PT AU BA BE GP AF BF CA TI SO SE BS LA DT CT CY CL SP HO DE ID AB C1 RP EM RI OI FU FX CR NR TC Z9 U1 U2 PU PI PA SN EI BN J9 JI PD PY VL IS PN SU SI MA BP EP AR DI D2 EA EY PG WC SC GA UT PM OA HC HP DA J Johansson, J; Kristensen, NP; Nilsson, JA; Jonzen, N Johansson, Jacob; Kristensen, Nadiah P.; Nilsson, Jan-Ake; Jonzen, Niclas The eco-evolutionary consequences of interspecific phenological asynchrony - a theoretical perspective OIKOS English Review PLANT-POLLINATOR INTERACTIONS; GLOBAL CLIMATE-CHANGE; LIFE-HISTORY TRAITS; MIGRATORY BIRDS; TROPHIC INTERACTIONS; POPULATION BIOLOGY; AVIAN REPRODUCTION; EMPIRICAL-EVIDENCE; BREEDING SEASONS; FLOWERING TIME The timing of biological events (phenology) is an important aspect of both a species' life cycle and how it interacts with other species and its environment. Patterns of phenological change have been given much scientific attention, particularly recently in relation to climate change. For pairs of interacting species, if their rates of phenological change differ, then this may lead to asynchrony between them and disruption of their ecological interactions. However it is often difficult to interpret differential rates of phenological change and to predict their ecological and evolutionary consequences. We review theoretical results regarding this topic, with special emphasis on those arising from life history theory, evolutionary game theory and population dynamic models. Much ecological research on phenological change builds upon the concept of match/mismatch, so we start by putting forward a simple but general model that captures essential elements of this concept. We then systematically compare the predictions of this baseline model with expectations from theory in which additional ecological mechanisms and features of species life cycles are taken into account. We discuss the ways in which the fitness consequences of interspecific phenological asynchrony may be weak, strong, or idiosyncratic. We discuss theory showing that synchrony is not necessarily an expected evolutionary outcome, and how population densities are not necessarily maximized by adaptation, and the implications of these findings. By bringing together theoretical developments regarding the eco-evolutionary consequences of phenological asynchrony, we provide an overview of available alternative hypotheses for interpreting empirical patterns as well as the starting point for the next generation of theory in this field. [Johansson, Jacob; Kristensen, Nadiah P.; Nilsson, Jan-Ake; Jonzen, Niclas] Lund Univ, Dept Biol, SE-22362 Lund, Sweden Johansson, J (reprint author), Lund Univ, Dept Biol, Ecol Bldg, SE-22362 Lund, Sweden. jacob.johansson@biol.lu.se Johansson, Jacob/0000-0002-0018-7018 research program BECC (Biodiversity and Ecosystem Services in a Changing Climate) at Lund Univ.; Univ. of Gothenburg; Swedish Research Council [2012-3620, 2013-4386] We are grateful for support from the research program BECC (Biodiversity and Ecosystem Services in a Changing Climate) at Lund Univ. and Univ. of Gothenburg (www.becc.lu.se) and for additional financial support from the Swedish Research Council (2012-3620 to NJ and 2013-4386 to JAN). We thank Per Lundberg and Silke Bauer for helpful suggestions during the revision of this manuscript. Allee WC, 1931, ANIMAL AGGREGATIONS; Altermatt F, 2010, P ROY SOC B-BIOL SCI, V277, P1281, DOI 10.1098/rspb.2009.1910; Barta Z, 2008, PHILOS T R SOC B, V363, P211, DOI 10.1098/rstb.2007.2136; Bennett NL, 2015, OIKOS, V124, P41, DOI 10.1111/oik.01490; Both C, 2006, NATURE, V441, P81, DOI 10.1038/nature04539; Both C, 2001, NATURE, V411, P296, DOI 10.1038/35077063; Both C, 2009, J ANIM ECOL, V78, P73, DOI 10.1111/j.1365-2656.2008.01458.x; Boyce MS, 2006, TRENDS ECOL EVOL, V21, P141, DOI 10.1016/j.tree.2005.11.018; BROWN JS, 1992, EVOL ECOL, V6, P360, DOI 10.1007/BF02270698; Burkle LA, 2013, SCIENCE, V339, P1611, DOI 10.1126/science.1232728; Carpenter S. R., 2009, BIOSCIENCE, V59, P1; Caswell H, 2001, MATRIX POPULATION MO; Childs DZ, 2010, P ROY SOC B-BIOL SCI, V277, P3055, DOI 10.1098/rspb.2010.0707; Cholewa M, 2011, ACTA ORNITHOL, V46, P105, DOI 10.3161/000164511X625874; Chuine I, 2010, PHILOS T R SOC B, V365, P3149, DOI 10.1098/rstb.2010.0142; Cleland EE, 2015, OIKOS, V124, P33, DOI 10.1111/oik.01433; COHEN D, 1971, J THEOR BIOL, V33, P299, DOI 10.1016/0022-5193(71)90068-3; CUSHING DH, 1969, ICES J MAR SCI, V33, P81, DOI DOI 10.1093/ICESJMS/33.1.81; Cushing DH, 1990, ADV MAR BIOL, P250, DOI DOI 10.1016/S0065-2881(08)60202-3); Day E, 2015, OIKOS, V124, P62, DOI 10.1111/oik.01340; Donnelly A, 2011, INT J BIOMETEOROL, V55, P805, DOI 10.1007/s00484-011-0426-5; Dunn PO, 2011, ECOLOGY, V92, P450, DOI 10.1890/10-0478.1; Durant JM, 2005, ECOL LETT, V8, P952, DOI 10.1111/j.1461-0248.2005.00798.x; Durant JM, 2007, CLIM RES, V33, P271, DOI 10.3354/cr033271; Easterling DR, 2000, SCIENCE, V289, P2068, DOI 10.1126/science.289.5487.2068; Ehrlen J, 2015, OIKOS, V124, P92, DOI 10.1111/oik.01473; Fitter AH, 2002, SCIENCE, V296, P1689, DOI 10.1126/science.1071617; Forrest J, 2010, PHILOS T R SOC B, V365, P3101, DOI 10.1098/rstb.2010.0145; Forrest JRK, 2015, OIKOS, V124, P4, DOI 10.1111/oik.01386; GADGIL S, 1975, J GENET, V62, P33, DOI 10.1007/BF02984179; Garcia-Roger EM, 2014, INT REV HYDROBIOL, V99, P96, DOI 10.1002/iroh.201301708; Gienapp P, 2007, CLIM RES, V35, P25, DOI 10.3354/cr00712; Gill J. A., 2014, P R SOC B, V281, P2013; GILLESPIE JH, 1974, GENETICS, V76, P601; Gilman RT, 2012, EVOL APPL, V5, P2, DOI 10.1111/j.1752-4571.2011.00202.x; Gomi T, 2007, ENTOMOL EXP APPL, V125, P179, DOI 10.1111/j.1570-7458.2007.00616.x; HARDIN G, 1968, SCIENCE, V162, P1243; Hedenstrom A, 2007, CLIM RES, V35, P79, DOI 10.3354/cr00715; Hendry AP, 2007, FUNCT ECOL, V21, P455, DOI 10.1111/j.1365-2435.2007.01240.x; Heppell SS, 2000, ECOLOGY, V81, P654, DOI 10.1890/0012-9658(2000)081[0654:LHAEPP]2.0.CO;2; Hjort J., 1914, RAPP P V REUN CONS I, V20, P1; Hopper KR, 1999, ANNU REV ENTOMOL, V44, P535, DOI 10.1146/annurev.ento.44.1.535; Huek J, 2014, OECOLOGIA, V174, P1139; Hutchings MJ, 2010, J ECOL, V98, P867, DOI 10.1111/j.1365-2745.2010.01661.x; IPCC, 1990, SCI ASS CLIM CHANG P; IWASA Y, 1995, J THEOR BIOL, V172, P33, DOI 10.1006/jtbi.1995.0003; Iwasa Y, 2000, EVOL ECOL RES, V2, P437; Johansson Jacob, 2012, Biology - Basel, V1, P639, DOI 10.3390/biology1030639; Johansson J, 2012, ECOL LETT, V15, P881, DOI 10.1111/j.1461-0248.2012.01812.x; Johansson J, 2012, AM NAT, V179, P463, DOI 10.1086/664624; Jonzen N, 2007, P R SOC B, V274, P269, DOI 10.1098/rspb.2006.3719; KETTERSON ED, 1976, ECOLOGY, V57, P679, DOI 10.2307/1936182; Kisdi E, 2002, AM NAT, V159, P579, DOI 10.1086/339989; Kokko H, 2006, AM NAT, V167, P901, DOI 10.1086/504604; Kokko H, 2011, OIKOS, V120, P1826, DOI 10.1111/j.1600-0706.2011.19438.x; LACK D, 1950, IBIS, V92, P288, DOI 10.1111/j.1474-919X.1950.tb01753.x; Lack D., 1954, NATURAL REGULATION A; Lambrechts MM, 1997, EVOL ECOL, V11, P599, DOI 10.1007/s10682-997-1515-0; Lof ME, 2012, P ROY SOC B-BIOL SCI, V279, P3161, DOI 10.1098/rspb.2012.0431; LYNCH M, 1993, BIOTIC INTERACTIONS AND GLOBAL CHANGE, P234; McNamara JM, 2008, PHILOS T R SOC B, V363, P301, DOI 10.1098/rstb.2007.2141; McNamara JM, 2011, ECOL LETT, V14, P1183, DOI 10.1111/j.1461-0248.2011.01686.x; Memmott J, 2007, ECOL LETT, V10, P710, DOI 10.1111/j.1461-0248.2007.01061.x; Miller-Rushing AJ, 2010, PHILOS T R SOC B, V365, P3177, DOI 10.1098/rstb.2010.0148; Nakazawa T, 2012, OIKOS, V121, P489, DOI 10.1111/j.1600-0706.2011.20171.x; Nilsson JA, 1996, P ROY SOC B-BIOL SCI, V263, P711, DOI 10.1098/rspb.1996.0106; NILSSON JA, 1988, J ANIM ECOL, V57, P917, DOI 10.2307/5101; Parmesan C, 2003, NATURE, V421, P37, DOI 10.1038/nature01286; Penuelas J, 2001, SCIENCE, V294, P793, DOI 10.1126/science.1066860; Philippart CJM, 2003, LIMNOL OCEANOGR, V48, P2171, DOI 10.4319/lo.2003.48.6.2171; Podrabsky JE, 2010, TOP CURR GENET, V21, P203, DOI 10.1007/978-3-642-12422-8_12; Polacik M, 2014, J EVOLUTION BIOL, V27, P854, DOI 10.1111/jeb.12359; Rafferty NE, 2015, OIKOS, V124, P14, DOI 10.1111/oik.01523; Rankin DJ, 2007, TRENDS ECOL EVOL, V22, P643, DOI 10.1016/j.tree.2007.07.009; Reed TE, 2015, OIKOS, V124, P81, DOI 10.1111/oik.01398; Reed TE, 2013, SCIENCE, V340, P488, DOI 10.1126/science.1232870; Revilla TA, 2015, OIKOS, V124, P22, DOI 10.1111/oik.01532; Revilla TA, 2014, THEOR ECOL-NETH, V7, P149, DOI 10.1007/s12080-013-0207-3; Ripa J, 2010, P ROY SOC B-BIOL SCI, V277, P1153, DOI 10.1098/rspb.2009.2023; Roy DB, 2000, GLOB CHANGE BIOL, V6, P407, DOI 10.1046/j.1365-2486.2000.00322.x; Rudolf V. H. W., 2013, OECOLOGIA, V173, P1034; Schmidt KA, 2015, OIKOS, V124, P69, DOI 10.1111/oik.01483; Schwartz MD, 2006, GLOBAL CHANGE BIOL, V12, P343, DOI 10.1111/j.1365-2486.2005.01097.x; Simons AM, 2011, P ROY SOC B-BIOL SCI, V278, P1601, DOI 10.1098/rspb.2011.0176; Singer MC, 2010, PHILOS T R SOC B, V365, P3161, DOI 10.1098/rstb.2010.0144; Sirot E, 2014, J AVIAN BIOL, V45, P109, DOI 10.1111/j.1600-048X.2013.00184.x; SMITH JM, 1989, PHILOS T ROY SOC B, V325, P241, DOI 10.1098/rstb.1989.0086; SMITH JM, 1976, ANIM BEHAV, V24, P159, DOI 10.1016/S0003-3472(76)80110-8; Sparks TH, 2002, INT J CLIMATOL, V22, P1715, DOI 10.1002/joc.821; Stenseth NC, 2002, P NATL ACAD SCI USA, V99, P13379, DOI 10.1073/pnas.212519399; SWEENEY BW, 1982, EVOLUTION, V36, P810, DOI 10.1111/j.1558-5646.1982.tb05447.x; Thackeray SJ, 2010, GLOBAL CHANGE BIOL, V16, P3304, DOI 10.1111/j.1365-2486.2010.02165.x; Thomson JD, 2010, PHILOS T R SOC B, V365, P3187, DOI 10.1098/rstb.2010.0115; van Asch M, 2007, ANNU REV ENTOMOL, V52, P37, DOI 10.1146/annurev.ento.52.110405.091418; Vatka E, 2011, GLOBAL CHANGE BIOL, V17, P3002, DOI 10.1111/j.1365-2486.2011.02430.x; Veen T, 2010, OECOLOGIA, V162, P873, DOI 10.1007/s00442-009-1544-1; Visser M. E., 2011, J ORNITHOL, V153, P75; Visser ME, 2010, PHILOS T R SOC B, V365, P3113, DOI 10.1098/rstb.2010.0111; Visser ME, 1998, P ROY SOC B-BIOL SCI, V265, P1867, DOI 10.1098/rspb.1998.0514; Visser ME, 2005, P ROY SOC B-BIOL SCI, V272, P2561, DOI 10.1098/rspb.2005.3356; Visser ME, 2004, ADV ECOL RES, V35, P89, DOI 10.1016/S0065-2504(04)35005-1; Wilczek AM, 2010, PHILOS T R SOC B, V365, P3129, DOI 10.1098/rstb.2010.0128; Winder M, 2004, ECOLOGY, V85, P2100, DOI 10.1890/04-0151; Yang LH, 2010, ECOL LETT, V13, P1, DOI 10.1111/j.1461-0248.2009.01402.x 104 18 21 4 107 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos JAN 2015 124 1 102 112 10.1111/oik.01909 11 Ecology Environmental Sciences & Ecology AX6SU WOS:000347052300012 2018-11-12 J Kissling, ML; Lukacs, PM; Gende, SM; Lewis, SB Kissling, Michelle L.; Lukacs, Paul M.; Gende, Scott M.; Lewis, Stephen B. Multi-State Mark-Recapture Model to Estimate Survival of a Dispersed-Nesting Seabird, the Kittlitz's Murrelet JOURNAL OF WILDLIFE MANAGEMENT English Article Alaska; Brachyramphus; demography; Kittlitz's murrelet; mark-recapture; multi-state; seabird; survival BRACHYRAMPHUS-BREVIROSTRIS; MARBLED-MURRELET; POPULATION STATUS; BRITISH-COLUMBIA; ADULT SURVIVAL; LOCAL SURVIVAL; GLACIER BAY; BALD EAGLES; ALASKA; CLIMATE The Kittlitz's murrelet (Brachyramphus brevirostris) is a small, dispersed-nesting seabird that often occurs in glacially influenced marine waters of Alaska and eastern Russia during the breeding season. Owing to its association with glacial habitats and apparent population declines in some parts of its range, the Kittlitz's murrelet has been the subject of considerable conservation concern in recent years. We present the first-ever estimates of breeding season and annual survival of the Kittlitz's murrelet. We estimated survival by capturing 914 murrelets and radiotagging 191 of them in Icy Bay, Alaska, 2007-2012. We used a multi-state mark-recapture framework to estimate breeding season survival. Daily survival probabilities were similar in the 3 spatial states (Icy Bay, Gulf of Alaska, nest; range=0.996-0.999), resulting in an overall 60-day breeding season survival probability of 0.89 (SE=0.04). The only apparent source of fatality of Kittlitz's murrelets during the breeding season was avian predators, specifically bald eagle (Haliaeetus leucocephalus) and peregrine falcon (Falco peregrinus). We estimated mean apparent annual survival across all years as 0.80 (SE=0.33) with a recapture probability of 0.079 (SE=0.032), resulting in a 305-day non-breeding season survival probability of 0.90 (SE=0.37). We found that survival was lower than expected based on life-history theory and allometry, and that fatality risk was greater in the breeding season compared to other parts of the year. Our results indicating low survival rates of Kittlitz's murrelets are consistent with the observed decline of 10% per annum in the local population of this species in Icy Bay. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. [Kissling, Michelle L.; Lewis, Stephen B.] US Fish & Wildlife Serv, Juneau, AK 99801 USA; [Lukacs, Paul M.] Univ Montana, Dept Ecosyst & Conservat Sci, Wildlife Biol Program, Missoula, MT 59812 USA; [Gende, Scott M.] Natl Pk Serv, Glacier Bay Field Stn, Juneau, AK USA Kissling, ML (reprint author), US Fish & Wildlife Serv, 3000 Vintage Blvd,Suite 201, Juneau, AK 99801 USA. michelle_kissling@fws.gov National Park Service; USFWS We thank over 100 volunteers and colleagues that provided advice, lent equipment, or assisted with capturing, tracking, and surveying murrelets in Icy Bay. We especially are grateful to N. Hatch, L. Kenney, J. Felis, S. Schoen, and N. Hajdukovich for their hard work in the field often under trying conditions. We also thank Icy Bay Lodge, Alsek Air, Temsco Helicopters, and Coastal Helicopters, and several individuals and businesses in Yakutat for many years of support. We particularly acknowledge Les Hartley for safely flying over 800 hr of telemetry. We thank Wrangell-St. Elias National Park, Chugach Native Corporation, and Alaska Mental Health Trust Authority for permitting access to their lands. We thank Dr. D. Koons, Dr. M. Morrison (Associate Editor), and one anonymous reviewer for constructive suggestions that improved the manuscript greatly. Funding for this study was provided primarily by the National Park Service and USFWS. The findings and conclusions in this manuscript are those of the authors and do not necessarily represent the views of the USFWS. Anthony RG, 2008, ECOLOGY, V89, P2725, DOI 10.1890/07-1818.1; Barclay DJ, 2006, ARCT ANTARCT ALP RES, V38, P153, DOI 10.1657/1523-0430(2006)38[153:ARAEHG]2.0.CO;2; Barron DG, 2010, METHODS ECOL EVOL, V1, P180, DOI 10.1111/j.2041-210X.2010.00013.x; Beissinger S. R., 1995, PSWGTR152 US DEP AGR, P385; Beissinger SR, 2007, ECOLOGY, V88, P296, DOI 10.1890/06-0869; Bertram DF, 2005, CAN J FISH AQUAT SCI, V62, P2841, DOI 10.1139/F05-190; Bradley RW, 2004, J WILDLIFE MANAGE, V68, P318, DOI 10.2193/0022-541X(2004)068[0318:IBSTRI]2.0.CO;2; Buehler D. A., 2000, BIRDS N AM ONLINE; Burnham K. P., 2002, MODEL SELECTION MULT; Cam E, 2003, CONSERV BIOL, V17, P1118, DOI 10.1046/j.1523-1739.2003.01287.x; Caswell H, 2001, MATRIX POPULATION MO; CORMACK RM, 1964, BIOMETRIKA, V51, P429, DOI 10.1093/biomet/51.3-4.429; Day R. H., 1999, BIRDS N AM ONLINE, DOI 10.2173/bna.435; Day RH, 1996, CONDOR, V98, P433, DOI 10.2307/1369165; Dekker D, 2012, CONDOR, V114, P290, DOI 10.1525/cond.2012.110110; Devineau O, 2014, J WILDLIFE MANAGE, V78, P224, DOI 10.1002/jwmg.660; Friesen V. L., 2012, CONSERVATION GENETIC; Gaston A. J, 2004, SEABIRDS NATURAL HIS; Harding AMA, 2011, OECOLOGIA, V167, P49, DOI 10.1007/s00442-011-1971-7; Hipfner J. Mark, 2012, Marine Ornithology, V40, P39; Horswill C, 2014, J ANIM ECOL, V83, P1057, DOI 10.1111/1365-2656.12229; JOLLY GM, 1965, BIOMETRIKA, V52, P225, DOI 10.2307/2333826; Jones IL, 2007, J AVIAN BIOL, V38, P450, DOI 10.1111/j.2007.0908-8857.03895.x; JONES IL, 1992, AUK, V109, P576; Kaler RSA, 2009, WATERBIRDS, V32, P363, DOI 10.1675/063.032.0301; Kirchhoff MD, 2014, CONDOR, V116, P24, DOI 10.1650/CONDOR-13-123.1; Kissling ML, 2007, ECOL APPL, V17, P2164, DOI 10.1890/06-1990.1; Kissling Michelle L., 2011, Marine Ornithology, V39, P3; KISSLING ML, 2011, MAR ORNITHOL, V39, P2; Kitaysky AS, 2010, FUNCT ECOL, V24, P625, DOI 10.1111/j.1365-2435.2009.01679.x; Kozie K., 1993, COASTAL WILDLIFE SUR; Kuletz Katherine J., 2003, Marine Ornithology, V31, P133; Kuletz Katherine J., 2011, Marine Ornithology, V39, P97; Kuletz Katherine J., 2011, Marine Ornithology, V39, P85; Lack D., 1968, ECOLOGICAL ADAPTATIO; Lawonn M. J., 2012, THESIS OREGON STATE; Lebreton JD, 2002, J APPL STAT, V29, P353, DOI 10.1080/02664760120108638; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Lougheed C, 2002, CONDOR, V104, P309, DOI 10.1650/0010-5422(2002)104[0309:LSOAAJ]2.0.CO;2; Madison E. N., 2012, ANN M PAC SEAB GROUP, P59; Markon C.J., 2012, 1379 US GEOL SURV; Matthiopoulos L., 2014, OECOLOGIA, V174, P151; Mills L. S., 2012, CONSERVATION WILDLIF; Molnia B. F., 2008, 1386K US GEOL SURV, pK1; Morrison KW, 2011, AUK, V128, P707, DOI 10.1525/auk.2011.10198; Newman SH, 1999, J FIELD ORNITHOL, V70, P520; Peery MZ, 2006, J WILDLIFE MANAGE, V70, P78, DOI 10.2193/0022-541X(2006)70[78:LSOMMI]2.0.CO;2; Peery MZ, 2004, CONSERV BIOL, V18, P1088, DOI 10.1111/j.1523-1739.2004.00134.x; Piatt JF, 2007, LONG TERM ECOLOGICAL, P522; Piatt John F., 2011, Marine Ornithology, V39, P65; Pyle P, 2008, IDENTIFICATION GUIDE; Sandvik H, 2012, MAR ECOL PROG SER, V454, P273, DOI 10.3354/meps09558; Saraux C, 2011, NATURE, V469, P203, DOI 10.1038/nature09630; SEALY SG, 1974, AUK, V91, P10, DOI 10.2307/4084657; Seber G. A. F., 1965, BIOMETRIKA, V49, P330; Stearns S. C., 1992, EVOLUTION LIFE HIST; Steenhof K, 2006, WILDLIFE SOC B, V34, P116, DOI 10.2193/0091-7648(2006)34[116:EOROPF]2.0.CO;2; Stenhouse Iain J., 2008, Marine Ornithology, V36, P59; [USFWS] U. S. Fish and Wildlife Service, 2013, FED REGISTER, V78, P61764; Viens R. J., 1994, THESIS U WASHINGTON; Watson James W., 2002, Northwestern Naturalist (Vancouver), V83, P101, DOI 10.2307/3536608; White CM, 2002, BIRDS N AM ONLINE; White GC, 1999, BIRD STUDY, V46, P120; Whitworth DL, 1997, COLON WATERBIRD, V20, P525, DOI 10.2307/1521603; Ydenberg RC, 2004, P ROY SOC B-BIOL SCI, V271, P1263, DOI 10.1098/rspb.2004.2713 65 4 4 1 23 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-541X 1937-2817 J WILDLIFE MANAGE J. Wildl. Manage. JAN 2015 79 1 20 30 10.1002/jwmg.811 11 Ecology; Zoology Environmental Sciences & Ecology; Zoology AW9YT WOS:000346611800004 2018-11-12 J Kohrt, BA; Jordans, MJD; Koirala, S; Worthman, CM Kohrt, Brandon A.; Jordans, Mark J. D.; Koirala, Suraj; Worthman, Carol M. Designing Mental Health Interventions Informed by Child Development and Human Biology Theory: A Social Ecology Intervention for Child Soldiers in Nepal AMERICAN JOURNAL OF HUMAN BIOLOGY English Review RANDOMIZED CONTROLLED-TRIAL; LIFE-HISTORY; IMPLEMENTATION SCIENCE; SYSTEMS BIOLOGY; ADULT DISEASE; HOUSEHOLD DYSFUNCTION; NORTHERN UGANDA; SEX-DIFFERENCES; FUTURE-RESEARCH; HIV PREVENTION The anthropological study of human biology, health, and child development provides a model with potential to address the gap in population-wide mental health interventions. Four key concepts from human biology can inform public mental health interventions: life history theory and tradeoffs, redundancy and plurality of pathways, cascades and multiplier effects in biological systems, and proximate feedback systems. A public mental health intervention for former child soldiers in Nepal is used to illustrate the role of these concepts in intervention design and evaluation. Future directions and recommendations for applying human biology theory in pursuit of public mental health interventions are discussed. Am. J. Hum. Biol. 27:27-40, 2015. (c) 2014 Wiley Periodicals, Inc. [Kohrt, Brandon A.; Worthman, Carol M.] Emory Univ, Dept Anthropol, Atlanta, GA 30322 USA; [Kohrt, Brandon A.; Jordans, Mark J. D.; Koirala, Suraj] TPO, Kathmandu, Nepal; [Jordans, Mark J. D.] Kings Coll London, Ctr Global Mental Hlth, London WC2R 2LS, England; [Jordans, Mark J. D.] HealthNet TPO, Amsterdam, Netherlands Kohrt, BA (reprint author), Duke Univ, Duke Global Hlth Inst, 310 Trent Dr,213 Trent Hall, Durham, NC 27708 USA. brandon.kohrt@duke.edu Kohrt, Brandon/0000-0002-3829-4820; Jordans, Mark/0000-0001-5925-8039; Worthman, Carol M/0000-0002-5397-2298 National Institute of Mental Health (NIMH) [F31 MH075584]; HopeLab Foundation, Redwood City, CA; UNICEF Nepal Contract grant sponsor: National Institute of Mental Health (NIMH); Contract grant number: F31 MH075584 (to B.A.K.); Contract grant sponsor: HopeLab Foundation, Redwood City, CA (to C.M.W. and B.A.K.) and UNICEF Nepal support to Transcultural Psychosocial Organization (TPO) Nepal. Adiwijaya BS, 2006, MOL BIOSYST, V2, P650, DOI 10.1039/b610090b; Ahn AC, 2006, PLOS MED, V3, P709, DOI 10.1371/journal.pmed.0030208; Anderson ES, 2006, ANN BEHAV MED, V31, P70, DOI 10.1207/s15324796abm3101_11; Anderson R, 2008, BRIT MED J, V337, DOI 10.1136/bmj.a1937; Annan J, 2011, J CONFLICT RESOLUT, V55, P877, DOI 10.1177/0022002711408013; Annan J, 2010, SOC SCI MED, V70, P152, DOI 10.1016/j.socscimed.2009.09.027; Annan J, 2009, J ADOLESCENT RES, V24, P639, DOI 10.1177/0743558409350499; BARKER DJP, 1990, BRIT MED J, V301, P1111, DOI 10.1136/bmj.301.6761.1111; Barker DJP, 2002, INT J EPIDEMIOL, V31, P1235, DOI 10.1093/ije/31.6.1235; Bastos FI, 2000, SOC SCI MED, V51, P1771, DOI 10.1016/S0277-9536(00)00109-X; BATESON G, 1971, PSYCHIATR, V34, P1; Bateson G, 1972, STEPS ECOLOGY MIND C, P545; Beasley JM, 2010, J CANCER SURVIV, V4, P372, DOI 10.1007/s11764-010-0139-5; BELSKY J, 1980, AM PSYCHOL, V35, P320, DOI 10.1037/0003-066X.35.4.320; Bennett L, 1983, DANGEROUS WIVES SACR, P353; Betancourt TS, 2013, BRIT J PSYCHIAT, V203, P196, DOI 10.1192/bjp.bp.112.113514; Betancourt TS, 2013, J CHILD PSYCHOL PSYC, V54, P17, DOI 10.1111/j.1469-7610.2012.02620.x; Betancourt TS, 2010, J AM ACAD CHILD PSY, V49, P606, DOI 10.1016/j.jaac.2010.03.008; Betancourt TS, 2010, SOC SCI MED, V70, P17, DOI 10.1016/j.socscimed.2009.09.038; Blackwell AD, 2010, AM J HUM BIOL, V22, P836, DOI 10.1002/ajhb.21092; Brewis AA, 2012, AM J HUM BIOL, V24, P258, DOI 10.1002/ajhb.22250; Brewis AA, 2011, SOC SCI MED, V73, P491, DOI 10.1016/j.socscimed.2011.05.048; BRONFENBRENNER U, 1977, AM PSYCHOL, V32, P513, DOI 10.1037/0003-066X.32.7.513; BRONFENBRENNER U., 1979, ECOLOGY HUMAN DEV EX; Bronfenbrenner U., 2005, MAKING HUMAN BEINGS; Bronfenbrenner U., 1994, INT ENCY ED, V2, P37; Brown DW, 2009, AM J PREV MED, V37, P389, DOI 10.1016/j.amepre.2009.06.021; Caceres CF, 2007, AIDS, V21, pS59; Chapman DP, 2007, PSYCHIAT ANN, V37, P359; Chapman DP, 2004, J AFFECT DISORDERS, V82, P217, DOI 10.1016/j.jad.2003.12.013; CICCHETTI D, 1993, PSYCHIATRY, V56, P96; Cicchetti D, 2000, HDB DEV PSYCHOPATHOL, P689; Copeland WE, 2009, ARCH GEN PSYCHIAT, V66, P764, DOI 10.1001/archgenpsychiatry.2009.85; Danese A, 2009, ARCH PEDIAT ADOL MED, V163, P1135, DOI 10.1001/archpediatrics.2009.214; Davies TH, 2002, J BIOL CHEM, V277, P4597, DOI 10.1074/jbc.C100531200; Decaro JA, 2010, AM J HUM BIOL, V22, P657, DOI 10.1002/ajhb.21062; Dong MX, 2004, CIRCULATION, V110, P1761, DOI 10.1161/01.CIR.0000143074.54995.7F; Drake AJ, 2004, J ENDOCRINOL, V180, P1, DOI 10.1677/joe.0.1800001; Dube SR, 2003, PEDIATRICS, V111, P564, DOI 10.1542/peds.111.3.564; Dube SR, 2001, JAMA-J AM MED ASSOC, V286, P3089, DOI 10.1001/jama.286.24.3089; Dyregrov A, 2002, TRAUMATOLOGY, V8, P135; Edmonds JK, 2012, SOC SCI MED, V74, P452, DOI 10.1016/j.socscimed.2011.10.032; Flinn MV, 2009, BEHAV BRAIN SCI, V32, P27, DOI 10.1017/S0140525X09000089; Fowler JH, 2010, P NATL ACAD SCI USA, V107, P5334, DOI 10.1073/pnas.0913149107; Franklin JC, 2015, J CLIN CHILD ADOLESC, V44, P280, DOI 10.1080/15374416.2013.873981; Freisthler B, 2006, CHILD MALTREATMENT, V11, P263, DOI 10.1177/1077559506289524; GARBARINO J, 1980, CHILD DEV, V51, P188, DOI 10.1111/j.1467-8624.1980.tb02525.x; Gillespie CF, 2009, DEPRESS ANXIETY, V26, P984, DOI 10.1002/da.20605; Government of Nepal, 2006, INT CONST 2063, P24; Grobman G. M., 2005, Public Administration Quarterly, V29, P350; Grubelnik V, 2009, BIOPHYS CHEM, V143, P132, DOI 10.1016/j.bpc.2009.04.009; Hawe P, 2009, AM J COMMUN PSYCHOL, V43, P267, DOI 10.1007/s10464-009-9229-9; Hester RL, 2011, J PHYSIOL-LONDON, V589, P1053, DOI 10.1113/jphysiol.2010.201558; Hillis SD, 2004, PEDIATRICS, V113, P320, DOI 10.1542/peds.113.2.320; Hruschka DJ, 2012, AM J HUM BIOL, V24, P277, DOI 10.1002/ajhb.22231; Hruschka DJ, 2011, AM J PUBLIC HEALTH, V101, pS295, DOI 10.2105/AJPH.2010.300053; Hruschka DJ, 2005, PSYCHONEUROENDOCRINO, V30, P698, DOI 10.1016/j.psyneuen.2005.03.002; Hruschka DJ, 2010, FRIENDSHIP DEV ECOLO; Human Rights Watch, 2007, CHILDR RANKS MAOISTS, P74; Hutt M, 2004, HIM PEOPL WAR NEP MA, p[xi, 322]; [INSEC Centre ISS], 2008, FACT SHEET NUMB VICT; Jeong H, 2000, NATURE, V407, P651, DOI 10.1038/35036627; Jordans MJD, 2013, COMMUNITY MENT HLT J, V49, P354, DOI 10.1007/s10597-013-9591-9; Jordans MJ, 2007, INT J ADV COUNS, V29, P57, DOI 10.1007/s10447-006-9028-z; Jordans MJD, 2012, AM J ORTHOPSYCHIAT, V82, P338, DOI 10.1111/j.1939-0025.2012.01171.x; Jordans MJD, 2010, J CHILD PSYCHOL PSYC, V51, P818, DOI 10.1111/j.1469-7610.2010.02209.x; Jordans MJ, 2003, INTERVENTION, V1, P18; Judge K, 2001, CRITICAL PUBLIC HLTH, V11, P19; Karki R, 2009, INTERVENTION, V7, P92, DOI 10.1097/WTF.0b013e3283302725; Kitano H, 2002, SCIENCE, V295, P1662, DOI 10.1126/science.1069492; Kloos B, 2005, AM J COMMUN PSYCHOL, V36, P357, DOI 10.1007/s10464-005-8631-1; Koehler Gus, 2003, Nonlinear Dynamics Psychol Life Sci, V7, P99, DOI 10.1023/A:1020418210366; Kohrt BA, 2007, COURSE BOOK COMMUNIT; Kohrt BA, 2015, GENOCIDE MASS VIOLEN, P369; Kohrt BA, 2009, STUD NEPALI HIST SOC, V14, P107; Kohrt BA, 2010, INT PSYCHIAT, V7, P58; Kohrt BA, 2014, HDB CHILD MALTREATME, V2, P553; Kohrt BA, 2010, PSYCHOSOCIAL SUPPORT; Kohrt BA, 2010, WAR MACHINE GLOBAL H, P89; Kohrt B, 2013, BRIT J PSYCHIAT, V203, P165, DOI 10.1192/bjp.bp.112.124958; Kohrt BA, 2008, CULT MED PSYCHIAT, V32, P462, DOI 10.1007/s11013-008-9110-6; Kohrt BA, 2008, JAMA-J AM MED ASSOC, V300, P691, DOI 10.1001/jama.300.6.691; Kohrt BA, 2015, ASIA-PAC PSYCHIAT, V7, P7, DOI 10.1111/appy.12141; Kohrt BA, 2010, TRANSCULT PSYCHIATRY, V47, P727, DOI 10.1177/1363461510381290; Kohrt BA, 2010, CULT MED PSYCHIAT, V34, P322, DOI 10.1007/s11013-010-9170-2; Kohrt BA, 2008, JAMA-J AM MED ASSOC, V300, P2729, DOI 10.1001/jama.2008.775; Kohrt BA, 2009, CNS NEUROSCI THER, V15, P237, DOI 10.1111/j.1755-5949.2009.00096.x; Latkin CA, 2005, AIDS CARE, V17, pS102, DOI 10.1080/09540120500121185; Lawoti Mahendra, 2003, STUDIES NEPALI HIST, V8, P67; Lupien SJ, 2009, NAT REV NEUROSCI, V10, P434, DOI 10.1038/nrn2639; Lynam DR, 2007, J ABNORM PSYCHOL, V116, P155, DOI 10.1037/0021-843X.116.1.155; MacMillan HL, 2009, LANCET, V373, P250, DOI 10.1016/S0140-6736(08)61708-0; Madon T, 2007, SCIENCE, V318, P1728, DOI 10.1126/science/1150009; Maggi S, 2010, J PAEDIATR CHILD H, V46, P627, DOI 10.1111/j.1440-1754.2010.01817.x; McDade TW, 2001, AM J CLIN NUTR, V74, P543; Moffitt TE, 2011, P NATL ACAD SCI USA, V108, P2693, DOI 10.1073/pnas.1010076108; Morley CA, 2013, J AGGRESS MALTREAT T, V22, P714, DOI 10.1080/10926771.2013.813882; Murray CJL, 2012, LANCET, V380, P2197, DOI 10.1016/S0140-6736(12)61689-4; Nyberg CH, 2012, AM J HUM BIOL, V24, P730, DOI 10.1002/ajhb.22304; O'Donnell M, 2008, AUST NZ J PUBL HEAL, V32, P325, DOI 10.1111/j.1753-6405.2008.00249.x; Panter-Brick C, 2012, OXFORD HDB POVERTY C, P603; Pessoa L, 2010, NAT REV NEUROSCI, V11, P773, DOI 10.1038/nrn2920; Phillips DIW, 2002, TRENDS ENDOCRIN MET, V13, P363, DOI 10.1016/S1043-2760(02)00696-3; Prince M, 2007, LANCET, V370, P859, DOI 10.1016/S0140-6736(07)61238-0; Psychosocial Working Group, 2003, PSYCH INT COMPL EM F, P2; Rahman A, 2008, LANCET, V372, P902, DOI 10.1016/S0140-6736(08)61400-2; Rice D, 2000, ENVIRON HEALTH PERSP, V108, P511, DOI 10.1289/ehp.00108s3511; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; Scovel T., 2000, ANNU REV APPL LINGUI, V20, P213, DOI DOI 10.1017/S0267190500200135; Spiegel D, 2001, Semin Clin Neuropsychiatry, V6, P252, DOI 10.1053/scnp.2001.26995; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Stormer C, 2011, AM J HUM BIOL, V23, P201, DOI 10.1002/ajhb.21103; Surkan PJ, 2011, B WORLD HEALTH ORGAN, V89, P607, DOI 10.2471/BLT.11.088187; Suter JC, 2009, CLIN CHILD FAM PSYCH, V12, P336, DOI 10.1007/s10567-009-0059-y; Tansella M, 2009, BRIT J PSYCHIAT, V195, P283, DOI 10.1192/bjp.bp.109.065565; TAUTZ D, 1992, BIOESSAYS, V14, P263, DOI 10.1002/bies.950140410; Thapa D, 2003, KINGDOM SIEGE NEPALS; Thapa D, 2004, KINGDOM SIEGE NEPALS, Vxix, P275; Thornicroft G, 2005, PSYCHIAT SERV, V56, P1416, DOI 10.1176/appi.ps.56.11.1416; Thornicroft G, 2012, EPIDEMIOL PSYCH SCI, V21, P241, DOI 10.1017/S2045796012000261; Tol WA, 2013, HDB RESILIENCE CHILD, P29; Tol Wietse A, 2005, Transcult Psychiatry, V42, P317, DOI 10.1177/1363461505052670; Tyson JJ, 1978, PROG THEOR BIOL, V5, P62; UNDP, 2009, HUM DEV REP 2009 MOV; United Nations, 2006, REP SECR GEN CHILDR, P18; Upadhaya N, 2015, INTERVENTIO IN PRESS; Vitzthum VJ, 2009, AM J HUM BIOL, V21, P762, DOI 10.1002/ajhb.20927; Wells JCK, 2012, AM J HUM BIOL, V24, P261, DOI 10.1002/ajhb.22253; Wessells M, 1997, B ATOM SCI, V53, P32, DOI 10.1080/00963402.1997.11456787; World Health Organization, 2011, MENT HLTH ATL; Worthman CM, 2009, AM J HUM BIOL, V21, P772, DOI 10.1002/ajhb.20966; Worthman CM, 2009, ANN HUM BIOL, V36, P281, DOI 10.1080/03014460902832934; Worthman CM, 2005, AM J HUM BIOL, V17, P95, DOI 10.1002/ajhb.20096; Worthman CM, 2002, BIOCULTURAL INTERACT, P2339; Worthman CM, 2005, DEV PSYCHOBIOLOGY AG, P187; Zielinski DS, 2006, CHILD MALTREATMENT, V11, P49, DOI 10.1177/1077559505283591 136 13 13 0 28 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1042-0533 1520-6300 AM J HUM BIOL Am. J. Hum. Biol. JAN-FEB 2015 27 1 27 40 10.1002/ajhb.22651 14 Anthropology; Biology Anthropology; Life Sciences & Biomedicine - Other Topics AW7UF WOS:000346469000004 25380194 Green Accepted 2018-11-12 J Souza, UP; Ferreira, FC; Braga, FMD; Winemiller, KO Souza, Ursulla P.; Ferreira, Fabio C.; Braga, Francisco M. de S.; Winemiller, Kirk O. Feeding, body condition and reproductive investment of Astyanax intermedius (Characiformes, Characidae) in relation to rainfall and temperature in a Brazilian Atlantic Forest stream ECOLOGY OF FRESHWATER FISH English Article fecundity; life history; oocyte size; physiological trade-offs; neotropical fishes FRESH-WATER FISH; MAR STATE-PARK; SAO-PAULO STATE; LIFE-HISTORY; AMERICAN FISHES; SANTA VIRGINIA; SERRA; PATTERNS; RIVER; OSTEICHTHYES Life history theory seeks to explain how environmental variation selects for patterns of investment in growth and survival relative to production and survival of offspring. Seasonal variations in rainfall and temperature provide environmental cues for spawning by many tropical freshwater fishes. To investigate environment-life history associations, we conducted a one-year study of Astyanax intermedius in an Atlantic Forest stream of southeastern Brazil. Our analysis focused on temporal variation in feeding, body condition and reproduction in relation to rainfall and water temperature. For mature females, food intake was not significantly correlated with rainfall or temperature; however, body condition was negatively correlated with rainfall and water temperature. Female reproductive effort was positively correlated with water temperature, but did not vary with rainfall. For males and juveniles, there was no significant relationship between food intake or body condition and either environmental variable. Testis weight was negatively correlated with rainfall, but was not significantly correlated with water temperature. We detected a negative correlation between gonad mass with body condition and food intake for females but not for males. Our results differed from other studies in tropical and subtropical areas where rainfall has been shown to be positively correlated with fish reproductive effort. Our results indicate that reproductive effort of males is relatively constant throughout the year, whereas for females, it increases with increasing water temperature. This increase in reproductive investment in concert with an increasing temperature and metabolic rate may incur a trade-off with somatic growth and survival for this small stream fish. [Souza, Ursulla P.; Braga, Francisco M. de S.] Univ Estadual Paulista, Inst Biociencias, Dept Zool, BR-13506910 Sao Paulo, Brazil; [Souza, Ursulla P.] UNISANTA, Programa Posgrad Sustentabilidade Ecossistemas Co, BR-11045907 Sao Paulo, Brazil; [Ferreira, Fabio C.] Univ Estadual Paulista, Inst Biociencias, Dept Ecol, BR-13506910 Sao Paulo, Brazil; [Winemiller, Kirk O.] Texas A&M Univ, Dept Wildlife & Fisheries Sci, College Stn, TX 77843 USA Souza, UP (reprint author), Univ Estadual Paulista, Inst Biociencias, Dept Zool, Ave 24-A,1515, BR-13506910 Sao Paulo, Brazil. upsouza@gmail.com Winemiller, Kirk/0000-0003-0236-5129 Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) [140180/2005-2]; Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [04/12669-3] This project was partially supported by the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq process 140180/2005-2) by means of a PhD scholarship provided to the first author and by the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP process 04/12669-3) by providing funding for fieldwork. The Universidade Estadual Paulista (UNESP), Department of Biology, Rio Claro campus provided the institutional support. We thank Dr. Leandro M. Gomiero for providing logistical support during fieldwork and laboratory analyses, Dr. Heraldo A. Britski and Dr. Vinicius A. Bertaco for taxonomic identification and IBAMA (process 02027.000234/2005-05) for issuing the collection license. Finally, we thank Dr. Miguel Petrere Jr. for the opportunities provided during the last years and two anonymous referees for valuable comments on the manuscript. Alkins-Koo M, 2000, ENVIRON BIOL FISH, V57, P49, DOI 10.1023/A:1007566609881; Andrade P. M., 2005, Braz. J. Biol., V65, P387, DOI 10.1590/S1519-69842005000300003; Baran E, 2006, 14 MRC; Bertaco VA, 2006, NEOTROP ICHTHYOL, V4, P53, DOI 10.1590/S1679-62252006000100004; Beschta R. L., 1989, STREAMSIDE MANAGEMEN, P191; Blanck A, 2007, FRESHWATER BIOL, V52, P843, DOI 10.1111/j.1365-2427.2007.01736.x; Blanck A, 2007, J BIOGEOGR, V34, P862, DOI 10.1111/j.1365-2699.2006.01654.x; BRAGA F M D S, 1991, Naturalia (Rio Claro), V16, P55; BRAGA F M D S, 1990, Naturalia (Rio Claro), V15, P171; BRAGA F M S, 2004, ACTA SCI, V26, P31; BRITSKI H.A., 1972, POLUICAO PISCICULTUR, P79; Chellappa S, 2009, LIMNOLOGICA, V39, P325, DOI 10.1016/j.limno.2009.06.003; Costa F. E. S., 1993, REV UNIMAR, V15, P117; de Souza Braga Francisco Manoel, 2007, Acta Scientiarum Biological Sciences, V29, P281; Gomiero LM, 2008, BRAZ J BIOL, V68, P187, DOI 10.1590/S1519-69842008000100027; Gomiero LM, 2012, BRAZ J BIOL, V72, P379, DOI 10.1590/S1519-69842012000200020; Gomiero LM., 2007, Braz. J. Biol., V67, P283, DOI 10.1590/S1519-69842007000200013; Gomiero Leandro Muller, 2007, Biota Neotrop., V7, P127, DOI 10.1590/S1676-06032007000300015; Gomiero Leandro Muller, 2006, Acta Scientiarum Biological Sciences, V28, P213; Gordon N.D., 2004, STREAM HYDROLOGY INT; Kavalco KF, 2003, CARYOLOGIA, V56, P453, DOI 10.1080/00087114.2003.10589358; KRAMER DL, 1978, ECOLOGY, V59, P976, DOI 10.2307/1938549; Lamouroux N, 2002, ECOLOGY, V83, P1792, DOI 10.2307/3071765; Lampert Vinicius Renner, 2004, Neotrop. ichthyol., V2, P209, DOI 10.1590/S1679-62252004000400003; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; Lewis WM, 2008, AQUAT ECOL SER, P1, DOI 10.1016/B978-012088449-0.50003-0; Lezama Antonio Queiroz, 2011, Check List, V7, P583; LIMA F.C.T., 2003, CHECK LIST FRESHWATE, P106; Link JS, 2001, J FISH BIOL, V59, P783, DOI 10.1006/jfbi.2001.1687; LOWE-MCCONNELL R.H., 1987, ECOLOGICAL STUDIES T; Manly B. J. F., 2007, RANDOMIZATION BOOTST; Mathews W. J., 1998, PATTERNS FRESHWATER; MAZZONI R., 2002, Braz. J. Biol., V62, P487, DOI 10.1590/S1519-69842002000300013; Mazzoni R, 1999, BRAZ ARCH BIOL TECHN, V42, P455; Moreira-Filho O., 1991, Brazilian Journal of Genetics, V14, P331; Nikolsky G. V., 1963, ECOLOGY FISHES; Nunn AD, 2003, FRESHWATER BIOL, V48, P579, DOI 10.1046/j.1365-2427.2003.01033.x; Oliveira Leandro Goncalves, 1997, Revista Brasileira de Zoologia, V14, P867; Patterson JT, 2013, J FISH BIOL, V82, P1269, DOI 10.1111/jfb.12066; Paugy D, 2002, AQUAT LIVING RESOUR, V15, P25, DOI 10.1016/S0990-7440(01)01144-5; Paulo SAo, 1998, PLAN MAN UN CONSERVA; PAULY D, 1988, ENVIRON BIOL FISH, V22, P261, DOI 10.1007/BF00004892; Quince C, 2008, J THEOR BIOL, V254, P197, DOI 10.1016/j.jtbi.2008.05.029; Quinn GP, 2002, EXPT DESIGN DATA ANA; Rankin JC, 1993, FISH FISHERIES SERIE, V9; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; Sibly RM, 2013, METHODS ECOL EVOL, V4, P151, DOI 10.1111/2041-210x.12002; Stearns S. C., 1992, EVOLUTION LIFE HIST; Sweka JA, 2001, T AM FISH SOC, V130, P138, DOI 10.1577/1548-8659(2001)130<0138:IOTOBT>2.0.CO;2; Vazzoler A. E. A. M., 1996, BIOL REPROD PEIXES T; Vila-Gispert A, 2002, ENVIRON BIOL FISH, V65, P387, DOI 10.1023/A:1021181022360; WEST G, 1990, AUST J MAR FRESH RES, V41, P199; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242 54 1 1 0 34 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0906-6691 1600-0633 ECOL FRESHW FISH Ecol. Freshw. Fish JAN 2015 24 1 123 132 10.1111/eff.12131 10 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology AW5YP WOS:000346347100012 2018-11-12 J Shoji, A; Elliott, KH; Aris-Brosou, S; Wilson, RP; Gaston, AJ Shoji, Akiko; Elliott, Kyle H.; Aris-Brosou, Stephane; Wilson, Rory P.; Gaston, Anthony J. Predictors of incubation costs in seabirds: an evolutionary perspective IBIS English Article ancestral reconstruction; incubation metabolic rate; incubation shift length; life history theory ENERGY-EXPENDITURE; CLUTCH SIZE; PHYLOGENETIC ANALYSIS; MAXIMUM-LIKELIHOOD; RISSA-TRIDACTYLA; ALIGNMENT; PERFORMANCE; ENERGETICS; PENGUINS; HISTORY Energy costs during breeding play an important role in the evolution of life history traits. Seabirds show substantial variation in both incubation shift length (ISL) and metabolic rates. However, it is still unclear how variation in life history traits relates to incubation metabolic rates (IMR). Here, we examine the relationship between IMR and life history traits, including ISL, fledging strategy (precocial to altricial), incubation period, nest location (surface vs. underground) and clutch mass relative to adult body mass for 30 species of seabirds collated from the literature. Using both conventional non-phylogenetic and phylogenetic generalized least-squares approaches, we show that IMR is negatively associated with ISL, relative clutch mass and with underground nesting, while fledging strategy and incubation period have no impact on IMR once phylogeny is accounted for. Maximum likelihood reconstructions further suggest than ancestral seabirds had average ISL and relative clutch mass, and were surface nesters. We conclude that lower metabolic rates during incubation are associated with both an increased incubation shift length that allows animals to travel farther, as well as the evolutionary emergence of underground nesting that requires less social interaction. [Shoji, Akiko; Gaston, Anthony J.] Environm Canada, Natl Wildlife Res Ctr, Ottawa, ON K1A 0H3, Canada; [Elliott, Kyle H.] Univ Manitoba, Dept Zool, Winnipeg, MB R3T 2N2, Canada; [Aris-Brosou, Stephane; Gaston, Anthony J.] Univ Ottawa, Dept Biol, Ottawa, ON K1N 6N5, Canada; [Aris-Brosou, Stephane] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada; [Wilson, Rory P.] Swansea Univ, Swansea SA2 8PP, W Glam, Wales Shoji, A (reprint author), Univ Oxford, Dept Zool, S Parks Rd, Oxford OX1 3PS, England. akikosho@gmail.com Aris-Brosou, Stephane/0000-0003-4987-0296 Environment Canada; Japan Student Services Organization, Merton College; Natural Sciences and Engineering Research Council of Canada; Canada Foundation for Innovation We would like to thank three anonymous referees as well as the Editor and Associate Editor for comments that helped improve this paper. This work was funded by Environment Canada (A.S., A.J.G.), Japan Student Services Organization, Merton College (A.S.), the Natural Sciences and Engineering Research Council of Canada (S.A.B., K.H.E.) and by the Canada Foundation for Innovation (S.A.B.). Akaike H., 1973, 2 INT S INF THEOR, P267, DOI DOI 10.1007/978-1-4612-1694-0_; ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1016/S0022-2836(05)80360-2; Aris-Brosou S, 2012, METHODS MOL BIOL, V855, P111, DOI 10.1007/978-1-61779-582-4_4; Bech C, 2002, COMP BIOCHEM PHYS A, V133, P765, DOI 10.1016/S1095-6433(02)00153-8; Blomberg SP, 2003, EVOLUTION, V57, P717, DOI 10.1111/j.0014-3820.2003.tb00285.x; Bolton M, 1996, IBIS, V138, P405, DOI 10.1111/j.1474-919X.1996.tb08058.x; Brooke M, 2004, BIRD FAMILIES WORLD; Burnham K. P., 2002, MODEL SELECTION MULT; CHEREL Y, 1988, AM J PHYSIOL, V254, pR170; Clamp M, 2004, BIOINFORMATICS, V20, P426, DOI 10.1093/bioinformatics/btg430; CROXALL JP, 1982, J ANIM ECOL, V51, P177, DOI 10.2307/4318; Edgar RC, 2004, NUCLEIC ACIDS RES, V32, P1792, DOI 10.1093/nar/gkh340; Elliott KH, 2013, P NATL ACAD SCI USA, V110, P9380, DOI 10.1073/pnas.1304838110; Ellis Hugh I., 2002, P359; FELSENSTEIN J, 1978, SYST ZOOL, V27, P27, DOI 10.2307/2412810; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Gaston A. J, 2004, SEABIRDS NATURAL HIS; Gaston A. J., 1992, ANCIENT MURRELET NAT; GASTON AJ, 1998, AUKS ALCIDAE; Gloutney ML, 1996, COMP BIOCHEM PHYS A, V114, P265, DOI 10.1016/0300-9629(96)00006-0; Grant G., 1981, SEABIRD ENERGETICS; Guindon S, 2010, SYST BIOL, V59, P307, DOI 10.1093/sysbio/syq010; Hackett SJ, 2008, SCIENCE, V320, P1763, DOI 10.1126/science.1157704; Hajibabaei M, 2007, TRENDS GENET, V23, P167, DOI 10.1016/j.tig.2007.02.001; Kober K, 2003, IBIS, V145, P413, DOI 10.1046/j.1474-919X.2003.00179.x; Lack D., 1968, ECOLOGICAL ADAPTATIO; Lovegrove BG, 2005, J COMP PHYSIOL B, V175, P231, DOI 10.1007/s00360-005-0477-1; McKechnie AE, 2004, J EXP BIOL, V207, P203, DOI 10.1242/jeb.00757; McNab BK, 2002, PHYSL ECOLOGY VERTEB; Niizuma Y, 2005, J AVIAN BIOL, V36, P421, DOI 10.1111/j.0908-8857.2005.03252.x; Niizuma Yasuaki, 1997, Journal of the Yamashina Institute for Ornithology, V29, P83; Overgaard J, 2002, PHYSIOL BIOCHEM ZOOL, V75, P360, DOI 10.1086/342769; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Posada D, 1998, BIOINFORMATICS, V14, P817, DOI 10.1093/bioinformatics/14.9.817; Pupko T, 2000, MOL BIOL EVOL, V17, P890, DOI 10.1093/oxfordjournals.molbev.a026369; R Development Core Team, 2011, R LANG ENV STAT COMP; Ronning B, 2008, J COMP PHYSIOL B, V178, P779, DOI 10.1007/s00360-008-0268-6; Schluter D, 1997, EVOLUTION, V51, P1699, DOI 10.1111/j.1558-5646.1997.tb05095.x; Schreiber EA, 2002, BIOL MARINE BIRDS; Shaffer SA, 2001, PHYSIOL BIOCHEM ZOOL, V74, P823, DOI 10.1086/323650; SHIBATA H, 1987, J APPL PHYSIOL, V63, P465; Shimodaira H, 1999, MOL BIOL EVOL, V16, P1114, DOI 10.1093/oxfordjournals.molbev.a026201; Shoji A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017760; Speakman JR, 2010, BLOOD PURIFICAT, V29, P150, DOI 10.1159/000245642; SPEAKMAN JR, 1997, DOUBLY LABELLED WATE; Thomson DL, 1998, BIOL REV, V73, P293, DOI 10.1017/S0006323198005180; Tinbergen JM, 2002, OX ORN SER, V13, P299; Warham J, 1990, PETRELS THEIR ECOLOG; Welcker J, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0056229; White CR, 2004, PHYSIOL BIOCHEM ZOOL, V77, P929, DOI 10.1086/425186; White CR, 2011, COMP BIOCHEM PHYS A, V158, P346, DOI 10.1016/j.cbpa.2010.10.004; Yang ZH, 2007, MOL BIOL EVOL, V24, P1586, DOI 10.1093/molbev/msm088 53 4 6 0 21 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0019-1019 1474-919X IBIS Ibis JAN 2015 157 1 44 53 10.1111/ibi.12219 10 Ornithology Zoology AW5YU WOS:000346347700004 2018-11-12 J Book, A; Visser, BA; Volk, AA Book, Angela; Visser, Beth A.; Volk, Anthony A. Unpacking "evil": Claiming the core of the Dark Triad PERSONALITY AND INDIVIDUAL DIFFERENCES English Review Dark Triad; HEXACO; Honesty-Humility; Psychopathy; Narcissism; Machiavellianism; Evil LIFE-HISTORY THEORY; PERSONALITY STRUCTURE; HEXACO MODEL; INDIVIDUAL-DIFFERENCES; SEXUAL FANTASIES; BIG 5; PSYCHOPATHY; NARCISSISM; TRAITS; DIMENSIONS Understanding the nature of "evil" has been challenging for a number of reasons. A productive psychological approach to this problem has been to study antisocial traits associated with negative outcomes. One such approach has grouped together three antisocial personalities known as the "Dark Triad": Machiavellianism, Narcissism, and Psychopathy. Researchers have proposed various models to account for the common core of these antisocial personalities - a core that might well be considered the psychological equivalent of the core of "evil" - and these models have not been directly compared, to date. We conducted two studies (total N > 700) to compare the utility of the various models using Canonical Correlation Analyses (CC.As). Results confirm that the HEXACO personality model (and, in particular, the Honesty-Humility factor) is not only the most theoretically parsimonious model, it also best accounts for the empirical overlap between these constructs that represents the core of the Dark Triad. Results also support the idea that the core of the Dark Triad represents an alternative life history strategy. (C) 2014 Elsevier Ltd. All rights reserved. [Book, Angela; Volk, Anthony A.] Brock Univ, St Catharines, ON L2S 3A1, Canada; [Visser, Beth A.] Trent Univ, Oshawa, ON, Canada Volk, AA (reprint author), Brock Univ, Child & Youth Studies Dept, St Catharines, ON L2S 3A1, Canada. tvolk@brocku.ca Ashton MC, 2004, J PERS SOC PSYCHOL, V86, P356, DOI 10.1037/0022-3514.86.2.356; Ashton MC, 2006, J RES PERS, V40, P851, DOI 10.1016/j.jrp.2005.06.003; Ashton MC, 2007, PERS SOC PSYCHOL REV, V11, P150, DOI 10.1177/1088868306294907; Ashton MC, 2009, J PERS ASSESS, V91, P340, DOI 10.1080/00223890902935878; Babiak P., 2006, SNAKES SUITS, P352; Baron-Cohen S., 2011, SCI EVIL EMPATHY ORI, P240; Baughman HM, 2014, PERS INDIV DIFFER, V67, P47, DOI 10.1016/j.paid.2014.01.034; Birnbaum GE, 2007, PERS RELATIONSHIP, V14, P321, DOI 10.1111/j.1475-6811.2007.00157.x; Book AS, 2007, CRIM JUSTICE BEHAV, V34, P531, DOI 10.1177/0093854806293554; Book AS, 2012, PERS INDIV DIFFER, V52, P218, DOI 10.1016/j.paid.2011.10.028; Book AS, 2004, PERS INDIV DIFFER, V36, P33, DOI 10.1016/S0191-8869(03)00049-7; Campbell WK, 2009, SELF IDENTITY, V8, P214, DOI 10.1080/15298860802505129; CHRISTIE R, 1970, STUDIES MACHIAVELLIA; Dawkins R., 1976, SELFISH GENE; de Raad B. E., 2002, BIG 5 ASSESSMENT; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Farrell A. H., 2014, J PERSONALITY ASSESS; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Furnham A, 2013, SOC PERSONAL PSYCHOL, V7, P199, DOI 10.1111/spc3.12018; Hare R.D., 1983, PROSPECTIVE STUDIES, P225, DOI DOI 10.1007/978-94-009-6672-7_12; HARE RD, 1984, INT J LAW PSYCHIAT, V7, P35, DOI 10.1016/0160-2527(84)90005-0; Hare RD, 2003, HARE PSYCHOPATHY CHE; Harris GT, 2007, J PERS DISORD, V21, P1, DOI 10.1521/pedi.2007.21.1.1; HARRIS GT, 1991, LAW HUMAN BEHAV, V15, P625, DOI 10.1007/BF01065856; Hawley PH, 2003, MERRILL PALMER QUART, V49, P279, DOI 10.1353/mpq.2003.0013; Jackson JJ, 2007, EVOL HUM BEHAV, V28, P382, DOI 10.1016/j.evolhumbehav.2007.04.005; Jakobwitz S, 2006, PERS INDIV DIFFER, V40, P331, DOI 10.1016/j.paid.2005.07.006; James J., 2013, OXFORD HDB CLOSE REL, P771; JOHN OP, 1999, HDB PERSONALITY THEO, P102; Jonason PK, 2012, REV GEN PSYCHOL, V16, P192, DOI 10.1037/a0027914; Jonason PK, 2010, PSYCHOL ASSESSMENT, V22, P420, DOI 10.1037/a0019265; Jonason PK, 2010, PERS INDIV DIFFER, V48, P373, DOI 10.1016/j.paid.2009.11.003; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jones D. N., 2010, HDB INTERPERSONAL TH, P249; Jones DN, 2014, ASSESSMENT, V21, P28, DOI 10.1177/1073191113514105; Jones DN, 2013, EUR J PERSONALITY, V27, P521, DOI 10.1002/per.1893; Jones SE, 2011, J CRIM JUST, V39, P329, DOI 10.1016/j.jcrimjus.2011.03.004; Krupp DB, 2012, FRONT PSYCHOL, V3, DOI 10.3389/fpsyg.2012.00305; Lee KB, 2005, PERS INDIV DIFFER, V38, P1571, DOI 10.1016/j.paid.2004.09.016; Lee K, 2008, J PERS, V76, P1001, DOI 10.1111/j.1467-6494.2008.00512.x; Lee K, 2013, EUR J PERSONALITY, V27, P169, DOI 10.1002/per.1860; Lewis GJ, 2014, J RES PERS, V51, P9, DOI 10.1016/j.jrp.2014.04.004; Lillenfeld S. O., 2012, J PERS SOC PSYCHOL, V103, P489; McAdams DP, 2006, AM PSYCHOL, V61, P204, DOI 10.1037/0003-066X.61.3.204; Mcilwain D., 2012, EMOTIONS IMAGINATION, P119; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; Miriam-Webster, 2014, MIR WEBST ONL DICT; Paulhus D. L., MANUAL SELF IN PRESS; Paulhus DL, 2015, MEASURES OF PERSONALITY AND SOCIAL PSYCHOLOGICAL CONSTRUCTS, P562, DOI 10.1016/B978-0-12-386915-9.00020-6; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; Paunonen SV, 2000, J PERS, V68, P821, DOI 10.1111/1467-6494.00117; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Pinker Steven, 2011, BETTER ANGELS OUR NA; Robins RW, 2001, J PERS SOC PSYCHOL, V80, P340, DOI 10.1037//0022-3514.80.2.340; Rose P, 2002, PERS INDIV DIFFER, V33, P379, DOI 10.1016/S0191-8869(01)00162-3; Sherry A, 2005, J PERS ASSESS, V84, P37, DOI 10.1207/s15327752jpa8401_09; SIMPSON JA, 1991, J PERS SOC PSYCHOL, V60, P870, DOI 10.1037/0022-3514.60.6.870; Spence J. T., 1974, J CONSULT CLIN PSYCH, V44, P766, DOI DOI 10.1037/0022-006X.44.5.766; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; Tooby J., 1992, ADAPTED MIND EVOLUTI, V163, P163; Tourangeau R, 2007, PSYCHOL BULL, V133, P859, DOI 10.1037/0033-2909.133.5.859; Trapnell PD, 2012, J PERS ASSESS, V94, P39, DOI 10.1080/00223891.2011.627968; Veselka L, 2011, TWIN RES HUM GENET, V14, P158, DOI [10.1375/twin.14.2.158, 10.1375/twin.14.2.150]; Visser B. A., 2014, CANADIAN J BEHAV SCI; Visser B. A., 2014, J PERSONALITY; Visser BA, 2014, J APPL SOC PSYCHOL, V44, P495, DOI 10.1111/jasp.12241; Volk AA, 2012, AGGRESSIVE BEHAV, V38, P222, DOI 10.1002/ab.21418; Zuroff DC, 2010, CAN PSYCHOL, V51, P58, DOI 10.1037/a0018472 68 39 41 6 63 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. JAN 2015 73 29 38 10.1016/j.paid.2014.09.016 10 Psychology, Social Psychology AT9OY WOS:000345257500006 2018-11-12 J van der Linden, D; van Klaveren, D; Dunkel, CS van der Linden, Dimitri; van Klaveren, Donna; Dunkel, Curtis S. Emotional intelligence (EI) is an indicator of a slow life history strategy: A test of ability and trait EI PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Life history theory; Emotional intelligence; Evolutionary psychology; Social behavior PERSONALITY Life history (LH) theory applied to humans states that individual differences exist in reproductive strategies. A slow LH strategy implies that one invests relatively much into parental care but less so in mating effort. A fast LH strategy implies a reversed pattern (i.e., high mating effort, lower parental investment). It has been hypothesized that due to higher demands of social complexity, slow LH strategist may have higher levels of emotional intelligence (EI). In a sample of N = 201, mainly high-school students, the present study is the first to use well-known ability and trait measures of EI in order to test this hypothesis. Ability and trait measures of EI, as well as a general EI factor, all were significantly related to a slow life history strategy. Findings provide further insight into the characteristics of fast versus slow life history strategies. (C) 2014 EIsevier Ltd. All rights reserved. [van der Linden, Dimitri; van Klaveren, Donna] Erasmus Univ, Inst Psychol, NL-3000 DR Rotterdam, Netherlands; [Dunkel, Curtis S.] Western Illinois Univ, Dept Psychol, Macomb, IL USA van der Linden, D (reprint author), Erasmus Univ, Inst Psychol, POB 1738, NL-3000 DR Rotterdam, Netherlands. vanderlinden@fsw.eur.nl Van der Linden, Dimitri/0000-0001-7098-8948 Buss A. H., 1998, JOURNAL OF PERSONALI, V63, P452; Dirken J. M., 1967, ARBEID EN STRESS HET; Dunbar RIM, 2010, MIND THE GAP: TRACING THE ORIGINS OF HUMAN UNIVERSALS, P315, DOI 10.1007/978-3-642-02725-3_15; Dunkel CS, 2010, PERS INDIV DIFFER, V48, P681, DOI 10.1016/j.paid.2009.12.014; Eysenck H., 1975, THE EYSENCK PERSONAL; Figueredo A. J., 2011, J SOCIAL EVOLUTIONAR, V5, P14, DOI DOI 10.1037/H0099277; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2009, TWIN RES HUM GENET, V12, P555, DOI 10.1375/twin.12.6.555; Goldberg LR, 2006, J RES PERS, V40, P84, DOI 10.1016/j.jrp.2005.08.007; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Koerhuis M. J. C., 2007, MALADAPTIVE SOCIAL B; Mayer JD, 2003, EMOTION, V3, P97, DOI 10.1037/1528-3542.3.1.97; Penke L, 2008, J PERS SOC PSYCHOL, V95, P1113, DOI 10.1037/0022-3514.95.5.1113; Petrides KV, 2007, BRIT J PSYCHOL, V98, P273, DOI 10.1348/00712606X120618; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Sherman RA, 2013, J PERS SOC PSYCHOL, V105, P873, DOI 10.1037/a0033772; Wilson E.O., 1975, P1; Zeidner M, 2008, EUR PSYCHOL, V13, P64, DOI 10.1027/1016-9040.13.1.64 18 2 2 2 17 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. JAN 2015 73 84 87 10.1016/j.paid.2014.09.027 4 Psychology, Social Psychology AT9OY WOS:000345257500015 2018-11-12 J Sakaluk, SK; Wilson, AJ; Bowers, EK; Johnson, LS; Masters, BS; Johnson, BGP; Vogel, LA; Forsman, AM; Thompson, CF Sakaluk, Scott K.; Wilson, Alastair J.; Bowers, E. Keith; Johnson, L. Scott; Masters, Brian S.; Johnson, Bonnie G. P.; Vogel, Laura A.; Forsman, Anna M.; Thompson, Charles F. Genetic and environmental variation in condition, cutaneous immunity, and haematocrit in house wrens BMC EVOLUTIONARY BIOLOGY English Article Animal model; Condition; Haematocrit; Heritability; Genetic variation; Immunity; Life-history theory; PHA; Troglodytes aedon WILD BIRD POPULATION; NESTLING EUROPEAN STARLINGS; EXTRA-PAIR PATERNITY; TROGLODYTES-AEDON; BODY CONDITION; NATURAL-POPULATIONS; PIED FLYCATCHERS; INNATE IMMUNITY; PASSERINE BIRD; ANIMAL-MODEL Background: Life-history studies of wild bird populations often focus on the relationship between an individual's condition and its capacity to mount an immune response, as measured by a commonly-employed assay of cutaneous immunity, the PHA skin test. In addition, haematocrit, the packed cell volume in relation to total blood volume, is often measured as an indicator of physiological performance. A multi-year study of a wild population of house wrens has recently revealed that those exhibiting the highest condition and strongest PHA responses as nestlings are most likely to be recruited to the breeding population and to breed through two years of age; in contrast, intermediate haematocrit values result in the highest recruitment to the population. Selection theory would predict, therefore, that most of the underlying genetic variation in these traits should be exhausted resulting in low heritability, although such traits may also exhibit low heritability because of increased residual variance. Here, we examine the genetic and environmental variation in condition, cutaneous immunity, and haematocrit using an animal model based on a pedigree of approximately 2,800 house wrens. Results: Environmental effects played a paramount role in shaping the expression of the fitness-related traits measured in this wild population, but two of them, condition and haematocrit, retained significant heritable variation. Condition was also positively correlated with both the PHA response and haematocrit, but in the absence of any significant genetic correlations, it appears that this covariance arises through parallel effects of the environment acting on this suite of traits. Conclusions: The maintenance of genetic variation in different measures of condition appears to be a pervasive feature of wild bird populations, in contradiction of conventional selection theory. A major challenge in future studies will be to explain how such variation persists in the face of the directional selection acting on condition in house wrens and other species. [Sakaluk, Scott K.; Bowers, E. Keith; Vogel, Laura A.; Forsman, Anna M.; Thompson, Charles F.] Illinois State Univ, Sch Biol Sci, Behavior Ecol Evolut & Systemat Sect, Normal, IL 61761 USA; [Wilson, Alastair J.] Univ Exeter, Sch Biosci, Ctr Ecol & Conservat, Penryn, Cornwall, England; [Johnson, L. Scott; Masters, Brian S.; Johnson, Bonnie G. P.] Towson Univ, Dept Biol, Towson, MD USA Sakaluk, SK (reprint author), Illinois State Univ, Sch Biol Sci, Behavior Ecol Evolut & Systemat Sect, Normal, IL 61761 USA. sksakal@ilstu.edu Forsman, Anna/S-9500-2017 Forsman, Anna/0000-0002-5942-4671; Wilson, Alastair/0000-0002-5045-2051; Vogel, Laura/0000-0002-9305-175X NSF [GK12-0086354, IBN-0316580, IOS-0718140, IOS-1118160]; NIH [R15HD076308-01]; Leverhulme Trust; School of Biological Sciences, Illinois State University; BBSRC David Phillips Research Fellowship; Beta Lambda Chapter of the Phi Sigma Biological Sciences Honor Society We thank the 2004-2006 Wren Crews for field assistance and the ParkLands Foundation (Merwin Preserve) and the Sears and Butler families for the use of their properties. Financial support was provided by NSF grants GK12-0086354, IBN-0316580, IOS-0718140 and IOS-1118160; NIH grant R15HD076308-01; a visiting professorship from the Leverhulme Trust (SKS); the School of Biological Sciences, Illinois State University; a BBSRC David Phillips Research Fellowship (AJW); and student-research grants from the Beta Lambda Chapter of the Phi Sigma Biological Sciences Honor Society (AMF). Ardia DR, 2005, FUNCT ECOL, V19, P414, DOI 10.1111/j.1365-2435.2005.00997.x; Ardia DR, 2005, OECOLOGIA, V145, P327, DOI 10.1007/s00442-005-0120-6; Barnett CA, 2012, ETHOLOGY, V118, P984, DOI 10.1111/j.1439-0310.2012.02092.x; Birkhead TR, 2006, EVOLUTION, V60, P2389; Bonato M, 2013, BEHAV ECOL SOCIOBIOL, V67, P1891, DOI 10.1007/s00265-013-1597-3; Bowers EK, 2014, ECOLOGY, V95, P3027; Bowers EK, 2012, P ROY SOC B-BIOL SCI, V279, P2891, DOI 10.1098/rspb.2012.0443; Bowers EK, 2012, ANIM BEHAV, V83, P495, DOI 10.1016/j.anbehav.2011.11.026; Bruford Michael W., 1992, P225; Cabe PR, 2001, MOL ECOL NOTES, V1, P155, DOI 10.1046/j.1471-8278.2001.00057.x; Christe P, 2000, HEREDITY, V85, P75, DOI 10.1046/j.1365-2540.2000.00732.x; Cichon M, 2006, J EVOLUTION BIOL, V19, P1701, DOI 10.1111/j.1420-9101.2006.01110.x; Cucco M, 2006, CAN J ZOOL, V84, P72, DOI 10.1139/Z05-179; DeMory ML, 2010, BEHAV ECOL, V21, P1156, DOI 10.1093/beheco/arq123; Double MC, 1997, MOL ECOL, V6, P691, DOI 10.1046/j.1365-294X.1997.00228.x; DRILLING NE, 1991, AUK, V108, P60; Drobniak SM, 2010, J EVOLUTION BIOL, V23, P1286, DOI 10.1111/j.1420-9101.2010.01993.x; FALCONER DS, 1981, INTRO QUANTITATIVE G; Forsman AM, 2008, MOL ECOL, V17, P3697, DOI 10.1111/j.1365-294X.2008.03860.x; Forsman AM, 2010, PHYSIOL BIOCHEM ZOOL, V83, P512, DOI 10.1086/649894; Gienapp P, 2010, J EVOLUTION BIOL, V23, P715, DOI 10.1111/j.1420-9101.2010.01949.x; Gleeson DJ, 2005, BMC EVOL BIOL, V5, DOI 10.1186/1471-2148-5-61; Grana SC, 2012, BEHAV ECOL SOCIOBIOL, V66, P1247, DOI 10.1007/s00265-012-1378-4; Grindstaff JL, 2006, P R SOC B, V273, P2551, DOI 10.1098/rspb.2006.3608; Hoi-Leitner M, 2001, BEHAV ECOL SOCIOBIOL, V49, P333, DOI 10.1007/s002650000310; HOULE D, 1992, GENETICS, V130, P195; Jensen H, 2003, J EVOLUTION BIOL, V16, P1296, DOI 10.1046/j.1420-9101.2003.00614.x; Johnson LS, 2002, BEHAV ECOL, V13, P670, DOI 10.1093/beheco/13.5.670; JOHNSON LS, 1993, OIKOS, V66, P255, DOI 10.2307/3544812; Johnson LS, 1998, BIRDS N AM, V380; Kahn NW, 1998, AUK, V115, P1074; Kim SY, 2013, HEREDITY, V111, P139, DOI 10.1038/hdy.2013.29; Kruuk LEB, 2007, J EVOLUTION BIOL, V20, P1890, DOI 10.1111/j.1420-9101.2007.01377.x; Kruuk LEB, 2001, AM NAT, V158, P557, DOI 10.1086/323585; Kruuk LEB, 2004, PHILOS T ROY SOC B, V359, P873, DOI 10.1098/rstb.2003.1437; Lambrechts MM, 2010, ACTA ORNITHOL, V45, P1, DOI 10.3161/000164510X516047; Martin LB, 2006, FUNCT ECOL, V20, P290, DOI 10.1111/j.1365-2435.01094.x; Masters BS, 2003, P ROY SOC B-BIOL SCI, V270, P1393, DOI 10.1098/rspb.2003.2380; McCleery RH, 2004, AM NAT, V164, pE62, DOI 10.1086/422660; MCDONALD DB, 1994, SCIENCE, V266, P1030, DOI 10.1126/science.7973654; Merila J, 2001, NATURE, V412, P76, DOI 10.1038/35083580; Merila J, 2001, J EVOLUTION BIOL, V14, P918, DOI 10.1046/j.1420-9101.2001.00353.x; Merino S, 1998, CAN J ZOOL, V76, P936, DOI 10.1139/cjz-76-5-936; Milot E, 2014, METHODS ECOL EVOL, V5, P146, DOI 10.1111/2041-210X.12145; Morrison ES, 2009, J AVIAN BIOL, V40, P573, DOI 10.1111/j.1600-048X.2009.04910.x; Morrissey MB, 2010, J EVOLUTION BIOL, V23, P2277, DOI 10.1111/j.1420-9101.2010.02084.x; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Pacejka AJ, 1998, ECOLOGY, V79, P1797; Pitala N, 2007, BIOLOGY LETT, V3, P418, DOI 10.1098/rsbl.2007.0135; Postma E, 2014, QUANTITATIVE GENETICS IN THE WILD, P16; Potti J, 1999, OECOLOGIA, V120, P1, DOI 10.1007/s004420050826; Potti J, 2007, J AVIAN BIOL, V38, P726, DOI 10.1111/j.2007.0908-8857.04073.x; PRICE T, 1991, EVOLUTION, V45, P853, DOI 10.1111/j.1558-5646.1991.tb04354.x; REHDER NB, 1983, CAN J ZOOL, V61, P2550, DOI 10.1139/z83-337; RICHNER H, 1993, J ANIM ECOL, V62, P703, DOI 10.2307/5390; Rowe L, 1996, P ROY SOC B-BIOL SCI, V263, P1415, DOI 10.1098/rspb.1996.0207; Saino N, 1997, OECOLOGIA, V110, P186, DOI 10.1007/s004420050148; Sakaluk SK, DRYAD, DOI [10.5061/dryad.jk2m0, DOI 10.5061/DRYAD.JK2M0]; Santangeli A, 2012, ANIM BEHAV, V83, P1115, DOI 10.1016/j.anbehav.2012.02.002; Schuler B, 2010, P NATL ACAD SCI USA, V107, P419, DOI 10.1073/pnas.0912924107; Schulte-Hostedde AI, 2005, ECOLOGY, V86, P155, DOI 10.1890/04-0232; Simon A, 2005, CAN J ZOOL, V83, P694, DOI 10.1139/Z05-059; Smits JE, 1999, FUNCT ECOL, V13, P567, DOI 10.1046/j.1365-2435.1999.00338.x; Soukup SS, 1997, ANIM BEHAV, V54, P1089, DOI 10.1006/anbe.1997.0556; Sutherland JL, 2012, PHYSIOL BIOCHEM ZOOL, V85, P21, DOI 10.1086/663353; Tella JL, 2002, P ROY SOC B-BIOL SCI, V269, P1059, DOI 10.1098/rspb.2001.1951; Tella JL, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003295; Thompson CF, 2014, CAN J ZOOL, V92, P1, DOI 10.1139/cjz-2013-0140; Vinkler M, 2014, J AVIAN BIOL, V45, P43, DOI 10.1111/j.1600-048X.2011.05860.x; Vinkler M, 2010, FUNCT ECOL, V24, P1081, DOI 10.1111/j.1365-2435.2010.01711.x; Visscher PM, 2006, TWIN RES HUM GENET, V9, P490, DOI 10.1375/183242706778024928; Wheelwright NT, 2014, EVOLUTION, V68, P3325, DOI 10.1111/evo.12499; Wilcoxen TE, 2010, BIOL LETTERS, V6, P552, DOI 10.1098/rsbl.2009.1078; Williams T.D., 2012, PHYSL ADAPTATIONS BR; Wilson AJ, 2010, J ANIM ECOL, V79, P13, DOI 10.1111/j.1365-2656.2009.01639.x 75 6 6 1 41 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1471-2148 BMC EVOL BIOL BMC Evol. Biol. DEC 4 2014 14 242 10.1186/s12862-014-0242-8 11 Evolutionary Biology; Genetics & Heredity Evolutionary Biology; Genetics & Heredity AW9ZB WOS:000346612500002 25471117 DOAJ Gold, Green Published 2018-11-12 J Vasilieva, NA; Pavlova, EV; Naidenko, SV; Tchabovsky, AV Vasilieva, Nina A.; Pavlova, Ekaterina V.; Naidenko, Sergey V.; Tchabovsky, Andrey V. Age of maturation and behavioral tactics in male yellow ground squirrel Spermophilus fulvus during mating season CURRENT ZOOLOGY English Article Age of maturation; Mating system; Reproductive tactics; Ground squirrel; Spermophilus fulvus ALTERNATIVE REPRODUCTIVE TACTICS; SCRAMBLE-COMPETITION POLYGYNY; ADULT LIFE-SPAN; PLASMA-TESTOSTERONE; 1ST REPRODUCTION; FECAL STEROIDS; ALPINE MARMOTS; XERUS-INAURIS; HISTORY; EVOLUTION Life-history theory predicts that in hibernators age of maturation is related positively to body size and negatively to the duration of active season aboveground. Yellow souslik is a large-sized ground squirrel with long hibernation, which suggests late maturation. We used four-year field observations of marked individuals to determine the age of maturation in males through analysis of age-dependent variation in body size, mass, androgen status, timing of spring emergence, ranging patterns and social behavior during the mating season. Yearling males were smaller, lighter, had lower level of fecal testosterone, emerged later and had smaller home ranges than older males. Social activity and the number of females encountered did not differ between age classes. After the second hibernation none of the studied parameters varied with age. Cluster analysis revealed two behavioral tactics: "active" males (adults only) emerged earlier, ranged more widely, initiated more contacts, encountered more females and were heavier than "passive" males (both yearling and adult). Thus, males of S. fulvus reached adult size and matured after two hibernations, which is relatively fast for such a big species with short active period. Indirect evidence for copulations and high variation among yearlings in all parameters suggest that some of them might successfully compete with adults. Active tactic of wandering and searching for females is energetically costly, and probably only adult males in good physical condition can afford it, whereas passive tactic of residing is energy saving and good for adults in poor condition and for yearlings that are continuing to grow. [Vasilieva, Nina A.; Pavlova, Ekaterina V.; Naidenko, Sergey V.; Tchabovsky, Andrey V.] Russian Acad Sci, AN Severtsov Inst Ecol & Evolut, Moscow 119071, Russia Vasilieva, NA (reprint author), Russian Acad Sci, AN Severtsov Inst Ecol & Evolut, 33 Leninsky Pr, Moscow 119071, Russia. ninavasilieva@gmail.com Tchabovsky, Andrey/B-2678-2008 Tchabovsky, Andrey/0000-0003-2227-1525; Vasilieva, Nina/0000-0002-5802-9733 Russian Foundation for Basic Research [10-04-01304a, 12-04-31279] We are grateful to S.A. Shilova who encouraged and supported the study. We thank L.E. Savinetskaya, V.S. Popov, N.S. Vasiliev, I.A. Volodin, E.V. Volodina, V.A. Matrosova, A.A. Kochetkova and other members of our field team, and thank Dr. Michael Birman for polishing the revised paper. Comments and suggestions of two anonymous reviewers to a previous version of this manuscript were very helpful. The study was financially supported by the Russian Foundation for Basic Research (grants 10-04-01304a and 12-04-31279). Adachi I, 2010, THERIOGENOLOGY, V74, P1499, DOI 10.1016/j.theriogenology.2010.04.031; ALCOCK J, 1980, AM SCI, V68, P146; Armitage K.B., 1986, P303; ARMITAGE KB, 1981, OECOLOGIA, V48, P36, DOI 10.1007/BF00346986; Armitage KB, 1998, J MAMMAL, V79, P385, DOI 10.2307/1382969; Arnold W, 1997, ANIM BEHAV, V53, P53, DOI 10.1006/anbe.1996.0277; BARNES BM, 1988, BIOL REPROD, V38, P616, DOI 10.1095/biolreprod38.3.616; Blumstein DT, 1997, AM NAT, V150, P179, DOI 10.1086/286062; Blumstein DT, 1998, BEHAV ECOL, V9, P8; Blumstein DT, 1999, OIKOS, V84, P369, DOI 10.2307/3546418; BOKSHTEIN FM, 1989, RUSS J ECOL, V20, P45; Boonstra R, 2000, J EXP ZOOL, V286, P390, DOI 10.1002/(SICI)1097-010X(20000301)286:4<390::AID-JEZ7>3.0.CO;2-O; Boonstra R, 2001, CAN J ZOOL, V79, P49, DOI 10.1139/cjz-79-1-49; Boonstra R, 2011, FUNCT ECOL, V25, P1348, DOI 10.1111/j.1365-2435.2011.01890.x; Cavigelli SA, 2000, HORM BEHAV, V37, P246, DOI 10.1006/hbeh.2000.1585; CHABOVSKY AV, 1989, ZOOL ZH, V68, P99; CHARNOV EL, 1990, EVOL ECOL, V4, P273, DOI 10.1007/BF02214335; CHARNOV EL, 1990, J EVOLUTION BIOL, V3, P139, DOI 10.1046/j.1420-9101.1990.3010139.x; Clutton-Brock T, 2010, TRENDS ECOL EVOL, V25, P562, DOI 10.1016/j.tree.2010.08.002; Dobson F. S., 1984, BIOL GROUND DWELLING, P227; DOBSON FS, 1986, J MAMMAL, V67, P416, DOI 10.2307/1380902; EMLEN ST, 1977, SCIENCE, V197, P215, DOI 10.1126/science.327542; Emlen ST, 1999, P 22 INT ORN C DURB, P2922; FERRIERE R, 1992, J THEOR BIOL, V157, P253, DOI 10.1016/S0022-5193(05)80624-1; FOLTZ DW, 1981, J MAMMAL, V62, P706, DOI 10.2307/1380592; Good T, 2003, PHYSIOL BEHAV, V80, P405, DOI 10.1016/j.physbeh.2003.09.006; Hacklander K, 2003, ANIM BEHAV, V65, P1133, DOI 10.1006/anbe.2003.2159; Harper JM, 2000, PHYSIOL BIOCHEM ZOOL, V73, P12, DOI 10.1086/316721; HARVEY PH, 1985, NATURE, V315, P319, DOI 10.1038/315319a0; Holekamp K, 1984, BIOL GROUND DWELLING, P295; Hoogland JL, 1998, J MAMMAL, V79, P887, DOI 10.2307/1383096; HOOGLAND JL, 1995, BLACK TAILED PRAIRIE; Hoogland John L., 2007, P438; Jewgenow K, 2006, GEN COMP ENDOCR, V149, P151, DOI 10.1016/j.ygcen.2006.05.015; Karels TJ, 2004, OIKOS, V105, P575, DOI 10.1111/j.0030-1299.2004.12732.x; KOPROWSKI JL, 1993, BEHAV ECOL, V4, P165; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Kuznetsov VA, 2004, BIOL BULL+, V31, P628, DOI 10.1023/B:BIBU.0000049736.02912.e2; Lacey EA, 1997, ANIM BEHAV, V53, P767, DOI 10.1006/anbe.1996.0342; Li CW, 2001, HORM BEHAV, V40, P518, DOI 10.1006/hbeh.2001.1711; LICHT P, 1982, BIOL REPROD, V27, P411, DOI 10.1095/biolreprod27.2.411; Mateo JM, 2005, PHYSIOL BIOCHEM ZOOL, V78, P1069, DOI 10.1086/432855; McCarley WH, 1966, J MAMMAL, V47, P294; Michener G. R., 1984, BIOL GROUND DWELLING, P79; Michener G. R., 1983, AM SOC MAMMAL SPEC P, V7, P528; MICHENER GR, 1983, BEHAV ECOL SOCIOBIOL, V14, P29, DOI 10.1007/BF00366653; Michener GR, 1998, J MAMMAL, V79, P1, DOI 10.2307/1382838; Michener GR, 1985, MAMMALIAN SPECIES, V243, P1; Millesi E, 1998, ETHOLOGY, V104, P298; Mohle U, 2002, GEN COMP ENDOCR, V129, P135, DOI 10.1016/S0016-6480(02)00525-7; Moller AP, 2006, J EVOLUTION BIOL, V19, P682, DOI 10.1111/j.1420-9101.2005.01065.x; Monfort SL, 1997, ZOO BIOL, V16, P533, DOI 10.1002/(SICI)1098-2361(1997)16:6<533::AID-ZOO6>3.0.CO;2-B; Murie J.O., 1984, P353; Neuhaus P, 2004, J ANIM ECOL, V73, P36, DOI 10.1111/j.1365-2656.2004.00793.x; Palme R, 2005, ANN NY ACAD SCI, V1046, P75, DOI 10.1196/annals.1343.007; PARKER GA, 1978, ANNU REV ENTOMOL, V23, P173, DOI 10.1146/annurev.en.23.010178.001133; Pettitt BA, 2007, GEN COMP ENDOCR, V150, P1, DOI 10.1016/j.ygcen.2006.06.010; Place NJ, 2000, J COMP PHYSIOL B, V170, P245, DOI 10.1007/s003600050282; Popov V. S., 2006, Byulleten' Moskovskogo Obshchestva Ispytatelei Prirody Otdel Biologicheskii, V111, P75; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Raveh S, 2010, BEHAV ECOL, V21, P537, DOI 10.1093/beheco/arq004; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; Rolland RM, 2005, GEN COMP ENDOCR, V142, P308, DOI 10.1016/j.ygcen.2005.02.002; SACHSER N, 1986, ETHOLOGY, V71, P103; Saether BE, 2013, AM NAT, V182, P743, DOI 10.1086/673497; Scantlebury M, 2008, PHYSIOL BEHAV, V94, P359, DOI 10.1016/j.physbeh.2008.02.003; SCHWAGMEYER PL, 1988, AM NAT, V131, P885, DOI 10.1086/284828; SCHWAGMEYER PL, 1985, BEHAV ECOL SOCIOBIOL, V17, P291, DOI 10.1007/BF00300149; SCHWAGMEYER PL, 1983, BEHAV ECOL SOCIOBIOL, V13, P1, DOI 10.1007/BF00295069; SCHWAGMEYER PL, 1986, BEHAV ECOL SOCIOBIOL, V19, P359, DOI 10.1007/BF00295709; Shilova S. A., 2006, Byulleten' Moskovskogo Obshchestva Ispytatelei Prirody Otdel Biologicheskii, V111, P71; Shilova SA, 2014, IZV RAN BIOL, V5; Shubin I.G., 1973, Trudy Inst Zool Alma Ata, V34, P172; Skibiel AL, 2009, ECOL MONOGR, V79, P325, DOI 10.1890/08-0718.1; Soto-Gamboa M, 2009, J EXP ZOOL PART A, V311A, P496, DOI 10.1002/jez.546; Stearns S. C., 1992, EVOLUTION LIFE HIST; Strauss A, 2007, HORM BEHAV, V52, P646, DOI 10.1016/j.yhbeh.2007.08.003; Taborsky M, 2008, ALTERNATIVE REPRODUCTIVE TACTICS: AN INTEGRATIVE APPROACH, P1, DOI 10.1017/CBO9780511542602.002; Terio KA, 2002, ZOO BIOL, V21, P215, DOI 10.1002/zoo.10036; Touma C, 2004, HORM BEHAV, V45, P10, DOI 10.1016/j.yhbeh.2003.07.002; Turbill C, 2011, P ROY SOC B-BIOL SCI, V278, P3355, DOI 10.1098/rspb.2011.0190; Umapathy G, 2013, GEN COMP ENDOCR, V180, P33, DOI 10.1016/j.ygcen.2012.10.009; Vasilieva NA, 2009, ZOOL ZH, V88, P588; Vasilieva NA, 2009, ZOOL ZH, V88, P339; Vasilieva NA, 2011, THESIS AN SEVERTSOV; Washburn BE, 2002, GEN COMP ENDOCR, V127, P217, DOI 10.1016/S0016-6480(02)00056-4; Wasser SK, 2005, PRINCIPLES CONSERVAT, P368; Waterman Jane, 2007, P27; Wolff JO, 2008, ALTERNATIVE REPRODUCTIVE TACTICS: AN INTEGRATIVE APPROACH, P356, DOI 10.1017/CBO9780511542602.015 89 6 6 1 19 CURRENT ZOOLOGY BEIJING CHINESE ACAD SCIENCES, INST ZOOLOGY, BEICHEN XILU, CHAOYANG DISTRICT, BEIJING, 100101, PEOPLES R CHINA 1674-5507 CURR ZOOL Curr. Zool. DEC 2014 60 6 700 711 10.1093/czoolo/60.6.700 12 Zoology Zoology CA0CH WOS:000348581800002 DOAJ Gold 2018-11-12 J David, AA; Simon, CA David, Andrew A.; Simon, Carol A. The effect of temperature on larval development of two non-indigenous poecilogonous polychaetes (Annelida: Spionidae) with implications for life history theory, establishment and range expansion JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY English Article Adelphophagy; Aquaculture; Boccardia proboscidea; Planktotrophy; Polydora hoplura BOCCARDIA-PROBOSCIDEA ANNELIDA; MARINE BENTHIC INVERTEBRATES; SOUTH-AFRICA; CULTURED ABALONE; FOOD AVAILABILITY; HALIOTIS-MIDAE; NORTH-AMERICA; CAPITELLA SP; SIZE; POLYDORA Marine invasions are recognized as an important threat to global biodiversity and predicting the establishment and spread of an introduced species can aid in management efforts to mitigate the damage incurred by these species. In South Africa, the recently introduced polychaete Boccardia proboscidea has been recorded at the outflow of abalone farms where they are known to infest the shells of these mollusks. To determine if B. proboscidea can become established along the South African coast and subsequently expand its range, we assessed brood size, larval size at hatching, larval survivorship and developmental time and rate of this species under temperature regimes reflective of those found along the coast. We also investigated similar temperature dependent development in the well-established non-indigenous shell borer Polydora hoplura which can serve as a proxy for our predictions. Worms were cultured in glass capillary tubes at five different temperature treatments (12 degrees C, 17 degrees C, 21 degrees C, 24 degrees C, 28 degrees C) and planktotrophic and adelphophagic larvae were tracked from oviposition to settlement. We found that in P. hoplura, females producing adelphophagic larvae had smaller broods at the highest temperature treatment and higher temperatures resulted in significantly larger sizes at hatching. Survivorship of planktotrophic and adelphophagic larvae was highest at the intermediate to high temperature treatments (21 degrees C and 24 degrees C) and was generally lower at the lower temperatures (12 degrees C and 17 degrees C). Temperature had no significant effect on brood size of B. pro boscidea whereas higher temperatures resulted in larger hatching sizes for planktotrophic and adelphophagic larvae. In B. proboscidea, larval types showed differences in survival optima with planktotrophic larvae exhibiting its highest survivorship at the colder temperatures and lowest at the warmer temperatures while adelphophagic larvae had its highest survivorship at 21 degrees C and its lowest at the extreme temperatures. There was a positive relationship between temperature and developmental rate for both species. The difference in larval sizes of the non-feeding planktotrophic larvae of B. proboscidea was attributed to a growth window that allowed for variability in reproductive traits based on exogenous factors such as temperature. More importantly, the results indicate that B. pro boscidea will be capable of producing viable populations at different localities along the South African coast including those where P. hoplura has already been established. (C) 2014 Elsevier B.V. All rights reserved. [David, Andrew A.; Simon, Carol A.] Stellenbosch Univ Matieland, Dept Bot & Zool, ZA-7602 Stellenbosch, South Africa Simon, CA (reprint author), Stellenbosch Univ Matieland, Dept Bot & Zool, Merriman Ave,Private Bag X01, ZA-7602 Stellenbosch, South Africa. adavid@sun.ac.za; csimon@sun.ac.za Simon, Carol/0000-0001-9613-5222 Stellenbosch University; National Research Foundation (Thuthuka Program) of South Africa We would like to thank Mike Gray, Mathias Wessels and Kevin Ruck for aid in accessing our sampling sites, the Department of Agriculture, Forestry and Fisheries (DAFF) of South Africa for providing algae stock cultures and South African Weather Service (SAWS) for providing water temperature records. We thank Conrad Matthee and two reviewers for input and comments on a previous draft of the manuscript. The support of Stellenbosch University is also greatly appreciated. This study is part of a larger doctoral dissertation funded by the National Research Foundation (Thuthuka Program) of South Africa, granted to Carol A. Simon. [SS] Bailey-Brock Julie H., 2000, Pacific Science, V54, P27; BLAKE JA, 1981, MAR ECOL PROG SER, V6, P175, DOI 10.3354/meps006175; Blake JA, 1999, HYDROBIOLOGIA, V402, P57, DOI 10.1023/A:1003784324125; BLAKE JA, 1978, MEM NAT MUS VICTORIA, V39, P171; Boonzaaier M.K., 2014, AFR J MAR S IN PRESS; Bradbury IR, 2008, CAN J FISH AQUAT SCI, V65, P147, DOI 10.1139/FO7-154; Collin R, 2012, BIOL BULL-US, V223, P268, DOI 10.1086/BBLv223n3p268; David AA, 2014, MAR BIOL, V161, P887, DOI 10.1007/s00227-013-2388-0; Derivera CE, 2007, MAR BIOL, V150, P1275, DOI 10.1007/s00227-006-0451-9; Gibson GD, 1997, INVERTEBR BIOL, V116, P213, DOI 10.2307/3226898; Gibson G, 2013, J MORPHOL, V274, P11, DOI 10.1002/jmor.20071; HARTMAN OLGA, 1940, JOUR WASHINGTON ACAD SCI, V30, P382; Hatton J., 2013, MAR BIODIVERS REC, V6, P1; Haydar D, 2010, THESIS U GRONINGEN; Herrera JC, 1996, OCEANOL ACTA, V19, P313; Hoegh-Guldberg O, 2010, SCIENCE, V328, P1523, DOI 10.1126/science.1189930; HOEGHGULDBERG O, 1995, AM ZOOL, V35, P415; IBM Corp. Released, 2011, IBM SPSS STAT WIND V; JABLONSKI D, 1983, BIOL REV, V58, P21, DOI 10.1111/j.1469-185X.1983.tb00380.x; Jaubet M.L., 2014, MAR ECOL; Jaubet ML, 2013, MAR POLLUT BULL, V71, P216, DOI 10.1016/j.marpolbul.2013.03.011; Johst K, 2002, OIKOS, V98, P263, DOI 10.1034/j.1600-0706.2002.980208.x; Kamel SJ, 2010, INTEGR COMP BIOL, V50, P619, DOI 10.1093/icb/icq104; KAMPS DM, 1978, HYDROBIOLOGIA, V61, P75, DOI 10.1007/BF00019026; Knott EK, 2012, INTEGR COMP BIOL, V52, P120; Kolar CS, 2001, TRENDS ECOL EVOL, V16, P199, DOI 10.1016/S0169-5347(01)02101-2; LEVIN LA, 1986, MAR BIOL, V92, P103, DOI 10.1007/BF00392752; Levin LA, 2006, INTEGR COMP BIOL, V46, P282, DOI 10.1093/icb/024; Jaubet ML, 2011, MAR ECOL-EVOL PERSP, V32, P188, DOI 10.1111/j.1439-0485.2010.00415.x; Martinez J., 2006, Boletin Instituto Espanol de Oceanografia, V22, P53; MORAWSKA B, 1984, AQUACULTURE, V42, P273, DOI 10.1016/0044-8486(84)90107-8; Nel R, 1996, AQUACULTURE, V141, P31, DOI 10.1016/0044-8486(95)01212-5; O'Connor M.I., 2007, P NATL ACAD SCI USA, V104, P1267; Oyarzun FX, 2011, EVOL DEV, V13, P489, DOI 10.1111/j.1525-142X.2011.00506.x; Oyarzun FX, 2011, INTEGR COMP BIOL, V51, P81, DOI 10.1093/icb/icr009; PEARSE JS, 1969, MAR BIOL, V3, P110, DOI 10.1007/BF00353429; Pechenik JA, 1999, MAR ECOL PROG SER, V177, P269, DOI 10.3354/meps177269; QIAN PY, 1994, INVERTEBR REPROD DEV, V26, P175, DOI 10.1080/07924259.1994.9672416; QIAN PY, 1991, J EXP MAR BIOL ECOL, V148, P11, DOI 10.1016/0022-0981(91)90143-K; READ G, 2004, GUIDE NZ SHELL POLYC; Reason CJC, 2006, S AFR J SCI, V102, P35; Sato-Okoshi W, 2000, J MAR BIOL ASSOC UK, V80, P443, DOI 10.1017/S0025315499002143; SHANNON LV, 1985, OCEANOGR MAR BIOL, V23, P105; Simon CA, 2006, AFR J MAR SCI, V28, P167, DOI 10.2989/18142320609504141; Simon CA, 2011, AFR INVERTEBR, V52, P39, DOI 10.5733/afin.052.0104; Simon CA, 2010, AQUACULTURE, V310, P52, DOI 10.1016/j.aquaculture.2010.10.031; Simon CA, 2009, AQUACULTURE, V294, P18, DOI 10.1016/j.aquaculture.2009.05.022; Teske PR, 2011, S AFR J SCI, V107, P43, DOI 10.4102/sajs.v107i5/6.514; VANCE RR, 1973, AM NAT, V107, P339, DOI 10.1086/282838; Verween A, 2007, J EXP MAR BIOL ECOL, V348, P111, DOI 10.1016/j.jembe.2007.04.011; WOODWICK KEITH H., 1963, BULL S CALIFORNIA ACAD SCI, V62, P132 51 12 12 1 27 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0022-0981 1879-1697 J EXP MAR BIOL ECOL J. Exp. Mar. Biol. Ecol. DEC 2014 461 20 30 10.1016/j.jembe.2014.07.012 11 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology AX4HU WOS:000346894900003 2018-11-12 J Sheskin, M; Chevallier, C; Lambert, S; Baumard, N Sheskin, Mark; Chevallier, Coralie; Lambert, Stephane; Baumard, Nicolas Life-history theory explains childhood moral development TRENDS IN COGNITIVE SCIENCES English Editorial Material YOUNG-CHILDREN; EVOLUTION; FAIRNESS; BEHAVIOR; INFANTS Infants understand harm and fairness in third-party situations and yet children require years of development before they apply this understanding to their own interactions with others. We suggest that the delay, is explained by a life-history analysis of when behaving morally becomes beneficial. The human species is characterized by an extended period of juvenile dependence during which cooperation with non-kin is mostly superfluous. Later, as children age, moral behaviors supporting cooperation become increasingly beneficial. [Sheskin, Mark; Chevallier, Coralie; Lambert, Stephane; Baumard, Nicolas] Ecole Normale Super, F-75231 Paris, France Sheskin, M (reprint author), Ecole Normale Super, 24 Rue Lhomond, F-75231 Paris, France. msheskin@gmail.com Chevallier, Coralie/L-3120-2017 Chevallier, Coralie/0000-0002-7358-4962; Sheskin, Mark/0000-0002-1277-8608 Baumard N, 2013, BEHAV BRAIN SCI, V36, P59, DOI 10.1017/S0140525X11002202; Eckel C, 2011, J ECON BEHAV ORGAN, V80, P603, DOI 10.1016/j.jebo.2011.05.017; Engelmann JM, 2013, DEVELOPMENTAL SCI, V16, P952, DOI 10.1111/desc.12086; Fu GY, 2007, DEVELOPMENTAL SCI, V10, P255, DOI 10.1111/j.1467-7687.2007.00583.x; Hamlin JK, 2013, DEVELOPMENTAL SCI, V16, P209, DOI 10.1111/desc.12017; Hamlin JK, 2012, COGNITIVE DEV, V27, P227, DOI 10.1016/j.cogdev.2012.05.005; Henrich J, 2010, SCIENCE, V327, P1480, DOI 10.1126/science.1182238; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; Kogut T, 2012, J ECON PSYCHOL, V33, P226, DOI 10.1016/j.joep.2011.10.003; Kramer KL, 2014, HUM NATURE-INT BIOS, V25, P49, DOI 10.1007/s12110-013-9189-5; Leimgruber KL, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0048292; Marlowe FW, 2005, EVOL ANTHROPOL, V14, P54, DOI 10.1002/evan.20046; Meehan CL, 2013, AM J HUM BIOL, V25, P42, DOI 10.1002/ajhb.22336; Sheskin M, 2014, COGNITION, V130, P152, DOI 10.1016/j.cognition.2013.10.008; Smith CE, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0059510 15 10 10 1 28 ELSEVIER SCIENCE LONDON LONDON 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND 1364-6613 TRENDS COGN SCI TRENDS COGN. SCI. DEC 2014 18 12 613 615 10.1016/j.tics.2014.08.004 3 Behavioral Sciences; Neurosciences; Psychology, Experimental Behavioral Sciences; Neurosciences & Neurology; Psychology AX7ZU WOS:000347131000001 25204219 2018-11-12 J Costantini, D; Casasole, G; Eens, M Costantini, David; Casasole, Giulia; Eens, Marcel Does reproduction protect against oxidative stress? JOURNAL OF EXPERIMENTAL BIOLOGY English Article Antioxidants; Life history; Oxidative damage; Parental care; Thiols; Vertebrates LONG-LIVED SEABIRD; TRADE-OFF; COST; DAMAGE; KESTREL; BIRDS; MICE; SUPPLEMENTATION; SENESCENCE; HYPOTHESIS A central principle of life-history theory is that parents trade investment in reproduction against that in body maintenance. One physiological cost thought to be important as a modulator of such trade-off is oxidative stress. Experimental support for this hypothesis has, however, proved to be contradictory. In this study, we manipulated the nestling rearing effort of captive canaries (Serinus canaria) soon after the hatching of their nestlings using a brood-size manipulation to test whether an increase in nestling rearing effort translates into an increase in oxidative damage, an increase in ceruloplasmin (which is upregulated in response to oxidative damage) and a decrease in thiol antioxidants. We also compared the blood oxidative stress level of reproducing birds with that of non-reproducing birds, a crucial aspect that most studies have invariably failed to include in tests of the oxidative cost of reproduction. Compared with non-breeding canaries and pre-manipulation values, plasma oxidative damage (reactive oxygen metabolites and protein carbonyls) decreased in breeding canaries irrespective of sex and brood size. In contrast, oxidative damage did not change in non-breeding birds over the experiment. Ceruloplasmin activity in plasma and both non-protein and protein thiols in red blood cells did not change throughout the experiment in both treatment groups. Our results suggest that reproduction may result in decreased rather than increased blood oxidative stress. Our results may explain some of the inconsistencies that have so far been reported in experimental tests of the oxidative cost of reproduction hypothesis. [Costantini, David; Eens, Marcel] Univ Antwerp, Dept Biol, Ethol Grp, B-2610 Antwerp, Belgium; [Costantini, David] Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Glasgow G12 8QQ, Lanark, Scotland; [Casasole, Giulia] Jagiellonian Univ, Inst Environm Sci, PL-30387 Krakow, Poland Costantini, D (reprint author), Univ Antwerp, Dept Biol, Ethol Grp, Univ Pl 1, B-2610 Antwerp, Belgium. davidcostantini@libero.it Costantini, David/0000-0002-8140-8790 FWO-Flanders; University of Antwerp; European Union This work was supported by a postdoctoral fellowship from FWO-Flanders and by a grant from the University of Antwerp to D.C. G.C. was supported by a PhD fellowship from Poland co-financed by the European Union. M.E. was supported by the University of Antwerp and FWO-Flanders. Alberti A, 2000, RES CHEM INTERMEDIAT, V26, P253, DOI 10.1163/156856700X00769; Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Angilletta MJ, 2000, FUNCT ECOL, V14, P39, DOI 10.1046/j.1365-2435.2000.00387.x; Beaulieu M, 2014, J EXP BIOL, V217, P370, DOI 10.1242/jeb.092825; Beaulieu M, 2011, FUNCT ECOL, V25, P577, DOI 10.1111/j.1365-2435.2010.01825.x; Boonekamp JJ, 2014, ECOL LETT, V17, P599, DOI 10.1111/ele.12263; Casagrande S, 2011, COMP BIOCHEM PHYS A, V160, P16, DOI 10.1016/j.cbpa.2011.04.011; Cichon M, 1998, IBIS, V140, P128, DOI 10.1111/j.1474-919X.1998.tb04549.x; Costantini D, 2014, OXIDATIVE STRESS HOR; Costantini D, 2006, COMP BIOCHEM PHYS A, V145, P137, DOI 10.1016/j.cbpa.2006.06.002; Costantini D, 2014, OECOLOGIA, V175, P1107, DOI 10.1007/s00442-014-2975-x; Costantini D, 2014, NATURWISSENSCHAFTEN, V101, P541, DOI 10.1007/s00114-014-1190-2; Costantini D, 2013, J EXP BIOL, V216, P2213, DOI 10.1242/jeb.083154; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; Fletcher QE, 2013, EVOLUTION, V67, P1527, DOI 10.1111/evo.12014; Garratt M, 2013, J EXP BIOL, V216, P2879, DOI 10.1242/jeb.082669; Garratt M, 2011, P ROY SOC B-BIOL SCI, V278, P1098, DOI 10.1098/rspb.2010.1818; Halliwell B., 2007, FREE RADICALS BIOL M; Hamel S, 2009, J ANIM ECOL, V78, P143, DOI 10.1111/j.1365-2656.2008.01459.x; Jelena A, 2013, J PHYSIOL BIOCHEM, V69, P45, DOI 10.1007/s13105-012-0186-7; Jones DP, 2006, ANTIOXID REDOX SIGN, V8, P1865, DOI 10.1089/ars.2006.8.1865; Kenyon CL, 2011, JAVMA-J AM VET MED A, V239, P1201, DOI 10.2460/javma.239.9.1201; LAW R, 1979, AM NAT, V113, P3, DOI 10.1086/283361; LEVINE RL, 1990, METHOD ENZYMOL, V186, P464; LIESEN H, 1977, EUR J APPL PHYSIOL O, V37, P243, DOI 10.1007/BF00430954; Losdat S, 2011, BEHAV ECOL, V22, P1218, DOI 10.1093/beheco/arr116; Metcalfe NB, 2013, TRENDS ECOL EVOL, V28, P347, DOI 10.1016/j.tree.2013.01.015; Montgomery MK, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024138; Muller W, 2010, BEHAV ECOL SOCIOBIOL, V64, P1767, DOI 10.1007/s00265-010-0989-x; Oldakowski L, 2012, J EXP BIOL, V215, P1799, DOI 10.1242/jeb.068452; PACHT ER, 1988, J APPL PHYSIOL, V64, P2092; Reed TE, 2008, AM NAT, V171, pE89, DOI 10.1086/524957; Salomons H. M., 2009, THESIS U GRONINGEN G; Santos ESA, 2012, J EVOLUTION BIOL, V25, P1911, DOI 10.1111/j.1420-9101.2012.02569.x; Sohal RS, 2012, FREE RADICAL BIO MED, V52, P539, DOI 10.1016/j.freeradbiomed.2011.10.445; Speakman JR, 2014, BIOESSAYS, V36, P93, DOI 10.1002/bies.201300108; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stier A, 2012, FRONT ZOOL, V9, DOI 10.1186/1742-9994-9-37; van de Crommenacker J, 2011, J ANIM ECOL, V80, P668, DOI 10.1111/j.1365-2656.2010.01792.x; WEATHERS WW, 1985, COMP BIOCHEM PHYS A, V81, P411, DOI 10.1016/0300-9629(85)90156-2; Wiersma P, 2004, P ROY SOC B-BIOL SCI, V271, pS360, DOI 10.1098/rsbl.2004.0171; Yang DB, 2013, J EXP BIOL, V216, P4242, DOI 10.1242/jeb.092049 43 23 23 5 51 COMPANY OF BIOLOGISTS LTD CAMBRIDGE BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND 0022-0949 1477-9145 J EXP BIOL J. Exp. Biol. DEC 2014 217 23 4237 4243 10.1242/jeb.114116 7 Biology Life Sciences & Biomedicine - Other Topics AU9GR WOS:000345900300024 25359937 Green Published, Bronze 2018-11-12 J Bessa, E; Goncalves-de-Freitas, E Bessa, Eduardo; Goncalves-de-Freitas, Eliane How does tourist monitoring alter fish behavior in underwater trails? TOURISM MANAGEMENT English Article Nature tourism; Cichlidae; Emergency life history theory; Sustainable tourism; Social behavior of fish; Tourism monitoring techniques; Underwater trails GUPPY POECILIA-RETICULATA; PREDATION RISK; RAINBOW-TROUT; TERRITORY QUALITY; STRESS; ECOTOURISM; ENVIRONMENTS; COMPETITION; AVOIDANCE; COURTSHIP Nature based tourism is becoming more popular because it is perceived as a solution to the conflict between conservation and economic exploitation. Nevertheless, it is known to cause several effects. This paper reports findings whereby monitored tourism avoids triggering adverse effects for social cichlid fish species, Crenicichla lepidota. Measures used included aggression toward territorial intruders and the number of nests built in pristine reference areas for monitored and in non-monitored tourist areas. We observed suppressed aggressive behavior and suppressed nesting only in the non-monitored area. We conclude that by monitoring visits, and using techniques including avoiding stepping on the river bed, reducing the number of visitors, prohibiting fish feeding and protecting riparian vegetation, it is possible to avoid the enduring damage caused by nature tourism. (C) 2014 Elsevier Ltd. All rights reserved. [Bessa, Eduardo] Univ Estado Mato Grosso, Lab Ecol Comportamental Reprod, BR-78300000 Tangara Da Serra, Mato Grosso, Brazil; [Bessa, Eduardo; Goncalves-de-Freitas, Eliane] Univ Estadual Paulista, Dept Zool & Bot, Sao Paulo, Brazil; [Bessa, Eduardo; Goncalves-de-Freitas, Eliane] Univ Estadual Paulista, Ctr Aquicultura, Sao Paulo, Brazil Bessa, E (reprint author), Univ Estado Mato Grosso, Lab Ecol Comportamental Reprod, Rod MT 358,Km 7,Jd Aeroporto POB 287, BR-78300000 Tangara Da Serra, Mato Grosso, Brazil. edu_bessa@yahoo.com Goncalves-de-Freitas, Eliane/C-4462-2012 Goncalves-de-Freitas, Eliane/0000-0003-1896-3035; Bessa, Eduardo/0000-0003-0606-5860 Amorim M. C. P., 2006, COMMUNICATION FISHES, V1, P71; Amundsen T, 2003, J FISH BIOL, V63, P17, DOI 10.1111/j.1095-8649.2003.00219.x; ASSOCIATION FOR THE STUDY OF ANIMAL BEHAVIOUR, 2006, ANIM BEHAV, V71, P245, DOI DOI 10.1016/J.ANBEHAV.2005.10.001; Barlow G.W., 1991, P173; Bejder L, 2006, CONSERV BIOL, V20, P1791, DOI 10.1111/j.1523-1739.2006.00540.x; Cacho MDRF, 2006, NEOTROP ICHTHYOL, V4, P87, DOI 10.1590/S1679-62252006000100009; Candolin U, 2001, OIKOS, V95, P225, DOI 10.1034/j.1600-0706.2001.950204.x; Caro T, 2011, TRENDS ECOL EVOL, V26, P111, DOI 10.1016/j.tree.2010.12.008; Carvalho Lucelia Nobre, 2004, Acta Ethologica, V7, P89, DOI 10.1007/s10211-004-0093-1; Casatti L., 2006, Braz. J. Biol., V66, P681, DOI 10.1590/S1519-69842006000400012; Catella A. C., 1997, PLANO CONSERVACAO BA, P324; Codarin A, 2009, MAR POLLUT BULL, V58, P1880, DOI 10.1016/j.marpolbul.2009.07.011; Constantine R, 2004, BIOL CONSERV, V117, P299, DOI 10.1016/j.biocon.2003.12.009; CPRM, 2009, BRAZ GEOL SERV; Davenport J, 2006, ESTUAR COAST SHELF S, V67, P280, DOI 10.1016/j.ecss.2005.11.026; Drumm A., 2003, INTRO ECOTOURISM PLA, V1; Duchesne M, 2000, BIOL CONSERV, V96, P311, DOI 10.1016/S0006-3207(00)00082-3; Evans JP, 2002, BEHAV ECOL SOCIOBIOL, V52, P496, DOI 10.1007/s00265-002-0535-6; Frid A, 2002, CONSERV ECOL, V6; GARBER SD, 1995, ECOL APPL, V5, P1151, DOI 10.2307/2269362; Hasler H, 2008, MAR POLLUT BULL, V56, P1788, DOI 10.1016/j.marpolbul.2008.06.002; HERT E, 1992, ENVIRON BIOL FISH, V33, P229, DOI 10.1007/BF00005866; Hinsch M, 2010, J THEOR BIOL, V266, P606, DOI 10.1016/j.jtbi.2010.07.033; Ilarri MDI, 2008, NEOTROP ICHTHYOL, V6, P651, DOI 10.1590/S1679-62252008000400014; Keenleyside M. H. A., 1991, CICHLID FISHES BEHAV, P190; Kelly CD, 2001, BEHAV ECOL SOCIOBIOL, V51, P95, DOI 10.1007/s002650100410; Labrosse P., 2002, UNDERWATER VISUAL CE; Lederbogen F, 2011, NATURE, V474, P498, DOI 10.1038/nature10190; MACHADO A., 2005, ECOTURISMO PRODUTO V; MAGNHAGEN C, 1991, TRENDS ECOL EVOL, V6, P183, DOI 10.1016/0169-5347(91)90210-O; MAGNHAGEN C, 1995, ANIM BEHAV, V50, P1123, DOI 10.1016/0003-3472(95)80111-1; MAHER CR, 1995, ANIM BEHAV, V49, P1581, DOI 10.1016/0003-3472(95)90080-2; Martins CIM, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0028084; McKercher B., 1993, Journal of Sustainable Tourism, V1, P6; Milazzo M, 2006, MAR ECOL PROG SER, V310, P165, DOI 10.3354/meps310165; Montgomery John C., 2008, P3; Moreira PSA, 2004, HORM BEHAV, V46, P450, DOI 10.1016/j.yhbeh.2004.05.003; Moreira PSA, 2004, J FISH BIOL, V64, P961, DOI 10.1111/j.1095-8649.2004.00362.x; Mullner A, 2004, BIOL CONSERV, V118, P549, DOI 10.1016/j.biocon.2003.10.003; Overli O, 2002, HORM BEHAV, V42, P53, DOI 10.1006/hbeh.2002.1796; POWER ME, 1984, ECOLOGY, V65, P523, DOI 10.2307/1941414; Rolland RM, 2012, P ROY SOC B-BIOL SCI, V279, P2363, DOI 10.1098/rspb.2011.2429; SARGENT RC, 1982, ANIM BEHAV, V30, P364, DOI 10.1016/S0003-3472(82)80047-X; Teresa FB, 2011, NEOTROP ICHTHYOL, V9, P355, DOI 10.1590/S1679-62252011005000018; Teresa FB, 2011, NEOTROP ICHTHYOL, V9, P121, DOI 10.1590/S1679-62252011005000009; Teresa FB, 2011, ENVIRON MANAGE, V47, P960, DOI 10.1007/s00267-011-9641-4; Wallace GN, 1996, ANN TOURISM RES, V23, P843, DOI 10.1016/0160-7383(96)00009-6; White PJ, 2009, TERR ECOL SER, V3, P581, DOI 10.1016/S1936-7961(08)00226-1; Wilson E. O., 1984, BIOPHILIA; Wilson Edgar, 2000, SOCIOBIOLOGY NEW SYN; Wingfield JC, 2003, ANIM BEHAV, V66, P807, DOI 10.1006/anbe.2003.2298; Yue S, 2004, APPL ANIM BEHAV SCI, V87, P343, DOI 10.1016/j.applanim.2004.01.004; ZAHAVI A, 1975, J THEOR BIOL, V53, P205, DOI 10.1016/0022-5193(75)90111-3; Zar J.H, 1999, BIOSTATISTICAL ANAL 54 6 6 3 81 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND 0261-5177 1879-3193 TOURISM MANAGE Tourism Manage. DEC 2014 45 253 259 10.1016/j.tourman.2014.04.008 7 Environmental Studies; Hospitality, Leisure, Sport & Tourism; Management Environmental Sciences & Ecology; Social Sciences - Other Topics; Business & Economics AN0WY WOS:000340305900026 2018-11-12 J Schmidt, MH Schmidt, Markus H. The energy allocation function of sleep: A unifying theory of sleep, torpor, and continuous wakefulness NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS English Review Sleep function; Energy allocation; Life history theory; Torpor; Hibernation; NREM sleep; REM sleep; Sleep deprivation; Sleep homeostasis; Thermoregulation EYE-MOVEMENT SLEEP; LATERAL GENICULATE-NUCLEUS; MELANIN-CONCENTRATING HORMONE; WHITE-CROWNED SPARROW; BROWN ADIPOSE-TISSUE; SLOW-WAVE SLEEP; AMBIENT-TEMPERATURE CHOICE; CEREBRAL PROTEIN-SYNTHESIS; SALMON ONCORHYNCHUS-NERKA; ATP-CONSUMING PROCESSES The energy allocation (EA) model defines behavioral strategies that optimize the temporal utilization of energy to maximize reproductive success. This model proposes that all species of the animal kingdom share a universal sleep function that shunts waking energy utilization toward sleep-dependent biological investment. For endotherms, REM sleep evolved to enhance energy appropriation for somatic and CNS-related processes by eliminating thermoregulatory defenses and skeletal muscle tone. Alternating REM with NREM sleep conserves energy by decreasing the need for core body temperature defense. Three EA phenotypes are proposed: sleep-wake cycling, torpor, and continuous (or predominant) wakefulness. Each phenotype carries inherent costs and benefits. Sleep-wake cycling downregulates specific biological processes in waking and upregulates them in sleep, thereby decreasing energy demands imposed by wakefulness, reducing cellular infrastructure requirements, and resulting in overall energy conservation. Torpor achieves the greatest energy savings, but critical biological operations are compromised. Continuous wakefulness maximizes niche exploitation, but endures the greatest energy demands. The EA model advances a new construct for understanding sleep-wake organization in ontogenetic and phylogenetic domains. (C) 2014 The Authors. Published by Elsevier Ltd. Ohio Sleep Med Inst, Dublin, OH 43017 USA Schmidt, MH (reprint author), Ohio Sleep Med Inst, 4975 Bradenton Ave, Dublin, OH 43017 USA. mschmidt@sleepmedicine.com Schmidt, Markus/0000-0002-3299-1318 Adam K, 1980, Prog Brain Res, V53, P289; Adamantidis A, 2009, J PHYSIOL-LONDON, V587, P33, DOI 10.1113/jphysiol.2008.164400; ALAM MN, 1995, AM J PHYSIOL-REG I, V269, pR1250; ALAM MN, 1995, AM J PHYSIOL-REG I, V269, pR1240; ALBERTS JR, 1978, J COMP PHYSIOL PSYCH, V92, P231, DOI 10.1037/h0077459; ALBERTS JR, 1978, J COMP PHYSIOL PSYCH, V92, P220, DOI 10.1037/h0077458; Allada R, 2008, CURR BIOL, V18, pR670, DOI 10.1016/j.cub.2008.06.033; ALLISON T, 1976, SCIENCE, V194, P732, DOI 10.1126/science.982039; Altman NG, 2012, SLEEP MED, V13, P1261, DOI 10.1016/j.sleep.2012.08.005; Amlaner C.J., 1989, PRINCIEPLES PRACTICE; Andretic R, 2008, ANNU REV GENET, V42, P361, DOI 10.1146/annurev.genet.42.110807.091541; Arnulf I, 2012, MOVEMENT DISORD, V27, P677, DOI 10.1002/mds.24957; ASTIC L, 1970, J PHYSIOL-PARIS, V62, P115; Aton SJ, 2009, NEURON, V61, P454, DOI 10.1016/j.neuron.2009.01.007; BACH V, 1994, SLEEP, V17, P1; Balkin TJ, 2011, J CLIN SLEEP MED, V7, pS12, DOI 10.5664/JCSM.1344; Barf RP, 2012, PHYSIOL BEHAV, V107, P322, DOI 10.1016/j.physbeh.2012.09.005; Bartels W, 1998, J COMP PHYSIOL B, V168, P233, DOI 10.1007/s003600050141; Bass J, 2010, SCIENCE, V330, P1349, DOI 10.1126/science.1195027; Belenky G, 2003, J SLEEP RES, V12, P1, DOI 10.1046/j.1365-2869.2003.00337.x; Benedict C, 2011, AM J CLIN NUTR, V93, P1229, DOI 10.3945/ajcn.110.006460; Benington JH, 2000, SLEEP, V23, P959; BENINGTON JH, 1995, PROG NEUROBIOL, V45, P347, DOI 10.1016/0301-0082(94)00057-O; BERGER RJ, 1993, NEWS PHYSIOL SCI, V8, P276; BERGER RJ, 1984, BIOL PSYCHOL, V19, P305, DOI 10.1016/0301-0511(84)90045-0; BERGER RJ, 1995, BEHAV BRAIN RES, V69, P65, DOI 10.1016/0166-4328(95)00002-B; BERGER RJ, 1969, PSYCHOL REV, V76, P144, DOI 10.1037/h0027235; BERGER RJ, 1993, NEUROSCI LETT, V154, P213, DOI 10.1016/0304-3940(93)90210-C; BERGMANN BM, 1989, SLEEP, V12, P31, DOI 10.1093/sleep/12.1.31; Bergmann BM, 1996, SLEEP, V19, P554, DOI 10.1093/sleep/19.7.554; BERGMANN BM, 1989, METHODOLOGY SLEEP, V12, P5; Bjorness TE, 2009, CURR NEUROPHARMACOL, V7, P238, DOI 10.2174/157015909789152182; Bjorness TE, 2009, J NEUROSCI, V29, P1267, DOI 10.1523/JNEUROSCI.2942-08.2009; Blumberg M. S., 2010, OXFORD HDB DEV BEHAV, P391; Blumberg Mark S, 2010, Front Neurol, V1, P140, DOI 10.3389/fneur.2010.00140; Blumberg MS, 1996, BEHAV NEUROSCI, V110, P305, DOI 10.1037/0735-7044.110.2.305; Blumberg MS, 2001, HDB BEHAV NEUROBIOLO, V13, P199; Blumberg MS, 2002, BODY HEAT TEMPERATUR; Bole-Feysot C, 1998, ENDOCR REV, V19, P225, DOI 10.1210/er.19.3.225; BONNET MH, 1991, J APPL PHYSIOL, V71, P1112; Borbely A A, 1982, Hum Neurobiol, V1, P195; Borbely AA, 1999, J BIOL RHYTHM, V14, P557, DOI 10.1177/074873099129000894; Bosy-Westphal A, 2008, OBESITY FACTS, V1, P266, DOI 10.1159/000158874; BRAAKMAN I, 1992, NATURE, V356, P260, DOI 10.1038/356260a0; Brown M, 2008, ADV PHYSIOL EDUC, V32, P120, DOI 10.1152/advan.90111.2008; Brown RE, 2012, PHYSIOL REV, V92, P1087, DOI 10.1152/physrev.00032.2011; Bryant PA, 2004, NAT REV IMMUNOL, V4, P457, DOI 10.1038/nri1369; Buehler DM, 2009, PHYSIOL BIOCHEM ZOOL, V82, P561, DOI 10.1086/603635; Buhr ED, 2010, SCIENCE, V330, P379, DOI 10.1126/science.1195262; Burness G, 2010, J EXP BIOL, V213, P1386, DOI 10.1242/jeb.027011; Bushey D, 2007, J NEUROSCI, V27, P5384, DOI 10.1523/JNEUROSCI.0108-07.2007; BUTTGEREIT F, 1995, BIOCHEM J, V312, P163, DOI 10.1042/bj3120163; CALASSO M, 1993, AM J PHYSIOL, V265, pR1060; CAMPBELL SS, 1984, NEUROSCI BIOBEHAV R, V8, P269, DOI 10.1016/0149-7634(84)90054-X; Capellini I, 2008, FUNCT ECOL, V22, P847, DOI 10.1111/j.1365-2435.2008.01449.x; Capellini I, 2008, EVOLUTION, V62, P1764, DOI 10.1111/j.1558-5646.2008.00392.x; Capellini I, 2010, ECOLOGY, V91, P2783, DOI 10.1890/09-0817.1; Caron AM, 2010, SLEEP, V33, P1226, DOI 10.1093/sleep/33.9.1226; Chase MH, 2005, PRINCIPLES PRACTICE, P154; Cirelli C, 2005, NATURE, V434, P1087, DOI 10.1038/nature03486; Cirelli C, 2005, NEUROSCIENTIST, V11, P63, DOI 10.1177/1073858404270900; Cirelli C, 2004, NEURON, V41, P35, DOI 10.1016/S0896-6273(03)00814-6; Cirelli C, 1999, BRAIN RES, V840, P184, DOI 10.1016/S0006-8993(99)01768-0; Cirelli C, 2005, J NEUROCHEM, V94, P1411, DOI 10.1111/j.1471-4159.2005.03291.x; Cirelli C, 2006, SLEEP MED REV, V10, P307, DOI 10.1016/j.smrv.2006.04.001; Cirelli C, 2009, NAT REV NEUROSCI, V10, P549, DOI 10.1038/nrn2683; Cirelli C, 2008, PLOS BIOL, V6, P1605, DOI 10.1371/journal.pbio.0060216; Clement O, 2012, J NEUROSCI, V32, P16763, DOI 10.1523/JNEUROSCI.1885-12.2012; CLUGSTON GA, 1982, HUM NUTR-CLIN NUTR, V36, P391; CLUGSTON GA, 1982, HUM NUTR-CLIN NUTR, V36, P57; Coffin V., 1998, ANN NEW YORK ACAD SC, V840, P498; Cooke SJ, 2006, ECOLOGY, V87, P1575, DOI 10.1890/0012-9658(2006)87[1575:MBOIMI]2.0.CO;2; DAAN S, 1991, NEUROSCI LETT, V128, P265, DOI 10.1016/0304-3940(91)90276-Y; DAAN S, 1984, AM J PHYSIOL, V246, pR161; Dausmann KH, 2004, NATURE, V429, P825, DOI 10.1038/429825a; DAVENNE D, 1989, BRAIN RES, V485, P267, DOI 10.1016/0006-8993(89)90570-2; DAVENNE D, 1987, BRAIN RES, V409, P1, DOI 10.1016/0006-8993(87)90735-9; DAVENNE D, 1984, NEUROSCI LETT, V45, P33, DOI 10.1016/0304-3940(84)90325-2; Deboer T, 2000, NEUROREPORT, V11, P881, DOI 10.1097/00001756-200003200-00044; Demas GE, 1997, AM J PHYSIOL-REG I, V273, pR1631; DEWASMES G, 1985, PHYSIOL BEHAV, V35, P67, DOI 10.1016/0031-9384(85)90173-8; Dinges D.F., 2005, PRINCIPLES PRACTICE, P67, DOI DOI 10.1016/B0-72-160797-7/50013-6; Doran SM, 2001, ARCH ITAL BIOL, V139, P253; DORNER AJ, 1990, P NATL ACAD SCI USA, V87, P7429, DOI 10.1073/pnas.87.19.7429; Durmer JS, 2005, SEMIN NEUROL, V25, P117, DOI 10.1055/s-2005-867080; Dworak M, 2010, J NEUROSCI, V30, P9007, DOI 10.1523/JNEUROSCI.1423-10.2010; Edery I, 2010, SCIENCE, V330, P329, DOI 10.1126/science.1197747; ELGAR MA, 1988, ANIM BEHAV, V36, P1407, DOI 10.1016/S0003-3472(88)80211-2; ELSE PL, 1981, AM J PHYSIOL, V240, pR3; Espinosa F, 2004, GENES BRAIN BEHAV, V3, P90, DOI 10.1046/j.1601-183x.2003.00054.x; Euston DR, 2007, SCIENCE, V318, P1147, DOI 10.1126/science.1148979; Evans TG, 2011, MOL ECOL, V20, P4472, DOI 10.1111/j.1365-294X.2011.05276.x; Everson CA, 2000, AM J PHYSIOL-REG I, V278, pR905; EVERSON CA, 1994, J NEUROSCI, V14, P6769; EVERSON CA, 1993, AM J PHYSIOL, V265, pR1148, DOI 10.1152/ajpregu.1993.265.5.R1148; Everson CA, 2005, AM J PHYSIOL-REG I, V288, pR374, DOI 10.1152/ajpregu.00565.2004; EVERSON CA, 1989, SLEEP, V12, P60; EVERSON CA, 1989, SLEEP, V12, P13, DOI 10.1093/sleep/12.1.13; EVERSON CA, 1993, AM J PHYSIOL, V264, pR376; Everson CA, 2012, EXP BIOL MED, V237, P1101, DOI 10.1258/ebm.2012.012043; Everson CA, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022987; Everson CA, 2009, AM J PHYSIOL-REG I, V297, pR1430, DOI 10.1152/ajpregu.00230.2009; Everson CA, 2008, AM J PHYSIOL-REG I, V295, pR2067, DOI 10.1152/ajpregu.90623.2008; FENG PF, 1995, SLEEP, V18, P797, DOI 10.1093/sleep/18.9.797; Fifer WP, 2010, P NATL ACAD SCI USA, V107, P10320, DOI 10.1073/pnas.1005061107; FIORICA V, 1968, J APPL PHYSIOL, V24, P167; FLANIGAN WF, 1973, ELECTROEN CLIN NEURO, V34, P521, DOI 10.1016/0013-4694(73)90069-2; FLANIGAN WF, 1973, BRAIN BEHAV EVOLUT, V8, P401; FLANIGAN WF, 1974, ARCH ITAL BIOL, V112, P227; FLANIGAN WF, 1974, ARCH ITAL BIOL, V112, P253; FONTVIEILLE AM, 1994, AM J PHYSIOL-ENDOC M, V267, pE732; Fort P, 2008, NEUROSCIENCE, V155, P174, DOI 10.1016/j.neuroscience.2008.05.035; Frank MG, 2001, NEURON, V30, P275, DOI 10.1016/S0896-6273(01)00279-3; Franken P, 2003, AM J PHYSIOL-REG I, V285, pR413, DOI 10.1152/ajpregu.00668.2002; Franken P, 2001, J NEUROSCI, V21, P2610, DOI 10.1523/JNEUROSCI.21-08-02610.2001; Franken P, 2006, NEUROSCI LETT, V402, P176, DOI 10.1016/j.neulet.2006.03.072; Froy O, 2011, CLIN SCI, V120, P65, DOI 10.1042/CS20100327; Gallopin T, 2005, NEUROSCIENCE, V134, P1377, DOI 10.1016/j.neuroscience.2005.05.045; Geiser F, 2004, ANNU REV PHYSIOL, V66, P239, DOI 10.1146/annurev.physiol.66.032102.115105; Geiser F, 1998, CLIN EXP PHARMACOL P, V25, P736, DOI 10.1111/j.1440-1681.1998.tb02287.x; Gerson AR, 2011, SCIENCE, V333, P1434, DOI 10.1126/science.1210449; GILLILAND MA, 1989, SLEEP, V12, P53, DOI 10.1093/sleep/12.1.53; Gip P, 2004, AM J PHYSIOL-REG I, V286, pR1057, DOI 10.1152/ajpregu.00528.2003; Gip P, 2002, AM J PHYSIOL-REG I, V283, pR54, DOI 10.1152/ajpregu.00735.2001; GLOTZBACH SF, 1976, SCIENCE, V194, P537, DOI 10.1126/science.973138; Gnone G, 2006, NATURE, V441, pE10, DOI 10.1038/nature04899; Goel N, 2010, NEUROLOGY, V75, P1509, DOI 10.1212/WNL.0b013e3181f9615d; GOLDEN MHN, 1977, CLIN SCI MOL MED, V53, P277, DOI 10.1042/cs0530277; Gross M.T., 1984, P55; Guzman-Marin R, 2005, EUR J NEUROSCI, V22, P2111, DOI 10.1111/j.1460-9568.2005.04376.x; Guzman-Marin R, 2003, J PHYSIOL-LONDON, V549, P563, DOI 10.1113/jphysiol.2003.041665; Haddad GG, 2011, SLEEP, V34, P835, DOI 10.5665/SLEEP.1104; Hairston IS, 2005, J NEUROPHYSIOL, V94, P4224, DOI 10.1152/jn.00218.2005; Hanlon EC, 2011, P NATL ACAD SCI USA, V108, P15609, DOI 10.1073/pnas.1101338108; Harrison Y, 2000, SLEEP, V23, P1067; Harrison Y, 2000, J EXP PSYCHOL-APPL, V6, P236, DOI 10.1037//1076-898X.6.3.236; HARTMANN E, 1968, ARCH GEN PSYCHIAT, V18, P280; Hartmann E., 1968, PSYCHOPHYSIOLOGY, V4; Hartmann E. L, 1973, FUNCTIONS SLEEP; Hartse K.M., 1989, PRINCIPLES PRACTICE; HASKELL EH, 1981, ELECTROEN CLIN NEURO, V51, P494, DOI 10.1016/0013-4694(81)90226-1; HASKELL EH, 1981, J APPL PHYSIOL, V51, P948; Hassani OK, 2009, P NATL ACAD SCI USA, V106, P2418, DOI 10.1073/pnas.0811400106; Heldmaier G, 2004, RESP PHYSIOL NEUROBI, V141, P317, DOI 10.1016/j.resp.2004.03.014; Heller HC, 2004, ANNU REV PHYSIOL, V66, P275, DOI 10.1146/annurev.physiol.66.032102.115313; HELLER HC, 2005, PRINCIPLES PRACTICE, P292; Hendricks JC, 2000, NEURON, V25, P129, DOI 10.1016/S0896-6273(00)80877-6; HENDRICKS JC, 1982, EXP NEUROL, V75, P700, DOI 10.1016/0014-4886(82)90036-X; Hipolide DC, 2006, J NEUROENDOCRINOL, V18, P231, DOI 10.1111/j.1365-2826.2006.01412.x; Hirschkowitz M, 2005, SLEEP MED REV, V9, P311, DOI 10.1016/j.smrv.2005.03.001; Hobson JA, 2005, NATURE, V437, P1254, DOI 10.1038/nature04283; HORNE JA, 1993, BRIT J PSYCHIAT, V162, P413, DOI 10.1192/bjp.162.3.413; HORNE JA, 1980, EXPERIENTIA, V36, P11, DOI 10.1007/BF02003942; HORNE JA, 1988, WHY WE SLEEP FUNCTIO; Hruska KA, 2010, PHYSIOL BIOCHEM ZOOL, V83, P663, DOI 10.1086/652411; Huber R, 2004, SLEEP, V27, P628, DOI 10.1093/sleep/27.4.628; Huber R, 2004, NATURE, V430, P78, DOI 10.1038/nature02663; HULBERT AJ, 1989, AM J PHYSIOL, V256, pR63; HULL J, 1982, J COMP PHYSIOL PSYCH, V96, P143, DOI 10.1037/h0077857; Hupbach A, 2009, DEVELOPMENTAL SCI, V12, P1007, DOI 10.1111/j.1467-7687.2009.00837.x; Hursel R, 2011, AM J CLIN NUTR, V94, P804, DOI 10.3945/ajcn.111.017632; Hyder F, 2013, P NATL ACAD SCI USA, V110, P3549, DOI 10.1073/pnas.1214912110; Imeri L, 2009, NAT REV NEUROSCI, V10, P199, DOI 10.1038/nrn2576; Jackson ML, 2013, SLEEP MED REV, V17, P215, DOI 10.1016/j.smrv.2012.06.007; Jeffries KM, 2011, J FISH BIOL, V79, P449, DOI 10.1111/j.1095-8649.2011.03042.x; Jeffries KM, 2012, PHYSIOL BIOCHEM ZOOL, V85, P62, DOI 10.1086/663770; Jego S, 2013, NAT NEUROSCI, V16, P1637, DOI 10.1038/nn.3522; Jego S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0052525; Jolivet Renaud, 2009, Front Neuroenergetics, V1, P4, DOI 10.3389/neuro.14.004.2009; Jones S, 2008, BRAIN RES BULL, V76, P536, DOI 10.1016/j.brainresbull.2008.03.008; Jones S, 2008, J NEUROCHEM, V105, P46, DOI 10.1111/j.1471-4159.2007.05089.x; Jones SG, 2008, BMC NEUROSCI, V9, DOI 10.1186/1471-2202-9-47; Jouvet M, 1998, J SLEEP RES, V7, P1, DOI 10.1046/j.1365-2869.7.s1.1.x; Jouvet M., 1975, HDB PSYCHOBIOLOGY, P499; Jouvet-Mounier D, 1970, Dev Psychobiol, V2, P216; Jung CM, 2011, J PHYSIOL-LONDON, V589, P235, DOI 10.1113/jphysiol.2010.197517; Kadi F, 2008, BRIT J PHARMACOL, V154, P522, DOI 10.1038/bjp.2008.118; KAISER W, 1983, NATURE, V301, P707, DOI 10.1038/301707a0; Kaiser W., 1985, Sleep '84. Proceedings of the Seventh European Congress on Sleep Research, Munich, September 1984, P225; Katayose Y, 2009, METABOLISM, V58, P920, DOI 10.1016/j.metabol.2009.02.025; Kavanau JL, 1997, BRAIN RES BULL, V42, P245, DOI 10.1016/S0361-9230(96)00331-0; Kavanau JL, 1996, NEUROSCI BIOBEHAV R, V20, P289; Kavanau JL, 1997, NEUROSCIENCE, V79, P7, DOI 10.1016/S0306-4522(96)00610-0; Kelm DH, 2007, J COMP PHYSIOL B, V177, P667, DOI 10.1007/s00360-007-0164-5; KLEITMAN N, 1982, PHYSIOL BEHAV, V29, P537, DOI 10.1016/0031-9384(82)90279-7; Kleitman N., 1963, SLEEP WAKEFULNESS; Klingenberg L, 2012, OBES REV, V13, P565, DOI 10.1111/j.1467-789X.2012.00991.x; Knutson KL, 2007, SLEEP MED REV, V11, P163, DOI 10.1016/j.smrv.2007.01.002; Koban M, 2005, AM J PHYSIOL-ENDOC M, V289, pE68, DOI 10.1152/ajpendo.00543.2004; Koh K, 2008, SCIENCE, V321, P372, DOI 10.1126/science.1155942; Kohsaka A, 2007, TRENDS ENDOCRIN MET, V18, P4, DOI 10.1016/j.tem.2006.11.005; Kong JM, 2002, J NEUROSCI, V22, P5581; Kortner G, 2000, CHRONOBIOL INT, V17, P103, DOI 10.1081/CBI-100101036; Krauchi K, 2010, FRONT BIOSCI-LANDMRK, V15, P604, DOI 10.2741/3636; Krueger JM, 2008, NAT REV NEUROSCI, V9, P910, DOI 10.1038/nrn2521; Krueger James M., 1994, Neuroimmunomodulation, V1, P100, DOI 10.1159/000097142; Krueger JM, 1999, SLEEP MED REV, V3, P119, DOI 10.1016/S1087-0792(99)90019-9; KRUEGER JM, 1993, J SLEEP RES, V2, P63, DOI 10.1111/j.1365-2869.1993.tb00064.x; Krystal AD, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0069914; KUSHIDA CA, 1989, SLEEP, V12, P22, DOI 10.1093/sleep/12.1.22; KUSHIDA CA, 1989, SLEEP, V12, P42, DOI 10.1093/sleep/12.1.42; LANDIS CA, 1992, SLEEP, V15, P13, DOI 10.1093/sleep/15.1.13; Larkin JE, 1999, AM J PHYSIOL-REG I, V276, pR522, DOI 10.1152/ajpregu.1999.276.2.R522; LAZAREV S G, 1978, Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, V14, P379; LENNIE TA, 1995, AM J PHYSIOL-REG I, V269, pR1024; Lennie TA, 1998, PHYSIOL BEHAV, V64, P475, DOI 10.1016/S0031-9384(98)00103-6; Lesku JA, 2008, SLEEP MED REV, V12, P229, DOI 10.1016/j.smrv.2007.10.003; Lesku JA, 2006, AM NAT, V168, P441, DOI 10.1086/506973; Lesku JA, 2012, SCIENCE, V337, P1654, DOI 10.1126/science.1220939; Lesku JA, 2011, P ROY SOC B-BIOL SCI, V278, P2419, DOI 10.1098/rspb.2010.2316; Lesku JA, 2009, NEUROSCI BIOBEHAV R, V33, P1024, DOI 10.1016/j.neubiorev.2009.04.002; Lima MG, 2012, SLEEP MED, V13, P139, DOI 10.1016/j.sleep.2011.07.011; Lima SL, 2005, ANIM BEHAV, V70, P723, DOI 10.1016/j.anbehav.2005.01.008; Louie K, 2001, NEURON, V29, P145, DOI 10.1016/S0896-6273(01)00186-6; Luboshitzky R, 1999, J ANDROL, V20, P731; Luppi PH, 2013, CURR OPIN NEUROBIOL, V23, P786, DOI 10.1016/j.conb.2013.02.006; Luppi PH, 2011, SLEEP MED REV, V15, P153, DOI 10.1016/j.smrv.2010.08.002; Lyamin O, 2005, NATURE, V435, P1177, DOI 10.1038/4351177a; Lyamin O, 2007, PHYSIOL BEHAV, V92, P725, DOI 10.1016/j.physbeh.2007.05.064; Lyamin OI, 2008, NEUROSCI BIOBEHAV R, V32, P1451, DOI 10.1016/j.neubiorev.2008.05.023; Mackiewicz M, 2008, ANN NY ACAD SCI, V1129, P335, DOI 10.1196/annals.1417.030; Mackiewicz M, 2007, PHYSIOL GENOMICS, V31, P441, DOI 10.1152/physiolgenomics.00275.2006; Mackiewicz M, 2009, TRENDS MOL MED, V15, P79, DOI 10.1016/j.molmed.2008.12.002; MACMILLEN RE, 1967, COMP BIOCHEM PHYSIOL, V23, P243, DOI 10.1016/0010-406X(67)90492-6; Macneil Douglas J, 2013, Front Endocrinol (Lausanne), V4, P49, DOI 10.3389/fendo.2013.00049; Magee CA, 2012, J SLEEP RES, V21, P441, DOI 10.1111/j.1365-2869.2011.00993.x; Mahowald MW, 2005, NATURE, V437, P1279, DOI 10.1038/nature04287; Makino K, 2007, GEN COMP ENDOCR, V152, P304, DOI 10.1016/j.ygcen.2007.01.010; Maquet P, 2000, NAT NEUROSCI, V3, P831, DOI 10.1038/77744; Maret S, 2007, P NATL ACAD SCI USA, V104, P20090, DOI 10.1073/pnas.0710131104; Margoliash D, 2010, BRAIN LANG, V115, P45, DOI 10.1016/j.bandl.2009.09.005; MARKS GA, 1995, BEHAV BRAIN RES, V69, P1, DOI 10.1016/0166-4328(95)00018-O; Marks GA, 1999, BRAIN RES, V815, P21, DOI 10.1016/S0006-8993(98)01008-7; Markwald RR, 2013, P NATL ACAD SCI USA, V110, P5695, DOI 10.1073/pnas.1216951110; Mateo JM, 2000, ANIM BEHAV, V59, P491, DOI 10.1006/anbe.1999.1363; MEDDIS R, 1975, ANIM BEHAV, V23, P676, DOI 10.1016/0003-3472(75)90144-X; Meerlo P, 2009, SLEEP MED REV, V13, P187, DOI 10.1016/j.smrv.2008.07.004; Mignot E, 2008, PLOS BIOL, V6, P661, DOI 10.1371/journal.pbio.0060106; Millesi E, 2001, J BIOL RHYTHM, V16, P264, DOI 10.1177/074873001129001971; Mohawk JA, 2012, ANNU REV NEUROSCI, V35, P445, DOI 10.1146/annurev-neuro-060909-153128; Moller N, 2009, CLIN NUTR, V28, P597, DOI 10.1016/j.clnu.2009.08.015; Moller N, 2009, ENDOCR REV, V30, P152, DOI 10.1210/er.2008-0027; Moller-Levet CS, 2013, P NATL ACAD SCI USA, V110, pE1132, DOI 10.1073/pnas.1217154110; Monti JM, 2013, SLEEP MED REV, V17, P293, DOI 10.1016/j.smrv.2012.10.002; MOOREEDE MC, 1986, AM J PHYSIOL, V250, pR737; Morin P, 2009, INT J DEV BIOL, V53, P433, DOI 10.1387/ijdb.082643pm; MUKHAMETOV LM, 1977, BRAIN RES, V134, P581, DOI 10.1016/0006-8993(77)90835-6; MURRAY EJ, 1958, J EXP PSYCHOL, V56, P271, DOI 10.1037/h0048421; MUZET A, 1983, INT J NEUROSCI, V18, P117, DOI 10.3109/00207458308985885; MUZET A, 1984, EXPERIENTIA, V40, P425, DOI 10.1007/BF01952376; Nadasdy Z, 1999, J NEUROSCI, V19, P9497; Naidoo N, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0035174; Naidoo N, 2009, SLEEP MED REV, V13, P195, DOI 10.1016/j.smrv.2009.01.001; Nakanishi H, 1997, EUR J NEUROSCI, V9, P271, DOI 10.1111/j.1460-9568.1997.tb01397.x; Nedeltcheva AV, 2010, ANN INTERN MED, V153, P435, DOI 10.7326/0003-4819-153-7-201010050-00006; Nedeltcheva AV, 2009, AM J CLIN NUTR, V89, P126, DOI 10.3945/ajcn.2008.26574; Oh-I S, 2006, NATURE, V443, P709, DOI 10.1038/nature05162; Oleksenko A.I., 1992, Journal of Sleep Research, V1, P40; Onuma T, 2003, ENDOCRINE, V20, P23, DOI 10.1385/ENDO:20:1-2:23; Oswald I, 1980, Prog Brain Res, V53, P279, DOI 10.1016/S0079-6123(08)60069-2; Oury F, 2011, CELL, V144, P796, DOI 10.1016/j.cell.2011.02.004; Palchykova S, 2006, PHYSIOL BEHAV, V87, P144, DOI 10.1016/j.physbeh.2005.09.005; Palchykova S, 2002, J SLEEP RES, V11, P313, DOI 10.1046/j.1365-2869.2002.00310.x; Parmeggiani PL, 2003, FRONT BIOSCI, V8, pS557, DOI 10.2741/1054; PATRICK GTW, 1896, PSYCHOL REV, V3, P469, DOI DOI 10.1037/H0075739; Petit JM, 2013, SLEEP, V36, P1445, DOI 10.5665/sleep.3034; PEYRETHO.J, 1967, CR SOC BIOL, V161, P2533; Peyron C, 2009, PEPTIDES, V30, P2052, DOI 10.1016/j.peptides.2009.07.022; Pillay P, 2004, J SLEEP RES, V13, P353, DOI 10.1111/j.1365-2869.2004.00419.x; Poe GR, 2000, BRAIN RES, V855, P176, DOI 10.1016/S0006-8993(99)02310-0; Porkka-Heiskanen T, 1997, SCIENCE, V276, P1265, DOI 10.1126/science.276.5316.1265; Prather AA, 2012, SLEEP, V35, P1063, DOI 10.5665/sleep.1990; Preston BT, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-7; PRETE FR, 1991, SLEEP, V14, P109, DOI 10.1093/sleep/14.2.109; Quinn T. J., 2005, BEHAV ECOLOGY PACIFI; RADOMSKI MW, 1992, AVIAT SPACE ENVIR MD, V63, P101; Raizen DM, 2008, NATURE, V451, P569, DOI 10.1038/nature06535; RAMM P, 1986, BRAIN RES, V365, P112, DOI 10.1016/0006-8993(86)90728-6; RAMM P, 1990, PHYSIOL BEHAV, V48, P749, DOI 10.1016/0031-9384(90)90220-X; Rasch B, 2009, NAT NEUROSCI, V12, P396, DOI 10.1038/nn.2206; Rashotte ME, 1998, AM J PHYSIOL-REG I, V275, pR1690, DOI 10.1152/ajpregu.1998.275.5.R1690; Ratcliff R, 2011, P NATL ACAD SCI USA, V108, P11285, DOI 10.1073/pnas.1100483108; Ratcliff R, 2009, PSYCHON B REV, V16, P742, DOI 10.3758/PBR.16.4.742; Rattenborg NC, 2000, NEUROSCI BIOBEHAV R, V24, P817, DOI 10.1016/S0149-7634(00)00039-7; Rattenborg NC, 2004, PLOS BIOL, V2, P924, DOI 10.1371/journal.pbio.0020212; Rattenborg NC, 2009, NEUROSCI BIOBEHAV R, V33, P253, DOI 10.1016/j.neubiorev.2008.08.010; Rechtschaffen A, 1998, PERSPECT BIOL MED, V41, P359; Rechtschaffen A, 2002, SLEEP, V25, P18, DOI 10.1093/sleep/25.1.18; RECHTSCHAFFEN A, 1989, SLEEP, V12, P1; RECHTSCHAFFEN A, 1989, SLEEP, V12, P68; Retey JV, 2006, J NEUROSCI, V26, P10472, DOI 10.1523/JNEUROSCI.1538-06.2006; Revell TK, 2007, COMP BIOCHEM PHYS A, V148, P393, DOI 10.1016/j.cbpa.2007.05.020; Rial RV, 2007, SLEEP MED REV, V11, P311, DOI 10.1016/j.smrv.2007.03.001; RICHARDS.K, 1971, NATURE-NEW BIOL, V233, P182; Ridgway S, 2006, J EXP BIOL, V209, P3621, DOI 10.1242/jeb.02405; Roff D. A., 2002, LIFE HIST EVOLUTION; ROFFWARG HP, 1982, PSYCHOSOM MED, V44, P73, DOI 10.1097/00006842-198203000-00009; ROFFWARG HP, 1966, SCIENCE, V152, P604, DOI 10.1126/science.152.3722.604; Roman V, 2005, BRAIN RES, V1065, P53, DOI 10.1016/j.brainres.2005.10.020; Roth TC, 2006, J SLEEP RES, V15, P395, DOI 10.1111/j.1365-2869.2006.00559.x; Roth TC, 2010, PHILOS T R SOC B, V365, P945, DOI 10.1098/rstb.2009.0209; Rupp TL, 2012, SLEEP, V35, P1163, DOI 10.5665/sleep.2010; Rupp TL, 2009, SLEEP, V32, P311, DOI 10.1093/sleep/32.3.311; Sakai K, 2011, ARCH ITAL BIOL, V149, P325, DOI 10.4449/aib.v149i4.1380; Sakurai T, 2005, SLEEP MED REV, V9, P231, DOI 10.1016/j.smrv.2004.07.007; Saper CB, 2006, PROG BRAIN RES, V153, P243, DOI 10.1016/S0079-6123(06)53014-6; SASSIN JF, 1969, SCIENCE, V165, P513, DOI 10.1126/science.165.3892.513; SATINOFF E, 1967, SCIENCE, V155, P1031, DOI 10.1126/science.155.3765.1031; Savage VM, 2007, P NATL ACAD SCI USA, V104, P1051, DOI 10.1073/pnas.0610080104; Schank JC, 1997, J THEOR BIOL, V189, P11, DOI 10.1006/jtbi.1997.0488; Scharf MT, 2008, PROG NEUROBIOL, V86, P264, DOI 10.1016/j.pneurobio.2008.08.003; SCHMIDEK WR, 1983, BRAIN RES, V288, P261, DOI 10.1016/0006-8993(83)90102-6; SCHMIDT I, 1986, PHYSIOL BEHAV, V37, P105, DOI 10.1016/0031-9384(86)90391-4; Schmidt M.H., 2005, PRINCIPLES PRACTICE, P305; Schmidt MH, 1999, SLEEP, V22, P409, DOI 10.1093/sleep/22.4.409; SCHMIDT MH, 1994, NEUROREPORT, V5, P561, DOI 10.1097/00001756-199401000-00007; Schmidt MH, 2000, J NEUROSCI, V20, P6640, DOI 10.1523/JNEUROSCI.20-17-06640.2000; Schoener T. W., 1971, A Rev Ecol Syst, V2, P369, DOI 10.1146/annurev.es.02.110171.002101; Schwilch R, 2002, J EXP BIOL, V205, P687; Seelke AMH, 2005, BEHAV NEUROSCI, V119, P603, DOI 10.1037/0735-7044.119.2.603; SEGURA ET, 1966, ACTA PHYSIOL LAT AM, VS 16, P277; SEIFRITZ E, 1995, PSYCHOPHARMACOLOGY, V120, P449, DOI 10.1007/BF02245817; Sekiguchi Y, 2006, NATURE, V441, pE9, DOI 10.1038/nature04898; Shaffery JP, 2003, NEUROSCI LETT, V342, P196, DOI 10.1016/S0304-3940(03)00279-9; Shaffery JP, 1998, SLEEP, V21, P837, DOI 10.1093/sleep/21.8.837; Shaffery JP, 2002, NEUROSCIENCE, V110, P431, DOI 10.1016/S0306-4522(01)00589-9; Shaffery JP, 1999, DEV BRAIN RES, V114, P109, DOI 10.1016/S0165-3806(99)00027-9; Shank SS, 2009, NATURE, V458, P73, DOI 10.1038/nature07615; SHAPIRO CM, 1976, PHYSIOL BEHAV, V16, P613, DOI 10.1016/0031-9384(76)90222-5; Shaw PJ, 2000, SCIENCE, V287, P1834, DOI 10.1126/science.287.5459.1834; Shaw PJ, 2002, NATURE, V417, P287, DOI 10.1038/417287a; Shaw PJ, 1997, AM J PHYSIOL-REG I, V272, pR682; Shaw PJ, 1998, SLEEP, V21, P7, DOI 10.1093/sleep/21.1.7; Sheffield-Moore M, 2000, ANN MED, V32, P181, DOI 10.3109/07853890008998825; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; SICHIERI R, 1984, PHYSIOL BEHAV, V33, P871, DOI 10.1016/0031-9384(84)90221-X; Siegel JM, 2008, TRENDS NEUROSCI, V31, P208, DOI 10.1016/j.tins.2008.02.001; Siegel JM, 2009, NAT REV NEUROSCI, V10, P747, DOI 10.1038/nrn2697; Siegel JM, 2005, NATURE, V437, P1264, DOI 10.1038/nature04285; Silva J Enrique, 2011, Front Biosci (Schol Ed), V3, P352, DOI 10.2741/s156; Silva JE, 2005, BIOSCIENCE REP, V25, P129, DOI 10.1007/s10540-005-2882-9; Sinha-Hikim I, 2006, J CLIN ENDOCR METAB, V91, P3024, DOI 10.1210/jc.2006-0357; Smith C, 2001, SLEEP MED REV, V5, P491, DOI 10.1053/smrv.2001.0164; Smith C, 1996, BEHAV BRAIN RES, V78, P49, DOI 10.1016/0166-4328(95)00218-9; SNYDER GK, 1990, J COMP PHYSIOL B, V159, P667, DOI 10.1007/BF00691712; Sokoloff G, 2000, BEHAV NEUROSCI, V114, P585; Sokoloff G, 1998, BEHAV NEUROSCI, V112, P695, DOI 10.1037/0735-7044.112.3.695; Spaeth AM, 2013, SLEEP, V36, P981, DOI 10.5665/sleep.2792; Spiegel K, 2004, ANN INTERN MED, V141, P846, DOI 10.7326/0003-4819-141-11-200412070-00008; Stearns S.C, 2004, EVOLULTION LIFE HIST; Stickgold R, 2005, NATURE, V437, P1272, DOI 10.1038/nature04286; Stickgold R, 2005, TRENDS NEUROSCI, V28, P408, DOI 10.1016/j.tins.2005.06.004; Storey KB, 2010, ADV CLIN CHEM, V52, P77, DOI 10.1016/S0065-2423(10)52003-1; Strijkstra AM, 1998, AM J PHYSIOL-REG I, V275, pR1110, DOI 10.1152/ajpregu.1998.275.4.R1110; SZYMUSIAK R, 1981, PHYSIOL BEHAV, V26, P687, DOI 10.1016/0031-9384(81)90145-1; Terao A, 2006, NEUROSCIENCE, V137, P593, DOI 10.1016/j.neuroscience.2005.08.059; Tiriac A, 2012, CURR BIOL, V22, P2075, DOI 10.1016/j.cub.2012.09.009; TOBLER I, 1995, BEHAV BRAIN RES, V69, P35, DOI 10.1016/0166-4328(95)00025-O; TOBLER I, 1992, J SLEEP RES, V1, P231, DOI 10.1111/j.1365-2869.1992.tb00044.x; Tononi G, 2006, SLEEP MED REV, V10, P49, DOI 10.1016/j.smrv.2005.05.002; Tononi G, 2003, BRAIN RES BULL, V62, P143, DOI 10.1016/j.brainresbull.2003.09.004; Tononi G, 2014, NEURON, V81, P12, DOI 10.1016/j.neuron.2013.12.025; TOTH LA, 1995, J SLEEP RES, V4, P30, DOI 10.1111/j.1365-2869.1995.tb00148.x; TOTH LA, 1995, ADV NEUROIMMUNOL, V5, P79, DOI 10.1016/0960-5428(94)00045-P; TOTH LA, 1993, P SOC EXP BIOL MED, V203, P179; TRACHSEL L, 1991, AM J PHYSIOL, V260, pR1123, DOI 10.1152/ajpregu.1991.260.6.R1123; Tsujino N, 2005, J NEUROSCI, V25, P7459, DOI 10.1523/JNEUROSCI.1193-05.2005; Tucker AM, 2010, SLEEP, V33, P47, DOI 10.1093/sleep/33.1.47; Tung A, 2005, NEUROSCIENCE, V134, P721, DOI 10.1016/j.neuroscience.2005.06.008; Vaara J, 2009, EUR J APPL PHYSIOL, V105, P439, DOI 10.1007/s00421-008-0921-5; VALATX JL, 1973, BRAIN RES, V55, P107, DOI 10.1016/0006-8993(73)90491-5; van Breukelen F, 2002, J COMP PHYSIOL B, V172, P355, DOI 10.1007/s00360-002-0256-1; Van Breukelen F, 2001, AM J PHYSIOL-REG I, V281, pR1374; Van Cauter E., 2005, PRINCIPLES PRACTICE, P266; Van Dongen HPA, 2012, SLEEP, V35, P1031, DOI 10.5665/sleep.1982; Van Dongen HPA, 2012, ACCIDENT ANAL PREV, V45, P11, DOI 10.1016/j.aap.2011.09.018; Van Dongen HPA, 2011, CURR TOP MED CHEM, V11, P2414; Van Dongen HPA, 2003, SLEEP, V26, P117, DOI 10.1093/sleep/26.2.117; Van Dongen HPA, 2004, SLEEP, V27, P423; Varshavsky A, 2012, PROTEIN SCI, V21, P1634, DOI 10.1002/pro.2148; Verret L, 2003, BMC NEUROSCI, V4, DOI 10.1186/1471-2202-4-19; Viola AU, 2007, CURR BIOL, V17, P613, DOI 10.1016/j.cub.2007.01.073; von Ruesten A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0030972; Vyazovskiy VV, 2008, J NEUROPHYSIOL, V99, P969, DOI 10.1152/jn.01154.2007; Vyazovskiy VV, 2008, NAT NEUROSCI, V11, P200, DOI 10.1038/nn2035; Vyazovskiy VV, 2011, NATURE, V472, P443, DOI 10.1038/nature10009; Wagner U, 2001, LEARN MEMORY, V8, P112, DOI 10.1101/lm.36801; Walker J M, 1980, Prog Brain Res, V53, P255, DOI 10.1016/S0079-6123(08)60068-0; WALKER JM, 1983, AM J PHYSIOL, V244, pR114; Walker MP, 2004, NEURON, V44, P121, DOI 10.1016/j.neuron.2004.08.031; WEBB WB, 1974, PERCEPT MOTOR SKILL, V38, P1023, DOI 10.2466/pms.1974.38.3c.1023; WEHR TA, 1992, NEUROSCI BIOBEHAV R, V16, P379, DOI 10.1016/S0149-7634(05)80208-8; WHITE DP, 1985, J APPL PHYSIOL, V59, P384; Wieser W, 2001, BIOCHEM J, V355, P389, DOI 10.1042/0264-6021:3550389; Wong-Riley M, 2011, SLEEP, V34, P833, DOI 10.5665/SLEEP.1102; Xie LL, 2013, SCIENCE, V342, P373, DOI 10.1126/science.1241224; Zenko CE, 2000, SLEEP, V23, P341; ZEPELIN H, 1974, BRAIN BEHAV EVOLUT, V10, P425, DOI 10.1159/000124330; Zepelin H, 1989, PRINCIPLES PRACTICE; ZEPELIN H, 2005, PRINCIPLES PRACTICE, P91, DOI DOI 10.1016/B0-72-160797-7/50015-X; Zhang SW, 2007, J PHYSIOL-LONDON, V581, P649, DOI 10.1113/jphysiol.2007.129510; Zhdanova IV, 2001, BRAIN RES, V903, P263, DOI 10.1016/S0006-8993(01)02444-1; Zimmer C, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018977; Zimmerman JE, 2006, PHYSIOL GENOMICS, V27, P337, DOI 10.1152/physiolgenomics.00030.2006 404 52 53 4 64 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0149-7634 1873-7528 NEUROSCI BIOBEHAV R Neurosci. Biobehav. Rev. NOV 2014 47 122 153 10.1016/j.neubiorev.2014.08.001 32 Behavioral Sciences; Neurosciences Behavioral Sciences; Neurosciences & Neurology AY3QY WOS:000347498900009 25117535 Other Gold 2018-11-12 J de Baca, TC; Figueredo, AJ de Baca, Tomas Cabeza; Figueredo, Aurelio Jose The cognitive ecology of Mexico: Climatic and socio-cultural effects on life history strategies and cognitive abilities INTELLIGENCE English Article Life history theory; Mexican States; Social privilege; Climate; Cognitive abilities DIFFERENTIATION-INTEGRATION EFFORT; SOCIAL DEVIANCE; RISK-TAKING; K-THEORY; NORTH; INCOME; IQ; SOUTH; INTELLIGENCE; POPULATIONS The purpose of the present study is to test an integrated model of human ecology, which takes into consideration variables and predictions derived from both life history and social privilege paradigms. Population-level statistics were collected from an assortment of Mexican national agencies on thirty-one Mexican States and the Federal District (N = 32). The integrated model of human cognitive ecology specifically described how biodiversity impacts state-level life history strategies and cognitive abilities in Mexico. Results from the sequential canonical cascade analysis supported the three following hypotheses: (1) regional climatic factors affected regional life histories; (2) both regional life histories and climatic factors affected regional levels of human capital; and (3) both regional levels of human capital and regional climatic factors affected regional mean cognitive abilities. The integrated model of human cognitive ecology explained a preponderance of the pooled multivariate variance (V = .66) in cognitive abilities. Implications and future directions within life history and intelligence research are discussed. (C) 2014 Elsevier Inc. All rights reserved. [de Baca, Tomas Cabeza] Univ Calif San Francisco, Dept Psychiat, San Francisco, CA 94118 USA; [Figueredo, Aurelio Jose] Univ Arizona, Coll Sci, Sch Mind Brain & Behav, Dept Psychol,Grad Program Ethol & Evolutionary Ps, Tucson, AZ 85721 USA de Baca, TC (reprint author), Univ Calif San Francisco, Dept Psychiat, 3333 Calif St,Suite 465, San Francisco, CA 94118 USA. tomas.cabezadebaca@ucsf.edu Armstrong EL, 2014, PERS INDIV DIFFER, V68, P189, DOI 10.1016/j.paid.2014.03.043; Badyaev AV, 2001, ECOLOGY, V82, P2948, DOI 10.2307/2679973; BOGAERT AF, 1989, PERS INDIV DIFFER, V10, P1071, DOI 10.1016/0191-8869(89)90259-6; Boutwell BB, 2013, PERS INDIV DIFFER, V55, P547, DOI 10.1016/j.paid.2013.04.018; Bureau of labor Statistics, 2014, GLOSSARY; Central Intelligence Agency, 2014, WORLD FACTB MEX; Cohen J., 1983, APPL MULTIPLE REGRES; Comision Nacional de Agua [National Water Commission], 2014, TEMP MED A NIV NAC P; Consejo Estatal de Poblacion [Jalisco State Population Council], 2014, SOBR OB CUEST BAS; De Baca TC, 2012, PARENT-SCI PRACT, V12, P94, DOI 10.1080/15295192.2012.680396; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Fabian DK, 2012, MOL ECOL, V21, P4748, DOI 10.1111/j.1365-294X.2012.05731.x; Fernandes HBF, 2013, PERS INDIV DIFFER, V55, P1000, DOI 10.1016/j.paid.2013.07.463; Figueredo A. J., 2012, TEMAS PSICOLOGIA, V20, P87; Figueredo A. J., 2013, J METHODS MEASUREMEN, V4, P1; Figueredo A. J., 2013, J SOCIAL EVOLUTIONAR, V7, P361, DOI DOI 10.1037/H0099182; Figueredo A. J., 2014, EVOLUTIONAR IN PRESS; Figueredo AJ, 2000, ADDICTION, V95, pS361; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2013, PERS INDIV DIFFER, V55, P251, DOI 10.1016/j.paid.2012.04.033; Figueredo AJ, 2010, PSYCHOL EMOT MOTIV A, P3; Figueredo Aurelio Jose, 2007, Journal of the Arizona-Nevada Academy of Science, V39, P59; Gibb SJ, 2012, SOC SCI MED, V74, P1979, DOI 10.1016/j.socscimed.2012.02.028; GLADDEN PR, 2008, PERSONALITY INDIVIDU, V46, P270, DOI DOI 10.1016/J.PAID.2008.10.010; Gorsuch R. L., 1983, FACTOR ANAL; Gottfredson L. S., 2006, INTRO PSICOLOGIA DIF, P433; Gottfredson L. S, 2011, HDB INDIVIDUAL DIFFE, P538; Gottfredson LS, 2004, CURR DIR PSYCHOL SCI, V13, P1, DOI 10.1111/j.0963-7214.2004.01301001.x; Green LD, 2000, AM J HUM GENET, V66, P989, DOI 10.1086/302801; Instituto Nacional de Estadistica y Geografia, 2014, AN EST ENT FED 2013; Instituto Nacional de Estadistica y Geografia, 2014, ALF 2000 2005; Instituto Nacional de Estadistica y Geografia [National Institute of Statistics and Geography], 2014, CENS POBL VIV 2010 C; Instituto Nacional de Estadistica y Geografia [National Institute of Statistics and Geography], 2013, EST PROP DIA MUERT; Instituto Nacional de Estadistica y Geografia [National Institute of Statistics and Geography], 2013, EST MATR DIV 2011; Instituto Nacional de Estadistica y Geografia [National Institute of Statistics and Geography], 2014, EST PROP DIA MUND LU; Instituto National de Estadistica y Geografia [National Institute of Statistics and Geography], 2014, AN EST ENT FED 2012; KAPLAN H, 2001, REPROD ECOLOGY HUMAN, P293; Kirkwood Burton, 2000, HIST MEXICO; Koster A, 2006, J GERONTOL A-BIOL, V61, P284, DOI 10.1093/gerona/61.3.284; Kura K, 2013, INTELLIGENCE, V41, P512, DOI 10.1016/j.intell.2013.07.001; Lancaster JB, 2009, ENDOCRINOLOGY SOCIAL, P95; Lynn R, 2012, MANKIND QUART, V52, P265; Lynn R, 2010, INTELLIGENCE, V38, P451, DOI 10.1016/j.intell.2010.07.001; Lynn R, 2010, INTELLIGENCE, V38, P353, DOI 10.1016/j.intell.2010.04.007; Lynn R, 2009, INTELLIGENCE, V37, P305, DOI 10.1016/j.intell.2009.01.002; MCLOYD VC, 1989, AM PSYCHOL, V44, P293, DOI 10.1037/0003-066X.44.2.293; Meisenberg G, 2013, PERS INDIV DIFFER, V55, P273, DOI 10.1016/j.paid.2012.04.016; Merrill T., 1996, MEXICO COUNTRY STUDY; Morris P., 2006, HDB CHILD PSYCHOL, V1, P793, DOI DOI 10.1002/9780470147658.CHPSY0114; Rangel-Villalobos H, 2008, AM J PHYS ANTHROPOL, V135, P448, DOI 10.1002/ajpa.20765; Ricardo D., 1871, PRINCIPLES POLITICAL; Rindermann H, 2012, INTELLIGENCE, V40, P362, DOI 10.1016/j.intell.2012.04.002; Ross LT, 2002, SOC BEHAV PERSONAL, V30, P453, DOI 10.2224/sbp.2002.30.5.453; Rushton JP, 2003, SCIENTIFIC STUDY OF GENERAL INTELLIGENCE: TRIBUTE TO ARTHUR R. J ENSEN, P147, DOI 10.1016/B978-008043793-4/50046-5; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Ruston J. P., 2004, INTELLIGENCE, V32, P321; SCARR S, 1983, CHILD DEV, V54, P424, DOI 10.1111/j.1467-8624.1983.tb03884.x; Secretaria de Educacion Publica [Secretary of Public Education], 2013, PISA MEX; Taylor SE, 2011, DEV PSYCHOPATHOL, V23, P939, DOI 10.1017/S0954579411000411; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Wenner CJ, 2013, INTELLIGENCE, V41, P102, DOI 10.1016/j.intell.2012.11.004; Woodley M. A., 2013, HIST VARIABILITY HER; Woodley MA, 2014, PERS INDIV DIFFER, V63, P64, DOI 10.1016/j.paid.2014.01.043; Woodley MA, 2013, INTELLIGENCE, V41, P832, DOI 10.1016/j.intell.2013.02.002; Woodley MA, 2011, REV GEN PSYCHOL, V15, P228, DOI 10.1037/a0024348 65 5 5 1 7 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 0160-2896 1873-7935 INTELLIGENCE Intelligence NOV-DEC 2014 47 63 71 10.1016/j.intell.2014.08.007 9 Psychology, Multidisciplinary Psychology AU9YR WOS:000345948400009 2018-11-12 J Lynch, HJ; Thorson, JT; Shelton, AO Lynch, Heather J.; Thorson, James T.; Shelton, Andrew Olaf Dealing with under- and over-dispersed count data in life history, spatial, and community ecology ECOLOGY English Article COM-Poisson; complete spatial randomness; Conway-Maxwell-Poisson; generalized Poisson; litter size; point pattern; probability distribution; species diversity MAXWELL-POISSON DISTRIBUTION; SPECIES RICHNESS; ESTIMATING ABUNDANCE; REGRESSION-MODEL; BIODIVERSITY; DIVERSITY; PATTERN; SIZE Count data arise frequently in ecological analyses, but regularly violate the equi-dispersion constraint imposed by the most popular distribution for analyzing these data, the Poisson distribution. Several approaches for addressing over-dispersion have been developed (e.g., negative binomial distribution), but methods for including both underdispersion and over-dispersion have been largely overlooked. We provide three specific examples drawn from life-history theory, spatial ecology, and community ecology, and illustrate the use of the Conway-Maxwell-Poisson (CMP) distribution as compared to other common models for count data. We find that where equi-dispersion is violated, the CMP distribution performs significantly better than the Poisson distribution, as assessed by information criteria that account for the CMP's additional distribution parameter. The Conway-Maxwell-Poisson distribution has seen rapid development in other fields such as risk analysis and linguistics, but is relatively unknown in the ecological literature. In addition to providing a more flexible exponential distribution for count data that is easily integrated into generalized linear models, the CMP allows ecologists to focus on the magnitude of under-or over-dispersion as opposed to the simple rejection of the equi-dispersion null hypothesis. By demonstrating its suitability in a variety of common ecological applications, we hope to encourage its wider adoption as a flexible alternative to the Poisson. [Lynch, Heather J.] SUNY Stony Brook, Dept Ecol & Evolut, Stony Brook, NY 11794 USA; [Thorson, James T.] NOAA, Fisheries Resource & Monitoring Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98112 USA; [Shelton, Andrew Olaf] NOAA, Conservat Biol Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98112 USA Lynch, HJ (reprint author), SUNY Stony Brook, Dept Ecol & Evolut, 113 Life Sci Bldg, Stony Brook, NY 11794 USA. heather.lynch@stonybrook.edu Thorson, James/O-7937-2014 Thorson, James/0000-0001-7415-1010 Anderson MJ, 2011, ECOL LETT, V14, P19, DOI 10.1111/j.1461-0248.2010.01552.x; Bailey T. C., 1995, INTERACTIVE SPATIAL; BOLKER B, 2008, ECOLOGICAL MODELS DA; Bruun HH, 2006, J VEG SCI, V17, P37, DOI 10.1658/1100-9233(2006)017[0037:EOAATO]2.0.CO;2; Burnham K. P., 2002, MODEL SELECTION MULT; Butchart SHM, 2010, SCIENCE, V328, P1164, DOI 10.1126/science.1187512; Charnov EL, 1997, NATURE, V387, P393, DOI 10.1038/387393a0; COHEN J, 1994, AM PSYCHOL, V49, P997, DOI 10.1037/0003-066X.49.12.997; CONSUL PC, 1989, GEN POISSON DISTRIBU; Conway R.W., 1962, J IND ENG, V12, P132; Cope JM, 2007, CAN J FISH AQUAT SCI, V64, P205, DOI 10.1139/F06-179; Dail D, 2011, BIOMETRICS, V67, P577, DOI 10.1111/j.1541-0420.2010.01465.x; del Castillo J, 2005, J STAT PLAN INFER, V134, P486, DOI 10.1016/j.jspi.2004.04.019; Devenish-Nelson ES, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058060; Dunn J., 2012, COMPOISSON CONWAY MA; EFRON B, 1986, J AM STAT ASSOC, V81, P709, DOI 10.2307/2289002; Fagan WF, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.0523; Gotelli NJ, 2011, FRONTIERS MEASURING, P39; Guikema SD, 2008, RISK ANAL, V28, P213, DOI 10.1111/j.1539-6924.2008.01014.x; Horness B. H., 2011, 2003 2008 US W COAST; Hubbell Stephen P., 2001, V32, pi; Iknayan KJ, 2014, TRENDS ECOL EVOL, V29, P97, DOI 10.1016/j.tree.2013.10.012; Jeltsch F, 1999, OIKOS, V85, P451, DOI 10.2307/3546695; Jones Kate E., 2009, Ecology (Washington D C), V90, P2648, DOI 10.1890/08-1494.1; Kadane JB, 2006, BAYESIAN ANAL, V1, P363, DOI 10.1214/06-BA113; Kendall BE, 2010, AM NAT, V175, P461, DOI 10.1086/650724; KENKEL NC, 1988, ECOLOGY, V69, P1017, DOI 10.2307/1941257; Kery M, 2008, J APPL ECOL, V45, P589, DOI 10.1111/j.1365-2664.2007.01441.x; Kleijn D, 2009, P R SOC B, V276, P903, DOI 10.1098/rspb.2008.1509; Krumbein WC, 1963, STRATIGRAPHY SEDIMEN; Linden A, 2011, ECOLOGY, V92, P1414, DOI 10.1890/10-1831.1; Lord D, 2008, ACCIDENT ANAL PREV, V40, P1123, DOI 10.1016/j.aap.2007.12.003; MAC ARTHUR ROBERT H., 1967; Martin TG, 2005, ECOL LETT, V8, P1235, DOI 10.1111/j.1461-0248.2005.00826.x; Minka T. P, 2003, 776 CARN MELL U DEP; Miyashita Tadashi, 1998, Acta Arachnologica, V47, P31, DOI 10.2476/asjaa.47.31; MORRIS DW, 1986, EVOLUTION, V40, P169, DOI 10.1111/j.1558-5646.1986.tb05728.x; National Marine Fisheries Service (NMFS), 2013, APP GROUNDF ESS FISH; PAINE RT, 1966, AM NAT, V100, P65, DOI 10.1086/282400; Pringle RM, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000377; R Core Development Team, 2012, R LANG ENV STAT COMP; Ridout MS, 2004, STAT MODEL, V4, P77, DOI 10.1191/1471082X04st064oa; Royle JA, 2004, BIOMETRICS, V60, P108, DOI 10.1111/j.0006-341X.2004.00142.x; Royle JA, 2003, ECOLOGY, V84, P777, DOI 10.1890/0012-9658(2003)084[0777:EAFRPA]2.0.CO;2; Saez-Castillo AJ, 2013, COMPUT STAT DATA AN, V61, P148, DOI 10.1016/j.csda.2012.12.009; Scollnik D. P. M., 1998, ASTIN BULL, V28, P135; Sellers KF, 2012, APPL STOCH MODEL BUS, V28, P104, DOI 10.1002/asmb.918; Sellers KF, 2010, ANN APPL STAT, V4, P943, DOI 10.1214/09-AOAS306; Shmueli G, 2005, J ROY STAT SOC C-APP, V54, P127, DOI 10.1111/j.1467-9876.2005.00474.x; Solow A., 2011, MAR BIOL, V159, P467; Stein RW, 2013, AM NAT, V182, P260, DOI 10.1086/670929; Tolimieri N, 2007, ENVIRON BIOL FISH, V78, P241, DOI 10.1007/s10641-006-9093-5; Wiegand T, 2004, OIKOS, V104, P209, DOI 10.1111/j.0030-1299.2004.12497.x; Wootton JT, 2005, NATURE, V433, P309, DOI 10.1038/nature03211; Wu G., 2013, J AGR BIOL ENVIR ST, V18, P1; Zipkin EF, 2014, ECOLOGY, V95, P22, DOI 10.1890/13-1131.1 56 8 8 3 58 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology NOV 2014 95 11 3173 3180 10.1890/13-1912.1 8 Ecology Environmental Sciences & Ecology AU0PO WOS:000345326000017 2018-11-12 J Marshall, DJ; Steinberg, PD Marshall, Dustin J.; Steinberg, Peter D. Larval size and age affect colonization in a marine invertebrate JOURNAL OF EXPERIMENTAL BIOLOGY English Article Egg size; Maternal effects; Bet-hedging; Size-number trade-off BET-HEDGING STRATEGY; EGG SIZE; OFFSPRING SIZE; SEA-URCHIN; REPRODUCTIVE STRATEGIES; BENTHIC INVERTEBRATES; VARIABLE ENVIRONMENTS; SPERM ENVIRONMENT; HABITAT SELECTION; DESPERATE LARVAE The relationship between offspring size and performance determines the optimal trade-off between producing many small offspring or fewer large offspring and the existence of this relationship has become a central tenet of life-history theory. For organisms with multiple life-history stages, the relationship between offspring size and performance is determined by the effects of offspring size in each life-history stage. Marine invertebrates have long been a model system for examining the evolutionary ecology of offspring size, and whilst offspring size effects have been found in several life-history stages, the crucial stage of colonization has received less attention. We examined the effect of offspring size on the settlement response of sea-urchin larvae (Heliocidaris erythrogramma) to preferred and less preferred host plants, how these effects changed over the larval period and estimated the success of juveniles in the field on preferred and less-preferred host plants. We found that smaller larvae became competent to respond to preferred host plant cues sooner than larger larvae but larger larvae rejected less-preferred host plants for longer than smaller larvae. Overall, smaller H. erythrogramma larvae are likely to have less dispersal potential and are more likely to settle in less-preferred habitats whereas larger larvae appear to have an obligately longer dispersal period but settle in preferred habitats. Our results suggest that marine invertebrates that produce non-feeding larvae may have the potential to affect the dispersal of their offspring in previously unanticipated ways and that offspring size is subject to a complex web of selection across life-history stages. [Marshall, Dustin J.] Monash Univ, Sch Biol Sci, Clayton, Vic 3800, Australia; [Steinberg, Peter D.] Univ New S Wales, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia Marshall, DJ (reprint author), Monash Univ, Sch Biol Sci, Clayton, Vic 3800, Australia. dustin.marshall@monash.edu Marshall, Dustin/C-3450-2016 Australian Research Council Discovery grants This research was supported by Australian Research Council Discovery grants to D.J.M. BAGENAL TB, 1969, J FISH BIOL, V1, P349, DOI 10.1111/j.1095-8649.1969.tb03882.x; Bertram DF, 1998, ECOLOGY, V79, P315, DOI 10.1890/0012-9658(1998)079[0315:EOMALN]2.0.CO;2; Bishop CD, 2006, INTEGR COMP BIOL, V46, P662, DOI 10.1093/icb/icl043; BLACK KP, 1991, MAR ECOL PROG SER, V74, P1, DOI 10.3354/meps074001; Botello G, 2006, MAR ECOL PROG SER, V312, P149, DOI 10.3354/meps312149; Burgess SC, 2013, FUNCT ECOL, V27, P757, DOI 10.1111/1365-2435.12080; CLARKE A, 1993, J EXP MAR BIOL ECOL, V168, P189, DOI 10.1016/0022-0981(93)90259-Q; Connolly SR, 1999, ECOL MONOGR, V69, P277, DOI 10.1890/0012-9615(1999)069[0277:TOMCCP]2.0.CO;2; Cox EF, 2002, MAR POLLUT BULL, V44, P1230, DOI 10.1016/S0025-326X(02)00213-8; Einum S, 2002, AM NAT, V160, P756, DOI 10.1086/343876; Elkin C, 2007, MAR ECOL PROG SER, V335, P143, DOI 10.3354/meps335143; Emlet RB, 1997, EVOLUTION, V51, P141, DOI 10.1111/j.1558-5646.1997.tb02395.x; Fox CW, 2000, ECOLOGY, V81, P3029, DOI 10.1890/0012-9658(2000)081[3029:NSOSBE]2.0.CO;2; HART MW, 1995, AM NAT, V146, P415, DOI 10.1086/285807; Hendry AP, 2001, AM NAT, V157, P387, DOI 10.1086/319316; HoeghGuldberg O, 1997, BIOL BULL, V192, P27, DOI 10.2307/1542573; Huggett MJ, 2006, OECOLOGIA, V149, P604, DOI 10.1007/s00442-006-0470-8; Hunt HL, 1997, MAR ECOL PROG SER, V155, P269, DOI 10.3354/meps155269; Isomura N, 2001, CORAL REEFS, V20, P309, DOI 10.1007/s003380100180; KEOUGH MJ, 1982, OECOLOGIA, V54, P348, DOI 10.1007/BF00380003; Krug PJ, 2001, MAR ECOL PROG SER, V213, P177, DOI 10.3354/meps213177; Krug PJ, 2000, J EXP BIOL, V203, P1741; Krug PJ, 1998, MAR BIOL, V132, P483, DOI 10.1007/s002270050414; Laaksonen T, 2004, OIKOS, V104, P616, DOI 10.1111/j.0030-1299.2004.12858.x; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Levitan DR, 2000, AM NAT, V156, P175, DOI 10.1086/303376; Levitan DR, 2002, ECOLOGY, V83, P464, DOI 10.2307/2680028; Levitan DR, 1996, NATURE, V382, P153, DOI 10.1038/382153a0; Marshall DJ, 2006, ECOLOGY, V87, P214, DOI 10.1890/05-0350; Marshall DJ, 2004, P ROY SOC B-BIOL SCI, V271, P1585, DOI 10.1098/rspb.2004.2790; Marshall DJ, 2003, ECOLOGY, V84, P3131, DOI 10.1890/02-0311; Marshall DJ, 2003, INVERTEBR REPROD DEV, V44, P63, DOI 10.1080/07924259.2003.9652554; Marshall DJ, 2002, ECOL LETT, V5, P173, DOI 10.1046/j.1461-0248.2002.00257.x; Marshall DJ, 2003, MAR ECOL PROG SER, V255, P145, DOI 10.3354/meps255145; Marshall DJ, 2008, ECOLOGY, V89, P2506, DOI 10.1890/07-0267.1; Marshall DJ, 2011, CURR BIOL, V21, pR718, DOI 10.1016/j.cub.2011.08.022; McEdward LR, 2003, MAR ECOL PROG SER, V256, P111, DOI 10.3354/meps256111; MCEDWARD LR, 1991, J EXP MAR BIOL ECOL, V147, P95, DOI 10.1016/0022-0981(91)90039-Y; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; Meidel K., 1999, J EXP MAR BIOL ECOL, V240, P161; Moran AL, 2001, ECOLOGY, V82, P1597, DOI 10.1890/0012-9658(2001)082[1597:OSAPIV]2.0.CO;2; Podolsky RD, 1996, AM NAT, V148, P160, DOI 10.1086/285916; Podolsky RD, 2001, EVOLUTION, V55, P2470; Quinn GP, 2002, EXPT DESIGN DATA ANA; RAIMONDI PT, 1990, AUST J ECOL, V15, P427, DOI 10.1111/j.1442-9993.1990.tb01468.x; RAMIREZLLODRA ER, 2002, ADV MAR BIOL, V43, P88, DOI DOI 10.1016/S0065-2881(02)43004-0; SARGENT RC, 1987, AM NAT, V129, P32, DOI 10.1086/284621; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Staver JM, 2002, BIOL BULL, V203, P58, DOI 10.2307/1543458; Stearns S. C., 1992, EVOLUTION LIFE HIST; Steinberg P. D., 2001, MARINE CHEM ECOLOGY, P255; STRATHMANN R, 1974, AM NAT, V108, P29, DOI 10.1086/282883; STRATHMANN RR, 1995, AM ZOOL, V35, P426; Swanson RL, 2007, J EXP BIOL, V210, P3228, DOI 10.1242/jeb.004192; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; Toonen RJ, 2001, MAR ECOL PROG SER, V224, P115, DOI 10.3354/meps224115; TURNER R, 1977, REPROD ECOLOGY MARIN, P25; VANCE RR, 1973, AM NAT, V107, P339, DOI 10.1086/282838; Wendt DE, 2000, BIOL BULL, V198, P346, DOI 10.2307/1542690; WILLIAMS TD, 1994, BIOL REV, V69, P35, DOI 10.1111/j.1469-185X.1994.tb01485.x; Williamson JE, 2004, ECOLOGY, V85, P1355, DOI 10.1890/02-4083 61 9 9 1 36 COMPANY OF BIOLOGISTS LTD CAMBRIDGE BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND 0022-0949 1477-9145 J EXP BIOL J. Exp. Biol. NOV 2014 217 22 3981 3987 10.1242/jeb.111781 7 Biology Life Sciences & Biomedicine - Other Topics AT3XG WOS:000344867000011 25267847 Green Published, Bronze 2018-11-12 J Bradley, RJ; Hubbard, JK; Jenkins, BR; Safran, RJ Bradley, R. J.; Hubbard, J. K.; Jenkins, B. R.; Safran, R. J. Patterns and ecological predictors of age-related performance in female North American barn swallows, Hirundo rustica erythrogaster BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article Avian; Generalized linear models; Life history; Longitudinal analyses; Reproductive performance; Social and ecological factors SHEARWATERS PUFFINUS-TENUIROSTRIS; REPRODUCTIVE SUCCESS; TREE SWALLOWS; HAEMATOPUS-OSTRALEGUS; FERTILIZATION SUCCESS; BREEDING PERFORMANCE; MICROSATELLITE LOCI; SITE SELECTION; EARLY-LIFE; SENESCENCE Life history theory describes the optimization of important trade-offs within an individual's lifetime and predicts that an individual's reproductive performance (RP) will improve up until a point of senescence. Despite abundant evidence for this pattern, relatively few studies consider the mechanisms associated with age-related improvements in RP. In this study, we aimed to describe patterns of age-related RP (seasonal fledgling production) in female North American barn swallows (Hirundo rustica erythrogaster) using a longitudinal data set to test multiple hypotheses about the social, morphological, and ecological factors underlying this prominent life history pattern. To address these objectives, we used generalized linear mixed models in a three-step series of analyses in which we assessed (1) patterns of female age-related RP; (2) the influence of age on changes in social, morphological, and ecological factors; and (3) whether the changes in RP were concomitant with changes in these factors. We found that (1) females showed patterns of age-related reproduction, in which performance increased in the first 2 years of breeding and decreased thereafter, (2) female tail streamer length increased and the extent of breast coloration increased then decreased significantly with age, and (3) changes in morphological traits did not covary with changes in reproductive performance over time. Our within-individual results highlight the importance of considering explicit links between morphology and reproductive performance that are not easily captured by population-level analyses. [Bradley, R. J.; Hubbard, J. K.; Jenkins, B. R.; Safran, R. J.] Univ Colorado, Dept Ecol & Evolutionary Biol, Boulder, CO 80309 USA; [Bradley, R. J.] Univ Wyoming, Dept Zool & Physiol, Laramie, WY 82071 USA Bradley, RJ (reprint author), Univ Colorado, Dept Ecol & Evolutionary Biol, Boulder, CO 80309 USA. rbradley810@gmail.com University of Colorado Boulder; Phi Beta Kappa; University of Colorado Boulder Graduate School; Ecology and Evolutionary Biology Department; National Science Foundation [IOS 0717421, DEB-CAREER 1149942]; University of Colorado We acknowledge members of the Safran Lab at the University of Colorado, Boulder, for their comments and ideas throughout manuscript development as well as the field assistants that made collection of the data possible each summer: Matthew Wilkins, Conner Fitzhugh, Andrew Flynn, Maren Vitousek, Alexander Oesterle, Kate Gloeckner, Hayley Biddle, Tessa Warner, Stephen Alderfer, Audrey Tobin, and Ian Harold. We also acknowledge the Nevada Genomics Center for fragment analysis services. RJB was funded by the University of Colorado Boulder and Phi Beta Kappa. JKH and BRJ were funded by the University of Colorado Boulder Graduate School and the Ecology and Evolutionary Biology Department. RJS was supported by the National Science Foundation (IOS 0717421 and DEB-CAREER 1149942) and the University of Colorado. Balbontin J, 2007, J ANIM ECOL, V76, P915, DOI 10.1111/j.1365-2656.2007.01269.x; Bensch S, 1997, MOL ECOL, V6, P91, DOI 10.1046/j.1365-294X.1997.00150.x; Bercovitch FB, 2003, NATURWISSENSCHAFTEN, V90, P309, DOI 10.1007/s00114-003-0436-1; Bergeron P, 2010, BEHAV ECOL SOCIOBIOL, V64, P1299, DOI 10.1007/s00265-010-0944-x; Bertram SM, 2011, ETHOLOGY, V117, P1050, DOI 10.1111/j.1439-0310.2011.01958.x; Bitton PP, 2008, BEHAV ECOL SOCIOBIOL, V62, P1543, DOI 10.1007/s00265-008-0583-7; Blas J, 2009, ECOGRAPHY, V32, P647, DOI 10.1111/j.1600-0587.2008.05700.x; Bouwman KM, 2007, ANIM BEHAV, V73, P15, DOI 10.1016/j.anbehav.2006.01.031; BRADLEY JS, 1995, J ANIM ECOL, V64, P31, DOI 10.2307/5825; BRADLEY JS, 1990, J ANIM ECOL, V59, P487, DOI 10.2307/4876; Bradley RJ, 2014, ETHOLOGY, V120, P411, DOI 10.1111/eth.12220; Brown C. R., 1999, BIRDS N AM ONLINE; Cardini A, 2003, ZOOMORPHOLOGY, V122, P11, DOI 10.1007/s00435-002-0063-y; Cuervo JJ, 2003, BEHAV ECOL, V14, P451, DOI 10.1093/beheco/arg027; Devevey G, 2010, J ORNITHOL, V151, P251, DOI 10.1007/s10336-009-0456-5; ENS BJ, 1993, ANIM BEHAV, V45, P1199, DOI 10.1006/anbe.1993.1142; Ericsson G, 2001, ECOLOGY, V82, P1613, DOI 10.1890/0012-9658(2001)082[1613:ARREAS]2.0.CO;2; FORSLUND P, 1992, J ANIM ECOL, V61, P195, DOI 10.2307/5522; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Galeotti P, 2001, ITAL J ZOOL, V68, P305, DOI 10.1080/11250000109356423; Garamszegi LZ, 2005, BEHAV ECOL, V16, P580, DOI 10.1093/beheco/ari029; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; HANOTTE O, 1994, MOL ECOL, V3, P529, DOI 10.1111/j.1365-294X.1994.tb00133.x; Hayes CL, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2012.1078; Jenkins BR, 2013, HORM BEHAV, V64, P665, DOI 10.1016/j.yhbeh.2013.08.006; Komdeur J, 2005, BEHAV ECOL, V16, P805, DOI 10.1093/beheco/ari059; Laskemoen T, 2008, J AVIAN BIOL, V39, P322, DOI 10.1111/j.0908-8857.2008.04178.x; Lifjeld JT, 2011, BEHAV ECOL SOCIOBIOL, V65, P1687, DOI 10.1007/s00265-011-1176-4; Lombardo MP, 2010, J FIELD ORNITHOL, V81, P294, DOI 10.1111/j.1557-9263.2010.00285.x; Lozano GA, 1999, WILSON BULL, V111, P381; Lubjuhn T, 2007, ZOOLOGY, V110, P387, DOI 10.1016/j.zool.2007.07.005; Ludwigs JD, 2005, BEHAV ECOL SOCIOBIOL, V57, P412, DOI 10.1007/s00265-004-0880-8; Maklakov AA, 2009, AGING CELL, V8, P324, DOI 10.1111/j.1474-9726.2009.00479.x; MCDONALD DB, 1994, SCIENCE, V266, P1030, DOI 10.1126/science.7973654; Moller AP, 2005, AGE, V27, P307, DOI 10.1007/s11357-005-4557-7; Moller AP, 1999, J ANIM ECOL, V68, P163, DOI 10.1046/j.1365-2656.1999.00274.x; Moreno J, 2010, ETHOLOGY, V116, P76, DOI 10.1111/j.1439-0310.2009.01716.x; Nakagawa S, 2008, J AVIAN BIOL, V39, P222, DOI 10.1111/j.2008.0908-8857.04171.x; Naves LC, 2007, ANIM BEHAV, V73, P433, DOI 10.1016/j.anbehav.2006.10.004; Neuman CR, 2007, J AVIAN BIOL, V38, P28, DOI 10.1111/j.2007.0908-8857.03713.x; PACKER C, 1979, ANIM BEHAV, V27, P37, DOI 10.1016/0003-3472(79)90127-1; Penteriani V, 2003, IBIS, V145, pE77, DOI 10.1046/j.1474-919X.2003.00159.x; Peron G, 2010, P ROY SOC B-BIOL SCI, V277, P2849, DOI 10.1098/rspb.2010.0530; Robertson RJ, 2001, J ANIM ECOL, V70, P1014, DOI 10.1046/j.0021-8790.2001.00555.x; ROCKWELL RF, 1993, J ANIM ECOL, V62, P323, DOI 10.2307/5363; Roff Derek A., 1992; Safran RJ, 2006, CAN J ZOOL, V84, P1533, DOI 10.1139/Z06-176; Safran RJ, 2004, AM NAT, V164, P121; Safran RJ, 2004, BEHAV ECOL, V15, P455, DOI 10.1093/beheco/arh035; Saino N, 2002, J ANIM ECOL, V71, P309, DOI 10.1046/j.1365-2656.2002.00600.x; Sanz-Aguilar A, 2008, ECOLOGY, V89, P3195, DOI 10.1890/08-0431.1; Sergio F, 2009, OECOLOGIA, V160, P507, DOI 10.1007/s00442-009-1314-0; SHIELDS WM, 1987, ECOLOGY, V68, P1373, DOI 10.2307/1939221; SHIELDS WM, 1984, AUK, V101, P780, DOI 10.2307/4086904; Tarof SA, 2012, BEHAV ECOL, V23, P313, DOI 10.1093/beheco/arr188; Tsyusko OV, 2007, MOL ECOL NOTES, V7, P833, DOI 10.1111/j.1471-8286.2007.01719.x; van de Pol M, 2006, BEHAV ECOL, V17, P982, DOI 10.1093/beheco/arl036 57 5 5 1 30 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. NOV 2014 68 11 1883 1892 10.1007/s00265-014-1797-5 10 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology AR9EF WOS:000343874100016 2018-11-12 J van Leeuwen, F; Koenig, BL; Graham, J; Park, JH van Leeuwen, Florian; Koenig, Bryan L.; Graham, Jesse; Park, Justin H. Moral concerns across the United States: associations with life-history variables, pathogen prevalence, urbanization, cognitive ability, and social class EVOLUTION AND HUMAN BEHAVIOR English Article Behavioral immune system; Life expectancy; Life-history theory; Moral foundations; Morality; Pathogen prevalence; Teenage birth rate BEHAVIORAL IMMUNE-SYSTEM; DISEASE-AVOIDANCE; CHILD MALTREATMENT; ATTITUDES; ATTACHMENT; DISGUST; CULTURE; VULNERABILITY; TRANSMISSION; CONSERVATISM This study evaluated the extent to which predictions derived from several theories could account for variability in human moral values across US states. We investigated moral values as conceptualized by Moral Foundations Theory, which argues that morality evolved in response to adaptive challenges in at least five domains: Ingroup/loyalty, Authority/respect, Purity/sanctity ("binding" foundations) and Harm/care, Fairness/reciprocity ("individualizing" foundations). We report correlations for measures of cognitive ability, social class, urbanization, pathogen prevalence, life expectancy, and teenage birth rates. Social class and educational attainment had fairly consistent but small effects across moral foundations (social class: positively associated with Ingroup/loyalty, negatively with individualizing foundations and Purity/sanctity; education: positively associated with individualizing foundations, negatively with binding foundations). We conducted multilevel regressions that were stratified for ethnicity. The most consistent state-level predictor of moral values was teenage birth rates (negatively associated with individualizing foundations, positively with binding foundations). This suggests that life-history theory may provide an explanation for individual differences in moral values, although the directions of effects for teenage birth rates diverged from predictions, of life-history theory. We conclude that none of the tested theories provides a good explanation for the observed variability in moral values in the USA. We discuss how a life-history approach might account for the findings, and note the need for improved measurement of pathogen stress to better distinguish its effects from those of life-history variables. (C) 2014 Elsevier Inc. All rights reserved. [van Leeuwen, Florian] Univ Lyon, F-69007 Lyon, France; [Koenig, Bryan L.] Lindenwood Univ, St Charles, MO USA; [Graham, Jesse] Univ So Calif, Los Angeles, CA 90089 USA; [Park, Justin H.] Univ Bristol, Bristol BS8 1TH, Avon, England van Leeuwen, F (reprint author), Univ Lyon, 14 Ave Berthelot, F-69007 Lyon, France. f.van.leeuwen.84@gmail.com Arias E, 2003, PEDIATRICS, V112, P1215, DOI 10.1542/peds.112.6.1215; Curtis V, 2001, PERSPECT BIOL MED, V44, P17, DOI 10.1353/pbm.2001.0001; Deary IJ, 2008, PSYCHOL SCI, V19, P1, DOI 10.1111/j.1467-9280.2008.02036.x; Faulkner J, 2004, GROUP PROCESS INTERG, V7, P333, DOI 10.1177/1368430204046142; Filcher C. L, 2012, BEHAV BRAIN SCI, V35, P61; Fincher CL, 2008, P R SOC B, V275, P2587, DOI 10.1098/rspb.2008.0688; Fincher CL, 2008, P R SOC B, V275, P1279, DOI 10.1098/rspb.2008.0094; Gladden P., 2009, J EVOLUTIONARY PSYCH, V7, P167, DOI DOI 10.1556/JEP.7.2009.2.5; Graham J, 2013, ADV EXP SOC PSYCHOL, V47, P55, DOI 10.1016/B978-0-12-407236-7.00002-4; Graham J, 2011, J PERS SOC PSYCHOL, V101, P366, DOI 10.1037/a0021847; Graham J, 2010, PERS SOC PSYCHOL REV, V14, P140, DOI 10.1177/1088868309353415; Graham J, 2009, J PERS SOC PSYCHOL, V96, P1029, DOI 10.1037/a0015141; Hackman J, 2013, EVOL HUM BEHAV, V34, P118, DOI 10.1016/j.evolhumbehav.2012.11.002; HAIDT J, 1993, J PERS SOC PSYCHOL, V65, P613, DOI 10.1037/0022-3514.65.4.613; Haidt J., 2010, HDB SOCIAL PSYCHOL, P797; Harper S, 2007, JAMA-J AM MED ASSOC, V297, P1224, DOI 10.1001/jama.297.11.1224; Henrich J, 2010, SCIENCE, V327, P1480, DOI 10.1126/science.1182238; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Horberg EJ, 2009, J PERS SOC PSYCHOL, V97, P963, DOI 10.1037/a0017423; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; King G, 2007, INT STUD QUART, V51, P183, DOI 10.1111/j.1468-2478.2007.00445.x; Kohlberg L., 1984, ESSAYS MORAL DEV, V2; Kohlberg L., 1977, THEOR PRACT, V16, P53, DOI [DOI 10.1080/00405847709542675, 10.1080/00405847709542675]; Koleva S, 2014, SOC PSYCHOL PERS SCI, V5, P185, DOI 10.1177/1948550613490965; Koleva SP, 2012, J RES PERS, V46, P184, DOI 10.1016/j.jrp.2012.01.006; Koleva SP, 2009, SOC JUSTICE RES, V22, P241, DOI 10.1007/s11211-009-0099-y; Kraus MW, 2012, PSYCHOL REV, V119, P546, DOI 10.1037/a0028756; Kurzban R, 2001, PSYCHOL BULL, V127, P187, DOI 10.1037//0033-2909.127.2.187; LOEHLE C, 1995, ECOLOGY, V76, P326, DOI 10.2307/1941192; Mortensen CR, 2010, PSYCHOL SCI, V21, P440, DOI 10.1177/0956797610361706; Murray DR, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0062275; Murray DR, 2011, PERS SOC PSYCHOL B, V37, P318, DOI 10.1177/0146167210394451; Navarrete CD, 2006, EVOL HUM BEHAV, V27, P270, DOI 10.1016/j.evolhumbehav.2005.12.001; Park JH, 2003, J NONVERBAL BEHAV, V27, P65, DOI 10.1023/A:1023910408854; Peugh JL, 2010, J SCHOOL PSYCHOL, V48, P85, DOI 10.1016/j.jsp.2009.09.002; Piff PK, 2012, P NATL ACAD SCI USA, V109, P4086, DOI 10.1073/pnas.1118373109; Prokop P, 2010, BEHAV PROCESS, V85, P52, DOI 10.1016/j.beproc.2010.06.006; Schaller M, 2008, J PERS SOC PSYCHOL, V95, P212, DOI 10.1037/0022-3514.95.1.212; Schaller M, 2011, CURR DIR PSYCHOL SCI, V20, P99, DOI 10.1177/0963721411402596; Sidanius J, 1996, J PERS SOC PSYCHOL, V70, P476, DOI 10.1037/0022-3514.70.3.476; Stankov L, 2009, INTELLIGENCE, V37, P294, DOI 10.1016/j.intell.2008.12.007; Terrizzi JA, 2013, EVOL HUM BEHAV, V34, P99, DOI 10.1016/j.evolhumbehav.2012.10.003; Thornhill R, 2007, EVOL HUM BEHAV, V28, P215, DOI 10.1016/j.evolhumbehav.2007.01.005; Thornhill R, 2011, PHILOS T R SOC B, V366, P3466, DOI 10.1098/rstb.2011.0052; Thornhill R, 2009, BIOL REV, V84, P113, DOI 10.1111/j.1469-185X.2008.00062.x; TRIANDIS HC, 1990, J PERS SOC PSYCHOL, V59, P1006, DOI 10.1037/0022-3514.59.5.1006; Tybur JM, 2011, PSYCHOL SCI, V22, P478, DOI 10.1177/0956797611400096; van Leeuwen F, 2012, EVOL HUM BEHAV, V33, P429, DOI 10.1016/j.evolhumbehav.2011.12.005; XU JQ, 2010, NATL VITAL STAT REPO, V58 49 3 3 0 32 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 1879-0607 EVOL HUM BEHAV Evol. Hum. Behav. NOV 2014 35 6 464 471 10.1016/j.evolhumbehav.2014.06.005 8 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences AR1PF WOS:000343356400003 2018-11-12 J Richardson, GB; Freedlander, JM; Katz, EC; Dai, CL; Chen, CC Richardson, George B.; Freedlander, Jonathan M.; Katz, Elizabeth C.; Dai, Chia-Liang; Chen, Ching-Chen Impulsivity links reward and threat sensitivities to substance use: a functional model FRONTIERS IN PSYCHOLOGY English Article reward sensitivity; threat sensitivity; impulsivity; substance use; college students LIFE-HISTORY THEORY; SENSATION-SEEKING; ANXIETY-SENSITIVITY; ANTISOCIAL-BEHAVIOR; PERSONALITY-TRAITS; ALCOHOL; PREDICTION; EVOLUTION; SAMPLE; INDEX This study used structural equations modeling and undergraduate student data to examine the effects of reward and threat sensitivities on substance use, along with the extent to which impulsivity explained these effects. Our results suggest that impulsivity may translate inversely related reward and threat sensitivities into substance use, completely mediate the effect between threat sensitivity and substance use, and partially mediate the effect between reward sensitivity and substance use. Our results also suggest that individuals with a combination of higher levels on both reward and threat sensitivities may be most impulsive and vulnerable to heightened substance use. We discuss implications for research at the interface of personality and substance use and also substance abuse prevention and treatment. [Richardson, George B.; Dai, Chia-Liang; Chen, Ching-Chen] Univ Cincinnati, Sch Human Serv, Cincinnati, OH 45221 USA; [Freedlander, Jonathan M.] Ctr Medicare & Medicaid Serv, Baltimore, MD USA; [Katz, Elizabeth C.] Towson Univ, Dept Psychol, Towson, MD USA Richardson, GB (reprint author), Univ Cincinnati, Sch Human Serv, POB 210002, Cincinnati, OH 45221 USA. george.richardson@uc.edu Richardson, George/0000-0001-6918-159X Ali R, 2002, ADDICTION, V97, P1183; Allen TJ, 1998, DRUG ALCOHOL DEPEN, V50, P137, DOI 10.1016/S0376-8716(98)00023-4; Aluja A, 2011, J PERS ASSESS, V93, P628, DOI 10.1080/00223891.2011.608760; Ames SL, 2002, PERS INDIV DIFFER, V33, P1055, DOI 10.1016/S0191-8869(01)00212-4; Angrist JD, 2001, J ECON PERSPECT, V15, P69, DOI 10.1257/jep.15.4.69; Antonakis J, 2010, LEADERSHIP QUART, V21, P1086, DOI 10.1016/j.leaqua.2010.10.010; Arnett JJ, 1996, PERS INDIV DIFFER, V20, P693, DOI 10.1016/0191-8869(96)00027-X; BENTLER PM, 1987, SOCIOL METHOD RES, V16, P78, DOI 10.1177/0049124187016001004; Berridge KC, 2012, EUR J NEUROSCI, V35, P1124, DOI 10.1111/j.1460-9568.2012.07990.x; Bollen K. A., 1989, STRUCTURAL EQUATIONS, DOI [10.1002/9781118619179, DOI 10.1002/9781118619179]; Browne MW, 1993, TESTING STRUCTURAL E, P136, DOI DOI 10.1177/0049124192021002001; Buss DM, 2009, AM PSYCHOL, V64, P140, DOI 10.1037/a0013207; Byrne B. M., 2001, STRUCTURAL EQUATION; Carver CS, 2008, EUR J PERSONALITY, V22, P388; Cosi S, 2011, PSYCHIAT RES, V190, P342, DOI 10.1016/j.psychres.2011.05.036; Costa P. T., 1992, REVISED NEO PERSONAL; Cronbach L., 1951, PSYCHOMETRIKA, V16, P234, DOI DOI 10.1007/BF02310555; Cyders MA, 2007, PERS INDIV DIFFER, V43, P839, DOI 10.1016/j.paid.2007.02.008; Cyders MA, 2007, PSYCHOL ASSESSMENT, V19, P107, DOI 10.1037/1040-3590.19.1.107; Deacon BJ, 2003, BEHAV RES THER, V41, P1427, DOI 10.1016/S0005-7967(03)00065-2; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Demaree Heath A, 2005, Behav Cogn Neurosci Rev, V4, P3, DOI 10.1177/1534582305276837; Durrant R, 2003, SUBSTANCE USE ABUSE; Eggert J, 2007, INT J EAT DISORDER, V40, P149, DOI 10.1002/eat.20351; Eisenberg N, 2005, DEV PSYCHOL, V41, P193, DOI 10.1037/0012-1649.41.1.193; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Enders C. K, 2010, APPL MISSING DATA AN; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Franken IHA, 2006, PERS INDIV DIFFER, V40, P1337, DOI 10.1016/j.paid.2005.11.016; Goldman MP, 2006, COGNITION ADDICTION, P31; Goldstein MA, 2011, MASSGENERAL HOSPITAL FOR CHILDREN ADOLESCENT MEDICINE HANDBOOK, P155, DOI 10.1007/978-1-4419-6845-6_19; Grau E, 1999, PERS INDIV DIFFER, V27, P1057, DOI 10.1016/S0191-8869(99)00047-1; GRAY JA, 1987, PSYCHOL FEAR STRESS; Hansen WB, 2007, HEALTH EDUC RES, V22, P351, DOI 10.1093/her/cyl091; Hayduk L, 2007, PERS INDIV DIFFER, V42, P841, DOI 10.1016/j.paid.2006.10.001; Hayduk LA, 2000, STRUCT EQU MODELING, V7, P111, DOI 10.1207/S15328007SEM0701_06; Hingson R, 2005, ANNU REV PUBL HEALTH, V26, P259, DOI 10.1146/annurev.publhealth.26.021304.144652; Hoyle RH, 2002, PERS INDIV DIFFER, V32, P401, DOI 10.1016/S0191-8869(01)00032-0; Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118; Humeniuk R, 2006, VALIDATION ALCOHOL S; Jacobus J, 2009, PHARMACOL BIOCHEM BE, V92, P559, DOI 10.1016/j.pbb.2009.04.001; Kane TA, 2004, PERS INDIV DIFFER, V36, P83, DOI 10.1016/S0191-8869(03)00070-9; Klesges RC, 2009, HEALTH EDUC RES, V24, P909, DOI 10.1093/her/cyp029; Kline RB, 2010, PRINCIPLES PRACTICE; Krueger RF, 2007, J ABNORM PSYCHOL, V116, P645, DOI 10.1037/0021-843X.116.4.645; Lende DH, 2002, ADDICTION, V97, P447, DOI 10.1046/j.1360-0443.2002.00022.x; Lord W., 2007, NEO PI R GUIDE INTER; MACDONALD K, 1995, J PERS, V63, P525, DOI 10.1111/j.1467-6494.1995.tb00505.x; Markon KE, 2005, J PERS SOC PSYCHOL, V88, P139, DOI 10.1037/0022-3514.88.1.139; Martens MP, 2006, COUNS PSYCHOL, V34, P878, DOI 10.1177/001100005283395; MILLER WR, 2004, J COGNITIVE PSYCHOTH, V18, P299, DOI DOI 10.1891/JC0P.18.4.299.64003; Moeller F. G., 2002, ADDICT DIS TREAT, V1, P3, DOI [DOI 10.1097/00132576-200205000-00002, 10.1097/00132576-200205000-00002]; Mooijaart A, 2012, PSYCHOMETRIKA, V77, P65, DOI 10.1007/s11336-011-9232-6; Morgan JE, 2014, PERS INDIV DIFFER, V63, P122, DOI 10.1016/j.paid.2014.01.054; National Institute on Drug Abuse (NIDA), 2009, NIH PUBLICATION, V09-4180; Nesse RM, 2002, ADDICTION, V97, P470, DOI 10.1046/j.1360-0443.2002.00086.x; NESSE RM, 1994, ETHOL SOCIOBIOL, V15, P339, DOI 10.1016/0162-3095(94)90007-8; NEWMAN JP, 1993, CLIN PSYCHOL REV, V13, P699, DOI 10.1016/S0272-7358(05)80002-9; Nower L, 2004, PSYCHOL ADDICT BEHAV, V18, P49, DOI 10.1037/0893-164X.18.1.49; Pearld J., 2009, CAUSALITY MODELS REA; Piedmont RL, 2001, J RES PERS, V35, P500, DOI 10.1006/jrpe.2001.2326; Pompili M, 2012, EUR ARCH PSY CLIN N, V262, P469, DOI 10.1007/s00406-012-0292-0; REISS S, 1986, BEHAV RES THER, V24, P1, DOI 10.1016/0005-7967(86)90143-9; Richardson GB, 2012, EVOL PSYCHOL-US, V10, P731, DOI 10.1177/147470491201000408; Robbins RN, 2004, J ADOLESCENT RES, V19, P428, DOI 10.1177/074355840328860; Robinson TE, 2008, PHILOS T R SOC B, V363, P3137, DOI 10.1098/rstb.2008.0093; Rubin DR, 2002, STAT ANAL MISSING DA, DOI [10.1002/9781119013563, DOI 10.1002/9781119013563]; SAMHSA, 2013, NSDUH SER H, V(SMA) 13-4795; Staiger PK, 2007, DRUG ALCOHOL REV, V26, P17, DOI 10.1080/09595230601036952; Taylor S, 1998, J ANXIETY DISORD, V12, P463, DOI 10.1016/S0887-6185(98)00028-0; University of Minnesota, 2007, 2007 COLL STUD HLTH; Verdejo-Garcia A, 2008, NEUROSCI BIOBEHAV R, V32, P777, DOI 10.1016/j.neubiorev.2007.11.003; Verheul R, 2001, EUR PSYCHIAT, V16, P274, DOI 10.1016/S0924-9338(01)00578-8; Vujanovic AA, 2007, ASSESSMENT, V14, P129, DOI 10.1177/1073191106295053; WALLACE JF, 1991, J RES PERS, V25, P23, DOI 10.1016/0092-6566(91)90003-9; Whiteside SP, 2005, EUR J PERSONALITY, V19, P559, DOI 10.1002/per.556; Whiteside SP, 2001, PERS INDIV DIFFER, V30, P669, DOI 10.1016/S0191-8869(00)00064-7; WOOD PB, 1995, J DRUG ISSUES, V25, P173, DOI 10.1177/002204269502500112; Zuckerman M, 1996, NEUROPSYCHOBIOLOGY, V34, P125, DOI 10.1159/000119303 80 4 4 1 11 FRONTIERS RESEARCH FOUNDATION LAUSANNE PO BOX 110, LAUSANNE, 1015, SWITZERLAND 1664-1078 FRONT PSYCHOL Front. Psychol. OCT 27 2014 5 1194 10.3389/fpsyg.2014.01194 10 Psychology, Multidisciplinary Psychology AS1QG WOS:000344054600001 25386147 DOAJ Gold, Green Published 2018-11-12 J Hauber, ME; Samas, P; Anderson, MG; Rutila, J; Low, J; Cassey, P; Grim, T Hauber, M. E.; Samas, P.; Anderson, M. G.; Rutila, J.; Low, J.; Cassey, P.; Grim, T. Life-history theory predicts host behavioural responses to experimental brood parasitism ETHOLOGY ECOLOGY & EVOLUTION English Article brood parasitism; clutch size; life-history theory; nest abandonment; virulence CUCKOO CUCULUS-CANORUS; REDSTART PHOENICURUS-PHOENICURUS; THRUSH TURDUS-PHILOMELOS; EGG COLOR MIMICRY; COMMON CUCKOO; REED WARBLERS; NEW-ZEALAND; POPULATION BOTTLENECKS; SHINY COWBIRDS; NEST DESERTION Life-history theory posits that the evolutionary responses of hosts to avian brood parasitism will be shaped by the extent of the fitness costs of parasitism. Previous modelling work predicted that hosts of more virulent parasites should eject foreign eggs, irrespective of clutch size, whereas hosts of less virulent parasites, with smaller clutch sizes, should desert (abandon) parasitized clutches and, with larger clutch sizes, should eject foreign eggs. Egg rejection behaviour of European blackbirds (Turdus merula) and song thrush (T. philomelos) in their introduced range in New Zealand was induced by manipulating the colour of one of the birds' own eggs. We also used parallel experimental manipulations in the common redstart (Phoenicurus phoenicurus), a regular host species with a large clutch size which pays a moderate cost when parasitized by the common cuckoo (Cuculus canorus). In all three species, eggs coloured entirely black were more often rejected than eggs coloured with black spots but with the rest of the background colour left visible. Rejections of black eggs occurred mainly through nest desertion in blackbirds, which have smaller clutch sizes, and mainly through egg ejection in song thrush, which have larger clutch sizes. As predicted, redstarts mostly ejected black eggs. Alternative egg rejection behaviours may have evolved in response to differently virulent brood parasitism across these species. For example, in the absence of interspecific parasitism in both their native and introduced ranges, selection by low-cost intraspecific brood parasitism may explain the experimentally-induced behavioural differences in egg rejection in blackbirds, with smaller clutch sizes, versus song thrushes, with larger clutch sizes. Such experimental approaches, informed by life-history theory, should be generally useful in larger-scale, comparative frameworks, to determine the relative roles of intra- versus interspecific brood parasitism in the evolution of egg rejection behaviours across diverse avian lineages. [Hauber, M. E.] CUNY Hunter Coll, Dept Psychol, New York, NY 10065 USA; [Hauber, M. E.] CUNY, Grad Ctr, New York, NY 10065 USA; [Hauber, M. E.; Low, J.] Victoria Univ Wellington, Sch Psychol, Wellington, New Zealand; [Samas, P.; Grim, T.] Palacky Univ, Dept Zool, Olomouc 77146, Czech Republic; [Samas, P.; Grim, T.] Palacky Univ, Ornithol Lab, Olomouc 77146, Czech Republic; [Anderson, M. G.] Massey Univ, Inst Nat & Math Sci, Ecol Behav & Conservat Grp, Albany, New Zealand; [Rutila, J.; Cassey, P.] Univ Adelaide, Sch Earth & Environm Sci, Adelaide, SA 5005, Australia Hauber, ME (reprint author), CUNY Hunter Coll, Dept Psychol, 695 Pk Ave, New York, NY 10065 USA. mark.hauber@hunter.cuny.edu Samas, Peter/E-3152-2016 Low, Jason/0000-0002-8342-7645 Human Frontier Science Program [RGY69/07, RGY83/2012] M.E. Hauber and P. Samas contributed equally to this work. Permissions to access nesting sites were granted by private landowners and the Auckland Regional Council and local authorities in Finland. Our experiments were approved by the University of Auckland Animal Ethics Committee. For assistance and discussions we are grateful to R. Boulton, J. Briskie, M. Cherry, J. Dale, D. Dearborn, B. Gill, B. Igic, M. Herberstein, M. Honza, O. Kruger, C. Millar, C. Moskat and C. Spottiswoode. P. Cassey is an Australian Research Council (ARC) Future Fellow (FT0991420). Funding was provided by the Human Frontier Science Program RGY69/07 (to T. Grim, P. Cassey and M.E. Hauber) and RGY83/2012 (to M.E. Hauber and T. Grim). Earlier drafts of this manuscript also benefitted critically from referees' comments. Anderson MG, 2009, PLOS ONE, V4, pA67, DOI 10.1371/journal.pone.0007725; [Anonymous], 1995, JMP STAT GRAPH GUID; Antonov A, 2009, BIOL LETTERS, V5, P169, DOI 10.1098/rsbl.2008.0645; Astie AA, 2006, AUK, V123, P23, DOI 10.1642/0004-8038(2006)123[0023:COEPAP]2.0.CO;2; Aviles JM, 2008, P ROY SOC B-BIOL SCI, V275, P2345, DOI 10.1098/rspb.2008.0720; Aviles JM, 2005, BEHAV ECOL SOCIOBIOL, V58, P608, DOI 10.1007/s00265-005-0941-7; Ban M, 2013, BEHAV ECOL, V24, P1014, DOI 10.1093/beheco/art004; Boulton RL, 2006, NEW ZEAL J ECOL, V30, P377; Briskie JV, 2004, P NATL ACAD SCI USA, V101, P558, DOI 10.1073/pnas.0305103101; Brooke MD, 1998, P ROY SOC B-BIOL SCI, V265, P1277, DOI 10.1098/rspb.1998.0430; CASSEY P., 2010, EMU, V109, P294; Cassey P, 2008, NATURWISSENSCHAFTEN, V95, P713, DOI 10.1007/s00114-008-0376-x; Cassey Phillip, 2005, Notornis, V52, P243; Congdon NM, 2010, IBIS, V152, P136, DOI 10.1111/j.1474-919X.2009.00975.x; Creighton E, 2001, IBIS, V143, P322, DOI 10.1111/j.1474-919X.2001.tb04493.x; Davies NB, 2011, J ZOOL, V284, P1, DOI 10.1111/j.1469-7998.2011.00810.x; Davies N. B., 2000, CUCKOOS COWBIRDS OTH; DAVIES NB, 1989, J ANIM ECOL, V58, P207, DOI 10.2307/4995; Evans KL, 2005, FUNCT ECOL, V19, P616, DOI 10.1111/j.1365-2435.2005.01016.x; Friedmann H., 1929, COWBIRDS STUDY BIOL; Geltsch N, 2012, BEHAV PROCESS, V90, P378, DOI 10.1016/j.beproc.2012.04.002; Grendstad LC, 1999, ARDEA, V87, P101; Grim T, 2001, BIOLOGIA, V56, P549; Grim Tomas, 2006, Ornithological Science, V5, P237; Grim T, 2007, ANN ZOOL FENN, V44, P1; Grim T, 2006, BEHAV ECOL SOCIOBIOL, V60, P716, DOI 10.1007/s00265-006-0215-z; Grim T, 2006, EVOL ECOL RES, V8, P785; Grim T, 2011, J ANIM ECOL, V80, P508, DOI 10.1111/j.1365-2656.2010.01798.x; Grim T, 2009, BEHAV ECOL, V20, P1138, DOI 10.1093/beheco/arp108; Grim T, 2009, ETHOLOGY, V115, P14, DOI 10.1111/j.1439-0310.2008.01574.x; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; Guigueno MF, 2009, ETHOLOGY, V115, P247, DOI 10.1111/j.1439-0310.2008.01597.x; Hale K, 2007, J AVIAN BIOL, V38, P198, DOI 10.1111/j.2007.0908-8857.03734.x; HAUBER M.E., 2003, BEHAV ECOLOGY, V14, P224, DOI DOI 10.1093/BEHEC0/14.2.227; Hauber ME, 2006, BIOL LETTERS, V2, P177, DOI 10.1098/rsbl.2005.0438; Hauber ME, 2003, AUK, V120, P860, DOI 10.1642/0004-8038(2003)120[0860:EIACPB]2.0.CO;2; Hauber ME, 2003, EVOL ECOL RES, V5, P559; Honza M, 2005, J AVIAN BIOL, V36, P517, DOI 10.1111/j.0908-8857.2005.03358.x; Honza M, 2007, BIOL J LINN SOC, V92, P269, DOI 10.1111/j.1095-8312.2007.00848.x; Hoover JP, 2006, ANIM BEHAV, V72, P881, DOI 10.1016/j.anbehav.2006.02.011; Hosoi SA, 2000, ANIM BEHAV, V59, P823, DOI 10.1006/anbe.1999.1370; Igic B, 2012, P ROY SOC B-BIOL SCI, V279, P1068, DOI 10.1098/rspb.2011.1718; Igic B, 2011, J R SOC INTERFACE, V8, P1654, DOI 10.1098/rsif.2011.0207; Igic Branislav, 2009, Notornis, V56, P134; Kilner Rebecca M., 2005, Ornithological Science, V4, P55, DOI 10.2326/osj.4.55; Kilner RM, 2011, BIOL REV, V86, P836, DOI 10.1111/j.1469-185X.2010.00173.x; Kilner RM, 2004, SCIENCE, V305, P877, DOI 10.1126/science.1098487; Kleven O, 1999, BEHAV ECOL SOCIOBIOL, V47, P41, DOI 10.1007/s002650050647; Kosciuch KL, 2006, BEHAV ECOL, V17, P917, DOI 10.1093/beheco/arl025; Langmore NE, 2005, BEHAV ECOL, V16, P686, DOI 10.1093/beheco/ari041; Latif QS, 2006, CONDOR, V108, P452, DOI 10.1650/0010-5422(2006)108[452:FEOCBP]2.0.CO;2; Lichtenstein G, 1998, CONDOR, V100, P680, DOI 10.2307/1369749; Lockwood JL, 2005, TRENDS ECOL EVOL, V20, P223, DOI 10.1016/j.tree.2005.02.004; Martin-Vivaldi M, 2002, J AVIAN BIOL, V33, P295, DOI 10.1034/j.1600-048X.2002.330311.x; MOKSNES A, 1995, J ZOOL, V236, P625, DOI 10.1111/j.1469-7998.1995.tb02736.x; Moller A.P., 1976, Dansk Ornithologisk Forenings Tidsskrift, V70, P71; Moskat C, 2003, ORNIS FENNICA, V80, P86; Moskat C, 2002, BEHAVIOUR, V139, P1313, DOI 10.1163/156853902321104181; Moskat C, 2008, ETHOLOGY, V114, P186, DOI 10.1111/j.1439-0310.2007.01456.x; Moskat C, 2007, ANIM COGN, V10, P377, DOI 10.1007/s10071-007-0071-x; Moskat C, 2010, J EXP BIOL, V213, P1976, DOI 10.1242/jeb.040394; Oien IJ, 1998, J AVIAN BIOL, V29, P209, DOI 10.2307/3677102; Pilz KM, 2005, BEHAV ECOL, V16, P507, DOI 10.1093/beheco/ari017; Polacikova L, 2010, J AVIAN BIOL, V41, P111, DOI 10.1111/j.1600-048X.2010.04983.x; Polacikova L, 2013, ANIM COGN, V16, P819, DOI 10.1007/s10071-013-0615-1; REEVE HK, 1989, AM NAT, V133, P407, DOI 10.1086/284926; ROTHSTEIN SI, 1982, BEHAV ECOL SOCIOBIOL, V11, P229, DOI 10.1007/BF00299299; ROTHSTEIN SI, 1975, CONDOR, V77, P250, DOI 10.2307/1366221; Rutila J, 2006, AUK, V123, P259, DOI 10.1642/0004-8038(2006)123[0259:ROPAUC]2.0.CO;2; Rutila J, 2002, J AVIAN BIOL, V33, P414, DOI 10.1034/j.1600-048X.2002.02937.x; SAMAS P., 2013, SYLVIA, V49, P41; Samas P, 2013, ECOGRAPHY, V36, P809, DOI 10.1111/j.1600-0587.2012.07927.x; Samas Peter, 2012, Chinese Birds, V3, P330; Samas P, 2011, ETHOLOGY, V117, P606, DOI 10.1111/j.1439-0310.2011.01917.x; *SAS I INC, 2000, SAS ONL DOC VERS 8; Segelbacher G, 2008, J ORNITHOL, V149, P131, DOI 10.1007/s10336-007-0227-0; Servedio MR, 2006, J EVOLUTION BIOL, V19, P1585, DOI 10.1111/j.1420-9101.2006.01124.x; Servedio MR, 2003, EVOLUTION, V57, P1164; Soler JJ, 1999, OECOLOGIA, V118, P265, DOI 10.1007/s004420050727; Soler JJ, 2001, ECOLOGY, V82, P1621, DOI 10.2307/2679805; Stearns S. C., 1992, EVOLUTION LIFE HIST; Streif M, 2001, IBIS, V143, P554, DOI 10.1111/j.1474-919X.2001.tb04882.x; TAKASU F, 1993, AM NAT, V142, P819, DOI 10.1086/285574; THOMPSON G.M., 1922, NATURALISATION PLANT; TINBERGEN N., 1962, BEHAVIOUR, V19, P74, DOI 10.1163/156853961X00213; Welbergen JA, 2012, BEHAV ECOL, V23, P783, DOI 10.1093/beheco/ars031; Wyllie I., 1981, CUCKOO; Yang CC, 2013, J AVIAN BIOL, V44, P216, DOI 10.1111/j.1600-048X.2013.00123.x 88 18 18 3 21 TAYLOR & FRANCIS LTD ABINGDON 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND 0394-9370 1828-7131 ETHOL ECOL EVOL Ethol. Ecol. Evol. OCT 2014 26 4 349 364 10.1080/03949370.2013.851121 16 Behavioral Sciences; Zoology Behavioral Sciences; Zoology AK9NO WOS:000338754000001 2018-11-12 J Mittal, C; Griskevicius, V Mittal, Chiraag; Griskevicius, Vladas Sense of Control Under Uncertainty Depends on People's Childhood Environment: A Life History Theory Approach JOURNAL OF PERSONALITY AND SOCIAL PSYCHOLOGY English Article resource uncertainty; socioeconomic status; sense of control; life history theory; persistence SOCIOECONOMIC-STATUS; SOCIAL-CLASS; REPRODUCTIVE STRATEGIES; COMPENSATORY CONTROL; PERCEIVED CONTROL; PERSONAL CONTROL; PHYSICAL HEALTH; STRESS; BEHAVIOR; SEX Past research found that environmental uncertainty leads people to behave differently depending on their childhood environment. For example, economic uncertainty leads people from poor childhoods to become more impulsive while leading people from wealthy childhoods to become less impulsive. Drawing on life history theory, we examine the psychological mechanism driving such diverging responses to uncertainty. Five experiments show that uncertainty alters people's sense of control over the environment. Exposure to uncertainty led people from poorer childhoods to have a significantly lower sense of control than those from wealthier childhoods. In addition, perceptions of control statistically mediated the effect of uncertainty on impulsive behavior. These studies contribute by demonstrating that sense of control is a psychological driver of behaviors associated with fast and slow life history strategies. We discuss the implications of this for theory and future research, including that environmental uncertainty might lead people who grew up poor to quit challenging tasks sooner than people who grew up wealthy. [Mittal, Chiraag; Griskevicius, Vladas] Univ Minnesota, Dept Mkt, Carlson Sch Management, St Paul, MN USA Mittal, C (reprint author), Univ Minnesota, Dept Mkt, Carlson Sch Management, 321 19th Ave South,Suite 3-150, Minneapolis, MN 55455 USA. mitt0172@umn.edu Ackerman JM, 2006, PSYCHOL SCI, V17, P836, DOI 10.1111/j.1467-9280.2006.01790.x; ADLER NE, 1994, AM PSYCHOL, V49, P15, DOI 10.1037//0003-066X.49.1.15; Aiken L.S., 1991, MULTIPLE REGRESSION; AVERILL JR, 1973, PSYCHOL BULL, V80, P286, DOI 10.1037/h0034845; Bagot RC, 2009, NEUROBIOL LEARN MEM, V92, P292, DOI 10.1016/j.nlm.2009.03.004; BANDURA A, 1989, DEV PSYCHOL, V25, P729, DOI 10.1037/0012-1649.25.5.729; Baumeister RF, 1998, J PERS SOC PSYCHOL, V74, P1252, DOI 10.1037/0022-3514.74.5.1252; Bell AM, 2011, J EVOLUTION BIOL, V24, P943, DOI 10.1111/j.1420-9101.2011.02247.x; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2012, CURR DIR PSYCHOL SCI, V21, P310, DOI 10.1177/0963721412453588; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Belsky J, 2010, PSYCHOL SCI, V21, P1195, DOI 10.1177/0956797610379867; Brady SS, 2002, J PEDIATR PSYCHOL, V27, P575, DOI 10.1093/jpepsy/27.7.575; Caudell MA, 2012, HUM BIOL, V84, P101, DOI 10.3378/027.084.0201; Champagne DL, 2008, J NEUROSCI, V28, P6037, DOI 10.1523/JNEUROSCI.0526-08.2008; Chen E, 2012, PERSPECT PSYCHOL SCI, V7, P135, DOI 10.1177/1745691612436694; Chisholm JS, 1999, HUM NATURE-INT BIOS, V10, P51, DOI 10.1007/s12110-999-1001-1; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Chivers DP, 1999, J CHEM ECOL, V25, P2455, DOI 10.1023/A:1020818006898; Cohen S, 2010, ANN NY ACAD SCI, V1186, P37, DOI 10.1111/j.1749-6632.2009.05334.x; COMPAS BE, 1991, J SOC ISSUES, V47, P23, DOI 10.1111/j.1540-4560.1991.tb01832.x; Cote S, 2013, J PERS SOC PSYCHOL, V104, P490, DOI 10.1037/a0030931; Daly M, 2005, Q REV BIOL, V80, P55, DOI 10.1086/431025; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Delton AW, 2012, J PERS SOC PSYCHOL, V102, P1252, DOI 10.1037/a0027026; Dew J., 2011, J FINANCIAL COUNSELI, V22, P43; Duncan GJ, 2010, CHILD DEV, V81, P306, DOI 10.1111/j.1467-8624.2009.01396.x; Durante KM, 2011, J CONSUM RES, V37, P921, DOI 10.1086/656575; Egan PM, 2012, J EXP SOC PSYCHOL, V48, P457, DOI 10.1016/j.jesp.2011.10.019; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P7, DOI 10.1017/S0954579410000611; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Evans GW, 2005, PSYCHOL SCI, V16, P560, DOI 10.1111/j.0956-7976.2005.01575.x; Evans GW, 2004, AM PSYCHOL, V59, P77, DOI 10.1037/0003-066X.59.2.77; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; FOLKMAN S, 1984, J PERS SOC PSYCHOL, V46, P839, DOI 10.1037/0022-3514.46.4.839; Frazier P, 2011, J PERS SOC PSYCHOL, V100, P749, DOI 10.1037/a0022405; Gangestad SW, 2010, ANIM BEHAV, V80, P1005, DOI 10.1016/j.anbehav.2010.09.003; Green L, 2004, PSYCHOL BULL, V130, P769, DOI 10.1037/0033-2909.130.5.769; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Griskevicius V, 2012, J PERS SOC PSYCHOL, V102, P69, DOI 10.1037/a0024761; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Griskevicius V, 2010, J CONSUM RES, V37, P238, DOI 10.1086/651442; GURIN P, 1978, SOC PSYCHOL, V41, P275, DOI 10.2307/3033581; Haselton MG, 2006, PERS SOC PSYCHOL REV, V10, P47, DOI 10.1207/s15327957pspr1001_3; Haselton MG, 2000, J PERS SOC PSYCHOL, V78, P81, DOI 10.1037//0022-3514.78.1.81; Hayes A. F., 2012, PROCESS VERSATILE CO; Hill SE, 2013, J EXP SOC PSYCHOL, V49, P888, DOI 10.1016/j.jesp.2013.03.016; Hill SE, 2012, J PERS SOC PSYCHOL, V103, P275, DOI 10.1037/a0028657; Hill SE, 2011, PERS SOC PSYCHOL B, V37, P383, DOI 10.1177/0146167210395603; JENSEN EW, 1983, SOC SCI MED, V17, P201, DOI 10.1016/0277-9536(83)90117-X; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; Kay AC, 2010, PERS SOC PSYCHOL REV, V14, P37, DOI 10.1177/1088868309353750; Kay AC, 2009, CURR DIR PSYCHOL SCI, V18, P264, DOI 10.1111/j.1467-8721.2009.01649.x; Kraus MW, 2012, PSYCHOL REV, V119, P546, DOI 10.1037/a0028756; Kraus MW, 2009, J PERS SOC PSYCHOL, V97, P992, DOI 10.1037/a0016357; Lachman ME, 1998, J PERS SOC PSYCHOL, V74, P763, DOI 10.1037/0022-3514.74.3.763; LANGER EJ, 1976, J PERS SOC PSYCHOL, V34, P191, DOI 10.1037//0022-3514.34.2.191; Leventhal T, 2000, PSYCHOL BULL, V126, P309, DOI 10.1037/0033-2909.126.2.309; Low BS, 2008, CROSS-CULT RES, V42, P201, DOI 10.1177/1069397108317669; Maner JK, 2012, J PERS SOC PSYCHOL, V103, P70, DOI 10.1037/a0028172; Maner JK, 2009, J PERS SOC PSYCHOL, V97, P74, DOI 10.1037/a0014055; MATHENY AP, 1995, J APPL DEV PSYCHOL, V16, P429, DOI 10.1016/0193-3973(95)90028-4; Miller GE, 2011, PSYCHOL BULL, V137, P959, DOI 10.1037/a0024768; Mortensen CR, 2010, PSYCHOL SCI, V21, P440, DOI 10.1177/0956797610361706; Muller D, 2005, J PERS SOC PSYCHOL, V89, P852, DOI 10.1037/0022-3514.89.6.852; Navarrete CD, 2010, J PERS SOC PSYCHOL, V98, P933, DOI 10.1037/a0017931; Nettle D, 2011, P ROY SOC B-BIOL SCI, V278, P1721, DOI 10.1098/rspb.2010.1726; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Neuberg S. L., 2010, HDB SOCIAL PSYCHOL, V2, P761, DOI DOI 10.1002/9780470561119.S0CPSY002021; Piff PK, 2012, J PERS SOC PSYCHOL, V103, P949, DOI 10.1037/a0029673; Piff PK, 2012, P NATL ACAD SCI USA, V109, P4086, DOI 10.1073/pnas.1118373109; Promislow D., 1990, J ZOOLOGICAL SOC LON, V220, P417, DOI [10.1111/j.1469-7998.1990.tb04316.x, DOI 10.1111/J.1469-7998.1990.TB04316.X]; Quinlan RJ, 2010, HUM NATURE-INT BIOS, V21, P124, DOI 10.1007/s12110-010-9085-1; Repetti RL, 2002, PSYCHOL BULL, V128, P330, DOI 10.1037//0033-2909.128.2.330; Rindfleisch A, 1997, J CONSUM RES, V23, P312, DOI 10.1086/209486; Robinson D., 2003, 50 CENT NEW BREED DO; RODIN J, 1986, SCIENCE, V233, P1271, DOI 10.1126/science.3749877; Roff D. A., 2002, LIFE HIST EVOLUTION; Seligman MEP, 1975, HELPLESSNESS DEPRESS; Sherman RA, 2013, J PERS SOC PSYCHOL, V105, P873, DOI 10.1037/a0033772; Sih A, 2012, PHILOS T R SOC B, V367, P2762, DOI 10.1098/rstb.2012.0216; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; SKINNER EA, 1990, J EDUC PSYCHOL, V82, P22, DOI 10.1037/0022-0663.82.1.22; Skinner EA, 1996, J PERS SOC PSYCHOL, V71, P549, DOI 10.1037/0022-3514.71.3.549; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; Troxel WM, 2004, CLIN CHILD FAM PSYCH, V7, P29, DOI 10.1023/B:CCFP.0000020191.73542.b0; Tybur JM, 2013, PSYCHOL REV, V120, P65, DOI 10.1037/a0030778; Vohs KD, 2006, SCIENCE, V314, P1154, DOI 10.1126/science.1132491; White AE, 2013, PSYCHOL SCI, V24, P715, DOI 10.1177/0956797612461919; Whitson JA, 2008, SCIENCE, V322, P115, DOI 10.1126/science.1159845; Wichman AL, 2008, J EXP SOC PSYCHOL, V44, P1106, DOI 10.1016/j.jesp.2007.12.002; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 98 46 49 3 56 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0022-3514 1939-1315 J PERS SOC PSYCHOL J. Pers. Soc. Psychol. OCT 2014 107 4 621 637 10.1037/a0037398 17 Psychology, Social Psychology AZ6MX WOS:000348334800004 25133717 2018-11-12 J Boyd, B Boyd, Brian LIFE HISTORY INTO STORY PHILOSOPHY AND LITERATURE English Article Life history theory in biology helps prompt the question: Does literature reflect the different phases of human life history equally? And if not, why not? I suggest that it does not. The centrality of sexual love and violent death in literature reflects the two key factors in biological evolution: reproduction and survival. But the very familiarity of these themes poses risks for storytellers. Since nothing makes for more arresting unpredictability than conflicting motives in active opposition, stories tend to focus disproportionately on conflicts of wills around love (mate choice and retention) and death (social oppositions and transgressions). Shakespeare's The Winter's Tale offers an illuminating example. Univ Auckland, Auckland 1, New Zealand Boyd, B (reprint author), Univ Auckland, Auckland 1, New Zealand. Bordwell David, 1988, OZU POETICS CINEMA; Boyd Brain, 2009, ORIGIN STORIES EVOLU; Boyd Brian, 2012, WHY LYRICS LAST EVOL; Boyd Brian, 2011, STALKING NABOKOV SEL, P172; BOYD R, 1992, ETHOL SOCIOBIOL, V13, P171, DOI 10.1016/0162-3095(92)90032-Y; Burke BL, 2010, PERS SOC PSYCHOL REV, V14, P155, DOI 10.1177/1088868309352321; Buss D. M., 2000, DANGEROUS PASSION WH; Buss D. M., 1994, EVOLUTION DESIRE STR; Carroll J., 2012, GRAPHING J AUSTEN EV; Carroll J., 2011, READING HUMAN NATURE; Carroll Joseph, 2004, LIT DARWINISM EVOLUT; Daly M., 1988, HOMICIDE; Daly M., 1999, TRUTH CINDERELLA DAR; de Kretser Michelle, 2012, MONTHLY JUL; Dunbar R. I. M., 1996, GROOMING GOSSIP EVOL; Dutton D, 2009, ART INSTINCT BEAUTY; Fiedler Leslie A, 1960, LOVE DEATH AM NOVEL; Flesch William, 2007, COMEUPPANCE COSTLY S; GEARY DC, 2005, ORIGIN MIND EVOLUTIO; Gottschall J, 2008, COGN STUD LIT PERFOR, P1, DOI 10.1057/9780230615595; Hrdy S. B., 1999, MOTHER NATURE HIST M; Hrdy S. B., 2009, MOTHERS OTHERS EVOLU; Landau M. J., 2007, EVOLUTIONARY PSYCHOL, V5, DOI [10. 1177/147470490700500303, DOI 10.1177/147470490700500303]; Landau MJ, 2010, EUR REV SOC PSYCHOL, V21, P114, DOI 10.1080/10463283.2010.513266; Lodge D., 2011, BRIT MUSEUM IS FALLI; Moretti Franco, 2005, GRAPHS MAPS TREES AB; Morson G. S., 1988, HIDDEN PLAIN VIEW NA; Morson Gary Saul, 2007, ANN KARENINA OUR TIM; Morson Gary Saul, 1996, NARRATIVE FREEDOM SH; Muehlenbein MP, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P153; Nabokov Dmitri, 1984, MAN USSR OTHER PLAYS, P341; Nabokov Vladimir, 1981, LECT LIT, P86; Perkins Emily, 2012, FORRESTS; Popper K, 1945, OPEN SOC ITS ENEMIES; Popper K. R, 1962, CONJECTURES REFUTATI; Shakespeare William, 2005, OXFORD SHAKESPEARE C; Solomon S., 2004, HDB EXPT EXISTENTIAL, P13; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Trivers RL, 2002, NATURAL SELECTION SO; Van Peer W., 2012, SCI METHODS HUMANITI 40 1 1 1 3 JOHNS HOPKINS UNIV PRESS BALTIMORE JOURNALS PUBLISHING DIVISION, 2715 NORTH CHARLES ST, BALTIMORE, MD 21218-4363 USA 0190-0013 1086-329X PHILOS LITERATURE Philos. Lit. OCT 2014 38 1A SI A267 A278 10.1353/phl.2014.0031 12 Literary Theory & Criticism; Literature Literature AT8NW WOS:000345190700023 2018-11-12 J Souchay, G; Gauthier, G; Pradel, R Souchay, Guillaume; Gauthier, Gilles; Pradel, Roger To breed or not: a novel approach to estimate breeding propensity and potential trade-offs in an Arctic-nesting species ECOLOGY English Article breeding propensity; Chen caerulescens atlantica; cost of reproduction; Greater Snow Goose; heterogeneity; multi-event models; reproduction; reproduction strategy; survival; temporary emigration GREATER SNOW GEESE; CAPTURE-RECAPTURE DATA; ESTIMATE TEMPORARY EMIGRATION; ROBUST DESIGN; INDIVIDUAL QUALITY; BRANTA-BERNICLA; BRENT GEESE; ENVIRONMENTAL-CONDITIONS; UNOBSERVABLE STATES; ESTIMATING SURVIVAL Breeding propensity, i.e., the probability that a mature female attempts to breed in a given year, is a critical demographic parameter in long-lived species. Life-history theory predicts that this trait should be affected by reproductive trade-offs so that the probability of future reproduction should depend on the current reproductive investment. However, breeding propensity is one of the most difficult parameters to estimate because nonbreeders are often absent from the breeding area, thereby requiring the inclusion of unobservable states in the analysis. We developed a new methodological approach by integrating a robust design sampling scheme within the multi-event capture-recapture framework. Our new model accounted for uncertainty in state assignation while allowing for departure of individuals between secondary sampling occasions. We applied this model to a long-term data set of female Greater Snow Geese (Chen caerulescens atlantica) to estimate breeding propensity and to investigate potential reproductive costs. We combined resightings during the nesting stage and recapture at the end of the breeding season to estimate breeding propensity and nesting success, and added recoveries to improve survival probability estimates. We found that both breeding propensity and nesting success depended upon breeding status in the previous year, though not survival. Successful breeders had a lower breeding propensity than failed breeders in the following year, but a higher nesting success. Individuals absent from the breeding colony had a low breeding propensity, but a high nesting success the following year. Our results suggest a cost of reproduction on breeding propensity in the next year, but once females decide to breed, nesting success is likely driven by individual quality. An added benefit of our model is that, unlike previous models with unobservable states, all parameters were identifiable when survival and breeding probabilities were fully state dependent. Our new multi-event framework is a flexible tool that can be applied to a large range of species to estimate breeding propensity and to investigate reproductive trade-offs. [Souchay, Guillaume; Gauthier, Gilles] Univ Laval, Dept Biol, Quebec City, PQ G1V 0A6, Canada; [Souchay, Guillaume; Gauthier, Gilles] Univ Laval, Ctr Etud Nord, Quebec City, PQ G1V 0A6, Canada; [Souchay, Guillaume; Pradel, Roger] Univ Paul Valery Montpellier EPHE, Ctr Ecol Fonct & Evolut, UMR 5175, Univ Montpellier, F-34293 Montpellier 05, France Souchay, G (reprint author), Swiss Ornithol Inst, Seerose 1, CH-6204 Sempach, Switzerland. guillaume.souchay@gmail.com Souchay, Guillaume/J-3486-2015 Souchay, Guillaume/0000-0003-0214-9362 Natural Sciences and Engineering Research Council of Canada; Arctic Goose Joint Venture (Canadian Wildlife Service); Centre d'Etudes Nordiques; Department of Indian and Northern Affairs Canada; network of center of excellence ArcticNet; International Research Group Dynamics of Biodiversity and Life-History traits Funding was provided by the Natural Sciences and Engineering Research Council of Canada, the Arctic Goose Joint Venture (Canadian Wildlife Service), the Centre d'Etudes Nordiques, the Department of Indian and Northern Affairs Canada, the network of center of excellence ArcticNet, and by the International Research Group Dynamics of Biodiversity and Life-History traits. Logistic support in the Arctic was generously provided by the Polar Continental Shelf Program (Natural Resources Canada), and assistance in the field by Parks Canada. Finally, we are grateful to the numerous field assistant that helped for goose banding, and especially Gerald Picard, to hunters who reported the banded birds that they shot, and to Marie-Christine Cadieux for managing the database and for assistance in the field. We are thankful to W. Kendall for helpful comments, which considerably improved an earlier version of our manuscript. Aubry LM, 2009, ECOLOGY, V90, P2491, DOI 10.1890/08-1475.1; Bailey LL, 2010, ECOLOGY, V91, P1598, DOI 10.1890/09-1633.1; Bailey LL, 2004, ECOLOGY, V85, P2456, DOI 10.1890/03-0539; Beauplet G, 2006, OIKOS, V112, P430, DOI 10.1111/j.0030-1299.2006.14412.x; Burnham K. P., 2002, MODEL SELECTION MULT; Calvert AM, 2005, J APPL ECOL, V42, P442, DOI 10.1111/j.1365-2664.2005.01042.x; Cam E, 2000, J ANIM ECOL, V69, P380, DOI 10.1046/j.1365-2656.2000.00400.x; Cam E, 1998, ECOLOGY, V79, P2917, DOI 10.2307/176526; Cam E, 2009, ENVIRON ECOL STAT SE, V3, P83, DOI 10.1007/978-0-387-78151-8_5; Choquet R, 2012, MATH BIOSCI, V236, P117, DOI 10.1016/j.mbs.2012.02.002; Choquet R, 2009, ENVIRON ECOL STAT SE, V3, P845, DOI 10.1007/978-0-387-78151-8_39; Choquet R, 2009, ECOGRAPHY, V32, P1071, DOI 10.1111/j.1600-0587.2009.05968.x; CLOBERT J, 1991, BIRD POPULATION STUD, P75; Converse SJ, 2009, AUK, V126, P77, DOI 10.1525/auk.2009.07189; Dickey MH, 2008, GLOBAL CHANGE BIOL, V14, P1973, DOI 10.1111/j.1365-2486.2008.01622.x; Erikstad KE, 1998, ECOLOGY, V79, P1781; Etterson MA, 2011, ECOL MODEL, V222, P2178, DOI 10.1016/j.ecolmodel.2010.10.013; Gauthier G, 2005, GLOBAL CHANGE BIOL, V11, P856, DOI 10.1111/j.1365-2486.2005.00944.x; Gauthier G, 2003, ECOLOGY, V84, P3250, DOI 10.1890/02-0613; GREGOIRE PE, 1990, AUK, V107, P550; Hamel S, 2009, J ANIM ECOL, V78, P143, DOI 10.1111/j.1365-2656.2008.01459.x; Hamel S, 2010, ECOL LETT, V13, P915, DOI 10.1111/j.1461-0248.2010.01478.x; Hanssen SA, 2005, P ROY SOC B-BIOL SCI, V272, P1039, DOI 10.1098/rspb.2005.3057; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hunter CM, 2009, ENVIRON ECOL STAT SE, V3, P797, DOI 10.1007/978-0-387-78151-8_37; Inger R, 2010, J ANIM ECOL, V79, P974, DOI 10.1111/j.1365-2656.2010.01712.x; Juillet C, 2012, J APPL ECOL, V49, P1237, DOI 10.1111/j.1365-2664.2012.02199.x; Kendall W. L., 2004, Animal Biodiversity and Conservation, V27, P97; Kendall WL, 2012, ECOLOGY, V93, P913, DOI 10.1890/11-1538.1; Kendall WL, 2002, ECOLOGY, V83, P3276; Kendall WL, 1997, ECOLOGY, V78, P563; Kendall WL, 2004, MAR MAMMAL SCI, V20, P424, DOI 10.1111/j.1748-7692.2004.tb01170.x; Kendall WL, 2001, BIOMETRICS, V57, P1113, DOI 10.1111/j.0006-341X.2001.01113.x; Kendall WL, 1995, J APPL STAT, V22, P751, DOI 10.1080/02664769524595; Klaassen M, 2006, ARDEA, V94, P371; LAMPRECHT J, 1986, BEHAVIOUR, V96, P28, DOI 10.1163/156853986X00207; LAZARUS J, 1978, BEHAVIOUR, V65, P62, DOI 10.1163/156853978X00198; Lecomte N, 2008, OECOLOGIA, V155, P33, DOI 10.1007/s00442-007-0860-6; Legagneux P, 2013, J FIELD ORNITHOL, V84, P201, DOI 10.1111/jofo.12019; Legagneux P, 2012, P ROY SOC B-BIOL SCI, V279, P876, DOI 10.1098/rspb.2011.1351; Mainguy J, 2006, AUK, V123, P1077, DOI 10.1642/0004-8038(2006)123[1077:GGASIR]2.0.CO;2; McCleery RH, 2008, P R SOC B, V275, P963, DOI 10.1098/rspb.2007.1418; Menu S, 2005, AUK, V122, P479, DOI 10.1642/0004-8038(2005)122[0479:SOYGSG]2.0.CO;2; Menu S, 2000, J WILDLIFE MANAGE, V64, P544, DOI 10.2307/3803252; NICHOLS JD, 1994, ECOLOGY, V75, P2052, DOI 10.2307/1941610; Poisbleau M, 2006, ANIM BEHAV, V71, P1351, DOI 10.1016/j.anbehav.2005.09.014; POLLOCK KH, 1982, J WILDLIFE MANAGE, V46, P752, DOI 10.2307/3808568; Pradel R, 2005, BIOMETRICS, V61, P442, DOI 10.1111/j.1541-0420.2005.00318.x; Pradel R, 1995, J APPL STAT, V22, P695, DOI 10.1080/02664769524559; Pradel R, 1997, BIOMETRICS, V53, P60, DOI 10.2307/2533097; PREVETT JP, 1980, WILDLIFE MONOGR, P6; Reed Austin, 1993, Wildfowl, V44, P33; Reed E. T., 2004, Animal Biodiversity and Conservation, V27, P35; Reed E. T., 2003, COUTS SOINS PARENTAU; Reed ET, 2005, J WILDLIFE MANAGE, V69, P91, DOI 10.2193/0022-541X(2005)069<0091:EONBOR>2.0.CO;2; Reed ET, 2003, ARCTIC, V56, P76; Reed ET, 2003, ECOLOGY, V84, P219, DOI 10.1890/0012-9658(2003)084[0219:AAECAR]2.0.CO;2; Roff Derek A., 1992; Rohwer FC, 1988, CURRENT ORNITHOLOGY, V5, P187; Schaub M, 2004, ECOLOGY, V85, P2107, DOI 10.1890/03-3110; SCHWARZ CJ, 1993, BIOMETRICS, V49, P177, DOI 10.2307/2532612; Schwarz CJ, 1997, BIOMETRICS, V53, P178, DOI 10.2307/2533106; Sedinger JS, 2008, J ANIM ECOL, V77, P702, DOI 10.1111/j.1365-2656.2008.01403.x; TURCOTTE Y, 1989, ANIM BEHAV, V38, P703, DOI 10.1016/S0003-3472(89)80016-8; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Viallefont A, 1995, AUK, V112, P67, DOI 10.2307/4088767; Viallefont A, 1995, J APPL STAT, V22, P847, DOI 10.1080/02664769524667; WARREN SM, 1993, AUK, V110, P145; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 69 17 17 1 32 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology OCT 2014 95 10 2745 2756 10.1890/13-1277.1 12 Ecology Environmental Sciences & Ecology AS5NL WOS:000344317300008 2018-11-12 J Sudyka, J; Arct, A; Drobniak, S; Dubiec, A; Gustafsson, L; Cichon, M Sudyka, J.; Arct, A.; Drobniak, S.; Dubiec, A.; Gustafsson, L.; Cichon, M. Experimentally increased reproductive effort alters telomere length in the blue tit (Cyanistes caeruleus) JOURNAL OF EVOLUTIONARY BIOLOGY English Article biomarker of ageing; blue tit; cost of reproduction; experimental manipulation; reproductive effort; telomeres; wild population LIFE-SPAN; QUANTITATIVE PCR; DYNAMICS; SURVIVAL; COSTS; BIRDS; AGE; CONSEQUENCES; METAANALYSIS; LONGEVITY Telomeres have recently been suggested to play important role in ageing and are considered to be a reliable ageing biomarkers. The life history theory predicts that costs of reproduction should be expressed in terms of accelerated senescence, and some empirical studies do confirm such presumption. Thus, a link between reproductive effort and telomere dynamics should be anticipated. Recent studies have indeed demonstrated that reproduction may trigger telomere loss, but actual impact of reproductive effort has not received adequate attention in experimental studies. Here, we experimentally manipulated reproductive effort by increasing the brood size in the wild blue tit (Cyanistes caeruleus). We show that parents attending enlarged broods experienced larger yearly telomere decay in comparison to control birds attending unaltered broods. In addition, we demonstrate that the change in telomere length differs between sexes, but this effect was independent from our treatment. To our knowledge, this is the first experimental study in the wild revealing that telomere dynamics may be linked to reproductive effort. Thus, telomere shortening may constitute one of the potential proximate mechanisms mediating the costs of reproduction. [Sudyka, J.; Arct, A.; Drobniak, S.; Cichon, M.] Jagiellonian Univ, Inst Environm Sci, PL-30387 Krakow, Poland; [Dubiec, A.] Polish Acad Sci, Museum & Inst Zool, PL-00679 Warsaw, Poland; [Gustafsson, L.] Uppsala Univ, Dept Anim Ecol Ecol & Genet, Uppsala, Sweden Sudyka, J (reprint author), Jagiellonian Univ, Inst Environm Sci, Ul Gronostajowa 7, PL-30387 Krakow, Poland. joanna.sudyka@uj.edu.pl Drobniak, Szymon/K-4954-2015; Dubiec, Anna/H-2941-2012 Drobniak, Szymon/0000-0001-8101-6247; Dubiec, Anna/0000-0003-4007-5915; Cichon, Mariusz/0000-0002-6164-6951 Polish National Science Center [DEC-2013/09/N/NZ8/03211]; [DS/MND/WBi-NoZ/INoS/24/2012] This research was financed by the grant of the Polish National Science Center no. DEC-2013/09/N/NZ8/03211 and the preliminary studies by DS/MND/WBi-NoZ/INoS/24/2012, both awarded to JS. We are thankful to Dariusz Wiejaczka for his assistance in the fieldwork. Antebi A, 2013, EXP GERONTOL, V48, P596, DOI 10.1016/j.exger.2012.09.009; Atema E, 2013, ARDEA, V101, P49, DOI 10.5253/078.101.0107; Barrett E. L. B., 2012, J AVIAN BIOL, V43; Barrett ELB, 2013, MOL ECOL, V22, P249, DOI 10.1111/mec.12110; Barrett ELB, 2011, AGING CELL, V10, P913, DOI 10.1111/j.1474-9726.2011.00741.x; Bauch C, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2540; Beaulieu M, 2011, FUNCT ECOL, V25, P577, DOI 10.1111/j.1365-2435.2010.01825.x; Bize P, 2009, P R SOC B, V276, P1679, DOI 10.1098/rspb.2008.1817; Blackburn EH, 2005, FEBS LETT, V579, P859, DOI 10.1016/j.febslet.2004.11.036; Boonekamp JJ, 2013, AGING CELL, V12, P330, DOI 10.1111/acel.12050; Bustin SA, 2009, CLIN CHEM, V55, P611, DOI 10.1373/clinchem.2008.112797; Butler D., 2009, ASREML ASREML FITS L; Cawthon RM, 2002, NUCLEIC ACIDS RES, V30, DOI 10.1093/nar/30.10.e47; Criscuolo F, 2009, J AVIAN BIOL, V40, P342, DOI 10.1111/j.1600-048X.2008.04623.x; de Lange T, 2005, GENE DEV, V19, P2100, DOI 10.1101/gad.1346005; Dunham MA, 2000, NAT GENET, V26, P447, DOI 10.1038/82586; Flatt T, 2011, EXP GERONTOL, V46, P369, DOI 10.1016/j.exger.2010.10.008; Gallup Jack M, 2008, Int J Biomed Sci, V4, P273; Gardner M, 2014, EXP GERONTOL, V51, P15, DOI 10.1016/j.exger.2013.12.004; Grasselli A, 2008, CIRC RES, V103, P34, DOI 10.1161/CIRCRESAHA.107.169037; Hamel S, 2010, ECOL LETT, V13, P915, DOI 10.1111/j.1461-0248.2010.01478.x; Haussmann MF, 2008, MOL BIOL EVOL, V25, P220, DOI 10.1093/molbev/msm244; Heidinger BJ, 2012, P NATL ACAD SCI USA, V109, P1743, DOI 10.1073/pnas.1113306109; Kenyon C, 2010, ANN NY ACAD SCI, V1204, P156, DOI 10.1111/j.1749-6632.2010.05640.x; Knowles SCL, 2009, FUNCT ECOL, V23, P405, DOI 10.1111/j.1365-2435.2008.01507.x; Kotrschal A, 2007, BIOL LETTERS, V3, P128, DOI 10.1098/rsbl.2006.0594; Kyo S, 1999, CANCER RES, V59, P5917; Metcalfe NB, 2013, TRENDS ECOL EVOL, V28, P347, DOI 10.1016/j.tree.2013.01.015; Monaghan P, 2006, TRENDS ECOL EVOL, V21, P47, DOI 10.1016/j.tree.2005.11.007; Monaghan P, 2010, ANN NY ACAD SCI, V1206, P130, DOI 10.1111/j.1749-6632.2010.05705.x; NUR N, 1988, EVOLUTION, V42, P351, DOI 10.1111/j.1558-5646.1988.tb04138.x; NUR N, 1984, OECOLOGIA, V65, P125, DOI 10.1007/BF00384475; PARTRIDGE L, 1981, NATURE, V294, P580, DOI 10.1038/294580a0; Pauliny A, 2006, MOL ECOL, V15, P1681, DOI 10.1111/j.1365-294X.2006.02862.x; Plot V., 2012, PLOS ONE, V7, P1; R Core Team, 2014, R LANG ENV STAT COMP; Reichert S., 2014, FRONT ECOL EVOL, V2, P1, DOI DOI 10.3389/FEVO.2014.00009; Reichert S, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0081496; Sahin E, 2010, NATURE, V464, P520, DOI 10.1038/nature08982; Salomons HM, 2009, P R SOC B, V276, P3157, DOI 10.1098/rspb.2009.0517; Santos ESA, 2012, J EVOLUTION BIOL, V25, P1911, DOI 10.1111/j.1420-9101.2012.02569.x; Sengupta S, 2004, ANN NY ACAD SCI, V1024, P54, DOI 10.1196/annals.1321.005; Shi C., 2013, SCIENCE, V343, P536; Skibiel AL, 2013, FUNCT ECOL, V27, P1382, DOI 10.1111/1365-2435.12130; Svensson L., 1992, IDENTIFICATION GUIDE; vonsZglinicki T., 2001, EXP GERONTOL, V36, P1049; Wiersma P, 2004, P ROY SOC B-BIOL SCI, V271, pS360, DOI 10.1098/rsbl.2004.0171 47 22 22 0 61 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. OCT 2014 27 10 2258 2264 10.1111/jeb.12479 7 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AR9TT WOS:000343920900020 25228433 Bronze 2018-11-12 J Richard, E; Simpson, SE; Medill, SA; McLoughlin, PD Richard, Emmanuelle; Simpson, Steven E.; Medill, Sarah A.; McLoughlin, Philip D. Interacting effects of age, density, and weather on survival and current reproduction for a large mammal ECOLOGY AND EVOLUTION English Article Density dependence; density independence; feral horses; life history theory; reproduction; survival POPULATION-DYNAMICS; TEMPORAL VARIATION; LARGE HERBIVORES; FERAL HORSES; LONG-TERM; RED DEER; GROWTH; DEMOGRAPHY; CLIMATE; FECUNDITY Individual-based study of natural populations allows for accurate and precise estimation of fitness components and the extent to which they might vary with ecological conditions. By tracking the fates of all 701 horses known to have lived on Sable Island, Canada, from 2009 to 2013 (where there is no predation, human interference, or interspecific competition for food), we present a detailed analysis of structured population dynamics with focus on interacting effects of intraspecific competition and weather on reproduction and survival. Annual survival of adult females (0.866 +/- 0.107 [(x) over bar +/- SE]) was lower than that of 3-year-olds (0.955 +/- 0.051), although annual fecundity (producing a foal in a year that was observed during our census) was higher in adults (0.616 +/- 0.023) compared to 3-year-olds (0.402 +/- 0.054). Milder winters and lower densities during gestation increased fecundity. Density negatively impacted survival for all age and sex categories; however, highest adult female survival was observed during high-density years coupled with a harsh winter, the result expected if pregnancy loss during winter or loss of foals in spring improved survival. Three-year-old females, which reproduced at lower rates, experienced higher survival than adults. Our results contrast with a previous study of feral horses that suggested recently feral ungulates might be artificially selected to reproduce even when costs to survival are high. In part, this may be because of the comparably long history of feralization (250 years; at least 25 generations) for Sable Island horses. [Richard, Emmanuelle; Simpson, Steven E.; Medill, Sarah A.; McLoughlin, Philip D.] Univ Saskatchewan, Dept Biol, Saskatoon, SK S7N 5E2, Canada Richard, E (reprint author), Univ Saskatchewan, Dept Biol, 112 Sci Pl, Saskatoon, SK S7N 5E2, Canada. emmanuelle.richard@rocketmail.com ADAMS LG, 1995, J WILDLIFE MANAGE, V59, P584, DOI 10.2307/3802467; Albon SD, 2000, J ANIM ECOL, V69, P1099, DOI 10.1046/j.1365-2656.2000.00485.x; Berger J., 1986, WILD HORSES GREAT BA; BRAULT S, 1993, ECOLOGY, V74, P1444, DOI 10.2307/1940073; Burnham K. P., 2002, MODEL SELECTION MULT; CAMERON RD, 1993, CAN J ZOOL, V71, P480, DOI 10.1139/z93-069; Caswell H, 2001, MATRIX POPULATION MO; Christie B., 1995, HORSES SABLE ISLAND; Clutton-Brock J, 1981, DOMESTICATED ANIMALS; Clutton-Brock T, 2010, TRENDS ECOL EVOL, V25, P562, DOI 10.1016/j.tree.2010.08.002; CLUTTONBROCK TH, 1987, J ANIM ECOL, V56, P857, DOI 10.2307/4953; Contasti AL, 2013, J WILDLIFE MANAGE, V77, P1545, DOI 10.1002/jwmg.625; Contasti AL, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0047858; Coulson T, 2001, SCIENCE, V292, P1528, DOI 10.1126/science.292.5521.1528; Crozier LG, 2010, J ANIM ECOL, V79, P342, DOI 10.1111/j.1365-2656.2009.01641.x; CYMBALUK NF, 1990, J ANIM SCI, V68, P3152; Festa-Bianchet M, 2003, J ANIM ECOL, V72, P640, DOI 10.1046/j.1365-2656.2003.00735.x; Festa-Bianchet M, 1998, AM NAT, V152, P367, DOI 10.1086/286175; FESTABIANCHET M, 1995, ECOLOGY, V76, P871, DOI 10.2307/1939352; Forchhammer MC, 2001, J ANIM ECOL, V70, P721, DOI 10.1046/j.0021-8790.2001.00532.x; Gaillard JM, 2013, ECOL LETT, V16, P48, DOI 10.1111/ele.12059; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; GARROTT RA, 1991, J WILDLIFE MANAGE, V55, P641, DOI 10.2307/3809513; GARROTT RA, 1990, J WILDLIFE MANAGE, V54, P603, DOI 10.2307/3809357; Garrott RA, 2003, CAN J ZOOL, V81, P33, DOI 10.1139/Z02-218; Grange S, 2009, P R SOC B, V276, P1911, DOI 10.1098/rspb.2008.1828; HELLE T, 1992, ANN ZOOL FENN, V29, P69; Heppell SS, 2000, ECOLOGY, V81, P654, DOI 10.1890/0012-9658(2000)081[0654:LHAEPP]2.0.CO;2; Johnson HE, 2010, ECOL APPL, V20, P1753, DOI 10.1890/09-1107.1; KIE JG, 1985, SOUTHWEST NAT, V30, P105, DOI 10.2307/3670664; Koenen EPC, 2004, LIVEST PROD SCI, V88, P77, DOI 10.1016/j.livprodsci.2003.10.011; Linklater WL, 2004, WILDLIFE RES, V31, P119, DOI 10.1071/WR02067; McFarland R, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0428; NELSON LJ, 1982, J WILDLIFE MANAGE, V46, P535, DOI 10.2307/3808676; Ozgul A, 2010, NATURE, V466, P482, DOI 10.1038/nature09210; Portier C, 1998, J ZOOL, V245, P271, DOI 10.1111/j.1469-7998.1998.tb00101.x; R Development Core Team, 2010, R LANG ENV STAT COMP; Raithel JD, 2007, J WILDLIFE MANAGE, V71, P795, DOI 10.2193/2005-608; Saether B.-E., 2000, ECOLOGY, V81, P642, DOI DOI 10.1890/0012-9658(2000)081[; Satinoff E., 2011, COMPREHENSIVE PHYSL, V14, P481, DOI DOI 10.1002/CPHY.CP040121; Schoener TW, 2011, SCIENCE, V331, P426, DOI 10.1126/science.1193954; Scorolli AL, 2010, WILDLIFE RES, V37, P207, DOI 10.1071/WR09059; Stearns S. C., 1992, EVOLUTION LIFE HIST; Steenhof K, 1997, J ANIM ECOL, V66, P350, DOI 10.2307/5981; Turchin P, 2003, COMPLEX POPULATION D; van Beest FM, 2014, J ANIM ECOL, V83, P147, DOI 10.1111/1365-2656.12115; VICKERY WL, 1984, OIKOS, V43, P88, DOI 10.2307/3544249; Welsh D. A., 1975, THESIS DALHOUSIE U H; Wilson L. T., 1983, California Agriculture, V37, P4; Zuur A. F., 2009, MIXED EFFECTS MODELS 51 5 5 2 83 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. OCT 2014 4 19 3851 3860 10.1002/ece3.1250 10 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology AQ9KM WOS:000343171400013 25614799 DOAJ Gold, Green Published 2018-11-12 J Morehouse, NI Morehouse, Nathan I. Condition-Dependent Ornaments, Life Histories, and the Evolving Architecture of Resource-Use INTEGRATIVE AND COMPARATIVE BIOLOGY English Article BODY CONDITION INDEXES; SEXUAL SELECTION; BEHAVIORAL SYNDROMES; HANDICAP PRINCIPLE; ESTIMATING FITNESS; LEK PARADOX; TRADE-OFFS; REPRODUCTION; TRAITS; ACQUISITION Over the past 20 years, researchers have emphasized condition-dependency as a core feature of many sexually selected ornaments. This empirical focus has been motivated by the assumption that condition-dependent ornaments should function as honest indicators of other fitness-related traits. However, evidence remains mixed regarding whether condition-dependent ornaments are consistently correlated with the expression of other key traits such as immunocompetence. I argue that the diversity of the observed relationships between condition-dependent ornaments and other fitness-related traits can be understood, and even predicted, based on attention to the structure of organisms' life histories. More specifically, these relationships are influenced by the relative variation between individuals within a population in their acquisition of resources versus the allocation of those resources to various physiological functions. However, characterizing these two core attributes of life histories requires that researchers quantify condition, a persistently challenging concept to measure empirically. In this review, I first highlight key concepts related to condition-dependency and life history theory. I then outline why measuring the acquisition and allocation of relevant resources is critical for advancing our understanding of sexually selected ornaments. As attempts to tackle these issues have been hampered in the past by empirical challenges, I offer a number of suggestions that aim to identify more tractable approaches to measuring condition, as well as its acquisition and allocation. I conclude by pointing to the broader value of pursuing these concepts empirically as well as to exciting new directions opened by this perspective. Univ Pittsburgh, Dept Biol Sci, Pittsburgh, PA 15260 USA Morehouse, NI (reprint author), Univ Pittsburgh, Dept Biol Sci, 4249 Fifth Ave, Pittsburgh, PA 15260 USA. nim@pitt.edu National Science Foundation [DEB1359537]; Animal Behavior Division of the Society for Integrative and Comparative Biology; Comparative Endocrinology Division of the Society for Integrative and Comparative Biology; Ecology and Evolution Division of the Society for Integrative and Comparative Biology; Comparative Physiology and Biochemistry Division of the Society for Integrative and Comparative Biology This work and the symposium "Stress, Condition, and Ornamentation" at the 2014 meeting of the Society for Integrative and Comparative Biology was supported by the National Science Foundation [grant DEB1359537 to W. R. Hood]; and by the Animal Behavior, Comparative Endocrinology, Ecology and Evolution, and Comparative Physiology and Biochemistry Divisions of the Society for Integrative and Comparative Biology. Blanckenhorn WU, 2003, BEHAV ECOL, V14, P612, DOI 10.1093/beheco/arg052; Bonduriansky R, 2007, AM NAT, V169, P9, DOI 10.1086/510214; Borgia G., 1979, SEXUAL SELECTION REP, P19; Cotton S, 2004, P ROY SOC B-BIOL SCI, V271, P771, DOI 10.1098/rspb.2004.2688; Cotton S, 2004, J EVOLUTION BIOL, V17, P1310, DOI 10.1111/j.1420.9101.2004.00754.x; Cotton S, 2006, CURR BIOL, V16, pR755, DOI 10.1016/j.cub.2006.08.022; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; DEJONG G, 1993, FUNCT ECOL, V7, P75, DOI 10.2307/2389869; Elser JJ, 2000, NATURE, V408, P578, DOI 10.1038/35046058; Fagan WF, 2002, AM NAT, V160, P784, DOI 10.1086/343879; Gosler AG, 2000, BIOL J LINN SOC, V71, P103, DOI 10.1006/bijl.1999.0432; Green AJ, 2001, ECOLOGY, V82, P1473, DOI 10.2307/2680003; Hill GE, 2002, P ROY SOC LOND B BIO, V269; Houle D, 2002, P ROY SOC B-BIOL SCI, V269, P97, DOI 10.1098/rspb.2001.1823; Jakob EM, 1996, OIKOS, V77, P61, DOI 10.2307/3545585; Johnstone RA, 2009, J EVOLUTION BIOL, V22, P2387, DOI 10.1111/j.1420-9101.2009.01822.x; JOHNSTONE RA, 1995, BIOL REV, V70, P1, DOI 10.1111/j.1469-185X.1995.tb01439.x; Kaspari M, 2008, P NATL ACAD SCI USA, V105, P17848, DOI 10.1073/pnas.0804528105; Ketola T, 2009, J EVOLUTION BIOL, V22, P770, DOI 10.1111/j.1420-9101.2009.01689.x; Kokko H, 2008, GENETICA, V134, P55, DOI 10.1007/s10709-008-9249-7; Kokko H, 2006, ANNU REV ECOL EVOL S, V37, P43, DOI 10.1146/annurev.ecolsys.37.091305.110259; Kotiaho JS, 1999, OIKOS, V87, P399, DOI 10.2307/3546755; Lailvaux SP, 2006, ANIM BEHAV, V72, P263, DOI 10.1016/j.anbehav.2006.02.003; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; Lorch PD, 2003, EVOL ECOL RES, V5, P867; Morehouse NI, 2010, OIKOS, V119, P766, DOI 10.1111/j.1600-0706.2009.18569.x; Moya-Larano J, 2008, J ANIM ECOL, V77, P1099, DOI 10.1111/j.1365-2656.2008.01433.x; NUR N, 1984, J THEOR BIOL, V110, P275, DOI 10.1016/S0022-5193(84)80059-4; Olijnyk AM, 2013, FUNCT ECOL, V27, P165, DOI 10.1111/1365-2435.12015; Peig J, 2010, FUNCT ECOL, V24, P1323, DOI 10.1111/j.1365-2435.2010.01751.x; Raubenheimer D, 1998, CHEMOECOLOGY, V8, P61, DOI 10.1007/PL00001805; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Robinson MR, 2013, ECOL LETT, V16, P281, DOI 10.1111/ele.12047; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; Roff D. A., 2002, LIFE HIST EVOLUTION; Roff DA, 2000, J EVOLUTION BIOL, V13, P434, DOI 10.1046/j.1420-9101.2000.00186.x; Rowe L, 1996, P ROY SOC B-BIOL SCI, V263, P1415, DOI 10.1098/rspb.1996.0207; ROWE L, 1994, AM NAT, V143, P698, DOI 10.1086/285627; Schoonhoven L. M., 2005, INSECT PLANT BIOL; SCRIBER JM, 1981, ANNU REV ENTOMOL, V26, P183, DOI 10.1146/annurev.en.26.010181.001151; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Sih A, 2008, ADV STUD BEHAV, V38, P227, DOI 10.1016/S0065-3454(08)00005-3; Simpson S.J., 2012, NATURE NUTR UNIFYING; Snell-Rood EC, 2014, P NATL ACAD SCI USA, V111, P10221, DOI 10.1073/pnas.1323607111; Sterner RW, 2002, ECOLOGICAL STOICHIOM; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WHITE TCR, 1993, INADEQUATE ENV NITRO; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 49 16 16 4 40 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1540-7063 1557-7023 INTEGR COMP BIOL Integr. Comp. Biol. OCT 2014 54 4 591 600 10.1093/icb/icu103 10 Zoology Zoology AR1BM WOS:000343314700006 25038118 Bronze 2018-11-12 J Bleu, J; Loison, A; Toigo, C Bleu, Josefa; Loison, Anne; Toigo, Carole Is there a trade-off between horn growth and survival in adult female chamois? BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article body mass; delayed costs; horn growth; life-history strategies; trade-off; ungulates INDIVIDUAL VARIATION; RUPICAPRA-RUPICAPRA; MARKED ANIMALS; ALPINE CHAMOIS; REPRODUCTION; POPULATIONS; MORTALITY; SELECTION; ECOLOGY; QUALITY Life-history theory predicts trade-offs in energy allocation between different life-history traits when resources are limited, i.e. certain traits should be negatively correlated. However, individuals differ in their ability to acquire resources, which can lead to positive correlations between traits at the population level. Here, we investigated the consequences of the allocation in horn growth and body mass on survival in a bovid (Rupicapra rupicapra) with capture-mark re-sighting data on 161 females. In female ungulates, body mass often covaries positively with demographic performance and the few studies on horn size suggest that this trait could be a signal of individual quality. Thus, we expected to measure positive correlations between the allocation in these traits and female survival. However, body mass was not correlated to female survival and there was only a negative, though marginal, effect of horn growth. Hence, it seems that the allocation in growth is not an indicator of female quality. Future studies could investigate the importance of growth on female reproduction to evaluate its effect on lifetime reproductive success. Moreover, it is important to confirm in other populations our result that suggests a cost of the allocation in horn growth to better understand the presence of horns in female bovids.(c) 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113, 516-521. [Bleu, Josefa; Loison, Anne] Univ Savoie, CNRS, UMR 5553, Lab Ecol Alpine, F-73376 Le Bourget Du Lac, France; [Bleu, Josefa] Norwegian Univ Sci & Technol, Dept Biol, Ctr Biodivers Dynam, N-7491 Trondheim, Norway; [Toigo, Carole] ONCFS, F-38610 Zi Mayencin, Gieres, France Bleu, J (reprint author), Univ Savoie, CNRS, UMR 5553, Lab Ecol Alpine, F-73376 Le Bourget Du Lac, France. josefa.bleu@gmail.com Bleu, Josefa/B-2574-2009 Bleu, Josefa/0000-0002-3403-8272 Ministere de l'Enseignement Superieur et de la Recherche; ONCFS; European Research Council Funding sources: Ministere de l'Enseignement Superieur et de la Recherche, ONCFS and European Research Council. Bassano B, 2003, MAMMALIA, V67, P65, DOI 10.1515/mamm.2003.67.1.65; Bonenfant C, 2009, J ANIM ECOL, V78, P161, DOI 10.1111/j.1365-2656.2008.01477.x; Burnham K. P., 1998, MODEL SELECTION INFE; Burnham KP, 2011, BEHAV ECOL SOCIOBIOL, V65, P23, DOI 10.1007/s00265-010-1029-6; Chirichella R, 2013, EVOL ECOL, V27, P145, DOI 10.1007/s10682-012-9583-1; Choquet R, 2009, ENVIRON ECOL STAT SE, V3, P845, DOI 10.1007/978-0-387-78151-8_39; Choquet R, 2009, ECOGRAPHY, V32, P1071, DOI 10.1111/j.1600-0587.2009.05968.x; Cote SD, 2001, OECOLOGIA, V127, P230, DOI 10.1007/s004420000584; Gaillard J.-M., 2004, Animal Biodiversity and Conservation, V27, P47; Gaillard JM, 2000, P ROY SOC B-BIOL SCI, V267, P471, DOI 10.1098/rspb.2000.1024; GREEN WCH, 1991, OECOLOGIA, V86, P521, DOI 10.1007/BF00318318; Hamel S, 2009, J ANIM ECOL, V78, P143, DOI 10.1111/j.1365-2656.2008.01459.x; Hamel S, 2010, ECOL LETT, V13, P915, DOI 10.1111/j.1461-0248.2010.01478.x; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; LOCATI M, 1991, AGGRESSIVE BEHAV, V17, P11; Loison A, 1999, J MAMMAL, V80, P620, DOI 10.2307/1383306; LOISON A, 1994, CAN J ZOOL, V72, P591, DOI 10.1139/z94-081; Mangel M, 2001, EVOL ECOL RES, V3, P583; Metcalfe NB, 2003, EXP GERONTOL, V38, P935, DOI 10.1016/S0531-5565(03)00159-1; PICARD K, 1994, J MAMMAL, V75, P710, DOI 10.2307/1382520; Poissant J, 2008, P R SOC B, V275, P623, DOI 10.1098/rspb.2007.1361; Pradel R, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0032666; Roff D. A., 2002, LIFE HIST EVOLUTION; Rughetti M, 2011, J ANIM ECOL, V80, P438, DOI 10.1111/j.1365-2656.2010.01773.x; Schroder W., 1985, P65; Toigo C, 2013, OECOLOGIA, V173, P1261, DOI 10.1007/s00442-013-2700-1; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002 28 2 2 2 33 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0024-4066 1095-8312 BIOL J LINN SOC Biol. J. Linnean Soc. OCT 2014 113 2 516 521 10.1111/bij.12351 6 Evolutionary Biology Evolutionary Biology AQ2KH WOS:000342613900014 Bronze 2018-11-12 J Schneider, NA; Griesser, M Schneider, Nicole A.; Griesser, Michael The alarm call system of breeding Brown Thornbills (Acanthiza pusilla): self-defence or nest defence? JOURNAL OF ORNITHOLOGY English Article Antipredator calls; Predation risk; Vocal system; Nestling begging TREE SWALLOWS; PREDATION RISK; SIGNAL; BIRD; RESPONSES; URGENCY; COMMUNICATION; EVOLUTION; DECISIONS; SURVIVAL Many species produce alarm calls during predator encounters that are directed at either conspecifics or the predator. Although many studies have investigated alarm calls in foraging individuals, antipredator communication during reproduction is rarely studied. In birds, where nest predation is a key cause of reproductive failure, some species have evolved sophisticated alarm calls to inform nestlings of danger from nest predators. However, different predator species differ in their primary prey type (brood predators, predators of adults), and accordingly, birds could have evolved different alarm calls depending on who is in danger. We experimentally investigated parental antipredator communication in Brown Thornbills (Acanthiza pusilla), where more than 50 % of all nests are depredated. We presented breeding pairs the models of a brood predator, a predator of adult birds and a harmless control species. Parents gave two different alarm calls (short and intense tzzt calls), which were not predator-specific, but responded to the predator of adults with more alarm calls than for the brood predator. Parental alarm calls did not affect nestling begging levels, which were influenced only by parental feeding rate. Our results suggest that alarm calls of breeding Brown Thornbills are mainly used as a form of self-defence by the individuals of the breeding pair rather than being directed at the nestlings. This fits with the predictions of life-history theory that parents in long-lived species are more concerned about their own survival. [Schneider, Nicole A.; Griesser, Michael] Swedish Univ Agr Sci, Dept Ecol, S-75007 Uppsala, Sweden; [Schneider, Nicole A.] Univ Tasmania, Sch Zool, Hobart, Tas 7001, Australia; [Griesser, Michael] Univ Zurich, Anthropol Inst & Museum, CH-8057 Zurich, Switzerland Schneider, NA (reprint author), Swedish Univ Agr Sci, Dept Ecol, POB 7044, S-75007 Uppsala, Sweden. nicole.schnei@gmail.com Griesser, Michael/J-4542-2012 Griesser, Michael/0000-0002-2220-2637 Swedish Research Council [621-2008-5349]; Stiftelsen Lars Hiertas Minne [FO2010-0041] We thank Branislav Igic, Grzegorz Mikusinski and Andy Radford and two anonymous reviewers for valuable comments on previous versions of the manuscript. We also thank Cathrine Young, Naoko Takeuchi and Costantino Marullo for help in the field, Erik Wapstra for his general support, Parks Tasmania for our being able to use Trevallyn Nature Recreation Area as a study site, the Western Australian Museum and the Tasmanian Museum and Art Gallery for lending the models, and Rod Bradbury for correcting our English. This work was funded by the Swedish Research Council (Grant No. 621-2008-5349 to M. G.) and Stiftelsen Lars Hiertas Minne (Grant No. FO2010-0041 to N.A.S.). Barker R, 1990, FOOD AUSTR BIRDS, V2; Barker RD, 1989, FOOD AUSTR BIRDS, VI; Blumstein DT, 1997, ANIM BEHAV, V53, P143, DOI 10.1006/anbe.1996.0285; Caro T., 2005, ANTIPREDATOR DEFENCE; Cowling S. J, 2006, HDB AUSTR NZ ANTARCT, V7; CRESSWELL W, 1994, BEHAV ECOL SOCIOBIOL, V34, P217, DOI 10.1007/s002650050036; CURIO E, 1978, Z TIERPSYCHOL, V48, P175; EVANS CS, 1993, ANIM BEHAV, V46, P1, DOI 10.1006/anbe.1993.1156; Fallow PM, 2011, BEHAV ECOL, V22, P401, DOI 10.1093/beheco/arq221; Fasanella M, 2009, J ORNITHOL, V150, P853, DOI 10.1007/s10336-009-0406-2; Furrer RD, 2009, AM NAT, V173, P400, DOI 10.1086/596541; Ghalambor CK, 2002, BEHAV ECOL, V13, P101, DOI 10.1093/beheco/13.1.101; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; GODFRAY HCJ, 1995, AM NAT, V146, P1, DOI 10.1086/285784; Green DJ, 1999, AUST J ZOOL, V47, P633, DOI 10.1071/ZO99052; Griesser M, 2008, CURR BIOL, V18, P69, DOI 10.1016/j.cub.2007.11.069; Griesser M, 2013, FRONT ZOOL, V10, DOI 10.1186/1742-9994-10-49; Griesser M, 2009, P R SOC B, V276, P2887, DOI 10.1098/rspb.2009.0551; Haff TM, 2010, ANIM BEHAV, V79, P487, DOI 10.1016/j.anbehav.2009.11.036; Haff TM, 2011, BIOL LETTERS, V7, P493, DOI 10.1098/rsbl.2010.1125; Higgins P. J., 2002, HDB AUSTR NZ ANTARCT, V6; Hollen LI, 2008, CURR BIOL, V18, P576, DOI 10.1016/j.cub.2008.02.078; Igic B, 2013, ANIM BEHAV, V85, P593, DOI 10.1016/j.anbehav.2012.12.022; KLUMP GM, 1984, Z TIERPSYCHOL, V66, P189; Krama T, 2005, BEHAV ECOL, V16, P37, DOI 10.1093/beheco/arh116; Krams I, 2009, ANIM BEHAV, V77, P513, DOI 10.1016/j.anbehav.2008.11.007; Kroodsma DE, 2001, ANIM BEHAV, V61, P1029, DOI 10.1006/anbe.2000.1676; Leavesley AJ, 2005, ANIM BEHAV, V70, P365, DOI 10.1016/j.anbehav.2004.10.017; Lemasson A, 2010, NATURWISSENSCHAFTEN, V97, P1023, DOI 10.1007/s00114-010-0715-6; Leonard ML, 2001, ANIM BEHAV, V61, P87, DOI 10.1006/anbe.2000.1575; Leonard ML, 2001, BEHAV ECOL SOCIOBIOL, V49, P170, DOI 10.1007/s002650000290; Leonard ML, 1998, BEHAV ECOL SOCIOBIOL, V42, P431, DOI 10.1007/s002650050457; Lima SL, 1998, BIOSCIENCE, V48, P25, DOI 10.2307/1313225; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Magrath RD, 2007, ANIM BEHAV, V74, P1117, DOI 10.1016/j.anbehav.2007.01.025; Magrath RD, 2010, ADV STUD BEHAV, V41, P187, DOI 10.1016/S0065-3454(10)41006-2; Manser MB, 2002, TRENDS COGN SCI, V6, P55, DOI 10.1016/S1364-6613(00)01840-4; Manser MB, 2001, P ROY SOC B-BIOL SCI, V268, P2315, DOI 10.1098/rspb.2001.1773; Marchant S, 1993, HDB AUSTR NZ ANTARCT, V2; Martin TE, 2011, EVOLUTION, V65, P1607, DOI 10.1111/j.1558-5646.2011.01227.x; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Platzen D, 2004, P ROY SOC B-BIOL SCI, V271, P1271, DOI 10.1098/rspb.2004.2716; R Core Team, 2012, R LANG ENV STAT COMP; Ricklefs R. E., 1969, SMITHSON CONTRIB ZOO, V9, P1, DOI [DOI 10.5479/SI.00810282.9, 10.5479/si.00810282.9]; Roff Derek A., 1992; Schneider NA, 2013, BEHAV ECOL, V24, P47, DOI 10.1093/beheco/ars134; SEYFARTH RM, 1980, SCIENCE, V210, P801, DOI 10.1126/science.7433999; Suzuki TN, 2014, ANIM BEHAV, V87, P59, DOI 10.1016/j.anbehav.2013.10.009; Suzuki TN, 2011, CURR BIOL, V21, pR15, DOI 10.1016/j.cub.2010.11.027; Templeton CN, 2005, SCIENCE, V308, P1934, DOI 10.1126/science.1108841; Wright J, 2010, ANIM BEHAV, V80, P517, DOI 10.1016/j.anbehav.2010.06.015; Zuberbuhler K, 1999, ETHOLOGY, V105, P477, DOI 10.1046/j.1439-0310.1999.00396.x; Zuberbuhler K, 2001, BEHAV ECOL SOCIOBIOL, V50, P414, DOI 10.1007/s002650100383 53 2 3 0 23 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0021-8375 1439-0361 J ORNITHOL J. Ornithol. OCT 2014 155 4 987 996 10.1007/s10336-014-1085-1 10 Ornithology Zoology AP9PR WOS:000342412200014 2018-11-12 J Baker, LL; Wiff, R; Quiroz, JC; Flores, A; Cespedes, R; Barrientos, MA; Ojeda, V; Gatica, C Baker, Laurie L.; Wiff, Rodrigo; Quiroz, J. C.; Flores, Andres; Cespedes, Renato; Barrientos, Mauricio A.; Ojeda, Vilma; Gatica, Claudio Reproductive ecology of the female pink cusk-eel (Genypterus blacodes): evaluating differences between fishery management zones in the Chilean austral zone ENVIRONMENTAL BIOLOGY OF FISHES English Article L-50%; Genypterus blacodes; Fisheries; Chile; Reproduction; Maturity NORTH-SEA PLAICE; COD GADUS-MORHUA; POPULATION-STRUCTURE; COMMERCIAL CATCH; MATURITY OGIVES; SOUTHERN CHILE; REACTION NORMS; LIFE-HISTORY; MATURATION; GROWTH The pink cusk-eel (Genypterus blacodes), a benthic-demersal fish confined to the southern hemisphere, supports an important commercial fishery in Chile where it is exploited over an extensive geographic area. Although the fishery was originally divided into a northern (41A(0)28'aEuro"47A(0)00'S) and southern (47A(0)00'aEuro"57A(0)00'S) zone for the purposes of fisheries management, recent studies have reported significant differences in life history parameters between these zones. Individuals from the southern zone reached larger asymptotic sizes and possessed higher survival rates compared to the northern zone. We estimate and compare the gonadosomatic index (GSI), shape of the maturity ogive, and length at 50 % maturity (L (50%)) of female G. blacodes between management zones and across time using biological data collected from the industrial fleet between 1985 and 2009. Females in the northern zone had higher monthly mean GSI than females in the southern zone. Our analyses also revealed L (50%) to be significantly higher in the southern zone than in the northern zone from 1985 to 2009. The significant differences in life-history traits between fishery management zones agree with the trade-offs predicted by Charnov's life history theory. Together these results provide additional support for the hypothesis that two separate stocks exist and suggest that females from the northern zone have developed a life-history strategy, which favours early maturation and a proportionally greater investment in reproduction than females from the southern zone. [Quiroz, J. C.; Flores, Andres; Cespedes, Renato; Ojeda, Vilma] Inst Fomento Pesquero IFOP, Div Invest Pesquera, Valparaiso, Chile; [Wiff, Rodrigo] Univ Concepcion, Dept Oceanog, COPAS Sur Austral, Concepcion, Chile; [Barrientos, Mauricio A.] Pontificia Univ Catolica Chile, Inst Matemat, Valparaiso, Chile; [Gatica, Claudio] Inst Invest Pesquera, Talcahuano, Chile Baker, LL (reprint author), Dalhousie Univ, Dept Biol, Ocean Tracking Network, 1459 Oxford St, Halifax, NS B3H 4R2, Canada. laurie.baker@dal.ca Quiroz, Juan Carlos/N-7937-2015 Quiroz, Juan Carlos/0000-0002-2831-7689 British Ecological Society (BES); Instituto de Investigacion Pesquera (INPESCA); CONICYT/FONDECYT [3130425] This work was funded by grants awarded to Laurie Baker from the British Ecological Society (BES) and from the Instituto de Investigacion Pesquera (INPESCA). This project was made possible by the Instituto de Fomento Pesquero (IFOP-Chile), who developed the 2012 sampling programme and stock assessment projects of G. blacodes. During the course of writing this manuscript R. Wiff was funded by CONICYT/FONDECYT post doctoral project number 3130425. We would like to also thank Aurora Guerrero from the Undersecretariat of fisheries (SUBPESCA) for her comments and logistical advice in the early stages of this work. We are also grateful to two anonymous reviewers for their valuable comments and constructive criticism. Aguayo M, 2001, 9915 FIP; BAGENAL TB, 1957, J MAR BIOL ASSOC UK, V36, P377, DOI 10.1017/S0025315400016866; Baker LL, 2011, THESIS U ST ANDREWS; Balbontin F., 1981, Revista de Biologia Marina, V17, P285; Brito CG, 2008, NUEVAS APROXIMACIONE, P73; Bromley PJ, 2000, J SEA RES, V44, P27, DOI 10.1016/S1385-1101(00)00043-5; Canales-Aguirre CB, 2010, FISH RES, V106, P102, DOI 10.1016/j.fishres.2010.06.010; Charnov Eric L., 1993, P1; Chong J, 1993, ESTIMACION FECUNDIDA; Conover DO, 2000, MAR ECOL PROG SER, V208, P303; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Fredrich F, 2003, J FISH BIOL, V63, P710, DOI 10.1046/j.1095-8649.2003.00184.x; Froese R, 2012, GENYPTERUS BLACODES; Grift RE, 2003, MAR ECOL PROG SER, V257, P247, DOI 10.3354/meps257247; Heino M, 1999, J EVOLUTION BIOL, V12, P423; HORN PL, 1993, NEW ZEAL J MAR FRESH, V27, P385, DOI 10.1080/00288330.1993.9516580; Jensen AL, 1996, CAN J FISH AQUAT SCI, V53, P820, DOI 10.1139/cjfas-53-4-820; Jorgensen C, 2004, ICES PAL 2 4 DK 1261; Kenchington E, 2003, ICES J MAR SCI, V60, P1172, DOI 10.1016/S1054-3139(03)00136-X; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Lowerre-Barbieri SK, 2011, MAR COAST FISH, V3, P71, DOI 10.1080/19425120.2011.556932; Marshall CT, 2007, MAR ECOL PROG SER, V335, P249, DOI 10.3354/meps335249; Murdie RE, 2000, REV GEOL CHILE, V27, P49; Nikolsky G. V., 1963, ECOLOGY FISHES; Paredes F, 2005, NEW ZEAL J MAR FRESH, V39, P1085, DOI 10.1080/00288330.2005.9517377; Pelletier D, 2000, CAN J FISH AQUAT SCI, V57, P51, DOI 10.1139/cjfas-57-1-51; Pena-Torres J, 1997, MARINE RESOURCE EC, V12, P253; R Development Core Team, 2009, R LANG ENV STAT COMP; Ramsay K, 1996, J SEA RES, V36, P50; REZNICK D, 1993, ECOLOGY, V74, P2011, DOI 10.2307/1940844; Rideout RM, 2005, FISH FISH, V6, P50, DOI 10.1111/j.1467-2679.2005.00174.x; Roa R, 1999, FISH B-NOAA, V97, P570; Schwalme K, 1999, ICES J MAR SCI, V56, P303, DOI 10.1006/jmsc.1999.0458; Smith JM, 2005, AQUAT LIVING RESOUR, V18, P341, DOI 10.1051/alr:2005038; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; Vitale F, 2006, ICES J MAR SCI, V63, P485, DOI 10.1016/j.icesjms.2005.09.001; Ward RD, 2001, MAR FRESHWATER RES, V52, P965, DOI 10.1071/MF01014; Wiff R, 2007, J APPL ICHTHYOL, V23, P270, DOI 10.1111/j.1439-0426.2007.00854.x; Wiff R, 2012, ESTATUS POSIBILIDADE; Wiff R, 2006, EVALUACION STOCKS CU; Wiff R, 2011, LAT AM J AQUAT RES, V39, P316, DOI 10.3856/vol39-issue2-fulltext-13 41 3 4 2 13 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0378-1909 1573-5133 ENVIRON BIOL FISH Environ. Biol. Fishes OCT 2014 97 10 1083 1093 10.1007/s10641-013-0199-2 11 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology AO6XQ WOS:000341496600001 2018-11-12 J Beall, AT; Schaller, M Beall, Alec T.; Schaller, Mark Affective implications of the mating/parenting trade-off: Short-term mating motives and desirability as a short-term mate predict less intense tenderness responses to infants PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Life history theory; Mating; Relationships; Tenderness INDIVIDUAL-DIFFERENCES; TESTOSTERONE; SOCIOSEXUALITY; MODEL; MENS Drawing on life-history theory, it is predicted that individuals' attitudinal orientation toward unrestricted short-term mating behavior, as well as their ability to engage in such behavior, are inversely related to nurturant emotional responses (tenderness) to infants. To test these hypotheses, participants (N = 305) completed measures assessing individual differences in short-term mating orientation, self-perceived physical attractiveness, dispositional tendency to experience tenderness, and their affective responses to photographs of human infants. Results revealed that (when controlling for other relevant individual difference variables) men's short-term mating orientation and self-perceived attractiveness were inversely associated with dispositional tenderness. Also, among men only, short-term mating orientation and self-perceived attractiveness predicted less intense tenderness responses to infants. (C) 2014 Elsevier Ltd. All rights reserved. [Beall, Alec T.; Schaller, Mark] Univ British Columbia, Vancouver, BC V6T 1Z4, Canada Beall, AT (reprint author), Univ British Columbia, Dept Psychol, 2136 W Mall, Vancouver, BC V6T 1Z4, Canada. alec@psych.ubc.ca Apicella CL, 2007, HUM NATURE-INT BIOS, V18, P22, DOI 10.1007/BF02820844; BELSKY J, 1984, CHILD DEV, V55, P83, DOI 10.2307/1129836; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Geary D. C., 1998, MALE FEMALE EVOLUTIO; Gray PB, 2002, EVOL HUM BEHAV, V23, P193, DOI 10.1016/S1090-5138(01)00101-5; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; HAIDT J, 1994, PERS INDIV DIFFER, V16, P701, DOI 10.1016/0191-8869(94)90212-7; Holtzman NS, 2011, J RES PERS, V45, P687, DOI 10.1016/j.jrp.2011.08.003; Jackson JJ, 2007, EVOL HUM BEHAV, V28, P382, DOI 10.1016/j.evolhumbehav.2007.04.005; Kalawski JP, 2010, MOTIV EMOTION, V34, P158, DOI 10.1007/s11031-010-9164-y; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; Kuzawa CW, 2010, HORM BEHAV, V57, P441, DOI 10.1016/j.yhbeh.2010.01.014; MCDOUGALL W, 1908, INTRO SOCIAL PSYCHOL; Okabe S, 2013, PHYSIOL BEHAV, V118, P159, DOI 10.1016/j.physbeh.2013.05.017; Rodrigues SM, 2009, P NATL ACAD SCI USA, V106, P21437, DOI 10.1073/pnas.0909579106; Sherman GD, 2009, EMOTION, V9, P282, DOI 10.1037/a0014904; SIMPSON JA, 1991, J PERS SOC PSYCHOL, V60, P870, DOI 10.1037/0022-3514.60.6.870; Taniguchi H, 2006, NONPROF VOLUNT SEC Q, V35, P83, DOI 10.1177/0899764005282481; van Anders SM, 2007, HORM BEHAV, V51, P454, DOI 10.1016/j.yhbeh.2007.01.002 21 6 6 1 5 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. OCT 2014 68 112 117 10.1016/j.paid.2014.03.049 6 Psychology, Social Psychology AK8OU WOS:000338688200022 2018-11-12 J Sohn, K Sohn, Kitae Age and Size at Maturity in Indonesian Women: A Norm of Reaction? AMERICAN JOURNAL OF HUMAN BIOLOGY English Article Objectives: We test (McIntyre and Kacerosky's [2011]: Am J Hum Biol 23: 305-312) prediction that the relationship between age at menarche and height switches from negative to positive, in a unidirectional and smooth manner, as the society industrializes. According to this prediction, a mid-level industrial country should exhibit a weak relationship between the two variables. Methods: The 8,013 observations are extracted from the Indonesian Family Life Survey, a nationally representative survey. Indonesia is an intermediate case that exists between the small-scale agrarian societies and industrialized societies examined by McIntyre and Kacerosky. While age at menarche is a recalled and self-reported variable, height is a measured one. The relationship is informally provided in a figure and formally estimated using ordinary least squares (OLS). Results: The informal finding clearly shows no relationship between age at menarche and height. The OLS results also agree that the relationship is very weak. Specifically, despite the large sample size, the relationship is not statistically significant in a linear manner, regardless of whether the outlier group (age at menarche 10) is included or excluded. Various robustness checks are performed to confirm this finding. Conclusions: Our results lend support to McIntyre and Kacerosky's explanation as to why the relationship between age at menarche and height switches from negative to positive as the society industrializes. Furthermore, our results imply that the model (the Day and Rowe model) and theory (life history theory) on which this explanation is based are plausible. (C) 2014 Wiley Periodicals, Inc. Kookmin Univ, Dept Econ, Seoul 136702, South Korea Sohn, K (reprint author), Kookmin Univ, Dept Econ, 77 Jeongneung Ro, Seoul 136702, South Korea. ksohn@kookmin.ac.kr Allal N, 2004, P ROY SOC B-BIOL SCI, V271, P465, DOI 10.1098/rspb.2003.2623; Baten J, 2012, ECON HIST DEV REG, V27, pS66, DOI 10.1080/20780389.2012.657489; Cairns BJ, 2011, BMC MED RES METHODOL, V11, DOI 10.1186/1471-2288-11-7; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; LIVSON N, 1962, HUM BIOL, V34, P218; McIntyre MH, 2011, AM J HUM BIOL, V23, P305, DOI 10.1002/ajhb.21122; Sohn K, EC HUM BIOL IN PRESS; Sterns SC, 1989, FUNCT ECOL, V3, P259; TANNER J, 1978, GROWTH ADOLESCENCE; van der Eng P, 2010, EXPLOR ECON HIST, V47, P294, DOI 10.1016/j.eeh.2009.08.004; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510 11 21 21 0 3 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1042-0533 1520-6300 AM J HUM BIOL Am. J. Hum. Biol. SEP-OCT 2014 26 5 713 715 10.1002/ajhb.22571 3 Anthropology; Biology Anthropology; Life Sciences & Biomedicine - Other Topics AS6HA WOS:000344363700020 24898522 2018-11-12 J Lloyd, P; Abadi, F; Altwegg, R; Martin, TE Lloyd, Penn; Abadi, Fitsum; Altwegg, Res; Martin, Thomas E. South temperate birds have higher apparent adult survival than tropical birds in Africa JOURNAL OF AVIAN BIOLOGY English Article LIFE-HISTORY EVOLUTION; CLUTCH-SIZE; GEOGRAPHIC-VARIATION; BREEDING BIOLOGY; MARKED ANIMALS; NEST PREDATION; RATES; TERRITORIALITY; POPULATIONS; HYPOTHESES Life history theory predicts an inverse relationship between annual adult survival and fecundity. Globally, clutch size shows a latitudinal gradient among birds, with south temperate species laying smaller clutches than north temperate species, but larger clutches than tropical species. Tropical birds often have higher adult survival than north temperate birds associated with their smaller clutches. However, the prediction that tropical birds should also have higher adult survival than south temperate birds because of smaller clutch sizes remains largely untested. We measured clutch size and apparent annual breeding adult survival for 17 south temperate African species to test two main predictions. First, we found strong support for a predicted inverse relationship between adult survival and clutch size among the south temperate species, consistent with life-history theory. Second, we compared our clutch size and survival estimates with published estimates for congeneric tropical African species to test the prediction of larger clutch size and lower adult survival among south temperate than related tropical species. We found that south-temperate species laid larger clutches, as predicted, but had higher, rather than lower, apparent adult survival than related tropical species. The latter result may be an artefact of different approaches to measuring survival, but the results suggest that adult survival is generally high in the south temperate region and raises questions about the importance of the cost of reproduction to adult survival. [Lloyd, Penn] Univ Cape Town, Percy FitzPatrick Inst, DST NRF Ctr Excellence, ZA-7701 Rondebosch, South Africa; [Lloyd, Penn] Biodiversity Assessment & Management Pty Ltd, Cleveland, Qld 4163, Australia; [Abadi, Fitsum; Altwegg, Res] South African Natl Biodivers Inst, ZA-7735 Claremont, South Africa; [Abadi, Fitsum] Univ Witwatersrand, Sch Stat & Actuarial Sci, ZA-2050 Johannesburg, South Africa; [Altwegg, Res] Univ Cape Town, African Climate & Dev Initiat, ZA-7701 Rondebosch, South Africa; [Altwegg, Res] Univ Cape Town, Dept Stat Sci, Ctr Stat Ecol Environm & Conservat, ZA-7701 Rondebosch, South Africa; [Martin, Thomas E.] Univ Montana, US Geol Survey, Cooperat Wildlife Res Unit, Missoula, MT 59812 USA Lloyd, P (reprint author), Univ Cape Town, Percy FitzPatrick Inst, DST NRF Ctr Excellence, P Bag X3, ZA-7701 Rondebosch, South Africa. penn@baamecology.com Martin, Thomas/F-6016-2011 Martin, Thomas/0000-0002-4028-4867 National Science Foundation [INT-9906030, DEB-0841764, DEB-1241041]; National Research Foundation; Claude Leon Foundation We thank volunteer banders from the Tygerberg Bird Club for extensive assistance with colour-banding birds, particularly Margaret McCall, Bob Ellis, Lee Silks, and Bridget de Kok. Many field assistants and co-workers helped locate and monitor nests and resight the colour-band combinations of breeding adults each year, particularly Sonya Auer and Ron Bassar, Simon Davies, Andrew Taylor, Corine Eising, David Nkosi, Joseph Fontaine, Davide Gaglio, Pierre-Yves Perroi, Justin Shew, Anna Chalfoun, Riccardo Ton, Adams Chaskda, Alexander Neu, Julia Taubman, and Bettina Christ. We thank Gert Greef and Hilton Westman for permission to work at ESKOM's Koeberg Nature Reserve, and Wes Hochachka for comments that improved the manuscript. This work was supported in part through National Science Foundation grants (INT-9906030, DEB-0841764, DEB-1241041 to TEM), National Research Foundation grants (to PL and RA) and a Claude Leon Foundation fellowship (to FA). Capture and banding activities were licensed by Cape Nature and SAFRING, the South African bird-banding scheme that issued the numbered metal bands, and approved by the Animal Ethics Committee, Univ. of Cape Town and IACUC #059-10TMMCWRU at the Univ. of Montana. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U. S. Government. Although the WinBUGS program has been used by the U. S. Geological Survey (USGS), no warranty, expressed or implied, is made by the USGS or the U.S. Government as to the accuracy and functioning of the program and related program material nor shall the fact of distribution constitute any such warranty, and no responsibility is assumed by the USGS in connection therewith. Ahumada JA, 2001, AUK, V118, P191, DOI 10.1642/0004-8038(2001)118[0191:COTRBO]2.0.CO;2; Altwegg R, 2006, OECOLOGIA, V149, P44, DOI 10.1007/s00442-006-0430-3; Armstrong DP, 2005, J ANIM ECOL, V74, P160, DOI 10.1111/j.1365-2656.2004.00908.x; Badyaev AV, 2001, ECOLOGY, V82, P2948, DOI 10.2307/2679973; Bonan G, 2002, ECOLOGICAL CLIMATOLO; Brooks SP, 1998, J COMPUT GRAPH STAT, V7, P434, DOI 10.2307/1390675; Burton Kenneth A., 2004, Studies in Avian Biology, P7; Cardillo M, 2002, J ANIM ECOL, V71, P79, DOI 10.1046/j.0021-8790.2001.00577.x; CAWTHORNE RA, 1980, BIRD STUDY, V27, P163, DOI 10.1080/00063658009476675; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Chown SL, 2004, PLOS BIOL, V2, P1701, DOI 10.1371/journal.pbio.0020406; Cilimburg AB, 2002, AUK, V119, P778, DOI 10.1642/0004-8038(2002)119[0778:EODOSP]2.0.CO;2; Cooch E., 2012, PROGRAM MARK GENTLE; Cox WA, 2009, WILSON J ORNITHOL, V121, P667, DOI 10.1676/08-133.1; Doerr ED, 2006, ANIM BEHAV, V72, P147, DOI 10.1016/j.anbehav.2005.10.017; Dowsett R. J., 2008, BIRDS ZAMBIA; Evans KL, 2005, FUNCT ECOL, V19, P616, DOI 10.1111/j.1365-2435.2005.01016.x; Faaborg J, 1995, AUK, V112, P503, DOI 10.2307/4088741; Faaborg John, 2004, Studies in Avian Biology, P144; Francis CM, 2002, J APPL STAT, V29, P637, DOI 10.1080/02664760120108584; Francis CM, 2003, PASOH: ECOLOGY OF A LOWLAND RAIN FOREST IN SOUTHEAST ASIA, P375; Fry CH, 1988, BIRDS AFRICA, V3; Gardner J. L., 2003, ANIM BEHAV, V66, pS21; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Hockey P. A. R., 2005, ROBERTS BIRDS SO AFR; Jetz W, 2008, PLOS BIOL, V6, P2650, DOI 10.1371/journal.pbio.0060303; Johnston JP, 1997, AM NAT, V150, P771, DOI 10.1086/286093; Jullien M, 1998, J ANIM ECOL, V67, P227, DOI 10.1046/j.1365-2656.1998.00171.x; KARR JR, 1990, AM NAT, V136, P277, DOI 10.1086/285098; Lahoz-Monfort JJ, 2011, METHODS ECOL EVOL, V2, P116, DOI 10.1111/j.2041-210X.2010.00050.x; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Low A. B., 1996, VEGETATION S AFRICA; Magrath RD, 1997, J ANIM ECOL, V66, P658, DOI 10.2307/5919; Magrath RD, 2000, AUK, V117, P479, DOI 10.1642/0004-8038(2000)117[0479:LITSLR]2.0.CO;2; Martin TE, 2006, EVOLUTION, V60, P390; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; Martin TE, 1995, J APPL STAT, V22, P863, DOI 10.1080/02664769524676; Martin TE, 1996, AM NAT, V147, P1028, DOI 10.1086/285891; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; McCarthy MA, 2005, J APPL ECOL, V42, P1012, DOI 10.1111/j.1365-2664.2005.01101.x; Mcgregor R, 2007, IBIS, V149, P615, DOI 10.1111/j.1474-919X.2007.00670.x; MOREAU R. E., 1944, IBIS, V86, P286, DOI 10.1111/j.1474-919X.1944.tb04093.x; Nalwanga D, 2004, OSTRICH, V75, P250, DOI 10.2989/00306520409485452; Nur Nadav, 2004, Studies in Avian Biology, V29, P63; Peach WJ, 2001, OIKOS, V93, P235, DOI 10.1034/j.1600-0706.2001.930207.x; Radford JQ, 2004, EMU, V104, P305, DOI 10.1071/MU04002; RICKLEFS RE, 1980, AUK, V97, P38; Ricklefs RE, 2000, CONDOR, V102, P9, DOI 10.1650/0010-5422(2000)102[0009:DDEOAT]2.0.CO;2; Ricklefs RE, 2011, J ORNITHOL, V152, P481, DOI 10.1007/s10336-010-0614-9; ROBINSON D, 1990, IBIS, V132, P78, DOI 10.1111/j.1474-919X.1990.tb01018.x; Roff D. A., 2002, LIFE HIST EVOLUTION; Royle JA, 2008, BIOMETRICS, V64, P364, DOI 10.1111/j.1541-0420.2007.00891.x; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; Sandercock BK, 2000, ECOLOGY, V81, P1351, DOI 10.1890/0012-9658(2000)081[1351:SROANP]2.0.CO;2; Skutch A. F., 1985, ORNITHOLOGICAL MONOG, V36, P575, DOI DOI 10.2307/40168306; Spiegelhalter D, 2003, WINBUGS USER MANUAL; Sturtz S, 2005, J STAT SOFTW, V12, P1; Tarwater CE, 2011, ECOLOGY, V92, P1271, DOI 10.1890/10-1386.1; White GC, 1999, BIRD STUDY, V46, P120; Williams J. B., 1966, ADAPTATION NATURAL S; YOUNG BE, 1994, AUK, V111, P545 62 18 18 1 33 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0908-8857 1600-048X J AVIAN BIOL J. Avian Biol. SEP 2014 45 5 493 500 10.1111/jav.00454 8 Ornithology Zoology AO9VH WOS:000341706400010 2018-11-12 J Takata, M; Hayashi, S; Thomas, CE; Koyama, S; Satoh, T; Fugo, H Takata, M.; Hayashi, S.; Thomas, C. E.; Koyama, S.; Satoh, T.; Fugo, H. Asynchronous hatching in the burying beetle, Nicrophorus quadripunctatus, maxmizes parental fitness JOURNAL OF EVOLUTIONARY BIOLOGY English Article allocation of parental investment; asynchronous hatching; burying beetle; Nicrophorus; Parent-offspring conflict BROOD REDUCTION; VESPILLOIDES; EVOLUTION; BIRDS; SIZE; FAMILIES; GROWTH Life history theory predicts that natural selection favours parents who balance investment across offspring to maximize fitness. Theoretical studies have shown that the optimal level of parental investment from the offspring's perspective exceeds that of its parents, and the disparity between the two generates evolutionary conflict for the allocation of parental investment. In various species, the offspring hatch asynchronously. The age hierarchy of the offspring usually establishes competitive asymmetries within the brood and determines the allocation of parental investment among offspring. However, it is not clear whether the allocation of parental investment determined by hatching pattern is optimal for parent or offspring. Here, we manipulated the hatching pattern of the burying beetle Nicrophorus quadripunctatus to demonstrate the influence of hatching pattern on the allocation of parental investment. We found that the total weight of a brood was largest in the group that mimicked the natural hatching pattern, with the offspring skewed towards early hatchers. This increases parental fitness. However, hatching patterns with more later hatchers had heavier individual offspring weights, which increases offspring fitness, but this hatching pattern is not observed in the wild. Thus, our study suggests that the natural hatching pattern optimizes parental fitness, rather than offspring fitness. [Takata, M.; Fugo, H.] Tokyo Univ Agr & Technol, United Grad Sch Agr Sci, Fuchu, Tokyo, Japan; [Hayashi, S.; Koyama, S.; Satoh, T.] Tokyo Univ Agr & Technol, Grad Sch Agr, Fuchu, Tokyo, Japan; [Thomas, C. E.] Int Ctr Life, LIFElab, Newcastle Upon Tyne, Tyne & Wear, England Koyama, S (reprint author), Tokyo Univ Agr & Technol, Grad Sch Agr, 3-5-8 Saiwai, Fuchu, Tokyo, Japan. skoyama@cc.tuat.ac.jp Satoh, Toshiyuki/C-8374-2013; Koyama, Satoshi/C-8369-2013 Satoh, Toshiyuki/0000-0002-7475-6746; Ministry of Education, Culture, Sports, Science and Technology (MEXT) [B:23300281] This study was supported by a Grant-in-Aid for Scientific Research (B:23300281) from The Ministry of Education, Culture, Sports, Science and Technology (MEXT) to HF. BARTLETT J, 1988, BEHAV ECOL SOCIOBIOL, V22, P429, DOI 10.1007/BF00294981; BATES D, 2010, LME4 LINEAR MIXED EF; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Forbes S, 1997, NATURE, V390, P351, DOI 10.1038/37025; Forbes S, 2000, BEHAV ECOL SOCIOBIOL, V48, P413, DOI 10.1007/s002650000239; Godfray HCJ, 2000, PHILOS T ROY SOC B, V355, P1581, DOI 10.1098/rstb.2000.0719; Hall ME, 2010, FUNCT ECOL, V24, P365, DOI 10.1111/j.1365-2435.2009.01635.x; LAZARUS J, 1986, ANIM BEHAV, V34, P1791, DOI 10.1016/S0003-3472(86)80265-2; MAGRATH RD, 1990, BIOL REV, V65, P587, DOI 10.1111/j.1469-185X.1990.tb01239.x; MAYNARDSMITH J, 1977, ANIM BEHAV, V25, P1, DOI DOI 10.1016/0003-3472(77)90062-8); Mock D. W., 1997, EVOLUTION SIBLING RI; MOCK DW, 1995, TRENDS ECOL EVOL, V10, P130, DOI 10.1016/S0169-5347(00)89014-X; MULLER JK, 1990, BEHAV ECOL SOCIOBIOL, V27, P11; NALEPA CA, 1988, ANN ENTOMOL SOC AM, V81, P637, DOI 10.1093/aesa/81.4.637; OTRONEN M, 1988, ANN ZOOL FENN, V25, P191; Royle NJ, 2012, P ROY SOC B-BIOL SCI, V279, P4914, DOI 10.1098/rspb.2012.1701; Ryan TJ, 2004, OECOLOGIA, V140, P46, DOI 10.1007/s00442-004-1563-x; Smiseth PT, 2008, OIKOS, V117, P899, DOI 10.1111/j.2008.0030-1299.16473.x; Smiseth PT, 2007, ECOLOGY, V88, P3174, DOI 10.1890/06-1992.1; Smiseth PT, 2009, ANIM BEHAV, V77, P519, DOI 10.1016/j.anbehav.2008.11.011; Smiseth PT, 2006, FUNCT ECOL, V20, P151, DOI 10.1111/j.1365-2435.2006.01072.x; Smiseth PT, 2005, ANIM BEHAV, V69, P551, DOI 10.1016/j.anbehav.2004.06.004; Smiseth PT, 2003, P ROY SOC B-BIOL SCI, V270, P1773, DOI 10.1098/rspb.2003.2444; Smiseth PT, 2002, ANIM BEHAV, V63, P577, DOI 10.1006/anbe.2001.1944; Stenning MJ, 1996, TRENDS ECOL EVOL, V11, P243, DOI 10.1016/0169-5347(96)10030-6; Stoleson Scott H., 1995, Current Ornithology, V12, P191; Takata M, 2013, J ETHOL, V31, P249, DOI 10.1007/s10164-013-0373-1; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; TRIVERS RL, 1974, INTEGR COMP BIOL, V14, P249, DOI DOI 10.1093/ICB/14.1.249; Westneat David F., 1996, Trends in Ecology and Evolution, V11, P87, DOI 10.1016/0169-5347(96)81049-4; While GM, 2007, FUNCT ECOL, V21, P513, DOI 10.1111/j.1365-2435.2007.01272.x; Williams G., 1966, AM NAT, V100, P678; WILSON DS, 1984, ECOL ENTOMOL, V9, P195, DOI 10.1111/j.1365-2311.1984.tb00715.x 33 3 3 0 15 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. SEP 2014 27 9 1830 1836 10.1111/jeb.12433 7 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AO8BL WOS:000341577300007 24898472 2018-11-12 J Moss, JH; Maner, JK Moss, Justin H.; Maner, Jon K. The Clock Is Ticking The Sound of a Ticking Clock Speeds Up Women's Attitudes on Reproductive Timing HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article Life History Theory; Reproductive timing; Mate preferences; Sex differences; Priming; Evolutionary psychology CHILDHOOD; UNPREDICTABILITY; PREFERENCES; EMBODIMENT; EVOLUTION; STRATEGY; WARMTH; STRESS; SEX The "biological clock" serves as a powerful metaphor that reflects the constraints posed by female reproductive biology. The biological clock refers to the progression of time from puberty to menopause, marking the period during which women can conceive children. Findings from two experiments suggest that priming the passage of time through the sound of a ticking clock influenced various aspects of women's (but not men's) reproductive timing. Moreover, consistent with recent research from the domain of life history theory, those effects depended on women's childhood socioeconomic status (SES). The subtle sound of a ticking clock led low (but not high) SES women to reduce the age at which they sought to get married and have their first child (Study 1), as well as the priority they placed on the social status and long-term earning potential of potential romantic partners (Study 2). Findings suggest that early developmental sensitization processes can interact with subtle environmental stimuli to affect reproductive timing during adulthood. [Moss, Justin H.; Maner, Jon K.] Florida State Univ, Tallahassee, FL 32306 USA Moss, JH (reprint author), Florida State Univ, 1107 W Call St, Tallahassee, FL 32306 USA. moss@psy.fsu.edu Ackerman JM, 2010, SCIENCE, V328, P1712, DOI 10.1126/science.1189993; Balcetis E, 2010, PSYCHOL SCI, V21, P147, DOI 10.1177/0956797609356283; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; CARETTA CM, 1995, PHYSIOL BEHAV, V57, P901, DOI 10.1016/0031-9384(94)00344-5; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Fabian D., 2012, NATURE ED KNOWLEDGE, V3, P24; Fay AJ, 2012, J EXP SOC PSYCHOL, V48, P1369, DOI 10.1016/j.jesp.2012.05.017; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Haselton MG, 2006, HORM BEHAV, V49, P509, DOI 10.1016/j.yhbeh.2005.10.006; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; Kaschak MP, 2009, EUR J SOC PSYCHOL, V39, P1236, DOI 10.1002/ejsp.664; Lee SWS, 2012, J PERS SOC PSYCHOL, V103, P737, DOI 10.1037/a0029708; Li NP, 2006, J PERS SOC PSYCHOL, V90, P468, DOI 10.1037/0022-3514.90.3.468; Li NP, 2002, J PERS SOC PSYCHOL, V82, P947, DOI 10.1037//0022-3514.82.6.947; Schroder T, 2013, PSYCHOL REV, V120, P255, DOI 10.1037/a0030972; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Williams LE, 2008, SCIENCE, V322, P606, DOI 10.1126/science.1162548 21 1 1 0 21 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 1936-4776 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. SEP 2014 25 3 328 341 10.1007/s12110-014-9210-7 14 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences AO1OZ WOS:000341084200002 25120171 2018-11-12 J Bjorklund, DF; Ellis, BJ Bjorklund, David F.; Ellis, Bruce J. Children, childhood, and development in evolutionary perspective DEVELOPMENTAL REVIEW English Article Evolutionary-developmental psychology; Developmental systems theory; Life history theory; Differential susceptibility; Ontogenetic adaptations; Deferred adaptations; Folk psychology; Folk physics CHIMPANZEES PAN-TROGLODYTES; EARLY FAMILY RELATIONSHIPS; HUMAN LIFE-HISTORY; HUMAN INFANTS; SEX-DIFFERENCES; MATERNAL-CARE; TOOL-USE; DIFFERENTIAL SUSCEPTIBILITY; PUBERTAL MATURATION; DEFERRED IMITATION We examine children, childhood, and development from an evolutionary perspective. We begin by reviewing major assumptions of evolutionary-developmental psychology, including the integration of "soft" developmental systems theory with ideas from mainstream evolutionary psychology. We then discuss the concept of adaptive developmental plasticity and describe the core evolutionary concept of developmental programming and some of its applications to human development, as instantiated in life history theory and the theory of differential susceptibility to environmental influence. We then discuss the concept of adaptation from an evolutionary-developmental perspective, including ontogenetic and deferred adaptations, and examine the development of some adaptations of infancy and childhood from the domains of folk psychology and folk physics. We conclude that evolutionary theory can serve as a metatheory for developmental science. (c) 2014 Elsevier Inc. All rights reserved. [Bjorklund, David F.] Florida Atlantic Univ, Dept Psychol, Boca Raton, FL 33431 USA; [Ellis, Bruce J.] Univ Arizona, John & Doris Norton Sch Family & Consumer Sci, Tucson, AZ 85721 USA Bjorklund, DF (reprint author), Florida Atlantic Univ, Dept Psychol, Boca Raton, FL 33431 USA. dbjorklu@fau.edu; bjellis@email.arizona.edu ABRAVANEL E, 1984, CHILD DEV, V55, P381, DOI 10.2307/1129950; Aguiar A, 1999, COGNITIVE PSYCHOL, V39, P116, DOI 10.1006/cogp.1999.0717; ALEXANDER RD, 1989, HUMAN REVOLUTION, P455; Alvergne A, 2008, PHYSIOL BEHAV, V95, P625, DOI 10.1016/j.physbeh.2008.09.005; ARCHER J, 1992, ETHOLOGY HUMAN DEV; Archer J, 2009, BEHAV BRAIN SCI, V32, P249, DOI 10.1017/S0140525X09990951; BAILLARGEON R, 1991, CHILD DEV, V62, P1227, DOI 10.1111/j.1467-8624.1991.tb01602.x; BAILLARGEON R, 1987, DEV PSYCHOL, V23, P655, DOI 10.1037/0012-1649.23.5.655; Baillargeon R, 2008, PERSPECT PSYCHOL SCI, V3, P2, DOI 10.1111/j.1745-6916.2008.00056.x; BAKEMAN R, 1990, CHILD DEV, V61, P794, DOI 10.1111/j.1467-8624.1990.tb02822.x; Banaji M. R., 2013, NAVIGATING SOCIAL WO, P395; Bandura A., 1997, SELF EFFICACY EXERCI; Bandura A, 2006, PERSPECT PSYCHOL SCI, V1, P164, DOI 10.1111/j.1745-6916.2006.00011.x; Bardi L, 2014, DEV PSYCHOL, V50, P986, DOI 10.1037/a0034678; Barrett TM, 2007, DEV PSYCHOL, V43, P352, DOI 10.1037/0012-1649.43.2.352; Bateson P, 2002, SCIENCE, V297, P2212; Bateson P., 1976, GROWING POINTS ETHOL, P401; Beier JS, 2012, CHILD DEV, V83, P486, DOI 10.1111/j.1467-8624.2011.01702.x; Belsky J, 1997, CHILD DEV, V68, P598, DOI 10.2307/1132110; BELSKY J, 1981, DEV PSYCHOL, V17, P630, DOI 10.1037/0012-1649.17.5.630; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2007, CHILD DEV, V78, P1302, DOI 10.1111/j.1467-8624.2007.01067.x; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Belsky J, 2009, PSYCHOL BULL, V135, P885, DOI 10.1037/a0017376; Bering J. M., 2003, PRIMATE PSYCHOL; Bering JM, 2000, DEV PSYCHOBIOL, V36, P218, DOI 10.1002/(SICI)1098-2302(200004)36:3<218::AID-DEV5>3.0.CO;2-K; Bjorklund D.F., 2005, ORIGINS SOCIAL MIND, P3; Bjorklund D. F., 2014, EVOLUTION VIOLENCE, P159; Bjorklund D. F., 2011, OXFORD HDB PLAY, P153; Bjorklund D. F., 1993, EMERGING THEMES COGN, V1, P79; Bjorklund D. F., 2007, WHY YOUTH NOT WASTED; Bjorklund D. F., 2002, ORIGINS HUMAN NATURE; Bjorklund DF, 2007, ADV CHILD DEV BEHAV, V35, P1; Bjorklund DF, 2006, DEV REV, V26, P213, DOI 10.1016/j.dr.2006.02.007; Bjorklund DF, 2010, MIND THE GAP: TRACING THE ORIGINS OF HUMAN UNIVERSALS, P351, DOI 10.1007/978-3-642-02725-3_17; Bjorklund DF, 1997, PSYCHOL BULL, V122, P153, DOI 10.1037/0033-2909.122.2.153; Bjorklund DF, 2003, PSYCHOL BULL, V129, P836, DOI 10.1037/0033-2909.129.6.836; Bjorklund DF, 2002, ANIM COGN, V5, P49, DOI 10.1007/s10071-001-0124-5; BJORKLUND DF, 1992, AM PSYCHOL, V47, P46, DOI 10.1037/0003-066X.47.1.46; BJORKLUND DF, 1987, DEV REV, V7, P86, DOI 10.1016/0273-2297(87)90006-2; BJORKLUND DF, 2005, ORIGINS SOCIAL MIND, P45; Blasi CH, 2003, HUM DEV, V46, P259, DOI 10.1159/000071935; Bloom P, 1998, TRENDS COGN SCI, V2, P67, DOI 10.1016/S1364-6613(98)01121-8; Boas D. A., 2002, NEUROIMAGE, V16, P120; Bock J., 2005, NATURE PLAY GREAT AP, P254; BOESCH C, 1991, ANIM BEHAV, V41, P530, DOI 10.1016/S0003-3472(05)80857-7; Boesch C, 1998, CURR ANTHROPOL, V39, P591, DOI 10.1086/204785; Bornstein MH, 1996, CHILD DEV, V67, P2910, DOI 10.1111/j.1467-8624.1996.tb01895.x; BOROWSKY RL, 1987, COPEIA, P792, DOI 10.2307/1445679; BOROWSKY RL, 1987, COPEIA, P782, DOI 10.2307/1445674; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Braendle C, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P3; Brauer J, 2005, J COMP PSYCHOL, V119, P145, DOI 10.1037/0735-7036.119.2.145; Brooks R, 2002, DEV PSYCHOL, V38, P958, DOI 10.1037//0012-1649.38.6.958; Brown GR, 2009, TRENDS ECOL EVOL, V24, P297, DOI 10.1016/j.tree.2009.02.005; BRUNER JS, 1972, AM PSYCHOL, V27, P687, DOI 10.1037/h0033144; Buss D., EVOLUTIONAR IN PRESS, V2; Buttelmann D, 2008, CHILD DEV, V79, P609, DOI 10.1111/j.1467-8624.2008.01146.x; Buttelmann D, 2007, DEVELOPMENTAL SCI, V10, pF31, DOI 10.1111/j.1467-7687.2007.00630.x; Byrne R. W., 2005, CURR BIOL, V15, pR489; Byrnes JP, 1999, PSYCHOL BULL, V125, P367, DOI 10.1037//0033-2909.125.3.367; CALDERA YM, 1989, CHILD DEV, V60, P70, DOI 10.2307/1131072; Call Josep, 1996, P371; Callaghan T. C., 2011, MONOGRAPHS SOC RES C, V76; Cameron NM, 2008, J NEUROENDOCRINOL, V20, P795, DOI 10.1111/j.1365-2826.2008.01725.x; Cameron N, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002210; Carey S, 2011, BEHAV BRAIN SCI, V34, P113, DOI 10.1017/S0140525X10000919; Carpenter M, 1998, INFANT BEHAV DEV, V21, P315, DOI 10.1016/S0163-6383(98)90009-1; Carrasco L, 2009, J COMP PSYCHOL, V123, P385, DOI 10.1037/a0016275; Carvalho S, 2009, ANIM COGN, V12, pS103, DOI 10.1007/s10071-009-0271-7; Champagne FA, 2008, FRONT NEUROENDOCRIN, V29, P386, DOI 10.1016/j.yfrne.2008.03.003; Clearfield MW, 2006, J COGN DEV, V7, P27, DOI 10.1207/s15327647jcd0701_2; Clearfield MW, 1999, PSYCHOL SCI, V10, P408, DOI 10.1111/1467-9280.00177; COOK M, 1989, J ABNORM PSYCHOL, V98, P448, DOI 10.1037//0021-843X.98.4.448; Costello EJ, 2007, DRUG ALCOHOL DEPEN, V88, pS50, DOI 10.1016/j.drugalcdep.2006.12.009; Craske M, 1999, ANXIETY DISORDERS PS; CRICK NR, 1995, CHILD DEV, V66, P710, DOI 10.1111/j.1467-8624.1995.tb00900.x; Cross CP, 2011, PSYCHOL BULL, V137, P97, DOI 10.1037/a0021591; Csibra G, 2008, COGNITION, V107, P705, DOI 10.1016/j.cognition.2007.08.001; Csibra G, 2011, PHILOS T R SOC B, V366, P1149, DOI 10.1098/rstb.2010.0319; D'Onofrio BM, 2006, DEV PSYCHOL, V42, P486, DOI 10.1037/0012-1649.42.3.486; Darwin C. R., 1871, DESCENT MAN; Davis E. P., 2013, PSYCHOL SCI, V23, P93; de Schonen S., 1994, NEUROREPORL LEARNING, V5, P14; de Schonen S., 2008, DEVELOPMENTAL SCI, V11, P563; Deak GO, 2008, INFANT BEHAV DEV, V31, P34, DOI 10.1016/j.infbeh.2007.06.004; DECASPER AJ, 1980, SCIENCE, V208, P1174, DOI 10.1126/science.7375928; DeLoache JS, 2009, DEVELOPMENTAL SCI, V12, P201, DOI 10.1111/j.1467-7687.2008.00753.x; Di Giorgio E, 2012, DEV PSYCHOL, V48, P1083, DOI 10.1037/a0026521; DIAMOND A, 1985, CHILD DEV, V56, P868, DOI 10.1111/j.1467-8624.1985.tb00160.x; Dias B.G., 2013, NATURE NEUROSCIENCE; Dobzhansky T, 2013, AM BIOL TEACH, V75, P87, DOI 10.2307/4444260; DORE FY, 1987, PSYCHOL BULL, V102, P219; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Draper P., 1988, SOCIOBIOLOGICAL PERS, P340, DOI DOI 10.1007/978-1-4612-3760-0_12; DUBOWITZ LMS, 1986, LANCET, V1, P1139; Dunbar RIM, 2003, ANNU REV ANTHROPOL, V32, P163, DOI 10.1146/annurev.anthro.32.061002.093158; Ellis B. J., DEV PSYCHOP IN PRESS, V1; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2000, CHILD DEV, V71, P485, DOI 10.1111/1467-8624.00159; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2012, DEV PSYCHOPATHOL, V24, P317, DOI 10.1017/S095457941100085X; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P85, DOI 10.1017/S0954579410000660; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P7, DOI 10.1017/S0954579410000611; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Erlich N, 2013, DEVELOPMENTAL SCI, V16, P894, DOI 10.1111/desc.12091; Fischer B, 2014, AM NAT, V183, P108, DOI 10.1086/674008; Fivush, 2014, WILEY BLACKWELL HDB, P126; FLINN MV, 1988, ETHOL SOCIOBIOL, V9, P1, DOI 10.1016/0162-3095(88)90002-7; Flynn E., 2006, P NATL ACAD SCI USA, V103, P13878; Foley MA, 2010, J COGN DEV, V11, P217, DOI 10.1080/15248371003699928; Frankenhuis WE, 2013, DEVELOPMENTAL SCI, V16, P584, DOI 10.1111/desc.12053; Frankenhuis WE, 2011, P ROY SOC B-BIOL SCI, V278, P3558, DOI 10.1098/rspb.2011.0055; Frankenhuis WE, 2011, PERSPECT PSYCHOL SCI, V6, P336, DOI 10.1177/1745691611412602; Furlow FB, 1997, EVOL HUM BEHAV, V18, P175, DOI 10.1016/S1090-5138(97)00006-8; GARCIA J, 1966, PSYCHON SCI, V4, P123, DOI DOI 10.3758/BF03342209; Gardiner AK, 2014, J EXP CHILD PSYCHOL, V119, P54, DOI 10.1016/j.jecp.2013.10.008; Gardiner AK, 2012, COGNITIVE DEV, V27, P240, DOI 10.1016/j.cogdev.2012.05.001; Gardiner AK, 2011, J COGN DEV, V12, P355, DOI 10.1080/15248372.2010.542216; Geary D. C., 2007, ACTA PSYCHOL SINICA, V39, P469; Geary D. C., 2005, HDB EVOLUTIONARY PSY, P483; Geary DC, 2002, ADV CHILD DEV BEHAV, V30, P41, DOI 10.1016/S0065-2407(02)80039-8; Geary DC, 2002, PSYCHOL BULL, V128, P667, DOI 10.1037//0033-2909.128.5.667; GEARY DC, 1995, AM PSYCHOL, V50, P24, DOI 10.1037/0003-066X.50.1.24; Geary DC, 2000, CHILD DEV, V71, P57, DOI 10.1111/1467-8624.00118; Geary DC, 2010, MALE FEMALE EVOLUTIO; GEARY DC, 2005, ORIGIN MIND EVOLUTIO; Gelman R., 1998, COGNITION PERCEPTION, P575; Gergely G., 2005, INTERACTION STUDIES, V6, P463, DOI DOI 10.1075/IS.6.3.10GER; German TP, 2002, J COGN DEV, V3, P279, DOI 10.1207/S15327647JCD0303_2; Glover V, 2011, J CHILD PSYCHOL PSYC, V52, P356, DOI 10.1111/j.1469-7610.2011.02371.x; Gluckman PD, 2005, FETAL MATRIX EVOLUTI; Goldhaber D, 2012, NATURE-NURTURE DEBATES: BRIDGING THE GAP, P1, DOI 10.1017/CBO9781139022583; Goldsmith DF, 1997, DEV PSYCHOL, V33, P113; Gottlieb G, 1971, BIOPSYCHOLOGY DEV, P67; Gottlieb G., 2006, HDB CHILD PSYCHOL, V1, P210; GOTTLIEB G, 1976, NEURAL BEHAV SPECIFI, P25; Gottlieb G, 2007, DEVELOPMENTAL SCI, V10, P1, DOI 10.1111/j.1467-7687.2007.00556.x; GRABER JA, 1995, CHILD DEV, V66, P346, DOI 10.2307/1131582; Gredlein JM, 2005, HUM NATURE-INT BIOS, V16, P211, DOI 10.1007/s12110-005-1004-5; Greenfield PM, 2000, SCH AM RES, P237; Groos Karl, 1898, PLAY ANIMALS; Guilamo-Ramos V, 2012, PEDIATRICS, V130, pE1313, DOI 10.1542/peds.2011-2066; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; Hammer MF, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.1000202; Hare B, 2001, ANIM BEHAV, V61, P139, DOI 10.1006/anbe.2000.1518; Hare B, 2011, ANNU REV ANTHROPOL, V40, P293, DOI 10.1146/annurev-anthro-081309-145726; HAUSER MD, 2000, WILD MINDS WHAT ANIM; Hawley P. H., 2007, AGGRESSION ADAPTATIO, P1; Hawley PH, 2012, J EXP CHILD PSYCHOL, V112, P18, DOI 10.1016/j.jecp.2011.10.004; Hawley PH, 2003, J EXP CHILD PSYCHOL, V85, P213, DOI 10.1016/S0022-0965(03)00073-0; Hawley PH, 1999, DEV REV, V19, P97, DOI 10.1006/drev.1998.0470; HAWLEY PH, 2007, AGGRESSION ADAPTATIO; HEIMANN M, 1989, INFANT BEHAV DEV, V12, P495, DOI 10.1016/0163-6383(89)90029-5; Herrmann E, 2007, SCIENCE, V317, P1360, DOI 10.1126/science.1146282; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; HINDE RA, 1976, MAN, V11, P1, DOI 10.2307/2800384; Holmboe K, 2008, J EXP CHILD PSYCHOL, V100, P89, DOI 10.1016/j.jecp.2007.09.004; Homik R., 1987, CHILD DEV, V58, P937; Hood BM, 2004, DEVELOPMENTAL SCI, V7, P415, DOI 10.1111/j.1467-7687.2004.00358.x; Howe M. L., 2014, WHATS ADAPTIVE ADAPT, P286; Hrdy S. B., 1999, MOTHER NATURE HIST M; Humle T, 2009, ANIM COGN, V12, pS37, DOI 10.1007/s10071-009-0272-6; Hutt C, 1966, S ZOOLOGICAL SOC LON, V18, P61; Jablonka E., 2005, EVOLUTION 4 DIMENSIO; JACOBSON SW, 1979, CHILD DEV, V50, P425, DOI 10.2307/1129418; James J., 2013, OXFORD HDB CLOSE REL, P771; James J, 2012, DEV PSYCHOL, V48, P687, DOI 10.1037/a0026427; Joffe TH, 1997, J HUM EVOL, V32, P593, DOI 10.1006/jhev.1997.0140; JOHNSON SP, 1995, DEV PSYCHOL, V31, P739, DOI 10.1037/0012-1649.31.5.739; Jones SS, 2006, INFANT BEHAV DEV, V29, P126, DOI 10.1016/j.infbeh.2005.08.004; Jones SS, 2009, PHILOS T R SOC B, V364, P2325, DOI 10.1098/rstb.2009.0045; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Keeley Lawrence, 1996, WAR CIVILIZATION MYT; Kelly DJ, 2009, J EXP CHILD PSYCHOL, V104, P105, DOI 10.1016/j.jecp.2009.01.006; KENNY PA, 1986, DEV PSYCHOBIOL, V19, P57, DOI 10.1002/dev.420190107; Kenward B, 2012, J EXP CHILD PSYCHOL, V112, P195, DOI 10.1016/j.jecp.2012.02.006; Ketelaar T, 2000, PSYCHOL INQ, V11, P1, DOI 10.1207/S15327965PLI1101_01; Keupp S, 2013, J EXP CHILD PSYCHOL, V116, P392, DOI 10.1016/j.jecp.2013.07.002; KOTOVSKY L, 1994, COGNITION, V51, P107, DOI 10.1016/0010-0277(94)90012-4; Kotovsky L, 2000, DEVELOPMENTAL SCI, V3, P344, DOI 10.1111/1467-7687.00129; Kovacs AM, 2010, SCIENCE, V330, P1830, DOI 10.1126/science.1190792; Kuhl PK, 2006, DEVELOPMENTAL SCI, V9, pF13, DOI 10.1111/j.1467-7687.2006.00468.x; Kuzawa CW, 2009, ANNU REV ANTHROPOL, V38, P131, DOI 10.1146/annurev-anthro-091908-164350; Lancy David F, 2010, ANTHR LEARNING CHILD, P145; Learmonth AE, 2004, J EXP CHILD PSYCHOL, V88, P297, DOI 10.1016/j.jecp.2004.04.004; Leavens DA, 2005, CURR DIR PSYCHOL SCI, V14, P185, DOI 10.1111/j.0963-7214.2005.00361.x; LEGERSTEE M, 1991, J EXP CHILD PSYCHOL, V51, P423, DOI 10.1016/0022-0965(91)90086-8; Lerner R. M., 2006, HDB CHILD PSYCHOL, V1, P1, DOI DOI 10.1002/9780470147658; Lewkowicz D. L., 2011, INFANCY, V16, P1; Lewkowicz DJ, 2009, TRENDS COGN SCI, V13, P470, DOI 10.1016/j.tics.2009.08.004; LICKLITER R, 1990, DEV PSYCHOBIOL, V23, P15, DOI 10.1002/dev.420230103; Lickliter R, 2003, PSYCHOL BULL, V129, P819, DOI 10.1037/0033-2909.129.6.819; Liszkowski U, 2006, J COGN DEV, V7, P173, DOI 10.1207/s15327647jcd0702_2; Liszkowski U, 2007, DEVELOPMENTAL SCI, V10, P1, DOI 10.1111/j.1467-7687.2006.00552.x; LoBue V, 2010, J EXP CHILD PSYCHOL, V107, P59, DOI 10.1016/j.jecp.2010.04.005; LoBue V, 2010, DEVELOPMENTAL SCI, V13, P221, DOI 10.1111/j.1467-7687.2009.00872.x; Lockhart KL, 2002, CHILD DEV, V73, P1408, DOI 10.1111/1467-8624.00480; Lonsdorf EV, 2006, ANIM COGN, V9, P36, DOI 10.1007/s10071-005-0002-7; LORD CG, 1980, J PERS SOC PSYCHOL, V38, P257, DOI 10.1037//0022-3514.38.2.257; LORENZ KONRAD Z., 1937, AUK, V54, P245; Lyons DE, 2007, P NATL ACAD SCI USA, V104, P19751, DOI 10.1073/pnas.0704452104; Macfarlane A., 1975, CIBA FDN S 33 PAR IN; Mackey W. C., 2000, J MENS STUDIES, V8, P349, DOI DOI 10.3149/JMS.0803.349; Maestripieri D, 2006, DEV REV, V26, P120, DOI 10.1016/j.dr.2006.02.006; Maestripieri D, 2002, HUM NATURE-INT BIOS, V13, P327, DOI 10.1007/s12110-002-1018-1; Mandler JM, 2000, J COGN DEV, V1, P3, DOI 10.1207/S15327647JCD0101N_2; Manner M., 2010, EVOLUTION CHILDHOOD; Manuck SB, 2011, DEV PSYCHOPATHOL, V23, P69, DOI 10.1017/S0954579410000659; Martin H., 1974, ADV PEDIATR, V21, P119; McGuigan N, 2011, BRIT J PSYCHOL, V102, P1, DOI 10.1348/000712610X493115; Meaney MJ, 2007, ADV GENET, V59, P173, DOI 10.1016/S0065-2660(07)59007-3; Meaney MJ, 2010, CHILD DEV, V81, P41, DOI 10.1111/j.1467-8624.2009.01381.x; Melis AP, 2006, J COMP PSYCHOL, V120, P154, DOI 10.1037/0735-7036.120.2.154; MELTZOFF AN, 1977, SCIENCE, V198, P75, DOI 10.1126/science.198.4312.75; Menard JL, 2007, BEHAV BRAIN RES, V176, P302, DOI 10.1016/j.bbr.2006.10.014; Mendle J, 2006, DEV PSYCHOL, V42, P533, DOI 10.1037/0012-1649.42.3.233; Mendle J, 2009, CHILD DEV, V80, P1463, DOI 10.1111/j.1467-8624.2009.01345.x; Mitchell-Olds T, 2007, NAT REV GENET, V8, P845, DOI 10.1038/nrg2207; Mix KS, 2002, PSYCHOL BULL, V128, P278, DOI 10.1037//0033-2909.128.2.278; Mondloch CJ, 1999, PSYCHOL SCI, V10, P419, DOI 10.1111/1467-9280.00179; Moore K. L., 2003, DEV HUMAN CLIN ORIEN; Morss J. R., 1990, BIOL CHILDHOOD DEV P; NAGELL K, 1993, J COMP PSYCHOL, V107, P174, DOI 10.1037/0735-7036.107.2.174; Nagy E, 2006, INFANT CHILD DEV, V15, P223, DOI 10.1002/icd.460; NELSON K, 2005, ORIGINS SOCIAL MIND, P354; Nettle D, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0012690; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Nielsen M., 2010, PSYCHOL SCI, V5, P729; Nielsen M, 2006, DEV PSYCHOL, V42, P555, DOI 10.1037/0012-1649.42.3.555; Nielsen M, 2012, J COMP PSYCHOL, V126, P170, DOI 10.1037/a0025168; Ohman A, 2001, J EXP PSYCHOL GEN, V130, P466, DOI 10.1037/0096-3445.130.3.466; Okami P, 2001, Annu Rev Sex Res, V12, P186; Oppenheim R.W, 1981, MATURATION DEV BIOL, P73; Oyama Susan, 2000, EVOLUTIONS EYE SYSTE; Parent CI, 2008, DEV PSYCHOBIOL, V50, P767, DOI 10.1002/dev.20342; Pascalis O, 2005, P NATL ACAD SCI USA, V102, P5297, DOI 10.1073/pnas.0406627102; Pascalis O, 2002, SCIENCE, V296, P1321, DOI 10.1126/science.1070223; Pellegrini AD, 1998, CHILD DEV, V69, P577, DOI 10.1111/j.1467-8624.1998.tb06226.x; Pellegrini AD, 2000, AM EDUC RES J, V37, P699, DOI 10.2307/1163486; Penn DC, 2008, BEHAV BRAIN SCI, V31, P109, DOI 10.1017/S0140525X08003543; Piaget J., 1954, CONSTRUCTION REALITY; Piaget J., 1955, LANGUAGE THOUGHT CHI; Placek CD, 2012, P ROY SOC B-BIOL SCI, V279, P4003, DOI 10.1098/rspb.2012.1022; Pluess M, 2011, DEV PSYCHOPATHOL, V23, P29, DOI 10.1017/S0954579410000623; POVINELLI DJ, 1996, MONOGRAPH SOC RES CH, V61; Pradeu Thomas, 2010, Biology Theory, V5, P216; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Quinn PC, 2002, PERCEPTION, V31, P1109, DOI 10.1068/p3331; Ramsey Jacklyn K., 2005, P89; Rhen T, 2002, J NEUROENDOCRINOL, V14, P517, DOI 10.1046/j.1365-2826.2002.00820.x; Rice F, 2010, PSYCHOL MED, V40, P335, DOI 10.1017/S0033291709005911; Robert JS, 2001, BIOESSAYS, V23, P954, DOI 10.1002/bies.1136; Rogoff B, 2003, CULTURAL NATURE HUMA; Ross J., 2011, MONOGRAPHS SOC RES C, V76; Rovee-Collier C, 2009, STUD DEV PSYCHOL, P11; ROVEECOLLIER C, 1992, DEV PSYCHOL, V28, P307, DOI 10.1037/0012-1649.28.2.307; ROVEECOLLIER C, 1992, DEV LONG TERM RETENT, P3; RUSSELL J, 1991, BRIT J DEV PSYCHOL, V9, P331, DOI 10.1111/j.2044-835X.1991.tb00881.x; RYAN MJ, 1992, AM NAT, V139, P21, DOI 10.1086/285311; RYAN MJ, 1989, BEHAV ECOL SOCIOBIOL, V24, P341, DOI 10.1007/BF00293262; Sakhai SA, 2011, PSYCHONEUROENDOCRINO, V36, P1217, DOI 10.1016/j.psyneuen.2011.02.016; SAVINWILLIAMS RC, 1979, CHILD DEV, V50, P923, DOI 10.1111/j.1467-8624.1979.tb02451.x; Saxbe DE, 2009, J ADOLESCENCE, V32, P415, DOI 10.1016/j.adolescence.2008.06.009; Schiefenhovel W., 2003, SOCIAL BRAIN EVOLUTI, P133; Schulz LE, 2008, CHILD DEV, V79, P395, DOI 10.1111/j.1467-8624.2007.01132.x; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; SELIGMAN ME, 1971, BEHAV THER, V2, P307, DOI 10.1016/S0005-7894(71)80064-3; Sentse M, 2009, DEV PSYCHOL, V45, P419, DOI 10.1037/a0014072; Shahaeian A, 2014, J CROSS CULT PSYCHOL, V45, P555, DOI 10.1177/0022022113513921; SHERROD KB, 1984, CHILD DEV, V55, P1174, DOI 10.2307/1129986; Shin H, 2007, COGNITIVE DEV, V22, P197, DOI 10.1016/j.cogdev.2006.10.001; SIGMAN M, 1988, CHILD DEV, V59, P1251, DOI 10.2307/1130488; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Simpson Jeffry A., 2008, HDB ATTACHMENT THEOR, P131; SLATER A, 1990, J EXP CHILD PSYCHOL, V49, P314, DOI 10.1016/0022-0965(90)90061-C; Smith JM, 1998, NATURE, V393, P639; Smith P. G., 2005, PLAY HUMANS GREAT AP, P173; Smith P. K., 1980, ECOLOGY PRESCHOOL BE; SMITH PK, 1982, BEHAV BRAIN SCI, V5, P139, DOI 10.1017/S0140525X0001092X; Spelke ES, 2007, DEVELOPMENTAL SCI, V10, P89, DOI 10.1111/j.1467-7687.2007.00569.x; Spencer JP, 2009, CHILD DEV PERSPECT, V3, P79, DOI 10.1111/j.1750-8606.2009.00081.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Taniike M., 2014, DEV PSYCHOL, V50, P979; THOMPSON RA, 2006, HDB CHILD PSYCHOL, V3, P24, DOI DOI 10.1002/9780470147658.CHPSY0302; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; Tomasello M, 2009, WHY WE COOPERATE, P1; Tomasello M, 2000, CURR DIR PSYCHOL SCI, V9, P37, DOI 10.1111/1467-8721.00056; Tomasello M., 2005, MONOGRAPHS SOC RES C, P70; Tomasello M, 2007, DEVELOPMENTAL SCI, V10, P121, DOI 10.1111/j.1467-7687.2007.00573.x; Tooby J., 1992, ADAPTED MIND EVOLUTI, P19, DOI DOI 10.1086/418398; Trickett PK, 2011, DEV PSYCHOPATHOL, V23, P453, DOI 10.1017/S0954579411000174; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; TURKEWITZ G, 1982, DEV PSYCHOBIOL, V15, P357, DOI 10.1002/dev.420150408; Uller C, 1999, COGNITIVE DEV, V14, P1, DOI 10.1016/S0885-2014(99)80016-1; Vaish A, 2004, DEVELOPMENTAL SCI, V7, P261, DOI 10.1111/j.1467-7687.2004.00344.x; Vigil JM, 2006, J FAM PSYCHOL, V20, P597, DOI 10.1037/0893-3200.20.4.597; Volk AA, 2013, EVOL HUM BEHAV, V34, P182, DOI 10.1016/j.evolhumbehav.2012.11.007; Vygotsky L.S., 1978, MIND SOC DEV HIGHER; Vygotsky L. S., 1962, THOUGHT LANGUAGE; WALTON GE, 1992, INFANT BEHAV DEV, V15, P265, DOI 10.1016/0163-6383(92)80027-R; Wang SH, 2003, INFANT BEHAV DEV, V26, P529, DOI 10.1016/j.infbeh.2003.08.002; Webster GD, 2014, EVOL PSYCHOL-US, V12, P273, DOI 10.1177/147470491401200202; Wellman HM, 2006, PSYCHOL SCI, V17, P1075, DOI 10.1111/j.1467-9280.2006.01830.x; WEST MJ, 1987, DEV PSYCHOBIOL, V20, P549, DOI 10.1002/dev.420200508; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Whiten A, 1999, NATURE, V399, P682, DOI 10.1038/21415; Whiten A., 2005, ANIMAL COGNITION, V8, P164, DOI DOI 10.1007/S10071-004-0239-6; Whiten A, 2010, MIND THE GAP: TRACING THE ORIGINS OF HUMAN UNIVERSALS, P429, DOI 10.1007/978-3-642-02725-3_20; Whiten A, 2010, DEV PSYCHOL, V46, P1694, DOI 10.1037/a0020786; Whiten A, 2009, PHILOS T R SOC B, V364, P2417, DOI 10.1098/rstb.2009.0069; Williams GC, 1966, ADAPTATION NATURAL S; Williamson RA, 2006, DEV PSYCHOL, V42, P723, DOI 10.1037/0012-1649.42.4.723; Williamson RA, 2008, DEV PSYCHOL, V44, P275, DOI 10.1037/0012-1649.44.1.275; WILSON DS, 1994, AM NAT, V144, P692, DOI 10.1086/285702; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; Wu SL, 2007, PSYCHOL SCI, V18, P600, DOI 10.1111/j.1467-9280.2007.01946.x; WYNN K, 1992, NATURE, V358, P749, DOI 10.1038/358749a0; Zelazo P., 2013, OXFORD HDB DEV PSYCH, P276 321 19 20 1 86 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0273-2297 1090-2406 DEV REV Dev. Rev. SEP 2014 34 3 225 264 10.1016/j.dr.2014.05.005 40 Psychology, Developmental Psychology AM6OU WOS:000339985300003 2018-11-12 J Baughman, HM; Jonason, PK; Veselka, L; Vernon, PA Baughman, Holly M.; Jonason, Peter K.; Veselka, Livia; Vernon, Philip A. Four shades of sexual fantasies linked to the Dark Triad PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Narcissism; Psychopathy; Machiavellianism; Sexual fantasy; Sex differences; Evolutionary psychology LIFE-HISTORY THEORY; DIRTY DOZEN; PERSONALITY-TRAITS; GENDER-DIFFERENCES; HEXACO MODEL; NARCISSISM; MACHIAVELLIANISM; PSYCHOPATHY; EMPATHY; SOCIOSEXUALITY The present study explored the links between the Dark Triad traits (i.e., narcissism, Machiavellianism, and psychopathy) and sexual fantasies in a sample of Canadian undergraduates (N = 643). Among the Dark Triad traits, psychopathy was the most strongly correlated with overall sex drive as well as fantasies containing exploratory, impersonal, and sadomasochistic themes. Further, individuals who scored high on narcissism reported engaging in intimate sexual fantasies more frequently. The Dark Triad, psychopathy in particular, facilitated overall sexual desire in men. Overall, these findings were consistent with the view that the Dark Triad facilitates an exploitative, short-term mating strategy. Implications are discussed in the context of an evolutionary framework. (C) 2014 Elsevier Ltd. All rights reserved. [Baughman, Holly M.; Veselka, Livia; Vernon, Philip A.] Univ Western Ontario, London, ON, Canada; [Jonason, Peter K.] Univ Western Sydney, Penrith, NSW 1797, Australia Baughman, HM (reprint author), Univ Western Ontario, London, ON, Canada. hbaughma@uwo.ca Ajzen I, 1985, ACTION CONTROL COGNI, P11, DOI DOI 10.1007/978-3-642-69746-3_2; BARON RM, 1986, J PERS SOC PSYCHOL, V51, P1173, DOI 10.1037//0022-3514.51.6.1173; Baumgartner Jerome V, 2002, Sex Abuse, V14, P19, DOI 10.1023/A:1013025410090; Bogart LA, 2004, BASIC APPL SOC PSYCH, V26, P35, DOI 10.1207/s15324834basp2601_4; Campbell WK, 2002, PERS SOC PSYCHOL B, V28, P484, DOI 10.1177/0146167202287006; Clark R. D., 1989, J PSYCHOL HUMAN SEXU, V2, P39, DOI DOI 10.1300/J056V02N01_; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Foster JD, 2006, J SOC PERS RELAT, V23, P367, DOI 10.1177/0265407506064204; Hare RD, 2003, HARE PSYCHOPATHY CHE; Jonason P. K., 2010, J SEX RES, V47, P1; Jonason PK, 2013, EUR J PERSONALITY, V27, P458, DOI 10.1002/per.1881; Jonason PK, 2013, PERS INDIV DIFFER, V55, P538, DOI 10.1016/j.paid.2013.05.001; Jonason PK, 2013, PERS INDIV DIFFER, V55, P532, DOI 10.1016/j.paid.2013.04.027; Jonason PK, 2013, EVOL PSYCHOL-US, V11, P172, DOI 10.1177/147470491301100116; Jonason PK, 2013, PERS INDIV DIFFER, V54, P572, DOI 10.1016/j.paid.2012.11.009; Jonason PK, 2012, PERS INDIV DIFFER, V53, P935, DOI 10.1016/j.paid.2012.07.010; Jonason PK, 2012, EVOL PSYCHOL-US, V10, P400, DOI 10.1177/147470491201000303; Jonason PK, 2012, PERS INDIV DIFFER, V53, P180, DOI 10.1016/j.paid.2012.03.007; Jonason PK, 2012, REV GEN PSYCHOL, V16, P192, DOI 10.1037/a0027914; Jonason PK, 2012, PERS INDIV DIFFER, V52, P521, DOI 10.1016/j.paid.2011.11.023; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2010, PERS INDIV DIFFER, V49, P606, DOI 10.1016/j.paid.2010.05.030; Jonason PK, 2010, PSYCHOL ASSESSMENT, V22, P420, DOI 10.1037/a0019265; Jonason PK, 2010, PERS INDIV DIFFER, V48, P373, DOI 10.1016/j.paid.2009.11.003; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jonason PK, 2007, INT J SEX HEALTH, V19, P41, DOI DOI 10.1300/J514V19N04_05; Jones D. N., 2014, ASSESSMENT; Jones DN, 2013, J APPL SOC PSYCHOL, V43, pE367, DOI 10.1111/jasp.12035; Kosson DS, 1997, J INTERPERS VIOLENCE, V12, P241, DOI 10.1177/088626097012002006; Kowalski R. M., 2001, BEHAV BADLY AVERSIVE; Lee KB, 2005, PERS INDIV DIFFER, V38, P1571, DOI 10.1016/j.paid.2004.09.016; LEITENBERG H, 1995, PSYCHOL BULL, V117, P469, DOI 10.1037/0033-2909.117.3.469; McDonald MM, 2012, PERS INDIV DIFFER, V52, P601, DOI 10.1016/j.paid.2011.12.003; McHoskey JW, 1998, J PERS SOC PSYCHOL, V74, P192, DOI 10.1037//0022-3514.74.1.192; McHoskey JW, 2001, PERS INDIV DIFFER, V31, P779, DOI 10.1016/S0191-8869(00)00180-X; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; Petersen JL, 2010, PSYCHOL BULL, V136, P21, DOI 10.1037/a0017504; RASKIN R, 1988, J PERS SOC PSYCHOL, V54, P890, DOI 10.1037//0022-3514.54.5.890; Raskin R. N., 1979, PSYCHOL REP, V45, P365; Rauthmann JF, 2012, SOC PSYCHOL PERS SCI, V3, P487, DOI 10.1177/1948550611427608; Reise SP, 1996, J RES PERS, V30, P128, DOI 10.1006/jrpe.1996.0009; Rushton J. P., 1995, RACE EVOLUTION BEHAV; Schmitt DP, 2005, BEHAV BRAIN SCI, V28, P247, DOI 10.1017/S0140525X05000051; Schmitt DP, 2003, J PERS SOC PSYCHOL, V85, P85, DOI 10.1037/0022-3514.85.1.85; WATSON PJ, 1994, SEX ROLES, V30, P701, DOI 10.1007/BF01544671; Webster GD, 2013, PERS INDIV DIFFER, V54, P302, DOI 10.1016/j.paid.2012.08.027; Williams KM, 2009, CRIM JUSTICE BEHAV, V36, P198, DOI 10.1177/0093854808327277; Wilson E.O., 1975, P1; Wilson G. D., 1988, SEXUAL MARITAL THERA, V3, P45, DOI DOI 10.1080/02674658808407692; WILSON GD, 1980, PERS INDIV DIFFER, V1, P289, DOI 10.1016/0191-8869(80)90061-6; WILSON GD, 1981, PERS INDIV DIFFER, V2, P343, DOI 10.1016/0191-8869(81)90093-3; Wilson GD, 1997, PERS INDIV DIFFER, V22, P27, DOI 10.1016/S0191-8869(96)00180-8; Wilson GD, 1978, SECRETS SEXUAL FANTA; Wilson GD, 2010, SEX RELATSH THER, V25, P57, DOI 10.1080/14681990903550134 54 17 17 2 42 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. SEP 2014 67 47 51 10.1016/j.paid.2014.01.034 5 Psychology, Social Psychology AJ8XM WOS:000337991400010 2018-11-12 J Moya, C; Sear, R Moya, Cristina; Sear, Rebecca Intergenerational conflicts may help explain parental absence effects on reproductive timing: a model of age at first birth in humans PEERJ English Article Cooperative breeding; Life history theory; Intergenerational conflict; Father absence; Helpers at the nest; Mother absence; Reproductive decision-making; Kin competition; Parental investment; Senescence LIFE-HISTORY THEORY; FATHER ABSENCE; INBREEDING AVOIDANCE; PUBERTAL MATURATION; EVOLUTIONARY-THEORY; OFFSPRING CONFLICT; PREDICTS AGE; MATERNAL AGE; SKEW THEORY; STRATEGIES Background. Parental absences in childhood are often associated with accelerated reproductive maturity in humans. These results are counterintuitive for evolutionary social scientists because reductions in parental investment should be detrimental for offspring, but earlier reproduction is generally associated with higher fitness. In this paper we discuss a neglected hypothesis that early reproduction is often associated with parental absence because it decreases the average relatedness of a developing child to her future siblings. Family members often help each other reproduce, meaning that parents and offspring may find themselves in competition over reproductive opportunities. In these intergenerational negotiations offspring will have less incentive to help the remaining parent rear future half-siblings relative to beginning reproduction themselves. Method. We illustrate this "intergenerational conflict hypothesis" with a formal game-theoretic model. Results. We show that when resources constrain reproductive opportunities within the family, parents will generally win reproductive conflicts with their offspring, i.e., they will produce more children of their own and therefore delay existing offsprings' reproduction. This is due to the asymmetric relatedness between grandparents and grandchildren (r = .25), compared to siblings (r = 0.5), resulting in greater incentives for older siblings to help rear younger siblings than for grandparents to help rear grandchildren. However, if a parent loses or replaces their partner, the conflict between the parent and offspring becomes symmetric since half siblings are as related to one another as grandparents are to grandchildren. This means that the offspring stand to gain more from earlier reproduction when their remaining parent would produce half, rather than full, siblings. We further show that if parents senesce in a way that decreases the quality of their infant relative to their offspring's infant, the intergenerational conflict can shift to favor the younger generation. [Moya, Cristina; Sear, Rebecca] London Sch Hyg & Trop Med, Dept Populat Hlth, London WC1, England Moya, C (reprint author), London Sch Hyg & Trop Med, Dept Populat Hlth, London WC1, England. cristina.moya@lshtm.ac.uk European Research Council Authors were funded by the European Research Council. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Allal N, 2004, P ROY SOC B-BIOL SCI, V271, P465, DOI 10.1098/rspb.2003.2623; Apostolou M, 2012, PERS INDIV DIFFER, V52, P733, DOI 10.1016/j.paid.2011.12.032; Bell AV, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0083667; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2012, CURR DIR PSYCHOL SCI, V21, P310, DOI 10.1177/0963721412453588; Birdthistle IJ, 2008, AIDS, V22, P759, DOI 10.1097/QAD.0b013e3282f4cac7; Bogaert AF, 2005, J ADOLESCENCE, V28, P541, DOI 10.1016/j.adolescence.2004.10.008; Cant MA, 2006, P ROY SOC B-BIOL SCI, V273, P171, DOI 10.1098/rspb.2005.3132; Cant MA, 2008, P NATL ACAD SCI USA, V105, P5332, DOI 10.1073/pnas.0711911105; Cas AG, 2014, DEMOGRAPHY, V51, P437, DOI 10.1007/s13524-014-0279-8; Chen XK, 2008, HUM REPROD, V23, P1290, DOI 10.1093/humrep/dem403; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Clutterbuck S, 2015, J BIOSOC SCI, V47, P188, DOI 10.1017/S0021932014000157; Cooney R, 2000, P ROY SOC B-BIOL SCI, V267, P801, DOI 10.1098/rspb.2000.1074; Crognier E, 2001, AM J HUM BIOL, V13, P365, DOI 10.1002/ajhb.1060; Cyrus CCY, 2013, J THEOR BIOL, V332, P171, DOI 10.1016/j.jtbi.2013.04.031; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; EMLEN ST, 1995, P NATL ACAD SCI USA, V92, P8092, DOI 10.1073/pnas.92.18.8092; Ermisch J, 2004, J R STAT SOC A STAT, V167, P69, DOI 10.1111/j.1467-985X.2004.00292.x; Flinn M. V., 1988, HUMAN REPROD BEHAV D, P189; FRASER AM, 1995, NEW ENGL J MED, V332, P1113, DOI 10.1056/NEJM199504273321701; FRETTS RC, 1995, NEW ENGL J MED, V333, P953, DOI 10.1056/NEJM199510123331501; Geary DC, 2000, PSYCHOL BULL, V126, P55, DOI 10.1037/0033-2909.126.1.55; Geronimus AT, 1999, SOC SCI MED, V49, P1623, DOI 10.1016/S0277-9536(99)00246-4; HARRIS JR, 1998, NURTURE ASSUMPTION W; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Hawkes K, 2013, EVOL ANTHROPOL, V22, P294, DOI 10.1002/evan.21382; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; HOBCRAFT JN, 1985, POP STUD-J DEMOG, V39, P363, DOI 10.1080/0032472031000141576; Hoier S, 2003, HUM NATURE-INT BIOS, V14, P209, DOI 10.1007/s12110-003-1004-2; Hrdy S. B., 2009, MOTHERS OTHERS EVOLU; JENNIONS MD, 1994, TRENDS ECOL EVOL, V9, P89, DOI 10.1016/0169-5347(94)90202-X; Ji T, 2014, HUM NATURE-INT BIOS, V25, P66, DOI 10.1007/s12110-013-9188-6; Johnstone RA, 2010, P ROY SOC B-BIOL SCI, V277, P3765, DOI 10.1098/rspb.2010.0988; Jones OR, 2014, NATURE, V505, P169, DOI 10.1038/nature12789; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kaplan H, 1996, YEARB PHYS ANTHROPOL, V39, P91; KIERNAN KE, 1992, POP STUD-J DEMOG, V46, P213, DOI 10.1080/0032472031000146206; KOENIG WD, 1992, Q REV BIOL, V67, P111, DOI 10.1086/417552; KOMDEUR J, 1994, P ROY SOC B-BIOL SCI, V256, P47, DOI 10.1098/rspb.1994.0047; Kramer KL, 2005, EVOL ANTHROPOL, V14, P224, DOI 10.1002/evan.20082; Lahdenpera M, 2012, ECOL LETT, V15, P1283, DOI 10.1111/j.1461-0248.2012.01851.x; Leonetti DL, 2009, AM J HUM BIOL, V21, P438, DOI 10.1002/ajhb.20929; Mace R, 2008, SCIENCE, V319, P764, DOI 10.1126/science.1153960; Mace R, 2012, P ROY SOC B-BIOL SCI, V279, P2219, DOI 10.1098/rspb.2011.2424; Matchock RL, 2006, AM J HUM BIOL, V18, P481, DOI 10.1002/ajhb.20508; MICHAEL RT, 1985, DEMOGRAPHY, V22, P515, DOI 10.2307/2061586; Muniz L, 2006, CURR BIOL, V16, pR156, DOI 10.1016/j.cub.2006.02.055; Nettle D, 2012, DEV PSYCHOL, V48, P718, DOI 10.1037/a0027507; Nettle D, 2011, P ROY SOC B-BIOL SCI, V278, P1721, DOI 10.1098/rspb.2010.1726; Palermo T, 2009, STUD FAMILY PLANN, V40, P101, DOI 10.1111/j.1728-4465.2009.00193.x; Pasinelli G, 2002, ECOLOGY, V83, P2229, DOI 10.2307/3072054; Pesonen AK, 2008, AM J HUM BIOL, V20, P345, DOI 10.1002/ajhb.20735; Plas E, 2000, EXP GERONTOL, V35, P543, DOI 10.1016/S0531-5565(00)00120-0; Reeve HK, 2006, P NATL ACAD SCI USA, V103, P8430, DOI 10.1073/pnas.0603005103; REEVE HK, 1995, AM NAT, V145, P119, DOI 10.1086/285731; Reeve HK, 1998, BEHAV ECOL, V9, P267, DOI 10.1093/beheco/9.3.267; Rickard IJ, 2014, PERSPECT PSYCHOL SCI, V9, P3, DOI 10.1177/1745691613513467; Robson SL, 2006, SCH AM RES, P17; Sear R, 2014, WORKING PAPER, P24; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; Shenk MK, 2013, HUM NATURE-INT BIOS, V24, P76, DOI 10.1007/s12110-013-9160-5; Sheppard P, 2014, HUM NATURE-INT BIOS, V25, P213, DOI 10.1007/s12110-014-9195-2; Sheppard P, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0089539; Sheppard P, 2012, BIOL LETTERS, V8, P237, DOI 10.1098/rsbl.2011.0747; Skjservo GR, 2013, EXPT GERONTOLOGY, V48, P408, DOI [10.1016/j.exger.2013.02.001, DOI 10.1016/J.EXGER.2013.02.001]; Snopkowski K, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0580; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; SURBEY MK, 1990, MG PRIMATOL, V13, P11; Surbey MK, 1998, HUM NATURE-INT BIOS, V9, P67, DOI 10.1007/s12110-998-1012-3; Teilmann G, 2006, PEDIATRICS, V118, pE391, DOI 10.1542/peds.2005-2939; Thomas F, 2001, HUM BIOL, V73, P271, DOI 10.1353/hub.2001.0029; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; van den Berg P, 2013, EVOL HUM BEHAV, V34, P405, DOI 10.1016/j.evolhumbehav.2013.07.004; VEHRENCAMP SL, 1983, AM ZOOL, V23, P327; Vikat A, 2002, J EPIDEMIOL COMMUN H, V56, P659, DOI 10.1136/jech.56.9.659; Waynforth D, 1998, EVOL HUM BEHAV, V19, P369, DOI 10.1016/S1090-5138(98)00031-2; Waynforth D, 2002, HDB FATHER INVOLVEME, P337; Waynforth D, 2012, P ROY SOC B-BIOL SCI, V279, P2998, DOI 10.1098/rspb.2012.0220; Webster GD, 2014, EVOL PSYCHOL-US, V12, P273, DOI 10.1177/147470491401200202; Wells JCK, 2007, TRENDS ENDOCRIN MET, V18, P331, DOI 10.1016/j.tem.2007.07.006; Winking J, 2011, EVOL HUM BEHAV, V32, P79, DOI 10.1016/j.evolhumbehav.2010.08.002 86 8 8 2 18 PEERJ INC LONDON 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND 2167-8359 PEERJ PeerJ AUG 12 2014 2 e512 10.7717/peerj.512 30 Multidisciplinary Sciences Science & Technology - Other Topics AY5MU WOS:000347617300003 25165627 DOAJ Gold, Green Published 2018-11-12 J Hughes, PW; Simons, AM Hughes, P. William; Simons, Andrew M. CHANGING REPRODUCTIVE EFFORT WITHIN A SEMELPAROUS REPRODUCTIVE EPISODE AMERICAN JOURNAL OF BOTANY English Article Campanulaceae; iteroparity; life history evolution; Lobelia inflata; monocarpy; reproductive effort; semelparity HYDROPHYLLUM-APPENDICULATUM HYDROPHYLLACEAE; FLORAL SEX ALLOCATION; SEED MASS VARIATION; TERMINAL INVESTMENT; INDIVIDUAL VARIATION; LOBELIA-INFLATA; POPULATION-DYNAMICS; RESOURCE LIMITATION; TEMPORAL VARIATION; NATURAL-SELECTION Premise of the study: Life-history theory predicts a trade-off between current and future reproduction for iteroparous organisms-as individuals age, the expected value of future reproduction declines, and thus reproductive effort is expected to be higher in later clutches than in earlier. In contrast, models explaining the evolution of semelparity treat semelparous reproduction as instantaneous, with no scope for intraindividual variation. However, semelparous reproduction is also extended, but over shorter time scales; whether there are similar age-or stage-specific changes in reproductive effort within a semelparous episode is unclear. In this study, we assessed whether semelparous individuals increase reproductive effort as residual reproductive value declines by comparing the reproductive phenotype of flowers at five different floral positions along a main inflorescence. Methods: Using the herbaceous monocarp Lobelia inflata, we conducted a longitudinal study of 409 individuals including both laboratory and field populations over three seasons. We recorded six reproductive traits-including the length of three phenological intervals as well as fruit size, seed size, and seed number-for all plants across floral positions produced throughout the reproductive episode. Key results: We found that while the rate of flower initiation did not change, flowers at distal (late) floral positions developed more quickly and contained larger seed than flowers at basal (early) floral positions did. Conclusions: Our results were consistent with the hypothesis that, like iteroparous organisms, L. inflata increases reproductive effort in response to low residual reproductive value. [Hughes, P. William; Simons, Andrew M.] Carleton Univ, Dept Biol, Ottawa, ON K1S 5B6, Canada Hughes, PW (reprint author), Carleton Univ, Dept Biol, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada. william.hughes@carleton.ca Simons, Andrew/A-7751-2012; Hughes, P. William/G-9119-2018 Simons, Andrew/0000-0002-0198-465X; Hughes, P. William/0000-0003-4142-2579 NSERC CGS; NSERC Discovery Grant The authors thank Mary Compton, Jake Graham, Howard Rundle, Tom Sherratt, and Root Gorelick for their ideas and helpful contributions to the design of this research project and Peter Arbour and the staff of the Petawawa Research Forest for access to long-term field sites. This work was supported through an NSERC CGS to P.W.H. and an NSERC Discovery Grant to A.M.S. AMIR S, 1990, J THEOR BIOL, V147, P17, DOI 10.1016/S0022-5193(05)80250-4; ASHMAN TL, 1992, OECOLOGIA, V92, P266, DOI 10.1007/BF00317374; Bercovitch FB, 2009, J MAMMAL, V90, P40, DOI 10.1644/08-MAMM-A-124.1; BIERE A, 1995, J ECOL, V83, P629, DOI 10.2307/2261631; Billing AM, 2007, BEHAV ECOL, V18, P535, DOI 10.1093/beheco/arm007; Bonfil C, 1998, AM J BOT, V85, P79, DOI 10.2307/2446557; Brunet J, 1996, ECOLOGY, V77, P2458, DOI 10.2307/2265746; BRUNET J, 1995, EVOLUTION, V49, P70, DOI 10.1111/j.1558-5646.1995.tb05959.x; Caruso CM, 2006, AM J BOT, V93, P531, DOI 10.3732/ajb.93.4.531; Caruso CM, 2003, AM J BOT, V90, P1333, DOI 10.3732/ajb.90.9.1333; CASPER BB, 1984, EVOLUTION, V38, P1337, DOI 10.1111/j.1558-5646.1984.tb05655.x; CAVERS PB, 1984, AM NAT, V124, P324, DOI 10.1086/284276; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; Christiansen JS, 2008, J EXP MAR BIOL ECOL, V360, P47, DOI 10.1016/j.jembe.2008.04.003; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Creighton JC, 2009, AM NAT, V174, P673, DOI 10.1086/605963; DIGGLE PK, 1995, ANNU REV ECOL SYST, V26, P531, DOI 10.1146/annurev.es.26.110195.002531; Edmunds G. F., 1976, MAYFLIES N CENTRAL A; Elliott J.M., 1980, Freshwater Biological Association Annual Report, P41; Fisher DO, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0015226; FISHER R. A., 1930, GENETICAL THEORY NAT; FLOOD RG, 1982, ANN BOT-LONDON, V49, P469, DOI 10.1093/oxfordjournals.aob.a086271; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Futami K, 2005, ETHOLOGY, V111, P1126, DOI 10.1111/j.1439-0310.2005.01126.x; Gallardo CS, 2006, J MAR BIOL ASSOC UK, V86, P757, DOI 10.1017/S0025315406013671; Gonzalez-Tokman DM, 2013, FUNCT ECOL, V27, P739, DOI 10.1111/1365-2435.12072; GROSBERG RK, 1988, EVOLUTION, V42, P900, DOI 10.1111/j.1558-5646.1988.tb02510.x; Guitian J, 1996, CAN J BOT, V74, P1482, DOI 10.1139/b96-178; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; Hanssen SA, 2006, ECOLOGY, V87, P2440, DOI 10.1890/0012-9658(2006)87[2440:COAICA]2.0.CO;2; Heinze J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0035201; Herrera C. M., 2009, MULTIPLICITY UNITY P; HERRERA CM, 1992, ECOLOGY, V73, P1832, DOI 10.2307/1940034; HERRERA CM, 1988, ECOLOGY, V69, P233, DOI 10.2307/1943179; HERRERA CM, 1991, ECOLOGY, V72, P1436, DOI 10.2307/1941116; HERRERA J, 1991, AM J BOT, V78, P789, DOI 10.2307/2445069; Hughes PW, 2014, BMC EVOL BIOL, V14, DOI 10.1186/1471-2148-14-90; Hughes PW, 2014, APPL PLANT SCI, V2, DOI 10.3732/apps.1300096; Imaizumi T, 2006, TRENDS PLANT SCI, V11, P550, DOI 10.1016/j.tplants.2006.09.004; Isaac JL, 2005, BIOL LETT-UK, V1, P271, DOI 10.1098/rsbl.2005.0326; Javois J, 2013, THEOR BIOSCI, V132, P123, DOI 10.1007/s12064-013-0176-5; Kaitala V, 2002, EVOL ECOL RES, V4, P169; KANG H, 1991, AM J BOT, V78, P711, DOI 10.2307/2445092; Kim E, 2012, FUNCT ECOL, V26, P294, DOI 10.1111/j.1365-2435.2011.01936.x; KIRKENDALL LR, 1985, AM NAT, V125, P189, DOI 10.1086/284337; Kivleniece I, 2010, ANIM BEHAV, V80, P1015, DOI 10.1016/j.anbehav.2010.09.004; Kliber A, 2004, ECOLOGY, V85, P1675, DOI 10.1890/03-0477; Langley PA, 1998, FUNCT ECOL, V12, P866, DOI 10.1046/j.1365-2435.1998.00262.x; LEVY F, 1988, AM MIDL NAT, V119, P193, DOI 10.2307/2426068; Lloret F, 1999, FUNCT ECOL, V13, P210, DOI 10.1046/j.1365-2435.1999.00309.x; MACNAIR MR, 1990, P ROY SOC B-BIOL SCI, V242, P101, DOI 10.1098/rspb.1990.0111; MAZER SJ, 1992, AM J BOT, V79, P1185, DOI 10.2307/2445218; Meunier J, 2012, EVOL ECOL, V26, P669, DOI 10.1007/s10682-011-9510-x; Moles AT, 2004, J ECOL, V92, P372, DOI 10.1111/j.0022-0477.2004.00884.x; Moravcova L, 2005, ACTA OECOL, V28, P1, DOI 10.1016/j.actao.2005.01.004; Navarro L, 1996, PLANT SYST EVOL, V201, P139, DOI 10.1007/BF00989057; OBESO JR, 1993, OECOLOGIA, V93, P571, DOI 10.1007/BF00328967; Olejnik S, 2000, CONTEMP EDUC PSYCHOL, V25, P241, DOI 10.1006/ceps.2000.1040; Omielan J, 1991, THESIS U BRIT COLUMB; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; Ots I, 1996, P ROY SOC B-BIOL SCI, V263, P1443, DOI 10.1098/rspb.1996.0210; PART T, 1992, AM NAT, V140, P868, DOI 10.1086/285445; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Roach DA, 2003, ECOLOGY, V84, P749, DOI 10.1890/0012-9658(2003)084[0749:ASDIPV]2.0.CO;2; Roach DA, 2009, ECOLOGY, V90, P1427, DOI 10.1890/08-0981.1; Roff D. A., 2001, LIFE HIST EVOLUTION; Roff Derek A., 1992; Sadd B, 2006, J EVOLUTION BIOL, V19, P321, DOI 10.1111/j.1420-9101.2005.01062.x; Schneider JM, 2003, EVOL ECOL RES, V5, P731; Searle I, 2004, EMBO J, V23, P1217, DOI 10.1038/sj.emboj.7600117; SHINE R, 1992, EVOLUTION, V46, P62, DOI 10.1111/j.1558-5646.1992.tb01985.x; SIEPEL H, 1994, BIOL FERT SOILS, V18, P263, DOI 10.1007/BF00570628; Simons AM, 1999, AM NAT, V153, P683, DOI 10.1086/303206; Simons AM, 2000, AM J BOT, V87, P124, DOI 10.2307/2656690; Simons AM, 2003, J EVOLUTION BIOL, V16, P233, DOI 10.1046/j.1420-9101.2003.00530.x; Simons AM, 2000, HEREDITY, V85, P356, DOI 10.1046/j.1365-2540.2000.00760.x; Simons AM, 2006, EVOLUTION, V60, P2280, DOI 10.1554/05-396.1; SOLOMON BP, 1988, AM J BOT, V75, P1074, DOI 10.2307/2443775; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stelzer CP, 2001, ECOLOGY, V82, P2521; STEPHENSON AG, 1981, ANNU REV ECOL SYST, V12, P253, DOI 10.1146/annurev.es.12.110181.001345; Tallamy DW, 1999, ANIM BEHAV, V57, P727, DOI 10.1006/anbe.1998.1008; Unwin MJ, 1999, CAN J FISH AQUAT SCI, V56, P1172, DOI 10.1139/cjfas-56-7-1172; Valimaki P, 2008, J EVOLUTION BIOL, V21, P1711, DOI 10.1111/j.1420-9101.2008.01597.x; Vallius E, 2000, FUNCT ECOL, V14, P573, DOI 10.1046/j.1365-2435.2000.t01-1-00450.x; van Kleunen M, 2005, NEW PHYTOL, V166, P49, DOI 10.1111/j.1469-8137.2004.01296.x; Vaughton G, 1997, INT J PLANT SCI, V158, P424, DOI 10.1086/297452; Velando A, 2006, P R SOC B, V273, P1443, DOI 10.1098/rspb.2006.3480; Williams GC, 1966, ADAPTATION NATURAL S; WINN AA, 1991, AM J BOT, V78, P838, DOI 10.2307/2445075; WOLFE LM, 1995, OECOLOGIA, V101, P343, DOI 10.1007/BF00328821; WOLFE LM, 1992, AM J BOT, V79, P1286, DOI 10.2307/2445057; Wolfe LM, 2001, AM J BOT, V88, P1419, DOI 10.2307/3558448; Wolfe LM, 2001, INT J PLANT SCI, V162, P1313, DOI 10.1086/322945; WYATT R, 1982, AM J BOT, V69, P585, DOI 10.2307/2443068; Young T. P., 2010, NATURE ED KNOWLEDGE, V3, P2; YOUNG TP, 1981, AM NAT, V118, P27, DOI 10.1086/283798; Zeineddine M, 2009, EVOLUTION, V63, P1498, DOI 10.1111/j.1558-5646.2009.00630.x; Zeng YF, 2009, J INTEGR PLANT BIOL, V51, P299, DOI 10.1111/j.1744-7909.2008.00724.x 101 3 3 5 49 BOTANICAL SOC AMER INC ST LOUIS PO BOX 299, ST LOUIS, MO 63166-0299 USA 0002-9122 1537-2197 AM J BOT Am. J. Bot. AUG 1 2014 101 8 1323 1331 10.3732/ajb.1400283 9 Plant Sciences Plant Sciences AO6BN WOS:000341433400009 25156981 2018-11-12 J Billman, EJ; Rasmussen, JE; Creighton, JC; Johnson, JB; Belk, MC Billman, Eric J.; Rasmussen, Josh E.; Creighton, J. Curtis; Johnson, Jerald B.; Belk, Mark C. A multivariate approach to the analysis of within lifetime variation in life history METHODS IN ECOLOGY AND EVOLUTION English Article Life-history evolution; phenotypic plasticity; Nicrophorus; Poeciliidae; multivariate trajectory FISH BRACHYRHAPHIS-RHABDOPHORA; TERMINAL INVESTMENT; REPRODUCTIVE EFFORT; NATURAL-SELECTION; POECILIA-RETICULATA; EL-NINO; EVOLUTION; POPULATIONS; PREDATION; COSTS 1. Ecological and environmental gradients create varying selective pressures on organisms that result in differences in optimal life history tactics. Moreover, life histories are inherently multivariate, consisting of a coordinated suite of life history traits that vary over an organism's lifetime. Such variation can be described as a trajectory of phenotypic change through time inmultivariate space defined by a set of life history traits. 2. We demonstrate the use of phenotypic trajectory analysis as a multivariate analytical approach for quantifying and comparing phenotypic change in life history throughout an organism's life. Life history trajectories have attributes - magnitude, direction, and shape - that can be quantified and statistically compared. We demonstrate the construction of trajectories using levels characterized by individuals with the same age or similar state, and we show how this approach can be used to evaluate the evolution of life history strategies given predictions from life history theory. 3. We demonstrate the utility of phenotypic trajectory analysis for life histories using two examples. We compare life history trajectories of burying beetles and show that females balance costs of reproduction differently based on resource availability. We also characterize life history trajectories of livebearing fish in different predation environments. We show that females in non-predator environments, but not predator environments, exhibit trajectories consistent with the terminal investment hypothesis. 4. While analysing life history variation in a multivariate framework is not novel, we show that phenotypic trajectory analysis provides a method to statistically test age-and state-based predictions of life history theory. [Billman, Eric J.; Johnson, Jerald B.; Belk, Mark C.] Brigham Young Univ, Dept Biol, Provo, UT 84602 USA; [Rasmussen, Josh E.] US Fish & Wildlife Serv, Klamath Falls Off, Klamath Falls, OR USA; [Creighton, J. Curtis] Purdue Univ Calumet, Dept Biol Sci, Hammond, IN 46323 USA Billman, EJ (reprint author), Brigham Young Univ, Dept Biol, Provo, UT 84602 USA. ericbillman@gmail.com Adams DC, 2007, EVOLUTION, V61, P510, DOI 10.1111/j.1558-5646.2007.00063.x; Adams DC, 2009, EVOLUTION, V63, P1143, DOI 10.1111/j.1558-5646.2009.00649.x; Belk MC, 2010, OIKOS, V119, P163, DOI 10.1111/j.1600-0706.2009.17742.x; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Butler D., 2009, ASREML R REFERENCE M; Charnov E. L., 2002, EVOL ECOL RES, V4, P1; Chun YJ, 2007, ECOLOGY, V88, P1499, DOI 10.1890/06-0856; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Collyer ML, 2007, ECOLOGY, V88, P683, DOI 10.1890/06-0727; Cotter SC, 2011, FUNCT ECOL, V25, P652, DOI 10.1111/j.1365-2435.2010.01819.x; Creighton JC, 2009, AM NAT, V174, P673, DOI 10.1086/605963; Dennis SR, 2011, P ROY SOC B-BIOL SCI, V278, P1687, DOI 10.1098/rspb.2010.1989; Dobson FS, 2008, CURR SCI INDIA, V95, P862; FISHER R. A., 1930, GENETICAL THEORY NAT; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; Grant PR, 2000, ECOLOGY, V81, P2442, DOI 10.2307/177466; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; Hamel S, 2009, J ANIM ECOL, V78, P143, DOI 10.1111/j.1365-2656.2008.01459.x; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Hanssen SA, 2005, P ROY SOC B-BIOL SCI, V272, P1039, DOI 10.1098/rspb.2005.3057; Hassell EMA, 2012, ECOL EVOL, V2, P1738, DOI 10.1002/ece3.278; Jennions MD, 2002, OECOLOGIA, V132, P44, DOI 10.1007/s00442-002-0942-4; JOHNSEN I, 1994, OIKOS, V71, P273, DOI 10.2307/3546276; Johnson JB, 2002, OIKOS, V96, P82, DOI 10.1034/j.1600-0706.2002.960109.x; Johnson JB, 2001, EVOLUTION, V55, P1486; Johnson JB, 2001, OECOLOGIA, V126, P142, DOI 10.1007/s004420000504; Johnson JB, 2009, ECOLOGY, V90, P2243, DOI 10.1890/07-1672.1; Langerhans RB, 2010, INTEGR COMP BIOL, V50, P1167, DOI 10.1093/icb/icq117; Langerhans RB, 2008, INTEGR COMP BIOL, V48, P750, DOI 10.1093/icb/icn092; Langerhans RB, 2004, AM NAT, V164, P335, DOI 10.1086/422857; Lu X, 2011, ANIM BEHAV, V82, P861, DOI 10.1016/j.anbehav.2011.07.024; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; McNamara JM, 2009, P ROY SOC B-BIOL SCI, V276, P4061, DOI 10.1098/rspb.2009.0959; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; R Core Development Team, 2010, R LANG ENV STAT COMP; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff D. A., 2002, LIFE HIST EVOLUTION; Salguero-Gomez R, 2010, J ECOL, V98, P312, DOI 10.1111/j.1365-2745.2009.01616.x; Schlupp I., 2010, NATURWISSENSCHAFTEN, V97, P133; Sparkman AM, 2007, P ROY SOC B-BIOL SCI, V274, P943, DOI 10.1098/rspb.2006.0072; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Velando A, 2006, P R SOC B, V273, P1443, DOI 10.1098/rspb.2006.3480; Wendeln H, 1999, J ANIM ECOL, V68, P205, DOI 10.1046/j.1365-2656.1999.00276.x; Wesner JS, 2011, BIOL J LINN SOC, V104, P386, DOI 10.1111/j.1095-8312.2011.01715.x; Wikelski M, 2000, NATURE, V403, P37, DOI 10.1038/47396; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WINEMILLER KO, 1992, OIKOS, V63, P318, DOI 10.2307/3545395; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242 52 3 3 2 48 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2041-210X 2041-2096 METHODS ECOL EVOL Methods Ecol. Evol. AUG 2014 5 8 797 805 10.1111/2041-210X.12211 9 Ecology Environmental Sciences & Ecology AN5AC WOS:000340600400009 Bronze 2018-11-12 J Lim, JN; Senior, AM; Nakagawa, S Lim, Jiahui N.; Senior, Alistair M.; Nakagawa, Shinichi HETEROGENEITY IN INDIVIDUAL QUALITY AND REPRODUCTIVE TRADE-OFFS WITHIN SPECIES EVOLUTION English Article Clutch size; life-history theory; litter size; optimum offspring size; resource acquisition; resource allocation OFFSPRING SIZE; EGG SIZE; MATERNAL INVESTMENT; VAN NOORDWIJK; CLUTCH SIZE; JONG MODEL; NUMBER; EVOLUTION; COSTS; METAANALYSES Interspecifically, a reasonable body of evidence supports a trade-off between offspring size and number. However, at the intraspecific level, a whole manner of phenotypic correlations between offspring size and number are observed. These correlations may be predicted when heterogeneity in resource availability, or quality, is considered. Making the assumption that maternal size is a proxy for resource availability, we meta-analytically quantified four phenotypic reproductive correlations within numerous species: (1) maternal size and offspring size, (2) maternal size and offspring number, (3) offspring number and offspring size, and (4) offspring number and offspring size after controlling for maternal size. Within species, maternal size showed a positive correlation with both offspring size and number. Despite this consistency, no correlation between offspring size and number was found. After controlling for maternal size, however, offspring size and number showed a significant negative correlation. A phylogenetic component of our analysis accounted for little heterogeneity in the data, suggesting that our findings show remarkable consistency across taxa. Overall, our results support an observable phenotypic trade-off between offspring size and number. However, this analysis also highlights the importance of considering quality when examining trade-offs, a task that is not always straightforward as quality is context dependant. [Lim, Jiahui N.; Senior, Alistair M.; Nakagawa, Shinichi] Univ Otago, Dept Zool, Dunedin 9054, New Zealand; [Senior, Alistair M.] Univ Sydney, Charles Perkins Ctr, Sydney, NSW 2006, Australia; [Senior, Alistair M.] Univ Sydney, Sch Biol Sci, Sydney, NSW 2006, Australia Lim, JN (reprint author), Univ Otago, Dept Zool, 340 Great King St, Dunedin 9054, New Zealand. alistair.senior1985@gmail.com Nakagawa, Shinichi/B-5571-2011 Nakagawa, Shinichi/0000-0002-7765-5182 University of Otago; Marsden Fund, NewZealand [UOO0812]; Rutherford Discovery Fellowship We would like to thank the University of Otago and the Marsden Fund, NewZealand (UOO0812) for providing research funding. SN is supported by a Rutherford Discovery Fellowship. We thank L. Lagisz for help in constructing a phylogenetic tree. We would also like to thank R. Poulin, I. Winney, M. Jennions, an anonymous reviewer and the editorial team at Evolution for comments and thoughts on this research. Ardia DR, 2007, BEHAV ECOL, V18, P259, DOI 10.1093/beheco/arl078; Bergeron P, 2011, J ANIM ECOL, V80, P361, DOI 10.1111/j.1365-2656.2010.01770.x; Brown CA, 2003, EVOLUTION, V57, P2184, DOI 10.1111/j.0014-3820.2003.tb00397.x; Brown GP, 2009, PHILOS T R SOC B, V364, P1097, DOI 10.1098/rstb.2008.0247; Buoro M, 2010, EVOLUTION, V64, P2629, DOI 10.1111/j.1558-5646.2010.01029.x; Cam E, 2000, OIKOS, V90, P560, DOI 10.1034/j.1600-0706.2000.900314.x; Cam E, 2013, OIKOS, V122, P739, DOI 10.1111/j.1600-0706.2012.20532.x; Christians JK, 2000, FUNCT ECOL, V14, P497, DOI 10.1046/j.1365-2435.2000.00444.x; Cohen J, 1988, STAT POWER ANAL BEHA; Duval S, 2005, PUBLICATION BIAS IN META-ANALYSIS: PREVENTION, ASSESSMENT AND ADJUSTMENTS, P127, DOI 10.1002/0470870168.ch8; Egger M, 1997, BMJ-BRIT MED J, V315, P629, DOI 10.1136/bmj.315.7109.629; Falster DS, 2008, AM NAT, V172, P299, DOI 10.1086/589889; Ford NB, 2006, J ZOOL, V268, P171, DOI 10.1111/j.1469-7998.2005.00006; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Gelman A, 1992, STAT SCI, V7, P457, DOI DOI 10.1214/SS/1177011136; GREEN WCH, 1991, OECOLOGIA, V86, P521, DOI 10.1007/BF00318318; Hadfield JD, 2010, J EVOLUTION BIOL, V23, P494, DOI 10.1111/j.1420-9101.2009.01915.x; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hamel S, 2009, J ANIM ECOL, V78, P143, DOI 10.1111/j.1365-2656.2008.01459.x; Hansen TF, 2005, EVOLUTION, V59, P2063; Harvey P. H., 1991, COMP METHOD EVOLUTIO; Higgins JPT, 2003, BRIT MED J, V327, P557, DOI 10.1136/bmj.327.7414.557; Higgins JPT, 2002, STAT MED, V21, P1539, DOI 10.1002/sim.1186; Higgins JPT, 2008, COCHRANE HDB SYSTEMA; Housworth EA, 2004, AM NAT, V163, P84, DOI 10.1086/380570; Jennions M. D., 2012, HDB META ANAL ECOLOG, P207; Kim S., 2012, PPCOR PARTIAL SEMI P; Kindsvater HK, 2011, J EVOLUTION BIOL, V24, P2230, DOI 10.1111/j.1420-9101.2011.02351.x; Kindsvater H. K., 2014, P ROY SOC LOND B BIO, V281, P1471; Kindsvater HK, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0048473; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lajeunesse M. J., 2013, HDB METAANALYSIS ECO, P284; Langford E, 2001, AM STAT, V55, P322, DOI 10.1198/000313001753272286; Liberati A, 2009, PLOS MED, V6, DOI 10.1371/journal.pmed.1000100; Lipsey M. W., 2001, PRACTICAL METAANALYS; LYNCH M, 1991, EVOLUTION, V45, P1065, DOI 10.1111/j.1558-5646.1991.tb04375.x; Marshall DJ, 2007, OIKOS, V116, P1957, DOI 10.1111/j.2007.0030-1299.16203.x; Marshall DJ, 2010, ECOLOGY, V91, P2862, DOI 10.1890/09-0156.1; Mengersen K., 2013, HDB METAANALYSIS ECO, P89; Messina Frank J., 2001, P113; Moller AP, 2002, OECOLOGIA, V132, P492, DOI 10.1007/s00442-002-0952-2; Moyes K, 2009, J ANIM ECOL, V78, P406, DOI 10.1111/j.1365-2656.2008.01497.x; Nakagawa S, 2007, BIOL REV, V82, P591, DOI 10.1111/j.1469-185X.2007.00027.x; Nakagawa S, 2012, EVOL ECOL, V26, P1253, DOI 10.1007/s10682-012-9555-5; Nakagawa S, 2012, EVOL ECOL, V26, P1085, DOI 10.1007/s10682-012-9593-z; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PEASE CM, 1988, J EVOLUTION BIOL, V1, P293, DOI 10.1046/j.1420-9101.1988.1040293.x; R Development Core Team, 2013, R LANG ENV STAT COMP; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Roff Derek A., 1992; Schroderus E, 2012, BMC EVOL BIOL, V12, DOI 10.1186/1471-2148-12-44; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; TUOMI J, 1980, OECOLOGIA, V45, P39, DOI 10.1007/BF00346705; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Viechtbauer W, 2010, J STAT SOFTW, V36, P1; Visman V, 1996, ECOSCIENCE, V3, P173, DOI 10.1080/11956860.1996.11682328; Walker RS, 2008, P ROY SOC B-BIOL SCI, V275, P827, DOI 10.1098/rspb.2007.1511; Wilson AJ, 2009, J ANIM ECOL, V78, P354, DOI 10.1111/j.1365-2656.2008.01489.x; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002; Zuniga-Vega JJ, 2011, J FISH BIOL, V79, P1029, DOI 10.1111/j.1095-8649.2011.03081.x 64 32 32 0 56 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution AUG 2014 68 8 2306 2318 10.1111/evo.12446 13 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AN3FL WOS:000340470600013 24820133 Bronze 2018-11-12 J Shrestha, S; Bjornstad, ON; King, AA Shrestha, Sourya; Bjornstad, Ottar N.; King, Aaron A. Evolution of acuteness in pathogen metapopulations: conflicts between "classical" and invasion-persistence trade-offs THEORETICAL ECOLOGY English Article Evolution of infectious pathogens; Invasion-persistence trade-off; Metapopulation model; Acute infections; Individual-based model; Bordetellae STRUCTURED POPULATIONS; WITHIN-HOST; VIRULENCE; SELECTION; EPIDEMICS; DYNAMICS; MODEL; TIME; MICROPARASITES; TRANSMISSION Classical life-history theory predicts that acute, immunizing pathogens should maximize between-host transmission. When such pathogens induce violent epidemic outbreaks, however, a pathogen's short-term advantage at invasion may come at the expense of its ability to persist in the population over the long term. Here, we seek to understand how the classical and invasion-persistence trade-offs interact to shape pathogen life-history evolution as a function of the size and structure of the host population. We develop an individual-based infection model at three distinct levels of organization: within an individual host, among hosts within a local population, and among local populations within a metapopulation. We find a continuum of evolutionarily stable pathogen strategies. At one end of the spectrum-in large well-mixed populations-pathogens evolve to greater acuteness to maximize between-host transmission: the classical trade-off theory applies in this regime. At the other end of the spectrum-when the host population is broken into many small patches-selection favors less acute pathogens, which persist longer within a patch and thereby achieve enhanced between-patch transmission: the invasion-persistence trade-off dominates in this regime. Between these extremes, we explore the effects of the size and structure of the host population in determining pathogen strategy. In general, pathogen strategies respond to evolutionary pressures arising at both scales. [Shrestha, Sourya; King, Aaron A.] Univ Michigan, Dept Ecol & Evolutionary Biol, Ann Arbor, MI 48109 USA; [Shrestha, Sourya; King, Aaron A.] Univ Michigan, Ctr Study Complex Syst, Ann Arbor, MI 48109 USA; [Bjornstad, Ottar N.] Penn State Univ, Dept Entomol & Biol, University Pk, PA 16802 USA; [King, Aaron A.] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA; [Bjornstad, Ottar N.; King, Aaron A.] NIH, Fogarty Int Ctr, Bethesda, MD 20892 USA Shrestha, S (reprint author), Johns Hopkins Sch Publ Hlth, Baltimore, MD 21205 USA. sourya@umich.edu King, Aaron/B-8092-2012 King, Aaron/0000-0001-6159-3207; Shrestha, Sourya/0000-0002-6106-6834 Research and Policy for Infectious Disease Dynamics program of the Science and Technology Directorate, US Department of Homeland Security; Fogarty International Center, US National Institutes of Health; National Institutes of Health [1-R01-AI-101155] Financial support was provided by the Research and Policy for Infectious Disease Dynamics program of the Science and Technology Directorate, US Department of Homeland Security, and the Fogarty International Center, US National Institutes of Health. AAK acknowledges the support of the National Institutes of Health (grant # 1-R01-AI-101155). Alizon S, 2005, AM NAT, V165, pE155, DOI 10.1086/430053; ANTIA R, 1994, AM NAT, V144, P457, DOI 10.1086/285686; Ball F, 2002, MATH BIOSCI, V180, P73, DOI 10.1016/S0025-5564(02)00125-6; Ball F, 1997, ANN APPL PROBAB, V7, P46; Bjornstad ON, 2005, TRENDS MICROBIOL, V13, P355, DOI 10.1016/j.tim.2005.06.007; Bjornstad ON, 2002, ECOL MONOGR, V72, P169, DOI 10.1890/0012-9615(2002)072[0169:DOMEES]2.0.CO;2; BLACK FL, 1975, SCIENCE, V187, P515, DOI 10.1126/science.163483; BLACK FL, 1974, AM J EPIDEMIOL, V100, P230, DOI 10.1093/oxfordjournals.aje.a112032; Boldin B, 2008, J MATH BIOL, V56, P635, DOI 10.1007/s00285-007-0135-1; Boots M, 1999, P ROY SOC B-BIOL SCI, V266, P1933, DOI 10.1098/rspb.1999.0869; Boots M, 2004, SCIENCE, V303, P842, DOI 10.1126/science.1088542; Coombs D, 2007, THEOR POPUL BIOL, V72, P576, DOI 10.1016/j.tpb.2007.08.005; Cross PC, 2007, J R SOC INTERFACE, V4, P315, DOI 10.1098/rsif.2006.0185; Cross PC, 2005, ECOL LETT, V8, P587, DOI 10.1111/j.1461-0248.2005.00760.x; Ewald PW, 1993, SCI AM, V268, P8; Ferrari Matthew J, 2011, Interdiscip Perspect Infect Dis, V2011, P267049, DOI 10.1155/2011/267049; Ganusov VV, 2003, THEOR POPUL BIOL, V64, P211, DOI 10.1016/S0040-5809(03)00063-7; Gilchrist MA, 2006, THEOR POPUL BIOL, V69, P145, DOI 10.1016/j.tpb.2005.07.002; Gilchrist MA, 2002, J THEOR BIOL, V218, P289, DOI 10.1006/yjtbi.3076; Grenfell BT, 2001, SYMP SOC GEN MICROBI, V60, P33, DOI 10.1017/CBO9780511754883.003; Higham DJ, 2008, SIAM REV, V50, P347, DOI 10.1137/060666457; Keeling M, 2000, P ROY SOC B-BIOL SCI, V267, P385, DOI 10.1098/rspb.2000.1013; King AA, 2009, AM NAT, V173, P446, DOI 10.1086/597217; LEVIN S, 1981, AM NAT, V117, P308, DOI 10.1086/283708; May R. M., 1983, COEVOLUTION; Mira A, 2006, TRENDS MICROBIOL, V14, P200, DOI 10.1016/j.tim.2006.03.001; Morozov A, 2012, J THEOR BIOL, V307, P29, DOI 10.1016/j.jtbi.2012.04.023; Pilyugin SS, 2000, B MATH BIOL, V62, P869, DOI 10.1006/bulm.2000.0181; RAND DA, 1995, P ROY SOC B-BIOL SCI, V259, P55, DOI 10.1098/rspb.1995.0009; Svennungsen TO, 2009, J THEOR BIOL, V257, P408, DOI 10.1016/j.jtbi.2008.11.014; van Ballegooijen WM, 2004, P NATL ACAD SCI USA, V101, P18246, DOI 10.1073/pnas.0405682101 31 3 3 0 8 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 1874-1738 1874-1746 THEOR ECOL-NETH Theor. Ecol. AUG 2014 7 3 299 311 10.1007/s12080-014-0219-7 13 Ecology Environmental Sciences & Ecology AM4JN WOS:000339820000007 25214895 Green Accepted 2018-11-12 J Madin, JS; Baird, AH; Dornelas, M; Connolly, SR Madin, Joshua S.; Baird, Andrew H.; Dornelas, Maria; Connolly, Sean R. Mechanical vulnerability explains size-dependent mortality of reef corals ECOLOGY LETTERS English Article Biomechanics; colonial; demography; disturbance; life history; mortality; reef coral GREAT-BARRIER-REEF; CLIMATE-CHANGE; HYDRODYNAMIC DISTURBANCES; OCEAN ACIDIFICATION; COMMUNITY ECOLOGY; FUNCTIONAL TRAITS; BUILDING CORALS; POPULATION; AGE; CONSEQUENCES Understanding life history and demographic variation among species within communities is a central ecological goal. Mortality schedules are especially important in ecosystems where disturbance plays a major role in structuring communities, such as coral reefs. Here, we test whether a trait-based, mechanistic model of mechanical vulnerability in corals can explain mortality schedules. Specifically, we ask whether species that become increasingly vulnerable to hydrodynamic dislodgment as they grow have bathtub-shaped mortality curves, whereas species that remain mechanically stable have decreasing mortality rates with size, as predicted by classical life history theory for reef corals. We find that size-dependent mortality is highly consistent between species with the same growth form and that the shape of size-dependent mortality for each growth form can be explained by mechanical vulnerability. Our findings highlight the feasibility of predicting assemblage-scale mortality patterns on coral reefs with trait-based approaches. [Madin, Joshua S.] Macquarie Univ, Dept Biol Sci, Sydney, NSW 2109, Australia; [Baird, Andrew H.; Connolly, Sean R.] James Cook Univ, ARC Ctr Excellence Coral Reef Studies, Townsville, Qld 4811, Australia; [Dornelas, Maria] Univ St Andrews, Ctr Biol Divers, Scottish Oceans Inst, St Andrews KY16 9TH, Fife, Scotland; [Connolly, Sean R.] James Cook Univ, Sch Marine & Trop Biol, Townsville, Qld 4811, Australia Madin, JS (reprint author), Macquarie Univ, Dept Biol Sci, Sydney, NSW 2109, Australia. joshua.madin@mq.edu.au Dornelas, Maria/E-3595-2010; Baird, Andrew/C-8449-2009 Dornelas, Maria/0000-0003-2077-7055; Baird, Andrew/0000-0001-8504-4077; Madin, Joshua/0000-0002-5005-6227; Connolly, Sean/0000-0003-1537-0859 Australian Research Council [FT110100609, FT0990652, DP0880544]; ERC [BioTIME 250189]; Scottish Funding Council [MASTS - HR09011] We thank M. Barbosa, S. Blowes, V. Cumbo, M. Diaz, M. Hisano, D. McCowan and S. Pennafirme for assistance in the field and P. Cetina, E. Graham and M. Hisano for outlining the coral images. We thank the Lizard Island Research Station staff for their support, especially A. Hogget and L. Vail. JM, AB and SC were supported by fellowships from the Australian Research Council (FT110100609, FT0990652 and DP0880544 respectively). MD was supported by the ERC (BioTIME 250189) and the Scottish Funding Council (MASTS - HR09011). Adler PB, 2013, ECOL LETT, V16, P1294, DOI 10.1111/ele.12157; BABCOCK RC, 1991, ECOL MONOGR, V61, P225, DOI 10.2307/2937107; Baird AH, 2002, MAR ECOL PROG SER, V237, P133, DOI 10.3354/meps237133; Baird AH, 2009, TRENDS ECOL EVOL, V24, P16, DOI 10.1016/j.tree.2008.09.005; Baria MVB, 2012, B MAR SCI, V88, P61, DOI 10.5343/bms.2011.1075; Carpenter KE, 2008, SCIENCE, V321, P560, DOI 10.1126/science.1159196; Connell J.H., 1973, P205; CONNELL JH, 1978, SCIENCE, V199, P1302, DOI 10.1126/science.199.4335.1302; De'ath G, 2012, P NATL ACAD SCI USA, V109, P17995, DOI 10.1073/pnas.1208909109; Done T.J., 1983, Australian Institute of Marine Science Contribution, P107; Dornelas M, 2008, ECOL LETT, V11, P1008, DOI 10.1111/j.1461-0248.2008.01208.x; GARRETT P, 1975, NATURE, V253, P349, DOI 10.1038/253349a0; GLYNN PW, 1993, CORAL REEFS, V12, P1, DOI 10.1007/BF00303779; Hall VR, 1996, ECOLOGY, V77, P950, DOI 10.2307/2265514; Hoegh-Guldberg O, 2007, SCIENCE, V318, P1737, DOI 10.1126/science.1152509; Hughes TP, 2003, SCIENCE, V301, P929, DOI 10.1126/science.1085046; Hughes TP, 1999, MAR GEOL, V157, P1, DOI 10.1016/S0025-3227(98)00187-X; HUGHES TP, 1985, ECOL MONOGR, V55, P141, DOI 10.2307/1942555; Hughes TP, 1999, LIMNOL OCEANOGR, V44, P932, DOI 10.4319/lo.1999.44.3_part_2.0932; HUGHES TP, 1987, AM NAT, V129, P818, DOI 10.1086/284677; HUGHES TP, 1980, SCIENCE, V209, P713, DOI 10.1126/science.209.4457.713; Jackson J.B.C., 1979, Systematics Association Special Volume Series, P499; KNOWLTON N, 1981, NATURE, V294, P251, DOI 10.1038/294251a0; Lenihan HS, 2011, ECOLOGY, V92, P1959, DOI 10.1890/11-0108.1; Litchman E, 2008, ANNU REV ECOL EVOL S, V39, P615, DOI 10.1146/annurev.ecolsys.39.110707.173549; LITTLER MM, 1983, J PHYCOL, V19, P229, DOI 10.1111/j.0022-3646.1983.00229.x; Madin JS, 2006, NATURE, V444, P477, DOI 10.1038/nature05328; Madin JS, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0046637; Madin JS, 2005, CORAL REEFS, V24, P630, DOI 10.1007/s00338-005-0042-0; MARTIN AP, 1993, P NATL ACAD SCI USA, V90, P4087, DOI 10.1073/pnas.90.9.4087; MASSEL SR, 1993, CORAL REEFS, V12, P153, DOI 10.1007/BF00334475; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; MORAN PJ, 1986, OCEANOGR MAR BIOL, V24, P379; Pandolfi JM, 2011, SCIENCE, V333, P418, DOI 10.1126/science.1204794; PARANJPE S, 1986, ECOLOGY, V67, P1693, DOI 10.2307/1939102; Pereira HM, 2010, SCIENCE, V330, P1496, DOI 10.1126/science.1196624; PORTER JW, 1981, NATURE, V294, P249, DOI 10.1038/294249a0; R Core Team, 2013, R LANG ENV STAT COMP; Rotjan RD, 2008, MAR ECOL PROG SER, V367, P73, DOI 10.3354/meps07531; ROUGHGARDEN J, 1985, ECOLOGY, V66, P54, DOI 10.2307/1941306; Shipley B., 2010, PLANT TRAITS VEGETAT; Smith LD, 1999, J EXP MAR BIOL ECOL, V235, P147, DOI 10.1016/S0022-0981(98)00178-6; STIMSON J, 1985, ECOLOGY, V66, P40, DOI 10.2307/1941305; TUNNICLIFFE V, 1981, P NATL ACAD SCI-BIOL, V78, P2427, DOI 10.1073/pnas.78.4.2427; van Mantgem PJ, 2007, ECOL LETT, V10, P909, DOI 10.1111/j.1461-0248.2007.01080.x; Veron J. E. N., 2000, CORALS WORLD; Wallace C. C., 1999, STAGHORN CORALS WORL; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; WERNER PA, 1977, ECOLOGY, V58, P1103, DOI 10.2307/1936930; Westoby M, 2006, TRENDS ECOL EVOL, V21, P261, DOI 10.1016/j.tree.2006.02.004; Wolstenholme JK, 2003, CORAL REEFS, V22, P155, DOI 10.1007/s00338-003-0299-0; Wood SN, 2011, J R STAT SOC B, V73, P3, DOI 10.1111/j.1467-9868.2010.00749.x; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403 53 41 41 1 59 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1461-023X 1461-0248 ECOL LETT Ecol. Lett. AUG 2014 17 8 1008 1015 10.1111/ele.12306 8 Ecology Environmental Sciences & Ecology AL4KF WOS:000339101100013 24894390 Other Gold, Green Published 2018-11-12 J de Valpine, P; Scranton, K; Knape, J; Ram, K; Mills, NJ de Valpine, Perry; Scranton, Katherine; Knape, Jonas; Ram, Karthik; Mills, Nicholas J. The importance of individual developmental variation in stage-structured population models ECOLOGY LETTERS English Review Cohort model; matrix population model; delay-differential equation model; life-history theory; stage-structured phenology; stage-structured development; individual heterogeneity; population growth rate; sensitivity and elasticity analysis; autocorrelated growth LIFE-HISTORY TRAITS; FREQUENCY DATA; MATRIX MODELS; PROJECTION MATRIX; TRANSIENT DYNAMICS; CAPTURE-RECAPTURE; DEVELOPMENT TIMES; INSECT PHENOLOGY; GROWTH; PARAMETERS Population stage structure is fundamental to ecology, and models of this structure have proven useful in many different systems. Many ecological variables other than stage, such as habitat type, site occupancy and metapopulation status are also modelled using transitions among discrete states. Transitions among life stages can be characterised by the distribution of time spent in each stage, including the mean and variance of each stage duration and within-individual correlations among multiple stage durations. Three modelling traditions represent stage durations differently. Matrix models can be derived as a long-run approximation from any distribution of stage durations, but they are often interpreted directly as a Markov model for stage transitions. Statistical stage-duration distribution models accommodate the variation typical of cohort development data, but such realism has rarely been incorporated in population theory or statistical population models. Delay-differential equation models include lags but no variation, except in limited cases. We synthesise these models in one framework and illustrate how individual variation and correlations in development can impact population growth. Furthermore, different development models can yield the same long-term matrix transition rates but different sensitivities and elasticities. Finally, we discuss future directions for estimating realistic stage duration models from data. [de Valpine, Perry; Scranton, Katherine; Knape, Jonas; Ram, Karthik; Mills, Nicholas J.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA; [Scranton, Katherine] Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT USA; [Knape, Jonas] Swedish Univ Agr Sci, Dept Ecol, S-75007 Uppsala, Sweden de Valpine, P (reprint author), Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. pdevalpine@berkeley.edu Mills, Nicholas/0000-0001-8885-8674; Knape, Jonas/0000-0002-8012-5131 NSF [DEB-1021553] We thank E. Crone, B. Kendall, S. Tuljapurkar, three anonymous reviewers and the Associate Editor for comments. This work was partially funded by NSF grant DEB-1021553. Acker P, 2014, FUNCT ECOL, V28, P458, DOI 10.1111/1365-2435.12187; ASHFORD JR, 1970, J ANIM ECOL, V39, P29, DOI 10.2307/2888; Aubry A, 2010, POPUL ECOL, V52, P437, DOI 10.1007/s10144-010-0194-9; Barfield M, 2011, AM NAT, V177, P397, DOI 10.1086/658903; Beckerman AP, 2003, AM NAT, V162, P754, DOI 10.1086/381056; BELLOWS TS, 1986, RES POPUL ECOL, V28, P53, DOI 10.1007/BF02515535; BELLOWS TS, 1981, RES POPUL ECOL, V23, P232, DOI 10.1007/BF02515628; Benton TG, 2004, J ANIM ECOL, V73, P983, DOI 10.1111/j.0021-8790.2004.00859.x; Biek R, 2002, CONSERV BIOL, V16, P728, DOI 10.1046/j.1523-1739.2002.00433.x; Bierzychudek P, 1999, ECOL APPL, V9, P1278, DOI 10.1890/1051-0761(1999)009[1278:LBATPO]2.0.CO;2; Birt A, 2009, ECOLOGY, V90, P57, DOI 10.1890/08-0757.1; Blackwell BF, 2007, J WILDLIFE MANAGE, V71, P1976, DOI 10.2193/2006-146; BLYTHE SP, 1984, THEOR POPUL BIOL, V25, P289, DOI 10.1016/0040-5809(84)90011-X; Bolnick DI, 2011, TRENDS ECOL EVOL, V26, P183, DOI 10.1016/j.tree.2011.01.009; Boucher DH, 1997, J ECOL, V85, P235, DOI 10.2307/2960654; Braner M., 1989, LECT NOTES STAT, P81; BRETELER WCM, 1994, J PLANKTON RES, V16, P1039, DOI 10.1093/plankt/16.8.1039; BROWNIE C, 1993, BIOMETRICS, V49, P1173, DOI 10.2307/2532259; CASWELL H, 1983, AM ZOOL, V23, P35; Caswell H, 2001, MATRIX POPULATION MO; Caswell H, 2012, THEOR ECOL-NETH, V5, P403, DOI 10.1007/s12080-011-0132-2; Chu CJ, 2014, J ECOL, V102, P531, DOI 10.1111/1365-2745.12212; COCHRAN ME, 1992, ECOL MONOGR, V62, P345, DOI 10.2307/2937115; Crone EE, 2011, ECOL LETT, V14, P1, DOI 10.1111/j.1461-0248.2010.01540.x; CROUSE DT, 1987, ECOLOGY, V68, P1412, DOI 10.2307/1939225; David O, 2010, BIOMETRICS, V66, P875, DOI 10.1111/j.1541-0420.2009.01360.x; de Kroon H, 2000, ECOLOGY, V81, P607, DOI 10.1890/0012-9658(2000)081[0607:EAROMA]2.0.CO;2; De Valpine P, 2008, ECOLOGY, V89, P532, DOI 10.1890/06-1996.1; de Valpine P, 2009, ECOLOGY, V90, P2889, DOI 10.1890/08-0703.1; DENNIS B, 1986, ENVIRON ENTOMOL, V15, P540, DOI 10.1093/ee/15.3.540; Ehrlen J, 2000, ECOLOGY, V81, P1675, DOI 10.2307/177316; Ellner SP, 1997, PHYSICA D, V110, P182, DOI 10.1016/S0167-2789(97)00123-1; Ellner SP, 2006, AM NAT, V167, P410, DOI 10.1086/499438; Ennola K, 1998, ECOL MODEL, V110, P135, DOI 10.1016/S0304-3800(98)00057-X; Ezard THG, 2010, J APPL ECOL, V47, P515, DOI 10.1111/j.1365-2664.2010.01801.x; Fieberg J, 2001, ECOL LETT, V4, P244, DOI 10.1046/j.1461-0248.2001.00202.x; Fox GA, 2000, AM NAT, V156, P242, DOI 10.1086/303387; Fujiwara M, 2005, ECOLOGY, V86, P1441, DOI 10.1890/04-1351; Fujiwara M, 2001, NATURE, V414, P537, DOI 10.1038/35107054; Gilioli G, 2007, ECOL MODEL, V200, P109, DOI 10.1016/j.ecolmodel.2006.07.017; Gonzalez-Suarez M, 2011, AM NAT, V178, P525, DOI 10.1086/661906; Gonzalez-Suarez M, 2008, CONSERV BIOL, V22, P1608, DOI 10.1111/j.1523-1739.2008.00995.x; Gouno E, 2011, COMPUT STAT DATA AN, V55, P615, DOI 10.1016/j.csda.2010.06.003; Gremer JR, 2012, AM NAT, V179, P315, DOI 10.1086/664459; Gross K, 2002, ECOLOGY, V83, P3285, DOI 10.2307/3072079; HAIRSTON NG, 1985, LIMNOL OCEANOGR, V30, P886, DOI 10.4319/lo.1985.30.4.0886; Haridas CV, 2007, ECOL LETT, V10, P1143, DOI 10.1111/j.1461-0248.2007.01108.x; Hoeting JA, 2003, J AM STAT ASSOC, V98, P503, DOI 10.1198/01621450300000028; HORVITZ CC, 1995, ECOL MONOGR, V65, P155, DOI 10.2307/2937136; Horvitz CC, 2005, ECOLOGY, V86, P3312, DOI 10.1890/04-1187; Hougaard P., 2000, ANAL MULTIVARIATE SU; Hunter CM, 2005, ECOL MODEL, V188, P15, DOI 10.1016/j.ecolmodel.2005.05.002; JELLISON R, 1995, J PLANKTON RES, V17, P2093, DOI 10.1093/plankt/17.11.2093; Kempton R. A., 1979, STATISTICAL DISTRIBU, P401; Kendall BE, 2011, ECOLOGY, V92, P1985, DOI 10.1890/11-0079.1; Kimmerer W, 2010, LIMNOL OCEANOGR-METH, V8, P118, DOI 10.4319/lom.2010.8.118; Knape J, 2014, BIOMETRICS, V70, P346, DOI 10.1111/biom.12138; Knape J, 2011, ECOLOGY, V92, P813, DOI 10.1890/10-0183.1; Koons DN, 2008, AM NAT, V172, P797, DOI 10.1086/592867; Lawless J.F., 2003, STAT MODELS METHODS; LEWIS ER, 1977, ECOLOGY, V58, P738, DOI 10.2307/1936210; LO NCH, 1995, MAR ECOL PROG SER, V127, P15, DOI 10.3354/meps127015; Manly BFJ, 1997, RES POPUL ECOL, V39, P101, DOI 10.1007/BF02765255; MANLY BFJ, 1990, STAGE STRUCTURED POP; McCauley E, 1996, ECOL MONOGR, V66, P479, DOI 10.2307/2963491; Moe SJ, 2005, P ROY SOC B-BIOL SCI, V272, P2133, DOI 10.1098/rspb.2005.3184; Morris WF, 2002, QUANTITATIVE CONSERV; Murtaugh PA, 2012, ENVIRON ENTOMOL, V41, P355, DOI 10.1603/EN11260; Nelson WA, 2004, ECOLOGY, V85, P889, DOI 10.1890/02-8019; Nisbet R., 1997, STRUCTURED POPULATIO, P89; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; Ohman MD, 2012, J MARINE SYST, V93, P4, DOI 10.1016/j.jmarsys.2011.05.008; Ohman MD, 2001, NATURE, V412, P638, DOI 10.1038/35088068; Ozgul A, 2009, AM NAT, V173, P517, DOI 10.1086/597225; Pascarella JB, 1998, ECOLOGY, V79, P547, DOI 10.1890/0012-9658(1998)079[0547:HDATPD]2.0.CO;2; Peacor SD, 2007, THEOR POPUL BIOL, V71, P80, DOI 10.1016/j.tpb.2006.08.005; Pfister CA, 2003, ECOLOGY, V84, P496, DOI 10.1890/0012-9658(2003)084[0496:IVAESI]2.0.CO;2; PLANT RE, 1986, J MATH BIOL, V23, P247, DOI 10.1007/BF00276960; Pradel R, 2005, BIOMETRICS, V61, P442, DOI 10.1111/j.1541-0420.2005.00318.x; READ KLQ, 1968, BIOMETRIKA, V55, P211, DOI 10.1093/biomet/55.1.211; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; SCHAALJE GB, 1989, J MATH BIOL, V27, P399, DOI 10.1007/BF00290637; Scranton K, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0072980; Severini M, 2003, ECOL MODEL, V167, P233, DOI 10.1016/S0304-3800(03)00188-1; Stott I, 2011, ECOL LETT, V14, P959, DOI 10.1111/j.1461-0248.2011.01659.x; Stover JP, 2012, THEOR ECOL-NETH, V5, P297, DOI 10.1007/s12080-011-0129-x; Tenhumberg B, 2009, ECOLOGY, V90, P1878, DOI 10.1890/08-1665.1; Tuljapurkar S, 2006, ECOL LETT, V9, P324, DOI 10.1111/j.1461-0248.2006.00881.x; Tuljapurkar S, 2009, ECOL LETT, V12, P93, DOI 10.1111/j.1461-0248.2008.01262.x; Twombly S, 2007, ECOLOGY, V88, P658, DOI 10.1890/06-0423; VANDERMEER J, 1978, OECOLOGIA, V32, P79, DOI 10.1007/BF00344691; VANDERMEER JH, 1975, BIOMETRICS, V31, P239, DOI 10.2307/2529726; Viallefont A, 2012, J ORNITHOL, V152, pS381, DOI 10.1007/s10336-010-0588-7; Wearing HJ, 2004, AM NAT, V164, P543, DOI 10.1086/424040; Wood S.N., 1991, ESTIMATION MORTALITY; Wood SN, 2010, NATURE, V466, P1102, DOI 10.1038/nature09319; WOOD SN, 1994, ECOL MONOGR, V64, P23, DOI 10.2307/2937054; WOODWARD IO, 1982, AUST J ECOL, V7, P389, DOI 10.1111/j.1442-9993.1982.tb01313.x; Yamamura K, 1998, RES POPUL ECOL, V40, P335, DOI 10.1007/BF02763465; Zuidema PA, 2009, AM NAT, V174, P709, DOI 10.1086/605981 100 17 17 3 82 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1461-023X 1461-0248 ECOL LETT Ecol. Lett. AUG 2014 17 8 1026 1038 10.1111/ele.12290 13 Ecology Environmental Sciences & Ecology AL4KF WOS:000339101100015 24811267 Bronze 2018-11-12 J Wan, WWN; Luk, CL; Chow, CWC Wan, Wendy W. N.; Luk, Chung-Leung; Chow, Cheris W. C. Consumer responses to sexual advertising: The intersection of modernization, evolution, and international marketing JOURNAL OF INTERNATIONAL BUSINESS STUDIES English Article evolutionary psychology; modernization; advertising; strategic pluralism theory; cross-cultural experiments; China GENDER-DIFFERENCES; CONSPICUOUS CONSUMPTION; BEHAVIOR; CHINA; WOMEN; SATISFACTION; REVOLUTION; ORIGINS; APPEALS; CULTURE Drawing on insights from evolutionary psychology and sociology, this research seeks to explain the gender differences and within-sex variations in consumer responses to nudity in advertisements. Specifically, we argue that the abundant resources that come with modernization emancipate women from the dependency on a long-term relationship with a male partner for child bearing and rearing. Therefore, women in modern societies are more likely to use fast reproductive strategies (e.g., short-term mating) to enhance the chances of getting good genes from their mates for their offspring. Their physiological arousals activated by and attitudes toward male or female nudity in ads will change accordingly. In contrast, men's responses to nudity in ads are less affected by modernization. We conducted an experiment in six Chinese cities and obtained supportive evidence to illustrate these differences. There was also evidence indicating that the socialization of high socio-economic status may offset the force of evolution. This study highlights the usefulness of an interdisciplinary approach in answering important questions in international business. The findings are discussed with a focus on the integration of strategic pluralism theory, life history theory, parental investment theory, and socialization theory. [Wan, Wendy W. N.] Tunghai Univ, Dept Int Business, Taichung 40704, Taiwan; [Luk, Chung-Leung] City Univ Hong Kong, Dept Mkt, Kowloon Tong, Hong Kong, Peoples R China; [Chow, Cheris W. C.] Univ Macau, Dept Management & Mkt, Taipa, Peoples R China Wan, WWN (reprint author), Tunghai Univ, Dept Int Business, 181 Sect 3,Taichung Port Rd, Taichung 40704, Taiwan. wendywan@live.com Luk, Chung Leung/0000-0002-1173-9420 Abdolsalehi-Najafi E, 2013, ARCH SEX BEHAV, V42, P1063, DOI 10.1007/s10508-013-0084-2; Baumeister RF, 2000, PSYCHOL BULL, V126, P347, DOI 10.1037//0033-2909.126.3.347; Bello D.C., 1983, J ADVERTISING, V12 , P32, DOI DOI 10.1080/00913367.1983.10672846; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2007, CHILD DEV, V78, P1302, DOI 10.1111/j.1467-8624.2007.01067.x; Blair J. D., 2006, J LEGAL ETHICAL REGU, V9, P109; Brown DE, 1991, HUMAN UNIVERSALS; BUSS DM, 1984, AM PSYCHOL, V39, P1135, DOI 10.1037/0003-066X.39.10.1135; BUSS DM, 1989, BEHAV BRAIN SCI, V12, P1, DOI 10.1017/S0140525X00023992; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; Buss DM, 2001, J PERS, V69, P955, DOI 10.1111/1467-6494.696171; Cashdan E, 2012, HUM NATURE-INT BIOS, V23, P1, DOI 10.1007/s12110-012-9133-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Cotter D, 2011, AM J SOCIOL, V117, P259, DOI 10.1086/658853; Craig C. S., 1975, ADV CONSUM RES, V2, P555; Crawford M, 2003, J SEX RES, V40, P13, DOI 10.1080/00224490309552163; Dahl DW, 2009, J CONSUM RES, V36, P215, DOI 10.1086/597158; Daly M, 1990, Hum Nat, V1, P81, DOI 10.1007/BF02692147; DAVIS JA, 1992, PUBLIC OPIN QUART, V56, P261, DOI 10.1086/269322; Dawkins R., 2006, SELFISH GENE; Durante KM, 2012, J PERS SOC PSYCHOL, V103, P121, DOI 10.1037/a0027949; Eagly AH, 1999, AM PSYCHOL, V54, P408, DOI 10.1037//0003-066X.54.6.408; EASTERLIN RA, 1995, J ECON BEHAV ORGAN, V27, P35, DOI 10.1016/0167-2681(95)00003-B; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Fisher H., 1992, ANATOMY LOVE NATURAL; Freud S., 1913, TOTEM TABOO; Galperin A, 2013, ARCH SEX BEHAV, V42, P1145, DOI 10.1007/s10508-012-0019-3; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Gill R, 2012, SEX ROLES, V66, P736, DOI 10.1007/s11199-011-0107-1; Griffith DA, 2003, J INT MARKETING, V11, P30, DOI 10.1509/jimk.11.3.30.20160; Griskevicius V., 2011, J PERS SOC PSYCHOL, V100, P214; Griskevicius V, 2006, J PERS SOC PSYCHOL, V91, P63, DOI 10.1037/0022-3514.91.1.63; Griskevicius V, 2013, J CONSUM PSYCHOL, V23, P372, DOI 10.1016/j.jcps.2013.03.003; Griskevicius V, 2012, J PERS SOC PSYCHOL, V102, P69, DOI 10.1037/a0024761; Haavio-Mannila E, 2003, J SEX RES, V40, P36, DOI 10.1080/00224490309552165; Hatfield E., 1996, LOVE SEX CROSS CULTU; Herold E. S., 1993, J SEX RES, V7, P583; Hess E. H., 1972, HDB PSYCHOPHYSIOLOGY, P491, DOI DOI 10.3758/BF03204445; Hill SE, 2012, J PERS SOC PSYCHOL, V103, P275, DOI 10.1037/a0028657; Horesh N., 2012, PROVINCIAL CHINA, V4, P116; Hrdy Sarah Blaffer, 2000, MOTHER NATURE MATERN; Hung KH, 2007, J INT BUS STUD, V38, P1034, DOI 10.1057/palgrave.jibs.8400303; Inglehart R, 2003, RISING TIDE GENDER E; Inglehart R. F., 2005, MODERNIZATION CULTUR; Jacques Martin, 2012, CHINA RULES WORLD; James J, 2012, DEV PSYCHOL, V48, P687, DOI 10.1037/a0026427; Jeffreys E, 2006, ROUT STUD CHINA TRAN, P159; Jones MY, 1998, J ADVERTISING, V27, P33, DOI 10.1080/00913367.1998.10673551; Kenrick DT, 2010, PERSPECT PSYCHOL SCI, V5, P292, DOI 10.1177/1745691610369469; Krupp DB, 2012, ARCH SEX BEHAV, V41, P1409, DOI 10.1007/s10508-012-9949-z; LaTour M.S., 1990, PSYCHOL MARKET, V7, P65; LATOUR MS, 1990, J ADVERTISING, V19, P51, DOI 10.1080/00913367.1990.10673200; LaTour MS, 2003, LEA COMMUN SER, P91; Lau CM, 2002, J INT BUS STUD, V33, P533, DOI 10.1057/palgrave.jibs.8491030; LEIGH BC, 1989, J SEX RES, V26, P199, DOI 10.1080/00224498909551506; LI C, 1998, CHINA CONSUMER REVOL; Li YJ, 2012, J PERS SOC PSYCHOL, V102, P550, DOI 10.1037/a0025844; Li YH, 2006, ROUT STUD CHINA TRAN, P82; Liu F, 2009, INT MARKET REV, V26, P501, DOI 10.1108/02651330910972002; Luk C. L., 2010, 2010 AMA SUMM MARK E; Luk CL, 2008, J INT BUS STUD, V39, P589, DOI 10.1057/palgrave.jibs.8400373; Machalek R, 2004, SOCIOL THEOR, V22, P455, DOI 10.1111/j.0735-2751.2004.00229.x; MACIEJEWSKI JJ, 2004, J CURRENT ISSUES RES, V26, P97, DOI DOI 10.1080/10641734.2004.10505167; MACKINNON A, 2008, CHINA CALLING FOOT G; Maner JK, 2009, J PERS SOC PSYCHOL, V97, P74, DOI 10.1037/a0014055; Manning K. C., 1995, J CONSUM PSYCHOL, V4, P329, DOI [DOI 10.1016/0167-4870(95)00024-I, DOI 10.1207/S15327663JCP0404_]; MORRISON BJ, 1972, J ADVERTISING RES, V12, P15; Morton H, 2013, ARCH SEX BEHAV, V42, P1615, DOI 10.1007/s10508-013-0180-3; Muller D, 2005, J PERS SOC PSYCHOL, V89, P852, DOI 10.1037/0022-3514.89.6.852; National Bureau of Statistics of China, 2011, CHIN STAT YB 2011; Naughton Barry, 2007, CHINESE EC TRANSITIO; Nesse R M, 1990, Hum Nat, V1, P261, DOI 10.1007/BF02733986; Ni P. F., 2006, ANN REPORT URBAN COM; Pan SM, 2006, ROUT STUD CHINA TRAN, P21; Parish WL, 2007, POPUL DEV REV, V33, P729, DOI 10.1111/j.1728-4457.2007.00195.x; Pedersen F A, 1991, Hum Nat, V2, P271, DOI 10.1007/BF02692189; Petersen JL, 2010, PSYCHOL BULL, V136, P21, DOI 10.1037/a0017504; PETERSON RA, 1977, J MARKETING, V41, P59, DOI 10.2307/1250235; Pierce BD, 1999, ACAD MANAGE REV, V24, P843, DOI 10.2307/259358; Plavcan JM, 2012, HUM NATURE-INT BIOS, V23, P45, DOI 10.1007/s12110-012-9130-3; Przeworski A, 1997, WORLD POLIT, V49, P155, DOI 10.1353/wp.1997.0004; Reichert T, 2001, J ADVERTISING, V30, P13, DOI 10.1080/00913367.2001.10673628; Rutter V., 2011, GENDER SEXUALITY EXP; Saad G, 2013, J CONSUM PSYCHOL, V23, P351, DOI 10.1016/j.jcps.2013.03.002; Saad G, 2009, ORGAN BEHAV HUM DEC, V110, P80, DOI 10.1016/j.obhdp.2009.06.001; Schmitt DP, 2004, J PERS SOC PSYCHOL, V86, P560, DOI 10.1037/0022-3514.86.4.560; Schmitt DP, 2003, J PERS SOC PSYCHOL, V85, P85, DOI 10.1037/0022-3514.85.1.85; Schmitt DP, 2001, PSYCHOL EVOLUTION GE, V3, P211, DOI DOI 10.1080/14616660110119331; Sell A, 2012, HUM NATURE-INT BIOS, V23, P30, DOI 10.1007/s12110-012-9131-2; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Simpson P.M., 1996, J ACAD MARKET SCI, V24, P257, DOI DOI 10.1177/0092070396243006; SMUTS B, 1991, HUMAN NATURE, V3, P1; Stephenson MT, 2003, DRUG ALCOHOL DEPEN, V72, P279, DOI 10.1016/j.drugalcdep.2003.08.003; Stewart DN, 2012, SEX ROLES, V67, P257, DOI 10.1007/s11199-012-0164-0; Sundie JM, 2011, J PERS SOC PSYCHOL, V100, P664, DOI 10.1037/a0021669; Tai S. H. C., 1999, TEACHING BUSINESS ET, V3, P87; THAYER RE, 1987, J PERS SOC PSYCHOL, V52, P119, DOI 10.1037//0022-3514.52.1.119; THAYER RE, 1967, PSYCHOL REP, V20, P663, DOI 10.2466/pr0.1967.20.2.663; THAYER RE, 1978, PSYCHOL REP, V42, P747, DOI 10.2466/pr0.1978.42.3.747; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; TSE DK, 1989, J CONSUM RES, V15, P457, DOI 10.1086/209185; Wang YJ, 2014, J CONSUM RES, V40, P834, DOI 10.1086/673256; Wilson D.S., 1975, SOCIOBIOLOGY NEW SYN; Wilson D. S., 1978, HUMAN NATURE; Wood W, 2002, PSYCHOL BULL, V128, P699, DOI 10.1037//0033-2909.128.5.699; Yik MSM, 1999, J PERS SOC PSYCHOL, V77, P600, DOI 10.1037/0022-3514.77.3.600; Zhang N, 2012, ARCH SEX BEHAV, V41, P861, DOI 10.1007/s10508-012-9930-x; Zhou N, 2004, J ADVERTISING, V33, P63, DOI 10.1080/00913367.2004.10639169 109 9 9 5 120 PALGRAVE MACMILLAN LTD BASINGSTOKE BRUNEL RD BLDG, HOUNDMILLS, BASINGSTOKE RG21 6XS, HANTS, ENGLAND 0047-2506 1478-6990 J INT BUS STUD J. Int. Bus. Stud. AUG 2014 45 6 SI 751 782 10.1057/jibs.2014.18 32 Business; Management Business & Economics AL6FS WOS:000339228600006 2018-11-12 J Roitberg, BD; Gillespie, DR Roitberg, Bernard D.; Gillespie, David R. Natural enemies on the landscape - Integrating life-history theory and landscapes BIOLOGICAL CONTROL English Article Model; State dependent life history; Patch exploitation; Theory; Structure function PATCH EXPLOITATION; INSECT PARASITOIDS; BIOLOGICAL-CONTROL; FORAGING BEHAVIOR; SEX-RATIOS; MULTIMODAL SIGNALS; TIME ALLOCATION; EGG MATURATION; STRATEGIES; WASPS The relationship between patch exploitation by individual parasitoids and landscape levels of control by such parasitoids is complex and not well understood. Here we build on a classic concept of the structure function as a way of describing the landscape of a biological control agent from the agent's perspective. We include such structure functions into patch exploitation theory as way of connecting the two aforementioned levels. An important feature is that for any given focal individual, its resource-specific structure functions can differ dramatically in the environment; we explain how one might employ multivariate functions into our theory. Further, rather than employ these functions in a strictly descriptive manner we embed them in state-dependent life history. Parasitoid states include, eggload, energy state, mass and their impacts on the Darwinian fitness from patch exploitation. When taken together, our approach allows us to determine optimal exploitation decisions for agents across various landscapes and more importantly, to predict response of biocontrol agents to changes in landscape as a function of changes in agricultural practices. Finally, we show how these optimal decisions can be used to calculate pest-killing rates for biological control agents, and ultimately to facilitate the selection and management of agents. (C) 2014 Elsevier Inc. All rights reserved. [Roitberg, Bernard D.] Simon Fraser Univ, Evolutionary & Behav Ecol Res Grp, Dept Biol Sci, Burnaby, BC V5A 1S6, Canada; [Gillespie, David R.] Agr & Agri Food Canada, Res Ctr, Agassiz, BC V0M 1A0, Canada Gillespie, DR (reprint author), Agr & Agri Food Canada, Res Ctr, POB 1000, Agassiz, BC V0M 1A0, Canada. roitberg@sfu.ca; Dave.Gillespie@agr.gc.ca NSERC Discovery grant; Agriculture and Agri-Food Canada, A-Base project [2529] Support for this work was from NSERC Discovery grant (BDR) and from Agriculture and Agri-Food Canada, A-Base project 2529 (DRG). We thank Marc Mangel for his pioneering work on structure functions, James Harwood and Dave Crowder for the invitation to participate in this special issue and their insightful comments on the manuscript, and two anonymous reviewers for comments that greatly improved the work. Alford D.V., 2003, BIOCONTROL OILSEED R, P1; Alphen J.J.M.V., 2003, TRENDS ECOL EVOL, V18, P81; Arrignon F, 2007, ECOL MODEL, V205, P423, DOI 10.1016/j.ecolmodel.2007.03.006; Bannerman JA, 2011, ECOL ENTOMOL, V36, P490, DOI 10.1111/j.1365-2311.2011.01292.x; Barrette M, 2009, OECOLOGIA, V158, P757, DOI 10.1007/s00442-008-1175-y; BEIRNE BP, 1985, CAN J ZOOL, V63, P743, DOI 10.1139/z85-108; Boivin G, 2004, OECOLOGIA, V138, P640, DOI 10.1007/s00442-003-1469-z; Burkman CE, 2014, BIOL CONTROL, V75, P58, DOI 10.1016/j.biocontrol.2014.02.015; Casas J, 2000, J ANIM ECOL, V69, P185, DOI 10.1046/j.1365-2656.2000.00376.x; Chaplin-Kramer R, 2011, ECOL LETT, V14, P922, DOI 10.1111/j.1461-0248.2011.01642.x; CHARNOV EL, 1976, THEOR POPUL BIOL, V9, P129, DOI 10.1016/0040-5809(76)90040-X; Chisholm PJ, 2014, BIOL CONTROL, V75, P48, DOI 10.1016/j.biocontrol.2014.02.003; Crowder DW, 2014, BIOL CONTROL, V75, P8, DOI 10.1016/j.biocontrol.2013.10.010; Dauphin G, 2009, ECOL ENTOMOL, V34, P193, DOI 10.1111/j.1365-2311.2008.01056.x; Dosdall LM, 2010, BIOCONTROL-BASED INTEGRATED MANAGEMENT OF OILSEED RAPE PESTS, P167, DOI 10.1007/978-90-481-3983-5_6; Gardner SM, 2007, BULL INSECTOLOGY, V60, P23; Gillespie D. R, 2013, BIOL CONTROL PROGRAM; Gillespie DR, 2012, OIKOS, V121, P149, DOI 10.1111/j.1600-0706.2011.19512.x; Goubault M, 2005, BEHAV ECOL, V16, P693, DOI 10.1093/beheco/ari043; Gustafson EJ, 1998, ECOSYSTEMS, V1, P143, DOI 10.1007/s100219900011; Hance T, 2007, ANNU REV ENTOMOL, V52, P107, DOI 10.1146/annurev.ento.52.110405.091333; Henry LM, 2009, OECOLOGIA, V161, P433, DOI 10.1007/s00442-009-1381-2; Hilker Monika, 2008, P92, DOI 10.1002/9780470696200.ch5; Holldobler B, 1999, J COMP PHYSIOL A, V184, P129, DOI 10.1007/s003590050313; Holling C.S., 1966, MEM ENTOMOL SOC CAN, V48, P1, DOI DOI 10.4039/ENTM9848FV; HOUSTON A, 1988, NATURE, V332, P29, DOI 10.1038/332029a0; IWASA Y, 1984, THEOR POPUL BIOL, V26, P205, DOI 10.1016/0040-5809(84)90030-3; Jenner WH, 2009, J INSECT BEHAV, V22, P257, DOI 10.1007/s10905-008-9171-y; Jervis MA, 2004, OIKOS, V107, P449, DOI 10.1111/j.0030-1299.2004.13453.x; Jervis MA, 2001, J ANIM ECOL, V70, P442, DOI 10.1046/j.1365-2656.2001.00507.x; Jervis MA, 2008, ANNU REV ENTOMOL, V53, P361, DOI 10.1146/annurev.ento.53.103106.093433; Kulahci IG, 2008, P R SOC B, V275, P797, DOI 10.1098/rspb.2007.1176; Legrand A, 2011, AGRON SUSTAIN DEV, V31, P515, DOI 10.1007/s13593-011-0007-3; Liu YQ, 2009, BEHAV ECOL SOCIOBIOL, V63, P1459, DOI 10.1007/s00265-009-0800-z; Louapre P, 2011, BEHAV ECOL, V22, P1064, DOI 10.1093/beheco/arr090; Lucchetta P, 2007, BEHAV ECOL SOCIOBIOL, V61, P1409, DOI 10.1007/s00265-007-0372-8; Ma BO, 2009, ECOL MODEL, V220, P3271, DOI 10.1016/j.ecolmodel.2009.08.022; MANGEL M, 1994, ECOLOGY, V75, P1289, DOI 10.2307/1937454; Mangel M., 1988, DYNAMIC MODELING BEH; Mason P.G., 2002, BIOL CONTROL PROGRAM; Miller J. R., 1984, CHEM ECOLOGY INSECTS; MINKENBERG OPJM, 1992, OIKOS, V65, P134, DOI 10.2307/3544896; Murchie AK, 1999, BIOCONTROL, V44, P379, DOI 10.1023/A:1009997917947; Nilsson Christer, 2003, P73, DOI 10.1002/9780470750988.ch4; Ode PJ, 2002, BIOL CONTROL, V24, P31, DOI 10.1016/S1049-9644(02)00003-8; Olden JD, 2004, J ANIM ECOL, V73, P1190, DOI 10.1111/j.0021-8790.2004.00889.x; Peterson JH, 2010, EVOL ECOL RES, V12, P347; Roff Derek A., 1992; Roitberg BD, 2004, CAN ENTOMOL, V136, P289; ROITBERG BD, 1992, BEHAV ECOL, V3, P156, DOI 10.1093/beheco/3.2.156; Roitberg BD, 1997, OIKOS, V80, P234, DOI 10.2307/3546591; Roitberg BD, 2000, PARASITOID POPULATION BIOLOGY, P254; ROITBERG BD, 1982, ECOL ENTOMOL, V7, P437, DOI 10.1111/j.1365-2311.1982.tb00685.x; Roitberg BD, 2010, ISR J ECOL EVOL, V56, P297, DOI 10.1560/IJEE.56.3-4.297; Roitberg BD, 2010, BEHAV ECOL SOCIOBIOL, V64, P627, DOI 10.1007/s00265-009-0880-9; Rosenheim JA, 1999, EVOLUTION, V53, P376, DOI 10.1111/j.1558-5646.1999.tb03773.x; Rosenheim JA, 1996, AM NAT, V148, P501, DOI 10.1086/285937; Rosenheim JA, 2010, AM NAT, V175, P662, DOI 10.1086/652468; SABELIS MW, 1994, EXP APPL ACAROL, V18, P711; Schroeder R, 2008, BIOSCIENCE, V58, P308, DOI 10.1641/B580406; Simberloff D, 1996, ECOLOGY, V77, P1965, DOI 10.2307/2265693; Stearns S. C., 1992, EVOLUTION LIFE HIST; Thiel A, 2011, ANIM COGN, V14, P73, DOI 10.1007/s10071-010-0344-7; Ulber B, 2010, BIOCONTROL-BASED INTEGRATED MANAGEMENT OF OILSEED RAPE PESTS, P45, DOI 10.1007/978-90-481-3983-5_2; van Alpen JJM, 2003, TRENDS ECOL EVOL, V18, P81, DOI 10.1016/S0169-5347(02)00035-6; VANALPHEN JJM, 1990, ANNU REV ENTOMOL, V35, P59, DOI 10.1146/annurev.en.35.010190.000423; Veres A, 2013, AGR ECOSYST ENVIRON, V166, P110, DOI 10.1016/j.agee.2011.05.027; Vollhardt IMG, 2010, BIOL CONTROL, V53, P204, DOI 10.1016/j.biocontrol.2009.12.011; Wajnberg E., 2008, BEHAV ECOLOGY INSECT; Wajnberg E, 2006, BEHAV ECOL SOCIOBIOL, V60, P589, DOI 10.1007/s00265-006-0198-9; Welch KD, 2014, BIOL CONTROL, V75, P18, DOI 10.1016/j.biocontrol.2014.01.004; WELLINGTON WG, 1977, ENVIRON ENTOMOL, V6, P1 72 11 11 4 57 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 1049-9644 1090-2112 BIOL CONTROL Biol. Control AUG 2014 75 39 47 10.1016/j.biocontrol.2014.02.002 9 Biotechnology & Applied Microbiology; Entomology Biotechnology & Applied Microbiology; Entomology AJ8ZI WOS:000337996200005 2018-11-12 J Del Giudice, M Del Giudice, M. Early stress and human behavioral development: emerging evolutionary perspectives JOURNAL OF DEVELOPMENTAL ORIGINS OF HEALTH AND DISEASE English Review developmental plasticity; early stress; life history; parent-offspring conflict; prenatal stress PARENT-OFFSPRING CONFLICT; LIFE-HISTORY THEORY; MATERNAL STRESS; ALLOSTATIC LOAD; REPRODUCTIVE STRATEGIES; BIOLOGICAL SENSITIVITY; INDIVIDUAL-DIFFERENCES; PHENOTYPIC PLASTICITY; PRENATAL CORTISOL; POPULATION-LEVEL Stress experienced early in life exerts a powerful, lasting influence on development. Converging empirical findings show that stressful experiences become deeply embedded in the child's neurobiology, with an astonishing range of long-term effects on cognition, emotion, and behavior. In contrast with the prevailing view that such effects are the maladaptive outcomes of 'toxic' stress, adaptive models regard them as manifestations of evolved developmental plasticity. In this paper, I offer a brief introduction to adaptive models of early stress and human behavioral development, with emphasis on recent theoretical contributions and emerging concepts in the field. I begin by contrasting dysregulation models of early stress with their adaptive counterparts; I then introduce life history theory as a unifying framework, and review recent work on predictive adaptive responses (PARs) in human life history development. In particular, I discuss the distinction between forecasting the future state of the environment (external prediction) and forecasting the future state of the organism (internal prediction). Next, I present the adaptive calibration model, an integrative model of individual differences in stress responsivity based on life history concepts. I conclude by examining how maternal-fetal conflict may shape the physiology of prenatal stress and its adaptive and maladaptive effects on postnatal development. In total, I aim to show how theoretical work from evolutionary biology is reshaping the way we think about the role of stress in human development, and provide researchers with an up-to-date conceptual map of this fascinating and rapidly evolving field. Univ New Mexico, Dept Psychol, Albuquerque, NM 87131 USA Del Giudice, M (reprint author), Univ New Mexico, Dept Psychol, Logan Hall, Albuquerque, NM 87131 USA. marcodg@unm.edu Del Giudice, Marco/F-7007-2010 Del Giudice, Marco/0000-0001-8526-1573 Adam E.K., 2007, HUMAN BEHAV LEARNING, P264; Baibazarova E, 2013, PSYCHONEUROENDOCRINO, V38, P907, DOI 10.1016/j.psyneuen.2012.09.015; Beauchaine TP, 2011, DEV PSYCHOPATHOL, V23, P975, DOI 10.1017/S0954579411000459; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2009, PERSPECT PSYCHOL SCI, V4, P345, DOI 10.1111/j.1745-6924.2009.01136.x; Benros ME, 2012, ANN NY ACAD SCI, V1262, P56, DOI 10.1111/j.1749-6632.2012.06638.x; Bourke AFG, 2011, P ROY SOC B-BIOL SCI, V278, P3313, DOI 10.1098/rspb.2011.1465; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Brunton PJ, 2011, PROG NEURO-PSYCHOPH, V35, P1178, DOI 10.1016/j.pnpbp.2010.12.023; Cameron NM, 2005, NEUROSCI BIOBEHAV R, V29, P843, DOI 10.1016/j.neubiorev.2005.03.022; Carr CP, 2013, J NERV MENT DIS, V201, P1007, DOI 10.1097/NMD.0000000000000049; Champagne FA, 2010, PERSPECT PSYCHOL SCI, V5, P564, DOI 10.1177/1745691610383494; Class QA, 2014, PSYCHOL MED, V44, P71, DOI 10.1017/S0033291713000780; Cole S. W., 2012, OXFORD HDB PSYCHONEU, P254, DOI [10.1093/oxfordhb/9780195394399.013.0014, DOI 10.1093/OXFORDHB/9780195394399.013.0014]; Crespi B, 2008, BEHAV BRAIN SCI, V31, P241, DOI 10.1017/S0140525X08004214; Crespi BJ, 2000, HEREDITY, V84, P623, DOI 10.1046/j.1365-2540.2000.00746.x; Del Giudice M., 2011, EVOLUTION PERSONALIT, P154; Del Giudice M, BIOBEHAVIOR IN PRESS; Del Giudice M, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2222; Del Giudice M, 2012, PSYCHONEUROENDOCRINO, V37, P1614, DOI 10.1016/j.psyneuen.2012.05.014; Del Giudice M, 2012, DEV PSYCHOL, V48, P775, DOI 10.1037/a0026519; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Del Giudice M, 2010, FRONT PSYCHOL, V1, DOI 10.3389/fpsyg.2010.00041; DeWitt TJ, 1998, TRENDS ECOL EVOL, V13, P77, DOI 10.1016/S0169-5347(97)01274-3; Ellis B. J., 2013, CHILD ADOLESCENT PSY, V2, P251; Ellis BJ, 2008, CURR DIR PSYCHOL SCI, V17, P183, DOI 10.1111/j.1467-8721.2008.00571.x; Ellis BJ, 2006, DEV REV, V26, P175, DOI 10.1016/j.dr.2006.02.004; Ellis BJ, 2014, DEV PSYCHOPATHOL, V26, P1, DOI 10.1017/S0954579413000849; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P7, DOI 10.1017/S0954579410000611; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Ellison PT, 2010, INFANT CHILD DEV, V19, P6, DOI 10.1002/icd.649; Erni Katja, 2012, Front Psychiatry, V3, P104, DOI 10.3389/fpsyt.2012.00104; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Fischer B, 2014, AM NAT, V183, P108, DOI 10.1086/674008; Flinn MV, 2006, DEV REV, V26, P138, DOI 10.1016/j.dr.2006.02.003; Flinn MV, 2011, NEUROSCI BIOBEHAV R, V35, P1611, DOI 10.1016/j.neubiorev.2011.01.005; Frankenhuis WE, 2013, CURR DIR PSYCHOL SCI, V22, P407, DOI 10.1177/0963721413484324; Frankenhuis WE, 2012, DEV PSYCHOL, V48, P628, DOI 10.1037/a0025629; Gangestad SW, 2012, BIOL REV, V87, P856, DOI 10.1111/j.1469-185X.2012.00226.x; Ganzel BL, 2010, PSYCHOL REV, V117, P134, DOI 10.1037/a0017773; Glasheen C, 2013, DEV PSYCHOPATHOL, V25, P1045, DOI 10.1017/S0954579413000369; Glover V, 2011, J CHILD PSYCHOL PSYC, V52, P356, DOI 10.1111/j.1469-7610.2011.02371.x; Gluckman PD, 2005, TRENDS ECOL EVOL, V20, P527, DOI 10.1016/j.tree.2005.08.001; Gluckman PD, 2007, AM J HUM BIOL, V19, P1, DOI 10.1002/ajhb.20590; Gunnar M., 2006, DEV PSYCHOPATHOL, P533, DOI DOI 10.1210/JC.82.2.536; Gunnar MR, 2012, MONOGR SOC RES CHILD, V77, P109, DOI 10.1111/j.1540-5834.2011.00669.x; Habib KE, 2001, ENDOCRIN METAB CLIN, V30, P695, DOI 10.1016/S0889-8529(05)70208-5; Haig D, 2004, ANNU REV GENET, V38, P553, DOI 10.1146/annurev.genet.37.110801.142741; HAIG D, 1993, Q REV BIOL, V68, P495, DOI 10.1086/418300; Haig D., 2007, ENDOTHELIAL BIOMEDIC, P135; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; Heijmans BT, 2008, P NATL ACAD SCI USA, V105, P17046, DOI 10.1073/pnas.0806560105; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Howerton CL, 2012, HORM BEHAV, V62, P237, DOI 10.1016/j.yhbeh.2012.03.007; Jones JH, 2009, EVOL HUM BEHAV, V30, P305, DOI 10.1016/j.evolhumbehav.2009.01.005; Jones JH, 2005, AM J HUM BIOL, V17, P22, DOI 10.1002/ajhb.20099; Kaiser S, 2009, CURR DIR PSYCHOL SCI, V18, P118, DOI 10.1111/j.1467-8721.2009.01620.x; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; Kapoor A, 2006, J PHYSIOL-LONDON, V572, P31, DOI 10.1113/jphysiol.2006.105254; Koolhaas JM, 2011, NEUROSCI BIOBEHAV R, V35, P1291, DOI 10.1016/j.neubiorev.2011.02.003; Korte SM, 2005, NEUROSCI BIOBEHAV R, V29, P3, DOI 10.1016/j.neubiorev.2004.08.009; Kuzawa CW, 2012, CURR ANTHROPOL, V53, pS369, DOI 10.1086/667410; Lopez HH, 2009, HORM BEHAV, V56, P84, DOI 10.1016/j.yhbeh.2009.03.004; Lupien SJ, 2006, DEV PSYCHOPATHOL, V2, P578, DOI DOI 10.1002/9780470939390.CH14; McDade TW, 2003, YEARB PHYS ANTHROPOL, V46, P100, DOI 10.1002/ajpa.10398; McEwen BS, 2007, PHYSIOL REV, V87, P873, DOI 10.1152/physrev.00041.2006; McEwen BS, 2012, P NATL ACAD SCI USA, V109, P17180, DOI 10.1073/pnas.1121254109; McEwen BS, 2003, HORM BEHAV, V43, P2, DOI 10.1016/S0018-506X(02)00024-7; Meaney MJ, 2007, ADV GENET, V59, P173, DOI 10.1016/S0065-2660(07)59007-3; Meaney MJ, 2010, CHILD DEV, V81, P41, DOI 10.1111/j.1467-8624.2009.01381.x; Miller GE, 2011, PSYCHOL BULL, V137, P959, DOI 10.1037/a0024768; Murphy MLM, 2013, CLIN PSYCHOL SCI, V1, P30, DOI [10.1177/2167702612455743, 10.1177/2167702613478594]; Nepomnaschy PA, 2006, P NATL ACAD SCI USA, V103, P3938, DOI 10.1073/pnas.0511183103; Nesse R M, 2001, Med Health Care Philos, V4, P37, DOI 10.1023/A:1009938513897; Nesse RM, 2006, CLIN NEUROPSYCHIATR, V3, P121; Nesse RM, 2011, EVOL APPL, V4, P264, DOI 10.1111/j.1752-4571.2010.00181.x; Nettle D, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1343; O'Connor TG, 2013, DEV PSYCHOBIOL, V55, P145, DOI 10.1002/dev.21007; Patterson PH, 2011, INFECT BEHAV BRAIN I; Pechtel P, 2011, PSYCHOPHARMACOLOGY, V214, P55, DOI 10.1007/s00213-010-2009-2; Pigliucci M, 2005, TRENDS ECOL EVOL, V20, P481, DOI 10.1016/j.tree.2005.06.001; Placek CD, 2012, P ROY SOC B-BIOL SCI, V279, P4003, DOI 10.1098/rspb.2012.1022; Pluess M, 2011, DEV PSYCHOPATHOL, V23, P29, DOI 10.1017/S0954579410000623; Raison CL, 2013, MOL PSYCHIATR, V18, P15, DOI 10.1038/mp.2012.2; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Rutter M., 1993, J ADOLESCENT HEALTH, V14, P690; SAETHER BE, 1987, OIKOS, V48, P79, DOI 10.2307/3565691; Sandman CA, 2012, PSYCHOL SCI, V23, P93, DOI 10.1177/0956797611422073; Scheiner S.M., 2004, PHENOTYPIC PLASTICIT; Schlichting C. D., 1998, PHENOTYPIC EVOLUTION; Schlomer GL, 2011, PSYCHOL REV, V118, P496, DOI 10.1037/a0024043; Schwabe L, 2013, TRENDS COGN SCI, V17, P60, DOI 10.1016/j.tics.2012.12.001; Schwabe L, 2012, HIPPOCAMPUS, V22, P2136, DOI 10.1002/hipo.22034; Seery MD, 2013, PSYCHOL SCI, V24, P1181, DOI 10.1177/0956797612469210; Shonkoff JP, 2012, PEDIATRICS, V129, pE232, DOI 10.1542/peds.2011-2663; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Stearns S. C., 1992, EVOLUTION LIFE HIST; Sterling P., 1988, HDB LIFE STRESS COGN, P629, DOI DOI 10.1016/0005-7967(90)90076-U; Talge NM, 2007, J CHILD PSYCHOL PSYC, V48, P245, DOI 10.1111/j.1469-7610.2007.01714.x; TRIVERS RL, 1974, AM ZOOL, V14, P249; Ubeda F, 2010, EVOLUTION, V64, P2587, DOI 10.1111/j.1558-5646.2010.01015.x; Uller T, 2011, EVOLUTION, V65, P2075, DOI 10.1111/j.1558-5646.2011.01282.x; Van den Bergh BRH, 2005, NEUROSCI BIOBEHAV R, V29, P237, DOI 10.1016/j.neubiorev.2004.10.007; Weinstock M, 2005, BRAIN BEHAV IMMUN, V19, P296, DOI 10.1016/j.bbi.2004.09.006; Wells JCK, 2006, TRENDS ECOL EVOL, V21, P424, DOI 10.1016/j.tree.2006.05.006; Werner E, 2013, DEV PSYCHOBIOL, V55, P707, DOI 10.1002/dev.21066; West SA, 2007, CURR BIOL, V17, pR661, DOI 10.1016/j.cub.2007.06.004; Wilkins JF, 2008, ADV EXP MED BIOL, P626 108 12 14 1 76 CAMBRIDGE UNIV PRESS CAMBRIDGE EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND 2040-1744 2040-1752 J DEV ORIG HLTH DIS J. Dev. Orig. Health Dis. AUG 2014 5 4 270 280 10.1017/S2040174414000257 11 Public, Environmental & Occupational Health Public, Environmental & Occupational Health AJ5VN WOS:000337758200001 24965133 2018-11-12 J Macho, GA; Lee-Thorp, JA Macho, Gabriele A.; Lee-Thorp, Julia A. Niche Partitioning in Sympatric Gorilla and Pan from Cameroon: Implications for Life History Strategies and for Reconstructing the Evolution of Hominin Life History PLOS ONE English Article LOANGO NATIONAL-PARK; NEONATAL BRAIN SIZE; DENTAL DEVELOPMENT; LOWLAND GORILLAS; TOOTH CALCIFICATION; ISOTOPE ANALYSIS; LOPE RESERVE; RAIN-FORESTS; GREAT APES; EARLY HOMO Factors influencing the hominoid life histories are poorly understood, and little is known about how ecological conditions modulate the pace of their development. Yet our limited understanding of these interactions underpins life history interpretations in extinct hominins. Here we determined the synchronisation of dental mineralization/eruption with brain size in a 20th century museum collection of sympatric Gorilla gorilla and Pan troglodytes from Central Cameroon. Using delta C-13 and delta N-15 of individuals' hair, we assessed whether and how differences in diet and habitat use may have impacted on ape development. The results show that, overall, gorilla hair delta C-13 and delta N-15 values are more variable than those of chimpanzees, and that gorillas are consistently lower in delta C-13 and delta N-15 compared to chimpanzees. Within a restricted, isotopically-constrained area, gorilla brain development appears delayed relative to dental mineralization/eruption [or dental development is accelerated relative to brains]: only about 87.8% of adult brain size is attained by the time first permanent molars come into occlusion, whereas it is 92.3% in chimpanzees. Even when M1s are already in full functional occlusion, gorilla brains lag behind those of chimpanzee (91% versus 96.4%), relative to tooth development. Both bootstrap analyses and stable isotope results confirm that these results are unlikely due to sampling error. Rather, delta N-15 values imply that gorillas are not fully weaned (physiologically mature) until well after M1 are in full functional occlusion. In chimpanzees the transition from infant to adult feeding appears (a) more gradual and (b) earlier relative to somatic development. Taken together, the findings are consistent with life history theory that predicts delayed development when non-density dependent mortality is low, i.e. in closed habitats, and with the "risk aversion'' hypothesis for frugivorous species as a means to avert starvation. Furthermore, the results highlight the complexity and plasticity of hominoid/hominin development. [Macho, Gabriele A.; Lee-Thorp, Julia A.] Res Lab Archaeol, Oxford, England Macho, GA (reprint author), Res Lab Archaeol, Oxford, England. Gabriele.Macho@rlaha.ox.ac.uk Ministerio de Ciencia e Innovacion [CGL2010-20868]; Leakey Foundation Funding was provided by the Ministerio de Ciencia e Innovacion (CGL2010-20868) and the Leakey Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Altmann S.A., 1998, FORAGING SURVIVAL, DOI University of Chicago Press; ASHTON E. H., 1958, PROC ZOOL SOC LONDON, V130, P169; ASHTON EH, 1976, J ZOOL, V180, P355; Barrickman NL, 2008, J HUM EVOL, V54, P568, DOI 10.1016/j.jhevol.2007.08.012; Breuer T, 2009, AM J PRIMATOL, V71, P106, DOI 10.1002/ajp.20628; Cerling TE, 2004, OECOLOGIA, V138, P5, DOI 10.1007/s00442-003-1375-4; Cerling TE, 2011, NATURE, V476, P51, DOI 10.1038/nature10306; Cerling TE, 2009, P NATL ACAD SCI USA, V106, P8093, DOI 10.1073/pnas.0902192106; Cernusak LA, 2009, FUNCT PLANT BIOL, V36, P199, DOI 10.1071/FP08216; Charnov Eric L., 1993, P1; Coquerelle M, 2010, J ANTHROPOL SCI, V88, P129; Deblauwe I, 2008, AM J PHYS ANTHROPOL, V135, P42, DOI 10.1002/ajpa.20703; Deblauwe I, 2009, INT J PRIMATOL, V30, P229, DOI 10.1007/s10764-009-9337-2; DEMIRJIAN A, 1973, HUM BIOL, V45, P211; DeSilva J, 2006, J HUM EVOL, V51, P207, DOI 10.1016/j.jhevol.2006.05.006; DeSilva JM, 2008, J HUM EVOL, V55, P1064, DOI 10.1016/j.jhevol.2008.07.008; Doran DM, 2002, AM J PRIMATOL, V58, P91, DOI 10.1002/ajp.10053; Doran DM, 1998, EVOL ANTHROPOL, V6, P120; Doran-Sheehy D, 2009, AM J PHYS ANTHROPOL, V140, P727, DOI 10.1002/ajpa.21118; Fahy GE, 2014, AM J PHYS ANTHROPOL, V153, P635, DOI 10.1002/ajpa.22464; Fahy GE, 2013, P NATL ACAD SCI USA, V110, P5829, DOI 10.1073/pnas.1221991110; FOGEL ML, 1989, NITROGEN ISOTOPE TRA, P111; FRIEDLI H, 1986, NATURE, V324, P237, DOI 10.1038/324237a0; Fuller BT, 2006, AM J PHYS ANTHROPOL, V129, P279, DOI 10.1002/ajpa.20249; Godfrey LR, 2001, AM J PHYS ANTHROPOL, V114, P192, DOI 10.1002/1096-8644(200103)114:3<192::AID-AJPA1020>3.0.CO;2-Q; Gordon AD, 2013, AM J PHYS ANTHROPOL, V152, P2, DOI 10.1002/ajpa.22391; Hammer O, 2001, PALAEONTOL ELECTRON, V4, P9, DOI DOI 10.1016/J.BCP.2008.05.025; Hart D, 2010, DEV PRIMATOLOGY PROG, V36, P19; HARVEY PH, 1985, EVOLUTION, V39, P559, DOI 10.1111/j.1558-5646.1985.tb00395.x; Head JS, 2012, J TROP ECOL, V28, P571, DOI 10.1017/S0266467412000612; Head JS, 2011, INT J PRIMATOL, V32, P755, DOI 10.1007/s10764-011-9499-6; Hohmann G, 2010, AM J PHYS ANTHROPOL, V141, P476, DOI 10.1002/ajpa.21168; HUTCHINSON GE, 1959, AM NAT, V93, P145, DOI 10.1086/282070; Isler K, 2012, CURR ANTHROPOL, V53, pS453, DOI 10.1086/667623; Isler K, 2009, J HUM EVOL, V57, P392, DOI 10.1016/j.jhevol.2009.04.009; Janson Charles H., 1993, P57; Kaur T, 2004, J MED PRIMATOL, V33, P187, DOI 10.1111/j.1600-0684.2004.00070.x; Kelley J, 2010, P NATL ACAD SCI USA, V107, P1035, DOI 10.1073/pnas.0906206107; Klailova M, 2012, FOLIA PRIMATOL, V83, P312, DOI 10.1159/000342143; Krigbaum J, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0466; Kuykendall KL, 1996, AM J PHYS ANTHROPOL, V99, P135, DOI 10.1002/(SICI)1096-8644(199601)99:1<135::AID-AJPA8>3.0.CO;2-#; KUYKENDALL KL, 1992, AM J PHYS ANTHROPOL, V89, P379, DOI 10.1002/ajpa.1330890310; Kuykendall KL, 1996, AM J PHYS ANTHROPOL, V99, P159, DOI 10.1002/(SICI)1096-8644(199601)99:1<159::AID-AJPA9>3.0.CO;2-W; Kuzawa CW, 2012, CURR ANTHROPOL, V53, pS369, DOI 10.1086/667410; Kuzawa CW, 2005, AM J HUM BIOL, V17, P5, DOI 10.1002/ajhb.20091; Lambert JE, 1998, EVOL ANTHROPOL, V7, P8, DOI 10.1002/(SICI)1520-6505(1998)7:1<8::AID-EVAN3>3.3.CO;2-J; Lee P. C., 1996, Evolutionary Anthropology, V5, P87, DOI 10.1002/(SICI)1520-6505(1996)5:3<87::AID-EVAN4>3.0.CO;2-T; Lee PC, 2012, INT J PRIMATOL, V33, P1309, DOI 10.1007/s10764-011-9536-5; Lehmann J, 2009, OIKOS, V118, P379, DOI 10.1111/j.1600-0706.2008.16382.x; Leigh SR, 2004, AM J PRIMATOL, V62, P139, DOI 10.1002/ajp.20012; LEIGH SR, 1994, AM J PHYS ANTHROPOL, V94, P499, DOI 10.1002/ajpa.1330940406; Leigh SR, 2012, EVOL BIOL, V39, P587, DOI 10.1007/s11692-012-9168-5; Leonard WR, 1997, AM J PHYS ANTHROPOL, V102, P265, DOI 10.1002/(SICI)1096-8644(199702)102:2<265::AID-AJPA8>3.0.CO;2-X; Macho GA, 2001, AM J PRIMATOL, V55, P189, DOI 10.1002/ajp.1054; Macho Gabriele A., 1995, Evolutionary Anthropology, V4, P17, DOI 10.1002/evan.1360040105; MARTIN RD, 1981, NATURE, V293, P57, DOI 10.1038/293057a0; Masi S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049805; Masi S, 2009, AM J PRIMATOL, V71, P91, DOI 10.1002/ajp.20629; McFarlin SC, 2013, AM J PRIMATOL, V75, P450, DOI 10.1002/ajp.22100; Moeller AH, 2013, GENOME RES, V23, P1715, DOI 10.1101/gr.154773.113; N'guessan AK, 2009, INT J PRIMATOL, V30, P481, DOI 10.1007/s10764-009-9354-1; Nakashima Y, 2013, AM J PRIMATOL, V75, P1220, DOI 10.1002/ajp.22185; Navarrete A, 2011, NATURE, V480, P91, DOI 10.1038/nature10629; Neubauer S, 2012, EVOL BIOL, V39, P568, DOI 10.1007/s11692-011-9156-1; Neubauer S, 2012, AM J PHYS ANTHROPOL, V147, P319, DOI 10.1002/ajpa.21641; Neubauer S, 2009, J ANAT, V215, P240, DOI 10.1111/j.1469-7580.2009.01106.x; Nowell AA, 2007, INT J PRIMATOL, V28, P441, DOI 10.1007/s10764-007-9128-6; Oelze VM, 2014, J HUM EVOL, V66, P95, DOI [10.1016/j.Thevol.2013.10.003, 10.1016/j.jhevol.2013.10.003]; Oelze VM, 2011, P NATL ACAD SCI USA, V108, P9792, DOI 10.1073/pnas.1018502108; Psoter W, 2008, COMMUNITY DENT ORAL, V36, P179, DOI 10.1111/j.1600-0528.2007.00386.x; Remis MJ, 2002, INT J PRIMATOL, V23, P231, DOI 10.1023/A:1013837426426; Remis MJ, 1997, AM J PRIMATOL, V43, P87; Remis MJ, 2001, INT J PRIMATOL, V22, P807, DOI 10.1023/A:1012021617737; Robbins MM, 2004, AM J PRIMATOL, V64, P145, DOI 10.1002/ajp.20069; Rogers ME, 2004, AM J PRIMATOL, V64, P173, DOI 10.1002/ajp.20071; Ross C, 1998, EVOL ANTHROPOL, V6, P54, DOI 10.1002/(SICI)1520-6505(1998)6:2<54::AID-EVAN3>3.3.CO;2-D; ROSS C, 1992, OECOLOGIA, V90, P383, DOI 10.1007/BF00317695; ROSS C, 1992, PRIMATES, V33, P207, DOI 10.1007/BF02382750; Rothman JM, 2008, AM J PRIMATOL, V70, P690, DOI 10.1002/ajp.20540; Rothman JM, 2008, OECOLOGIA, V155, P111, DOI 10.1007/s00442-007-0901-1; Rothman JM, 2011, BIOL LETTERS, V7, P847, DOI 10.1098/rsbl.2011.0321; Rothman JM, 2009, AM J PRIMATOL, V71, P70, DOI 10.1002/ajp.20623; Sardi ML, 2007, J ANAT, V210, P406, DOI 10.1111/j.1469-7580.2007.00701.x; Schmidt S, 2003, OECOLOGIA, V134, P569, DOI 10.1007/s00442-002-1150-y; Smith B. Holly, 1994, Yearbook of Physical Anthropology, V37, P177; Smith BH, 2011, J HUM EVOL, V60, P34, DOI 10.1016/j.jhevol.2010.08.006; SMITH BH, 1994, AM J PHYS ANTHROPOL, V94, P307, DOI 10.1002/ajpa.1330940303; SMITH BH, 1989, EVOLUTION, V43, P683, DOI 10.1111/j.1558-5646.1989.tb04266.x; SMITH RJ, 1995, J HUM EVOL, V29, P155, DOI 10.1006/jhev.1995.1051; Smith TM, 2007, P NATL ACAD SCI USA, V104, P20220, DOI 10.1073/pnas.0707051104; Stanford CB, 2003, INT J PRIMATOL, V24, P901, DOI 10.1023/A:1024689008159; STEWART KJ, 1988, J REPROD FERTIL, V83, P627; Stoinski TS, 2013, AM J PHYS ANTHROPOL, V152, P165, DOI 10.1002/ajpa.22301; Suri L, 2004, AM J ORTHOD DENTOFAC, V126, P432, DOI 10.1016/j.ajodo.2003.10.031; Taylor AB, 1997, AM J PRIMATOL, V43, P1, DOI 10.1002/(SICI)1098-2345(1997)43:1<1::AID-AJP1>3.0.CO;2-0; Thompson ME, 2013, AM J PRIMATOL, V75, P222, DOI 10.1002/ajp.22084; TUTIN CEG, 1991, PHILOS T ROY SOC B, V334, P179, DOI 10.1098/rstb.1991.0107; TUTIN CEG, 1992, AM J PRIMATOL, V28, P29, DOI 10.1002/ajp.1350280103; UEHARA S, 1987, AM J PHYS ANTHROPOL, V72, P315, DOI 10.1002/ajpa.1330720305; VANDERMERWE NJ, 1989, GEOCHIM COSMOCHIM AC, V53, P1091, DOI 10.1016/0016-7037(89)90213-5; Vrba ES, 1998, J THEOR BIOL, V190, P227, DOI 10.1006/jtbi.1997.0549; WATTS DP, 1985, AM J PRIMATOL, V8, P1, DOI 10.1002/ajp.1350080102; Wrangham R. W., 1977, P503; WRANGHAM RW, 1991, PHILOS T ROY SOC B, V334, P171, DOI 10.1098/rstb.1991.0106; Yamagiwa J, 2006, PRIMATES, V47, P74, DOI 10.1007/s10329-005-0147-7; Yamagiwa J, 2009, AM J PHYS ANTHROPOL, V140, P739, DOI 10.1002/ajpa.21102; Zihlman A, 2004, P NATL ACAD SCI USA, V101, P10541, DOI 10.1073/pnas.0402635101 107 14 14 0 36 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One JUL 23 2014 9 7 e102794 10.1371/journal.pone.0102794 11 Multidisciplinary Sciences Science & Technology - Other Topics AM1NT WOS:000339614100057 25054380 DOAJ Gold, Green Published 2018-11-12 J Kribs-Zaleta, CM Kribs-Zaleta, Christopher M. Graphical analysis of evolutionary trade-off in sylvatic Trypanosoma cruzi transmission modes JOURNAL OF THEORETICAL BIOLOGY English Article Vector-borne disease; Vertical transmission; Oral transmission; Stercorarian transmission CONTACT PROCESS SATURATION; VIRULENCE EVOLUTION; VECTOR MIGRATION; UNITED-STATES; HOST; PATHOGENS; DYNAMICS; PARASITE; DISEASES; BIOLOGY The notion of evolutionary trade-off (one attribute increasing at the expense of another) is central to the evolution of traits, well-studied especially in life-history theory, where a framework first developed by Levins illustrates how internal (genetics) and external (fitness landscapes) forces interact to shape an organism's ongoing adaptation. This manuscript extends this framework to the context of vector-borne pathogens, with the example of Trypanosoma cruzi (the etiological agent of Chagas' disease) adapting via trade-off among three different infection routes to hosts-stercorarian, vertical, and oral in response to an epidemiological landscape that involves both hosts and vectors (where, in particular, parasite evolution depends not on parasite density but on relative host and vector densities). Using a fitness measure derived from an invasion reproductive number, this study analyzes several different trade-off scenarios in cycles involving raccoons or woodrats, including a proper three-way trade-off (two independent parameters). Results indicate that selection favors oral transmission to raccoons but classical stercorarian transmission to woodrats even under the same predation rate, with vertical (congenital) transmission favored only when aligned with dominant oral transmission or (at trace levels) under a weak (convex) trade-off. (C) 2014 Elsevier Ltd. All rights reserved. Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA Kribs-Zaleta, CM (reprint author), Univ Texas Arlington, Dept Math, Box 19408, Arlington, TX 76019 USA. kribs@uta.edu Kribs, Christopher/A-5431-2015 Alizon S, 2009, J EVOLUTION BIOL, V22, P245, DOI 10.1111/j.1420-9101.2008.01658.x; Alizon S, 2008, THEOR POPUL BIOL, V74, P6, DOI 10.1016/j.tpb.2008.04.003; ANDERSON RM, 1979, NATURE, V280, P361, DOI 10.1038/280361a0; Best A, 2013, INTERFACE FOCUS, V3, DOI 10.1098/rsfs.2013.0024; Boldin B, 2012, EVOLUTION, V66, P2514, DOI 10.1111/j.1558-5646.2012.01613.x; Boldin B, 2009, EVOL ECOL RES, V11, P153; Boots M, 1999, AM NAT, V153, P359, DOI 10.1086/303181; Bowers RG, 2005, J THEOR BIOL, V233, P363, DOI 10.1016/j.jtbi.2004.10.017; Charles RA, 2013, VECTOR-BORNE ZOONOT, V13, P22, DOI 10.1089/vbz.2011.0817; Crawford B.A., 2014, MATH BIOSCI ENG, V11; Crawford BA, 2013, B MATH BIOL, V75, P1051, DOI 10.1007/s11538-013-9840-7; Crawford BA, 2013, ECOL COMPLEX, V14, P145, DOI 10.1016/j.ecocom.2012.11.003; Day T, 2002, ECOL LETT, V5, P471, DOI 10.1046/j.1461-0248.2002.00342.x; de Mazancourt C, 2004, AM NAT, V164, P765, DOI 10.1086/424762; de Roode JC, 2008, P NATL ACAD SCI USA, V105, P7489, DOI 10.1073/pnas.0710909105; FISHER R. A., 1930, GENETICAL THEORY NAT; Froissart R, 2010, PHILOS T R SOC B, V365, P1907, DOI 10.1098/rstb.2010.0068; Hall CA, 2010, J PARASITOL, V96, P371, DOI 10.1645/GE-2296.1; Kribs-Zaleta C.M., 2010, MATH BIOSCI ENG, V7, P661; Kribs-Zaleta C, 2006, MATH POPUL STUD, V13, P135, DOI 10.1080/08898480600788576; Kribs-Zaleta C, 2010, PLOS NEGLECT TROP D, V4, DOI 10.1371/journal.pntd.0000656; Kribs-Zaleta CM, 2012, J BIOL DYNAM, V6, P813, DOI 10.1080/17513758.2012.710339; Lauria Pires L., 1997, J COMP PATHOL, V117, P119; LEVINS R, 1962, AM NAT, V96, P361, DOI 10.1086/282245; MAY RM, 1983, PROC R SOC SER B-BIO, V219, P281, DOI 10.1098/rspb.1983.0075; NORMAN L, 1959, J PARASITOL, V45, P457, DOI 10.2307/3274400; Pelosse P, 2012, J THEOR BIOL, V312, P133, DOI 10.1016/j.jtbi.2012.07.028; PIPPIN WF, 1970, J MED ENTOMOL, V7, P30, DOI 10.1093/jmedent/7.1.30; Roche B, 2011, ECOL LETT, V14, P569, DOI 10.1111/j.1461-0248.2011.01619.x; Roellig DM, 2008, EMERG INFECT DIS, V14, P1123, DOI 10.3201/eid1407.080175; Roellig DM, 2009, INT J PARASITOL, V39, P1603, DOI 10.1016/j.ijpara.2009.06.007; Rueffler C, 2006, AM NAT, V167, P81, DOI 10.1086/498275; Rueffler C, 2004, THEOR POPUL BIOL, V65, P165, DOI 10.1016/j.tpb.2003.10.001; Svennungsen TO, 2009, J THEOR BIOL, V257, P408, DOI 10.1016/j.jtbi.2008.11.014; Turner PE, 1998, EVOLUTION, V52, P315, DOI 10.1111/j.1558-5646.1998.tb01634.x 35 6 6 0 16 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0022-5193 1095-8541 J THEOR BIOL J. Theor. Biol. JUL 21 2014 353 34 43 10.1016/j.jtbi.2014.03.002 10 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology AH7WY WOS:000336347300005 24632446 2018-11-12 J Johnston, SE; Orell, P; Pritchard, VL; Kent, MP; Lien, S; Niemela, E; Erkinaro, J; Primmer, CR Johnston, Susan E.; Orell, Panu; Pritchard, Victoria L.; Kent, Matthew P.; Lien, Sigbjorn; Niemela, Eero; Erkinaro, Jaakko; Primmer, Craig R. Genome-wide SNP analysis reveals a genetic basis for sea-age variation in a wild population of Atlantic salmon (Salmo salar) MOLECULAR ECOLOGY English Article F-ST outlier analysis; genome-wide association; life history variation; sea age; sexual maturity; trade-off MAJOR HISTOCOMPATIBILITY COMPLEX; SUB-ARCTIC RIVER; ALTERNATIVE REPRODUCTIVE TACTICS; QUANTITATIVE TRAIT LOCI; POST-SMOLT GROWTH; LIFE-HISTORY; SEXUAL MATURITY; MATE CHOICE; PHENOTYPIC PLASTICITY; ADAPTIVE DIVERGENCE Delaying sexual maturation can lead to larger body size and higher reproductive success, but carries an increased risk of death before reproducing. Classical life history theory predicts that trade-offs between reproductive success and survival should lead to the evolution of an optimal strategy in a given population. However, variation in mating strategies generally persists, and in general, there remains a poor understanding of genetic and physiological mechanisms underlying this variation. One extreme case of this is in the Atlantic salmon (Salmo salar), which can show variation in the age at which they return from their marine migration to spawn (i.e. their 'sea age'). This results in large size differences between strategies, with direct implications for individual fitness. Here, we used an Illumina Infinium SNP array to identify regions of the genome associated with variation in sea age in a large population of Atlantic salmon in Northern Europe, implementing individual-based genome-wide association studies (GWAS) and population-based F-ST outlier analyses. We identified several regions of the genome which vary in association with phenotype and/or selection between sea ages, with nearby genes having functions related to muscle development, metabolism, immune response and mate choice. In addition, we found that individuals of different sea ages belong to different, yet sympatric populations in this system, indicating that reproductive isolation may be driven by divergence between stable strategies. Overall, this study demonstrates how genome-wide methodologies can be integrated with samples collected from wild, structured populations to understand their ecology and evolution in a natural context. [Johnston, Susan E.; Pritchard, Victoria L.; Primmer, Craig R.] Univ Turku, Div Genet & Physiol, Dept Biol, FIN-20520 Turku, Finland; [Orell, Panu; Niemela, Eero; Erkinaro, Jaakko] Finnish Game & Fisheries Res Inst, FIN-99980 Utsjoki, Finland; [Kent, Matthew P.; Lien, Sigbjorn] Norwegian Univ Life Sci, Ctr Integrat Genet CIGENE, N-1432 As, Norway; [Kent, Matthew P.; Lien, Sigbjorn] Norwegian Univ Life Sci, Dept Anim & Aquacultural Sci, N-1432 As, Norway Primmer, CR (reprint author), Univ Turku, Div Genet & Physiol, Dept Biol, Itainen Pitkakatu 4, FIN-20520 Turku, Finland. craig.primmer@utu.fi Primmer, Craig/B-8179-2008 Primmer, Craig/0000-0002-3687-8435; Johnston, Susan/0000-0002-5623-8902 Academy of Finland This work would not have been possible without the help and cooperation of the fishermen on the Teno River who contributed scales and phenotypic information to the Finnish Game and Fisheries Research Institute. Scale age measurements were carried out by Jari Haantie. The samples were prepared for SNP genotyping by Katja Salminen, Karin Sostar and Terhi Pajula with guidance from Meri Lindqvist. Data analysis was greatly improved by discussion and feedback from Jarrod Hadfield, Jisca Huisman, Konrad Lohse, Lewis Spurgin, Graham Stone, Silva Uusi-Heikkila, Shihab Hasan, Hannu Makinen and participants of the ERC Wild Animal Genomics workshop at The Burn (Eskdale, Scotland). The comments provided by three anonymous reviewers are also acknowledged. This study was funded by an Academy of Finland professorship awarded to C.R.P. ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1016/S0022-2836(05)80360-2; Amaral IPG, 2011, J EXP BIOL, V214, P2125, DOI 10.1242/jeb.053298; Aubin-Horth N, 2009, MOL ECOL, V18, P3763, DOI 10.1111/j.1365-294X.2009.04313.x; Aulchenko YS, 2007, BIOINFORMATICS, V23, P1294, DOI 10.1093/bioinformatics/btm108; Balding DJ, 2006, NAT REV GENET, V7, P781, DOI 10.1038/nrg1916; Beaumont MA, 1996, P ROY SOC B-BIOL SCI, V263, P1619, DOI 10.1098/rspb.1996.0237; Bierne N, 2013, MOL ECOL, V22, P2061, DOI 10.1111/mec.12241; Bierne N, 2011, MOL ECOL, V20, P2044, DOI 10.1111/j.1365-294X.2011.05080.x; Bourret V, 2013, MOL ECOL, V22, P532, DOI 10.1111/mec.12003; Braceland M, 2013, J PROTEOMICS, V94, P423, DOI 10.1016/j.jprot.2013.10.016; Bruneaux M, 2013, MOL ECOL, V22, P565, DOI 10.1111/j.1365-294X.2012.05749.x; Chadwick E.M.P., 1986, Canadian Special Publication of Fisheries and Aquatic Sciences, V89, P15; Chaput G, 2012, ICES J MAR SCI, V69, P1538, DOI 10.1093/icesjms/fss013; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Dionne M, 2007, EVOLUTION, V61, P2154, DOI 10.1111/j.1558-5646.2007.00178.x; DIRIENZO A, 1994, P NATL ACAD SCI USA, V91, P3166, DOI 10.1073/pnas.91.8.3166; Do C, 2014, MOL ECOL RESOUR, V14, P209, DOI 10.1111/1755-0998.12157; Edward DA, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P137; Eisbrenner WS, 2014, HEREDITY, V113, P86, DOI 10.1038/hdy.2013.55; ELLNER S, 1994, AM NAT, V143, P403, DOI 10.1086/285610; Evans ML, 2012, P ROY SOC B-BIOL SCI, V279, P379, DOI 10.1098/rspb.2011.0909; Excoffier L, 2010, MOL ECOL RESOUR, V10, P564, DOI 10.1111/j.1755-0998.2010.02847.x; FALCONER DS, 1996, INTRO QUANTITATIVE G, P299; Fleming IA, 1998, CAN J FISH AQUAT SCI, V55, P59, DOI 10.1139/cjfas-55-S1-59; Foll M, 2008, GENETICS, V180, P977, DOI 10.1534/genetics.108.092221; Fourcade Y, 2013, MOL ECOL, V22, P2065, DOI 10.1111/mec.12158; Fraley C, 2002, J AM STAT ASSOC, V97, P611, DOI 10.1198/016214502760047131; Friedland KD, 1996, J FISH BIOL, V48, P1, DOI 10.1111/j.1095-8649.1996.tb01414.x; Friedland KD, 2000, ICES J MAR SCI, V57, P419, DOI 10.1006/jmsc.1999.0639; Friedland KD, 2009, ICES J MAR SCI, V66, P289, DOI 10.1093/icesjms/fsn210; Garant D, 2003, EVOLUTION, V57, P1133; Gilad Y, 2009, TRENDS GENET, V25, P463, DOI 10.1016/j.tig.2009.09.003; GJERDE B, 1984, AQUACULTURE, V38, P229, DOI 10.1016/0044-8486(84)90147-9; GJERDE B, 1984, AQUACULTURE, V36, P97, DOI 10.1016/0044-8486(84)90057-7; GJERDE B, 1994, LIVEST PROD SCI, V38, P133, DOI 10.1016/0301-6226(94)90057-4; Glover KA, 2007, DIS AQUAT ORGAN, V76, P57, DOI 10.3354/dao076057; Gosset CC, 2013, J EVOLUTION BIOL, V26, P14, DOI 10.1111/jeb.12046; Grimholt U, 2003, IMMUNOGENETICS, V55, P210, DOI 10.1007/s00251-003-0567-8; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; Gurney WSC, 2012, B MATH BIOL, V74, P615, DOI 10.1007/s11538-011-9679-8; Gutierrez AP, 2014, MAR BIOTECHNOL, V16, P103, DOI 10.1007/s10126-013-9530-3; Hale MC, 2013, G3-GENES GENOM GENET, V3, P1273, DOI 10.1534/g3.113.006817; Hansen LP, 1998, CAN J FISH AQUAT SCI, V55, P104, DOI 10.1139/d98-010; Heinimaa S, 2004, BOREAL ENVIRON RES, V9, P55; Helyar SJ, 2011, MOL ECOL RESOUR, V11, P123, DOI 10.1111/j.1755-0998.2010.02943.x; Hohenlohe PA, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1000862; Huizinga TWJ, 2004, ARTHRITIS RHEUM, V50, P2066, DOI 10.1002/art.20360; Hutchings JA, 1998, CAN J FISH AQUAT SCI, V55, P22, DOI 10.1139/cjfas-55-S1-22; ICES, 2011, 2011ACOM44 ICES CM; ICES, 2013, 2013ACOM09 ICES CM; Jennings S, 1998, ADV MAR BIOL, V34, P201, DOI 10.1016/S0065-2881(08)60212-6; Johnston SE, 2013, BMC GENOMICS, V14, DOI 10.1186/1471-2164-14-439; Johnston SE, 2011, MOL ECOL, V20, P2555, DOI 10.1111/j.1365-294X.2011.05076.x; Jonsson B, 2011, FISH FISH SER, V33, P247, DOI 10.1007/978-94-007-1189-1_6; Jonsson N, 2007, J FISH BIOL, V71, P245, DOI 10.1111/j.1095-8649.2007.01488.x; Kalinowski ST, 2006, MOL ECOL NOTES, V6, P576, DOI 10.1111/j.1471-8286.2006.01256.x; Kallio-Nyberg I, 2006, FISH RES, V80, P295, DOI 10.1016/j.fishres.2006.03.026; Karppinen P, 2009, ECOL FRESHW FISH, V18, P177, DOI 10.1111/j.1600-0633.2008.00346.x; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; LANDER ES, 1989, GENETICS, V121, P185; Landry C, 2001, MOL ECOL, V10, P2525, DOI 10.1046/j.1365-294X.2001.01383.x; Landry C, 2001, P ROY SOC B-BIOL SCI, V268, P1279, DOI 10.1098/rspb.2001.1659; Lewis Cathryn M, 2002, Brief Bioinform, V3, P146, DOI 10.1093/bib/3.2.146; Li DL, 2011, GENET EPIDEMIOL, V35, P790, DOI 10.1002/gepi.20628; Lien S, 2011, BMC GENOMICS, V12, DOI 10.1186/1471-2164-12-615; Mank JE, 2006, EVOLUTION, V60, P1311; Manolio TA, 2009, NATURE, V461, P747, DOI 10.1038/nature08494; Mather ME, 1998, CAN J FISH AQUAT SCI, V55, P232, DOI 10.1139/d98-002; McCarthy MI, 2008, NAT REV GENET, V9, P356, DOI 10.1038/nrg2344; Milinski M, 2006, ANNU REV ECOL EVOL S, V37, P159, DOI 10.1146/annurev.ecolsys.37.091305.110242; Moskvina V, 2008, GENET EPIDEMIOL, V32, P567, DOI 10.1002/gepi.20331; Namroud MC, 2008, MOL ECOL, V17, P3599, DOI 10.1111/j.1365-294X.2008.03840.x; Niemela E, 2006, J FISH BIOL, V69, P1151, DOI 10.1111/j.1095-8649.2006.01193.x; Niemela E, 2006, J FISH BIOL, V68, P1222, DOI 10.1111/j.1095-8649.2006.01012.x; Niemela E, 2000, J FISH BIOL, V56, P974, DOI 10.1006/jfbi.1999.1223; Otero J, 2012, ECOL EVOL, V2, P2192, DOI 10.1002/ece3.337; Otero J, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024005; Parchman TL, 2012, MOL ECOL, V21, P2991, DOI 10.1111/j.1365-294X.2012.05513.x; Pedersen S, 2013, AQUACULTURE, V410, P164, DOI 10.1016/j.aquaculture.2013.06.039; Piry S, 2004, J HERED, V95, P536, DOI 10.1093/jhered/esh074; Piry S, 1999, J HERED, V90, P502, DOI 10.1093/jhered/90.4.502; Platt A, 2010, GENETICS, V186, P1045, DOI 10.1534/genetics.110.121665; Price AL, 2006, NAT GENET, V38, P904, DOI 10.1038/ng1847; Price AL, 2010, NAT REV GENET, V11, P459, DOI 10.1038/nrg2813; Purcell S, 2007, AM J HUM GENET, V81, P559, DOI 10.1086/519795; R Core Team, 2013, R LANG ENV STAT COMP; Rajakaruna RS, 2006, MOL ECOL, V15, P4569, DOI 10.1111/j.1365-294X.2006.03113.x; Rannala B, 1997, P NATL ACAD SCI USA, V94, P9197, DOI 10.1073/pnas.94.17.9197; RODGER HD, 1991, DIS AQUAT ORGAN, V12, P17, DOI 10.3354/dao012017; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; Roff DA, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P11; Roff Derek A., 1992; Salminen M., 1995, Fisheries Management and Ecology, V2, P171, DOI 10.1111/j.1365-2400.1995.tb00110.x; Salminen M, 1997, J APPL ICHTHYOL, V13, P121, DOI 10.1111/j.1439-0426.1997.tb00111.x; Santure AW, 2013, MOL ECOL, V22, P3949, DOI 10.1111/mec.12376; SAUNDERS RL, 1985, CAN J FISH AQUAT SCI, V42, P615, DOI 10.1139/f85-080; Schindler DE, 2010, NATURE, V465, P609, DOI 10.1038/nature09060; SKILBREI OT, 1989, AQUACULTURE, V83, P95, DOI 10.1016/0044-8486(89)90064-1; Slate J, 2010, TRENDS GENET, V26, P275, DOI 10.1016/j.tig.2010.03.005; Spencer CCA, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000477; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Stinchcombe JR, 2008, HEREDITY, V100, P158, DOI 10.1038/sj.hdy.6800937; Storz JF, 2005, MOL ECOL, V14, P671, DOI 10.1111/j.1365-294X.2005.02437.x; TABORSKY M, 1994, ADV STUD BEHAV, V23, P1, DOI 10.1016/S0065-3454(08)60351-4; Tonteri A, 2010, MOL ECOL, V19, P1273, DOI 10.1111/j.1365-294X.2010.04573.x; Vaha JP, 2008, EVOL APPL, V1, P137, DOI 10.1111/j.1752-4571.2007.00007.x; Vaha JP, 2007, MOL ECOL, V16, P2638, DOI 10.1111/j.1365-294X.2007.03329.x; Vasemagi A, 2005, MOL ECOL, V14, P3623, DOI 10.1111/j.1365-294X.2005.02690.x; Visscher PM, 2012, AM J HUM GENET, V90, P7, DOI 10.1016/j.ajhg.2011.11.029; Warnes G, 2012, GENETICS POPULATION; WILD V, 1994, AQUACULTURE, V128, P51, DOI 10.1016/0044-8486(94)90101-5; Wu CL, 2011, TRANSGENIC RES, V20, P1217, DOI 10.1007/s11248-011-9488-8; Yano A, 2013, EVOL APPL, V6, P486, DOI 10.1111/eva.12032; Yousaf MN, 2012, SCI WORLD J, DOI 10.1100/2012/741302 116 46 47 1 133 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. JUL 2014 23 14 3452 3468 10.1111/mec.12832 17 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology AL8LB WOS:000339389000007 24931807 2018-11-12 J Lewis, SM; Vahed, K; Koene, JM; Engqvist, L; Bussiere, LF; Perry, JC; Gwynne, D; Lehmann, GUC Lewis, Sara M.; Vahed, Karim; Koene, Joris M.; Engqvist, Leif; Bussiere, Luc F.; Perry, Jennifer C.; Gwynne, Darryl; Lehmann, Gerlind U. C. Emerging issues in the evolution of animal nuptial gifts BIOLOGY LETTERS English Article sexual conflict; spermatophore; simultaneous hermaphrodite SEMINAL FLUID PROTEINS; FREE AMINO-ACIDS; SEXUAL CONFLICT; PATERNAL INVESTMENT; INSECTS; EJACULATE; SELECTION; CRICKETS; FOOD; IDENTIFICATION Uniquely positioned at the intersection of sexual selection, nutritional ecology and life-history theory, nuptial gifts are widespread and diverse. Despite extensive empirical study, we still have only a rudimentary understanding of gift evolution becausewe lack a unified conceptual framew(o)rk for considering these traits. In this opinion piece, we tackle several issues that we believe have substantively hindered progress in this area. Here, we: (i) present a comprehensive definition and classification scheme for nuptial gifts (including those transferred by simultaneous hermaphrodites), (ii) outline evolutionary predictions for different gift types, and (iii) highlight some research directions to help facilitate progress in this field. [Lewis, Sara M.] Tufts Univ, Dept Biol, Medford, MA 02155 USA; [Vahed, Karim] Univ Derby, Dept Biol Sci, Derby DE22 1GB, England; [Koene, Joris M.] Vrije Univ Amsterdam, Dept Ecol Sci, NL-1081 HV Amsterdam, Netherlands; [Engqvist, Leif] Univ Bielefeld, D-33615 Bielefeld, Germany; [Engqvist, Leif] Univ Bern, Dept Behav Ecol, CH-3032 Hinterkappelen, Switzerland; [Bussiere, Luc F.] Univ Stirling, Stirling FK9 4LA, Scotland; [Perry, Jennifer C.] Univ Oxford, Edward Grey Inst, Dept Zool, Oxford OX1 3PS, England; [Perry, Jennifer C.] Univ Oxford Jesus Coll, Oxford OX1 3DW, England; [Gwynne, Darryl] Univ Toronto, Dept Zool, Mississauga, ON L5L 1C6, Canada; [Lehmann, Gerlind U. C.] Humboldt Univ, Dept Biol, D-10115 Berlin, Germany Lewis, SM (reprint author), Tufts Univ, Dept Biol, Medford, MA 02155 USA. sara.lewis@tufts.edu Bussiere, Luc/T-2134-2018; Lehmann, Gerlind/D-5464-2013; Koene, Joris M./B-4502-2009; Engqvist, Leif/C-3595-2009 Bussiere, Luc/0000-0001-8937-8381; Lehmann, Gerlind/0000-0003-0559-6002; Koene, Joris M./0000-0001-8188-3439; Engqvist, Leif/0000-0002-9434-7130 Albo MJ, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-329; Alonzo SH, 2010, AM NAT, V175, P174, DOI 10.1086/649596; Arnqvist G, 2003, NATURE, V424, P387, DOI 10.1038/424387a; Arnqvist G, 2000, ANIM BEHAV, V60, P145, DOI 10.1006/anbe.2000.1446; Avila FW, 2011, ANNU REV ENTOMOL, V56, P21, DOI 10.1146/annurev-ento-120709-144823; Boggs Carol L., 1995, P215; BOGGS CL, 1990, AM NAT, V136, P598, DOI 10.1086/285118; Chapman T, 2008, PLOS BIOL, V6, P1379, DOI 10.1371/journal.pbio.0060179; CHARNOV EL, 1979, P NATL ACAD SCI USA, V76, P2480, DOI 10.1073/pnas.76.5.2480; EISNER T, 1995, P NATL ACAD SCI USA, V92, P50, DOI 10.1073/pnas.92.1.50; Fricke C, 2009, BIOL LETTERS, V5, P671, DOI 10.1098/rsbl.2009.0433; Gershman SN, 2013, J EVOLUTION BIOL, V26, P693, DOI 10.1111/jeb.12078; Gwynne D.T, 2001, KATYDIDS BUSHCRICKET; Gwynne DT, 2008, ANNU REV ENTOMOL, V53, P83, DOI 10.1146/annurev.ento.53.103106.093423; GWYNNE DT, 1990, NATURE, V346, P172, DOI 10.1038/346172a0; Koene JM, 2005, BMC EVOL BIOL, V5, DOI 10.1186/1471-2148-5-25; Lange R, 2013, BIOL REV, V88, P585, DOI 10.1111/brv.12018; Lehmann GUC, 2012, FRONT ZOOL, V9, DOI 10.1186/1742-9994-9-19; LEIMAR O, 1994, P ROY SOC B-BIOL SCI, V258, P121, DOI 10.1098/rspb.1994.0151; Lewis S, 2012, ADV STUD BEHAV, V44, P53, DOI 10.1016/B978-0-12-394288-3.00002-2; PARKER GA, 1989, ETHOLOGY, V82, P3; Perry JC, 2013, TRENDS ECOL EVOL, V28, P414, DOI 10.1016/j.tree.2013.03.005; Poiani A, 2006, BEHAV ECOL SOCIOBIOL, V60, P289, DOI 10.1007/s00265-006-0178-0; Reinhardt K, 2009, P NATL ACAD SCI USA, V106, P21743, DOI 10.1073/pnas.0905347106; Simmons LW, 2013, INSECT MOL BIOL, V22, P115, DOI 10.1111/imb.12007; SIMMONS LW, 1989, ETHOLOGY, V81, P332; South A, 2011, EVOLUTION, V65, P1099, DOI 10.1111/j.1558-5646.2010.01199.x; THORNHILL R, 1976, AM NAT, V110, P153, DOI 10.1086/283055; Thornhill R., 1983, EVOLUTION INSECT MAT; Vahed K, 1998, BIOL REV, V73, P43, DOI 10.1017/S0006323197005112; Vahed K, 2007, ETHOLOGY, V113, P105, DOI 10.1111/j.1439-0310.2006.01312.x; Vahed K, 2014, EVOLUTION, V68, P2052, DOI 10.1111/evo.12421; Voigt CC, 2008, BIOL LETTERS, V4, P476, DOI 10.1098/rsbl.2008.0282; Warwick S, 2009, BIOL LETTERS, V5, P194, DOI 10.1098/rsbl.2008.0731; Zizzari ZV, 2014, FRONT ZOOL, V11, DOI 10.1186/1742-9994-11-32 35 21 22 1 46 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 1744-957X BIOL LETTERS Biol. Lett. JUL 2014 10 7 20140336 10.1098/rsbl.2014.0336 3 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology AL5JW WOS:000339170900005 25030043 Bronze, Green Published 2018-11-12 J Thorson, JT; Jensen, OP; Zipkin, EF Thorson, James T.; Jensen, Olaf P.; Zipkin, Elise F. How variable is recruitment for exploited marine fishes? A hierarchical model for testing life history theory CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article STOCK ASSESSMENT MODEL; TIME-SERIES BIAS; POPULATION-DYNAMICS; REGIME SHIFTS; METAANALYSIS; MANAGEMENT; HYPOTHESIS; STRATEGIES; MORTALITY; SABLEFISH Recruitment often varies substantially in fish populations, and residual variability may have serial autocorrelation due to environmental effects even after accounting for a stock-recruitment relationship. However, the likely magnitude of variability and autocorrelation in recruitment has yet to be formally estimated. We therefore developed a hierarchical model for recruitment variability and autocorrelation and applied it to data for 154 fish populations. Results were similar when using either the Ricker or Beverton-Holt stock-recruitment model, and showed that autocorrelated recruitment has a marginal standard deviation of 0.74 (SD = 0.35) and a mean autocorrelation of 0.43 (SD = 0.28) when predicting for an unobserved taxonomic order. Estimates differed somewhat among taxonomic orders and stocks, and also supported a hypothesized positive relationship between age at maturity and autocorrelation in recruitment. Our results can be used as a Bayesian prior for recruitment variability in models for data-poor stocks and to distinguish recruitment from other process errors in models for data-rich stocks. Estimates can also be used in the design of future simulation models and management strategy evaluations and in theoretical research regarding life history variation. [Thorson, James T.] NOAA, Fisheries Resource Assessment & Monitoring Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98112 USA; [Jensen, Olaf P.] Rutgers State Univ, Inst Marine & Coastal Sci, New Brunswick, NJ 08901 USA; [Zipkin, Elise F.] Michigan State Univ, Dept Zool, E Lansing, MI 48824 USA Thorson, JT (reprint author), NOAA, Fisheries Resource Assessment & Monitoring Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, 2725 Montlake Blvd East, Seattle, WA 98112 USA. Jimthor@u.washington.edu Thorson, James/O-7937-2014 Thorson, James/0000-0001-7415-1010 New Jersey Sea Grant Consortium (NJSGC); NOAA Office of Sea Grant; US Department of Commerce, under NOAA grant [NA10OAR4170075]; NJSGC We continue to be grateful for the dedication and foresight demonstrated by R. Myers when developing this stock-recruitment respository and the many scientists whose work is represented therein. We also thank C. Minto for his hard work in maintaining the original Myers repository and S. Munch for helpful comments on an earlier draft. We thank L. Brooks, C. Legault, an anonymous reviewer, and the associate editor for helpful comments that improved the quality of analysis and writing. O.P.J. was supported by the New Jersey Sea Grant Consortium (NJSGC) with funds from the NOAA Office of Sea Grant, US Department of Commerce, under NOAA grant No. NA10OAR4170075 and the NJSGC. The statements, findings, conclusions, and recommendations are those of the author(s) and do not necessarily reflect the views of the NJSGC or the US Department of Commerce, NJSG-14-858. Bailey KM, 2005, PROG OCEANOGR, V67, P24, DOI 10.1016/j.pocean.2005.06.001; Brodziak JKT, 2001, CAN J FISH AQUAT SCI, V58, P306, DOI 10.1139/cjfas-58-2-306; Brooks E.N., 2010, ICES J MAR SCI, V67, P413; Brunel T, 2010, ICES J MAR SCI, V67, P1921, DOI 10.1093/icesjms/fsq032; CAPUTI N, 1988, CAN J FISH AQUAT SCI, V45, P178, DOI 10.1139/f88-019; Cope JM, 2013, FISH RES, V142, P3, DOI 10.1016/j.fishres.2012.03.006; CUSHING DH, 1990, ADV MAR BIOL, V26, P249, DOI 10.1016/S0065-2881(08)60202-3; Davidson Russell, 2003, ECONOMETRIC THEORY M; Deriso RB, 2007, CAN J FISH AQUAT SCI, V64, P187, DOI 10.1139/F06-178; Draper N., 1998, APPL REGRESSION ANAL; Efron B, 1977, STEINS PARADOX STAT; Fiksen O, 2002, CAN J FISH AQUAT SCI, V59, P211, DOI 10.1139/F02-002; Gelman A., 2003, BAYESIAN DATA ANAL; Gelman A., 2007, DATA ANAL USING REGR; Hilborn R, 1998, REV FISH BIOL FISHER, V8, P273, DOI 10.1023/A:1008877912528; Hilborn R., 1992, QUANTITATIVE FISHERI; Hjort J., 1926, ICES J MAR SCI, V1, P5, DOI DOI 10.1093/ICESJMS/1.1.5; Hoffman M.D., J MAR LEARN IN PRESS; Holmes EE, 2001, P NATL ACAD SCI USA, V98, P5072, DOI 10.1073/pnas.081055898; Hutchings JA, 2000, NATURE, V406, P882, DOI 10.1038/35022565; Jensen OP, 2010, PROG OCEANOGR, V86, P176, DOI 10.1016/j.pocean.2010.04.020; Keith DM, 2012, CAN J FISH AQUAT SCI, V69, P1150, DOI 10.1139/F2012-055; Mantyniemi S, 2013, CAN J FISH AQUAT SCI, V70, P1317, DOI 10.1139/cjfas-2012-0315; Mertz G., 1994, Fisheries Oceanography, V3, P236, DOI 10.1111/j.1365-2419.1994.tb00101.x; Mertz G, 1996, CAN J FISH AQUAT SCI, V53, P1618, DOI 10.1139/cjfas-53-7-1618; Minto C, 2014, CAN J FISH AQUAT SCI, V71, P203, DOI 10.1139/cjfas-2013-0161; Morgan MJ, 2011, CAN J FISH AQUAT SCI, V68, P1361, DOI [10.1139/F2011-049, 10.1139/f2011-049]; Mueter FJ, 2002, FISH OCEANOGR, V11, P205, DOI 10.1046/j.1365-2419.2002.00192.x; Myers R. A., 1995, SUMMARY WORLDWIDE SP; Myers RA, 1999, CAN J FISH AQUAT SCI, V56, P2404, DOI 10.1139/cjfas-56-12-2404; Myers RA, 1998, REV FISH BIOL FISHER, V8, P285, DOI 10.1023/A:1008828730759; MYERS RA, 1995, CAN J FISH AQUAT SCI, V52, P223, DOI 10.1139/f95-022; MYERS RA, 1993, CAN J FISH AQUAT SCI, V50, P1576, DOI 10.1139/f93-179; Neubauer P, 2013, SCIENCE, V340, P347, DOI 10.1126/science.1230441; Ono K, 2012, FISH RES, V125, P173, DOI 10.1016/j.fishres.2012.02.022; Osenberg CW, 1999, ECOLOGY, V80, P1105, DOI 10.2307/177058; Punt AE, 2003, CAN J FISH AQUAT SCI, V60, P1217, DOI 10.1139/F03-105; R Development Core Team, 2013, R LANG ENV STAT COMP; R Development Core Team, 2012, R LANG ENV STAT COMP; Ricard D, 2012, FISH FISH, V13, P380, DOI 10.1111/j.1467-2979.2011.00435.x; Rickman SJ, 2000, CAN J FISH AQUAT SCI, V57, P116, DOI 10.1139/cjfas-57-1-116; Rose KA, 2001, FISH FISH, V2, P293, DOI 10.1046/j.1467-2960.2001.00056.x; Sainsbury KJ, 2000, ICES J MAR SCI, V57, P731, DOI 10.1006/jmsc.2000.0737; Schirripa MJ, 2009, ICES J MAR SCI, V66, P1605, DOI 10.1093/icesjms/fsp043; Schirripa MJ, 2006, FISH OCEANOGR, V15, P25, DOI 10.1111/j.1365-2419.2005.00352.x; SCHNUTE JT, 1991, FISH RES, V11, P197, DOI 10.1016/0165-7836(91)90002-W; SHAMAN P, 1988, J AM STAT ASSOC, V83, P842, DOI 10.2307/2289315; Smith Tim D., 2007, SCALING FISHERIES SC; Stan Development Team, 2013, STAN C LIB PROB SAMP; Stewart I.J., 2013, INT PAC HAL COMM 89; Stewart I.J., 2012, INT PAC HAL COMM 89; Szuwalski C, 2013, FISH OCEANOGR, V22, P345, DOI 10.1111/fog.12026; Thorson JT, 2015, ICES J MAR SCI, V72, P178, DOI 10.1093/icesjms/fst211; Thorson JT, 2015, FISH FISH, V16, P342, DOI 10.1111/faf.12061; Thorson JT, 2014, ECOL APPL, V24, P315, DOI 10.1890/12-1803.1; Thorson JT, 2013, MAR ECOL PROG SER, V483, P245, DOI 10.3354/meps10295; Trautmann H., 2012, TRUNCNORM TRUNCATED; Vert-pre KA, 2013, P NATL ACAD SCI USA, V110, P1779, DOI 10.1073/pnas.1214879110; Walters C, 2001, CAN J FISH AQUAT SCI, V58, P39, DOI 10.1139/cjfas-58-1-39; WALTERS CJ, 1985, CAN J FISH AQUAT SCI, V42, P147, DOI 10.1139/f85-018; Wayte SE, 2013, FISH RES, V142, P47, DOI 10.1016/j.fishres.2012.07.009; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242 63 31 31 0 30 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0706-652X 1205-7533 CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. JUL 2014 71 7 973 983 10.1139/cjfas-2013-0645 11 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology AL3BI WOS:000338999600002 2018-11-12 J Costantini, D; Bonisoli-Alquati, A; Rubolini, D; Caprioli, M; Ambrosini, R; Romano, M; Saino, N Costantini, David; Bonisoli-Alquati, Andrea; Rubolini, Diego; Caprioli, Manuela; Ambrosini, Roberto; Romano, Maria; Saino, Nicola Nestling rearing is antioxidant demanding in female barn swallows (Hirundo rustica) NATURWISSENSCHAFTEN English Article Antioxidants; Life history; Oxidative damage; Oxidative stress; Parental effort; Trade-off OXIDATIVE STRESS; EGG-PRODUCTION; DROSOPHILA-MELANOGASTER; REPRODUCTIVE EFFORT; PARENTAL EFFORT; TRADE-OFF; COST; BIRD; RESISTANCE; SUSCEPTIBILITY Reproduction is a demanding activity, since organisms must produce and, in some cases, protect and provision their progeny. Hence, a central tenet of life-history theory predicts that parents have to trade parental care against body maintenance. One physiological cost thought to be particularly important as a modulator of such trade-offs is oxidative stress. However, evidence in favour of the hypothesis of an oxidative cost of reproduction is contradictory. In this study, we manipulated the brood size of wild barn swallows Hirundo rustica soon after hatching of their nestlings to test whether an increase in nestling rearing effort translates into an increased oxidative damage and a decreased antioxidant protection at the end of the nestling rearing period. We found that, while plasma oxidative damage was unaffected by brood size enlargement, females rearing enlarged broods showed a decrease in plasma non-enzymatic antioxidants during the nestling rearing period. This was not the case among females rearing reduced broods and among males assigned to either treatment. Moreover, individuals with higher plasma oxidative damage soon after the brood size manipulation had lower plasma non-enzymatic antioxidants at the end of the nestling rearing period, suggesting that non-enzymatic antioxidants were depleted to buffer the negative effects of high oxidative damage. Our findings point to antioxidant depletion as a potential mechanism mediating the cost of reproduction among female birds. [Costantini, David] Univ Antwerp, Dept Biol, B-2610 Antwerp, Belgium; [Costantini, David] Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Glasgow G12 8QQ, Lanark, Scotland; [Bonisoli-Alquati, Andrea] Univ S Carolina, Dept Biol Sci, Columbia, SC 29208 USA; [Rubolini, Diego; Caprioli, Manuela; Romano, Maria; Saino, Nicola] Univ Milan, Dipartimento Biosci, Milan, Italy; [Ambrosini, Roberto] Univ Milano Bicocca, Dipartimento Biotecnol & Biosci, Milan, Italy Costantini, D (reprint author), Univ Antwerp, Dept Biol, Univ Pl 1, B-2610 Antwerp, Belgium. davidcostantini@libero.it Rubolini, Diego/F-2851-2011; Ambrosini, Roberto/F-3188-2012; Bonisoli-Alquati, Andrea/S-2082-2017 Rubolini, Diego/0000-0003-2703-5783; Ambrosini, Roberto/0000-0002-7148-1468; Bonisoli-Alquati, Andrea/0000-0002-9255-7556; Costantini, David/0000-0002-8140-8790; Saino, Nicola/0000-0002-0230-3967 International Observatory for Oxidative Stress (Salerno, Italy); MIUR PhD grant We thankfully acknowledge P. Bize and an anonymous reviewer for providing comments that helped us to improve the presentation of the article. We thank C. Girardo, R. Grossi, T. Noyere, D. Patelli, V. Pignataro, and M. Prinzivalli for help during fieldwork, the International Observatory for Oxidative Stress (Salerno, Italy) for advice and support, G. Brambilla and E. Vignolo for technical and logistical support at the ISS, Rome. ABA was funded by a MIUR PhD grant. Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Beaulieu M, 2013, CONSERV PHYSIOL, V1, DOI 10.1093/conphys/cot004; Beaulieu M, 2011, FUNCT ECOL, V25, P577, DOI 10.1111/j.1365-2435.2010.01825.x; BENJAMINI Y, 1995, J ROY STAT SOC B MET, V57, P289; Bergeron P, 2011, FUNCT ECOL, V25, P1063, DOI 10.1111/j.1365-2435.2011.01868.x; Bertrand S, 2006, OECOLOGIA, V147, P576, DOI 10.1007/s00442-005-0317-8; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Boonekamp JJ, 2014, ECOL LETT IN PRESS; Casagrande S, 2011, COMP BIOCHEM PHYS A, V160, P16, DOI 10.1016/j.cbpa.2011.04.011; Christe P, 2012, P ROY SOC B-BIOL SCI, V279, P1142, DOI 10.1098/rspb.2011.1546; Costantini D, 2006, J COMP PHYSIOL B, V176, P329, DOI 10.1007/s00360-005-0055-6; Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x; Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x; Costantini D, 2009, FUNCT ECOL, V23, P506, DOI 10.1111/j.1365-2435.2009.01546.x; Garratt M, 2011, P ROY SOC B-BIOL SCI, V278, P1098, DOI 10.1098/rspb.2010.1818; Halliwell B., 2007, FREE RADICALS BIOL M; Heiss RS, 2012, PHYSIOL BIOCHEM ZOOL, V85, P499, DOI 10.1086/666840; Helfenstein F, 2010, ECOL LETT, V13, P213, DOI 10.1111/j.1461-0248.2009.01419.x; Kim SY, 2010, EVOLUTION, V64, P852, DOI 10.1111/j.1558-5646.2009.00862.x; Losdat S, 2011, BEHAV ECOL, V22, P1218, DOI 10.1093/beheco/arr116; Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x; MOLLER AP, 1994, SEXUAL SELECTION BAR; Nussey DH, 2009, FUNCT ECOL, V23, P809, DOI 10.1111/j.1365-2435.2009.01555.x; Pike TW, 2007, P ROY SOC B-BIOL SCI, V274, P1591, DOI 10.1098/rspb.2007.0317; Rands SA, 2006, THEOR BIOL MED MODEL, V3, DOI 10.1186/1742-4682-3-20; Rubolini D, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0048955; Saino N, 1997, J ANIM ECOL, V66, P827, DOI 10.2307/5998; Saino N, 1999, J ANIM ECOL, V68, P999, DOI 10.1046/j.1365-2656.1999.00350.x; Saino N CaprioliM, 2011, PLOS ONE, V6; Salmon AB, 2001, EVOLUTION, V55, P1600, DOI 10.1111/j.0014-3820.2001.tb00679.x; Speakman JR, 2014, BIOESSAYS, V36, P93, DOI 10.1002/bies.201300108; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stier A, 2012, FRONT ZOOL, V9, DOI 10.1186/1742-9994-9-37; Travers M, 2010, ECOL LETT, V13, P980, DOI 10.1111/j.1461-0248.2010.01488.x; van de Crommenacker J, 2011, THESIS U GRONINGEN; Wang Y, 2001, EXP GERONTOL, V36, P1349, DOI 10.1016/S0531-5565(01)00095-X; Weinert BT, 2003, J APPL PHYSIOL, V95, P1706, DOI 10.1152/japplphysiol.00288.2003; Wiersma P, 2004, P ROY SOC B-BIOL SCI, V271, pS360, DOI 10.1098/rsbl.2004.0171; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Yang DB, 2013, J EXP BIOL, V216, P4242, DOI 10.1242/jeb.092049 40 14 14 1 30 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0028-1042 1432-1904 NATURWISSENSCHAFTEN Naturwissenschaften JUL 2014 101 7 541 548 10.1007/s00114-014-1190-2 8 Multidisciplinary Sciences Science & Technology - Other Topics AL3BC WOS:000338998900003 24890700 2018-11-12 J Stier, A; Delestrade, A; Zahn, S; Arrive, M; Criscuolo, F; Massemin-Challet, S Stier, Antoine; Delestrade, Anne; Zahn, Sandrine; Arrive, Mathilde; Criscuolo, Francois; Massemin-Challet, Sylvie Elevation impacts the balance between growth and oxidative stress in coal tits OECOLOGIA English Article Elevation; Altitude; Oxidative stress; Metabolism; Life history trade-off; Ageing OXYGEN SPECIES PRODUCTION; KING PENGUIN CHICKS; HISTORY TRADE-OFFS; SEASONAL ENVIRONMENT; ENERGY-EXPENDITURE; TELOMERE LENGTH; METABOLIC-RATE; ZEBRA FINCHES; PARUS-MAJOR; BODY-SIZE The short favorable period of time available for the growth in seasonal environments could constrain the resources allocation between growth and other life-history traits, and the short-term fitness benefits of increased growth rate may prevail over other functions. Accelerated growth rates have been associated with long-term deleterious consequences (e.g., decreased lifespan), and recently oxidative stress (the imbalance between pro-oxidants generation and antioxidant defenses) has been suggested as a mediator of these effects. Here, we examined the impact of elevation on growth rate and self-maintenance parameters (resting metabolism, oxidative damage, and antioxidant defenses) of coal tit chicks (Periparus ater). We predicted that the shorter favorable season at the higher-elevation site could lead to a reallocation of resources towards growth at the expense of self-maintenance processes. We found that chicks at high elevation grew significantly faster in terms of body mass and body size. Chicks from the high-elevation site presented higher resting metabolism, higher oxidative damage level, but similar antioxidant defenses, compared to low-elevation chicks. Interestingly, the chicks exhibiting the better antioxidant defenses at 7 days were also those with the highest resting metabolic rate, and the chicks that grew at the faster rate within the high-elevation site were those with the highest levels of oxidative damage on DNA. Our study supports the idea that increasing elevation leads to a higher growth rate in coal tit chicks, possibly in response to a shorter favorable season. In accordance with life-history theory, a bigger investment in growth was done at the expense of body maintenance, at least in terms of oxidative stress. [Stier, Antoine; Zahn, Sandrine; Arrive, Mathilde; Criscuolo, Francois; Massemin-Challet, Sylvie] Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, Strasbourg, France; [Stier, Antoine; Zahn, Sandrine; Arrive, Mathilde; Criscuolo, Francois; Massemin-Challet, Sylvie] CNRS, UMR7178, DEPE, F-67087 Strasbourg, France; [Delestrade, Anne] Observ Mont Blanc, CREA, F-74400 Chamonix Mt Blanc, France; [Delestrade, Anne] Univ Savoie, UMR 5553, Lab Ecol Alpine, F-73376 Le Bourget Du Lac, France Stier, A (reprint author), Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. antoine.stier@gmail.com Stier, Antoine/0000-0002-5445-5524 CNRS; University of Strasbourg; CREA We are grateful to G. Chagneau and O. Scholly for help with fieldwork, to Antoine Duparc for assistance with the statistical analysis of temperature data, and to the CNRS, The University of Strasbourg, and The CREA for funding. We are especially grateful to two anonymous reviewers and the handling editor for providing interesting and constructive comments on a previous draft of the paper. Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Alonso-Alvarez C, 2007, FUNCT ECOL, V21, P873, DOI 10.1111/j.1365-2435.2007.01300.x; [Anonymous], EVOL ECOL, V25, P461; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Badyaev AV, 2001, ECOLOGY, V82, P2948, DOI 10.2307/2679973; Barja G, 2007, REJUV RES, V10, P215, DOI 10.1089/rej.2006.0516; Beckman KB, 1998, PHYSIOL REV, V78, P547; BETTS MM, 1955, J ANIM ECOL, V24, P282, DOI 10.2307/1715; Bize P, 2006, FUNCT ECOL, V20, P857, DOI 10.1111/1365-2435.2006.01157.x; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Bize P, 2009, P R SOC B, V276, P1679, DOI 10.1098/rspb.2008.1817; CALOW P, 1982, AM NAT, V120, P416, DOI 10.1086/284001; Careau V, 2013, OECOLOGIA, V171, P11, DOI 10.1007/s00442-012-2385-x; Noguera JC, 2012, BIOL LETTERS, V8, P61, DOI 10.1098/rsbl.2011.0756; Conway CJ, 2000, BEHAV ECOL, V11, P178, DOI 10.1093/beheco/11.2.178; Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x; Criscuolo F, 2008, P ROY SOC B-BIOL SCI, V275, P1565, DOI 10.1098/rspb.2008.0148; Criscuolo F, 2011, OECOLOGIA, V167, P315, DOI 10.1007/s00442-011-1986-0; Dittmar C, 2006, EUR J FOREST RES, V125, P181, DOI 10.1007/s10342-005-0099-x; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Fletcher QE, 2013, EVOLUTION, V67, P1527, DOI 10.1111/evo.12014; FREEMAN S, 1990, AUK, V107, P69; Geiger S, 2012, PHYSIOL BIOCHEM ZOOL, V85, P415, DOI DOI 10.1086/666364; Geiger S, 2012, MOL ECOL, V21, P1500, DOI 10.1111/j.1365-294X.2011.05331.x; Gotthard K, 2008, BIOSCIENCE, V58, P222, DOI 10.1641/B580308; Griffiths R, 1998, MOL ECOL, V7, P1071, DOI 10.1046/j.1365-294x.1998.00389.x; Halliwell B., 2007, FREE RADICALS BIOL M; HAYES JP, 1989, J COMP PHYSIOL B, V159, P453, DOI 10.1007/BF00692417; Heidinger BJ, 2012, P NATL ACAD SCI USA, V109, P1743, DOI 10.1073/pnas.1113306109; Jefferson JA, 2004, HIGH ALT MED BIOL, V5, P61, DOI 10.1089/152702904322963690; Lack D., 1968, ECOLOGICAL ADAPTATIO; Lee WS, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2370; Mangel M, 2005, AM NAT, V166, pE155, DOI 10.1086/444439; McVicar TR, 2012, OECOLOGIA, V171, P335; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Monros JS, 1998, ARDEA, V86, P213; Naef Daenzer B, 1999, J ANIM ECOL, V68, P708; Naef-Daenzer B, 2012, CLIM PAST, V8, P1527, DOI 10.5194/cp-8-1527-2012; Naef-Daenzer B, 2001, J ANIM ECOL, V70, P730, DOI 10.1046/j.0021-8790.2001.00533.x; Naef-Daenzer L, 2004, ARDEA, V92, P229; Nussey DH, 2009, FUNCT ECOL, V23, P809, DOI 10.1111/j.1365-2435.2009.01555.x; Pellerin M, 2012, EUR J FOREST RES, V131, P1957, DOI 10.1007/s10342-012-0646-1; Quinlivan EP, 2008, ANAL BIOCHEM, V373, P383, DOI 10.1016/j.ab.2007.09.031; Reeve, 2000, J EVOLUTION BIOL, V13, P836; RICHNER H, 1989, J ANIM ECOL, V58, P427, DOI 10.2307/4840; RICKLEFS RE, 1979, AUK, V96, P10; ROFF D, 1980, OECOLOGIA, V45, P202, DOI 10.1007/BF00346461; Rosa CE, 2008, COMP BIOCHEM PHYS B, V149, P209, DOI 10.1016/j.cbpb.2007.09.010; Salin K, 2012, J EXP BIOL, V215, P863, DOI 10.1242/jeb.062745; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stier A, 2014, FUNCT ECOL, V28, P601, DOI 10.1111/1365-2435.12204; Stier A, 2014, J EXP BIOL, V217, P624, DOI 10.1242/jeb.092700; Stier A, 2012, FRONT ZOOL, V9, DOI 10.1186/1742-9994-9-37; Tarry-Adkins JL, 2008, FASEB J, V22, P2037, DOI 10.1096/fj.07-099523; Tarry-Adkins JL, 2009, FASEB J, V23, P1521, DOI 10.1096/fj.08-122796; Tsuchiya Y, 2012, J EVOLUTION BIOL, V25, P1835, DOI 10.1111/j.1420-9101.2012.02568.x; von Zglinicki T, 2002, TRENDS BIOCHEM SCI, V27, P339, DOI 10.1016/S0968-0004(02)02110-2; Weathers WW, 2002, J EXP BIOL, V205, P2915; Wood SN, 2006, GEN ADDITIVE MODELS; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zhong YC, 2011, ZHONGHUA YU FANG YI, V42, P502 65 11 11 3 44 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia JUL 2014 175 3 791 800 10.1007/s00442-014-2946-2 10 Ecology Environmental Sciences & Ecology AK1UO WOS:000338202600005 24805201 2018-11-12 J Barraquand, F; Husek, J Barraquand, Frederic; Husek, Jan Covariation between mean vole density and variability drives the numerical response of storks to vole prey POPULATION ECOLOGY English Editorial Material Coefficient of variation (CV); Jensen's inequality; Life history; Population cycles; Taylor's law STOCHASTIC ENVIRONMENTS; CICONIA-CICONIA; POWER-LAW; POPULATION; DYNAMICS; PRODUCTIVITY; PREDATOR; RATES Huek et al. (Popul Ecol 55:363-375, 2013) showed that the numerical response of storks to vole prey was stronger in regions where variability in vole density was higher. This finding is, at first sight, in contradiction with the predictions of life-history theory in stochastic environments. Since the stork productivity-vole density relationship is concave, theory predicts a negative association between the temporal variability in vole density and stork productivity. Here, we illustrate this negative effect of vole variability on stork productivity with a simple mathematical model relating expected stork productivity to vole dynamics. When comparing model simulations to the observed mean density and variability of thirteen Czech and Polish vole populations, we find that the observed positive effect of vole variability on stork numerical response is most likely due to an unusual positive correlation between mean and variability of vole density. [Barraquand, Frederic] Univ Tromso, Dept Arctic & Marine Biol, Northern Populat & Ecosyst Grp, N-9037 Tromso, Norway; [Husek, Jan] Hedmark Univ Coll, Fac Appl Ecol & Agr Sci, N-2480 Koppang, Norway Barraquand, F (reprint author), Univ Tromso, Dept Arctic & Marine Biol, Northern Populat & Ecosyst Grp, Dramsveien 201, N-9037 Tromso, Norway. frederic.barraquand@uit.no; jan.husek@hihm.no Barraquand, Frederic/G-1599-2011 Barraquand, Frederic/0000-0002-4759-0269 Barraquand F, 2014, J ANIM ECOL, V83, P375, DOI 10.1111/1365-2656.12140; Barraquand F, 2013, THEOR POPUL BIOL, V89, P1, DOI 10.1016/j.tpb.2013.07.002; Brommer JE, 2000, BIOL REV, V75, P377, DOI 10.1017/S000632310000551X; Garcia-Carreras B, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0063974; Henden JA, 2008, J APPL ECOL, V45, P1086, DOI 10.1111/j.1365-2664.2008.01515.x; Husek J, 2013, POPUL ECOL, V55, P363, DOI 10.1007/s10144-013-0366-5; Kilpatrick AM, 2003, NATURE, V422, P65, DOI 10.1038/nature01471; Koons DN, 2009, OIKOS, V118, P972, DOI 10.1111/j.1600-0706.2009.16399.x; Krebs CJ, 2013, POPULATION FLUCTUATI; Linnerud M, 2013, OIKOS, V122, P1207, DOI 10.1111/j.1600-0706.2012.20517.x; MCARDLE BH, 1995, OIKOS, V74, P165, DOI 10.2307/3545687; Pasztor L, 2000, TRENDS ECOL EVOL, V15, P117, DOI 10.1016/S0169-5347(99)01801-7; Schaub M, 2005, J ANIM ECOL, V74, P656, DOI 10.1111/j.1365-2656.2005.00961.x; Schaub M, 2004, BIOL CONSERV, V119, P105, DOI 10.1016/j.biocon.2003.11.002; Tkadlec E, 2006, CLIM RES, V32, P99, DOI 10.3354/cr032099 15 2 2 0 19 SPRINGER JAPAN KK TOKYO CHIYODA FIRST BLDG EAST, 3-8-1 NISHI-KANDA, CHIYODA-KU, TOKYO, 101-0065, JAPAN 1438-3896 1438-390X POPUL ECOL Popul. Ecol. JUL 2014 56 3 551 553 10.1007/s10144-014-0440-7 3 Ecology Environmental Sciences & Ecology AK2YL WOS:000338286400011 2018-11-12 J Westneat, DF; Bokony, V; Burke, T; Chastel, O; Jensen, H; Kvalnes, T; Lendvai, AZ; Liker, A; Mock, D; Schroeder, J; Schwagmeyer, PL; Sorci, G; Stewart, IRK Westneat, David F.; Bokony, Veronika; Burke, Terry; Chastel, Olivier; Jensen, Henrik; Kvalnes, Thomas; Lendvai, Adam Z.; Liker, Andras; Mock, Douglas; Schroeder, Julia; Schwagmeyer, P. L.; Sorci, Gabriele; Stewart, Ian R. K. Multiple aspects of plasticity in clutch size vary among populations of a globally distributed songbird JOURNAL OF ANIMAL ECOLOGY English Article adaptation; clutch size; life history; phenology of breeding; phenotypic plasticity; trade-offs; within-individual variance SPARROW PASSER-DOMESTICUS; WILD BIRD POPULATION; HOUSE SPARROW; PHENOTYPIC PLASTICITY; REACTION NORMS; GENETIC-VARIATION; SEASONAL DECLINE; QUANTITATIVE GENETICS; LIFE-HISTORY; PARUS-MAJOR Plasticity in life-history characteristics can influence many ecological and evolutionary phenomena, including how invading organisms cope with novel conditions in new locations or how environmental change affects organisms in native locations. Variation in reaction norm attributes is a critical element to understanding plasticity in life history, yet we know relatively little about the ways in which reaction norms vary within and among populations. We amassed data on clutch size from marked females in eight populations of house sparrows (Passer domesticus) from North America and Europe. We exploited repeated measures of clutch size to assess both the extent of within-individual phenotypic plasticity and among-individual variation and to test alternative hypotheses about the underlying causes of reaction norm shape, particularly the decline in clutch size with date. Across all populations, females of this multibrooded species altered their clutch size with respect to date, attempt order, and the interaction of date and order, producing a reaction norm in multidimensional environmental space. The reaction norm fits that predicted by a model in which optimal clutch size is driven by a decline with date hatched in the ability of offspring to recruit. Our results do not fit those predicted for other proposed causes of a seasonal decline in clutch size. We also found significant differences between populations in response to date and the date by attempt order interaction. We tested the prediction that the relationship with date should be increasingly negative as breeding season becomes shorter but found steeper declines in clutch size with date in populations with longer seasons, contrary to the prediction. Populations also differed in the level of among-individual variation in reaction norm intercept, but we found no evidence of among-individual variation in reaction norm slope. We show that complex reaction norms in life-history characters exhibit within- and among-population variance. The nature of this variance is only partially consistent with current life-history theory and stimulates expansions of such theory to accommodate complexities in adaptive life history. [Westneat, David F.; Stewart, Ian R. K.] Univ Kentucky, Dept Biol, Lexington, KY 40506 USA; [Westneat, David F.; Stewart, Ian R. K.] Univ Kentucky, Ctr Ecol Evolut & Behav, Lexington, KY 40506 USA; [Bokony, Veronika; Liker, Andras] Univ Pannonia, Dept Limnol, H-8201 Veszprem, Hungary; [Burke, Terry] Univ Nottingham, Dept Genet, Nottingham NG7 2RD, England; [Burke, Terry; Liker, Andras; Schroeder, Julia] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England; [Chastel, Olivier; Lendvai, Adam Z.] CNRS, Ctr Etud Biol Chiz, F-79360 Villiers En Bois, Beauvoir Sur Ni, France; [Jensen, Henrik; Kvalnes, Thomas] Norwegian Univ Sci & Technol, Dept Biol, Ctr Biodivers Dynam, NO-7491 Trondheim, Norway; [Lendvai, Adam Z.] Virginia Tech, Dept Biol, Blacksburg, VA 24060 USA; [Mock, Douglas; Schwagmeyer, P. L.] Dept Biol, Norman, OK 73019 USA; [Sorci, Gabriele] Univ Bourgogne, CNRS UMR 6282, F-21000 Dijon, France Westneat, DF (reprint author), Univ Kentucky, Dept Biol, 101 Morgan Bldg, Lexington, KY 40506 USA. biodfw@uky.edu Burke, Terry/B-3196-2011; Schroeder, Julia/B-1436-2010; Jensen, Henrik/B-5085-2011 Burke, Terry/0000-0003-3848-1244; Schroeder, Julia/0000-0002-4136-843X; Jensen, Henrik/0000-0001-7804-1564; Westneat, David/0000-0001-5163-8096; Lendvai, Adam Z./0000-0002-8953-920X; Bokony, Veronika/0000-0002-2136-5346 U.S. National Science Foundation; Norwegian Research Council; NERC; Hungarian Scientific Research Fund [T047256, K72827, K84132, PD76862]; Hungarian Scholarship Board (CRBPA); French ANR; University of Kentucky; Hungarian Scholarship Board; Natural Environment Research Council [NE/F006071/1] We thank the large number of field personnel across eight studies who helped contribute to this data set. We also thank the multiple agencies that supported this work, including the U.S. National Science Foundation (AZL, DFW, DM, IRKS and PLS), the Norwegian Research Council (HJ and TK), NERC (TB and JS), Hungarian Scientific Research Fund (Grants no. T047256, K72827, K84132, PD76862; AL, AZL and VB), Hungarian Scholarship Board [AZL, the CRBPA (OC)] and the French ANR (GS). The lead author also thanks the University of Kentucky for support during preparation of this manuscript and the Norwegian University of Science and Technology for hosting him during a sabbatical when plans for this paper took shape. We also appreciate the useful suggestions on the manuscript provided by three anonymous reviewers. Anderson TR, 2006, UBIQUITOUS HOUSE SPA; Bennett P. M., 2002, EVOLUTIONARY ECOLOGY; Bokony V, 2008, IBIS, V150, P139; BOUTIN S, 1990, CAN J ZOOL, V68, P203, DOI 10.1139/z90-031; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; Brommer JE, 2005, EVOLUTION, V59, P1362; Brommer JE, 2002, P ROY SOC B-BIOL SCI, V269, P647, DOI 10.1098/rspb.2001.1929; Brommer JE, 2008, P ROY SOC B-BIOL SCI, V275, P687, DOI 10.1098/rspb.2007.0951; Burke T., 1984, THESIS U NOTTINGHAM; Charmantier A, 2008, SCIENCE, V320, P800, DOI 10.1126/science.1157174; Chastel O, 2002, IBIS, V144, P284, DOI 10.1046/j.1474-919X.2002.00062.x; Cleasby IR, 2010, BIOL J LINN SOC, V101, P680, DOI 10.1111/j.1095-8312.2010.01515.x; Clifford LD, 2001, J ANIM ECOL, V70, P539, DOI 10.1046/j.1365-2656.2001.00521.x; CRICK HQP, 1993, J ANIM ECOL, V62, P263, DOI 10.2307/5357; Decker KL, 2012, EVOL ECOL, V26, P683, DOI 10.1007/s10682-011-9521-7; Dingemanse NJ, 2013, ANIM BEHAV, V85, P1031, DOI 10.1016/j.anbehav.2012.12.032; DRENT RH, 1980, ARDEA, V68, P225; Frankham R, 1997, HEREDITY, V78, P311, DOI 10.1038/hdy.1997.46; Ghalambor Cameron K., 2010, P90; GOMULKIEWICZ R, 1992, EVOLUTION, V46, P390, DOI 10.1111/j.1558-5646.1992.tb02047.x; GOTTHARD K, 1995, OIKOS, V74, P3, DOI 10.2307/3545669; HOCHACHKA W, 1990, ECOLOGY, V71, P1279, DOI 10.2307/1938265; Husby A, 2010, EVOLUTION, V64, P2221, DOI 10.1111/j.1558-5646.2010.00991.x; Husby A, 2006, J ANIM ECOL, V75, P1128, DOI 10.1111/j.1365-2656.2006.01132.x; Jensen H, 2008, EVOLUTION, V62, P1275, DOI 10.1111/j.1558-5646.2008.00395.x; KLOMP H, 1970, ARDEA, V58, P1; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lande R, 2009, J EVOLUTION BIOL, V22, P1435, DOI 10.1111/j.1420-9101.2009.01754.x; Lendvai AZ, 2010, HORM BEHAV, V58, P936, DOI 10.1016/j.yhbeh.2010.09.004; LOMAN J, 1982, OECOLOGIA, V52, P253, DOI 10.1007/BF00363845; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; MURPHY MT, 1986, ECOLOGY, V67, P1483, DOI 10.2307/1939079; Nager RG, 1997, J ANIM ECOL, V66, P495, DOI 10.2307/5944; Nussey DH, 2007, J EVOLUTION BIOL, V20, P831, DOI 10.1111/j.1420-9101.2007.01300.x; Pettifor RA, 2001, J ANIM ECOL, V70, P62, DOI 10.1046/j.1365-2656.2001.00465.x; Pigliucci M, 2003, ECOL LETT, V6, P265, DOI 10.1046/j.1461-0248.2003.00428.x; Pigliucci M., 2001, PHENOTYPIC PLASTICIT; Pinheiro JC, 2000, MIXED EFFECTS MODELS; Postma E, 2005, ECOLOGY, V86, P2344, DOI 10.1890/04-0348; Ringsby TH, 2002, ECOLOGY, V83, P561, DOI 10.2307/2680035; ROWE L, 1994, AM NAT, V143, P698, DOI 10.1086/285627; SAS Institute, 2008, SAS US GUID STAT; SCHEINER SM, 1993, ANNU REV ECOL SYST, V24, P35, DOI 10.1146/annurev.es.24.110193.000343; Schrey AW, 2011, MOL ECOL, V20, P1133, DOI 10.1111/j.1365-294X.2011.05001.x; Schwagmeyer PL, 2008, ANIM BEHAV, V75, P291, DOI 10.1016/j.anbehav.2007.05.023; Schwagmeyer PL, 2003, ETHOLOGY, V109, P303, DOI 10.1046/j.1439-0310.2003.00868.x; SIIKAMAKI P, 1994, FUNCT ECOL, V8, P587, DOI 10.2307/2389919; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; van de Pol M., 2009, ANIM BEHAV, V77, P253; van de Pol M, 2012, METHODS ECOL EVOL, V3, P268, DOI 10.1111/j.2041-210X.2011.00160.x; VANNOORDWIJK AJ, 1989, BIOSCIENCE, V39, P453, DOI 10.2307/1311137; Verhulst S, 2008, PHILOS T R SOC B, V363, P399, DOI 10.1098/rstb.2007.2146; Westneat DF, 2009, ECOLOGY, V90, P1162, DOI 10.1890/08-0698.1; Williams TD, 2005, BIOSCIENCE, V55, P39, DOI 10.1641/0006-3568(2005)055[0039:MUTCOE]2.0.CO;2; Woltereck R., 1909, VERH DTSCH ZOOL GES, P110 55 6 7 0 57 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. JUL 2014 83 4 876 887 10.1111/1365-2656.12191 12 Ecology; Zoology Environmental Sciences & Ecology; Zoology AJ4CO WOS:000337618100014 24286484 Bronze 2018-11-12 J Healy, K; Guillerme, T; Finlay, S; Kane, A; Kelly, SBA; McClean, D; Kelly, DJ; Donohue, I; Jackson, AL; Cooper, N Healy, Kevin; Guillerme, Thomas; Finlay, Sive; Kane, Adam; Kelly, Sean B. A.; McClean, Deirdre; Kelly, David J.; Donohue, Ian; Jackson, Andrew L.; Cooper, Natalie Ecology and mode-of-life explain lifespan variation in birds and mammals PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article longevity; extrinsic mortality; MCMCglmm; volant; non-volant LONGEVITY; EVOLUTION; HISTORY; METABOLISM; MORTALITY; INSIGHTS; ANIMALS; CANCER; SIZE; TIME Maximum lifespan in birds and mammals varies strongly with body mass such that large species tend to live longer than smaller species. However, many species live far longer than expected given their body mass. This may reflect interspecific variation in extrinsic mortality, as life-history theory predicts investment in long-term survival is under positive selection when extrinsic mortality is reduced. Here, we investigate how multiple ecological and mode-of-life traits that should reduce extrinsic mortality (including volancy (flight capability), activity period, foraging environment and fossoriality), simultaneously influence lifespan across endotherms. Using novel phylogenetic comparative analyses and to our knowledge, the most species analysed to date (n = 1368), we show that, over and above the effect of body mass, the most important factor enabling longer lifespan is the ability to fly. Within volant species, lifespan depended upon when (day, night, dusk or dawn), but not where (in the air, in trees or on the ground), species are active. However, the opposite was true for non-volant species, where lifespan correlated positively with both arboreality and fossoriality. Our results highlight that when studying the molecular basis behind cellular processes such as those underlying lifespan, it is important to consider the ecological selection pressures that shaped them over evolutionary time. [Healy, Kevin; Guillerme, Thomas; Finlay, Sive; Kane, Adam; Kelly, Sean B. A.; McClean, Deirdre; Kelly, David J.; Donohue, Ian; Jackson, Andrew L.; Cooper, Natalie] Trinity Coll Dublin, Sch Nat Sci, Dublin 2, Ireland; [Healy, Kevin; Guillerme, Thomas; Finlay, Sive; Kane, Adam; Kelly, Sean B. A.; McClean, Deirdre; Kelly, David J.; Donohue, Ian; Jackson, Andrew L.; Cooper, Natalie] Trinity Coll Dublin, Trinity Ctr Biodivers Res, Dublin 2, Ireland Healy, K (reprint author), Trinity Coll Dublin, Sch Nat Sci, Dublin 2, Ireland. healyke@tcd.ie Jackson, Andrew/D-3441-2009; Cooper, Natalie/I-7976-2012; Donohue, Ian/A-7270-2010; Finlay, Sive/K-2932-2014; Kane, Adam/H-6449-2013; Healy, Kevin/H-6512-2013; Guillerme, Thomas/G-9833-2014 Jackson, Andrew/0000-0001-7334-0434; Cooper, Natalie/0000-0003-4919-8655; Donohue, Ian/0000-0002-4698-6448; Finlay, Sive/0000-0001-5100-4819; Kane, Adam/0000-0002-2830-5338; Healy, Kevin/0000-0002-3548-6253; Guillerme, Thomas/0000-0003-4325-1275; Kelly, David/0000-0002-5880-4162; Kelly, Sean/0000-0002-3078-8404 Earth and Natural Sciences (ENS) Doctoral Studies Programme; Higher Education Authority (HEA) through the Programme for Research at Third Level Institutions [PRTLI-5]; European Regional Development Fund (ERDF); IRC Embark Initiative Postgraduate Scholarship; Trinity College Dublin; EU INTERREG IVA Cross-border Programme [002862]; European Commission CORDIS [321696]; Science Foundation Ireland Funding was provided by the Earth and Natural Sciences (ENS) Doctoral Studies Programme, funded by the Higher Education Authority (HEA) through the Programme for Research at Third Level Institutions, Cycle 5 (PRTLI-5), co-funded by the European Regional Development Fund (ERDF) (K. H.); IRC Embark Initiative Postgraduate Scholarship (S. F.); Trinity College Dublin (T. G., A. K., S. K.), the EU INTERREG IVA Cross-border Programme-funded DOLMANT Project (ref. no: 002862; D. M.) and European Commission CORDIS Seventh Framework Programme (FP7) Marie Curie CIG grant (proposal no: 321696; N.C.). All calculations were performed on the Lonsdale cluster maintained by the Trinity Centre for High Performance Computing. This cluster was funded through grants from Science Foundation Ireland. AUSTAD SN, 1991, J GERONTOL, V46, pB47, DOI 10.1093/geronj/46.2.B47; Bininda-Emonds ORP, 2007, NATURE, V446, P507, DOI 10.1038/nature05634; Buffenstein Rochelle, 2002, Sci Aging Knowledge Environ, V2002, ppe7, DOI 10.1126/sageke.2002.21.pe7; Byrnes G, 2011, INTEGR COMP BIOL, V51, P991, DOI 10.1093/icb/icr069; CRAMP S, 1977, HDB BIRDS EUROPE MID, V1; de Magalhaes JP, 2009, J EVOLUTION BIOL, V22, P1770, DOI 10.1111/j.1420-9101.2009.01783.x; de Magalhaes JP, 2007, J GERONTOL A-BIOL, V62, P149; Depczynski M, 2005, CURR BIOL, V15, pR288, DOI 10.1016/j.cub.2005.04.016; Elliott A, 1992, HDB BIRDS WORLD, V1; Fry HC, 2010, KINGFISHERS BEE EATE; Gelman A, 1992, STAT SCI, V7, P457, DOI DOI 10.1214/SS/1177011136; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Harvey P. H., 1991, COMP METHOD EVOLUTIO; Holmes DJ, 2003, EXP GERONTOL, V38, P1365, DOI 10.1016/j.exger.2003.10.018; HOLMES DJ, 1994, J MAMMAL, V75, P224, DOI 10.2307/1382255; Hulbert AJ, 2007, PHYSIOL REV, V87, P1175, DOI 10.1152/physrev.00047.2006; Jetz W, 2012, NATURE, V491, P444, DOI 10.1038/nature11631; Juniper T., 2003, PARROTS GUIDE PARROT; Kuhn TS, 2011, METHODS ECOL EVOL, V2, P427, DOI 10.1111/j.2041-210X.2011.00103.x; LINDSTEDT SL, 1981, Q REV BIOL, V56, P1, DOI 10.1086/412080; Nowak R.M., 1999, WALKERS MAMMALS WORL; PARTRIDGE L, 1993, NATURE, V362, P305, DOI 10.1038/362305a0; PETO R, 1975, BRIT J CANCER, V32, P411, DOI 10.1038/bjc.1975.242; Plummer M., 2006, R NEWS, V6, P7, DOI DOI 10.1159/000323281; POMEROY D, 1990, BIOL J LINN SOC, V40, P53, DOI 10.1111/j.1095-8312.1990.tb00534.x; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; PROMISLOW DEL, 1993, J GERONTOL, V48, pB115, DOI 10.1093/geronj/48.4.B115; R Development Core Team, 2012, R LANG ENV STAT COMP; Reisz RR, 2004, TRENDS GENET, V20, P237, DOI 10.1016/j.tig.2004.03.007; Ricklefs RE, 2001, EXP GERONTOL, V36, P845, DOI 10.1016/S0531-5565(00)00245-X; Ricklefs RE, 2010, P NATL ACAD SCI USA, V107, P10314, DOI 10.1073/pnas.1005862107; Ricklefs RE, 2010, AGING CELL, V9, P273, DOI 10.1111/j.1474-9726.2009.00542.x; Shattuck MR, 2010, P NATL ACAD SCI USA, V107, P4635, DOI 10.1073/pnas.0911439107; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tacutu R, 2013, NUCLEIC ACIDS RES, V41, pD1027, DOI 10.1093/nar/gks1155; Tian X, 2013, NATURE, V499, P346, DOI 10.1038/nature12234; Wilkinson GS, 2002, AGING CELL, V1, P124, DOI 10.1046/j.1474-9728.2002.00020.x; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Williams TD, 1995, PENGUINS SPHENISCIDA; Wilson DE, 2005, MAMMAL SPECIES WORLD; Zhang GJ, 2013, SCIENCE, V339, P456, DOI 10.1126/science.1230835 41 49 50 5 122 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. JUN 7 2014 281 1784 20140298 10.1098/rspb.2014.0298 7 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology AG4IJ WOS:000335382700020 24741018 Other Gold, Green Published 2018-11-12 J Hussell, DJT; Bairlein, F; Dunn, EH Hussell, David J. T.; Bairlein, Franz; Dunn, Erica H. Double Brooding by the Northern Wheatear on Baffin Island ARCTIC English Article second brood; Northern Wheatear; Oenanthe oenanthe; Arctic passerine; life-history theory Most Arctic-breeding passerines raise a single brood in a season, presumably because the short Arctic summer does not provide sufficient time to raise a second brood. Here we document the first cases of two broods being raised or attempted, after successful fledging of a first brood, in an Arctic-breeding population of Northern Wheatears Oenanthe oenanthe, at Iqaluit, Nunavut, Canada, in 2010 and 2011. In one case, the same pair was involved in raising both broods. In a second case, the female that raised the first brood was mated to a different male for her second brood. In a third case, it was not known whether the same male was involved in a female's attempt to raise two broods. The three females that attempted to raise two broods started their first clutches four to six days earlier than the estimated median date of laying first eggs and represented about 6% of all female g in the study population. Potential constraints on raising two broods include not only the shortness of the summer season but also the nature and abundance of the food supply, trade-offs between the success of the first brood and that of the second brood, and effects of the one- and two-brood strategies on the survival and future reproductive output of the adults. [Hussell, David J. T.] Ontario Minist Nalural Resources, Wildlife Res & Dev Sect, Peterborough, ON K9J 7B8, Canada; [Bairlein, Franz] Inst Avian Res Vogelwarte Helgoland, D-26386 Wilhelmshaven, Germany; [Dunn, Erica H.] Carleton Univ, Environm Canada, Natl Wildlife Res Ctr, Ottawa, ON K1A 0H3, Canada Hussell, DJT (reprint author), Ontario Minist Nalural Resources, Wildlife Res & Dev Sect, 2140 East Bank Dr, Peterborough, ON K9J 7B8, Canada. david.hussell@ontario.ca Deutsche Forschungsgemeinschaft [BA 816/15-4]; Bird Studies Canada Thanks to M. Bulte, J. Hussell, R. Nagel, D.R Norris, D. Strickland, and M.T. Ravers for assistance with fieldwork, particularly finding some of the nests reported here and trapping adults. R. Armstrong and M.E. Thomas, Nunavut Research Institute, and M. Mallory, Canadian Wildlife Service, contributed in various ways to facilitating our research in Iqaluit. F. Bairlein was supported by a Deutsche Forschungsgemeinschaft (BA 816/15-4) grant, and E.H. Dunn and D.J.T. Hussell were partially supported by Bird Studies Canada. Alekseeva N. S., 1986, ORNITOLOGIYA, V21, P145; [Anonymous], TITLE ERROR; Bairlein F, 2012, BIOL LETTERS, V8, P505, DOI 10.1098/rsbl.2011.1223; Beason R. C., 1995, BIRDS N AM ONLINE; Buchmann Martin, 2001, Vogelwarte, V41, P1; Conder P., 1989, THE WHEATEAR; CRAMP S., 1988, BIRDS W PALEARCTIC, V5; CUSTER TW, 1977, AUK, V94, P505; Hemborg C, 1998, BEHAV ECOL SOCIOBIOL, V43, P19, DOI 10.1007/s002650050462; Hendricks P, 2012, BIRDS N AM ONLINE, DOI [10.2173/bna.95, DOI 10.2173/BNA.95]; HUSSELL DJT, 1972, ECOL MONOGR, V42, P317, DOI 10.2307/1942213; Hussell DJT, 2002, BIRDS N AM ONLINE; Knox A. G., 2000, BIRDS N AM ONLINE; KREN J, 1997, BIRDS N AM ONLINE; LYNGS P, 2003, DANSK ORNITOLOGISK F, V97; Montgomerie RD, 2011, BIRDS N AM ONLINE; MORENO J, 1989, J ORNITHOL, V130, P321, DOI 10.1007/BF01644745; Murphy Mary E., 1996, P158; NICHOLSON E. M., 1930, IBIS, V6, P280; TROY DM, 1979, CONDOR, V81, P96, DOI 10.2307/1367868 20 2 3 1 16 ARCTIC INST N AMER CALGARY UNIV OF CALGARY 2500 UNIVERSITY DRIVE NW 11TH FLOOR LIBRARY TOWER, CALGARY, ALBERTA T2N 1N4, CANADA 0004-0843 1923-1245 ARCTIC Arctic JUN 2014 67 2 167 172 10.14430/arctic4387 6 Environmental Sciences; Geography, Physical Environmental Sciences & Ecology; Physical Geography AK2SK WOS:000338269600005 Bronze 2018-11-12 J Liao, WB; Lu, X; Jehle, R Liao, W. B.; Lu, X.; Jehle, R. Altitudinal variation in maternal investment and trade-offs between egg size and clutch size in the Andrew's toad JOURNAL OF ZOOLOGY English Article Bufo andrewsi; differentiation; reproductive output; trade-offs LIFE-HISTORY TRAITS; FROG BOMBINA-ORIENTALIS; GEOGRAPHIC-VARIATION; RANA-TEMPORARIA; NATURAL-SELECTION; BERGMANNS RULE; BODY-SIZE; ENVIRONMENTAL-QUALITY; LATITUDINAL VARIATION; REPRODUCTIVE OUTPUT Environmental variation along altitudinal gradients can promote life-history trait differentiation in ectothermic animals. Life-history theory predicts that increased environmental stress results in a shift in reproductive allocation from offspring quantity to quality and a stronger trade-off between egg size and clutch size. To test this prediction, we investigated patterns of variation in life-history traits (i.e. age, body size, clutch size and egg size) among four populations of Bufo andrewsi from Baoxing County, western China, at different altitudes. We found that body size, age, egg size and total reproductive output, but not clutch size, differed between populations. Clutch size and total reproductive output increased with female size and age. However, egg size decreased with female size and did not change with female age. The egg size and clutch size trade-off was evident for all populations except at lowest altitude, and the strength of trade-off between egg size and clutch size increased with altitude. Our findings suggest that environmental constraints at high altitude select for investment in larger eggs at a cost of offspring number. [Liao, W. B.] China West Normal Univ, Inst Rare Anim & Plants, Nanchong 637000, Peoples R China; [Liao, W. B.] Univ Helsinki, Dept Biol & Environm Sci, Ecol Genet Res Unit, Helsinki, Finland; [Lu, X.] Wuhan Univ, Dept Zool, Coll Life Sci, Wuhan 430072, Peoples R China; [Jehle, R.] Univ Salford, Sch Environm & Life Sci, Salford M5 4WT, Lancs, England Liao, WB (reprint author), China West Normal Univ, Inst Rare Anim & Plants, 1 Shida Rd, Nanchong 637000, Peoples R China. liaobo_0_0@126.com National Natural Science Foundation of China [31101633]; Sichuan Province Outstanding Youth Academic Technology Leaders Program [2013JQ0016]; Innovative Team Foundation of China West Normal University We are thankful to Professor Juha Merila from University of Helsinki and Dr Jun Hua Hu from Chengdu Institute of Biology, Chinese Academic of Science for the helpful comments in the paper. Financial support was provided by the National Natural Science Foundation of China (31101633), Sichuan Province Outstanding Youth Academic Technology Leaders Program (2013JQ0016) and the Innovative Team Foundation of China West Normal University. All animals used in the study were treated humanely and ethically following all animal care guidelines applicable in China. Altwegg R, 2003, EVOLUTION, V57, P872; Armbruster P, 2001, EVOLUTION, V55, P439; Ashton KG, 2000, AM NAT, V156, P390, DOI 10.1086/303400; Ashton KG, 2002, GLOBAL ECOL BIOGEOGR, V11, P505, DOI 10.1046/j.1466-822X.2002.00313.x; Bergmann C, 1847, GOTTINGER STUDIEN, V1, P595; BERVEN KA, 1982, EVOLUTION, V36, P962, DOI 10.1111/j.1558-5646.1982.tb05466.x; BERVEN KA, 1990, ECOLOGY, V71, P1599, DOI 10.2307/1938295; BERVEN KA, 1983, AM ZOOL, V23, P85; CUMMINS CP, 1986, J ANIM ECOL, V55, P303, DOI 10.2307/4710; Czarnoleski M, 1998, ECOL LETT, V1, P5, DOI 10.1046/j.1461-0248.1998.0007b.x; Duellman WE, 1986, BIOL AMPHIBIANS; Einum S, 2000, EVOLUTION, V54, P628, DOI 10.1111/j.0014-3820.2000.tb00064.x; Einum S, 1999, P ROY SOC B-BIOL SCI, V266, P2095, DOI 10.1098/rspb.1999.0893; ELMBERG J, 1991, FUNCT ECOL, V5, P340, DOI 10.2307/2389805; Fei L, 2001, COLOUR HDB AMPHIBIAN; FLEMING IA, 1990, ECOLOGY, V71, P1, DOI 10.2307/1940241; Frost DR, 2013, AMPHIBIAN SPECIES WO; HOWARD JH, 1985, AM MIDL NAT, V113, P361, DOI 10.2307/2425582; Johnston TA, 2002, ECOLOGY, V83, P1777, DOI 10.1890/0012-9658(2002)083[1777:MAEGIT]2.0.CO;2; Jorgensen C. Barker, 1992, P439; Kaplan RH, 2006, EVOLUTION, V60, P142; Kaplan RH, 1997, HERPETOLOGICA, V53, P149; Komoroski MJ, 1998, PHYSIOL ZOOL, V71, P633, DOI 10.1086/515989; Kozowska M., 1971, ACTA BIOL CRACOV Z, V14, P17; KURAMOTO M, 1978, EVOLUTION, V32, P287, DOI 10.1111/j.1558-5646.1978.tb00644.x; Laugen AT, 2003, J EVOLUTION BIOL, V16, P996, DOI 10.1046/j.1420-9101.2003.00560.x; Liao WB, 2011, BEHAVIOUR, V148, P1087, DOI 10.1163/000579511X589848; Liao WB, 2011, ANIM BIOL, V61, P263, DOI 10.1163/157075511X584218; Liao WB, 2010, HERPETOL J, V20, P77; Liao WB, 2010, ZOOL ANZ, V248, P255, DOI 10.1016/j.jcz.2009.10.002; Liao WB, 2009, BEHAV PROCESS, V82, P100, DOI 10.1016/j.beproc.2009.04.005; Liao WB, 2012, EVOL ECOL, V26, P579, DOI 10.1007/s10682-011-9501-y; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; Lu X, 2004, HERPETOL J, V14, P9; Lu X, 2006, CAN J ZOOL, V84, P1789, DOI 10.1139/Z06-180; Luddecke H, 2002, OECOLOGIA, V130, P403, DOI 10.1007/s00442-001-0820-5; Ma X, 2009, J ZOOL, V279, P364, DOI 10.1111/j.1469-7998.2009.00627.x; Macey JR, 1998, MOL PHYLOGENET EVOL, V9, P80, DOI 10.1006/mpev.1997.0440; Merila J, 2000, ECOSCIENCE, V7, P18, DOI 10.1080/11956860.2000.11682566; Miaud C, 1999, J ZOOL, V249, P61, DOI 10.1111/j.1469-7998.1999.tb01060.x; Morrison C, 2003, J ANIM ECOL, V72, P270, DOI 10.1046/j.1365-2656.2003.00696.x; Olsen EM, 2003, OIKOS, V100, P483, DOI 10.1034/j.1600-0706.2003.11900.x; Oromi N, 2012, ZOOLOGY, V115, P30, DOI 10.1016/j.zool.2011.08.003; PARICHY DM, 1992, OECOLOGIA, V91, P579, DOI 10.1007/BF00650334; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; Rasanen K, 2005, OECOLOGIA, V142, P546, DOI 10.1007/s00442-004-1762-5; Rasanen K, 2008, ECOLOGY, V89, P2553, DOI 10.1890/07-0168.1; Rensch B., 1950, Bonner Zoologische Beitraege, V1, P58; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; RIHA VF, 1991, COPEIA, P209, DOI 10.2307/1446264; Roff D. A., 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; Sacchi R, 2007, AMPHIBIA-REPTILIA, V28, P43, DOI 10.1163/156853807779799117; SEIGEL RA, 1992, FUNCT ECOL, V6, P382, DOI 10.2307/2389275; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S. C., 1992, EVOLUTION LIFE HIST; TEJEDO M, 1992, OECOLOGIA, V90, P294, DOI 10.1007/BF00317189; Wang YJ, 2011, ASIAN HERPETOL RES, V2, P97, DOI 10.3724/SP.J.1245.2011.00097; WELLS KD, 1977, ANIM BEHAV, V25, P666, DOI 10.1016/0003-3472(77)90118-X; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WILLIAMSON I, 1995, COPEIA, P105 61 19 21 2 39 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0952-8369 1469-7998 J ZOOL J. Zool. JUN 2014 293 2 84 91 10.1111/jzo.12122 8 Zoology Zoology AJ2WP WOS:000337525500003 2018-11-12 J Woodley, MA; Fernandes, HBF; Madison, G Woodley, Michael A.; Fernandes, Heitor B. F.; Madison, Guy Strategic differentiation-integration effort amongst the 47 prefectures of Japan PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Life history; SD-IE; K super factor; CPEM; Niche splitting; Japan; Asexuality LIFE-HISTORY THEORY; K-THEORY; GENERAL FACTOR; CLIMATE-CHANGE; SKIN COLOR; PERSONALITY; EVOLUTION; HEALTH; INCOME; IQ The strategic differentiation-integration effort (SD-IE) hypothesis holds that high-K (slow life history) individuals and populations are specialists with respect to domains of behavior and personality, and that the converse is true for low-K populations. Here, we examine SD-IE at the national level, amongst the 47 prefectures of Japan. Aggregate data on height, IQ, divorce, homicide rates, skin reflectance, fertility rates, income and infant mortality were used as life history indicators. Principal Axis Factor analysis revealed the presence of a K super-factor on which the first five of these loaded preferentially. A second factor loaded highly on income and fertility and a third on infant mortality. As Japan is among the highest-K countries, the extraction of three factors indicates strong underlying SD-IE. Amongst the five K super-factor variables. SD-IE confirmatory effects were recovered on all variables except IQ. The effect magnitudes were positively mediated by the K super-factor saturation of the indicators. We conclude that SD-IE appears to be highly general across different populations and measures of life-history traits. Finally, we discuss how the second and third factors appear to conform to recent social phenomena specific to the Japanese culture, namely increasing behavioral asexuality and high-quality universal health coverage. (c) 2014 Elsevier Ltd. All rights reserved. [Woodley, Michael A.; Madison, Guy] Umea Univ, Dept Psychol, S-90187 Umea, Sweden; [Woodley, Michael A.] Vrije Univ Brussel, Ctr Leo Apostel Interdisciplinary Studies, Brussels, Belgium; [Fernandes, Heitor B. F.] Univ Fed Rio Grande do Sul, Inst Psychol, Porto Alegre, RS, Brazil; [Fernandes, Heitor B. F.] Univ Fed Rio Grande do Sul, Inst Genet, Porto Alegre, RS, Brazil Woodley, MA (reprint author), Umea Univ, Dept Psychol, S-90187 Umea, Sweden. Michael.Woodley@psy.umu.se; heitor.barcellos@ufrgs.br; Guy.Madison@psy.umu.se Madison, Guy/0000-0001-5366-1169 Anderson GF, 1999, HEALTH AFFAIR, V18, P178, DOI 10.1377/hlthaff.18.3.178; Appleby R., 2013, PORTAL J MULTIDISCIP, V10, P1; Boutwell BB, 2013, PERS INDIV DIFFER, V55, P547, DOI 10.1016/j.paid.2013.04.018; Central Intelligence Agency, 2012, CIA WORLD FACTB 2012; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; Chen S., 2012, GENDER CULTURE CONSU, P285; Clark G, 2007, PRINC ECON HIST W WO, P1; Cleary T., 1999, CODE SAMURAI MODERN; Deacon C, 2013, MANGA GIRL SEEKS HER; Ducrest AL, 2008, TRENDS ECOL EVOL, V23, P502, DOI 10.1016/j.tree.2008.06.001; Dunbar RIM, 2010, MIND THE GAP: TRACING THE ORIGINS OF HUMAN UNIVERSALS, P315, DOI 10.1007/978-3-642-02725-3_15; Dunkel CS, 2014, PERS INDIV DIFFER, V61-62, P13, DOI 10.1016/j.paid.2013.12.017; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Fernandes HBF, 2013, PERS INDIV DIFFER, V55, P1000, DOI 10.1016/j.paid.2013.07.463; Figueredo A. J., 2013, J SOCIAL EVOLUTIONAR, V7, P361, DOI DOI 10.1037/H0099182; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2012, BEHAV BRAIN SCI, V35, P87, DOI 10.1017/S0140525X11000999; Figueredo AJ, 2009, TWIN RES HUM GENET, V12, P555, DOI 10.1375/twin.12.6.555; Gangestad S. W., 2011, EVOLUTION PERSONALIT, P338; Gordon A., 2008, MODERN HIST JAPAN TO; Gorsuch R. L., 2005, J SCI FACULTY CHIANG, V32, P21; Gorsuch R. L., 1983, FACTOR ANAL; HAIRSTON NG, 1970, J WILDLIFE MANAGE, V34, P681, DOI 10.2307/3799132; Harney A., 2009, SLATE MAGAZINE; Ishi-Kuntz M., 2008, EXP GROUP M EQ SHAR; ITO K, 1988, WASH QUART, V11, P35, DOI 10.1080/01636608809477692; Kura K, 2013, INTELLIGENCE, V41, P512, DOI 10.1016/j.intell.2013.07.001; Lakatos I., 1970, PSA P BIENN M PHIL S, P91, DOI DOI 10.1007/978-94-010-3142-4_7; MAC ARTHUR ROBERT H., 1967; Mackintosh JA, 2001, J THEOR BIOL, V211, P101, DOI 10.1006/jtbi.2001.2331; Meisenberg G, 2013, PERS INDIV DIFFER, V55, P273, DOI 10.1016/j.paid.2012.04.016; Murray AL, 2013, INTELLIGENCE, V41, P439, DOI 10.1016/j.intell.2013.06.007; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Rushton J., 2000, RACE EVOLUTION BEHAV; Rushton JP, 2010, PERS INDIV DIFFER, V48, P97, DOI 10.1016/j.paid.2009.07.029; Rushton JP, 2009, INTELLIGENCE, V37, P341, DOI 10.1016/j.intell.2009.04.003; Rushton JP, 2005, PSYCHOL PUBLIC POL L, V11, P235, DOI 10.1037/1076-8971.11.2.235; Rushton JP, 2002, POPUL ENVIRON, V23, P501, DOI 10.1023/A:1016335501805; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Sansom George, 1961, HIST JAPAN 1334 1615; Sansom George B, 1958, HIST JAPAN 1334; Shibuya K, 2011, LANCET, V378, P1265, DOI 10.1016/S0140-6736(11)61098-2; Templer DI, 2008, PERS INDIV DIFFER, V45, P440, DOI 10.1016/j.paid.2008.05.010; Templer DI, 2011, INTELLIGENCE, V39, P437, DOI 10.1016/j.intell.2011.08.001; United Nations Development Programme, 2013, HUM DEV REP RIS S HU; van Schaik Carel P., 2012, P220; WILSON DS, 1994, BEHAV BRAIN SCI, V17, P639, DOI 10.1017/S0140525X0003644X; Wilson EO, 1998, CONSILIENCE UNITY KN; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Woodley MA, 2014, PERS INDIV DIFFER, V57, P3, DOI 10.1016/j.paid.2013.09.010; Woodley MA, 2013, INTELLIGENCE, V41, P832, DOI 10.1016/j.intell.2013.02.002; Woodley MA, 2011, REV GEN PSYCHOL, V15, P228, DOI 10.1037/a0024348; Yong E, 2012, NATURE, V485, P298, DOI 10.1038/485298a; Zhang DD, 2007, P NATL ACAD SCI USA, V104, P19214, DOI 10.1073/pnas.0703073104; Zhang DD, 2011, P NATL ACAD SCI USA, V108, P17296, DOI 10.1073/pnas.1104268108 56 6 6 1 9 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. JUN 2014 63 64 68 10.1016/j.paid.2014.01.043 5 Psychology, Social Psychology AE6WH WOS:000334138200012 2018-11-12 J Dulvy, NK; Pardo, SA; Simpfendorfer, CA; Carlson, JK Dulvy, Nicholas K.; Pardo, Sebastian A.; Simpfendorfer, Colin A.; Carlson, John K. Diagnosing the dangerous demography of manta rays using life history theory PEERJ English Article CITES; Data-poor fisheries; Life history invariant; Wildlife trade; Euler-Lotka; Population growth rate; Accounting for uncertainty; Von Bertalanffy growth function; Ocean ivory; Chinese medicine EXTINCTION RISK; MARINE FISHES; GROWTH; CONSERVATION; ECOLOGY; SHARKS; REPRODUCTION; UNCERTAINTY; MORTALITY; SURVIVAL Background. The directed harvest and global trade in the gill plates of mantas, and devil rays, has led to increased fishing pressure and steep population declines in some locations. The slow life history, particularly of the manta rays, is cited as a key reason why such species have little capacity to withstand directed fisheries. Here, we place their life history and demography within the context of other sharks and rays. Methods. Despite the limited availability of data, we use life history theory and comparative analysis to estimate the intrinsic risk of extinction (as indexed by the maximum intrinsic rate of population increase r(max)) for a typical generic manta ray using a variant of the classic Euler-Lotka demographic model. This model requires only three traits to calculate the maximum intrinsic population growth rate r(max): von Bertalanffy growth rate, annual pup production and age at maturity. To account for the uncertainty in life history parameters, we created plausible parameter ranges and propagate these uncertainties through the model to calculate a distribution of the plausible range of rmax values. Results. The maximum population growth rate rmax of manta ray is most sensitive to the length of the reproductive cycle, and the median rmax of 0.116 year(-1) 95th percentile [0.089-0.139] is one of the lowest known of the 106 sharks and rays for which we have comparable demographic information. Discussion. In common with other unprotected, unmanaged, high-value largebodied sharks and rays the combination of very low population growth rates of manta rays, combined with the high value of their gill rakers and the international nature of trade, is highly likely to lead to rapid depletion and potential local extinction unless a rapid conservation management response occurs worldwide. Furthermore, we show that it is possible to derive important insights into the demography extinction risk of data-poor species using well-established life history theory. [Dulvy, Nicholas K.; Pardo, Sebastian A.] Simon Fraser Univ, Dept Biol Sci, Earth Ocean Res Grp, Burnaby, BC V5A 1S6, Canada; [Simpfendorfer, Colin A.] James Cook Univ, Ctr Sustainable Trop Fisheries & Aquaculture, Townsville, Qld 4811, Australia; [Simpfendorfer, Colin A.] James Cook Univ, Sch Earth & Environm Sci, Townsville, Qld 4811, Australia; [Carlson, John K.] NOAA, Natl Marine Fisheries Serv, Southeast Fisheries Sci Ctr, Panama City, FL USA Dulvy, NK (reprint author), Simon Fraser Univ, Dept Biol Sci, Earth Ocean Res Grp, Burnaby, BC V5A 1S6, Canada. dulvy@sfu.ca Simpfendorfer, Colin/G-9681-2011; CSTFA, ResearcherID/P-1067-2014 Simpfendorfer, Colin/0000-0002-0295-2238; Pardo, Sebastian A./0000-0002-4147-5796; Dulvy, Nicholas/0000-0002-4295-9725 Natural Science and Engineering Research Council, Canada; Canada Research Chairs program; Save Our Seas Foundation [235]; US State Department We thank the Natural Science and Engineering Research Council, Canada (NKD, SAP), the Canada Research Chairs program (NKD), Save Our Seas Foundation project #235 (NKD) and the US State Department contribution to IUCN (NKD) for funding. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Opinions expressed herein are of the authors only and do not imply endorsement by any agency or institution associated with the authors. Anderson SC, 2011, FISH FISH, V12, P317, DOI 10.1111/j.1467-2979.2010.00397.x; Baker CS, 2004, TRENDS ECOL EVOL, V19, P365, DOI 10.1016/j.tree.2004.05.005; Beddington JR, 2005, PHILOS T R SOC B, V360, P163, DOI 10.1098/rstb.2004.1582; Bennett M., 2014, PEERJ, DOI [10.7287/peerj.400v0.1/reviews/1, DOI 10.7287/PEERJ.400V0.1/REVIEWS/1]; Berkes F, 2006, SCIENCE, V311, P1557, DOI 10.1126/science.1122804; Beverton R. J. H., 1959, CIBA FDN C AGEING, V5, P142, DOI DOI 10.1002/9780470715253.CH10; Charnov E.L., 2012, FISH FISH, V14, P213, DOI DOI 10.1111/J.1467-2979.2012.00467.X; CHARNOV EL, 1993, AM NAT, V142, P707, DOI 10.1086/285565; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; Charnov EL, 2011, EVOL ECOL RES, V13, P431; CITES, 2007, INT IMPL CNV SPEC TR, P62; CITES, 2013, AM APP 1 2 CONV AD C, P8; Clark T. B., 2010, THESIS U HAWAII MANO; Clarke S, 2004, FISH FISH, V5, P53, DOI 10.1111/j.1467-2960.2004.00137.x; Clarke SC, 2006, ECOL LETT, V9, P1115, DOI 10.1111/j.1461-0248.2006.00968.x; Cortes E, 2002, CONSERV BIOL, V16, P1048, DOI 10.1046/j.1523-1739.2002.00423.x; Cortes Enric, 2000, Reviews in Fisheries Science, V8, P299, DOI 10.1080/10408340308951115; Couturier LIE, 2012, J FISH BIOL, V80, P1075, DOI 10.1111/j.1095-8649.2012.03264.x; Cuevas-Zimbron E, 2013, ENVIRON BIOL FISH, V96, P907, DOI 10.1007/s10641-012-0086-2; Dulvy N, 2010, SHARKS THEIR RELATIV, P635; Dulvy NK, 2014, ELIFE, V3, DOI 10.7554/eLife.00590; Dulvy NK, 2004, FISH FISH, V5, P255, DOI 10.1111/j.1467-2679.2004.00158.x; FAO, 2013, 4 FAO EXP ADV PAN AS, P169; Foster SJ, 2004, J FISH BIOL, V65, P1, DOI 10.1111/j.1095-8649.2004.00429.x; Frisk MG, 2001, CAN J FISH AQUAT SCI, V58, P969, DOI 10.1139/cjfas-58-5-969; Garcia VB, 2008, P R SOC B, V275, P83, DOI 10.1098/rspb.2007.1295; Gislason H, 2010, FISH FISH, V11, P149, DOI 10.1111/j.1467-2979.2009.00350.x; Goodwin NB, 2002, PHILOS T R SOC B, V357, P259, DOI 10.1098/rstb.2001.0958; Heinrichs S, 2011, MANTA RAY HOPE GLOBA; Heppell SS, 1999, AM FISH S S, V23, P137; HOENIG JM, 1983, FISH B US, V82, P898, DOI DOI 10.1890/04-0594; Hutchings JA, 1999, CAN J FISH AQUAT SCI, V56, P1612, DOI 10.1139/cjfas-56-9-1612; Hutchings JA, 2012, ECOL APPL, V22, P1061, DOI 10.1890/11-1313.1; IUCN/TRAFFIC, 2013, IUCN TRAFFIC AN PROP; Jennings S, 2008, P ROY SOC B-BIOL SCI, V275, P1375, DOI 10.1098/rspb.2008.0192; Jennings S, 2008, ADVANCES IN FISHERIES SCIENCE: 50 YEARS ON FROM BEVERTON AND HOLT, P434, DOI 10.1002/9781444302653.ch18; Jensen AL, 1996, CAN J FISH AQUAT SCI, V53, P820, DOI 10.1139/cjfas-53-4-820; Law R, 1979, POPULATION DYNAMICS, P81; Lenzen M, 2012, NATURE, V486, P109, DOI 10.1038/nature11145; LUDWIG D, 1993, SCIENCE, V260, P17, DOI 10.1126/science.260.5104.17; Magnusson A, 2013, FISH FISH, V14, P325, DOI 10.1111/j.1467-2979.2012.00473.x; Marshall A, 2011, MANTA BIROSTRIS; Marshall AD, 2011, MAR BIOL, V158, P1111, DOI 10.1007/s00227-011-1634-6; Marshall AD, 2010, J FISH BIOL, V77, P169, DOI 10.1111/j.1095-8649.2010.02669.x; Marshall AD, 2011, MANTA ALFREDI; Marshall AD, 2009, ZOOTAXA, P1; MARTIN LK, 1988, COPEIA, P754; MUNDYTAYLOR V, 2013, DEEP IMPLEMENTING CI, P106; Musick JA, 1998, FISHERIES, V23, P28; Musick JA, 1999, FISHERIES, V24, P6, DOI 10.1577/1548-8446(1999)024<0006:CTDERI>2.0.CO;2; Myers RA, 1998, ECOL APPL, V8, pS165, DOI 10.2307/2641375; Neer JA, 2005, ENVIRON BIOL FISH, V73, P321, DOI 10.1007/s10641-005-2136-5; O'Malley MP, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0065051; Pardo S, 2012, CRITICAL REV ANAL EX; Pardo SA, 2013, METHODS ECOL EVOL, V4, P353, DOI 10.1111/2041-210x.12020; Pauly D, 2002, P INT SEM WORKSH JUL, P199; Peterman RM, 2004, ICES J MAR SCI, V61, P1331, DOI 10.1016/j.icesjms.2004.08.017; Phillis CC, 2013, CONSERV LETT, V6, P98, DOI 10.1111/j.1755-263X.2012.00294.x; POPE JG, 1994, PHILOS T ROY SOC B, V343, P41, DOI 10.1098/rstb.1994.0006; Pope JG, 2000, ICES J MAR SCI, V57, P689, DOI 10.1006/jmsc.2000.0729; R Core Team, 2013, R LANG ENV STAT COMP; Sadovy Y, 2003, FISH FISH, V4, P86, DOI 10.1046/j.1467-2979.2003.00104.x; Sadovy Yvonne J., 2002, P391, DOI 10.1016/B978-012615185-5/50023-2; Simpfendorfer C. A., 2005, ELASMOBRANCH FISHERI, P187; Simpfendorfer CA, 2009, ENVIRON CONSERV, V36, P97, DOI 10.1017/S0376892909990191; Smart JJ, 2013, AQUAT CONSERV, V23, P124, DOI 10.1002/aqc.2274; Smith SE, 1998, MAR FRESHWATER RES, V49, P663, DOI 10.1071/MF97135; Thorson JT, 2009, FISH RES, V98, P75, DOI 10.1016/j.fishres.2009.03.016; Town C, 2013, ECOL EVOL, V3, P1902, DOI 10.1002/ece3.587; Vincent ACJ, 2014, FISH FISH, V15, P563, DOI 10.1111/faf.12035; Ward-Paige CA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074835; Wintner SP, 2000, ENVIRON BIOL FISH, V59, P441, DOI 10.1023/A:1026564707027; Yamaguchi A, 2005, ENVIRON BIOL FISH, V74, P229, DOI 10.1007/s10641-005-0217-0 73 32 33 2 44 PEERJ INC LONDON 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND 2167-8359 PEERJ PeerJ MAY 27 2014 2 e400 10.7717/peerj.400 19 Multidisciplinary Sciences Science & Technology - Other Topics AY5JL WOS:000347608300003 24918029 DOAJ Gold, Green Published 2018-11-12 J Hua, FY; Sieving, KE; Fletcher, RJ; Wright, CA Hua, Fangyuan; Sieving, Kathryn E.; Fletcher, Robert J., Jr.; Wright, Chloe A. Increased perception of predation risk to adults and offspring alters avian reproductive strategy and performance BEHAVIORAL ECOLOGY English Article adult; avian reproduction; life-history theory; offspring; perceived predation risk LIFE-HISTORY EVOLUTION; NEST PREDATION; CLUTCH SIZE; PREY INTERACTIONS; COLLARED FLYCATCHER; HABITAT SELECTION; PHENOTYPIC PLASTICITY; POECILIA-RETICULATA; DECISION-MAKING; AMERICAN BIRDS Predation risk can inflict profound effects on prey by influencing prey behavior and other traits. Prey are often subjected to a diversity of predators, which can exert differential predation pressures on prey life-history strategies. In birds, breeding adults and offspring (as eggs, nestlings, and fledglings) are susceptible to different types of predators, and life-history theory predicts that breeding birds can adjust to adult versus offspring predation risk differentially via allocation of breeding investment. Here, we experimentally tested for the effects of perceived adult versus offspring predation risk on breeding birds' reproductive strategy and performance. On study plots with nest boxes used by the cavity-nesting Eastern bluebird Sialia sialis, we manipulated vocal cues of 3 avian predators that preferentially prey on either bluebird adults, or offspring, or both. We found that 1) increased perception of predation risk by all predator treatments reduced bluebird parental investment in egg production and/or post-egg nesting performance, and 2) increased perception of adult and offspring predation risks affected bluebirds differentially, with bluebirds exhibiting shorter nestling rearing periods under offspring, but not adult, predation risk. Our results provide experimental evidence for the nonconsumptive effects of predation risk on avian breeding behavior that can influence demographic vital rates and highlight the mechanisms by which breeding birds can adjust reproductive strategies under different predation risk situations. [Hua, Fangyuan; Sieving, Kathryn E.; Fletcher, Robert J., Jr.; Wright, Chloe A.] Univ Florida, Dept Wildlife Ecol & Conservat, Gainesville, FL 32611 USA; [Hua, Fangyuan] Univ Florida, Sch Nat Resources & Environm, Gainesville, FL 32611 USA Hua, FY (reprint author), Princeton Univ, Woodrow Wilson Sch Publ & Int Affairs, Program Sci Technol & Environm Policy, Princeton, NJ 08544 USA. slcyane@gmail.com Fletcher, Robert/0000-0003-1717-5707; Sieving, Kathryn/0000-0002-0849-8101 School of Natural Resources and Environment (University of Florida); University of Florida; Department of Wildlife Ecology and Conservation (University of Florida) This study is supported by the Department of Wildlife Ecology and Conservation (University of Florida; field expenses to R.J.F. Jr. and K. E. S.), Ordway-Swisher Biological Station (logistical support), and School of Natural Resources and Environment (University of Florida; PhD Program Fellowship to F.H.).; We thank S. Coates and the Ordway-Swisher Biological Station for use of field sites and logistic support and the University of Florida for financial support. We thank S. K. Robinson for helpful discussion on research design. Special thanks go to I. Skinner and J. Yuan for arduous field assistance. We thank J. Colee for insights on statistical analysis. We thank D. J. Levey, J. Mappes, D. Blumstein, and 1 anonymous reviewer for critical comments that greatly improved the manuscript. Agrawal AA, 2001, SCIENCE, V294, P321, DOI 10.1126/science.1060701; ALATALO RV, 1984, BEHAV ECOL SOCIOBIOL, V14, P253, DOI 10.1007/BF00299496; Blaustein L, 2004, OECOLOGIA, V138, P300, DOI 10.1007/s00442-003-1398-x; Candolin U, 1998, P ROY SOC B-BIOL SCI, V265, P1171, DOI 10.1098/rspb.1998.0415; Creel S, 2008, TRENDS ECOL EVOL, V23, P194, DOI 10.1016/j.tree.2007.12.004; Creel S, 2007, SCIENCE, V315, P960, DOI 10.1126/science.1135918; Creel S, 2009, P NATL ACAD SCI USA, V106, P12388, DOI 10.1073/pnas.0902235106; Cresswell W, 2008, IBIS, V150, P3, DOI 10.1111/j.1474-919X.2007.00793.x; Curtis E, 2006, BIRDS N AM ONLINE; DeLuca J, 2008, THESIS U FLORIDA GAI, P17; Doligez B, 2003, ECOLOGY, V84, P2582, DOI 10.1890/02-3116; DRENT RH, 1980, ARDEA, V68, P225; DRILLING NE, 1991, AUK, V108, P60; Eggers S, 2006, P ROY SOC B-BIOL SCI, V273, P701, DOI 10.1098/rspb.2005.3373; Endler J.A., 1991, P169; Fletcher RJ, 2007, J ANIM ECOL, V76, P598, DOI 10.1111/j.1365-2656.2007.01230.x; Fletcher RJ, 2009, OIKOS, V118, P1139, DOI 10.1111/j.1600-0706.2009.17342.x; Florida Natural Areas Inventory, 2010, GUID NAT COMM FLOR; Fontaine JJ, 2006, ECOL LETT, V9, P428, DOI 10.1111/j.1461-0248.2006.00892.x; FRASER DF, 1992, ECOLOGY, V73, P959, DOI 10.2307/1940172; FRETWELL SD, 1972, POPULATIONS SEASONAL; Gauthreaux S.A. Jr, 1978, Perspectives in Ethology, V3, P17; Gehlbach FR, 1995, BIRDS N AM ONLINE; Ghalambor CK, 2000, ANIM BEHAV, V60, P263, DOI 10.1006/anbe.2000.1472; Greenwood JL, 2011, J RAPTOR RES, V45, P15, DOI 10.3356/JRR-10-26.1; HOCHACHKA W, 1990, ECOLOGY, V71, P1279, DOI 10.2307/1938265; HOYT DF, 1979, AUK, V96, P73; Hua FY, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.0762; Kluyver H.N., 1977, P153; KOSKELA E, 1995, BEHAV ECOL, V6, P311, DOI 10.1093/beheco/6.3.311; Lasley-Rasher RS, 2012, LIMNOL OCEANOGR, V57, P433, DOI 10.4319/lo.2012.57.2.0433; LIANG KY, 1986, BIOMETRIKA, V73, P13, DOI 10.2307/2336267; LIMA SL, 1993, WILSON BULL, V105, P1; LIMA SL, 1987, ECOLOGY, V68, P1062, DOI 10.2307/1938378; Lima SL, 1998, BIOSCIENCE, V48, P25, DOI 10.2307/1313225; Lima SL, 1998, ADV STUD BEHAV, V27, P215; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Lima SL, 2009, BIOL REV, V84, P485, DOI 10.1111/j.1469-185X.2009.00085.x; MAGNHAGEN C, 1991, TRENDS ECOL EVOL, V6, P183, DOI 10.1016/0169-5347(91)90210-O; Maier TJ, 2000, CONDOR, V102, P325, DOI 10.1650/0010-5422(2000)102[0325:POJQVH]2.0.CO;2; Maron JL, 2010, ECOLOGY, V91, P3719, DOI 10.1890/10-0160.1; Martin T.E., 1992, Current Ornithology, V9, P163; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; Martin TE, 2011, EVOLUTION, V65, P1607, DOI 10.1111/j.1558-5646.2011.01227.x; Martin TE, 2009, ANN NY ACAD SCI, V1168, P201, DOI 10.1111/j.1749-6632.2009.04577.x; McCallum CA, 2001, CONDOR, V103, P192, DOI 10.1650/0010-5422(2001)103[0192:APOARN]2.0.CO;2; McLennan JA, 1996, NEW ZEAL J ECOL, V20, P27; Monkkonen M, 2009, BIOL LETTERS, V5, P176, DOI 10.1098/rsbl.2008.0631; MONTGOMERIE RD, 1988, Q REV BIOL, V63, P167, DOI 10.1086/415838; Nest Box Resource Center, 2013, NEST BOX PLAC; Nocera JJ, 2008, BEHAV ECOL SOCIOBIOL, V62, P1769, DOI 10.1007/s00265-008-0605-5; Orrock JL, 2013, ECOLOGY, V94, P573, DOI 10.1890/12-0502.1; Pan W, 2001, BIOMETRICS, V57, P120, DOI 10.1111/j.0006-341X.2001.00120.x; PART T, 1991, AM NAT, V138, P790, DOI 10.1086/285252; PART T, 1994, ANIM BEHAV, V48, P401, DOI 10.1006/anbe.1994.1254; Peckarsky BL, 2008, ECOLOGY, V89, P2416, DOI 10.1890/07-1131.1; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Poole A., 1998, BIRDS N AM ONLINE; Preisser EL, 2005, ECOLOGY, V86, P501, DOI 10.1890/04-0719; Preisser EL, 2007, ECOLOGY, V88, P2744, DOI 10.1890/07-0260.1; R Core Team, 2013, R LANG ENV STAT COMP; REED JM, 1993, TRENDS ECOL EVOL, V8, P253, DOI 10.1016/0169-5347(93)90201-Y; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; RODENHOUSE NL, 1992, ECOLOGY, V73, P357, DOI 10.2307/1938747; SAFRIEL UN, 1975, ECOLOGY, V56, P703, DOI 10.2307/1935505; Scheuerlein A, 2001, P ROY SOC B-BIOL SCI, V268, P1575, DOI 10.1098/rspb.2001.1691; Schmitz OJ, 1997, ECOLOGY, V78, P1388; Schneider NA, 2013, BEHAV ECOL, V24, P47, DOI 10.1093/beheco/ars134; SIEGEL HS, 1980, BIOSCIENCE, V30, P529, DOI 10.2307/1307973; Sih A., 1987, P203; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; SLAGSVOLD T, 1984, J ANIM ECOL, V53, P945, DOI 10.2307/4669; SMITH HG, 1987, AUK, V104, P700; Stanback MT, 2003, AUK, V120, P1029, DOI 10.1642/0004-8038(2003)120[1029:NFIEBS]2.0.CO;2; Stout RL, 2002, RECENT DEV ALCOHOL, V16, P39, DOI 10.1007/0-306-47939-7_5; Stracey CM., 2010, THESIS U FLORIDA GAI, P62; STUTCHBURY BJ, 1987, CONDOR, V89, P587, DOI 10.2307/1368647; Tarvin KA, 1999, BIRDS N AM ONLINE; Templeton CN, 2004, BEHAV ECOL, V15, P673, DOI 10.1093/beheco/arh065; Thomson DL, 1998, BIOL REV, V73, P293, DOI 10.1017/S0006323198005180; Thomson RL, 2006, ECOGRAPHY, V29, P507; Thomson RL, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0052226; USDA Natural Resources Conservation Service, 1999, FISH WILDL HAB MAN L, P12; VANHORNE B, 1983, J WILDLIFE MANAGE, V47, P893; WARKENTIN KM, 1995, P NATL ACAD SCI USA, V92, P3507, DOI 10.1073/pnas.92.8.3507; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WINGFIELD JC, 1986, HORM BEHAV, V20, P405, DOI 10.1016/0018-506X(86)90003-6; Wisenden BD, 1993, CAN J ZOOL, V71, P251; Zanette LY, 2011, SCIENCE, V334, P1398, DOI 10.1126/science.1210908 93 23 23 2 99 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 1465-7279 BEHAV ECOL Behav. Ecol. MAY-JUN 2014 25 3 509 519 10.1093/beheco/aru017 11 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology AH9TQ WOS:000336486100015 Bronze 2018-11-12 J Galvez, D; Chapuisat, M Galvez, Dumas; Chapuisat, Michel Immune priming and pathogen resistance in ant queens ECOLOGY AND EVOLUTION English Article formicine ants; immune priming; immunity; life-history; life span; mating SOCIALLY POLYMORPHIC ANT; IMPORTED FIRE ANT; TRADE-OFF; INSECT; INVERTEBRATES; DROSOPHILA; DIFFERENTIATION; REPRODUCTION; PROPHYLAXIS; HYMENOPTERA Growing empirical evidence indicates that invertebrates become more resistant to a pathogen following initial exposure to a nonlethal dose; yet the generality, mechanisms, and adaptive value of such immune priming are still under debate. Because life-history theory predicts that immune priming and large investment in immunity should be more frequent in long-lived species, we here tested for immune priming and pathogen resistance in ant queens, which have extraordinarily long life span. We exposed virgin and mated queens of Lasius niger and Formica selysi to a low dose of the entomopathogenic fungus Beauveria bassiana, before challenging them with a high dose of the same pathogen. We found evidence for immune priming in naturally mated queens of L.niger. In contrast, we found no sign of priming in virgin queens of L.niger, nor in virgin or experimentally mated queens of F.selysi, which indicates that immune priming in ant queens varies according to mating status and mating conditions or species. In both ant species, mated queens showed higher pathogen resistance than virgin queens, which suggests that mating triggers an up-regulation of the immune system. Overall, mated ant queens combine high reproductive output, very long life span, and elevated investment in immune defense. Hence, ant queens are able to invest heavily in both reproduction and maintenance, which can be explained by the fact that mature queens will be protected and nourished by their worker offspring. [Galvez, Dumas; Chapuisat, Michel] Univ Lausanne, Dept Ecol & Evolut, UNIL Sorge, CH-1015 Lausanne, Switzerland Chapuisat, M (reprint author), Univ Lausanne, Dept Ecol & Evolut, UNIL Sorge, CH-1015 Lausanne, Switzerland. Michel.Chapuisat@unil.ch Chapuisat, Michel/T-8686-2017 Chapuisat, Michel/0000-0001-7207-199X Swiss National Science Foundation; Societe Academique Vaudoise; University of Lausanne Swiss National Science Foundation; Societe Academique Vaudoise; University of Lausanne. Adamo SA, 2004, ANIM BEHAV, V68, P1443, DOI 10.1016/j.anbehav.2004.05.005; Baer B, 2006, NATURE, V441, P872, DOI 10.1038/nature04698; Best A, 2013, J R SOC INTERFACE, V10, DOI 10.1098/rsif.2012.0887; Castella G, 2009, J EVOLUTION BIOL, V22, P564, DOI 10.1111/j.1420-9101.2008.01664.x; Chapuisat M, 2004, EVOLUTION, V58, P1064; Cronin AL, 2013, ANNU REV ENTOMOL, V58, P37, DOI 10.1146/annurev-ento-120811-153643; De Loof A, 2011, J INSECT PHYSIOL, V57, P1, DOI 10.1016/j.jinsphys.2010.08.018; Garnier R, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0017; Gonzalez-Tokman DM, 2010, PHYSIOL ENTOMOL, V35, P364, DOI 10.1111/j.1365-3032.2010.00752.x; Hamilton C, 2011, BIOL LETTERS, V7, P89, DOI 10.1098/rsbl.2010.0466; Hauton C, 2007, BIOESSAYS, V29, P1138, DOI 10.1002/bies.20650; Heinze J, 2013, BEHAV ECOL SOCIOBIOL, V67, P1555, DOI 10.1007/s00265-013-1567-9; HOLM S, 1979, SCAND J STAT, V6, P65; Jemielity S, 2005, AGE, V27, P241, DOI 10.1007/s11357-005-2916-z; Kafle L, 2011, PEST MANAG SCI, V67, P1434, DOI 10.1002/ps.2192; Kamimura Y, 2007, INSECT SOC, V55, P51; Keller L, 1997, NATURE, V389, P958, DOI 10.1038/40130; Keller L, 1998, INSECT SOC, V45, P235, DOI 10.1007/s000400050084; Konrad M, 2012, PLOS BIOL, V10, DOI 10.1371/journal.pbio.1001300; Lawniczak MKN, 2007, TRENDS ECOL EVOL, V22, P48, DOI 10.1016/j.tree.2006.09.012; Little TJ, 2004, TRENDS ECOL EVOL, V19, P58, DOI 10.1016/j.tree.2003.11.011; Peng J, 2005, CURR BIOL, V15, P1690, DOI 10.1016/j.cub.2005.08.048; Pham LN, 2007, PLOS PATHOG, V3, DOI 10.1371/journal.ppat.0030026; Purcell J, 2013, EVOLUTION, V67, P1169, DOI 10.1111/evo.12010; R Development Core Team, 2013, R LANG ENV STAT COMP; Reber A, 2012, INSECT SOC, V59, P231, DOI 10.1007/s00040-011-0209-3; Reber A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0035372; Reber A, 2010, ANIM BEHAV, V79, P467, DOI 10.1016/j.anbehav.2009.11.030; Rodrigues J, 2010, SCIENCE, V329, P1353, DOI 10.1126/science.1190689; Rolff J, 2002, P NATL ACAD SCI USA, V99, P9916, DOI 10.1073/pnas.152271999; Rolff J., 2009, INSECT INFECT IMMUNI; Rosengaus RB, 1999, NATURWISSENSCHAFTEN, V86, P588, DOI 10.1007/s001140050679; Rosengaus RB, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0563; Rosset H, 2007, EVOL ECOL, V21, P577, DOI 10.1007/s10682-006-9139-3; Roth O, 2010, J ANIM ECOL, V79, P403, DOI 10.1111/j.1365-2656.2009.01617.x; Rowley AF, 2007, J IMMUNOL, V179, P7209, DOI 10.4049/jimmunol.179.11.7209; Rus F, 2013, EMBO J, V32, P1626, DOI 10.1038/emboj.2013.100; Sadd BM, 2005, BIOL LETT-UK, V1, P386, DOI 10.1098/rsbl.2005.0369; Sadd BM, 2006, CURR BIOL, V16, P1206, DOI 10.1016/j.cub.2006.04.047; Sanjayan KP, 1996, J BIOSCIENCE, V21, P781, DOI 10.1007/BF02704719; Schmid-Hempel P, 2009, PHILOS T R SOC B, V364, P85, DOI 10.1098/rstb.2008.0157; Schneider SA, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0014601; Shoemaker KL, 2006, ANIM BEHAV, V71, P371, DOI 10.1016/j.anbehav.2005.05.007; Stahlschmidt ZR, 2013, FUNCT ECOL, V27, P800, DOI 10.1111/1365-2435.12071; SZATHMARY E, 1995, NATURE, V374, P227, DOI 10.1038/374227a0; ter Braak B, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0073600; Tian HS, 2004, INSECT BIOCHEM MOLEC, V34, P937, DOI 10.1016/j.ibmb.2004.06.004; Tidbury HJ, 2011, P ROY SOC B-BIOL SCI, V278, P871, DOI 10.1098/rspb.2010.1517; Traniello JFA, 2002, P NATL ACAD SCI USA, V99, P6838, DOI 10.1073/pnas.102176599; Ugelvig LV, 2007, CURR BIOL, V17, P1967, DOI 10.1016/j.cub.2007.10.029; Valtonen TM, 2010, PARASITOLOGY, V137, P985, DOI 10.1017/S0031182009992009; Wilson EO, 1990, ANTS; Zanchi C, 2012, P ROY SOC B-BIOL SCI, V279, P3223, DOI 10.1098/rspb.2012.0493; Zuk M, 2002, AM NAT, V160, pS9, DOI 10.1086/342131 54 12 12 1 51 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. MAY 2014 4 10 1761 1767 10.1002/ece3.1070 7 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology AH9VC WOS:000336491600004 24963375 DOAJ Gold, Green Published 2018-11-12 J Jorgensen, C; Opdal, AF; Fiksen, O Jorgensen, Christian; Opdal, Anders Frugard; Fiksen, Oyvind Can behavioural ecology unite hypotheses for fish recruitment? ICES JOURNAL OF MARINE SCIENCE English Article adaptations; larval fish behaviour; life history theory; recruitment success; trade-offs NORTHEAST ARCTIC COD; ANCHOVY ENGRAULIS-JAPONICUS; ENERGY ACQUISITION RATES; TRADE-OFFS; INTRINSIC GROWTH; MENIDIA-MENIDIA; GADUS-MORHUA; SWIMMING PERFORMANCE; SELECTIVE PREDATION; PELAGIC ECOSYSTEM Since the classical works by Hjort linked the survival of early life stages of fish to year-class strength and recruitment, fisheries science has struggled to understand the fate of fish eggs and larvae. Here we discuss how food availability will influence growth and survival of larvae when foraging behaviour is flexible and involves predation risk. We use theory to show that small larval fish with a high risk of predation should nevertheless forage intensely and maintain high growth rates. The implication of this is that food availability is more important to recruitment success than is often assumed from studies of growth rate, since the main effect of low food availability appears as increased predation rates. As larvae develop and grow bigger, they are expected to tailor their behaviour to balance food intake and predation risk, which makes it more probable that environmental fluctuations will cause growth differences. A theoretical framework including larval behaviour thus illustrates how several existing hypotheses, i.e. "bigger is better", "stage duration", and "growth-selective predation", emphasize different aspects of larval success but can be understood more generally and coherently when interpreted in the light of behavioural trade-offs. This may lead to more consistent consideration of larval behaviour in biophysical models of fish recruitment. [Jorgensen, Christian; Opdal, Anders Frugard; Fiksen, Oyvind] Uni Res, N-5020 Bergen, Norway; [Fiksen, Oyvind] Univ Bergen, Dept Biol, N-5020 Bergen, Norway Jorgensen, C (reprint author), Uni Res, POB 7810, N-5020 Bergen, Norway. Christian.Jorgensen@uni.no Fiksen, Oyvind/F-1771-2011; Jorgensen, Christian/B-4453-2009 Fiksen, Oyvind/0000-0002-9687-5842; Jorgensen, Christian/0000-0001-7087-4625 Reseach Council of Norway We thank the Reseach Council of Norway for funding. Aksnes DL, 1997, SARSIA, V82, P137, DOI 10.1080/00364827.1997.10413647; Andersen KH, 2006, AM NAT, V168, P54, DOI 10.1086/504849; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Arnott SA, 2006, EVOLUTION, V60, P1269; Beaugrand G, 2003, NATURE, V426, P661, DOI 10.1038/nature02164; Billerbeck JM, 2001, EVOLUTION, V55, P1863; Biro PA, 2006, J ANIM ECOL, V75, P1165, DOI 10.1111/j.1365-2656.2006.01137.x; Castellani M, 2013, ECOL MODEL, V251, P54, DOI 10.1016/j.ecolmodel.2012.12.007; CLARK CW, 1988, AM NAT, V131, P271, DOI 10.1086/284789; CLARK CW, 2000, DYNAMIC STATE VARIAB; Clark DL, 2005, MAR ECOL PROG SER, V292, P287, DOI 10.3354/meps292287; Crean AJ, 2009, PHILOS T R SOC B, V364, P1087, DOI 10.1098/rstb.2008.0237; CUSHING DH, 1990, ADV MAR BIOL, V26, P249, DOI 10.1016/S0065-2881(08)60202-3; CUSHING DH, 1973, J FISH RES BOARD CAN, V30, P1965, DOI 10.1139/f73-320; DRAGESUND O, 1970, Fiskeridirektoratets Skrifter Serie Havundersokelser, V15, P381; EMLEN JM, 1966, AM NAT, V100, P611, DOI 10.1086/282455; Enberg K, 2012, MAR ECOL-EVOL PERSP, V33, P1, DOI 10.1111/j.1439-0485.2011.00460.x; Fiksen O, 2007, MAR ECOL PROG SER, V347, P195, DOI 10.3354/meps06978; Fiksen O, 2011, MAR ECOL PROG SER, V432, P207, DOI 10.3354/meps09148; Folkvord A, 2005, CAN J FISH AQUAT SCI, V62, P1037, DOI 10.1139/F05-008; FUIMAN LA, 1989, MAR ECOL PROG SER, V51, P291, DOI 10.3354/meps051291; Hjort J., 1926, ICES J MAR SCI, V1, P5, DOI DOI 10.1093/ICESJMS/1.1.5; Hjort J, 1914, PROC VERB REUN CONS, V20, P1; Holling CS, 1965, MEM ENTOMOL SOC CAN, V45, P3; Houde E.D, 1987, AM FISH SOC S, V2, P17; HOUDE ED, 1989, FISH B-NOAA, V87, P471; HOUDE ED, 1997, EARLY LIFE HIST RECR, P173; Houston AI, 1999, MODELS ADAPTIVE BEHA; Huse G, 2010, PROG OCEANOGR, V84, P93, DOI 10.1016/j.pocean.2009.09.011; Huwer B, 2011, PROG OCEANOGR, V91, P382, DOI 10.1016/j.pocean.2011.04.001; IWASA Y, 1982, AM NAT, V120, P171, DOI 10.1086/283980; Jorgensen C, 2011, AM NAT, V177, pE119, DOI 10.1086/659622; Kiorboe T, 2011, BIOL REV, V86, P311, DOI 10.1111/j.1469-185X.2010.00148.x; Krebs J.R., 1991, P105; Kristiansen T, 2009, BEHAV ECOL, V20, P490, DOI 10.1093/beheco/arp023; Lankford TE, 2001, EVOLUTION, V55, P1873, DOI 10.1111/j.0014-3820.2001.tb00836.x; Leis JM, 2007, MAR ECOL PROG SER, V347, P185, DOI 10.3354/meps06977; LETCHER BH, 1993, J EXP MAR BIOL ECOL, V167, P197, DOI 10.1016/0022-0981(93)90031-I; Letcher BH, 1996, CAN J FISH AQUAT SCI, V53, P787, DOI 10.1139/cjfas-53-4-787; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; LITVAK MK, 1992, MAR ECOL PROG SER, V81, P13, DOI 10.3354/meps081013; MCGURK MD, 1986, MAR ECOL PROG SER, V34, P227, DOI 10.3354/meps034227; MCNAMARA JM, 1987, ECOLOGY, V68, P1515, DOI 10.2307/1939235; Opdal A.F., 2009, Journal of Northwest Atlantic Fishery Science, V41, P13; Opdal AF, 2011, MAR ECOL PROG SER, V439, P255, DOI 10.3354/meps09335; Otterlei E, 1999, CAN J FISH AQUAT SCI, V56, P2099, DOI 10.1139/cjfas-56-11-2099; Peacor SD, 2013, OECOLOGIA, V171, P1, DOI 10.1007/s00442-012-2394-9; Peck MA, 2012, J MARINE SYST, V93, P77, DOI 10.1016/j.jmarsys.2011.08.005; PETERSON I, 1984, CAN J FISH AQUAT SCI, V41, P1117, DOI 10.1139/f84-131; POPE JG, 1994, PHILOS T ROY SOC B, V343, P41, DOI 10.1098/rstb.1994.0006; Reznick D, 2006, OIKOS, V114, P135, DOI 10.1111/j.2006.0030-1299.14446.x; SHELDON RW, 1972, LIMNOL OCEANOGR, V17, P327, DOI 10.4319/lo.1972.17.3.0327; SHINE R, 1978, J THEOR BIOL, V75, P417, DOI 10.1016/0022-5193(78)90353-3; Siegel DA, 2008, P NATL ACAD SCI USA, V105, P8974, DOI 10.1073/pnas.0802544105; Sinclair M., 1988, Aquatic Living Resources, V1, P189, DOI 10.1051/alr:1988020; Skajaa K, 2003, BIG FISH BANG, P105; Skajaa K, 2004, J EXP MAR BIOL ECOL, V312, P253, DOI 10.1016/j.jembe.2004.06.012; Skajaa K, 2007, J EXP MAR BIOL ECOL, V353, P135, DOI 10.1016/j.jembe.2007.01.014; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Takasuka A, 2006, FISH OCEANOGR, V15, P139, DOI 10.1111/j.1365-2419.2005.00385.x; Takasuka A, 2003, MAR ECOL PROG SER, V252, P223, DOI 10.3354/meps252223; Vikebo F, 2007, MAR ECOL PROG SER, V347, P207, DOI 10.3354/meps06979; Visser AW, 2013, MAR ECOL PROG SER, V473, P91, DOI 10.3354/meps10079; Visser AW, 2006, OECOLOGIA, V148, P538, DOI 10.1007/s00442-006-0385-4; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; WINEMILLER KO, 1993, AM NAT, V142, P585, DOI 10.1086/285559 66 9 9 1 37 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 1054-3139 1095-9289 ICES J MAR SCI ICES J. Mar. Sci. MAY-JUN 2014 71 4 909 917 10.1093/icesjms/fst083 9 Fisheries; Marine & Freshwater Biology; Oceanography Fisheries; Marine & Freshwater Biology; Oceanography AH9AH WOS:000336430200017 Bronze 2018-11-12 J Bulit, F; Barrionuevo, M; Massoni, V Bulit, Florencia; Barrionuevo, Melina; Massoni, Viviana Insights into life history theory: a brood size manipulation on a southern hemisphere species, Tachycineta leucorrhoa, reveals a fast pace of life JOURNAL OF AVIAN BIOLOGY English Article MITOCHONDRIAL-DNA SEQUENCES; FEMALE TREE SWALLOWS; CLUTCH SIZE; BREEDING BIOLOGY; HATCHING ASYNCHRONY; REPRODUCTIVE EFFORT; FOOD LIMITATION; PARENTAL CARE; HOUSE WRENS; IMMUNE FUNCTION Life history traits exhibit substantial geographical variation associated with the pace of life. Species with a slow pace are expected to invest more in their future/residual reproductive value and are more common at tropical latitudes, whereas species from high latitudes, with a faster pace, are expected to prioritize the current reproductive effort. Most evidence supporting this pattern comes from studies conducted in tropical and north temperate species; very little is known about patterns in southern South American species. Here, we describe the life history of a southern swallow Tachycineta leucorrhoa and use an experimental approach to test their breeding strategy over four breeding seasons. We manipulated brood size for 105 nests of white-rumped swallows to measure whether costs of reproduction were borne by adults or nestlings as alternative selection strategies towards maintaining residual or current reproductive value. Adults increased their feeding effort in enlarged broods, at least enough to maintain nestlings' development/growth. In addition, adults decreased the number of visits to the nest (without having a negative effect on nestlings) in reduced broods. We did not detect differences in fledging success among treatments, suggesting there were no differences in nestlings' survival. However, enlarged broods more frequently incurred in complete nest failure, suggesting only some adults were able to cope with increased costs of reproduction. We conclude this species is characterized by a fast pace of life similar to their northern congeners and less like its tropical ones. This is one of the first studies to use an experimental approach to test a life history hypothesis of pace of life using data from a southern South American species. We encourage researches to include southern species when evaluating latitudinal variations as we still do not have enough evidence to assume all southern subtropical species are indeed similar to tropical ones. [Bulit, Florencia; Massoni, Viviana] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Ecol Genet & Evoluc, Buenos Aires IEGEBA CONICET UBA, RA-1053 Buenos Aires, DF, Argentina; [Barrionuevo, Melina] Univ Nacl Patagonia Austral, Ctr Invest Puerto Deseado, RA-9050 Puerto Deseado, Argentina Bulit, F (reprint author), Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Ecol Genet & Evoluc, Buenos Aires IEGEBA CONICET UBA, Pabellon 2 Ciudad Univ,C1428EGA, RA-1053 Buenos Aires, DF, Argentina. florbulit@ege.fcen.uba.ar Univ. of Buenos Aires [UBACyT X-140, X-462]; CONICET [PIP-5875]; national research council, CONICET We thank INTECH - CONICET for their logistical support, and to R. Garcia and N. Zald a for their field assistance. We thank the editor for comments and suggestions. This study was supported by grants from the Univ. of Buenos Aires (UBACyT X-140 and X-462) and from CONICET (PIP-5875) to VM. VM is a Researcher Fellow of CONICET Argentina. MB is a doctoral candidate and during this research FB was supported by a doctoral fellowship, both from the national research council, CONICET. Ardia DR, 2007, BEHAV ECOL, V18, P259, DOI 10.1093/beheco/arl078; Ardia DR, 2005, ECOLOGY, V86, P2040, DOI 10.1890/04-1619; Ardia DR, 2003, P ROY SOC B-BIOL SCI, V270, P1679, DOI 10.1098/rspb.2003.2424; Arnold TW, 2011, AUK, V128, P737, DOI 10.1525/auk.2011.11050; Auer SK, 2007, CONDOR, V109, P321, DOI 10.1650/0010-5422(2007)109[321:BBOPIA]2.0.CO;2; Baayen RH, 2008, J MEM LANG, V59, P390, DOI 10.1016/j.jml.2007.12.005; Babura J., 2008, ACTA ORNITHOL, V43, P129; Barker RJ, 2005, J WILDLIFE MANAGE, V69, P1508, DOI 10.2193/0022-541X(2005)69[1508:SROASD]2.0.CO;2; BEISSINGER SR, 1990, AM NAT, V136, P20, DOI 10.1086/285080; Biancucci L, 2010, J ANIM ECOL, V79, P1086, DOI 10.1111/j.1365-2656.2010.01720.x; Bitton PP, 2007, ANIM BEHAV, V74, P1777, DOI 10.1016/j.anbehav.2007.03.018; Brawn JD, 1999, INT ORN C, V22, P297; Bulit F, 2008, EMU, V108, P181, DOI 10.1071/MU07068; Bulit F, 2011, IBIS, V153, P190, DOI 10.1111/j.1474-919X.2010.01079.x; Burness GP, 2000, J EXP BIOL, V203, P3513; Cardillo M, 2002, J ANIM ECOL, V71, P79, DOI 10.1046/j.0021-8790.2001.00577.x; Cerasale DJ, 2012, MOL PHYLOGENET EVOL, V63, P64, DOI 10.1016/j.ympev.2011.12.014; Chalfoun AD, 2007, ANIM BEHAV, V73, P579, DOI 10.1016/j.anbehav.2006.09.010; Clark RG, 1999, ECOLOGY, V80, P272, DOI 10.2307/176996; Cockburn A, 2006, P R SOC B, V273, P1375, DOI 10.1098/rspb.2005.3458; Cooper CB, 2011, FUNCT ECOL, V25, P769, DOI 10.1111/j.1365-2435.2011.01847.x; Crawley M. J., 2007, R BOOK; DESTEVEN D, 1980, EVOLUTION, V34, P278, DOI 10.1111/j.1558-5646.1980.tb04816.x; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Dor R, 2012, MOL PHYLOGENET EVOL, V65, P317, DOI 10.1016/j.ympev.2012.06.020; Dunn PO, 2000, AUK, V117, P215, DOI 10.1642/0004-8038(2000)117[0215:GAEVIC]2.0.CO;2; Ferretti V, 2005, P ROY SOC B-BIOL SCI, V272, P769, DOI 10.1098/rspb.2004.3039; Fontaine JJ, 2006, ECOL LETT, V9, P428, DOI 10.1111/j.1461-0248.2006.00892.x; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; GREENWOOD PJ, 1982, ANNU REV ECOL SYST, V13, P1, DOI 10.1146/annurev.es.13.110182.000245; Hainstock MH, 2010, BEHAVIOUR, V147, P441, DOI 10.1163/000579509X12580070671323; Hau M, 2010, P ROY SOC B-BIOL SCI, V277, P3203, DOI 10.1098/rspb.2010.0673; HUSSELL DJT, 1983, J FIELD ORNITHOL, V54, P312; Jetz W, 2012, NATURE, V491, P444, DOI 10.1038/nature11631; Jetz W, 2008, PLOS BIOL, V6, P2650, DOI 10.1371/journal.pbio.0060303; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Liljesthrom M, 2012, CONDOR, V114, P377, DOI 10.1525/cond.2012.110142; Liljesthrom M, 2012, EMU, V112, P157, DOI 10.1071/MU11047; Llambias PE, 2009, IBIS, V151, P113, DOI 10.1111/j.1474-919X.2008.00868.x; Magrath RD, 2000, AUK, V117, P479, DOI 10.1642/0004-8038(2000)117[0479:LITSLR]2.0.CO;2; Martin TE, 2006, EVOLUTION, V60, P390; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; Martin TE, 2008, P NATL ACAD SCI USA, V105, P9268, DOI 10.1073/pnas.0709366105; Martin TE, 2011, EVOLUTION, V65, P1607, DOI 10.1111/j.1558-5646.2011.01227.x; Massoni V, 2007, IBIS, V149, P10; McCarty JP, 2002, J FIELD ORNITHOL, V73, P9, DOI 10.1648/0273-8570-73.1.9; McCarty JP, 1999, CONDOR, V101, P246, DOI 10.2307/1369987; Mcgregor R, 2007, IBIS, V149, P615, DOI 10.1111/j.1474-919X.2007.00670.x; Moreno J, 2005, CONDOR, V107, P69, DOI 10.1650/7602; Moreno J, 2004, ARDEOLA, V51, P51; Murphy MT, 2000, AUK, V117, P902, DOI 10.1642/0004-8038(2000)117[0902:IRBTSC]2.0.CO;2; Nielsen JT, 2003, IBIS, V145, P1; Parejo D, 2006, BEHAV ECOL SOCIOBIOL, V60, P184, DOI 10.1007/s00265-005-0155-z; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; Pettifor RA, 2001, J ANIM ECOL, V70, P62, DOI 10.1046/j.1365-2656.2001.00465.x; QUINNEY TE, 1986, WILSON BULL, V98, P147; Ramstack JM, 1998, WILSON BULL, V110, P233; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Riechert J, 2012, GEN COMP ENDOCR, V178, P391, DOI 10.1016/j.ygcen.2012.06.022; Roff Derek A., 1992; Ruuskanen S, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0025360; Saino N, 2003, BEHAV ECOL, V14, P16, DOI 10.1093/beheco/14.1.16; Sandercock BK, 2000, ECOLOGY, V81, P1351, DOI 10.1890/0012-9658(2000)081[1351:SROANP]2.0.CO;2; Sanz-Aguilar A, 2008, ECOLOGY, V89, P3195, DOI 10.1890/08-0431.1; Sheldon FH, 2005, MOL PHYLOGENET EVOL, V35, P254, DOI 10.1016/j.ympev.2004.11.008; Shutler D, 2003, AUK, V120, P619, DOI 10.1642/0004-8038(2003)120[0619:CACOTS]2.0.CO;2; Shutler D, 2006, ECOLOGY, V87, P2938, DOI 10.1890/0012-9658(2006)87[2938:TARCAC]2.0.CO;2; Soriano O., 1991, INTRO W HEMISPHERE, P367; Sousa NOM, 2013, EMU, V113, P8, DOI 10.1071/MU11102; Stager M, 2012, ORNITOL NEOTROP, V23, P95; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stevens M. C., 2011, THESIS U ST ANDREWS; Stoleson SH, 1997, ECOL MONOGR, V67, P131, DOI 10.1890/0012-9615(1997)067[0131:HABRAF]2.0.CO;2; STUTCHBURY BJ, 1988, CAN J ZOOL, V66, P827, DOI 10.1139/z88-122; Styrsky JD, 1999, P ROY SOC B-BIOL SCI, V266, P1253, DOI 10.1098/rspb.1999.0771; Styrsky JN, 2005, ECOLOGY, V86, P3238, DOI 10.1890/04-1613; Townsend JM, 2008, WILSON J ORNITHOL, V120, P867, DOI 10.1676/08-001.1; Velando A, 2006, P R SOC B, V273, P1443, DOI 10.1098/rspb.2006.3480; Warner DA, 2013, BEHAV ECOL SOCIOBIOL, V67, P973, DOI 10.1007/s00265-013-1523-8; WHEELWRIGHT NT, 1991, CAN J ZOOL, V69, P2540, DOI 10.1139/z91-358; Whittingham LA, 2002, MOL PHYLOGENET EVOL, V22, P430, DOI 10.1006/mpev.2001.1073; WIGGINS DA, 1990, CONDOR, V92, P534, DOI 10.2307/1368257; Wikelski M, 2003, P ROY SOC B-BIOL SCI, V270, P2383, DOI 10.1098/rspb.2003.2500; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams JB, 2010, INTEGR COMP BIOL, V50, P855, DOI 10.1093/icb/icq024; Winkler DW, 1996, ECOLOGY, V77, P922, DOI 10.2307/2265512; Winkler DW, 2004, CONDOR, V106, P768, DOI 10.1650/7634; Young BE, 1996, ECOLOGY, V77, P472, DOI 10.2307/2265623; ZACH R, 1982, AUK, V99, P695 92 3 3 3 33 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0908-8857 1600-048X J AVIAN BIOL J. Avian Biol. MAY 2014 45 3 225 234 10.1111/j.1600-048X.2013.00266.x 10 Ornithology Zoology AG4PB WOS:000335401300003 2018-11-12 J Vogelweith, F; Thiery, D; Moret, Y; Colin, E; Motreuil, S; Moreau, J Vogelweith, Fanny; Thiery, Denis; Moret, Yannick; Colin, Eloise; Motreuil, Sebastien; Moreau, Jerome Defense strategies used by two sympatric vineyard moth pests JOURNAL OF INSECT PHYSIOLOGY English Article Behavioral defense; Eupoecilia ambiguella; Immunological defense; Lobesia botrana; Parasitism; Physical defense TRADE-OFFS; BEHAVIORAL DEFENSES; PREDATOR AVOIDANCE; NATURAL ENEMIES; LOBESIA-BOTRANA; ASOBARA-TABIDA; IMMUNE DEFENSE; PEA APHID; HOST; PARASITOIDS Natural enemies including parasitoids are the major biological cause of mortality among phytophagous insects. In response to parasitism, these insects have evolved a set of defenses to protect themselves, including behavioral, morphological, physiological and immunological barriers. According to life history theory, resources are partitioned to various functions including defense, implying trade-offs among defense mechanisms. In this study we characterized the relative investment in behavioral, physical and immunological defense systems in two sympatric species of Tortricidae (Eupoecilia ambiguella, Lobesia botrana) which are important grapevine moth pests. We also estimated the parasitism by parasitoids in natural populations of both species, to infer the relative success of the investment strategies used by each moth. We demonstrated that larvae invest differently in defense systems according to the species. Relative to L. botrana, E. ambiguella larvae invested more into morphological defenses and less into behavioral defenses, and exhibited lower basal levels of immune defense but strongly responded to immune challenge. L. botrana larvae in a natural population were more heavily parasitized by various parasitoid species than E. ambiguella, suggesting that the efficacy of defense strategies against parasitoids is not equal among species. These results have implications for understanding of regulation in communities, and in the development of biological control strategies for these two grapevine pests. (C) 2014 Elsevier Ltd. All rights reserved. [Vogelweith, Fanny; Moret, Yannick; Colin, Eloise; Motreuil, Sebastien; Moreau, Jerome] Univ Bourgogne, Equipe Ecol Evolut, UMR Biogeosci 6282, F-21000 Dijon, France; [Vogelweith, Fanny; Thiery, Denis] INRA UMR 1065 Sante & Agroecol Vignoble, Inst Sci Vigne & Vin, F-33883 Villenave Dornon, France; [Thiery, Denis] Univ Bordeaux, INRA UMR 1065, Bordeaux Sci Agro, F-33883 Villenave Dornon, France Vogelweith, F (reprint author), INRA UMR 1065 Sante & Agroecol Vignoble, Inst Sci Vigne & Vin, Ave E Bourleaux, F-33883 Villenave Dornon, France. fanny.vogelweith@gmail.com Moret, Yannick/I-9282-2012 Vogelweith, Fanny/0000-0002-3595-6702 CNRS; ANR [ANR-07-JCJC-0134, ANR-08-JCJC-0006] We thank Lionel Delbac, Morgane Dourneau, Geoffrey Melot, Karen Muller and Alicia Munoz. This study was supported by the CNRS and Grants from the ANR (ANR-07-JCJC-0134 and ANR-08-JCJC-0006). We also thank the Conseils Regionaux of Aquitaine and Bourgogne. Second author DT belongs to the Labex exelence cluster COTE. Barbosa P, 2007, ENVIRON ENTOMOL, V36, P329, DOI 10.1603/0046-225X(2007)36[329:DLOSIM]2.0.CO;2; BECKAGE NE, 1978, ENTOMOL EXP APPL, V23, P139, DOI 10.1111/j.1570-7458.1978.tb03016.x; Cerenius L, 2004, IMMUNOL REV, V198, P116, DOI 10.1111/j.0105-2896.2004.00116.x; Chuche J, 2006, J CHEM ECOL, V32, P2721, DOI 10.1007/s10886-006-9195-8; Cole L. R., 1959, Journal of the Lepidopterist's Society, V13, P1; Cressler CE, 2010, AM NAT, V176, P276, DOI 10.1086/655425; Delbac L, 2010, CROP PROT, V29, P623, DOI 10.1016/j.cropro.2010.01.009; DeWitt TJ, 2003, J SEA RES, V49, P143, DOI 10.1016/S1385-1101(02)00220-4; DeWitt TJ, 2000, EVOL ECOL RES, V2, P129; Dyer LA, 1999, ECOL APPL, V9, P402, DOI 10.1890/1051-0761(1999)009[0402:PNERTH]2.0.CO;2; Eslin P, 1998, J INSECT PHYSIOL, V44, P807, DOI 10.1016/S0022-1910(98)00013-4; Eslin P, 1996, J INSECT PHYSIOL, V42, P549, DOI 10.1016/0022-1910(95)00134-4; Flenner I, 2009, ECOL ENTOMOL, V34, P735, DOI 10.1111/j.1365-2311.2009.01129.x; Gentry GL, 2002, ECOLOGY, V83, P3108; Gonzalez-Santoyo I., 2011, ENT EXP APPL, V142; Greeney HF, 2012, ISJ-INVERT SURVIV J, V9, P7; GROSS P, 1993, ANNU REV ENTOMOL, V38, P251, DOI 10.1146/annurev.en.38.010193.001343; Gwynn DM, 2005, P ROY SOC B-BIOL SCI, V272, P1803, DOI 10.1098/rspb.2005.3089; Haine ER, 2008, SCIENCE, V322, P1257, DOI 10.1126/science.1165265; Hammill E, 2010, AM NAT, V176, P723, DOI 10.1086/657040; Hawkins BA, 1997, ECOLOGY, V78, P2145, DOI 10.1890/0012-9658(1997)078[2145:PPAPAM]2.0.CO;2; Jiang H, 2010, ADV EXP MED BIOL, V708, P181; KaIka M. B., 2008, SCIENCE, V320, P71; Kraaijeveld AR, 2002, PARASITOLOGY, V125, pS71, DOI 10.1017/S0031182002001750; Lavine MD, 2002, INSECT BIOCHEM MOLEC, V32, P1295, DOI 10.1016/S0965-1748(02)00092-9; Lefevre T, 2012, BIOL LETTERS, V8, P230, DOI 10.1098/rsbl.2011.0725; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Marmaras VJ, 2009, CELL SIGNAL, V21, P186, DOI 10.1016/j.cellsig.2008.08.014; MATTIACCI L, 1995, ENTOMOL EXP APPL, V76, P37, DOI 10.1111/j.1570-7458.1995.tb01944.x; Mikolajewski DJ, 2004, BEHAV ECOL, V15, P614, DOI 10.1093/beheco/arh061; Nelson EH, 2007, OECOLOGIA, V151, P22, DOI 10.1007/s00442-006-0573-2; Parker BJ, 2011, TRENDS ECOL EVOL, V26, P242, DOI 10.1016/j.tree.2011.02.005; Potting RPJ, 1999, ENTOMOL EXP APPL, V91, P143, DOI 10.1046/j.1570-7458.1999.00476.x; Rigby MC, 2000, P ROY SOC B-BIOL SCI, V267, P171, DOI 10.1098/rspb.2000.0983; Siva-Jothy MT, 2005, ADV INSECT PHYSIOL, V32, P1, DOI 10.1016/S0065-2806(05)32001-7; Smilanich AM, 2009, ECOL LETT, V12, P612, DOI 10.1111/j.1461-0248.2009.01309.x; Steiner UK, 2007, AM NAT, V169, P118, DOI 10.1086/509939; Thiery D, 2005, OECOLOGIA, V143, P548, DOI 10.1007/s00442-005-0022-7; Thiery D., 2011, IOBC/WPRS Bulletin, V67, P189; THIERY D, 1993, EXPERIENTIA, V49, P998, DOI 10.1007/BF02125648; Thiery D., 2008, RAVAGEURS VIGNE; Thiery D., 2001, IOBC WPRS B, V27, P135; Van Buskirk J, 2000, J EXP BIOL, V203, P2149; VINSON SB, 1976, ANNU REV ENTOMOL, V21, P109, DOI 10.1146/annurev.en.21.010176.000545; Vogelweith F, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0072568; Vogelweith F, 2011, FUNCT ECOL, V25, P1241, DOI 10.1111/j.1365-2435.2011.01911.x; Wilson K, 2013, ADV STUD BEHAV, V45, P81, DOI 10.1016/B978-0-12-407186-5.00003-3; Xuereb A, 2006, B ENTOMOL RES, V96, P105, DOI 10.1079/BER2005393; Zylberberg M., 2013, BIOL LETT, V9 49 11 11 3 64 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0022-1910 1879-1611 J INSECT PHYSIOL J. Insect Physiol. MAY 2014 64 54 61 10.1016/j.jinsphys.2014.03.009 8 Entomology; Physiology; Zoology Entomology; Physiology; Zoology AH9NB WOS:000336468000008 24662468 2018-11-12 J Rafferty, AR; Scheelings, TF; Foley, LJ; Johnstone, CP; Reina, RD Rafferty, Anthony R.; Scheelings, T. Franciscus; Foley, Laura J.; Johnstone, Christopher P.; Reina, Richard D. Reproductive Investment Compromises Maternal Health in Three Species of Freshwater Turtle PHYSIOLOGICAL AND BIOCHEMICAL ZOOLOGY English Article HEMATOLOGICAL PARAMETERS; BODY CONDITION; BIOCHEMICAL VALUES; EGG-PRODUCTION; SERUM ENZYMES; GREAT TITS; STRESS; BLOOD; BIRDS; SIZE Life-history theory predicts that a trade-off in the allocation of resources between different physiological systems exists because resources are finite. As a result, females investing heavily in reproduction may compromise their future health. We used hematology, serum biochemistry, mass, and morphometric measurements as indicators of physiological health state to investigate whether reproductive investment altered subsequent maternal health in three Australian freshwater turtles: the oblong turtle (Chelodina oblonga; n = 12), the Macquarie turtle (Emydura macquarii; n = 9), and the eastern long-necked turtle (Chelodina longicollis; n = 8). Maternal health was impaired in turtles that produced larger and heavier eggs and clutches. In C. oblonga and E. macquarii, increased reproductive investment generally resulted in negative changes to the hematology and serum biochemistry profile of maternal blood. Generally, increases in heterophil/lymphocyte ratio, aspartate transaminase, creatine kinase, calcium/phosphorus ratio, and albumin/globulin ratio were observed following reproduction, in addition to a decrease in glucose and total protein. These findings agree with the physiological constraint hypothesis and highlight the connection between life-history evolution and animal physiology by documenting, for the first time, how measures of physiological health state relate to reproductive investment in Australian freshwater turtles. Additionally, our findings suggest that body condition, a readily used morphological biomarker, is a poor predictor of health in turtles. Our results emphasize the need to investigate how maternal health is influenced by the reproductive process in different species. [Rafferty, Anthony R.; Johnstone, Christopher P.; Reina, Richard D.] Monash Univ, Sch Biol Sci, Melbourne, Vic 3004, Australia; [Scheelings, T. Franciscus] Healesville Sanctuary, Australian Wildlife Hlth Ctr, Healesville, Australia; [Foley, Laura J.] Univ Dublin Trinity Coll, Sch Nat Sci, Biogeochem Res Grp, Dublin 2, Ireland Rafferty, AR (reprint author), Monash Univ, Sch Biol Sci, Melbourne, Vic 3004, Australia. tony.rafferty@monash.edu Holsworth Wildlife Foundation; Monash University We thank the Holsworth Wildlife Foundation and Monash University for financial support in addition to the ABAXIS Company for generously donating the biochemistry rotors. This study was made possible with help from Bryan Tormey, Jason Van Rijn, Roger Evans, Zoos Victoria, and the staff of the Healesville Sanctuary Wildlife Health Centre. Abdi H, 2010, COMPUT STAT, V2, P433, DOI DOI 10.1002/WICS.101; Apanius V, 2008, ORNITHOL MONOGR, V65, P1; Artacho P, 2007, COMP BIOCHEM PHYS A, V147, P1060, DOI 10.1016/j.cbpa.2007.03.017; Artacho P, 2007, COMP BIOCHEM PHYS A, V146, P283, DOI 10.1016/j.cbpa.2006.10.031; Bonier F, 2009, TRENDS ECOL EVOL, V24, P634, DOI 10.1016/j.tree.2009.04.013; Bowden RM, 2004, FUNCT ECOL, V18, P522, DOI 10.1111/j.0269-8463.2004.00861.x; BOYD JW, 1988, J COMP PATHOL, V98, P381, DOI 10.1016/0021-9975(88)90088-6; Campbell T. W., 2006, REPTILE MED SURG, P453; CAMPBELL TW, 1995, AVIAN HEMATOLOGY CYT; Cann J., 1998, AUSTR FRESHWATER TUR; CHESSMAN BC, 1986, AUST WILDLIFE RES, V13, P65; Clarke K. R., 2006, PRIMER V6 USER MANUA; Cockburn A, 2006, P R SOC B, V273, P1375, DOI 10.1098/rspb.2005.3458; DABBERT CB, 1993, J WILDLIFE DIS, V29, P304, DOI 10.7589/0090-3558-29.2.304; Davis AK, 2008, FUNCT ECOL, V22, P760, DOI 10.1111/j.1365-2435.2008.01467.x; Dein J, 1986, HEMATOLOGY CLIN AVIA, P174; DESSAUER HC, 1970, BIOLOGY REPTILIA, V3, P1; Diethelm G., 2006, REPTILE MED SURG, P1103; Dunbar MR, 2005, J ZOO WILDLIFE MED, V36, P422, DOI 10.1638/04-065.1; EWERT MA, 1978, HERPETOLOGICA, V34, P314; Fair J, 2007, IBIS, V149, P535, DOI 10.1111/j.1474-919X.2007.00680.x; George Robert H., 1997, P363; GROSS WB, 1983, AVIAN DIS, V27, P972, DOI 10.2307/1590198; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; Harr KE, 2002, VET CLIN PATH, V31, P140, DOI 10.1111/j.1939-165X.2002.tb00295.x; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; HO SM, 1982, HERPETOLOGICA, V38, P40; Johnstone CP, 2012, J COMP PHYSIOL B, V182, P861, DOI 10.1007/s00360-012-0656-9; KAWAI T, 1973, CLIN ASPECTS PLASMA; Kennett R., 2009, CHELONIAN RES MONOGR, V5; Kilgas P, 2006, COMP BIOCHEM PHYS A, V144, P224, DOI 10.1016/j.cbpa.2006.02.038; KUCHLING G, 1988, Records of the Western Australian Museum, V14, P189; KUCHLING G, 1989, HERPETOLOGICA, V45, P89; Madsen T, 2005, OECOLOGIA, V142, P407, DOI 10.1007/s00442-004-1742-9; Masello JF, 2004, J AVIAN BIOL, V35, P445, DOI 10.1111/j.0908-8857.2004.03278.x; MAXWELL MH, 1993, WORLD POULTRY SCI J, V49, P34, DOI 10.1079/WPS19930004; Moreno J, 2002, ETHOL ECOL EVOL, V14, P19; Norte AC, 2010, CONDOR, V112, P79, DOI 10.1525/cond.2010.080071; Ots I, 1998, FUNCT ECOL, V12, P700, DOI 10.1046/j.1365-2435.1998.00219.x; Peig J, 2010, FUNCT ECOL, V24, P1323, DOI 10.1111/j.1365-2435.2010.01751.x; Perrault JR, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0031841; Polo-Cavia N, 2010, ANIM CONSERV, V13, P256, DOI 10.1111/j.1469-1795.2009.00329.x; R Development Core Team, 2013, R LANG ENV STAT COMP; Rasmussen ML, 2010, ECOSCIENCE, V17, P47, DOI 10.2980/17-1-3298; Rodriguez P, 2005, COMP BIOCHEM PHYS A, V140, P157, DOI 10.1016/j.cbpb.2004.11.014; Roff Derek A., 1992; Rowe JW, 1997, AM MIDL NAT, V138, P174, DOI 10.2307/2426664; SCHALL JJ, 1982, SCIENCE, V217, P1057, DOI 10.1126/science.7112113; Scheelings TF, 2012, J WILDLIFE DIS, V48, P314, DOI 10.7589/0090-3558-48.2.314; Spencer R.J., 2001, THESIS SYDNEY U; Stamper MA, 2005, J ZOO WILDLIFE MED, V36, P635, DOI 10.1638/04-074.1; Stein Geoff, 1996, P473; Totzke U, 1999, PHYSIOL BIOCHEM ZOOL, V72, P426, DOI 10.1086/316675; Uller T, 2006, FUNCT ECOL, V20, P873, DOI 10.1111/j.1365-2435.2006.01163.x; Van Rijn JA, 2010, FISH SHELLFISH IMMUN, V29, P534, DOI 10.1016/j.fsi.2010.04.016; Wagner EC, 2008, J EXP BIOL, V211, P2960, DOI 10.1242/jeb.017897; Wallace BP, 2007, OECOLOGIA, V152, P37, DOI 10.1007/s00442-006-0641-7; Wilkinson LR, 2005, COPEIA, P868, DOI 10.1643/0045-8511(2005)005[0868:PORACA]2.0.CO;2; Williams TD, 2004, FUNCT ECOL, V18, P330, DOI 10.1111/j.0269-8463.2004.00829.x 59 0 0 0 23 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 1522-2152 1537-5293 PHYSIOL BIOCHEM ZOOL Physiol. Biochem. Zool. MAY 1 2014 87 3 411 419 10.1086/675310 9 Physiology; Zoology Physiology; Zoology AF7OL WOS:000334904300005 24769705 2018-11-12 J Nystrand, M; Dowling, DK Nystrand, M.; Dowling, D. K. Dose-dependent effects of an immune challenge at both ultimate and proximate levels in Drosophila melanogaster JOURNAL OF EVOLUTIONARY BIOLOGY English Review sperm competition; life history; trade-off; immune elicitor; eco-immunology; lipopolysaccharide; disease; dose dependence IN-FIELD CRICKETS; TRADE-OFFS; SYSTEM ACTIVATION; SEX-DIFFERENCES; REPRODUCTIVE STRATEGIES; TERMINAL INVESTMENT; BATEMANS PRINCIPLE; INNATE IMMUNITY; LIFE-HISTORY; HOST-DEFENSE Immune responses are highly dynamic. The magnitude and efficiency of an immune response to a pathogen can change markedly across individuals, and such changes may be influenced by variance in a range of intrinsic (e.g. age, genotype, sex) and external (e.g. abiotic stress, pathogen identity, strain) factors. Life history theory predicts that up-regulation of the immune system will come at a physiological cost, and studies have confirmed that increased investment in immunity can reduce reproductive output and survival. Furthermore, males and females often have divergent reproductive strategies, and this might drive the evolution of sex-specific life history trade-offs involving immunity, and sexual dimorphism in immune responses per se. Here, we employ an experiment design to elucidate dose-dependent and sex-specific responses to exposure to a nonpathogenic immune elicitor at two scales - the 'ultimate' life history and the underlying 'proximate' immune level in Drosophila melanogaster. We found dose-dependent effects of immune challenges on both male and female components of reproductive success, but not on survival, as well as a response in antimicrobial activity. These results indicate that even in the absence of the direct pathogenic effects that are associated with actual disease, individual life histories respond to a perceived immune challenge - but with the magnitude of this response being contingent on the initial dose of exposure. Furthermore, the results indicate that immune responses at the ultimate life history level may indeed reflect underlying processes that occur at the proximate level. [Nystrand, M.; Dowling, D. K.] Monash Univ, Sch Biol Sci, Clayton, Vic 3800, Australia Nystrand, M (reprint author), Monash Univ, Sch Biol Sci, Clayton, Vic 3800, Australia. magdalena.nystrand@monash.edu Dowling, Damian/C-9016-2009 Dowling, Damian/0000-0003-2209-3458 Australian Research Council [DP110104965]; Monash University Margaret Clayton - Women in Research Postdoctoral Fellowship We thank Katherine Sutton for laboratory work. We also thank Florencia Camus and Travis Johnson for advice and assistance during development of immunological assays. The study was funded by the Australian Research Council (Australian Postdoctoral Fellowship and Discovery Project, DP110104965) and Monash University Margaret Clayton - Women in Research Postdoctoral Fellowship, both to MN. Adamo SA, 2001, ANIM BEHAV, V62, P417, DOI 10.1006/anbe.2001.1786; Agudelo-Romero P, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002397; Ahmed AM, 2002, OIKOS, V97, P371, DOI 10.1034/j.1600-0706.2002.970307.x; Altizer SM, 1999, J INVERTEBR PATHOL, V74, P76, DOI 10.1006/jipa.1999.4853; Anand P, 2012, ELIFE, V1, DOI 10.7554/eLife.00003; Andersson M., 1994, SEXUAL SELECTION; Ayres JS, 2012, ANNU REV IMMUNOL, V30, P271, DOI 10.1146/annurev-immunol-020711-075030; Ayres JS, 2009, PLOS BIOL, V7, DOI 10.1371/journal.pbio.1000150; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Bates D, 2009, LME4 LINEAR MIXED EF; Bates D., 2013, LME4 LINEAR MIXED EF; Ben-Ami F, 2010, AM NAT, V175, P106, DOI 10.1086/648672; Bhavsar AP, 2007, NATURE, V449, P827, DOI 10.1038/nature06247; Boggs CL, 2009, FUNCT ECOL, V23, P27, DOI 10.1111/j.1365-2435.2009.01527.x; BOLKER B, 2008, ECOLOGICAL MODELS DA; Brennan CA, 2004, ANNU REV IMMUNOL, V22, P457, DOI 10.1146/annurev.immunol.22.012703.104626; Burger JMS, 2007, AGING CELL, V6, P63, DOI 10.1111/j.1474-9726.2006.00261.x; Cermelli S, 2006, CURR BIOL, V16, P1783, DOI 10.1016/j.cub.2006.07.062; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Cotter SC, 2004, J EVOLUTION BIOL, V17, P421, DOI 10.1046/j.1420-9101.2003.00655.x; Crozatier M, 2007, CELL MICROBIOL, V9, P1117, DOI 10.1111/j.1462-5822.2007.00930.x; Downs CJ, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2636; Esko J., 2009, ESSENTIAL GLYCOBIOLO; Fedorka KM, 2007, BEHAV ECOL, V18, P231, DOI 10.1093/beheco/arl067; Fellowes MDE, 2000, HEREDITY, V84, P1, DOI 10.1046/j.1365-2540.2000.00685.x; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Fournier DA, 2012, OPTIM METHOD SOFTW, V27, P233, DOI 10.1080/10556788.2011.597854; Freitak D, 2007, BMC BIOL, V5, DOI 10.1186/1741-7007-5-56; Freitak D, 2009, P R SOC B, V276, P2617, DOI 10.1098/rspb.2009.0323; Friberg U, 2008, J EVOLUTION BIOL, V21, P1798, DOI 10.1111/j.1420-9101.2008.01581.x; Gray DA, 1998, J INVERTEBR PATHOL, V71, P288, DOI 10.1006/jipa.1997.4742; Grigorian M, 2011, DEV GENES EVOL, V221, P121, DOI 10.1007/s00427-011-0364-6; Grindstaff JL, 2012, HORM BEHAV, V62, P337, DOI 10.1016/j.yhbeh.2012.04.005; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; Hanssen SA, 2004, P ROY SOC B-BIOL SCI, V271, P925, DOI 10.1098/rspb.2004.2678; Haq IU, 2012, VIROL J, V9, DOI 10.1186/1743-422X-9-9; Hedengren M, 1999, MOL CELL, V4, P827, DOI 10.1016/S1097-2765(00)80392-5; Hoffmann JA, 2002, NAT IMMUNOL, V3, P121, DOI 10.1038/ni0202-121; Hoffmann JA, 2003, NATURE, V426, P33, DOI 10.1038/nature02021; Imler JL, 2000, J ENDOTOXIN RES, V6, P459, DOI 10.1179/096805100101532423; Jacot A, 2004, EVOLUTION, V58, P2280; Jacot A, 2005, P ROY SOC B-BIOL SCI, V272, P63, DOI 10.1098/rspc.2004.2919; Janeway CA, 2001, IMMUNOBIOLOGY IMMUNE; Kaneko T, 2004, IMMUNITY, V20, P637, DOI 10.1016/S1074-7613(04)00104-9; Kim T, 2005, NAT IMMUNOL, V6, P211, DOI 10.1038/ni1159; Kounatidis I, 2012, OPEN BIOL, V2, DOI 10.1098/rsob.120075; Kurtz J, 2005, TRENDS IMMUNOL, V26, P186, DOI 10.1016/j.it.2005.02.001; Kurtz J, 2000, DEV COMP IMMUNOL, V24, P1, DOI 10.1016/S0145-305X(99)00057-9; Lazzaro BP, 2009, PHILOS T R SOC B, V364, P15, DOI 10.1098/rstb.2008.0141; Lee KA, 2006, INTEGR COMP BIOL, V46, P1000, DOI 10.1093/icb/icl049; Lefevre T., 2010, P ROY SOC LOND B BIO, V278, P751; Leggett HC, 2012, PLOS PATHOG, V8, DOI 10.1371/journal.ppat.1002512; Lemaitre B, 1997, P NATL ACAD SCI USA, V94, P14614, DOI 10.1073/pnas.94.26.14614; Lemaitre B, 2007, ANNU REV IMMUNOL, V25, P697, DOI 10.1146/annurev.immunol.25.022106.141615; Little TJ, 2004, TRENDS ECOL EVOL, V19, P58, DOI 10.1016/j.tree.2003.11.011; Male D., 2012, IMMUNOLOGY; Martin LB, 2008, PHILOS T R SOC B, V363, P321, DOI 10.1098/rstb.2007.2142; McKean KA, 2005, EVOLUTION, V59, P1510; McKean KA, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-76; McKean KA, 2008, EVOLUTION, V62, P386, DOI 10.1111/j.1558-5646.2007.00286.x; McNamara KB, 2013, J ANIM ECOL, V82, P235, DOI 10.1111/j.1365-2656.2012.02018.x; Meister M, 2003, CELL MICROBIOL, V5, P573, DOI 10.1046/j.1462-5822.2003.00302.x; Meng JM, 2010, J BIOL CHEM, V285, P8695, DOI 10.1074/jbc.M109.075127; MOHRIG W, 1968, Biologisches Zentralblatt, V87, P439; Moret Y, 2001, NATURE, V414, P506, DOI 10.1038/35107138; Moret Y, 2000, SCIENCE, V290, P1166, DOI 10.1126/science.290.5494.1166; Nunn CL, 2009, PHILOS T R SOC B, V364, P61, DOI 10.1098/rstb.2008.0148; Paschos K, 2010, TRENDS MICROBIOL, V18, P439, DOI 10.1016/j.tim.2010.07.003; Paulo AC, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011655; R Development Core Team, 2012, R LANG ENV STAT COMP; Ramsden S, 2008, AGING CELL, V7, P225, DOI 10.1111/j.1474-9726.2008.00370.x; Rice WR, 2005, P NATL ACAD SCI USA, V102, P6527, DOI 10.1073/pnas.0501889102; Robb Tonia, 2006, BMC Ecology, V6, P15, DOI 10.1186/1472-6785-6-15; Roff D. A., 2002, LIFE HIST EVOLUTION; Rolff J, 2005, EVOLUTION, V59, P1844; Rolff J, 2002, P ROY SOC B-BIOL SCI, V269, P867, DOI 10.1098/rspb.2002.1959; Rolff J, 2004, AM NAT, V164, P559, DOI 10.1086/423715; Roth O, 2009, DEV COMP IMMUNOL, V33, P1151, DOI 10.1016/j.dci.2009.04.005; Sadd B, 2006, J EVOLUTION BIOL, V19, P321, DOI 10.1111/j.1420-9101.2005.01062.x; Sadd BM, 2007, CURR BIOL, V17, pR1046, DOI 10.1016/j.cub.2007.11.007; Sadd BM, 2006, P R SOC B, V273, P2571, DOI 10.1098/rspb.2006.3574; Sadd BM, 2005, BIOL LETT-UK, V1, P386, DOI 10.1098/rsbl.2005.0369; Sano Y, 2005, MOL BIOL CELL, V16, P2934, DOI 10.1091/mbc.E04-01-1108; Serra L, 2012, BEHAV ECOL SOCIOBIOL, V66, P697, DOI 10.1007/s00265-012-1318-3; Shi XZ, 2012, INSECT BIOCHEM MOLEC, V42, P545, DOI 10.1016/j.ibmb.2012.04.002; Simmons LW, 2012, BEHAV ECOL, V23, P168, DOI 10.1093/beheco/arr170; Simmons LW., 2001, SPERM COMPETITION IT; Skaug H. J., 2012, PACKAGE GLMMADMB GEN; Stoehr AM, 2007, ECOL ENTOMOL, V32, P188, DOI 10.1111/j.1365-2311.2007.00855.x; Sullivan JT, 2014, DEV COMP IMMUNOL, V42, P256, DOI 10.1016/j.dci.2013.09.016; Therneau T, 2012, COXME MIXED EFFECTS; Vale PF, 2011, AM NAT, V177, P510, DOI 10.1086/659002; Wiesner Andreas, 1998, P11; Winterhalter WE, 2009, P R SOC B, V276, P1109, DOI 10.1098/rspb.2008.1559; Yee WKW, 2013, CURR BIOL, V23, pR55, DOI 10.1016/j.cub.2012.12.002; Zanchi C, 2011, J ANIM ECOL, V80, P1174, DOI 10.1111/j.1365-2656.2011.01872.x; Zhong YX, 2012, VIRUSES-BASEL, V4, P980, DOI 10.3390/v4060980; Zhu F, 2013, SCI REP-UK, V3, DOI 10.1038/srep02069; ZUK M, 1990, PARASITOL TODAY, V6, P231, DOI 10.1016/0169-4758(90)90202-F; Zuk M, 1996, INT J PARASITOL, V26, P1009, DOI 10.1016/S0020-7519(96)80001-4; Zuk M, 2002, AM NAT, V160, pS9, DOI 10.1086/342131 101 10 10 0 26 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. MAY 2014 27 5 876 888 10.1111/jeb.12364 13 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AF8LF WOS:000334966800007 24731072 Bronze 2018-11-12 J Deas, JB; Hunter, MS Deas, J. B.; Hunter, M. S. Egg and time limitation mediate an egg protection strategy JOURNAL OF EVOLUTIONARY BIOLOGY English Article time limitation; parasitoid; seed beetles; life history; egg protection; Mimosestes amicus; oviposition behaviour; egg limitation CLUTCH SIZE; EVOLUTIONARY ARGUMENT; OVIPOSITION BEHAVIOR; RESOURCE-ALLOCATION; PARASITOID WASPS; BATTUS-PHILENOR; LIFE EXPECTANCY; BODY-SIZE; LOAD; INSECTS The number of mature eggs remaining in the ovaries and the time left for oviposition determine the reproductive decisions of the hyperdiverse guild of insects that require discrete and potentially limiting resources for oviposition (such as seeds, fruits or other insects). A female may run out of eggs before all available oviposition sites are used (egg limitation), or die before using all of her eggs (time limitation). Females are predicted to change clutch size depending on whether eggs or time is the limiting resource. We extend this framework and ask whether the same constraints influence a strategy in which females modify eggs into protective shields. In response to egg parasitism cues, female seed beetles (Mimosestes amicus) lay eggs in vertical groups of 2-4, modifying the top 1-3 eggs into shields in order to protect the bottom egg from attack by parasitoids. We made contrasting predictions of how egg and time limitation would influence egg size and the incidence and level of egg protection. By varying access to seed pods, we manipulated the number of remaining eggs a female had at the time she received a parasitism cue. Although egg size was not affected, our results confirm that egg-limited females protected fewer eggs and time-limited females protected more eggs. Female body size explained the number of eggs in a stack rather than host deprivation or the timing of parasitoid exposure. Our results clearly show that host availability relative to female age influences the incidence of egg protection in M.amicus. Furthermore, our study represents a novel use of life history theory to explain patterns in an unusual but compelling defensive behaviour. [Deas, J. B.] Univ Arizona, Grad Interdisciplinary Program Entomol & Insect S, Tucson, AZ USA; [Hunter, M. S.] Univ Arizona, Dept Entomol, Tucson, AZ 85721 USA Deas, JB (reprint author), Univ Kentucky, Dept Entomol, Agr Sci Ctr North S225, Lexington, KY 40546 USA. joe.deas@uky.edu Hunter, Martha/0000-0002-6342-675X Marshall Foundation Fellowship through the University of Arizona; Ford Foundation Dissertation Fellowship; NSF [DEB-1110557] We thank Judie Bronstein, Goggy Davidowitz, Dan Papaj, Charles W. Fox, Bernard Roitberg and Jay Rosenheim for their helpful comments on how to improve this manuscript. We thank Aryn Cunningham for assisting with experiments and for maintaining beetle laboratory populations. This research was in part supported by a Marshall Foundation Fellowship through the University of Arizona, a Ford Foundation Dissertation Fellowship and an NSF Doctoral Dissertation Improvement Grant (DEB-1110557) to J.B.D. Asplen MK, 2006, J MORPHOL, V267, P1066, DOI 10.1002/jmor.10459; Babendreier D, 2002, ENTOMOL EXP APPL, V105, P63, DOI 10.1046/j.1570-7458.2002.01034.x; BEGON M, 1986, OIKOS, V47, P293, DOI 10.2307/3565440; Boggs CL, 2009, FUNCT ECOL, V23, P27, DOI 10.1111/j.1365-2435.2009.01527.x; Casas J, 2000, J ANIM ECOL, V69, P185, DOI 10.1046/j.1365-2656.2000.00376.x; Crawley M. J., 2007, R BOOK; Deas JB, 2013, ANIM BEHAV, V86, P933, DOI 10.1016/j.anbehav.2013.08.010; Deas JB, 2012, P ROY SOC B-BIOL SCI, V279, P847, DOI 10.1098/rspb.2011.1585; Diaz-Fleischer F, 2003, OIKOS, V100, P125, DOI 10.1034/j.1600-0706.2003.12134.x; DRIESSEN G, 1992, ECOL ENTOMOL, V17, P17, DOI 10.1111/j.1365-2311.1992.tb01034.x; DROST YC, 1992, PHYSIOL ENTOMOL, V17, P230, DOI 10.1111/j.1365-3032.1992.tb01015.x; Ellers J, 2000, AM NAT, V156, P650, DOI 10.1086/316990; Ellers J, 2003, OIKOS, V102, P164, DOI 10.1034/j.1600-0706.2003.12183.x; Flanders Stanley E., 1942, ANN ENT SOC AMERICA, V35, P251; FLETCHER JP, 1994, P ROY SOC B-BIOL SCI, V258, P163, DOI 10.1098/rspb.1994.0157; Fox CW, 2006, ANN ZOOL FENN, V43, P239; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Fursov V., 1995, Colloques de l'INRA, V73, P15; Geister TL, 2008, J INSECT PHYSIOL, V54, P1253, DOI 10.1016/j.jinsphys.2008.06.002; Giron D, 2003, ECOL LETT, V6, P273, DOI 10.1046/j.1461-0248.2003.00429.x; Harvey JA, 2001, J INSECT BEHAV, V14, P573, DOI 10.1023/A:1012219116341; HONEK A, 1993, OIKOS, V66, P483, DOI 10.2307/3544943; IWASA Y, 1984, THEOR POPUL BIOL, V26, P205, DOI 10.1016/0040-5809(84)90030-3; Javois J, 2004, ANIM BEHAV, V68, P249, DOI 10.1016/j.anbehav.2003.10.022; Jervis MA, 2004, OIKOS, V107, P449, DOI 10.1111/j.0030-1299.2004.13453.x; Jervis MA, 2001, J ANIM ECOL, V70, P442, DOI 10.1046/j.1365-2656.2001.00507.x; Karl I, 2007, BIOL J LINN SOC, V91, P403, DOI 10.1111/j.1095-8312.2007.00806.x; Kingsolver J. M., 1978, TECHNICAL B USDA; LALONDE RG, 1994, J ANIM ECOL, V63, P583, DOI 10.2307/5224; Mangel M, 1998, EVOL ECOL, V12, P871, DOI 10.1023/A:1006502901441; ODENDAAL FJ, 1990, J INSECT BEHAV, V3, P183, DOI 10.1007/BF01417911; PARKER GA, 1984, THEOR POPUL BIOL, V26, P27, DOI 10.1016/0040-5809(84)90022-4; Pianka E.R., 1981, P300; Pianka E. R., 1988, EVOLUTIONARY ECOLOGY, P70; Potter KA, 2012, P ROY SOC B-BIOL SCI, V279, P3572, DOI 10.1098/rspb.2012.1050; Poykko H, 2012, ECOL ENTOMOL, V37, P330, DOI 10.1111/j.1365-2311.2012.01369.x; Rosenheim JA, 2000, P ROY SOC B-BIOL SCI, V267, P1565, DOI 10.1098/rspb.2000.1179; Rosenheim JA, 1996, EVOLUTION, V50, P2089, DOI 10.1111/j.1558-5646.1996.tb03595.x; Rosenheim JA, 2011, EVOLUTION, V65, P2300, DOI 10.1111/j.1558-5646.2011.01305.x; Savalli UM, 2002, ANN ENTOMOL SOC AM, V95, P724, DOI 10.1603/0013-8746(2002)095[0724:PMIESP]2.0.CO;2; Sevenster JG, 1998, EVOLUTION, V52, P1241, DOI 10.1111/j.1558-5646.1998.tb01853.x; Sloggett JJ, 2008, PHYSIOL ENTOMOL, V33, P200, DOI 10.1111/.j.1365-3032.2008.00622.x; SOUTHGATE BJ, 1979, ANNU REV ENTOMOL, V24, P449, DOI 10.1146/annurev.en.24.010179.002313; TATAR M, 1991, BEHAV ECOL SOCIOBIOL, V28, P337, DOI 10.1007/BF00164383; VANALPHEN JJM, 1990, ANNU REV ENTOMOL, V35, P59, DOI 10.1146/annurev.en.35.010190.000423; WIKLUND C, 1984, OIKOS, V43, P391, DOI 10.2307/3544158; Xu LL, 2012, ECOL ENTOMOL, V37, P446, DOI 10.1111/j.1365-2311.2012.01383.x 47 3 3 0 22 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. MAY 2014 27 5 920 928 10.1111/jeb.12363 9 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AF8LF WOS:000334966800011 24735410 Bronze 2018-11-12 J Konishi, S; Parajuli, RP; Takane, E; Maharjan, M; Tachibana, K; Jiang, HW; Pahari, K; Inoue, Y; Umezaki, M; Watanabe, C Konishi, Shoko; Parajuli, Rajendra Prasad; Takane, Erica; Maharjan, Makhan; Tachibana, Ken'ichi; Jiang, Hong-Wei; Pahari, Krishna; Inoue, Yosuke; Umezaki, Masahiro; Watanabe, Chiho Significant sex difference in the association between C-reactive protein concentration and anthropometry among 13- to 19-year olds, but not 6- to 12-year olds in Nepal AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY English Article inflammation; height; dried blood spot; BMI ACUTE-PHASE PROTEIN; PAPUA-NEW-GUINEA; NUTRITIONAL-STATUS; ELECTIVE SURGERY; IMMUNE FUNCTION; LIFE-HISTORY; DISEASE RISK; BODY-FAT; CHILDREN; INFLAMMATION Life history theory predicts a trade-off between immunostimulation and growth. Using a cross-sectional study design, this study aims to test the hypothesis that C-reactive protein (CRP) is negatively associated with height-for-age z-scores (HAZ scores) and BMI-for-age z-scores (BAZ scores) among 6- to 19-year olds (N = 426) residing in five Nepalese communities. Dried blood spot (DBS) samples were collected and assayed for CRP using an in-house enzyme immunoassay (EIA). Sex- and age-group-specific CRP quartiles were used to examine its association with growth in linear mixed-effects (LME) models. A significant difference was found in the proportion of elevated CRP (>2 mg/L, equivalent to similar to 3.2 mg/L serum CRP) between 13- and 19-year-old boys (12%) and girls (4%). Concentrations of CRP were positively associated with HAZ score among adolescent (13-19 years) boys, which may indicate that individuals with greater energy resources have better growth and a better response to infections, thus eliminating the expected trade-off between body maintenance (immunostimulation) and growth. Adolescent boys with low BAZ and HAZ scores had low CRP values, suggesting that those who do not have enough energy for growth cannot increase their CRP level even when infected with pathogens. Among adolescent girls a positive association was observed between CRP and BAZ scores suggesting the possible effects of chronic low-grade inflammation due to body fat rather than infection. The association between CRP and growth was less evident among children (6-12 years) compared with adolescents, indicating that the elevated energy requirement needed for the adolescent growth spurt and puberty may play some role. Am J Phys Anthropol 154:42-51, 2014. (c) 2014 Wiley Periodicals, Inc. [Konishi, Shoko; Parajuli, Rajendra Prasad; Takane, Erica; Inoue, Yosuke; Umezaki, Masahiro; Watanabe, Chiho] Univ Tokyo, Grad Sch Med, Dept Human Ecol, Tokyo 1130033, Japan; [Konishi, Shoko] Univ Washington, Dept Anthropol, Seattle, WA 98195 USA; [Maharjan, Makhan] Environm & Publ Hlth Org ENPHO, Kathmandu, Nepal; [Tachibana, Ken'ichi] Ritsumeikan Univ, Coll Social Sci, Kyoto 6038577, Japan; [Jiang, Hong-Wei] Res Inst Humanity & Nat, Kyoto 6038047, Japan; [Pahari, Krishna] Nepal Dev Res Inst, Kathmandu, Nepal Konishi, S (reprint author), Univ Tokyo, Dept Human Ecol, Grad Sch Med, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. moe@humeco.m.u-tokyo.ac.jp Parajuli, Rajendra/0000-0002-4899-7212 Global Environment Research Fund, Ministry of Environment, Japan [H-063]; KAKENHI [21406021] Grant sponsor: Global Environment Research Fund, Ministry of Environment, Japan; Grant number: H-063; Grant sponsor: KAKENHI; Grant number: 21406021. Albert MA, 2004, AM J CARDIOL, V93, P221, DOI 10.1016/j.amjcard.2003.09.046; Aziz N, 2003, CLIN DIAGN LAB IMMUN, V10, P652, DOI 10.1128/CDLI.10.4.652-657.2003; BALLOU SP, 1992, ADV INTERNAL MED, V37, P313; Blackwell AD, 2010, AM J HUM BIOL, V22, P836, DOI 10.1002/ajhb.21092; Brindle E, 2010, J IMMUNOL METHODS, V362, P112, DOI 10.1016/j.jim.2010.09.014; Brown DE, 2010, AM J HUM BIOL, V22, P675, DOI 10.1002/ajhb.21064; CALVIN J, 1988, ANN CLIN BIOCHEM, V25, P60, DOI 10.1177/000456328802500108; Campbell DI, 2003, J NUTR, V133, P1332; Chambers JC, 2001, CIRCULATION, V104, P145, DOI 10.1161/01.CIR.104.2.145; Cook DG, 2000, ATHEROSCLEROSIS, V149, P139, DOI 10.1016/S0021-9150(99)00312-3; CRUICKSHANK AM, 1989, BRIT J SURG, V76, P165, DOI 10.1002/bjs.1800760220; CURTIS GE, 1995, CYTOKINE, V7, P380, DOI 10.1006/cyto.1995.0048; Decaro JA, 2010, AM J HUM BIOL, V22, P657, DOI 10.1002/ajhb.21062; DOHERTY JF, 1993, CLIN SCI, V84, P169, DOI 10.1042/cs0840169; Dowd JB, 2010, AM J PREV MED, V39, P314, DOI 10.1016/j.amepre.2010.05.014; FILTEAU SM, 1995, AM J CLIN NUTR, V62, P434; Ford ES, 2003, CIRCULATION, V108, P1053, DOI 10.1161/01.CIR.0000080913.81393.B8; Goto R, 2009, BRIT J NUTR, V101, P1509, DOI 10.1017/S0007114508083554; Gurung H., 2006, NEPAL ATLAS STAT; Hayashi S, 2001, VET RES COMMUN, V25, P117, DOI 10.1023/A:1006404902214; Hiura M, 2003, HYPERTENS RES, V26, P541, DOI 10.1291/hypres.26.541; Imrie H, 2007, AM J TROP MED HYG, V76, P280, DOI 10.4269/ajtmh.2007.76.280; Informal Sector Research and Study Center, 2002, DISTR DEM PROF NEP D; Kelishadi R, 2007, EPIDEMIOL REV, V29, P62, DOI 10.1093/epirev/mxm003; Konishi S, 2011, Nepal Med Coll J, V13, P1; Lim S, 2006, ATHEROSCLEROSIS, V184, P171, DOI 10.1016/j.atherosclerosis.2005.04.003; McDade TW, 2008, AM J PHYS ANTHROPOL, V136, P478, DOI 10.1002/ajpa.20831; McDade TW, 2012, AM J HUM BIOL, V24, P675, DOI 10.1002/ajhb.22296; McDade TW, 2005, ANNU REV ANTHROPOL, V34, P495, DOI 10.1146/annurev.anthro.34.081804.120348; McDade TW, 2003, YEARB PHYS ANTHROPOL, V46, P100, DOI 10.1002/ajpa.10398; Pagana KD, 2010, MOSBYS MANUAL DIAGNO; Panter-Brick C, 2001, BRIT J NUTR, V85, P125, DOI 10.1079/BJN2000225; Panter-Brick C, 2009, BRIT J NUTR, V101, P558, DOI 10.1017/S000711450802744X; Pinheiro JC, 2000, MIXED EFFECTS MODELS; R Development Core Team, 2011, R LANG ENV STAT COMP; Shea S, 2003, OBES RES, V11, P95, DOI 10.1038/oby.2003.15; Sorensen MV, 2006, AM J HUM BIOL, V18, P766, DOI 10.1002/ajhb.20547; THOMPSON D, 1992, ANN CLIN BIOCHEM, V29, P123, DOI 10.1177/000456329202900201; Vikram NK, 2003, ATHEROSCLEROSIS, V168, P305, DOI 10.1016/S0021-9150(03)00096-0; Wander K, 2008, AM J PHYS ANTHROPOL, V136, P138, DOI 10.1002/ajpa.20785; *WHO, 1997, WHO GLOB DAT CHILD G; World Health Organization, 2006, WHO CHILD GROWTH STA, P301; Yamanaka M, 2002, AM J HUM BIOL, V14, P356, DOI 10.1002/ajhb.10030 43 5 5 0 4 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0002-9483 1096-8644 AM J PHYS ANTHROPOL Am. J. Phys. Anthropol. MAY 2014 154 1 42 51 10.1002/ajpa.22470 10 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology AE4PN WOS:000333965100004 24431160 2018-11-12 J Bradley, RJ; Safran, RJ Bradley, Rachel J.; Safran, Rebecca J. Conceptual Revision and Synthesis of Proximate Factors Associated with Age-Related Improvement in Reproduction ETHOLOGY English Review SHEARWATERS PUFFINUS-TENUIROSTRIS; LONG-LIVED SEABIRD; PAIR-BOND DURATION; BREEDING PERFORMANCE; SEYCHELLES WARBLER; MATE RETENTION; HAEMATOPUS-OSTRALEGUS; FERTILIZATION SUCCESS; FOOD AVAILABILITY; SEXUAL SELECTION Improvement in reproductive performance with age, up to the point of senescence, is a predominant pattern among vertebrates. Predictions from life-history theory provide a powerful framework for understanding the evolutionary basis of these patterns. However, based on the growing number of publications on this topic, there is increased interest in understanding the proximate causes of age-related improvements in reproductive performance (ARIRP). A formal conceptual framework through which factors related to ARIRP can be examined is lacking. Here, we establish hypotheses with testable predictions for social and ecological factors, including resource quality, mate fidelity, site fidelity, prior breeding experience, and changes in ability to attract mates. We use this conceptual framework to review 55 empirical studies published (between 1900 through 2013) on avian species as birds have the greatest representation in empirical studies of ARIRP. Our synthesis revealed that tests of the breeding experience hypothesis are most prevalent in the literature, whereas tests of the site fidelity hypothesis are least prevalent. Overall, the role of increased mate attraction with age seems to be an important predictor of ARIRP, whereas changes in resource quality with age show the least support among published studies. Because many studies suffered from small sample sizes and did not control for confounding variables, we suggest experimental methodologies for teasing apart hypotheses in empirical investigations and offer statistical approaches for longitudinal datasets. From an ultimate perspective, we also highlight the role of life-history variation, in shaping within-individual improvements. Future work should employ a standardized framework to study patterns of ARIRP, as set forward here, to allow for more quantitative comparison of results across studies. [Bradley, Rachel J.; Safran, Rebecca J.] Univ Colorado, Dept Ecol & Evolutionary Biol, Boulder, CO 80309 USA Bradley, RJ (reprint author), Univ Colorado, Dept Ecol & Evolutionary Biol, Boulder, CO 80309 USA. rbradley810@gmail.com University of Colorado; Phi Beta Kappa Crisp fellowship; Department of Ecology and Evolutionary Biology research grants; NSF [IOS 0717421, DEB-CAREER 1149942] We thank the Safran Lab Group at the University of Colorado for extensive comments on ideas during manuscript development, and Samuel Flaxman, Michael Breed, Cait Dmitriew, and reviewers for comments on this manuscript. RJB was funded by the University of Colorado Graduate School Sheryl R. Young fellowship, the Phi Beta Kappa Crisp fellowship and Department of Ecology and Evolutionary Biology research grants. RJS was supported by the NSF (IOS 0717421 and DEB-CAREER 1149942) and the University of Colorado. Alonso JC, 2010, BEHAV ECOL SOCIOBIOL, V64, P1589, DOI 10.1007/s00265-010-0972-6; AUSTAD SN, 1991, J GERONTOL, V46, pB47, DOI 10.1093/geronj/46.2.B47; Bai ML, 2012, ANIM BEHAV, V84, P251, DOI 10.1016/j.anbehav.2012.05.004; Balbontin J, 2007, J ANIM ECOL, V76, P915, DOI 10.1111/j.1365-2656.2007.01269.x; Bell CB, 2012, WEST N AM NATURALIST, V72, P369, DOI 10.3398/064.072.0311; Bertram SM, 2011, ETHOLOGY, V117, P1050, DOI 10.1111/j.1439-0310.2011.01958.x; Blas J, 2009, ECOGRAPHY, V32, P647, DOI 10.1111/j.1600-0587.2008.05700.x; Bolker BM, 2009, TRENDS ECOL EVOL, V24, P127, DOI 10.1016/j.tree.2008.10.008; Bowen WD, 2006, J ANIM ECOL, V75, P1340, DOI 10.1111/j.1365-2656.2006.01157.x; BRADLEY JS, 1995, J ANIM ECOL, V64, P31, DOI 10.2307/5825; BRADLEY JS, 1990, J ANIM ECOL, V59, P487, DOI 10.2307/4876; Brown WP, 2009, ECOLOGY, V90, P218, DOI 10.1890/07-2061.1; Budden AE, 2009, J AVIAN BIOL, V40, P18, DOI 10.1111/j.1600-048X.2008.04344.x; Bunce A, 2005, J ZOOL, V266, P163, DOI 10.1017/S0952836905006734; Cichon M, 2003, OECOLOGIA, V134, P78, DOI 10.1007/s00442-002-1099-x; Coltman DW, 2002, P ROY SOC B-BIOL SCI, V269, P165, DOI 10.1098/rspb.2001.1851; Cox RM, 2009, J EVOLUTION BIOL, V22, P1586, DOI 10.1111/j.1420-9101.2009.01772.x; Crawley MJ., 2012, R BOOK; Daunt F, 1999, P ROY SOC B-BIOL SCI, V266, P1489, DOI 10.1098/rspb.1999.0805; Desprez M, 2011, P ROY SOC B-BIOL SCI, V278, P3060, DOI 10.1098/rspb.2011.0189; Dubois F, 2002, BEHAV ECOL SOCIOBIOL, V52, P357, DOI 10.1007/s00265-002-0521-z; Dugdale HL, 2011, MOL ECOL, V20, P3261, DOI 10.1111/j.1365-294X.2011.05167.x; ENS BJ, 1993, ANIM BEHAV, V45, P1199, DOI 10.1006/anbe.1993.1142; Ericsson G, 2001, ECOLOGY, V82, P1613, DOI 10.1890/0012-9658(2001)082[1613:ARREAS]2.0.CO;2; Evans SR, 2011, EVOLUTION, V65, P1623, DOI 10.1111/j.1558-5646.2011.01253.x; Ferrer M, 2003, AUK, V120, P180, DOI 10.1642/0004-8038(2003)120[0180:AATEOF]2.0.CO;2; FORSLUND P, 1992, J ANIM ECOL, V61, P195, DOI 10.2307/5522; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Freeman-Gallant CR, 2010, EVOLUTION, V64, P1007, DOI 10.1111/j.1558-5646.2009.00873.x; Gonzalez-Solis J, 2004, J ORNITHOL, V145, P129, DOI 10.1007/s10336-004-0023-z; Guinan J. A., 2008, BIRDS N AM ONLINE; Hollister-Smith JA, 2007, ANIM BEHAV, V74, P287, DOI 10.1016/j.anbehav.2006.12.008; Horie S, 2012, IBIS, V154, P285, DOI 10.1111/j.1474-919X.2011.01204.x; Jones OR, 2014, NATURE, V505, P169, DOI 10.1038/nature12789; Kery M., 2010, INTRO WINBUGS ECOLOG; Komdeur J, 2005, BEHAV ECOL, V16, P805, DOI 10.1093/beheco/ari059; Komdeur J, 1996, BEHAV ECOL, V7, P326; Komdeur J, 2007, ADV STUD BEHAV, V37, P147, DOI 10.1016/S0065-3454(07)37004-6; Laaksonen T, 2002, J ANIM ECOL, V71, P23, DOI 10.1046/j.0021-8790.2001.00570.x; Laskemoen T, 2008, J AVIAN BIOL, V39, P322, DOI 10.1111/j.0908-8857.2008.04178.x; Lifjeld JT, 2011, BEHAV ECOL SOCIOBIOL, V65, P1687, DOI 10.1007/s00265-011-1176-4; Limmer B, 2010, OIKOS, V119, P500, DOI 10.1111/j.1600-0706.2009.16673.x; Llambias PE, 2008, J AVIAN BIOL, V39, P493, DOI 10.1111/j.0908-8857.2008.04274.x; Lombardo MP, 2010, J FIELD ORNITHOL, V81, P294, DOI 10.1111/j.1557-9263.2010.00285.x; Lozano GA, 1999, WILSON BULL, V111, P381; Michl G, 2002, P NATL ACAD SCI USA, V99, P5466, DOI 10.1073/pnas.082036699; Milonas PG, 2011, BEHAV ECOL SOCIOBIOL, V65, P1249, DOI 10.1007/s00265-011-1138-x; Moller AP, 2006, J EVOLUTION BIOL, V19, P682, DOI 10.1111/j.1420-9101.2005.01065.x; Naves LC, 2007, ANIM BEHAV, V73, P433, DOI 10.1016/j.anbehav.2006.10.004; Nisbet ICT, 2009, J AVIAN BIOL, V40, P296, DOI 10.1111/j.1600-048X.2008.04563.x; OLLASON JC, 1978, J ANIM ECOL, V47, P961, DOI 10.2307/3681; PACKER C, 1979, ANIM BEHAV, V27, P37, DOI 10.1016/0003-3472(79)90127-1; Part T, 2001, P ROY SOC B-BIOL SCI, V268, P2267, DOI 10.1098/rspb.2001.1803; Penteriani V, 2003, IBIS, V145, pE77, DOI 10.1046/j.1474-919X.2003.00159.x; Poesel A, 2006, ANIM BEHAV, V72, P531, DOI 10.1016/j.anbehav.2005.10.022; Poole A., 1998, BIRDS N AM ONLINE; Pyle P, 2001, J ANIM ECOL, V70, P1088, DOI 10.1046/j.0021-8790 .2001.00567.x; Ratcliffe N, 1998, J ANIM ECOL, V67, P853, DOI 10.1046/j.1365-2656.1998.6760853.x; REID WV, 1988, ECOLOGY, V69, P1454, DOI 10.2307/1941642; Richardson DS, 2007, EVOLUTION, V61, P2790, DOI 10.1111/j.1558-5646.2007.00222.x; ROCKWELL RF, 1993, J ANIM ECOL, V62, P323, DOI 10.2307/5363; Roff Derek A., 1992; Safran RJ, 2006, CAN J ZOOL, V84, P1533, DOI 10.1139/Z06-176; Safran RJ, 2005, SCIENCE, V309, P2210, DOI 10.1126/science.1115090; Schmoll T, 2009, P R SOC B, V276, P337, DOI 10.1098/rspb.2008.1116; Slater GL, 2013, BIRDS N AM ONLINE; Sloane S. A., 2001, BIRDS N AM ONLINE; SYDEMAN WJ, 1991, J ANIM ECOL, V60, P135, DOI 10.2307/5450; Takagi M, 2003, J ETHOL, V21, P9, DOI 10.1007/s10164-002-0068-5; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; van de Pol M, 2006, BEHAV ECOL, V17, P982, DOI 10.1093/beheco/arl036; Wasser DE, 2010, J ZOOL, V280, P103, DOI 10.1111/j.1469-7998.2009.00671.x; White J, 2008, P NATL ACAD SCI USA, V105, P13947, DOI 10.1073/pnas.0803067105; Williams TD, 2003, J AVIAN BIOL, V34, P379, DOI 10.1111/j.0908-8857.2003.03080.x; ZANN R, 1996, ZEBRA FINCH; Zuur A. F., 2012, ZERO INFLATED MODELS; Zuur A. F., 2009, MIXED EFFECTS MODELS 77 8 8 0 40 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0179-1613 1439-0310 ETHOLOGY Ethology MAY 2014 120 5 411 426 10.1111/eth.12220 16 Psychology, Biological; Behavioral Sciences; Zoology Psychology; Behavioral Sciences; Zoology AE0ZY WOS:000333696100001 2018-11-12 J De Baca, TC; Sotomayor-Peterson, M; Smith-Castro, V; Figueredo, AJ De Baca, Tomas Cabeza; Sotomayor-Peterson, Marcela; Smith-Castro, Vanessa; Figueredo, Aurelio Jose Contributions of Matrilineal and Patrilineal Kin Alloparental Effort to the Development of Life History Strategies and Patriarchal Values: A Cross-Cultural Life History Approach JOURNAL OF CROSS-CULTURAL PSYCHOLOGY English Article evolutionary psychology; family emotional climate; parenting; familism; Mexico; life history theory; patriarchal values; Costa Rica PARENT CHARACTERISTICS; REPRODUCTIVE STRATEGY; FAMILY; EVOLUTION; SOCIALIZATION; CHILD; SELF; PERSONALITY; INVESTMENT; MODELS Childrearing behaviors are often shaped by familial and cultural principles that function as guides for socialization goals and effective childrearing practices. For an increasing number of Latino families, the extended kin often acts as a source of childcare support. Due to a scarcity of research on the familial support configurations of Latin American families, the current study utilizes a cross-cultural retrospective approach to explore the associations between matrilineal/patrilineal kin and life history strategies in relation to childrearing. Applying a family system and life history framework, the present model tested 200 university students from Mexico and Costa Rica on measures of family emotional environment and traditional social values (e.g., familismo/simpatia and patriarchal values). Results found that childcare assistance from patrilineal and matrilineal kin was associated with positive family emotional environment, which weakly mediated the association between kin care and slow life history. Positive associations were also found between matrilineal kin childcare and traditional Latin social values. However, patriarchal values were only predicted by higher levels of patrilineal kin aid. The results are consistent with the general theoretical literature of life history theory and family systems theory, suggesting that high levels of childcare produce positively emotional family climates, which in turn perpetuate the development of prosocial individuals with slow life history strategies. Implications for further research are discussed. [De Baca, Tomas Cabeza; Figueredo, Aurelio Jose] Univ Arizona, Tucson, AZ 85721 USA; [Sotomayor-Peterson, Marcela] Univ Sonora, Hermosillo 83000, Sonora, Mexico; [Smith-Castro, Vanessa] Univ Costa Rica, San Pedro, Costa Rica De Baca, TC (reprint author), Univ Arizona, Norton Sch Family & Consumer Sci, Div Family Studies & Human Dev, 650 N Pk Ave, Tucson, AZ 85721 USA. tdebaca@email.arizona.edu Smith-Castro, Vanessa/D-8173-2015 Smith-Castro, Vanessa/0000-0001-6348-4223; Cabeza de Baca, Tomas/0000-0003-3322-2163 Allen SM, 1999, J MARRIAGE FAM, V61, P199, DOI 10.2307/353894; Barnett MA, 2008, CLIN CHILD FAM PSYCH, V11, P145, DOI 10.1007/s10567-008-0034-z; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BEST DL, 1994, J CROSS CULT PSYCHOL, V25, P181, DOI 10.1177/0022022194252002; BETZIG L, 1989, CURR ANTHROPOL, V30, P654, DOI 10.1086/203798; Bobko P, 2007, ORGAN RES METHODS, V10, P689, DOI 10.1177/1094428106294734; BRONFENBRENNER U., 1979, ECOLOGY HUMAN DEV EX; Burton L M, 1990, Hum Nat, V1, P123, DOI 10.1007/BF02692149; Cannon EA, 2008, FAM PROCESS, V47, P501, DOI 10.1111/j.1545-5300.2008.00268.x; Carlo G, 2001, J APPL DEV PSYCHOL, V22, P559, DOI 10.1016/S0193-3973(01)00094-6; Cavalli-Sforza L. L., 1981, CULTURAL TRANSMISSIO; COHEN J, 1990, AM PSYCHOL, V45, P1304, DOI 10.1037/0003-066X.45.12.1304; Cox MJ, 2003, CURR DIR PSYCHOL SCI, V12, P193, DOI 10.1111/1467-8721.01259; Cromwell R E, 1979, Hisp J Behav Sci, V1, P355, DOI 10.1177/073998637900100404; Darwin C.R., 1871, DESCENT MAN SELECTIO; Davis Melinda F., 2007, Journal of the Arizona-Nevada Academy of Science, V39, P65; De Baca TC, 2012, PARENT-SCI PRACT, V12, P94, DOI 10.1080/15295192.2012.680396; EINHORN HJ, 1975, ORGAN BEHAV HUM PERF, V13, P171, DOI 10.1016/0030-5073(75)90044-6; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; FELDMAN MW, 1976, THEOR POPUL BIOL, V9, P238, DOI 10.1016/0040-5809(76)90047-2; Figueredo A. J., 2013, J METHODS MEASUREMEN, V4, P1; Figueredo A. J., 2001, VIRGINIA J SOCIAL PO, V8, P219; Figueredo A. J., 2009, J SOCIAL EVOLUTIONAR, V3, P29; Figueredo AJ, 2004, EVOL HUM BEHAV, V25, P336, DOI 10.1016/j.evolhumbehav.2004.05.005; FIGUEREDO AJ, 1993, ETHOL SOCIOBIOL, V14, P353, DOI 10.1016/0162-3095(93)90024-C; Figueredo AJ, 2001, EVOL HUM BEHAV, V22, P295, DOI 10.1016/S1090-5138(01)00067-8; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2013, PERS INDIV DIFFER, V55, P251, DOI 10.1016/j.paid.2012.04.033; Figueredo AJ, 2010, PSYCHOL EMOT MOTIV A, P3; Figueredo AJ, 2009, HUM NATURE-INT BIOS, V20, P317, DOI 10.1007/s12110-009-9068-2; Figueredo Aurelio Jose, 2007, Journal of the Arizona-Nevada Academy of Science, V39, P59; Flere S, 2008, FIELD METHOD, V20, P399, DOI 10.1177/1525822X08322703; Flinn MV, 2006, DEV REV, V26, P138, DOI 10.1016/j.dr.2006.02.003; Frias-Armenta M, 1998, J ABNORM CHILD PSYCH, V26, P129, DOI 10.1023/A:1022621922331; Frias-Armenta M., 2004, REV INTERAMERICANA P, V38, P61; Gaxiola Romero J., 2011, REV MEXICANA INVESTI, V1, P28; Geary DC, 2001, PARENT-SCI PRACT, V1, P5, DOI 10.1207/S15327922PAR011&2_2; Geary DC, 2000, PSYCHOL BULL, V126, P55, DOI 10.1037/0033-2909.126.1.55; Geronimus AT, 1996, HUM NATURE-INT BIOS, V7, P323, DOI 10.1007/BF02732898; Giosan C, 2006, EVOLUTIONARY PSYCHOL, V41, P394; Gorsuch R. L., 1991, ANN AM EV ASS C CHIC; Gorsuch R. L., 1983, FACTOR ANAL; Gosling SD, 2003, J RES PERS, V37, P504, DOI 10.1016/S0092-6566(03)00046-1; Green EGT, 2005, J CROSS CULT PSYCHOL, V36, P321, DOI 10.1177/0022022104273654; Greenfield PM, 2009, DEV PSYCHOL, V45, P401, DOI 10.1037/a0014726; Griffith JD, 1998, HISPANIC J BEHAV SCI, V20, P468, DOI 10.1177/07399863980204004; HALBERSTADT AG, 1986, J PERS SOC PSYCHOL, V51, P827, DOI 10.1037//0022-3514.51.4.827; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; HARRISON AO, 1990, CHILD DEV, V61, P347, DOI 10.1111/j.1467-8624.1990.tb02782.x; Hausmann Ricardo, 2010, GLOBAL GENDER GAP RE; Henrich J, 2010, BEHAV BRAIN SCI, V33, P61, DOI 10.1017/S0140525X0999152X; Hofstede G, 2003, ACCOUNT ORG SOC, V28, P811, DOI 10.1016/S0361-3682(03)00018-7; Hofstede G., 2001, CULTURES CONSEQUENCE; Hrdy S. B., 1999, MOTHER NATURE HIST M; Hrdy S. B., 2009, MOTHERS OTHERS EVOLU; Johnson W, 2009, CURR DIR PSYCHOL SCI, V18, P217, DOI 10.1111/j.1467-8721.2009.01639.x; Jones D., 2007, J CHILD FAM STUD, V16, P671, DOI [10.1007/s10826-006-9115-0, DOI 10.1007/S10826-006-9115-0]; Jouriles EN, 1997, J CONSULT CLIN PSYCH, V65, P309, DOI 10.1037/0022-006X.65.2.309; Kartner J, 2011, J COGN EDUC PSYCHOL, V10, P96, DOI 10.1891/1945-8959.10.1.96; Kagitcibasi C, 2005, J CROSS CULT PSYCHOL, V36, P403, DOI 10.1177/0022022105275959; Keller H, 2003, HUM DEV, V46, P288, DOI 10.1159/000071937; Keller H, 2006, J CROSS CULT PSYCHOL, V37, P155, DOI 10.1177/0022022105284494; Keller H, 2004, CHILD DEV, V75, P1745, DOI 10.1111/j.1467-8624.2004.00814.x; Keller H., 2011, KINDERALLTAG KULTURE; Kirsner BR, 2003, J AFFECT DISORDERS, V75, P131, DOI 10.1016/S0165-0327(02)00048-4; Lumsden C. J, 1981, GENES MIND CULTURE C; Mayo Y., 1997, CHALLENGE PERMANENCY, P49; McFarland C, 1998, J PERS SOC PSYCHOL, V75, P1424, DOI 10.1037//0022-3514.75.6.1424; Michalski RL, 2005, HUM NATURE-INT BIOS, V16, P293, DOI 10.1007/s12110-005-1012-5; Miranda D, 1997, PATRONES SOCIALIZACI; Mirande A., 2004, MENS LIVES, P28; Nesse Randolph, 2009, EVOLUTION CULTURE HU, P137; Olderbak S, 2009, PERS INDIV DIFFER, V46, P604, DOI 10.1016/j.paid.2008.12.019; Olderbak SG, 2010, PERS INDIV DIFFER, V49, P234, DOI 10.1016/j.paid.2010.03.041; Organization for Economic Co-Operation and Development, 2012, 2012 SOC I GEND IND; Oyserman D, 2002, PSYCHOL BULL, V128, P3, DOI 10.1037/0033-2909.128.1.3; Pashos A, 2008, HUM NATURE-INT BIOS, V19, P311, DOI 10.1007/s12110-008-9046-0; Pollet T. V., 2007, EVOLUTIONARY PSYCHOL, V5, P832; Rosabal-Coto M., 2009, REV DIGITAL MAESTRIA, V1, P389; Rosabal-Coto M., 2013, REV ACTUALIDADES PSI, V27, P87; Rosabal-Coto M, 2012, REV COSTARRIC PSICOL, V31, P65; Rushton JP, 2008, J RES PERS, V42, P1173, DOI 10.1016/j.jrp.2008.03.002; Sarkisian N, 2007, J MARRIAGE FAM, V69, P40, DOI 10.1111/j.1741-3737.2006.00342.x; Schwartz SJ, 2007, J SOC PSYCHOL, V147, P101, DOI 10.3200/SOCP.147.2.101-118; Shackelford TK, 2000, PERS INDIV DIFFER, V28, P917, DOI 10.1016/S0191-8869(99)00150-6; Sotomayor-Peterson M, 2013, J CROSS CULT PSYCHOL, V44, P620, DOI 10.1177/0022022112455456; Sotomayor-Peterson M, 2012, FAM PROCESS, V51, P218, DOI 10.1111/j.1545-5300.2012.01396.x; Steinmetz S. K., 1993, SOURCEBOOK FAMILY TH; STRAUS MA, 1979, J MARRIAGE FAM, V41, P75, DOI 10.2307/351733; Stright AD, 2003, FAM RELAT, V52, P232, DOI 10.1111/j.1741-3729.2003.00232.x; Teubert D, 2010, PARENT-SCI PRACT, V10, P286, DOI 10.1080/15295192.2010.492040; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; Torres JB, 2002, AM J ORTHOPSYCHIAT, V72, P163, DOI 10.1037/0002-9432.72.2.163; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Ulbricht JA, 2010, HANDBOOK OF BEHAVIOR GENETICS, P209, DOI 10.1007/978-0-387-76727-7_15; United Nations Development Program, 2008, GEN IN IND GII; WARE JE, 1994, SF 36 PHYS MENTAL HL; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; WESTEBERHARD MJ, 1979, P AM PHILOS SOC, V123, P222; White J. M., 2002, FAMILY THEORIES, P117; Wilson Margo, 1992, P289; Wolf PSA, 2011, BIODEMOGR SOC BIOL, V57, P171, DOI 10.1080/19485565.2011.614569; World Bank, 2012, LITTL DAT BOOK 2012; Wozniak R., 1996, RELATIONAL FAM UNPUB 105 2 2 0 10 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 0022-0221 1552-5422 J CROSS CULT PSYCHOL J. Cross-Cult. Psychol. MAY 2014 45 4 534 554 10.1177/0022022113513068 21 Psychology, Social Psychology AE3OS WOS:000333886400002 2018-11-12 J Hughes, PW; Simons, AM Hughes, P. William; Simons, Andrew M. The continuum between semelparity and iteroparity: plastic expression of parity in response to season length manipulation in Lobelia inflata BMC EVOLUTIONARY BIOLOGY English Article Semelparity; Iteroparity; Life-history theory; Reproductive effort; Phenotypic plasticity REPRODUCTIVE LIFE-SPAN; PHENOTYPIC PLASTICITY; NATURAL-SELECTION; ANNUAL PLANTS; CRAB SPIDER; SEED MASS; EVOLUTION; TIME; ALLOCATION; HISTORY Background: Semelparity and iteroparity are considered to be distinct and alternative life-history strategies, where semelparity is characterized by a single, fatal reproductive episode, and iteroparity by repeated reproduction throughout life. However, semelparous organisms do not reproduce instantaneously; typically reproduction occurs over an extended time period. If variation in reproductive allocation exists within such a prolonged reproductive episode, semelparity may be considered iteroparity over a shorter time scale. This continuity hypothesis predicts that "semelparous" organisms with relatively low probability of survival after age at first reproduction will exhibit more extreme semelparity than those with high probability of adult survival. This contrasts with the conception of semelparity as a distinct reproductive strategy expressing a discrete, single, bout of reproduction, where reproductive phenotype is expected to be relatively invariant. Here, we manipulate expected season length-and thus expected adult survival-to ask whether Lobelia inflata, a classic "semelparous" plant, exhibits plasticity along a semelparous-iteroparous continuum. Results: Groups of replicated genotypes were manipulated to initiate reproduction at different points in the growing season in each of three years. In lab and field populations alike, the norm of reaction in parity across a season was as predicted by the continuity hypothesis: as individuals bolted later, they showed shorter time to, and smaller size at first reproduction, and multiplied their reproductive organs through branching, thus producing offspring more simultaneously. Conclusions: This work demonstrates that reproductive effort occurs along a semelparous-iteroparous continuum within a "semelparous" organism, and that variation in parity occurs within populations as a result of phenotypic plasticity. [Hughes, P. William; Simons, Andrew M.] Carleton Univ, Dept Biol, Ottawa, ON K1S 5B6, Canada Hughes, PW (reprint author), Carleton Univ, Dept Biol, 1125 Colonel Dr, Ottawa, ON K1S 5B6, Canada. william.hughes@carleton.ca Hughes, P. William/G-9119-2018; Simons, Andrew/A-7751-2012 Hughes, P. William/0000-0003-4142-2579; Simons, Andrew/0000-0002-0198-465X NSERC CGS; NSERC Discovery Grant We thank M. Compton, J. Graham, H. Rundle, T. Sherratt and R. Gorelick for their contributions to experimental design, and Peter Arbour for access to long-term field sites. Lobelia inflata is a common weed of disturbed habitats and is not cited under Canada's List of Wildlife Species at Risk, nor is it protected under CITES. All fieldwork and specimen collection in the Petawawa Research Forest was undertaken with the permission of the Operations Managers of the Canadian Wood Fibre Centre. This work was supported through an NSERC CGS to PWH and an NSERC Discovery Grant to AMS. AMIR S, 1990, J THEOR BIOL, V147, P17, DOI 10.1016/S0022-5193(05)80250-4; Bolker BM, 2009, TRENDS ECOL EVOL, V24, P127, DOI 10.1016/j.tree.2008.10.008; Bolmgren K, 2008, OIKOS, V117, P424, DOI 10.1111/j.2007.0030-1299.16142.x; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; BULMER MG, 1985, AM NAT, V126, P63, DOI 10.1086/284396; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; Christiansen JS, 2008, J EXP MAR BIOL ECOL, V360, P47, DOI 10.1016/j.jembe.2008.04.003; COHEN D, 1971, J THEOR BIOL, V33, P299, DOI 10.1016/0022-5193(71)90068-3; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Crespi BJ, 2002, EVOLUTION, V56, P1008; DIGGLE PK, 1995, ANNU REV ECOL SYST, V26, P531, DOI 10.1146/annurev.es.26.110195.002531; FRITZ RS, 1982, AM NAT, V120, P264, DOI 10.1086/283987; Futami K, 2005, ETHOLOGY, V111, P1126, DOI 10.1111/j.1439-0310.2005.01126.x; GOLDING DW, 1994, P NATL ACAD SCI USA, V91, P11777, DOI 10.1073/pnas.91.25.11777; Harper J. L., 1977, POPULATION BIOL PLAN; Hendry AP, 2004, P ROY SOC B-BIOL SCI, V271, P259, DOI 10.1098/rspb.2003.2600; Hughes PW, 2014, APPL PLANT SCI, V2, DOI 10.3732/apps.1300096; Hughes PW, 2014, REPROD TRAITS LOBELI; KING D, 1983, ECOLOGY, V64, P16, DOI 10.2307/1937324; KING D, 1982, THEOR POPUL BIOL, V22, P1, DOI 10.1016/0040-5809(82)90032-6; KIRKENDALL LR, 1985, AM NAT, V125, P189, DOI 10.1086/284337; Larsen SU, 2004, CROP SCI, V44, P1710, DOI 10.2135/cropsci2004.1710; Meunier J, 2012, EVOL ECOL, V26, P669, DOI 10.1007/s10682-011-9510-x; Montti L, 2011, ACTA OECOL, V37, P361, DOI 10.1016/j.actao.2011.04.004; Morbey YE, 2004, J EVOLUTION BIOL, V17, P768, DOI 10.1111/j.1420-9101.2004.00731.x; MORSE DH, 1994, J ARACHNOL, V22, P195; Ollerton J, 1998, PLANT ECOL, V139, P35, DOI 10.1023/A:1009798320049; Pinheiro J, 2000, MIXED EFFECTS MODELS, P548; Rocha F, 2001, BIOL REV, V76, P291, DOI 10.1017/S1464793101005681; ROFF D, 1980, OECOLOGIA, V45, P202, DOI 10.1007/BF00346461; Roff DA, 2001, LIFE HIST EVOLUTION, P527; Roff Derek A., 1992; SCHLICHTING CD, 1986, ANNU REV ECOL SYST, V17, P667, DOI 10.1146/annurev.es.17.110186.003315; Simons AM, 2007, J EVOLUTION BIOL, V20, P813, DOI 10.1111/j.1420-9101.2006.01270.x; Simons AM, 2000, AM J BOT, V87, P124, DOI 10.2307/2656690; Simons AM, 2003, J EVOLUTION BIOL, V16, P233, DOI 10.1046/j.1420-9101.2003.00530.x; Simons AM, 2000, HEREDITY, V85, P356, DOI 10.1046/j.1365-2540.2000.00760.x; Simons AM, 2006, EVOLUTION, V60, P2280, DOI 10.1554/05-396.1; Simons AM, 2009, P ROY SOC B-BIOL SCI, V276, P1987, DOI 10.1098/rspb.2008.1920; STANTON ML, 1985, OECOLOGIA, V67, P524, DOI 10.1007/BF00790024; Stearns S.C., 1992, EVOLUTION LIFE HIST, P262; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; Thomson FJ, 2011, J ECOL, V99, P1299, DOI 10.1111/j.1365-2745.2011.01867.x; Unwin MJ, 1999, CAN J FISH AQUAT SCI, V56, P1172, DOI 10.1139/cjfas-56-7-1172; Venables WN, 2004, FISH RES, V70, P319, DOI 10.1016/j.fishres.2004.08.011; Young T. P., 2010, NATURE ED KNOWLEDGE, V3, P2; YOUNG TP, 1991, TRENDS ECOL EVOL, V6, P285, DOI 10.1016/0169-5347(91)90006-J; YOUNG TP, 1981, AM NAT, V118, P27, DOI 10.1086/283798; Zeineddine M, 2009, EVOLUTION, V63, P1498, DOI 10.1111/j.1558-5646.2009.00630.x 49 8 8 2 54 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1471-2148 BMC EVOL BIOL BMC Evol. Biol. APR 26 2014 14 90 10.1186/1471-2148-14-90 11 Evolutionary Biology; Genetics & Heredity Evolutionary Biology; Genetics & Heredity AG1KB WOS:000335172800001 24766909 DOAJ Gold, Green Published 2018-11-12 J Wensink, MJ; Wrycza, TF; Baudisch, A Wensink, Maarten J.; Wrycza, Tomasz F.; Baudisch, Annette No senescence despite declining selection pressure: Hamilton's result in broader perspective JOURNAL OF THEORETICAL BIOLOGY English Article Evolution of aging; Life history theory; Trade-offs; Force of natural selection; Fitness differential OXIDATIVE DAMAGE THEORY; POPULATION-GROWTH RATE; NATURAL-SELECTION; EVOLUTION; LIFE; AGE; MUTATION; REPRODUCTION; ELEGANS; MODELS Theory predicts that senescence should inevitably evolve because selection pressure declines with age. Yet, data show that senescence is not a universal phenomenon. How can these observations peacefully coexist? Evolution of any trait hinges on its impact on fitness. A complete mathematical description of change in fitness, the total fitness differential, involves selection pressure along with a perturbation function that describes how the vital rates, mortality and fecundity, are affected across ages. We propose that the perturbation function can be used to model trade-offs when vital rates are perturbed in different directions and magnitude at different ages. We find that for every trade-off we can identify parameter values for which senescence does evolve and others for which it does not. We argue that this reconciles the apparent contradiction between data and theory. The total fitness differential is also instrumental in deriving mathematical relationships between alternative indicators of selection pressure. We show examples and highlight that any indicator combined with the right perturbation function can be used to parameterize a specific biological change. Biological considerations should motivate what perturbation functions are used. We interpret the relevance of Hamilton's finding that selection pressure declines for the evolution of senescence: declining selection pressure is a necessary but not a sufficient condition. (C) 2013 The Authors. Published by Elsevier Ltd. All rights reserved. [Wensink, Maarten J.; Wrycza, Tomasz F.; Baudisch, Annette] Max Planck Inst Demog Res, Max Planck Res Grp Modeling Evolut Aging, D-18057 Rostock, Germany; [Wensink, Maarten J.] Leyden Acad Vital & Ageing, NL-2333 AA Leiden, Netherlands Wensink, MJ (reprint author), Max Planck Inst Demog Res, Max Planck Res Grp Modeling Evolut Aging, Konrad Zuse Str 1, D-18057 Rostock, Germany. wensink@demogr.mpg.de Andersen, Mette Adalheidur/D-5608-2017 ABRAMS PA, 1993, EVOLUTION, V47, P877, DOI 10.1111/j.1558-5646.1993.tb01241.x; ABRAMS PA, 1991, EVOL ECOL, V5, P343, DOI 10.1007/BF02214152; ARTHUR WB, 1984, DEMOGRAPHY, V21, P109, DOI 10.2307/2061031; Baudisch A, 2005, P NATL ACAD SCI USA, V102, P8263, DOI 10.1073/pnas.0502155102; Baudisch A., 2008, CONTRIBUTIONS EVOLUT; Baudisch A, 2012, GERONTOLOGY, V58, P481, DOI 10.1159/000341861; Baudisch A, 2012, SCIENCE, V338, P618, DOI 10.1126/science.1226467; Baudisch A, 2010, DEMOGR RES, V23, P655, DOI 10.4054/DemRes.2010.23.23; Caswell H, 1996, ECOLOGY, V77, P870, DOI 10.2307/2265507; CASWELL H, 1982, J THEOR BIOL, V98, P519, DOI 10.1016/0022-5193(82)90134-5; Caswell H, 2001, MATRIX POPULATION MO; Caswell H, 2010, DEMOGR RES, V23, P531, DOI 10.4054/DemRes.2010.23.19; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; Charlesworth B, 2001, J THEOR BIOL, V210, P47, DOI 10.1006/jtbi.2001.2296; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Danko MJ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0034146; Doonan R, 2008, GENE DEV, V22, P3236, DOI 10.1101/gad.504808; Falconer DS, 1996, INTRO QUANTITATIVE G; Gems D, 2009, CELL CYCLE, V8, P1681, DOI 10.4161/cc.8.11.8595; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; KIRKWOOD TBL, 1979, PROC R SOC SER B-BIO, V205, P531, DOI 10.1098/rspb.1979.0083; Kirkwood TBL, 2011, CURR BIOL, V21, pR701, DOI 10.1016/j.cub.2011.07.020; Kirkwood TBL, 2010, ANN NY ACAD SCI, V1204, P21, DOI 10.1111/j.1749-6632.2010.05520.x; Kriete A, 2013, BIOSYSTEMS, V112, P37, DOI 10.1016/j.biosystems.2013.03.014; Lotka A., 1924, ELEMENTS MATH BIOL; Martin GM, 2007, ANN NY ACAD SCI, V1100, P14, DOI 10.1196/annals.1395.002; Medawar P. B., 1952, UNSOLVED PROBLEM BIO, P3; Metcalf CJE, 2007, TRENDS ECOL EVOL, V22, P205, DOI 10.1016/j.tree.2006.12.001; Monaghan P, 2008, FUNCT ECOL, V22, P371, DOI 10.1111/j.1365-2435.2008.01418.x; PARTRIDGE L, 1993, NATURE, V362, P305, DOI 10.1038/362305a0; Partridge L, 2006, TRENDS ECOL EVOL, V21, P334, DOI 10.1016/j.tree.2006.02.008; Shahrestani P, 2012, REJUV RES, V15, P49, DOI 10.1089/rej.2011.1201; Sozou PD, 2004, P ROY SOC B-BIOL SCI, V271, P457, DOI 10.1098/rspb.2003.2614; Stearns S. C., 1992, EVOLUTION LIFE HIST; Steinsaltz D, 2005, ADV APPL MATH, V35, P16, DOI 10.1016/j.aam.2004.09.003; Vaupel JW, 2004, THEOR POPUL BIOL, V65, P339, DOI 10.1016/j.tpb.2003.12.003; Wachter KW, 2013, P NATL ACAD SCI USA, V110, P10141, DOI 10.1073/pnas.1306656110; Wensink M, 2013, BIOGERONTOLOGY, V14, P99, DOI 10.1007/s10522-012-9410-7; Wensink MJ, 2012, BIOGERONTOLOGY, V13, P197, DOI 10.1007/s10522-011-9362-3; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060 42 7 7 0 26 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0022-5193 1095-8541 J THEOR BIOL J. Theor. Biol. APR 21 2014 347 176 181 10.1016/j.jtbi.2013.11.016 6 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology AF8PE WOS:000334977300017 24316386 Other Gold 2018-11-12 J Shaw, P; Cresswell, W Shaw, Phil; Cresswell, Will Latitudinal variation in day length and working day length has a confounding effect when comparing nest attentiveness in tropical and temperate species JOURNAL OF ORNITHOLOGY English Article Nest attentiveness; Latitudinal variation; Day length; Working day; Stripe-breasted Tit Parus fasciiventer; Great Tit Parus major TITS PARUS-MAJOR; DAILY ENERGY-EXPENDITURE; LONG INCUBATION PERIODS; GREAT TIT; CLUTCH SIZE; GEOGRAPHIC-VARIATION; BREEDING ECOLOGY; NORTHERN FINLAND; LIFE-HISTORY; BEHAVIOR During incubation, tropical passerines have been shown to have lower levels of nest attentiveness than their counterparts at north temperate latitudes, spending a higher percentage of daylight time off the nest. This difference has been interpreted as evidence of parental restraint; tropical birds allocate more time to daily self-maintenance, perhaps preserving their higher annual survival rates and future breeding potential. But such comparisons are susceptible to the confounding effects of day length variation, because a given amount of time spent off the nest will account for a greater percentage of daylight time near to the equator than at high latitudes during spring and summer. Based on a pattern of increasing day length between 0 degrees and 70 degrees N, we show that the impact of this bias is likely to be small where sites are separated by less than 30 degrees-40 degrees of latitude, but should increase substantially both with latitudinal span and distance from the equator. To illustrate this effect, we compared nest attentiveness in two congeners breeding at 1 degrees S and 52 degrees N. During incubation, Stripe-breasted Tits Parus fasciiventer in Uganda had a shorter working day (time from emerging to retiring) than north temperate Great Tits P. major, and spent a higher percentage of daylight time off the nest (32 %) than Great Tits in the UK (24 %). However, this difference was almost wholly explained by the latitudinal difference in day length; the amount of time spent off the nest differed by just 10 min day(-1) (<1 % of the 24-h cycle). We show that this effect may be moderated by the change in working day length, which increased less rapidly (in relation to latitude) than day length. Although these effects can thus confound latitudinal comparisons of nest attentiveness, accentuating a pattern predicted by life-history theory, they are avoidable if attentiveness is expressed as the percentage of time or the number of minutes spent incubating per 24 h. [Shaw, Phil; Cresswell, Will] Univ St Andrews, Sch Biol, St Andrews KY16 9TS, Fife, Scotland; [Shaw, Phil] Mbarara Univ Sci & Technol, Inst Trop Forest Conservat, Kabale, Uganda Shaw, P (reprint author), Univ St Andrews, Sch Biol, Harold Mitchell Bldg, St Andrews KY16 9TS, Fife, Scotland. ps61@st-andrews.ac.uk British Ornithologists' Union; African Bird Club; Uganda Wildlife Authority We thank Narsensius Owoyesigire, Savio Ngabirano, Lawrence Tumugabirwe, Margaret Kobusingye and David Ebbutt for assisting with fieldwork, and Alastair McNeilage, Martha Robbins, Miriam van Heist and Douglas Sheil for their hospitality and their support for the Stripe-breasted Tit study at Bwindi. We gratefully acknowledge the financial support provided by the British Ornithologists' Union and the African Bird Club, and the Uganda Wildlife Authority and Uganda National Council for Science and Technology for granting permission for P.S. to participate in the study. Auer SK, 2007, J AVIAN BIOL, V38, P278, DOI 10.1111/j.2007.0908-8857.04092.x; Auer SK, 2007, CONDOR, V109, P321, DOI 10.1650/0010-5422(2007)109[321:BBOPIA]2.0.CO;2; BALAT F, 1970, Zoologicke Listy, V19, P321; Bryan SM, 1999, P ROY SOC B-BIOL SCI, V266, P157, DOI 10.1098/rspb.1999.0616; Busse P, 1962, ACTA ORNITHOL, V7, P1; Camfield AF, 2009, BEHAVIOUR, V146, P1615, DOI 10.1163/156853909X463335; Chalfoun AD, 2007, ANIM BEHAV, V73, P579, DOI 10.1016/j.anbehav.2006.09.010; Conway CJ, 2000, EVOLUTION, V54, P670; Cox WA, 2009, WILSON J ORNITHOL, V121, P667, DOI 10.1676/08-133.1; Cramp S., 1993, BIRDS W PALEARCTIC; Cresswell W, 2004, BEHAV ECOL, V15, P498, DOI 10.1093/beheco/arh042; Cresswell W, 2003, J ANIM ECOL, V72, P356, DOI 10.1046/j.1365-2656.2003.00701.x; de Heij ME, 2008, J AVIAN BIOL, V39, P121, DOI 10.1111/j.2008.0908-8857.04286.x; DUNN E K, 1976, British Birds, V69, P45; EGUCHI K, 1980, RES POPUL ECOL, V22, P284, DOI 10.1007/BF02530852; Fierro-Calderon K, 2007, CONDOR, V109, P680, DOI 10.1650/8305.1; Fontaine JJ, 2006, ECOL LETT, V9, P429; Frederiksen K.S., 1972, Dansk Ornithologisk Forenings Tidsskrift, V66, P73; HOWELL THOMAS R., 1954, CONDOR, V56, P93, DOI 10.2307/1364665; Kirkham CBS, 2013, J ORNITHOL, V154, P795, DOI 10.1007/s10336-013-0945-4; Kluijver H. N., 1951, Ardea, V39, P1; Kluijver H. N., 1950, ARDEA, V38, P99; Lack D., 1966, POPULATION STUDIES B; Likhachev G. N., 1967, Ornitologiya, V8, P165; Lloyd P, 2009, J AVIAN BIOL, V40, P400, DOI 10.1111/j.1600-048X.2008.04642.x; Londono GA, 2008, ANIM BEHAV, V76, P669, DOI 10.1016/j.anbehav.2008.05.002; LYON BE, 1985, BEHAV ECOL SOCIOBIOL, V17, P279, DOI 10.1007/BF00300147; MACE R, 1989, J ANIM ECOL, V58, P143, DOI 10.2307/4991; Martin TE, 2006, EVOLUTION, V60, P390; Martin TE, 1999, AM NAT, V153, P131, DOI 10.1086/303153; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; Martin TE, 2007, EVOLUTION, V61, P2558, DOI 10.1111/j.1558-5646.2007.00204.x; Matysiokova B, 2010, ETHOLOGY, V116, P596, DOI 10.1111/j.1439-0310.2010.01776.x; MOREAU R. E., 1944, IBIS, V86, P286, DOI 10.1111/j.1474-919X.1944.tb04093.x; ORELL M, 1983, ARDEA, V71, P183; Pearse AT, 2004, WILSON BULL, V116, P23, DOI 10.1676/0043-5643(2004)116[0023:EOFSOF]2.0.CO;2; Ricklefs RE, 2013, J ORNITHOL, V154, P145, DOI 10.1007/s10336-012-0880-9; Rompre Ghislain, 2008, Ecotropica-Bonn, V14, P81; Sanz JJ, 1998, ARDEA, V86, P101; Sanz JJ, 2000, OECOLOGIA, V122, P149, DOI 10.1007/PL00008842; Sanz JJ, 1999, IBIS, V141, P100; Tieleman BI, 2004, FUNCT ECOL, V18, P571, DOI 10.1111/j.0269-8463.2004.00882.x; TINBERGEN JM, 1994, FUNCT ECOL, V8, P563, DOI 10.2307/2389916; Tombre IM, 2012, POLAR BIOL, V35, P985, DOI 10.1007/s00300-011-1145-4; Tulp I, 2006, J AVIAN BIOL, V37, P207, DOI 10.1111/j.2006.0908-8857.03519.x; USNO, 2012, US NAV OC PORT; VANBALEN JH, 1973, ARDEA, V61, P1; VANNOORDWIJK AJ, 1981, OECOLOGIA, V49, P158, DOI 10.1007/BF00349183; Verhulst S, 1997, ARDEA, V85, P111; VONHAARTMAN L, 1969, COMMENTAT BIOL SOC S, V32, P1; Wilkin TA, 2009, J AVIAN BIOL, V40, P135, DOI 10.1111/j.1600-048X.2009.04362.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Zink G, 1959, VOGELWARTE, V20, P128 53 4 4 0 20 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0021-8375 1439-0361 J ORNITHOL J. Ornithol. APR 2014 155 2 481 489 10.1007/s10336-013-1029-1 9 Ornithology Zoology AJ6HM WOS:000337792000016 2018-11-12 J Becker, DV; Kenrick, DT Becker, D. Vaughn; Kenrick, Douglas T. Selfish goals serve more fundamental social and biological goals BEHAVIORAL AND BRAIN SCIENCES English Editorial Material Proximate selfish goals reflect the machinations of more fundamental goals such as self-protection and reproduction. Evolutionary life history theory allows us to make predictions about which goals are prioritized over others, which stimuli release which goals, and how the stages of cognitive processing are selectively influenced to better achieve the aims of those goals. [Becker, D. Vaughn] Arizona State Univ, Cognit Sci & Engn Unit, Tempe, AZ 85201 USA; [Kenrick, Douglas T.] Arizona State Univ, Dept Psychol, Tempe, AZ 85201 USA Becker, DV (reprint author), Arizona State Univ, Cognit Sci & Engn Unit, Tempe, AZ 85201 USA. vaughn.becker@asu.edu; douglas.kenrick@asu.edu 0 1 2 0 2 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0140-525X 1469-1825 BEHAV BRAIN SCI Behav. Brain Sci. APR 2014 37 2 137 138 10.1017/S0140525X13001957 2 Psychology, Biological; Behavioral Sciences; Neurosciences Psychology; Behavioral Sciences; Neurosciences & Neurology AH0QV WOS:000335826100004 24775123 2018-11-12 J Geange, SW Geange, Shane W. Growth and reproductive consequences of photosynthetic tissue loss in the surface canopies of Macrocystis pyrifera (L.) C. Agardh JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY English Article Growth; Harvesting; Reproduction; Sporophyll; Tolerance GIANT-KELP FOREST; MACROALGAL SPORE DISPERSAL; NEW-ZEALAND; SOUTHERN-CALIFORNIA; NUTRIENT AVAILABILITY; POPULATION-DYNAMICS; COASTAL FORESTS; BROWN ALGA; LAMINARIALES; TRANSLOCATION Macrocystis pyrifera (L) C. Agardh provides biogenic habitat for species of significant commercial, cultural and recreational value; however, the floating surface canopies of M. pyrifera are particularly vulnerable to physical and biological disturbance (e.g., herbivory, storm events and harvesting). Given the key ecological roles of M. pyrifera, it is important to identify the impacts of photosynthetic tissue loss on growth and reproduction. I hypothesized that canopy removal would result in compensatory regeneration of the surface canopy. As life history theory posits a tradeoff between growth and reproduction, I also hypothesized that canopy removal would involve a reduction in reproductive investment, as either: (i) reduced production of reproductive structures; or (ii) changes in reproductive condition from fertile to sterile. To evaluate these hypothesizes I conducted two field experiments. In the first experiment, there was no significant difference in the generation of vegetative fronds or reproductive blades between controls (no loss of photosynthetic tissue from surface canopies) and treatments where photosynthetic tissue in surface canopies was thinned by either 30% or 70%. Relative to controls, the removal of entire surface canopies to a depth of 1.2 m (i.e., simulated commercial harvesting) did not affect the generation of new vegetative fronds; however, the generation of reproductive blades was reduced by an average of 86%, suggesting that without the organic production supplied by the canopy, reproduction, but not growth, suffers. Further, the lack of evidence for compensatory growth despite reductions in reproduction suggests that M pyrifera has little tolerance to canopy loss. The second experiment, which examined the effect of removing surface canopies on rate and longevity of changes in reproductive condition, found that although no control algae became sterile, 89% of algae with their surface canopies removed became sterile 50 d after canopy removal, with effects persisting for up to 83 d. As the supply of M. pyrifera propagules in the center of kelp forests can be tightly coupled to local reproductive output, induced sterility via the loss of photosynthetic tissue could affect the long-term stability of M. pyrifera beds. Further investigation into the scalability of these results and implications for long-term stability of M. pyrifera beds is warranted. (c) 2014 Elsevier B.V. All rights reserved. Victoria Univ Wellington, Sch Biol Sci, Wellington, New Zealand Geange, SW (reprint author), Victoria Univ Wellington, Sch Biol Sci, POB 600, Wellington, New Zealand. shane.geange@vuw.ac.nz Geange, Shane/0000-0002-0679-0272 Ministry of Fisheries [468]; Ministry of Science and Innovation [E1667]; Victoria University of Wellington Faculty of Science Small Research grants [103450, 112084] This study was approved by the Ministry of Fisheries under special permit 468; was conducted outside protected marine areas; and did not involve any protected species. C.A. Cardenas, PJ. Mensink, D. Nelson, J. Oliver, S. Journee, D. McNaughtan, I. Geeson, D.K. Lekan and S. Jenkins provided invaluable support for field and laboratory work. Waverider data was provided courtesy of C. Stevens and J. McGregor at the National Institute of Water and Atmospheric Research. J.S. Shima, R.B. Ford and two anonymous reviewers provided helpful comments on this manuscript. This project was possible with financial support from the Ministry of Science and Innovation (grant number E1667) and two Victoria University of Wellington Faculty of Science Small Research grants (grant numbers 103450 and 112084). [SS] Anten NPR, 2003, ECOLOGY, V84, P2905, DOI 10.1890/02-0454; BARILOTTI DC, 1990, HYDROBIOLOGIA, V204, P35, DOI 10.1007/BF00040212; Brown MT, 1997, MAR BIOL, V129, P417, DOI 10.1007/s002270050182; Carney LT, 2010, J PHYCOL, V46, P987, DOI 10.1111/j.1529-8817.2010.00882.x; Cerda O, 2009, J EXP MAR BIOL ECOL, V377, P61, DOI 10.1016/j.jembe.2009.06.011; COHEN D, 1971, J THEOR BIOL, V33, P299, DOI 10.1016/0022-5193(71)90068-3; Dayton PK, 1998, ECOL APPL, V8, P309, DOI 10.2307/2641070; DAYTON PK, 1984, ECOL MONOGR, V54, P253, DOI 10.2307/1942498; DAYTON PK, 1984, SCIENCE, V224, P283, DOI 10.1126/science.224.4646.283; Denny MW, 1988, BIOL MECH WAVE SWEPT; DEYSHER LE, 1986, J EXP MAR BIOL ECOL, V103, P41, DOI 10.1016/0022-0981(86)90131-0; Foster M. S., 1985, ECOLOGY GIANT KELP F; Fyfe J., 1999, GEOCARTO INT, V14, P17; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gao X., 2014, J APPL PHYCOL, V25, P1331; Gao X, 2013, J APPL PHYCOL, V25, P1171, DOI 10.1007/s10811-012-9925-y; Gardner JPA, 2000, MAR ECOL PROG SER, V194, P123, DOI 10.3354/meps194123; Gaylord B, 2002, ECOLOGY, V83, P1239, DOI 10.1890/0012-9658(2002)083[1239:APBMOM]2.0.CO;2; Gaylord B, 2004, J MARINE SYST, V49, P19, DOI 10.1016/j.jmarsys.2003.05.003; Gaylord B, 2006, ECOL MONOGR, V76, P481, DOI 10.1890/0012-9615(2006)076[0481:MSDICE]2.0.CO;2; GERARD VA, 1982, J EXP MAR BIOL ECOL, V62, P211, DOI 10.1016/0022-0981(82)90202-7; Graham M.H., 2000, PLANTONIC PATTERNS P; Graham MH, 2002, MAR BIOL, V140, P901, DOI 10.1007/s00227-001-0761-x; Graham MH, 2003, ECOLOGY, V84, P1250, DOI 10.1890/0012-9658(2003)084[1250:CPOTSA]2.0.CO;2; Graham MH, 1997, MAR ECOL PROG SER, V148, P269, DOI 10.3354/meps148269; Graham MH, 2004, ECOSYSTEMS, V7, P341, DOI 10.1007/s10021-003-0245-6; Graham Michael, 2008, P103; HAY CH, 1990, J ROY SOC NEW ZEAL, V20, P313, DOI 10.1080/03036758.1990.10426716; Hay KB, 2011, J ECOL, V99, P1540, DOI 10.1111/j.1365-2745.2011.01874.x; Hemmi A., 2005, AQUAT ECOL, V39, P210; Hepburn CD, 2007, MAR ECOL PROG SER, V339, P99, DOI 10.3354/meps339099; Honkanen T, 2002, INT J PLANT SCI, V163, P815, DOI 10.1086/342081; JACKSON GA, 1983, CONT SHELF RES, V2, P75, DOI 10.1016/0278-4343(83)90023-7; Jackson GA, 1997, CONT SHELF RES, V17, P1913, DOI 10.1016/S0278-4343(97)00054-X; JAMESON DA, 1963, BOT REV, V29, P532, DOI 10.1007/BF02860815; KARBAN R, 1993, ECOLOGY, V74, P9, DOI 10.2307/1939496; KIMURA RS, 1984, HYDROBIOLOGIA, V116, P425, DOI 10.1007/BF00027714; KULMAN HM, 1971, ANNU REV ENTOMOL, V16, P289, DOI 10.1146/annurev.en.16.010171.001445; LOBBAN CS, 1978, PLANT PHYSIOL, V61, P585, DOI 10.1104/pp.61.4.585; MANLEY SL, 1984, J PHYCOL, V20, P192, DOI 10.1111/j.0022-3646.1984.00192.x; MCCLENEGHAN K, 1985, CALIF FISH GAME, V71, P21; MCNAUGHTON SJ, 1979, AM NAT, V113, P691, DOI 10.1086/283426; Miller D.J., 1973, CALIFORNIA DEP FISH, V137; Ministry for Primary Industries, 2013, FISH ASS PLEN MAY 20; MORRIS AW, 1963, ANAL CHIM ACTA, V29, P272, DOI 10.1016/S0003-2670(00)88614-6; North W.J., 1986, FAO FISH TECH PAP, V281, P265; North WJ, 1994, BIOL EC ALGAE; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; Parnell PE, 2010, LIMNOL OCEANOGR, V55, P2686, DOI 10.4319/lo.2010.55.6.2686; Perea-Blazquez A, 2012, HYDROBIOLOGIA, V687, P237, DOI 10.1007/s10750-011-0798-x; Phillips JC, 2003, MAR ECOL PROG SER, V264, P31, DOI 10.3354/meps264031; Pinheiro JC, 2000, MIXED EFFECTS MODELS; Pirker J.J., 2002, DEMOGRAPHY BIOMASS P, P244; R Development Core Team, 2010, R LANG ENV STAT COMP; REED DC, 1987, J EXP MAR BIOL ECOL, V113, P61, DOI 10.1016/0022-0981(87)90082-7; REED DC, 1988, ECOL MONOGR, V58, P321, DOI 10.2307/1942543; Rhode S., 2004, J ECOL, V92, P1011; Sanderson J., 1987, SURVERY MACRIOCYSTIC; SANTELICES B, 1984, MAR ECOL PROG SER, V14, P175, DOI 10.3354/meps014175; SANTELICES B, 1984, MAR ECOL PROG SER, V14, P165, DOI 10.3354/meps014165; SCHIEL DR, 1995, MAR BIOL, V123, P355, DOI 10.1007/BF00353627; SCHMITZ K, 1976, MAR BIOL, V36, P207, DOI 10.1007/BF00389281; SEYMOUR RJ, 1989, ESTUAR COAST SHELF S, V28, P277, DOI 10.1016/0272-7714(89)90018-8; Shears NT, 2007, SCI CONSERVATION, V280; Strauss SY, 1999, TRENDS ECOL EVOL, V14, P179, DOI 10.1016/S0169-5347(98)01576-6; Taylor RB, 2002, OECOLOGIA, V132, P68, DOI 10.1007/s00442-002-0644-2; Tiffin P, 2000, EVOL ECOL, V14, P523, DOI 10.1023/A:1010881317261; TOWLE DW, 1973, LIMNOL OCEANOGR, V18, P155, DOI 10.4319/lo.1973.18.1.0155; TUGWELL S, 1989, J EXP MAR BIOL ECOL, V129, P219, DOI 10.1016/0022-0981(89)90104-4; Wai TC, 2005, J EXP MAR BIOL ECOL, V324, P141, DOI 10.1016/j.jembe.2005.04.010; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; ZIMMERMAN RC, 1986, MAR ECOL PROG SER, V27, P277, DOI 10.3354/meps027277 72 3 3 0 33 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0022-0981 1879-1697 J EXP MAR BIOL ECOL J. Exp. Mar. Biol. Ecol. APR 2014 453 70 75 10.1016/j.jembe.2014.01.004 6 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology AF1MB WOS:000334476900009 2018-11-12 J Gonzalez-Pisani, X; Greco, LL Gonzalez-Pisani, Ximena; Lopez Greco, Laura Comparative Reproductive Effort and Fecundity in the Spider Crabs, Leurocyclus tuberculosus and Libinia spinosa (Majoidea, Brachyura) ZOOLOGICAL SCIENCE English Article reproductive effort; fecundity; Majoidea; Leurocyclus; Libinia H. MILNE EDWARDS; CHIONOECETES-BAIRDI DECAPODA; BRAZILIAN COAST; EGG-PRODUCTION; SNOW CRAB; SIZE; MAJIDAE; OPILIO; OUTPUT; VARIABILITY A comparative analysis of reproductive effort, fecundity, and egg weight was conducted in two species of spider crabs, Leurocyclus tuberculosus and Libinia spinosa, during one-year period. Ovigerous females were collected from Patagonia-Argentina (42 degrees 56'S, 64 degrees 21'W) and were measured (CW = carapace width). Each egg brood was weighed, dried and the number of eggs (F = fecundity) counted. Scatterplots of relative fecundity (RF = F/CW) were submitted to regression analyses. Mean F and RF was calculated for each season to assess seasonal variation of reproductive intensity. Mean F was 35,000 eggs in L. tuberculosus and 30,000 eggs in L. spinosa, with these values being intermediate in comparison with other Majoidea. The RF was approximately 18% higher in L. tuberculosus that presented an average dry weight egg 45% less than L. spinosa. Although in both species F showed a positive correlation with CW, less than the 20% of the variation in the number of eggs could be explained by female's size, suggesting there are other factors that influence F. The proportion of body energy devoted to reproduction (reproductive effort), exhibited significant differences between species. In Leurocyclus tuberculosus reproductive activity is significantly different along the 12-month suggesting that the conditions for 'optimal' egg production change-throughout the year. In Libinia spinosa mean fecundity did not reveal significant differences over seasons. These results are central in studies of life-history theory and in the development of life-history models, as it is directly related to energy allocation and partitioning. [Gonzalez-Pisani, Ximena] Natl Patagonian Ctr CENPAT CONICET, Puerto Madryn, Chubut, Argentina; [Lopez Greco, Laura] Univ Buenos Aires, FCEyN, Dept Biodivers & Expt Biol, Buenos Aires, DF, Argentina; [Lopez Greco, Laura] CONICET UBA, IBBEA, Buenos Aires, DF, Argentina Gonzalez-Pisani, X (reprint author), Natl Patagonian Ctr CENPAT CONICET, Puerto Madryn, Chubut, Argentina. xgpisani@gmail.com CONICET [PIP 5835-]; Agencia Nacional de Promocion Cientifica y Tecnologica (PICT) [953, 01187]; UBACYT [X143, X458] This study is part of X. Gonzalez-Pisani postgraduate scholarship (CONICET) and PhD Thesis (University of Buenos Aires, Argentina) and mainly funded by CONICET (PIP 5835- Dr. P.J. Baron). L. S. Lopez-Greco is grateful to Agencia Nacional de Promocion Cientifica y Tecnologica (PICT 2004, project 953 and PICT 2007 project 01187) and UBACYT (projects (projects X143 and X458) for partial supporting. Baron PJ, 2009, CRUSTACEANA, V82, P267, DOI 10.1163/156854008X390407; Bas CC, 2007, HELGOLAND MAR RES, V61, P225, DOI 10.1007/s10152-007-0070-y; Brante A, 2004, REV CHIL HIST NAT, V77, P15, DOI 10.4067/S0716-078X2004000100003; Brillon S, 2005, MAR BIOL, V147, P895, DOI 10.1007/s00227-005-1633-6; BRYANT AD, 1995, J EXP MAR BIOL ECOL, V188, P261, DOI 10.1016/0022-0981(94)00169-E; Carmona-Suarez CA, 2003, SCI MAR, V67, P75, DOI 10.3989/scimar.2003.67n175; Cobo VJ, 2009, INVERTEBR REPROD DEV, V53, P53, DOI 10.1080/07924259.2009.9652289; Cobo VJ, 2008, IHERINGIA, V98, P1; Comeau M, 1999, CAN J FISH AQUAT SCI, V56, P1088, DOI 10.1139/cjfas-56-6-1088; Dellatorre FG, 2009, THESIS NATL U COMAHU; DIESEL R, 1988, J CRUSTACEAN BIOL, V8, P63, DOI 10.2307/1548431; Diez MJ, 2009, POLAR BIOL, V33, P389; Dunnington M. J., 1999, THESIS U CANTERBURY; Gardner C, 1997, MAR FRESHWATER RES, V48, P581, DOI 10.1071/MF97023; Gayoso AM, 2006, HARMFUL ALGAE, V5, P233, DOI 10.1016/j.hal.2004.12.010; Gonzalez-Pisani X, 2011, THESIS U BUENOS AIRE; Graham DJ, 2012, J CRUSTACEAN BIOL, V32, P49, DOI 10.1163/193724011X615325; Hartnoll RG, 2006, HYDROBIOLOGIA, V557, P31, DOI 10.1007/s10750-005-9305-6; HAYNES E, 1976, J FISH RES BOARD CAN, V33, P2592, DOI 10.1139/f76-304; Henmi Y, 2003, J CRUSTACEAN BIOL, V23, P46, DOI 10.1651/0278-0372(2003)023[0046:TOBBSA]2.0.CO;2; HINES AH, 1992, AM ZOOL, V32, P503; HINES AH, 1982, MAR BIOL, V69, P309, DOI 10.1007/BF00397496; Lardies MA, 1997, OPHELIA, V46, P165, DOI 10.1080/00785326.1997.10432582; Lopez Greco L. S., 2000, Hydrobiologia, V439, P151, DOI 10.1023/A:1004130621093; Mantelatto FLM, 2002, J CRUSTACEAN BIOL, V22, P390, DOI 10.1651/0278-0372(2002)022[0390:EPSOTT]2.0.CO;2; Melo GAS, 1996, MANUAL IDENTIFICACAO; Negreiros-Fransozo Maria Lucia, 1992, Revista Brasileira de Biologia, V52, P547; Ng Peter K.L., 2008, Raffles Bulletin of Zoology Supplement, V17, P1; Okamori CM, 2003, J MAR BIOL ASSOC UK, V83, P979, DOI 10.1017/S0025315403008178h; Ouellet P, 2004, J CRUSTACEAN BIOL, V24, P481, DOI 10.1651/C-2467; PAUL AJ, 1984, J CRUSTACEAN BIOL, V4, P375, DOI 10.2307/1548037; PAUL AJ, 1984, J CRUSTACEAN BIOL, V4, P589, DOI 10.2307/1548073; Pinheiro N, 2000, CRUSTAC INT J CRUSTA, V73, P1121; Ramirez-Llodra E., 2002, ADV MAR BIOL, V43, P87, DOI DOI 10.1016/S0065-2881(02)43004-0; SAINTE-MARIE B, 1993, CAN J FISH AQUAT SCI, V50, P2147, DOI 10.1139/f93-240; Sainte-Marie B, 2002, CAN J FISH AQUAT SCI, V59, P1932, DOI 10.1139/F02-162; Sastry A.N., 1983, P179; Schejter L, 2005, J MAR BIOL ASSOC UK, V85, P1; SOKAL RR, 1995, BIOMETRY PRINCIPLES; SOMERTON DA, 1983, J CRUSTACEAN BIOL, V3, P183, DOI 10.2307/1548254; Tavares M, 2012, ZOOLOGIA-CURITIBA, V29, P577, DOI 10.1590/S1984-46702012000600009; Tuck ID, 2000, ICES J MAR SCI, V57, P1227, DOI 10.1006/jmsc.2000.0809; Van den Brink AM, 2006, THESIS U CANTERBURY; Varisco M, 2011, LAT AM J AQUAT RES, V39, P471, DOI [10.4067/S0718-560X2011000300008, 10.3856/vol39-issue3-fulltext-8]; Verisimo P, 2011, ICES J MAR SCI, V68, P472, DOI 10.1093/icesjms/fsq164; Villalejo-Fuerte M, 1998, J SHELLFISH RES, V17, P299; Villalejo-Fuerte Marcial, 1999, Journal of Shellfish Research, V18, P181; Webb JB, 2009, ATL FISH SCI, V41, P163; Wenner A, 1991, CRUSTACEAN ISSUES, V7 49 3 5 1 14 ZOOLOGICAL SOC JAPAN TOKYO HONGO MT BUILDING 4F, HONGO 7-2-2, BUNKYO-KU, TOKYO, 113-0033, JAPAN 0289-0003 ZOOL SCI Zool. Sci. APR 2014 31 4 244 250 10.2108/zs130089 7 Zoology Zoology AE0AG WOS:000333625300008 24694227 2018-11-12 J Bize, P; Cotting, S; Devevey, G; van Rooyen, J; Lalubin, F; Glaizot, O; Christe, P Bize, Pierre; Cotting, Sophie; Devevey, Godefroy; van Rooyen, Juan; Lalubin, Fabrice; Glaizot, Olivier; Christe, Philippe Senescence in cell oxidative status in two bird species with contrasting life expectancy OECOLOGIA English Article Ageing; Antioxidant defences; Free radical theory of ageing; Life history theory; Oxidative stress LONG-LIVED BIRD; FREE-RADICALS; REPRODUCTIVE-PERFORMANCE; HISTORY EVOLUTION; ALPINE SWIFT; PARUS-MAJOR; STRESS; AGE; ERYTHROCYTES; RESISTANCE Oxidative stress occurs when the production of reactive oxygen species (ROS) by an organism exceeds its capacity to mitigate the damaging effects of the ROS. Consequently, oxidative stress hypotheses of ageing argue that a decline in fecundity and an increase in the likelihood of death with advancing age reported at the organism level are driven by gradual disruption of the oxidative balance at the cellular level. Here, we measured erythrocyte resistance to oxidative stress in the same individuals over several years in two free-living bird species with contrasting life expectancy, the great tit (known maximum life expectancy is 15.4 years) and the Alpine swift (26 years). In both species, we found evidence for senescence in cell resistance to oxidative stress, with patterns of senescence becoming apparent as subjects get older. In the Alpine swift, there was also evidence for positive selection on cell resistance to oxidative stress, the more resistant subjects being longer lived. The present findings of inter-individual selection and intra-individual deterioration in cell oxidative status at old age in free-living animals support a role for oxidative stress in the ageing of wild animals. [Bize, Pierre; Cotting, Sophie; van Rooyen, Juan; Lalubin, Fabrice; Glaizot, Olivier; Christe, Philippe] Univ Lausanne, Dept Ecol & Evolut, CH-1015 Lausanne, Switzerland; [Devevey, Godefroy] Univ Edinburgh, Inst Evolutionary Biol, Edinburgh EH9 3JT, Midlothian, Scotland; [Glaizot, Olivier] Museum Zool, CH-1014 Lausanne, Switzerland Bize, P (reprint author), Univ Aberdeen, Inst Biol & Environmental Sci, Zool Bldg,Tillydrone Ave, Aberdeen AB24 2TZ, Scotland. pierre.bize@unil.ch Glaizot, Olivier/B-8627-2012 Glaizot, Olivier/0000-0001-9116-3355; Christe, Philippe/0000-0002-8605-7002 Swiss National Science Foundation [31003A_124988, 31003A_138187] We are grateful to numerous students for their help in the field, to two anonymous reviewers for helpful comments, and to the Swiss National Science Foundation for financial support (grant no. 31003A_124988 to P. B. and 31003A_138187 to P.C.). Alonso-Alvarez C, 2006, EVOLUTION, V60, P1913, DOI 10.1111/j.0014-3820.2006.tb00534.x; Alonso-Alvarez C, 2010, PHYSIOL BIOCHEM ZOOL, V83, P110, DOI 10.1086/605395; Angelier F, 2007, BEHAV ECOL SOCIOBIOL, V61, P611, DOI 10.1007/s00265-006-0290-1; Beckman KB, 1998, PHYSIOL REV, V78, P547; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Bize P, 2006, EVOLUTION, V60, P2370; Bize P, 2009, P R SOC B, V276, P1679, DOI 10.1098/rspb.2008.1817; Brzezinska-Slebodzinska E, 2001, ACTA VET HUNG, V49, P413, DOI 10.1556/AVet.49.2001.4.5; Cadenas E, 2000, FREE RADICAL BIO MED, V29, P222, DOI 10.1016/S0891-5849(00)00317-8; Noguera JC, 2012, BIOL LETTERS, V8, P61, DOI 10.1098/rsbl.2011.0756; Christe P, 2012, P ROY SOC B-BIOL SCI, V279, P1142, DOI 10.1098/rspb.2011.1546; Coulson JC, 2001, J AVIAN BIOL, V32, P146, DOI 10.1034/j.1600-048X.2001.320207.x; Devevey G, 2010, J ORNITHOL, V151, P251, DOI 10.1007/s10336-009-0456-5; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Hamanaka RB, 2010, TRENDS BIOCHEM SCI, V35, P505, DOI 10.1016/j.tibs.2010.04.002; Harman D., 1956, J GERONTOL, V11, P208; HARVEY PH, 1979, IBIS, V121, P216, DOI 10.1111/j.1474-919X.1979.tb04967.x; Hattangadi SM, 2007, J CLIN INVEST, V117, P2075, DOI 10.1172/JCI32559; Helle S, 2004, P NATL ACAD SCI USA, V101, P12391, DOI 10.1073/pnas.0402215101; Hulbert AJ, 2008, COMP BIOCHEM PHYS A, V150, P196, DOI 10.1016/j.cbpa.2006.05.014; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; Kiefer CR, 2000, CURR OPIN HEMATOL, V7, P113, DOI 10.1097/00062752-200003000-00007; Lecomte VJ, 2010, P NATL ACAD SCI USA, V107, P6370, DOI 10.1073/pnas.0911181107; Lesgards JF, 2002, ENVIRON HEALTH PERSP, V110, P479, DOI 10.1289/ehp.02110479; Losdat S, 2013, BIOL LETT, V13, P1; Marinkovic D, 2007, J CLIN INVEST, V117, P2133, DOI 10.1172/JC131807; Masoro E. J., 2006, HDB BIOL AGING; Moe B, 2009, BIOL LETTERS, V5, P86, DOI 10.1098/rsbl.2008.0481; Monaghan P, 2008, ECOL LETT, V12, P75; Partridge L, 2002, NAT REV GENET, V3, P165, DOI 10.1038/nrg753; Patel KV, 2010, J GERONTOL A-BIOL, V65, P258, DOI 10.1093/gerona/glp163; Payevsky VA, 2006, RUSS J ECOL+, V37, P180, DOI 10.1134/S1067413606030064; Rebke M, 2010, P NATL ACAD SCI USA, V107, P7841, DOI 10.1073/pnas.1002645107; Reed TE, 2008, AM NAT, V171, pE89, DOI 10.1086/524957; Richards RS, 1998, MED HYPOTHESES, V50, P363, DOI 10.1016/S0306-9877(98)90206-7; Ricklefs RE, 2010, AGING CELL, V9, P273, DOI 10.1111/j.1474-9726.2009.00542.x; Ristow M, 2011, FREE RADICAL BIO MED, V51, P327, DOI 10.1016/j.freeradbiomed.2011.05.010; Rizzo AM, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0032361; ROHME D, 1981, P NATL ACAD SCI-BIOL, V78, P5009, DOI 10.1073/pnas.78.8.5009; Saino N, 2011, PLOS ONE, V6; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; Sohal RS, 2012, FREE RADICAL BIO MED, V52, P539, DOI 10.1016/j.freeradbiomed.2011.10.445; Stier A, 2013, FRONT ZOOL, V10, DOI 10.1186/1742-9994-10-33; Tacutu R, 2013, NUCLEIC ACIDS RES, V41, pD1027, DOI 10.1093/nar/gks1155; Tettamanti F, 2012, IBIS, V154, P338, DOI 10.1111/j.1474-919X.2012.01215.x; Tsantes AE, 2006, ANTIOXID REDOX SIGN, V8, P1205, DOI 10.1089/ars.2006.8.1205; Valko M, 2007, INT J BIOCHEM CELL B, V39, P44, DOI 10.1016/j.biocel.2006.07.001; van de Pol M, 2006, AM NAT, V167, P766; Yu BP, 2005, MECH AGEING DEV, V126, P1003, DOI 10.1016/j.mad.2005.03.020 50 13 13 1 42 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia APR 2014 174 4 1097 1105 10.1007/s00442-013-2840-3 9 Ecology Environmental Sciences & Ecology AD3UJ WOS:000333171400003 24292795 2018-11-12 J Dunkel, CS; De Baca, TC; Woodley, MA; Fernandes, HBF Dunkel, Curtis S.; De Baca, Tomas Cabeza; Woodley, Michael A.; Fernandes, Heitor B. F. The General Factor of Personality and general intelligence: Testing hypotheses from Differential-K, Life History Theory, and strategic differentiation-integration effort PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Life History Theory; Strategic differentiation-integration effort; Differential-K; General Factor of Personality; General intelligence COVITALITY; VALIDITY; SAMPLE Life history as applied to human psychology has progressed on different levels of analysis including between racial groups (Differential-K) and between individuals (Life History Theory). While the approaches at each level have garnered significant research support, some findings at the level of individual differences are inconsistent with findings from the level of group differences. The association between the General Factor of Personality and general intelligence was examined across and within racial groups to investigate the inconsistency. The results were in line with predictions derived from strategic differentiation-integration effort (SD-IE), the proposition that aggregation amongst variables decreases as life history strategy slows. The results suggest SD-IE may be a useful tool in reconciling the apparent contradictions across the levels of analysis. (C) 2013 Elsevier Ltd. All rights reserved. [Dunkel, Curtis S.] Western Illinois Univ, Macomb, IL 61455 USA; [De Baca, Tomas Cabeza] Univ Arizona, Tucson, AZ 85721 USA; [Woodley, Michael A.] Umea Univ, Dept Psychol, S-90187 Umea, Sweden; [Woodley, Michael A.] Vrije Univ Brussel, Ctr Leo Apostel Interdisciplinary Studies, Brussels, Belgium; [Fernandes, Heitor B. F.] Univ Fed Rio Grande do Sul, Inst Psychol, BR-90046900 Porto Alegre, RS, Brazil Dunkel, CS (reprint author), Western Illinois Univ, Dept Psychol, Macomb, IL 61455 USA. c-dunkel@wiu.edu Cabeza de Baca, Tomas/0000-0003-3322-2163 American Institutes for Research. Project Talent Base Year Data, 1960, ICPSR33341V2 INT CON; BAYER AE, 1972, PUBLIC OPINION Q, V0036; BOGAERT AF, 1989, PERS INDIV DIFFER, V10, P1071, DOI 10.1016/0191-8869(89)90259-6; Connelly BS, 2010, PSYCHOL BULL, V136, P1092, DOI 10.1037/a0021212; Dunkel C., 2010, J SOCIAL EVOLUTIONAR, V4, P51, DOI DOI 10.1037/H0099301; Dunkel CS, 2013, INTELLIGENCE, V41, P423, DOI 10.1016/j.intell.2013.06.010; Dunkel CS, 2012, PERS INDIV DIFFER, V52, P759, DOI 10.1016/j.paid.2011.12.035; Dunkel CS, 2010, PERS INDIV DIFFER, V48, P681, DOI 10.1016/j.paid.2009.12.014; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Fernandes HBF, 2013, PERS INDIV DIFFER, V55, P1000, DOI 10.1016/j.paid.2013.07.463; Figueredo A. J., 2013, J SOCIAL EVOLUTIONAR, V7, P361, DOI DOI 10.1037/H0099182; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2013, PERS INDIV DIFFER, V55, P251, DOI 10.1016/j.paid.2012.04.033; Figueredo AJ, 2009, TWIN RES HUM GENET, V12, P555, DOI 10.1375/twin.12.6.555; Flanagan J. C., 1962, DESIGN STUDY AM YOUT; Gottfredson L. S., 2006, INTRO PSICOLOGIA DIF, P433; Lesson P., 2012, INTELLIGENCE, V40, P213; Loehlin JC, 2012, PERS INDIV DIFFER, V53, P463, DOI 10.1016/j.paid.2012.04.013; Loehlin JC, 2011, J RES PERS, V45, P504, DOI 10.1016/j.jrp.2011.06.011; Loehlin JC, 2011, J RES PERS, V45, P44, DOI 10.1016/j.jrp.2010.11.008; Meisenberg G, 2013, PERS INDIV DIFFER, V55, P273, DOI 10.1016/j.paid.2012.04.016; Miller G. F., 2010, EVOLUTION PERSONALIT, P376; Musek J, 2007, J RES PERS, V41, P1213, DOI 10.1016/j.jrp.2007.02.003; Rushton J., 2000, RACE EVOLUTION BEHAV; Rushton JP, 2008, J RES PERS, V42, P1173, DOI 10.1016/j.jrp.2008.03.002; Rushton JP, 2005, PSYCHOL PUBLIC POL L, V11, P235, DOI 10.1037/1076-8971.11.2.235; Rushton JP, 2003, SCIENTIFIC STUDY OF GENERAL INTELLIGENCE: TRIBUTE TO ARTHUR R. J ENSEN, P147, DOI 10.1016/B978-008043793-4/50046-5; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Schermer JA, 2010, PERS INDIV DIFFER, V48, P187, DOI 10.1016/j.paid.2009.10.003; US Bureau of the Census, 1963, US CENS POP 1960 SUB; van der Linden D, 2013, PERS INDIV DIFFER, V54, P367, DOI 10.1016/j.paid.2012.10.002; Van der Linden D, 2012, PERS INDIV DIFFER, V53, P175, DOI 10.1016/j.paid.2012.03.001; van der Linden D, 2010, J RES PERS, V44, P669, DOI 10.1016/j.jrp.2010.08.007; Wilson EO, 1998, CONSILIENCE UNITY KN; Wong Morrison G., 1983, CULTURE ETHNICITY ID, P381; Woodley M. A, USING PRISO IN PRESS; Woodley MA, 2014, PERS INDIV DIFFER, V57, P3, DOI 10.1016/j.paid.2013.09.010; Woodley MA, 2013, INTELLIGENCE, V41, P832, DOI 10.1016/j.intell.2013.02.002; Woodley MA, 2011, REV GEN PSYCHOL, V15, P228, DOI 10.1037/a0024348 42 12 13 1 16 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. APR-MAY 2014 61-62 13 17 10.1016/j.paid.2013.12.017 5 Psychology, Social Psychology AD8CV WOS:000333495000003 2018-11-12 J Lyons, M; Rice, H Lyons, Minna; Rice, Holly Thieves of time? Procrastination and the Dark Triad of personality PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Dark Triad; Narcissism; Machiavellianism; Psychopathy; Avoidance procrastination; Arousal procrastination; Life History theory TRAIT PROCRASTINATION; ACADEMIC PROCRASTINATION; PSYCHOPATHY; CONSCIENTIOUSNESS; MACHIAVELLIANISM; TEMPTATION; INVENTORY; STRATEGY; BEHAVIOR; MEN Procrastination shares many features with the Dark Triad of personality, such as high impulsivity and low conscientiousness. We investigated the Dark Triad of personality (i.e., narcissism. Machiavellianism and psychopathy) in relation to two types of procrastination styles (i.e., arousal and avoidance procrastination) in an on-line survey with 369 participants. We found that avoidance procrastination had a positive relationship with secondary psychopathy and the Entitlement/Exploitativeness facet of the Narcissistic Personality Inventory. Arousal procrastination, in turn, had a negative relationship with the Leadership/Authority facet. Possible reasons for the findings are discussed with a reference to fast and slow Life History strategies. (C) 2014 Elsevier Ltd. All rights reserved. [Lyons, Minna] Univ Liverpool, Sch Psychol, Liverpool L69 7ZA, Merseyside, England; [Rice, Holly] Liverpool Hope Univ, Liverpool L16 9JD, Merseyside, England Lyons, M (reprint author), Univ Liverpool, Sch Psychol, Eleanor Rathbone Bldg Bedford St South, Liverpool L69 7ZA, Merseyside, England. m.lyons@liverpool.ac.uk Ackerman RA, 2011, ASSESSMENT, V18, P67, DOI 10.1177/1073191110382845; CHRISTIE R, 1970, STUDIES MACHIAVELLIA; Chu AHC, 2005, J SOC PSYCHOL, V145, P245; Crysel LC, 2013, PERS INDIV DIFFER, V54, P35, DOI 10.1016/j.paid.2012.07.029; Del Giudice M., 2010, EVOLUTION PERSONALIT; Deniz ME, 2009, KURAM UYGULAMA EGI, V9, P623; Ferrari J. R., 1995, PROCRASTINATION TASK; Ferrari JR, 2007, J RES PERS, V41, P707, DOI 10.1016/j.jrp.2006.06.006; FERRARI JR, 1994, PERS INDIV DIFFER, V17, P673, DOI 10.1016/0191-8869(94)90140-6; Ferrari JR, 2000, J RES PERS, V34, P73, DOI 10.1006/jrpe.1999.2261; Freeman E, 2011, CURR PSYCHOL, V30, P375, DOI 10.1007/s12144-011-9123-0; Furnham A, 2013, SOC PERSONAL PSYCHOL, V7, P199, DOI 10.1111/spc3.12018; Furtner M. R., 2011, SOC BEHAV PERSONAL, V39, P369; Gendolla G. H. E., 2014, BIOBEHAVIORAL FDN SE; Jakobwitz S, 2006, PERS INDIV DIFFER, V40, P331, DOI 10.1016/j.paid.2005.07.006; Jonason PK, 2013, PERS INDIV DIFFER, V55, P538, DOI 10.1016/j.paid.2013.05.001; Jonason PK, 2013, PERS INDIV DIFFER, V54, P572, DOI 10.1016/j.paid.2012.11.009; Jonason PK, 2012, PERS INDIV DIFFER, V52, P449, DOI 10.1016/j.paid.2011.11.008; Jonason PK, 2010, PERS INDIV DIFFER, V49, P611, DOI 10.1016/j.paid.2010.05.031; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jones DN, 2013, J RES PERS, V47, P563, DOI 10.1016/j.jrp.2013.04.005; Jones DN, 2011, PERS INDIV DIFFER, V51, P679, DOI 10.1016/j.paid.2011.04.011; LAY CH, 1986, J RES PERS, V20, P474, DOI 10.1016/0092-6566(86)90127-3; Lay CH, 1997, EUR J PERSONALITY, V11, P267, DOI 10.1002/(SICI)1099-0984(199711)11:4<267::AID-PER281>3.0.CO;2-P; Lee DG, 2006, PERS INDIV DIFFER, V40, P27, DOI 10.1016/j.paid.2005.05.010; Lyons M, 2013, PERS INDIV DIFFER, V55, P676, DOI 10.1016/j.paid.2013.05.018; McDonald MM, 2012, PERS INDIV DIFFER, V52, P601, DOI 10.1016/j.paid.2011.12.003; McHoskey JW, 1998, J PERS SOC PSYCHOL, V74, P192, DOI 10.1037//0022-3514.74.1.192; Nguyen B, 2013, INT J SELECT ASSESS, V21, P388, DOI 10.1111/ijsa.12048; Paulhus D. L., 2009, MANUAL SELF REPORT P; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; Rabin LA, 2011, J CLIN EXP NEUROPSYC, V33, P344, DOI 10.1080/13803395.2010.518597; RASKIN R, 1988, J PERS SOC PSYCHOL, V54, P890, DOI 10.1037//0022-3514.54.5.890; Schouwenburg HC, 2001, PERS INDIV DIFFER, V30, P229, DOI 10.1016/S0191-8869(00)00034-9; Steel P, 2007, PSYCHOL BULL, V133, P65, DOI 10.1037/0033-2909.133.1.65; Stolarski M, 2013, BIOL RHYTHM RES, V44, P181, DOI 10.1080/09291016.2012.656248; Thomas J, 2013, PERSONAL MENT HEALTH, V7, P160, DOI 10.1002/pmh.1219; Tsukayama E, 2012, EUR J PERSONALITY, V26, P318, DOI 10.1002/per.841; Watson DC, 2001, PERS INDIV DIFFER, V30, P149, DOI 10.1016/S0191-8869(00)00019-2 39 6 6 4 69 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. APR-MAY 2014 61-62 34 37 10.1016/j.paid.2014.01.002 4 Psychology, Social Psychology AD8CV WOS:000333495000007 2018-11-12 J Hayward, AD; Mar, KU; Lahdenpera, M; Lummaa, V Hayward, A. D.; Mar, K. U.; Lahdenpera, M.; Lummaa, V. Early reproductive investment, senescence and lifetime reproductive success in female Asian elephants JOURNAL OF EVOLUTIONARY BIOLOGY English Article reproductive costs, senescence; antagonistic pleiotropy; trade-off; ageing; disposable soma AGE-SPECIFIC SURVIVAL; WILD BIRD POPULATION; LONG-LIVED BIRD; RED DEER; INDIVIDUAL QUALITY; TRADE-OFFS; PERFORMANCE; EVOLUTION; HISTORY; COSTS The evolutionary theory of senescence posits that as the probability of extrinsic mortality increases with age, selection should favour early-life over late-life reproduction. Studies on natural vertebrate populations show early reproduction may impair later-life performance, but the consequences for lifetime fitness have rarely been determined, and little is known of whether similar patterns apply to mammals which typically live for several decades. We used a longitudinal dataset on Asian elephants (Elephas maximus) to investigate associations between early-life reproduction and female age-specific survival, fecundity and offspring survival to independence, as well as lifetime breeding success (lifetime number of calves produced). Females showed low fecundity following sexual maturity, followed by a rapid increase to a peak at age 19 and a subsequent decline. High early life reproductive output (before the peak of performance) was positively associated with subsequent age-specific fecundity and offspring survival, but significantly impaired a female's own later-life survival. Despite the negative effects of early reproduction on late-life survival, early reproduction is under positive selection through a positive association with lifetime breeding success. Our results suggest a trade-off between early reproduction and later survival which is maintained by strong selection for high early fecundity, and thus support the prediction from life history theory that high investment in reproductive success in early life is favoured by selection through lifetime fitness despite costs to later-life survival. That maternal survival in elephants depends on previous reproductive investment also has implications for the success of (semi-)captive breeding programmes of this endangered species. [Hayward, A. D.; Mar, K. U.; Lummaa, V.] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England; [Lahdenpera, M.] Univ Turku, Dept Biol, Sect Ecol, SF-20500 Turku, Finland Hayward, AD (reprint author), Univ Sheffield, Dept Anim & Plant Sci, Alfred Denny Bldg,Western Bank, Sheffield S10 2TN, S Yorkshire, England. a.hayward@sheffield.ac.uk Hayward, Adam/B-7659-2016 Hayward, Adam/0000-0001-6953-7509 National Environmental Research Council (NERC); Royal Society; European Research Council; Nando Peretti Foundation; Rufford Small Grant for Nature; International Foundation for Science; Academy of Finland We thank Matthew Robinson, Mirre Simons, Jelle Boonekamp and Tom Cameron for discussion about statistical analyses and Andy Russell for helpful comments. This work was funded by grants from the National Environmental Research Council (NERC) (VL, KUM), the Royal Society Fellowship Scheme (VL), the European Research Council (VL, ADH), Nando Peretti Foundation (VL), Rufford Small Grant for Nature (KUM), International Foundation for Science (KUM) and the Academy of Finland (ML). Bates D., 2012, LME4 LINEAR MIXED EF; Beauplet G, 2006, OIKOS, V112, P430, DOI 10.1111/j.0030-1299.2006.14412.x; Bouwhuis S, 2010, J EVOLUTION BIOL, V23, P636, DOI 10.1111/j.1420-9101.2009.01929.x; Bouwhuis S, 2012, AM NAT, V179, pE15, DOI 10.1086/663194; Bowen WD, 2006, J ANIM ECOL, V75, P1340, DOI 10.1111/j.1365-2656.2006.01157.x; Brommer JE, 2007, AM NAT, V170, P643, DOI 10.1086/521241; Burnham K. P., 2002, MODEL SELECTION MULT; Cam E, 2002, AM NAT, V159, P96, DOI 10.1086/324126; Catry P, 2006, P R SOC B, V273, P1625, DOI 10.1098/rspb.2006.3482; Charmantier A, 2006, P NATL ACAD SCI USA, V103, P6587, DOI 10.1073/pnas.0511123103; Clubb R, 2008, SCIENCE, V322, P1649, DOI 10.1126/science.1164298; Coulson JC, 2001, J AVIAN BIOL, V32, P146, DOI 10.1034/j.1600-048X.2001.320207.x; Descamps S, 2006, P R SOC B, V273, P2369, DOI 10.1098/rspb.2006.3588; Foote AD, 2008, BIOL LETTERS, V4, P189, DOI 10.1098/rsbl.2008.0006; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; Helle S, 2005, P ROY SOC B-BIOL SCI, V272, P29, DOI 10.1098/rspb.2004.2944; Hermes R, 2008, THERIOGENOLOGY, V70, P131, DOI 10.1016/j.theriogenology.2008.04.003; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Lahdenpera M, 2004, NATURE, V428, P178, DOI 10.1038/nature02367; Lahdenpera M, 2012, ECOL LETT, V15, P1283, DOI 10.1111/j.1461-0248.2012.01851.x; Lahdenpera M, 2011, EVOLUTION, V65, P476, DOI 10.1111/j.1558-5646.2010.01142.x; Leimgruber P, 2008, ANIM CONSERV, V11, P198, DOI 10.1111/j.1469-1795.2008.00172.x; Mar K. U., 2007, DEMOGRAPHY LIFE HIST; Mar K. U., 2012, PLOS ONE, V7; Martin JGA, 2011, ECOL LETT, V14, P576, DOI 10.1111/j.1461-0248.2011.01621.x; MEDAWAR PB, 1952, UNSOLVED PROBLEM BIO; Moss C. J., 2011, AMBOSELI ELEPHANTS L; Moss CJ, 2001, J ZOOL, V255, P145, DOI 10.1017/S0952836901001212; Moyes K, 2006, OIKOS, V115, P241, DOI 10.1111/j.2006.0030-1299.15200.x; Mumby HS, 2013, ECOL EVOL, V3, P3794, DOI 10.1002/ece3.746; Mumby HS, 2013, ECOLOGY, V94, P1131, DOI 10.1890/12-0834.1; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; Nussey DH, 2008, P ROY SOC B-BIOL SCI, V275, P745, DOI 10.1098/rspb.2007.0986; Nussey DH, 2006, ECOL LETT, V9, P1342, DOI 10.1111/j.1461-0248.2006.00989.x; Partridge L, 2006, TRENDS ECOL EVOL, V21, P334, DOI 10.1016/j.tree.2006.02.008; Peron G, 2010, P ROY SOC B-BIOL SCI, V277, P2849, DOI 10.1098/rspb.2010.0530; Pettay JE, 2005, P NATL ACAD SCI USA, V102, P2838, DOI 10.1073/pnas.0406709102; Rattiste K, 2004, P ROY SOC B-BIOL SCI, V271, P2059, DOI 10.1098/rspb.2004.2832; Rebke M, 2010, P NATL ACAD SCI USA, V107, P7841, DOI 10.1073/pnas.1002645107; Reed TE, 2008, AM NAT, V171, pE89, DOI 10.1086/524957; Reid JM, 2010, J ANIM ECOL, V79, P851, DOI 10.1111/j.1365-2656.2010.01669.x; Reid JM, 2003, J ANIM ECOL, V72, P765, DOI 10.1046/j.1365-2656.2003.00750.x; Ricklefs RE, 2001, EXP GERONTOL, V36, P845, DOI 10.1016/S0531-5565(00)00245-X; Robinson MR, 2012, ECOL LETT, V15, P260, DOI 10.1111/j.1461-0248.2011.01735.x; Sukumar R, 2003, LIVING ELEPHANTS EVO; Sukumar R., 1989, ASIAN ELEPHANT ECOLO; Toke Gale U., 1971, BURMESE TIMBER ELEPH; Turbill C., 2010, PLOS ONE, V5; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; van de Pol MV, 2009, ANIM BEHAV, V77, P753, DOI 10.1016/j.anbehav.2008.11.006; Ward EJ, 2009, J APPL ECOL, V46, P632, DOI 10.1111/j.1365-2664.2009.01647.x; Weladji RB, 2008, OECOLOGIA, V156, P237, DOI 10.1007/s00442-008-0961-x; Wiese RJ, 2000, ZOO BIOL, V19, P299, DOI 10.1002/1098-2361(2000)19:5<299::AID-ZOO2>3.0.CO;2-Z; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Wilson AJ, 2008, FUNCT ECOL, V22, P431, DOI 10.1111/j.1365-2435.2008.01412.x; Zuur A. F., 2009, MIXED EFFECTS MODELS 58 27 28 5 143 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. APR 2014 27 4 772 783 10.1111/jeb.12350 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AD0KP WOS:000332923200010 24580655 Green Published 2018-11-12 J Dechaine, JM; Brock, MT; Weinig, C Dechaine, Jennifer M.; Brock, Marcus T.; Weinig, Cynthia QTL architecture of reproductive fitness characters in Brassica rapa BMC PLANT BIOLOGY English Article Fitness components; Life-history traits; Phenotypic plasticity; Transgenerational effects; Yield; Brassica rapa QUANTITATIVE TRAIT LOCI; GENOTYPE-ENVIRONMENT INTERACTION; LIFE-HISTORY CHARACTERS; FLOWERING TIME GENE; ARABIDOPSIS-THALIANA; SEED COLOR; TRANSGENERATIONAL PLASTICITY; DROSOPHILA-MELANOGASTER; HEADING DATE; NAPUS L Background: Reproductive output is critical to both agronomists seeking to increase seed yield and to evolutionary biologists interested in understanding natural selection. We examine the genetic architecture of diverse reproductive fitness traits in recombinant inbred lines (RILs) developed from a crop (seed oil) x wild-like (rapid cycling) genotype of Brassica rapa in field and greenhouse environments. Results: Several fitness traits showed strong correlations and QTL-colocalization across environments (days to bolting, fruit length and seed color). Total fruit number was uncorrelated across environments and most QTL affecting this trait were correspondingly environment-specific. Most fitness components were positively correlated, consistent with life-history theory that genotypic variation in resource acquisition masks tradeoffs. Finally, we detected evidence of transgenerational pleiotropy, that is, maternal days to bolting was negatively correlated with days to offspring germination. A QTL for this transgenerational correlation was mapped to a genomic region harboring one copy of FLOWERING LOCUS C, a genetic locus known to affect both days to flowering as well as germination phenotypes. Conclusions: This study characterizes the genetic structure of important fitness/yield traits within and between generations in B. rapa. Several identified QTL are suitable candidates for fine-mapping for the improvement of yield in crop Brassicas. Specifically, brFLC1, warrants further investigation as a potential regulator of phenology between generations. [Dechaine, Jennifer M.] Cent Washington Univ, Dept Biol Sci, Ellensburg, WA 98926 USA; [Brock, Marcus T.; Weinig, Cynthia] Univ Wyoming, Dept Bot, Laramie, WY 82071 USA Dechaine, JM (reprint author), Cent Washington Univ, Dept Biol Sci, Ellensburg, WA 98926 USA. dechaine@cwu.edu National Science Foundation [20091702] We are grateful to T.C.Osborn and F.L.Iniguez-Luy for development and characterization of the B.rapa RILs used in this study.We also thank J.Johnston, L.Demink, Z.German, C.Willis, A.Hansen, and B.Meyer for their contributions to experimental management and data collection.This work was supported by a grant from the National Science Foundation (20091702) to CW. Allainguillaume J, 2006, MOL ECOL, V15, P1175, DOI 10.1111/j.1365-294X.2006.02856.x; Alonso-Blanco C, 1999, P NATL ACAD SCI USA, V96, P4710, DOI 10.1073/pnas.96.8.4710; Asins MJ, 2002, PLANT BREEDING, V121, P281, DOI 10.1046/j.1439-0523.2002.730285.x; Bastow R, 2004, NATURE, V427, P164, DOI 10.1038/nature02269; Bettey M, 2000, NEW PHYTOL, V148, P277, DOI 10.1046/j.1469-8137.2000.00760.x; Bisht NC, 2009, THEOR APPL GENET, V118, P413, DOI 10.1007/s00122-008-0907-z; BOX GEP, 1964, J ROY STAT SOC B, V26, P211; Brock MT, 2010, GENETICS, V186, P1451, DOI 10.1534/genetics.110.119982; Burstin J, 2007, PLANT PHYSIOL, V144, P768, DOI 10.1104/pp.107.096966; Cai HY, 2012, EUPHYTICA, V184, P109, DOI 10.1007/s10681-011-0581-0; Cai HW, 2002, THEOR APPL GENET, V104, P1217, DOI 10.1007/s00122-001-0819-7; CHEN BY, 1992, EUPHYTICA, V59, P157, DOI 10.1007/BF00041268; Chen L, 2012, PLOS ONE, V7; Chiang GCK, 2009, P NATL ACAD SCI USA, V106, P11661, DOI 10.1073/pnas.0901367106; CHURCHILL GA, 1994, GENETICS, V138, P963; Clark CJ, 2007, AM NAT, V170, P128, DOI 10.1086/518565; Collard BCY, 2008, PHILOS T R SOC B, V363, P557, DOI 10.1098/rstb.2007.2170; Contreras S, 2008, HORTSCIENCE, V43, P845; Cooper M, 2009, CURR OPIN PLANT BIOL, V12, P231, DOI 10.1016/j.pbi.2009.01.006; Cummings CL, 2002, ECOL APPL, V12, P1661, DOI 10.1890/1051-0761(2002)012[1661:FSIASC]2.0.CO;2; Dechaine JM, 2007, NEW PHYTOL, V176, P874, DOI 10.1111/j.1469-8137.2007.02210.x; Dechaine JM, 2009, NEW PHYTOL, V184, P828, DOI 10.1111/j.1469-8137.2009.02964.x; Dechaine JM, 2009, PLANT CELL ENVIRON, V32, P1297, DOI 10.1111/j.1365-3040.2009.01998.x; DEJONG G, 1990, J EVOLUTION BIOL, V3, P447, DOI 10.1046/j.1420-9101.1990.3050447.x; Donohue K, 1998, MATERNAL EFFECTS AS ADAPTATIONS, P137; Donohue K, 2005, SEED SCI RES, V15, P175, DOI 10.1079/SSR2005208; Donohue K, 2002, ECOLOGY, V83, P1006; Donohue K, 2009, PHILOS T R SOC B, V364, P1059, DOI 10.1098/rstb.2008.0291; DORN LA, 1991, EVOLUTION, V45, P371, DOI 10.1111/j.1558-5646.1991.tb04411.x; Flury B, 1998, COMMON PRINCIPAL COM; Fry JD, 1998, GENET RES, V71, P133, DOI 10.1017/S0016672398003176; Galloway LF, 2007, SCIENCE, V318, P1134, DOI 10.1126/science.1148766; Galloway LF, 2009, NEW PHYTOL, V183, P826, DOI 10.1111/j.1469-8137.2009.02939.x; Galloway LF, 2009, ECOLOGY, V90, P2139, DOI 10.1890/08-0948.1; Gurganus MC, 1998, GENETICS, V149, P1883; Gutterman Y, 2000, SEEDS ECOLOGY REGENE, P59; Herman JJ, 2012, INTEGR COMP BIOL, V52, P77, DOI 10.1093/icb/ics041; HINATA K, 1984, Indian Journal of Genetics and Plant Breeding, V44, P102; Huang XH, 2012, NAT GENET, V44, P32, DOI 10.1038/ng.1018; Huang XQ, 2010, MOL ECOL, V19, P1335, DOI 10.1111/j.1365-294X.2010.04557.x; Huang Z, 2012, GENOME, V55, P8, DOI [10.1139/G11-072, 10.1139/g11-072]; Kebede B, 2012, GENOME, V55, P813, DOI 10.1139/g2012-066; Khavkin E, 1997, THEOR APPL GENET, V95, P343, DOI 10.1007/s001220050569; Lou P, 2011, THEOR APPL GENET, V123, P397, DOI 10.1007/s00122-011-1592-x; Lou P, 2007, J EXP BOT, V58, P4005, DOI 10.1093/jxb/erm255; Iniguez-Luy FL, 2009, THEOR APPL GENET, V120, P31, DOI 10.1007/s00122-009-1157-4; Lynch M, 1998, GENETICS ANAL QUANTI; Maccaferri M, 2008, GENETICS, V178, P489, DOI 10.1534/genetics.107.077297; Mahmood T, 2006, THEOR APPL GENET, V113, P1211, DOI 10.1007/s00122-006-0376-1; Malmberg RL, 2005, GENETICS, V171, P2015; Mezey JG, 2003, GENETICS, V165, P411; MitchellOlds T, 1996, EVOLUTION, V50, P1849, DOI 10.1111/j.1558-5646.1996.tb03571.x; Phillips PC, 1999, EVOLUTION, V53, P1506, DOI 10.1111/j.1558-5646.1999.tb05414.x; Prakash S, 1980, OPERA BOT, V55, P180; Quarrie SA, 2006, J EXP BOT, V57, P2627, DOI 10.1093/jxb/erl026; Ramchiary N, 2007, THEOR APPL GENET, V115, P807, DOI 10.1007/s00122-007-0610-5; ROACH DA, 1987, ANNU REV ECOL SYST, V18, P209, DOI 10.1146/annurev.es.18.110187.001233; ROBERTSON A, 1959, BIOMETRICS, V15, P469, DOI 10.2307/2527750; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; Schranz ME, 2002, GENETICS, V162, P1457; Sheldon CC, 2008, P NATL ACAD SCI USA, V105, P2214, DOI 10.1073/pnas.0711453105; Shi JQ, 2009, GENETICS, V182, P851, DOI 10.1534/genetics.109.101642; SHIRZADEGAN M, 1985, FETT WISS TECHNOL, V87, P235, DOI 10.1002/lipi.19850870605; STAMP NE, 1990, AM J BOT, V77, P874, DOI 10.2307/2444503; Susko DJ, 2000, AM J BOT, V87, P56, DOI 10.2307/2656685; Turnbull LA, 2000, OIKOS, V88, P225, DOI 10.1034/j.1600-0706.2000.880201.x; Van Molken T, 2005, AM J BOT, V92, P432, DOI 10.3732/ajb.92.3.432; VANOOIJEN JW, 1992, THEOR APPL GENET, V84, P803, DOI 10.1007/BF00227388; WANG S, 2007, WINDOWS QTL CARTOGRA; Wang XW, 2011, NAT GENET, V43, P1035, DOI 10.1038/ng.919; Weinig C, 2002, GENETICS, V162, P1875; WILLIAMS PH, 1986, SCIENCE, V232, P1385, DOI 10.1126/science.232.4756.1385; Xiao L, 2012, THEOR APPL GENET, V124, P903, DOI 10.1007/s00122-011-1754-x; Xie XB, 2008, THEOR APPL GENET, V116, P613, DOI 10.1007/s00122-007-0695-x; Xing YZ, 2010, ANNU REV PLANT BIOL, V61, P421, DOI 10.1146/annurev-arplant-042809-112209; Xue WY, 2008, NAT GENET, V40, P761, DOI 10.1038/ng.143; Yang P, 2012, THEOR APPL GENET, V125, P285, DOI 10.1007/s00122-012-1833-7; ZHANG JH, 1993, CAN J BOT, V71, P1231, DOI 10.1139/b93-145; Zhang JF, 2009, PLANT MOL BIOL, V69, P553, DOI 10.1007/s11103-008-9437-y; Zhang LW, 2012, THEOR APPL GENET, V125, P695, DOI 10.1007/s00122-012-1861-3 80 10 10 0 33 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1471-2229 BMC PLANT BIOL BMC Plant Biol. MAR 18 2014 14 66 10.1186/1471-2229-14-66 12 Plant Sciences Plant Sciences AF9YS WOS:000335071200001 24641198 DOAJ Gold, Green Published 2018-11-12 J Gray, JC; Cutter, AD Gray, Jeremy C.; Cutter, Asher D. Mainstreaming Caenorhabditis elegans in experimental evolution PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Review experimental evolution; Caenorhabditis; evolution HOST-PARASITE COEVOLUTION; MICROPARASITE BACILLUS-THURINGIENSIS; BASE-SUBSTITUTION MUTATION; GENETIC DIVERSITY; SEX-DETERMINATION; LIFE-SPAN; C-ELEGANS; EXPERIMENTAL POPULATIONS; OUTBREEDING DEPRESSION; SPERM COMPETITION Experimental evolution provides a powerful manipulative tool for probing evolutionary process and mechanism. As this approach to hypothesis testing has taken purchase in biology, so too has the number of experimental systems that use it, each with its own unique strengths and weaknesses. The depth of biological knowledge about Caenorhabditis nematodes, combined with their laboratory tractability, positions them well for exploiting experimental evolution in animal systems to understand deep questions in evolution and ecology, as well as in molecular genetics and systems biology. To date, Caenorhabditis elegans and related species have proved themselves in experimental evolution studies of the process of mutation, host-pathogen coevolution, mating system evolution and life-history theory. Yet these organisms are not broadly recognized for their utility for evolution experiments and remain underexploited. Here, we outline this experimental evolution work undertaken so far in Caenorhabditis, detail simple methodological tricks that can be exploited and identify research areas that are ripe for future discovery. [Gray, Jeremy C.; Cutter, Asher D.] Univ Toronto, Dept Ecol & Evolutionary Biol, Toronto, ON M5S 3B2, Canada Cutter, AD (reprint author), Univ Toronto, Dept Ecol & Evolutionary Biol, 25 Willcocks St, Toronto, ON M5S 3B2, Canada. asher.cutter@utoronto.ca Cutter, Asher/A-5647-2009 Natural Sciences and Engineering Research Council of Canada; United States' National Institutes of Health; Canada Research Chair A.D.C. is supported by funds from the Natural Sciences and Engineering Research Council of Canada, the United States' National Institutes of Health, and a Canada Research Chair. Agrawal AF, 2006, CURR BIOL, V16, pR696, DOI 10.1016/j.cub.2006.07.063; Ajie BC, 2005, GENETICS, V170, P655, DOI 10.1534/genetics.104.040014; Andersen EC, 2012, NAT GENET, V44, P285, DOI 10.1038/ng.1050; Anderson J, 2010, DANCING TIMES, V100, P62; Anderson JL, 2011, J GERONTOL A-BIOL, V66, P1300, DOI 10.1093/gerona/glr143; Antebi A, 2007, PLOS GENET, V3, P1565, DOI 10.1371/journal.pgen.0030129; Azevedo RBR, 2002, GENETICS, V162, P755; Baer CF, 2005, P NATL ACAD SCI USA, V102, P5785, DOI 10.1073/pnas.0406056102; Baer CF, 2007, NAT REV GENET, V8, P619, DOI 10.1038/nrg2158; Baer CF, 2006, GENETICS, V174, P1387, DOI 10.1534/genetics.106-061200; Baer CF, 2010, EVOLUTION, V64, P3242, DOI 10.1111/j.1558-5646.2010.01061.x; Barriere A, 2005, CURR BIOL, V15, P1176, DOI 10.1016/j.cub.2005.06.022; Barriere A, 2007, GENETICS, V176, P999, DOI 10.1534/genetics.106.067223; Bell G, 2008, SELECTION: THE MECHANISM OF EVOLUTION, 2ND EDITION, P1; Bell G, 1982, MASTERPIECE NATURE E; Bendesky A, 2011, NAT REV GENET, V12, P809, DOI 10.1038/nrg3065; BRENNER S, 1974, GENETICS, V77, P71; BRUN J, 1965, SCIENCE, V150, P1467, DOI 10.1126/science.150.3702.1467; Buckling A, 2009, NATURE, V457, P824, DOI 10.1038/nature07892; C. elegans Sequencing Consortium, 1998, SCIENCE, V282, P2012, DOI [10.1126/science.282.5396.2012, DOI 10.1126/SCIENCE.282.5396.2012]; CHALFIE M, 1994, SCIENCE, V263, P802, DOI 10.1126/science.8303295; Chandler CH, 2012, EVOLUTION, V66, P82, DOI 10.1111/j.1558-5646.2011.01420.x; Chasnov JR, 2002, GENETICS, V160, P983; Chelo IM, 2013, EVOLUTION, V67, P142, DOI 10.1111/j.1558-5646.2012.01744.x; Chen HY, 2012, CURR BIOL, V22, P2140, DOI 10.1016/j.cub.2012.09.021; Cutter A. D., 2011, EVOLUTION, V66, P1180, DOI DOI 10.1111/J.1558-5646.2011.01514.X); Cutter AD, 2005, J EVOLUTION BIOL, V18, P27, DOI 10.1111/j.1420-9101.2004.00804.x; Cutter AD, 2004, EVOLUTION, V58, P651, DOI 10.1111/j.0014-3820.2004.tb01687.x; Cutter AD, 2003, GENET RES, V81, P91, DOI 10.1017/S001667230300613X; Cutter AD, 2013, MOL ECOL, V22, P2074, DOI 10.1111/mec.12281; DALLINGER WH, 1978, P R SOC LOND, V27, P332, DOI DOI 10.1098/RSPL.1878.0055; Dennehy JJ, 2006, APPL ENVIRON MICROB, V72, P1974, DOI 10.1128/AEM.72.3.1974-1979.2006; Denver DR, 2012, GENOME BIOL EVOL, V4, P513, DOI 10.1093/gbe/evs028; Denver DR, 2010, GENOME RES, V20, P1663, DOI 10.1101/gr.108191.110; Denver DR, 2009, P NATL ACAD SCI USA, V106, P16310, DOI 10.1073/pnas.0904895106; Denver DR, 2004, NATURE, V430, P679, DOI 10.1038/nature02697; Dey A, 2012, GENETICS, V191, P1257, DOI 10.1534/genetics.112.140418; Dolgin ES, 2007, EVOLUTION, V61, P1339, DOI 10.1111/j.1558-5646.2007.00118.x; Duveau F, 2012, PLOS BIOL, V10, DOI 10.1371/journal.pbio.1001230; Ellis RE, 2008, CURR TOP DEV BIOL, V83, P41, DOI 10.1016/S0070-2153(08)00402-X; Elvin M, 2011, BMC GENOMICS, V12, DOI 10.1186/1471-2164-12-510; Estes S, 2005, GENETICS, V170, P645, DOI 10.1534/genetics.104.040022; Estes S, 2004, GENETICS, V166, P1269, DOI 10.1534/genetics.166.3.1269; Estes S, 2003, EVOLUTION, V57, P1022; Felix MA, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-10; Felix MA, 2011, PLOS BIOL, V9, DOI 10.1371/journal.pbio.1000586; Felix MA, 2010, CURR BIOL, V20, pR965, DOI 10.1016/j.cub.2010.09.050; Flibotte S, 2010, GENETICS, V185, P431, DOI 10.1534/genetics.110.116616; Friedenberg NA, 2003, AM NAT, V162, P586, DOI 10.1086/378782; Friedenberg NA, 2003, ECOL LETT, V6, P953, DOI 10.1046/j.1461-0248.2003.00524.x; Frokjaer-Jensen C, 2013, GENETICS, V195, P635, DOI 10.1534/genetics.113.156521; Garcia LR, 2007, GENETICS, V175, P1761, DOI 10.1534/genetics.106.068304; Garland T, 2009, EXPT EVOLUTION CONCE; Gimond C, 2013, EVOLUTION, V67, P3087, DOI 10.1111/evo.12203; Gloria-Soria A, 2008, CURR BIOL, V18, P1694, DOI 10.1016/j.cub.2008.09.043; Goddard MR, 2007, SEX IN FUNGI: MOLECULAR DETERMINATION AND EVOLUTIONARY IMPLICATIONS, P489; Herron MD, 2013, PLOS BIOL, V11, DOI 10.1371/journal.pbio.1001490; Hodgkin J, 2002, GENETICS, V162, P1501; Husson SJ, 2012, WORMBOOK, DOI [10.1895/wormbook.1.156.1, DOI 10.1895/WORMBOOK.1.156.1]; Janzen FJ, 2006, J EVOLUTION BIOL, V19, P1775, DOI 10.1111/j.1420-9101.2006.01138.x; Jarrell TA, 2012, SCIENCE, V337, P437, DOI 10.1126/science.1221762; Joyner-Matos J, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0065604; Kawecki TJ, 2012, TRENDS ECOL EVOL, V27, P547, DOI 10.1016/j.tree.2012.06.001; Keightley PD, 1997, P NATL ACAD SCI USA, V94, P3823, DOI 10.1073/pnas.94.8.3823; Kiontke KC, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-339; LaMunyon CW, 2007, J HERED, V98, P67, DOI 10.1093/jhered/esl052; LaMunyon CW, 2002, P ROY SOC B-BIOL SCI, V269, P1125, DOI 10.1098/rspb.2002.1996; LaMunyon CW, 1999, P ROY SOC B-BIOL SCI, V266, P263, DOI 10.1098/rspb.1999.0631; LENSKI RE, 1991, AM NAT, V138, P1315, DOI 10.1086/285289; Lockery SR, 2008, J NEUROPHYSIOL, V99, P3136, DOI 10.1152/jn.91327.2007; Lopes PC, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003741; Manoel D, 2007, P ROY SOC B-BIOL SCI, V274, P417, DOI 10.1098/rspb.2006.3739; Masri L, 2013, ECOL LETT, V16, P461, DOI 10.1111/ele.12068; Matsuba C, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2012.0334; Morran LT, 2013, EVOLUTION, V67, P1860, DOI 10.1111/evo.12007; Morran LT, 2011, SCIENCE, V333, P216, DOI 10.1126/science.1206360; Morran LT, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014473; Morran LT, 2009, NATURE, V462, P350, DOI 10.1038/nature08496; Morran LT, 2009, EVOLUTION, V63, P1473, DOI 10.1111/j.1558-5646.2009.00652.x; Murray RL, 2011, J EXP BIOL, V214, P1740, DOI 10.1242/jeb.053181; Pothof J, 2003, GENE DEV, V17, P443, DOI 10.1101/gad.1060703; Ramani AK, 2012, CELL, V148, P792, DOI 10.1016/j.cell.2012.01.019; Schulenburg H, 2004, BMC EVOL BIOL, V4, DOI 10.1186/1471-2148-4-49; Schulte RD, 2013, J EVOLUTION BIOL, V26, P1836, DOI 10.1111/jeb.12174; Schulte RD, 2012, BIOL LETTERS, V8, P234, DOI 10.1098/rsbl.2011.0684; Schulte RD, 2011, P ROY SOC B-BIOL SCI, V278, P2832, DOI 10.1098/rspb.2011.0019; Schulte RD, 2010, P NATL ACAD SCI USA, V107, P7359, DOI 10.1073/pnas.1003113107; Shi WW, 2011, TOP CURR CHEM, V304, P323, DOI 10.1007/128_2011_145; Sicard M, 2007, ENVIRON MICROBIOL, V9, P12, DOI 10.1111/j.1462-2920.2006.01099.x; Smith JR, 2011, PLOS GENET, V7, DOI 10.1371/journal.pgen.1002375; Stewart AD, 2002, GENETICS, V160, P975; Stiernagle T, 2006, WORMBOOK 0211, DOI [10.1895/wormbook.1.101.1, DOI 10.1895/WORMBOOK.1.101.1]; SULSTON JE, 1977, DEV BIOL, V56, P110, DOI 10.1016/0012-1606(77)90158-0; Teotonio H, 2012, PLOS ONE, V7, DOI [10.1371/journal.pone.0035811, DOI 10.1371/JOURNAL.PONE.0035811]; Teotonio H, 2006, EVOLUTION, V60, P1300; Thompson O, 2013, GENOME RES, V23, P1749, DOI 10.1101/gr.157651.113; Timmons L, 1998, NATURE, V395, P854, DOI 10.1038/27579; Vassilieva LL, 1999, GENETICS, V151, P119; Walker DW, 2000, NATURE, V405, P296, DOI 10.1038/35012693; WARD S, 1979, DEV BIOL, V73, P304, DOI 10.1016/0012-1606(79)90069-1; Wegewitz Viktoria, 2008, BMC Ecology, V8, P12, DOI 10.1186/1472-6785-8-12; WHITE JG, 1986, PHILOS T R SOC B, V314, P1, DOI 10.1098/rstb.1986.0056; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Williams PD, 2006, TRENDS ECOL EVOL, V21, P458, DOI 10.1016/j.tree.2006.05.008; WOOD WB, 1988, NEMATODE CAENORHABDI; Woodruff GC, 2010, GENETICS, V186, P997, DOI 10.1534/genetics.110.120550; Yan C, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0043770 107 24 25 3 40 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. MAR 7 2014 281 1778 20133055 10.1098/rspb.2013.3055 10 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology AC2YN WOS:000332382300020 24430852 Green Published, Bronze 2018-11-12 J Thorson, JT; Taylor, IG; Stewart, IJ; Punt, AE Thorson, James T.; Taylor, Ian G.; Stewart, Ian J.; Punt, Andre E. Rigorous meta-analysis of life history correlations by simultaneously analyzing multiple population dynamics models ECOLOGICAL APPLICATIONS English Article Brody individual growth coefficient; integrated model; life history correlations; life history theory; likelihood profile; meta-analysis; mixed-effects models; natural mortality; Pacific rockfishes; population dynamics database; Sebastes; stock assessment STOCK-RECRUITMENT RELATIONSHIP; TIME-VARYING CATCHABILITY; NATURAL MORTALITY; REFERENCE POINTS; ASSEMBLY RULES; FISH; FISHERIES; PARAMETERS; GROWTH; UNCERTAINTY Correlations among life history parameters have been discussed in the ecological literature for over 50 years, but are often estimated while treating model estimates of demographic rates such as natural mortality (M) or individual growth (k) as data. This approach fails to propagate uncertainty appropriately because it ignores correlations in estimation errors between parameters within a species and differences in estimation error among species. An improved alternative is multi-species mixed-effects modeling, which we approximate using multivariate likelihood profiles in an approach that synthesizes information from several population dynamics models. Simulation modeling demonstrates that this approach has minimal bias, and that precision improves with increased number of species. As a case study, we demonstrate this approach by estimating M/k for 11 groundfish species off the U.S. West Coast using the data and functional forms on which pre-existing, peer-reviewed, population dynamics models are based. M/k is estimated to be 1.26 for Pacific rockfishes (Sebastes spp.), with a coefficient of variation of 76% for M given k. This represents the first-ever estimate of correlations among life history parameters for marine fishes using several age-structured population dynamics models, and it serves as a standard for future life history correlation studies. This approach can be modified to provide robust estimates of other life history parameters and correlations, and requires few changes to existing population dynamics models and software input files for both marine and terrestrial species. Specific results for Pacific rockfishes can be used as a Bayesian prior for estimating natural mortality in future fisheries management efforts. We therefore recommend that fish population dynamics models be compiled in a global database that can be used to simultaneously analyze observation-level data for many species in life history meta-analyses. [Thorson, James T.; Taylor, Ian G.; Stewart, Ian J.] NOAA, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Fisheries Resource Anal & Monitoring Div, Seattle, WA 98112 USA; [Punt, Andre E.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA Thorson, JT (reprint author), NOAA, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Fisheries Resource Anal & Monitoring Div, 2725 Montlake Blvd East, Seattle, WA 98112 USA. James.Thorson@noaa.gov Thorson, James/O-7937-2014 Thorson, James/0000-0001-7415-1010 National Research Council Research Associate Program J. T. Thorson acknowledges financial support from the National Research Council Research Associate Program and supervision by E. Holmes, E. Ward, and M. Scheuerell at the NMFS Northwest Fisheries Science Center. This research was improved through discussion with J. Cope, I. Spies, and E. Ward. The profile likelihood approximation to maximum marginal likelihood has been previously explored by M. Dorn, A. Punt, and M. Wu. The manuscript was also improved through comments from J. Hastie, M. McClure, and two anonymous reviewers. To the many research scientists and assessment authors who collected, compiled, and analyzed the data in the stock assessments used herein, thank you! BEVERTON R. J. H., 1965, INT COMP NORTHWEST ATLANTIC FISH RES BULL, V2, P59; Beverton R. J. H., 1959, CIBA FDN C AGEING, V5, P142, DOI DOI 10.1002/9780470715253.CH10; BEVERTON RJH, 1992, J FISH BIOL, V41, P137, DOI 10.1111/j.1095-8649.1992.tb03875.x; CHARNOV EL, 1991, PHILOS T ROY SOC B, V332, P41, DOI 10.1098/rstb.1991.0031; Charnov EL, 2013, FISH FISH, V14, P213, DOI 10.1111/j.1467-2979.2012.00467.x; Charnov Eric L., 1993, P1; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Dail D, 2011, BIOMETRICS, V67, P577, DOI 10.1111/j.1541-0420.2010.01465.x; Dick E. J., 2011, STATUS GREENSPOTTED; Draper N., 1998, APPL REGRESSION ANAL; *FAO, 2010, FISHSTAT PLUS UN SOF; Field J., 2011, STATUS BOCACCIO SEBA; Field J. C., 2011, STATUS BLACKGILL ROC; FROESE R, 2010, FISHBASE; Garrison TM, 2011, CAN J FISH AQUAT SCI, V68, P1761, DOI 10.1139/F2011-073; Gelman A., 2007, DATA ANAL USING REGR; Gislason H, 2010, FISH FISH, V11, P149, DOI 10.1111/j.1467-2979.2009.00350.x; Haltuch M. A., 2011, STATUS US PETRALE SO; Hamel O. S., 2011, STOCK ASSESSMENT PAC; He X., 2011, STATUS WIDOW ROCKFIS; Hicks A. C., 2011, STATUS DOVER SOLE MI; Hilborn R, 1998, REV FISH BIOL FISHER, V8, P273, DOI 10.1023/A:1008877912528; Jensen AL, 1996, CAN J FISH AQUAT SCI, V53, P820, DOI 10.1139/cjfas-53-4-820; Lee HH, 2012, FISH RES, V125, P254, DOI 10.1016/j.fishres.2012.03.001; Lee HH, 2011, FISH RES, V109, P89, DOI 10.1016/j.fishres.2011.01.021; Lorenzen K, 2002, P ROY SOC B-BIOL SCI, V269, P49, DOI 10.1098/rspb.2001.1853; Lorenzen K, 1996, J FISH BIOL, V49, P627, DOI 10.1111/j.1095-8649.1996.tb00060.x; LUDWIG D, 1981, CAN J FISH AQUAT SCI, V38, P711, DOI 10.1139/f81-094; MacCall A. D., 1990, DYNAMIC GEOGRAPHY MA; MacKenzie D. I., 2005, OCCUPANCY ESTIMATION; Maunder Mark N., 2003, Natural Resource Modeling, V16, P465; Maunder MN, 2013, FISH RES, V142, P61, DOI 10.1016/j.fishres.2012.07.025; Methot R.D, 1990, INPFC B, V50, P259; Methot RD, 2013, FISH RES, V142, P86, DOI 10.1016/j.fishres.2012.10.012; Methot RD, 2011, CAN J FISH AQUAT SCI, V68, P1744, DOI 10.1139/F2011-092; Methot RD, 2009, FISH FISHERIES SERIE, V31, P137, DOI 10.1007/978-1-4020-9210-7_9; Osenberg CW, 1999, ECOLOGY, V80, P1105, DOI 10.2307/177058; PAULY D, 1980, J CONSEIL, V39, P175; Punt AE, 2008, CAN J FISH AQUAT SCI, V65, P1991, DOI 10.1139/F08-111; Punt AE, 2011, ICES J MAR SCI, V68, P972, DOI 10.1093/icesjms/fsr039; Quinn TJ, 1999, QUANTITATIVE FISH DY; Ricard D, 2012, FISH FISH, V13, P380, DOI 10.1111/j.1467-2979.2011.00435.x; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; RICKLEFS RE, 1977, AM NAT, V111, P453, DOI 10.1086/283179; Royle JA, 2008, HIERARCHICAL MODELIN; Stephens A., 2011, STATUS FUTURE PROSPE; Stewart I. J., 2011, STATUS US SABLEFISH; Stewart IJ, 2013, FISH RES, V142, P37, DOI 10.1016/j.fishres.2012.07.003; Stewart IJ, 2009, STATUS US CANARY ROC; Taylor I. G., 2011, STATUS US YELLOWEYE; Taylor IG, 2013, FISH RES, V142, P15, DOI 10.1016/j.fishres.2012.04.018; Thomson DL, 2009, ENVIRON ECOL STAT SE, V3, P1, DOI 10.1007/978-0-387-78151-8; Thorson JT, 2012, CAN J FISH AQUAT SCI, V69, P1556, DOI 10.1139/F2012-077; Thorson JT, 2011, CAN J FISH AQUAT SCI, V68, P1681, DOI 10.1139/F2011-086; Thorson JT, 2011, ICES J MAR SCI, V68, P2264, DOI 10.1093/icesjms/fsr160; Thorson JT, 2010, FISH RES, V101, P38, DOI 10.1016/j.fishres.2009.09.005; Wilberg MJ, 2010, REV FISH SCI, V18, P7, DOI 10.1080/10641260903294647; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Zhou SJ, 2012, CAN J FISH AQUAT SCI, V69, P1292, DOI 10.1139/F2012-060 59 10 10 3 34 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1051-0761 1939-5582 ECOL APPL Ecol. Appl. MAR 2014 24 2 315 326 10.1890/12-1803.1 12 Ecology; Environmental Sciences Environmental Sciences & Ecology AA9HZ WOS:000331405700007 24689143 2018-11-12 J Jonason, PK; Wee, S; Li, NP Jonason, Peter K.; Wee, Serena; Li, Norman P. Thinking Bigger and Better About "Bad Apples": Evolutionary Industrial-Organizational Psychology and the Dark Triad INDUSTRIAL AND ORGANIZATIONAL PSYCHOLOGY-PERSPECTIVES ON SCIENCE AND PRACTICE English Article NARCISSISTIC PERSONALITY-INVENTORY; TERM MATING STRATEGY; LIFE-HISTORY THEORY; MACHIAVELLIANISM; LEADERSHIP; WORK; BEHAVIOR; TRAITS; MODEL; PSYCHOPATHY [Jonason, Peter K.] Univ Western Sydney, Milperra, NSW 2214, Australia; [Wee, Serena; Li, Norman P.] Singapore Management Univ, Singapore 178902, Singapore Jonason, PK (reprint author), Univ Western Sydney, Sch Social Sci & Psychol, Milperra, NSW 2214, Australia. p.jonason@uws.edu.au Wee, Serena/F-9090-2010; LI, Norman/F-9075-2010 LI, Norman/0000-0002-0318-1359 Ackerman RA, 2011, ASSESSMENT, V18, P67, DOI 10.1177/1073191110382845; Amernic JH, 2010, J BUS ETHICS, V96, P79, DOI 10.1007/s10551-010-0450-0; Benet-Martinez V, 1998, J PERS SOC PSYCHOL, V75, P729, DOI 10.1037//0022-3514.75.3.729; Boddy CRP, 2010, J PUBLIC AFF, V10, P300, DOI 10.1002/pa.365; Brunell AB, 2008, PERS SOC PSYCHOL B, V34, P1663, DOI 10.1177/0146167208324101; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; Campbell W. K, 2011, HDB NARCISSISM NARCI; Confer JC, 2010, AM PSYCHOL, V65, P110, DOI 10.1037/a0018413; Crysel LC, 2013, PERS INDIV DIFFER, V54, P35, DOI 10.1016/j.paid.2012.07.029; Galperin B. L., 2010, J BUS ETHICS, V98, P407; Guenole N, 2014, IND ORGAN PSYCHOL-US, V7, P85, DOI 10.1111/iops.12114; Hogan R, 2005, REV GEN PSYCHOL, V9, P169, DOI 10.1037/1089-2680.9.2.169; Hogan R, 2001, INT J SELECT ASSESS, V9, P40, DOI 10.1111/1468-2389.00162; Jonason P. K., 2010, INDIVIDUAL DIFFERENC, V8, P111; Jonason PK, 2013, PERS INDIV DIFFER, V55, P538, DOI 10.1016/j.paid.2013.05.001; Jonason PK, 2012, EVOL PSYCHOL-US, V10, P400, DOI 10.1177/147470491201000303; Jonason PK, 2012, REV GEN PSYCHOL, V16, P192, DOI 10.1037/a0027914; Jonason PK, 2012, PERS INDIV DIFFER, V52, P521, DOI 10.1016/j.paid.2011.11.023; Jonason PK, 2012, PERS INDIV DIFFER, V52, P449, DOI 10.1016/j.paid.2011.11.008; Jonason PK, 2011, PERS INDIV DIFFER, V51, P759, DOI 10.1016/j.paid.2011.06.025; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2010, PERS INDIV DIFFER, V49, P611, DOI 10.1016/j.paid.2010.05.031; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jones D. N., 2013, J APPL SOC PSYCHOL, V43, P367; Kenrick DT, 2003, PSYCHOL REV, V110, P3, DOI 10.1037/0033-295X.110.1.3; Kessler SR, 2010, J APPL SOC PSYCHOL, V40, P1868, DOI 10.1111/j.1559-1816.2010.00643.x; Kiazad K, 2010, J RES PERS, V44, P512, DOI 10.1016/j.jrp.2010.06.004; Kowalski R. M., 2001, BEHAV BADLY AVERSIVE; Lee KB, 2005, PERS INDIV DIFFER, V38, P1571, DOI 10.1016/j.paid.2004.09.016; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; Penney LM, 2002, INT J SELECT ASSESS, V10, P126, DOI 10.1111/1468-2389.00199; PERVIN LA, 1968, PSYCHOL BULL, V69, P56, DOI 10.1037/h0025271; RASKIN R, 1988, J PERS SOC PSYCHOL, V54, P890, DOI 10.1037//0022-3514.54.5.890; Robinson SL, 1998, ACAD MANAGE J, V41, P658, DOI 10.2307/256963; Rosenthal SA, 2006, LEADERSHIP QUART, V17, P617, DOI 10.1016/j.leaqua.2006.10.005; Tett RP, 2003, J APPL PSYCHOL, V88, P500, DOI 10.1037/0021-9010.88.3.500; Van Vugt M, 2008, AM PSYCHOL, V63, P182, DOI 10.1037/0003-066X.63.3.182; Van Vugt M, 2007, PSYCHOL SCI, V18, P19, DOI 10.1111/j.1467-9280.2007.01842.x; Zettler I, 2011, CAREER DEV INT, V16, P20, DOI 10.1108/13620431111107793 39 0 0 0 32 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1754-9426 1754-9434 IND ORGAN PSYCHOL-US Ind. Organ. Psychol. MAR 2014 7 1 5 Psychology, Applied Psychology AB1CT WOS:000331529600025 2018-11-12 J Lemaitre, JF; Vanpe, C; Plard, F; Gaillard, JM Lemaitre, J. F.; Vanpe, C.; Plard, F.; Gaillard, J. M. The allometry between secondary sexual traits and body size is nonlinear among cervids BIOLOGY LETTERS English Article life-history theory; ornaments; sexual selection; ungulates; weapons IRISH ELK; MEGALOCEROS-GIGANTEUS; TESTES MASS; COMPETITION; EXTINCTION; INTENSITY; SELECTION; WEAPONRY; ANTLERS Allometric relationships between sexually selected traits and body size have been extensively studied in recent decades. While sexually selected traits generally display positive allometry, a few recent reports have suggested that allometric relationships are not always linear. In male cervids, having both long antlers and large size provides benefits in terms of increased mating success. However, such attributes are costly to grow and maintain, and these costs might constrain antler length from increasing at the same rate as body mass in larger species if the quantity of energy that males can extract from their environment is limiting. We tested for possible nonlinearity in the relationship between antler size and body mass (on a log-log scale) among 31 cervids and found clear deviation from linearity in the allometry of antler length. Antler length increased linearly until a male body mass threshold at approximately 110 kg. Beyond this threshold, antler length did not change with increasing mass. We discuss this evidence of nonlinear allometry in the light of life-history theory and stress the importance of testing for nonlinearity when studying allometric relationships. [Lemaitre, J. F.] Univ Lyon, F-69000 Lyon, France; Univ Lyon 1, F-69622 Villeurbanne, France; Univ Lyon 1, CNRS, UMR5558, Lab Biometrie & Biol Evolut, F-69622 Villeurbanne, France Lemaitre, JF (reprint author), Univ Lyon, F-69000 Lyon, France. jeff.lemaitre@gmail.com Vanpe, Cecile/0000-0001-8136-1657 PATCH RPDOC ANR project from the French National Research Agency [ANR-12-PDOC-0017-01]; French Ministry of Higher Education and Research J.F.L. and C. V. are financially supported by the PATCH RPDOC ANR project (ANR-12-PDOC-0017-01) attributed to C. V. from the French National Research Agency. F. P. is funded by a PhD scholarship from the French Ministry of Higher Education and Research. BARNOSKY AD, 1986, QUATERNARY RES, V25, P128, DOI 10.1016/0033-5894(86)90049-9; Bro-Jorgensen J, 2007, EVOLUTION, V61, P1316, DOI 10.1111/j.1558-5646.2007.00111.x; Burnham K. P., 2002, MODEL SELECTION MULT; CLUTTONBROCK TH, 1980, NATURE, V285, P565, DOI 10.1038/285565a0; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Fernandez MH, 2005, BIOL REV, V80, P269, DOI 10.1017/S1464793104006670; Fitzpatrick JL, 2012, EVOLUTION, V66, P3595, DOI 10.1111/j.1558-5646.2012.01713.x; GOULD SJ, 1974, EVOLUTION, V28, P191, DOI 10.1111/j.1558-5646.1974.tb00740.x; Harvey P. H., 1991, COMP METHOD EVOLUTIO; Houle D, 2011, Q REV BIOL, V86, P3, DOI 10.1086/658408; Kolokotrones T, 2010, NATURE, V464, P753, DOI 10.1038/nature08920; Lemaitre JF, 2013, BEHAV ECOL, V24, P421, DOI 10.1093/beheco/ars179; Lindenfors Patrik, 2007, P16; MacLeod CD, 2010, METHODS ECOL EVOL, V1, P359, DOI 10.1111/j.2041-210X.2010.00037.x; MacLeod CD, 2010, MAR MAMMAL SCI, V26, P370, DOI 10.1111/j.1748-7692.2009.00348.x; Moen RA, 1999, EVOL ECOL RES, V1, P235; Pitnick S, 2006, P ROY SOC B-BIOL SCI, V273, P719, DOI 10.1098/rspb.2005.3367; Plard F, 2011, OIKOS, V120, P601, DOI 10.1111/j.1600-0706.2010.18934.x; Preston BT, 2003, P ROY SOC B-BIOL SCI, V270, P633, DOI 10.1098/rspb.2002.2268; Stearns S. C., 1992, EVOLUTION LIFE HIST; ULM K, 1989, BIOMETRICS, V45, P1324; Vanpe C, 2010, OIKOS, V119, P1484, DOI 10.1111/j.1600-0706.2010.18312.x 22 13 14 3 44 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 1744-957X BIOL LETTERS Biol. Lett. MAR 1 2014 10 3 20130869 10.1098/rsbl.2013.0869 3 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology AE3TZ WOS:000333902400002 24598105 Green Published, Other Gold 2018-11-12 J Shaver, JH; Sosis, R Shaver, John H.; Sosis, Richard How Does Male Ritual Behavior Vary Across the Lifespan? An Examination of Fijian Kava Ceremonies HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article Ritual; Life history theory; Fiji; Kava PARENTAL INVESTMENT; TIME ALLOCATION; OKAVANGO DELTA; EVOLUTION; RELIGION; HISTORY; FERTILITY; HUMANS; MEN; PROSOCIALITY Ritual behaviors of some form exist in every society known to anthropologists. Despite this universality, we have little understanding of how ritual behavior varies within populations or across the lifespan, nor the determinants of this variation. Here we test hypotheses derived from life history theory by using behavioral observations and oral interview data concerning participant variation in Fijian kava-drinking ceremonies. We predicted that substantial variation in the frequency and duration of participation would result from (1) trade-offs with reproduction and (2) the intrinsic status differences between ritual participants. We demonstrate that when controlling for household composition, men with young offspring participated less frequently and exhibited greater variance in their time spent at ceremonies than men without young children. However, men with a larger number of total dependents in their household participated more frequently than those with fewer. Moreover, we found that men's ascribed rank, level of education, and reliance on wage labor all significantly predict their frequency of attendance. We also found that the number of dependents a man has in his household is positively correlated with total food production, and the amount of kava he cultivates. In general, these results suggest that ritual participation is part of an important strategy employed by Fijian men for both achieving status and developing social alliances. Variation in participation in kava ceremonies by Fijian men therefore reflects the constraints of their current life history condition and their inherited rank. [Shaver, John H.] Masaryk Univ, Lab Expt Res Relig, Brno, Czech Republic; [Sosis, Richard] Univ Connecticut, Dept Anthropol, Storrs, CT 06269 USA Shaver, JH (reprint author), Masaryk Univ, Lab Expt Res Relig, Jaselska 199-16, Brno, Czech Republic. jhshaver@hotmail.com; richard.sosis@uconn.edu Shaver, John/0000-0002-9522-4765 Economic and Social Research Council [ES/I005455/1] Alcorta CS, 2005, HUM NATURE-INT BIOS, V16, P323, DOI 10.1007/s12110-005-1014-3; [Anonymous], 2010, MY GOD MY LAND INTER; Atkinson QD, 2011, EVOL HUM BEHAV, V32, P50, DOI 10.1016/j.evolhumbehav.2010.09.002; Barker John, 1992, HIST TRADITION MELAN, P144; Bock J, 2004, HUM NATURE-INT BIOS, V15, P63, DOI 10.1007/s12110-004-1004-x; Bock J, 2002, HUM NATURE-INT BIOS, V13, P161, DOI 10.1007/s12110-002-1007-4; BREWSTER A, 1922, HILL TRIBES FIJI; Brison Karen, 2007, OUR WEALTH IS LOVING; Brown DE, 1991, HUMAN UNIVERSALS; Brunton Ron, 1989, ABANDONED NARCOTIC K; Burt Ben, 1994, TRADITION CHRISTIANI; Cairney S, 2003, NEUROPSYCHOPHARMACOL, V28, P389, DOI 10.1038/sj.npp.1300052; Cairney S, 2002, AUST NZ J PSYCHIAT, V36, P657, DOI 10.1046/j.1440-1614.2002.01027.x; CAWTE J, 1986, AUST NZ J PSYCHIAT, V20, P70, DOI 10.3109/00048678609158867; Charnov Eric L., 1993, P1; CRONK L, 1994, ZYGON, V29, P81, DOI 10.1111/j.1467-9744.1994.tb00651.x; de Aguiar R, 2011, RELIG BRAIN BEHAV, V1, P73, DOI 10.1080/2153599X.2011.558710; France Peter., 1969, CHARTER LAND CUSTOM; GALDIKAS BMF, 1990, AM J PHYS ANTHROPOL, V83, P185, DOI 10.1002/ajpa.1330830207; Ginges J, 2009, PSYCHOL SCI, V20, P224, DOI 10.1111/j.1467-9280.2009.02270.x; Guo Pei-yi, 2009, RELIG RITUAL CHANGE, P69; Gurven M, 2006, J HUM EVOL, V51, P454, DOI 10.1016/j.jhevol.2006.05.003; Gurven M, 2006, HUM NATURE-INT BIOS, V17, P1, DOI 10.1007/s12110-006-1019-6; HAMES R, 1992, EVOLUTIONARY ECOLOGY, P203; Hawkes K, 1997, CURR ANTHROPOL, V38, P551, DOI 10.1086/204646; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hocart A. M., 1929, BULLETIN, V62; IRONS W, 1979, EVOLUTIONARY BIOL HU, P257; Irons W, 2001, EVOLUTION CAPACITY C, P292; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kaplan H, 1996, YEARB PHYS ANTHROPOL, V39, P91; KAPLAN H, 1994, POPUL DEV REV, V20, P753, DOI 10.2307/2137661; Kaplan Hillard S., 2001, INT ENCY SOCIAL BEHA, P5561; KAPLAN HS, 1995, HUM NATURE-INT BIOS, V6, P325, DOI 10.1007/BF02734205; Kaplan M., 1990, CHRISTIANITY OCEANIA, P127; Kaplan M., 1995, NEITHER CARGO NOR CU; Kirch PV, 1984, EVOLUTION POLYNESIAN; Kuzawa CW, 2012, CURR ANTHROPOL, V53, pS369, DOI 10.1086/667410; Lebot V., 1995, CANBERRA ANTHR, V18, P20; Lebot V, 1992, KAVA PACIFIC ELIXIR; Leinard P., 2011, NEUROSCI BIOBEHAV R, V35, P1067; Levins R., 1968, EVOLUTION CHANGING E; Marlowe FW, 2003, EVOL HUM BEHAV, V24, P217, DOI 10.1016/S1090-5138(03)00014-X; McKay R, 2013, RELIG BRAIN BEHAV, V3, P201, DOI 10.1080/2153599X.2012.739410; McNamara P., 2006, GOD SCI MEET BRAIN E, V1, P55; Nayacakalou R. R., 1955, J POLYNESIAN SOC, V64, P44; Norenzayan A, 2008, SCIENCE, V322, P58, DOI 10.1126/science.1158757; NORTON SA, 1994, J AM ACAD DERMATOL, V31, P89, DOI 10.1016/S0190-9622(94)70142-3; Raven-Hart R., 1956, J POLYNESIAN SOC, V65, P95; Roff Derek A., 1992; Ruffle BJ, 2007, BE J ECON ANAL POLI, V7; Sahlins Marshall, 1987, ISLANDS HIST; Shaver J. H., 2012, THESIS U CONNECTICUT; Singh YN, 2002, CNS DRUGS, V16, P731, DOI 10.2165/00023210-200216110-00002; Soler M, 2012, EVOL HUM BEHAV, V33, P346, DOI 10.1016/j.evolhumbehav.2011.11.004; Sosis R, 2003, EVOL ANTHROPOL, V12, P264, DOI 10.1002/evan.10120; Sosis R, 2003, CROSS-CULT RES, V37, P211, DOI 10.1177/1069397103251426; Sosis R., 2005, INTERDISCIPLINARY J, V1; Sosis R., 2006, GOD SCI MEET BRAIN E, VI, P61; Sosis R, 2011, RELIGION, V41, P341, DOI 10.1080/0048721X.2011.604514; Stearns S. C., 1992, EVOLUTION LIFE HIST; Strathern P., 2009, RELIG RITUAL CHANGE; Swanson Guy E., 1960, BIRTH GODS ORIGIN PR; THOMSON B, 1908, FIJIANS STUDY DECAY; Thornley A. W., 2005, KO WILIAME KOROSI KE; Tomlinson M, 2007, ANTHROPOL QUART, V80, P1065, DOI 10.1353/anq.2007.0054; Tomlinson M, 2006, OCEANIA, V76, P173, DOI 10.1002/j.1834-4461.2006.tb03043.x; Tomlinson Matt., 2009, GODS IMAGE METACULTU; Toren C., 1994, GENDER DRINK DRUGS, P153; Toren Christina, 1990, MAKING SENSE HIERARC; Turner J., 1995, CANBERRA ANTHR, V18, P87; TURNER JW, 1986, ETHNOLOGY, V25, P203, DOI 10.2307/3773584; TURNER JW, 1992, ETHNOLOGY, V31, P291, DOI 10.2307/3773421; van Gennep A, 2004, RITES PASSAGE; von Rueden C, 2011, P ROY SOC B-BIOL SCI, V278, P2223, DOI 10.1098/rspb.2010.2145; Walker R, 2002, J HUM EVOL, V42, P639, DOI 10.1006/jhev.2001.0541; Walker RS, 2008, P ROY SOC B-BIOL SCI, V275, P827, DOI 10.1098/rspb.2007.1511; Waterhouse Joseph, 1997, KING PEOPLE FIJI; Weisfeld G., 1997, CROSS CULTURAL RES J, V31, P27; Wrangham R., 1996, DEMONIC MALES APES O; Xygalatas D, 2013, RELIG BRAIN BEHAV, V3, P91, DOI 10.1080/2153599X.2012.724547; Xygalatas D, 2013, PSYCHOL SCI, V24, P1602, DOI 10.1177/0956797612472910 82 9 10 0 14 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 1936-4776 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. MAR 2014 25 1 136 160 10.1007/s12110-014-9191-6 25 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences AD0YJ WOS:000332960200009 24522974 2018-11-12 J Martin, TE Martin, Thomas E. A Conceptual Framework for Clutch-Size Evolution in Songbirds AMERICAN NATURALIST English Article nest predation; developmental strategy; parental care; reproductive effort; fledgling mortality; age-specific mortality LIFE-HISTORY EVOLUTION; POSTFLEDGING PARENTAL CARE; AGE-SPECIFIC MORTALITY; NEST PREDATION; ENERGY-EXPENDITURE; BROOD DIVISION; DEVELOPMENTAL RATES; FLEDGLING OVENBIRDS; JUVENILE SURVIVAL; WILSONIA-CITRINA Causes of evolved differences in clutch size among songbird species remain debated. I propose a new conceptual framework that integrates aspects of traditional life-history theory while including novel elements to explain evolution of clutch size among songbirds. I review evidence that selection by nest predation on length of time that offspring develop in the nest creates a gradient in offspring characteristics at nest leaving (fledging), including flight mobility, spatial dispersion, and self-feeding rate. I postulate that this gradient has consequences for offspring mortality rates and parental energy expenditure per offspring. These consequences then determine how reproductive effort is partitioned among offspring, while reproductive effort evolves from age-specific mortality effects. Using data from a long-term site in Arizona, as well as from the literature, I provide support for hypothesized relationships. Nestling development period consistently explains fledgling mortality, energy expenditure per offspring, and clutch size while accounting for reproductive effort (i.e., total energy expenditure) to thereby support the framework. Tests in this article are not definitive, but they document previously unrecognized relationships and address diverse traits (developmental strategies, parental care strategies, energy requirements per offspring, evolution of reproductive effort, clutch size) that justify further investigations of hypotheses proposed here. Univ Montana, Montana Cooperat Wildlife Res Unit, US Geol Survey, Missoula, MT 59812 USA Martin, TE (reprint author), Univ Montana, Montana Cooperat Wildlife Res Unit, US Geol Survey, Missoula, MT 59812 USA. tom.martin@umontana.edu Martin, Thomas/F-6016-2011 Martin, Thomas/0000-0002-4028-4867 National Science Foundation [DEB-0841764, DEB-1241041]; US Geological Survey Climate Change Research Program I am grateful to K. P. Dial for helpful discussions and to R. J. Fletcher, J. LaManna, J. C. Oteyza, S. Sillett, R. Ton, and two anonymous reviewers for helpful comments on the manuscript. I thank W. A. Cox for sharing independent discovery of a relationship between nestling period and fledgling mortality and for providing additional comments. This work was supported by the National Science Foundation (grants DEB-0841764 and DEB-1241041) and the US Geological Survey Climate Change Research Program. Work in Arizona was conducted under University of Montana Institutional Animal Care and Use Committee (IACUC) protocol 059-10TMMCWRU. Any use of trade names is for descriptive purposes only and does not imply endorsement by the US government. Adams AAY, 2006, ECOLOGY, V87, P178, DOI 10.1890/04-1922; Anders AD, 1997, CONSERV BIOL, V11, P698, DOI 10.1046/j.1523-1739.1997.95526.x; Anthonisen K, 1997, AUK, V114, P553; Ashmole N. P., 1961, THESIS OXFORD U OXFO; BOSQUE C, 1995, AM NAT, V145, P234, DOI 10.1086/285738; BROWN CR, 1978, WILSON BULL, V90, P376; BRYANT DM, 1988, IBIS, V130, P17, DOI 10.1111/j.1474-919X.1988.tb00952.x; Bryant DM, 1997, P NUTR SOC, V56, P1025, DOI 10.1079/PNS19970107; BRYANT DM, 1984, AUK, V101, P25; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Cheng YR, 2012, AM NAT, V180, P285, DOI 10.1086/667214; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; DRENT RH, 1980, ARDEA, V68, P225; EDWARDS PJ, 1985, IBIS, V127, P42, DOI 10.1111/j.1474-919X.1985.tb05036.x; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; GODFRAY HCJ, 1991, ANNU REV ECOL SYST, V22, P409, DOI 10.1146/annurev.ecolsys.22.1.409; Hackett SJ, 2008, SCIENCE, V320, P1763, DOI 10.1126/science.1157704; Jackson AK, 2011, J WILDLIFE MANAGE, V75, P1082, DOI 10.1002/jwmg.154; Jetz W, 2012, NATURE, V491, P444, DOI 10.1038/nature11631; Jetz W, 2008, PLOS BIOL, V6, P2650, DOI 10.1371/journal.pbio.0060303; Kershner EL, 2004, AUK, V121, P1146, DOI 10.1642/0004-8038(2004)121[1146:PMASOJ]2.0.CO;2; King DI, 2006, J ZOOL, V269, P414, DOI 10.1111/j.1469-7998.2006.00158.x; KOPACHENA JG, 1993, CAN J ZOOL, V71, P227, DOI 10.1139/z93-032; LACK D, 1948, IBIS, V90, P25, DOI 10.1111/j.1474-919X.1948.tb01399.x; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; MAC ARTHUR ROBERT H., 1967; Maddison W.P., 2011, MESQUITE MODULAR SYS; MAGRATH RD, 1991, J ANIM ECOL, V60, P335, DOI 10.2307/5464; Martin TE, 2006, EVOLUTION, V60, P390; Martin TE, 1996, AM NAT, V147, P1028, DOI 10.1086/285891; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; Martin TE, 2007, ECOLOGY, V88, P367, DOI 10.1890/0012-9658(2007)88[367:CCOYOT]2.0.CO;2; Martin TE, 2014, AM NAT, V183, P313, DOI 10.1086/674966; Martin TE, 2011, EVOLUTION, V65, P1607, DOI 10.1111/j.1558-5646.2011.01227.x; MCLAUGHLIN RL, 1989, BEHAV ECOL SOCIOBIOL, V25, P207, DOI 10.1007/BF00302920; MCLAUGHLIN RL, 1985, AUK, V102, P687; MCLAUGHLIN RL, 1989, AUK, V106, P738; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; Midford P. E., 2002, PDAP PDTREE PACKAGE; Moore LC, 2010, AUK, V127, P185, DOI 10.1525/auk.2009.09134; Moreno J, 1999, BEHAV ECOL SOCIOBIOL, V46, P244, DOI 10.1007/s002650050616; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; Ogden LJE, 1997, CAN J ZOOL, V75, P576, DOI 10.1139/z97-071; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Raihani NJ, 2007, ANIM BEHAV, V74, P1303, DOI 10.1016/j.anbehav.2007.02.025; Remes V, 2002, EVOLUTION, V56, P2505; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Ricklefs RE, 2010, AM NAT, V175, P350, DOI 10.1086/650371; Roff D. A., 2002, LIFE HIST EVOLUTION; Roff DA, 2005, J EVOLUTION BIOL, V18, P1425, DOI 10.1111/j.1420-9101.2005.00958.x; ROYAMA T, 1966, IBIS, V108, P313, DOI 10.1111/j.1474-919X.1966.tb07348.x; Rush SA, 2008, AUK, V125, P183, DOI 10.1525/auk.2008.125.1.183; Sandercock BK, 2000, ECOLOGY, V81, P1351, DOI 10.1890/0012-9658(2000)081[1351:SROANP]2.0.CO;2; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; SKUTCH AF, 1967, IBIS, V109, P579, DOI 10.1111/j.1474-919X.1967.tb00027.x; SLAGSVOLD T, 1984, J ANIM ECOL, V53, P945, DOI 10.2307/4669; SMITH SM, 1967, CONDOR, V69, P344, DOI 10.2307/1366198; Steiger SS, 2009, PHYSIOL BIOCHEM ZOOL, V82, P580, DOI 10.1086/605336; Streby HM, 2013, FOREST ECOL MANAG, V287, P9, DOI 10.1016/j.foreco.2012.08.046; Styrsky JN, 2005, ECOLOGY, V86, P3238, DOI 10.1890/04-1613; SULLIVAN KA, 1989, J ANIM ECOL, V58, P275, DOI 10.2307/5000; Verhulst S, 1997, ARDEA, V85, P111; WEATHERS WW, 1989, ECOL MONOGR, V59, P223, DOI 10.2307/1942600; Welcker J, 2010, J ANIM ECOL, V79, P205, DOI 10.1111/j.1365-2656.2009.01626.x; Welcker J, 2009, FUNCT ECOL, V23, P1081, DOI 10.1111/j.1365-2435.2009.01585.x; Wells KMS, 2007, CONDOR, V109, P781, DOI 10.1650/0010-5422(2007)109[781:SOPGBI]2.0.CO;2; Wheelwright NT, 2003, ANIM BEHAV, V65, P435, DOI 10.1006/anbe.2003.2086; White JD, 2008, WILSON J ORNITHOL, V120, P62, DOI 10.1676/06-142.1; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams Joseph B., 1996, P375; WITH KA, 1990, CAN J ZOOL, V68, P733, DOI 10.1139/z90-106; WOLF L, 1988, ANIM BEHAV, V36, P1601, DOI 10.1016/S0003-3472(88)80102-7; Wright J, 1998, J ANIM ECOL, V67, P620; Zanette L, 2006, ECOLOGY, V87, P2459, DOI 10.1890/0012-9658(2006)87[2459:FAPAEP]2.0.CO;2 79 24 24 0 38 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. MAR 1 2014 183 3 313 324 10.1086/674966 12 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology AB2BY WOS:000331599200004 24561596 2018-11-12 J Davis, K; Marshall, DJ Davis, Kurt; Marshall, Dustin J. Offspring size in a resident species affects community assembly JOURNAL OF ANIMAL ECOLOGY English Article maternal effect; egg size; phenotypic plasticity; seed size; life-history theory AFFECT POPULATION-DYNAMICS; EGG SIZE; MATERNAL INVESTMENT; SEED SIZE; INTRASPECIFIC COMPETITION; EVOLUTIONARY ECOLOGY; MARINE-INVERTEBRATES; LIFE-HISTORIES; LARVAL SIZE; PHENOTYPE Offspring size is a trait of fundamental importance that affects the ecology and evolution of a range of organisms. Despite the pervasive impact of offspring size for those offspring, the influence of offspring size on other species in the broader community remains unexplored. Such community-wide effects of offspring size are likely, but they have not been anticipated by theory or explored empirically. For a marine invertebrate community, we manipulated the size and density of offspring of a resident species (Watersipora subtorquata) in the field and examined subsequent community assembly around that resident species. Communities that assembled around larger offspring were denser and less diverse than communities that assembled around smaller offspring. Differences in niche usage by colonies from smaller and larger offspring may be driving these community-level effects. Our results suggest that offspring size is an important but unexplored source of ecological variation and that life-history theory must accommodate the effects of offspring size on community assembly. Life-history theory often assumes that environmental variation drives intraspecific variation in offspring size, and our results show that the converse can also occur. [Davis, Kurt; Marshall, Dustin J.] Univ Queensland, Sch Biol Sci, Brisbane, Qld 4072, Australia; [Marshall, Dustin J.] Monash Univ, Sch Biol Sci, Melbourne, Vic 3800, Australia Marshall, DJ (reprint author), Univ Queensland, Sch Biol Sci, Brisbane, Qld 4072, Australia. dustin.marshall@monash.edu Marshall, Dustin/C-3450-2016 ARC Thanks to Tracey Price and the MEEG members for help with the data collection in this study. DJM was supported by grants from the ARC. We thank Martin Thiel and anonymous reviewers for providing very helpful comments on earlier versions of this manuscript. The authors declare no conflict of interest. Allen RM, 2008, AM NAT, V171, P225, DOI 10.1086/524952; Bashey F, 2008, OIKOS, V117, P104, DOI 10.1111/j.2007.0030-1299.16094.x; Bassar RD, 2010, P NATL ACAD SCI USA, V107, P3616, DOI 10.1073/pnas.0908023107; Benton TG, 2008, J ANIM ECOL, V77, P1038, DOI 10.1111/j.1365-2656.2008.01434.x; Benton TG, 2005, P ROY SOC B-BIOL SCI, V272, P1351, DOI 10.1098/rspb.2005.3081; Burgess SC, 2011, MAR ECOL PROG SER, V440, P151, DOI 10.3354/meps09374; Burgess SC, 2011, J ANIM ECOL, V80, P681, DOI 10.1111/j.1365-2656.2010.01802.x; BUSS LW, 1990, TRENDS ECOL EVOL, V5, P352, DOI 10.1016/0169-5347(90)90093-S; CHARNOV EL, 1995, NATURE, V376, P418, DOI 10.1038/376418a0; Crutsinger GM, 2010, ECOLOGY, V91, P1237, DOI 10.1890/09-0613.1; Fox CW, 2000, ECOLOGY, V81, P3029, DOI 10.1890/0012-9658(2000)081[3029:NSOSBE]2.0.CO;2; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Gomez JM, 2004, EVOLUTION, V58, P71, DOI 10.1111/j.0014-3820.2004.tb01574.x; Gosselin LA, 2000, MAR ECOL PROG SER, V192, P163, DOI 10.3354/meps192163; Johnson MTJ, 2009, PHILOS T R SOC B, V364, P1593, DOI 10.1098/rstb.2008.0334; Johnston TA, 2002, ECOLOGY, V83, P1777, DOI 10.1890/0012-9658(2002)083[1777:MAEGIT]2.0.CO;2; Jorgensen C, 2011, AM NAT, V177, pE119, DOI 10.1086/659622; KAPLAN RH, 1992, ECOLOGY, V73, P280, DOI 10.2307/1938739; KEOUGH MJ, 1984, ECOLOGY, V65, P423, DOI 10.2307/1941405; Krist M, 2011, BIOL REV, V86, P692, DOI 10.1111/j.1469-185X.2010.00166.x; Leblanc CAL, 2011, ETHOLOGY, V117, P664, DOI 10.1111/j.1439-0310.2011.01920.x; Marshall DJ, 2004, MAR ECOL PROG SER, V279, P73, DOI 10.3354/meps279073; Marshall DJ, 2003, MAR ECOL PROG SER, V255, P145, DOI 10.3354/meps255145; Marshall DJ, 2008, ADV MAR BIOL, V53, P1, DOI 10.1016/S0065-2881(07)53001-4; Marshall DJ, 2008, AM NAT, V171, P214, DOI 10.1086/524954; Marshall DJ, 2007, OIKOS, V116, P1957, DOI 10.1111/j.2007.0030-1299.16203.x; Marshall DJ, 2013, EVOLUTION, V67, P328, DOI 10.1111/j.1558-5646.2012.01749.x; Marshall DJ, 2010, ECOLOGY, V91, P2862, DOI 10.1890/09-0156.1; MARSHALL PA, 1994, J EXP MAR BIOL ECOL, V177, P121, DOI 10.1016/0022-0981(94)90147-3; Martin RA, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009117; McGhee KE, 2012, FUNCT ECOL, V26, P932, DOI 10.1111/j.1365-2435.2012.02008.x; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; Moles AT, 2005, SCIENCE, V307, P576, DOI 10.1126/science.1104863; MOUSSEAU TA, 1991, ANNU REV ENTOMOL, V36, P511, DOI 10.1146/annurev.en.36.010191.002455; OKAMURA B, 1984, J EXP MAR BIOL ECOL, V83, P179, DOI 10.1016/0022-0981(84)90044-3; PALMER AR, 1990, ECOLOGY, V71, P759, DOI 10.2307/1940328; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; Pfennig DW, 2009, EVOLUTION, V63, P898, DOI 10.1111/j.1558-5646.2008.00544.x; Post DM, 2008, ECOLOGY, V89, P2019, DOI 10.1890/07-1216.1; Quinn GP, 2002, EXPT DESIGN DATA ANA; RIVEST BR, 1983, J EXP MAR BIOL ECOL, V69, P217, DOI 10.1016/0022-0981(83)90071-0; Sakai S, 2001, AM NAT, V157, P348, DOI 10.1086/319194; Segers FHID, 2011, FUNCT ECOL, V25, P166, DOI 10.1111/j.1365-2435.2010.01790.x; Sellheim K, 2010, MAR ECOL PROG SER, V398, P69, DOI 10.3354/meps08341; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; STANTON ML, 1984, ECOLOGY, V65, P1105, DOI 10.2307/1938318; SUTHERLAND JP, 1974, AM NAT, V108, P859, DOI 10.1086/282961; Thorson G., 1936, Meddelelser om Gronland, V100, P1; Tilman D, 2004, P NATL ACAD SCI USA, V101, P10854, DOI 10.1073/pnas.0403458101; Wade MJ, 1998, MATERNAL EFFECTS AS ADAPTATIONS, P5; Whitham TG, 2003, ECOLOGY, V84, P559, DOI 10.1890/0012-9658(2003)084[0559:CAEGAC]2.0.CO;2; Wolf JB, 2001, J EVOLUTION BIOL, V14, P347, DOI 10.1046/j.1420-9101.2001.00277.x 52 6 6 0 25 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. MAR 2014 83 2 322 331 10.1111/1365-2656.12136 10 Ecology; Zoology Environmental Sciences & Ecology; Zoology AB0GF WOS:000331469200002 26046291 Bronze 2018-11-12 J Hill, SE; Delpriore, DJ; Rodeheffer, CD; Butterfield, ME Hill, Sarah E.; Delpriore, Danielle J.; Rodeheffer, Christopher D.; Butterfield, Max E. The effect of ecological harshness on perceptions of the ideal female body size: an experimental life history approach EVOLUTION AND HUMAN BEHAVIOR English Article Life history theory; Mortality; Socioeconomic differences; Body fat; Pubertal timing; Ideal body size REPRODUCTIVE STRATEGY; SOCIOECONOMIC-STATUS; RESOURCE SCARCITY; ENVIRONMENTS; CHILDHOOD; RESPONSES; MENARCHE; BEHAVIOR; FATNESS; OBESITY Why do researchers regularly observe a relationship between ecological conditions and the heaviness of female body weight ideals? The current research uses insights from life history theory and female reproductive physiology to examine whether variability in female body ideals might emerge from the different life history strategies typically adopted by individuals living in harsh versus benign ecologies. Across three experiments, we demonstrate that women who were sensitized to faster life history strategies during childhood - as indexed by earlier menarche or lower childhood SES - respond to cues of ecological harshness by shifting away from the thin body weight typically favored by Western women toward a heavier female body ideal. Additionally, although men's perceptions of the ideal male body size did not shift in response to these cues, their perceptions of the ideal female body size did, with developmentally sensitized men also preferring a heavier female body size in the context of harsh ecologies. (C) 2014 Elsevier Inc. All rights reserved. [Hill, Sarah E.; Delpriore, Danielle J.; Rodeheffer, Christopher D.] Texas Christian Univ, Ft Worth, TX 76129 USA; [Butterfield, Max E.] Point Loma Univ, San Diego, CA USA Hill, SE (reprint author), Texas Christian Univ, Dept Psychol, Ft Worth, TX 76129 USA. s.e.hill@tcu.edu Anthony M. Marchionne Foundation This research was conducted with grant funding from the Anthony M. Marchionne Foundation. Aiken L.S., 1991, MULTIPLE REGRESSION; ANDERSON JL, 1992, ETHOL SOCIOBIOL, V13, P197, DOI 10.1016/0162-3095(92)90033-Z; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BROWN PJ, 1987, ANN NY ACAD SCI, V499, P29, DOI 10.1111/j.1749-6632.1987.tb36195.x; Calogero R. M., 2007, BODY BEAUTIFUL EVOLU, P259; Charnov Eric L., 1993, P1; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; ELLISON PT, 2001, FERTILE GROUND NATUR; Ember C. R., 2005, EVOL HUM BEHAV, V28, P48; FRISCH RE, 1985, PERSPECT BIOL MED, V28, P611; FRISCH RE, 1976, HUM BIOL, V48, P353; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Hill SE, 2013, J EXP SOC PSYCHOL, V49, P888, DOI 10.1016/j.jesp.2013.03.016; Hill SE, 2012, J PERS SOC PSYCHOL, V103, P275, DOI 10.1037/a0028657; Kenrick DT, 2010, PERSPECT PSYCHOL SCI, V5, P292, DOI 10.1177/1745691610369469; Kuzawa CW, 2010, P NATL ACAD SCI USA, V107, P16800, DOI 10.1073/pnas.1006008107; Kuzawa CW, 2005, AM J HUM BIOL, V17, P5, DOI 10.1002/ajhb.20091; Kuzawa CW, 2008, EVOLUTIONARY MED HLT, P325; Marlowe FW, 2001, PERS INDIV DIFFER, V30, P481, DOI 10.1016/S0191-8869(00)00039-8; Miller SL, 2010, PSYCHOL SCI, V21, P276, DOI 10.1177/0956797609357733; NASSER M, 1997, CULTURE WEIGHT CONSC; Navarrete CD, 2009, PSYCHOL SCI, V20, P661, DOI 10.1111/j.1467-9280.2009.02352.x; Nelson LD, 2005, PSYCHOL SCI, V16, P167, DOI 10.1111/j.0956-7976.2005.00798.x; Roff Derek A., 1992; ROSENTHAL R, 1985, CONTRAST ANAL; Salmon C, 2008, HUM NATURE-INT BIOS, V19, P103, DOI 10.1007/s12110-008-9030-8; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; SOBAL J, 1989, PSYCHOL BULL, V105, P260, DOI 10.1037//0033-2909.105.2.260; Stearns S. C., 1992, EVOLUTION LIFE HIST; SURBEY MK, 1987, ETHOL SOCIOBIOL, V8, pS47; Swami V, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0042593; Swami V, 2010, PERS SOC PSYCHOL B, V36, P309, DOI 10.1177/0146167209359702; THOMPSON MA, 1995, J PERS ASSESS, V64, P258, DOI 10.1207/s15327752jpa6402_6; Tovee MJ, 2000, P ROY SOC B-BIOL SCI, V267, P1987, DOI 10.1098/rspb.2000.1240; Trevathan W., 2010, ANCIENT BODIES MODER; University of North Carolina at Chapel Hill, 2008, SCIENCEDAILY; Voracek M, 2002, BRIT MED J, V325, P1447, DOI 10.1136/bmj.325.7378.1447; WASSER SK, 1983, Q REV BIOL, V58, P513, DOI 10.1086/413545; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; World Health Organisation, 2013, OB OV 44 7 7 1 22 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 1879-0607 EVOL HUM BEHAV Evol. Hum. Behav. MAR 2014 35 2 148 154 10.1016/j.evolhumbehav.2013.12.005 7 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences AB5UN WOS:000331854300011 2018-11-12 J Furness, AI; Reznick, DN Furness, Andrew I.; Reznick, David N. The comparative ecology of a killifish (Rivulus hartii) across aquatic communities differing in predation intensity EVOLUTIONARY ECOLOGY RESEARCH English Article density; growth rate; guppy; indirect effects; killifish; life history; mark-recapture; mortality; Poecilia reticulata; Rivulus hartii LIFE-HISTORY EVOLUTION; GUPPIES POECILIA-RETICULATA; FISH BRACHYRHAPHIS-RHABDOPHORA; SNAKE THAMNOPHIS-ELEGANS; CAPTURE-RECAPTURE MODELS; STREAM FISH; RESOURCE AVAILABILITY; NATURAL-SELECTION; MARKED ANIMALS; GENETIC-BASIS Background: Life-history theory predicts that populations experiencing different patterns of age-or size-specific mortality will evolve divergent life histories. Higher mortality can also cause indirect effects by reducing population density and increasing resources for survivors. How life histories evolve can ultimately be shaped by the interactions between the direct impact of predators on mortality, their indirect effects on resource availability, and the age specificity of these combined effects. Prior research on the killifish, Rivulus hartii, suggests differences among aquatic communities in both predation risk and resource availability but has failed to characterize the age specificity of these effects. Study organism and site: We studied Rivulus hartii in Ramdeen stream, a second-order tributary of the Arima River, on the south slope of the Northern Range Mountains in Trinidad. We used four sites near each other: in the two Rivulus-only sites, killifish were found alone; in the Rivulus/guppy site, guppies (a potential predator of juvenile Rivulus) also occurred; and in the high-predation site, Rivulus occurred with predators. Hypotheses: (1) If guppies shape the evolution of Rivulus life histories by increasing juvenile mortality rates and indirectly increasing food availability to the survivors, then juvenile mortality and growth rates should be higher when guppies are present than when they are absent. (2) If larger predators shape Rivulus life histories by selectively preying on adult Rivulus, then the added mortality associated with predators should be greater in the larger size classes. Methods: We performed mark-recapture studies on juvenile and adult Rivulus in the field (>12 mm total length), which allowed us to estimate size-specific mortality, growth rate, and density. Results: Rivulus experienced the highest mortality in the high predation site, but predation was not selectively focused on adults. Furthermore, the higher mortality was coupled with reduced population density and increased adult growth rates. In Rivulus/guppy and Rivulus-only sites, all size classes had the same survival rate. Laboratory study confirmed that adult guppies can prey upon hatchling Rivulus (<7 mm) and are restricted to preying on this size class. Lastly, juvenile Rivulus from Rivulus/guppy localities had higher growth rates than those from Rivulus-only localities, as predicted, but such an effect disappeared in the adult stage. [Furness, Andrew I.; Reznick, David N.] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA Furness, AI (reprint author), Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA. andrew.furness@email.ucr.edu US National Science Foundation FIBR grant [EF 0623632] We thank the Ramdeen family for permission to use their land and Doug Fraser, Jim Gilliam, Andres Lopez-Sepulcre, and Matt Walsh for helpful advice and suggestions. Ron Bassar and Joe Travis provided helpful statistical guidance and advice regarding the implementation of mark-recapture models. Lila Sultan assisted with the Rivulus and guppy laboratory predation trials. Lastly, we thank Stephanie George, Jim Nunnally, and Emily Josephs for help with processing Rivulus during the course of the mark-recapture. This research was funded by a US National Science Foundation FIBR grant (EF 0623632). Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; ABRAMS PA, 1993, EVOLUTION, V47, P877, DOI 10.1111/j.1558-5646.1993.tb01241.x; Bassar RD, 2010, ANN NY ACAD SCI, V1206, P17, DOI 10.1111/j.1749-6632.2010.05706.x; Brommer JE, 2000, BIOL REV, V75, P377, DOI 10.1017/S000632310000551X; Bronikowski AM, 1999, ECOLOGY, V80, P2314, DOI 10.1890/0012-9658(1999)080[2314:TEEOLH]2.0.CO;2; Burnham K. P., 2002, MODEL SELECTION MULT; Burnham KP, 2004, SOCIOL METHOD RES, V33, P261, DOI 10.1177/0049124104268644; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Dudycha JL, 1999, EVOLUTION, V53, P1744, DOI 10.1111/j.1558-5646.1999.tb04559.x; FRASER DF, 1995, ECOLOGY, V76, P1461, DOI 10.2307/1938148; Fraser DF, 2001, AM NAT, V158, P124, DOI 10.1086/321307; FRASER DF, 1992, ECOLOGY, V73, P959, DOI 10.2307/1940172; Fraser DF, 1999, ECOLOGY, V80, P597, DOI 10.1890/0012-9658(1999)080[0597:HQIAHR]2.0.CO;2; FRASER DF, 1987, BEHAV ECOL SOCIOBIOL, V21, P203, DOI 10.1007/BF00292500; Fraser DF, 2006, ENVIRON BIOL FISH, V76, P25, DOI 10.1007/s10641-006-9004-9; Fraser DF, 2013, ECOLOGY, V94, P640, DOI 10.1890/12-0803.1; Furness A. I., 2011, EVOLUTION, V66, P1240; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gardmark A, 2003, EVOL ECOL RES, V5, P239; GILLIAM JF, 1993, ECOLOGY, V74, P1856, DOI 10.2307/1939943; Gilliam JF, 2001, ECOLOGY, V82, P258, DOI 10.2307/2680101; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; Johnson JB, 2001, EVOLUTION, V55, P1486; Johnson JB, 2001, OECOLOGIA, V126, P142, DOI 10.1007/s004420000504; Johnson JB, 2004, TRENDS ECOL EVOL, V19, P101, DOI 10.1016/j.tree.2003.10.013; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; Lack D., 1954, NATURAL REGULATION A; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; McNamara JM, 2004, THEOR POPUL BIOL, V65, P361, DOI 10.1016/j.tpb.2003.10.006; Morrison KR, 2014, J EVOLUTION BIOL, V27, P1192, DOI 10.1111/jeb.12393; NICHOLS JD, 1992, BIOSCIENCE, V42, P94, DOI 10.2307/1311650; Nichols JD, 1995, J APPL STAT, V22, P835, DOI 10.1080/02664769524658; Owens D. C., 2010, THESIS U NEBRASKA LI; Pace ML, 1999, TRENDS ECOL EVOL, V14, P483, DOI 10.1016/S0169-5347(99)01723-1; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.2307/3071970; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; Reznick David, 1996, P243; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Roff D. A., 2002, LIFE HIST EVOLUTION; SCHWARZ CJ, 1993, BIOMETRICS, V49, P177, DOI 10.2307/2532612; Sparkman AM, 2007, P ROY SOC B-BIOL SCI, V274, P943, DOI 10.1098/rspb.2006.0072; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Stearns SC, 2000, P NATL ACAD SCI USA, V97, P3309, DOI 10.1073/pnas.060289597; Tatar M, 1997, OECOLOGIA, V111, P357, DOI 10.1007/s004420050246; TAYLOR HM, 1974, THEOR POPUL BIOL, V5, P104, DOI 10.1016/0040-5809(74)90053-7; Walsh MR, 2008, P NATL ACAD SCI USA, V105, P594, DOI 10.1073/pnas.0710051105; Walsh MR, 2013, TRENDS ECOL EVOL, V28, P23, DOI 10.1016/j.tree.2012.08.006; Walsh MR, 2011, EVOLUTION, V65, P1021, DOI 10.1111/j.1558-5646.2010.01188.x; Walsh MR, 2011, FUNCT ECOL, V25, P227, DOI 10.1111/j.1365-2435.2010.01786.x; Walsh MR, 2010, EVOLUTION, V64, P1583, DOI 10.1111/j.1558-5646.2009.00922.x; Walsh MR, 2009, EVOLUTION, V63, P3201, DOI 10.1111/j.1558-5646.2009.00785.x; White GC, 1999, BIRD STUDY, V46, P120; Williams PD, 2003, EVOLUTION, V57, P1478; WOOTTON JT, 1994, ANNU REV ECOL SYST, V25, P443, DOI 10.1146/annurev.es.25.110194.002303 59 4 4 1 26 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 1937-3791 EVOL ECOL RES Evol. Ecol. Res. MAR 2014 16 3 249 265 17 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity CC2XX WOS:000350209600005 2018-11-12 J Gillette, MT; Gudmunson, CG Gillette, Meghan T.; Gudmunson, Clinton G. Utilizing Evolutionary Life History Theories in Family Studies JOURNAL OF FAMILY THEORY & REVIEW English Article differential susceptibility; life history; parent-offspring conflict; paternal investment; psychosocial acceleration; sexual development PARENT-OFFSPRING CONFLICT; REPRODUCTIVE STRATEGY; FATHER ABSENCE; PUBERTAL MATURATION; CHILD ADJUSTMENT; GIRLS; MENARCHE; AGE; STRESS; MODELS To provide a more holistic view of the family, scholars seek theoretical principles that can bridge and enhance existing paradigms. In this article, we introduce evolutionary life history theory and describe 4 midlevel life history theories (psychosocial acceleration, paternal investment, differential susceptibility, and parent-offspring conflict). These theories will enable family scholars to expand their understanding of contemporary human families from an evolutionary perspective by creating novel research questions that will lead to innovative, interdisciplinary research. [Gillette, Meghan T.; Gudmunson, Clinton G.] Iowa State Univ, Dept Human Dev & Family Studies, Ames, IA 50011 USA Gillette, MT (reprint author), Iowa State Univ, Dept Human Dev & Family Studies, 2330 Palmer, Ames, IA 50011 USA. meghang@iastate.edu BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BELSKY J, 2005, ORIGINS SOCIAL MIND, P139; Belsky J, 2007, CURR DIR PSYCHOL SCI, V16, P300, DOI 10.1111/j.1467-8721.2007.00525.x; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Belsky J, 2010, PSYCHOL SCI, V21, P1195, DOI 10.1177/0956797610379867; Booth A, 2000, J MARRIAGE FAM, V62, P1018, DOI 10.1111/j.1741-3737.2000.01018.x; Bralic I, 2012, J PEDIATR ENDOCR MET, V25, P57, DOI 10.1515/jpem-2011-0277; Buss D. M., 2012, EVOLUTIONARY PSYCHOL; Calkins SD, 2011, J MARRIAGE FAM, V73, P817, DOI 10.1111/j.1741-3737.2011.00847.x; Cheng G, 2012, NUTR REV, V70, P133, DOI 10.1111/j.1753-4887.2011.00461.x; Cherlin AJ, 2010, J MARRIAGE FAM, V72, P403, DOI 10.1111/j.1741-3737.2010.00710.x; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Claeys G, 2000, J HIST IDEAS, V61, P223; Degler CN, 1991, SEARCH HUMAN NATURE; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2000, CHILD DEV, V71, P485, DOI 10.1111/1467-8624.00159; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Flinn MV, 2006, DEV REV, V26, P138, DOI 10.1016/j.dr.2006.02.003; Fuller RC, 2006, J HIST BEHAV SCI, V42, P221, DOI 10.1002/jhbs.20170; Geary DC, 2000, PSYCHOL BULL, V126, P55, DOI 10.1037/0033-2909.126.1.55; Geary DC, 2002, ADV CHILD DEV BEHAV, V30, P41, DOI 10.1016/S0065-2407(02)80039-8; Gluckman PD, 2006, TRENDS ENDOCRIN MET, V17, P7, DOI 10.1016/j.tem.2005.11.006; Hamilton B. E., 2011, NATL VITAL STAT REPO; Haviland William A., 2008, EVOLUTION PREHISTORY; Hawkins M, 1997, SOCIAL DARWINISM EUR; Heath KM, 1998, CURR ANTHROPOL, V39, P369, DOI 10.1086/204748; Hoier S, 2003, HUM NATURE-INT BIOS, V14, P209, DOI 10.1007/s12110-003-1004-2; Horwitz BN, 2011, J MARRIAGE FAM, V73, P804, DOI 10.1111/j.1741-3737.2011.00846.x; Knight K. E., 2011, J FAMILY THEORY REV, V3, P198, DOI DOI 10.1111/J.1756-2589.2011.00095.X; Kuhl AJ, 2005, J STEROID BIOCHEM, V96, P67, DOI 10.1016/j.jsbmb.2005.01.029; Lancaster J. B., 2008, SCH AGE PREGNANCY PA, P17; Maestripieri D, 2004, DEVELOPMENTAL SCI, V7, P560, DOI 10.1111/j.1467-7687.2004.00380.x; Matchock RL, 2006, AM J HUM BIOL, V18, P481, DOI 10.1002/ajhb.20508; Ridley M., 2004, EVOLUTION; Ritz B, 1999, ENVIRON HEALTH PERSP, V107, P17, DOI 10.2307/3434285; Roff Derek A., 1992; Schlomer GL, 2011, PSYCHOL REV, V118, P496, DOI 10.1037/a0024043; Seeman TE, 1996, PSYCHOSOM MED, V58, P459, DOI 10.1097/00006842-199609000-00008; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Steingraber S., 2007, FALLING PUBERTY US G; Strassmann BI, 2003, AM J HUM BIOL, V15, P361, DOI 10.1002/ajhb.10154; Susman E. J., 2009, HDB ADOLESCENT PSYCH, V1, P116; TRIVERS RL, 1974, AM ZOOL, V14, P249; U.S. Bureau of the Census, 2004, EST MED AG 1 MARR SE; U.S. Bureau of the Census, 2011, CHILD CAR ARR PRESCH; Winking J, 2011, EVOL HUM BEHAV, V32, P79, DOI 10.1016/j.evolhumbehav.2010.08.002 49 0 0 1 2 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1756-2570 1756-2589 J FAM THEOR REV J. Fam. Theory. Rev. MAR 2014 6 1 SI 5 17 10.1111/jftr.12025 13 Family Studies Family Studies CX5BP WOS:000365716000002 2018-11-12 J Yong, L; Grober, MS Yong, Lengxob; Grober, Matthew S. Sex differences in the energetic content of reproductive tissues in the Blackeye Goby, Rhinogobiops nicholsii ENVIRONMENTAL BIOLOGY OF FISHES English Article Blackeye Goby; Sexual dimorphism; Reproduction; Energetics; Mating systems; Calorimetry SPERM COMPETITION; PARENTAL CARE; TESTIS SIZE; MATE CHOICE; FISH; EVOLUTION; COST; ORGANIZATION; ALLOCATION; GOBIIDAE Differential energetic investment in reproduction between the sexes has been a driving a force of life history theory and sexual selection. However, reproductive costs between the sexes have often been based on morphology, such as gonad mass and gonadosomatic indices (GSI), and few have directly measured the energy content of gonadal tissues in relation to GSI. Using the blackeye goby, Rhinogobiops nicholsii, we measured the energetic content of whole gonadal tissues, specifically testes, ovaries and associated reproductive tissues using oxygen bomb calorimetry. The energy content per gram unit of gonadal tissues was generally predictive of GSI, indicating that GSI is a reasonable measure of energetic costs. Interestingly, although females had greater gonadal mass, GSI and energy content per gram than males, the sex difference in energy content per mass unit was only 13 %, suggesting that gross indices such as gonadal mass or GSI may overestimate energetic costs where instead the cost difference in a unit gram of gonadal tissues between the sexes is smaller than often predicted. This study also demonstrates that although the cost of ovaries is greater than testes, males' investment in reproductive tissue can be considerable, which is consistent with the often inflated reproductive success for males in haremic mating systems. [Yong, Lengxob] E Carolina Univ, Dept Biol, Greenville, NC 27858 USA; [Grober, Matthew S.] Georgia State Univ, Dept Biol, Atlanta, GA 30303 USA Yong, L (reprint author), E Carolina Univ, Dept Biol, Howell Sci Complex N409, Greenville, NC 27858 USA. yongl09@students.ecu.edu Center for Behavioral Neuroscience; STC Program of the NSF [IBN-9876754]; National Science Foundation [IBO-0548567] We thank Mark Hay for allowing us to use his calorimeter, Tammy Devries for teaching us how to use it, and Tim Mahanes for assistance in collecting the fish. We also thank Jeffrey McKinnon for helpful comments on the manuscript and the staff at USC Wrigley Institute for Environmental Studies for logistical assistance. All procedures were in compliance with Georgia State University IACUC regulations (approved protocol #A02011). This work was supported by the Center for Behavioral Neuroscience, an STC Program of the NSF under Agreement No. IBN-9876754 (to MSG), and a National Science Foundation grant IBO-0548567 (to MSG). Amundsen T, 2003, J FISH BIOL, V63, P17, DOI 10.1111/j.1095-8649.2003.00219.x; Amundsen T, 2001, P NATL ACAD SCI USA, V98, P13155, DOI 10.1073/pnas.211439298; Andersson M., 1994, SEXUAL SELECTION; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Chowdhury I, 2007, FISH PHYSIOL BIOCHEM, V33, P383, DOI 10.1007/s10695-007-9162-5; COLE KS, 1983, COPEIA, P809; CRAIG JF, 1978, FRESHWATER BIOL, V8, P585, DOI 10.1111/j.1365-2427.1978.tb01480.x; Dewsbury DA, 2005, INTEGR COMP BIOL, V45, P831, DOI 10.1093/icb/45.5.831; DEWSBURY DA, 1982, AM NAT, V119, P601, DOI 10.1086/283938; Drilling CC, 2005, ENVIRON BIOL FISH, V72, P361, DOI 10.1007/s10641-004-2590-5; Encina L, 1997, J FISH BIOL, V50, P511; FISHELSON L, 1991, JPN J ICHTHYOL, V38, P17; Hayward A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016557; Hosken DJ, 2001, ECOL LETT, V4, P10, DOI 10.1046/j.1461-0248.2001.00198.x; Jakob EM, 1996, OIKOS, V77, P61, DOI 10.2307/3545585; Jonsson N, 1997, FUNCT ECOL, V11, P310, DOI 10.1046/j.1365-2435.1997.00083.x; JONSSON N, 1991, J FISH BIOL, V39, P739, DOI 10.1111/j.1095-8649.1991.tb04403.x; Kraak SBM, 1998, ANIM BEHAV, V56, P859, DOI 10.1006/anbe.1998.0822; Kroon FJ, 2000, ENVIRON BIOL FISH, V57, P401, DOI 10.1023/A:1007600728267; Miller P.J., 1984, P119; NAKATSURU K, 1982, SCIENCE, V216, P753, DOI 10.1126/science.216.4547.753; Olsson M, 1997, P ROY SOC B-BIOL SCI, V264, P455, DOI 10.1098/rspb.1997.0065; PARKER GA, 1972, J THEOR BIOL, V36, P529, DOI 10.1016/0022-5193(72)90007-0; Steinhart GB, 2005, BEHAV ECOL, V16, P427, DOI 10.1093/beheco/ari006; Stockley P, 1997, AM NAT, V149, P933, DOI 10.1086/286031; Svensson PA, 2009, J FISH BIOL, V75, P2777, DOI 10.1111/j.1095-8649.2009.02478.x; Taborsky M, 1998, TRENDS ECOL EVOL, V13, P222, DOI 10.1016/S0169-5347(97)01318-9; Thomsen R, 2007, PRIMATES, V47, P272; Ursin E, 1979, FISH PHENOLOGY ANABO, P63; Warner RR, 1997, BIOSCIENCE, V47, P561, DOI 10.2307/1313162; WATT WB, 1986, AM NAT, V127, P629, DOI 10.1086/284510; Wedell N, 2002, TRENDS ECOL EVOL, V17, P313, DOI 10.1016/S0169-5347(02)02533-8; WILEY J W, 1973, Transactions of the San Diego Society of Natural History, V17, P187; Williams GC, 1966, ADAPTATION NATURAL S; WOOTTON RJ, 1973, J FISH BIOL, V5, P683, DOI 10.1111/j.1095-8649.1973.tb04504.x 35 3 4 2 37 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0378-1909 1573-5133 ENVIRON BIOL FISH Environ. Biol. Fishes MAR 2014 97 3 321 328 10.1007/s10641-013-0142-6 8 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 298UQ WOS:000330350400010 2018-11-12 J Dhole, S; Pfennig, KS Dhole, Sumit; Pfennig, Karin S. Age-Dependent Male Mating Investment in Drosophila pseudoobscura PLOS ONE English Article SEMINAL FLUID PROTEINS; CRYPTIC MALE CHOICE; SPERM COMPETITION; COPULATION DURATION; FERTILIZATION SUCCESS; REPRODUCTIVE STATUS; PLASTIC RESPONSES; SOLDIER FLY; MATE CHOICE; FRUIT-FLY Male mating investment can strongly influence fitness gained from a mating. Yet, male mating investment often changes with age. Life history theory predicts that mating investment should increase with age, and males should become less discriminatory about their mate as they age. Understanding age-dependent changes in male behavior and their effects on fitness is important for understanding how selection acts in age-structured populations. Although the independent effects of male or female age have been studied in many species, how these interact to influence male mating investment and fitness is less well understood. We mated Drosophila pseudoobscura males of five different age classes (4-, 8-, 11-, 15-, 19-day old) to either young (4-day) or old (11-day) females, and measured copulation duration and early post-mating fecundity. Along with their independent effects, we found a strong interaction between the effects of male and female ages on male mating investment and fitness from individual matings. Male mating investment increased with male age, but this increase was more prominent in matings with young females. Male D. pseudoobscura made smaller investments when mating with old females. The level of such discrimination based on female age, however, also changed with male age. Intermediate aged males were most discriminatory, while the youngest and the oldest males did not discriminate between females of different ages. We also found that larger male mating investments resulted in higher fitness payoffs. Our results show that male and female ages interact to form a complex pattern of age-specific male mating investment and fitness. [Dhole, Sumit; Pfennig, Karin S.] Univ N Carolina, Dept Biol, Chapel Hill, NC 27515 USA Dhole, S (reprint author), Univ N Carolina, Dept Biol, Chapel Hill, NC 27515 USA. sumit@live.unc.edu Sigma Xi; Office of The Director, National Institutes of Health [1 DP2 OD004436-01] This work was supported by a Sigma Xi grants-in-aid of research award to SD and a New Innovator Award from the Office of The Director, National Institutes of Health (1 DP2 OD004436-01) to KSP. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Amundsen T, 2000, TRENDS ECOL EVOL, V15, P149, DOI 10.1016/S0169-5347(99)01800-5; Andersson M., 1994, SEXUAL SELECTION; Avent TD, 2008, ANIM BEHAV, V75, P1413, DOI 10.1016/j.anbehav.2007.09.015; Avila FW, 2011, ANNU REV ENTOMOL, V56, P21, DOI 10.1146/annurev-ento-120709-144823; Barbosa F, 2012, BEHAV ECOL, V23, P815, DOI 10.1093/beheco/ars035; Barbosa F, 2011, BEHAV ECOL, V22, P1332, DOI 10.1093/beheco/arr137; Barron AB, 2000, J INSECT PHYSIOL, V46, P439, DOI 10.1016/S0022-1910(99)00129-8; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Birkhead T. R., 1998, SPERM COMPETITION SE; Bonduriansky R, 2001, BIOL REV, V76, P305, DOI 10.1017/S1464793101005693; Bretman A, 2011, TRENDS ECOL EVOL, V26, P467, DOI 10.1016/j.tree.2011.05.002; Bretman A, 2010, BEHAV ECOL, V21, P317, DOI 10.1093/beheco/arp189; Bretman A, 2009, P ROY SOC B-BIOL SCI, V276, P1705, DOI 10.1098/rspb.2008.1878; Burnham K. P., 2002, MODEL SELECTION MULT; Chapman T, 2004, PEPTIDES, V25, P1477, DOI 10.1016/j.peptides.2003.10.023; Chapman T, 2001, HEREDITY, V87, P511, DOI 10.1046/j.1365-2540.2001.00961.x; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Cornwallis CK, 2007, AM NAT, V170, P758, DOI 10.1086/521955; DICKINSON JL, 1986, BEHAV ECOL SOCIOBIOL, V18, P331, DOI 10.1007/BF00299664; Dobzhansky T, 1943, GENETICS, V28, P304; Engqvist L, 2003, J EVOLUTION BIOL, V16, P1196, DOI 10.1046/j.1420-9101.2003.00613.x; Engqvist L, 2002, BEHAV ECOL, V13, P632, DOI 10.1093/beheco/13.5.632; Friberg U, 2006, ANIM BEHAV, V72, P1259, DOI 10.1016/j.anbehav.2006.03.021; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Galvani A, 1998, BEHAV ECOL SOCIOBIOL, V44, P161, DOI 10.1007/s002650050528; Gilchrist AS, 2000, EVOLUTION, V54, P534; Goshima S, 1996, J EXP MAR BIOL ECOL, V196, P131, DOI 10.1016/0022-0981(95)00127-1; HALL JC, 1978, BEHAV GENET, V8, P125, DOI 10.1007/BF01066870; Ingleby FC, 2010, ANIM BEHAV, V80, P37, DOI 10.1016/j.anbehav.2010.03.022; Jones TM, 2004, P ROY SOC B-BIOL SCI, V271, P1311, DOI 10.1098/rspb.2004.2723; LEWIS SM, 1995, ANIM BEHAV, V50, P1157, DOI 10.1016/0003-3472(95)80031-X; Lupold S, 2011, BEHAV ECOL, V22, P184, DOI 10.1093/beheco/arq193; Martin OY, 2002, ANIM BEHAV, V63, P541, DOI 10.1006/anbe.2001.1929; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; Monaghan P, 2008, FUNCT ECOL, V22, P371, DOI 10.1111/j.1365-2435.2008.01418.x; Noor MAF, 1997, J INSECT BEHAV, V10, P305, DOI 10.1007/BF02765563; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; PARKER GA, 1970, BIOL REV, V45, P525, DOI 10.1111/j.1469-185X.1970.tb01176.x; Parker GA, 2010, BIOL REV, V85, P897, DOI 10.1111/j.1469-185X.2010.00140.x; Price TAR, 2008, EVOLUTION, V62, P1644, DOI 10.1111/j.1558-5646.2008.00386.x; Price TAR, 2012, J INSECT PHYSIOL, V58, P1669, DOI 10.1016/j.jinsphys.2012.10.008; R Development Core Team, 2012, R LANG ENV STAT COMP; Ram KR, 2007, INTEGR COMP BIOL, V47, P427, DOI 10.1093/icb/icm046; Reinhold K, 2002, J EVOLUTION BIOL, V15, P201, DOI 10.1046/j.1420-9101.2002.00390.x; Simmons LW., 2001, SPERM COMPETITION IT; Simmons LW, 1998, SEXUAL SELECTION SPE, P503; Sirot LK, 2011, P NATL ACAD SCI USA, V108, P9922, DOI 10.1073/pnas.1100905108; Sirot LK, 2009, BEHAV ECOL SOCIOBIOL, V63, P1505, DOI 10.1007/s00265-009-0806-6; Siva-Jothy MT, 2003, P ROY SOC B-BIOL SCI, V270, P649, DOI 10.1098/rspb.2002.2260; Snook RR, 2001, J INSECT PHYSIOL, V47, P957, DOI 10.1016/S0022-1910(01)00070-1; Snook RR, 1998, ANIM BEHAV, V56, P1497, DOI 10.1006/anbe.1998.0930; Stasinopoulos DM, 2012, R PACKAGE GEN ADDITI; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Thomas ML, 2007, AM NAT, V170, P190, DOI 10.1086/519404; Thornhill R., 1983, EVOLUTION INSECT MAT; Wedell N, 2002, TRENDS ECOL EVOL, V17, P313, DOI 10.1016/S0169-5347(02)02533-8; Wigby S, 2009, CURR BIOL, V19, P751, DOI 10.1016/j.cub.2009.03.036; Wolfner MF, 1997, INSECT BIOCHEM MOLEC, V27, P179, DOI 10.1016/S0965-1748(96)00084-7; Xu J, 2009, BEHAV ECOL SOCIOBIOL, V63, P801, DOI 10.1007/s00265-009-0713-x; Yasui Y, 1996, J INSECT BEHAV, V9, P517, DOI 10.1007/BF02214027 60 5 5 0 36 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One FEB 19 2014 9 2 e88700 10.1371/journal.pone.0088700 6 Multidisciplinary Sciences Science & Technology - Other Topics AB3TA WOS:000331711900040 24586373 DOAJ Gold, Green Published 2018-11-12 J Burkli, A; Postma, E Buerkli, Anja; Postma, Erik GENETIC CONSTRAINTS UNDERLYING HUMAN REPRODUCTIVE TIMING IN A PREMODERN SWISS VILLAGE EVOLUTION English Article Genetic correlation; humans; life-history evolution; menopause; natural selection; reproductive scheduling LIFE-HISTORY TRAITS; CONTEMPORARY HUMAN-POPULATION; NATURAL-SELECTION; QUANTITATIVE GENETICS; ANIMAL-MODEL; TRADE-OFF; RED DEER; AGE; SENESCENCE; EVOLUTION The trade-off between reproductive investment in early versus late life is central to life-history theory. Despite abundant empirical evidence supporting different versions of this trade-off, the specific trade-off between age at first reproduction (AFR) and age at last reproduction (ALR) has received little attention, especially in long-lived species with a pronounced reproductive senescence such as humans. Using genealogical data for a 19th-century Swiss village, we (i) quantify natural selection acting on reproductive timing, (ii) estimate the underlying additive genetic (co)variances, and (iii) use these to predict evolutionary responses. Selection gradients were computed using multiple linear regression, and the additive genetic variance-covariance matrix was estimated using a restricted maximum-likelihood animal model. We found strong selection for both an early AFR and a late ALR, which resulted from selection for an earlier and longer reproductive period (RP, i.e., ALR-AFR). Furthermore, postponing AFR shortened RP in both sexes, but twice as much in women. Finally, AFR and ALR were strongly and positively genetically correlated, which led to a considerable reduction in the predicted responses to selection, or even rendered them maladaptive. These results provide evidence for strong genetic constraints underlying reproductive timing in humans, which may have contributed to the evolution of menopause. [Buerkli, Anja; Postma, Erik] Univ Zurich, Inst Evolutionary Biol & Environm Studies, CH-8057 Zurich, Switzerland; [Buerkli, Anja] Swiss Fed Inst Aquat Sci & Technol, EAWAG, CH-8600 Dubendorf, Switzerland; [Buerkli, Anja] Swiss Fed Inst Technol, Inst Integrat Biol, Zurich, Switzerland Burkli, A (reprint author), Univ Zurich, Inst Evolutionary Biol & Environm Studies, Winterthurerstr 190, CH-8057 Zurich, Switzerland. anjabuerkli@hotmail.com Postma, Erik/B-7258-2008 Postma, Erik/0000-0003-0856-1294; Felmy, Anja/0000-0002-2913-6994 Agrawal AF, 2009, P ROY SOC B-BIOL SCI, V276, P1183, DOI 10.1098/rspb.2008.1671; Andersen AMN, 2000, BRIT MED J, V320, P1708, DOI 10.1136/bmj.320.7251.1708; Anderson KG, 2006, CURR ANTHROPOL, V47, P513, DOI 10.1086/504167; Blomquist GE, 2009, BEHAV ECOL SOCIOBIOL, V63, P1345, DOI 10.1007/s00265-009-0792-8; Byars SG, 2010, P NATL ACAD SCI USA, V107, P1787, DOI 10.1073/pnas.0906199106; Cant MA, 2008, P NATL ACAD SCI USA, V105, P5332, DOI 10.1073/pnas.0711911105; Charmantier A, 2005, MOL ECOL, V14, P2839, DOI 10.1111/j.1365-294X.2005.02619.x; Charmantier A, 2006, P NATL ACAD SCI USA, V103, P6587, DOI 10.1073/pnas.0511123103; CONNER J, 1992, HEREDITY, V69, P73, DOI 10.1038/hdy.1992.96; Coulson T, 2003, EVOLUTION, V57, P2879; Creighton JC, 2009, AM NAT, V174, P673, DOI 10.1086/605963; Danchin E, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0061254; Dribe M, 2004, POP STUD-J DEMOG, V58, P297, DOI 10.1080/0032472042000272357; Falconer DS, 1996, INTRO QUANTITATIVE G; Gibson MA, 2005, EVOL HUM BEHAV, V26, P469, DOI 10.1016/j.evolhumbehav.2005.03.004; Gilmour A. R., 2009, ASREML USER GUIDE RE; GOSDEN RG, 1985, BIOL MENOPAUSE CAUSE; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; Hadfield JD, 2010, J STAT SOFTW, V33, P1; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Helle S, 2005, P ROY SOC B-BIOL SCI, V272, P29, DOI 10.1098/rspb.2004.2944; Helle S, 2008, EVOL HUM BEHAV, V29, P189, DOI 10.1016/j.evolhumbehav.2007.11.009; Johnson KJ, 2009, EPIDEMIOLOGY, V20, P475, DOI 10.1097/EDE.0b013e3181a5a332; Kaar P, 1996, P ROY SOC B-BIOL SCI, V263, P1475, DOI 10.1098/rspb.1996.0215; Kachel AF, 2012, EVOL BIOL, V39, P638, DOI 10.1007/s11692-012-9169-4; KAWECKI TJ, 1993, OIKOS, V66, P309, DOI 10.2307/3544819; Kirk KM, 2001, EVOLUTION, V55, P423; Kosova G, 2010, P NATL ACAD SCI USA, V107, P1772, DOI 10.1073/pnas.0906196106; Kruuk LEB, 2004, PHILOS T ROY SOC B, V359, P873, DOI 10.1098/rstb.2003.1437; Kruuk LEB, 2000, P NATL ACAD SCI USA, V97, P698, DOI 10.1073/pnas.97.2.698; Lahdenpera M, 2004, NATURE, V428, P178, DOI 10.1038/nature02367; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Martin JGA, 2012, OIKOS, V121, P752, DOI 10.1111/j.1600-0706.2011.19962.x; MEDAWAR PB, 1952, UNSOLVED PROBLEM BIO; Melby MK, 2011, ANNU REV ANTHROPOL, V40, P53, DOI 10.1146/annurev-anthro-081309-145641; Milot E, 2011, P NATL ACAD SCI USA, V108, P17040, DOI 10.1073/pnas.1104210108; MINCHELLA DJ, 1981, AM NAT, V118, P876, DOI 10.1086/283879; MITCHELLOLDS T, 1987, EVOLUTION, V41, P1149, DOI 10.1111/j.1558-5646.1987.tb02457.x; Morrissey MB, 2012, AM NAT, V179, pE97, DOI 10.1086/664686; Nettle D, 2011, PHILOS T R SOC B, V366, P357, DOI 10.1098/rstb.2010.0073; Nussey DH, 2006, ECOL LETT, V9, P1342, DOI 10.1111/j.1461-0248.2006.00989.x; Pettay JE, 2005, P NATL ACAD SCI USA, V102, P2838, DOI 10.1073/pnas.0406709102; Pettay JE, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000606; Postma E, 2010, J EVOLUTION BIOL, V23, P1468, DOI 10.1111/j.1420-9101.2010.02013.x; Postma E, 2007, J ORNITHOL, V148, pS633, DOI 10.1007/s10336-007-0191-8; Postma E, 2011, EVOLUTION, V65, P2145, DOI 10.1111/j.1558-5646.2011.01314.x; R Development Core Team, 2012, R LANG ENV STAT COMP; Reale D, 2000, HEREDITY, V85, P593, DOI 10.1046/j.1365-2540.2000.00795.x; Reed TE, 2008, AM NAT, V171, pE89, DOI 10.1086/524957; Richner H, 1999, OIKOS, V86, P535, DOI 10.2307/3546657; Rousseau T, 2010, J GYNECOL OBST BIO R, V39, P284, DOI 10.1016/j.jgyn.2010.03.001; Rutkowska J, 2011, P ROY SOC B-BIOL SCI, V278, P2962, DOI 10.1098/rspb.2010.2654; Sartorius GA, 2010, HUM REPROD UPDATE, V16, P65, DOI 10.1093/humupd/dmp027; Schmid TE, 2007, HUM REPROD, V22, P180, DOI 10.1093/humrep/del338; SELF SG, 1987, J AM STAT ASSOC, V82, P605, DOI 10.2307/2289471; Skjaervo GR, 2011, EVOL HUM BEHAV, V32, P305, DOI 10.1016/j.evolhumbehav.2010.11.006; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stearns SC, 2010, NAT REV GENET, V11, P611, DOI 10.1038/nrg2831; Teplitsky C, 2009, EVOLUTION, V63, P716, DOI 10.1111/j.1558-5646.2008.00581.x; Tettamanti F, 2012, IBIS, V154, P338, DOI 10.1111/j.1474-919X.2012.01215.x; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Wilson AJ, 2010, J ANIM ECOL, V79, P13, DOI 10.1111/j.1365-2656.2009.01639.x; Zampieri F, 2009, Q REV BIOL, V84, P333, DOI 10.1086/648122 64 1 1 0 20 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution FEB 2014 68 2 526 537 10.1111/evo.12287 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AJ8FR WOS:000337938600017 24117466 2018-11-12 J Ellis, BJ; Del Giudice, M Ellis, Bruce J.; Del Giudice, Marco Beyond allostatic load: Rethinking the role of stress in regulating human development DEVELOPMENT AND PSYCHOPATHOLOGY English Article CUMULATIVE RISK EXPOSURE; LIFE-HISTORY STRATEGY; MATERNAL-CARE; REPRODUCTIVE STRATEGIES; INDIVIDUAL-DIFFERENCES; MALTREATED CHILDREN; SALIVARY CORTISOL; CHILDHOOD POVERTY; DIFFERENTIAL SUSCEPTIBILITY; EXPERIENTIAL-CANALIZATION How do exposures to stress affect biobehavioral development and, through it, psychiatric and biomedical disorder? In the health sciences, the allostatic load model provides a widely accepted answer to this question: stress responses, while essential for survival, have negative long-term effects that promote illness. Thus, the benefits of mounting repeated biological responses to threat are traded off against costs to mental and physical health. The adaptive calibration model, an evolutionary-developmental theory of stress-health relations, extends this logic by conceptualizing these trade-offs as decision nodes in allocation of resources. Each decision node influences the next in a chain of resource allocations that become instantiated in the regulatory parameters of stress response systems. Over development, these parameters filter and embed information about key dimensions of environmental stress and support, mediating the organism's openness to environmental inputs, and function to regulate life history strategies to match those dimensions. Drawing on the adaptive calibration model, we propose that consideration of biological fitness trade-offs, as delineated by life history theory, is needed to more fully explain the complex relations between developmental exposures to stress, stress responsivity, behavioral strategies, and health. We conclude that the adaptive calibration model and allostatic load model are only partially complementary and, in some cases, support different approaches to intervention. In the long run, the field may be better served by a model informed by life history theory that addresses the adaptive role of stress response systems in regulating alternative developmental pathways. [Ellis, Bruce J.] Univ Arizona, Tucson, AZ 85721 USA; [Del Giudice, Marco] Univ New Mexico, Albuquerque, NM 87131 USA Ellis, BJ (reprint author), Univ Arizona, Norton Sch Family & Consumer Sci, 650 North Pk Ave,POB 210078, Tucson, AZ 85721 USA. bjellis@email.arizona.edu Del Giudice, Marco/F-7007-2010 Del Giudice, Marco/0000-0001-8526-1573 Abed RT, 1998, BRIT J MED PSYCHOL, V71, P525, DOI 10.1111/j.2044-8341.1998.tb01007.x; Adam EK, 2012, MONOGR SOC RES CHILD, V77, P17, DOI 10.1111/j.1540-5834.2012.00657.x; Alink LRA, 2008, DEV PSYCHOBIOL, V50, P427, DOI 10.1002/dev.20300; Allsworth JE, 2005, ANN EPIDEMIOL, V15, P438, DOI 10.1016/j.annepidem.2004.12.010; Ayoub C, 2009, EARLY CHILD RES Q, V24, P289, DOI 10.1016/j.ecresq.2009.04.001; Badanes LS, 2011, DEV PSYCHOPATHOL, V23, P881, DOI 10.1017/S095457941100037X; Bagot RC, 2009, NEUROBIOL LEARN MEM, V92, P292, DOI 10.1016/j.nlm.2009.03.004; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; Beauchaine TP, 2011, DEV PSYCHOPATHOL, V23, P975, DOI 10.1017/S0954579411000459; Belsky J, 1995, ATTACHMENT THEORY, P153; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 1996, PSYCHOL SCI, V7, P111, DOI 10.1111/j.1467-9280.1996.tb00339.x; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; Belsky J, 2009, PSYCHOL BULL, V135, P885, DOI 10.1037/a0017376; BIERMAN KL, 1996, BANF INT BEHAV SER, V3, P65; Bilbo SD, 2012, FRONT NEUROENDOCRIN, V33, P267, DOI 10.1016/j.yfrne.2012.08.006; Bingham B, 2011, NEUROPSYCHOPHARMACOL, V36, P896, DOI 10.1038/npp.2010.229; Blair C, 2005, CHILD DEV, V76, P554, DOI 10.1111/j.1467-8624.2005.00863.x; Blair C, 2012, AM PSYCHOL, V67, P309, DOI 10.1037/a0027493; Blair C, 2012, DEV PSYCHOL, V48, P647, DOI 10.1037/a0026472; Blair C, 2011, CHILD DEV, V82, P1970, DOI 10.1111/j.1467-8624.2011.01643.x; Bleil ME, 2012, HUM REPROD, V27, P2720, DOI 10.1093/humrep/des214; Bleil ME, 2013, BIOL PSYCHOL, V93, P213, DOI 10.1016/j.biopsycho.2013.02.005; Boutwell BB, 2013, J THEOR BIOL, V322, P72, DOI 10.1016/j.jtbi.2013.01.005; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Bredy TW, 2003, NEUROSCIENCE, V118, P571, DOI 10.1016/S0306-4522(02)00918-1; Brody S, 2002, PSYCHONEUROENDOCRINO, V27, P933, DOI 10.1016/S0306-4530(02)00007-0; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Buwalda B, 2013, NEUROSCIENCE, V249, P258, DOI 10.1016/j.neuroscience.2012.12.050; Cabib S, 2012, NEUROSCI BIOBEHAV R, V36, P79, DOI 10.1016/j.neubiorev.2011.04.012; Cameron NM, 2008, J NEUROENDOCRINOL, V20, P795, DOI 10.1111/j.1365-2826.2008.01725.x; Cameron N, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002210; Campbell SB, 2010, DEV PSYCHOPATHOL, V22, P133, DOI 10.1017/S0954579409990319; Champagne DL, 2008, J NEUROSCI, V28, P6037, DOI 10.1523/JNEUROSCI.0526-08.2008; Champagne FA, 2008, FRONT NEUROENDOCRIN, V29, P386, DOI 10.1016/j.yfrne.2008.03.003; Chisholm JS, 1999, DEATH HOPE SEX STEPS; Clancy KBH, 2013, AM J HUM BIOL, V25, P389, DOI 10.1002/ajhb.22386; CRAWFORD CB, 1989, AM PSYCHOL, V44, P1449, DOI 10.1037/0003-066X.44.12.1449; Crespi BJ, 2000, HEREDITY, V84, P623, DOI 10.1046/j.1365-2540.2000.00746.x; Crespi EJ, 2005, AM J HUM BIOL, V17, P44, DOI 10.1002/ajhb.20098; Cribbet MR, 2011, EMOTION, V11, P188, DOI 10.1037/a0021789; Daly M, 2005, Q REV BIOL, V80, P55, DOI 10.1086/431025; Danese A, 2012, PHYSIOL BEHAV, V106, P29, DOI 10.1016/j.physbeh.2011.08.019; Decker SA, 2013, EVOL HUM BEHAV, V34, P55, DOI 10.1016/j.evolhumbehav.2012.09.003; Del Giudice M., 2011, EVOLUTION PERSONALIT, P154; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Dickerson SS, 2008, HEALTH PSYCHOL, V27, P116, DOI 10.1037/0278-6133.27.1.116; Dickerson SS, 2004, PSYCHOL BULL, V130, P355, DOI 10.1037/0033-2909.130.3.355; Dingemanse NJ, 2010, PHILOS T R SOC B, V365, P3947, DOI 10.1098/rstb.2010.0221; Dishion TJ, 2012, DEV PSYCHOL, V48, P703, DOI 10.1037/a0027304; Dobrova-Krol NA, 2010, CHILD DEV, V81, P237, DOI 10.1111/j.1467-8624.2009.01392.x; DODGE KA, 1995, J ABNORM PSYCHOL, V104, P632, DOI 10.1037/0021-843X.104.4.632; DODGE KA, 1980, CHILD DEV, V51, P162, DOI 10.1111/j.1467-8624.1980.tb02522.x; Eaton SB, 2003, COMP BIOCHEM PHYS A, V136, P153, DOI 10.1016/S1095-6433(03)00208-3; Eisen ML, 2007, DEV PSYCHOL, V43, P1275, DOI 10.1037/0012-1649.43.6.1275; Ellis B. J., 2013, CHILD ADOLESCENT PSY, P251; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2006, DEV REV, V26, P175, DOI 10.1016/j.dr.2006.02.004; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P7, DOI 10.1017/S0954579410000611; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; ELLISON PT, 2001, FERTILE GROUND NATUR; Essex MJ, 2011, DEV PSYCHOPATHOL, V23, P1039, DOI 10.1017/S0954579411000484; Evans GW, 2007, PSYCHOL SCI, V18, P953, DOI 10.1111/j.1467-9280.2007.02008.x; Evans GW, 2012, PSYCHOL SCI, V23, P979, DOI 10.1177/0956797612441218; Evans GW, 2009, P NATL ACAD SCI USA, V106, P6545, DOI 10.1073/pnas.0811910106; Evans GW, 2003, DEV PSYCHOL, V39, P924, DOI 10.1037/0012-1649.39.5.924; Evans GW, 2002, CHILD DEV, V73, P1238, DOI 10.1111/1467-8624.00469; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Flinn MV, 2006, DEV REV, V26, P138, DOI 10.1016/j.dr.2006.02.003; Flinn MV, 2011, NEUROSCI BIOBEHAV R, V35, P1611, DOI 10.1016/j.neubiorev.2011.01.005; Francis DD, 2008, PHARMACOL BIOCHEM BE, V90, P497, DOI 10.1016/j.pbb.2008.04.012; Frankenhuis WE, 2013, CURR DIR PSYCHOL SCI, V22, P407, DOI 10.1177/0963721413484324; Frankenhuis WE, 2012, DEV PSYCHOL, V48, P628, DOI 10.1037/a0025629; Gallup AC, 2011, AGGRESSIVE BEHAV, V37, P258, DOI 10.1002/ab.20384; Gatzke-Kopp LM, 2011, NEUROSCI BIOBEHAV R, V35, P794, DOI 10.1016/j.neubiorev.2010.09.013; Geary DC, 2002, ADV CHILD DEV BEHAV, V30, P41, DOI 10.1016/S0065-2407(02)80039-8; Geronimus AT, 2010, HUM NATURE-INT BIOS, V21, P19, DOI 10.1007/s12110-010-9078-0; Geronimus Arline T., 1992, Ethnicity and Disease, V2, P207; Geronimus AT, 1996, HUM NATURE-INT BIOS, V7, P323, DOI 10.1007/BF02732898; Gettler LT, 2011, AM J HUM BIOL, V23, P609, DOI 10.1002/ajhb.21187; Gilbert P., 2002, J COGNITIVE PSYCHOTH, V16, P263, DOI DOI 10.1891/JCOP.16.3.263.52515; Goldstein David S, 2008, Endocr Regul, V42, P111; Golub MS, 2008, PEDIATRICS, V121, pS218, DOI 10.1542/peds.2007-1813G; Gotlib IH, 2008, BIOL PSYCHIAT, V63, P847, DOI 10.1016/j.biopsych.2007.10.008; Gunnar M., 2006, DEV PSYCHOPATHOL, P533, DOI DOI 10.1210/JC.82.2.536; Gunnar MR, 2009, PSYCHONEUROENDOCRINO, V34, P953, DOI 10.1016/j.psyneuen.2009.02.010; Gunnar MR, 2009, DEV PSYCHOPATHOL, V21, P69, DOI 10.1017/S0954579409000054; Hastings PD, 2011, DEV PSYCHOPATHOL, V23, P1149, DOI 10.1017/S0954579411000538; He CY, 2010, AM J EPIDEMIOL, V171, P334, DOI 10.1093/aje/kwp372; Hertzman C, 1999, ANN NY ACAD SCI, V896, P85, DOI 10.1111/j.1749-6632.1999.tb08107.x; Hertzman C, 1996, SOC SCI MED, V43, P1083, DOI 10.1016/0277-9536(96)00028-7; Hill JO, 2006, ENDOCR REV, V27, P750, DOI 10.1210/er.2006-0032; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hrdy S. B., 1999, MOTHER NATURE HIST M; Joels M, 2011, TRENDS COGN SCI, V15, P280, DOI 10.1016/j.tics.2011.04.004; Joels M, 2009, NAT REV NEUROSCI, V10, P459, DOI 10.1038/nrn2632; Johns S. E., 2011, J EVOLUTIONARY PSYCH, V9, P3, DOI DOI 10.1556/JEP.9.2011.37.1; Juster RP, 2011, DEV PSYCHOPATHOL, V23, P725, DOI 10.1017/S0954579411000289; Juster RP, 2010, NEUROSCI BIOBEHAV R, V35, P2, DOI 10.1016/j.neubiorev.2009.10.002; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; Kaplan HS, 2003, OFFSPRING, P170; Konner M, 2010, NUTR CLIN PRACT, V25, P594, DOI 10.1177/0884533610385702; Korte SM, 2005, NEUROSCI BIOBEHAV R, V29, P3, DOI 10.1016/j.neubiorev.2004.08.009; Kuo LE, 2007, NAT MED, V13, P803, DOI 10.1038/nm1611; Kuzawa CW, 2009, ANNU REV ANTHROPOL, V38, P131, DOI 10.1146/annurev-anthro-091908-164350; Lakshman R, 2009, J CLIN ENDOCR METAB, V94, P4953, DOI 10.1210/jc.2009-1789; Lass-Hennemann J, 2010, P ROY SOC B-BIOL SCI, V277, P2175, DOI 10.1098/rspb.2010.0258; Laurent H, 2007, BIOL PSYCHOL, V76, P61, DOI 10.1016/j.biopsycho.2007.06.002; Liu D, 2000, NAT NEUROSCI, V3, P799; Lopez HH, 2009, HORM BEHAV, V56, P84, DOI 10.1016/j.yhbeh.2009.03.004; Lovallo W.R., 2007, ENCY STRESS, P282; Lupien SJ, 2006, DEV PSYCHOPATHOL, V2, P578, DOI DOI 10.1002/9780470939390.CH14; Martorell GA, 2006, J FAM PSYCHOL, V20, P641, DOI 10.1037/0893-3200.20.4.641; Masten CL, 2008, CHILD ABUSE NEGLECT, V32, P139, DOI 10.1016/j.chiabu.2007.09.006; Mather M, 2012, CURR DIR PSYCHOL SCI, V21, P36, DOI 10.1177/0963721411429452; McCullough ME, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2104; McEwen BS, 2012, P NATL ACAD SCI USA, V109, P17180, DOI 10.1073/pnas.1121254109; McEwen BS, 2003, HORM BEHAV, V43, P2, DOI 10.1016/S0018-506X(02)00024-7; MCEWEN BS, 1993, ARCH INTERN MED, V153, P2093, DOI 10.1001/archinte.153.18.2093; Mead HK, 2010, DEV PSYCHOPATHOL, V22, P1, DOI 10.1017/S0954579409990228; Meaney MJ, 2007, ADV GENET, V59, P173, DOI 10.1016/S0065-2660(07)59007-3; Meaney MJ, 2010, CHILD DEV, V81, P41, DOI 10.1111/j.1467-8624.2009.01381.x; Menard JL, 2007, BEHAV BRAIN RES, V176, P302, DOI 10.1016/j.bbr.2006.10.014; Miller GE, 2011, PSYCHOL BULL, V137, P959, DOI 10.1037/a0024768; Miller GE, 2010, PSYCHOL SCI, V21, P848, DOI 10.1177/0956797610370161; Mills-Koonce WR, 2009, DEV PSYCHOBIOL, V51, P650, DOI 10.1002/dev.20400; MOLLER A. P., 1997, ASYMMETRY DEV STABIL; Morgan CA, 2000, BIOL PSYCHIAT, V47, P902, DOI 10.1016/S0006-3223(99)00239-5; Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4; Muehlenbein MP, 2005, AM J HUM BIOL, V17, P527, DOI 10.1002/ajhb.20419; MUNCK A, 1984, ENDOCR REV, V5, P25, DOI 10.1210/edrv-5-1-25; Nederhof E., PSYCHOL SCI IN PRESS; Nederhof E, 2012, PHYSIOL BEHAV, V106, P691, DOI 10.1016/j.physbeh.2011.12.008; Nelson CA, 2007, SCIENCE, V318, P1937, DOI 10.1126/science.1143921; Nelson R. J., 2013, HDB PSYCHOL, V3, P26; Nesse R M, 2001, Med Health Care Philos, V4, P37, DOI 10.1023/A:1009938513897; Nesse RM, 2005, EVOL HUM BEHAV, V26, P88, DOI 10.1016/j.evolhumbehav.2004.08.002; Netherton C, 2004, PSYCHONEUROENDOCRINO, V29, P125, DOI 10.1016/S0306-4530(03)00150-6; Nettle D, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1343; Nettle D, 2011, P ROY SOC B-BIOL SCI, V278, P1721, DOI 10.1098/rspb.2010.1726; Nettle D, 2010, AM J HUM BIOL, V22, P172, DOI 10.1002/ajhb.20970; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Nyberg CH, 2012, AM J HUM BIOL, V24, P730, DOI 10.1002/ajhb.22304; Painter RC, 2008, HUM REPROD, V23, P2591, DOI 10.1093/humrep/den274; PALMER CT, 1995, J SEX RES, V32, P213, DOI 10.1080/00224499509551792; Parent CI, 2008, DEV PSYCHOBIOL, V50, P767, DOI 10.1002/dev.20342; Pigliucci M., 2001, PHENOTYPIC PLASTICIT; Placek CD, 2012, P ROY SOC B-BIOL SCI, V279, P4003, DOI 10.1098/rspb.2012.1022; Pollak SD, 2005, CHILD DEV, V76, P968, DOI 10.1111/j.1467-8624.2005.00890.x; Pollak SD, 2003, J ABNORM PSYCHOL, V112, P323, DOI 10.1037/0021-843X.112.3.323; Pollak SD, 2008, CURR DIR PSYCHOL SCI, V17, P370, DOI 10.1111/j.1467-8721.2008.00608.x; Pollak SD, 2009, COGNITION, V110, P242, DOI 10.1016/j.cognition.2008.10.010; Porges SW, 2007, BIOL PSYCHOL, V74, P116, DOI 10.1016/j.biopsycho.2006.06.009; Porges SW, 2001, INT J PSYCHOPHYSIOL, V42, P123, DOI 10.1016/S0167-8760(01)00162-3; Quirin M, 2008, PSYCHONEUROENDOCRINO, V33, P581, DOI 10.1016/j.psyneuen.2008.01.013; Ramos D, 2013, J RES ADOLESCENCE, V23, P95, DOI 10.1111/j.1532-7795.2012.00796.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; RIEDER C, 1989, DEV PSYCHOL, V25, P382, DOI 10.1037//0012-1649.25.3.382; Rogosch FA, 2011, DEV PSYCHOPATHOL, V23, P1107, DOI 10.1017/S0954579411000587; Roney JR, 2007, HORM BEHAV, V52, P326, DOI 10.1016/j.yhbeh.2007.05.008; Rosmalen JGM, 2011, PLOS MED, V8, DOI 10.1371/journal.pmed.1001143; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; Sakhai SA, 2011, PSYCHONEUROENDOCRINO, V36, P1217, DOI 10.1016/j.psyneuen.2011.02.016; Sandman CA, 2012, PSYCHOL SCI, V23, P93, DOI 10.1177/0956797611422073; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; Scheiner S.M., 2004, PHENOTYPIC PLASTICIT; Schlichting C. D., 1998, PHENOTYPIC EVOLUTION; Schwabe L, 2013, TRENDS COGN SCI, V17, P60, DOI 10.1016/j.tics.2012.12.001; Sefcek JA, 2010, BIODEMOGR SOC BIOL, V56, P42, DOI 10.1080/19485561003709214; Shirtcliff EA, 2005, DEV PSYCHOPATHOL, V17, P167, DOI 10.1017/S0954579405050091; Shonkoff JP, 2012, PEDIATRICS, V129, pE232, DOI 10.1542/peds.2011-2663; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Simpson Jeffry A., 2008, HDB ATTACHMENT THEOR, P131; Smallwood PD, 1996, AM ZOOL, V36, P392; Starcke K, 2012, NEUROSCI BIOBEHAV R, V36, P1228, DOI 10.1016/j.neubiorev.2012.02.003; Staton Lori, 2009, Dev Psychobiol, V51, P249, DOI 10.1002/dev.20361; Stearns S. C., 1992, EVOLUTION LIFE HIST; Sterling P., 1988, HDB LIFE STRESS COGN, P629, DOI DOI 10.1016/0005-7967(90)90076-U; Stout DM, 2013, FRONT HUM NEUROSCI, V7, DOI 10.3389/fnhum.2013.00058; Sturge-Apple ML, 2009, J FAM PSYCHOL, V23, P215, DOI 10.1037/a0014198; Sylwester K, 2011, SEX ROLES, V64, P695, DOI 10.1007/s11199-010-9790-6; Tooby J., 1992, ADAPTED MIND EVOLUTI, P19, DOI DOI 10.1086/418398; Van Buskirk J, 1998, BIOL J LINN SOC, V65, P301, DOI 10.1006/bijl.1998.0249; van Goozen SHM, 2007, PSYCHOL BULL, V133, P149, DOI 10.1037/0033-2909.133.1.149; van Marle HJF, 2009, BIOL PSYCHIAT, V66, P649, DOI 10.1016/j.biopsych.2009.05.014; Volk AA, 2013, EVOL HUM BEHAV, V34, P182, DOI 10.1016/j.evolhumbehav.2012.11.007; Wells JCK, 2012, AM J HUM BIOL, V24, P261, DOI 10.1002/ajhb.22253; Wenner CJ, 2013, INTELLIGENCE, V41, P102, DOI 10.1016/j.intell.2012.11.004; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Wingfield JC, 2002, INTEGR COMP BIOL, V42, P600, DOI 10.1093/icb/42.3.600; Wingfield JC, 1998, AM ZOOL, V38, P191; Winterhalder Bruce, 2007, OXFORD HDB EVOLUTION, P433; Worthman CM, 2009, AM J HUM BIOL, V21, P772, DOI 10.1002/ajhb.20966 199 58 59 1 57 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0954-5794 1469-2198 DEV PSYCHOPATHOL Dev. Psychopathol. FEB 2014 26 1 1 20 10.1017/S0954579413000849 20 Psychology, Developmental Psychology AD0UV WOS:000332950500001 24280315 2018-11-12 J Tiippel, EA; Butts, IAE; Babin, A; Neil, SRE; Feindel, NJ; Benfey, TJ Tiippel, Edward A.; Butts, Ian A. E.; Babin, Amanda; Neil, Steven R. E.; Feindel, Nathaniel J.; Benfey, Tillmann J. Effects of reproduction on growth and survival in Atlantic cod, Gadus morhua, assessed by comparison to triploids JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY English Article Compensatory growth; Gonad; Maturation; Soma; Triploidy NORTHEAST ARCTIC COD; SALMO-SALAR L; GONADAL DEVELOPMENT; MATURATION COHORTS; SEXUAL-MATURATION; FEEDING-BEHAVIOR; FOOD-CONSUMPTION; COST; FISH; MATURITY Despite increasing interest in optimal life history theory and the associated physiological, ecological and evolutionary processes, little information exists on gonad-soma tradeoffs and longevity of individuals over long time periods. We examined somatic and survival costs of reproduction in captive iteroparous, batch-spawning Atlantic cod (Gadus morhua), utilizing diploids and triploids, knowing that triploid females invest little to no energy into gametogenesis. Based on annual specific growth rate, there was no evidence for a somatic cost of reproduction at ages 2 (virgin year) and 4 years, but there was at age 3 years. At age 2 years, low investment in reproduction likely accounted for the lack of a somatic cost of reproduction, whereas at age 4 the absence was associated with heightened growth post-spawning enabling mature fish to catch up to immature fish. At age 3, compensatory growth during post-spawning was below that of immature fish. Survival represented a significant component of the cost of reproduction. Laboratory experiments examining the cost of reproduction have traditionally focused on shorter time periods, commonly spanning several months, whereas ours spanned nearly four years. Although previously done for bivalves, to our knowledge, this is the first time the cost of reproduction has been evaluated using triploid fish as a comparator. (C) 2013 Elsevier B.V. All rights reserved. [Tiippel, Edward A.; Neil, Steven R. E.; Feindel, Nathaniel J.] Fisheries & Oceans Canada, Biol Stn, St Andrews, NB E5B 2L9, Canada; [Butts, Ian A. E.] Tech Univ Denmark, Natl Inst Aquat Resources, Sect Marine Ecol, DTU Aqua, DK-2920 Charlottenlund, Denmark; [Babin, Amanda] Univ New Brunswick, Dept Biol, St John, NB E2L 4L5, Canada; [Babin, Amanda] Univ New Brunswick, Ctr Coastal Studies & Aquaculture, St John, NB E2L 4L5, Canada; [Feindel, Nathaniel J.; Benfey, Tillmann J.] Univ New Brunswick, Dept Biol, Fredericton, NB E3B 5A3, Canada Tiippel, EA (reprint author), Fisheries & Oceans Canada, Biol Stn, 531 Brandy Cove Rd, St Andrews, NB E5B 2L9, Canada. edward.trippel@dfo-mpo.ga.ca Butts, Ian/0000-0001-8447-1392 Fisheries and Oceans Canada Aquaculture Collaborative Research Development Program [MG-04-09-001/MG-07-01-003]; Natural Sciences and Engineering Research Council of Canada This work was supported by the Fisheries and Oceans Canada Aquaculture Collaborative Research Development Program (MG-04-09-001/MG-07-01-003) and the Natural Sciences and Engineering Research Council of Canada. The handling of fish was approved by DFO's Animal Care Committee, adhering to guidelines established by the Canadian Council on Animal Care. The authors greatly appreciate the technical support of the St. Andrews Biological Station for their help with data collection over the course of these experiments. [RH] Ajiad Adnan, 1999, Journal of Northwest Atlantic Fishery Science, V25, P1, DOI 10.2960/J.v25.a1; Armstrong MJ, 2004, ICES J MAR SCI, V61, P98, DOI 10.1016/j.icesjms.2003.10.005; Arnason T, 2012, AQUAC RES, V43, P292, DOI 10.1111/j.1365-2109.2011.02829.x; Belk MC, 2010, OIKOS, V119, P163, DOI 10.1111/j.1600-0706.2009.17742.x; Benfey Tillmann J., 1999, Reviews in Fisheries Science, V7, P39, DOI 10.1080/10641269991319162; Beverton RJH, 2004, ICES J MAR SCI, V61, P165, DOI 10.1016/j.icesjms.2004.01.001; BEVERTON RJH, 1994, ICES MAR SC, V198, P482; Biro PA, 2008, P NATL ACAD SCI USA, V105, P2919, DOI 10.1073/pnas.0708159105; BRAWN VIVIEN M., 1961, BEHAVIOUR, V18, P177, DOI 10.1163/156853961X00114; Brown JA, 2003, AQUACULTURE, V227, P357, DOI 10.1016/S0044-8486(03)00514-3; Busacker G.P., 1990, P363; CALOW P, 1979, BIOL REV, V54, P23, DOI 10.1111/j.1469-185X.1979.tb00866.x; CARTER CG, 1994, CAN J ZOOL, V72, P609, DOI 10.1139/z94-083; DAMBERGS N, 1964, J FISH RES BOARD CAN, V21, P703, DOI 10.1139/f64-063; Derayat A, 2013, FISH PHYSIOL BIOCHEM, V39, P1195, DOI 10.1007/s10695-013-9775-9; Descamps S, 2009, BIOL LETTERS, V5, P278, DOI 10.1098/rsbl.2008.0704; Dutil JD, 2000, CAN J FISH AQUAT SCI, V57, P826, DOI 10.1139/cjfas-57-4-826; Feindel NJ, 2011, J FISH BIOL, V78, P1900, DOI 10.1111/j.1095-8649.2011.02955.x; Feindel NJ, 2010, AQUACULT ENV INTERAC, V1, P47, DOI 10.3354/aei00006; Felip A, 2001, J FISH BIOL, V58, P76, DOI 10.1006/jfbi.2000.1427; Fordham SE, 1999, J APPL ICHTHYOL, V15, P1, DOI 10.1046/j.1439-0426.1999.00098.x; Garner SR, 2008, J FISH BIOL, V73, P169, DOI 10.1111/j.1095-8649.2008.01923.x; GJERDE B, 1984, AQUACULTURE, V38, P229, DOI 10.1016/0044-8486(84)90147-9; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; Honkoop PJC, 2003, OECOLOGIA, V135, P176, DOI 10.1007/s00442-002-1172-5; Hutchings JA, 1999, CAN J FISH AQUAT SCI, V56, P1612, DOI 10.1139/cjfas-56-9-1612; Iles T.D., 1984, P331; Kadri S, 1996, AQUACULTURE, V142, P245, DOI 10.1016/0044-8486(96)01258-6; KARLSEN O, 1995, AQUACULTURE, V133, P159, DOI 10.1016/0044-8486(94)00399-9; KENNEDY W. A., 1954, JOUR FISH RES BD CANADA, V11, P827; Koster FW, 2013, FISH RES, V138, P52, DOI 10.1016/j.fishres.2012.07.002; Kotiaho JS, 2003, J INSECT PHYSIOL, V49, P817, DOI 10.1016/S0022-1910(03)00117-3; Lambert Y, 2000, CAN J FISH AQUAT SCI, V57, P815, DOI 10.1139/cjfas-57-4-815; Lee WS, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2370; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; LINCOLN RF, 1981, AQUACULTURE, V25, P259, DOI 10.1016/0044-8486(81)90187-3; Meager JJ, 2010, CAN J FISH AQUAT SCI, V67, P1221, DOI 10.1139/F10-066; Metcalfe NB, 2002, EVOL ECOL RES, V4, P871; Michalsen K, 2008, ICES J MAR SCI, V65, P571, DOI 10.1093/icesjms/fsn019; Morgan M. J., 2005, Journal of Northwest Atlantic Fishery Science, V37, P81, DOI 10.2960/J.v37.m560; Morgan MJ, 1996, ICES J MAR SCI, V53, P820, DOI 10.1006/jmsc.1996.0103; Nash Richard D.M., 2009, Journal of Northwest Atlantic Fishery Science, V41, P71; O'Keefe RA, 1999, AQUACULTURE, V175, P111, DOI 10.1016/S0044-8486(99)00038-1; PAGE FH, 1989, CAN J FISH AQUAT SCI, V46, P68; Piferrer F, 2009, AQUACULTURE, V293, P125, DOI 10.1016/j.aquaculture.2009.04.036; Poizat G, 1999, P ROY SOC B-BIOL SCI, V266, P1543, DOI 10.1098/rspb.1999.0813; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; Rideout RM, 2011, MAR COAST FISH, V3, P176, DOI 10.1080/19425120.2011.556943; ROWE DK, 1990, J FISH BIOL, V36, P643, DOI 10.1111/j.1095-8649.1990.tb04319.x; Rowe S, 2004, CAN J ZOOL, V82, P1391, DOI [10.1139/z04-119, 10.1139/Z04-119]; Schwalme K, 1999, ICES J MAR SCI, V56, P303, DOI 10.1006/jmsc.1999.0458; Skjaeraasen JE, 2010, CAN J ZOOL, V88, P595, DOI 10.1139/Z10-033; Spilke J, 2005, J AGRON CROP SCI, V191, P47, DOI 10.1111/j.1439-037X.2004.00120.x; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Swain DP, 2007, P ROY SOC B-BIOL SCI, V274, P1015, DOI 10.1098/rapb.2006.0275; Tomkiewicz J, 1998, FISH OCEANOGR, V7, P48, DOI 10.1046/j.1365-2419.1998.00051.x; Tomkiewicz J., 2002, DIFRES REPORT SERIES; Trippel EA, 1995, BEL BAR LIB, P599; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; Trippel EA, 2008, CYBIUM, V32, P136; Volkoff H, 2009, COMP BIOCHEM PHYS A, V153, P8, DOI 10.1016/j.cbpa.2008.12.001; WARNER K, 1971, J FISH RES BOARD CAN, V28, P537, DOI 10.1139/f71-076; Weeks SC, 1996, OIKOS, V75, P345, DOI 10.2307/3546263; Wright PJ, 2009, FISH FISH, V10, P283, DOI 10.1111/j.1467-2979.2008.00322.x; Yaragina NA, 2010, ICES J MAR SCI, V67, P2033, DOI 10.1093/icesjms/fsq059; Yoneda M, 2005, J FISH BIOL, V67, P1225, DOI 10.1111/j.1095-8649.2005.00819.x 66 2 2 2 36 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0022-0981 1879-1697 J EXP MAR BIOL ECOL J. Exp. Mar. Biol. Ecol. FEB 2014 451 35 43 10.1016/j.jembe.2013.10.030 9 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology AB3AN WOS:000331663800005 2018-11-12 J Kulma, K; Low, M; Bensch, S; Qvarnstrom, A Kulma, Katarzyna; Low, Matthew; Bensch, Staffan; Qvarnstrom, Anna Malaria-Infected Female Collared Flycatchers (Ficedula albicollis) Do Not Pay the Cost of Late Breeding PLOS ONE English Article AVIAN BLOOD PARASITES; WILD BIRD POPULATION; HISTORY TRADE-OFF; REPRODUCTIVE EFFORT; FOOD ABUNDANCE; BLUE TITS; TERMINAL INVESTMENT; IMMUNE-RESPONSE; PARENTAL EFFORT; PLASMODIUM Life-history theory predicts that the trade-off between parasite defense and other costly traits such as reproduction may be most evident when resources are scarce. The strength of selection that parasites inflict on their host may therefore vary across environmental conditions. Collared flycatchers (Ficedula albicollis) breeding on the Swedish island Oland experience a seasonal decline in their preferred food resource, which opens the possibility to test the strength of life-history trade-offs across environmental conditions. We used nested-PCR and quantitative-PCR protocols to investigate the association of Haemosporidia infection with reproductive performance of collared flycatcher females in relation to a seasonal change in the external environment. We show that despite no difference in mean onset of breeding, infected females produced relatively more of their fledglings late in the season. This pattern was also upheld when considering only the most common malaria lineage (hPHSIB1), however there was no apparent link between the reproductive output and the intensity of infection. Infected females produced heavier-than-average fledglings with higher-than-expected recruitment success late in the season. This reversal of the typical seasonal trend in reproductive output compensated them for lower fledging and recruitment rates compared to uninfected birds earlier in the season. Thus, despite different seasonal patterns of reproductive performance the overall number of recruits was the same for infected versus uninfected birds. A possible explanation for our results is that infected females breed in a different microhabitat where food availability is higher late in the season but also is the risk of infection. Thus, our results suggest that another trade-off than the one we aimed to test is more important for explaining variation in reproductive performance in this natural population: female flycatchers appear to face a trade-off between the risk of infection and reproductive success late in the season. [Kulma, Katarzyna; Qvarnstrom, Anna] Uppsala Univ, Dept Ecol & Genet, Uppsala, Sweden; [Low, Matthew] Swedish Univ Agr Sci, Dept Ecol, Uppsala, Sweden; [Bensch, Staffan] Lund Univ, Dept Biol, Lund, Sweden Kulma, K (reprint author), Uppsala Univ, Dept Ecol & Genet, Uppsala, Sweden. katarzyna.kulma@ebc.uu.se Low, Matthew/0000-0002-7345-6063; Qvarnstrom, Anna/0000-0002-1178-4053 Swedish Research Council; Swedish Research Council for Environment, Agricultural and Spatial Planning; European Research Foundation Our work is funded by the Swedish Research Council (VR to AQ) and the Swedish Research Council for Environment, Agricultural and Spatial Planning (Formas to ML) and the European Research Foundation (AQ). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Albon SD, 2002, P ROY SOC B-BIOL SCI, V269, P1625, DOI 10.1098/rspb.2002.2064; Asghar M, 2011, J AVIAN BIOL, V42, P530, DOI 10.1111/j.1600-048X.2011.05281.x; Atkinson CT, 2009, PARASITIC DIS WILD B; Barton K., 2012, MUMIN MULTIMODEL INF; Bates D., 2011, LME4 LINEAR MIXED EF; Bensch S, 2000, P ROY SOC B-BIOL SCI, V267, P1583, DOI 10.1098/rspb.2000.1181; Bensch S, 2009, MOL ECOL RESOUR, V9, P1353, DOI 10.1111/j.1755-0998.2009.02692.x; Bonneaud C, 2003, AM NAT, V161, P367, DOI 10.1086/346134; Burnham K. P., 2002, MODEL SELECTION MULT; Christe P, 2001, OECOLOGIA, V126, P333, DOI 10.1007/s004420000527; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Coltman DW, 1999, EVOLUTION, V53, P1259, DOI 10.1111/j.1558-5646.1999.tb04538.x; DOBSON A, 1994, TRENDS ECOL EVOL, V9, P393, DOI 10.1016/0169-5347(94)90062-0; Ebert Dieter, 1996, Trends in Ecology and Evolution, V11, P79, DOI 10.1016/0169-5347(96)81047-0; French SS, 2007, AM NAT, V170, P79, DOI 10.1086/518569; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; Ilmonen P, 1999, OIKOS, V86, P79, DOI 10.2307/3546571; Knowles SCL, 2010, J EVOLUTION BIOL, V23, P557, DOI 10.1111/j.1420-9101.2009.01920.x; Knowles SCL, 2011, MOL ECOL, V20, P1062, DOI 10.1111/j.1365-294X.2010.04909.x; Knowles SCL, 2009, FUNCT ECOL, V23, P405, DOI 10.1111/j.1365-2435.2008.01507.x; Kulma K, 2013, MOL ECOL, V22, P4591, DOI 10.1111/mec.12409; LOYE JE, 1991, BIRD PARASITE INTERA; Lundberg A, 1992, PIED FLYCATCHER; Mani T., 1989, MOL CLONING LAB MANU, DOI DOI 10.51-10.67; Marzal A, 2005, OECOLOGIA, V142, P541, DOI 10.1007/s00442-004-1757-2; Marzal A, 2012, RECENT ADV STUDIES A, P350; Merino S, 2000, P ROY SOC B-BIOL SCI, V267, P2507, DOI 10.1098/rspb.2000.1312; Messina FJ, 1999, PHYSIOL ENTOMOL, V24, P358, DOI 10.1046/j.1365-3032.1999.00151.x; Messina FJ, 2003, J EVOLUTION BIOL, V16, P501, DOI 10.1046/j.1420-9101.2003.00535.x; Mullarney K, 2000, BIRDS EUROPE; Palinauskas V, 2008, EXP PARASITOL, V120, P372, DOI 10.1016/j.exppara.2008.09.001; PART T, 1992, AM NAT, V140, P868, DOI 10.1086/285445; PERRINS CM, 1970, IBIS, V112, P242, DOI 10.1111/j.1474-919X.1970.tb00096.x; Qvarnstrom A, 2005, BIOL LETTERS, V1, P68, DOI 10.1098/rsbl.2004.0265; Qvarnstrom A, 2010, PHILOS T R SOC B, V365, P1841, DOI 10.1098/rstb.2009.0306; Qvarnstrom A, 2009, ECOLOGY, V90, P1948, DOI 10.1890/08-0494.1; R Development Core Team, 2012, R LANG ENV STAT COMP; Raberg L, 2000, ECOL LETT, V3, P382, DOI 10.1046/j.1461-0248.2000.00154.x; Rice AM, 2013, HORM BEHAV, V63, P813, DOI 10.1016/j.yhbeh.2013.03.019; Santiago-Alarcon D, 2012, BIOL REV, V87, P928, DOI 10.1111/j.1469-185X.2012.00234.x; SchmidHempel P, 2011, EVOLUTIONARY PARASITOLOGY: THE INTEGRATED STUDY OF INFECTIONS, IMMUNOLOGY, ECOLOGY, AND GENETICS, P1; Siikamaki P, 1998, ECOLOGY, V79, P1789, DOI 10.1890/0012-9658(1998)079[1789:LORSBF]2.0.CO;2; Stearns S. C., 1992, EVOLUTION LIFE HIST; Symonds MRE, 2011, BEHAV ECOL SOCIOBIOL, V65, P13, DOI 10.1007/s00265-010-1037-6; Thomas DW, 2007, FUNCT ECOL, V21, P947, DOI 10.1111/j.1365-2435.2007.01301.x; Valkiunas G., 2005, AVIAN MALARIA PARASI; Veen T, 2010, OECOLOGIA, V162, P873, DOI 10.1007/s00442-009-1544-1; Waldenstrom J, 2004, J PARASITOL, V90, P191, DOI 10.1645/GE-3221RN; Wood MJ, 2007, MOL ECOL, V16, P3263, DOI 10.1111/j.1365-294X.2007.03362.x 49 3 4 0 38 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One JAN 23 2014 9 1 e85822 10.1371/journal.pone.0085822 9 Multidisciplinary Sciences Science & Technology - Other Topics 297XI WOS:000330288000027 24465726 DOAJ Gold, Green Published 2018-11-12 J Stormer, C; Lummaa, V Stoermer, Charlotte; Lummaa, Virpi Increased Mortality Exposure within the Family Rather than Individual Mortality Experiences Triggers Faster Life-History Strategies in Historic Human Populations PLOS ONE English Article FATHER ABSENCE; REPRODUCTIVE STRATEGY; NATURAL-SELECTION; CARIBBEAN COMMUNITY; SEX-DIFFERENCES; CHILD SURVIVAL; PREDICTS AGE; EARLY STRESS; RISK-TAKING; DYING YOUNG Life History Theory predicts that extrinsic mortality risk is one of the most important factors shaping (human) life histories. Evidence from contemporary populations suggests that individuals confronted with high mortality environments show characteristic traits of fast life-history strategies: they marry and reproduce earlier, have shorter birth intervals and invest less in their offspring. However, little is known of the impact of mortality experiences on the speed of life histories in historical human populations with generally higher mortality risk, and on male life histories in particular. Furthermore, it remains unknown whether individual-level mortality experiences within the family have a greater effect on life-history decisions or family membership explains life-history variation. In a comparative approach using event history analyses, we study the impact of family versus individual-level effects of mortality exposure on two central life-history parameters, ages at first marriage and first birth, in three historical human populations (Germany, Finland, Canada). Mortality experience is measured as the confrontation with sibling deaths within the natal family up to an individual's age of 15. Results show that the speed of life histories is not adjusted according to individual-level mortality experiences but is due to family-level effects. The general finding of lower ages at marriage/reproduction after exposure to higher mortality in the family holds for both females and males. This study provides evidence for the importance of the family environment for reproductive timing while individual-level mortality experiences seem to play only a minor role in reproductive life history decisions in humans. [Stoermer, Charlotte] Univ Giessen, Inst Philosophie, D-35390 Giessen, Germany; [Lummaa, Virpi] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England; [Lummaa, Virpi] Wissensch Kolleg Berlin, Berlin, Germany Stormer, C (reprint author), Univ Giessen, Inst Philosophie, D-35390 Giessen, Germany. Charlotte.Stoermer@phil.uni-giessen.de VolkswagenStiftung; Royal Society of London; European Research Council Funding from VolkswagenStiftung (http://www.volkswagenstiftung.de/); The Royal Society of London (http://royalsociety.org/grants/); European Research Council (http://erc.europa.eu/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Anderson KG, 2010, HUM NATURE-INT BIOS, V21, P103, DOI 10.1007/s12110-010-9087-z; Beise J, 2001, VERHALTENSOKOLOGIE M; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; Ben-Shlomo Y, 2002, INT J EPIDEMIOL, V31, P285, DOI 10.1093/ije/31.2.285; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Blossfeld H.-P., 2002, TECHNIQUES EVENT HIS; Bogaert AF, 2005, J ADOLESCENCE, V28, P541, DOI 10.1016/j.adolescence.2004.10.008; Bolund E, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.2002; BROCKERHOFF M, 1990, DEMOGRAPHY, V27, P601, DOI 10.2307/2061573; CHARBONNEAU H, 2000, POPULATION HIST N AM, P99; Chisholm JS, 1999, HUM NATURE-INT BIOS, V10, P51, DOI 10.1007/s12110-999-1001-1; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Coall DA, 2010, AM J HUM BIOL, V22, P143, DOI 10.1002/ajhb.20965; COX DR, 1972, J R STAT SOC B, V34, P187; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Eriksson JG, 2009, AM J HUM BIOL, V22, P330, DOI DOI 10.1002/AJHB.20995; Flinn MV, 2006, DEV REV, V26, P138, DOI 10.1016/j.dr.2006.02.003; Gagnon A, 2012, AM J HUM BIOL, V24, P654, DOI 10.1002/ajhb.22287; Gillespie DOS, 2008, P R SOC B, V275, P713, DOI 10.1098/rspb.2007.1000; Gillespie DOS, 2010, AM NAT, V176, P159, DOI 10.1086/653668; Gurven M, 2007, POPUL DEV REV, V33, P321, DOI 10.1111/j.1728-4457.2007.00171.x; Hayward AD, 2013, EVOLUTION MED PUBLIC, V1, P106, DOI DOI 10.1093/EMPH/E0T007; Hayward AD, 2013, P NATL ACAD SCI USA, V110, P13886, DOI 10.1073/pnas.1301817110; Hrdy S. B., 2009, MOTHERS OTHERS EVOLU; Kleinbaum DG, 2012, STAT BIOL HEALTH, P1, DOI 10.1007/978-1-4419-6646-9; Lahdenpera M, 2011, J EVOLUTION BIOL, V24, P1053, DOI 10.1111/j.1420-9101.2011.02237.x; Mace R, 2005, GRANDMOTHERHOOD EVOL, P143; Mills M., 2011, INTRO SURVIVAL EVENT; Milot E, 2011, P NATL ACAD SCI USA, V108, P17040, DOI 10.1073/pnas.1104210108; Nettle D, 2011, P ROY SOC B-BIOL SCI, V278, P1721, DOI 10.1098/rspb.2010.1726; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; O'Quigley J, 2002, STAT MED, V21, P3219, DOI 10.1002/sim.1259; Olderbak SG, 2010, PERS INDIV DIFFER, V49, P234, DOI 10.1016/j.paid.2010.03.041; Omariba DWR, 2010, POPUL RES POLICY REV, V29, P275, DOI 10.1007/s11113-009-9140-y; Oyen N, 2009, EPIDEMIOLOGY, V20, P757, DOI 10.1097/EDE.0b013e3181ad5444; Pettay JE, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000606; Placek CD, 2012, P ROY SOC B-BIOL SCI, V279, P4003, DOI 10.1098/rspb.2012.1022; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; Quinlan RJ, 2007, AM ANTHROPOL, V109, P164, DOI 10.1525/AA.2007.109.1.164; Quinlan RJ, 2006, AM ANTHROPOL, V108, P464, DOI 10.1525/aa.2006.108.3.464; Quinlan RJ, 2010, HUM NATURE-INT BIOS, V21, P124, DOI 10.1007/s12110-010-9085-1; Rickard IJ, 2010, ECOLOGY, V91, P3515, DOI 10.1890/10-0019.1; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; Sheppard P, 2012, BIOL LETTERS, V8, P237, DOI 10.1098/rsbl.2011.0747; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Stormer C, 2011, AM J HUM BIOL, V23, P201, DOI 10.1002/ajhb.21103; Vandezande M, 2010, EXPLAINING DEATH CLU, P1846; Voland E, 2000, EVOL ANTHROPOL, V9, P134; VOLAND E, 1995, HUMAN REPRODUCTIVE DECISIONS, P137; VOLAND E, 1995, HUM NATURE-INT BIOS, V6, P33, DOI 10.1007/BF02734134; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; Wang XT, 2009, EVOL HUM BEHAV, V30, P77, DOI 10.1016/j.evolhumbehav.2008.09.006; Willfuhr KP, 2012, BIODEMOGR SOC BIOL, V58, P149, DOI 10.1080/19485565.2012.734745; Willfuhr KP, 2009, AM J HUM BIOL, V21, P488, DOI 10.1002/ajhb.20909; Willfuhr KP, 1670, BIODEMOGRAPHY SOCIAL; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; Wilson M, 1996, POPUL ENVIRON, V18, P143, DOI 10.1007/BF02208408; Woods R, 2003, POPUL DEV REV, V29, P29, DOI 10.1111/j.1728-4457.2003.00029.x 62 8 9 0 19 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One JAN 8 2014 9 1 e83633 10.1371/journal.pone.0083633 9 Multidisciplinary Sciences Science & Technology - Other Topics 291WL WOS:000329862500061 24421897 DOAJ Gold, Green Published 2018-11-12 S Panter-Brick, C Brenneis, D; Strier, KB Panter-Brick, Catherine Health, Risk, and Resilience: Interdisciplinary Concepts and Applications ANNUAL REVIEW OF ANTHROPOLOGY, VOL 43 Annual Review of Anthropology English Article; Book Chapter culture; political economy; life history; child development; policy PUBLIC-HEALTH; MENTAL-HEALTH; DEVELOPMENTAL ORIGINS; CHILD-DEVELOPMENT; CULTURE; YOUTH; PREVENTION; VIOLENCE; CONFLICT; CONTEXT Risk and resilience research articulates major explanatory frameworks regarding the persistence of health disparities. Specifically, scholars have advocated a sophisticated knowledge of risk, a more grounded understanding of resilience, and comprehensive and meaningful measurements of risk and resilience pathways across cultures. The goal is to operationalize research issues into sustainable health practice and equity-focused policy. This article synthesizes current understandings on risk and resilience from the lens of medical anthropology: It reviews key insights gained from the standpoint of cultural narratives, political economy, and life history theory, as well as current shortcomings. The emergent literature on health-related risk and resilience is breathing new life into collaboration and dialogue across diverse fields of research and policy. Yale Univ, Dept Anthropol, New Haven, CT 06511 USA Panter-Brick, C (reprint author), Yale Univ, Dept Anthropol, New Haven, CT 06511 USA. catherine.panter-brick@yale.edu Ager A, 2013, J CHILD PSYCHOL PSYC, V54, P488, DOI 10.1111/jcpp.12030; Almedom A. M., 2010, GLOBAL PERSPECTIVES, P127; Almedom AM, 2008, AFR HEALTH SCI, V8, pS1; Barber BK, 2008, INT J BEHAV DEV, V32, P298, DOI 10.1177/0165025408090972; Barber BK, 2013, J CHILD PSYCHOL PSYC, V54, P461, DOI 10.1111/jcpp.12056; Belsky J, 2013, DEV PSYCHOPATHOL, V25, P1243, DOI 10.1017/S095457941300059X; Bonanno GA, 2004, AM PSYCHOL, V59, P20, DOI 10.1037/0003-066X.59.1.20; Bourgois P., 2002, EXOTIC NO MORE ANTHR, P15; Brown K, 2011, ANNU REV ENV RESOUR, V36, P321, DOI 10.1146/annurev-environ-052610-092905; DAVISON C, 1991, SOCIOL HEALTH ILL, V13, P1, DOI 10.1111/1467-9566.ep11340301; DAVISON C, 1992, SOC SCI MED, V34, P675, DOI 10.1016/0277-9536(92)90195-V; Dobbs D., 2009, ATLANTIC, P60; Dressler WW, 2012, PREV MED, V55, P390, DOI 10.1016/j.ypmed.2011.12.022; Eggerman M, 2010, SOC SCI MED, V71, P71, DOI 10.1016/j.socscimed.2010.03.023; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P7, DOI 10.1017/S0954579410000611; EVANSPRITCHARD EE, 1937, WITCHCRAFT ORACLES M; Farmer P, 2004, CURR ANTHROPOL, V45, P305, DOI 10.1086/382250; Farmer P, 2013, CALIF SER PUB ANTHR, V26, P1; Farmer Paul E., 1997, ANTHR INFECT DIS, P413; Feldman R, 2007, DEV PSYCHOPATHOL, V19, P1, DOI 10.1017/S0954579407070010; Felner RD, 2013, HANDBOOK OF RESILIENCE IN CHILDREN, SECOND EDITION, P105, DOI 10.1007/978-1-4614-3661-4_7; Goldstein S, 2013, HANDBOOK OF RESILIENCE IN CHILDREN, SECOND EDITION, P1, DOI 10.1007/978-1-4614-3661-4; Gravlee CC, 2009, AM J PHYS ANTHROPOL, V139, P47, DOI 10.1002/ajpa.20983; Hall P., 2013, SOCIAL RESILIENCE NE; Heikkinen H, 2010, SOC SCI MED, V71, P877, DOI 10.1016/j.socscimed.2010.05.036; Hobfoll SE, 2012, PSYCHIATRY, V75, P227, DOI 10.1521/psyc.2012.75.3.227; Jasienska G, 2009, AM J HUM BIOL, V21, P524, DOI 10.1002/ajhb.20931; Jones Camara Phyllis, 2009, J Health Care Poor Underserved, V20, P1, DOI 10.1353/hpu.0.0228; Kamat VR, 2008, MED ANTHROPOL Q, V22, P67, DOI 10.1111/j.1548-1387.2008.00004.x; Keshavjee S, 2006, PLOS MED, P1; Kleinman Arthur, 2006, WHAT REALLY MATTERS; Kleinman Arthur, 1997, SOCIAL SUFFERING; Kohrt BA, 2010, TRANSCULT PSYCHIATRY, V47, P727, DOI 10.1177/1363461510381290; Konner M., 2010, EVOLUTION CHILDHOOD; KRIEGER N, 1994, SOC SCI MED, V39, P887, DOI 10.1016/0277-9536(94)90202-X; Krieger N, 2002, AM J PUBLIC HEALTH, V92, P611, DOI 10.2105/AJPH.92.4.611; Kuzawa CW, 2007, AM J HUM BIOL, V19, P654, DOI 10.1002/ajhb.20659; Kuzawa CW, 2009, ANNU REV ANTHROPOL, V38, P131, DOI 10.1146/annurev-anthro-091908-164350; Langford R, 2013, SOC SCI MED, V83, P133, DOI 10.1016/j.socscimed.2013.01.036; Langford R, 2011, AM J HUM BIOL, V23, P621, DOI 10.1002/ajhb.21189; Lende DH, 2012, ENCULTURED BRAIN: AN INTRODUCTION TO NEUROANTHROPOLOGY, P1; Luthar SS, 2007, DEV PSYCHOPATHOL, V19, P931, DOI 10.1017/S0954579407000454; Marmot M, 2007, LANCET, V370, P1153, DOI 10.1016/S0140-6736(07)61385-3; Masten AS, 2007, DEV PSYCHOPATHOL, V19, P921, DOI 10.1017/S0954579407000442; Masten AS, 2014, CHILD DEV, V85, P6, DOI 10.1111/cdev.12205; Masten AS, 2012, ANNU REV PSYCHOL, V63, P227, DOI 10.1146/annurev-psych-120710-100356; Masten AS, 2011, DEV PSYCHOPATHOL, V23, P493, DOI 10.1017/S0954579411000198; Masten AS, 2001, AM PSYCHOL, V56, P227, DOI 10.1037//0003-066X.56.3.227; McDade TW, 2004, J RES ADOLESCENCE, V14, P49, DOI 10.1111/j.1532-7795.2004.01401003.x; McKinlay J., 1979, PATIENTS PHYS ILLNES, P9; Miller KE, 2006, AM J ORTHOPSYCHIAT, V76, P423, DOI 10.1037/0002-9432.76.4.423; Murray LR, 2011, SOC SCI MED, V72, P945, DOI 10.1016/j.socscimed.2011.01.004; Nguyen-Gillham V, 2008, HEALTH SOC CARE COMM, V16, P291, DOI 10.1111/j.1365-2524.2008.00767.x; NICHTER M, 1991, MED ANTHROPOL Q, V5, P236, DOI 10.1525/maq.1991.5.3.02a00040; Obradovi J., 2012, CAMBRIDGE HDB ENV HU, P35; Ozbay Fatih, 2007, Psychiatry (Edgmont), V4, P35; Panter-Brick C, 2002, ANNU REV ANTHROPOL, V31, P147, DOI 10.1146/annurev.anthro.31.040402.085359; Panter-Brick C, 2012, OXFORD HDB POVERTY C, P603; Panter-Brick C., 2013, J CHILD PSYCHOL PSYC, V55, P313, DOI 0.1111/jcpp.12167; Panter-Brick C., 2010, HLTH RISK ADVERSITY; Panter-Brick C, 2008, AM J HUM BIOL, V20, P627, DOI 10.1002/ajhb.20797; Panter-Brick Catherine, 2014, Glob Health Action, V7, P23411, DOI 10.3402/gha.v7.23411; Panter-Brick C, 2013, J CHILD PSYCHOL PSYC, V54, P333, DOI 10.1111/jcpp.12057; Panter-Brick C, 2012, SOCIAL ECOLOGY OF RESILIENCE: A HANDBOOK OF THEORY AND PRACTICE, P369, DOI 10.1007/978-1-4614-0586-3_29; Panter-Brick C, 2009, LANCET, V374, P807, DOI 10.1016/S0140-6736(09)61080-1; Parker M, 2006, J BIOSOC SCI, V38, P1, DOI 10.1017/S0021932005001148; Parker M, 2011, HEALTH RES POLICY SY, V9, DOI 10.1186/1478-4505-9-3; Parker R, 2001, ANNU REV ANTHROPOL, V30, P163, DOI 10.1146/annurev.anthro.30.1.163; Phan T, 2006, INT CUL PSY, P427; Pickett K, 2011, SPIRIT LEVEL WHY GRE; Pollard TM, 2011, ANNU REV ANTHROPOL, V40, P145, DOI 10.1146/annurev-anthro-081309-145719; Pool R., 2005, MED ANTHR UNDERSTAND; Rutter M, 2013, J CHILD PSYCHOL PSYC, V54, P474, DOI 10.1111/j.1469-7610.2012.02615.x; Rutter M, 2012, SOCIAL ECOLOGY OF RESILIENCE: A HANDBOOK OF THEORY AND PRACTICE, P33, DOI 10.1007/978-1-4614-0586-3_3; Sellen DW, 2007, ANNU REV NUTR, V27, P123, DOI 10.1146/annurev.nutr.25.050304.092557; Southwick SM, 2011, RESILIENCE MENTAL HL; Southwick SM, 2012, SCIENCE, V338, P79, DOI 10.1126/science.1222942; Sweet E, 2010, SOC SCI MED, V70, P2029, DOI 10.1016/j.socscimed.2010.02.032; Tomlinson M, 2010, J HEALTH PSYCHOL, V15, P972, DOI 10.1177/1359105310371399; Ungar M, 2012, SOCIAL ECOLOGY OF RESILIENCE: A HANDBOOK OF THEORY AND PRACTICE, P1, DOI 10.1007/978-1-4614-0586-3; Ungar M, 2008, BRIT J SOC WORK, V38, P218, DOI 10.1093/bjsw/bc1343; Wexler LM, 2009, SOC SCI MED, V69, P565, DOI 10.1016/j.socscimed.2009.06.022; Worthman CM, 2010, FORMATIVE EXPERIENCE, P51; Wright MO, 2013, HANDBOOK OF RESILIENCE IN CHILDREN, SECOND EDITION, P15, DOI 10.1007/978-1-4614-3661-4_2 84 35 35 4 27 ANNUAL REVIEWS PALO ALTO 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0897 USA 0084-6570 978-0-8243-1943-4 ANNU REV ANTHROPOL Annu. Rev. Anthropol. 2014 43 431 448 10.1146/annurev-anthro-102313-025944 10.1146/annurev-anthro-092412-155504 18 Anthropology Anthropology BB9LA WOS:000348430900028 2018-11-12 J Richardson, GB; Chen, CC; Dai, CL; Hardesty, PH; Swoboda, CM Richardson, George B.; Chen, Ching-Chen; Dai, Chia-Liang; Hardesty, Patrick H.; Swoboda, Christopher M. Life History Strategy and Young Adult Substance Use EVOLUTIONARY PSYCHOLOGY English Article substance use; life history theory; life history strategy; structural equation modeling STRUCTURAL EQUATION MODELS; REPRODUCTIVE STRATEGIES; K-FACTOR; SOCIOECONOMIC-STATUS; ENVIRONMENTAL RISK; DRUG-ADDICTION; PERSONALITY; MORTALITY; EVOLUTION; VARIABLES This study tested whether life history strategy (LHS) and its intergenerational transmission could explain young adult use of common psychoactive substances. We tested a sequential structural equation model using data from the National Longitudinal Survey of Youth. During young adulthood, fast LHS explained 61% of the variance in overall liability for substance use. Faster parent LHS predicted poorer health and lesser alcohol use, greater neuroticism and cigarette smoking, but did not predict fast LHS or overall liability for substance use among young adults. Young adult neuroticism was independent of substance use controlling for fast LHS. The surprising finding of independence between parent and child LHS casts some uncertainty upon the identity of the parent and child LHS variables. Fast LHS may be the primary driver of young adult use of common psychoactive substances. However, it is possible that the young adult fast LHS variable is better defined as young adult mating competition. We discuss our findings in depth, chart out some intriguing new directions for life history research that may clarify the dimensionality of LHS and its mediation of the intergenerational transmission of substance use, and discuss implications for substance abuse prevention and treatment. [Richardson, George B.; Chen, Ching-Chen; Dai, Chia-Liang] Univ Cincinnati, Sch Human Serv, Cincinnati, OH 45221 USA; [Hardesty, Patrick H.] Univ Louisville, Dept Educ & Counseling Psychol, Louisville, KY 40292 USA; [Hardesty, Patrick H.] Univ Louisville, Coll Student Personnel, Louisville, KY 40292 USA; [Swoboda, Christopher M.] Univ Cincinnati, Sch Educ, Cincinnati, OH USA Richardson, GB (reprint author), Univ Cincinnati, Sch Human Serv, Cincinnati, OH 45221 USA. george.richardson@uc.edu Beeghley L., 2004, STRUCTURE SOCIAL STR; Belsky J, 1997, PSYCHOL INQ, V8, P182, DOI 10.1207/s15327965pli0803_3; Bentler PM, 2009, PSYCHOMETRIKA, V74, P137, DOI 10.1007/s11336-008-9100-1; BENTLER PM, 1987, SOCIOL METHOD RES, V16, P78, DOI 10.1177/0049124187016001004; Bollen KA, 1989, STRUCTURAL EQUATIONS; Browne MW, 1993, TESTING STRUCTURAL E, P136, DOI DOI 10.1177/0049124192021002001; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Bureau of Labor Statistics U.S. Department of Labor, 2013, NAT LONG SURV YOUTH; Buss DM, 2009, AM PSYCHOL, V64, P140, DOI 10.1037/a0013207; Byrne B. M., 2001, STRUCTURAL EQUATION; Caldwell B. M., 1984, HOME OBSERVATION MEA; Carvalho L, 2012, DEMOGRAPHY, V49, P913, DOI 10.1007/s13524-012-0120-1; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Cloninger CR, 1996, ALCOHOL HEALTH RES W, V20, P18; CRONBACH LJ, 1951, PSYCHOMETRIKA, V16, P297; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Enders C. K, 2010, APPL MISSING DATA AN; Figueredo A. J., 2012, APPL EVOLUTIONARY PS, P201; Figueredo A. J., 2011, OXFORD HDB SEXUAL CO, P72; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Friedman NP, 2006, PSYCHOL SCI, V17, P172, DOI 10.1111/j.1467-9280.2006.01681.x; Geronimus Arline T., 1992, Ethnicity and Disease, V2, P222; GERONIMUS AT, 1987, POPUL DEV REV, V13, P245, DOI 10.2307/1973193; GLADDEN PR, 2008, PERSONALITY INDIVIDU, V46, P270, DOI DOI 10.1016/J.PAID.2008.10.010; Goldman MP, 2006, COGNITION ADDICTION, P31; Goldstein MA, 2011, MASSGENERAL HOSPITAL FOR CHILDREN ADOLESCENT MEDICINE HANDBOOK, P155, DOI 10.1007/978-1-4419-6845-6_19; Goldstein RZ, 2002, AM J PSYCHIAT, V159, P1642, DOI 10.1176/appi.ajp.159.10.1642; Green SB, 2009, PSYCHOMETRIKA, V74, P155, DOI 10.1007/s11336-008-9099-3; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Hagen E. H., 2005, EVOLUTIONARY PSYCHOL, P145; Hayduk L, 2007, PERS INDIV DIFFER, V42, P841, DOI 10.1016/j.paid.2006.10.001; Hayduk LA, 2012, BMC MED RES METHODOL, V12, DOI 10.1186/1471-2288-12-159; Hayduk LA, 2000, STRUCT EQU MODELING, V7, P1, DOI 10.1207/S15328007SEM0701_01; Hill EM, 2002, ADDICTION, V97, P401, DOI 10.1046/j.1360-0443.2002.00020.x; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118; Jacobus J, 2009, PHARMACOL BIOCHEM BE, V92, P559, DOI 10.1016/j.pbb.2009.04.001; Jones DN, 2007, CURR RES SOC PSYCHOL, V12, P186; Kline RB, 2010, PRINCIPLES PRACTICE; Krueger RF, 2003, J PERS DISORD, V17, P109, DOI 10.1521/pedi.17.2.109.23986; Krueger RF, 2001, PERS INDIV DIFFER, V30, P1245, DOI 10.1016/S0191-8869(00)00106-9; Krueger RF, 2007, J ABNORM PSYCHOL, V116, P645, DOI 10.1037/0021-843X.116.4.645; Lieberman M., 2007, SOCIAL NEUROSCIENCE, P290; Little R., 2002, STAT ANAL MISSING DA; Little TD, 1999, PSYCHOL METHODS, V4, P192, DOI 10.1037/1082-989X.4.2.192; Margaron H, 2004, SUBST USE MISUSE, V39, P1423, DOI 10.1081/JA-120039399; Markon KE, 2005, J PERS SOC PSYCHOL, V88, P139, DOI 10.1037/0022-3514.88.1.139; McGrath RE, 2005, J PERS ASSESS, V85, P112, DOI 10.1207/s15327752jpa8502_02; MEALEY LR, 2000, SEX DIFFERENCES DEV; Miller JW, 2007, PEDIATRICS, V119, P76, DOI 10.1542/peds.2006-1517; Mulaik SA, 2000, STRUCT EQU MODELING, V7, P36, DOI 10.1207/S15328007SEM0701_02; Muthen B, 1997, ROBUST INFEREN UNPUB; Nation M, 2006, AM J DRUG ALCOHOL AB, V32, P415, DOI 10.1080/00952990600753867; Nesse RM, 2002, ADDICTION, V97, P470, DOI 10.1046/j.1360-0443.2002.00086.x; NESSE RM, 1994, ETHOL SOCIOBIOL, V15, P339, DOI 10.1016/0162-3095(94)90007-8; O'Hara RB, 2010, METHODS ECOL EVOL, V1, P118, DOI 10.1111/j.2041-210X.2010.00021.x; Olderbak S, 2014, PERS INDIV DIFFER, V58, P82, DOI 10.1016/j.paid.2013.10.012; Olderbak SG, 2010, PERS INDIV DIFFER, V49, P234, DOI 10.1016/j.paid.2010.03.041; Patrick ME, 2012, J STUD ALCOHOL DRUGS, V73, P772, DOI 10.15288/jsad.2012.73.772; Pohlmann JT, 2004, J EDUC RES, V98, P14, DOI 10.3200/JOER.98.1.14-23; Pompili M, 2012, EUR ARCH PSY CLIN N, V262, P469, DOI 10.1007/s00406-012-0292-0; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Richardson G. E., 2011, THESIS; Richardson GB, 2012, EVOL PSYCHOL-US, V10, P731, DOI 10.1177/147470491201000408; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Schafer JL, 1997, ANAL INCOMPLETE MULT; Schutter D.J.L.G., 2007, SOCIAL NEUROSCIENCE, P197; Shaffer H.J., 2012, APA ADDICTION SYNDRO, V1; Sibly RM, 2007, P NATL ACAD SCI USA, V104, P17707, DOI 10.1073/pnas.0707725104; Sibly RM, 2009, AM NAT, V173, pE185, DOI 10.1086/598680; Sijtsma K, 2009, PSYCHOMETRIKA, V74, P107, DOI 10.1007/s11336-008-9101-0; Substance Abuse and Mental Health Services Administration (SAMHSA), 2011, SAMHSA HHS PUBL, VSMA 11-4618; The National Center on Addiction and Substance Abuse (CASA), 2005, SHOV 2 IMP SUBST AB; Thornberry TP, 2006, J DRUG ISSUES, V36, P1, DOI 10.1177/002204260603600101; TRIVERS RL, 1971, Q REV BIOL, V46, P35, DOI 10.1086/406755; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Volkow ND, 2004, MOL PSYCHIATR, V9, P557, DOI 10.1038/sj.mp.4001507; Volkow ND, 2007, ARCH NEUROL-CHICAGO, V64, P1575, DOI 10.1001/archneur.64.11.1575; von Hippel PT, 2013, SOCIOL METHOD RES, V42, P105, DOI 10.1177/0049124112464866; Young Margaret B., 2012, Morbidity and Mortality Weekly Report, V61, P1; Yucel M, 2007, AUST NZ J PSYCHIAT, V41, P957, DOI 10.1080/00048670701689444 85 5 5 1 7 EVOLUTIONARY PSYCHOL DAVIE C/O TOOD K SHACKELFORD, DIR, FLORIDA ATLANTIC UNIV, DEPT PSYCHOL, 2912 COLLEGE AVE, DAVIE, FL 33314 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. 2014 12 5 932 957 10.1177/147470491401200506 26 Psychology, Experimental Psychology AY3HY WOS:000347476200006 25365695 DOAJ Gold 2018-11-12 J Copping, LT; Campbell, A; Muncer, S Copping, Lee T.; Campbell, Anne; Muncer, Steven Conceptualizing Time Preference: A Life-History Analysis EVOLUTIONARY PSYCHOLOGY English Article life-history strategies; time preference; impulsivity; sensation seeking; delay discounting; future orientation; aggression SENSATION SEEKING; DYSFUNCTIONAL IMPULSIVITY; AGE-DIFFERENCES; FUTURE ORIENTATION; RISK-TAKING; BEHAVIOR; PERSPECTIVE; SEX; PERSONALITY; AGGRESSION Life-history theory (LHT) has drawn upon the concept of "time preference" as a psychological mechanism for the development of fast and slow strategies. However, the conceptual and empirical nature of this mechanism is ill-defined. This study compared four traits commonly used as measures of "time preference" (impulsivity, sensation seeking, future orientation and delay discounting) and evaluated their relationship to variables associated with life-history strategies (aggressive behavior and mating attitudes, biological sex, pubertal timing, victimization, and exposure to aggression in the environment). Results indicated that only sensation seeking consistently showed all the predicted associations, although impulsivity, future orientation, and delay discounting showed some significant associations. A unidimensional higher-order factor of "time preference" did not adequately fit the data and lacked structural invariance across age and sex, suggesting that personality traits associated with LHT do not represent a global trait. We discuss the use of personality traits as measures in LHT and suggest that greater caution and clarity is required when conceptualizing this construct in future work. [Copping, Lee T.; Campbell, Anne] Univ Durham, Dept Psychol, Durham DH1 3LE, England; [Muncer, Steven] Univ Teesside, Programme Clin Psychol, Middlesbrough, Cleveland, England Copping, LT (reprint author), Univ Durham, Dept Psychol, Durham DH1 3LE, England. l.t.copping@durham.ac.uk Archer J, 2009, BEHAV BRAIN SCI, V32, P249, DOI 10.1017/S0140525X09990951; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Bolland JM, 2003, J ADOLESCENCE, V26, P145, DOI 10.1016/S0140-1971(02)00136-7; Brennan IR, 2010, PSYCHIAT RES, V178, P536, DOI 10.1016/j.psychres.2009.05.006; Brezina T, 2009, CRIMINOLOGY, V47, P1091, DOI 10.1111/j.1745-9125.2009.00170.x; Brown T. A., 2006, CONFIRMATORY FACTOR; Browne M.W., 1993, TESTING STRUCTURAL E, P136, DOI DOI 10.1177/0049124192021002005; Cabrera P., 2009, J CHILD ADOLESCENT T, V2, P271, DOI DOI 10.1080/19361520903317311; Campbell A, 1999, BEHAV BRAIN SCI, V22, P203; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; Chisholm JS, 1999, DEATH HOPE SEX STEPS; Copping LT, 2013, HUM NATURE-INT BIOS, V24, P137, DOI 10.1007/s12110-013-9163-2; Copping LT, 2013, PERS INDIV DIFFER, V54, P908, DOI 10.1016/j.paid.2013.01.003; Cross CP, 2011, PSYCHOL BULL, V137, P97, DOI 10.1037/a0021591; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Depue RA, 1999, BEHAV BRAIN SCI, V22, P491; DICKMAN SJ, 1990, J PERS SOC PSYCHOL, V58, P95, DOI 10.1037/0022-3514.58.1.95; Donohew L, 2000, PERS INDIV DIFFER, V28, P1079, DOI 10.1016/S0191-8869(99)00158-0; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Evenden JL, 1999, PSYCHOPHARMACOLOGY, V146, P348, DOI 10.1007/PL00005481; Fawcett TW, 2012, BEHAV PROCESS, V89, P128, DOI 10.1016/j.beproc.2011.08.015; Figueredo AJ, 2005, HDB EVOLUTIONARY PSY, P851; Frederick S, 2002, J ECON LIT, V40, P351, DOI 10.1257/002205102320161311; Gatzke-Kopp LM, 2002, J ABNORM CHILD PSYCH, V30, P477, DOI 10.1023/A:1019816930615; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Hill E., 2008, J SOCIO-ECON, V37, P1381, DOI DOI 10.1016/J.S0CEC.2006.12.081; Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118; Khurana A, 2012, DEV PSYCHOL, V48, P1416, DOI 10.1037/a0027491; Kruger D. J., 2008, J SOCIAL EVOLUTIONAR, V2, P1, DOI DOI 10.1037/H0099336; Loewenstein G., 2001, SURV RES HOUS EXP PR; MacDonald KB, 2008, PSYCHOL REV, V115, P1012, DOI 10.1037/a0013327; Mazur JE, 1987, QUANTITATIVE ANAL BE, V5, P55; McAlister AR, 2005, BRIT J PSYCHOL, V96, P331, DOI 10.1348/000712605X47936; Mishra S, 2011, PERS INDIV DIFFER, V50, P869, DOI 10.1016/j.paid.2010.11.037; Nagin DS, 2004, J QUANT CRIMINOL, V20, P295, DOI 10.1007/s10940-004-5866-1; Nettle D, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1343; NURMI JE, 1987, ADOLESCENCE, V22, P977; NURMI JE, 1992, INT J BEHAV DEV, V15, P487, DOI 10.1177/016502549201500404; Patton JH, 1995, J CLIN PSYCHOL, V51, P768, DOI 10.1002/1097-4679(199511)51:6<768::AID-JCLP2270510607>3.0.CO;2-1; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Read D, 2004, ORGAN BEHAV HUM DEC, V94, P22, DOI 10.1016/j.obhdp.2004.01.002; Reif A, 2011, PSYCHOPHARMACOLOGY, V214, P239, DOI 10.1007/s00213-010-1915-7; Reimers S, 2009, PERS INDIV DIFFER, V47, P973, DOI 10.1016/j.paid.2009.07.026; Richardson D. S., 2003, INT REV SOCIAL PSYCH, V16, P11; Roff Derek A., 1992; Schechter DE, 2010, HUM NATURE-INT BIOS, V21, P140, DOI 10.1007/s12110-010-9084-2; SETO MC, 1995, PERS INDIV DIFFER, V19, P669, DOI 10.1016/0191-8869(95)00101-B; Smith CL, 2008, BEHAV RES METHODS, V40, P940, DOI 10.3758/BRM.40.4.940; Stearns S. C., 1992, EVOLUTION LIFE HIST; Steinberg L, 2008, DEV PSYCHOL, V44, P1764, DOI 10.1037/a0012955; Steinberg L, 2009, CHILD DEV, V80, P28, DOI 10.1111/j.1467-8624.2008.01244.x; Teuscher U, 2011, PSYCHOL REC, V61, P613, DOI 10.1007/BF03395780; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Trostel PA, 2001, ECON INQ, V39, P379, DOI 10.1093/ei/39.3.379; Vigil-Colet A, 2004, PERS INDIV DIFFER, V37, P1431, DOI 10.1016/j.paid.2004.01.013; Wilson J. Q., 1985, CRIME HUMAN NATURE D; Wilson L. C., 2010, AGGRESSIVE BEHAV, V35, P1; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; WILSON M, 1985, ETHOL SOCIOBIOL, V6, P59, DOI 10.1016/0162-3095(85)90041-X; Wilson M, 2006, PSYCHOL SCI, V17, P989, DOI 10.1111/j.1467-9280.2006.01817.x; Zimbardo PG, 1999, J PERS SOC PSYCHOL, V77, P1271, DOI 10.1037//0022-3514.77.6.1271; ZUCKERMAN M, 1993, J PERS SOC PSYCHOL, V65, P757, DOI 10.1037/0022-3514.65.4.757; Zuckerman M., 1994, BEHAV EXPRESSIONS BI; Zuckerman M, 1979, SENSATION SEEKING OP; Zuckerman M., 1993, NORMS ZUCKERMA UNPUB; Zumbo BD, 2007, J MOD APPL STAT METH, V6, P21 68 7 7 0 13 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. 2014 12 4 829 847 10.1177/147470491401200411 19 Psychology, Experimental Psychology AR6LW WOS:000343695900011 25300057 DOAJ Gold, Green Published 2018-11-12 J Copping, LT; Campbell, A; Muncer, S Copping, Lee T.; Campbell, Anne; Muncer, Steven Psychometrics and Life History Strategy: The Structure and Validity of the High K Strategy Scale EVOLUTIONARY PSYCHOLOGY English Article K-Strategy; life history; puberty; sex differences; psychometric analysis REPRODUCTIVE STRATEGY; RISK-TAKING; R-SELECTION; DARK TRIAD; SEX; UNPREDICTABILITY; PERSONALITY; CHILDHOOD; EVOLUTION; ATTACHMENT In this paper, we critically review the conceptualization and implementation of psychological measures of life history strategy associated with Differential K theory. The High K Strategy Scale (HKSS: Giosan, 2006) was distributed to a large British sample (n = 809) with the aim of assessing its factor structure and construct validity in relation to theoretically relevant life history variables: age of puberty, age of first sexual encounter, and number of sexual partners. Exploratory and confirmatory factor analyses indicated that the HKSS in its current form did not show an adequate statistical fit to the data. Modifications to improve fit indicated four correlated factors (personal capital, environmental stability, environmental security, and social capital). Later puberty in women was positively associated with measures of the environment and personal capital. Among men, contrary to Differential K predictions but in line with female mate preferences, earlier sexual debut and more sexual partners were positively associated with more favorable environments and higher personal and social capital. We raise concerns about the use of psychometric indicators of lifestyle and personality as proxies for life history strategy when they have not been validated against objective measures derived from contemporary life history theory and when their status as causes, mediators, or correlates has not been investigated. [Copping, Lee T.; Campbell, Anne] Univ Durham, Dept Psychol, Durham DH1 3LE, England; [Muncer, Steven] Univ Teesside, Programme Clin Psychol, Middlesbrough, Cleveland, England Copping, LT (reprint author), Univ Durham, Dept Psychol, Durham DH1 3LE, England. l.t.copping@durham.ac.uk Abed R., 2012, THE SCIENTIFIC WORLD, V2012, P1, DOI DOI 10.1100/2012/290813; BAILEY JM, 1994, J PERS SOC PSYCHOL, V66, P1081, DOI 10.1037/0022-3514.66.6.1081; Barclay H. J., 1981, AM NAT, V117, P994; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Bogeart A. F., 1989, PERSONALITY AND INDI, V10, P1071; Browne MW, 1993, TESTING STRUCTURAL E, P136, DOI DOI 10.1177/0049124192021002001; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; Campbell A, 1999, BEHAV BRAIN SCI, V22, P203; CARROLL JL, 1985, ARCH SEX BEHAV, V14, P131, DOI 10.1007/BF01541658; Charlesworth B., 1980, EVOLUTION IN AGE STR; CHARNOV EL, 1990, EVOL ECOL, V4, P273, DOI 10.1007/BF02214335; Charnov EL, 1993, LIFE HISTORY INVARIA; Chisholm J., 1999, DEATH HOPE AND SEX S; CLARK G, 2007, FAREWELL ALMS; Clark G, 2009, AM ECON REV, V99, P242, DOI 10.1257/aer.99.2.242; Daly M., 1983, SEX EVOLUTION AND BE; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Del Giudice M, 2010, CHILD DEV PERSPECT, V4, P97, DOI 10.1111/j.1750-8606.2010.00125.x; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; DRAPER P, 1989, ETHOL SOCIOBIOL, V10, P145, DOI 10.1016/0162-3095(89)90017-4; Dunkel CS, 2012, PERS INDIV DIFFER, V52, P759, DOI 10.1016/j.paid.2011.12.035; Dunkel CS, 2012, PERS INDIV DIFFER, V52, P202, DOI 10.1016/j.paid.2011.10.016; Dunkel CS, 2011, PERS INDIV DIFFER, V51, P34, DOI 10.1016/j.paid.2011.03.005; Dunkel CS, 2010, PERS INDIV DIFFER, V48, P681, DOI 10.1016/j.paid.2009.12.014; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2013, PERS INDIV DIFFER, V55, P251, DOI 10.1016/j.paid.2012.04.033; Giosan C., 2006, EVOLUTIONARY PSYCHOL, V4, P394, DOI DOI 10.1177/147470490600400131; Giosan C, 2013, AUST J PSYCHOL, V65, P156, DOI 10.1111/ajpy.12016; Giosan C, 2009, EVOL PSYCHOL-US, V7, P28; Gladden P., 2009, J EVOLUTIONARY PSYCH, V7, P167, DOI DOI 10.1556/JEP.7.2009.2.5; Gladden PR, 2008, EVOL HUM BEHAV, V29, P319, DOI 10.1016/j.evolhumbehav.2008.03.003; Goodman A, 2012, P ROY SOC B-BIOL SCI, V279, P4342, DOI 10.1098/rspb.2012.1415; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; James J, 2012, DEV PSYCHOL, V48, P687, DOI 10.1037/a0026427; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Kanazawa S, 2003, SOCIOL QUART, V44, P291; LUCKINBILL LS, 1979, AM NAT, V113, P427, DOI 10.1086/283400; McDonald MM, 2012, PERS INDIV DIFFER, V52, P601, DOI 10.1016/j.paid.2011.12.003; Messick S., 1989, ED MEASUREMENT, P13; Mulder M B, 1992, Hum Nat, V3, P45, DOI 10.1007/BF02692266; MULDER MB, 1990, BEHAV ECOL SOCIOBIOL, V27, P255; Muncer S., 2013, PERSONALITY AND INDI, V51, P775; Negriff S, 2011, J YOUTH ADOLESCENCE, V40, P1343, DOI 10.1007/s10964-010-9621-7; Nettle D, 2013, BEHAV ECOL, V24, P1031, DOI 10.1093/beheco/ars222; NRS Ltd, 2011, NATIONAL READERSHIP; Olderbak S, 2014, PERS INDIV DIFFER, V58, P82, DOI 10.1016/j.paid.2013.10.012; Olderbak SG, 2010, PERS INDIV DIFFER, V49, P234, DOI 10.1016/j.paid.2010.03.041; PERUSSE D, 1993, BEHAV BRAIN SCI, V16, P267, DOI 10.1017/S0140525X00029939; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Roff Derek A., 1992; Rushton J. P., 2008, PERSONALITY AND INDI, V45, P679, DOI DOI 10.1016/J.PAID.2008.07.015; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; SCHAFFER WM, 1983, AM NAT, V121, P418, DOI 10.1086/284070; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; STEARNS SC, 1992, THE EVOLUTION OF LIF; Steiger JH, 1989, EZPATH CAUSAL MODELI; Tanner J. M., 1990, FOETUS INTO MAN PHYS; TAYLOR CE, 1980, EVOLUTION, V34, P1183, DOI 10.1111/j.1558-5646.1980.tb04064.x; Tourangeau R, 2007, PSYCHOL BULL, V133, P859, DOI 10.1037/0033-2909.133.5.859; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X 67 22 22 0 13 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. 2014 12 1 200 222 10.1177/147470491401200115 23 Psychology, Experimental Psychology AR6LS WOS:000343695600014 25299760 DOAJ Gold, Green Published 2018-11-12 J Webster, GD; Graber, JA; Gesselman, AN; Crosier, BS; Schember, TO Webster, Gregory D.; Graber, Julia A.; Gesselman, Amanda N.; Crosier, Benjamin S.; Schember, Tatiana Orozco A Life History Theory of Father Absence and Menarche: A Meta-Analysis EVOLUTIONARY PSYCHOLOGY English Article menarche; meta-analysis; puberty; father absence; life history NATIONAL PROBABILITY SAMPLE; CHILDHOOD SEXUAL-ABUSE; REPRODUCTIVE DEVELOPMENT; INDIVIDUAL-DIFFERENCES; EVOLUTIONARY PERSPECTIVE; PUBERTAL MATURATION; FAMILY ENVIRONMENT; LONGITUDINAL TEST; RISK-TAKING; AGE Is the absence of biological fathers related to their daughters' earlier age at menarche? Drawing on evolutionary psychology and life history theory, prior research has suggested such a relationship (Belsky, Steinberg, and Draper, 1991; Draper and Harpending, 1982; Ellis, 2004). Although qualitative reviews have shown narrative support for this relationship (Allison and Hyde, 2013; Ellis, 2004; Kim, Smith, and Palermiti, 1997; Susman and Dorn, 2009), no quantitative review exists to provide empirical support for this relationship or to explain mixed results. Thus, we conducted a random-effects meta-analysis of correlations (Card, 2012) on father absence and daughter menarcheal age (k = 33; N = 70,403). The weighted mean correlation was .14, 95% CI [.09, .19], suggesting that father absence was significantly related to earlier menarche; effect sizes were heterogeneous. Egger's regression (Egger, Smith, Schneider, and Minder, 1997) showed no evidence of publication bias (file-drawer effect; r = .34, p = .052). Outcome measure differences (menarcheal age vs. menarcheal age embedded in a multi-item pubertal timing scale) did not moderate effect sizes. Study year effects (Schooler, 2011) were also nonsignificant. Our findings support one aspect of the life history model and provide groundwork for subsequent examination of other pathways in the model. [Webster, Gregory D.; Graber, Julia A.; Gesselman, Amanda N.; Crosier, Benjamin S.; Schember, Tatiana Orozco] Univ Florida, Dept Psychol, Gainesville, FL 32611 USA Webster, GD (reprint author), Univ Florida, Dept Psychol, Gainesville, FL 32611 USA. gdwebs@gmail.com Aiken L.S., 1991, MULTIPLE REGRESSION; Allison CM, 2013, SEX ROLES, V68, P55, DOI 10.1007/s11199-011-9993-5; Alvergne A, 2008, PHYSIOL BEHAV, V95, P625, DOI 10.1016/j.physbeh.2008.09.005; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2007, CHILD DEV, V78, P1302, DOI 10.1111/j.1467-8624.2007.01067.x; Belsky J, 2012, CURR DIR PSYCHOL SCI, V21, P310, DOI 10.1177/0963721412453588; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; Bogaert AF, 2005, J ADOLESCENCE, V28, P541, DOI 10.1016/j.adolescence.2004.10.008; Bogaert AF, 2008, J BIOSOC SCI, V40, P623, DOI 10.1017/S0021932007002386; Bowlby J, 1982, ATTACHMENT LOSS; Burkett B. N., 2000, THESIS FRANKLIN MARS; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; Cameron NM, 2005, NEUROSCI BIOBEHAV R, V29, P843, DOI 10.1016/j.neubiorev.2005.03.022; CAMPBELL BC, 1995, J BIOSOC SCI, V27, P127; Card N. A., 2012, APPL META ANAL SOCIA; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; COALL DA, 1999, 11 ANN M HUM BEH EV; Cohen J, 1988, STAT POWER ANAL BEHA; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Conger RD, 2007, ANNU REV PSYCHOL, V58, P175, DOI 10.1146/annurev.psych.58.110405.085551; Deardorff J, 2011, J ADOLESCENT HEALTH, V48, P441, DOI 10.1016/j.jadohealth.2010.07.032; DelPriore DJ, 2013, J PERS SOC PSYCHOL, V105, P234, DOI 10.1037/a0032784; Dishion TJ, 2012, DEV PSYCHOL, V48, P703, DOI 10.1037/a0027304; Doughty D, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P169; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Draper P., 1988, SOCIOBIOLOGICAL PERS, P340, DOI DOI 10.1007/978-1-4612-3760-0_12; Egger M, 1997, BMJ-BRIT MED J, V315, P629, DOI 10.1136/bmj.315.7109.629; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2000, CHILD DEV, V71, P485, DOI 10.1111/1467-8624.00159; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Ellis BJ, 2012, DEV PSYCHOL, V48, P591, DOI 10.1037/a0027651; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2012, DEV PSYCHOPATHOL, V24, P317, DOI 10.1017/S095457941100085X; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Foster H, 2008, J HEALTH SOC BEHAV, V49, P162, DOI 10.1177/002214650804900204; Gesselman A. N., 2012, UNPUB; Graber J. A., 2009, HDB ADOLESCENT PSYCH, P642, DOI DOI 10.1002/9780470479193.ADLPSY001020; Graber JA, 2004, J AM ACAD CHILD PSY, V43, P718, DOI 10.1097/01.chi.0000120022.14101.11; GRABER JA, 1995, CHILD DEV, V66, P346, DOI 10.2307/1131582; Hadden BW, 2014, PERS SOC PSYCHOL REV, V18, P42, DOI 10.1177/1088868313501885; Hirsch LR, 1996, ETHOL SOCIOBIOL, V17, P55, DOI 10.1016/0162-3095(96)00128-8; Hoier S, 2003, HUM NATURE-INT BIOS, V14, P209, DOI 10.1007/s12110-003-1004-2; Hrdy S. B., 1999, MOTHER NATURE HIST M; Hulanicka B, 2001, AM J HUM BIOL, V13, P771, DOI 10.1002/ajhb.1123; Hulanicka B., 1999, J REPROD INFANT PSYC, V17, P119; Hunter J.E., 2004, METHODS METAANALYSIS; James J, 2012, DEV PSYCHOL, V48, P687, DOI 10.1037/a0026427; James-Todd T, 2010, ANN EPIDEMIOL, V20, P836, DOI 10.1016/j.annepidem.2010.08.006; Jean RT, 2011, AM J EPIDEMIOL, V173, P1203, DOI 10.1093/aje/kwq498; Jennions MD, 2002, P ROY SOC B-BIOL SCI, V269, P43, DOI 10.1098/rspb.2001.1832; Joinson C, 2011, BRIT J PSYCHIAT, V198, P17, DOI 10.1192/bjp.bp.110.080861; JONES B, 1972, MED J AUSTRALIA, V2, P533; Jorm AF, 2004, AM J MED GENET B, V125B, P105, DOI 10.1002/ajmg.b.20114; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; Kiernan KE, 1997, POP STUD-J DEMOG, V51, P41, DOI 10.1080/0032472031000149716; Kim K, 1998, INT J BEHAV DEV, V22, P729, DOI 10.1080/016502598384144; Kim K, 1997, EVOL HUM BEHAV, V18, P109, DOI 10.1016/S1090-5138(96)00114-6; LOW BS, 1978, AM NAT, V112, P197, DOI 10.1086/283260; MEKOS D, 1992, PSYCHOSOCIAL ANTECED; Mendle J., 2006, DEV PSYCHOL, V42, P535; Mendle J, 2009, CHILD DEV, V80, P1463, DOI 10.1111/j.1467-8624.2009.01345.x; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.2307/1130900; MORRIS NM, 1980, J YOUTH ADOLESCENCE, V9, P271, DOI 10.1007/BF02088471; Mustanski BS, 2004, DEV PSYCHOL, V40, P1188, DOI 10.1037/0012-1649.40.6.1188; Muthen L. K., 2010, MPLUS USERS GUIDE; Neberich W, 2010, EUR J DEV PSYCHOL, V7, P153, DOI 10.1080/17405620801928029; Perilloux HK, 2010, SOC PSYCHOL PERS SCI, V1, P34, DOI 10.1177/1948550609349514; PETERSEN AC, 1988, J YOUTH ADOLESCENCE, V17, P117, DOI 10.1007/BF01537962; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; Romans SE, 2003, PSYCHOL MED, V33, P933, DOI 10.1017/S0033291703007530; ROSENTHAL R, 1979, PSYCHOL BULL, V86, P638, DOI 10.1037/0033-2909.86.3.638; Schmidt F, 2010, PERSPECT PSYCHOL SCI, V5, P233, DOI 10.1177/1745691610369339; Schooler J, 2011, NATURE, V470, P437, DOI 10.1038/470437a; Sheppard P., 2011, BIOL LETT; SIMPSON JA, 1991, J PERS SOC PSYCHOL, V60, P870, DOI 10.1037/0022-3514.60.6.870; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; SURBEY MK, 1990, MG PRIMATOL, V13, P11; Surbey MK, 1998, HUM NATURE-INT BIOS, V9, P67, DOI 10.1007/s12110-998-1012-3; Susman E. J., 2009, HDB ADOLESCENT PSYCH, V1, P116; Tanner JM, 1962, GROWTH ADOLESCENCE; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; Toromanovic Alma, 2004, Bosn J Basic Med Sci, V4, P5; Vigil JM, 2005, DEV PSYCHOL, V41, P553, DOI 10.1037/0012-1649.41.3.553; Webster GD, 2007, J RES PERS, V41, P917, DOI 10.1016/j.jrp.2006.08.007; Webster GD, 2012, J RES PERS, V46, P591, DOI 10.1016/j.jrp.2012.07.001; WIERSON M, 1993, ADOLESCENCE, V28, P913; Zabin LS, 2005, J ADOLESCENT HEALTH, V36, P393, DOI 10.1016/j.jadohealth.2004.07.013 91 26 26 1 24 EVOLUTIONARY PSYCHOL DAVIE C/O TOOD K SHACKELFORD, DIR, FLORIDA ATLANTIC UNIV, DEPT PSYCHOL, 2912 COLLEGE AVE, DAVIE, FL 33314 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. 2014 12 2 SI 273 294 10.1177/147470491401200202 22 Psychology, Experimental Psychology AR6LT WOS:000343695700002 25299880 DOAJ Gold 2018-11-12 J Hawley, PH Hawley, Patricia H. Ontogeny and Social Dominance: A Developmental View of Human Power Patterns EVOLUTIONARY PSYCHOLOGY English Article individual differences; personality; development; social dominance; power; prestige MORAL DEVELOPMENT THEORY; RESOURCE-CONTROL; EVOLUTIONARY PERSPECTIVE; SEXUAL SELECTION; REPRODUCTIVE STRATEGY; PEER GROUP; BEHAVIOR; PRESCHOOLERS; PERSONALITY; CHILDREN Developmental science has long evolutionary roots and has historically focused on individual differences. Accordingly, developmental models can inform conversations about phylogeny and personality. The present paper evokes life history theory to describe a theoretical model of competitive behavior that applies to both children and adults (resource control theory: RCT). The model suggests that prosocial and coercive behavior, though different in manifest form, serve similar evolutionary functions. Accordingly, RCT presents a view on social dominance that gives primacy to function over form that contrasts sharply from traditional views. This reformulation gives rise to novel questions (both developmental and non-developmental) and challenges long accepted views on prosociality (e.g., that it is altruistic) and aggression (e.g., that it is maladaptive). Similarly, RCT gives rise to a minority perspective that aligns aggression with social competence. Texas Tech Univ, Coll Educ, Lubbock, TX 79409 USA Hawley, PH (reprint author), Texas Tech Univ, Coll Educ, Lubbock, TX 79409 USA. Patricia.Hawley@ttu.edu Abbot P, 2011, NATURE, V471, pE1, DOI [10.1038/nature09831, 10.1038/nature09835]; ABRAMOVITCH R, 1976, SOCIAL STRUCTURE ATT, P153; Alcock J, 2005, ANIMAL BEHAV EVOLUTI; Alexander R. D., 1987, BIOL MORAL SYSTEMS; Alonso F, 2012, PHYSIOL BEHAV, V106, P612, DOI 10.1016/j.physbeh.2012.04.003; Axelrod Robert M., 1984, EVOLUTION COOPERATIO; Baar P, 2011, SPORT PSYCHOL, V25, P444, DOI 10.1123/tsp.25.4.444; Bakan D, 1966, DUALITY HUMAN EXISTE; BAUMEISTER RF, 1995, PSYCHOL BULL, V117, P497, DOI 10.1037/0033-2909.117.3.497; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Berlin I, 1980, CURRENT ESSAYS HIST, P25; BERNSTEIN IS, 1981, BEHAV BRAIN SCI, V4, P419, DOI 10.1017/S0140525X00009614; Blau PM, 1964, EXCHANGE POWER SOCIA; Boehm C, 2000, J CONSCIOUSNESS STUD, V7, P79; BOEHM C, 1993, CURR ANTHROPOL, V34, P227, DOI 10.1086/204166; Boehm C, 1999, HIERARCHY FOREST EVO; Boehm C., 2010, SOCIAL PSYCHOL POWER, P46; Bowlby J., 1969, ATTACHMENT LOSS, V1; Bowles S, 2011, COOPERATIVE SPECIES: HUMAN RECIPROCITY AND ITS EVOLUTION, P1; Boyd R, 2003, P NATL ACAD SCI USA, V100, P3531, DOI 10.1073/pnas.0630443100; Buhler C., 1927, QUEL STUD JUGKD, V5, P1; Bull J. J., 1983, EVOLUTION SEX DETERM; Buss D. M., 2011, EVOLUTION PERSONALIT; Buss DM, 1999, J PERS, V67, P209, DOI 10.1111/1467-6494.00053; Byrne R. W., 1988, MACHIAVELLIAN INTELL; Campbell RL, 1996, DEV REV, V16, P1, DOI 10.1006/drev.1996.0001; Camperio Ciani A., 2011, EVOLUTION PERSONALIT, P425; Carere C., 2013, ANIMAL PERSONALITIES; CARO TM, 1986, ANIM BEHAV, V34, P1483, DOI 10.1016/S0003-3472(86)80219-6; Carpenter CR, 1942, BIOL S, V8, P177; CHANCE MRA, 1967, MAN, V2, P503, DOI 10.2307/2799336; Charlesworth WR, 1996, INT J BEHAV DEV, V19, P25, DOI 10.1080/016502596385910; Chen BB, 2012, ASIAN J SOC PSYCHOL, V15, P122, DOI 10.1111/j.1467-839X.2012.01373.x; COIE JD, 1998, HDB CHILD PSYCHOL, V3, P779, DOI DOI 10.1002/9780470147658.CHPSY0312; Darwin C.R., 1871, DESCENT MAN SELECTIO; Dawkins R., 1976, SELFISH GENE; de Waal F, 1996, GOOD NATURED ORIGINS; de Waal Frans, 1982, CHIMPANZEE POLITICS; DEWAAL FBM, 1986, Q REV BIOL, V61, P459, DOI 10.1086/415144; Dijkstra JK, 2010, J RES ADOLESCENCE, V20, P942, DOI 10.1111/j.1532-7795.2010.00671.x; Dodge KA, 2012, DEV PSYCHOL, V48, P624, DOI 10.1037/a0027683; Drea CM, 2005, INTEGR COMP BIOL, V45, P915, DOI 10.1093/icb/45.5.915; Dreber A, 2008, NATURE, V452, P348, DOI 10.1038/nature06723; Dunbar R. I. M., 1988, PRIMATE SOCIAL SYSTE; EISENBERG N, 1984, CHILD STUDY J, V14, P115; Eisenberg N, 1996, DEV REV, V16, P48, DOI 10.1006/drev.1996.0002; Eisenberg N, 1989, ROOTS PROSOCIAL BEHA; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Fehr E, 2000, J ECON PERSPECT, V14, P159, DOI 10.1257/jep.14.3.159; Figueredo A. J., 1992, MULTIVARIATE BEHAV R, V27, P413; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; FISHER R. A., 1930, GENETICAL THEORY NAT; Frankenhuis WE, 2012, DEV PSYCHOL, V48, P628, DOI 10.1037/a0025629; GADGIL M, 1972, AM NAT, V106, P574, DOI 10.1086/282797; Gintis H., CULTURAL EV IN PRESS; Gintis H., 2012, SOCIAL EVOLUTION FOR; Gintis Herbert, 2004, J BIOECON, DOI [10.1007/s10818-012-9140-6, DOI 10.1007/s10818-012-9140-6]; Gosling SD, 2001, PSYCHOL BULL, V127, P45, DOI 10.1037/0033-2909.127.1.45; Gowaty P. A., 1997, FEMINISM EVOLUTIONAR, P351; Green VA, 2008, J GENET PSYCHOL, V169, P92, DOI 10.3200/GNTP.169.1.92-112; Griskevicius V, 2010, J PERS SOC PSYCHOL, V98, P392, DOI 10.1037/a0017346; GROSS MR, 1991, PHILOS T R SOC B, V332, P59, DOI 10.1098/rstb.1991.0033; HALDANE JBS, 1932, CAUSES EVOLUTION; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; Hardy CL, 2006, PERS SOC PSYCHOL B, V32, P1402, DOI 10.1177/0146167206291006; Hawley P., 2006, HDB PERSONALITY DEV, P147; Hawley P. H., 2011, EVOLUTION PERSONALIT, pix; Hawley P. H., 2014, MULTIDIMENSIONALITY, P43; Hawley P. H., 2007, AGGRESSION ADAPTATIO, P1; Hawley PH, 2008, INT J BEHAV DEV, V32, P76, DOI 10.1177/0165025407084054; Hawley PH, 2007, J SCHOOL PSYCHOL, V45, P499, DOI 10.1016/j.jsp.2007.04.001; Hawley PH, 2007, INT J BEHAV DEV, V31, P170, DOI 10.1177/0165025407074630; Hawley PH, 2012, J EXP CHILD PSYCHOL, V112, P18, DOI 10.1016/j.jecp.2011.10.004; Hawley PH, 2011, J RES ADOLESCENCE, V21, P307, DOI 10.1111/j.1532-7795.2010.00732.x; Hawley PH, 2009, J SOC PERS RELAT, V26, P1097, DOI 10.1177/0265407509347939; Hawley PH, 2003, STRUCTURAL EQUATION MODELING, P143, DOI 10.1017/CBO9780511542138.007; Hawley PH, 1999, MERRILL PALMER QUART, V45, P185; Hawley PH, 2003, J EXP CHILD PSYCHOL, V85, P213, DOI 10.1016/S0022-0965(03)00073-0; Hawley PH, 1999, DEV REV, V19, P97, DOI 10.1006/drev.1998.0470; Hawley PH, 2003, MERRILL PALMER QUART, V49, P279, DOI 10.1353/mpq.2003.0013; Hawley PH, 2002, INT J BEHAV DEV, V26, P167, DOI 10.1080/01650250042000726; Henrich J, 2001, EVOL HUM BEHAV, V22, P165, DOI 10.1016/S1090-5138(00)00071-4; Hofer H, 2003, EVOL ECOL, V17, P315, DOI 10.1023/A:1027352517231; HOFFMAN ML, 1994, REACHING OUT CARING, P196; HOFFMAN ML, 1983, SOCIAL COGNITION SOC; HOMBERG U, 1991, J COMP NEUROL, V303, P245, DOI 10.1002/cne.903030207; Hrdy S. B., 2009, MOTHERS OTHERS EVOLU; Hrdy Sarah Blaffer, 1999, WOMAN NEVER EVOLVED; Hsu Y., 2006, FISH COGNITION BEHAV, P96; Ishikawa Y, 2011, INSECT SOC, V58, P519, DOI 10.1007/s00040-011-0173-y; JESSOR R, 1991, J ADOLESCENT HEALTH, V12, P597, DOI 10.1016/1054-139X(91)90007-K; Jokela M, 2012, PSYCHOL SCI, V23, P835, DOI 10.1177/0956797612439067; Jokela M, 2009, J PERS SOC PSYCHOL, V96, P218, DOI 10.1037/a0014058; Kelley H. H, 1978, INTERPERSONAL RELATI; Keltner D, 2003, PSYCHOL REV, V110, P265, DOI 10.1037/0033-295X.110.2.265; KENNY DA, 1984, ADV EXP SOC PSYCHOL, V18, P141, DOI 10.1016/S0065-2601(08)60144-6; Krause J, 2002, LIVING GROUPS; KREBS JR, 1997, BEHAV ECOLOGY EVOLUT; Kropotkin P, 1902, MUTUAL AID FACTOR EV; KylHeku LM, 1996, PERS INDIV DIFFER, V21, P497, DOI 10.1016/0191-8869(96)00103-1; Lukaszewski AW, 2011, PERS SOC PSYCHOL B, V37, P409, DOI 10.1177/0146167210397209; Maccoby E. E., 1974, PSYCHOL SEX DIFFEREN; Machiavelli N., 1961, PRINCE; Marks PEL, 2012, SOC DEV, V21, P501, DOI 10.1111/j.1467-9507.2011.00647.x; Mascaro O, 2012, P NATL ACAD SCI USA, V109, P6862, DOI 10.1073/pnas.1113194109; MCGREW WC, 1972, ETHOLOGICAL STUDY CH; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; Mikulincer M., 2007, ATTACHMENT ADULTHOOD; Nettle D., 2011, EVOLUTION PERSONALIT, P5; Nowak MA, 2011, NATURE, V471, pE9, DOI 10.1038/nature09836; Olthof T, 2011, J SCHOOL PSYCHOL, V49, P339, DOI 10.1016/j.jsp.2011.03.003; Ozer DJ, 2006, ANNU REV PSYCHOL, V57, P401, DOI 10.1146/annurev.psych.57.102904.190127; Palmen H., 2011, NARCISSISM MACHIAVEL, P233; Pellegrini AD, 2008, DEV REV, V28, P461, DOI 10.1016/j.dr.2008.03.001; Pelletier F, 2006, ANIM BEHAV, V71, P649, DOI 10.1016/j.anbehav.2005.07.008; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Pigliucci M., 2001, PHENOTYPIC PLASTICIT; RAVEN BH, 1958, SOCIOMETRY, V21, P83, DOI 10.2307/2785895; Roff Derek A., 1992; Roseth CJ, 2011, SOC DEV, V20, P185, DOI 10.1111/j.1467-9507.2010.00579.x; ROWELL TE, 1974, BEHAV BIOL, V11, P131, DOI 10.1016/S0091-6773(74)90289-2; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; SAHLINS MD, 1963, COMP STUD SOC HIST, V5, P285, DOI 10.1017/S0010417500001729; Schjelderup-Ebbe T., 1922, Zeitschrift fuer Psychologie Leipzig, V88, P225; Sell A, 2009, P NATL ACAD SCI USA, V106, P15073, DOI 10.1073/pnas.0904312106; Silk JB, 2003, SCIENCE, V302, P1231, DOI 10.1126/science.1088580; STRAYER FF, 1976, CHILD DEV, V47, P980, DOI 10.2307/1128434; Stump KN, 2009, SOCIAL BEHAVIOR AND SKILLS IN CHILDREN, P23, DOI 10.1007/978-1-4419-0234-4_2; Teisl M, 2012, DEV PSYCHOL, V48, P575, DOI 10.1037/a0024888; TOOBY J, 1990, J PERS, V58, P17, DOI 10.1111/j.1467-6494.1990.tb00907.x; TRIVERS RL, 1971, Q REV BIOL, V46, P35, DOI 10.1086/406755; Van Vugt M, 2008, AM PSYCHOL, V63, P182, DOI 10.1037/0003-066X.63.3.182; Van Vugt M, 2013, BRIT J PSYCHOL, V104, P3, DOI 10.1111/j.2044-8295.2011.02093.x; Van Vugt M, 2010, GROUP PROCESS INTERG, V13, P101, DOI 10.1177/1368430209342258; Wall S., 1978, PATTERNS ATTACHMENT; WALSTER E, 1978, EQUITY THEORY RES; West SA, 2007, J EVOLUTION BIOL, V20, P415, DOI 10.1111/j.1420-9101.2006.01258.x; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Whitman D. W., 2009, Phenotypic plasticity of insects: mechanisms and consequences, P1; WILSON DS, 1993, J COMP PSYCHOL, V107, P250, DOI 10.1037//0735-7036.107.3.250; Wilson EO, 2012, SOCIAL CONQUEST EART; Wright S, 1931, GENETICS, V16, P0097; Zahn-Waxler C., 1983, ACAD PSYCHOL B, V5, P247 145 8 8 0 22 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. 2014 12 2 SI 318 342 25 Psychology, Experimental Psychology AR6LT WOS:000343695700004 25299882 DOAJ Gold 2018-11-12 J Vadell, MV; Villafane, IEG; Cavia, R Vadell, M. V.; Gomez Villafane, I. E.; Cavia, R. Are life-history strategies of Norway rats (Rattus norvegicus) and house mice (Mus musculus) dependent on environmental characteristics? WILDLIFE RESEARCH English Article abundance; demography; life-history traits; reproduction INHABITING RICE GRANARIES; PUREORA FOREST PARK; POPULATION ECOLOGY; NEW-ZEALAND; MOUSE-POPULATIONS; CENTRAL ARGENTINA; POULTRY FARMS; ISLAND; DOMESTICUS; AUSTRALIA Context Life-history theory attempts to explain the way in which an organism is adapted to its environment as well as explaining the differences in life-history strategies among and within species. Aims The aim of this paper was to compare life-history traits of the Norway rat and the house mouse living in different habitats and geographic regions so as to find patterns related to environmental characteristics on the basis of published ecological studies conducted before 2011. Methods The environments where rodent populations lived were characterised according to climate type, occurrence of freezing temperatures and frost, degree of anthropisation and trapping location. Four demographic characteristics were analysed. A canonical correspondence analysis was performed to explain the effects of environmental variables on the demographic characteristics of rodents. Information was gathered from 35 articles published between 1945 and 2010. Key results Most populations of both species showed differences in abundance throughout the year, but no defined pattern was common among populations. The pregnancy rate of Norway rat was highest during spring and autumn in urban environments, during spring and winter in rural environments and during summer in sylvan habitats. House mouse populations were most frequently reported to experience high pregnancy rates during summer. Contrary to urban and rural populations, in sylvan environments the occurrence of a reproductive break was the most commonly reported pattern for both species. Litter size of Norway rat depended on the degree of anthropisation and the occurrence of freezing temperatures and frost. Litter size was greater in rural environments and in areas without freezing temperatures and frost. House mouse did not show differences in litter size resulting from any of the environmental characteristics analysed. Conclusions Both species are able to modify their reproductive strategies according to environmental characteristics, especially according to the degree of anthropisation of the environment. In sylvan areas, where animals are more exposed to seasonal changes in weather conditions, changes in reproductive investment are more evident. Implications Regarding the implications for rodent control, the best time to apply control measures could be winter in sylvan and urban environments. In rural environments, the best time for conducting control efforts is less clear, although cold seasons seem also to be the best. [Vadell, M. V.; Gomez Villafane, I. E.; Cavia, R.] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Lab Ecol Poblac, Dept Ecol Genet & Evoluc, Buenos Aires, DF, Argentina; [Vadell, M. V.; Gomez Villafane, I. E.; Cavia, R.] UBA CONICET, IEGEBA, Buenos Aires, DF, Argentina Cavia, R (reprint author), Univ Buenos Aires, Fac Ciencias Exactas & Nat, Lab Ecol Poblac, Dept Ecol Genet & Evoluc, Ciudad Univ,PB 2,4to Piso,C1428EHA Nunez, Buenos Aires, DF, Argentina. rcavia@ege.fcen.uba.ar CONICET (Argentina); University of Buenos Aires We thank all the authors of the published articles included in this study. We are very grateful to Richard Douglass for his help with the revision of the manuscript. This research has been funded with grants of CONICET (Argentina) and the University of Buenos Aires. We are grateful to Olga V. Suarez and Maria Busch for their comments to the early version of this work. Aplin K. P., 2003, RATS MICE PEOPLE ROD, P487; Aplin K. P., 2003, FIELD METHODS RODENT; ATKINSON IAE, 1985, INT COUNCIL BIRD PRE, V3, P35; BADAN D, 1986, NEW ZEAL J ECOL, V9, P137; BERRY RJ, 1981, MAMMAL REV, V11, P91, DOI 10.1111/j.1365-2907.1981.tb00001.x; BERRY RJ, 1968, J ANIM ECOL, V37, P445, DOI 10.2307/2959; Bettesworth D.J., 1972, Tane, V18, P189; BISHOP JA, 1976, J ANIM ECOL, V45, P623, DOI 10.2307/3572; Bomford M., 1987, WILDLIFE RES, V14, P207, DOI [10.1071/WR9870207, DOI 10.1071/WR9870207]; BOONSTRA R, 1994, WILDLIFE RES, V21, P583, DOI 10.1071/WR9940583; Borcard D., 2011, NUMERICAL ECOLOGY R, P153; Borcard D, 2011, USE R, P1, DOI 10.1007/978-1-4419-7976-6; Bronson F. H., 1989, MAMMALIAN REPROD BIO; BRONSON FH, 1979, Q REV BIOL, V54, P265, DOI 10.1086/411295; BRONSON FH, 1987, AM ZOOL, V27, P929; Calhoun J.B., 1963, ECOLOGY SOCIOLOGY NO; Cavia R, 2009, LANDSCAPE URBAN PLAN, V90, P11, DOI 10.1016/j.landurbplan.2008.10.017; Chou CW, 1998, ZOOL STUD, V37, P201; Copson G., 1986, WILDLIFE RES, V13, P441, DOI [10.1071/WR9860441, DOI 10.1071/WR9860441]; Coto H., 1997, BIOL CONTROL RATAS S; Gomez MD, 2008, INT BIODETER BIODEGR, V62, P270, DOI 10.1016/j.ibiod.2007.08.004; DAVIS DE, 1951, ECOLOGY, V32, P469, DOI 10.2307/1931724; DAVIS DE, 1953, Q REV BIOL, V28, P373, DOI 10.1086/399860; Dobson FS, 2007, ECOSCIENCE, V14, P292, DOI 10.2980/1195-6860(2007)14[292:FASLHO]2.0.CO;2; DOBSON FS, 1987, AM NAT, V129, P382, DOI 10.1086/284643; EFFORD MG, 1988, J ZOOL, V216, P539, DOI 10.1111/j.1469-7998.1988.tb02450.x; FARHANG-AZAD A, 1979, Annals of Zoology (Agra), V15, P1; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; Glass G.E., 1989, Occasional Papers of the Museum of Natural History University of Kansas, VNo. 130, P1; Villafane IEG, 2007, MAMM BIOL, V72, P364, DOI 10.1016/j.mambio.2006.09.002; Villafane IEG, 2013, MAMMALIA, V77, P187, DOI 10.1515/mammalia-2012-0075; Gómez Villafañe Isabel E., 2008, Mastozool. neotrop., V15, P203; Innes JG, 2001, NEW ZEAL J ZOOL, V28, P57, DOI 10.1080/03014223.2001.9518257; King CM, 1996, NEW ZEAL J ECOL, V20, P253; KING CM, 1983, J ANIM ECOL, V52, P141, DOI 10.2307/4593; Kottek M, 2006, METEOROL Z, V15, P259, DOI 10.1127/0941-2948/2006/0130; Krebs CJ, 1978, ECOLOGY EXPT ANAL DI; KREBS CJ, 1974, ADV ECOL RES, V8, P267, DOI DOI 10.1016/S0065-2504(08)60280-9; LAURIE EMO, 1946, PROC R SOC SER B-BIO, V133, P248, DOI 10.1098/rspb.1946.0012; Le Roux V, 2002, POLAR BIOL, V25, P49, DOI 10.1007/s003000100310; Leon VA, 2013, INTEGR ZOOL, V8, P18, DOI 10.1111/j.1749-4877.2012.00290.x; LESLIE PH, 1952, P ZOOL SOC LOND, V122, P187, DOI 10.1111/j.1469-7998.1952.tb06316.x; LIDICKER WZ, 1966, ECOL MONOGR, V36, P27, DOI 10.2307/1948487; Lund M., 1994, P23; Macdonald D. W., 1999, Ecologically-based management of rodent pests., P49; Major HL, 2007, J ZOOL, V271, P463, DOI 10.1111/j.1469-7998.2006.00230.x; MATTHEWSON DC, 1994, S AFR J ZOOL, V29, P99; McGuire B, 2006, AM MIDL NAT, V155, P221, DOI 10.1674/0003-0031(2006)155[0221:GEOARP]2.0.CO;2; Meehan AP, 1984, RATS MICE THEIR BIOL; MILLER CJ, 1995, NEW ZEAL J ECOL, V19, P19; MILLS JN, 1991, J MAMMAL, V72, P470, DOI 10.2307/1382129; MILLS JN, 1992, J MAMMAL, V73, P515, DOI 10.2307/1382017; MOORS PJ, 1985, NEW ZEAL J ECOL, V8, P37; MURPHY EC, 1992, NEW ZEAL J ECOL, V16, P33; NEWSOME AE, 1969, J ANIM ECOL, V38, P361, DOI 10.2307/2776; Oksanen J., 2013, PACKAGE VEGAN COMMUN; PEARSON OP, 1963, ECOLOGY, V44, P540, DOI 10.2307/1932533; Pocock MJO, 2004, J ANIM ECOL, V73, P878, DOI 10.1111/j.0021-8790.2004.00863.x; PYE T, 1980, J ZOOL, V192, P237; R Core Team, 2013, R LANG ENV STAT COMP; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; Robinet O, 1998, BIOL CONSERV, V86, P223, DOI 10.1016/S0006-3207(97)00181-X; ROWE F P, 1973, Mammal Review, V3, P58, DOI 10.1111/j.1365-2907.1973.tb00172.x; ROWE FP, 1983, J ZOOL, V199, P259; SCHEIN MW, 1953, AM J TROP MED HYG, V2, P1117, DOI 10.4269/ajtmh.1953.2.1117; Singleton G, 2001, P ROY SOC B-BIOL SCI, V268, P1741, DOI 10.1098/rspb.2001.1638; Singleton G. R., 1999, Ecologically-based management of rodent pests., P17; Singleton GR, 2005, BIOL J LINN SOC, V84, P617, DOI 10.1111/j.1095-8312.2005.00458.x; Singleton GR, 2003, ACIAR MONOGRAPH, V96; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stenseth NC, 2003, FRONT ECOL ENVIRON, V1, P367, DOI 10.1890/1540-9295(2003)001[0367:MRAPTB]2.0.CO;2; Stenseth NC, 2001, J APPL ECOL, V38, P1020, DOI 10.1046/j.1365-2664.2001.00656.x; STICKEL LF, 1979, J ANIM ECOL, V48, P871, DOI 10.2307/4200; Thorsen M, 2000, BIOL CONSERV, V96, P133, DOI 10.1016/S0006-3207(00)00059-8; TRIGGS GS, 1991, J ZOOL, V225, P449, DOI 10.1111/j.1469-7998.1991.tb03828.x; Venables LSV, 1942, J ANIM ECOL, V11, P44, DOI 10.2307/1300; Vadell MV, 2010, INT J PEST MANAGE, V56, P327, DOI 10.1080/09670874.2010.499479; Villa-C. Beatriz, 1997, Anales del Instituto de Biologia Universidad Nacional Autonoma de Mexico Serie Zoologia, V68, P165; Williams B. K., 2002, ANAL MANAGEMENT ANIM; Wu SY, 2006, ZOOL STUD, V45, P467; ZAR JH, 1996, BIOSTATISTICAL ANAL 83 5 7 2 44 CSIRO PUBLISHING COLLINGWOOD 150 OXFORD ST, PO BOX 1139, COLLINGWOOD, VICTORIA 3066, AUSTRALIA 1035-3712 1448-5494 WILDLIFE RES Wildl. Res. 2014 41 2 172 184 10.1071/WR14005 13 Ecology; Zoology Environmental Sciences & Ecology; Zoology AO7AG WOS:000341503600009 2018-11-12 J Del Giudice, M Del Giudice, Marco An Evolutionary Life History Framework for Psychopathology Marco Del Giudice PSYCHOLOGICAL INQUIRY English Article evolutionary psychopathology; fast-slow continuum; individual differences; life history strategies; life history theory; mental disorders OBSESSIVE-COMPULSIVE DISORDER; HIGHER-ORDER FACTORS; SPECTRUM QUOTIENT AQ; COMMON MENTAL-DISORDERS; HUMAN REPRODUCTIVE STRATEGIES; ANOREXIA-NERVOSA SUBTYPES; SMOKE DETECTOR PRINCIPLE; BROADER AUTISM PHENOTYPE; SUBSTANCE USE DISORDERS; EATING-DISORDERS In this article, I outline a general framework for the evolutionary analysis of mental disorders based on the concepts of life history theory. I synthesize and extend a large body of work showing that individual differences in life history strategy set the stage for the development of psychopathology. My analysis centers on the novel distinction between fast spectrum and slow spectrum disorders. I describe four main causal pathways from life history strategies to psychopathology, argue that psychopathology can arise at both ends of the fast-slow continuum of life history variation, and provide heuristic criteria for classifying disorders as fast or slow spectrum pathologies. I then apply the fast-slow distinction to a diverse sample of common mental disorders: externalizing disorders, schizophrenia and autism spectrum disorders, obsessive-compulsive disorders, eating disorders, and depression. The framework integrates previously disconnected models of psychopathology within a common frame of reference and has far-reaching implications for the classification of mental disorders. [Del Giudice, Marco] Univ New Mexico, Dept Psychol, Albuquerque, NM 87131 USA Del Giudice, M (reprint author), Univ New Mexico, Logan Hall,2001 Redondo Dr NE, Albuquerque, NM 87131 USA. marcodg@unm.edu Del Giudice, Marco/F-7007-2010 Del Giudice, Marco/0000-0001-8526-1573 Abed RT, 1998, BRIT J MED PSYCHOL, V71, P525, DOI 10.1111/j.2044-8341.1998.tb01007.x; Abed RT, 2000, BRIT J PSYCHIAT, V177, P1, DOI 10.1192/bjp.177.1.1; Abed RT, 1998, BEHAV NEUROL, V11, P245; Adriaens P. R., 2011, MALADAPTING MINDS PH; Ahmed AO, 2012, ACTA PSYCHIAT SCAND, V125, P54, DOI 10.1111/j.1600-0447.2011.01800.x; Alexander N, 2011, BEHAV BRAIN RES, V216, P53, DOI 10.1016/j.bbr.2010.07.003; Alink LRA, 2008, DEV PSYCHOBIOL, V50, P427, DOI 10.1002/dev.20300; Allan S., 2012, Eating and its disorders, P154; Allen NB, 2006, PROG NEURO-PSYCHOPH, V30, P815, DOI 10.1016/j.pnpbp.2006.01.007; Altman SE, 2009, CLIN PSYCHOL REV, V29, P638, DOI 10.1016/j.cpr.2009.08.001; American Psychiatric Association, 2013, DIAGN STAT MAN MENT; Angst J, 2007, ACTA PSYCHIAT SCAND, V115, P72, DOI 10.1111/j.1600-0447.2007.00965.x; Anholt GE, 2010, J AUTISM DEV DISORD, V40, P580, DOI 10.1007/s10803-009-0922-1; Archer J, 2009, BEHAV BRAIN SCI, V32, P249, DOI 10.1017/S0140525X09990951; Armour S, 2007, J YOUTH ADOLESCENCE, V36, P141, DOI 10.1007/s10964-006-9128-4; Asai T, 2011, PSYCHIAT RES, V185, P78, DOI 10.1016/j.psychres.2009.07.018; Asendorpf JB, 1999, J PERS SOC PSYCHOL, V77, P815, DOI 10.1037//0022-3514.77.4.815; Ashton MC, 2009, PERS SOC PSYCHOL REV, V13, P79, DOI 10.1177/1088868309338467; Austin EJ, 2005, PERS INDIV DIFFER, V38, P451, DOI 10.1016/j.paid.2004.04.022; AVIA MD, 1995, PERS INDIV DIFFER, V19, P81, DOI 10.1016/0191-8869(95)00007-S; Avila C, 2004, J ABNORM CHILD PSYCH, V32, P295, DOI 10.1023/B:JACP.0000026143.70832.4b; Awadalla P, 2010, AM J HUM GENET, V87, P316, DOI 10.1016/j.ajhg.2010.07.019; Bakermans-Kranenburg MJ, 2009, ATTACH HUM DEV, V11, P223, DOI 10.1080/14616730902814762; Bannon S, 2002, PSYCHIAT RES, V110, P165, DOI 10.1016/S0165-1781(02)00104-X; Baron-Cohen S, 2001, J AUTISM DEV DISORD, V31, P5, DOI 10.1023/A:1005653411471; Baron-Cohen S, 2003, ESSENTIAL DIFFERENCE; Baron-Cohen S, 2011, PLOS BIOL, V9, DOI 10.1371/journal.pbio.1001081; Baron-Cohen S, 2009, PHILOS T R SOC B, V364, P1377, DOI 10.1098/rstb.2008.0337; Barr KN, 2004, EVOLUTIONARY PSYCHOLOGY, PUBLIC POLICY AND PERSONAL DECISIONS, P293; Bassett AS, 1996, SCHIZOPHR RES, V21, P151, DOI 10.1016/0920-9964(96)00018-7; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; Baumeister H, 2011, J AFFECT DISORDERS, V139, P126; Beauchaine TP, 2011, DEV PSYCHOPATHOL, V23, P975, DOI 10.1017/S0954579411000459; Beaussart ML, 2012, J CREATIVE BEHAV, V46, P151, DOI 10.1002/jocb.11; Bejerot S, 2007, AUTISM, V11, P101, DOI 10.1177/1362361307075699; Belloch A, 2010, J ANXIETY DISORD, V24, P573, DOI 10.1016/j.janxdis.2010.03.017; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2012, CURR DIR PSYCHOL SCI, V21, P310, DOI 10.1177/0963721412453588; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Benros ME, 2012, ANN NY ACAD SCI, V1262, P56, DOI 10.1111/j.1749-6632.2012.06638.x; Besiroglu L, 2011, ACTA PSYCHIAT SCAND, V124, P141, DOI 10.1111/j.1600-0447.2011.01726.x; Besiroglu L, 2007, DEPRESS ANXIETY, V24, P461, DOI 10.1002/da.20240; Betancur C, 2011, BRAIN RES, V1380, P42, DOI 10.1016/j.brainres.2010.11.078; Bhasin TK, 2007, J AUTISM DEV DISORD, V37, P667, DOI 10.1007/s10803-006-0194-y; Block J., 2002, PERSONALITY AFFECT P; Block J. H., 1980, DEV COGNITION AFFECT, V13, P39; BLOCK JH, 1991, J PERS SOC PSYCHOL, V60, P726, DOI 10.1037//0022-3514.60.5.726; BOGAERT AF, 1989, PERS INDIV DIFFER, V10, P1071, DOI 10.1016/0191-8869(89)90259-6; Bogg T, 2004, PSYCHOL BULL, V130, P887, DOI 10.1037/0033-2909-130.6.887; Bollen E, 2004, EUR EAT DISORD REV, V12, P117, DOI 10.1002/erv.551; Borowsky IW, 2009, PEDIATRICS, V124, pE81, DOI 10.1542/peds.2008-3425; Bowlby J., 1973, ATTACHMENT LOSS, V2; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Boyer P, 2006, BEHAV BRAIN SCI, V29, P595, DOI 10.1017/S0140525X06009332; Braendle C, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P3; Brakoulias V, 2013, COMPR PSYCHIAT, V54, P750, DOI 10.1016/j.comppsych.2013.02.005; Brezina T, 2009, CRIMINOLOGY, V47, P1091, DOI 10.1111/j.1745-9125.2009.00170.x; Bribiescas RG, 2012, CURR ANTHROPOL, V53, pS424, DOI 10.1086/667538; Brown GR, 2009, TRENDS ECOL EVOL, V24, P297, DOI 10.1016/j.tree.2009.02.005; BROWN GW, 1995, PSYCHOL MED, V25, P7, DOI 10.1017/S003329170002804X; Brune M, 2006, PERSPECT BIOL MED, V49, P317, DOI 10.1353/pbm.2006.0037; Brune M, 2012, WORLD PSYCHIATRY, V11, P55; Brune M, 2010, CLIN NEUROPSYCHIATR, V7, P3; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Brune M., 2008, TXB EVOLUTIONARY PSY; Burns JK, 2004, BEHAV BRAIN SCI, V27, P831; Burt SA, 2003, ARCH GEN PSYCHIAT, V60, P505, DOI 10.1001/archpsyc.60.5.505; Buss D., 2005, HDB EVOLUTIONARY PSY; Buss D. M., 2011, EVOLUTIONARY PSYCHOL; BUSS DM, 1989, BEHAV BRAIN SCI, V12, P1, DOI 10.1017/S0140525X00023992; Cale EM, 2002, CLIN PSYCHOL REV, V22, P1179, DOI 10.1016/S0272-7358(01)00125-8; Calvo R, 2009, EUR PSYCHIAT, V24, P201, DOI 10.1016/j.eurpsy.2008.11.003; Carragher N, 2009, J AFFECT DISORDERS, V113, P88, DOI 10.1016/j.jad.2008.05.015; Caspi A, 2014, CLIN PSYCHOL SCI, V2, P119, DOI 10.1177/2167702613497473; Cassin SE, 2005, CLIN PSYCHOL REV, V25, P895, DOI 10.1016/j.cpr.2005.04.012; Cavedini P, 2010, BIOL PSYCHIAT, V67, P1178, DOI 10.1016/j.biopsych.2010.02.012; Chamberlain SR, 2007, AM J PSYCHIAT, V164, P335, DOI 10.1176/appi.ajp.164.2.335; Chamberlain SR, 2006, AM J PSYCHIAT, V163, P1282, DOI 10.1176/appi.ajp.163.7.1282; Champagne FA, 2010, DEV PSYCHOBIOL, V52, P299, DOI 10.1002/dev.20436; Chapman BP, 2011, J PERS SOC PSYCHOL, V101, P593, DOI 10.1037/a0024289; Charnov Eric L., 1993, P1; Chen LS, 2000, J AFFECT DISORDERS, V59, P1, DOI 10.1016/S0165-0327(99)00132-9; Chen P, 2011, DEV PSYCHOL, V47, P1633, DOI 10.1037/a0025327; Chevallier C, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0031107; Chiappe D, 2005, J GEN PSYCHOL, V132, P5, DOI 10.3200/GENP.132.1.5-40; Chisholm JS, 1999, HUM NATURE-INT BIOS, V10, P51, DOI 10.1007/s12110-999-1001-1; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Chisholm JS, 1999, DEATH HOPE SEX STEPS; Claes L, 2012, INT J EAT DISORDER, V45, P407, DOI 10.1002/eat.20966; Claridge G, 1996, BRIT J CLIN PSYCHOL, V35, P103, DOI 10.1111/j.2044-8260.1996.tb01166.x; CLARIDGE G, 1997, SCHIZOTYPY IMPLICATI; Clark LA, 2005, J ABNORM PSYCHOL, V114, P505, DOI 10.1037/0021-843X.114.4.505; Clark LA, 2006, BRIT J PSYCHIAT, V189, P481, DOI 10.1192/bjp.bp.106.03825; Coghill D, 2012, J CHILD PSYCHOL PSYC, V53, P469, DOI 10.1111/j.1469-7610.2011.02511.x; Coles ME, 2008, J PSYCHIATR RES, V42, P289, DOI 10.1016/j.jpsychires.2006.12.009; Confer JC, 2010, EVOL HUM BEHAV, V31, P348, DOI 10.1016/j.evolhumbehav.2010.04.002; Copping LT, 2013, HUM NATURE-INT BIOS, V24, P137, DOI 10.1007/s12110-013-9163-2; Cosmides L, 1999, J ABNORM PSYCHOL, V108, P453, DOI 10.1037//0021-843X.108.3.453; COSTA PT, 1995, J PERS ASSESS, V64, P21, DOI 10.1207/s15327752jpa6401_2; Crespi B, 2008, BEHAV BRAIN SCI, V31, P241, DOI 10.1017/S0140525X08004214; Crespi B, 2013, BMC MED, V11, DOI 10.1186/1741-7015-11-119; Crespi B, 2010, P NATL ACAD SCI USA, V107, P1736, DOI 10.1073/pnas.0906080106; Crespi BJ, 2010, ANN NY ACAD SCI, V1206, P80, DOI 10.1111/j.1749-6632.2010.05707.x; Crespi BJ, 2000, HEREDITY, V84, P623, DOI 10.1046/j.1365-2540.2000.00746.x; Crijnen AAM, 1997, J AM ACAD CHILD PSY, V36, P1269, DOI 10.1097/00004583-199709000-00020; Crow TJ, 1995, EUR NEUROPSYCHOPHARM, V5, P59, DOI 10.1016/0924-977X(95)00032-K; Crow TJ, 1997, SCHIZOPHR RES, V28, P127, DOI 10.1016/S0920-9964(97)00110-2; Crowell S. E., 2013, CHILD ADOLESCENT PSY, P577; Cui M, 2012, PERS RELATIONSHIP, V19, P354, DOI 10.1111/j.1475-6811.2011.01366.x; Currie TE, 2009, EVOL HUM BEHAV, V30, P409, DOI 10.1016/j.evolhumbehav.2009.06.005; Curry OS, 2008, PERS INDIV DIFFER, V44, P780, DOI 10.1016/j.paid.2007.09.023; DACOSTA M, 1992, INT J EAT DISORDER, V11, P305, DOI 10.1002/1098-108X(199205)11:4<305::AID-EAT2260110403>3.0.CO;2-2; Decuyper M, 2009, EUR J PERSONALITY, V23, P531, DOI 10.1002/per.729; Del Giudice M, 2012, J THEOR BIOL, V297, P48, DOI 10.1016/j.jtbi.2011.12.004; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Del Giudice M, 2010, FRONT PSYCHOL, V1, DOI 10.3389/fpsyg.2010.00041; Del Giudice M, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0016040; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P45, DOI 10.1017/S0140525X09000272; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; DeYoung C. G., 2011, HDB SELF REGULATION, P485; DeYoung CG, 2002, PERS INDIV DIFFER, V33, P533, DOI 10.1016/S0191-8869(01)00171-4; DeYoung CG, 2008, J ABNORM PSYCHOL, V117, P947, DOI 10.1037/a0013742; DeYoung CG, 2006, J PERS SOC PSYCHOL, V91, P1138, DOI 10.1037/0022-3514.91.6.1138; Diamond A, 2013, ANNU REV PSYCHOL, V64, P135, DOI 10.1146/annurev-psych-113011-143750; DICKMAN SJ, 1990, J PERS SOC PSYCHOL, V58, P95, DOI 10.1037/0022-3514.58.1.95; Digman JM, 1997, J PERS SOC PSYCHOL, V73, P1246, DOI 10.1037/0022-3514.73.6.1246; Dinsdale NL, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0063316; Dunbar R., 2007, OXFORD HDB EVOLUTION; Dunkel CS, 2010, PERS INDIV DIFFER, V48, P681, DOI 10.1016/j.paid.2009.12.014; Dunn MJ, 2010, EVOL HUM BEHAV, V31, P383, DOI 10.1016/j.evolhumbehav.2010.05.001; Dussault F, 2011, J CHILD PSYCHOL PSYC, V52, P130, DOI 10.1111/j.1469-7610.2010.02313.x; Dwyer DS, 2011, MOL PSYCHIATR, V16, P595, DOI 10.1038/mp.2010.95; Eddy KT, 2008, AM J PSYCHIAT, V165, P245, DOI 10.1176/appi.ajp.2007.07060951; Eisen J. L., 2012, OXFORD HDB OBSESSIVE, P189; Eisenberg N, 2001, CHILD DEV, V72, P1112, DOI 10.1111/1467-8624.00337; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2006, DEV REV, V26, P175, DOI 10.1016/j.dr.2006.02.004; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; ELLISON PT, 2001, FERTILE GROUND NATUR; Essau CA, 2006, ASSESSMENT, V13, P454, DOI 10.1177/1073191106287354; Ettelt S, 2007, ACTA PSYCHIAT SCAND, V115, P41, DOI 10.1111/j.1600-0447.2006.00835.x; Faer LM, 2005, PSYCHOL PSYCHOTHER-T, V78, P397, DOI 10.1348/147608305X42929; Falter CM, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0032774; Fanning JR, 2012, PERS INDIV DIFFER, V53, P868, DOI 10.1016/j.paid.2012.06.019; Farrington DP, 2005, CLIN PSYCHOL PSYCHOT, V12, P177, DOI 10.1002/cpp.448; Ferguson CJ, 2011, REV GEN PSYCHOL, V15, P11, DOI 10.1037/a0022607; Figueredo A. J., 2012, OXFORD HDB SEXUAL CO, P72; Figueredo A. J., 2011, J SOCIAL EVOLUTIONAR, V5, P14, DOI DOI 10.1037/H0099277; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2013, PERS INDIV DIFFER, V55, P251, DOI 10.1016/j.paid.2012.04.033; Figueredo AJ, 2010, PSYCHOL EMOT MOTIV A, P3; Figueredo AJ, 2009, HUM NATURE-INT BIOS, V20, P317, DOI 10.1007/s12110-009-9068-2; FINCH CE, 1995, Q REV BIOL, V70, P1, DOI 10.1086/418864; Fiske AP, 1997, J NERV MENT DIS, V185, P211, DOI 10.1097/00005053-199704000-00001; Flinn MV, 2011, NEUROSCI BIOBEHAV R, V35, P1611, DOI 10.1016/j.neubiorev.2011.01.005; Fontenelle LF, 2008, PROG NEURO-PSYCHOPH, V32, P1, DOI [10.1016/j.pnpbp.2007.06.024, 10.1016/j.pnpbp.2007.06.04]; Forbush KT, 2010, J ABNORM PSYCHOL, V119, P282, DOI 10.1037/a0019189; Fossati A, 2003, PERS INDIV DIFFER, V35, P1007, DOI 10.1016/S0191-8869(02)00314-8; Fowles D. C., 2006, HDB PSYCHOPATHY, P14; Frankenhuis WE, 2012, DEV PSYCHOL, V48, P628, DOI 10.1037/a0025629; Frederick MJ, 2012, EVOL PSYCHOL-US, V10, P342; FRIEDMAN HS, 1995, AM PSYCHOL, V50, P69, DOI 10.1037/0003-066X.50.2.69; Frith U, 2011, CURR BIOL, V21, pR994, DOI 10.1016/j.cub.2011.11.001; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Gardener H, 2009, BRIT J PSYCHIAT, V195, P7, DOI 10.1192/bjp.bp.108.051672; Ge X., 2010, CURRENT DIRECTIONS P, V18, P327; Geary D. C., 2005, EVOLUTIONARY PSYCHOL, P483; Geary DC, 2002, ADV CHILD DEV BEHAV, V30, P41, DOI 10.1016/S0065-2407(02)80039-8; Gettler LT, 2011, AM J HUM BIOL, V23, P609, DOI 10.1002/ajhb.21187; Gilbert P, 1998, PSYCHOL MED, V28, P585, DOI 10.1017/S0033291798006710; GILBERT P, 1992, DEPRESSION EVOLUTION; Gillath O, 2006, DYNAMICS ROMANTIC LO, P337; Gilman SR, 2012, NAT NEUROSCI, V15, P1723, DOI 10.1038/nn.3261; GJERDE PF, 1995, CHILD DEV, V66, P1277, DOI 10.1111/j.1467-8624.1995.tb00935.x; Gladden PR, 2009, PERS INDIV DIFFER, V46, P270, DOI 10.1016/j.paid.2008.10.010; Glass D. J., 2012, THESIS STATE U NEW Y; Glenn AL, 2011, AGGRESS VIOLENT BEH, V16, P371, DOI 10.1016/j.avb.2011.03.009; Gluckman P, 2009, PRINCIPLES EVOLUTION; Gluckman PD, 2011, EVOL APPL, V4, P249, DOI 10.1111/j.1752-4571.2010.00164.x; Godart N, 2006, INT J EAT DISORDER, V39, P772, DOI 10.1002/eat.20274; Graber JA, 2004, J AM ACAD CHILD PSY, V43, P718, DOI 10.1097/01.chi.0000120022.14101.11; Graber JA, 2008, ADOLESCENT EMOTIONAL DEVELOPMENT AND THE EMERGENCE OF DEPRESSIVE DISORDERS, P74, DOI 10.1017/CBO9780511551963.005; Grafen A., 1985, Oxford Surveys in Evolutionary Biology, V2, P28; Grant BF, 2004, J CLIN PSYCHIAT, V65, P948; Grinter EJ, 2009, J AUTISM DEV DISORD, V39, P670, DOI 10.1007/s10803-008-0658-3; Grisham JR, 2008, EUR ARCH PSY CLIN N, V258, P107, DOI 10.1007/s00406-007-0789-0; Gruzelier JH, 1996, SCHIZOPHR RES, V21, P183, DOI 10.1016/0920-9964(96)00050-3; Haberstick BC, 2005, BEHAV GENET, V35, P381, DOI 10.1007/s10519-004-1747-5; Hagen EH, 1999, EVOL HUM BEHAV, V20, P325, DOI 10.1016/S1090-5138(99)00016-1; Haidt J, 2003, SER AFFECTIVE SCI, P852; Halbreich U, 2007, J AFFECT DISORDERS, V102, P245, DOI 10.1016/j.jad.2006.09.023; Halmi KA, 2003, INT J EAT DISORDER, V33, P308, DOI 10.1002/eat.10138; Hansen S, 2011, BRAIN COGNITION, V76, P364, DOI 10.1016/j.bandc.2011.04.004; Happe F, 2006, NAT NEUROSCI, V9, P1218, DOI 10.1038/nn1770; Happe F, 2009, PHILOS T R SOC B, V364, P1369, DOI 10.1098/rstb.2008.0332; Happe F, 2008, NEUROPSYCHOL REV, V18, P287, DOI 10.1007/s11065-008-9076-8; Hare R. D., 2006, HDB PSYCHOPATHY, P58; Harris AC, 2002, PSYCHOL REC, V52, P429, DOI 10.1007/BF03395196; Harris GT, 2007, J PERS DISORD, V21, P1, DOI 10.1521/pedi.2007.21.1.1; Haselton MG, 2006, HUM NATURE-INT BIOS, V17, P50, DOI 10.1007/s12110-006-1020-0; Hau M, 2010, P ROY SOC B-BIOL SCI, V277, P3203, DOI 10.1098/rspb.2010.0673; Haukka J, 2003, AM J PSYCHIAT, V160, P460, DOI 10.1176/appi.ajp.160.3.460; Hawley P. H, 2011, EVOLUTION PERSONALIT, P61; Hawley PH, 2008, INT J BEHAV DEV, V32, P76, DOI 10.1177/0165025407084054; Hawley PH, 1999, DEV REV, V19, P97, DOI 10.1006/drev.1998.0470; Hellemans H, 2007, J AUTISM DEV DISORD, V37, P260, DOI 10.1007/s10803-006-0159-1; Herman KC, 2007, J CONSULT CLIN PSYCH, V75, P716, DOI 10.1037/0022-006X.75.5.716; Hettema JM, 2008, AM J MED GENET C, V148C, P140, DOI 10.1002/ajmg.c.30171; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Hoek HW, 2006, CURR OPIN PSYCHIATR, V19, P389, DOI 10.1097/01.yco.0000228759.95237.78; Hofmann W, 2012, TRENDS COGN SCI, V16, P174, DOI 10.1016/j.tics.2012.01.006; Hollander E, 2003, PSYCHIAT RES, V117, P11, DOI 10.1016/S0165-1781(02)00304-9; Holtzman Nicholas S, 2013, Evol Psychol, V11, P1101; Hopwood CJ, 2010, COMPR PSYCHIAT, V51, P585, DOI 10.1016/j.comppsych.2010.03.006; Huey SJ, 1997, J ABNORM PSYCHOL, V106, P404, DOI 10.1037/0021-843X.106.3.404; Ingudomnuku E, 2007, HORM BEHAV, V51, P597, DOI 10.1016/j.yhbeh.2007.02.001; Ivarsson T, 2008, J ANXIETY DISORD, V22, P969, DOI 10.1016/j.janxdis.2007.10.003; Izuma K, 2011, P NATL ACAD SCI USA, V108, P17302, DOI 10.1073/pnas.1107038108; James J, 2012, DEV PSYCHOL, V48, P687, DOI 10.1037/a0026427; Jeschke JM, 2009, EVOL ECOL, V23, P867, DOI 10.1007/s10682-008-9276-y; Jobe LE, 2007, PERS INDIV DIFFER, V42, P1479, DOI 10.1016/j.paid.2006.10.021; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jones D. N., 2007, EVOLUTIONARY PSYCHOL, V5, P367; Jones DN, 2011, PERS INDIV DIFFER, V51, P679, DOI 10.1016/j.paid.2011.04.011; Jones JH, 2011, CURR BIOL, V21, pR708, DOI 10.1016/j.cub.2011.08.025; Jones S, 2012, PSYCHOL ASSESSMENT, V24, P255, DOI 10.1037/a0025264; Jones SE, 2011, J CRIM JUST, V39, P329, DOI 10.1016/j.jcrimjus.2011.03.004; Juda MN, 2004, EVOL HUM BEHAV, V25, P200, DOI 10.1016/j.evolhumbehav.2004.02.001; Just C, 2011, PERS INDIV DIFFER, V50, P765, DOI 10.1016/j.paid.2011.01.008; Kahn JA, 2002, J ADOLESCENT HEALTH, V30, P229, DOI 10.1016/S1054-139X(01)00391-3; Kaiser J, 1999, INT J PSYCHOPHYSIOL, V34, P237, DOI 10.1016/S0167-8760(99)00081-1; Kalkman HO, 2012, NEUROSCI BIOBEHAV R, V36, P2206, DOI 10.1016/j.neubiorev.2012.07.008; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; Kastner RM, 2012, PERS INDIV DIFFER, V53, P644, DOI 10.1016/j.paid.2012.05.005; Keel PK, 2004, ARCH GEN PSYCHIAT, V61, P192, DOI 10.1001/archpsyc.61.2.192; Keller MC, 2006, J PERS SOC PSYCHOL, V91, P316, DOI 10.1037/0022-3514.91.2.316; Keller MC, 2006, BEHAV BRAIN SCI, V29, P385, DOI 10.1017/S0140525X06009095; Keltner D., 2006, EVOLUTION SOCIAL PSY, P115; Keltner D., 1998, REV GEN PSYCHOL, V2, p[320, 342], DOI [DOI 10.1037/1089-2680.2.3.320, 10.1037/1089-2680.2.3.320]; Kendler KS, 2005, AM J PSYCHIAT, V162, P250, DOI 10.1176/appi.ajp.162.2.250; Kendler KS, 2003, ARCH GEN PSYCHIAT, V60, P789, DOI 10.1001/archpsyc.60.8.789; Kendler KS, 2003, ARCH GEN PSYCHIAT, V60, P929, DOI 10.1001/archpsyc.60.9.929; Kennair L. E. O, 2011, EVOLUTION PERSONALIT, P451; Kennair LEO, 2003, CURR OPIN PSYCHIATR, V16, P691, DOI 10.1097/01.yco.0000097655.75497.2e; Kenrick DT, 1996, CHILD DEV, V67, P1499, DOI 10.2307/1131714; KENRICK DT, 1992, BEHAV BRAIN SCI, V15, P75, DOI 10.1017/S0140525X00067595; Kessler RC, 2005, ARCH GEN PSYCHIAT, V62, P593, DOI 10.1001/archpsyc.62.6.593; Kim S, 2011, PSYCHOL BULL, V137, P68, DOI 10.1037/a0021466; Kinney DK, 2000, CREATIVITY RES J, V13, P17; Kirk KM, 2001, EVOLUTION, V55, P423; Knickmeyer RC, 2006, DEV MED CHILD NEUROL, V48, P1007, DOI 10.1017/S0012162206222229; Kokko H, 2008, J EVOLUTION BIOL, V21, P919, DOI 10.1111/j.1420-9101.2008.01540.x; Kong A, 2012, NATURE, V488, P471, DOI 10.1038/nature11396; Korte SM, 2005, NEUROSCI BIOBEHAV R, V29, P3, DOI 10.1016/j.neubiorev.2004.08.009; Kotov R, 2010, PSYCHOL BULL, V136, P768, DOI 10.1037/a0020327; Krueger RF, 2002, J ABNORM PSYCHOL, V111, P411, DOI 10.1037//0021-843X.111.3.411; Krueger RF, 1998, J ABNORM PSYCHOL, V107, P216, DOI 10.1037/0021-843X.107.2.216; Krueger RF, 1999, ARCH GEN PSYCHIAT, V56, P921, DOI 10.1001/archpsyc.56.10.921; Krueger RF, 2011, J PERS DISORD, V25, P170, DOI 10.1521/pedi.2011.25.2.170; Kruger D. J., 2008, J SOCIAL EVOLUTIONAR, V2, P1, DOI DOI 10.1037/H0099336; Kruger DJ, 2006, HUM NATURE-INT BIOS, V17, P74, DOI 10.1007/s12110-006-1021-z; Kuzawa CW, 2012, CURR ANTHROPOL, V53, pS369, DOI 10.1086/667410; Kyaga S, 2011, BRIT J PSYCHIAT, V199, P373, DOI 10.1192/bjp.bp.110.085316; La Greca AM, 2008, ADOLESCENT EMOTIONAL DEVELOPMENT AND THE EMERGENCE OF DEPRESSIVE DISORDERS, P318, DOI 10.1017/CBO9780511551963.017; Laghi F, 2009, SOC INDIC RES, V90, P181, DOI 10.1007/s11205-008-9249-0; Lahey BB, 2003, CAUSES OF CONDUCT DISORDER AND JUVENILE DELINQUENCY, P76; Lahey BB, 2008, J ABNORM CHILD PSYCH, V36, P187, DOI 10.1007/s10802-007-9169-5; Lahey BB, 2012, J CHILD PSYCHOL PSYC, V53, P536, DOI 10.1111/j.1469-7610.2011.02509.x; Lahey BB, 2011, ARCH GEN PSYCHIAT, V68, P181, DOI 10.1001/archgenpsychiatry.2010.192; Lalumiere M. L., 2008, EVOLUTIONARY FORENSI, P176; Lalumiere M. L., 2008, EVOLUTIONARY FORENSI, P139, DOI DOI 10.1093/ACPROF:OSO/9780195325; Lalumiere ML, 1996, PERS INDIV DIFFER, V21, P33, DOI 10.1016/0191-8869(96)00059-1; Leadbeater BJ, 1999, DEV PSYCHOL, V35, P1268, DOI 10.1037//0012-1649.35.5.1268; Lease AM, 2002, SOC DEV, V11, P508, DOI 10.1111/1467-9507.00213; Lee HJ, 2010, BEHAV RES THER, V48, P571, DOI 10.1016/j.brat.2010.03.006; Lee HJ, 2009, BEHAV RES THER, V47, P294, DOI 10.1016/j.brat.2009.01.002; Lee HJ, 2005, J ANXIETY DISORD, V19, P793, DOI 10.1016/j.janxdis.2004.10.001; Lee HJ, 2005, J CLIN PSYCHOL, V61, P401, DOI 10.1002/jcdp.20115; Lee HJ, 2003, BEHAV RES THER, V41, P11, DOI 10.1016/S0005-7967(01)00101-2; Leimar O, 2006, AM NAT, V167, P367, DOI 10.1086/499566; Lejuez CW, 2002, J EXP PSYCHOL-APPL, V8, P75, DOI 10.1037//1076-898X.8.2.75; Leonard H, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017875; Levesque M, 2010, AGGRESSIVE BEHAV, V36, P358, DOI 10.1002/ab.20362; Li NP, 2010, EVOL HUM BEHAV, V31, P365, DOI 10.1016/j.evolhumbehav.2010.05.004; Li XY, 2012, BEHAV GENET, V42, P268, DOI 10.1007/s10519-011-9506-x; Lien YJ, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024103; Loehlin JC, 2011, J RES PERS, V45, P44, DOI 10.1016/j.jrp.2010.11.008; Lorber MF, 2004, PSYCHOL BULL, V130, P531, DOI 10.1037/0033-2909.130.4.531; Lu HJ, 2012, EVOL PSYCHOL-US, V10, P120, DOI 10.1177/147470491201000113; Lucas RE, 2000, J PERS SOC PSYCHOL, V79, P452, DOI 10.1037/0022-3514.79.3.452; Lynam D. R., 2006, HDB PSYCHOPATHY, P133; Lynam DR, 2003, AGGRESSIVE BEHAV, V29, P316, DOI 10.1002/ab.10073; MacCabe JH, 2009, PSYCHOL MED, V39, P1667, DOI 10.1017/S0033291709005431; MacDonald K, 1997, HUM NATURE-INT BIOS, V8, P327, DOI 10.1007/BF02913038; MacDonald K, 1999, POPUL ENVIRON, V21, P223; MACDONALD K, 1995, J PERS, V63, P525, DOI 10.1111/j.1467-6494.1995.tb00505.x; MacDonald K. B., 2012, J SOCIAL EVOLUTIONAR, V6, P260; Marlowe FW, 2000, BEHAV PROCESS, V51, P45, DOI 10.1016/S0376-6357(00)00118-2; Marlowe FW, 2003, CROSS-CULT RES, V37, P282, DOI 10.1177/1069397103254008; Martel MM, 2013, PSYCHOL BULL, V139, P1221, DOI 10.1037/a0032247; Martin LR, 2007, HEALTH PSYCHOL, V26, P428, DOI 10.1037/0278-6133.26.4.428; Mataix-Cols D, 2005, AM J PSYCHIAT, V162, P228, DOI 10.1176/appi.ajp.162.2.228; McAdams T, 2012, J RES ADOLESCENCE, V22, P100, DOI 10.1111/j.1532-7795.2011.00758.x; McGrath J. J., 2011, SCHIZOPHRENIA, P226; McGuire Michael, 1998, DARWINIAN PSYCHIAT; McKay D, 2004, CLIN PSYCHOL REV, V24, P283, DOI 10.1016/j.cpr.2004.04.003; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; Mealey L, 2000, HUM NATURE-INT BIOS, V11, P105, DOI 10.1007/s12110-000-1005-3; Meaney MJ, 2007, ADV GENET, V59, P173, DOI 10.1016/S0065-2660(07)59007-3; Mendle J, 2007, DEV REV, V27, P151, DOI 10.1016/j.dr.2006.11.001; Mendle J, 2012, DEV REV, V32, P49, DOI 10.1016/j.dr.2011.11.001; Miller GF, 2007, SCHIZOPHR RES, V93, P317, DOI 10.1016/j.schres.2007.02.007; Miller GE, 2007, PSYCHOL BULL, V133, P25, DOI 10.1037/0033-2909.133.1.25; Miyake A, 2000, COGNITIVE PSYCHOL, V41, P49, DOI 10.1006/cogp.1999.0734; Miyake A, 2012, CURR DIR PSYCHOL SCI, V21, P8, DOI 10.1177/0963721411429458; Moffit T. E., 2005, DEV PSYCHOL AGGRESS, P161; Moffitt TE, 1996, DEV PSYCHOPATHOL, V8, P399, DOI 10.1017/S0954579400007161; Morgan AB, 2000, CLIN PSYCHOL REV, V20, P113, DOI 10.1016/S0272-7358(98)00096-8; Moritz S, 2002, ARCH CLIN NEUROPSYCH, V17, P477, DOI 10.1016/S0887-6177(01)00130-5; Mottron L, 2006, J AUTISM DEV DISORD, V36, P27, DOI 10.1007/s10803-005-0040-7; Moulding R, 2007, J ANXIETY DISORD, V21, P677, DOI 10.1016/j.janxdis.2006.10.001; Muris P, 2005, CLIN CHILD FAM PSYCH, V8, P271, DOI 10.1007/s10567-005-8809-y; Musek J, 2007, J RES PERS, V41, P1213, DOI 10.1016/j.jrp.2007.02.003; NANKO S, 1993, ACTA PSYCHIAT SCAND, V87, P400, DOI 10.1111/j.1600-0447.1993.tb03395.x; Nederlof AF, 2012, PERS INDIV DIFFER, V53, P33, DOI 10.1016/j.paid.2012.02.013; Nelson MT, 2013, NEUROSCI BIOBEHAV R, V37, P317, DOI 10.1016/j.neubiorev.2013.01.004; Nesse R M, 2001, Med Health Care Philos, V4, P37, DOI 10.1023/A:1009938513897; Nesse R M, 1990, Hum Nat, V1, P261, DOI 10.1007/BF02733986; Nesse R. M., 2006, AM PSYCHIAT PUBLISHI, P159; Nesse R. M., 2011, MALADAPTING MINDS PH, P173; Nesse RM, 2006, CLIN NEUROPSYCHIATR, V3, P121; Nesse RM, 2012, BMC MED, V10, DOI 10.1186/1741-7015-10-5; Nesse RM, 2004, BEHAV BRAIN SCI, V27, P862; Nesse RM, 2005, EVOL HUM BEHAV, V26, P88, DOI 10.1016/j.evolhumbehav.2004.08.002; Nesse RM, 2004, PHILOS T ROY SOC B, V359, P1333, DOI 10.1098/rstb.2004.1511; Nesse RM, 2000, ARCH GEN PSYCHIAT, V57, P14, DOI 10.1001/archpsyc.57.1.14; Nesse RM, 2001, ANN NY ACAD SCI, V935, P75; Nestadt G, 2009, PSYCHOL MED, V39, P1491, DOI 10.1017/S0033291708004753; Nettle D, 2006, P ROY SOC B-BIOL SCI, V273, P611, DOI 10.1098/rspb.2005.3349; Nettle D, 2004, J AFFECT DISORDERS, V81, P91, DOI 10.1016/j.jad.2003.08.009; NETTLE D, 2001, STRONG IMAGINATION M; Nettle D., 2011, EVOLUTION PERSONALIT, P5; Nettle D, 2012, CURR BIOL, V22, pR712, DOI 10.1016/j.cub.2012.06.020; Nettle D, 2006, BEHAV BRAIN SCI, V29, P418, DOI 10.1017/S0140525X06359092; Nettle D, 2011, P ROY SOC B-BIOL SCI, V278, P1721, DOI 10.1098/rspb.2010.1726; Nettle D, 2009, J THEOR BIOL, V257, P100, DOI 10.1016/j.jtbi.2008.10.033; Nettle D, 2006, J RES PERS, V40, P876, DOI 10.1016/j.jrp.2005.09.004; O'Connor LE, 1999, J SOC CLIN PSYCHOL, V18, P181, DOI 10.1521/jscp.1999.18.2.181; O'Connor LE, 2002, J AFFECT DISORDERS, V71, P19, DOI 10.1016/S0165-0327(01)00408-6; O'Hearn K, 2008, DEV PSYCHOPATHOL, V20, P1103, DOI 10.1017/S0954579408000527; O'Keane V, 2012, PSYCHONEUROENDOCRINO, V37, P1589, DOI 10.1016/j.psyneuen.2012.03.009; Oakley B, 2012, PATHOLOGICAL ALTRUIS; Olderbak SG, 2010, PERS INDIV DIFFER, V49, P234, DOI 10.1016/j.paid.2010.03.041; Patterson PH, 2011, INFECT BEHAV BRAIN I; Peat C, 2009, INT J EAT DISORDER, V42, P590, DOI 10.1002/eat.20717; Penades R, 2007, EUR PSYCHIAT, V22, P404, DOI 10.1016/j.eurpsy.2006.05.001; PENNINGTON R, 1988, AM J PHYS ANTHROPOL, V77, P303, DOI 10.1002/ajpa.1330770304; Pettay JE, 2005, P NATL ACAD SCI USA, V102, P2838, DOI 10.1073/pnas.0406709102; Phillips KA, 2010, DEPRESS ANXIETY, V27, P528, DOI 10.1002/da.20705; Pigliucci M., 2001, PHENOTYPIC PLASTICIT; Placek CD, 2012, P ROY SOC B-BIOL SCI, V279, P4003, DOI 10.1098/rspb.2012.1022; Podubinski T, 2012, PERS INDIV DIFFER, V52, P586, DOI 10.1016/j.paid.2011.11.025; Pollmann MMH, 2010, J AUTISM DEV DISORD, V40, P470, DOI 10.1007/s10803-009-0888-z; Pooni J, 2012, INT J EAT DISORDER, V45, P583, DOI 10.1002/eat.20980; Porter RJ, 2004, PSYCHOPHARMACOLOGY, V173, P1, DOI 10.1007/s00213-004-1774-1; Potts R, 1998, EVOL ANTHROPOL, V7, P81, DOI 10.1002/(SICI)1520-6505(1998)7:3<81::AID-EVAN3>3.0.CO;2-A; Poyurovsky M, 2005, J PSYCHIAT RES, V39, P399, DOI 10.1016/j.jpsychires.2004.09.004; Poyurovsky M, 2008, PSYCHIAT RES, V159, P254, DOI 10.1016/j.psychres.2007.02.019; PRICE J, 1994, BRIT J PSYCHIAT, V164, P309, DOI 10.1192/bjp.164.3.309; Pronk TM, 2011, J PERS SOC PSYCHOL, V100, P827, DOI 10.1037/a0021993; Purcell SM, 2009, NATURE, V460, P748, DOI DOI 10.1038/NATURE08185; Quiles ZN, 1997, J PERS ASSESS, V69, P104, DOI 10.1207/s15327752jpa6901_6; Quinlan RJ, 2008, EVOL ANTHROPOL, V17, P227, DOI 10.1002/evan.20191; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Rai D, 2012, J AM ACAD CHILD PSY, V51, P467, DOI 10.1016/j.jaac.2012.02.012; Raison CL, 2013, MOL PSYCHIATR, V18, P15, DOI 10.1038/mp.2012.2; Rapoport JL, 1998, PERSPECT BIOL MED, V41, P159; Rawlings D, 2008, J RES PERS, V42, P465, DOI 10.1016/j.jrp.2007.06.005; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Reynolds B, 2006, PERS INDIV DIFFER, V40, P305, DOI 10.1016/j.paid.2005.03.024; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Ridley NJ, 2011, AUTISM, V15, P728, DOI 10.1177/1362361310395956; Robins RW, 1996, J PERS SOC PSYCHOL, V70, P157, DOI 10.1037/0022-3514.70.1.157; Roff D. A., 2002, VARIATION CENTRAL CO, P333; Romer D, 2011, DEVELOPMENTAL SCI, V14, P1119, DOI 10.1111/j.1467-7687.2011.01061.x; Ronald A, 2011, MOL PSYCHIATR, V16, P1039, DOI 10.1038/mp.2010.82; Ross LT, 2002, SOC BEHAV PERSONAL, V30, P453, DOI 10.2224/sbp.2002.30.5.453; Ross SR, 2002, J PERS ASSESS, V79, P53, DOI 10.1207/S15327752JPA7901_04; Rosval L, 2006, INT J EAT DISORDER, V39, P590, DOI 10.1002/eat.20296; ROZIN P, 1994, J PERS SOC PSYCHOL, V66, P870, DOI 10.1037/0022-3514.76.4.574; Rozin P., 2000, HDB EMOTIONS, P637; Rushton JP, 2008, J RES PERS, V42, P1173, DOI 10.1016/j.jrp.2008.03.002; RUSHTON JP, 1987, PSYCHOL REP, V60, P539, DOI 10.2466/pr0.1987.60.2.539; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Russo N, 2007, BRAIN COGNITION, V65, P77, DOI 10.1016/j.bandc.2006.04.007; Ruthsatz J, 2012, INTELLIGENCE, V40, P419, DOI 10.1016/j.intell.2012.06.002; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; SAETHER BE, 1987, OIKOS, V48, P79, DOI 10.2307/3565691; Salmon C, 2008, HUM NATURE-INT BIOS, V19, P103, DOI 10.1007/s12110-008-9030-8; Salmon C, 2009, EVOL PSYCHOL-US, V7, P585; Samuel DB, 2012, J PERS, V80, P1669, DOI 10.1111/j.1467-6494.2012.00770.x; Sanders SJ, 2012, NATURE, V485, P237, DOI 10.1038/nature10945; Schaller M, 2011, PHILOS T R SOC B, V366, P3418, DOI 10.1098/rstb.2011.0029; Scheiner S.M., 2004, PHENOTYPIC PLASTICIT; Schlomer GL, 2011, PSYCHOL REV, V118, P496, DOI 10.1037/a0024043; Schmitt DP, 2005, BEHAV BRAIN SCI, V28, P247, DOI 10.1017/S0140525X05000051; Sebastian C, 2009, J AUTISM DEV DISORD, V39, P1122, DOI 10.1007/s10803-009-0725-4; Shafran R, 1996, J ANXIETY DISORD, V10, P509, DOI 10.1016/S0887-6185(96)00026-6; Shaner A, 2004, SCHIZOPHR RES, V70, P101, DOI 10.1016/j.schres.2003.09.014; Shaner A, 2008, HUM NATURE-INT BIOS, V19, P389, DOI 10.1007/s12110-008-9049-x; Sherman RA, 2013, J PERS SOC PSYCHOL, V105, P873, DOI 10.1037/a0033772; Silverstein B, 2002, AM J PSYCHIAT, V159, P1051, DOI 10.1176/appi.ajp.159.6.1051; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Slade T, 2007, SOC PSYCH PSYCH EPID, V42, P554, DOI 10.1007/s00127-007-0200-5; SLOMAN L, 1987, ETHOL SOCIOBIOL, V8, pS99; Smallwood PD, 1996, AM ZOOL, V36, P392; Smari J, 2008, J BEHAV THER EXP PSY, V39, P228, DOI 10.1016/j.jbtep.2007.07.002; Sobin C, 2000, J PSYCHIATR RES, V34, P15, DOI 10.1016/S0022-3956(99)00023-0; Stamps JA, 2007, ECOL LETT, V10, P355, DOI 10.1111/j.1461-0248.2007.01034.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stearns SC, 2010, P NATL ACAD SCI USA, V107, P1691, DOI 10.1073/pnas.0914475107; Stearns Stephen C., 2008, EVOLUTION HLTH DIS; STEVENS A, 1996, EVOLUTIONARY PSYCHIA; Stevenson JL, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0059329; Stokes MA, 2005, AUTISM, V9, P266, DOI 10.1177/1362361305053258; Stokes M, 2007, J AUTISM DEV DISORD, V37, P1969, DOI 10.1007/s10803-006-0344-2; Suhr JA, 2006, J NERV MENT DIS, V194, P884, DOI 10.1097/01.nmd.0000243929.45895.d9; Sulkowski ML, 2009, PERS INDIV DIFFER, V47, P620, DOI 10.1016/j.paid.2009.05.020; Sullivan PF, 2002, J AFFECT DISORDERS, V68, P273, DOI 10.1016/S0165-0327(00)00364-5; SURBEY MK, 1987, ETHOL SOCIOBIOL, V8, pS47; Surbey MK, 1998, HUM NATURE-INT BIOS, V9, P67, DOI 10.1007/s12110-998-1012-3; Szechtman H, 2004, PSYCHOL REV, V111, P111, DOI 10.1037/0033-295X.111.1.111; Tandon R, 2008, SCHIZOPHR RES, V102, P1, DOI 10.1016/j.schres.2008.04.011; Tangney JP, 2007, ANNU REV PSYCHOL, V58, P345, DOI 10.1146/annurev.psych.56.091103.070145; Tasca GA, 2009, EUR EAT DISORD REV, V17, P281, DOI 10.1002/erv.938; Taylor MA, 2008, J AFFECT DISORDERS, V105, P1, DOI 10.1016/j.jad.2007.05.023; Thompson-Brenner H, 2005, BRIT J PSYCHIAT, V186, P516, DOI 10.1192/bjp.186.6.516; Thompson-Brenner H, 2008, COMPR PSYCHIAT, V49, P551, DOI 10.1016/j.comppsych.2008.04.002; Thompson-Brenner H, 2008, J CHILD PSYCHOL PSYC, V49, P170, DOI 10.1111/j.1469-7610.2007.01825.x; Tompson MC, 2008, ADOLESCENT EMOTIONAL DEVELOPMENT AND THE EMERGENCE OF DEPRESSIVE DISORDERS, P280, DOI 10.1017/CBO9780511551963.015; Tops M, 2008, PSYCHONEUROENDOCRINO, V33, P551, DOI 10.1016/j.psyneuen.2008.01.011; Tops M, 2010, FRONT PSYCHOL, V1, DOI 10.3389/fpsyg.2010.00152; Tops M, 2010, COGN AFFECT BEHAV NE, V10, P441, DOI 10.3758/CABN.10.4.441; Torgersen S, 2001, ARCH GEN PSYCHIAT, V58, P590, DOI 10.1001/archpsyc.58.6.590; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Troisi A, 2005, NEUROSCI BIOBEHAV R, V29, P159, DOI 10.1016/j.neubiorev.2004.06.012; Troisi Alfonso, 2002, Neuro Endocrinol Lett, V23 Suppl 4, P31; Tucker DM, 1995, ANN NY ACAD SCI, V769, P213, DOI 10.1111/j.1749-6632.1995.tb38141.x; Tucker DM, 2007, COGNITIVE THER RES, V31, P189, DOI 10.1007/s10608-006-9115-9; Tybur JM, 2009, J PERS SOC PSYCHOL, V97, P103, DOI 10.1037/a0015474; Ullrich S, 2008, PERS INDIV DIFFER, V44, P1162, DOI 10.1016/j.paid.2007.11.008; Vaidyanathan U, 2011, COMPR PSYCHIAT, V52, P527, DOI 10.1016/j.comppsych.2010.10.006; Vaillancourt T, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2013.0080; Van Eylen L, 2011, RES AUTISM SPECT DIS, V5, P1390, DOI 10.1016/j.rasd.2011.01.025; van Goozen SHM, 2002, ARCH SEX BEHAV, V31, P247, DOI 10.1023/A:1015248803022; van Goozen SHM, 2007, PSYCHOL BULL, V133, P149, DOI 10.1037/0033-2909.133.1.149; van Os J, 2009, PSYCHOL MED, V39, P179, DOI 10.1017/S0033291708003814; VENABLES PH, 1994, BRIT J CLIN PSYCHOL, V33, P277, DOI 10.1111/j.2044-8260.1994.tb01124.x; Verona E, 2011, PSYCHOL ASSESSMENT, V23, P545, DOI 10.1037/a0022055; Vital PM, 2009, J CHILD PSYCHOL PSYC, V50, P1093, DOI 10.1111/j.1469-7610.2009.02076.x; VOLAND E, 1989, ETHOL SOCIOBIOL, V10, P223, DOI 10.1016/0162-3095(89)90001-0; Vollebergh WAM, 2001, ARCH GEN PSYCHIAT, V58, P597, DOI 10.1001/archpsyc.58.6.597; Wakabayashi A, 2006, PERS INDIV DIFFER, V41, P873, DOI 10.1016/j.paid.2006.04.003; Wakefield J. C., 2011, MALADAPTING MINDS PH, P141; WAKEFIELD JC, 1992, AM PSYCHOL, V47, P373, DOI 10.1037//0003-066X.47.3.373; Wakefield JC, 1999, J ABNORM PSYCHOL, V108, P374, DOI 10.1037//0021-843X.108.3.374; Walsh Z., 2012, J PERSONALITY DISORD, V26, P061; Wang J, 2010, J ADOLESCENT HEALTH, V47, P99, DOI 10.1016/j.jadohealth.2009.12.007; Wang XT, 2009, EVOL HUM BEHAV, V30, P77, DOI 10.1016/j.evolhumbehav.2008.09.006; WASSER SK, 1983, Q REV BIOL, V58, P513, DOI 10.1086/413545; Watson D, 2005, J ABNORM PSYCHOL, V114, P522, DOI 10.1037/0021-843X.114.4.522; Watson D, 2008, DEPRESS ANXIETY, V25, P282, DOI 10.1002/da.20496; Watson PJ, 2002, J AFFECT DISORDERS, V72, P1, DOI 10.1016/S0165-0327(01)00459-1; Waxman SE, 2009, EUR EAT DISORD REV, V17, P408, DOI 10.1002/erv.952; Weiss A, 2005, PSYCHOSOM MED, V67, P724, DOI 10.1097/01.psy.0000181272.58103.18; Wenner CJ, 2013, INTELLIGENCE, V41, P102, DOI 10.1016/j.intell.2012.11.004; West SA, 2007, CURR BIOL, V17, pR661, DOI 10.1016/j.cub.2007.06.004; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Westen D, 2001, AM J PSYCHIAT, V158, P547, DOI 10.1176/appi.ajp.158.4.547; Wheelwright S, 2006, BRAIN RES, V1079, P47, DOI 10.1016/j.brainres.2006.01.012; Wheelwright S, 2010, MOL AUTISM, V1, DOI 10.1186/2040-2392-1-10; WHITE JL, 1994, J ABNORM PSYCHOL, V103, P192, DOI 10.1037/0021-843X.103.2.192; Whitehouse AJO, 2011, J AUTISM DEV DISORD, V41, P1125, DOI 10.1007/s10803-010-1129-1; Wiederman MW, 1996, INT J EAT DISORDER, V19, P109, DOI 10.1002/(SICI)1098-108X(199603)19:2<109::AID-EAT1>3.0.CO;2-R; Williams GC, 1966, ADAPTATION NATURAL S; WILSON M, 2002, HORMONES BRAIN BEHAV, V5, P381, DOI DOI 10.1016/B978-012532104-4/50096-2; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wolf M, 2012, AM NAT, V179, P679, DOI 10.1086/665656; Woodley MA, 2011, REV GEN PSYCHOL, V15, P228, DOI 10.1037/a0024348; Woody EZ, 2011, NEUROSCI BIOBEHAV R, V35, P1019, DOI 10.1016/j.neubiorev.2010.08.003; Worthman CM, 2009, AM J HUM BIOL, V21, P772, DOI 10.1002/ajhb.20966; Worthman CM, 2005, AM J HUM BIOL, V17, P95, DOI 10.1002/ajhb.20096; Worthman CM, 2005, DEV PSYCHOBIOLOGY AG, P187; Yu K, 2010, FRONT HUM NEUROSCI, V4, DOI 10.3389/fnhum.2010.00189; Zelazniewicz AM, 2011, ARCH SEX BEHAV, V40, P1129, DOI 10.1007/s10508-011-9850-1 506 51 52 2 53 ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND 1047-840X 1532-7965 PSYCHOL INQ Psychol. Inq. 2014 25 3-4 261 300 10.1080/1047840X.2014.884918 40 Psychology, Multidisciplinary Psychology AO0NL WOS:000341006500001 2018-11-12 J Abed, R Abed, Riadh A Framework for Psychopathology Based on Life History Theory: A Landmark Formulation PSYCHOLOGICAL INQUIRY English Editorial Material EATING-DISORDERS; SCHIZOPHRENIA; COMPETITION; PREVALENCE; PSYCHIATRY; ANOREXIA; STRATEGY Minist Justice, Sheffield, S Yorkshire, England Abed, R (reprint author), Minist Justice, Sheffield, S Yorkshire, England. abedrt@btinternet.com Abed R., 2012, THESCIENTIFICWORLDJO; Abed R. T., 2014, Irish Journal of Psychological Medicine, V31, P1, DOI 10.1017/ipm.2014.2; Abed RT, 2011, PERSPECT BIOL MED, V54, P132, DOI 10.1353/pbm.2011.0020; Abed RT, 1998, BRIT J MED PSYCHOL, V71, P525, DOI 10.1111/j.2044-8341.1998.tb01007.x; Abed RT, 2000, BRIT J PSYCHIAT, V177, P1, DOI 10.1192/bjp.177.1.1; Bourque F, 2011, PSYCHOL MED, V41, P897, DOI 10.1017/S0033291710001406; Brune M., 2008, TXB EVOLUTIONARY PSY; Cantor-Graae E, 2005, AM J PSYCHIAT, V162, P12, DOI 10.1176/appi.ajp.162.1.12; Das-Munshi J, 2012, BRIT J PSYCHIAT, V201, P282, DOI 10.1192/bjp.bp.111.102376; Evans K, 2003, ACTA PSYCHIAT SCAND, V107, P323, DOI 10.1034/j.1600-0447.2003.00053.x; Faer LM, 2005, PSYCHOL PSYCHOTHER-T, V78, P397, DOI 10.1348/147608305X42929; Feierman JR, 2006, CLIN NEUROPSYCHIATR, V3, P87; Gluckman P, 2006, MISMATCH WHY OUR WOR; Gordon R. A., 1990, ANOREXIA BULIMIA ANA; Hoek HW, 2003, INT J EAT DISORDER, V34, P383, DOI 10.1002/eat.10222; Jablensky A, 1992, Psychol Med Monogr Suppl, V20, P1; Kotte A., 2013, PEDIATRICS, V132, P612; Krabbendam L, 2005, SCHIZOPHRENIA BULL, V31, P795, DOI 10.1093/schbul/sbi060; Li NP, 2010, EVOL HUM BEHAV, V31, P365, DOI 10.1016/j.evolhumbehav.2010.05.004; McGuire Michael, 1998, DARWINIAN PSYCHIAT; Mealey L, 2000, HUM NATURE-INT BIOS, V11, P105, DOI 10.1007/s12110-000-1005-3; Nesse R, 2005, HDB EVOLUTIONARY PSY, P903; Nesse R., 2012, PRAGMATIC EVOLUTION, P107; Nesse RM, 2006, CLIN NEUROPSYCHIATR, V3, P121; Nesse RM, 2000, ARCH GEN PSYCHIAT, V57, P14, DOI 10.1001/archpsyc.57.1.14; Nesse RM, 2009, UNDERSTANDING DEPRES, P17; Russell G., 2000, NEW OXFORD TESTBOOK, P835; Salmon C, 2009, EVOL PSYCHOL-US, V7, P585; SARTORIUS N, 1986, PSYCHOL MED, V16, P909, DOI 10.1017/S0033291700011910; Stearns SC, 2010, P NATL ACAD SCI USA, V107, P1691, DOI 10.1073/pnas.0914475107; Stevens A., 2000, EVOLUTIONARY PSYCHIA; STEVENS A, 1996, EVOLUTIONARY PSYCHIA; TORREY EF, 1987, BRIT J PSYCHIAT, V150, P598, DOI 10.1192/bjp.150.5.598; TORREY EF, 1980, SCHIZOPHRENIA CIVILI; van Os J, 2012, BRIT J PSYCHIAT, V201, P258, DOI 10.1192/bjp.bp.112.110262; VOLAND E, 1989, ETHOL SOCIOBIOL, V10, P223, DOI 10.1016/0162-3095(89)90001-0; Wakefield JC, 2007, WORLD PSYCHIATRY, V6, P149; WHO, 1973, REP INT PIL STUD SCH 38 0 0 0 2 ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD ABINGDON 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXFORDSHIRE, ENGLAND 1047-840X 1532-7965 PSYCHOL INQ Psychol. Inq. 2014 25 3-4 301 306 10.1080/1047840X.2014.904136 6 Psychology, Multidisciplinary Psychology AO0NL WOS:000341006500002 2018-11-12 J Brune, M Bruene, Martin Life History Theory as Organizing Principle of Psychiatric Disorders: Implications and Prospects Exemplified by Borderline Personality Disorder PSYCHOLOGICAL INQUIRY English Editorial Material POSTTRAUMATIC-STRESS-DISORDER; EARLY FAMILY ENVIRONMENT; CHILDHOOD MALTREATMENT; DIFFERENTIAL SUSCEPTIBILITY; EVOLUTIONARY-THEORY; ADULT ATTACHMENT; MATE RETENTION; MODEL; BEHAVIOR; VULNERABILITY Ruhr Univ Bochum, LWL Univ Hosp, Dept Psychiat Psychotherapy & Prevent Med, Div Cognit Neuropsychiat & Psychiat Prevent Med, D-44791 Bochum, Germany Brune, M (reprint author), Ruhr Univ Bochum, LWL Univ Hosp, Dept Psychiat Psychotherapy & Prevent Med, Div Cognit Neuropsychiat & Psychiat Prevent Med, Alexandrninenstr 1, D-44791 Bochum, Germany. martin.bruene@rub.de Agrawal HR, 2004, HARVARD REV PSYCHIAT, V12, P94, DOI 10.1080/10673220490447218; Amad A, 2014, NEUROSCI BIOBEHAV R, V40, P6, DOI 10.1016/j.neubiorev.2014.01.003; American Psychiatric Association, 2013, DIAGN STAT MAN MENT; Bakermans-Kranenburg MJ, 2007, J CHILD PSYCHOL PSYC, V48, P1160, DOI 10.1111/j.1469-7610.2007.01801.x; Bakermans-Kranenburg MJ, 2006, DEV PSYCHOBIOL, V48, P406, DOI 10.1002/dev.20152; Bartz J, 2011, SOC COGN AFFECT NEUR, V6, P556, DOI 10.1093/scan/nsq085; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2009, MOL PSYCHIATR, V14, P746, DOI 10.1038/mp.2009.44; Belsky J, 2012, CURR DIR PSYCHOL SCI, V21, P310, DOI 10.1177/0963721412453588; Belsky J, 2011, J CHILD PSYCHOL PSYC, V52, P619, DOI 10.1111/j.1469-7610.2010.02327.x; Benecke C, 2004, NONVERBALE PROZESSE, P261; Bierer LM, 2003, CNS SPECTRUMS, V8, P737, DOI 10.1017/S1092852900019118; Bouchard S, 2009, J MARITAL FAM THER, V35, P446, DOI 10.1111/j.1752-0606.2009.00151.x; Bowlby J., 1969, ATTACHMENT LOSS, V1; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; BOYCE WT, 1995, PSYCHOSOM MED, V57, P411, DOI 10.1097/00006842-199509000-00001; Bribiescas RG, 2012, CURR ANTHROPOL, V53, pS424, DOI 10.1086/667538; Brune M, 2013, HUM PSYCHOPHARM CLIN, V28, P552, DOI 10.1002/hup.2343; Brune M, 2012, BMC MED, V10, DOI 10.1186/1741-7015-10-38; Brune M, 2012, WORLD PSYCHIATRY, V11, P55; Brune M, 2010, CLIN NEUROPSYCHIATR, V7, P3; Brune M., 2008, TXB EVOLUTIONARY PSY; Buchheim A, 2007, Z PSYCHOSOM MED PSYC, V53, P339; Cantor C, 2009, AUST NZ J PSYCHIAT, V43, P1038, DOI 10.3109/00048670903270407; Caspi A, 2002, SCIENCE, V297, P851, DOI 10.1126/science.1072290; Caspi A, 2010, AM J PSYCHIAT, V167, P509, DOI 10.1176/appi.ajp.2010.09101452; Chen EY, 2009, PSYCHIAT RES, V170, P86, DOI 10.1016/j.psychres.2009.03.006; Chisholm JS, 1999, HUM NATURE-INT BIOS, V10, P51, DOI 10.1007/s12110-999-1001-1; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; Cloninger CR, 1994, TEMPERAMENT CHARACTE; Dannlowski U, 2012, BIOL PSYCHIAT, V71, P286, DOI 10.1016/j.biopsych.2011.10.021; Davidson RJ, 2012, NAT NEUROSCI, V15, P689, DOI 10.1038/nn.3093; Del Giudice M, 2012, J THEOR BIOL, V297, P48, DOI 10.1016/j.jtbi.2011.12.004; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Dinsdale N, 2013, J PERS DISORD, V27, P172, DOI 10.1521/pedi.2013.27.2.172; Ebert A, 2013, SOC NEUROSCI-UK, V8, P305, DOI 10.1080/17470919.2013.807301; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P7, DOI 10.1017/S0954579410000611; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Feldman R, 2011, DEVELOPMENTAL SCI, V14, P752, DOI 10.1111/j.1467-7687.2010.01021.x; Fernand SC, 2012, PSYCHONEUROENDOCRINO, V37, P1659, DOI 10.1016/j.psyneuen.2012.02.012; Fonagy P, 2000, PSYCHIAT CLIN N AM, V23, P103, DOI 10.1016/S0193-953X(05)70146-5; Fossati A, 2001, J PERS DISORD, V15, P390, DOI 10.1521/pedi.15.5.390.19197; Franzen N, 2011, PSYCHIAT RES, V187, P224, DOI 10.1016/j.psychres.2010.11.012; Gaher RM, 2013, COGNITIVE THER RES, V37, P466, DOI 10.1007/s10608-012-9515-y; Gilbert P, 2004, J AFFECT DISORDERS, V79, P149, DOI 10.1016/S0165-0327(02)00405-6; Gunderson JG, 2008, J PERS DISORD, V22, P22, DOI 10.1521/pedi.2008.22.1.22; Hochberg Z, 2013, BMC MED, V11, DOI 10.1186/1741-7015-11-113; Jovev M, 2012, PSYCHIAT RES, V199, P44, DOI 10.1016/j.psychres.2012.03.027; King-Casas B, 2008, SCIENCE, V321, P806, DOI 10.1126/science.1156902; Kishida KT, 2010, NEURON, V67, P543, DOI 10.1016/j.neuron.2010.07.021; KROHN A, 1974, INT J PSYCHOANAL PSY, V3, P142; LABONTE E, 1993, CAN J PSYCHIAT, V38, P638, DOI 10.1177/070674379303801003; Lieb K, 2004, LANCET, V364, P453, DOI 10.1016/S0140-6736(04)16770-6; Linehan M., 1993, COGNITIVE BEHAV TREA; Luca M, 2012, PSYCHIAT QUART, V83, P281, DOI 10.1007/s11126-011-9198-7; MAC ARTHUR ROBERT H., 1967; Manuck SB, 2011, DEV PSYCHOPATHOL, V23, P69, DOI 10.1017/S0954579410000659; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; MONROE SM, 1991, PSYCHOL BULL, V110, P406, DOI 10.1037//0033-2909.110.3.406; Murgatroyd C, 2009, NAT NEUROSCI, V12, P1559, DOI 10.1038/nn.2436; Nicol K, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0073440; Olesen TB, 2012, EUR J PUBLIC HEALTH, V22, P220, DOI 10.1093/eurpub/ckr055; Pagura J, 2010, J PSYCHIATR RES, V44, P1190, DOI 10.1016/j.jpsychires.2010.04.016; Polanczyk G, 2009, ARCH GEN PSYCHIAT, V66, P978, DOI 10.1001/archgenpsychiatry.2009.114; Rosenvinge J H, 2000, Eat Weight Disord, V5, P52; Rusch N, 2011, EUR ARCH PSY CLIN N, V261, P369, DOI 10.1007/s00406-010-0174-2; Sansone Randy A, 2011, Innov Clin Neurosci, V8, P13; Shackelford TK, 2005, PERS RELATIONSHIP, V12, P447, DOI 10.1111/j.1475-6811.2005.00125.x; Silove D, 1998, PSYCHIATRY, V61, P181, DOI 10.1080/00332747.1998.11024830; Stanley B, 2010, AM J PSYCHIAT, V167, P24, DOI 10.1176/appi.ajp.2009.09050744; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; Stepp SD, 2012, PERSONAL DISORD, V3, P76, DOI 10.1037/a0023081; Taylor SE, 2006, BIOL PSYCHIAT, V60, P671, DOI 10.1016/j.biopsych.2006.04.019; Teicher MH, 2012, P NATL ACAD SCI USA, V109, pE563, DOI 10.1073/pnas.1115396109; Teicher MH, 2003, NEUROSCI BIOBEHAV R, V27, P33, DOI 10.1016/S0149-7634(03)00007-1; Tragesser SL, 2012, J PERS DISORD, V26, P334, DOI 10.1521/pedi.2012.26.3.334; Troisi A, 2005, NEUROSCI BIOBEHAV R, V29, P159, DOI 10.1016/j.neubiorev.2004.06.012; Troisi A., 2012, APPL EVOLUTIONARY PS, P276; Unoka Z, 2009, J PERS DISORD, V23, P399, DOI 10.1521/pedi.2009.23.4.399; van Ijzendoorn MH, 2008, GENES BRAIN BEHAV, V7, P403, DOI 10.1111/j.1601-183X.2007.00362.x; Volker KA, 2009, PSYCHOTHER PSYCH MED, V59, P264, DOI 10.1055/s-2008-1067437; Widom CS, 2006, BIOL PSYCHIAT, V60, P684, DOI 10.1016/j.biopsych.2006.03.039; Wischniewski J, 2013, J PERS DISORD, V27, P531, DOI 10.1521/pedi_2012_26_036; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wolf RC, 2012, EUR ARCH PSY CLIN N, V262, P677, DOI 10.1007/s00406-012-0303-1; ZWEIGFRANK H, 1991, AM J PSYCHIAT, V148, P648 88 3 3 0 5 ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND 1047-840X 1532-7965 PSYCHOL INQ Psychol. Inq. 2014 25 3-4 311 321 10.1080/1047840X.2014.914120 11 Psychology, Multidisciplinary Psychology AO0NL WOS:000341006500004 2018-11-12 J Glass, DJ Glass, Daniel J. Life History Theory as a Powerful Framework for Clinical Psychology PSYCHOLOGICAL INQUIRY English Editorial Material EVOLUTIONARY PSYCHOLOGY; HARMFUL DYSFUNCTION; MENTAL DISORDER; STRATEGY; PSYCHOPATHOLOGY; LIMITATIONS; CRITIQUE Suffolk Univ, Dept Psychol, Boston, MA 02114 USA Glass, DJ (reprint author), Suffolk Univ, Dept Psychol, 41 Temple St,6th Floor, Boston, MA 02114 USA. djglass@suffolk.edu American Psychiatric Association, 2013, DIAGN STAT MAN MENT; BALACHANDRAN N, 2012, EVOL EDUC OUTREACH, V5, P312, DOI DOI 10.1007/s12052-012-0428-8; BRONFENBRENNER U., 1979, ECOLOGY HUMAN DEV EX; Carmen R. A., 2013, EVOS J J EVOLUTIONAR, V5, P108; Cosmides L, 1999, J ABNORM PSYCHOL, V108, P453, DOI 10.1037//0021-843X.108.3.453; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Frankenhuis WE, 2007, PHILOS PSYCHOL, V20, P687, DOI 10.1080/09515080701665904; Gladden PR, 2009, PERS INDIV DIFFER, V46, P270, DOI 10.1016/j.paid.2008.10.010; GLANTZ K, 1989, EXILES EDEN PSYCHOTH; Insel T, 2010, AM J PSYCHIAT, V167, P748, DOI 10.1176/appi.ajp.2010.09091379; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; Kennair LEO, 2003, CURR OPIN PSYCHIATR, V16, P691, DOI 10.1097/01.yco.0000097655.75497.2e; Kutchins H, 1997, MAKING US CRAZY DSM; LILIENFELD SO, 1995, J ABNORM PSYCHOL, V104, P411, DOI 10.1037//0021-843X.104.3.411; McNally R. J., 2011, WHAT IS MENTAL ILLNE; McWilliams N, 2011, J PERS ASSESS, V93, P112, DOI 10.1080/00223891.2011.542709; Mealey L, 2000, HUM NATURE-INT BIOS, V11, P105, DOI 10.1007/s12110-000-1005-3; Moffitt TE, 2005, PSYCHOL BULL, V131, P533, DOI 10.1037/0033-2909.131.4.533; NESSE R, 1994, WHY WE GET SICK NEW; Robertson L, 1997, J COGNITIVE NEUROSCI, V9, P295, DOI 10.1162/jocn.1997.9.3.295; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Tooby J., 1992, ADAPTED MIND EVOLUTI, P19, DOI DOI 10.1086/418398; WAKEFIELD JC, 1992, PSYCHOL REV, V99, P232, DOI 10.1037//0033-295X.99.2.232; Wakefield Jerome, 2005, HDB EVOLUTIONARY PSY, P878; Walmsley T., 1993, PSYCHIATRIC B, V17, P748; Washburn M, 2013, SOC WORK, V58, P373, DOI 10.1093/sw/swt030; Wilson EO, 1998, CONSILIENCE UNITY KN 29 0 0 0 4 ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD ABINGDON 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXFORDSHIRE, ENGLAND 1047-840X 1532-7965 PSYCHOL INQ Psychol. Inq. 2014 25 3-4 334 336 10.1080/1047840X.2014.916195 3 Psychology, Multidisciplinary Psychology AO0NL WOS:000341006500008 2018-11-12 J Jonason, PK; Schmitt, DP Jonason, Peter K.; Schmitt, David P. The Virtues of Evolutionary Psychology for Studying Human Vices PSYCHOLOGICAL INQUIRY English Editorial Material TERM MATING STRATEGY; LIFE-HISTORY THEORY; DARK TRIAD; PERSONALITY; CULTURE; PSYCHOPATHY; ATTACHMENT; MACHIAVELLIANISM; NARCISSISM; EMPATHY [Jonason, Peter K.] Univ Western Sydney, Sch Social Sci & Psychol, Milperra, NSW 2214, Australia; [Schmitt, David P.] Bradley Univ, Dept Psychol, Peoria, IL 61625 USA Jonason, PK (reprint author), Univ Western Sydney, Sch Social Sci & Psychol, Milperra, NSW 2214, Australia. p.jonason@uws.edu.au American Psychiatric Association, 2013, DIAGN STAT MAN MENT; Buss DM, 2000, AM PSYCHOL, V55, P15, DOI 10.1037//0003-066X.55.1.15; Christopher M, 2004, CLIN PSYCHOL REV, V24, P75, DOI 10.1016/j.cpr.2003.12.003; Church A. T., 2009, PERSPECT PSYCHOL SCI, V5, P441; Confer JC, 2010, AM PSYCHOL, V65, P110, DOI 10.1037/a0018413; Crysel LC, 2013, PERS INDIV DIFFER, V54, P35, DOI 10.1016/j.paid.2012.07.029; Denissen JJA, 2008, J RES PERS, V42, P1285, DOI 10.1016/j.jrp.2008.04.002; Dunkel CS, 2010, PERS INDIV DIFFER, V48, P681, DOI 10.1016/j.paid.2009.12.014; Ein-Dor T, 2010, PERSPECT PSYCHOL SCI, V5, P123, DOI 10.1177/1745691610362349; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Friedman M, 2010, PERS RELATIONSHIP, V17, P107, DOI 10.1111/j.1475-6811.2010.01256.x; Gangestad SW, 2006, PSYCHOL INQ, V17, P75, DOI 10.1207/s15327965pli1702_1; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Holcomb H. R., 2001, CONCEPTUAL CHALLENGE, V27; Jonason P. K., 2009, J SEX RES, V46, P1; Jonason P. K., 2010, INDIVIDUAL DIFFERENC, V8, P111; Jonason PK, 2014, PERS INDIV DIFFER, V67, P30, DOI 10.1016/j.paid.2013.10.006; Jonason PK, 2013, ARCH SEX BEHAV, V42, P1407, DOI 10.1007/s10508-013-0189-7; Jonason PK, 2013, PERS INDIV DIFFER, V55, P532, DOI 10.1016/j.paid.2013.04.027; Jonason PK, 2013, EVOL PSYCHOL-US, V11, P172, DOI 10.1177/147470491301100116; Jonason PK, 2013, PERS INDIV DIFFER, V54, P572, DOI 10.1016/j.paid.2012.11.009; Jonason PK, 2012, REV GEN PSYCHOL, V16, P192, DOI 10.1037/a0027914; Jonason PK, 2012, PERS INDIV DIFFER, V52, P521, DOI 10.1016/j.paid.2011.11.023; Jonason PK, 2011, PERS INDIV DIFFER, V51, P759, DOI 10.1016/j.paid.2011.06.025; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jones DN, 2011, PERS INDIV DIFFER, V51, P679, DOI 10.1016/j.paid.2011.04.011; Leistedt SJ, 2014, J FORENSIC SCI, V59, P167, DOI 10.1111/1556-4029.12359; MacCallum RC, 2002, PSYCHOL METHODS, V7, P19, DOI 10.1037//1082-989X.7.1.19; MAXWELL SE, 1993, PSYCHOL BULL, V113, P181, DOI 10.1037/0033-2909.113.1.181; NESSE R, 1994, WHY WE GET SICK NEW; Nettle D, 2006, AM PSYCHOL, V61, P622, DOI 10.1037/0003-066X.61.6.622; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; Penke L., 2011, HDB SEXUALITY RELATE, P622; Penke L, 2007, EUR J PERSONALITY, V21, P549, DOI 10.1002/per.629; Rauthmann JF, 2012, SOC PSYCHOL PERS SCI, V3, P487, DOI 10.1177/1948550611427608; Schaller M, 2010, EVOLUTION, CULTURE, AND THE HUMAN MIND, P243; Schmitt DP, 2008, CROSS-CULT RES, V42, P220, DOI 10.1177/1069397108317485; Schmitt DP, 2005, BEHAV BRAIN SCI, V28, P247, DOI 10.1017/S0140525X05000051; Schmitt DP, 2004, PSYCHOL SCI, V15, P643, DOI 10.1111/j.0956-7976.2004.00734.x; Van de Velde S, 2010, SOC SCI RES, V39, P396, DOI 10.1016/j.ssresearch.2010.01.002; van de Vijver FJR, 2001, J PERS, V69, P1007, DOI 10.1111/1467-6494.696173; WAKEFIELD JC, 1992, PSYCHOL REV, V99, P232, DOI 10.1037//0033-295X.99.2.232 43 1 1 2 21 ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD ABINGDON 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXFORDSHIRE, ENGLAND 1047-840X 1532-7965 PSYCHOL INQ Psychol. Inq. 2014 25 3-4 341 345 10.1080/1047840X.2014.897200 5 Psychology, Multidisciplinary Psychology AO0NL WOS:000341006500010 2018-11-12 J Polimeni, J; Reiss, JP Polimeni, Joseph; Reiss, Jeffrey P. Life History Theory's Best Chance: Illuminating Cluster B Personality Disorders PSYCHOLOGICAL INQUIRY English Editorial Material OBSESSIVE-COMPULSIVE DISORDER; CLINICAL-FEATURES; SYMPTOMS; FAMILY; SCHIZOPHRENIA; HERITABILITY; IMPULSIVITY; SCHIZOTYPY; CHILDHOOD; SELECTION [Polimeni, Joseph] Univ Manitoba, Dept Psychiat, Winnipeg, MB R3T 2N2, Canada; [Reiss, Jeffrey P.] Univ Western Ontario, Dept Psychiat, London, ON N6A 3K7, Canada Polimeni, J (reprint author), 806-233 Kennedy St, Winnipeg, MB R3C 3J5, Canada. JPolimeni@shaw.ca Bandelow B, 2005, PSYCHIAT RES, V134, P169, DOI 10.1016/j.psychres.2003.07.008; Cardno AG, 1999, ARCH GEN PSYCHIAT, V56, P162, DOI 10.1001/archpsyc.56.2.162; Ettelt S, 2007, ACTA PSYCHIAT SCAND, V115, P41, DOI 10.1111/j.1600-0447.2006.00835.x; HARLOW HF, 1965, P NATL ACAD SCI USA, V54, P90, DOI 10.1073/pnas.54.1.90; Harrison PJ, 2005, MOL PSYCHIATR, V10, P40, DOI 10.1038/sj.mp.4001558; Jenkins Jeffrey R., 2001, Veterinary Clinics of North America Exotic Animal Practice, V4, P651; Mathews CA, 2007, AM J MED GENET B, V144B, P174, DOI 10.1002/ajmg.b.30370; Nesse RM, 2005, Q REV BIOL, V80, P62, DOI 10.1086/431026; Nettle D, 2006, P ROY SOC B-BIOL SCI, V273, P611, DOI 10.1098/rspb.2005.3349; Nettle D, 2006, J RES PERS, V40, P876, DOI 10.1016/j.jrp.2005.09.004; Polimeni J, 2002, MED HYPOTHESES, V58, P244, DOI 10.1054/mehy.2001.1504; Polimeni J, 2005, MED HYPOTHESES, V65, P655, DOI 10.1016/j.mehy.2005.05.023; Polimeni J., 2012, SHAMANS AMONG US SCH; PRICE J, 1994, BRIT J PSYCHIAT, V164, P309, DOI 10.1192/bjp.164.3.309; PRICE J, 1967, LANCET, V2, P243; RASMUSSEN SA, 1992, PSYCHIAT CLIN N AM, V15, P743; Smari J, 2008, J BEHAV THER EXP PSY, V39, P228, DOI 10.1016/j.jbtep.2007.07.002; Stevens A., 2000, PROPHETS CULTS MADNE; Sulkowski ML, 2009, PERS INDIV DIFFER, V47, P620, DOI 10.1016/j.paid.2009.05.020; van Grootheest DS, 2005, TWIN RES HUM GENET, V8, P450, DOI 10.1375/183242705774310060; Winsper C, 2012, PSYCHOL MED, V42, P2405, DOI 10.1017/S0033291712000542; Zanarini MC, 1997, AM J PSYCHIAT, V154, P1101 22 0 0 0 4 ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD ABINGDON 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXFORDSHIRE, ENGLAND 1047-840X 1532-7965 PSYCHOL INQ Psychol. Inq. 2014 25 3-4 360 362 10.1080/1047840X.2014.911639 3 Psychology, Multidisciplinary Psychology AO0NL WOS:000341006500014 2018-11-12 J Schlomer, GL; Cleveland, HH Schlomer, Gabriel L.; Cleveland, H. Harrington Life History Theory in Psychopathology: More Than an Elegant Heuristic? PSYCHOLOGICAL INQUIRY English Editorial Material EVOLUTIONARY-DEVELOPMENTAL THEORY; DIFFERENTIAL SUSCEPTIBILITY; BIOLOGICAL SENSITIVITY; REPRODUCTIVE STRATEGY; ENVIRONMENT; BEHAVIOR; PREVENTION; CONTEXT [Schlomer, Gabriel L.; Cleveland, H. Harrington] Penn State Univ, Dept Human Dev & Family Studies, University Pk, PA 16802 USA; [Schlomer, Gabriel L.] Penn State Univ, Dept Biobehav Hlth, University Pk, PA 16802 USA Schlomer, GL (reprint author), Penn State Univ, Dept Human Dev & Family Studies, University Pk, PA 16802 USA. gls29@psu.edu BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2009, PSYCHOL BULL, V135, P885, DOI 10.1037/a0017376; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Brody GH, 2013, AM J PUBLIC HEALTH, V103, pS19, DOI 10.2105/AJPH.2012.301080; Cleveland HH, 2000, CHILD DEV, V71, P733, DOI 10.1111/1467-8624.00182; CRAWFORD CB, 1989, AM PSYCHOL, V44, P1449, DOI 10.1037/0003-066X.44.12.1449; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Duncan LE, 2011, AM J PSYCHIAT, V168, P1041, DOI 10.1176/appi.ajp.2011.11020191; Ellis BJ, 2005, DEV PSYCHOPATHOL, V17, P303, DOI 10.1017/S0954579405050157; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2012, DEV PSYCHOPATHOL, V24, P317, DOI 10.1017/S095457941100085X; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P7, DOI 10.1017/S0954579410000611; Essex MJ, 2013, CHILD DEV, V84, P58, DOI 10.1111/j.1467-8624.2011.01641.x; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Jaffee SR, 2007, MOL PSYCHIATR, V12, P432, DOI 10.1038/sj.mp.4001950; Lykken D.T., 1995, ANTISOCIAL PERSONALI; MCCLELLAND GH, 1993, PSYCHOL BULL, V114, P376, DOI 10.1037//0033-2909.114.2.376; Meaney MJ, 2010, CHILD DEV, V81, P41, DOI 10.1111/j.1467-8624.2009.01381.x; Nesse RM, 2012, BMC MED, V10, DOI 10.1186/1741-7015-10-5; Reiss D, 2013, AM J PUBLIC HEALTH, V103, P111, DOI 10.2105/AJPH.2013.301408; Rowe D. C., 2002, EVOL HUM BEHAV, V1, P1; Rowe DC, 1997, PERS INDIV DIFFER, V23, P105, DOI 10.1016/S0191-8869(97)00005-6; Schlomer G. L., 2013, M SOC RES CHILD DEV; WILLIAMS GC, 1991, Q REV BIOL, V66, P1, DOI 10.1086/417048 25 0 0 0 1 ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD ABINGDON 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXFORDSHIRE, ENGLAND 1047-840X 1532-7965 PSYCHOL INQ Psychol. Inq. 2014 25 3-4 363 368 10.1080/1047840X.2014.916191 6 Psychology, Multidisciplinary Psychology AO0NL WOS:000341006500015 2018-11-12 J Vila-Cabrera, A; Martinez-Vilalta, J; Retana, J Vila-Cabrera, Albert; Martinez-Vilalta, Jordi; Retana, Javier Variation in reproduction and growth in declining Scots pine populations PERSPECTIVES IN PLANT ECOLOGY EVOLUTION AND SYSTEMATICS English Article Drought; Growth; Pinus sylvestris; Reproduction; Size-dependent; Trade-off DROUGHT-INDUCED MORTALITY; NE IBERIAN PENINSULA; CONE PRODUCTION; TREE MORTALITY; FOREST DECLINE; ALEPPO PINE; ALLOCATION; ALLOMETRY; PATTERNS; PINACEAE Disentangling how variation in reproduction and growth is linked in plants across different ecological scales, and how allocation rules change in response to stress are fundamental aspects of life history theory. Although it is known that reproductive allocation is an allometric process and that environmental conditions can influence demographic traits, patterns of variation in vegetative and reproductive functions across and within individuals of tree species suffering drought-induced decline have rarely been documented. In this study we use Scots pine (Pinus sylvestris L.) as a model species to explore patterns of variation in cone production and growth in two declining populations at the southern edge of its distribution. A Bayesian approach was used to assess how these demographic traits vary as a function of drought effects and competition and covary across different ecological scales. The allometric trajectories relating tree size with cone production and growth differed along gradients of drought impacts and biotic interactions. Although reproduction and growth increased with tree size, cone production reached a maximum at intermediate sized trees and stabilized or decreased at larger sizes. Drought stress effects (defoliation at the tree level and overall decline at the plot level) and competition for resources reduced cone production and growth. Our results also showed differential effects of defoliation on cone production depending on tree size, with stronger effects on larger individuals. After accounting for these effects, much of the variation of demographic traits and correlations among them occurred at small ecological scales across individuals (i.e. within plots) and within individuals across years. This resulted in covariations between demographic traits among nearby individuals and within individuals through time, suggesting a consistent advantage in resource acquisition of some individuals within plots, and trade-offs between growth and cone production within trees across years. In conclusion, this study reports that drought-induced forest decline is associated with lower growth and cone production in Scots pine, which could contribute to explain the long-term impacts of drought in southern populations of this species and, in particular, its low regeneration capacity after severe drought. (C) 2014 Geobotanisches Institut ETH, Stiftung Ruebel. Published by Elsevier GmbH. All rights reserved. [Vila-Cabrera, Albert; Martinez-Vilalta, Jordi; Retana, Javier] CREAF, Cerdanyola Del Valles 08193, Catalonia, Spain; [Vila-Cabrera, Albert; Martinez-Vilalta, Jordi; Retana, Javier] Univ Autonoma Barcelona, Cerdanyola Del Valles 08193, Catalonia, Spain; [Martinez-Vilalta, Jordi] Univ Edinburgh, Sch Geosci, Edinburgh EH9 3JN, Midlothian, Scotland Vila-Cabrera, A (reprint author), CREAF, Cerdanyola Del Valles 08193, Catalonia, Spain. a.vila@creaf.uab.es Retana, Javier/L-1214-2014; Martinez-Vilalta, Jordi/D-3385-2014 Retana, Javier/0000-0002-7505-9467; Martinez-Vilalta, Jordi/0000-0002-2332-7298 Spanish Ministry of Education and Science via competitive projects [CGL2007-60120, CONSOLIDER INGENIO 2010 CSD2008-0040] We thank J.M. Espelta for helpful suggestions and discussions on an earlier version of the manuscript. We would also like to thank M. Brunat, D. Gimenez, B. Ros, S. Guerrero and P. Garcia for their help with the fieldwork. This study was supported by the Spanish Ministry of Education and Science via competitive projects CGL2007-60120 and CONSOLIDER INGENIO 2010 CSD2008-0040. Aber J, 2001, BIOSCIENCE, V51, P735, DOI 10.1641/0006-3568(2001)051[0735:FPAGEC]2.0.CO;2; Adams HD, 2005, J BIOGEOGR, V32, P1629, DOI 10.1111/j.1365-2699.2005.01292.x; Barringer BC, 2012, OECOLOGIA, V171, P129; Bazzaz F. A., 2000, Seeds: the ecology of regeneration in plant communities, P1, DOI 10.1079/9780851994321.0001; Bonser SP, 2009, PERSPECT PLANT ECOL, V11, P31, DOI 10.1016/j.ppees.2008.10.003; Linares JC, 2012, GLOBAL CHANGE BIOL, V18, P1000, DOI 10.1111/j.1365-2486.2011.02566.x; Carnicer J, 2011, P NATL ACAD SCI USA, V108, P1474, DOI 10.1073/pnas.1010070108; Climent J, 2008, AM J BOT, V95, P833, DOI 10.3732/ajb.2007354; COUSENS JE, 1988, FORESTRY, V61, P255, DOI 10.1093/forestry/61.3.255; Davies SJ, 2001, ECOLOGY, V82, P920, DOI 10.1890/0012-9658(2001)082[0920:TMAGIS]2.0.CO;2; Despland E, 1997, AM J BOT, V84, P928, DOI 10.2307/2446283; Di Filippo A, 2012, GLOBAL CHANGE BIOL, V18, P960, DOI 10.1111/j.1365-2486.2011.02617.x; ELKASSABY YA, 1992, CAN J BOT, V70, P1429, DOI 10.1139/b92-179; Espelta JM, 2008, ECOLOGY, V89, P805, DOI 10.1890/07-0217.1; Galiano L, 2011, NEW PHYTOL, V190, P750, DOI 10.1111/j.1469-8137.2010.03628.x; Galiano L, 2010, ECOSYSTEMS, V13, P978, DOI 10.1007/s10021-010-9368-8; Garcia D, 2000, J ECOL, V88, P436; Girard F, 2012, EUR J FOREST RES, V131, P919, DOI 10.1007/s10342-011-0565-6; Gomez-Aparicio L, 2011, GLOBAL CHANGE BIOL, V17, P2400, DOI 10.1111/j.1365-2486.2011.02421.x; Gracia C., 2000, INVENTARI ECOLOGIC F; Gracia M., 2011, PINESDES PI ROIG MAN; Guo H, 2012, J ECOL, V100, P452, DOI 10.1111/j.1365-2745.2011.01884.x; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Harper J. L., 1977, POPULATION BIOL PLAN; Haymes KL, 2012, AM J BOT, V99, P640, DOI 10.3732/ajb.1100339; Heres AM, 2012, TREES-STRUCT FUNCT, V26, P621, DOI 10.1007/s00468-011-0628-9; Hulshof CM, 2012, ECOLOGY, V93, P180, DOI 10.1890/11-0740.1; Knops JMH, 2007, P NATL ACAD SCI USA, V104, P16982, DOI 10.1073/pnas.0704251104; Lloret F, 2004, GLOBAL CHANGE BIOL, V10, P2092, DOI 10.1111/j.1365-2486.2004.00870.x; Lloret F, 2012, GLOBAL CHANGE BIOL, V18, P797, DOI 10.1111/j.1365-2486.2011.02624.x; Martinez-Alonso C, 2007, FOREST ECOL MANAG, V253, P19, DOI 10.1016/j.foreco.2007.06.043; Martinez-Vilalta J, 2002, FOREST ECOL MANAG, V161, P247, DOI 10.1016/S0378-1127(01)00495-9; Martinez-Vilalta J, 2012, OECOLOGIA, V168, P877, DOI 10.1007/s00442-011-2132-8; Mencuccini M, 2005, ECOL LETT, V8, P1183, DOI 10.1111/j.1461-0248.2005.00819.x; Monks A, 2006, AUSTRAL ECOL, V31, P366, DOI 10.1111/j.1442=9993.2006.01565.x; Monserrat-Marti G, 2009, TREES-STRUCT FUNCT, V23, P787; Mutke S., 2005, AGR FOR METEOROL, V132, P63; Niklas KJ, 2003, EVOL ECOL RES, V5, P79; Ninyerola M, 2000, INT J CLIMATOL, V20, P1823, DOI 10.1002/1097-0088(20001130)20:14<1823::AID-JOC566>3.0.CO;2-B; Norton DA, 1988, FUNCT ECOL, V2, P399, DOI 10.2307/2389413; Perez-Ramos IM, 2010, ECOLOGY, V91, P3057, DOI 10.1890/09-2313.1; Petit RJ, 2006, ANNU REV ECOL EVOL S, V37, P187, DOI 10.1146/annurev.ecolsys.37.091305.110215; Poyatos R, 2013, NEW PHYTOL, V200, P388, DOI 10.1111/nph.12278; R Development Core Team, 2011, R LANG ENV STAT COMP; Sakai A, 2006, AM J BOT, V93, P988, DOI 10.3732/ajb.93.7.988; Sala A, 2012, NEW PHYTOL, V196, P189, DOI 10.1111/j.1469-8137.2012.04257.x; Sala A, 2012, TREE PHYSIOL, V32, P764, DOI 10.1093/treephys/tpr143; Sanchez-Humanes B, 2011, OECOLOGIA, V166, P101, DOI 10.1007/s00442-010-1819-6; Sanchez-Humanes B, 2011, FORESTRY, V84, P73, DOI 10.1093/forestry/cpq045; Sanchez-Salguero R, 2012, CLIMATIC CHANGE, V113, P767, DOI 10.1007/s10584-011-0372-6; Santos-del-Blanco L, 2010, FOR SYST, V19, P381; Silvertown J, 1999, AM NAT, V154, P321, DOI 10.1086/303238; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Staudhammer CL, 2013, OECOLOGIA, V173, P45, DOI 10.1007/s00442-013-2603-1; Thabeet A, 2009, TREES-STRUCT FUNCT, V23, P843, DOI 10.1007/s00468-009-0326-z; Vila-Cabrera A, 2013, ECOSYSTEMS, V16, P323, DOI 10.1007/s10021-012-9615-2; Weiner J, 2004, PERSPECT PLANT ECOL, V6, P207, DOI 10.1078/1433-8319-00083; Weiner J, 2009, J ECOL, V97, P1220, DOI 10.1111/j.1365-2745.2009.01559.x; Yasumura Y, 2006, FOREST ECOL MANAG, V229, P228, DOI 10.1016/j.foreco.2006.04.003; Zlotin RI, 2008, J ARID ENVIRON, V72, P1562, DOI 10.1016/j.jaridenv.2008.02.021 60 8 8 4 37 ELSEVIER GMBH, URBAN & FISCHER VERLAG JENA OFFICE JENA, P O BOX 100537, 07705 JENA, GERMANY 1433-8319 PERSPECT PLANT ECOL Perspect. Plant Ecol. Evol. Syst. 2014 16 3 111 120 10.1016/j.ppees.2014.02.005 10 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology AI4XB WOS:000336868700002 2018-11-12 J Rickard, IJ; Frankenhuis, WE; Nettle, D Rickard, Ian J.; Frankenhuis, Willem E.; Nettle, Daniel Why Are Childhood Family Factors Associated With Timing of Maturation? A Role for Internal Prediction PERSPECTIVES ON PSYCHOLOGICAL SCIENCE English Article developmental plasticity; psychosocial acceleration; puberty; life history; familial adversity LIFE-HISTORY THEORY; SEXUAL RISK-TAKING; REPRODUCTIVE STRATEGIES; TELOMERE LENGTH; PUBERTAL MATURATION; INDIVIDUAL-DIFFERENCES; PSYCHOLOGICAL STRESS; METABOLIC SYNDROME; ADAPTIVE RESPONSE; OXIDATIVE STRESS Children, particularly girls, who experience early familial adversity tend to go on to reach sexual maturity relatively early. This feature of adolescent development is believed to be an evolved strategy that arose because individuals with genes that caused them to mature relatively early under certain conditions left behind more descendants than those who did not. However, although much has been done to uncover the psychological and physiological mechanisms underlying this process, less attention has been paid to the evolutionary reasons behind why it might be advantageous. It has previously been suggested that this strategy evolved because early familial adversity accurately indicated later environmental adversity, under which conditions early reproduction would likely maximize evolutionary fitness. In this article, we contrast this external prediction model with an alternative explanation, which builds on the existing explanation and is mutually compatible with it but also distinct from it. We argue that accelerated development is advantageous because early adversity detrimentally affects the individual's body, increasing later morbidity and mortality; individuals may adapt to this internal setback by accelerating their development. Unlike the external prediction model, this internal prediction relies not on temporal environmental continuity but on long-term effects of early circumstances on the body. [Rickard, Ian J.] Univ Durham, Dept Anthropol, Durham DH1 3LE, England; [Rickard, Ian J.] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England; [Rickard, Ian J.; Nettle, Daniel] Newcastle Univ, Inst Neurosci, Ctr Behav & Evolut, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England; [Frankenhuis, Willem E.] Radboud Univ Nijmegen, Inst Behav Sci, Dept Dev Psychol, NL-6525 ED Nijmegen, Netherlands Rickard, IJ (reprint author), Univ Durham, Dept Anthropol, Dawson Bldg,South Rd, Durham DH1 3LE, England. ian.rickard@durham.ac.uk Nettle, Daniel/0000-0001-9089-2599 Baig U., 2011, J OBESITY, V2011; Bakaysa SL, 2007, AGING CELL, V6, P769, DOI 10.1111/j.1474-9726.2007.00340.x; BARGLOW P, 1968, AM J ORTHOPSYCHIAT, V38, P672, DOI 10.1111/j.1939-0025.1968.tb02437.x; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P127; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; Belsky J, 2009, PSYCHOL BULL, V135, P885, DOI 10.1037/a0017376; Bertram CE, 2001, BRIT MED BULL, V60, P103, DOI 10.1093/bmb/60.1.103; BLACKBURN EH, 1991, NATURE, V350, P569, DOI 10.1038/350569a0; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Cameron N. M., 2011, FRONTIERS EVOLUTIONA, V3; Cameron N, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002210; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Cho GJ, 2012, MENOPAUSE, V19, P456, DOI 10.1097/gme.0b013e3182337150; CHYUN YS, 1984, ENDOCRINOLOGY, V114, P477, DOI 10.1210/endo-114-2-477; Costello EJ, 2007, ARCH GEN PSYCHIAT, V64, P338, DOI 10.1001/archpsyc.64.3.338; D'Onofrio BM, 2006, DEV PSYCHOL, V42, P486, DOI 10.1037/0012-1649.42.3.486; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; DORIUS GL, 1993, YOUTH SOC, V25, P3, DOI 10.1177/0044118X93025001001; Ellis B. J., 2013, CHILD ADOLESCENT PSY, V2, P251; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2000, CHILD DEV, V71, P485, DOI 10.1111/1467-8624.00159; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Emlen DJ, 1999, J INSECT PHYSIOL, V45, P45, DOI 10.1016/S0022-1910(98)00096-1; Entringer S, 2011, P NATL ACAD SCI USA, V108, pE513, DOI 10.1073/pnas.1107759108; Epel ES, 2004, P NATL ACAD SCI USA, V101, P17312, DOI 10.1073/pnas.0407162101; Fawcett TW, 2003, P ROY SOC B-BIOL SCI, V270, P1637, DOI 10.1098/rspb.2003.2328; Frankenhuis WE, 2013, DEVELOPMENTAL SCI, V16, P584, DOI 10.1111/desc.12053; Frankenhuis WE, 2013, CHILD DEV PERSPECT, V7, P115, DOI 10.1111/cdep.12024; Frankenhuis WE, 2012, DEV PSYCHOL, V48, P628, DOI 10.1037/a0025629; Frankenhuis WE, 2011, P ROY SOC B-BIOL SCI, V278, P3558, DOI 10.1098/rspb.2011.0055; Frankenhuis WE, 2011, PERSPECT PSYCHOL SCI, V6, P336, DOI 10.1177/1745691611412602; Gavrilov LA, 2004, ANN NY ACAD SCI, V1019, P496, DOI 10.1196/annals.1297.091; Geronimus AT, 2013, AM J PUBLIC HEALTH, V103, P56, DOI 10.2105/AJPH.2013.301380; Gidron Y, 2006, BIOL PSYCHOL, V72, P291, DOI 10.1016/j.biopsycho.2005.11.011; Gillman MW, 2005, NEW ENGL J MED, V353, P1848, DOI 10.1056/NEJMe058187; GRABER JA, 1995, CHILD DEV, V66, P346, DOI 10.2307/1131582; Grafen A., 1988, REPROD SUCCESS, P454; GROSS MR, 1985, NATURE, V313, P47, DOI 10.1038/313047a0; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; Hayward Adam D., 2013, Evolution Medicine and Public Health, P106, DOI 10.1093/emph/eot007; Hayward AD, 2013, P NATL ACAD SCI USA, V110, P13886, DOI 10.1073/pnas.1301817110; Hope D, 2013, ECON HUM BIOL, V11, P236, DOI 10.1016/j.ehb.2011.06.006; James J, 2012, DEV PSYCHOL, V48, P687, DOI 10.1037/a0026427; Joergensen A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020795; JONES B, 1972, MED J AUSTRALIA, V2, P533; Jones JH, 2005, AM J HUM BIOL, V17, P22, DOI 10.1002/ajhb.20099; Kananen L, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010826; Kim K, 1998, J ADOLESCENCE, V21, P231, DOI 10.1006/jado.1998.0149; Kimura M, 2008, AM J EPIDEMIOL, V167, P799, DOI 10.1093/aje/kwm380; Liu Y, 2008, AM J PHYSIOL-RENAL, V294, pF768, DOI 10.1152/ajprenal.00163.2007; Maestripieri D, 2005, P ROY SOC B-BIOL SCI, V272, P1243, DOI 10.1098/rspb.2005.3059; Mangel M., 1988, DYNAMIC MODELING BEH; McEwen BS, 2003, HORM BEHAV, V43, P2, DOI 10.1016/S0018-506X(02)00024-7; McNamara J., 1999, MODELS ADAPTIVE BEHA; Mendle J, 2006, DEV PSYCHOL, V42, P533, DOI 10.1037/0012-1649.42.3.233; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Mezzich AC, 1997, DRUG ALCOHOL DEPEN, V44, P157, DOI 10.1016/S0376-8716(96)01333-6; Miller GE, 2011, PSYCHOL BULL, V137, P959, DOI 10.1037/a0024768; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.2307/1130900; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Neal CR, 2004, AM J PHYSIOL-REG I, V287, pR375, DOI 10.1152/ajpregu.00012.2004; Neberich W, 2010, EUR J DEV PSYCHOL, V7, P153, DOI 10.1080/17405620801928029; Nettle D., 2013, P ROYAL SOC B, V280, DOI 10.1098/rspb.2013.1343; Nettle D, 2011, P ROY SOC B-BIOL SCI, V278, P1721, DOI 10.1098/rspb.2010.1726; Njajou OT, 2009, J GERONTOL A-BIOL, V64, P860, DOI 10.1093/gerona/glp061; Nussey DH, 2007, CURR BIOL, V17, pR1000, DOI 10.1016/j.cub.2007.10.005; Penke L, 2009, EVOL HUM BEHAV, V30, P429, DOI 10.1016/j.evolhumbehav.2009.06.001; Pesonen AK, 2008, AM J HUM BIOL, V20, P345, DOI 10.1002/ajhb.20735; Rice F, 2010, PSYCHOL MED, V40, P335, DOI 10.1017/S0033291709005911; Rickard IJ, 2007, TRENDS ENDOCRIN MET, V18, P94, DOI 10.1016/j.tem.2007.02.004; Rickard IJ, 2012, P ROY SOC B-BIOL SCI, V279, P4253, DOI 10.1098/rspb.2012.1363; Rickard IJ, 2010, ECOLOGY, V91, P3515, DOI 10.1890/10-0019.1; Roustit C., 2011, BMC PUBLIC HLTH, V11; SCHWARTZ JE, 1995, AM J PUBLIC HEALTH, V85, P1237, DOI 10.2105/AJPH.85.9.1237; Segerstrom SC, 2004, PSYCHOL BULL, V130, P601, DOI 10.1037/0033-2909.130.4.601; Smallegange IM, 2011, EVOL ECOL, V25, P857, DOI 10.1007/s10682-010-9446-6; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEINBERG L, 1988, DEV PSYCHOL, V24, P122, DOI 10.1037/0012-1649.24.1.122; Stephens DW, 1991, BEHAV ECOL, V2, P77, DOI 10.1093/beheco/2.1.77; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; TONOLO G, 1988, J HYPERTENS, V6, P25; Turner PK, 1999, J REPROD INFANT PSYC, V17, P111, DOI DOI 10.1080/02646839908409091; Uller T, 2013, J EVOLUTION BIOL, V26, P2161, DOI 10.1111/jeb.12212; Vigil JM, 2005, DEV PSYCHOL, V41, P553, DOI 10.1037/0012-1649.41.3.553; von Zglinicki T, 2002, TRENDS BIOCHEM SCI, V27, P339, DOI 10.1016/S0968-0004(02)02110-2; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; Waynforth D, 2012, P ROY SOC B-BIOL SCI, V279, P2998, DOI 10.1098/rspb.2012.0220; Webb RT, 2011, PSYCHOL MED, V41, P1867, DOI 10.1017/S0033291711000055; Wegman HL, 2009, PSYCHOSOM MED, V71, P805, DOI 10.1097/PSY.0b013e3181bb2b46; Wells JCK, 2012, INT J EPIDEMIOL, V41, P229, DOI 10.1093/ije/dyr239; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Widen E, 2012, DIABETES CARE, V35, P850, DOI 10.2337/dc11-1365; Zafir A, 2009, STRESS, V12, P167, DOI 10.1080/10253890802234168 98 42 44 2 33 SAGE PUBLICATIONS LTD LONDON 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND 1745-6916 1745-6924 PERSPECT PSYCHOL SCI Perspect. Psychol. Sci. JAN 2014 9 1 3 15 10.1177/1745691613513467 13 Psychology, Multidisciplinary Psychology AA1IB WOS:000330848700001 26173236 2018-11-12 J Marty, L; Rochet, MJ; Ernande, B Marty, Lise; Rochet, Marie-Joelle; Ernande, Bruno Temporal trends in age and size at maturation of four North Sea gadid species: cod, haddock, whiting and Norway pout MARINE ECOLOGY PROGRESS SERIES English Article Probabilistic maturation reaction norm; Demography; Phenotypic plasticity; Fisheries-induced evolution; Life-history strategy; Maturity; Growth; Reproductive investment FISHERIES-INDUCED EVOLUTION; LIFE-HISTORY TRAITS; PROBABILISTIC REACTION NORMS; EVOLVING FISH STOCKS; GADUS-MORHUA; ATLANTIC COD; MELANOGRAMMUS-AEGLEFINUS; PHENOTYPIC PLASTICITY; TRISOPTERUS-ESMARKII; OPTIMAL ALLOCATION Younger ages and smaller sizes at maturation have been observed in commercial fish stocks over the last century. We establish that age and length at 50% proportion mature (i.e. the proportion of mature individuals in a population or the probability that an individual is mature) decreased from the 1970s to the 2000s in North Sea cod Gadus morhua, haddock Melanogrammus aeglefinus and whiting Merlangius merlangus, but not in Norway pout Trisopterus esmarkii. The potential contributions of demography, phenotypic plasticity and evolution to these trends were assessed. First, maturation trends were extricated from demographic effects and growth-dependent plasticity by estimating probabilistic maturation reaction norms (PMRNs). PMRN midpoints have significantly shifted downwards at most ages for cod, haddock and whiting, but not for Norway pout. Second, increased temperature and food abundance, loosened trophic competition and relaxed social pressure may also trigger growth-independent plasticity in maturation. Principal component regression of PMRN midpoints on annual estimates of relevant environmental variables exhibiting a temporal trend suggest that, despite some evidence of environmental effects, PMRN trends were mostly independent of growth-independent plasticity in haddock, whiting and male cod, but not in female cod. According to these findings, evolution of maturation, potentially in response to fishing, is plausible in haddock, whiting and male cod, but unlikely for Norway pout, and does not explain trends in female cod maturation. In agreement with life-history theory, the maturation response was larger in fast-growing, late- and large-maturing species exhibiting moderate reproductive effort. [Marty, Lise; Ernande, Bruno] IFREMER, Lab Ressources Halieut, F-62321 Boulogne Sur Mer, France; [Rochet, Marie-Joelle] IFREMER, F-44311 Nantes 03, France; [Ernande, Bruno] Int Inst Appl Syst Anal, Evolut & Ecol Program, A-2361 Laxenburg, Austria Marty, L (reprint author), Tech Univ Denmark, Natl Inst Aquat Resources DTU Aqua, Ctr Ocean Life, DK-2920 Charlottenlund, Denmark. lisma@aqua.dtu.dk Ernande, Bruno/C-1182-2008 Ernande, Bruno/0000-0002-0727-5774 European Commission [SSP-2006-044276] This study was carried out with financial support from the European Commission, as part of the Specific Targeted Research Project on 'Fisheries-induced evolution' (FinE, contract number SSP-2006-044276) under the Scientific Support to Policies cross-cutting activities of the European Community's Sixth Framework Programme. It Audzijonyte A, 2013, EVOL APPL, V6, P585, DOI 10.1111/eva.12044; Barot S, 2004, EVOL ECOL RES, V6, P659; Baulier L, 2008, J FISH BIOL, V73, P2452, DOI 10.1111/j.1095-8649.2008.02088.x; Berkeley SA, 2004, ECOLOGY, V85, P1258, DOI 10.1890/03-0706; BERNARDO J, 1993, TRENDS ECOL EVOL, V8, P166, DOI 10.1016/0169-5347(93)90142-C; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Charrier G, 2007, MAR ECOL PROG SER, V330, P201, DOI 10.3354/meps330201; Coxe K. L, 1986, ENCY STAT SCI, P181; Devine JA, 2011, FISH RES, V110, P441, DOI 10.1016/j.fishres.2011.05.016; Dhillon RS, 2004, COPEIA, P37, DOI 10.1643/CI-02-098R1; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; Engelhard GH, 2003, ICES J MAR SCI, V60, P304, DOI 10.1016/S1054-3139(03)00017-1; Ernande B, 2004, P ROY SOC B-BIOL SCI, V271, P415, DOI 10.1098/rspb.2003.2519; Fekedulegn B. D., 2002, NE721 USDA FOR SERV; Gardmark A, 2006, P ROY SOC B-BIOL SCI, V273, P2185, DOI 10.1098/rspb.2006.3562; Grift RE, 2007, MAR ECOL PROG SER, V334, P213, DOI 10.3354/meps334213; Grift RE, 2003, MAR ECOL PROG SER, V257, P247, DOI 10.3354/meps257247; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 1998, CAN J FISH AQUAT SCI, V55, P1971, DOI 10.1139/cjfas-55-8-1971; Heino M, 2002, B MAR SCI, V70, P639; HEINO M, 2002, 2002Y14 ICES CM; Heino M, 2008, B MAR SCI, V83, P69; Hislop J, 1997, 219 ICES, V219; Hislop JRG, 1984, FISH REPROD STRATEGI, P311; Hobbs JPA, 2004, P ROY SOC B-BIOL SCI, V271, P2109, DOI 10.1098/rspb.2004.2845; HOLM S, 1979, SCAND J STAT, V6, P65; Hutchings JA, 2005, CAN J FISH AQUAT SCI, V62, P824, DOI 10.1139/F05-081; Hutchings JA, 1999, CAN J FISH AQUAT SCI, V56, P97, DOI 10.1139/cjfas-56-1-97; Hutchings JA, 2008, MOL ECOL, V17, P294, DOI 10.1111/j.1365-294X.2007.03485.x; Hutchinson WF, 2001, MAR ECOL PROG SER, V223, P251, DOI 10.3354/meps223251; ICES, 2012, REP WORK GROUP ASS D; ICES, 2010, SER ICES SURV PROT; ICES, 2009, REP WORK GROUP ASS D; Jakobsen Tore, 1999, Journal of Northwest Atlantic Fishery Science, V25, P125, DOI 10.2960/J.v25.a11; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Jorgensen C, 2009, EVOL APPL, V2, P356, DOI 10.1111/j.1752-4571.2009.00075.x; JORGENSEN T, 1990, J CONSEIL, V46, P235; Kinnison MT, 2011, HEREDITY, V106, P448, DOI 10.1038/hdy.2010.162; Kjesbu OS, 2007, J SEA RES, V58, P23, DOI 10.1016/j.seares.2007.02.001; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; KOZLOWSKI J, 1986, THEOR POPUL BIOL, V29, P16; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; Kraak SBM, 2007, MAR ECOL PROG SER, V335, P295, DOI 10.3354/meps335295; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; Lambert G, 2009, ICES J MAR SCI, V66, P1899, DOI 10.1093/icesjms/fsp153; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Law R, 2007, MAR ECOL PROG SER, V335, P271, DOI 10.3354/meps335271; Manly BF, 1997, RANDOMIZATION BOOTST; Marshall CT, 2007, MAR ECOL PROG SER, V335, P301, DOI 10.3354/meps335301; Marteinsdottir G, 2002, MAR ECOL PROG SER, V235, P235, DOI 10.3354/meps235235; Marty L, 2011, AM NAT, V177, pE98, DOI 10.1086/658988; Mollet FM, 2007, MAR ECOL PROG SER, V351, P189, DOI 10.3354/meps07138; Mollet FM, 2010, OIKOS, V119, P10, DOI 10.1111/j.1600-0706.2009.17746.x; Morita K, 2007, MAR ECOL PROG SER, V335, P289, DOI 10.3354/meps335289; Morita K, 2006, EVOLUTION, V60, P1516, DOI 10.1554/06-007.1; Morita K, 2009, BIOL LETTERS, V5, P628, DOI 10.1098/rsbl.2009.0290; Neuheimer AB, 2012, GLOBAL CHANGE BIOL, V18, P1812, DOI 10.1111/j.1365-2486.2012.02673.x; Neuheimer AB, 2010, CAN J FISH AQUAT SCI, V67, P854, DOI 10.1139/F10-025; Nielsen EE, 2009, MAR ECOL PROG SER, V376, P213, DOI 10.3354/meps07798; Olsen E, 2005, CAN J FISH AQUAT SCI, V62, P811, DOI 10.1139/F05-065; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Pardoe H, 2009, CAN J FISH AQUAT SCI, V66, P1719, DOI 10.1139/F09-132; R Development Core Team, 2013, R LANG ENV STAT COMP; REZNICK DN, 1993, EXPLOITATION EVOLVIN, P72; Rochet MJ, 2000, J SEA RES, V44, P145, DOI 10.1016/S1385-1101(00)00041-1; Rochet MJ, 2000, 2000N2613 ICES CM; ROWELL CA, 1993, EXPLOITATION EVOLVIN, P44; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; Siems DP, 1998, ENVIRON BIOL FISH, V53, P319, DOI 10.1023/A:1007407925835; SOHN JJ, 1977, SCIENCE, V195, P199, DOI 10.1126/science.831271; Sparholt H, 2002, ICES J MAR SCI, V59, P1270, DOI 10.1006/jmsc.2002.1296; Stearns S.C., 1984, P13; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; Uusi-Heikkila S, 2011, P ROY SOC B-BIOL SCI, V278, P709, DOI 10.1098/rspb.2010.1507; Vainikka A, 2009, ICES J MAR SCI, V66, P248, DOI 10.1093/icesjms/fsn199; WEATHERLEY AH, 1990, T AM FISH SOC, V119, P662, DOI 10.1577/1548-8659(1990)119<0662:ATUFG>2.3.CO;2; Wright PJ, 2006, J FISH BIOL, V69, P181, DOI 10.1111/j.1095-8649.2006.01262.x; Wright PJ, 2011, ICES J MAR SCI, V68, P1918, DOI 10.1093/icesjms/fsr111; Wright PJ, 2011, MAR ECOL PROG SER, V432, P149, DOI 10.3354/meps09168; Yoneda M, 2004, MAR ECOL PROG SER, V276, P237, DOI 10.3354/meps276237 84 9 9 3 35 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. 2014 497 179 197 10.3354/meps10580 19 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography 304CM WOS:000330723600014 2018-11-12 J Jones, JH; Bird, RB Jones, James Holland; Bird, Rebecca Bliege The marginal valuation of fertility EVOLUTION AND HUMAN BEHAVIOR English Article Demography; Life history theory; Human evolution; Fertility; Utah; Reproductive effort PARENTAL INVESTMENT; BIRTH INTERVALS; LIFE-HISTORIES; REPRODUCTIVE SUCCESS; DEMOGRAPHIC-TRANSITION; CHILDHOOD MORTALITY; INDIVIDUAL FITNESS; FAMILY-SIZE; POPULATION; EVOLUTION Substantial theoretical and empirical evidence demonstrates that fertility entails economic, physiological, and demographic trade-offs. The existence of trade-offs suggests that fitness should be maximized by an intermediate level of fertility, but this hypothesis has not had much support in the human life-history literature. We suggest that the difficulty of finding intermediate optima may be a function of the way fitness is calculated. Evolutionary analyses of human behavior typically use lifetime reproductive success as their fitness criterion. This fitness measure implicitly assumes that women are indifferent to the timing of reproduction and that they are risk-neutral in their reproductive decision-making. In this paper, we offer an alternative, easily-calculated fitness measure that accounts for differences in reproductive timing and yields clear preferences in the face of risky reproductive decision-making. Using historical demographic data from a genealogically-detailed dataset from 19th century Utah, we show that this measure is highly concave with respect to reproductive effort. This result has three major implications: (1) if births are properly timed, a lower-fertility reproductive strategy can have the same fitness as a high-fertility strategy, (2) intermediate optima are far more likely using fitness measures that are strongly concave with respect to effort, (3) we expect mothers to have strong investment preferences with respect to the risk inherent in reproduction. (C) 2014 Elsevier Inc. All rights reserved. [Jones, James Holland; Bird, Rebecca Bliege] Stanford Univ, Dept Anthropol, Stanford, CA 94305 USA Jones, JH (reprint author), Dept Anthropol, 450 Serra Mall,Bldg 50, Stanford, CA 94305 USA. jhj1@stanford.edu Jones, James/0000-0003-1680-6757 Huntsman Cancer Institute; Hellman Faculty Scholarship; Stanford Center for Economics and Demography of Health and Aging [NIA: P30AG017253-11]; IRiSS Faculty Fellowship We thank Geri Mineau and staff at the Huntsman Cancer Institute at the University of Utah for help with accessing the UPDB. Partial support for all datasets within the Utah Population Database is provided by the Huntsman Cancer Institute. Thanks to Claudia Engel, Carole Schaffer, and David Lawson for database help and critical comments. This research was supported by a Hellman Faculty Scholarship, a pilot grant from the Stanford Center for Economics and Demography of Health and Aging (NIA: P30AG017253-11), and an IRiSS Faculty Fellowship to JHJ. Anderies JM, 1996, ETHOL SOCIOBIOL, V17, P221, DOI 10.1016/0162-3095(96)00037-4; ANDERTON DL, 1983, POPUL INDEX, V49, P363; ANDERTON DL, 1985, DEMOGRAPHY, V22, P169, DOI 10.2307/2061176; Arrow K., 1965, ASPECTS THEORY RISK; BARKOW JH, 1977, ETHOS, V5, P409, DOI 10.1525/eth.1977.5.4.02a00030; BEAN LL, 1990, FERTILITY CHANGE AM; Bengtsson T, 2006, DEMOGRAPHY, V43, P727, DOI 10.1353/dem.2006.0030; Bhalotra S, 2008, J ECONOMETRICS, V143, P274, DOI 10.1016/j.jeconom.2007.10.005; Billari FC, 2004, POP STUD-J DEMOG, V58, P161, DOI 10.1080/0032472042000213695; Blurton Jones N. G., 1978, SSHB S 18 HUM BEH AD, P135; BOLKER B, 2008, ECOLOGICAL MODELS DA; Bongaarts J, 1999, POP STUD-J DEMOG, V53, P277, DOI 10.1080/00324720308088; BOONE JL, 1986, AM ANTHROPOL, V88, P859; Boone JL, 2002, WORLD ARCHAEOL, V34, P6, DOI 10.1080/00438240220134232; Borgerhoff Mulder M., 2000, EVOL HUM BEHAV, V21, P391, DOI [DOI 10.1016/S1090-5138(00)00054-4, 10.1016/S1090-5138(00)00054-4]; BOSERUP E, 1985, POPUL DEV REV, V11, P383, DOI 10.2307/1973245; Brommer JE, 2002, ECOL LETT, V5, P802, DOI 10.1046/j.1461-0248.2002.00369.x; Caldwell J. C., 1982, THEORY FERTILITY DEC; Caswell H, 2001, MATRIX POPULATION MO; CHAGNON NA, 1988, SCIENCE, V239, P985, DOI 10.1126/science.239.4843.985; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; CHARNOV EL, 1976, THEOR POPUL BIOL, V9, P129, DOI 10.1016/0040-5809(76)90040-X; Coale A.J., 1986, DECLINE FERTILITY EU; Cohen J. E., 1995, MANY PEOPLE CAN EART; Conde-Agudelo A, 2006, JAMA-J AM MED ASSOC, V295, P1809, DOI 10.1001/jama.295.15.1809; Conde-Agudelo A, 2007, AM J OBSTET GYNECOL, V196, P297, DOI 10.1016/j.ajog.2006.05.055; CRONK L, 1989, CURR ANTHROPOL, V30, P224, DOI 10.1086/203736; Davies N.B., 1978, P317; Derose LF, 2002, POP STUD-J DEMOG, V56, P167, DOI 10.1080/00324720215924; ELLISON PT, 1993, HUM REPROD, V8, P2248, DOI 10.1093/oxfordjournals.humrep.a138015; Excoffier L, 1999, P NATL ACAD SCI USA, V96, P10597, DOI 10.1073/pnas.96.19.10597; Fisher R. A., 1958, GENETICAL THEORY NAT; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; George DS, 2000, AM J HUM BIOL, V12, P50; Gibson MA, 2006, PLOS MED, V3, P476, DOI 10.1371/journal.pmed.0030087; Gibson MA, 2010, CURR ANTHROPOL, V51, P693, DOI 10.1086/655954; Goodman A, 2012, P ROY SOC B-BIOL SCI, V279, P4342, DOI 10.1098/rspb.2012.1415; Gurmu E, 2008, J BIOSOC SCI, V40, P339, DOI 10.1017/S002193200700260X; Hagen EH, 2006, AM J PHYS ANTHROPOL, V130, P405, DOI 10.1002/ajpa.20272; Helle S, 2004, EVOLUTION, V58, P430, DOI 10.1111/j.0014-3820.2004.tb01658.x; HILL K, 1996, ACHE LIFE HIST DEMOG; HOBCRAFT J, 1983, POPUL INDEX, V49, P585, DOI 10.2307/2737284; Howell N., 1979, DEMOGRAPHY DOBE KUNG; Jeon J, 2008, BEHAV ECOL, V19, P344, DOI 10.1093/beheco/arm136; Jones JH, 2011, CURR BIOL, V21, pR708, DOI 10.1016/j.cub.2011.08.025; Jones JH, 2007, J STAT SOFTW, V22, P1; Jones JH, 2009, EVOL HUM BEHAV, V30, P305, DOI 10.1016/j.evolhumbehav.2009.01.005; JONES NB, 1986, ETHOL SOCIOBIOL, V7, P91, DOI 10.1016/0162-3095(86)90002-6; Kaar P, 1998, P ROY SOC B-BIOL SCI, V265, P2415, DOI 10.1098/rspb.1998.0592; Kaplan H, 1996, YEARB PHYS ANTHROPOL, V39, P91; KAPLAN H, 1994, POPUL DEV REV, V20, P753, DOI 10.2307/2137661; Kaplan HS, 2002, P NATL ACAD SCI USA, V99, P10221, DOI 10.1073/pnas.152502899; KAPLAN HS, 1995, HUM NATURE-INT BIOS, V6, P325, DOI 10.1007/BF02734205; Keyfitz N, 2005, STAT BIOL HEALTH, P1, DOI 10.1007/b139042; Kohler H. P, 2006, BABY BUST WHO WILL D, P48; Korpelainen H, 2000, P ROY SOC B-BIOL SCI, V267, P1765, DOI 10.1098/rspb.2000.1208; Korpelainen H, 2003, AM J PHYS ANTHROPOL, V120, P384, DOI 10.1002/ajpa.10191; Kramer KL, 2007, AM ANTHROPOL, V109, P713, DOI [10.1525/aa.2007.109.4.713, 10.1525/AA.2007.109.4.713]; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lawson DW, 2012, P ROY SOC B-BIOL SCI, V279, P4755, DOI 10.1098/rspb.2012.1635; Lawson DW, 2011, PHILOS T R SOC B, V366, P333, DOI 10.1098/rstb.2010.0297; Lawson DW, 2010, HUM NATURE-INT BIOS, V21, P39, DOI 10.1007/s12110-010-9080-6; Lawson DW, 2009, EVOL HUM BEHAV, V30, P170, DOI 10.1016/j.evolhumbehav.2008.12.001; Manda SOM, 1999, SOC SCI MED, V48, P301, DOI 10.1016/S0277-9536(98)00359-1; McGraw JB, 1996, AM NAT, V147, P47, DOI 10.1086/285839; Metcalf CJE, 2007, TRENDS ECOL EVOL, V22, P205, DOI 10.1016/j.tree.2006.12.001; Mulder MB, 1998, TRENDS ECOL EVOL, V13, P266, DOI 10.1016/S0169-5347(98)01357-3; Nath DC, 1999, J BIOSOC SCI, V31, P55, DOI 10.1017/S0021932099000553; Nee S, 2005, SCIENCE, V309, P1236, DOI 10.1126/science.1114488; Notestein F, 1953, P 8 INT C AGR EC, P13; PARKER GA, 1976, AM NAT, V110, P1055, DOI 10.1086/283126; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; R Development Core Team, 2012, R LANG ENV STAT COMP; Rindfuss RR, 2007, DEMOGRAPHY, V44, P345, DOI 10.1353/dem.2007.0017; Rutstein SO, 2005, INT J GYNECOL OBSTET, V89, pS7, DOI 10.1016/j.ijgo.2004.11.012; Schoen R, 2004, DEMOGRAPHY, V41, P801, DOI 10.1353/dem.2004.0036; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Strassmann BI, 2002, P ROY SOC B-BIOL SCI, V269, P553, DOI 10.1098/rspb.2001.1912; TURKE PW, 1985, ETHOL SOCIOBIOL, V6, P79, DOI 10.1016/0162-3095(85)90001-9; Upadhyay UD, 2005, SOC SCI MED, V60, P2641, DOI 10.1016/j.socscimed.2004.11.032; Van Bavel J, 2004, EUR J POPUL, V20, P119, DOI 10.1023/B:EUJP.0000033860.39537.e2; Van Bavel J, 2004, POP STUD-J DEMOG, V58, P95, DOI 10.1080/0032472032000167706; Van Bavel J, 2003, POP STUD-J DEMOG, V57, P55, DOI 10.1080/0032472032000061721; van Eijsden M, 2008, AM J CLIN NUTR, V88, P147; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Voland E, 1988, HUMAN REPROD BEHAV D, P253; Whitworth A, 2002, SOC SCI MED, V55, P2107, DOI 10.1016/S0277-9536(02)00002-3; WOOD JW, 1994, DYNAMICS HUMAN REPRO 89 13 13 1 30 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 1879-0607 EVOL HUM BEHAV Evol. Hum. Behav. JAN 2014 35 1 65 71 10.1016/j.evolhumbehav.2013.10.002 7 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences 288DG WOS:000329591600009 24778546 Green Accepted 2018-11-12 J Neal, AT; Schall, JJ Neal, Allison T.; Schall, Jos. J. Life history focus on a malaria parasite: linked traits and variation among genetic clones EVOLUTIONARY ECOLOGY English Article Protists; Plasmodium; Principal components; Clonal infections; Sex ratio GAMETOCYTE SEX-RATIO; MIXED-GENOTYPE INFECTIONS; WESTERN FENCE LIZARD; PLASMODIUM-MEXICANUM; SCELOPORUS-OCCIDENTALIS; REPRODUCTIVE RESTRAINT; VERTEBRATE HOST; TRANSMISSION; DIVERSITY; EVOLUTION Life history theory has long been a major campaign in evolutionary ecology, but has typically focused only on animals and plants. Life history research on single-celled eukaryotic protists such as malaria parasites (Plasmodium) will offer new insights into the theory's general utility as well as the parasite's basic biology. For example, parasitologists have described the Plasmodium life cycle and cell types in exquisite detail, with little discussion of evolutionary issues such as developmental links between traits. We measured 10 life history traits of replicate single-genotype experimental Plasmodium mexicanum infections in its natural lizard host to identify groups of linked traits. These 10 traits formed 4 trait groups: "Rate/Peak" merges measures of growth rate and maximum parasitemia of infections; "Timing" combines time to patency and maximum parasitemia; "Growth Shape" describes the fit to an exponential growth curve; and "Sex Ratio" includes only the gametocyte sex ratio. Parasite genotype (clone) showed no effect on the life history trait groups, with the exception of gametocyte sex ratio. Therefore, variation in most life history traits among infections appears to be driven by environmental (individual host) effects. The findings support the model that life history traits are often linked by developmental constraints. Understanding why life history traits of Plasmodium are linked in this way would offer a new window into the evolution of the parasites, and also should inform public health efforts to control infection prevalence. [Neal, Allison T.; Schall, Jos. J.] Univ Vermont, Dept Biol, Burlington, VT 05405 USA Neal, AT (reprint author), Univ Vermont, Dept Biol, Burlington, VT 05405 USA. aneal@uvm.edu Neal, Allison T/0000-0001-9805-5461 US National Science Foundation [DEB-0813832]; US National Science Foundation Graduate Research Fellowship N. Hicks and J. Grauer assisted with the field experiments, and J. Grauer, K. St. Denis, N. Hicks, P. Teixeira, W. C. Stevens, D. Golschneider, and M. Lind assisted with the lab duties. We also thank the staff of the Hopland Research and Extension Center for all their help and support. The research was supported by funding from the US National Science Foundation (grant number DEB-0813832 to JJS) and ATN was supported by a US National Science Foundation Graduate Research Fellowship. Al-Olayan EM, 2002, INT J PARASITOL, V32, P1133, DOI 10.1016/S0020-7519(02)00087-5; Anderson TJC, 2010, P ROY SOC B-BIOL SCI, V277, P2531, DOI 10.1098/rspb.2010.0196; Barclay VC, 2012, PLOS BIOL, V10, DOI 10.1371/journal.pbio.1001368; BROMWICH CR, 1986, ECOLOGY, V67, P1227, DOI 10.2307/1938678; Buckling A, 1999, EXP PARASITOL, V93, P45, DOI 10.1006/expr.1999.4429; Buckling AGJ, 1997, P ROY SOC B-BIOL SCI, V264, P553, DOI 10.1098/rspb.1997.0079; BURKOT TR, 1984, T ROY SOC TROP MED H, V78, P339, DOI 10.1016/0035-9203(84)90114-7; Charnov Eric L., 1993, P1; de Roode JC, 2005, AM NAT, V166, P531, DOI 10.1086/491659; DUNLAP KD, 1995, PHYSIOL ZOOL, V68, P608, DOI 10.1086/physzool.68.4.30166347; Edwards AWF, 2000, THEOR POPUL BIOL, V58, P255, DOI 10.1006/tpbi.2000.1482; Eisen RJ, 2000, P ROY SOC B-BIOL SCI, V267, P793, DOI 10.1098/rspb.2000.1073; Eisen RJ, 2000, CAN J ZOOL, V78, P1230, DOI 10.1139/cjz-78-7-1230; FISHER R. A., 1930, GENETICAL THEORY NAT; Ford AF, 2011, INT J PARASITOL, V41, P731, DOI 10.1016/j.ijpara.2011.01.010; Fricke JM, 2010, J PARASITOL, V96, P308, DOI 10.1645/GE-2304.1; Gotelli NJ, 2008, PRIMER ECOLOGY; Gotelli NJ, 2004, PRIMER ECOLOGICAL ST; GRAVES PM, 1984, AM J TROP MED HYG, V33, P1045, DOI 10.4269/ajtmh.1984.33.1045; Guilbride DL, 2012, TRENDS PARASITOL, V28, P142, DOI 10.1016/j.pt.2012.01.002; HAMILTON WD, 1967, SCIENCE, V156, P477, DOI 10.1126/science.156.3774.477; Joliffe I., 2002, PRINCIPAL COMPONENT; Mackinnon MJ, 1999, P ROY SOC B-BIOL SCI, V266, P741, DOI 10.1098/rspb.1999.0699; Mackinnon MJ, 1999, EVOLUTION, V53, P689, DOI 10.1111/j.1558-5646.1999.tb05364.x; Martinsen ES, 2008, MOL PHYLOGENET EVOL, V47, P261, DOI 10.1016/j.ympev.2007.11.012; Mideo N, 2008, P ROY SOC B-BIOL SCI, V275, P1217, DOI 10.1098/rspb.2007.1545; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; Neal AT, 2011, PARASITOLOGY, V138, P1203, DOI 10.1017/S0031182011000941; Neal AT, 2010, PARASITOLOGY, V137, P1851, DOI 10.1017/S0031182010000909; Osgood SM, 2004, PARASITOLOGY, V128, P23, DOI 10.1017/S0031182003004207; Osgood SM, 2003, J PARASITOL, V89, P190, DOI 10.1645/0022-3395(2003)089[0190:MOTVHT]2.0.CO;2; Osgood SM, 2002, J PARASITOL, V88, P494, DOI 10.1645/0022-3395(2002)088[0494:GSROAM]2.0.CO;2; Paul REL, 1998, PARASITOL TODAY, V14, P197, DOI 10.1016/S0169-4758(98)01226-5; Perkins SL, 1998, MOL ECOL, V7, P1587, DOI 10.1046/j.1365-294x.1998.00496.x; Pollitt LC, 2011, AM NAT, V177, P358, DOI 10.1086/658175; READ AF, 1992, PARASITOL TODAY, V8, P239, DOI 10.1016/0169-4758(92)90125-L; Reece SE, 2008, NATURE, V453, P609, DOI 10.1038/nature06954; Reece SE, 2009, EVOL APPL, V2, P11, DOI 10.1111/j.1752-4571.2008.00060.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Schall JJ, 2013, PARASITOLOGY, V140, P21, DOI 10.1017/S0031182012001217; SCHALL JJ, 1995, J ANIM ECOL, V64, P177, DOI 10.2307/5753; SCHALL JJ, 1982, SCIENCE, V217, P1057, DOI 10.1126/science.7112113; Schall JJ, 1996, ADV PARASIT, V37, P255, DOI 10.1016/S0065-308X(08)60222-5; SCHALL JJ, 1989, PARASITOLOGY, V98, P343, DOI 10.1017/S0031182000061412; SCHALL JJ, 1990, PARASITOLOGY, V100, pS35, DOI 10.1017/S0031182000073005; Schall JJ, 2007, MOL ECOL NOTES, V7, P227, DOI 10.1111/j.1471-8286.2006.01528.x; Schall JJ, 2009, TRENDS PARASITOL, V25, P120, DOI 10.1016/j.pt.2008.12.006; Stearns S. C., 1992, EVOLUTION LIFE HIST; Taylor LH, 1997, PARASITOL TODAY, V13, P135, DOI 10.1016/S0169-4758(97)89810-9; Taylor LH, 1997, P ROY SOC B-BIOL SCI, V264, P927, DOI 10.1098/rspb.1997.0128; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vardo AM, 2007, MOL ECOL, V16, P2712, DOI 10.1111/j.1365-294X.2007.03355.x; Vardo-Zalik AM, 2008, PARASITOLOGY, V135, P1363, DOI 10.1017/S0031182008004964; Vardo-Zalik AM, 2009, ECOLOGY, V90, P529, DOI 10.1890/07-1866.1; West SA, 2009, MONOGRAPHS POPULATIO 55 4 4 3 31 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 1573-8477 EVOL ECOL Evol. Ecol. JAN 2014 28 1 89 102 10.1007/s10682-013-9654-y 14 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 284MQ WOS:000329323400006 2018-11-12 J Riesch, R; Plath, M; Schlupp, I; Tobler, M; Langerhans, RB Riesch, Ruediger; Plath, Martin; Schlupp, Ingo; Tobler, Michael; Langerhans, R. Brian Colonisation of toxic environments drives predictable life-history evolution in livebearing fishes (Poeciliidae) ECOLOGY LETTERS English Article Divergent natural selection; ecological speciation; extreme environments; Gambusia; life-history evolution; phenotypic convergence; Poecilia; replicated evolution OFFSPRING SIZE; LIVE-BEARING; EXTREME ENVIRONMENTS; MOLECULAR PHYLOGENY; HYDROGEN-SULFIDE; GENETIC-BASIS; ADAPTATIONS; SELECTION; COMPETITION; DIVERGENCE New World livebearing fishes (family Poeciliidae) have repeatedly colonised toxic, hydrogen sulphide-rich waters across their natural distribution. Physiological considerations and life-history theory predict that these adverse conditions should favour the evolution of larger offspring. Here, we examined nine poeciliid species that independently colonised toxic environments, and show that these fishes have indeed repeatedly evolved much larger offspring size at birth in sulphidic waters, thus uncovering a widespread pattern of predictable evolution. However, a second pattern, only indirectly predicted by theory, proved additionally common: a reduction in the number of offspring carried per clutch (i.e. lower fecundity). Our analyses reveal that this secondary pattern represents a mere consequence of a classic life-history trade-off combined with strong selection on offspring size alone. With such strong natural selection in extreme environments, extremophile organisms may commonly exhibit multivariate phenotypic shifts even though not all diverging traits necessarily represent adaptations to the extreme conditions. [Riesch, Ruediger; Langerhans, R. Brian] N Carolina State Univ, Dept Biol Sci, David Clark Labs 127, Raleigh, NC 27695 USA; [Riesch, Ruediger; Langerhans, R. Brian] N Carolina State Univ, WM Keck Ctr Behav Biol, David Clark Labs 127, Raleigh, NC 27695 USA; [Riesch, Ruediger] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England; [Plath, Martin] Goethe Univ Frankfurt, Evolutionary Ecol Grp, D-60438 Frankfurt, Germany; [Schlupp, Ingo] Univ Oklahoma, Dept Biol, Norman, OK 73019 USA; [Tobler, Michael] Oklahoma State Univ, Dept Zool, Stillwater, OK 74078 USA Riesch, R (reprint author), N Carolina State Univ, Dept Biol Sci, David Clark Labs 127, Raleigh, NC 27695 USA. rwriesch.evolutionarybiology@gmail.com Riesch, Rudiger/A-5787-2008; Schlupp, Ingo/C-3913-2012 Riesch, Rudiger/0000-0002-0223-1254; Schlupp, Ingo/0000-0002-2460-5667; Tobler, Michael/0000-0002-0326-0890 Mexican government [CONAPESCA: DGOPA/16986/191205/8101, DGOPA/02232/230706/1079, DGOPA.06192. 240608-1562, SGPA/DGVS/04751/08]; Municipal of Tacotalpa [SM/1133/208]; United States National Park Service Chickasaw NRA [CHIC-2007-SCI-0001]; National Science Foundation of America [DEB-0743406, IOS-1121832, DEB-0842364]; German Science Foundation [DFG, PL 470/1-2]; Alexander von Humboldt Foundation; W. M. Keck Center for Behavioral Biology; University of Oklahoma IACUC [R06-026] We thank L. Arias-Rodriguez and F. J. Garcia de Leon for help during the collections in Mexico. The Mexican government (CONAPESCA: DGOPA/16986/191205/8101, DGOPA/02232/230706/1079, DGOPA.06192. 240608-1562, and SGPA/DGVS/04751/08), the Municipal of Tacotalpa (SM/1133/208) and the United States National Park Service Chickasaw NRA (CHIC-2007-SCI-0001) kindly provided collection permits. Financial support came from the National Science Foundation of America (DEB-0743406 to IS; IOS-1121832 to MT, DEB-0842364 to RBL), the German Science Foundation (DFG, PL 470/1-2, to MP), the Alexander von Humboldt Foundation (to IS), and the W. M. Keck Center for Behavioral Biology (to RR and RBL). This study was conducted under University of Oklahoma IACUC #R06-026. BAGARINAO T, 1992, AQUAT TOXICOL, V24, P21, DOI 10.1016/0166-445X(92)90015-F; Bashey F, 2008, OIKOS, V117, P104, DOI 10.1111/j.2007.0030-1299.16094.x; Bowmaker JK, 1998, EYE, V12, P541; Breden F, 1999, MOL PHYLOGENET EVOL, V12, P95, DOI 10.1006/mpev.1998.0600; BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; Calow P, 2003, ENVIRON SCI TECHNOL, V37, p146A, DOI 10.1021/es0324003; Darriba D, 2012, NAT METHODS, V9, P772, DOI 10.1038/nmeth.2109; Darwin C., 1859, ORIGIN SPECIES MEANS; Duponchelle F, 2008, P NATL ACAD SCI USA, V105, P15475, DOI 10.1073/pnas.0802343105; GARLAND T, 1993, SYST BIOL, V42, P265, DOI 10.2307/2992464; Grieshaber MK, 1998, ANNU REV PHYSIOL, V60, P33, DOI 10.1146/annurev.physiol.60.1.33; Guindon S, 2003, SYST BIOL, V52, P696, DOI 10.1080/10635150390235520; Harmon LJ, 2008, BIOINFORMATICS, V24, P129, DOI 10.1093/bioinformatics/btm538; Hoekstra HE, 2006, SCIENCE, V313, P101, DOI 10.1126/science.1126121; Hrbek T, 2007, MOL PHYLOGENET EVOL, V43, P986, DOI 10.1016/j.ympev.2006.06.009; Hulsey CD, 2008, EVOLUTION, V62, P1587, DOI 10.1111/j.1558-5646.2008.00384.x; Jahn A, 1997, MAR ECOL PROG SER, V154, P175, DOI 10.3354/meps154175; Jennions MD, 2002, OECOLOGIA, V132, P44, DOI 10.1007/s00442-002-0942-4; Johnson JB, 2001, EVOLUTION, V55, P1486; Jorgensen C, 2011, AM NAT, V177, pE119, DOI 10.1086/659622; Langerhans RB, 2013, CURR ZOOL, V59, P31, DOI 10.1093/czoolo/59.1.31; Langerhans RB, 2010, INTEGR COMP BIOL, V50, P1167, DOI 10.1093/icb/icq117; Langerhans RB, 2004, AM NAT, V164, P335, DOI 10.1086/422857; Losos JB, 2006, SCIENCE, V314, P1111, DOI 10.1126/science.1133584; Losos JB, 2011, EVOLUTION, V65, P1827, DOI 10.1111/j.1558-5646.2011.01289.x; LYDEARD C, 1995, CAN J ZOOL, V73, P213, DOI 10.1139/z95-025; Nosil P, 2009, TRENDS ECOL EVOL, V24, P145, DOI 10.1016/j.tree.2008.10.011; Plath M, 2013, EVOLUTION, V67, P2647, DOI 10.1111/evo.12133; POWELL E, 1989, J MAR RES, V47, P887, DOI 10.1357/002224089785076082; Protas ME, 2006, NAT GENET, V38, P107, DOI 10.1038/ng1700; R Core Team, 2012, R LANG ENV STAT COMP; Revell LJ, 2009, EVOLUTION, V63, P3258, DOI 10.1111/j.1558-5646.2009.00804.x; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; Reznick DN, 2002, SCIENCE, V298, P1018, DOI 10.1126/science.1076018; Riesch R, 2013, AM NAT, V181, P78, DOI 10.1086/668597; Riesch R, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0027377; Riesch R, 2010, EVOL ECOL, V24, P789, DOI 10.1007/s10682-009-9335-z; Riesch R, 2010, ECOLOGY, V91, P1494, DOI 10.1890/09-1008.1; Riesch R, 2010, NATURWISSENSCHAFTEN, V97, P133, DOI 10.1007/s00114-009-0613-y; Rollinson N, 2013, AM NAT, V182, P76, DOI 10.1086/670648; Rollinson N, 2013, ECOLOGY, V94, P315, DOI 10.1890/2-0552.1; Ronquist F, 2012, SYST BIOL, V61, P539, DOI 10.1093/sysbio/sys029; SCHLUTER D, 1994, SCIENCE, V266, P798, DOI 10.1126/science.266.5186.798; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stern DL, 2008, EVOLUTION, V62, P2155, DOI 10.1111/j.1558-5646.2008.00450.x; Tobler M, 2008, J FISH BIOL, V72, P523, DOI 10.1111/j.1095-8649.2007.01716.x; Tobler M, 2008, EVOLUTION, V62, P2643, DOI 10.1111/j.1558-5646.2008.00466.x; Tobler M, 2011, EVOLUTION, V65, P2213, DOI 10.1111/j.1558-5646.2011.01298.x; Whiting MF, 2003, NATURE, V421, P264, DOI 10.1038/nature01313 51 29 32 1 53 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1461-023X 1461-0248 ECOL LETT Ecol. Lett. JAN 2014 17 1 65 71 10.1111/ele.12209 7 Ecology Environmental Sciences & Ecology 270JY WOS:000328315900008 24188245 2018-11-12 J Lee, VE; Head, ML; Carter, MJ; Royle, NJ Lee, Victoria E.; Head, Megan L.; Carter, Mauricio J.; Royle, Nick J. Effects of age and experience on contest behavior in the burying beetle, Nicrophorus vespilloides BEHAVIORAL ECOLOGY English Article age; contest behavior; fighting; male competition; Nicrophorus vespilloides; social experience; terminal investment; winner-loser effect AGGRESSIVE-BEHAVIOR; FIGHTING EXPERIENCE; PERSONALITY-TRAITS; PARASITOID WASP; PATERNAL CARE; COMPETITION; EVOLUTION; SUCCESS; WINNER; MATE Contest behavior forms an important part of reproductive investment. Life-history theory predicts that as individuals age and their residual reproductive value decreases, they should increase investment in contest behavior. However, other factors such as social experience may also be important in determining age-related variation in contest behavior. To understand how selection acts on contest behavior over an individual's lifetime, it is therefore important to tease apart the effects of age per se from other factors that may vary with age. Here, we independently manipulate male age and social experience to examine their effects on male contest behavior in the burying beetle Nicrophorus vespilloides. We found that social experience, but not age, influenced male contest behavior but that these changes in behavior did not alter contest outcomes. Male size (relative to his opponent) was overwhelmingly the most important factor determining contest outcome. Our results suggest that in systems with high variation in fighting ability among males, there may be little opportunity for selection to act on factors that influence contest outcomes by altering motivation to win. [Lee, Victoria E.; Carter, Mauricio J.; Royle, Nick J.] Univ Exeter, Coll Life & Environm Sci, Ctr Ecol & Conservat, Penryn TR10 9EZ, Cornwall, England; [Head, Megan L.] Australian Natl Univ, Res Sch Biol, Div Evolut Ecol & Genet, Acton, ACT 0200, Australia Head, ML (reprint author), Australian Natl Univ, Res Sch Biol, Div Evolut Ecol & Genet, Acton, ACT 0200, Australia. megan.head@anu.edu.au Carter, Mauricio/C-3099-2013; Head, Megan/D-2551-2010; Royle, Nick/H-2802-2015 Royle, Nick/0000-0002-1617-3884 Natural Environment Research Council (UK) [NG/H022805/1] Natural Environment Research Council (UK) grant (NG/H022805/1) to N.J.R. Arnott G, 2009, ANIM BEHAV, V77, P991, DOI 10.1016/j.anbehav.2009.02.010; BARTLETT J, 1988, BEHAV ECOL SOCIOBIOL, V23, P297, DOI 10.1007/BF00300576; Benowitz KM, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1124; Bergman M, 2010, P ROY SOC B-BIOL SCI, V277, P3027, DOI 10.1098/rspb.2010.0646; Briffa M, 2013, ANIMAL CONTESTS, P1; Briffa M, 2013, ANIMAL CONTESTS, P47; Chamorro-Florescano IA, 2011, EVOL ECOL, V25, P277, DOI 10.1007/s10682-010-9428-8; Crawley M. J., 2007, R BOOK; Edenbrow M, 2013, OIKOS, V122, P667, DOI 10.1111/j.1600-0706.2012.20556.x; Egge AR, 2011, BEHAV ECOL SOCIOBIOL, V65, P1731, DOI 10.1007/s00265-011-1181-7; Eggert AK, 2008, P ROY SOC B-BIOL SCI, V275, P2521, DOI 10.1098/rspb.2008.0661; Fawcett TW, 2010, P ROY SOC B-BIOL SCI, V277, P1427, DOI 10.1098/rspb.2009.2088; Frost AJ, 2007, P ROY SOC B-BIOL SCI, V274, P333, DOI 10.1098/rspb.2006.3751; Garcia MJ, 2012, ETHOLOGY, V118, P821, DOI 10.1111/j.1439-0310.2012.02072.x; Goubault M, 2012, AM NAT, V180, P364, DOI 10.1086/667192; HALEY MP, 1994, BEHAV ECOL SOCIOBIOL, V34, P427, DOI 10.1007/s002650050059; Head ML, 2012, EVOLUTION, V66, P3570, DOI 10.1111/j.1558-5646.2012.01699.x; Holveck MJ, 2010, P ROY SOC B-BIOL SCI, V277, P153, DOI 10.1098/rspb.2009.1222; Hopwood PE, 2013, FUNCT ECOL, V27, P1350, DOI 10.1111/1365-2435.12137; Hsu YY, 2006, BIOL REV, V81, P33, DOI 10.1017/S146479310500686X; Jennings DJ, 2010, ANIM BEHAV, V79, P1293, DOI 10.1016/j.anbehav.2010.02.031; Johnsson JI, 1998, ANIM BEHAV, V56, P771, DOI 10.1006/anbe.1998.0824; Jolliffe I. T, 2002, PRINCIPAL COMPONENT; Judge KA, 2010, BEHAV ECOL SOCIOBIOL, V64, P1971, DOI 10.1007/s00265-010-1008-y; Kasumovic MM, 2011, BEHAV ECOL, V22, P39, DOI 10.1093/beheco/arq161; Kasumovic MM, 2010, BEHAV ECOL, V21, P404, DOI 10.1093/beheco/arp204; Kemp DJ, 2006, BIOL J LINN SOC, V88, P565, DOI 10.1111/j.1095-8312.2006.00643.x; Kemp DJ, 2006, ETHOLOGY, V112, P471, DOI 10.1111/j.1439-0310.2005.01173.x; Kemp DJ, 2003, BEHAV ECOL SOCIOBIOL, V54, P7, DOI 10.1007/s00265-003-0602-7; Knell RJ, 2009, J ZOOL, V278, P83, DOI 10.1111/j.1469-7998.2009.00566.x; Kozak GM, 2009, BEHAV ECOL, V20, P1282, DOI 10.1093/beheco/arp134; Oliveira RF, 1998, P ROY SOC B-BIOL SCI, V265, P1045, DOI 10.1098/rspb.1998.0397; OTRONEN M, 1988, ANN ZOOL FENN, V25, P191; OTRONEN M, 1990, ANIM BEHAV, V40, P980, DOI 10.1016/S0003-3472(05)81000-0; PARKER GA, 1974, J THEOR BIOL, V47, P223, DOI 10.1016/0022-5193(74)90111-8; Pukowski E., 1933, F Z MORPHOL OKOL TIE, V27, P518; R Development Team, 2012, R LANG ENV STAT COMP; Roff Derek A., 1992; Ruploh T, 2013, BEHAV ECOL SOCIOBIOL, V67, P175, DOI 10.1007/s00265-012-1436-y; Rutte C, 2006, TRENDS ECOL EVOL, V21, P16, DOI 10.1016/j.tree.2005.10.014; Sachser N, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0344; Safryn SA, 2000, J INSECT BEHAV, V13, P291, DOI 10.1023/A:1007700601095; Sharpe LL, 2005, ANIM BEHAV, V69, P1023, DOI 10.1016/j.anbehav.2004.07.013; Sneddon LU, 2000, J ZOOL, V250, P397, DOI 10.1111/j.1469-7998.2000.tb00783.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stokkebo S, 2000, ANIM BEHAV, V59, P1111, DOI 10.1006/anbe.2000.1407; Van Wilgenburg E, 2010, BIOL LETTERS, V6, P152, DOI 10.1098/rsbl.2009.0616; Walling CA, 2009, BEHAV ECOL, V20, P153, DOI 10.1093/beheco/arn127; Wong BBM, 2005, BIOL REV, V80, P559, DOI 10.1017/S1464793105006809 49 16 16 2 43 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 1465-7279 BEHAV ECOL Behav. Ecol. JAN-FEB 2014 25 1 172 179 10.1093/beheco/art101 8 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology 271GO WOS:000328380000023 Bronze, Green Published 2018-11-12 J de la Cerda, HEC; Estrada, EO; Poot, FRT; Banik, SD Cuanalo de la Cerda, Heriberto E.; Ochoa Estrada, Ernesto; Tuz Poot, Felipe R.; Datta Banik, Sudip Food intake and nutrition in children 1-4 years of age in Yucatan, Mexico ANNALS OF HUMAN BIOLOGY English Article Food intake; growth; nutrition; pre-school children NATIONAL-HEALTH; ENERGY Background: The National Health and Nutrition Survey 2006 (ENSANUT in Spanish) reported high rates of under-nutrition in children of Yucatan. Is food intake the main cause of undernutrition in children of the state of Yucatan, Mexico? Aim: Identify the primary causes of under-nutrition in pre-school children in Yucatan. Subjects: A sample of 111 children (59 girls and 52 boys) aged 1-4 years representing Yucatan was taken from a database of ENSANUT 2006 and another national survey, a federal poverty mitigation programme for the state of Yucatan, Mexico entitled "Oportunidades". Methods: A human ecology approach together with life history theory was used to analyse anthropometric indices and food intake data from the ENSANUT 2006 and "Oportunidades". Results: Height and weight were significantly correlated to age and total food intake. No correlations were found between age and anthropometric indices or food intake rates. The children in the sample had adequate protein intake but deficient energy intake. No correlation was identified between nutritional status and food intake rates. Pre-schoolers with higher weight-for-height values achieved greater height-for-age. These relationships can be explained by life history theory in that energy intake was used either for maintenance (combating and recovering from infections) or growth. Conclusion: The poor relationship between food intake rates and nutritional status is probably explained by the interaction between high disease incidence and insufficient energy intake. These conditions are endemic in Yucatan due to widespread poor housing, water and sanitation conditions. [Tuz Poot, Felipe R.] Autonomous Univ Yucatan UADY, Fac Math, Merida, Yucatan, Mexico de la Cerda, HEC (reprint author), IPN, Dept Human Ecol, Cinvestav Ctr Invest & Estudios Avanzados, Merida Unit, Km 6,Carretera Antigua Progreso, Merida 97310, Yucatan, Mexico. cuanalo@mda.cinvestav.mx DATTA BANIK, SUDIP/E-3753-2013 DATTA BANIK, SUDIP/0000-0001-5359-1850 Behar M, 1977, Ann N Y Acad Sci, V300, P176, DOI 10.1111/j.1749-6632.1977.tb19316.x; Bogin B., 1999, PATTERNS HUMAN GROWT, V23; Cabrera Z, 2007, ECOL FOOD NUTR, V46, P37; CONEVAL, 2008, POBR INGR SEG ENT FE; Cuanalo de la CHE, 2009, C INT ED POP AM SIGL, P111; FAO/ WHO/ UNU (Food and Agriculture Organization of the United Nations/ World Health Organization/ United Nations University), 2004, FOOD NUTR TECHN REP; Hernandez F, 2003, CUADERNOS DESARROLLO; *INSP, 2007, ENC NAC SAL NUTR 200; INSP (Instituto Nacional de Salud Publica), 2006, ENCUESTA NACL SALUD; Institute of Medicine, 2005, DIET REF INT EN CARB, P176; Lindsay HA, 1992, AM J CLIN NUTR, V56, P353; Lindsay HA, 1995, J NUTR, V125, p1119S; McDade WT, 2008, AM J PHYS ANTHROPOL, V136, P478; McDade WT, 2003, YEARB PHYS ANTHROPOL, V46, P100; Mundo-Rosas V, 2009, SALUD PUBLICA MEXICO, V51, pS530, DOI 10.1590/s0036-36342009001000008; Olaiz-Fernandez G, 2006, ENCUESTA NACL SALUD; Oyama S., 1985, ONTOGENY INFORM DEV; PERRIN N, 1993, ANNU REV ECOL SYST, V24, P379, DOI 10.1146/annurev.es.24.110193.002115; Powanda CM, 2003, J NUTR, V133, p322S; Rivera DJ, 2001, ECCUESTA NACL NUTR 1, p[30, 34]; Rodriguez-Ramirez S, 2009, SALUD PUBLICA MEXICO, V51, pS523, DOI 10.1590/s0036-36342009001000007; Scrimshaw SN, 2003, J NUTR, V133, p316S; Shamah-Levy T, 2007, RESULTADOS SALUD NUT; SINAVE, 2005, EPIDEMIOLOGIA, V22; Teran R, 2011, CLIN IMMUNOL, V138, P299, DOI 10.1016/j.clim.2010.12.011; WHO, 1995, WHO TECHN REP SER; Wiskin AE, 2011, ARCH DIS CHILD, V96, P567, DOI 10.1136/adc.2009.158303 27 1 1 0 6 INFORMA HEALTHCARE LONDON TELEPHONE HOUSE, 69-77 PAUL STREET, LONDON EC2A 4LQ, ENGLAND 0301-4460 1464-5033 ANN HUM BIOL Ann. Hum. Biol. JAN-FEB 2014 41 1 46 52 10.3109/03014460.2013.824024 7 Anthropology; Biology; Public, Environmental & Occupational Health Anthropology; Life Sciences & Biomedicine - Other Topics; Public, Environmental & Occupational Health 267NS WOS:000328105200007 23992150 2018-11-12 J Giacomini, HC; Shuter, BJ Giacomini, Henrique C.; Shuter, Brian J. Adaptive responses of energy storage and fish life histories to climatic gradients JOURNAL OF THEORETICAL BIOLOGY English Article Fish bioenergetics; Life history optimization; Seasonal environments; Biphasic growth model; Energy budget SIZE-STRUCTURED POPULATIONS; WINTER LIPID STORES; FRESH-WATER FISH; SALVELINUS-NAMAYCUSH; BIPHASIC GROWTH; ATLANTIC SALMON; SOMATIC GROWTH; YOUNG FISH; LAKE TROUT; MORTALITY Energy storage is a common adaptation of fish living in seasonal environments. For some species, the energy accumulated during the growing season, and stored primarily as lipids, is crucial to preventing starvation mortality over winter. Thus, in order to understand the adaptive responses of fish life history to climate, it is important to determine how energy should be allocated to storage and how it trades off with the other body components that contribute to fitness. In this paper, we extend previous life history theory to include an explicit representation of how the seasonal allocation of energy to storage acts as a constraint on fish growth. We show that a strategy that privileges allocation to structural mass in the first part of the growing season and switches to storage allocation later on, as observed empirically in several fish species, is the strategy that maximizes growth efficiency and hence is expected to be favored by natural selection. Stochastic simulations within this theoretical framework demonstrate that the relative performance of this switching strategy is robust to a wide range of fluctuations in growing season length, and to moderate short-term (i.e., daily) fluctuations in energy intake and/or expenditure within the growing season. We then integrate this switching strategy with a biphasic growth modeling framework to predict typical growth rates of walleye Sander vitreus, a cool water species, and lake trout Salvelinus namaycush, a cold water specialist, across a climatic gradient in North America. As predicted, growth rates increased linearly with the duration of the growing season. Regression line intercepts were negative, indicating that growth can only occur when growing season length exceeds a threshold necessary to produce storage for winter survival. The model also reveals important differences between species, showing that observed growth rates of lake trout are systematically higher than those of walleye in relatively colder lakes. This systematic difference is consistent with both (i) the expected superior capacity of lake trout to withstand harsh winter conditions, and (ii) some degree of counter gradient adaptation of lake trout growth capacity to the climatic gradient covered by our data. (C) 2013 Elsevier Ltd. All rights reserved. [Giacomini, Henrique C.; Shuter, Brian J.] Univ Toronto, Dept Ecol & Evolutionary Biol, Toronto, ON M5S 3G5, Canada; [Shuter, Brian J.] Ontario Minist Nat Resources, Harkness Lab Fisheries Res, Peterborough, ON K9J 7B8, Canada Giacomini, HC (reprint author), Univ Toronto, Dept Ecol & Evolutionary Biol, 25 Harbord St, Toronto, ON M5S 3G5, Canada. hgiacomini@gmail.com Natural Sciences and Engineering Research Council of Canada; Ontario Ministry of Natural Resources; University of Toronto; NSERC This work was supported by the Natural Sciences and Engineering Research Council of Canada, the Ontario Ministry of Natural Resources and the University of Toronto. H.C.G. is supported by a postdoctoral fellowship funded by NSERC and the University of Toronto. We thank Peter A. Abrams and Nigel Lester for advice and suggestions on the manuscript. Nigel Lester was extensively involved in compiling and validating the lake trout and walleye life history data bases. ABRAMS P, 1983, THEOR POPUL BIOL, V24, P22, DOI 10.1016/0040-5809(83)90044-8; ABRAMS PA, 1994, THEOR POPUL BIOL, V46, P78, DOI 10.1006/tpbi.1994.1020; Abrams PA, 2003, EVOL ECOL RES, V5, P653; Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; ABRAMS PA, 1993, BEHAV ECOL, V4, P246, DOI 10.1093/beheco/4.3.246; ABRAMS PA, 1991, ECOLOGY, V72, P1242, DOI 10.2307/1941098; Angilletta MJ, 2009, BIO HABIT, P1, DOI 10.1093/acprof:oso/9780198570875.001.1; Berg OK, 2011, J FISH BIOL, V79, P1156, DOI 10.1111/j.1095-8649.2011.03097.x; Berg OK, 2009, J FISH BIOL, V74, P1383, DOI 10.1111/j.1095-8649.2009.02193.x; Biro PA, 2005, P ROY SOC B-BIOL SCI, V272, P1443, DOI 10.1098/rspb.2005.3096; Biro PA, 2004, CAN J FISH AQUAT SCI, V61, P1513, DOI 10.1139/F04-083; Bonnet X, 1998, OIKOS, V83, P333, DOI 10.2307/3546846; Bozek MA, 2011, BIOLOGY, MANAGEMENT, AND CULTURE OF WALLEYE AND SAUGER, P233; Bradshaw WE, 2007, ANNU REV ECOL EVOL S, V38, P1, DOI 10.1146/annurev.ecolsys.37.091305.110115; Bradshaw WE, 2010, ANNU REV PHYSIOL, V72, P147, DOI 10.1146/annurev-physiol-021909-135837; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Bull CD, 1996, P ROY SOC B-BIOL SCI, V263, P13, DOI 10.1098/rspb.1996.0003; CHRISTIE GC, 1988, CAN J FISH AQUAT SCI, V45, P301, DOI 10.1139/f88-036; Clarke A, 1999, J ANIM ECOL, V68, P893, DOI 10.1046/j.1365-2656.1999.00337.x; Conover DO, 2009, ANN NY ACAD SCI, V1168, P100, DOI 10.1111/j.1749-6632.2009.04575.x; Day T, 2002, EVOLUTION, V56, P877; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Emerson KJ, 2008, EVOLUTION, V62, P979, DOI 10.1111/j.1558-5646.2008.00324.x; Enberg K, 2012, MAR ECOL-EVOL PERSP, V33, P1, DOI 10.1111/j.1439-0485.2011.00460.x; Ernest SKM, 2003, ECOL LETT, V6, P990, DOI 10.1046/j.1461-0248.2003.00526.x; Finstad AG, 2010, P R SOC B, V277, P1113, DOI 10.1098/rspb.2009.1874; Hasnain SS, 2013, CAN J FISH AQUAT SCI, V70, P964, DOI 10.1139/cjfas-2012-0217; Henderson BA, 1996, CAN J FISH AQUAT SCI, V53, P127, DOI 10.1139/f95-162; Hurst TP, 2003, ECOLOGY, V84, P3360, DOI 10.1890/02-0562; Intergovernmental Panel on Climate Change (IPCC), 2005, IPCC DAT DISTR CTR G; Kooijman SALM, 2007, BIOL REV, V82, P113, DOI 10.1111/j.1469-185X.2006.00006.x; Kooijman S. A. L. M, 2000, DYNAMIC ENERGY MASS; Kozlowski J, 1996, P ROY SOC B-BIOL SCI, V263, P559, DOI 10.1098/rspb.1996.0084; Kozlowski J, 1999, EVOL ECOL RES, V1, P423; Lee WS, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2370; Legendre L., 1998, NUMERICAL ECOLOGY; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; McDermid JL, 2010, CAN J FISH AQUAT SCI, V67, P314, DOI 10.1139/F09-183; Mogensen S, 2012, OECOLOGIA, V168, P923, DOI 10.1007/s00442-011-2164-0; NELISSEN MHJ, 1992, J ETHOL, V10, P153, DOI 10.1007/BF02350121; Nisbet RM, 2000, J ANIM ECOL, V69, P913, DOI 10.1046/j.1365-2656.2000.00448.x; Nisbet RM, 2012, J EXP BIOL, V215, P892, DOI 10.1242/jeb.059675; PAULY D, 1980, J CONSEIL, V39, P175; Persson L, 1996, ECOLOGY, V77, P900, DOI 10.2307/2265510; Portner HO, 2006, DEEP-SEA RES PT II, V53, P1071, DOI 10.1016/j.dsr2.2006.02.015; Pope JG, 2006, ICES J MAR SCI, V63, P1029, DOI 10.1016/j.icesjms.2006.04.015; Post JR, 2001, ECOLOGY, V82, P1040, DOI 10.2307/2679901; Quince C, 2008, J THEOR BIOL, V254, P207, DOI 10.1016/j.jtbi.2008.05.030; Quince C, 2008, J THEOR BIOL, V254, P197, DOI 10.1016/j.jtbi.2008.05.029; Roff D. A., 2002, LIFE HIST EVOLUTION; Schultz ET, 1997, OECOLOGIA, V109, P516, DOI 10.1007/s004420050112; Shul'man GE, 1974, LIFE CYCLES OF FISH; SHULMAN GE, 1999, BIOCH ECOLOGY MARINE; Shuter BJ, 2012, AQUAT SCI, V74, P637, DOI 10.1007/s00027-012-0274-3; SHUTER BJ, 1983, CAN J FISH AQUAT SCI, V40, P1838, DOI 10.1139/f83-213; Shuter BJ, 2005, CAN J FISH AQUAT SCI, V62, P738, DOI 10.1139/F05-070; STEWART DJ, 1983, CAN J FISH AQUAT SCI, V40, P681, DOI 10.1139/f83-091; Varpe O, 2009, OIKOS, V118, P363, DOI 10.1111/j.1600-0706.2008.17036.x; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141 60 12 12 4 71 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0022-5193 1095-8541 J THEOR BIOL J. Theor. Biol. DEC 21 2013 339 SI 100 111 10.1016/j.jtbi.2013.08.020 12 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology 256EN WOS:000327292600011 23999284 2018-11-12 J Hegemann, A; Matson, KD; Flinks, H; Tieleman, BI Hegemann, Arne; Matson, Kevin D.; Flinks, Heiner; Tieleman, B. Irene Offspring pay sooner, parents pay later: experimental manipulation of body mass reveals trade-offs between immune function, reproduction and survival FRONTIERS IN ZOOLOGY English Article Birds; Cost of reproduction; Ecoimmunology; Ecophysiology; Immunity; Life history; Carry-over effect; Avian KESTREL FALCO-TINNUNCULUS; BLACK-LEGGED KITTIWAKES; ROSE COLORED STARLINGS; TIT PARUS-MAJOR; BROOD SIZE; GREAT TIT; ENERGY-EXPENDITURE; EXPERIMENTAL INCREASE; PARTNER CONTRIBUTION; STURNUS-VULGARIS Introduction: Life-history theory predicts that organisms trade off survival against reproduction. However, the time scales on which various consequences become evident and the physiology mediating the cost of reproduction remain poorly understood. Yet, explaining not only which mechanisms mediate this trade-off, but also how fast or slow the mechanisms act, is crucial for an improved understanding of life-history evolution. We investigated three time scales on which an experimental increase in body mass could affect this trade-off: within broods, within season and between years. We handicapped adult skylarks (Alauda arvensis) by attaching extra weight during first broods to both adults of a pair. We measured body mass, immune function and return rates in these birds. We also measured nest success, feeding rates, diet composition, nestling size, nestling immune function and recruitment rates. Results: When nestlings of first broods fledged, parent body condition had not changed, but experimental birds experienced higher nest failure. Depending on the year, immune parameters of nestlings from experimental parents were either higher or lower than of control nestlings. Later, when parents were feeding their second brood, the balance between self-maintenance and nest success had shifted. Control and experimental adults differed in immune function, while mass and immune function of their nestlings did not differ. Although weights were removed after breeding, immune measurements during the second brood had the capacity to predict return rates to the next breeding season. Among birds that returned the next year, body condition and reproductive performance a year after the experiment did not differ between treatment groups. Conclusions: We conclude that the balance between current reproduction and survival shifts from affecting nestlings to affecting parents as the reproductive season progresses. Furthermore, immune function is apparently one physiological mechanism involved in this trade-off. By unravelling a physiological mechanism underlying the trade-offs between current and future reproduction and by demonstrating the different time scales on which it acts, our study represents an important step in understanding a central theory of life-history evolution. [Hegemann, Arne; Matson, Kevin D.; Tieleman, B. Irene] Univ Groningen, Ctr Ecol & Evolut Studies, Anim Ecol Grp, NL-9700 CC Groningen, Netherlands Hegemann, A (reprint author), Univ Groningen, Ctr Ecol & Evolut Studies, Anim Ecol Grp, POB 11103, NL-9700 CC Groningen, Netherlands. a.hegemann@rug.nl Matson, Kevin/G-3855-2010 Matson, Kevin/0000-0002-4373-5926; Hegemann, Arne/0000-0002-3309-9866 BirdLife Netherlands; Rosalind Franklin Fellowship; Netherlands Organization for Scientific Research [863.04.023, 863.08.026]; Schure-Beijerinck-Popping Fonds; Deutsche Ornithologen-Gesellschaft We thank T. Piersma, C. Both and the late R. Drent for discussions about experimental design, R. Voesten for field work, M. van der Velde for molecular sexing, C. Gotteland and E. Gilot for slide counts, K. Meirmans and S. Wallert for feeding observations, M. A. Versteegh, I. R. Pen for advice on statistics and D. Visser for help with the graphic design of figures. S. Verhulst, C. Both, two anonymous reviewers and the editor T. Price provided useful comments on earlier drafts. Staatsbosbeheer Drents-Friese Wold kindly allowed working in their area. Financial support came from BirdLife Netherlands (BIT), a Rosalind Franklin Fellowship (BIT), the Netherlands Organization for Scientific Research (BIT: 863.04.023, KDM: 863.08.026), Schure-Beijerinck-Popping Fonds (AH) and the Deutsche Ornithologen-Gesellschaft (AH). Alonso-Alvarez C, 2001, CAN J ZOOL, V79, P101, DOI 10.1139/cjz-79-1-101; Ardia DR, 2003, P ROY SOC B-BIOL SCI, V270, P1679, DOI 10.1098/rspb.2003.2424; Beaulieu M, 2010, J EXP BIOL, V213, P33, DOI 10.1242/jeb.035378; Buehler DM, 2008, PHYSIOL BIOCHEM ZOOL, V81, P673, DOI 10.1086/588591; CALVER MC, 1982, AUST WILDLIFE RES, V9, P293; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; Davis AK, 2008, FUNCT ECOL, V22, P760, DOI 10.1111/j.1365-2435.2008.01467.x; DEERENBERG C, 1995, ZOOL-ANAL COMPLEX SY, V99, P39; Deerenberg C, 1997, P ROY SOC B-BIOL SCI, V264, P1021, DOI 10.1098/rspb.1997.0141; Dietz MW, 2007, FUNCT ECOL, V21, P317, DOI 10.1111/j.1365-2435.2006.01234.x; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; DONALD PF, 2004, SKYLARK; DUNCAN R, 1987, GRAMPIAN RINGING GRO, V5, P49; Engel S, 2006, J COMP PHYSIOL B, V176, P415, DOI 10.1007/s00360-006-0063-1; Feldman BF, 2000, SCHALMS VET HEMATOLO; FLINKS H, 1987, Vogelwelt, V108, P41; GLUTZ VON BLOTZHEIM U.N., 1985, HDB VOGEL MITTELEURO, V10; Golet GH, 1998, J ANIM ECOL, V67, P827, DOI 10.1046/j.1365-2656.1998.00233.x; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; Hanssen SA, 2005, P ROY SOC B-BIOL SCI, V272, P1039, DOI 10.1098/rspb.2005.3057; Hanssen SA, 2004, P ROY SOC B-BIOL SCI, V271, P925, DOI 10.1098/rspb.2004.2678; Harding AMA, 2009, ANIM BEHAV, V78, P321, DOI 10.1016/j.anbehav.2009.05.009; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hasselquist D, 2001, BEHAV ECOL, V12, P93, DOI 10.1093/oxfordjournals.beheco.a000384; Hegemann A, 2013, J EXP BIOL, V216, P2573, DOI 10.1242/jeb.083147; Hegemann A, 2012, OECOLOGIA, V170, P605, DOI 10.1007/s00442-012-2339-3; Hegemann Arne, 2012, Ringing & Migration, V27, P7; Hegemann A, 2010, ARDEA, V98, P135, DOI 10.5253/078.098.0202; Janeway CA, 2002, ANNU REV IMMUNOL, V20, P197, DOI 10.1146/annurev.immunol.20.083001.084359; Janeway Jr CA, 2005, IMMUNOBIOLOGY IMMUNE; JENNI L, 1990, IBIS, V132, P445, DOI 10.1111/j.1474-919X.1990.tb01062.x; Klasing Kirk C., 2004, Acta Zoologica Sinica, V50, P961; Knowles SCL, 2009, FUNCT ECOL, V23, P405, DOI 10.1111/j.1365-2435.2008.01507.x; Koivula M, 2003, ECOLOGY, V84, P398, DOI 10.1890/0012-9658(2003)084[0398:CORITW]2.0.CO;2; Kurtz J, 2004, MICROBES INFECT, V6, P1410, DOI 10.1016/j.micinf.2004.10.002; Kvist A, 2001, NATURE, V413, P730, DOI 10.1038/35099556; Leclaire S, 2010, BEHAVIOUR, V147, P1841, DOI 10.1163/000579510X538872; LINDEN M, 1988, OIKOS, V51, P285, DOI 10.2307/3565309; MAGNHAGEN C, 1991, TRENDS ECOL EVOL, V6, P183, DOI 10.1016/0169-5347(91)90210-O; Matson KD, 2006, PHYSIOL BIOCHEM ZOOL, V79, P556, DOI 10.1086/501057; Matson KD, 2005, DEV COMP IMMUNOL, V29, P275, DOI 10.1016/j.dci.2004.07.006; Matson KD, 2012, J EXP BIOL, V215, P3734, DOI 10.1242/jeb.072264; Matson KD, 2012, COMP BIOCHEM PHYS A, V162, P7, DOI 10.1016/j.cbpa.2012.01.010; MAUCK RA, 1995, ANIM BEHAV, V49, P999, DOI 10.1006/anbe.1995.0129; Moller AP, 2004, OIKOS, V104, P299, DOI 10.1111/j.0030-1299.2004.12844.x; Moreno J, 1999, BEHAV ECOL SOCIOBIOL, V46, P244, DOI 10.1007/s002650050616; Moreno-Rueda G, 2010, J EVOLUTION BIOL, V23, P2229, DOI 10.1111/j.1420-9101.2010.02090.x; Navarro J, 2007, OECOLOGIA, V151, P150, DOI 10.1007/s00442-006-0559-0; Nilsson JA, 1996, P ROY SOC B-BIOL SCI, V263, P711, DOI 10.1098/rspb.1996.0106; Nordling D, 1998, P ROY SOC B-BIOL SCI, V265, P1291, DOI 10.1098/rspb.1998.0432; NORRIS K, 1994, J ANIM ECOL, V63, P601, DOI 10.2307/5226; Owen JC, 2008, CAN J ZOOL, V86, P638, DOI 10.1139/7-08-038; Owen JC, 2008, J ETHOL, V26, P383, DOI 10.1007/s10164-008-0092-1; R Development Core Team, 2011, R LANG ENV STAT COMP; RALPH CP, 1985, J FIELD ORNITHOL, V56, P165; RAPPOLE JH, 1991, J FIELD ORNITHOL, V62, P335; Sanz JJ, 2000, J ANIM ECOL, V69, P74, DOI 10.1046/j.1365-2656.2000.00373.x; Schmidt-Wellenburg CA, 2008, J COMP PHYSIOL B, V178, P767, DOI 10.1007/s00360-008-0267-7; SMITH HG, 1987, AUK, V104, P700; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stjernman M, 2004, P ROY SOC B-BIOL SCI, V271, P2387, DOI 10.1098/rspb.2004.2883; Tieleman BI, 2008, BEHAV ECOL, V19, P949, DOI 10.1093/beheco/arn051; TINBERGEN JM, 1987, ARDEA, V75, P111; TINBERGEN JM, 1981, ARDEA, V69, P1; van de Crommenacker J, 2010, J EXP BIOL, V213, P3527, DOI 10.1242/jeb.045591; Verhulst S, 1998, FUNCT ECOL, V12, P132, DOI 10.1046/j.1365-2435.1998.00165.x; Wernham CV, 1998, J ANIM ECOL, V67, P25, DOI 10.1046/j.1365-2656.1998.00166.x; Wiebe KL, 2010, J ANIM ECOL, V79, P63, DOI 10.1111/j.1365-2656.2009.01614.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WRIGHT J, 1990, ANIM BEHAV, V40, P462, DOI 10.1016/S0003-3472(05)80526-3; Wright J, 1998, J ANIM ECOL, V67, P620; Wright J, 1990, BEHAV ECOL, V1, P116, DOI 10.1093/beheco/1.2.116 72 20 21 0 86 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1742-9994 FRONT ZOOL Front. Zool. DEC 17 2013 10 77 10.1186/1742-9994-10-77 11 Zoology Zoology 287EI WOS:000329523400001 24344978 DOAJ Gold, Green Published 2018-11-12 J Adamson, JJ Adamson, Joel J. Evolution of male life histories and age-dependent sexual signals under female choice PEERJ English Article Sexual selection; Life-history theory; Evolutionary theory Sexual selection theory models evolution of sexual signals and preferences using simple life histories. However, life-history models predict that males benefit from increasing sexual investment approaching old age, producing age-dependent sexual traits. Age-dependent traits require time and energy to grow, and will not fully mature before individuals enter mating competition. Early evolutionary stages pose several problems for these traits. Age-dependent traits suffer from strong viability selection and gain little benefit from mate choice when rare. Few males will grow large traits, and they will rarely encounter choosy females. The evolutionary origins of age-dependent traits therefore remain unclear. I used numerical simulations to analyze evolution of preferences, condition (viability) and traits in an age-structured population. Traits in the model depended on age and condition ("good genes") in a population with no genetic drift. I asked (1) if age-dependent indicator traits and their preferences can originate depending on the strength of selection and the size of the trait; (2) which mode of development (age-dependent versus age-independent) eventually predominates when both modes occur in the population; and (3) if age-independent traits can invade a population with age-dependent traits. Age-dependent traits evolve under weaker selection and at smaller sizes than age-independent traits. This result held in isolation and when the types co-occur. Evolution of age-independent traits depends only on trait size, whereas evolution of age-dependent traits depends on both strength of selection and growth rate. Invasion of age-independence into populations with established traits followed a similar pattern with age-dependence predominating at small trait sizes. I suggest that reduced adult mortality facilitates sexual selection by favoring the evolution of age-dependent sexual signals under weak selection. Univ N Carolina, Chapel Hill, NC USA Adamson, JJ (reprint author), Univ N Carolina, Chapel Hill, NC USA. adamsonj@ninthfloor.org NSF [DEB-0614166, DEB-0919018] This research was supported by NSF DEB-0614166 and NSF DEB-0919018 to Maria Servedio, Ph.D. advisor to the author; these grants were to provide support for graduate students. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Badyaev AV, 2002, AUK, V119, P301, DOI 10.1642/0004-8038(2002)119[0301:PSTITC]2.0.CO;2; Ballentine B, 2009, ANIM BEHAV, V77, P973, DOI 10.1016/j.anbehav.2008.12.027; Beck CW, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000939; Bonduriansky R, 2005, J EVOLUTION BIOL, V18, P1332, DOI 10.1111/j.1420-9101.2005.00957.x; Brooks R, 2001, TRENDS ECOL EVOL, V16, P308, DOI 10.1016/S0169-5347(01)02147-4; Burger R, 2000, MATH THEORY SELECTIO; Candolin U, 2000, ANIM BEHAV, V60, P417, DOI 10.1006/anbe.2000.1481; Candolin U, 2000, P ROY SOC B-BIOL SCI, V267, P2425, DOI 10.1098/rspb.2000.1301; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CLINTON WL, 1993, ECOLOGY, V74, P1884, DOI 10.2307/1939945; Coltman DW, 2002, P ROY SOC B-BIOL SCI, V269, P165, DOI 10.1098/rspb.2001.1851; Courtiol A, 2012, P NATL ACAD SCI USA, V109, P8044, DOI 10.1073/pnas.1118174109; Evans MR, 1997, ANIM BEHAV, V53, P749, DOI 10.1006/anbe.1996.0311; Evans SR, 2011, EVOLUTION, V65, P1623, DOI 10.1111/j.1558-5646.2011.01253.x; Garamszegi LZ, 2007, ETHOLOGY, V113, P246, DOI 10.1111/j.1439-0310.2007.01337.x; Geary DC, 2002, ADV CHILD DEV BEHAV, V30, P41, DOI 10.1016/S0065-2407(02)80039-8; Gil D, 2001, ANIM BEHAV, V62, P689, DOI 10.1006/anbe.2001.1812; Hammerstein Peter, 1998, P3; Hansen TF, 1999, GENETICA, V106, P251, DOI 10.1023/A:1003988101586; Hawkins GL, 2012, BIOL REV, V87, P257, DOI 10.1111/j.1469-185X.2011.00193.x; HIEBERT SM, 1989, ANIM BEHAV, V37, P266, DOI 10.1016/0003-3472(89)90115-2; Jacob A, 2010, MOL ECOL, V19, P5296, DOI 10.1111/j.1365-294X.2010.04884.x; Jacob A, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-207; Johnson DW, 2011, J EVOLUTION BIOL, V24, P1653, DOI 10.1111/j.1420-9101.2011.02298.x; Jones AG, 2009, P NATL ACAD SCI USA, V106, P10001, DOI 10.1073/pnas.0901129106; Jones TM, 2004, P ROY SOC B-BIOL SCI, V271, P1311, DOI 10.1098/rspb.2004.2723; Jones TM, 2000, P ROY SOC B-BIOL SCI, V267, P681, DOI 10.1098/rspb.2000.1056; Judge KA, 2011, ANIM BEHAV, V81, P185, DOI 10.1016/j.anbehav.2010.09.032; KIRKPATRICK M, 1982, EVOLUTION, V36, P1, DOI 10.1111/j.1558-5646.1982.tb05003.x; Kirkpatrick M, 1997, P NATL ACAD SCI USA, V94, P1282, DOI 10.1073/pnas.94.4.1282; Kivleniece I, 2010, ANIM BEHAV, V80, P1015, DOI 10.1016/j.anbehav.2010.09.004; KODRICBROWN A, 1984, AM NAT, V124, P309, DOI 10.1086/284275; Kokko H, 2002, P ROY SOC B-BIOL SCI, V269, P1331, DOI 10.1098/rspb.2002.2020; Kokko H, 1997, BEHAV ECOL SOCIOBIOL, V41, P99, DOI 10.1007/s002650050369; Kokko H, 2001, ECOL LETT, V4, P322, DOI 10.1046/j.1461-0248.2001.00224.x; Kokko H, 2006, ANNU REV ECOL EVOL S, V37, P43, DOI 10.1146/annurev.ecolsys.37.091305.110259; Mace R, 2000, ANIM BEHAV, V59, P1, DOI 10.1006/anbe.1999.1287; MCDONALD DB, 1994, SCIENCE, V266, P1030, DOI 10.1126/science.7973654; Miller LK, 2005, EVOLUTION, V59, P2414; Moorad JA, 2008, GENETICS, V179, P2061, DOI 10.1534/genetics.108.088526; Oh KP, 2010, AM NAT, V176, pE80, DOI 10.1086/655216; Pemberton JM, 2004, SOAY SHEEP: DYNAMICS AND SELECTION IN AN ISLAND POPULATION, P166; Poissant J, 2008, P R SOC B, V275, P623, DOI 10.1098/rspb.2007.1361; Proulx SR, 2002, P ROY SOC B-BIOL SCI, V269, P2291, DOI 10.1098/rspb.2002.2129; Rands SA, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0027174; Rowe L, 1996, P ROY SOC B-BIOL SCI, V263, P1415, DOI 10.1098/rspb.1996.0207; Taff CC, 2011, ANIM BEHAV, V81, P619, DOI 10.1016/j.anbehav.2010.12.009; Verburgt L, 2011, ANIM BEHAV, V81, P19, DOI 10.1016/j.anbehav.2010.09.010 48 3 3 0 12 PEERJ INC LONDON 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND 2167-8359 PEERJ PeerJ DEC 17 2013 1 e225 10.7717/peerj.225 20 Multidisciplinary Sciences Science & Technology - Other Topics V36CY WOS:000209192100001 24392289 DOAJ Gold, Green Published 2018-11-12 J Gray, PB Gray, Peter B. Evolution and Human Sexuality AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY English Article evolution; sexual behavior; sexual function; sexual selection; hominin; Homo; life course; life history; genetics; neuroendocrine; polygyny SALIVARY TESTOSTERONE LEVELS; HUMAN LIFE-HISTORY; ROMANTIC LOVE; MATE CHOICE; REPRODUCTIVE SUCCESS; MALE COMPETITION; STRESS HORMONES; SEX-DIFFERENCES; UNITED-STATES; HOMO-ERECTUS The aim of this review is to put core features of human sexuality in an evolutionary light. Toward that end, I address five topics concerning the evolution of human sexuality. First, I address theoretical foundations, including recent critiques and developments. While much traces back to Darwin and his view of sexual selection, more recent work helps refine the theoretical bases to sex differences and life history allocations to mating effort. Second, I consider central models attempting to specify the phylogenetic details regarding how hominin sexuality might have changed, with most of those models honing in on transitions from a possible chimpanzee-like ancestor to the slightly polygynous and long-term bonded sociosexual partnerships observed among most recently studied hunter-gatherers. Third, I address recent genetic and physiological data contributing to a refined understanding of human sexuality. As examples, the availability of rapidly increasing genomic information aids comparative approaches to discern signals of selection in sexuality-related phenotypes, and neuroendocrine studies of human responses to sexual stimuli provide insight into homologous and derived mechanisms. Fourth, I consider some of the most recent, large, and rigorous studies of human sexuality. These provide insights into sexual behavior across other national samples and on the Internet. Fifth, I discuss the relevance of a life course perspective to understanding the evolution of human sexuality. Most research on the evolution of human sexuality focuses on young adults. Yet humans are sexual beings from gestation to death, albeit in different ways across the life course, and in ways that can be theoretically couched within life history theory. Am J Phys Anthropol 57:94-118, 2013. (c) 2013 Wiley Periodicals, Inc. Univ Nevada, Dept Anthropol, Las Vegas, NV 89154 USA Gray, PB (reprint author), Univ Nevada, Dept Anthropol, 4505 Maryland Pkwy,Box 455003, Las Vegas, NV 89154 USA. peter.gray@unlv.edu Gray, Peter/0000-0003-1774-2468 Alvergne A, 2010, TRENDS ECOL EVOL, V25, P171, DOI 10.1016/j.tree.2009.08.003; Anderson KG, 2010, FATHERHOOD EVOLUTION; Andersson M., 1994, SEXUAL SELECTION; Apostolou M, 2007, EVOL HUM BEHAV, V28, P403, DOI 10.1016/j.evolhumbehav.2007.05.007; Archer J, 2005, PERS SOC PSYCHOL REV, V9, P212, DOI 10.1207/s15327957pspr0903_2; Archer J, 2006, NEUROSCI BIOBEHAV R, V30, P319, DOI 10.1016/j.neubiorev.2004.12.007; Aron A, 2005, J NEUROPHYSIOL, V94, P327, DOI 10.1152/jn.00838.2004; Avis NE, 2009, MENOPAUSE, V16, P442, DOI 10.1097/gme.0b013e3181948dd0; Baker RR, 1994, HUMAN SPERM COMPETIT; Bancroft J, 2005, J ENDOCRINOL, V186, P411, DOI 10.1677/joe.1.06233; Barry III H, 1991, ADOLESCENCE ANTHR IN; Bartels A, 2000, NEUROREPORT, V11, P3829, DOI 10.1097/00001756-200011270-00046; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Baumeister RF, 2001, PERS SOC PSYCHOL REV, V5, P242, DOI 10.1207/S15327957PSPR0503_5; BEACH FA, 1976, HORM BEHAV, V7, P105, DOI 10.1016/0018-506X(76)90008-8; Berndt R, 1951, SEXUAL BEHAV ARNHEM; Betzig L, 2012, EVOL HUM BEHAV, V33, P309, DOI 10.1016/j.evolhumbehav.2011.10.008; Bird R, 1999, EVOL ANTHROPOL, V8, P65, DOI 10.1002/(SICI)1520-6505(1999)8:2<65::AID-EVAN5>3.0.CO;2-3; Birkhead T., 2000, PROMISCUITY; Blurton Jones N. G., 2000, ADAPTATION HUMAN BEH, P65; Bogin B., 1999, PATTERNS HUMAN GROWT; Brewis A, 2005, J BIOSOC SCI, V37, P499, DOI 10.1017/S002193200400690X; Brewis A, 2005, CURR ANTHROPOL, V46, P465, DOI 10.1086/430016; Brown GR, 2009, TRENDS ECOL EVOL, V24, P297, DOI 10.1016/j.tree.2009.02.005; Brown JK, 1992, HER PRIME NEW VIEWS; Brunet M, 2005, NATURE, V434, P752, DOI 10.1038/nature03392; BUSS DM, 1989, BEHAV BRAIN SCI, V12, P1, DOI 10.1017/S0140525X00023992; BUSS DM, 2003, EVOLUTION DESIRE STR; Campbell A, 1999, BEHAV BRAIN SCI, V22, P203; Campbell CJ, 2011, PRIMATES PERSPECTIVE; CARMICHAEL MS, 1987, J CLIN ENDOCR METAB, V64, P27, DOI 10.1210/jcem-64-1-27; Carnahan SJ, 2008, AM J PRIMATOL, V70, P939, DOI 10.1002/ajp.20585; Chapais B., 2008, PRIMEVAL KINSHIP PAI; Chapman T, 2003, TRENDS ECOL EVOL, V18, P41, DOI 10.1016/S0169-5347(02)00004-6; Chivers ML, 2010, ARCH SEX BEHAV, V39, P5, DOI 10.1007/s10508-009-9556-9; Clark NL, 2005, PLOS GENET, V1, P335, DOI 10.1371/journal.pgen.0010035; Clutton-Brock T, 2009, Q REV BIOL, V84, P3, DOI 10.1086/596461; CLUTTONBROCK TH, 1991, NATURE, V351, P58; Crompton RH, 2008, J ANAT, V212, P501, DOI 10.1111/j.1469-7580.2008.00870.x; Darwin C.R., 1871, DESCENT MAN SELECTIO; Dean C, 2001, NATURE, V414, P628, DOI 10.1038/414628a; Dennerstein Lorraine, 2003, Annu Rev Sex Res, V14, P64; Disotell TR, 2012, AM J PHYS ANTHROPOL, V149, P24, DOI 10.1002/ajpa.22159; Ditzen B, 2009, BIOL PSYCHIAT, V65, P728, DOI 10.1016/j.biopsych.2008.10.011; Dixson AF, 2012, PRIMATE SEXUALITY: COMPARATIVE STUDIES OF THE PROSIMIANS, MONKEYS, APES, AND HUMANS, 2ND EDITION, P1, DOI 10.1093/acprof:osobl/9780199544646.001.0001; Dixson AF, 2009, SEXUAL SELECTION ORI; Durante KM, 2008, PERS SOC PSYCHOL B, V34, P1451, DOI 10.1177/0146167208323103; Eberhard W. G., 1996, FEMALE CONTROL SEXUA; Ellison P. T., 2001, FERTILE GROUND; EMLEN ST, 1977, SCIENCE, V197, P215, DOI 10.1126/science.327542; Escasa MJ, 2011, ARCH SEX BEHAV, V40, P921, DOI 10.1007/s10508-010-9711-3; Fisher HE, 1982, SEX CONTRACT; Fisher HE, 2006, PHILOS T R SOC B, V361, P2173, DOI 10.1098/rstb.2006.1938; Foley R, 2009, PHILOS T R SOC B, V364, P3267, DOI 10.1098/rstb.2009.0136; Ford CS, 1951, PATTERNS SEXUAL BEHA; Frayser S., 1985, VARIETIES SEXUAL EXP; Gangestad SW, 2008, P R SOC B, V275, P991, DOI 10.1098/rspb.2007.1425; Garcia JR, 2012, REV GEN PSYCHOL, V16, P161, DOI 10.1037/a0027911; Garcia JR, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014162; Gat Azar, 2006, WAR HUMAN CIVILIZATI; Geary DC, 2001, PARENT-SCI PRACT, V1, P5, DOI 10.1207/S15327922PAR011&2_2; Geary DC, 2002, ADV CHILD DEV BEHAV, V30, P41, DOI 10.1016/S0065-2407(02)80039-8; Geary DC, 2010, MALE FEMALE EVOLUTIO; GENTRY GA, 1988, P NATL ACAD SCI USA, V85, P2658, DOI 10.1073/pnas.85.8.2658; Georgiadis JR, 2009, HUM BRAIN MAPP, V30, P3089, DOI 10.1002/hbm.20733; Gettler LT, 2011, P NATL ACAD SCI USA, V108, P16194, DOI 10.1073/pnas.1105403108; Good JM, 2013, MOL BIOL EVOL, V30, P964, DOI 10.1093/molbev/mst005; Goodman M, 1998, MOL PHYLOGENET EVOL, V9, P585, DOI 10.1006/mpev.1998.0495; Gowaty PA, 2012, P NATL ACAD SCI USA, V109, P11740, DOI 10.1073/pnas.1207851109; Gray P, 2005, INT J IMPOT RES, V17, P445, DOI 10.1038/sj.ijir.3901359; Gray PB, 2006, P ROY SOC B-BIOL SCI, V273, P333, DOI 10.1098/rspb.2005.3311; Gray PB, 2003, AM J PHYS ANTHROPOL, V122, P279, DOI 10.1002/ajpa.10293; Gray PB, 2009, ENDOCRINOLOGY SOCIAL; Gray PB, 2013, EVOLUTION HUMAN SEXU; Gray PB, 2012, GERONTOLOGY, V58, P446, DOI 10.1159/000337420; Grewen KM, 2005, PSYCHOSOM MED, V67, P531, DOI 10.1097/01.psy.0000170341.88395.47; Gueguen N, 2009, EVOL HUM BEHAV, V30, P351, DOI 10.1016/j.evolhumbehav.2009.03.004; Guttentag M, 1983, TOO MANY WOMEN SEX R; Hammock EAD, 2005, SCIENCE, V308, P1630, DOI 10.1126/science.1111427; HARCOURT AH, 1981, NATURE, V293, P55, DOI 10.1038/293055a0; Harmon E, 2009, J HUM EVOL, V56, P551, DOI 10.1016/j.jhevol.2009.01.002; Harpending H, 2002, P NATL ACAD SCI USA, V99, P10, DOI 10.1073/pnas.012612799; Hausfater G., 1984, INFANTICIDE COMP EVO; Hawkes K, 2004, KINSHIP AND BEHAVIOR IN PRIMATES, P443; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Hawkes K, 2006, EVOLUTION HUMAN LIFE; Herbenick D, 2010, J SEX MED, V7, P255, DOI 10.1111/j.1743-6109.2010.02012.x; Herdt G, 2000, ARCH SEX BEHAV, V29, P587, DOI 10.1023/A:1002006521067; Hewlett BS, 2010, AFRICAN STUDY MONOGR, V31, P107; Heyer E, 2012, MOL ECOL, V21, P597, DOI 10.1111/j.1365-294X.2011.05406.x; Howell N., 2010, LIFE HIST DOBE KUNG; Hrdy S. B., 2009, MOTHERS OTHERS EVOLU; Hrdy S. B., 1981, WOMAN NEVER EVOLVED; Hrdy SB, 1999, MOTHER NATURE NATURA; Hughes JF, 2010, NATURE, V463, P536, DOI 10.1038/nature08700; Jankowiak W, 2005, ETHNOLOGY, V44, P81, DOI 10.2307/3773961; Jankowiak W, 2008, INTIMACIES LOVE SEX; Janson CH, 2000, INFANICIDE MALES ITS; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kelly RL, 1995, FORAGING SPECTRUM; Kiecolt-Glaser JK, 2003, J CONSULT CLIN PSYCH, V71, P176, DOI 10.1037/0022-006X.71.1.176; Kinsey A. C., 1948, SEXUAL BEHAV HUMAN M; Kinsey A. C., 1953, SEXUAL BEHAV HUMAN F; Kirkpatrick RC, 2000, CURR ANTHROPOL, V41, P385, DOI 10.1086/300145; Kokko H, 2003, TRENDS ECOL EVOL, V18, P103, DOI 10.1016/S0169-5347(03)00009-0; Kokko H, 2008, J EVOLUTION BIOL, V21, P919, DOI 10.1111/j.1420-9101.2008.01540.x; Kokko H, 2008, CURR BIOL, V18, pR121, DOI 10.1016/j.cub.2007.11.063; Komisaruk BR, 2005, ANN REV SEX RES, V16, P62; Kruger THC, 2003, J ENDOCRINOL, V177, P57, DOI 10.1677/joe.0.1770057; Labuda D, 2010, AM J HUM GENET, V86, P353, DOI 10.1016/j.ajhg.2010.01.029; Lassek WD, 2009, EVOL HUM BEHAV, V30, P322, DOI 10.1016/j.evolhumbehav.2009.04.002; Lieberman DE, 2011, EVOLUTION HUMAN HEAD; Lindau ST, 2007, NEW ENGL J MED, V357, P762, DOI 10.1056/NEJMoa067423; Lockwood CA, 1999, AM J PHYS ANTHROPOL, V108, P97, DOI 10.1002/(SICI)1096-8644(199901)108:1<97::AID-AJPA6>3.0.CO;2-O; Lockwood CA, 2007, SCIENCE, V318, P1443, DOI 10.1126/science.1149211; Lovejoy CO, 2009, SCIENCE, V326, p74e1; Low BS, 2000, WHY SEX MATTERS; Lukas D, 2013, SCIENCE, V341, P526, DOI 10.1126/science.1238677; MACCOBY EE, 1998, 2 SEXES GROWING APAR; Mallants C, 2008, EUR J PEDIATR, V167, P1111, DOI 10.1007/s00431-008-0766-2; Marlowe F, 2010, HADZA HUNTER GATHERE; Marlowe FW, 2007, CROSS-CULT RES, V41, P170, DOI 10.1177/1069397106297529; Marlowe FW, 2003, EVOL HUM BEHAV, V24, P217, DOI 10.1016/S1090-5138(03)00014-X; Marlowe FW, 2005, EVOL ANTHROPOL, V14, P54, DOI 10.1002/evan.20046; Mazur A, 1998, SOC FORCES, V77, P315, DOI 10.2307/3006019; MCHENRY HM, 1994, J HUM EVOL, V27, P77, DOI 10.1006/jhev.1994.1036; McLean CY, 2011, NATURE, V471, P216, DOI 10.1038/nature09774; MEIZNER I, 1987, J ULTRAS MED, V6, P111, DOI 10.7863/jum.1987.6.2.111; Mellars P, 2007, RETHINKING HUMAN REV, P395; Mesnick SL, 1997, FEMINISM EVOLUTIONAR; Michaels Stuart, 1994, SOCIAL ORG SEXUALITY; Mikkelsen TS, 2005, NATURE, V437, P69, DOI 10.1038/nature04072; Miller G., 2000, MATING MIND; Mitani JC, 1996, AM NAT, V147, P966, DOI 10.1086/285888; Mitani JC, 2012, EVOLUTION PRIMATE SO; Montagu MFA, 1946, ADOLESCENT STERILITY; Mubiru JN, 2012, J MED PRIMATOL, V41, P67, DOI 10.1111/j.1600-0684.2011.00517.x; Muehlenbein M, 2010, HUMAN EVOLUTIONARY B; Muller MN, 2006, CURR BIOL, V16, P2234, DOI 10.1016/j.cub.2006.09.042; Muller MN, 2009, SEXUAL COERCION PRIM; Murdock G. P., 1949, SOCIAL STRUCTURE; MURDOCK GP, 1969, ETHNOLOGY, V8, P329, DOI 10.2307/3772907; Nelson E, 2011, P ROY SOC B-BIOL SCI, V278, P1556, DOI 10.1098/rspb.2010.1740; Nunn CL, 1999, ANIM BEHAV, V58, P229, DOI 10.1006/anbe.1999.1159; O'Bleness M, 2012, NAT REV GENET, V13, P853, DOI 10.1038/nrg3336; Ogas O, 2011, BILLION WICKED THOUG; Parish WL, 2007, POPUL DEV REV, V33, P729, DOI 10.1111/j.1728-4457.2007.00195.x; PARKER GA, 1970, BIOL REV, V45, P525, DOI 10.1111/j.1469-185X.1970.tb01176.x; Plavcan JM, 2012, HUM NATURE-INT BIOS, V23, P45, DOI 10.1007/s12110-012-9130-3; Poiani A., 2010, ANIMAL HOMOSEXUALITY; Prichard Zoe M, 2007, Hum Mutat, V28, P1150, DOI 10.1002/humu.9510; Prufer K, 2012, NATURE, V486, P527, DOI 10.1038/nature11128; Pusey AE, 2012, EVOLUTION PRIMATE SO; Puts DA, 2010, EVOL HUM BEHAV, V31, P157, DOI 10.1016/j.evolhumbehav.2010.02.005; Quinlan RJ, 2008, EVOL ANTHROPOL, V17, P227, DOI 10.1002/evan.20191; Ravel J, 2011, P NATL ACAD SCI USA, V108, P4680, DOI 10.1073/pnas.1002611107; Reno PL, 2003, P NATL ACAD SCI USA, V100, P9404, DOI 10.1073/pnas.1133180100; REYNOLDS JD, 1987, IBIS, V129, P225, DOI 10.1111/j.1474-919X.1987.tb03203.x; Robles TF, 2006, J SOC PERS RELAT, V23, P305, DOI 10.1177/0265407506062482; Ryan C, 2010, SEX DAWN WE MATE WE; Schaefer K, 2004, ANN ANAT, V186, P471, DOI 10.1016/S0940-9602(04)80086-4; Schmitt DP, 2005, BEHAV BRAIN SCI, V28, P247, DOI 10.1017/S0140525X05000051; Schmitt DP, 2003, J PERS SOC PSYCHOL, V85, P85, DOI 10.1037/0022-3514.85.1.85; Senut B, 2001, CR ACAD SCI II A, V332, P137, DOI 10.1016/S1251-8050(01)01529-4; SHORT RV, 1976, PROC R SOC SER B-BIO, V195, P3, DOI 10.1098/rspb.1976.0095; Shoskak M., 1981, NISA LIFE WORDS KUNG; Simpson SW, 2008, SCIENCE, V322, P1089, DOI 10.1126/science.1163592; Smith EA, 2004, HUM NATURE-INT BIOS, V15, P343, DOI 10.1007/s12110-004-1013-9; Smuts B, 1992, Hum Nat, V3, P1, DOI 10.1007/BF02692265; Smuts B. B., 1985, SEX FRIENDSHIP BABOO; Sokol Chang R, 2013, EVOLUTIONS EMPRESS D, P260; Starkweather KE, 2012, HUM NATURE-INT BIOS, V23, P149, DOI 10.1007/s12110-012-9144-x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stockley P, 2011, BIOL REV, V86, P341, DOI 10.1111/j.1469-185X.2010.00149.x; STRASSMANN BI, 1981, ETHOL SOCIOBIOL, V2, P31, DOI 10.1016/0162-3095(81)90020-0; STRIER KB, 1990, INT J PRIMATOL, V11, P7, DOI 10.1007/BF02193693; Symons D., 1979, EVOLUTION HUMAN SEXU; Tinbergen N., 1963, Zeitschrift fuer Tierpsychologie, V20, P410; Trivers R, 1972, SEXUAL SELECTION DES, P136; Van Anders SM, 2006, HUM NATURE-INT BIOS, V17, P212, DOI 10.1007/s12110-006-1018-7; van Anders SM, 2009, J SEX MED, V6, P739, DOI 10.1111/j.1743-6109.2008.01123.x; vansAnders Sari M., 2007, ANN REV SEX RES, V18, P60, DOI DOI 10.1080/10532528.2007; VANSCHAIK CP, 1983, BEHAVIOUR, V87, P120, DOI 10.1163/156853983X00147; VANSCHAIK CP, 1990, BEHAVIOUR, V115, P30, DOI 10.1163/156853990X00284; Vitzthum VJ, 2009, YEARB PHYS ANTHROPOL, V52, P95, DOI 10.1002/ajpa.21195; von Sydow K, 1999, J PSYCHOSOM RES, V47, P27, DOI 10.1016/S0022-3999(98)00106-8; Walker AC, 1993, NARIOKOTOME HOMOEREC; Walker RS, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019066; Walum H, 2008, P NATL ACAD SCI USA, V105, P14153, DOI 10.1073/pnas.0803081105; Weisfeld GE., 1999, EVOLUTIONARY PRINCIP; Wellings K, 2006, LANCET, V368, P1706, DOI 10.1016/S0140-6736(06)69479-8; Wilcox AJ, 2004, HUM REPROD, V19, P1539, DOI 10.1093/humrep/deh305; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Winking J, 2007, P R SOC B, V274, P1643, DOI 10.1098/rspb.2006.0437; WINN RL, 1982, ARCH SEX BEHAV, V11, P283, DOI 10.1007/BF01541590; Wood B, 2008, J ANAT, V212, P354, DOI 10.1111/j.1469-7580.2008.00871.x; Wrangham RW, 1999, CURR ANTHROPOL, V40, P567, DOI 10.1086/300083; WRANGHAM RW, 1979, SOC SCI INFORM, V18, P335; Yang CFJ, 2005, AM J PSYCHIAT, V162, P263, DOI 10.1176/appi.ajp.162.2.263; Zeki S, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0015802 200 15 15 5 123 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0002-9483 1096-8644 AM J PHYS ANTHROPOL Am. J. Phys. Anthropol. DEC 2013 152 57 94 118 10.1002/ajpa.22394 25 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology 296JL WOS:000330181100005 24151100 Bronze 2018-11-12 J Morbey, YE; Shuter, BJ Morbey, Yolanda E.; Shuter, Brian J. Intermittent breeding in the absence of a large cost of reproduction: evidence for a non-migratory, iteroparous salmonid ECOSPHERE English Article individual quality; intermittent breeding; Lake Opeongo; life history theory; reproduction; resource allocation; Salmonidae; Salvelinus namaycush; state-dependent decisions TROUT SALVELINUS-NAMAYCUSH; LAKE TROUT; REACTION NORMS; BIPHASIC GROWTH; ATLANTIC SALMON; MATURATION; HISTORY; FISHES; MODEL; SIZE In long-lived organisms, intermittent breeding likely evolves as a resource allocation strategy for coping with environmental uncertainty or individual heterogeneity in condition. In fishes, the phenomenon of intermittent breeding is referred to as skipped spawning, and appears to be more common at high latitudes or in migratory species with high accessory costs of reproduction. We used long-term monitoring data on lake trout (Salvelinus namaycush) to test whether key predictions about the frequency of skipped spawning hold in a mid-latitude population of a species lacking any obvious costs of reproduction beyond the production and fertilization of gametes. We first developed a threshold-based method to classify skipped spawners based on gonad size, fish size, and fish age. Consistent with life history theory, age-specific frequencies of skipped spawning were higher in females than males. The frequency of skipped spawning varied among years and was higher in 1994-2011 than in 1938-1959, perhaps because of food web changes over the past century. In temperate lakes, food web structure may be sufficiently variable to favor intermittent breeding in long-lived iteroparous fishes, despite low accessory costs of reproduction. [Morbey, Yolanda E.] Western Univ, Dept Biol, London, ON N5Y 3P3, Canada; [Shuter, Brian J.] Ontario Minist Nat Resources, Harkness Lab Fisheries Res, Aquat Res & Dev Sect, Peterborough, ON K9J 7B8, Canada; [Shuter, Brian J.] Univ Toronto, Dept Ecol & Evolutionary Biol, Toronto, ON M5S 3B2, Canada Morbey, YE (reprint author), Western Univ, Dept Biol, London, ON N5Y 3P3, Canada. ymorbey@uwo.ca Morbey, Yolanda/F-9035-2013 Ontario Ministry of Natural Resources; MITACs We are extremely grateful to the staff at the Harkness Laboratory of Fisheries Research, and in particular G. Ridout and T. Middel, for their efforts in sustaining the high quality creel program in Lake Opeongo. We also thank Nick Lacombe and Devon Waters for their help in acquiring supplementary data for this project. Comments and suggestions by C. Jorgensen and an anonymous reviewer greatly improved the manuscript. In addition to continual funding by the Ontario Ministry of Natural Resources, partial support was provided by an Accelerator Grant from MITACs to Y.E. Morbey and B.J. Shuter. Barot S, 2004, EVOL ECOL RES, V6, P659; BULL JJ, 1979, AM NAT, V114, P296, DOI 10.1086/283476; Cam E, 1998, ECOLOGY, V79, P2917, DOI 10.2307/176526; Clutton-Brock TH, 2002, PHILOS T ROY SOC B, V357, P1285, DOI 10.1098/rstb.2002.1128; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Fleming IA, 1998, CAN J FISH AQUAT SCI, V55, P59, DOI 10.1139/cjfas-55-S1-59; Goetz F, 2011, T AM FISH SOC, V140, P1472, DOI 10.1080/00028487.2011.630276; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 2008, B MAR SCI, V83, P69; Henderson BA, 1998, J FISH BIOL, V52, P1078, DOI 10.1006/jfbi.1997.0631; Holmgren K, 2003, J FISH BIOL, V62, P918, DOI 10.1046/j.1095-8649.2003.00086.x; Hutchings JA, 2011, HEREDITY, V106, P421, DOI 10.1038/hdy.2010.166; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; Jorgensen C, 2006, CAN J FISH AQUAT SCI, V63, P186, DOI 10.1139/F05-209; Jorgensen C, 2006, CAN J FISH AQUAT SCI, V63, P200, DOI 10.1139/F05-210; Keeley ER, 2001, CAN J FISH AQUAT SCI, V58, P1122, DOI 10.1139/cjfas-58-6-1122; KENNEDY W. A., 1954, JOUR FISH RES BD CANADA, V11, P827; Kinnison MT, 2001, EVOLUTION, V55, P1656; Korstrom J. S., 2003, SALMON ILLUMINATED S, V62, P85; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; Manly BF, 1997, RANDOMIZATION BOOTST; MARTIN NV, 1970, J FISH RES BOARD CAN, V27, P125, DOI 10.1139/f70-013; MATUSZEK JE, 1990, T AM FISH SOC, V119, P718, DOI 10.1577/1548-8659(1990)119<0718:CILTGA>2.3.CO;2; McDermid JL, 2007, T AM FISH SOC, V136, P1018, DOI 10.1577/T06-189.1; MILLER R. B., 1948, JOUR FISH RES BD CANADA, V7, P176; Morbey YE, 2010, J FISH BIOL, V77, P2298, DOI 10.1111/j.1095-8649.2010.02804.x; Morbey YE, 2007, T AM FISH SOC, V136, P477, DOI 10.1577/T06-070.1; PERRIN N, 1990, FUNCT ECOL, V4, P53, DOI 10.2307/2389652; Quince C, 2008, J THEOR BIOL, V254, P207, DOI 10.1016/j.jtbi.2008.05.030; Quince C, 2008, J THEOR BIOL, V254, P197, DOI 10.1016/j.jtbi.2008.05.029; *R COR DEV TEAM, 2009, R LANG ENV STAT COMP; Rennie MD, 2008, N AM J FISH MANAGE, V28, P1270, DOI 10.1577/M06-258.1; Rideout RM, 2005, FISH FISH, V6, P50, DOI 10.1111/j.1467-2679.2005.00174.x; ROFF DA, 1983, CAN J FISH AQUAT SCI, V40, P1395, DOI 10.1139/f83-161; Sedinger JS, 2001, J ANIM ECOL, V70, P798, DOI 10.1046/j.0021-8790.2001.00535.x; Shaw AK, 2013, J MATH BIOL, V66, P685, DOI 10.1007/s00285-012-0603-0; Shaw AK, 2011, OIKOS, V120, P1871, DOI 10.1111/j.1600-0706.2011.19443.x; Shuter BJ, 1998, CAN J FISH AQUAT SCI, V55, P2161, DOI 10.1139/cjfas-55-9-2161; Skjaeraasen JE, 2012, P NATL ACAD SCI USA, V109, P8995, DOI 10.1073/pnas.1200223109; Thorpe JE, 1998, EVOL ECOL, V12, P581, DOI 10.1023/A:1022351814644; Thorpe JE, 2007, MAR ECOL PROG SER, V335, P285, DOI 10.3354/meps335285; Wang HY, 2008, CAN J FISH AQUAT SCI, V65, P2157, DOI 10.1139/F08-124; Wright PJ, 2007, MAR ECOL PROG SER, V335, P279, DOI 10.3354/meps335279 43 8 8 1 26 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 2150-8925 ECOSPHERE Ecosphere DEC 2013 4 12 UNSP 150 10.1890/ES13-00259.1 18 Ecology Environmental Sciences & Ecology 285PI WOS:000329405700006 DOAJ Gold 2018-11-12 J Postma, M; Bester, MN; De Bruyn, PJN Postma, Martin; Bester, Marthan N.; De Bruyn, P. J. Nico Spatial variation in female southern elephant seal mass change assessed by an accurate non-invasive photogrammetry method ANTARCTIC SCIENCE English Article breeding season; life history theory; methodology advancement; Mirounga leonina; moult; pelagic foraging KING-GEORGE-ISLAND; LIONS EUMETOPIAS-JUBATUS; MIROUNGA-LEONINA; MARION ISLAND; MACQUARIE ISLAND; WEANING MASS; EL-NINO; LA-NINA; INVESTMENT; LACTATION Physically weighing large marine mammals sequentially over time has presented researchers with a logistical challenge and has severely limited sample sizes. Using a well-established photogrammetry method we developed a simple mathematical method to calculate accurate mass measurements at specific stages in the life cycle of a top marine predator. Female southern elephant seals (n = 23) at Marion Island were sampled sequentially using photogrammetry and three-dimensional models (based on each photogrammetry project) were built for estimation of body mass. Simple equations were applied to obtain mass at critical instances in their life cycle. Marion Island elephant seal mass data was compared to data obtained from physically weighed elephant seals from King George, South Georgia and Macquarie islands. Females from Marion Island are smaller, but their percentage lactation mass loss is similar to females from these other populations. The similarity of percentage mass loss during lactation between different female populations illustrates the accuracy and practicality of the photogrammetric method over a temporal scale. Photogrammetric mass estimation can be used alongside datasets of physically weighed animals and can greatly benefit ecology and life history studies. [Postma, Martin; Bester, Marthan N.; De Bruyn, P. J. Nico] Univ Pretoria, Dept Zool & Entomol, Mammal Res Inst, ZA-0028 Hatfield, South Africa Postma, M (reprint author), Univ Pretoria, Dept Zool & Entomol, Mammal Res Inst, Private Bag X20, ZA-0028 Hatfield, South Africa. mpostma@zoology.up.ac.za de Bruyn, P. J. Nico/E-4176-2010 de Bruyn, P. J. Nico/0000-0002-9114-9569 Department of Science and Technology We thank the South African Department of Environmental Affairs for providing logistical support within the South African National Antarctic Programme and the Department of Science and Technology (administered through the National Research Foundation) for funding the marine mammal monitoring programme at Marion Island. The Marion Island seal researchers of 2006, 2007, 2008 and 2009 are thanked for their endless hours of data collection and Cheryl Tosh for valuable comments on earlier versions of this paper. The comments by the editor and two anonymous reviewers are acknowledged and improved the manuscript. Arnbom T, 1997, ECOLOGY, V78, P471; Baker WH, 1960, ELEMENTS PHOTOGRAMME; Bergmann C, 1847, GOTTINGER STUDIEN, V1, P595; Bornemann H, 2000, ANTARCT SCI, V12, P3; BOYD I, 1993, PHYSIOL ZOOL, V66, P43, DOI 10.1086/physzool.66.1.30158286; BOYD IL, 1989, BEHAV ECOL SOCIOBIOL, V24, P377, DOI 10.1007/BF00293265; Boyd IL, 1996, CAN J ZOOL, V74, P1696, DOI 10.1139/z96-187; Carlini AR, 1997, POLAR BIOL, V18, P305, DOI 10.1007/s003000050192; Carlini AR, 2004, POLAR BIOL, V27, P266, DOI 10.1007/s00300-003-0584-y; Carlini AR, 1999, POLAR BIOL, V21, P234, DOI 10.1007/s003000050358; Condy P.R., 1978, South African Journal of Antarctic Research, V8, P42; de Bruyn PJN, 2011, ANIM BEHAV, V82, P445, DOI 10.1016/j.anbehav.2011.06.006; de Bruyn PJN, 2009, AQUAT BIOL, V5, P31, DOI 10.3354/ab00135; de Bruyn PJN, 2008, S AFR J WILDL RES, V38, P133, DOI 10.3957/0379-4369-38.2.133; Fedak MA, 1996, PHYSIOL ZOOL, V69, P887, DOI 10.1086/physzool.69.4.30164234; Fedak Michael A., 1994, P354; Hindell MA, 2000, PHYSIOL BIOCHEM ZOOL, V73, P790, DOI 10.1086/318104; HINDELL MA, 1994, POLAR BIOL, V14, P275; Huston MA, 2011, ECOL MONOGR, V81, P349, DOI 10.1890/10-1523.1; Kirkman SP, 2004, AUST J ZOOL, V52, P379, DOI 10.1071/ZO03038; Kirkman SP, 2003, S AFR J WILDL RES, V33, P79; KLEIBER M, 1947, PHYSIOL REV, V27, P511; Laws Richard M., 1994, P49; Le Boeuf B. J., 1994, ELEPHANT SEALS POPUL; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; MCCANN TS, 1989, BEHAV ECOL SOCIOBIOL, V25, P81, DOI 10.1007/BF00302924; McConnell BJ, 1996, CAN J ZOOL, V74, P1485, DOI 10.1139/z96-163; McIntyre T, 2010, POLAR BIOL, V33, P1037, DOI 10.1007/s00300-010-0782-3; McMahon CR, 2005, MAMMAL REV, V35, P82, DOI 10.1111/j.1365-2907.2005.00055.x; McMahon CR, 2003, J ANIM ECOL, V72, P61, DOI 10.1046/j.1365-2656.2003.00685.x; McMahon CR, 2000, ANTARCT SCI, V12, P149; Pakhomov EA, 2003, OCEAN YEARB, V17, P348, DOI 10.1163/221160003X00140; Pistorius PA, 2011, AFR J MAR SCI, V33, P523, DOI 10.2989/1814232X.2011.637357; R Development Core Team, 2011, R LANG ENV STAT COMP; Remondino F., 2006, INT ARCH PHOTOGRAMM, VXXXVI, P266; Richards R., 1992, POLAR MONOGRAPHS, V1, P1; Rode KD, 2010, ECOL APPL, V20, P768, DOI 10.1890/08-1036.1; Rosen DAS, 2009, MAMMAL REV, V39, P284, DOI 10.1111/j.1365-2907.2009.00150.x; Trites AW, 2003, MAMMAL REV, V33, P3, DOI 10.1046/j.1365-2907.2003.00009.x; Vergani DF, 2008, J BIOGEOGR, V35, P248, DOI 10.1111/j.1365-2699.2007.01780.x; Vergani DF, 2001, ANTARCT SCI, V13, P37; Wilkinson IS, 2001, MAR MAMMAL SCI, V17, P873, DOI 10.1111/j.1748-7692.2001.tb01303.x 42 8 8 1 19 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0954-1020 1365-2079 ANTARCT SCI Antarct. Sci. DEC 2013 25 6 731 740 10.1017/S0954102013000059 10 Environmental Sciences; Geography, Physical; Geosciences, Multidisciplinary Environmental Sciences & Ecology; Physical Geography; Geology 273PG WOS:000328547200002 Bronze 2018-11-12 J Beckerman, AP; de Roij, J; Dennis, SR; Little, TJ Beckerman, Andrew P.; de Roij, Job; Dennis, Stuart R.; Little, Tom J. A shared mechanism of defense against predators and parasites: chitin regulation and its implications for life-history theory ECOLOGY AND EVOLUTION English Article Chitin; disease; endocrine physiology; inducible defenses; parasites; predation; trade-offs MIDGUT PERITROPHIC MATRIX; JUVENILE-HORMONE; ANOPHELES-GAMBIAE; MANDUCA-SEXTA; DROSOPHILA-MELANOGASTER; ANTIMICROBIAL PEPTIDES; EPIDERMAL CUTICLE; TOBACCO HORNWORM; PLANT-RESPONSES; IMMUNE-RESPONSE Defenses against predators and parasites offer excellent illustrations of adaptive phenotypic plasticity. Despite vast knowledge about such induced defenses, they have been studied largely in isolation, which is surprising, given that predation and parasitism are ubiquitous and act simultaneously in the wild. This raises the possibility that victims must trade-off responses to predation versus parasitism. Here, we propose that arthropod responses to predators and parasites will commonly be based on the endocrine regulation of chitin synthesis and degradation. The proposal is compelling because many inducible defenses are centered on temporal or spatial modifications of chitin-rich structures. Moreover, we show how the chitin synthesis pathway ends in a split to carapace or gut chitin, and how this form of molecular regulation can be incorporated into theory on life-history trade-offs, specifically the Y-model. Our hypothesis thus spans several biological scales to address advice from Stearns that Endocrine mechanisms may prove to be only the tip of an iceberg of physiological mechanisms that modulate the expression of genetic covariance. [Beckerman, Andrew P.; Dennis, Stuart R.] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England; [de Roij, Job; Little, Tom J.] Univ Edinburgh, Inst Evolutionary Biol, Ashworth Labs, Edinburgh EH9 3JT, Midlothian, Scotland Beckerman, AP (reprint author), Univ Sheffield, Dept Anim & Plant Sci, Western Bank, Sheffield S10 2TN, S Yorkshire, England. a.beckerman@sheffield.ac.uk Little, Tom/B-7890-2009; Beckerman, Andrew/D-3020-2011; Dennis, Stuart/L-7998-2017 Little, Tom/0000-0002-8945-0416; Beckerman, Andrew/0000-0002-4797-9143; Dennis, Stuart/0000-0003-4263-3562 NERC; Wellcome Trust; Natural Environment Research Council [NE/D012244/1] A. P. Beckerman and S. R. Dennis were supported by NERC. TJL and JdR were supported by the Wellcome Trust and NERC. Arakane Y, 2005, INSECT MOL BIOL, V14, P453, DOI 10.1111/j.1365-2583.2005.00576.x; Badariotti F, 2007, DEV COMP IMMUNOL, V31, P559, DOI 10.1016/j.dci.2006.09.002; Baldwin IT, 2001, CURR OPIN PLANT BIOL, V4, P351, DOI 10.1016/S1369-5266(00)00184-9; Baumann AA, 2011, GENE DUPLICATION, P333; BECKER B, 1978, J INSECT PHYSIOL, V24, P699, DOI 10.1016/0022-1910(78)90067-7; Beckerman AP, 2010, J ANIM ECOL, V79, P1069, DOI 10.1111/j.1365-2656.2010.01703.x; Boersma M, 1998, AM NAT, V152, P237, DOI 10.1086/286164; Brakefield PM, 1998, AM NAT, V152, P853, DOI 10.1086/286213; Bulet P, 1999, DEV COMP IMMUNOL, V23, P329, DOI 10.1016/S0145-305X(99)00015-4; Chadwick W, 2005, P ROY SOC B-BIOL SCI, V272, P505, DOI 10.1098/rspb.2004.2959; Chaudhari SS, 2011, P NATL ACAD SCI USA, V108, P17028, DOI 10.1073/pnas.1112288108; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; Dinglasan RR, 2009, INSECT BIOCHEM MOLEC, V39, P125, DOI 10.1016/j.ibmb.2008.10.010; Ebert D, 2004, AM NAT, V164, pS19, DOI 10.1086/424606; Emlen DJ, 1999, J INSECT PHYSIOL, V45, P45, DOI 10.1016/S0022-1910(98)00096-1; Emlen DJ, 2000, ANNU REV ENTOMOL, V45, P661, DOI 10.1146/annurev.ento.45.1.661; Erezyilmaz DF, 2009, DEV GENES EVOL, V219, P535, DOI 10.1007/s00427-009-0315-7; Erezyilmaz DF, 2006, P NATL ACAD SCI USA, V103, P6925, DOI 10.1073/pnas.0509983103; Erezyilmaz DF, 2005, DEV BIOL, V283, P653; Filho P. D. B., 2002, INSECT BIOCHEM MOLEC, V32, P1723; Flatt T, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P1; Flatt T, 2008, J EXP BIOL, V211, P2712, DOI 10.1242/jeb.014878; Hiruma K, 2009, INSECT BIOCHEM MOLEC, V39, P245, DOI 10.1016/j.ibmb.2009.01.008; Jolles P., 1999, CHITIN CHITINASES; Kessler A, 2002, ANNU REV PLANT BIOL, V53, P299, DOI 10.1146/annurev.arplant.53.100301.135207; Khajuria C, 2010, INSECT BIOCHEM MOLEC, V40, P621, DOI 10.1016/j.ibmb.2010.06.003; Kramer K.J., 2009, INSECT DEV MORPHOGEN, P497; KRAMER KJ, 1993, INSECT BIOCHEM MOLEC, V23, P691, DOI 10.1016/0965-1748(93)90043-R; Krist AC, 2001, EVOL ECOL RES, V3, P191; Lass S, 2002, OECOLOGIA, V132, P344, DOI 10.1007/s00442-002-0982-9; Lee CG, 2008, CURR OPIN IMMUNOL, V20, P684, DOI 10.1016/j.coi.2008.10.002; Lehane MJ, 1997, ANNU REV ENTOMOL, V42, P525, DOI 10.1146/annurev.ento.42.1.525; Marmaras VJ, 1996, ARCH INSECT BIOCHEM, V31, P119, DOI 10.1002/(SICI)1520-6327(1996)31:2<119::AID-ARCH1>3.0.CO;2-V; McTaggart SJ, 2009, BMC GENOMICS, V10, DOI 10.1186/1471-2164-10-175; Merzendorfer H, 2003, J EXP BIOL, V206, P4393, DOI 10.1242/jeb.00709; Minakuchi C, 2008, MECH DEVELOP, V125, P91, DOI 10.1016/j.mod.2007.10.002; Muthukrishnan S, 2007, COMP BIOCHEM PHYS A, V148, pS57, DOI 10.1016/j.cbpa.2007.06.144; Nagai T, 2001, J BIOL CHEM, V276, P27166, DOI 10.1074/jbc.M102596200; Nair MG, 2003, IMMUNOL LETT, V85, P173, DOI 10.1016/S0165-2478(02)00225-0; Oda S, 2005, CHEMOSPHERE, V61, P1168, DOI 10.1016/j.chemosphere.2005.02.075; Oda S, 2011, ENVIRON TOXICOL CHEM, V30, P232, DOI 10.1002/etc.378; Olmstead AW, 2007, INT J BIOL SCI, V3, P77; Riessen HP, 1999, CAN J FISH AQUAT SCI, V56, P2487, DOI 10.1139/cjfas-56-12-2487; ROUNTREE DB, 1995, J INSECT PHYSIOL, V41, P987, DOI 10.1016/0022-1910(95)00046-W; Shen ZC, 1997, J BIOL CHEM, V272, P28895, DOI 10.1074/jbc.272.46.28895; Shi L, 2004, INSECT MOL BIOL, V13, P387, DOI 10.1111/j.0962-1075.2004.00496.x; Siva-Jothy MT, 2005, ADV INSECT PHYSIOL, V32, P1, DOI 10.1016/S0065-2806(05)32001-7; Soderhall K, 1998, CURR OPIN IMMUNOL, V10, P23, DOI 10.1016/S0952-7915(98)80026-5; THORNHILL JA, 1986, PARASITOLOGY, V93, P443, DOI 10.1017/S0031182000081166; Tiffin P, 2006, TRENDS GENET, V22, P662, DOI 10.1016/j.tig.2006.09.011; Tollrian R, 1999, ECOLOGY EVOLUTION IN; Tran HT, 2011, HISTOL HISTOPATHOL, V26, P1453, DOI 10.14670/HH-26.1453; TRUMAN JW, 1973, J INSECT PHYSIOL, V19, P195, DOI 10.1016/0022-1910(73)90232-1; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Walker CA, 2010, EUKARYOT CELL, V9, P1329, DOI 10.1128/EC.00051-10; WIGGLESWORTH VB, 1970, INSECT HORMONES; Wu JQ, 2010, ANNU REV GENET, V44, P1, DOI 10.1146/annurev-genet-102209-163500; Zera AJ, 2006, AM NAT, V167, P889, DOI 10.1086/503578; Zhou BH, 1998, DEV BIOL, V203, P233, DOI 10.1006/dbio.1998.9059; Zhou X, 2001, DEV BIOL, V235, P261; Zhou XF, 2002, DEVELOPMENT, V129, P2259 61 14 14 1 36 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. DEC 2013 3 15 5119 5126 10.1002/ece3.766 8 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 265ON WOS:000327961500022 24455141 DOAJ Gold, Green Published 2018-11-12 J Colodro-Conde, L; Rijsdijk, F; Ordonana, JR Colodro-Conde, Lucia; Rijsdijk, Fruehling; Ordonana, Juan R. The Genetic and Environmental Structure of Reproduction-Related Variables: The Case of Fertility and Breastfeeding TWIN RESEARCH AND HUMAN GENETICS English Article life history traits; fertility; breastfeeding; twin study MURCIA TWIN REGISTRY; LIFE-HISTORY TRAITS; EVOLUTIONARY PERSPECTIVE; PARENTAL INVESTMENT; TRADE-OFF; INITIATION; HERITABILITY; BEHAVIOR; SPAIN; DETERMINANTS Life history theory studies the evolution of traits related to reproductive fitness. Fertility and parental investment are key life history traits which, from an evolutionary standpoint, appear strongly interrelated. The aim of this work was to analyze the genetic and environmental structure and relationship of two behaviors associated with reproductive fitness: total number of offspring and mean duration of breastfeeding. A total of 1,347 women distributed in 239 monozygotic pairs, 236 dizygotic pairs, and 393 individual twins from opposite sex pairs provided information about their reproductive history. We conducted separate univariate analyses to study the sources of variance of both variables; and a bivariate analysis, with threshold liability models. The sources of variance for number of children and breastfeeding were best explained by a model including familial and unique environmental factors, being E = 0.54 (CI 95%: 0.44, 0.66) and E = 0.46 (CI 95%: 0.34, 0.61), respectively. The phenotypic correlation between number of children and breastfeeding was low but significant (r = 0.16, CI 95%: 0.07, 0.25). Familial correlation between these variables did not reach significance, but unique environmental correlation did (r(e) = 0.20, CI 95%: 0.02, 0.37). In conclusion, results do not support the existence of a clear common structure for the number of children a woman has and the time she spends breastfeeding them, at least in modern societies. The relationship found was mainly due to unique environmental factors. More research on these and related phenotypes is needed to better understand women's reproductive decisions and how natural selection acts on the life history traits. [Colodro-Conde, Lucia; Ordonana, Juan R.] Univ Murcia, Dept Human Anat & Psychobiol, Murcia Twin Registry, Murcia, Spain; [Colodro-Conde, Lucia; Ordonana, Juan R.] Murcia Inst Biomed Res, Murcia, Spain; [Rijsdijk, Fruehling] Kings Coll London, Inst Psychiat, MRC Social Genet & Dev Psychiat Ctr, London WC2R 2LS, England Ordonana, JR (reprint author), Univ Murcia, Dept Human Anat & Psychobiol, Murcia Twin Registry, Area Psychobiol, Espinardo 30100, Spain. ordonana@um.es Ordonana, Juan/M-1196-2014 Ordonana, Juan/0000-0001-7779-6017; Rijsdijk, Fruhling/0000-0003-4762-2803; Colodro Conde, Lucia/0000-0002-9004-364X Seneca Foundation - Regional Agency for Science and Technology, Murcia, Spain [08633/PHCS/08, 15302/PHCS/10]; Ministry of Science and Innovation, Spain [PSI11560-2009]; Seneca Foundation [12431/FPI/09] The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Seneca Foundation - Regional Agency for Science and Technology, Murcia, Spain (08633/PHCS/08 and 15302/PHCS/10) and Ministry of Science and Innovation, Spain (PSI11560-2009). First author was supported by a grant provided by Seneca Foundation (12431/FPI/09). Barona-Vilar C, 2009, MIDWIFERY, V25, P187, DOI 10.1016/j.midw.2007.01.013; Colodro-Conde L, 2011, J HUM LACT, V27, P272, DOI 10.1177/0890334411403929; Colodro-Conde L, 2013, TWIN RES HUM GENET, V16, P575, DOI 10.1017/thg.2013.2; Earle S, 2002, HEALTH PROMOT INT, V17, P205, DOI 10.1093/heapro/17.3.205; Ekstrom A, 2003, BIRTH-ISS PERINAT C, V30, P261, DOI 10.1046/j.1523-536X.2003.00256.x; Fabian D., 2012, NATURE ED KNOWLEDGE, V3, P24; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Holman DJ, 2003, AM J HUM BIOL, V15, P765, DOI 10.1002/ajhb.10219; Huber S, 2010, AM J HUM BIOL, V22, P578, DOI 10.1002/ajhb.21048; Kaplan H, 1996, YEARB PHYS ANTHROPOL, V39, P91; Kaplan HS, 2003, OFFSPRING, P170; Kohler HP, 2006, INT J ANDROL, V29, P46, DOI 10.1111/j.1365-2605.2005.00606.x; Kools EJ, 2005, HEALTH EDUC BEHAV, V32, P809, DOI 10.1177/1090198105277327; Kosova G, 2010, P NATL ACAD SCI USA, V107, P1772, DOI 10.1073/pnas.0906196106; Lawson DW, 2012, P ROY SOC B-BIOL SCI, V279, P4755, DOI 10.1098/rspb.2012.1635; Lawson DW, 2011, PHILOS T R SOC B, V366, P333, DOI 10.1098/rstb.2010.0297; MacDonald K, 1999, POPUL ENVIRON, V21, P223; Meij JJ, 2009, J EVOLUTION BIOL, V22, P1014, DOI 10.1111/j.1420-9101.2009.01713.x; Miller WB, 2010, DEMOGRAPHY, V47, P393, DOI 10.1353/dem.0.0107; Neale M.C., 1992, METHODOLOGY GENETIC; Neale MC, 2006, MX STAT MODELING; Ordonana JR, 2006, TWIN RES HUM GENET, V9, P865, DOI 10.1375/183242706779462534; Ordonana JR, 2013, TWIN RES HUM GENET, V16, P302, DOI 10.1017/thg.2012.66; Papadimitriou F., 2008, MOTHERHOOD MOTIVATIO; Posthuma D, 2003, TWIN RES, V6, P361, DOI 10.1375/twin.6.5.361; PRICE T, 1991, EVOLUTION, V45, P853, DOI 10.1111/j.1558-5646.1991.tb04354.x; Rijsdijk Fruhling V, 2002, Brief Bioinform, V3, P119, DOI 10.1093/bib/3.2.119; Rodgers JL, 2001, CURR DIR PSYCHOL SCI, V10, P184, DOI 10.1111/1467-8721.00145; Rodgers JL, 2001, DEMOGRAPHY, V38, P29, DOI 10.1353/dem.2001.0009; Rodgers JL, 2007, BEHAV GENET, V37, P345, DOI 10.1007/s10519-006-9137-9; Rudzik AEF, 2011, ANTHR MOTHERING, P159; SPSS, 2010, IBM SPSS STAT BAS 19; Swanson V, 2005, J ADV NURS, V50, P272, DOI 10.1111/j.1365-2648.2005.03390.x; Volk A. A., 2008, J SOCIAL CULTURAL EV, V3, P103; Volk A. A., 2009, J SOCIAL EVOLUTIONAR, V3, P304; Zietsch B. P., 2013, PERFECT GENETI UNPUB 36 0 0 0 10 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 1832-4274 1839-2628 TWIN RES HUM GENET Twin Res. Hum. Genet. DEC 2013 16 6 1096 1102 10.1017/thg.2013.64 7 Genetics & Heredity; Obstetrics & Gynecology Genetics & Heredity; Obstetrics & Gynecology 273OX WOS:000328546200006 24050145 2018-11-12 J Neuberg, SL; Sng, O Neuberg, Steven L.; Sng, Oliver A LIFE HISTORY THEORY OF SOCIAL PERCEPTION: STEREOTYPING AT THE INTERSECTIONS OF AGE, SEX, ECOLOGY (AND RACE) SOCIAL COGNITION English Article GENDER STEREOTYPES; EVOLUTION; PREJUDICE; ATTITUDES; ENVIRONMENTS; BEHAVIOR; MOTIVES; ROLES; PREFERENCES; PERSPECTIVE The authors present a framework to better account for the social dimensions people use to categorize others and the nuanced stereotypes they hold. Conceiving stereotypes as imperfect but useful tools for managing social threats and opportunities, and incorporating ideas from Life History Theory, the authors propose three dimensions of special significance for social perception-age, sex, and home ecology (characterized as "desperation" versus "hopeful"). People possess stereotypes about others along these dimensions-as intersecting AgeSexEcology stereotypes-because, interactively, these dimensions shape the goals and behavioral strategies of others. The authors hypothesize that AgeSexEcology stereotypes are universal. They further propose that race is an important dimension for categorization in the United States because it provides a cue to ecology, and that AgeSexRace stereotypes in the United States should thus track AgeSexEcology stereotypes. The authors discuss several novel implications of this approach for the literature on social stereotypes and for social perception processes more broadly. [Neuberg, Steven L.; Sng, Oliver] Arizona State Univ, Tempe, AZ 85287 USA Neuberg, SL (reprint author), Arizona State Univ, Dept Psychol, Tempe, AZ 85287 USA. steven.neuberg@asu.edu Balcetis E, 2010, PSYCHOL SCI, V21, P147, DOI 10.1177/0956797609356283; Barden J, 2004, J PERS SOC PSYCHOL, V87, P5, DOI 10.1037/0022-3514.87.1.5; Bernstein MJ, 2008, PSYCHOL SCI, V19, P981, DOI 10.1111/j.1467-9280.2008.02187.x; Brewer M. B., 1988, ADV SOCIAL COGNITION, V1, P1, DOI DOI 10.1037/0022-3514.56.1.5; Brewer M. B., 1997, MESSAGE SOCIAL PSYCH, P54; BREWER MB, 1981, J PERS SOC PSYCHOL, V41, P656, DOI 10.1037/0022-3514.41.4.656; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; CAMPBELL DT, 1982, J SOC BIOL STRUCT, V5, P431, DOI 10.1016/S0140-1750(82)92071-1; Chamov E. L., 1993, LIFE HIST INVARIANTS; Cole ER, 2009, AM PSYCHOL, V64, P170, DOI 10.1037/a0014564; Cottrell CA, 2005, J PERS SOC PSYCHOL, V88, P770, DOI 10.1037/0022-3514.88.5.770; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; Dasgupta N, 2001, J PERS SOC PSYCHOL, V81, P800, DOI 10.1037//0022-3514.81.5.800; DEVINE PG, 1989, J PERS SOC PSYCHOL, V56, P5, DOI 10.1037//0022-3514.56.1.5; Dunkel C., 2010, J SOCIAL EVOLUTIONAR, V4, P51, DOI DOI 10.1037/H0099301; Dunkel CS, 2010, EVOL PSYCHOL-US, V8, P492; EAGLY AH, 1984, J PERS SOC PSYCHOL, V46, P735, DOI 10.1037/0022-3514.46.4.735; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; FABES RA, 1991, PERS SOC PSYCHOL B, V17, P532, DOI 10.1177/0146167291175008; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; FISKE ST, 1990, ADV EXP SOC PSYCHOL, V23, P1, DOI 10.1016/S0065-2601(08)60317-2; FOX R, 1992, PSYCHOL INQ, V3, P137; Gibson J. J., 1979, ECOLOGICAL APPROACH; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; GROSS MR, 1991, ECOLOGY, V72, P1180, DOI 10.2307/1941091; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Jussim L., 2009, HDB PREJUDICE STEREO, P199; Kaplan H. S., 2004, HDB EVOLUTIONARY PSY, P68; Kenrick D. T., 2013, OXFORD HDB SOCIAL CO, P656; Kenrick DT, 2010, CURR DIR PSYCHOL SCI, V19, P63, DOI 10.1177/0963721409359281; KENRICK DT, 1992, BEHAV BRAIN SCI, V15, P75, DOI 10.1017/S0140525X00067595; KENRICK DT, 1990, J PERS, V58, P97, DOI 10.1111/j.1467-6494.1990.tb00909.x; Kenrick DT, 2000, DEVELOPMENTAL SOCIAL PSYCHOLOGY OF GENDER, P35; KITE ME, 1991, PSYCHOL AGING, V6, P19, DOI 10.1037/0882-7974.6.1.19; Kite ME, 2005, J SOC ISSUES, V61, P241, DOI 10.1111/j.1540-4560.2005.00404.x; Li NP, 2006, J PERS SOC PSYCHOL, V90, P468, DOI 10.1037/0022-3514.90.3.468; Lueptow LB, 1995, ETHOL SOCIOBIOL, V16, P509, DOI 10.1016/0162-3095(95)00072-0; Macrae C. N., 2010, HDB SOCIAL PSYCHOL, P428, DOI [10.1002/9780470561119.socpsy001012, DOI 10.1002/9780470561119.SOCPSY001012, DOI 10.1002/9780470561119.S0CPSY001012]; MACRAE CN, 1994, J PERS SOC PSYCHOL, V66, P37, DOI 10.1037//0022-3514.66.1.37; Maner JK, 2005, J PERS SOC PSYCHOL, V88, P63, DOI [10.1037/0022-3514.88.1.63, 10.1037/0022-3514.1.63]; Maner JK, 2012, J PERS SOC PSYCHOL, V103, P70, DOI 10.1037/a0028172; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; MASSEY DS, 2004, DU BOIS REV, V1, P1; MCARTHUR LZ, 1983, PSYCHOL REV, V90, P215, DOI 10.1037//0033-295X.90.3.215; McCall L, 2005, SIGNS, V30, P1771, DOI 10.1086/426800; Miller SL, 2010, J PERS SOC PSYCHOL, V99, P62, DOI 10.1037/a0018086; Neuberg S. L., 2006, EVOLUTION SOCIAL PSY, P163; Neuberg S. L., APA HDB PERSONALITY, V1; Neuberg S. L., 2010, HDB SOCIAL PSYCHOL, P761; Plant EA, 2009, J EXP SOC PSYCHOL, V45, P961, DOI 10.1016/j.jesp.2009.04.018; Richerson P., 1995, RINGB CASTL S ID WAR; Roff Derek A., 1992; ROSENCRA.HA, 1969, GERONTOLOGIST, V9, P55, DOI 10.1093/geront/9.1.55; Rule NO, 2011, PSYCHOL SCI, V22, P881, DOI 10.1177/0956797611412394; Sampson RJ, 1997, SCIENCE, V277, P918, DOI 10.1126/science.277.5328.918; Schaller M, 2012, ADV EXP SOC PSYCHOL, V46, P1, DOI 10.1016/B978-0-12-394281-4.00001-5; Shields SA, 2008, SEX ROLES, V59, P301, DOI 10.1007/s11199-008-9501-8; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Sng O., 2013, SEX AGE STEREO UNPUB; Spence J. T., 1978, MASCULINITY FEMININI; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; SWIM JK, 1994, J PERS SOC PSYCHOL, V66, P21, DOI 10.1037/0022-3514.66.1.21; Taylor S. E., 1981, COGNITIVE PROCESS, P83; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Williams J. E., 1982, MEASURING SEX STEREO; Williams K. E. G., 2013, UNPUB; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; Wittenbrink B, 2001, J PERS SOC PSYCHOL, V81, P815, DOI 10.1037/0022-3514.81.5.815; Zebrowitz L.A, 2011, SCI SOCIAL VISION, P3; Zebrowitz L. A., 2006, EVOLUTION SOCIAL PSY, P81 73 15 17 1 30 GUILFORD PUBLICATIONS INC NEW YORK 370 SEVENTH AVE, SUITE 1200, NEW YORK, NY 10001-1020 USA 0278-016X SOC COGNITION Soc. Cogn. DEC 2013 31 6 SI 696 711 10.1521/soco.2013.31.6.696 16 Psychology, Social Psychology 263NM WOS:000327815300007 2018-11-12 J Zwoinska, MK; Kolm, N; Maklakov, AA Zwoinska, Martyna K.; Kolm, Niclas; Maklakov, Alexei A. Sex differences in cognitive ageing: Testing predictions derived from life-history theory in a dioecious nematode EXPERIMENTAL GERONTOLOGY English Article Ageing; Caenorhabditis; Learning; Life-history; Sex differences; Trade-off DROSOPHILA-MELANOGASTER; LEARNING-ABILITY; SELECTION; EVOLUTION; LONGEVITY; ELEGANS; MEMORY; BRAIN; SPAN; COST Life-history theory maintains that organisms allocate limited resources to different traits to maximize fitness. Learning ability and memory are costly and known to trade-off with longevity in invertebrates. However, since the relationship between longevity and fitness often differs between the sexes, it is likely that sexes will differentially resolve the trade-off between learning and longevity. We used an established associative learning paradigm in the dioecious nematode Caenorhabditis remanei, which is sexually dimorphic for lifespan, to study age-related learning ability in males and females. In particular, we tested the hypothesis that females (the shorter-lived sex) show higher learning ability than males early in life but senesce faster. Indeed, young females outperformed young males in learning a novel association between an odour (butanone) and food (bacteria). However, while learning ability and offspring production declined rapidly with age in females, males maintained high levels of these traits until mid-age. These results not only demonstrate sexual dimorphismin age-related learning ability but also suggest that it conforms to predictions derived from the life-history theory. (C) 2013 Elsevier Inc. All rights reserved. [Zwoinska, Martyna K.; Maklakov, Alexei A.] Uppsala Univ, Evolutionary Biol Ctr, Dept Anim Ecol, S-75236 Uppsala, Sweden; [Kolm, Niclas] Stockholm Univ, Dept Zool Ethol, S-10691 Stockholm, Sweden Zwoinska, MK (reprint author), Uppsala Univ, Evolutionary Biol Ctr, Dept Anim Ecol, Ageing Res Grp, Norbyvagen 18 D, S-75236 Uppsala, Sweden. martyna.zwoinska@ebc.uu.se; niclas.kolm@ebc.uu.se; alexei.maklakov@ebc.uu.se Maklakov, Alexei/F-8167-2014 Maklakov, Alexei/0000-0002-5809-1203; Kolm, Niclas/0000-0001-5791-336X Swedish Research Council; ERC The study was supported by Swedish Research Council and ERC Starting Grant to A. A. M. The authors are grateful to two reviewers for constructive comments on the manuscript. Bonduriansky R, 2008, FUNCT ECOL, V22, P443, DOI 10.1111/j.1365-2435.2008.01417.x; Burger JMS, 2008, EVOLUTION, V62, P1294, DOI 10.1111/j.1558-5646.2008.00376.x; Chen HY, 2012, CURR BIOL, V22, P2140, DOI 10.1016/j.cub.2012.09.021; Clutton-Brock TH, 2007, P R SOC B, V274, P3097, DOI 10.1098/rspb.2007.1138; DUKAS R, 1998, COGNITIVE ECOLOGY EV; Kauffman AL, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000372; Kotrschal A, 2013, CURR BIOL, V23, P168, DOI 10.1016/j.cub.2012.11.058; Lagasse F, 2012, P ROY SOC B-BIOL SCI, V279, P4015, DOI 10.1098/rspb.2012.1457; Maklakov AA, 2013, BIOESSAYS, V35, P717, DOI 10.1002/bies.201300021; McCulloch D, 2003, AGING CELL, V2, P165, DOI 10.1046/j.1474-9728.2003.00047.x; Mery F, 2003, P ROY SOC B-BIOL SCI, V270, P2465, DOI 10.1098/rspb.2003.2548; Mery F, 2004, ANIM BEHAV, V68, P589, DOI 10.1016/j.anbehav.2003.12.005; Placais PY, 2013, SCIENCE, V339, P440, DOI 10.1126/science.1226018; Snell-Rood EC, 2011, BEHAV ECOL, V22, P291, DOI 10.1093/beheco/arq169; Stein Geneva M., 2012, Frontiers in Genetics, V3, P259, DOI 10.3389/fgene.2012.00259; Stiernagle T, 2006, WORMBOOK, V2006, P1, DOI DOI 10.1895/W0RMB00K.1.101.1; Trivers RR, 1972, SEXUAL SELECTION DES; Tsui D, 2008, LEARN MEMORY, V15, P844, DOI 10.1101/lm.1188208; Vellai T, 2006, GENETICS, V174, P309, DOI 10.1534/genetics.106.061499; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060 20 4 4 0 22 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0531-5565 1873-6815 EXP GERONTOL Exp. Gerontol. DEC 2013 48 12 1469 1472 10.1016/j.exger.2013.09.008 4 Geriatrics & Gerontology Geriatrics & Gerontology 258WQ WOS:000327489800012 24120565 2018-11-12 J Aktipis, CA; Boddy, AM; Gatenby, RA; Brown, JS; Maley, CC Aktipis, C. Athena; Boddy, Amy M.; Gatenby, Robert A.; Brown, Joel S.; Maley, Carlo C. Life history trade-offs in cancer evolution NATURE REVIEWS CANCER English Review ACUTE MYELOID-LEUKEMIA; STEM-CELLS; NATURAL-SELECTION; BREAST-CANCER; PHENOTYPIC PLASTICITY; TUMOR PROGRESSION; SUPPRESSOR-CELLS; CLONAL EVOLUTION; K-SELECTION; R-SELECTION Somatic evolution during cancer progression and therapy results in tumour cells that show a wide range of phenotypes, which include rapid proliferation and quiescence. Evolutionary life history theory may help us to understand the diversity of these phenotypes. Fast life history organisms reproduce rapidly, whereas those with slow life histories show less fecundity and invest more resources in survival. Life history theory also provides an evolutionary framework for phenotypic plasticity, which has potential implications for understanding 'cancer stem cells'. Life history theory suggests that different therapy dosing schedules might select for fast or slow life history cell phenotypes, with important clinical consequences. [Aktipis, C. Athena; Boddy, Amy M.; Maley, Carlo C.] Univ Calif San Francisco, Ctr Evolut & Canc, San Francisco, CA 94143 USA; [Aktipis, C. Athena; Boddy, Amy M.; Maley, Carlo C.] Univ Calif San Francisco, Dept Surg, San Francisco, CA 94143 USA; [Aktipis, C. Athena] Arizona State Univ, Dept Psychol, Tempe, AZ 85287 USA; [Gatenby, Robert A.] H Lee Moffitt Canc Ctr & Res Inst, Tampa, FL 33612 USA; [Brown, Joel S.] Univ Illinois, Dept Biol Sci, Chicago, IL 60607 USA Aktipis, CA (reprint author), Univ Calif San Francisco, Ctr Evolut & Canc, 2340 Sutter St,BOX 1351, San Francisco, CA 94143 USA. aktipis@alumni.reed.edu American Cancer Society [117209-RSG-09-163-01-CNE]; US National Institutes of Health (NIH) [F32 CA144331, R01 CA149566, R01 CA170595, R01 CA140657, U54 CA143970]; McDonnell Foundation [220020270] The authors thank A. Nedelcu, A. Caulin and A. J. Figuredo for thoughtful and thought-provoking discussions during the development of these ideas. This work was supported in part by Research Scholar Grant number 117209-RSG-09-163-01-CNE from the American Cancer Society, by US National Institutes of Health (NIH) grants F32 CA144331, R01 CA149566, R01 CA170595, R01 CA140657 and U54 CA143970, and by a grant from the McDonnell Foundation 220020270. Aguirre-Ghiso JA, 2007, NAT REV CANCER, V7, P834, DOI 10.1038/nrc2256; Aktipis CA, 2012, CANCER PREV RES, V5, P266, DOI 10.1158/1940-6207.CAPR-11-0004; Alfarouk KO, 2013, EVOL APPL, V6, P46, DOI 10.1111/eva.12015; Ball SL, 1996, ECOLOGY, V77, P1116, DOI 10.2307/2265580; Biddle A, 2011, CANCER RES, V71, P5317, DOI 10.1158/0008-5472.CAN-11-1059; Bissell MJ, 2005, CANCER CELL, V7, P17, DOI 10.1016/j.ccr.2004.12.013; Borst P, 2012, OPEN BIOL, V2, DOI 10.1098/rsob.120066; BROXTERMAN HJ, 1988, FASEB J, V2, P2278; Brurberg KG, 2005, RADIOTHER ONCOL, V77, P220, DOI 10.1016/j.radonc.2005.09.009; BUHSE HE, 1982, J PROTOZOOL, V29, P222, DOI 10.1111/j.1550-7408.1982.tb04015.x; Bunt SK, 2006, J IMMUNOL, V176, P284, DOI 10.4049/jimmunol.176.1.284; Bunt SK, 2007, CANCER RES, V67, P10019, DOI 10.1158/0008-5472.CAN-07-2354; CAIRNS J, 1975, NATURE, V255, P197, DOI 10.1038/255197a0; Campisi J, 2003, EXP GERONTOL, V38, P5, DOI 10.1016/S0531-5565(02)00152-3; Cardenas-Navia LI, 2008, CANCER RES, V68, P5812, DOI 10.1158/0008-5472.CAN-07-6387; Chen J, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017933; Chivers DP, 1999, J CHEM ECOL, V25, P2455, DOI 10.1023/A:1020818006898; Clevers H, 2011, NAT MED, V17, P313, DOI 10.1038/nm.2304; Coffey JC, 2003, LANCET ONCOL, V4, P760, DOI 10.1016/S1470-2045(03)01282-8; Contractor KB, 2009, J NUCL MED, V50, p97S, DOI 10.2967/jnumed.108.057273; Corley DA, 2003, GASTROENTEROLOGY, V124, P47, DOI 10.1053/gast.2003.50008; Creighton JC, 2009, AM NAT, V174, P673, DOI 10.1086/605963; Crook JM, 2012, NEW ENGL J MED, V367, P895, DOI 10.1056/NEJMoa1201546; Debarre F, 2011, AM NAT, V177, pE84, DOI 10.1086/658178; Debnath J, 2005, NAT REV CANCER, V5, P675, DOI 10.1038/nrc1695; EBENMAN B, 1988, J THEOR BIOL, V131, P389, DOI 10.1016/S0022-5193(88)80036-5; Etzioni R, 2003, NAT REV CANCER, V3, P243, DOI 10.1038/nrc1041; Fabian D., 2012, NATURE ED KNOWLEDGE, V3, P24; Fitzpatrick MJ, 2005, TRENDS ECOL EVOL, V20, P96, DOI 10.1016/j.tree.2004.11.017; Foret S, 2012, P NATL ACAD SCI USA, V109, P4968, DOI 10.1073/pnas.1202392109; Gatenby RA, 2004, NAT REV CANCER, V4, P891, DOI 10.1038/nrc1478; Gatenby RA, 2013, RADIOLOGY, V269, P8, DOI 10.1148/radiol.13122697; Gatenby RA, 2009, CANCER RES, V69, P4894, DOI 10.1158/0008-5472.CAN-08-3658; Gerlinger M, 2010, BRIT J CANCER, V103, P1139, DOI 10.1038/sj.bjc.6605912; Gillies RJ, 2012, NAT REV CANCER, V12, P487, DOI 10.1038/nrc3298; Godlewski J, 2010, MOL CELL, V37, P620, DOI 10.1016/j.molcel.2010.02.018; Gottesman MM, 2002, NAT REV CANCER, V2, P48, DOI 10.1038/nrc706; Graham TA, 2011, GASTROENTEROLOGY, V140, P1241, DOI 10.1053/j.gastro.2010.12.036; Greaves LC, 2006, P NATL ACAD SCI USA, V103, P714, DOI 10.1073/pnas.0505903103; Greaves M, 2012, NATURE, V481, P306, DOI 10.1038/nature10762; Grivennikov SI, 2010, CELL, V140, P883, DOI 10.1016/j.cell.2010.01.025; Gupta PB, 2011, CELL, V146, P633, DOI 10.1016/j.cell.2011.07.026; Gurney WSC, 1996, FUNCT ECOL, V10, P602, DOI 10.2307/2390170; Hanahan D, 2011, CELL, V144, P646, DOI 10.1016/j.cell.2011.02.013; Heiden MGV, 2009, SCIENCE, V324, P1029, DOI 10.1126/science.1160809; Hibbing ME, 2010, NAT REV MICROBIOL, V8, P15, DOI 10.1038/nrmicro2259; Holzel M, 2013, NAT REV CANCER, V13, P365, DOI 10.1038/nrc3498; HOUSTON AI, 1992, EVOL ECOL, V6, P243, DOI 10.1007/BF02214164; HOWE HF, 1982, ANNU REV ECOL SYST, V13, P201, DOI 10.1146/annurev.es.13.110182.001221; Jerby L, 2012, CANCER RES, V72, P5712, DOI 10.1158/0008-5472.CAN-12-2215; Jeschke JM, 2009, EVOL ECOL, V23, P867, DOI 10.1007/s10682-008-9276-y; Joyce JA, 2009, NAT REV CANCER, V9, P239, DOI 10.1038/nrc2618; Kenific CM, 2010, CURR OPIN CELL BIOL, V22, P241, DOI 10.1016/j.ceb.2009.10.008; Kirkwood TBL, 2002, MECH AGEING DEV, V123, P737, DOI 10.1016/S0047-6374(01)00419-5; Kostadinov RL, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003553; Kreso A, 2013, SCIENCE, V339, P543, DOI 10.1126/science.1227670; Kusumbe AP, 2009, CANCER RES, V69, P9245, DOI 10.1158/0008-5472.CAN-09-2802; LAPIDOT T, 1994, NATURE, V367, P645, DOI 10.1038/367645a0; Leroi AM, 2005, MECH AGEING DEV, V126, P421, DOI 10.1016/j.mad.2004.07.012; Levins R., 1968, EVOLUTION CHANGING E; Li LH, 2010, SCIENCE, V327, P542, DOI 10.1126/science.1180794; Limberger R, 2011, OECOLOGIA, V167, P723, DOI 10.1007/s00442-011-2013-1; Lu Z, 2008, J CLIN INVEST, V118, P3917, DOI 10.1172/JCI35512; MAC ARTHUR ROBERT H., 1967; Magee JA, 2012, CANCER CELL, V21, P283, DOI 10.1016/j.ccr.2012.03.003; Malthus T., 1798, ESSAY PRINCIPLE POPU; Mantovani A, 2008, NATURE, V454, P436, DOI 10.1038/nature07205; Mazzone M, 2009, CELL, V136, P839, DOI 10.1016/j.cell.2009.01.020; Merlo LMF, 2006, NAT REV CANCER, V6, P924, DOI 10.1038/nrc2013; MUELLER LD, 1988, AM NAT, V132, P786, DOI 10.1086/284890; NOWELL PC, 1976, SCIENCE, V194, P23, DOI 10.1126/science.959840; O'Brien CA, 2007, NATURE, V445, P106, DOI 10.1038/nature05372; Orlando P. A., 2013, FRONT ONCOL, DOI DOI 10.3389/F0NC.2013.00045; PARRY GD, 1981, OECOLOGIA, V48, P260, DOI 10.1007/BF00347974; Pasquier E, 2010, NAT REV CLIN ONCOL, V7, P455, DOI 10.1038/nrclinonc.2010.82; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Prowse N, 1997, J INSECT PHYSIOL, V43, P501, DOI 10.1016/S0022-1910(97)00014-0; Radich JP, 2012, CONTEMP HEMATOL, P251, DOI 10.1007/978-1-60761-565-1_9; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.2307/3071970; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; Rhim AD, 2012, CELL, V148, P349, DOI 10.1016/j.cell.2011.11.025; Robey IF, 2009, CANCER RES, V69, P2260, DOI 10.1158/0008-5472.CAN-07-5575; Rothwell PM, 2011, LANCET, V377, P31, DOI 10.1016/S0140-6736(10)62110-1; Ryals PE, 2002, INT REV CYTOL, V212, P209; Schlichting CD, 2003, EVOL DEV, V5, P98, DOI 10.1046/j.1525-142X.2003.03015.x; Schmidt-Kittler O, 2003, P NATL ACAD SCI USA, V100, P7737, DOI 10.1073/pnas.1331931100; Seliger B, 2005, BIODRUGS, V19, P347, DOI 10.2165/00063030-200519060-00002; Sharma SV, 2010, CELL, V141, P69, DOI 10.1016/j.cell.2010.02.027; SKUTCH AF, 1951, IBIS, V93, P180; Smith CR, 2008, NAT REV GENET, V9, P735, DOI 10.1038/nrg2429; Smith VH, 1996, TRENDS ECOL EVOL, V11, P386, DOI 10.1016/0169-5347(96)20067-9; Sprouffske K, 2013, EVOL APPL, V6, P92, DOI 10.1111/eva.12030; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Taussig DC, 2010, BLOOD, V115, P1976, DOI 10.1182/blood-2009-02-206565; Turchin P, 2001, OIKOS, V94, P17, DOI 10.1034/j.1600-0706.2001.11310.x; Turnbull LA, 1999, J ECOL, V87, P899, DOI 10.1046/j.1365-2745.1999.00405.x; Ungewitter E, 2009, MECH AGEING DEV, V130, P10, DOI 10.1016/j.mad.2008.06.002; van Diest PJ, 2004, J CLIN PATHOL, V57, P675, DOI 10.1136/jcp.2003.010777; Vaughan TL, 2005, LANCET ONCOL, V6, P945, DOI 10.1016/S1470-2045(05)70431-9; Wargo AR, 2007, P NATL ACAD SCI USA, V104, P19914, DOI 10.1073/pnas.0707766104; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Wilkinson GS, 2002, AGING CELL, V1, P124, DOI 10.1046/j.1474-9728.2002.00020.x; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wilson A, 2007, ANN NY ACAD SCI, V1106, P64, DOI 10.1196/annals.1392.021; Wilting RH, 2012, DRUG RESIST UPDATE, V15, P21, DOI 10.1016/j.drup.2012.01.008; Zakrzewska A, 2011, MOL BIOL CELL, V22, P4435, DOI 10.1091/mbc.E10-08-0721; Zhang WG, 2005, CARCINOGENESIS, V26, P249, DOI 10.1093/carcin/bgh300 109 75 76 0 68 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 1474-175X 1474-1768 NAT REV CANCER Nat. Rev. Cancer DEC 2013 13 12 883 892 10.1038/nrc3606 10 Oncology Oncology 259RA WOS:000327542800011 24213474 Green Published, Green Accepted 2018-11-12 J Schmitt, DP; Rohde, PA Schmitt, David P.; Rohde, Percy A. The Human Polygyny Index and its Ecological Correlates: Testing Sexual Selection and Life History Theory at the Cross-National Level SOCIAL SCIENCE QUARTERLY English Article HUMAN MATE PREFERENCES; MATING SYSTEMS; EVOLUTIONARY PERSPECTIVE; REPRODUCTIVE STRATEGIES; INCOME INEQUALITY; SIZE DIMORPHISM; CULTURAL SAMPLE; UNITED-STATES; MAMMALS; RATES ObjectivesSexual selection theory suggests patterns of covariance among polygynous mating behaviors and ecological variables at the cross-national level. We quantified national levels of polygyny using the human polygyny index (HPI), a ratio of men's to women's variability in the numbers of sex partners over the past year. MethodsHPI scores were available for 48 nations from the International Sexuality Description Project (Schmitt, 2005), and were used to test three hypotheses: (1) human polygyny should be associated with increased intrasexual competition (e.g., high male-male aggression and resource competition), (2) human polygyny should be associated with features of natural and intersexual selection (e.g., high pathogen stress and an emphasis on physical attractiveness in mate choice), and (3) human polygyny should be associated with early and more prolific reproduction. ResultsAll three hypotheses received at least partial support. ConclusionsDiscussion focuses on the limitations and implications of the current findings. [Schmitt, David P.] Bradley Univ, Peoria, IL 61625 USA; [Rohde, Percy A.] Univ Kassel, Kassel, Germany Schmitt, DP (reprint author), Bradley Univ, Dept Psychol, 75 Bradley Hall, Peoria, IL 61625 USA. dps@bradley.edu ALCOCK J, 2001, ANIMAL BEHAV; Alexander R. D., 1979, EVOLUTIONARY BIOL HU, P436; Alexander R. D., 1979, EVOLUTIONARY BIOL HU, P402; Andersson M., 1994, SEXUAL SELECTION; Archer J, 2002, SEX GENDER; Baker R. R., 1995, HUMAN SPERM COMPETIT; Barash D. P., 2001, MYTH MONOGAMY; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Bateson P., 1983, MATE CHOICE; Belsky J, 1999, HDB ATTACHMENT THEOR, P141; Betzig L., 1988, HUMAN REPROD BEHAV D; Breuer T, 2012, J HUM EVOL, V62, P466, DOI 10.1016/j.jhevol.2012.01.006; Brown GP, 1999, BEHAV ECOL SOCIOBIOL, V47, P9, DOI 10.1007/s002650050644; BUSS DM, 1989, BEHAV BRAIN SCI, V12, P1, DOI 10.1017/S0140525X00023992; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; Central Intelligence Agency, 2002, WORLD FACTB; Chagnon N.A., 1979, EVOLUTIONARY BIOL HU, P374; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Clutton-Brock T.H., 1988, REPROD SUCCESS STUDI; CLUTTONBROCK TH, 1989, PROC R SOC SER B-BIO, V236, P339, DOI 10.1098/rspb.1989.0027; CLUTTONBROCK TH, 1991, NATURE, V351, P58; Daly M, 2001, CAN J CRIMINOL, V43, P219; Daly M., 1983, SEX EVOLUTION BEHAV; Daly M., 1988, HOMICIDE; Daly M., 1990, HUMAN NATURE, V1, P87; Darwin C.R., 1871, DESCENT MAN SELECTIO; Dixson A. F., 1998, PRIMATE SEXUALITY CO; ELDER GH, 1969, AM SOCIOL REV, V34, P519, DOI 10.2307/2091961; EMBER M, 1974, ETHNOLOGY, V13, P197, DOI 10.2307/3773112; EMLEN ST, 1977, SCIENCE, V197, P215, DOI 10.1126/science.327542; Flinn MV, 1986, ECOLOGICAL ASPECTS S, P217; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Frank R, 1999, LUXURY FEVER WHY MON; Franzen Axel, 2001, PARTNERWAHL HEIRATSM, P183; Frayser S., 1985, VARIETIES SEXUAL EXP; Gangestad SW, 2006, PSYCHOL INQ, V17, P75, DOI 10.1207/s15327965pli1702_1; GANGESTAD SW, 1993, ETHOL SOCIOBIOL, V14, P89, DOI 10.1016/0162-3095(93)90009-7; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Garamszegi LZ, 2004, BEHAV ECOL, V15, P148, DOI 10.1093/beheco/arg108; Geary D. C., 1998, MALE FEMALE EVOLUTIO; Geronimus AT, 1996, HUM NATURE-INT BIOS, V7, P323, DOI 10.1007/BF02732898; Goldberg JL, 2001, BEHAV ECOL, V12, P490, DOI 10.1093/beheco/12.4.490; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; Guttentag M, 1983, TOO MANY WOMEN SEX R; GWYNNE DT, 1990, NATURE, V346, P172, DOI 10.1038/346172a0; Harvey P. H., 1994, DIFFERENCE SEXES, P51; Henrich J, 2012, PHILOS T R SOC B, V367, P657, DOI 10.1098/rstb.2011.0290; Hill EM, 2002, ADDICTION, V97, P401, DOI 10.1046/j.1360-0443.2002.00020.x; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hofstede G., 2001, CULTURES CONSEQUENCE; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; Isaac JL, 2005, MAMMAL REV, V35, P101, DOI 10.1111/j.1365-2907.2005.00045.x; Kanazawa S, 2001, EVOL HUM BEHAV, V22, P329, DOI 10.1016/S1090-5138(01)00073-3; Kanazawa S, 1999, SOC FORCES, V78, P25, DOI 10.2307/3005789; Kappeler PM, 2002, INT J PRIMATOL, V23, P707, DOI 10.1023/A:1015520830318; Kasser T, 1999, PSYCHOL SCI, V10, P374, DOI 10.1111/1467-9280.00171; KAWACHI I, 1999, SOC POPULATION HLTH, V1; Kruger DJ, 2010, EVOL PSYCHOL-US, V8, P194; Kuemmerling A., 2001, Z SOZIALPSYCHOL, V32, P81; le Boeuf B.J., 1988, P344; Low Bobbi S., 2003, P161; LOW BS, 1988, CURR ANTHROPOL, V29, P189, DOI 10.1086/203627; LOW BS, 1989, J COMP PSYCHOL, V103, P311, DOI 10.1037/0735-7036.103.4.311; Low BS, 1998, HANDBOOK OF EVOLUTIONARY PSYCHOLOGY, P131; LOW BS, 1990, AM ZOOL, V30, P325; Low BS, 2000, WHY SEX MATTERS; MacDonald K, 1997, HUM NATURE-INT BIOS, V8, P327, DOI 10.1007/BF02913038; Mace R, 2003, COMP BIOCHEM PHYS A, V136, P85, DOI 10.1016/S1095-6433(03)00019-9; Marlowe FW, 2000, BEHAV PROCESS, V51, P45, DOI 10.1016/S0376-6357(00)00118-2; Marlowe FW, 2003, CROSS-CULT RES, V37, P282, DOI 10.1177/1069397103254008; Mayr E, 1939, AM NAT, V73, P156, DOI 10.1086/280824; Mesquida CG, 1996, ETHOL SOCIOBIOL, V17, P247, DOI 10.1016/0162-3095(96)00035-0; Mesquida Christian C., 1999, POLIT LIFE SCI, V18, P113; Moller Anders Pape, 2005, P251; Moller H., 1967, COMP STUDIES SOC HIS, V10, P237; MULDER MB, 1990, BEHAV ECOL SOCIOBIOL, V27, P255; Murdock G. P., 1967, ETHNOGRAPHIC ATLAS; MURDOCK GP, 1969, ETHNOLOGY, V8, P329, DOI 10.2307/3772907; ORIANS GH, 1969, AM NAT, V103, P589, DOI 10.1086/282628; PARKER GA, 1972, J THEOR BIOL, V36, P529, DOI 10.1016/0022-5193(72)90007-0; PASTERNAK B, 1997, SEX GENDER KINSHIP C; Pedersen F A, 1991, Hum Nat, V2, P271, DOI 10.1007/BF02692189; Penke L., 2008, MATING INTELLIGENCE, P37; Penton-Voak IS, 2004, EVOL HUM BEHAV, V25, P355, DOI 10.1016/j.evolhumbehav.2004.06.002; PIANTADOSI S, 1988, AM J EPIDEMIOL, V127, P893, DOI 10.1093/oxfordjournals.aje.a114892; Pickett KE, 2005, AM J PUBLIC HEALTH, V95, P1181, DOI 10.2105/AJPH.2004.056721; Plavcan JM, 2001, YEARB PHYS ANTHROPOL, V44, P25, DOI 10.1002/ajpa.10011; QUINN N, 1977, ANNU REV ANTHROPOL, V6, P181, DOI 10.1146/annurev.an.06.100177.001145; RALLS K, 1977, AM NAT, V111, P917, DOI 10.1086/283223; Regan PC, 1998, PERS SOC PSYCHOL B, V24, P1294, DOI 10.1177/01461672982412004; Rohde P. A., 2006, PROMISCUITY ATTRACTI; SALZANO FM, 1967, AM J HUM GENET, V19, P463; Schaller M, 2006, PSYCHOL INQ, V17, P96; Schmitt D. P., 2010, HUMAN EVOLUTIONARY B, P295; Schmitt DP, 2008, J PERS SOC PSYCHOL, V94, P168, DOI 10.1037/0022-3514.94.1.168; Schmitt DP, 2005, BEHAV BRAIN SCI, V28, P247, DOI 10.1017/S0140525X05000051; Schmitt DP, 2004, J PERS SOC PSYCHOL, V86, P560, DOI 10.1037/0022-3514.86.4.560; Schmitt DP, 2003, J PERS SOC PSYCHOL, V85, P85, DOI 10.1037/0022-3514.85.1.85; Sefcek JA, 2006, J PSYCHOL HUMAN SEXU, V18, P125, DOI DOI 10.1300/J056V18N02_05; Sheets V., 1996, SEX POWER CONFLICT E, P29; SIMMONS LW, 1994, BEHAV ECOL, V5, P259, DOI 10.1093/beheco/5.3.259; Simpson JA, 1999, J PERS SOC PSYCHOL, V76, P159, DOI 10.1037/0022-3514.76.1.159; SIMPSON JA, 1991, J PERS SOC PSYCHOL, V60, P870, DOI 10.1037/0022-3514.60.6.870; Starks PT, 2000, P ROY SOC B-BIOL SCI, V267, P1259, DOI 10.1098/rspb.2000.1136; Stearns S. C., 1992, EVOLUTION LIFE HIST; Surbey M. K., 2007, ACTA PSYCHOL SINICA, V39, P513; Symons D., 1979, EVOLUTION HUMAN SEXU; THIESSEN D, 1994, HUM NATURE-INT BIOS, V5, P167, DOI 10.1007/BF02692160; Thomas RB, 2002, COPEIA, P456, DOI 10.1643/0045-8511(2002)002[0456:CMSIAL]2.0.CO;2; TOWNSEND JM, 1990, ARCH SEX BEHAV, V19, P149, DOI 10.1007/BF01542229; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; UDRY JR, 1984, PSYCHOL REP, V54, P47, DOI 10.2466/pr0.1984.54.1.47; *UN DEV PROGR, 2001, HUM DEV REP 2001; *UN STAT DIV, 2001, WORLD POP PROSP 2000, V1; Van de Vliert E, 1999, J CROSS CULT PSYCHOL, V30, P291, DOI 10.1177/0022022199030003002; VAYDA AP, 1976, WAR ECOLOGICAL PERSP; Weckerly FW, 1998, J MAMMAL, V79, P33, DOI 10.2307/1382840; WIEDERMAN MW, 1992, ETHOL SOCIOBIOL, V13, P115, DOI 10.1016/0162-3095(92)90021-U; Wilkinson R. G., 2005, IMPACT INEQUALITY MA; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; Yanca C., 2005, EVOL HUM BEHAV, V25, P9; Zamudio KR, 2003, LIZARD SOCIAL BEHAVIOR, P83 122 7 7 4 44 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0038-4941 1540-6237 SOC SCI QUART Soc. Sci. Q. DEC 2013 94 4 1159 1184 10.1111/ssqu.12030 26 Political Science; Sociology Government & Law; Sociology 252SG WOS:000327029800014 2018-11-12 J Andrade, EA; Barbosa, MEA; Demetrio, GR Andrade, Eleonora Alvarenga; Avelar Barbosa, Mario Eduardo; Demetrio, Guilherme Ramos Density-dependent morphological plasticity and trade-offs among vegetative traits in Eichhornia crassipes (Pontederiaceae) ACTA AMAZONICA English Article Phenotypic plasticity; Plant-environment relationships; Plastic morphology; Macrophyte PHENOTYPIC PLASTICITY; MORPHOGENIC RESPONSES; PLANT; ALLOCATION; LEVEL Density-dependent responses are an important component of the organism life-history, and the resource allocation theory is a central concept to the life-history theory. When resource allocation varies due to environmental changes, a plant may change its morphology or physiology to cope with the new conditions, a process known as phenotypic plasticity. Our study aimed to evaluate how plant density affects Eichhornia crassipes allocation patterns. A total of 214 individuals in high and low density were collected. The density effect was observed in all plant traits examined including biomass accumulation. All traits of E. crassipes demonstrated higher values in high density conditions, except for biomass of leaves. Density exhibited a high influence on vegetative traits of E. crassipes, but did not influence allocation pattern, since a trade-off among the vegetative traits was not found. The morphological plasticity and the a bsence of trade-offs were discussed as strategies to overcome neighbor plants in competition situations. In high density conditions, there were clear changes in the morphology of the plants which probably allows for their survival in a highly competitive environment. [Andrade, Eleonora Alvarenga] Univ Fed Amazonas, Inst Educ Agr & Ambiente, BR-69800000 Humaita, AM, Brazil; [Avelar Barbosa, Mario Eduardo; Demetrio, Guilherme Ramos] Univ Fed Lavras, Programa Pos Grad Ecol Aplicada, BR-37200000 Lavras, MG, Brazil Andrade, EA (reprint author), Univ Fed Amazonas, Inst Educ Agr & Ambiente, Rua 29 Agosto,786 Ctr, BR-69800000 Humaita, AM, Brazil. eleonoralvarenga@yahoo.com.br; mario.eab@gmail.com; gramosdemetrio@gmail.com CENTER TD, 1981, AQUAT BOT, V10, P1, DOI 10.1016/0304-3770(81)90002-4; Coelho FF, 2005, REV BIOL TROP, V53, P369; Coelho FF, 2000, AQUAT BOT, V66, P273, DOI 10.1016/S0304-3770(99)00084-4; Harper J. L., 1977, POPULATION BIOL PLAN; HARPER JL, 1970, J ECOL, V58, P681, DOI 10.2307/2258529; Ikegami M, 2008, ECOL MODEL, V213, P156, DOI 10.1016/j.ecolmodel.2007.11.016; Lorenzi H., 2008, PLANTAS DANINHAS BRA; MADSEN JD, 1991, AQUAT BOT, V41, P67, DOI 10.1016/0304-3770(91)90039-8; Miranda E.V., 2002, THESIS AMAZON U FDN; Petit C, 1996, CAN J BOT, V74, P1964, DOI 10.1139/b96-235; Pott V. J., 2000, PLANTAS AQUATICAS PA; Potters G, 2009, PLANT CELL ENVIRON, V32, P158, DOI 10.1111/j.1365-3040.2008.01908.x; Potters G, 2007, TRENDS PLANT SCI, V12, P98, DOI 10.1016/j.tplants.2007.01.004; ROOM PM, 1988, J ECOL, V76, P826, DOI 10.2307/2260576; SCHLICHTING CD, 1986, ANNU REV ECOL SYST, V17, P667, DOI 10.1146/annurev.es.17.110186.003315; SOUZA VC, 2005, BOT SISTEMATICA GUIA; Stearns S. C., 1992, EVOLUTION LIFE HIST; Weiner J, 2004, PERSPECT PLANT ECOL, V6, P207, DOI 10.1078/1433-8319-00083; Xie YH, 2006, ENVIRON EXP BOT, V57, P195, DOI 10.1016/j.envexpbot.2005.06.001; Zeidemann V.K., 2001, FLORESTAS RIO NEGRO, P62; Zou YY, 2010, FUND APPL LIMNOL, V177, P197, DOI 10.1127/1863-9135/2010/0177-0197 21 2 3 0 104 INST NACIONAL PESQUISAS AMAZONIA MANAUS CAIXA POSTAL 478, ALAMEDA COSME FERREIRA, 1756, MANAUS, AMAZONAS 00000, BRAZIL 0044-5967 ACTA AMAZON ACTA AMAZON. DEC 2013 43 4 455 459 10.1590/S0044-59672013000400007 5 Agronomy; Plant Sciences; Ecology; Forestry; Zoology Agriculture; Plant Sciences; Environmental Sciences & Ecology; Forestry; Zoology 212SU WOS:000324003900007 DOAJ Gold 2018-11-12 J Schultner, J; Kitaysky, AS; Gabrielsen, GW; Hatch, SA; Bech, C Schultner, J.; Kitaysky, A. S.; Gabrielsen, G. W.; Hatch, S. A.; Bech, C. Differential reproductive responses to stress reveal the role of life-history strategies within a species PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article trade-offs; stress hormones; reproduction; populations; seabirds; life-history theory BLACK-LEGGED KITTIWAKES; LONG-LIVED BIRD; RISSA-TRIDACTYLA; FOOD AVAILABILITY; CLIMATE-CHANGE; POPULATION PROCESSES; TRADE-OFFS; CORTICOSTERONE; SEABIRDS; SURVIVAL Life-history strategies describe that 'slow'-in contrast to 'fast'-living species allocate resources cautiously towards reproduction to enhance survival. Recent evidence suggests that variation in strategies exists not only among species but also among populations of the same species. Here, we examined the effect of experimentally induced stress on resource allocation of breeding seabirds in two populations with contrasting life-history strategies: slow-living Pacific and fast-living Atlantic black-legged kittiwakes. We tested the hypothesis that reproductive responses in kittiwakes under stress reflect their life-history strategies. We predicted that in response to stress, Pacific kittiwakes reduce investment in reproduction compared with Atlantic kittiwakes. We exposed chick-rearing kittiwakes to a short-term (3-day) period of increased exogenous corticosterone (CORT), a hormone that is released during food shortages. We examined changes in baseline CORT levels, parental care and effects on offspring. We found that kittiwakes from the two populations invested differently in offspring when facing stress. In response to elevated CORT, Pacific kittiwakes reduced nest attendance and deserted offspring more readily than Atlantic kittiwakes. We observed lower chick growth, a higher stress response in offspring and lower reproductive success in response to CORT implantation in Pacific kittiwakes, whereas the opposite occurred in the Atlantic. Our findings support the hypothesis that life-history strategies predict short-term responses of individuals to stress within a species. We conclude that behaviour and physiology under stress are consistent with trade-off priorities as predicted by life-history theory. We encourage future studies to consider the pivotal role of life-history strategies when interpreting inter-population differences of animal responses to stressful environmental events. [Schultner, J.; Bech, C.] Norwegian Univ Sci & Technol, Dept Biol, N-7034 Trondheim, Norway; [Schultner, J.; Kitaysky, A. S.] Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK USA; [Gabrielsen, G. W.] Norwegian Polar Res Inst, Tromso, Norway; [Hatch, S. A.] US Geol Survey, Anchorage Sci Ctr, Anchorage, AK USA; [Hatch, S. A.] Inst Seabird Res & Conservat, Anchorage, AK USA Schultner, J (reprint author), Norwegian Univ Sci & Technol, Dept Biol, N-7034 Trondheim, Norway. jschultner@gmail.com Schultner, Jannik/G-2264-2010; Bech, Claus/C-1086-2011 Schultner, Jannik/0000-0002-5865-7975; Bech, Claus/0000-0002-0860-0663 Research Council of Norway (SPORE project) [196181]; Research Council of Norway (MariClim project) [165112]; North Pacific Research Board; Arctic Field Grants from Svalbard Science Forum This work was supported by the Research Council of Norway (SPORE project, grant no. 196181; MariClim project, grant no. 165112). J.S. was supported by a Graduate Student Research Award from the North Pacific Research Board. J.S. and C. B. received support by Arctic Field Grants from the Svalbard Science Forum. Angelier F, 2007, HORM BEHAV, V52, P482, DOI 10.1016/j.yhbeh.2007.07.003; Angelier F, 2009, FUNCT ECOL, V23, P784, DOI 10.1111/j.1365-2435.2009.01545.x; Bokony V, 2009, AM NAT, V173, P589, DOI 10.1086/597610; Bonier F, 2009, TRENDS ECOL EVOL, V24, P634, DOI 10.1016/j.tree.2009.04.013; Boonstra R, 2000, J EXP ZOOL, V286, P390, DOI 10.1002/(SICI)1097-010X(20000301)286:4<390::AID-JEZ7>3.0.CO;2-O; Breuner CW, 2002, J ENDOCRINOL, V175, P99, DOI 10.1677/joe.0.1750099; Brewer JH, 2008, J FIELD ORNITHOL, V79, P391, DOI 10.1111/j.1557-9263.2008.00187.x; Buck CL, 2007, GEN COMP ENDOCR, V150, P430, DOI 10.1016/j.ygcen.2006.10.011; Burnham K. P., 2002, MODEL SELECTION MULT; Careau V, 2012, PHYSIOL BIOCHEM ZOOL, V85, P543, DOI 10.1086/666970; Chardine JW, 2002, CONDOR, V104, P687, DOI 10.1650/0010-5422(2002)104[0687:GVITWP]2.0.CO;2; Charmantier A, 2008, SCIENCE, V320, P800, DOI 10.1126/science.1157174; Chastel O, 2005, HORM BEHAV, V47, P459, DOI 10.1016/j.yhbeh.2004.10.009; Cheviron ZA, 2009, EVOLUTION, V63, P1593, DOI 10.1111/j.1558-5646.2009.00644.x; Coulson JC, 2002, J AVIAN BIOL, V33, P111, DOI 10.1034/j.1600-048X.2002.t01-1-330201.x; Erikstad KE, 2009, ECOLOGY, V90, P3197, DOI 10.1890/08-1778.1; FINCH CE, 1995, Q REV BIOL, V70, P1, DOI 10.1086/418864; Frederiksen M, 2005, OIKOS, V111, P209, DOI 10.1111/j.0030-1299.2005.13746.x; Frederiksen M, 2006, J ANIM ECOL, V75, P1259, DOI 10.1111/j.1365-2656.2006.01148.x; Friesen VL, 2007, MOL ECOL, V16, P1765, DOI 10.1111/j.1365-294X.2006.03197.x; Gaillard J. -M., 1989, OIKOS, V56, P56, DOI DOI 10.2307/3566088); Gill VA, 2002, IBIS, V144, P268, DOI 10.1046/j.1474-919X.2002.00043.x; Gill VA, 2002, J AVIAN BIOL, V33, P113, DOI 10.1034/j.1600-048X.2002.330201.x; Golet GH, 1998, J ANIM ECOL, V67, P827, DOI 10.1046/j.1365-2656.1998.00233.x; Goutte A, 2011, J EXP BIOL, V214, P2005, DOI 10.1242/jeb.051979; Goutte A, 2010, GEN COMP ENDOCR, V169, P108, DOI 10.1016/j.ygcen.2010.07.016; Goutte A, 2010, GEN COMP ENDOCR, V167, P246, DOI 10.1016/j.ygcen.2010.03.018; Green AJ, 2001, ECOLOGY, V82, P1473, DOI 10.2307/2680003; Harley CDG, 2006, ECOL LETT, V9, P228, DOI 10.1111/j.1461-0248.2005.00871.x; HATCH SA, 1993, IBIS, V135, P247, DOI 10.1111/j.1474-919X.1993.tb02841.x; Hatch SA, 2013, MAR ECOL PROG SER, V477, P271, DOI 10.3354/meps10161; Hau M, 2010, P ROY SOC B-BIOL SCI, V277, P3203, DOI 10.1098/rspb.2010.0673; Kitaysky AS, 2007, MAR ECOL PROG SER, V352, P245, DOI 10.3354/meps07074; Kitaysky AS, 2010, FUNCT ECOL, V24, P625, DOI 10.1111/j.1365-2435.2009.01679.x; Kitaysky AS, 2003, HORM BEHAV, V43, P140, DOI 10.1016/S0018-506X(02)00030-2; Kitaysky AS, 1999, J COMP PHYSIOL B, V169, P303, DOI 10.1007/s003600050225; Kitaysky AS, 2001, J COMP PHYSIOL B, V171, P701, DOI 10.1007/s003600100230; Kitaysky AS, 2001, BEHAV ECOL, V12, P619, DOI 10.1093/beheco/12.5.619; Lahann P, 2011, BEHAV ECOL SOCIOBIOL, V65, P381, DOI 10.1007/s00265-010-1055-4; Lancaster LT, 2008, J EVOLUTION BIOL, V21, P556, DOI 10.1111/j.1420-9101.2007.01478.x; Lanctot RB, 2003, HORM BEHAV, V43, P489, DOI 10.1016/S0018-506X(03)00030-8; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; McCoy KD, 2005, MOL ECOL, V14, P2825, DOI 10.1111/j.1365-294X.2005.02631.x; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Miles DB, 2007, FUNCT ECOL, V21, P653, DOI 10.1111/j.1365-2435.2007.01304.x; Morris WF, 2008, ECOLOGY, V89, P19, DOI 10.1890/07-0774.1; Mulard H, 2009, BIOL J LINN SOC, V97, P289, DOI 10.1111/j.1095-8312.2009.01198.x; Palacios MG, 2012, GEN COMP ENDOCR, V175, P443, DOI 10.1016/j.ygcen.2011.11.042; R Core Team, 2012, R LANG ENV STAT COMP; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Robinson R.A., 2012, ONLINE RINGING REPOR; Romero LM, 2002, GEN COMP ENDOCR, V128, P1; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; Schultner J, 2013, FUNCT ECOL, V27, P45, DOI 10.1111/j.1365-2435.2012.02058.x; SHULTZ MT, 2007, THESIS U ALASKA FAIR; Spee M, 2011, HORM BEHAV, V60, P362, DOI 10.1016/j.yhbeh.2011.07.003; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; Suryan RM, 2009, PROG OCEANOGR, V81, P214, DOI 10.1016/j.pocean.2009.04.012; Vincenzi S, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.0554; Walther GR, 2002, NATURE, V416, P389, DOI 10.1038/416389a; Williams JB, 2010, INTEGR COMP BIOL, V50, P855, DOI 10.1093/icb/icq024; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 64 28 28 2 84 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. NOV 22 2013 280 1771 UNSP 20132090 10.1098/rspb.2013.2090 10 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 298LH WOS:000330324900020 24089339 Green Published, Bronze 2018-11-12 J Crossin, GT; Phillips, RA; Lattin, CR; Romero, LM; Williams, TD Crossin, Glenn T.; Phillips, Richard A.; Lattin, Christine R.; Romero, L. Michael; Williams, Tony D. Corticosterone mediated costs of reproduction link current to future breeding GENERAL AND COMPARATIVE ENDOCRINOLOGY English Article Breeding-moult overlap; Macronectes; Chick rearing; Feather corticosterone; Foraging behaviour GIANT PETRELS MACRONECTES; PIED FLYCATCHERS; ADRENOCORTICAL-RESPONSE; FORAGING BEHAVIOR; SEXUAL CONFLICT; FEATHER QUALITY; SOUTH GEORGIA; KING PENGUINS; PARENTAL CARE; LONG-TERM Life-history theory predicts that costs are associated with reproduction. One possible mediator of costs involves the secretion of glucocorticoid hormones, which in birds can be measured in feathers grown during the breeding period. Glucocorticoids mediate physiological responses to unpredictable environmental or other stressors, but they can also function as metabolic regulators during more predictable events such as reproduction. Here we show that corticosterone ("Cort") in feathers grown during the breeding season reflects reproductive effort in two Antarctic seabird species (giant petrels, Macronectes spp.). In females of both species, but not males, feather Cort ("fCort") was nearly 1.5-fold higher in successful than failed breeders (those that lost their eggs/chicks), suggesting a cost of successful reproduction, i.e., high fCort levels in females reflect the elevated plasma Cort levels required to support high metabolic demands of chick-rearing. Successful breeding also led to delayed moult prior to winter migration. The fCort levels and pre-migration moult score that we measured at the end of current breeding were predictive of subsequent reproductive effort in the following year. Birds with high fCort and a delayed initiation of moult were much more likely to defer breeding in the following year. Cort levels and the timing of moult thus provide a potential mechanism for the tradeoff between current and future reproduction. Crown Copyright (C) 2013 Published by Elsevier Inc. All rights reserved. [Crossin, Glenn T.] Dalhousie Univ, Dept Biol, Halifax, NS B3H 4R2, Canada; [Phillips, Richard A.] British Antarctic Survey, Nat Environm Res Council, Cambridge CB3 0ET, England; [Lattin, Christine R.; Romero, L. Michael] Tufts Univ, Dept Biol, Medford, MA 02155 USA; [Williams, Tony D.] Simon Fraser Univ, Dept Biol Sci, Burnaby, BC V5A 1S6, Canada Crossin, GT (reprint author), Dalhousie Univ, Dept Biol, Life Sci Ctr, 1355 Oxford St, Halifax, NS B3H 4R2, Canada. gtc@dal.ca Lattin, Christine/E-5662-2013 Lattin, Christine/0000-0003-4030-4212 British Antarctic Survey through their Antarctic Funding Initiative; National Science and Engineering Research Council (Canada); E-BIRD; NSERC; National Science Foundation (U.S.) [IOS-1048529]; Antarctic Science Bursary; Natural Environment Research Council [bas0100025] We thank Stacey Ad lard, Fabrice Le Bouard, Ruth Brown, Kristen Gorman, and Andy Wood for assistance. Financial support was provided by the British Antarctic Survey through their Antarctic Funding Initiative, by a National Science and Engineering Research Council (Canada) Post-doctoral Fellowship and E-BIRD funding to GTC, by a NSERC Discovery Grant to TDW, and by a National Science Foundation (U.S.) grant (IOS-1048529) to LMR. GTC was also supported by an Antarctic Science Bursary. Angelier F, 2008, GEN COMP ENDOCR, V156, P134, DOI 10.1016/j.ygcen.2007.12.001; Angelier F, 2009, J EXP BIOL, V212, P2824, DOI 10.1242/jeb.027722; Bias J., 2007, P NATL ACAD SCI USA, V104, P8880; Bonier F, 2011, BIOL LETTERS, V7, P944, DOI 10.1098/rsbl.2011.0391; Bonier F, 2009, TRENDS ECOL EVOL, V24, P634, DOI 10.1016/j.tree.2009.04.013; Bonier F, 2009, GEN COMP ENDOCR, V163, P208, DOI 10.1016/j.ygcen.2008.12.013; Bortolotti GR, 2008, FUNCT ECOL, V22, P494, DOI 10.1111/j.1365-2435.2008.01387.x; Bortolotti GR, 2009, J EXP BIOL, V212, P1477, DOI 10.1242/jeb.022152; Breuner CW, 2008, GEN COMP ENDOCR, V157, P288, DOI 10.1016/j.ygcen.2008.05.017; Bridge Eli S., 2006, Marine Ornithology, V34, P7; Brooke M, 2004, ALBATROSSES PETRELS; BUTTEMER WA, 1991, J COMP PHYSIOL B, V161, P427; Crossin GT, 2012, AM NAT, V180, pE31, DOI 10.1086/666001; Crossin GT, 2012, GEN COMP ENDOCR, V175, P74, DOI 10.1016/j.ygcen.2011.10.003; Dawson A, 2004, AUK, V121, P372, DOI 10.1642/0004-8038(2004)121[0372:UAVOAM]2.0.CO;2; DesRochers DW, 2009, COMP BIOCHEM PHYS A, V152, P46, DOI 10.1016/j.cbpa.2008.08.034; Fairhurst GD, 2012, P ROY SOC B-BIOL SCI, V279, P177, DOI 10.1098/rspb.2011.0884; Foote CG, 2011, BEHAV ECOL, V22, P156, DOI 10.1093/beheco/arq178; Fourie NH, 2011, GEN COMP ENDOCR, V174, P150, DOI 10.1016/j.ygcen.2011.08.013; Golet GH, 1998, J ANIM ECOL, V67, P827, DOI 10.1046/j.1365-2656.1998.00233.x; GONZALEZ-SOLIS J., 2008, AQUAT CONSERV, V17, pS22; Groscolas R, 2008, HORM BEHAV, V53, P51, DOI 10.1016/j.yhbeh.2007.08.010; Hau M, 2011, GEN COMP ENDOCR, V172, P305, DOI 10.1016/j.ygcen.2011.03.016; Hau M, 2010, P ROY SOC B-BIOL SCI, V277, P3203, DOI 10.1098/rspb.2010.0673; Hemborg C, 1998, P ROY SOC B-BIOL SCI, V265, P2003, DOI 10.1098/rspb.1998.0532; Hemborg C, 1999, J ANIM ECOL, V68, P429, DOI 10.1046/j.1365-2656.1999.00295.x; HUNTER S, 1984, J ZOOL, V203, P441; HUNTER S, 1984, IBIS, V126, P119, DOI 10.1111/j.1474-919X.1984.tb07993.x; Koren L., 2011, P ROY SOC LOND B BIO, V279, P1560, DOI DOI 10.1098/RSPB.2011.2062); Kouwenberg AL, 2013, IBIS, V155, P413, DOI 10.1111/ibi.12030; Landys MM, 2006, GEN COMP ENDOCR, V148, P132, DOI 10.1016/j.ygcen.2006.02.013; Langston NE, 1996, OIKOS, V76, P498, DOI 10.2307/3546343; Lattin CR, 2011, J AVIAN BIOL, V42, P247, DOI 10.1111/j.1600-048X.2010.05310.x; Love OP, 2004, HORM BEHAV, V46, P59, DOI 10.1016/j.yhbeh.2004.02.001; Macbeth BJ, 2010, CAN J ZOOL, V88, P935, DOI 10.1139/Z10-057; MacDougall-Shackleton SA, 2009, BIOL LETTERS, V5, P746, DOI 10.1098/rsbl.2009.0382; Morales J, 2007, ECOSCIENCE, V14, P31, DOI 10.2980/1195-6860(2007)14[31:EMILSA]2.0.CO;2; MORTON GA, 1990, CONDOR, V92, P813, DOI 10.2307/1368717; MURPHY ME, 1995, COMP BIOCHEM PHYS A, V111, P385, DOI 10.1016/0300-9629(95)00039-A; Phillips RA, 2011, MAR BIOL, V158, P2199, DOI 10.1007/s00227-011-1725-4; Rohwer S, 2011, CONDOR, V113, P61, DOI 10.1525/cond.2011.100092; Romero LM, 2009, HORM BEHAV, V55, P375, DOI 10.1016/j.yhbeh.2008.12.009; Romero LM, 2001, P NATL ACAD SCI USA, V98, P7366, DOI 10.1073/pnas.131091498; Romero LM, 2005, COMP BIOCHEM PHYS A, V142, P65, DOI 10.1016/j.cbpa.2005.07.014; SCHIELTZ PC, 1995, COMP BIOCHEM PHYS A, V112, P265, DOI 10.1016/0300-9629(95)00097-6; Siikamaki P, 1998, ECOLOGY, V79, P1789, DOI 10.1890/0012-9658(1998)079[1789:LORSBF]2.0.CO;2; STEARNS SC, 1972, Q REVIEW BIOLOGY, V51, P3; Strochlic DE, 2008, COMP BIOCHEM PHYS A, V149, P68, DOI 10.1016/j.cbpa.2007.10.011; Svensson E, 1997, BEHAV ECOL, V8, P92, DOI 10.1093/beheco/8.1.92; WINGFIELD JC, 1992, J EXP ZOOL, V264, P419, DOI 10.1002/jez.1402640407; Wingfield JC, 1998, AM ZOOL, V38, P191 51 27 27 0 95 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0016-6480 1095-6840 GEN COMP ENDOCR Gen. Comp. Endocrinol. NOV 1 2013 193 112 120 10.1016/j.ygcen.2013.07.011 9 Endocrinology & Metabolism Endocrinology & Metabolism 244YX WOS:000326427200014 23891657 2018-11-12 J Wander, K; Mattison, SM Wander, Katherine; Mattison, Siobhan M. The evolutionary ecology of early weaning in Kilimanjaro, Tanzania PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article breastfeeding; parental investment; life history theory; Trivers-Willard hypothesis TRIVERS-WILLARD HYPOTHESIS; HUNGARIAN GYPSY POPULATION; BIASED PARENTAL INVESTMENT; PAPUA-NEW-GUINEA; WEANLINGS DILEMMA; HUMAN LACTATION; NORTHERN KENYA; DURATION; INFANT; SONS Public health recommendations promote prolonged breastfeeding of all children; however, parental investment (PI) theory predicts that breastfeeding will be allocated among a mothers' offspring to maximize her reproductive success. We evaluated PI in terms of risk for weaning before age two among 283 children in Kilimanjaro, Tanzania. Results demonstrate: (i) a Trivers-Willard effect-high socioeconomic status (SES) females and low SES males were more likely to be weaned early; (ii) later-born children were less likely to be weaned early; (iii) higher birthweight children were less likely to be weaned early, and (iv) no effect of cattle (a source of supplementary milk) ownership. These associations were largely independent and remained significant in models controlling for potential confounders; however, the inverse association between early weaning and birth order lost significance in the model containing birthweight. These patterns were observed despite public health recommendations encouraging breastfeeding for at least two years. [Wander, Katherine] Univ Washington, Dept Anthropol, Seattle, WA 98195 USA; [Mattison, Siobhan M.] Univ Auckland, Dept Anthropol, Auckland 1, New Zealand Wander, K (reprint author), Univ Washington, Dept Anthropol, Seattle, WA 98195 USA. kwander@uw.edu National Science Foundation [0968742]; Wenner-Gren Foundation for Anthropological Research [8065]; National Institute of Child Health and Human Development [5R24 HD042828] This work was supported by the National Science Foundation (0968742 to KW), the Wenner-Gren Foundation for Anthropological Research (8065 to KW) and the National Institute of Child Health and Human Development (5R24 HD042828 to the UW Center for Studies in Demography and Ecology). Basire K, 1997, NEW ZEAL MED J, V110, P184; Bereczkei T, 2000, HUM NATURE-INT BIOS, V11, P183, DOI 10.1007/s12110-000-1018-y; Bereczkei T, 2002, CURR ANTHROPOL, V43, P804, DOI 10.1086/344374; Bereczkei T, 1997, P ROY SOC B-BIOL SCI, V264, P17, DOI 10.1098/rspb.1997.0003; Bereczkei T, 2001, EVOL HUM BEHAV, V22, P197, DOI 10.1016/S1090-5138(01)00062-9; Bourgoin GL, 1997, CAN J PUBLIC HEALTH, V88, P238; Brown GR, 2009, TRENDS ECOL EVOL, V24, P297, DOI 10.1016/j.tree.2009.02.005; CRONK L, 1989, AM ANTHROPOL, V91, P414, DOI 10.1525/aa.1989.91.2.02a00090; Cronk L, 2000, ADAPTATION HUMAN BEH, P203; Cronk L, 2007, REPROD BIOMED ONLINE, V15, P23, DOI 10.1016/S1472-6483(10)60546-9; Daly M, 1987, SOCIOBIOLOGY PSYCHOL, P293; Datar A, 2010, DEMOGRAPHY, V47, P145; Dettwyler K. A., 1995, BREASTFEEDING BIOCUL, P39; Dufour DL, 2002, AM J HUM BIOL, V14, P584, DOI 10.1002/ajhb.10071; Fujita M, 2012, AM J PHYS ANTHROPOL, V149, P52, DOI 10.1002/ajpa.22092; Fujita M, 2012, EVOL HUM BEHAV, V33, P357, DOI 10.1016/j.evolhumbehav.2011.11.006; GAULIN SJC, 1991, AM J PHYS ANTHROPOL, V85, P61, DOI 10.1002/ajpa.1330850108; Hinde K, 2009, AM J HUM BIOL, V21, P512, DOI 10.1002/ajhb.20917; Hinde K, 2011, EVOL ANTHROPOL, V20, P9, DOI 10.1002/evan.20289; Irons W, 1998, EVOL ANTHROPOL, V6, P194, DOI 10.1002/(SICI)1520-6505(1998)6:6<194::AID-EVAN2>3.0.CO;2-B; JACKSON DA, 1992, BRIT J NUTR, V67, P149, DOI 10.1079/BJN19920019; Jasienska G, 2001, FOUND HUM B, P59; Keller MC, 2001, EVOL HUM BEHAV, V22, P343, DOI 10.1016/S1090-5138(01)00075-7; Kennedy GE, 2005, J HUM EVOL, V48, P123, DOI 10.1016/j.jhevol.2004.09.005; Koziel S, 2001, AM J PHYS ANTHROPOL, V115, P71, DOI 10.1002/ajpa.1058; KURINIJ N, 1988, PEDIATRICS, V81, P365; Long J. S., 1997, REGRESSION MODELS CA; MANN J, 1992, ADAPTED MIND EVOLUTI, P367; MARGULIS SW, 1993, BEHAV ECOL SOCIOBIOL, V32, P41; McDade TW, 2001, HUM NATURE-INT BIOS, V12, P9, DOI 10.1007/s12110-001-1011-0; McDade TW, 1998, J DEV BEHAV PEDIATR, V19, P286, DOI 10.1097/00004703-199808000-00008; MICHAELSEN KF, 1994, ACTA PAEDIATR, V83, P565; Oddy W H, 2001, Breastfeed Rev, V9, P11; Piper S, 1996, BIRTH-ISS PERINAT C, V23, P7, DOI 10.1111/j.1523-536X.1996.tb00454.x; QUANDT SA, 1987, HUM ORGAN, V46, P152, DOI 10.17730/humo.46.2.f580815271u10732; Quinlan RJ, 2005, CURR ANTHROPOL, V46, P471, DOI 10.1086/430017; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P1, DOI 10.1016/S1090-5138(02)00104-6; Quinlan RJ, 2008, HUM NATURE-INT BIOS, V19, P87, DOI 10.1007/s12110-007-9026-9; Sellen DW, 2007, ANNU REV NUTR, V27, P123, DOI 10.1146/annurev.nutr.25.050304.092557; Sellen DW, 2001, HUM NATURE-INT BIOS, V12, P47, DOI 10.1007/s12110-001-1013-y; Sellen DW, 2001, J NUTR, V131, P2707; SIEFF DF, 1990, CURR ANTHROPOL, V31, P25, DOI 10.1086/203801; Tracer DP, 2009, AM J HUM BIOL, V21, P635, DOI 10.1002/ajhb.20928; Tracer DP, 1996, HUM BIOL, V68, P277; TRIVERS RL, 1973, SCIENCE, V179, P90, DOI 10.1126/science.179.4068.90; Valeggia CR, 2001, FOUND HUM B, P85; Vega Lopez M G, 1993, Bull Pan Am Health Organ, V27, P350; VITZTHUM VJ, 1994, ANN NY ACAD SCI, V709, P221, DOI 10.1111/j.1749-6632.1994.tb30408.x; Vitzthum VJ, 1994, AM J PHYS ANTHROPOL, V37, P307, DOI [10.1002/ajpa.1330370611, DOI 10.1002/AJPA.1330370611)]; Vogel A, 1999, ACTA PAEDIATR, V88, P1320, DOI 10.1080/080352599750030013; WILDE CJ, 1995, P NUTR SOC, V54, P401, DOI 10.1079/PNS19950009 51 6 6 2 18 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. OCT 7 2013 280 1768 20131359 10.1098/rspb.2013.1359 6 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 298JY WOS:000330321300010 23926151 Green Published, Bronze 2018-11-12 J Colwell, MA; Pearson, WJ; Eberhart-Phillips, LJ; Dinsmore, SJ Colwell, Mark A.; Pearson, Wendy J.; Eberhart-Phillips, Luke J.; Dinsmore, Stephen J. APPARENT SURVIVAL OF SNOWY PLOVERS (CHARADRIUS NIVOSUS) VARIES WITH REPRODUCTIVE EFFORT AND YEAR AND BETWEEN SEXES AUK English Article apparent survival; Charadrius nivosus; incubation; reproductive effort; Snowy Plover; threatened COASTAL NORTHERN CALIFORNIA; POPULATION-GROWTH RATE; BREEDING GROUNDS; NATAL DISPERSAL; BODY STORES; CLUTCH SIZE; SUCCESS; ALEXANDRINUS; COSTS; EXCLOSURES Life history theory predicts a tradeoff between reproductive effort and survival, which suggests that some management practices aimed at increasing productivity may compromise population growth. We analyzed a 10-year data set of 225 individually marked Snowy Plovers (Charadrius nivosus), a threatened shorebird, to determine whether individual reproductive effort was correlated with low apparent survival. Most adults resided in the population an average of 2 years (range: 1-10 years), during which females laid 3-60 eggs, and both males and females invested considerable time in incubation and brooding. Apparent survival varied annually and was higher for males than for females. Contrary to theory, we found no evidence that increased reproductive effort, either current or cumulative, compromised survival. Instead, apparent survival was correlated positively with incubation time, which may be related to either high-quality individuals having high reproductive rates and high survival or permanent emigration of failed breeders (who incubated for shorter intervals). Although our results suggest that some predator management practices (e.g., nest exclosures) aimed at increasing productivity will not compromise survival in a subsequent year, we caution that these same practices may have serious negative consequences for population growth if (1) reproductive effort does not translate into higher per capita fledging success and (2) direct mortality of adults results from the practice. [Colwell, Mark A.; Pearson, Wendy J.; Eberhart-Phillips, Luke J.] Humboldt State Univ, Dept Wildlife, Arcata, CA 95521 USA; [Dinsmore, Stephen J.] Iowa State Univ, Dept Nat Resource Ecol & Management, Ames, IA 50011 USA Colwell, MA (reprint author), Humboldt State Univ, Dept Wildlife, Arcata, CA 95521 USA. mac3@humboldt.edu California Department of Fish and Game; California Department of Parks and Recreation; Chevron Oil Corporation; Eureka Rotary Club; Humboldt County Fish and Game Advisory Commission; Humboldt County Planning Department; Humboldt State University Sponsored Programs Foundation; Mad River Biologists; Mann Rod and Gun Club; MRB Research, Inc.; Redwood Region Audubon Society; Stockton Sportsmen's Club; Western Section of The Wildlife Society; U.S. Bureau of Land Management; U.S. Fish and Wildlife Service; California Department of Fish and Game's Oil Spill Response Trust Fund through the Oiled Wildlife Care Network at the Wildlife Health Center, School of Veterinary Medicine, University of California, Davis Many individuals assisted us with fieldwork. In particular, we thank K. Brindock, N. Burrell, W. Goldenberg, J. Hall, M. Hardy, J. Harris, A. Hoffmann, S. Hurley, R. LeValley, A. Liebenberg, S. McAllister, J. Meyer, C. Millett, S. Mullin, Z. Nelson, S. Peterson, K. Ross, R. Thiem, A. Transou, J. Watkins, and C. Wilson. Our work was funded by the California Department of Fish and Game, California Department of Parks and Recreation, Chevron Oil Corporation, Eureka Rotary Club, Humboldt County Fish and Game Advisory Commission, Humboldt County Planning Department, Humboldt State University Sponsored Programs Foundation, Mad River Biologists, Mann Rod and Gun Club, MRB Research, Inc., Redwood Region Audubon Society, Stockton Sportsmen's Club, Western Section of The Wildlife Society, U.S. Bureau of Land Management, U.S. Fish and Wildlife Service, and California Department of Fish and Game's Oil Spill Response Trust Fund through the Oiled Wildlife Care Network at the Wildlife Health Center, School of Veterinary Medicine, University of California, Davis. Burnham K. P., 2002, MODEL SELECTION MULT; BURNHAM KP, 1987, AM FISHERIES SOC MON, V5; Burrell Noah S., 2012, Wildfowl, V62, P204; Catlin DH, 2011, J WILDLIFE MANAGE, V75, P458, DOI 10.1002/jwmg.56; Collier BA, 2009, WILDLIFE BIOL, V15, P370, DOI 10.2981/09-011; Colwell MA, 2007, WILSON J ORNITHOL, V119, P378, DOI 10.1676/06-038.1; Colwell MA, 2007, CONDOR, V109, P638, DOI 10.1650/8236.1; Colwell MA, 2010, J FIELD ORNITHOL, V81, P349, DOI 10.1111/j.1557-9263.2010.00291.x; Colwell Mark A., 2006, Wader Study Group Bulletin, V111, P50; Cooch E., 2011, PROGRAM MARK GENTLE; DAAN S, 1990, BEHAVIOUR, V114, P83, DOI 10.1163/156853990X00068; EBERHART-PHILLIPS L. J., 2013, BIRD CONSER IN PRESS, V23; Foppen RR, 2006, ARDEA, V94, P159; Haas CA, 1998, AUK, V115, P929, DOI 10.2307/4089511; Hardy Michael A., 2008, Wader Study Group Bulletin, V115, P161; Hitchcock CL, 1997, ECOLOGY, V78, P522; Isaksson D, 2007, BIOL CONSERV, V136, P136, DOI 10.1016/j.biocon.2006.11.015; Liebezeit JR, 2007, CONDOR, V109, P32, DOI 10.1650/0010-5422(2007)109[32:ATDOSE]2.0.CO;2; Mabee TJ, 2000, WILSON BULL, V112, P14, DOI 10.1676/0043-5643(2000)112[0014:ATEOPE]2.0.CO;2; Morrison RIG, 2005, CONDOR, V107, P449, DOI 10.1650/7614; Morrison RIG, 2004, AUK, V121, P333, DOI 10.1642/0004-8038(2004)121[0333:UOBSIS]2.0.CO;2; Moyes K, 2006, OIKOS, V115, P241, DOI 10.1111/j.2006.0030-1299.15200.x; Muir JJ, 2010, CONDOR, V112, P507, DOI 10.1525/cond.2010.090196; Mullin SM, 2010, J WILDLIFE MANAGE, V74, P1792, DOI 10.2193/2009-503; Murphy MT, 2000, ECOL MONOGR, V70, P1, DOI 10.1890/0012-9615(2000)070[0001:EOCSIT]2.0.CO;2; Neuman KK, 2004, WATERBIRDS, V27, P257, DOI 10.1675/1524-4695(2004)027[0257:EOMPMO]2.0.CO;2; Newton I., 1998, POPULATION LIMITATIO; Page G. W., 1995, BIRDS N AM, V15; PATON PWC, 1994, CONDOR, V96, P1106, DOI 10.2307/1369123; Pauliny A, 2008, J WILDLIFE MANAGE, V72, P1579, DOI 10.2193/2007-199; PEARSON W. J., 2013, BIRD CONSER IN PRESS, V23; R Development Core Team, 2010, R LANG ENV STAT COMP; Roff Derek A., 1992; Rotella JJ, 2003, CONDOR, V105, P336, DOI 10.1650/0010-5422(2003)105[0336:SOFLSE]2.0.CO;2; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Sandercock BK, 2005, CONDOR, V107, P583, DOI 10.1650/0010-5422(2005)107[0583:TEOAAS]2.0.CO;2; Sandercock Brett K., 2003, Wader Study Group Bulletin, V100, P163; Sim IMW, 2011, J ANIM ECOL, V80, P159, DOI 10.1111/j.1365-2656.2010.01750.x; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stenzel LE, 2007, AUK, V124, P1023, DOI 10.1642/0004-8038(2007)124[1023:SANDOJ]2.0.CO;2; Stenzel LE, 2011, IBIS, V153, P312, DOI 10.1111/j.1474-919X.2011.01118.x; Stjernman M, 2004, P ROY SOC B-BIOL SCI, V271, P2387, DOI 10.1098/rspb.2004.2883; U.S. DEPARTMENT OF INTERIOR, 1993, FED REGISTER, V58, P2864; U.S. Fish and Wildlife Service, 2007, REC PLAN PAC COAST P; VanderWerf EA, 2011, AUK, V128, P726, DOI 10.1525/auk.2011.10285; Verhulst S, 1998, FUNCT ECOL, V12, P132, DOI 10.1046/j.1365-2435.1998.00165.x; WASER PM, 1991, ECOLOGY, V72, P771, DOI 10.2307/1940579; White GC, 1999, BIRD STUDY, V46, P120 48 3 4 1 32 AMER ORNITHOLOGISTS UNION LAWRENCE ORNITHOLOGICAL SOC NORTH AMER PO BOX 1897, LAWRENCE, KS 66044-8897 USA 0004-8038 1938-4254 AUK AUK OCT 2013 130 4 725 732 10.1525/auk.2013.13147 8 Ornithology Zoology 274EM WOS:000328588800017 2018-11-12 J King, EDA; Garratt, M; Brooks, R King, Edith D. Aloise; Garratt, Michael; Brooks, Robert Manipulating reproductive effort leads to changes in female reproductive scheduling but not oxidative stress ECOLOGY AND EVOLUTION English Article Ageing; aging; cost of reproduction; cross-foster; Free Radical Theory of ageing; life history; oxidative damage; postpartum pregnancy; senescence; trade-off SUSTAINED ENERGY-INTAKE; LIFE-HISTORY EVOLUTION; MICE MUS-MUSCULUS; HOUSE MICE; CONCURRENT PREGNANCY; MATERNAL-CARE; LITTER SIZE; TRADE-OFFS; LACTATION; WEIGHT The trade-off between reproductive investment and lifespan is the single most important concept in life-history theory. A variety of sources of evidence support the existence of this trade-off, but the physiological costs of reproduction that underlie this relationship remain poorly understood. The Free Radical Theory of Ageing suggests that oxidative stress, which occurs when there is an imbalance between the production of damaging Reactive Oxygen Species (ROS) and protective antioxidants, may be an important mediator of this trade-off. We sought to test this theory by manipulating the reproductive investment of female mice (Mus musculus domesticus) and measuring the effects on a number of life history and oxidative stress variables. Females with a greater reproductive load showed no consistent increase in oxidative damage above females who had a smaller reproductive load. The groups differed, however, in their food consumption, reproductive scheduling and mean offspring mass. Of particular note, females with a very high reproductive load delayed blastocyst implantation of their second litter, potentially mitigating the costs of energetically costly reproductive periods. Our results highlight that females use strategies to offset particularly costly periods of reproduction and illustrate the absence of a simple relationship between oxidative stress and reproduction. [Brooks, Robert] Univ New S Wales, Evolut & Ecol Res Ctr, Sydney, NSW 2052, Australia; [Brooks, Robert] Univ New S Wales, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia Brooks, R (reprint author), Univ New S Wales, Evolut & Ecol Res Ctr, Sydney, NSW 2052, Australia. rob.brooks@unsw.edu.au Brooks, Robert/A-1251-2008 Brooks, Robert/0000-0001-6926-0781 Australian Research Council This research is funded by an Australian Research Council Discovery Grant and Professorial Fellowship to RB. Anderson M. E., 1996, FREE RADICALS PRACTI, P213; Beckman KB, 1998, PHYSIOL REV, V78, P547; Bergeron P, 2011, FUNCT ECOL, V25, P1063, DOI 10.1111/j.1365-2435.2011.01868.x; BERRY R J, 1970, Field Studies, V3, P219; Berry R. J., 1981, BIOL HOUSE MOUSE; BIGGERSTAFF S, 1992, PHYSIOL BEHAV, V52, P485, DOI 10.1016/0031-9384(92)90335-Y; BRUCE HM, 1956, J ENDOCRINOL, V14, P19, DOI 10.1677/joe.0.0140019; Cheetham SA, 2009, PHYSIOL BEHAV, V96, P253, DOI 10.1016/j.physbeh.2008.10.005; Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x; DIMONTE D, 1984, ARCH BIOCHEM BIOPHYS, V235, P343, DOI 10.1016/0003-9861(84)90207-8; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Edward DA, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P137; Fletcher Q. E., 2012, EVOLUTION, V67, P1527; Garratt M, 2013, J EXP BIOL, V216, P2879, DOI 10.1242/jeb.082669; Garratt M, 2012, P ROY SOC B-BIOL SCI, V279, P3121, DOI 10.1098/rspb.2012.0568; Garratt M, 2011, P ROY SOC B-BIOL SCI, V278, P1098, DOI 10.1098/rspb.2010.1818; Hamel S, 2010, ECOL LETT, V13, P915, DOI 10.1111/j.1461-0248.2010.01478.x; HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Isaksson C, 2011, BIOSCIENCE, V61, P194, DOI 10.1525/bio.2011.61.3.5; Johnson MS, 2001, J EXP BIOL, V204, P1947; Jones DP, 2008, AM J PHYSIOL-CELL PH, V295, pC849, DOI 10.1152/ajpcell.00283.2008; Jones DP, 2006, ANTIOXID REDOX SIGN, V8, P1865, DOI 10.1089/ars.2006.8.1865; KONIG B, 1987, BEHAV ECOL SOCIOBIOL, V20, P1, DOI 10.1007/BF00292161; KONIG B, 1988, J ZOOL, V216, P195; KRACKOW S, 1993, ETHOLOGY, V95, P76; KRACKOW S, 1989, ANIM BEHAV, V37, P177, DOI 10.1016/0003-3472(89)90108-5; Krol E, 2007, J EXP BIOL, V210, P4233, DOI 10.1242/jeb.009779; MANTALENAKIS SJ, 1966, J REPROD FERTIL, V12, P391; Metcalfe NB, 2013, TRENDS ECOL EVOL, V28, P347, DOI 10.1016/j.tree.2013.01.015; Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; NORRIS ML, 1981, LAB ANIM, V15, P273, DOI 10.1258/002367781780893858; Nussey DH, 2009, FUNCT ECOL, V23, P809, DOI 10.1111/j.1365-2435.2009.01555.x; Odakowski, 2012, J EXP BIOL, V215, P1799; ORTIZ CL, 1984, AM NAT, V124, P416, DOI 10.1086/284282; OSWALD C, 1990, J MAMMAL, V71, P500, DOI 10.2307/1381788; PERRIGO G, 1987, ANIM BEHAV, V35, P1298, DOI 10.1016/S0003-3472(87)80002-7; PONTIER D, 1989, OECOLOGIA, V80, P390, DOI 10.1007/BF00379041; ROSS C, 1988, J ZOOL, V214, P199, DOI 10.1111/j.1469-7998.1988.tb04717.x; Salmon AB, 2010, FREE RADICAL BIO MED, V48, P642, DOI 10.1016/j.freeradbiomed.2009.12.015; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; Sohal RS, 1996, SCIENCE, V273, P59, DOI 10.1126/science.273.5271.59; Sohal RS, 2002, FREE RADICAL BIO MED, V33, P575, DOI 10.1016/S0891-5849(02)00886-9; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; Speakman JR, 2010, INTEGR COMP BIOL, V50, P793, DOI 10.1093/icb/icq049; Stearns S. C., 1992, EVOLUTION LIFE HIST; THOMPSON LJ, 1977, J DAIRY SCI, V60, P126, DOI 10.3168/jds.S0022-0302(77)83838-1; Vasilaki A, 2006, AGING CELL, V5, P109, DOI 10.1111/j.1474-9726.2006.00198.x; Warton DI, 2011, ECOLOGY, V92, P3, DOI 10.1890/10-0340.1; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 51 15 16 1 26 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. OCT 2013 3 12 4161 4171 10.1002/ece3.786 11 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 242ZU WOS:000326286700010 24324867 DOAJ Gold, Green Published 2018-11-12 J Smith, KE; Thatje, S Smith, Kathryn E.; Thatje, Sven The subtle intracapsular survival of the fittest: maternal investment, sibling conflict, or environmental effects? ECOLOGY English Article Buccinum undatum; cannibalism; embryology; life history theory; marine gastropods; maternal investment; nurse egg consumption; resource partitioning; sibling rivalry; temperature OFFSPRING SIZE; OXYGEN AVAILABILITY; DIFFERENT TEMPERATURES; VARIABLE ENVIRONMENTS; EMBRYONIC-DEVELOPMENT; MARINE-INVERTEBRATES; PARENTAL INVESTMENT; ACANTHINA-MONODON; EVOLUTIONARY BETS; HATCHING SIZE Developmental resource partitioning and the consequent offspring size variations are of fundamental importance for marine invertebrates, in both an ecological and evolutionary context. Typically, differences are attributed to maternal investment and the environmental factors determining this; additional variables, such as environmental factors affecting development, are rarely discussed. During intracapsular development, for example, sibling conflict has the potential to affect resource partitioning. Here, we investigate encapsulated development in the marine gastropod Buccinum undatum. We examine the effects of maternal investment and temperature on intracapsular resource partitioning in this species. Reproductive output was positively influenced by maternal investment, but additionally, temperature and sibling conflict significantly affected offspring size, number, and quality during development. Increased temperature led to reduced offspring number, and a combination of high sibling competition and asynchronous early development resulted in a common occurrence of empty embryos, which received no nutrition at all. The proportion of empty embryos increased with both temperature and capsule size. Additionally, a novel example of a risk in sibling conflict was observed; embryos cannibalized by others during early development ingested nurse eggs from inside the consumer, killing it in a Trojan horse scenario. Our results highlight the complexity surrounding offspring fitness. Encapsulation should be considered as significant in determining maternal output. Considering predicted increases in ocean temperatures, this may impact offspring quality and consequently species distribution and abundance. [Smith, Kathryn E.; Thatje, Sven] Univ Southampton, Natl Oceanog Ctr, Southampton SO14 3ZH, Hants, England Smith, KE (reprint author), Florida Inst Technol, 150 West Univ Blvd, Melbourne, FL 32901 USA. kathryn@fit.edu Smith, Kathryn/G-5257-2014 Smith, Kathryn/0000-0002-7240-1490 Total Foundation [Abyss2100]; Malacological Society Thanks are given to Viviers, UK, and Vor Marine Research Center, Iceland, for their help with adult sample collection. Thanks also go to Adam Reed, Alastair Brown, and Andrew Oliphant for help with animal maintenance, and to Andrew Oliphant for helpful discussions on the topic. This work was supported by grants from the Total Foundation (Abyss2100) to S. Thatje and the Malacological Society to K. Smith. We thank two anonymous reviewers for constructive criticism on the draft manuscript. Anger K, 2004, J EXP MAR BIOL ECOL, V306, P217, DOI 10.1016/j.jembe.2004.01.010; Anger K, 2001, CRUSTACEAN ISSUES, V14; Bernardo J, 1996, AM ZOOL, V36, P216; CHAPARRO OR, 1990, MAR ECOL PROG SER, V65, P183, DOI 10.3354/meps065183; CLARKE A, 1992, INVERTEBR REPROD DEV, V22, P175, DOI 10.1080/07924259.1992.9672270; Collin R, 2012, BIOL J LINN SOC, V106, P763, DOI 10.1111/j.1095-8312.2012.01908.x; Crean AJ, 2009, PHILOS T R SOC B, V364, P1087, DOI 10.1098/rstb.2008.0237; Cumplido M, 2011, J MOLLUS STUD, V77, P429, DOI 10.1093/mollus/eyr025; Dziminski MA, 2005, OECOLOGIA, V146, P98, DOI 10.1007/s00442-005-0177-2; Evjemo JO, 2001, AQUACULTURE, V193, P65, DOI 10.1016/S0044-8486(00)00470-1; Fernandez M, 2006, REV CHIL HIST NAT, V79, P155, DOI 10.4067/S0716-078X2006000200002; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; GALLARDO CS, 1979, BIOL BULL, V157, P453, DOI 10.2307/1541030; Garcia-Guerrero M, 2003, COMP BIOCHEM PHYS A, V135, P147, DOI 10.1016/S1095-6433(02)00354-9; Gibson G, 1999, MAR BIOL, V134, P743, DOI 10.1007/s002270050591; Gibson G, 2013, J MORPHOL, V274, P11, DOI 10.1002/jmor.20071; Gonzalez KA, 1999, OPHELIA, V51, P77, DOI 10.1080/00785326.1999.10409400; HADFIELD MG, 1989, B MAR SCI, V45, P369; Hughes SL, 2010, TEMPERATURE AIR SEA; JABLONSKI D, 1991, SCIENCE, V252, P1831, DOI 10.1126/science.252.5014.1831; Kamel SJ, 2010, INTEGR COMP BIOL, V50, P619, DOI 10.1093/icb/icq104; Kamel SJ, 2010, TRENDS ECOL EVOL, V25, P442, DOI 10.1016/j.tree.2010.05.008; Kesaniemi JE, 2012, ECOL EVOL, V2, P994, DOI 10.1002/ece3.226; Kingsolver JG, 2008, EVOL ECOL RES, V10, P251; Koops MA, 2003, EVOL ECOL RES, V5, P29; Krug PJ, 2012, INTEGR COMP BIOL, V52, P161, DOI 10.1093/icb/ics059; Kudo S, 2001, OIKOS, V92, P208, DOI 10.1034/j.1600-0706.2001.920202.x; Lardies MA, 2002, MAR ECOL PROG SER, V239, P139, DOI 10.3354/meps239139; Lawler A., 2009, WHELK BIOL; Marshall DJ, 2006, ECOLOGY, V87, P214, DOI 10.1890/05-0350; Marshall DJ, 2008, ECOLOGY, V89, P2506, DOI 10.1890/07-0267.1; Marshall DJ, 2008, OCEANOGR MAR BIOL, V46, P203, DOI 10.1201/9781420065756.ch5; Marshall DJ, 2008, ADV MAR BIOL, V53, P1, DOI 10.1016/S0065-2881(07)53001-4; MARTEL A, 1986, J EXP MAR BIOL ECOL, V96, P27, DOI 10.1016/0022-0981(86)90011-0; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; Moran AL, 2001, ECOLOGY, V82, P1597, DOI 10.1890/0012-9658(2001)082[1597:OSAPIV]2.0.CO;2; Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4; Ojeda JA, 2004, MAR BIOL, V144, P263, DOI 10.1007/s00227-003-1194-5; Oyarzun FX, 2011, INTEGR COMP BIOL, V51, P81, DOI 10.1093/icb/icr009; Parker GA, 2002, PHILOS T R SOC B, V357, P295, DOI 10.1098/rstb.2001.0950; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; Portmann A., 1925, Zeitschrift Morph Oekol Berlin, V3, P526, DOI 10.1007/BF00408189; RHYMER JM, 1988, OECOLOGIA, V75, P20, DOI 10.1007/BF00378809; RIVEST BR, 1983, J EXP MAR BIOL ECOL, V69, P217, DOI 10.1016/0022-0981(83)90071-0; SLATKIN M, 1974, NATURE, V250, P704, DOI 10.1038/250704b0; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Smith KE, 2013, J SEA RES, V79, P32, DOI 10.1016/j.seares.2013.01.008; Smith KE, 2013, HELGOLAND MAR RES, V67, P109, DOI 10.1007/s10152-012-0308-1; SPIGHT TM, 1976, OECOLOGIA, V24, P283, DOI 10.1007/BF00381135; Strathmann MF, 2006, PAC SCI, V60, P97, DOI 10.1353/psc.2005.0062; STRATHMANN RR, 1995, AM ZOOL, V35, P426; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; Valentinsson D, 2002, MAR BIOL, V140, P1139, DOI 10.1007/s00227-002-0793-x; VANCE RR, 1973, AM NAT, V107, P339, DOI 10.1086/282838 54 6 6 0 37 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 0012-9658 1939-9170 ECOLOGY Ecology OCT 2013 94 10 2263 2274 10.1890/12-1701.1 12 Ecology Environmental Sciences & Ecology 235CN WOS:000325692900018 24358712 2018-11-12 J Voss, MA; Cooper, CB Voss, Margaret A.; Cooper, Caren B. Solar noon and tactile cues synergistically regulate clutch size: a new approach to investigations of avian life-history theory IBIS English Editorial Material CLOCK GENE-EXPRESSION; LUTEINIZING-HORMONE; GALLUS-DOMESTICUS; PREMAMMILLARY NUCLEUS; JAPANESE-QUAIL; TRADE-OFFS; BIRDS; HYPOTHALAMUS; REPRODUCTION; HEN [Voss, Margaret A.] Penn State Univ, Behrend Coll, Sch Sci, Erie, PA 16563 USA; [Cooper, Caren B.] Cornell Lab Ornithol, Ithaca, NY 14850 USA Voss, MA (reprint author), Penn State Univ, Behrend Coll, Sch Sci, 4205 Coll Dr, Erie, PA 16563 USA. mav11@psu.edu Voss, Margaret/H-6720-2016 Voss, Margaret/0000-0002-7969-4871 Aschoff J., 1980, P INT ORNITHOL C, V17, P113; Ball GF, 2007, ENDOCRINOLOGY, V148, P3029, DOI 10.1210/en.2007-0570; BEUKEBOOM L, 1988, ORNIS SCAND, V19, P41, DOI 10.2307/3676526; BHATTI BM, 1978, BRIT POULTRY SCI, V19, P365, DOI 10.1080/00071667808416488; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; Cooper CB, 2009, CONDOR, V111, P752, DOI 10.1525/cond.2009.090061; CRICK HQP, 1993, J ANIM ECOL, V62, P263, DOI 10.2307/5357; Dawson A, 2008, PHILOS T R SOC B, V363, P1621, DOI 10.1098/rstb.2007.0004; ETCHES RJ, 1984, J EXP ZOOL, V232, P501, DOI 10.1002/jez.1402320317; FARNER DS, 1964, AM NAT, V98, P375, DOI 10.1086/282333; Fraps R. M., 1955, PROGR PHYSL FARM ANI, P661; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gill SA, 2003, J FIELD ORNITHOL, V74, P31, DOI 10.1648/0273-8570-74.1.31; Hamner W. M., 1964, NATURE, V205, P1400; HAMNER WM, 1963, SCIENCE, V142, P1294, DOI 10.1126/science.142.3597.1294; HAYWOOD S, 1993, AUK, V110, P778, DOI 10.2307/4088633; HAYWOOD S, 1993, IBIS, V135, P79, DOI 10.1111/j.1474-919X.1993.tb02812.x; HAYWOOD S, 1993, Q REV BIOL, V68, P33, DOI 10.1086/417910; Haywood S, 2013, IBIS, V155, P714, DOI 10.1111/ibi.12086; HOCHACHKA W, 1990, ECOLOGY, V71, P1279, DOI 10.2307/1938265; Houdelier C, 2007, CHRONOBIOL INT, V24, P235, DOI 10.1080/07420520701283701; JOHNSON AL, 1980, BIOL REPROD, V23, P386, DOI 10.1095/biolreprod23.2.386; JOHNSON PA, 1985, GEN COMP ENDOCR, V58, P478, DOI 10.1016/0016-6480(85)90122-4; Johnston SA, 2007, BRIT POULTRY SCI, V48, P224, DOI 10.1080/00071660701227493; Kang SW, 2010, NEUROSCIENCE, V170, P200, DOI 10.1016/j.neuroscience.2010.06.082; KENNEDY ED, 1991, CONDOR, V93, P106, DOI 10.2307/1368612; KLOMP H, 1970, ARDEA, V58, P1; Leclerc B, 2010, J NEUROENDOCRINOL, V22, P119, DOI 10.1111/j.1365-2826.2009.01942.x; McMaster DG, 1999, AUK, V116, P236, DOI 10.2307/4089472; MORRIS DW, 1986, EVOLUTION, V40, P169, DOI 10.1111/j.1558-5646.1986.tb05728.x; NICE MARGARET M., 1948, WILSON BULL, V60, P139; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Ricklefs RE, 2000, CONDOR, V102, P9, DOI 10.1650/0010-5422(2000)102[0009:DDEOAT]2.0.CO;2; Silverin B, 2008, HORM BEHAV, V54, P60, DOI 10.1016/j.yhbeh.2008.01.015; Sinervo B, 1998, OIKOS, V83, P432, DOI 10.2307/3546671; Skutch A. F., 1952, Ibis, V94, P49, DOI 10.1111/j.1474-919X.1952.tb01787.x; SLAUGH BT, 1988, THERIOGENOLOGY, V30, P291, DOI 10.1016/0093-691X(88)90178-1; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; TEWARY PD, 1984, PHYSIOL ZOOL, V57, P563, DOI 10.1086/physzool.57.5.30163949; Turek R. W., 1974, J COMP PHYSL, V92, P59; Underwood H., 1997, AM J PHYSIOL, V272, P172; Wingfield JC, 2003, GEN COMP ENDOCR, V131, P143, DOI 10.1016/S0016-6480(02)00648-2; Yasuo S, 2004, ENDOCRINOLOGY, V145, P1612, DOI 10.1210/en.2003-1285; Yasuo S, 2003, ENDOCRINOLOGY, V144, P3742, DOI 10.1210/en.2003-0435; Yoshimura T, 2003, NATURE, V426, P178, DOI 10.1038/nature02117 46 1 1 0 19 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0019-1019 IBIS Ibis OCT 2013 155 4 709 713 10.1111/ibi.12098 5 Ornithology Zoology 219XE WOS:000324544200001 Bronze 2018-11-12 J Irie, T; Morimoto, N; Fischer, K Irie, Takahiro; Morimoto, Naoko; Fischer, Klaus Higher calcification costs at lower temperatures do not break the temperature-size rule in an intertidal gastropod with determinate growth MARINE BIOLOGY English Article BUTTERFLY LYCAENA-TITYRUS; COWRIES GENUS-CYPRAEA; LIFE-HISTORY; REACTION NORMS; GEOGRAPHIC-VARIATION; SEXUAL-DIMORPHISM; SHELL MORPHOLOGY; ECTOTHERMS; CORAL; MODEL The vast majority of ectothermic organisms grow larger when developing at cooler environmental temperatures, a pattern frequently referred to as the temperature-size rule (TSR). Assuming that this reaction norm has adaptive significance, life history theory predicts that converse patterns may evolve if favored by natural selection, namely if the costs associated with complying to the TSR outweigh the benefits. Calcifying ectotherms may comprise such an exception not following the TSR, because calcification is expected to be more costly at lower temperatures thus increasing associated costs. To test this hypothesis, we reared wild-caught juveniles of the intertidal gastropod Monetaria annulus and compared their shell sizes at the end of the juvenile stage between two rearing temperatures. Contrary to our prediction, M. annulus does follow the TSR, suggesting that increased calcification costs at lower temperatures are not high enough to break the TSR. Such plastic responses should be considered when interpreting geographical patterns such as latitudinal size clines, which may be caused at least partly by phenotypic plasticity. [Irie, Takahiro] Stanford Univ, Dept Biol, Stanford, CA 94305 USA; [Morimoto, Naoko] Univ Tokyo, Atmosphere & Ocean Res Inst, Kashiwa, Chiba 2778564, Japan; [Fischer, Klaus] Ernst Moritz Arndt Univ Greifswald, Museum & Inst Zool, D-17489 Greifswald, Germany Irie, T (reprint author), Stanford Univ, Dept Biol, Stanford, CA 94305 USA. irie@bio-math10.biology.kyushu-u.ac.jp Irie, Takahiro/A-3621-2012 Japan Society for the Promotion of Science (JSPS) The authors are grateful to P. Kraufvelin, W. C. E. P. Verberk, W. Zuo, and three anonymous reviewers for valuable comments, and to S. Nakamura and Y. Nakano for maintaining the equipment necessary for rearing experiments at Sesoko Station. We also thank K. Baba, Y. Iwasa, K. Sakai, S. Tuljapurkar, and K. Yamahira for helpful discussions. This project was funded by the Japan Society for the Promotion of Science (JSPS). Angilletta MJ, 2003, AM NAT, V162, P332; Angilletta MJ, 2004, INTEGR COMP BIOL, V44, P498, DOI 10.1093/icb/44.6.498; Arendt J. D., 2010, EVOLUTION, V65, P43; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; ATKINSON D, 1995, J THERM BIOL, V20, P61, DOI 10.1016/0306-4565(94)00028-H; Atkinson D, 2003, P ROY SOC B-BIOL SCI, V270, P2605, DOI 10.1098/rspb.2003.2538; ATKINSON D, 1996, ANIMALS TEMPERATURE, P61; Bourdeau PE, 2010, P R SOC B, V277, P455, DOI 10.1098/rspb.2009.1295; Cohen AL, 2003, REV MINERAL GEOCHEM, V54, P151, DOI 10.2113/0540151; Cohen AL, 2009, OCEANOGRAPHY, V22, P117; Cohen AL, 2009, GEOCHEM GEOPHY GEOSY, V10, DOI 10.1029/2009GC002411; Davison AC, 1997, BOOTSTRAP METHODS TH; Efron B, 1993, INTRO BOOTSTRAP; Faraway J, 2002, PRACTICAL REGRESSION; Feely RA, 2012, GLOBAL BIOGEOCHEM CY, V26, DOI 10.1029/2011GB004157; Fischer K, 2002, EVOL ECOL, V16, P333, DOI 10.1023/A:1020271600025; Fischer K, 2001, J EVOLUTION BIOL, V14, P210, DOI 10.1046/j.1420-9101.2001.00280.x; Fischer K, 2000, OIKOS, V90, P372, DOI 10.1034/j.1600-0706.2000.900218.x; FOIN T C, 1972, Proceedings of the Malacological Society of London, V40, P211; Hosono T, 2011, MAR BIOL, V158, P363, DOI 10.1007/s00227-010-1564-8; Irie T, 2007, VELIGER, V49, P209; Irie T, 2006, J MOLLUS STUD, V72, P31, DOI 10.1093/mollus/eyi043; Irie T, 2005, AM NAT, V165, P238, DOI 10.1086/427157; Irie T, 2003, EVOL ECOL RES, V5, P1133; Irie T., 1997, YURIYAGAI J MALACOZO, V5, P17; Irie T, 2008, BIOL BULL-US, V215, P126, DOI 10.2307/25470693; Irie T, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013436; Irie T, 2009, MAR ECOL PROG SER, V385, P33, DOI 10.3354/meps08090; Ishii M, 2011, J GEOPHYS RES-OCEANS, V116, DOI 10.1029/2010JC006831; Kammenga JE, 2007, PLOS GENET, V3, P358, DOI 10.1371/journal.pgen.0030034; Karl I, 2008, OIKOS, V117, P778, DOI 10.1111/j.2008.0030-1299.16522.x; KATOH M, 1989, MAR BIOL, V101, P227, DOI 10.1007/BF00391462; KAY ALISON, 1961, VELIGER, V4, P36; Kingsolver JG, 2008, EVOL ECOL RES, V10, P251; Kozlowski J, 2004, INTEGR COMP BIOL, V44, P480, DOI 10.1093/icb/44.6.480; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; Marubini F, 1999, MAR ECOL PROG SER, V188, P117, DOI 10.3354/meps188117; McConnaughey TA, 2008, GEO-MAR LETT, V28, P287, DOI 10.1007/s00367-008-0116-4; Morse JW, 2007, CHEM REV, V107, P342, DOI 10.1021/cr050358j; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; O'Dea A, 2000, PALAEOGEOGR PALAEOCL, V162, P319, DOI 10.1016/S0031-0182(00)00136-X; Ohde S, 2004, GEOCHEM J, V38, P613, DOI 10.2343/geochemj.38.613; PALMER AR, 1983, MAR BIOL, V75, P287, DOI 10.1007/BF00406014; PALMER AR, 1992, P NATL ACAD SCI USA, V89, P1379, DOI 10.1073/pnas.89.4.1379; PALMER AR, 1981, NATURE, V292, P150, DOI 10.1038/292150a0; PARTRIDGE L, 1996, ANIMALS TEMPERATURE, P265; Peterson LC, 2010, MARINE CHEM GEOCHEMI, P336; PLUMMER LN, 1982, GEOCHIM COSMOCHIM AC, V46, P1011, DOI 10.1016/0016-7037(82)90056-4; Ruppert D., 2003, SEMIPARAMETRIC REGRE; SCHILDER F A, 1968, Veliger, V11, P109; SCHILDER F. A., 1961, VELIGER, V4, P15; TISSOT BN, 1984, VELIGER, V27, P106; TISSOT BN, 1988, EVOLUTION, V42, P103, DOI 10.1111/j.1558-5646.1988.tb04111.x; vanderHave TM, 1996, J THEOR BIOL, V183, P329, DOI 10.1006/jtbi.1996.0224; vanVoorhies WA, 1996, EVOLUTION, V50, P1259, DOI 10.1111/j.1558-5646.1996.tb02366.x; Vermeij GJ, 1987, EVOLUTION ESCALATION; Walters RJ, 2006, AM NAT, V167, P510, DOI 10.1086/501029; Zuo WY, 2012, P ROY SOC B-BIOL SCI, V279, P1840, DOI 10.1098/rspb.2011.2000 58 6 6 0 30 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0025-3162 MAR BIOL Mar. Biol. OCT 2013 160 10 2619 2629 10.1007/s00227-013-2256-y 11 Marine & Freshwater Biology Marine & Freshwater Biology 224GP WOS:000324871300009 2018-11-12 J Zywiec, M; Zielonka, T Zywiec, Magdalena; Zielonka, Tomasz Does a heavy fruit crop reduce the tree ring increment? Results from a 12-year study in a subalpine zone TREES-STRUCTURE AND FUNCTION English Article Cost of reproduction; Masting; Trade-off; Vegetative growth SORBUS-AUCUPARIA L.; SEED PRODUCTION; EVOLUTIONARY ECOLOGY; REPRODUCTIVE GROWTH; IBERIAN PENINSULA; MASTING BEHAVIOR; CALIFORNIA OAKS; CONE PRODUCTION; SPRUCE FOREST; FAGUS-CRENATA Life history theory posits that an increased investment in reproduction should result in decreased vegetative investment. Switching resources from growth to reproduction are also expected in species experiencing selection pressure for high variation of seed crops. In this study, we tested whether the reproductive effort of trees, measured as the number of fruits produced, is related to their radial growth increment. We examined a population of Sorbus aucuparia, a fleshy-fruited tree species with highly variable interannual individual fruit production growing in the subalpine zone and under strong selection pressure from pre-dispersal seed predators. We used 12-year data to test the relationship between fruit crop and radial growth increments in current, previous and subsequent years, and found no trade-off between growth and reproduction. For almost all trees, there was no correlation between fruit crop and radial growth increment in the same year or next year. Only a few trees showed a positive correlation between fruit crop and previous-year growth. In the statistics, we took advantage of the high variability of individual fruit crops in high production years. In four heavy crop years, we compared the radial growth increments of trees with heavy crops with those of trees with low fruit crops. Current and next-year radial growth did not differ between trees with low and high fruit crops. In all those years, however, trees having heavy fruit crops had higher previous-year growth increments. We suggest that the harsh subalpine weather conditions account for the lack of a trade-off between growth and reproduction in the studied population. [Zywiec, Magdalena] Polish Acad Sci, Inst Bot, PL-31512 Krakow, Poland; [Zielonka, Tomasz] Pedag Univ Cracow, Inst Biol, PL-30084 Krakow, Poland Zywiec, M (reprint author), Polish Acad Sci, Inst Bot, Ul Lubicz 46, PL-31512 Krakow, Poland. m.zywiec@botany.pl Zywiec, Magdalena/0000-0002-5992-4051; Zielonka, Tomasz/0000-0002-0562-3819 Polish State Committee for Scientific Research [6 P04G 045 21, 3 P04G 111 25]; Polish Ministry of Science and Higher Education [N304 362938]; Institute of Botany of the Polish Academy of Sciences We thank the authorities and staff of Babia Gora National Park for their kind cooperation and for granting permission to conduct this study. Michael Jacobs finally edited the manuscript. This study was funded by the Polish State Committee for Scientific Research (grant nos. 6 P04G 045 21 and 3 P04G 111 25), the Polish Ministry of Science and Higher Education (N304 362938), and the statutory fund of the Institute of Botany of the Polish Academy of Sciences. The methodology complies with the current laws of Poland in which the experiments were performed. BARCLAY AM, 1982, FLORA, V172, P21; Barringer BC, 2013, OECOLOGIA, V171, P129, DOI 10.1007/s00442-012-2386-9; Camarero JJ, 2010, TREES-STRUCT FUNCT, V24, P909, DOI 10.1007/s00468-010-0462-5; CREMER KW, 1992, FOREST ECOL MANAG, V52, P179, DOI 10.1016/0378-1127(92)90501-Y; Despland E, 1997, AM J BOT, V84, P928, DOI 10.2307/2446283; Drobyshev I, 2010, FOREST ECOL MANAG, V259, P2160, DOI 10.1016/j.foreco.2010.01.037; EIS S, 1965, CAN J BOTANY, V43, P1553, DOI 10.1139/b65-165; GROSS HL, 1972, CAN J BOT, V50, P2431, DOI 10.1139/b72-312; Han Q, 2008, TREE PHYSIOL, V28, P1269, DOI 10.1093/treephys/28.8.1269; Harper J. L., 1977, POPULATION BIOL PLAN; Hemborg AM, 1998, OIKOS, V83, P273, DOI 10.2307/3546838; Hemborg AM, 1998, ECOSCIENCE, V5, P517, DOI 10.1080/11956860.1998.11682495; HERRERA CM, 1987, ECOL MONOGR, V57, P305, DOI 10.2307/2937089; Hillebrand K., 1996, Forst und Holz, V51, P216; Hoch G, 2005, PLANT CELL ENVIRON, V28, P651, DOI 10.1111/j.1365-3040.2004.01311.x; HOFGAARD A, 1993, J VEG SCI, V4, P601, DOI 10.2307/3236125; Holeksa J, 2005, EKOL BRATISLAVA, V24, P263; Holeksa J., 2008, STRUCTURE PRODUCTION, P49; Holmes R.L., 1983, TREE RING B, V43, P67; Ishihara MI, 2009, ANN BOT-LONDON, V104, P1195, DOI 10.1093/aob/mcp217; Kalson PS, 2005, REPROD ALLOCATION PL, P1; KELLY D, 1994, TRENDS ECOL EVOL, V9, P465, DOI 10.1016/0169-5347(94)90310-7; Kelly D, 2002, ANNU REV ECOL SYST, V33, P427, DOI 10.1146/annurev.ecolsys.33.020602.095433; Knops JMH, 2007, P NATL ACAD SCI USA, V104, P16982, DOI 10.1073/pnas.0704251104; Kobro S, 2003, POPUL ECOL, V45, P25, DOI 10.1007/s10104-003-0136-x; Koenig WD, 1998, NATURE, V396, P225, DOI 10.1038/24293; KOENIG WD, 1994, ECOLOGY, V75, P99, DOI 10.2307/1939386; KULLMAN L, 1986, ANN BOT FENN, V23, P267; Miechowka A, 2004, MONOGRAPH KOMITET OC, ppp; Miyazaki Y, 2002, ANN BOT-LONDON, V89, P767, DOI 10.1093/aob/mcf107; Monks A, 2006, AUSTRAL ECOL, V31, P366, DOI 10.1111/j.1442=9993.2006.01565.x; Nicotra AB, 1999, J ECOL, V87, P138, DOI 10.1046/j.1365-2745.1999.00337.x; Norton DA, 1988, FUNCT ECOL, V2, P399, DOI 10.2307/2389413; Obeso JR, 1997, J ECOL, V85, P159, DOI 10.2307/2960648; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; Obrbska-Starkel B., 2004, MONOGRAFIA PRZYRODNI, P137; Pias B, 2006, ACTA OECOL, V29, P97, DOI 10.1016/j.actao.2005.08.005; Piovesan G, 2001, CAN J BOT, V79, P1039, DOI 10.1139/cjb-79-9-1039; Pulliainen E., 1978, Aquilo Ser Zoologica, V18, P28; Raspe O, 2000, J ECOL, V88, P910, DOI 10.1046/j.1365-2745.2000.00502.x; Reekie E., 2005, REPROD ALLOCATION PL, P189, DOI 10. 1016/B978-012088386-8/50007-7; REEKIE EG, 1987, AM NAT, V129, P907, DOI 10.1086/284683; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; REZNICK DN, 1986, EVOLUTION, V40, P1338, DOI 10.1111/j.1558-5646.1986.tb05757.x; Sanchez-Humanes B, 2011, OECOLOGIA, V166, P101, DOI 10.1007/s00442-010-1819-6; Satake A, 2004, OIKOS, V104, P540, DOI 10.1111/j.0030-1299.2004.12694.x; Satake A, 2000, J THEOR BIOL, V203, P63, DOI 10.1006/jtbi.1999.1066; Schauber EM, 2002, ECOLOGY, V83, P1214, DOI 10.2307/3071937; SILVERTOWN JW, 1980, BIOL J LINN SOC, V14, P235, DOI 10.1111/j.1095-8312.1980.tb00107.x; Silvertown JW, 1999, AM NAT, V136, P154; SORK VL, 1993, ECOLOGY, V74, P528, DOI 10.2307/1939313; Sperens U, 1996, ECOSCIENCE, V3, P325, DOI 10.1080/11956860.1996.11682350; Sperens U, 1997, ECOGRAPHY, V20, P521, DOI 10.1111/j.1600-0587.1997.tb00421.x; TAPPEINER JC, 1969, FOREST SCI, V15, P171; WILLSON MF, 1986, AM MIDL NAT, V115, P204, DOI 10.2307/2425852; YAMAGUCHI DK, 1991, CAN J FOREST RES, V21, P414, DOI 10.1139/x91-053; Yasumura Y, 2006, FOREST ECOL MANAG, V229, P228, DOI 10.1016/j.foreco.2006.04.003; ywiec M, 2012, FOREST ECOL MANAG, V284, P205; Zywiec M, 2008, PLANT ECOL, V194, P283, DOI 10.1007/s11258-007-9291-z; Zywiec M, 2013, OECOLOGIA, V172, P461, DOI 10.1007/s00442-012-2502-x; Zywiec M, 2012, PLANT ECOL, V213, P993, DOI 10.1007/s11258-012-0059-8 61 7 8 1 41 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0931-1890 TREES-STRUCT FUNCT Trees-Struct. Funct. OCT 2013 27 5 1365 1373 10.1007/s00468-013-0884-y 9 Forestry Forestry 216YB WOS:000324321600016 Other Gold 2018-11-12 J Kavanagh, PS; Signal, TD; Taylor, N Kavanagh, Phillip S.; Signal, Tania D.; Taylor, Nik The Dark Triad and animal cruelty: Dark personalities, dark attitudes, and dark behaviors PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Dark Triad; Animal cruelty; Personality; Attitudes; Behavior LIFE-HISTORY THEORY; VIOLENCE; ABUSE; ADOLESCENTS; NARCISSISM; EMPATHY; TRAITS; STYLES; SAMPLE; YOUTH Research examining the interpersonal interactions of those high on the Dark Triad has proliferated in recent years. Extant research, however, has not examined other types of relationships such as attitudes and behaviors towards animals. Further, there has been limited research examining the associations between personality and attitudes and behaviors towards animals generally. In this study, participants (N = 227) completed an online survey measuring the Dark Triad, attitudes towards animals, and acts of animal cruelty. The results revealed that individuals with higher levels of the Dark Triad demonstrated less positive attitudes towards animals and reported engaging in more acts of animal cruelty. Age and sex were found to be significant predictors of less positive attitudes and behaviors towards animals, independent of the Dark Triad. These results suggest that those callous and manipulative behaviors and attitudes that have come to be associated with the Dark Triad are not just limited to human-to-human interactions, but are also consistent across other interactions. Crown Copyright (c) 2013 Published by Elsevier Ltd. All rights reserved. [Kavanagh, Phillip S.] Univ S Australia, Sch Psychol Social Work & Social Policy, Adelaide, SA 5001, Australia; [Signal, Tania D.] Cent Queensland Univ, Sch Hlth & Human Serv, Rockhampton, Qld 4702, Australia; [Taylor, Nik] Flinders Univ S Australia, Sch Social & Policy Studies, Adelaide, SA 5001, Australia Kavanagh, PS (reprint author), Univ S Australia, Sch Psychol Social Work & Social Policy, GPO Box 2471, Adelaide, SA 5001, Australia. phil.kavanagh@unisa.edu.au; t.signal@cqu.edu.au; nik.taylor@flinders.edu.au Taylor, Nik/0000-0003-3736-1443; Kavanagh, Phil/0000-0003-1090-4188 American Pet Products Association, 2012, APPA NAT PET OWN SUR; Ames DR, 2006, J RES PERS, V40, P440, DOI 10.1016/j.jrp.2005.03.002; Australian Companion Animal Council, 2010, CONTR PET CAR IND AU; Baldry AC, 2004, SOC ANIM, V12, P1, DOI 10.1163/156853004323029513; Baldry AC, 2003, J INTERPERS VIOLENCE, V18, P258, DOI 10.1177/0886260502250081; CHRISTIE R, 1970, STUDIES MACHIAVELLIA; Crysel LC, 2013, PERS INDIV DIFFER, V54, P35, DOI 10.1016/j.paid.2012.07.029; DEEGAN J, 1978, EDUC PSYCHOL MEAS, V38, P873, DOI 10.1177/001316447803800404; DRISCOLL JW, 1992, ANTHROZOOS, V5, P32, DOI 10.2752/089279392787011575; Furnham A, 2003, ANTHROZOOS, V16, P135, DOI 10.2752/089279303786992260; Gullone E, 2008, J APPL DEV PSYCHOL, V29, P371, DOI 10.1016/j.appdev.2008.06.004; Hayes AF, 2009, COMMUN MONOGR, V76, P408, DOI 10.1080/03637750903310360; Henry BC, 2004, SOC ANIM, V12, P185, DOI 10.1163/1568530042880677; Herzog H. A., 1997, ANTHROPOMORPHISM ANE, P237; Herzog HA, 2007, ANTHROZOOS, V20, P7, DOI 10.2752/089279307780216687; Jonason P. K., 2011, J METHODS MEASUREMEN, V2, P28, DOI DOI 10.2458/AZU_; Jonason PK, 2013, PERS INDIV DIFFER, V54, P572, DOI 10.1016/j.paid.2012.11.009; Jonason PK, 2012, REV GEN PSYCHOL, V16, P192, DOI 10.1037/a0027914; Jonason PK, 2012, PERS INDIV DIFFER, V52, P521, DOI 10.1016/j.paid.2011.11.023; Jonason PK, 2012, PERS INDIV DIFFER, V52, P449, DOI 10.1016/j.paid.2011.11.008; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2010, PERS INDIV DIFFER, V49, P606, DOI 10.1016/j.paid.2010.05.030; Jonason PK, 2010, PSYCHOL ASSESSMENT, V22, P420, DOI 10.1037/a0019265; Jones D. N., 2012, EUROPEAN J PERSONALI; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; Khan R, 2008, J INTERPERS VIOLENCE, V23, P1513, DOI 10.1177/0886260508314312; Knight S, 2004, ANTHROZOOS, V17, P43, DOI 10.2752/089279304786991945; Mathews S, 1997, SOC ANIM, V5, P169, DOI 10.1163/156853097X00060; McDonald MM, 2012, PERS INDIV DIFFER, V52, P601, DOI 10.1016/j.paid.2011.12.003; O'Grady KE, 2007, PRISON J, V87, P416, DOI 10.1177/0032885507307124; Oleson JC, 2009, ANTHROZOOS, V22, P255, DOI 10.2752/175303709X457595; Paulhus D. L., 2010, SELF REPORT PSYCHOPA; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; Schleidt Wolfgang, 2003, Evolution and Cognition, V9, P57; Sharp H. W., 2006, SPRING C N CAR PSYCH; Signal TD, 2006, SOC ANIM, V14, P147, DOI 10.1163/156853006776778743; Simons DA, 2008, CHILD ABUSE NEGLECT, V32, P549, DOI 10.1016/j.chiabu.2007.03.027; Slavkin ML, 2001, ADOLESCENCE, V36, P461; Tallichet SE, 2005, CRIM JUSTICE STUD, V18, P173, DOI 10.1080/14786010500157235; Taylor N., 2008, SOCIOLOGICAL RES ONL, V13, P2, DOI [10.5153/sro.1661, DOI 10.5153/SRO.1661]; Vaughn MG, 2009, J PSYCHIATR RES, V43, P1213, DOI 10.1016/j.jpsychires.2009.04.011; Veselka L, 2010, PERS INDIV DIFFER, V48, P772, DOI 10.1016/j.paid.2010.01.017; Volant AM, 2008, J INTERPERS VIOLENCE, V23, P1277, DOI 10.1177/0886260508314309 43 27 29 5 82 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. OCT 2013 55 6 666 670 10.1016/j.paid.2013.05.019 5 Psychology, Social Psychology 199TY WOS:000323019600007 2018-11-12 J Mascaro, JS; Hackett, PD; Rilling, JK Mascaro, Jennifer S.; Hackett, Patrick D.; Rilling, James K. Testicular volume is inversely correlated with nurturing-related brain activity in human fathers PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article empathy; sperm competition LIFE-HISTORY STRATEGY; SPERM COMPETITION; TESTES SIZE; REPRODUCTIVE SUCCESS; MATERNAL-BEHAVIOR; NEURAL CIRCUITRY; SEXUAL-BEHAVIOR; BREEDING-SEASON; PARENTAL CARE; TESTOSTERONE Despite the well-documented benefits afforded the children of invested fathers in modern Western societies, some fathers choose not to invest in their children. Why do some men make this choice? Life History Theory offers an explanation for variation in parental investment by positing a trade-off between mating and parenting effort, which may explain some of the observed variance in human fathers' parenting behavior. We tested this hypothesis by measuring aspects of reproductive biology related to mating effort, as well as paternal nurturing behavior and the brain activity related to it. Both plasma testosterone levels and testes volume were independently inversely correlated with paternal caregiving. In response to viewing pictures of one's own child, activity in the ventral tegmental area-a key component of the mesolimbic dopamine reward and motivation system-predicted paternal caregiving and was negatively related to testes volume. Our results suggest that the biology of human males reflects a trade-off between mating effort and parenting effort, as indexed by testicular size and nurturing-related brain function, respectively. [Mascaro, Jennifer S.; Hackett, Patrick D.; Rilling, James K.] Emory Univ, Dept Anthropol, Atlanta, GA 30322 USA; [Rilling, James K.] Emory Univ, Ctr Translat Social Neurosci, Atlanta, GA 30322 USA; [Mascaro, Jennifer S.; Rilling, James K.] Emory Univ, Sch Med, Dept Psychiat & Behav Sci, Atlanta, GA 30322 USA; [Mascaro, Jennifer S.; Rilling, James K.] Emory Univ, Ctr Behav Neurosci, Atlanta, GA 30322 USA Rilling, JK (reprint author), Emory Univ, Dept Anthropol, Atlanta, GA 30322 USA. jrillin@emory.edu Yerkes National Primate Research Center [2P51RR000165-51]; John Templeton Foundation We thank Sherryl Goodman for guidance regarding the measurement of paternal behavior. Assay services were provided by the Biomarkers Core Laboratory at the Yerkes National Primate Research Center, which is supported by Yerkes National Primate Research Center Base Grant 2P51RR000165-51. This work was supported by a Positive Neuroscience Award from the John Templeton Foundation. Alvergne A, 2009, HORM BEHAV, V56, P491, DOI 10.1016/j.yhbeh.2009.07.013; Anderson KG, 2010, FATHERHOOD EVOLUTION; Apicella CL, 2007, HUM NATURE-INT BIOS, V18, P22, DOI 10.1007/BF02820844; ARIBARG A, 1986, INT J ANDROL, V9, P170, DOI 10.1111/j.1365-2605.1986.tb00880.x; Atzil S, 2011, NEUROPSYCHOPHARMACOL, V36, P2603, DOI 10.1038/npp.2011.172; Bahk JY, 2010, UROLOGY, V75, P1318, DOI 10.1016/j.urology.2009.12.007; Bartels A, 2004, NEUROIMAGE, V21, P1155, DOI 10.1016/j.neuroimage.2003.11.003; Bellis MA, 1995, HUMAN SPERM COMPETIT; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; BOOTH A, 1993, SOC FORCES, V72, P463, DOI 10.2307/2579857; Cabrera NJ, 2000, CHILD DEV, V71, P127, DOI 10.1111/1467-8624.00126; Catania JA, 1996, PUBLIC OPIN QUART, V60, P345, DOI 10.1086/297758; Champagne F, 2001, P NATL ACAD SCI USA, V98, P12736, DOI 10.1073/pnas.221224598; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Eisenegger C, 2011, TRENDS COGN SCI, V15, P263, DOI 10.1016/j.tics.2011.04.008; Fenton KA, 2001, SEX TRANSM INFECT, V77, P84, DOI 10.1136/sti.77.2.84; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Fleming AS, 2002, HORM BEHAV, V42, P399, DOI 10.1006/hbeh.2002.1840; Gaudino JA, 1999, SOC SCI MED, V48, P253, DOI 10.1016/S0277-9536(98)00342-6; Gettler LT, 2011, P NATL ACAD SCI USA, V108, P16194, DOI 10.1073/pnas.1105403108; HARCOURT AH, 1981, NATURE, V293, P55, DOI 10.1038/293055a0; HARCOURT AH, 1995, FUNCT ECOL, V9, P468, DOI 10.2307/2390011; Hermans EJ, 2008, BIOL PSYCHIAT, V63, P263, DOI 10.1016/j.biopsych.2007-05-013; Hrdy S. B., 2009, MOTHERS OTHERS EVOLU; Hunt KE, 1999, BEHAV ECOL SOCIOBIOL, V45, P360, DOI 10.1007/s002650050572; Kim P, 2010, BEHAV NEUROSCI, V124, P695, DOI 10.1037/a0020884; KOTHARI LK, 1974, INT J FERTIL, V19, P140; Kuo PX, 2012, BIOL PSYCHOL, V91, P302, DOI 10.1016/j.biopsycho.2012.08.002; Lack D., 1954, NATURAL REGULATION A, P343; Lieberman MD, 2007, ANNU REV PSYCHOL, V58, P259, DOI 10.1146/annurev.psych.58.110405.085654; Martin RD, 2007, YEARB PHYS ANTHROPOL, V50, P59, DOI 10.1002/ajpa.20734; MCBRIDE BA, 1993, EARLY CHILDHOOD RES, V8, P457, DOI DOI 10.1016/S0885-2006(05)80080-8; Mehl MR, 2001, BEHAV RES METH INS C, V33, P517, DOI 10.3758/BF03195410; MOLLER AP, 1988, J HUM EVOL, V17, P479, DOI 10.1016/0047-2484(88)90037-1; Montague DPF, 2002, CHILD DEV, V73, P1339, DOI 10.1111/1467-8624.00475; Numan M, 2007, DEV PSYCHOBIOL, V49, P12, DOI 10.1002/dev.20198; Numan M, 2009, FRONT NEUROENDOCRIN, V30, P46, DOI 10.1016/j.yfrne.2008.10.002; Preston BT, 2003, P ROY SOC B-BIOL SCI, V270, P633, DOI 10.1098/rspb.2002.2268; Rilling JK, 2013, NEUROPSYCHOLOGIA, V51, P731, DOI 10.1016/j.neuropsychologia.2012.12.017; Sarkadi A, 2008, ACTA PAEDIATR, V97, P153, DOI 10.1111/j.1651-2227.2007.00572.x; Schulte-Hostedde AI, 2004, BEHAV ECOL SOCIOBIOL, V55, P272, DOI 10.1007/s00265-003-0707-z; Simmons LW, 2004, ANIM BEHAV, V68, P297, DOI 10.1016/j.anbehav.2003.11.013; Spyropoulos E, 2002, UROLOGY, V60, P485, DOI 10.1016/S0090-4295(02)01869-1; Strathearn L, 2009, NEUROPSYCHOPHARMACOL, V34, P2655, DOI 10.1038/npp.2009.103; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; Trivers RR, 1972, SEXUAL SELECTION DES; van Honka J, 2011, P NATL ACAD SCI USA, V108, P3448, DOI 10.1073/pnas.1011891108; Wang C, 2000, J CLIN ENDOCR METAB, V85, P2839, DOI 10.1210/jc.85.8.2839; Weitoft GR, 2003, LANCET, V361, P289, DOI 10.1016/S0140-6736(03)12324-0; WINGFIELD JC, 1990, AM NAT, V136, P829, DOI 10.1086/285134; Wittfoth-Schardt D, 2012, NEUROPSYCHOPHARMACOL, V37, P1799, DOI 10.1038/npp.2012.47; Wynne-Edwards KE, 2001, HORM BEHAV, V40, P139, DOI 10.1006/hbeh.2001.1699 52 51 51 3 61 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. SEP 24 2013 110 39 15746 15751 10.1073/pnas.1305579110 6 Multidisciplinary Sciences Science & Technology - Other Topics 222XE WOS:000324765100055 24019499 Green Published, Bronze 2018-11-12 J Tarwater, CE; Beissinger, SR Tarwater, Corey E.; Beissinger, Steven R. Opposing selection and environmental variation modify optimal timing of breeding PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article reproductive success; juvenile survival; adult survival; Forpus passerinus WILD BIRD POPULATION; CLIMATE-CHANGE; PHENOTYPIC SELECTION; NATURAL-POPULATIONS; NEOTROPICAL PARROT; CLUTCH SIZE; DIRECTIONAL SELECTION; REPRODUCTIVE SUCCESS; HATCHING ASYNCHRONY; GREAT TITS Studies of evolution in wild populations often find that the heritable phenotypic traits of individuals producing the most offspring do not increase proportionally in the population. This paradox may arise when phenotypic traits influence both fecundity and viability and when there is a tradeoff between these fitness components, leading to opposing selection. Such tradeoffs are the foundation of life history theory, but they are rarely investigated in selection studies. Timing of breeding is a classic example of a heritable trait under directional selection that does not result in an evolutionary response. Using a 22-y study of a tropical parrot, we show that opposing viability and fecundity selection on the timing of breeding is common and affects optimal breeding date, defined by maximization of fitness. After accounting for sampling error, the directions of viability (positive) and fecundity (negative) selection were consistent, but the magnitude of selection fluctuated among years. Environmental conditions (rainfall and breeding density) primarily and breeding experience secondarily modified selection, shifting optimal timing among individuals and years. In contrast to other studies, viability selection was as strong as fecundity selection, late-born juveniles had greater survival than early-born juveniles, and breeding later in the year increased fitness under opposing selection. Our findings provide support for life history tradeoffs influencing selection on phenotypic traits, highlight the need to unify selection and life history theory, and illustrate the importance of monitoring survival as well as reproduction for understanding phenological responses to climate change. [Tarwater, Corey E.; Beissinger, Steven R.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Ecosyst Sci Div, Berkeley, CA 94720 USA Tarwater, CE (reprint author), Univ British Columbia, Dept Forest & Conservat Sci, Vancouver, BC V6T 1Z4, Canada. cetarwater@gmail.com National Science Foundation [IBN-9407349, DEB-9503194, IBN-0113173]; Smithsonian Institution; National Geographic Society; A. Starker Leopold Chair in Wildlife Biology We thank the many Forpus field workers over the years and acknowledge the long-term contributions by Karl Berg, Virginia Saenz, and Scott Stoleson. The laboratory of S. R. B., J. Patrick Kelley, Stephanie Carlson, Shripad Tuljapurkar, Sutirth Dey, and two anonymous reviewers provided helpful comments on the manuscript. The late Tomas Blohm gave us permission to work and live on his ranch. The research described here was compliant with the current laws of Venezuela. Decades of parrotlet research were funded primarily by multiple grants from each of our long-term sponsors: National Science Foundation Grants IBN-9407349, DEB-9503194 and IBN-0113173, the Smithsonian Institution, the National Geographic Society, and the A. Starker Leopold Chair in Wildlife Biology. Ahola MP, 2009, J ANIM ECOL, V78, P1298, DOI 10.1111/j.1365-2656.2009.01596.x; Beissinger SR, 1998, ANIM BEHAV, V55, P21, DOI 10.1006/anbe.1997.0576; Beissinger SR, 1996, AM NAT, V147, P655, DOI 10.1086/285872; Beissinger SR, 2008, ORNITOL NEOTROP, V19, P73; Bohning-Gaese K, 2000, EVOL ECOL RES, V2, P823; Bonebrake TC, 2010, OECOLOGIA, V163, P385, DOI 10.1007/s00442-010-1566-8; Borash DJ, 1998, AM NAT, V151, P148, DOI 10.1086/286108; Both C, 2004, P ROY SOC B-BIOL SCI, V271, P1657, DOI 10.1098/rspb.2004.2770; Burnham KP, 2002, MODEL SELECTION INFE; Candolin U, 2004, EVOLUTION, V58, P1861; Caswell H, 2001, MATRIX POPULATION MO; Charmantier A, 2008, SCIENCE, V320, P800, DOI 10.1126/science.1157174; Christensen JH, 2007, CLIMATE CHANGE 2007: THE PHYSICAL SCIENCE BASIS, P847; DAAN S, 1990, BEHAVIOUR, V114, P83, DOI 10.1163/156853990X00068; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Garant D, 2007, EVOLUTION, V61, P1546, DOI 10.1111/j.1558-5646.2007.00128.x; Greene CM, 2001, ECOLOGY, V82, P2091; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Husby A, 2011, PLOS BIOL, V9, DOI 10.1371/journal.pbio.1000585; Kingsolver JG, 2012, EVOL ECOL, V26, P1101, DOI 10.1007/s10682-012-9563-5; Kingsolver JG, 2011, AM NAT, V177, P346, DOI 10.1086/658341; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; MacColl ADC, 2011, TRENDS ECOL EVOL, V26, P514, DOI 10.1016/j.tree.2011.06.009; Matsumura S, 2012, BIOSCIENCE, V62, P1039, DOI 10.1525/bio.2012.62.12.6; Merila J, 2001, GENETICA, V112, P199, DOI 10.1023/A:1013391806317; Morrissey MB, 2012, EVOLUTION, V66, P435, DOI 10.1111/j.1558-5646.2011.01444.x; Nevoux M, 2007, J ANIM ECOL, V76, P159, DOI 10.1111/j.1365-2656.2006.01191.x; Parmesan C, 2006, ANNU REV ECOL EVOL S, V37, P637, DOI 10.1146/annurev.ecolsys.37.091305.110100; Roff D. A., 2002, LIFE HIST EVOLUTION; Royle JA, 2008, HIERARCHICAL MODELIN; Sandercock BK, 2000, ECOLOGY, V81, P1351, DOI 10.1890/0012-9658(2000)081[1351:SROANP]2.0.CO;2; SCHLUTER D, 1991, P ROY SOC B-BIOL SCI, V246, P11, DOI 10.1098/rspb.1991.0118; Senapathi D, 2011, P ROY SOC B-BIOL SCI, V278, P3184, DOI 10.1098/rspb.2011.0212; Sheldon BC, 2003, EVOLUTION, V57, P406; Siepielski AM, 2011, P ROY SOC B-BIOL SCI, V278, P1572, DOI 10.1098/rspb.2010.1973; Stoleson SH, 1997, ECOL MONOGR, V67, P131, DOI 10.1890/0012-9615(1997)067[0131:HABRAF]2.0.CO;2; Tarwater CE, 2012, ECOL LETT, V15, P1218, DOI 10.1111/j.1461-0248.2012.01843.x; Tarwater CE, 2011, ECOLOGY, V92, P1271, DOI 10.1890/10-1386.1; Veran S, 2009, ECOL LETT, V12, P129, DOI 10.1111/j.1461-0248.2008.01268.x; VERHULST S, 1995, ECOLOGY, V76, P2392, DOI 10.2307/2265815; Verhulst S, 2008, PHILOS T R SOC B, V363, P399, DOI 10.1098/rstb.2007.2146; Visser ME, 2010, PHILOS T R SOC B, V365, P3113, DOI 10.1098/rstb.2010.0111; Williams SE, 2008, DIVERS DISTRIB, V14, P69, DOI 10.1111/j.1472-4642.2007.00418.x; Wilson AJ, 2006, PLOS BIOL, V4, P1270, DOI 10.1371/journal.pbio.0040216 44 9 9 2 72 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. SEP 17 2013 110 38 15365 15370 10.1073/pnas.1303821110 6 Multidisciplinary Sciences Science & Technology - Other Topics 219GW WOS:000324495300056 24003118 Green Published, Bronze 2018-11-12 J Jaatinen, K; Seltmann, MW; Hollmen, T; Atkinson, S; Mashburn, K; Ost, M Jaatinen, Kim; Seltmann, Martin W.; Hollmen, Tuula; Atkinson, Shannon; Mashburn, Kendall; Ost, Markus Context dependency of baseline glucocorticoids as indicators of individual quality in a capital breeder GENERAL AND COMPARATIVE ENDOCRINOLOGY English Article Body temperature; CORT-fitness hypothesis; Individual quality; Context-dependent CORT response; Baseline CORT; Somateria mollissima EIDERS SOMATERIA-MOLLISSIMA; LONG-LIVED BIRD; CORTICOSTERONE LEVELS; COMMON EIDERS; LIFE-HISTORY; CLUTCH SIZE; MATERNAL CORTICOSTERONE; STRESS RESPONSIVENESS; REPRODUCTIVE SUCCESS; PASSERINE BIRD Identifying markers of individual quality is a central goal of life-history theory and conservation biology. The 'corticosterone (CORT)-fitness hypothesis' postulates that low fitness signals impaired ability to cope with the environment, resulting in elevated baseline CORT levels. CORT can, however, be negatively, positively or neutrally related to fitness, depending on the context. In order to clarify this controversial issue, we elucidate the utility of using baseline CORT as a correlate of individual fitness in incubating female eiders across variable environments. An increase in serum CORT with decreasing body condition was evident in older, more experienced breeders, while increased clutch mass was associated with elevated serum CORT in females breeding late in the season. For faecal CORT, the expected negative association with body condition was observed only in early breeders. We found a strong increase in faecal CORT with increasing baseline body temperature, indicating the utility of body temperature as a complementary stress indicator. Females in good body condition had a lower baseline body temperature, but this effect was only observed on open islands, a harsher breeding habitat less buffered against weather variability. Females with higher reproductive investment also maintained a lower baseline body temperature. Nest success strongly decreased with increasing serum and faecal CORT concentrations, and individual stress hormone and body temperature profiles were repeatable over years. Although our data support the tenet that baseline CORT is negatively related to fitness, the complex context-dependent effects call for cautious interpretation of relationships between stress physiology and phenotypic quality. (C) 2013 Elsevier Inc. All rights reserved. [Jaatinen, Kim] Australian Natl Univ, Evolut Ecol & Genet Res Sch Biol, ANU Coll Med Biol & Environm, Canberra, ACT 0200, Australia; [Seltmann, Martin W.; Ost, Markus] Abo Akad Univ, ARONIA Coastal Zone Res Team, Turku, Finland; [Hollmen, Tuula; Atkinson, Shannon; Mashburn, Kendall] Univ Alaska Fairbanks, Sch Fisheries & Ocean Sci, Inst Marine Sci, Fairbanks, AK USA; [Hollmen, Tuula] Alaska Sealife Ctr, Seward, AK USA; [Atkinson, Shannon; Mashburn, Kendall] Univ Alaska Fairbanks, Sch Fisheries & Ocean Sci, Div Fisheries, Juneau, AK USA Jaatinen, K (reprint author), Australian Natl Univ, Evolut Ecol & Genet Res Sch Biol, ANU Coll Med Biol & Environm, GPO Box 4, Canberra, ACT 0200, Australia. kim.jaatinen@gmail.com Jaatinen, Kim/A-3221-2011; Ost, Markus/C-7376-2008 Ost, Markus/0000-0002-2205-1437 Academy of Finland [128039]; Finnish Cultural Foundation; Onni Talas Foundation; Swedish Cultural Foundation We thank Petteri Lehikoinen, Johan Ekroos and James Montanari for assistance in the field. Tvarminne Zoological Station provided facilities and equipment for fieldwork. The study was funded by the Academy of Finland (to KJ, MS and MO; grant no. 128039), the Finnish Cultural Foundation (to KJ), Onni Talas Foundation (to MS) and the Swedish Cultural Foundation (to MO). Aiken L.S., 1991, MULTIPLE REGRESSION; Angelier F, 2010, BIOL LETTERS, V6, P846, DOI 10.1098/rsbl.2010.0376; Bokony V, 2009, AM NAT, V173, P589, DOI 10.1086/597610; Bolduc F, 2003, BIOL CONSERV, V110, P77, DOI 10.1016/S0006-3207(02)00178-7; Bonier F, 2010, TRENDS ECOL EVOL, V25, P262, DOI 10.1016/j.tree.2010.01.009; Bonier F, 2009, TRENDS ECOL EVOL, V24, P634, DOI 10.1016/j.tree.2009.04.013; Bonier F, 2009, GEN COMP ENDOCR, V163, P208, DOI 10.1016/j.ygcen.2008.12.013; Cabanac AJ, 2001, PHYSIOL BEHAV, V74, P475, DOI 10.1016/S0031-9384(01)00586-8; Campeau S, 2008, NEUROSCI BIOBEHAV R, V32, P1277, DOI 10.1016/j.neubiorev.2008.05.014; Charmantier A, 2005, P ROY SOC B-BIOL SCI, V272, P1415, DOI 10.1098/rspb.2005.3117; Clinchy M, 2013, FUNCT ECOL, V27, P56, DOI 10.1111/1365-2435.12007; Cockrem JF, 2005, HORM BEHAV, V48, P492, DOI 10.1016/j.yhbeh.2005.03.008; Cockrem JF, 2002, GEN COMP ENDOCR, V125, P197, DOI 10.1006/gcen.2001.7750; Crespi EJ, 2013, FUNCT ECOL, V27, P93, DOI 10.1111/1365-2435.12009; Criscuolo F, 2006, PHYSIOL BIOCHEM ZOOL, V79, P514, DOI 10.1086/501065; Crossin GT, 2012, AM NAT, V180, pE31, DOI 10.1086/666001; D'Alba L, 2011, GEN COMP ENDOCR, V172, P218, DOI 10.1016/j.ygcen.2011.03.006; Descamps S, 2009, BIOL LETTERS, V5, P278, DOI 10.1098/rsbl.2008.0704; Dingemanse NJ, 2010, TRENDS ECOL EVOL, V25, P261, DOI 10.1016/j.tree.2010.01.008; Ekroos J, 2012, OECOLOGIA, V170, P979, DOI 10.1007/s00442-012-2378-9; Evans MR, 2006, J EVOLUTION BIOL, V19, P343, DOI 10.1111/j.1420-9101.2005.01034.x; Fast PLF, 2007, J AVIAN BIOL, V38, P205, DOI 10.1111/j.2007.0908-8857.03820.x; FORSLUND P, 1992, J ANIM ECOL, V61, P195, DOI 10.2307/5522; GABRIELSEN GW, 1991, NOR POLARINST SKR, V195, P51; Hanssen SA, 2002, BEHAV ECOL SOCIOBIOL, V52, P282, DOI 10.1007/s00265-002-0523-x; Hau M, 2010, P ROY SOC B-BIOL SCI, V277, P3203, DOI 10.1098/rspb.2010.0673; Hayashida S, 2010, PHYSIOL BEHAV, V101, P124, DOI 10.1016/j.physbeh.2010.04.027; Hayward LS, 2004, GEN COMP ENDOCR, V135, P365, DOI 10.1016/j.ygcen.2003.11.002; Jaatinen K, 2011, ANIM BEHAV, V81, P1289, DOI 10.1016/j.anbehav.2011.03.020; Kilpi M, 1997, OECOLOGIA, V111, P297, DOI 10.1007/s004420050238; Kilpi M, 2001, ANIM BEHAV, V62, P527, DOI 10.1006/anbe.2001.1784; Lehikoinen A, 2010, BIOL LETTERS, V6, P225, DOI 10.1098/rsbl.2009.0744; Mashburn KL, 2004, GEN COMP ENDOCR, V136, P371, DOI 10.1016/j.ygcen.2004.01.016; Meerlo P, 1996, PHYSIOL BEHAV, V59, P735, DOI 10.1016/0031-9384(95)02182-5; Mostl E, 2005, ANN NY ACAD SCI, V1046, P17, DOI 10.1196/annals.1343.004; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Nilsson P. B., 2004, THESIS U ALASKA FAIR; Ost M, 2008, OECOLOGIA, V158, P205, DOI 10.1007/s00442-008-1139-2; Ost M, 2008, J ANIM ECOL, V77, P315, DOI 10.1111/j.1365-2656.2007.01348.x; Ost M, 2011, OECOLOGIA, V166, P327, DOI 10.1007/s00442-010-1855-2; Ost M, 2010, OECOLOGIA, V162, P59, DOI 10.1007/s00442-009-1444-4; Ouyang JQ, 2011, P ROY SOC B-BIOL SCI, V278, P2537, DOI 10.1098/rspb.2010.2490; PARKER H, 1990, AUK, V107, P660, DOI 10.2307/4087996; Purnell JQ, 2004, J CLIN ENDOCR METAB, V89, P281, DOI 10.1210/jc.2003-030440; R Development Core Team, 2008, R LANG ENV STAT COMP; Robert A, 2012, ECOLOGY, V93, P1944, DOI 10.1890/11-1840.1; Romero LM, 2001, P NATL ACAD SCI USA, V98, P7366, DOI 10.1073/pnas.131091498; Romero LM, 2002, GEN COMP ENDOCR, V128, P1; Rubolini D, 2005, HORM BEHAV, V47, P592, DOI 10.1016/j.yhbeh.2005.01.006; Saino N, 2005, J EXP ZOOL PART A, V303A, P998, DOI 10.1002/jez.a.224; Schmidt JB, 2009, BRIT POULTRY SCI, V50, P739, DOI 10.1080/00071660903317571; Seltmann MW, 2012, ANIM BEHAV, V84, P889, DOI 10.1016/j.anbehav.2012.07.012; Sheriff MJ, 2009, J ANIM ECOL, V78, P1249, DOI 10.1111/j.1365-2656.2009.01552.x; STEINBEHRENS BA, 1992, AGING-CLIN EXP RES, V4, P197; Wads H., 2006, PHYSIOL BIOCHEM ZOOL, V79, P784; Waldeck P, 2004, BEHAVIOUR, V141, P725, DOI 10.1163/1568539042245132; Warne JP, 2009, AM J PHYSIOL-REG I, V296, pR1366, DOI 10.1152/ajpregu.91016.2008; Wingfield JC, 1998, AM ZOOL, V38, P191; Yoccoz NG, 2002, J APPL STAT, V29, P57, DOI 10.1080/02664760120108458 59 19 19 1 75 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0016-6480 GEN COMP ENDOCR Gen. Comp. Endocrinol. SEP 15 2013 191 231 238 10.1016/j.ygcen.2013.06.022 8 Endocrinology & Metabolism Endocrinology & Metabolism 210YD WOS:000323870400025 23851039 2018-11-12 J Marzoli, D; Moretto, F; Monti, A; Tocci, O; Roberts, SC; Tommasi, L Marzoli, Daniele; Moretto, Francesco; Monti, Aura; Tocci, Ornella; Roberts, S. Craig; Tommasi, Luca Environmental Influences on Mate Preferences as Assessed by a Scenario Manipulation Experiment PLOS ONE English Article LONELY HEARTS ADVERTISEMENTS; GAP-PREDICTS-DEGREE; LIFE-HISTORY THEORY; MALE FACES; WOMENS PREFERENCES; BENEVOLENT SEXISM; REPRODUCTIVE STRATEGIES; FACIAL ATTRACTIVENESS; PATHOGEN PREVALENCE; INTERVIEWER GENDER Many evolutionary psychology studies have addressed the topic of mate preferences, focusing particularly on gender and cultural differences. However, the extent to which situational and environmental variables might affect mate preferences has been comparatively neglected. We tested 288 participants in order to investigate the perceived relative importance of six traits of an ideal partner (wealth, dominance, intelligence, height, kindness, attractiveness) under four different hypothetical scenarios (status quo/nowadays, violence/post-nuclear, poverty/resource exhaustion, prosperity/global wellbeing). An equal number of participants (36 women, 36 men) was allotted to each scenario; each was asked to allocate 120 points across the six traits according to their perceived value. Overall, intelligence was the trait to which participants assigned most importance, followed by kindness and attractiveness, and then by wealth, dominance and height. Men appraised attractiveness as more valuable than women. Scenario strongly influenced the relative importance attributed to traits, the main finding being that wealth and dominance were more valued in the poverty and post-nuclear scenarios, respectively, compared to the other scenarios. Scenario manipulation generally had similar effects in both sexes, but women appeared particularly prone to trade off other traits for dominance in the violence scenario, and men particularly prone to trade off other traits for wealth in the poverty scenario. Our results are in line with other correlational studies of situational variables and mate preferences, and represent strong evidence of a causal relationship of environmental factors on specific mate preferences, corroborating the notion of an evolved plasticity to current ecological conditions. A control experiment seems to suggest that our scenarios can be considered as realistic descriptions of the intended ecological conditions. [Marzoli, Daniele; Moretto, Francesco; Monti, Aura; Tocci, Ornella; Tommasi, Luca] Univ G dAnnunzio, Dipartimento Sci Psicol Umanist & Terr, Chieti, Italy; [Roberts, S. Craig] Univ Stirling, Sch Nat Sci, Stirling FK9 4LA, Scotland Marzoli, D (reprint author), Univ G dAnnunzio, Dipartimento Sci Psicol Umanist & Terr, Chieti, Italy. d.marzoli@unich.it Roberts, S. Craig/E-6919-2011 Roberts, S. Craig/0000-0002-9641-6101; Tommasi, Luca/0000-0003-0664-714X BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Burriss RP, 2011, PERS INDIV DIFFER, V50, P542, DOI 10.1016/j.paid.2010.11.022; Buss D, 2003, EVOLUTION DESIRE; Buss D. M., 2008, EVOLUTIONARY PSYCHOL; Buss D.M., 1989, BEHAV BRAIN SCI, V122, P1, DOI DOI 10.1017/S0140525X00023992; BUSS DM, 1990, J CROSS CULT PSYCHOL, V21, P5, DOI 10.1177/0022022190211001; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; Campos LD, 2002, EVOL HUM BEHAV, V23, P395; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Cohen D. L., 2008, J EVOLUTIONARY PSYCH, V6, P25, DOI DOI 10.1556/1EP; DeBruine LM, 2011, P ROY SOC B-BIOL SCI, V278, P813, DOI 10.1098/rspb.2010.2200; DeBruine LM, 2010, P ROY SOC B-BIOL SCI, V277, P2405, DOI 10.1098/rspb.2009.2184; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Eagly AH, 1999, AM PSYCHOL, V54, P408, DOI 10.1037//0003-066X.54.6.408; Edlund JE, 2010, PERS INDIV DIFFER, V49, P835, DOI 10.1016/j.paid.2010.07.004; EGOLF DB, 1991, SEX ROLES, V24, P365, DOI 10.1007/BF00288309; Figueredo AJ, 2010, LIFE HIST STRATEGY C; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Fisher TD, 2007, ARCH SEX BEHAV, V36, P89, DOI 10.1007/s10508-006-9094-7; Fraley RC, 2002, PERS SOC PSYCHOL REV, V6, P123, DOI 10.1207/S15327957PSPR0602_03; GALLA JP, 1981, PSYCHOL REP, V49, P935, DOI 10.2466/pr0.1981.49.3.935; GANGESTAD SW, 1993, ETHOL SOCIOBIOL, V14, P89, DOI 10.1016/0162-3095(93)90009-7; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Gawley T, 2009, SEX ROLES, V60, P208, DOI 10.1007/s11199-008-9520-5; Geary DC, 2004, J SEX RES, V41, P27, DOI 10.1080/00224490409552211; Glick P, 2001, AM PSYCHOL, V56, P109, DOI 10.1037//0003-066X.56.2.109; HOLM S, 1979, SCAND J STAT, V6, P65; Huddy L, 1997, POLIT BEHAV, V19, P197, DOI 10.1023/A:1024882714254; Johnston VS, 2001, EVOL HUM BEHAV, V22, P251, DOI 10.1016/S1090-5138(01)00066-6; Jones BC, 2011, BIOL PSYCHOL, V87, P453, DOI 10.1016/j.biopsycho.2011.04.004; Jost JT, 2005, J PERS SOC PSYCHOL, V88, P498, DOI 10.1037/0022-3514.88.3.498; KANE EW, 1993, PUBLIC OPIN QUART, V57, P1, DOI 10.1086/269352; Kang MJ, 2011, J NEUROSCI, V31, P461, DOI 10.1523/JNEUROSCI.1583-10.2011; Law-Smith MJ, 2006, P ROY SOC B-BIOL SCI, V273, P135, DOI 10.1098/rspb.2005.3296; Lee AJ, 2011, BIOL LETTERS, V7, P892, DOI 10.1098/rsbl.2011.0454; LEVIN IP, 1983, ORGAN BEHAV HUM PERF, V31, P173, DOI 10.1016/0030-5073(83)90119-8; Li NP, 2006, J PERS SOC PSYCHOL, V90, P468, DOI 10.1037/0022-3514.90.3.468; Li NP, 2002, J PERS SOC PSYCHOL, V82, P947, DOI 10.1037//0022-3514.82.6.947; Lippa RA, 2007, ARCH SEX BEHAV, V36, P209, DOI 10.1007/s10508-006-9146-z; Little AC, 2001, P ROY SOC B-BIOL SCI, V268, P39, DOI 10.1098/rspb.2000.1327; Little AC, 2007, BEHAV ECOL SOCIOBIOL, V61, P967, DOI 10.1007/s00265-006-0325-7; Little AC, 2013, PSYCHONEUROENDOCRINO, V38, P1777, DOI 10.1016/j.psyneuen.2013.02.014; Little AC, 2013, EVOL HUM BEHAV, V34, P193, DOI 10.1016/j.evolhumbehav.2012.11.008; Little AC, 2011, P ROY SOC B-BIOL SCI, V278, P2032, DOI 10.1098/rspb.2010.1925; Little AC, 2010, PSYCHONEUROENDOCRINO, V35, P912, DOI 10.1016/j.psyneuen.2009.12.006; Lorber MF, 2004, J FAM VIOLENCE, V19, P329, DOI 10.1007/s10896-004-0678-5; McGraw KJ, 2002, ETHOLOGY, V108, P303, DOI 10.1046/j.1439-0310.2002.00757.x; MELAMED T, 1992, PERS INDIV DIFFER, V13, P1349, DOI 10.1016/0191-8869(92)90179-S; Mesnick S., 1997, FEMINISM EVOLUTIONAR, P207; Montoya RM, 2005, SEXUALITIES EVOLUTIO, V7, P115; NORRIS AE, 1992, PERS SOC PSYCHOL B, V18, P118, DOI 10.1177/0146167292182002; Oda R, 2001, HUM NATURE-INT BIOS, V12, P191, DOI 10.1007/s12110-001-1006-x; OLEARY KD, 1994, J CONSULT CLIN PSYCH, V62, P594, DOI 10.1037//0022-006X.62.3.594; Pawlowski B, 1999, P ROY SOC B-BIOL SCI, V266, P281, DOI 10.1098/rspb.1999.0634; Penton-Voak IS, 2004, EVOL HUM BEHAV, V25, P355, DOI 10.1016/j.evolhumbehav.2004.06.002; Penton-Voak IS, 2000, EVOL HUM BEHAV, V21, P39, DOI 10.1016/S1090-5138(99)00033-1; Phelan JE, 2010, SEX ROLES, V62, P35, DOI 10.1007/s11199-009-9711-8; Puts DA, 2013, HORM BEHAV, V63, P13, DOI 10.1016/j.yhbeh.2012.11.007; Regan PC, 1998, PERS SOC PSYCHOL B, V24, P1294, DOI 10.1177/01461672982412004; Roberts SC, 2008, P ROY SOC B-BIOL SCI, V275, P2715, DOI 10.1098/rspb.2008.0825; Roberts SC, 2004, P ROY SOC B-BIOL SCI, V271, pS270, DOI 10.1098/rsbl.2004.0174; Schmitt DP, 2012, EVOL PSYCHOL-US, V10, P720, DOI 10.1177/147470491201000406; Scott I, 2008, EVOL HUM BEHAV, V29, P289, DOI 10.1016/j.evolhumbehav.2008.02.004; Snyder JK, 2011, EVOL HUM BEHAV, V32, P127, DOI 10.1016/j.evolhumbehav.2010.08.007; SPECTOR PE, 1976, PERS SOC PSYCHOL B, V2, P290, DOI 10.1177/014616727600200318; Stone EA, 2008, EVOL PSYCHOL-US, V6, P447; Waynforth D, 2001, HUM NATURE-INT BIOS, V12, P207, DOI 10.1007/s12110-001-1007-9; WAYNFORTH D, 1995, BEHAVIOUR, V132, P755, DOI 10.1163/156853995X00135; Wilson M., 1997, FEMINISM EVOLUTIONAR, P505, DOI 10.1007/978-1-4615-5985-6_21; Wiseman DB, 1996, ORGAN BEHAV HUM DEC, V66, P241, DOI 10.1006/obhd.1996.0053; Zentner M, 2012, PSYCHOL SCI, V23, P1176, DOI 10.1177/0956797612441004 72 3 3 0 23 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One SEP 12 2013 8 9 e74282 10.1371/journal.pone.0074282 10 Multidisciplinary Sciences Science & Technology - Other Topics 242KO WOS:000326240100097 24069291 DOAJ Gold, Green Published 2018-11-12 J Dunkel, CS Dunkel, Curtis S. The general factor of personality and general intelligence: Evidence for substantial association INTELLIGENCE English Article General factor of personality; Life history theory; Q-sort; General fitness LIFE-HISTORY STRATEGY; SOCIAL DESIRABILITY; 5-FACTOR MODEL; INTEGRATION; BOYS Despite theoretical assertions derived from life history theory, research on the relationship between the general factor of personality and general intelligence has shown that there is little overlap between the two higher-order constructs. It is argued that the association between these general factors is largely attenuated by measurement error in assessing the general factor of personality. A substantial association between the general factors at multiple points in time was found when the general factor of personality was derived from rater Q-sorts. The results have important implications for the study of individual differences. (C) 2013 Elsevier Inc. All rights reserved. Western Illinois Univ, Dept Psychol, Macomb, IL 61455 USA Dunkel, CS (reprint author), Western Illinois Univ, Dept Psychol, Waggoner Hall, Macomb, IL 61455 USA. c-dunkel@wiu.edu Backstrom M, 2009, J RES PERS, V43, P335, DOI 10.1016/j.jrp.2008.12.013; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Block J, 2006, AM PSYCHOL, V61, P315, DOI 10.1037/0003-066X.61.4.315; BLOCK J, 1980, CALIFORNIA CHILD Q S; Block J, 1961, Q SORT METHOD PERSON; Block J. H., 1969, BLOCK BLOCK LONGITUD; Connelly BS, 2010, PSYCHOL BULL, V136, P1092, DOI 10.1037/a0021212; Dunkel CS, 2012, PERS INDIV DIFFER, V52, P202, DOI 10.1016/j.paid.2011.10.016; Figueredo AJ, 2000, ADDICTION, V95, pS361; Figueredo AJ, 2004, SOC BIOL, V51, P121; Irwing P, 2012, INTELLIGENCE, V40, P296, DOI 10.1016/j.intell.2012.03.001; JOHN OP, 1994, CHILD DEV, V65, P160, DOI 10.2307/1131373; Lesson P., 2012, INTELLIGENCE, V40, P213; Loehlin JC, 2012, J RES PERS, V46, P655, DOI 10.1016/j.jrp.2012.07.004; Loehlin JC, 2011, J RES PERS, V45, P504, DOI 10.1016/j.jrp.2011.06.011; MCCRAE RR, 1986, J PERS, V54, P430, DOI 10.1111/j.1467-6494.1986.tb00403.x; Penke L, 2007, EUR J PERSONALITY, V21, P549, DOI 10.1002/per.629; Robins RW, 1996, J PERS SOC PSYCHOL, V70, P157, DOI 10.1037/0022-3514.70.1.157; Rushton JP, 2009, TWIN RES HUM GENET, V12, P356, DOI 10.1375/twin.12.4.356; Schermer JA, 2013, PERS INDIV DIFFER, V54, P141, DOI 10.1016/j.paid.2012.08.012; Schermer JA, 2012, PERS INDIV DIFFER, V53, P557, DOI 10.1016/j.paid.2012.04.037; Schermer JA, 2010, PERS INDIV DIFFER, V48, P187, DOI 10.1016/j.paid.2009.10.003; Sefcek J. A., 2010, BIODEMOGRAPHY SOCIAL, V56, P41; van der Linden D, 2010, J RES PERS, V44, P315, DOI 10.1016/j.jrp.2010.03.003; Woodley MA, 2011, REV GEN PSYCHOL, V15, P228, DOI 10.1037/a0024348 25 10 11 1 10 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 0160-2896 1873-7935 INTELLIGENCE Intelligence SEP-OCT 2013 41 5 423 427 10.1016/j.intell.2013.06.010 5 Psychology, Multidisciplinary Psychology 256DI WOS:000327289500012 2018-11-12 J Holecek, DE; Scarnecchia, DL Holecek, Dean E.; Scarnecchia, Dennis L. Comparison of Two Life History Strategies after Impoundment of a Historically Anadromous Stock of Columbia River Redband Trout TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY English Article RAINBOW-TROUT; SALMO-GAIRDNERI; ONCORHYNCHUS-MYKISS; DESERT STREAMS; FOOD-HABITS; IDAHO; POPULATION; RESIDENT; EXPLOITATION; MIGRATIONS In this study we collected information on abundance, age structure, migration, and exploitation to characterize the population demographics and reproductive characteristics of a historically anadromous Columbia River Redband Trout Oncorhynchus mykiss gairdneri population now isolated in a southwestern Idaho reservoir and limited to resident and adfluvial life histories. We estimated there were 3,905 adfluvial individuals in Mann Creek Reservoir in October 2008 based on a mark-recapture population estimate. The adfluvial population sex ratio of 2.78 females per male captured at a weir, peak spawn timing near the peak of the hydrograph (late April), age at spawning (4-6years), and growth patterns (slow growth in the stream followed by rapid growth in the reservoir) were all characteristic of an anadromous population. Resident fish abundance was not estimated, but the fish were characterized by relatively slow growth, earlier sexual maturity, and a reverse sex ratio (0.23 females per male) compared with the adfluvial fish. The two life histories (resident and adfluvial) and their differential use by the sexes are consistent with life history theory, which suggests female salmonids maximize fitness by increasing body size and fecundity while males attempt to maximize survival at the expense of growth. The migratory fish in this drainage that could have historically exercised an anadromous life history appear to be exercising the next-best option, an adfluvial life history, which has relatively similar costs and benefits to the anadromous form as distinct from the stream-resident form. Future studies should evaluate other similar native populations isolated in reservoir systems because these populations could play a role in recovery of endangered steelhead (anadromous Rainbow Trout) populations in the western USA. Received December 4, 2012; accepted April 18, 2013 [Holecek, Dean E.; Scarnecchia, Dennis L.] Univ Idaho, Dept Fish & Wildlife Sci, Moscow, ID 83844 USA Holecek, DE (reprint author), US Army Corps Engineers, 201 North 3rd St, Walla Walla, WA 99362 USA. dean.holecek@usace.army.mil Idaho Fish and Game through the Federal Aid in Sport Fish Restoration Program We are grateful for field and laboratory assistance from many people including R. Attebery, J. Kingsbury, S. Miller, J. Kozfkay, J. Dillon, D. Schill, T. Watson, L. Mamer, S. Elle, members of the Boise Valley Flyfishermen, the Indianhead Flyfishermen, and many Idaho Fish and Game personnel. This manuscript improved with reviews from R. Beamish and three anonymous reviewers. Funding was provided by the Idaho Fish and Game through the Federal Aid in Sport Fish Restoration Program. BAILEY NTJ, 1951, BIOMETRIKA, V38, P293, DOI 10.1093/biomet/38.3-4.293; Behnke R. J., 1992, AM FISHERIES SOC MON, V6; BIETTE RM, 1981, CAN J FISH AQUAT SCI, V38, P1759, DOI 10.1139/f81-224; BOSAKOWSKI T, 1994, CAN J FISH AQUAT SCI, V51, P636, DOI 10.1139/f94-064; Busby P. J., 1996, NMFSNWFSC27 NOAA; Campbell MR, 2012, T AM FISH SOC, V141, P1310, DOI 10.1080/00028487.2012.690816; Chapman D. G., 1951, U CALIFORNIA PUBL ST, V1, P131; Cooper K. L., 2003, THESIS U TENNESSEE K; DAUBLE DD, 1980, T AM FISH SOC, V109, P92, DOI 10.1577/1548-8659(1980)109<92:LHOTBS>2.0.CO;2; DEVLAMING V, 1982, COMP BIOCHEM PHYS A, V73, P31, DOI 10.1016/0300-9629(82)90088-3; Dillon J.C., 1991, LAKE RESERVOIR INVES; Fleming IA, 1998, CAN J FISH AQUAT SCI, V55, P59, DOI 10.1139/cjfas-55-S1-59; Gross M.R., 1987, AM FISH SOC S, V1, P14; Hayes Michael C., 1997, North American Journal of Fisheries Management, V17, P182, DOI 10.1577/1548-8675(1997)017<0182:MCOSBI>2.3.CO;2; Heath DD, 2008, T AM FISH SOC, V137, P1268, DOI 10.1577/T05-278.1; Hendry Andrew P., 2004, P92; Hining K. J., 2000, North American Journal of Fisheries Management, V20, P978, DOI 10.1577/1548-8675(2000)020<0978:VOSAOF>2.0.CO;2; Holecek D.E., 2010, THESIS U IDAHO MOSCO; Holecek DE, 2007, N AM J FISH MANAGE, V27, P1010, DOI 10.1577/M06-049.1; Holecek DE, 2012, T AM FISH SOC, V141, P68, DOI 10.1080/00028487.2011.651550; Independent Scientific Advisory Board, 2005, 20052 ISAB NW POW PL; JOHNSON DW, 1983, NORTHWEST SCI, V57, P229; JONSSON B, 1985, T AM FISH SOC, V114, P182, DOI 10.1577/1548-8659(1985)114<182:LHPOFR>2.0.CO;2; Kozfkay J.R., 2009, 09133 ID DEP FISH GA; Lux F.E., 1971, NATL MARINE FISHERIE, P637; MACCRIMMON HR, 1971, J FISH RES BOARD CAN, V28, P663, DOI 10.1139/f71-098; McIntosh B.A., 1995, SUMMARY REPORT BUREA; Meyer K.A., 2008, 0812 ID DEP FISH GAM; Meyer K.A., 2009, 0911 ID DEP FISH GAM; Miranda LE, 2002, N AM J FISH MANAGE, V22, P1358, DOI 10.1577/1548-8675(2002)022<1358:UOEEMF>2.0.CO;2; Mourning Toby E., 1994, North American Journal of Fisheries Management, V14, P636, DOI 10.1577/1548-8675(1994)014<0636:COVITA>2.3.CO;2; MUNKITTRICK KR, 1987, AQUACULTURE, V64, P147, DOI 10.1016/0044-8486(87)90350-4; Narum SR, 2004, J FISH BIOL, V65, P471, DOI [10.1111/j.0022-1112.2004.00461.x, 10.1111/j.1095-8649.2004.00461.x]; Pascual M, 2001, T AM FISH SOC, V130, P53, DOI 10.1577/1548-8659(2001)130<0053:FDCOAI>2.0.CO;2; Quinn T. J., 2005, BEHAV ECOLOGY PACIFI; Quinn TP, 2004, REV FISH BIOL FISHER, V14, P421, DOI 10.1007/s11160-005-0802-5; Roper Brett B., 2000, Rivers, V7, P77; ROUNSEFELL GEORGE A., 1958, U S FISH AND WILDLIFE SERV FISH BULL, V58, P171; Scarnecchia DL, 2006, T AM FISH SOC, V135, P1086, DOI 10.1577/T05-081.1; SCARNECCHIA DL, 1979, PROG FISH CULT, V41, P132, DOI 10.1577/1548-8659(1979)41[132:VOSCOC]2.0.CO;2; Schill D. J, 2009, THESIS U IDAHO MOSCO; Schill DJ, 2007, N AM J FISH MANAGE, V27, P665, DOI 10.1577/M06-082.1; Schill DJ, 2010, ENVIRON BIOL FISH, V89, P319, DOI 10.1007/s10641-010-9694-x; Scott WB, 1973, FISHERIES RES BOARD, P184; Seber GAF, 1982, ESTIMATION ANIMAL AB; Shrader T., 1997, PREDATION COMPETITIO; Stearns S. C., 1992, EVOLUTION LIFE HIST; Steinhorst R.K., 2004, J AGR BIOL ENVIR ST, V9, P284; Thedinga John F., 1994, North American Journal of Fisheries Management, V14, P837, DOI 10.1577/1548-8675(1994)014<0837:DOSSYW>2.3.CO;2; Thompson AR, 2001, FRESHWATER BIOL, V46, P145, DOI 10.1046/j.1365-2427.2001.00654.x; THROWER FP, 2004, PROPAGATED FISH RESO, V44, P485; Thrower FP, 2008, AM FISH S S, V62, P309; Thurow R.F., 2007, COLUMBIA RIVER REDBA, P28; VONBERTALANFFY L, 1957, Q REV BIOL, V32, P217, DOI 10.1086/401873; Young H.W., 1977, INFORM B; Zar J. H., 1984, BIOSTATISTICAL ANAL; Zimmerman CE, 2000, CAN J FISH AQUAT SCI, V57, P2152, DOI 10.1139/cjfas-57-10-2152; Zimmerman MP, 1999, T AM FISH SOC, V128, P1036, DOI 10.1577/1548-8659(1999)128<1036:FHOSBW>2.0.CO;2 58 4 4 0 28 TAYLOR & FRANCIS INC PHILADELPHIA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA 0002-8487 1548-8659 T AM FISH SOC Trans. Am. Fish. Soc. SEP 1 2013 142 5 1157 1166 10.1080/00028487.2013.799520 10 Fisheries Fisheries 220VA WOS:000324613800001 2018-11-12 J Sofaer, HR; Chapman, PL; Sillett, TS; Ghalambor, CK Sofaer, Helen R.; Chapman, Phillip L.; Sillett, T. Scott; Ghalambor, Cameron K. Advantages of nonlinear mixed models for fitting avian growth curves JOURNAL OF AVIAN BIOLOGY English Article SIBLING COMPETITION; NESTLING GROWTH; HATCHING ASYNCHRONY; ALTRICIAL BIRDS; FLEDGING SUCCESS; TREE SWALLOWS; CHICK GROWTH; HOUSE FINCH; CLUTCH SIZE; RATES Our understanding of avian growth rates can benefit from the use of two statistical approaches that explicitly model the sources of intraspecific variation. First, random effects can evaluate whether there are consistent differences between individuals and groups of siblings within a population, and also account for any lack of statistical independence among data points. Second, nonlinear fixed-effect functions can be extended to test specific biological hypotheses of interest, such as for differences between groups or populations. We illustrate the advantages of these methods by using nonlinear mixed models to study variation in the growth trajectories of nestling orange-crowned warblers Oreothylpis celata. Specifically, we quantify the sources of variation within populations, analyze the effects of asynchronous hatching, and test for a difference in the growth rates of populations in Alaska and California, which are at the northern and southern limits of the species' breeding distribution. We found that growth rates did not consistently vary between nests and individuals within populations and were not affected by asynchronous hatching, but were higher in Alaska than in California. Our extensions of traditional methods allowed us to accurately quantify this difference between populations, which is consistent with life history theory but has rarely been demonstrated in previous comparisons of intraspecific passerine populations. The methods we present can be applied to any taxonomic group and adjusted to fit any nonlinear function, and we provide code and implementation advice to facilitate the use of this analytical framework in future studies. [Sofaer, Helen R.; Ghalambor, Cameron K.] Colorado State Univ, Grad Degree Program Ecol, Ft Collins, CO 80523 USA; [Sofaer, Helen R.; Ghalambor, Cameron K.] Colorado State Univ, Dept Biol, Ft Collins, CO 80523 USA; [Chapman, Phillip L.] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA; [Sillett, T. Scott] Natl Zool Pk, Migratory Bird Ctr, Smithsonian Conservat Biol Inst, Washington, DC 20013 USA Sofaer, HR (reprint author), Colorado State Univ, Grad Degree Program Ecol, Ft Collins, CO 80523 USA. helen@lamar.colostate.edu Sillett, Scott/0000-0002-7486-0076 Nature Conservancy; Smithsonian Instit.; American Ornithologists' Union Graduate Research Award; Frank M. Chapman Memorial Grant from the American Museum of Natural History; NSF-IGERT Grant DGE [0221595]; NSF Grant DEB [0846175] Our research was supported by the The Nature Conservancy, the Smithsonian Instit., an American Ornithologists' Union Graduate Research Award, and a Frank M. Chapman Memorial Grant from the American Museum of Natural History. HRS was supported by NSF-IGERT Grant DGE-#0221595 (administered by the PRIMES program at Colorado State Univ.) and NSF Grant DEB-#0846175 to CKG. The Catalina Island Conservancy provided logistical support. We thank users of the R mixed effect models message board for advice. Comments from B. R. Noon, K. M. Pepin, and C. T. Webb improved the manuscript. Alos J, 2010, FISH RES, V101, P60, DOI 10.1016/j.fishres.2009.09.007; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Austin SH, 2011, METHODS ECOL EVOL, V2, P43, DOI 10.1111/j.2041-210X.2010.00055.x; Badyaev AV, 2001, EVOLUTION, V55, P2534; Badyaev AV, 2000, J EVOLUTION BIOL, V13, P290; BANCROFT GT, 1984, CONDOR, V86, P423, DOI 10.2307/1366822; Barrett RT, 1996, POLAR RES, V15, P107, DOI 10.1111/j.1751-8369.1996.tb00462.x; Bates D., 2012, LMER LINEAR MIXED EF; BEST LB, 1977, AUK, V94, P308; BLANCHER PJ, 1988, CAN J ZOOL, V66, P842, DOI 10.1139/z88-124; Bolker B., 2012, EMDBOOK ECOLOGICAL M; Bolker BM, 2009, TRENDS ECOL EVOL, V24, P127, DOI 10.1016/j.tree.2008.10.008; BRISBIN IL, 1987, AUK, V104, P552, DOI 10.2307/4087567; Brown WP, 2007, J AVIAN BIOL, V38, P495, DOI 10.1111/j.2007.0908-8857.03979.x; BRYANT DM, 1990, ANIM BEHAV, V39, P657, DOI 10.1016/S0003-3472(05)80377-X; Burnham K. P., 2002, MODEL SELECTION MULT; CASE TJ, 1978, Q REV BIOL, V53, P243, DOI 10.1086/410622; CLARK AB, 1981, Q REV BIOL, V56, P253, DOI 10.1086/412316; Davidian M, 2003, J AGR BIOL ENVIR ST, V8, P387, DOI 10.1198/1085711032697; EMMS SK, 1991, CONDOR, V93, P943, DOI 10.2307/3247729; GARD NW, 1992, CAN J ZOOL, V70, P2421, DOI 10.1139/z92-325; Greven S, 2010, BIOMETRIKA, V97, P773, DOI 10.1093/biomet/asq042; HAYWOOD S, 1992, P ROY SOC B-BIOL SCI, V249, P195, DOI 10.1098/rspb.1992.0103; Horton BM, 2010, GEN COMP ENDOCR, V168, P333, DOI 10.1016/j.ygcen.2010.04.019; Hu FB, 1998, AM J EPIDEMIOL, V147, P694; HUSSELL DJT, 1972, ECOL MONOGR, V42, P317, DOI 10.2307/1942213; Ives AR, 2007, SYSTEMATIC BIOL, V56, P252, DOI 10.1080/10635150701313830; Johnson LS, 2003, J AVIAN BIOL, V34, P35, DOI 10.1034/j.1600-048X.2003.02950.x; Kaiser SA, 2007, CONDOR, V109, P288, DOI 10.1650/0010-5422(2007)109[288:EODTEA]2.0.CO;2; KING JR, 1981, CONDOR, V83, P362, DOI 10.2307/1367507; Krebs EA, 1999, J ANIM ECOL, V68, P266, DOI 10.1046/j.1365-2656.1999.00284.x; Lack D., 1968, ECOLOGICAL ADAPTATIO; LAIRD NM, 1982, BIOMETRICS, V38, P963, DOI 10.2307/2529876; LINDEN M, 1992, ECOLOGY, V73, P336, DOI 10.2307/1938745; LINDSTROM MJ, 1990, BIOMETRICS, V46, P673, DOI 10.2307/2532087; MAGRATH RD, 1990, BIOL REV, V65, P587, DOI 10.1111/j.1469-185X.1990.tb01239.x; MAGRATH RD, 1991, J ANIM ECOL, V60, P335, DOI 10.2307/5464; Mauck RA, 2005, FUNCT ECOL, V19, P1001, DOI 10.1111/j.1365-2435.2005.01060.x; McCarty JP, 2001, AUK, V118, P176, DOI 10.1642/0004-8038(2001)118[0176:VIGONT]2.0.CO;2; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Molenberghs G, 2005, MODELS DISCRETE LONG; Nilsson JA, 1996, J ANIM ECOL, V65, P825, DOI 10.2307/5680; Pilling GM, 2002, CAN J FISH AQUAT SCI, V59, P424, DOI 10.1139/F02-022; Pinheiro JC, 2011, NLME LINEAR NONLINEA, V3, P1, DOI DOI 10.1371/J0URNAL.P0NE.0018860; Pinheiro JC, 2000, MIXED EFFECTS MODELS; Remes V, 2002, EVOLUTION, V56, P2505; RICKLEFS RE, 1981, AUK, V98, P39; RICKLEFS RE, 1967, ECOLOGY, V48, P978, DOI 10.2307/1934545; RICKLEFS RE, 1976, IBIS, V118, P179, DOI 10.1111/j.1474-919X.1976.tb03065.x; RICKLEFS RE, 1969, ECOLOGY, V50, P1031, DOI 10.2307/1936894; RICKLEFS RE, 1968, IBIS, V110, P419, DOI 10.1111/j.1474-919X.1968.tb00058.x; Ricklefs Robert E., 1993, Current Ornithology, V11, P199; Ritz C, 2008, USE R, P1; Rodenhouse NL, 1997, ECOLOGY, V78, P2025, DOI 10.1890/0012-9658(1997)078[2025:SDROPS]2.0.CO;2; Roff Derek A., 1992; Royle NJ, 1999, P ROY SOC B-BIOL SCI, V266, P923, DOI 10.1098/rspb.1999.0725; Schekkerman H, 2003, OECOLOGIA, V134, P332, DOI 10.1007/s00442-002-1124-0; Searcy WA, 2004, J AVIAN BIOL, V35, P269, DOI 10.1111/j.0908-8857.2004.03247.x; Shelton AO, 2012, J BIOL DYNAM, V6, P3, DOI 10.1080/17513758.2012.697195; Sofaer H. R., 2012, THESIS COLORADO STAT; STARCK JM, 1995, IBIS, V137, P519, DOI 10.1111/j.1474-919X.1995.tb03262.x; STARCK JM, 1998, AVIAN GROWTH DEV EVO; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tilgar V, 2006, EVOL ECOL, V20, P217, DOI 10.1007/s10682-005-5877-x; Tjorve KMC, 2010, ZOOLOGY, V113, P326, DOI 10.1016/j.zool.2010.05.003; Tjorve KMC, 2009, ZOOLOGY, V112, P27, DOI 10.1016/j.zool.2008.04.004; VONESH EF, 1992, BIOMETRICS, V48, P1, DOI 10.2307/2532734; WERSCHKUL DF, 1979, IBIS, V121, P97, DOI 10.1111/j.1474-919X.1979.tb05022.x; Yoon J, 2012, ANIM BEHAV, V84, P515, DOI 10.1016/j.anbehav.2012.05.024; Zuur A. F., 2009, MIXED EFFECTS MODELS 70 24 25 0 48 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0908-8857 1600-048X J AVIAN BIOL J. Avian Biol. SEP 2013 44 5 469 478 10.1111/j.1600-048X.2013.05719.x 10 Ornithology Zoology 226AG WOS:000325005900007 2018-11-12 J Jonason, PK; Jones, A; Lyons, M Jonason, Peter K.; Jones, Amy; Lyons, Minna Creatures of the night: Chronotypes and the Dark Triad traits PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Dark Triad; Narcissism; Psychopathy; Machiavellianism; Morningness:eveningness; Chronotype; Evolutionary psychology LIFE-HISTORY THEORY; NARCISSISTIC PERSONALITY-INVENTORY; TERM MATING STRATEGY; MORNINGNESS-EVENINGNESS; CIRCADIAN TYPOLOGY; GENDER-DIFFERENCES; COLLEGE-STUDENTS; SLEEP PATTERNS; HEXACO MODEL; SELF-CONTROL In this study (N = 263) we provide a basic test of a niche-specialization hypothesis of the Dark Triad (i.e., narcissism, psychopathy, and Machiavellianism). We propose that in order to best enact a "cheater strategy" those high on the Dark Triad traits should have optimal cognitive performance and, thus, have a night-time chronotype. Such a disposition will take advantage of the low light, the limited monitoring, and the lessened cognitive processing of morning-type people. The Dark Triad composite was correlated with an eveningness disposition. This link worked through links with the "darker" aspects of the Dark Triad (i.e., Machiavellianism, secondary psychopathy, and exploitive narcissism); correlations that were invariant across the sexes. While we replicated sex differences in the Dark Triad, we failed to replicate sex differences in chronotype, suggesting eveningness may not be a sexually selected trait as some have argued but is a trait under natural selective pressures to enable effective exploitations of conspecifics by both sexes. (c) 2013 Elsevier Ltd. All rights reserved. [Jonason, Peter K.] Univ Western Sydney, Milperra, NSW 2214, Australia; [Jones, Amy; Lyons, Minna] Liverpool Hope Univ, Liverpool, Merseyside, England Jonason, PK (reprint author), Univ Western Sydney, Sch Social Sci & Psychol, Milperra, NSW 2214, Australia. p.jonason@uws.edu.au Ackerman RA, 2011, ASSESSMENT, V18, P67, DOI 10.1177/1073191110382845; Adan A, 2002, CHRONOBIOL INT, V19, P709, DOI 10.1081/CBI-120005390; Adan A, 2010, CHRONOBIOL INT, V27, P606, DOI 10.3109/07420521003663827; Caci H, 2004, EUR PSYCHIAT, V19, P79, DOI 10.1016/j.eurpsy.2003.09.007; Campbell D. J., 2007, PRIMATES PERSPECTIVE; CHRISTIE R, 1970, STUDIES MACHIAVELLIA; Cummins DD, 1999, EVOL HUM BEHAV, V20, P229, DOI 10.1016/S1090-5138(99)00008-2; Diaz-Morales JF, 2007, PERS INDIV DIFFER, V43, P769, DOI 10.1016/j.paid.2007.02.002; Digdon N, 2008, CHRONOBIOL INT, V25, P1029, DOI 10.1080/07420520802553671; Falkenbach D, 2007, ASSESSMENT, V14, P341, DOI 10.1177/1073191107305612; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Fleagle J. G., 1999, PRIMATE EVOLUTION AD; Gunawardane K., 2011, INTERDISCIPLINARY BI, V3, P1, DOI DOI 10.4051/IBC.2011.3.4.0013; Hicks BM, 2004, PSYCHOL ASSESSMENT, V16, P276, DOI 10.1037/1040-3590.16.3.276; HORNE J A, 1976, International Journal of Chronobiology, V4, P97; HORNE JA, 1980, ERGONOMICS, V23, P29, DOI 10.1080/00140138008924715; HUNTER JE, 1982, J PERS SOC PSYCHOL, V43, P1293, DOI 10.1037//0022-3514.43.6.1293; Hur YM, 1998, PERS INDIV DIFFER, V25, P917, DOI 10.1016/S0191-8869(98)00089-0; Hur YM, 2007, J SLEEP RES, V16, P17, DOI 10.1111/j.1365-2869.2007.00562.x; Jonason P. K., 2010, INDIVIDUAL DIFFERENC, V8, P111; Jonason PK, 2013, PERS INDIV DIFFER, V54, P572, DOI 10.1016/j.paid.2012.11.009; Jonason PK, 2012, PERS INDIV DIFFER, V53, P935, DOI 10.1016/j.paid.2012.07.010; Jonason PK, 2012, EVOL PSYCHOL-US, V10, P400, DOI 10.1177/147470491201000303; Jonason PK, 2012, REV GEN PSYCHOL, V16, P192, DOI 10.1037/a0027914; Jonason PK, 2012, PERS INDIV DIFFER, V52, P521, DOI 10.1016/j.paid.2011.11.023; Jonason PK, 2011, PERS INDIV DIFFER, V51, P759, DOI 10.1016/j.paid.2011.06.025; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2010, PERS INDIV DIFFER, V49, P611, DOI 10.1016/j.paid.2010.05.031; Jonason PK, 2010, PSYCHOL ASSESSMENT, V22, P420, DOI 10.1037/a0019265; Jonason PK, 2010, PERS INDIV DIFFER, V48, P373, DOI 10.1016/j.paid.2009.11.003; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jones DN, 2011, PERS INDIV DIFFER, V51, P679, DOI 10.1016/j.paid.2011.04.011; Kanazawa S, 2009, PERS INDIV DIFFER, V47, P685, DOI 10.1016/j.paid.2009.05.021; Killgore WDS, 2007, PSYCHOL REP, V100, P613, DOI 10.2466/PRO.100.3.613-626; Klei L., 2005, CHRONOBIOL INT, V26, P510; LAUBICHLER W, 1986, Archiv fuer Kriminologie, V177, P176; Lee KB, 2005, PERS INDIV DIFFER, V38, P1571, DOI 10.1016/j.paid.2004.09.016; MATTHEWS G, 1988, EUR J PERSONALITY, V2, P277, DOI 10.1002/per.2410020405; McDonald M. M., 2011, PERSONALITY INDIVIDU, V52, P601; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; Ollivier FJ, 2004, VET OPHTHALMOL, V7, P11, DOI 10.1111/j.1463-5224.2004.00318.x; Paulhus D. L., MANUAL SELF IN PRESS; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; Piffer D, 2010, MANKIND QUART, V50, P361; Randler C, 2008, PERS INDIV DIFFER, V45, P191, DOI 10.1016/j.paid.2008.03.007; Randler C, 2007, PERS INDIV DIFFER, V43, P1667, DOI 10.1016/j.paid.2007.05.004; Randler C, 2012, PSYCHONEUROENDOCRINO, V37, P1740, DOI 10.1016/j.psyneuen.2012.02.008; RASKIN R, 1988, J PERS SOC PSYCHOL, V54, P890, DOI 10.1037//0022-3514.54.5.890; Rauthmann JF, 2012, SOC PSYCHOL PERS SCI, V3, P487, DOI 10.1177/1948550611427608; REINBERG A, 1978, ARCH SEX BEHAV, V7, P13, DOI 10.1007/BF01541895; Roberts RD, 1999, PERS INDIV DIFFER, V27, P1123, DOI 10.1016/S0191-8869(99)00054-9; ROSBASH M, 1989, NEURON, V3, P387, DOI 10.1016/0896-6273(89)90199-2; Russo P. M., 2012, CHRONOBIOL INT, V29, P1; Stroebel Armin M, 2010, J Circadian Rhythms, V8, P10, DOI 10.1186/1740-3391-8-10; TANKOVA I, 1994, PERS INDIV DIFFER, V16, P671, DOI 10.1016/0191-8869(94)90209-7; Tonetti L, 2008, CHRONOBIOL INT, V25, P745, DOI 10.1080/07420520802394191; Tonetti L, 2009, CHRONOBIOL INT, V26, P337, DOI 10.1080/07420520902750995; Tooby J., 1992, ADAPTED MIND EVOLUTI, V163, P163, DOI DOI 10.1098/RSTB.2006.1991; Tsai LL, 2004, J PSYCHOSOM RES, V56, P231, DOI 10.1016/S0022-3999(03)00507-5; Tsaousis I, 2010, EUR J PERSONALITY, V24, P356, DOI 10.1002/per.754; Vernon PA, 2008, PERS INDIV DIFFER, V44, P445, DOI 10.1016/j.paid.2007.09.007; Vollmer C, 2012, PERS INDIV DIFFER, V52, P738, DOI 10.1016/j.paid.2012.01.001 62 48 49 1 65 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. SEP 2013 55 5 538 541 10.1016/j.paid.2013.05.001 4 Psychology, Social Psychology 191JZ WOS:000322410500016 2018-11-12 J Dillon, HM; Adair, LE; Wang, Z; Johnson, Z Dillon, Haley Moss; Adair, Lora Elizabeth; Wang, Zhe; Johnson, Zoe Slow and steady wins the race: Life history, mate value, and mate settling PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Life history strategy; Mate value; Mate Value Inventory; r/K selection PHYSICAL ATTRACTIVENESS; STRUCTURAL RELATIONS; CHOICE DECISIONS; K-FACTOR; STRATEGY; SELECTION; PREFERENCES; MORTALITY; EVOLUTION; BRAIN Life history theory explains how individuals decide to invest their limited resources, which involves several trade-offs. Particularly relevant to the current work, individuals can choose to invest in current or delayed reproduction (a slow life history strategy), which implicates a trade-off between the quantity and the quality of one's offspring. Choosing to delay reproduction allows for increased self-investment, and previous research has demonstrated that traits requiring self-investment are related to higher mate value. As such, the current study hypothesizes that slow life history strategy will predict high personal mate value and high levels of partner mate-value within heterosexual partnerships. Similarly, those with a slow life history strategy should display fewer tendencies toward mate-settling. The current work employs both subjective and objective measures of mate value within mateships to investigate these hypothesized relationships. As hypothesized, significant positive relationships among life history and mate value were detected, suggesting that a slower life history strategy corresponds to high ratings of mate value for both self and partner. Also, life history strategy is a significant predictor of subjective, objective, and Mate Value Inventory ratings of partner and self. Further implications and potential future works are discussed. (C) 2013 Elsevier Ltd. All rights reserved. [Dillon, Haley Moss; Adair, Lora Elizabeth; Wang, Zhe] Kansas State Univ, Dept Psychol, Manhattan, KS 66506 USA; [Johnson, Zoe] SUNY Coll Purchase, Dept Psychol, Purchase, NY 10577 USA Dillon, HM (reprint author), Kansas State Univ, Dept Psychol, Bluemont Hall, Manhattan, KS 66506 USA. hmdillon@ksu.edu Aarssen L. W., 2006, EVOLUTIONARY PSYCHOL, V4, P290, DOI DOI 10.1177/147470490600400125; Buss D. M., 2002, SAMFUNDSOKONOMEN, V4, P47; Buss DM, 1997, J PERS SOC PSYCHOL, V72, P346, DOI 10.1037/0022-3514.72.2.346; BUSS DM, 1986, J PERS SOC PSYCHOL, V50, P559, DOI 10.1037//0022-3514.50.3.559; BUSS DM, 1985, AM SCI, V73, P47; Calwell JC, 2002, J POPULATION RES, V19, P1; Daly M., 2001, S MOTIVATION, V47, P1; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2009, HUM NATURE-INT BIOS, V20, P317, DOI 10.1007/s12110-009-9068-2; FOWLER CW, 1981, ECOLOGY, V62, P602, DOI 10.2307/1937727; Gallup GG, 2010, REV GEN PSYCHOL, V14, P240, DOI 10.1037/a0020451; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Hunt J, 2005, AM NAT, V166, P79, DOI 10.1086/430672; Johnston VS, 2006, TRENDS COGN SCI, V10, P9, DOI 10.1016/j.tics.2005.11.003; Kaplan H. S., 2004, LIFE HIST THEO UNPUB; Kirsner BR, 2009, EVOL PSYCHOL, V7, P374; Kirsner BR, 2003, J AFFECT DISORDERS, V75, P131, DOI 10.1016/S0165-0327(02)00048-4; Kruger DJ, 2006, HUM NATURE-INT BIOS, V17, P74, DOI 10.1007/s12110-006-1021-z; Leigh SR, 2004, AM J PRIMATOL, V62, P139, DOI 10.1002/ajp.20012; MAC ARTHUR ROBERT H., 1967; Martin SP, 2000, DEMOGRAPHY, V37, P523, DOI 10.1353/dem.2000.0007; Mills M., 2011, MEN ARE RATED LESS F; Montoya RM, 2008, PERS SOC PSYCHOL B, V34, P1315, DOI 10.1177/0146167208320387; Pawlowski B, 1999, P ROY SOC B-BIOL SCI, V266, P281, DOI 10.1098/rspb.1999.0634; Penke L., 2007, MATING INTELLIGENCE, P37; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Roff D. A., 2002, LIFE HIST EVOLUTION; Shackelford TK, 2005, PERS INDIV DIFFER, V39, P447, DOI 10.1016/j.paid.2005.01.023; Thornhill R, 1999, TRENDS COGN SCI, V3, P452, DOI 10.1016/S1364-6613(99)01403-5; TOOBY J, 1990, J PERS, V58, P17, DOI 10.1111/j.1467-6494.1990.tb00907.x; WHITE GL, 1980, J PERS SOC PSYCHOL, V39, P660, DOI 10.1037//0022-3514.39.4.660; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956 34 4 5 1 36 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. SEP 2013 55 5 612 618 10.1016/j.paid.2013.05.015 7 Psychology, Social Psychology 191JZ WOS:000322410500029 2018-11-12 J Giosan, C Giosan, Cezar "Slow' reproductive strategy: A negative predictor of depressive symptomatology AUSTRALIAN JOURNAL OF PSYCHOLOGY English Article depression; evolutionary psychopathology; fitness; high-K strategy; Life History Theory POSTTRAUMATIC-STRESS-DISORDER; LIFE-HISTORY STRATEGY; RISK-FACTORS; STRUCTURAL RELATIONS; INVENTORY; SELF; HYPOTHESIS; EVENTS The present study examined the associations between a high-K (slow) life history strategy and depressive symptomatology. The participants were a sample of 494 male utility workers who underwent psychological evaluations. It was hypothesised that high-K will correlate negatively with, and will be a negative predictor of, depressive symptomatology. The results confirmed the predictions, showing that high-K accounts for 15% of the variance in depressive symptomatology after controlling for risk factors for depression such as demographics, prior traumatic experiences, past depression, and recent negative life events. Implications of the results are discussed. [Giosan, Cezar] Berkeley Coll, New York, NY 10017 USA; [Giosan, Cezar] Univ Babes Bolyai, R-3400 Cluj Napoca, Romania Giosan, C (reprint author), Berkeley Coll, Sch Liberal Arts, 12 East 41st St, New York, NY 10017 USA. cgiosan@gmail.com Giosan, Cezar/J-7426-2015 Giosan, Cezar/0000-0002-1260-6830 American Psychiatric Association, 2000, DIAGN STAT MAN MENT; Beck A. T., 1996, MANUAL BECK DEPRESSI; Beck AT, 1996, J PERS ASSESS, V67, P588, DOI 10.1207/s15327752jpa6703_13; BECK AT, 1961, ARCH GEN PSYCHIAT, V4, P561; BOGAERT AF, 1989, PERS INDIV DIFFER, V10, P1071, DOI 10.1016/0191-8869(89)90259-6; Crow T. J., 1991, BRIT J PSYCHIAT S, V14, P76; CROW TJ, 1995, BRIT J PSYCHIAT, V167, P12, DOI 10.1192/bjp.167.1.12; Crow TJ, 1997, SCHIZOPHR RES, V28, P127, DOI 10.1016/S0920-9964(97)00110-2; Dunkel CS, 2010, PERS INDIV DIFFER, V48, P681, DOI 10.1016/j.paid.2009.12.014; Evans D, 1999, ASCAP NEWSLETTER, V12, P12; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; First MB, 1997, STRUCTURED CLIN INTE; Fisher H. E, 2007, EVOLUTIONARY COGNITI, P248; Fiske AP, 1997, J NERV MENT DIS, V185, P211, DOI 10.1097/00005053-199704000-00001; Giosan C, 2007, NE EV PSYCH C SUNY N; Giosan C, 2006, EVOLUTIONARY PSYCHOL, V41, P394; Giosan C, 2009, EVOL PSYCHOL-US, V7, P28; Gladden P., 2009, J EVOLUTIONARY PSYCH, V7, P167, DOI DOI 10.1556/JEP.7.2009.2.5; Gladden PR, 2010, PERS INDIV DIFFER, V48, P731, DOI 10.1016/j.paid.2010.01.016; Green B. L., 1996, MEASUREMENT STRESS T, P366; Hagen EH, 2003, DAHL WS ENV, P95; Heim C, 1997, ANN NY ACAD SCI, V821, P194, DOI 10.1111/j.1749-6632.1997.tb48279.x; Holzel L, 2011, J AFFECT DISORDERS, V129, P1, DOI 10.1016/j.jad.2010.03.025; Kessler RC, 2003, JAMA-J AM MED ASSOC, V289, P3095, DOI 10.1001/jama.289.23.3095; Kirsner BR, 2009, EVOL PSYCHOL, V7, P374; Kirsner BR, 2003, J AFFECT DISORDERS, V75, P131, DOI 10.1016/S0165-0327(02)00048-4; Leith KP, 1996, J PERS SOC PSYCHOL, V71, P1250, DOI 10.1037/0022-3514.71.6.1250; LEWINSOHN PM, 1988, J ABNORM PSYCHOL, V97, P251, DOI 10.1037/0021-843X.97.3.251; MAC ARTHUR ROBERT H., 1967; Maercker A, 2004, BRIT J PSYCHIAT, V184, P482, DOI 10.1192/bjp.184.6.482; McGuire M, 1997, DEPRESSION EVOLUTION, P255; Mealey L, 2000, HUM NATURE-INT BIOS, V11, P105, DOI 10.1007/s12110-000-1005-3; National Institute of Mental Health, 1994, DEPR FACT SHEET 00 4; Nesse R, 1998, BRIT J MED PSYCHOL, V71, P397, DOI 10.1111/j.2044-8341.1998.tb01000.x; Nesse R. M, 2004, WHY DO WE GET SIC NE; Nesse RM, 2000, ARCH GEN PSYCHIAT, V57, P14, DOI 10.1001/archpsyc.57.1.14; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PRICE J, 1994, BRIT J PSYCHIAT, V164, P309, DOI 10.1192/bjp.164.3.309; SARASON IG, 1978, J CONSULT CLIN PSYCH, V46, P932, DOI 10.1037/0022-006X.46.5.932; SHROUT PE, 1989, J ABNORM PSYCHOL, V98, P460, DOI 10.1037//0021-843X.98.4.460; Wakefield JC, 1997, BEHAV RES THER, V35, P633, DOI 10.1016/S0005-7967(97)00018-1; Wakefield JC, 2003, ADVANCING DSM: DILEMMAS IN PSYCHIATRIC DIAGNOSIS, P23; Watson PJ, 2002, J AFFECT DISORDERS, V72, P1, DOI 10.1016/S0165-0327(01)00459-1; WENNER CJ, 2005, ANN M HUM BEH EV SOC 45 4 4 0 3 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0004-9530 AUST J PSYCHOL Aust. J. Psychol. SEP 2013 65 3 156 162 10.1111/ajpy.12016 7 Psychology, Multidisciplinary Psychology 195SF WOS:000322723200003 2018-11-12 J Bastiaans, E; de la Cruz, FM; Hernandez, KR; Aguirre, CF; Sinervo, B Bastiaans, Elizabeth; Mendez de la Cruz, Fausto; Rodriguez Hernandez, Karla; Flores Aguirre, Cynthia; Sinervo, Barry FEMALE REPRODUCTIVE INVESTMENT IN THE MESQUITE LIZARD (SCELOPORUS GRAMMICUS) SPECIES COMPLEX (SQUAMATA: PHRYNOSOMATIDAE) SOUTHWESTERN NATURALIST English Article Life-history theory is based on the idea that trade-offs exist in allocation of resources. The same energy cannot simultaneously fuel growth and reproduction or simultaneously increase size and number of offspring. Many genetic, physiological, and environmental variables influence how trade-offs manifest and whether they are detectable through phenotypic correlations. In most squamates, the absence of parental care enables estimation of reproductive investment using mass of offspring. This, as well as their diverse ecologies, makes squamates an attractive system for empirical tests of life history theory. Approximately 20% of squamates are viviparous, and long gestation periods limit most to one litter per year. Carrying offspring until an advanced developmental stage may increase the burden of the litter, and female abdominal volume may constrain litter size. These factors should intensify selection on female tactics of life history and enhance detectability of trade-offs. We compare life history of females in two species within the Sceloporus grammicus species complex, viviparous Mexican lizards from varied habitats. Each inhabits one of the primary ecosystems used by this taxon (chaparral and forest). Litter sizes were lower in the chaparral population, when adjusted for body size of the mother. A trade-off of size versus number of offspring was detected in the forest population but not in the chaparral population. The chaparral population varied more in average neonate mass between years, which may relate to local extinctions, likely linked to climate change, in Mexican montane lizards. Regardless of whether these differences represent adaptation or plasticity, our findings emphasize the importance of environmental influence on trade-offs in life history. [Bastiaans, Elizabeth; Sinervo, Barry] Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, Santa Cruz, CA 95064 USA; [Mendez de la Cruz, Fausto] Univ Nacl Autonoma Mexico, Inst Biol, Copilco 04510, Coyoacan, Mexico; Univ Nacl Autonoma Mexico, Fac Ciencias, Copilco 04510, Coyoacan, Mexico Bastiaans, E (reprint author), Univ Minnesota, Dept Ecol Evolut & Behav, 100 Ecol Bldg,1987 Upper Buford Circle, St Paul, MN 55108 USA. ejbastiaans@gmail.com Mendez, Fausto/O-3512-2018 Mendez, Fausto/0000-0002-5084-1276; Bastiaans, Elizabeth/0000-0002-7322-1088 UC Mexus grant; Science, Technology, Engineering Policy, and Society Institute Fellowship; National Science Foundation [I05-1110497]; Fulbright United States Students grant For assistance with fieldwork, we thank A. Helios de la Vega, V. Jimenez Arcos, R. Lara Resendiz, D. Miles, E. Vasquez, and M. Villagran Santa Cruz. We thank H. Monterde for assistance with husbandry of lizards. For helpful comments on the manuscript, we thank G. Bastiaans, M. Bastiaans, J. Marshall, K. McCully, R. Mehta, G. Morinaga, D. Paranjpe, C. Ravelo, S. Schlung, J. Yost, N. Ford, and two anonymous reviewers. This research was conducted with the approval of the University of California, Santa Cruz Chancellor's Animal Research Committee (code Sineb0902) and under permits issued by the Secretaria de Medio Ambiente y Recursos Naturales de Mexico (folio FAUT0074). Funding for this research was provided by a UC Mexus grant to BS and a Science, Technology, Engineering Policy, and Society Institute Fellowship, a Fulbright United States Students grant, and a National Science Foundation grant I05-1110497 to EB. Aguilar AG, 2003, CITIES, V20, P3, DOI 10.1016/S0264-2751(02)00092-6; Amat F, 2008, HERPETOL J, V18, P147; Andrews RM, 1997, COPEIA, P108, DOI 10.2307/1447845; AREVALO E, 1993, COPEIA, P352; Blackburn DG, 2006, HERPETOL MONOGR, V20, P131, DOI 10.1655/0733-1347(2007)20[131:SRAMOF]2.0.CO;2; BLACKBURN DG, 1984, P NATL ACAD SCI-BIOL, V81, P4860, DOI 10.1073/pnas.81.15.4860; Bowen WD, 2003, J ZOOL, V261, P155, DOI 10.1017/S0952836903004047; BROWN C. A., 2003, EVOLUTION, V57, P21; Brown GP, 2009, PHILOS T R SOC B, V364, P1097, DOI 10.1098/rstb.2008.0247; CASWELL H, 1983, AM ZOOL, V23, P35; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; CZESAK M. E., 2003, EVOLUTION, V57, P11; Du WG, 2005, BIOL J LINN SOC, V85, P443, DOI 10.1111/j.1095-8312.2005.00508.x; FITCH H. S., 1985, VARIATION CLUTCH LIT; FORD NB, 1989, HERPETOLOGICA, V45, P75; FORD NB, 1989, ECOLOGY, V70, P1768, DOI 10.2307/1938110; GUILLETTE LJ, 1980, J HERPETOL, V14, P143, DOI 10.2307/1563845; HALL WP, 1973, THESIS HARVARD U CAM; HARVEY PH, 1991, PHILOS T ROY SOC B, V332, P31, DOI 10.1098/rstb.1991.0030; Hernandez-Salinas U, 2010, HERPETOLOGICA, V66, P12, DOI 10.1655/08-053.1; Hijmans RJ, 2005, INT J CLIMATOL, V25, P1965, DOI 10.1002/joc.1276; JI X., 2008, OECOLOGIA, V159, P689; Ji X, 2006, J COMP PHYSIOL B, V176, P521, DOI 10.1007/s00360-006-0074-y; Jimenez-Cruz E, 2005, SOUTHWEST NAT, V50, P178, DOI 10.1894/0038-4909(2005)050[0178:RCOSGS]2.0.CO;2; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lara-Gongora G., 1983, Bulletin of the Maryland Herpetological Society, V19, P1; Lemos-Espinal JA, 1998, GREAT BASIN NAT, V58, P375; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; Marshall JC, 2006, EVOLUTION, V60, P1050; Mas J. F., 2004, International Journal of Applied Earth Observation and Geoinformation, V5, P249, DOI 10.1016/j.jag.2004.06.002; MENDEZ DE LA CRUZ F., 1989, THESIS U NACL AUTONO; MILES D. B., 2000, EVOLUTION, V54, P13; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Olsson M, 1997, AM NAT, V149, P179, DOI 10.1086/285985; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Quinn GP, 2002, EXPT DESIGN DATA ANA; Ramirez-Bautista A, 2004, WEST N AM NATURALIST, V64, P175; Roff D. A., 2002, LIFE HIST EVOLUTION; ROWE JW, 1994, OECOLOGIA, V99, P35, DOI 10.1007/BF00317081; SCHWARZKOPF L, 1992, HERPETOLOGICA, V48, P390; SEIGEL RA, 1984, OECOLOGIA, V61, P293, DOI 10.1007/BF00379625; Shine R, 1999, OECOLOGIA, V119, P1, DOI 10.1007/s004420050754; SHINE R, 1992, EVOLUTION, V46, P62, DOI 10.1111/j.1558-5646.1992.tb01985.x; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; SHINE R, 1992, EVOLUTION, V46, P828, DOI 10.1111/j.1558-5646.1992.tb02088.x; Shine R, 2005, ANNU REV ECOL EVOL S, V36, P23, DOI 10.1146/annurev.ecolsys.36.102003.152631; SINERVO B, 1991, SCIENCE, V252, P1300, DOI 10.1126/science.252.5010.1300; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; Sinervo B, 2010, SCIENCE, V328, P894, DOI 10.1126/science.1184695; SITES JW, 1995, EVOLUTION, V49, P9, DOI 10.1111/j.1558-5646.1995.tb05955.x; SITES JW, 1983, EVOLUTION, V37, P38, DOI 10.1111/j.1558-5646.1983.tb05512.x; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stebbins R. C., 2003, FIELD GUIDE W REPTIL; Uller T, 2009, J EVOLUTION BIOL, V22, P143, DOI 10.1111/j.1420-9101.2008.01629.x; ULLER T., 2007, EVOLUTIONARY ECOLOGY, V23, P363; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VILLAGRAN M., 2005, J MORPHOL, V264, P286; VITT LJ, 1982, HERPETOLOGICA, V38, P237; Wang Z, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016585; Warne RW, 2008, AM NAT, V172, pE80, DOI 10.1086/589880; Wiens JJ, 2010, MOL PHYLOGENET EVOL, V54, P150, DOI 10.1016/j.ympev.2009.09.008; Zuniga-Vega JJ, 2008, AMPHIBIA-REPTILIA, V29, P127, DOI 10.1163/156853808783431550 63 4 4 2 16 SOUTHWESTERN ASSOC NATURALISTS SAN MARCOS SOUTHWEST TEXAS STATE UNIV, DEPT BIOLOGY, 601 UNIVERSITY DR, SAN MARCOS, TX 78666 USA 0038-4909 1943-6262 SOUTHWEST NAT Southw. Natural. SEP 2013 58 3 335 343 10.1894/0038-4909-58.3.335 9 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology V37ZE WOS:000209312900008 2018-11-12 J Natsumeda, T; Yuma, M; Hori, M Natsumeda, Takaharu; Yuma, Masahide; Hori, Michio Variation in life-history traits of male Japanese fluvial sculpin Cottus pollux in relation to nest abundance along a stream course ENVIRONMENTAL BIOLOGY OF FISHES English Article Life-history traits; Male-male competition; Nest site abundance; Sculpin; Size-dependent reproduction; Weir FRESH-WATER GOBY; POTENTIAL REPRODUCTIVE RATES; MALE-MALE COMPETITION; LARGE EGG TYPE; SEXUAL SELECTION; SAND GOBY; SITE ABUNDANCE; POMATOSCHISTUS-MINUTUS; PHENOTYPIC PLASTICITY; RESOURCE DISTRIBUTION Life-history theory predicts the occurrence of variation in the life-history traits of fish populations under different environmental conditions; however, most studies have focused on such variation between geographically separated populations. We compared breeding characteristics and life-history traits of the Japanese fluvial sculpin (Cottus pollux), a bottom-dwelling nest-holding fish, between two adjacent sites sub-divided by a weir along a stream course in central Japan. Males in the area with a lower abundance of nest sites reached sexual maturity at an earlier age and had a shorter life span than males in the area with sufficient nest abundance. Size-dependent male reproduction was found only in areas with a shortage of nest sites, supporting the assumption of competitive exclusion among males for nests. Females matured at the same age in both sites with no differences in age-specific growth rates and mortality. Our results provide evidence for life-history variation in age and size at maturity and age-specific mortality schedule of males in nest-holding fishes in a single stream population via different sexual selection regimes related to differences in nest abundance between sites. [Natsumeda, Takaharu; Yuma, Masahide] Kyoto Univ, Ctr Ecol Res, Otsu, Shiga 5202113, Japan; [Hori, Michio] Kyoto Univ, Anim Ecol Lab, Grad Sch Sci, Kyoto 6068502, Japan Natsumeda, T (reprint author), Chiba Inst Sci, Fac Risk & Crisis Management, Dept Anim Risk Management, 3 Shiomi Cho, Choshi, Chiba 2880025, Japan. natsutak@hotmail.com Ahnesjo I, 2001, BEHAV ECOL, V12, P397, DOI 10.1093/beheco/12.4.397; ALMADA VC, 1994, J FISH BIOL, V45, P819, DOI 10.1111/j.1095-8649.1994.tb00947.x; ANDERSON CS, 1985, ENVIRON BIOL FISH, V13, P93, DOI 10.1007/BF00002577; Andersson M., 1994, SEXUAL SELECTION; BALON EK, 1975, J FISH RES BOARD CAN, V32, P821, DOI 10.1139/f75-110; BREITBURG DL, 1987, ECOLOGY, V68, P1844, DOI 10.2307/1939876; CLUTTONBROCK TH, 1991, NATURE, V351, P58; DOWNHOWER J F, 1990, Polskie Archiwum Hydrobiologii, V37, P119; EMLEN ST, 1977, SCIENCE, V197, P215, DOI 10.1126/science.327542; Englbrecht CC, 1999, MOL ECOL, V8, P1966, DOI 10.1046/j.1365-294x.1999.00778-6.x; ERMAN DC, 1988, CAN J FISH AQUAT SCI, V45, P2195, DOI 10.1139/f88-255; Forsgren E, 1996, EVOLUTION, V50, P646, DOI 10.1111/j.1558-5646.1996.tb03875.x; FOX PJ, 1978, J FISH BIOL, V12, P5, DOI 10.1111/j.1095-8649.1978.tb04144.x; GOTO A, 1990, ENVIRON BIOL FISH, V28, P101, DOI 10.1007/BF00751030; GOTO A, 1987, COPEIA, P32; GOTO A, 1993, JPN J ICHTHYOL, V39, P363; GOTO A, 1982, Japanese Journal of Ichthyology, V28, P453; Goto A, 1998, ENVIRON BIOL FISH, V52, P203, DOI 10.1023/A:1007347631573; GOTO A, 1985, JPN J ICHTHYOL, V32, P359, DOI 10.1007/BF02905442; Hildrew Alan G., 1994, P21; HUSTON MA, 1987, AM NAT, V129, P678, DOI 10.1086/284666; Knaepkens G, 2006, ECOL FRESHW FISH, V15, P20, DOI 10.1111/j.1600-0633.2005.00117.x; Lamphere BA, 2012, ECOL FRESHW FISH, V21, P75, DOI 10.1111/j.1600-0633.2011.00525.x; Lehtonen T, 2004, OIKOS, V104, P327, DOI 10.1111/j.0030-1299.2004.12489.x; LINDSTROM K, 1988, OIKOS, V53, P67, DOI 10.2307/3565664; Lindstrom K, 2001, AM NAT, V158, P64, DOI 10.1086/320867; Lindstrom K, 1996, P ROY SOC B-BIOL SCI, V263, P1319, DOI 10.1098/rspb.1996.0193; LUGLI M, 1992, ENVIRON BIOL FISH, V35, P37, DOI 10.1007/BF00001156; Manly B. F. J., 1968, T SOC BRIT ENTOMOL, V18, P81; Mann R.H.K., 1984, P171; Matsubara H, 2001, ENVIRON BIOL FISH, V61, P285, DOI 10.1023/A:1010812431239; MATTHEWS W. J., 1998, PATTERNS FRESHWATER; MOUSSEAU TA, 1987, CAN J ZOOL, V65, P2827, DOI 10.1139/z87-429; Mueller M, 2011, J APPL ECOL, V48, P1450, DOI 10.1111/j.1365-2664.2011.02035.x; Nakamura F, 2010, LANDSC ECOL ENG, V6, P143, DOI 10.1007/s11355-009-0083-6; Nakamura K, 2006, BIOSCIENCE, V56, P419, DOI 10.1641/0006-3568(2006)056[0419:RAWRLF]2.0.CO;2; Natsumeda T, 1998, ENVIRON BIOL FISH, V53, P295, DOI 10.1023/A:1007410519726; Natsumeda T, 1998, J FISH BIOL, V53, P33, DOI 10.1006/jfbi.1998.0678; Natsumeda T, 2007, J FISH BIOL, V70, P1378, DOI 10.1111/j.1095-8649.2007.01418.x; Natsumeda T, 2005, ENVIRON BIOL FISH, V74, P349, DOI 10.1007/s10641-005-1608-y; Natsumeda T, 2003, ENVIRON BIOL FISH, V68, P417, DOI 10.1023/B:EBFI.0000005777.90560.90; Natsumeda T, 1997, ICHTHYOL RES, V44, P43, DOI 10.1007/BF02672757; Natsumeda T, 1999, ICHTHYOL RES, V46, P43, DOI 10.1007/BF02674946; Natsumeda T, 2001, ENVIRON BIOL FISH, V62, P393, DOI 10.1023/A:1012227729820; NATSUMEDA T, 1998, THESIS KYOTO U; Natsumeda T, 2007, T AM FISH SOC, V136, P1769, DOI 10.1577/T06-028.1; Natsumeda T, 2012, J ETHOL, V30, P239, DOI 10.1007/s10164-011-0316-7; Reichard M, 2009, EVOLUTION, V63, P377, DOI 10.1111/j.1558-5646.2008.00572.x; Rochet MJ, 2000, OIKOS, V91, P255, DOI 10.1034/j.1600-0706.2000.910206.x; Scheiner S.M., 2004, PHENOTYPIC PLASTICIT; Schmetterling DA, 2004, N AM J FISH MANAGE, V24, P1163, DOI 10.1577/M03-025.1; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Takahashi D, 2008, ECOL FRESHW FISH, V17, P71, DOI 10.1111/j.1600-0633.2007.00260.x; TAKAHASHI G, 1984, Japanese Journal of Limnology, V45, P178; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; Utzinger J, 1998, J APPL ECOL, V35, P882, DOI 10.1111/j.1365-2664.1998.tb00006.x; Warren ML, 1998, T AM FISH SOC, V127, P637, DOI 10.1577/1548-8659(1998)127<0637:RCABTS>2.0.CO;2 58 2 2 0 13 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0378-1909 ENVIRON BIOL FISH Environ. Biol. Fishes SEP 2013 96 9 1123 1133 10.1007/s10641-013-0108-8 11 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 188DY WOS:000322173500009 2018-11-12 J Hill, SE; Rodeheffer, CD; DelPriore, DJ; Butterfield, ME Hill, Sarah E.; Rodeheffer, Christopher D.; DelPriore, Danielle J.; Butterfield, Max E. Ecological contingencies in women's calorie regulation psychology: A life history approach JOURNAL OF EXPERIMENTAL SOCIAL PSYCHOLOGY English Article Life history theory; Food regulation; Critical fat hypothesis; Evolutionary psychology; Dieting BODY-IMAGE; REPRODUCTIVE STRATEGIES; SOCIOECONOMIC-STATUS; GIRLS; SEX; ENVIRONMENTS; MORTALITY; MENARCHE; WEIGHT; SHAPE We used insights from life history theory and the critical fat hypothesis to explore how environmental harshness influences women's food and weight regulation psychology. As predicted by our theoretical model, women who grew up in poorer, more unpredictable environments responded to harshness cues in their adult environments by exhibiting a greater desire for food (Studies 1 and 2) and a diminished concern with calorie restriction and weight loss (Study 3). In sharp contrast, women who grew up in more predictable, wealthier environments responded to these cues by exhibiting a diminished desire for food and increased concern with calorie restriction and weight loss. This research provides novel insights into the role that local environmental factors play in women's food and weight regulation psychology. (c) 2013 Elsevier Inc. All rights reserved. [Hill, Sarah E.; Rodeheffer, Christopher D.; DelPriore, Danielle J.; Butterfield, Max E.] Texas Christian Univ, Dept Psychol, Ft Worth, TX 76129 USA Hill, SE (reprint author), Texas Christian Univ, Dept Psychol, Ft Worth, TX 76129 USA. s.e.hill@tcu.edu ABRAHAM SF, 1982, PSYCHOL MED, V12, P625, DOI 10.1017/S0033291700055732; Aiken L.S., 1991, MULTIPLE REGRESSION; ANDERSEN AE, 1992, INT J EAT DISORDER, V11, P283, DOI 10.1002/1098-108X(199204)11:3<283::AID-EAT2260110313>3.0.CO;2-O; ARNOW B, 1992, J BEHAV MED, V15, P155, DOI 10.1007/BF00848323; Becker J. B., 1993, BEHAV ENDOCRINOLOGY; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2010, PSYCHOL SCI, V21, P1195, DOI 10.1177/0956797610379867; BRUNER JS, 1947, J ABNORM SOC PSYCH, V42, P33, DOI 10.1037/h0058484; Charnov Eric L., 1993, P1; Chen WY, 1998, PERCEPT MOTOR SKILL, V87, P395, DOI 10.2466/pms.1998.87.2.395; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Cohen J., 2003, APPL MULTIPLE REGRES; Condit V K, 1990, Hum Nat, V1, P391, DOI 10.1007/BF02734052; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; FALLON AE, 1985, J ABNORM PSYCHOL, V94, P102, DOI 10.1037/0021-843X.94.1.102; Frisch R. E., 2002, FEMALE FERTILITY BOD; FRISCH RE, 1985, PERSPECT BIOL MED, V28, P611; FRISCH RE, 1976, HUM BIOL, V48, P353; Greenberg J, 2000, PERS SOC PSYCHOL B, V26, P91, DOI 10.1177/0146167200261009; Greenberg J, 2003, PSYCHOL SCI, V14, P516, DOI 10.1111/1467-9280.03454; Greenberg J., 1986, PUBLIC SELF PRIVATE, P189, DOI [DOI 10.1007/978-1-4613-9564-5_10, 10.1007/978-1-4613-9564-5_10 10. 1007/978-1-4613-9564-5_10]; GREENO CG, 1994, PSYCHOL BULL, V115, P444, DOI 10.1037/0033-2909.115.3.444; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; HEATHERTON TF, 1991, PSYCHOL BULL, V110, P86, DOI 10.1037/0033-2909.110.1.86; Heesacker M., 2000, COLL STUDENT J, V34, P572; HERMAN CP, 1975, J ABNORM PSYCHOL, V84, P666, DOI 10.1037/0021-843X.84.6.666; Hill S. E., FAT FERTILI IN PRESS; HUON GF, 1994, INT J EAT DISORDER, V15, P159, DOI 10.1002/1098-108X(199403)15:2<159::AID-EAT2260150207>3.0.CO;2-2; Jaeger B, 2002, PSYCHOTHER PSYCHOSOM, V71, P54, DOI 10.1159/000049344; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; Kenrick DT, 2010, PERSPECT PSYCHOL SCI, V5, P292, DOI 10.1177/1745691610369469; Knobloch-Westerwick S, 2012, COMMUN RES, V39, P79, DOI 10.1177/0093650211400596; Koball AM, 2012, HEALTH PSYCHOL, V31, P521, DOI 10.1037/a0025893; Kuzawa CW, 2010, P NATL ACAD SCI USA, V107, P16800, DOI 10.1073/pnas.1006008107; Kuzawa CW, 2005, AM J HUM BIOL, V17, P5, DOI 10.1002/ajhb.20091; Kuzawa CW, 2008, EVOLUTIONARY MED HLT, P325; LINGSWILER VM, 1989, INT J EAT DISORDER, V8, P533, DOI 10.1002/1098-108X(198909)8:5<533::AID-EAT2260080505>3.0.CO;2-O; Mahmud N, 2007, BRIT J PSYCHOL, V98, P187, DOI 10.1348/000712606X112446; Navarrete CD, 2009, PSYCHOL SCI, V20, P661, DOI 10.1111/j.1467-9280.2009.02352.x; PATTON GC, 1990, PSYCHOL MED, V20, P383, DOI 10.1017/S0033291700017700; PAXTON SJ, 1991, J YOUTH ADOLESCENCE, V20, P361, DOI 10.1007/BF01537402; Pyszczynski T, 1999, PSYCHOL REV, V106, P835, DOI 10.1037//0033-295X.106.4.835; RIPPON C, 1988, INT J EAT DISORDER, V7, P617, DOI 10.1002/1098-108X(198809)7:5<617::AID-EAT2260070505>3.0.CO;2-U; Roff Derek A., 1992; RUDERMAN AJ, 1985, J ABNORM PSYCHOL, V94, P78, DOI 10.1037/0021-843X.94.1.78; Salmon C, 2008, HUM NATURE-INT BIOS, V19, P103, DOI 10.1007/s12110-008-9030-8; SOBAL J, 1989, PSYCHOL BULL, V105, P260, DOI 10.1037//0033-2909.105.2.260; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stice E, 1998, PSYCHOL ADDICT BEHAV, V12, P195, DOI 10.1037//0893-164X.12.3.195; SURBEY MK, 1987, ETHOL SOCIOBIOL, V8, pS47; Swami V, 2010, PERS SOC PSYCHOL B, V36, P309, DOI 10.1177/0146167209359702; Swami Viren, 2006, BODY IMAGE NEW RES, P35; Tabachnick B. G., 2001, USING MULTIVARIATE S; Tiggemann M, 1996, INT J EAT DISORDER, V20, P199, DOI 10.1002/(SICI)1098-108X(199609)20:2<199::AID-EAT11>3.0.CO;2-Z; Tybur JM, 2011, PSYCHOL SCI, V22, P478, DOI 10.1177/0956797611400096; VOLAND E, 1989, ETHOL SOCIOBIOL, V10, P223, DOI 10.1016/0162-3095(89)90001-0; WASSER SK, 1983, Q REV BIOL, V58, P513, DOI 10.1086/413545; Weeden J, 2005, PSYCHOL BULL, V131, P635, DOI 10.1037/0033-2909.131.5.635; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Williams S, 2002, LANCET, V359, P580, DOI 10.1016/S0140-6736(02)07715-2; Wilson J. M. B., 2005, EVOLUTION GENDER, V7, P245; WILSON M, 1997, CHARACTERIZING HUMAN, P253; Zhou XY, 2009, PSYCHOL SCI, V20, P700, DOI 10.1111/j.1467-9280.2009.02353.x 67 11 12 0 19 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0022-1031 1096-0465 J EXP SOC PSYCHOL J. Exp. Soc. Psychol. SEP 2013 49 5 888 897 10.1016/j.jesp.2013.03.016 10 Psychology, Social Psychology 182FL WOS:000321727000011 2018-11-12 J Kerby, J; Post, E Kerby, Jeffrey; Post, Eric Capital and income breeding traits differentiate trophic match-mismatch dynamics in large herbivores PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article trophic mismatch; life-history theory; climate change; capital-income breeding; Ovibos moschatus; Rangifer tarandus MUSKOXEN OVIBOS-MOSCHATUS; RECENT CLIMATE-CHANGE; PLANT PHENOLOGY; BODY CONDITION; POPULATION-GROWTH; FEMALE MUSKOXEN; REPRODUCTION; REINDEER; CARIBOU; RESPONSES For some species, climate change has altered environmental conditions away from those in which life-history strategies evolved. In such cases, if adaptation does not keep pace with these changes, existing life-history strategies may become maladaptive and lead to population declines. We use life-history theory, with a specific emphasis on breeding strategies, in the context of the trophic match-mismatch framework to form generalizable hypotheses about population-level consumer responses to climate-driven perturbations in resource availability. We first characterize the income and breeding traits of sympatric caribou and muskoxen populations in western Greenland, and then test trait-based hypotheses about the expected reproductive performance of each population during a period of high resource variability at that site. The immediate reproductive performance of income breeding caribou decreased with trophic mismatch. In contrast, capital breeding muskoxen were relatively unaffected by current breeding season resource variability, but their reproductive performance was sensitive to resource conditions from previous years. These responses matched our expectations about how capital and income breeding strategies should influence population susceptibility to phenological mismatch. We argue for a taxon-independent assessment of trophic mismatch vulnerability based on a life-history strategy perspective in the context of prevailing environmental conditions. [Kerby, Jeffrey] Penn State Univ, Polar Ctr, Mueller Lab 208, University Pk, PA 16802 USA; Penn State Univ, Dept Biol, Mueller Lab 208, University Pk, PA 16802 USA Kerby, J (reprint author), Penn State Univ, Polar Ctr, Mueller Lab 208, University Pk, PA 16802 USA. jtk210@psu.edu Kerby, Jeffrey/0000-0002-2739-9096 U.S. National Science Foundation (NSF) Graduate Research Fellowship; NSF; National Geographic Society Committee for Research and Exploration This research was supported by a U.S. National Science Foundation (NSF) Graduate Research Fellowship to J.K., and by grants from NSF and the National Geographic Society Committee for Research and Exploration to E.P. Adamczewski JZ, 1997, J ZOOL, V241, P245, DOI 10.1111/j.1469-7998.1997.tb01956.x; Adamczewski JZ, 1998, THERIOGENOLOGY, V50, P605, DOI 10.1016/S0093-691X(98)00165-4; Bergerud A. T., 1996, RANGIFER, V9, P95, DOI DOI 10.7557/2.16.4.1225; Both C, 2010, P ROY SOC B-BIOL SCI, V277, P1259, DOI 10.1098/rspb.2009.1525; Cahill AE, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.1890; CAUGHLEY G, 1974, J WILDLIFE MANAGE, V38, P552, DOI 10.2307/3800889; CAUGHLEY G, 1977, ANAL VERTEBRATE POPU; Durant JM, 2005, ECOL LETT, V8, P952, DOI 10.1111/j.1461-0248.2005.00798.x; Durant JM, 2007, CLIM RES, V33, P271, DOI 10.3354/cr033271; Edwards M, 2004, NATURE, V430, P881, DOI 10.1038/nature02808; FLOOD PF, 1995, RANGIFER, V17, P25; FORCHHAMMER M, 1993, ECOGRAPHY, V16, P299, DOI 10.1111/j.1600-0587.1993.tb00219.x; Forchhammer MC, 2002, POPUL ECOL, V44, P113, DOI 10.1007/s101440200013; FRANCIS JA, 2012, GEOPHYS RES LETT, V39, DOI DOI 10.1029/2012GL051000); Gustine DD, 2010, PHYSIOL BIOCHEM ZOOL, V83, P687, DOI 10.1086/652729; Hoye TT, 2007, CURR BIOL, V17, pR449, DOI 10.1016/j.cub.2007.04.047; Inouye DW, 2000, P NATL ACAD SCI USA, V97, P1630, DOI 10.1073/pnas.97.4.1630; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; KERBY J, NAT COMMUN; Kerby J. T., 2012, TRAIT MEDIATED INDIR, P508; KLEIN D R, 1992, Rangifer, V12, P47; LATOUR PB, 1987, CAN J ZOOL, V65, P265, DOI 10.1139/z87-041; Lu WQ, 2010, CURR BIOL, V20, P533, DOI 10.1016/j.cub.2010.01.042; Miller-Rushing AJ, 2010, PHILOS T R SOC B, V365, P3177, DOI 10.1098/rstb.2010.0148; Min SK, 2011, NATURE, V470, P378, DOI 10.1038/nature09763; Olesen Carsten Riis, 1993, Rangifer, V13, P27; OLESEN CR, 1994, RANGIFER, V1, P3; Ouellet JP, 1997, CAN J ZOOL, V75, P11, DOI 10.1139/z97-002; Ozgul A, 2010, NATURE, V466, P482, DOI 10.1038/nature09210; Pall P, 2011, NATURE, V470, P382, DOI 10.1038/nature09762; PARKER KL, 1990, CAN J ZOOL, V68, P106, DOI 10.1139/z90-015; Parmesan C, 2003, NATURE, V421, P37, DOI 10.1038/nature01286; Pedersen CB, 2000, ARCTIC, V53, P18; Post E, 1999, ECOLOGY, V80, P1322, DOI 10.2307/177078; Post E, 2003, CAN J ZOOL, V81, P1709, DOI 10.1139/Z03-172; Post E, 1999, J WILDLIFE MANAGE, V63, P335, DOI 10.2307/3802517; Post E., 2013, ECOLOGY CLIMATE CHAN; Post E, 2008, P ROY SOC B-BIOL SCI, V275, P2005, DOI 10.1098/rspb.2008.0463; Post E, 2008, PHILOS T R SOC B, V363, P2369, DOI 10.1098/rstb.2007.2207; Post E, 2009, SCIENCE, V325, P1355, DOI 10.1126/science.1173113; R Core Development Team, 2012, R LANG ENV STAT COMP; REIMERS E, 1982, CAN J ZOOL, V60, P1812, DOI 10.1139/z82-235; Reynolds PE, 2001, ALCES-N AM MOOSE CON, V37, P403; Rognmo A, 1983, RANGIFER, V3, P10; Ronnegard L, 2002, CAN J ZOOL, V80, P2047, DOI 10.1139/z02-192; Root TL, 2003, NATURE, V421, P57, DOI 10.1038/nature01333; Senechal E, 2011, OECOLOGIA, V165, P593, DOI 10.1007/s00442-010-1853-4; SKOGLAND T, 1984, HOLARCTIC ECOL, V7, P345; SKOGLAND T, 1990, OECOLOGIA, V84, P442, DOI 10.1007/BF00328158; Skogland T., 1989, ADV ETHOL, V29, P1; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stephens PA, 2009, ECOLOGY, V90, P2057, DOI 10.1890/08-1369.1; Tafani M, 2013, ECOLOGY, V94, P580, DOI 10.1890/12-0833.1; Thackeray SJ, 2010, GLOBAL CHANGE BIOL, V16, P3304, DOI 10.1111/j.1365-2486.2010.02165.x; Thing H., 1984, Danish Review of Game Biology, V12, P1; THING H, 1982, RANGIFER, V2, P28, DOI DOI 10.7557/2.2.2.410); Tveraa T, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0056450; Tyler NJC, 2008, ECOLOGY, V89, P1675, DOI 10.1890/07-0416.1; Visser ME, 2008, P R SOC B, V275, P649, DOI 10.1098/rspb.2007.0997; Visser ME, 2003, P ROY SOC B-BIOL SCI, V270, P367, DOI 10.1098/rspb.2002.2244; Visser ME, 1998, P ROY SOC B-BIOL SCI, V265, P1867, DOI 10.1098/rspb.1998.0514; Visser ME, 2004, ADV ECOL RES, V35, P89, DOI 10.1016/S0065-2504(04)35005-1; VISSER ME, 2001, P ROY SOC LOND B BIO, V268, P1, DOI DOI 10.1098/RSPB.2000.1322); Walther GR, 2002, NATURE, V416, P389, DOI 10.1038/416389a; White RG, 1997, J ZOOL, V243, P13, DOI 10.1111/j.1469-7998.1997.tb05752.x; WHITE RG, 1989, CAN J ZOOL, V67, P1125, DOI 10.1139/z89-162; Winder M, 2004, ECOLOGY, V85, P2100, DOI 10.1890/04-0151 67 23 23 0 80 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8436 1471-2970 PHILOS T R SOC B Philos. Trans. R. Soc. B-Biol. Sci. AUG 19 2013 368 1624 UNSP 20120484 10.1098/rstb.2012.0484 7 Biology Life Sciences & Biomedicine - Other Topics 180AR WOS:000321565600006 23836789 Bronze, Green Published 2018-11-12 J Hua, FY; Fletcher, RJ; Sieving, KE; Dorazio, RM Hua, Fangyuan; Fletcher, Robert J., Jr.; Sieving, Kathryn E.; Dorazio, Robert M. Too risky to settle: avian community structure changes in response to perceived predation risk on adults and offspring PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article predation risk; community structure; birds; life-history traits; natural-history traits HABITAT SELECTION; NEST PREDATION; MULTIVARIATE ANALYSES; SPECIES-DIVERSITY; BIRD ASSEMBLAGES; POPULATION-SIZE; HISTORY TRAITS; LIFE-HISTORY; SOCIAL CUES; PREY Predation risk is widely hypothesized as an important force structuring communities, but this potential force is rarely tested experimentally, particularly in terrestrial vertebrate communities. How animals respond to predation risk is generally considered predictable from species life-history and natural-history traits, but rigorous tests of these predictions remain scarce. We report on a large-scale playback experiment with a forest bird community that addresses two questions: (i) does perceived predation risk shape the richness and composition of a breeding bird community? And (ii) can species life-history and natural-history traits predict prey community responses to different types of predation risk? On 9 ha plots, we manipulated cues of three avian predators that preferentially prey on either adult birds or offspring, or both, throughout the breeding season. We found that increased perception of predation risk led to generally negative responses in the abundance, occurrence and/or detection probability of most prey species, which in turn reduced the species richness and shifted the composition of the breeding bird community. Species-level responses were largely predicted from the key natural-history trait of body size, but we did not find support for the life-history theory prediction of the relationship between species' slow/fast life-history strategy and their response to predation risk. [Hua, Fangyuan; Fletcher, Robert J., Jr.; Sieving, Kathryn E.] Univ Florida, Dept Wildlife Ecol & Conservat, Gainesville, FL 32611 USA; [Hua, Fangyuan] Univ Florida, Sch Nat Resources & Environm, Gainesville, FL 32611 USA; [Dorazio, Robert M.] US Geol Survey, Southeast Ecol Sci Ctr, Gainesville, FL 32653 USA Hua, FY (reprint author), Princeton Univ, Woodrow Wilson Sch Publ & Int Affairs, Program Sci Technol & Environm Policy, Princeton, NJ 08540 USA. slcyane@gmail.com Sieving, Kathryn/0000-0002-0849-8101; Fletcher, Robert/0000-0003-1717-5707 University of Florida We thank S. Coates and the Ordway-Swisher Biological Station for use of field sites and logistic support, and the University of Florida for financial support. We thank S. K. Robinson for helpful discussion on research design. Special thanks go to I. Skinner and C. Wright for arduous field assistance. We thank D. J. Levey, C. M. St Mary, N. Jayasena, K. Kerman and three anonymous reviewers for critical comments that greatly improved the manuscript. Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the US Government. ADDICOTT JF, 1974, ECOLOGY, V55, P475, DOI 10.2307/1935141; Alachua County Audubon (ACA), 2010, AL COUNT BIRD CAL; Banks PB, 2008, BOREAL ENVIRON RES, V13, P3; BENNETT PM, 1988, NATURE, V333, P216, DOI 10.1038/333216b0; Bibby C. J., 2000, BIRD CENSUS TECHNIQU, P302; Blumstein DT, 2006, ANIM BEHAV, V71, P389, DOI 10.1016/j.anbehav.2005.05.010; BRAY JR, 1957, ECOL MONOGR, V27, P326; Burnham KP, 2002, MODEL SELECTION MULT, P496; Clarke K. R, 2001, CHANGE MARINE COMMUN; CLARKE KR, 1993, AUST J ECOL, V18, P117, DOI 10.1111/j.1442-9993.1993.tb00438.x; Conneil J.H., 1975, P460; Cresswell W, 2008, IBIS, V150, P3, DOI 10.1111/j.1474-919X.2007.00793.x; Curtis OE, 2006, BIRDS N AM ONLINE, DOI [10.2173/bna.75, DOI 10.2173/BNA.75)]; Dail D, 2011, BIOMETRICS, V67, P577, DOI 10.1111/j.1541-0420.2010.01465.x; Fletcher RJ, 2008, ECOL APPL, V18, P1764, DOI 10.1890/07-1850.1; Fletcher RJ, 2007, J ANIM ECOL, V76, P598, DOI 10.1111/j.1365-2656.2007.01230.x; FNAI (Florida Natural Areas Inventory), 2010, GUID NAT COMM FLOR 2; Fontaine JJ, 2006, AM NAT, V168, P811, DOI 10.1086/508297; Forsman JT, 2001, ECOLOGY, V82, P232, DOI 10.2307/2680099; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; Gehlbach FR., 1995, BIRDS N AM ONLINE, DOI [10.2173/ bna. 165, DOI 10.2173/BNA.165]; Ghalambor CK, 2000, ANIM BEHAV, V60, P263, DOI 10.1006/anbe.2000.1472; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Gotmark F, 1996, PHILOS T ROY SOC B, V351, P1559, DOI 10.1098/rstb.1996.0141; Greeney HF, 2009, WILSON J ORNITHOL, V121, P809, DOI 10.1676/08-174.1; Jones J, 2001, AUK, V118, P557, DOI 10.1642/0004-8038(2001)118[0557:HSSIAE]2.0.CO;2; Julliard R, 1997, ECOLOGY, V78, P394; KENKEL NC, 1986, ECOLOGY, V67, P919, DOI 10.2307/1939814; KOTLER BP, 1984, ECOLOGY, V65, P689, DOI 10.2307/1938041; Krama T, 2008, ETHOLOGY, V114, P656, DOI 10.1111/j.1439-0310.2008.01514.x; Kroodsma DE, 2001, ANIM BEHAV, V61, P1029, DOI 10.1006/anbe.2000.1676; Kullberg C, 2000, OIKOS, V89, P41, DOI 10.1034/j.1600-0706.2000.890105.x; LI PJ, 1991, AUK, V108, P405; LIMA SL, 1993, WILSON BULL, V105, P1; LIMA SL, 1992, ANN ZOOL FENN, V29, P217; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Lima SL, 2009, BIOL REV, V84, P485, DOI 10.1111/j.1469-185X.2009.00085.x; Lowther PE, 1993, BIRDS N AM ONLINE, DOI [10.2173/bna.47, DOI 10.2173/BNA.47)]; MacKenzie DI, 2006, OCCUPANCY ESTIMATION; MARTIN TE, 1988, ECOLOGY, V69, P74, DOI 10.2307/1943162; Martin TE, 1988, EVOL ECOL, V2, P37, DOI 10.1007/BF02071587; MENGE BA, 1976, AM NAT, V110, P351, DOI 10.1086/283073; MENGE BA, 1976, ECOL MONOGR, V46, P355, DOI 10.2307/1942563; Monkkonen M, 1999, EVOL ECOL, V13, P91; Monkkonen M, 2007, J ANIM ECOL, V76, P619, DOI 10.1111/j.1365-2656.2007.01233.x; MONTGOMERIE RD, 1988, Q REV BIOL, V63, P167, DOI 10.1086/415838; Morosinotto C, 2010, J ANIM ECOL, V79, P327, DOI 10.1111/j.1365-2656.2009.01638.x; Mougeot F, 2000, ANIM BEHAV, V60, P647, DOI 10.1006/anbe.2000.1491; Norrdahl K, 1998, J AVIAN BIOL, V29, P79, DOI 10.2307/3677344; PAINE RT, 1966, AM NAT, V100, P65, DOI 10.1086/282400; Pan W, 2001, BIOMETRICS, V57, P120, DOI 10.1111/j.0006-341X.2001.00120.x; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; POLIS GA, 1989, ANNU REV ECOL SYST, V20, P297, DOI 10.1146/annurev.es.20.110189.001501; POLLOCK KH, 1982, J WILDLIFE MANAGE, V46, P752, DOI 10.2307/3808568; Preisser EL, 2012, ECOSPHERE, V3, DOI 10.1890/ES12-00084.1; R Development Core Team, 2011, R LANG ENV STAT COMP; RICKLEFS RE, 1977, CONDOR, V79, P376, DOI 10.2307/1368016; Rodenhouse NL, 1997, ECOLOGY, V78, P2025, DOI 10.1890/0012-9658(1997)078[2025:SDROPS]2.0.CO;2; Rota CT, 2009, J APPL ECOL, V46, P1173, DOI 10.1111/j.1365-2664.2009.01734.x; Royle JA, 2004, BIOMETRICS, V60, P108, DOI 10.1111/j.0006-341X.2004.00142.x; Royle JA, 2008, HIERARCHICAL MODELIN; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; Sih A, 1998, TRENDS ECOL EVOL, V13, P350, DOI 10.1016/S0169-5347(98)01437-2; SIH A, 1985, ANNU REV ECOL SYST, V16, P269, DOI 10.1146/annurev.es.16.110185.001413; SIH A, 1992, AM NAT, V139, P1052, DOI 10.1086/285372; Smith K. G., 2013, BIRDS N AM ONLINE, DOI [10.2173/bna.469, DOI 10.2173/BNA.469]; Stracey CM., 2010, THESIS U FLORIDA GAI, P62; SUHONEN J, 1994, ECOLOGY, V75, P1626, DOI 10.2307/1939623; Thomson RL, 2006, ECOGRAPHY, V29, P507; VEZINA AF, 1985, OECOLOGIA, V67, P555, DOI 10.1007/BF00790027; Vonesh JR, 2009, OIKOS, V118, P1219, DOI 10.1111/j.1600-0706.2009.17369.x; Warton DI, 2012, METHODS ECOL EVOL, V3, P89, DOI 10.1111/j.2041-210X.2011.00127.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WILSON DM, 1985, CONDOR, V87, P69, DOI 10.2307/1367132; Zanette LY, 2011, SCIENCE, V334, P1398, DOI 10.1126/science.1210908 75 17 17 3 82 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. AUG 7 2013 280 1764 20130762 10.1098/rspb.2013.0762 8 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 167RA WOS:000320649400005 23782879 Bronze, Green Published 2018-11-12 J Bonser, SP Bonser, Stephen P. High reproductive efficiency as an adaptive strategy in competitive environments FUNCTIONAL ECOLOGY English Article competitive annual strategy; life-history theory; reproductive allocation; reproductive perennial strategy; strategy theory; trade-off; vegetative allocation TREE SEEDLING RECRUITMENT; LEAF ECONOMICS SPECTRUM; LIFE-HISTORY; SPECIES COEXISTENCE; PLANT COMPETITION; HERBACEOUS PLANTS; OLD-FIELDS; ALLOCATION; SELECTION; POPULATIONS 1. Reproductive efficiency (the efficiency of conversion of resources from vegetative tissue to reproductive output) is a central to our understanding of reproductive allocation and the evolution of reproductive strategies in plants. Plant strategy theory predicts that reproductive efficiency should decrease under competition. Short-lived semelparous species are not predicted to evolve under competition and therefore should not express adaptive responses to the presence of competitors. Long-lived iteroparous species are predicted to delay reproduction in favour of growth and resource acquisition in the presence of competitors. I use life-history theory to advance a prediction that reproductive efficiency increases under competition in both short-lived semelparous and potentially longer-lived iteroparous species. 2. Contrary to the predictions of plant strategy theory, short-lived semelparous species are frequently observed to live in highly competitive environments. Further, iteroparous species under intense competition may die long before they reach competitive dominance or an optimal size for reproduction. 3. I surveyed the literature for studies on plant species including measurements of vegetative and reproductive allocation in high and low (or no) competition treatments. 4. Across species, relative reproductive efficiency (reproductive efficiency under high competition/reproductive efficiency under low competition) significantly increased with increasing competition intensity. 5. Patterns of allocation to reproduction under competition support the existence of a competitive annual strategy and a reproductive perennial strategy. Under these strategies, short-lived semelparous species and long-lived iteroparous species express high reproductive efficiency under competition as an adaptation to high neighbour density. In addition, some species also expressed patterns of allocation to reproduction consistent with plant strategy theories. 6. Under this interpretation, I predict that competitive strategies, where plants delay reproduction in competitive environments to gain competitive superiority, are favoured not under intense competition but under modest competition. Including a life-history interpretation in reproductive efficiency under competition provides a much needed predictive framework for strategies of reproduction observed across species. Univ New S Wales, Sch Biol Earth & Environm Sci, Evolut & Ecol Res Ctr, Sydney, NSW 2052, Australia Bonser, SP (reprint author), Univ New S Wales, Sch Biol Earth & Environm Sci, Evolut & Ecol Res Ctr, Sydney, NSW 2052, Australia. s.bonser@unsw.edu.au Bonser, Stephen/0000-0002-6608-9912 ARC Joshua Griffiths kindly helped with collecting data from the literature. Angela Moles, Lonnie Aarssen and David Robinson provided helpful comments on earlier versions of this manuscript. This research was supported by an ARC Discovery grant to SPB. Aarssen L. W., 1990, OIKOS, V58, P239; Aarssen L. W., 1992, OIKOS, V65, P225; Aarssen LW, 2008, EVOL ECOL, V22, P279, DOI 10.1007/s10682-007-9170-z; Aarssen LW, 2006, J ECOL, V94, P569, DOI 10.1111/j.1365-2745.2006.01128.x; Aarssen LW, 2002, OIKOS, V96, P531, DOI 10.1034/j.1600-0706.2002.960314.x; [Anonymous], 2011, J PLANT ECOLOGY, V19, P4; Ansari S, 2010, BIOL INVASIONS, V12, P4033, DOI 10.1007/s10530-010-9810-z; Bell, 2006, ECOL LETT, V9, P569; Bell G, 1976, AM NAT, V100, P55; Bonser SP, 2006, CAN J BOT, V84, P143, DOI [10.1139/B05-154, 10.1139/b05-154]; BONSER SP, 1995, ECOLOGY, V76, P2176, DOI 10.2307/1941691; Bonser SP, 2011, PLANT ECOL, V212, P1441, DOI 10.1007/s11258-011-9919-x; Bonser SP, 2009, PERSPECT PLANT ECOL, V11, P31, DOI 10.1016/j.ppees.2008.10.003; Campbell LG, 2007, NEW PHYTOL, V173, P648, DOI 10.1111/j.1469-81.2006.01941.x; Chaneton EJ, 2010, J ECOL, V98, P488, DOI 10.1111/j.1365-2745.2009.01631.x; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; Dostal P, 2009, BASIC APPL ECOL, V10, P525, DOI 10.1016/j.baae.2008.12.004; FACELLI JM, 1994, ECOLOGY, V75, P1727, DOI 10.2307/1939632; FONE AL, 1989, J ECOL, V77, P484, DOI 10.2307/2260764; Gilbert GS, 2002, ANNU REV PHYTOPATHOL, V40, P13, DOI 10.1146/annurev.phyto.40.021202.110417; Goldberg DE, 2001, ECOL MONOGR, V71, P423, DOI 10.1890/0012-9615(2001)071[0423:DDIAAP]2.0.CO;2; Grime J. P., 1979, PLANT STRATEGIES VEG; HARPER JL, 1970, J ECOL, V58, P681, DOI 10.2307/2258529; Jongejans E, 2006, OECOLOGIA, V147, P369, DOI 10.1007/s00442-005-0325-8; Kazakou E, 2007, FUNCT ECOL, V21, P235, DOI 10.1111/j.1365-2435.2006.01242.x; Kery M, 2000, J ECOL, V88, P17, DOI 10.1046/j.1365-2745.2000.00422.x; KLINKHAMER PGL, 1992, FUNCT ECOL, V6, P308, DOI 10.2307/2389522; KOK LT, 1986, WEED SCI, V34, P966; Loehle C, 2000, AM NAT, V156, P14, DOI 10.1086/303369; MAC ARTHUR ROBERT H., 1967; Nagy L, 1997, NEW PHYTOL, V137, P267, DOI 10.1046/j.1469-8137.1997.00799.x; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; Oksanen L, 2006, OIKOS, V112, P149, DOI 10.1111/j.0030-1299.2006.13379.x; PALMBLAD IG, 1968, ECOLOGY, V49, P26, DOI 10.2307/1933557; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PITELKA LF, 1977, ECOLOGY, V58, P1055, DOI 10.2307/1936925; REEKIE EG, 1987, AM NAT, V129, P876, DOI 10.1086/284681; Rees M, 2012, J ECOL, V100, P577, DOI 10.1111/j.1365-2745.2011.01946.x; Ricklefs RE, 1999, ECOLOGY; Royo AA, 2008, CAN J FOREST RES, V38, P1634, DOI 10.1139/X07-247; Sammul M, 2000, OECOLOGIA, V125, P18, DOI 10.1007/PL00008887; Saulnier, 1995, J ECOL, V83, P23; Schiffers K, 2006, J ECOL, V94, P336, DOI 10.1111/j.1365-2745.2006.01097.x; Silvertown J, 1996, PHILOS T ROY SOC B, V351, P1233, DOI 10.1098/rstb.1996.0106; Violle C, 2006, J ECOL, V94, P196, DOI 10.1111/j.1365-2745.2005.01061.x; WEINER J, 1990, TRENDS ECOL EVOL, V5, P360, DOI 10.1016/0169-5347(90)90095-U; Weiner J, 2009, J ECOL, V97, P1220, DOI 10.1111/j.1365-2745.2009.01559.x; Weinig C, 2007, EVOLUTION, V61, P58, DOI 10.1111/j.1558-5646.2007.00005.x; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403 49 24 25 0 49 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. AUG 2013 27 4 SI 876 885 10.1111/1365-2435.12064 10 Ecology Environmental Sciences & Ecology 284GK WOS:000329303900006 Bronze 2018-11-12 J Santure, AW; De Cauwer, I; Robinson, MR; Poissant, J; Sheldon, BC; Slate, J Santure, Anna W.; De Cauwer, Isabelle; Robinson, Matthew R.; Poissant, Jocelyn; Sheldon, Ben C.; Slate, Jon Genomic dissection of variation in clutch size and egg mass in a wild great tit (Parus major) population MOLECULAR ECOLOGY English Article association study; genomics; life history evolution; QTL mapping; quantitative genetics QUANTITATIVE TRAIT LOCI; GENETIC ARCHITECTURE; ASSOCIATION ANALYSIS; LINKAGE DISEQUILIBRIUM; REPRODUCTIVE TRAITS; WIDE ASSOCIATION; BIRD POPULATION; COMPLEX TRAITS; CLIMATE-CHANGE; SELECTION Clutch size and egg mass are life history traits that have been extensively studied in wild bird populations, as life history theory predicts a negative trade-off between them, either at the phenotypic or at the genetic level. Here, we analyse the genomic architecture of these heritable traits in a wild great tit (Parus major) population, using three marker-based approaches - chromosome partitioning, quantitative trait locus (QTL) mapping and a genome-wide association study (GWAS). The variance explained by each great tit chromosome scales with predicted chromosome size, no location in the genome contains genome-wide significant QTL, and no individual SNPs are associated with a large proportion of phenotypic variation, all of which may suggest that variation in both traits is due to many loci of small effect, located across the genome. There is no evidence that any regions of the genome contribute significantly to both traits, which combined with a small, nonsignificant negative genetic covariance between the traits, suggests the absence of genetic constraints on the independent evolution of these traits. Our findings support the hypothesis that variation in life history traits in natural populations is likely to be determined by many loci of small effect spread throughout the genome, which are subject to continued input of variation by mutation and migration, although we cannot exclude the possibility of an additional input of major effect genes influencing either trait. [Santure, Anna W.; De Cauwer, Isabelle; Robinson, Matthew R.; Poissant, Jocelyn; Slate, Jon] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England; [De Cauwer, Isabelle] Univ Sci & Technol Lille Lille 1, Lab Genet & Evolut Populat Vegetales, UMR CNRS 8198, F-59655 Villeneuve Dascq, France; [Sheldon, Ben C.] Univ Oxford, Edward Grey Inst, Dept Zool, Oxford OX1 3PS, England Santure, AW (reprint author), Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England. asanture@gmail.com De Cauwer, Isabelle/M-4810-2015; Sheldon, Ben/A-8056-2010; Robinson, Matthew/N-8689-2013; Slate, Jon/D-2925-2012 De Cauwer, Isabelle/0000-0001-8871-8938; Sheldon, Ben/0000-0002-5240-7828; Slate, Jon/0000-0003-3356-5123; Robinson, Matthew/0000-0001-8982-8813; Poissant, Jocelyn/0000-0003-1546-3609; Santure, Anna/0000-0001-8965-1042 European Research Council (ERC); project AvianEGG [202487]; Natural Environment Research Council (NERC) UK fellowship; Natural Sciences and Engineering Council of Canada (NSERC); Marie Curie fellowships; Natural Environment Research Council [NE/D011744/1] We thank the many people who have collected data from the Wytham Woods great tit population over the past decades and the many funding sources, too numerous to list here, that supported the collection of the data. We are very grateful for the insightful and helpful comments from three anonymous reviewers and Subject Editor Professor Staffan Bensch. This work was funded by the European Research Council (ERC), project AvianEGG, number 202487, awarded to JS, a Natural Environment Research Council (NERC) UK fellowship to MRR, and Natural Sciences and Engineering Council of Canada (NSERC) and Marie Curie fellowships to JP. Abecasis GR, 2000, BIOINFORMATICS, V16, P182, DOI 10.1093/bioinformatics/16.2.182; Allen HL, 2010, NATURE, V467, P832, DOI 10.1038/nature09410; Amin N, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0001274; Aulchenko SY, 2007, GENETICS, V177, P577; Aulchenko YS, 2007, BIOINFORMATICS, V23, P1294, DOI 10.1093/bioinformatics/btm108; Bates D., 2011, LME4 LINEAR MIXED EF; Bennett P. M., 2002, EVOLUTIONARY ECOLOGY; Bernardo J, 1996, AM ZOOL, V36, P216; BLACKBURN TM, 1991, AUK, V108, P973; Brown GP, 2007, J EVOLUTION BIOL, V20, P588, DOI 10.1111/j.1420-9101.2006.01256.x; Browning BL, 2009, AM J HUM GENET, V84, P210, DOI 10.1016/j.ajhg.2009.01.005; Browning SR, 2007, AM J HUM GENET, V81, P1084, DOI 10.1086/521987; Charmantier A, 2005, MOL ECOL, V14, P2839, DOI 10.1111/j.1365-294X.2005.02619.x; Christians JK, 2002, BIOL REV, V77, P1, DOI 10.1017/S1464793101005784; Fisher N, 2010, WYTHAM WOODS: OXFORD'S ECOLOGICAL LABORATORY, P197; Flint J, 2009, GENOME RES, V19, P723, DOI 10.1101/gr.086660.108; Gall GAE, 2004, AQUACULTURE, V234, P143, DOI 10.1016/j.aquaculture.2004.01.029; Garant D, 2008, MOL ECOL, V17, P179, DOI 10.1111/j.1365-294X.2007.03436.x; Garant D, 2007, EVOLUTION, V61, P1546, DOI 10.1111/j.1558-5646.2007.00128.x; George AW, 2000, GENETICS, V156, P2081; Gilmour A. R., 2009, ASREML USER GUIDE RE; Goddard ME, 2011, J ANIM BREED GENET, V128, P409, DOI 10.1111/j.1439-0388.2011.00964.x; Hadfield JD, 2010, AM NAT, V175, P116, DOI 10.1086/648604; Hayes BJ, 2010, PLOS GENETICS, V6; Heath SC, 1997, GENET EPIDEMIOL, V14, P1011, DOI 10.1002/(SICI)1098-2272(1997)14:6<1011::AID-GEPI75>3.0.CO;2-L; Heath SC, 1997, AM J HUM GENET, V61, P748, DOI 10.1086/515506; HENDERSON CR, 1975, BIOMETRICS, V31, P423, DOI 10.2307/2529430; Hill WG, 2008, PLOS GENETICS, V4; Keightley PD, 1999, GENET RES, V74, P323, DOI 10.1017/S0016672399004176; Krist M, 2011, BIOL REV, V86, P692, DOI 10.1111/j.1469-185X.2010.00166.x; Lack D., 1964, Journal of Animal Ecology (Suppl), V33, P159, DOI 10.2307/2437; LANDER E, 1995, NAT GENET, V11, P241, DOI 10.1038/ng1195-241; LANDER ES, 1989, GENETICS, V121, P185; Lynch M, 1998, GENETICS ANAL QUANTI; Mackay TFC, 2001, ANNU REV GENET, V35, P303, DOI 10.1146/annurev.genet.35.102401.090633; Mappes Koskela E, 2004, EVOLUTION, V58, P645; Martin Bassar R, 2006, EVOLUTION, V60, P390; McCleery RH, 2004, AM NAT, V164, P62; Merila J, 1999, HEREDITY, V83, P103, DOI 10.1046/j.1365-2540.1999.00585.x; Moskvina V, 2008, GENET EPIDEMIOL, V32, P567, DOI 10.1002/gepi.20331; Nyholt DR, 2000, AM J HUM GENET, V67, P282, DOI 10.1086/303029; Postma E, 2006, J EVOLUTION BIOL, V19, P309, DOI 10.1111/j.1420-9101.2005.01007.x; Postma E, 2005, NATURE, V433, P65, DOI 10.1038/nature03083; Powell JE, 2010, NAT REV GENET, V11, P800, DOI 10.1038/nrg2865; Pritchard JK, 2001, AM J HUM GENET, V69, P1, DOI 10.1086/321275; Purcell S, 2007, AM J HUM GENET, V81, P559, DOI 10.1086/519795; Quinn JL, 2006, J EVOLUTION BIOL, V19, P994, DOI 10.1111/j.1420-9101.2006.01081.x; R development core team, 2012, R LANG ENV STAT COMP; Robinson MR, 2013, MOL ECOL, V22, P3963, DOI 10.1111/mec.12375; Schroderus E, 2012, BMC EVOL BIOL, V12, DOI 10.1186/1471-2148-12-44; Sham PC, 2000, AM J HUM GENET, V66, P1616, DOI 10.1086/302891; Sinervo B, 1996, EVOLUTION, V50, P1314, DOI 10.1111/j.1558-5646.1996.tb02371.x; Slate J, 2005, MOL ECOL, V14, P363, DOI 10.1111/j.1365-294X.2004.02378.x; Slate J, 2013, EVOLUTION, V67, P1251, DOI 10.1111/evo.12060; Slate J, 2010, TRENDS GENET, V26, P275, DOI 10.1016/j.tig.2010.03.005; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SNYDER RJ, 1991, COPEIA, P526; Star B, 2008, GENETICS, V179, P1469, DOI 10.1534/genetics.108.087817; Stinchcombe JR, 2008, HEREDITY, V100, P158, DOI 10.1038/sj.hdy.6800937; Van Bers NEM, 2012, MOL ECOL RESOUR, V12, P753, DOI 10.1111/j.1755-0998.2012.03141.x; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VanRaden PM, 2008, J DAIRY SCI, V91, P4414, DOI 10.3168/jds.2007-0980; Verhulst S, 1997, ECOLOGY, V78, P864; Visscher PM, 2007, AM J HUM GENET, V81, P1104, DOI 10.1086/522934; Visser ME, 2003, P ROY SOC B-BIOL SCI, V270, P367, DOI 10.1098/rspb.2002.2244; Wilkin Garant D, 2006, J ANIM ECOL, V75, P604; Wilson AJ, 2005, J EVOLUTION BIOL, V18, P405, DOI 10.1111/j.1420-9101.2004.00824.x; Yang J, 2011, NAT GENET, V43, P519, DOI 10.1038/ng.823; Yang JA, 2011, AM J HUM GENET, V88, P76, DOI 10.1016/j.ajhg.2010.11.011 69 53 53 0 103 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. AUG 2013 22 15 3949 3962 10.1111/mec.12376 14 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology 188XA WOS:000322229800008 23889544 2018-11-12 J Ritchie, H; Marshall, DJ Ritchie, Hannah; Marshall, Dustin J. Fertilisation is not a new beginning: sperm environment affects offspring developmental success JOURNAL OF EXPERIMENTAL BIOLOGY English Article complex life cycles; life-history theory; phenotypic plasticity; stress POLYCHAETE GALEOLARIA-CAESPITOSA; POSTCOPULATORY SEXUAL SELECTION; MARINE BROADCAST-SPAWNERS; SEA-URCHIN; LARVAL DEVELOPMENT; CONSEQUENCES; SALINITY; LIFE; SERPULIDAE; POLYANDRY For organisms with complex life histories, the direction and magnitude of phenotypic links among life-history stages can have important ecological and evolutionary effects. While the phenotypic links between mothers and offspring, as well as between larvae and adults, are well recognised, the links between sperm phenotype and offspring phenotype have been less well explored. Here, we used a split-clutch/split-ejaculate design to examine whether the environment that sperm experience affects the subsequent performance of larvae in the broadcast spawning marine invertebrate Galeolaria gemineoa. The environment that sperm experienced affected the developmental success of larvae sired by these sperm; larvae sired by sperm that experienced low salinities had poorer developmental success than larvae sired by sperm that experienced a normal salinity. When we explored the interactive effects of the sperm environment and the larval environment with an orthogonal design, we found an interaction; when sperm and larvae experienced the same environment, performance was generally higher than when the sperm and larval environments differed. These effects could be due to selection on specific sperm phenotypes, phenotypic modification of the sperm or both. Together, our results challenge the traditional notion that sperm are merely transporters of genetic material; instead, significant covariance between sperm and offspring phenotypes exists. Our study adds to a growing list that demonstrates that fertilisation does have a homogenising effect on the phenotype of the zygote, and that events before fertilisation during the gamete phase can carry through to affect performance in later life-history stages. [Ritchie, Hannah; Marshall, Dustin J.] Univ Queensland, Sch Biol Sci, Brisbane, Qld 4072, Australia; [Marshall, Dustin J.] Monash Univ, Sch Biol Sci, Clayton, Vic 3800, Australia Marshall, DJ (reprint author), Univ Queensland, Sch Biol Sci, Brisbane, Qld 4072, Australia. dustin.marshall@monash.edu Marshall, Dustin/C-3450-2016 Australian Research Council (ARC) D.J.M. was supported by grants from the Australian Research Council (ARC). Allen JD, 2010, BIOL BULL-US, V218, P189, DOI 10.1086/BBLv218n2p189; Andrews J, 1962, P LINN SOC N S W, V87, P185; ARNOLD SJ, 1992, AM NAT, V140, pS85, DOI 10.1086/285398; Beckerman AP, 2002, TRENDS ECOL EVOL, V17, P263, DOI 10.1016/S0169-5347(02)02469-2; Bergeron CM, 2011, ENVIRON SCI TECHNOL, V45, P3781, DOI 10.1021/es104210a; Birkhead TR, 2002, NAT REV GENET, V3, P262, DOI 10.1038/nrg774; Blows MW, 2007, J EVOLUTION BIOL, V20, P1, DOI 10.1111/j.1420-9101.2006.01164.x; Bonduriansky R, 2007, J EVOLUTION BIOL, V20, P2379, DOI 10.1111/j.1420-9101.2007.01409.x; Bonduriansky R, 2009, ANNU REV ECOL EVOL S, V40, P103, DOI 10.1146/annurev.ecolsys.39.110707.173441; Bownds C, 2010, J EXP BIOL, V213, P3796, DOI 10.1242/jeb.043356; Crean AJ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049167; Crean AJ, 2011, EVOLUTION, V65, P3079, DOI 10.1111/j.1558-5646.2011.01372.x; de Boer P, 2010, MOL HUM REPROD, V16, P48, DOI 10.1093/molehr/gap098; DINNEL PA, 1989, ARCH ENVIRON CON TOX, V18, P748, DOI 10.1007/BF01225012; Droge-Young EM, 2012, J EVOLUTION BIOL, V25, P1555, DOI 10.1111/j.1420-9101.2012.02540.x; Evans JP, 2007, EVOLUTION, V61, P2832, DOI 10.1111/j.1558-5646.2007.00227.x; Evans JP, 2003, NATURE, V421, P360, DOI 10.1038/nature01367; Evans JP, 2005, EVOLUTION, V59, P106; Fitzpatrick JL, 2008, COMP BIOCHEM PHYS C, V147, P441, DOI 10.1016/j.cbpc.2008.01.012; Flanagan JM, 2006, AM J HUM GENET, V79, P67, DOI 10.1086/504729; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Gasparini C, 2012, NATURWISSENSCHAFTEN, V99, P417, DOI 10.1007/s00114-012-0908-2; Gur Y, 2006, GENE DEV, V20, P411, DOI 10.1101/gad.367606; Hamilton SL, 2008, P NATL ACAD SCI USA, V105, P1561, DOI 10.1073/pnas.0707676105; Hollows CF, 2007, MAR ECOL PROG SER, V333, P51, DOI 10.3354/meps333051; Hunter FM, 2002, CURR BIOL, V12, P121, DOI 10.1016/S0960-9822(01)00647-9; Jablonka E, 2009, Q REV BIOL, V84, P131, DOI 10.1086/598822; Konior M, 2009, EVOL ECOL RES, V11, P975; MARSDEN JR, 1981, AUST J MAR FRESH RES, V32, P667; Marshall DJ, 2010, ECOL LETT, V13, P128, DOI 10.1111/j.1461-0248.2009.01408.x; Marshall DJ, 2005, J EVOLUTION BIOL, V18, P1244, DOI 10.1111/j.1420-9101.2005.00947.x; Marshall DJ, 2005, J EVOLUTION BIOL, V18, P735, DOI 10.1111/j.1420-9101.2004.00873.x; Marshall DJ, 2007, OIKOS, V116, P1957, DOI 10.1111/j.2007.0030-1299.16203.x; Marshall DJ, 2006, MAR POLLUT BULL, V52, P734, DOI 10.1016/j.marpolbul.2006.05.005; Marshall DJ, 2011, CURR BIOL, V21, pR718, DOI 10.1016/j.cub.2011.08.022; MEAD KS, 1995, BIOL BULL-US, V188, P46, DOI 10.2307/1542066; Morgan SG, 2008, P NATL ACAD SCI USA, V105, P222, DOI 10.1073/pnas.0704725105; Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4; Ng SF, 2010, NATURE, V467, P963, DOI 10.1038/nature09491; Ng TYT, 2003, MAR ECOL PROG SER, V257, P77, DOI 10.3354/meps257077; Pechenik JA, 2006, INTEGR COMP BIOL, V46, P323, DOI 10.1093/icb/icj028; Pechenik JA, 2001, J EXP MAR BIOL ECOL, V264, P101, DOI 10.1016/S0022-0981(01)00313-6; Quinn GP, 2002, EXPT DESIGN DATA ANA; Relyea RA, 2001, ECOLOGY, V82, P1947, DOI 10.1890/0012-9658(2001)082[1947:TLEOAP]2.0.CO;2; Ross KE, 2001, ARCH ENVIRON CON TOX, V40, P489; SCHLUTER D, 1991, P ROY SOC B-BIOL SCI, V246, P11, DOI 10.1098/rspb.1991.0118; Simmons LW, 2009, J EVOLUTION BIOL, V22, P225, DOI 10.1111/j.1420-9101.2008.01628.x; Slatyer RA, 2012, BIOL REV, V87, P1, DOI 10.1111/j.1469-185X.2011.00182.x; Suarez SS, 2006, HUM REPROD UPDATE, V12, P23, DOI 10.1093/humupd/dmi047; TAIT NN, 1981, AUST J MAR FRESH RES, V32, P769; TAIT NN, 1984, AUST J MAR FRESH RES, V35, P483; Uller T, 2008, TRENDS ECOL EVOL, V23, P432, DOI 10.1016/j.tree.2008.04.005; Visconti PE, 1997, DEV BIOL, V192, P351, DOI 10.1006/dbio.1997.8768; Zigler KS, 2005, EVOLUTION, V59, P2399 54 17 17 0 77 COMPANY OF BIOLOGISTS LTD CAMBRIDGE BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND 0022-0949 J EXP BIOL J. Exp. Biol. AUG 2013 216 16 3104 3109 10.1242/jeb.087221 6 Biology Life Sciences & Biomedicine - Other Topics 188TL WOS:000322216600019 23661780 Green Published, Bronze 2018-11-12 J Stein, RW; Williams, TD Stein, R. Will; Williams, Tony D. Extreme Intraclutch Egg-Size Dimorphism in Eudyptes Penguins, an Evolutionary Response to Clutch-Size Maladaptation AMERICAN NATURALIST English Article Eudyptes; intraclutch egg-size dimorphism; life-history evolution; maladaptation; selective constraint; Spheniscidae BREEDING BIOLOGY; ROCKHOPPER PENGUINS; MACARONI PENGUINS; PYGOSCELIS-PAPUA; SPHENISCUS-HUMBOLDTI; MAGELLANIC PENGUINS; CRESTED PENGUINS; SOUTH GEORGIA; BIRD ISLAND; SUCCESS Eudyptes penguins (six species) are uniquely characterized by a two-egg clutch with extreme intraclutch egg-size dimorphism (ESD): the first-laid A-egg is 17.5%-56.9% smaller than the B-egg. Although A-eggs are viable, they almost never produce fledged chicks (genus average <1%). Using classical life-history theory and phylogenetic comparative methods, we demonstrate a marked slow-down in the life history of Eudyptes: age of first reproduction is 52% later and annual fecundity 48% lower compared with other two-egg clutch penguin species. All six Eudyptes species have retained a two-egg clutch, despite this pronounced life-history slow-down; this suggests evolutionary mismatch between clutch size and chicks fledged per clutch. Consistent with this, we show that Eudyptes fledge 43% fewer chicks per clutch than other two-egg clutch penguin species. Extreme intraclutch ESD in Eudyptes is associated primarily with a uniform (5%) increase in relative B-egg size, and B-egg size has evolved in accord with life history. We further show that intraclutch ESD is positively correlated with age of first reproduction in Eudyptes but not in other two-egg clutch penguin species. We argue that Eudyptes' persistent failure to evolve a one-egg clutch constitutes a unique genus-wide evolutionary maladaptation and that extreme intraclutch ESD evolved as a correlated response to selection favoring a slower life history imposed by their extreme pelagic overwintering and migration ecology. [Stein, R. Will; Williams, Tony D.] Simon Fraser Univ, Dept Biol Sci, Burnaby, BC V5A 1S6, Canada Stein, RW (reprint author), Simon Fraser Univ, Dept Biol Sci, Burnaby, BC V5A 1S6, Canada. rwstein@sfu.ca Natural Sciences and Engineering Research Council of Canada We thank P. D. Boersma, C. N. Challies, M. Massaro, R. Paredes, the Tennessee Aquarium (L. E. Aldrich and A. B. Graves), the Western Foundation of Vertebrate Zoology (R. Corado and L. S. Hall), and C. B. Zavalaga for providing unpublished data; S. L. Pereira for providing phylogenetic hypothesis of Spheniscidae; J. G. Darrah for providing pivotal perspective on selective constraints; and A. M. Chubaty, B. J. Crespi, J. B. Joy, B. O. Ma, A. O. Mooers, K. W. Morrison, and J. D. Reynolds for commenting on the manuscript. Finally, we thank D. J. Anderson, one anonymous reviewer, and S. B. Heard for insightful reviews that improved the manuscript. This research was facilitated by the Interdisciplinary Research in the Mathematical and Computational Sciences Centre at Simon Fraser University and supported by the Natural Sciences and Engineering Research Council of Canada through a postgraduate scholarship (PGS D) to R. W. S. and Discovery grants to A. O. Mooers and T.D.W. AINLEY DG, 1980, ECOLOGY, V61, P522, DOI 10.2307/1937418; ASTHEIMER LB, 1985, CONDOR, V87, P256, DOI 10.2307/1366891; Baker AJ, 2006, P ROY SOC B-BIOL SCI, V273, P11, DOI 10.1098/rspb.2005.3260; Belliure J, 1999, POLAR BIOL, V21, P80, DOI 10.1007/s003000050337; Bertellotti M, 2002, WATERBIRDS, V25, P479, DOI 10.1675/1524-4695(2002)025[0479:DSOMPU]2.0.CO;2; Boersma P.D., 1990, P15; Bost CA, 2009, BIOL LETTERS, V5, P473, DOI 10.1098/rsbl.2009.0265; BOST CA, 1991, IBIS, V133, P14, DOI 10.1111/j.1474-919X.1991.tb04804.x; BROWN CR, 1984, COMP BIOCHEM PHYS A, V77, P345, DOI 10.1016/0300-9629(84)90071-9; Carrick R, 1970, P505; CHARLESWORTH B, 1982, EVOLUTION, V36, P474, DOI 10.1111/j.1558-5646.1982.tb05068.x; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Cherel Y, 1999, MAR BIOL, V134, P375, DOI 10.1007/s002270050554; Clair CC St., 1992, BEHAV ECOL SOCIOBIOL, V31, P409, DOI [10.1007/BF00170608, DOI 10.1007/BF00170608]; Crawford RJM, 2006, BIOL CONSERV, V132, P119, DOI 10.1016/j.biocon.2006.03.019; Crespi BJ, 2000, HEREDITY, V84, P623, DOI 10.1046/j.1365-2540.2000.00746.x; Crossin G. T., 2011, POLAR BIOL, V35, P313; Crossin GT, 2010, AM NAT, V176, P357, DOI 10.1086/655223; Croxall J.P., 1990, P207; Croxall J. P., 1999, Marine Ornithology, V27, P1; CROXALL JP, 1982, J ANIM ECOL, V51, P177, DOI 10.2307/4318; Daan P., 1990, PENGUIN BIOL, P63; Darby J.T., 1990, P45; DAVIS LS, 2003, PENGUINS; Boersma PD, 2013, PENGUINS: NATURAL HISTORY AND CONSERVATION, P233; Demongin L, 2010, POLAR BIOL, V33, P469, DOI 10.1007/s00300-009-0722-2; Dorward DF, 1962, IBIS, V103, P174, DOI 10.1111/j.1474-919X.1962.tb07244.x; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Frere E, 1998, COLON WATERBIRD, V21, P205, DOI 10.2307/1521907; Goerlich VC, 2010, BEHAV ECOL SOCIOBIOL, V64, P599, DOI 10.1007/s00265-009-0877-4; GRAU CR, 1982, CONDOR, V84, P172, DOI 10.2307/1367663; Green A. J., 2009, J AVIAN BIOL, V40, P529; Guinard E, 1998, COLON WATERBIRD, V21, P222, DOI 10.2307/1521909; Hamer Keith C., 2002, P217; HAYWOOD S, 1993, Q REV BIOL, V68, P33, DOI 10.1086/417910; JOHNSON K, 1987, OIKOS, V49, P347, DOI 10.2307/3565771; JOUVENTIN P, 1991, BIRD POPULATION STUD, P297; Kemp A, 2001, EMU, V101, P249, DOI 10.1071/MU00024; Lack D., 1968, ECOLOGICAL ADAPTATIO; Lack D., 1954, NATURAL REGULATION A; LISHMAN GS, 1985, IBIS, V127, P84; Massaro M, 2005, IBIS, V147, P251, DOI 10.1111/j.1474-919x.2005.00379.x; NAGY KA, 1984, ECOLOGY, V65, P1648, DOI 10.2307/1939143; Nisbet ICT, 2009, J AVIAN BIOL, V40, P296, DOI 10.1111/j.1600-048X.2008.04563.x; Pacheco MA, 2011, MOL BIOL EVOL, V28, P1927, DOI 10.1093/molbev/msr014; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Paredes R, 2002, AUK, V119, P244, DOI 10.1642/0004-8038(2002)119[0244:POELAB]2.0.CO;2; Poisbleau M, 2008, POLAR BIOL, V31, P925, DOI 10.1007/s00300-008-0431-2; Putz K, 2001, POLAR BIOL, V24, P793, DOI 10.1007/s003000100293; R Development Core Team, 2011, R LANG ENV STAT COMP; Ratz H, 2004, NEW ZEAL J ZOOL, V31, P133, DOI 10.1080/03014223.2004.9518367; REILLY P N, 1981, Notornis, V28, P189; Reilly P. N., 1975, BIOL PENGUINS, P161; RICHDALE LE, 1957, POPULATION STUDY PEN; Roff D. A., 2002, LIFE HIST EVOLUTION; Saraux C, 2011, NATURE, V469, P203, DOI 10.1038/nature09630; Schwenk Kurt, 1995, Zoology (Jena), V98, P251; Shaffer SA, 2011, COMP BIOCHEM PHYS A, V158, P315, DOI 10.1016/j.cbpa.2010.07.012; SLAGSVOLD T, 1984, AUK, V101, P685, DOI 10.2307/4086895; Spear LB, 1997, IBIS, V139, P234, DOI 10.1111/j.1474-919X.1997.tb04621.x; Spurr E. B., 1975, CONDOR, V117, P324; St. Clair C. C., 1998, AUK, V115, P478; St Clair C. C., 1995, ANIM BEHAV, V50, P1177; St Clair C. C., 1996, J ANIM ECOL, V65, P485; Stahl J.-C., 1985, Oiseau et la Revue Francaise d'Ornithologie, V55, P27; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stearns SC, 1986, PATTERNS PROCESSES H, P23, DOI DOI 10.1007/978-3-642-70831-2-3; Stein R. W, 2013, AM NATURALIST DRYAD; TAYLOR ROWLAND H., 1962, IBIS, V104, P176, DOI 10.1111/j.1474-919X.1962.tb08644.x; Taylor SS, 2002, CAN J ZOOL, V80, P700, DOI 10.1139/Z02-046; Trivelpiece W.Z., 1990, P191; WARHAM J, 1974, Journal of the Royal Society of New Zealand, V4, P63; WARHAM J, 1974, IBIS, V116, P1, DOI 10.1111/j.1474-919X.1974.tb00220.x; WARHAM J, 1971, Notornis, V18, P91; Weimerskirch Henri, 2002, P115; Whittington P, 2005, OSTRICH, V76, P14, DOI 10.2989/00306520509485468; Whittow G.C., 1986, P253; WILLIAMS A J, 1980, Gerfaut, V70, P283; WILLIAMS AJ, 1980, AUK, V97, P754; Williams T.D., 1995, PENGUINS; Williams T.D., 2012, PHYSL ADAPTATIONS BR; WILLIAMS TD, 1990, J ZOOL, V222, P247, DOI 10.1111/j.1469-7998.1990.tb05675.x; WILLIAMS TD, 1990, OIKOS, V59, P349, DOI 10.2307/3545145; WILLIAMS TD, 1991, J ZOOL, V223, P189, DOI 10.1111/j.1469-7998.1991.tb04759.x; YEATES G W, 1968, New Zealand Journal of Marine and Freshwater Research, V2, P472; Yorio P., 2001, Marine Ornithology, V29, P75 87 7 7 0 50 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 AM NAT Am. Nat. AUG 2013 182 2 260 270 10.1086/670929 11 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 181XI WOS:000321703400014 23852359 2018-11-12 J Yanagi, S; Saeki, Y; Tuda, M Yanagi, Shin-ichi; Saeki, Yoriko; Tuda, Midori Adaptive egg size plasticity for larval competition and its limits in the seed beetle Callosobruchus chinensis ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA English Article maternal effects; Coleoptera; transgenerational effects; phenotypic plasticity; body size; larval density; Chrysomelidae; Bruchinae; adzuki bean; Vigna angularis BODY-SIZE; PHENOTYPIC PLASTICITY; DROSOPHILA-MELANOGASTER; ENVIRONMENTAL VARIATION; DEVELOPMENT TIME; BEAN BEETLE; CLUTCH SIZE; PEST STATUS; COLEOPTERA; BRUCHIDAE Life-history theory predicts that females who experienced stressful conditions, such as larval competition or malnutrition, should increase their investment in individual offspring to increase offspring fitness (the adaptive parental hypothesis). In contrast, it has been shown that when females were reared under stressful conditions, they become smaller, which consequently decreases egg size (the parental stress hypothesis). To test whether females adjust their egg volume depending on larval competition, independent of maternal body mass constraint, we used a pest species of stored adzuki beans, Callosobruchus chinensis (L.) (Coleoptera: Chrysomelidae: Bruchinae). The eggs of females reared with competitors were smaller than those of females reared alone, supporting the parental stress hypothesis; however, correcting for female body size, females reared with competitors produced larger eggs than those reared in the absence of competition, supporting the adaptive parental hypothesis, as predicted. The phenotypic plasticity in females' investment in each offspring in stressful environments counteracts the constraint of body size on egg size. [Yanagi, Shin-ichi; Saeki, Yoriko] Kyushu Univ, Univ Museum, Fukuoka 8128581, Japan; [Yanagi, Shin-ichi; Saeki, Yoriko; Tuda, Midori] Kyushu Univ, Fac Agr, Inst Biol Control, Fukuoka 8128581, Japan Yanagi, S (reprint author), Kyushu Univ, Fac Agr, Inst Biol Control, Fukuoka 8128581, Japan. syanagi@agr.kyushu-u.ac.jp U-ID, Kyushu/C-5291-2016 JSPS [C19510237, B19370035, B19380037, B19510237, B20405006, A21255008, C22570215] We thank T. Miyatake for his support during this experiment and two anonymous reviewers for their comments. This study was supported in part by Grants-in-Aid for Scientific Research (C19510237, B19370035, B19380037, B19510237, B20405006, A21255008, and C22570215) from JSPS to MT. Auld JR, 2010, P ROY SOC B-BIOL SCI, V277, P503, DOI 10.1098/rspb.2009.1355; Azevedo RBR, 1997, AM NAT, V150, P250, DOI 10.1086/286065; Badyaev AV, 2009, PHILOS T R SOC B, V364, P1169, DOI 10.1098/rstb.2008.0302; Bauerfeind SS, 2008, BASIC APPL ECOL, V9, P443, DOI 10.1016/j.baae.2007.05.005; Creighton JC, 2005, BEHAV ECOL, V16, P1031, DOI 10.1093/beheco/ari084; Drayton JM, 2010, EVOLUTION, V64, P3069, DOI 10.1111/j.1558-5646.2010.01053.x; Falconer DS, 1996, INTRO QUANTITATIVE G; Fox CW, 1998, EVOLUTION, V52, P172, DOI 10.1111/j.1558-5646.1998.tb05150.x; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Fox CW, 1997, EVOLUTION, V51, P1005, DOI 10.1111/j.1558-5646.1997.tb03683.x; Fox CW, 1999, ENVIRON ENTOMOL, V28, P217, DOI 10.1093/ee/28.2.217; Goubault M, 2007, P R SOC B, V274, P2571, DOI 10.1098/rspb.2007.0867; Joron M, 2003, NATURE, V424, P191, DOI 10.1038/nature01713; KAWECKI TJ, 1995, OECOLOGIA, V102, P81, DOI 10.1007/BF00333313; McLain DK, 1991, PSYCHE, V98, P135; MESSINA FJ, 1991, OECOLOGIA, V85, P447, DOI 10.1007/BF00320624; Mesterton-Gibbons M, 2004, P ROY SOC B-BIOL SCI, V271, P971, DOI 10.1098/rspb.2003.2670; MILLER PS, 1993, GENETICA, V88, P29, DOI 10.1007/BF02424449; Mousseau TA, 1998, MATERNAL EFFECTS ADA; Plaistow SJ, 2006, AM NAT, V167, P206, DOI 10.1086/499380; Roff D. A., 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; Sakai S, 2001, AM NAT, V157, P348, DOI 10.1086/319194; SHINODA K, 1985, JPN J APPL ENTOMOL Z, V29, P14; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Takakura K, 1999, RES POPUL ECOL, V41, P269, DOI 10.1007/s101440050031; Tuda M, 2006, MOL ECOL, V15, P3541, DOI 10.1111/j.1365-294X.2006.03030.x; Tuda M, 2005, ADV ECOL RES, V37, P37, DOI 10.1016/S0065-2504(04)37002-9; Tuda M, 2005, J STORED PROD RES, V41, P31, DOI [10.1016/j.jspr.2003.09.003, 10.1016/j.jspr.2004.09.003]; Tuda M, 2004, B ENTOMOL RES, V94, P75, DOI 10.1079/BER2003277; Tuda M, 2011, B ENTOMOL RES, V101, P415, DOI 10.1017/S0007485310000660; TUDA M, 1993, RES POPUL ECOL, V35, P231, DOI 10.1007/BF02513595; TUDA M, 1993, RES POPUL ECOL, V35, P261, DOI 10.1007/BF02513599; Tuda M, 1998, RES POPUL ECOL, V40, P293, DOI 10.1007/BF02763461; Tuda M, 1998, EVOL ECOL, V12, P855, DOI 10.1023/A:1006550817371; Utida S, 1943, MEMOIRS COLL AGR KYO, V51, P1; Vamosi SM, 2005, FUNCT ECOL, V19, P859, DOI 10.1111/j.1365-2435.2005.01029.x; Vamosi SM, 2007, EVOL ECOL RES, V9, P1131; VANHUIS A, 1991, INSECT SCI APPL, V12, P87, DOI 10.1017/S1742758400020579; VIA S, 1993, AM NAT, V142, P352, DOI 10.1086/285542; Vijendravarma RK, 2010, BIOL LETTERS, V6, P238, DOI 10.1098/rsbl.2009.0754; WATANABE N, 1990, SERIES ENTOM, V46, P141; WILSON K, 1989, PHYSIOL ENTOMOL, V14, P115, DOI 10.1111/j.1365-3032.1989.tb00943.x; Yanagi S, 2012, J INSECT PHYSIOL, V58, P1432, DOI 10.1016/j.jinsphys.2012.08.007; Yanagi S, 2010, FUNCT ECOL, V24, P383, DOI 10.1111/j.1365-2435.2009.01653.x; Yanagi SI, 2002, PHYSIOL ENTOMOL, V27, P261, DOI 10.1046/j.1365-3032.2002.00294.x 46 3 3 1 44 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0013-8703 1570-7458 ENTOMOL EXP APPL Entomol. Exp. Appl. AUG 2013 148 2 182 187 10.1111/eea.12088 6 Entomology Entomology 185LM WOS:000321969300008 2018-11-12 J Garratt, M; Pichaud, N; King, EDA; Brooks, RC Garratt, Michael; Pichaud, Nicolas; King, Edith D. Aloise; Brooks, Robert C. Physiological adaptations to reproduction. I. Experimentally increasing litter size enhances aspects of antioxidant defence but does not cause oxidative damage in mice JOURNAL OF EXPERIMENTAL BIOLOGY English Article life history; reproduction; trade-off; senescence; ageing OXYGEN SPECIES PRODUCTION; LIFE-HISTORY EVOLUTION; MUS MUSCULUS; UNCOUPLING PROTEIN-2; METABOLIC-RATE; CELL-FUNCTION; NITRIC-OXIDE; FOOD-INTAKE; STRESS; SUPEROXIDE Life history theory suggests that investment in reproduction can trade off against growth, longevity and both reproduction and performance later in life. One possible reason for this trade-off is that reproduction directly causes somatic damage. Oxidative stress, an overproduction of reactive oxygen species in relation to cellular defences, can correlate with reproductive investment and has been implicated as a pathway leading to senescence. This has led to the suggestion that this aspect of physiology could be an important mechanism underlying the trade-off between reproduction and lifespan. We manipulated female reproductive investment to test whether oxidative stress increases with reproduction in mice. Each female's pups were cross-fostered to produce litters of either two or eight, representing low and high levels of reproductive investment for wild mice. No differences were observed between reproductive groups at peak lactation for several markers of oxidative stress in the heart and gastrocnemius muscle. Surprisingly, oxidative damage to proteins was lower in the livers of females with a litter size of eight than in females with two pups or non-reproductive control females. While protein oxidation decreased, activity levels of the antioxidant enzyme superoxide dismutase increased in the liver, suggesting this may be one pathway used to protect against oxidative stress. Our results highlight the need for caution when interpreting correlative relationships and suggest that oxidative stress does not increase with enhanced reproductive effort during lactation. [Garratt, Michael; Pichaud, Nicolas; King, Edith D. Aloise; Brooks, Robert C.] Univ New S Wales, Evolut & Ecol Res Ctr, Sydney, NSW 2052, Australia; [Garratt, Michael; Pichaud, Nicolas; King, Edith D. Aloise; Brooks, Robert C.] Univ New S Wales, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia; [Pichaud, Nicolas] Univ New S Wales, Sch Biotechnol & Biomol Sci, Sydney, NSW 2052, Australia Garratt, M (reprint author), Univ New S Wales, Evolut & Ecol Res Ctr, Sydney, NSW 2052, Australia. Michael.Garratt@unsw.edu.au Brooks, Robert/A-1251-2008 Brooks, Robert/0000-0001-6926-0781; Pichaud, Nicolas/0000-0002-2820-8124 Australian Research Council (ARC) This study was funded by an Australian Research Council (ARC) Discovery Grant awarded to R.C.B. AEBI H, 1984, METHOD ENZYMOL, V105, P121; Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Alonso-Alvarez C, 2006, EVOLUTION, V60, P1913, DOI 10.1111/j.0014-3820.2006.tb00534.x; Anderson M. E., 1996, FREE RADICALS PRACTI, P213; Balaban RS, 2005, CELL, V120, P483, DOI 10.1016/j.cell.2005.02.001; Banks R, 2010, MOL NUTR FOOD RES, V54, P719, DOI 10.1002/mnfr.200900382; Barja G, 2007, REJUV RES, V10, P215, DOI 10.1089/rej.2006.0516; Beckman KB, 1998, PHYSIOL REV, V78, P547; Bergeron P, 2011, FUNCT ECOL, V25, P1063, DOI 10.1111/j.1365-2435.2011.01868.x; Berry R. J., 1981, BIOL HOUSE MOUSE; Brand MD, 2004, FREE RADICAL BIO MED, V37, P755, DOI 10.1016/j.freeradbiomed.2004.05.034; Brand MD, 2005, CELL METAB, V2, P85, DOI 10.1016/j.cmet.2005.06.002; Christe P, 2012, P ROY SOC B-BIOL SCI, V279, P1142, DOI 10.1098/rspb.2011.1546; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Collins S, 2012, BEST PRACT RES CL EN, V26, P753, DOI 10.1016/j.beem.2012.08.002; Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x; Cretegny C, 2006, COMP BIOCHEM PHYS A, V144, P125, DOI 10.1016/j.cbpa.2005.10.030; Dalle-Donne I, 2003, CLIN CHIM ACTA, V329, P23, DOI 10.1016/S0009-8981(03)00003-2; DIMONTE D, 1984, ARCH BIOCHEM BIOPHYS, V235, P334, DOI 10.1016/0003-9861(84)90206-6; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Droge W, 2002, PHYSIOL REV, V82, P47; Elchuri S, 2005, ONCOGENE, V24, P367, DOI 10.1038/sj.onc.1208207; Gardner PR, 1997, BIOSCIENCE REP, V17, P33, DOI 10.1023/A:1027383100936; GARDNER PR, 1995, J BIOL CHEM, V270, P13399, DOI 10.1074/jbc.270.22.13399; Garratt M, 2011, P ROY SOC B-BIOL SCI, V278, P1098, DOI 10.1098/rspb.2010.1818; GITTLEMAN JL, 1988, AM ZOOL, V28, P863; Halliwell B, 1999, FREE RADICALS BIOL M; HAMMOND KA, 1994, PHYSIOL ZOOL, V67, P1479, DOI 10.1086/physzool.67.6.30163908; Hammond KA, 1997, J MAMMARY GLAND BIOL, V2, P243, DOI 10.1023/A:1026332304435; HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hausladen A, 1996, METHOD ENZYMOL, V269, P37; HAUSLADEN A, 1994, J BIOL CHEM, V269, P29405; Isaksson C, 2011, BIOSCIENCE, V61, P194, DOI 10.1525/bio.2011.61.3.5; JAESCHKE H, 1986, TOXICOLOGY, V39, P59, DOI 10.1016/0300-483X(86)90159-9; Johnson MS, 2001, J EXP BIOL, V204, P1925; Jones DP, 2006, ANTIOXID REDOX SIGN, V8, P1865, DOI 10.1089/ars.2006.8.1865; Keller M, 2004, J EXP BIOL, V207, P2529, DOI 10.1242/jeb.01050; KIRKWOOD TBL, 1979, PROC R SOC SER B-BIO, V205, P531, DOI 10.1098/rspb.1979.0083; Klatt P, 1999, FASEB J, V13, P1481; Koivula M, 2003, ECOLOGY, V84, P398, DOI 10.1890/0012-9658(2003)084[0398:CORITW]2.0.CO;2; Korshunov SS, 1997, FEBS LETT, V416, P15, DOI 10.1016/S0014-5793(97)01159-9; Lessells C.M., 1991, P32; Magwere T, 2006, J GERONTOL A-BIOL, V61, P36, DOI 10.1093/gerona/61.1.36; Malhotra JD, 2008, P NATL ACAD SCI USA, V105, P18525, DOI 10.1073/pnas.0809677105; Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Nussey DH, 2009, FUNCT ECOL, V23, P809, DOI 10.1111/j.1365-2435.2009.01555.x; Oldakowski L, 2012, J EXP BIOL, V215, P1799, DOI 10.1242/jeb.068452; Partridge L, 2005, CELL, V120, P461, DOI 10.1016/j.cell.2005.01.026; Pecqueur C, 2008, FASEB J, V22, P9, DOI 10.1096/fj.07-8945com; Pedraza N, 2001, BIOCHEM J, V355, P105, DOI 10.1042/0264-6021:3550105; Perez VI, 2009, BBA-GEN SUBJECTS, V1790, P1005, DOI 10.1016/j.bbagen.2009.06.003; Pichaud N, 2013, J EXP BIOL, V216, P2889, DOI 10.1242/jeb.082685; Pichaud N, 2010, J EXP BIOL, V213, P1665, DOI 10.1242/jeb.040261; REEVES PG, 1993, J NUTR, V123, P1939; Selman C, 2001, J EXP BIOL, V204, P777; Selman C, 2008, P ROY SOC B-BIOL SCI, V275, P1907, DOI 10.1098/rspb.2008.0355; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; Speakman JR, 1996, PHYSIOL ZOOL, V69, P746, DOI 10.1086/physzool.69.4.30164228; Stearns S. C., 1992, EVOLUTION LIFE HIST; Toime LJ, 2010, FREE RADICAL BIO MED, V49, P606, DOI 10.1016/j.freeradbiomed.2010.05.010; Townsend DM, 2003, BIOMED PHARMACOTHER, V57, P145, DOI 10.1016/S0753-3322(03)00013-X; Vasilaki A, 2006, AGING CELL, V5, P109, DOI 10.1111/j.1474-9726.2006.00198.x; WIEGAND G, 1986, ANNU REV BIOPHYS BIO, V15, P97; Wiersma P, 2004, P ROY SOC B-BIOL SCI, V271, pS360, DOI 10.1098/rsbl.2004.0171; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Zelko IN, 2002, FREE RADICAL BIO MED, V33, P337, DOI 10.1016/S0891-5849(02)00905-X 69 34 35 1 36 COMPANY OF BIOLOGISTS LTD CAMBRIDGE BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND 0022-0949 J EXP BIOL J. Exp. Biol. AUG 2013 216 15 2879 2888 10.1242/jeb.082669 10 Biology Life Sciences & Biomedicine - Other Topics 180SB WOS:000321614700022 23619417 Green Published, Bronze 2018-11-12 J Ellis, BJ Ellis, Bruce J. The hypothalamic-pituitary-gonadal axis: A switch-controlled, condition-sensitive system in the regulation of life history strategies HORMONES AND BEHAVIOR English Review Life history theory; Parental investment and sexual selection; Developmental plasticity; Developmental switches; Puberty; Adolescence; Gene environment interactions EARLY FAMILY RELATIONSHIPS; ESTROGEN-RECEPTOR-ALPHA; SEXUAL RISK-TAKING; REPRODUCTIVE STRATEGY; MATERNAL-CARE; BIOLOGICAL SENSITIVITY; INDIVIDUAL-DIFFERENCES; CHILDHOOD EXPERIENCE; PUBERTAL MATURATION; SENSATION SEEKING This article is part of a Special Issue "Puberty and Adolescence". Life history theory provides an overarching framework for explaining the development of individual differences in reproductive strategies and highlights the role of familial and ecological conditions in regulating pubertal timing. Parental investment and sexual selection models afford a powerful framework for explaining the emergence of sex differences in reproductive strategies and suggest that pubertal timing in males and females is differentially sensitive to psychosocial stress. The West-Eberhard's (2003) model of switch-controlled modular systems provides the foundation for a comprehensive analysis of variation in reproductive strategies at the level of mechanism and development. Applied to puberty, this model provides a framework for explaining how genes and environments interact over development, are modulated by extant phenotypic characteristics, and operate through control of regulatory switch mechanisms across multiple levels of the hypothalamic-pituitary-gonadal axis. Taken together, life history theory, parental investment and sexual selection models, and the West-Eberhard framework enable an integrated evolutionary-developmental analysis of between-sex variation and within-sex variation in pubertal processes and their role in regulating alternative life history strategies. (C) 2013 Elsevier Inc. All rights reserved. Univ Arizona, Norton Sch Family & Consumer Sci, Tucson, AZ 85721 USA Ellis, BJ (reprint author), Univ Arizona, Norton Sch Family & Consumer Sci, 650 N Pk Ave, Tucson, AZ 85721 USA. bjellis@email.arizona.edu Andrews PW, 2009, PSYCHOL REV, V116, P620, DOI 10.1037/a0016242; Archer J, 2009, BEHAV BRAIN SCI, V32, P249, DOI 10.1017/S0140525X09990951; Banerjee I, 2007, J NEUROENDOCRINOL, V19, P831, DOI 10.1111/j.1365-2826.2007.01598.x; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P127; Belsky J, 2007, CHILD DEV, V78, P1302, DOI 10.1111/j.1467-8624.2007.01067.x; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Brown GR, 2009, TRENDS ECOL EVOL, V24, P297, DOI 10.1016/j.tree.2009.02.005; Buss D. M., 1999, EVOLUTIONARY PSYCHOL; BUSS DM, 1989, BEHAV BRAIN SCI, V12, P1, DOI 10.1017/S0140525X00023992; Byrnes JP, 1999, PSYCHOL BULL, V125, P367, DOI 10.1037//0033-2909.125.3.367; Cameron JL, 1997, SEMIN REPROD ENDOCR, V15, P37, DOI 10.1055/s-2008-1067966; Cameron JL, 2004, ANN NY ACAD SCI, V1021, P110, DOI 10.1196/annals.1308.012; Cameron N.M., 2008, PLOS ONE, V3, P2; Cameron NM, 2005, NEUROSCI BIOBEHAV R, V29, P843, DOI 10.1016/j.neubiorev.2005.03.022; Champagne FA, 2003, PHYSIOL BEHAV, V79, P359, DOI 10.1016/S0031-9384(03)00149-5; Champagne FA, 2006, ENDOCRINOLOGY, V147, P2909, DOI 10.1210/en.2005-1119; Charney E., 2012, BEHAV BRAIN SCI, V35, P1; Chasiotis A, 1998, HUM NATURE-INT BIOS, V9, P321, DOI 10.1007/s12110-998-1008-z; CHERN MM, 1980, MENSTRUAL CYCLE SYNT, P123; Cole SW, 2009, CURR DIR PSYCHOL SCI, V18, P132, DOI 10.1111/j.1467-8721.2009.01623.x; Costello EJ, 2007, DRUG ALCOHOL DEPEN, V88, pS50, DOI 10.1016/j.drugalcdep.2006.12.009; Cross CP, 2011, PSYCHOL BULL, V137, P97, DOI 10.1037/a0021591; Dallman MF, 2005, FRONT NEUROENDOCRIN, V26, P103, DOI 10.1016/j.yfrne.2005.08.001; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Dobson H, 2003, REPRODUCTION, V125, P151, DOI 10.1530/rep.0.1250151; Doughty D, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P169; Dunne MP, 1997, PSYCHOL SCI, V8, P211, DOI 10.1111/j.1467-9280.1997.tb00414.x; Ebling FJP, 2005, REPRODUCTION, V129, P675, DOI 10.1530/rep.1.00367; Ellis B.J., 2011, EVOLUTION PERSONALIT, P177; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P85, DOI 10.1017/S0954579410000660; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P7, DOI 10.1017/S0954579410000611; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Fernandez-Fernandez R, 2006, MOL CELL ENDOCRINOL, V254, P127, DOI 10.1016/j.mce.2006.04.026; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Frankenhuis WE, 2012, DEV PSYCHOL, V48, P628, DOI 10.1037/a0025629; Gamba M, 2006, MOL CELL ENDOCRINOL, V254, P133, DOI 10.1016/j.mce.2006.04.023; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Ge XJ, 2007, J RES ADOLESCENCE, V17, P767, DOI 10.1111/j.1532-7795.2007.00546.x; Ge XJ, 2002, DEV PSYCHOL, V38, P42, DOI 10.1037//0012-1649.38.1.42; Geary D. C., 1998, MALE FEMALE EVOLUTIO; Gottsch ML, 2006, MOL CELL ENDOCRINOL, V254, P91, DOI 10.1016/j.mce.2006.04.030; Groeneweg FL, 2011, J ENDOCRINOL, V209, P153, DOI 10.1530/JOE-10-0472; GRUMBACH MM, 2003, WILLIAMS TXB ENDOCRI, P1115; Hajn V., 1985, ANTHROPOLOGIE, V23, P5; Hammer M. F., 2008, PLOS GENET, V4, P1, DOI [DOI 10.137/JOURNAL.PGEN.1000202, 10.1371/journal.pgen.1000202]; He C., 2009, NAT GENET, V41; Herbison AE, 2007, HORM RES, V68, P75, DOI 10.1159/000110583; Huhtaniemi I, 2006, MOL CELL ENDOCRINOL, V254, P84, DOI 10.1016/j.mce.2006.04.015; Jackson JJ, 2009, BEHAV BRAIN SCI, V32, P31, DOI 10.1017/S0140525X09000132; James J., OXFORD HDB IN PRESS; James J, 2012, DEV PSYCHOL, V48, P687, DOI 10.1037/a0026427; JOHNSON EO, 1992, NEUROSCI BIOBEHAV R, V16, P115, DOI 10.1016/S0149-7634(05)80175-7; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; KAPRIO J, 1995, HUM BIOL, V67, P739; KENRICK DT, 1990, J PERS, V58, P97, DOI 10.1111/j.1467-6494.1990.tb00909.x; Kirby KN, 1996, PSYCHON B REV, V3, P100, DOI 10.3758/BF03210748; Kruger D. J., 2008, J SOCIAL EVOLUTIONAR, V2, P1, DOI DOI 10.1037/H0099336; Manuck SB, 2011, DEV PSYCHOPATHOL, V23, P69, DOI 10.1017/S0954579410000659; Martin CA, 2002, J AM ACAD CHILD PSY, V41, P1495, DOI 10.1097/01.CHI.0000024864.60748.9D; Meaney MJ, 2010, CHILD DEV, V81, P41, DOI 10.1111/j.1467-8624.2009.01381.x; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.2307/1130900; Najman JM, 2009, AUST NZ J CRIMINOL, V42, P369, DOI 10.1375/acri.42.3.369; Obeidallah D, 2004, J AM ACAD CHILD PSY, V43, P1460, DOI 10.1097/01.chi.0000142667.52062.le; Obradovic J, 2012, DEV PSYCHOPATHOL, V24, P371, DOI 10.1017/S0954579412000053; Ojeda SR, 2010, ENDOCR DEV, V17, P44, DOI 10.1159/000262527; Ojeda SR, 2006, ENDOCRINOLOGY, V147, P1166, DOI 10.1210/en.2005-1136; Okami P, 2001, Annu Rev Sex Res, V12, P186; Oldehinkel AJ, 2011, J ADOLESCENCE, V34, P73, DOI 10.1016/j.adolescence.2010.01.010; Ong K.K., 2009, NAT GENET, V41; Parent AS, 2003, ENDOCR REV, V24, P668, DOI 10.1210/er.2002-0019; Perry J.R.B., 2009, NAT GENET, V41; PERUSSE D, 1993, BEHAV BRAIN SCI, V16, P267, DOI 10.1017/S0140525X00029939; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Quevedo KM, 2009, DEV PSYCHOPATHOL, V21, P27, DOI 10.1017/S0954579409000030; Read D, 2004, ORGAN BEHAV HUM DEC, V94, P22, DOI 10.1016/j.obhdp.2004.01.002; Reynolds MD, 2007, BIOL PSYCHIAT, V61, P1223, DOI 10.1016/j.biopsych.2006.07.008; Reznick David, 1996, P243; RIVIER C, 1991, BIOL REPROD, V45, P523, DOI 10.1095/biolreprod45.4.523; Roff D. A., 2002, LIFE HIST EVOLUTION; Rose AJ, 2006, PSYCHOL BULL, V132, P98, DOI 10.1037/0033-2909.132.1.98; Rowe DC, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P147; Rowe R, 2004, BIOL PSYCHIAT, V55, P546, DOI 10.1016/j.biopsych.2003.10.010; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Schaal B., 1996, J AM ACAD CHILD ADOL, V34, P1322; Schmitt DP, 2001, PSYCHOL EVOLUTION GE, V3, P211, DOI DOI 10.1080/14616660110119331; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; Sijtsema JJ, 2013, DEV PSYCHOPATHOL, V25, P699, DOI 10.1017/S0954579413000114; Silk JS, 2009, DEV PSYCHOPATHOL, V21, P7, DOI 10.1017/S0954579409000029; Sonuga-Barke EJS, 2010, MONOGR SOC RES CHILD, V75, P143, DOI 10.1111/j.1540-5834.2010.00554.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Steinberg L, 2008, DEV PSYCHOL, V44, P1764, DOI 10.1037/a0012955; STGEORGE IM, 1994, J ADOLESCENT HEALTH, V15, P573; Strelzyk F, 2012, J NEUROSCI, V32, P616, DOI 10.1523/JNEUROSCI.2384-11.2012; Sulem P., 2009, NAT GENET, V41; Tinbergen N., 1963, Zeitschrift fuer Tierpsychologie, V20, P410; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; Tremblay RE, 1998, INT J BEHAV DEV, V22, P753, DOI 10.1080/016502598384153; Trickett PK, 2011, DEV PSYCHOPATHOL, V23, P453, DOI 10.1017/S0954579411000174; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; vanLenthe F, 1996, INT J OBESITY, V20, P121; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Zuckerman M., 1994, BEHAV EXPRESSIONS BI 107 15 16 1 23 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0018-506X 1095-6867 HORM BEHAV Horm. Behav. JUL 2013 64 2 SI 215 225 10.1016/j.yhbeh.2013.02.012 11 Behavioral Sciences; Endocrinology & Metabolism Behavioral Sciences; Endocrinology & Metabolism 217HR WOS:000324351100007 23998666 2018-11-12 J Onyango, PO; Gesquiere, LR; Altmann, J; Alberts, SC Onyango, Patrick O.; Gesquiere, Laurence R.; Altmann, Jeanne; Alberts, Susan C. Puberty and dispersal in a wild primate population HORMONES AND BEHAVIOR English Review Puberty; Maturation; Baboons; Growth; Reproductive hormones; Sex differences; Ecological differences; Socio-demographic differences; Genetic differences BABOONS PAPIO-CYNOCEPHALUS; JUVENILE SAVANNA BABOONS; LIFE-HISTORY; DOMINANCE RANK; NATIONAL-PARK; DEVELOPMENTAL THRESHOLDS; HYBRIDIZATION PATTERNS; REPRODUCTIVE SUCCESS; MANDRILLUS SPHINX; SIZE DIMORPHISM This article is part of a Special Issue "Puberty and Adolescence". The onset of reproduction is preceded by a host of organismal adjustments and transformations, involving morphological, physiological, and behavioral changes. In highly social mammals, including humans and most nonhuman primates, the timing and nature of maturational processes are affected by the animal's social milieu as well as its ecology. Here, we review a diverse set of findings on how maturation unfolds in wild baboons in the Amboseli basin of southern Kenya, and we place these findings in the context of other reports of maturational processes in primates and other mammals. First, we describe the series of events and processes that signal maturation in female and male baboons. Sex differences in age at both sexual maturity and first reproduction documented for this species are consistent with expectations of life history theory; males mature later than females and exhibit an adolescent growth spurt that is absent or minimal in females. Second, we summarize what we know about sources of variance in the timing of maturational processes including natal dispersal. In Amboseli, individuals in a food-enhanced group mature earlier than their wild-feeding counterparts, and offspring of high-ranking females mature earlier than offspring of low-ranking females. We also report on how genetic admixture, which occurs in Amboseli between two closely related baboon taxa, affects individual maturation schedules. (C) 2013 Elsevier Inc. All rights reserved. [Onyango, Patrick O.; Alberts, Susan C.] Duke Univ, Dept Biol, Durham, NC USA; [Gesquiere, Laurence R.; Altmann, Jeanne] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA; [Altmann, Jeanne] Univ Nairobi, Dept Vet Anat & Physiol, Nairobi, Kenya; [Altmann, Jeanne; Alberts, Susan C.] Natl Museums Kenya, Inst Primate Res, Nairobi, Kenya Onyango, PO (reprint author), Duke Univ, Dept Biol, Durham, NC USA. patrick.onyango@duke.edu National Science Foundation; National Institute of Aging [R01AG034513-01, P01AG031719]; Princeton Center for the Demography of Aging [P30AG024361]; Chicago Zoological Society; Max Planck Institute for Demography; L.S.B. Leakey Foundation; National Geographic Society; [IBN 9985910]; [IBN 0322613]; [IBN 0322781]; [BCS 0323553]; [BCS 0323596]; [DEB 0846286]; [DEB 0846532]; [IOS 0919200] We gratefully acknowledge the support of the National Science Foundation for the majority of the data represented here; in the past decade in particular we acknowledge support from IBN 9985910, IBN 0322613, IBN 0322781, BCS 0323553, BCS 0323596, DEB 0846286, DEB 0846532 and IOS 0919200. We are also very grateful for support from the National Institute of Aging (R01AG034513-01 and P01AG031719, and the Princeton Center for the Demography of Aging (P30AG024361). We also thank the Chicago Zoological Society, the Max Planck Institute for Demography, the L.S.B. Leakey Foundation and the National Geographic Society for support at various times over the years. We thank the Kenya Wildlife Services, Institute of Primate Research, National Museums of Kenya, and members of the Amboseli-Longido pastoralist communities for their cooperation and assistance in Kenya. A number of people have contributed to the long-term data collection over the years; particular thanks go to the Amboseli Baboon Project long-term field team (R.S. Mututua, S. Sayialel, and J.K. Warutere), and to V. Somen and T. Wango for their assistance in Nairobi, and to K. Pinc for his expertise in the design and management of the Baboon Project database, BABASE. We also thank the database technicians who have provided assistance with BABASE over the years, particularly D. Onderdonk, C. Markham, T. Fenn, N. Learn, and L. Maryott Roerish. This research was approved by the IACUC at Princeton University and at Duke University and adhered to all the laws and guidelines of Kenya. Ackermann RR, 2006, J HUM EVOL, V51, P632, DOI 10.1016/j.jhevol.2006.07.009; ALBERTS SC, 1995, AM NAT, V145, P279, DOI 10.1086/285740; ALBERTS SC, 1992, HORM BEHAV, V26, P167, DOI 10.1016/0018-506X(92)90040-3; Alberts SC, 2001, AM J PRIMATOL, V53, P139, DOI 10.1002/ajp.1; ALBERTS SC, 1995, BEHAV ECOL SOCIOBIOL, V36, P397, DOI 10.1007/BF00177335; Alberts SC, 2005, CAM S BIO EVOL ANTHR, V44, P157, DOI 10.1017/CBO9780511542343.007; Alberts Susan C., 2012, P412; ALLMAN J, 1993, P NATL ACAD SCI USA, V90, P118, DOI 10.1073/pnas.90.1.118; ALTMANN J, 1977, Primates, V18, P315, DOI 10.1007/BF02383111; Altmann J, 2005, BEHAV ECOL SOCIOBIOL, V57, P490, DOI 10.1007/s00265-004-0870-x; Altmann J, 2003, OFFSPRING, P140; Altmann J, 2000, PRIMATE MALES, P236; ALTMANN J, 1981, AM J PRIMATOL, V1, P389, DOI 10.1002/ajp.1350010404; Altmann J., 1988, LIFETIME REPROD SUCC, P403; Altmann J., 1980, BABOON MOTHERS INFAN; Altmann SA., 1998, FORAGING SURVIVAL YE; Anderson CA, 2007, BEHAV GENET, V37, P668, DOI 10.1007/s10519-007-9163-2; APTER D, 1985, CLIN ENDOCRINOL, V22, P753, DOI 10.1111/j.1365-2265.1985.tb00165.x; Babbitt CC, 2012, GENOME BIOL EVOL, V4, P102, DOI 10.1093/gbe/evr134; BARKER DJP, 1993, LANCET, V341, P938, DOI 10.1016/0140-6736(93)91224-A; Beehner JC, 2009, HORM BEHAV, V56, P472, DOI 10.1016/j.yhbeh.2009.08.005; BERCOVITCH FB, 1993, BEHAV ECOL SOCIOBIOL, V33, P313; BERCOVITCH FB, 1990, MG PRIMATOL, V13, P59; Bergman TJ, 2004, INT J PRIMATOL, V25, P1313, DOI 10.1023/B:IJOP.0000043964.01085.dc; Bernardo J, 1996, AM ZOOL, V36, P83; Bolter DR, 2003, J ZOOL, V260, P99, DOI 10.1017/S0952836903003522; Bronikowski AM, 1996, BEHAV ECOL SOCIOBIOL, V39, P11, DOI 10.1007/s002650050262; Buchan JC, 2003, NATURE, V425, P179, DOI 10.1038/nature01866; Charpentier MJE, 2008, MOL ECOL, V17, P2026, DOI 10.1111/j.1365-294X.2008.03724.x; Charpentier MJE, 2008, P NATL ACAD SCI USA, V105, P1988, DOI 10.1073/pnas.0711219105; Charpentier MJE, 2012, MOL ECOL, V21, P715, DOI 10.1111/j.1365-294X.2011.05302.x; Clutton-Brock T, 2010, TRENDS ECOL EVOL, V25, P562, DOI 10.1016/j.tree.2010.08.002; Combes SL, 2001, P ROY SOC B-BIOL SCI, V268, P1367, DOI 10.1098/rspb.2001.1631; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; Dixson AF, 2012, PRIMATE SEXUALITY: COMPARATIVE STUDIES OF THE PROSIMIANS, MONKEYS, APES, AND HUMANS, 2ND EDITION, P1, DOI 10.1093/acprof:osobl/9780199544646.001.0001; Ekernas LS, 2007, ANIM BEHAV, V73, P1009, DOI 10.1016/j.anbehav.2006.11.007; Elks CE, 2010, NAT GENET, V42, P1077, DOI 10.1038/ng.714; Ellison P. T., 2001, FERTILE GROUND; Emanuel I, 2004, INT J EPIDEMIOL, V33, P1236, DOI 10.1093/ije/dyh269; FAIRBANKS LA, 1990, ANIM BEHAV, V40, P553, DOI 10.1016/S0003-3472(05)80536-6; Foerster K, 2007, NATURE, V447, P1107, DOI 10.1038/nature05912; Freetly HC, 2011, J ANIM SCI, V89, P2373, DOI 10.2527/jas.2011-3847; Gagliardi C, 2010, AM J PRIMATOL, V72, P811, DOI 10.1002/ajp.20843; Garcia C, 2006, AM J PHYS ANTHROPOL, V131, P64, DOI 10.1002/ajpa.20405; Garcia C, 2009, AM J PHYS ANTHROPOL, V138, P123, DOI 10.1002/ajpa.20909; Gesquiere LR, 2007, HORM BEHAV, V51, P114, DOI 10.1016/j.yhbeh.2006.08.010; Gesquiere LR, 2005, AM J PRIMATOL, V67, P83, DOI 10.1002/ajp.20171; Gonzalez-Lagos C, 2010, J EVOLUTION BIOL, V23, P1064, DOI 10.1111/j.1420-9101.2010.01976.x; Hyatt MA, 2007, AM J PHYSIOL-REG I, V292, pR1934, DOI 10.1152/ajpregu.00802.2006; Johnson SE, 2006, DEV PRIMATOL-PROG PR, P177; Johnson SE, 2003, AM J PHYS ANTHROPOL, V120, P83, DOI 10.1002/ajpa.10139; Jolly CJ, 1997, INT J PRIMATOL, V18, P597, DOI 10.1023/A:1026367307470; Jolly Clifford J., 1993, P67; Kappeler P.M., 2012, LONG TERM FIELD STUD; Khan MZ, 2002, GEN COMP ENDOCR, V128, P57, DOI 10.1016/S0016-6480(02)00063-1; KIRKPATRICK M, 1989, EVOLUTION, V43, P485, DOI 10.1111/j.1558-5646.1989.tb04247.x; KRAEMER H C, 1982, Primates, V23, P393, DOI 10.1007/BF02381322; Kuester J, 1996, BEHAVIOUR, V133, P763, DOI 10.1163/156853996X00468; Leigh SR, 1998, INT J PRIMATOL, V19, P723, DOI 10.1023/A:1020381026848; LEIGH SR, 1992, J HUM EVOL, V23, P27, DOI 10.1016/0047-2484(92)90042-8; LEUTENEGGER W, 1977, Primates, V18, P117, DOI 10.1007/BF02382954; Lynch JW, 2003, GEN COMP ENDOCR, V132, P264, DOI 10.1016/S0016-6480(03)00093-5; Maestripieri Dario, 2009, P256; Malabarey OT, 2012, J PEDIATR ADOL GYNEC, V25, P98, DOI 10.1016/j.jpag.2011.09.004; Melnick D.J., 1987, P121; MORI A, 1979, Primates, V20, P371, DOI 10.1007/BF02373390; Newman TK, 2004, AM J PHYS ANTHROPOL, V124, P17, DOI 10.1002/ajpa.10340; Nguyen N, 2009, BEHAV ECOL SOCIOBIOL, V63, P1331, DOI 10.1007/s00265-009-0786-6; Onyango PO, 2008, HORM BEHAV, V54, P319, DOI 10.1016/j.yhbeh.2008.03.002; Palme R, 2005, ANN NY ACAD SCI, V1046, P75, DOI 10.1196/annals.1343.007; PEREIRA ME, 1988, ANIM BEHAV, V36, P184, DOI 10.1016/S0003-3472(88)80262-8; PEREIRA ME, 1988, ETHOLOGY, V79, P195, DOI 10.1111/j.1439-0310.1988.tb00711.x; Plaistow SJ, 2004, P ROY SOC B-BIOL SCI, V271, P919, DOI 10.1098/rspb.2004.2682; Plant TA, 2006, MOL CELL ENDOCRINOL, V254, P97, DOI 10.1016/j.mce.2006.04.022; Plant Tony M., 1994, P453; Pluhacek J, 2007, BIOL CONSERV, V139, P457, DOI 10.1016/j.biocon.2007.06.023; Pope TR, 2000, PRIMATE MALES, P219; Pusey A.E., 1987, P250; Pusey Anne, 2012, P343; Reale D, 2000, HEREDITY, V85, P593, DOI 10.1046/j.1365-2540.2000.00795.x; SAMUELS A, 1991, INT J PRIMATOL, V12, P1, DOI 10.1007/BF02547555; SAPOLSKY R M, 1992, P287; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; Setchell JM, 2001, AM J PHYS ANTHROPOL, V115, P349, DOI 10.1002/ajpa.1091; Setchell JM, 2003, BEHAVIOUR, V140, P1053, DOI 10.1163/156853903322589641; Setchell JM, 2006, AM J PHYS ANTHROPOL, V131, P498, DOI 10.1002/ajpa.20478; Shea B. T., 1986, HUM EVOL, V1, P97, DOI DOI 10.1007/BF02437489; Silk J.B., 1987, P318; Silk JB, 2003, SCIENCE, V302, P1231, DOI 10.1126/science.1088580; Silk JB, 2007, SCIENCE, V317, P1347, DOI 10.1126/science.1140734; Silk JB, 2006, BEHAV ECOL SOCIOBIOL, V61, P183, DOI 10.1007/s00265-006-0249-2; Silk JB, 2012, ANIM BEHAV, V83, P1511, DOI 10.1016/j.anbehav.2012.03.028; Silk JB, 2010, CURR BIOL, V20, P1359, DOI 10.1016/j.cub.2010.05.067; Silventoinen K, 2008, PEDIATRICS, V121, pE885, DOI 10.1542/peds.2007-1615; Sol D, 2009, BIOL LETTERS, V5, P130, DOI 10.1098/rsbl.2008.0621; Stein D.M., 1984, SOCIOBIOLOGY INFANT; SUGAWARA K, 1988, PRIMATES, V29, P429, DOI 10.1007/BF02381132; Thompson ME, 2007, ANIM BEHAV, V73, P501, DOI 10.1016/j.anbehav.2006.09.007; Tung J, 2008, MOL ECOL, V17, P1998, DOI 10.1111/j.1365-294X.2008.03723.x; Tung J, 2011, MOL ECOL, V20, P725, DOI 10.1111/j.1365-294X.2010.04970.x; Tung J, 2010, TRENDS GENET, V26, P353, DOI 10.1016/j.tig.2010.05.005; van den Berg SM, 2007, BEHAV GENET, V37, P661, DOI 10.1007/s10519-007-9161-4; van Noordwijk MA, 1999, PRIMATES, V40, P105, DOI 10.1007/BF02557705; van Noordwijk Maria A., 2004, P208, DOI 10.1017/CBO9780511542459.014; Walters J.R., 1987, P306; Wells JCK, 2011, TRENDS ENDOCRIN MET, V22, P421, DOI 10.1016/j.tem.2011.05.006; Whitten PL, 1998, YEARB PHYS ANTHROPOL, V41, P1, DOI 10.1002/(SICI)1096-8644(199802)105:2<137::AID-AJPA3>3.0.CO;2-S; WILLIAMSBLANGERO S, 1995, AM J PRIMATOL, V37, P233, DOI 10.1002/ajp.1350370305; Wolf JB, 1998, TRENDS ECOL EVOL, V13, P64, DOI 10.1016/S0169-5347(97)01233-0 109 19 19 0 69 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0018-506X 1095-6867 HORM BEHAV Horm. Behav. JUL 2013 64 2 SI 240 249 10.1016/j.yhbeh.2013.02.014 10 Behavioral Sciences; Endocrinology & Metabolism Behavioral Sciences; Endocrinology & Metabolism 217HR WOS:000324351100009 23998668 Green Accepted 2018-11-12 J Chambert, T; Rotella, JJ; Higgs, MD; Garrott, RA Chambert, Thierry; Rotella, Jay J.; Higgs, Megan D.; Garrott, Robert A. Individual heterogeneity in reproductive rates and cost of reproduction in a long-lived vertebrate ECOLOGY AND EVOLUTION English Article Bayesian statistics; individual variation; life-history theory; marine mammals; population dynamics; posterior predictive checks LIFE-HISTORY TRAITS; SEAL LEPTONYCHOTES-WEDDELLII; AGE-SPECIFIC SURVIVAL; DYNAMIC HETEROGENEITY; ROSS SEA; POPULATION-DYNAMICS; MARINE PREDATOR; MCMURDO SOUND; BIGHORN SHEEP; ROE DEER Individual variation in reproductive success is a key feature of evolution, but also has important implications for predicting population responses to variable environments. Although such individual variation in reproductive outcomes has been reported in numerous studies, most analyses to date have not considered whether these realized differences were due to latent individual heterogeneity in reproduction or merely random chance causing different outcomes among like individuals. Furthermore, latent heterogeneity in fitness components might be expressed differently in contrasted environmental conditions, an issue that has only rarely been investigated. Here, we assessed (i) the potential existence of latent individual heterogeneity and (ii) the nature of its expression (fixed vs. variable) in a population of female Weddell seals (Leptonychotes weddellii), using a hierarchical modeling approach on a 30-year mark-recapture data set consisting of 954 individual encounter histories. We found strong support for the existence of latent individual heterogeneity in the population, with robust individuals expected to produce twice as many pups as "frail" individuals. Moreover, the expression of individual heterogeneity appeared consistent, with only mild evidence that it might be amplified when environmental conditions are severe. Finally, the explicit modeling of individual heterogeneity allowed us to detect a substantial cost of reproduction that was not evidenced when the heterogeneity was ignored. [Chambert, Thierry; Rotella, Jay J.; Garrott, Robert A.] Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA; [Higgs, Megan D.] Montana State Univ, Dept Math Sci, Bozeman, MT 59717 USA Chambert, T (reprint author), Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA. thierry.chambert@gmail.com National Science Foundation, Division of Polar Programs This study was made possible thanks to the support and funding provided by the National Science Foundation, Division of Polar Programs. ANDERSSON S, 1989, BEHAV ECOL SOCIOBIOL, V25, P403, DOI 10.1007/BF00300186; Atkinson S, 1997, Rev Reprod, V2, P175, DOI 10.1530/ror.0.0020175; Aubry LM, 2011, J ANIM ECOL, V80, P375, DOI 10.1111/j.1365-2656.2010.01784.x; Aubry LM, 2009, ECOLOGY, V90, P2491, DOI 10.1890/08-1475.1; Barbraud C, 2005, ECOLOGY, V86, P682, DOI 10.1890/04-0075; Barnett AG, 2010, METHODS ECOL EVOL, V1, P15, DOI 10.1111/j.2041-210X.2009.00009.x; Bergeron P, 2011, J ANIM ECOL, V80, P361, DOI 10.1111/j.1365-2656.2010.01770.x; Berube CH, 1999, ECOLOGY, V80, P2555, DOI 10.2307/177240; Boness DJ, 1996, BIOSCIENCE, V46, P645, DOI 10.2307/1312894; Brooks SP, 1998, J COMPUT GRAPH STAT, V7, P434, DOI 10.2307/1390675; Burnham K. P., 2002, MODEL SELECTION MULT; Burns JM, 1998, POLAR BIOL, V19, P272, DOI 10.1007/s003000050245; Burton T, 2011, P ROY SOC B-BIOL SCI, V278, P3465, DOI 10.1098/rspb.2011.1778; Cam E, 2000, J ANIM ECOL, V69, P380, DOI 10.1046/j.1365-2656.2000.00400.x; Cam E, 2002, AM NAT, V159, P96, DOI 10.1086/324126; Cam E., 2012, OIKOS, DOI 10.1111/j.16000706. 2012.20532.x; Cameron MF, 2004, CAN J ZOOL, V82, P601, DOI 10.1139/Z04-025; Cameron MF, 2007, ANTARCT SCI, V19, P149, DOI 10.1017/S0954102007000223; CARPENTER SR, 1990, ECOLOGY, V71, P2038, DOI 10.2307/1938617; CASTELLINI MA, 1992, J EXP BIOL, V165, P181; Chambert T, 2012, P ROY SOC B-BIOL SCI, V279, P4532, DOI 10.1098/rspb.2012.1733; Conner Mary M., 1999, Natural Resource Modeling, V12, P109; Costa DP, 2004, INT CONGR SER, V1275, P359, DOI 10.1016/j.ics.2004.08.058; Cubaynes S, 2012, METHODS ECOL EVOL, V3, P564, DOI 10.1111/j.2041-210X.2011.00175.x; Dall SRX, 2004, ECOL LETT, V7, P734, DOI 10.1111/j.1461-0248.2004.00618.x; Darwin C., 1859, ORIGIN SPECIES MEANS; Endler JA, 1986, NATURAL SELECTION WI; Festa-Bianchet M, 2000, BEHAV ECOL, V11, P633, DOI 10.1093/beheco/11.6.633; FestaBianchet M, 1997, CAN J ZOOL, V75, P1372, DOI 10.1139/z97-763; Foerster K, 2003, NATURE, V425, P714, DOI 10.1038/nature01969; Fox GA, 2006, J ANIM ECOL, V75, P921, DOI 10.1111/j.1365-2656.2006.01110.x; Gelman A., 2004, BAYESIAN DATA ANAL, P159; Gimenez O, 2010, ECOLOGY, V91, P951, DOI 10.1890/09-1903.1; GOULD SJ, 1993, NATURE, V366, P223, DOI 10.1038/366223a0; Guglielmo L, 1998, POLAR BIOL, V19, P37; Guglielmo L, 2009, POLAR BIOL, V32, P347, DOI 10.1007/s00300-008-0546-5; Hadley GL, 2007, J ANIM ECOL, V76, P448, DOI 10.1111/j.1365-2656.2007.01219.x; Hadley GL, 2007, OIKOS, V116, P601, DOI 10.1111/j.2007.0030-1299.15528.x; Hadley GL, 2006, J ANIM ECOL, V75, P1058, DOI 10.1111/j.1365-2656.2006.01118.x; Hamel S, 2009, J ANIM ECOL, V78, P143, DOI 10.1111/j.1365-2656.2008.01459.x; Hamel S, 2012, METHODS ECOL EVOL, V3, P731, DOI 10.1111/j.2041-210X.2012.00195.x; Hamel S, 2012, ECOL APPL, V22, P1628; Hamel S, 2009, ECOLOGY, V90, P1981, DOI 10.1890/08-0596.1; Hunt J, 2004, TRENDS ECOL EVOL, V19, P329, DOI 10.1016/j.tree.2004.03.035; Hunt J, 2000, EVOLUTION, V54, P936; Kendall BE, 2011, ECOLOGY, V92, P1985, DOI 10.1890/11-0079.1; KOOYMAN GL, 1973, RESP PHYSIOL, V17, P283, DOI 10.1016/0034-5687(73)90003-0; Lailvaux SP, 2011, P ROY SOC B-BIOL SCI, V278, P321, DOI 10.1098/rspb.2010.1591; Landis RM, 2005, J ECOL, V93, P607, DOI 10.1111/j.1365-2745.2005.00996.x; Lescroel A, 2009, J ANIM ECOL, V78, P798, DOI 10.1111/j.1365-2656.2009.01542.x; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Link WA, 2010, BAYESIAN INFERENCE WITH ECOLOGICAL APPLICATIONS, P127; Link WA, 2002, J APPL STAT, V29, P207, DOI 10.1080/02664760120108700a; LOMNICKI A, 1978, J ANIM ECOL, V47, P461, DOI 10.2307/3794; Lummaa V, 2002, TRENDS ECOL EVOL, V17, P141, DOI 10.1016/S0169-5347(01)02414-4; Lunn D, 2009, STAT MED, V28, P3049, DOI 10.1002/sim.3680; MacAyeal DR, 2008, J GLACIOL, V54, P371, DOI 10.3189/002214308784886180; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; Oli MK, 2003, OECOLOGIA, V136, P543, DOI 10.1007/s00442-003-1291-7; Orzack SH, 2011, OIKOS, V120, P369, DOI 10.1111/j.1600-0706.2010.17996.x; Plard F, 2012, THEOR POPUL BIOL, V82, P317, DOI 10.1016/j.tpb.2012.03.006; Pryke SR, 2012, AM NAT, V179, P375, DOI 10.1086/664078; Rotella JJ, 2012, J ANIM ECOL, V81, P162, DOI 10.1111/j.1365-2656.2011.01902.x; Rotella JJ, 2009, ECOLOGY, V90, P975, DOI 10.1890/08-0971.1; Saggiomo V, 1998, J MARINE SYST, V17, P115, DOI 10.1016/S0924-7963(98)00033-5; Schofield MR, 2011, J AGR BIOL ENVIR ST, V16, P253, DOI 10.1007/s13253-010-0052-4; Schwagmeyer PL, 2008, ANIM BEHAV, V75, P291, DOI 10.1016/j.anbehav.2007.05.023; Service PM, 2000, AM NAT, V156, P1, DOI 10.1086/303371; Siepielski AM, 2009, ECOL LETT, V12, P1261, DOI 10.1111/j.1461-0248.2009.01381.x; SINIFF DB, 1977, ECOL MONOGR, V47, P319, DOI 10.2307/1942520; Smith BR, 2008, BEHAV ECOL, V19, P448, DOI 10.1093/beheco/arm144; Smith WO, 2007, PHILOS T R SOC B, V362, P95, DOI 10.1098/rstb.2006.1956; Spiegelhalter DJ, 2002, J ROY STAT SOC B, V64, P583, DOI 10.1111/1467-9868.00353; Steiner UK, 2010, J ANIM ECOL, V79, P436, DOI 10.1111/j.1365-2656.2009.01653.x; Tavecchia G, 2005, J ANIM ECOL, V74, P201, DOI 10.1111/j.1365-2656.2005.00916.x; Tuljapurkar S, 2009, ECOL LETT, V12, P93, DOI 10.1111/j.1461-0248.2008.01262.x; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VANNOORDWIJK AJ, 1989, BIOSCIENCE, V39, P453, DOI 10.2307/1311137; Vanpe C, 2007, AM NAT, V169, P481, DOI 10.1086/512046; VAUPEL JW, 1985, AM STAT, V39, P176, DOI 10.2307/2683925; Vindenes Y, 2008, AM NAT, V171, P455, DOI 10.1086/528965; Weladji RB, 2008, OECOLOGIA, V156, P237, DOI 10.1007/s00442-008-0961-x; Wheatley KE, 2008, PHYSIOL BIOCHEM ZOOL, V81, P651, DOI 10.1086/590397; Wheatley KE, 2008, OECOLOGIA, V155, P11, DOI 10.1007/s00442-007-0888-7; Wheatley KE, 2006, J ANIM ECOL, V75, P724, DOI 10.1111/j.1365-2656.01093.x; Williams TM, 2004, J EXP BIOL, V207, P973, DOI 10.1242/jeb.00822; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002; ZUK M, 1990, AM NAT, V136, P459, DOI 10.1086/285107 90 32 32 0 90 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. JUL 2013 3 7 2047 2060 10.1002/ece3.615 14 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 185WY WOS:000322002400020 23919151 DOAJ Gold, Green Published 2018-11-12 J Drake, A; Rock, C; Quinlan, SP; Green, DJ Drake, Anna; Rock, Christine; Quinlan, Sam P.; Green, David J. Carry-over effects of winter habitat vary with age and sex in yellow warblers Setophaga petechia JOURNAL OF AVIAN BIOLOGY English Article NORTH-ATLANTIC OSCILLATION; FEMALE PIED FLYCATCHERS; DISTANCE MIGRATORY BIRD; STABLE-CARBON ISOTOPES; NON-BREEDING SEASON; REPRODUCTIVE SUCCESS; DENDROICA-PETECHIA; TERRITORY QUALITY; SPRING ARRIVAL; LONG We use stable isotope data to investigate the role of winter habitat use in altering the breeding phenology of yellow warblers Setophaga petechia. We first confirm that C-13 and N-15 isotopic signatures vary with winter habitat use in this species. We then examine the relationship between winter habitat use, breeding phenology and productivity within four age-sex-classes, since life history theory would predict that carry-over effects should vary with age and gender. The C-13 signatures of yellow warblers using riparian habitats over winter were more depleted than the signatures of those using agricultural or scrub habitat. Individuals on the Pacific coast of Mexico were also more N-15 enriched than those on the southern Gulf of Mexico. C-13 and N-15 signatures were only correlated with earlier clutch initiation and subsequent higher productivity in first-breeding-season females. We estimate that shifts in C-13 equivalent to a shift from scrub to riparian winter habitat would be associated with the production of 0.8 more fledglings by yearling females. Pre-breeding events that influence the timing of breeding could also influence the reproductive performance of older males and females, but we found little evidence that winter habitat use influenced breeding season phenology in these birds. [Drake, Anna; Rock, Christine; Quinlan, Sam P.; Green, David J.] Simon Fraser Univ, Dept Biol Sci, Ctr Wildlife Ecol, Burnaby, BC V5A 1S6, Canada Drake, A (reprint author), Simon Fraser Univ, Dept Biol Sci, Ctr Wildlife Ecol, 8888 Univ Blvd, Burnaby, BC V5A 1S6, Canada. aedrake@sfu.ca Green, David/B-5096-2012 Columbia Basin Fish and Wildlife Program; BC Hydro; Natural Sciences and Engineering Research Council of Canada (NSERC); Friends of Mount Revelstoke and Glacier National Parks; NSERC; NSERC CGS-D We thank the Revelstoke field team: Michaela Martin, Celia Grande, Matt Pennell, Paul Levesque, Annette Potvin, Danny O'Farrell, and Pauline Ridings and are grateful for the assistance of Annette Potvin and Kristina Hunter in preparing samples for analysis. D. Lank and R. Ydenberg provided helpful comments on earlier drafts. We thank P. Rodewald and M. Reudink for constructive feedback. Research support came from the Columbia Basin Fish and Wildlife Program, BC Hydro, a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery grant to DJG and a Friends of Mount Revelstoke and Glacier National Parks grant to SPQ and CR. CR and SPQ were supported by a NSERC Industrial Scholarship sponsored by BC Hydro. AD was supported by an NSERC CGS-D. ALATALO RV, 1986, NATURE, V323, P152, DOI 10.1038/323152a0; Amundson R, 2003, GLOBAL BIOGEOCHEM CY, V17, DOI 10.1029/2002GB001903; Bart J, 1999, BEHAV ECOL SOCIOBIOL, V45, P355, DOI 10.1007/s002650050571; Bearhop S, 2004, P ROY SOC B-BIOL SCI, V271, pS215, DOI 10.1098/rsbl.2003.0129; BENSCH S, 1992, ANIM BEHAV, V44, P301, DOI 10.1016/0003-3472(92)90036-9; Binford L. C., 1989, ORNITHOL MONOGR, V43, P392; Boulet Marylene, 2006, Ornithological Monographs, V61, P29, DOI 10.1642/0078-6594(2006)61[29:IAOGSI]2.0.CO;2; Brown WP, 2002, ECOLOGY, V83, P958, DOI 10.2307/3071905; Cormie AB, 1996, GEOCHIM COSMOCHIM AC, V60, P4161, DOI 10.1016/S0016-7037(96)00251-7; EBBINGE BS, 1995, J AVIAN BIOL, V26, P105, DOI 10.2307/3677058; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; FOWLER GS, 1995, AM ZOOL, V35, P318; Garrett K., 1997, FIELD GUIDE WARBLERS; Gill JA, 2001, NATURE, V412, P436, DOI 10.1038/35086568; Graves GR, 1997, ECOLOGY, V78, P2524; Greenberg R, 1997, BIOL CONSERV, V80, P235, DOI 10.1016/S0006-3207(96)00137-1; GREENBERG R, 1994, AUK, V111, P672; Greenberg R, 1996, CONDOR, V98, P640, DOI 10.2307/1369579; Greenberg Russell, 2005, P336; Gunnarsson TG, 2005, P ROY SOC B-BIOL SCI, V272, P2319, DOI 10.1098/rspb.2005.3214; Gunnarsson TG, 2006, J ANIM ECOL, V75, P1119, DOI 10.1111/j.1365-2656.2006.01131.x; Handley LL, 1999, AUST J PLANT PHYSIOL, V26, P185, DOI 10.1071/PP98146; Harrison XA, 2011, J ANIM ECOL, V80, P4, DOI 10.1111/j.1365-2656.2010.01740.x; Hasselquist D, 1998, ECOLOGY, V79, P2376, DOI 10.2307/176829; Hobson KA, 2005, AUK, V122, P1037, DOI 10.1642/0004-8038(2005)122[1037:SIATDO]2.0.CO;2; HOBSON KA, 1993, CONDOR, V95, P388, DOI 10.2307/1369361; Hobson KA, 1999, OECOLOGIA, V120, P314, DOI 10.1007/s004420050865; Huk T, 2006, P R SOC B, V273, P1681, DOI 10.1098/rspb.2006.3485; Kelly JF, 2000, CAN J ZOOL, V78, P1, DOI 10.1139/cjz-78-1-1; Kottek M, 2006, METEOROL Z, V15, P259, DOI 10.1127/0941-2948/2006/0130; Langefors, 1998, J AVIAN BIOL, V29, P134, DOI DOI 10.2307/3677191; Latta SC, 2002, ECOLOGY, V83, P2502, DOI 10.1890/0012-9658(2002)083[2502:DAPROC]2.0.CO;2; LAVEE D, 1991, ORNIS SCAND, V22, P33, DOI 10.2307/3676619; Lindsay A, 2008, THESIS OHIO STATE U; LOWTHER P, 1999, BIRDS N AM; Lozano GA, 1996, J AVIAN BIOL, V27, P164, DOI 10.2307/3677146; Marra PP, 1998, OECOLOGIA, V116, P284, DOI 10.1007/s004420050590; Marra PP, 1997, ECOLOGY, V78, P947; Marra PP, 1998, SCIENCE, V282, P1884, DOI 10.1126/science.282.5395.1884; MORTON ES, 1976, CONDOR, V78, P423, DOI 10.2307/1367713; Norris DR, 2007, CONDOR, V109, P535; Norris DR, 2006, BIOL LETT-UK, V2, P148, DOI 10.1098/rsbl.2005.0397; Norris DR, 2005, J AVIAN BIOL, V36, P164, DOI 10.1111/j.0908-8857.2005.03398.x; Norris DR, 2004, P ROY SOC B-BIOL SCI, V271, P59, DOI 10.1098/rspb.2003.2569; Nott MP, 2002, GLOBAL ECOL BIOGEOGR, V11, P333, DOI 10.1046/j.1466-822X.2002.00296.x; Porneluzi PA, 1999, CONSERV BIOL, V13, P1151, DOI 10.1046/j.1523-1739.1999.98455.x; Pyle P., 1997, IDENTIFICATION GUI 1; Quinlan S. P., 2010, J ORNITHOL, V152, P93; Reudink MW, 2009, P R SOC B, V276, P1619, DOI 10.1098/rspb.2008.1452; Rockwell SM, 2012, AUK, V129, P744, DOI 10.1525/auk.2012.12003; Rohwer S, 2004, ECOLOGY, V85, P423, DOI 10.1890/02-0380; Rotenberry John T., 1995, P55; ROWE L, 1994, AM NAT, V143, P698, DOI 10.1086/285627; Runge M. C., 2005, BIRDS 2 WORLDS ECOLO, P336; Saino N, 2004, P ROY SOC B-BIOL SCI, V271, P681, DOI 10.1098/rspb.2003.2656; Schaub M, 2008, BEHAV ECOL, V19, P657, DOI 10.1093/beheco/arn023; Smith JAM, 2011, AUK, V128, P53, DOI 10.1525/auk.2011.10241; Smith JAM, 2010, ECOLOGY, V91, P2874, DOI 10.1890/09-2212.1; Smith RJ, 2005, BEHAV ECOL SOCIOBIOL, V57, P231, DOI 10.1007/s00265-004-0855-9; STUDD MV, 1985, ANIM BEHAV, V33, P1102, DOI 10.1016/S0003-3472(85)80169-X; STUDD MV, 1985, BEHAV ECOL SOCIOBIOL, V17, P101; Studds CE, 2005, ECOLOGY, V86, P2380, DOI 10.1890/04-1145; Terborgh John, 1989, HAVE ALL BIRDS GONE; Tonra CM, 2011, J AVIAN BIOL, V42, P397, DOI 10.1111/j.1600-048X.2011.05333.x; Vahatalo AV, 2004, J AVIAN BIOL, V35, P210; VANDERMERWE NJ, 1990, NATURE, V346, P744, DOI 10.1038/346744a0; Webster M. S., 2005, BIRDS 2 WORLDS ECOLO, P336; Yong W, 1998, AUK, V115, P829, DOI 10.2307/4089502 68 12 12 0 57 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0908-8857 J AVIAN BIOL J. Avian Biol. JUL 2013 44 4 321 330 10.1111/j.1600-048X.2013.05828.x 10 Ornithology Zoology 176TK WOS:000321327700003 2018-11-12 J Hossie, TJ; Hassall, C; Knee, W; Sherratt, TN Hossie, T. J.; Hassall, C.; Knee, W.; Sherratt, T. N. Species with a chemical defence, but not chemical offence, live longer JOURNAL OF EVOLUTIONARY BIOLOGY English Article amphibian; chemical protection; extrinsic mortality; lifespan; longevity; phylogenetic dependence; senescence; snake; toxic; venom EVOLUTION; SENESCENCE; PLEIOTROPY; SELECTION Evolutionary hypotheses for ageing generally predict that delayed senescence should evolve in organisms that experience lower extrinsic mortality. Thus, one might expect species that are highly toxic or venomous (i.e. chemically protected) will have longer lifespans than related species that are not likewise protected. This remarkable relationship has been suggested to occur in amphibians and snakes. First, we show that chemical protection is highly conserved in several lineages of amphibians and snakes. Therefore, accounting for phylogenetic autocorrelation is critical when conservatively testing evolutionary hypotheses because species may possess similar longevities and defensive attributes simply through shared ancestry. Herein, we compare maximum longevity of chemically protected and nonprotected species, controlling for potential nonindependence of traits among species using recently available phylogenies. Our analyses confirm that longevity is positively correlated with body size in both groups which is consistent with life-history theory. We also show that maximum lifespan was positively associated with chemical protection in amphibian species but not in snakes. Chemical protection is defensive in amphibians, but primarily offensive (involved in prey capture) in snakes. Thus, we find that although chemical defence in amphibians favours long life, there is no evidence that chemical offence in snakes does the same. [Hossie, T. J.; Sherratt, T. N.] Carleton Univ, Ottawa Carleton Inst Biol, Ottawa, ON K1S 5B6, Canada; [Hassall, C.] Univ Leeds, Sch Biol, Leeds, W Yorkshire, England; [Knee, W.] Agr & Agri Food Canada, Ottawa, ON, Canada Hossie, TJ (reprint author), Carleton Univ, Ottawa Carleton Inst Biol, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada. thomashossie@cmail.carleton.ca National Sciences and Engineering Research Council of Canada; Ontario MRI We thank A. Pyron for providing us with the phylogenetic data files. David Marjanovic and two anonymous referees provided helpful critical comments. This work was funded through a National Sciences and Engineering Research Council of Canada Discovery grant awarded to TNS. CH was supported by an Ontario MRI Postdoctoral Fellowship. ABRAMS PA, 1993, EVOLUTION, V47, P877, DOI 10.1111/j.1558-5646.1993.tb01241.x; Barlow A, 2009, P ROY SOC B-BIOL SCI, V276, P2443, DOI 10.1098/rspb.2009.0048; Blanco MA, 2005, MECH AGEING DEV, V126, P794, DOI 10.1016/j.mad.2005.02.006; Ernst C. H., 2012, VENOMOUS REPTILES US, V1-2; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; HARMON LJ, 2009, GEIGER PACKAGE MACRO; Harvey P. H., 1991, COMP METHOD EVOLUTIO; Hayes WK, 2002, BIOL VIPERS; Kirkwood TBL, 1996, BIOESSAYS, V18, P1009, DOI 10.1002/bies.950181211; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; KIRKWOOD TBL, 1979, PROC R SOC SER B-BIO, V205, P531, DOI 10.1098/rspb.1979.0083; Laurin M, 2010, SYST BIOL, V59, P689, DOI 10.1093/sysbio/syq059; MEDAWAR PB, 1952, UNSOLVED PROBLEM BIO; Moorad JA, 2012, AGING CELL, V11, P940, DOI 10.1111/j.1474-9726.2012.00861.x; PAGEL MD, 1992, J THEOR BIOL, V156, P431, DOI 10.1016/S0022-5193(05)80637-X; Paradis E, 2002, J THEOR BIOL, V218, P175, DOI 10.1006/yjtbi.3066; Paradis E., 2009, APE ANAL PHYLOGENETI; Pinheiro J, 2012, NLME LINEAR NONLINEA; Pyron RA, 2011, MOL PHYLOGENET EVOL, V58, P329, DOI 10.1016/j.ympev.2010.11.006; Pyron RA, 2011, MOL PHYLOGENET EVOL, V61, P543, DOI 10.1016/j.ympev.2011.06.012; R Development Core Team, 2012, R LANG ENV STAT COMP; Reeve Hudson Kern, 2001, P64, DOI 10.1017/CBO9780511609084.004; Ricklefs RE, 1998, AM NAT, V152, P24, DOI 10.1086/286147; Swiderski DL, 2001, AM ZOOL, V41, P485, DOI 10.1668/0003-1569(2001)041[0485:TROPIC]2.0.CO;2; Weinstein SA, 2011, ELSEV INSIGHT, P1; Wilkinson GS, 2002, AGING CELL, V1, P124, DOI 10.1046/j.1474-9728.2002.00020.x; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Williams PD, 2003, EVOLUTION, V57, P1478 29 6 6 0 24 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X J EVOLUTION BIOL J. Evol. Biol. JUL 2013 26 7 1598 1602 10.1111/jeb.12143 5 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 185XC WOS:000322003000019 23638626 Bronze 2018-11-12 J Nyborg, H Nyborg, Helmuth In conversation with J. Philippe Rushton PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Altruism; Life history theory; r-K strategies; Intelligence; g Factor; Spearman's hypothesis; Jensen effects; Darwinian selection BRAIN SIZE; SEX-DIFFERENCES; INTELLIGENCE; EVOLUTION; IQ The interview covers Rushton's background in England, South Africa, and Canada, his education at the University of London (B.Sc., 1970; Ph.D., 1973), and his early research (1970-1980) on the social learning of generosity in 7- to 11-year olds. In his first book, Altruism, socialization, and society (1980), Rushton solved two "anomalies" for his social learning perspective altruism in animals and traits in people-causing a "paradigm shift" for him toward sociobiology. He spent January to June 1981 at the University of California, Berkeley, to study the longitudinal stability of personality traits like altruism. There, he was influenced by Jensen's work on g and race differences in rate of maturation and two-egg twinning. Subsequently, Rushton found that across 60 variables, Europeans fall between East Asians and Africans, closer to East Asians. He extrapolated Wilson's (fast-slow) r-K life history theory to explain the pattern. Also covered is Rushton's research on the heritability of altruism, and Genetic Similarity Theory explaining assortative mating and ethnic nepotism. Spouses and best friends are as similar as half-siblings and people randomly chosen from the same ethnic group are as related as first cousins. Altruism follows lines of similarity to replicate genes effectively. Rushton's research on creativity is described. (C) 2012 Elsevier Ltd. All rights reserved. [Nyborg, Helmuth] Univ Aarhus, Aarhus, Denmark Nyborg, H (reprint author), Adslev Skovvej 2, DK-8240 Horning, Denmark. helmuthnyborg@msn.com Nyborg, Helmuth/0000-0002-6795-594X BEALS KL, 1984, CURR ANTHROPOL, V25, P301, DOI 10.1086/203138; Eysenck H., 1995, GENIUS NATURAL HIST; Eysenck H. J., 1956, SENSE NONSENSE PSYCH; Eysenck H. J., 1953, USES ABUSES PSYCHOL; Eysenck H. J., 1964, FACT FICTION PSYCHOL; GALTON F, 1887, FORTNIGHTLY REV, V42, P21; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; Jackson DN, 2006, INTELLIGENCE, V34, P479, DOI 10.1016/j.intell.2006.03.005; Jensen A. R., 1973, EDUCABILITY GROUP DI; JENSEN AR, 1969, HARVARD EDUC REV, V39, P1; JENSEN AR, 1998, G FACTOR; LOVEJOY CO, 1981, SCIENCE, V211, P341, DOI 10.1126/science.211.4480.341; LYNN R, 1977, B BRIT PSYCHOL SOC, V30, P69; Lynn R, 1999, INTELLIGENCE, V27, P1, DOI 10.1016/S0160-2896(99)00009-4; LYNN R, 1994, PERS INDIV DIFFER, V17, P257, DOI 10.1016/0191-8869(94)90030-2; Nyborg H, 2005, PERS INDIV DIFFER, V39, P497, DOI 10.1016/j.paid.2004.12.011; Rushton J. P., 2011, WILEY BLACKWELL HDB, P132; Rushton J. P., 1995, RACE EVOLUTION BEHAV; Rushton JP, 2008, J RES PERS, V42, P1173, DOI 10.1016/j.jrp.2008.03.002; Rushton JP, 2009, J RES PERS, V43, P532, DOI 10.1016/j.jrp.2009.01.005; Rushton JP, 2009, INT J NEUROSCI, V119, P691, DOI 10.1080/00207450802325843; Rushton JP, 2009, BIOL J LINN SOC, V96, P8, DOI 10.1111/j.1095-8312.2008.01110.x; RUSHTON JP, 1983, PSYCHOL BULL, V94, P18, DOI 10.1037//0033-2909.94.1.18; Rushton JP, 2005, PSYCHOL SCI, V16, P555, DOI 10.1111/j.0956-7976.2005.01574.x; Rushton JP, 2004, P ROY SOC B-BIOL SCI, V271, P2583, DOI 10.1098/rspb.2004.2941; Rushton JP, 2003, INTELLIGENCE, V31, P139, DOI 10.1016/S0160-2896(02)00137-X; RUSHTON JP, 1986, J PERS SOC PSYCHOL, V50, P1192, DOI 10.1037/0022-3514.50.6.1192; RUSHTON JP, 1990, PERS INDIV DIFFER, V11, P1291, DOI 10.1016/0191-8869(90)90156-L; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; RUSHTON JP, 1980, ALTRUISM SOCIALIZATI; Wilson E.O., 1975, P1 31 2 2 0 13 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. JUL 2013 55 3 SI 205 211 10.1016/j.paid.2012.03.010 7 Psychology, Social Psychology 163PY WOS:000320350600003 2018-11-12 J Jensen, AR Jensen, Arthur R. Rushton's contributions to the study of mental ability PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Spearman's hypothesis; Jensen Effect; g Factor; Intelligence; Reaction time; Group differences ADVANCED PROGRESSIVE MATRICES; WECHSLER INTELLIGENCE SCALE; WHITE ENGINEERING STUDENTS; SOUTH-AFRICA; IQ DIFFERENCES; PERFORMANCE; JAPANESE; CHILDREN; RACE This essay describes Rushton's contribution to examining the nexus of intelligence, race, and genetics, specifically what I termed "Spearman's hypothesis". It states that Black-White differences are "most marked in just those [tests] which are known to be saturated with g". I (Jensen) had confirmed this hypothesis using large data sets in the 1970s and 1980s and also found that Black-White differences were most marked on the more heritable rather than the more cultural subtests. Rushton confirmed and extended these findings in many highly innovative ways and demonstrated Spearman's hypothesis applied among samples of Gypsy Roma in Serbia, and East Asian, European, South Asian, Colored and Black samples in South Africa. He has not only documented group differences in brain size, intelligence, life span, family structure, infant mortality, developmental precocity, personality, and temperament, and rates of two egg twinning, and crime among East Asians, Europeans, and Africans, but also provided a life history theory that explains them. (C) 2012 Published by Elsevier Ltd. Univ Calif Berkeley, Sch Educ, Berkeley, CA 94720 USA Jensen, AR (reprint author), Univ Calif Berkeley, Sch Educ, Berkeley, CA 94720 USA. nesnejanda@aol.com BEALS KL, 1984, CURR ANTHROPOL, V25, P301, DOI 10.1086/203138; Bouchard TJ, 2003, J NEUROBIOL, V54, P4, DOI 10.1002/neu.10160; Coon C.S., 1962, ORIGIN RACES; Gottfredson LS, 1996, POLIT LIFE SCI, V15, P141; Harpending H., 1995, EVOLUTIONARY ANTHR, V4, P99; HO KC, 1980, ARCH PATHOL LAB MED, V104, P635; Jensen AR, 2011, INTELLIGENCE, V39, P171, DOI 10.1016/j.intell.2011.03.004; Jensen A. R., 2006, CLOCKING MIND; JENSEN AR, 1973, ED GROUP DIFFERENCES; JENSEN AR, 1998, G FACTOR; LYNN R, 1977, B BRIT PSYCHOL SOC, V30, P69; LYNN R, 1982, NATURE, V297, P222, DOI 10.1038/297222a0; Lynn R, 2006, IQ GLOBAL INEQUALITY; Lynn R, 2002, IQ WEALTH NATIONS; Miele Frank, 2002, INTELLIGENCE RACE GE; Nichols P. L., 1972, THESIS U MINNESOTA M; NYBORG H., 2003, SCI STUDY GEN INTELL; Nyborg H, 2013, PERS INDIV DIFFER, V55, P203, DOI 10.1016/j.paid.2013.05.003; Rushton J. P., 1995, RACE EVOLUTION BEHAV; Rushton JP, 2007, P R SOC B, V274, P1773, DOI 10.1098/rspb.2007.0461; Rushton JP, 2010, INTELLIGENCE, V38, P213, DOI 10.1016/j.intell.2009.12.002; Rushton JP, 2009, INT J NEUROSCI, V119, P691, DOI 10.1080/00207450802325843; Rushton JP, 2005, PSYCHOL PUBLIC POL L, V11, P235, DOI 10.1037/1076-8971.11.2.235; Rushton JP, 2004, INT J SELECT ASSESS, V12, P220, DOI 10.1111/j.0965-075X.2004.00276.x; Rushton JP, 2004, INTELLIGENCE, V32, P321, DOI 10.1016/j.intell.2004.06.003; Rushton JP, 2003, PERS INDIV DIFFER, V34, P177; Rushton JP, 2003, INTELLIGENCE, V31, P123, DOI 10.1016/S0160-2896(02)00140-X; Rushton JP, 2002, INTELLIGENCE, V30, P409; RUSHTON JP, 1989, INTELLIGENCE, V13, P43, DOI 10.1016/0160-2896(89)90005-6; Rushton JP, 2001, PERS INDIV DIFFER, V31, P1227, DOI 10.1016/S0191-8869(00)00210-5; Rushton JP, 1998, INTELLIGENCE, V26, P217, DOI 10.1016/S0160-2896(99)80004-X; Rushton JP, 2000, INTELLIGENCE, V28, P251, DOI 10.1016/S0160-2896(00)00035-0; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Skuy M, 2001, PERS INDIV DIFFER, V30, P1413, DOI 10.1016/S0191-8869(00)00123-9; Wilson E.O., 1975, P1; ZINDI F, 1994, PSYCHOLOGIST, V7, P549 36 0 0 1 11 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. JUL 2013 55 3 SI 212 217 10.1016/j.paid.2012.03.008 6 Psychology, Social Psychology 163PY WOS:000320350600004 2018-11-12 J Gottfredson, LS Gottfredson, Linda S. Resolute ignorance on race and Rushton PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Evolution; Intelligence; Life-history theory; Mob science; Race differences; Resolute ignorance I review Rushton's research on the evolutionary divergence of the three major human lineages. His life-history theory predicts, and his multiple analyses document, a consistent three-way patterning of mean differences among blacks, whites, and East Asians on coevolved sets of morphological, physiological, developmental, psychological, and behavioral traits. I then analyze a typical example of how critics evaluate his work, including the rate at which they cast his scientific hypotheses, methods and conclusions in politically charged language. The set of articles in question, although authored by well-known academics and appearing in a major, peer-reviewed journal, illustrate how mob science works to "discredit" valid research and enforce collective ignorance about entire bodies of evidence. Rushton is a scholar and gentleman but it appears that his critics often act like neither. (C) 2012 Elsevier Ltd. All rights reserved. Univ Delaware, Sch Educ, Newark, DE 19716 USA Gottfredson, LS (reprint author), Univ Delaware, Sch Educ, Newark, DE 19716 USA. gottfred@udel.edu Ceci SJ, 2005, AM PSYCHOL, V60, P149, DOI 10.1037/0003-066X.60.2.149; Gottfredson LS, 2005, PSYCHOL PUBLIC POL L, V11, P311, DOI 10.1037/1076-8971.11.2.311; Gottfredson LS, 1996, POLIT LIFE SCI, V15, P141; JENSEN AR, 1998, G FACTOR; Lewis JE, 2011, PLOS BIOL, V9, DOI 10.1371/journal.pbio.1001071; Lieberman L, 2001, CURR ANTHROPOL, V42, P69, DOI 10.1086/318434; Rosenberg NA, 2005, PLOS GENET, V1, P660, DOI 10.1371/journal.pgen.0010070; Rushton J.P., 2004, Human Evolution, V19, P173, DOI 10.1007/BF02438913; Rushton J. P., 1995, RACE EVOLUTION BEHAV; Rushton J. P., 1998, LIBERTY, V11, P31; Rushton JP, 2005, PSYCHOL PUBLIC POL L, V11, P235, DOI 10.1037/1076-8971.11.2.235 11 3 3 0 11 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. JUL 2013 55 3 SI 218 223 10.1016/j.paid.2012.10.021 6 Psychology, Social Psychology 163PY WOS:000320350600005 2018-11-12 J Irwing, P Irwing, Paul The general factor of personality: Substance or artefact? PERSONALITY AND INDIVIDUAL DIFFERENCES English Article General factor of personality, GFP; Personality structure; Blended variables; MTMM; g; Genetic dominance HIGHER-ORDER FACTORS; MULTITRAIT-MULTIMETHOD DATA; SOCIAL DESIRABILITY; IPSATIVE DATA; ABNORMAL-PERSONALITY; COVARIANCE STRUCTURE; BIG 5; MODELS; VALIDITY; TRAIT While it is now widely recognized that a general factor (GFP) can be extracted from most personality data, this finding has been subject to numerous critiques; (1) that the GFP is an artefact due to socially desirable responding; (2) that it is factorially indeterminate; (3) that it can be more parsimoniously modelled using blended variables; (4) that it shows less genetic variance due to dominance than should be true of a fitness trait; (5) that it correlates more weakly with g than would be predicted from Life History theory; (6) that it cannot be recovered across personality inventories. We present new evidence and argument to show that each of these critiques is open to reasonable doubt. (C) 2013 Elsevier Ltd. All rights reserved. Univ Manchester, Manchester Business Sch, Manchester M15 6PB, Lancs, England Irwing, P (reprint author), Univ Manchester, Manchester Business Sch, Booth St West, Manchester M15 6PB, Lancs, England. paul.irwing@mbs.ac.uk Anusic I., 2009, J PERS SOC PSYCHOL, V97, P1142; Ashton MC, 2009, PERS SOC PSYCHOL REV, V13, P79, DOI 10.1177/1088868309338467; Backstrom M, 2007, EUR J PSYCHOL ASSESS, V23, P63, DOI 10.1027/1015-5759.23.2.63; Backstrom M, 2009, J RES PERS, V43, P335, DOI 10.1016/j.jrp.2008.12.013; Bandura A., 1997, SELF EFFICACY EXERCI; Baron H, 1996, J OCCUP ORGAN PSYCH, V69, P49, DOI 10.1111/j.2044-8325.1996.tb00599.x; Bartram D, 1996, J OCCUP ORGAN PSYCH, V69, P25, DOI 10.1111/j.2044-8325.1996.tb00597.x; Bartram D., 2006, OPQ32 TECHNICAL MANU; Bartram D, 2007, INT J SELECT ASSESS, V15, P263, DOI 10.1111/j.1468-2389.2007.00386.x; Biesanz JC, 2004, J PERS, V72, P845, DOI 10.1111/j.0022-3506.2004.00282.x; Bollen KA, 2011, PSYCHOL METHODS, V16, P265, DOI 10.1037/a0024448; Booth T. W., 2011, THESIS U MANCHESTER; Brown A., 2008, EXPLORING USE IPSATI; Brown A., 2009, DEV PSYCHOMETRIC PRO; Brown A, 2011, EDUC PSYCHOL MEAS, V71, P460, DOI 10.1177/0013164410375112; Caselles A, 2011, SPAN J PSYCHOL, V14, P675, DOI 10.5209/rev_SJOP.2011.v14.n2.16; CHAN W, 1993, SOCIOL METHOD RES, V22, P214, DOI 10.1177/0049124193022002003; Chang LY, 2012, J PERS SOC PSYCHOL, V102, P408, DOI 10.1037/a0025559; Cheung MWL, 2004, STRUCT EQU MODELING, V11, P217, DOI 10.1207/s15328007sem1102_5; Cheung MWL, 2002, STRUCT EQU MODELING, V9, P55, DOI 10.1207/S15328007SEM0901_4; Christiansen ND, 2005, HUM PERFORM, V18, P267, DOI 10.1207/s15327043hup1803_4; Connelly BS, 2010, PSYCHOL BULL, V136, P1092, DOI 10.1037/a0021212; CORNWELL JM, 1994, J OCCUP ORGAN PSYCH, V67, P89, DOI 10.1111/j.2044-8325.1994.tb00553.x; CRNOKRAK P, 1995, HEREDITY, V75, P530, DOI 10.1038/hdy.1995.169; CROWNE DP, 1960, J CONSULT PSYCHOL, V24, P349, DOI 10.1037/h0047358; Danay E, 2011, J RES PERS, V45, P560, DOI 10.1016/j.jrp.2011.07.003; Davenport CB, 1911, HEREDITY RELATION EU; de Vries RE, 2011, J RES PERS, V45, P229, DOI 10.1016/j.jrp.2010.12.002; DeYoung CG, 2006, J PERS SOC PSYCHOL, V91, P1138, DOI 10.1037/0022-3514.91.6.1138; EDWARDS AL, 1963, J CLIN PSYCHOL, V19, P200, DOI 10.1002/1097-4679(196304)19:2<200::AID-JCLP2270190216>3.0.CO;2-6; EDWARDS AL, 1962, J APPL PSYCHOL, V46, P220, DOI 10.1037/h0040280; EDWARDS AL, 1969, EDUC PSYCHOL MEAS, V29, P737, DOI 10.1177/001316446902900401; Eid M, 2003, PSYCHOL METHODS, V8, P38, DOI 10.1037/1082-989X.8.1.38; Eid M, 2008, PSYCHOL METHODS, V13, P230, DOI 10.1037/a0013219; Eysenck HJ, 1975, MANUAL EYSENCK PERSO; FERGUSON E, 1994, PERS INDIV DIFFER, V17, P217, DOI 10.1016/0191-8869(94)90028-0; Fleeson W, 2009, J PERS SOC PSYCHOL, V97, P1097, DOI 10.1037/a0016786; GALTON F, 1887, FORTNIGHTLY REV, V42, P21; Hattie J., 1985, APPL PSYCH MEAS, V9, P49; HEILBRUN AB, 1964, PSYCHOL BULL, V61, P377, DOI 10.1037/h0048620; Heller D, 2007, PERS SOC PSYCHOL B, V33, P898, DOI 10.1177/0146167207301010; HELMES E, 1993, PSYCHOL BULL, V113, P453, DOI 10.1037/0033-2909.113.3.453; Hiller JB, 1999, PSYCHOL ASSESSMENT, V11, P278, DOI 10.1037//1040-3590.11.3.278; Hopwood CJ, 2011, J RES PERS, V45, P468, DOI 10.1016/j.jrp.2011.06.002; Hopwood CJ, 2010, PERS SOC PSYCHOL REV, V14, P332, DOI 10.1177/1088868310361240; Irwing P., 2009, M INT SOC STUD IND D; Irwing P., 2011, INT SOC STUD IND DIF; Irwing P, 2012, INTELLIGENCE, V40, P296, DOI 10.1016/j.intell.2012.03.001; Jackson DN, 2000, HUM PERFORM, V13, P371, DOI 10.1207/S15327043HUP1304_3; Johnson W, 2008, INTELLIGENCE, V36, P81, DOI 10.1016/j.intell.2007.06.001; Joreskog KG, 1993, TESTING STRUCTURAL E, V154, P294; Just C, 2011, PERS INDIV DIFFER, V50, P765, DOI 10.1016/j.paid.2011.01.008; Keith TZ, 2008, INTELLIGENCE, V36, P502, DOI 10.1016/j.intell.2007.11.001; Loehlin JC, 2011, J RES PERS, V45, P504, DOI 10.1016/j.jrp.2011.06.011; Loehlin JC, 2011, J RES PERS, V45, P44, DOI 10.1016/j.jrp.2010.11.008; MacCallum RC, 1999, PSYCHOL METHODS, V4, P84, DOI 10.1037/1082-989X.4.1.84; Major JT, 2011, INTELLIGENCE, V39, P418, DOI 10.1016/j.intell.2011.07.002; Markon KE, 2005, J PERS SOC PSYCHOL, V88, P139, DOI 10.1037/0022-3514.88.1.139; Martin BA, 2002, PERS INDIV DIFFER, V32, P247, DOI 10.1016/S0191-8869(01)00021-6; MATTHEWS G, 1994, PERS INDIV DIFFER, V16, P733, DOI 10.1016/0191-8869(94)90214-3; MATTHEWS G, 1990, PERS INDIV DIFFER, V11, P591, DOI 10.1016/0191-8869(90)90042-P; McCrae RR, 2008, J PERS SOC PSYCHOL, V95, P442, DOI 10.1037/0022-3514.95.2.442; Meade AW, 2004, J OCCUP ORGAN PSYCH, V77, P531, DOI 10.1348/0963179042596504; MISCHEL W, 1995, PSYCHOL REV, V102, P246, DOI 10.1037/0033-295X.102.2.246; Moskowitz DS, 2009, CAN PSYCHOL, V50, P33, DOI 10.1037/a0014425; Mulaik S. A., 2005, CONT PSYCHOMETRICS F, P153; Pace VL, 2010, PERS INDIV DIFFER, V49, P669, DOI 10.1016/j.paid.2010.06.014; Pettersson E., 2011, EUROPEAN J PERSONALI, V26, P292; Revelle W., 2009, IMPORTANT IS GEN FAC; Revelle W, 2009, PSYCHOMETRIKA, V74, P145, DOI 10.1007/s11336-008-9102-z; Riemann R, 2010, EUR J PERSONALITY, V24, P258, DOI 10.1002/per.760; Rushton J. P., 2011, HDB INDIVIDUAL DIFFE, P132; Rushton JP, 2008, J RES PERS, V42, P1173, DOI 10.1016/j.jrp.2008.03.002; Rushton JP, 2009, TWIN RES HUM GENET, V12, P356, DOI 10.1375/twin.12.4.356; Samuel DB, 2010, PERSONAL DISORD, V1, P5, DOI 10.1037/a0018136; SAVILLE P, 1991, J OCCUP PSYCHOL, V64, P219, DOI 10.1111/j.2044-8325.1991.tb00556.x; Tomarken AJ, 2003, J ABNORM PSYCHOL, V112, P578, DOI 10.1037/0021-843X.112.4.578; Vassend O, 2011, PERS INDIV DIFFER, V50, P1300, DOI 10.1016/j.paid.2011.03.002; Veselka L, 2012, PERS INDIV DIFFER, V52, P261, DOI 10.1016/j.paid.2011.10.007; Veselka L, 2009, TWIN RES HUM GENET, V12, P420, DOI 10.1375/twin.12.5.420; Veselka L, 2009, TWIN RES HUM GENET, V12, P254, DOI 10.1375/twin.12.3.254; Vinkhuyzen AAE, 2012, BEHAV GENET, V42, P187, DOI 10.1007/s10519-011-9507-9; WIDAMAN KF, 1985, APPL PSYCH MEAS, V9, P1, DOI 10.1177/014662168500900101; WIDAMAN KF, 1993, MULTIVAR BEHAV RES, V28, P263, DOI 10.1207/s15327906mbr2803_1; Wood D, 2006, J PERS, V74, P779, DOI 10.1111/j.1467-6494.2006.00392.x; Zawadzki B, 2010, PERS INDIV DIFFER, V49, P77, DOI 10.1016/j.paid.2010.03.025 86 14 15 2 21 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. JUL 2013 55 3 SI 234 242 10.1016/j.paid.2013.03.002 9 Psychology, Social Psychology 163PY WOS:000320350600008 2018-11-12 J Templer, DI Templer, Donald I. Rushton: The great theoretician and his contribution to personality PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Rushton; Theory; Evolution; Personality; Intelligence GENERAL FACTOR; SKIN COLOR; BIG 5; HISTORY; RECIDIVISM; INVENTORY; CHARACTER; EPILEPSY; VALIDITY; GFP J. Philippe Rushton has been described as one of the greatest theorists in the field of personality and individual differences and social psychology. His life history theory (Differential K Theory) was said to bring unification to the scientific study of racial differences as Einstein's theory of relativity unified the field of physics. It was maintained that Rushton's General Factor of Personality (GFP) meshes with both general intelligence and his Differential K Theory. The present author presented a two-pillar theory of adaptive functioning that has a heavy concentration on Rushton conceptualization. (C) 2012 Published by Elsevier Ltd. [Templer, Donald I.] Alliant Int Univ, Fresno, CA 93727 USA donaldtempler@sbcglobal.net Bassarath L, 2001, CAN J PSYCHIAT, V46, P609, DOI 10.1177/070674370104600704; BIASUTTI R, 1967, RAZZE POPOLI TERRA; Clark G, 2007, PRINC ECON HIST W WO, P1; Cochran G, 2006, J BIOSOC SCI, V38, P659, DOI 10.1017/S0021932005027069; Entine J, 2000, TABOO WHY BLACK ATHL; Erdle S, 2010, PERS INDIV DIFFER, V48, P343, DOI 10.1016/j.paid.2009.09.004; EYSENCK HJ, 1957, DYNAMICS ANXIETY HYS; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2009, TWIN RES HUM GENET, V12, P555, DOI 10.1375/twin.12.6.555; FOSS G, 1981, MENT RETARD, V19, P103; GATH A, 1986, BRIT J PSYCHIAT, V149, P156, DOI 10.1192/bjp.149.2.156; GIBBS L, 1977, INT J ADDICT, V12, P1097, DOI 10.3109/10826087709027273; Gough H. G., 1987, CALIFORNIA PSYCHOLOG; Hawks J, 2007, P NATL ACAD SCI USA, V104, P20753, DOI 10.1073/pnas.0707650104; HERMANN BP, 1984, PSYCHOL BULL, V95, P451, DOI 10.1037//0033-2909.95.3.451; Herrnstein RJ, 1994, BELL CURVE INTELLIGE; JENSEN AR, 1998, G FACTOR; KNAPP JE, 1991, ADOLESCENCE, V26, P305; Lynn R, 2002, IQ WEALTH NATIONS; Lynn R., 2011, CHOSEN PEOPLE STUDY; MAC ARTHUR ROBERT H., 1967; Maskin M. B., 1974, J CLIN PSYCHOL, V30, P210; MATTHEWS WS, 1981, PSYCHOSOMATICS, V22, P515; Meisenberg G, 2004, MANKIND QUART, V45, P123; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Rice ME, 2008, SEX ABUSE-J RES TR, V20, P409, DOI 10.1177/1079063208324662; Rushton J. P., 1995, RACE EVOLUTION BEHAV; Rushton JP, 2008, PERS INDIV DIFFER, V45, P679, DOI 10.1016/j.paid.2008.07.015; Rushton JP, 2009, J RES PERS, V43, P1091, DOI 10.1016/j.jrp.2009.06.002; Rushton JP, 2009, PERS INDIV DIFFER, V47, P571, DOI 10.1016/j.paid.2009.05.011; Rushton JP, 2009, PERS INDIV DIFFER, V47, P558, DOI 10.1016/j.paid.2009.05.009; RUSHTON JP, 1983, PSYCHOL BULL, V94, P18, DOI 10.1037//0033-2909.94.1.18; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Rushton JP, 2011, WILEY BLACKWELL HDB; SPEARMAN C, 1927, ABILITIES MAN; STEVENS JR, 1972, ARCH GEN PSYCHIAT, V26, P532; Templer D. I., 2004, OCCIDENTAL Q, V4, P7; Templer DI, 2006, INTELLIGENCE, V34, P121, DOI 10.1016/j.intell.2005.04.002; Templer DI, 2003, PERS INDIV DIFFER, V35, P237, DOI 10.1016/S0191-8869(02)00215-5; Templer DI, 2008, PERS INDIV DIFFER, V45, P440, DOI 10.1016/j.paid.2008.05.010; Templer DI, 2010, MANKIND QUART, V51, P3; Templer DI, 2010, PERS INDIV DIFFER, V48, P102, DOI 10.1016/j.paid.2009.08.011; van der Linden D, 2011, INT J SELECT ASSESS, V19, P157, DOI 10.1111/j.1468-2389.2011.00543.x; van der Linden D, 2010, J RES PERS, V44, P669, DOI 10.1016/j.jrp.2010.08.007; van der Linden D, 2010, J RES PERS, V44, P315, DOI 10.1016/j.jrp.2010.03.003; Willis GM, 2008, SEX ABUSE-J RES TR, V20, P218, DOI 10.1177/1079063208318005; WRAGG RE, 1989, AM J PSYCHIAT, V146, P577 47 0 0 0 3 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. JUL 2013 55 3 SI 243 246 10.1016/j.paid.2012.04.038 4 Psychology, Social Psychology 163PY WOS:000320350600009 2018-11-12 J Lynn, R Lynn, Richard Rushton's r-K life history theory of race differences in penis length and circumference examined in 113 populations PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Race; Penis length; r-K Life theory; Intelligence TESTOSTERONE; INTELLIGENCE; METAANALYSIS; TEMPERATURE; EVOLUTION Rushton's (1985, 2000) r-K life history theory that Mongoloids are the most K evolved, Caucasoids somewhat less K evolved, and Negroids the least K evolved is examined and extended in an analysis of data for erect penis length and circumference in two new data sets. These new data extend Rushton's theory by presenting disaggregated data for penis size for European and North African/South Asian Caucasoids; for East Asian and Southeast Asian Mongoloids; for Inuit and Amerindians and Mestizos, and for thirteen mixed race samples. The results generally confirm and extend Rushton's r-K life history theory. (C) 2012 Elsevier Ltd. All rights reserved. Univ Ulster, Coleraine BT52 1SA, Londonderry, North Ireland Lynn, R (reprint author), Univ Ulster, Coleraine BT52 1SA, Londonderry, North Ireland. lynnr540@aol.com A French Army Surgeon, 1898, UNTRODDEN FIELDS ANT; Baker J. R., 1974, RACE; Bernatzik H. A., 1929, ZWISCHEN WEISSEM NIL; Book AS, 2001, AGGRESS VIOLENT BEH, V6, P579, DOI 10.1016/S1359-1789(00)00032-X; Brooks JH, 1996, J CLIN PSYCHOL, V52, P475, DOI 10.1002/(SICI)1097-4679(199607)52:4<475::AID-JCLP14>3.0.CO;2-D; Burton Richard F., 1885, BOOK 1000 NIGHTS NIG; Cavalli-Scorza LL, 1994, HIST GEOGRAPHY HUMAN; DABBS JM, 2000, HEROES ROGUES LOVERS; FISCHER R, 1964, Proc K Ned Akad Wet C, V67, P103; Gallup GG, 2003, EVOL HUM BEHAV, V24, P277, DOI 10.1016/S1090-5138(03)00016-3; Goldenberg DM, 2003, CURSE OF HAM: RACE AND SLAVERY IN EARLY JUDAISM, CHRISTIANITY, AND ISLAM, P1; Kanazawa S, 2008, INTELLIGENCE, V36, P99, DOI 10.1016/j.intell.2007.04.001; LEWIS B, 1990, RACE SLAVERY MIDDLE; LYNN R, 1991, MANKIND QUART, V32, P99; LYNN R, 1990, PSYCHOL REP, V67, P1203; Lynn R., 2006, RACE DIFFERENCES INT; Madrigal L, 2006, CAM S BIO EVOL ANTHR, V45, P1, DOI 10.2277/ 0521819318; MILLER EM, 1994, PERS INDIV DIFFER, V17, P227, DOI 10.1016/0191-8869(94)90029-9; Philips, 1996, WORLD ATLAS; Popper K. R., 1959, LOGIC SCI DISCOVERY; Roth PL, 2001, PERS PSYCHOL, V54, P297, DOI 10.1111/j.1744-6570.2001.tb00094.x; Rushton J., 2000, RACE EVOLUTION BEHAV; RUSHTON JP, 1987, J RES PERS, V21, P529, DOI 10.1016/0092-6566(87)90038-9; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Siminoski K., 1988, ANN SEX RES, V6, P231; Stringer G., 2011, ORIGIN OUR SPECIES; Templer D. I., 2002, IS SIZE IMPORTANT; Templer DI, 2006, INTELLIGENCE, V34, P121, DOI 10.1016/j.intell.2005.04.002; THOMPSON LA, 1989, ROMANS BLACKS; Widodsky H. S., 1940, ENDINOCRINOLOGY, V26, P1078; Wilson E.O., 1975, P1 31 3 4 4 49 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. JUL 2013 55 3 SI 261 266 10.1016/j.paid.2012.02.016 6 Psychology, Social Psychology 163PY WOS:000320350600013 2018-11-12 J Mauricio, GN; Bencke, GA; Repenning, M; Machado, DB; Dias, RA; Bugoni, L Mauricio, Giovanni N.; Bencke, Glayson Ariel; Repenning, Marcio; Machado, Diogenes Borges; Dias, Rafael A.; Bugoni, Leandro Review of the breeding status of birds in Rio Grande do Sul, Brazil IHERINGIA SERIE ZOOLOGIA English Review Nest; egg; nestling; breeding biology; breeding records SWIFT CYPSELOIDES-FUMIGATUS; HERON NYCTANASSA-VIOLACEA; PATOS LAGOON ESTUARY; SOUTHERN BRAZIL; NEST PLACEMENT; HOUSE WREN; BIOLOGY; AVES; FURNARIIDAE; CONSERVATION Information on the breeding biology of birds is essential for improving avian life-history theory and implementing sound management and conservation actions for these organisms. Comprehensive reviews of this kind of information are lacking for most Neotropical regions, including Rio Grande do Sul, the southernmost Brazilian state. Aiming to update the knowledge on the reproductive status of birds in Rio Grande do Sul, we reviewed breeding records of all potential breeding species recorded in the state using a set of predefined, restrictive criteria for accepting breeding evidences as effective. Data satisfying our criteria were available for 165 species in the literature. We also collected novel breeding information obtained in the state for an additional 126 species, including observations for several species whose reproductive biology is poorly known. Among these are birds previously unknown to breed in Brazil. This new data and the critical review of the previous information resulted in a total of 291 species for which breeding evidences are accepted as effective. This corresponds to 54.7% of the 532 species considered either confirmed or potential breeders in the state. In addition to providing information on nesting dates, clutch size, nest architecture and breeding behavior of south Brazilian birds, our review serves as a benchmark for the adequate assessment of avian breeding records elsewhere. We hope to stimulate observers to rigorously document breeding events, especially for taxa for which basic information is lacking. [Mauricio, Giovanni N.; Bugoni, Leandro] Univ Fed Rio Grande FURG, Inst Ciencias Biol, Lab Aves Aquat, BR-96203900 Rio Grande, RS, Brazil; [Bencke, Glayson Ariel] Fdn Zoobot Rio Grande Sul, Museu Ciencias Nat, BR-90690000 Porto Alegre, RS, Brazil; [Repenning, Marcio] Pontificia Univ Catolica Rio Grande do Sul, Museu Ciencias & Tecnol, Programa Posgrad Zool, BR-90619900 Porto Alegre, RS, Brazil; [Repenning, Marcio] Pontificia Univ Catolica Rio Grande do Sul, Museu Ciencias & Tecnol, Lab Ornitol, BR-90619900 Porto Alegre, RS, Brazil; [Machado, Diogenes Borges] Univ Fed Rio Grande do Sul, Inst Biociencias, Programa Posgrad Ecol, BR-91501970 Porto Alegre, RS, Brazil; [Dias, Rafael A.] Univ Fed Pelotas, Inst Biol, Dept Ecol Zool & Genet, BR-96010900 Pelotas, RS, Brazil Mauricio, GN (reprint author), Univ Fed Pelotas UFEPel, Ctr Integra Mercosul, Rua Andrade Neves 1529, BR-96020080 Pelotas, RS, Brazil. gnachtigallmauricio@yahoo.com.br; gabencke@fzb.rs.gov.br; mrepenning@gmail.com; diornito@gmail.com; rafael.dias@ufpel.edu.br; lbugoni@yahoo.com.br Dias, Rafael/E-7680-2010 Dias, Rafael/0000-0001-7203-2093 Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES); Universidade Federal do Rio Grande (FURG); CNPq [Proc. 308697/2012-0] We are most grateful to I. A. Accordi, C. B. Andretti, H. Assis, C. N. Barreto, V. A. G. Bastazini, A. Becker, C. Beier, A. Bomm, E. S. Borsato, R. Both, M. D. M. Burns, C. P. Calabuig, A. C. Canary, F. R. Cunha, P. Develey, M. A. Efe, E. Endrigo, F. A. Faria, C. S. Fontana, I. Franz, C. M. da Gloria, A. C. F. Gomes-Jr., M. S. S. Goncalves, H. Grillo, C. M. Joenck, A. Kindel, C. N. Kuhn, J. K. Mahler Jr., C. Mansan, R. Marques, D. Meller, A. de Mendonca-Lima, A. Osorio, M. Pairet, M. da S. Pereira, A. S. Peter, A. Quadros, U. B. Rasquin, S. Ribeiro, J. Rosoni, C. E. Rovedder, J. Sanabria, S. B. Scherer, J. M. Schlee Jr., C. A. Schwertner, J. Vizentin-Bugoni and F. Zilio for sharing unpublished information of several species. R. S. Ferrer and J. M. Schlee Jr. helped with plant species identification. GNM is supported by a post-doctoral grant from Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) and Universidade Federal do Rio Grande (FURG). LB is research fellow from CNPq (Proc. 308697/2012-0) GAB thanks the administration of the Estacao Ambiental Braskem, in the Polo Petroquimico de Triunfo, for permission to publish information gathered during the monitoring program of the area. Cyro M. da Gloria provided the identification of lichens used in one nest. Azpiroz AB, 2001, AVES URUGUAY LISTA I; BARLOW JC, 1967, AUK, V84, P421, DOI 10.2307/4083091; Barquete Viviane, 2008, Hornero, V23, P15; BELTON W, 1984, B AM MUS NAT HIST, V178, P369; BELTON W, 1985, Bulletin of the American Museum of Natural History, V180, P1; Belton W., 1994, AVES RIO GRANDE SUL; BENCKE G. A., 2001, ORNITOL NEOTROP, V12, P1; BENCKE GA, 1996, ACTA BIOL LEOPOLD, V18, P17; Bencke GA, 2003, LIVRO VERMELHO FAUNA, P189; Bencke GA, 2010, IHERINGIA SER ZOOL, V100, P519, DOI 10.1590/S0073-47212010000400022; Bencke GA, 2010, IHERINGIA SER ZOOL, V100, P391, DOI 10.1590/S0073-47212010000400014; Bencke Glayson Ariel, 1998, Cotinga, V10, P71; Bencke Glayson Ariel, 1995, Bulletin of the British Ornithologists' Club, V115, P105; Biancalana RN, 2012, REV BRAS ORNITOL, V20, P87; BINFORD LC, 1973, WILSON BULL, V85, P244; Camilotti VL, 2008, REV BRAS ORNITOL, V16, P363; Chantler P, 2000, SWIFTS GUIDE SWIFTS; COLLINS CHARLES T., 1963, CONDOR, V65, P324, DOI 10.2307/1365359; Cristofoli Simone Ines, 2008, Biodiversidade Pampeana, V6, P30; De La Pena M, 1987, NIDOS HUEVOS AVES AR; DE LA PENA M. R., 2005, LOLA MONOGRAFIA, V20; DIAS R. A., 2002, CENSO NEOTROPICAL CI, P1; Dias Rafael A., 2005, ARARAJUBA, V13, P63; Dias RA, 2009, IHERINGIA SER ZOOL, V99, P449, DOI 10.1590/S0073-47212009000400017; Efe Marcio Amorim, 2001, International Journal of Ornithology, V4, P103; ENDRIGO E., 2010, AVES PAMPA; EULER C., 1900, REV MUS PAULISTA, V4, P9; Fontana C. S., 2009, BIODIVERSIDADE PLANA, P159; FONTANA C. S., 1998, COTINGA, V8, P79; Fontana Carla Suertegaray, 2000, Ornitologia Neotropical, V11, P169; Franz I, 2013, REV BRAS ORNITOL, V21, P101; Gianuca D, 2012, IHERINGIA SER ZOOL, V102, P19, DOI 10.1590/S0073-47212012000100003; Gianuca Dimas, 2011, Cotinga, V33, P63; Gianuca D, 2007, REV BRAS ORNITOL, V15, P464; GUSSONI C. O. A., 2009, ATUALIDADES ORNITOLO, V148, P12; Hagemeijer W, 1997, EBBC ATLAS EUROPEAN; Hartert E., 1909, Novitates Zoologicae, V16; Hilty SL, 1986, GUIDE BIRDS COLOMBIA; Hoffmann D, 2007, REV BRAS ORNITOL, V15, P453; Ippi S, 2012, WILSON J ORNITHOL, V124, P531, DOI 10.1676/11-143.1; JOENCK C. M., HORNERO IN PRESS, V26; Krugel MM, 2003, ARARAJUBA, V11, P83; Lomascolo SB, 2010, WILSON J ORNITHOL, V122, P674, DOI 10.1676/09-167.1; Machado E, 2011, ZOOTAXA, P49; Mahler J.K., 1996, ACTA BIOL LEOPOLDENS, V18, P69; Marin A. M., 1992, Proceedings of the Western Foundation of Vertebrate Zoology, V4, P286; Marreis Iris Trois, 2009, Biodiversidade Pampeana, V7, P47; MARSICO M., 2008, P ROYAL SOC BIOL SCI, V275, P2499; MAURICIO G. N., WILSON J OR IN PRESS; Mauricio Giovanni N., 1998, Bulletin of the British Ornithologists' Club, V118, P14; Mauricio Giovanni N., 1996, Ararajuba, V4, P47; Moreno J, 2005, CONDOR, V107, P69, DOI 10.1650/7602; Naranjo Luis G., 1991, Ornitologia Neotropical, V2, P47; Narosky T., 1998, NIDIFICACION AVES AR; OLIVEIRA R. G., 1980, REV BRAS BIOL, V40, P599; OLIVEIRA R. G., 1984, AN SOC SUL RIOGRAND, V5, P15; OLIVEIRA S. L., 2011, CHECK LIST, V7, P473; Pearman M, 2010, ORNITOL NEOTROP, V21, P351; Remsen Jr. J. V., 2012, CLASSIFICATION BIRD; Repenning M, 2010, REV BRAS ORNITOL, V18, P283; Rovedder CE, 2012, WILSON J ORNITHOL, V124, P173, DOI 10.1676/10-182.1; Sick H., 1997, ORNITOLOGIA BRASILEI; Silva Flavio, 1995, Revista de Ecologia LatinoAmericana, V2, P19; SIMON J. E., 2005, REV BRAS ORNITOL, V13, P143; SNYDER NFR, 1987, PARROTS LUQUILLO NAT; STARCK JM, 1998, AVIAN GROWTH DEV EVO, P3; Taylor P. B., 1996, HDB BIRDS WORLD, V3, P108; Tomazzoni AC, 2004, ORNITOL NEOTROP, V15, P279; Trejo Ana, 2007, Hornero, V22, P85; Tuero DT, 2007, IBIS, V149, P521, DOI 10.1111/j.1474-919X.2007.00676.x; Vasconcelos M. F., 2006, COTINGA, V25, P74; Vizentin-Bugoni J, 2013, BIRD CONSERV INT, V23, P147, DOI 10.1017/S0959270913000221; WELLER M W, 1968, Living Bird, V7, P169; WELLER MW, 1967, CONDOR, V69, P133, DOI 10.2307/1366603; Woods R., 1997, ATLAS BREEDING BIRDS 75 8 9 0 14 FUNDACAO ZOOBOTANICA RIO GRANDE SUL, MUSEU CIENCIAS NATURAIS PORTO ALEGRE CAIXA POSTAL 1188, PORTO ALEGRE, RS 00000, BRAZIL 0073-4721 1678-4766 IHERINGIA SER ZOOL Iheringia Ser. Zool. JUN 30 2013 103 2 163 184 10.1590/S0073-47212013000200012 22 Zoology Zoology 200MZ WOS:000323074500012 DOAJ Gold 2018-11-12 J Garnier, R; Boulinier, T; Gandon, S Garnier, Romain; Boulinier, Thierry; Gandon, Sylvain Evolution of the temporal persistence of immune protection BIOLOGY LETTERS English Article host - parasite interactions; life-history theory; immune system; maternal antibodies MATERNAL TRANSFER; LIFE; RESISTANCE; LONGEVITY; RECEPTOR The evolution of resistance to parasites has been the focus of numerous theoretical studies and several mechanisms, ranging from innate to acquired immune responses, have been considered. Life-history theory predicts that long-lived species should invest more resources into maintenance and immunity than short-lived species. Here, we provide further theoretical and empirical support for this hypothesis. First, an analysis of the evolution of the persistence of immune protection in a theoretical framework accounting for maternal transfer of immunity reveals that longer-lived hosts are expected to invest in more persistent intragenerational and transgenerational immune responses. Controlling for phylogenetic structure and for the confounding effect of catabolic activity, we further showed that immunoglobulin half-life and longevity are positively correlated in mammal species. Our study confirms that persistence of immunity has evolved as part of elaborate anti-parasitic defence strategies. [Garnier, Romain; Boulinier, Thierry; Gandon, Sylvain] CNRS, Ctr Ecol Fonct & Evolut, UMR 5175, F-34033 Montpellier, France; [Garnier, Romain] Princeton Univ, Dept Ecol & Evolut Biol, Princeton, NJ 08544 USA Garnier, R (reprint author), CNRS, Ctr Ecol Fonct & Evolut, UMR 5175, F-34033 Montpellier, France. romaing@princeton.edu Centre National de la Recherche Scientifique (CNRS); Agence Nationale de la Recherche (ANR) grant [11 BSV7 003]; European Research Council (ERC) [243054] The authors acknowledge financial support from the Centre National de la Recherche Scientifique (CNRS). T.B. acknowledges support from the Agence Nationale de la Recherche (ANR) grant no. 11 BSV7 003 'EVEMATA', and S.G. from European Research Council (ERC) starting grant no. 243054 'EVOLEPID'. Amanna IJ, 2007, NEW ENGL J MED, V357, P1903, DOI 10.1056/NEJMoa066092; Boots M, 2004, P ROY SOC B-BIOL SCI, V271, P715, DOI 10.1098/rspb.2003.2655; Boots M, 2009, PHILOS T R SOC B, V364, P27, DOI 10.1098/rstb.2008.0160; Boulinier T, 2008, TRENDS ECOL EVOL, V23, P282, DOI 10.1016/j.tree.2007.12.006; de Magalhaes JP, 2009, J EVOLUTION BIOL, V22, P1770, DOI 10.1111/j.1420-9101.2009.01783.x; Garnier R, 2012, P ROY SOC B-BIOL SCI, V279, P2033, DOI 10.1098/rspb.2011.2277; Garnier R, 2012, EVOLUTION, V66, P3067, DOI 10.1111/j.1558-5646.2012.01665.x; Ghetie V, 2000, ANNU REV IMMUNOL, V18, P739, DOI 10.1146/annurev.immunol.18.1.739; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Miller MR, 2007, EVOLUTION, V61, P2, DOI 10.1111/j.1558-5646.2007.00001.x; PARADIS E, 2006, ANAL PHYLOGENETICS E; Previtali MA, 2012, OIKOS, V121, P1483, DOI 10.1111/j.1600-0706.2012.020215.x; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; West AP, 2004, IMMUNITY, V20, P601, DOI 10.1016/S1074-7613(04)00113-X 15 6 6 0 22 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 BIOL LETTERS Biol. Lett. JUN 23 2013 9 3 20130017 10.1098/rsbl.2013.0017 4 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 141YK WOS:000318762300016 23485875 Green Published, Bronze 2018-11-12 J Vincenzi, S; Hatch, S; Mangel, M; Kitaysky, A Vincenzi, Simone; Hatch, Scott; Mangel, Marc; Kitaysky, Alexander Food availability affects onset of reproduction in a long-lived seabird PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article recruitment; social rank; developmental stress; productivity; predictive adaptive response BLACK-LEGGED KITTIWAKES; BREEDING HABITAT SELECTION; RISSA-TRIDACTYLA; PHENOTYPIC DEVELOPMENT; POPULATION-DYNAMICS; SURVIVAL; SUCCESS; CHICKS; AGE; RESPONSES Life-history theory predicts that suboptimal developmental conditions may lead to faster life histories (younger age at recruitment and higher reproductive investment), but experimental testing of this prediction is still scarce in long-lived species. We report the effects of an experimental manipulation of food availability during early development and at recruitment on the onset of reproduction and reproductive performance (productivity at first breeding) in a long-lived seabird, the black-legged kittiwake Rissa tridactyla, breeding on Middleton Island, Alaska. Birds were born and raised in nests with supplemented food ('fed') or unsupplemented control nests ('unfed'), and later recruited into either fed or unfed nests. Fed chicks grew faster than unfed chicks, and males grew faster than females. Birds were more likely to reproduce at younger ages when recruiting into fed nests. Faster growth during development tended to increase age at recruitment in all individuals. Social rank of individuals also affected age at recruitment: B-chicks recruited earlier than A-chicks and singletons recruited later than A-and B-chicks. Productivity increased with the age at recruitment and growth rate as chick, but much of the variability remained unexplained. We conclude that results of this study at least partially support predictions of life-history theory: younger age at first breeding for kittiwakes that experienced suboptimal natal conditions, as well as greater productivity of early recruiting kittiwakes that grew in control nests compared with those that grew in food-supplemented nests. [Vincenzi, Simone; Mangel, Marc] Univ Calif Santa Cruz, Ctr Stock Assessment Res, Santa Cruz, CA 95064 USA; [Vincenzi, Simone] MRAG Amer, Capitola, CA 95010 USA; [Hatch, Scott] US Geol Survey, Alaska Sci Ctr, Anchorage, AK 99508 USA; [Mangel, Marc] Univ Bergen, Dept Biol, N-5020 Bergen, Norway; [Kitaysky, Alexander] Univ Alaska Fairbanks, Dept Biol & Wildlife, Inst Art Biol, Fairbanks, AK 99775 USA Vincenzi, S (reprint author), Univ Calif Santa Cruz, Ctr Stock Assessment Res, Santa Cruz, CA 95064 USA. simon.vincenz@gmail.com North Pacific Research Board [320, B74, B67, B77] This work was supported by the North Pacific Research Board (project no. 320, BEST-BSIERP Projects B74, B67 and B77). Many volunteer and student fieldworkers assisted in the field. We thank in particular the several camp leaders who supervised Middleton Island fieldwork in 2 or more years: V. A. Gill, C. Sterne, N. A. Bargmann, A. M. Ramey, J. Kotzerka, T. van Nus and L. Agdere. We thank Will Satterthwaite, Morgan Benowitz-Fredericks and two anonymous reviewers for comments that helped improve the manuscript. Any use of trade names is only for descriptive purposes and does not imply endorsement by the US Government. AKAIKE H, 1974, IEEE T AUTOMAT CONTR, VAC19, P716, DOI 10.1109/TAC.1974.1100705; Aubry LM, 2011, J ANIM ECOL, V80, P375, DOI 10.1111/j.1365-2656.2010.01784.x; Aubry LM, 2009, ENVIRON ECOL STAT SE, V3, P365, DOI 10.1007/978-0-387-78151-8_16; Becker PH, 2007, J ORNITHOL, V148, P377, DOI DOI 10.1007/S10336-007-0157-X; Becker PH, 1999, P 22 INT ORN C DURB; Boulinier T, 1997, EVOL ECOL, V11, P505, DOI 10.1007/s10682-997-1507-0; Brakefield PM, 2005, MECH AGEING DEV, V126, P431, DOI 10.1016/j.mad.2004.07.013; Brewer JH, 2008, GEN COMP ENDOCR, V156, P361, DOI 10.1016/j.ygcen.2008.01.010; Burnham K. P., 2002, MODEL SELECTION MULT; Callum TS, 1990, REPROD SUCCESS STUDI, P548; Cam E, 2003, J ANIM ECOL, V72, P411, DOI 10.1046/j.1365-2656.2003.00708.x; Cam E, 2011, J ORNITHOL, V152, P187, DOI 10.1007/s10336-011-0707-0; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Coulson JC., 2011, KITTIWAKE; COX DR, 1972, J R STAT SOC B, V34, P187; Criscuolo F, 2008, P ROY SOC B-BIOL SCI, V275, P1565, DOI 10.1098/rspb.2008.0148; Danchin E, 1998, ECOLOGY, V79, P2415, DOI 10.1890/0012-9658(1998)079[2415:CRSABH]2.0.CO;2; Desprez M, 2011, P ROY SOC B-BIOL SCI, V278, P3060, DOI 10.1098/rspb.2011.0189; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Gill VA, 2002, IBIS, V144, P268, DOI 10.1046/j.1474-919X.2002.00043.x; Gill VA, 2002, J AVIAN BIOL, V33, P113, DOI 10.1034/j.1600-048X.2002.330201.x; Gluckman PD, 2005, TRENDS ECOL EVOL, V20, P527, DOI 10.1016/j.tree.2005.08.001; HATCH SA, 1993, IBIS, V135, P247, DOI 10.1111/j.1474-919X.1993.tb02841.x; Hatch SA, 1993, CANADIAN WILDLIFE SE, P140; Helfenstein F, 2004, WATERBIRDS, V27, P350, DOI 10.1675/1524-4695(2004)027[0350:AMASSD]2.0.CO;2; Jodice Patrick G. R., 2008, Marine Ornithology, V36, P107; KIESTER AR, 1979, BEHAV ECOL SOCIOBIOL, V5, P323, DOI 10.1007/BF00292522; Kitaysky AS, 2010, FUNCT ECOL, V24, P625, DOI 10.1111/j.1365-2435.2009.01679.x; Kitaysky AS, 2006, P ROY SOC B-BIOL SCI, V273, P445, DOI 10.1098/rspb.2005.3351; Kitaysky AS, 2003, HORM BEHAV, V43, P140, DOI 10.1016/S0018-506X(02)00030-2; Kitaysky AS, 2000, MAR ECOL PROG SER, V206, P283, DOI 10.3354/meps206283; Lack D., 1968, ECOLOGICAL ADAPTATIO; Langley-Evans SC, 2006, P NUTR SOC, V65, P97, DOI 10.1079/PNS2005478; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; MARCHETTI K, 1989, BIOL REV, V64, P51, DOI 10.1111/j.1469-185X.1989.tb00638.x; MAUNDER JE, 1972, AUK, V89, P789; McMillen C, 2005, PHYSIOL REV, V85, P571, DOI DOI 10.1152/PHYSREV.00053.2003; Merkling T, 2012, BEHAV ECOL, V23, P751, DOI 10.1093/beheco/ars023; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Monaghan P, 2008, PHILOS T R SOC B, V363, P1635, DOI 10.1098/rstb.2007.0011; Moreno J, 2003, SCI MAR, V67, P7, DOI 10.3989/scimar.2003.67s27; Nevoux M, 2010, OECOLOGIA, V162, P383, DOI 10.1007/s00442-009-1482-y; NEWTON I, 1989, LIFETIME REPROD BIRD; Olsson O, 1997, POLAR BIOL, V18, P161, DOI 10.1007/s003000050172; Parejo D, 2006, IBIS, V148, P146, DOI 10.1111/j.1474-919X.2006.00494.x; Piatt J. F., 2002, RESPONSE SEABIRDS FL; R Development Core Team, 2011, LANG ENV STAT COMP; Rickard IJ, 2007, TRENDS ENDOCRIN MET, V18, P94, DOI 10.1016/j.tem.2007.02.004; Roff D. A., 2002, LIFE HIST EVOLUTION; Saether BE, 1997, TRENDS ECOL EVOL, V12, P143, DOI 10.1016/S0169-5347(96)10068-9; Sandvik H, 2008, AUK, V125, P723, DOI 10.1525/auk.2008.07059; Shields W.M., 1988, P189; STAMPS JA, 1988, AM NAT, V131, P329, DOI 10.1086/284793; Starck J.M., 1998, AVIAN GROWTH DEV; Stearns S. C., 1992, EVOLUTION LIFE HIST; Steiner UK, 2010, J ANIM ECOL, V79, P436, DOI 10.1111/j.1365-2656.2009.01653.x; Switzer PV, 1997, BEHAV ECOL SOCIOBIOL, V40, P307, DOI 10.1007/s002650050346; Thompson PM, 2001, NATURE, V413, P417, DOI 10.1038/35096558; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Wingfield JC, 2002, INTEGR COMP BIOL, V42, P600, DOI 10.1093/icb/42.3.600; Wooller RD, 1977, IBIS, V125, P567 61 12 12 0 64 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. JUN 7 2013 280 1760 20130554 10.1098/rspb.2013.0554 9 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 131VH WOS:000318024600015 23576791 Green Published, Bronze 2018-11-12 J Vitt, LJ Vitt, Laurie J. WALKING THE NATURAL-HISTORY TRAIL HERPETOLOGICA English Article Foraging mode; Life history; Lizard; Placentation; Reptile; Squamate ecology BROAD-HEADED SKINK; LIZARD EUMECES-LATICEPS; RELATIVE CLUTCH MASS; REPRODUCTIVE EFFORT; SQUAMATE REPTILES; SCINCID LIZARD; GENUS EUMECES; ODOR DISCRIMINATION; CONSPECIFIC ODORS; SEXUAL-DIMORPHISM Natural-history studies represent the observational stage of the scientific method, and the single greatest discovery in biological sciences, evolution by natural selection, was based largely on a vast amount of natural-history information collected by Charles Darwin. I briefly review natural-history observations that I have made during my career that led to discoveries in life-history theory, placentation in New World Mabuya that rivals that of eutherian mammals, social behavior in the North American clade of five-lined skinks, and the relationship of ecological traits of lizards globally to their evolutionary history (phylogeny). Gifted collaborators provided the intellectual interplay that led to these discoveries, and they certainly deserve as much credit as I do. I briefly comment on what I consider to be frontiers in herpetology that involve combining phylogenetic hypotheses with natural-history data. In a final comment, I encourage those among us who are able to spend extended time periods in the field to collect as much natural-history data as possible, because these data describe reality, and, as theories and phylogenies evolve, the kinds of basic data that led to Darwin's theory of evolution by natural selection can be applied again and again. [Vitt, Laurie J.] Univ Oklahoma, Sam Noble Museum, Norman, OK 73072 USA; [Vitt, Laurie J.] Univ Oklahoma, Dept Biol, Norman, OK 73072 USA Vitt, LJ (reprint author), 4554 S Claire Pumpkin Pt, Inverness, FL 34450 USA. vitt@ou.edu National Science Foundation; Savannah River Ecology Laboratory; Brazilian government; Sam Noble Museum; Research Council of the University of Oklahoma; George Lynn Cross Research Professorship I first thank the Herpetologists' League and S. Trauth for inviting me to present a lecture based on this topic at the World Congress of Herpetology in Vancouver, British Columbia. I thank the following, with whom I have had the fortune of collaborating over the years: J. Congdon; D. Blackburn; W. E. Cooper, Jr.; E. Pianka; K. Schwenk; J. Caldwell; P. Vanzolini; T. C. Avila-Pires and her students; G. Colli and his students; T. Gamble; R. Glor; J. Losos; R. Huey; and my former grad students and postdocs, including P. Zani, S. Sartorius, G. Costa, T. Colston, A. Ramirez-Bautista, and D. Mesquita. I also thank S. E. Evans for educating me on the origins of lepidosaurs and their relatives, and both S. Evans and E. Pianka for commenting on a portion of this paper. All work summarized here was conducted with proper IACUC approvals, and foreign, federal, and state permits (when and where required). Although some of this work was supported indirectly by National Science Foundation grants to me and J. Caldwell, a majority was conducted with funding from other sources, including the Savannah River Ecology Laboratory, the Brazilian government, the Sam Noble Museum, the Research Council of the University of Oklahoma, a George Lynn Cross Research Professorship, and personal funds. I have never had funding for projects with "natural history" in the title. Finally, I dedicate this paper to H. S. Fitch, who made a lifetime career out of studying natural history and will always be "Dr. Natural History" to those of us who had the luxury of knowing him. Biju SD, 2003, NATURE, V425, P711, DOI 10.1038/nature02019; Blackburn D.G., 1992, P150; BLACKBURN DG, 1984, P NATL ACAD SCI-BIOL, V81, P4860, DOI 10.1073/pnas.81.15.4860; Blackburn DG, 2002, J MORPHOL, V254, P121, DOI 10.1002/jmor.10005; BLACKBURN DG, 1985, FORTS ZOOL, V30, P437; Cooper W.E. Jr, 1983, Herpetological Review, V14, P65; COOPER WE, 1994, HERPETOL J, V4, P20; COOPER WE, 1988, COPEIA, P1; COOPER WE, 1990, BEHAV ECOL SOCIOBIOL, V27, P153; COOPER WE, 1987, J HERPETOL, V21, P96, DOI 10.2307/1564469; COOPER WE, 1985, J HERPETOL, V19, P481, DOI 10.2307/1564201; COOPER WE, 1984, J EXP ZOOL, V230, P199, DOI 10.1002/jez.1402300205; COOPER WE, 1993, ANIM BEHAV, V45, P683, DOI 10.1006/anbe.1993.1083; COOPER WE, 1989, J EXP ZOOL, V249, P11, DOI 10.1002/jez.1402490104; COOPER WE, 1987, HERPETOLOGICA, V43, P7; COOPER WE, 1987, ETHOLOGY, V75, P328; COOPER WE, 1986, ETHOLOGY, V71, P242; COOPER WE, 1986, BEHAVIOUR, V97, P1, DOI 10.1163/156853986X00289; COOPER WE, 1986, ANIM BEHAV, V34, P367, DOI 10.1016/S0003-3472(86)80104-X; COOPER WE, 1984, J EXP ZOOL, V229, P49, DOI 10.1002/jez.1402290107; COOPER WE, 1985, Z TIERPSYCHOL, V70, P265; COOPER WE, 1991, CAN J ZOOL, V69, P757, DOI 10.1139/z91-109; COOPER WE, 1986, HERPETOLOGICA, V42, P361; COOPER WE, 1986, ETHOLOGY, V71, P177; COOPER WE, 1987, OECOLOGIA, V72, P321, DOI 10.1007/BF00377558; COOPER WE, 1986, HORM BEHAV, V20, P235, DOI 10.1016/0018-506X(86)90021-8; COOPER WE, 1986, CHEM SIGNALS VERTEBR, V4, P323; Cooper William E. Jr., 1997, Amphibia-Reptilia, V18, P59, DOI 10.1163/156853897X00314; Cooper William E. Jr, 2002, Acta Ethologica, V5, P19, DOI 10.1007/s10211-002-0058-1; Darwin C., 1859, ORIGIN SPECIES MEANS; Darwin C, 1851, MONOGRAPH SUBCLASS C, VI; Darwin C.R., 1854, MONOGRAPH CIRRIPEDIA, V2; Dunham A.E., 1988, Biology of Reptilia, V16, P441; DUNHAM AE, 1985, AM NAT, V126, P231, DOI 10.1086/284411; Estes R., 1988, P119; Evans SE, 2003, BIOL REV, V78, P513, DOI 10.1014/S1464793103006134; Evans Susan E., 2009, Palaeontologia Polonica, P145; Evans Susan E., 2009, Palaeontologia Polonica, P179; FITCH HENRY S., 1954, UNIV KANSAS PUBL MUS NAT HIST, V8, P1; FITCH HS, 1955, ECOL MONOGR, V25, P59, DOI 10.2307/1943214; FITCH HS, 1981, MISCELLANEOUS PUBLIC, V70, P1; FITCH HS, 1970, U KANSAS MUS NAT HIS, V52, P1; Fraser NC, 2007, J VERTEBR PALEONTOL, V27, P261, DOI 10.1671/0272-4634(2007)27[261:ANGTDA]2.0.CO;2; Gamble T, 2011, J EVOLUTION BIOL, V24, P231, DOI 10.1111/j.1420-9101.2010.02184.x; Gamble T, 2008, MOL PHYLOGENET EVOL, V46, P269, DOI 10.1016/j.ympev.2007.08.013; Gamble T, 2011, ZOOL J LINN SOC-LOND, V163, P1244, DOI 10.1111/j.1096-3642.2011.00741.x; Gauthier JA, 2012, B PEABODY MUS NAT HI, V53, P3, DOI 10.3374/014.053.0101; Graham CH, 2008, ECOL LETT, V11, P1265, DOI 10.1111/j.1461-0248.2008.01256.x; Greene H.W., 1986, P99; Hedges SB, 2012, ZOOTAXA, P1; Hedges S. Blair, 2009, P383; HEDGES SB, 2009, TIMETREE LIFE; HUEY RB, 1981, ECOLOGY, V62, P991, DOI 10.2307/1936998; Inger R.F., 1978, FIELDIANA ZOOLOGY, V18, P1; Jones MEH, 2008, J MORPHOL, V269, P945, DOI 10.1002/jmor.10634; McGuire JA, 2011, INTEGR COMP BIOL, V51, P983, DOI 10.1093/icb/icr090; NOBLE G. K., 1933, ANN NEW YORK ACAD SCI, V35, P25, DOI 10.1111/j.1749-6632.1933.tb55365.x; NOBLE G. K., 1933, AMER MUS NOVITATES, V619, P1; Pianka E. R., 2003, LIZARDS WINDOWS EVOL; PIANKA ER, 1966, ECOLOGY, V47, P1055, DOI 10.2307/1935656; REBOUCAS-SPIEKER R, 1978, Papeis Avulsos de Zoologia (Sao Paulo), V32, P95; Reilly SM, 2007, LIZARD ECOLOGY EVOLU; Schoener T. W., 1971, A Rev Ecol Syst, V2, P369, DOI 10.1146/annurev.es.02.110171.002101; SCHOENER TW, 1969, AM NAT, V103, P277, DOI 10.1086/282602; Sites JW, 2011, ANNU REV ECOL EVOL S, V42, P227, DOI 10.1146/annurev-ecolsys-102710-145051; TINKLE DW, 1970, EVOLUTION, V24, P55, DOI 10.1111/j.1558-5646.1970.tb01740.x; TINKLE DW, 1973, COPEIA, P272; TINKLE DW, 1969, AM NAT, V103, P501, DOI 10.1086/282617; TINKLE DW, 1975, ECOLOGY, V56, P427, DOI 10.2307/1934973; Townsend TM, 2004, SYST BIOL, V53, P735, DOI 10.1080/10635150490522340; TRAUTH SE, 1987, HERPETOLOGICA, V43, P458; Vidal N, 2005, CR BIOL, V328, P1000, DOI 10.1016/j.crvi.2005.10.001; Vidal N, 2008, BIOL LETTERS, V4, P115, DOI 10.1098/rsbl.2007.0531; Vidal N, 2009, CR BIOL, V332, P129, DOI 10.1016/j.crvi.2008.07.010; Vitt L.J., 1992, P135; VITT L J, 1974, Journal of Herpetology, V8, P165, DOI 10.2307/1562813; Vitt L.J., 1986, J HERPETOL, V20, P404; Vitt L.J., 1991, COPEIA, V1991, P917; Vitt Laurie J., 1995, Occasional Papers of the Oklahoma Museum of Natural History, V1, P1; VITT LJ, 1988, J HERPETOL, V22, P485, DOI 10.2307/1564347; VITT LJ, 1985, HERPETOLOGICA, V41, P419; Vitt LJ, 1998, J TROP ECOL, V14, P537, DOI 10.1017/S0266467498000388; Vitt LJ, 2003, AM NAT, V162, P44, DOI 10.1086/375172; VITT LJ, 1981, AM NAT, V117, P506, DOI 10.1086/283731; Vitt LJ, 1996, CAN J ZOOL, V74, P1313, DOI 10.1139/z96-147; VITT LJ, 1978, AM NAT, V112, P595, DOI 10.1086/283300; Vitt LJ, 2005, P NATL ACAD SCI USA, V102, P7877, DOI 10.1073/pnas.0501104102; VITT LJ, 1983, CAN J ZOOL, V61, P2798, DOI 10.1139/z83-367; VITT LJ, 1989, J HERPETOL, V23, P29, DOI 10.2307/1564312; Vitt LJ, 1999, OIKOS, V87, P286, DOI 10.2307/3546743; VITT LJ, 1986, J HERPETOL, V20, P65, DOI 10.2307/1564126; VITT LJ, 1985, CAN J ZOOL, V63, P995, DOI 10.1139/z85-148; VITT LJ, 1986, CAN J ZOOL, V64, P584; WALDMAN M, 1994, ZOOL J LINN SOC-LOND, V112, P135, DOI 10.1006/zjls.1994.1037; Wilkinson M, 2011, ZOOTAXA, P41; Williams GC, 1966, ADAPTATION NATURAL S 96 12 12 1 43 HERPETOLOGISTS LEAGUE EMPORIA EMPORIA STATE UNIV, DIVISION BIOLOGICAL SCIENCES, 1200 COMMERCIAL ST, EMPORIA, KS 66801-5087 USA 0018-0831 1938-5099 HERPETOLOGICA Herpetologica JUN 2013 69 2 105 117 10.1655/HERPETOLOGICA-D-13-00027 13 Zoology Zoology 172HB WOS:000320990500001 2018-11-12 J Fitzsimmons, LP; Bertram, SM Fitzsimmons, Lauren P.; Bertram, Susan M. No relationship between long-distance acoustic mate attraction signals and male fertility or female preference in spring field crickets BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article Phenotype-linked fertility; Life-history theory; Acoustic signal; Mate attraction; Sexual selection; Sperm competition; Y model MALE MATING SUCCESS; SPERM COMPETITION; SEXUAL SELECTION; TELEOGRYLLUS-OCEANICUS; GRYLLODES-SIGILLATUS; EJACULATE QUALITY; DIRECT BENEFITS; SOCIAL-STATUS; CHOICE; EVOLUTION To father offspring, a male must succeed at two processes of sexual selection: (1) mate with a female and (2) fertilize her eggs. We investigated the relationships between pre- and post-copulatory male traits and female mating responses in wild-captured and laboratory-reared spring field crickets, Gryllus veletis. The phenotype-linked fertility hypothesis suggests that females may receive a direct benefit, enhanced fertilization efficiency, by mating with males that signal attractively. We measured fine-scale components of male acoustic mate attraction signals as well as how much time males spent signalling, measured female preference for males in mating trials and then quantified sperm number and viability. We found no relationship between male signalling traits and male fertility or female preference, providing no evidence for the phenotype-linked fertility hypothesis. We also found no difference in sperm metrics between wild-captured and laboratory-reared males. While female crickets may receive benefits by choosing males based on acoustic signal characteristics, whether the benefits are a result of genetic quality, seminal fluid contents or some other male trait remains unknown. [Fitzsimmons, Lauren P.; Bertram, Susan M.] Carleton Univ, Dept Biol, Ottawa, ON K1S 2Y4, Canada Fitzsimmons, LP (reprint author), Carleton Univ, Dept Biol, 1125 Colonel By Dr, Ottawa, ON K1S 2Y4, Canada. lauren.p.fitzsimmons@gmail.com Bertram, Susan/L-6992-2013 Bertram, Susan/0000-0002-6326-579X Natural Science and Engineering Research Council of Canada (NSERC) Canada Graduate Scholarship; P.E.O. Scholar Award; NSERC; Canadian Foundation for Innovation; Ontario Research Fund; Carleton University We thank S. Harrison for assistance catching crickets and conducting experiments, and J. Fitzsimmons, J.-G. Godin, M. Hollahan, S. Sakaluk, A. Morin, L. Holman and two anonymous reviewers for comments on earlier versions of this manuscript. Funding was provided by a Natural Science and Engineering Research Council of Canada (NSERC) Canada Graduate Scholarship to L. P. F., a P.E.O. Scholar Award to L. P. F., a NSERC Discovery Grant to S. M. B., the Canadian Foundation for Innovation to S. M. B., the Ontario Research Fund to S. M. B. and Carleton University. ALEXANDER RICHARD D., 1961, BEHAVIOUR, V17, P130, DOI 10.1163/156853961X00042; Andersson M., 1994, SEXUAL SELECTION; Andersson M, 2006, TRENDS ECOL EVOL, V21, P296, DOI 10.1016/j.tree.2006.03.015; Beausoleil JMJ, 2012, ANIM BEHAV, V83, P969, DOI 10.1016/j.anbehav.2012.01.017; Brent CS, 2011, ENVIRON ENTOMOL, V40, P455, DOI 10.1603/EN10230; Bretman A, 2006, BIOL LETT-UK, V2, P409, DOI 10.1098/rsbl.2006.0493; CADE WH, 1992, ANIM BEHAV, V43, P49, DOI 10.1016/S0003-3472(05)80070-3; CADE WH, 1981, Z TIERPSYCHOL, V55, P365; Candolin U, 2003, BIOL REV, V78, P575, DOI 10.1017/S1464793103006158; Cornwallis CK, 2007, AM NAT, V170, P758, DOI 10.1086/521955; Evans JP, 2010, P ROY SOC B-BIOL SCI, V277, P3195, DOI 10.1098/rspb.2010.0826; Farmer DC, 2000, BEHAV ECOL SOCIOBIOL, V47, P287, DOI 10.1007/s002650050668; Fisher R. A., 1958, GENETICAL THEORY NAT; Fitzsimmons LP, 2011, BEHAVIOUR, V148, P1045, DOI 10.1163/000579511X588812; Garcia-Gonzalez F, 2005, CURR BIOL, V15, P271, DOI 10.1016/j.cub.2005.01.032; Gress BE, 2011, CAN J ZOOL, V89, P1231, DOI 10.1139/Z11-103; GWYNNE DT, 1981, SCIENCE, V213, P779, DOI 10.1126/science.213.4509.779; HEDRICK AV, 1986, BEHAV ECOL SOCIOBIOL, V19, P73, DOI 10.1007/BF00303845; HEYWOOD JS, 1989, EVOLUTION, V43, P1387, DOI 10.1111/j.1558-5646.1989.tb02590.x; Hoback WW, 1997, PHYSIOL ENTOMOL, V22, P286, DOI 10.1111/j.1365-3032.1997.tb01170.x; HOELZER GA, 1989, ANIM BEHAV, V38, P1067, DOI 10.1016/S0003-3472(89)80146-0; Holman L, 2009, BEHAV ECOL SOCIOBIOL, V63, P1679, DOI 10.1007/s00265-009-0816-4; Jennions MD, 1997, BIOL REV, V72, P283, DOI 10.1017/S0006323196005014; Ketola T, 2007, EVOL ECOL RES, V9, P869; Killian KA, 2008, J INSECT BEHAV, V21, P535, DOI 10.1007/s10905-008-9148-x; King EG, 2011, EVOLUTION, V65, P2273, DOI 10.1111/j.1558-5646.2011.01296.x; KIRKPATRICK M, 1991, NATURE, V350, P33, DOI 10.1038/350033a0; Klaus SP, 2011, ETHOLOGY, V117, P154, DOI 10.1111/j.1439-0310.2010.01857.x; Kokko H, 2003, P ROY SOC B-BIOL SCI, V270, P653, DOI 10.1098/rspb.2002.2235; Moller AP, 2001, NATURWISSENSCHAFTEN, V88, P401, DOI 10.1007/s001140100255; Montrose VT, 2008, J EVOLUTION BIOL, V21, P1290, DOI 10.1111/j.1420-9101.2008.01570.x; Pfau K, 1994, J EXP BIOL, V195, P147; Pitcher TE, 2007, J FISH BIOL, V70, P165, DOI 10.1111/j.1095-8649.2006.01292.x; Preston BT, 2001, NATURE, V409, P681, DOI 10.1038/35055617; PRESTWICH KN, 1994, AM ZOOL, V34, P625; Qvarnstrom A, 1998, TRENDS ECOL EVOL, V13, P498, DOI 10.1016/S0169-5347(98)01513-4; REYNOLDS JD, 1990, AM NAT, V136, P230, DOI 10.1086/285093; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Rodriguez-Munoz R, 2010, SCIENCE, V328, P1269, DOI 10.1126/science.1188102; Rowe M, 2010, ANIM BEHAV, V79, P1239, DOI 10.1016/j.anbehav.2010.02.020; Ruther J, 2009, P R SOC B, V276, P3303, DOI 10.1098/rspb.2009.0738; Sakaluk SK, 1996, EVOLUTION, V50, P694, DOI 10.1111/j.1558-5646.1996.tb03879.x; Schaus JM, 2001, BEHAV ECOL, V12, P720; Shackleton MA, 2005, BEHAV ECOL SOCIOBIOL, V58, P1, DOI 10.1007/s00265-004-0907-1; SHELDON BC, 1994, P ROY SOC B-BIOL SCI, V257, P25, DOI 10.1098/rspb.1994.0089; Simmons LW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0029271; Simmons LW, 2010, BEHAV ECOL, V21, P1330, DOI 10.1093/beheco/arq154; SIMMONS LW, 1993, P ROY SOC B-BIOL SCI, V251, P183, DOI 10.1098/rspb.1993.0027; SPITZE K, 1991, EVOLUTION, V45, P1081, DOI 10.1111/j.1558-5646.1991.tb04376.x; Thomas ML, 2007, AM NAT, V170, P190, DOI 10.1086/519404; Thomas ML, 2009, BEHAV ECOL, V20, P1118, DOI 10.1093/beheco/arp105; Tolle AE, 2011, EVOLUTION, V65, P283, DOI 10.1111/j.1558-5646.2010.01123.x; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Wagner WE, 2012, P ROY SOC B-BIOL SCI, V279, P2899, DOI 10.1098/rspb.2012.0275; Wagner WE, 2011, ADV STUD BEHAV, V43, P273, DOI 10.1016/B978-0-12-380896-7.00006-X; Wedell N, 2002, TRENDS ECOL EVOL, V17, P313, DOI 10.1016/S0169-5347(02)02533-8; ZAHAVI A, 1975, J THEOR BIOL, V53, P205, DOI 10.1016/0022-5193(75)90111-3 57 2 2 0 28 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. JUN 2013 67 6 885 893 10.1007/s00265-013-1511-z 9 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology 146CN WOS:000319066600003 2018-11-12 J Harris, BN; Saltzman, W Harris, Breanna N.; Saltzman, Wendy Effects of aging on hypothalamic-pituitary-adrenal (HPA) axis activity and reactivity in virgin male and female California mice (Peromyscus californicus) GENERAL AND COMPARATIVE ENDOCRINOLOGY English Article Age; Trade-off; Glucocorticoids; Corticosterone; California mouse; Stress; Reproduction LIFE-HISTORY EVOLUTION; LONG-LIVED SEABIRD; REPRODUCTIVE SUCCESS; TRADE-OFFS; HORMONAL RESPONSES; MONOGAMOUS RODENT; BINDING PROTEINS; PIED FLYCATCHER; STRESS-RESPONSE; SEX-DIFFERENCES Life history theory posits that organisms face a trade-off between current and future reproductive attempts. The physiological mechanisms mediating such trade-offs are still largely unknown, but glucocorticoid hormones are likely candidates as elevated, post-stress glucocorticoid levels have been shown to suppress both reproductive physiology and reproductive behavior. Aged individuals have a decreasing window in which to reproduce, and are thus predicted to invest more heavily in current as opposed to future reproduction. Therefore, if glucocorticoids are important in mediating the trade-off between current and future reproduction, aged animals are expected to show decreased hypothalamic-pituitary-adrenal (HPA) axis responses to stressors and to stimulation by corticotropin-releasing hormone (CRH), and enhanced responses to glucocorticoid negative feedback, as compared to younger animals. We tested this hypothesis in the monogamous, biparental California mouse by comparing baseline and post-stress corticosterone levels, as well as corticosterone responses to dexamethasone (DEX) and CRH injections, between old (similar to 18-20 months) and young (similar to 4 months) virgin adults of both sexes. We also measured gonadal and uterine masses as a proxy for investment in potential current reproductive effort. Adrenal glands were weighed to determine if older animal had decreased adrenal mass. Old male mice had lower plasma corticosterone levels 8 h after DEX injection than did young male mice, suggesting that the anterior pituitary of older males is more sensitive to DEX-induced negative feedback. Old female mice had higher body-mass-corrected uterine mass than did young females. No other differences in corticosterone levels or organ masses were found between age groups within either sex. In conclusion, we did not find strong evidence for age-related change in HPA activity or reactivity in virgin adult male or female California mice; however, future studies investigating HPA activity and reproductive outcomes in young and old breeding adults would be illuminating. (C) 2013 Elsevier Inc. All rights reserved. [Harris, Breanna N.; Saltzman, Wendy] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA Harris, BN (reprint author), Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA. bharr002@ucr.edu Harris, Breanna/0000-0002-2239-0914 NIH [MH087806]; University of California, Riverside.z We would like to thank the UCR vivarium staff for their assistance with animal maintenance. We also thank Vanessa Yang, Julia Cho, Kevin Measor, Omar Aldaas, Aaron Stamp, Saif Hossain, Juan Pablo Perea-Rodriguez, Gavrielle Concepcion, and Dr. Trynke de Jong for help with various aspects of experimental preparation and data collection, and Matthew Wolak, Brian Gray, and Dr. Zach Hohman for advice on statistical procedures. We also thank Dr. Mark Chappell and two anonymous reviewers for helpful comments on a previous draft of this manuscript. This work was supported by NIH MH087806 and by funds from the University of California, Riverside.z Boonstra R, 2005, J MAMMAL, V86, P236, DOI 10.1644/BHE-001.1; BRADLEY EL, 1979, J MAMMAL, V60, P543, DOI 10.2307/1380094; BRETT LP, 1983, NEUROBIOL AGING, V4, P133, DOI 10.1016/0197-4580(83)90037-4; Breuner CW, 2002, J ENDOCRINOL, V175, P99, DOI 10.1677/joe.0.1750099; Caligioni C.S., 2009, CURR PROTOC NEUROSCI, V48, P25; Cantoni D, 1997, ANIM BEHAV, V54, P377, DOI 10.1006/anbe.1996.0583; Cantoni D, 1997, ANN NY ACAD SCI, V807, P486, DOI 10.1111/j.1749-6632.1997.tb51946.x; Chauke M, 2011, HORM BEHAV, V60, P128, DOI 10.1016/j.yhbeh.2011.04.002; Cole MA, 2000, PSYCHONEUROENDOCRINO, V25, P151, DOI 10.1016/S0306-4530(99)00045-1; Dallman M.F., 2001, HDB PHYSL 7, P179; DALLMAN MF, 1993, FRONT NEUROENDOCRIN, V14, P303, DOI 10.1006/frne.1993.1010; Dalm S, 2005, NEUROENDOCRINOLOGY, V81, P372, DOI 10.1159/000089555; Davis ES, 2003, HORM BEHAV, V44, P185, DOI 10.1016/S0018-506X(03)00128-4; Demas GE, 1998, BIOL REPROD, V58, P385, DOI 10.1095/biolreprod58.2.385; Ferin M, 2006, KNOBIL AND NEILL'S PHYSIOLOGY OF REPRODUCTION, VOLS 1 AND 2, 3RD EDITON, P2627; Goldman JM, 2007, BIRTH DEFECTS RES B, V80, P84, DOI 10.1002/bdrb.20106; Greenberg N., 1987, P461; GUBERNICK DJ, 1988, J MAMMAL, V69, P857, DOI 10.2307/1381649; GUBERNICK DJ, 1993, ANIM BEHAV, V46, P539, DOI 10.1006/anbe.1993.1221; Gubernick DJ, 2000, P ROY SOC B-BIOL SCI, V267, P147, DOI 10.1098/rspb.2000.0979; Gust DA, 2000, J CLIN ENDOCR METAB, V85, P2556, DOI 10.1210/jc.85.7.2556; Harris BN, 2012, GEN COMP ENDOCR, V179, P436, DOI 10.1016/j.ygcen.2012.08.026; Heidinger BJ, 2008, GEN COMP ENDOCR, V156, P564, DOI 10.1016/j.ygcen.2008.02.014; Heidinger BJ, 2006, P ROY SOC B-BIOL SCI, V273, P2227, DOI 10.1098/rspb.2006.3557; Herman J.P., 2001, AGING-US, V22, P323; HEUSER IJ, 1994, NEUROBIOL AGING, V15, P227, DOI 10.1016/0197-4580(94)90117-1; HYLKA VW, 1984, P SOC EXP BIOL MED, V175, P1; Jessop TS, 2005, AUST J ZOOL, V53, P131, DOI 10.1071/ZO04061; Karelina K, 2010, HORM BEHAV, V58, P193, DOI 10.1016/j.yhbeh.2010.03.022; Kasckow JW, 2005, ENDOCRINOLOGY, V146, P3105, DOI 10.1210/en.2004-1648; Keck ME, 2000, EUR J NEUROSCI, V12, P1487, DOI 10.1046/j.1460-9568.2000.00030.x; Ketterson ED, 1999, AM NAT, V154, pS4, DOI 10.1086/303280; Landys MM, 2006, GEN COMP ENDOCR, V148, P132, DOI 10.1016/j.ygcen.2006.02.013; Lerman SA, 1997, REPROD TOXICOL, V11, P799, DOI 10.1016/S0890-6238(97)00063-4; Lo MJ, 2006, J CELL BIOCHEM, V97, P351, DOI 10.1002/jcb.20576; Long J. A., 1922, Memoirs of the University of California, V6, P1; Lundeen SG, 1997, ENDOCRINOLOGY, V138, P1552, DOI 10.1210/en.138.4.1552; Malisch JL, 2010, MOL CELL ENDOCRINOL, V316, P42, DOI 10.1016/j.mce.2009.09.019; Meddle SL, 2003, P ROY SOC B-BIOL SCI, V270, P1849, DOI 10.1098/rspb.2003.2455; Merritt J., 1999, SMITHSONIAN BOOK N A, P565; MERRITT J F, 1978, Mammalian Species, V85, P1; Mettus RV, 2003, ONCOGENE, V22, P8413, DOI 10.1038/sj.onc.1206888; Mizoguchi K, 2009, NEUROSCIENCE, V159, P259, DOI 10.1016/j.neuroscience.2008.12.020; Moore IT, 2009, INTEGR COMP BIOL, V49, P441, DOI 10.1093/icb/icp081; NICHOLS DJ, 1981, EXPERIENTIA, V37, P319, DOI 10.1007/BF01991678; O'Reilly K.M., 1999, PACIFIC SEABIRDS, V26, P42; Otte C, 2005, PSYCHONEUROENDOCRINO, V30, P80, DOI 10.1016/j.psyneuen.2004.06.002; Perogamvros I, 2011, CLIN ENDOCRINOL, V75, P31, DOI 10.1111/j.1365-2265.2011.04003.x; Pruessner JC, 2003, PSYCHONEUROENDOCRINO, V28, P916, DOI 10.1016/S0306-4530(02)00108-7; Reeder DM, 2005, J MAMMAL, V86, P225, DOI 10.1644/BHE-003.1; RIBBLE DO, 1990, BEHAV ECOL SOCIOBIOL, V26, P9; RIBBLE DO, 1992, J ANIM ECOL, V61, P457, DOI 10.2307/5336; RIBBLE DO, 1991, BEHAV ECOL SOCIOBIOL, V29, P161, DOI 10.1007/BF00166397; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Roff DA, 1996, Q REV BIOL, V71, P3, DOI 10.1086/419266; Roff Derek A., 1992; Romero LM, 2005, COMP BIOCHEM PHYS A, V140, P73, DOI 10.1016/j.cbpb.2004.11.004; Saltzman W, 2006, HORM BEHAV, V49, P527, DOI 10.1016/j.yhbeh.2005.11.004; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; Sapolsky RM., 2002, BEHAV ENDOCRINOLOGY, P409; SCACCIANOCE S, 1995, NEUROENDOCRINOLOGY, V62, P32, DOI 10.1159/000126985; Sharp J, 2003, CONTEMP TOP LAB ANIM, V42, P9; SILVERIN B, 1986, GEN COMP ENDOCR, V64, P67, DOI 10.1016/0016-6480(86)90029-8; Silverin B, 1998, ANIM BEHAV, V55, P1411, DOI 10.1006/anbe.1997.0717; Solomon NG, 1996, BIOL REPROD, V54, P1038, DOI 10.1095/biolreprod54.5.1038; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Tilbrook AJ, 2000, REV REPROD, V5, P105, DOI 10.1530/ror.0.0050105; Tomkins JL, 2002, ANIM BEHAV, V63, P1009, DOI 10.1006/anbe.2001.1994; Trainor BC, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017405; Trainor BC, 2010, HORM BEHAV, V58, P506, DOI 10.1016/j.yhbeh.2010.04.008; Walker QD, 2002, PHARMACOL BIOCHEM BE, V73, P743, DOI 10.1016/S0091-3057(02)00883-3; Wingfield JC, 2003, J NEUROENDOCRINOL, V15, P711, DOI 10.1046/j.1365-2826.2003.01033.x; Wingfield JC, 1998, AM ZOOL, V38, P191; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 76 8 8 1 25 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0016-6480 1095-6840 GEN COMP ENDOCR Gen. Comp. Endocrinol. JUN 1 2013 186 41 49 10.1016/j.ygcen.2013.02.010 9 Endocrinology & Metabolism Endocrinology & Metabolism 141UC WOS:000318751000006 23458287 Green Accepted 2018-11-12 J Rosenfield, RN; Bielefeldt, J; Booms, TL; Cava, JA; Bozek, MA Rosenfield, Robert N.; Bielefeldt, John; Booms, Travis L.; Cava, Jenna A.; Bozek, Michael A. LIFE-HISTORY TRADE-OFFS OF BREEDING IN ONE-YEAR-OLD MALE COOPER'S HAWKS CONDOR English Article Accipiter cooperii; life-history trade-offs; age at first breeding; life-history evolution; Cooper's Hawk; molt; lifetime reproduction SEXUAL SIZE DIMORPHISM; ACCIPITER HAWKS; EYE COLOR; WISCONSIN; PRODUCTIVITY; POPULATIONS; AGE; REPRODUCTION; DENSITY; EVOLUTION Life-history theory suggests that delayed maturation is beneficial to birds when costs of breeding early in life are high. We compared selected aspects of the biology of male Cooper's Hawks (Accipiter cooperii) that began breeding at 1 year of age (SY males) vs. males that began breeding >= 2 years of age (ASY males) in an effort to elucidate what renders breeding of SY males rare. Of the 732 males of known age whose breeding we studied over 32 years (1980-2011) 13 (2%) were SY and 719 (98%) were ASY. During this period, the incidence of breeding of SY males changed markedly, as 12 of the instances of breeding of SY males were recorded in the first half of our study, only 1 in the latter half. We suggest that SY males could acquire nest sites more readily in the first half of the study when the breeding population of ASY males was apparently lower. Males breeding in their second year were on average similar in size to ASY males but were molting more extensively than were ASY males. ASY males lived longer than males breeding in their second year, and maximum lifetime production of young was greater, so SY males may have sacrificed greater longevity for breeding early. A strategy of facultative breeding in response to the constraints of higher numbers of older breeding males and restraints of trade-offs in energy allocation may explain why SY male Cooper's Hawks rarely breed. [Rosenfield, Robert N.; Cava, Jenna A.] Univ Wisconsin, Dept Biol, Stevens Point, WI 54481 USA; [Booms, Travis L.] Wildlife Divers, Alaska Dept Fish & Game, Fairbanks, AK 99701 USA; [Bozek, Michael A.] Univ Wisconsin, US Geol Survey, Coll Nat Resources, Wisconsin Cooperat Fishery Res Unit, Stevens Point, WI 54481 USA Rosenfield, RN (reprint author), Univ Wisconsin, Dept Biol, Stevens Point, WI 54481 USA. rrosenfi@uwsp.edu Biology Department; Personnel Development Committee; Letters and Science Foundation; Honors Intern Program; Wisconsin Cooperative Fishery Unit at the University of Wisconsin at Stevens Point; Bureau of Endangered Resources at the Wisconsin Department of Natural Resources; Society for Tympanuchus cupido pinnatus, Ltd.; Great Lakes Falconers Association We thank William and Norma Allen, D. A. Grosshuesch, M. J. Gibson, C. M. Morasky, J. M. Papp, C. S. Larson, S. A. Sonsthagen, and K. L. Taft for their long-term support and field assistance. Various staff of the Kettle Moraine State Forest, South Unit of the Wisconsin Department of Natural Resources, aided our work in many ways. Funding was provided by the Biology Department, Personnel Development Committee, Letters and Science Foundation, Honors Intern Program, and the Wisconsin Cooperative Fishery Unit at the University of Wisconsin at Stevens Point; the Bureau of Endangered Resources at the Wisconsin Department of Natural Resources; the Society for Tympanuchus cupido pinnatus, Ltd.; and the Great Lakes Falconers Association. We are particularly grateful for the excellent suggestions of two anonymous reviewers of our paper. RNR dedicates this paper to the memory of his dear friend and colleague John Bielefeldt. ASAY CE, 1987, CALIF FISH GAME, V73, P80; Bielefeldt John, 1998, Passenger Pigeon, V60, P111; BILDSTEIN KL, 1992, J RAPTOR RES, V26, P115; Boal CW, 2001, CONDOR, V103, P381, DOI 10.1650/0010-5422(2001)103[0381:NMAPOA]2.0.CO;2; CURIO E, 1983, IBIS, V125, P400, DOI 10.1111/j.1474-919X.1983.tb03130.x; Dawson A, 2000, P ROY SOC B-BIOL SCI, V267, P2093, DOI 10.1098/rspb.2000.1254; FARMER C.J., 2008, STATE N AM BIRDS PRE, P179; HAMERSTROM F, 1972, BIRDS PREY WISCONSIN; HENNESSY SP, 1978, THESIS UTAH STATE U; HENNY CJ, 1985, J FIELD ORNITHOL, V56, P97; Hunt WG, 1998, OIKOS, V82, P191, DOI 10.2307/3546929; Koons DN, 2008, AM NAT, V172, P797, DOI 10.1086/592867; Kruger O, 2005, EVOL ECOL, V19, P467, DOI 10.1007/s10682-005-0293-9; Lack D., 1968, ECOLOGICAL ADAPTATIO; Lieske DJ, 1997, AUK, V114, P288; MEHTA C, 1992, STATXACT TURBO STAT; Meng HK, 1951, THESIS CORNELL U ITH; Millon A, 2010, J ANIM ECOL, V79, P426, DOI 10.1111/j.1365-2656.2009.01637.x; Millsap B. A., 1981, 355 US DEP INT BUR L; MOORE KR, 1984, NORTHWEST SCI, V58, P290; MUELLER H. C., 2001, HAWKWATCHING AM, P1; Mueller Helmut C., 2011, Passenger Pigeon, V73, P385; MURPHY R K, 1988, Journal of Raptor Research, V22, P97; Newton I., 1986, SPARROWHAWK; Newton I, 1979, POPULATION ECOLOGY R; Oliphant L.W., 1985, Raptor Research, V19, P56; REYNOLDS RT, 1978, WILSON BULL, V90, P182; ROSENFIELD R N, 1991, Journal of Raptor Research, V25, P113; Rosenfield R. N., 2006, ATLAS BREEDING BIRDS, P162; ROSENFIELD RN, 1991, CONDOR, V93, P659, DOI 10.2307/1368197; Rosenfield RN, 1999, AUK, V116, P830, DOI 10.2307/4089346; Rosenfield RN, 2003, WILSON BULL, V115, P225, DOI 10.1676/03-012; ROSENFIELD RN, 1995, J RAPTOR RES, V29, P1; Rosenfield RN, 1997, J RAPTOR RES, V31, P313; Rosenfield RN, 1996, CONDOR, V98, P165, DOI 10.2307/1369520; ROSENFIELD RN, 1993, BIRDS N AM; Rosenfield RN, 2007, J RAPTOR RES, V41, P230, DOI 10.3356/0892-1016(2007)41[230:GACFRO]2.0.CO;2; Rosenfield RN, 2007, WILSON J ORNITHOL, V119, P181, DOI 10.1676/06-094.1; Rosenfield RN, 2010, CONDOR, V112, P347, DOI 10.1525/cond.2010.090148; Rosenfield Robert N., 2007, P351; Rosenfield RN, 2009, WILSON J ORNITHOL, V121, P610, DOI 10.1676/08-149.1; Rutz C, 2008, J ANIM ECOL, V77, P1008, DOI 10.1111/j.1365-2656.2008.01420.x; Sonsthagen SA, 2012, AUK, V129, P427, DOI 10.1525/auk.2012.11166; Stearns S. C., 1992, EVOLUTION LIFE HIST; Steenhof Karen, 2007, P181; Stout WE, 2007, J WILDLIFE MANAGE, V71, P366, DOI 10.2193/2005-664; Stout WE, 2010, J RAPTOR RES, V44, P255, DOI 10.3356/JRR-09-26.1; Thiollay J. M, 1994, HDB BIRDS WORLD, V2, P52; Tordoff HB, 1997, J RAPTOR RES, V31, P339; Trexel DR, 1999, WILSON BULL, V111, P7; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Zar J.H, 1999, BIOSTATISTICAL ANAL 52 7 7 0 28 COOPER ORNITHOLOGICAL SOC LAWRENCE ORNITHOLOGICAL SOC NORTH AMER PO BOX 1897, LAWRENCE, KS 66044-8897 USA 0010-5422 CONDOR Condor MAY 2013 115 2 306 315 10.1525/cond.2013.120001 10 Ornithology Zoology 151SU WOS:000319481300011 2018-11-12 J White, AE; Li, YJ; Griskevicius, V; Neuberg, SL; Kenrick, DT White, Andrew Edward; Li, Yexin Jessica; Griskevicius, Vladas; Neuberg, Steven L.; Kenrick, Douglas T. Putting All Your Eggs in One Basket: Life-History Strategies, Bet Hedging, and Diversification PSYCHOLOGICAL SCIENCE English Article evolutionary psychology; socioeconomic status UNPREDICTABLE ENVIRONMENTS; REPRODUCTIVE STRATEGY; OXIDATIVE STRESS; CHILDHOOD; EVOLUTION; ATTACHMENT; NUMBER; RISK; SIZE; SEX Diversification of resources is a strategy found everywhere from the level of microorganisms to that of giant Wall Street investment firms. We examine the functional nature of diversification using life-history theory-a framework for understanding how organisms navigate resource-allocation trade-offs. This framework suggests that diversification may be adaptive or maladaptive depending on one's life-history strategy and that these differences should be observed under conditions of threat. In three studies, we found that cues of mortality threat interact with one index of life-history strategy, childhood socioeconomic status (SES), to affect diversification. Among those from low-SES backgrounds, mortality threat increased preferences for diversification. However, among those from high-SES backgrounds, mortality threat had the opposite effect, inclining people to put all their eggs in one basket. The same interaction pattern emerged with a potential biomarker of life-history strategy, oxidative stress. These findings highlight when, and for whom, different diversification strategies can be advantageous. [White, Andrew Edward; Neuberg, Steven L.; Kenrick, Douglas T.] Arizona State Univ, Dept Psychol, Tempe, AZ 85287 USA; [Li, Yexin Jessica] Univ Kansas, Sch Business, Lawrence, KS 66045 USA; [Griskevicius, Vladas] Univ Minnesota, Carlson Sch Management, Minneapolis, MN 55455 USA Kenrick, DT (reprint author), Arizona State Univ, Dept Psychol, Tempe, AZ 85287 USA. douglas.kenrick@asu.edu Aiken L.S., 1991, MULTIPLE REGRESSION; Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Baumgartner H., 1996, INT J RES MARK, V13, P121, DOI DOI 10.1016/0167-8116(95)00037-2; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Belsky J, 2010, PSYCHOL SCI, V21, P1195, DOI 10.1177/0956797610379867; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; CRAWFORD CB, 1989, AM PSYCHOL, V44, P1449, DOI 10.1037/0003-066X.44.12.1449; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Epel ES, 2004, P NATL ACAD SCI USA, V101, P17312, DOI 10.1073/pnas.0407162101; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Gangestad SW, 2010, ANIM BEHAV, V80, P1005, DOI 10.1016/j.anbehav.2010.09.003; GOLAND C, 1993, MT RES DEV, V13, P317, DOI 10.2307/3673760; Griffiths HR, 2002, MOL ASPECTS MED, V23, P101, DOI 10.1016/S0098-2997(02)00017-1; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; Kraus MW, 2009, J PERS SOC PSYCHOL, V97, P992, DOI 10.1037/a0016357; Kuzawa CW, 2010, P NATL ACAD SCI USA, V107, P16800, DOI 10.1073/pnas.1006008107; MACE R, 1990, AGR SYST, V33, P1, DOI 10.1016/0308-521X(90)90067-Z; Marshall DJ, 2008, ECOLOGY, V89, P2506, DOI 10.1890/07-0267.1; Olofsson H, 2009, P ROY SOC B-BIOL SCI, V276, P2963, DOI 10.1098/rspb.2009.0500; Parsons PA, 2005, BIOL REV, V80, P589, DOI 10.1017/S1464793105006822; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; Roff D. A., 2002, LIFE HIST EVOLUTION; Simons AM, 2007, J EVOLUTION BIOL, V20, P813, DOI 10.1111/j.1420-9101.2006.01270.x; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Stearns S. C., 1992, EVOLUTION LIFE HIST; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; Wong RH, 2005, ENVIRON HEALTH PERSP, V113, P1386, DOI 10.1289/ehp.7401 34 21 23 1 56 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 0956-7976 PSYCHOL SCI Psychol. Sci. MAY 2013 24 5 715 722 10.1177/0956797612461919 8 Psychology, Multidisciplinary Psychology 143GI WOS:000318854600012 23545483 2018-11-12 J Volk, AA; Atkinson, JA Volk, Anthony A.; Atkinson, Jeremy A. Infant and child death in the human environment of evolutionary adaptation EVOLUTION AND HUMAN BEHAVIOR English Article Environment of evolutionary adaptedness; Human evolution; Infant mortality; Child mortality HUNTER-GATHERERS; POPULATION-DYNAMICS; SEXUAL SELECTION; LIFE-HISTORIES; SOCIOECONOMIC INEQUALITIES; DEMOGRAPHIC HISTORY; GENETIC STRUCTURE; PAN-PANISCUS; NEW-GUINEA; MORTALITY The precise quantitative nature of the Environment of Evolutionary Adaptedness (EEA) is difficult to reconstruct. The EEA represents a multitude of different geographic and temporal environments, of which a large number often need to be surveyed in order to draw sound conclusions. We examine a large number of both hunter-gatherer (N = 20) and historical (N = 43) infant and child mortality rates to generate a reliable quantitative estimate of their levels in the EEA. Using data drawn from a wide range of geographic locations, cultures, and times, we estimate that approximately 27% of infants failed to survive their first year of life, while approximately 47.5% of children failed to survive to puberty across in the EEA. These rates represent a serious selective pressure faced by humanity that may be underappreciated by many evolutionary psychologists. Additionally, a cross-species comparison found that human child mortality rates are roughly equivalent to Old World monkeys, higher than orangutan or bonobo rates and potentially higher than those of chimpanzees and gorillas. These findings are briefly discussed in relation to life history theory and evolved adaptations designed to lower high childhood mortality. (c) 2013 Elsevier Inc. All rights reserved. [Volk, Anthony A.] Brock Univ, Dept Child & Youth Studies, St Catharines, ON L2S 3A1, Canada; [Atkinson, Jeremy A.] SUNY Albany, Dept Psychol, Albany, NY 12222 USA Volk, AA (reprint author), Brock Univ, Dept Child & Youth Studies, St Catharines, ON L2S 3A1, Canada. tvolk@brocku.ca ALAM N, 1995, J BIOSOC SCI, V27, P393; Alesan A, 1999, AM J PHYS ANTHROPOL, V110, P285, DOI 10.1002/(SICI)1096-8644(199911)110:3<285::AID-AJPA3>3.3.CO;2-U; ALLEY TR, 1983, CHILD DEV, V54, P241, DOI 10.1111/j.1467-8624.1983.tb00354.x; ALTMANN J, 1977, Primates, V18, P315, DOI 10.1007/BF02383111; Alvergne A, 2009, ANIM BEHAV, V78, P61, DOI 10.1016/j.anbehav.2009.03.019; ANDERSON CM, 1986, PRIMATES, V27, P15, DOI 10.1007/BF02382520; Anderson M., 1996, BRIT POPULATION HIST, P191; Aries Philippe, 1962, CENTURIES CHILDHOOD; Bagnall R. S., 1994, DEMOGRAPHY ROMAN EGY; Barber B., 2000, EVOLUTIONARY PSYCHOL, V6, P234; Bjorklund D. F., 2007, WHY YOUTH IS NOT WAS; BJORKLUND DF, 1987, DEV REV, V7, P86, DOI 10.1016/0273-2297(87)90006-2; Blurton JN, 2005, HUNTER GATHERER CHIL, P214; Boesch C., 2000, CHIMPANZEES TAI FORE; Bogin B, 1997, YEARB PHYS ANTHROPOL, V40, P63; Bogin B, 1996, AM J HUM BIOL, V8, P703, DOI 10.1002/(SICI)1520-6300(1996)8:6<703::AID-AJHB2>3.0.CO;2-U; Bogin B., 1999, PATTERNS HUMAN GROWT; BOHLER E, 1995, J BIOSOC SCI, V27, P431; Bowlby J, 1982, LOSS SADNESS DEPRESS; Bryce J, 2005, LANCET, V365, P1147, DOI 10.1016/S0140-6736(05)71877-8; Budnik A, 2006, AM J PHYS ANTHROPOL, V129, P294, DOI 10.1002/ajpa.20288; BULGER J, 1987, INT J PRIMATOL, V8, P635, DOI 10.1007/BF02735781; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; CAMPOS JJ, 1992, PSYCHOL SCI, V3, P61, DOI 10.1111/j.1467-9280.1992.tb00259.x; CHARBONNEAU H, 1970, TOUROUVRE AU PERCHE; CHARBONNEAU H, 2000, POPULATION HIST N AM, P99; Cheney DL, 2004, INT J PRIMATOL, V25, P401, DOI 10.1023/B:IJOP.0000019159.75573.13; Coale A.J., 1986, DECLINE FERTILITY EU; Cochran G, 2009, 10000 YEAR EXPLOSION; COHEN JE, 1975, DEMOGRAPHY, V12, P35, DOI 10.2307/2060731; Colson M. N., 1958, MARRIAGE FAMILY PLAT; Cunningham Hugh, 2005, CHILDREN CHILDHOOD W; Cvorovic J, 2008, PERS INDIV DIFFER, V44, P1604, DOI 10.1016/j.paid.2008.01.019; Dawkins R., 1989, SELFISH GENE; De Lathouwers M, 2005, INT J PRIMATOL, V26, P55, DOI 10.1007/s10764-005-0723-0; Debyser IWJ, 1995, INT J PRIMATOL, V16, P935, DOI 10.1007/BF02696111; DeVries M. W., 1987, CHILD SURVIVAL ANTHR, P165; DIEZ AAP, 1978, J HUM EVOL, V7, P253; Dittus W. P. J., 1981, TECHNIQUES STUDY PRI, P135; DITTUS WPJ, 1977, BEHAVIOUR, V63, P281, DOI 10.1163/156853977X00450; Drusini AG, 2001, HOMO, V52, P157, DOI 10.1078/0018-442X-00026; Dubas JS, 2009, HUM NATURE-INT BIOS, V20, P80, DOI 10.1007/s12110-009-9058-4; DUGDALE AE, 1980, MED J AUSTRALIA, V2, P380; DUNBAR RIM, 1974, FOLIA PRIMATOL, V21, P188, DOI 10.1159/000155600; DYKE B, 1993, AM J PRIMATOL, V29, P269, DOI 10.1002/ajp.1350290404; EARLY JD, 1990, POPULATION DYNAMICS; EDER JF, 1987, ROAD TRIBAL EXTINCTI; Ellis B. J., 2005, ORIGINS SOCIAL MIND; Eshed V, 2004, AM J PHYS ANTHROPOL, V124, P315, DOI 10.1002/ajpa.10332; Feliciano Z. M., 2000, POPULATION HIST N AM, P601; Firth R., 1983, WE TIKOPIA; Foley Robert, 1995, Evolutionary Anthropology, V4, P194, DOI 10.1002/evan.1360040603; Fortes M., 1943, SOCIOL REV, V35, P99; Fricke T. E., 1984, HIMALAYAN HOUSEHOLDS; Furlow FB, 1997, EVOL HUM BEHAV, V18, P175, DOI 10.1016/S1090-5138(97)00006-8; Furuichi T, 1998, INT J PRIMATOL, V19, P1029, DOI 10.1023/A:1020326304074; GAGE TB, 1994, DEMOGRAPHY, V31, P271, DOI 10.2307/2061886; Geary DC, 2001, PARENT-SCI PRACT, V1, P5, DOI 10.1207/S15327922PAR011&2_2; Geary DC, 2010, MALE FEMALE EVOLUTIO; GIBSON EJ, 1960, SCI AM, V202, P64, DOI 10.1038/scientificamerican0460-64; Gille H, 1949, POP STUD-J DEMOG, V3, P3, DOI 10.2307/2172491; Golden M, 1990, CHILDREN CHILDHOOD C; Golding J, 1997, EARLY HUM DEV, V49, pS143, DOI 10.1016/S0378-3782(97)00060-1; Goldschmidt W., 1976, CULTURE BEHAV SEBEK; Goodall J, 1986, CHIMPANZEES GOMBE; Gould L, 2003, AM J PHYS ANTHROPOL, V120, P182, DOI 10.1002/ajpa.10151; Grammer K, 2003, BIOL REV, V78, P385, DOI 10.1017/S1464793102006085; Gurven M, 2007, POPUL DEV REV, V33, P321, DOI 10.1111/j.1728-4457.2007.00171.x; Guttormsson L., 2002, HYGIEA INT INTERDISC, V3, P151; Haines M., 2000, POPULATION HIST N AM, P305; HARCOURT AH, 1981, J ZOOL, V195, P215; Hart D., 2005, MAN HUNTED PRIMATES; Hartl D. L., 1997, PRINCIPLES POPULATIO; HAUSER MD, 1988, AM NAT, V131, P573, DOI 10.1086/284807; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Hawkes K, 1989, COMP SOCIOECOLOGY BE, P341; HAWLEY PH, 2007, AGGRESSION ADAPTATIO; HEADLAND T N, 1989, American Journal of Human Biology, V1, P59, DOI 10.1002/ajhb.1310010111; HEWLETT BS, 1991, J ANTHROPOL RES, V47, P1; HILL K, 1989, AM SCI, V77, P436; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Hill K, 2007, J HUM EVOL, V52, P443, DOI 10.1016/j.jhevol.2006.11.003; Hill K, 2009, P ROY SOC B-BIOL SCI, V276, P3863, DOI 10.1098/rspb.2009.1061; Hill RA, 1998, BEHAVIOUR, V135, P411; HOBCRAFT J, 1983, POPUL INDEX, V49, P585, DOI 10.2307/2737284; Houweling TAJ, 2010, BRIT MED BULL, V93, P7, DOI 10.1093/bmb/ldp048; Howell N., 1979, DEMOGRAPHY DOBE KUNG; HRDY S, 1999, MOTHER NATURE; Hrdy S. B., 2009, MOTHERS OTHERS EVOLU; Human Mortality Database at University of California Berkeley (USA), HUM MORT DAT; HURTADO AM, 1987, HUM ECOL, V15, P163; Irons W, 1998, EVOL ANTHROPOL, V6, P194, DOI 10.1002/(SICI)1520-6505(1998)6:6<194::AID-EVAN2>3.0.CO;2-B; JANNETTA AB, 1991, POP STUD-J DEMOG, V45, P417, DOI 10.1080/0032472031000145616; Johnston F. E., 2005, AM J PHYS ANTHROPOL, V19, P237; Jolly A., 1973, International Zoo Yearbook, V13, P391, DOI 10.1111/j.1748-1090.1973.tb02188.x; Jones JH, 2009, EVOL HUM BEHAV, V30, P305, DOI 10.1016/j.evolhumbehav.2009.01.005; Jones NGB, 2002, AM J HUM BIOL, V14, P184, DOI 10.1002/ajhb.10038; KLEINMAN JC, 1991, AM J EPIDEMIOL, V133, P133, DOI 10.1093/oxfordjournals.aje.a115852; KNODEL J, 1970, POP STUD-J DEMOG, V24, P353, DOI 10.1080/00324728.1970.10406134; KNODEL J, 1984, AM J PUBLIC HEALTH, V74, P1098, DOI 10.2105/AJPH.74.10.1098; Kondgen S, 2008, CURR BIOL, V18, P260, DOI 10.1016/j.cub.2008.01.012; Konigsberg Lyle W., 1994, Evolutionary Anthropology, V3, P92, DOI 10.1002/evan.1360030306; Konner M., 2010, EVOLUTION CHILDHOOD; Konner Melvin J., 1977, CULTURE INFANCY VARI, P287; Kramer KL, 2007, AM ANTHROPOL, V109, P713, DOI [10.1525/aa.2007.109.4.713, 10.1525/AA.2007.109.4.713]; Lachiver M., 1969, POPULATION MEULAN 1; Landers J., 1992, HLTH TRANSITION REV, V2, P47; Lee Richard, 1999, CAMBRIDGE ENCY HUNTE; LEVINE Nancy E., 1988, DYNAMICS POLYANDRY K; Lewis ME, 2007, CAM S BIO EVOL ANTHR, V50, P1; Malaurie J, 1952, POPULATION, V7, P675, DOI 10.2307/1524871; Marlowe FW, 2010, ORIG HUM BEHAV, V3, P1; Melnick D., 1981, THESIS YALE U; Menard N., 1996, P106; Miller Alan S., 2007, WHY BEAUTIFUL PEOPLE; Milner George R., 2000, BIOL ANTHR HUMAN SKE, P467; Moffat T, 1999, SOC SCI MED, V48, P1821, DOI 10.1016/S0277-9536(99)00074-X; Moller AP, 1999, P ROY SOC B-BIOL SCI, V266, P85, DOI 10.1098/rspb.1999.0607; MULDER MB, 1992, HUM ECOL, V20, P383, DOI 10.1007/BF00890427; MULDER MB, 1988, REPROD SUCCESS, P419; Murdock George P., 1934, OUR PRIMITIVE CONT; Nagaoka T, 2006, AM J PHYS ANTHROPOL, V131, P1, DOI 10.1002/ajpa.20402; NEEL JV, 1975, AM J PHYS ANTHROPOL, V42, P25, DOI 10.1002/ajpa.1330420105; Omariba DWR, 2007, J MARRIAGE FAM, V69, P528, DOI 10.1111/j.1741-3737.2007.00381.x; Oris M., 2004, LIFE PRESSURE MORTAL, P359; Orme Nicholas, 2001, MEDIEVAL CHILDREN; PALLONI A, 1986, POP STUD-J DEMOG, V40, P215, DOI 10.1080/0032472031000142036; Peacock N. B., 1988, COPING UNCERTAINTY F, P88; PELLEGRINI AD, 2005, NATURE PLAY GREAT AP; Pinker Steven, 2011, BETTER ANGELS OUR NA; Popsil L., 1963, KAPAUKU PAPUAN EC; PRESTON SH, 1978, POP STUD-J DEMOG, V32, P275, DOI 10.2307/2173562; Puts DA, 2010, EVOL HUM BEHAV, V31, P157, DOI 10.1016/j.evolhumbehav.2010.02.005; Puyi A. J., 1964, MY FORMER LIFE; Rawson Beryl, 2003, CHILDREN CHILDHOOD R; Richard AF, 2002, J ZOOL, V256, P421, DOI 10.1017/S0952836902000468; Roberts GW, 1952, POP STUD-J DEMOG, V5, P238, DOI 10.2307/2172428; Roff D., 1993, EVOLUTION LIFE HIST; ROTH EA, 1981, J HUM EVOL, V10, P413, DOI 10.1016/S0047-2484(81)80005-X; SALZANO FM, 1967, AM J HUM GENET, V19, P463; Sastry N, 2004, DEMOGRAPHY, V41, P443, DOI 10.1353/dem.2004.0027; Schaller G. B., 1963, MOUNTAIN GORILLA ECO; Scheib JE, 1999, P ROY SOC B-BIOL SCI, V266, P1913, DOI 10.1098/rspb.1999.0866; Sear R, 2002, DEMOGRAPHY, V39, P43, DOI 10.1353/dem.2002.0010; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; SIBAJUDDIN SM, 1984, MAN INDIA, V64, P181; SIGG H, 1982, Primates, V23, P473, DOI 10.1007/BF02373959; Smith EA, 2010, EVOL HUM BEHAV, V31, P231, DOI 10.1016/j.evolhumbehav.2010.03.001; Smith HJ, 2005, PARENTING PRIMATES; SMITH TE, 1960, POP STUD-J DEMOG, V14, P94, DOI 10.2307/2172009; Snow C. E., 1948, U KENTUCKY REPORTS A, VIV; Soltis J, 2004, BEHAV BRAIN SCI, V27, P443; Stearns PN, 2006, THEMES WORLD HIST, P1; Stearns S. C., 2008, FDN EVOLUTIONARY PSY, P47; STECKEL RH, 1986, EXPLOR ECON HIST, V23, P173, DOI 10.1016/0014-4983(86)90012-4; STOREY R, 1985, AM ANTHROPOL, V87, P519, DOI 10.1525/aa.1985.87.3.02a00010; Sugiyama Y, 2004, AM J PHYS ANTHROPOL, V124, P154, DOI 10.1002/ajpa.10345; Sugiyama Y., 1994, AM J PRIMATOL, V32, P134; Takahata Y, 1998, PRIMATES, V39, P339, DOI 10.1007/BF02573082; Thornton Russell, 2000, POPULATION HIST N AM, P9; Tishkoff SA, 2007, NAT GENET, V39, P31, DOI 10.1038/ng1946; Todman D, 2007, AUST NZ J OBSTET GYN, V47, P82, DOI 10.1111/j.1479-828X.2007.00691.x; Tooby J., 1992, ADAPTED MIND EVOLUTI, P19, DOI DOI 10.1086/418398; Torres SMF, 2002, VET DERMATOL, V13, P275, DOI 10.1046/j.1365-3164.2002.00309.x; TRINKAUS E, 1995, J ARCHAEOL SCI, V22, P121, DOI 10.1016/S0305-4403(95)80170-7; TURPEINEN O, 1978, POP STUD-J DEMOG, V32, P523, DOI 10.2307/2173725; United Nations Data, 2008, WORLD POP PROSP 2006; van Noordwijk MA, 2005, AM J PHYS ANTHROPOL, V127, P79, DOI 10.1002/ajpa.10426; VANARSDALE PW, 1978, HUM ECOL, V6, P435, DOI 10.1007/BF00889419; VICTORA CG, 1987, LANCET, V2, P319; Volk A, 2002, HUM NATURE-INT BIOS, V13, P437, DOI 10.1007/s12110-002-1002-9; Volk A., 2012, OXFORD HDB EVOLUTION, P270; Volk A., 2007, EVOLUTIONARY PSYCHOL, V5, P1, DOI DOI 10.1556/JEP.2007.1018; Volk A. A., 2008, J SOCIAL EVOLUTIONAR, V2, P247, DOI [DOI 10.1037/H0099341, 10.1037/h0099341]; Volk A. A., 2007, EVOLUTIONARY PSYCHOL, V5, P801, DOI DOI 10.1177/147470490700500409; Volk A. A., 2011, J HIST CHILDHOOD YOU, V4, P470; Volk AA, 2009, J SOC EVOL CULT PSYC, V3, P305, DOI DOI 10.1037/H0099314; Volk AA, 2012, AGGRESSIVE BEHAV, V38, P222, DOI 10.1002/ab.21418; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; Walz L., 2006, COMP PROGRAM HLTH SO, P22; WATTS DP, 1989, ETHOLOGY, V81, P1; WEISNER TS, 1977, CURR ANTHROPOL, V18, P169, DOI 10.1086/201883; Wich SA, 2004, J HUM EVOL, V47, P385, DOI 10.1016/j.jhevol.2004.08.006; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Wood J., 1983, HLTH MOTHERS INFANTS; WOOD JW, 1987, AM NAT, V129, P165, DOI 10.1086/284628; WOOD JW, 1994, DYNAMICS HUMAN REPRO; Wrangham R.W., 1992, P81; Wrangham Richard, 2000, Microbial Ecology in Health and Disease, V12, P186, DOI 10.1080/089106000750051855; WRIGHT PC, 1995, INT J PRIMATOL, V16, P835, DOI 10.1007/BF02735722; Yamagiwa J., 2001, GORILLAS 3 DECADES R, P89; Yi X, 2010, SCIENCE, V329, P75, DOI 10.1126/science.1190371; ZELLER AC, 1987, MAN, V22, P528, DOI 10.2307/2802504 193 26 26 0 46 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 1879-0607 EVOL HUM BEHAV Evol. Hum. Behav. MAY 2013 34 3 182 192 10.1016/j.evolhumbehav.2012.11.007 11 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences 133JM WOS:000318134700004 2018-11-12 J Mattison, SM; Neill, DB Mattison, Siobhan M.; Neill, Dawn B. The effects of residential ecology on patterns of child work and mother's reproductive success among Indo-Fijians EVOLUTION AND HUMAN BEHAVIOR English Article Child productive work; Embodied capital; Urban; Rural; Quality-quantity trade-off; Life history theory BIASED PARENTAL INVESTMENT; OKAVANGO DELTA PEOPLES; HUMAN LIFE-HISTORY; AT-THE-NEST; CONSTRAINTS MODEL; TRADE-OFFS; FERTILITY; EVOLUTION; LABOR; KIN A central question in human life history theory surrounds the rapid pace of reproduction of human mothers. Accordingly, evolutionary anthropologists have debated who provides assistance to human mothers and how. Here, we develop an embodied capital framework (i.e., a parental investment strategy focused on improving the adult productivity of offspring) to understand urban-rural differences in the extent to which children help to underwrite the costs of their dependence among Indo-Fijians. We employ multiple regression analysis to explore the relationships among various categories of helpful activity, residential ecology and mother's reproductive success and show that, while rural children work more overall compared to urban children, childcare is the only productive activity with any relationship to mother's reproductive success. We conclude by providing support for the general idea that children are potentially important sources of allomaternal help, but emphasize the need for more nuanced models of how such help is provided. Published by Elsevier Inc. [Mattison, Siobhan M.] Univ Auckland, Dept Anthropol, Auckland 1, New Zealand; [Neill, Dawn B.] Calif Polytech State Univ San Luis Obispo, Dept Social Sci, San Luis Obispo, CA 93407 USA Neill, DB (reprint author), Calif Polytech State Univ San Luis Obispo, Dept Social Sci, 1 Grand Ave, San Luis Obispo, CA 93407 USA. dbneill@calpoly.edu Mattison, Siobhan/0000-0002-9537-5459 NSF Dissertation Improvement Grant This work was supported by an NSF Dissertation Improvement Grant to the corresponding author. We thank the study participants without whom this research would not exist. We thank the Center for Studies in Demography and Ecology and the Center for Statistics in the Social Sciences at the University of Washington for logistical support, and the Morrison Institute for Population and Resource Studies and the Department of Anthropology at Stanford University for writing support. We thank Donna Leonetti, Benjamin Trumble, Eric A. Smith, Steven Gaulin and three anonymous reviewers for providing useful comments and criticisms on earlier drafts of the paper. Peter Mattison also provided assistance with the database. ALTMANN J, 1974, BEHAVIOUR, V49, P227, DOI 10.1163/156853974X00534; BARRY H, 1959, AM ANTHROPOL, V61, P51; Beise J., 2005, GRANDMOTHERHOOD EVOL, P215; Bereczkei T, 2002, CURR ANTHROPOL, V43, P804, DOI 10.1086/344374; Bird RB, 2002, HUM NATURE-INT BIOS, V13, P239, DOI 10.1007/s12110-002-1009-2; Blurton Jones N., 1989, COMP SOCIOECOLOGY; Blurton Jones N. G., 1972, ETHOLOGICAL STUDIES; Bock J, 2004, HUM NATURE-INT BIOS, V15, P63, DOI 10.1007/s12110-004-1004-x; Bock J, 2002, AM J HUM BIOL, V14, P206, DOI 10.1002/ajhb.10040; Booth H, 2001, GENUS, VLVII, P165; Brewis A, 2010, AM J HUM BIOL, V22, P60, DOI 10.1002/ajhb.20954; CAIN MT, 1977, POPUL DEV REV, V3, P201, DOI 10.2307/1971889; Crognier E, 2001, AM J HUM BIOL, V13, P365, DOI 10.1002/ajhb.1060; Ember Carol R., 1973, ETHOS, V1, P424, DOI DOI 10.1525/ETH.1973.1.4.02A00050; EMLEN ST, 1982, AM NAT, V119, P29, DOI 10.1086/283888; FIBS (Fiji Island Bureau of Statistics), 2010, FIJ NAT CENS POP 200; FLINN MV, 1989, SOCIOBIOLOGY SEXUAL, P206; Gelman A., 2007, DATA ANAL USING REGR; Gibson MA, 2002, CURR ANTHROPOL, V43, P631, DOI 10.1086/342428; Gibson MA, 2011, EVOL HUM BEHAV, V32, P97, DOI 10.1016/j.evolhumbehav.2010.10.002; Gurven M, 2006, P ROY SOC B-BIOL SCI, V273, P835, DOI 10.1098/rspb.2005.3380; Hagen EH, 2009, CURR ANTHROPOL, V50, P727, DOI 10.1086/605328; Hames R, 2004, HUM NATURE-INT BIOS, V15, P319, DOI 10.1007/s12110-004-1012-x; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; JONES NB, 1994, J ANTHROPOL RES, V50, P217, DOI 10.1086/jar.50.3.3630178; JONES NGB, 1997, UNITING PSYCHOL BIOL, P279; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kaplan H, 1996, YEARB PHYS ANTHROPOL, V39, P91; KAPLAN HS, 2000, ADAPTATION HUMAN BEH; Kelly John D., 1991, POLITICS VIRTUE HIND; Kramer KL, 2011, HUM NATURE-INT BIOS, V22, P303, DOI 10.1007/s12110-011-9122-8; Kramer KL, 2010, EVOL ANTHROPOL, V19, P136, DOI 10.1002/evan.20265; Kramer KL, 2005, EVOL ANTHROPOL, V14, P224, DOI 10.1002/evan.20082; Kramer KL, 2002, CURR ANTHROPOL, V43, P511, DOI 10.1086/340239; Kramer KL, 2002, HUM NATURE-INT BIOS, V13, P299, DOI 10.1007/s12110-002-1011-8; Lal B. J., 2001, ENDANGERED PEOPLES O; Lawson DW, 2008, INT J EPIDEMIOL, V37, P1408, DOI 10.1093/ije/dyn116; Lee R. D., 1983, DETERMINANTS FERTILI, P191; Lee RD, 2002, POPUL DEV REV, V28, P475, DOI 10.1111/j.1728-4457.2002.00475.x; Leonetti DL, 2011, HUM NATURE-INT BIOS, V22, P16, DOI 10.1007/s12110-011-9111-y; Long J. S., 1997, REGRESSION MODELS CA; Mace R, 1998, PHILOS T R SOC B, V353, P389, DOI 10.1098/rstb.1998.0217; Mace R, 2000, ANIM BEHAV, V59, P1, DOI 10.1006/anbe.1999.1287; Mahalingam R, 2007, EVOL HUM BEHAV, V28, P319, DOI 10.1016/j.evolhumbehav.2007.01.004; Mattison S. M., 2010, ASIA PACIFIC J ANTHR, V11, P157; Mattison SM, 2011, HUM NATURE-INT BIOS, V22, P64, DOI 10.1007/s12110-011-9107-7; Miles A., 1993, ANTHR WORK REV, V13-14, P12; Mulder M Borgerhoff, 1992, EVOLUTIONARY ECOLOGY, P339; MULDER MB, 1985, CURR ANTHROPOL, V26, P323, DOI 10.1086/203277; MUNROE RH, 1984, AM ANTHROPOL, V86, P369, DOI 10.1525/aa.1984.86.2.02a00120; NAG M, 1978, CURR ANTHROPOL, V19, P293, DOI 10.1086/202076; Neill DB, 2007, HUM NATURE-INT BIOS, V18, P209, DOI 10.1007/s12110-007-9011-3; Neill DB, 2011, HUM NATURE-INT BIOS, V22, P139, DOI 10.1007/s12110-011-9110-z; Nieuwenhuys O, 1996, ANNU REV ANTHROPOL, V25, P237, DOI 10.1146/annurev.anthro.25.1.237; Quinlan RJ, 2008, HUM NATURE-INT BIOS, V19, P87, DOI 10.1007/s12110-007-9026-9; R Core Development Team, 2011, R LANG ENV STAT COMP; Reddy Mahendra, 2001, DEV B, V55, P33; REYNOLDS P, 1991, DANCE CIVET CAT CHIL; Sear R, 2002, DEMOGRAPHY, V39, P43, DOI 10.1353/dem.2002.0010; SEAR R, 2000, P ROYAL SOC B, V267, P461; Sear R, 2008, HUM NATURE-INT BIOS, V19, P277, DOI 10.1007/s12110-008-9042-4; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; Strassmann BI, 2003, AM J HUM BIOL, V15, P361, DOI 10.1002/ajhb.10154; Towner MC, 2007, EVOL ANTHROPOL, V16, P107, DOI 10.1002/evan.20134; TRIVERS RL, 1974, AM ZOOL, V14, P249; Turke P., 1988, HUMAN REPROD BEHAV D, P173; Yamanaka M, 2002, AM J HUM BIOL, V14, P356, DOI 10.1002/ajhb.10030 70 6 6 0 71 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 EVOL HUM BEHAV Evol. Hum. Behav. MAY 2013 34 3 207 215 10.1016/j.evolhumbehav.2013.01.002 9 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences 133JM WOS:000318134700007 2018-11-12 J Le Vaillant, M; Le Bohec, C; Prud'Homme, O; Wienecke, B; Le Maho, Y; Kato, A; Ropert-Coudert, Y Le Vaillant, Maryline; Le Bohec, Celine; Prud'Homme, Onesime; Wienecke, Barbara; Le Maho, Yvon; Kato, Akiko; Ropert-Coudert, Yan How age and sex drive the foraging behaviour in the king penguin MARINE BIOLOGY English Article DIVING BEHAVIOR; APTENODYTES-PATAGONICUS; STABLE-ISOTOPES; REPRODUCTIVE-PERFORMANCE; CROZET ARCHIPELAGO; SOUTHERN-OCEAN; STRATEGIES; SEGREGATION; SEABIRD; HABITAT As predicted by life history theory, once recruited into the breeding population and with increasing age, long-lived animals should be able to manage more efficiently the conflict between self-maintenance and reproduction. Consequently, breeding performances should improve with age before stabilizing at a certain level. Using temperature-depth recorders and isotopic analysis, we tested how age affects the foraging behaviour of king penguin Aptenodytes patagonicus during one trip in the chick-rearing phase. Depending on sex and age, king penguins expressed two different foraging strategies. Older birds gained more daily mass per unit body mass than younger ones. Older females conducted shorter trips, dived deeper and performed more prey pursuits. They also had higher blood levels of delta N-15 than younger individuals and males indicating sex- and age-specific dietary regimes. However, we found no differences in carbon isotopic signature, suggesting that individuals exploited the same foraging areas independently of sex and age. Our results suggest that king penguins are able to increase the quantity of energy extracted with increasing age and that such a strategy is sex-related. Our study is the first to reveal of an interaction between age and sex in determining foraging efficiency in king penguins. [Le Vaillant, Maryline; Le Bohec, Celine; Prud'Homme, Onesime; Le Maho, Yvon; Kato, Akiko; Ropert-Coudert, Yan] Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, F-67087 Strasbourg, France; [Le Vaillant, Maryline; Le Bohec, Celine; Prud'Homme, Onesime; Le Maho, Yvon; Kato, Akiko; Ropert-Coudert, Yan] CNRS, UMR7178, F-67037 Strasbourg, France; [Le Bohec, Celine] Ctr Sci Monaco, MC-98000 Monaco, Monaco; [Le Bohec, Celine] CNRS, LEA BioSensib CSM 647, MC-98000 Monaco, Monaco; [Le Bohec, Celine] Univ Oslo, Dept Biol, Nord Ctr Res Marine Ecosyst & Resources Climate C, Ctr Ecol & Evolutionary Synth, N-0316 Oslo, Norway; [Wienecke, Barbara] Australian Antarctic Div, Kingston, Tas 7050, Australia Le Vaillant, M (reprint author), Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, 23 Rue Becquerel, F-67087 Strasbourg, France. levaillant.mary@gmail.com Institut Polaire Francais Paul-Emile Victor [ECOPHY 137]; Centre National de la Recherche Scientifique; Fondation Prince Albert II de Monaco; Fondation des Treilles; Marie Curie Intra European Fellowship (European Commission) [235962] Thanks to Paul E. Viblanc for his help in pre-analysing diving data. We are grateful to B. Friess for his help on the Radio Frequency IDentification analysis and H. Gachot-Neveu for sexing birds. Thanks to T. Raclot for his help in delipidating samples, to J.-P. Robin for lyophylizing samples and to P. Richard and G. Guillou for isotopic measurements. We thank all volunteers for their help with field work. This work was supported by the Institut Polaire Francais Paul-Emile Victor (Program ECOPHY 137), and by the grants from the Centre National de la Recherche Scientifique, the Fondation Prince Albert II de Monaco (http://www.fpa2.com) and the Fondation des Treilles (to M. L. V.), and the Marie Curie Intra European Fellowship (FP7-PEOPLE-IEF-2008, European Commission; project No 235962) (to C.L.B.). Angelier F, 2008, GEN COMP ENDOCR, V156, P134, DOI 10.1016/j.ygcen.2007.12.001; Awkerman JA, 2007, CAN J ZOOL, V85, P273, DOI 10.1139/Z06-202; BANNASCH R, 1994, J EXP BIOL, V194, P83; Barrat A, 1976, COM NAT FR RECH ANT, V40, P107; Bearhop S, 2002, PHYSIOL BIOCHEM ZOOL, V75, P451, DOI 10.1086/342800; Bost CA, 2007, DEEP-SEA RES PT II, V54, P248, DOI 10.1016/j.dsr2.2006.11.007; Bost CA, 1997, MAR ECOL PROG SER, V150, P21, DOI 10.3354/meps150021; BRANDT CA, 1984, OECOLOGIA, V62, P132, DOI 10.1007/BF00377386; Burnham K. P., 1998, MODEL SELECTION INFE; Burnham K. P., 2002, MODEL SELECTION MULT; Charrassin JB, 1998, OECOLOGIA, V114, P194, DOI 10.1007/s004420050436; Charrassin JB, 2002, MAR BIOL, V141, P581, DOI 10.1007/s00227-002-0843-4; Charrassin JB, 2001, MAR ECOL PROG SER, V221, P285, DOI 10.3354/meps221285; CHEREL Y, 1992, IBIS, V134, P118, DOI 10.1111/j.1474-919X.1992.tb08388.x; Cherel Y, 2005, ECOLOGY, V86, P2881, DOI 10.1890/05-0562; Cherel Y, 2010, LIMNOL OCEANOGR, V55, P324, DOI 10.4319/lo.2010.55.1.0324; Clarke J, 1998, J FIELD ORNITHOL, V69, P149; Cottin M, 2011, ORNITHOL SC, V10, P1; Daunt F, 2007, FUNCT ECOL, V21, P561, DOI 10.1111/j.1365-2435.2007.01260.x; DeForest LN, 1996, ECOLOGY, V77, P1501, DOI 10.2307/2265547; Descamps Sebastien, 2002, Avian Science, V2, P87; Forero MG, 2005, MAR ECOL PROG SER, V296, P107, DOI 10.3354/meps296107; Forero MG, 2002, MAR ECOL PROG SER, V234, P289, DOI 10.3354/meps234289; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Froget G, 1998, POLAR BIOL, V20, P406; Gentry R.L., 1986, P28; Gonzalez-Solis J, 2000, OIKOS, V90, P390, DOI 10.1034/j.1600-0706.2000.900220.x; Goutte A, 2010, FUNCT ECOL, V24, P1007, DOI 10.1111/j.1365-2435.2010.01712.x; Griffiths R, 1998, MOL ECOL, V7, P1071, DOI 10.1046/j.1365-294x.1998.00389.x; Hanuise N, 2010, J EXP BIOL, V213, P3874, DOI 10.1242/jeb.044057; Hobson KA, 1997, CAN J ZOOL, V75, P1720, DOI 10.1139/z97-799; HOBSON KA, 1993, AUK, V110, P638, DOI 10.2307/4088430; Kato A, 2006, MAR ECOL PROG SER, V308, P293, DOI 10.3354/meps308293; Kato A, 1999, CR ACAD SCI III-VIE, V322, P557, DOI 10.1016/S0764-4469(00)88525-X; Kato A, 2000, AUK, V117, P718, DOI 10.1642/0004-8038(2000)117[0718:VIFAPB]2.0.CO;2; KOOYMAN GL, 1992, ECOL MONOGR, V62, P143, DOI 10.2307/2937173; Koubbi P, 2001, ANTARCT SCI, V13, P385; Lack D., 1954, NATURAL REGULATION A; Le Vaillant M, 2012, J EXP BIOL, V215, P3685, DOI 10.1242/jeb.071175; Lecomte VJ, 2010, P NATL ACAD SCI USA, V107, P6370, DOI 10.1073/pnas.0911181107; Lewis S, 2005, IBIS, V147, P408, DOI 10.1111/j.1474-919x.2005.00428.x; MARCHETTI K, 1989, BIOL REV, V64, P51, DOI 10.1111/j.1469-185X.1989.tb00638.x; Nisbet ICT, 2009, J AVIAN BIOL, V40, P296, DOI 10.1111/j.1600-048X.2008.04563.x; Part T, 2001, ANIM BEHAV, V62, P379, DOI 10.1006/anbe.2001.1754; Part T., 1996, P ROY SOC LOND B BIO, V360, P113, DOI [DOI 10.1098/RSPB.1995.0067, 10.1098/rspb.1995.0067]; Pinet P, 2012, ANIM BEHAV, V83, P979, DOI 10.1016/j.anbehav.2012.01.019; Pinheiro J., 2010, NLME LINEAR NONLINEA; Putz K, 2005, MAR BIOL, V147, P281, DOI 10.1007/s00227-005-1577-x; R Development Core Team, 2008, R LANG ENV STAT COMP; Ridoux Vincent, 1994, Marine Ornithology, V22, P1; Rutz C, 2006, P ROY SOC B-BIOL SCI, V273, P579, DOI 10.1098/rspb.2005.3353; Saraux C, 2011, BEHAV ECOL, V22, P837, DOI 10.1093/beheco/arr049; Schreer JF, 1997, CAN J ZOOL, V75, P339, DOI 10.1139/z97-044; Schulte-Hostedde AI, 2005, ECOLOGY, V86, P155, DOI 10.1890/04-0232; WEIMERSKIRCH H, 1992, IBIS, V134, P107, DOI 10.1111/j.1474-919X.1992.tb08387.x; Weimerskirch H, 1997, ECOLOGY, V78, P2051; Welcker J, 2009, IBIS, V151, P502, DOI 10.1111/j.1474-919X.2009.00931.x; WILSON RP, 1989, WILDLIFE SOC B, V17, P77; WILSON RP, 1992, J EXP BIOL, V167, P267; WILSON RP, 1995, J AVIAN BIOL, V26, P172, DOI 10.2307/3677067; Zimmer I, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016098 61 14 14 1 90 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0025-3162 MAR BIOL Mar. Biol. MAY 2013 160 5 1147 1156 10.1007/s00227-013-2167-y 10 Marine & Freshwater Biology Marine & Freshwater Biology 131OL WOS:000318002900010 2018-11-12 J Postma, M; Bester, MN; de Bruyn, PJN Postma, Martin; Bester, Marthan N.; de Bruyn, P. J. Nico Age-related reproductive variation in a wild marine mammal population POLAR BIOLOGY English Article Southern elephant seals; Mirounga leonina; Photogrammetry; Age-specific reproduction; Pup survival; Life history theory SOUTHERN ELEPHANT SEALS; MIROUNGA-LEONINA; CAPITAL BREEDER; MACQUARIE ISLAND; WEANING MASS; GROWTH; SURVIVAL; PUPS; DISPERSION; OCEAN Life history theory predicts a change in reproduction success with age as energy resources are limited and must be allocated effectively to maximize reproduction and survival. In this study, we use three reproductive performance measures, maternal expenditure, offspring weaning mass, and first-year survival, to investigate the role that maternal age plays in successful reproduction. Long-term uninterrupted life history data available for Marion Island's southern elephant seals and mass change estimates from photogrammetry data allow for assessment of age-related reproduction performance and trade-offs. Known-aged adult females were photographed for photogrammetric mass estimation (n = 29) and their pups weighed at weaning during the 2009 breeding season. Maternal age and proportional mass loss positively influenced pup weaning mass. In turn, first-year pup return rates (as a proxy for survival) were assessed through the intensive mark-recapture program. Pup survival increased with female age and weaning mass. Pups of young females aged 3-6 years have a lower first-year survival probability compared with pups of older and larger females. [Postma, Martin; Bester, Marthan N.; de Bruyn, P. J. Nico] Univ Pretoria, Mammal Res Inst, Dept Zool & Entomol, ZA-0028 Hatfield, South Africa Postma, M (reprint author), Univ Pretoria, Mammal Res Inst, Dept Zool & Entomol, Private Bag X20, ZA-0028 Hatfield, South Africa. mpostma@zoology.up.ac.za de Bruyn, P. J. Nico/E-4176-2010 de Bruyn, P. J. Nico/0000-0002-9114-9569 Department of Science and Technology We thank the South African Department of Environmental Affairs for providing logistical support within the South African National Antarctic Programme and the Department of Science and Technology (administered through the National Research Foundation) for funding the marine mammal monitoring programme at Marion Island. The Marion Island seal researchers of 2006, 2007, 2008, and 2009 in particular are thanked for their endless hours of data collection. ARNBOM T, 1994, BEHAV ECOL SOCIOBIOL, V35, P373, DOI 10.1007/BF00165838; ARNBOM T, 1993, CAN J ZOOL, V71, P1772, DOI 10.1139/z93-252; Arnbom T, 1997, ECOLOGY, V78, P471; Barton K., 2011, MUMIN MULTIMODEL INF; Bates D., 2011, LME4 LINEAR MIXED EF; Bell CM, 1997, AUST J ZOOL, V45, P447, DOI 10.1071/ZO96067; Biuw M, 2007, P NATL ACAD SCI USA, V104, P13705, DOI 10.1073/pnas.0701121104; Bowen WD, 2006, J ANIM ECOL, V75, P1340, DOI 10.1111/j.1365-2656.2006.01157.x; BOYD IL, 1995, J ANIM ECOL, V64, P505, DOI 10.2307/5653; BRYDEN MM, 1969, GROWTH, V33, P69; Burnham K. P., 2002, MODEL SELECTION MULT; Carlini AR, 1997, POLAR BIOL, V18, P305, DOI 10.1007/s003000050192; Clutton-Brock T.H., 1988, REPROD SUCCESS STUDI; CURIO E, 1983, IBIS, V125, P400, DOI 10.1111/j.1474-919X.1983.tb03130.x; de Bruyn PJN, 2011, ANIM BEHAV, V82, P445, DOI 10.1016/j.anbehav.2011.06.006; de Bruyn PJN, 2009, AQUAT BIOL, V5, P31, DOI 10.3354/ab00135; de Bruyn PJN, 2008, S AFR J WILDL RES, V38, P133, DOI 10.3957/0379-4369-38.2.133; de Bruyn PJN, 2012, MARION ISLAND MARINE; Fedak MA, 1996, PHYSIOL ZOOL, V69, P887, DOI 10.1086/physzool.69.4.30164234; Festa-Bianchet M, 1998, AM NAT, V152, P367, DOI 10.1086/286175; Fox J, 2011, R COMPANION APPL REG; Kirkman SP, 2004, AUST J ZOOL, V52, P379, DOI 10.1071/ZO03038; Kirkman SP, 2003, S AFR J WILDL RES, V33, P79; KOVACS KM, 1986, J ANIM ECOL, V55, P1035, DOI 10.2307/4432; LAWS R. M., 1956, FALKLAND ISLANDS DEPENDENCIES SURVEY SCI REPT, V13, P1; Laws R. M., 1953, SCI REP FALKLAND IS, V8, P1; LAWS RM, 1956, NATURE, V178, P193, DOI 10.1038/178193a0; McIntyre T, 2010, POLAR BIOL, V33, P1037, DOI 10.1007/s00300-010-0782-3; McMahon CR, 2004, BEHAV ECOL SOCIOBIOL, V55, P349, DOI 10.1007/s00265-003-0721-1; McMahon CR, 1999, POLAR BIOL, V21, P279, DOI 10.1007/s003000050363; McMahon CR, 2003, J ANIM ECOL, V72, P61, DOI 10.1046/j.1365-2656.2003.00685.x; McMahon CR, 2000, ANTARCT SCI, V12, P149; Oosthuizen WC, 2009, AFR J MAR SCI, V31, P457, DOI 10.2989/AJMS.2009.31.3.20.1008; Oosthuizen WC, 2011, ANTARCT SCI, V23, P567, DOI 10.1017/S0954102011000447; Oosthuizen WC, 2010, MAR MAMMAL SCI, V26, P350, DOI 10.1111/j.1748-7692.2009.00328.x; Pistorius PA, 2011, AFR J MAR SCI, V33, P523, DOI 10.2989/1814232X.2011.637357; Pistorius PA, 2004, J ZOOL, V263, P107, DOI 10.1017/S0952836904004984; Pistorius PA, 2001, POLAR BIOL, V24, P828, DOI 10.1007/s003000100285; R Development Core Team, 2011, R LANG ENV STAT COMP; REITER J, 1981, ANIM BEHAV, V29, P670, DOI 10.1016/S0003-3472(81)80002-4; REITER J, 1991, BEHAV ECOL SOCIOBIOL, V28, P153, DOI 10.1007/BF00172166; Remondino F., 2006, INT ARCH PHOTOGRAMM, VXXXVI, P266; Roff DA, 1992, EVOLUTION LIFE HIST; Roff Derek A., 1992; Thorson Philip H., 1994, P271; Trillmich Fritz, 1996, Advances in the Study of Behavior, V25, P533; WILKINSON IS, 1990, J ZOOL, V222, P591, DOI 10.1111/j.1469-7998.1990.tb06016.x; Wilkinson IS, 2001, MAR MAMMAL SCI, V17, P873, DOI 10.1111/j.1748-7692.2001.tb01303.x; WORTHY GAJ, 1983, J MAMMAL, V64, P89, DOI 10.2307/1380753 49 11 11 1 45 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0722-4060 1432-2056 POLAR BIOL Polar Biol. MAY 2013 36 5 719 729 10.1007/s00300-013-1298-4 11 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology 129RB WOS:000317858500008 2018-11-12 J Boothroyd, LG; Craig, PS; Crossman, RJ; Perrett, DI Boothroyd, Lynda G.; Craig, Peter S.; Crossman, Richard J.; Perrett, David I. Father absence and age at first birth in a western sample AMERICAN JOURNAL OF HUMAN BIOLOGY English Article LIFE-HISTORY THEORY; REPRODUCTIVE STRATEGY; MENARCHE; DAUGHTERS; PREGNANCY; GIRLS Objectives Although a large literature has shown links between father absence during early childhood, and earlier puberty and sexual behavior in girls in Western populations, there are only a few studies which have looked at timing of reproduction, and only one of these fully incorporated childless respondents to investigate whether father absence is associated with increased hazard of becoming a parent at one time point (early) more than another. Here we sought to clarify exactly when, if at all, father absence increased the likelihood of first birth in a Western sample. Methods An online sample of 954 women reported on their childhood living circumstances, their age of menarche, first coitus, first pregnancy, and first birth. Results Cox regression and KaplanMeier plots showed an increased risk of becoming a parent for father absent women in their 20s, but no overall greater likelihood of parenthood. Conclusion These data support the suggestion that father absence is associated with an acceleration of reproductive behavior in Western samples, rather than a simple increase in likelihood of reproduction. Am. J. Hum. Biol. 25:366369, 2013. (c) 2013 Wiley Periodicals, Inc. [Boothroyd, Lynda G.] Univ Durham, Dept Psychol, Durham DH1 3LE, England; [Boothroyd, Lynda G.; Perrett, David I.] Univ St Andrews, Sch Psychol, St Andrews, Fife, Scotland; [Craig, Peter S.] Univ Durham, Dept Math Sci, Durham DH1 3LE, England; [Crossman, Richard J.] Univ Warwick, Warwick Med Sch, Coventry CV4 7AL, W Midlands, England Boothroyd, LG (reprint author), Univ Durham, Dept Psychol, Durham DH1 3LE, England. l.g.boothroyd@dur.ac.uk Boothroyd, Lynda/B-9168-2009 Boothroyd, Lynda/0000-0001-6660-5828 BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Boothroyd LG, 2008, J EVOLUTIONARY PSYCH, V6, P187, DOI DOI 10.1556/JEP.6.2008.3.3; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Deardorff J, 2011, J ADOLESCENT HEALTH, V48, P441, DOI 10.1016/j.jadohealth.2010.07.032; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Hoier S, 2003, HUM NATURE-INT BIOS, V14, P209, DOI 10.1007/s12110-003-1004-2; Maestripieri D, 2004, DEVELOPMENTAL SCI, V7, P560, DOI 10.1111/j.1467-7687.2004.00380.x; Nettle D, 2011, P ROY SOC B-BIOL SCI, V278, P1721, DOI 10.1098/rspb.2010.1726; Office for National Statistics, 2009, SER FM1; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; Sear R, 2011, POPUL DEV REV, V37, P81, DOI 10.1111/j.1728-4457.2011.00379.x; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; Waynforth D, 2012, P ROY SOC B-BIOL SCI, V279, P2998, DOI 10.1098/rspb.2012.0220 15 3 3 0 26 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1042-0533 AM J HUM BIOL Am. J. Hum. Biol. MAY-JUN 2013 25 3 366 369 10.1002/ajhb.22378 4 Anthropology; Biology Anthropology; Life Sciences & Biomedicine - Other Topics 132AS WOS:000318040700012 23564358 2018-11-12 J Froy, H; Phillips, RA; Wood, AG; Nussey, DH; Lewis, S Froy, Hannah; Phillips, Richard A.; Wood, Andrew G.; Nussey, Daniel H.; Lewis, Sue Age-related variation in reproductive traits in the wandering albatross: evidence for terminal improvement following senescence ECOLOGY LETTERS English Article Ageing; breeding experience; cost of reproduction; demographic variation; Diomedea exulans; life history theory; reproductive effort; seabird; terminal investment LONG-LIVED SEABIRD; BREEDING SUCCESS; SELECTIVE DISAPPEARANCE; IMMUNE CHALLENGE; LIFE-HISTORY; INVESTMENT; PERFORMANCE; COSTS; BIRD; WILD The processes driving age-related variation in demographic rates are central to understanding population and evolutionary ecology. An increasing number of studies in wild vertebrates find evidence for improvements in reproductive performance traits in early adulthood, followed by senescent declines in later life. However, life history theory predicts that reproductive investment should increase with age as future survival prospects diminish, and that raised reproductive investment may have associated survival costs. These non-mutually exclusive processes both predict an increase in breeding performance at the terminal breeding attempt. Here, we use a 30-year study of wandering albatrosses (Diomedea exulans) to disentangle the processes underpinning age-related variation in reproduction. Whilst highlighting the importance of breeding experience, we reveal senescent declines in performance are followed by a striking increase in breeding success and a key parental investment trait at the final breeding attempt. [Froy, Hannah; Nussey, Daniel H.; Lewis, Sue] Univ Edinburgh, Inst Evolutionary Biol, Edinburgh, Midlothian, Scotland; [Froy, Hannah; Phillips, Richard A.; Wood, Andrew G.] British Antarctic Survey, Cambridge CB3 0ET, England Froy, H (reprint author), Univ Edinburgh, Inst Evolutionary Biol, Edinburgh, Midlothian, Scotland. hannah.froy@ed.ac.uk Nussey, Daniel/F-4155-2010; Lewis, Sue/D-3380-2012 Biotechnology and Biological Sciences Research Council [BB/H021868/1]; Natural Environment Research Council [NE/E012906/1, bas0100025] Barton K., 2011, MUMIN MULTIMODEL INF; Berman M, 2009, P R SOC B, V276, P375, DOI 10.1098/rspb.2008.0925; Bize P, 2009, P R SOC B, V276, P1679, DOI 10.1098/rspb.2008.1817; Black J. M., 1996, PARTNERSHIPS BIRDS S; Bonneaud C, 2004, EVOLUTION, V58, P2823, DOI 10.1111/j.0014-3820.2004.tb01633.x; Bouwhuis S, 2009, P R SOC B, V276, P2769, DOI 10.1098/rspb.2009.0457; Bowers EK, 2012, P ROY SOC B-BIOL SCI, V279, P2891, DOI 10.1098/rspb.2012.0443; Burnham K. P., 2002, MODEL SELECTION MULT; Cam E, 2002, AM NAT, V159, P96, DOI 10.1086/324126; Caswell H., 2000, MATRIX POPULATION MO; Catry P, 2006, P R SOC B, V273, P1625, DOI 10.1098/rspb.2006.3482; Clutton-Brock T.H., 1988, REPROD SUCCESS STUDI; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Cotter SC, 2011, FUNCT ECOL, V25, P652, DOI 10.1111/j.1365-2435.2010.01819.x; Coulson JC, 2001, J AVIAN BIOL, V32, P146, DOI 10.1034/j.1600-048X.2001.320207.x; CROXALL JP, 1990, J ANIM ECOL, V59, P775, DOI 10.2307/4895; Daunt F, 2007, FUNCT ECOL, V21, P561, DOI 10.1111/j.1365-2435.2007.01260.x; Descamps S, 2007, J ANIM ECOL, V76, P1192, DOI 10.1111/j.1365-2656.2007.01301.x; Dugdale HL, 2011, MOL ECOL, V20, P3261, DOI 10.1111/j.1365-294X.2011.05167.x; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; Golet GH, 1998, J ANIM ECOL, V67, P827, DOI 10.1046/j.1365-2656.1998.00233.x; Grueber CE, 2011, J EVOLUTION BIOL, V24, P699, DOI 10.1111/j.1420-9101.2010.02210.x; Hamel S, 2010, ECOL LETT, V13, P915, DOI 10.1111/j.1461-0248.2010.01478.x; HOYT DF, 1979, AUK, V96, P73; Jouventin P, 1999, ANIM BEHAV, V57, P1099, DOI 10.1006/anbe.1999.1083; Lecomte VJ, 2010, P NATL ACAD SCI USA, V107, P6370, DOI 10.1073/pnas.0911181107; MAGEE L, 1990, AM STAT, V44, P250, DOI 10.2307/2685352; Naves LC, 2007, ANIM BEHAV, V73, P433, DOI 10.1016/j.anbehav.2006.10.004; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; Nussey DH, 2013, AGEING RES REV, V12, P214, DOI 10.1016/j.arr.2012.07.004; Nussey DH, 2011, ECOLOGY, V92, P1936, DOI 10.1890/11-0308.1; Pardo D, 2013, ECOLOGY, V94, P208, DOI 10.1890/12-0215.1; PART T, 1992, AM NAT, V140, P868, DOI 10.1086/285445; Rattiste K, 2004, P ROY SOC B-BIOL SCI, V271, P2059, DOI 10.1098/rspb.2004.2832; Rebke M, 2010, P NATL ACAD SCI USA, V107, P7841, DOI 10.1073/pnas.1002645107; Reed TE, 2008, AM NAT, V171, pE89, DOI 10.1086/524957; Reid JM, 2010, J ANIM ECOL, V79, P851, DOI 10.1111/j.1365-2656.2010.01669.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tickell W.L.N., 2000, ALBATROSSES; Townsend HM, 2007, EVOLUTION, V61, P1956, DOI 10.1111/j.1558-5646.2007.00169.x; ULM K, 1989, BIOMETRICS, V45, P1324; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; VAUPEL JW, 1979, DEMOGRAPHY, V16, P439, DOI 10.2307/2061224; Velando A, 2006, P R SOC B, V273, P1443, DOI 10.1098/rspb.2006.3480; Weimerskirch H, 2001, BEHAV ECOL, V12, P22, DOI 10.1093/oxfordjournals.beheco.a000374; WEIMERSKIRCH H, 1995, OECOLOGIA, V102, P37, DOI 10.1007/BF00333308; Weladji RB, 2010, OECOLOGIA, V162, P261, DOI 10.1007/s00442-009-1443-5; Williams GC, 1966, ADAPTATION NATURAL S; Zuur A. F., 2009, MIXED EFFECTS MODELS 50 47 47 3 107 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1461-023X 1461-0248 ECOL LETT Ecol. Lett. MAY 2013 16 5 642 649 10.1111/ele.12092 8 Ecology Environmental Sciences & Ecology 132OA WOS:000318077200009 23438213 2018-11-12 J Fletcher, QE; Selman, C; Boutin, S; McAdam, AG; Woods, SB; Seo, AY; Leeuwenburgh, C; Speakman, JR; Humphries, MM Fletcher, Quinn E.; Selman, Colin; Boutin, Stan; McAdam, Andrew G.; Woods, Sarah B.; Seo, Arnold Y.; Leeuwenburgh, Christiaan; Speakman, John R.; Humphries, Murray M. OXIDATIVE DAMAGE INCREASES WITH REPRODUCTIVE ENERGY EXPENDITURE AND IS REDUCED BY FOOD-SUPPLEMENTATION EVOLUTION English Article Antioxidant protection; daily energy expenditure; doubly-labeled water; energetics; food-supplementation; life-history theory LIFE-HISTORY EVOLUTION; RANGING RED SQUIRRELS; IN-HOUSE MICE; PROTEIN OXIDATION; TRADE-OFFS; ANTIOXIDANT CAPACITY; MICROTUS-AGRESTIS; POPULATION-GROWTH; FIELD VOLES; STRESS A central principle in life-history theory is that reproductive effort negatively affects survival. Costs of reproduction are thought to be physiologically based, but the underlying mechanisms remain poorly understood. Using female North American red squirrels (Tamiasciurus hudsonicus), we test the hypothesis that energetic investment in reproduction overwhelms investment in antioxidant protection, leading to oxidative damage. In support of this hypothesis we found that the highest levels of plasma protein oxidative damage in squirrels occurred during the energetically demanding period of lactation. Moreover, plasma protein oxidative damage was also elevated in squirrels that expended the most energy and had the lowest antioxidant protection. Finally, we found that squirrels that were food-supplemented during lactation and winter had increased antioxidant protection and reduced plasma protein oxidative damage providing the first experimental evidence in the wild that access to abundant resources can reduce this physiological cost. [Fletcher, Quinn E.; Woods, Sarah B.; Humphries, Murray M.] McGill Univ, Dept Nat Resource Sci, Ste Anne De Bellevue, PQ H9X 3V9, Canada; [Fletcher, Quinn E.; Selman, Colin; Speakman, John R.] Univ Aberdeen, Inst Biol & Environm Sci, Aberdeen AB24 2TZ, Scotland; [Boutin, Stan] Univ Alberta, Dept Biol Sci, Edmonton, AB T6G 2E9, Canada; [McAdam, Andrew G.] Univ Guelph, Dept Integrat Biol, Guelph, ON N1G 2W1, Canada; [Seo, Arnold Y.; Leeuwenburgh, Christiaan] Univ Florida, Inst Aging, Div Biol Aging, Dept Aging & Geriatr Res, Gainesville, FL 32610 USA; [Speakman, John R.] Inst Genet & Dev Biol, State Key Lab Mol & Dev Biol, Beijing 100080, Peoples R China Fletcher, QE (reprint author), McGill Univ, Dept Nat Resource Sci, Macdonald Campus, Ste Anne De Bellevue, PQ H9X 3V9, Canada. q.fletcher@gmail.com McAdam, Andrew/G-1802-2010; Boutin, Stan/A-2619-2014; John, Speakman/A-9494-2008 McAdam, Andrew/0000-0001-7323-2572; Boutin, Stan/0000-0001-6317-038X; John, Speakman/0000-0002-2457-1823; Selman, Colin/0000-0002-8727-0593 Natural Sciences and Engineering Research Council (NSERC) of Canada; National Science Foundation [DEB-0515849]; Aboriginal Affairs and Northern Development Canada Northern Scientific Training Program; British Ecological Society; National Institute on Aging [AG17994, AG21042]; NSERC We thank all field technicians, especially Ainsley Sykes and Elizabeth Anderson, for field data collection and management. We are grateful to Paula Redman and Peter Thomson for technical assistance in isotope analyses for the doubly-labeled water work. Thanks to Patrick Bergeron for providing the chipmunk daily energy expenditure data. Thanks also to Neil Metcalfe, Bruce Lyon, and two anonymous reviewers for helpful comments on the manuscript. Research support was provided by Natural Sciences and Engineering Research Council (NSERC) of Canada (A. G. McAdam, S. Boutin, M. M. Humphries), the National Science Foundation (DEB-0515849, A. G. McAdam), Aboriginal Affairs and Northern Development Canada Northern Scientific Training Program (Q. E. Fletcher, S. B. Woods), the British Ecological Society (C. Selman), and the National Institute on Aging (AG17994 and AG21042; C. Leeuwenburgh) grants. Personal support was provided to Q. E. Fletcher and S. B. Woods by NSERC Postgraduate Scholarships, and to A. Y. Seo by the American Heart Association (0615256B). This is paper number 66 of the Kluane Red Squirrel Project. Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Alonso-Alvarez C, 2006, EVOLUTION, V60, P1913, DOI 10.1111/j.0014-3820.2006.tb00534.x; Archer CR, 2013, EVOLUTION, V67, P620, DOI 10.1111/j.1558-5646.2012.01805.x; Archibald DW, 2012, AM NAT, V179, P536, DOI 10.1086/664623; Beckman KB, 1998, PHYSIOL REV, V78, P547; Behl C, 1997, MOL PHARMACOL, V51, P535; BENJAMINI Y, 1995, J ROY STAT SOC B MET, V57, P289; Bergeron P, 2011, FUNCT ECOL, V25, P1063, DOI 10.1111/j.1365-2435.2011.01868.x; Berlett BS, 1997, J BIOL CHEM, V272, P20313, DOI 10.1074/jbc.272.33.20313; Bertrand S, 2006, OECOLOGIA, V147, P576, DOI 10.1007/s00442-005-0317-8; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Bonnet X, 2002, ECOLOGY, V83, P2124, DOI 10.2307/3072044; Boonstra R, 2001, ECOSYSTEM DYNAMICS OF THE BOREAL FOREST, P179; Boutin S, 2006, SCIENCE, V314, P1928, DOI 10.1126/science.1135520; Casagrande S, 2012, BEHAV ECOL SOCIOBIOL, V66, P1319, DOI 10.1007/s00265-012-1387-3; Catoni C, 2008, ANIM BEHAV, V76, P1107, DOI 10.1016/j.anbehav.2008.05.027; Cavalieri E, 2000, J Natl Cancer Inst Monogr, P75; Christe P., 2011, P ROY SOC LOND B BIO, V279, P1142; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Cohen A, 2007, COMP BIOCHEM PHYS B, V147, P110, DOI 10.1016/j.cbpb.2006.12.015; Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x; Costantini D, 2010, COMP BIOCHEM PHYS A, V156, P294, DOI 10.1016/j.cbpa.2010.02.021; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; Descamps S, 2009, P R SOC B, V276, P1129, DOI 10.1098/rspb.2008.1401; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Duncan CE, 2006, FOOD RES INT, V39, P898, DOI 10.1016/j.foodres.2006.05.009; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Fletcher QE, 2012, FUNCT ECOL, V26, P677, DOI 10.1111/j.1365-2435.2012.01975.x; Fletcher QE, 2010, ECOLOGY, V91, P2673, DOI 10.1890/09-1816.1; Garcia LV, 2004, OIKOS, V105, P657, DOI 10.1111/j.0030-1299.2004.13046.x; Garratt M, 2012, FUNCT ECOL, V26, P423, DOI 10.1111/j.1365-2435.2011.01952.x; Garratt M, 2011, P ROY SOC B-BIOL SCI, V278, P1098, DOI 10.1098/rspb.2010.1818; Health Canada, 1990, NUTR VAL SOM COMM FO; Heiss RS, 2012, PHYSIOL BIOCHEM ZOOL, V85, P499, DOI 10.1086/666840; Humphries MM, 2000, ECOLOGY, V81, P2867, DOI 10.1890/0012-9658(2000)081[2867:TDOOLS]2.0.CO;2; Ibern-Gomez M, 2000, J AGR FOOD CHEM, V48, P6352, DOI 10.1021/jf000786k; LaMontagne J. M., 2007, THESIS U ALBERTA EDM; Losdat S, 2011, BEHAV ECOL, V22, P1218, DOI 10.1093/beheco/arr116; Marko G, 2011, J COMP PHYSIOL B, V181, P73, DOI 10.1007/s00360-010-0502-x; McAdam AG, 2003, EVOLUTION, V57, P1689; Mcadam AG, 2007, ECOSCIENCE, V14, P362, DOI 10.2980/1195-6860(2007)14[362:LHOFRS]2.0.CO;2; McNab BK, 2002, PHYSL ECOLOGY VERTEB; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; Miller AA, 2007, CLIN EXP PHARMACOL P, V34, P1037, DOI 10.1111/j.1440-1681.2007.04732.x; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Murcia MA, 2001, J FOOD PROTECT, V64, P379, DOI 10.4315/0362-028X-64.3.379; Nagy K. A., 1983, LOS ANGELES PUBLICAT, V12-1417; Nussey DH, 2009, FUNCT ECOL, V23, P809, DOI 10.1111/j.1365-2435.2009.01555.x; Odakowski, 2012, J EXP BIOL, V215, P1799; Persky AM, 2000, P SOC EXP BIOL MED, V223, P59, DOI 10.1046/j.1525-1373.2000.22308.x; R Development Core Team, 2011, R LANG ENV STAT COMP; Ramara A, 2007, BRAIN RES, V1176, P71, DOI 10.1016/j.brainres.2007.08.036; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; Roff Derek A., 1992; Salmon AB, 2009, FASEB J, V23, P2317, DOI 10.1096/fj.08-122523; Selman C, 2002, FREE RADICAL BIO MED, V33, P259, DOI 10.1016/S0891-5849(02)00874-2; Selman C, 2008, REJUV RES, V11, P83, DOI 10.1089/rej.2007.0586; Selman C, 2008, P ROY SOC B-BIOL SCI, V275, P1907, DOI 10.1098/rspb.2008.0355; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; Sobolev VS, 1999, J AGR FOOD CHEM, V47, P1435, DOI 10.1021/jf9809885; Somogyi A, 2007, PHYSIOL MEAS, V28, pR41, DOI 10.1088/0967-3334/28/4/R01; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; Speakman JR, 2011, BIOESSAYS, V33, P255, DOI 10.1002/bies.201000132; Speakman JR, 2003, P NATL ACAD SCI USA, V100, P14057, DOI 10.1073/pnas.2235671100; SPEAKMAN JR, 1997, DOUBLY LABELLED WATE; STADTMAN ER, 1992, SCIENCE, V257, P1220, DOI 10.1126/science.1355616; Stearns S. C., 1992, EVOLUTION LIFE HIST; Talcott ST, 2005, FOOD CHEM, V90, P379, DOI 10.1016/j.foodchem.2004.04.011; Thomas DW, 2001, SCIENCE, V291, P2598, DOI 10.1126/science.1057487; Tinbergen JM, 2000, J ANIM ECOL, V69, P323, DOI 10.1046/j.1365-2656.2000.00395.x; TUOMI J, 1983, AM ZOOL, V23, P25; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vina J, 2003, ANTIOXID REDOX SIGN, V5, P549, DOI 10.1089/152308603770310194; Welcker J, 2010, J ANIM ECOL, V79, P205, DOI 10.1111/j.1365-2656.2009.01626.x; Wiersma P, 2004, P ROY SOC B-BIOL SCI, V271, pS360, DOI 10.1098/rsbl.2004.0171; Wilson SM, 2012, COMP BIOCHEM PHYS A, V162, P212, DOI 10.1016/j.cbpa.2012.02.023; Woods S. B., 2009, THESIS MCGILL U MONT; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 79 46 47 4 70 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution MAY 2013 67 5 1527 1536 10.1111/evo.12014 10 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 134SN WOS:000318234900024 23617928 Green Accepted, Bronze 2018-11-12 J Cotto, O; Olivieri, I; Ronce, O Cotto, O.; Olivieri, I.; Ronce, O. Optimal life-history schedule in a metapopulation with juvenile dispersal JOURNAL OF EVOLUTIONARY BIOLOGY English Article age structure; colonization; dispersal; disturbance; life-history theory; reproductive effort AGE-SPECIFIC SURVIVAL; REPRODUCTIVE EFFORT; PEA APHID; ECOLOGICAL SUCCESSION; ACYRTHOSIPHON-PISUM; DENSITY-DEPENDENCE; NATURAL-SELECTION; NATAL DISPERSAL; EVOLUTION; POPULATIONS Previous models have predicted that when mortality increases with age, older individuals should invest more of their resources in reproduction and produce less dispersive offspring, as both their future reproductive value and their prospect of competing with their own sib decline. Those models assumed stable population sizes. We here study for the first time the evolution of age-specific reproductive effort and of age-specific offspring dispersal rate in a metapopulation with extinction-recolonization dynamics and juvenile dispersal. Our model explores the evolutionary consequences of disequilibrium in the age structure of individuals in local populations, generated by disturbances. Life-history decisions are then shaped both by changes with age in individual performances, and by changes in ecological conditions, as young and old individuals do not live on average in the same environments. Lower juvenile dispersal favours the evolution of higher reproductive effort in young adults in a metapopulation with extinction-recolonization compared with a well-mixed population. Contrary to previous predictions for stable structured populations, we find that offspring dispersal should generally increase with maternal age. This is because young individuals, who are overrepresented in recently colonized populations, should allocate more to reproduction and less to dispersal as a strategy to exploit abundant recruitment opportunities in such populations. [Cotto, O.; Olivieri, I.; Ronce, O.] Univ Montpellier 2, CNRS, Inst Sci Evolut, F-34095 Montpellier 5, France Cotto, O (reprint author), Univ Montpellier 2, CNRS, Inst Sci Evolut, CC65,Pl Eugene Bataillon, F-34095 Montpellier 5, France. olivier.cotto@univ-montp2.fr Olivieri, Isabelle/E-5872-2016 Ministry of Research; French Agropolis Fondation (RTRA Montpellier) [1001-001]; ANR GENEVOLSPE [2010 BLAN 1715] We thank Daniel Promislow, Jean Clobert, Mike Hochberg, Simon Fellous and Tom Van Dooren for providing helpful corrections and comments. OC acknowledges support from the Ministry of Research through a PhD scholarship; this is publication ISEM 2012-263 from the Institut des Sciences de l'Evolution. This study was supported by the French Agropolis Fondation (RTRA Montpellier, BIOFIS project number 1001-001) and ANR GENEVOLSPE (2010 BLAN 1715). Abrams PA, 1995, EVOLUTION, V49, P1055, DOI 10.1111/j.1558-5646.1995.tb04433.x; Baker JD, 2007, P ROY SOC B-BIOL SCI, V274, P407, DOI 10.1098/rspb.2006.3737; Bourke AFG, 2007, ANNU REV ECOL EVOL S, V38, P103, DOI 10.1146/annurev.ecolsys.38.091206.095528; Burns JG, 2010, J EVOLUTION BIOL, V23, P678, DOI 10.1111/j.1420-9101.2010.01932.x; CASWELL H, 1982, AM NAT, V120, P317, DOI 10.1086/283993; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; Clobert Jean, 2004, P307, DOI 10.1016/B978-012323448-3/50015-5; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Crowley PH, 2002, AM NAT, V159, P190, DOI 10.1086/324790; Descamps S, 2007, J ANIM ECOL, V76, P1192, DOI 10.1111/j.1365-2656.2007.01301.x; Dobson A, 2003, SCIENCE, V301, P1488, DOI 10.1126/science.1090481; DRENT RH, 1980, ARDEA, V68, P225; Enright NJ, 1998, J ECOL, V86, P946, DOI 10.1046/j.1365-2745.1998.00312.x; Frantz A, 2006, P R SOC B, V273, P2887, DOI 10.1098/rspb.2006.3665; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Geritz SAH, 1998, EVOL ECOL, V12, P35, DOI 10.1023/A:1006554906681; HAMILTON WD, 1977, NATURE, V269, P578, DOI 10.1038/269578a0; Hanski I, 1997, METAPOPULATION BIOL; Hanski I. A., 2004, ECOLOGY GENETICS EVO; HEGAZY AK, 1992, J APPL ECOL, V29, P549, DOI 10.2307/2404462; JOHNSON EA, 1979, CAN J BOT, V57, P1374, DOI 10.1139/b79-171; Joly P, 1996, ACTA OECOL, V17, P599; LEVINS R, 1969, Bulletin of the Entomological Society of America, V15, P237; MACKAY P A, 1977, Researches on Population Ecology (Tokyo), V18, P195; MACKAY PA, 1979, OECOLOGIA, V39, P301, DOI 10.1007/BF00345441; Mason THE, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0028002; MASSOT M, 1992, ECOLOGY, V73, P1742, DOI 10.2307/1940026; Mitteldorf J, 2006, EVOL ECOL RES, V8, P561; Morgan D, 2001, B ENTOMOL RES, V91, P47, DOI 10.1046/j.1365-2672.2001.01338.x; OLIVIERI I, 1995, AM NAT, V146, P202, DOI 10.1086/285795; OLIVIERI I, 1990, TRENDS ECOL EVOL, V5, P207, DOI 10.1016/0169-5347(90)90132-W; Poethke HJ, 2002, P ROY SOC B-BIOL SCI, V269, P637, DOI 10.1098/rspb.2001.1936; Proffitt KM, 2007, OIKOS, V116, P1683, DOI 10.1111/j.2007.0030-1299.16139.x; Ronce O, 2005, J ECOL, V93, P431, DOI 10.1111/j.1365-2745.2005.00972.x; Ronce O, 1997, AM NAT, V150, P220, DOI 10.1086/286064; Ronce O, 2000, EVOL ECOL, V14, P233, DOI 10.1023/A:1011068005057; Ronce O, 1998, P NATL ACAD SCI USA, V95, P600, DOI 10.1073/pnas.95.2.600; Ronce Ophelie, 2004, P227, DOI 10.1016/B978-012323448-3/50012-X; Ronce O, 2010, P ROY SOC B-BIOL SCI, V277, P3659, DOI 10.1098/rspb.2010.1095; Rousset F, 2004, THEOR POPUL BIOL, V65, P127, DOI 10.1016/j.tpb.2003.09.003; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; Seymour RM, 2007, PLOS COMPUT BIOL, V3, P2580, DOI 10.1371/journal.pcbi.0030256; Stearns S. C., 1992, EVOLUTION LIFE HIST; Toigo C, 2007, J ANIM ECOL, V76, P679, DOI 10.1111/j.1365-2656.2007.01254.x; Valverde T, 1998, J ECOL, V86, P545, DOI 10.1046/j.1365-2745.1998.00280.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 46 8 8 0 48 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X J EVOLUTION BIOL J. Evol. Biol. MAY 2013 26 5 944 954 10.1111/jeb.12100 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 135MJ WOS:000318291900003 23496292 Bronze 2018-11-12 J Boutwell, BB; Barnes, JC; Deaton, R; Beaver, KM Boutwell, Brian B.; Barnes, J. C.; Deaton, Raelynn; Beaver, Kevin M. On the evolutionary origins of life-course persistent offending: A theoretical scaffold for Moffitt's developmental taxonomy JOURNAL OF THEORETICAL BIOLOGY English Article Antisocial behavior; Life-history theory LIMITED ANTISOCIAL PATHWAYS; DIFFERENTIAL K-THEORY; LOW SELF-CONTROL; INDIVIDUAL-DIFFERENCES; RISK-TAKING; BEHAVIOR; ADOLESCENCE; PERSONALITY; SELECTION; STRATEGY The study of human crime and violence represents a flashpoint for discussion across academia. Multiple theories exist pertaining to the topic, all aimed at organizing numerous findings surrounding correlates of antisocial behavior. Along these lines, Moffitt's developmental taxonomy has emerged as a theory well supported by empirical research. Noticeably absent, though, has been an effort to apply an evolutionary framework to Moffitt's dual taxonomy of offending. With this in mind, the current study is intended to examine Moffitt's different typologies in the context of Rushton's Differential K theory (an adaptation of r-K selection from life history theory). Our findings suggest that life-course persistent offending may represent a viable reproductive strategy characterized by higher levels of sexual involvement over the life-course. (C) 2013 Elsevier Ltd. All rights reserved. [Boutwell, Brian B.] Sam Houston State Univ, Coll Criminal Justice, Huntsville, TX 77341 USA; [Barnes, J. C.] Univ Texas Dallas, Sch Econ Polit & Policy Sci, Richardson, TX 75080 USA; [Deaton, Raelynn] St Edwards Univ, Dept Biol Sci, Austin, TX 78704 USA; [Beaver, Kevin M.] Florida State Univ, Coll Criminol & Criminal Justice, Tallahassee, FL 32306 USA Boutwell, BB (reprint author), Sam Houston State Univ, Coll Criminal Justice, POB 2296, Huntsville, TX 77341 USA. brian.boutwell@shsu.edu; jcbarnes@utdallas.edu; paulad@stedwards.edu; kbeaver@fsu.edu Beaver, Kevin/B-4631-2013 Eunice Kennedy Shriver National Institute of Child Health and Human Development [P01-HD31921] This research uses data from Add Health, a program project designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris, and funded by a grant P01-HD31921 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, with cooperative funding from 17 other agencies. Special acknowledgment is due Ronald R. Rindfuss and Barbara Entwisle for assistance in the original design. Persons interested in obtaining data files from Add Health should contact Add Health, Carolina Population Center, 123 W. Franklin Street, Chapel Hill, NC 27516-2524 (addhealth@unc.edu). No direct support was received from grant P01-HD31921 for this analysis. Barnes JC, 2011, CRIMINOLOGY, V49, P923, DOI 10.1111/j.1745-9125.2011.00243.x; Barnes JC, 2012, PHYSIOL BEHAV, V105, P522, DOI 10.1016/j.physbeh.2011.09.013; Barnes JC, 2010, J CRIM JUST, V38, P1176, DOI 10.1016/j.jcrimjus.2010.09.006; Beaver KM, 2009, CRIM JUSTICE BEHAV, V36, P1158, DOI 10.1177/0093854809342859; Boutwell Brian B, 2008, Crim Behav Ment Health, V18, P59, DOI 10.1002/cbm.678; Buss DM, 2009, PERSPECT PSYCHOL SCI, V4, P359, DOI 10.1111/j.1745-6924.2009.01138.x; CASPI A, 1991, J PERS SOC PSYCHOL, V61, P157, DOI 10.1037//0022-3514.61.1.157; Cauffman E, 2005, CRIMINOLOGY, V43, P133, DOI 10.1111/j.0011-1348.2005.00005.x; CLOGG CC, 1995, AM J SOCIOL, V100, P1261, DOI 10.1086/230638; ELLIS L, 1988, PERS INDIV DIFFER, V9, P697, DOI 10.1016/0191-8869(88)90059-1; Evans PD, 2005, SCIENCE, V309, P1717, DOI 10.1126/science.1113722; Fergusson DM, 2000, CRIMINOLOGY, V38, P525, DOI 10.1111/j.1745-9125.2000.tb00898.x; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Gottfredson M. R., 1990, GEN THEORY CRIME; Harris KM, 2009, NATL LONGITUDINAL ST; Kelley M.S., 1997, NATLL LONGITUDINAL S; MAC ARTHUR ROBERT H., 1967; McGloin JM, 2006, J RES CRIME DELINQ, V43, P412, DOI 10.1177/0022427806292340; Miller G. F., 2000, MATING MIND SEXUAL C; Moffitt T. E., 2006, ADV CRIMINOLOGICAL T, V15, P277; Moffitt TE, 2002, DEV PSYCHOPATHOL, V14, P179, DOI 10.1017/S0954579402001104; Moffitt TE, 2001, DEV PSYCHOPATHOL, V13, P355, DOI 10.1017/S0954579401002097; MOFFITT TE, 1994, CRIMINOLOGY, V32, P277, DOI 10.1111/j.1745-9125.1994.tb01155.x; MOFFITT TE, 1993, PSYCHOL REV, V100, P674, DOI 10.1037//0033-295X.100.4.674; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Pinker Steven, 2011, BETTER ANGELS OUR NA; Reisig MD, 2011, DEVIANT BEHAV, V32, P589, DOI 10.1080/01639621003800505; ROSENBAUM E, 1990, J MARRIAGE FAM, V52, P783, DOI 10.2307/352942; Rowe DC, 1999, CHILD DEV, V70, P1151, DOI 10.1111/1467-8624.00084; Rushton J., 2000, RACE EVOLUTION BEHAV; Rushton JP, 2004, INTELLIGENCE, V32, P321, DOI 10.1016/j.intell.2004.06.003; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P769, DOI 10.1016/0191-8869(85)90088-1; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Tapert SF, 2001, J ADOLESCENT HEALTH, V28, P181, DOI 10.1016/S1054-139X(00)00169-5; Tooby J., 2005, HDB EVOLUTIONARY PSY; Walsh A., 2002, BIOSOCIAL CRIMINOLOG; Wilson E.O., 1975, P1; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; WILSON M, 1985, ETHOL SOCIOBIOL, V6, P59, DOI 10.1016/0162-3095(85)90041-X 40 9 9 0 30 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0022-5193 1095-8541 J THEOR BIOL J. Theor. Biol. APR 7 2013 322 72 80 10.1016/j.jtbi.2013.01.005 9 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology 112HU WOS:000316584100007 23333839 2018-11-12 J Schmidt, CM; Jarvis, JUM; Bennett, NC Schmidt, Christina M.; Jarvis, Jennifer U. M.; Bennett, Nigel C. The long-lived queen: reproduction and longevity in female eusocial Damaraland mole-rats (Fukomys damarensis) AFRICAN ZOOLOGY English Editorial Material Fukomys damarensis; reproductive costs; sociality; longevity; trade-offs SOCIALLY-INDUCED INFERTILITY; EXTRAORDINARY LIFE-SPANS; CRYPTOMYS-DAMARENSIS; BATHYERGIDAE; COLONIES; RODENTIA; SUPPRESSION; EVOLUTION; BEHAVIOR; COSTS The inverse relationship between reproduction and lifespan is one of the main concepts of life history theory This association has been observed in most taxa, although exceptions have been found in which a breeding female outlives her non-reproductive cohorts. This relationship is well known in social insects, and it has recently come to light that reproductive females of certain social mole-rat species also exhibit extended lifespans relative to non-breeders. We analysed mark-recapture data over 13 years in 12 colonies of Damaraland mole-rats (Fukomys damarensis) to assess if colony queens lived longer than non-reproductive adult females. Queens were recaptured up to 8.5 years after initial capture ((X) over bar = 6.2 years); significantly longer than non-reproductive females ((X) over bar = 1.3 years), suggesting that a colony queen lives longer than her non-reproductive subordinates, This difference may be attributed to both physiological and social factors which may relax reproductive costs in queens. [Schmidt, Christina M.; Bennett, Nigel C.] Univ Pretoria, Dept Zool & Entomol, ZA-0001 Pretoria, South Africa; [Jarvis, Jennifer U. M.] Univ Cape Town, Dept Zool, ZA-7700 Cape Town, South Africa Schmidt, CM (reprint author), Univ Pretoria, Dept Zool & Entomol, ZA-0001 Pretoria, South Africa. ossavolatus@gmail.com Bennett, Nigel/0000-0001-9748-2947 Anyan JJ, 2011, BRAIN BEHAV EVOLUT, V77, P291, DOI 10.1159/000328640; BENNETT NC, 1988, J MAMMAL, V69, P293, DOI 10.2307/1381379; BENNETT NC, 1994, J ZOOL, V234, P25, DOI 10.1111/j.1469-7998.1994.tb06054.x; Bennett NC, 1996, P ROY SOC B-BIOL SCI, V263, P1599, DOI 10.1098/rspb.1996.0234; BENNETT NC, 1994, J ZOOL, V233, P617, DOI 10.1111/j.1469-7998.1994.tb05369.x; BENNETT NC, 1990, J ZOOL, V220, P225, DOI 10.1111/j.1469-7998.1990.tb04305.x; BENNETT NC, 1993, J REPROD FERTIL, V99, P81; BENNETT NC, 1991, J ZOOL, V225, P13, DOI 10.1111/j.1469-7998.1991.tb03798.x; Bennett NC, 2000, AFRICAN MOLE RATS EC; Bennett NC, 2011, INTEGR ZOOL, V6, P311, DOI 10.1111/j.1749-4877.2011.00263.x; Buffenstein R, 2008, J COMP PHYSIOL B, V178, P439, DOI 10.1007/s00360-007-0237-5; Cooney R, 2000, P ROY SOC B-BIOL SCI, V267, P801, DOI 10.1098/rspb.2000.1074; Cox RM, 2010, EVOLUTION, V64, P1321, DOI 10.1111/j.1558-5646.2009.00906.x; Dammann P, 2006, CURR BIOL, V16, pR117, DOI 10.1016/j.cub.2006.02.012; Dammann P, 2012, J GERONTOL A-BIOL, V67, P573, DOI 10.1093/gerona/glr208; Dammann P, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018757; Faulkes CG, 2001, TRENDS ECOL EVOL, V16, P184, DOI 10.1016/S0169-5347(01)02116-4; Flatt T, 2011, EXP GERONTOL, V46, P369, DOI 10.1016/j.exger.2010.10.008; Hatle JD, 2008, EXP GERONTOL, V43, P900, DOI 10.1016/j.exger.2008.08.005; Heinze J, 2008, GERONTOLOGY, V54, P160, DOI 10.1159/000122472; Jarvis J.U.M., 1991, P66; JARVIS JUM, 1993, BEHAV ECOL SOCIOBIOL, V33, P253, DOI 10.1007/BF02027122; JARVIS JUM, 1981, SCIENCE, V212, P571, DOI 10.1126/science.7209555; Keller L, 1997, NATURE, V389, P958, DOI 10.1038/40130; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; LOVEGROVE BG, 1988, J ZOOL, V216, P391, DOI 10.1111/j.1469-7998.1988.tb02437.x; Molteno AJ, 2000, J REPROD FERTIL, V119, P35, DOI 10.1530/reprod/119.1.35; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; Remolina SC, 2008, AGE, V30, P177, DOI 10.1007/s11357-008-9061-4; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Roff Derek A., 1992; Sherman PW, 2002, J ZOOL, V258, P307, DOI 10.1017/S0952836902001437; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Young AJ, 2010, EVOLUTION, V64, P3190, DOI 10.1111/j.1558-5646.2010.01066.x 38 14 14 3 20 ZOOLOGICAL SOC SOUTHERN AFRICA SCOTTSVILLE AFRICAN ZOOLOGY CIRCULATION OFFICE, UNIV KWAZULU-NATAL, SCHOOL BIOL & CONSERVATION SCI, P B X01, SCOTTSVILLE 3209, SOUTH AFRICA 1562-7020 2224-073X AFR ZOOL Afr. Zool. APR 2013 48 1 193 196 4 Zoology Zoology 296QT WOS:000330201200020 2018-11-12 J Skjaervo, GR; Roskaft, E Skjaervo, Gine Roll; Roskaft, Eivin Menopause: No support for an evolutionary explanation among historical Norwegians EXPERIMENTAL GERONTOLOGY English Article Ageing; Demographic data; Evolutionary theory; Follicular atresia; Grandchildren; Menopause; Reproductive Conflict Hypothesis POSTREPRODUCTIVE LIFE-SPAN; ANTRAL FOLLICLE COUNT; MORTALITY PATTERNS; MOTHER HYPOTHESIS; NATURAL-SELECTION; HUNTER-GATHERERS; ADULT MORTALITY; HUMANS; AGE; SENESCENCE Life history theory proposes that menopause is either an epiphenomenon or an adaptation. The most recent adaptive hypothesis proposes that menopause in humans has evolved because of conflict between reproducing generations (RCH). Overlapping reproduction between generations may impose fitness costs to older and younger females who co-breed. However, it has yet to be demonstrated by using a measure of evolutionary fitness (i.e. grandchildren). Here, we tested the RCH by using multigenerational life-history data of historical Norwegian women. Our results indicate that both generations seem to experience some fitness benefits with co-breeding (i.e. reproductive overlap and cohabit). This was because both younger and older females who co-bred had more grandchildren than those who did not co-breed. We suggest that younger females may partly had enhanced fitness because they copied behaviour of females of the older generation. Our results do not support the hypothesis that reproductive conflict between generations explains the evolution of menopause in women. Our results, taken together with the growing evidence against several assumptions of the RCH, indicate that 1) the decline in follicle number has no marked increase in women as they reach the age of 38 years; 2) humans do not have an abrupt decline in fertility at mean age of 38 years; 3) menopause is not unique to humans; and 4) there are not high numbers of individuals surviving to older adulthood during our evolutionary past. Finally, we discuss an alternative point of view suggesting that menopause might be understood in the light of both ageing in general as well as our increased lifespan. (C) 2013 Elsevier Inc. All rights reserved. [Skjaervo, Gine Roll; Roskaft, Eivin] Norwegian Univ Sci & Technol NTNU, Dept Biol, N-7491 Trondheim, Norway Skjaervo, GR (reprint author), Norwegian Univ Sci & Technol NTNU, Dept Biol, N-7491 Trondheim, Norway. Gine.Skjarvo@bio.ntnu.no Acsadi G., 1970, HIST HUMAN LIFE SPAN; [Anonymous], 1865, FOLKETELLING 1865; AUSTAD SN, 1994, EXP GERONTOL, V29, P255, DOI 10.1016/0531-5565(94)90005-1; Berg G.F., 1981, SMOLA BYGDEBOK BIND; Boyd R, 2011, P NATL ACAD SCI USA, V108, P10918, DOI 10.1073/pnas.1100290108; Bronikowski AM, 2011, SCIENCE, V331, P1325, DOI 10.1126/science.1201571; Cant MA, 2008, P NATL ACAD SCI USA, V105, P5332, DOI 10.1073/pnas.0711911105; Caspari R, 2004, P NATL ACAD SCI USA, V101, P10895, DOI 10.1073/pnas.0402857101; Chang MY, 1998, FERTIL STERIL, V69, P505, DOI 10.1016/S0015-0282(97)00557-8; Coale A.J., 1986, DECLINE FERTILITY EU; Cohen AA, 2004, BIOL REV, V79, P733, DOI 10.1017/S1464793103006432; Coxworth JE, 2010, HUM REPROD, V25, P1796, DOI 10.1093/humrep/deq136; Danchin E, 2004, SCIENCE, V305, P487, DOI 10.1126/science.1098254; Drake M., 1969, POPULATION SOC NORWA; Faddy MJ, 1996, HUM REPROD, V11, P1484; FADDY MJ, 1992, HUM REPROD, V7, P1342, DOI 10.1093/oxfordjournals.humrep.a137570; Finch CE, 2010, ANN NY ACAD SCI, V1204, P82, DOI 10.1111/j.1749-6632.2010.05610.x; Fletcher RJ, 2008, BIOL LETTERS, V4, P482, DOI 10.1098/rsbl.2008.0306; Foote AD, 2008, BIOL LETTERS, V4, P189, DOI 10.1098/rsbl.2008.0006; Gurven M, 2007, POPUL DEV REV, V33, P321, DOI 10.1111/j.1728-4457.2007.00171.x; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Haukdal J., 1971, BUSETNAD GOLKELIV SO; Hawkes K, 1997, CURR ANTHROPOL, V38, P551, DOI 10.1086/204646; Hawkes K, 2010, ANN NY ACAD SCI, V1204, P43, DOI [10.1111/j.1749-6632.2010.05527.x, 10.1111/L1749-6632.2010.05527A]; Hill K, 2007, J HUM EVOL, V52, P443, DOI 10.1016/j.jhevol.2006.11.003; HODGEN GD, 1977, AM J OBSTET GYNECOL, V127, P581, DOI 10.1016/0002-9378(77)90352-0; Johnstone RA, 2010, P ROY SOC B-BIOL SCI, V277, P3765, DOI 10.1098/rspb.2010.0988; Kameda T, 2003, EVOL HUM BEHAV, V24, P242, DOI 10.1016/S1090-5138(03)00015-1; La Marca A, 2011, FERTIL STERIL, V95, P684, DOI 10.1016/j.fertnstert.2010.07.1069; Lahdenpera M, 2004, NATURE, V428, P178, DOI 10.1038/nature02367; Lahdenpera M, 2011, J EVOLUTION BIOL, V24, P1053, DOI 10.1111/j.1420-9101.2011.02237.x; Lahdenpera M, 2011, EVOLUTION, V65, P476, DOI 10.1111/j.1558-5646.2010.01142.x; Leidy LE, 1998, FERTIL STERIL, V70, P851, DOI 10.1016/S0015-0282(98)00316-1; LOW BL, 2000, WHY SEX MATTERS DARW; LOW BS, 1992, ETHOL SOCIOBIOL, V13, P463, DOI 10.1016/0162-3095(92)90013-T; Mace R, 2012, P ROY SOC B-BIOL SCI, V279, P2219, DOI 10.1098/rspb.2011.2424; Meij JJ, 2009, J EVOLUTION BIOL, V22, P1014, DOI 10.1111/j.1420-9101.2009.01713.x; Ng EHY, 2003, HUM REPROD, V18, P2169, DOI 10.1093/humrep/deg404; Nordli PO, 2004, HYDROBIOLOGIA, V521, P7, DOI 10.1023/B:HYDR.0000026347.66043.cb; Nordli PO, 2003, INT J CLIMATOL, V23, P1821, DOI 10.1002/joc.980; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; Packer C, 1998, NATURE, V392, P807, DOI 10.1038/33910; Pavard S, 2008, AM J PHYS ANTHROPOL, V136, P194, DOI 10.1002/ajpa.20794; PAVELKA MSM, 1991, YEARB PHYS ANTHROPOL, V34, P13; PECCEI JS, 1995, MATURITAS, V21, P83, DOI 10.1016/0378-5122(94)00884-A; Peccei JS, 2001, EVOL ANTHROPOL, V10, P43, DOI 10.1002/evan.1013; Peccei JS, 2001, AM J HUM BIOL, V13, P434, DOI 10.1002/ajhb.1076; Perheentupa A, 2009, MOL CELL ENDOCRINOL, V299, P2, DOI 10.1016/j.mce.2008.11.004; PUSEY AE, 1994, BEHAV ECOL, V5, P362, DOI 10.1093/beheco/5.4.362; Rendell L, 2010, SCIENCE, V328, P208, DOI 10.1126/science.1184719; Reuss ML, 1996, AM J OBSTET GYNECOL, V174, P624, DOI 10.1016/S0002-9378(96)70439-8; Ricklefs RE, 2010, P NATL ACAD SCI USA, V107, P10314, DOI 10.1073/pnas.1005862107; Skjaervo G, 2009, BEHAV ECOL SOCIOBIOL, V63, P1133, DOI 10.1007/s00265-009-0745-2; Rosen MP, 2010, FERTIL STERIL, V94, P2182, DOI 10.1016/j.fertnstert.2009.12.045; Rosen MP, 2010, MENOPAUSE, V17, P109, DOI 10.1097/gme.0b013e3181b48a88; ROSKAFT E, 1992, ETHOL SOCIOBIOL, V13, P443, DOI 10.1016/0162-3095(92)90012-S; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; Shanley DP, 2007, P ROY SOC B-BIOL SCI, V274, P2943, DOI 10.1098/rspb.2007.1028; Shanley DP, 2001, BIOESSAYS, V23, P282, DOI 10.1002/1521-1878(200103)23:3<282::AID-BIES1038>3.3.CO;2-0; Skjaervo GR, 2011, EVOL HUM BEHAV, V32, P305, DOI 10.1016/j.evolhumbehav.2010.11.006; Smith TM, 2010, P NATL ACAD SCI USA, V107, P20923, DOI 10.1073/pnas.1010906107; Sogner S., 1979, FOLKEVEKST FLYTTING; Stearns S. C., 1992, EVOLUTION LIFE HIST; Trinkaus E, 2011, P NATL ACAD SCI USA, V108, P1267, DOI 10.1073/pnas.1018700108; van Bodegom D, 2010, GERONTOLOGY, V56, P214, DOI 10.1159/000255170; van Bodegom D, 2009, T ROY SOC TROP MED H, V103, P795, DOI 10.1016/j.trstmh.2008.12.003; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; Velde ERT, 2002, HUM REPROD UPDATE, V8, P141; Ward EJ, 2009, FRONT ZOOL, V6, DOI 10.1186/1742-9994-6-4; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Yusuf HR, 2010, LANCET, V375, P1944, DOI 10.1016/S0140-6736(10)60899-9 71 7 7 0 48 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0531-5565 1873-6815 EXP GERONTOL Exp. Gerontol. APR 2013 48 4 408 413 10.1016/j.exger.2013.02.001 6 Geriatrics & Gerontology Geriatrics & Gerontology 113LQ WOS:000316669600006 23403380 2018-11-12 J Harris, AL; Vitzthum, VJ Harris, Amy L.; Vitzthum, Virginia J. Darwin's Legacy: An Evolutionary View of Women's Reproductive and Sexual Functioning JOURNAL OF SEX RESEARCH English Review HUMAN MENSTRUAL-CYCLE; PREMENSTRUAL DYSPHORIC DISORDER; TAMARINS LEONTOPITHECUS-ROSALIA; SALIVARY PROGESTERONE PROFILES; FOLLICLE-STIMULATING-HORMONE; WEST-AFRICAN CHIMPANZEES; EARLY-PREGNANCY LOSS; LIFE-HISTORY THEORY; OVARIAN-FUNCTION; BLEEDING PATTERNS On the Origin of Species, published just over 150 years ago, has deeply influenced thinking in both scientific and wider communities. Darwin's legacy includes recognition of the fact that all organisms evolve; that variation within and between species is natural and normal; and that an evolutionary approach to understanding the sources and consequences of this variation comprises theoretical frameworks, testable hypotheses, and rigorously collected evidence. With an eye toward facilitating communication and productive collaboration among researchers from different intellectual traditions who nonetheless share a common interest in women's reproductive and sexual functioning, we discuss evolutionary concepts and models, summarize the known variability in ovarian functioning and consider the implications of this variability for conducting sex research, and evaluate the relative merits of various biomarkers that serve as proxy measurements of a woman's reproductive and hormonal status. With these perspectives and methods from reproductive ecology at hand, we examine several contentious issues: the links between hormones and sexuality in premenopausal and perimenopausal women, the causes of premenstrual syndrome, and the existence (or not) of menstrual synchrony. In none of these cases is as much known as is often claimed. In each, there are abundant opportunities for innovative, albeit challenging, research. [Harris, Amy L.; Vitzthum, Virginia J.] Indiana Univ, Dept Anthropol, Bloomington, IN 47405 USA; [Vitzthum, Virginia J.] Indiana Univ, Kinsey Inst Res Sex Gender & Reprod, Bloomington, IN 47405 USA Vitzthum, VJ (reprint author), Indiana Univ, Kinsey Inst Res Sex Gender & Reprod, Morrison Hall 313,1165 East 3rd St, Bloomington, IN 47405 USA. vitzthum@indiana.edu ABPLANALP JM, 1979, PSYCHOSOM MED, V41, P605, DOI 10.1097/00006842-197912000-00002; Alberts SC, 2012, BEHAV ECOL, V23, P699, DOI 10.1093/beheco/ars052; Alliende ME, 2002, FERTIL STERIL, V78, P90, DOI 10.1016/S0015-0282(02)03167-9; Alvarado G, 1988, Ginecol Obstet Mex, V56, P127; [Anonymous], 1983, Fertil Steril, V40, P773; [Anonymous], 1983, Fertil Steril, V39, P647; [Anonymous], 1980, Am J Obstet Gynecol, V138, P383; Anson O, 1999, SOC SCI MED, V49, P67, DOI 10.1016/S0277-9536(99)00079-9; Apter D, 1997, ANN NY ACAD SCI, V816, P9, DOI 10.1111/j.1749-6632.1997.tb52125.x; Arrington R, 2004, QUAL LIFE RES, V13, P1643, DOI 10.1007/s11136-004-7625-z; Avis NE, 2009, MENOPAUSE, V16, P442, DOI 10.1097/gme.0b013e3181948dd0; BACHMANN GA, 1991, MATURITAS, V13, P43, DOI 10.1016/0378-5122(91)90284-W; Bachmann GA, 2004, MENOPAUSE, V11, P120, DOI 10.1097/01.GME.0000075502.60230.28; BACKSTROM T, 1974, J STEROID BIOCHEM, V5, P257, DOI 10.1016/0022-4731(74)90139-3; BACKSTROM T, 1976, J STEROID BIOCHEM, V7, P473, DOI 10.1016/0022-4731(76)90115-1; BACKSTROM T, 1983, PSYCHOSOM MED, V45, P503, DOI 10.1097/00006842-198312000-00004; BAILEY J, 1970, J BIOSOC SCI, V2, P123; Baird DD, 1999, FERTIL STERIL, V71, P40, DOI 10.1016/S0015-0282(98)00419-1; BAIRD DD, 1991, STAT MED, V10, P255, DOI 10.1002/sim.4780100209; BANCROFT J, 1983, PSYCHOSOM MED, V45, P509, DOI 10.1097/00006842-198312000-00005; Bancroft J, 1996, CLIN ENDOCRINOL, V45, P577, DOI 10.1046/j.1365-2265.1996.00846.x; Bancroft J, 2011, HORM BEHAV, V59, P717, DOI 10.1016/j.yhbeh.2011.01.005; BANCROFT J, 1993, PSYCHOSOM MED, V55, P133, DOI 10.1097/00006842-199303000-00001; Bancroft J., 2009, HUMAN SEXUALITY ITS; Basson R, 2010, MENOPAUSE, V17, P962, DOI 10.1097/gme.0b013e3181d59765; BELSEY EM, 1988, CONTRACEPTION, V38, P227, DOI 10.1016/0010-7824(88)90040-6; Belsey EM, 1997, CONTRACEPTION, V55, P57, DOI 10.1016/S0010-7824(96)00273-9; BERNSTEIN L, 1990, CANCER CAUSE CONTROL, V1, P51, DOI 10.1007/BF00053183; BONGAARTS J, 1980, SCIENCE, V208, P564, DOI 10.1126/science.7367878; Brewis A, 2005, CURR ANTHROPOL, V46, P465, DOI 10.1086/430016; Bribiescas RG, 2001, YEARB PHYS ANTHROPOL, V44, P148, DOI 10.1002/ajpa.10025; BRIGGS MH, 1972, ACTA ENDOCRINOL-COP, V70, P619, DOI 10.1530/acta.0.0700619; BROOM TJ, 1981, FERTIL STERIL, V36, P194; Burkhart MC, 1999, CONTRACEPTION, V59, P271, DOI 10.1016/S0010-7824(99)00030-X; BURLESON MH, 1995, PSYCHONEUROENDOCRINO, V20, P405, DOI 10.1016/0306-4530(94)00071-9; Cain VS, 2003, J SEX RES, V40, P266, DOI 10.1080/00224490309552191; CAMERON N, 1976, ANN HUM BIOL, V3, P279, DOI 10.1080/03014467600001451; Campbell KL, 2006, PAEDIATR PERINAT EP, V20, P13, DOI 10.1111/j.1365-3016.2006.00766.x; CAMPBELL KL, 1994, ANN NY ACAD SCI, V709, P1, DOI 10.1111/j.1749-6632.1994.tb30384.x; CARO TM, 1987, ETHOL SOCIOBIOL, V8, P61, DOI 10.1016/0162-3095(87)90058-6; Cawood EHH, 1996, PSYCHOL MED, V26, P925, DOI 10.1017/S0033291700035261; Charnov EL, 2006, AM NAT, V167, P578, DOI 10.1086/501141; Charnov Eric L., 1993, P1; Chau JPC, 1998, J ADOLESCENT HEALTH, V22, P247, DOI 10.1016/S1054-139X(97)00206-1; CHIAZZE L, 1968, J AMER MED ASSOC, V203, P377, DOI 10.1001/jama.203.6.377; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Chisholm JS, 2008, EVOLUTIONARY MED HLT, P134; Christiansen K, 2001, J ENDOCRINOL, V170, P39, DOI 10.1677/joe.0.1700039; CLUTTONBROCK TH, 1979, PROC R SOC SER B-BIO, V205, P547, DOI 10.1098/rspb.1979.0084; COLLETT ME, 1954, FERTIL STERIL, V5, P437; COLLINS W P, 1985, Advances in Contraception, V1, P279, DOI 10.1007/BF01849303; Cooney KA, 1996, STUD FAMILY PLANN, V27, P162, DOI 10.2307/2137922; Creinin MD, 2004, CONTRACEPTION, V70, P289, DOI 10.1016/j.contraception.2004.04.012; Cunningham J, 2009, HARVARD REV PSYCHIAT, V17, P120, DOI 10.1080/10673220902891836; Davis SR, 2005, JAMA-J AM MED ASSOC, V294, P91, DOI 10.1001/jama.294.1.91; DECHERNEY AH, 1982, FERTIL STERIL, V37, P323; DENNERSTEIN L, 1994, PSYCHONEUROENDOCRINO, V19, P293, DOI 10.1016/0306-4530(94)90067-1; Dennerstein L, 2002, FERTIL STERIL, V77, pS42; Dennerstein L, 2001, FERTIL STERIL, V76, P456, DOI 10.1016/S0015-0282(01)01978-1; deSantos JRRM, 1997, J PSYCHOSOM OBST GYN, V18, P175, DOI 10.3109/01674829709085584; Deschner T, 2004, HORM BEHAV, V46, P204, DOI 10.1016/j.yhbeh.2004.03.013; Deschner T, 2003, ANIM BEHAV, V66, P551, DOI 10.1006/anbe.2003.2210; DICKINSON LE, 1974, NEW ENGL J MED, V291, P1211, DOI 10.1056/NEJM197412052912302; Dixson A. F., 2009, SEXUAL SELECTION ORI, P106; Dixson AF, 2012, PRIMATE SEXUALITY: COMPARATIVE STUDIES OF THE PROSIMIANS, MONKEYS, APES, AND HUMANS, 2ND EDITION, P1, DOI 10.1093/acprof:osobl/9780199544646.001.0001; DOBBINS JG, 1980, J BIOSOC SCI, V12, P133; Dobzhansky T, 2013, AM BIOL TEACH, V75, P87, DOI 10.2307/4444260; DORING GK, 1969, J REPROD FERT S, V6, P77; DUNBAR RIM, 1980, J ANIM ECOL, V49, P485, DOI 10.2307/4259; Dunson DB, 1999, HUM REPROD, V14, P1835, DOI 10.1093/humrep/14.7.1835; Dunson DB, 2002, HUM REPROD, V17, P1399, DOI 10.1093/humrep/17.5.1399; Ecochard R, 2001, BRIT J OBSTET GYNAEC, V108, P822, DOI 10.1111/j.1471-0528.2001.00194.x; Ecochard R, 2000, HUM REPROD, V15, P752, DOI 10.1093/humrep/15.4.752; ELLISON PT, 1986, AM J OBSTET GYNECOL, V154, P1000, DOI 10.1016/0002-9378(86)90737-4; ELLISON PT, 1993, HUM REPROD, V8, P2248, DOI 10.1093/oxfordjournals.humrep.a138015; ELLISON PT, 1994, ANNU REV ANTHROPOL, V23, P255, DOI 10.1146/annurev.anthro.23.1.255; ELLISON PT, 1989, AM J PHYS ANTHROPOL, V78, P519, DOI 10.1002/ajpa.1330780407; ELLISON PT, 2001, REPROD ECOLOGY HUMAN, P1; ERIKSSON E, 1992, PSYCHONEUROENDOCRINO, V17, P195, DOI 10.1016/0306-4530(92)90058-F; Fehring RJ, 2006, JOGNN-J OBST GYN NEO, V35, P376, DOI 10.1111/j.1552-6909.2006.00051.x; Ferrell RJ, 2005, MENOPAUSE, V12, P567, DOI 10.1097/01.gme.0000172265.40196.86; FISHER DC, 1985, PALEOBIOLOGY, V11, P120; FISHER R. A., 1930, GENETICAL THEORY NAT; Flynn A. M., 1988, INT J FERTIL, V33, pS17; Foley RA, 1996, CURR ANTHROPOL, V37, P539, DOI 10.1086/204516; Fraenkel L., 1926, HDB NORMALEN PATHOLO, Vxiv, P454; FRANCE JT, 1992, INT J FERTIL, V37, P244; Frank RT, 1931, ARCH NEURO PSYCHIATR, V26, P1053, DOI 10.1001/archneurpsyc.1931.02230110151009; Frank RT, 1928, J AMER MED ASSOC, V90, P106, DOI 10.1001/jama.1928.02690290036009; FRENCH JA, 1987, AM J PRIMATOL, V12, P469, DOI 10.1002/ajp.1350120403; FRISCH RE, 1971, ARCH DIS CHILD, V46, P695, DOI 10.1136/adc.46.249.695; FRISCH RE, 1974, SCIENCE, V185, P949, DOI 10.1126/science.185.4155.949; FRISCH RE, 1970, SCIENCE, V169, P397, DOI 10.1126/science.169.3943.397; FRISCH RE, 1978, SCIENCE, V199, P22, DOI 10.1126/science.199.4324.22; FRISCH RE, 1971, HUM BIOL, V43, P140; Furtbauer I, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026144; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Geronimus AT, 1999, SOC SCI MED, V49, P1623, DOI 10.1016/S0277-9536(99)00246-4; Gierhart BS, 2006, OBSTET GYNECOL, V107, P750, DOI 10.1097/01.AOG.0000204866.43734.22; GINSBURG F, 1991, ANNU REV ANTHROPOL, V20, P311; GOTTLIEB A, 1988, ANTHR TODAY, V4, P10, DOI DOI 10.2307/3032946; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; GOULD SJ, 1982, PALEOBIOLOGY, V8, P4, DOI 10.1017/S0094837300004310; Gracia CR, 2004, MENOPAUSE, V11, P144, DOI 10.1097/01.GME.0000082147.01218.CF; Graham C A, 1991, Hum Nat, V2, P293, DOI 10.1007/BF02692195; GRAHAM CA, 1980, PSYCHONEUROENDOCRINO, V5, P245, DOI 10.1016/0306-4530(80)90028-1; Graham CA, 1995, CONTRACEPTION, V52, P363, DOI 10.1016/0010-7824(95)00226-X; GRAY RH, 1987, J CLIN ENDOCR METAB, V64, P645, DOI 10.1210/jcem-64-4-645; Haiman CA, 2002, BRIT J CANCER, V86, P367, DOI 10.1038/sj/bjc/6600098; HALBREICH U, 1985, PSYCHONEUROENDOCRINO, V10, P15, DOI 10.1016/0306-4530(85)90036-8; HALBREICH U, 1986, ACTA PSYCHIAT SCAND, V74, P576, DOI 10.1111/j.1600-0447.1986.tb06287.x; Harlow SD, 2000, HUM REPROD, V15, P11, DOI 10.1093/humrep/15.1.11; Harris AL, 2012, AM J HUM BIOL, V24, P226; Hayes R, 2005, J SEX MED, V2, P317, DOI 10.1111/j.1743-6109.2005.20356.x; HEDRICKS C, 1987, FERTIL STERIL, V48, P234; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Holman D. J., 1996, THESIS PENNSYLVANIA; Hrdy S.B., 1987, P370; Huang AJ, 2009, J AM GERIATR SOC, V57, P1362, DOI 10.1111/j.1532-5415.2009.02353.x; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; JACOB F, 1977, SCIENCE, V196, P1161, DOI 10.1126/science.860134; JASIENSKA G, 2001, REPROD ECOLOGY HUMAN, P59; JEYASEELAN L, 1993, HUM BIOL, V65, P627; Kadian Suman, 2012, Menopause Int, V18, P43, DOI 10.1258/mi.2012.012017; KEY TJA, 1990, BRIT J CANCER, V62, P631, DOI 10.1038/bjc.1990.344; Knight C, 1991, BLOOD RELATIONS MENS; KONNER M, 1980, SCIENCE, V207, P788, DOI 10.1126/science.7352291; LANDGREN BM, 1980, CONTRACEPTION, V21, P87, DOI 10.1016/0010-7824(80)90142-0; LANDGREN BM, 1980, ACTA ENDOCRINOL-COP, V94, P89, DOI 10.1530/acta.0.0940089; LASKER GW, 1969, SCIENCE, V166, P1480, DOI 10.1126/science.166.3912.1480; Lauder George V., 1996, P55; LENTON EA, 1984, BRIT J OBSTET GYNAEC, V91, P681, DOI 10.1111/j.1471-0528.1984.tb04830.x; LEROI AM, 1994, AM NAT, V143, P381, DOI 10.1086/285609; LESLIE PW, 1989, AM J PHYS ANTHROPOL, V79, P103, DOI 10.1002/ajpa.1330790111; Leslie PW, 2003, AM ANTHROPOL, V105, P28, DOI 10.1525/aa.2003.105.1.28; Lessells C.M., 1991, P32; Li HX, 2001, FERTIL STERIL, V75, P549, DOI 10.1016/S0015-0282(00)01765-9; Lipson SF, 1996, HUM REPROD, V11, P2090; Lipson SF, 2001, FOUND HUM B, P235; LIPSON SF, 1992, J BIOSOC SCI, V24, P233; LIU SF, 1986, J REPROD FERTIL, V76, P43; LIVINGSTONE FB, 1958, AM ANTHROPOL, V60, P533, DOI 10.1525/aa.1958.60.3.02a00110; Lock M, 2001, MED ANTHROPOL Q, V15, P478, DOI 10.1525/maq.2001.15.4.478; MACMAHON B, 1974, INT J CANCER, V14, P161, DOI 10.1002/ijc.2910140204; MALINA RM, 1983, ANN HUM BIOL, V10, P1, DOI 10.1080/03014468300006141; Malthus T., 1798, ESSAY PRINCIPLE POPU; MANSFIELD MJ, 1984, J REPROD MED, V29, P399; Marks L, 2001, Clio Med, V61, P217; Marlowe FW, 2004, ARCH SEX BEHAV, V33, P427, DOI 10.1023/B:ASEB.0000037423.84026.1f; Martin E., 1987, WOMAN BODY CULTURAL; Matsumoto S., 1962, GUNMA J MED SCI, V11, P294; Matsumoto-Oda A, 2007, BEHAV ECOL SOCIOBIOL, V61, P661, DOI 10.1007/s00265-006-0287-9; MAZESS RB, 1975, BIOSOCIAL INTERRELAT, P9; MCCLINTOCK MK, 1971, NATURE, V229, P244, DOI 10.1038/229244a0; MCCLINTOCK MK, 1981, AM ZOOL, V21, P243; MCCOY NL, 1985, MATURITAS, V7, P203, DOI 10.1016/0378-5122(85)90041-6; McDade TW, 1998, J DEV BEHAV PEDIATR, V19, P286, DOI 10.1097/00004703-199808000-00008; Meaden PM, 2005, PSYCHIAT RES, V134, P27, DOI 10.1016/j.psychres.2005.01.003; MENKEN J, 1981, J INTERDISCIPL HIST, V11, P425, DOI 10.2307/203626; Meredith M, 2001, CHEM SENSES, V26, P433, DOI 10.1093/chemse/26.4.433; Messinis IE, 2006, HUM REPROD UPDATE, V12, P557, DOI 10.1093/humupd/dml020; METCALF MG, 1980, J BIOSOC SCI, V12, P345; METCALF MG, 1983, NEW ZEAL MED J, V96, P645; Meyer VF, 2001, INT J HEALTH SERV, V31, P769, DOI 10.2190/M77D-YV2Y-D5NU-FXNW; Migliano AB, 2007, P NATL ACAD SCI USA, V104, P20216, DOI 10.1073/pnas.0708024105; Monari Paola, 1998, Genus, V54, P95; Monfort SL, 1996, BIOL REPROD, V55, P875, DOI 10.1095/biolreprod55.4.875; MORBECK ME, 1997, EVOLVING FEMALE LIFE; MORRIS NM, 1987, ARCH SEX BEHAV, V16, P27, DOI 10.1007/BF01541839; Mulder M Borgerhoff, 1992, EVOLUTIONARY ECOLOGY, P339; Mulder VB, 2000, EVOL HUM BEHAV, V21, P391; Nepomnaschy PA, 2004, AM J HUM BIOL, V16, P523, DOI 10.1002/ajhb.20057; Nunn CL, 1999, ANIM BEHAV, V58, P229, DOI 10.1006/anbe.1999.1159; O'Connor KA, 2006, HUM REPROD, V21, P1442, DOI 10.1093/humrep/dei497; PANTERBRICK C, 1993, HUM REPROD, V8, P684, DOI 10.1093/oxfordjournals.humrep.a138120; PEREIRA ME, 1991, PHYSIOL BEHAV, V49, P47, DOI 10.1016/0031-9384(91)90228-G; PERSKY H, 1978, PSYCHOSOM MED, V40, P523, DOI 10.1097/00006842-197811000-00001; PERSKY H, 1978, ARCH SEX BEHAV, V7, P157, DOI 10.1007/BF01542376; PERSKY H, 1982, PSYCHOSOM MED, V44, P305, DOI 10.1097/00006842-198209000-00001; Pinheiro SP, 2005, CANCER EPIDEM BIOMAR, V14, P2147, DOI 10.1158/1055-9965.EPI-04-0944; PRIOR JC, 1987, BAILLIERE CLIN ENDOC, V1, P299, DOI 10.1016/S0950-351X(87)80065-4; PRIOR JC, 1985, SEMIN REPROD ENDOCR, V3, P27, DOI 10.1055/s-2007-1022601; PRIOR JC, 1985, MENSTRUAL CYCLE PHYS, P63; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Promislow JHE, 2007, HUM REPROD, V22, P853, DOI 10.1093/humrep/del417; QUANDT SA, 1984, SOC SCI MED, V19, P177, DOI 10.1016/0277-9536(84)90285-5; Rapkin Andrea J, 2012, Menopause Int, V18, P52, DOI 10.1258/mi.2012.012014; REDEI E, 1995, PSYCHONEUROENDOCRINO, V20, P259, DOI 10.1016/0306-4530(94)00057-H; Reiber C., 2009, J SOCIAL EVOLUTIONAR, V3, P9; Reiber C, 2008, MED HYPOTHESES, V70, P1058, DOI 10.1016/j.mehy.2007.08.031; RENAUD RL, 1980, FERTIL STERIL, V33, P272; RIADFAHMY D, 1987, J REPROD MED, V32, P254; Riley A, 2000, J SEX MARITAL THER, V26, P269, DOI 10.1080/00926230050084669; ROSE MR, 1996, ADAPTATION; ROSSEINSKY DR, 1974, LANCET, V2, P1024; RUBINOW DR, 1988, AM J OBSTET GYNECOL, V158, P5, DOI 10.1016/0002-9378(88)90765-X; Rubinow DR, 1995, ANN NY ACAD SCI, V771, P648, DOI 10.1111/j.1749-6632.1995.tb44717.x; RUSSELL MJ, 1980, PHARMACOL BIOCHEM BE, V13, P737, DOI 10.1016/0091-3057(80)90020-9; Sabatini R, 2006, CONTRACEPTION, V74, P220, DOI 10.1016/j.contraception.2006.03.022; Sadler C, 2010, J WOMENS HEALTH, V19, P391, DOI 10.1089/jwh.2008.1210; SANDERS D, 1983, PSYCHOSOM MED, V45, P487, DOI 10.1097/00006842-198312000-00003; Schank JC, 2001, BEHAV PROCESS, V56, P131, DOI 10.1016/S0376-6357(01)00194-2; Schipper I, 1998, HUM REPROD, V13, P1442, DOI 10.1093/humrep/13.6.1442; Schmidt PJ, 1998, NEW ENGL J MED, V338, P209, DOI 10.1056/NEJM199801223380401; SCHREINERENGEL P, 1981, PSYCHOSOM MED, V43, P199, DOI 10.1097/00006842-198106000-00002; SCHREINERENGEL P, 1989, HORM BEHAV, V23, P221, DOI 10.1016/0018-506X(89)90063-9; SCOTT EC, 1985, CURR ANTHROPOL, V26, P463, DOI 10.1086/203309; Sellen DW, 2001, HUM NATURE-INT BIOS, V12, P47, DOI 10.1007/s12110-001-1013-y; Setchell JM, 2011, PSYCHONEUROENDOCRINO, V36, P51, DOI 10.1016/j.psyneuen.2010.06.004; SHIMIZU H, 1990, BRIT J CANCER, V62, P451, DOI 10.1038/bjc.1990.316; SMITH SK, 1985, J REPROD FERTIL, V75, P363; SNOWDEN R, 1983, PATTERNS PERCEPTIONS; Stearns S. C., 1992, EVOLUTION LIFE HIST; Steiner MJ, 2001, ANN EPIDEMIOL, V11, P428, DOI 10.1016/S1047-2797(01)00248-4; Stern K, 1998, NATURE, V392, P177, DOI 10.1038/32408; STEWART DR, 1993, J CLIN ENDOCR METAB, V76, P1470, DOI 10.1210/jc.76.6.1470; Strassmann BI, 1999, HUM REPROD, V14, P579, DOI 10.1093/humrep/14.3.579; Strassmann BI, 1997, CURR ANTHROPOL, V38, P123, DOI 10.1086/204592; Strassmann BI, 2002, P ROY SOC B-BIOL SCI, V269, P553, DOI 10.1098/rspb.2001.1912; STUART FM, 1987, ARCH SEX BEHAV, V16, P91, DOI 10.1007/BF01542064; Sulak PJ, 2000, OBSTET GYNECOL, V95, P261, DOI 10.1016/S0029-7844(99)00524-4; Sundstrom Poromaa I., 2003, ARCH WOMEN MENT HLTH, V6, P23, DOI DOI 10.1007/S00737-002-0147-1; Takeda T, 2006, ARCH WOMEN MENT HLTH, V9, P209, DOI 10.1007/s00737-006-0137-9; THOMAS RB, 1989, HUMAN POPULATION BIO, P296; Tobler R, 2010, ANIM BEHAV, V80, P829, DOI 10.1016/j.anbehav.2010.07.018; Traish AM, 2010, J SEX MED, V7, P2925, DOI 10.1111/j.1743-6109.2010.01903.x; TRELOAR AE, 1967, INT J FERTIL, V12, P77; Treloar SA, 2002, PSYCHOL MED, V32, P25; TREVATHAN WR, 1993, PSYCHONEUROENDOCRINO, V18, P425, DOI 10.1016/0306-4530(93)90017-F; TRICHOPOULOS D, 1984, CANCER, V53, P187, DOI 10.1002/1097-0142(19840101)53:1<187::AID-CNCR2820530133>3.0.CO;2-N; Trotier D, 2000, CHEM SENSES, V25, P369, DOI 10.1093/chemse/25.4.369; TRUSSELL J, 1980, HUM BIOL, V52, P711; Turna B, 2005, INT J IMPOT RES, V17, P148, DOI 10.1038/sj.ijir.3901294; USALA SJ, 1983, FERTIL STERIL, V39, P304; Van der Wijden C, 2003, COCHRANE DB SYST REV, V4; VANDENAKKER OBA, 1995, SOC SCI MED, V40, P1417, DOI 10.1016/0277-9536(94)00265-U; VANDERWALT LA, 1978, J CLIN ENDOCR METAB, V46, P658, DOI 10.1210/jcem-46-4-658; VanGoozen SHM, 1997, ARCH SEX BEHAV, V26, P359, DOI 10.1023/A:1024587217927; Venners SA, 2006, HUM REPROD, V21, P2272, DOI 10.1093/humrep/del187; Vitzthum VJ, 2007, AM J HUM BIOL, V19, P286; Vitzthum VJ, 2011, AM J HUM BIOL, V23, P282; Vitzthum V J, 2000, High Alt Med Biol, V1, P39, DOI 10.1089/152702900320676; Vitzthum VJ, 2008, SOC ST HUM, V48, P99; Vitzthum VJ, 2008, ANNU REV ANTHROPOL, V37, P53, DOI 10.1146/annurev.anthro.37.081407.085112; Vitzthum VJ, 2006, FERTIL STERIL, V86, P373, DOI 10.1016/j.fertnstert.2006.01.021; Vitzthum VJ, 2009, YEARB PHYS ANTHROPOL, V52, P95, DOI 10.1002/ajpa.21195; Vitzthum VJ, 2009, AM J HUM BIOL, V21, P762, DOI 10.1002/ajhb.20927; Vitzthum VJ, 2009, AM J HUM BIOL, V21, P548, DOI 10.1002/ajhb.20936; Vitzthum Virginia J., 1994, Yearbook of Physical Anthropology, V37, P307; Vitzthum VJ, 2004, P NATL ACAD SCI USA, V101, P1443, DOI 10.1073/pnas.0302640101; VITZTHUM VJ, 1989, AM J PHYS ANTHROPOL, V78, P318; Vitzthum VJ, 2002, HUM REPROD, V17, P1906, DOI 10.1093/humrep/17.7.1906; Vitzthum VJ, 2001, FOUND HUM B, P179; Vitzthum VJ, 2001, CONTRACEPTION, V64, P319, DOI 10.1016/S0010-7824(01)00260-8; VITZTHUM VJ, 1992, ECOL FOOD NUTR, V28, P45, DOI 10.1080/03670244.1992.9991259; Vitzthum VJ, 2000, CONTRACEPTION, V62, P181, DOI 10.1016/S0010-7824(00)00164-5; VITZTHUM VJ, 1994, ANN NY ACAD SCI, V709, P221, DOI 10.1111/j.1749-6632.1994.tb30408.x; VITZTHUM VJ, 1989, J BIOSOC SCI, V21, P145; VITZTHUM VJ, 1997, EVOLVING FEMALE LIFE, P242; VITZTHUM VJ, 1990, 90200 U MICH POP STU; Voland E, 1998, ANNU REV ANTHROPOL, V27, P347, DOI 10.1146/annurev.anthro.27.1.347; Vollman R F, 1977, Major Probl Obstet Gynecol, V7, P1; Waller K, 1998, AM J EPIDEMIOL, V147, P1071; WALLIS J, 1985, INT J PRIMATOL, V6, P335, DOI 10.1007/BF02745505; WALLIS J, 1995, INT J PRIMATOL, V16, P435, DOI 10.1007/BF02735796; WANG DY, 1991, BREAST CANCER RES TR, V18, pS41, DOI 10.1007/BF02633526; WASSER SK, 1983, Q REV BIOL, V58, P513, DOI 10.1086/413545; WELLER L, 1993, NEUROSCI BIOBEHAV R, V17, P427, DOI 10.1016/S0149-7634(05)80118-6; West B. T., 2006, LINEAR MIXED MODELS; Wierman ME, 2010, J SEX MED, V7, P561, DOI 10.1111/j.1743-6109.2009.01629.x; Wilcox AJ, 2004, HUM REPROD, V19, P1539, DOI 10.1093/humrep/deh305; WILCOX AJ, 1995, NEW ENGL J MED, V333, P1517, DOI 10.1056/NEJM199512073332301; Wilcox AJ, 2001, CONTRACEPTION, V63, P211, DOI 10.1016/S0010-7824(01)00191-3; Wilcox AJ, 2000, BRIT MED J, V321, P1259, DOI 10.1136/bmj.321.7271.1259; WILEY AS, 1992, MED ANTHROPOL Q, V6, P216, DOI 10.1525/maq.1992.6.3.02a00030; Williams GC, 1966, ADAPTATION NATURAL S; Williams Sharon R, 2006, J Physiol Anthropol, V25, P85, DOI 10.2114/jpa2.25.85; WILSON HC, 1992, PSYCHONEUROENDOCRINO, V17, P565, DOI 10.1016/0306-4530(92)90016-Z; Windham GC, 2002, EPIDEMIOLOGY, V13, P675, DOI 10.1097/01.EDE.0000032361.84313.F2; Winterhalder B, 2000, EVOL ANTHROPOL, V9, P51; Winterich JA, 2003, GENDER SOC, V17, P627, DOI 10.1177/0891243203253962; WOOD JW, 1985, J BIOSOC SCI, V17, P57; WOOD JW, 1994, DYNAMICS HUMAN REPRO; Worthman CM, 2003, OFFSPRING, P289; Yang ZW, 2006, HUM NATURE-INT BIOS, V17, P433, DOI 10.1007/s12110-006-1005-z; Yonkers KA, 2008, LANCET, V371, P1200, DOI 10.1016/S0140-6736(08)60527-9; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; ZITA JN, 1988, HYPATIA, V3, P77 288 5 5 2 74 ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND 0022-4499 1559-8519 J SEX RES J. Sex Res. APR 1 2013 50 3-4 SI 207 246 10.1080/00224499.2012.763085 40 Psychology, Clinical; Social Sciences, Interdisciplinary Psychology; Social Sciences - Other Topics 103TX WOS:000315943100002 23480070 2018-11-12 J Xu, F; Adler, GH; Li, YM Xu, Feng; Adler, Gregory H.; Li, Yiming Covariation in Insular Life-history Traits of the Rice Frog (Fejervarya limnocharis) in Eastern China ASIAN HERPETOLOGICAL RESEARCH English Article island syndrome; life-history traits; trade-off; body size; egg size; clutch size; reproductive effort BODY-SIZE; ZHOUSHAN ARCHIPELAGO; ISLAND RULE; TRADE-OFFS; RANA-SYLVATICA; GENE FLOW; POPULATION; SHIFTS; REPRODUCTION; VERTEBRATES Although shifts in life-history traits of insular vertebrates, as compared with mainland populations, have been observed in many taxa, few studies have examined the relationships among individual life-history traits on islands. Life-history theory also predicts that there is a trade-off between body size and reproductive effort, and between egg size and clutch size. We surveyed the rice frog, Fejervarya limnocharis, on 20 islands within the Zhoushan Archipelago and two nearby sites on the mainland of China to compare differences in life-history traits and to explore relationships among those traits. Rice frog females reached a greater body size on half of the smaller islands among the total 20 surveyed islands, and larger egg size, decreased clutch size and reduced reproductive effort on most of the islands when compared to the two mainland sites. Insular body size was negatively correlated with reproductive effort. There was a negative correlation between egg size and clutch size. Results suggest that life-history theory provides a good explanation for co-variation between body size and reproductive effort, and between egg size and clutch size in rice frogs on the islands. [Xu, Feng; Li, Yiming] Chinese Acad Sci, Inst Zool, Key Lab Anim Ecol & Conservat Biol, Beijing 100101, Peoples R China; [Xu, Feng] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Key Lab Biogeog & Bioresource Arid Land, Urumqi 830011, Xinjiang, Peoples R China; [Adler, Gregory H.] Univ Wisconsin, Dept Biol & Microbiol, Oshkosh, WI 54901 USA Li, YM (reprint author), Chinese Acad Sci, Inst Zool, Beijing 100101, Peoples R China. liym@ioz.ac.cn Xu, Feng/A-8626-2011 Xu, Feng/0000-0001-8925-977X "973" Program of China [2007CB411600]; Chinese Academy of Sciences (CAS) [kscx2-yw-z-1021]; "Xi Bu Zhi Guang" Program of CAS [XBBS201102] We thank Lital DABOOL, Shai MEIRI, and Gentile Francesco FICETOLA for helpful comments on the early draft of this manuscript. This work was supported by the grant from the "973" Program of China (No. 2007CB411600), the Chinese Academy of Sciences (CAS) (No. kscx2-yw-z-1021), and the "Xi Bu Zhi Guang" Program of CAS (No. XBBS201102). The collection and handling of amphibians were conducted under the approval of the Animal Care and Ethics Committee of Institute of Zoology, CAS. ADLER GH, 1994, Q REV BIOL, V69, P473, DOI 10.1086/418744; ANDERSON TR, 1994, WILSON BULL, V106, P537; ANGERBJORN A, 1986, OIKOS, V47, P47, DOI 10.2307/3565918; BERVEN KA, 1990, EVOLUTION, V44, P2047, DOI 10.1111/j.1558-5646.1990.tb04310.x; BERVEN KA, 1988, OECOLOGIA, V75, P67, DOI 10.1007/BF00378815; Cabe PR, 2007, HEREDITY, V98, P53, DOI 10.1038/sj.hdy.6800905; CASE TJ, 1978, ECOLOGY, V59, P1, DOI 10.2307/1936628; Chen Q., 1989, ANN CURRENT HIST PLA; Covas R, 2012, P ROY SOC B-BIOL SCI, V279, P1531, DOI 10.1098/rspb.2011.1785; Darlington RB, 2001, ANIM BEHAV, V62, P599, DOI 10.1006/anbe.2001.1806; Dziminski MA, 2006, J EVOLUTION BIOL, V19, P144, DOI 10.1111/j.1420-9101.2005.00978.x; Fei L., 1999, ATLAS AMPHIBIANS CHI; Ficetola GF, 2009, BIOL J LINN SOC, V97, P845, DOI 10.1111/j.1095-8312.2009.01229.x; Freckleton RP, 2002, J ANIM ECOL, V71, P542, DOI 10.1046/j.1365-2656.2002.00618.x; Gosner K. L., 1960, Herpetologica, V16, P183; Gu Huiqing, 1985, Acta Herpetologica Sinica, V4, P30; Huang M, 1990, FAUNA ZHEJIANG AMPHI; Jinling Z., 1987, COMPREHENSIVE AGR PR; KAPLAN RH, 1992, ECOLOGY, V73, P280, DOI 10.2307/1938739; Li YM, 2011, J ANIM ECOL, V80, P171, DOI 10.1111/j.1365-2656.2010.01746.x; Lips KR, 2001, OECOLOGIA, V128, P509, DOI 10.1007/s004420100687; Lomolino MV, 2005, J BIOGEOGR, V32, P1683, DOI 10.1111/j.1365-2699.2005.01314.x; Madsen T, 1999, J ANIM ECOL, V68, P571, DOI 10.1046/j.1365-2656.1999.00306.x; Meiri S, 2004, AM NAT, V163, P469, DOI 10.1086/382229; Meiri S, 2008, P ROY SOC B-BIOL SCI, V275, P141, DOI 10.1098/rspb.2007.1056; Monsen KJ, 2003, MOL ECOL, V12, P3275, DOI 10.1046/j.1365-294X.2003.02001.x; Novosolov M, 2013, GLOBAL ECOL BIOGEOGR, V22, P184, DOI 10.1111/j.1466-8238.2012.00791.x; Palkovacs EP, 2003, OIKOS, V103, P37, DOI 10.1034/j.1600-0706.2003.12502.x; Pough FH, 1998, HERPETOLOGY; Raia P, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-289; Robinson-Wolrath SI, 2003, J EVOLUTION BIOL, V16, P1106, DOI 10.1046/j.1420-9101.2003.00615.x; Roff DA, 2000, J EVOLUTION BIOL, V13, P434, DOI 10.1046/j.1420-9101.2000.00186.x; Roff Derek A., 1992; RYSER J, 1989, OECOLOGIA, V78, P264, DOI 10.1007/BF00377165; STAMPS JA, 1985, Q REV BIOL, V60, P155, DOI 10.1086/414314; Stearns S. C., 1992, EVOLUTION LIFE HIST; TEJEDO M, 1992, OECOLOGIA, V90, P294, DOI 10.1007/BF00317189; Vonesh JR, 2005, OIKOS, V110, P241, DOI 10.1111/j.0030-1299.2005.13759.x; Wang J., 1980, CHINESE J GEOGRAPHY, V35, P299; Wang Y, 2009, J ZOOL, V278, P65, DOI 10.1111/j.1469-7998.2009.00552.x; Welch JJ, 2009, P ROY SOC B-BIOL SCI, V276, P675, DOI 10.1098/rspb.2008.1180; White TA, 2007, J BIOGEOGR, V34, P356, DOI 10.1111/j.1365-2699.2006.01599.x; Wilkinson JW, 2007, HERPETOL J, V17, P192; Wu ZJ, 2006, J ANIM ECOL, V75, P1071, DOI 10.1111/j.1365-2656.2006.01126.x; Yiming L, 1998, OECOLOGIA, V113, P557, DOI 10.1007/s004420050409; Zar J. H, 1999, BIOL STAT; Zhuge Y., 1990, FAUNA ZHEJIANG MAMMA 47 2 2 2 20 SCIENCE PRESS BEIJING 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA 2095-0357 ASIAN HERPETOL RES Asian Herpetol. Res. MAR 25 2013 4 1 28 35 10.3724/SP.J.1245.2013.00028 8 Zoology Zoology 133IU WOS:000318132900004 2018-11-12 J Wenner, CJ; Bianchi, J; Figueredo, AJ; Rushton, JP; Jacobs, WJ Wenner, C. J.; Bianchi, J.; Figueredo, A. J.; Rushton, J. Philippe; Jacobs, W. J. Life History theory and social deviance: The mediating role of Executive Function INTELLIGENCE English Article Deviance; Impulsivity; Life History theory; Executive Functioning; Self-Regulation RISK-TAKING; K-FACTOR; REPRODUCTIVE STRATEGY; MATING-EFFORT; PERSONALITY; BEHAVIOR; ADOLESCENCE; DELINQUENCY; COVITALITY; ECOLOGY The present work examined predicted relations among Life History strategies, Executive Functions, socially antagonistic attitudes, socially antagonistic behaviors, and general intelligence. Life History (LH) theory predicts that Executive Functions and socially antagonistic attitudes and behaviors underpin an interrelated and coherent set of behavioral strategies (LH strategies) designed to enhance reproductive success. Specifically, LH theory predicts a positive relation between Executive Functioning and LH strategies; a negative relation between socially antagonistic attitudes and behaviors and LH strategies; and that Executive Functions mediate relations among LH strategies and socially antagonistic attitudes and behaviors. Results from a Structural Equation Model (SEM), based on self-reported Life History strategies, Executive Functioning, socially antagonistic attitudes and behaviors, and general intelligence support these predictions. The structure of the model suggests that Executive Functions serve a mediating role in the relations between LH strategy and social deviance. (C) 2012 Elsevier Inc. All rights reserved. [Wenner, C. J.] Univ Arizona, Dept Psychol, Tucson, AZ 85721 USA; Univ Western Ontario, London, ON N6A 3K7, Canada Wenner, CJ (reprint author), Univ Arizona, Dept Psychol, POB 210068, Tucson, AZ 85721 USA. wenner@u.arizona.edu Army Individual Test Battery, 1944, MAN DIR SCOR; Banfield JF, 2004, HDB SELF REGULATION; BARASH D, 1982, SOCIOBIOLOGY BEHAV; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BENTLER PM, 1980, PSYCHOL BULL, V88, P588, DOI 10.1037/0033-2909.107.2.238; Browne M. W., 1993, TESTING STRUCTURAL E; Brumbach B. H., 2007, ACTA PSYCHOL SINICA, V39, P481; Bulow PJ, 1998, J COMMUNITY PSYCHOL, V26, P581, DOI 10.1002/(SICI)1520-6629(199811)26:6<581::AID-JCOP5>3.0.CO;2-Y; Charles KE, 2005, PERS INDIV DIFFER, V38, P1035, DOI 10.1016/j.paid.2004.06.021; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; Cochran DL, 1997, FAM SOC-J CONTEMP H, V78, P340, DOI 10.1606/1044-3894.792; Cohen J, 1988, STAT POWER ANAL BEHA; CROWNE DP, 1960, J CONSULT PSYCHOL, V24, P349, DOI 10.1037/h0047358; Denowski G., 1985, CRIM JUSTICE BEHAV, V12, P55; DONOVAN JE, 1985, J CONSULT CLIN PSYCH, V53, P890, DOI 10.1037/0022-006X.53.6.890; EADINGTON W, 1976, GAMBLING SOC INTERDI; EISENBERG JF, 1981, MAMMALIAN RAD ANAL T; Ellis, 2011, DEV PSYCHOL, V48, P598; Ellis B. J., 2011, EVOLUTIONARY BASIS R; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Figueredo A. J., 2012, DOSSIE ACERCA INTELL, V20; Figueredo A. J., 2007, ARIZONA LIFE HIST BA; Figueredo A. J., 2011, APPL EVOLUTIONARY PS, P201; Figueredo AJ, 2000, ADDICTION, V95, pS361; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2010, PSYCHOL EMOT MOTIV A, P3; Figueredo AJ, 2009, TWIN RES HUM GENET, V12, P555, DOI 10.1375/twin.12.6.555; Friedman NP, 2006, PSYCHOL SCI, V17, P172, DOI 10.1111/j.1467-9280.2006.01681.x; Fuster JM, 2008, PREFRONTAL CORTEX, 4TH EDITION, P1; GEARY DC, 2005, ORIGIN MIND EVOLUTIO; Gioia GA, 2002, CHILD NEUROPSYCHOL, V8, P249, DOI 10.1076/chin.8.4.249.13513; Gladden P., 2009, J EVOLUTIONARY PSYCH, V7, P167, DOI DOI 10.1556/JEP.7.2009.2.5; Gladden PR, 2008, EVOL HUM BEHAV, V29, P319, DOI 10.1016/j.evolhumbehav.2008.03.003; GLADDEN PR, 2008, PERSONALITY INDIVIDU, V46, P270, DOI DOI 10.1016/J.PAID.2008.10.010; Gorsuch R. L., 1983, FACTOR ANAL; Gottfredson M. R., 1990, GEN THEORY CRIME; Hamilton D., 1966, J THEOR BIOL, V12, P12; HERRNSTEIN R, 1994, BELL CURVE; Hu LT, 1995, STRUCTURAL EQUATION; KANDEL E, 1988, J CONSULT CLIN PSYCH, V56, P224, DOI 10.1037/0022-006X.56.2.224; Kidd P S, 1993, J Emerg Nurs, V19, P292; Lezak MD, 2004, NEUROPSYCHOLOGICAL A; Lilienfeld SO, 1996, J PERS ASSESS, V66, P488, DOI 10.1207/s15327752jpa6603_3; MCARTHUR RH, 1967, THEORY ISLAND BIOGEO; McKnight PE, 2007, MISSING DATA; MCNAMARA KJ, 1997, SHAPES TIME EVOLUTIO; Metcalfe J, 1999, PSYCHOL REV, V106, P3, DOI 10.1037/0033-295X.106.1.3; Metcalfe J., 2009, OXFORD COMPANION EMO; Miyake A, 2000, COGNITIVE PSYCHOL, V41, P49, DOI 10.1006/cogp.1999.0734; MOFFITT TE, 1981, J ABNORM PSYCHOL, V90, P152, DOI 10.1037/0021-843X.90.2.152; Morgan B., 2010, BRAIN MATURATION COG; Olderbak S, 2009, PERS INDIV DIFFER, V46, P604, DOI 10.1016/j.paid.2008.12.019; Olderbak SG, 2010, PERS INDIV DIFFER, V49, P234, DOI 10.1016/j.paid.2010.03.041; Osterrieth PA, 1944, ARCH PSYCHOL-GENEVE, P206; Patton JH, 1995, J CLIN PSYCHOL, V51, P768, DOI 10.1002/1097-4679(199511)51:6<768::AID-JCLP2270510607>3.0.CO;2-1; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; REGARD M, 1982, PERCEPT MOTOR SKILL, V55, P839, DOI 10.2466/pms.1982.55.3.839; Robbins RN, 2004, J ADOLESCENT RES, V19, P428, DOI 10.1177/074355840328860; Rowe D. C., 1996, CURRENT THEORIES DEL, P268; Rowe DC, 1997, PERS INDIV DIFFER, V23, P105, DOI 10.1016/S0191-8869(97)00005-6; Rowe DC, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P147; ROWE DC, 1989, ADV ADOLESCENT DEV, P38; Rushton J., 2000, RACE EVOLUTION BEHAV; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P769, DOI 10.1016/0191-8869(85)90088-1; Shennan S., 2002, GENES MEMES HUMAN HI; SKINNER HA, 1982, ADDICT BEHAV, V7, P363, DOI 10.1016/0306-4603(82)90005-3; Steiger J. H., 1980, ANN SPRING M PSYCH S; STEIGER JH, 1990, MULTIVAR BEHAV RES, V25, P173, DOI 10.1207/s15327906mbr2502_4; Steinberg L, 2007, CURR DIR PSYCHOL SCI, V16, P55, DOI 10.1111/j.1467-8721.2007.00475.x; Stroop JR, 1935, J EXP PSYCHOL, V18, P643, DOI 10.1037//0096-3445.121.1.15; van de Mortel TF, 2008, AUST J ADV NURS, V25, P40; Wenner C. J., 2007, EXECUTIVE FUNC UNPUB; Wenner C. J., 2007, ANN M INT SOC INT RE; Wenner C. J., 2005, PSYCHOMETRICS BEHAV; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Wilson B. A, 1996, BEHAV ASSESSMENT DYS; Wilson E.O., 1975, P522; Wilson EO, 1998, CONSILIENCE UNITY KN; Zachary R. A., 1986, SHIPLEY I LIVING SCA; Zuckerman M, 2000, J PERS, V68, P999, DOI 10.1111/1467-6494.00124 84 20 22 0 34 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 0160-2896 1873-7935 INTELLIGENCE Intelligence MAR-APR 2013 41 2 102 113 10.1016/j.intell.2012.11.004 12 Psychology, Multidisciplinary Psychology 111KT WOS:000316520900003 2018-11-12 J Smallegange, IM; Coulson, T Smallegange, Isabel M.; Coulson, Tim Towards a general, population-level understanding of eco-evolutionary change TRENDS IN ECOLOGY & EVOLUTION English Article INTEGRAL PROJECTION MODELS; LIFE-HISTORY; VARIABLE ENVIRONMENT; ECOLOGICAL DYNAMICS; RAPID EVOLUTION; TRAIT; STRATEGIES; DEMOGRAPHY; DECISIONS; SELECTION Most population-level studies of eco-evolutionary dynamics assume that evolutionary change occurs in response to ecological change and vice versa. However, a growing number of papers report simultaneous ecological and evolutionary change, suggesting that the eco-evolutionary consequences of environmental change for populations can only be fully understood through the simultaneous analysis of statistics used to describe both ecological and evolutionary dynamics. Here we argue that integral projection models (IPM), and matrix approximations of them, provide a powerful approach to integrate population ecology, life history theory, and evolution. We discuss key questions in population biology that can be examined using these models, the answers to which are essential for a general, population-level understanding of eco-evolutionary change. [Smallegange, Isabel M.; Coulson, Tim] Univ London Imperial Coll Sci Technol & Med, Div Biol, Ascot SL5 7PY, Berks, England Smallegange, IM (reprint author), Univ London Imperial Coll Sci Technol & Med, Div Biol, Silwood Pk, Ascot SL5 7PY, Berks, England. i.smallegange@imperial.ac.uk Smallegange, Isabel/A-8198-2010 Smallegange, Isabel/0000-0001-6218-7358; Coulson, Tim/0000-0001-9371-9003 ERC Advanced Grant; Natural Environment Research Council [NE/E015921/1, NE/G004390/1] We thank Susanne Schindler for helpful discussions and three anonymous reviewers and Paul Craze for their comments. The work was funded by an ERC Advanced Grant awarded to T.C. Adler PB, 2010, ECOL LETT, V13, P1019, DOI 10.1111/j.1461-0248.2010.01496.x; Benton TG, 2004, J ANIM ECOL, V73, P983, DOI 10.1111/j.0021-8790.2004.00859.x; Benton TG, 1999, TRENDS ECOL EVOL, V14, P467, DOI 10.1016/S0169-5347(99)01724-3; Caswell H, 2001, MATRIX POPULATION MO; Childs DZ, 2011, ECOL LETT, V14, P985, DOI 10.1111/j.1461-0248.2011.01657.x; Childs DZ, 2004, P ROY SOC B-BIOL SCI, V271, P425, DOI 10.1098/rspb.2003.2597; Childs DZ, 2003, P ROY SOC B-BIOL SCI, V270, P1829, DOI 10.1098/rspb.2003.2399; Coulson T, 2008, AM NAT, V172, P599, DOI 10.1086/591693; Coulson T, 2011, SCIENCE, V334, P1275, DOI 10.1126/science.1209441; Coulson T, 2010, J ANIM ECOL, V79, P1226, DOI 10.1111/j.1365-2656.2010.01734.x; Easterling MR, 2000, ECOLOGY, V81, P694, DOI 10.2307/177370; Ellner SP, 2006, AM NAT, V167, P410, DOI 10.1086/499438; Ellner SP, 2007, J MATH BIOL, V54, P227, DOI 10.1007/s00285-006-0044-8; Ellner SP, 2011, ECOL LETT, V14, P603, DOI 10.1111/j.1461-0248.2011.01616.x; Ezard THG, 2009, PHILOS T R SOC B, V364, P1491, DOI 10.1098/rstb.2009.0006; Falconer DS, 1996, INTRO QUANTITATIVE G; Geritz SAH, 1998, EVOL ECOL, V12, P35, DOI 10.1023/A:1006554906681; Hairston NG, 2005, ECOL LETT, V8, P1114, DOI 10.1111/j.1461-0248.2005.00812.x; Hamel S, 2009, ECOLOGY, V90, P1981, DOI 10.1890/08-0596.1; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; McGulloch C.E., 2001, GEN LINEAR MIXED MOD; Metcalf CJE, 2008, P NATL ACAD SCI USA, V105, P10466, DOI 10.1073/pnas.0800777105; Oliveira RF, 2008, ALTERNATIVE REPRODUCTIVE TACTICS: AN INTEGRATIVE APPROACH, P1, DOI 10.1017/CBO9780511542602; Ozgul A., 2009, NATURE, V446, P482; Rees M, 1999, AM NAT, V154, P628, DOI 10.1086/303268; Rees M, 2006, AM NAT, V168, pE53, DOI 10.1086/505762; Rees M, 2009, ECOL MONOGR, V79, P575, DOI 10.1890/08-1474.1; Schoener TW, 2011, SCIENCE, V331, P426, DOI 10.1126/science.1193954; Smallegange IM, 2011, EVOL ECOL, V25, P857, DOI 10.1007/s10682-010-9446-6; Tomkins JL, 2007, TRENDS ECOL EVOL, V22, P522, DOI 10.1016/j.tree.2007.09.002; Visser ME, 2005, P ROY SOC B-BIOL SCI, V272, P2561, DOI 10.1098/rspb.2005.3356 31 51 51 4 186 ELSEVIER SCIENCE LONDON LONDON 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND 0169-5347 TRENDS ECOL EVOL Trends Ecol. Evol. MAR 2013 28 3 143 148 10.1016/j.tree.2012.07.021 6 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 106QS WOS:000316160400004 22944192 2018-11-12 J Solari, CA; Kessler, JO; Goldstein, RE Solari, Cristian A.; Kessler, John O.; Goldstein, Raymond E. A General Allometric and Life-History Model for Cellular Differentiation in the Transition to Multicellularity AMERICAN NATURALIST English Article body size; cost of reproduction; germ-soma differentiation; life-history evolution; multicellularity; Volvocales GERM-SOMA DIFFERENTIATION; MOLECULAR-TRANSPORT; EVOLUTION; MOTILITY; VOLVOCALES; PHYLOGENY; VOLVOX; ALGAE The transition from unicellular, to colonial, to larger multicellular organisms has benefits, costs, and requirements. Here we present a model inspired by the volvocine green algae that explains the dynamics involved in the unicellular-multicellular transition using life-history theory and allometry. We model the two fitness components (fecundity and viability) and compare the fitness of hypothetical colonies of different sizes with varying degrees of cellular differentiation to understand the general principles that underlie the evolution of multicellularity. We argue that germ-soma separation may have evolved to counteract the increasing costs and requirements of larger multicellular colonies. The model shows that the cost of investing in soma decreases with size. For lineages such as the Volvocales, as reproduction costs increase with size for undifferentiated colonies, soma specialization benefits the colony indirectly by decreasing such costs and directly by helping reproductive cells acquire resources for their metabolic needs. Germ specialization is favored once soma evolves and takes care of vegetative functions. To illustrate the model, we use some allometric relationships measured in Volvocales. Our analysis shows that the cost of reproducing an increasingly larger group has likely played an important role in the transition to multicellularity and cellular differentiation. [Solari, Cristian A.] Univ Buenos Aires, Lab Biol Comparada Protistas, Dept Biodiversidad & Biol Expt, Fac Ciencias Exactas & Nat,Consejo Nacl Invest Ci, Buenos Aires, DF, Argentina; [Kessler, John O.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA; [Goldstein, Raymond E.] Univ Cambridge, Ctr Math Sci, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England Solari, CA (reprint author), Univ Buenos Aires, Lab Biol Comparada Protistas, Dept Biodiversidad & Biol Expt, Fac Ciencias Exactas & Nat,Consejo Nacl Invest Ci, C1428EHA, Buenos Aires, DF, Argentina. casolari@bg.fcen.uba.ar Goldstein, Raymond/F-2932-2011 Goldstein, Raymond/0000-0003-2645-0598 Consejo Nacional de Investigaciones Cientificas y Tecnicas, Argentina; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE AC02-06CH11357]; Biotechnology and Biological Sciences Research Council; European Research Council [247333]; Biotechnology and Biological Sciences Research Council [BB/F021844/1] We thank two anonymous reviewers for greatly improving the manuscript, and we thank R. Michod and A. Nedelcu for important discussions over many years on the subject. This research was supported in part by Consejo Nacional de Investigaciones Cientificas y Tecnicas, Argentina; the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering, contract DE AC02-06CH11357; the Biotechnology and Biological Sciences Research Council; and European Research Council Advanced Investigator grant 247333. Gavrilets S, 2010, PLOS COMPUT BIOL, V6, DOI 10.1371/journal.pcbi.1000805; Graham L.E., 2000, ALGAE; Grosberg RK, 2007, ANNU REV ECOL EVOL S, V38, P621, DOI 10.1146/annurev.ecolsys.36.102403.114735; Guyon E., 2001, PHYS HYDRODYNAMICS; Herron MD, 2008, EVOLUTION, V62, P436, DOI 10.1111/j.1558-5646.2007.00304.x; Hoops HJ, 1997, PROTOPLASMA, V199, P99, DOI 10.1007/BF01294499; Kirk D. L., 1998, VOLVOX MOL GENETIC O; Kirk DL, 1997, ANNU REV GENET, V31, P359, DOI 10.1146/annurev.genet.31.1.359; KOUFOPANOU V, 1994, AM NAT, V143, P907, DOI 10.1086/285639; LARSON A, 1992, MOL BIOL EVOL, V9, P85; Michod RE, 2006, J THEOR BIOL, V239, P257, DOI 10.1016/j.jtbi.2005.08.043; Morgan N.C., 1980, International Biological Programme, V22, P247; Niklas K.J., 1994, PLANT ALLOMETRY SCAL; Niklas KJ, 2000, ANN BOT-LONDON, V85, P411, DOI 10.1006/anbo.1999.1100; Nozaki H, 2006, J PHYCOL, V42, P1072, DOI 10.1111/j.1529-8817.2006.00255.x; PORTER KG, 1977, AM SCI, V65, P159; Short MB, 2006, P NATL ACAD SCI USA, V103, P8315, DOI 10.1073/pnas.0600566103; Solari CA, 2006, AM NAT, V167, P537, DOI 10.1086/501031; Solari CA, 2006, P NATL ACAD SCI USA, V103, P1353, DOI 10.1073/pnas.0503810103; SOMMER U, 1986, LIMNOL OCEANOGR, V31, P650, DOI 10.4319/lo.1986.31.3.0650; Stearns S. C., 1992, EVOLUTION LIFE HIST; Willensdorfer M, 2009, EVOLUTION, V63, P306, DOI 10.1111/j.1558-5646.2008.00541.x 22 12 12 0 24 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 AM NAT Am. Nat. MAR 2013 181 3 369 380 10.1086/669151 12 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 103ON WOS:000315927900009 23448886 2018-11-12 J Hackman, J; Hruschka, D Hackman, Joseph; Hruschka, Daniel Fast life histories, not pathogens, account for state-level variation in homicide, child maltreatment, and family ties in the US EVOLUTION AND HUMAN BEHAVIOR English Article Life history; Pathogens; Homicide; Religiosity; Sexually transmitted disease UNITED-STATES; DISEASE-AVOIDANCE; REPRODUCTIVE STRATEGY; INFECTIOUS-DISEASES; ENVIRONMENTAL RISK; ETHNIC DISPARITIES; INFANT-MORTALITY; PREVALENCE; STRESS; RACE Parasite stress theory has recently been used to account for an array of cross-cultural differences in human cognition and social behavior, including in-group bias, interpersonal violence, child maltreatment, and religious adherence. Here, we re-assess the apparently ubiquitous effects of parasite stress on behavior observed in the U.S., using the cross-sectional, cross-population approach implemented by prior pathogen stress studies. Our results raise two challenges to previous findings. First, we show that the observed effects of pathogen stress in the U.S. data are due exclusively to one type of infectious disease - sexually transmitted diseases (STD) - while non-STD infections have no effect. Second, we find that controlling for life history measures of extrinsic risk and a fast life history erases the observed associations with family ties, interpersonal violence, child fatalities, and religious adherence. Thus, after appropriate variable specification, stratification, and control, U.S. cross-state population differences provide no support for the pathogen stress hypothesis in these various domains of behavior. Rather, the findings are more consistent with predictions from life history theory. (C) 2013 Elsevier Inc. All rights reserved. [Hackman, Joseph; Hruschka, Daniel] Arizona State Univ, Sch Human Evolut & Social Change, Tempe, AZ 85287 USA Hackman, J (reprint author), Arizona State Univ, Sch Human Evolut & Social Change, Tempe, AZ 85287 USA. jhackman@asu.edu National Science Foundation [BCS-1150813]; University of Chicago and Templeton Foundation New Science of Virtues Grant We thank Joe Henrich for his encouragement and helpful comments on the project, and Martin Daly, John Ziker, Kris Smith, Claire Yee, Andrew Bishop, and Maddie Sands for constructive comments on earlier drafts. D.H. acknowledges support from the National Science Foundation grant BCS-1150813 and the University of Chicago and Templeton Foundation New Science of Virtues Grant. ANDERSON RN, 2002, DEATHS LEADING CAUSE; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Cashden E., 2012, BEHAV BRAIN SCI, V35, P22; Charnov Eric L., 1993, P1; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Currie TE, 2012, BEHAV BRAIN SCI, V35, P83, DOI 10.1017/S0140525X11000963; Delamontagne RG, 2010, EVOL PSYCHOL-US, V8, P617; Division of STD Prevention, 2007, CONS ADDR STD DISP A; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Eppig C, 2010, P ROY SOC B-BIOL SCI, V277, P3801, DOI 10.1098/rspb.2010.0973; Faulkner J, 2004, GROUP PROCESS INTERG, V7, P333, DOI 10.1177/1368430204046142; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2012, BEHAV BRAIN SCI, V35, P87, DOI 10.1017/S0140525X11000999; Fincher CL, 2008, OIKOS, V117, P1289, DOI [10.1111/j.0030-1299.2008.16684.x, 10.1111/j.2008.0030-1299.16684.x]; Fincher CL, 2008, P R SOC B, V275, P1279, DOI 10.1098/rspb.2008.0094; Fincher CL, 2012, BEHAV BRAIN SCI, V35, P61, DOI 10.1017/S0140525X11000021; Fox J. A., 2003, BUREAU JUSTICE STAT; Gladden P., 2009, J EVOLUTIONARY PSYCH, V7, P167, DOI DOI 10.1556/JEP.7.2009.2.5; Harper S, 2012, JAMA-J AM MED ASSOC, V307, P2257, DOI 10.1001/jama.2012.5059; Hauck FR, 2011, SEMIN PERINATOL, V35, P209, DOI 10.1053/j.semperi.2011.02.018; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Hummer RA, 1999, SOC SCI QUART, V80, P136; Inglehart R, 2000, AM SOCIOL REV, V65, P19, DOI 10.2307/2657288; Kamo Y, 2000, SOCIOL PERSPECT, V43, P211, DOI 10.2307/1389794; Kaplan H, 1996, YEARB PHYS ANTHROPOL, V39, P91; Koehler N, 2007, EVOLUTIONARY PSYCHOL, V5, P184; Letendre K, 2010, BIOL REV, V85, P669, DOI 10.1111/j.1469-185X.2010.00133.x; MacDorman MF, 2011, SEMIN PERINATOL, V35, P200, DOI 10.1053/j.semperi.2011.02.017; McCleary RM, 2006, J SCI STUD RELIG, V45, P149, DOI 10.1111/j.1468-5906.2006.00299.x; Mokdad AH, 2004, JAMA-J AM MED ASSOC, V291, P1238, DOI 10.1001/jama.291.10.1238; Mortensen CR, 2010, PSYCHOL SCI, V21, P440, DOI 10.1177/0956797610361706; Murray CJL, 2006, PLOS MED, V3, P1513, DOI 10.1371/journal.pmed.0030260; Murray DR, 2011, PERS SOC PSYCHOL B, V37, P318, DOI 10.1177/0146167210394451; Murray DR, 2010, J CROSS CULT PSYCHOL, V41, P99, DOI 10.1177/0022022109349510; Navarrete CD, 2006, EVOL HUM BEHAV, V27, P270, DOI 10.1016/j.evolhumbehav.2005.12.001; Neuberg SL, 2011, NEUROSCI BIOBEHAV R, V35, P1042, DOI 10.1016/j.neubiorev.2010.08.011; Norris Pippa, 2004, SACRED SECULAR RELIG; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Rees T. J., 2009, J RELIG SOC, V11, P1; Reid SA, 2012, EVOL HUM BEHAV, V33, P471, DOI 10.1016/j.evolhumbehav.2011.12.009; Remison C., 2001, BUREAU JUSTICE STAT; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Sarkisian N, 2004, AM SOCIOL REV, V69, P812, DOI 10.1177/000312240406900604; Schaller M, 2008, J PERS SOC PSYCHOL, V95, P212, DOI 10.1037/0022-3514.95.1.212; Schaller M, 2011, PHILOS T R SOC B, V366, P3418, DOI 10.1098/rstb.2011.0029; Stearns S. C., 1992, EVOLUTION LIFE HIST; Swartz TT, 2009, ANNU REV SOCIOL, V35, P191, DOI 10.1146/annurev.soc.34.040507.134615; Taylor RJ, 1996, J SCI STUD RELIG, V35, P403, DOI 10.2307/1386415; Testa M., 2004, RACE MATTERS CHILD W; Thornhill R, 2011, PHILOS T R SOC B, V366, P3466, DOI 10.1098/rstb.2011.0052; Thornhill R, 2010, EVOL PSYCHOL-US, V8, P151; U.S. Census Bureau, 2007, DP02 SEL POP PROF US; U. S. Department of Health and Human Sciences, 2011, SEX TRANSM DIS MORB; Van de Vliert E, 2012, BEHAV BRAIN SCI, V35, P94, DOI 10.1017/S0140525X11001075; Vandello J. A, 2007, INT J PSYCHOL RES, V1, P59; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 60 20 20 0 22 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 1879-0607 EVOL HUM BEHAV Evol. Hum. Behav. MAR 2013 34 2 118 124 10.1016/j.evolhumbehav.2012.11.002 7 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences 101GJ WOS:000315762900007 2018-11-12 J Sheets, GM Sheets, G. M. Aiding and abetting: a new perspective on life history theory x 10(13) GM Sheets AMERICAN JOURNAL OF HUMAN BIOLOGY English Meeting Abstract [Sheets, G. M.] Emory Univ, Dept Anthropol, Atlanta, GA 30322 USA 0 0 0 0 1 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1042-0533 AM J HUM BIOL Am. J. Hum. Biol. MAR-APR 2013 25 2 274 274 1 Anthropology; Biology Anthropology; Life Sciences & Biomedicine - Other Topics 095TL WOS:000315357500087 2018-11-12 J Robinson, MR; Beckerman, AP Robinson, Matthew R.; Beckerman, Andrew P. Quantifying multivariate plasticity: genetic variation in resource acquisition drives plasticity in resource allocation to components of life history ECOLOGY LETTERS English Article eigen; environmental heterogeneity; genotypeenvironment interaction; life-history trade-off; plasticity; reproduction; survival; tensor WING DIMORPHIC CRICKET; PHENOTYPIC PLASTICITY; TRADE-OFFS; QUANTITATIVE GENETICS; COVARIANCE MATRICES; GRYLLUS-FIRMUS; PRINCIPAL COMPONENTS; EVOLUTION; REPRODUCTION; TRAITS Acquisition and allocation of resources are central to life-history theory. However, empirical work typically focuses only on allocation despite the fact that relationships between fitness components may be governed by differences in the ability of individuals to acquire resources across environments. Here, we outline a statistical framework to partition the genetic basis of multivariate plasticity into independent axes of genetic variation, and quantify for the first time, the extent to which specific traits drive multitrait genotypeenvironment interactions. Our framework generalises to analyses of plasticity, growth and ageing. We apply this approach to a unique, large-scale, multivariate study of acquisition, allocation and plasticity in the life history of the cricket, Gryllus firmus. We demonstrate that resource acquisition and allocation are genetically correlated, and that plasticity in trade-offs between allocation to components of fitness is 90% dependent on genetic variance for total resource acquisition. These results suggest that genotypeenvironment effects for resource acquisition can maintain variation in life-history components that are typically observed in the wild. [Robinson, Matthew R.; Beckerman, Andrew P.] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England Robinson, MR (reprint author), Univ Sheffield, Dept Anim & Plant Sci, Alfred Denny Bldg,Western Bank, Sheffield S10 2TN, S Yorkshire, England. matthew.r.robinson@sheffield.ac.uk Robinson, Matthew/N-8689-2013; Beckerman, Andrew/D-3020-2011 Beckerman, Andrew/0000-0002-4797-9143; Robinson, Matthew/0000-0001-8982-8813 Natural Environment Research Council (NERC) fellowship; NERC; Royal Society; Natural Environment Research Council [NE/G013535/1, NE/D012244/1] We thank Daphne Fairbairn and Elizabeth King for assistance and insight into the data, and their comments on this work. We also thank Dylan Childs and Julia Reger, who provided comments, and Anna Qvarnstrom whose insights inspired the analysis of the cricket data. MRR is funded by a Natural Environment Research Council (NERC) fellowship, and APB was funded in part by NERC and the Royal Society. Basser PJ, 2007, SIGNAL PROCESS, V87, P220, DOI 10.1016/j.sigpro.2006.02.050; Baythavong BS, 2011, AM NAT, V178, P75, DOI 10.1086/660281; Burton OJ, 2010, ECOL LETT, V13, P1210, DOI 10.1111/j.1461-0248.2010.01505.x; Cano JM, 2004, EVOLUTION, V58, P2013, DOI 10.1111/j.0014-3820.2004.tb00486.x; GILLESPIE JH, 1989, GENETICS, V121, P129; Hadfield JD, 2010, J STAT SOFTW, V33, P1; HILL WG, 1978, BIOMETRICS, V34, P429, DOI 10.2307/2530605; Hine E, 2009, PHILOS T R SOC B, V364, P1567, DOI 10.1098/rstb.2008.0313; Hughes CL, 2003, P ROY SOC B-BIOL SCI, V270, pS147, DOI 10.1098/rsbl.2003.0049; Karlsson B, 2008, P ROY SOC B-BIOL SCI, V275, P2131, DOI 10.1098/rspb.2008.0404; Kent CF, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000609; King EG, 2011, J EVOLUTION BIOL, V24, P256, DOI 10.1111/j.1420-9101.2010.02160.x; King E. G., 2011, DRYAD DIGITAL REPOSI, DOI [10.5061/dryad.8727, DOI 10.5061/DRYAD.8727]; King EG, 2012, AM NAT, V180, P394, DOI 10.1086/667194; King EG, 2011, EVOLUTION, V65, P2273, DOI 10.1111/j.1558-5646.2011.01296.x; Kirkpatrick M, 2009, GENETICA, V136, P271, DOI 10.1007/s10709-008-9302-6; KRZANOWSKI WJ, 1979, J AM STAT ASSOC, V74, P703, DOI 10.2307/2286995; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; Messina FJ, 2003, J EVOLUTION BIOL, V16, P501, DOI 10.1046/j.1420-9101.2003.00535.x; Meyer K, 2005, PHILOS T R SOC B, V360, P1443, DOI 10.1098/rstb.2005.1681; Meyer K, 2008, GENETICS, V180, P1153, DOI 10.1534/genetics.108.090159; Miner BG, 2004, ECOL LETT, V7, P794, DOI 10.1111/j.1461-0248.2004.00637.x; Mooney HA, 2001, P NATL ACAD SCI USA, V98, P5446, DOI 10.1073/pnas.091093398; Ovaskainen O, 2008, P R SOC B, V275, P669, DOI 10.1098/rspb.2007.0949; Parmesan C, 2003, NATURE, V421, P37, DOI 10.1038/nature01286; Phillips PC, 1999, EVOLUTION, V53, P1506, DOI 10.1111/j.1558-5646.1999.tb05414.x; Pletcher SD, 1999, GENETICS, V153, P825; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Richards CL, 2006, ECOL LETT, V9, P981, DOI 10.1111/j.1461-0248.2006.00950.x; Robinson MR, 2008, CURR BIOL, V18, P751, DOI 10.1016/j.cub.2008.04.059; Rodriguez A, 2007, P R SOC B, V274, P1403, DOI 10.1098/rspb.2007.0104; Rodriguez RL, 2012, J EVOLUTION BIOL, V25, P1897, DOI 10.1111/j.1420-9101.2012.02565.x; Roff D. A., 2002, LIFE HIST EVOLUTION; Roff DA, 2003, J EVOLUTION BIOL, V16, P55, DOI 10.1046/j.1420-9101.2003.00480.x; Saglam IK, 2008, J EVOLUTION BIOL, V21, P997, DOI 10.1111/j.1420-9101.2008.01548.x; SCHEINER SM, 1993, ANNU REV ECOL SYST, V24, P35, DOI 10.1146/annurev.es.24.110193.000343; Schlichting C. D., 1998, PHENOTYPIC EVOLUTION; Sorensen D., 2002, LIKELIHOOD BAYESIAN; SPITZE K, 1991, EVOLUTION, V45, P1081, DOI 10.1111/j.1558-5646.1991.tb04376.x; STEARNS S, 1991, TRENDS ECOL EVOL, V6, P122, DOI 10.1016/0169-5347(91)90090-K; Strauss SY, 2002, TRENDS ECOL EVOL, V17, P278, DOI 10.1016/S0169-5347(02)02483-7; Thomas CD, 2004, NATURE, V427, P145, DOI 10.1038/nature02121; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU 44 29 29 6 124 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1461-023X 1461-0248 ECOL LETT Ecol. Lett. MAR 2013 16 3 281 290 10.1111/ele.12047 10 Ecology Environmental Sciences & Ecology 088VS WOS:000314865900001 23301600 2018-11-12 J Blomberg, EJ; Sedinger, JS; Nonne, DV; Atamian, MT Blomberg, Erik J.; Sedinger, James S.; Nonne, Daniel V.; Atamian, Michael T. Seasonal reproductive costs contribute to reduced survival of female greater sage-grouse JOURNAL OF AVIAN BIOLOGY English Article LIFE-HISTORY TRAITS; LONG-LIVED SEABIRD; ENVIRONMENTAL STOCHASTICITY; POPULATION-DYNAMICS; CAPTURE-RECAPTURE; SOAY SHEEP; INDIVIDUAL QUALITY; LARGE HERBIVORES; WEDDELL SEALS; RED DEER Tradeoffs among demographic traits are a central component of life history theory. We investigated tradeoffs between reproductive effort and survival in female greater sage-grouse breeding in the American Great Basin, while also considering reproductive heterogeneity by examining covariance among current and future reproductive success. We analyzed survival and reproductive histories from 328 individual female greater sage-grouse captured between 2003 and 2011, and examined the effect of reproductive effort on survival and future reproduction. Monthly survival of females was variable within years, and this within-year variation was associated with distinct biological seasons. Monthly survival was greatest during the winter (NovemberMarch; phi W= 0.99 +/- 0.001 SE), and summer (JuneJuly; phi S= 0.98 +/- 0.01 SE), and lower during nesting (AprilMay; phi N= 0.93 +/- 0.02 SE) and fall (AugustOctober; phi F= 0.92 +/- 0.02 SE). Successful reproduction was associated with reduced monthly survival during summer and fall, and this effect was greatest during fall. Females that successfully fledged chicks had lower annual survival (0.47 +/- 0.05 SE) than females who were not successful (0.64 +/- 0.04 SE). Annual survival did not vary across years, consistent with a slow-paced life history strategy in greater sage-grouse. In contrast, reproductive success varied widely, and was positively correlated with annual rainfall. We found evidence for heterogeneity among females with respect to reproductive success; compared with unsuccessful females, females that raised a brood successfully in year t were more than twice as likely to be successful in year t+ 1. Female greater sage-grouse incur costs to survival associated with reproduction, however, variation in quality among females may override costs to subsequent reproductive output. [Blomberg, Erik J.; Sedinger, James S.; Nonne, Daniel V.; Atamian, Michael T.] Univ Nevada, Dept Nat Resources & Environm Sci, Reno, NV 89557 USA; [Blomberg, Erik J.; Sedinger, James S.; Nonne, Daniel V.] Univ Nevada, Program Ecol Evolut & Conservat Biol, Reno, NV 89557 USA Blomberg, EJ (reprint author), US Geol Survey, Western Ecol Res Ctr, 6924 Tremont Rd, Dixon, CA 95620 USA. ejblomberg@gmail.com Univ. of Nevada Reno Agricultural Experiment Station; National Fish and Wildlife Foundation; Nevada Dept of Wildlife; United States Bureau of Land Management; NV Energy Corp. We thank numerous field technicians and volunteers for assistance with sage-grouse capture and monitoring. This work was supported jointly by the Univ. of Nevada Reno Agricultural Experiment Station, the National Fish and Wildlife Foundation, the Nevada Dept of Wildlife, the United States Bureau of Land Management, and NV Energy Corp. We thank E. Ledger, P Weisberg, K. Stewart, J. Rotella and J. Nilsson for comments that greatly improved earlier drafts. Anthony RG, 2009, J WILDLIFE MANAGE, V73, P538, DOI 10.2193/2008-177; Arnold TW, 2010, J WILDLIFE MANAGE, V74, P1175, DOI 10.2193/2009-367; Atamian MT, 2010, J WILDLIFE MANAGE, V74, P1533, DOI 10.2193/2009-226; Aubry LM, 2011, J ANIM ECOL, V80, P375, DOI 10.1111/j.1365-2656.2010.01784.x; Bardsen BJ, 2008, ECOLOGY, V89, P829, DOI 10.1890/07-0414.1; Bardsen BJ, 2011, OIKOS, V120, P245, DOI 10.1111/j.1600-0706.2010.18597.x; BARNETT JK, 1994, J RANGE MANAGE, V47, P114, DOI 10.2307/4002817; Blomberg E. J., 2012, Ecosphere, V3, part55; BROWNIE C, 1993, BIOMETRICS, V49, P1173, DOI 10.2307/2532259; Burnham K. P., 2002, MODEL SELECTION MULT; Cam E, 2002, AM NAT, V159, P96, DOI 10.1086/324126; Choqet R., 2005, U CARE 2 2 USERS MAN; Choquet R, 2009, ECOGRAPHY, V32, P1071, DOI 10.1111/j.1600-0587.2009.05968.x; Clark ME, 2007, ECOL MODEL, V209, P110, DOI 10.1016/j.ecolmodel.2007.06.008; CluttonBrock TH, 1996, J ANIM ECOL, V65, P675, DOI 10.2307/5667; CLUTTONBROCK TH, 1983, J ANIM ECOL, V52, P367, DOI 10.2307/4560; CLUTTONBROCK TH, 1989, NATURE, V337, P260, DOI 10.1038/337260a0; COE MJ, 1976, OECOLOGIA, V22, P341, DOI 10.1007/BF00345312; Connelly JW, 2011, STUD AVIAN BIOL, P53; Connelly JW, 2011, STUD AVIAN BIOL, P69; Coulson T, 2001, SCIENCE, V292, P1528, DOI 10.1126/science.292.5521.1528; Crunden C. W., 1963, Journal of Wildlife Management, V27, P846, DOI 10.2307/3798498; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; Dawson A, 2000, P ROY SOC B-BIOL SCI, V267, P2093, DOI 10.1098/rspb.2000.1254; Derner JD, 2008, ARID LAND RES MANAG, V22, P81, DOI 10.1080/15324980701784274; Descamps S, 2009, P R SOC B, V276, P1129, DOI 10.1098/rspb.2008.1401; Doak DF, 2005, AM NAT, V166, pE14, DOI 10.1086/430642; Erikstad KE, 1998, ECOLOGY, V79, P1781; Festa-Bianchet M, 1998, AM NAT, V152, P367, DOI 10.1086/286175; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; GIESEN K M, 1982, Wildlife Society Bulletin, V10, P224; Golet GH, 1998, J ANIM ECOL, V67, P827, DOI 10.1046/j.1365-2656.1998.00233.x; Gregg MA, 2006, J WILDLIFE MANAGE, V70, P472, DOI 10.2193/0022-541X(2006)70[472:TPPARB]2.0.CO;2; GREGG MA, 1994, J WILDLIFE MANAGE, V58, P162, DOI 10.2307/3809563; Gregg MA, 2009, J WILDLIFE MANAGE, V73, P904, DOI 10.2193/2007-410; Hadley GL, 2007, J ANIM ECOL, V76, P448, DOI 10.1111/j.1365-2656.2007.01219.x; Hagen CA, 2011, STUD AVIAN BIOL, P95; Hanssen SA, 2005, P ROY SOC B-BIOL SCI, V272, P1039, DOI 10.1098/rspb.2005.3057; JOHNSON GD, 1990, J WILDLIFE MANAGE, V54, P89, DOI 10.2307/3808906; Kendall BE, 2011, ECOLOGY, V92, P1985, DOI 10.1890/11-0079.1; Knick ST, 2011, STUD AVIAN BIOL, P1; Lescroel A, 2009, J ANIM ECOL, V78, P798, DOI 10.1111/j.1365-2656.2009.01542.x; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; MCNAMARA JM, 1995, P ROY SOC B-BIOL SCI, V261, P279, DOI 10.1098/rspb.1995.0148; Miller RF, 2011, STUD AVIAN BIOL, P145; Moyes K, 2006, OIKOS, V115, P241, DOI 10.1111/j.2006.0030-1299.15200.x; Moynahan BJ, 2006, ECOL APPL, V16, P1529, DOI 10.1890/1051-0761(2006)016[1529:FCTPVI]2.0.CO;2; Nichols JD, 1995, J APPL STAT, V22, P835, DOI 10.1080/02664769524658; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Rotella JJ, 2012, J ANIM ECOL, V81, P162, DOI 10.1111/j.1365-2656.2011.01902.x; Saether BE, 1997, TRENDS ECOL EVOL, V12, P143, DOI 10.1016/S0169-5347(96)10068-9; Schroeder MA, 2004, CONDOR, V106, P363, DOI 10.1650/7425; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tavecchia G, 2005, J ANIM ECOL, V74, P201, DOI 10.1111/j.1365-2656.2005.00916.x; Taylor RL, 2012, J WILDLIFE MANAGE, V76, P336, DOI 10.1002/jwmg.267; Tuljapurkar S, 2009, PHILOS T R SOC B, V364, P1499, DOI 10.1098/rstb.2009.0021; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Walker BL, 2011, STUD AVIAN BIOL, P127; WALLESTAD R, 1975, J WILDLIFE MANAGE, V39, P628, DOI 10.2307/3800409; Weladji RB, 2008, OECOLOGIA, V156, P237, DOI 10.1007/s00442-008-0961-x; Wenninger EJ, 2008, J ARID ENVIRON, V72, P24, DOI 10.1016/j.jaridenv.2007.04.005; White GC, 1999, BIRD STUDY, V46, P120; Wiebe KL, 2000, BEHAV ECOL SOCIOBIOL, V48, P463; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002; Young J. R., 1999, BIRDS N AM; Zablan MA, 2003, J WILDLIFE MANAGE, V67, P144, DOI 10.2307/3803070 71 38 38 1 75 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0908-8857 1600-048X J AVIAN BIOL J. Avian Biol. MAR 2013 44 2 149 158 10.1111/j.1600-048X.2012.00013.x 10 Ornithology Zoology 099UG WOS:000315647300007 2018-11-12 J Herzog, TK; Hill-Chapman, CR Herzog, Teresa Kamman; Hill-Chapman, Crystal Rene Relationship Formation and Early Risk Exposure: Diverging Associations with Romantic Self-Concept and Attachment JOURNAL OF ADULT DEVELOPMENT English Article Early risk; Life-history theory; Romantic attachment; Romantic relationships LIFE-HISTORY; YOUNG-ADULTS; EARLY STRESS; BEHAVIOR; SEX; EXPERIENCE; STRATEGY; PUBERTY; SAMPLE; WOMEN Early risk exposure reportedly influences romantic relationship formation via an increase in sexualized reproductive strategies and attachment insecurity. Because these are risk adaptations that predict differing interactions in romantic relationships and are complexly related to gender, two studies focused on these features in relation to relationship formation in emerging adulthood. Beyond confirming that self-reported early risk exposure was associated with a more sexualized romantic self-concept, greater numbers of relationships, and greater attachment insecurity, "Study 1" confirmed a hypothesized four-way interaction between gender, early risk, romantic self-concept, and attachment style. "Study 2" clarified the interaction through a regression model predicting a sexualized romantic self-concept differently for men and women. A structural equation model including all the study variables confirmed the hypothesis that pathways for men primarily predicted unrestricted sexuality (i.e., numbers of casual relationships), whereas the pathways for women included direct effects from risk and indicators of committed relationships. [Herzog, Teresa Kamman; Hill-Chapman, Crystal Rene] Francis Marion Univ, Florence, SC 29501 USA Herzog, TK (reprint author), Francis Marion Univ, POB 100547, Florence, SC 29501 USA. therzog@fmarion.edu Arbuckle J. L., 2006, AMOS VERSION 2007 CO; Barry CM, 2009, J ADULT DEV, V16, P209, DOI 10.1007/s10804-009-9067-x; BARTHOLOMEW K, 1991, J PERS SOC PSYCHOL, V61, P226, DOI 10.1037/0022-3514.61.2.226; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Boden JS, 2010, J ADULT DEV, V17, P121, DOI 10.1007/s10804-009-9078-7; Bogaert AF, 2005, J ADOLESCENCE, V28, P541, DOI 10.1016/j.adolescence.2004.10.008; Bowlby J., 1969, ATTACHMENT LOSS, V1; Brennan K. A., 1998, ATTACHMENT THEORY CL, P46; Byrne B. M., 2001, STRUCTURAL EQUATION; Cassidy J, 2001, CLIN PSYCHOL-SCI PR, V8, P275, DOI 10.1093/clipsy/8.3.275; Chisholm JS, 1999, HUM NATURE-INT BIOS, V10, P51, DOI 10.1007/s12110-999-1001-1; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CLIFF N, 1983, MULTIVAR BEHAV RES, V18, P115, DOI 10.1207/s15327906mbr1801_7; CUTHBERT D, 1999, FITTING EQUATIONS DA; Del Giudice M, 2009, DEV REV, V29, P1, DOI 10.1016/j.dr.2008.09.001; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Fugere MA, 2008, SEX CULT, V12, P169, DOI 10.1007/s12119-008-9029-7; Gray M. R., 1999, DEV ROMANTIC RELATIO, P235; HAZAN C, 1987, J PERS SOC PSYCHOL, V52, P511, DOI 10.1037//0022-3514.52.3.511; Herzog TK, 2010, J SOC PERS RELAT, V27, P283, DOI 10.1177/0265407509347303; Hrdy S. B., 2009, MOTHERS OTHERS EVOLU; Hu LT, 1998, PSYCHOL METHODS, V3, P424, DOI 10.1037/1082-989X.3.4.424; Kammeyer KCW, 2008, HYPERSEXUAL SOCIETY: SEXUAL DISCOURSE, EROTICA, AND PORNOGRAPHY IN AMERICA TODAY, P1, DOI 10.1057/9780230616608; KIRKPATRICK LA, 1998, ATTACHMENT THEORY CL, P353; LYONSRUTH K, 1999, HDB ATTACHMENT THEOR, P520; MacDonald K, 1997, HUM NATURE-INT BIOS, V8, P327, DOI 10.1007/BF02913038; Manning WD, 2006, J ADOLESCENT RES, V21, P459, DOI 10.1177/0743558406291692; Meschke LL, 1997, J ADOLESCENCE, V20, P403, DOI 10.1006/jado.1997.0096; Mikulincer M., 2004, HDB ATTACHMENT THEOR, P159; Oyen A S, 2000, Attach Hum Dev, V2, P203; Roisman GI, 2002, CHILD DEV, V73, P1204, DOI 10.1111/1467-8624.00467; Santelli J, 2006, J ADOLESCENT HEALTH, V38, P72, DOI 10.1016/j.jadohealth.2005.10.006; Schmitt D. P., 2003, PERS RELATIONSHIP, V10, P1350; Schmitt DP, 2000, J RES PERS, V34, P141, DOI 10.1006/jrpe.1999.2267; Schulman S., 2005, J ADOLESCENT RES, V29, P577; Seiffge-Krenke I, 2003, INT J BEHAV DEV, V27, P519, DOI 10.1080/01650250344000145; Simpson J. A., 1991, J SOCIAL PERSONALITY, V67, P870; Tracy JL, 2011, EMOTION, V11, P1379, DOI 10.1037/a0022902; WEINSTEIN M, 1989, DEMOGRAPHY, V26, P563, DOI 10.2307/2061258; Willoughby BJ, 2010, J ADULT DEV, V17, P1, DOI 10.1007/s10804-009-9073-z; Wood W, 2002, PSYCHOL BULL, V128, P699, DOI 10.1037//0033-2909.128.5.699; Zocccolillo M., 1993, DEV PSYCHOPATHOL, V8, P65 43 3 3 0 29 SPRINGER/PLENUM PUBLISHERS NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1068-0667 J ADULT DEV J. Adult Dev. MAR 2013 20 1 1 15 10.1007/s10804-012-9151-5 15 Psychology, Developmental Psychology 095PF WOS:000315345800001 2018-11-12 J Shaw, AK; Levin, SA Shaw, Allison K.; Levin, Simon A. The evolution of intermittent breeding JOURNAL OF MATHEMATICAL BIOLOGY English Article Evolutionarily stable strategy; Intermittent breeding; Low frequency reproduction; Skipped spawning REPRODUCTIVE SUCCESS; ITEROPAROUS ANIMALS; BODY CONDITION; MODEL; POPULATIONS; AGE; VARIABILITY; MIGRATION; DYNAMICS; SURVIVAL A central issue in life history theory is how organisms trade off current and future reproduction. A variety of organisms exhibit intermittent breeding, meaning sexually mature adults will skip breeding opportunities between reproduction attempts. It's thought that intermittent breeding occurs when reproduction incurs an extra cost in terms of survival, energy, or recovery time. We have developed a matrix population model for intermittent breeding, and use adaptive dynamics to determine under what conditions individuals should breed at every opportunity, and under what conditions they should skip some breeding opportunities (and if so, how many). We also examine the effect of environmental stochasticity on breeding behavior. We find that the evolutionarily stable strategy (ESS) for breeding behavior depends on an individual's expected growth and mortality, and that the conditions for skipped breeding depend on the type of reproductive cost incurred (survival, energy, recovery time). In constant environments there is always a pure ESS, however environmental stochasticity and deterministic population fluctuations can both select for a mixed ESS. Finally, we compare our model results to patterns of intermittent breeding in species from a range of taxonomic groups. [Shaw, Allison K.; Levin, Simon A.] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA Shaw, AK (reprint author), Australian Natl Univ, Div Evolut Ecol & Genet, Res Sch Biol, GPO Box 4, Canberra, ACT 0200, Australia. allison.shaw@anu.edu.au; slevin@princeton.edu Shaw, Allison/E-7161-2010 Shaw, Allison/0000-0001-7969-8365 National Science Foundation Graduate Research Fellowship [DGE-0646086] We thank Odo Diekmann and two anonymous reviewers for helpful comments on early versions of the manuscript. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-0646086 to AKS. We dedicate this manuscript to Odo Diekmann, on the occasion of his 65th birthday, for being a source of inspiration with his work on many problems. Arrow K, 2009, PNAS, V106, P13; Barta Z, 2006, OIKOS, V112, P580, DOI 10.1111/j.0030-1299.2006.14240.x; Bonnet X, 1998, OIKOS, V83, P333, DOI 10.2307/3546846; Bradley JS, 2000, J ANIM ECOL, V69, P639, DOI 10.1046/j.1365-2656.2000.00422.x; Bruinzeel LW, 2007, BEHAV ECOL SOCIOBIOL, V61, P551, DOI 10.1007/s00265-006-0283-0; BULL JJ, 1979, AM NAT, V114, P296, DOI 10.1086/283476; Calladine J, 1997, IBIS, V139, P259, DOI 10.1111/j.1474-919X.1997.tb04623.x; Cam E, 2000, J ANIM ECOL, V69, P380, DOI 10.1046/j.1365-2656.2000.00400.x; Castro JI, 1996, B MAR SCI, V59, P508; Caswell H, 2001, MATRIX POPULATION MO; Caut S, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001845; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; Chastel O, 1995, AUK, V112, P964, DOI 10.2307/4089027; CHASTEL O, 1993, OECOLOGIA, V94, P278, DOI 10.1007/BF00341328; COHEN D, 1976, AM NAT, V110, P801, DOI 10.1086/283103; COHEN D, 1971, J THEOR BIOL, V33, P299, DOI 10.1016/0022-5193(71)90068-3; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Davydova NV, 2003, J MATH BIOL, V46, P95, DOI 10.1007/s00285-002-0167-5; De Roos AM, 2001, OIKOS, V94, P51, DOI 10.1034/j.1600-0706.2001.11313.x; Diekmann O, 2005, J DIFFER EQU APPL, V11, P327, DOI 10.1080/10236190412331335409; Diekmann O., 2004, BANACH CTR PUBL, V63, P47, DOI DOI 10.4064/BC63-0-2; DRENT RH, 1980, ARDEA, V68, P225; EAGLESON GW, 1976, CAN J ZOOL, V54, P2098, DOI 10.1139/z76-243; ELLNER S, 1987, AM NAT, V130, P798, DOI 10.1086/284746; FERRIERE R, 1995, THEOR POPUL BIOL, V48, P126, DOI 10.1006/tpbi.1995.1024; Gardmark A, 2003, EVOL ECOL RES, V5, P239; GOODYEAR CP, 1980, T AM FISH SOC, V109, P511, DOI 10.1577/1548-8659(1980)109<511:OBOASB>2.0.CO;2; JENSEN GC, 1989, CAN J FISH AQUAT SCI, V46, P932, DOI 10.1139/f89-120; JONSSON N, 1991, J ANIM ECOL, V60, P937, DOI 10.2307/5423; Langston NE, 1996, OIKOS, V76, P498, DOI 10.2307/3546343; Le Bohec C, 2007, J ANIM ECOL, V76, P1149, DOI 10.1111/j.1365-2656.2007.01268.x; LEVIN SA, 1980, J MATH BIOL, V9, P245, DOI 10.1007/BF00276028; Lewis ER, 1977, NETWORK MODELS POPUL; Livnat A, 2005, AM NAT, V165, P311, DOI 10.1086/428294; McGill BJ, 2007, ANNU REV ECOL EVOL S, V38, P403, DOI 10.1146/annurev.ecolsys.36.091704.175517; Metz JAJ, 2008, EVOL ECOL RES, V10, P629; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; Mylius SD, 2001, J THEOR BIOL, V211, P297, DOI 10.1006/jtbi.2001.2349; Naulleau G, 1996, OECOLOGIA, V107, P301, DOI 10.1007/BF00328446; Nevoux M, 2010, ECOLOGY, V91, P2416, DOI 10.1890/09-0143.1; Olsson M, 1999, COPEIA, P794; PERRIN N, 1993, ANNU REV ECOL SYST, V24, P379, DOI 10.1146/annurev.es.24.110193.002115; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; RICKER W. E., 1954, JOUR FISH RES BD CANADA, V11, P559; Ricker W. E., 1975, FISHERIES RES BOARD, V191, P382; Shaw AK, 2011, OIKOS, V120, P1871, DOI 10.1111/j.1600-0706.2011.19443.x; SMITH JM, 1973, NATURE, V246, P15, DOI 10.1038/246015a0; Solow AR, 2002, ECOL LETT, V5, P742, DOI 10.1046/j.1461-0248.2002.00374.x; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stephens PA, 2009, ECOLOGY, V90, P2057, DOI 10.1890/08-1369.1; Thorpe J.E., 1994, Aquaculture and Fisheries Management, V25, P77; Tinkle D. W., 1962, Copeia, V1962, P306, DOI 10.2307/1440895; WITTENBERGER JF, 1979, AM NAT, V114, P439, DOI 10.1086/283490 53 20 20 0 46 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 0303-6812 1432-1416 J MATH BIOL J. Math. Biol. MAR 2013 66 4-5 SI 685 703 10.1007/s00285-012-0603-0 19 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology 092BF WOS:000315093100004 23076830 2018-11-12 J Drayton, JM; Boeke, JEK; Jennions, MD Drayton, Jean M.; Boeke, J. E. Kobus; Jennions, Michael D. Immune Challenge and Pre- and Post-copulatory Female Choice in the Cricket Teleogryllus commodus JOURNAL OF INSECT BEHAVIOR English Article Immunocompetence; LPS; male attractiveness; trade off; pre-copulatory choice; cryptic female choice IN-FIELD CRICKETS; MALE MEALWORM BEETLES; SEXUAL SELECTION; TRADE-OFFS; GRYLLUS-CAMPESTRIS; SYSTEM ACTIVATION; TENEBRIO-MOLITOR; IMMUNOCOMPETENCE HANDICAP; GRYLLODES-SIGILLATUS; EVOLUTIONARY ECOLOGY Life history theory predicts a trade off between the expression of male sexual traits and the immune system. To test for this trade off, male crickets Teleogryllus commodus were injected with bacterial lipopolysaccharides (LPS) to induce an immune response and their subsequent pre- and post-copulatory sexual attractiveness to virgin and non-virgin females was assessed. Pre-copulatory attractiveness was quantified based on the time taken for males to court and mate with a female. Post-copulatory attractiveness was measured as the time that elapsed between mating and a female interrupting sperm transfer by removing the externally attached spermatophore. We found no difference in pre- or post-copulatory attractiveness between LPS and control males. In contrast, virgin females retained spermatophores for almost twice as long as non-virgins, presumably to enhance fertilization and begin egg-laying. Finally, we note that although LPS is a widely used immune elicitor in insects, its effect might be transitory. After 24 h there was no detectable elevation in haemolymph antibacterial activity of LPS injected crickets compared to that of controls. [Drayton, Jean M.; Jennions, Michael D.] Australian Natl Univ, Res Sch Biol, Canberra, ACT 0200, Australia; [Boeke, J. E. Kobus] Univ Groningen, Ctr Ecol & Evolutionary Studies, NL-9750 AA Haren, Netherlands Drayton, JM (reprint author), Australian Natl Univ, Res Sch Biol, GPO Box 4, Canberra, ACT 0200, Australia. jean.drayton@anu.edu.au Jennions, Michael/C-7560-2009 Jennions, Michael/0000-0001-9221-2788 Australian Research Council We are grateful to J. Davies for excellent assistance during the mating trials and maintenance of the crickets, and to D. Gordon for much appreciated advice and the use of equipment during the lysozyme assays. This research was supported by a grant from the Australian Research Council to MDJ. Adamo SA, 2001, ANIM BEHAV, V62, P417, DOI 10.1006/anbe.2001.1786; Ahmed AM, 2002, OIKOS, V97, P371, DOI 10.1034/j.1600-0706.2002.970307.x; Ahtiainen JJ, 2005, J EVOLUTION BIOL, V18, P985, DOI 10.1111/j.1420-9101.2005.00907.x; Bailey NW, 2011, BIOL LETTERS, V7, P217, DOI 10.1098/rsbl.2010.0659; Bateman PW, 2001, ANIM BEHAV, V61, P631, DOI 10.1006/anbe.2000.1617; Bentsen CL, 2006, AM NAT, V167, pE102, DOI 10.1086/501376; Brooks R, 2005, EVOLUTION, V59, P871, DOI 10.1111/j.0014-3820.2005.tb01760.x; Bussiere LF, 2006, EVOLUTION, V60, P792, DOI 10.1554/05-378.1; CAMPBELL DJ, 1979, Z TIERPSYCHOL, V51, P260; Crawley MJ, 2002, STAT COMPUTING INTRO; Drayton JM, 2011, BEHAV ECOL, V22, P486, DOI 10.1093/beheco/arr005; EVANS AR, 1988, ETHOLOGY, V78, P21; Feder D, 1997, J INSECT PHYSIOL, V43, P513, DOI 10.1016/S0022-1910(97)00010-3; Fedorka KM, 2007, BEHAV ECOL, V18, P231, DOI 10.1093/beheco/arl067; Fedorka KM, 2004, EVOLUTION, V58, P2478; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Freitak D, 2003, P ROY SOC B-BIOL SCI, V270, pS220, DOI 10.1098/rsbl.2003.0069; Gershman SN, 2010, J EVOLUTION BIOL, V23, P829, DOI 10.1111/j.1420-9101.2010.01951.x; Hack MA, 1998, J INSECT BEHAV, V11, P853, DOI 10.1023/A:1020864111073; Hall MD, 2008, EVOLUTION, V62, P2305, DOI 10.1111/j.1558-5646.2008.00436.x; Hall MD, 2010, MOL ECOL, V19, P610, DOI 10.1111/j.1365-294X.2009.04496.x; Hedrick A, 2005, ANIM BEHAV, V70, P1121, DOI 10.1016/j.anbehav.2005.02.01; Holzer B, 2003, BEHAV ECOL, V14, P353, DOI 10.1093/beheco/14.3.353; Hunt J, 2004, NATURE, V432, P1024, DOI 10.1038/nature03084; Jacot A, 2005, J EVOLUTION BIOL, V18, P1060, DOI 10.1111/j.1420-9101.2005.00899.x; Jacot A, 2004, EVOLUTION, V58, P2280; Jacot A, 2005, P ROY SOC B-BIOL SCI, V272, P63, DOI 10.1098/rspc.2004.2919; Jennions MD, 2012, HDB METAANALYSIS ECO; KAVANAGH MW, 1987, J EXP BIOL, V130, P107; Kerr AM, 2010, BEHAV ECOL, V21, P647, DOI 10.1093/beheco/arg035; Kivleniece I, 2010, ANIM BEHAV, V80, P1015, DOI 10.1016/j.anbehav.2010.09.004; Kokko H, 2005, EVOLUTION, V59, P1876; Kolluru GR, 2002, BEHAV ECOL, V13, P607, DOI 10.1093/beheco/13.5.607; Korner P, 2004, J INVERTEBR PATHOL, V87, P59, DOI 10.1016/j.jip.2004.07.004; Krams I, 2011, J INSECT SCI, V11, DOI 10.1673/031.011.5601; Leman JC, 2009, J EVOLUTION BIOL, V22, P163, DOI 10.1111/j.1420-9101.2008.01636.x; LOHER W, 1978, Z TIERPSYCHOL, V46, P225; LOHER W, 1981, BEHAV ECOL SOCIOBIOL, V9, P219, DOI 10.1007/BF00302941; Luong LT, 2005, BEHAV ECOL, V16, P153, DOI 10.1093/beheco/arh146; McKean KA, 2001, P NATL ACAD SCI USA, V98, P7904, DOI 10.1073/pnas.131216398; Moret Y, 2000, SCIENCE, V290, P1166, DOI 10.1126/science.290.5494.1166; PRESTWICH KN, 1981, J COMP PHYSIOL, V143, P199; Rantala MJ, 2003, P ROY SOC B-BIOL SCI, V270, P2257, DOI 10.1098/rspb.2003.2472; Rantala MJ, 2003, BIOL J LINN SOC, V79, P503, DOI 10.1046/j.1095-8312.2003.00202.x; Rantala MJ, 2000, P ROY SOC B-BIOL SCI, V267, P2453, DOI 10.1098/rspb.2000.1305; Rantala MJ, 2002, P ROY SOC B-BIOL SCI, V269, P1681, DOI 10.1098/rspb.2002.2056; Rantala MJ, 2003, FUNCT ECOL, V17, P534, DOI 10.1046/j.1365-2435.2003.00764.x; Reaney LT, 2010, BEHAV ECOL, V21, P1367, DOI 10.1093/beheco/arq139; Rolff J, 2002, P NATL ACAD SCI USA, V99, P9916, DOI 10.1073/pnas.152271999; Rowe L, 1996, P ROY SOC B-BIOL SCI, V263, P1415, DOI 10.1098/rspb.1996.0207; Ryder JJ, 2000, P ROY SOC B-BIOL SCI, V267, P1171, DOI 10.1098/rspb.2000.1125; Scheuber H, 2003, ANIM BEHAV, V65, P721, DOI 10.1006/anbe.2003.2083; Schmid-Hempel P, 2005, ANNU REV ENTOMOL, V50, P529, DOI 10.1146/annurev.ento.50.071803.130420; Shackleton MA, 2005, BEHAV ECOL SOCIOBIOL, V58, P1, DOI 10.1007/s00265-004-0907-1; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Shoemaker KL, 2007, PHYSIOL ENTOMOL, V32, P113, DOI 10.1111/j.1365-3032.2006.00552.x; Simmons LW, 2012, BEHAV ECOL, V23, P168, DOI 10.1093/beheco/arr170; Simmons LW, 2005, ANIM BEHAV, V69, P1235, DOI 10.1016/j.anbehav.2004.09.011; Simmons LW, 2005, SCIENCE, V309, P2031, DOI 10.1126/science.1114500; Siva-Jothy MT, 2002, PHYSIOL ENTOMOL, V27, P206, DOI 10.1046/j.1365-3032.2002.00286.x; Tregenza T, 2006, ANIM BEHAV, V72, P809, DOI 10.1016/j.anbehav.2006.01.019; Vainikka A, 2007, ACTA ETHOL, V10, P63, DOI 10.1007/s10211-007-0031-0; Wagner WE, 1999, ANIM BEHAV, V57, P89, DOI 10.1006/anbe.1998.0964; Worden BD, 2000, ANIM BEHAV, V59, P543, DOI 10.1006/anbe.1999.1368 64 5 5 0 64 SPRINGER/PLENUM PUBLISHERS NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0892-7553 J INSECT BEHAV J. Insect Behav. MAR 2013 26 2 176 190 10.1007/s10905-012-9347-3 15 Entomology Entomology 088NI WOS:000314841300004 2018-11-12 J Laran, J; Salerno, A Laran, Juliano; Salerno, Anthony Life-History Strategy, Food Choice, and Caloric Consumption PSYCHOLOGICAL SCIENCE English Article evolutionary psychology; life-history theory; food; self-control; health REPRODUCTIVE STRATEGY; EATING BEHAVIOR; SELF-CONTROL; DYING YOUNG; LIVING FAST; OBESITY; PURSUIT; STRESS; HUNGER; GOALS Do people's perceptions that they live in a harsh environment influence their food choices? Drawing on life-history theory, we propose that cues indicating that the current environment is harsh (e. g., news about an economic crisis, the sight of people facing adversity in life) lead people to perceive that resources in the world are scarce. As a consequence, people seek and consume more filling and high-calorie foods, which they believe will sustain them for longer periods of time. Although perceptions of harshness can promote unhealthy eating, we show how this effect can be attenuated and redirected to promote healthier food choices. [Laran, Juliano; Salerno, Anthony] Univ Miami, Sch Business Adm, Coral Gables, FL 33124 USA Laran, J (reprint author), Univ Miami, Sch Business Adm, 5250 Univ Dr,Kosar Epstein 515, Coral Gables, FL 33124 USA. laran@miami.edu Bargh JA, 2001, J PERS SOC PSYCHOL, V81, P1014, DOI 10.1037//0022-3514.81.6.1014; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2010, PSYCHOL SCI, V21, P1195, DOI 10.1177/0956797610379867; Block RA, 1990, COGNITIVE MODELS PSY, P1; Briers B, 2006, PSYCHOL SCI, V17, P939, DOI 10.1111/j.1467-9280.2006.01808.x; Chandon P, 2007, J MARKETING RES, V44, P84, DOI 10.1509/jmkr.44.1.84; Charnov Eric L., 1993, P1; Chartrand T. L., 2008, SOC COGNITION, V26, P199; Cohen S., 1988, SOCIAL PSYCHOL HLTH, V13, P31; Drewnowski A, 2004, AM J CLIN NUTR, V79, P6; Elbel BD, 2009, HEALTH AFFAIR, V28, pw1110, DOI DOI 10.1377/HLTHAFF.28.6.W1110; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Fishbach A, 2006, J PERS SOC PSYCHOL, V90, P820, DOI 10.1037/0022-3514.90.5.820; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kay AC, 2004, ORGAN BEHAV HUM DEC, V95, P83, DOI 10.1016/j.obhdp.2004.06.003; Laran J, 2010, J PERS SOC PSYCHOL, V98, P16, DOI 10.1037/a0017422; Laran J, 2009, J CONSUM RES, V35, P967, DOI 10.1086/593293; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Oliver G, 2000, PSYCHOSOM MED, V62, P853, DOI 10.1097/00006842-200011000-00016; Papies EK, 2010, HEALTH PSYCHOL, V29, P384, DOI 10.1037/a0019877; Pinel JPJ, 2000, AM PSYCHOL, V55, P1105, DOI 10.1037//0003-066X.55.10.1105; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Roff D. A., 2002, LIFE HIST EVOLUTION; Scheier LM, 2005, J AM DIET ASSOC, V105, P883, DOI 10.1016/j.jada.2005.04.013; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tangney JP, 2004, J PERS, V72, P271, DOI 10.1111/j.0022-3506.2004.00263.x; Tice DM, 2001, J PERS SOC PSYCHOL, V80, P53, DOI 10.1037//0022-3514.80.1.53; Torres SJ, 2007, NUTRITION, V23, P887, DOI 10.1016/j.nut.2007.08.008 31 27 30 3 44 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 0956-7976 PSYCHOL SCI Psychol. Sci. FEB 2013 24 2 167 173 10.1177/0956797612450033 7 Psychology, Multidisciplinary Psychology 113BS WOS:000316641400006 23302296 2018-11-12 J Griskevicius, V; Ackerman, JM; Cantu, SM; Delton, AW; Robertson, TE; Simpson, JA; Thompson, ME; Tybur, JM Griskevicius, Vladas; Ackerman, Joshua M.; Cantu, Stephanie M.; Delton, Andrew W.; Robertson, Theresa E.; Simpson, Jeffry A.; Thompson, Melissa Emery; Tybur, Joshua M. When the Economy Falters, Do People Spend or Save? Responses to Resource Scarcity Depend on Childhood Environments PSYCHOLOGICAL SCIENCE English Article evolutionary psychology; individual differences; motivation; life-history theory; resource scarcity LIFE-HISTORY STRATEGY; REPRODUCTIVE STRATEGIES; OXIDATIVE STRESS; DYING YOUNG; LIVING FAST; SEX; EVOLUTION; RISK; UNPREDICTABILITY; SUSCEPTIBILITY Just as modern economies undergo periods of boom and bust, human ancestors experienced cycles of abundance and famine. Is the adaptive response when resources become scarce to save for the future or to spend money on immediate gains? Drawing on life-history theory, we propose that people's responses to resource scarcity depend on the harshness of their early-life environment, as reflected by childhood socioeconomic status (SES). In the three experiments reported here, we tested how people from different childhood environments responded to resource scarcity. We found that people who grew up in lower-SES environments were more impulsive, took more risks, and approached temptations more quickly. Conversely, people who grew up in higher-SES environments were less impulsive, took fewer risks, and approached temptations more slowly. Responses similarly diverged according to people's oxidative-stress levels-a urinary biomarker of cumulative stress exposure. Overall, whereas tendencies associated with early-life environments were dormant in benign conditions, they emerged under conditions of economic uncertainty. [Ackerman, Joshua M.] MIT, Sloan Sch Management, Cambridge, MA 02139 USA; [Cantu, Stephanie M.; Simpson, Jeffry A.] Univ Minnesota, Dept Psychol, Minneapolis, MN 55455 USA; [Delton, Andrew W.; Robertson, Theresa E.] Univ Calif Santa Barbara, Dept Psychol & Brain Sci, Santa Barbara, CA 93106 USA; [Thompson, Melissa Emery] Univ New Mexico, Dept Anthropol, Albuquerque, NM 87131 USA; [Tybur, Joshua M.] Vrije Univ Amsterdam, Dept Social & Org Psychol, Amsterdam, Netherlands Griskevicius, V (reprint author), Univ Minnesota, Carlson Sch Management, 321 19th Ave South,Suite 3-150, Minneapolis, MN 55455 USA. vladasg@umn.edu Tybur, Joshua/P-5435-2014 Tybur, Joshua/0000-0002-0462-6508; Robertson, Theresa/0000-0001-8229-2323; Simpson, Jeff/0000-0003-1899-2493 Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; [Anonymous], 2010, US BUS CYCL EXP CONT; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Belsky J, 2010, PSYCHOL SCI, V21, P1195, DOI 10.1177/0956797610379867; CARROLL CD, 1992, BROOKINGS PAPERS EC, V2, P61; Chakravarthy MV, 2004, J APPL PHYSIOL, V96, P3, DOI 10.1152/japplphysiol.00757.2003; Chen M, 1999, PERS SOC PSYCHOL B, V25, P215, DOI 10.1177/0146167299025002007; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P7, DOI 10.1017/S0954579410000611; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Gangestad SW, 2010, ANIM BEHAV, V80, P1005, DOI 10.1016/j.anbehav.2010.09.003; Green L, 2004, PSYCHOL BULL, V130, P769, DOI 10.1037/0033-2909.130.5.769; Griskevicius V, 2012, J PERS SOC PSYCHOL, V102, P69, DOI 10.1037/a0024761; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hill SE, 2012, J PERS SOC PSYCHOL, V103, P275, DOI 10.1037/a0028657; Jablonka E, 2009, Q REV BIOL, V84, P131, DOI 10.1086/598822; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; Kenrick DT, 2010, PERSPECT PSYCHOL SCI, V5, P292, DOI 10.1177/1745691610369469; Kenrick DT, 2009, SOC COGNITION, V27, P764, DOI 10.1521/soco.2009.27.5.764; Kuzawa CW, 2010, P NATL ACAD SCI USA, V107, P16800, DOI 10.1073/pnas.1006008107; Lejuez CW, 2002, J EXP PSYCHOL-APPL, V8, P75, DOI 10.1037//1076-898X.8.2.75; Low BS, 2008, CROSS-CULT RES, V42, P201, DOI 10.1177/1069397108317669; Miller GE, 2009, P NATL ACAD SCI USA, V106, P14716, DOI 10.1073/pnas.0902971106; Mortensen CR, 2010, PSYCHOL SCI, V21, P440, DOI 10.1177/0956797610361706; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Roff D. A., 2002, LIFE HIST EVOLUTION; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tinbergen N., 1963, Zeitschrift fuer Tierpsychologie, V20, P410; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 38 73 78 4 81 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 0956-7976 PSYCHOL SCI Psychol. Sci. FEB 2013 24 2 197 205 10.1177/0956797612451471 9 Psychology, Multidisciplinary Psychology 113BS WOS:000316641400010 23302295 2018-11-12 J Olijnyk, AM; Nelson, WA Olijnyk, Adriana M.; Nelson, William A. Positive phenotypic correlations among life-history traits remain in the absence of differential resource ingestion FUNCTIONAL ECOLOGY English Article Daphnia pulicaria; life-history trade-offs; partial correlation; positive life-history correlations; range in resource environment; von Bertalanffy growth model DAPHNIA-MAGNA STRAUS; TRADE-OFFS; GENETIC CORRELATIONS; GROWTH-RATE; EVOLUTION; REPRODUCTION; FOOD; PLASTICITY; ALLOCATION; SIZE A central tenet of life-history theory states that individuals are constrained from maximizing all aspects of fitness simultaneously through negative correlations among life-history traits, known as trade-offs. Although evidence for trade-offs is abundant, a surprising number of taxa reveal positive correlations where trade-offs are expected. Previous studies suggest two mechanisms to explain the lack of trade-offs in situations where they are predicted by theory: differential resource acquisition and multidimensional trait constraints expressed in the presence of genetic variation. However, there is no direct empirical evidence supporting either hypothesis. Using individuals from multiple genotypes of the cyclic parthenogenic freshwater zooplankton, Daphnia pulicaria, we conducted life-history experiments that prevented two key aspects of these mechanisms from operating. The experiments were conducted under a range of resources from levels causing near-starvation to levels of resource abundance yielding a mean clutch size of 45 eggs. Growth, reproduction and survival were measured for each individual. Contrary to expectations, we found strong positive correlations among life-history traits in the absence of both differential resource ingestion, which is one form of differential resource acquisition, and genetic variation. These positive correlations emerge from differential resource utilization, which is one of the steps along the resource ingestion-utilization-allocation pathway. Our results demonstrate that strong positive correlations among life-history traits emerge from variation among individuals in an underappreciated aspect of their energy budget. This alternative mechanism has different implications for understanding life-history evolution, and reinforces the potential role that physiological ecology has in shaping life-history trait correlations. [Olijnyk, Adriana M.; Nelson, William A.] Queens Univ, Dept Biol, Kingston, ON K7L 3N6, Canada Nelson, WA (reprint author), Queens Univ, Dept Biol, Biosci Complex,116 Barrie St, Kingston, ON K7L 3N6, Canada. nelsonw@queensu.ca Nelson, William/D-1405-2013 NSERC discovery grant We would like to thank C. Cressler, S. Bengtson and three anonymous reviewers for comments that helped improve the manuscript, and J. Hanschell, A. Lizius, and A. Siew for assistance with conducting the experiments. The research was funded by an NSERC discovery grant to WAN. Allan J. D., 1983, EVOLUTION, V38, P280; Barata C, 2007, AQUAT TOXICOL, V84, P439, DOI 10.1016/j.aquatox.2007.07.004; Bednarska A, 2011, J LIMNOL, V70, P353, DOI 10.3274/JL11-70-2-19; BJORNSTAD ON, 1994, OIKOS, V69, P167, DOI 10.2307/3545298; BOERSMA M, 1994, J PLANKTON RES, V16, P1793, DOI 10.1093/plankt/16.12.1793; BRADLEY MC, 1991, OECOLOGIA, V86, P414, DOI 10.1007/BF00317610; BROOKFIELD JFY, 1984, GENETICA, V63, P161, DOI 10.1007/BF00128409; Buskirk J, 1994, COPEIA, V1, P66; CHARLESWORTH B, 1990, GENET RES, V55, P199, DOI 10.1017/S0016672300025532; Charlesworth B, 1984, EVOLUTIONARY ECOLOGY, P117; De Graaf G, 2005, AQUAC RES, V36, P100, DOI 10.1111/j.1365-2109.2004.01191.x; EBERT D, 1994, OIKOS, V69, P309, DOI 10.2307/3546152; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gliwicz ZM, 1996, J PLANKTON RES, V18, P863, DOI 10.1093/plankt/18.6.863; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; Kilham SS, 1998, HYDROBIOLOGIA, V377, P147, DOI 10.1023/A:1003231628456; Kim SH, 2007, GENETICA, V131, P151, DOI 10.1007/s10709-006-9125-2; King EG, 2011, EVOLUTION, V65, P2273, DOI 10.1111/j.1558-5646.2011.01296.x; Kneitel JM, 2004, ECOL LETT, V7, P69, DOI 10.1046/j.1461-0248.2003.00551.x; Kooijman S. A. L. M, 2000, DYNAMIC ENERGY MASS; Koojiman S. A. L. M., 2008, BIOL REV, V83, P533; Laguerie P., 1991, EVOL ECOL, V5, P361; LaMontagne JM, 2001, ECOL LETT, V4, P64, DOI 10.1046/j.1461-0248.2001.00197.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LANDE R, 1975, GENET RES, V26, P221, DOI 10.1017/S0016672300016037; Latta LC, 2011, J EXP ZOOL PART A, V315A, P610, DOI 10.1002/jez.710; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LEROI AM, 1994, EVOLUTION, V48, P1244, DOI 10.1111/j.1558-5646.1994.tb05309.x; Nisbet RM, 2004, ECOLOGY, V85, P3132, DOI 10.1890/03-0429; Noonburg EG, 1998, FUNCT ECOL, V12, P211, DOI 10.1046/j.1365-2435.1998.00174.x; R Development Core Team, 2011, R LANG ENV STAT COMP; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff D. A., 2002, LIFE HIST EVOLUTION; Roff DA, 2000, J EVOLUTION BIOL, V13, P434, DOI 10.1046/j.1420-9101.2000.00186.x; SCHULTZ ET, 1991, ENVIRON BIOL FISH, V30, P333, DOI 10.1007/BF02028849; Smith J. N. M., 1981, EVOLUTION, V35, P1155; SPITZE K, 1991, EVOLUTION, V45, P1081, DOI 10.1111/j.1558-5646.1991.tb04376.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stige LC, 2004, OIKOS, V107, P519; Tessier AJ, 2000, ECOLOGY, V81, P826, DOI 10.1890/0012-9658(2000)081[0826:AFTOIR]2.0.CO;2; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VANNI MJ, 1992, OECOLOGIA, V92, P48, DOI 10.1007/BF00317261; Vindenes Y, 2008, AM NAT, V171, P455, DOI 10.1086/528965; Vorburger C, 2005, EVOLUTION, V59, P1006; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 48 12 12 3 57 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 FUNCT ECOL Funct. Ecol. FEB 2013 27 1 165 172 10.1111/1365-2435.12015 8 Ecology Environmental Sciences & Ecology 079JN WOS:000314166500018 Bronze 2018-11-12 J Jacobs, SR; Elliott, KH; Gaston, AJ Jacobs, Shoshanah R.; Elliott, Kyle Hamish; Gaston, Anthony J. Parents are a Drag: Long-Lived Birds Share the Cost of Increased Foraging Effort with Their Offspring, but Males Pass on More of the Costs than Females PLOS ONE English Article THICK-BILLED MURRES; GUILLEMOTS URIA-LOMVIA; BLUE-FOOTED BOOBY; BRUNNICHS GUILLEMOTS; BODY CONDITION; ARCTIC SEABIRD; PLASMA-CORTICOSTERONE; MONOMORPHIC SEABIRD; REPRODUCTIVE COSTS; ATLANTIC PUFFINS Life history theory predicts that parents will balance benefits from investment in current offspring against benefits from future reproductive investments. Long-lived organisms are therefore less likely to increase parental effort when environmental conditions deteriorate. To investigate the effect of decreased foraging capacity on parental behaviour of long-lived monogamous seabirds, we experimentally increased energy costs for chick-rearing thick-billed murres (Uria lomvia). Handicapped birds had lighter chicks and lower provisioning rates, supporting the prediction that long-lived animals would pass some of the costs of impaired foraging ability on to their offspring. Nonetheless, handicapped birds spent less time underwater, had longer inter-dive surface intervals, had lower body mass, showed lower resighting probabilities in subsequent years and consumed fewer risky prey items. Corticosterone levels were similar between control and handicapped birds. Apparently, adults shared some of the costs of impaired foraging, but those costs were not measurable in all metrics. Handicapped males had higher plasma neutral lipid concentrations (higher energy mobilisation) and their chicks exhibited lower growth rates than handicapped females, suggesting different sex-specific investment strategies. Unlike other studies of auks, partners did not compensate for handicapping, despite good foraging conditions for unhandicapped birds. In conclusion, parental murres and their offspring shared the costs of experimentally increased foraging constraints, with females investing more than males. [Jacobs, Shoshanah R.] Dept Integrated Biol, Guelph, ON, Canada; [Elliott, Kyle Hamish] Univ Manitoba, Dept Zool, Winnipeg, MB R3T 2N2, Canada; [Gaston, Anthony J.] Environm Canada, Natl Wildlife Res Ctr, Ottawa, ON K1A 0H3, Canada Elliott, KH (reprint author), Univ Manitoba, Dept Zool, Winnipeg, MB R3T 2N2, Canada. urialomvia@gmail.com Elliott, Kyle/0000-0001-5304-3993 University of Ottawa Doctoral Research Award; Northern Scientific Training Program; Weinberger Award for Environmental Research; Heather Glendinning McMurter Award for Environmental Research; Maas Family Scholarship; NSERC PGSM and Vanier Awards; Natural Sciences and Engineering Research Council Northern Research Internship; Mountain Equipment Co-op Studentship; Arctic Institute of North America; American Ornithologists' Union Research Grant; Society of Canadian Ornithologists/Bird Studies Canada Taverner; American Museum of Natural History Frank M. Chapman Award; Science and technology Branch of Environment Canada, the University of Manitoba SRJ benefited from the University of Ottawa Doctoral Research Award, Northern Scientific Training Program, Weinberger Award for Environmental Research, Heather Glendinning McMurter Award for Environmental Research, and Maas Family Scholarship. KHE benefited from funding provided by NSERC PGSM and Vanier Awards, Natural Sciences and Engineering Research Council Northern Research Internship, Northern Scientific Training Program, Mountain Equipment Co-op Studentship, Arctic Institute of North America Grant-in-aid, American Ornithologists' Union Research Grant, Society of Canadian Ornithologists/Bird Studies Canada Taverner and James L. Baillie Awards and an American Museum of Natural History Frank M. Chapman Award. Additional financial support came from Science and technology Branch of Environment Canada, the University of Manitoba and 2007-08 International Polar Year. R. Armstrong at the Nunavut Research Institute. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Anderson PJ, 1999, MAR ECOL PROG SER, V189, P117, DOI 10.3354/meps189117; Angelier F, 2007, PHYSIOL BIOCHEM ZOOL, V80, P283, DOI 10.1086/512585; Angelier F, 2009, J EXP BIOL, V212, P2824, DOI 10.1242/jeb.027722; Baillie SM, 2004, WATERBIRDS, V27, P102, DOI 10.1675/1524-4695(2004)027[0102:ROAPTA]2.0.CO;2; Barrett RT, 1996, ICES J MAR SCI, V53, P713, DOI 10.1006/jmsc.1996.0090; BARRETT RT, 1992, COLON WATERBIRD, V15, P24, DOI 10.2307/1521351; Beaulieu M, 2010, J EXP BIOL, V213, P33, DOI 10.1242/jeb.035378; Beaulieu M, 2009, ANIM BEHAV, V78, P313, DOI 10.1016/j.anbehav.2009.05.006; Benvenuti S, 2002, POLAR BIOL, V25, P474, DOI 10.1007/s00300-002-0372-0; Bijleveld AI, 2009, BEHAV ECOL, V20, P736, DOI 10.1093/beheco/arp054; Blem C.R., 1990, Current Ornithology, V7, P59; BLEM CR, 1976, AM ZOOL, V16, P671; Burke CM, 2008, WATERBIRDS, V31, P372, DOI 10.1675/1524-4695-31.3.372; CARACO T, 1990, ANIM BEHAV, V39, P338, DOI 10.1016/S0003-3472(05)80879-6; CHAURAND T, 1994, IBIS, V136, P285, DOI 10.1111/j.1474-919X.1994.tb01097.x; CLARK CW, 1990, EVOL ECOL, V4, P21, DOI 10.1007/BF02270712; CROLL DA, 1991, CONDOR, V93, P496, DOI 10.2307/1368181; Davoren GK, 2003, MAR ECOL PROG SER, V258, P253, DOI 10.3354/meps258253; Diamond AW, 2003, ENVIRON MONIT ASSESS, V88, P153, DOI 10.1023/A:1025560805788; DRENT RH, 1980, ARDEA, V68, P225; Elliott KH, 2005, IBIS, V147, P783, DOI 10.1111/j.1474.919x.2005.00482.x; Elliott KH, 2008, J FIELD ORNITHOL, V79, P298, DOI 10.1111/j.1557-9263.2008.00177.x; Elliott KH, 2007, CAN J ZOOL, V85, P352, DOI 10.1139/Z07-012; Elliott KH, 2012, MAR ECOL PROG SER, V466, P1, DOI 10.3354/meps09975; Elliott KH, 2009, AUK, V126, P613, DOI 10.1525/auk.2009.08245; Elliott KH, 2009, MAR BIOL, V156, P1809, DOI 10.1007/s00227-009-1214-1; Elliott KH, 2008, J AVIAN BIOL, V39, P619, DOI 10.1111/j.1600-048X.2008.04316.x; Elliott Kyle Hamish, 2008, Marine Ornithology, V36, P25; Elliott KH, 2008, ANIM BEHAV, V75, P1311, DOI 10.1016/j.anbehav.2007.10.026; Elliott KH, 2008, MAR ECOL PROG SER, V354, P289, DOI 10.3354/meps07221; Elliott KH, 2010, BEHAV ECOL, V21, P1024, DOI 10.1093/beheco/arq076; Elliott KH, 2009, WATERBIRDS, V32, P183, DOI 10.1675/063.032.0123; Erikstad KE, 1998, ECOLOGY, V79, P1781; Erikstad KE, 1997, BEHAV ECOL SOCIOBIOL, V40, P95, DOI 10.1007/s002650050320; FISHER HI, 1975, AUK, V92, P433, DOI 10.2307/4084599; Pereira RJG, 2009, J WILDLIFE MANAGE, V73, P772, DOI 10.2193/2008-184; Gaston AJ, 2006, J AVIAN BIOL, V37, P101; Gaston AJ, 2006, IBIS, V148, P106, DOI 10.1111/j.1474-919X.2006.00489.x; Gaston AJ, 2005, J ANIM ECOL, V74, P832, DOI 10.1111/j.1365-2656.2005.00982.x; Gaston AJ, 2003, ARCTIC, V56, P227; GASTON AJ, 1983, CAN J ZOOL, V61, P2465, DOI 10.1139/z83-327; Gaston AT, 2009, CONDOR, V111, P111, DOI 10.1525/cond.2009.080077; Gill VA, 2002, IBIS, V144, P268, DOI 10.1046/j.1474-919X.2002.00043.x; Gladbach A, 2009, POLAR BIOL, V32, P1315, DOI 10.1007/s00300-009-0628-z; Golet HG, 2004, ECOL MONOGR, V74, P353; Granadeiro JP, 2004, J SEA RES, V52, P227, DOI 10.1016/j.seares.2004.01.005; Groscolas R, 2000, AM J PHYSL REG 1, V279, P2104; Hamer KC, 2006, BEHAV ECOL, V17, P132, DOI 10.1093/beheco/arj008; Harding AMA, 2009, ANIM BEHAV, V78, P321, DOI 10.1016/j.anbehav.2009.05.009; Harding AMA, 2007, ECOLOGY, V88, P2024, DOI 10.1890/06-1695.1; Harding AMA, 2009, FUNCT ECOL, V23, P348, DOI 10.1111/j.1365-2435.2008.01488.x; HEDGREN S, 1981, ORNIS SCAND, V12, P51, DOI 10.2307/3675904; Hipfner JM, 2006, CAN J ZOOL, V84, P931, DOI 10.1139/Z06-066; Hipfner JM, 1997, CONDOR, V99, P353, DOI 10.2307/1369941; Hipfner JM, 1999, ECOLOGY, V80, P1289, DOI 10.1890/0012-9658(1999)080[1289:TRBESA]2.0.CO;2; Hipfner JM, 2001, AUK, V118, P1076, DOI 10.1642/0004-8038(2001)118[1076:FRCORI]2.0.CO;2; Ito M, 2010, AQUAT BIOL, V8, P279, DOI 10.3354/ab00229; Jacobs SR, 2012, PHYSIOL BIOCHEM ZOOL, V85, P85, DOI 10.1086/663832; Jacobs SR, 2011, COMP BIOCHEM PHYS B, V158, P77, DOI 10.1016/j.cbpb.2010.09.011; Jacobs SR, 2009, J AVIAN BIOL, V40, P327, DOI 10.1111/j.1600-048X.2008.04625.x; JACOBSEN KO, 1995, ECOLOGY, V76, P1636, DOI 10.2307/1938164; Jenni-Eiermann S, 2002, J EXP BIOL, V205, P2453; JENNIEIERMANN S, 1992, PHYSIOL ZOOL, V65, P112, DOI 10.1086/physzool.65.1.30158242; Jensen B, 2002, FISH PHYSIOL BIOCHEM, V25, P141; Keedwell RJ, 2003, J FIELD ORNITHOL, V74, P217, DOI 10.1648/0273-8570-74.3.217; Kilner RM, 1999, NATURE, V397, P667, DOI 10.1038/17746; Kitaysky AS, 2006, P ROY SOC B-BIOL SCI, V273, P445, DOI 10.1098/rspb.2005.3351; Kitaysky AS, 2003, HORM BEHAV, V43, P140, DOI 10.1016/S0018-506X(02)00030-2; Kitaysky AS, 2001, BEHAV ECOL, V12, P619, DOI 10.1093/beheco/12.5.619; Landys MTM, 2004, HORM BEHAV, V46, P574, DOI 10.1016/j.yhbeh.2004.06.006; Landys-Ciannelli MM, 2002, PHYSIOL BIOCHEM ZOOL, V75, P101, DOI 10.1086/338285; Lewis S, 2006, J ANIM ECOL, V75, P1304, DOI 10.1111/j.1365-2656.2006.01152.x; Lewis S, 2009, OIKOS, V118, P521, DOI 10.1111/j.1600-0706.2009.17308.x; MAGRATH RD, 1991, J ANIM ECOL, V60, P335, DOI 10.2307/5464; MAUCK RA, 1995, ANIM BEHAV, V49, P999, DOI 10.1006/anbe.1995.0129; McWilliams SR, 2004, J AVIAN BIOL, V35, P377, DOI 10.1111/j.0908-8857.2004.03378.x; Navarro J, 2007, OECOLOGIA, V151, P150, DOI 10.1007/s00442-006-0559-0; Paredes R, 2005, ANIM BEHAV, V69, P197, DOI 10.1016/j.anbehav.2003.12.029; Paredes R, 2006, BEHAVIOUR, V143, P451, DOI 10.1163/156853906776240641; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; Piatt JF, 2007, MAR ECOL PROG SER, V352, P221, DOI 10.3354/meps07078; Reed TE, 2008, AM NAT, V171, pE89, DOI 10.1086/524957; RICKLEFS RE, 1992, ANIM BEHAV, V43, P895, DOI 10.1016/0003-3472(92)90003-R; RICKLEFS RE, 1984, ORNIS SCAND, V15, P162, DOI 10.2307/3675957; RICKLEFS RE, 1981, AUK, V98, P361; Robin J.P., 1998, AM J PHYSIOL-REG I, V274, P746; Robin JP, 2001, J AVIAN BIOL, V32, P303, DOI 10.1111/j.0908-8857.2001.320403.x; Ropert-Coudert Y, 2009, P R SOC B, V276, P4105, DOI 10.1098/rspb.2009.1399; SAETHER BE, 1993, BEHAV ECOL SOCIOBIOL, V33, P147, DOI 10.1007/BF00216594; Takahashi A, 2003, FUNCT ECOL, V17, P590, DOI 10.1046/j.1365-2435.2003.00772.x; Takahashi A, 2008, DEEP-SEA RES PT II, V55, P1837, DOI 10.1016/j.dsr2.2008.04.005; Thaxter CB, 2010, J EXP BIOL, V213, P1018, DOI 10.1242/jeb.037390; Thaxter CB, 2009, J AVIAN BIOL, V40, P75, DOI 10.1111/j.1600-048X.2008.04507.x; Tremblay Y, 2003, J EXP BIOL, V206, P1929, DOI 10.1242/jeb.00363; Tveraa T, 1998, J ANIM ECOL, V67, P699, DOI 10.1046/j.1365-2656.1998.00234.x; VADER W, 1990, STUD AVIAN BIOL, V14, P175; Velando A, 2003, J ANIM ECOL, V72, P846, DOI 10.1046/j.1365-2656.2003.00756.x; WANLESS S, 1988, CONDOR, V90, P816, DOI 10.2307/1368838; Whittingham MJ, 2006, J ANIM ECOL, V75, P1182, DOI 10.1111/j.1365-2656.2006.01141.x; Wilhelm S.I., 2004, ATLANTIC SEABIRDS, V6, P47; Winkler DW, 1995, AUK, V112, P737 101 11 11 0 68 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One JAN 30 2013 8 1 e54594 10.1371/journal.pone.0054594 11 Multidisciplinary Sciences Science & Technology - Other Topics 098QM WOS:000315563800056 23382921 DOAJ Gold, Green Published 2018-11-12 J Wittemyer, G; Daballen, D; Douglas-Hamilton, I Wittemyer, George; Daballen, David; Douglas-Hamilton, Iain Comparative Demography of an At-Risk African Elephant Population PLOS ONE English Article KRUGER-NATIONAL-PARK; LOXODONTA-AFRICANA; LARGE HERBIVORES; SOUTH-AFRICA; DYNAMICS; SURVIVAL; DENSITY; SAMBURU; KENYA; REPRODUCTION Knowledge of population processes across various ecological and management settings offers important insights for species conservation and life history. In regard to its ecological role, charisma and threats from human impacts, African elephants are of high conservation concern and, as a result, are the focus of numerous studies across various contexts. Here, demographic data from an individually based study of 934 African elephants in Samburu, Kenya were summarized, providing detailed inspection of the population processes experienced by the population over a fourteen year period (including the repercussions of recent increases in illegal killing). These data were compared with those from populations inhabiting a spectrum of xeric to mesic ecosystems with variable human impacts. In relation to variability in climate and human impacts (causing up to 50% of recorded deaths among adults), annual mortality in Samburu fluctuated between 1 and 14% and, unrelatedly, natality between 2 and 14% driving annual population increases and decreases. Survivorship in Samburu was significantly lower than other populations with age-specific data even during periods of low illegal killing by humans, resulting in relatively low life expectancy of males (18.9 years) and females (21.8 years). Fecundity (primiparous age and inter-calf interval) were similar to those reported in other human impacted or recovering populations, and significantly greater than that of comparable stable populations. This suggests reproductive effort of African savanna elephants increases in relation to increased mortality (and resulting ecological ramifications) as predicted by life history theory. Further comparison across populations indicated that elongated inter-calf intervals and older ages of reproductive onset were related to age structure and density, and likely influenced by ecological conditions. This study provides detailed empirical data on elephant population dynamics strongly influenced by human impacts (laying the foundation for modeling approaches), supporting predictions of evolutionary theory regarding demographic responses to ecological processes. [Wittemyer, George] Colorado State Univ, Dept Fish Wildlife & Conservat Biol, Ft Collins, CO 80523 USA; [Wittemyer, George] Colorado State Univ, Grad Degree Program Ecol, Ft Collins, CO 80523 USA; [Wittemyer, George; Daballen, David; Douglas-Hamilton, Iain] Save Elephants, Nairobi, Kenya; [Douglas-Hamilton, Iain] Univ Oxford, Dept Zool, Oxford OX1 3PS, England Wittemyer, G (reprint author), Colorado State Univ, Dept Fish Wildlife & Conservat Biol, Ft Collins, CO 80523 USA. g.wittemyer@colostate.edu National Science Foundation [OISE-0502340]; Escape Foundation Funding for this study included the National Science Foundation GRFP and IRFP OISE-0502340, Save the Elephants private donors and the Escape Foundation (http://www.escapefoundation.org). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Blake S, 2009, BIOTROPICA, V41, P459, DOI 10.1111/j.1744-7429.2009.00512.x; BLANC JJ, 2007, AFRICAN ELEPHANT STA; Bouche P, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020619; Burn RW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024165; Burnham K. P., 1998, MODEL SELECTION INFE; BUSS IO, 1966, J WILDLIFE MANAGE, V30, P375, DOI 10.2307/3797826; CAUGHLEY G, 1977, ANAL VERTEBRATE POPU; Chamaille-Jammes S, 2007, J APPL ECOL, V44, P625, DOI 10.1111/j.1365-2664.2007.01300.x; DOUGLAS-HAMILTON I, 1987, Oryx, V21, P11; Douglas-Hamilton I, 1972, ECOLOGY BEHAV AFRICN; Douglas-Hamilton I, 2010, LEVELS ILLEGAL KILLI; DUBLIN HT, 1990, J ANIM ECOL, V59, P1147, DOI 10.2307/5037; Dudley JP, 2001, AFR J ECOL, V39, P187, DOI 10.1046/j.0141-6707.2000.00297.x; Foley C, 2008, BIOL LETTERS, V4, P541, DOI 10.1098/rsbl.2008.0370; Foley CAH, 2010, ORYX, V44, P205, DOI 10.1017/S0030605309990706; Freeman EW, 2009, AFR J ECOL, V47, P192, DOI 10.1111/j.1365-2028.2008.00957.x; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; Gough KF, 2006, ORYX, V40, P434, DOI 10.1017/S0030605306001189; HANKS J, 1972, J REPROD FERTIL, V30, P13; IUCN, 2012, IUCN RED LIST THREAT; Kahindi O, 2010, AFR J ECOL, V48, P972, DOI 10.1111/j.1365-2028.2009.01200.x; Laws R. M., 1969, Journal of Reproduction and Fertility Suppl, VNo. 6, P193; Laws R. M., 1975, ELEPHANTS THEIR HABI; LAWS RM, 1970, OIKOS, V21, P1, DOI 10.2307/3543832; Lindeque M, 1988, POPULATION DYNAMICS; Mace GM, 2008, CONSERV BIOL, V22, P1424, DOI 10.1111/j.1523-1739.2008.01044.x; Maisels F, PLOS ONE IN PRESS; Moeschberger ML, 2003, SURVIVAL ANAL TECHNI; Moss C. J., 2011, AMBOSELI ELEPHANTS L; Moss CJ, 2001, J ZOOL, V255, P145, DOI 10.1017/S0952836901001212; Moss CJ, 1996, AWF SERIES HDB TECHN, V7, P58; Owen-Smith N, 2006, S AFR J SCI, V102, P389; Owen-Smith N, 2005, J ANIM ECOL, V74, P774, DOI 10.1111/j.1365-2656.2005.00974.x; Owen-Smith N., 1988, MEGAHERBIVORES INFLU; Packer C, 1998, NATURE, V392, P807, DOI 10.1038/33910; Power ME, 1996, BIOSCIENCE, V46, P609, DOI 10.2307/1312990; Pringle RM, 2008, ECOLOGY, V89, P26, DOI 10.1890/07-0776.1; R Development Core Team, 2012, R LANG ENV STAT COMP; Rasmussen HB, 2008, BEHAV ECOL, V19, P9, DOI 10.1093/beheco/arm093; Rasmussen HB, 2005, AFR J ECOL, V43, P215, DOI 10.1111/j.1365-2028.2005.00571.x; Roff Derek A., 1992; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stockwell CA, 2003, TRENDS ECOL EVOL, V18, P94, DOI 10.1016/S0169-5347(02)00044-7; van Aarde RJ, 2007, BIOL CONSERV, V134, P289, DOI 10.1016/j.biocon.2006.08.027; Wasser S, 2010, SCIENCE, V327, P1331, DOI 10.1126/science.1187811; Whyte I, 1998, ANIM CONSERV, V1, P77, DOI 10.1111/j.1469-1795.1998.tb00014.x; Wittemyer G, 2007, BEHAV ECOL SOCIOBIOL, V61, P1919, DOI 10.1007/s00265-007-0432-0; Wittemyer G, 2005, ANIM BEHAV, V69, P1357, DOI 10.1016/j.anbehav.2004.08.018; Wittemyer G, 2005, AFR J ECOL, V43, P44, DOI 10.1111/j.1365-2028.2004.00543.x; Wittemyer G, 2001, AFR J ECOL, V39, P357, DOI 10.1046/j.1365-2028.2001.00324.x; Wittemyer G, 2007, HORM BEHAV, V51, P346, DOI 10.1016/j.yhbeh.2006.12.013; Wittemyer G, 2007, ECOGRAPHY, V30, P42, DOI 10.1111/j.2006.0906-7590.04900.x; Wittemyer G, 2011, CONSERV BIOL, V25, P1002, DOI 10.1111/j.1523-1739.2011.01713.x; Wittemyer G, 2011, NATURE, V476, P282, DOI 10.1038/476282c; Wittemyer G, 2009, P R SOC B, V276, P3513, DOI 10.1098/rspb.2009.0941 56 35 35 2 158 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One JAN 16 2013 8 1 e53726 10.1371/journal.pone.0053726 10 Multidisciplinary Sciences Science & Technology - Other Topics 072OV WOS:000313682700039 23341984 DOAJ Gold, Green Published 2018-11-12 J Queenborough, SA; Humphreys, AM; Valencia, R Queenborough, Simon A.; Humphreys, Aelys M.; Valencia, Renato Sex-specific flowering patterns and demography of the understorey rain forest tree Iryanthera hostmannii (Myristicaceae) TROPICAL CONSERVATION SCIENCE English Article Amazonian Ecuador; dioecy; nutmeg; phenology; pollination biology; reproductive ecology; Yasuni National Park DIOECIOUS TROPICAL SHRUB; FRUIT-SET; SIPARUNA-GRANDIFLORA; REPRODUCTIVE-BIOLOGY; SPATIAL-DISTRIBUTION; POLLEN LIMITATION; NEOTROPICAL TREE; PLANTS; POPULATION; PHENOLOGY Sexual dimorphism in dioecious plants is a common phenomenon that has received widespread attention, yet the implications for reproductive function and fitness remain poorly understood. Using data from a long-term study of a population of 839 dioecious Iryanthera hostmannii (Myristicaceae 'nutmeg') trees in a large permanent plot in a lowland tropical rain forest, we examined the effects of greater investment in reproduction by females compared to males for various aspects of life history. Although male trees often produced more inflorescences than females, total dry mass of flowers was roughly equal in two out of three years for both sexes, implying that any investment differential lies in fruit production. There was no difference in the 12-year relative growth rate of males and females, suggesting that females can compensate somehow for their greater reproductive investment, although there were weak suggestions that mortality might have been greater in females. Male flowers opened slightly earlier in the day than female flowers and were short-lived, lasting at most two nights compared to up to four nights in females. Understanding the interacting effects of resource availability (studied here) and pollen movement (currently unknown in Iryanthera) on reproduction is essential in terms of life history theory. Knowledge of reproductive biology is key in considering the ecology and conservation of tropical forest communities. [Queenborough, Simon A.] Ohio State Univ, Dept Ecol Evolut & Organismal Biol, Columbus, OH 43210 USA; [Humphreys, Aelys M.] Stockholm Univ, Dept Bot, SE-10691 Stockholm, Sweden; [Valencia, Renato] Pontificia Univ Catolica Ecuador, Sch Biol Sci, Plant Ecol Lab, Quito, Ecuador; [Valencia, Renato] Pontificia Univ Catolica Ecuador, Sch Biol Sci, Herbarium QCA, Quito, Ecuador Queenborough, SA (reprint author), Ohio State Univ, Dept Ecol Evolut & Organismal Biol, Columbus, OH 43210 USA. queenborough.1@osu.edu Leverhulme Trust, UK; SENESCYT [300]; Pontifical Catholic University of Ecuador funds of donaciones del impuesto a la renta; government of Ecuador; US National Science Foundation; Andrew W. Mellon Foundation; Smithsonian Tropical Research Institute; University of Aarhus of Denmark We thank the Ministerio del Medioambiente of Ecuador for permission to carry out fieldwork in Yasuni National Park and within the Yasuni Forest Dynamics Plot. SAQ thanks The Leverhulme Trust, UK, for their support through a Study Abroad Studentship in 2002-2004. RV thanks SENESCYT for supporting research in the Yasuni FDP (project 300) in 2011. The Forest Dynamics Plot of Yasuni National Park has been made possible through the generous support of the Pontifical Catholic University of Ecuador funds of donaciones del impuesto a la renta, the government of Ecuador, the US National Science Foundation, the Andrew W. Mellon Foundation, the Smithsonian Tropical Research Institute, and the University of Aarhus of Denmark. The Yasuni Forest Dynamics Plot is associated with the Center for Tropical Forest Science, a global network of large-scale demographic tree plots. Abe T, 2001, AM J BOT, V88, P455, DOI 10.2307/2657110; Agostinelli C, 2011, R PACKAGE CIRCULAR C; AGREN J, 1988, OECOLOGIA, V76, P175, DOI 10.1007/BF00379950; ALLEN GA, 1993, AM NAT, V141, P537, DOI 10.1086/285490; ARMSTRONG JE, 1986, AM J BOT, V73, P1131, DOI 10.2307/2443792; ARMSTRONG JE, 1989, AM J BOT, V76, P74, DOI 10.2307/2444776; ARMSTRONG JE, 1986, BIOTROPICA, V18, P32, DOI 10.2307/2388359; Ashman TL, 2004, ECOLOGY, V85, P2408, DOI 10.1890/03-8024; ATAROFF M, 1992, OECOLOGIA, V92, P250, DOI 10.1007/BF00317372; Baddeley A, 2005, J STAT SOFTW, V12, P1; Barrett SCH, 2010, PHILOS T R SOC B, V365, P351, DOI 10.1098/rstb.2009.0212; Batschelet E., 1981, CIRCULAR STAT BIOL; BIERZYCHUDEK P, 1988, AM NAT, V132, P34, DOI 10.1086/284836; BULLOCK SH, 1992, OECOLOGIA, V91, P52, DOI 10.1007/BF00317240; Charnov E., 1982, THEORY SEXU ALLOCATI; CLARK DA, 1987, J ECOL, V75, P135, DOI 10.2307/2260540; CONN JS, 1981, B TORREY BOT CLUB, V108, P374, DOI 10.2307/2484717; COX PA, 1981, AM NAT, V117, P295, DOI 10.1086/283707; Crone EE, 2005, AM NAT, V166, P396, DOI 10.1086/432561; Darwin C., 1877, DIFFERENT FORMS FLOW; Dawson T., 2009, GENDER SEXUAL DIMORP, P175; Delph LF, 1996, AM NAT, V148, P299, DOI 10.1086/285926; Espirito-Santo MM, 2003, ANN BOT-LONDON, V91, P13, DOI 10.1093/aob/mcg001; FLANAGAN LB, 1985, OECOLOGIA, V68, P23, DOI 10.1007/BF00379468; FOSTER RB, 1977, NATURE, V268, P624, DOI 10.1038/268624b0; GARCIA MB, 1995, INT J PLANT SCI, V156, P236, DOI 10.1086/297246; Graham EA, 2003, P NATL ACAD SCI USA, V100, P572, DOI 10.1073/pnas.0133045100; HOUSE SM, 1993, OECOLOGIA, V96, P555, DOI 10.1007/BF00320513; Howe H., 1983, TROPICAL RAIN FOREST, P211; Hurd P, 2001, R CODE G TEST V3 3; Jones FA, 2008, P ROY SOC B-BIOL SCI, V275, P2759, DOI 10.1098/rspb.2008.0894; KOHORN LU, 1994, ECOLOGY, V75, P2384, DOI 10.2307/1940892; Lenza Eddie, 2006, Braz. J. Bot., V29, P443, DOI 10.1590/S0100-84042006000300011; LLOYD DG, 1977, BOT REV, V43, P177, DOI 10.1007/BF02860717; McDowell SCL, 2000, AM J BOT, V87, P539, DOI 10.2307/2656598; Midgley JJ, 2010, S AFR J BOT, V76, P588, DOI 10.1016/j.sajb.2010.05.001; Ngulube MR, 1998, J TROP ECOL, V14, P743, DOI 10.1017/S0266467498000546; Nicotra AB, 1999, FUNCT ECOL, V13, P322, DOI 10.1046/j.1365-2435.1999.00326.x; Nicotra AB, 1999, J ECOL, V87, P138, DOI 10.1046/j.1365-2745.1999.00337.x; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; Queenborough SA, 2007, AM J BOT, V94, P67, DOI 10.3732/ajb.94.1.67; R Development Core Team, 2009, R LANG ENV STAT COMP; Morillo IMR, 2008, REV BIOL TROP, V56, P279; RENNER SS, 1995, AM J BOT, V82, P596, DOI 10.2307/2445418; Roosmalen M., 1996, ACTA AMAZONICA, V25, P209; Sharma M., 2012, TROPICAL CONSERVATIO; Shelton AO, 2010, AM NAT, V175, P302, DOI 10.1086/650374; Somanathan H, 2000, BIOL CONSERV, V94, P243, DOI 10.1016/S0006-3207(99)00170-6; THOMAS SC, 1993, ECOLOGY, V74, P1529, DOI 10.2307/1940080; Thomas SC, 2011, TREE PHYSIOL-NETH, V4, P33, DOI 10.1007/978-94-007-1242-3_2; Ting S, 2008, GLOBAL ECOL BIOGEOGR, V17, P648, DOI 10.1111/j.1466-8238.2008.00408.x; Valencia R, 2004, J ECOL, V92, P214, DOI 10.1111/j.0022-0477.2004.00876.x; Wheelwright NT, 2004, P NATL ACAD SCI USA, V101, P8051, DOI 10.1073/pnas.0402735101; WHEELWRIGHT NT, 1992, J ECOL, V80, P425, DOI 10.2307/2260688 54 2 2 0 14 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 1940-0829 TROP CONSERV SCI Trop. Conserv. Sci. 2013 6 5 SI 637 652 10.1177/194008291300600504 16 Biodiversity Conservation Biodiversity & Conservation AC7JW WOS:000332705400004 DOAJ Gold 2018-11-12 J Benesh, DP; Chubb, JC; Parker, GA Benesh, Daniel P.; Chubb, James C.; Parker, Geoff A. Complex Life Cycles: Why Refrain from Growth before Reproduction in the Adult Niche? AMERICAN NATURALIST English Article cestode; complex life cycle; life-history theory; phylogenetic analysis; size at maturity STICKLEBACKS GASTEROSTEUS-ACULEATUS; CESTODE SCHISTOCEPHALUS-SOLIDUS; LIGULA-INTESTINALIS; BODY-SIZE; DEFINITIVE HOST; HISTORY TRAITS; PHYLOGENETIC-RELATIONSHIPS; TETRABOTHRIIDAE EUCESTODA; PARASITIC NEMATODES; INTERMEDIATE HOSTS Organisms with complex life cycles occupy distinct niches as larvae and adults. One presumed advantage of this is the ability to exploit different resources successively throughout ontogeny. Various taxa, however, have evolved nonfeeding, nongrowing adult stages. We show theoretically that this counterintuitive no growth strategy is favored when the optimal larval size is greater than or equal to the optimal adult size for reproduction. We empirically investigated this in a group of parasitic worms (helminths). Helminths are transmitted trophically between hosts before reproducing in large, high-trophic-level hosts, and most undergo considerable growth as adults in their final host. Some well-studied tapeworm species (Schistocephalus, Ligula, and Digramma species) are notable exceptions; they reproduce semelparously without any growth in their final habitat (the gut of piscivorous birds). Using cross-species comparative analyses, we show that these tapeworms that do not grow in their final host (1) attain larval sizes in their last intermediate host (fishes) that are comparable to or larger than the adult sizes reached by tapeworms that do grow in the same adult niche (also piscivorous birds) and (2) are large, even as larvae, relative to the mass of their final hosts. These results are consistent with the idea that a massive larval size can make adult growth superfluous, and we discuss whether this likely applies to other complex life cycle taxa with nonfeeding, nongrowing adults. [Benesh, Daniel P.] Max Planck Inst Evolutionary Biol, Dept Evolutionary Ecol, D-24306 Plon, Germany; [Chubb, James C.; Parker, Geoff A.] Univ Liverpool, Inst Integrat Biol, Dept Evolut Ecol & Behav, Liverpool L69 7ZB, Merseyside, England Benesh, DP (reprint author), Max Planck Inst Evolutionary Biol, Dept Evolutionary Ecol, August Thienemann Str 2, D-24306 Plon, Germany. benesh@evolbio.mpg.de Parker, Geoff/C-4337-2008 Parker, Geoff/0000-0003-4795-6352 Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; ARCHER D. M., 1958, EXPTL PARASITOL, V7, P125, DOI 10.1016/0014-4894(58)90011-0; ARME C, 1968, J PARASITOL, V54, P272, DOI 10.2307/3276934; Arneberg P, 1998, AM NAT, V151, P497, DOI 10.1086/286136; Bagamian KH, 2004, J FISH BIOL, V64, P1568, DOI 10.1111/j.0022-1112.2004.00411.x; Ball MA, 2008, J THEOR BIOL, V253, P202, DOI 10.1016/j.jtbi.2008.02.025; Barber I, 2010, PARASITOLOGY, V137, P411, DOI 10.1017/S0031182009991466; Barber I, 1997, J FISH BIOL, V51, P654, DOI 10.1006/jfbi.1997.0469; BARBOSA P, 1989, AM MIDL NAT, V122, P262, DOI 10.2307/2425912; Barus V, 2002, HELMINTHOLOGIA, V39, P29; Benesh DP, 2011, EVOLUTION, V65, P2286, DOI 10.1111/j.1558-5646.2011.01301.x; Bersier LF, 2008, ECOL COMPLEX, V5, P132, DOI 10.1016/j.ecocom.2007.06.013; BOLKER B, 2008, ECOLOGICAL MODELS DA; BRITTAIN JE, 1982, ANNU REV ENTOMOL, V27, P119, DOI 10.1146/annurev.en.27.010182.001003; Brose U, 2006, ECOLOGY, V87, P2411, DOI 10.1890/0012-9658(2006)87[2411:CBRINF]2.0.CO;2; Brown SP, 2001, J EVOLUTION BIOL, V14, P815, DOI 10.1046/j.1420-9101.2001.00318.x; Brown SP, 2001, PARASITOLOGY, V123, P519, DOI 10.1017/S0031182001008678; Chubb JC, 2010, TRENDS PARASITOL, V26, P93, DOI 10.1016/j.pt.2009.11.008; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; Dubinina M. N., 1980, TAPEWORMS CESTODA LI; Dunning J.B., 1992, CRC HDB AVIAN BODY M; EBENMAN B, 1992, AM NAT, V139, P990, DOI 10.1086/285370; Evans Elwin D., 1996, P298; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Gemmill AW, 1999, J EVOLUTION BIOL, V12, P1148, DOI 10.1046/j.1420-9101.1999.00117.x; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; HALVORSEN O, 1974, PARASITOLOGY, V69, P149, DOI 10.1017/S0031182000047995; Hanelt B, 2005, ADV PARASIT, V59, P243, DOI 10.1016/S0065-308X(05)59004-3; Hanks LM, 1999, ANNU REV ENTOMOL, V44, P483, DOI 10.1146/annurev.ento.44.1.483; HARVEY PH, 1991, PHILOS T ROY SOC B, V332, P31, DOI 10.1098/rstb.1991.0030; Hassanine RMES, 2008, ACTA PARASITOL, V53, P289, DOI 10.2478/s11686-008-0043-6; Haukisalmi V, 1998, OIKOS, V83, P152, DOI 10.2307/3546556; Heins DC, 2010, PARASITOLOGY, V137, P1681, DOI 10.1017/S003118201000048X; Hendler G, 2009, INVERTEBR BIOL, V128, P65, DOI 10.1111/j.1744-7410.2008.00164.x; Hoberg EP, 1999, SYST PARASITOL, V42, P51, DOI 10.1023/A:1006100629059; HOBERG EP, 1995, CAN J ZOOL, V73, P45, DOI 10.1139/z95-006; HOBERG EP, 1989, J PARASITOL, V75, P617, DOI 10.2307/3282914; HOPKINS CA, 1952, EXP PARASITOL, V1, P196, DOI 10.1016/0014-4894(52)90011-8; HOPKINS CA, 1950, J PARASITOL, V36, P384, DOI 10.2307/3273474; Iwasa Y, 2006, EVOL ECOL RES, V8, P1427; Jervis MA, 2005, ECOL ENTOMOL, V30, P359, DOI 10.1111/j.0307-6946.2005.00712.x; Jervis MA, 2000, BIOL J LINN SOC, V70, P121, DOI 10.1006/bijl.1999.0396; KATHIRITHAMBY J, 1989, SYST ENTOMOL, V14, P41, DOI 10.1111/j.1365-3113.1989.tb00265.x; Kennedy CR, 2001, PARASITOLOGY, V123, P257, DOI 10.1017/S0031182001008538; Kuhlow F., 1953, PARASITOL RES, V16, P1; Logan FJ, 2004, PARASITOL RES, V94, P10, DOI 10.1007/s00436-004-1164-y; Martins EP, 1997, AM NAT, V149, P646, DOI 10.1086/286013; MCCAIG MLO, 1963, EXP PARASITOL, V13, P273, DOI 10.1016/0014-4894(63)90080-8; MORAN NA, 1994, ANNU REV ECOL SYST, V25, P573, DOI 10.1146/annurev.es.25.110194.003041; Morand S, 1996, FUNCT ECOL, V10, P210, DOI 10.2307/2389845; Morand S, 1996, OECOLOGIA, V107, P274, DOI 10.1007/BF00327912; Mulcahy G, 2005, TRENDS PARASITOL, V21, P273, DOI 10.1016/j.pt.2005.04.003; Ness JH, 1999, OIKOS, V85, P127, DOI 10.2307/3546798; Okamoto M, 2007, PARASITOL INT, V56, P235, DOI 10.1016/j.parint.2007.03.003; OLIVER JH, 1989, ANNU REV ECOL SYST, V20, P397, DOI 10.1146/annurev.es.20.110189.002145; Olson PD, 2008, J PARASITOL, V94, P898, DOI 10.1645/GE-1456.1; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Parker GA, 2009, J THEOR BIOL, V260, P460, DOI 10.1016/j.jtbi.2009.06.016; Parker GA, 2009, J THEOR BIOL, V258, P135, DOI 10.1016/j.jtbi.2009.01.016; Parker GA, 2003, NATURE, V425, P480, DOI 10.1038/nature02012; Parker GA, 2003, J EVOLUTION BIOL, V16, P47, DOI 10.1046/j.1420-9101.2003.00504.x; Parker GA, 2009, EVOLUTION, V63, P448, DOI 10.1111/j.1558-5646.2008.00565.x; Poulin R, 2005, J PARASITOL, V91, P511, DOI 10.1645/GE-398R; Poulin R, 2003, INT J PARASITOL, V33, P799, DOI 10.1016/S0020-7519(03)00108-5; Poulin R, 2003, CAN J ZOOL, V81, P574, DOI [10.1139/z03-039, 10.1139/Z03-039]; Poulin R, 1998, CAN J ZOOL, V76, P925, DOI 10.1139/cjz-76-5-925; Quinn TP, 2012, OECOLOGIA, V168, P43, DOI 10.1007/s00442-011-2071-4; Randhawa HS, 2009, OECOLOGIA, V161, P759, DOI 10.1007/s00442-009-1410-1; READ AF, 1995, PARASITOLOGY, V111, P359, DOI 10.1017/S0031182000081919; READ CP, 1951, J PARASITOL, V37, P174, DOI 10.2307/3273449; Revell LJ, 2010, METHODS ECOL EVOL, V1, P319, DOI 10.1111/j.2041-210X.2010.00044.x; Riede JO, 2011, ECOL LETT, V14, P169, DOI 10.1111/j.1461-0248.2010.01568.x; RITCHER PO, 1958, ANNU REV ENTOMOL, V3, P311, DOI 10.1146/annurev.en.03.010158.001523; ROBERTS LS, 1961, EXP PARASITOL, V11, P332, DOI 10.1016/0014-4894(61)90040-6; Rosenheim JA, 2007, ANN ENTOMOL SOC AM, V100, P549, DOI 10.1603/0013-8746(2007)100[549:POAEAS]2.0.CO;2; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; Ryzhikov K.M., 1985, HELMINTHS FISH EATIN; Scharer L, 1999, EVOL ECOL, V13, P381, DOI 10.1023/A:1006789110502; Scharer L, 2001, J EVOLUTION BIOL, V14, P55, DOI 10.1046/j.1420-9101.2001.00263.x; SCHMIDT G. D., 1986, CRC HDB TAPEWORM IDE; Shields BA, 2002, J FISH BIOL, V61, P448, DOI 10.1006/jfbi.2002.2051; SINHA DP, 1967, PARASITOLOGY, V57, P555, DOI 10.1017/S0031182000072437; Smith FA, 2003, ECOLOGY, V84, P3403, DOI 10.1890/02-9003; SMYTH JD, 1946, J EXP BIOL, V23, P47; SMYTH JD, 1959, ANN NY ACAD SCI, V77, P102, DOI 10.1111/j.1749-6632.1959.tb36897.x; SMYTH JD, 1949, J EXP BIOL, V26, P1; Snall N, 2007, BIOL J LINN SOC, V92, P241, DOI 10.1111/j.1095-8312.2007.00834.x; Stefka J, 2009, MOL ECOL, V18, P1187, DOI 10.1111/j.1365-294X.2008.04074.x; STERRY PR, 1982, Z PARASITENKD, V67, P87, DOI 10.1007/BF00929517; STOCK TM, 1987, J PARASITOL, V73, P1116, DOI 10.2307/3282291; SWEETING RA, 1977, J FISH BIOL, V10, P43, DOI 10.1111/j.1095-8649.1977.tb04040.x; Tammaru T, 1996, OIKOS, V77, P561, DOI 10.2307/3545946; Tanaka Katsuhiko, 2007, Plankton & Benthos Research, V2, P1, DOI 10.3800/pbr.2.1; THRELFALL W, 1968, CAN J ZOOLOG, V46, P105, DOI 10.1139/z68-016; Tierney JF, 1996, J FISH BIOL, V49, P483; TIERNEY JF, 1992, J PARASITOL, V78, P1049, DOI 10.2307/3283228; Trouve S, 2003, PARASITOL RES, V89, P81, DOI 10.1007/s00436-002-0638-z; WARDLE ROBERT ARNOLD, 1941, CANADIAN JOUR RES SECT D ZOOL SCI, V19, P245; Wedekind C, 1998, PARASITOLOGY, V117, P373, DOI 10.1017/S0031182098003114; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; Wicht B, 2010, PARASITOL INT, V59, P35, DOI 10.1016/j.parint.2009.09.002 103 14 14 3 72 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. JAN 2013 181 1 39 51 10.1086/668592 13 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 055VI WOS:000312445500007 23234844 2018-11-12 J Gadsden, H; Castaneda, G Gadsden, Hector; Castaneda, Gamaliel Life history of the Marbled Whiptail Lizard Aspidoscelis marmorata from the central Chihuahuan Desert, Mexico ACTA HERPETOLOGICA English Article Aspidoscelis marmorata; lizard; Mexico; life history; reproductive cycle; Chihuahuan Desert CNEMIDOPHORUS-TIGRIS TEIIDAE; SCELOPORUS-UNDULATUS; COMPARATIVE DEMOGRAPHY; SOUTHEASTERN ARIZONA; TROPICAL LIZARD; REPRODUCTIVE STRATEGIES; BASILISCUS-BASILISCUS; POPULATION-STRUCTURE; COPHOSAURUS-TEXANUS; GROWTH-RATES The life history of a population of marbled whiptail lizard, Aspidoscelis marmorata, was examined from 1989 to 1994 in the sand dunes of the Biosphere Reserve of Mapim, in Northern Mexico. Lizards were studied using markrecapture techniques. Reproduction in females occurred between May and August, with birth hatchlings matching the wet season in August. Reproductive activity was highest in the early wet season (July). Males and females reached adult size class at an average age of 1.7 years and 1.8 years, respectively. Body size of males attained an asymptote around 90 mm snout-vent length and females around 82 mm snout-vent length, at an age of approximately 3.6 years and 3.0 years, respectively. The density varied from 7 to 85 individuals / 1.0 ha. The Mexican population had late maturity, relatively long life expectancy, and fewer offspring. Overall, the observed data for A. marmorata and the expectations of life history theory for a late maturing species (K-rate selection) are in agreement. [Gadsden, Hector] AC Ctr Reg Chihuahua, Inst Ecol, Chihuahua 31009, Mexico; [Castaneda, Gamaliel] Univ Juarez Estado Durango, Fac Ciencias Biol, Durango 35070, Mexico Gadsden, H (reprint author), AC Ctr Reg Chihuahua, Inst Ecol, Cubiculo 29C,Miguel Cervantes 120,Complejo Ind Ch, Chihuahua 31009, Mexico. hector.gadsden@inecol.edu.mx Castaneda, Gamaliel/0000-0002-1896-0937 CONACYT grant [1367-N9206] This study was supported by a CONACYT grant (1367-N9206). We thank the Herrera family for field assistance. Permit SEMARNAP-SGPA/DGVS/88173 and it is also a contribution to the UNESCO-MAB program. ADOLPH SC, 1993, AM NAT, V142, P273, DOI 10.1086/285538; ANDERSON RA, 1994, AM ZOOL, V34, P409; Andrews R.M., 1982, Biology of Reptilia, V13, P273; ANDREWS RM, 1990, OIKOS, V57, P215, DOI 10.2307/3565942; ANDREWS RM, 1988, OECOLOGIA, V76, P376, DOI 10.1007/BF00377032; ASPLUND KK, 1974, COPEIA, P695, DOI 10.2307/1442683; Ballinger R.E., 1983, P241; BALLINGER RE, 1981, J NAT HIST, V15, P213, DOI 10.1080/00222938100770171; BALLINGER RE, 1979, ECOLOGY, V60, P901, DOI 10.2307/1936858; BALLINGER RE, 1973, ECOLOGY, V54, P269, DOI 10.2307/1934336; BALLINGER RE, 1977, ECOLOGY, V58, P628, DOI 10.2307/1939012; BARBAULT R., 1981, ECOLOGY CHIHUAHUAN D, P11; Breimer R., 1985, SOIL LANDSCAPE SURVE; BULL CM, 1994, LIZARD ECOLOGY, P159; BULL CM, 1995, AUST J ECOL, V20, P393, DOI 10.1111/j.1442-9993.1995.tb00555.x; Burkholder G.L., 1973, Herpetologica, V29, P76; Chapple DG, 2003, HERPETOL MONOGR, V17, P145, DOI 10.1655/0733-1347(2003)017[0145:ELABIT]2.0.CO;2; CHRISTIAN KA, 1985, OECOLOGIA, V66, P132, DOI 10.1007/BF00378565; CORNET A, 1988, ESTUDIO INTEGRADO RE, P45; Cuellar Orlando, 1993, Bulletin d'Ecologie, V24, P109; Diaz-Gomez E., 2009, THESIS U AUTONOMA CI; Dixon J. R, 2009, LIZARDS AM SW, P362; Du WG, 2005, BIOL J LINN SOC, V85, P443, DOI 10.1111/j.1095-8312.2005.00508.x; Dunham A.E., 1988, Biology of Reptilia, V16, P441; Dunham A. E., 1981, MISC PUBL MUS ZOOL, V158, P1; DUNHAM AE, 1982, HERPETOLOGICA, V38, P208; DUNHAM AE, 1985, AM NAT, V126, P231, DOI 10.1086/284411; DUNHAM AE, 1980, ECOL MONOGR, V50, P304; FABENS AJ, 1965, GROWTH, V29, P265; FERGUSON GW, 1980, ECOLOGY, V61, P313, DOI 10.2307/1935190; FITCH HS, 1985, MISC PU U KANSAS MUS, V76, P1; Gadsden H, 2001, J HERPETOL, V35, P493, DOI 10.2307/1565968; Gadsden H., 1995, 1367N9206 CONACYT I; Gadsden H, 2007, SOUTHWEST NAT, V52, P600, DOI 10.1894/0038-4909(2007)52[600:EOTSLS]2.0.CO;2; Gadsden Hector, 2000, Acta Zoologica Mexicana Nueva Serie, V79, P61; Gadsden-Esparza H., 2001, B SOC HERPETOLOGICA, V9, P51; Gadsen H, 1997, J HERPETOL, V31, P1; GOLDBERG SR, 1976, COPEIA, P260; GOLDBERG SR, 1966, J MORPHOL, V118, P543, DOI 10.1002/jmor.1051180407; HASEGAWA M, 1990, RES POPUL ECOL, V32, P119, DOI 10.1007/BF02512594; HENDRICKS FS, 1984, SOUTHWEST NAT, V29, P137, DOI 10.2307/3670780; HENDRICKS FS, 1986, TEX J SCI, V38, P327; HOWLAND JM, 1992, COPEIA, P82, DOI 10.2307/1446538; JAMES CD, 1991, J HERPETOL, V25, P284, DOI 10.2307/1564586; JOLLY GM, 1965, BIOMETRIKA, V52, P225, DOI 10.2307/2333826; Lemos-Espinal JA, 2003, BIOTROPICA, V35, P240, DOI 10.1646/02090; Lemos-Espinal Julio A., 1995, Transactions of the Nebraska Academy of Sciences, V22, P77; LESLIE PH, 1953, BIOMETRIKA, V40, P137, DOI 10.2307/2333105; MATA-SILVA V., 2008, B SOC HERPETOLOGICA, V16, P1; Mata-Silva V, 2010, SOUTHWEST NAT, V55, P125, DOI 10.1894/WL-26.1; MAURY ME, 1995, J HERPETOL, V29, P266, DOI 10.2307/1564565; MCCOY CJ, 1966, SCIENCE, V154, P1671, DOI 10.1126/science.154.3757.1671; Milstead W. W., 1957, Texas Journal of Science, V9, P410; MITCHELL JC, 1979, CAN J ZOOL, V57, P1487, DOI 10.1139/z79-193; Niewiarowski PH, 2004, EVOLUTION, V58, P619, DOI 10.1111/j.0014-3820.2004.tb01684.x; NIEWIAROWSKI PH, 1993, ECOLOGY, V74, P1992, DOI 10.2307/1940842; NUSSBAUM R A, 1976, Northwest Science, V50, P243; PARKER W S, 1972, Herpetologica, V28, P360; PARKER WS, 1994, COPEIA, P136; PARKER WS, 1975, COPEIA, P615; PIANKA ER, 1970, ECOLOGY, V51, P703, DOI 10.2307/1934053; Pianka ER, 1983, LIZARD ECOLOGY STUDI, P169; Ramirez-Bautista A, 1997, HERPETOLOGICA, V53, P423; Rojas-Gonzalez RI, 2008, AMPHIBIA-REPTILIA, V29, P245; ROSE B, 1982, J HERPETOL, V16, P253, DOI 10.2307/1563718; SCHALL JJ, 1978, COPEIA, P108; SCHOENER TW, 1980, J ANIM ECOL, V49, P19, DOI 10.2307/4276; SCOTT DE, 1990, ECOLOGY, V71, P296, DOI 10.2307/1940269; Sears MW, 2004, INTEGR COMP BIOL, V44, P433, DOI 10.1093/icb/44.6.433; Seber GAF, 1982, ESTIMATION ANIMAL AB; SINERVO B, 1990, OECOLOGIA, V83, P228, DOI 10.1007/BF00317757; Smith GR, 1996, CAN J ZOOL, V74, P2025, DOI 10.1139/z96-230; STEARNS SC, 1984, AM NAT, V123, P56, DOI 10.1086/284186; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Sullivan B.K., 2009, LIZARDS AM SW, P394; Tanner W. W., 1963, Brigham Young University Science Bulletin Biol, V3, P1; Tanner W.W., 1972, Brigham Young Univ Sci Bull (Biol Ser), V15, P31; Taylor Harry L., 2001, American Museum Novitates, P1; Tinkle D. W., 1967, Miscellaneous Publications Museum of Zoology University of Michigan, VNo. 132, P1; Tinkle D.W., 1969, SYST BIOL, P133; TINKLE DW, 1970, EVOLUTION, V24, P55, DOI 10.1111/j.1558-5646.1970.tb01740.x; TINKLE DW, 1993, ECOLOGY, V74, P2413, DOI 10.2307/1939592; TINKLE DW, 1972, ECOLOGY, V53, P570, DOI 10.2307/1934772; TINKLE DW, 1969, AM NAT, V103, P501, DOI 10.1086/282617; TURNER F B, 1969, Southwestern Naturalist, V14, P189, DOI 10.2307/3668873; VANDEVENDER RW, 1982, HERPETOLOGICA, V38, P189; VANDEVENDER RW, 1978, ECOLOGY, V59, P1031, DOI 10.2307/1938555; Vega J. J. Z., 2005, TECNICAS ESTUDIO POB; VITT L J, 1977, Herpetologica, V33, P223; VONBERTALANFFY L, 1957, Q REV BIOL, V32, P217, DOI 10.1086/401873; VONBERTALANFFY L, 1951, AM NAT, V85, P111, DOI 10.1086/281659; WHITFORD W G, 1977, Herpetologica, V33, P54; ZUG GR, 1993, HERPETOLOGY INTRO BI 93 1 1 3 13 FIRENZE UNIV PRESS FIRENZE JOURNALS DIVISION, BORGO ALBIZI, 28, FIRENZE, 50122, ITALY 1827-9635 1827-9643 ACTA HERPETOL Acta Herpetol. 2013 8 2 81 91 11 Zoology Zoology 294HE WOS:000330034700001 DOAJ Gold 2018-11-12 J Blute, M Blute, Marion "Variation and selective retention" as an evolutionary epistemology: were Donald Campbell's life histories sufficient? ISRAEL JOURNAL OF ECOLOGY & EVOLUTION English Article evolutionary epistemology; Donald T. Campbell; life history theory; density and scale-dependence; cultural evolution; sociocultural evolution CULTURAL-EVOLUTION; PERSPECTIVE Campbell's "evolutionary epistemology" is used more frequently to refer to extensions of Darwinism than other phrases, and his description of it as "variation and selective retention" is highly cited. However, we can still ask whether it is sufficient. The evidence from his classic essay is that he understood it to include somatic maintenance and reproductive growth, but omitted somatic growth and reproductive maintenance. We describe some of the complexity of the evolutionary ecology of life histories, including ecological and ecological versus social density-dependence and scale-dependence, and find that, interestingly, understood as a distinction between spending and investing, the traditional r versus K density-dependence distinction yields the same pattern of expected life history traits as does scale-dependence (although there should be other ways of distinguishing them). We then use this to fill in the missing somatic growth and offspring maintenance of Campbell's model of sociocultural evolution. In concluding, we emphasize the degree to which not only the evolutionary ecology of life histories but also the logic of population genetics and tree-building have been found relevant to the social sciences. Donald Campbell and David Hull, both now deceased, will be remembered as early modern pioneers of the theory of Darwinian sociocultural evolution. Univ Toronto, Dept Sociol, Mississauga, ON L5L 1C6, Canada Blute, M (reprint author), Univ Toronto, Dept Sociol, 3359 Mississauga Rd N, Mississauga, ON L5L 1C6, Canada. marion.blute@utoronto.ca Aldrich H. E., 2006, ORG EVOLVING; Aldrich HE, 2008, J EVOL ECON, V18, P577, DOI 10.1007/s00191-008-0110-z; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; BLACKMORE S., 1999, MEME MACHINE; Blute M., 2003, J MEMETIC, V7, P21; BLUTE M, 2010, DARWINIAN SOCIOCULTU; Blute Marion, 2011, Perspectives on Science, V19, P391; Blute Marion, 2007, Biology Theory, V2, P10, DOI 10.1162/biot.2007.2.1.10; Blute Marion, 2011, TRENDS ECOL EVOL, V26, P624; Boyd R., 1985, CULTURE EVOLUTIONARY; Campbell Donald T., 1974, PHILOS K POPPER, P413; Campbell Donald T., 1970, HDB METHOD CULTURAL, P51; Campbell DT, 1965, SOCIAL CHANGE DEV AR, P19; Cavalli-Sforza L. L., 1981, CULTURAL TRANSMISSIO; Currie TE, 2013, CROSS-CULT RES, V47, P102, DOI 10.1177/1069397112471803; Dawkins R., 1983, P403; Dawkins R., 1976, SELFISH GENE; DENNETT DC, 1995, DARWINS DANGEROUS ID; Edelman G. M., 1987, NEURAL DARWINISM THE; Godfrey-Smith P, 2009, DARWINIAN POPULATION; Hodgson G., 2012, PLEASURE MACHINES MO; Hodgson Geoffrey M, 2010, DARWINS CONJECTURE S; Hull D. L, 1988, SCI PROCESS EVOLUTIO; Hull DL, 2001, BEHAV BRAIN SCI, V24, P511; MAC ARTHUR ROBERT H., 1967; MACARTHUR RH, 1962, P NATL ACAD SCI USA, V48, P1893, DOI 10.1073/pnas.48.11.1893; Maynard Smith J, 1995, MAJOR TRANSITIONS EV; Mesoudi A, 2004, EVOLUTION, V58, P1; Mesoudi A, 2006, BEHAV BRAIN SCI, V29, P329, DOI 10.1017/S0140525X06009083; Mesoudi Alex, 2011, CULTURAL EVOLUTION D; Odling-Smee F J, 2003, NICHE CONSTRUCTION N; OdlingSmee FJ, 1996, AM NAT, V147, P641, DOI 10.1086/285870; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Richerson Peter J., 2005, NOT GENES ALONE CULT; Roff D. A., 2002, LIFE HIST EVOLUTION; Runciman W. G., 2009, THEORY CULTURAL SOCI; Turner Jonathan, 2009, ORIGIN SOC NATURAL S; Whiten A., 2012, CULTURE EVOLVES; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002; Wu Tim, 2010, MASTER SWITCH RISE F 40 1 2 0 2 TAYLOR & FRANCIS LTD ABINGDON 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND 1565-9801 2224-4662 ISR J ECOL EVOL Isr. J. Ecol. Evol. 2013 59 2 SI 109 116 10.1080/15659801.2013.836309 8 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 285IX WOS:000329388500007 2018-11-12 J Buunk, AP; Hoben, AD Buunk, Abraham P.; Hoben, Ashley D. A Slow Life History is Related to a Negative Attitude towards Cousin Marriages: A Study in Three Ethnic Groups in Mexico EVOLUTIONARY PSYCHOLOGY English Article life history theory; mate choice; cousin marriage; Mexico; consanguineous marriage PARENT-OFFSPRING CONFLICT; MALE-WARRIOR HYPOTHESIS; ROMANTIC RELATIONSHIPS; SEX-DIFFERENCES; MATE CHOICE; FAMILY; PREFERENCES; BEHAVIOR; COMPETITION; SELECTION Little is known about current attitudes towards cousin marriages. Using data from a rural population in the Mexican state of Oaxaca, the present research examined how life history was related to attitudes towards cousin marriages in various ethnic groups. Participants were 205 parents from three ethnic groups. i.e., Mestizos (people of mixed descent, n = 103), indigenous Mixtecs (n = 65), and Blacks (n = 35). Nearly all men in this study were farm workers or fishermen. Participants reported more negative than positive attitudes towards cousin marriage, and women reported more negative attitudes than did men. The main objection against marrying a cousin was that it is wrong for religious reasons, whereas the risk of genetic defects was considered relatively unimportant. Cousin marriage was not considered to contribute to the quality and unity of marriage and the family. The three ethnic groups did not differ in their attitude towards cousin marriages. However, a slower life history was related to a more negative attitude towards cousin marriages, especially among Blacks, less so among Mixtecs, and not at all among Mestizos. In addition, and independent of the effect of life history, with increasing levels of parental control over mate choice, the attitude towards cousin marriage was more positive, but among men the attitude was more negative the more religious they were. The results are discussed in the context of theorizing on life history theory and the benefits and costs of cousin marriages. [Buunk, Abraham P.] Univ Groningen, Royal Netherlands Acad Arts & Sci, Groningen, Netherlands; [Buunk, Abraham P.; Hoben, Ashley D.] Univ Groningen, Dept Psychol, NL-9712 TS Groningen, Netherlands Buunk, AP (reprint author), Univ Groningen, Royal Netherlands Acad Arts & Sci, Groningen, Netherlands. a.p.buunk@rug.nl Apostolou M, 2007, EVOL HUM BEHAV, V28, P403, DOI 10.1016/j.evolhumbehav.2007.05.007; Apostolou M, 2010, BRIT J PSYCHOL, V101, P695, DOI 10.1348/000712609X480634; Apostolou M, 2010, EVOL HUM BEHAV, V31, P39, DOI 10.1016/j.evolhumbehav.2009.06.010; Apostolou M, 2008, EVOL PSYCHOL, V6, P456; APPLBAUM KD, 1995, ETHNOLOGY, V34, P37, DOI 10.2307/3773862; Bennett Herman, 2009, COLONIAL BLACKNESS H; Bhopal K, 1997, WOMEN STUD INT FORUM, V20, P483, DOI 10.1016/S0277-5395(97)00037-X; Bogardus E. S., 1928, IMMIGRATION RACE ATT; Burbank V. K., 1995, ROMANTIC PASSION UNI, P196; BUSS DM, 1994, AM SCI, V82, P238; Buunk AP, 2008, REV GEN PSYCHOL, V12, P47, DOI 10.1037/1089-2680.12.1.47; Buunk AP, 2010, J FAM PSYCHOL, V24, P391, DOI 10.1037/a0020252; Buunk AP, 2010, CROSS-CULT RES, V44, P23, DOI 10.1177/1069397109337711; Chagnon N. A., 1992, YANOMAMO LAST DAYS E; CHAGNON NA, 1988, SCIENCE, V239, P985, DOI 10.1126/science.239.4843.985; Das Gupta M., 1997, GENDER SOC, V11, P572, DOI DOI 10.1177/089124397011005004; Davis D. A., 1995, ROMANTIC PASSION UNI, P219; Dubbs SL, 2010, J SOC PERS RELAT, V27, P1051, DOI 10.1177/0265407510378666; Dugsin R, 2001, FAM PROCESS, V40, P233, DOI 10.1111/j.1545-5300.2001.4020100233.x; Faulkner J, 2007, EVOL HUM BEHAV, V28, P430, DOI 10.1016/j.evolhumbehav.2007.06.001; Feliciano C, 2009, SOC SCI RES, V38, P41, DOI 10.1016/j.ssresearch.2008.09.004; FURSTENBERG FF, 1966, AM SOCIOL REV, V31, P326, DOI 10.2307/2090821; GOODE WJ, 1959, AM SOCIOL REV, V24, P38, DOI 10.2307/2089581; GUTIERREZ RA, 1985, LAT AM PERSPECT, V12, P81, DOI 10.1177/0094582X8501200105; Hofstede G., 1980, CULTURE CONSEQUENCES; HORTACSU N, 1994, J SOC PSYCHOL, V134, P229, DOI 10.1080/00224545.1994.9711386; Hynie Michaela, 2006, Cultur Divers Ethnic Minor Psychol, V12, P230, DOI 10.1037/1099-9809.12.2.230; Joyce AA, 2010, MIXTECS ZAPOTECS CHA; Klavina L., 2009, HUMAN CHARACTERISTIC, P382; Knight Alan., 1990, IDEA RACE LATIN AM 1, P71; Lalonde RN, 2004, J CROSS CULT PSYCHOL, V35, P503, DOI 10.1177/0022022104268386; LEVINE R, 1995, J CROSS CULT PSYCHOL, V26, P554, DOI 10.1177/0022022195265007; Lewis LA, 2000, AM ETHNOL, V27, P898, DOI 10.1525/ae.2000.27.4.898; MENON R, 1989, SOCIOL SOC RES, V73, P180; Miller SC, 2004, GROUP PROCESS INTERG, V7, P354, DOI 10.1177/1368430204046143; Mitchell R. E., 1970, URBAN FAMILY LIFE SU, P481; Murdock G. P., 1949, SOCIAL STRUCTURE; Murstein Bernard I., 1974, LOVE SEX MARRIAGE AG; Park J. H., 2009, HUMAN CHARACTERISTIC, P352; Perilloux C, 2008, EVOL PSYCHOL, V6, P217; POOL JE, 1972, CAN J AFR STUDIES, V6, P233, DOI 10.2307/484200; Pratto F., 2006, EUROPEAN REV SOCIAL, V17, P271, DOI [10.1080/10463280601055772, DOI 10.1080/10463280601055772]; Qian ZC, 2007, AM SOCIOL REV, V72, P68, DOI 10.1177/000312240707200104; RAO VV, 1976, J COMP FAM STUD, V7, P433; Reiss I. L., 1980, FAMILY SYSTEMS AM; RILEY NE, 1994, J MARRIAGE FAM, V56, P791, DOI 10.2307/353592; Shadle BL, 2003, J AFR HIST, V44, P241, DOI 10.1017/S0021853703008429; Shostak M., 1983, NISA LIFE WORDS KUNG; Sprecher S., 1992, FREE INQUIRY CREATIV, V20, P59; Sterckx L, 2005, LIEFDE MAAT PARTNERK; Stutzman R, 1981, CULTURAL TRANSFORMAT; Sussman MB, 1953, SOC FORCES, V32, P76, DOI 10.2307/2572863; Talbani A, 2000, J ADOLESCENCE, V23, P615, DOI 10.1006/jado.2000.0348; THEODORSON GA, 1965, SOC FORCES, V44, P17, DOI 10.2307/2574818; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; TUCKER MB, 1995, J SOC PERS RELAT, V12, P341, DOI 10.1177/0265407595123002; Van Vugt M, 2007, PSYCHOL SCI, V18, P19, DOI 10.1111/j.1467-9280.2007.01842.x; Van Vugt M, 2009, SOC PERSONAL PSYCHOL, V3, P927, DOI 10.1111/j.1751-9004.2009.00221.x; Van Vugt M, 2009, ANN NY ACAD SCI, V1167, P124, DOI 10.1111/j.1749-6632.2009.04539.x; Villarreal A, 2010, AM SOCIOL REV, V75, P652, DOI 10.1177/0003122410378232; Wight D, 2006, J ADOLESCENCE, V29, P473, DOI 10.1016/j.adolescence.2005.08.007; Wrangham R., 1996, DEMONIC MALES APES O; Xie X., 1996, INT J SOCIOL FAM, V26, P67 63 2 2 0 2 EVOLUTIONARY PSYCHOL DAVIE C/O TOOD K SHACKELFORD, DIR, FLORIDA ATLANTIC UNIV, DEPT PSYCHOL, 2912 COLLEGE AVE, DAVIE, FL 33314 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. 2013 11 2 442 458 17 Psychology, Experimental Psychology 237UI WOS:000325896000015 23797964 DOAJ Gold 2018-11-12 J McAlister, JS; Moran, AL McAlister, Justin S.; Moran, Amy L. Effects of variation in egg energy and exogenous food on larval development in congeneric sea urchins MARINE ECOLOGY PROGRESS SERIES English Article Larvae; Egg size; Egg energy; Egg composition; Growth; Plankton; Echinoid; Echinometra spp. MARINE BENTHIC INVERTEBRATES; LIFE-HISTORY THEORY; PARENTAL INVESTMENT; REPRODUCTIVE STRATEGIES; ECHINOID ECHINODERMS; GENUS ECHINOMETRA; STRONGYLOCENTROTUS-FRANCISCANUS; INTERSPECIFIC RELATIONSHIPS; LECITHOTROPHIC DEVELOPMENT; EVOLUTIONARY TRANSITIONS Planktotrophic larvae of marine invertebrates develop and grow by utilizing a combination of endogenous materials contained in the egg and exogenous food consumed during development. In general, larger eggs contain more reserves for morphogenesis and metabolism than smaller eggs. Interspecific comparisons among planktotrophic echinoderms have generally found that increased maternal provisioning decreases the length of development in the plankton, leading to the widely held idea that large eggs are likely to be selectively favored in low-food or high-mortality environments. Despite long interest in these patterns, however, few studies have examined how exogenous and endogenous supplies interactively affect larval development in phylogenetically controlled and environmentally relevant contexts. We investigated the direct and interactive effects of both endogenous egg materials and exogenous food supply on larval performance of 3 closely related tropical sea urchin species (Echinometra spp.). We found that egg size was positively correlated with egg energy among these 3 species, and that larvae of species with larger (and more energy-rich) eggs developed more rapidly than those from smaller (and lower-energy) eggs. Likewise, across species, larvae fed higher rations grew more rapidly than those fed less. Length of development was most strongly affected by food level in the species with the smallest eggs. Compared to the lowest food treatment, satiating levels shortened development by 9, 7, and 4 d for E. vanbrunti, E. lucunter, and E. viridis, respectively (listed in order of increasing egg energy). Our study supports the hypothesis that the growth and development of larvae are more strongly affected by exogenous food availability when they develop from lower-energy eggs than when larvae develop from energy-rich eggs. [McAlister, Justin S.; Moran, Amy L.] Clemson Univ, Dept Biol Sci, Clemson, SC 29634 USA McAlister, JS (reprint author), Coll Holy Cross, Dept Biol, Worcester, MA 01610 USA. jmcalist@holycross.edu Moran, Amy/F-7072-2011 National Science Foundation [OCE-0850764] We thank R. Collin, H. Lessios, L. Geyer and the staff of the Naos Island Laboratories and Galeta Marine Laboratory of the Smithsonian Tropical Research Institute. We also thank S. Crickenberger and C. Genovese for their assistance with sea urchin collection and experimental maintenance. Funding was provided by National Science Foundation grant OCE-0850764 to A.L.M. Alcorn NJ, 2009, EVOL DEV, V11, P719, DOI 10.1111/j.1525-142X.2009.00379.x; Allen JD, 2006, J EXP MAR BIOL ECOL, V331, P186, DOI 10.1016/j.jembe.2005.10.020; Allen JD, 2007, EVOL DEV, V9, P643, DOI 10.1111/j.1525-142X.2007.00202.x; Allen JD, 2007, MAR BIOL, V151, P85, DOI 10.1007/s00227-006-0470-6; Allen JD, 2012, J EXP MAR BIOL ECOL, V422, P72, DOI 10.1016/j.jembe.2012.04.015; ANGER K, 1995, J EXP MAR BIOL ECOL, V187, P161, DOI 10.1016/0022-0981(94)00178-G; Barnes DKA, 2001, MAR BIOL, V138, P1205, DOI 10.1007/s002270100543; Bertram DF, 1998, ECOLOGY, V79, P315, DOI 10.1890/0012-9658(1998)079[0315:EOMALN]2.0.CO;2; Bridges TS, 1996, AM ZOOL, V36, P132; Brunkow PE, 1996, ECOLOGY, V77, P1483, DOI 10.2307/2265545; Byrne M, 2008, FUNCT ECOL, V22, P643, DOI 10.1111/j.1365-2435.2008.01427.x; CASWELL H, 1981, AM NAT, V117, P529, DOI 10.1086/283733; CHRISTIANSEN FB, 1979, THEOR POPUL BIOL, V16, P267, DOI 10.1016/0040-5809(79)90017-0; Collin R, 2012, INTEGR COMP BIOL, V52, P128, DOI 10.1093/icb/ics065; CORDS M, 1986, J ANIM ECOL, V55, P811, DOI 10.2307/4418; DCROZ L, 1997, P 8 INT COR REEF S, V2, P2053; DUQUECARO H, 1990, PACIFIC NEOGENE EVEN, P101; Ebert TA, 1999, MAR ECOL PROG SER, V190, P189, DOI 10.3354/meps190189; ECKELBARGER KJ, 1994, P BIOL SOC WASH, V107, P193; Emlet R.B., 1987, Echinoderm Studies, V2, P55; EMLET RB, 1995, EVOLUTION, V49, P476, DOI 10.1111/j.1558-5646.1995.tb02280.x; Emlet RB, 1997, EVOLUTION, V51, P141, DOI 10.1111/j.1558-5646.1997.tb02395.x; FIENBERG S, 1977, ANAL CROSS CLASSIFIE; Folin P, 1929, J BIOL CHEM, V83, P121; GEORGE SB, 1990, J EXP MAR BIOL ECOL, V141, P107, DOI 10.1016/0022-0981(90)90217-Z; Geyer LB, 2009, MOL BIOL EVOL, V26, P2135, DOI 10.1093/molbev/msp122; Geyer LB, 2003, EVOLUTION, V57, P1049; GLYNN PW, 1982, ADV MAR BIOL, V19, P91, DOI 10.1016/S0065-2881(08)60087-5; Gnaiger E., 1983, POLAROGRAPHIC OXYGEN, P337, DOI DOI 10.1007/978-3-642-81863-9_30; GRANT A, 1983, AM NAT, V122, P549, DOI 10.1086/284155; HADFIELD MG, 1987, AM MALACOL BULL, V5, P197; HART MW, 1995, AM NAT, V146, P415, DOI 10.1086/285807; Havenhand Jon N., 1995, P79; Herrera JC, 1996, OCEANOL ACTA, V19, P313; HOLLAND DL, 1971, J MAR BIOL ASSOC UK, V51, P659, DOI 10.1017/S0025315400015034; Jackson JH, 1999, PROGRESS IN MECHANICAL BEHAVIOUR OF MATERIALS (ICM8), VOL 1, P249; Jaeckle William B., 1995, P49; Jordan DS, 1908, AM NAT, V42, P73, DOI 10.1086/278905; Knott KE, 2012, INTEGR COMP BIOL, V52, P120, DOI 10.1093/icb/ics037; LESSIOS HA, 1990, AM NAT, V135, P1, DOI 10.1086/285028; LESSIOS HA, 1990, EVOLUTION, V44, P933, DOI 10.1111/j.1558-5646.1990.tb03815.x; Levin Lisa A., 1995, P1; Levitan DR, 2000, AM NAT, V156, P175, DOI 10.1086/303376; Littell RC, 1996, SAS SYSTEM MIXED MOD; LOWRY OH, 1951, J BIOL CHEM, V193, P265; Marshall DJ, 2003, ECOLOGY, V84, P3131, DOI 10.1890/02-0311; Marshall DJ, 2008, ECOLOGY, V89, P418, DOI 10.1890/07-0449.1; McAlister JS, 2008, EVOLUTION, V62, P1358, DOI 10.1111/j.1558-5646.2008.00368.x; McAlister JS, 2007, J EXP MAR BIOL ECOL, V352, P306, DOI 10.1016/j.jembe.2007.08.009; McAlister JS, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0041599; McCartney MA, 2000, MOL ECOL, V9, P1391, DOI 10.1046/j.1365-294x.2000.01022.x; MCCLINTOCK JB, 1986, COMP BIOCHEM PHYS A, V85, P341, DOI 10.1016/0300-9629(86)90259-8; McEdward LR, 1997, AM NAT, V150, P48, DOI 10.1086/286056; McEdward LR, 1997, BIOL J LINN SOC, V60, P381; MCEDWARD LR, 1987, EVOLUTION, V41, P914, DOI 10.1111/j.1558-5646.1987.tb05865.x; MCEDWARD LR, 1985, T AM MICROSC SOC, V104, P194, DOI 10.2307/3226427; MCEDWARD LR, 1986, J EXP MAR BIOL ECOL, V96, P251, DOI 10.1016/0022-0981(86)90206-6; MCEDWARD LR, 1991, AM ZOOL, V31, pA105; MCEDWARD LR, 1987, MAR ECOL PROG SER, V37, P159, DOI 10.3354/meps037159; McEdward LR, 1996, AM ZOOL, V36, P169; McEdward LR, 2001, BIOL BULL, V200, P33, DOI 10.2307/1543083; MCEDWARD LR, 1991, J EXP MAR BIOL ECOL, V147, P95, DOI 10.1016/0022-0981(91)90039-Y; Meyer E, 2007, MAR BIOL, V152, P179, DOI 10.1007/s00227-007-0672-6; Miller BA, 1999, J EXP MAR BIOL ECOL, V235, P67, DOI 10.1016/S0022-0981(98)00164-6; Miner BG, 2005, J EXP MAR BIOL ECOL, V321, P135, DOI 10.1016/j.jembe.2005.01.008; Moran AL, 2004, EVOLUTION, V58, P2718; Moran AL, 2004, J EXP MAR BIOL ECOL, V306, P17, DOI 10.1016/j.jembe.2003.12.021; Moran AL, 2003, BIOL BULL-US, V204, P270, DOI 10.2307/1543598; Moran AL, 2009, BIOL BULL-US, V216, P226; Mortensen T., 1921, STUDIES DEV LARVAL F; PALUMBI SR, 1991, MOL BIOL EVOL, V8, P227; Pearse John S., 1991, P513; PEARSE JS, 1969, B MAR SCI, V19, P580; PERRON FE, 1981, AM NAT, V118, P749, DOI 10.1086/283865; Podolsky RD, 1996, AM NAT, V148, P160, DOI 10.1086/285916; Prowse TAA, 2008, MAR BIOL, V153, P337, DOI 10.1007/s00227-007-0809-7; Roughgarden J., 1989, P270; Sewell MA, 2005, MAR ECOL PROG SER, V304, P133, DOI 10.3354/meps304133; Sewell MA, 2001, ECHINODERMS 2000, P55; SINERVO B, 1988, EVOLUTION, V42, P885, DOI 10.1111/j.1558-5646.1988.tb02509.x; Strathmann MF, 1987, REPROD DEV MARINE IN; STRATHMANN RR, 1977, MAR BIOL, V39, P305, DOI 10.1007/BF00391933; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; Thiyagarajan V, 2003, J EXP MAR BIOL ECOL, V290, P133, DOI 10.1016/S0022-0981(03)00071-6; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; TURNER RL, 1976, J EXP MAR BIOL ECOL, V24, P49, DOI 10.1016/0022-0981(76)90042-3; Turner RL, 1979, REPROD ECOLOGY MARIN, P25; VANCE RR, 1973, AM NAT, V107, P339, DOI 10.1086/282838; VANCE RR, 1973, AM NAT, V107, P353, DOI 10.1086/282839; Wourms J.P., 1987, REPRODUCTION MARINE, P50; WRAY GA, 1991, TRENDS ECOL EVOL, V6, P45, DOI 10.1016/0169-5347(91)90121-D; Wray GA, 1996, SYST BIOL, V45, P308, DOI 10.2307/2413566 92 4 4 2 19 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. 2013 490 155 167 10.3354/meps10420 13 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography 219ZN WOS:000324550600013 Bronze 2018-11-12 J Waxenbaum, EB; Erickson, B Waxenbaum, Erin B.; Erickson, Blake Fluctuating and directional asymmetry: Skeletal evidence for life history theory and human evolutionary ecological variation in an archaeological South Dakota Arikara population. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY English Meeting Abstract 82nd Annual Meeting of the American-Association-of-Physical-Anthropologists APR 09-13, 2013 Knoxville, TN Amer Assoc Phys Anthropologists [Waxenbaum, Erin B.; Erickson, Blake] Northwestern Univ, Evanston, IL 60208 USA 0 0 0 1 5 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0002-9483 AM J PHYS ANTHROPOL Am. J. Phys. Anthropol. 2013 150 56 SI 286 286 1 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology 132BR WOS:000318043202451 2018-11-12 J Jonason, PK; Li, NP; Czarna, AZ Jonason, Peter K.; Li, Norman P.; Czarna, Anna Z. Quick and Dirty: Some Psychosocial Costs Associated With the Dark Triad in Three Countries EVOLUTIONARY PSYCHOLOGY English Article Dark Triad; psychopathy; narcissism; Machiavellianism; Life History Theory LIFE-HISTORY STRATEGY; TERM MATING STRATEGY; INDIVIDUAL-DIFFERENCES; PERSONALITY-TRAITS; HEXACO MODEL; K-FACTOR; PSYCHOPATHY; MACHIAVELLIANISM; NARCISSISM; DOZEN The current study provides the first examination of the relationship between life history indicators and the Dark Triad traits in an international sample drawn from the U. S. (n = 264), Singapore (n = 185), and Poland (n = 177). In all three samples, the Dark Triad traits were associated with psychosocial costs, although there were more links in the Singaporean and Polish samples than in the American sample. In the U. S., the quality of one's romantic relationships and psychopathy were negatively correlated. Narcissism was higher in the Polish and American samples than in the Singaporean sample. Men scored higher than women did regardless of location and the sex difference in the individual differences in life histories was mediated by the Dark Triad composite. Results suggest the Dark Triad are related to a volatile socioecology composed of psychosocial costs in the familial, romantic, and platonic relationships. [Jonason, Peter K.] Univ Western Sydney, Sch Social Sci & Psychol, Bankstown, NSW, Australia; [Li, Norman P.] Singapore Management Univ, Sch Social Sci, Singapore, Singapore; [Czarna, Anna Z.] Uniwersytet Jagiellonski, Dept Psychol, Krakow, Poland Jonason, PK (reprint author), Univ Western Sydney, Sch Social Sci & Psychol, Bankstown, NSW, Australia. p.jonason@uws.edu.au LI, Norman/F-9075-2010 LI, Norman/0000-0002-0318-1359; Li, Norman/0000-0002-4059-1613; Czarna, Anna/0000-0002-9861-9455 Ali F, 2009, PERS INDIV DIFFER, V47, P758, DOI 10.1016/j.paid.2009.06.016; BENTLER PM, 1987, SOCIOL METHOD RES, V16, P78, DOI 10.1177/0049124187016001004; Buss DM, 2009, PERSPECT PSYCHOL SCI, V4, P359, DOI 10.1111/j.1745-6924.2009.01138.x; CHRISTIE R, 1970, STUDIES MACHIAVELLIA; Cooke DJ, 1999, J ABNORM PSYCHOL, V108, P58, DOI 10.1037/0021-843X.108.1.58; Crede M, 2012, J PERS SOC PSYCHOL, V102, P874, DOI 10.1037/a0027403; Figueredo A. J., 2012, OXFORD HDB SEXUAL CO, P72; Figueredo A.J., 2007, ARIZONA LIFE H UNPUB; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Foster JE, 2003, ECON THEOR, V22, P469, DOI 10.1007/s00199-002-0339-y; Gladden P.R., 2008, J EVOLUTIONARY PSYCH, V7, P167; Gladden PR, 2008, EVOL HUM BEHAV, V29, P319, DOI 10.1016/j.evolhumbehav.2008.03.003; GLADDEN PR, 2008, PERSONALITY INDIVIDU, V46, P270, DOI DOI 10.1016/J.PAID.2008.10.010; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Henrich J, 2010, BEHAV BRAIN SCI, V33, P61, DOI 10.1017/S0140525X0999152X; Jonason P. K., 2011, J METHODS MEASUREMEN, V2, P28, DOI DOI 10.2458/AZU_; Jonason PK, 2012, PERS INDIV DIFFER, V53, P935, DOI 10.1016/j.paid.2012.07.010; Jonason PK, 2012, EVOL PSYCHOL-US, V10, P400, DOI 10.1177/147470491201000303; Jonason PK, 2012, PERS INDIV DIFFER, V53, P180, DOI 10.1016/j.paid.2012.03.007; Jonason PK, 2012, REV GEN PSYCHOL, V16, P192, DOI 10.1037/a0027914; Jonason PK, 2012, PERS INDIV DIFFER, V52, P521, DOI 10.1016/j.paid.2011.11.023; Jonason PK, 2011, PERS INDIV DIFFER, V51, P759, DOI 10.1016/j.paid.2011.06.025; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2010, PERS INDIV DIFFER, V49, P611, DOI 10.1016/j.paid.2010.05.031; Jonason PK, 2010, PSYCHOL ASSESSMENT, V22, P420, DOI 10.1037/a0019265; Jonason PK, 2010, PERS INDIV DIFFER, V48, P373, DOI 10.1016/j.paid.2009.11.003; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jones DN, 2011, PERS INDIV DIFFER, V51, P679, DOI 10.1016/j.paid.2011.04.011; Keysar B, 2012, PSYCHOL SCI, V23, P661, DOI 10.1177/0956797611432178; Lee KB, 2005, PERS INDIV DIFFER, V38, P1571, DOI 10.1016/j.paid.2004.09.016; Lee K, 2013, EUR J PERSONALITY, V27, P169, DOI 10.1002/per.1860; McDonald M. M., 2011, PERSONALITY INDIVIDU, V52, P601; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; Miller JD, 2012, PSYCHOL ASSESSMENT, V24, P1048, DOI 10.1037/a0028583; O'Boyle EH, 2012, J APPL PSYCHOL, V97, P557, DOI 10.1037/a0025679; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; RASKIN R, 1988, J PERS SOC PSYCHOL, V54, P890, DOI 10.1037//0022-3514.54.5.890; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Schmitt DP, 2011, NATL SYMP FAM ISS, P161, DOI 10.1007/978-1-4419-7361-0_11; Vernon PA, 2008, PERS INDIV DIFFER, V44, P445, DOI 10.1016/j.paid.2007.09.007; Webster GD, 2013, PERS INDIV DIFFER, V54, P302, DOI 10.1016/j.paid.2012.08.027; Wernke MR, 2008, AGGRESS VIOLENT BEH, V13, P229, DOI 10.1016/j.avb.2008.04.004; Wilson E.O., 1975, P1; WILSON M, 1985, ETHOL SOCIOBIOL, V6, P59, DOI 10.1016/0162-3095(85)90041-X 46 45 45 1 30 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. 2013 11 1 172 185 10.1177/147470491301100116 14 Psychology, Experimental Psychology 130FC WOS:000317897300015 23531804 DOAJ Gold 2018-11-12 J Wagner, EL; Lee, EJ; Boersma, PD Wagner, Eric L.; Lee, Eleanor J.; Boersma, P. Dee Patterns of acceptance of artificial eggs and chicks by Magellanic Penguins (Spheniscus magellanicus) JOURNAL OF ORNITHOLOGY English Article Egg recognition; Chick recognition; Spheniscus magellanicus ADELIE PENGUINS; MEGADYPTES-ANTIPODES; BROOD PARASITISM; RECOGNITION; BEHAVIOR; ADOPTION; SUCCESS; SIZE; SELECTION; DENSITY Life history theory predicts that parents will not raise unrelated offspring. For seabirds, an ability to recognize their own eggs and chicks can prevent a costly mistake. We tested whether Magellanic Penguins (Spheniscus magellanicus) would discriminate against artificial eggs by presenting nine types of egg-objects and one type of artificial chick to penguins at their nests. Magellanic Penguins regardless of their sex or breeding status accepted all egg-objects. A generalized linear mixed model showed that mass and number of dimensions were the most important factors in predicting whether the object was accepted: flat egg-objects and light egg-objects were less likely to be incubated than round, normally weighted ones. We also tested whether Magellanic Penguins would retrieve egg-objects more frequently if the object was within 1 m of the nest cup. Penguins retrieved 75 % of objects that were 1 m from the nest cup, but only 25 % of objects that were 2 m from the nest cup. Lastly, we tested whether penguins would accept artificial chicks. We found that pairs with chicks less than 3 weeks of age (i.e., not out of the guard stage) were at least twice as likely to brood an artificial chick than pairs with chicks older than 3 weeks, pairs that had lost their chicks, or unmated males. [Wagner, Eric L.; Lee, Eleanor J.; Boersma, P. Dee] Univ Washington, Seattle, WA 98195 USA Wagner, EL (reprint author), Univ Washington, Seattle, WA 98195 USA. elwagner@uw.edu Penguin Project; Wildlife Conservation Society (WCS); University of Washington; Exxon-Mobil Foundation; Disney Wildlife Conservation Fund; National Geographic Society; Chase foundation; Cunningham foundation; MKCG foundation; Offield foundation; Peach foundation; Thorne foundation; Kellogg foundation; Wadsworth Endowed Chair in Conservation Science; Friends of the Penguins This study was funded by The Penguin Project, sponsored by the Wildlife Conservation Society (WCS) and the University of Washington, Exxon-Mobil Foundation, Disney Wildlife Conservation Fund, National Geographic Society, the Chase, Cunningham, MKCG, Offield, Peach, Thorne, and Kellogg foundations, the Wadsworth Endowed Chair in Conservation Science, and Friends of the Penguins. The research was carried out under a joint agreement between WCS and the Office of Tourism, Province of Chubut, Argentina. We thank the Province of Chubut and the La Regina family for access to the penguin colony. Thanks to Jennifer Ruesink, Brian Walker, and two anonymous reviewers for very helpful comments that improved the manuscript. Angelier F, 2006, J EXP BIOL, V209, P1413, DOI 10.1242/jeb.02138; Auben T, 2002, ADV STUD BEHAV, V31, P243; BEECHER MD, 1985, AUK, V102, P600; BIRKHEAD TR, 1978, ANIM BEHAV, V26, P321, DOI 10.1016/0003-3472(78)90050-7; Boersma P.D., 1990, P15; Boersma PD, 2009, AUK, V126, P335, DOI 10.1525/auk.2009.08144; Brown KM, 1998, ANIM BEHAV, V56, P1529, DOI 10.1006/anbe.1998.0913; BUCKLEY PA, 1972, ANIM BEHAV, V20, P457, DOI 10.1016/S0003-3472(72)80009-5; Buntin John D., 1996, Advances in the Study of Behavior, V25, P161; Clark JA, 2006, ANIM BEHAV, V72, P1141, DOI 10.1016/j.anbehav.2006.04.002; CONOVER MR, 1985, AUK, V102, P696; DAVIES S. J. J. F., 1962, AUSTRALIAN JOUR ZOOL, V10, P171, DOI 10.1071/ZO9620171; DAVIS LS, 1989, EMU, V89, P155, DOI 10.1071/MU9890155; FREDRICKSON LH, 1972, WILSON BULL, V84, P309; Friesen VL, 1996, EVOLUTION, V50, P924, DOI 10.1111/j.1558-5646.1996.tb03902.x; Gaston AJ, 1995, AUK, V112, P508, DOI 10.2307/4088742; GASTON AJ, 1993, ANIM BEHAV, V45, P301, DOI 10.1006/anbe.1993.1034; Goldsmith AR, 1991, P INT ORNITHOL C ORN, V20, P2063; Hood LC, 1998, AUK, V115, P76; JOUVENTIN P, 1995, ANIM BEHAV, V50, P1023, DOI 10.1016/0003-3472(95)80102-2; Lyon BE, 2008, ANNU REV ECOL EVOL S, V39, P343, DOI 10.1146/annurev.ecolsys.39.110707.173354; Massaro M, 2007, GEN COMP ENDOCR, V151, P220, DOI 10.1016/j.ygcen.2007.01.034; Nimon AJ, 1996, PHYSIOL BEHAV, V60, P1019; Oosthuizen WC, 2009, POLAR BIOL, V32, P302; Poulsen H., 1953, Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening i Kjobenhavn, V115, P1; PREVETT JP, 1973, AUK, V90, P202; Rafferty NE, 2005, CONDOR, V107, P923; Rebstock GA, 2011, CONDOR, V113, P316, DOI 10.1525/cond.2011.100162; REID WV, 1990, EVOLUTION, V44, P1780, DOI 10.1111/j.1558-5646.1990.tb05248.x; Renison D, 2002, BEHAV ECOL, V13, P462, DOI 10.1093/beheco/13.4.462; RICHARDSON F, 1967, Murrelet, V48, P52, DOI 10.2307/3535959; RISKA DE, 1984, AUK, V101, P605; ROTHSTEIN SI, 1990, ANNU REV ECOL SYST, V21, P481, DOI 10.1146/annurev.es.21.110190.002405; SEARS HF, 1978, BIRD BANDING, V49, P1, DOI 10.2307/4512314; Setiawan AN, 2007, HORM BEHAV, V51, P46, DOI 10.1016/j.yhbeh.2006.08.002; SHUGART GW, 1987, ANIM BEHAV, V35, P1563, DOI 10.1016/S0003-3472(87)80030-1; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STODDARD PK, 1983, AUK, V100, P795; STOKES DL, 1991, AUK, V108, P923; Stokes DL, 2000, ECOLOGY, V81, P2878, DOI 10.2307/177348; Stokes DL, 1998, AUK, V115, P24; TAYLOR ROWLAND H., 1962, IBIS, V104, P176, DOI 10.1111/j.1474-919X.1962.tb08644.x; TENAZA R, 1971, CONDOR, V73, P81, DOI 10.2307/1366127; Tinbergen N, 1960, HERRING GULLS WORLD; Tinbergen N., 1958, CURIOUS NATURALISTS; Tinbergen N., 1951, STUDY INSTINCT; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Vleck CM, 1999, P INT ORNITHOL C, V22, P1210; VOLKMAN NJ, 1981, WILSON BULL, V93, P243; YORIO P, 1994, AUK, V111, P215, DOI 10.2307/4088528 50 3 4 0 29 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0021-8375 J ORNITHOL J. Ornithol. JAN 2013 154 1 99 105 10.1007/s10336-012-0875-6 7 Ornithology Zoology 080RB WOS:000314259900011 2018-11-12 J Decker, SA; Aggott, Z Decker, Seamus A.; Aggott, Zachary Stress as adaptation? A test of the adaptive boost hypothesis among Batswana men EVOLUTION AND HUMAN BEHAVIOR English Article Hypothalamic-pituitary adrenal axis; Depression; Socioeconomic status; Cortisol awakening response; Diurnal rhythm; Health; Fitness; Evolutionary psychology; Cognition; Appraisal MAJOR DEPRESSIVE DISORDER; SOCIOECONOMIC-STATUS; SALIVARY CORTISOL; DIFFERENTIAL SUSCEPTIBILITY; MEMORY PERFORMANCE; SOCIAL-STATUS; NEURAL BASES; RESPONSES; HEALTH; HUMANS Many studies have found elevated cortisol linked to negative events ("stress") and subsequent negative outcomes, such as reduced immunity and stunted growth, leading to the conclusion that high cortisol is "bad." However, a growing number of studies have found more advantaged groups showing relatively elevated cortisol. For example, higher morning cortisol followed by a steeper diurnal decline among Caucasians compared to ethnic minorities has been interpreted as a context-specific "adaptive boost" to meet daily demands. We tested the adaptive boost hypothesis using data on socioeconomic status, depressive affect and salivary cortisol among adult men (n = 32) in Botswana. Three findings emerged; (i) depressive affect was associated with lower morning cortisol (r = -0.43, p = 0.014); (ii) depressive affect was associated with a diurnal increase in cortisol when comparing morning and evening samples (r = 0.49, p = 0.004); and (iii) depressive affect was associated with lower income (r = -0.55, p = 0.001). Findings are consistent with the adaptive boost hypothesis and add to a growing body of evidence that elevated cortisol is not universally bad. Hypothalamic-pituitary adrenal axis (HPAA) activity, such as cortisol, may be adaptive depending on a person's contextual circumstances. Based on our findings and those of previous studies, we develop a "person-in-context" model of the threat appraisal process. Integrated with life history theory, our model facilitates testable hypotheses about intra- and inter-individual variability in HPAA and adaptive consequences. (C) 2013 Published by Elsevier Inc. [Decker, Seamus A.] Univ Massachusetts, Psychol Anthropol & Human Adaptat Lab, Dept Anthropol, Amherst, MA 01003 USA; [Aggott, Zachary] Univ Massachusetts, Dept Psychol, Amherst, MA 01003 USA Decker, SA (reprint author), Univ Massachusetts, Psychol Anthropol & Human Adaptat Lab, Dept Anthropol, 215 Machmer Hall,240 Hicks Way, Amherst, MA 01003 USA. sdecker@anthro.umass.edu; zaggott@gmail.com Adam EK, 2006, P NATL ACAD SCI USA, V103, P17058, DOI 10.1073/pnas.060503103; Appelhans B. M., 2006, ANXIETY STRESS COPIN, V19, P81; Aspinwall LG, 2010, ANN BEHAV MED, V39, P4, DOI 10.1007/s12160-009-9153-0; Belsky J, 2009, PSYCHOL BULL, V135, P885, DOI 10.1037/a0017376; Biggs B, 2010, SOC SCI MED, V71, P266, DOI 10.1016/j.socscimed.2010.04.002; Brune M, 2006, PERSPECT BIOL MED, V49, P317, DOI 10.1353/pbm.2006.0037; Brune M, 2006, NEUROSCI BIOBEHAV R, V30, P437, DOI 10.1016/j.neubiorev.2005.08.001; Buss KA, 2011, DEV PSYCHOL, V47, P804, DOI 10.1037/a0023227; Cahill L, 2003, NEUROBIOL LEARN MEM, V79, P194, DOI 10.1016/S1074-7427(02)00036-9; Chisholm JS, 1999, DEATH HOPE SEX STEPS; Crawford MJ, 2004, BRIT J PSYCHIAT, V184, P379, DOI 10.1192/bjp.184.5.379; Decker S., 2008, RES EC ANTHR, V26, P75; Decker SA, 2000, HORM BEHAV, V38, P29, DOI 10.1006/hbeh.2000.1597; Decker SA, 2011, ETHOS, V39, P189, DOI 10.1111/j.1548-1352.2011.01184.x; Decker SA, 2011, COMPUT HUM BEHAV, V27, P798, DOI 10.1016/j.chb.2010.11.005; Decker Seamus A, 2006, J Physiol Anthropol, V25, P91, DOI 10.2114/jpa2.25.91; Derakshan N, 2007, COGNITION EMOTION, V21, P1585, DOI 10.1080/02699930701499857; Dickerson SS, 2004, PSYCHOL BULL, V130, P355, DOI 10.1037/0033-2909.130.3.355; Do DP, 2011, HEALTH PLACE, V17, P625, DOI [10.1016/j.healthplace.2010.12.019, 10.1015/j.healthplace.2010.12.019]; Domes G, 2002, PSYCHONEUROENDOCRINO, V27, P843, DOI 10.1016/S0306-4530(01)00085-3; Dowd JB, 2011, ANN BEHAV MED, V41, P13, DOI 10.1007/s12160-010-9224-2; Dowd JB, 2009, INT J EPIDEMIOL, V38, P1297, DOI 10.1093/ije/dyp277; Dressler WW, 2004, BRIT MED BULL, V69, P21, DOI 10.1093/bmb/ldh020; Durham W, 1991, COEVOLUTION GENES CU; El-Sheikh M, 2011, DEV PSYCHOPATHOL, V23, P703, DOI 10.1017/S0954579411000034; Ellenbogen MA, 2002, PSYCHOPHYSIOLOGY, V39, P723, DOI 10.1017/S0048577202010739; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P7, DOI 10.1017/S0954579410000611; Elzinga BM, 2003, NEUROPSYCHOPHARMACOL, V28, P1656, DOI 10.1038/sj.npp.1300226; Erickson K, 2003, NEUROSCI BIOBEHAV R, V27, P233, DOI 10.1016/S0149-7634(03)00033-2; Flinn MV, 2006, DEV REV, V26, P138, DOI 10.1016/j.dr.2006.02.003; Flinn MV, 2012, PARENT-SCI PRACT, V12, P124, DOI 10.1080/15295192.2012.683338; Flinn MV, 2011, NEUROSCI BIOBEHAV R, V35, P1611, DOI 10.1016/j.neubiorev.2011.01.005; Hertel PT, 2010, CURR DIR PSYCHOL SCI, V19, P155, DOI 10.1177/0963721410370137; Kline KA, 2005, INT J PSYCHOPHYSIOL, V55, P343, DOI 10.1016/j.ijpsycho.2004.09.003; Koehler N, 2009, J SEX RES, V46, P366, DOI 10.1080/00224490902773996; Ladd CO, 2004, BIOL PSYCHIAT, V55, P367, DOI 10.1016/j.biopsych.2003.10.007; Lupien SJ, 2000, BIOL PSYCHIAT, V48, P976, DOI 10.1016/S0006-3223(00)00965-3; Lyons DM, 2007, BIOL PSYCHIAT, V62, P1171, DOI 10.1016/i.biopsych.2007.03.012; McEwen BS, 2004, ANN NY ACAD SCI, V1032, P1, DOI 10.1193/annals.1314.001; Mendl M, 2010, P ROY SOC B-BIOL SCI, V277, P2895, DOI 10.1098/rspb.2010.0303; Miller G, 2006, SCIENCE, V311, P458, DOI 10.1126/science.311.5760.458; Newcomer JW, 1999, ARCH GEN PSYCHIAT, V56, P527, DOI 10.1001/archpsyc.56.6.527; Newlin DB, 2002, ADDICTION, V97, P427, DOI 10.1046/j.1360-0443.2002.00021.x; Panter-Brick C, 1999, HORMONES HLTH BEHAV; Patel PD, 2008, PSYCHONEUROENDOCRINO, V33, P360, DOI 10.1016/j.psyneuen.2007.12.003; Peeters F, 2003, PSYCHOSOM MED, V65, P836, DOI 10.1097/01.PSY.0000088594.17747.2E; Putman P, 2007, PSYCHONEUROENDOCRINO, V32, P14, DOI 10.1016/j.psyneuen.2006.09.010; Quinlan RJ, 2005, CURR ANTHROPOL, V46, P471, DOI 10.1086/430017; Rohleder N, 2004, BIOL PSYCHIAT, V55, P745, DOI 10.1016/j.biopsych.2003.11.018; Salvador A, 2009, NEUROSCI BIOBEHAV R, V33, P160, DOI 10.1016/j.neubiorev.2008.09.005; SAPOLSKY RM, 1990, BIOL PSYCHIAT, V27, P937, DOI 10.1016/0006-3223(90)90032-W; Sauro MD, 2005, INT J PSYCHOPHYSIOL, V56, P55, DOI 10.1016/j.ijpsycho.2004.09.008; Selye H, 1936, NATURE, V138, P32, DOI 10.1038/138032a0; Shohamy D, 2010, TRENDS COGN SCI, V14, P464, DOI 10.1016/j.tics.2010.08.002; Stein DJ, 2011, NEUROSCI BIOBEHAV R, V35, P1075, DOI 10.1016/j.neubiorev.2010.11.012; Steptoe A, 2003, PSYCHOSOM MED, V65, P461, DOI 10.1097/01.PSY.0000035717.78650.A1; Sweet E, 2010, SOC SCI MED, V70, P2029, DOI 10.1016/j.socscimed.2010.02.032; Taylor SE, 2008, J PERS SOC PSYCHOL, V95, P197, DOI 10.1037/0022-3514.95.1.197; Taylor SE, 2010, P NATL ACAD SCI USA, V107, P8507, DOI 10.1073/pnas.1003890107; Teneggi V, 2002, PSYCHOPHARMACOLOGY, V164, P177, DOI 10.1007/s00213-002-1176-1; Toates F, 2004, APPL ANIM BEHAV SCI, V86, P173, DOI 10.1016/j.applanim.2004.02.010; TOMAKA J, 1993, J PERS SOC PSYCHOL, V65, P248, DOI 10.1037/0022-3514.65.2.248; Tretter F, 2009, PHARMACOPSYCHIATRY, V42, pS11, DOI 10.1055/s-0029-1220699; Van Honk J, 2003, PSYCHONEUROENDOCRINO, V28, P941, DOI 10.1016/S0306-4530(02)00116-6; van Wingen GA, 2011, MOL PSYCHIATR, V16, P664, DOI 10.1038/mp.2010.132; Vythilingam M, 2004, BIOL PSYCHIAT, V56, P101, DOI 10.1016/j.biopsych.2004.04.002; Waters A. M., 2004, COGNITION EMOTION, V18, P689; WILKINSON R, 1996, UNHEALTHY SOC AFFLIC; Wirth MM, 2006, HORM BEHAV, V49, P346, DOI 10.1016/j.yhbeh.2005.08.013; Wolf Oliver T, 2002, Stress, V5, P59, DOI 10.1080/102538902900012332; Yehuda R, 2006, ANN NY ACAD SCI, V1071, P137, DOI 10.1196/annals.1364.012 71 2 3 0 25 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 1879-0607 EVOL HUM BEHAV Evol. Hum. Behav. JAN 2013 34 1 55 60 10.1016/j.evolhumbehav.2012.09.003 6 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences 072JW WOS:000313668200009 2018-11-12 J Alvarado, LC Alvarado, Louis Calistro Do evolutionary life-history trade-offs influence prostate cancer risk? a review of population variation in testosterone levels and prostate cancer disparities EVOLUTIONARY APPLICATIONS English Review challenge hypothesis; cross-cultural variation; male reproductive physiology; prostate cancer; testosterone SEX-HORMONE LEVELS; ANDROGEN RECEPTOR GENE; PAN-TROGLODYTES-SCHWEINFURTHII; POTENTIAL REPRODUCTIVE RATES; FACTOR INTERVENTION TRIAL; SALIVARY TESTOSTERONE; SERUM TESTOSTERONE; UNITED-STATES; WHITE MEN; SOCIOECONOMIC-STATUS An accumulation of evidence suggests that increased exposure to androgens is associated with prostate cancer risk. The unrestricted energy budget that is typical of Western diets represents a novel departure from the conditions in which men's steroid physiology evolved and is capable of supporting distinctly elevated testosterone levels. Although nutritional constraints likely underlie divergent patterns of testosterone secretion between Westernized and non-Western men, considerable variability exists in men's testosterone levels and prostate cancer rates within Westernized populations. Here, I use evolutionary life history theory as a framework to examine prostate cancer risk. Life history theory posits trade-offs between investment in early reproduction and long-term survival. One corollary of life history theory is the challenge hypothesis, which predicts that males augment testosterone levels in response to intrasexual competition occurring within reproductive contexts. Understanding men's evolved steroid physiology may contribute toward understanding susceptibility to prostate cancer. Among well-nourished populations of Westerners, men's testosterone levels already represent an outlier of cross-cultural variation. I hypothesize that Westernized men in aggressive social environments, characterized by intense malemale competition, will further augment testosterone production aggravating prostate cancer risk. [Alvarado, Louis Calistro] Univ New Mexico, Dept Anthropol, Albuquerque, NM 87131 USA Alvarado, LC (reprint author), 1 Univ New Mexico, Dept Anthropol, MSC01-1040, Albuquerque, NM 87131 USA. lalvarad@unm.edu National Science Foundation; Robert Wood Johnson Foundation Center for Health; Program for Interdisciplinary Biological and Biomedical Sciences at University of New Mexico The author thanks Melissa Emery Thompson, Jane Lancaster, and Martin Muller for many insightful discussions that led to the preparation of this manuscript, as well as for their comments on an earlier draft. The author is also indebted to two anonymous reviewers for their constructive critique that greatly improved the quality of this manuscript. And finally, the author is appreciative for the invitation to contribute to this Special Issue on Evolution and Cancer, and is grateful to Guest Editor Athena Aktipis for her input on an earlier draft. This research was supported by graduate research fellowships from the National Science Foundation 2008-2011, the Robert Wood Johnson Foundation Center for Health Policy 2011-2013, and the Program for Interdisciplinary Biological and Biomedical Sciences at University of New Mexico 2011-2013. AHLUWALIA B, 1981, CANCER, V48, P2267, DOI 10.1002/1097-0142(19811115)48:10<2267::AID-CNCR2820481023>3.0.CO;2-R; Allen NE, 2000, NUTR RES REV, V13, P159, DOI 10.1079/095442200108729052; Altekruse SF, 2010, CANCER EPIDEM BIOMAR, V19, P1460, DOI 10.1158/1055-9965.EPI-09-1310; Alvarado LC, 2011, THER ADV UROL, V3, P99, DOI [10.1177/1756287211405706, 10.1177/175628721140570]; Alvarado LC, 2010, AM J HUM BIOL, V22, P449, DOI 10.1002/ajhb.21016; ANDERSSON SO, 1993, BRIT J CANCER, V68, P97, DOI 10.1038/bjc.1993.293; Archer J, 2006, NEUROSCI BIOBEHAV R, V30, P319, DOI 10.1016/j.neubiorev.2004.12.007; ARCHER J, 1991, BRIT J PSYCHOL, V82, P1, DOI 10.1111/j.2044-8295.1991.tb02379.x; Banks T, 1996, J SOC PSYCHOL, V136, P49, DOI 10.1080/00224545.1996.9923028; Barclay G., 2001, HOME OFFICE STAT RES, V6; Beehner JC, 2006, BEHAV ECOL SOCIOBIOL, V59, P469, DOI 10.1007/s00265-005-0071-2; BENTLEY GR, 1993, AM J HUM BIOL, V5, P711, DOI 10.1002/ajhb.1310050614; BISHOP DT, 1988, GENET EPIDEMIOL, V5, P43, DOI 10.1002/gepi.1370050105; Bribiescas RG, 2001, FOUND HUM B, P107; Bribiescas RG, 2001, YEARB PHYS ANTHROPOL, V44, P148, DOI 10.1002/ajpa.10025; Bribiescas RG, 1996, HUM NATURE-INT BIOS, V7, P163, DOI 10.1007/BF02692109; Campbell B, 2003, AM J HUM BIOL, V15, P697, DOI 10.1002/ajhb.10203; Campbell BC, 2009, INT J ANDROL, V32, P140, DOI 10.1111/j.1365-2605.2007.00825.x; CARTER HB, 1995, PROSTATE, V27, P25, DOI 10.1002/pros.2990270106; Cavigelli SA, 2000, HORM BEHAV, V37, P246, DOI 10.1006/hbeh.2000.1585; Centers for Disease Control and Prevention, 2012, US CANC STAT 1999 20; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; CHRISTIANSEN KH, 1991, AM J PHYS ANTHROPOL, V86, P37, DOI 10.1002/ajpa.1330860103; CLUTTONBROCK TH, 1992, Q REV BIOL, V67, P437, DOI 10.1086/417793; CLUTTONBROCK TH, 1991, NATURE, V351, P58; Curado M., 2007, IARC SCI PUBLICATION, V160; DABBS JM, 1992, SOC FORCES, V70, P813, DOI 10.2307/2579755; Dabbs JM, 1998, J APPL SOC PSYCHOL, V28, P84, DOI 10.1111/j.1559-1816.1998.tb01655.x; DABBS JM, 1991, J ABNORM CHILD PSYCH, V19, P469, DOI 10.1007/BF00919089; DABBS JM, 1990, PSYCHOL SCI, V1, P209, DOI 10.1111/j.1467-9280.1990.tb00200.x; DEJONG FH, 1991, CANCER RES, V51, P3445; DEMERS PA, 1994, CANCER CAUSE CONTROL, V5, P129, DOI 10.1007/BF01830258; Du XL, 2006, CANCER, V106, P1276, DOI 10.1002/cncr.21732; Eaton SB, 2002, PREV MED, V34, P109, DOI 10.1006/pmed.2001.0876; ELIA M, 1992, ENERGY METABOLISM, P19; ELLIS L, 1992, STEROIDS, V57, P72, DOI 10.1016/0039-128X(92)90032-5; ELLISON P T, 1989, American Journal of Human Biology, V1, P21, DOI 10.1002/ajhb.1310010106; ELLISON PT, 1988, YEARB PHYS ANTHROPOL, V31, P115; Ellison PT, 2002, HUM REPROD, V17, P3251, DOI 10.1093/humrep/17.12.3251; Ellison PT, 1996, HUM BIOL, V68, P955; Ettinger B, 1997, J CLIN ENDOCR METAB, V82, P429, DOI 10.1210/jc.82.2.429; FIELD AE, 1994, J CLIN ENDOCR METAB, V79, P1310, DOI 10.1210/jcem.79.5.7962322; Fleming AS, 2002, HORM BEHAV, V42, P399, DOI 10.1006/hbeh.2002.1840; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gann PH, 1996, J NATL CANCER I, V88, P1118, DOI 10.1093/jnci/88.16.1118; Gapstur SM, 2002, CANCER EPIDEM BIOMAR, V11, P1041; Geary D. C., 2005, EVOLUTIONARY PSYCHOL, P483; Geronimus AT, 1999, J EPIDEMIOL COMMUN H, V53, P325, DOI 10.1136/jech.53.6.325; Geronimus AT, 1996, NEW ENGL J MED, V335, P1552, DOI 10.1056/NEJM199611213352102; Geronimus AT, 1996, HUM NATURE-INT BIOS, V7, P323, DOI 10.1007/BF02732898; Gettler LT, 2011, P NATL ACAD SCI USA, V108, P16194, DOI 10.1073/pnas.1105403108; Gettler LT, 2010, AM J PHYS ANTHROPOL, V142, P590, DOI 10.1002/ajpa.21282; Ghafoor A, 2002, CA-CANCER J CLIN, V52, P326, DOI 10.3322/canjclin.52.6.326; GIAGULLI VA, 1994, J CLIN ENDOCR METAB, V79, P997, DOI 10.1210/jc.79.4.997; GIAGULLI VA, 1989, J STEROID BIOCHEM, V33, P935, DOI 10.1016/0022-4731(89)90243-4; Giovannucci E, 1997, P NATL ACAD SCI USA, V94, P3320, DOI 10.1073/pnas.94.7.3320; GRAY A, 1991, J CLIN EPIDEMIOL, V44, P671, DOI 10.1016/0895-4356(91)90028-8; Gray PB, 2006, P ROY SOC B-BIOL SCI, V273, P333, DOI 10.1098/rspb.2005.3311; Gray PB, 2006, AM J HUM BIOL, V18, P123, DOI 10.1002/ajhb.20471; Gray PB, 2003, AM J PHYS ANTHROPOL, V122, P279, DOI 10.1002/ajpa.10293; Gray PB, 2002, EVOL HUM BEHAV, V23, P193, DOI 10.1016/S1090-5138(01)00101-5; Gronberg H, 2003, LANCET, V361, P859, DOI 10.1016/S0140-6736(03)12713-4; HAKKINEN K, 1993, ACTA PHYSIOL SCAND, V148, P199, DOI 10.1111/j.1748-1716.1993.tb09549.x; Hall SE, 2005, BJU INT, V95, P51, DOI 10.1111/j.1464-410X.2005.05248.x; HAMILTON JB, 1969, J GERONTOL, V24, P395, DOI 10.1093/geronj/24.4.395; Heald AH, 2003, CLIN ENDOCRINOL, V58, P262, DOI 10.1046/j.1365-2265.2003.01653.x; HENDERSON BE, 1982, CANCER RES, V42, P3232; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; HOLDEN C, 1987, SCIENCE, V238, P158, DOI 10.1126/science.3659906; Howlader N, 2012, SEER CANC STAT REV 1; Hsing AW, 2008, CANCER EPIDEM BIOMAR, V17, P2525, DOI 10.1158/1055-9965.EPI-08-0448; Hsing AW, 2000, INT J CANCER, V85, P60, DOI 10.1002/(SICI)1097-0215(20000101)85:1<60::AID-IJC11>3.0.CO;2-B; Hsing AW, 2006, FRONT BIOSCI-LANDMRK, V11, P1388, DOI 10.2741/1891; HSING AW, 1993, CANCER EPIDEM BIOMAR, V2, P27; Hsing AW, 2001, EPIDEMIOL REV, V23, P42, DOI 10.1093/oxfordjournals.epirev.a000795; Huggins C, 1941, CANCER RES, V1, P293; IRVINE RA, 1995, CANCER RES, V55, P1937; Jakobsson J, 2006, J CLIN ENDOCR METAB, V91, P687, DOI 10.1210/jc.2005-1643; Jankowska E A, 2000, Med Sci Monit, V6, P1159; Jensen TK, 2004, FERTIL STERIL, V82, P863, DOI 10.1016/j.fertnstert.2004.03.056; Jin B, 2000, J ANDROL, V21, P91; Jin B, 1996, J CLIN ENDOCR METAB, V81, P4290, DOI 10.1210/jc.81.12.4290; Kamangar F, 2006, J CLIN ONCOL, V24, P2137, DOI 10.1200/JCO.2005.05.2308; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; KAPOOR P, 1993, J STEROID BIOCHEM, V45, P325, DOI 10.1016/0960-0760(93)90350-6; Kehinde EO, 2006, INT UROL NEPHROL, V38, P33, DOI 10.1007/s11255-005-3619-1; KETTERSON ED, 1992, AM NAT, V140, pS33, DOI 10.1086/285396; KEY TJA, 1990, BRIT J NUTR, V64, P111, DOI 10.1079/BJN19900014; KLEY HK, 1980, J CLIN ENDOCR METAB, V51, P1128, DOI 10.1210/jcem-51-5-1128; KLEY HK, 1981, HORM METAB RES, V13, P639, DOI 10.1055/s-2007-1019359; KLIBANSKI A, 1981, J CLIN ENDOCR METAB, V53, P258, DOI 10.1210/jcem-53-2-258; Kolonel LN, 2001, EPIDEMIOL REV, V23, P72, DOI 10.1093/oxfordjournals.epirev.a000798; KOVI J, 1972, AM J EPIDEMIOL, V96, P401, DOI 10.1093/oxfordjournals.aje.a121473; Krause Walter, 2006, Soc Biol, V53, P4; Kubricht WS, 1999, UROLOGY, V54, P1035, DOI 10.1016/S0090-4295(99)00290-3; Lado-Abeal J, 1999, NUTRITION, V15, P351, DOI 10.1016/S0899-9007(99)00051-9; Lancaster JB, 1983, HUMANS ADAPT BIOCULT, P33; LeRoy BE, 2009, VET J, V180, P149, DOI 10.1016/j.tvjl.2008.07.012; LIPSON S F, 1989, American Journal of Human Biology, V1, P249, DOI 10.1002/ajhb.1310010304; Lukas WD, 2004, AM J HUM BIOL, V16, P704, DOI 10.1002/ajhb.20083; Mather M, 2010, US CHILDREN SINGLE M; Matsumoto A. M., 2001, ENDOCRINOL METAB; MAZUR A, 1995, BIOL PSYCHOL, V41, P271, DOI 10.1016/0301-0511(95)05138-4; Mazur Allan, 2006, Soc Biol, V53, P24; MEIKLE AW, 1982, J CLIN ENDOCR METAB, V54, P1104, DOI 10.1210/jcem-54-6-1104; Merrill RM, 2002, AM J EPIDEMIOL, V155, P148, DOI 10.1093/aje/155.2.148; Miyamoto H, 2004, PROSTATE, V61, P332, DOI 10.1002/pros.20115; Mohler James L., 2007, P355, DOI 10.1007/978-1-59745-224-3_19; Morley JE, 2002, METABOLISM, V51, P554, DOI 10.1053/meta.2002.31975; Morris PD, 2004, EUR J ENDOCRINOL, V151, P241, DOI 10.1530/eje.0.1510241; Muehlenbein M. P., 2008, SOC BIOL, V53, P13; Muehlenbein MP, 2005, AM J HUM BIOL, V17, P527, DOI 10.1002/ajhb.20419; Muehlenbein MP, 2004, AM J PRIMATOL, V64, P71, DOI 10.1002/ajp.20062; Muller MN, 2009, P ROY SOC B-BIOL SCI, V276, P347, DOI 10.1098/rspb.2008.1028; Muller MN, 2005, AM J PRIMATOL, V66, P119, DOI 10.1002/ajp.20132; Muller MN, 2004, ANIM BEHAV, V67, P113, DOI 10.1016/j.anbehav.2003.03.013; Nilsen TIL, 2000, BRIT J CANCER, V82, P1358; Odedina FT, 2006, J NATL MED ASSOC, V98, P539; OMALLEY BW, 1971, NEW ENGL J MED, V284, P370; Parsons JK, 2005, CANCER EPIDEM BIOMAR, V14, P2257, DOI 10.1158/1055-9965.EPI-04-0715; Pettaway CA, 1999, J NATL MED ASSOC, V91, P653; Platz EA, 2004, J STEROID BIOCHEM, V92, P237, DOI 10.1016/j.jsbmb.2004.10.002; POLLARD M, 1982, PROSTATE, V3, P563, DOI 10.1002/pros.2990030605; Pritchard J, 1998, J CLIN ENDOCR METAB, V83, P3277, DOI 10.1210/jc.83.9.3277; Rapiti E, 2009, CANCER-AM CANCER SOC, V115, P5556, DOI 10.1002/cncr.24607; Redpath SM, 2006, ANIM BEHAV, V71, P1297, DOI 10.1016/j.anbehav.2005.08.012; Roddam AW, 2008, J NATL CANCER I, V100, P170, DOI 10.1093/jnci/djm323; Rohrmann S, 2007, J CLIN ENDOCR METAB, V92, P2519, DOI 10.1210/jc.2007-0028; Rosner W, 2007, J CLIN ENDOCR METAB, V92, P405, DOI 10.1210/jc.2006-1864; ROSS R, 1986, JNCI-J NATL CANCER I, V76, P45; ROSS RK, 1992, LANCET, V339, P887, DOI 10.1016/0140-6736(92)90927-U; Ross RK, 1998, CANCER RES, V58, P4497; Sachs JD, 2006, SCI AM, V295, P42; Sampson R. J., 1995, CRIME INEQUALITY, P37; Sanderson M, 2006, ANN EPIDEMIOL, V16, P901, DOI 10.1016/j.annepidem.2006.02.006; Santner SJ, 1998, J CLIN ENDOCR METAB, V83, P2104, DOI 10.1210/jc.83.6.2104; Sartor O, 1999, UROLOGY, V53, P378, DOI 10.1016/S0090-4295(98)00481-6; SEVERSON RK, 1989, CANCER RES, V49, P1857; Shaneyfelt T, 2000, J CLIN ONCOL, V18, P847, DOI 10.1200/JCO.2000.18.4.847; Shibata A, 1997, J NATL CANCER I, V89, P1716, DOI 10.1093/jnci/89.22.1716; Simmons ZL, 2009, AM J HUM BIOL, V21, P133, DOI 10.1002/ajhb.20837; SINGH GK, 2003, NCI CANC SURVEILLANC, V4; SMITH CM, 1994, J STEROID BIOCHEM, V50, P151, DOI 10.1016/0960-0760(94)90022-1; Smith GD, 1996, AM J PUBLIC HEALTH, V86, P497, DOI 10.2105/AJPH.86.4.497; Smith GD, 1996, AM J PUBLIC HEALTH, V86, P486, DOI 10.2105/AJPH.86.4.486; Sofikerim M, 2007, UROL INT, V79, P13, DOI 10.1159/000102906; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STRAUSS RH, 1985, JAMA-J AM MED ASSOC, V254, P3337, DOI 10.1001/jama.254.23.3337; Thompson IM, 2003, NEW ENGL J MED, V349, P215, DOI 10.1056/NEJMoa030660; Tomova A, 1999, ANDROLOGIA, V31, P143, DOI 10.1046/j.1439-0272.1999.00262.x; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Trumble BC, 2010, AM J HUM BIOL, V22, P775, DOI 10.1002/ajhb.21079; Tsai CJ, 2006, CANCER CAUSE CONTROL, V17, P1237, DOI 10.1007/s10552-006-0052-4; Uchida A, 2006, AGING MALE, V9, P207, DOI 10.1080/13685530601060461; United Nations Development Programme, 2000, HUM DEV REP 2000 HUM; Vermeulen A, 1999, J CLIN ENDOCR METAB, V84, P3666, DOI 10.1210/jc.84.10.3666; VITTEK J, 1985, LIFE SCI, V37, P711, DOI 10.1016/0024-3205(85)90540-5; Western B, 2002, AM SOCIOL REV, V67, P526, DOI 10.2307/3088944; WILSON M, 1985, ETHOL SOCIOBIOL, V6, P59, DOI 10.1016/0162-3095(85)90041-X; WINGFIELD JC, 1990, AM NAT, V136, P829, DOI 10.1086/285134; Winters SJ, 2001, METABOLISM, V50, P1242, DOI 10.1053/meta.2001.26714; Wolk A, 1997, J NATL CANCER I, V89, P820, DOI 10.1093/jnci/89.11.820; Woodhouse LJ, 2003, AM J PHYSIOL-ENDOC M, V284, pE1009, DOI 10.1152/ajpendo.00536.2002; World Health Organisation, 2002, WHO EUR SER, V97; YU H, 1991, INT J EPIDEMIOL, V20, P76, DOI 10.1093/ije/20.1.76; ZAHAVI A, 1975, J THEOR BIOL, V53, P205, DOI 10.1016/0022-5193(75)90111-3; Zeegers MPA, 2004, J OCCUP ENVIRON MED, V46, P271, DOI 10.1097/01.jom.0000116961.48464.6b 167 9 11 0 26 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1752-4571 EVOL APPL Evol. Appl. JAN 2013 6 1 SI 117 133 10.1111/eva.12036 17 Evolutionary Biology Evolutionary Biology 075IQ WOS:000313878800012 23396824 DOAJ Gold, Green Published 2018-11-12 J Rueffler, C; Metz, JAJ; Van Dooren, TJM Rueffler, Claus; Metz, Johan A. J.; Van Dooren, Tom J. M. What life cycle graphs can tell about the evolution of life histories JOURNAL OF MATHEMATICAL BIOLOGY English Article Adaptive dynamics; Density dependence; Frequency dependence; Life history theory; Matrix model; Evolutionary optimisation FREQUENCY-DEPENDENT SELECTION; STRUCTURED POPULATION-MODELS; COMPETITIVE-EXCLUSION; MATRIX MODEL; TRADE-OFF; DYNAMICS; STABILITY; FITNESS; FORMULATION; ENVIRONMENT We analyze long-term evolutionary dynamics in a large class of life history models. The model family is characterized by discrete-time population dynamics and a finite number of individual states such that the life cycle can be described in terms of a population projection matrix. We allow an arbitrary number of demographic parameters to be subject to density-dependent population regulation and two or more demographic parameters to be subject to evolutionary change. Our aim is to identify structural features of life cycles and modes of population regulation that correspond to specific evolutionary dynamics. Our derivations are based on a fitness proxy that is an algebraically simple function of loops within the life cycle. This allows us to phrase the results in terms of properties of such loops which are readily interpreted biologically. The following results could be obtained. First, we give sufficient conditions for the existence of optimisation principles in models with an arbitrary number of evolving traits. These models are then classified with respect to their appropriate optimisation principle. Second, under the assumption of just two evolving traits we identify structural features of the life cycle that determine whether equilibria of the monomorphic adaptive dynamics (evolutionarily singular points) correspond to fitness minima or maxima. Third, for one class of frequency-dependent models, where optimisation is not possible, we present sufficient conditions that allow classifying singular points in terms of the curvature of the trade-off curve. Throughout the article we illustrate the utility of our framework with a variety of examples. [Rueffler, Claus] Univ Vienna, Math & Biosci Grp, Dept Math, A-1090 Vienna, Austria; [Metz, Johan A. J.] Leiden Univ, Math Inst, NL-2300 RA Leiden, Netherlands; [Metz, Johan A. J.] Leiden Univ, Inst Biol, NL-2300 RA Leiden, Netherlands; [Metz, Johan A. J.] Int Inst Appl Syst Anal, Evolut & Ecol Program, A-2361 Laxenburg, Austria; [Metz, Johan A. J.; Van Dooren, Tom J. M.] Naturalis, Netherlands Ctr Biodivers, NL-2300 RA Leiden, Netherlands; [Van Dooren, Tom J. M.] Ecole Normale Super, UMR Ecol & Evolut 7625, F-75230 Paris 05, France Rueffler, C (reprint author), Univ Vienna, Math & Biosci Grp, Dept Math, Nordbergstr 15, A-1090 Vienna, Austria. claus.rueffler@univie.ac.at; j.a.j.metz@biology.leidenuniv.nl; vandoore@biologie.ens.fr Rueffler, Claus/0000-0001-9836-2752; Van Dooren, Tom/0000-0003-1137-9995 Netherlands Organisation of Scientific Research (NWO); Natural Sciences and Engineering Research Council of Canada; Vienna Science and Technology Fund (WWTF) [MA07-015]; European Training Network ModLife; European Commission; Dutch NWO-VENI Work on this project spanned a long time during which C. R. received financial supported by the Netherlands Organisation of Scientific Research (NWO), a Discovery Grant to Peter Abrams from the Natural Sciences and Engineering Research Council of Canada and by the Vienna Science and Technology Fund (WWTF) through project MA07-015. H. M. was supported by the European Training Network ModLife funded through the Human Potential Program of the European Commission and T. V. D. was supported by a Dutch NWO-VENI grant. The authors thank Odo Diekmann, Mats Gyllenberg, Joachim Hermisson, Geza Meszena and two anonymous referees for helpful comments. Abrams PA, 2005, J EVOLUTION BIOL, V18, P1162, DOI 10.1111/j.1420-9101.2004.00843.x; ARMSTRONG RA, 1980, AM NAT, V115, P151, DOI 10.1086/283553; Bowers RG, 2005, J THEOR BIOL, V233, P363, DOI 10.1016/j.jtbi.2004.10.017; Bowers RG, 2011, J MATH BIOL, V62, P901, DOI 10.1007/s00285-010-0356-6; BRAULT S, 1993, ECOLOGY, V74, P1444, DOI 10.2307/1940073; CASWELL H, 1982, ECOLOGY, V63, P1218, DOI 10.2307/1938846; Caswell H, 2001, MATRIX POPULATION MO; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Charnov Eric L., 1993, P1; de Mazancourt C, 2004, AM NAT, V164, P765, DOI 10.1086/424762; Dercole F, 2008, PRINC SER THEOR COMP, P1; Dercole F, 2002, EVOLUTION, V56, P1081; Dieckmann U, 1996, J MATH BIOL, V34, P579, DOI 10.1007/BF02409751; Dieckmann U, 2006, THEOR POPUL BIOL, V69, P263, DOI 10.1016/j.tpb.2005.12.001; Diekmann O, 1998, J MATH BIOL, V36, P349, DOI 10.1007/s002850050104; Diekmann O, 2003, THEOR POPUL BIOL, V63, P309, DOI 10.1016/S0040-5809(02)00058-8; Diekmann O, 2001, J MATH BIOL, V43, P157, DOI 10.1007/s002850170002; Diekmann O, 2003, BANACH CTR PUBL, V63, P47, DOI DOI 10.4064/BC63-0-2; ELLNER S, 1994, AM NAT, V143, P403, DOI 10.1086/285610; Geritz SAH, 2002, J MATH BIOL, V44, P548, DOI 10.1007/s002850100136; Geritz SAH, 1998, EVOL ECOL, V12, P35, DOI 10.1023/A:1006554906681; Geritz SAH, 2005, J MATH BIOL, V50, P67, DOI 10.1007/s00285-004-0280-8; Gyllenberg M, 2011, J MATH BIOL, V62, P359, DOI 10.1007/s00285-010-0340-1; Heino M, 1998, TRENDS ECOL EVOL, V13, P367, DOI 10.1016/S0169-5347(98)01380-9; Horn R.A., 1985, MATRIX ANAL; HUBBELL SP, 1979, AM NAT, V113, P277, DOI 10.1086/283385; Leimar O, 2009, EVOL ECOL RES, V11, P191; LEVIN SA, 1970, AM NAT, V104, P413, DOI 10.1086/282676; LEVINS R, 1962, AM NAT, V96, P361, DOI 10.1086/282245; Levins R., 1968, EVOLUTION CHANGING E; MACARTHUR R, 1970, Theoretical Population Biology, V1, P1, DOI 10.1016/0040-5809(70)90039-0; Meszena G, 2006, THEOR POPUL BIOL, V69, P68, DOI 10.1016/j.tpb.2005.07.001; Meszena G, 2005, PHYS REV LETT, V95, DOI 10.1103/PhysRevLett.95.078105; Metz JAJ, 2008, EVOL ECOL RES, V10, P629; Metz JAJ, 2008, EVOL ECOL RES, V10, P655; Metz J. A. J., 2011, Journal of Biological Dynamics, V5, P163, DOI 10.1080/17513758.2010.502256; Metz J. A. J., 2006, ENCY ECOLOGY, P1599; Metz J.A.J., 1986, LECT NOTES BIOMATHEM, V68; Metz JAJ, 2009, EVOL ECOL RES, V11, P177; Metz JAJ, 2005, J EVOLUTION BIOL, V18, P1178, DOI 10.1111/j.1420-9101.2004.00840.x; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; Metz JAJ, 1996, WP9604 IIASA; METZ JAJ, 1996, STOCHASTIC SPATIAL S, P183; Metz JAJH, 2011, MATH DARWINS LEGACY; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; NOWAK M, 1990, J THEOR BIOL, V142, P237, DOI 10.1016/S0022-5193(05)80224-3; Otto S, 2007, BIOL GUIDE MATH MODE; Pasztor L, 1996, J EVOLUTION BIOL, V9, P511, DOI 10.1046/j.1420-9101.1996.9040511.x; POWELL EO, 1958, J GEN MICROBIOL, V18, P259, DOI 10.1099/00221287-18-1-259; Ravigne V, 2009, AM NAT, V174, pE141, DOI 10.1086/605369; Roff D. A., 2002, LIFE HIST EVOLUTION; Rueffler C, 2006, TRENDS ECOL EVOL, V21, P238, DOI 10.1016/j.tree.2006.03.003; Rueffler C, 2004, THEOR POPUL BIOL, V65, P165, DOI 10.1016/j.tpb.2003.10.001; Rueffler C, B MATH BIOL UNPUB; Schneider KA, 2006, J MATH BIOL, V52, P483, DOI 10.1007/s00285-005-0355-1; Stearns S. C., 1992, EVOLUTION LIFE HIST; Takada T, 1996, J THEOR BIOL, V182, P179, DOI 10.1006/jtbi.1996.0153; Takada T, 1998, J MATH BIOL, V36, P497, DOI 10.1007/s002850050111; TAKADA T, 1992, MATH BIOSCI, V112, P155, DOI 10.1016/0025-5564(92)90091-A; Van Dooren TJM, 2012, ELEMENTS ADAPTIVE DY; Van Dooren TJM, 2006, EVOLUTION, V60, P1991, DOI 10.1554/05-259.1 61 5 5 0 47 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 0303-6812 1432-1416 J MATH BIOL J. Math. Biol. JAN 2013 66 1-2 225 279 10.1007/s00285-012-0509-x 55 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology 065BE WOS:000313121100009 22311195 2018-11-12 J Beguel, JP; Huvet, A; Quillien, V; Lambert, C; Fabioux, C Beguel, Jean-Philippe; Huvet, Arnaud; Quillien, Virgile; Lambert, Christophe; Fabioux, Caroline Study of the antioxidant capacity in gills of the Pacific oyster Crassostrea gigas in link with its reproductive investment COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY C-TOXICOLOGY & PHARMACOLOGY English Article Antioxidant capacity; Crassostrea gigas; Reproduction; RNA interference; ROS MESSENGER-RNA EXPRESSION; GLUTATHIONE-S-TRANSFERASE; OXIDATIVE STRESS; SUMMER MORTALITY; DROSOPHILA-MELANOGASTER; COST; SUSCEPTIBILITY; TEMPERATURE; RESISTANCE; BIOCHEMISTRY Energy allocation principle is a core element of life-history theory in which "the cost of reproduction" corresponds to an acceleration of senescence caused by an increase in reproductive investment. In the "theory of aging", senescence is mainly due to the degradation of lipids, proteins and DNA by reactive oxygen species (ROS), by-products of oxidative metabolism. Some studies have shown that oxidative stress susceptibility could be a cost of reproduction. The present study investigates the effect of reproductive investment on antioxidant capacity in the gills of a species with a very high reproductive investment, the Pacific oyster Crassostrea gigas. We used RNA interference targeting the oyster vasa-like gene (Oyvlg) to produce oysters with contrasted reproductive investment. Antioxidant capacity was studied by measuring the mRNA levels of genes encoding major antioxidant enzymes, and the activity of these enzymes. The highest reproductive investment was associated with the highest transcript levels for glutathione peroxidase and extra-cellular and mitochondrial superoxide dismutase. In contrast, lipid peroxidation did not show any sign of oxidative damage whatever the reproductive investment. Up-regulation of certain genes encoding enzymes involved in the first step of ROS detoxification could therefore be a part of the organism's strategy for managing the pro-oxidant species produced by heavy reproductive investment. (C) 2012 Elsevier Inc. All rights reserved. [Beguel, Jean-Philippe; Lambert, Christophe; Fabioux, Caroline] Univ Bretagne Occidentale, Inst Univ Europeen Mer, Lab Sci Environm Marin, CNRS UBO IRD IFREMER,UMR 6539, F-29280 Plouzane, France; [Huvet, Arnaud; Quillien, Virgile] IFREMER, Lab Physiol Invertebres, UMR 6539, IFREMER CNRS UBO IRD, F-29280 Plouzane, France Fabioux, C (reprint author), IUEM, UMR6539, LEMAR, Pl Nicolas Copernic, F-29280 Plouzane, France. Caroline.Fabioux@univ-brest.fr Huvet, Arnaud/0000-0001-6912-881X; Lambert, Christophe/0000-0002-5885-467X; Fabioux, Caroline/0000-0002-9436-5128 "Oxygenes" research program; GIS Europole-Mer; ANR Genanimal program "Gametogenes"; Region Bretagne doctoral grant The authors are indebted to all staff of the Argenton IFREMER station, particularly Isabelle Queau for microalgae production and Luc Lebrun for conditioning the oysters. The authors thank Jean-Yves Daniel and Charlotte Corporeau (LPI, IFREMER, Plouzane, France), Aline Amerand and Christine Moisan (ORPHY, UEB, Brest, France), Nelly Le Goic and Sebastien Artigaud (LEMAR UMR 6539, IUEM, Plouzane, France) for their useful help and technical assistance. This work was supported by the "Oxygenes" research program funded by the GIS Europole-Mer and by the ANR Genanimal program "Gametogenes". Jean-Philippe Beguel was funded by a Region Bretagne doctoral grant. We also thank Helen McCombie for improving the English. Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Alonso-Alvarez C, 2006, EVOLUTION, V60, P1913, DOI 10.1111/j.0014-3820.2006.tb00534.x; Angilletta MJ, 2000, FUNCT ECOL, V14, P39, DOI 10.1046/j.1365-2435.2000.00387.x; BOUGRIER S, 1995, AQUACULTURE, V134, P143, DOI 10.1016/0044-8486(95)00036-2; CADENAS E, 1989, ANNU REV BIOCHEM, V58, P79, DOI 10.1146/annurev.bi.58.070189.000455; Chen GA, 2002, MOL CELL PROTEOMICS, V1, P304, DOI 10.1074/mcp.M200008-MCP200; Cheng Thomas C., 1996, P299; Choi CY, 2008, COMP BIOCHEM PHYS A, V149, P330, DOI 10.1016/j.cbpa.2008.01.013; Corporeau C, 2011, MAR BIOTECHNOL, V13, P971, DOI 10.1007/s10126-010-9361-4; Delaporte M, 2006, AQUACULTURE, V254, P571, DOI 10.1016/j.aquaculture.2005.10.006; Delaporte M, 2007, J EXP MAR BIOL ECOL, V353, P45, DOI 10.1016/j.jembe.2007.09.003; Enriquez-Diaz M, 2009, AQUACULT INT, V17, P491, DOI 10.1007/s10499-008-9219-1; Ernande B, 2004, J EVOLUTION BIOL, V17, P342, DOI 10.1046/j.1420-9101.2003.00674.x; Fabioux C, 2005, AQUACULTURE, V250, P458, DOI 10.1016/j.aquaculture.2005.02.038; Fabioux C, 2004, BIOCHEM BIOPH RES CO, V315, P897, DOI 10.1016/j.bbrc.2004.01.145; Fabioux C, 2009, FEBS J, V276, P2566, DOI 10.1111/j.1742-4658.2009.06982.x; Farcy E, 2009, CELL STRESS CHAPERON, V14, P371, DOI 10.1007/s12192-008-0091-8; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Fleury E, 2012, MAR BIOTECHNOL, V14, P203, DOI 10.1007/s10126-011-9403-6; Fleury E, 2010, MAR BIOTECHNOL, V12, P326, DOI 10.1007/s10126-009-9227-9; Gate L, 1999, BIOMED PHARMACOTHER, V53, P169, DOI 10.1016/S0753-3322(99)80086-9; Gate L, 1998, IN VIVO, V12, P299; Gillooly JF, 2001, SCIENCE, V293, P2248, DOI 10.1126/science.1061967; Gonzalez M, 2005, BIOCHEM BIOPH RES CO, V338, P1089, DOI 10.1016/j.bbrc.2005.10.075; Hamdoun AM, 2003, BIOL BULL-US, V205, P160, DOI 10.2307/1543236; Han D, 2001, BIOCHEM J, V353, P411, DOI 10.1042/0264-6021:3530411; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hermes-Lima M., 2005, FUNCTIONAL METABOLIS, P319, DOI DOI 10.1002/047167558X.CH12; Huvet A, 2010, AQUACULTURE, V304, P95, DOI 10.1016/j.aquaculture.2010.03.022; Jo PG, 2008, COMP BIOCHEM PHYS C, V147, P460, DOI 10.1016/j.cbpc.2008.02.001; Kawabe S, 2012, MAR BIOTECHNOL, V14, P106, DOI 10.1007/s10126-011-9394-3; Koganezawa A., 1974, P 3 US JAP M AQ TOK, P29; Kraffe E, 2008, MAR BIOL, V156, P25, DOI 10.1007/s00227-008-1062-4; Latendresse JR, 2002, TOXICOL PATHOL, V30, P524, DOI 10.1080/01926230290105721; Lesser MP, 2006, ANNU REV PHYSIOL, V68, P253, DOI 10.1146/annurev.physiol.68.040104.110001; MARTOJA R, 1967, INITIATION TECHNIQUE; Miquel J, 1998, EXP GERONTOL, V33, P113, DOI 10.1016/S0531-5565(97)00060-0; MORI K, 1979, MAR BIOL, V53, P361, DOI 10.1007/BF00391619; Pamplona R, 2011, AM J PHYSIOL-REG I, V301, pR843, DOI 10.1152/ajpregu.00034.2011; Park MS, 2009, MAR BIOL RES, V5, P451, DOI 10.1080/17451000802626554; PERDUE J A, 1981, Journal of Shellfish Research, V1, P9; Pfaffl MW, 2001, NUCLEIC ACIDS RES, V29, DOI 10.1093/nar/29.9.e45; Pouvreau S, 2006, J SEA RES, V56, P156, DOI 10.1016/j.seares.2006.03.007; Royer J, 2008, AQUACULTURE, V277, P313, DOI 10.1016/j.aquaculture.2008.02.033; Salmon AB, 2001, EVOLUTION, V55, P1600, DOI 10.1111/j.0014-3820.2001.tb00679.x; Samain JF, 2007, AQUACULTURE, V268, P227, DOI 10.1016/j.aquaculture.2007.04.044; Samain JF, 2008, SUMMER MORTALITY PAC, P379; Stearns S. C., 1992, EVOLUTION LIFE HIST; Steele S, 1999, J MAR BIOL ASSOC UK, V79, P673, DOI 10.1017/S0025315498000836; Storey KB, 1996, BRAZ J MED BIOL RES, V29, P1715; Travers MA, 2008, FISH SHELLFISH IMMUN, V24, P400, DOI 10.1016/j.fsi.2007.10.001; van der Veer HW, 2006, J SEA RES, V56, P107, DOI 10.1016/j.seares.2006.03.005; Wang Y, 2001, EXP GERONTOL, V36, P1349, DOI 10.1016/S0531-5565(01)00095-X; Wiersma P, 2004, P ROY SOC B-BIOL SCI, V271, pS360, DOI 10.1098/rsbl.2004.0171; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zhang GF, 2012, NATURE, V490, P49, DOI 10.1038/nature11413 56 15 17 0 38 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1532-0456 COMP BIOCHEM PHYS C Comp. Biochem. Physiol. C-Toxicol. Pharmacol. JAN 2013 157 1 63 71 10.1016/j.cbpc.2012.10.004 9 Biochemistry & Molecular Biology; Endocrinology & Metabolism; Toxicology; Zoology Biochemistry & Molecular Biology; Endocrinology & Metabolism; Toxicology; Zoology 056EG WOS:000312470600008 23073513 2018-11-12 J Barry, MJ; Syal, S Barry, Michael J.; Syal, Shruti Metabolic responses of tadpoles to chemical predation cues HYDROBIOLOGIA English Article Tadpole; Predator; Kairomone; Respiration rate; Physiological costs PHENOTYPIC PLASTICITY; ANTIPREDATOR BEHAVIOR; INDUCIBLE DEFENSES; ANURAN TADPOLES; RISK-ASSESSMENT; LARVAL ANURANS; INDUCED STRESS; LIFE-HISTORY; ALARM CUES; COSTS Life-history theory predicts that predator-induced defences should incur fitness costs. In larval amphibians, the most frequently reported cost is reduced energy intake due to lower foraging rates; however, recent reports suggest that this trade-off may be uncoupled through morphological and physiological adaptations. Metabolism is a measure of energy expenditure and plasticity in respiration may potentially offset other costs of predator-induction. The aim of this study was to measure the indirect effects of dragonfly larvae on the respiration rate of tadpoles of the Arabian toad (Bufo arabicus) over time and at different predator concentrations. We performed two experiments. In the first experiment (time-response), we exposed tadpoles either to the indirect presence of odonate larvae or predator-free conditions and measured respiration rates 3, 5, 8, 11, 13, 15, 19 and 26 days after the start of the experiment. In the second experiment (dose-response), we used three levels of predator chemicals, equivalent to 1 predator per 10, 100 or 1,000 l plus controls. The respiration rate of predator-exposed tadpoles varied initially, but was 56.3% of controls after 26 days. In the dose-response experiment, the respiration rate of all predator-exposed tadpole groups was reduced by between 19.1 and 27.2% after 21 days. The study demonstrates a mechanism by which tadpoles may be able to adjust their physiology to partially offset the costs of lower energy intake due to predator avoidance. [Barry, Michael J.; Syal, Shruti] Sultan Qaboos Univ, Dept Biol, Muscat 123, Oman Barry, MJ (reprint author), Sultan Qaboos Univ, Dept Biol, POB 36, Muscat 123, Oman. mjbarry@squ.edu.om Sultan Qaboos University Internal Grant This study was supported by the Sultan Qaboos University Internal Grant. All experiments were conducted under guidelines permitted by the Sultan Qaboos University Animal Ethics Committee regulations. The authors thank Dr Derek Roberts and several anonymous reviewers for their suggestions that helped in greatly improving this manuscript. Alton LA, 2012, FUNCT ECOL, V26, P94, DOI 10.1111/j.1365-2435.2011.01900.x; Balletto E., 1985, Fauna of Saudi Arabia, V7, P318; Barry MJ, 2011, ECOTOX ENVIRON SAFE, V74, P918, DOI 10.1016/j.ecoenv.2010.12.014; Beckerman AP, 2007, OECOLOGIA, V152, P335, DOI 10.1007/s00442-006-0642-6; Benard MF, 2004, ANNU REV ECOL EVOL S, V35, P651, DOI 10.1146/annurev.ecolsys.35.021004.112426; Boonstra R, 1998, ECOL MONOGR, V68, P371, DOI 10.1890/0012-9615(1998)068[0371:TIOPIS]2.0.CO;2; Brown GE, 2006, BEHAV ECOL SOCIOBIOL, V61, P9, DOI 10.1007/s00265-006-0232-y; Dries R. R., 1979, KIELER MEERESFORSCH, V4, P310; Ferrari MCO, 2007, CHEMOECOLOGY, V17, P263, DOI 10.1007/s00049-007-0381-0; Ferrari MCO, 2010, CAN J ZOOL, V88, P698, DOI 10.1139/Z10-029; Fraker ME, 2008, J ANIM ECOL, V77, P638, DOI 10.1111/j.1365-2656.2008.01386.x; FUHRMAN FA, 1961, AM J PHYSIOL, V201, P231; Gervasi SS, 2008, FUNCT ECOL, V22, P100, DOI 10.1111/j.1365-2435.2007.01340.x; Gosner K. L., 1960, Herpetologica, V16, P183; HAYES JP, 1992, PHYSIOL ZOOL, V65, P604, DOI 10.1086/physzool.65.3.30157972; HELFMAN GS, 1989, BEHAV ECOL SOCIOBIOL, V24, P47, DOI 10.1007/BF00300117; Hernandez-Leon Santiago, 2005, P57; Holopainen IJ, 1997, J FISH BIOL, V50, P781, DOI 10.1111/j.1095-8649.1997.tb01972.x; Jara FG, 2008, AQUAT ECOL, V42, P503, DOI 10.1007/s10452-007-9110-6; Kats LB, 1998, ECOSCIENCE, V5, P361, DOI 10.1080/11956860.1998.11682468; Kehr A.I., 2009, Advanced Studies in Biology, V1, P85; Kiesecker JM, 1996, ANIM BEHAV, V52, P1237, DOI 10.1006/anbe.1996.0271; Kishida O, 2005, EVOL ECOL RES, V7, P619; Lampert W., 1984, IBP HDB, V17, P413; Laurila A, 1997, BEHAV ECOL SOCIOBIOL, V40, P329, DOI 10.1007/s002650050349; Laurila A, 2000, OIKOS, V88, P159, DOI 10.1034/j.1600-0706.2000.880118.x; Lawton J. H., 1979, S BRIT ECOLOGICAL SO, V20, P223; LIVELY CM, 1986, EVOLUTION, V40, P232, DOI 10.1111/j.1558-5646.1986.tb00466.x; McCarthy ID, 2000, J FISH BIOL, V57, P224, DOI 10.1111/j.1095-8649.2000.tb00788.x; McCollum SA, 1997, OECOLOGIA, V109, P615, DOI 10.1007/s004420050124; McIntyre PB, 2000, OECOLOGIA, V125, P301, DOI 10.1007/s004420000451; McPeek M. A., 2004, AM NAT, V163, P88; McPeek MA, 2001, ECOLOGY, V82, P1535, DOI 10.2307/2679798; Peacor SD, 2002, ECOL LETT, V5, P77, DOI 10.1046/j.1461-0248.2002.00287.x; Puttlitz MH, 1999, ETHOLOGY, V105, P449, DOI 10.1046/j.1439-0310.1999.00416.x; Quinn GP, 2002, EXPT DESIGN DATA ANA; Relyea RA, 2002, AM NAT, V159, P272, DOI 10.1086/338540; Relyea RA, 2004, ECOL LETT, V7, P869, DOI 10.1111/j.1461-0248.2004.00645.x; Relyea RA, 2002, ECOLOGY, V83, P1953, DOI 10.2307/3071778; Relyea RA, 2001, ECOLOGY, V82, P523, DOI 10.1890/0012-9658(2001)082[0523:MABPOL]2.0.CO;2; Richardson JML, 2001, BEHAV ECOL, V12, P51, DOI 10.1093/oxfordjournals.beheco.a000378; Rowe CL, 1998, PHYSIOL ZOOL, V71, P27, DOI 10.1086/515885; Schoeppner NM, 2008, OECOLOGIA, V154, P743, DOI 10.1007/s00442-007-0862-4; SIH A, 1992, AM NAT, V139, P1052, DOI 10.1086/285372; SKELLY DK, 1992, ECOLOGY, V73, P704, DOI 10.2307/1940779; Slos S, 2008, FUNCT ECOL, V22, P637, DOI 10.1111/j.1365-2435.2008.01424.x; Smith ME, 1997, ENVIRON TOXICOL CHEM, V16, P1229, DOI 10.1897/1551-5028(1997)016<1229:ARRWFT>2.3.CO;2; Steiner U.K., 2009, PLOS ONE, P4, DOI DOI 10.1371/J0URNAL.P0NE.0006160.PMID:19582147; Steiner UK, 2007, ANIM BEHAV, V74, P1473, DOI 10.1016/j.anbehav.2007.02.016; Stibor H, 1998, LIMNOL OCEANOGR, V43, P997, DOI 10.4319/lo.1998.43.5.0997; Stoks R, 2005, J ANIM ECOL, V74, P708, DOI 10.1111/j.1365-2656.2005.00969.x; Stoks R, 2001, OECOLOGIA, V127, P222, DOI 10.1007/s004420000595; Takahara T, 2008, BEHAV ECOL SOCIOBIOL, V63, P235, DOI 10.1007/s00265-008-0654-9; TOLLRIAN R, 1993, J PLANKTON RES, V15, P1309, DOI 10.1093/plankt/15.11.1309; Tollrian R, 1999, ECOLOGY EVOLUTION IN; Van Buskirk J, 2002, ECOLOGY, V83, P1580, DOI 10.2307/3071977; Van Buskirk J, 2002, BEHAV ECOL, V13, P526, DOI 10.1093/beheco/13.4.526; Victor R, 2004, LIMNOL DEV COUNTR, V4, P219; Voutilainen A, 2011, MAR FRESHW BEHAV PHY, V44, P239, DOI 10.1080/10236244.2011.622090; Wisenden BD, 2000, PHILOS T ROY SOC B, V355, P1205, DOI 10.1098/rstb.2000.0668; Wisenden BD, 2009, BEHAVIOUR, V146, P1423, DOI 10.1163/156853909X440998 61 12 12 2 86 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0018-8158 HYDROBIOLOGIA Hydrobiologia JAN 2013 700 1 267 276 10.1007/s10750-012-1236-4 10 Marine & Freshwater Biology Marine & Freshwater Biology 050SC WOS:000312073300022 2018-11-12 J Crysel, LC; Crosier, BS; Webster, GD Crysel, Laura C.; Crosier, Benjamin S.; Webster, Gregory D. The Dark Triad and risk behavior PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Dark Triad; Impulsivity; Sensation-seeking; Delay-discounting; Gambling LIFE-HISTORY THEORY; SELF-ESTEEM; THREATENED EGOTISM; PERSONALITY-TRAITS; CONSTRUCT-VALIDITY; DECISION-MAKING; TASK BART; AGGRESSION; NARCISSISM; DELAY The Dark Triad traits-Machiavellianism, narcissism, and psychopathy-are theorized to facilitate short-term, exploitative social tactics. Thus, the Dark Triad traits should be positively related to (a) similar short-term-focused traits such as impulsivity and sensation-seeking, and (b) risky behaviors. In two studies (N > 1400), we examined the relationships among the Dark Triad traits and impulsivity and sensation-seeking. In Study 2, we incorporated risk behaviors, including blackjack betting and temporal discounting of money. Both studies showed positive relationships among the Dark Triad traits and impulsivity and sensation-seeking. Study 2 showed positive relationships among the Dark Triad traits, blackjack betting, and steeper temporal discounting. An experimentally manipulated ego threat in Study 2 marginally moderated the narcissism-discounting relationship: ego-threatened participants had a significantly positive relationship, whereas those who were not threatened showed no relationship. We discuss implications of the Dark Triad traits for understanding risk behavior. (C) 2012 Elsevier Ltd. All rights reserved. [Crysel, Laura C.; Crosier, Benjamin S.; Webster, Gregory D.] Univ Florida, Dept Psychol, Gainesville, FL 32611 USA Crysel, LC (reprint author), Univ Florida, Dept Psychol, POB 112250, Gainesville, FL 32611 USA. crysel@ufl.edu Aiken L.S., 1991, MULTIPLE REGRESSION; [Anonymous], 2010, INQ 3 0 4 0 COMP SOF; Baumeister RF, 1996, PSYCHOL REV, V103, P5, DOI 10.1037/0033-295X.103.1.5; Buhrmester M, 2011, PERSPECT PSYCHOL SCI, V6, P3, DOI 10.1177/1745691610393980; Bushman B. J., 2011, HDB NARCISSISM NARCI, P319; Bushman BJ, 1998, J PERS SOC PSYCHOL, V75, P219, DOI 10.1037//0022-3514.75.1.219; Bushman BJ, 2009, J PERS, V77, P427, DOI 10.1111/j.1467-6494.2008.00553.x; Campbell WK, 2005, PERS SOC PSYCHOL B, V31, P1358, DOI 10.1177/0146167205274855; Cohen J, 1988, STAT POWER ANAL BEHA; Holt DD, 2003, BEHAV PROCESS, V64, P355, DOI 10.1016/S0376-6357(03)00141-4; Hunt MK, 2005, ASSESSMENT, V12, P416, DOI 10.1177/1073191105278740; Inzlicht M, 2010, J PERS SOC PSYCHOL, V99, P467, DOI 10.1037/a0018951; Jakobwitz S, 2006, PERS INDIV DIFFER, V40, P331, DOI 10.1016/j.paid.2005.07.006; Jonason P. K., 2011, J METHODS MEASUREMEN, V2, P28, DOI DOI 10.2458/AZU_; Jonason PK, 2012, REV GEN PSYCHOL, V16, P192, DOI 10.1037/a0027914; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2010, PERS INDIV DIFFER, V49, P611, DOI 10.1016/j.paid.2010.05.031; Jonason PK, 2010, PSYCHOL ASSESSMENT, V22, P420, DOI 10.1037/a0019265; Jones D.N., 2012, 13 ANN M SOC PERS SO; Jones DN, 2011, PERS INDIV DIFFER, V51, P679, DOI 10.1016/j.paid.2011.04.011; Jones DN, 2010, SOC PSYCHOL PERS SCI, V1, P12, DOI 10.1177/1948550609347591; Kirkpatrick LA, 2002, J PERS SOC PSYCHOL, V82, P756, DOI 10.1037//0022-3514.82.5.756; Konrath S, 2006, PSYCHOL SCI, V17, P995, DOI 10.1111/j.1467-9280.2006.01818.x; Lakey CE, 2008, J BEHAV DECIS MAKING, V21, P113, DOI 10.1002/bdm.582; Lejuez CW, 2002, J EXP PSYCHOL-APPL, V8, P75, DOI 10.1037//1076-898X.8.2.75; Levin I. P., 2006, J BEHAV DECIS MAKING, V1, P29; McDaniel SR, 2008, PERS INDIV DIFFER, V44, P1528, DOI 10.1016/j.paid.2008.01.009; Myerson J, 2001, J EXP ANAL BEHAV, V76, P235, DOI 10.1901/jeab.2001.76-235; Ostaszewski P, 1996, EUR J PERSONALITY, V10, P161, DOI 10.1002/(SICI)1099-0984(199609)10:3<161::AID-PER259>3.3.CO;2-I; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; Petrocelli JV, 2009, J EXP SOC PSYCHOL, V45, P1312, DOI 10.1016/j.jesp.2009.08.004; RACHLIN H, 1990, PSYCHOL SCI, V1, P294, DOI 10.1111/j.1467-9280.1990.tb00220.x; RACHLIN H, 1992, J EXP ANAL BEHAV, V57, P407, DOI 10.1901/jeab.1992.57-407; RASKIN R, 1988, J PERS SOC PSYCHOL, V54, P890, DOI 10.1037//0022-3514.54.5.890; Richards JB, 1999, J EXP ANAL BEHAV, V71, P121, DOI 10.1901/jeab.1999.71-121; Tamborski M., 2011, HDB NARCISSISM NARCI, P133, DOI [10.1002/9781118093108.ch11, DOI 10.1002/9781118093108.CH11]; Twenge JM, 2003, PERS SOC PSYCHOL B, V29, P261, DOI 10.1177/0146167202239051; Vazire S, 2006, PERS SOC PSYCHOL REV, V10, P154, DOI 10.1207/s15327957pspr1002_4; Vernon PA, 2008, PERS INDIV DIFFER, V44, P445, DOI 10.1016/j.paid.2007.09.007; Webster G. D., J RES PERSO IN PRESS; Wilson VB, 2011, J CHILD PSYCHOL PSYC, V52, P256, DOI 10.1111/j.1469-7610.2010.02347.x; ZUCKERMAN M, 1993, J PERS SOC PSYCHOL, V65, P757, DOI 10.1037/0022-3514.65.4.757; Zuckerman M., 1994, BEHAV EXPRESSIONS BI 43 43 47 2 76 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. JAN 2013 54 1 35 40 10.1016/j.paid.2012.07.029 6 Psychology, Social Psychology 038OE WOS:000311183200007 2018-11-12 J Hernandez, JE; Bolanos, JA; Palazon, JL; Hernandez, G; Lira, C; Baeza, JA Hernandez, J. E.; Bolanos, J. A.; Palazon, J. L.; Hernandez, G.; Lira, C.; Antonio Baeza, J. The Enigmatic Life History of the Symbiotic Crab Tunicotheres moseri (Crustacea, Brachyura, Pinnotheridae): Implications for Its Mating System and Population Structure BIOLOGICAL BULLETIN English Article SPONGE-DWELLING SHRIMPS; URCHIN TETRAPYGUS-NIGER; EXTENDED PARENTAL CARE; ACTIVE BROOD CARE; HOST USE PATTERN; PEA CRAB; LIOPETROLISTHES-MITRA; LARVAL DEVELOPMENT; DECAPODA; BEHAVIOR Resource-monopolization theory predicts the adoption of a solitary habit in species using scarce; discrete, and small refuges. Life-history theory suggests that temporarily stable parental dwellings favor extended parental care in species that brood embryos. We tested these two predictions with the symbiotic crab Tunicotheres moseri. This species exhibits abbreviated development and inhabits the atrial chamber of the scarce, structurally simple, long-lived, and relatively small ascidian Phalusia nigra in the Caribbean. These host characteristics should favor a solitary habit and extended parental care (EPC) in T. moseri. As predicted, males and females of T. moseri inhabited ascidians solitarily with greater frequency than expected by chance alone. The male-female association pattern and reverse sexual dimorphism (males < females) additionally suggests a promiscuous "pure-search" mating system in T. moseri. Also in agreement with theoretical considerations, T. moseri displays EPC; in addition to embryos, females naturally retain larval stages, megalopae, and juveniles within their brooding pouches. This is the first record of EPC in a symbiotic crab and the second confirmed record of EPC in a marine brachyuran crab. This study supports predictions central to resource-monopolization and life-history theories. [Hernandez, J. E.; Bolanos, J. A.; Palazon, J. L.; Hernandez, G.; Lira, C.] Univ Oriente, Grp Invest Carcinol, Escuela Ciencias Aplicadas Mar, Nucleo Nueva Esparta, Isla Margarita, Venezuela; [Antonio Baeza, J.] Smithsonian Marine Stn, Ft Pierce, FL USA; [Antonio Baeza, J.] Old Dominion Univ, Dept Biol Sci, Norfolk, VA 23435 USA; [Antonio Baeza, J.] Univ Catolica Norte, Dept Biol Marina, Fac Ciencias Mar, Larrondo 1281, Coquimbo, Chile Baeza, JA (reprint author), Smithsonian Marine Stn, 701 Seaway Dr, Ft Pierce, FL USA. baezaa@si.edu Research Council of the Universidad de Oriente, Nncleo Nueva Esparta JEH deeply thanks members of the Grupo de Investigacion en Carcinologia at Universidad de Oriente, Miele Nueva Esparta, for their invaluable support during many stages of this study. Thanks to the Research Council of the Universidad de Oriente, Nncleo Nueva Esparta, for funding. This project was done in partial fulfillment of requirements for the Master in Science degree at the Instituto Oceanografico de Venezuela. We greatly thank Rebbeca Squibbs for comments and careful editing of the English in this manuscript. Many thanks to Dr. Maria Byrne and three anonymous reviewers whose comments substantially improved this manuscript. This is contribution number 899 of the Smithsonian Marine Station at Fort Pierce. ADAMS J, 1985, CRUSTACEANA, V48, P188, DOI 10.1163/156854085X00882; Ambrosio LJ, 2011, SYMBIOSIS, V53, P53, DOI 10.1007/s13199-011-0112-8; Baeza JA, 2011, J EXP MAR BIOL ECOL, V407, P41, DOI 10.1016/j.jembe.2011.07.011; Asakura A., 2009, DECAPOD CRUSTACEAN P, V18, P121; Asama H., 2002, J MAR BIOL ASSOC UK, V2, P1; Baeza JA, 2010, BIOL BULL-US, V219, P151, DOI 10.1086/BBLv219n2p151; Baeza JA, 2008, MAR BIOL, V153, P387, DOI 10.1007/s00227-007-0815-9; Baeza J. Antonio, 2007, P249; Baeza JA, 2002, FUNCT ECOL, V16, P241, DOI 10.1046/j.1365-2435.2002.00616.x; Baeza JA, 2000, J MAR BIOL ASSOC UK, V80, P639, DOI 10.1017/S0025315400002460; Baeza JA, 2003, MAR BIOL, V142, P93, DOI 10.1007/s00227-002-0927-1; Baeza JA, 2001, J MAR BIOL ASSOC UK, V81, P69, DOI 10.1017/S0025315401003411; Baeza Juan A., 1999, Revista de Biologia Marina y Oceanografia, V34, P303; Bauer R.T., 2004, REMARKABLE SHRIMPS; Bauer RT, 2001, ETHOLOGY, V107, P185, DOI 10.1046/j.1439-0310.2001.00636.x; Bolanos J, 2004, SCI MAR, V68, P373, DOI 10.3989/scimar.2004.68n3373; Bonilla J., 1974, LAGENA, V34, P3; Brown J. L., 1964, Wilson Bulletin, V76, P160; Bruyn C., 2009, MAR ECOL PROG SER, V375, P173; Byrne M, 2003, BIOL BULL-US, V205, P285, DOI 10.2307/1543292; Campos E, 1996, J CRUSTACEAN BIOL, V16, P556, DOI 10.2307/1548747; CHRISTENSEN AM, 1958, BIOL BULL, V114, P146, DOI 10.2307/1538845; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Conner SL, 2010, INVERTEBR BIOL, V129, P344, DOI 10.1111/j.1744-7410.2010.00210.x; de Bary A., 1879, ERSCHEINUNG SYMBIOS; DIESEL R, 1992, ANIM BEHAV, V43, P803, DOI 10.1016/S0003-3472(05)80203-9; Duffy J. Emmett, 2007, P387; Duffy JE, 2000, EVOLUTION, V54, P503; DUFFY JE, 1993, MAR BIOL, V116, P459, DOI 10.1007/BF00350063; ELLIOTT JM, 1983, FRESHWATER BIOL ASS, V25; Fernandez M, 2003, MAR BIOL, V142, P559, DOI 10.1007/s00227-002-0965-8; Forster C, 2001, J CRUSTACEAN BIOL, V21, P606, DOI 10.1651/0278-0372(2001)021[0606:ABCITA]2.0.CO;2; GOODBODY I, 1960, NATURE, V185, P704, DOI 10.1038/185704a0; HAINES CMC, 1994, J SHELLFISH RES, V13, P5; Hernandez Jesus E., 2008, Boletin del Centro de Investigaciones Biologicas Universidad del Zulia, V42, P135; KNOWLTON N, 1980, EVOLUTION, V34, P161, DOI 10.1111/j.1558-5646.1980.tb04802.x; McDermott JJ, 2005, P BIOL SOC WASH, V118, P742, DOI 10.2988/0006-324X(2005)118[742:BOTBCP]2.0.CO;2; McLaughlin PA, 1980, COMP MORPHOLOGY RECE; Ocampo E. H., 2010, HELGOLAND MAR RES, V5, P347; Ocampo EH, 2012, J EXP MAR BIOL ECOL, V429, P36, DOI 10.1016/j.jembe.2012.06.009; PEARCE JB, 1966, PAC SCI, V20, P3; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; RIISGARD HU, 1988, MAR ECOL PROG SER, V47, P129, DOI 10.3354/meps047129; Rosbaczylo N., 1993, P BIOL SOC WASH, V106, P666; Schmitt W.L., 1973, CRUSTACEORUM CATALOG, P32; SEED R, 1969, J ZOOL, V158, P413; Shuster S. M., 2003, MATING SYSTEMS STRAT; Sokal R. R., 1981, BIOMETRY; Thiel M, 1999, J CRUSTACEAN BIOL, V19, P60, DOI 10.2307/1549547; Thiel M, 2003, REV CHIL HIST NAT, V76, P205, DOI 10.4067/S0716-078X2003000200007; Thiel M, 2003, B MAR SCI, V72, P89; Thiel M, 2001, SYMBIOSIS, V30, P163; Vannini M., 1994, Ethology Ecology & Evolution Special Issue, V3, P137; Vermeij G.J., 1983, P311; Wear R. G., 1967, New Zealand Journal of Marine and Freshwater Research, V1, P482; Wilson K, 2002, SEX RATIOS: CONCEPTS AND RESEARCH METHODS, P48, DOI 10.1017/CBO9780511542053.004 56 8 8 2 23 MARINE BIOLOGICAL LABORATORY WOODS HOLE 7 MBL ST, WOODS HOLE, MA 02543 USA 0006-3185 BIOL BULL-US Biol. Bull. DEC 2012 223 3 278 290 10.1086/BBLv223n3p278 13 Biology; Marine & Freshwater Biology Life Sciences & Biomedicine - Other Topics; Marine & Freshwater Biology 068TR WOS:000313389600006 23264474 2018-11-12 J Schwartz, GT Schwartz, Gary T. Growth, Development, and Life History throughout the Evolution of Homo CURRENT ANTHROPOLOGY English Article SOUTH-AFRICAN AUSTRALOPITHECINES; CHIMPANZEES PAN-TROGLODYTES; DENTAL ENAMEL HYPOPLASIA; UPPER PALEOLITHIC CHILD; PAPIO-HAMADRYAS-ANUBIS; HISTOLOGICAL RECONSTRUCTION; FOSSIL HOMINIDS; MODERN HUMANS; BODY-SIZE; PERMANENT DENTITION For over a century, paleoanthropologists have listed the presence of prolonged periods of gestation, growth, and maturation, extremely short interbirth intervals, and early weaning among the key features that distinguish modern humans from our extant ape cousins. Exactly when and how this particular scheduling of important developmental milestones-termed a "life history profile"-came to characterize Homo sapiens is not entirely clear. Researchers have suggested that the modern human life history profile appeared either at the base of the hominin radiation (ca. 6 Ma), with the origins of the genus Homo (ca. 2.5 Ma), or much later in time, perhaps only with H. sapiens (ca. 200-100 Ka). In this short review, evidence of the pace of growth and maturation in fossil australopiths and early members of Homo is detailed to evaluate the merits of each of these scenarios. New data on the relationship between dental development and life history in extant apes are synthesized within the context of life history theory and developmental variation across modern human groups. Future directions, including new analytical tools for extracting more refined life history parameters as well as integrative biomechanical and developmental models of facial growth are also discussed. Arizona State Univ, Inst Human Origins, Tempe, AZ 85287 USA Schwartz, GT (reprint author), Arizona State Univ, Inst Human Origins, 900 S Cady Mall, Tempe, AZ 85287 USA. garys.iho@asu.edu Aiello LC, 2002, ANNU REV ANTHROPOL, V31, P323, DOI 10.1146/annurev.anthro.31.040402.085403; AIELLO LC, 1991, J HUM EVOL, V21, P397, DOI 10.1016/0047-2484(91)90114-B; Alemseged Z, 2006, NATURE, V443, P296, DOI 10.1038/nature05047; Anemone RL, 1996, AM J PHYS ANTHROPOL, V99, P119, DOI 10.1002/(SICI)1096-8644(199601)99:1<119::AID-AJPA7>3.0.CO;2-W; ANTON SC, 2003, PATTERNS GROWTH DEV, P219; Anton SC, 2012, CURR ANTHROPOL, V53, pS278, DOI 10.1086/667695; Asfaw B, 1999, SCIENCE, V284, P629, DOI 10.1126/science.284.5414.629; Bayle P, 2010, P NATL ACAD SCI USA, V107, P1338, DOI 10.1073/pnas.0914202107; Bayle P, 2009, AM J PHYS ANTHROPOL, V138, P493, DOI 10.1002/ajpa.21000; Bayle P, 2009, J HUM EVOL, V56, P66, DOI 10.1016/j.jhevol.2008.09.002; Berger LR, 2010, SCIENCE, V328, P195, DOI 10.1126/science.1184944; Beynon AD, 1998, J HUM EVOL, V35, P351, DOI 10.1006/jhev.1998.0234; BEYNON AD, 1991, AM J PHYS ANTHROPOL, V86, P189, DOI 10.1002/ajpa.1330860208; BEYNON AD, 1988, NATURE, V335, P509, DOI 10.1038/335509a0; Bogin B, 1997, YEARB PHYS ANTHROPOL, V40, P63; Bogin B, 1988, PATTERNS HUMAN GROWT; Bogin B., 2000, HUMAN BIOL EVOLUTION, P377; Boyde A, 1964, THESIS U LONDON; Boyde Alan, 1963, 3 INT M FOR IMM MED, P36; Bradley BJ, 2008, J ANAT, V212, P337, DOI 10.1111/j.1469-7580.2007.00840.x; Breuer T, 2009, AM J PRIMATOL, V71, P106, DOI 10.1002/ajp.20628; BROMAGE TG, 1985, NATURE, V317, P525, DOI 10.1038/317525a0; CONROY GC, 1995, AM J PHYS ANTHROPOL, V98, P121, DOI 10.1002/ajpa.1330980203; CONROY GC, 1991, AM J PHYS ANTHROPOL, V86, P243, DOI 10.1002/ajpa.1330860212; CONROY GC, 1991, AM J PHYS ANTHROPOL, V86, P137, DOI 10.1002/ajpa.1330860205; CONROY GC, 1991, AM J PHYS ANTHROPOL, V86, P121, DOI 10.1002/ajpa.1330860204; Coqueugniot H, 2007, PERIOD BIOL, V109, P379; de Leon MSP, 2008, P NATL ACAD SCI USA, V105, P13764, DOI 10.1073/pnas.0803917105; de Leon MSP, 2001, NATURE, V412, P534, DOI 10.1038/35087573; Dean C, 2001, NATURE, V414, P628, DOI 10.1038/414628a; Dean M. C., 1995, ASPECTS DENT BIOL PA, P239; Dean MC, 2006, P ROY SOC B-BIOL SCI, V273, P2799, DOI 10.1098/rspb.2006.3583; Dean MC, 2010, PHILOS T R SOC B, V365, P3397, DOI 10.1098/rstb.2010.0052; Dean M. Christopher, 2009, P101, DOI 10.1007/978-1-4020-9980-9_10; DEAN MC, 1987, J HUM EVOL, V16, P197, DOI 10.1016/0047-2484(87)90076-5; DEAN MC, 1993, AM J PHYS ANTHROPOL, V91, P401, DOI 10.1002/ajpa.1330910402; Deaner Robert O., 2003, P233; DEMENOCAL PB, 1995, SCIENCE, V270, P53, DOI 10.1126/science.270.5233.53; DeSilva JM, 2011, P NATL ACAD SCI USA, V108, P1022, DOI 10.1073/pnas.1003865108; Dirks W, 2003, AM J PRIMATOL, V61, P29, DOI 10.1002/ajp.10106; Dirks W, 1998, J HUM EVOL, V35, P411, DOI 10.1006/jhev.1997.0185; Dirks W, 2007, J HUM EVOL, V53, P309, DOI 10.1016/j.jhevol.2007.04.007; Dirks W, 2010, FOLIA PRIMATOL, V81, P207, DOI 10.1159/000321707; Godfrey Laurie R., 2002, P113; Godfrey LR, 2005, FOLIA PRIMATOL, V76, P77, DOI 10.1159/000083615; Godfrey LR, 2001, AM J PHYS ANTHROPOL, V114, P192, DOI 10.1002/1096-8644(200103)114:3<192::AID-AJPA1020>3.0.CO;2-Q; Guatelli-Steinberg D, 2005, P NATL ACAD SCI USA, V102, P14197, DOI 10.1073/pnas.0503108102; Guatelli-Steinberg D, 2009, EVOL ANTHROPOL, V18, P9, DOI 10.1002/evan.20190; Gurven M, 2006, P ROY SOC B-BIOL SCI, V273, P835, DOI 10.1098/rspb.2005.3380; Hamada Y, 1996, PRIMATES, V37, P279, DOI 10.1007/BF02381860; Hawkes K, 2003, AM J HUM BIOL, V15, P380, DOI 10.1002/ajhb.10156; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Holliday TW, 2012, CURR ANTHROPOL, V53, pS330, DOI 10.1086/667360; Humphrey LT, 2008, FOLIA PRIMATOL, V79, P197, DOI 10.1159/000113457; Humphrey LT, 2008, P NATL ACAD SCI USA, V105, P6834, DOI 10.1073/pnas.0711513105; Humphrey LT, 2010, SEMIN CELL DEV BIOL, V21, P453, DOI 10.1016/j.semcdb.2009.11.003; Janson Charles H., 1993, P57; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kelley J, 2012, INT J PRIMATOL, V33, P1332, DOI 10.1007/s10764-012-9607-2; Kelley J, 2010, P NATL ACAD SCI USA, V107, P1035, DOI 10.1073/pnas.0906206107; Kimbel WH, 1997, AM J PHYS ANTHROPOL, V103, P235, DOI 10.1002/(SICI)1096-8644(199706)103:2<235::AID-AJPA8>3.0.CO;2-S; Kimbel William H., 2009, P31, DOI 10.1007/978-1-4020-9980-9_4; Kimura T, 1996, PRIMATES, V37, P237, DOI 10.1007/BF02381856; Knott Cheryl D., 2009, P171; KUYKENDALL KL, 1992, AM J PHYS ANTHROPOL, V89, P379, DOI 10.1002/ajpa.1330890310; Kuzawa CW, 2012, CURR ANTHROPOL, V53, pS369, DOI 10.1086/667410; Lacruz RS, 2005, S AFR J SCI, V101, P567; LEAKEY LSB, 1964, NATURE, V202, P7, DOI 10.1038/202007a0; Leigh SR, 2001, EVOL ANTHROPOL, V10, P223, DOI 10.1002/evan.20002; Leigh SR, 1998, AM J PHYS ANTHROPOL, V107, P331; LEIGH SR, 2007, PRIMATES PERSPECTIVE, P396; Liversidge H., 2003, PATTERNS GROWTH DEV, P73; Macchiarelli R, 2006, NATURE, V444, P748, DOI 10.1038/nature05314; Mann AE, 1975, SOME PALEODEMOGRAPHI; McFarlin Shannon C., 2009, AM J PHYS ANTHR S, V138, P257; MCHENRY HM, 1992, AM J PHYS ANTHROPOL, V87, P407, DOI 10.1002/ajpa.1330870404; MCHENRY HM, 1994, J HUM EVOL, V27, P77, DOI 10.1006/jhev.1994.1036; McPherron SP, 2010, NATURE, V466, P857, DOI 10.1038/nature09248; Migliano AB, 2012, CURR ANTHROPOL, V53, pS359, DOI 10.1086/667694; Nettle D., 2010, P ROYAL SOC B, V278, P1721; NISSEN HW, 1945, GROWTH, V9, P265; NISSEN HW, 1964, AM J PHYS ANTHROPOL, V22, P285, DOI 10.1002/ajpa.1330220315; OGILVIE MD, 1989, AM J PHYS ANTHROPOL, V79, P25, DOI 10.1002/ajpa.1330790104; Pettitt PB, 2000, WORLD ARCHAEOL, V31, P351, DOI 10.1080/713781494; Pontzer H, 2012, CURR ANTHROPOL, V53, pS346, DOI 10.1086/667402; Potts R, 1996, SCIENCE, V273, P922, DOI 10.1126/science.273.5277.922; Potts R, 2012, CURR ANTHROPOL, V53, pS299, DOI 10.1086/667704; Rak Y, 2007, P NATL ACAD SCI USA, V104, P6568, DOI 10.1073/pnas.0606454104; Reid DJ, 1998, J HUM EVOL, V35, P427, DOI 10.1006/jhev.1998.0248; Richard AF, 2002, J ZOOL, V256, P421, DOI 10.1017/S0952836902000468; Robson SL, 2008, J ANAT, V212, P394, DOI 10.1111/j.1469-7580.2008.00867.x; Roff D. A., 2002, LIFE HIST EVOLUTION; Ross C, 1998, EVOL ANTHROPOL, V6, P54, DOI 10.1002/(SICI)1520-6505(1998)6:2<54::AID-EVAN3>3.3.CO;2-D; ROSS C, 1992, OECOLOGIA, V90, P383, DOI 10.1007/BF00317695; Rozzi FVR, 2004, NATURE, V428, P936, DOI 10.1038/nature02428; Ruff C, 2002, ANNU REV ANTHROPOL, V31, P211, DOI 10.1146/annurev.anthro.31.040402.085407; Ruff Christopher B., 1993, P234; RUVOLO M, 1994, AM J PHYS ANTHROPOL, V94, P89, DOI 10.1002/ajpa.1330940108; Sacher G.A., 1975, P417; SACHER GA, 1974, AM NAT, V108, P593, DOI 10.1086/282938; SACHER GA, 1978, GERONTOLOGIST, V18, P112, DOI 10.1093/geront/18.2.112; Sacher George A., 1959, LIFESPAN ANIMALS, V5, P115; Schultz A.H., 1949, ARCH JULIUS KLAUS ST, V24, P197; Schultz A. H., 1960, HUMAN GROWTH, P1; Schultz AH, 1935, AM J PHYS ANTHROPOL, V19, P489, DOI 10.1002/ajpa.1330190417; Schultz AH, 1940, CONTRIB EMBRYOL, V28, P3; Schwartz Gary T., 2000, P207; Schwartz Gary T., 2008, AM J PHYS ANTHR S, V135, P299; Schwartz GT, 2005, J HUM EVOL, V49, P702, DOI 10.1016/j.jhevol.2005.08.006; Schwartz GT, 2002, P NATL ACAD SCI USA, V99, P6124, DOI 10.1073/pnas.092685099; Smith B. Holly, 1993, P195; Smith B. Holly, 1994, Yearbook of Physical Anthropology, V37, P177; Smith BH, 2011, J HUM EVOL, V60, P34, DOI 10.1016/j.jhevol.2010.08.006; Smith B. Holly, 2000, P212, DOI 10.1017/CBO9780511542626.015; SMITH BH, 1995, ANNU REV ANTHROPOL, V24, P257, DOI 10.1146/annurev.an.24.100195.001353; SMITH BH, 1989, EVOLUTION, V43, P683, DOI 10.1111/j.1558-5646.1989.tb04266.x; SMITH BH, 1986, NATURE, V323, P327, DOI 10.1038/323327a0; SMITH RJ, 1995, J HUM EVOL, V29, P155, DOI 10.1006/jhev.1995.1051; Smith SL, 2004, AM J PHYS ANTHROPOL, V125, P105, DOI 10.1002/ajpa.10376; Smith TM, 2007, J HUM EVOL, V52, P201, DOI 10.1016/j.jhevol.2006.09.004; Smith TM, 2010, J HUM EVOL, V58, P363, DOI 10.1016/j.jhevol.2010.02.008; Smith TM, 2007, P NATL ACAD SCI USA, V104, P20220, DOI 10.1073/pnas.0707051104; Smith TM, 2008, J HUM EVOL, V54, P205, DOI 10.1016/j.jhevol.2007.09.020; Smith TM, 2007, P NATL ACAD SCI USA, V104, P6128, DOI 10.1073/pnas.0700747104; Smith TM, 2010, P NATL ACAD SCI USA, V107, P20923, DOI 10.1073/pnas.1010906107; Smith TM, 2006, J ANAT, V208, P99, DOI 10.1111/j.1469-7580.2006.00499.x; Smith TM, 2006, J ANAT, V208, P125, DOI 10.1111/j.1469-7580.2006.00500.x; Spencer M. A., 1995, THESIS STATE U NEW Y; Spencer MA, 1999, AM J PHYS ANTHROPOL, V108, P483, DOI 10.1002/(SICI)1096-8644(199904)108:4<483::AID-AJPA7>3.0.CO;2-L; Stearns S. C., 1992, EVOLUTION LIFE HIST; TRINKAUS E, 1990, MG PRIMATOL, V14, P153; TRINKAUS E, 1995, J ARCHAEOL SCI, V22, P121, DOI 10.1016/S0305-4403(95)80170-7; Trinkaus E, 2011, P NATL ACAD SCI USA, V108, P1267, DOI 10.1073/pnas.1018700108; Ungar PS, 2012, CURR ANTHROPOL, V53, pS318, DOI 10.1086/666700; Ungar Peter S., 2011, J HUM EVOL, V50, P78; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Willoughby David P., 1978, ALL GORILLAS; WINKLER LA, 1991, AM J PHYS ANTHROPOL, V86, P255, DOI 10.1002/ajpa.1330860213; Wood B, 1999, SCIENCE, V284, P65, DOI 10.1126/science.284.5411.65; Wood B, 2008, J ANAT, V212, P354, DOI 10.1111/j.1469-7580.2008.00871.x; Zihlman A, 2004, P NATL ACAD SCI USA, V101, P10541, DOI 10.1073/pnas.0402635101 142 45 46 1 97 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0011-3204 1537-5382 CURR ANTHROPOL Curr. Anthropol. DEC 2012 53 6 S395 S408 10.1086/667591 14 Anthropology Anthropology 069AI WOS:000313406900011 2018-11-12 J Mazzoni, R; Iglesias-Rios, R Mazzoni, Rosana; Iglesias-Rios, Ricardo Movement patterns of stream-dwelling fishes from Mata Atlantica, Southeast Brazil REVISTA DE BIOLOGIA TROPICAL English Article migration; home-range; life history; Characins; Siluroidei; Brazil POPULATION-DYNAMICS; NEOTROPICAL STREAM; ECOLOGY PARADIGM; TROPICAL RIVER; RAIN-FOREST; BODY-SIZE; ASSEMBLAGE; RIO; ABUNDANCE; DAM The identification of mechanisms of spatial-temporal variation, obtained from the quantification of natural populations, is a central topic of ecological research. Despite its importance to life-history theory, as well as to conservation and management of natural populations, no studies concerning movement patterns and home range of small stream-dwelling fishes from Brazilian rain forests are known. In the present study we aimed to describe the longitudinal pattern of long distance movement as well as local patterns of short movement (daily home-range) of fishes from a Mata Atlantica stream from Southeast Brazil. We gathered information about movement dynamic in order to discuss the relationship between swimming ability, fish morphology and home range. Long distance movement data were obtained in a mark-recapture experiment held in the field between June and September - 2008, on five sites along the Ubatiba stream. For this study, we had one day to mark fishes, on June-19, and 14 events for recapture. Considering the ten species that inhabit the study area, our study showed that four species: Astyanax janeiroensis, Astyanax hastatus, Parotocinclus maculicauda and Pimelodella lateristriga, moved at least 6 000m in 60 days. The other six species did not present long distance movements, as they were recaptured in the same site 90 days after being marked. For short distance study, movement data were obtained in one mark-recapture experiment held in a 100m long site subdivided into five 20m stretches where fishes were marked with different elastomer colours. We marked 583 specimens that after recapture showed two groups of different movement patterns. The first group was called "Long Movement Group" and the second one was called "Short Movement Group". The Long Movement Group showed, on average, 89.8% of moving fishes and 10.2% of non moving fishes, against 21.3% and 78.7%, respectively, for the Short Movement Group. It was concluded that fish movement could explain the previously mentioned community stability, and that it is correlated to specific morphological attributes. Rev. Biol. Trop. 60 (4): 1837-1846. Epub 2012 December 01. [Mazzoni, Rosana] Univ Estado Rio de Janeiro, Lab Ecol Peixes, Dept Ecol, Inst Biol Roberto Alcantara Gomes, BR-20550013 Rio De Janeiro, RJ, Brazil; [Iglesias-Rios, Ricardo] Univ Fed Rio de Janeiro, Inst Biol, Dept Ecol, BR-68020 Rio De Janeiro, RJ, Brazil Mazzoni, R (reprint author), Univ Estado Rio de Janeiro, Lab Ecol Peixes, Dept Ecol, Inst Biol Roberto Alcantara Gomes, Av Sao Francisco Xavier 524, BR-20550013 Rio De Janeiro, RJ, Brazil. mazzoni@uerj.br; rir@biologia.ufrj.br Iglesias-Rios, Ricardo/C-1794-2013; Mazzoni, Rosana/O-7241-2015 Iglesias-Rios, Ricardo/0000-0002-6133-5045; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico - CNPq, Brazil [47086/2008-3, 301433/2007-0] We acknowledge to the staff of Laboratorio de Ecologia de Peixes/Universidade do Estado do Rio de Janeiro for helping in the field work. To Javier Lobon-Cervia (MNHN/CSIC - Madrid) for the comments in the early draft of the manuscript. This research was supported by Conselho Nacional de Desenvolvimento Cientifico e Tecnologico - CNPq, Brazil (47086/2008-3 and 301433/2007-0). Agostinho Angelo Antonio, 2003, P19; Alves CBM, 2007, NEOTROP ICHTHYOL, V5, P233, DOI 10.1590/S1679-62252007000200019; Alves CBM, 2007, NEOTROP ICHTHYOL, V5, P229, DOI 10.1590/S1679-62252007000200018; Antonio RR, 2007, NEOTROP ICHTHYOL, V5, P177, DOI 10.1590/S1679-62252007000200012; Arrington DA, 2003, J FISH BIOL, V63, P442, DOI 10.1046/j.1095-8649.2003.00167.x; Casatti L, 2006, NEOTROP ICHTHYOL, V4, P203, DOI 10.1590/S1679-62252006000200006; COPP GH, 1993, J FISH BIOL, V43, P229; Costa W.J.E.M., 1984, ATLANTICA RIO GRANDE, V7, P65; Downing JA, 2006, LIMNOL OCEANOGR, V51, P2388, DOI 10.4319/lo.2006.51.5.2388; Fernandez DR, 2007, NEOTROP ICHTHYOL, V5, P215, DOI 10.1590/S1679-62252007000200016; Goulding M., 1980, FISHES FOREST EXPLOR; GOWAN C, 1994, CAN J FISH AQUAT SCI, V51, P2626, DOI 10.1139/f94-262; Granado-Lorencio C, 2005, ECOGRAPHY, V28, P515, DOI 10.1111/j.0906-7590.2005.04176.x; GROSSMAN GD, 1982, AM NAT, V119, P611, DOI 10.1086/283939; Hansen A., 2005, BEHAV ECOL, V16, P240; Haskell JP, 2002, NATURE, V418, P527, DOI 10.1038/nature00840; HUEY RB, 1981, ECOLOGY, V62, P991, DOI 10.2307/1936998; Lobon-Cervia J, 2004, OIKOS, V105, P641, DOI 10.1111/j.0030-1299.2004.12989.x; Lucas MC, 2001, MIGRATION FRESHWATER; Martin-Smith KM, 1999, PHILOS T ROY SOC B, V354, P1803, DOI 10.1098/rstb.1999.0522; Mazzoni R, 2000, ECOGRAPHY, V23, P588, DOI 10.1034/j.1600-0587.2000.230510.x; Mazzoni R, 2006, BRAZ ARCH BIOL TECHN, V49, P249, DOI 10.1590/S1516-89132006000300010; Mazzoni R., 2005, Braz. J. Biol., V65, P643, DOI 10.1590/S1519-69842005000400012; MAZZONI R., 2002, Braz. J. Biol., V62, P171, DOI 10.1590/S1519-69842002000100019; Mazzoni R., 2000, Revista Brasileira de Biologia, V60, P205, DOI 10.1590/S0034-71082000000200003; Mazzoni R, 2004, ECOL FRESHW FISH, V13, P231, DOI 10.1111/j.1600-0633.2004.00062.x; Mazzoni R, 2002, J FISH BIOL, V61, P1606, DOI 10.1006/jfbi.2002.2178; McMahon TE, 2006, ECOL FRESHW FISH, V15, P200, DOI 10.1111/j.1600-0633.2006.00130.x; MENEZES M. S., 1994, REV BRAS BIOL, V54, P503; Nathan R, 2008, P NATL ACAD SCI USA, V105, P19052, DOI 10.1073/pnas.0800375105; Nathan R, 2008, P NATL ACAD SCI USA, V105, P19050, DOI 10.1073/pnas.0808918105; Okun N, 2005, ECOL FRESHW FISH, V14, P139, DOI 10.1111/j.1600-0633.2005.00087.x; Ostrand KG, 2002, ECOL FRESHW FISH, V11, P137, DOI 10.1034/j.1600-0633.2002.00005.x; Polis G. A., 2004, FOOD WEBS LANDSCAPE; Reis RE, 2003, CHECK LIST FRESHWATE; Rezende CF, 2010, REV BIOL TROP, V58, P1479; SAUNDERS RL, 1964, J FISH RES BOARD CAN, V21, P27, DOI 10.1139/f64-004; SCHLOSSER IJ, 1991, BIOSCIENCE, V41, P704, DOI 10.2307/1311765; Schrank AJ, 2004, CAN J FISH AQUAT SCI, V61, P1528, DOI 10.1139/F04-097; Schuck Howard A., 1945, TRANS AMER FISH SOC, V73, P209, DOI 10.1577/1548-8659(1943)73[209:SPDGAM]2.0.CO;2; Skyfield JP, 2008, ECOL FRESHW FISH, V17, P219, DOI 10.1111/j.1600-0633.2007.00273.x; Tejerina-Garro FL, 2010, NEOTROP ICHTHYOL, V8, P145, DOI 10.1590/S1679-62252010005000005; Winemiller KO, 1998, J FISH BIOL, V53, P267, DOI 10.1006/jfbi.1998.0832; WINEMILLER KO, 1991, ECOL MONOGR, V61, P343, DOI 10.2307/2937046; Woolnough DA, 2009, ECOL FRESHW FISH, V18, P83, DOI 10.1111/j.1600-0633.2008.00326.x; WOOTTON JT, 1992, ENVIRON BIOL FISH, V35, P311, DOI 10.1007/BF00001899; Wootton R.J., 1998, ECOLOGY TELEOST FISH; ZIPPIN CALVIN, 1958, JOUR WILDLIFE MANAGEMENT, V22, P82, DOI 10.2307/3797301 48 4 4 0 13 REVISTA DE BIOLOGIA TROPICAL SAN JOSE UNIVERSIDAD DE COSTA RICA CIUDAD UNIVERSITARIA, SAN JOSE, 00000, COSTA RICA 0034-7744 REV BIOL TROP Rev. Biol. Trop. DEC 2012 60 4 1837 1846 10 Biology Life Sciences & Biomedicine - Other Topics 083DZ WOS:000314444200035 23342532 DOAJ Gold 2018-11-12 J Ruger, N; Wirth, C; Wright, SJ; Condit, R Rueger, Nadja; Wirth, Christian; Wright, S. Joseph; Condit, Richard Functional traits explain light and size response of growth rates in tropical tree species ECOLOGY English Article adult stature; Barro Colorado Island; leaf area; leaf nutrient concentration; life-history theory; maximum height; Panama; plasticity; seed mass; shade tolerance; wood density RAIN-FOREST TREES; WOOD DENSITY; INTERSPECIFIC VARIATION; NEOTROPICAL FORESTS; ECONOMICS SPECTRUM; DEMOGRAPHIC RATES; SHADE TOLERANCE; GOOD PREDICTORS; PLANT TRAITS; LIFE-HISTORY Relationships between functional traits and average or potential demographic rates have provided insight into the functional constraints and trade-offs underlying life-history strategies of tropical tree species. We have extended this framework by decomposing growth rates of similar to 130 000 trees of 171 Neotropical tree species into intrinsic growth and the response of growth to light and size. We related these growth characteristics to multiple functional traits (wood density, adult stature, seed mass, leaf traits) in a hierarchical Bayesian model that accounted for measurement error and intraspecific variability of functional traits. Wood density was the most important trait determining all three growth characteristics. Intrinsic growth rates were additionally strongly related to adult stature, while all traits contributed to light response. Our analysis yielded a predictive model that allows estimation of growth characteristics for rare species on the basis of a few easily measurable morphological traits. [Rueger, Nadja; Wirth, Christian] Univ Leipzig, AG Spezielle Bot & Funkt Biodiversitat, D-04103 Leipzig, Germany; [Rueger, Nadja; Wright, S. Joseph; Condit, Richard] Smithsonian Trop Res Inst, Balboa Ancon, Panama Ruger, N (reprint author), Univ Leipzig, AG Spezielle Bot & Funkt Biodiversitat, Johannisallee 21-23, D-04103 Leipzig, Germany. nadja.rueger@uni-leipzig.de Ruger, Nadja/J-6393-2015; Wright, Stuart/M-3311-2013 Ruger, Nadja/0000-0003-2371-4172; Wright, Stuart/0000-0003-4260-5676 Deutsche Forschungsgemeinschaft DFG [RU 1536/2-1]; Center for Tropical Forest Science (CTFS); U.S. National Science Foundation [0948585]; John D. and Catherine D. McArthur Foundation; Smithsonian Tropical Research Institute; F. H. Levinson Fund We thank Jens Doleschal and the Center for Information Services and High Performance Computing, Technische Universitat Dresden, for the parallelization of the R code and provision of computing resources. We also thank Karin Nadrowksi and Gerald van den Boogaart for statistical advice, John Kress for providing the phylogenetic tree, and Bruno Herault and Timothy Paine for helpful comments. N. Ruger was funded by research grants from Deutsche Forschungsgemeinschaft DFG (RU 1536/2-1) and the Center for Tropical Forest Science (CTFS). The BCI plot has been made possible through the support of the U.S. National Science Foundation (most recently, grant no. 0948585 to S. P. Hubbell), the John D. and Catherine D. McArthur Foundation, and the Smithsonian Tropical Research Institute. Functional trait data were funded by the F. H. Levinson Fund. We thank the dozens of field assistants and botanists who have collected data in the BCI plot over the past 30 years. Baker TR, 2009, BIOGEOSCIENCES, V6, P297, DOI 10.5194/bg-6-297-2009; Baraloto C, 2010, ECOL LETT, V13, P1338, DOI 10.1111/j.1461-0248.2010.01517.x; Chave J, 2004, PHILOS T ROY SOC B, V359, P409, DOI 10.1098/rstb.2003.1425; Chave J, 2009, ECOL LETT, V12, P351, DOI 10.1111/j.1461-0248.2009.01285.x; Clark DA, 1999, ECOL APPL, V9, P981; Clark JS, 2007, ECOL APPL, V17, P1942, DOI 10.1890/06-1039.1; Clark JS, 2005, ECOL LETT, V8, P2, DOI 10.1111/j.1461-0248.2004.00702.x; Coley PD, 1996, ANNU REV ECOL SYST, V27, P305, DOI 10.1146/annurev.ecolsys.27.1.305; COLEY PD, 1983, ECOL MONOGR, V53, P209, DOI 10.2307/1942495; CONDIT R, 1993, FOREST ECOL MANAG, V62, P107, DOI 10.1016/0378-1127(93)90045-O; CONDIT R., 1998, TROPICAL FOREST CENS; Dalling JW, 2001, ECOLOGY, V82, P933; Daws MI, 2005, FUNCT ECOL, V19, P874, DOI 10.1111/j.1365-2435.2005.01034.x; Diniz JAF, 1998, EVOLUTION, V52, P1247, DOI 10.1111/j.1558-5646.1998.tb02006.x; Falster DS, 2011, J ECOL, V99, P148, DOI 10.1111/j.1365-2745.2010.01735.x; Fan ZX, 2012, J ECOL, V100, P732, DOI 10.1111/j.1365-2745.2011.01939.x; Gelman A., 2007, DATA ANAL USING REGR; Gelman A, 2004, BAYESIAN DATA ANAL; Gilbert G. S., 2005, BIOTROPICA, V37, P461, DOI DOI 10.1111/J.1744-7429.2005.00061.X; GOWER JC, 1966, BIOMETRIKA, V53, P325, DOI 10.2307/2333639; GRIME JP, 1965, J ECOL, V53, P621, DOI 10.2307/2257624; GRIME JP, 1994, EXPLOITATION ENV HET, P2; Herault B, 2011, J ECOL, V99, P1431, DOI 10.1111/j.1365-2745.2011.01883.x; Herault B, 2010, J APPL ECOL, V47, P821, DOI 10.1111/j.1365-2664.2010.01826.x; Hunt R., 1982, PLANT GROWTH CURVES; Wright SJ, 2010, ECOLOGY, V91, P3664, DOI 10.1890/09-2335.1; King DA, 2006, J TROP ECOL, V22, P11, DOI 10.1017/S0266467405002774; KITAJIMA K, 1994, OECOLOGIA, V98, P419, DOI 10.1007/BF00324232; Kraft NJB, 2010, NEW PHYTOL, V188, P1124, DOI 10.1111/j.1469-8137.2010.03444.x; KRESS WJ, 2009, P NATL ACAD SCI USA, V106, P18627; Larjavaara M, 2010, FUNCT ECOL, V24, P701, DOI 10.1111/j.1365-2435.2010.01698.x; Muller-Landau HC, 2004, BIOTROPICA, V36, P20, DOI 10.1111/j.1744-7429.2004.tb00292.x; Muller-Landau HC, 2008, J ECOL, V96, P653, DOI 10.1111/j.1365-2745.2008.01399.x; Muller-Landau HC, 2010, P NATL ACAD SCI USA, V107, P4242, DOI 10.1073/pnas.0911637107; Ogle K, 2009, TREE PHYSIOL, V29, P587, DOI 10.1093/treephys/tpn051; Paine CET, 2012, METHODS ECOL EVOL, V3, P245, DOI 10.1111/j.2041-210X.2011.00155.x; Poorter L, 2008, ECOLOGY, V89, P1908, DOI 10.1890/07-0207.1; Poorter L, 2005, OECOLOGIA, V142, P378, DOI 10.1007/s00442-004-1732-y; Poorter L, 2006, ECOLOGY, V87, P1733, DOI 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2; Poorter L, 2010, NEW PHYTOL, V185, P481, DOI 10.1111/j.1469-8137.2009.03092.x; Purves D, 2008, SCIENCE, V320, P1452, DOI 10.1126/science.1155359; R Development Core Team, 2010, R VERS 2 11 1 R PROJ; Romero C, 2008, CAN J FOREST RES, V38, P611, DOI 10.1139/X07-205; Ruger N, 2012, FUNCT ECOL, V26, P759, DOI 10.1111/j.1365-2435.2012.01981.x; Ruger N, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0025330; Ruger N, 2011, OIKOS, V120, P1047, DOI 10.1111/j.1600-0706.2010.19021.x; Sterck F, 2011, P NATL ACAD SCI USA, V108, P20627, DOI 10.1073/pnas.1106950108; STRAUSSDEBENEDETTI S, 1991, OECOLOGIA, V87, P377, DOI 10.1007/BF00634595; Thomas SC, 1996, AM J BOT, V83, P556, DOI 10.2307/2445913; Turnbull LA, 2008, ECOLOGY, V89, P1352, DOI 10.1890/07-1531.1; Valladares F, 2008, ANNU REV ECOL EVOL S, V39, P237, DOI 10.1146/annurev.ecolsys.39.110707.173506; Weiher E, 1999, J VEG SCI, V10, P609, DOI 10.2307/3237076; Westbrook JW, 2011, AM NAT, V177, P800, DOI 10.1086/659963; Westoby M, 2002, ANNU REV ECOL SYST, V33, P125, DOI 10.1146/annurev.ecolsys.33.010802.150452; Wirth R, 2001, ACTA OECOL, V22, P235, DOI 10.1016/S1146-609X(01)01123-7; Wright IJ, 2007, ANN BOT-LONDON, V99, P1003, DOI 10.1093/aob/mcl066; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Wright SJ, 2003, ECOLOGY, V84, P3174, DOI 10.1890/02-0038 58 61 63 3 198 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 0012-9658 ECOLOGY Ecology DEC 2012 93 12 2626 2636 11 Ecology Environmental Sciences & Ecology 062AW WOS:000312892500013 23431593 2018-11-12 J Pavard, S; Branger, F Pavard, Samuel; Branger, Frederic Effect of maternal and grandmaternal care on population dynamics and human life-history evolution: A matrix projection model THEORETICAL POPULATION BIOLOGY English Article Matrix population model; Maternal care; Grandmaternal care; Orphan and non-orphan dynamics; Evolution; Life-history theory INTERGENERATIONAL TRANSFERS; QUANTITATIVE GENETICS; HUNTER-GATHERERS; CHILD SURVIVAL; MORTALITY; REPRODUCTION; SENSITIVITY; HYPOTHESIS; LONGEVITY; MENOPAUSE We present a matrix population model for a single-sex human population comprising non-orphan daughters (whose mothers are alive) and orphan daughters (whose mothers are dead). Orphans suffer higher mortality than non-orphans, which simulates the need for daughters to receive maternal care in order to survive. The way that maternal care affects population dynamics and life-history evolution is then analysed for demographic regimes that encompass large ranges of daughter survival, mother survival and fertility. We provide stable age-distributions of orphans and non-orphans for each regime and perform sensitivity analyses on daughter survival, adult survival and fertility. The results show that natural selection will favour (i) faster daughter independence from maternal care, (ii) higher adult survival at all ages, and (Hi) early reproduction to the detriment of late reproduction. We then build scenarios concerning the coevolution of daughter survival and maternal care with adult survival and fertility. We also incorporate grandmaternal care into the model. We show that (i) the acute altriciality of human babies, (ii) the increased maternal care resulting from emergence of complex sociality and (Hi) the role played by grandmothers in caring for granddaughters may have led to the emergence of specific human life-history traits: a short reproductive period characterised by a reproductive senescence and menopause, as well as an extended lifespan characterised by a post-reproductive life. (C) 2012 Elsevier Inc. All rights reserved. [Pavard, Samuel; Branger, Frederic] Museum Natl Hist Nat, Equipe Genet Populat Humaines, UMR Ecoanthropol 7206, F-75231 Paris, France Pavard, S (reprint author), Museum Natl Hist Nat, Equipe Genet Populat Humaines, UMR Ecoanthropol 7206, F-75231 Paris, France. pavard@mnhn.fr Robine, Jean-Marie/F-5439-2011 Robine, Jean-Marie/0000-0002-4111-6195; Pavard, Samuel/0000-0002-6803-8123 chair Veolia-X-MNHN We thank A. Caporali and two anonymous reviewers for very helpful comments on earlier drafts. We acknowledge the chair Veolia-X-MNHN for providing a grant for a master's degree internship. BENTLEY GR, 2009, SUBSTITUTE PARENTS B; Berge C, 1998, AM J PHYS ANTHROPOL, V105, P441; CASWELL H, 1978, THEOR POPUL BIOL, V14, P215, DOI 10.1016/0040-5809(78)90025-4; Caswell H, 2001, MATRIX POPULATION MO; Caswell H, 2007, ECOL LETT, V10, P1, DOI 10.1111/j.1461-0248.2006.01001.x; Caswell H, 2009, J DIFFER EQU APPL, V15, P349, DOI 10.1080/10236190802282669; CHARBONNEAU H, 1987, NAISSANCE POPULATION; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; Chu CYC, 2006, THEOR POPUL BIOL, V69, P193, DOI 10.1016/j.tpb.2005.11.004; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; de Kroon H, 2000, ECOLOGY, V81, P607, DOI 10.1890/0012-9658(2000)081[0607:EAROMA]2.0.CO;2; Galeta P, 2009, DOC PRAEHIST, V36, P139, DOI 10.4312/dp.36.8; Geary DC, 2001, PARENT-SCI PRACT, V1, P5, DOI 10.1207/S15327922PAR011&2_2; Gurven M, 2007, POPUL DEV REV, V33, P321, DOI 10.1111/j.1728-4457.2007.00171.x; Gurven M, 2009, EVOLUTION, V63, P1017, DOI 10.1111/j.1558-5646.2008.00592.x; Hadwiger H, 1940, SKAND AKTUARIETIDSKR, V23, P101; HARVEY PH, 1985, NATURE, V315, P319, DOI 10.1038/315319a0; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Heppell S, 2000, ECOLOGY, V81, P605, DOI 10.1890/0012-9658(2000)081[0605:EAIPBM]2.0.CO;2; Hill K, 2007, J HUM EVOL, V52, P443, DOI 10.1016/j.jhevol.2006.11.003; Jalley E., 1981, WALLON LECT FREUD PI; Jamison CS, 2002, AM J PHYS ANTHROPOL, V119, P67, DOI 10.1002/ajpa.10070; Jones JH, 2011, CURR BIOL, V21, pR708, DOI 10.1016/j.cub.2011.08.025; Kaplan HS, 2002, P NATL ACAD SCI USA, V99, P10221, DOI 10.1073/pnas.152502899; Lee RD, 2003, P NATL ACAD SCI USA, V100, P9637, DOI 10.1073/pnas.1530303100; Lee R, 2008, P NATL ACAD SCI USA, V105, P7124, DOI 10.1073/pnas.0710234105; Leslie PH, 1945, BIOMETRIKA, V33, P183, DOI 10.2307/2332297; Leutenegger W., 1982, PRIMATE BRAIN EVOLUT; LITTLE BB, 1989, AM J PHYS ANTHROPOL, V80, P213, DOI 10.1002/ajpa.1330800209; Mace R, 2000, ANIM BEHAV, V59, P1, DOI 10.1006/anbe.1999.1287; Mace R., 2009, SUBSTITUTE PARENTS B, P50; Mahy M., 2003, WORKSH HIV AIDS AD, P8; Martin RD, 2007, YEARB PHYS ANTHROPOL, V50, P59, DOI 10.1002/ajpa.20734; Masmas TN, 2004, ACTA PAEDIATR, V93, P99, DOI 10.1080/08035250310007970; Metcalf CJE, 2007, TRENDS ECOL EVOL, V22, P205, DOI 10.1016/j.tree.2006.12.001; Moeschberger ML, 2003, SURVIVAL ANAL TECHNI; Nagaoka T, 2006, AM J PHYS ANTHROPOL, V131, P1, DOI 10.1002/ajpa.20402; Parker S. T., 1977, P43; Pavard S, 2005, J BIOSOC SCI, V37, P209, DOI 10.1017/S0021932004006571; Pavard S, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0001206; Pavard S, 2008, AM J PHYS ANTHROPOL, V136, P194, DOI 10.1002/ajpa.20794; Pavard S, 2007, EVOLUTION, V61, P2801, DOI 10.1111/j.1558-5646.2007.00236.x; Peccei JS, 1995, ETHOL SOCIOBIOL, V16, P425, DOI 10.1016/0162-3095(95)00069-0; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; SILER W, 1979, ECOLOGY, V60, P750, DOI 10.2307/1936612; SMITH BH, 1995, ANNU REV ANTHROPOL, V24, P257, DOI 10.1146/annurev.an.24.100195.001353; Steppan SJ, 2002, TRENDS ECOL EVOL, V17, P320, DOI 10.1016/S0169-5347(02)02505-3; Tuljapurkar S, 2009, PHILOS T R SOC B, V364, P1499, DOI 10.1098/rstb.2009.0021; Tuljapurkar S, 2009, ECOL LETT, V12, P93, DOI 10.1111/j.1461-0248.2008.01262.x; Vallin J., 1988, CAUSES DECES FRANCE; Vaupel JW, 2010, NATURE, V464, P536, DOI 10.1038/nature08984; Walker R, 2006, J HUM EVOL, V51, P480, DOI 10.1016/j.jhevol.2006.06.002; Watts E. S., 1986, REPROD DEV, P415 55 10 10 1 49 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0040-5809 THEOR POPUL BIOL Theor. Popul. Biol. DEC 2012 82 4 SI 364 376 10.1016/j.tpb.2012.01.007 13 Ecology; Evolutionary Biology; Genetics & Heredity; Mathematical & Computational Biology Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity; Mathematical & Computational Biology 049KH WOS:000311981400014 22326750 2018-11-12 J Buzney, CD; DeCaro, JA Buzney, Catherine D.; DeCaro, Jason A. Explanatory Models of Female Pubertal Timing: Discordances Between Cultural Models of Maturation and the Recollection and Interpretation of Personal Developmental Experiences CULTURE MEDICINE AND PSYCHIATRY English Article Adolescent development; Stress; Menarche; Cultural models; Life History Theory EARLY MENARCHE; PRECOCIOUS PUBERTY; ADOLESCENT GIRLS; STRESS; AGE; CHILDREN; IMPACT; ATTACHMENT; ADJUSTMENT; DEPRESSION Given the ambiguity surrounding the source of the continuing trend toward earlier menarche observed in Westernized nations, several competing explanatory models have emerged regarding variation in pubertal timing. While a biomedical model proposes that predominantly constitutional characteristics shape the maturation timetable, an alternative framework derived from Life History Theory (LHT) evolutionary principles emphasizes the influence of psychosocial factors on development. Working with a sample of women 19-25 years of age (N = 103) drawn from two Southeastern U.S. colleges, we combined cultural consensus analysis with retrospective self-report regarding childhood stress and menarcheal timing to investigate whether reported developmental experiences align with cultural models regarding factors that should drive pubertal timing. Results suggest a robust cultural model consistent with a biomedical framework concentrating principally on constitutional characteristics. However, participants' personal developmental recollections support an association between higher childhood stress and earlier menarche. These findings support LHT predictions that early reproductive maturation is an evolutionary adaptive response to chronic childhood stress as well as clarify the extent to which cultural models of factors contributing to puberty concord with developmental experiences. [Buzney, Catherine D.; DeCaro, Jason A.] Univ Alabama, Dept Anthropol, Tuscaloosa, AL 35487 USA Buzney, CD (reprint author), Univ Alabama, Dept Anthropol, POB 870210, Tuscaloosa, AL 35487 USA. cbuzney@gmail.com; jdecaro@as.ua.edu DeCaro, Jason/0000-0002-3333-212X Adams Hillard Paula J, 2008, Medscape J Med, V10, P295; Adler NE, 2000, HEALTH PSYCHOL, V19, P586, DOI 10.1037/0278-6133.19.6.586; Annandale E., 2002, SOCIOLOGY HLTH MED C; Ano GG, 2005, J CLIN PSYCHOL, V61, P461, DOI 10.1002/jclp.20049; Bernard H. R., 2005, RES METHODS ANTHR QU; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; D'Andrade Roy G., 1992, HUMAN MOTIVES CULTUR; De Bellis MD, 2001, DEV PSYCHOPATHOL, V13, P539, DOI 10.1017/S0954579401003078; DeCaro JA, 2007, PARENT-SCI PRACT, V7, P177, DOI 10.1080/15295190701306953; Downs Levi S., 2005, FIELD METHOD, V17, P331, DOI DOI 10.1177/1525822X05279899; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2000, CHILD DEV, V71, P485, DOI 10.1111/1467-8624.00159; Gluckman PD, 2006, TRENDS ENDOCRIN MET, V17, P7, DOI 10.1016/j.tem.2005.11.006; Howe ML, 2007, PSYCHOL SCI, V18, P856, DOI 10.1111/j.1467-9280.2007.01991.x; James I. A, 2007, J COGNITIVE PSYCHOTH, V21, P51, DOI [10.1891/088983907780493296, DOI 10.1891/088983907780493296]; Kleider HM, 2008, APPL COGNITIVE PSYCH, V22, P1, DOI 10.1002/acp.1361; Mishra GD, 2009, WOMENS HEALTH, V5, P175, DOI 10.2217/17455057.5.2.175; Mitchell KJ, 2003, APPL COGNITIVE PSYCH, V17, P107, DOI 10.1002/acp.857; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.2307/1130900; Neuner F, 2008, CHILD ADOL PSYCH CL, V17, P641, DOI 10.1016/j.chc.2008.03.001; NEWCOMB MD, 1981, J HEALTH SOC BEHAV, V22, P400, DOI 10.2307/2136681; Parent AS, 2003, ENDOCR REV, V24, P668, DOI 10.1210/er.2002-0019; Reyes-Garcia V, 2010, AM J PHYS ANTHROPOL, V143, P167, DOI 10.1002/ajpa.21303; Romney A. Kimball, 1984, AM ANTHROPOL, V88, P313; RUSSELL RL, 1992, PSYCHOTHER, V29, P344, DOI 10.1037/h0088536; Stice E, 2001, DEV PSYCHOL, V37, P608, DOI 10.1037//0012-1649.37.5.608; SURBEY MK, 1990, MG PRIMATOL, V13, P11; Teilmann G, 2006, PEDIATRICS, V118, pE391, DOI 10.1542/peds.2005-2939; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; Tremblay L, 2005, CHILD PSYCHIAT HUM D, V36, P73, DOI 10.1007/s10578-004-3489-2; TRICKETT PK, 1993, PSYCHOL SCI, V4, P81, DOI 10.1111/j.1467-9280.1993.tb00465.x; VANDERKOLK BA, 1991, AM IMAGO, V48, P425; VIHKO R, 1984, J STEROID BIOCHEM, V20, P231, DOI 10.1016/0022-4731(84)90209-7; Walvoord EC, 2010, J ADOLESCENT HEALTH, V47, P433, DOI 10.1016/j.jadohealth.2010.05.018; Weller SC, 2007, FIELD METHOD, V19, P339, DOI 10.1177/1525822XO7303502; WIERSON M, 1993, ADOLESCENCE, V28, P913; WITZTUM E, 1999, TRANSCULT PSYCHIATRY, V36, P403; Worthman CM, 1999, EVOLUTIONARY MEDICI NE, P135 40 3 3 2 14 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0165-005X CULT MED PSYCHIAT Cult. Med. Psychiatr. DEC 2012 36 4 601 620 10.1007/s11013-012-9277-8 20 Anthropology; Psychiatry; Social Sciences, Biomedical Anthropology; Psychiatry; Biomedical Social Sciences 035ZP WOS:000310994200005 23054294 2018-11-12 J Moron, D; Lenda, M; Skorka, P; Woyciechowski, M Moron, Dawid; Lenda, Magdalena; Skorka, Piotr; Woyciechowski, Michal Short-Lived Ants Take Greater Risks during Food Collection AMERICAN NATURALIST English Article ants; division of labor; eusociality; food collecting; Formicidae; life expectancy; Myrmica scabrinodis; social insects DIVISION-OF-LABOR; LIFE EXPECTANCY; CATAGLYPHIS-BICOLOR; SOCIAL INSECTS; MORTALITY RISK; TRADE-OFF; WORKERS; AGE; HYMENOPTERA; LONGEVITY Life-history theory predicts that organisms should alter their behavior if life expectancy declines. Recent theoretical work has focused on worker life expectancy as an ultimate factor in allocating risk-related tasks among the workforce in social insects. A key prediction of this evolutionary model is that workers with shorter life expectancy should perform riskier tasks. We tested this hypothesis, using laboratory colonies of the ant Myrmica scabrinodis. We modified foraging so that it differed in level of risk by manipulating distances, temperatures, and the presence of competitors on foraging patches. The life expectancies of foragers were shortened by poisoning with carbon dioxide or by injury through removal of their propodeal spines. Both treatments significantly shortened worker life expectancy in comparison with untreated ants. We show, for the first time, that foragers with a shorter life expectancy foraged under risk more often than foragers in the control group. Thus, a worker's strategy of foraging under risky circumstances appears to be fine-tuned to its life expectancy. [Moron, Dawid] Polish Acad Sci, Inst Systemat & Evolut Anim, PL-31016 Krakow, Poland; [Lenda, Magdalena] Polish Acad Sci, Inst Nat Conservat, PL-31120 Krakow, Poland; [Skorka, Piotr] Poznan Univ Life Sci, Inst Zool, PL-60625 Poznan, Poland; [Woyciechowski, Michal] Jagiellonian Univ, Inst Environm Sci, PL-30387 Krakow, Poland Moron, D (reprint author), Polish Acad Sci, Inst Systemat & Evolut Anim, Slawkowska 17, PL-31016 Krakow, Poland. dawidmoron@poczta.onet.pl Moron, Dawid/A-8595-2010; Skorka, Piotr/B-7218-2009 Moron, Dawid/0000-0003-3692-7855; Skorka, Piotr/0000-0002-7486-2928; Skorka, Piotr/0000-0002-3221-296X Polish Ministry of Science and Higher Education [NN304 075135]; Jagiellonian University [DS/BiNoZ/INoS/761/10-11] We wish to thank J. Kozlowski, A. Lomnicki, T. Sparks, and A. Tofilski for helpful comments on the initial manuscript. Two anonymous reviewers greatly improved the quality of this article with their comments. This study was financed by research project NN304 075135 from the Polish Ministry of Science and Higher Education to D.M. and M.W. and partially financed by the Jagiellonian University, DS/BiNoZ/INoS/761/10-11 to M.W. Abbott KR, 2009, ANIM BEHAV, V78, P633, DOI 10.1016/j.anbehav.2009.05.029; Amdam GV, 2004, EXP GERONTOL, V39, P767, DOI 10.1016/j.exger.2004.02.010; BACHMAN GC, 1993, ANIM BEHAV, V46, P233, DOI 10.1006/anbe.1993.1185; Biesmeijer JC, 1998, INSECT SOC, V45, P427, DOI 10.1007/s000400050099; CAMMAERTSTRICOT MC, 1975, ANIM BEHAV, V23, P124, DOI 10.1016/0003-3472(75)90058-5; Carroll C.R., 1973, Annual Rev Ecol Syst, V4, P231, DOI 10.1146/annurev.es.04.110173.001311; Cerda X, 2000, OIKOS, V89, P155, DOI 10.1034/j.1600-0706.2000.890117.x; Chapuisat M, 2002, P ROY SOC B-BIOL SCI, V269, P909, DOI 10.1098/rspb.2002.1962; Clemencet J, 2010, INSECT SOC, V57, P11, DOI 10.1007/s00040-009-0044-y; Eliassen S, 2007, OIKOS, V116, P513, DOI 10.1111/j.2006.0030-1299.15462.x; Elmes GW, 1998, J INSECT CONSERV, V2, P67, DOI 10.1023/A:1009696823965; GROVES S, 1978, AUK, V95, P95; Heinze J, 2010, CURR BIOL, V20, P249, DOI 10.1016/j.cub.2009.12.031; Javois J, 2004, ANIM BEHAV, V68, P249, DOI 10.1016/j.anbehav.2003.10.022; JEANNE RL, 1986, MONIT ZOOL ITAL, V20, P119; Kay A, 2005, BEHAV ECOL SOCIOBIOL, V58, P165, DOI 10.1007/s00265-005-0914-x; Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682; Kuriwada T, 2006, ANN ENTOMOL SOC AM, V99, P1244, DOI 10.1603/0013-8746(2006)99[1244:FRINCW]2.0.CO;2; Kuriwada T, 2011, PHYSIOL ENTOMOL, V36, P149, DOI 10.1111/j.1365-3032.2010.00777.x; Lima SL, 2002, TRENDS ECOL EVOL, V17, P70, DOI 10.1016/S0169-5347(01)02393-X; Mehdiabadi NJ, 2002, P ROY SOC B-BIOL SCI, V269, P1695, DOI 10.1098/rspb.2002.2087; Moron D, 2008, ANIM BEHAV, V75, P345, DOI 10.1016/j.anbehav.2007.06.005; NONACS P, 1988, INSECT SOC, V35, P293, DOI 10.1007/BF02224061; NONACS P, 1990, BEHAVIOUR, V112, P23, DOI 10.1163/156853990X00662; Orr MR, 2003, ANIM BEHAV, V65, P1187, DOI 10.1006/anbe.2003.2176; R Development Core Team, 2010, R LANG ENV STAT COMP; Radchenko Alexander, 1997, Annales Zoologici (Warsaw), V47, P481; ROITBERG BD, 1993, NATURE, V364, P108, DOI 10.1038/364108a0; Rueppell O, 2010, J EVOLUTION BIOL, V23, P1538, DOI 10.1111/j.1420-9101.2010.02022.x; Schmid-Hempel P, 1998, PARASITES SOCIAL INS; SCHMIDHEMPEL P, 1984, INSECT SOC, V31, P345, DOI 10.1007/BF02223652; Skorka P, 2008, J ORNITHOL, V149, P31, DOI 10.1007/s10336-007-0208-3; Tofilski A, 2002, BEHAV ECOL SOCIOBIOL, V51, P234, DOI 10.1007/S00265-001-0429-Z; Tofilski A, 2009, INSECT SOC, V56, P359, DOI 10.1007/s00040-009-0031-3; Wardlaw J. C., 1996, Entomologist, V115, P191; Wehner R, 2004, ECOL ENTOMOL, V29, P240, DOI 10.1111/j.0307-6946.2004.00591.x; WERNER EE, 1988, ECOLOGY, V69, P1352, DOI 10.2307/1941633; Wilson E., 1971, INSECT SOC; Wilson EO, 1990, ANTS; Woyciechowski M, 1998, APIDOLOGIE, V29, P191, DOI 10.1051/apido:19980111; Woyciechowski M, 2009, INSECT SOC, V56, P193, DOI 10.1007/s00040-009-0012-6; Woyciechowski M, 2007, SOCIOBIOLOGY, V50, P1059; Zimmer I, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016098 43 9 9 1 55 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 AM NAT Am. Nat. DEC 2012 180 6 744 750 10.1086/668009 7 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 037GL WOS:000311090100007 23149399 2018-11-12 J Lucas, LD; French, SS Lucas, LeiLani D.; French, Susannah S. Stress-Induced Tradeoffs in a Free-Living Lizard across a Variable Landscape: Consequences for Individuals and Populations PLOS ONE English Article GALAPAGOS MARINE IGUANAS; FEMALE TREE LIZARDS; UROSAURUS-ORNATUS; REPRODUCTIVE EFFORT; IMMUNE FUNCTION; UTA-STANSBURIANA; OXIDATIVE STRESS; LIFE-HISTORY; IMMUNOCOMPETENCE-HANDICAP; PLASMA-CORTICOSTERONE Current life history theory suggests that the allocation of energetic resources between competing physiological needs should be dictated by an individual's longevity and pace of life. One key physiological pathway likely to contribute to the partitioning of resources is the vertebrate stress response. By increasing circulating glucocorticoids the stress response can exert a suite of physiological effects, such as altering immune function. We investigated the effects of stress physiology on individual immunity, reproduction and oxidative stress, across an urban landscape. We sampled populations in and around St. George, Utah, examining corticosterone in response to restraint stress, two innate immune measures, reproductive output, and the presence of both reactive oxygen metabolites and antioxidant binding capacity, in populations of common side-blotched lizards (Uta stansburiana) experiencing variable levels of environmental stress. Additionally, using capture-mark-recapture techniques, we examined the relationships between these physiological parameters and population-level differences. Our results reveal elevated physiological stress corresponds with suppressed immunity and increased oxidative stress. Interestingly, urban populations experiencing the most physiological stress also exhibited greater reproductive output and decreased survival relative to rural populations experiencing less physiological stress, demonstrating a tradeoff between reproduction and life maintenance processes. Our results suggest that environmental stress may augment life history strategy in this fast-paced species, and that shifts in life history strategy can in turn affect the population at large. Finally, the urban environment poses definite challenges for organisms, and while it appears that side-blotched lizards are adjusting physiologically, it is unknown what fitness costs these physiological adjustments accrue. [Lucas, LeiLani D.; French, Susannah S.] Utah State Univ, Dept Biol, Logan, UT 84322 USA Lucas, LD (reprint author), Utah State Univ, Dept Biol, Logan, UT 84322 USA. leilani.lucas@usu.edu Dr. French's USU start-up line Funding was provided by Dr. French's USU start-up line. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Adamo SA, 2001, ANIM BEHAV, V62, P417, DOI 10.1006/anbe.2001.1786; Akaike H., 1973, 2 INT S INF THEOR, P267, DOI DOI 10.1007/978-1-4612-1694-0_; Anderson David R., 1999, Bird Study, V46, pS14; Angelier F, 2007, BEHAV ECOL SOCIOBIOL, V61, P611, DOI 10.1007/s00265-006-0290-1; Angelier F, 2009, GEN COMP ENDOCR, V163, P142, DOI 10.1016/j.ygcen.2009.03.028; Angilletta MJ, 2000, FUNCT ECOL, V14, P39, DOI 10.1046/j.1365-2435.2000.00387.x; Berger S, 2005, HORM BEHAV, V47, P419, DOI 10.1016/j.yhbeh.2004.11.011; Biondi M., 2001, EFFECTS STRESS IMMUN; Bjelakovic G, 2007, J Basic Clin Physiol Pharmacol, V18, P115; Blas J, 2007, P NATL ACAD SCI USA, V104, P8880, DOI 10.1073/pnas.0700232104; Bonier F, 2012, HORM BEHAV, V61, P763, DOI 10.1016/j.yhbeh.2012.03.016; Bonier F, 2009, TRENDS ECOL EVOL, V24, P634, DOI 10.1016/j.tree.2009.04.013; Bourgeon S, 2006, J EXP BIOL, V209, P4957, DOI 10.1242/jeb.02610; Breuner CW, 2008, GEN COMP ENDOCR, V157, P288, DOI 10.1016/j.ygcen.2008.05.017; Burnham K. P., 2002, MODEL SELECTION MULT; Constantini D., 2011, J COMP PHYSIOL B, V181, P447; Constantini D, 2006, J COMP PHYSIOL B, V176, P575, DOI DOI 10.1007/S00360-006-0080-0; Cote J, 2010, GEN COMP ENDOCR, V166, P142, DOI 10.1016/j.ygcen.2009.11.008; Cox RM, 2010, FUNCT ECOL, V24, P1262, DOI 10.1111/j.1365-2435.2010.01756.x; Creel S, 2009, P NATL ACAD SCI USA, V106, P12388, DOI 10.1073/pnas.0902235106; Deerenberg C, 1997, P ROY SOC B-BIOL SCI, V264, P1021, DOI 10.1098/rspb.1997.0141; Drazen DL, 2003, CAN J ZOOL, V81, P1406, DOI 10.1139/Z03-120; Epel ES, 2004, P NATL ACAD SCI USA, V101, P17312, DOI 10.1073/pnas.0407162101; Finch CE, 2004, SCIENCE, V305, P1736, DOI 10.1126/science.1092556; Foikidis HB, 2009, GEN COMP ENDOCR, V160, P259; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Franceschi C, 2000, ANN NY ACAD SCI, V908, P244; French SS, 2006, GEN COMP ENDOCR, V145, P128, DOI 10.1016/j.ygcen.2005.08.005; French SS, 2008, J COMP PHYSIOL B, V178, P997, DOI 10.1007/s00360-008-0290-8; French SS, 2008, GEN COMP ENDOCR, V155, P148, DOI 10.1016/j.ygcen.2007.04.007; French SS, 2007, J EXP BIOL, V210, P2859, DOI 10.1242/jeb.005348; French SS, 2007, AM NAT, V170, P79, DOI 10.1086/518569; French SS, 2012, BIOL OPEN, V1, P482, DOI 10.1242/bio.2012919; French SS, 2010, HORM BEHAV, V58, P792, DOI 10.1016/j.yhbeh.2010.08.001; Friedl TWP, 2005, EVOL ECOL, V19, P221, DOI 10.1007/s10682-005-0509-z; Gilman CA, 2007, J EXP BIOL, V210, P1859, DOI 10.1242/jeb.001875; HAHN WE, 1965, J EXP ZOOL, V158, P79, DOI 10.1002/jez.1401580108; Hanssen SA, 2003, OECOLOGIA, V136, P457, DOI 10.1007/s00442-003-1282-8; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hawlena H, 2008, COMP BIOCHEM PHYS A, V150, P66, DOI 10.1016/j.cbpa.2008.03.004; Iuchi T, 2003, CIRC RES, V92, P81, DOI 10.1161/01.RES.0000050588.35034.3C; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LACK D, 1948, IBIS, V90, P25, DOI 10.1111/j.1474-919X.1948.tb01399.x; Landys MM, 2006, GEN COMP ENDOCR, V148, P132, DOI 10.1016/j.ygcen.2006.02.013; Liebl AL, 2009, FUNCT ECOL, V23, P1091, DOI 10.1111/j.1365-2435.2009.01592.x; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Martin LB, 2003, P ROY SOC B-BIOL SCI, V270, P153, DOI 10.1098/rspb.2002.2185; Martin LB, 2005, GEN COMP ENDOCR, V140, P126, DOI 10.1016/j.ygcen.2004.10.010; McEwen BS, 2003, HORM BEHAV, V43, P2, DOI 10.1016/S0018-506X(02)00024-7; Metcalf JC, 2006, TRENDS ECOL EVOL, V22, P205; Meylan S, 2010, GEN COMP ENDOCR, V169, P158, DOI 10.1016/j.ygcen.2010.08.002; MOORE MC, 1991, GEN COMP ENDOCR, V81, P217, DOI 10.1016/0016-6480(91)90006-R; Moore MC, 1986, J COMP PHYSIOL A, V35, P1193; Moreno J, 1999, P ROY SOC B-BIOL SCI, V266, P1105, DOI 10.1098/rspb.1999.0750; Moret Y, 2000, SCIENCE, V290, P1166, DOI 10.1126/science.290.5494.1166; Nelson RJ, 1996, Q REV BIOL, V71, P511, DOI 10.1086/419555; Nelson RJ, 2004, TRENDS IMMUNOL, V25, P187, DOI 10.1016/j.it.2004.02.001; Nilsson JA, 2001, OECOLOGIA, V128, P187, DOI 10.1007/s004420100653; Nordling D, 1998, P ROY SOC B-BIOL SCI, V265, P1291, DOI 10.1098/rspb.1998.0432; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Olsson M, 2000, P ROY SOC B-BIOL SCI, V267, P2339, DOI 10.1098/rspb.2000.1289; Owen-Ashley NT, 2006, J EXP BIOL, V209, P3062, DOI 10.1242/jeb.02371; Padgett DA, 1998, BRAIN BEHAV IMMUN, V12, P64, DOI 10.1006/brbi.1997.0512; PARKER W S, 1974, Journal of Herpetology, V8, P135, DOI 10.2307/1562809; Rojas IG, 2000, J DENT RES, V79, P393; Romero LM, 2002, BIOL CONSERV, V108, P371, DOI 10.1016/S0006-3207(02)00128-3; Rook G, 2000, ANN NY ACAD SCI, V917, P913; SAAD AH, 1989, THYMUS, V14, P223; Sapolsky R., 1996, STRESS, V1, P1, DOI DOI 10.3109/10253899609001092; Schoech SJ, 2007, GEN COMP ENDOCR, V154, P150, DOI 10.1016/j.ygcen.2007.05.027; Serra V, 2000, ANN NY ACAD SCI, V908, P327; Sheridan JF, 2004, WORLD J SURG, V28, P327, DOI 10.1007/s00268-003-7404-y; TINKLE DW, 1965, EVOLUTION, V19, P569, DOI 10.2307/2406255; TINKLE DW, 1962, ECOLOGY, V43, P223, DOI 10.2307/1931978; van de Crommenacker J, 2010, J EXP BIOL, V213, P3527, DOI 10.1242/jeb.045591; Vassalle C., 2009, METHOD MOL BIOL, V477, P31; Vassalle C, 2008, CLIN BIOCHEM, V41, P1162, DOI 10.1016/j.clinbiochem.2008.07.005; Viney ME, 2005, TRENDS ECOL EVOL, V20, P665, DOI 10.1016/j.tree.2005.10.003; von Zglinicki T, 2002, TRENDS BIOCHEM SCI, V27, P339, DOI 10.1016/S0968-0004(02)02110-2; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WILSON BS, 1992, COPEIA, P691; Wingfield JC, 1998, AM ZOOL, V38, P191; Woodley SK, 2002, GEN COMP ENDOCR, V128, P143, DOI 10.1016/S0016-6480(02)00068-0; Zuk M, 2002, AM NAT, V160, pS9, DOI 10.1086/342131 84 30 30 0 84 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One NOV 20 2012 7 11 e49895 10.1371/journal.pone.0049895 10 Multidisciplinary Sciences Science & Technology - Other Topics 043II WOS:000311535700055 23185478 DOAJ Gold, Green Published 2018-11-12 J Rubolini, D; Colombo, G; Ambrosini, R; Caprioli, M; Clerici, M; Colombo, R; Dalle-Donne, I; Milzani, A; Romano, A; Romano, M; Saino, N Rubolini, Diego; Colombo, Graziano; Ambrosini, Roberto; Caprioli, Manuela; Clerici, Marco; Colombo, Roberto; Dalle-Donne, Isabella; Milzani, Aldo; Romano, Andrea; Romano, Maria; Saino, Nicola Sex-Related Effects of Reproduction on Biomarkers of Oxidative Damage in Free-living Barn Swallows (Hirundo rustica) PLOS ONE English Article LIFE-HISTORY EVOLUTION; HUMAN SERUM-ALBUMIN; TRADE-OFFS; MIGRATORY BIRD; EGG-PRODUCTION; ARRIVAL DATE; PROTEIN CARBONYLATION; NATURAL-SELECTION; CIGARETTE-SMOKE; STRESS According to life-history theory, the allocation of limiting resources to one trait has negative consequences for other traits requiring the same resource, resulting in trade-offs among life-history traits, such as reproduction and survival. In vertebrates, oxidative stress is increasingly being considered among the physiological mechanisms forming the currency of life-history trade-offs. In this study of the barn swallow (Hirundo rustica), we focus on the oxidative costs of reproduction, especially egg laying, by investigating the effects of breeding stage (pre- vs. post-laying) and progression of the season on three biomarkers of oxidative damage (OD) to plasma proteins, namely the concentration of malondialdehyde (MDA)-protein adducts and of protein thiol groups (PSH), and the protein carbonyl (PCO) content. Moreover, we investigated whether males and females differed in plasma OD levels, because the inherent sex differences in reproductive roles and physiology may originate sex-specific patterns of OD during breeding. We found that MDA-protein adduct levels were higher in the pre-laying than in the post-laying phase, that males had lower levels of MDA-modified proteins than females, and that the decline of MDA-protein adduct concentration between the pre- and the post-laying phase was more marked for females than males. In addition, MDA-protein adduct levels declined with sampling date, but only during the pre-laying phase. On the other hand, plasma PCO levels increased from the pre- to the post-laying phase in both sexes, and females had higher levels of PCO than males. PSH concentration was unaffected by breeding stage, sex or sampling date. On the whole, our findings indicate that biomarkers of protein oxidation closely track the short-term variation in breeding stage of both male and female barn swallows. Moreover, the higher protein OD levels observed among females compared to males suggest that egg laying entails oxidative costs, which might negatively affect female residual reproductive value. Citation: Rubolini D, Colombo G, Ambrosini R, Caprioli M, Clerici M, et al. (2012) Sex-Related Effects of Reproduction on Biomarkers of Oxidative Damage in Free-living Barn Swallows (Hirundo rustica). PLoS ONE 7(11): e48955. doi:10.1371/journal.pone.0048955 [Rubolini, Diego; Colombo, Graziano; Caprioli, Manuela; Clerici, Marco; Colombo, Roberto; Dalle-Donne, Isabella; Milzani, Aldo; Romano, Andrea; Romano, Maria; Saino, Nicola] Univ Milan, Dipartimento Biosci, Milan, Italy; [Ambrosini, Roberto] Unv Milano Bicocca, Dipartimento Biotecnol & Biosci, Milan, Italy; [Clerici, Marco] Univ Milan, Dipartimento Sci Biomed Salute, Milan, Italy Rubolini, D (reprint author), Univ Milan, Dipartimento Biosci, Milan, Italy. diego.rubolini@unimi.it Ambrosini, Roberto/F-3188-2012; ROMANO, ANDREA/A-2780-2017; Romano, Andrea/B-3930-2012; Rubolini, Diego/F-2851-2011 Ambrosini, Roberto/0000-0002-7148-1468; ROMANO, ANDREA/0000-0002-0945-6018; Rubolini, Diego/0000-0003-2703-5783; Dalle-Donne, Isabella/0000-0001-7098-6213; MILZANI, ALDO DOMENICO GUIDO/0000-0002-1496-6872; Saino, Nicola/0000-0002-0230-3967 Universita degli Studi di Milano [2009-ATE-0015]; Fondazione Cariplo [UNIAGI 13357] The study was partly funded by the Universita degli Studi di Milano (grant 2009-ATE-0015 to DR) and Fondazione Cariplo (grant UNIAGI 13357 to NS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Alonso-Alvarez C, 2007, P R SOC B, V274, P819, DOI 10.1098/rspb.2006.3764; Ambrosini R, 2002, J APPL ECOL, V39, P524, DOI 10.1046/j.1365-2664.2002.00721.x; Angilletta MJ, 2000, FUNCT ECOL, V14, P39, DOI 10.1046/j.1365-2435.2000.00387.x; Bailey R. E., 1952, Condor, V54, P121, DOI 10.2307/1365062; Barnes AI, 2003, ANIM BEHAV, V66, P199, DOI 10.1006/anbe.2003.2122; Beckman KB, 1998, PHYSIOL REV, V78, P547; Bergeron P, 2011, FUNCT ECOL, V25, P1063, DOI 10.1111/j.1365-2435.2011.01868.x; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Brambilla G, 2003, ANAL CHIM ACTA, V483, P281, DOI 10.1016/S0003-2670(02)01400-9; Buchanan KL, 2001, P ROY SOC B-BIOL SCI, V268, P1337, DOI 10.1098/rspb.2001.1669; Casagrande S, 2012, BEHAV ECOL SOCIOBIOL, V66, P1319, DOI 10.1007/s00265-012-1387-3; Casagrande S, 2011, COMP BIOCHEM PHYS A, V160, P16, DOI 10.1016/j.cbpa.2011.04.011; Casagrande S, 2012, COMP BIOCHEM PHYS A, V163, P296, DOI 10.1016/j.cbpa.2012.07.018; Christe P, 2012, P ROY SOC B-BIOL SCI, V279, P1142, DOI 10.1098/rspb.2011.1546; Colombo G, 2012, FREE RADICAL BIO MED, V52, P1584, DOI 10.1016/j.freeradbiomed.2012.02.030; Colombo G, 2010, ANTIOXID REDOX SIGN, V12, P349, DOI 10.1089/ars.2009.2806; Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x; Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x; Costantini D, 2010, FUNCT ECOL, V24, P950, DOI 10.1111/j.1365-2435.2010.01746.x; Costantini D, 2010, COMP BIOCHEM PHYS A, V156, P294, DOI 10.1016/j.cbpa.2010.02.021; Costantini D, 2009, PHYSIOL BIOCHEM ZOOL, V82, P430, DOI 10.1086/604668; Dalle-Donne I, 2006, CLIN CHEM, V52, P601, DOI 10.1373/clinchem.2005.061408; Dalle-Donne I, 2003, CLIN CHIM ACTA, V329, P23, DOI 10.1016/S0009-8981(03)00003-2; Dalle-Donne I, 2001, FREE RADICAL BIO MED, V31, P1075, DOI 10.1016/S0891-5849(01)00690-6; Dalle-Donne I, 2006, J CELL MOL MED, V10, P389, DOI 10.1111/j.1582-4934.2006.tb00407.x; Dalle-Donne I, 2009, FREE RADICAL BIO MED, V46, P1411, DOI 10.1016/j.freeradbiomed.2009.02.024; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; FARNER DS, 1980, ANNU REV PHYSIOL, V42, P457, DOI 10.1146/annurev.ph.42.030180.002325; Farout L, 2006, ANTIOXID REDOX SIGN, V8, P205, DOI 10.1089/ars.2006.8.205; Garratt M, 2012, P ROY SOC B-BIOL SCI, V279, P3121, DOI 10.1098/rspb.2012.0568; Garratt M, 2011, P ROY SOC B-BIOL SCI, V278, P1098, DOI 10.1098/rspb.2010.1818; Ghezzi P, 2005, BIOCHEM SOC T, V33, P1378, DOI 10.1042/BST0331378; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; Halifeoglu I, 2003, CELL BIOCHEM FUNCT, V21, P133, DOI 10.1002/cbf.1009; Halliwell B., 2007, FREE RADICALS BIOL M; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hayward A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016557; Hekimi S, 2011, TRENDS CELL BIOL, V21, P569, DOI 10.1016/j.tcb.2011.06.008; Higdon A, 2012, BIOCHEM J, V442, P453, DOI 10.1042/BJ20111752; Johnson AL, 2000, AVIAN PHYSL, P569; Jones DP, 2008, AM J PHYSIOL-CELL PH, V295, pC849, DOI 10.1152/ajpcell.00283.2008; Jung T, 2009, MOL ASPECTS MED, V30, P191, DOI 10.1016/j.mam.2009.04.001; King J.R., 1973, P78; Liker A, 2005, EVOLUTION, V59, P890, DOI 10.1554/04-560; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; Moller AP, 2004, ECOLOGY, V85, P206, DOI 10.1890/02-0451; MOLLER AP, 1994, BEHAV ECOL SOCIOBIOL, V35, P115, DOI 10.1007/s002650050077; MOLLER AP, 1994, SEXUAL SELECTION BAR; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Ninni P, 2004, OIKOS, V105, P55, DOI 10.1111/j.0030-1299.2004.12516.x; NUR N, 1988, ARDEA, V76, P155; Nussey DH, 2009, FUNCT ECOL, V23, P809, DOI 10.1111/j.1365-2435.2009.01555.x; Oettl K, 2011, ACTA OPHTHALMOL, V89, pE174, DOI 10.1111/j.1755-3768.2009.01824.x; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; Rasband W. S., 2012, IMAGEJ; Requena JR, 1996, NEPHROL DIAL TRANSPL, V11, P48; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; Roff Derek A., 1992; Rossi R, 2009, J CELL MOL MED, V13, P3131, DOI 10.1111/j.1582-4934.2008.00417.x; Saino N, 2004, ECOL LETT, V7, P21, DOI 10.1046/j.1461-0248.2003.00553.x; Saino N, 2012, J ANIM ECOL, V81, P1004, DOI 10.1111/j.1365-2656.2012.01989.x; Saino N, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019593; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; Sinervo B, 1996, EVOLUTION, V50, P1299, DOI 10.1111/j.1558-5646.1996.tb02370.x; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Travers M, 2010, ECOL LETT, V13, P980, DOI 10.1111/j.1461-0248.2010.01488.x; Turner A., 2006, BARN SWALLOW; van de Crommenacker J, 2012, P ROY SOC B-BIOL SCI, V279, P1466, DOI 10.1098/rspb.2011.1865; Visser ME, 2001, P ROY SOC B-BIOL SCI, V268, P1271, DOI 10.1098/rspb.2001.1661; Walsberg G.E., 1983, P161; Ward S, 2006, J AVIAN BIOL, V37, P179, DOI 10.1111/j.2006.0908-8857.03262.x; Ward S, 1996, PHYSIOL ZOOL, V69, P930, DOI 10.1086/physzool.69.4.30164236; Whittingham MJ, 2006, J ANIM ECOL, V75, P1182, DOI 10.1111/j.1365-2656.2006.01141.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams TD, 2005, BIOSCIENCE, V55, P39, DOI 10.1641/0006-3568(2005)055[0039:MUTCOE]2.0.CO;2; Williams TD, 2004, GEN COMP ENDOCR, V136, P346, DOI 10.1016/j.ygcen.2004.01.010; Wingfield John C., 1993, Avian Biology, V9, P163; Wolak ME, 2012, METHODS ECOL EVOL, V3, P129, DOI 10.1111/j.2041-210X.2011.00125.x; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zuur A. F., 2009, MIXED EFFECTS MODELS 85 14 14 0 50 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One NOV 8 2012 7 11 e48955 10.1371/journal.pone.0048955 8 Multidisciplinary Sciences Science & Technology - Other Topics 053KE WOS:000312269500056 23145037 DOAJ Gold, Green Published 2018-11-12 J Davis, J Davis, Jeff Perceived environmental threats as a factor in reproductive behavior: an examination of American youth EVOLUTION AND HUMAN BEHAVIOR English Article Youth; Threat perception; Environmental risk; Reproductive decisions; Life history LIFE-HISTORY; COLLECTIVE EFFICACY; VIOLENCE EXPOSURE; RISK-TAKING; NEIGHBORHOODS; EVOLUTIONARY; EXPECTANCY; EXPRESSION; SELECTION; HOMICIDE This study presents a test of general life history theory by estimating the association between perceived environmental threat (PET) and reproductive outcomes among American youth. Data for the study came from the National Longitudinal Survey of Youth 1997-2009, which consists of a nationally representative sample of youth. Analyses were based on a subsample of N=4748 respondents who were aged 12-14 years in 1997; reported having no biological children in 1997; and, for females, were not pregnant at the time of the 1997 interview. PET was measured using 11 questionnaire items that asked respondents about experiences with violent assaults from peers, witnessing violent assaults, and nonviolent crime victimization. First childbirth occurred earlier among respondents who reported higher PET in 1997. Average fertility during the study period was also higher among respondents with higher PET. Male and female respondents' reproductive behaviors were similarly associated with PET. However, only among female respondents was the association between PET and fertility moderated by the quality of the household environment. (C) 2012 Elsevier Inc. All rights reserved. Calif State Univ Long Beach, Ctr Behav Res & Serv, Long Beach, CA 90813 USA Davis, J (reprint author), Calif State Univ Long Beach, Ctr Behav Res & Serv, 1090 Atlantic Blvd, Long Beach, CA 90813 USA. Jeffrey.davis@csulb.edu U.S. National Institutes of Health, National Center for Minority Health and Health Disparities, Research Infrastructure at Minority Institutions program [I P20 MD003942-01] This project was supported by a grant from the U.S. National Institutes of Health, National Center for Minority Health and Health Disparities, Research Infrastructure at Minority Institutions program (Grant Number: I P20 MD003942-01). Allison PD, 2010, SURVIVAL ANAL USING; Anderson E., 1999, CODE STREET DECENCY, V1; Anderson KG, 2006, AM J PHYS ANTHROPOL, V131, P560, DOI 10.1002/ajpa.20452; Andersson M., 1994, SEXUAL SELECTION; Belsky J, 2008, INT J BEHAV DEV, V32, P260, DOI 10.1177/0165025408090969; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; Ben-Zur H, 2009, PERS SOC PSYCHOL REV, V13, P109, DOI 10.1177/1088868308330104; Boynton-Jarrett R, 2008, PEDIATRICS, V122, P961, DOI 10.1542/peds.2007-3063; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Burger O, 2010, P R SOC B, V277, P773, DOI 10.1098/rspb.2009.1450; Charnov EL, 2007, AM NAT, V170, pE129, DOI 10.1086/522840; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; Chisholm JS, 1999, DEATH HOPE SEX STEPS; Cleveland HH, 2003, J RES ADOLESCENCE, V13, P211, DOI 10.1111/1532-7795.1302004; Creel S, 2003, ANIMAL SOCIAL COMPLEXITY, P153; Crespi EJ, 2005, AM J HUM BIOL, V17, P44, DOI 10.1002/ajhb.20098; Del Giudice M, 2009, DEV REV, V29, P1, DOI 10.1016/j.dr.2008.09.001; Division P. T., 2006, ASVAB TECHN B; Djordjevic A, 2009, NEUROPSYCHOBIOLOGY, V59, P213, DOI 10.1159/000223733; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Feder ME, 1999, ANNU REV PHYSIOL, V61, P243, DOI 10.1146/annurev.physiol.61.1.243; Fernald RD, 1999, FRONT NEUROENDOCRIN, V20, P224, DOI 10.1006/frne.1999.0181; Finkelhor D, 2009, CHILDRENS EXPOSURE V; FRANCIS RC, 1993, P NATL ACAD SCI USA, V90, P7794, DOI 10.1073/pnas.90.16.7794; FURSTENBERG FF, 1998, MANAGING MAKE IT URB; Geffner R., 2001, B BEHAV CURRENT ISSU; Javois J, 2004, ANIM BEHAV, V68, P249, DOI 10.1016/j.anbehav.2003.10.022; Jones ME, 2008, P NATL ACAD SCI USA, V105, P10023, DOI 10.1073/pnas.0711236105; Kefalas M., 2005, PROMISES I CAN KEEP; Kubrin CE, 2003, SOC PROBL, V50, P157, DOI 10.1525/sp.2003.50.2.157; Manlove J, 2008, PERSPECT SEX REPRO H, V40, P105, DOI 10.1363/4010508; Mazerolle L, 2010, J RES CRIME DELINQ, V47, P3, DOI 10.1177/0022427809348898; Meade CS, 2008, HEALTH PSYCHOL, V27, P419, DOI 10.1037/0278-6133.27.4.419; Moore W., 2000, NATL LONGITUDINAL SU; Mueller U, 2001, BEHAV ECOL SOCIOBIOL, V50, P302, DOI 10.1007/s002650100370; Nansel TR, 2001, JAMA-J AM MED ASSOC, V285, P2094, DOI 10.1001/jama.285.16.2094; Nettle D, 2002, HUM NATURE-INT BIOS, V13, P473, DOI 10.1007/s12110-002-1004-7; Newman K.S., 2004, RAMPAGE SOCIAL ROOTS; Pettay JE, 2005, P NATL ACAD SCI USA, V102, P2838, DOI 10.1073/pnas.0406709102; Pettay JE, 2008, EVOLUTION, V62, P2297, DOI 10.1111/j.1558-5646.2008.00452.x; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; Roff D. A., 2002, LIFE HIST EVOLUTION; Sampson RJ, 1997, SCIENCE, V277, P918, DOI 10.1126/science.277.5328.918; Shuster S. M., 2003, MATING SYSTEMS STRAT; Sibly RM, 2007, P NATL ACAD SCI USA, V104, P17707, DOI 10.1073/pnas.0707725104; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1994, EVOLUTION, V48, P1438, DOI 10.1111/j.1558-5646.1994.tb02186.x; Suglia SF, 2008, J TRAUMA STRESS, V21, P479, DOI 10.1002/jts.20362; Vogl C, 1996, EVOLUTION, V50, P1343, DOI 10.1111/j.1558-5646.1996.tb02375.x; WARKENTIN KM, 2009, COGNITIVE ECOLOGY, V2, P177; White RB, 1998, GEN COMP ENDOCR, V112, P322, DOI 10.1006/gcen.1998.7142; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; Wolf JB, 2009, PHILOS T R SOC B, V364, P1107, DOI 10.1098/rstb.2008.0238 53 2 2 1 14 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 EVOL HUM BEHAV Evol. Hum. Behav. NOV 2012 33 6 647 656 10.1016/j.evolhumbehav.2012.04.002 10 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences 031UU WOS:000310668700006 2018-11-12 J Balbontin, J; Moller, AP; Hermosell, IG; Marzal, A; Reviriego, M; de Lope, F Balbontin, J.; Moller, A. P.; Hermosell, I. G.; Marzal, A.; Reviriego, M.; de Lope, F. Geographical variation in reproductive ageing patterns and life-history strategy of a short-lived passerine bird JOURNAL OF EVOLUTIONARY BIOLOGY English Article age; age at last reproduction; barn swallow; life-history theory; lifespan; migration distance; reproductive senescence SWALLOW HIRUNDO-RUSTICA; AGE-SPECIFIC REPRODUCTION; NATURAL-SELECTION; SEXUAL SELECTION; WILD POPULATION; MIGRATORY BIRD; ARRIVAL DATE; RED DEER; SENESCENCE; SURVIVAL We investigated differences in ageing patterns in three measures of breeding performance in populations of barn swallows Hirundo rustica L. from Spain and Denmark differing in breeding latitude and hence migration distance and duration of the breeding season. We found differences in ageing patterns between populations. Generally, young (i.e. yearling) and old females (i.e. = 5 years of age) laid their first eggs later and produced smaller clutches than middle-aged females (i.e. 2-4 years of age) in both populations. The southernmost population (i.e. Spanish) showing the shorter migratory distance experienced a greater within-individual increase in timing of breeding and clutch size in early life and a greater within-individual decrease in laying date but not in clutch size during senescence compared with the northernmost population (i.e. Danish). We also found that the number of fledglings produced annually was related to the age of the two members of the breeding pairs with pairs composed of young and old females performing less well than breeding pairs composed of middle-aged females. We did not find reproductive senescence for the age of the male while controlling for the age of the female on the number of fledglings produced annually by the breeding pair. Differential survival between individuals did not explain age effects on laying date or annual clutch size in neither population. However, the increase in the number of fledglings produced annually with age was partly explained by the disappearance of poor-quality members of the pairs, mainly poor-quality males. Age-related breeding success (i.e. number of fledglings) was similar for barn swallows from Spain and Denmark. Therefore, the study of ageing patterns and life-history strategies in free-ranging animals from more than a single population can throw new light on life-history theory, population dynamics and evolutionary studies of senescence. [Balbontin, J.] Fac Biol, Dept Zool, E-41012 Seville, Spain; [Moller, A. P.] Univ Paris 11, CNRS UMR 8079, Lab Ecol Systemat & Evolut, Orsay, France; [Hermosell, I. G.; Marzal, A.; Reviriego, M.; de Lope, F.] Univ Extremadura, Dept Anat Biol Celular & Zool, E-06071 Badajoz, Spain Balbontin, J (reprint author), Fac Biol, Dept Zool, Edificio Verde,Avda Reina Mercedes S-N, E-41012 Seville, Spain. balbontin@us.es Marzal, Alfonso/J-6677-2012; Garcia Hermosell, Ignacio/H-1800-2012; Balbontin, Javier/H-5932-2015 Marzal, Alfonso/0000-0001-5872-1060; Garcia Hermosell, Ignacio/0000-0002-5785-2269; Balbontin, Javier/0000-0003-1539-2636; Reviriego, Maria Isabel/0000-0002-7141-4054 Spanish Ministry of Education and Science [CGL-2009-08976] Thanks to all the people who helped obtain field data, especially A. Barbosa, N. Cadee, J. Cuervo, L. Garamszegi, D. Gil, F. Mateos, S. Merino, J. Moreno, C. Navarro and P. Ninni. The Spanish Ministry of Education and Science (CGL-2009-08976) supported this research. The Spanish Ministry of Education and Science supported IGH through a predoctoral 'FPI' fellowship. Comments by A. Roulin and three anonymous reviewers helped improve earlier versions of this manuscript. Ambrosini R, 2009, J THEOR BIOL, V257, P203, DOI 10.1016/j.jtbi.2008.11.019; Balbontin J, 2007, J ANIM ECOL, V76, P915, DOI 10.1111/j.1365-2656.2007.01269.x; Balbontin J, 2009, J ANIM ECOL, V78, P981, DOI 10.1111/j.1365-2656.2009.01573.x; Barton K, 2009, MUMIN MULTIMODEL INF; Blas J, 2009, ECOGRAPHY, V32, P647, DOI 10.1111/j.1600-0587.2008.05700.x; Bouwhuis S, 2009, P R SOC B, V276, P2769, DOI 10.1098/rspb.2009.0457; Bouwhuis S, 2010, J ANIM ECOL, V79, P1251, DOI 10.1111/j.1365-2656.2010.01730.x; Brommer JE, 2007, AM NAT, V170, P643, DOI 10.1086/521241; Burnham K. P., 2002, MODEL SELECTION MULT; Cam E, 2002, AM NAT, V159, P96, DOI 10.1086/324126; Caswell H, 2001, MATRIX POPULATION MO; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Clutton-Brock T.H., 1988, REPROD SUCCESS STUDI; CURIO E, 1983, IBIS, V125, P400, DOI 10.1111/j.1474-919X.1983.tb03130.x; de Lope F., 1983, Donana Acta Vertebrata, V10, P91; Descamps S, 2008, J ANIM ECOL, V77, P305, DOI 10.1111/j.1365-2656.2007.01340.x; DESROCHERS A, 1992, ECOLOGY, V73, P1128, DOI 10.2307/1940186; Dugdale HL, 2011, MOL ECOL, V20, P3261, DOI 10.1111/j.1365-294X.2011.05167.x; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Mangel M, 2008, FUNCT ECOL, V22, P422, DOI 10.1111/j.1365-2435.2008.01410.x; MARCHETTI K, 1989, BIOL REV, V64, P51, DOI 10.1111/j.1469-185X.1989.tb00638.x; McCleery RH, 2008, P R SOC B, V275, P963, DOI 10.1098/rspb.2007.1418; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; McNamara JM, 2009, P ROY SOC B-BIOL SCI, V276, P4061, DOI 10.1098/rspb.2009.0959; MEDAWAR PB, 1952, UNSOLVED PROBLEM BIO; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Millon A, 2011, J ANIM ECOL, V80, P968, DOI 10.1111/j.1365-2656.2011.01842.x; Moller AP, 2007, J EVOLUTION BIOL, V20, P750, DOI 10.1111/j.1420-9101.2006.01236.x; Moller AP, 2005, AGE, V27, P307, DOI 10.1007/s11357-005-4557-7; MOLLER AP, 1992, J EVOLUTION BIOL, V5, P603, DOI 10.1046/j.1420-9101.1992.5040603.x; Moller AP, 2002, ECOLOGY, V83, P2220, DOI 10.2307/3072053; Moller AP, 2006, J EVOLUTION BIOL, V19, P682, DOI 10.1111/j.1420-9101.2005.01065.x; MOLLER AP, 1995, BEHAV ECOL SOCIOBIOL, V37, P289; MOLLER AP, 1994, BEHAV ECOL SOCIOBIOL, V35, P115, DOI 10.1007/s002650050077; Monaghan P, 2008, FUNCT ECOL, V22, P371, DOI 10.1111/j.1365-2435.2008.01418.x; Ninni P, 2004, OIKOS, V105, P55, DOI 10.1111/j.0030-1299.2004.12516.x; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; Nussey DH, 2007, CURR BIOL, V17, pR1000, DOI 10.1016/j.cub.2007.10.005; Nussey DH, 2006, ECOL LETT, V9, P1342, DOI 10.1111/j.1461-0248.2006.00989.x; Partridge L, 1996, P ROY SOC B-BIOL SCI, V263, P1365, DOI 10.1098/rspb.1996.0200; Pinheiro JC, 2000, MIXED EFFECTS MODELS; R Development Core Team, 2012, R LANG ENV STAT COMP; Rebke M, 2010, P NATL ACAD SCI USA, V107, P7841, DOI 10.1073/pnas.1002645107; Reed TE, 2008, AM NAT, V171, pE89, DOI 10.1086/524957; Reid JM, 2010, J ANIM ECOL, V79, P851, DOI 10.1111/j.1365-2656.2010.01669.x; Roff Derek A., 1992; Rose M. R, 1991, EVOLUTIONARY BIOL AG; Sharp SP, 2010, J ANIM ECOL, V79, P176, DOI 10.1111/j.1365-2656.2009.01616.x; Turner A. K., 1989, SWALLOWS MARTINS WOR; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060 56 10 10 6 85 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. NOV 2012 25 11 2298 2309 10.1111/j.1420-9101.2012.02606.x 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 030DY WOS:000310550400013 22994532 Bronze 2018-11-12 J Vehvilainen, H; Kause, A; Kuukka-Anttila, H; Koskinen, H; Paananen, T Vehvilainen, Harri; Kause, Antti; Kuukka-Anttila, Hanna; Koskinen, Heikki; Paananen, Tuija Untangling the positive genetic correlation between rainbow trout growth and survival EVOLUTIONARY APPLICATIONS English Article animal breeding; aquaculture; body size; evolutionary theory; fitness cost; life-history trade-off; Oncorhynchus mykiss; quantitative genetics BODY-SIZE; LIFE-HISTORY; QUANTITATIVE GENETICS; ONCORHYNCHUS-MYKISS; BREEDING PROGRAM; PHENOTYPIC PLASTICITY; SELECTION INDEXES; DEVELOPMENT TIME; FEED-EFFICIENCY; EVOLUTION Explanations for positive and negative genetic correlations between growth and fitness traits are essential for life-history theory and selective breeding. Here, we test whether growth and survival display genetic trade-off. Furthermore, we assess the potential of third-party traits to explain observed genetic associations. First, we estimated genetic correlations of growth and survival of rainbow trout. We then explored whether these associations are explained by genetic correlations with health, body composition and maturity traits. Analysis included 14 traits across life stages and environments. Data were recorded from 249 166 individuals belonging to 10 year classes of a pedigreed population. The results revealed that rapid growth during grow-out was genetically associated with enhanced survival (mean r(G) = 0.17). This resulted because genotypes with less nematode caused cataract grew faster and were more likely to survive. Fingerling survival was not genetically related to weight or to grow-out survival. Instead, rapid fingerling growth made fish prone to deformations (r(G) = 0.18). Evolutionary genetics provides a theoretical framework to study variation in genetic correlations. This study demonstrates that genetic correlation patterns of growth and survival can be explained by a set of key explanatory traits recorded at different life stages and that these traits can be simultaneously improved by selective breeding. [Vehvilainen, Harri; Kause, Antti] MTT Agrifood Res Finland, Jokioinen, Finland; [Kuukka-Anttila, Hanna] Univ Helsinki, Dept Biosci, Helsinki, Finland; [Kuukka-Anttila, Hanna] Finnish Game & Fisheries Res Inst, Helsinki, Finland; [Koskinen, Heikki; Paananen, Tuija] Finnish Game & Fisheries Res Inst, Tervo, Finland Vehvilainen, H (reprint author), MTT Agrifood Res, FI-31600 Jokioinen, Finland. harri.vehvilainen@mtt.fi Finnish Ministry of Agriculture and Forestry; Kone foundation The always hardworking FGFRI staff at the Tervo Fisheries Research and Aquaculture station and animal geneticists at MTT made this study possible. Cheryl Quinton kindly improved the language. This study was financed by the Finnish Ministry of Agriculture and Forestry and Kone foundation. Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; Blount JD, 2004, ARCH BIOCHEM BIOPHYS, V430, P10, DOI 10.1016/j.abb.2004.03.039; Brakefield PM, 2006, TRENDS ECOL EVOL, V21, P362, DOI 10.1016/j.tree.2006.05.001; Carlson SM, 2008, EVOL APPL, V1, P222, DOI 10.1111/j.1752-4571.2008.00025.x; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; de Greef KH, 2001, J ANIM SCI, V79, P1723; de Jong G, 2002, LIVEST PROD SCI, V78, P195, DOI 10.1016/S0301-6226(02)00096-9; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Eroukhmanoff F, 2009, EVOL BIOL, V36, P323, DOI 10.1007/s11692-009-9062-y; Falconer D. S., 1960, INTRO QUANTITATIVE G; FISHER R. A., 1930, GENETICAL THEORY NAT; Gasser M, 2000, EVOLUTION, V54, P1260; Gitterle T, 2005, AQUACULTURE, V243, P83, DOI 10.1016/j.aquaculture.2004.10.015; Gjedrem T, 2010, REV AQUACULT, V2, P2, DOI 10.1111/j.1753-5131.2010.01011.x; Gjoen HM, 1997, ICES J MAR SCI, V54, P1009, DOI 10.1006/jmsc.1997.0299; HAYES JF, 1981, BIOMETRICS, V37, P483, DOI 10.2307/2530561; Hazel LN, 1943, GENETICS, V28, P476; Hellbrugge B, 2008, ANIMAL, V2, P1273, DOI 10.1017/S1751731108002504; HENDERSON CR, 1975, BIOMETRICS, V31, P423, DOI 10.2307/2529430; Henryon M, 2002, AQUACULTURE, V209, P59, DOI 10.1016/S0044-8486(01)00729-3; JONASSON J, 1993, AQUACULTURE, V109, P225, DOI 10.1016/0044-8486(93)90165-U; Kause A, 2007, J ANIM SCI, V85, P3218, DOI 10.2527/jas.2007-0332; Kause A, 2006, J ANIM SCI, V84, P807; Kause A, 2005, AQUACULTURE, V247, P177, DOI 10.1016/j.aquaculture.2005.02.023; Kause A, 2003, J FISH BIOL, V62, P610, DOI 10.1046/j.0022-1112.2003.00051.x; Kause A, 2011, J ANIM SCI, V89, P959, DOI 10.2527/jas.2010-2981; Kause A, 2002, AQUACULTURE, V211, P65, DOI 10.1016/S0044-8486(01)00884-5; Kause A, 2001, GENET RES, V78, P31, DOI 10.1017/S0016672301005171; Kause A, 2001, EVOLUTION, V55, P1992; Kause A, 1999, J EVOLUTION BIOL, V12, P471, DOI 10.1046/j.1420-9101.1999.00045.x; Kenway M, 2006, AQUACULTURE, V259, P138, DOI 10.1016/j.aquaculture.2006.05.042; Kiessling A, 1995, FISH PHYSIOL BIOCHEM, V14, P439, DOI 10.1007/BF00004344; Kuukka-Anttila H, 2010, HEREDITY, V104, P20, DOI 10.1038/hdy.2009.123; Lakeh AAB, 2010, J APPL ICHTHYOL, V26, P35, DOI 10.1111/j.1439-0426.2009.01349.x; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; Lang RP, 2010, AQUACULTURE, V306, P68, DOI 10.1016/j.aquaculture.2010.04.023; Lazzaro BP, 2009, PHILOS T R SOC B, V364, P15, DOI 10.1098/rstb.2008.0141; Madsen P., 2008, DMU PACKAGE ANAL MUL; MANTYSAARI EA, 1991, J DAIRY SCI, V74, P580; McKean KA, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-76; Merila J, 1999, HEREDITY, V83, P103, DOI 10.1046/j.1365-2540.1999.00585.x; Nielsen HM, 2010, AQUACULTURE, V304, P14, DOI 10.1016/j.aquaculture.2010.03.016; Phillips PC, 2001, GENETICS, V158, P1137; Pigliucci M, 2000, TRENDS ECOL EVOL, V15, P66, DOI 10.1016/S0169-5347(99)01762-0; Quinton CD, 2007, GENET SEL EVOL, V39, P431, DOI 10.1051/gse:2007013; Rauw WM, 1998, LIVEST PROD SCI, V56, P15, DOI 10.1016/S0301-6226(98)00147-X; Riggio V, 2008, J ANIM SCI, V86, P1758, DOI 10.2527/jas.2007-0132; ROBISON OW, 1984, AQUACULTURE, V38, P155, DOI 10.1016/0044-8486(84)90227-8; Roehe R, 2010, J ANIM SCI, V88, P1276, DOI 10.2527/jas.2009-2287; Roff DA, 2011, J EVOLUTION BIOL, V24, P1857, DOI 10.1111/j.1420-9101.2011.02315.x; Roff DA, 1996, EVOLUTION, V50, P1392, DOI 10.1111/j.1558-5646.1996.tb03913.x; Roff Derek A., 1992; ROSE MR, 1984, AM NAT, V123, P565, DOI 10.1086/284222; RYE M, 1990, AQUACULTURE, V89, P209, DOI 10.1016/0044-8486(90)90126-8; Rye M, 2010, P 9 WORLD C GEN APPL; SAS Institute Inc, 2008, SAS STAT US GUID VER; Schluter D, 1996, EVOLUTION, V50, P1766, DOI 10.1111/j.1558-5646.1996.tb03563.x; SKREDE G, 1990, J FOOD SCI, V55, P361, DOI 10.1111/j.1365-2621.1990.tb06763.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Teuschl Y, 2007, J EVOLUTION BIOL, V20, P87, DOI 10.1111/j.1420-9101.2006.01225.x; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vehvilainen H., 2010, P 9 WORLD C GEN APPL; Vehvilainen H, 2008, GENETICS, V180, P507, DOI 10.1534/genetics.108.089896; Vehvilainen H, 2010, GENET RES, V92, P1, DOI 10.1017/S0016672310000017; Wedekind C, 2008, P ROY SOC B-BIOL SCI, V275, P1737, DOI 10.1098/rspb.2008.0072; Wright S, 1920, P NATL ACAD SCI USA, V6, P320, DOI 10.1073/pnas.6.6.320 66 18 18 0 26 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1752-4571 EVOL APPL Evol. Appl. NOV 2012 5 7 732 745 10.1111/j.1752-4571.2012.00251.x 14 Evolutionary Biology Evolutionary Biology 030BW WOS:000310543800007 23144659 DOAJ Gold, Green Published 2018-11-12 J Haapakoski, M; Sundell, J; Ylonen, H Haapakoski, Marko; Sundell, Janne; Ylonen, Hannu Predation risk and food: opposite effects on overwintering survival and onset of breeding in a boreal rodent JOURNAL OF ANIMAL ECOLOGY English Article fitness; indirect predation; olfaction; predator stress VOLE CLETHRIONOMYS-GLAREOLUS; WEASEL MUSTELA NIVALIS; SNOWSHOE HARE CYCLE; BANK VOLE; PREY INTERACTIONS; MICROTUS-PENNSYLVANICUS; MEADOW VOLES; POPULATION; WINTER; SUPPRESSION 1. In seasonal environments, optimal onset of breeding and survival plays major roles in individual fitness. Many physiological and behavioural factors related to breeding increase the risk of predation; thus, breeding decisions should be based on current risks and benefits. According to life-history theory, if current predation risk is high and breeding itself increases the risk, it may be beneficial to postpone breeding. 2. During winter in northern hemispheres, food availability is limited and is at its lowest just prior to the onset of breeding in spring. Food constraint may lead to poor condition and reduced ability to start breeding. 3. We studied the effects of food and predation risk on winter survival and onset of breeding in a common boreal rodent, the bank vole (Myodes glareolus). In a 2 x 2 factorial experiment, we manipulated food availability (food supplemented or not) and predation risk (presence/absence of predator odour) in 20 large outdoor enclosures in central Finland. 4. Survival probabilities were highest in no predation risk treatments, whereas they were lowest in the predator risk treatment. The same trend was observed in vole densities and the weight change in individuals. Voles with food addition bred earlier than in the other treatments. 5. We conclude that during energy constrained harsh conditions in winter, predation risk causes behavioural changes throughout the winter and has significant negative survival and fitness effects for small mammals, reflected as delay in the start of breeding. [Haapakoski, Marko; Ylonen, Hannu] Univ Jyvaskyla, Konnevesi Res Stn, Dept Biol & Environm Sci, Jyvaskyla 40014, Finland; [Sundell, Janne] Univ Helsinki, Lammi Biol Stn, Lammi 16900, Finland Haapakoski, M (reprint author), Univ Jyvaskyla, Konnevesi Res Stn, Dept Biol & Environm Sci, POB 35, Jyvaskyla 40014, Finland. marko.j.haapakoski@jyu.fi Haapakoski, Marko/0000-0003-0901-6319 Finnish Academy We thank the technicians of the Konnevesi Research Station and additionally Jani Korpilauri and Lenka Trebaticka for help in the field work. Ines Klemme, Carl Soulsbury, Rolf A. Ims and two reviewers provided valuable comments on the manuscript. The study was supported by the Finnish Academy to the CoE in Evolutionary Ecology at University of Jyvaskyla. The Authors declares that there is no conflict of interest. Experiment and animal handling were conducted with animal experimentation permission at Jyvaskyla University no. 35/31.5.2004. Aars J, 2002, ECOLOGY, V83, P3449, DOI 10.2307/3072093; Baillargeon S, 2007, J STAT SOFTW, V19; Boonstra R, 1998, ECOL MONOGR, V68, P371, DOI 10.1890/0012-9615(1998)068[0371:TIOPIS]2.0.CO;2; BOUTIN S, 1990, CAN J ZOOL, V68, P203, DOI 10.1139/z90-031; BRINCK C, 1983, J CHEM ECOL, V9, P727, DOI 10.1007/BF00988779; BROWN EB, 1973, ECOLOGY, V54, P1103; BROWN JS, 1988, BEHAV ECOL SOCIOBIOL, V22, P37, DOI 10.1007/BF00395696; BUJALSKA G, 1985, ANN ZOOL FENN, V22, P331; Burnham KP, 2002, MODEL SELECTION INFE; BURNHAM KPD, 1987, MONOGRAPH AM FISHERI, V5; Crawley M. J., 2007, R BOOK; Creel S, 2008, TRENDS ECOL EVOL, V23, P194, DOI 10.1016/j.tree.2007.12.004; Eccard JA, 2001, CAN J ZOOL, V79, P1743, DOI 10.1139/cjz-79-10-1743; Eccard JA, 2011, OECOLOGIA, V167, P623, DOI 10.1007/s00442-011-2008-y; Eccard Jana A., 2011, BMC Ecology, V11, P16, DOI 10.1186/1472-6785-11-16; Elton C., 1949, J ECOL, V37, pU22; Ergon T, 2004, AM NAT, V163, P442, DOI 10.1086/381940; Ergon T, 2001, NATURE, V411, P1043, DOI 10.1038/35082553; Ergon T, 2007, ECOSCIENCE, V14, P330, DOI 10.2980/1195-6860(2007)14[330:OOOSRI]2.0.CO;2; Ergon T, 2011, OIKOS, V120, P934, DOI 10.1111/j.1600-0706.2010.18983.x; ERLINGE S, 1974, OIKOS, V25, P308, DOI 10.2307/3543948; ERLINGE S, 1975, OIKOS, V26, P378, DOI 10.2307/3543510; ERLINGE S, 1982, ANIM BEHAV, V30, P811, DOI 10.1016/S0003-3472(82)80154-1; Fuelling O, 2004, OECOLOGIA, V138, P151, DOI 10.1007/s00442-003-1417-y; Galea LAM, 1999, NEUROSCIENCE, V89, P955, DOI 10.1016/S0306-4522(98)00345-5; Hanski I, 2001, ECOLOGY, V82, P1505, DOI 10.2307/2679796; HANSSON L, 1995, ANN ZOOL FENN, V32, P159; Hellstedt P, 2002, ANN ZOOL FENN, V39, P257; Hik DS, 2001, ECOSCIENCE, V8, P275, DOI 10.1080/11956860.2001.11682654; Hodges KE, 2006, J ANIM ECOL, V75, P1, DOI 10.1111/j.1365-2656.2005.01018.x; Huitu O, 2003, ECOLOGY, V84, P2108, DOI 10.1890/02-0040; IMS RA, 1987, AM NAT, V130, P475, DOI 10.1086/284725; Jochym M., 2011, THESIS FRIEDRICH SCH; Jonsson P, 2000, OECOLOGIA, V122, P487, DOI 10.1007/s004420050970; Klemme I, 2008, P R SOC B, V275, P1095, DOI 10.1098/rspb.2008.0038; Kokko H, 1996, OIKOS, V77, P173, DOI 10.2307/3545599; Kokko H, 2000, ECOLOGY, V81, P252, DOI 10.1890/0012-9658(2000)081[0252:BSAPPD]2.0.CO;2; KORPIMAKI E, 1991, OECOLOGIA, V88, P552, DOI 10.1007/BF00317719; Kotler BP, 2004, ECOLOGY, V85, P917, DOI 10.1890/03-3002; KREBS CJ, 1995, SCIENCE, V269, P1112, DOI 10.1126/science.269.5227.1112; Krebs CJ, 2001, BIOSCIENCE, V51, P25, DOI 10.1641/0006-3568(2001)051[0025:WDTYCO]2.0.CO;2; Kusumoto K, 2009, J MAMMAL, V90, P416, DOI 10.1644/08-MAMM-A-139.1; Laake J., 2008, RMARK ALTERNATIVE AP; Lima SL, 2002, TRENDS ECOL EVOL, V17, P70, DOI 10.1016/S0169-5347(01)02393-X; Lima SL, 1998, BIOSCIENCE, V48, P25, DOI 10.2307/1313225; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Mappes T, 1998, OIKOS, V82, P365, DOI 10.2307/3546977; McPhee ME, 2009, J ETHOL, V27, P137, DOI 10.1007/s10164-008-0099-7; MERRITT JF, 1978, J MAMMAL, V59, P576, DOI 10.2307/1380235; MILLAR JS, 1981, CAN J ZOOL, V59, P1094, DOI 10.1139/z81-151; Nyholm E. S., 1959, SUOMEN RIISTA, V13, P106; Pedersen AB, 2008, J ANIM ECOL, V77, P370, DOI 10.1111/j.1365-2656.2007.01321.x; PerrotSinal TS, 1996, BEHAV NEUROSCI, V110, P1126, DOI 10.1037/0735-7044.110.5.1126; Pinheiro J, 2010, NLME LINEAR NONLINEA, V3, P1; Preisser EL, 2005, ECOLOGY, V86, P501, DOI 10.1890/04-0719; R Development Core Team, 2010, R LANG ENV STAT COMP; Roff Derek A., 1992; RONKAINEN H, 1994, OECOLOGIA, V97, P377, DOI 10.1007/BF00317328; Schmitz OJ, 2008, SCIENCE, V319, P952, DOI 10.1126/science.1152355; Sheriff MJ, 2010, ECOLOGY, V91, P2983, DOI 10.1890/09-1108.1; Sheriff MJ, 2009, J ANIM ECOL, V78, P1249, DOI 10.1111/j.1365-2656.2009.01552.x; Short H. L., 1961, Journal of Mammalogy, V42, P273, DOI 10.2307/1376858; Sundell J, 2000, OIKOS, V90, P501, DOI 10.1034/j.1600-0706.2000.900308.x; Von Blanckenhagen F, 2007, ECOSCIENCE, V14, P323, DOI 10.2980/1195-6860(2007)14[323:APAARC]2.0.CO;2; WEST SD, 1984, SPECIAL PUBLICATION, V10, P293; White GC, 1999, BIRD STUDY, V46, P120; Wolff JO, 1997, OIKOS, V79, P543, DOI 10.2307/3546898; YLONEN H, 1995, ANN ZOOL FENN, V32, P171; Ylonen H, 2004, ECOSCIENCE, V11, P1; YLONEN H, 1985, ANN ZOOL FENN, V22, P353; YLONEN H, 1994, EVOL ECOL, V8, P658, DOI 10.1007/BF01237848; Zuur A. F., 2009, MIXED EFFECTS MODELS 72 11 11 1 64 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. NOV 2012 81 6 1183 1192 10.1111/j.1365-2656.2012.02005.x 10 Ecology; Zoology Environmental Sciences & Ecology; Zoology 030FF WOS:000310554300006 22686945 2018-11-12 J Heineman, RH; Brown, SP Heineman, Richard H.; Brown, Sam P. Experimental Evolution of a Bacteriophage Virus Reveals the Trajectory of Adaptation across a Fecundity/Longevity Trade-Off PLOS ONE English Article THERMAL INACTIVATION; LYSIS TIME; VIRULENCE; PHARAOH; CURSE; PATHOGENS; TRANSMISSION; ENVIRONMENT; HYPOTHESIS; DEMOGRAPHY Life history theory attempts to account for how organisms lead their lives, balancing the conflicting demands of reproduction and survival. Here, we track the genomic and phenotypic evolution of the bacteriophage virus T7 across a postulated fecundity/longevity constraint. We adapted T7 to a challenging survival environment (6M urea). Our evolved strain displayed a significant improvement in propagule survival, coupled with a significant loss of fecundity (reduced growth rate on host cells). However, the increased resistance to urea did not generalise to increased resistance against temperature stress, highlighting that propagule durability is environment dependent. Previous comparative studies predicted that changes in propagule resistance would be mediated by changes in capsid proteins or gene deletions. In contrast, we found that point mutations in internal core protein genes (6.7 and 16) were responsible for the increased urea resistance of our evolved strain. Prior to the emergence of the 6.7 and 16 mutations, a distinct set of 5-point mutations peaked at over 20% prevalence before attenuating, suggestive of negative epistatic interactions during adaptation. Our results illustrate that parasites can adapt to specific transmission environments, and that this adaptation can impose costs on the subsequent ability to exploit host cells, potentially constraining durable parasites to lower virulence. [Heineman, Richard H.; Brown, Sam P.] Univ Texas Austin, Sect Integrat Biol, Austin, TX 78712 USA; [Brown, Sam P.] Univ Edinburgh, Ctr Infect Immun & Evolut, Edinburgh, Midlothian, Scotland Brown, SP (reprint author), Univ Texas Austin, Sect Integrat Biol, Austin, TX 78712 USA. sam.brown@ed.ac.uk Brown, Sam/B-5234-2009 Brown, Sam/0000-0003-1892-9275 Human Frontier Science Program (HFSP) grant [LT755/2004]; Wellcome Trust grant [082273/Z/07/Z]; National Institutes of Health (NIH) grant [GM 57756] This work was supported by the Human Frontier Science Program (HFSP) grant LT755/2004 (SPB), The Wellcome Trust grant 082273/Z/07/Z (SPB), and the National Institutes of Health (NIH) grant GM 57756 (Jim Bull) provided financial support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Alizon S, 2005, AM NAT, V165, pE155, DOI 10.1086/430053; Bennion BJ, 2003, P NATL ACAD SCI USA, V100, P5142, DOI 10.1073/pnas.0930122100; BLEICHRODT JF, 1968, VIROLOGY, V36, P343, DOI 10.1016/0042-6822(68)90160-8; Bloom JD, 2005, P NATL ACAD SCI USA, V102, P606, DOI 10.1073/pnas.0406744102; Bonhoeffer S, 1996, P ROY SOC B-BIOL SCI, V263, P715, DOI 10.1098/rspb.1996.0107; Brown SP, 2006, PLOS BIOL, V4, P2091, DOI 10.1371/journal.pbio.0040349; Bull JJ, 2000, MOL BIOL EVOL, V17, P942, DOI 10.1093/oxfordjournals.molbev.a026375; Childs DZ, 2010, P ROY SOC B-BIOL SCI, V277, P3055, DOI 10.1098/rspb.2010.0707; Crill WD, 2000, GENETICS, V154, P27; Day T, 2002, ECOL LETT, V5, P471, DOI 10.1046/j.1461-0248.2002.00342.x; De Paepe M, 2006, PLOS BIOL, V4, P1248, DOI 10.1371/journal.pbio.0040193; Duffy S, 2006, GENETICS, V172, P751, DOI 10.1534/genetics.105.051136; DUNN JJ, 1983, J MOL BIOL, V166, P477, DOI 10.1016/S0022-2836(83)80282-4; Ebert D, 1997, EVOLUTION, V51, P1828, DOI 10.1111/j.1558-5646.1997.tb05106.x; EWALD PW, 1987, ANN NY ACAD SCI, V503, P295, DOI 10.1111/j.1749-6632.1987.tb40616.x; EWALD PW, 1993, EVOLUTION INFECT DIS; Fraser C, 2007, P NATL ACAD SCI USA, V104, P17441, DOI 10.1073/pnas.0708559104; Gandon S, 1998, P ROY SOC B-BIOL SCI, V265, P1545, DOI 10.1098/rspb.1998.0470; GUPTA K, 1995, J MOL EVOL, V41, P113; Harrison F., 2006, BMC BIOL, V4; Heineman RH, 2005, J MOL EVOL, V61, P181, DOI 10.1007/s00239-004-0304-4; Heineman RH, 2008, AM NAT, V171, pE149, DOI 10.1086/528962; Heineman RH, 2007, EVOLUTION, V61, P1695, DOI 10.1111/j.1558-5646.2007.00132.x; Kamo M, 2004, J THEOR BIOL, V231, P435, DOI 10.1016/j.jtbi.2004.07.005; Kemp P, 2005, VIROLOGY, V340, P307, DOI 10.1016/j.virol.2005.06.039; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; Moak M, 2004, MOL MICROBIOL, V51, P1169, DOI 10.1046/j.1365-2958.2003.03894.x; Moak M, 2000, MOL MICROBIOL, V37, P345, DOI 10.1046/j.1365-2958.2000.01995.x; Ojosnegros S, 2011, PLOS GENETICS, V7; Roche B, 2011, ECOL LETT, V14, P569, DOI 10.1111/j.1461-0248.2011.01619.x; Shao YP, 2008, GENETICS, V180, P471, DOI 10.1534/genetics.108.090100; Stearns SC, 1992, EVOLUTION LIFE HIST, Vxii; Struthers-Schlinke JS, 2000, J MOL BIOL, V301, P35, DOI 10.1006/jmbi.2000.3940; Turner PE, 2003, AM NAT, V161, P497, DOI 10.1086/367880; Walther BA, 2004, BIOL REV, V79, P849, DOI 10.1017/S1464793104006475; Wang IN, 2006, GENETICS, V172, P17, DOI 10.1514/genetics.105.045922; WOESE C, 1960, ANN NY ACAD SCI, V83, P741, DOI 10.1111/j.1749-6632.1960.tb40943.x 37 11 11 1 40 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One OCT 12 2012 7 10 e46322 10.1371/journal.pone.0046322 7 Multidisciplinary Sciences Science & Technology - Other Topics 020LH WOS:000309809500012 23071555 DOAJ Gold, Green Published 2018-11-12 J Buss, C; Entringer, S; Wadhwa, PD Buss, Claudia; Entringer, Sonja; Wadhwa, Pathik D. Fetal Programming of Brain Development: Intrauterine Stress and Susceptibility to Psychopathology SCIENCE SIGNALING English Article CORTICOTROPIN-RELEASING HORMONE; 11-BETA-HYDROXYSTEROID DEHYDROGENASE TYPE-2; PRENATAL IMMUNE ACTIVATION; NEURAL STEM-CELLS; HIPPOCAMPAL VOLUME; MATERNAL CORTISOL; GENE-EXPRESSION; THYROID-HORMONE; FEMALE RATS; NEUROPSYCHIATRIC DISORDERS The fetal brain is highly plastic and is not only receptive to but requires cues from its environment to develop properly. Based on an understanding of evolutionary biology, developmental plasticity, and life history theory, one can predict that stressors are an important environmental condition that may influence brain development. In fact, the available empirical evidence appears to support the notion that exposure to excess stress in intrauterine life has the potential to adversely affect short- and long-term neurodevelopmental outcomes with implications for altered susceptibility for mental health disorders in childhood and adult life. In this presentation, we provide a rationale for proposing that endocrine and inflammatory stress mediators are key candidate pathways for programming brain development. These mediators are responsive to a diverse set of intrauterine perturbations and alter key signaling pathways critical for brain development, including but not limited to mammalian target of rapamycin, Wnt (wingless), Sonic hedgehog, and reelin signaling. We suggest that recent advances in neuroimaging and other methods now afford us an unprecedented opportunity to advance our understanding of this important topic. Additionally, we provide empirical evidence from two recently published papers for fetal programming of human brain development. We conclude by suggesting some future directions for expanding this field of research. [Buss, Claudia; Entringer, Sonja; Wadhwa, Pathik D.] Univ Calif Irvine, Dept Pediat, Sch Med, Irvine, CA 92697 USA; [Wadhwa, Pathik D.] Univ Calif Irvine, Dept Psychiat & Human Behav, Sch Med, Irvine, CA 92697 USA; [Wadhwa, Pathik D.] Univ Calif Irvine, Dept Obstet & Gynecol, Sch Med, Irvine, CA 92697 USA; [Wadhwa, Pathik D.] Univ Calif Irvine, Dept Epidemiol, Sch Med, Irvine, CA 92697 USA; [Buss, Claudia; Entringer, Sonja; Wadhwa, Pathik D.] Univ Calif Irvine, Sch Med, Dev Hlth & Dis Res Program, Irvine, CA 92697 USA Buss, C (reprint author), Univ Calif Irvine, Dept Pediat, Sch Med, Irvine, CA 92697 USA. cbuss@uci.edu NIH [HD-51852, HD-28413, MH-091351, HD-06028, HD-065825] We particularly acknowledge the contributions of J. M. Swanson and S. G. Potkin for the development of many of the concepts presented here. The two empirical studies presented here were from a research project led by C. A. Sandman in collaboration with E. P. Davis and supported by NIH grants HD-51852 and HD-28413, respectively. The ongoing neuroimaging work is being performed in collaboration with J. H. Gilmore and M. Styner at the Univ. of North Carolina and D. Fair of the Oregon Health and Science Univ. under NIH grants MH-091351, HD-06028, and HD-065825, respectively. Aberg ND, 2003, J NEUROSCI RES, V74, P12, DOI 10.1002/jnr.10734; Achenbach T, 2001, MANUAL ASEBA SCH AGE; Andersen SL, 2003, NEUROSCI BIOBEHAV R, V27, P3, DOI 10.1016/S0149-7634(03)00005-8; Anderson BJ, 2011, DEV PSYCHOBIOL, V53, P456, DOI 10.1002/dev.20563; Bale TL, 2011, STRESS, V14, P348, DOI 10.3109/10253890.2011.586447; Behan AT, 2011, EUR NEUROPSYCHOPHARM, V21, P71, DOI 10.1016/j.euroneuro.2010.07.004; BEITINS IZ, 1973, PEDIATR RES, V7, P509, DOI 10.1203/00006450-197305000-00004; Bellani M, 2011, EPIDEMIOL PSYCH SCI, V20, P33, DOI 10.1017/S2045796011000096; Benediktsson R, 1997, CLIN ENDOCRINOL, V46, P161, DOI 10.1046/j.1365-2265.1997.1230939.x; Bilbo SD, 2009, FRONT BEHAV NEUROSCI, V3, DOI 10.3389/neuro.08.014.2009; Bose R, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.60; BRABANT A, 1989, ACTA ENDOCRINOL-COP, V121, P95, DOI 10.1530/acta.0.1210095; Brown RW, 1996, ENDOCRINOLOGY, V137, P794, DOI 10.1210/en.137.2.794; Buss C, 2011, STRESS, V14, P665, DOI 10.3109/10253890.2011.623250; Buss C, 2007, J NEUROSCI, V27, P2592, DOI 10.1523/JNEUROSCI.3252-06.2007; Buss C, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0037758; Buss C, 2012, P NATL ACAD SCI USA, V109, pE1312, DOI 10.1073/pnas.1201295109; Buss C, 2009, EARLY HUM DEV, V85, P633, DOI 10.1016/j.earlhumdev.2009.08.001; Chen CH, 2012, STEM CELLS DEV, V21, P2667, DOI 10.1089/scd.2012.0023; Cheng YH, 2000, J CLIN ENDOCR METAB, V85, P1937, DOI 10.1210/jc.85.5.1937; Chrousos GP, 2009, ANN NY ACAD SCI, V1179, P153, DOI 10.1111/j.1749-6632.2009.04988.x; CHROUSOS GP, 1992, JAMA-J AM MED ASSOC, V267, P1244, DOI 10.1001/jama.267.9.1244; Clancy B, 2001, NEUROSCIENCE, V105, P7, DOI 10.1016/S0306-4522(01)00171-3; Clifton VL, 2010, PLACENTA, V31, pS33, DOI 10.1016/j.placenta.2009.11.010; Coe CL, 2003, BIOL PSYCHIAT, V54, P1025, DOI 10.1016/S0006-3223(03)00698-X; Crampton SJ, 2012, J NEUROCHEM, V120, P964, DOI 10.1111/j.1471-4159.2011.07634.x; Davis EP, 2010, CHILD DEV, V81, P131, DOI 10.1111/j.1467-8624.2009.01385.x; De Bellis MD, 2000, BIOL PSYCHIAT, V48, P51, DOI 10.1016/S0006-3223(00)00835-0; Delany AM, 2001, MOL ENDOCRINOL, V15, P1781, DOI 10.1210/me.15.10.1781; Demaree Heath A, 2005, Behav Cogn Neurosci Rev, V4, P3, DOI 10.1177/1534582305276837; Desouza LA, 2011, ENDOCRINOLOGY, V152, P1989, DOI 10.1210/en.2010-1396; Elovitz MA, 2006, PEDIATR RES, V59, P50, DOI 10.1203/01.pdr.0000191141.21932.b6; Entringer S, 2012, J NUTR METAB, DOI 10.1155/2012/632548; Entringer S, 2010, CURR OPIN ENDOCRINOL, V17, P507, DOI 10.1097/MED.0b013e3283405921; Epstein JN, 2003, J ABNORM CHILD PSYCH, V31, P543, DOI 10.1023/A:1025405216339; Feldman EL, 1997, NEUROBIOL DIS, V4, P201, DOI 10.1006/nbdi.1997.0156; Fowden AL, 2009, HORM RES, V72, P257, DOI 10.1159/000245927; Geuze E, 2005, MOL PSYCHIATR, V10, P160, DOI 10.1038/sj.mp.4001579; Gilbertson MW, 2002, NAT NEUROSCI, V5, P1242, DOI 10.1038/nn958; Gluckman PD, 2004, SCIENCE, V305, P1733, DOI 10.1126/science.1095292; Golan HM, 2005, NEUROPHARMACOLOGY, V48, P903, DOI 10.1016/j.neuropharm.2004.12.023; Graciarena M, 2010, BRAIN BEHAV IMMUN, V24, P1301, DOI 10.1016/j.bbi.2010.06.005; Guo R, 2010, REPROD SCI, V17, P540, DOI 10.1177/1933719110364061; Harris A, 2011, HORM BEHAV, V59, P279, DOI 10.1016/j.yhbeh.2010.06.007; Heine VM, 2009, J CLIN INVEST, V119, P267, DOI 10.1172/JCI36376; Huang WL, 2001, INT J DEV NEUROSCI, V19, P415, DOI 10.1016/S0736-5748(01)00026-0; Huda SS, 2010, SEMIN FETAL NEONAT M, V15, P70, DOI 10.1016/j.siny.2009.09.006; Hyman SE, 2008, NATURE, V455, P890, DOI 10.1038/nature07454; Janusonis S, 2004, J NEUROSCI, V24, P1652, DOI 10.1523/JNEUROSCI.4651-03.2004; Jia N, 2010, DEV NEUROBIOL, V70, P114, DOI 10.1002/dneu.20766; Johnstone JF, 2005, J SOC GYNECOL INVEST, V12, P238, DOI 10.1016/j.jsgi.2005.01.029; Juranek J, 2006, J CHILD NEUROL, V21, P1051, DOI 10.2310/7010.2006.00237; Kang HJ, 2011, NATURE, V478, P483, DOI 10.1038/nature10523; Koehl M, 2009, EUR J NEUROSCI, V29, P635, DOI 10.1111/j.1460-9568.2009.06608.x; Kossintseva I, 2006, AM J PHYSIOL-ENDOC M, V290, pE282, DOI 10.1152/ajpendo.00328.2005; Kraft E, 2012, AGING NEUROPSYCHOL C, V19, P248, DOI 10.1080/13825585.2011.645010; Kumamaru E, 2008, MOL ENDOCRINOL, V22, P546, DOI 10.1210/me.2007-0264; Liang G, 2011, EXP TOXICOL PATHOL, V63, P607, DOI 10.1016/j.etp.2010.04.015; Lupien SJ, 2011, P NATL ACAD SCI USA, V108, P14324, DOI 10.1073/pnas.1105371108; Lussier AL, 2009, NEUROSCI LETT, V460, P170, DOI 10.1016/j.neulet.2009.05.050; MEANEY MJ, 1991, NEUROBIOL AGING, V12, P31, DOI 10.1016/0197-4580(91)90036-J; Mehta MA, 2009, J CHILD PSYCHOL PSYC, V50, P943, DOI 10.1111/j.1469-7610.2009.02084.x; Moors M, 2012, TOXICOL SCI, V125, P488, DOI 10.1093/toxsci/kfr304; Mullane JC, 2009, CHILD NEUROPSYCHOL, V15, P321, DOI 10.1080/09297040802348028; Nathanielsz PW, 2003, ACTA PAEDIATR, V92, P766, DOI 10.1080/08035250310003668; O'Donnell KJ, 2012, PSYCHONEUROENDOCRINO, V37, P818, DOI 10.1016/j.psyneuen.2011.09.014; O'Shea TM, 2002, MENT RETARD DEV D R, V8, P135, DOI 10.1002/mrdd.10032; OZAWA M, 1988, ENDOCRINOLOGY, V123, P1461, DOI 10.1210/endo-123-3-1461; Papaioannou A, 2002, NEUROSCIENCE, V114, P195, DOI 10.1016/S0306-4522(02)00129-X; Pathak A, 2011, CEREB CORTEX, V21, P11, DOI 10.1093/cercor/bhq052; PRICE CJ, 1993, J NEUROSCI, V13, P4979; Rehman KS, 2007, REPROD SCI, V14, P578, DOI 10.1177/1933719107307908; Rezaie P, 2002, NEUROPATHOLOGY, V22, P106, DOI 10.1046/j.1440-1789.2002.00438.x; Sandman CA, 2006, PEPTIDES, V27, P1457, DOI 10.1016/j.peptides.2005.10.002; Shimizu H, 2010, PEPTIDES, V31, P145, DOI 10.1016/j.peptides.2009.09.036; Skaper Stephen D, 2012, Methods Mol Biol, V846, P1, DOI 10.1007/978-1-61779-536-7_1; Swanson JD, 2008, J CHILD PSYCHOL PSYC, V49, P1009, DOI 10.1111/j.1469-7610.2008.02014.x; Tottenham N, 2010, DEVELOPMENTAL SCI, V13, P46, DOI 10.1111/j.1467-7687.2009.00852.x; Townsend J., 1983, STOCHASTIC MODELLING; Udo H, 2005, NEURON, V45, P887, DOI 10.1016/j.neuron.2005.01.044; UNO H, 1994, HORM BEHAV, V28, P336, DOI 10.1006/hbeh.1994.1030; Van Lieshout RJ, 2011, OBES REV, V12, pe548, DOI 10.1111/j.1467-789X.2010.00850.x; Vuillermot S, 2010, J NEUROSCI, V30, P1270, DOI 10.1523/JNEUROSCI.5408-09.2010; Vyas A, 2004, NEUROSCIENCE, V128, P667, DOI 10.1016/j.neuroscience.2004.07.013; Wadhwa PD, 2011, CLIN PERINATOL, V38, P351, DOI 10.1016/j.clp.2011.06.007; Wei HG, 2011, J NEUROINFLAMM, V8, DOI 10.1186/1742-2094-8-52; Willcutt EG, 2005, BIOL PSYCHIAT, V57, P1336, DOI 10.1016/j.biopsych.2005.02.006; Winter C, 2009, INT J NEUROPSYCHOPH, V12, P513, DOI 10.1017/S1461145708009206; Yamazaki K, 1996, ENDOCRINOLOGY, V137, P4857, DOI 10.1210/en.137.11.4857; Zohar I, 2011, J NEUROENDOCRINOL, V23, P320, DOI 10.1111/j.1365-2826.2011.02117.x 90 24 24 0 0 AMER ASSOC ADVANCEMENT SCIENCE WASHINGTON 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA 1945-0877 1937-9145 SCI SIGNAL Sci. Signal. OCT 9 2012 5 245 10.1126/scisignal.2003406 7 Biochemistry & Molecular Biology; Cell Biology Biochemistry & Molecular Biology; Cell Biology 022JH WOS:000309953900005 23047922 Green Accepted 2018-11-12 J Placek, CD; Quinlan, RJ Placek, Caitlyn D.; Quinlan, Robert J. Adolescent fertility and risky environments: a population-level perspective across the lifespan PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article life-history theory; reproductive effort; environmental risk MATERNAL MORTALITY-RATES; REPRODUCTIVE STRATEGIES; CARIBBEAN COMMUNITY; PUBERTAL MATURATION; EXPECTANCY; PREGNANCY; INFANT; MODEL; GIRLS; AGE Timing of first reproduction is a key life-history variable with important implications for global economic development and health. Life-history theory predicts that human reproductive strategies are shaped by mortality regimes. This study provides the first test of the relationship between population-level adolescent fertility (AF) and extrinsic risk at two time points. Data are from United Nations database and were analysed using mediation and moderation techniques. The goals were to determine whether (i) early risk has a stronger impact on fertility than current risk; (ii) current risk mediates the relationship between early risk and fertility outcomes; and (iii) different levels of early risk influence the relationship between current risk and fertility. Results indicated that current risk partially mediated the relationship between early risk and fertility, with early risk having the strongest impact on reproduction. Measures for early and current mortality did not show significant interaction effects. However, a series of separate regression analyses using a quantile split of early risk indicated that high levels of early risk strengthened the relationship between current risk and AF. Overall, these findings demonstrate that reproductive strategies are significantly influenced by fluctuations of early mortality as well as current environmental cues of harshness. [Placek, Caitlyn D.; Quinlan, Robert J.] Washington State Univ, Dept Anthropol, Pullman, WA 99163 USA Placek, CD (reprint author), Washington State Univ, Dept Anthropol, POB 644910, Pullman, WA 99163 USA. caitlyn_placek@wsu.edu Anderson KG, 2010, HUM NATURE-INT BIOS, V21, P103, DOI 10.1007/s12110-010-9087-z; [Anonymous], 2011, STATW WORLDS CHILDRE; [Anonymous], 2007, GEND INF; BARON RM, 1986, J PERS SOC PSYCHOL, V51, P1173, DOI 10.1037//0022-3514.51.6.1173; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BERECZKEI T, 1993, ETHOL SOCIOBIOL, V14, P71, DOI 10.1016/0162-3095(93)90008-6; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Chisholm JS, 1999, DEATH HOPE SEX STEPS; Coall DA, 2010, AM J HUM BIOL, V22, P143, DOI 10.1002/ajhb.20965; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Flinn M.V., 2008, FAMILY RELATIONS EVO, P16; Geronimus AT, 2011, AM J PUBLIC HEALTH, V101, P720, DOI 10.2105/AJPH.2010.195537; HERTZ E, 1994, SOC SCI MED, V39, P105, DOI 10.1016/0277-9536(94)90170-8; Hill K, 2007, LANCET, V370, P1311, DOI 10.1016/S0140-6736(07)61572-4; Hogan MC, 2010, LANCET, V375, P1609, DOI 10.1016/S0140-6736(10)60518-1; Kline RB, 2010, PRINCIPLES PRACTICE; Lee KS, 1997, J PEDIATR-US, V131, P430, DOI 10.1016/S0022-3476(97)80070-4; Low BS, 2008, CROSS-CULT RES, V42, P201, DOI 10.1177/1069397108317669; Muthen B., 2010, MPLUS USERS GUIDE VE; Nettle D, 2011, P ROY SOC B-BIOL SCI, V278, P1721, DOI 10.1098/rspb.2010.1726; PROMISLOW DEL, 1991, ACTA OECOL, V12, P119; Quinlan RJ, 2003, J COMP FAM STUD, V34, P569; Quinlan RJ, 2007, AM ANTHROPOL, V109, P164, DOI 10.1525/AA.2007.109.1.164; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Quinlan RJ, 2010, HUM NATURE-INT BIOS, V21, P124, DOI 10.1007/s12110-010-9085-1; Roff D. A., 2002, LIFE HIST EVOLUTION; Rutter M, 2004, DEV PSYCHOL, V40, P81, DOI 10.1037/0012-1649.40.1.81; Stearns S. C., 1992, EVOLUTION LIFE HIST; Vitzthum VJ, 2001, FOUND HUM B, P179; WHITING BB, 1980, ETHOS, V8, P95, DOI 10.1525/eth.1980.8.2.02a00010; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 34 19 20 0 15 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. OCT 7 2012 279 1744 4003 4008 10.1098/rspb.2012.1022 6 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 998LC WOS:000308239500015 22833268 Green Published, Bronze 2018-11-12 J Milne, FH; Judge, DS Milne, Fritha H.; Judge, Debra S. A Novel Quantitative Approach to Women's Reproductive Strategies PLOS ONE English Article LIFE-HISTORY TRAITS; FATHER ABSENCE; MULTIPLE INTELLIGENCES; ENDOMETRIAL CANCER; BIRTH INTERVALS; SEXUAL-ACTIVITY; RESPONSE RATE; HEALTH SURVEY; FAMILY-SIZE; K-FACTOR The patterned way in which individuals allocate finite resources to various components of reproduction (e. g. mating effort, reproductive timing and parental investment) is described as a reproductive strategy. As energy is limited, trade-offs between and within aspects of reproductive strategies are expected. The first aim of this study was to derive aspects of reproductive strategies using complete reproductive histories from 718 parous Western Australian women. Factor analysis using a subset of these participants resulted in six factors that represented 'short-term mating strategy', 'early onset of sexual activity', 'reproductive output', 'timing of childbearing', 'breastfeeding', and 'child spacing'. This factor structure was internally validated by replication using a second independent subset of the data. The second aim of this study examined trade-offs between aspects of reproductive strategies derived from aim one. Factor scores calculated for each woman were incorporated in generalised linear models and interaction terms were employed to examine the effect of mating behaviour on the relationships between reproductive timing, parental investment and overall reproductive success. Early sexual activity correlates with early reproductive onset for women displaying more long-term mating strategies. Women with more short-term mating strategies exhibit a trade-off between child quantity and child quality not observed in women with a long-term mating strategy. However, women with a short-term mating strategy who delay reproductive timing exhibit levels of parental investment (measured as breastfeeding duration per child) similar to that of women with long-term mating strategies. Reproductive delay has fitness costs (fewer births) for women displaying more short-term mating strategies. We provide empirical evidence that reproductive histories of contemporary women reflect aspects of reproductive strategies, and associations between these strategic elements, as predicted from life history theory. [Milne, Fritha H.; Judge, Debra S.] Univ Western Australia, Sch Anat Physiol & Human Biol, Perth, WA 6009, Australia Milne, FH (reprint author), Univ Western Australia, Sch Anat Physiol & Human Biol, Perth, WA 6009, Australia. fritha.milne@graduate.uwa.edu.au judge, debra/J-5784-2012 School of Anatomy, Physiology Human Biology; School of Population Health at the University of Western Australia The School of Anatomy, Physiology & Human Biology and the School of Population Health at the University of Western Australia provided funding for this research. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Arifeen S, 2001, PEDIATRICS, V108; Baschieri A, 2007, DEMOGR RES, V16, P59, DOI 10.4054/DemRes.2007.16.3; Baxter J, 2009, ACTA PAEDIATR, V98, P1274, DOI 10.1111/j.1651-2227.2009.01335.x; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 1997, HUM NATURE-INT BIOS, V8, P361, DOI 10.1007/BF02913039; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; BLAKE J, 1981, DEMOGRAPHY, V18, P421, DOI 10.2307/2060941; Bogaert AF, 2008, J BIOSOC SCI, V40, P623, DOI 10.1017/S0021932007002386; Bollen KA, 1989, STRUCTURAL EQUATIONS; Buss D. M., 1994, EVOLUTION DESIRE STR; Castejon JL, 2010, INTELLIGENCE, V38, P481, DOI 10.1016/j.intell.2010.07.002; Chan DW, 2006, GIFTED CHILD QUART, V50, P325, DOI 10.1177/001698620605000405; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; Chen FN, 2008, SOCIOL METHOD RES, V36, P462, DOI 10.1177/0049124108314720; Child D., 2006, ESSENTIALS FACTOR AN; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Comrey A. L., 1992, 1 COURSE FACTOR ANAL; Datar A, 2010, DEMOGRAPHY, V47, P145; DiStefano C., 2009, PRACT ASSESS RES EVA, V14, P1, DOI DOI 10.10/1531-7714; DRAPER P, 1989, ETHOL SOCIOBIOL, V10, P145, DOI 10.1016/0162-3095(89)90017-4; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Eaker S, 1998, AM J EPIDEMIOL, V147, P74; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Ellison Peter, 1999, HORMONES HLTH BEHAV, P184; Essock-Vitale S., 1988, HUMAN REPROD BEHAV D, P221; Etter JF, 1997, J CLIN EPIDEMIOL, V50, P1123, DOI 10.1016/S0895-4356(97)00166-2; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Hayes A, 2012, FAMILIES THEN NOW 19; HAZAN C, 1999, HDB ATTACHMENT THEOR, P336; Heath KM, 1998, CURR ANTHROPOL, V39, P369, DOI 10.1086/204748; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hochberg Z, 2011, INT J PEDIATR ENDOCR, DOI 10.1186/1687-9856-2011-2; Holton S, 2011, J POPUL RES, V28, P353, DOI 10.1007/s12546-011-9072-3; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; Jones JJS, 2006, BRIT J CLIN PSYCHOL, V45, P145, DOI 10.1348/014466505X29134; JONES NB, 1986, ETHOL SOCIOBIOL, V7, P91, DOI 10.1016/0162-3095(86)90002-6; KALDENBERG DO, 1994, PUBLIC OPIN QUART, V58, P68, DOI 10.1086/269408; Kim K, 1997, EVOL HUM BEHAV, V18, P109, DOI 10.1016/S1090-5138(96)00114-6; Kline P., 1994, EASY GUIDE FACTOR AN; Kohlhuber M, 2008, BRIT J NUTR, V99, P1127, DOI 10.1017/S0007114508864835; Koziel S, 2001, AM J PHYS ANTHROPOL, V115, P71, DOI 10.1002/ajpa.1058; Lamberti L, 2011, BMC PUBLIC HLTH, V11; Lawley D. N., 1962, J R STAT SOC D-STAT, V12, P209; Lawson DW, 2010, HUM NATURE-INT BIOS, V21, P39, DOI 10.1007/s12110-010-9080-6; Low BS, 2008, CROSS-CULT RES, V42, P201, DOI 10.1177/1069397108317669; Mace R, 1997, J BIOSOC SCI, V29, P499, DOI 10.1017/S0021932097004999; Marlowe FW, 2000, BEHAV PROCESS, V51, P45, DOI 10.1016/S0376-6357(00)00118-2; Michalski RL, 2002, PERS INDIV DIFFER, V33, P661, DOI 10.1016/S0191-8869(01)00181-7; Milne FH, 2011, MED HYPOTHESES, V77, P626, DOI 10.1016/j.mehy.2011.07.001; Milne FH, 2011, P ROY SOC B-BIOL SCI, V278, P417, DOI 10.1098/rspb.2010.1377; MULDAL AM, 1986, BEHAV ECOL SOCIOBIOL, V19, P105, DOI 10.1007/BF00299945; Mulder M Borgerhoff, 1992, EVOLUTIONARY ECOLOGY, P339; Muthen B, 2005, MPLUS DISCUSSION OBT; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Ogunlesi TA, 2010, MATERN CHILD HLTH J, V14, P459, DOI 10.1007/s10995-008-0440-3; PAGANINIHILL A, 1993, EPIDEMIOLOGY, V4, P375, DOI 10.1097/00001648-199307000-00014; Plaisant O, 2010, ANN MED-PSYCHOL, V168, P97, DOI 10.1016/j.amp.2009.09.003; PURVIS A, 1995, J ZOOL, V237, P259, DOI 10.1111/j.1469-7998.1995.tb02762.x; Rowlands IJ, 2011, GYNECOL ONCOL, V123, P537, DOI [10.1016/j.ygyno2011.08.022, 10.1016/j.ygyno.2011.08.022]; Ryan AS, 2002, PEDIATRICS, V110, P1103, DOI 10.1542/peds.110.6.1103; SANTOW G, 1991, AUST NZ J OBSTET GYN, V31, P201, DOI 10.1111/j.1479-828X.1991.tb02781.x; Schmitt DP, 2005, PERS SOC PSYCHOL B, V31, P747, DOI 10.1177/0146167204271843; SMITH DP, 1985, STUD FAMILY PLANN, V16, P154, DOI 10.2307/1967017; Smuts B. B., 1992, FATHER CHILD RELATIO, P1; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; Taveras EM, 2003, PEDIATRICS, V112, P108, DOI 10.1542/peds.112.1.108; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Weeden J, 2006, HUM NATURE-INT BIOS, V17, P377, DOI 10.1007/s12110-006-1001-3 73 0 0 2 22 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One OCT 2 2012 7 10 e46760 10.1371/journal.pone.0046760 11 Multidisciplinary Sciences Science & Technology - Other Topics 015NG WOS:000309452600056 23056440 DOAJ Gold, Green Published 2018-11-12 J Selman, C; Blount, JD; Nussey, DH; Speakman, JR Selman, Colin; Blount, Jonathan D.; Nussey, Daniel H.; Speakman, John R. Oxidative damage, ageing, and life-history evolution: where now? TRENDS IN ECOLOGY & EVOLUTION English Review FREE-RADICAL THEORY; NAKED MOLE-RAT; ZEBRA FINCHES; COMPARATIVE BIOLOGY; MAMMAL POPULATION; TELOMERE LENGTH; WILD MAMMALS; TRADE-OFF; RED DEER; STRESS The idea that resources are limited and animals can maximise fitness by trading costly activities off against one another forms the basis of life-history theory. Although investment in reproduction or growth negatively affects survival, the mechanisms underlying such trade-offs remain obscure. One plausible mechanism is oxidative damage to proteins, lipids, and nucleic acids caused by reactive oxygen species (ROS). Here, we critically evaluate the premise that ROS-induced oxidative damage shapes life history, focussing on birds and mammals, and highlight the importance of ecological studies examining free-living animals within this experimental framework. We conclude by emphasising the value of using multiple assays to determine oxidative protection and damage. We also highlight the importance of using standardised and appropriate protocols, and discuss future research directions. [Selman, Colin; Speakman, John R.] Univ Aberdeen, Inst Biol & Environm Sci, Aberdeen AB24 2TZ, Scotland; [Blount, Jonathan D.] Univ Exeter, Coll Life & Environm Sci, Ctr Ecol & Conservat, Penryn TR10 9EZ, England; [Nussey, Daniel H.] Univ Edinburgh, Inst Evolutionary Biol, Edinburgh EH9 3JT, Midlothian, Scotland; [Speakman, John R.] Chinese Acad Sci, Inst Genet & Dev Biol, Beijing 100101, Peoples R China Selman, C (reprint author), Univ Aberdeen, Inst Biol & Environm Sci, Aberdeen AB24 2TZ, Scotland. c.selman@abdn.ac.uk John, Speakman/A-9494-2008; Blount, Jonathan/K-7695-2012; Nussey, Daniel/F-4155-2010 John, Speakman/0000-0002-2457-1823; Blount, Jonathan/0000-0002-0016-0130; Selman, Colin/0000-0002-8727-0593 Biotechnology and Biological Sciences Research Council (BBSRC) [BB/H012850/1]; Royal Society; BBSRC [BB/G009953/1]; '1000 Talents Recruitment Program' of the Chinese Government; Key State Laboratory of Developmental and Molecular Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences; Biotechnology and Biological Sciences Research Council [BB/H012850/1, BB/H021868/1, BB/G009953/1]; Natural Environment Research Council [NE/E01237X/1] We are grateful to David Costantini for helpful comments on an earlier draft. C.S. acknowledges support from the Biotechnology and Biological Sciences Research Council (BBSRC) in the form of a New Investigator Grant (BB/H012850/1). J.D.B. was supported by a Royal Society Research Fellowship. D.H.N. was supported by a BBSRC David Phillips fellowship. J.R.S. was supported by BBSRC grant (BB/G009953/1), the '1000 Talents Recruitment Program' of the Chinese Government and the Key State Laboratory of Developmental and Molecular Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences. Alexeyev MF, 2009, FEBS J, V276, P5768, DOI 10.1111/j.1742-4658.2009.07269.x; Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Austad SN, 2010, J COMP PATHOL, V141, pS10, DOI 10.1016/j.jcpa.2009.10.024; AUSTAD SN, 1991, J GERONTOL, V46, pB47, DOI 10.1093/geronj/46.2.B47; Austad SN, 2010, INTEGR COMP BIOL, V50, P783, DOI 10.1093/icb/icq131; Barja G, 2007, REJUV RES, V10, P215, DOI 10.1089/rej.2006.0516; Barnes SK, 2011, PROG BIOPHYS MOL BIO, V106, P323, DOI 10.1016/j.pbiomolbio.2010.12.005; Bartke A, 2011, PHILOS T R SOC B, V366, P28, DOI 10.1098/rstb.2010.0281; Beaulieu M, 2011, FUNCT ECOL, V25, P577, DOI 10.1111/j.1365-2435.2010.01825.x; Beckman KB, 1998, PHYSIOL REV, V78, P547; Berdasco M, 2012, AGING CELL, V11, P181, DOI 10.1111/j.1474-9726.2012.00806.x; Bergeron P, 2011, FUNCT ECOL, V25, P1063, DOI 10.1111/j.1365-2435.2011.01868.x; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Bjedov I, 2011, BIOCHEM SOC T, V39, P460, DOI 10.1042/BST0390460; Bouwhuis S, 2010, J ANIM ECOL, V79, P1251, DOI 10.1111/j.1365-2656.2010.01730.x; Christe P, 2012, P ROY SOC B-BIOL SCI, V279, P1142, DOI 10.1098/rspb.2011.1546; Clutton-Brock T, 2010, TRENDS ECOL EVOL, V25, P562, DOI 10.1016/j.tree.2010.08.002; CLUTTONBROCK TH, 1989, NATURE, V337, P260, DOI 10.1038/337260a0; Cohen AA, 2009, OIKOS, V118, P1854, DOI 10.1111/j.1600-0706.2009.17785.x; Costantini D, 2006, J COMP PHYSIOL B, V176, P329, DOI 10.1007/s00360-005-0055-6; Costantini D, 2012, J EXP BIOL, V215, P374, DOI 10.1242/jeb.062034; Costantini D, 2011, J EXP BIOL, V214, P1148, DOI 10.1242/jeb.053496; Costantini D, 2011, METHODS ECOL EVOL, V2, P321, DOI 10.1111/j.2041-210X.2010.00080.x; Costantini D, 2010, FUNCT ECOL, V24, P950, DOI 10.1111/j.1365-2435.2010.01746.x; Costantini D, 2009, FUNCT ECOL, V23, P506, DOI 10.1111/j.1365-2435.2009.01546.x; Criscuolo F, 2011, OECOLOGIA, V167, P315, DOI 10.1007/s00442-011-1986-0; Csiszar A, 2007, AGING CELL, V6, P783, DOI 10.1111/j.1474-9726.2007.00339.x; Devevey G, 2010, J ORNITHOL, V151, P251, DOI 10.1007/s10336-009-0456-5; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Edrey YH, 2011, ILAR J, V52, P41, DOI 10.1093/ilar.52.1.41; Fontana L, 2010, SCIENCE, V328, P321, DOI 10.1126/science.1172539; Fraser S. T., 2011, ADV HEMATOL; Furness LJ, 2008, AGE, V30, P75, DOI 10.1007/s11357-008-9054-3; Garratt M, 2011, P ROY SOC B-BIOL SCI, V278, P1098, DOI 10.1098/rspb.2010.1818; Gerlach NM, 2012, P ROY SOC B-BIOL SCI, V279, P860, DOI 10.1098/rspb.2011.1547; Gomes NMV, 2011, AGING CELL, V10, P761, DOI 10.1111/j.1474-9726.2011.00718.x; Hall ME, 2010, FUNCT ECOL, V24, P365, DOI 10.1111/j.1365-2435.2009.01635.x; Halliwell B, 2011, TRENDS PHARMACOL SCI, V32, P125, DOI 10.1016/j.tips.2010.12.002; HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298; Harper JM, 2011, J EXP BIOL, V214, P1902, DOI 10.1242/jeb.054643; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hayward AD, 2009, P R SOC B, V276, P3477, DOI 10.1098/rspb.2009.0906; Heidinger BJ, 2012, P NATL ACAD SCI USA, V109, P1743, DOI 10.1073/pnas.1113306109; Hindle AG, 2010, COMP BIOCHEM PHYS B, V155, P427, DOI 10.1016/j.cbpb.2010.01.007; Hindle AG, 2009, J EXP ZOOL PART A, V311A, P358, DOI 10.1002/jez.534; Hindle AG, 2009, J EXP BIOL, V212, P790, DOI 10.1242/jeb.025387; Horak P, 2010, FUNCT ECOL, V24, P960, DOI 10.1111/j.1365-2435.2010.01755.x; Issartel J, 2009, J COMP PHYSIOL B, V179, P543, DOI 10.1007/s00360-008-0338-9; Johnson MS, 2001, J EXP BIOL, V204, P1925; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; Kenyon C, 2011, PHILOS T R SOC B, V366, P9, DOI 10.1098/rstb.2010.0276; Kim EB, 2011, NATURE, V479, P223, DOI 10.1038/nature10533; KIRKWOOD TBL, 1979, PROC R SOC SER B-BIO, V205, P531, DOI 10.1098/rspb.1979.0083; Lailvaux SP, 2011, EVOLUTION, V65, P3138, DOI 10.1111/j.1558-5646.2011.01358.x; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; Lee WS, 2010, J EXP BIOL, V213, P3289, DOI 10.1242/jeb.043083; Losdat S., 2011, J EVOLUTION BIOL, V24, P2529; Marko G, 2011, J COMP PHYSIOL B, V181, P73, DOI 10.1007/s00360-010-0502-x; Meade J, 2010, J ANIM ECOL, V79, P529, DOI 10.1111/j.1365-2656.2009.01656.x; Miller RA, 2009, J GERONTOL A-BIOL, V64, P179, DOI 10.1093/gerona/gln072; Moe B, 2009, BIOL LETTERS, V5, P86, DOI 10.1098/rsbl.2008.0481; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Montgomery MK, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024138; Mougeot F, 2009, P R SOC B, V276, P1093, DOI 10.1098/rspb.2008.1570; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; Nussey DH, 2007, CURR BIOL, V17, pR1000, DOI 10.1016/j.cub.2007.10.005; Nussey DH, 2006, ECOL LETT, V9, P1342, DOI 10.1111/j.1461-0248.2006.00989.x; Nussey DH, 2012, AGING CELL, V11, P178, DOI 10.1111/j.1474-9726.2011.00771.x; Nussey DH, 2011, ECOLOGY, V92, P1936, DOI 10.1890/11-0308.1; Nussey DH, 2009, FUNCT ECOL, V23, P809, DOI 10.1111/j.1365-2435.2009.01555.x; Oldakowski L, 2012, J EXP BIOL, V215, P1799, DOI 10.1242/jeb.068452; Partridge L, 2002, NAT REV GENET, V3, P165, DOI 10.1038/nrg753; Pearl R, 1928, RATE LIVING; Perez VI, 2009, BBA-GEN SUBJECTS, V1790, P1005, DOI 10.1016/j.bbagen.2009.06.003; Peterson RO, 2010, ECOL LETT, V13, P1124, DOI 10.1111/j.1461-0248.2010.01504.x; Reed TE, 2008, AM NAT, V171, pE89, DOI 10.1086/524957; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Robert KA, 2007, AGING CELL, V6, P395, DOI 10.1111/j.1474-9726.2007.00287.x; Robert KA, 2010, AM NAT, V175, P147, DOI 10.1086/649595; Saino N, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019593; Salmon AB, 2009, FASEB J, V23, P2317, DOI 10.1096/fj.08-122523; Selman C, 2008, P ROY SOC B-BIOL SCI, V275, P1907, DOI 10.1098/rspb.2008.0355; Selman C, 2011, PHILOS T R SOC B, V366, P99, DOI 10.1098/rstb.2010.0243; Sharp SP, 2011, J EVOLUTION BIOL, V24, P1756, DOI 10.1111/j.1420-9101.2011.02304.x; Sherratt TN, 2010, J ANIM ECOL, V79, P1034, DOI 10.1111/j.1365-2656.2010.01719.x; Soltow QA, 2010, INTEGR COMP BIOL, V50, P844, DOI 10.1093/icb/icq094; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; Speakman JR, 2011, BIOESSAYS, V33, P255, DOI 10.1002/bies.201000132; Speakman JR, 2005, J EXP BIOL, V208, P1717, DOI 10.1242/jeb.01556; Speakman JR, 2004, AGING CELL, V3, P87, DOI 10.1111/j.1474-9728.2004.00097.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Ungvari Z, 2011, J GERONTOL A-BIOL, V66, P741, DOI 10.1093/gerona/glr044; van de Crommenacker J, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026423; van de Crommenacker J, 2011, J ANIM ECOL, V80, P668, DOI 10.1111/j.1365-2656.2010.01792.x; Veskoukis AS, 2009, FREE RADICAL BIO MED, V47, P1371, DOI 10.1016/j.freeradbiomed.2009.07.014; Voituron Y, 2011, BIOL LETTERS, V7, P105, DOI 10.1098/rsbl.2010.0539; Wiersma P, 2004, P ROY SOC B-BIOL SCI, V271, pS360, DOI 10.1098/rsbl.2004.0171; Williams JB, 2010, INTEGR COMP BIOL, V50, P855, DOI 10.1093/icb/icq024 98 156 159 13 294 ELSEVIER SCIENCE LONDON LONDON 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND 0169-5347 TRENDS ECOL EVOL Trends Ecol. Evol. OCT 2012 27 10 570 577 10.1016/j.tree.2012.06.006 8 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 050LT WOS:000312055500006 22789512 Other Gold Y N 2018-11-12 J Lee, R; Chu, CYC Lee, Ronald; Chu, C. Y. Cyrus The evolution of transfers and life histories EXPERIMENTAL GERONTOLOGY English Article Transfers; Intergenerational; Menopause; Mortality; Sexual dimorphism; Life history INTERGENERATIONAL TRANSFERS; TIME-PREFERENCE; FOOD TRANSFERS; LONGEVITY; INTELLIGENCE; COEVOLUTION; SENESCENCE; MORTALITY; SELECTION; SURVIVAL Much of life history theory analyzes life histories of independent, isolated individuals, who grow, forage, reproduce, and die. However, in many species social interactions such as food sharing are a key part of the life history strategy, altering the energetic budget constraint. Transfers and sharing raise reproductive success and also alter the fitness impact of other aspects of the life history. We discuss a variety of traits and behaviors for which transfers are important, synthesizing results from a number of earlier papers. Topics include the U-shaped mortality curve, post reproductive survival, causes of early life mortality decline, why intergenerational transfers evolve and co-evolve with longevity, time preference, sexual dimorphism and sexual differences in transfers, menopause, demographic advantages of social sharing, and consequences of social sharing for life history evolution. (C) 2012 Elsevier Inc. All rights reserved. [Lee, Ronald] Univ Calif Berkeley, Dept Demog, Berkeley, CA 94720 USA; [Lee, Ronald] Univ Calif Berkeley, Dept Econ, Berkeley, CA 94720 USA; [Chu, C. Y. Cyrus] Acad Sinica, Inst Econ, Taipei 115, Taiwan Lee, R (reprint author), Univ Calif Berkeley, Dept Demog, 2232 Piedmont Ave, Berkeley, CA 94720 USA. rlee@demog.berkeley.edu; cyruschu@gate.sinica.edu.tw NIA [P01 AG022500, R37-AG025247] Lee's research for this paper was funded by NIA grants P01 AG022500 and R37-AG025247. Carey JR, 2001, POPUL DEV REV, V27, P411, DOI 10.1111/j.1728-4457.2001.00411.x; Chu C.Y.C., THEOR POPUL BIOL; Chu C.Y.C., EVOLUTION FILI UNPUB; Chu CYC, 2008, THEOR POPUL BIOL, V73, P171, DOI 10.1016/j.tpb.2007.11.005; Chu CYC, 2010, J ECON BEHAV ORGAN, V76, P451, DOI 10.1016/j.jebo.2010.09.011; Chu CYC, 2006, THEOR POPUL BIOL, V69, P193, DOI 10.1016/j.tpb.2005.11.004; Darwin C.R., 1871, DESCENT MAN SELECTIO; Fisher R. A., 1930, GENETIC THEORY NATUR; Gurven M, 2004, BEHAV BRAIN SCI, V27, P543; Gurven M, 2002, J ANTHROPOL RES, V58, P93, DOI 10.1086/jar.58.1.3631070; Gurven M, 2000, HUM ECOL, V28, P171, DOI 10.1023/A:1007067919982; Hamilton W.E., 1966, THEOR POPUL BIOL, V12, P12; Hill K, 2009, P ROY SOC B-BIOL SCI, V276, P3863, DOI 10.1098/rspb.2009.1061; Hrdy S. B., 2009, MOTHERS OTHERS EVOLU; Hurtado AM, 1996, ACHE LIFE HIST; KAPLAN H, 1994, POPUL DEV REV, V20, P753, DOI 10.2307/2137661; Kaplan H.S., 2006, HUM NATURE, V17, P1; Kaplan H, 2010, ANN NY ACAD SCI, V1204, P30, DOI [10.1111/J.1749-6632.2010.05528.x, 10.1111/j.1749-6632.2010.05528.x]; Kaplan HS, 2002, P NATL ACAD SCI USA, V99, P10221, DOI 10.1073/pnas.152502899; Lee RD, 2003, P NATL ACAD SCI USA, V100, P9637, DOI 10.1073/pnas.1530303100; Lee RD, 2002, POPUL DEV REV, V28, P475, DOI 10.1111/j.1728-4457.2002.00475.x; Lee R, 2008, P NATL ACAD SCI USA, V105, P7124, DOI 10.1073/pnas.0710234105; PROMISLOW DEL, 1991, EVOLUTION, V45, P1869, DOI 10.1111/j.1558-5646.1991.tb02693.x; Robson AJ, 2003, AM ECON REV, V93, P150, DOI 10.1257/000282803321455205; Robson AJ, 2009, AM ECON REV, V99, P1925, DOI 10.1257/aer.99.5.1925; ROGERS AR, 1994, AM ECON REV, V84, P460; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; Sozou PD, 2003, P ROY SOC B-BIOL SCI, V270, P1047, DOI 10.1098/rspb.2003.2344; Vaupel JW, 2004, THEOR POPUL BIOL, V65, P339, DOI 10.1016/j.tpb.2003.12.003 29 3 3 0 12 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0531-5565 EXP GERONTOL Exp. Gerontol. OCT 2012 47 10 803 806 10.1016/j.exger.2012.06.004 4 Geriatrics & Gerontology Geriatrics & Gerontology 004FZ WOS:000308667600008 22750486 Green Accepted 2018-11-12 J Atkinson, RRL; Burrell, MM; Osborne, CP; Rose, KE; Rees, M Atkinson, Rebecca R. L.; Burrell, Mike M.; Osborne, Colin P.; Rose, Karen E.; Rees, Mark A non-targeted metabolomics approach to quantifying differences in root storage between fast- and slow-growing plants NEW PHYTOLOGIST English Article allocation strategy; fast-slow continuum; metabolomics; root physiology; trade-off RELATIVE GROWTH-RATE; AMINO-ACID POOLS; CARBOHYDRATE STORAGE; RESOURCE AVAILABILITY; ADAPTIVE SIGNIFICANCE; PROLINE ACCUMULATION; WINTERING STAGE; SEED SIZE; NITROGEN; FOREST Life history theory posits that slower-growing species should invest proportionally more resources to storage, structural (e.g. stems) or defence traits than fast-growing species. Previously, we showed that the slower-growing monocarpic plants had lower mortality rates and higher bolting probabilities after two defoliation events. Here, we consider a mechanistic explanation, that the slower-growing species invested relatively more resources to storage. We compared the relative levels of root storage compounds between eight monocarpic species using metabolomic profiling, and characterized plant growth using a size-corrected estimate of relative growth rate (RGR). Growth rate was negatively correlated with the proportional allocation of root metabolites identified as sucrose, raffinose and stachyose and with amino acids known for their roles in nitrogen storage, particularly proline and arginine. The total amount and concentration of energy-corrected carbohydrates were also negatively correlated with RGR. Our results show for the first time that slower-growing species invest proportionally more of their total root metabolites in carbon- and nitrogen-storage compounds. We conclude that the increased investment in these reserves is an important resource allocation strategy underlying the growthsurvival trade-off in plants. [Atkinson, Rebecca R. L.; Burrell, Mike M.; Osborne, Colin P.; Rose, Karen E.; Rees, Mark] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England Rees, M (reprint author), Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England. m.rees@sheffield.ac.uk NERC We thank Heather Walker and Bob Keen for their help with mass spectrometry and gas chromatography. R.R.L.A. is grateful for support from a NERC studentship. Ardent DA, 1997, Q REV BIOL, V72, P149; BEESON RC, 1988, J AM SOC HORTIC SCI, V113, P800; Bell TL, 1996, ANN BOT-LONDON, V77, P357, DOI 10.1006/anbo.1996.0043; BLOOM AJ, 1985, ANNU REV ECOL SYST, V16, P363, DOI 10.1146/annurev.es.16.110185.002051; Bundy JG, 2009, METABOLOMICS, V5, P3, DOI 10.1007/s11306-008-0152-0; CHAPIN FS, 1986, J ECOL, V74, P167; CHAPIN FS, 1990, ANNU REV ECOL SYST, V21, P423, DOI 10.1146/annurev.ecolsys.21.1.423; CHAPIN FS, 1980, ANNU REV ECOL SYST, V11, P233, DOI 10.1146/annurev.es.11.110180.001313; CLARKSON DT, 1985, ANNU REV PLANT PHYS, V36, P77, DOI 10.1146/annurev.pp.36.060185.000453; Davey MP, 2008, NEW PHYTOL, V177, P380, DOI 10.1111/j.1469-8137.2007.02282.x; EFRON B, 1983, AM STAT, V37, P36, DOI 10.2307/2685844; Eriksson L, 2006, MULTI MEGAVARIATE 2; Eriksson L, 2008, J CHEMOMETR, V22, P594, DOI 10.1002/cem.1187; Gaucher C, 2005, TREE PHYSIOL, V25, P93, DOI 10.1093/treephys/25.1.93; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; GRIME JP, 1975, J ECOL, V63, P393, DOI 10.2307/2258728; Hare PD, 1997, PLANT GROWTH REGUL, V21, P79, DOI 10.1023/A:1005703923347; Kandler O, 1982, ENCY PLANT PHYSL A, V13, P348; KELLER F, 1985, J PLANT PHYSIOL, V119, P369, DOI 10.1016/S0176-1617(85)80104-8; KELLER F, 1996, PHOTOASSIMILATE DIST, P157; Koons DN, 2008, AM NAT, V172, P797, DOI 10.1086/592867; KOZLOWSKI TT, 1992, BOT REV, V58, P107, DOI 10.1007/BF02858600; Lambers H., 1987, Disturbance in grasslands, P237; Madsen T, 2000, J ANIM ECOL, V69, P952, DOI 10.1046/j.1365-2656.2000.00477.x; Marquis RJ, 1997, FUNCT ECOL, V11, P636, DOI 10.1046/j.1365-2435.1997.00139.x; MCLAREN IA, 1966, ECOLOGY, V47, P852, DOI 10.2307/1934273; Metcalf CJE, 2007, P R SOC B, V274, P2153, DOI 10.1098/rspb.2007.0561; Metcalf CJE, 2006, FUNCT ECOL, V20, P217, DOI 10.1111/j.1365-2435.2006.01054.x; MOONEY HA, 1995, OECOLOGIA, V104, P17, DOI 10.1007/BF00365557; Myers JA, 2007, J ECOL, V95, P383, DOI 10.1111/j.1365-2745.2006.01207.x; Noda I, 2008, J MOL STRUCT, V883, P216, DOI 10.1016/j.molstruc.2007.12.026; OHLSON M, 1995, FUNCT ECOL, V9, P596, DOI 10.2307/2390150; Okumoto S, 2011, MOL PLANT, V4, P453, DOI 10.1093/mp/ssr003; PARSONS RF, 1968, AM NAT, V102, P595, DOI 10.1086/282575; PATE JS, 1990, ANN BOT-LONDON, V65, P585, DOI 10.1093/oxfordjournals.aob.a087976; Paul-Victor C, 2010, NEW PHYTOL, V187, P1102, DOI 10.1111/j.1469-8137.2010.03325.x; Piironen V, 2000, J SCI FOOD AGR, V80, P939, DOI [10.1002/(SICI)1097-0010(20000515)80:7<939::AID-JSFA644>3.3.CO;2-3, 10.1002/(SICI)1097-0010(20000515)80:7<939::AID-JSFA644>3.0.CO;2-C]; POORTER H, 1992, PLANT CELL ENVIRON, V15, P221, DOI 10.1111/j.1365-3040.1992.tb01476.x; POORTER H, 1990, OECOLOGIA, V83, P553, DOI 10.1007/BF00317209; POORTER H, 1990, PLANT PHYSIOL, V94, P621, DOI 10.1104/pp.94.2.621; Poorter H., 1989, CAUSES CONSEQUENCES, P45; Poorter L, 2007, ECOLOGY, V88, P1000, DOI 10.1890/06-0984; R Development Core Team, 2009, R LANG ENV STAT COMP; RADWANSKI ER, 1995, PLANT CELL, V7, P921; REES M, 1994, AM NAT, V144, P43, DOI 10.1086/285660; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Roessner U, 2000, PLANT J, V23, P131, DOI 10.1046/j.1365-313x.2000.00774.x; Rose KE, 2009, ECOL LETT, V12, P1379, DOI 10.1111/j.1461-0248.2009.01394.x; Rose KE, 2002, EVOLUTION, V56, P1416; Rozan P, 2001, PHYTOCHEMISTRY, V58, P281, DOI 10.1016/S0031-9422(01)00200-X; SAGISAKA S, 1987, PLANT CELL PHYSIOL, V28, P171; SAGISAKA S, 1983, PLANT CELL PHYSIOL, V24, P479; STEINLEIN T, 1993, OECOLOGIA, V93, P374, DOI 10.1007/BF00317881; STEWART GR, 1974, PLANTA, V120, P279, DOI 10.1007/BF00390296; Trygg J, 2007, J PROTEOME RES, V6, P469, DOI 10.1021/pr060594q; Turnbull LA, 2008, ECOLOGY, V89, P1352, DOI 10.1890/07-1531.1; Van Der Meijden E, 2000, EVOL ECOL, V14, P439, DOI 10.1023/A:1010985028360; VENABLE DL, 1988, AM NAT, V131, P360, DOI 10.1086/284795; Wanner LA, 1999, PLANT PHYSIOL, V120, P391, DOI 10.1104/pp.120.2.391; ZRUST J, 1994, ROST VYROBA, V40, P711 60 11 11 4 68 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0028-646X NEW PHYTOL New Phytol. OCT 2012 196 1 200 211 10.1111/j.1469-8137.2012.04274.x 12 Plant Sciences Plant Sciences 996LS WOS:000308090000019 22924406 Bronze 2018-11-12 J De Baca, TC; Jordan, AC De Baca, Tomas Cabeza; Jordan, Ashley C. To know is not to love: Cognitive and affective barriers toward the adoption of evolutionary theory PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Resistances toward evolution; Life history theory; Evolutionary psychology DEVELOPMENTAL-PSYCHOLOGY; UNITED-STATES; ATTITUDES; NEED; PERSONALITY; CREATIONISM; STUDENTS; BIOLOGY; RISK Despite widespread acceptance of natural selection in biology and the life sciences, social and developmental scientists have resisted incorporating evolutionary frameworks into research and teaching curricula. Charlesworth (1992) has argued that developmentalists avoid evolution because they perceive it as running contrary to meliorist attitudes that are predominate in the field. Other scholars have suggested that evolution is ignored by social scientists because of a lack of knowledge about the theory. In this study, we suggest that resistance among developmentalists toward evolution may occur due to individual differences in life history and personality traits. We examine the meliorist attitudes, life history and personality traits of faculty, graduate and undergraduates in family studies in human development and the effect these variables have on the acceptance and usage of evolutionary theory in academia. Results reveal that life history may contribute to more meliorism, increasing disuse of evolutionary theory due to affective reasons. (C) 2012 Elsevier Ltd. All rights reserved. [De Baca, Tomas Cabeza] Univ Arizona, Norton Sch Family & Consumer Sci, Div Family Studies & Human Dev, Tucson, AZ 85719 USA De Baca, TC (reprint author), Univ Arizona, Norton Sch Family & Consumer Sci, Div Family Studies & Human Dev, 650 N Pk Ave, Tucson, AZ 85719 USA. tdebaca@email.arizona.edu Cabeza de Baca, Tomas/0000-0003-3322-2163 Abrie AL, 2010, J BIOL EDUC, V44, P102, DOI 10.1080/00219266.2010.9656205; Berkman MB, 2008, PLOS BIOL, V6, P920, DOI 10.1371/journal.pbio.0060124.g001; BISHOP BA, 1990, J RES SCI TEACH, V27, P415, DOI 10.1002/tea.3660270503; Brem SK, 2003, SCI EDUC, V87, P181, DOI 10.1002/sce.10105; Buss DM, 2011, SEX ROLES, V64, P768, DOI 10.1007/s11199-011-9987-3; CACIOPPO JT, 1982, J PERS SOC PSYCHOL, V42, P116, DOI 10.1037/0022-3514.42.1.116; CHARLESWORTH WR, 1992, DEV PSYCHOL, V28, P5, DOI 10.1037//0012-1649.28.1.5; CONWAY JB, 1992, CAN PSYCHOL, V33, P1, DOI 10.1037/h0078692; De Baca TC, 2012, PARENT-SCI PRACT, V12, P94, DOI 10.1080/15295192.2012.680396; Downie JR, 2000, J BIOL EDUC, V34, P139, DOI 10.1080/00219266.2000.9655704; DOWNIE JR, 2004, BIOSCI ED ELECT J, V4, P3; Ellis B. J., 2011, DEV PSYCHOL; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Feist GJ, 2012, PERS INDIV DIFFER, V52, P771, DOI 10.1016/j.paid.2012.01.005; Figueredo AJ, 2000, ADDICTION, V95, pS361; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo Aurelio Jose, 2007, Journal of the Arizona-Nevada Academy of Science, V39, P59; Gladden P., 2009, J EVOLUTIONARY PSYCH, V7, P167, DOI DOI 10.1556/JEP.7.2009.2.5; Gorsuch R. L., 1991, AM EV ASS C CHIC ILL; Gosling SD, 2003, J RES PERS, V37, P504, DOI 10.1016/S0092-6566(03)00046-1; GROSE EC, 1982, J RES SCI TEACH, V19, P15, DOI 10.1002/tea.3660190103; Haddock G, 2008, PERS SOC PSYCHOL B, V34, P769, DOI 10.1177/0146167208314871; Jordan A. C., ENCY HUMAN IN PRESS; King AC, 2010, PSICOTHEMA, V22, P22; Kline RB, 2011, PRINCIPLES PRACTICE; Maio GR, 2001, J PERS, V69, P583, DOI 10.1111/1467-6494.694156; Moore R, 2000, J BIOL EDUC, V35, P17, DOI 10.1080/00219266.2000.9655730; Perry G., 2010, J EVOLUTIONARY PSYCH, V8, P105, DOI [DOI 10.1556/JEP.8.2010.2.2, 10.1556/JEP.8.2010.2.2]; Rushton JP, 2008, J RES PERS, V42, P1173, DOI 10.1016/j.jrp.2008.03.002; RUSHTON JP, 1983, PSYCHOL BULL, V94, P18, DOI 10.1037//0033-2909.94.1.18; Rutledge ML, 2002, AM BIOL TEACH, V64, P21, DOI 10.1662/0002-7685(2002)064[0021:HSBTKS]2.0.CO;2; Sanders M, 2009, J BIOL EDUC, V43, P121, DOI 10.1080/00219266.2009.9656166; SCARR S, 1983, CHILD DEV, V54, P424, DOI 10.1111/j.1467-8624.1983.tb03884.x; Scott EC, 1997, ANNU REV ANTHROPOL, V26, P263, DOI 10.1146/annurev.anthro.26.1.263; Thagard P., 2010, SCI ED, V19, P626; WILSON M, 1985, ETHOL SOCIOBIOL, V6, P59, DOI 10.1016/0162-3095(85)90041-X 36 4 4 1 27 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. OCT 2012 53 5 681 686 10.1016/j.paid.2012.05.015 6 Psychology, Social Psychology 983PV WOS:000307132100027 2018-11-12 J Yoon, J; Sillett, TS; Morrison, SA; Ghalambor, CK Yoon, Jongmin; Sillett, T. Scott; Morrison, Scott A.; Ghalambor, Cameron K. Breeding density, not life history, predicts interpopulation differences in territorial aggression in a passerine bird ANIMAL BEHAVIOUR English Article breeding density; dear enemy; individual recognition; life history; male aggression; nasty neighbour; simulated territorial intrusion DEAR-ENEMY PHENOMENON; MIGRATORY SONGBIRD; ASYMMETRIC WAR; CLUTCH SIZE; TRADE-OFFS; NEIGHBORS; BEHAVIOR; TESTOSTERONE; HYPOTHESIS; EVOLUTION Interpopulation variation in territorial aggression can reflect differences in life history or competitive environments. Life history theory predicts that males with more opportunities for future reproduction should avoid risk-taking behaviour to minimize the cost of current reproduction, whereas competitive environments should favour higher aggression to defend limited resources. Additionally, male aggression can be modulated by familiarity with competitors to be either lower (dear enemies) or higher (nasty neighbours) towards neighbours. We conducted a territory intrusion experiment using neighbour-stranger songs to examine how territorial aggression differed in two populations of orange-crowned warblers, Oreothlypis celata, breeding in California and Alaska. The California population breeds at very high densities and has a higher annual survival relative to the Alaska population, which breeds at significantly lower densities and has a lower annual survival rate. We found that California males showed higher amounts of territorial aggression in response to simulated territory intrusions than did Alaska males, supporting the hypothesis that competitive environments, as indicated by breeding density, rather than life history, shape geographical variation in levels of aggression. Both populations discriminated between song stimuli of neighbours and strangers, but California males responded more strongly towards neighbours, whereas Alaska males responded more strongly towards strangers. We discuss these results in light of the mechanisms for overall aggression and neighbour-stranger discrimination. (c) 2012 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. [Yoon, Jongmin; Ghalambor, Cameron K.] Colorado State Univ, Dept Biol, Ft Collins, CO 80523 USA; [Yoon, Jongmin; Ghalambor, Cameron K.] Colorado State Univ, Grad Degree Program Ecol, Ft Collins, CO 80523 USA; [Sillett, T. Scott] Smithsonian Conservat Biol Inst, Migratory Bird Ctr, Natl Zool Pk, Washington, DC USA; [Morrison, Scott A.] Nature Conservancy, San Francisco, CA USA Ghalambor, CK (reprint author), Colorado State Univ, Dept Biol, Ft Collins, CO 80523 USA. cameron.ghalambor@colostate.edu Sillett, Scott/0000-0002-7486-0076 The Nature Conservancy; Smithsonian Institution; Colorado State University Our research was supported by The Nature Conservancy, the Smithsonian Institution and Colorado State University. We thank the many field technicians who assisted with data collection, especially J. Coumoutso, H. Montag and L. Caldwell, and The Catalina Island Conservancy for providing logistical support. This study was improved by the advice and comments of L. Angeloni, P. Doherty, K. Langin and H. Sofaer. Akcay C, 2009, ANIM BEHAV, V78, P97, DOI 10.1016/j.anbehav.2009.03.023; ASHMOLE N. P., 1963, IBIS, V103b, P458, DOI 10.1111/j.1474-919X.1963.tb06766.x; BALL GF, 1987, PHYSIOL ZOOL, V60, P191, DOI 10.1086/physzool.60.2.30158643; BIRKHEAD TR, 1987, ETHOLOGY, V74, P320; BIRKHEAD TR, 1992, SPERM COMPETITION BI; Briefer E, 2008, ANIM BEHAV, V76, P1319, DOI 10.1016/j.anbehav.2008.06.017; Brown J. L., 1964, Wilson Bulletin, V76, P160; BROWN JL, 1969, WILSON BULL, V81, P293; Brunton DH, 2008, BEHAV ECOL, V19, P791, DOI 10.1093/beheco/arn027; CLARK CW, 1994, BEHAV ECOL, V5, P159, DOI 10.1093/beheco/5.2.159; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; Dunn R, 1999, J INSECT BEHAV, V12, P461, DOI 10.1023/A:1020958505815; EASON P, 1994, BEHAV ECOL SOCIOBIOL, V34, P419, DOI 10.1007/BF00167333; Falls JB, 1982, ACOUSTIC COMMUNICATI, P237; Fisher J., 1954, P71; Ford R. G., 1981, STUD AVIAN BIOL, V6, P461; Frostman P, 2004, ICHTHYOL RES, V51, P283, DOI 10.1007/s10228-004-0223-9; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; GODARD R, 1993, BEHAV ECOL SOCIOBIOL, V33, P45, DOI 10.1007/BF00164345; GOSSCUSTARD JD, 1984, J ANIM ECOL, V53, P233, DOI 10.2307/4354; GRANT JWA, 1993, MAR BEHAV PHYSIOL, V23, P137, DOI 10.1080/10236249309378862; Heinze J, 1996, ETHOLOGY, V102, P510; Horton BM, 2010, GEN COMP ENDOCR, V168, P333, DOI 10.1016/j.ygcen.2010.04.019; JAEGER RG, 1981, AM NAT, V117, P962, DOI 10.1086/283780; KROODSMA DE, 1996, ECOLOGY EVOLUTION AC; Langin KM, 2009, P 7 CAL ISL S, P293; LEVEY DJ, 1992, AM NAT, V140, P447, DOI 10.1086/285421; MacArthur R. H., 1972, GEOGRAPHICAL ECOLOGY; Martin PR, 2001, ECOLOGY, V82, P207, DOI 10.2307/2680097; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; MCGREGOR PK, 1992, NATO ADV SCI I A-LIF, V228, P79; Mennill Daniel J., 2000, Bioacoustics, V11, P77; Muller CA, 2007, P ROY SOC B-BIOL SCI, V274, P959, DOI 10.1098/rspb.2006.0222; Newey PS, 2010, ECOLOGY, V91, P2366, DOI 10.1890/09-0561.1; Porneluzi PA, 1999, CONSERV BIOL, V13, P1151, DOI 10.1046/j.1523-1739.1999.98455.x; Pratt AE, 2006, BEHAVIOUR, V143, P597, DOI 10.1163/156853906776759501; PRICE K, 1990, BEHAV ECOL SOCIOBIOL, V27, P217; PYLE P, 1997, IDENTIFICATION GUIDE; RICKLEFS RE, 1980, AUK, V97, P38; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Roff D. A., 2002, EVOLUTION LIFE HIST; Sillett TS, 2002, J ANIM ECOL, V71, P296, DOI 10.1046/j.1365-2656.2002.00599.x; Sillett TS, 2004, ECOLOGY, V85, P2467, DOI 10.1890/03-0272; SMITH SM, 1978, AM NAT, V112, P571, DOI 10.1086/283298; Sogge M. K., 1994, BIRDS N AM; STAMPS J, 1994, ADV STUD BEHAV, V23, P173, DOI 10.1016/S0065-3454(08)60354-X; Stearns S. C., 1992, EVOLUTION LIFE HIST; TEMELES EJ, 1994, ANIM BEHAV, V47, P339, DOI 10.1006/anbe.1994.1047; TEMELES EJ, 1990, BEHAV ECOL SOCIOBIOL, V26, P57; TRIVERS RL, 1971, Q REV BIOL, V46, P35, DOI 10.1086/406755; Whiting MJ, 1999, BEHAV ECOL SOCIOBIOL, V46, P210, DOI 10.1007/s002650050611; Wilson E.O., 1975, P1; WINGFIELD JC, 1994, ANIM BEHAV, V47, P77, DOI 10.1006/anbe.1994.1009; WINGFIELD JC, 1990, AM NAT, V136, P829, DOI 10.1086/285134; Wingfield JC, 2001, BRAIN BEHAV EVOLUT, V57, P239, DOI 10.1159/000047243; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; YDENBERG RC, 1988, ANIM BEHAV, V36, P343, DOI 10.1016/S0003-3472(88)80004-6; ZACK S, 1992, BEHAVIOUR, V123, P194, DOI 10.1163/156853992X00020 59 18 18 0 65 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 1095-8282 ANIM BEHAV Anim. Behav. SEP 2012 84 3 515 521 10.1016/j.anbehav.2012.05.024 7 Behavioral Sciences; Zoology Behavioral Sciences; Zoology 996VU WOS:000308123700005 2018-11-12 J Saraux, C; Friess, B; Le Maho, Y; Le Bohec, C Saraux, Claire; Friess, Benjamin; Le Maho, Yvon; Le Bohec, Celine Chick-provisioning strategies used by king penguins to adapt to a multiseasonal breeding cycle ANIMAL BEHAVIOUR English Article altricial species; Aptenodytes patagonicus; breeding success; central-place forager; foraging behaviour; king penguin; parental investment; seabird FORAGING BEHAVIOR; SEX-DIFFERENCES; BODY CONDITION; WANDERING ALBATROSSES; POPULATION-DYNAMICS; MANX SHEARWATERS; PELAGIC SEABIRD; CROZET-ISLANDS; FLIPPER BANDS; SUCCESS Parental provisioning strategies are central to life history theory, as one of the main components that adults can adjust to maximize their fitness. In altricial species, newly born young rely entirely on parents for food. Provisioning strategies are thus crucial for offspring survival and growth, but they may also have major consequences for parental lifetime reproductive success, especially in long-lived species. We investigated provisioning strategies in an offshore seabird, the king penguin, Aptenodytes patagonicus, through the number of times parents return to the colony to feed their chick, using a pluriannual database on more than 800 microtagged penguins. King penguin chick rearing can be divided into three periods: (1) from thermal emancipation to the onset of winter, (2) winter and (3) from the end of winter to fledging. Overall, we found that the number of feeding visits was larger for males, as well as for older and larger individuals. The timing of the winter low-provisioning period (15 May-1 September; shorter than previously described) did not vary according to sex, age or breeding timing. We found four different parental strategies during the winter period, from complete absence to regular foraging trips, which led to different breeding success rates. These four strategies were observed in the 6 study years, and in both sexes, although in different proportions. They were not explained by individuals' age, and individuals were not consistent across years, the decision to follow a strategy probably reflecting the trade-off between the bird's current condition and its environment. (C) 2012 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. [Saraux, Claire; Friess, Benjamin; Le Maho, Yvon; Le Bohec, Celine] Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, Strasbourg, France; [Saraux, Claire; Friess, Benjamin; Le Maho, Yvon; Le Bohec, Celine] CNRS, UMR 7178, Strasbourg, France; [Saraux, Claire; Friess, Benjamin; Le Maho, Yvon; Le Bohec, Celine] CNRS, LEA 647, CSM BioSensib, Strasbourg, France; [Saraux, Claire] AgroParisTech ENGREF, Paris, France; [Le Bohec, Celine] CNRS, CSM, LEA 647, Principality Of Monaco, Monaco; [Saraux, Claire] Ctr Sci Monaco, Principality Of Monaco, Monaco; [Le Bohec, Celine] Univ Oslo, Dept Biol, Ctr Ecol & Evolutionary Synth, Blindern, Norway Saraux, C (reprint author), IFREMER, UMR EME 212, Av Jean Monnet,BP 171, F-34203 Sete, France. Claire.saraux@gmail.com Saraux, Claire/0000-0001-5061-4009 Institut Polaire Francais-Paul-Emile Victor; Fondation d'entreprise Total; Centre National de la Recherche Scientifique (Programme Zone Atelier de Recherches sur l'Environnement Antarctique et Subantarctique); Marie Curie Intra European Fellowship [235962] We are very grateful to D. Babel for his help with mySQL requests on the database and to V.A. Viblanc for his comments on the manuscript. We also thank M. Ballesteros, F. Bard, D. Beaune, C. Bricaud, N. Chatelain, G. Conan, S. Descamps, J. Dutel, P. Gabriel, C. Gilbert, S. Gravier, A. Hergott, G. Kuntz, N. Lambert, T. Lebard, N. Lecomte, J. Legrand, M. Le Vaillant, S. Mangin, V. Mosch, O. Prudhomme, S. Quemeneur, A. Simon, E. Taquet and C. Villemin for their help with field work. This study was supported by the Institut Polaire Francais-Paul-Emile Victor, the Fondation d'entreprise Total, the Centre National de la Recherche Scientifique (Programme Zone Atelier de Recherches sur l'Environnement Antarctique et Subantarctique) and a Marie Curie Intra European Fellowship (FP7-PEOPLE-IEF-2008, European Commission; project No 235962) to C.L.B. Aho T, 1997, BEHAV ECOL SOCIOBIOL, V41, P49, DOI 10.1007/s002650050362; Andersson M., 1994, SEXUAL SELECTION; Barrat A., 1976, COM NAT FR RECH ANTA, V40, P9, DOI DOI 10.1016/J.ATHEROSCLEROSIS.2014.12.010; Bates D, 2009, LME4 LINEAR MIXED EF; Behrenfeld MJ, 2006, NATURE, V444, P752, DOI 10.1038/nature05317; Bost CA, 2004, MAR ECOL PROG SER, V283, P293, DOI 10.3354/meps283293; Charrassin JB, 2001, MAR ECOL PROG SER, V221, P285, DOI 10.3354/meps221285; CHAURAND T, 1994, J ANIM ECOL, V63, P275, DOI 10.2307/5546; CHEREL Y, 1987, AUK, V104, P254; CHEREL Y, 1993, POLAR BIOL, V13, P355; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Cotte C, 2007, P R SOC B, V274, P2385, DOI 10.1098/rspb.2007.0775; Daunt F, 2007, FUNCT ECOL, V21, P561, DOI 10.1111/j.1365-2435.2007.01260.x; Descamps Sebastien, 2002, Avian Science, V2, P87; DESROCHERS A, 1992, ANIM BEHAV, V43, P885, DOI 10.1016/S0003-3472(06)80002-3; DRENT RH, 1980, ARDEA, V68, P225; Fahlman A, 2006, POLAR BIOL, V29, P609, DOI 10.1007/s00300-005-0096-z; Froget G, 1998, POLAR BIOL, V20, P409, DOI 10.1007/s003000050322; Gauthier-Clerc M, 2004, P ROY SOC B-BIOL SCI, V271, pS423, DOI 10.1098/rsbl.2004.0201; Gendner JP, 2005, J FIELD ORNITHOL, V76, P138, DOI 10.1648/0273-8570-76.2.138; Gregg WW, 2003, GEOPHYS RES LETT, V30, DOI 10.1029/2003GL016889; GREIG SA, 1983, ANIM BEHAV, V31, P1237, DOI 10.1016/S0003-3472(83)80030-X; Griffiths R, 1998, MOL ECOL, V7, P1071, DOI 10.1046/j.1365-294x.1998.00389.x; Hamer KC, 2006, BEHAV ECOL, V17, P132, DOI 10.1093/beheco/arj008; JOUVENTIN P, 1990, NATURE, V343, P746, DOI 10.1038/343746a0; Kozlov A. N., 1991, SELECTED SCI PAPERS, P320; Le Bohec C, 2005, ANIM BEHAV, V70, P527, DOI 10.1016/j.anbehav.2004.11.012; Le Bohec C, 2007, J ANIM ECOL, V76, P1149, DOI 10.1111/j.1365-2656.2007.01268.x; Le Bohec C, 2008, P NATL ACAD SCI USA, V105, P2493, DOI 10.1073/pnas.0712031105; Le Maho Y, 2011, CR BIOL, V334, P378, DOI 10.1016/j.crvi.2011.04.004; Lewis S, 2005, IBIS, V147, P408, DOI 10.1111/j.1474-919x.2005.00428.x; Lewis S, 2002, P ROY SOC B-BIOL SCI, V269, P1687, DOI 10.1098/rspb.2002.2083; Markman S, 2004, J ANIM ECOL, V73, P747, DOI 10.1111/j.0021-8790.2004.00847.x; MARTIN K, 1995, AM ZOOL, V35, P340; MAUCK RA, 1995, ANIM BEHAV, V49, P999, DOI 10.1006/anbe.1995.0129; Nesterova AP, 2010, BEHAV ECOL SOCIOBIOL, V64, P1145, DOI 10.1007/s00265-010-0930-3; NEWTON I, 1989, LIFETIME REPROD BIRD; Nicolaus M, 2008, ARDEA, V96, P286, DOI 10.5253/078.096.0215; Orians G.H., 1979, P155; PYKE GH, 1984, ANNU REV ECOL SYST, V15, P523, DOI 10.1146/annurev.es.15.110184.002515; Quillfeldt P, 2004, ANIM BEHAV, V68, P613, DOI 10.1016/j.anbehav.2003.12.002; Saraux C, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020407; Saraux C, 2011, NATURE, V469, P203, DOI 10.1038/nature09630; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STONEHOUSE BERNARD, 1960, FALKLAND ISLANDS DEPENDENCIES SURV SCI REPT, V23, P1; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; VANHEEZIK YM, 1993, COLON WATERBIRD, V16, P71, DOI 10.2307/1521558; Velando A, 2003, J ANIM ECOL, V72, P846, DOI 10.1046/j.1365-2656.2003.00756.x; Weimerskirch H, 2000, ECOLOGY, V81, P309, DOI 10.1890/0012-9658(2000)081[0309:SDIPIA]2.0.CO;2; WEIMERSKIRCH H, 1992, IBIS, V134, P107, DOI 10.1111/j.1474-919X.1992.tb08387.x; Weimerskirch H, 1998, J ANIM ECOL, V67, P99, DOI 10.1046/j.1365-2656.1998.00180.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WUNDERLE JM, 1991, CURR ORNITHOL, V8, P273; Zimmer I, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016098 55 5 5 0 52 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 1095-8282 ANIM BEHAV Anim. Behav. SEP 2012 84 3 675 683 10.1016/j.anbehav.2012.06.024 9 Behavioral Sciences; Zoology Behavioral Sciences; Zoology 996VU WOS:000308123700023 2018-11-12 J Riou, S; Chastel, O; Hamer, KC Riou, Samuel; Chastel, Olivier; Hamer, Keith C. Parentoffspring conflict during the transition to independence in a pelagic seabird BEHAVIORAL ECOLOGY English Article avian development; hormonal regulation; life-history theory; petrels; signals [Behav Ecol] PARENT-OFFSPRING CONFLICT; NESTLING DEPARTURE DECISIONS; PREFLEDGING MASS RECESSION; MANX SHEARWATERS; PROVISIONING RULES; PIED FLYCATCHERS; SEX-DIFFERENCES; MILVUS-MIGRANS; CHICK GROWTH; CORTICOSTERONE The transition to independence is a critical period of development and a focus of parentoffspring conflict over the optimum level of parental care, but there is continuing uncertainty over how much this transition is influenced by parents or offspring. We experimentally cross-fostered Manx shearwater chicks differing in age by 1014days and tested two predictions: 1) food-provisioning rate in the period leading up to fledging is related to the duration of parental care rather than to the age of chicks; 2) parents protect themselves from exploitative offspring by becoming insensitive to begging behavior of chicks over the period leading up to fledging. We also examined whether fledging age was under endogenous hormonal control or influenced mainly by parents. Switching chicks had no effect on fledging age, which was mainly controlled by an internal mechanism linked to a marked and rapid increase in corticosterone secretion, with no difference among treatments in the timing or magnitude of this increase. In contrast, parents reduced their frequency of food delivery according to the number of days elapsed since they started provisioning, regardless of age of chicks and despite younger foster chicks having lower body condition and begging more intensely than older foster chicks or controls. These data provide clear experimental evidence of parentoffspring conflict over parental feeding frequency in late chick development and hence chick body condition at fledging. As predicted, parents resolved this conflict in their favor by responding much less to begging over the period prior to fledging than at earlier stages of chick development. [Riou, Samuel; Hamer, Keith C.] Univ Leeds, Inst Integrat & Comparat Biol, Leeds LS2 9JT, W Yorkshire, England; [Chastel, Olivier] CNRS, CEBC, F-79360 Villiers En Bois, Deux Sevres, France Hamer, KC (reprint author), Univ Leeds, Inst Integrat & Comparat Biol, Leeds LS2 9JT, W Yorkshire, England. k.c.hamer@leeds.ac.uk Marie Curie Fellowship We thank the Countryside Council for Wales, the Wildlife Trust of South and West Wales, and the Skomer and Skokholm Management Committee for permission to work on Skomer Island. We thank Juan Brown, David Boyle, Jo and Dave Milborrow, Chris Taylor, and Chris Perrins for advice and help with logistics. Many thanks to Bee Kesso, Annie Harrison, Saada Abdalla, Sarah Richards, and Luke Halpin for help in the field, and to Colette Trouve and Stephanie Dano for help with corticosterone assays. This work was supported by a Marie Curie Fellowship, conforms to the legal requirements of the UK, and was carried out under appropriate personal and project licences. [Anonymous], 2007, R LANG ENV STAT COMP; BROOKE ML, 1990, MANX SHEARWATER; BUSTAMANTE J, 1994, IBIS, V136, P176, DOI 10.1111/j.1474-919X.1994.tb01082.x; BUSTAMANTE J, 1990, IBIS, V132, P58, DOI 10.1111/j.1474-919X.1990.tb01016.x; Catry P, 2006, ANIM BEHAV, V72, P383, DOI 10.1016/j.anbehav.2005.10.030; Corbel H, 2008, HORM BEHAV, V53, P557, DOI 10.1016/j.yhbeh.2007.12.008; Corbel H, 2008, GEN COMP ENDOCR, V155, P804, DOI 10.1016/j.ygcen.2007.11.006; Corbel H, 2009, ANIM BEHAV, V78, P829, DOI 10.1016/j.anbehav.2009.06.019; Crawley M. J., 2007, R BOOK; Dunn JC, 2010, J APPL ECOL, V47, P994, DOI 10.1111/j.1365-2664.2010.01856.x; Erikstad KE, 2009, ECOLOGY, V90, P3197, DOI 10.1890/08-1778.1; EVANS RM, 1994, AUK, V111, P596; Gjerdrum C, 2004, AUK, V121, P463, DOI 10.1642/0004-8038(2004)121[0463:PPANDD]2.0.CO;2; GODFRAY HCJ, 1995, NATURE, V376, P133, DOI 10.1038/376133a0; Gray CM, 2001, ANIM BEHAV, V62, P705, DOI 10.1006/anbe.2001.1813; Grodzinski U, 2007, P R SOC B, V274, P2449, DOI 10.1098/rspb.2007.0658; Hamer KC, 1999, ANIM BEHAV, V57, P627, DOI 10.1006/anbe.1998.0994; Hamer KC, 2006, BEHAV ECOL, V17, P132, DOI 10.1093/beheco/arj008; Hamer KC, 1997, FUNCT ECOL, V11, P489, DOI 10.1046/j.1365-2435.1997.00118.x; Hamer KC, 2003, BIRDS W PALAEARCTIC, P101; Harding AMA, 2003, CAN J ZOOL, V81, P1004, DOI 10.1139/Z03-075; Jacob S, 2011, BEHAV ECOL, V22, P1249, DOI 10.1093/beheco/arr121; Johnsen L, 1994, OIKOS, V71, P273; Jonker RM, 2011, BEHAV ECOL, V22, P326, DOI 10.1093/beheco/arq208; Kern M, 2001, PHYSIOL BIOCHEM ZOOL, V74, P651, DOI 10.1086/322927; Kilner R, 1997, TRENDS ECOL EVOL, V12, P11, DOI 10.1016/S0169-5347(96)10061-6; Kitaysky AS, 2001, BEHAV ECOL, V12, P619, DOI 10.1093/beheco/12.5.619; KONIG B, 1987, BEHAV ECOL SOCIOBIOL, V20, P1, DOI 10.1007/BF00292161; Kozlowski CP, 2010, GEN COMP ENDOCR, V169, P91, DOI 10.1016/j.ygcen.2010.07.019; Lormee H, 2003, IBIS, V145, P212, DOI 10.1046/j.1474-919X.2003.00106.x; Mauck RA, 2005, FUNCT ECOL, V19, P73, DOI 10.1111/j.0269-8463.2005.00933.x; Mock DW, 2011, BEHAV ECOL, V22, P909, DOI 10.1093/beheco/arr091; Morbey YE, 1999, ANIM BEHAV, V57, P873, DOI 10.1006/anbe.1998.1039; PARKER GA, 1979, ANIM BEHAV, V27, P1210, DOI 10.1016/0003-3472(79)90068-X; Pinheiro JC, 2000, MIXED EFFECTS MODELS; Quillfeldt P, 2004, ANIM BEHAV, V68, P613, DOI 10.1016/j.anbehav.2003.12.002; Quillfeldt P, 2002, ANIM BEHAV, V64, P579, DOI 10.1006/anbe.2002.3090; Quillfeldt P, 2007, NATURWISSENSCHAFTEN, V94, P919, DOI 10.1007/s00114-007-0275-6; Quillfeldt Petra, 2004, Acta Ethologica, V7, P73, DOI 10.1007/s10211-004-0100-6; Quillfeldt Petra, 2010, Open Access Animal Physiology, V2, P61; Rehling A, 2007, BEHAV ECOL SOCIOBIOL, V62, P149, DOI 10.1007/s00265-007-0449-4; Rehling A, 2012, ANIM BEHAV, V83, P35, DOI 10.1016/j.anbehav.2011.10.003; Riou S, 2008, ANIM BEHAV, V76, P1743, DOI 10.1016/j.anbehav.2008.08.012; Riou S, 2010, FUNCT ECOL, V24, P340, DOI 10.1111/j.1365-2435.2009.01651.x; Romero LM, 2006, GEN COMP ENDOCR, V149, P119, DOI 10.1016/j.ygcen.2006.02.015; Royle NJ, 2002, TRENDS ECOL EVOL, V17, P434, DOI 10.1016/S0169-5347(02)02565-X; Sprague RS, 2010, HORM BEHAV, V58, P297, DOI 10.1016/j.yhbeh.2010.03.002; SWANSON LJ, 1980, BEHAV NEURAL BIOL, V28, P172, DOI 10.1016/S0163-1047(80)91519-8; Thorogood R, 2011, P ROY SOC B-BIOL SCI, V278, P2638, DOI 10.1098/rspb.2010.2594; Tilgar V, 2011, BEHAV ECOL, V22, P23, DOI 10.1093/beheco/arq164; TRIVERS RL, 1974, AM ZOOL, V14, P249; Wada H, 2008, GEN COMP ENDOCR, V156, P441, DOI 10.1016/j.ygcen.2008.02.004 52 11 11 1 45 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 BEHAV ECOL Behav. Ecol. SEP-OCT 2012 23 5 1102 1107 10.1093/beheco/ars079 6 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology 998HL WOS:000308228200026 Bronze 2018-11-12 J van der Linden, D; Figueredo, AJ; de Leeuw, RNH; Scholte, RHJ; Engels, RCME van der Linden, Dimitri; Figueredo, Aurelio J.; de Leeuw, Rebecca N. H.; Scholte, Ron H. J.; Engels, Rutger C. M. E. The General Factor of Personality (GFP) and parental support: testing a prediction from Life History Theory EVOLUTION AND HUMAN BEHAVIOR English Article General Factor of Personality; Life History Theory; Parental support; Big Five STRATEGY; MODEL; ADOLESCENCE; INVENTORIES; ATTACHMENT; VALIDITY; BRAIN In the present study, we tested whether the General Factor of Personality (GFP) is related to the level of parental support. The GFP is assumed to occupy the apex of the hierarchy of human personality structure and is believed to reflect a socially and sexually selected aggregate of behavioral characteristics that are generally valued as "desirable" in interpersonal relationships. The relationship between the GFP and parental support tested in this study is predicted by Life History Theory, a midlevel evolutionary account of systematic differences in evolved reproductive strategies. A total of 428 families with mother, father, and two children (range 14-16 years) participated. Parents filled out personality questionnaires (Big Five) and their level of parental support. The children also independently rated the amount of support they perceived from their parents. In the present sample, parents' GFPs were found to explain 33% of the variance in the Big Five. Moreover, the parents' GFPs showed significant relationships with the parents' self-rated parental support, but also with the child-rated parental support. The monoinformant (parents ratings) and multi-informant (parent and child ratings) data support the notion of a substantive GFP that is related to the investment of parents into their offspring. (C) 2012 Elsevier Inc. All rights reserved. [van der Linden, Dimitri] Erasmus Univ, Inst Psychol, NL-3000 DR Rotterdam, Netherlands; [Figueredo, Aurelio J.] Univ Arizona, Tucson, AZ 85721 USA; [de Leeuw, Rebecca N. H.; Scholte, Ron H. J.; Engels, Rutger C. M. E.] Radboud Univ Nijmegen, Inst Behav Sci, Nijmegen, Netherlands van der Linden, D (reprint author), Erasmus Univ, Inst Psychol, POB 1738, NL-3000 DR Rotterdam, Netherlands. vanderlinden@fsw.eur.nl Van der Linden, Dimitri/0000-0001-7098-8948; Engels, Rutger/0000-0003-1944-9126 Anusic I, 2009, J PERS SOC PSYCHOL, V97, P1142, DOI 10.1037/a0017159; Ashton MC, 2009, PERS SOC PSYCHOL REV, V13, P79, DOI 10.1177/1088868309338467; Backstrom M, 2009, J RES PERS, V43, P335, DOI 10.1016/j.jrp.2008.12.013; BUSS DM, 1991, ANNU REV PSYCHOL, V42, P459, DOI 10.1146/annurev.ps.42.020191.002331; Danay E, 2011, J RES PERS, V45, P560, DOI 10.1016/j.jrp.2011.07.003; De Fruyt F, 2006, J PERS SOC PSYCHOL, V91, P538, DOI 10.1037/0022-3514.91.3.538; de Vries RE, 2011, J RES PERS, V45, P229, DOI 10.1016/j.jrp.2010.12.002; Del Giudice M., 2011, EVOLUTION PERSONALIT, P154; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Dunkel C. S., 2011, PERSONALITY INDIVIDU, V52, P202; Dunkel CS, 2010, PERS INDIV DIFFER, V48, P681, DOI 10.1016/j.paid.2009.12.014; Erdle S, 2011, PERS INDIV DIFFER, V50, P1152, DOI 10.1016/j.paid.2010.12.038; Erdle S, 2010, PERS INDIV DIFFER, V48, P762, DOI 10.1016/j.paid.2010.01.025; Eysenck H. J., 1967, BIOL BASIS PERSONALI; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2006, PERS INDIV DIFFER, V41, P431, DOI 10.1016/j.paid.2006.02.004; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2009, CAMBRIDGE HANDBOOK OF PERSONALITY PSYCHOLOGY, P265; Figueredo AJ, 2009, TWIN RES HUM GENET, V12, P555, DOI 10.1375/twin.12.6.555; Figueredo AJ, 2009, BEHAV BRAIN SCI, V32, P26, DOI 10.1017/S0140525X09000077; Fisher R. A., 1954, GENETICAL THEORY NAT; GEARY DC, 2005, ORIGIN MIND EVOLUTIO; GOLDBERG LR, 1990, J PERS SOC PSYCHOL, V59, P1216, DOI 10.1037/0022-3514.59.6.1216; GRAY JA, 1990, COGNITION EMOTION, V4, P269, DOI 10.1080/02699939008410799; Harakeh Z, 2005, ADDICTION, V100, P862, DOI 10.1111/j.1360-0443.2005.01067.x; Holden RR, 2012, PERS INDIV DIFFER, V52, P37, DOI 10.1016/j.paid.2011.08.024; Hopwood CJ, 2011, J RES PERS, V45, P468, DOI 10.1016/j.jrp.2011.06.002; Hrdy S. B., 2009, MOTHERS OTHERS EVOLU; Loehlin JC, 2011, J RES PERS, V45, P504, DOI 10.1016/j.jrp.2011.06.011; Loehlin JC, 2011, PERS INDIV DIFFER, V51, P862, DOI 10.1016/j.paid.2011.07.021; Loehlin JC, 2011, J RES PERS, V45, P44, DOI 10.1016/j.jrp.2010.11.008; Musek J, 2007, J RES PERS, V41, P1213, DOI 10.1016/j.jrp.2007.02.003; Nesse Randolph M., 2007, Biological Theory, V2, P143, DOI 10.1162/biot.2007.2.2.143; Riemann R, 2010, EUR J PERSONALITY, V24, P258, DOI 10.1002/per.760; Rushton J. P., 2011, WILEY BLACKWELL HDB, P187; Rushton JP, 2008, J RES PERS, V42, P1173, DOI 10.1016/j.jrp.2008.03.002; Rushton JP, 2009, TWIN RES HUM GENET, V12, P356, DOI 10.1375/twin.12.4.356; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Schermer J. A., 2009, PERSONALITY INDIVIDU, V48, P187; Scholte RHJ, 2001, J RES ADOLESCENCE, V11, P71, DOI 10.1111/1532-7795.00004; Sefcek J. A., 2010, BIODEMOGRAPHY SOCIAL, V56, P41; van der Linden D, 2011, PERS INDIV DIFFER, V51, P836, DOI 10.1016/j.paid.2011.07.010; van der Linden D, 2011, INT J SELECT ASSESS, V19, P157, DOI 10.1111/j.1468-2389.2011.00543.x; van der Linden D, 2010, J RES PERS, V44, P669, DOI 10.1016/j.jrp.2010.08.007; van der Linden D, 2010, J RES PERS, V44, P315, DOI 10.1016/j.jrp.2010.03.003; van der Vorst H, 2005, ADDICTION, V100, P1464, DOI 10.1111/j.1360-0443.2005.01193.x; Vermulst A. A., 2005, QUICK BIG 5 PERSONAL; Veselka L, 2012, PERS INDIV DIFFER, V52, P261, DOI 10.1016/j.paid.2011.10.007; Veselka L, 2009, TWIN RES HUM GENET, V12, P420, DOI 10.1375/twin.12.5.420; Veselka L, 2009, TWIN RES HUM GENET, V12, P254, DOI 10.1375/twin.12.3.254; Wilson E.O., 1975, P1 51 9 9 0 15 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 1879-0607 EVOL HUM BEHAV Evol. Hum. Behav. SEP 2012 33 5 537 546 10.1016/j.evolhumbehav.2012.01.007 10 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences 998YU WOS:000308277100012 2018-11-12 J Chen, BB; Chang, L Chen, Bin-Bin; Chang, Lei Adaptive insecure attachment and resource control strategies during middle childhood INTERNATIONAL JOURNAL OF BEHAVIORAL DEVELOPMENT English Article attachment; Chinese children; life history theory; middle childhood; resource control SOCIAL-DOMINANCE; PEER-GROUP; EVOLUTIONARY PERSPECTIVE; SEX-DIFFERENCES; LIFE-HISTORY; ADOLESCENCE; TRANSITION; ORGANIZATION; DIMENSIONS; BEHAVIORS By integrating the life history theory of attachment with resource control theory, the current study examines the hypothesis that insecure attachment styles reorganized in middle childhood are alternative adaptive strategies used to prepare for upcoming competition with the peer group. A sample of 654 children in the second through seventh grades in Shanghai, China, participated in this study. The children reported attachment relationships with their mother and the use of resource control strategies in the peer group. Boys had higher avoidant attachment scores than girls, whereas girls had higher ambivalent attachment scores than boys. Moreover, avoidant attachment was positively associated with the use of coercive strategies to control resources. Ambivalent attachment was associated with the use of both coercive and prosocial strategies to control resources. A number of other gender and developmental differences were also observed. The implications for the adaptiveness of insecure attachment in middle childhood are discussed. [Chang, Lei] Chinese Univ Hong Kong, Dept Educ Psychol, Hong Kong, Hong Kong, Peoples R China; [Chen, Bin-Bin] Fudan Univ, Shanghai 200433, Peoples R China Chang, L (reprint author), Chinese Univ Hong Kong, Dept Educ Psychol, Hong Kong, Hong Kong, Peoples R China. leichang@cuhk.edu.hk Chang, Lei/0000-0001-6457-0254 Aiken L.S., 1991, MULTIPLE REGRESSION; Ammaniti M, 2000, Attach Hum Dev, V2, P328, DOI 10.1080/14616730010001587; Archer J, 2009, BEHAV BRAIN SCI, V32, P249, DOI 10.1017/S0140525X09990951; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 1997, HUM NATURE-INT BIOS, V8, P361, DOI 10.1007/BF02913039; Belsky J, 1999, HDB ATTACHMENT THEOR, P141; Belsky J, 2008, INT J BEHAV DEV, V32, P260, DOI 10.1177/0165025408090969; Bjorklund DF, 1999, CURR DIR PSYCHOL SCI, V8, P86, DOI 10.1111/1467-8721.00020; Bogin B, 1997, YEARB PHYS ANTHROPOL, V40, P63; Booth-LaForce C, 2006, ATTACH HUM DEV, V8, P309, DOI 10.1080/14616730601048209; Bowlby J., 1973, ATTACHMENT LOSS, V2; Bowlby J., 1982, ATTACHMENT AND LOSS, V1; Brumariu LE, 2010, DEV PSYCHOPATHOL, V22, P177, DOI 10.1017/S0954579409990344; Brumariu LE, 2008, J APPL DEV PSYCHOL, V29, P393, DOI DOI 10.1016/J.APPDEV.2008.06.002; Campbell A, 2009, BEHAV BRAIN SCI, V32, P24, DOI 10.1017/S0140525X09000053; Chang L, 2011, PARENT-SCI PRACT, V11, P102, DOI 10.1080/15295192.2011.585553; Charlesworth WR, 1996, INT J BEHAV DEV, V19, P25, DOI 10.1080/016502596385910; Chen B.-B., J GENETIC P IN PRESS; Chen BB, 2012, ASIAN J SOC PSYCHOL, V15, P122, DOI 10.1111/j.1467-839X.2012.01373.x; Chen BB, 2009, BEHAV BRAIN SCI, V32, P25, DOI 10.1017/S0140525X09000065; Chen T, 2003, CHIN PREV MED, V4, P264; Chen Z.-Y., 2008, THESIS NATL CHENG KU; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; Collins W. A., 2002, HDB PARENTING, V3, P73; Darwin C.R., 1871, DESCENT MAN SELECTIO; Del Giudice M., 2011, EVOLUTION PERSONALIT, P154; Del Giudice M, 2008, BRIT J DEV PSYCHOL, V26, P369, DOI 10.1348/026151007X243289; Del Giudice M, 2009, DEV REV, V29, P1, DOI 10.1016/j.dr.2008.09.001; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; DEWAAL FBM, 1986, Q REV BIOL, V61, P459, DOI 10.1086/415144; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Fearon RP, 2010, CHILD DEV, V81, P435, DOI 10.1111/j.1467-8624.2009.01405.x; Finnegan RA, 1996, CHILD DEV, V67, P1318, DOI 10.2307/1131702; Flinn MV, 2006, DEV REV, V26, P138, DOI 10.1016/j.dr.2006.02.003; FOA UG, 1971, SCIENCE, V171, P345, DOI 10.1126/science.171.3969.345; GODFRAY HCJ, 1995, NATURE, V376, P133, DOI 10.1038/376133a0; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; Hardy CL, 2002, J EARLY ADOLESCENCE, V22, P117, DOI 10.1177/0272431602022002001; Hawley P. H., 2006, RESOURCE CONTR UNPUB; Hawley P. H, 2011, EVOLUTION PERSONALIT, P61; Hawley P. H., 2007, AGGRESSION ADAPTATIO, P1; Hawley PH, 2008, INT J BEHAV DEV, V32, P76, DOI 10.1177/0165025407084054; Hawley PH, 2007, INT J BEHAV DEV, V31, P170, DOI 10.1177/0165025407074630; Hawley PH, 2011, J RES ADOLESCENCE, V21, P307, DOI 10.1111/j.1532-7795.2010.00732.x; Hawley PH, 2009, J SOC PERS RELAT, V26, P1097, DOI 10.1177/0265407509347939; Hawley PH, 1999, DEV REV, V19, P97, DOI 10.1006/drev.1998.0470; Hawley PH, 2003, MERRILL PALMER QUART, V49, P279, DOI 10.1353/mpq.2003.0013; Hawley PH, 2002, INT J BEHAV DEV, V26, P466, DOI 10.1080/01650250143000427; Hrdy S., 2005, HUNTER GATHERER CHIL, P65, DOI DOI 10.1177/1754073911430141; Hrdy Sarah Blaffer, 1999, WOMAN NEVER EVOLVED; Karavasilis L, 2003, INT J BEHAV DEV, V27, P153, DOI 10.1080/01650250244000155; Kerns KA, 2006, SOC DEV, V15, P1, DOI 10.1111/j.1467-9507.2006.00327.x; Kerns KA, 2000, DEV PSYCHOL, V36, P614, DOI 10.1037//0012-1649.36.5.614; Kruger DJ, 2006, HUM NATURE-INT BIOS, V17, P74, DOI 10.1007/s12110-006-1021-z; Ma E. Y., 2010, THESIS U HONG KONG C; MacDonald K, 1996, INT J BEHAV DEV, V19, P53; MAIN M, 1990, HUM DEV, V33, P48, DOI 10.1159/000276502; Mayseless O, 2005, ATTACHMENT IN MIDDLE CHILDHOOD, P1; MCGREW WC, 1972, ETHOLOGICAL STUDY CH; Pellegrini AD, 2002, BRIT J DEV PSYCHOL, V20, P259, DOI 10.1348/026151002166442; Pellegrini AD, 2001, MERRILL PALMER QUART, V47, P142, DOI 10.1353/mpq.2001.0004; Pellegrini AD, 2008, DEV REV, V28, P461, DOI 10.1016/j.dr.2008.03.001; Pellegrini AD, 2007, J COMP PSYCHOL, V121, P54, DOI 10.1037/0735-7036.121.1.45; Roseth CJ, 2011, SOC DEV, V20, P185, DOI 10.1111/j.1467-9507.2010.00579.x; Soltis J, 2004, BEHAV BRAIN SCI, V27, P443; Sun H., 2006, CHINESE YOUTH TRANSI, P19; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Trivers R. L., 1974, AM ZOOL, V14, P247; Trivers R. L., 1985, SOCIAL EVOLUTION; TRIVERS RL, 1971, Q REV BIOL, V46, P35, DOI 10.1086/406755; Weisfeld GE., 1999, EVOLUTIONARY PRINCIP; Wilson E., 1978, SOCIOBIOLOGY NEW SYN; Yunger JL, 2005, ATTACHMENT IN MIDDLE CHILDHOOD, P89 73 11 12 0 31 SAGE PUBLICATIONS LTD LONDON 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND 0165-0254 INT J BEHAV DEV Int. J. Behav. Dev. SEP 2012 36 5 389 397 10.1177/0165025412445440 9 Psychology, Developmental Psychology 995CV WOS:000307985800008 2018-11-12 J Reznick, DN; Bassar, RD; Travis, J; Rodd, FH Reznick, David N.; Bassar, Ronald D.; Travis, Joseph; Rodd, F. Helen LIFE-HISTORY EVOLUTION IN GUPPIES VIII: THE DEMOGRAPHICS OF DENSITY REGULATION IN GUPPIES (POECILIA RETICULATA) EVOLUTION English Article Density regulation; life-history evolution; population biology TABLE RESPONSE EXPERIMENTS; TRINIDADIAN GUPPIES; OFFSPRING SIZE; POPULATION REGULATION; NATURAL-SELECTION; GENETIC-BASIS; TIME-SERIES; MORTALITY; PREDATION; SENESCENCE In prior research, we found the way guppy life histories evolve in response to living in environments with a high or low risk of predation is consistent with life-history theory that assumes no density dependence. We later found that guppies from high-predation environments experience higher mortality rates than those from low-predation environments, but the increased risk was evenly distributed across all age/size classes. Life-history theory that assumes density-independent population growth predicts that life histories will not evolve under such circumstances, yet we have shown with field introduction experiments that they do evolve. However, theory that incorporates density regulation predicts this pattern of mortality can result in the patterns of life-history evolution we had observed. Here we report on density manipulation experiments performed in populations of guppies from low-predation environments to ask whether natural populations normally experience density regulation and, if so, to characterize the short-term demographic changes that underlie density regulation. Our experiments reveal that these populations are density regulated. Decreased density resulted in higher juvenile growth, decreased juvenile mortality rates, and increased reproductive investment by adult females. Increased density causes reduced offspring size, decreased fat storage by adult females, and increased adult mortality. [Reznick, David N.; Bassar, Ronald D.] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA; [Travis, Joseph] Florida State Univ, Dept Biol Sci, Tallahassee, FL 32306 USA; [Rodd, F. Helen] Univ Toronto, Dept Ecol & Evolutionary Biol, Toronto, ON M5S 3G5, Canada Reznick, DN (reprint author), Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA. David.Reznick@ucr.edu National Science Foundation (NSF) [EF0623632, 9419823] We wish to thank the numerous undergraduate assistants that helped with the laboratory processing of the fish and the Sinanan family for providing housing while in Trinidad. This research was funded by National Science Foundation (NSF) grants (EF0623632, 9419823) to DNR. Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; ABRAMS PA, 1993, EVOLUTION, V47, P877, DOI 10.1111/j.1558-5646.1993.tb01241.x; Alexander HJ, 2006, EVOLUTION, V60, P2352, DOI 10.1111/j.0014-3820.2006.tb01870.x; Andrewartha H. G., 1954, DISTRIBUTION ABUNDAN; Bashey F, 2006, EVOLUTION, V60, P348, DOI 10.1554/05-087.1; Bassar RD, 2010, ANN NY ACAD SCI, V1206, P17, DOI 10.1111/j.1749-6632.2010.05706.x; Bassar RD, 2010, P NATL ACAD SCI USA, V107, P3616, DOI 10.1073/pnas.0908023107; BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; Brommer JE, 2000, BIOL REV, V75, P377, DOI 10.1017/S000632310000551X; Brook BW, 2006, ECOLOGY, V87, P1445, DOI 10.1890/0012-9658(2006)87[1445:SOEFDD]2.0.CO;2; Cappuccino N, 1996, FRONTIERS OF POPULATION ECOLOGY, P53; Carvalho GR, 1996, BIOL J LINN SOC, V57, P219, DOI 10.1111/j.1095-8312.1996.tb00310.x; CASWELL H, 1989, ECOL MODEL, V46, P221, DOI 10.1016/0304-3800(89)90019-7; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Darwin C., 1859, ORIGIN SPECIES MEANS; Dobson FS, 2001, AM NAT, V158, P236, DOI 10.1086/321322; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; Fowler NL, 2006, ECOLOGY, V87, P655, DOI 10.1890/05-1197; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gustafsson C, 2003, OIKOS, V100, P317, DOI 10.1034/j.1600-0706.2003.11493.x; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lack D., 1968, ECOLOGICAL ADAPTATIO; Leips J, 2001, T AM FISH SOC, V130, P501, DOI 10.1577/1548-8659(2001)130<0501:TSOCTM>2.0.CO;2; Leips J, 2009, EVOLUTION, V63, P1341, DOI 10.1111/j.1558-5646.2009.00631.x; MAC ARTHUR ROBERT H., 1967; Macdonald DW, 2009, J MAMMAL, V90, P1392, DOI 10.1644/08-MAMM-A-356R1.1; MEDAWAR PB, 1952, UNSOLVED PROBLEM BIO; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MURDOCH WW, 1994, ECOLOGY, V75, P271, DOI 10.2307/1939533; Nicholson AJ, 1933, J ANIM ECOL, V2, P132; Oli MK, 2001, ECOLOGY, V82, P1921, DOI 10.2307/2680057; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; REZNICK D, 1993, ECOLOGY, V74, P2011, DOI 10.2307/1940844; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK D, 1981, EVOLUTION, V35, P941, DOI 10.1111/j.1558-5646.1981.tb04960.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Reznick DN, 2004, NATURE, V431, P1095, DOI 10.1038/nature02936; Rodd FH, 1997, ECOLOGY, V78, P419; RODD FH, 1991, OIKOS, V62, P13, DOI 10.2307/3545440; Roff DA, 2008, J GENET, V87, P339, DOI 10.1007/s12041-008-0056-9; Sibly RM, 2005, SCIENCE, V309, P607, DOI 10.1126/science.1110760; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Williams PD, 2003, EVOLUTION, V57, P1478; WILSON CA, 1987, T AM FISH SOC, V116, P668, DOI 10.1577/1548-8659(1987)116<668:CAAFMO>2.0.CO;2; WOLDA H, 1993, OECOLOGIA, V95, P581, DOI 10.1007/BF00317444; Zandona E., 2011, FUNCT ECOL, V25, P747; Ziebarth NL, 2010, ECOL LETT, V13, P21, DOI 10.1111/j.1461-0248.2009.01393.x 56 27 28 3 106 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 EVOLUTION Evolution SEP 2012 66 9 2903 2915 10.1111/j.1558-5646.2012.01650.x 13 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 000RJ WOS:000308405100018 22946811 Bronze 2018-11-12 J Bonte, D Bonte, Dries Untitled OIKOS English Editorial Material POPULATION-DYNAMICS The Per Brinck Foundation at the editorial office of the journal Oikos and Wiley/Blackwell Publishing annually awards the Per Brinck Oikos Award in honor of the Swedish ecologist Professor Per Brinck, who has played an instrumental role for the development and recognition of the science of ecology in the Nordic countries, especially as serving as the Editor-in-Chief for Oikos for many years. The Per Brinck Oikos Award recognizes extraordinary and important contributions to the science of ecology. Particular emphasis is given to scientific work aimed at synthesis that has led to novel and original research in unexplored or neglected fields or to bridging gaps between ecological disciplines. Such achievements typically require theoretical innovation and development as well as imaginative observational or experimental work, all of which will be valid grounds for recognition. The 2012 laureate is Prof. Tim Coulson from Imperial College London for his timely and synthesizing work on linking ecological and evolutionary theory. Instead of treating individual variation in life history as noise, he is embracing individual variation and the mechanisms leading to it. By integrating this variation into models he developed novel theoretical approaches to predict ecological and evolutionary consequences of environmental change on life history, population dynamics and the distribution of quantitative characters and genotypes. In this issue, we publish Tim Coulsons Per Brinck lecture in which he demonstrates the advantages of integral projection models for the understanding of eco-evolutionary dynamics in systems that cannot be easily replicated in the field (Coulson 2012). By this hands- on paper, Tim advocates the benefits of IPMs to field biologists who may not have tried to construct models before but might be interested in doing so. Oikos is publishing novel work that aims at synthesis and generalization; for instance recent empirical (Auld and Charmantier 2011) and theoretical work of (Bardsen et al. 2011) on the linkage of life history and population dynamics to climate change. As evidenced by the per Brinck paper in this issue, real synthesis can be created by the integration of empirical and theoretical approaches in both marine (Dias and Marshall 2010) and terrestrial environments (Jacquemin et al. 2012, Rodriguez-Perez and Traveset 2012). Oikos is aiming to stimulate synthesis in specific fields by bringing together papers from different disciplines and systems into more thematic issues that are centred on key contributions (Bonte et al. 2012). In order to improve our understanding of the wealth of mechanisms determining life history variation, we have compiled such an issue consisting of 17 articles documenting novel insights in life history theory and its relevance for predicting phenomena at higher level of biological organization. We especially would like to highlight the contributions on density dependency in larger herbivores (Mob ae k et al. 2012) and novel approaches for testing them in nature (Simard et al. 2012). Equally important is the synthesis created by the compilation of contributions demonstrating the interplay between genetics and environment on floral display and subsequent reproduction (von Euler et al. 2012), its further importance for pollinator fitness (Cahenzli and Erhardt 2012). By means of an elegant experiment, Brody and Irwin (2012) show that variability in plant response to herbivory can be attributed by plant interactions with mutualists and enemies. In a final package of papers, we compile work demonstrating amongst others the importance of stage- or age specific life history responses on predation (Sand et al. 2012), phenology (Briscoe et al. 2012) and the importance of overall life history variation on immunology and reservoir competence of infectious diseases (Previtali et al. 2012). Bonte, Dries/0000-0002-3320-7505 Auld JR, 2011, OIKOS, V120, P1129, DOI 10.1111/j.1600-0706.2010.19161.x; Bardsen BJ, 2011, OIKOS, V120, P245, DOI 10.1111/j.1600-0706.2010.18597.x; Bonte D, 2012, OIKOS, V121, P801, DOI 10.1111/j.1600-0706.2012.20978.x; Briscoe N.J, 2012, OIKOS, V121, P1465; Brody AK, 2012, OIKOS, V121, P1424, DOI 10.1111/j.1600-0706.2012.20458.x; Cahenzli F, 2012, OIKOS, V121, P1417, DOI 10.1111/j.1600-0706.2012.20190.x; Coulson T, 2012, OIKOS, V121, P1337, DOI 10.1111/j.1600-0706.2012.00035.x; Dias GM, 2010, OIKOS, V119, P154, DOI 10.1111/j.1600-0706.2009.17725.x; Jacquemyn H, 2012, OIKOS, V121, P211, DOI 10.1111/j.1600-0706.2011.19774.x; Mobaek R, 2012, OIKOS, V121, P1364, DOI 10.1111/j.1600-0706.2012.20286.x; Previtali MA, 2012, OIKOS, V121, P1483, DOI 10.1111/j.1600-0706.2012.020215.x; Rodriguez-Perez J, 2012, OIKOS, V121, P835, DOI 10.1111/j.1600-0706.2011.19946.x; Sand H, 2012, OIKOS, V121, P1454, DOI 10.1111/j.1600-0706.2012.20082.x; Simard MA, 2012, OIKOS, V121, P1351, DOI 10.1111/j.1600-0706.2011.19723.x; von Euler T, 2012, OIKOS, V121, P1400, DOI 10.1111/j.1600-0706.2012.20433.x 15 0 0 0 23 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 OIKOS Oikos SEP 2012 121 9 1335 1336 10.1111/j.1600-0706.2012.00172.x 2 Ecology Environmental Sciences & Ecology 996LZ WOS:000308091200001 2018-11-12 J Zhang, CY; Wang, J; Zhao, XH; Xia, FC; Gadow, KV Zhang, Chunyu; Wang, Juan; Zhao, Xiuhai; Xia, Fucai; Gadow, Klaus V. Sexual dimorphism in reproductive and vegetative allometry for two dioecious Rhamnus plants in north-eastern China EUROPEAN JOURNAL OF FOREST RESEARCH English Article Dioecious plant; Reproductive allometry; Vegetative allometry; Logarithmic model; Life history theory SILENE-LATIFOLIA; ALLOCATION; GROWTH; COSTS; SHRUB; TREES; EQUATIONS; FORESTS; FLOWERS; BIOMASS The dimorphism in reproductive allometry has received much attention, while rather little is known about the sexual dimorphism in the vegetative allometry of a dioecious species. This study presents vegetative and reproductive allometries for two dioecious tree species of the genus Rhamnus in north-eastern China. A power function and a linear model were found suitable for describing different components of the vegetative allometry. In addition, a linear regression was used to estimate the number of flowers and/or fruits based on observed stem size. R. davurica being the taller species of the two shows highly significant correlations for all selected combinations of different vegetative components. These correlations are much less pronounced and sometimes even nonsignificant in R. schneideri, which occupies a great variety of niches at the understory with diverse crown shapes. Component biomass was highly correlated with tree diameter for both sexes, but the allometries changed with sex and species. Both females and males show consistent patterns of reproductive size dependency. However, the slope of the linear relations differs between the sexes again indicating gender-related differences in reproductive size. According to theory, females allocate more biomass to reproduction than males, which negatively affects their vegetative growth. However, in this study, flowering females did not show less vegetative growth than males suggesting that the two Rhamnus species behave contrary to expectation. Further studies are required to test the assumption that photosynthesis by reproductive organs may substantially contribute to vegetative growth. [Zhang, Chunyu; Wang, Juan; Zhao, Xiuhai] Beijing Forestry Univ, Minist Educ, Forest Coll, Key Lab Silviculture & Conservat, Beijing 100083, Peoples R China; [Xia, Fucai] Beihua Univ, Coll Forestry, Jilin 132013, Peoples R China; [Gadow, Klaus V.] Univ Gottingen, Fac Forestry & Forest Ecol, D-37077 Gottingen, Germany Zhao, XH (reprint author), Beijing Forestry Univ, Minist Educ, Forest Coll, Key Lab Silviculture & Conservat, 35 Qinghua E Rd, Beijing 100083, Peoples R China. zhaoxh@bjfu.edu.cn Fundamental Research Funds for the Central Universities [HJ2010-19]; 12th five-year National Science and Technology plan of China [2012BAC01B03]; Program of the Co-Construction with Beijing Municipal Government of China; Special Research Program for Forestry Welfare of China This research is supported by the Fundamental Research Funds for the Central Universities (NO. HJ2010-19), the 12th five-year National Science and Technology plan of China (2012BAC01B03), the Program of the Co-Construction with Beijing Municipal Government of China (2011) and the Special Research Program for Forestry Welfare of China (20100400204). Akaike H, 1974, IEEE T RES, V6, P397; ALLEN GA, 1993, AM NAT, V141, P537, DOI 10.1086/285490; Banuelos MJ, 2004, EVOL ECOL RES, V6, P397; BASKERVILLE G L, 1972, Canadian Journal of Forest Research, V2, P49, DOI 10.1139/x72-009; BAZZAZ FA, 1979, NEW PHYTOL, V82, P223, DOI 10.1111/j.1469-8137.1979.tb07577.x; BAZZAZ FA, 1979, NATURE, V279, P554, DOI 10.1038/279554a0; BISCOE PV, 1975, J APPL ECOL, V12, P295, DOI 10.2307/2401734; Bonser SP, 2003, AM J BOT, V90, P404, DOI 10.3732/ajb.90.3.404; Bonser SP, 2009, PERSPECT PLANT ECOL, V11, P31, DOI 10.1016/j.ppees.2008.10.003; Cepeda-Cornejo V, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009824; CIPOLLINI ML, 1991, OECOLOGIA, V86, P585, DOI 10.1007/BF00318326; CIPOLLINI ML, 1994, AM J BOT, V81, P65, DOI 10.2307/2445564; Crawley MJ, 1997, PLANT ECOL, P157; Delph LF, 2002, J EVOLUTION BIOL, V15, P1011, DOI 10.1046/j.1420-9101.2002.00467.x; GARCIA MB, 1995, OECOLOGIA, V101, P59, DOI 10.1007/BF00328901; GEHRING JL, 1993, INT J PLANT SCI, V154, P152, DOI 10.1086/297100; Gingerich PD, 2000, J THEOR BIOL, V204, P201, DOI 10.1006/jtbi.2000.2008; HOFFMANN AJ, 1984, OECOLOGIA, V61, P109, DOI 10.1007/BF00379095; Humeau L, 2001, ECOL LETT, V4, P221, DOI 10.1046/j.1461-0248.2001.00217.x; Leigh A, 2003, AUST J BOT, V51, P509, DOI 10.1071/BT03043; LLOYD DG, 1977, BOT REV, V43, P177, DOI 10.1007/BF02860717; LOVETTDOUST J, 1988, ECOLOGY, V69, P741; Marklund LG, 1987, 43 SLU DEP FOR SURV; Matsuyama S, 2008, ANN BOT-LONDON, V101, P1391, DOI 10.1093/aob/mcn048; Moore JR, 2010, ANN FOREST SCI, V67, DOI 10.1051/forest/2010042; Nicotra AB, 1999, J ECOL, V87, P138, DOI 10.1046/j.1365-2745.1999.00337.x; Niklas KJ, 2003, EVOL ECOL RES, V5, P79; Obeso JR, 1997, J ECOL, V85, P159, DOI 10.2307/2960648; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; Packard GC, 2011, BIOL REV, V86, P549, DOI 10.1111/j.1469-185X.2010.00160.x; POPP JW, 1988, AM J BOT, V75, P1732, DOI 10.2307/2444688; RAMADAN AA, 1994, AM J BOT, V81, P847, DOI 10.2307/2445766; Rocheleau AF, 2001, AM J BOT, V88, P659, DOI 10.2307/2657066; Rovere AE, 2003, ECOSCIENCE, V10, P195, DOI 10.1080/11956860.2003.11682767; SAKAI AK, 1985, ECOLOGY, V66, P1921, DOI 10.2307/2937388; Santa Regina I., 1997, ANN FOREST SCI, V54, P261, DOI [10.1051/forest:19970304, DOI 10.1051/FOREST:19970304]; SPRUGEL DG, 1983, ECOLOGY, V64, P209, DOI 10.2307/1937343; Thomas SC, 1996, EVOL ECOL, V10, P517, DOI 10.1007/BF01237882; Weiner J, 2004, PERSPECT PLANT ECOL, V6, P207, DOI 10.1078/1433-8319-00083; Wirth C, 2002, TREE PHYSIOL, V22, P537, DOI 10.1093/treephys/22.8.537 40 7 9 1 40 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1612-4669 EUR J FOREST RES Eur. J. For. Res. SEP 2012 131 5 1287 1296 10.1007/s10342-012-0598-5 10 Forestry Forestry 991KN WOS:000307700000002 2018-11-12 J Bleil, ME; Adler, NE; Pasch, LA; Sternfeld, B; Gregorich, SE; Rosen, MP; Cedars, MI Bleil, M. E.; Adler, N. E.; Pasch, L. A.; Sternfeld, B.; Gregorich, S. E.; Rosen, M. P.; Cedars, M. I. Psychological stress and reproductive aging among pre-menopausal women HUMAN REPRODUCTION English Article life history theory; psychological stress; reproductive aging; ovarian reserve; antral follicle count ANTRAL FOLLICLE COUNTS; IN-VITRO FERTILIZATION; PERCEIVED STRESS; TRANSVAGINAL ULTRASONOGRAPHY; PUBERTAL MATURATION; NATURAL MENOPAUSE; SOCIOECONOMIC POSITION; CHILDHOOD EXPERIENCE; PSYCHOSOCIAL FACTORS; OVARIAN DYSFUNCTION Life history models suggest that biological preparation for current versus longer term reproduction is favored in environments of adversity. In this context, we present a model of reproductive aging in which environmental adversity is proposed to increase the number of growing follicles at the cost of hastening the depletion of the ovarian reserve over time. We evaluated this model by examining psychological stress in relation to reproductive aging indexed by antral follicle count (AFC), a marker of total ovarian reserve. We hypothesized that stress would be related to (i) higher AFC in younger women, reflecting greater reproductive readiness as well as (ii) greater AFC loss across women, reflecting more accelerated reproductive aging. In a multi-ethnic, community sample of 979 participants [ages 2545 (mean (standard deviation) 35.2 (5.5)); 27.5 Caucasian] in the Ovarian Aging study, an investigation of the correlates of reproductive aging, the interaction of age-x-stress was assessed in relation to AFC to determine whether AFC and AFC loss varied across women experiencing differing levels of stress. Stress was assessed by the perceived stress scale and AFC was assessed by summing the total number of antral follicles visible by transvaginal ultrasound. In linear regression examining AFC as the dependent variable, covariates (race/ethnicity, socio-economic status, menarcheal age, hormone-containing medication for birth control, parity, cigarette smoking, bodymass index, waist-to-hip ratio) and age were entered on step 1, stress on step 2 and the interaction term (age-x-stress) on step 3. On step 3, significant main effects showed that older age was related to lower AFC (b 0.882, P 0.000) and greater stress was related to higher AFC (b 0.545, P 0.005). Follow-up analyses showed that the main effect of stress on AFC was present in the younger women only. A significant interaction term (b 0.036, P 0.031) showed the relationship between age and AFC varied as function of stress. When the sample was divided into tertiles of stress, the average follicle loss was 0.781, 0.842 and 0.994 follicles/year in the low-, mid- and high-stress groups, respectively. Psychological stress was related to higher AFC among younger women and greater AFC decline across women, suggesting that greater stress may enhance reproductive readiness in the short term at the cost of accelerating reproductive aging in the long term. Findings are preliminary, however, due to the cross-sectional nature of the current study. [Bleil, M. E.; Adler, N. E.; Pasch, L. A.] Univ Calif San Francisco, Dept Psychiat, San Francisco, CA 94143 USA; [Sternfeld, B.] Kaiser Permanente No Calif, Div Res, Oakland, CA 94612 USA; [Gregorich, S. E.] Univ Calif San Francisco, Dept Med, San Francisco, CA 94143 USA; [Rosen, M. P.; Cedars, M. I.] Univ Calif San Francisco, Dept Obstet Gynecol & Reprod Sci, San Francisco, CA 94143 USA Bleil, ME (reprint author), Univ Calif San Francisco, Dept Psychiat, 3333 Calif St, San Francisco, CA 94143 USA. maria.bleil@ucsf.edu NIH/NICHD; NIH/NIA [R01 HD044876, K08 AG03575]; NIH/UCSF-CTSI [UL1 RR024131] The preparation of this manuscript and the research described here were supported by NIH/NICHD and NIH/NIA (R01 HD044876); NIH/NIA (K08 AG03575) and NIH/UCSF-CTSI (UL1 RR024131). Aflatoonian A, 2009, J ASSIST REPROD GEN, V26, P319, DOI 10.1007/s10815-009-9319-5; Aiken L.S., 1991, MULTIPLE REGRESSION; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2007, CHILD DEV, V78, P1302, DOI 10.1111/j.1467-8624.2007.01067.x; Biro FM, 2001, J PEDIATR-US, V138, P636, DOI 10.1067/mpd.2001.114476; Bogdan R, 2009, PSYCHOL MED, V39, P211, DOI 10.1017/S0033291708003619; Broekmans Frank J, 2004, Menopause, V11, P607, DOI 10.1097/01.GME.0000123643.76105.27; Bromberger JT, 1997, AM J EPIDEMIOL, V145, P124; CAMPBELL BC, 1995, J BIOSOC SCI, V27, P127; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Cohen S, 1999, PSYCHOSOM MED, V61, P175, DOI 10.1097/00006842-199903000-00009; COHEN S, 1983, J HEALTH SOC BEHAV, V24, P385, DOI 10.2307/2136404; COHEN S, 1988, SOCIAL PSYCHOL HLTH; Cohen S, 2012, J APPL SOC PSYCHOL, V42, P1320, DOI 10.1111/j.1559-1816.2012.00900.x; Conard MA, 2008, PERS INDIV DIFFER, V44, P171, DOI 10.1016/j.paid.2007.07.023; Cruess DG, 1999, PSYCHONEUROENDOCRINO, V24, P537, DOI 10.1016/S0306-4530(99)00010-4; Deardorff J, 2005, PEDIATRICS, V116, P1451, DOI 10.1542/peds.2005-0542; Dunbar J, 2008, AM J PUBLIC HEALTH, V98, P1822, DOI 10.2105/AJPH.2007.120444; Ebstrup JF, 2011, ANXIETY STRESS COPIN, V24, P407, DOI 10.1080/10615806.2010.540012; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2000, CHILD DEV, V71, P485, DOI 10.1111/1467-8624.00159; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; ELLISON PT, 1990, AM ANTHROPOL, V92, P933, DOI 10.1525/aa.1990.92.4.02a00050; Epel ES, 2004, P NATL ACAD SCI USA, V101, P17312, DOI 10.1073/pnas.0407162101; Federenko IS, 2006, PSYCHOL MED, V36, P375, DOI 10.1017/S0033291705006616; FISHER M, 1991, J PEDIATR-US, V119, P821, DOI 10.1016/S0022-3476(05)80311-7; Frattarelli JL, 2003, FERTIL STERIL, V80, P350, DOI 10.1016/S0015-0282(03)00664-2; Fredman L, 2010, J AM GERIATR SOC, V58, P937, DOI 10.1111/j.1532-5415.2010.02808.x; Giacobbe M, 2004, CLIMACTERIC, V7, P255, DOI 10.1080/13697130410001713715; Glaser R, 1999, ARCH GEN PSYCHIAT, V56, P450, DOI 10.1001/archpsyc.56.5.450; Gold EB, 2001, AM J EPIDEMIOL, V153, P865, DOI 10.1093/aje/153.9.865; Gordon NP, 2006, DOES ADULT KAISER PE; GRABER JA, 1995, CHILD DEV, V66, P346, DOI 10.2307/1131582; Hansen KR, 2007, FERTIL STERIL, V88, pS79, DOI 10.1016/j.fertnstert.2007.07.266; Hansen KR, 2008, HUM REPROD, V23, P699, DOI 10.1093/humrep/dem408; Kalantaridou SN, 2004, J REPROD IMMUNOL, V62, P61, DOI 10.1016/j.jri.2003.09.004; Kaplan JR, 2008, MENOPAUSE, V15, P768, DOI 10.1097/gme.0b013e31815eb18e; Kaplan JR, 2004, ILAR J, V45, P89, DOI 10.1093/ilar.45.2.89; Kaplan JR, 1996, PSYCHOSOM MED, V58, P598, DOI 10.1097/00006842-199611000-00008; Kirby ED, 2006, PSYCHOSOM MED, V68, P816, DOI 10.1097/01.psy.0000238452.81926.d3; Klinkert ER, 2005, FERTIL STERIL, V83, P811, DOI 10.1016/j.fertnstert.2004.11.005; Lane JD, 2007, ALTERN THER HEALTH M, V13, P38; Lawlor DA, 2003, BJOG-INT J OBSTET GY, V110, P1078, DOI 10.1016/S1470-0328(03)02519-9; Li J, 2007, PSYCHOSOM MED, V69, P551, DOI 10.1097/PSY.0b013e3180cc2c61; LUOTO R, 1994, AM J EPIDEMIOL, V139, P64, DOI 10.1093/oxfordjournals.aje.a116936; McDade TW, 2006, PSYCHOSOM MED, V68, P376, DOI 10.1097/01.psy.0000221371.43607.64; McGee EA, 2000, ENDOCR REV, V21, P200, DOI 10.1210/er.21.2.200; Mendle J, 2007, DEV REV, V27, P151, DOI 10.1016/j.dr.2006.11.001; Michalsen A, 2005, PSYCHOTHER PSYCHOSOM, V74, P344, DOI 10.1159/000087781; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.2307/1130900; Moynihan JA, 2004, PSYCHOSOM MED, V66, P950, DOI 10.1097/01.psy.0000140001.49208.2d; Ng DM, 2003, HEALTH PSYCHOL, V22, P638, DOI 10.1037/0278-6133.33.6.638; PACHE TD, 1990, FERTIL STERIL, V54, P638; Parks CG, 2009, CANCER EPIDEM BIOMAR, V18, P551, DOI 10.1158/1055-9965.EPI-08-0614; Reuss ML, 1996, AM J OBSTET GYNECOL, V175, P1189, DOI 10.1016/S0002-9378(96)70026-1; Reuss ML, 1996, AM J OBSTET GYNECOL, V174, P624, DOI 10.1016/S0002-9378(96)70439-8; RIVIER C, 1991, BIOL REPROD, V45, P523, DOI 10.1095/biolreprod45.4.523; Rosen MP, 2011, FERTIL STERIL, V95, P1950, DOI 10.1016/j.fertnstert.2011.01.151; Rosen MP, 2010, FERTIL STERIL, V94, P2182, DOI 10.1016/j.fertnstert.2009.12.045; Saxbe DE, 2009, J ADOLESCENCE, V32, P415, DOI 10.1016/j.adolescence.2008.06.009; Scheffer GJ, 2002, ULTRASOUND OBST GYN, V20, P270, DOI 10.1046/j.1469-0705.2002.00787.x; Scheffer GJ, 1999, FERTIL STERIL, V72, P845, DOI 10.1016/S0015-0282(99)00396-9; Snieder H, 1998, J CLIN ENDOCR METAB, V83, P1875, DOI 10.1210/jc.83.6.1875; Soules MR, 2001, J WOMEN HEALTH GEN-B, V10, P843, DOI 10.1089/152460901753285732; STANFORD JL, 1987, J CHRON DIS, V40, P995, DOI 10.1016/0021-9681(87)90113-5; TORGERSON DJ, 1994, MATURITAS, V19, P83, DOI 10.1016/0378-5122(94)90057-4; TRELOAR AE, 1974, HUM BIOL, V46, P89; WASSER SK, 1983, Q REV BIOL, V58, P513, DOI 10.1086/413545; WIERSON M, 1993, ADOLESCENCE, V28, P913; Wise LA, 2002, J EPIDEMIOL COMMUN H, V56, P851, DOI 10.1136/jech.56.11.851; Yu RHY, 2010, MATURITAS, V67, P186, DOI 10.1016/j.maturitas.2010.06.014 73 10 11 0 10 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0268-1161 HUM REPROD Hum. Reprod. SEP 2012 27 9 2720 2728 10.1093/humrep/des214 9 Obstetrics & Gynecology; Reproductive Biology Obstetrics & Gynecology; Reproductive Biology 988PC WOS:000307502000018 22767452 Green Published, Bronze 2018-11-12 J Santos, ESA; Nakagawa, S Santos, E. S. A.; Nakagawa, S. The costs of parental care: a meta-analysis of the trade-off between parental effort and survival in birds JOURNAL OF EVOLUTIONARY BIOLOGY English Article cost of reproduction; life history; meta-regression; parental effects; parent-offspring conflict BROOD-SIZE MANIPULATION; LIFE-HISTORY TRAITS; COMPARATIVE BIOLOGY; PARUS-MAJOR; REPRODUCTION; EVOLUTION; QUALITY; MODELS; FOOD; TIT A fundamental premise of life-history theory is that organisms that increase current reproductive investment suffer increased mortality. Possibly the most studied life-history phenotypic relationship is the trade-off between parental effort and survival. However, evidence supporting this trade-off is equivocal. Here, we conducted a meta-analysis to test the generality of this tenet. Using experimental studies that manipulated parental effort in birds, we show that (i) the effect of parental effort on survival was similar across species regardless of phylogeny; (ii) individuals that experienced reduced parental effort had similar survival probabilities than control individuals, regardless of sex; and (iii) males that experienced increased parental effort were less likely to survive than control males, whereas females that experienced increased effort were just as likely to survive as control females. Our results suggest that the trade-off between parental effort and survival is more complex than previously assumed. Finally, our study provides recommendations of unexplored avenues of future research into life-history trade-offs. [Santos, E. S. A.; Nakagawa, S.] Univ Otago, Dept Zool, Dunedin 9016, New Zealand; [Nakagawa, S.] Max Planck Inst Ornithol, Dept Behav Ecol & Evolutionary Genet, Seewiesen, Germany Santos, ESA (reprint author), Univ Otago, Dept Zool, 340 Great King St, Dunedin 9016, New Zealand. e.salves@gmail.com Santos, Eduardo/B-4449-2008; Nakagawa, Shinichi/B-5571-2011 Santos, Eduardo/0000-0002-0434-3655; Nakagawa, Shinichi/0000-0002-7765-5182 University of Otago [UOO-0812] We thank Glauco Machado, Julia Schroeder, Alistair Senior, Bruce Lyon and three anonymous reviewers for their most valuable suggestions and comments on an earlier version of this paper. This work was supported by a University of Otago postgraduate scholarship to ESAS and a Marsden grant (UOO-0812) and a Humboldt Fellowship to SN. Ardia DR, 2007, CAN J ZOOL, V85, P847, DOI 10.1139/Z07-070; BRYANT DM, 1979, J ANIM ECOL, V48, P655, DOI 10.2307/4185; Chamberlain SA, 2012, ECOL LETT, V15, P627, DOI 10.1111/j.1461-0248.2012.01776.x; Cohen J, 1988, STAT POWER ANAL BEHA; Cooper H., 2009, HDB RES SYNTHESIS ME, P561; Creighton JC, 2009, AM NAT, V174, P673, DOI 10.1086/605963; Doligez B, 2002, J APPL STAT, V29, P407, DOI 10.1080/02664760120108845; Egger M, 1997, BMJ-BRIT MED J, V315, P629, DOI 10.1136/bmj.315.7109.629; Erikstad KE, 2009, ECOLOGY, V90, P3197, DOI 10.1890/08-1778.1; Fleiss J. L., 2009, HDB RES SYNTHESIS ME, P237; GRAVES J, 1991, AUK, V108, P967; GUSTAFSSON L, 1995, NATURE, V375, P311, DOI 10.1038/375311a0; Hadfield JD, 2010, J EVOLUTION BIOL, V23, P494, DOI 10.1111/j.1420-9101.2009.01915.x; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hamel S, 2010, ECOLOGY, V91, P2034, DOI 10.1890/09-1311.1; Harrison F, 2009, J EVOLUTION BIOL, V22, P1800, DOI 10.1111/j.1420-9101.2009.01792.x; Higgins JPT, 2003, BRIT MED J, V327, P557, DOI 10.1136/bmj.327.7414.557; Higgins JPT, 2002, STAT MED, V21, P1539, DOI 10.1002/sim.1186; Knowles SCL, 2010, OECOLOGIA, V164, P87, DOI 10.1007/s00442-010-1706-1; KORPIMAKI E, 1988, J ANIM ECOL, V57, P1027, DOI 10.2307/5109; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; Losos JB, 2011, AM NAT, V177, P709, DOI 10.1086/660020; Low M., 2011, BEHAV ECOL, V23, P25; Lunn DJ, 2000, STAT COMPUT, V10, P325, DOI 10.1023/A:1008929526011; MacGregor NA, 2002, ANIM BEHAV, V63, P923, DOI 10.1006/anbe.2001.1991; Martin JGA, 2010, AM NAT, V176, P414, DOI 10.1086/656267; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; Mock DW, 2005, ANIM BEHAV, V70, P225, DOI 10.1016/j.anbehav.2004.10.020; Nakagawa S, 2007, J EVOLUTION BIOL, V20, P1674, DOI 10.1111/j.1420-9101.2007.01403.x; Nakagawa S, 2007, BIOL REV, V82, P591, DOI 10.1111/j.1469-185X.2007.00027.x; Nakagawa S, 2012, EVOL ECOL, V26, P1253, DOI 10.1007/s10682-012-9555-5; Olson VA, 2008, P ROY SOC B-BIOL SCI, V275, P301, DOI 10.1098/rspb.2007.1395; Orell M, 1996, IBIS, V138, P630, DOI 10.1111/j.1474-919X.1996.tb04764.x; Parejo D, 2006, BEHAV ECOL SOCIOBIOL, V60, P184, DOI 10.1007/s00265-005-0155-z; Peters JL, 2006, JAMA-J AM MED ASSOC, V295, P676, DOI 10.1001/jama.295.6.676; Pettifor RA, 2001, J ANIM ECOL, V70, P62, DOI 10.1046/j.1365-2656.2001.00465.x; Queller DC, 1997, P ROY SOC B-BIOL SCI, V264, P1555, DOI 10.1098/rspb.1997.0216; Qvarnstrom A, 2001, TRENDS ECOL EVOL, V16, P95, DOI 10.1016/S0169-5347(00)02063-2; R Development Core Team, 2011, R LANG ENV STAT COMP; REID WV, 1987, OECOLOGIA, V74, P458, DOI 10.1007/BF00378945; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; Roff D. A., 2002, LIFE HIST EVOLUTION; Sheldon BC, 2002, PHILOS T R SOC B, V357, P341, DOI 10.1098/rstb.2001.0931; Siefferman L, 2005, BIOL LETT-UK, V1, P208, DOI 10.1098/rsbl.2004.0274; SMITH HG, 1989, J ANIM ECOL, V58, P383, DOI 10.2307/4837; Stearns S. C., 1992, EVOLUTION LIFE HIST; Sterne JAC, 2005, PUBLICATION BIAS IN META-ANALYSIS: PREVENTION, ASSESSMENT AND ADJUSTMENTS, P75, DOI 10.1002/0470870168.ch5; Uller T, 2008, TRENDS ECOL EVOL, V23, P432, DOI 10.1016/j.tree.2008.04.005; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WESTNEAT DF, 1993, BEHAV ECOL, V4, P66, DOI 10.1093/beheco/4.1.66; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002 55 56 56 1 166 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. SEP 2012 25 9 1911 1917 10.1111/j.1420-9101.2012.02569.x 7 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 989JA WOS:000307554900022 22830387 Bronze 2018-11-12 J Jordana, X; Marin-Moratalla, N; DeMiguel, D; Kaiser, TM; Kohler, M Jordana, Xavier; Marin-Moratalla, Nekane; DeMiguel, Daniel; Kaiser, Thomas M.; Koehler, Meike Evidence of correlated evolution of hypsodonty and exceptional longevity in endemic insular mammals PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article ageing; lifespan; life-history theory; disposable soma theory; tooth height; dental abrasion MYOTRAGUS-BALEARICUS BATE; LIFE-HISTORY; 1909 ARTIODACTYLA; DEER POPULATIONS; MOLAR WEAR; FOSSIL; SENESCENCE; UNGULATE; ISLANDS; ECOLOGY Here, we test whether the increase in tooth height in insular endemics results from the expansion of the dietary niche under resource limitation, as widely considered, or whether it represents an investment in dental durability in response to the selection for extended longevity under low levels of extrinsic mortality. We tested these hypotheses in the extremely hypsodont fossil bovid Myotragus balearicus from the Balearic Islands, an ideal model to study the evolutionary trends on islands. Dental abrasion was significantly lower in the insular bovid than in highly hypsodont continental artiodactyls, suggesting that feeding habits are not the sole driving force behind increased crown height. However, the estimated longevity for M. balearicus based on dental durability was two times that predicted from body mass. Survivorship curves confirm that an extraordinarily large number of individuals approached the longevity of the species. Our results, hence, provide evidence that hypsodonty in insular endemics is the outcome of selection for increased durability of the permanent dentition in association with an extended lifespan. In the context of insularity, our results lend additional support to the disposable soma theory of ageing confirming the dependency of somatic maintenance and repair on lifespan, and its control by resource availability and extrinsic mortality. [Jordana, Xavier; Marin-Moratalla, Nekane; DeMiguel, Daniel; Koehler, Meike] Univ Autonoma Barcelona, Inst Catala Paleontol Miquel Crusafont ICP, Barcelona 08193, Spain; [Kaiser, Thomas M.] Univ Hamburg, Biozentrum Grindel, D-20146 Hamburg, Germany; [Kaiser, Thomas M.] Univ Hamburg, Zool Museum, D-20146 Hamburg, Germany; [Koehler, Meike] Catalan Inst Res & Adv Studies ICREA, Barcelona 08010, Spain Jordana, X (reprint author), Univ Autonoma Barcelona, Inst Catala Paleontol Miquel Crusafont ICP, Barcelona 08193, Spain. xavier.jordana@icp.cat Jordana, Xavier/G-7537-2017; Jordana, Xavier/L-9301-2014 Jordana, Xavier/0000-0002-6016-6630; Jordana, Xavier/0000-0001-8990-4388; Kohler, Meike/0000-0001-9228-3164; Kaiser, Thomas/0000-0002-8154-1751 Spanish Ministry of Science and Innovation MICINN [CGL2008-06204/BTE, BES-2009-02641, JCI-2010-08157, JCI-2011-11697]; ICREA We thank C. Constantino for access to the collections of the Museu Balear de Ciencies Naturals (MBCN), Salvador Moya for providing the hypsodonty index of Myotragaus species as well as for access to his Myotragus collections at the ICP, A. Alcover for access to the collections of the Institut Mediterrani d'Estudis Avancats (IMEDEA) and R. Garcia for technical help. We are grateful to two anonymous reviewers for their useful comments and suggestions on the manuscript. This work was supported by the Spanish Ministry of Science and Innovation MICINN (M.K. CGL2008-06204/BTE, N.M.-M. BES-2009-02641, X.J. JCI-2010-08157 and D.DeM. JCI-2011-11697). Ahrestani FS, 2011, MAMMAL REV, V41, P75, DOI 10.1111/j.1365-2907.2010.00166.x; Alcover JA, 1999, BIOL J LINN SOC, V66, P57, DOI 10.1111/j.1095-8312.1999.tb01917.x; Alcover JA, 1981, QUIMERES PASSAT; Austad SN, 1997, EXP GERONTOL, V32, P23, DOI 10.1016/S0531-5565(96)00059-9; AUSTAD SN, 1991, J GERONTOL, V46, pB47, DOI 10.1093/geronj/46.2.B47; AUSTAD SN, 1993, J ZOOL, V229, P695, DOI 10.1111/j.1469-7998.1993.tb02665.x; Bate D.M.A., 1909, GEOL MAG, V6, P385, DOI DOI 10.1017/S0016756800124665; Bover P, 1999, BIOL J LINN SOC, V68, P401; Bover P., 2004, THESIS U ILLES BALEA; Carranza J, 2004, NATURE, V432, P215, DOI 10.1038/nature03004; Casanovas-Vilar I, 2011, J HUM EVOL, V61, P42, DOI 10.1016/j.jhevol.2011.01.003; CAUGHLEY G, 1966, ECOLOGY, V47, P906, DOI 10.2307/1935638; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Damuth J, 2011, BIOL REV, V86, P733, DOI 10.1111/j.1469-185X.2011.00176.x; Davis M. H. L. A., 2002, INT SERIES BAR, P198; DEEVEY ES, 1947, Q REV BIOL, V22, P283, DOI 10.1086/395888; DeMiguel D., 2008, BMC EVOLUTIONARY BIO, V8, P1, DOI DOI 10.1186/1471-2148-8-13; DeMiguel D, 2010, PALAEOGEOGR PALAEOCL, V289, P81, DOI 10.1016/j.palaeo.2010.02.010; FORTELIUS M, 1985, ACTA ZOOL FENN, V180, P1; Fortelius Mikael, 2000, American Museum Novitates, V3301, P1, DOI 10.1206/0003-0082(2000)301<0001:FCOUMU>2.0.CO;2; FOSTER JB, 1964, NATURE, V202, P234, DOI 10.1038/202234a0; Gaillard JM, 2003, LIFE SPAN: EVOLUTIONARY, ECOLOGICAL, AND DEMOGRAPHIC PERSPECTIVES, P39; GAILLARD JM, 1993, J ANIM ECOL, V62, P778; Grant A., 1982, BAR BRIT SERIES, V109, P91; Grant Peter R., 1998, P1; Hamilton J., 1984, INT SERIES BAR I, V229, P71; Hummel J, 2011, P ROY SOC B-BIOL SCI, V278, P1742, DOI 10.1098/rspb.2010.1939; Janis CM, 1988, TEETH REVISITED, P367; Jones Kate E., 2009, Ecology (Washington D C), V90, P2648, DOI 10.1890/08-1494.1; Jordana X, 2011, PALAEOGEOGR PALAEOCL, V300, P59, DOI 10.1016/j.palaeo.2010.12.008; Kaiser Thomas M., 2000, Carolinea, V58, P103; Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682; Kirkwood TBL, 1985, HDB BIOL AGING, P27; Klevezal G.A., 1996, RECORDING STRUCTURES; Kohler M, 1997, P NATL ACAD SCI USA, V94, P11747, DOI 10.1073/pnas.94.21.11747; Kohler M, 2004, BRAIN BEHAV EVOLUT, V63, P125, DOI 10.1159/000076239; Kohler Meike, 2010, P261; Kohler M, 2009, P NATL ACAD SCI USA, V106, P20354, DOI 10.1073/pnas.0813385106; Loe LE, 2003, OECOLOGIA, V135, P346, DOI 10.1007/s00442-003-1192-9; Lubinski PM, 2001, INT J OSTEOARCHAEOL, V11, P218, DOI 10.1002/oa.536; MAC ARTHUR ROBERT H., 1967; Marin-Moratalla N, 2011, CR PALEVOL, V10, P469, DOI 10.1016/j.crpv.2011.03.007; McNab BK, 2002, ECOL LETT, V5, P693, DOI 10.1046/j.1461-0248.2002.00365.x; Mihlbachler MC, 2011, SCIENCE, V331, P1178, DOI 10.1126/science.1196166; Ozaki M, 2010, J ZOOL, V280, P202, DOI 10.1111/j.1469-7998.2009.00653.x; Pianka E. R., 2000, EVOLUTIONARY ECOLOGY; Reznick DN, 2004, NATURE, V431, P1095, DOI 10.1038/nature02936; Ricklefs RE, 2008, FUNCT ECOL, V22, P379, DOI 10.1111/j.1365-2435.2008.01420.x; Ricklefs RE, 1998, AM NAT, V152, P24, DOI 10.1086/286147; Ricklefs RE, 2010, AGING CELL, V9, P273, DOI 10.1111/j.1474-9726.2009.00542.x; Rivals F, 2007, J VERTEBR PALEONTOL, V27, P763, DOI 10.1671/0272-4634(2007)27[763:EOODIF]2.0.CO;2; Sinclair A. R. E., 1977, AFRICAN BUFFALO STUD; SOLOUNIAS N, 1994, ANN ZOOL FENN, V31, P219; Speakman JR, 2010, INTEGR COMP BIOL, V50, P793, DOI 10.1093/icb/icq049; Stearns S. C., 1992, EVOLUTION LIFE HIST; Van der Geer A, 2010, EVOLUTION ISLAND MAM; Van der Geer A. A. E, 2005, QUARTERNAIRE, V2, P231; Veiberg V, 2007, BIOLOGY LETT, V3, P268, DOI 10.1098/rsbl.2006.0610; Wilkinson GS, 2002, AGING CELL, V1, P124, DOI 10.1046/j.1474-9728.2002.00020.x 59 29 29 0 23 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. AUG 22 2012 279 1741 3339 3346 10.1098/rspb.2012.0689 8 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 973DQ WOS:000306335300029 22535784 Bronze, Green Published 2018-11-12 J Waynforth, D Waynforth, David Life-history theory, chronic childhood illness and the timing of first reproduction in a British birth cohort PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article mortality; risk; evolutionary medicine; father absence; maturity RISK BEHAVIORS; MORTALITY; YOUTH Life-history theoretical models show that a typical evolutionarily optimal response of a juvenile organism to high mortality risk is to reach reproductive maturity earlier. Experimental studies in a range of species suggest the existence of adaptive flexibility in reproductive scheduling to maximize fitness just as lifehistory theory predicts. In humans, supportive evidence has come from studies comparing neighbourhoods with different mortality rates, historical and cross-cultural data. Here, the prediction is tested in a novel way in a large (n = 9099), longitudinal sample using data comparing age at first reproduction in individuals with and without life-expectancy-reducing chronic disease diagnosed during childhood. Diseases selected for inclusion as chronic illnesses were those unlikely to be significantly affected by shifting allocation of effort away from reproduction towards survival; those which have comparatively large effects on mortality and life expectancy; and those which are not profoundly disabling. The results confirmed the prediction that chronic disease would associate with early age at first reproduction: individuals growing up with a serious chronic disease were 1.6 times more likely to have had a first child by age 30. Analysis of control variables also confirmed past research findings on links between being raised father-absent and early pubertal development and reproduction. Univ E Anglia, Norwich Med Sch, Dept Populat Hlth & Primary Care, Norwich NR4 7TJ, Norfolk, England Waynforth, D (reprint author), Univ E Anglia, Norwich Med Sch, Dept Populat Hlth & Primary Care, Norwich NR4 7TJ, Norfolk, England. d.waynforth@uea.ac.uk AUSTAD SN, 1993, J ZOOL, V229, P695, DOI 10.1111/j.1469-7998.1993.tb02665.x; Butler N., 2008, 1970 BRIT COHORT STU; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Erickson JD, 2005, CHILD HEALTH CARE, V34, P181, DOI 10.1207/s15326888chc3403_2; Gasser M, 2000, EVOLUTION, V54, P1260; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; Kneale D, 2008, DEMOGR RES, V19, P1935, DOI 10.4054/DemRes.2008.19.58; KRAVDAL O, 1994, POP STUD-J DEMOG, V48, P249, DOI 10.1080/0032472031000147786; Low BS, 2008, CROSS-CULT RES, V42, P201, DOI 10.1177/1069397108317669; LOW BS, 1991, ETHOL SOCIOBIOL, V12, P411, DOI 10.1016/0162-3095(91)90024-K; Nettle D, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0012690; Nettle D, 2010, AM J HUM BIOL, V22, P172, DOI 10.1002/ajhb.20970; *OFF POP CENS SURV, 1980, CLASS OCC; Quinlan RJ, 2010, HUM NATURE-INT BIOS, V21, P124, DOI 10.1007/s12110-010-9085-1; Redelings M, 2010, J URBAN HEALTH, V87, P670, DOI 10.1007/s11524-010-9470-4; Stearns S. C., 1992, EVOLUTION LIFE HIST; STIBOR H, 1992, OECOLOGIA, V92, P162, DOI 10.1007/BF00317358; Suris JC, 2005, EUR J PUBLIC HEALTH, V15, P484, DOI 10.1093/eurpub/cki001; Suris JC, 2008, PEDIATRICS, V122, pE1113, DOI 10.1542/peds.2008-1479; Tamimi RM, 2003, BRIT MED J, V326, P1245, DOI 10.1136/bmj.326.7401.1245; University of London. Institute of Education. Centre for Longitudinal Studies, 2008, 1970 BRIT COH STUD 2; Valencia L S, 2000, J Pediatr Adolesc Gynecol, V13, P53, DOI 10.1016/S1083-3188(00)00004-8; VINING DR, 1986, BEHAV BRAIN SCI, V9, P167, DOI 10.1017/S0140525X00021968; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; Waynforth D, 2002, HDB FATHER INVOLVEME, P337; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 28 17 17 0 26 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. AUG 7 2012 279 1740 2998 3002 10.1098/rspb.2012.0220 5 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 970CO WOS:000306105900014 22456889 Bronze, Green Published 2018-11-12 J Herrando-Perez, S; Delean, S; Brook, BW; Bradshaw, CJA Herrando-Perez, Salvador; Delean, Steven; Brook, Barry W.; Bradshaw, Corey J. A. Strength of density feedback in census data increases from slow to fast life histories ECOLOGY AND EVOLUTION English Article Age at first reproduction; body size; density dependence; fertility; longevity; population dynamics POPULATION-GROWTH RATE; TIME-SERIES DATA; BODY-SIZE; ELASTICITY PATTERNS; METABOLIC THEORY; EXTINCTION RISK; GENERATION TIME; SMALL MAMMALS; DEPENDENCE; DYNAMICS Life-history theory predicts an increasing rate of population growth among species arranged along a continuum from slow to fast life histories. We examine the effects of this continuum on density-feedback strength estimated using long-term census data from >700 vertebrates, invertebrates, and plants. Four life-history traits (Age at first reproduction, Body size, Fertility, Longevity) were related statistically to Gompertz strength of density feedback using generalized linear mixed-effects models and multi-model inference. Life-history traits alone explained 10 to 30% of the variation in strength across species (after controlling for time-series length and phylogenetic nonindependence). Effect sizes were largest for body size in mammals and longevity in birds, and density feedback was consistently stronger for smaller-bodied and shorter-lived species. Overcompensatory density feedback (strength <-1) occurred in 20% of species, predominantly at the fast end of the life-history continuum, implying relatively high population variability. These results support the idea that life history leaves an evolutionary signal in long-term population trends as inferred from census data. Where there is a lack of detailed demographic data, broad life-history information can inform management and conservation decisions about rebound capacity from low numbers, and propensity to fluctuate, of arrays of species in areas planned for development, harvesting, protection, and population recovery. [Herrando-Perez, Salvador; Delean, Steven; Brook, Barry W.; Bradshaw, Corey J. A.] Univ Adelaide, Inst Environm, Adelaide, SA 5005, Australia; [Herrando-Perez, Salvador; Delean, Steven; Brook, Barry W.; Bradshaw, Corey J. A.] Univ Adelaide, Sch Earth & Environm Sci, Adelaide, SA 5005, Australia; [Bradshaw, Corey J. A.] S Australian Res & Dev Inst, Henley Beach, SA 5022, Australia Herrando-Perez, S (reprint author), Univ Adelaide, Inst Environm, Adelaide, SA 5005, Australia. salvador.herrando-perez@adelaide.edu.au Brook, Barry/G-2686-2011; Bradshaw, Corey/A-1311-2008 Brook, Barry/0000-0002-2491-1517; Bradshaw, Corey/0000-0002-5328-7741; Herrando-Perez, Salvador/0000-0001-6052-6854 University of Adelaide; Australian Research Council [DP0878582] Funding provided by an Endeavour International Postgraduate Scholarship (University of Adelaide) to S. H. P., and by an Australian Research Council Discovery Project grant (DP0878582) to C. J. A. B. Allee WC, 1941, AM NAT, V75, P473, DOI 10.1086/280987; Anderson CNK, 2008, NATURE, V452, P835, DOI 10.1038/nature06851; BJORNSTAD ON, 1995, P ROY SOC B-BIOL SCI, V262, P127, DOI 10.1098/rspb.1995.0186; BLACKBURN TM, 1991, FUNCT ECOL, V5, P65, DOI 10.2307/2389556; Blackburn TM, 2001, NATURE, V414, P195, DOI 10.1038/35102557; BLUEWEISS L, 1978, OECOLOGIA, V37, P257, DOI 10.1007/BF00344996; BOX GEP, 1964, J ROY STAT SOC B, V26, P211; Boyce MS, 1999, OIKOS, V87, P419, DOI 10.2307/3546808; BRESLOW NE, 1993, J AM STAT ASSOC, V88, P9, DOI 10.1080/01621459.1993.10594284; Brook BW, 2008, TRENDS ECOL EVOL, V23, P453, DOI 10.1016/j.tree.2008.03.011; Brook BW, 2006, ECOLOGY, V87, P1445, DOI 10.1890/0012-9658(2006)87[1445:SOEFDD]2.0.CO;2; Brook BW, 2006, ECOL LETT, V9, P375, DOI 10.1111/j.1461-0248.2006.00883.x; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Burnham K. P., 2002, MODEL SELECTION MULT; CAUGHLEY G, 1983, OECOLOGIA, V59, P7, DOI 10.1007/BF00388066; Chamaille-Jammes S, 2008, J ANIM ECOL, V77, P135, DOI 10.1111/j.1365-2656.2007.01307.x; Clark F, 2010, METHODS ECOL EVOL, V1, P253, DOI 10.1111/j.2041-210X.2010.00029.x; Cortes E, 2002, CONSERV BIOL, V16, P1048, DOI 10.1046/j.1523-1739.2002.00423.x; Dennis B, 2006, ECOL MONOGR, V76, P323, DOI 10.1890/0012-9615(2006)76[323:EDDPNA]2.0.CO;2; Doncaster CP, 2008, THEOR POPUL BIOL, V73, P483, DOI 10.1016/j.tpb.2008.02.003; Doncaster C Patrick, 2006, Science, V311, P1100; Duncan RP, 2007, ECOLOGY, V88, P324, DOI 10.1890/0012-9658(2007)88[324:TTMTOE]2.0.CO;2; Eberhardt LL, 2008, OIKOS, V117, P1240, DOI 10.1111/j.2008.0030-1299.16402.x; Erb J, 2001, OIKOS, V92, P3, DOI 10.1034/j.1600-0706.2001.920101.x; Ernest SKM, 2003, ECOL LETT, V6, P990, DOI 10.1046/j.1461-0248.2003.00526.x; Fagan WF, 2001, ECOL LETT, V4, P132, DOI 10.1046/j.1461-0248.2001.00206.x; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; FENCHEL T, 1974, OECOLOGIA, V14, P317, DOI 10.1007/BF00384576; Forsyth DM, 2006, ECOLOGY, V87, P297, DOI 10.1890/05-0709; FOWLER CW, 1988, EVOL ECOL, V2, P197, DOI 10.1007/BF02214283; FOWLER CW, 1981, ECOLOGY, V62, P602, DOI 10.2307/1937727; Franco M, 2004, ECOLOGY, V85, P531, DOI 10.1890/02-0651; Freckleton RP, 2006, J ANIM ECOL, V75, P837, DOI 10.1111/j.1365-2656.2006.01121.x; Fryxell JM, 2005, OIKOS, V111, P143, DOI 10.1111/j.0030-1299.2005.13840.x; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; Getz Wayne M, 2006, Science, V311, P1100; GILPIN ME, 1973, P NATL ACAD SCI USA, V70, P3590, DOI 10.1073/pnas.70.12.3590; Hassell M. P., 1973, INSECT POPULATION EC; Henle K, 2004, BIODIVERS CONSERV, V13, P9, DOI 10.1023/B:BIOC.0000004312.41575.83; Heppell SS, 2000, ECOLOGY, V81, P654, DOI 10.1890/0012-9658(2000)081[0654:LHAEPP]2.0.CO;2; Herrando-Perez S, 2012, OECOLOGIA, V170, P585, DOI 10.1007/s00442-012-2347-3; Herrando-Perez S, 2012, ECOLOGY, V93, P1728, DOI 10.1890/11-1415.1; Holyoak M, 1996, OECOLOGIA, V108, P54, DOI 10.1007/BF00333214; Ives AR, 2010, ECOLOGY, V91, P858, DOI 10.1890/09-0442.1; Jeschke JM, 2009, EVOL ECOL, V23, P867, DOI 10.1007/s10682-008-9276-y; Johansson F, 2000, FRESHWATER BIOL, V43, P149, DOI 10.1046/j.1365-2427.2000.00532.x; Jolliffe I.T., 2004, PRINCIPAL COMPONENT; Knape J, 2012, ECOL LETT, V15, P17, DOI 10.1111/j.1461-0248.2011.01702.x; Knape J, 2011, P ROY SOC B-BIOL SCI, V278, P985, DOI 10.1098/rspb.2010.1333; Knape J, 2008, ECOLOGY, V89, P2994, DOI 10.1890/08-0071.1; Knapp SM, 2003, BIOL CONSERV, V111, P223, DOI 10.1016/S0006-3207(02)00278-1; Krebs CJ, 2009, WILDLIFE RES, V36, P1, DOI 10.1071/WR08004; Lande R, 2002, AM NAT, V159, P321, DOI 10.1086/338988; Lande R, 2006, AM NAT, V168, P76, DOI 10.1086/504851; Link WA, 2006, ECOLOGY, V87, P2626, DOI 10.1890/0012-9658(2006)87[2626:MWATFO]2.0.CO;2; McMahon CR, 2009, OECOLOGIA, V159, P69, DOI 10.1007/s00442-008-1205-9; Medawar PB, 1940, PROC R SOC SER B-BIO, V129, P332, DOI 10.1098/rspb.1940.0042; Melbourne BA, 2008, NATURE, V454, P100, DOI 10.1038/nature06922; NELDER JA, 1961, BIOMETRICS, V17, P89, DOI 10.2307/2527498; Oli MK, 2005, AM NAT, V166, P124, DOI 10.1086/430332; Oli MK, 2003, AM NAT, V161, P422, DOI 10.1086/367591; Pasinelli G, 2011, J ANIM ECOL, V80, P225, DOI 10.1111/j.1365-2656.2010.01754.x; Peters R.H., 1983, P1; Polansky L, 2009, ECOLOGY, V90, P2313, DOI 10.1890/08-1461.1; Possingham HP, 2002, TRENDS ECOL EVOL, V17, P503, DOI 10.1016/S0169-5347(02)02614-9; R Development Core Team, 2011, R LANG ENV STAT COMP; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; Rose KA, 2001, FISH FISH, V2, P293, DOI 10.1046/j.1467-2960.2001.00056.x; Ross JV, 2009, ECOL MODEL, V220, P3472, DOI 10.1016/j.ecolmodel.2009.08.024; Ross Joshua V, 2006, Science, V311, P1100; Sabo JL, 2004, ECOLOGY, V85, P328, DOI 10.1890/03-0035; Saether BE, 2005, NATURE, V436, P99, DOI 10.1038/nature03666; Saether BE, 2004, AM NAT, V164, P793, DOI 10.1086/425371; SAETHER BE, 1987, OIKOS, V48, P79, DOI 10.2307/3565691; Saether BE, 1996, OIKOS, V77, P217, DOI 10.2307/3546060; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Saether BE, 2002, PHILOS T ROY SOC B, V357, P1185, DOI 10.1098/rstb.2002.1119; Saether BE, 2002, SCIENCE, V295, P2070; Saitoh T, 1997, J ANIM ECOL, V66, P14, DOI 10.2307/5960; Saitoh T, 1999, ECOLOGY, V80, P638, DOI 10.2307/176641; SCHWARZ G, 1978, ANN STAT, V6, P461, DOI 10.1214/aos/1176344136; Seavy NE, 2009, J WILDLIFE MANAGE, V73, P414, DOI 10.2193/2007-420; Sibly RM, 2007, ECOL LETT, V10, P970, DOI 10.1111/j.1461-0248.2007.01092.x; Sibly RM, 2007, P NATL ACAD SCI USA, V104, P17707, DOI 10.1073/pnas.0707725104; Sibly RM, 2005, SCIENCE, V309, P607, DOI 10.1126/science.1110760; Sinclair ARE, 1996, FRONTIERS OF POPULATION ECOLOGY, P127; Smith S. H., 1935, J ECON ENTOMOL, V28, P873; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; SUGIURA N, 1978, COMMUN STAT A-THEOR, V7, P13, DOI 10.1080/03610927808827599; Tulloch A, 2011, BIOL CONSERV, V144, P141, DOI 10.1016/j.biocon.2010.08.009; Wang GM, 2002, INT J BIOMETEOROL, V46, P197, DOI 10.1007/s00484-002-0134-2; Wang GM, 2009, POPUL ECOL, V51, P123, DOI 10.1007/s10144-008-0095-3; White PJ, 2007, ECOL APPL, V17, P1598, DOI 10.1890/06-2032.1; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Zeng Z, 1998, ECOLOGY, V79, P2193, DOI 10.2307/176721 95 9 9 2 61 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. AUG 2012 2 8 1922 1934 10.1002/ece3.298 13 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 055WN WOS:000312448700013 22957193 DOAJ Gold, Green Published 2018-11-12 J Helft, F; Tirard, C; Doums, C Helft, F.; Tirard, C.; Doums, C. Effects of division of labour on immunity in workers of the ant Cataglyphis cursor INSECTES SOCIAUX English Article Immune defences; Social insects; Foraging; Ageing; Exposure risk; Cataglyphis cursor PROPHENOLOXIDASE-ACTIVATING SYSTEM; LEAF-CUTTING ANTS; DISEASE RESISTANCE; FORAGING ACTIVITY; INNATE IMMUNITY; APIS-MELLIFERA; AGE; INFECTION; DEFENSE; TRANSMISSION Workers in social insects perform different roles, and the environment they experience differs markedly according to the tasks performed. Life history theory predicts that individuals should adapt investment in immune defences according to their cost relative to the risk of pathogen infection. Workers, which forage outside the nest, face harsher environmental conditions with increased risk of injury and infection. We then might expect higher immune defences in foragers than in intra-nidal workers which remain in the relative sanctity of the nest. However, task partitioning in social insects is often age-based, and foragers are usually the oldest individuals. Hence if immune defences degenerate with age, foragers could have lower immune defences than intra-nidal workers. In this study, we examined the difference in immune defences as assessed by the level of phenoloxidase activity (PO) between intra-nidal workers and foragers in the ant Cataglyphis cursor. In three out of four colonies tested, foragers and intra-nidal workers did not differ in their level of PO. In the final colony, the level of workers PO overall was higher than in the other three colonies, and foragers displayed a lower level of PO than intra-nidal workers. These results may suggest that, when a sustained colonial PO activity is necessary, foragers may be less able than intra-nidal workers to activate their PO. Our results are discussed in the light of previous studies that underline the diversity of PO activity patterns in social insects. The variation observed among studies and even colonies clearly emphasizes the plasticity of immune parameters. [Helft, F.] Univ Paris 06, Lab Ecol & Evolut, CNRS, UMR 7625, F-75252 Paris 05, France; [Helft, F.; Tirard, C.; Doums, C.] Univ Paris 06, Lab Ecol & Evolut, CNRS, UMR 7625, F-75005 Paris, France; [Helft, F.; Doums, C.] Ecole Prat Hautes Etud, F-75007 Paris, France Helft, F (reprint author), Univ Paris 06, Lab Ecol & Evolut, CNRS, UMR 7625, 7 Quai St Bernard,Batiment A 7Eme Etage, F-75252 Paris 05, France. florence.helft@snv.jussieu.fr Doums, claudie/0000-0001-6284-2412 Amdam GV, 2004, EXP GERONTOL, V39, P767, DOI 10.1016/j.exger.2004.02.010; Armitage SAO, 2010, J INSECT PHYSIOL, V56, P780, DOI 10.1016/j.jinsphys.2010.01.009; Bidochka MJ, 1998, J INVERTEBR PATHOL, V72, P231, DOI 10.1006/jipa.1998.4782; Bocher A, 2007, J EVOLUTION BIOL, V20, P2228, DOI 10.1111/j.1420-9101.2007.01424.x; Cerda X, 1997, OIKOS, V78, P467, DOI 10.2307/3545608; Cerenius L, 2004, IMMUNOL REV, V198, P116, DOI 10.1111/j.0105-2896.2004.00116.x; Chan QWT, 2009, BMC GENOMICS, V10, DOI 10.1186/1471-2164-10-387; Cheron B, 2011, ECOLOGY, V92, P1448, DOI 10.1890/10-2347.1; Clemencet J, 2007, OECOLOGIA, V152, P211, DOI 10.1007/s00442-006-0646-2; Crawley M. J., 2007, R BOOK; Cremer S., 2007, CURR BIOL, V17, P693, DOI [10.1016/j.cub.2007.06.008, DOI 10.1016/J.CUB.2007.06.008]; Doums C, 2000, CAN J ZOOL, V78, P1060, DOI 10.1139/cjz-78-6-1060; Doums C, 2002, ECOL ENTOMOL, V27, P138, DOI 10.1046/j.1365-2311.2002.00388.x; Godfrey SS, 2006, PARASITOL RES, V99, P223, DOI 10.1007/s00436-005-0120-9; Hoch G, 2004, ENTOMOL EXP APPL, V113, P77, DOI 10.1111/j.0013-8703.2004.00203.x; Hughes WOH, 2010, P R SOC B, V277, P609, DOI 10.1098/rspb.2009.1415; Hughes WOH, 2002, P ROY SOC B-BIOL SCI, V269, P1811, DOI 10.1098/rspb.2002.2113; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Lenoir Alain, 2010, Israel Journal of Entomology, V39, P1; Moret Y, 2009, OIKOS, V118, P371, DOI 10.1111/j.1600-0706.2008.17187.x; Moron D, 2008, ANIM BEHAV, V75, P345, DOI 10.1016/j.anbehav.2007.06.005; Nigam Y, 1997, J INVERTEBR PATHOL, V69, P279, DOI 10.1006/jipa.1996.4652; Pearcy M, 2004, SCIENCE, V306, P1780, DOI 10.1126/science.1105453; Pinheiro J. C., 2000, STAT COMPUTING SERIE; Plaistow SJ, 2003, ECOL LETT, V6, P489, DOI 10.1046/j.1461-0248.2003.00455.x; RETANA J, 1991, ETHOLOGY, V89, P275; Robinson EJH, 2009, INSECT SOC, V56, P1, DOI 10.1007/s00040-008-1035-0; Rolff J, 2001, CAN J ZOOL, V79, P2176, DOI 10.1139/cjz-79-12-2176; Sadd BM, 2006, P R SOC B, V273, P2571, DOI 10.1098/rspb.2006.3574; Schmid MR, 2008, J INSECT PHYSIOL, V54, P439, DOI 10.1016/j.jinsphys.2007.11.002; Schmid-Hempel P, 2003, P ROY SOC B-BIOL SCI, V270, P357, DOI 10.1098/rspb.2002.2265; Soderhall K, 1998, CURR OPIN IMMUNOL, V10, P23, DOI 10.1016/S0952-7915(98)80026-5; Tripet F, 2004, ETHOLOGY, V110, P863, DOI 10.1111/j.1439-0310.2004.01023.x; Wilson E., 1971, INSECT SOC; Wilson EO, 1990, ANTS; Wilson K, 2001, ECOL LETT, V4, P637, DOI 10.1046/j.1461-0248.2001.00279.x; Wilson-Rich N, 2008, J INSECT PHYSIOL, V54, P1392, DOI 10.1016/j.jinsphys.2008.07.016 37 5 5 0 31 SPRINGER BASEL AG BASEL PICASSOPLATZ 4, BASEL, 4052, SWITZERLAND 0020-1812 INSECT SOC Insect. Soc. AUG 2012 59 3 333 340 10.1007/s00040-012-0225-y 8 Entomology Entomology 974IY WOS:000306429000005 2018-11-12 J Stahlschmidt, ZR; Shine, R; DeNardo, DF Stahlschmidt, Zachary R.; Shine, Richard; DeNardo, Dale F. The consequences of alternative parental care tactics in free-ranging pythons in tropical Australia FUNCTIONAL ECOLOGY English Article Egg brooding; Liasis fuscus; life-history trade-off; maternal care; nest attendance; nest-site selection; parent-offspring trade-off; polymorphism; pythons WATER PYTHONS; LIASIS-FUSCUS; REPRODUCTIVE TACTICS; ANTARESIA-CHILDRENI; COLOR POLYMORPHISM; THERMOREGULATION; VERTEBRATES; SNAKES; FISHES; TEMPERATURES 1.Life-history theory attributes the evolution of parental care to the benefits to offspring viability outweighing any costs to parental viability. However, the consequences of parental care tactics to parent(s) and the developmental environment have seldom been measured under field conditions. 2.Laboratory research on pythons shows that maternal nest-site selection and egg brooding benefit embryos, but prolonged nest attendance may impose fitness costs to free-ranging females. A population of water pythons (Liasis fuscus) in tropical Australia provides an excellent opportunity to examine this parentoffspring trade-off because females exhibit parental care polymorphism wherein some individuals brood their eggs only briefly (<10days) post-oviposition (short brooders) while others remain with their eggs throughout the incubation period (>50days; long brooders). 3.We used radiotelemetry, temperature and humidity data loggers, ultrasonography, haematological techniques, and habitat analyses to examine the correlates and consequences of maternal nesting decisions in 14 free-ranging female pythons over the 4-month reproductive season. 4.Nest-site selection and maternal attendance enhanced thermal and hydric regimes within the nest. Egg production by reproducing female pythons resulted in high energetic costs (loss of 60% of maternal body mass) and increased parasite load. However, the estimated mass loss because of brooding was (i) low (<5%), (ii) inversely related to fecundity (females that produced relatively large clutches tended to select lower temperatures and thus lost less mass during brooding) and (iii) surprisingly unrelated to brooding duration. Phenotypic traits of short and long brooders were similar, but long brooders had higher haemoparasite burdens prior to oviposition. Clutches of long brooders were laid in more open sites (less canopy cover) and experienced warmer and more humid conditions than did those of short brooders. 5.Together with previous research, we suggest several explanations for the maintenance of maternal care polymorphism within this population, such as a trade-off between offspring number and quality (long brooders may produce fewer clutches during their lifespan but enhance offspring quality). Our study provides detailed measurements of the correlates and consequences of parental care in a free-ranging reptile, and it clarifies the trade-offs mediated by taxonomically widespread maternal decisions (e.g. nest- or oviposition-site selection and nest attendance). [Stahlschmidt, Zachary R.; DeNardo, Dale F.] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA; [Shine, Richard] Univ Sydney, Sch Biol Sci A08, Sydney, NSW 2006, Australia Stahlschmidt, ZR (reprint author), Dalhousie Univ, Dept Psychol, Halifax, NS B3H 4J1, Canada. zrs@dal.ca National Science Foundation [IOS-0543979]; American Philosophical Society; School of Life Sciences at ASU; Australian Research Council We thank the National Science Foundation (IOS-0543979 to DFD and Graduate Research Fellowship to ZRS), the American Philosophical Society (Lewis and Clark Fund to ZRS), the School of Life Sciences at ASU (Dissertation Completion Award to ZRS) and the Australian Research Council (to RS) for funding. We also appreciate logistical support from personnel in the Northern Territory, including those from Team Bufo at TERF, Beatrice Hill Farm, and Window on the Wetlands. We specifically thank Thomas Madsen, Marty Feldner, Olivier Lourdais and Nate Morehouse for field and logistical assistance, as well as Bobby Fokidis and Pierre Deviche for assistance with blood smear analyses. We appreciate helpful comments on the paper from Fabien Aubret and two anonymous reviewers. Aubret F, 2005, ANIM BEHAV, V69, P1043, DOI 10.1016/j.anbehav.2004.09.008; Aubret F, 2003, BIOL J LINN SOC, V78, P263, DOI 10.1046/j.1095-8312.2003.00169.x; Bedford GS, 1998, AUST J ZOOL, V46, P317, DOI 10.1071/ZO98019; Blouin-Demers G, 2001, ECOLOGY, V82, P2882, DOI 10.2307/2679968; BLUMER LS, 1979, Q REV BIOL, V54, P149, DOI 10.1086/411154; Brown GP, 2004, ECOLOGY, V85, P1627, DOI 10.1890/03-0107; Campbell T. W., 2005, REPTILE MED SURG, P453; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Dale S, 1996, BEHAV ECOL SOCIOBIOL, V39, P31, DOI 10.1007/s002650050264; Davis AK, 2008, FUNCT ECOL, V22, P760, DOI 10.1111/j.1365-2435.2008.01467.x; Dillon ME, 2009, J THERM BIOL, V34, P109, DOI 10.1016/j.jtherbio.2008.11.007; Farmer CG, 2000, AM NAT, V155, P326, DOI 10.1086/303323; French SS, 2008, J COMP PHYSIOL B, V178, P997, DOI 10.1007/s00360-008-0290-8; Gilbert JDJ, 2010, AM NAT, V176, P212, DOI 10.1086/653661; GROSS MR, 1981, EVOLUTION, V35, P775, DOI 10.1111/j.1558-5646.1981.tb04937.x; Harlow P., 1984, MORELIA SPILOTES SPI, V4, P959; Henson SA, 1997, ANNU REV ECOL SYST, V28, P571, DOI 10.1146/annurev.ecolsys.28.1.571; Hurtado-Gonzales JL, 2009, ANIM BEHAV, V77, P1187, DOI 10.1016/j.anbehav.2008.12.032; Lourdais O, 2005, J ZOOL, V265, P43, DOI 10.1017/S095283690400603X; Lourdais O, 2008, BIOL J LINN SOC, V93, P499, DOI 10.1111/j.1095-8312.2007.00925.x; Lourdais O, 2007, J COMP PHYSIOL B, V177, P569, DOI 10.1007/s00360-007-0155-6; MADER D. R., 2005, REPTILE MED SURG; Madsen T, 1999, ECOLOGY, V80, P989, DOI 10.2307/177032; Mank JE, 2006, EVOLUTION, V60, P1311; Oliveira RF, 2001, GEN COMP ENDOCR, V121, P278, DOI 10.1006/gcen.2001.7596; Pizzatto L, 2009, J TROP ECOL, V25, P181, DOI 10.1017/S0266467408005774; Pryke SR, 2009, AM NAT, V174, P455, DOI 10.1086/605376; Roulin A, 2004, BIOL REV, V79, P815, DOI 10.1017/S1464793104006487; Secor SM, 2008, J EXP BIOL, V211, P3767, DOI 10.1242/jeb.023754; Shine R, 2005, ANNU REV ECOL EVOL S, V36, P23, DOI 10.1146/annurev.ecolsys.36.102003.152631; Shine R, 1997, ECOLOGY, V78, P1713; Shine R, 1996, PHYSIOL ZOOL, V69, P252, DOI 10.1086/physzool.69.2.30164182; Shine R, 1987, BIOL REPTILIA, V16, P275; Shine R, 2008, PHILOS T R SOC B, V363, P363, DOI 10.1098/rstb.2007.2144; Stahlschmidt ZR, 2011, ANIM BEHAV, V81, P1077, DOI 10.1016/j.anbehav.2011.02.024; Stahlschmidt Z, 2011, BIOL J LINN SOC, V103, P772, DOI 10.1111/j.1095-8312.2011.01671.x; Stahlschmidt ZR, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024192; Stahlschmidt ZR, 2012, PHYSIOL BIOCHEM ZOOL, V85, P219, DOI 10.1086/665663; Stahlschnidt Z.R., 2011, REPROD BIOL PHYLOGEN, V9, P673; Taylor EN, 2004, J THERM BIOL, V29, P91, DOI 10.1016/j.jtherbio.2003.11.003; Telford jr S.R, 2008, HEMOPARASITES REPTIL; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Tuttle EM, 2003, BEHAV ECOL, V14, P425, DOI 10.1093/beheco/14.3.425; Ujvari B, 2011, ECOLOGY, V92, P777, DOI 10.1890/10-1471.1; VINEGAR A, 1970, ZOOLOGICA-N Y, V55, P19; Webb JK, 2006, EVOLUTION, V60, P115, DOI 10.1554/05-460.1; Wilson S., 2008, COMPLETE GUIDE REPTI; ZEH DW, 1985, AM ZOOL, V25, P785 48 7 7 0 73 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 FUNCT ECOL Funct. Ecol. AUG 2012 26 4 812 821 10.1111/j.1365-2435.2012.02003.x 10 Ecology Environmental Sciences & Ecology 974BF WOS:000306404100007 Bronze 2018-11-12 J Boyle, WA; Winkler, DW; Guglielmo, CG Boyle, W. Alice; Winkler, David W.; Guglielmo, Christopher G. Rapid loss of fat but not lean mass prior to chick provisioning supports the flight efficiency hypothesis in tree swallows FUNCTIONAL ECOLOGY English Article body composition; condition; energetic stress; flight efficiency; gonadal regression; incubation; mass loss; quantitative magnetic resonance; Tachycineta bicolor BODY-MASS; TACHYCINETA-BICOLOR; BREEDING BIRDS; CLUTCH SIZE; ENERGY-EXPENDITURE; FICEDULA-HYPOLEUCA; STRESS HYPOTHESIS; NEST PREDATION; EGG-PRODUCTION; PARUS-MAJOR 1. Birds often lose body mass during nesting. Determining whether this mass loss represents an energetic cost of reproduction (energetic stress hypothesis), serves an adaptive function (flight efficiency hypothesis), or results from physiological processes that are neutral with respect to fitness (e.g. gonadal regression hypothesis) is important to interpreting variation in body mass and energy stores in the context of life-history theory. 2. New quantitative magnetic resonance technology enables precise, repeated measurements of body composition (fat, lean, and water masses) on the same individuals, and we used this method to test a series of predictions to distinguish among competing hypotheses explaining mass loss in female tree swallows (Tachycineta bicolor, Vieillot, 1808). 3. Tree swallows lost mass abruptly prior to the peak foraging demands of feeding chicks. Lean mass and fat mass losses varied independently, with small and gradual losses in lean mass during incubation and dramatic losses of fat immediately prior to and following hatching. Females lost some body water early in incubation, but did not lose more water when brood patches would be expected to atrophy. The period of greatest parental foraging costs was not associated with any significant changes in total body mass, lean mass, fat mass or water. Net change in body mass from early incubation until mid-way through chick rearing was associated strongly with initial body mass and to a lesser degree, brood size. 4. These findings are consistent with the flight efficiency hypothesis. Females appear to facultatively modulate their endogenous energy stores to maximize insurance against bad weather and poor foraging opportunities during incubation, but then lower their body mass to maximize efficiency once chicks hatch, thereby reducing the costs of feeding nestlings. 5. This study corroborates results of a growing number of studies of small, insectivorous birds (especially cavity-nesting species), suggesting that increases in mass prior to reproduction (and the subsequent loss of that mass) are likely best viewed as part of an adaptive suite of interrelated reproductive decisions made by females each year. [Boyle, W. Alice; Guglielmo, Christopher G.] Univ Western Ontario, Dept Biol, Adv Facil Avian Res, London, ON N6A 5B7, Canada; [Winkler, David W.] Cornell Univ, Dept Ecol & Evolutionary Biol, Museum Vertebrates, Ithaca, NY 14853 USA; [Winkler, David W.] Cornell Univ, Ornithol Lab, Ithaca, NY 14853 USA Boyle, WA (reprint author), Univ British Columbia, Ctr Appl Conservat Res, Dept Forest Sci, Vancouver, BC V6T 1Z4, Canada. aboyle7@mail.ubc.ca Boyle, W. Alice/G-1872-2010 Boyle, W. Alice/0000-0002-2880-142X NSERC; NSF [DEB-0717021, IOS-0744753]; Canada Foundation for Innovation; Ontario Research Fund This study was approved by the Institutional Animal Care Committees of the University of Western Ontario (protocol # 2010-020) and Cornell University (2001-0051) and conforms to the legal requirements of the USA and accepted international ethical standards of animal welfare. This research was supported in part by funding from NSERC (post-doctoral fellowship to W.A.B., and Discovery Grant to C.G.G.), and NSF DEB-0717021 and IOS-0744753 to D.W.W., and the Canada Foundation for Innovation and Ontario Research Fund to CGG. We thank the entire 2010 Golo Team for assistance and good times in the field, especially E. Shogren, S. Orzechowski, L. Incorvaia, and M. Knoderbane. Changes suggested by anonymous reviewers improved the quality and clarity of this manuscript. Blem CR, 2006, WILSON J ORNITHOL, V118, P3, DOI 10.1676/1559-4491(2006)118[0003:VIMOFP]2.0.CO;2; BLEM CR, 1976, AM ZOOL, V16, P671; Bowlin MS, 2004, AUK, V121, P345, DOI 10.1642/0004-8038(2004)121[0345:NVIFPI]2.0.CO;2; Brown RE, 1998, CAN J ZOOL, V76, P26, DOI 10.1139/cjz-76-1-26; Burness GP, 2001, J EXP BIOL, V204, P1491; Cichon M, 2001, AUK, V118, P550, DOI 10.1642/0004-8038(2001)118[0550:BMCIFC]2.0.CO;2; Conway CJ, 2000, EVOLUTION, V54, P670; CURLEE AP, 1995, BEHAV ECOL, V6, P192, DOI 10.1093/beheco/6.2.192; de Heij ME, 2007, J EXP BIOL, V210, P2006, DOI 10.1242/jeb.001420; DESTEVEN D, 1980, EVOLUTION, V34, P278, DOI 10.1111/j.1558-5646.1980.tb04816.x; Dietz MW, 1999, J EXP BIOL, V202, P2831; Elliott KH, 2008, J AVIAN BIOL, V39, P619, DOI 10.1111/j.1600-048X.2008.04316.x; FREED LA, 1981, ECOLOGY, V62, P1179, DOI 10.2307/1937282; Gerson AR, 2011, AM J PHYSIOL-REG I, V300, pR925, DOI 10.1152/ajpregu.00701.2010; GOSLER AG, 1995, NATURE, V377, P621, DOI 10.1038/377621a0; Guglielmo CG, 2003, PHYSIOL BIOCHEM ZOOL, V76, P84, DOI 10.1086/367942; Guglielmo CG, 2011, J ORNITHOL, V152, P75, DOI 10.1007/s10336-011-0724-z; Hasselquist D, 2001, BEHAV ECOL, V12, P93, DOI 10.1093/oxfordjournals.beheco.a000384; HUSSELL DJT, 1983, J FIELD ORNITHOL, V54, P312; JONES IL, 1994, J ANIM ECOL, V63, P71, DOI 10.2307/5584; Karasov WH, 2007, PHYSL ECOLOGY ANIMAL; Lindstrom A, 2000, J EXP BIOL, V203, P913; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; McCarty J. P., 1995, THESIS CORNELL U; McCarty JP, 1999, IBIS, V141, P286, DOI 10.1111/j.1474-919X.1999.tb07551.x; McCarty JP, 2001, AUK, V118, P176, DOI 10.1642/0004-8038(2001)118[0176:VIGONT]2.0.CO;2; McCarty JP, 1999, CONDOR, V101, P246, DOI 10.2307/1369987; Merila J, 1997, J ANIM ECOL, V66, P452, DOI 10.2307/5940; Merkle MS, 1996, J ANIM ECOL, V65, P401, DOI 10.2307/5776; MORENO J, 1989, BIOL J LINN SOC, V37, P297, DOI 10.1111/j.1095-8312.1989.tb01907.x; Moreno J, 1997, OIKOS, V79, P559, DOI 10.2307/3546900; Murphy MT, 2000, AUK, V117, P902, DOI 10.1642/0004-8038(2000)117[0902:IRBTSC]2.0.CO;2; Nagy LR, 2007, CONDOR, V109, P304, DOI 10.1650/0010-5422(2007)109[304:MLBBFS]2.0.CO;2; Niizuma Y, 2001, ECOL RES, V16, P197, DOI 10.1046/j.1440-1703.2001.00386.x; NORBERG RA, 1981, AM NAT, V118, P838, DOI 10.1086/283874; Parejo D, 2006, BEHAV ECOL SOCIOBIOL, V60, P184, DOI 10.1007/s00265-005-0155-z; Peig J, 2009, OIKOS, V118, P1883, DOI 10.1111/j.1600-0706.2009.17643.x; PETERSEN ARNOLD J., 1955, WILSON BULL, V67, P235; Portugal SJ, 2007, J EXP BIOL, V210, P1391, DOI 10.1242/jeb.004598; Portugal SJ, 2011, J ORNITHOL, V152, P1055, DOI 10.1007/s10336-011-0699-9; Potti Jaime, 1995, Ardeola, V42, P173; RACEY PA, 1974, J ZOOL, V172, P101, DOI 10.1111/j.1469-7998.1974.tb04096.x; Reid JM, 2000, P ROY SOC B-BIOL SCI, V267, P37, DOI 10.1098/rspb.2000.0963; RICKLEFS RE, 1974, AVIAN ENERGETICS, P152; Schamber JL, 2009, J AVIAN BIOL, V40, P49, DOI 10.1111/j.1600-048X.2008.04462.x; Schwilch R, 2002, J EXP BIOL, V205, P687; Slagsvold T, 1998, ARDEA, V86, P203; Sokal R.R., 1995, BIOMETRY; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STEEL EA, 1963, J ENDOCRINOL, V26, P11, DOI 10.1677/joe.0.0260011; TURNER JS, 1994, J THERM BIOL, V19, P237, DOI 10.1016/0306-4565(94)90046-9; van den Hout PJ, 2010, BEHAV ECOL, V21, P16, DOI 10.1093/beheco/arp146; Vezina F, 2003, PHYSIOL BIOCHEM ZOOL, V76, P716, DOI 10.1086/376425; Vezina F, 2010, CURR ZOOL, V56, P767; Visser ME, 2001, P ROY SOC B-BIOL SCI, V268, P1271, DOI 10.1098/rspb.2001.1661; Ward S, 2006, J AVIAN BIOL, V37, P179, DOI 10.1111/j.2006.0908-8857.03262.x; Weimerskirch H, 2006, OECOLOGIA, V146, P681, DOI 10.1007/s00442-005-0226-x; WILLIAMS JB, 1988, AUK, V105, P706; Winkler DW, 1996, ECOLOGY, V77, P922, DOI 10.2307/2265512; Winkler DW, 1995, AUK, V112, P737; Winkler DW, 2011, BIRDS N AM ONLINE; WITTER MS, 1993, PHILOS T R SOC B, V340, P73, DOI 10.1098/rstb.1993.0050 62 14 14 1 54 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 FUNCT ECOL Funct. Ecol. AUG 2012 26 4 895 903 10.1111/j.1365-2435.2012.01997.x 9 Ecology Environmental Sciences & Ecology 974BF WOS:000306404100016 Bronze 2018-11-12 J Sundt-Hansen, L; Einum, S; Neregard, L; Bjornsson, BT; Johnsson, JI; Fleming, IA; Devlin, RH; Hindar, K Sundt-Hansen, Line; Einum, Sigurd; Neregard, Lena; Bjornsson, Bjorn Thrandur; Johnsson, Jorgen I.; Fleming, Ian A.; Devlin, Robert H.; Hindar, Kjetil Growth hormone reduces growth in free-living Atlantic salmon fry FUNCTIONAL ECOLOGY English Article growth enhancement; juveniles; life history; Salmo salar; trade-offs CONFLICTING SELECTION PRESSURES; TROUT ONCORHYNCHUS-MYKISS; BROWN TROUT; RAINBOW-TROUT; ONTOGENIC CONFLICT; INCREASES GROWTH; TRADE-OFFS; SALAR; WILD; SIZE 1. Although life-history theory predicts that juvenile growth rates should be high, there is substantial evidence that most juveniles grow below their physiological maximum. The endocrine system plays an important role in the determination of fundamental life-history traits, and hormones often serve as a link between an organisms environment and the expression of a trait. Particularly, growth is a life-history trait, which is strongly associated with growth hormone (GH) in fish, as well as most vertebrates. 2. To elucidate trade-offs related to elevated GH in fish in a natural environment, we experimentally administrated GH exogenously to juvenile Atlantic salmon using sustained-release GH implants, at an earlier ontogenetic stage than previously achieved (1.5 months). We assessed the effects on growth, dispersal and survival in contrasting environments. 3. Exogenous GH treatment increased the growth rate when fish were fed ad libitum in captivity. However, in a natural stream, GH treatment had a significant negative effect on growth and no apparent effect on survival or dispersal. This contrasts with previous studies conducted at later developmental stages, which show either a positive growth effect or no effect of elevated GH levels. 4. This study shows that environmental conditions strongly affect the response to GH and that under some natural conditions, it may also reduce growth. We suggest that the endogenous plasma GH levels may be maximizing growth during early, but not later, juvenile stages in nature. [Sundt-Hansen, Line; Einum, Sigurd; Hindar, Kjetil] Norwegian Inst Nat Res, N-7004 Trondheim, Norway; [Einum, Sigurd] Norwegian Univ Sci & Technol, Dept Biol, Ctr Conservat Biol, N-7034 Trondheim, Norway; [Neregard, Lena; Bjornsson, Bjorn Thrandur] Univ Gothenburg, Dept Zool Zoophysiol, Fish Endocrinol Lab, Gothenburg, Sweden; [Neregard, Lena; Johnsson, Jorgen I.] Univ Gothenburg, Dept Zool, Gothenburg, Sweden; [Fleming, Ian A.] Mem Univ Newfoundland, Ctr Ocean Sci, St John, NF, Canada; [Devlin, Robert H.] Fisheries & Oceans Canada, W Vancouver, BC, Canada Sundt-Hansen, L (reprint author), Norwegian Inst Nat Res, Tungasletta 2, N-7004 Trondheim, Norway. line.sundt-hansen@nina.no Fleming, Ian/I-7217-2012 Bjornsson, Bjorn Thrandur/0000-0002-1310-9756; Einum, Sigurd/0000-0002-3788-7800 FUGE programme of the Research Council of Norway; Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas) We thank the three anonymous reviewers and editor for valuable comments on the manuscript. We also thank Anders Finstad and the staff at NINA research station Ims for technical assistance. The recombinant bovine growth hormone formulation (Posilac) was kindly provided by Monsanto Company, St Louis, MO, U.S.A. This work was supported by the FUGE programme of the Research Council of Norway and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas). The study was conducted according to national regulations for the treatment and welfare of experimental animals. Adriaenssens B, 2011, APPL ANIM BEHAV SCI, V132, P90, DOI 10.1016/j.applanim.2011.03.005; Arendt J, 2001, OIKOS, V93, P95, DOI 10.1034/j.1600-0706.2001.930110.x; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Baayen R. H., 2008, ANAL LINGUISTIC DATA; Bartke A, 2008, AGING CELL, V7, P285, DOI 10.1111/j.1474-9726.2008.00387.x; Bates D, 2009, LME4 LINEAR MIXED EF; Beccavin C, 2001, J ENDOCRINOL, V168, P297, DOI 10.1677/joe.0.1680297; BELL JG, 1994, AQUACULTURE, V128, P301, DOI 10.1016/0044-8486(94)90319-0; Biro PA, 2006, J ANIM ECOL, V75, P1165, DOI 10.1111/j.1365-2656.2006.01137.x; Bjornsson BT, 2002, FISH PHYSIOL BIOCHEM, V27, P227, DOI 10.1023/B:FISH.0000032728.91152.10; Bjornsson BT, 1997, FISH PHYSIOL BIOCHEM, V17, P9, DOI 10.1023/A:1007712413908; BOHLIN T, 1989, HYDROBIOLOGIA, V173, P9, DOI 10.1007/BF00008596; BRANNAS E, 1995, EVOL ECOL, V9, P411, DOI 10.1007/BF01237763; Brodin T, 2004, ECOLOGY, V85, P2927, DOI 10.1890/03-3120; Burnham K. P., 2002, MODEL SELECTION MULT; Chippindale AK, 2001, P NATL ACAD SCI USA, V98, P1671, DOI 10.1073/pnas.041378098; Cook JT, 2000, AQUACULTURE, V188, P33, DOI 10.1016/S0044-8486(00)00332-X; DERTING TL, 1989, ECOLOGY, V70, P587, DOI 10.2307/1940210; Devlin RH, 1999, AQUAC RES, V30, P479, DOI 10.1046/j.1365-2109.1999.00359.x; Devlin RH, 2001, NATURE, V409, P781, DOI 10.1038/35057314; Dmitriew C, 2010, AM NAT, V175, P640, DOI 10.1086/652470; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Einum S, 2000, NATURE, V405, P565, DOI 10.1038/35014600; Einum S, 2000, EVOLUTION, V54, P628, DOI 10.1111/j.0014-3820.2000.tb00064.x; Einum S, 2006, OIKOS, V113, P489, DOI 10.1111/j.2006.0030-1299.14806.x; Elliott JM, 1997, FUNCT ECOL, V11, P592, DOI 10.1046/j.1365-2435.1997.00130.x; ELLIOTT JM, 1994, QUANTITIATIVE ECOLOG; Flatt T, 2005, Q REV BIOL, V80, P287, DOI 10.1086/432265; Gahr SA, 2008, PHYSIOL GENOMICS, V32, P380, DOI 10.1152/physiolgenomics.00142.2007; Gomez JM, 2004, EVOLUTION, V58, P71, DOI 10.1111/j.0014-3820.2004.tb01574.x; Gotthard K, 2000, J ANIM ECOL, V69, P896, DOI 10.1046/j.1365-2656.2000.00432.x; GOTTHARD K, 1994, OECOLOGIA, V99, P281, DOI 10.1007/BF00627740; Guillette LJ, 1996, GEN COMP ENDOCR, V104, P116; Henderson JN, 2003, CAN J FISH AQUAT SCI, V60, P32, DOI 10.1139/F03-001; Herbert NA, 2001, J FISH BIOL, V59, P754, DOI 10.1006/jfbi.2001.1676; Johnsson JI, 1999, FUNCT ECOL, V13, P514, DOI 10.1046/j.1365-2435.1999.00341.x; JOHNSSON JI, 1994, ANIM BEHAV, V48, P177, DOI 10.1006/anbe.1994.1224; Johnsson JI, 2001, FUNCT ECOL, V15, P654, DOI 10.1046/j.0269-8463.2001.00566.x; Johnsson JI, 2000, J FISH BIOL, V57, P326, DOI 10.1006/jfbi.2000.1305; Johnsson JI, 2008, BEHAV ECOL SOCIOBIOL, V62, P1613, DOI 10.1007/s00265-008-0590-8; Jonsson E, 1996, P ROY SOC B-BIOL SCI, V263, P647, DOI 10.1098/rspb.1996.0097; Jonsson E, 1998, ANN NY ACAD SCI, V839, P636, DOI 10.1111/j.1749-6632.1998.tb10902.x; Kennedy BP, 2008, ECOLOGY, V89, P2529, DOI 10.1890/06-1353.1; Martin-Smith KM, 2004, J FISH BIOL, V65, P156, DOI 10.1111/j.1095-8649.2004.00542.x; McGlothlin JW, 2008, PHILOS T R SOC B, V363, P1611, DOI 10.1098/rstb.2007.0002; McLean E, 1997, AQUACULTURE, V156, P113, DOI 10.1016/S0044-8486(97)00071-9; MCLEAN E, 1992, AQUACULTURE, V103, P377, DOI 10.1016/0044-8486(92)90180-S; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Neregard L, 2008, J FISH BIOL, V73, P79, DOI 10.1111/j.1095-8649.2008.01907.x; Nislow KH, 2004, J FISH BIOL, V65, P188, DOI 10.1111/j.1095-8649.2004.00561.x; PALMITER RD, 1982, NATURE, V300, P611, DOI 10.1038/300611a0; R Development Core Team, 2011, R LANG ENV STAT COMP; Rice WR, 2001, J EVOLUTION BIOL, V14, P685, DOI 10.1046/j.1420-9101.2001.00319.x; RICKER WE, 1979, FISH PHYSIOL, V8, P677; Schielzeth H, 2009, BEHAV ECOL, V20, P416, DOI 10.1093/beheco/arn145; SCHLUTER D, 1991, P ROY SOC B-BIOL SCI, V246, P11, DOI 10.1098/rspb.1991.0118; SEDDIKI H, 1995, FISH PHYSIOL BIOCHEM, V14, P279, DOI 10.1007/BF00004066; SINERVO B, 1991, SCIENCE, V252, P1300, DOI 10.1126/science.252.5010.1300; Stearns S. C., 1992, EVOLUTION LIFE HIST; Sundstrom LF, 2007, ETHOLOGY, V113, P403, DOI 10.1111/j.1439-0310.2007.01331.x; Sundt-Hansen L, 2009, FUNCT ECOL, V23, P551, DOI 10.1111/j.1365-2435.2008.01532.x; ZIPPIN CALVIN, 1958, JOUR WILDLIFE MANAGEMENT, V22, P82, DOI 10.2307/3797301; Zuur A. F., 2009, MIXED EFFECTS MODELS 63 8 8 0 28 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 FUNCT ECOL Funct. Ecol. AUG 2012 26 4 904 911 10.1111/j.1365-2435.2012.01999.x 8 Ecology Environmental Sciences & Ecology 974BF WOS:000306404100017 Bronze 2018-11-12 J Jonason, PK; Luevano, VX; Adams, HM Jonason, Peter K.; Luevano, Victor X.; Adams, Heather M. How the Dark Triad traits predict relationship choices PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Narcissism; Machiavellianism; Psychopathy; Dark Triad; Casual sex; Friends-with-benefits; One-night stands; Booty-call relationships TERM MATING STRATEGY; LIFE-HISTORY THEORY; COLLEGE-STUDENTS; MATE PREFERENCES; SEX-DIFFERENCES; BOOTY-CALL; NARCISSISM; MACHIAVELLIANISM; PERSONALITY; SEXUALITY While previous studies have correlated the Dark Triad traits (i.e., narcissism, psychopathy, and Machiavellianism) with a preference for short-term relationships, little research has addressed possible correlations with short-term relationship sub-types. In this online study using Amazon's Mechanical Turk system (N = 210) we investigated the manner in which scores on the Dark Triad relate to the selection of different mating environments using a budget-allocation task. Overall, the Dark Triad were positively correlated with preferences for short-term relationships and negatively correlated with preferences for a long-term relationship. Specifically, narcissism was uniquely correlated with preferences for one-night stands and friends-with-benefits and psychopathy was uniquely correlated with preferences for booty-call relationships. Both narcissism and psychopathy were negatively correlated with preferences for serious romantic relationships. In mediation analyses, psychopathy partially mediated the sex difference in preferences for booty-call relationships and narcissism partially mediated the sex difference in preferences for one-night stands. In addition, the sex difference in preference for serious romantic relationships was partially mediated by both narcissism and psychopathy. It appears the Dark Triad traits facilitate the adoption of specific mating environments providing fit with people's personality traits. (C) 2012 Elsevier Ltd. All rights reserved. [Jonason, Peter K.] Univ Western Sydney, Sch Psychol, Milperra, NSW 2214, Australia; [Luevano, Victor X.; Adams, Heather M.] Calif State Univ Stanislaus, Dept Psychol, Stanislaus, CA USA Jonason, PK (reprint author), Univ Western Sydney, Sch Psychol, 2 Bullecourt Ave, Milperra, NSW 2214, Australia. peterkarljonason@yahoo.com Luevano, Victor/0000-0002-4135-3334 Buffardi LE, 2008, PERS SOC PSYCHOL B, V34, P1303, DOI 10.1177/0146167208320061; Buhrmester M, 2011, PERSPECT PSYCHOL SCI, V6, P3, DOI 10.1177/1745691610393980; BUSS DM, 1987, J PERS SOC PSYCHOL, V53, P1214, DOI 10.1037//0022-3514.53.6.1214; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; BUSS DM, 1984, J PERS SOC PSYCHOL, V47, P361, DOI 10.1037//0022-3514.47.2.361; CHRISTIE R, 1970, STUDIES MACHIAVELLIA; Christopher FS, 2000, J MARRIAGE FAM, V62, P999, DOI 10.1111/j.1741-3737.2000.00999.x; Clark R., 1989, Physics World, V2, P39; Cubbins LA, 2000, ARCH SEX BEHAV, V29, P229, DOI 10.1023/A:1001963413640; Epstein M, 2009, J SEX RES, V46, P414, DOI 10.1080/00224490902775801; Fielder RL, 2010, ARCH SEX BEHAV, V39, P1105, DOI 10.1007/s10508-008-9448-4; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; FISHER WA, 1978, J PERS SOC PSYCHOL, V36, P117, DOI 10.1037/0022-3514.36.2.117; Forster J, 2010, J EXP SOC PSYCHOL, V46, P237, DOI 10.1016/j.jesp.2009.08.009; Foster JD, 2008, PERS SOC PSYCHOL B, V34, P1004, DOI 10.1177/0146167208316688; Foster JD, 2006, J SOC PERS RELAT, V23, P367, DOI 10.1177/0265407506064204; Garcia JR, 2008, J SOC EVOL CULT PSYC, V2, P192, DOI DOI 10.1037/H0099345; Greitemeyer T, 2007, J EXP SOC PSYCHOL, V43, P180, DOI 10.1016/j.jesp.2006.02.006; Grello CM, 2006, J SEX RES, V43, P255, DOI 10.1080/00224490609552324; Jonason PK, 2011, PERS INDIV DIFFER, V51, P759, DOI 10.1016/j.paid.2011.06.025; Jonason PK, 2011, J SEX RES, V48, P486, DOI 10.1080/00224499.2010.497984; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2010, PERS INDIV DIFFER, V49, P611, DOI 10.1016/j.paid.2010.05.031; Jonason PK, 2010, PSYCHOL ASSESSMENT, V22, P420, DOI 10.1037/a0019265; Jonason PK, 2010, PERS INDIV DIFFER, V48, P373, DOI 10.1016/j.paid.2009.11.003; Jonason PK, 2009, J SEX RES, V46, P460, DOI 10.1080/00224490902775827; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jones DN, 2011, PERS INDIV DIFFER, V51, P679, DOI 10.1016/j.paid.2011.04.011; Jones DN, 2010, SOC PSYCHOL PERS SCI, V1, P12, DOI 10.1177/1948550609347591; Lee KB, 2005, PERS INDIV DIFFER, V38, P1571, DOI 10.1016/j.paid.2004.09.016; Li NP, 2011, PERS INDIV DIFFER, V50, P291, DOI 10.1016/j.paid.2010.10.005; Li NP, 2002, J PERS SOC PSYCHOL, V82, P947, DOI 10.1037//0022-3514.82.6.947; McHoskey JW, 2001, PERS INDIV DIFFER, V31, P779, DOI 10.1016/S0191-8869(00)00180-X; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; Paul EL, 2000, J SEX RES, V37, P76, DOI 10.1080/00224490009552023; Paulhus D. L., MANUAL SELF IN PRESS; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; Preacher KJ, 2008, BEHAV RES METHODS, V40, P879, DOI 10.3758/BRM.40.3.879; RASKIN R, 1988, J PERS SOC PSYCHOL, V54, P890, DOI 10.1037//0022-3514.54.5.890; Townsend JM, 2011, ARCH SEX BEHAV, V40, P1173, DOI 10.1007/s10508-011-9841-2; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Wentland J. J., 2011, CANADIAN J HUMAN SEX, V29, P75 42 73 76 1 62 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. AUG 2012 53 3 180 184 10.1016/j.paid.2012.03.007 5 Psychology, Social Psychology 973VK WOS:000306387700004 2018-11-12 J Ligout, S; Munier, D; Marquereau, L; Greenfield, MD Ligout, Severine; Munier, Damien; Marquereau, Lucie; Greenfield, Michael D. Chronological vs. Physiological Age as Determinants of Mating Decisions: Studies on Female Choice Over Lifespan in An Acoustic Moth ETHOLOGY English Article ACHROIA-GRISELLA LEPIDOPTERA; MATE CHOICE; REPRODUCTIVE EFFORT; SEXUAL SELECTION; WAX MOTHS; TERMINAL INVESTMENT; HOUSE CRICKETS; PREFERENCES; PYRALIDAE; BEHAVIOR Life history theory predicts that females may adjust the selectivity expressed in mate choice as they age. Particularly in cases where time is limiting, females are expected to reduce selectivity and thereby avoid losing a terminal mating opportunity. Some evidence for this reduction has been found in vertebrates and long-lived insects, and several recent findings show that it may also exist in insects with very short adult longevities. Theory also predicts that behavioural adjustments should respond to remaining longevity (physiological age) rather than chronological age, but very little information relevant to this issue exists. We studied age-related changes in mating behaviour in an acoustic moth species (Achroia grisella; Lepidoptera: Pyralidae) in which females choose males based on the intensity, rhythm and other temporal features of the male song, with the objective of determining whether observed adjustments reflect chronological or physiological age. In accordance with theory, we found that females became less selective in their evaluation of male song rhythm as they aged and that this adjustment was predicted by physiological rather than chronological age. The reduction in selectivity may be due to decreased movement and searching, factors that can prevent a female from perceiving all of the male songs being broadcast locally in a complex environment where the transmission of some songs is blocked in some locations. We did not observe these age-related effects in a simpler, open environment. [Ligout, Severine; Munier, Damien; Marquereau, Lucie; Greenfield, Michael D.] Univ Tours, Inst Rech Biol Insecte IRBI, CNRS, UMR 7261, Tours, France Greenfield, MD (reprint author), Univ Tours, Inst Rech Biol Insecte IRBI, CNRS, UMR 7261, Parc Grandmont, Tours, France. michael.greenfield@univ-tours.fr Greenfield, Michael/0000-0003-1935-3423 Agence Nationale de la Recherche [ANR-07-BLAN-0113-01]; Centre National de la Recherche Scientifique (CNRS); Universite Francois Rabelais de Tours We thank Guy Bourdais, Bruno Brizard and Fabrice Vannier (I. R. B. I., Tours, France) for technical assistance in the laboratory; Bob Danka and Robin Cargell (U.S. Dept. Agriculture, Baton Rouge, Louisiana) for helping us to collect our Louisiana population of A. grisella; Bethany Harris and Yihong Zhou (Univ. of Kansas) for helping to breed and rear the population; and the Agence Nationale de la Recherche (contrat ANR-07-BLAN-0113-01), the Centre National de la Recherche Scientifique (CNRS), and the Universite Francois Rabelais de Tours for their financial support. We also thank Marlene Goubault for valuable criticisms of an earlier version of this manuscript. Alem S, 2011, BEHAV ECOL SOCIOBIOL, V65, P2105, DOI 10.1007/s00265-011-1219-x; Alem S, 2010, BEHAV ECOL, V21, P615, DOI [10.1093/beheco/arg028, 10.1093/beheco/arq028]; Andersson M., 1994, SEXUAL SELECTION; Andersson M, 2006, TRENDS ECOL EVOL, V21, P296, DOI 10.1016/j.tree.2006.03.015; Anjos-Duarte CS, 2011, J INSECT BEHAV, V24, P11, DOI 10.1007/s10905-010-9232-x; Bercovitch FB, 2009, J MAMMAL, V90, P40, DOI 10.1644/08-MAMM-A-124.1; Bonduriansky R, 2002, NATURE, V420, P377, DOI 10.1038/420377a; Brandt LSE, 2004, J EVOLUTION BIOL, V17, P821, DOI 10.1111/j.1420-9101.2004.00716.x; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; COLLIER TJ, 1991, NEUROBIOL AGING, V12, P685, DOI 10.1016/0197-4580(91)90122-Z; Descamps S, 2007, J ANIM ECOL, V76, P1192, DOI 10.1111/j.1365-2656.2007.01301.x; Eberhard W. G., 1996, FEMALE CONTROL SEXUA; Ericsson G, 2001, ECOLOGY, V82, P1613, DOI 10.1890/0012-9658(2001)082[1613:ARREAS]2.0.CO;2; Gray DA, 1999, J INSECT BEHAV, V12, P691, DOI 10.1023/A:1020983821436; GREENFIELD MD, 1983, BEHAVIOUR, V84, P287, DOI 10.1163/156853983X00534; Greig EI, 2004, BEHAVIOUR, V141, P799, DOI 10.1163/1568539042265626; Hebets EA, 2008, ANIM BEHAV, V76, P355, DOI 10.1016/j.anbehav.2007.12.021; Isaac JL, 2005, BIOL LETT-UK, V1, P271, DOI 10.1098/rsbl.2005.0326; Jang Y, 1997, J INSECT BEHAV, V10, P87, DOI 10.1007/BF02765476; Jang YW, 1996, ANIM BEHAV, V51, P1095, DOI 10.1006/anbe.1996.0111; Jang YW, 1998, EVOLUTION, V52, P1383, DOI 10.1111/j.1558-5646.1998.tb02020.x; Javois J, 2004, ANIM BEHAV, V68, P249, DOI 10.1016/j.anbehav.2003.10.022; Jennions MD, 1997, BIOL REV, V72, P283, DOI 10.1017/S0006323196005014; Jia FY, 2001, J INSECT BEHAV, V14, P19, DOI 10.1023/A:1007893411662; Judge KA, 2010, CAN J ZOOL, V88, P219, DOI 10.1139/Z09-139; Kodric-Brown A, 2001, AM NAT, V157, P316, DOI 10.1086/319191; Kuriwada T, 2006, ANN ENTOMOL SOC AM, V99, P1244, DOI 10.1603/0013-8746(2006)99[1244:FRINCW]2.0.CO;2; Lafaille M, 2010, BEHAV ECOL SOCIOBIOL, V64, P1485, DOI 10.1007/s00265-010-0963-7; Limousin D, 2009, J EXP BIOL, V212, P4091, DOI 10.1242/jeb.035345; Lynch KS, 2005, ANIM BEHAV, V69, P689, DOI 10.1016/j.anbehav.2004.06.016; Mack PD, 2003, P ROY SOC B-BIOL SCI, V270, P159, DOI 10.1098/rspb.2002.2214; Mautz BS, 2008, J INSECT BEHAV, V21, P203, DOI 10.1007/s10905-008-9120-9; Mitnitski A, 2002, GERONTOLOGIST, V42, P4; Moore PJ, 2001, P NATL ACAD SCI USA, V98, P9171, DOI 10.1073/pnas.161154598; Pfennig KS, 2002, J EVOLUTION BIOL, V15, P399, DOI 10.1046/j.1420-9101.2002.00406.x; Prosser MR, 1997, J INSECT BEHAV, V10, P437, DOI 10.1007/BF02765609; REAL L, 1990, AM NAT, V136, P376, DOI 10.1086/285103; Ritchie MG, 1996, P NATL ACAD SCI USA, V93, P14628, DOI 10.1073/pnas.93.25.14628; Roff Derek A., 1992; SPANGLER HG, 1984, PHYSIOL ENTOMOL, V9, P87, DOI 10.1111/j.1365-3032.1984.tb00684.x; Stearns S. C., 1992, EVOLUTION LIFE HIST 41 11 11 1 26 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0179-1613 1439-0310 ETHOLOGY Ethology AUG 2012 118 8 740 751 10.1111/j.1439-0310.2012.02064.x 12 Psychology, Biological; Behavioral Sciences; Zoology Psychology; Behavioral Sciences; Zoology 970NR WOS:000306138700005 2018-11-12 J Wiebe, RP Wiebe, Richard P. Integrating Criminology Through Adaptive Strategy and Life History Theory JOURNAL OF CONTEMPORARY CRIMINAL JUSTICE English Article Adaptive strategies; biosocial criminology; evolution and crime; antisocial strategies; low self-control; psychopathy; white-collar crime Criminological theories tend to explain street crime as either a reaction to personal deficiencies or a reaction to inequality and injustice. Using adaptive strategy and life history theory, this article seeks to unite these explanations of crime under the biosocial umbrella. It incorporates the psychology of crime, tying traits implicated in low self-control, psychopathy, and mating effort to antisocial strategies and discusses how strategies based on low self-control and psychopathy may be promoted or controlled. It further applies adaptive strategy theory to nonstreet crime, with the aim of bringing critical and biosocial criminology closer together. [Wiebe, Richard P.] Fitchburg State Univ, Fitchburg, MA 01420 USA Wiebe, RP (reprint author), Fitchburg State Univ, Dept Behav Sci, 160 Pearl St, Fitchburg, MA 01420 USA. rwiebe@fitchburgstate.edu Akers RL, 1996, CRIMINOLOGY, V34, P229, DOI 10.1111/j.1745-9125.1996.tb01204.x; ARENELLA P, 1992, UCLA LAW REV, V39, P1511; Axelrod Robert M., 1984, EVOLUTION COOPERATIO; Baumeister R. F., 1997, EVIL INSIDE HUMAN VI; Beaver KM, 2009, CRIM JUSTICE BEHAV, V36, P41, DOI 10.1177/0093854808326992; Belfied C. R., 2006, J HUM RESOUR, V51, P162; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BENSON M. L., 1985, CRIMINOLOGY, V23, P589; Blair RJR, 2006, J CHILD PSYCHOL PSYC, V47, P262, DOI 10.1111/j.1469-7610.2006.01596.x; Borowsky IW, 2009, PEDIATRICS, V124, pE81, DOI 10.1542/peds.2008-3425; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; BUSS DM, 1991, ANNU REV PSYCHOL, V42, P459, DOI 10.1146/annurev.ps.42.020191.002331; Caldwell R. M., 2006, J YOUTH ADOLESCENCE, V35, P587; Cleckley H., 1941, MASK SANITY; Cleveland HH, 2000, CHILD DEV, V71, P733, DOI 10.1111/1467-8624.00182; Cloninger C. R., 1987, CAUSES CRIME NEW BIO, P92; Cloward RA, 1960, DELINQUENCY OPPORTUN; Cohen L. E., 1995, STUDIES CRIME CRIME, V4, P197; COHEN LE, 1988, AM J SOCIOL, V94, P465, DOI 10.1086/229027; Duntley JD, 2008, AGGRESS VIOLENT BEH, V13, P373, DOI 10.1016/j.avb.2008.06.002; Eckenrode J, 2010, ARCH PEDIAT ADOL MED, V164, P9, DOI 10.1001/archpediatrics.2009.240; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis L., 1990, CRIME BIOL SOCIAL MO, P18; Felson M., 2010, CRIME EVERYDAY LIFE; FIGUEREDO AJ, 1993, ETHOL SOCIOBIOL, V14, P353, DOI 10.1016/0162-3095(93)90024-C; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Gottfredson M. R., 1990, GEN THEORY CRIME; Hare R. D., 1993, CONSCIENCE DISTURBIN; Hare RD, 1996, CRIM JUSTICE BEHAV, V23, P25, DOI 10.1177/0093854896023001004; HARPENDING H, 1988, BIOL CONTRIBUTIONS C, P293; HARPUR TJ, 1989, PSYCHOL ASSESSMENT J, V1, P6, DOI DOI 10.1037/1040-3590.1.1.6; Harris GT, 2007, J PERS DISORD, V21, P1, DOI 10.1521/pedi.2007.21.1.1; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; HIRSCHI T, 1977, AM SOCIOL REV, V42, P571, DOI 10.2307/2094556; Hrdy S, 1999, MOTHER NATURE MATERN; Jaffee SR, 2003, CHILD DEV, V74, P109, DOI 10.1111/1467-8624.t01-1-00524; Kanazawa S, 2000, SOCIOL THEOR, V18, P434, DOI 10.1111/0735-2751.00110; Kanazawa S, 2009, CRIMINOL JUST STUD, P90; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; Leve LD, 1998, CHILD DEV, V69, P1286, DOI 10.2307/1132266; Lykken D.T., 1995, ANTISOCIAL PERSONALI; Lynam DR, 1996, PSYCHOL BULL, V120, P209, DOI 10.1037//0033-2909.120.2.209; LYONS MJ, 1995, ARCH GEN PSYCHIAT, V52, P906; MACHIAVELLI N, 1514, PRINCE; Maes HH, 2007, TWIN RES HUM GENET, V10, P136, DOI 10.1375/twin.10.1.136; McDonald M. M., 2010, THESIS MICHIGAN STAT; MCGUE M, 1992, PSYCHOL SCI, V3, P368, DOI 10.1111/j.1467-9280.1992.tb00049.x; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; Merton RK, 1938, AM SOCIOL REV, V3, P672, DOI 10.2307/2084686; MILLER WB, 1958, J SOC ISSUES, V14, P5, DOI 10.1111/j.1540-4560.1958.tb01413.x; Moffitt TE, 2000, CRIMINOLOGY, V38, P199, DOI 10.1111/j.1745-9125.2000.tb00888.x; Moffitt TE, 2002, J CHILD PSYCHOL PSYC, V43, P727, DOI 10.1111/1469-7610.00082; MOFFITT TE, 1994, CRIMINOLOGY, V32, P277, DOI 10.1111/j.1745-9125.1994.tb01155.x; MOFFITT TE, 1993, PSYCHOL REV, V100, P674, DOI 10.1037//0033-295X.100.4.674; Nesse R M, 1990, Hum Nat, V1, P261, DOI 10.1007/BF02733986; PATRICK CJ, 1994, PSYCHOPHYSIOLOGY, V31, P319, DOI 10.1111/j.1469-8986.1994.tb02440.x; Petersilia J., 2003, PRISONERS COME HOME; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Raine A., 1993, PSYCHOPATHOLOGY CRIM; Richerson Peter J., 2005, NOT GENES ALONE CULT; RIDLEY M, 1996, ORIGINS VIRTUE; Rowe D., 1996, DELINQUENCY CRIME CU, P268; ROWE D, 2002, BIOL CRIME; Rowe D. C, 1994, LIMITS FAMILY INFLUE; Rowe DC, 1997, PERS INDIV DIFFER, V23, P105, DOI 10.1016/S0191-8869(97)00005-6; ROWE DC, 1995, BEHAV BRAIN SCI, V18, P573, DOI 10.1017/S0140525X00039959; ROWE DC, 1989, BIOL ADOLESCENT DEV, P38; RUSHTON JP, 1986, J PERS SOC PSYCHOL, V50, P1192, DOI 10.1037/0022-3514.50.6.1192; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Sanderson Stephen K., 2001, EVOLUTION HUMAN SOCI; Shover N, 2006, CAMB STUD CRIMINOL, P1; Smith CA, 2004, J CHILD PSYCHOL PSYC, V45, P230, DOI 10.1111/j.1469-7610.2004.00216.x; Sutherland Edwin Hardin, 1949, WHITE COLLAR CRIME; SYKES GM, 1957, AM SOCIOL REV, V22, P664, DOI 10.2307/2089195; Tremblay RE, 2000, INT J BEHAV DEV, V24, P129, DOI 10.1080/016502500383232; Vigil JM, 2006, J FAM PSYCHOL, V20, P597, DOI 10.1037/0893-3200.20.4.597; Vila B, 1997, POLIT LIFE SCI, V16, P3; VILA B, 1994, CRIMINOLOGY, V32, P311, DOI 10.1111/j.1745-9125.1994.tb01157.x; Walsh A., 2002, BIOSOCIAL CRIMINOLOG; Walsh A., 2008, J CRIMINAL JUSTICE S, V2, P135; Walsh A., 2007, CRIMINOLOGY INTERDIS; Walsh A, 2009, CRIMINOL JUST STUD, P154; WIDOM CS, 1977, J CONSULT CLIN PSYCH, V45, P674, DOI 10.1037//0022-006X.45.4.674; Wiebe RP, 2009, CRIMINOL JUST STUD, P225; Wiebe RP, 2004, AUST NZ J CRIMINOL, V37, P65, DOI 10.1375/acri.37.1.65; Wiebe RP, 2003, JUSTICE Q, V20, P297, DOI 10.1080/07418820300095541; Wiebe RP, 2004, INDIVIDUAL DIFFERENC, V2, P38; Wilson J. Q., 1985, CRIME HUMAN NATURE; Wright JP, 2009, CRIMINOL JUST STUD, P73; Wright JP, 2005, CRIMINOLOGY, V43, P1169, DOI 10.1111/j.1745-9125.2005.00036.x; Wright R., 2000, NONZERO LOGIC HUMAN 91 3 4 0 5 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 1043-9862 1552-5406 J CONTEMP CRIM JUST J. Contemp. Crim. Justice AUG 2012 28 3 SI 346 365 10.1177/1043986212450231 20 Criminology & Penology Criminology & Penology V35SH WOS:000209168000008 2018-11-12 J Maunder, MN Maunder, Mark N. Evaluating the stock-recruitment relationship and management reference points: Application to summer flounder (Paralichthys dentatus) in the U.S. mid-Atlantic FISHERIES RESEARCH English Article Beverton-Holt; Fisheries management; Maximum sustainable yield; Reference points; Steepness; Stock assessment; Stock-recruitment CONCENTRATION HYPOTHESIS; FISHERIES MANAGEMENT; MARINE FISHES; RISK ANALYSIS; STEEPNESS; METAANALYSIS; RATES The stock-recruitment relationship is one of the most uncertain processes of fish population dynamics, and is highly influential with respect to fisheries management advice. The stock recruitment relationship has a direct impact on reference points commonly used in contemporary fisheries management. Simulation analysis has shown that the steepness of the Beverton-Holt stock-recruitment relationship is difficult to estimate for most fish stocks, which has led to the use of proxy reference points. Proxy maximum sustainable yield reference points based on spawning biomass-per-recruit, which are commonly used when the stock-recruitment relationship is uncertain, are a linear function of steepness. Risk in terms of lost yield is generally lower when steepness is underestimated compared to when steepness is overestimated because the yield curve is flat when steepness is high (close to one: recruitment is independent of stock size), indicating that using a lower value of steepness might be appropriate. Simulation analysis based on data for summer flounder in the US mid-Atlantic indicates that steepness can be estimated from the data. Steepness is estimated to be close to one and a high steepness is supported by estimates for related species and from life history theory. Current target (F-35%) and threshold (F-40%) spawning biomass-per-recruit reference points used for summer flounder imply steepness values of 0.73 and 0.66, respectively, for the Beverton-Holt stock-recruitment relationship. (C) 2012 Elsevier B.V. All rights reserved. [Maunder, Mark N.] Quantitat Resource Assessment LLC, San Diego, CA 92129 USA Maunder, MN (reprint author), Interamer Trop Tuna Commiss, 8604 La Jolla Shores Dr, La Jolla, CA 92037 USA. mmaunder@iattc.org I BOAT NJ; Save the Summer Flounder Fishery Fund The summer flounder working group provided advice on various aspects of this research. The assessment model is based on the work of Mark Terceiro. I BOAT NJ and Save the Summer Flounder Fishery Fund provided funding. Comments by two anonymous reviewers and associate editor Andre Punt improved the manuscript. Beverton RJH, 1995, NETH J SEA RES, V34, P1, DOI 10.1016/0077-7579(95)90010-1; Beverton RJH, 1957, DYNAMICS EXPLOITED F; Clark WG, 2002, N AM J FISH MANAGE, V22, P251, DOI 10.1577/1548-8675(2002)022<0251:FRTYL>2.0.CO;2; CLARK WG, 1991, CAN J FISH AQUAT SCI, V48, P734, DOI 10.1139/f91-088; CLARK WG, 1993, P INT S MAN STRAT EX, P233; Conn P. B., 2010, CANADIAN J FISHERIES, V67, P1; Dorn MW, 2002, N AM J FISH MANAGE, V22, P280, DOI 10.1577/1548-8675(2002)022<0280:AOWCRH>2.0.CO;2; FRANCIS RIC, 1992, CAN J FISH AQUAT SCI, V49, P922, DOI 10.1139/f92-102; Goodwin NB, 2006, CAN J FISH AQUAT SCI, V63, P494, DOI 10.1139/f05-234; Goodyear P. C., 1996, N AM J FISH MANAGE, V16, P8; He X, 2006, FISH B-NOAA, V104, P428; Hilborn R., 1992, QUANTITATIVE FISHERI; ILES TC, 1994, NETH J SEA RES, V32, P399, DOI 10.1016/0077-7579(94)90017-5; Iles TC, 2000, ICES J MAR SCI, V57, P216, DOI 10.1006/jmsc.2000.0646; Lee H.H., FISH RES IN PRESS; Lee HH, 2011, FISH RES, V109, P89, DOI 10.1016/j.fishres.2011.01.021; MACE PM, 1988, 884 NZ FISH; Magnusson A, 2007, FISH FISH, V8, P337, DOI 10.1111/j.1467-2979.2007.00258.x; Mangel M, 2010, FISH FISH, V11, P89, DOI 10.1111/j.1467-2979.2009.00345.x; Maunder M.N., 2008, ENCY ECOLOGY, V3, P2292; Maunder MN, 2011, FISH RES, V111, P92, DOI 10.1016/j.fishres.2011.06.016; Maunder MN, 2002, FISH FISH, V3, P251, DOI 10.1046/j.1467-2979.2002.00089.x; MCGURK MD, 1986, MAR ECOL PROG SER, V34, P227, DOI 10.3354/meps034227; Methot RD, 2009, FISH FISHERIES SERIE, V31, P137, DOI 10.1007/978-1-4020-9210-7_9; Myers RA, 1999, CAN J FISH AQUAT SCI, V56, P2404, DOI 10.1139/cjfas-56-12-2404; Myers RA, 2002, N AM J FISH MANAGE, V22, P351, DOI 10.1577/1548-8675(2002)022<0351:IBPWLD>2.0.CO;2; *NE FISH SCI CTR, 2008, 47 NE REG STOCK ASS; NEEDLE CL, 2002, REV FISH BIOL FISHER, V11, P95, DOI DOI 10.1023/A:1015208017674); Osenberg CW, 1999, ECOLOGY, V80, P1105, DOI 10.2307/177058; Quinn TJ, 1999, QUANTITATIVE FISH DY; RICKER W. E., 1954, JOUR FISH RES BD CANADA, V11, P559; SHEPHERD JG, 1982, J CONSEIL, V40, P67; Shertzer KW, 2012, B MAR SCI, V88, P39, DOI 10.5343/bms.2011.1019; Terceiro M., 2002, REV FISH BIOL FISHER, V11, P125; Williams EH, 2003, CAN J FISH AQUAT SCI, V60, P710, DOI 10.1139/F03-059; Zhu JF, 2012, FISH RES, V119, P89, DOI 10.1016/j.fishres.2011.12.008 36 19 19 1 25 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0165-7836 FISH RES Fish Res. AUG 2012 125 20 26 10.1016/j.fishres.2012.02.006 7 Fisheries Fisheries 953EG WOS:000304849100003 2018-11-12 J Johnston, TA; Wong, DMM; Moles, MD; Wiegand, MD; Casselman, JM; Leggett, WC Johnston, T. A.; Wong, D. M. -M.; Moles, M. D.; Wiegand, M. D.; Casselman, J. M.; Leggett, W. C. Reproductive allocation in exploited lake whitefish (Coregonus clupeaformis) and walleye (Sander vitreus) populations FISHERIES RESEARCH English Article Growth; Reproduction; Life history; Energetics; Lipids TROUT SALVELINUS-NAMAYCUSH; COD GADUS-MORHUA; STIZOSTEDION-VITREUM; BODY CONDITION; LIFE-HISTORY; DENSITY-DEPENDENCE; CONDITION INDEXES; FISH POPULATIONS; MARINE FISH; GROWTH We examined age-related changes in energetic status and reproductive effort of lake whitefish (Coregonus clupeaformis) and walleye (Sander vitreus) populations in Lakes Winnipeg and Ontario. We predicted, based on life history theory, that both species would exhibit declines in somatic energy stores and increases in the proportion of their energy reserves allocated to reproduction as they aged. These predicted trends were evident for walleye but not for lake whitefish, and the contrast between species was most pronounced for females. Walleye devoted an increasingly larger proportion of their body lipids to gonad development as they got older whereas lake whitefish devoted an increasingly smaller proportion. Between-species differences for some reproductive traits, particularly gonad size (GSI) and relative fecundity, were not consistent between the two lakes. Lake whitefish follow a strategy of lower relative fecundity, larger eggs, and lower egg lipid content compared to walleye. Differences between these species in the gamete quantity and quality of different age classes suggest that age-structured population models parameterized for one species should be applied to other species with caution. (C) 2012 Elsevier B.V. All rights reserved. [Johnston, T. A.] Laurentian Univ, Cooperat Freshwater Ecol Unit, Ontario Minist Nat Resources, Sudbury, ON P3E 2C6, Canada; [Wong, D. M. -M.; Casselman, J. M.; Leggett, W. C.] Queens Univ, Dept Biol, Kingston, ON K7L 3N6, Canada; [Moles, M. D.] Univ Guelph, Dept Integrat Biol, Guelph, ON N1G 2W1, Canada; [Wiegand, M. D.] Univ Winnipeg, Dept Biol, Winnipeg, MB R3B 2E9, Canada Johnston, TA (reprint author), Laurentian Univ, Cooperat Freshwater Ecol Unit, Ontario Minist Nat Resources, Sudbury, ON P3E 2C6, Canada. tjohnston@laurentian.ca Johnston, Thomas/G-1809-2012; Leggett, William/F-6009-2011 government of Canada through Natural Sciences and Engineering Research Council (NSERC); Department of Fisheries and Oceans; government of Ontario through the Ministry of Natural Resources; University of Winnipeg Field assistance and in-kind support were provided by S. Casselman, K. Dewey, J. Dewey, C. Einarsson, W. Leonard, W. Lysack, M. Magnusson, R. Slapkauskis, and Manitoba Conservation. Laboratory assistance was provided by S. Chesser, C. Cliffe, D. Couture, A. Cowley, J. Hendricks, T. Herra, L Porteous, M. Prevost, P. Rohn, S. Snell, and A. Somerville. Constructive criticisms on earlier drafts of this manuscript were provided by Jim Hoyle, Ashley Stasko, and four anonymous reviewers. This research was funded by the government of Canada through its Natural Sciences and Engineering Research Council (NSERC) Strategic Grants Program and the Department of Fisheries and Oceans' Aquaculture Collaborative Research and Development Program (ACRDP), the government of Ontario through the Ministry of Natural Resources, and the University of Winnipeg. Baccante D.A., 1988, North American Journal of Fisheries Management, V8, P199, DOI 10.1577/1548-8675(1988)008<0199:FCITEW>2.3.CO;2; Berkeley SA, 2004, ECOLOGY, V85, P1258, DOI 10.1890/03-0706; Blukacz EA, 2010, J GREAT LAKES RES, V36, P78, DOI 10.1016/j.jglr.2009.12.014; Burness G, 2008, CAN J FISH AQUAT SCI, V65, P615, DOI 10.1139/F07-188; Casselman J.M., 1987, P209; CASSELMAN JM, 1992, CAN J FISH AQUAT SCI, V49, P102, DOI 10.1139/f92-305; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; CHEVALIER JR, 1977, J FISH RES BOARD CAN, V34, P1696, DOI 10.1139/f77-234; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Colby PJ, 1996, ANN ZOOL FENN, V33, P589; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; CRAIG JF, 1995, CAN J ZOOL, V73, P367, DOI 10.1139/z95-040; CRAIG JF, 1985, CAN J ZOOL, V63, P1, DOI 10.1139/z85-001; FORBES LS, 1994, CAN J FISH AQUAT SCI, V51, P603, DOI 10.1139/f94-062; Franzin W.G., 2003, FISH FISHERIES LAKE; Green BS, 2008, ADV MAR BIOL, V54, P1, DOI 10.1016/S0065-2881(08)00001-1; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; HEALEY MC, 1980, CAN J FISH AQUAT SCI, V37, P255, DOI 10.1139/f80-033; HEALEY MC, 1978, J FISH RES BOARD CAN, V35, P945, DOI 10.1139/f78-155; Henderson BA, 2002, J FISH BIOL, V61, P999, DOI 10.1006/jfbi.2002.2119; Henderson BA, 1996, CAN J FISH AQUAT SCI, V53, P127, DOI 10.1139/f95-162; Hilborn R., 1992, QUANTITATIVE FISHERI; Hoyle JA, 2008, AQUAT ECOSYST HEALTH, V11, P403, DOI 10.1080/14634980802530392; Hutchings JA, 2005, PHILOS T ROY SOC B, V360, P315, DOI 10.1098/rstb.2004.1586; Hutchings JA, 2005, CAN J FISH AQUAT SCI, V62, P824, DOI 10.1139/F05-081; Johnston TA, 2008, AQUACULTURE, V281, P131, DOI 10.1016/j.aquaculture.2008.05.039; Johnston TA, 2007, ECOL FRESHW FISH, V16, P295, DOI 10.1111/j.1600-0063.2006.00219.x; Johnston T.A., J GREAT LAK IN PRESS; Johnston TA, 1997, CAN J FISH AQUAT SCI, V54, P1006, DOI 10.1139/cjfas-54-5-1006; Johnston TA, 2002, ECOLOGY, V83, P1777, DOI 10.1890/0012-9658(2002)083[1777:MAEGIT]2.0.CO;2; Jones Marks S., 1994, North American Journal of Fisheries Management, V14, P409, DOI 10.1577/1548-8675(1994)014<0409:CIWFHA>2.3.CO;2; Kaufman SD, 2007, T AM FISH SOC, V136, P1566, DOI 10.1577/T06-262.1; Kratzer JF, 2007, J GREAT LAKES RES, V33, P922, DOI 10.3394/0380-1330(2007)33[922:CIFAEL]2.0.CO;2; LEGGETT WC, 1978, J FISH RES BOARD CAN, V35, P1469, DOI 10.1139/f78-230; Leggett WC, 2008, OCEANOGR MAR BIOL, V46, P331; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; Longhurst A, 2002, FISH RES, V56, P125, DOI 10.1016/S0165-7836(01)00351-4; Lumb CE, 2007, J GREAT LAKES RES, V33, P314, DOI 10.3394/0380-1330(2007)33[314:COLWCC]2.0.CO;2; MALISON JA, 1994, FISH PHYSIOL BIOCHEM, V13, P473, DOI 10.1007/BF00004330; Marteinsdottir G, 1998, CAN J FISH AQUAT SCI, V55, P1372, DOI 10.1139/cjfas-55-6-1372; Mayer T., 2006, Aquatic Ecosystem Health & Management, V9, P307, DOI 10.1080/14634950600876039; MILLER TJ, 1988, CAN J FISH AQUAT SCI, V45, P1657, DOI 10.1139/f88-197; MILLS KH, 1985, CAN J FISH AQUAT SCI, V42, P129, DOI 10.1139/f85-016; Moles MD, 2010, CAN J ZOOL, V88, P950, DOI 10.1139/Z10-062; Moles MD, 2008, CAN J FISH AQUAT SCI, V65, P600, DOI 10.1139/F07-186; Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4; Murawski SA, 2001, ICES J MAR SCI, V58, P1002, DOI 10.1006/jmsc.2001.1097; MUTH KM, 1993, J GREAT LAKES RES, V19, P715, DOI 10.1016/S0380-1330(93)71259-9; Myers RA, 2001, ICES J MAR SCI, V58, P937, DOI 10.1006/jmsc.2001.1109; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Pothoven SA, 2001, N AM J FISH MANAGE, V21, P876, DOI 10.1577/1548-8675(2001)021<0876:CIDABC>2.0.CO;2; Rennie MD, 2008, N AM J FISH MANAGE, V28, P1270, DOI 10.1577/M06-258.1; Rennie MD, 2009, CAN J FISH AQUAT SCI, V66, P2096, DOI 10.1139/F09-139; RICKER W. E., 1954, JOUR FISH RES BD CANADA, V11, P559; Ricker W. E., 1975, FISHERIES RES BOARD, V191, P382; Rideout RM, 2005, FISH FISH, V6, P50, DOI 10.1111/j.1467-2679.2005.00174.x; Roff D. A., 2002, LIFE HIST EVOLUTION; Sas Institute Inc, 2009, SAS ONL DOC VERS 9 2; Schueller AM, 2005, N AM J FISH MANAGE, V25, P841, DOI 10.1577/M04-090.1; Scott W.B., 1973, FISHERIES RES BOARD, V184, P966; Stearns S.C., 1992, EVOLUTIONS LIFE HIST; Swain DP, 2007, P ROY SOC B-BIOL SCI, V274, P1015, DOI 10.1098/rapb.2006.0275; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; Venturelli PA, 2010, ECOLOGY, V91, P2003, DOI 10.1890/09-1218.1; Walsh MR, 2006, ECOL LETT, V9, P142, DOI 10.1111/j.1461-0248.2005.00858.x; Wiegand MD, 2007, CAN J FISH AQUAT SCI, V64, P700, DOI 10.1139/F07-033; Wiegand MD, 2004, CAN J FISH AQUAT SCI, V61, P110, DOI 10.1139/F03-146; Williams PD, 2006, TRENDS ECOL EVOL, V21, P458, DOI 10.1016/j.tree.2006.05.008 68 9 9 2 42 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0165-7836 1872-6763 FISH RES Fish Res. AUG 2012 125 225 234 10.1016/j.fishres.2012.01.027 10 Fisheries Fisheries 953EG WOS:000304849100024 2018-11-12 J Vagasi, CI; Pap, PL; Vincze, O; Benko, Z; Marton, A; Barta, Z Vagasi, Csongor I.; Pap, Peter L.; Vincze, Orsolya; Benko, Zoltan; Marton, Attila; Barta, Zoltan Haste Makes Waste but Condition Matters: Molt Rate-Feather Quality Trade-Off in a Sedentary Songbird PLOS ONE English Article SPARROW PASSER-DOMESTICUS; CURRENT REPRODUCTIVE EFFORT; WILD BIRD POPULATION; GREAT TIT; MIGRATORY BEHAVIOR; FLIGHT PERFORMANCE; STURNUS-VULGARIS; BODY CONDITION; GROWTH-RATE; SELECTION Background: The trade-off between current and residual reproductive values is central to life history theory, although the possible mechanisms underlying this trade-off are largely unknown. The 'molt constraint' hypothesis suggests that molt and plumage functionality are compromised by the preceding breeding event, yet this candidate mechanism remains insufficiently explored. Methodology/Principal Findings: The seasonal change in photoperiod was manipulated to accelerate the molt rate. This treatment simulates the case of naturally late-breeding birds. House sparrows Passer domesticus experiencing accelerated molt developed shorter flight feathers with more fault bars and body feathers with supposedly lower insulation capacity (i.e. shorter, smaller, with a higher barbule density and fewer plumulaceous barbs). However, the wing, tail and primary feather lengths were shorter in fast-molting birds if they had an inferior body condition, which has been largely overlooked in previous studies. The rachis width of flight feathers was not affected by the treatment, but it was still condition-dependent. Conclusions/Significance: This study shows that sedentary birds might face evolutionary costs because of the molt rate-feather quality conflict. This is the first study to experimentally demonstrate that (1) molt rate affects several aspects of body feathers as well as flight feathers and (2) the costly effects of rapid molt are condition-specific. We conclude that molt rate and its association with feather quality might be a major mediator of life history trade-offs. Our findings also suggest a novel advantage of early breeding, i.e. the facilitation of slower molt and the condition-dependent regulation of feather growth. [Vagasi, Csongor I.; Pap, Peter L.; Barta, Zoltan] Univ Debrecen, Dept Evolutionary Zool, H-4012 Debrecen, Hungary; [Vagasi, Csongor I.; Pap, Peter L.; Vincze, Orsolya; Benko, Zoltan; Marton, Attila] Univ Babes Bolyai, Hungarian Dept Biol & Ecol, Evolutionary Ecol Grp, R-3400 Cluj Napoca, Romania; [Barta, Zoltan] Univ Debrecen, MTA DE Lendulet Behav Ecol Res Grp, H-4012 Debrecen, Hungary Vagasi, CI (reprint author), Univ Debrecen, Dept Evolutionary Zool, H-4012 Debrecen, Hungary. csongor.vagasi@vocs.unideb.hu Vincze, Orsolya/0000-0001-5789-2124; Vagasi, Csongor I./0000-0002-8736-2391 Hungarian Ministry of Education and Culture [FNFRDL060701DN 46/2006]; Hungarian Academy of Sciences [2009A00031E]; OTKA [NF61143, K75696]; Romanian Ministry of Education and Research [PN II-RU TE 291/2010]; TAMOP [4.2.1./B-09/1/KONV-2010-0007]; European Social Fund; European Regional Development Fund This work was supported by PhD scholarships from the Hungarian Ministry of Education and Culture (#FNFRDL060701DN 46/2006 to CIV) and the Hungarian Academy of Sciences (#2009A00031E to CIV), OTKA grant (#NF61143 to ZB), and partially supported by a research grant (#PN II-RU TE 291/2010 to PLP and CIV) of the Romanian Ministry of Education and Research and the TAMOP project (#4.2.1./B-09/1/KONV-2010-0007 to Z. Barta) which is implemented through the New Hungary Development Plan, co-financed by the European Social Fund and the European Regional Development Fund. During the preparation of the manuscript Z. Barta was supported by an OTKA grant (K75696). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Alonso-Alvarez C, 2007, FUNCT ECOL, V21, P873, DOI 10.1111/j.1365-2435.2007.01300.x; Andersson M., 1994, SEXUAL SELECTION; Animal Behavior Society, 2012, ANIM BEHAV, V83, P301, DOI DOI 10.1016/J.ANBEHAV.2011.10.031; Barta Z, 2006, OIKOS, V112, P580, DOI 10.1111/j.0030-1299.2006.14240.x; Bortolotti GR, 2009, J EXP BIOL, V212, P1477, DOI 10.1242/jeb.022152; Both C, 2006, NATURE, V441, P81, DOI 10.1038/nature04539; Broggi J, 2004, J ANIM ECOL, V73, P967, DOI 10.1111/j.0021-8790.2004.00872.x; Broggi J, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024942; Carr JM, 2012, BEHAV ECOL, V23, P434, DOI 10.1093/beheco/arr208; Dawson A, 2000, P ROY SOC B-BIOL SCI, V267, P2093, DOI 10.1098/rspb.2000.1254; Dawson A, 2004, IBIS, V146, P493, DOI 10.1111/j.1474-919x.2004.00290.x; de la Hera I, 2010, J AVIAN BIOL, V41, P609, DOI 10.1111/j.1600-048X.2010.05075.x; de la Hera I, 2010, J AVIAN BIOL, V41, P342, DOI 10.1111/j.1600-048X.2009.04835.x; De La Hera I, 2009, ACTA ORNITHOL, V44, P95, DOI 10.3161/000164509X464939; de la Hera I, 2009, J AVIAN BIOL, V40, P461, DOI 10.1111/j.1600-048X.2008.04689.x; de la Hera I, 2009, BIOL J LINN SOC, V97, P98, DOI 10.1111/j.1095-8312.2008.01189.x; Desrochers A, 2010, ECOLOGY, V91, P1577, DOI 10.1890/09-2202.1; DesRochers DW, 2009, COMP BIOCHEM PHYS A, V152, P46, DOI 10.1016/j.cbpa.2008.08.034; Gienapp P, 2010, J EVOLUTION BIOL, V23, P715, DOI 10.1111/j.1420-9101.2010.01949.x; Ginn HB, 2007, BTO GUIDE, V19; GRANT PR, 1995, EVOLUTION, V49, P241, DOI 10.1111/j.1558-5646.1995.tb02236.x; Green AJ, 2001, ECOLOGY, V82, P1473, DOI 10.2307/2680003; Grubb T., 2006, PTILOCHRONOLOGY FEAT; Hall KSS, 2000, J AVIAN BIOL, V31, P583, DOI 10.1034/j.1600-048X.2000.310419.x; Helm B, 2005, J ORNITHOL, V146, P348, DOI 10.1007/s10336-005-0009-5; Helm B, 1999, AUK, V116, P589, DOI 10.2307/4089321; Hemborg C, 1998, BEHAV ECOL SOCIOBIOL, V43, P19, DOI 10.1007/s002650050462; Hinsley SA, 2003, IBIS, V145, P337, DOI 10.1046/j.1474-919X.2003.00167.x; Jensen H, 2003, J EVOLUTION BIOL, V16, P1296, DOI 10.1046/j.1420-9101.2003.00614.x; Jovani R, 2004, J EVOLUTION BIOL, V17, P294, DOI 10.1111/j.1420-9101.2003.00680.x; Larsson K, 1996, HEREDITY, V76, P100, DOI 10.1038/hdy.1996.13; Legendre P., 2011, LMODEL2 MODEL 2 REGR; LESSELLS CM, 1989, CONDOR, V91, P210, DOI 10.2307/1368167; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; LINDSTROM A, 1993, PHYSIOL ZOOL, V66, P490, DOI 10.1086/physzool.66.4.30163805; Macleod R, 2005, J ANIM ECOL, V74, P292, DOI 10.1111/j.1365-2656.2005.00923.x; Merila J, 2001, J EVOLUTION BIOL, V14, P918, DOI 10.1046/j.1420-9101.2001.00353.x; MOLLER AP, 1995, BEHAV ECOL, V6, P242, DOI 10.1093/beheco/6.3.242; MOLLER AP, 1988, BEHAV ECOL SOCIOBIOL, V22, P373; Moreno-Rueda G, 2010, J EVOLUTION BIOL, V23, P2229, DOI 10.1111/j.1420-9101.2010.02090.x; MORTON GA, 1990, CONDOR, V92, P813, DOI 10.2307/1368717; Murtaugh PA, 2009, ECOL LETT, V12, P1061, DOI 10.1111/j.1461-0248.2009.01361.x; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Nilsson JA, 1996, P ROY SOC B-BIOL SCI, V263, P711, DOI 10.1098/rspb.1996.0106; Nussey DH, 2005, SCIENCE, V310, P304, DOI 10.1126/science.1117004; Pap PL, 2008, CAN J ZOOL, V86, P834, DOI 10.1139/Z08-060; Pap PL, 2011, AUK, V128, P330, DOI 10.1525/auk.2011.10142; Peig J, 2009, OIKOS, V118, P1883, DOI 10.1111/j.1600-0706.2009.17643.x; Perrins CM, 1998, COMPLETE BIRDS W PAL; R Development Core Team, 2011, R LANG ENV STAT COMP; Rasband WS, 2008, IMAGEJ VERSION 1 41; Roff D. A., 2002, LIFE HIST EVOLUTION; Serra L, 2001, J AVIAN BIOL, V32, P377, DOI 10.1111/j.0908-8857.2001.320415.x; SMITH HG, 1991, BEHAV ECOL SOCIOBIOL, V28, P195; Svensson E, 1997, BEHAV ECOL, V8, P92, DOI 10.1093/beheco/8.1.92; Svensson E, 1999, BIOL J LINN SOC, V67, P263, DOI 10.1111/j.1095-8312.1999.tb01864.x; Swaddle JP, 1996, J AVIAN BIOL, V27, P103, DOI 10.2307/3677139; Swaddle JP, 2003, IBIS, V145, P457, DOI 10.1046/j.1474-919X.2003.00189.x; Vagasi CI, 2011, ARDEA, V99, P53, DOI 10.5253/078.099.0107; Vagasi CI, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014215; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VERHULST S, 1995, ECOLOGY, V76, P2392, DOI 10.2307/2265815; Wang X, 2012, J EVOLUTION BIOL, V25, P547, DOI 10.1111/j.1420-9101.2011.02449.x; Weber TP, 2005, BIOL LETT-UK, V1, P27, DOI 10.1098/rsbl.2004.0244; Webster MS, 2002, TRENDS ECOL EVOL, V17, P76, DOI 10.1016/S0169-5347(01)02380-1 65 37 37 0 39 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One JUL 12 2012 7 7 e40651 10.1371/journal.pone.0040651 9 Multidisciplinary Sciences Science & Technology - Other Topics 973NH WOS:000306366400043 22808221 DOAJ Gold, Green Published 2018-11-12 J Allen, JD Allen, Jonathan D. Effects of egg size reductions on development time and juvenile size in three species of echinoid echinoderms: Implications for life history theory JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY English Article Egg size; Echinoids; Larvae; Life history evolution MARINE BENTHIC INVERTEBRATES; REPRODUCTIVE STRATEGIES; PARENTAL INVESTMENT; LARVAE; EVOLUTION; CONSEQUENCES; DISPERSAL; METAMORPHOSIS; MANIPULATIONS; ENVIRONMENTS Life-history models for marine invertebrate animals assume a strong correlation between the size of the egg and the time from fertilization until metamorphosis. This assumption is supported by comparative data across a wide range of phyla. However, the exact form of the relationship between egg size and development time has a strong effect on the predicted outcomes of life-history models and has been the subject of much debate. Comparative data suggest that as egg size increases the effect of egg size reductions on development time will decrease and the effects of size reductions on juvenile size will increase. I used blastomere separations to test the effects of a 50% reduction in egg volume on development time and juvenile size in three species of echinoid echinoderms (Arbacia punctulata, Strongylocentrotus purpuratus, and Dendraster excentricus) that develop from eggs of a range of sizes (80-124 mu m). I also manipulated the food level given to developing embryos and larvae to investigate the potential interaction between the effects of egg size reductions and food availability. Larvae from halved zygotes took significantly longer to develop to metamorphosis than their whole size counterparts in all three species. In only one species was I able to detect a significant reduction in juvenile size for offspring developing from halved zygotes. When compared with similar manipulations in species with larger eggs (140-387 mu m), egg size reductions have a stronger effect on development time in species with small eggs. As predicted, development time does not change linearly with egg size but instead increases exponentially as egg size is reduced. The relationship between egg size and juvenile size remains unclear. Further investigations into the factors, including egg size, that influence juvenile performance are warranted. (C) 2012 Elsevier B.V. All rights reserved. [Allen, Jonathan D.] Univ N Carolina, Dept Biol, Chapel Hill, NC 27599 USA Allen, JD (reprint author), Coll William & Mary, Dept Biol, POB 8795, Williamsburg, VA 23187 USA. jdallen@wm.edu NSF [EEP-0308799] I would like to thank R. Podolsky for his advice and support during the collection of these data. Laboratory assistance was provided by J. McAlister. Early drafts of this manuscript were improved greatly by comments from M. Pizer, W. Kier, J. Kingsolver, and D. Pfennig. B. Pernet along with anonymous reviewers provided helpful criticism and comments on later versions of the manuscript. Support for data collection came from NSF grant EEP-0308799 to JDA and R. Podolsky. [SS] Alcorn NJ, 2009, EVOL DEV, V11, P719, DOI 10.1111/j.1525-142X.2009.00379.x; Allen JD, 2006, J EXP MAR BIOL ECOL, V331, P186, DOI 10.1016/j.jembe.2005.10.020; Allen JD, 2008, BIOL BULL-US, V214, P42, DOI 10.2307/25066658; Cameron RA, 1996, DEV BIOL, V178, P514, DOI 10.1006/dbio.1996.0235; CASWELL H, 1981, AM NAT, V117, P529, DOI 10.1086/283733; CHRISTIANSEN FB, 1979, THEOR POPUL BIOL, V16, P267, DOI 10.1016/0040-5809(79)90017-0; CRUMP ML, 1981, AM NAT, V117, P724, DOI 10.1086/283755; EMLET RB, 1995, EVOLUTION, V49, P476, DOI 10.1111/j.1558-5646.1995.tb02280.x; Emlet RB, 1997, EVOLUTION, V51, P141, DOI 10.1111/j.1558-5646.1997.tb02395.x; Emlet RB, 1987, ECHINODERM STUDIES, P55; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Fox CW, 1997, CAN J ZOOL, V75, P1465, DOI 10.1139/z97-769; Gosselin LA, 1998, HYDROBIOLOGIA, V390, P141, DOI 10.1023/A:1003598828105; HARKEY MA, 1980, ROUX ARCH DEV BIOL, V189, P111, DOI 10.1007/BF00848500; HART MW, 1995, AM NAT, V146, P415, DOI 10.1086/285807; Harvey EB, 1940, BIOL BULL-US, V78, P202, DOI 10.2307/1537773; Harvey P. H., 1991, COMP METHOD EVOLUTIO; HIGHSMITH RC, 1982, ECOLOGY, V63, P329, DOI 10.2307/1938950; HIGHSMITH RC, 1986, B MAR SCI, V39, P347; HORSTADIUS S, 1973, EXPT EMBRYOLOGY ECHI; Kroh A, 2010, J SYST PALAEONTOL, V8, P147, DOI 10.1080/14772011003603556; Krug PJ, 2009, BIOL BULL-US, V216, P355; Krug PJ, 2001, MAR ECOL PROG SER, V213, P177, DOI 10.3354/meps213177; Levitan DR, 2000, AM NAT, V156, P175, DOI 10.1086/303376; LEVITAN DR, 1993, AM NAT, V141, P517, DOI 10.1086/285489; Marshall DJ, 2008, ECOLOGY, V89, P2506, DOI 10.1890/07-0267.1; McEdward L.R., 1988, ECHINODERM PHYLOGENY, P189; McEdward LR, 1997, AM NAT, V150, P48, DOI 10.1086/286056; McEdward LR, 1996, AM ZOOL, V36, P169; Morgan Steven G., 1995, P279; Nager RG, 2000, ECOLOGY, V81, P1339, DOI 10.2307/177212; Pernet B, 2004, BIOL BULL-US, V207, P67, DOI 10.2307/1543629; Podolsky RD, 2004, AM NAT, V163, P735, DOI 10.1086/382791; Podolsky RD, 2001, EVOLUTION, V55, P2470; Roff D. A., 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; RUMRILL SS, 1990, OPHELIA, V32, P163, DOI 10.1080/00785236.1990.10422030; SIMON KA, 1974, MAR BIOL, V25, P335, DOI 10.1007/BF00404976; SINERVO B, 1988, EVOLUTION, V42, P885, DOI 10.1111/j.1558-5646.1988.tb02509.x; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S. C., 1992, EVOLUTION LIFE HIST; Strathmann MF, 1987, REPROD DEV MARINE IN; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; Turner RL, 1979, REPROD ECOLOGY MARIN, P25; VANCE RR, 1973, AM NAT, V107, P339, DOI 10.1086/282838; VANCE RR, 1973, AM NAT, V107, P353, DOI 10.1086/282839; Vaughn D, 2010, INTEGR COMP BIOL, V50, P552, DOI 10.1093/icb/icq037; Vaughn D, 2010, MAR BIOL, V157, P1301, DOI 10.1007/s00227-010-1410-z; VENABLE DL, 1988, AM NAT, V131, P360, DOI 10.1086/284795; WINEMILLER KO, 1993, AM NAT, V142, P585, DOI 10.1086/285559; YOUNG CM, 1987, REPRODUCTION MARINE, V9, P385 52 7 7 0 21 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0022-0981 1879-1697 J EXP MAR BIOL ECOL J. Exp. Mar. Biol. Ecol. JUL 1 2012 422 72 80 10.1016/j.jembe.2012.04.015 9 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 972RV WOS:000306298500010 2018-11-12 J Vendetti, JE; Trowbridge, CD; Krug, PJ Vendetti, Jann E.; Trowbridge, Cynthia D.; Krug, Patrick J. Poecilogony and Population Genetic Structure in Elysia pusilla (Heterobranchia: Sacoglossa), and Reproductive Data for Five Sacoglossans that Express Dimorphisms in Larval Development INTEGRATIVE AND COMPARATIVE BIOLOGY English Article GASTROPOD GENUS ALDERIA; EGG SIZE; MARINE-INVERTEBRATES; DEVELOPMENT PATTERNS; MAXIMUM-LIKELIHOOD; ANIMAL LIFE; OPISTHOBRANCHIA; EVOLUTION; ASCOGLOSSA; STRATEGY Credible cases of poecilogony, the production of two distinct larval morphs within a species, are extremely rare in marine invertebrates, yet peculiarly common in a clade of herbivorous sea slugs, the Sacoglossa. Only five animal species have been reported to express dimorphic egg sizes that result in planktotrophic and lecithotrophic larvae: the spionid polychaete Streblospio benedicti and four sacoglossans distributed in temperate estuaries or the Caribbean. Here, we present developmental and genetic evidence for a fifth case of poecilogony via egg-size dimorphism in the Sacoglossa and the first example from the tropical Indo-Pacific. The sea slug Elysia pusilla produced both planktotrophic and lecithotrophic larvae in Guam and Japan. Levels of genetic divergence within populations were markedly low and rule out cryptic species. However, divergence among populations was exceptionally high (10-12% at the mitochondrial cytochrome c oxidase I locus), illustrating that extensive phylogeographic structure can persist in spite of the dispersal potential of planktotrophic larvae. We review reproductive, developmental, and ecological data for the five known cases of poecilogony in the Sacoglossa, including new data for Costasiella ocellifera from the Caribbean. We hypothesize that sacoglossans achieve lecithotrophy at smaller egg sizes than do related clades of marine heterobranchs, which may facilitate developmental plasticity that is otherwise vanishingly rare among animals. Insight into the environmental drivers and evolutionary results of shifts in larval type will continue to be gleaned from population-level studies of poecilogonous taxa like E. pusilla, and should inform life-history theory about the causes and consequences of alternative development modes in marine animals. [Vendetti, Jann E.; Krug, Patrick J.] Calif State Univ Los Angeles, Dept Biol Sci, Los Angeles, CA 90032 USA; [Trowbridge, Cynthia D.] Oregon Inst Marine Biol, Charleston, OR 97420 USA Vendetti, JE (reprint author), Calif State Univ Los Angeles, Dept Biol Sci, Los Angeles, CA 90032 USA. pkrug@calstatela.edu US National Science Foundation [IOS-1157279, OCE 06-48606, OCE 11-30072, DEB-0817084]; Company of Biologists, Ltd.; American Microscopical Society; Society for Integrative and Comparative Biology; SICB division DEDB; SICB division DEE; SICB division DIZ; NSF [OCE 0095724, PEHS 0550468]; Encyclopedia of Life Organization of the symposium was sponsored by the US National Science Foundation (IOS-1157279), The Company of Biologists, Ltd., the American Microscopical Society, and the Society for Integrative and Comparative Biology, including SICB divisions DEDB, DEE, and DIZ. Special thanks to Joseph R. Pawlik for enabling research in the Bahamas (funded by NSF awards OCE 0095724 and PEHS 0550468 to J.R.P.). This study was supported by awards to P.J.K. from the US National Science Foundation program in Biological Oceanography (OCE 06-48606 and OCE 11-30072) and Systematics (award DEB-0817084). J.E.V. was supported in part by a postdoctoral fellowship from the Encyclopedia of Life. Allen RM, 2009, MAR ECOL PROG SER, V389, P127, DOI 10.3354/meps08157; Baba K., 1956, Publications of the Seto Marine Biological Laboratory, V5, P209; Baba K., 1957, Publications of the Seto Marine Biological Laboratory, V6, P69; BOUCHER LM, 1983, J MOLLUS STUD, V49, P232, DOI 10.1093/oxfordjournals.mollus.a065718; BOUCHET P, 1989, J MOLLUS STUD, V55, P67, DOI 10.1093/mollus/55.1.67; Byrne M, 2006, INTEGR COMP BIOL, V46, P243, DOI 10.1093/icb/icj033; CHIA F-S, 1971, Veliger, V13, P319; Chia FS, 1996, OCEANOL ACTA, V19, P203; CLARK KB, 1984, NAUTILUS, V98, P85; CLARK KB, 1981, INT J INVER REP DEV, V3, P57; CLARK KB, 1978, J MOLLUS STUD, V44, P283; Clark KB, 1979, REPROD ECOLOGY MARIN, P11; Clemens-Seely K, 2011, BIOL BULL-US, V221, P189, DOI 10.1086/BBLv221n2p189; Colgan DJ, 2000, ZOOL SCR, V29, P29, DOI 10.1046/j.1463-6409.2000.00021.x; Collin R, 2004, EVOLUTION, V58, P1488; Collin R, 2012, INTEGR COMP BIOL, V52, P128, DOI 10.1093/icb/ics065; DEFREESE DE, 1983, INT J INVER REP DEV, V6, P1; Douady CJ, 2003, MOL BIOL EVOL, V20, P248, DOI 10.1093/molbev/msg042; Duda TF, 1999, P NATL ACAD SCI USA, V96, P10272, DOI 10.1073/pnas.96.18.10272; Ellingson R. A, 2006, THESIS CALIFORNIA ST; Ellingson RA, 2006, EVOLUTION, V60, P2293; EXCOFFIER L, 1992, GENETICS, V131, P479; Excoffier L, 2005, EVOL BIOINFORM, V1, P47; EYSTER LS, 1979, MAR BIOL, V51, P133, DOI 10.1007/BF00555192; Goddard JHR, 2001, VELIGER, V44, P398; Gosliner Terrence M., 1995, Proceedings of the California Academy of Sciences, V49, P1; HADFIELD MG, 1987, AM MALACOL BULL, V5, P197; Handeler K, 2009, FRONT ZOOL, V6, DOI 10.1186/1742-9994-6-28; Hart M, 2000, SEMIN CELL DEV BIOL, V11, P411, DOI 10.1006/scdb.2000.0194; Hart MW, 1997, EVOLUTION, V51, P1848, DOI 10.1111/j.1558-5646.1997.tb05108.x; Hebert PDN, 2010, BIOL LETTERS, V6, P359, DOI 10.1098/rsbl.2009.0848; Hebert PDN, 2003, P ROY SOC B-BIOL SCI, V270, pS96, DOI 10.1098/rsbl.2003.0025; HOAGLAND KE, 1988, BIOL BULL, V174, P109, DOI 10.2307/1541778; Huelsenbeck JP, 2004, SYST BIOL, V53, P904, DOI 10.1080/1063515049522629; Jeffery CH, 2003, MOL PHYLOGENET EVOL, V28, P99, DOI 10.1016/S1055-7903(03)00030-7; Jensen Kathe R., 2001, Bollettino Malacologico, V37, P81; Jensen Kathe R., 1997, P163; Jensen KR, 1996, PHILOS T ROY SOC B, V351, P91, DOI 10.1098/rstb.1996.0006; Jensen KR, 1990, MARINE FLORA FAUNA A, P297; Klussmann-Kolb A, 2001, ZOOL ANZ, V240, P101, DOI 10.1078/0044-5231-00010; Krug P.J., 2012, INVERTEBR SYST, V25, P477; Krug PJ, 2007, AM MALACOL BULL, V23, P99, DOI 10.4003/0740-2783-23.1.99; Krug PJ, 2007, J MOLLUS STUD, V73, P29, DOI 10.1093/mollus/eyl025; Krug PJ, 2012, INTEGR COMP BIOL, V52, P161, DOI 10.1093/icb/ics059; Krug PJ, 2009, BIOL BULL-US, V216, P355; Krug PJ, 2001, MAR ECOL PROG SER, V213, P177, DOI 10.3354/meps213177; Krug PJ, 1998, MAR BIOL, V132, P483, DOI 10.1007/s002270050414; LEVIN LA, 1991, EVOLUTION, V45, P380, DOI 10.1111/j.1558-5646.1991.tb04412.x; LEVIN LA, 1984, BIOL BULL, V166, P494, DOI 10.2307/1541157; LEVIN LA, 1994, AM ZOOL, V34, P323; MACNAE WILLIAM, 1954, ANN NATAL MUS, V13, P51; MARCUS EDBR, 1980, B MAR SCI, V30, P54; MARIN A, 1993, J MOLLUS STUD, V59, P95, DOI 10.1093/mollus/59.1.95; Marshall DJ, 2003, ADV MAR BIOL, V53, P1; Marshall DJ, 2008, ECOLOGY, V89, P2506, DOI 10.1890/07-0267.1; Meyer CP, 2005, PLOS BIOL, V3, P2229, DOI 10.1371/journal.pbio.0030422; Miles CM, 2002, J MOLLUS STUD, V68, P101, DOI 10.1093/mollus/68.2.101; Pagel M, 2004, SYST BIOL, V53, P571, DOI 10.1080/10635150490468675; Pierce SK, 2009, SYMBIOSIS, V49, P121, DOI 10.1007/s13199-009-0044-8; Posada D, 2008, MOL BIOL EVOL, V25, P1253, DOI 10.1093/molbev/msn083; Schwartz JA, 2010, EVOL BIOL, V37, P29, DOI 10.1007/s11692-010-9079-2; Smolensky N, 2009, BIOL BULL-US, V216, P188; Tamura K, 2011, MOL BIOL EVOL, V28, P2731, DOI 10.1093/molbev/msr121; THOMPSON, 1997, NUCLEIC ACIDS RES, V24, P4876, DOI DOI 10.1093/NAR/25.24.4876; THOMPSON TE, 1967, J MAR BIOL ASSOC UK, V47, P1, DOI 10.1017/S0025315400033518; Trathen D.Y., 2010, THESIS CALIFORNIA ST; Trowbridge CD, 2001, ECOL MONOGR, V71, P219, DOI 10.1890/0012-9615(2001)071[0219:HPCIMS]2.0.CO;2; WEST HH, 1984, VELIGER, V26, P199 68 20 20 4 26 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1540-7063 INTEGR COMP BIOL Integr. Comp. Biol. JUL 2012 52 1 138 150 10.1093/icb/ics077 13 Zoology Zoology 966FP WOS:000305823400013 22659202 Bronze 2018-11-12 J Sgueo, C; Wells, ME; Russell, DE; Schaeffer, PJ Sgueo, Carrie; Wells, Marion E.; Russell, David E.; Schaeffer, Paul J. Acclimatization of seasonal energetics in northern cardinals (Cardinalis cardinalis) through plasticity of metabolic rates and ceilings JOURNAL OF EXPERIMENTAL BIOLOGY English Article seasonal acclimatization; phenotypic plasticity; daily energy expenditure; field metabolic rate; sustained metabolic rate; metabolic ceiling; summit metabolism; muscle oxidative capacity; avian life history DAILY ENERGY-EXPENDITURE; SMALL PASSERINE BIRDS; DOUBLY LABELED WATER; ORGAN SIZE; HEART-RATE; BODY-MASS; OXYGEN-CONSUMPTION; SUMMIT METABOLISM; WINTERING BIRDS; COLD TOLERANCE Northern cardinals (Cardinalis cardinalis) are faced with energetically expensive seasonal challenges that must be met to ensure survival, including thermoregulation in winter and reproductive activities in summer. Contrary to predictions of life history theory that suggest breeding metabolic rate should be the apex of energetic effort, winter metabolism exceeds that during breeding in several temperate resident bird species. By examining whole-animal, tissue and cellular function, we ask whether seasonal acclimatization is accomplished by coordinated phenotypic plasticity of metabolic systems. We measured summit metabolism ((V) over dot(O2,sum)), daily energy expenditure (DEE) and muscle oxidative capacity under both winter (December to January) and breeding (May to June) conditions. We hypothesize that: (1) rates of energy utilization will be highest in the winter, contrary to predictions based on life history theory, and (2) acclimatization of metabolism will occur at multiple levels of organization such that birds operate with a similar metabolic ceiling during different seasons. We measured field metabolic rates using heart rate telemetry and report the first daily patterns in avian field metabolic rate. Patterns of daily energy use differed seasonally, primarily as birds maintain high metabolic rates throughout the winter daylight hours. We found that DEE and (V) over dot(O2,sum) were significantly greater and DEE occurred at a higher fraction of maximum metabolic capacity during winter, indicating an elevation of the metabolic ceiling. Surprisingly, there were no significant differences in mass or oxidative capacity of skeletal muscle. These data, highlighting the importance of examining energetic responses to seasonal challenges at multiple levels, clearly reject life history predictions that breeding is the primary energetic challenge for temperate zone residents. Further, they indicate that metabolic ceilings are seasonally flexible as metabolic effort during winter thermoregulation exceeds that of breeding. [Sgueo, Carrie; Wells, Marion E.; Russell, David E.; Schaeffer, Paul J.] Miami Univ, Dept Zool, Oxford, OH 45056 USA Schaeffer, PJ (reprint author), Miami Univ, Dept Zool, Oxford, OH 45056 USA. schaefpj@muohio.edu Barron DG, 2010, METHODS ECOL EVOL, V1, P180, DOI 10.1111/j.2041-210X.2010.00013.x; Bauchinger U, 2005, ZOOLOGY, V108, P97, DOI 10.1016/j.zool.2005.03.003; Bergstrom BJ, 2008, J AVIAN BIOL, V39, P507, DOI 10.1111/j.2008.0908-8857.03999.x; BEVAN RM, 1995, FUNCT ECOL, V9, P40, DOI 10.2307/2390088; Bisson IA, 2009, P R SOC B, V276, P961, DOI 10.1098/rspb.2008.1277; Brodin A, 2007, PHILOS T R SOC B, V362, P1857, DOI 10.1098/rstb.2006.1812; Butler PJ, 2000, COMP BIOCHEM PHYS A, V126, P379, DOI 10.1016/S1095-6433(00)00221-X; Canterbury G, 2002, ECOLOGY, V83, P946, DOI 10.1890/0012-9658(2002)083[0946:MAACCO]2.0.CO;2; CHI MMY, 1983, AM J PHYSIOL, V244, pC276; COOPER SJ, 1994, CONDOR, V96, P638, DOI 10.2307/1369467; Cooper SJ, 2002, PHYSIOL BIOCHEM ZOOL, V75, P386, DOI 10.1086/342256; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; DAWSON WR, 1983, AM J PHYSIOL, V245, pR755; DeSante D. F., 2009, MAPS MANUAL INSTRUCT; DRENT RH, 1980, ARDEA, V68, P225; Forsman JT, 2003, J BIOGEOGR, V30, P55, DOI 10.1046/j.1365-2699.2003.00812.x; Fox AD, 2008, J AVIAN BIOL, V39, P35, DOI 10.1111/j.2007.0908-8857.04135.x; Froget G, 2001, J EXP BIOL, V204, P2133; Green JA, 2011, COMP BIOCHEM PHYS A, V158, P287, DOI 10.1016/j.cbpa.2010.09.011; Hammond KA, 1997, NATURE, V386, P457, DOI 10.1038/386457a0; Lack D., 1968, ECOLOGICAL ADAPTATIO; Liknes ET, 1996, J AVIAN BIOL, V27, P279, DOI 10.2307/3677259; Liknes ET, 2002, CONDOR, V104, P548, DOI 10.1650/0010-5422(2002)104[0548:SAITAG]2.0.CO;2; Lind J, 2001, P ROY SOC B-BIOL SCI, V268, P1915, DOI 10.1098/rspb.2001.1740; Lindstrom A, 2000, J EXP BIOL, V203, P913; Marsh R.L., 1989, Advances in Comparative and Environmental Physiology, V4, P205; MASMAN D, 1986, ARDEA, V74, P24; MAYER L, 1982, INT J BIOMETEOROL, V26, P231, DOI 10.1007/BF02184939; Murray DL, 2000, METH C CONS, P15; NIH, 1985, NIH PUBL, P86; NOLET BA, 1992, PHYSIOL ZOOL, V65, P1188, DOI 10.1086/physzool.65.6.30158275; O'Connor T. P., 1995, J COMP PHYSIOL B, V165, P298; PETERSON CC, 1990, P NATL ACAD SCI USA, V87, P2324, DOI 10.1073/pnas.87.6.2324; Piersma T, 1997, TRENDS ECOL EVOL, V12, P134, DOI 10.1016/S0169-5347(97)01003-3; PIERSMA T, 1995, J COMP PHYSIOL B, V165, P37, DOI 10.1007/BF00264684; Piersma T, 2002, INTEGR COMP BIOL, V42, P51, DOI 10.1093/icb/42.1.51; Piersma T, 1998, J AVIAN BIOL, V29, P511, DOI 10.2307/3677170; Piersma T, 2010, FLEXIBLE PHENOTYPE; Piersma T, 2011, J EXP BIOL, V214, P295, DOI 10.1242/jeb.046748; REPASKY RR, 1991, ECOLOGY, V72, P2274, DOI 10.2307/1941577; Ricklefs RE, 1996, AM NAT, V147, P1047, DOI 10.1086/285892; ROOT T, 1988, ECOLOGY, V69, P330, DOI 10.2307/1940431; ROSENMANN M, 1974, AM J PHYSIOL, V226, P490; Seewagen CL, 2008, J FIELD ORNITHOL, V79, P80, DOI 10.1111/j.1557-9263.2007.00132.x; Speakman JR, 2011, J EXP BIOL, V214, P230, DOI 10.1242/jeb.048603; Swanson DL, 2010, CURR ORNITHOL, V17, P75, DOI 10.1007/978-1-4419-6421-2_3; Swanson DL, 2009, EVOLUTION, V63, P184, DOI 10.1111/j.1558-5646.2008.00522.x; SWANSON DL, 1991, PHYSIOL ZOOL, V64, P1578, DOI 10.1086/physzool.64.6.30158232; Swanson DL, 1996, J THERM BIOL, V21, P221, DOI 10.1016/0306-4565(96)00005-8; Vezina F, 2006, J EXP BIOL, V209, P3141, DOI 10.1242/jeb.02338; Weathers WW, 1999, AUK, V116, P842, DOI 10.2307/4089348; WEATHERS WW, 1993, PHYSIOL ZOOL, V66, P511, DOI 10.1086/physzool.66.4.30163806; Weimerskirch H, 2002, J EXP BIOL, V205, P475; Zheng WH, 2008, COMP BIOCHEM PHYS A, V151, P519, DOI 10.1016/j.cbpa.2008.07.009 54 17 18 2 49 COMPANY OF BIOLOGISTS LTD CAMBRIDGE BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND 0022-0949 J EXP BIOL J. Exp. Biol. JUL 2012 215 14 2418 2424 10.1242/jeb.061168 7 Biology Life Sciences & Biomedicine - Other Topics 964GT WOS:000305682700013 22723481 Bronze 2018-11-12 J Rushton, JP Rushton, J. Philippe Life history theory and race differences: An appreciation of Richard Lynn's contributions to science PERSONALITY AND INDIVIDUAL DIFFERENCES English Article IQ; Evolution; Brain size; Race differences SOUTH-AFRICA; PROGRESSIVE MATRICES; ENGINEERING STUDENTS; INTELLIGENCE; IQ This essay describes six findings by Richard Lynn that substantially influenced my application of life history theory to human differences. Lynn was the first to observe that while sub-Saharan Africans averaged lower on IQ tests than Europeans, internationally, East Asians averaged higher. Further, he found reaction time measures of intelligence showed the same worldwide pattern. He also found the Black-White IQ differences in Africa are more pronounced on subtests having higher g loadings, just as in the US. He also found national IQ differences predictably aggregated into 10 population groups identified by Cavalli-Sforza, Menzoni, and Piazza (1994). Finally, Lynn proposed cold winters theory to parsimoniously explain why East Asians and Europeans evolved a larger brain and a higher IQ than more southerly populations. (C) 2011 Elsevier Ltd. All rights reserved. Univ Western Ontario, Dept Psychol, London, ON N6A 5C2, Canada Rushton, JP (reprint author), Univ Western Ontario, Dept Psychol, London, ON N6A 5C2, Canada. rushton@uwo.ca BEALS KL, 1984, CURR ANTHROPOL, V25, P301, DOI 10.1086/203138; Cavalli-Scorza LL, 1994, HIST GEOGRAPHY HUMAN; Gould S. J., 1981, MISMEASURE MAN; Jensen A. R., 1973, EDUCABILITY GROUP DI; JENSEN AR, 1969, HARVARD EDUC REV, V39, P1; JENSEN AR, 1998, G FACTOR; LYNN R, 1991, MANKIND QUART, V32, P99; LYNN R, 1991, MANKIND QUART, V31, P255; LYNN R, 1977, B BRIT PSYCHOL SOC, V30, P69; LYNN R, 1982, NATURE, V297, P222, DOI 10.1038/297222a0; LYNN R, 1994, J GEN PSYCHOL, V121, P27, DOI 10.1080/00221309.1994.9711170; Lynn R, 2006, IQ GLOBAL INEQUALITY; Lynn R, 2002, IQ WEALTH NATIONS; Lynn R., 2006, RACE DIFFERENCES INT; Lynn R, 1978, HUMAN VARIATION BIOP, P261; Rushton J. P., 1995, RACE EVOLUTION BEHAV; Rushton JP, 2007, P R SOC B, V274, P1773, DOI 10.1098/rspb.2007.0461; Rushton JP, 2010, PERS INDIV DIFFER, V48, P97, DOI 10.1016/j.paid.2009.07.029; Rushton JP, 2009, INT J NEUROSCI, V119, P691, DOI 10.1080/00207450802325843; Rushton JP, 2004, INT J SELECT ASSESS, V12, P220, DOI 10.1111/j.0965-075X.2004.00276.x; Rushton JP, 2002, INTELLIGENCE, V30, P409; Rushton JP, 2000, INTELLIGENCE, V28, P251, DOI 10.1016/S0160-2896(00)00035-0; RUSHTON JP, 1980, ALTRUISM SOCIALIZATI; SCHULTZ AH, 1923, 2 INT C EUG, V2; Spearman C, 1904, AM J PSYCHOL, V15, P201, DOI 10.2307/1412107; Vernon P. E., 1982, ABILITIES ACHIEVEMEN; Wicherts JM, 2010, PERS INDIV DIFFER, V48, P91, DOI 10.1016/j.paid.2009.05.028; Wilson E.O., 1975, P1 28 5 5 2 13 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. JUL 2012 53 2 SI 85 89 10.1016/j.paid.2011.03.012 5 Psychology, Social Psychology 951TD WOS:000304742000003 2018-11-12 J Rushton, JP; Templer, DI Rushton, J. Philippe; Templer, Donald I. Do pigmentation and the melanocortin system modulate aggression and sexuality in humans as they do in other animals? PERSONALITY AND INDIVIDUAL DIFFERENCES English Review Pigmentation; Skin color; Aggression; Sexual activity; HIV/AIDS; Crime; IQ; Life history theory LIFE-HISTORY TRAITS; SKIN COLOR; RACE DIFFERENCES; K-THEORY; BEHAVIOR; IQ; INCOME; SOCIOBIOLOGY; PERSONALITY; SELECTION Pigmentation of the hair, skin, cuticle, feather and eye is one of the most salient and variable attributes of vertebrates. In many species, melanin-based coloration is found to be pleiotropically linked to behavior. We review animal studies that have found darker pigmented individuals average higher amounts of aggression and sexual activity than lighter pigmented individuals. We hypothesize that similar relationships between pigmentation, aggression, and sexuality occur in humans. We first review the literature on non-human animals and then review some of the correlates of melanin in people, including aggression and sexual activity. Both within human populations (e.g., siblings), and between populations (e.g., races, nations, states), studies find that darker pigmented people average higher levels of aggression and sexual activity (and also lower IQ). We conceptualize skin color as a multigenerational adaptation to differences in climate over the last 70,000 years as a result of "cold winters theory" and the "Out-of-Africa" model of human origins. We propose life history theory to explain the covariation found between human (and non-human) pigmentation and variables such as birth rate, infant mortality, longevity, rate of HIV/AIDS, and violent crime. (C) 2012 Elsevier Ltd. All rights reserved. [Rushton, J. Philippe] Univ Western Ontario, Dept Psychol, London, ON N6A 5C2, Canada; [Templer, Donald I.] Alliant Int Univ, Calif Sch Profess Psychol, Fresno, CA 93704 USA Rushton, JP (reprint author), Univ Western Ontario, Dept Psychol, London, ON N6A 5C2, Canada. Rushton@uwo.ca; donaldtempler@sbcglobal.net BELYAEV DK, 1982, SCI USSR, V5, P60; Biasutti R., 1967, RAZZE T POPELI TERRA; Cavalli-Scorza LL, 1994, HIST GEOGRAPHY HUMAN; Coren S., 2011, PSYCHOL TODAY BLOGS; Ducrest AL, 2008, TRENDS ECOL EVOL, V23, P502, DOI 10.1016/j.tree.2008.06.001; ELLIS L, 1992, STEROIDS, V57, P72, DOI 10.1016/0039-128X(92)90032-5; ELLIS L, 1987, DEVIANT BEHAV, V8, P149, DOI 10.1080/01639625.1987.9967739; Entine J, 2000, TABOO WHY BLACK ATHL; Figueredo AJ, 2009, TWIN RES HUM GENET, V12, P555, DOI 10.1375/twin.12.6.555; Ford CS, 1951, PATTERNS SEXUAL BEHA; Gantz I, 2003, AM J PHYSIOL-ENDOC M, V284, pE468, DOI 10.1152/ajpendo.00434.2002; Home Office, 1999, STAT RAC CRIM JUST S; Jablonski NG, 2000, J HUM EVOL, V39, P57, DOI 10.1006/jhev.2000.0403; Jensen AR, 2006, INTELLIGENCE, V34, P128, DOI 10.1016/j.intell.2005.04.003; Lynn R, 2002, PERS INDIV DIFFER, V32, P273, DOI 10.1016/S0191-8869(01)00029-0; Lynn R, 2006, IQ GLOBAL INEQUALITY; Lynn R, 2002, IQ WEALTH NATIONS; MAC ARTHUR ROBERT H., 1967; Mafli A, 2011, ANIM BEHAV, V81, P859, DOI 10.1016/j.anbehav.2011.01.025; Meisenberg G, 2004, MANKIND QUART, V45, P123; Mendel G., 1866, P NATURAL HIST SOC B; Ontario, 1996, REPORT COMMISSION SY; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Roulin A, 2011, EUR J PHARMACOL, V660, P226, DOI 10.1016/j.ejphar.2011.01.036; ROWE DC, 1994, J RES CRIME DELINQ, V31, P374, DOI 10.1177/0022427894031004002; Rowe DC, 2002, POPUL ENVIRON, V23, P513, DOI 10.1023/A:1016313718644; ROWE DC, 1989, DEV PSYCHOL, V25, P61, DOI 10.1037//0012-1649.25.1.61; Rushton J., 2000, RACE EVOLUTION BEHAV; Rushton J. P., 1995, RACE EVOLUTION BEHAV; Rushton JP, 2009, INTELLIGENCE, V37, P341, DOI 10.1016/j.intell.2009.04.003; RUSHTON JP, 1987, J RES PERS, V21, P529, DOI 10.1016/0092-6566(87)90038-9; Rushton JP, 2005, PSYCHOL PUBLIC POL L, V11, P235, DOI 10.1037/1076-8971.11.2.235; Rushton JP, 2004, INTELLIGENCE, V32, P321, DOI 10.1016/j.intell.2004.06.003; RUSHTON JP, 1988, J RES PERS, V22, P259, DOI 10.1016/0092-6566(88)90029-3; Rushton JP, 2002, POPUL ENVIRON, V23, P501, DOI 10.1023/A:1016335501805; RUSHTON JP, 1987, ACTA GENET MED GEMEL, V36, P289, DOI 10.1017/S0001566000006048; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; SMITH BH, 1989, EVOLUTION, V43, P683, DOI 10.1111/j.1558-5646.1989.tb04266.x; TAYLOR J, 1999, J SOCIAL POLITICAL E, V0024; Templer DI, 2006, INTELLIGENCE, V34, P121, DOI 10.1016/j.intell.2005.04.002; Templer DI, 2008, PERS INDIV DIFFER, V45, P440, DOI 10.1016/j.paid.2008.05.010; Templer DI, 2011, INTELLIGENCE, V39, P437, DOI 10.1016/j.intell.2011.08.001; Templer DI, 2010, PERS INDIV DIFFER, V48, P102, DOI 10.1016/j.paid.2009.08.011; Trut L. N., 1997, RUSS J GENET, V33, p[1156, 983]; Trut LN, 1999, AM SCI, V87, P160, DOI 10.1511/1999.2.160; United States Central Intelligence Agency, 2010, WORLD FACTB; US Centers for Disease Control, 2009, US 2007 MORB MORT WE, V56; Wilson E.O., 1975, P1 48 6 6 2 45 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. JUL 2012 53 1 4 8 10.1016/j.paid.2012.02.015 5 Psychology, Social Psychology 941IV WOS:000303957800001 Other Gold 2018-11-12 J Skjaeraasen, JE; Nash, RDM; Korsbrekke, K; Fonn, M; Nilsen, T; Kennedy, J; Nedreaas, KH; Thorsen, A; Witthames, PR; Geffen, AJ; Hoie, H; Kjesbu, OS Skjaeraasen, Jon Egil; Nash, Richard D. M.; Korsbrekke, Knut; Fonn, Merete; Nilsen, Trygve; Kennedy, James; Nedreaas, Kjell H.; Thorsen, Anders; Witthames, Peter R.; Geffen, Audrey J.; Hoie, Hans; Kjesbu, Olav Sigurd Frequent skipped spawning in the world's largest cod population PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article codfish; population dynamics; reproductive biology; total egg production; stock reproductive potential NORTHEAST ARCTIC COD; GADUS-MORHUA; SPATIAL VARIATION; FISH STOCKS; REPRODUCTION; ENERGY; SIZE; MIGRATION; FECUNDITY; GROWTH Life-history theory suggests that animals may skip reproductive events after initial maturation to maximize lifetime fitness. In iteroparous teleosts, verifying past spawning history is particularly difficult; the degree of skipped spawning at the population level therefore remains unknown. We unequivocally show frequent skipped spawning in Northeast Arctic cod (NEAC) in a massive field and laboratory effort from 2006 to 2008. This was verified by postovulatory follicles in temporarily arrested ovaries close to the putative spawning period. At the population level, "skippers" were estimated to be approximately equally abundant as spawning females in 2008, constituting similar to 24% of the females 60-100 cm. These females never truly started vitellogenesis and principally remained on the feeding grounds when spawners migrated southward, avoiding any migration costs. The proximate cause of skipping seems to be insufficient energy to initiate oocyte development, indicating that skipped spawning may partly be a density-dependent response important in population regulation. Our data also indicate more skipping among smaller females and potential tradeoffs between current and future reproductive effort. We propose that skipped spawning is an integral life-history component for NEAC, likely varying annually, and it could therefore be an underlying factor causing some of the currently unexplained large NEAC recruitment variation. The same may hold for other teleosts. [Skjaeraasen, Jon Egil; Geffen, Audrey J.; Hoie, Hans] Univ Bergen, Dept Biol, N-5020 Bergen, Norway; [Nilsen, Trygve] Univ Bergen, Dept Math, N-5020 Bergen, Norway; [Skjaeraasen, Jon Egil; Nash, Richard D. M.; Korsbrekke, Knut; Fonn, Merete; Nedreaas, Kjell H.; Thorsen, Anders; Kjesbu, Olav Sigurd] Inst Marine Res, N-5817 Bergen, Norway; [Kennedy, James] Moreforskning Alesund, N-5021 Alesund, Norway; [Witthames, Peter R.] Ctr Environm Fisheries & Aquaculture Sci, Lowestoft NR33 0HT, Suffolk, England Skjaeraasen, JE (reprint author), Univ Bergen, Dept Biol, N-5020 Bergen, Norway. jon.skjaeraasen@bio.uib.no Kjesbu, Olav Sigurd/M-3551-2015; Geffen, Audrey/H-4426-2013 Geffen, Audrey/0000-0002-6946-5282; Kennedy, James/0000-0002-5466-2814 Research Council of Norway [173341/S40, 190228] We thank V. Mangerud and B. Njos Strand for laboratory assistance, the crews aboard various commercial fishing and Institute of Marine Research (Norway) research vessels for their effort during sample collection, and C. Jorgensen for comments and feedback during the development of the manuscript. The study was funded by the Research Council of Norway Projects 173341/S40 and 190228. Alexander RM, 2003, PRINCIPLES ANIMAL LO; Amundsen PA, 2007, J ANIM ECOL, V76, P149, DOI 10.1111/j.1365-2656.2006.01179.x; BELL JD, 1992, J FISH BIOL, V40, P107, DOI 10.1111/j.1095-8649.1992.tb02558.x; BERGSTAD OA, 1987, FISH RES, V5, P119, DOI 10.1016/0165-7836(87)90037-3; Burton MPM, 1997, CAN J FISH AQUAT SCI, V54, P122, DOI 10.1139/cjfas-54-S1-122; Cam E, 2000, J ANIM ECOL, V69, P380, DOI 10.1046/j.1365-2656.2000.00400.x; Creighton JC, 2009, AM NAT, V174, P673, DOI 10.1086/605963; Dutil JD, 2000, CAN J FISH AQUAT SCI, V57, P826, DOI 10.1139/cjfas-57-4-826; Godo OR, 2000, FISH RES, V48, P127, DOI 10.1016/S0165-7836(00)00177-6; Hedenstrom A, 2003, J ZOOL, V259, P155, DOI 10.1017/S0952836902003096; Hedenstrom A, 2008, PHILOS T R SOC B, V363, P287, DOI 10.1098/rstb.2007.2140; HOGSTEDT G, 1980, SCIENCE, V210, P1148, DOI 10.1126/science.210.4474.1148; JONSSON N, 1991, J ANIM ECOL, V60, P937, DOI 10.2307/5423; Jorgensen C, 2006, CAN J FISH AQUAT SCI, V63, P200, DOI 10.1139/F05-210; Jorgensen C, 2008, ECOLOGY, V89, P3436, DOI 10.1890/07-1469.1; Kindsvater HK, 2011, J EVOLUTION BIOL, V24, P2230, DOI 10.1111/j.1420-9101.2011.02351.x; Kjesbu OS, 2010, CAN J FISH AQUAT SCI, V67, P605, DOI 10.1139/F10-011; KJESBU OS, 1991, CAN J FISH AQUAT SCI, V48, P2333, DOI 10.1139/f91-274; Marshall CT, 1998, CAN J FISH AQUAT SCI, V55, P1766, DOI 10.1139/cjfas-55-7-1766; Marshall CT, 1999, NATURE, V402, P288, DOI 10.1038/46272; Milton DA, 2005, MAR ECOL PROG SER, V301, P279, DOI 10.3354/meps301279; Mylonas CC, 2007, REV FISH SCI, V15, P183, DOI 10.1080/10641260701484572; Nash RDM, 2010, FISH RES, V104, P89, DOI 10.1016/j.fishres.2010.03.001; Ndjaula HON, 2009, ICES J MAR SCI, V66, P623, DOI 10.1093/icesjms/fsp032; RICKER W. E., 1954, JOUR FISH RES BD CANADA, V11, P559; Rideout RM, 2006, ICES J MAR SCI, V63, P1101, DOI 10.1016/j.icesjms.2006.04.014; Rideout RM, 2006, MAR ECOL PROG SER, V320, P267, DOI 10.3354/meps320267; Rideout RM, 2011, MAR COAST FISH, V3, P176, DOI 10.1080/19425120.2011.556943; Rideout RM, 2005, FISH FISH, V6, P50, DOI 10.1111/j.1467-2679.2005.00174.x; RIJNSDORP AD, 1990, NETH J SEA RES, V25, P279, DOI 10.1016/0077-7579(90)90027-E; Rothschild BJ, 2005, ICES J MAR SCI, V62, P1531, DOI 10.1016/j.icesjms.2005.06.011; Skjaeraasen JE, 2010, MAR ECOL PROG SER, V404, P173, DOI 10.3354/meps08486; Skjaeraasen JE, 2009, CAN J FISH AQUAT SCI, V66, P1582, DOI 10.1139/F09-102; Stevenson IR, 1995, P ROY SOC B-BIOL SCI, V262, P267, DOI 10.1098/rspb.1995.0205; Sundby S, 2008, ICES J MAR SCI, V65, P953, DOI 10.1093/icesjms/fsn085; Thorsen A, 2001, J SEA RES, V46, P295, DOI 10.1016/S1385-1101(01)00090-9; Tyler CR, 1996, REV FISH BIOL FISHER, V6, P287, DOI 10.1007/BF00122584; Ulltang O, 1996, ICES J MAR SCI, V53, P659, DOI 10.1006/jmsc.1996.0086; Utz RM, 2006, CAN J FISH AQUAT SCI, V63, P2675, DOI 10.1139/F06-152; Weber TP, 1998, EVOL ECOL, V12, P377, DOI 10.1023/A:1006560420310; Witthames PR, 2010, FISH RES, V104, P27, DOI 10.1016/j.fishres.2009.11.008; Yaragina NA, 2010, ICES J MAR SCI, V67, P2033, DOI 10.1093/icesjms/fsq059 42 45 45 0 50 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. JUN 5 2012 109 23 8995 8999 10.1073/pnas.1200223109 5 Multidisciplinary Sciences Science & Technology - Other Topics 955BC WOS:000304991100048 22615381 Green Published, Bronze 2018-11-12 J McConnachie, SH; Cook, KV; Patterson, DA; Gilmour, KM; Hinch, SG; Farrell, AP; Cooke, SJ McConnachie, Sarah H.; Cook, Katrina V.; Patterson, David A.; Gilmour, Kathleen M.; Hinch, Scott G.; Farrell, Anthony P.; Cooke, Steven J. Consequences of acute stress and cortisol manipulation on the physiology, behavior, and reproductive outcome of female Pacific salmon on spawning grounds HORMONES AND BEHAVIOR English Article Metyrapone; Cortisol; Pacific salmon; Oncorhynchus gorbuscha; Hormone injections; Reproduction; Behavior; Senescence; Stress RIVER SOCKEYE-SALMON; KRAFT PULP-MILL; ONCORHYNCHUS-GORBUSCHA WALBAUM; HOME-RANGE SIZE; RAINBOW-TROUT; FISH REPRODUCTION; PLASMA-CORTISOL; PINK SALMON; SWIMMING PERFORMANCE; RAPID SENESCENCE Life-history theory predicts that stress responses should be muted to maximize reproductive fitness. Yet, the relationship between stress and reproduction for semelparous salmon is unusual because successfully spawning individuals have elevated plasma cortisol levels. To tease apart the effects of high baseline cortisol levels and stress-induced elevation of cortisol titers, we determined how varying degrees of cortisol elevation (i.e., acute and chronic) affected behavior, reproductive physiology, and reproductive success of adult female pink salmon (Oncorhynchus gorbuscha) relative to different states of ovulation (i.e., ripe and unripe). Exhaustive exercise and air exposure were applied as acute stressors to manipulate plasma cortisol in salmon either confined to a behavioral arena or free-swimming in a spawning channel. Cortisol (eliciting a cortisol elevation to levels similar to those in post-spawn female salmon) and metyrapone (a corticosteroid synthesis inhibitor) implants were also used to chemically manipulate plasma cortisol. Cortisol implants elevated plasma cortisol, and impaired reproductive success; cortisol-treated fish released fewer eggs and died sooner than fish in other treatment groups. In contrast, acute stressors elevated plasma corisol and the metyrapone implant suppressed plasma cortisol, but neither treatment significantly altered reproductive success, behavior, or physiology. Our results suggest that acute stressors do not influence behavior or reproductive outcome when experienced upon arrival at spawning grounds. Thus, certain critical aspects of salmonid reproduction can become refractory to various stressful conditions on spawning grounds. However, there is a limit to the ability of these fish to tolerate elevated cortisol levels as revealed by experimental elevation of cortisol. (C) 2012 Elsevier Inc. All rights reserved. [McConnachie, Sarah H.; Cook, Katrina V.; Cooke, Steven J.] Carleton Univ, Dept Biol, Fish Ecol & Conservat Physiol Lab, Ottawa, ON K1S 5B6, Canada; [Patterson, David A.] Simon Fraser Univ, Sch Resource & Environm Management, Cooperat Resource Management Inst, Fisheries & Oceans Canada,Sci Branch,Fraser Envir, Burnaby, BC V5A 1S6, Canada; [Gilmour, Kathleen M.] Univ Ottawa, Dept Biol, Ottawa, ON K1N 6N5, Canada; [Hinch, Scott G.] Univ British Columbia, Dept Forest Sci, Vancouver, BC V6T 1Z4, Canada; [Hinch, Scott G.] Univ British Columbia, Inst Resources Environm & Sustainabil, Vancouver, BC V6T 1Z4, Canada; [Farrell, Anthony P.] Univ British Columbia, Dept Zool, Vancouver, BC V6T 1Z4, Canada; [Farrell, Anthony P.] Univ British Columbia, Fac Land & Food Syst, Vancouver, BC V6T 1Z4, Canada; [Cooke, Steven J.] Carleton Univ, Inst Environm Sci, Ottawa, ON K1S 5B6, Canada McConnachie, SH (reprint author), Carleton Univ, Dept Biol, Fish Ecol & Conservat Physiol Lab, 1125 Colonel Dr, Ottawa, ON K1S 5B6, Canada. s.h.mcconnachie@gmail.com; katrina.vcook@gmail.com; David.Patterson@dfo-mpo.gc.ca; Kathleen.Gilmour@uottawa.ca; scott.hinch@ubc.ca; farrellt@interchange.ubc.ca; scooke@connect.carleton.ca Cooke, Steven/F-4193-2010 Cooke, Steven/0000-0002-5407-0659 Natural Sciences and Engineering Research Council of Canada; Department of Fisheries and Oceans (Canada) This research was supported by Natural Sciences and Engineering Research Council of Canada Discovery and Strategic grants to S.J.C., S.G.H., A.P.F. and K.M.G. Research was also supported by the Department of Fisheries and Oceans (Canada) Environmental Watch Program led by D.A.P. Field support was provided by Connie O'Connor, Alison Colotelo, Mike Donaldson, Graham Raby, Charlotte Whitney, Kim Hruska, Juliette Mudra and Tim Clark. Jayme Hills and Vanessa Ives conducted plasma analyses. Rick Stitt and the Weaver Creek Spawning Channel staff provided logistical and technical support. Barry TP, 2010, GEN COMP ENDOCR, V165, P53, DOI 10.1016/j.ygcen.2009.06.003; Barton BA, 2002, INTEGR COMP BIOL, V42, P517, DOI 10.1093/icb/42.3.517; Barton BA, 1991, ANN REV FISH DIS, V1, P2; BOONSTRA R, 1998, ECOL MONOGR, V79, P371; Bowron LK, 2009, AQUAT TOXICOL, V95, P117, DOI 10.1016/j.aquatox.2009.08.009; Carruth LL, 2002, INTEGR COMP BIOL, V42, P574, DOI 10.1093/icb/42.3.574; Cook KV, 2011, HORM BEHAV, V60, P489, DOI 10.1016/j.yhbeh.2011.07.017; Cooke SJ, 2006, CAN J FISH AQUAT SCI, V63, P1469, DOI 10.1139/F06-042; DENARDO DF, 1994, HORM BEHAV, V28, P273, DOI 10.1006/hbeh.1994.1023; DENARDO DF, 1994, HORM BEHAV, V28, P53, DOI 10.1006/hbeh.1994.1005; DiBattista JD, 2005, J EXP BIOL, V208, P2707, DOI 10.1242/jeb.01690; Donaldson EM, 1972, GEN COMP ENDOCRINO S, V3, P254; Doyon C, 2006, GEN COMP ENDOCR, V146, P126, DOI 10.1016/j.ygcen.2005.10.003; DYE HM, 1986, J FISH BIOL, V29, P167, DOI 10.1111/j.1095-8649.1986.tb04935.x; Farrell A.P., 2001, CAN J FISH AQUAT SCI, V58, P1931; Farrell AP, 2001, CAN J FISH AQUAT SCI, V58, P2319, DOI 10.1139/cjfas-58-12-2319; GAMPERL AK, 1994, REV FISH BIOL FISHER, V4, P215, DOI 10.1007/BF00044129; Gilmour KM, 2005, INTEGR COMP BIOL, V45, P263, DOI 10.1093/icb/45.2.263; GOETZ FW, 1983, FISH PHYSIOL, V9, P117; Gregory TR, 1999, PHYSIOL BIOCHEM ZOOL, V72, P286, DOI 10.1086/316673; Heard W. R., 1991, PACIFIC SALMON LIFE, P120; Hinch SG, 2006, BEHAV PHYSL FISH FIS, V24; Hinch SG, 2000, T AM FISH SOC, V129, P604, DOI DOI 10.1577/1548-8659(2000)129<0598:E0SSAA>2.0.00:2; Hoogenboom MO, 2011, J FISH BIOL, V79, P587, DOI 10.1111/j.1095-8649.2011.03039.x; HOPKINS TE, 1995, J EXP BIOL, V198, P2229; Hruska KA, 2007, AM FISH S S, V54, P17; Hruska KA, 2010, PHYSIOL BIOCHEM ZOOL, V83, P663, DOI 10.1086/652411; Janz DM, 1997, TOXICOL APPL PHARM, V147, P391, DOI 10.1006/taap.1997.8283; Jardine JJ, 1996, ECOTOX ENVIRON SAFE, V33, P287, DOI 10.1006/eesa.1996.0037; Mathes MT, 2010, CAN J FISH AQUAT SCI, V67, P70, DOI 10.1139/F09-158; MCBRIDE JR, 1986, J FISH BIOL, V29, P153, DOI 10.1111/j.1095-8649.1986.tb04934.x; Mehranvar L, 2004, EVOL ECOL RES, V6, P1167; Milla S, 2009, COMP BIOCHEM PHYS A, V153, P242, DOI 10.1016/j.cbpa.2009.02.027; Milligan CL, 2003, J EXP BIOL, V206, P3167, DOI 10.1242/jeb.00538; Mishra A, 2006, J ENDOCRINOL, V189, P341, DOI 10.1677/joe.1.06686; Mommsen TP, 1999, REV FISH BIOL FISHER, V9, P211, DOI 10.1023/A:1008924418720; Morbey YE, 2005, AM NAT, V166, P556, DOI 10.1086/491720; NEGROVILAR A, 1993, ENVIRON HEALTH PERSP, V101, P59, DOI 10.2307/3431377; PICKERING AD, 1987, GEN COMP ENDOCR, V68, P249, DOI 10.1016/0016-6480(87)90036-0; QUINN TP, 1994, ANIM BEHAV, V48, P751, DOI 10.1006/anbe.1994.1300; Quinn TP, 2000, EVOLUTION, V54, P1372; Rand PS, 2006, T AM FISH SOC, V135, P655, DOI 10.1577/T05-023.1; ROBERTSON OH, 1959, ENDOCRINOLOGY, V65, P225, DOI 10.1210/endo-65-2-225; Rodela TM, 2009, J EXP BIOL, V212, P1849, DOI 10.1242/jeb.026997; Schreck CB, 2010, GEN COMP ENDOCR, V165, P549, DOI 10.1016/j.ygcen.2009.07.004; Schreck CB, 2001, AQUACULTURE, V197, P3, DOI 10.1016/S0044-8486(01)00580-4; Silverin B, 1997, ANIM BEHAV, V53, P451, DOI 10.1006/anbe.1996.0295; STEINBEHRENS BA, 1992, AGING-CLIN EXP RES, V4, P197; Tierney KB, 2009, J FISH BIOL, V75, P1244, DOI 10.1111/j.1095-8649.2009.02360.x; Van Der Kraak G, 1998, SETAC TECH PUBLICAT, P249; Wagner GN, 2005, CAN J FISH AQUAT SCI, V62, P2124, DOI 10.1139/F05-126; Wingfield J.C., 1988, P121; Wingfield JC, 2003, J NEUROENDOCRINOL, V15, P711, DOI 10.1046/j.1365-2826.2003.01033.x; Wingfield JC, 2003, ANIM BEHAV, V66, P807, DOI 10.1006/anbe.2003.2298; Wingfield JC, 1998, AM ZOOL, V38, P191; Young JL, 2006, CAN J FISH AQUAT SCI, V63, P1067, DOI 10.1139/F06-014 56 37 38 0 69 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0018-506X HORM BEHAV Horm. Behav. JUN 2012 62 1 67 76 10.1016/j.yhbeh.2012.05.001 10 Behavioral Sciences; Endocrinology & Metabolism Behavioral Sciences; Endocrinology & Metabolism 966DT WOS:000305818500009 22580596 2018-11-12 J Pernet, B; Amiel, A; Seaver, EC Pernet, Bruno; Amiel, Aldine; Seaver, Elaine C. Effects of maternal investment on larvae and juveniles of the annelid Capitella teleta determined by experimental reduction of embryo energy content INVERTEBRATE BIOLOGY English Article allometric engineering; polychaete; macromere; spiralian development MARINE BENTHIC INVERTEBRATES; EGG SIZE; PARENTAL INVESTMENT; CELL LINEAGE; REPRODUCTIVE STRATEGIES; POSTLARVAL PERFORMANCE; SPIRALIAN DEVELOPMENT; ECHINOID ECHINODERMS; EVOLUTIONARY ECOLOGY; CREPIDULA-FORNICATA Experimental manipulations of the energy content of marine invertebrate embryos have been useful in testing key assumptions of life history theory, especially those concerning relationships between egg size, length of the planktonic period, and juvenile size and quality. However, methods for such allometric engineering experiments have been available for only a limited set of taxa (those with regulative early development, e.g., cnidarians and echinoderms). Here, we describe a method for the reduction of embryo energy content in the spirally cleaving embryos of a marine annelid, Capitella teleta, by targeted deletion of endodermal precursor cells. Embryos of C. teleta in which up to three cells (the macromeres 3A, 3B, and 3C) were deleted formed morphologically normal lecithotrophic larvae that were much smaller than larvae developing from control embryos. Experimental larvae metamorphosed at high rates, forming juveniles that were smaller than control juveniles. Juveniles derived from treated embryos had functional midguts, ingested and digested food, and grew into sexually mature adults. These results are consistent with those from previous allometric engineering studies of echinoid echinoderms, which suggest that in facultatively planktotrophic or lecithotrophic species, little maternally derived energy is used for construction of the larval body; instead, the majority is allocated to the formation of a large, high-quality juvenile. Cleavage programs are highly conserved among divergent spiralian taxa (e.g., molluscs, nemerteans, and platyhelminths), so this method will likely be applicable to a diverse set of embryos. Similar experiments carried out in these diverse taxa will be extremely useful for evaluating inferences on relationships between egg size, length of the planktonic period, and juvenile size and quality previously based only on experiments on echinoid echinoderms. [Pernet, Bruno] Calif State Univ Long Beach, Dept Biol Sci, Long Beach, CA 90840 USA; [Amiel, Aldine; Seaver, Elaine C.] Univ Hawaii, Kewalo Marine Lab, Pacific Biosci Res Ctr, Honolulu, HI 96813 USA Pernet, B (reprint author), Calif State Univ Long Beach, Dept Biol Sci, Long Beach, CA 90840 USA. bruno.pernet@csulb.edu Pernet, Bruno/0000-0002-6200-5654 CSU Long Beach; EMBO; NSF [IOS 09-23754] We thank E. Yamaguchi and Dr. Y. Passamaneck for advice and assistance during laboratory work and Dr. J. Henry for advice on the use of the XY-Clone deletion system. Dr. A. Moran served as an external guest editor for this manuscript, and we thank her and two anonymous reviewers for their helpful comments. B. P. thanks the director and staff of Kewalo Marine Laboratory for providing facilities and support during a sabbatical visit. This work was supported in part by a sabbatical award from CSU Long Beach (to B. P.), by an EMBO Long-Term Fellowship (to A. A.), and by NSF grant IOS 09-23754 (to E.C.S.). Alcorn NJ, 2009, EVOL DEV, V11, P719, DOI 10.1111/j.1525-142X.2009.00379.x; Allen JD, 2006, J EXP MAR BIOL ECOL, V331, P186, DOI 10.1016/j.jembe.2005.10.020; Allen JD, 2008, BIOL BULL-US, V214, P42, DOI 10.2307/25066658; BERNARDO J, 1991, TRENDS ECOL EVOL, V6, P1, DOI 10.1016/0169-5347(91)90137-M; Bernardo J, 1996, AM ZOOL, V36, P216; Bertram DF, 2009, EVOL DEV, V11, P728, DOI 10.1111/j.1525-142X.2009.00380.x; BORING L, 1989, DEV BIOL, V136, P239, DOI 10.1016/0012-1606(89)90145-0; CATHER JN, 1979, ROUX ARCH DEV BIOL, V187, P355, DOI 10.1007/BF00848469; CHRISTIANSEN FB, 1979, THEOR POPUL BIOL, V16, P267, DOI 10.1016/0040-5809(79)90017-0; CLEMENT AC, 1962, J EXP ZOOL, V149, P193, DOI 10.1002/jez.1401490304; Cohen RA, 1999, J EXP MAR BIOL ECOL, V240, P1, DOI 10.1016/S0022-0981(99)00047-7; COSTELLO DP, 1945, J EXP ZOOL, V100, P19, DOI 10.1002/jez.1401000103; COSTELLO DP, 1976, AM ZOOL, V16, P277; Emlet R.B., 1987, Echinoderm Studies, V2, P55; Emlet RB, 1997, EVOLUTION, V51, P141, DOI 10.1111/j.1558-5646.1997.tb02395.x; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Gosliner Terrence M., 2006, Proceedings of the California Academy of Sciences, V57, P1003; HART MW, 1995, AM NAT, V146, P415, DOI 10.1086/285807; Hejnol A, 2007, DEV BIOL, V305, P63, DOI 10.1016/j.ydbio.2007.01.044; Henry JJ, 1998, DEV BIOL, V201, P253, DOI 10.1006/dbio.1998.8966; Henry JJ, 1999, HYDROBIOLOGIA, V402, P255, DOI 10.1023/A:1003756912738; Henry JQ, 2006, DEV BIOL, V297, P295, DOI 10.1016/j.ydbio.2006.04.441; Henry JQ, 2004, DEV BIOL, V272, P145, DOI 10.1016/j.ybdio.2004.04.027; Heyward AJ, 2012, SCIENCE, V335, P1064, DOI 10.1126/science.1216055; HORSTADIUS S, 1973, EXPT EMBRYOLOGY ECHI; Jaeckle William B., 1995, P49; KEMPF SC, 1985, BIOL BULL-US, V169, P119, DOI 10.2307/1541392; KOHN AJ, 1994, LIFE HIST BIOGEOGRAP; Krist M, 2011, BIOL REV, V86, P692, DOI 10.1111/j.1469-185X.2010.00166.x; Krug PJ, 2007, AM MALACOL BULL, V23, P99, DOI 10.4003/0740-2783-23.1.99; Levin Lisa A., 1995, P1; Levitan DR, 2000, AM NAT, V156, P175, DOI 10.1086/303376; Lillie F. R., 1898, Biological Lectures Wood's Hole, P43; Marshall DJ, 2008, ADV MAR BIOL, V53, P1, DOI 10.1016/S0065-2881(07)53001-4; MARTINDALE MQ, 1986, INT J INVER REP DEV, V9, P229, DOI 10.1080/01688170.1986.10510198; McAlister JS, 2007, J EXP MAR BIOL ECOL, V352, P306, DOI 10.1016/j.jembe.2007.08.009; McEdward LR, 2006, INTEGR COMP BIOL, V46, P224, DOI 10.1093/icb/icj026; McEdward LR, 1997, AM NAT, V150, P48, DOI 10.1086/286056; McEdward LR, 1997, BIOL J LINN SOC, V60, P381; McEdward LR, 1996, AM ZOOL, V36, P169; McEdward LR, 2001, BIOL BULL, V200, P33, DOI 10.2307/1543083; Meyer NP, 2010, INTEGR COMP BIOL, V50, P756, DOI 10.1093/icb/icq120; Meyer NP, 2010, EVODEVO, V1, DOI 10.1186/2041-9139-1-8; Moran AL, 2007, BIOL BULL-US, V212, P143, DOI 10.2307/25066591; Moreno G, 1999, J EXP MAR BIOL ECOL, V235, P1, DOI 10.1016/S0022-0981(98)00031-8; Pernet B, 2006, MAR BIOL, V149, P803, DOI 10.1007/s00227-006-0266-8; Pernet B, 2004, BIOL BULL-US, V207, P67, DOI 10.2307/1543629; Prowse TAA, 2008, MAR BIOL, V153, P337, DOI 10.1007/s00227-007-0809-7; Render J, 1997, DEV BIOL, V189, P301, DOI 10.1006/dbio.1997.8654; Roff D. A., 2001, LIFE HIST EVOLUTION; SCHNEIDER S, 1992, ROUX ARCH DEV BIOL, V201, P243, DOI 10.1007/BF00188755; Seaver EC, 2005, EVOL DEV, V7, P312, DOI 10.1111/j.1525-142X.2005.05037.x; Sewell MA, 2001, ECHINODERMS 2000, P55; SINERVO B, 1990, SCIENCE, V248, P1106, DOI 10.1126/science.248.4959.1106; SINERVO B, 1988, EVOLUTION, V42, P885, DOI 10.1111/j.1558-5646.1988.tb02509.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; SYMES K, 1992, DEV BIOL, V150, P203, DOI 10.1016/0012-1606(92)90019-D; VANCE RR, 1973, AM NAT, V107, P339, DOI 10.1086/282838; Wilson EB, 1904, SCIENCE, V20, P748, DOI 10.1126/science.20.518.748 60 8 8 1 27 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1077-8306 1744-7410 INVERTEBR BIOL Invertebr. Biol. JUN 2012 131 2 82 95 10.1111/j.1744-7410.2012.00263.x 14 Marine & Freshwater Biology; Zoology Marine & Freshwater Biology; Zoology 956ZY WOS:000305129400002 2018-11-12 J Fisher, ML; Salmon, C Fisher, Maryanne L.; Salmon, Catherine Human Nature and Pop Culture INTRODUCTION REVIEW OF GENERAL PSYCHOLOGY English Editorial Material LIFE-HISTORY THEORY; POPULAR-CULTURE; EVOLUTIONARY PSYCHOLOGY; SEX-DIFFERENCES; STRATEGY; PERSONALITY [Fisher, Maryanne L.] St Marys Univ, Dept Psychol, Halifax, NS B3H 3C3, Canada; [Salmon, Catherine] Univ Redlands, Dept Psychol, Redlands, CA 92373 USA Fisher, ML (reprint author), St Marys Univ, Dept Psychol, Halifax, NS B3H 3C3, Canada. mlfisher@smu.ca Fisher, Maryanne/0000-0002-7804-8544 Barkow JH, 2012, REV GEN PSYCHOL, V16, P121, DOI 10.1037/a0027907; BOGAERT AF, 1989, PERS INDIV DIFFER, V10, P1071, DOI 10.1016/0191-8869(89)90259-6; Brown DE, 1991, HUMAN UNIVERSALS; Burnham T., 2000, MEAN GENES SEX MONEY; Buss D. M., 2011, EVOLUTIONARY PSYCHOL; Buss DM, 2009, PERSPECT PSYCHOL SCI, V4, P359, DOI 10.1111/j.1745-6924.2009.01138.x; Carmen RA, 2012, REV GEN PSYCHOL, V16, P134, DOI 10.1037/a0027908; Carroll J., 2005, LIT ANIMAL, P197; Carroll J, 1995, EVOLUTION LIT THEORY; Carroll Joseph, 2010, EVOLUTION LIT FILM R, P211; Clasen M, 2012, REV GEN PSYCHOL, V16, P222, DOI 10.1037/a0027918; COSMIDES L, 1989, COGNITION, V31, P187, DOI 10.1016/0010-0277(89)90023-1; Cosmides L, 2010, P NATL ACAD SCI USA, V107, P9007, DOI 10.1073/pnas.0914623107; Crosier BS, 2012, REV GEN PSYCHOL, V16, P230, DOI 10.1037/a0027919; De Backer CJS, 2012, REV GEN PSYCHOL, V16, P144, DOI 10.1037/a0027909; Dissanayake E., 1992, HOMO AESTHETICUS ART; Dutton D, 2009, ART INSTINCT BEAUTY; Figueredo AJ, 2005, HDB EVOLUTIONARY PSY, P851; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Fisher M., EVOLUTIONAR IN PRESS; Fisher ML, 2012, REV GEN PSYCHOL, V16, P200, DOI 10.1037/a0027915; FISKE J, 1989, READING POPULAR; Flesch William, 2007, COMEUPPANCE COSTLY S; Garcia JR, 2012, REV GEN PSYCHOL, V16, P161, DOI 10.1037/a0027911; Glynn K., 2010, UNDERSTANDING POPULA, pxxxix; Gottschall J, 2008, RAPE OF TROY: EVOLUTION, VIOLENCE, AND THE WORLD OF HOMER, P1; Gottschall J, 2004, EVOL HUM BEHAV, V25, P102, DOI 10.1016/S1090-5138(04)00007-8; Gottschall J., 2005, LIT ANIMAL; Grodal T., 2009, ENTBODIED VISIONS EV; Ingalls V, 2012, REV GEN PSYCHOL, V16, P208, DOI 10.1037/a0027917; Jonason PK, 2012, REV GEN PSYCHOL, V16, P192, DOI 10.1037/a0027914; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; Kuhle BX, 2012, REV GEN PSYCHOL, V16, P177, DOI 10.1037/a0027912; Kurzban R, 2012, REV GEN PSYCHOL, V16, P187, DOI 10.1037/a0027913; Saad G., 2007, EVOLUTIONARY BASES C; Saad G, 2012, REV GEN PSYCHOL, V16, P109, DOI 10.1037/a0027906; Salmon C, 2004, J SEX RES, V41, P94, DOI 10.1080/00224490409552217; Salmon C, 2012, REV GEN PSYCHOL, V16, P152, DOI 10.1037/a0027910; Salmon C, 2009, EVOL PSYCHOL-US, V7, P585; Stearns S. C., 1992, EVOLUTION LIFE HIST; Strout S., 2010, J SOCIAL EVOLUTIONAR, V4, P317; Sugiyama MS, 1996, HUM NATURE-INT BIOS, V7, P403, DOI 10.1007/BF02732901; Tooby J, 2001, SUB-STANCE, P6 43 2 2 0 9 EDUCATIONAL PUBLISHING FOUNDATION-AMERICAN PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST, NE, WASHINGTON, DC 20002-4242 USA 1089-2680 1939-1552 REV GEN PSYCHOL Rev. Gen. Psychol. JUN 2012 16 2 SI 104 108 10.1037/a0027905 5 Psychology, Multidisciplinary Psychology 957LP WOS:000305164800002 2018-11-12 J Jonason, PK; Webster, GD; Schmitt, DP; Li, NP; Crysel, L Jonason, Peter K.; Webster, Gregory D.; Schmitt, David P.; Li, Norman P.; Crysel, Laura The Antihero in Popular Culture: Life History Theory and the Dark Triad Personality Traits REVIEW OF GENERAL PSYCHOLOGY English Article Dark Triad; narcissism; Machiavellianism; psychopathy; Life History Theory TERM MATING STRATEGY; SELF-ESTEEM; EMOTIONAL INTELLIGENCE; INDIVIDUAL-DIFFERENCES; REPRODUCTIVE STRATEGY; MACHIAVELLIANISM; PSYCHOPATHY; NARCISSISM; AGGRESSION; SUBTYPES The Dark Triad of personality is composed of narcissism, psychopathy, and Machiavellianism. Despite the common belief that these traits are undesirable, the media is awash with characters that embody the Dark Triad. Characters like Gregory House, M.D., Batman (a.k.a. the Dark Knight), and James Bond all embody these traits and are some of the most popular media franchises today. As entertaining as these characters are, they provide us with a window into the dark side of human nature. Instead of treating the dark side of human nature as inherently maladaptive, we provide an alternative view that, despite their costs, traits like these can confer reproductive and survival benefits for the individual. In so doing, we review the research on the Dark Triad traits and provide a theoretical account for how these traits can confer some positive benefits. To facilitate comprehension, we provide examples taken from the media to show how evolutionary psychology and popular culture intersect. [Jonason, Peter K.] Univ Western Sydney, Sch Social Sci & Psychol, Penrith, NSW 2751, Australia; [Webster, Gregory D.; Crysel, Laura] Univ Florida, Dept Psychol, Gainesville, FL 32611 USA; [Schmitt, David P.] Bradley Univ, Dept Psychol, Peoria, IL 61625 USA; [Li, Norman P.] Singapore Management Univ, Univ Singapore, Sch Social Sci, Singapore, Singapore Jonason, PK (reprint author), Univ Western Sydney, Sch Social Sci & Psychol, Locked Bag 1797, Penrith, NSW 2751, Australia. p.jonason@uws.edu.au LI, Norman/F-9075-2010 LI, Norman/0000-0002-0318-1359; Li, Norman/0000-0002-4059-1613 Ali F, 2009, PERS INDIV DIFFER, V47, P758, DOI 10.1016/j.paid.2009.06.016; ARDREY R, 1970, SOCIAL CONTRACT; Austin EJ, 2007, PERS INDIV DIFFER, V43, P179, DOI 10.1016/j.paid.2006.11.019; Barlow A, 2010, PERS INDIV DIFFER, V48, P78, DOI 10.1016/j.paid.2009.08.021; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Brown SL, 1997, J CONSULT CLIN PSYCH, V65, P848, DOI 10.1037//0022-006X.65.5.848; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Bushman BJ, 1998, J PERS SOC PSYCHOL, V75, P219, DOI 10.1037//0022-3514.75.1.219; Buss DM, 2009, PERSPECT PSYCHOL SCI, V4, P359, DOI 10.1111/j.1745-6924.2009.01138.x; Byrne R. W., 1988, MACHIAVELLIAN INTELL; Cale EM, 2002, CLIN PSYCHOL REV, V22, P1179, DOI 10.1016/S0272-7358(01)00125-8; Campbell W. K, 2011, HDB NARCISSISM NARCI; Campbell WK, 2005, PERS SOC PSYCHOL B, V31, P1358, DOI 10.1177/0146167205274855; CHRISTIE R, 1970, STUDIES MACHIAVELLIA; CLECKLEY H, 1964, MASK SANITY; Daly M, 2005, Q REV BIOL, V80, P55, DOI 10.1086/431025; DAWKINS R, 1978, SELFISH GENE; DeWall CN, 2011, PSYCHOL AESTHET CREA, V5, P200, DOI 10.1037/a0023195; Donnellan MB, 2009, J RES PERS, V43, P498, DOI 10.1016/j.jrp.2008.12.010; Falkenbach D, 2007, ASSESSMENT, V14, P341, DOI 10.1177/1073191107305612; FEHR B, 1992, ADV PERS AS, V9, P77; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; GHOSH D, 1995, J BUS ETHICS, V14, P353, DOI 10.1007/BF00872098; Gladden PR, 2009, PERS INDIV DIFFER, V46, P270, DOI 10.1016/j.paid.2008.10.010; Gunnthorsdottir A, 2002, J ECON PSYCHOL, V23, P49, DOI 10.1016/S0167-4870(01)00067-8; GUSTAFSON SB, 1995, EUR J PERSONALITY, V9, P147, DOI 10.1002/per.2410090302; Hare R. D., 1993, CONSCIENCE DISTURBIN; HARRELL WA, 1980, SOC BEHAV PERSONAL, V8, P217, DOI 10.2224/sbp.1980.8.2.217; Hicks BM, 2004, PSYCHOL ASSESSMENT, V16, P276, DOI 10.1037/1040-3590.16.3.276; Hugo Victor, 1862, MISERABLES; Jakobwitz S, 2006, PERS INDIV DIFFER, V40, P331, DOI 10.1016/j.paid.2005.07.006; Jonason P. K., 2010, INDIVIDUAL DIFFERENC, V8, P111; Jonason PK, 2011, PERS INDIV DIFFER, V51, P759, DOI 10.1016/j.paid.2011.06.025; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2010, PERS INDIV DIFFER, V49, P611, DOI 10.1016/j.paid.2010.05.031; Jonason PK, 2010, PSYCHOL ASSESSMENT, V22, P420, DOI 10.1037/a0019265; Jonason PK, 2010, PERS INDIV DIFFER, V48, P373, DOI 10.1016/j.paid.2009.11.003; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jones D.N., 2009, HDB INDIVIDUAL DIFFE, P93; Jones DN, 2011, PERS INDIV DIFFER, V51, P679, DOI 10.1016/j.paid.2011.04.011; Jones DN, 2010, SOC PSYCHOL PERS SCI, V1, P12, DOI 10.1177/1948550609347591; Jones GE, 1996, J BUS ETHICS, V15, P511, DOI 10.1007/BF00381927; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; Kashy DA, 1996, J PERS SOC PSYCHOL, V70, P1037, DOI 10.1037/0022-3514.70.5.1037; Kowalski R. M., 2001, BEHAV BADLY AVERSIVE, DOI [10.1037/10365-000, DOI 10.1037/10365-000]; Kruger DJ, 2003, HUM NATURE-INT BIOS, V14, P305, DOI 10.1007/s12110-003-1008-y; Lee KB, 2005, PERS INDIV DIFFER, V38, P1571, DOI 10.1016/j.paid.2004.09.016; Liu CC, 2008, J BUS PSYCHOL, V22, P233, DOI 10.1007/s10869-008-9065-1; Lykken D. T., 2006, HDB PSYCHOPATHY, P3; Machiavelli Niccolo, 2003, PRINCE; MCHOSKEY J, 1995, PSYCHOL REP, V77, P755, DOI 10.2466/pr0.1995.77.3.755; McHoskey JW, 2001, PERS INDIV DIFFER, V31, P779, DOI 10.1016/S0191-8869(00)00180-X; McHoskey JW, 1999, MOTIV EMOTION, V23, P267, DOI 10.1023/A:1021338809469; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; Miller JD, 2010, J PERS, V78, P1529, DOI 10.1111/j.1467-6494.2010.00660.x; Moffitt TE, 2001, DEV PSYCHOPATHOL, V13, P355, DOI 10.1017/S0954579401002097; Nathanson C, 2006, J RES PERS, V40, P779, DOI 10.1016/j.jrp.2005.09.002; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; Paulhus DL, 2001, PSYCHOL INQ, V12, P228; Rushton J. P., 1995, RACE EVOLUTION BEHAV; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; RYCKMAN RM, 1994, J PERS ASSESS, V62, P84, DOI 10.1207/s15327752jpa6201_8; Sakalaki M, 2007, J APPL SOC PSYCHOL, V37, P1181, DOI 10.1111/j.1559-1816.2007.00208.x; Schmitt DP, 2011, NATL SYMP FAM ISS, P161, DOI 10.1007/978-1-4419-7361-0_11; Schmitt DP, 2005, BEHAV BRAIN SCI, V28, P247, DOI 10.1017/S0140525X05000051; SHULTZ CJ, 1993, J APPL SOC PSYCHOL, V23, P478, DOI 10.1111/j.1559-1816.1993.tb01099.x; SINGHAPAKDI A, 1991, J ACADEMY MARKETING, V19, P37, DOI DOI 10.1007/BF02723422; SNYDER M, 1974, J PERS SOC PSYCHOL, V30, P526, DOI 10.1037/h0037039; Sparks J. R., 1994, J ACAD MARKET SCI, V22, P393, DOI DOI 10.1177/0092070394224008; Stalenheim EG, 1998, PSYCHIAT RES, V77, P79, DOI 10.1016/S0165-1781(97)00143-1; Thornhill R, 2004, EVOLUTIONARY PSYCHOLOGY, PUBLIC POLICY AND PERSONAL DECISIONS, P249; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Troisi A, 2005, NEUROSCI BIOBEHAV R, V29, P159, DOI 10.1016/j.neubiorev.2004.06.012; Trzesniewski KH, 2008, PSYCHOL SCI, V19, P181, DOI 10.1111/j.1467-9280.2008.02065.x; TURNER CF, 1977, SOCIOMETRY, V40, P325, DOI 10.2307/3033481; Twenge JM, 2008, J PERS, V76, P875, DOI 10.1111/j.1467-6494.2008.00507.x; Twenge JM, 2010, SOC PSYCHOL PERS SCI, V1, P99, DOI 10.1177/1948550609355719; Twenge JM, 2009, LIVING AGE ENTITLEME; van Honk Jack, 2006, Cogn Neuropsychiatry, V11, P285, DOI 10.1080/13546800500233728; Vazire S, 2006, PERS SOC PSYCHOL REV, V10, P154, DOI 10.1207/s15327957pspr1002_4; VECCHIO RP, 1991, J ORGAN BEHAV, V12, P73, DOI 10.1002/job.4030120107; Vernon PA, 2008, PERS INDIV DIFFER, V44, P445, DOI 10.1016/j.paid.2007.09.007; Webster GD, 2007, SELF IDENTITY, V6, P74, DOI 10.1080/15298860600920488; Wilson E.O., 1975, P1; Zeigler-Hill V, 2008, J PERS, V76, P753, DOI 10.1111/j.1467-6494.2008.00503.x 86 81 84 2 100 EDUCATIONAL PUBLISHING FOUNDATION-AMERICAN PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST, NE, WASHINGTON, DC 20002-4242 USA 1089-2680 1939-1552 REV GEN PSYCHOL Rev. Gen. Psychol. JUN 2012 16 2 SI 192 199 10.1037/a0027914 8 Psychology, Multidisciplinary Psychology 957LP WOS:000305164800011 2018-11-12 J Ardia, DR; Gantz, JE; Schneider, BC; Strebel, S Ardia, Daniel R.; Gantz, Jacob E.; Schneider, Brent C.; Strebel, Stefanie Costs of immunity in insects: an induced immune response increases metabolic rate and decreases antimicrobial activity FUNCTIONAL ECOLOGY English Article costs of immunity; encapsulation; life-history trade-offs; lysozyme; metabolic rate; phenoloxidase; wounding LIFE-HISTORY TRAITS; TRADE-OFFS; EVOLUTIONARY ECOLOGY; GRYLLUS-BIMACULATUS; EPIRRITA-AUTUMNATA; TENEBRIO-MOLITOR; DEVELOPMENT TIME; FIELD CRICKET; LYSOZYME; DEFENSE 1. Life-history theory predicts that immune responses have evolved in the context of costs and benefits. However, our understanding of the costs of mounting an immune response is limited. 2. Using four species of insects, we tested for metabolic costs of immunity by inducing a short-term immune response and/or wounding and measuring CO2 production. Inducing an encapsulation response and/or wounding raised resting metabolic rate by up to 28% with a strong positive correlation between individual encapsulation response and metabolic rate in Tenebrio molitor, Acheta domesticus, Cotinis nitida and Periplaneta americana. Interestingly, we found that haemolymph removal increased metabolic activity relative to only wounding, suggesting a cost to sampling haemolymph. 3. We also tested for how mounting an encapsulation response and/or wounding would affect other immune components. We found that inducing an encapsulation response led to increased levels of phenoloxidase and decreased levels of lysozyme, an antimicrobial protein. 4. Our results support the growing evidence that immune responses entail specific energetic and corresponding physiological costs. [Ardia, Daniel R.; Gantz, Jacob E.; Schneider, Brent C.; Strebel, Stefanie] Franklin & Marshall Coll, Dept Biol, Lancaster, PA 17604 USA Ardia, DR (reprint author), Franklin & Marshall Coll, Dept Biol, Lancaster, PA 17604 USA. daniel.ardia@fandm.edu Hackman Scholars Fund We thank Shelley Adamo and Mike Siva-Jothy for assistance with immune assays, Barbara Joos, John Lighton and Robbin Turner of Sable Systems for assistance with measuring metabolic rate, and James Engelman for assistance with insect care. We thank Lynn Martin and four reviewers for helpful comments on this work. This study was supported by the Hackman Scholars Fund. We have no conflicts of interest associated with this work. Adamo SA, 2008, J EXP BIOL, V211, P531, DOI 10.1242/jeb.013136; Adamo SA, 2004, J INSECT PHYSIOL, V50, P209, DOI 10.1016/j.jinsphys.2003.11.011; Ardia DR, 2011, FUNCT ECOL, V25, P61, DOI 10.1111/j.1365-2435.2010.01759.x; Armitage SAO, 2005, HEREDITY, V94, P650, DOI 10.1038/sj.hdy.6800675; Cotter SC, 2008, J EVOLUTION BIOL, V21, P1744, DOI 10.1111/j.1420-9101.2008.01587.x; Cotter SC, 2004, J EVOLUTION BIOL, V17, P421, DOI 10.1046/j.1420-9101.2003.00655.x; da Silva CCA, 2000, J INVERTEBR PATHOL, V76, P285, DOI 10.1006/jipa.2000.4975; Demas GE, 2011, FUNCT ECOL, V25, P29, DOI 10.1111/j.1365-2435.2010.01738.x; Fellowes MDE, 2000, HEREDITY, V84, P1, DOI 10.1046/j.1365-2540.2000.00685.x; Freitak D, 2003, P ROY SOC B-BIOL SCI, V270, pS220, DOI 10.1098/rsbl.2003.0069; Gillespie JP, 1997, ANNU REV ENTOMOL, V42, P611, DOI 10.1146/annurev.ento.42.1.611; Han YS, 1999, DEV COMP IMMUNOL, V23, P553, DOI 10.1016/S0145-305X(99)00047-6; HAYES JP, 1992, PHYSIOL ZOOL, V65, P604, DOI 10.1086/physzool.65.3.30157972; Kan H, 2008, J BIOL CHEM, V283, P25316, DOI 10.1074/jbc.M804364200; Lambrechts L, 2004, EVOLUTION, V58, P2377; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Martin LB, 2008, PHILOS T R SOC B, V363, P321, DOI 10.1098/rstb.2007.2142; Moret Y, 2001, NATURE, V414, P506, DOI 10.1038/35107138; Moret Y, 2003, P ROY SOC B-BIOL SCI, V270, P2475, DOI 10.1098/rspb.2003.2511; Morishima I, 1995, DEV COMP IMMUNOL, V19, P357, DOI 10.1016/0145-305X(95)00019-P; Park JW, 2006, J BIOL CHEM, V281, P7747, DOI 10.1074/jbc.M510058200; Poulsen M, 2002, BEHAV ECOL SOCIOBIOL, V52, P151, DOI 10.1007/s00265-002-0489-8; Rantala MJ, 2007, HEREDITY, V98, P329, DOI 10.1038/sj.hdy.6800945; Rantala MJ, 2003, P ROY SOC B-BIOL SCI, V270, P2257, DOI 10.1098/rspb.2003.2472; Rantala MJ, 2003, BIOL J LINN SOC, V79, P503, DOI 10.1046/j.1095-8312.2003.00202.x; Rantala MJ, 2006, J EVOLUTION BIOL, V19, P834, DOI 10.1111/j.1420-9101.2005.01048.x; Rantala MJ, 2005, FUNCT ECOL, V19, P323, DOI 10.1111/j.1365-2435.2005.00979.x; Rao XJ, 2010, DEV COMP IMMUNOL, V34, P264, DOI 10.1016/j.dci.2009.10.004; Rolff J, 2003, SCIENCE, V301, P472, DOI 10.1126/science.1080623; Schmid-Hempel P, 2005, ANNU REV ENTOMOL, V50, P529, DOI 10.1146/annurev.ento.50.071803.130420; Siva-Jothy MT, 2005, ADV INSECT PHYSIOL, V32, P1, DOI 10.1016/S0065-2806(05)32001-7; Smilanich AM, 2009, ECOLOGY, V90, P1434, DOI 10.1890/08-1906.1; Strand MR, 2008, INSECT SCI, V15, P1, DOI 10.1111/j.1744-7917.2008.00183.x; Vilmos P, 1998, IMMUNOL LETT, V62, P59, DOI 10.1016/S0165-2478(98)00023-6; Whiting MF, 1997, SYST BIOL, V46, P1, DOI 10.1093/sysbio/46.1.1; Yang SY, 2007, ANN ZOOL FENN, V44, P89; Zhang Y, 2009, ARCH INSECT BIOCHEM, V70, P18, DOI 10.1002/arch.20258 37 71 72 1 98 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 FUNCT ECOL Funct. Ecol. JUN 2012 26 3 732 739 10.1111/j.1365-2435.2012.01989.x 8 Ecology Environmental Sciences & Ecology 945EV WOS:000304256500020 Bronze 2018-11-12 J Oldakowski, L; Piotrowska, Z; Chrzascik, KM; Sadowska, ET; Koteja, P; Taylor, JRE Oldakowski, Lukasz; Piotrowska, Zaneta; Chrzascik, Katarzyna M.; Sadowska, Edyta T.; Koteja, Pawel; Taylor, Jan R. E. Is reproduction costly? No increase of oxidative damage in breeding bank voles JOURNAL OF EXPERIMENTAL BIOLOGY English Article bank vole; cost of reproduction; oxidative damage; oxidative stress BASAL METABOLIC-RATE; CONCURRENT PREGNANCY; LABORATORY MICE; MUS MUSCULUS; LITTER SIZE; STRESS; LACTATION; SELECTION; MANIPULATION; PROTEINS According to life-history theory, investment in reproduction is associated with costs, which should appear as decreased survival to the next reproduction or lower future reproductive success. It has been suggested that oxidative stress may be the proximate mechanism of these trade-offs. Despite numerous studies of the defense against reactive oxygen species (ROS) during reproduction, very little is known about the damage caused by ROS to the tissues of wild breeding animals. We measured oxidative damage to lipids and proteins in breeding bank vole (Myodes glareolus) females after rearing one and two litters, and in non-breeding females. We used bank voles from lines selected for high maximum aerobic metabolic rates (which also had high resting metabolic rates and food intake) and non-selected control lines. The oxidative damage was determined in heart, kidneys and skeletal muscles by measuring the concentration of thiobarbituric acid-reactive substances, as markers of lipid peroxidation, and carbonyl groups in proteins, as markers of protein oxidation. Surprisingly, we found that the oxidative damage to lipids in kidneys and muscles was actually lower in breeding than in non-breeding voles, and it did not differ between animals from the selected and control lines. Thus, contrary to our predictions, females that bred suffered lower levels of oxidative stress than those that did not reproduce. Elevated production of antioxidant enzymes and the protective role of sex hormones may explain the results. The results of the present study do not support the hypothesis that oxidative damage to tissues is the proximate mechanism of reproduction costs. [Oldakowski, Lukasz; Piotrowska, Zaneta; Taylor, Jan R. E.] Univ Bialystok, Inst Biol, PL-15950 Bialystok, Poland; [Chrzascik, Katarzyna M.; Sadowska, Edyta T.; Koteja, Pawel] Jagiellonian Univ, Inst Environm Sci, PL-30387 Krakow, Poland Taylor, JRE (reprint author), Univ Bialystok, Inst Biol, Swierkowa 20 B, PL-15950 Bialystok, Poland. taylor@uwb.edu.pl Koteja, Pawel/O-4039-2015 Koteja, Pawel/0000-0003-0077-4957; Sadowska, Edyta T./0000-0003-1240-4814; Oldakowski, Lukasz/0000-0002-8631-5227; Piotrowska, Zaneta/0000-0003-2159-1068 Institute of Biology, University of Bialystok [BST-106]; National Science Centre [N 304 280840]; Ministry of Science and Higher Education [N 303 275233]; Jagiellonian University [UJ/INoS DS/BW 757] This work was supported by the Institute of Biology, University of Bialystok [fund no. BST-106 to J.R.E.T. and L.O.]; the National Science Centre [grant number N 304 280840 to J.R.E.T.]; the Ministry of Science and Higher Education [N 303 275233 to P. K.]; and the Jagiellonian University [UJ/INoS DS/BW 757 to P.K.]. Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Alonso-Alvarez C, 2006, EVOLUTION, V60, P1913, DOI 10.1111/j.0014-3820.2006.tb00534.x; Antinuchi CD, 2001, PHYSIOL BIOCHEM ZOOL, V74, P319, DOI 10.1086/320416; Bergeron P, 2011, FUNCT ECOL, V25, P1063, DOI 10.1111/j.1365-2435.2011.01868.x; Bertrand S, 2006, OECOLOGIA, V147, P576, DOI 10.1007/s00442-005-0317-8; Borras C, 2003, FREE RADICAL BIO MED, V34, P546, DOI 10.1016/S0891-5849(02)01356-4; Cretegny C, 2006, COMP BIOCHEM PHYS A, V144, P125, DOI 10.1016/j.cbpa.2005.10.030; CUSHING BS, 1995, PHYSIOL BEHAV, V58, P953, DOI 10.1016/0031-9384(95)00158-F; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; DRENT RH, 1980, ARDEA, V68, P225; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Garratt M, 2011, P ROY SOC B-BIOL SCI, V278, P1098, DOI 10.1098/rspb.2010.1818; Halliwell B, 1996, ANNU REV NUTR, V16, P33, DOI 10.1146/annurev.nu.16.070196.000341; Huh K, 1994, Arch Pharm Res, V17, P109, DOI 10.1007/BF02974233; Isaksson C, 2011, BIOSCIENCE, V61, P194, DOI 10.1525/bio.2011.61.3.5; Johnson MS, 2001, J EXP BIOL, V204, P1947; Kireev RA, 2007, BIOGERONTOLOGY, V8, P469, DOI 10.1007/s10522-007-9089-3; Koivula M, 2003, ECOLOGY, V84, P398, DOI 10.1890/0012-9658(2003)084[0398:CORITW]2.0.CO;2; Konarzewski M, 1995, EVOLUTION, V49, P1239, DOI 10.1111/j.1558-5646.1995.tb04450.x; Koskela E, 1998, OECOLOGIA, V115, P379, DOI 10.1007/s004420050531; Koskela E, 2009, J ANIM ECOL, V78, P1007, DOI 10.1111/j.1365-2656.2009.01574.x; Koteja P., 2011, COMP PHYSL BIOCH S, V28, P94; Koteja P, 2009, J PHYSIOL SCI, V59, P541; Ksiazek A, 2004, PHYSIOL BIOCHEM ZOOL, V77, P890, DOI 10.1086/425190; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; LEVINE RL, 1994, METHOD ENZYMOL, V233, P346; LOWRY OH, 1951, J BIOL CHEM, V193, P265; Mailloux RJ, 2011, FREE RADICAL BIO MED, V51, P1106, DOI 10.1016/j.freeradbiomed.2011.06.022; MAPPES T, 1995, P ROY SOC B-BIOL SCI, V261, P19, DOI 10.1098/rspb.1995.0111; MCCORMACK JT, 1974, J ENDOCRINOL, V62, P101, DOI 10.1677/joe.0.0620101; Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Nussey DH, 2009, FUNCT ECOL, V23, P809, DOI 10.1111/j.1365-2435.2009.01555.x; Olsson M, 2009, NATURWISSENSCHAFTEN, V96, P25, DOI 10.1007/s00114-008-0444-2; OSWALD C, 1990, J MAMMAL, V71, P500, DOI 10.2307/1381788; OSWALD C, 1987, J EXP ZOOL, V241, P343, DOI 10.1002/jez.1402410310; Persky AM, 2000, P SOC EXP BIOL MED, V223, P59, DOI 10.1046/j.1525-1373.2000.22308.x; PETERSON GL, 1977, ANAL BIOCHEM, V83, P346, DOI 10.1016/0003-2697(77)90043-4; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff Derek A., 1992; Sadowska ET, 2008, PHYSIOL BIOCHEM ZOOL, V81, P627, DOI 10.1086/590164; Sibly RM, 1986, PHYSL ECOLOGY ANIMAL; Speakman J. R., 2003, ADV CELL AGING GERON, P35; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; Speakman JR, 2011, BIOESSAYS, V33, P255, DOI 10.1002/bies.201000132; Speakman JR, 2004, AGING CELL, V3, P87, DOI 10.1111/j.1474-9728.2004.00097.x; Speakman JR, 1996, PHYSIOL ZOOL, V69, P746, DOI 10.1086/physzool.69.4.30164228; STADTMAN ER, 1991, J BIOL CHEM, V266, P2005; Stearns S. C., 1992, EVOLUTION LIFE HIST; Trebaticka L, 2007, ECOSCIENCE, V14, P306, DOI 10.2980/1195-6860(2007)14[306:IRRCEM]2.0.CO;2; Van Remmen H, 2001, EXP GERONTOL, V36, P957; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 52 41 41 0 26 COMPANY OF BIOLOGISTS LTD CAMBRIDGE BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND 0022-0949 1477-9145 J EXP BIOL J. Exp. Biol. JUN 2012 215 11 1799 1805 10.1242/jeb.068452 7 Biology Life Sciences & Biomedicine - Other Topics 939RP WOS:000303831800010 22573758 Bronze 2018-11-12 J Xu, YC; Yang, DB; Wang, DH Xu, Yan-Chao; Yang, Deng-Bao; Wang, De-Hua No Evidence for a Trade-Off between Reproductive Investment and Immunity in a Rodent PLOS ONE English Article VOLES LASIOPODOMYS-BRANDTII; HAMSTERS PHODOPUS-SUNGORUS; SUSTAINED METABOLIC-RATE; LIFE-HISTORY TRAITS; ENERGY-INTAKE; ECOLOGICAL IMMUNOLOGY; HUMORAL IMMUNITY; TREE SWALLOWS; MUS MUSCULUS; FOOD-INTAKE Life history theory assumes there are trade-offs between competing functions such as reproduction and immunity. Although well studied in birds, studies of the trade-offs between reproduction and immunity in small mammals are scarce. Here we examined whether reduced immunity is a consequence of reproductive effort in lactating Brandt's voles (Lasiopodomys brandtii). Specifically, we tested the effects of lactation on immune function (Experiment I). The results showed that food intake and resting metabolic rate (RMR) were higher in lactating voles (6 <= litter size <= 8) than that in non-reproductive voles. Contrary to our expectation, lactating voles also had higher levels of serum total Immunoglobulin G (IgG) and anti-keyhole limpet hemocyanin (KLH) IgG and no change in phytohemagglutinin (PHA) response and anti-KLH Immunoglobulin M (IgM) compared with non-reproductive voles, suggesting improved rather than reduced immune function. To further test the effect of differences in reproductive investment on immunity, we compared the responses between natural large (n >= 8) and small litter size (n <= 6) (Experiment II) and manipulated large (11-13) and small litter size (2-3) (Experiment III). During peak lactation, acquired immunity (PHA response, anti-KLH IgG and anti-KLH IgM) was not significantly different between voles raising large or small litters in both experiments, despite the measured difference in reproductive investment (greater litter size, litter mass, RMR and food intake in the voles raising larger litters). Total IgG was higher in voles with natural large litter size than those with natural small litter size, but decreased in the enlarged litter size group compared with control and reduced group. Our results showed that immune function is not suppressed to compensate the high energy demands during lactation in Brandt's voles and contrasting the situation in birds, is unlikely to be an important aspect mediating the trade-off between reproduction and survival. [Xu, Yan-Chao; Yang, Deng-Bao; Wang, De-Hua] Chinese Acad Sci, Inst Zool, State Key Lab Integrated Management Pest Insects, Beijing, Peoples R China; [Xu, Yan-Chao; Yang, Deng-Bao] Chinese Acad Sci, Grad Sch, Beijing, Peoples R China Xu, YC (reprint author), Chinese Acad Sci, Inst Zool, State Key Lab Integrated Management Pest Insects, Beijing, Peoples R China. wangdh@ioz.ac.cn Ministry of Science and Technology [2007BC109103]; Chinese Academy of Sciences [KSCX2-EW-N-005]; National Natural Science Foundation of China [31071930] This study was supported by grants from the Ministry of Science and Technology (2007BC109103), Chinese Academy of Sciences (KSCX2-EW-N-005) and National Natural Science Foundation of China (31071930). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Adamo SA, 2001, ANIM BEHAV, V62, P417, DOI 10.1006/anbe.2001.1786; Ardia DR, 2005, ECOLOGY, V86, P2040, DOI 10.1890/04-1619; Ardia DR, 2005, J ANIM ECOL, V74, P517, DOI 10.1111/j.1365-2656.2005.00950.x; Ardia DR, 2003, P ROY SOC B-BIOL SCI, V270, P1679, DOI 10.1098/rspb.2003.2424; Bellocq J. G., 2006, COMP BIOCH PHYSL A, V145, P554; Bleu J., 2011, P R SOC B, V279, P489; Bonneaud C, 2003, AM NAT, V161, P367, DOI 10.1086/346134; Boulinier T, 2008, TRENDS ECOL EVOL, V23, P282, DOI 10.1016/j.tree.2007.12.006; Brogan RS, 1999, ENDOCRINOLOGY, V140, P2621, DOI 10.1210/en.140.6.2621; Chi QS, 2011, J COMP PHYSIOL B, V181, P91, DOI 10.1007/s00360-010-0506-6; Cox RM, 2010, FUNCT ECOL, V24, P1262, DOI 10.1111/j.1365-2435.2010.01756.x; Criscuolo F, 2006, PHYSIOL BIOCHEM ZOOL, V79, P514, DOI 10.1086/501065; Deerenberg C, 1997, P ROY SOC B-BIOL SCI, V264, P1021, DOI 10.1098/rspb.1997.0141; Demas GE, 2003, P ROY SOC B-BIOL SCI, V270, P905, DOI 10.1098/rspb.2003.2341; Demas GE, 2004, HORM BEHAV, V45, P173, DOI 10.1016/j.yhbeh.2003.11.002; Demas GE, 1997, AM J PHYSIOL-REG I, V273, pR1631; Derting TL, 2003, PHYSIOL BIOCHEM ZOOL, V76, P744, DOI 10.1086/375662; Derting TL, 1998, PHYSIOL ZOOL, V71, P611, DOI 10.1086/515981; DIXON FJ, 1966, J IMMUNOL, V97, P350; Drazen DL, 2003, CAN J ZOOL, V81, P1406, DOI 10.1139/Z03-120; Eraud C, 2005, FUNCT ECOL, V19, P110, DOI 10.1111/j.0269-8463.2005.00934.x; French SS, 2007, AM NAT, V170, P79, DOI 10.1086/518569; Gasparini J, 2001, P ROY SOC B-BIOL SCI, V268, P647, DOI 10.1098/rspb.2000.1411; GITTLEMAN JL, 1988, AM ZOOL, V28, P863; Grattan DR, 2002, REPRODUCTION, V123, P497, DOI 10.1530/rep.0.1230497; Greives TJ, 2006, FUNCT ECOL, V20, P812, DOI 10.1111/j.1365-2435.2006.01167.x; HAMMOND KA, 1992, PHYSIOL ZOOL, V65, P952, DOI 10.1086/physzool.65.5.30158552; Hammond KA, 1997, NATURE, V386, P457, DOI 10.1038/386457a0; Hanssen SA, 2005, P ROY SOC B-BIOL SCI, V272, P1039, DOI 10.1098/rspb.2005.3057; Hanssen SA, 2004, P ROY SOC B-BIOL SCI, V271, P925, DOI 10.1098/rspb.2004.2678; Hasselquist D, 2009, PHILOS T R SOC B, V364, P51, DOI 10.1098/rstb.2008.0137; Ilmonen P, 2003, OECOLOGIA, V136, P148, DOI 10.1007/s00442-003-1243-2; INNES DGL, 1981, CAN J ZOOL, V59, P785, DOI 10.1139/z81-113; Janeway CA, 2004, IMMUNOBIOLOGY; Johnson MS, 2001, J EXP BIOL, V204, P1937; Johnson MS, 2001, J EXP BIOL, V204, P1925; Knobil E., 2006, KNOBIL NEILLS PHYSL; Knowles SCL, 2009, FUNCT ECOL, V23, P405, DOI 10.1111/j.1365-2435.2008.01507.x; Koivula M, 2003, ECOLOGY, V84, P398, DOI 10.1890/0012-9658(2003)084[0398:CORITW]2.0.CO;2; Lemke H, 2003, VACCINE, V21, P3428, DOI 10.1016/S0264-410X(03)00394-3; Li Qingfen, 1994, Acta Theriologica Sinica, V14, P217; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Marti A, 2001, Obes Rev, V2, P131, DOI 10.1046/j.1467-789x.2001.00025.x; Martin Ii LB, 2006, OECOLOGIA, V147, P565; Martin IILB, 2004, ECOLOGY, V85, P2323; Martin LB, 2008, PHILOS T R SOC B, V363, P321, DOI 10.1098/rstb.2007.2142; Matson KD, 2006, P R SOC B, V273, P815, DOI 10.1098/rspb.2005.3376; MATTINGLY DK, 1982, ECOLOGY, V63, P183, DOI 10.2307/1937043; McNab BK, 2002, PHYSL ECOLOGY VERTEB; Naef L, 2007, ENDOCRINOLOGY, V148, P5977, DOI 10.1210/en.2007-0442; Nordling D, 1998, P ROY SOC B-BIOL SCI, V265, P1291, DOI 10.1098/rspb.1998.0432; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Padgett DA, 2003, TRENDS IMMUNOL, V24, P444, DOI 10.1016/S1471-4906(03)00173-X; RICHNER H, 1995, P NATL ACAD SCI USA, V92, P1192, DOI 10.1073/pnas.92.4.1192; Romero LM, 2004, TRENDS ECOL EVOL, V19, P249, DOI 10.1016/j.tree.2004.03.008; Saino N, 2000, OECOLOGIA, V124, P358, DOI 10.1007/s004420000395; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Smits JE, 1999, FUNCT ECOL, V13, P567, DOI 10.1046/j.1365-2435.1999.00338.x; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; Speakman JR, 2010, J ANIM ECOL, V79, P726, DOI 10.1111/j.1365-2656.2010.01689.x; Speakman JR, 2005, J COMP PHYSIOL B, V175, P375, DOI 10.1007/s00360-005-0013-3; Speakman JR, 2000, ADV ECOL RES, V30, P177; Speakman JR, 1996, PHYSIOL ZOOL, V69, P746, DOI 10.1086/physzool.69.4.30164228; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stocker CJ, 2007, AM J PHYSIOL-REG I, V292, pR1810, DOI 10.1152/ajpregu.00676.2006; THOMPSON SD, 1986, NATURE, V321, P690, DOI 10.1038/321690a0; TUOMI J, 1983, AM ZOOL, V23, P25; Visser ME, 2001, P ROY SOC B-BIOL SCI, V268, P1271, DOI 10.1098/rspb.2001.1661; WEINER J, 1992, TRENDS ECOL EVOL, V7, P384, DOI 10.1016/0169-5347(92)90009-Z; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wu SH, 2009, J EXP BIOL, V212, P3455, DOI 10.1242/jeb.030338; Yu-Lee LY, 2002, RECENT PROG HORM RES, V57, P435, DOI 10.1210/rp.57.1.435; Zhang XY, 2008, J COMP PHYSIOL B, V178, P637, DOI 10.1007/s00360-008-0255-y; Zhang XY, 2007, J EXP BIOL, V210, P512, DOI 10.1242/jeb.02659; Zhang Z.B., 1998, ECOLOGY MANAGEMENT R; Zysling DA, 2007, J COMP PHYSIOL B, V177, P339, DOI 10.1007/s00360-006-0133-4 77 69 76 1 30 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One MAY 23 2012 7 5 e37182 10.1371/journal.pone.0037182 11 Multidisciplinary Sciences Science & Technology - Other Topics 959TH WOS:000305335800030 22649512 DOAJ Gold, Green Published 2018-11-12 J Kosztolanyi, A; Kupper, C; Chastel, O; Parenteau, C; Yilmaz, KT; Miklosi, A; Szekely, T; Lendvai, AZ Kosztolanyi, Andras; Kuepper, Clemens; Chastel, Olivier; Parenteau, Charline; Yilmaz, K. Tuluhan; Miklosi, Adam; Szekely, Tarnas; Lendvai, Adam Z. Prolactin stress response does not predict brood desertion in a polyandrous shorebird HORMONES AND BEHAVIOR English Article Social behavior; Neuroendocrine system; Parental care; Brood desertion; Corticosterone; Prolactin; Capture and restraint; Shorebird; Kentish plover LONG-LIVED BIRD; PLOVERS CHARADRIUS-ALEXANDRINUS; PARENTAL CARE; KENTISH PLOVERS; REPRODUCTIVE SUCCESS; LUTEINIZING-HORMONE; SEXUAL CONFLICT; HOUSE SPARROWS; OLDER PARENTS; CORTICOSTERONE RESPONSES One of the fundamental principles of the life-history theory is that parents need to balance their resources between current and future offspring. Deserting the dependent young is a radical life-history decision that saves resources for future reproduction but that may cause the current brood to fail. Despite the importance of desertion for reproductive success, and thus fitness, the neuroendocrine mechanisms of brood desertion are largely unknown. We investigated two candidate hormones that may influence brood desertion in the Kentish plover Charadrius alexandrinus: prolactin ('parental hormone') and corticosterone ('stress hormone'). Kentish plovers exhibit an unusually diverse mating and parental care system: brood desertion occurs naturally since either parent (the male or the female) may desert the brood after the chicks hatch and mate with a new partner shortly after. We measured the hormone levels of parents at hatching using the standard capture and restraint protocol. We subsequently followed the broods to determine whether a parent deserted the chicks. We found no evidence that either baseline or stress-induced prolactin levels of male or female parents predicted brood desertion. Although stress-induced corticosterone levels were generally higher in females compared with males, individual corticosterone levels did not explain the probability of brood desertion. We suggest that, in this species, low prolactin levels do not trigger brood desertion. In general, we propose that the prolactin stress response does not reflect overall parental investment in a species where different parts of the breeding cycle are characterized by contrasting individual investment strategies. (C) 2012 Elsevier Inc. All rights reserved. [Kosztolanyi, Andras; Miklosi, Adam] Eotvos Lorand Univ, Dept Ethol, H-1117 Budapest, Hungary; [Kuepper, Clemens] Harvard Univ, Dept Organism & Evolutionary Biol, Museum Comparat Zool, Cambridge, MA 02138 USA; [Chastel, Olivier; Parenteau, Charline] Ctr Natl Rech Sci, Ctr Etud Biol Chize, F-79360 Villiers En Bois, France; [Yilmaz, K. Tuluhan] Cukurova Univ, Dept Landscape Architecture, TR-01330 Adana, Turkey; [Szekely, Tarnas] Univ Bath, Dept Biol & Biochem, Bath 8A2 7AY, Avon, England; [Lendvai, Adam Z.] Coll Nyiregyhaza, Dept Biol, H-4400 Nyiregyhaza, Hungary Kosztolanyi, A (reprint author), Eotvos Lorand Univ, Dept Ethol, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary. andras.kosztolanyi@gmail.com Lendvai, Adam/B-8546-2008; Kosztolanyi, Andras/B-8008-2016; Kupper, Clemens/D-8116-2011 Lendvai, Adam/0000-0002-8953-920X; Kosztolanyi, Andras/0000-0002-9109-5871; Kupper, Clemens/0000-0002-1507-8033 Hungarian Scientific Research Fund (OTKA) [K81953, PD76862]; Hungarian-French Intergovernmental S&T Cooperation Programme [OMFB-00365/2010, Egide 22895WE]; Hungarian-Turkish Intergovernmental S&T Cooperation Programme [OMFB-00581/2009, TUBITAK-108Y329]; DAAD The study was supported by the Hungarian Scientific Research Fund (OTKA, K81953, PD76862) and the Hungarian-French Intergovernmental S&T Cooperation Programme (OMFB-00365/2010, Egide 22895WE). Fieldwork was supported by a grant from the Hungarian-Turkish Intergovernmental S&T Cooperation Programme (OMFB-00581/2009, TUBITAK-108Y329). CK was supported by a DAAD fellowship. At the CEBC, we thank Colette Trouve for her technical assistance in performing the prolactin and corticosterone assays. We are grateful to Peter Sharp and Alexander Badyaev for discussion and useful advice on the methods. We are grateful for two anonymous referees for their excellent comments that improved the manuscript. Adkins-Regan E, 2005, HORMONES ANIMAL SOCI; Adkins-Regan Elizabeth, 2010, P59; Amat JA, 1999, IBIS, V141, P596, DOI 10.1111/j.1474-919X.1999.tb07367.x; Angelier F, 2007, J ANIM ECOL, V76, P1181, DOI 10.1111/j.1365-2656.2007.01295.x; Angelier F, 2009, PHYSIOL BIOCHEM ZOOL, V82, P590, DOI 10.1086/603634; Angelier F, 2009, GEN COMP ENDOCR, V163, P142, DOI 10.1016/j.ygcen.2009.03.028; Angelier F, 2009, FUNCT ECOL, V23, P784, DOI 10.1111/j.1365-2435.2009.01545.x; Arnqvist G, 2005, SEXUAL CONFLICT; Ball G.F., 1991, ACT 20 C INT ORN, V199, P984; Blas J, 2007, P NATL ACAD SCI USA, V104, P8880, DOI 10.1073/pnas.0700232104; Bokony V, 2009, AM NAT, V173, P589, DOI 10.1086/597610; Bonier F, 2009, TRENDS ECOL EVOL, V24, P634, DOI 10.1016/j.tree.2009.04.013; Boos M, 2007, BEHAV PROCESS, V76, P206, DOI 10.1016/j.beproc.2007.05.003; Buntin John D., 1996, Advances in the Study of Behavior, V25, P161; Chastel O, 2005, HORM BEHAV, V47, P459, DOI 10.1016/j.yhbeh.2004.10.009; Chastel O, 2002, CONDOR, V104, P873, DOI 10.1650/0010-5422(2002)104[0873:POPSIR]2.0.CO;2; CHEREL Y, 1994, PHYSIOL ZOOL, V67, P1154, DOI 10.1086/physzool.67.5.30163887; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; DITTAMI JP, 1981, Z TIERPSYCHOL, V55, P289; Flatt T, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P1; GOLDSMITH AR, 1982, GEN COMP ENDOCR, V46, P458, DOI 10.1016/0016-6480(82)90100-9; GOLDSMITH AR, 1980, J ENDOCRINOL, V86, P371, DOI 10.1677/joe.0.0860371; GRATTOTREVOR CL, 1990, AUK, V107, P718, DOI 10.2307/4088002; Green AJ, 2001, ECOLOGY, V82, P1473, DOI 10.2307/2680003; Groscolas R, 2008, HORM BEHAV, V53, P51, DOI 10.1016/j.yhbeh.2007.08.010; HALL MR, 1983, GEN COMP ENDOCR, V49, P270, DOI 10.1016/0016-6480(83)90144-2; HALL MR, 1987, J WILDLIFE MANAGE, V51, P530, DOI 10.2307/3801263; Hau M, 2010, P ROY SOC B-BIOL SCI, V277, P3203, DOI 10.1098/rspb.2010.0673; Heidinger BJ, 2006, P ROY SOC B-BIOL SCI, V273, P2227, DOI 10.1098/rspb.2006.3557; Heidinger BJ, 2010, FUNCT ECOL, V24, P1037, DOI 10.1111/j.1365-2435.2010.01733.x; Houston AI, 2005, TRENDS ECOL EVOL, V20, P33, DOI 10.1016/j.tree.2004.10.008; Ketterson ED, 1999, AM NAT, V154, pS4, DOI 10.1086/303280; Kosztolanyi A, 2006, J ANIM ECOL, V75, P257, DOI 10.1111/j.1365-2656.2006.01049.x; Kosztolanyi A, 2002, J FIELD ORNITHOL, V73, P199, DOI 10.1648/0273-8570-73.2.199; Kosztolanyi A, 2009, BEHAV ECOL, V20, P446, DOI 10.1093/beheco/arn140; Lendvai AZ, 2011, J EXP BIOL, V214, P821, DOI 10.1242/jeb.047712; Lendvai AZ, 2010, HORM BEHAV, V58, P936, DOI 10.1016/j.yhbeh.2010.09.004; Lendvai AZ, 2008, HORM BEHAV, V53, P395, DOI 10.1016/j.yhbeh.2007.11.011; Lendvai AZ, 2007, P R SOC B, V274, P391, DOI 10.1098/rspb.2006.3735; Lendvai AZ, 2004, ANIM BEHAV, V67, P703, DOI 10.1016/j.anbehav.2003.08.010; Lessells CM, 1999, MG BEH ECOL, P75; LESSELLS CM, 1984, IBIS, V126, P474, DOI 10.1111/j.1474-919X.1984.tb02074.x; McGlothlin JW, 2007, AM NAT, V170, P864, DOI 10.1086/522838; McGraw Lisa, 2010, P271; Miller DA, 2009, HORM BEHAV, V56, P457, DOI 10.1016/j.yhbeh.2009.08.001; ORING LW, 1986, AUK, V103, P820; ORING LW, 1988, GEN COMP ENDOCR, V72, P247, DOI 10.1016/0016-6480(88)90207-9; ORING LW, 1986, GEN COMP ENDOCR, V62, P394, DOI 10.1016/0016-6480(86)90049-3; Perkins D.E., 2004, THESIS U MAINE; Pinheiro JC, 2000, MIXED EFFECTS MODELS; R Development Core Team, 2011, R LANG ENV STAT COMP; Rall MK, 2004, BEHAVIOUR, V141, P1511; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Riou S, 2010, GEN COMP ENDOCR, V168, P8, DOI 10.1016/j.ygcen.2010.03.011; Schuett W, 2011, ANIM BEHAV, V81, P609, DOI 10.1016/j.anbehav.2010.12.006; Sharp PJ, 1998, COMP BIOCHEM PHYS C, V119, P275, DOI 10.1016/S0742-8413(98)00016-4; Sinervo B, 1998, OIKOS, V83, P432, DOI 10.2307/3546671; SMITH JM, 1977, ANIM BEHAV, V25, P1, DOI 10.1016/0003-3472(77)90062-8; Spee M, 2010, HORM BEHAV, V58, P762, DOI 10.1016/j.yhbeh.2010.07.011; Szekely T, 1999, BEHAV ECOL, V10, P191, DOI 10.1093/beheco/10.2.191; SZEKELY T, 1995, BEHAV ECOL SOCIOBIOL, V37, P155, DOI 10.1007/BF00176712; SZEKELY T, 1993, ORNIS SCAND, V24, P317, DOI 10.2307/3676794; Szekely T, 1999, BEHAV ECOL, V10, P185, DOI 10.1093/beheco/10.2.185; Szekely Tamas, 1996, Current Ornithology, V13, P271; Szekely T, 2006, BIOSCIENCE, V56, P801, DOI 10.1641/0006-3568(2006)56[801:SCEABS]2.0.CO;2; Szentirmai I., 2001, Ornis Hungarica, V11, P27; Van Dijk R, 2007, IBIS, V149, P530, DOI 10.1111/j.1474-919X.2007.00679.x; Venables W. N., 2002, MODERN APPL STAT S; VISSER GH, 1993, PHYSIOL ZOOL, V66, P771, DOI 10.1086/physzool.66.5.30163823; WARRINER JS, 1986, WILSON BULL, V98, P15; Warton DI, 2012, METHODS ECOL EVOL, V3, P257, DOI 10.1111/j.2041-210X.2011.00153.x; WENTWORTH BC, 1983, BIOL REPROD, V29, P87, DOI 10.1095/biolreprod29.1.87; Williams TD, 2008, PHILOS T R SOC B, V363, P1687, DOI 10.1098/rstb.2007.0003; Wingfield JC, 2003, J NEUROENDOCRINOL, V15, P711, DOI 10.1046/j.1365-2826.2003.01033.x; WINGFIELD JC, 1994, PERSPECTIVES IN COMPARATIVE ENDOCRINOLOGY, P520; WINGFIELD JC, 1995, AM ZOOL, V35, P285; WINGFIELD JC, 1990, HORM BEHAV, V24, P89, DOI 10.1016/0018-506X(90)90029-W; Ziegler TE, 2009, HORM BEHAV, V56, P436, DOI 10.1016/j.yhbeh.2009.07.012 78 5 5 1 29 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0018-506X 1095-6867 HORM BEHAV Horm. Behav. MAY 2012 61 5 734 740 10.1016/j.yhbeh.2012.03.011 7 Behavioral Sciences; Endocrinology & Metabolism Behavioral Sciences; Endocrinology & Metabolism 946GP WOS:000304339800010 22504343 2018-11-12 J Irwing, P; Booth, T; Nyborg, H; Rushton, JP Irwing, Paul; Booth, Tom; Nyborg, Helmuth; Rushton, J. Philippe Are g and the General Factor of Personality (GFP) correlated? INTELLIGENCE English Article Life History theory; Confirmatory factor analysis; GFP; g; Personality HIGHER-ORDER FACTORS; STRUCTURAL EQUATION MODELS; 5-FACTOR MODEL; DIMENSIONAL ASSESSMENT; ABNORMAL-PERSONALITY; SOCIAL DESIRABILITY; SEXUAL-DIMORPHISM; PARALLEL ANALYSIS; FIT INDEXES; BIG 5 We examined whether the General Factor of Personality (GFP) is related to the g factor of cognitive ability using data from the Vietnam Experience Study which randomly sampled 4462 Vietnam War veterans from a total sample of about five million Vietnam era army veterans. Exclusionary criteria included passing a fitness test, achieving a final rank of no higher than sergeant, and scoring above the 10th percentile on a pre-induction general aptitude test, but otherwise the sample is broadly representative of the U.S. male population for the period 1965-1971. A hierarchical confirmatory factor analysis of the Minnesota Multiphasic Personality Inventory (MMPI) and 15 cognitive ability tests yielded three first-order factors from the MMPI (Somatization, Internalization, and Externalization), and four first-order factors from the cognitive ability tests (Memory, Dexterity, Crystallized, and Fluid intelligence). At the apex of both measures was a general factor and we were able to fit a model which integrated both structures. This model provided a close fit to the data (chi(2) = 3114.1, df = 235, RMSEA = .051 SRMR = .047, NNFI = .97), and provided an estimate of -.23 for the correlation between g and the GFP(Abnormal), that is, the higher the g score the higher the score on the GFP. One possible reason for the low correlation is restriction of range in the sample. Another is that intelligence and personality are to a degree mutually exclusive strategies, the first aimed at generating resources and the second at maximizing one's share of resources. (C) 2012 Elsevier Inc. All rights reserved. [Irwing, Paul; Booth, Tom] Manchester Business Sch, Manchester M15 6PB, Lancs, England; [Nyborg, Helmuth] Univ Aarhus, Aarhus, Denmark; [Rushton, J. Philippe] Univ Western Ontario, London, ON, Canada Irwing, P (reprint author), Univ Manchester, Manchester Business Sch E, Psychometr Work Res Grp, Booth St W, Manchester M15 6PB, Lancs, England. paul.irwing@mbs.ac.uk Nyborg, Helmuth/0000-0002-6795-594X AKAIKE H, 1974, IEEE T AUTOMAT CONTR, VAC19, P716, DOI 10.1109/TAC.1974.1100705; Anusic I, 2009, J PERS SOC PSYCHOL, V97, P1142, DOI 10.1037/a0017159; Backstrom M, 2007, EUR J PSYCHOL ASSESS, V23, P63, DOI 10.1027/1015-5759.23.2.63; Backstrom M, 2009, J RES PERS, V43, P335, DOI 10.1016/j.jrp.2008.12.013; Bandura A., 1997, SELF EFFICACY EXERCI; Biesanz JC, 2004, J PERS, V72, P845, DOI 10.1111/j.0022-3506.2004.00282.x; Browne MW, 1993, TESTING STRUCTURAL E, P136, DOI DOI 10.1177/0049124192021002001; BUDESCU DV, 1981, MULTIVAR BEHAV RES, V16, P483, DOI 10.1207/s15327906mbr1604_4; Buss D. M, 2004, EVOLUTIONARY PSYCHOL; Chen FN, 2008, SOCIOL METHOD RES, V36, P462, DOI 10.1177/0049124108314720; Darwin C. R., 1871, DESCENT MAN; de Vries RE, 2011, PERS INDIV DIFFER, V50, P512, DOI 10.1016/j.paid.2010.11.020; DESTEFANO F, 1988, JAMA-J AM MED ASSOC, V259, P2701; DeYoung CG, 2006, J PERS SOC PSYCHOL, V91, P1138, DOI 10.1037/0022-3514.91.6.1138; Eid M, 2003, PSYCHOL METHODS, V8, P38, DOI 10.1037/1082-989X.8.1.38; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Erdle S, 2010, PERS INDIV DIFFER, V48, P343, DOI 10.1016/j.paid.2009.09.004; Ferguson E., 2011, WILEY BLACKWELL HDB; Figueredo AJ, 2004, SOC BIOL, V51, P121; FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312; GLORFELD LW, 1995, EDUC PSYCHOL MEAS, V55, P377, DOI 10.1177/0013164495055003002; Goldstein JM, 2001, CEREB CORTEX, V11, P490, DOI 10.1093/cercor/11.6.490; GRAHAM JR, 1987, MMPI PRACTICAL GUIDE; HELMES E, 1993, PSYCHOL BULL, V113, P453, DOI 10.1037/0033-2909.113.3.453; Hopwood CJ, 2010, PERS SOC PSYCHOL REV, V14, P332, DOI 10.1177/1088868310361240; HORN JL, 1965, PSYCHOMETRIKA, V30, P179, DOI 10.1007/BF02289447; Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118; Hu LT, 1998, PSYCHOL METHODS, V3, P424, DOI 10.1037/1082-989X.3.4.424; Kaplan HS, 2003, OFFSPRING, P170; Kuha J, 2004, SOCIOL METHOD RES, V33, P188, DOI 10.1177/0049124103262065; Larsen CS, 2003, P NATL ACAD SCI USA, V100, P9103, DOI 10.1073/pnas.1633678100; Lindenfors P, 2005, BIOL LETT-UK, V1, P407, DOI 10.1098/rsbl.2005.0362; Lindenfors P., 2007, BMC BIOL, P5; Loehlin JC, 2011, J RES PERS, V45, P504, DOI 10.1016/j.jrp.2011.06.011; Loehlin JC, 2011, J RES PERS, V45, P44, DOI 10.1016/j.jrp.2010.11.008; MACDONALD K, 1995, J PERS, V63, P525, DOI 10.1111/j.1467-6494.1995.tb00505.x; Malloy TE, 1997, J PERS SOC PSYCHOL, V72, P390, DOI 10.1037/0022-3514.72.2.390; Markon KE, 2005, J PERS SOC PSYCHOL, V88, P139, DOI 10.1037/0022-3514.88.1.139; McCrae RR, 2008, J PERS SOC PSYCHOL, V95, P442, DOI 10.1037/0022-3514.95.2.442; McGrew KS, 2009, INTELLIGENCE, V37, P1, DOI 10.1016/j.intell.2008.08.004; MISCHEL W, 1995, PSYCHOL REV, V102, P246, DOI 10.1037/0033-295X.102.2.246; Musek J, 2007, J RES PERS, V41, P1213, DOI 10.1016/j.jrp.2007.02.003; Nettle D, 2006, AM PSYCHOL, V61, P622, DOI 10.1037/0003-066X.61.6.622; NICHOLLS PT, 1988, INFORM PROCESS MANAG, V24, P469, DOI 10.1016/0306-4573(88)90049-0; Nyborg H, 2000, PERS INDIV DIFFER, V28, P593, DOI 10.1016/S0191-8869(99)00122-1; O'Connor BP, 2000, BEHAV RES METH INS C, V32, P396, DOI 10.3758/BF03200807; O'Connor BP, 2002, J PERS SOC PSYCHOL, V83, P962, DOI 10.1037//0022-3514.83.4.962; Paunonen SV, 2010, EUR J PERSONALITY, V24, P189, DOI 10.1002/per.751; Penke L, 2007, EUR J PERSONALITY, V21, P549, DOI 10.1002/per.629; Revelle W., 2009, IMPORTANT GEN FACTOR; Revelle W, 2009, PSYCHOMETRIKA, V74, P145, DOI 10.1007/s11336-008-9102-z; Riemann R, 2010, EUR J PERSONALITY, V24, P258, DOI 10.1002/per.760; Rushton J. P., 2011, WILEY BLACKWELL HDB, P132; Rushton JP, 2008, J RES PERS, V42, P1173, DOI 10.1016/j.jrp.2008.03.002; Rushton JP, 2010, TWIN RES HUM GENET, V13, P301, DOI 10.1375/twin.13.4.301; Rushton JP, 2009, J RES PERS, V43, P1091, DOI 10.1016/j.jrp.2009.06.002; Rushton JP, 2009, TWIN RES HUM GENET, V12, P356, DOI 10.1375/twin.12.4.356; Rushton JP, 2009, PERS INDIV DIFFER, V47, P571, DOI 10.1016/j.paid.2009.05.011; Rushton JP, 2009, PERS INDIV DIFFER, V47, P558, DOI 10.1016/j.paid.2009.05.009; Rushton JP, 2009, PERS INDIV DIFFER, V46, P437, DOI 10.1016/j.paid.2008.11.015; Rushton JP, 2004, INTELLIGENCE, V32, P321, DOI 10.1016/j.intell.2004.06.003; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Samuel DB, 2010, PERSONAL DISORD, V1, P5, DOI 10.1037/a0018136; Saucier G., 2001, J PERS, V69, P843; Schermer JA, 2010, PERS INDIV DIFFER, V48, P187, DOI 10.1016/j.paid.2009.10.003; Schmidt FL, 1998, PSYCHOL BULL, V124, P262, DOI 10.1037//0033-2909.124.2.262; Spence SH, 1997, J ABNORM PSYCHOL, V106, P280, DOI 10.1037//0021-843X.106.2.280; Vassend O, 2011, PERS INDIV DIFFER, V50, P1300, DOI 10.1016/j.paid.2011.03.002; VELICER WF, 1976, PSYCHOMETRIKA, V41, P321, DOI 10.1007/BF02293557; Veselka L, 2009, TWIN RES HUM GENET, V12, P420, DOI 10.1375/twin.12.5.420; Veselka L, 2009, TWIN RES HUM GENET, V12, P254, DOI 10.1375/twin.12.3.254; von Stumm S., 2011, WILEY BLACKWELL HDB; Yamasue H, 2008, CEREB CORTEX, V18, P2331, DOI 10.1093/cercor/bhm254; Zagorsky JL, 2007, INTELLIGENCE, V35, P489, DOI 10.1016/j.intell.2007.02.003; Zawadzki B, 2010, PERS INDIV DIFFER, V49, P77, DOI 10.1016/j.paid.2010.03.025; Zimprich D, 2009, J RES PERS, V43, P444, DOI 10.1016/j.jrp.2009.01.018; Zinbarg RE, 2005, PSYCHOMETRIKA, V70, P123, DOI 10.1007/s11336-003-0974-7 77 14 15 0 16 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 0160-2896 INTELLIGENCE Intelligence MAY-JUN 2012 40 3 296 305 10.1016/j.intell.2012.03.001 10 Psychology, Multidisciplinary Psychology 944UR WOS:000304229800007 2018-11-12 J Rucas, SL; Gurven, M; Winking, J; Kaplan, H Rucas, Stacey L.; Gurven, Michael; Winking, Jeffrey; Kaplan, Hillard Social Aggression and Resource Conflict Across the Female Life-Course in the Bolivian Amazon AGGRESSIVE BEHAVIOR English Article female-female competition; social networks; resource competition; reproductive success; social aggression TOLERATED THEFT; EVOLUTION; ACHE; MARRIAGE; ECOLOGY; TSIMANE; MEN This work explores sources of conflict among forager-horticulturalist women in Amazonian Bolivia, and applies life history theory as a tool for understanding competitive and cooperative social networking behaviors among women. In this study, 121 Tsimane women and girls were interviewed regarding current and past disagreements with others in their community to identify categories of contested resources that instigate interpersonal conflicts, often resulting in incidences of social aggression. Analysis of frequency data on quarrels (N = 334) reveals that women target several diverse categories of resources, with social types appearing as frequently as food and mates. It was also found that the focus of women's competition changes throughout the life-course, consistent with the notion that current vs. future reproduction and quantity-quality trade-offs might have different influences on competition and social conflict over resources within women's social networks across different age groups. Aggr. Behav. 38:194207, 2012. (C) 2012 Wiley Periodicals, Inc. [Rucas, Stacey L.] Calif Polytech State Univ San Luis Obispo, Dept Social Sci, San Luis Obispo, CA 93407 USA; [Gurven, Michael] Univ Calif Santa Barbara, Dept Anthropol, Integrat Anthropol Sci Program, Santa Barbara, CA 93106 USA; [Winking, Jeffrey] Texas A&M Univ, Dept Anthropol, College Stn, TX 77843 USA; [Kaplan, Hillard] Univ New Mexico, Albuquerque, NM 87131 USA Rucas, SL (reprint author), Calif Polytech State Univ San Luis Obispo, Dept Social Sci, San Luis Obispo, CA 93407 USA. srucas@calpoly.edu Gurven, Michael/0000-0002-5661-527X; Kaplan, Hillard/0000-0002-7398-7358 LAII Field Research Grants; Tinker Foundation; NSF [BCS-0136274] Contract grant sponsor: LAII Field Research Grants; Contract grant sponsor: Tinker Foundation; Contract grant sponsor: NSF Grant; Contract grant number: BCS-0136274 Barton R., 1997, MACHIAVELLIAN INTELL, P240, DOI DOI 10.1017/CB09780511525636.010; Bird RLB, 1997, CURR ANTHROPOL, V38, P49, DOI 10.1086/204581; Clutton-Brock TH, 1994, DEV INTEGRATION BEHA, P229; Daly M, 1985, SEX EVOLUTION BEHAV; Dunbar RIM, 1997, HUM NATURE-INT BIOS, V8, P231, DOI 10.1007/BF02912493; DUNBAR RIM, 1993, BEHAV BRAIN SCI, V16, P681, DOI 10.1017/S0140525X00032325; DUNBAR RIM, 1992, J HUM EVOL, V20, P469, DOI DOI 10.1016/0047-2484(92)90081-J); Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Godoy RA, 2004, HUM ECOL, V32, P339, DOI 10.1023/B:HUEC.0000028085.47707.08; Gurven M, 2006, CURR ANTHROPOL, V47, P185, DOI 10.1086/499552; Gurven M, 2000, EVOL HUM BEHAV, V21, P263, DOI 10.1016/S1090-5138(00)00032-5; Gurven M, 2004, BEHAV ECOL SOCIOBIOL, V56, P366, DOI 10.1007/s00265-004-0793-6; Gurven M, 2002, J ANTHROPOL RES, V58, P93, DOI 10.1086/jar.58.1.3631070; Gurven M, 2009, HUM NATURE-INT BIOS, V20, P151, DOI 10.1007/s12110-009-9062-8; Hagen EH, 2006, AM J PHYS ANTHROPOL, V130, P405, DOI 10.1002/ajpa.20272; Hess NC, 2006, INFORM WARFARE EVOLU; HOOKS BL, 1993, HUM NATURE-INT BIOS, V4, P81, DOI 10.1007/BF02734090; Hrdy S., 2005, HUNTER GATHERER CHIL, P65, DOI DOI 10.1177/1754073911430141; Hrdy S, 1999, MOTHER NATURE MATERN; Hurtado A M, 1992, Hum Nat, V3, P185, DOI 10.1007/BF02692239; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; JONES NGB, 1987, SOC SCI INFORM, V26, P31; KAPLAN H, 1985, CURR ANTHROPOL, V26, P223, DOI 10.1086/203251; Lancaster J, 1978, HUMAN NATURE, V1, P83; LUNDBERG S, 1993, J POLIT ECON, V101, P988, DOI 10.1086/261912; MANSER M, 1980, INT ECON REV, V21, P31, DOI 10.2307/2526238; Marlowe FW, 2003, EVOL HUM BEHAV, V24, P217, DOI 10.1016/S1090-5138(03)00014-X; Mesnick S., 1997, FEMINISM EVOLUTIONAR, P207; Mulder M Borgerhoff, 1992, EVOLUTIONARY ECOLOGY, P339; PARKER GA, 1972, J THEOR BIOL, V36, P529, DOI 10.1016/0022-5193(72)90007-0; Rucas SL, 2006, EVOL HUM BEHAV, V27, P40, DOI 10.1016/j.evolhumbehav.2005.07.001; Rucas SL, 2010, HUM NATURE-INT BIOS, V21, P1, DOI 10.1007/s12110-010-9079-z; Schmitt DP, 2001, PSYCHOL EVOLUTION GE, V3, P211, DOI DOI 10.1080/14616660110119331; Silk JB, 2003, SCIENCE, V302, P1231, DOI 10.1126/science.1088580; Stieglitz J, EVOL HUM BE IN PRESS; Stieglitz J, 2011, AM J HUM BIOL, V23, P445, DOI 10.1002/ajhb.21149; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Winking J, 2007, P R SOC B, V274, P1643, DOI 10.1098/rspb.2006.0437; Winking Jeffrey, 2006, Soc Biol, V53, P100 39 4 4 0 9 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0096-140X AGGRESSIVE BEHAV Aggressive Behav. MAY-JUN 2012 38 3 194 207 10.1002/ab.21420 14 Behavioral Sciences; Psychology, Multidisciplinary Behavioral Sciences; Psychology 930QZ WOS:000303155500002 22531995 2018-11-12 J Price-Rees, SJ; Congdon, BC; Krockenberger, AK Price-Rees, Samantha J.; Congdon, Bradley C.; Krockenberger, Andrew K. Size delays female senescence in a medium sized marsupial: The effects of maternal traits on annual fecundity in the northern brown bandicoot (Isoodon macrourus) AUSTRAL ECOLOGY English Article fecundity; maternal effect; reproductive investment; resource allocation; terminal investment REPRODUCTIVE EFFORT; LITTER SIZE; BODY-SIZE; EARLY-LIFE; RED DEER; TERMINAL INVESTMENT; ENERGY ALLOCATION; GROUND-SQUIRRELS; SMALL MAMMALS; CLUTCH SIZE The degree to which females allocate resources between current reproduction, future fecundity and survival is a central theme in life history theory. We investigated two hypotheses proposed to explain patterns of reproductive investment, terminal investment and senescence, by examining the effects of maternal traits (age and maternal mass) on annual fecundity in female northern brown bandicoots, Isoodon macrourus (Marsupialia: Peramelidae). We found that annual fecundity in females declined in their final year of reproduction, indicating reproductive senescence. Maternal mass significantly influenced the rate of senescence and, in turn, a female's lifetime reproductive output. Mass had little effect on fecundity in 1st and 2nd year females, but a positive relationship with fecundity in 3rd year females. This meant that heavy, 3rd year females did not suffer the decline in fecundity shown in light 3rd year females. For 1st year females, mass and leg length increased between their first and second reproductive seasons, indicating a temporary shift, from the allocation of resources to reproduction, to increasing condition or structural size post their first breeding event. There were no net changes to body mass in subsequent years. We suggest that this year of post-reproductive growth has important consequences for senescent effects on reproduction. Overall, results provided support for the effects of senescence on annual fecundity. Our findings were not consistent with the terminal investment hypothesis; reproductive output did not increase in females' final reproductive season despite a rapid decline in survival. However, this notion cannot be entirely dismissed; other measures of reproductive performance not examined here (e.g. offspring mass) may have provided an indication that females did increase their effort at the end of their lifespan. This study highlights the difficulty of measuring reproductive costs and the importance of understanding the combined effects of specific characteristics of an individual when interpreting reproductive strategies in iteroparous organisms. [Price-Rees, Samantha J.; Congdon, Bradley C.; Krockenberger, Andrew K.] James Cook Univ, Sch Marine & Trop Biol, Cairns, Qld, Australia Krockenberger, AK (reprint author), James Cook Univ, Sch Marine & Trop Biol, Cairns, Qld, Australia. andrew.krockenberger@jcu.edu.au James Cook University, TESS/B-8171-2012; Research ID, CTBCC/O-3564-2014; Congdon, Bradley/J-9181-2012; Krockenberger, Andrew/C-1323-2010 Congdon, Bradley/0000-0002-8751-0892; Krockenberger, Andrew/0000-0003-2872-9939 Smithfield Palm Nursery; School of Marine and Tropical Biology, James Cook University, Cairns We thank Smithfield Palm Nursery for allowing access to the study site and for their general support for the project. Thanks to all field assistants that helped with data collection. We thank Jamie Seymour, Will Edwards and Greg Brown for statistical advice. Melanie Elphick for assistance with graphics. Research was conducted with approval from JCU Animal Ethics (A465) and Qld EPA permit numberWISP01821404. Financial support for this project was provided by the School of Marine and Tropical Biology, James Cook University, Cairns. Altmann J, 2005, BEHAV ECOL SOCIOBIOL, V57, P490, DOI 10.1007/s00265-004-0870-x; Arnold Stean J., 1994, P17; Balbontin J, 2007, J ANIM ECOL, V76, P915, DOI 10.1111/j.1365-2656.2007.01269.x; BARNES A, 1984, AUST J ZOOL, V32, P219, DOI 10.1071/ZO9840219; Baudisch A, 2005, P NATL ACAD SCI USA, V102, P8263, DOI 10.1073/pnas.0502155102; Beckman J, 2007, MOL ECOL, V16, P1069, DOI 10.1111/j.1365-294X.2006.03209.x; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Bernardo J, 1996, AM ZOOL, V36, P83; Berube CH, 1999, ECOLOGY, V80, P2555, DOI 10.2307/177240; BLUEWEISS L, 1978, OECOLOGIA, V37, P257, DOI 10.1007/BF00344996; Bowen WD, 2006, J ANIM ECOL, V75, P1340, DOI 10.1111/j.1365-2656.2006.01157.x; BOWEN WD, 1994, CAN J ZOOL, V72, P8, DOI 10.1139/z94-002; Boyce M.S., 1988, EVOLUTION LIFE HIST; Bridges TS, 1996, AM ZOOL, V36, P132; Catry P, 2006, P R SOC B, V273, P1625, DOI 10.1098/rspb.2006.3482; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; CHASTEL O, 1995, ECOLOGY, V76, P2240, DOI 10.2307/1941698; Clark PJ, 2001, FUNCT ECOL, V15, P70, DOI 10.1046/j.1365-2435.2001.00494.x; Clutton-Brock T., 1991, P234; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Cockburn A., 1990, P285; COCKBURN A, 1983, EVOLUTION, V37, P86, DOI 10.1111/j.1558-5646.1983.tb05517.x; COCKBURN A, 1989, TRENDS ECOL EVOL, V4, P126, DOI 10.1016/0169-5347(89)90210-3; Cockburn Andrew, 1997, P163; Comfort A, 1979, BIOL SENESCENCE; Crocker DE, 2001, ECOLOGY, V82, P3541, DOI 10.1890/0012-9658(2001)082[3541:MTAREI]2.0.CO;2; Daan Serge, 1997, P311; DOBSON FS, 1995, ECOLOGY, V76, P851, DOI 10.2307/1939350; Dudycha JL, 2003, OECOLOGIA, V135, P555, DOI 10.1007/s00442-003-1230-7; FESTABIANCHET M, 1991, J ANIM ECOL, V60, P1077, DOI 10.2307/5432; FINCH C, 1990, LONGEVITY SENESCENCE; Fisher DO, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0015226; Fisher DO, 2001, ECOLOGY, V82, P3531, DOI 10.1890/0012-9658(2001)082[3531:TEBOLH]2.0.CO;2; FORD NB, 1989, HERPETOLOGICA, V45, P75; Friend G.R., 1990, P357; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GEMMELL R T, 1989, Australian Mammalogy, V12, P73; Gemmell R.T., 1990, P213; Gemmell R. T., 1982, AUST MAMMAL, V5, P187; GITTLEMAN JL, 1988, AM ZOOL, V28, P863; Gordon G, 1995, MAMMALS AUSTR, P174; Griffiths AD, 2005, J ZOOL, V267, P211, DOI 10.1017/S0952836905007429; Hall L.S., 1990, P123; Hamilton MJ, 2011, P ROY SOC B-BIOL SCI, V278, P560, DOI 10.1098/rspb.2010.1056; Havelka MA, 2004, J MAMMAL, V85, P940, DOI 10.1644/013; Hayflick L, 2000, NATURE, V408, P267, DOI 10.1038/35041709; Hendry AP, 2004, P ROY SOC B-BIOL SCI, V271, P259, DOI 10.1098/rspb.2003.2600; Hewison AJM, 2001, J ANIM ECOL, V70, P600, DOI 10.1046/j.1365-2656.2001.00528.x; Hoffman CL, 2010, BEHAV ECOL, V21, P972, DOI 10.1093/beheco/arq098; Hsu MJ, 1999, J COMP PHYSIOL B, V169, P67, DOI 10.1007/s003600050195; Ikonomopoulou MP, 2005, AUST J ZOOL, V53, P59, DOI 10.1071/ZO04044; Isaac JL, 2005, BIOL LETT-UK, V1, P271, DOI 10.1098/rsbl.2005.0326; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; KIRKPATRICK M, 1989, EVOLUTION, V43, P485, DOI 10.1111/j.1558-5646.1989.tb04247.x; Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Krockenberger A, 2003, J COMP PHYSIOL B, V173, P531, DOI 10.1007/s00360-003-0361-9; LEE A, 1985, EVOLUTIONARY ECOLOGY; Litzgus JD, 2008, COPEIA, P86, DOI 10.1643/CH-07-093; Lobert B., 1990, REPROD LIFE HIST ISO, P357; Loison A, 1999, ECOLOGY, V80, P2539, DOI 10.2307/177239; LUNN NJ, 1993, J ZOOL, V229, P55, DOI 10.1111/j.1469-7998.1993.tb02620.x; LYNE A G, 1981, Australian Mammalogy, V4, P107; Lyne A.G, 1990, BANDICOOTS BILBIES, pxxiii; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; McCleery RH, 2008, P R SOC B, V275, P963, DOI 10.1098/rspb.2007.1418; Merchant J.C., 1990, P219; Milner JM, 1999, J ANIM ECOL, V68, P1235, DOI 10.1046/j.1365-2656.1999.00366.x; Monaghan P, 2008, FUNCT ECOL, V22, P371, DOI 10.1111/j.1365-2435.2008.01418.x; Morbey YE, 2005, AM NAT, V166, P556, DOI 10.1086/491720; Mysterud A, 2002, OIKOS, V97, P177, DOI 10.1034/j.1600-0706.2002.970203.x; Mysterud A, 2001, P ROY SOC B-BIOL SCI, V268, P911, DOI 10.1098/rspb.2001.1585; Naulleau G, 1996, OECOLOGIA, V107, P301, DOI 10.1007/BF00328446; Newton I, 1997, ECOLOGY, V78, P1000, DOI 10.1890/0012-9658(1997)078[1000:SARVIS]2.0.CO;2; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; Nussey DH, 2007, CURR BIOL, V17, pR1000, DOI 10.1016/j.cub.2007.10.005; Nussey DH, 2006, ECOL LETT, V9, P1342, DOI 10.1111/j.1461-0248.2006.00989.x; Olsson M, 1996, OECOLOGIA, V105, P175, DOI 10.1007/BF00328543; Peig J, 2009, OIKOS, V118, P1883, DOI 10.1111/j.1600-0706.2009.17643.x; Peters R.H., 1983, P1; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Reed TE, 2008, AM NAT, V171, pE89, DOI 10.1086/524957; Roff Derek A., 1992; Rogowitz GL, 1996, AM ZOOL, V36, P197; Rose M. R, 1991, EVOLUTIONARY BIOL AG; SCHNEBEL EM, 1988, EVOLUTION, V42, P306, DOI 10.1111/j.1558-5646.1988.tb04134.x; Sharp SP, 2010, J ANIM ECOL, V79, P176, DOI 10.1111/j.1365-2656.2009.01616.x; Sikes RS, 1998, J MAMMAL, V79, P1143, DOI 10.2307/1383005; Skow CD, 2003, J ARACHNOL, V31, P305, DOI 10.1636/01-85; Sokal R.R., 1995, BIOMETRY; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tardif SD, 2004, AM J PRIMATOL, V62, P83, DOI 10.1002/ajp.20009; THOMPSON SD, 1987, OECOLOGIA, V71, P201, DOI 10.1007/BF00377285; TyndaleBiscoe H, 2005, LIFE OF MARSUPIALS, P1; WEINER J, 1987, S ZOOL SOC LOND, V57, P167; Weladji RB, 2002, OECOLOGIA, V131, P79, DOI 10.1007/s00442-001-0864-6; Weladji RB, 2010, OECOLOGIA, V162, P261, DOI 10.1007/s00442-009-1443-5; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; ZULLINGER EM, 1984, J MAMMAL, V65, P607, DOI 10.2307/1380844 100 2 2 0 32 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1442-9985 1442-9993 AUSTRAL ECOL Austral Ecol. MAY 2012 37 3 313 322 10.1111/j.1442-9993.2011.02279.x 10 Ecology Environmental Sciences & Ecology 930EA WOS:000303118800009 2018-11-12 J Ellis, BJ; Bjorklund, DF Ellis, Bruce J.; Bjorklund, David F. Beyond Mental Health: An Evolutionary Analysis of Development Under Risky and Supportive Environmental Conditions: An Introduction to the Special Section DEVELOPMENTAL PSYCHOLOGY English Editorial Material evolutionary-developmental psychology; adaptive phenotypic plasticity; life history theory; differential susceptibility; developmental programming DIFFERENTIAL SUSCEPTIBILITY; BIOLOGICAL SENSITIVITY; STRESS REACTIVITY; TRADE-OFFS; CONTEXT; PERSPECTIVE; PSYCHOLOGY Evolutionary approaches to behavior have increasingly captured the attention and imagination of academics and laypeople alike. One part of this trend has been the increasing influence of evolutionary theory in developmental science. The articles in this special section of Developmental Psychology attempt to demonstrate why an evolutionary analysis is needed to more fully understand the contexts and contingencies of development. The 3 theoretical articles articulate the core evolutionary logic underlying conditional adaptation (and maladaptation) to both stressful and supportive environmental conditions over development. These theoretical articles are then followed by 9 empirical articles that test these evolutionary-developmental theories and hypotheses. Finally, 6 commentaries evaluate the prospects, pitfalls, and implications of this body of work. [Ellis, Bruce J.] Univ Arizona, John & Doris Norton Sch Family & Consumer Sci, Tucson, AZ 85721 USA; [Bjorklund, David F.] Florida Atlantic Univ, Dept Psychol, Boca Raton, FL 33431 USA Ellis, BJ (reprint author), Univ Arizona, John & Doris Norton Sch Family & Consumer Sci, McClelland Pk,650 N Pk Ave, Tucson, AZ 85721 USA. bjellis@email.arizona.edu Baldwin J.M., 1902, DEV EVOLUTION; Belsky J, 1997, CHILD DEV, V68, P598, DOI 10.2307/1132110; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 1997, PSYCHOL INQ, V8, P182, DOI 10.1207/s15327965pli0803_3; Belsky J, 2008, INT J BEHAV DEV, V32, P260, DOI 10.1177/0165025408090969; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Belsky J, 2009, PSYCHOL BULL, V135, P885, DOI 10.1037/a0017376; Bjorklund D. F., 2002, ORIGINS HUMAN NATURE, DOI [10.1037/10425-000, DOI 10.1037/10425-000]; Bjorklund DF, 2007, ADV CHILD DEV BEHAV, V35, P1; Bjorklund DF, 2006, DEV REV, V26, P213, DOI 10.1016/j.dr.2006.02.007; Blair C, 2012, DEV PSYCHOL, V48, P647, DOI 10.1037/a0026472; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Bugental DB, 2012, DEV PSYCHOL, V48, P806, DOI 10.1037/a0027477; BURGESS R, 2005, EVOLUTIONARY PERSPEC; Chisholm JS, 1999, DEATH HOPE SEX STEPS; Dawkins R., 1976, SELFISH GENE; Del Giudice M, 2012, DEV PSYCHOL, V48, P775, DOI 10.1037/a0026519; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Dishion TJ, 2012, DEV PSYCHOL, V48, P703, DOI 10.1037/a0027304; Dodge KA, 2012, DEV PSYCHOL, V48, P624, DOI 10.1037/a0027683; Eisenberg N, 2012, DEV PSYCHOL, V48, P755, DOI 10.1037/a0026518; Ellis B. J., 2005, ORIGINS SOCIAL MIND; Ellis BJ, 2006, DEV REV, V26, P175, DOI 10.1016/j.dr.2006.02.004; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P7, DOI 10.1017/S0954579410000611; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P1, DOI 10.1017/S095457941000060X; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Frankenhuis WE, 2012, DEV PSYCHOL, V48, P628, DOI 10.1037/a0025629; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Gibbons FX, 2012, DEV PSYCHOL, V48, P722, DOI 10.1037/a0026599; Gluckman PD, 2012, DEV PSYCHOL, V48, P643, DOI 10.1037/a0027508; Gottlieb G, 2002, PSYCHOL REV, V109, P211, DOI 10.1037//0033-295X.109.2.211; GOTTLIEB G, 1992, INDIVIDUAL DEV EVOLU; James J, 2012, DEV PSYCHOL, V48, P687, DOI 10.1037/a0026427; Korte SM, 2005, NEUROSCI BIOBEHAV R, V29, P3, DOI 10.1016/j.neubiorev.2004.08.009; Lickliter R, 2003, PSYCHOL BULL, V129, P819, DOI 10.1037/0033-2909.129.6.819; Lickliter R, 2012, DEV PSYCHOL, V48, P658, DOI 10.1037/a0027495; Nettle D, 2012, DEV PSYCHOL, V48, P718, DOI 10.1037/a0027507; Obradovic J, 2010, CHILD DEV, V81, P270, DOI 10.1111/j.1467-8624.2009.01394.x; Ploeger A, 2008, PSYCHOL INQ, V19, P1, DOI 10.1080/10478400701774006; Raff R. A., 1996, SHAPE LIFE GENES DEV; Schlichting C. D., 1998, PHENOTYPIC EVOLUTION; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Smith J. Maynard, 1982, EVOLUTION THEORY GAM; Sturge-Apple ML, 2012, DEV PSYCHOL, V48, P791, DOI 10.1037/a0026908; Sulik MJ, 2012, DEV PSYCHOL, V48, P740, DOI 10.1037/a0025938; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Van IJzendoorn M. H., 2012, DEV PSYCHOL, V48, P769, DOI [10.1037/a0027536, DOI 10.1037/A0027536]; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Wolf M, 2008, P NATL ACAD SCI USA, V105, P15825, DOI 10.1073/pnas.0805473105 50 24 24 0 29 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0012-1649 DEV PSYCHOL Dev. Psychol. MAY 2012 48 3 591 597 10.1037/a0027651 7 Psychology, Developmental Psychology 932JK WOS:000303287200001 22545847 2018-11-12 J Belsky, J; Schlomer, GL; Ellis, BJ Belsky, Jay; Schlomer, Gabriel L.; Ellis, Bruce J. Beyond Cumulative Risk: Distinguishing Harshness and Unpredictability as Determinants of Parenting and Early Life History Strategy DEVELOPMENTAL PSYCHOLOGY English Article harsh parenting; unpredictable environment; sexual risk taking; life history; maternal depression REPRODUCTIVE STRATEGIES; ENVIRONMENTAL RISK; ECONOMIC HARDSHIP; EARLY ADOLESCENCE; STRESS; HEALTH; CHILDREN; TRAJECTORIES; PERSPECTIVE; ATTACHMENT Drawing on life history theory, Ellis and associates' (2009) recent across- and within-species analysis of ecological effects on reproductive development highlighted two fundamental dimensions of environmental variation and influence: harshness and unpredictability. To evaluate the unique contributions of these factors, the authors of present article examined data from a national sample 1364 mothers and their children participating in the NICHD Study of Early Child Care and Youth Development. Harshness was operationalized as income-to-needs ratio in the first 5 years of life; unpredictability was indexed by residential changes, paternal transitions, and parental job changes during this same period. Here the proposition was tested that these factors not only uniquely predict accelerated life-history strategy, operationalized in terms of sexual behavior at age 15, but that such effects are mediated by change over the early-childhood years in maternal depression and, thereby, observed maternal sensitivity in the early-elementary-school years. Structural equation modeling provided empirical support for Ellis et al.'s (2009) theorizing, calling attention once again to the contribution of evolutionary analysis to understanding contemporary human parenting and development. Implications of the findings for intervention are discussed. [Belsky, Jay] Univ Calif Davis, Davis, CA 95616 USA; [Belsky, Jay] Birkbeck Univ London, Dept Psychol Sci, London, England; [Schlomer, Gabriel L.] Univ Arizona, Arizona Ctr Res & Outreach, Norton Sch Family & Consumer Sci, Tucson, AZ 85721 USA Belsky, J (reprint author), Univ Calif Davis, 1 Shields Ave, Davis, CA 95616 USA. jbelsky@ucdavis.edu Belsky, Jay/0000-0003-2191-2503 ADLER NE, 1993, JAMA-J AM MED ASSOC, V269, P3140, DOI 10.1001/jama.269.24.3140; Allhusen V, 2001, J APPL DEV PSYCHOL, V22, P457; BATESON P, 1994, TRENDS ECOL EVOL, V9, P399, DOI 10.1016/0169-5347(94)90066-3; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; Baumer EP, 2001, J MARRIAGE FAM, V63, P540, DOI 10.1111/j.1741-3737.2001.00540.x; Belsky J, 2006, DEV PSYCHOL, V42, P38, DOI 10.1037/0012-1649.42.1.38; Belsky J, 2002, DEV PSYCHOPATHOL, V14, P293; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BELSKY J, 1984, CHILD DEV, V55, P83, DOI 10.2307/1129836; Belsky J, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P127; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; BRONFENBRENNER U., 1979, ECOLOGY HUMAN DEV; Brown T. A., 2006, CONFIRMATORY FACTOR; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Cameron NM, 2005, NEUROSCI BIOBEHAV R, V29, P843, DOI 10.1016/j.neubiorev.2005.03.022; Capaldi DM, 1996, CHILD DEV, V67, P344, DOI 10.2307/1131818; Chen E, 2002, PSYCHOL BULL, V128, P295, DOI 10.1037/0033-2909.128.2.295; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Chisholm JS, 1999, DEATH HOPE AND SEX; Cohen J., 2003, APPL MULTIPLE REGRES; Collins LM, 2001, PSYCHOL METHODS, V6, P330, DOI 10.1037//1082-989X.6.4.330; CONGER RD, 1990, J MARRIAGE FAM, V52, P643, DOI 10.2307/352931; Conger RD, 2002, DEV PSYCHOL, V38, P179, DOI 10.1037//0012-1649.38.2.179; CONGER RD, 1994, CHILD DEV, V65, P541, DOI 10.1111/j.1467-8624.1994.tb00768.x; Crowder K, 2004, J MARRIAGE FAM, V66, P721, DOI 10.1111/j.0022-2445.2004.00049.x; Dobzhansky T, 2013, AM BIOL TEACH, V75, P87, DOI 10.2307/4444260; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Ellis B. J., DEV PSYCHOP IN PRESS; Ellis B. J., 2005, ORIGINS SOCIAL MIND; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Evans GW, 2007, PSYCHOL SCI, V18, P953, DOI 10.1111/j.1467-9280.2007.02008.x; Evans GW, 2002, CHILD DEV, V73, P1238, DOI 10.1111/1467-8624.00469; Fergusson DM, 2000, J CHILD PSYCHOL PSYC, V41, P779, DOI 10.1111/1469-7610.00665; Frankenhuis W. E., 2010, ANN M HUM BEH EV SOC; Gazelle H, 2007, J APPL DEV PSYCHOL, V28, P515, DOI 10.1016/j.appdev.2007.06.006; Geronimus AT, 1996, HUM NATURE-INT BIOS, V7, P323, DOI 10.1007/BF02732898; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Gutman LM, 2003, DEV PSYCHOL, V39, P777, DOI 10.1037/0012-1649.39.4.777; Gutman LM, 2002, AM J COMMUN PSYCHOL, V30, P367, DOI 10.1023/A:1015389103911; Harden A, 2009, BRIT MED J, V339, DOI 10.1136/bmj.b4254; HINDE RA, 1990, HUM DEV, V33, P62, DOI 10.1159/000276503; HINDE RA, 1986, DEV ANTISOCIAL PROSO, P13; Holden GW, 2010, CHILD DEV PERSPECT, V4, P197, DOI 10.1111/j.1750-8606.2010.00148.x; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; Kline R, 2005, PRINCIPALS PRACTICE; Maccoby E.E., 1980, SOCIAL DEV PSYCHOL G; MCLOYD VC, 1990, CHILD DEV, V61, P311, DOI 10.1111/j.1467-8624.1990.tb02781.x; McLoyd VC, 1998, AM PSYCHOL, V53, P185, DOI 10.1037/0003-066X.53.2.185; Muthen L. K., 2005, RE MULTIPLE GROUP FA; Muthen L. K., 1998, MPLUS USERS GUIDE; National Institute of Child Health and Human Development (NICHD) Early Child Care Research Network, 2005, CHILD CAR CHILD DEV; Nettle D, 2011, P ROY SOC B-BIOL SCI, V278, P1721, DOI 10.1098/rspb.2010.1726; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; *NICHD EARL CHILD, 2003, INFANT BEHAV DEV, V0026; PENNINGTON R, 1988, AM J PHYS ANTHROPOL, V77, P303, DOI 10.1002/ajpa.1330770304; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Quinlan RJ, 2010, HUM NATURE-INT BIOS, V21, P124, DOI 10.1007/s12110-010-9085-1; RADLOFF L S, 1977, Applied Psychological Measurement, V1, P385, DOI 10.1177/014662167700100306; Roff D. A., 2002, LIFE HIST EVOLUTION; ROSENBLUM LA, 1984, CHILD DEV, V55, P305, DOI 10.1111/j.1467-8624.1984.tb00293.x; ROSENBLUM LA, 1994, ACTA PAEDIATR, V83, P57, DOI 10.1111/j.1651-2227.1994.tb13266.x; SAMEROFF AJ, 1987, PEDIATRICS, V79, P343; Scaramella LV, 1998, DEV PSYCHOL, V34, P1233, DOI 10.1037/0012-1649.34.6.1233; Schlomer GL, 2010, J COUNS PSYCHOL, V57, P1, DOI 10.1037/a0018082; Seifer R, 1996, J CLIN CHILD PSYCHOL, V25, P423, DOI 10.1207/s15374424jccp2504_7; Simpson Jeffry A., 2008, HDB ATTACHMENT THEOR, P131; Sobel ME, 1986, SOCIOL METHODOL, V16, P159, DOI DOI 10.2307/270922; Stearns S. C., 1992, EVOLUTION LIFE HIST 70 111 116 1 83 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0012-1649 1939-0599 DEV PSYCHOL Dev. Psychol. MAY 2012 48 3 662 673 10.1037/a0024454 12 Psychology, Developmental Psychology 932JK WOS:000303287200008 21744948 2018-11-12 J Simpson, JA; Griskevicius, V; Kuo, SIC; Sung, S; Collins, WA Simpson, Jeffry A.; Griskevicius, Vladas; Kuo, Sally I-Chun; Sung, Sooyeon; Collins, W. Andrew Evolution, Stress, and Sensitive Periods: The Influence of Unpredictability in Early Versus Late Childhood on Sex and Risky Behavior DEVELOPMENTAL PSYCHOLOGY English Article life stress; social development; sexual behavior; evolution; life history theory LIFE-HISTORY STRATEGIES; REPRODUCTIVE STRATEGY; FATHER ABSENCE; ENVIRONMENTAL RISK; DYING YOUNG; LIVING FAST; NEIGHBORHOODS; HEALTH According to a recent evolutionary life history model of development proposed by Ellis, Figueredo, Brumbach, and Schlomer (2009), growing up in harsh versus unpredictable environments should have unique effects on life history strategies in adulthood. Using data from the Minnesota Longitudinal Study of Risk and Adaptation, we tested how harshness and unpredictability experienced in early childhood (age 0-5) versus in later childhood (age 6-16) uniquely predicted sexual and risky behavior at age 23. Findings showed that the strongest predictor of both sexual and risky behavior was an unpredictable environment between ages 0 and 5. Individuals exposed to more unpredictable, rapidly changing environments during the first 5 years of life displayed a faster life history strategy at age 23 by having more sexual partners, engaging in more aggressive and delinquent behaviors, and being more likely to be associated with criminal activities. In contrast, exposure to either harsh environments or experiencing unpredictability in later childhood (age 6-16) was, for the most part, not significantly related to these outcomes at age 23. Viewed together, these findings show that unpredictable rather than merely harsh childhood environments exert unique effects on risky behavior later in life consistent with a faster life history strategy. The findings also suggest that there is a developmentally sensitive period for assessing environmental unpredictability during the first 5 years of life. [Simpson, Jeffry A.; Sung, Sooyeon] Univ Minnesota, Dept Psychol, Minneapolis, MN 55455 USA; [Griskevicius, Vladas] Univ Minnesota, Carlson Sch Management, Minneapolis, MN 55455 USA; [Kuo, Sally I-Chun; Collins, W. Andrew] Univ Minnesota, Inst Child Dev, Minneapolis, MN 55455 USA Simpson, JA (reprint author), Univ Minnesota, Dept Psychol, Twin Cities Campus, Minneapolis, MN 55455 USA. simps108@umn.edu Simpson, Jeff/0000-0003-1899-2493 Achenbach T M, 2000, Pediatr Rev, V21, P265, DOI 10.1542/pir.21-8-265; ACHENBACH TM, 1997, MANUAL YOUNG ADULT S; ADLER NE, 1993, JAMA-J AM MED ASSOC, V269, P3140, DOI 10.1001/jama.269.24.3140; *AM PSYCH ASS, 1994, DIAG STAT MAN MENT D; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 1999, HDB ATTACHMENT THEOR, P141; Belsky J, 2007, CHILD DEV, V78, P1302, DOI 10.1111/j.1467-8624.2007.01067.x; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; Bereczkei T, 1996, HUM NATURE-INT BIOS, V7, P257, DOI 10.1007/BF02733397; Blum R., 1989, STATE ADOLESCENT HLT; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Chen E, 2002, PSYCHOL BULL, V128, P295, DOI 10.1037/0033-2909.128.2.295; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Chisholm JS, 1999, DEATH HOPE SEX STEPS; COCHRANE R, 1973, J PSYCHOSOM RES, V17, P135, DOI 10.1016/0022-3999(73)90014-7; Del Giudice M., 2011, EVOLUTION PERSONALIT, P154; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Duncan O., 1961, OCCUPATIONS SOCIAL S, P109; EGELAND B, 1980, J CONSULT CLIN PSYCH, V48, P195, DOI 10.1037/0022-006X.48.2.195; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2006, DEV REV, V26, P175, DOI 10.1016/j.dr.2006.02.004; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Griskevicius V., 2011, EC RECESSIONS UNPUB; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; Kenrick DT, 2010, PERSPECT PSYCHOL SCI, V5, P292, DOI 10.1177/1745691610369469; Low BS, 2008, CROSS-CULT RES, V42, P201, DOI 10.1177/1069397108317669; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Roff D. A., 2002, LIFE HIST EVOLUTION; ROSENBLUM LA, 1984, CHILD DEV, V55, P305, DOI 10.1111/j.1467-8624.1984.tb00293.x; ROSENBLUM LA, 1994, ACTA PAEDIATR, V83, P57, DOI 10.1111/j.1651-2227.1994.tb13266.x; Rowe DC, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P147; Simpson J. A., 2011, HDB INTERPERSONAL PS, P75; Simpson Jeffry A., 2008, HDB ATTACHMENT THEOR, P131; Sroufe L. A., 2005, DEV PERSON MINNESOTA; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEVENS G, 1981, SOC SCI RES, V10, P364, DOI 10.1016/0049-089X(81)90011-9; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 49 109 114 3 48 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0012-1649 1939-0599 DEV PSYCHOL Dev. Psychol. MAY 2012 48 3 674 686 10.1037/a0027293 13 Psychology, Developmental Psychology 932JK WOS:000303287200009 22329381 2018-11-12 J Bugental, DB Bugental, Daphne Blunt Adaptive Calibration of Children's Physiological Responses to Family Stress: The Utility of Evolutionary Developmental Theory: Comment on Del Giudice et al. (2012) and Sturge-Apple et al. (2012) DEVELOPMENTAL PSYCHOLOGY English Editorial Material life history theory; family; stress; physiological responses CORTISOL; HEALTH Children's physiological reactions to stress are presented from the broader theoretical perspective of adaptive calibration to the environment, as rooted in life history theory. Del Giudice, Hinnant, Ellis, and El-Sheikh (2012) focus on children's physiological responses to a stressful task as a consequence of their history of family stress. Sturge-Apple, Davies, Martin, Cicchetti, and Hentges (2012) focus on the ways that children respond to a novel laboratory manipulation as a combined function of their temperament patterns and the harshness of their parental environment. The theoretical perspective employed provides an overarching framework that not only accounts for the findings presented here but also has heuristic value for future research on responses to early environmental risk. Future work in this area will benefit by inclusion of additional sympathetic nervous system (SNS) markers and neurotransmitters, inclusion of the role of gene expression in adaptive calibration, broader consideration of protective factors in the child's environment, and longitudinal work demonstrating the effects of adaptive calibration on children's future life history strategies and outcomes. Univ Calif Santa Barbara, Dept Psychol & Brain Sci, Santa Barbara, CA 93106 USA Bugental, DB (reprint author), Univ Calif Santa Barbara, Dept Psychol & Brain Sci, Santa Barbara, CA 93106 USA. bugental@psych.ucsb.edu Bjorklund D. F., 2002, HDB PARENTING, P3; Boyd R, 2011, P NATL ACAD SCI USA, V108, P10918, DOI 10.1073/pnas.1100290108; Bugental DB, 2012, DEV PSYCHOL, V48, P1443, DOI 10.1037/a0027303; Bugental DB, 2010, MIND BRAIN EDUC, V4, P159, DOI 10.1111/j.1751-228X.2010.01095.x; Bugental DB, 2010, J EXP CHILD PSYCHOL, V106, P30, DOI 10.1016/j.jecp.2009.10.004; Coall DA, 2010, BEHAV BRAIN SCI, V33, P1, DOI 10.1017/S0140525X09991105; Del Giudice M, 2012, DEV PSYCHOL, V48, P775, DOI 10.1037/a0026519; Ellis BJ, 2005, DEV PSYCHOPATHOL, V17, P303, DOI 10.1017/S0954579405050157; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Fox NA, 2005, ANNU REV PSYCHOL, V56, P235, DOI 10.1146/annurev.psych.55.090902.141532; Hane AA, 2010, DEV PSYCHOBIOL, V52, P558, DOI 10.1002/dev.20461; Liu D, 2000, NAT NEUROSCI, V3, P799; Sameroff A., 2009, T MODEL DEV CHILDREN, DOI [10.1037/11877-000, DOI 10.1037/11877-000]; Spinrad TL, 2009, HORM BEHAV, V56, P133, DOI 10.1016/j.yhbeh.2009.03.020; Sturge-Apple ML, 2012, DEV PSYCHOL, V48, P791, DOI 10.1037/a0026908; Taylor SE, 2004, J PERS, V72, P1365, DOI 10.1111/j.1467-6494.2004.00300.x; Taylor SE, 2011, DEV PSYCHOPATHOL, V23, P939, DOI 10.1017/S0954579411000411; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU 19 1 1 0 9 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0012-1649 DEV PSYCHOL Dev. Psychol. MAY 2012 48 3 806 809 10.1037/a0027477 4 Psychology, Developmental Psychology 932JK WOS:000303287200019 22545853 2018-11-12 J Hunt, GR; Holzhaider, JC; Gray, RD Hunt, Gavin R.; Holzhaider, Jennifer C.; Gray, Russell D. Prolonged Parental Feeding in Tool-Using New Caledonian Crows ETHOLOGY English Article WHITE-WINGED CHOUGHS; CORVUS-MONEDULOIDES; LIFE-HISTORY; HOOK-TOOLS; MANUFACTURE; BIRDS; EVOLUTION; CARE; WILD; DISPERSAL According to life-history theory, the duration of extended parental feeding is determined by the costs and benefits of maximising reproductive success. Therefore, the length of regular parental provisioning should be correlated with the time required for juveniles to acquire the skills that they need to be independent. The relatively few cases of extremely prolonged parental feeding in both land and sea birds appear to be consistent with this prediction because they are associated with learning-intensive foraging techniques. New Caledonian crows have the most intricate tool manufacture techniques amongst non-human animals and juveniles take over 1 yr to reach adult-like proficiency in their tool skills. We investigated the prediction that this species also should have prolonged parental provisioning. We found that these crows have one of the longest known periods of regular extended parental provisioning in birds. Some parents regularly fed juveniles for up to 10 mo post-fledging. Humans also stand out amongst primates because of their learning-intensive foraging strategies and an extended period of juvenile dependence. The independently evolved association between a relatively high level of technological skill in foraging and prolonged juvenile provisioning in both humans and New Caledonian crows raises the possibility that these two characteristics might be causally related. [Hunt, Gavin R.; Holzhaider, Jennifer C.; Gray, Russell D.] Univ Auckland, Dept Psychol, Auckland, New Zealand Hunt, GR (reprint author), Univ Auckland, Dept Psychol, Private Bag 92019, Auckland, New Zealand. g.hunt@auckland.ac.nz Gray, Russell/H-2078-2015 Gray, Russell/0000-0002-9858-0191 New Zealand Marsden Fund We thank the Province des Iles Loyaute for permission to work on Mare and W. Wardrobert and his family for access to their land. Mick Sibley and Maren Wagener assisted us with field observations. We also thank the Editor and the two reviewers for their comments that much improved the manuscript. This work was supported by a grant from the New Zealand Marsden Fund (R.D.G. and G.R H.). ASHMOLE NP, 1968, AUK, V85, P90, DOI 10.2307/4083627; Baglione V, 2002, AUK, V119, P790, DOI 10.1642/0004-8038(2002)119[0790:CBGOCC]2.0.CO;2; Barrickman NL, 2008, J HUM EVOL, V54, P568, DOI 10.1016/j.jhevol.2007.08.012; Burger J., 1980, P367; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Cnotka J, 2008, NEUROSCI LETT, V433, P241, DOI 10.1016/j.neulet.2008.01.026; dos Anjos L., 2009, P494; Ekman J, 2002, P ROY SOC B-BIOL SCI, V269, P1709, DOI 10.1098/rspb.2002.2082; FOGDEN MPL, 1972, IBIS, V114, P307, DOI 10.1111/j.1474-919X.1972.tb00831.x; Gurven M, 2006, J HUM EVOL, V51, P454, DOI 10.1016/j.jhevol.2006.05.003; HEINSOHN RG, 1988, ETHOLOGY, V77, P177; HEINSOHN RG, 1991, AM NAT, V137, P864, DOI 10.1086/285198; Holzhaider JC, 2011, ANIM BEHAV, V81, P83, DOI 10.1016/j.anbehav.2010.09.015; Holzhaider JC, 2010, BEHAVIOUR, V147, P553, DOI 10.1163/000579510X12629536366284; Hunt GR, 2007, NEW ZEAL J ZOOL, V34, P1; Hunt GR, 2007, BIOL LETTERS, V3, P173, DOI 10.1098/rsbl.2006.0603; Hunt GR, 2004, P ROY SOC B-BIOL SCI, V271, pS88, DOI 10.1098/rsbl.2003.0085; Hunt GR, 2004, ANIM COGN, V7, P114, DOI 10.1007/s10071-003-0200-0; Hunt GR, 1996, NATURE, V379, P249, DOI 10.1038/379249a0; Hunt GR, 2002, EMU, V102, P349, DOI 10.1071/MU01056; Hunt GR, 2003, P ROY SOC B-BIOL SCI, V270, P867, DOI 10.1098/rspb.2002.2302; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kenward B, 2005, NATURE, V433, P121, DOI 10.1038/433121a; Langen TA, 2000, BEHAV ECOL, V11, P367, DOI 10.1093/beheco/11.4.367; Mehlhorn J, 2010, BRAIN BEHAV EVOLUT, V75, P63, DOI 10.1159/000295151; Morton J. M., 1999, REPROD JUVENILE DISP; Russell EM, 2004, BEHAV ECOL, V15, P831, DOI 10.1093/beheco/arh088; Rutz C, 2010, SCIENCE, V329, P1523, DOI 10.1126/science.1192053; Shultz S, 2010, BIOL J LINN SOC, V100, P111, DOI 10.1111/j.1095-8312.2010.01427.x; Shumaker R. W, 2011, ANIMAL TOOL BEHAV US 30 9 9 0 32 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0179-1613 1439-0310 ETHOLOGY Ethology MAY 2012 118 5 423 430 10.1111/j.1439-0310.2012.02027.x 8 Psychology, Biological; Behavioral Sciences; Zoology Psychology; Behavioral Sciences; Zoology 924OA WOS:000302700000001 2018-11-12 J Decker, KL; Conway, CJ; Fontaine, JJ Decker, Karie L.; Conway, Courtney J.; Fontaine, Joseph J. Nest predation, food, and female age explain seasonal declines in clutch size EVOLUTIONARY ECOLOGY English Article Clutch size; Seasonality; Food abundance; Nest predation; Female age LIFE-HISTORY EVOLUTION; TIT PARUS-PALUSTRIS; LESSER SNOW GEESE; REPRODUCTIVE SUCCESS; NATURAL-SELECTION; GREAT TITS; FALCO-TINNUNCULUS; PIED FLYCATCHER; SONG SPARROWS; BREEDING TIME The selection pressures responsible for intra- and interspecific variation in avian clutch size have been debated for over half a century. Seasonal declines in clutch size represent one of the most robust patterns in avian systems, yet despite extensive research on the subject, the mechanisms underlying this pattern remain largely unknown. We tested a combination of experimental and observational predictions to evaluate ten hypotheses, representing both evolutionary and proximate mechanisms proposed to explain seasonal declines in avian clutch size. In line with long held life-history theory, we found strong support for both an evolved and proximate response to food availability for young. We also found evidence consistent with predictions that proximate level experiential nest predation influences seasonal declines in clutch size. Finally, older females appear to invest more in reproduction (initiate nests earlier and lay larger clutches) and choose better territories than younger females. Our results highlight the importance of examining multiple hypotheses in a theoretical context to elucidate the ecological processes underlying commonly observed patterns in life history. [Decker, Karie L.; Conway, Courtney J.] Univ Arizona, Arizona Cooperat Fish & Wildlife Res Unit, Sch Nat Resources & Environm, Tucson, AZ 85721 USA; [Fontaine, Joseph J.] Univ Nebraska, US Geol Survey, Nebraska Cooperat Fish & Wildlife Res Unit, Lincoln, NE 68583 USA Decker, KL (reprint author), Univ Nebraska, Nebraska Cooperat Fish & Wildlife Res Unit, Sch Nat Resources, 909 Hardin Hall, Lincoln, NE 68583 USA. kdecker4@unl.edu Fontaine, Joseph/F-6557-2010 Fontaine, Joseph/0000-0002-7639-9156 NSF [DGE-0638744]; TE Inc.; American Ornithologists' Union; Animal Behavior Society; Shikar Safari Club International Foundation; Arrington Memorial Scholarship; School of Natural Resources and the Environment at the University of Arizona T. Weinkam, E. Scobie, T. Isberg, and M. Ali provided many hours of assistance in the field. B. Steidl, K. Bonine, K. Borgmann, A. Macias-Duarte, S. Steckler, C. Kirkpatrick, and A. Chalfoun provided comments and support. Financial support was provided by NSF GK-12 Fellowship grant (DGE-0638744), T&E Inc., American Ornithologists' Union, Animal Behavior Society, Shikar Safari Club International Foundation, Arrington Memorial Scholarship, and the School of Natural Resources and the Environment at the University of Arizona. All methods were approved under permits from U. S. Fish and Wildlife Service (MB053041-2), U. S. Forest Service (Catalina National Forest, #2720), U.S. Geological Survey's Bird Banding Laboratory (22524), Arizona Game and Fish Department (SP650825), and The University of Arizona Institutional Animal Care and Use Committee (protocol 06-108). APARICIO JM, 1994, OIKOS, V71, P451, DOI 10.2307/3545833; ARCESE P, 1988, J ANIM ECOL, V57, P119, DOI 10.2307/4768; Blums P, 1997, AUK, V114, P737, DOI 10.2307/4089293; Borgmann KL, 2004, AUK, V121, P74, DOI 10.1642/0004-8038(2004)121[0074:WYWDCT]2.0.CO;2; Bourgault P, 2010, OECOLOGIA, V162, P885, DOI 10.1007/s00442-009-1545-0; Chalfoun AD, 2009, J ANIM ECOL, V78, P497, DOI 10.1111/j.1365-2656.2008.01506.x; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; COOKE F, 1984, AUK, V101, P451; Cooper CB, 2005, ECOLOGY, V86, P2018, DOI 10.1890/03-8028; Decker KL, 2009, CONDOR, V111, P392, DOI 10.1525/cond.2009.080055; DRENT RH, 1980, ARDEA, V68, P225; ENS BJ, 1992, J ANIM ECOL, V61, P703, DOI 10.2307/5625; Fontaine JJ, 2006, AM NAT, V168, P811, DOI 10.1086/508297; Fontaine JJ, 2006, ECOL LETT, V9, P428, DOI 10.1111/j.1461-0248.2006.00892.x; Fontaine JJ, 2007, OIKOS, V116, P1887, DOI 10.1111/j.2007.0030-1299.16043.x; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; HAMANN J, 1989, OECOLOGIA, V79, P83, DOI 10.1007/BF00378243; Hendry AP, 2005, MOL ECOL, V14, P901, DOI 10.1111/j.1365-294X.2005.02480.x; Hillstrom L, 1995, FUNCT ECOL, V9, P807, DOI 10.2307/2389978; HOCHACHKA W, 1990, ECOLOGY, V71, P1279, DOI 10.2307/1938265; Jetz W, 2008, PLOS BIOL, V6, P2650, DOI 10.1371/journal.pbio.0060303; Johnson MD, 2001, J ANIM ECOL, V70, P546, DOI 10.1046/j.1365-2656.2001.00522.x; Julliard R, 1997, ECOLOGY, V78, P394; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lack D., 1954, NATURAL REGULATION A; Lepage D, 2000, J ANIM ECOL, V69, P414, DOI 10.1046/j.1365-2656.2000.00404.x; LESSELLS CM, 1986, J ANIM ECOL, V55, P669, DOI 10.2307/4747; Ligon J.D., 1988, P229; Lima SL, 2009, BIOL REV, V84, P485, DOI 10.1111/j.1469-185X.2009.00085.x; MARRA PP, 1993, AUK, V110, P565, DOI 10.2307/4088420; MARTIN K, 1995, AM ZOOL, V35, P340; Martin T, 1995, BIRDS N AM ONLINE; MARTIN TE, 1993, J FIELD ORNITHOL, V64, P507; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; MEIJER T, 1990, BEHAVIOUR, V114, P117, DOI 10.1163/156853990X00077; MURPHY MT, 1986, ECOLOGY, V67, P1483, DOI 10.2307/1939079; Nager RG, 1997, J ANIM ECOL, V66, P495, DOI 10.2307/5944; Nilsson JA, 2006, J AVIAN BIOL, V37, P357, DOI 10.1111/j.2006.0908-8857.03604.x; NILSSON JA, 1991, ECOLOGY, V72, P1757, DOI 10.2307/1940974; Nilsson JA, 2000, OIKOS, V88, P351, DOI 10.1034/j.1600-0706.2000.880214.x; NORRIS K, 1993, J ANIM ECOL, V62, P287, DOI 10.2307/5360; PERRINS CM, 1989, WILSON BULL, V101, P236; PERRINS CM, 1970, IBIS, V112, P242, DOI 10.1111/j.1474-919X.1970.tb00096.x; Perrins CM, 1996, IBIS, V138, P2, DOI 10.1111/j.1474-919X.1996.tb04308.x; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; PLATT JR, 1964, SCIENCE, V146, P347, DOI 10.1126/science.146.3642.347; PRICE T, 1988, SCIENCE, V240, P798, DOI 10.1126/science.3363360; PYLE P, 1997, IDENTIFICATION GUIDE; Reynolds SJ, 2010, CURR ORNITHOL, V17, P31, DOI 10.1007/978-1-4419-6421-2_2; RICKLEFS RE, 1969, NATURE, V223, P922, DOI 10.1038/223922a0; Roff D. A., 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; Roos S, 2002, OECOLOGIA, V133, P608, DOI 10.1007/s00442-002-1056-8; Saether B.-E., 1990, Current Ornithology, V7, P251; Sheldon BC, 2003, EVOLUTION, V57, P406; Siikamaki P, 1998, ECOLOGY, V79, P1789, DOI 10.1890/0012-9658(1998)079[1789:LORSBF]2.0.CO;2; SIIKAMAKI P, 1994, FUNCT ECOL, V8, P587, DOI 10.2307/2389919; SJOBERG G, 1994, J AVIAN BIOL, V25, P112, DOI 10.2307/3677028; SLAGSVOLD T, 1988, ECOLOGY, V69, P1918, DOI 10.2307/1941168; SMITH HG, 1993, AUK, V110, P889, DOI 10.2307/4088642; Stearns S. C., 1992, EVOLUTION LIFE HIST; Travers M, 2010, ECOL LETT, V13, P980, DOI 10.1111/j.1461-0248.2010.01488.x; von Haartman L., 1990, POPULATION BIOL PASS, P1; WHEELWRIGHT NT, 1994, J ANIM ECOL, V63, P686, DOI 10.2307/5234; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Winkler DW, 1996, ECOLOGY, V77, P922, DOI 10.2307/2265512 68 17 19 2 53 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 1573-8477 EVOL ECOL Evol. Ecol. MAY 2012 26 3 683 699 10.1007/s10682-011-9521-7 17 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 923XX WOS:000302655200017 2018-11-12 J Nicolaus, M; Michler, SPM; Ubels, R; van der Velde, M; Bouwman, KM; Both, C; Tinbergen, JM Nicolaus, Marion; Michler, Stephanie P. M.; Ubels, Richard; van der Velde, Marco; Bouwman, Karen M.; Both, Christiaan; Tinbergen, Joost M. Local sex ratio affects the cost of reproduction JOURNAL OF ANIMAL ECOLOGY English Article density; disease risk; intraspecific competition; optimal clutch size; Parus major; predation risk; reproductive trade-offs; sex ratio; social environment TITS PARUS-MAJOR; BROOD SIZE MANIPULATION; AVIAN CLUTCH SIZE; GREAT TIT; BLUE TIT; DENSITY-DEPENDENCE; NATAL DISPERSAL; TRADE-OFF; CONSEQUENCES; DOMINANCE 1. Costs and benefits of reproduction are central to life-history theory, and the outcome of reproductive trade-offs may depend greatly on the ecological conditions in which they are estimated. In this study, we propose that costs and benefits of reproduction are modulated by social effects, and consequently that selection on reproductive rates depends on the social environment. 2. We tested this hypothesis in a great tit Parus major population. Over 3 years, we altered parental reproductive effort via brood size manipulations (small, intermediate, large) and manipulated the local social environment via changes in the local fledgling density (decreased, increased) and the local sex ratio (female-biased, control, male-biased). 3. We found that male-biased treatment consistently increased the subsequent local breeding densities over the 3-year study period. We also found that parents rearing small broods in these male-biased plots had increased survival rates compared with the other experimental groups. 4. We conclude that reproductive costs are the product of an interaction between parental phenotypic quality after reproduction and the social environment: raising a small brood had long-lasting effects on some phenotypic traits of the parents and that this increased their survival chances in male-biased environment where habitat quality may have deteriorated (via increased disease/predation risk or intraspecific competition). 5. Our results provide the first experimental evidence that local sex ratio can affect reproductive costs and thus optimal clutch size. [Nicolaus, Marion; Michler, Stephanie P. M.; Ubels, Richard; van der Velde, Marco; Bouwman, Karen M.; Both, Christiaan; Tinbergen, Joost M.] Univ Groningen, Ctr Ecol & Evolutionary Studies, Anim Ecol Grp, NL-9700 CC Groningen, Netherlands Nicolaus, M (reprint author), Univ Groningen, Ctr Ecol & Evolutionary Studies, Anim Ecol Grp, POB 11103, NL-9700 CC Groningen, Netherlands. mnicolaus@orn.mpg.de Both, Christiaan/E-6459-2011; Nicolaus, Marion/H-6124-2015 Nicolaus, Marion/0000-0003-1808-1526 Netherlands Organisation for Scientific Research (NWO-VICI) [86503003]; University of Groningen We are grateful to R. Radersma, N.J. Dingemanse, M. Keiser, T. Lok, J. Reimerink, K. M. Jalvingh, A. Haydn, J. Plantinga as well as to all the Animal Ecology course students between 2005 and 2008 for their help in collecting the data in the field. We also thank L. te Marvelde and K. Meijer for helping with the molecular sexing of the nestlings. This project was financially supported by the Netherlands Organisation for Scientific Research (NWO-VICI grant 86503003 to Jan Komdeur) and by the University of Groningen (to JMT). We thank Staatsbosbeheer and the Royal Dutch Army 'Koninklijke Landmacht' for their permission to work in the Lauwersmeer area and to stay on their army base. Finally, we thank C. M. Lessells and two anonymous referees for useful comments on the manuscript and N.P.C. Horrocks for improving English. Ardia DR, 2005, J ANIM ECOL, V74, P517, DOI 10.1111/j.1365-2656.2005.00950.x; Both C, 1998, J ANIM ECOL, V67, P667, DOI 10.1046/j.1365-2656.1998.00228.x; Both C, 1999, P ROY SOC B-BIOL SCI, V266, P465, DOI 10.1098/rspb.1999.0660; Both C, 2000, ECOLOGY, V81, P3391, DOI 10.1890/0012-9658(2000)081[3391:ADDOAC]2.0.CO;2; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; de Heij ME, 2006, P ROY SOC B-BIOL SCI, V273, P2353, DOI 10.1098/rspb.2006.3584; Doligez B, 2008, ECOLOGY, V89, P1436, DOI 10.1890/07-0113.1; Donald PF, 2007, IBIS, V149, P671, DOI 10.1111/j.1474-919X.2007.00724.x; Drent P. J., 1983, THESIS U GRONINGEN G; DRENT PJ, 1984, ARDEA, V72, P127; Gosler A, 1999, J AVIAN BIOL, V30, P447, DOI 10.2307/3677017; GREENWOOD PJ, 1979, J ANIM ECOL, V48, P123, DOI 10.2307/4105; Griffiths R, 1998, MOL ECOL, V7, P1071, DOI 10.1046/j.1365-294x.1998.00389.x; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; HOGSTAD O, 1989, WILSON BULL, V101, P254; LACK D, 1947, IBIS, V89, P668; Lack D., 1966, POPULATION STUDIES B; Lessells C.M., 1991, P32; Lindstrom KM, 2005, HORM BEHAV, V48, P311, DOI 10.1016/j.yhbeh.2005.04.002; MARCSTROM V, 1988, J ANIM ECOL, V57, P859, DOI 10.2307/5097; Mesterton-Gibbons M, 2004, P ROY SOC B-BIOL SCI, V271, P971, DOI 10.1098/rspb.2003.2670; Michler S. P. M., 2010, THESIS U GRONINGEN G; Newton I., 1998, POPULATION LIMITATIO; Nicolaus M, 2009, J ANIM ECOL, V78, P828, DOI 10.1111/j.1365-2656.2009.01535.x; Nicolaus M, 2009, J ANIM ECOL, V78, P414, DOI 10.1111/j.1365-2656.2008.01505.x; Nilsson JA, 2002, P ROY SOC B-BIOL SCI, V269, P1735, DOI 10.1098/rspb.2002.2071; NUR N, 1984, J ANIM ECOL, V53, P479, DOI 10.2307/4529; Pap PL, 2003, J AVIAN BIOL, V34, P428, DOI 10.1111/j.0908-8857.2003.03002.x; Parejo D, 2006, BEHAV ECOL SOCIOBIOL, V60, P184, DOI 10.1007/s00265-005-0155-z; Rasbash J., 2004, USERS GUIDE MLWIN; Roff Derek A., 1992; ROSKAFT E, 1985, J ANIM ECOL, V54, P255, DOI 10.2307/4635; Sanz JJ, 1999, BEHAV ECOL, V10, P598, DOI 10.1093/beheco/10.5.598; Siefferman L, 2008, IBIS, V150, P32; SMITH HG, 1987, AUK, V104, P700; Soler M, 1996, IBIS, V138, P377, DOI 10.1111/j.1474-919X.1996.tb08054.x; Stjernman M, 2004, P ROY SOC B-BIOL SCI, V271, P2387, DOI 10.1098/rspb.2004.2883; Svensson E, 1997, BEHAV ECOL, V8, P92, DOI 10.1093/beheco/8.1.92; Tinbergen JM, 2004, BEHAV ECOL, V15, P525, DOI 10.1093/beheco/arh045; Tinbergen JM, 2005, J ANIM ECOL, V74, P1112, DOI 10.1111/j.1365-2656.2005.01010.x; van Oort H, 2007, CONDOR, V109, P88, DOI 10.1650/0010-5422(2007)109[88:HDATPQ]2.0.CO;2; Verhulst S, 1997, FUNCT ECOL, V11, P714, DOI 10.1046/j.1365-2435.1997.00145.x; Verhulst S, 1996, ANIM BEHAV, V51, P957, DOI 10.1006/anbe.1996.0099; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WILSON JD, 1992, BEHAVIOUR, V121, P168, DOI 10.1163/156853992X00363 46 15 16 1 48 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. MAY 2012 81 3 564 572 10.1111/j.1365-2656.2011.01933.x 9 Ecology; Zoology Environmental Sciences & Ecology; Zoology 923IP WOS:000302613300007 22112192 2018-11-12 J McDonald, BI; Goebel, ME; Crocker, DE; Costa, DP McDonald, Birgitte I.; Goebel, Michael E.; Crocker, Daniel E.; Costa, Daniel P. Dynamic Influence of Maternal and Pup Traits on Maternal Care during Lactation in an Income Breeder, the Antarctic Fur Seal PHYSIOLOGICAL AND BIOCHEMICAL ZOOLOGY English Article ARCTOCEPHALUS-GAZELLA PUPS; NORTHERN ELEPHANT SEALS; REPRODUCTIVE SUCCESS; MILK INTAKE; CALLORHINUS-URSINUS; PARENTAL INVESTMENT; GROUND-SQUIRRELS; SOUTH GEORGIA; SOAY SHEEP; GRAY SEALS Life-history theory predicts that selection will favor optimal levels of parental effort that balance benefits of current reproduction with costs to survival and future reproduction. The optimal level of effort depends on parental traits, offspring traits, and provisioning strategy. Additionally, how these factors influence effort may differ depending on the stage of reproduction. The relative importance of maternal and offspring traits on energy allocation to offspring was investigated in known-age Antarctic fur seals Arctocephalus gazella across four stages of reproduction, using birth mass and milk-consumption measurements. Maternal traits were important during three of the four stages investigated, with larger females giving birth to larger pups and investing more in pups during perinatal and molt stages. Pup mass influenced maternal effort during the premolt stage, and provisioning strategy influenced postnatal maternal effort at all stages. Energy provided to the offspring during an attendance visit was positively related to the duration of the foraging-trip/visit cycle; however, when investment was controlled for trip/visit cycle duration, the overall rate of energy transfer was similar across trip durations. In addition to strong effects of maternal mass, pup traits affected energy allocation, suggesting that pup demand is important in determining maternal care. These findings emphasize the importance of considering state variables in life-history studies and suggest that timing of measurements of effort in species with long provisioning periods may influence conclusions and our ability to make comparisons of reproductive effort among species. [McDonald, Birgitte I.; Costa, Daniel P.] Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, Long Marine Lab, Santa Cruz, CA 95060 USA; [Goebel, Michael E.] Natl Marine Fisheries Serv, Antarct Ecosyst Res Div, Natl Ocean & Atmospher Adm, SW Fisheries Sci Ctr, La Jolla, CA 92038 USA; [Crocker, Daniel E.] Sonoma State Univ, Dept Biol, Rohnert Pk, CA 94928 USA McDonald, BI (reprint author), Scripps Inst Oceanog, Ctr Marine Biotechnol & Biomed, La Jolla, CA 92093 USA. gitte.mcdonald@gmail.com Costa, Daniel/0000-0002-0233-5782; McDonald, Birgitte/0000-0001-5028-066X U.S. AMLR; NSF Office of Polar Programs [0440687]; U.S. Environmental Protection Agency (EPA); NSF We thank all those who assisted with the collection of the data, in particular C. Champagne, R. Haner, and S. Seganti. Logistical support was provided by the U. S. Antarctic Marine Living Resources (AMLR) Program, the National Science Foundation (NSF) U.S. Antarctic Program, and Raytheon Polar Services. This article was improved by comments from two anonymous reviewers. Research was funded by the U.S. AMLR Program and NSF Office of Polar Programs grant 0440687 to D. P. C, D. E. C., and M. E. G. B. I. M. was supported by the U.S. Environmental Protection Agency (EPA) under the Science to Achieve Results Graduate Fellowship Program and an NSF graduate fellowship. The EPA has not officially endorsed this publication, and the views expressed herein may not reflect the views of the EPA. Andersen R, 2000, J ANIM ECOL, V69, P672, DOI 10.1046/j.1365-2656.2000.00425.x; Arnould JPY, 1996, CAN J ZOOL, V74, P254, DOI 10.1139/z96-032; Arnould JPY, 2002, J ZOOL, V256, P351, DOI 10.1017/S0952836902000389; Arnould JPY, 2001, BEHAV ECOL SOCIOBIOL, V50, P461, DOI 10.1007/s002650100386; BAKER JD, 1992, J ZOOL, V227, P231, DOI 10.1111/j.1469-7998.1992.tb04819.x; Beauplet G, 2007, P R SOC B, V274, P1877, DOI 10.1098/rspb.2007.0454; Boltnev AI, 1998, CAN J ZOOL, V76, P843, DOI 10.1139/cjz-76-5-843; Bowen WD, 2001, FUNCT ECOL, V15, P325, DOI 10.1046/j.1365-2435.2001.00530.x; Boyd IL, 2000, FUNCT ECOL, V14, P623, DOI 10.1046/j.1365-2435.2000.t01-1-00463.x; Broussard DR, 2005, CAN J ZOOL, V83, P546, DOI 10.1139/Z05-044; Chastel O, 1995, AUK, V112, P964, DOI 10.2307/4089027; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; CluttonBrock TH, 1996, J ANIM ECOL, V65, P675, DOI 10.2307/5667; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Costa D.P., 1986, P79; Costa D. P., 1993, MARINE MAMMALS ADV B, P293; COSTA DP, 1988, CAN J ZOOL, V66, P45, DOI 10.1139/z88-006; COSTA DP, 1988, BEHAV ECOL SOCIOBIOL, V22, P361; Costa DP, 2008, AQUAT CONSERV, V17, pS44, DOI DOI 10.1002/AQC.917; Costa DP, 1987, APPROACHES MARINE MA, P43; Cote SD, 2001, OECOLOGIA, V127, P230, DOI 10.1007/s004420000584; Crocker DE, 2001, ECOLOGY, V82, P3541, DOI 10.1890/0012-9658(2001)082[3541:MTAREI]2.0.CO;2; Descamps S, 2007, J ANIM ECOL, V76, P1192, DOI 10.1111/j.1365-2656.2007.01301.x; DOBSON FS, 1995, ECOLOGY, V76, P851, DOI 10.2307/1939350; DOIDGE DW, 1989, POLAR BIOL, V9, P155, DOI 10.1007/BF00297170; Donohue MJ, 2002, PHYSIOL BIOCHEM ZOOL, V75, P3, DOI 10.1086/338284; Festa-Bianchet M, 1998, AM NAT, V152, P367, DOI 10.1086/286175; Gales NJ, 1998, MAR MAMMAL SCI, V14, P355, DOI 10.1111/j.1748-7692.1998.tb00727.x; Gentry R.L., 1986, P41; Georges JY, 2000, ECOLOGY, V81, P295, DOI 10.1890/0012-9658(2000)081[0295:MCITSF]2.0.CO;2; Gill P.F., 1990, ORNITHOLOGY; Gittleman J.L., 1987, REPROD ENERGETICS MA, P41; Goebel M.E., 2007, NOAATMNMFSSWFSC409 A, P122; Guinet C, 2000, CAN J ZOOL, V78, P476, DOI 10.1139/cjz-78-3-476; Houston AI, 1996, FUNCT ECOL, V10, P432, DOI 10.2307/2389935; IVERSON SJ, 1993, PHYSIOL ZOOL, V66, P61, DOI 10.1086/physzool.66.1.30158287; KOVACS KM, 1986, J ANIM ECOL, V55, P1035, DOI 10.2307/4432; Landete-Castillejos T, 2009, THERIOGENOLOGY, V71, P400, DOI 10.1016/j.theriogenology.2008.08.006; Lang SLC, 2009, ECOLOGY, V90, P2513, DOI 10.1890/08-1386.1; Lea MA, 2002, MAR ECOL PROG SER, V245, P281, DOI 10.3354/meps245281; Lea MA, 2002, COMP BIOCHEM PHYS A, V132, P321, DOI 10.1016/S1095-6433(02)00030-2; Lea MA, 2006, MAR ECOL PROG SER, V310, P77, DOI 10.3354/meps310077; Lunn NJ, 1997, BEHAV ECOL SOCIOBIOL, V40, P351, DOI 10.1007/s002650050351; LUNN NJ, 1993, J MAMMAL, V74, P908, DOI 10.2307/1382429; Marrow P, 1996, PHILOS T R SOC B, V351, P17, DOI 10.1098/rstb.1996.0002; McDonald B.I., 2009, THESIS U CALIFORNIA; McDonald BI, 2006, PHYSIOL BIOCHEM ZOOL, V79, P484, DOI 10.1086/501056; McDonald BI, 2009, MAR ECOL PROG SER, V394, P277, DOI 10.3354/meps08308; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; Nagy K.A., 1980, AM J PHYSIOL, V238, pR446; Oftedal O.T., 1987, Current Mammalogy, V1, P175; Oftedal O. T., 1984, S ZOOL SOC LOND, V51, P33; OFTEDAL OT, 1987, PHYSIOL ZOOL, V60, P560, DOI 10.1086/physzool.60.5.30156130; ORTIZ CL, 1978, PHYSIOL ZOOL, V51, P166, DOI 10.1086/physzool.51.2.30157864; ORTIZ CL, 1984, AM NAT, V124, P416, DOI 10.1086/284282; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Pomeroy PP, 1999, J ANIM ECOL, V68, P235, DOI 10.1046/j.1365-2656.1999.00281.x; Royle NJ, 2004, POPUL ECOL, V46, P231, DOI 10.1007/s10144-004-0196-6; Schmidt-Nielsen K., 1979, ANIMAL PHYSL ADAPTAT; SPEAKMAN JR, 1997, DOUBLY LABELLED WATE; Stearns S. C., 1992, EVOLUTION LIFE HIST; Testa JW, 2004, ECOLOGY, V85, P1439, DOI 10.1890/02-0671; TRITES AW, 1991, CAN J ZOOL, V69, P2608, DOI 10.1139/z91-367; Trivers R.L., 1974, AM ZOOL, V14, P219; Verrier D, 2009, AM J PHYSIOL-REG I, V297, pR1582, DOI 10.1152/ajpregu.90857.2008; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Zuur A. F., 2009, MIXED EFFECTS MODELS; Zuur AF, 2007, STAT BIOL HEALTH, P1 68 2 2 0 42 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 1522-2152 1537-5293 PHYSIOL BIOCHEM ZOOL Physiol. Biochem. Zool. MAY-JUN 2012 85 3 243 254 10.1086/665407 12 Physiology; Zoology Physiology; Zoology 925UQ WOS:000302787600004 22494980 Green Published 2018-11-12 J Liu, L; Feng, TY; Suo, T; Lee, K; Li, H Liu, Lei; Feng, Tingyong; Suo, Tao; Lee, Kang; Li, Hong Adapting to the Destitute Situations: Poverty Cues Lead to Short-Term Choice PLOS ONE English Article SOCIAL-CLASS; INEQUALITY; IMPATIENCE; DECISION; REWARDS; MONEY; DELAY Background: Why do some people live for the present, whereas others save for the future? The evolutionary framework of life history theory predicts that preference for delay of gratification should be influenced by social economic status (SES). However, here we propose that the decision to choose alternatives in immediate and delayed gratification in poverty environments may have a psychological dimension. Specifically, the perception of environmental poverty cues may induce people alike to favor choices with short-term, likely smaller benefit than choices with long-term, greater benefit. Methodology/Principal Findings: The present study was conducted to explore how poverty and affluence cues affected individuals' intertemporal choices. In our first two experiments, individuals exposed explicitly (Experiment 1) and implicitly (Experiment 2) to poverty pictures (the poverty cue) were induced to prefer immediate gratification compared with those exposed to affluence pictures (the affluence cue). Furthermore, by the manipulation of temporary perceptions of poverty and affluence status using a lucky draw game; individuals in the poverty state were more impulsive in a manner, which made them pursue immediate gratification in intertemporal choices (Experiment 3). Thus, poverty cues can lead to short-term choices. Conclusions/Significance: Decision makers chose more frequently the sooner-smaller reward over the later-larger reward as they were exposed to the poverty cue. This indicates that it is that just the feeling of poverty influences intertemporal choice - the actual reality of poverty (restricted resources, etc.) is not necessary to get the effect. Furthermore, our findings emphasize that it is a change of the poverty-affluence status, not a trait change, can influence individual preference in intertemporal choice. [Liu, Lei; Feng, Tingyong; Suo, Tao; Li, Hong] Southwest Univ, Sch Psychol, Chongqing, Peoples R China; [Feng, Tingyong; Li, Hong] Minist Educ, Key Lab Cognit & Personal, Chongqing, Peoples R China; [Lee, Kang] Univ Toronto, Inst Child Study, Toronto, ON, Canada; [Li, Hong] Liaoning Normal Univ, Sch Educ, Dalian, Peoples R China Liu, L (reprint author), Southwest Univ, Sch Psychol, Chongqing, Peoples R China. fengty0@163.com National Natural Science Foundation of China [30800292]; National Key Discipline of Basic Psychology in Southwest University of China [NSKD08007]; Fundamental Research Funds for the Central Universities [SWU1109009] This study was supported by the National Natural Science Foundation of China (30800292), the National Key Discipline of Basic Psychology in Southwest University of China (NSKD08007) and the Fundamental Research Funds for the Central Universities (SWU1109009). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Berger J, 2008, P NATL ACAD SCI USA, V105, P8846, DOI 10.1073/pnas.0711988105; Cacioppo JT, 1999, ANNU REV PSYCHOL, V50, P191, DOI 10.1146/annurev.psych.50.1.191; Christie AM, 2010, J APPL PSYCHOL, V95, P920, DOI 10.1037/a0019856; De Martino B, 2006, SCIENCE, V313, P684, DOI 10.1126/science.1128356; Delplanque S, 2005, BIOL PSYCHOL, V68, P107, DOI 10.1016/j.biopsycho.2004.04.006; Fehr E, 2002, NATURE, V415, P269, DOI 10.1038/415269a; Frederick S, 2002, J ECON LIT, V40, P351, DOI 10.1257/002205102320161311; Green L, 2004, PSYCHOL BULL, V130, P769, DOI 10.1037/0033-2909.130.5.769; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Hackman DA, 2009, TRENDS COGN SCI, V13, P65, DOI 10.1016/j.tics.2008.11.003; Haisley E, 2008, J BEHAV DECIS MAKING, V21, P283, DOI 10.1002/bdm.588; KAHNEMAN D, 1979, ECONOMETRICA, V47, P263, DOI 10.2307/1914185; Kraus MW, 2010, PSYCHOL SCI, V21, P1716, DOI 10.1177/0956797610387613; Kraus MW, 2009, J PERS SOC PSYCHOL, V97, P992, DOI 10.1037/a0016357; Lipina S.J., 2005, INTERAM J PSYCHOL, V39, P49; Luhmann CC, 2008, J NEUROSCI, V28, P14459, DOI 10.1523/JNEUROSCI.5058-08.2008; MAZUR JE, 1989, J EXP ANAL BEHAV, V51, P87, DOI 10.1901/jeab.1989.51-87; McClure SM, 2004, SCIENCE, V306, P503, DOI 10.1126/science.1100907; Oakes JM, 2003, SOC SCI MED, V56, P796; Piff PK, 2010, J PERS SOC PSYCHOL, V99, P771, DOI 10.1037/a0020092; Singh-Manoux A, 2005, ANN EPIDEMIOL, V15, P572, DOI 10.1016/j.annepidem.2004.10.007; Snibbe AC, 2005, J PERS SOC PSYCHOL, V88, P703, DOI 10.1037/0022-3514.88.4.703; Sprengelmeyer R, 2006, NEUROPSYCHOLOGIA, V44, P2899, DOI 10.1016/j.neuropsychologia.2006.06.020; Stevens JR, 2010, ENCY ANIMAL BEHAV; Tricomi E, 2010, NATURE, V463, P1089, DOI 10.1038/nature08785; Vohs KD, 2006, SCIENCE, V314, P1154, DOI 10.1126/science.1132491; Wilkinson RG, 2000, MIND GAP HIERARCHIES; Wood M, 1998, J ECON PSYCHOL, V19, P295, DOI 10.1016/S0167-4870(98)00009-9; Yuan JJ, 2009, HUM BRAIN MAPP, V30, P3676, DOI 10.1002/hbm.20796; Zhong CB, 2010, PSYCHOL SCI, V21, P619, DOI 10.1177/0956797610366090; Zhou XY, 2009, PSYCHOL SCI, V20, P700, DOI 10.1111/j.1467-9280.2009.02353.x 31 12 16 1 32 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One APR 18 2012 7 4 e33950 10.1371/journal.pone.0033950 6 Multidisciplinary Sciences Science & Technology - Other Topics 959XD WOS:000305350600009 22529902 DOAJ Gold, Green Published 2018-11-12 J Baos, R; Jovani, R; Serrano, D; Tella, JL; Hiraldo, F Baos, Raquel; Jovani, Roger; Serrano, David; Tella, Jose L.; Hiraldo, Fernando Developmental Exposure to a Toxic Spill Compromises Long-Term Reproductive Performance in a Wild, Long-Lived Bird: The White Stork (Ciconia ciconia) PLOS ONE English Article VALDEZ OIL-SPILL; KITES MILVUS-MIGRANS; SOUTHWESTERN SPAIN; OXIDATIVE STRESS; HEAVY-METAL; ENVIRONMENTAL-CONDITIONS; ADRENOCORTICAL-RESPONSE; GENOTOXIC DAMAGE; LIFE; NEUROENDOCRINE Background/Objective: Exposure to environmental contaminants may result in reduced reproductive success and long-lasting population declines in vertebrates. Emerging data from laboratory studies on model species suggest that certain life-stages, such as development, should be of special concern. However, detailed investigations of long-term consequences of developmental exposure to environmental chemicals on breeding performance are currently lacking in wild populations of long-lived vertebrates. Here, we studied how the developmental exposure to a mine spill (Aznalcollar, SW Spain, April 1998) may affect fitness under natural conditions in a long-lived bird, the White Stork (Ciconia ciconia). Methodology: The reproductive performance of individually-banded storks that were or not developmentally exposed to the spill (i.e. hatched before or after the spill) was compared when these individuals were simultaneously breeding during the seven years after the spill occurred (1999-2005). Principal Findings: Female storks developmentally exposed to the spill experienced a premature breeding senescence compared with their non-developmentally exposed counterparts, doing so after departing from an unusually higher productivity in their early reproductive life (non-developmentally exposed females: 0.5 +/- 0.33SE fledglings/year at 3-yr old vs. 1.38 +/- 0.31SE at 6-7 yr old; developmentally exposed females: 1.5 +/- 0.30SE fledglings/year at 3-yr old vs. 0.86 +/- 0.25SE at 67 yr old). Conclusions/Significance: Following life-history theory, we propose that costly sub-lethal effects reported in stork nestlings after low-level exposure to the spill-derived contaminants might play an important role in shaping this pattern of reproduction, with a clear potential impact on population dynamics. Overall, our study provides evidence that environmental disasters can have long-term, multigenerational consequences on wildlife, particularly when affecting developing individuals, and warns about the risk of widespread low-level contamination in realistic scenarios. [Baos, Raquel; Serrano, David; Tella, Jose L.; Hiraldo, Fernando] Estac Biol Donana CSIC, Dept Conservat Biol, Seville, Spain; [Jovani, Roger] Estac Biol Donana CSIC, Dept Evolutionary Ecol, Seville, Spain Baos, R (reprint author), Estac Biol Donana CSIC, Dept Conservat Biol, Seville, Spain. raquel@ebd.csic.es CSIC, EBD Donana/C-4157-2011; Jovani, Roger/C-7080-2013; Baos, Raquel/L-9206-2015; Tella, Jose/I-3707-2015; Serrano, David/B-5352-2013 CSIC, EBD Donana/0000-0003-4318-6602; Jovani, Roger/0000-0002-8693-9742; Baos, Raquel/0000-0003-1283-6270; Tella, Jose/0000-0002-3038-7424; Serrano, David/0000-0001-6205-386X Junta de Andalucia; Ministry of Science and Technology [B0S2002-00857]; EGMASA; CSIC in an i3P grant; Ministry of Education and Culture in an FPU Pre-doctoral Fellowship; Ramon y Cajal from the Ministry of Science and Innovation [RYC-2009-03967] Partial funding for this work was provided by the Junta de Andalucia and the Ministry of Science and Technology (B0S2002-00857). RB was supported by EGMASA and CSIC in an i3P grant, and by the Ministry of Education and Culture in an FPU Pre-doctoral Fellowship. During writing, RJ has been supported by a Ramon y Cajal research contract (RYC-2009-03967) from the Ministry of Science and Innovation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Alzaga R, 1999, SCI TOTAL ENVIRON, V242, P167, DOI 10.1016/S0048-9697(99)00382-4; Baos R, 2006, ENVIRON HEALTH PERSP, V114, P1497, DOI 10.1289/ehp.9099; Baos R, 2006, ENVIRON TOXICOL CHEM, V25, P2794, DOI 10.1897/05-570R.1; Baos R, 2006, ENVIRON TOXICOL CHEM, V25, P1153, DOI 10.1897/05-395R.1; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; Bernanke J, 2009, REV ENVIRON CONTAM T, V198, P1, DOI 10.1007/978-0-387-09647-6_1; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Blas J, 2007, P NATL ACAD SCI USA, V104, P8880, DOI 10.1073/pnas.0700232104; Blas J, 2006, GEN COMP ENDOCR, V148, P172, DOI 10.1016/j.ygcen.2006.02.011; Bonilla-Valverde D, 2004, TOXICOLOGY, V197, P123, DOI 10.1016/j.tox.2003.12.010; Chernetsov N, 2006, AUK, V123, P1103, DOI 10.1642/0004-8038(2006)123[1103:SNDOWS]2.0.CO;2; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; COLBORN T, 1992, CHEM INDUCED ALTERAT; Consejeria de Medio Ambiente Junta de Andalucia, 2003, CIENC REST RIO GUAD; DAMSTRA T, 2002, GLOBAL ASSESSMENT ST; Dickerson SM, 2007, REV ENDOCR METAB DIS, V8, P143, DOI 10.1007/s11154-007-9048-y; DIGIULIO RT, 1999, REPROD DEV EFFECTS C; Eeva T, 2005, OECOLOGIA, V145, P629, DOI 10.1007/s00442-005-0145-x; Ellegren H, 1996, P ROY SOC B-BIOL SCI, V263, P1635, DOI 10.1098/rspb.1996.0239; Elliott John E., 2001, Reviews in Toxicology (Amsterdam), V4, P1; Esler D, 2010, ENVIRON TOXICOL CHEM, V29, P1138, DOI 10.1002/etc.129; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Gil F, 2006, SCI TOTAL ENVIRON, V372, P49, DOI 10.1016/j.scitotenv.2006.08.004; Gore AC, 2008, FRONT NEUROENDOCRIN, V29, P358, DOI 10.1016/j.yfrne.2008.02.002; Grimalt JO, 1999, SCI TOT ENV, V242; Gump BB, 2008, ENVIRON HEALTH PERSP, V116, P249, DOI 10.1289/ehp.10391; Guterman L, 2009, SCIENCE, V323, P1558, DOI 10.1126/science.323.5921.1558; Hanssen SA, 2006, ECOLOGY, V87, P2440, DOI 10.1890/0012-9658(2006)87[2440:COAICA]2.0.CO;2; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hegyi G, 2011, BEHAV ECOL SOCIOBIOL, V65, P69, DOI 10.1007/s00265-010-1036-7; Henriksen EO, 2001, J ENVIRON MONITOR, V3, P493, DOI 10.1039/b102683f; Hotchkiss AK, 2008, TOXICOL SCI, V105, P235, DOI 10.1093/toxsci/kfn030; Iwaniuk AN, 2006, BEHAV BRAIN RES, V173, P1, DOI 10.1016/j.bbr.2006.05.026; Jovani R, 2004, ARDEOLA, V51, P357; Jovani R, 2004, ECOGRAPHY, V27, P611, DOI 10.1111/j.0906-7590.2004.03925.x; Jovani R, 2007, P ROY SOC B-BIOL SCI, V274, P2465, DOI 10.1098/rspb.2007.0527; Kim SY, 2010, EVOLUTION, V64, P852, DOI 10.1111/j.1558-5646.2009.00862.x; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Littell RC, 1996, SAS SYSTEM MIXED MOD; Marchamalo J., 1996, Butlleti del Grup Catala d'Anellament, V13, P37; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Moller AP, 2008, J COMP PHYSIOL B, V178, P735, DOI 10.1007/s00360-008-0262-z; Monaghan P, 2008, FUNCT ECOL, V22, P371, DOI 10.1111/j.1365-2435.2008.01418.x; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Munoz-Arnanz J, 2008, ORGANOH COMP, V70, P1562; Munoz-Arnanz J, 2011, ENVIRON INT, V37, P1164, DOI 10.1016/j.envint.2011.03.025; Munoz-Arnanz J, 2011, ENVIRON INT, V37, P572, DOI 10.1016/j.envint.2010.11.013; Murtaugh PA, 2009, ECOL LETT, V12, P1061, DOI 10.1111/j.1461-0248.2009.01361.x; Newton I., 1998, POPULATION LIMITATIO; NORRIS DO, 2006, ENDOCRINE DISRUPTION; Nowicki S, 1998, AM ZOOL, V38, P179; Nussey DH, 2007, CURR BIOL, V17, pR1000, DOI 10.1016/j.cub.2007.10.005; Ottinger MA, 2008, BRAIN RES REV, V57, P376, DOI 10.1016/j.brainresrev.2007.08.011; Paine RT, 1996, ANNU REV ECOL SYST, V27, P197, DOI 10.1146/annurev.ecolsys.27.1.197; Pastor N, 2004, MUTAGENESIS, V19, P61, DOI 10.1093/mutage/geg035; Pastor N, 2001, MUTAGENESIS, V16, P219, DOI 10.1093/mutage/16.3.219; Peterson CH, 2003, SCIENCE, V302, P2082, DOI 10.1126/science.1084282; PIATT JF, 1990, AUK, V107, P387, DOI 10.2307/4087623; Quinn MJ, 2008, HORM BEHAV, V53, P249, DOI 10.1016/j.yhbeh.2007.10.004; Reed TE, 2008, AM NAT, V171, pE89, DOI 10.1086/524957; Romero-Ruiz A, 2003, ENVIRON TOXICOL CHEM, V22, P92, DOI 10.1897/1551-5028(2003)022<0092:OSBIBT>2.0.CO;2; Rowe CL, 2008, BIOSCIENCE, V58, P623, DOI 10.1641/B580709; Sabbioni G, 2002, BIOMARKERS, V7, P347, DOI 10.1080/13547500210147253; Segner H, 2007, NATO SCI PEACE SECUR, P39, DOI 10.1007/978-1-4020-6335-0_4; Sih A, 2004, TRENDS ECOL EVOL, V19, P274, DOI 10.1016/j.tree.2004.02.010; Smits JEG, 2005, TOXICOL PATHOL, V33, P441, DOI 10.1080/01926230590953097; Smits JE, 2007, ENVIRON POLLUT, V145, P538, DOI 10.1016/j.envpol.2006.04.032; Spencer KA, 2010, BEHAV ECOL, V21, P999, DOI 10.1093/beheco/arq090; Stearns S. C., 1992, EVOLUTION LIFE HIST; Symonds MRE, 2011, BEHAV ECOL SOCIOBIOL, V65, P13, DOI 10.1007/s00265-010-1037-6; Tablado Z, 2010, CONSERV BIOL, V24, P1230, DOI 10.1111/j.1523-1739.2010.01483.x; Velando A, 2006, P R SOC B, V273, P1443, DOI 10.1098/rspb.2006.3480; Velando A, 2005, J ORNITHOL, V146, P116, DOI 10.1007/s10336-004-0068-z; White LD, 2007, TOXICOL APPL PHARM, V225, P1, DOI 10.1016/j.taap.2007.08.001; Wiens JA, 2004, ECOL APPL, V14, P1806, DOI 10.1890/02-5340; WIENS JA, 1995, ECOL APPL, V5, P1069, DOI 10.2307/2269355; Wikelski M, 2002, NATURE, V417, P607, DOI 10.1038/417607a; Wingfield JC, 2009, GEN COMP ENDOCR, V163, P92, DOI 10.1016/j.ygcen.2009.04.030; Zuberogoitia I, 2006, MAR POLLUT BULL, V52, P1176, DOI 10.1016/j.marpolbul.2006.02.016 79 14 14 1 48 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One APR 18 2012 7 4 e34716 10.1371/journal.pone.0034716 7 Multidisciplinary Sciences Science & Technology - Other Topics 959XD WOS:000305350600022 22529928 DOAJ Gold, Green Published 2018-11-12 J Caudell, MA; Quinlan, RJ Caudell, Mark A.; Quinlan, Robert J. Resource Availability, Mortality, and Fertility: A Path Analytic Approach to Global Life-History Variation HUMAN BIOLOGY English Article LIFE-HISTORY THEORY; TOTAL FERTILITY RATE; TEENAGE PREGNANCY; MORTALITY; PATH ANALYSIS REPRODUCTIVE STRATEGIES; ENVIRONMENTAL RISK; DYING YOUNG; LIVING FAST; EXPECTANCY; NEIGHBORHOODS; EVOLUTION; BURDEN; RATES Humans exhibit considerable diversity in timing and rate of reproduction. Life-history theory (LHT) suggests that ecological cues of resource richness and survival probabilities shape human phenotypes across populations. Populations experiencing high extrinsic mortality due to uncertainty in resources should exhibit faster life histories. Here we use a path analytic (PA) approach informed by LHT to model the multiple pathways between resources, mortality rates, and reproductive behavior in 191 countries. Resources that account for the most variance in population mortality rates are predicted to explain the most variance in total fertility rates. Results indicate that resources (e. g., calories, sanitation, education, and health-care expenditures) influence fertility rates in paths through communicable and noncommunicable diseases. Paths acting through communicable disease are more strongly associated with fertility than are paths through noncommunicable diseases. These results suggest that a PA approach may help disaggregate extrinsic and intrinsic mortality factors in cross-cultural analyses. Such knowledge may be useful in developing targeted policies to decrease teenage pregnancy, total fertility rates, and thus issues associated with overpopulation. [Caudell, Mark A.; Quinlan, Robert J.] Washington State Univ, Dept Anthropol, Pullman, WA 99164 USA Caudell, MA (reprint author), Washington State Univ, Dept Anthropol, Pullman, WA 99164 USA. mcaudell@wsu.edu Anderson KG, 2010, HUM NATURE-INT BIOS, V21, P103, DOI 10.1007/s12110-010-9087-z; Brown T. A., 2006, CONFIRMATORY FACTOR; Bulled NL, 2010, HUM NATURE-INT BIOS, V21, P269, DOI 10.1007/s12110-010-9092-2; Byrne B. M., 2012, STRUCTURAL EQUATION; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Chisholm JS, 2008, EVOLUTIONARY MED HLT, P134; Chisholm JS, 1999, DEATH HOPE SEX STEPS; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Gant L, 2009, SOC WORK PUBLIC HLTH, V24, P39, DOI 10.1080/19371910802569435; Harpending HC, 1990, DIS POPULATIONS TRAN, P251; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kline RB, 2010, PRINCIPLES PRACTICE; Leowski J, 1986, World Health Stat Q, V39, P138; Lopez AD, 2006, LANCET, V367, P1747, DOI 10.1016/S0140-6736(06)68770-9; Low BS, 2008, CROSS-CULT RES, V42, P201, DOI 10.1177/1069397108317669; MacCallum RC, 1996, PSYCHOL METHODS, V1, P130, DOI 10.1037//1082-989X.1.2.130; Mulder M Borgerhoff, 1992, EVOLUTIONARY ECOLOGY, P339; Muthen B., 2010, MPLUS USERS GUIDE VE; Narayan KMV, 2010, NEW ENGL J MED, V363, P1196, DOI 10.1056/NEJMp1002024; Nettle D, 2011, P ROY SOC B-BIOL SCI, V278, P1721, DOI 10.1098/rspb.2010.1726; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Placek C, 2011, ENV RISK ADOLESCENT; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Quinlan RJ, 2010, HUM NATURE-INT BIOS, V21, P124, DOI 10.1007/s12110-010-9085-1; Roff D. A., 2002, LIFE HIST EVOLUTION; Sachs J, 2002, NATURE, V415, P680, DOI 10.1038/415680a; StataCorp, 2009, STAT STAT SOFTW REL; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; Watson JT, 2007, EMERG INFECT DIS, V13, P1, DOI 10.3201/eid1301.060779; WHO, 2009, WORLD HLTH STAT; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 37 8 10 0 27 WAYNE STATE UNIV PRESS DETROIT 4809 WOODWARD AVE, DETROIT, MI 48201-1309 USA 0018-7143 1534-6617 HUM BIOL Hum. Biol. APR 2012 84 2 101 125 10.3378/027.084.0201 25 Anthropology; Biology; Genetics & Heredity Anthropology; Life Sciences & Biomedicine - Other Topics; Genetics & Heredity 952FS WOS:000304777300001 22708816 Green Published 2018-11-12 J Jervis, MA; Moe, A; Heimpel, GE Jervis, Mark A.; Moe, Annika; Heimpel, George E. The evolution of parasitoid fecundity: a paradigm under scrutiny ECOLOGY LETTERS English Article Balanced mortality; comparative analysis; Diptera; fecundity; Hymenoptera; life-history; parasitism; survivorship LIFE-HISTORY TRAITS; BODY-SIZE; EGG-PRODUCTION; CLUTCH SIZE; HYMENOPTERA; WASPS; STRATEGIES; LIMITATION; ALLOCATION; ARGUMENT An important assumption in insect parasitoid life-history theory is that, within parasitoid complexes (species assemblages associated with particular hosts), members attacking young host stages are more fecund than members targeting older ones. This hypothesis reflects the general trajectory of host survivorship curves: as a host cohort ages, availability to female parasitoids declines, as can the risk that the host and the parasitoid offspring it carries succumbs to extrinsic mortality. However, the analyses that provided empirical support for the hypothesis did not control for phylogeny. Using the original datasets, we use phylogenetically corrected analyses to test whether the results of the seminal study are upheld. Although we show those findings to be robust, the decline in fecundity could be a sampling artefact. We conclude that it would be unwise to assume the paradigm to be generally representative of natural parasitoid complexes. [Jervis, Mark A.] Cardiff Univ, Cardiff Sch Biosci, Cardiff CF10 3AX, S Glam, Wales; [Moe, Annika] Univ Minnesota, Dept Ecol Evolut & Behav, St Paul, MN 55108 USA; [Heimpel, George E.] Univ Minnesota, Dept Entomol, St Paul, MN 55108 USA Jervis, MA (reprint author), Cardiff Univ, Cardiff Sch Biosci, Biomed Sci Bldg,Museum Ave, Cardiff CF10 3AX, S Glam, Wales. jervis@cf.ac.uk BELSHAW R. M., 1993, HDB IDENT BR INSECTS, V10, P1; BENJAMINI Y, 1995, J ROY STAT SOC B MET, V57, P289; BLACKBURN TM, 1991, FUNCT ECOL, V5, P65, DOI 10.2307/2389556; BLACKBURN TM, 1991, J ANIM ECOL, V60, P151, DOI 10.2307/5451; Boletzky S. v., 2003, Berliner Palaeobiologische Abhandlungen, V3, P19; Carvalho AR, 2007, REV BRAS PARASITOL V, V16, P181, DOI 10.1590/S1984-29612007000400001; Cole M.L., 1954, Q REV BIOL, V29, P103; COOK WJ, 1989, OECOLOGIA, V79, P184, DOI 10.1007/BF00388476; DIAL BE, 1981, OECOLOGIA, V51, P310, DOI 10.1007/BF00540899; Ellers J, 2000, AM NAT, V156, P650, DOI 10.1086/316990; Ellers J, 2003, OIKOS, V102, P164, DOI 10.1034/j.1600-0706.2003.12183.x; Furuya H, 2003, MAR BIOL, V142, P693, DOI 10.1007/s00227-002-0991-6; GAULD ID, 1988, HYMENOPTERA; Ghara M, 2010, ECOL ENTOMOL, V35, P139, DOI 10.1111/j.1365-2311.2010.01176.x; Godfray HCJ., 1994, PARASITOIDS BEHAV EV; Harvey P. H., 1991, COMP METHOD EVOLUTIO; HASSELL MP, 1969, J ANIM ECOL, V38, P329, DOI 10.2307/2774; HITCHCOCK HB, 1984, J MAMMAL, V65, P126, DOI 10.2307/1381210; Hoffmeister T., 2005, AM NAT, V166, P62; Jervis MA, 2003, FUNCT ECOL, V17, P375, DOI 10.1046/j.1365-2435.2003.00742.x; Jervis MA, 2001, J ANIM ECOL, V70, P442, DOI 10.1046/j.1365-2656.2001.00507.x; Jervis M, 2011, BIOL J LINN SOC, V104, P443, DOI 10.1111/j.1095-8312.2011.01719.x; Jervis MA, 2008, ANNU REV ENTOMOL, V53, P361, DOI 10.1146/annurev.ento.53.103106.093433; LYONS L. A., 1962, CANADIAN ENTOMOL, V94, P49; Mayhew PJ, 1999, J ANIM ECOL, V68, P906, DOI 10.1046/j.1365-2656.1999.00338.x; Midford PE, 2005, PDAP PACKAGE MESQUIT; MILLS NJ, 1992, ENVIRON ENTOMOL, V21, P230, DOI 10.1093/ee/21.2.230; Murdoch W. W. et al., 2003, CONSUMER RESOURCE DY; O'Hara J.E., 2003, TACHINIDAE RESOURCES; Pennacchio F, 2006, ANNU REV ENTOMOL, V51, P233, DOI 10.1146/annurev.ento.51.110104.151029; Pexton JJ, 2002, BEHAV ECOL, V13, P690, DOI 10.1093/beheco/13.5.690; Poulin R, 2001, CAN J ZOOL, V79, P741, DOI 10.1139/cjz-79-5-741; Price P.W., 1975, P87; PRICE P W, 1973, Environmental Entomology, V2, P623; Price P. W., 2003, MACROEVOLUTIONARY TH; PRICE PW, 1974, EVOLUTION, V28, P76, DOI 10.1111/j.1558-5646.1974.tb00728.x; Price PW, 1973, AM NAT, V107, P685; PURVIS A, 1995, COMPUT APPL BIOSCI, V11, P247; Quicke D.L.J., 1997, PARASITIC WASPS; Quicke DLJ, 2009, J NAT HIST, V43, P1305, DOI 10.1080/00222930902807783; Rosenheim JA, 1996, EVOLUTION, V50, P2089, DOI 10.1111/j.1558-5646.1996.tb03595.x; Sevenster JG, 1998, EVOLUTION, V52, P1241, DOI 10.1111/j.1558-5646.1998.tb01853.x; Shaw S. R., 2004, P RUSSIAN ENTOMOLOGI, V75, P82; Sivinski J, 2001, ANN ENTOMOL SOC AM, V94, P886, DOI 10.1603/0013-8746(2001)094[0886:OLIAGO]2.0.CO;2; Tachi T, 2010, SYST ENTOMOL, V35, P148, DOI 10.1111/j.1365-3113.2009.00497.x; Timi JT, 2005, PARASITOL RES, V95, P1, DOI 10.1007/s00436-004-1242-1; Traynor RE, 2005, OIKOS, V109, P305, DOI 10.1111/j.0030-1299.2005.13666.x; Wajnberg E., 2008, BEHAV ECOLOGY PARASI; Waloff N., 1987, Advances in Ecological Research, V17, P281, DOI 10.1016/S0065-2504(08)60248-2; Yu DS, 2005, WORLD ICHNEUMONOIDEA; ZAMMUTO RM, 1986, CAN J ZOOL, V64, P2739, DOI 10.1139/z86-398 51 11 12 3 37 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1461-023X ECOL LETT Ecol. Lett. APR 2012 15 4 357 364 10.1111/j.1461-0248.2012.01745.x 8 Ecology Environmental Sciences & Ecology 906MP WOS:000301349600008 22313604 2018-11-12 J Tettamanti, F; Witvliet, W; Bize, P Tettamanti, Federico; Witvliet, Willem; Bize, Pierre Selection on age at first and at last reproduction in the long-lived Alpine Swift Apus melba IBIS English Article Apus melba; directional selection; life-history theory; lifetime reproductive success; stabilising selection PHENOTYPIC PLASTICITY; INDIVIDUAL FITNESS; SEXUAL SELECTION; POPULATIONS; SENESCENCE; EVOLUTION; PATERNITY; CHOICE; BIRD The way an organism spreads its reproduction over time is defined as a life-history trait, and selection is expected to favour life-history traits associated with the highest fitness return. We use a long-term dataset of 277 life histories to investigate the shape and strength of selection acting on the age at first reproduction and at last reproduction in the long-lived Alpine Swift. Both traits were under strong directional selection, but in opposite directions, with selection favouring birds starting their reproductive career early and being able to reproduce for longer. There was also evidence for stabilising selection acting on both traits, suggesting that individuals should nonetheless refrain from reproducing in their first 2 years of life (i.e. when inexperienced), and that reproducing after 7 years of age had little effect on lifetime fitness, probably due to senescence. [Tettamanti, Federico; Bize, Pierre] Univ Lausanne, Dept Ecol & Evolut, CH-1015 Lausanne, Switzerland Bize, P (reprint author), Univ Lausanne, Dept Ecol & Evolut, CH-1015 Lausanne, Switzerland. pierre.bize@unil.ch Swiss National Science Foundation [31003A_124988] We are grateful to Dominik Pfluger and the late Theo Marbot for their outstanding ringing work in the Alpine Swift colonies in Solothurn and Bienne, respectively, Anne Charmantier for her help with the statistical models, and Rauri Bowie, Andrew McColl and Oliver Kruger for comments on the manuscript. This research was funded by the Swiss National Science Foundation (grant no. 31003A_124988 to P.B.). Arn H, 1960, BIOL STUDIEN ALPENSE; Barbraud C, 2005, ECOLOGY, V86, P682, DOI 10.1890/04-0075; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Bize P, 2006, EVOLUTION, V60, P2370; Brommer JE, 2000, BIOL REV, V75, P377, DOI 10.1017/S000632310000551X; Brommer JE, 2004, AM NAT, V163, P505, DOI 10.1086/382547; BROWN D, 1988, REPROD SUCCESS, P439; Charmantier A, 2006, P NATL ACAD SCI USA, V103, P6587, DOI 10.1073/pnas.0511123103; Charmantier A, 2008, SCIENCE, V320, P800, DOI 10.1126/science.1157174; Clutton-Brock T.H., 1988, REPROD SUCCESS STUDI; Clutton-Brock T, 2010, TRENDS ECOL EVOL, V25, P562, DOI 10.1016/j.tree.2010.08.002; Daunt F, 2007, FUNCT ECOL, V21, P561, DOI 10.1111/j.1365-2435.2007.01260.x; Dolan AC, 2007, BEHAV ECOL, V18, P985, DOI 10.1093/beheco/arm068; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; Kingsolver JG, 2001, AM NAT, V157, P245, DOI 10.1086/319193; Kokko H, 2002, PHILOS T ROY SOC B, V357, P319, DOI 10.1098/rstb.2001.0926; Kruger O, 2005, J ANIM ECOL, V74, P266, DOI 10.1111/j.1365-2656.2004.00920.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Martins TLF, 2002, J AVIAN BIOL, V33, P441, DOI 10.1034/j.1600-048X.2002.02686.x; McGraw JB, 1996, AM NAT, V147, P47, DOI 10.1086/285839; NEWTON I, 1989, LIFETIME REPROD BIRD; Nussey DH, 2007, J EVOLUTION BIOL, V20, P831, DOI 10.1111/j.1420-9101.2007.01300.x; Oli MK, 2002, EVOL ECOL RES, V4, P563; R Development Core Team, 2010, R LANG ENV STAT COMP; Stinchcombe JR, 2008, EVOLUTION, V62, P2435, DOI 10.1111/j.1558-5646.2008.00449.x; WADE MJ, 1980, ANIM BEHAV, V28, P446, DOI 10.1016/S0003-3472(80)80052-2 26 4 4 0 31 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0019-1019 IBIS Ibis APR 2012 154 2 338 344 10.1111/j.1474-919X.2012.01215.x 7 Ornithology Zoology 905OW WOS:000301283100010 2018-11-12 J Santangeli, A; Hakkarainen, H; Laaksonen, T; Korpimaki, E Santangeli, Andrea; Hakkarainen, Harri; Laaksonen, Toni; Korpimaki, Erkki Home range size is determined by habitat composition but feeding rate by food availability in male Tengmalm's owls ANIMAL BEHAVIOUR English Article Aegolius funereus; haematocrit; parental care; provisioning rate; reproductive cost; telemetry; Tengmalm's owl TITS PARUS-CAERULEUS; REPRODUCTIVE SUCCESS; AEGOLIUS-FUNEREUS; BREEDING PERFORMANCE; FORAGING PATTERNS; AMERICAN KESTRELS; FOREST; LANDSCAPE; BIRDS; AREA Animal populations are often limited by food and rearing offspring is energetically demanding. Life history theory predicts that parents of altricial bird species will often reduce their current reproductive effort when given supplementary food. Previous food supplementation studies have mainly focused on effects on female parents, while the importance of paternal behaviour has largely been neglected. We addressed the effects of natural and experimentally increased food abundance on male ranging behaviour and provisioning rate, female and fledgling condition, and final reproductive success, in the Tengmalm's owl, Aegolius funereus, a species with obligatory biparental care. We found that males adjusted their parental effort by reducing provisioning rate at food-supplemented nests. Food supplementation induced an increase in body mass of females, and in body mass and haematocrit levels of fledglings. This suggests that the amount of extra food provided was enough for females to increase body condition sufficiently to start allocating extra resources to enhance the quality of current offspring. While the home range size of radiomarked males was not affected by food supplementation, it decreased with cover of spruce forest, which is a habitat that is denser in structure and richer in prey than pine forest and especially clear-cut areas. This suggests that habitat-specific prey abundance and/or cover may be strong determinants of home range size for males. Overall, the results provide novel insights into how habitat quality and food supply affect male hunting behaviour and biparental care, and how this in turn is reflected in fledgling condition. (C) 2012 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. [Santangeli, Andrea; Laaksonen, Toni] Univ Helsinki, Finnish Museum Nat Hist, FI-00014 Helsinki, Finland; [Santangeli, Andrea; Hakkarainen, Harri; Korpimaki, Erkki] Univ Turku, Dept Biol, Sect Ecol, SF-20500 Turku, Finland Santangeli, A (reprint author), Univ Helsinki, Finnish Museum Nat Hist, POB 17, FI-00014 Helsinki, Finland. andrea.santangeli@helsinki.fi Laaksonen, Toni/B-4241-2014 Laaksonen, Toni/0000-0001-9035-7131; Santangeli, Andrea/0000-0003-0273-1977 Centre of International Mobility, Ministry of Education, Finland; Finnish School in Wildlife Biology, Conservation and Management (LUOVA) We thank Mari Laine, Jorma Nurmi, Rauno Varjonen and Michael Griesser for help in conducting fieldwork and L. Laurila for GIS assistance. We also thank three referees for providing valuable comments. The study was supported by a grant of the Centre of International Mobility, Ministry of Education, Finland (to E.K. and A.S.). A.S. was also supported by the Finnish School in Wildlife Biology, Conservation and Management (LUOVA). ANDERSEN DE, 1989, J WILDLIFE MANAGE, V53, P802, DOI 10.2307/3809215; Bernard E, 2003, BIOTROPICA, V35, P262, DOI 10.1646/02156; Bruun M, 2003, BIOL CONSERV, V114, P179, DOI 10.1016/S0006-3207(03)00021-1; Burnham K. P., 2002, MODEL SELECTION MULT; Byholm P, 2008, ECOLOGY, V89, P1696, DOI 10.1890/07-0675.1; Christensen P, 2003, J MAMMAL, V84, P1292, DOI 10.1644/BBa-014; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; Dawson RD, 1997, J WILDLIFE MANAGE, V61, P1297, DOI 10.2307/3802129; Dawson RD, 2002, BEHAV ECOL SOCIOBIOL, V52, P43, DOI 10.1007/s00265-002-0486-y; DRENT RH, 1980, ARDEA, V68, P225; Eldegard K, 2010, BEHAV ECOL SOCIOBIOL, V64, P815, DOI 10.1007/s00265-009-0898-z; Freckleton RP, 2002, J ANIM ECOL, V71, P542, DOI 10.1046/j.1365-2656.2002.00618.x; FREYROOS F, 1995, BEHAV ECOL, V6, P287, DOI 10.1093/beheco/6.3.287; Glutz von Blotzheim UN, 1980, HDB VOGEL MITTELEURO; HAKKARAINEN H, 1994, OECOLOGIA, V97, P209, DOI 10.1007/BF00323151; Hakkarainen H, 2003, OIKOS, V100, P162, DOI 10.1034/j.1600-0706.2003.11906.x; Hakkarainen H, 1996, ECOLOGY, V77, P1134, DOI 10.2307/2265582; Hakkarainen H, 2008, OECOLOGIA, V155, P479, DOI 10.1007/s00442-007-0929-2; Hinam HL, 2008, BIOL CONSERV, V141, P524, DOI 10.1016/j.biocon.2007.11.011; Hinsley SA, 1999, J AVIAN BIOL, V30, P271, DOI 10.2307/3677353; HIRALDO F, 1994, J FIELD ORNITHOL, V65, P466; Huitu O, 2009, FOREST ECOL MANAG, V258, P1219, DOI 10.1016/j.foreco.2009.06.013; Ilmonen P, 1999, OIKOS, V86, P79, DOI 10.2307/3546571; IMS RA, 1987, J ANIM ECOL, V56, P585, DOI 10.2307/5070; Karell P, 2009, CAN J ZOOL, V87, P8, DOI 10.1139/Z08-133; Kenward R. E., 2001, MANUAL WILDLIFE RADI; Kenward R. E., 2002, RANGES 6 SOFTWARE; Kernohan B. J., 2001, RADIO TRACKING ANIMA, P126; Korpimaki E, 2002, P ROY SOC B-BIOL SCI, V269, P991, DOI 10.1098/rspb.2002.1972; KORPIMAKI E, 1991, OECOLOGIA, V85, P543, DOI 10.1007/BF00323767; KORPIMAKI E, 1988, ORNIS FENNICA, V65, P21; KORPIMAKI E, 1987, J ANIM ECOL, V56, P185, DOI 10.2307/4808; KORPIMAKI E, 1989, IBIS, V131, P51, DOI 10.1111/j.1474-919X.1989.tb02743.x; Korpimaki E, 1981, ACTA U OUL A, V118, P1, DOI DOI 10.1897/IEAM_2009-053.1; Korpimaki Erkki, 2008, Scottish Birds, V28, P19; Laaksonen T, 2004, J ANIM ECOL, V73, P342, DOI 10.1111/j.0021-8790.2004.00811.x; Laaksonen T, 2002, J ANIM ECOL, V71, P23, DOI 10.1046/j.0021-8790.2001.00570.x; Laaksonen T, 2004, P ROY SOC B-BIOL SCI, V271, pS461, DOI 10.1098/rsbl.2004.0221; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; Lopez-Bao JV, 2010, ANIM CONSERV, V13, P35, DOI 10.1111/j.1469-1795.2009.00300.x; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; Marzluff JM, 1997, CONDOR, V99, P567, DOI 10.2307/1370470; Mikkola H, 1983, OWLS EUROPE; Newton I., 1998, POPULATION LIMITATIO; O'Donnell CFJ, 2000, ANIM CONSERV, V3, P287, DOI 10.1111/j.1469-1795.2000.tb00114.x; REDPATH SM, 1995, J ANIM ECOL, V64, P652, DOI 10.2307/5807; REYNOLDS TD, 1990, J WILDLIFE MANAGE, V54, P316, DOI 10.2307/3809049; Seaman DE, 1999, J WILDLIFE MANAGE, V63, P739, DOI 10.2307/3802664; Seaman DE, 1996, ECOLOGY, V77, P2075, DOI 10.2307/2265701; Stearns S. C., 1992, EVOLUTION LIFE HIST; Sutherland W. J., 2004, BIRD ECOLOGY CONSERV; SWIHART RK, 1985, ECOLOGY, V66, P1176, DOI 10.2307/1939170; Tremblay I, 2005, IBIS, V147, P17, DOI 10.1111/j.1474-919x.2004.00312.x; Turcotte Y, 2003, OIKOS, V100, P614, DOI 10.1034/j.1600-0706.2003.12031.x; Wiehn J, 1997, ECOLOGY, V78, P2043, DOI 10.1890/0012-9658(1997)078[2043:FLOBSE]2.0.CO;2; Zanette L, 2000, ECOLOGY, V81, P1654, DOI 10.2307/177314 57 26 26 0 82 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 ANIM BEHAV Anim. Behav. APR 2012 83 4 1115 1123 10.1016/j.anbehav.2012.02.002 9 Behavioral Sciences; Zoology Behavioral Sciences; Zoology 914TN WOS:000301975500035 2018-11-12 J Dunkel, CS Dunkel, Curtis S. Do self-report measures of life history strategy exhibit the hypothesized differences between blacks and whites predicted by Differential K theory? PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Differential K; Life history theory ADVANCED PROGRESSIVE MATRICES; ENGINEERING STUDENTS; CANADIAN UNIVERSITY; SOUTH-AFRICA; VALIDITY Rushton's Differential K theory posits that a large number of differences between racial groups can be explained by the groups' different life history strategies. Recently self-report measures of life history strategy have been developed. Data aggregated from a number of studies were used to examine the hypothesized difference in life history strategy between Blacks and Whites on these self-report measures. The results were mixed and effect sizes were small. Analyses with one measure supported the hypothesized difference between Blacks and Whites while analyses using a second measure found a difference between Blacks and Whites that was the opposite of that predicted by Differential K theory. In both cases less than two percent of the variance on the measures was explained by ethnicity. The results are discussed in relation to Differential K theory and the measurement of life history strategies. (C) 2012 Elsevier Ltd. All rights reserved. Western Illinois Univ, Dept Psychol, Macomb, IL 61529 USA Dunkel, CS (reprint author), Western Illinois Univ, Dept Psychol, Wagonner Hall, Macomb, IL 61529 USA. c-dunkel@wiu.edu BOGAERT AF, 1989, PERS INDIV DIFFER, V10, P1071, DOI 10.1016/0191-8869(89)90259-6; Dunkel CS, 2010, PERS INDIV DIFFER, V48, P681, DOI 10.1016/j.paid.2009.12.014; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Giosan C., 2006, EVOLUTIONARY PSYCHOL, V4, P394, DOI DOI 10.1177/147470490600400131; Giosan C, 2009, EVOL PSYCHOL-US, V7, P28; Rushton JP, 2005, PSYCHOL PUBLIC POL L, V11, P235, DOI 10.1037/1076-8971.11.2.235; Rushton JP, 2004, INT J SELECT ASSESS, V12, P220, DOI 10.1111/j.0965-075X.2004.00276.x; Rushton JP, 2003, INTELLIGENCE, V31, P123, DOI 10.1016/S0160-2896(02)00140-X; RUSHTON JP, 1992, PERS INDIV DIFFER, V13, P439, DOI 10.1016/0191-8869(92)90072-W; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Sefcek J. A., 2010, BIODEMOGRAPHY SOCIAL, V56, P41 11 2 2 0 2 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. APR 2012 52 6 759 761 10.1016/j.paid.2011.12.035 3 Psychology, Social Psychology 910FZ WOS:000301623900020 2018-11-12 J Krams, I; Vrublevska, J; Cirule, D; Kivleniece, I; Krama, T; Rantala, MJ; Sild, E; Horak, P Krams, Indrikis; Vrublevska, Jolanta; Cirule, Dina; Kivleniece, Inese; Krama, Tatjana; Rantala, Markus J.; Sild, Elin; Horak, Peeter Heterophil/lymphocyte ratios predict the magnitude of humoral immune response to a novel antigen in great tits (Parus major) COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY English Article Antibody response; Brucella abortus; Body mass loss; H/L ratio; Immune challenge; Immunosuppression; Parus major; Stress STRESS-INDUCED IMMUNOSUPPRESSION; GREENFINCHES CARDUELIS-CHLORIS; SPARROWS PASSER-DOMESTICUS; ECOLOGICAL IMMUNOLOGY; TRADE-OFFS; BRUCELLA-ABORTUS; BODY-MASS; INFECTIOUS-DISEASES; ANTIBODY-RESPONSE; CHICKENS Animals display remarkable individual variation in their capacity to mount immune responses against novel antigens. According to the life-history theory, this variation is caused by the costs of immune responses to the hosts. We studied one of such potential costs, depletion of somatic resources in wintering wild-caught captive passerines, the great tits (Parus major) by immune challenging the birds with a novel antigen, killed Brucella abortus (BA) suspension. We found that despite mild temperature conditions in captivity and ad libitum availability of food, immune challenge depleted somatic resources (as indicated by a body mass loss) and elevated relative proportion of heterophils to lymphocytes (H/L ratio) in the peripheral blood of birds. However, body mass loss did not covary with an increase in H/L ratios between two sampling events, which indicates that these two markers of health state describe different aspects of individual physiological condition. Antibody titres were not associated with the extent of body mass loss during the development of immune response, which shows that the somatic cost of immune response was not proportional to the amount of antibody produced. Birds with high pre-immunisation H/L ratios mounted weaker antibody response, which is indicative of stress-induced suppression of humoral immune response and is consistent with the concept of an antagonistic cross-regulation between different components of the immune system. The latter finding suggests a novel diagnostic value of H/L ratios, which reinforces the utility of this simple haematological index for prediction of the outcomes of complicated immune processes. (C) 2012 Elsevier Inc. All rights reserved. [Krams, Indrikis; Sild, Elin; Horak, Peeter] Univ Tartu, Inst Ecol & Earth Sci, EE-51014 Tartu, Estonia; [Krams, Indrikis; Vrublevska, Jolanta; Cirule, Dina; Kivleniece, Inese; Krama, Tatjana] Univ Daugavpils, Inst Systemat Biol, LV-5401 Daugavpils, Latvia; [Krams, Indrikis; Rantala, Markus J.] Univ Turku, Dept Biol, Sect Ecol, FIN-20024 Turku, Finland; [Cirule, Dina] Inst Food Safety Anim Hlth & Environm BIOR, LV-1076 Riga, Latvia Horak, P (reprint author), Univ Tartu, Inst Ecol & Earth Sci, Ulikooli 18, EE-51014 Tartu, Estonia. horak@ut.ee Horak, Peeter/A-2351-2009 Horak, Peeter/0000-0002-1442-9903 Estonian Science Foundation [7737]; Estonian Ministry of Education and Science [0180004s09]; European Union through (Centre of Excellence FIBIR); Academy of Finland; Latvian Council of Science [09.1186]; Daugavpils University [2009/0140/1DP/1.1.2.1.2/09/IPIA/VIAA/015] P. Horak and E. Sild were financed by Estonian Science Foundation (grant # 7737 to PH), the Estonian Ministry of Education and Science (target-financing project # 0180004s09) and by the European Union through the European Regional Development Fund (Centre of Excellence FIBIR). M. J. Rantala and I. Krams were supported by the Academy of Finland, Latvian Council of Science (grant 09.1186) financed T. Krama, and the European Social Fund within the project 'Support for the implementation of doctoral studies at Daugavpils University' Nr.2009/0140/1DP/1.1.2.1.2/09/IPIA/VIAA/015 supported Jolanta Vrublevska. We thank Mihails Pupins, Sanita Kecko and Valerijs Vahrusevs for their help in the field and two anonymous reviewers for their constructive comments on the ms. Amat JA, 2007, ECOL RES, V22, P282, DOI 10.1007/s11284-006-0022-z; Barbosa A, 2004, ECOSCIENCE, V11, P305, DOI 10.1080/11956860.2004.11682837; Birkhead TR, 1998, BEHAV ECOL SOCIOBIOL, V44, P179, DOI 10.1007/s002650050530; Boughton RK, 2011, FUNCT ECOL, V25, P81, DOI 10.1111/j.1365-2435.2010.01817.x; Bourgeon S, 2010, J EXP BIOL, V213, P3810, DOI 10.1242/jeb.045484; Calcagni E, 2006, ANN NY ACAD SCI, V1069, P62, DOI 10.1196/annals.1351.006; Campbell T. W., 2007, AVIAN EXOTIC ANIMAL; Cirule D, 2012, J ORNITHOL, V153, P161, DOI 10.1007/s10336-011-0719-9; Coon CAC, 2011, AM J PHYSIOL-REG I, V300, pR1418, DOI 10.1152/ajpregu.00187.2010; Davis AK, 2008, FUNCT ECOL, V22, P760, DOI 10.1111/j.1365-2435.2008.01467.x; Demas GE, 2011, J ANIM ECOL, V80, P710, DOI 10.1111/j.1365-2656.2011.01813.x; Demas GE, 2011, FUNCT ECOL, V25, P29, DOI 10.1111/j.1365-2435.2010.01738.x; Dhabhar FS, 2009, NEUROIMMUNOMODULAT, V16, P300, DOI 10.1159/000216188; El-Lethey H, 2003, VET IMMUNOL IMMUNOP, V95, P91, DOI 10.1016/S0165-2427(02)00308-2; Eraud C, 2005, FUNCT ECOL, V19, P110, DOI 10.1111/j.0269-8463.2005.00934.x; Eraud C, 2009, EVOLUTION, V63, P1036, DOI 10.1111/j.1558-5646.2008.00540.x; Fair JM, 1999, P ROY SOC B-BIOL SCI, V266, P1735, DOI 10.1098/rspb.1999.0840; Gladbach A, 2010, COMP BIOCHEM PHYS A, V156, P269, DOI 10.1016/j.cbpa.2010.02.012; Golding B, 2001, MICROBES INFECT, V3, P43, DOI 10.1016/S1286-4579(00)01350-2; GROSS WB, 1983, AVIAN DIS, V27, P972, DOI 10.2307/1590198; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; Hanssen SA, 2006, ECOLOGY, V87, P2440, DOI 10.1890/0012-9658(2006)87[2440:COAICA]2.0.CO;2; Hasselquist D, 2001, BEHAV ECOL, V12, P93, DOI 10.1093/oxfordjournals.beheco.a000384; Hasselquist D, 2007, J EXP BIOL, V210, P1123, DOI 10.1242/jeb.02712; He HQ, 2008, VET IMMUNOL IMMUNOP, V123, P177, DOI 10.1016/j.vetimm.2008.01.033; Horak P, 2003, CAN J ZOOL, V81, P371, DOI 10.1139/Z03-020; Horak P, 2006, J EXP BIOL, V209, P4329, DOI 10.1242/jeb.02502; Klasing KC, 1998, POULTRY SCI, V77, P1119, DOI 10.1093/ps/77.8.1119; KLASING KC, 1984, P SOC EXP BIOL MED, V176, P276; Knowles SCL, 2009, FUNCT ECOL, V23, P405, DOI 10.1111/j.1365-2435.2008.01507.x; Krams I, 2000, BEHAV ECOL SOCIOBIOL, V48, P147, DOI 10.1007/s002650000214; Krams I, 2011, J ORNITHOL, V152, P889, DOI 10.1007/s10336-011-0672-7; Krams I, 2010, FUNCT ECOL, V24, P172, DOI 10.1111/j.1365-2435.2009.01628.x; Leshchinsky TV, 2001, POULTRY SCI, V80, P1590, DOI 10.1093/ps/80.11.1590; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; MAIER SF, 1994, AM PSYCHOL, V49, P1004, DOI 10.1037/0003-066X.49.12.1004; Martin LB, 2011, FUNCT ECOL, V25, P1, DOI 10.1111/j.1365-2435.2010.01820.x; Mendes L, 2006, J ORNITHOL, V147, P274, DOI 10.1007/s10336-006-0070-8; Moe RO, 2010, ANIMAL, V4, P1709, DOI 10.1017/S175173111000100X; Moller AP, 2002, BEHAV ECOL, V13, P248, DOI 10.1093/beheco/13.2.248; Moller AP, 1998, OIKOS, V83, P301, DOI 10.2307/3546841; Moreno-Rueda G, 2011, ECOL RES, V26, P943, DOI 10.1007/s11284-011-0848-x; Mueller C, 2011, FUNCT ECOL, V25, P566, DOI 10.1111/j.1365-2435.2010.01816.x; MUNNS PL, 1991, POULTRY SCI, V70, P2371, DOI 10.3382/ps.0702371; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Oliveira SC, 2008, MICROBES INFECT, V10, P1005, DOI 10.1016/j.micinf.2008.07.005; Ots I, 1998, FUNCT ECOL, V12, P700, DOI 10.1046/j.1365-2435.1998.00219.x; Ots I, 2001, P ROY SOC B-BIOL SCI, V268, P1175, DOI 10.1098/rspb.2001.1636; Ottenweller JE, 1998, PHYSIOL BEHAV, V63, P795, DOI 10.1016/S0031-9384(97)00539-8; Owen-Ashley NT, 2007, J ORNITHOL, V148, pS583, DOI 10.1007/s10336-007-0197-2; Owen-Ashley NT, 2006, J EXP BIOL, V209, P3062, DOI 10.1242/jeb.02371; Plischke A, 2010, J ORNITHOL, V151, P347, DOI 10.1007/s10336-009-0461-8; Raberg L, 1998, P ROY SOC B-BIOL SCI, V265, P1637, DOI 10.1098/rspb.1998.0482; Romano A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022805; Saks L, 2006, FUNCT ECOL, V20, P75, DOI 10.1111/j.1365-2435.2006.01068.x; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; Schulenburg H, 2009, PHILOS T R SOC B, V364, P3, DOI 10.1098/rstb.2008.0249; Sepp T, 2010, PHYSIOL BIOCHEM ZOOL, V83, P276, DOI 10.1086/648580; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Shini S, 2009, Stress, V12, P388, DOI 10.1080/10253890802526894; Shini S, 2010, POULTRY SCI, V89, P841, DOI 10.3382/ps.2009-00483; Shini S, 2008, COMP BIOCHEM PHYS B, V149, P324, DOI 10.1016/j.cbpb.2007.10.003; Shini S, 2010, STRESS, V13, P185, DOI 10.3109/10253890903144639; Sild E, 2011, BRAIN BEHAV IMMUN, V25, P1349, DOI 10.1016/j.bbi.2011.03.020; Sild E, 2010, BEHAV ECOL SOCIOBIOL, V64, P2065, DOI 10.1007/s00265-010-1076-z; Svensson E, 1998, FUNCT ECOL, V12, P912, DOI 10.1046/j.1365-2435.1998.00271.x; Takahashi Kazuaki, 1992, Japanese Poultry Science, V29, P350; Totzke U, 1999, PHYSIOL BIOCHEM ZOOL, V72, P426, DOI 10.1086/316675; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Zhou H, 2001, POULTRY SCI, V80, P1679, DOI 10.1093/ps/80.12.1679 70 31 32 2 51 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1095-6433 1531-4332 COMP BIOCHEM PHYS A Comp. Biochem. Physiol. A-Mol. Integr. Physiol. APR 2012 161 4 422 428 10.1016/j.cbpa.2011.12.018 7 Biochemistry & Molecular Biology; Physiology; Zoology Biochemistry & Molecular Biology; Physiology; Zoology 911DV WOS:000301698400010 22245489 2018-11-12 J Varpe, O Varpe, Oystein Fitness and phenology: annual routines and zooplankton adaptations to seasonal cycles JOURNAL OF PLANKTON RESEARCH English Article Calanus; dynamic state-variable models; evolutionary ecology; match-mismatch; optimality modelling; reproductive value; seasonality DIEL VERTICAL MIGRATION; SOUTHEASTERN HUDSON-BAY; LIFE-HISTORY THEORY; CALANUS-FINMARCHICUS; ANTARCTIC KRILL; EUPHAUSIA-SUPERBA; REPRODUCTIVE STRATEGIES; PELAGIC ECOSYSTEMS; MARINE COPEPOD; CLIMATE-CHANGE Behaviour and life-history strategies of zooplankton have evolved in response to seasonal cycles in food availability, predation risk and abiotic conditions. A key challenge is to understand how different activities over the year are linked. For instance, how does a change in spring activities, such as the timing or amount of egg production, influence autumn activities, for instance energy storage or migration? Trade-offs viewed in relation to individual lifetime fitness consequences couple these events. The framework of optimal annual routines provides theory and methodology for consistent analyses of these temporal trade-offs. Here I describe the key parts of optimal annual routine models and how the models can be used to: (i) study phenology, life-history strategies, and population dynamics; (ii) predict responses to environmental change; and (iii) guide future zooplankton studies. I mainly discuss the adaptations of zooplankton species inhabiting high latitude oceans where the seasonal cycle and its effects are particularly strong. Empirical challenges include issues of seasonal resolution, state-dependent processes and individual variability. Two ecological problems with avenues for future work are discussed in particular detail: the role of sea ice and ice algae in the life cycle of copepods and krill, and the adaptive value and ecological consequences of semelparous versus iteroparous reproductive strategies. Norwegian Polar Res Inst, Fram Ctr, N-9296 Tromso, Norway Varpe, O (reprint author), Norwegian Polar Res Inst, Fram Ctr, N-9296 Tromso, Norway. oystein.varpe@gmail.com Varpe, Oystein/B-9693-2008 Varpe, Oystein/0000-0002-5895-6983 Centre for Ice, Climate and Ecosystems (ICE) at the Norwegian Polar Institute This work was supported by the Centre for Ice, Climate and Ecosystems (ICE) at the Norwegian Polar Institute. ALLAN JD, 1976, AM NAT, V110, P165, DOI 10.1086/283056; Alonzo SH, 2003, ECOLOGY, V84, P1598, DOI 10.1890/0012-9658(2003)084[1598:EGISAT]2.0.CO;2; Alonzo SH, 2001, MAR ECOL PROG SER, V209, P203, DOI 10.3354/meps209203; Andrews K. J. H., 1966, Discovery Reports, V34, P117; Arrigo KR, 2010, SEA ICE, P283, DOI [DOI 10.1002/9781444317145.CH8, 10.1002/9781444317145.ch8]; Atkinson A, 2004, NATURE, V432, P100, DOI 10.1038/nature02950; Barta Z, 2006, OIKOS, V112, P580, DOI 10.1111/j.0030-1299.2006.14240.x; Berge J, 2009, BIOL LETTERS, V5, P69, DOI 10.1098/rsbl.2008.0484; Bollens SM, 2011, J PLANKTON RES, V33, P349, DOI 10.1093/plankt/fbq152; Brierley AS, 2002, SCIENCE, V295, P1890, DOI 10.1126/science.1068574; Brodersen J, 2008, ECOLOGY, V89, P1195, DOI 10.1890/07-1318.1; Brommer JE, 2000, BIOL REV, V75, P377, DOI 10.1017/S000632310000551X; CHASTEL O, 1995, ECOLOGY, V76, P2240, DOI 10.2307/1941698; CLARK CW, 2000, DYNAMIC STATE VARIAB; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Conover R.J., 1991, Journal of Marine Systems, V2, P1, DOI 10.1016/0924-7963(91)90011-I; CONOVER RJ, 1988, HYDROBIOLOGIA, V167, P127, DOI 10.1007/BF00026299; CUSHING DH, 1990, ADV MAR BIOL, V26, P249, DOI 10.1016/S0065-2881(08)60202-3; DAWSON JK, 1978, LIMNOL OCEANOGR, V23, P950, DOI 10.4319/lo.1978.23.5.0950; Falk-Petersen S, 2009, MAR BIOL RES, V5, P18, DOI 10.1080/17451000802512267; Fero O, 2008, ECOL APPL, V18, P1563, DOI 10.1890/07-1012.1; Fiksen O, 1998, SARSIA, V83, P129; Fiksen O, 1997, ECOLOGY, V78, P1446; Fiksen O, 2000, ICES J MAR SCI, V57, P1825, DOI 10.1006/jmsc.2000.0976; GILBERT JJ, 1983, ANNU REV ECOL SYST, V14, P1, DOI 10.1146/annurev.es.14.110183.000245; Gosselin M, 1997, DEEP-SEA RES PT II, V44, P1623, DOI 10.1016/S0967-0645(97)00054-4; Hagen W, 1999, INVERTEBR REPROD DEV, V36, P25, DOI 10.1080/07924259.1999.9652674; Hagen W, 1996, DEEP-SEA RES PT I, V43, P139, DOI 10.1016/0967-0637(96)00001-5; Hairston NG, 1998, J MARINE SYST, V15, P23, DOI 10.1016/S0924-7963(97)00046-8; HAIRSTON NG, 1984, AM NAT, V123, P733, DOI 10.1086/284236; HAMNER WM, 1983, SCIENCE, V220, P433, DOI 10.1126/science.220.4595.433; Hassett RP, 2006, LIMNOL OCEANOGR, V51, P997, DOI 10.4319/lo.2006.51.2.0997; Hays GC, 2001, LIMNOL OCEANOGR, V46, P2050, DOI 10.4319/lo.2001.46.8.2050; Hilborn R., 1997, ECOLOGICAL DETECTIVE; HIRCHE HJ, 1993, MAR BIOL, V117, P615, DOI 10.1007/BF00349773; Hirche HJ, 1996, OPHELIA, V44, P129, DOI 10.1080/00785326.1995.10429843; Houston AI, 1999, MODELS ADAPTIVE BEHA; Hunt GL, 2002, DEEP-SEA RES PT II, V49, P5821, DOI 10.1016/S0967-0645(02)00321-1; HUTCHINSON G. E., 1951, ECOLOGY, V32, P571, DOI 10.2307/1931745; IKEDA T, 1982, J EXP MAR BIOL ECOL, V62, P143, DOI 10.1016/0022-0981(82)90088-0; Ji RB, 2010, J PLANKTON RES, V32, P1355, DOI 10.1093/plankt/fbq062; Jin M., 2011, DEEP SEA RES 2, DOI [10.1016/j.dsr1012.2011.1006.1003, DOI 10.1016/J.DSR1012.2011.1006.1003]; Kaartvedt S, 2000, ICES J MAR SCI, V57, P1819, DOI 10.1006/jmsc.2000.0964; Kahru M, 2011, GLOBAL CHANGE BIOL, V17, P1733, DOI 10.1111/j.1365-2486.2010.02312.x; Kiorboe T, 2009, P NATL ACAD SCI USA, V106, P12394, DOI 10.1073/pnas.0903350106; Klevjer TA, 2011, LIMNOL OCEANOGR, V56, P765, DOI 10.4319/lo.2011.56.3.0765; Kosobokova KN, 1999, POLAR BIOL, V22, P254, DOI 10.1007/s003000050418; Lee RF, 2006, MAR ECOL PROG SER, V307, P273, DOI 10.3354/meps307273; Leu E, 2011, PROG OCEANOGR, V90, P18, DOI 10.1016/j.pocean.2011.02.004; Lischka S, 2005, POLAR BIOL, V28, P910, DOI 10.1007/s00300-005-0017-1; Madsen SD, 2001, MAR BIOL, V139, P75; Mangel M., 1988, DYNAMIC MODELING BEH; Marcus NH, 1996, HYDROBIOLOGIA, V320, P141, DOI 10.1007/BF00016815; MARSCHALL HP, 1988, POLAR BIOL, V9, P129, DOI 10.1007/BF00442041; MCLAREN IA, 1966, ECOLOGY, V47, P852, DOI 10.2307/1934273; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; McNamara JM, 2008, PHILOS T R SOC B, V363, P301, DOI 10.1098/rstb.2007.2141; MILLER CB, 1984, PROG OCEANOGR, V13, P201, DOI 10.1016/0079-6611(84)90009-0; Nygard H, 2010, MAR ECOL PROG SER, V417, P115, DOI 10.3354/meps08798; OBRIEN DP, 1987, J CRUSTACEAN BIOL, V7, P437, DOI 10.2307/1548293; OHMAN MD, 1994, LIMNOL OCEANOGR, V39, P21, DOI 10.4319/lo.1994.39.1.0021; Ohman MD, 1998, DEEP-SEA RES PT II, V45, P1709, DOI 10.1016/S0967-0645(98)80014-3; Olsson O, 1997, J AVIAN BIOL, V28, P264, DOI 10.2307/3676979; Rey-Rassat C, 2002, MAR ECOL PROG SER, V238, P301, DOI 10.3354/meps238301; RUNGE JA, 1988, LIMNOL OCEANOGR, V33, P280, DOI 10.4319/lo.1988.33.2.0280; SAMEOTO DD, 1984, POLAR BIOL, V2, P213, DOI 10.1007/BF00263627; Soreide JE, 2010, GLOBAL CHANGE BIOL, V16, P3154, DOI 10.1111/j.1365-2486.2010.02175.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Swalethorp R, 2011, MAR ECOL PROG SER, V429, P125, DOI 10.3354/meps09065; TANDE KS, 1982, J EXP MAR BIOL ECOL, V62, P129, DOI 10.1016/0022-0981(82)90087-9; TOURANGEAU S, 1991, MAR BIOL, V108, P227, DOI 10.1007/BF01344337; Tsuda A, 1998, PHILOS T ROY SOC B, V353, P713, DOI 10.1098/rstb.1998.0237; Varpe O, 2005, OECOLOGIA, V146, P443, DOI 10.1007/s00442-005-0219-9; Varpe O, 2007, OIKOS, V116, P1331, DOI 10.1111/j.2007.0030-1299.15893.x; Varpe O, 2010, ECOLOGY, V91, P311, DOI 10.1890/08-1817.1; Varpe O, 2009, OIKOS, V118, P363, DOI 10.1111/j.1600-0706.2008.17036.x; Verity PG, 1996, MAR ECOL PROG SER, V130, P277, DOI 10.3354/meps130277; Visser ME, 2005, P ROY SOC B-BIOL SCI, V272, P2561, DOI 10.1098/rspb.2005.3356; Vogedes D, 2010, J PLANKTON RES, V32, P1471, DOI 10.1093/plankt/fbq068; Wallace MI, 2010, LIMNOL OCEANOGR, V55, P831, DOI 10.4319/lo.2009.55.2.0831; Wassmann P, 2011, PROG OCEANOGR, V90, P1, DOI 10.1016/j.pocean.2011.02.002; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 82 52 52 0 71 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0142-7873 J PLANKTON RES J. Plankton Res. APR 2012 34 4 267 276 10.1093/plankt/fbr108 10 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography 906QD WOS:000301360800001 Bronze 2018-11-12 J McDonald, MM; Donnellan, MB; Navarrete, CD McDonald, Melissa M.; Donnellan, M. Brent; Navarrete, Carlos David A life history approach to understanding the Dark Triad PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Life history theory; Personality; Evolutionary psychology; Dark Triad; Psychopathy; Narcissism; Machiavellianism NARCISSISTIC PERSONALITY-INVENTORY; IMPULSIVE ANTISOCIALITY; FEARLESS DOMINANCE; CONSTRUCT-VALIDITY; PSYCHOPATHY; MACHIAVELLIANISM; STRATEGY; SOCIOPATHY; MODEL Researchers adopting an evolutionary perspective have conceptualized the Dark Triad as an exploitative interpersonal style reflective of a fast life history strategy. However, not all research has supported this claim. We posit that different elements of the constructs associated with the Dark Triad may reflect different life history strategies. Our results indicate that the measures of the Dark Triad and other indicators of life history strategies form two distinct factors: (1)a fast life strategy factor that includes the impulsive antisociality facet of psychopathy, the entitlement/exploitativeness facet of narcissism, Machiavellianism, unrestricted sociosexuality, and aggression, and (2) a slow life strategy factor that includes the fearless dominance facet of psychopathy and both the leadership/authority and grandiose exhibitionism facets of narcissism. These factors differentially correlate with established measures of life history strategy. These findings add to the literature by clarifying how the Dark Triad fits into a life history framework. (C) 2011 Elsevier Ltd. All rights reserved. [McDonald, Melissa M.; Donnellan, M. Brent; Navarrete, Carlos David] Michigan State Univ, Dept Psychol, E Lansing, MI 48824 USA McDonald, MM (reprint author), Michigan State Univ, Dept Psychol, E Lansing, MI 48824 USA. mcdon348@msu.edu; donnel59@msu.edu; cdn@msu.edu Navarrete, C. David/B-8290-2016 Navarrete, C. David/0000-0002-9642-5753 Ackerman RA, 2011, ASSESSMENT, V18, P67, DOI 10.1177/1073191110382845; Benning SD, 2003, PSYCHOL ASSESSMENT, V15, P340, DOI 10.1037/1040-3590.15.3.340; Blonigen DM, 2010, PSYCHOL ASSESSMENT, V22, P96, DOI 10.1037/a0017240; BUSS AH, 1992, J PERS SOC PSYCHOL, V63, P452, DOI 10.1037/0022-3514.63.3.452; CHRISTIE R, 1970, STUDIES MACHIAVELLIA; Cleckley H., 1941, MASK SANITY; Cooke DJ, 2001, PSYCHOL ASSESSMENT, V13, P171, DOI 10.1037//1040-3590.13.2.171; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; EMMONS RA, 1984, J PERS ASSESS, V48, P291, DOI 10.1207/s15327752jpa4803_11; Figueredo A.J., 2007, ARIZONA LIFE H UNPUB; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Giosan C., 2006, EVOLUTIONARY PSYCHOL, V4, P394, DOI DOI 10.1177/147470490600400131; Gladden PR, 2009, PERS INDIV DIFFER, V46, P270, DOI 10.1016/j.paid.2008.10.010; HARPENDING HC, 1987, ETHOL SOCIOBIOL, V8, pS63; HARPUR TJ, 1989, PSYCHOL ASSESSMENT J, V1, P6, DOI DOI 10.1037/1040-3590.1.1.6; Hill P., 2011, SOCIAL PSYC IN PRESS; HUNTER JE, 1982, J PERS SOC PSYCHOL, V43, P1293, DOI 10.1037//0022-3514.43.6.1293; Johnson J. A., DEV SHORT FORM UNPUB; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2010, PERS INDIV DIFFER, V49, P611, DOI 10.1016/j.paid.2010.05.031; Jonason PK, 2010, PSYCHOL ASSESSMENT, V22, P420, DOI 10.1037/a0019265; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; Lee K, 2004, MULTIVAR BEHAV RES, V39, P329, DOI 10.1207/s15327906mbr3902_8; McHoskey JW, 1998, J PERS SOC PSYCHOL, V74, P192, DOI 10.1037//0022-3514.74.1.192; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; Penke L, 2008, J PERS SOC PSYCHOL, V95, P1113, DOI 10.1037/0022-3514.95.5.1113; RASKIN R, 1988, J PERS SOC PSYCHOL, V54, P890, DOI 10.1037//0022-3514.54.5.890; Rhodewalt F., 2009, HDB INDIVIDUAL DIFFE, P547; Smith ST, 2011, J PERS ASSESS, V93, P244, DOI 10.1080/00223891.2011.558876; Witt EA, 2008, PERS INDIV DIFFER, V45, P219, DOI 10.1016/j.paid.2008.04.002; Witt EA, 2009, J RES PERS, V43, P1006, DOI 10.1016/j.jrp.2009.06.010; Witt EA, 2009, J PERS ASSESS, V91, P265, DOI 10.1080/00223890902794317 34 45 48 2 50 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. APR 2012 52 5 601 605 10.1016/j.paid.2011.12.003 5 Psychology, Social Psychology 905XZ WOS:000301310800008 2018-11-12 J Figueredo, AJ; Gladden, PR; Black, CJ Figueredo, Aurelio Jose; Gladden, Paul Robert; Black, Candace Jasmine Parasite stress, ethnocentrism, and life history strategy BEHAVIORAL AND BRAIN SCIENCES English Editorial Material Fincher & Thornhill (F&T) present a compelling argument that parasite stress underlies certain cultural practices promoting assortative sociality. However, we suggest that the theoretical framework proposed is limited in several ways, and that life history theory provides a more explanatory and inclusive framework, making more specific predictions about the trade-offs faced by organisms in the allocation of bioenergetic and material resources. [Figueredo, Aurelio Jose; Black, Candace Jasmine] Univ Arizona, Dept Psychol, Tucson, AZ 85721 USA; [Figueredo, Aurelio Jose; Black, Candace Jasmine] Univ Arizona, Coll Sci, Sch Mind Brain & Behav, Tucson, AZ 85721 USA; [Gladden, Paul Robert] Macon State Coll, Dept Psychol & Sociol, Macon, GA 31206 USA Figueredo, AJ (reprint author), Univ Arizona, Dept Psychol, Tucson, AZ 85721 USA. ajf@u.arizona.edu; paul.gladden@maconstate.edu; cjblack@email.arizona.edu ALLPORT G. W, 1954, NATURE PREJUDICE; ANDRZEJCZAK DJ, 2007, ANN M HUM BEH EV SOC; Brewer MB, 1999, J SOC ISSUES, V55, P429, DOI 10.1111/0022-4537.00126; Brewer MB, 1976, ETHNOCENTRISM INTERG; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Eppig C, 2010, P ROY SOC B-BIOL SCI, V277, P3801, DOI 10.1098/rspb.2010.0973; Figueredo A.J., 2011, APPL EVOLUTIONARY PS, P201; Figueredo A. J., 2011, J SOCIAL EVOLUTIONAR, V5, P14, DOI DOI 10.1037/H0099277; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2009, HUM NATURE-INT BIOS, V20, P317, DOI 10.1007/s12110-009-9068-2; Gladden P., 2009, J EVOLUTIONARY PSYCH, V7, P167, DOI DOI 10.1556/JEP.7.2009.2.5; GLADDEN PR, 2010, ANN M HUM BEH EV SOC; Gottfredson M. R., 1990, GEN THEORY CRIME; JONES DJ, ETHNOCENTRISM UNPUB; MACDONALD KM, 2007, ANN M HUM BEH EV SOC; SUMNER W.G, 1906, FOLKWAYS; THORNHILL R, 2010, ANN M HUM BEH EV SOC 17 3 4 1 9 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0140-525X 1469-1825 BEHAV BRAIN SCI Behav. Brain Sci. APR 2012 35 2 87 88 10.1017/S0140525X11000999 2 Psychology, Biological; Behavioral Sciences; Neurosciences Psychology; Behavioral Sciences; Neurosciences & Neurology 901TT WOS:000300990500010 22289411 2018-11-12 J Jonason, PK; Webster, GD Jonason, Peter K.; Webster, Gregory D. A protean approach to social influence: Dark Triad personalities and social influence tactics PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Dark Triad; Cheater-detection; Personality; Social influence TERM MATING STRATEGY; LIFE-HISTORY THEORY; EVOLUTIONARY PSYCHOLOGY; MACHIAVELLIANISM; PSYCHOPATHY; NARCISSISM; DOMAINS; MODEL To avoid detection, those high on Dark Triad traits (i.e., narcissism, psychopathy, and Machiavellianism) may adopt a protean approach to interpersonal influence. We show the Dark Triad traits correlate with a number of unique tactics of influence (Study 1; N = 259). We show this protean approach was insensitive to differences in targets of manipulation (Study 2; N = 296). When forced to choose one tactic to solve different adaptive problems, the Dark Triad traits were correlated with unique tactical choices (Study 3; N = 268). We show these associations are generally robust to controlling for the Big Five and participants' sex (Study 1 and 2). We discuss the theoretical implications of these findings for both life history and cheater-detection theories. (C) 2011 Elsevier Ltd. All rights reserved. [Jonason, Peter K.] Univ Western Sydney, Sch Psychol, Penrith, NSW 2751, Australia; [Webster, Gregory D.] Univ Florida, Dept Psychol, Gainesville, FL 32611 USA Jonason, PK (reprint author), Univ Western Sydney, Sch Psychol, Locked Bag 1797, Penrith, NSW 2751, Australia. peterkarljonason@yahoo.com Ali F, 2009, PERS INDIV DIFFER, V47, P758, DOI 10.1016/j.paid.2009.06.016; Baumeister RF, 2007, PERSPECT PSYCHOL SCI, V2, P396, DOI 10.1111/j.1745-6916.2007.00051.x; Benotsch E. G., 2004, BASIC APPL SOC PSYCH, V16, P35; Buss DM, 2009, PERSPECT PSYCHOL SCI, V4, P359, DOI 10.1111/j.1745-6924.2009.01138.x; BUSS DM, 1992, J PERS, V60, P477, DOI 10.1111/j.1467-6494.1992.tb00981.x; BUSS DM, 1991, J PERS, V59, P179, DOI 10.1111/j.1467-6494.1991.tb00773.x; CHRISTIE R, 1970, STUDIES MACHIAVELLIA; Cummins DD, 1999, EVOL HUM BEHAV, V20, P229, DOI 10.1016/S1090-5138(99)00008-2; DRIVER PM, 1988, PROTEAN BEHAV BIOL U; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Foster JD, 2008, PERS SOC PSYCHOL B, V34, P1004, DOI 10.1177/0146167208316688; Gosling SD, 2003, J RES PERS, V37, P504, DOI 10.1016/S0092-6566(03)00046-1; Gunnthorsdottir A, 2002, J ECON PSYCHOL, V23, P49, DOI 10.1016/S0167-4870(01)00067-8; Hare RD, 1996, CRIM JUSTICE BEHAV, V23, P25, DOI 10.1177/0093854896023001004; Jonason P. K., 2010, INDIVIDUAL DIFFERENC, V8, P111; Jonason PK, 2011, PERS INDIV DIFFER, V51, P759, DOI 10.1016/j.paid.2011.06.025; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2010, PSYCHOL ASSESSMENT, V22, P420, DOI 10.1037/a0019265; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jones DN, 2010, SOC PSYCHOL PERS SCI, V1, P12, DOI 10.1177/1948550609347591; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; Kenrick DT, 2002, PERS SOC PSYCHOL REV, V6, P347, DOI 10.1207/S15327957PSPR0604_09; Kline P., 2000, HDB PSYCHOL TESTING; Kowalski R. M., 2001, BEHAV BADLY AVERSIVE; Lee KB, 2005, PERS INDIV DIFFER, V38, P1571, DOI 10.1016/j.paid.2004.09.016; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; Tooby J., 1992, ADAPTED MIND EVOLUTI, V163, P163, DOI DOI 10.1098/RSTB.2006.1991; Wilson DS, 1996, PSYCHOL BULL, V119, P285, DOI 10.1037/0033-2909.119.2.285 29 85 86 3 39 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. MAR 2012 52 4 521 526 10.1016/j.paid.2011.11.023 6 Psychology, Social Psychology 904SL WOS:000301218100010 2018-11-12 J Johnson, PTJ; Rohr, JR; Hoverman, JT; Kellermanns, E; Bowerman, J; Lunde, KB Johnson, Pieter T. J.; Rohr, Jason R.; Hoverman, Jason T.; Kellermanns, Esra; Bowerman, Jay; Lunde, Kevin B. Living fast and dying of infection: host life history drives interspecific variation in infection and disease risk ECOLOGY LETTERS English Article Amphibian decline; conservation; dilution effect; emerging disease; immunoecology; phylogenetic comparative methods; Ribeiroia ondatrae; trematode WEST-NILE-VIRUS; IMMUNE DEFENSE; AMPHIBIAN COMMUNITY; TROPICAL BIRDS; TRADE-OFFS; ECOLOGY; RESISTANCE; TOLERANCE; PARASITES; PATHOGEN Parasite infections often lead to dramatically different outcomes among host species. Although an emerging body of ecoimmunological research proposes that hosts experience a fundamental trade-off between pathogen defences and life-history activities, this line of inquiry has rarely been extended to the most essential outcomes of host-pathogen interactions: namely, infection and disease pathology. Using a comparative experimental approach involving 13 amphibian host species and a virulent parasite, we test the hypothesis that pace-of-life predicts parasite infection and host pathology. Trematode exposure increased mortality and malformations in nine host species. After accounting for evolutionary history, species that developed quickly and metamorphosed smaller (fast-species) were particularly prone to infection and pathology. This pattern likely resulted from both weaker host defences and greater adaptation by parasites to infect common hosts. Broader integration between life history theory and disease ecology can aid in identifying both reservoir hosts and species at risk of disease-driven declines. [Johnson, Pieter T. J.; Hoverman, Jason T.; Kellermanns, Esra] Univ Colorado, Boulder, CO 80309 USA; [Rohr, Jason R.] Univ S Florida, Dept Integrat Biol, Tampa, FL 33620 USA; [Bowerman, Jay] Sunriver Nat Ctr, Sunriver, OR 97707 USA; [Lunde, Kevin B.] Univ Calif Berkeley, Berkeley, CA 94720 USA Johnson, PTJ (reprint author), Univ Colorado, Boulder, CO 80309 USA. pieter.johnson@colorado.edu Hoverman, Jason/D-1756-2013; Lunde, Kevin/D-4202-2009 Hoverman, Jason/0000-0002-4002-2728; NSF [DEB-0553768]; US Department of Agriculture [NRI 2006-01370, 2009-35102-05043]; US Environmental Protection Agency [R833835]; David and Lucile Packard Foundation For assistance in conducting experiments and collecting data, we thank E. Daly, S. Todd, R. Hartson, E. Preu, M. Redmond, M. McGrath, G. Cropsey, E. Holldorf, C. de Jesus, J. Jenkins, I. Buller, D. Larson, A. Price and B. LaFonte. Comments from R. Ostfeld, J. Cronin, two anonymous referees and members of the Johnson Lab helped shape the manuscript. M. Lajeunesse generously provided help with the phylogenetic analyses. This project was supported by grants from NSF (DEB-0553768 to PTJJ), the US Department of Agriculture (NRI 2006-01370, 2009-35102-05043 to JRR), the US Environmental Protection Agency (R833835 to JRR) and a fellowship from the David and Lucile Packard Foundation (to PTJJ). Arriero E, 2008, J EVOLUTION BIOL, V21, P1504, DOI 10.1111/j.1420-9101.2008.01613.x; Blackwell AD, 2010, AM J HUM BIOL, V22, P836, DOI 10.1002/ajhb.21092; Borer ET, 2009, P NATL ACAD SCI USA, V106, P503, DOI 10.1073/pnas.0808778106; Burnham K. P., 2002, MODEL SELECTION MULT; Craft ME, 2008, J ANIM ECOL, V77, P1257, DOI 10.1111/j.1365-2656.2008.01410.x; Cronin JP, 2010, ECOL LETT, V13, P1221, DOI 10.1111/j.1461-0248.2010.01513.x; Daszak P, 2000, SCIENCE, V287, P443, DOI 10.1126/science.287.5452.443; Frost DR, 2006, B AM MUS NAT HIST, P8, DOI 10.1206/0003-0090(2006)297[0001:TATOL]2.0.CO;2; Gilbert GS, 2007, P NATL ACAD SCI USA, V104, P4979, DOI 10.1073/pnas.0607968104; HART BL, 1994, PARASITOLOGY, V109, pS139, DOI 10.1017/S0031182000085140; Hasselquist D, 2007, J ORNITHOL, V148, pS571, DOI 10.1007/s10336-007-0201-x; Hawley D. M., 2010, FUNCT ECOL, V25, P48, DOI DOI 10.1111/J.1365-2435.2010.01753.X; Haydon DT, 2002, EMERG INFECT DIS, V8, P1468; Johnson PTJ, 2011, FUNCT ECOL, V25, P726, DOI 10.1111/j.1365-2435.2010.01830.x; Johnson PTJ, 2009, J ANIM ECOL, V78, P191, DOI 10.1111/j.1365-2656.2008.01455.x; Johnson PTJ, 1999, SCIENCE, V284, P802, DOI 10.1126/science.284.5415.802; Johnson PTJ, 2001, HERPETOLOGICA, V57, P336; Jones KE, 2008, NATURE, V451, P990, DOI 10.1038/nature06536; Keesing F, 2006, ECOL LETT, V9, P485, DOI 10.1111/j.1461-0248.2006.00885.x; Kilpatrick AM, 2006, P R SOC B, V273, P2327, DOI 10.1098/rspb.2006.3575; Knowles SCL, 2009, FUNCT ECOL, V23, P405, DOI 10.1111/j.1365-2435.2008.01507.x; Komar N, 2003, EMERG INFECT DIS, V9, P311, DOI 10.3201/eid0903.020628; LaDeau SL, 2007, NATURE, V447, P710, DOI 10.1038/nature05829; Lee KA, 2008, J ANIM ECOL, V77, P356, DOI 10.1111/j.1365-2656.2007.01347.x; Lee KA, 2006, INTEGR COMP BIOL, V46, P1000, DOI 10.1093/icb/icl049; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; LoGiudice K, 2003, P NATL ACAD SCI USA, V100, P567, DOI 10.1073/pnas.0233733100; Martin II LB, 2006, OECOLOGIA, V147, P565, DOI 10.1007/s00442-005-0314-y; Martin LB, 2007, ECOLOGY, V88, P2516, DOI 10.1890/07-0060.1; Martin LB, 2006, INTEGR COMP BIOL, V46, P1030, DOI 10.1093/icb/icl039; Martins EP, 1997, AM NAT, V149, P646, DOI 10.1086/286013; McGarigal K, 2000, MULTIVARIATE STAT WI; Miller MR, 2007, EVOLUTION, V61, P2, DOI 10.1111/j.1558-5646.2007.00001.x; Ostfeld R, 2000, CAN J ZOOL, V78, P2061, DOI 10.1139/cjz-78-12-2061; Paradis E., 2011, PACKAGE APE VERSION; POULIN R., 2004, PARASITE BIODIVERSIT; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Purvis A, 2000, P ROY SOC B-BIOL SCI, V267, P1947, DOI 10.1098/rspb.2000.1234; R Development Core Team, 2008, R LANG ENV STAT COMP; Raberg L, 2009, PHILOS T R SOC B, V364, P37, DOI 10.1098/rstb.2008.0184; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Rohr JR, 2010, FUNCT ECOL, V24, P1110, DOI 10.1111/j.1365-2435.2010.01709.x; Rosseel Y., 2011, LATENT VARIABLE ANAL; Schmid-Hempel P, 2003, TRENDS ECOL EVOL, V18, P27, DOI 10.1016/S0169-5347(02)00013-7; Sparkman AM, 2009, J ANIM ECOL, V78, P1242, DOI 10.1111/j.1365-2656.2009.01587.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tieleman BI, 2005, P ROY SOC B-BIOL SCI, V272, P1715, DOI 10.1098/rspb.2005.3155; Todd BD, 2007, AM NAT, V170, P793, DOI 10.1086/521958; Viney ME, 2005, TRENDS ECOL EVOL, V20, P665, DOI 10.1016/j.tree.2005.10.003; Zuk M, 2002, AM NAT, V160, pS9, DOI 10.1086/342131 50 108 109 1 132 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1461-023X ECOL LETT Ecol. Lett. MAR 2012 15 3 235 242 10.1111/j.1461-0248.2011.01730.x 8 Ecology Environmental Sciences & Ecology 887RH WOS:000299946200008 22221837 2018-11-12 J Koster, JM; Tankersley, KB Koster, Jeremy M.; Tankersley, Kenneth B. Heterogeneity of hunting ability and nutritional status among domestic dogs in lowland Nicaragua PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article Canis lupus familiaris; life history theory; Mayangna; Miskito; stable isotopes PERFORMANCE; HUNTERS; SUCCESS; BOLIVIA; WOLVES; SIZE; AGE In past and modern human societies, dogs have played an important role as hunting companions. Given considerable ethnographic evidence that dogs vary in their hunting abilities, this paper addresses the effects of key demographic variables, namely age and sex, on the amount of harvested game that dogs contribute in an indigenous Nicaraguan community. Controlling for variation in the time spent potentially hunting, male dogs and older dogs are significantly associated with greater harvests. These results may account for documented preferences for males in both archaeological and ethnographic contexts. Among societies in which dogs are used both as hunting companions and sources of food, the age-related delay in peak hunting ability also suggests a tradeoff that might explain the consumption of dogs shortly after they have reached adult size. Informant rankings of two cohorts of dogs indicate that residents of the community exhibit high agreement about the relative abilities of the dogs, and the rankings indicate that dogs from the same household exhibit comparable skill. There is little evidence that talented, highly-ranked dogs are provided a more nutritious diet, as measured by nitrogen-based and carbon-based isotopic analysis of hair samples. Overall, although dogs can be quite advantageous as hunting companions, this research suggests that the heterogeneity of hunting ability combines with the high mortality of dogs to impose risks on households that depend on dogs as a source of harvested meat. [Koster, Jeremy M.; Tankersley, Kenneth B.] Univ Cincinnati, Dept Anthropol, Cincinnati, OH 45221 USA Koster, JM (reprint author), Univ Cincinnati, Dept Anthropol, Cincinnati, OH 45221 USA. jeremy.koster@uc.edu Fulbright Student Grant; National Science Foundation [BCS-0413037, BCS-0963752]; Hill Foundation; William Sanders dissertation grant; Charles Phelps Taft Research Center; Court Family Foundation; University of Cincinnati Research Council We thank Jeff Winking, Mark Grote, Angela Perri, and Brooke Crowley for valuable suggestions. This research was supported by a Fulbright Student Grant, the National Science Foundation (BCS-0413037, BCS-0963752), the Hill Foundation, a William Sanders dissertation grant, the Charles Phelps Taft Research Center, the Court Family Foundation, and the University of Cincinnati Research Council. ARCHER J, 1977, ANIM BEHAV, V25, P479, DOI 10.1016/0003-3472(77)90023-9; Bohannon P, 1966, SOURCE NOTEBOOK TIV; Borgatti S. P., 2002, UCINET WINDOWS SOFTW; CLUTTONBROCK J, 1994, J ARCHAEOL SCI, V21, P819, DOI 10.1006/jasc.1994.1079; Crockford Susan Janet, 2000, DOGS TIME ARCHAEOLOG, P115; Descola Philippe, 1994, SOC NATURE NATIVE EC; DWYER PD, 1983, HUM ECOL, V11, P145, DOI 10.1007/BF00891741; Estioko-Griffin A., 1981, WOMAN GATHERER, P121; Fiorello CV, 2006, CONSERV BIOL, V20, P762, DOI 10.1111/j.1523-1739.2006.00466.x; Gurven M, 2006, J HUM EVOL, V51, P454, DOI 10.1016/j.jhevol.2006.05.003; HILL K, 1983, ADAPTIVE RESPONSES N, P223; Holmsen K, 2010, THESIS U ARIZONA TUC; Ikeya K, 1994, AFRICAN STUDY MONOGR, V15, P119; ISAAC BL, 1977, HUM ECOL, V5, P137, DOI 10.1007/BF00889540; JOHNSON A, 1975, ETHNOLOGY, V14, P301, DOI 10.2307/3773258; KEEGAN WF, 1986, AM ANTHROPOL, V88, P92, DOI 10.1525/aa.1986.88.1.02a00060; Koster J. M., 2007, THESIS PENN STATE U; Koster J, 2010, CURR ANTHROPOL, V51, P257, DOI 10.1086/651073; Koster J, 2009, J ANTHROPOL RES, V65, P575, DOI 10.3998/jar.0521004.0065.403; Koster JM, 2008, CURR ANTHROPOL, V49, P935, DOI 10.1086/592021; Koster JM, HUM NAT, V22, P394; Koster JM, 2008, ENVIRON CONSERV, V25, P211; Lee RB, 1979, IKUNG SAN MEN WOMEN; Lupo K. D., 2011, ETHNOZOOARCHAEOLOGY, P4; MacNulty DR, 2009, ECOL LETT, V12, P1347, DOI 10.1111/j.1461-0248.2009.01385.x; MacNulty DR, 2009, J ANIM ECOL, V78, P532, DOI 10.1111/j.1365-2656.2008.01517.x; Marlowe FW, 2002, ETHNICITY HUNTER GAT, P247; Mitchell P.J., 2008, ANIMALS PEOPLE ARCHA, P104; Morey Darcy, 2010, DOGS DOMESTICATION D; Nobayashi A., 2006, DOGS PEOPLE SOCIAL W, P77; Petzke KJ, 2005, J NUTR, V135, P1515; Politis G., 2007, NUKAK ETHNOARCHAEOLO; Pongracz P, 2005, J COMP PSYCHOL, V119, P136, DOI 10.1037/0735-7036.119.2.136; Puri Rajindra K., 2005, DEADLY DANCES BORNEA; Rasbash J., 2009, USERS GUIDE MLWIN; ROMNEY AK, 1987, AM BEHAV SCI, V31, P163, DOI 10.1177/000276487031002003; Sand H, 2006, ANIM BEHAV, V72, P781, DOI 10.1016/j.anbehav.2005.11.030; Schmutz SM, 1998, J HERED, V89, P233, DOI 10.1093/jhered/89.3.233; Schwartz M., 1997, HIST DOGS EARLY AM; Schwertl M, 2003, RAPID COMMUN MASS SP, V17, P1312, DOI 10.1002/rcm.1042; Smith EA, 2004, HUM NATURE-INT BIOS, V15, P343, DOI 10.1007/s12110-004-1013-9; Smith EA, 2003, BEHAV ECOL, V14, P116, DOI 10.1093/beheco/14.1.116; Stocks A, 2003, HUM ORGAN, V62, P344, DOI 10.17730/humo.62.4.exekjumfqej3vpx4; Tankersley KB, 2009, N AM ARCHAEOL, V30, P361, DOI 10.2190/NA.30.4.b; VANHEST A, 1989, HORM BEHAV, V23, P57, DOI 10.1016/0018-506X(89)90074-3; Walker R, 2002, J HUM EVOL, V42, P639, DOI 10.1006/jhev.2001.0541; Warren DM, 2004, THESIS BLOOMINGTON; WELLER SC, 1987, AM BEHAV SCI, V31, P178, DOI 10.1177/000276487031002004; Yin S, 2004, ANIM BEHAV, V68, P343, DOI 10.1016/j.anbehav.2003.07.016 49 14 14 1 22 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. FEB 21 2012 109 8 E463 E470 10.1073/pnas.1112515109 8 Multidisciplinary Sciences Science & Technology - Other Topics 895KM WOS:000300495100003 22232662 Green Published, Bronze 2018-11-12 J McMillan, JR; Dunham, JB; Reeves, GH; Mills, JS; Jordan, CE McMillan, John R.; Dunham, Jason B.; Reeves, Gordon H.; Mills, Justin S.; Jordan, Chris E. Individual condition and stream temperature influence early maturation of rainbow and steelhead trout, Oncorhynchus mykiss ENVIRONMENTAL BIOLOGY OF FISHES English Article Rainbow trout; Steelhead trout; Alternative male phenotypes; Resident male maturity; Anadromy; Life history SALMO-SALAR L; WILD ATLANTIC SALMON; LIFE-HISTORY TACTICS; BODY-SIZE; BROWN TROUT; BROOK CHARR; SALVELINUS-FONTINALIS; WATER TEMPERATURE; MATING SYSTEM; PARR Alternative male phenotypes in salmonine fishes arise from individuals that mature as larger and older anadromous marine-migrants or as smaller and younger freshwater residents. To better understand the processes influencing the expression of these phenotypes we examined the influences of growth in length (fork length) and whole body lipid content in rainbow trout (Oncorhynchus mykiss). Fish were sampled from the John Day River basin in northeast Oregon where both anadromous ("steelhead") and freshwater resident rainbow trout coexist. Larger males with higher lipid levels had a greater probability of maturing as a resident at age-1+. Among males, 38% were maturing overall, and the odds ratios of the logistic model indicated that the probability of a male maturing early as a resident at age-1+ increased 49% (95% confidence interval (CI) = 23-81%) for every 5 mm increase in length and 33% (95% CI = 10-61%) for every 0.5% increase in whole body lipid content. There was an inverse association between individual condition and water temperature as growth was greater in warmer streams while whole body lipid content was higher in cooler streams. Our results support predictions from life history theory and further suggest that relationships between individual condition, maturation, and environmental variables (e.g., water temperature) are shaped by complex developmental and evolutionary influences. [McMillan, John R.; Mills, Justin S.] Oregon State Univ, Dept Fisheries & Wildlife, Corvallis, OR 97331 USA; [Dunham, Jason B.] US Geol Survey, Forest & Rangeland Ecosyst Sci Ctr, Corvallis, OR USA; [Reeves, Gordon H.] US Forest Serv, Pacific NW Res Stn, Corvallis, OR 97331 USA; [Jordan, Chris E.] Natl Ocean & Atmospher Adm, Corvallis, OR USA McMillan, JR (reprint author), Oregon State Univ, Dept Fisheries & Wildlife, Corvallis, OR 97331 USA. jmcmillan71@gmail.com NOAA; USGS; USFS; North Umpqua Foundation All sampling was conducted in accordance with the Oregon Department of Fish and Wildlife permit # OR2007-3680 M1 approved by NOAA and USFWS under the Endangered Species Act. Tim Unterwegner, Jim Ruzycki, Jeff Neal, Shelly Miller, and Chris James at ODFW helped identify survey locations and provided critical information on the John Day River basin. Nick Weber, Ian Tattam, Jeremiah Leslie assisted in data collection. Martin Fitzpatrick at USGS provided suggestions that improved the methods and manuscript. Funding was provided by NOAA, USGS, USFS, and the North Umpqua Foundation. Use of trade or firm names is for reader information only and does not constitute endorsement of any product or service by the U.S. Government. Adams S.M., 1998, MULTIPLE STRESSES EC, P13; Allison PD, 1999, LOGISTIC REGRESSION; [Anonymous], 1987, TECATOR APPL NOTE AN, V92, P1; *AOAC, 1998, OFF METH AN; Aubin-Horth N, 2006, CAN J FISH AQUAT SCI, V63, P2067, DOI 10.1139/F06-103; Bacon PJ, 2005, J ANIM ECOL, V74, P1, DOI 10.1111/j.1365-2656.2004.00875.x; BAGLINIERE JL, 1985, AQUACULTURE, V45, P249, DOI 10.1016/0044-8486(85)90274-1; Baum D, 2005, J FISH BIOL, V67, P1370, DOI 10.1111/j.1095-8649.2005.00832.x; Baum D, 2004, J ANIM ECOL, V73, P253, DOI 10.1111/j.0021-8790.2004.00803.x; Behnke RJ, 2002, TROUT SALMON N AM; Berg OK, 1998, J FISH BIOL, V52, P1272, DOI 10.1006/jfbi.1998.0679; Biro PA, 2004, CAN J FISH AQUAT SCI, V61, P1513, DOI 10.1139/F04-083; Brett J. R., 1952, Journal of the Fisheries Research Board of Canada, V9, P265; BROWN LR, 1991, CAN J FISH AQUAT SCI, V48, P849, DOI 10.1139/f91-101; Busby P. J, 1996, NMFSNWFSC27 US DEP C; Chapman D. G., 1951, U CALIFORNIA PUBL ST, V1, P131; Chernoff E, 2007, J FISH BIOL, V70, P334, DOI 10.1111/j.1095-8649.2007.01328.x; Christie MR, 2011, MOL ECOL, V20, P1263, DOI 10.1111/j.1365-294X.2010.04994.x; Clemens BJ, 2009, REV FISH SCI, V17, P174, DOI 10.1080/10641260802618375; Dunham J., 2005, RMRSGTR150WWW USDA F; Einum S, 1999, P ROY SOC B-BIOL SCI, V266, P2095, DOI 10.1098/rspb.1999.0893; Emling ST, 1977, SCIENCE, V197, P215; Feldhaus JW, 2006, THESIS OREGON STATE; FLAIN M, 1988, NEW ZEAL J MAR FRESH, V22, P497, DOI 10.1080/00288330.1988.9516319; Fleming Ian A., 2004, P264; GIBBONS JW, 1972, PROG FISH CULT, V34, P88, DOI 10.1577/1548-8640(1972)34[88:WROLBT]2.0.CO;2; Graham TP, 1974, AEC S SERIES, P151; GRIMES DV, 1993, T AM FISH SOC, V122, P636, DOI 10.1577/1548-8659(1993)122<0636:NVAVPO>2.3.CO;2; Gross MR, 1998, J THEOR BIOL, V192, P445, DOI 10.1006/jtbi.1998.0665; GROSS MR, 1991, ECOLOGY, V72, P1180, DOI 10.2307/1941091; Hoar WS, 1979, FISH PHYSIOL, V8, P575; Houston CJG, 1981, THESIS U BRIT COLUMB; Jones JW, 1940, PROC R SOC SER B-BIO, V128, P485, DOI 10.1098/rspb.1940.0022; Jones MW, 2001, HEREDITY, V86, P675, DOI 10.1046/j.1365-2540.2001.00880.x; JONSSON B, 1993, REV FISH BIOL FISHER, V3, P348, DOI 10.1007/BF00043384; JONSSON B, 1985, T AM FISH SOC, V114, P182, DOI 10.1577/1548-8659(1985)114<182:LHPOFR>2.0.CO;2; KEPSHIRE BM, 1983, AQUACULTURE, V32, P295, DOI 10.1016/0044-8486(83)90226-0; Madrinan F, 2008, THESIS OREGON STATE; McCormick JL, 2010, P118590 USDOE BOW AD; MCCULLOUGH D. A., 1999, 910R99010 EPA; McMillan J. R., 2009, THESIS OREGON STATE; McMillan JR, 2007, T AM FISH SOC, V136, P736, DOI 10.1577/T06-165.1; Mills JS, ENV BIO FIS IN PRESS; Morales-Nin B., 2002, P91; Morgan IJ, 2002, J FISH BIOL, V60, P674, DOI 10.1006/jfbi.2002.1886; Morinville GR, 2003, CAN J FISH AQUAT SCI, V60, P401, DOI 10.1139/F03-036; Neuheimer AB, 2007, CAN J FISH AQUAT SCI, V64, P375, DOI 10.1139/F07-003; Quinn T. J., 2005, BEHAV ECOLOGY PACIFI; Quinn TP, 2004, REV FISH BIOL FISHER, V14, P421, DOI 10.1007/s11160-005-0802-5; Railsback SF, 1999, T AM FISH SOC, V128, P241, DOI 10.1577/1548-8659(1999)128<0241:BMOSTG>2.0.CO;2; Ramsey F. L., 2002, STAT SLEUTH COURSE M; REEVES GH, 1987, CAN J FISH AQUAT SCI, V44, P1603, DOI 10.1139/f87-194; Reshetnikov Y.S., 1970, J ICHTHYOL, V10, P804; Rikardsen AH, 2000, J FISH BIOL, V56, P328, DOI 10.1111/j.1095-8649.2000.tb02110.x; Rosenberger AE, 2005, N AM J FISH MANAGE, V25, P251; ROWE DK, 1991, CAN J FISH AQUAT SCI, V48, P405, DOI 10.1139/f91-052; ROWE DK, 1990, J FISH BIOL, V36, P643, DOI 10.1111/j.1095-8649.1990.tb04319.x; SCHMIDT SP, 1979, J FISH RES BOARD CAN, V36, P90, DOI 10.1139/f79-014; Schultz T, 2004, DOEBP000058404 BPA; Seamons TR, 2004, ENVIRON BIOL FISH, V69, P333, DOI 10.1023/B:EBFI.0000022893.88086.8f; Silverstein JT, 1997, CAN J FISH AQUAT SCI, V54, P444, DOI 10.1139/cjfas-54-2-444; Simpkins DG, 2003, CAN J ZOOL, V81, P1641, DOI 10.1139/Z03-157; SIMPSON AL, 1992, CAN J ZOOL, V70, P1737, DOI 10.1139/z92-241; Stevens DL, 2004, J AM STAT ASSOC, V99, P262, DOI 10.1198/016214504000000250; Sutton SG, 2000, T AM FISH SOC, V129, P527, DOI 10.1577/1548-8659(2000)129<0527:RAFWBW>2.0.CO;2; Tattam I, 2006, THESIS OREGON STATE; Temple GM, 2006, N AM J FISH MANAGE, V26, P941, DOI 10.1577/M05-086.1; Theriault V, 2007, J EVOLUTION BIOL, V20, P2266, DOI 10.1111/j.1420-9101.2007.01417.x; Theriault V, 2003, J FISH BIOL, V63, P1144, DOI 10.1046/j.1095-8649.2003.00233.x; Thomaz D, 1997, P ROY SOC B-BIOL SCI, V264, P219, DOI 10.1098/rspb.1997.0031; Thorpe JE, 1998, EVOL ECOL, V12, P581, DOI 10.1023/A:1022351814644; Tipping JM, 2003, N AM J AQUACULT, V65, P318, DOI 10.1577/C02-040; Tocher DR, 2003, REV FISH SCI, V11, P107, DOI 10.1080/713610925; WARD BR, 1989, CAN J FISH AQUAT SCI, V46, P1853, DOI 10.1139/f89-233; Wassermann Gustavo Javier, 2002, Cienc. Rural, V32, P133, DOI 10.1590/S0103-84782002000100023 75 32 33 4 57 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0378-1909 ENVIRON BIOL FISH Environ. Biol. Fishes FEB 2012 93 3 343 355 10.1007/s10641-011-9921-0 13 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 885HC WOS:000299768600004 2018-11-12 J Nyberg, CH Nyberg, Colleen H. Diurnal cortisol rhythms in Tsimane' Amazonian foragers: New insights into ecological HPA axis research PSYCHONEUROENDOCRINOLOGY English Article Cortisol; Stress; HPA axis; Homeostasis; Allostasis; Developmental plasticity; Market integration; Life history theory; Bolivia EVOLUTIONARY-DEVELOPMENTAL THEORY; PITUITARY-ADRENAL AXIS; C-REACTIVE PROTEIN; SALIVARY CORTISOL; PSYCHOLOGICAL STRESS; INDIVIDUAL-DIFFERENCES; NUTRITIONAL-STATUS; LOWLAND BOLIVIA; METABOLIC SYNDROME; GLUCOCORTICOID-RECEPTOR Although a growing body of research has documented important pathways by which the HPA axis mediates the interface between the psychosocial world and individual health, there is a paucity of data from nonwestern populations, particularly from those populations with distinct nutritional and infectious disease ecologies. The specific objectives of this study are: (1) to document variation in diurnal cortisol rhythms among the Tsimane', a remote population in the Bolivian Amazon, (2) to explore this variation by age and by gender, and (3) to compare diurnal rhythms from this study to other population based studies of cortisol conducted in industrialized nations. Salivary cortisol samples were collected twice daily, immediately upon waking and before bed, for three consecutive days from 303 participants (age 1.6-82 years, 1564 samples) in conjunction with the Tsimane' Amazonian Panel Study (TAPS). Cortisol rhythms showed strong age effects across the developmental span, with basal levels and slopes increasing into adulthood, although individuals older than 60 years demonstrated a precipitous flattening of the diurnal slope. Cortisol profiles were elevated in adult females compared to their age-matched male counterparts, and diurnal slopes, as well as mean cortisol concentrations among the Tsimane' were the lowest reported in any population based study of HPA axis function. Although the within-population variation in cortisol profiles was consistent with the established correlates of time of day, age, and sex, the between-population comparisons revealed dramatically lower levels of HPA activity among the Tsimane'. This study provides a benchmark against which to reference cortisol levels from industrialized populations, and expands the range of documented variation in HPA axis function in a nonwestern context. (C) 2011 Elsevier Ltd. All rights reserved. Univ Massachusetts, Dept Anthropol, Boston, MA 02125 USA Nyberg, CH (reprint author), Univ Massachusetts, Dept Anthropol, 100 Morrissey Blvd, Boston, MA 02125 USA. colleen.nyberg@umb.edu National Science Foundation DDIG [BCS-0622576]; American Association of University Women Dissertation Fellowship; Northwestern University Research was supported by a National Science Foundation DDIG (BCS-0622576), an American Association of University Women Dissertation Fellowship, a Northwestern University Graduate Research Grant, and a Northwestern University Fellowship and a Northwestern University FAN Grant. Adam EK, 2001, PSYCHONEUROENDOCRINO, V26, P189, DOI 10.1016/S0306-4530(00)00045-7; Adam EK, 2006, PSYCHONEUROENDOCRINO, V31, P664, DOI 10.1016/j.psyneuen.2006.01.010; Adam EK, 2009, PSYCHONEUROENDOCRINO, V34, P1423, DOI 10.1016/j.psyneuen.2009.06.011; Anacker C., 2010, PSYCHONEUROENDOCRINO; Baker PT, 1986, CHANGING SAMOANS BEH; Barker DJP, 2004, J EPIDEMIOL COMMUN H, V58, P114, DOI 10.1136/jech.58.2.114; Bateson P, 2001, INT J EPIDEMIOL, V30, P928, DOI 10.1093/ije/30.5.928; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; Besedovsky HO, 1996, ENDOCR REV, V17, P64, DOI 10.1210/edrv-17-1-64; Bjorntorp P, 2000, BLOOD PRESSURE, V9, P71, DOI 10.1080/08037050050151762; Bjorntorp P, 2000, BRIT J NUTR, V83, pS49, DOI 10.1017/S0007114500000957; BLALOCK JE, 1989, PHYSIOL REV, V69, P1; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; BRILLON DJ, 1995, AM J PHYSIOL-ENDOC M, V268, pE501; Bruce J, 2002, PSYCHONEUROENDOCRINO, V27, P635, DOI 10.1016/S0306-4530(01)00031-2; Burke HM, 2005, PSYCHONEUROENDOCRINO, V30, P846, DOI 10.1016/j.psyneune.2005.02.010; Byron E, 2003, THESIS U FLORIDA; Campbell BC, 2006, AGING CLIN EXP RES, V18, P470; Champagne FA, 2003, PHYSIOL BEHAV, V79, P359, DOI 10.1016/S0031-9384(03)00149-5; Chen E., 2010, MOL PSYCHIATR; Chisholm JS, 2008, EVOLUTIONARY MED HLT, P134; CHROUSOS GP, 1995, NEW ENGL J MED, V332, P1351, DOI 10.1056/NEJM199505183322008; Chrousos GP, 2000, ANN NY ACAD SCI, V917, P38, DOI 10.1111/j.1749-6632.2000.tb05371.x; Clow A, 2004, STRESS, V7, P29, DOI 10.1080/10253890410001667205; Cohen S, 2006, PSYCHOSOM MED, V68, P41, DOI 10.1097/01.psy.0000195967.51768.ea; Cohen S, 2007, JAMA-J AM MED ASSOC, V298, P1685, DOI 10.1001/jama.298.14.1685; Cole SW, 2008, BRAIN BEHAV IMMUN, V22, P1049, DOI 10.1016/j.bbi.2008.02.006; Crespi EJ, 2005, AM J HUM BIOL, V17, P44, DOI 10.1002/ajhb.20098; Curley JP, 2009, FRONT BEHAV NEUROSCI, V3, DOI 10.3389/neuro.08.025.2009; DALLMAN MF, 1993, FRONT NEUROENDOCRIN, V14, P303, DOI 10.1006/frne.1993.1010; Dantzer R, 2008, NAT REV NEUROSCI, V9, P46, DOI 10.1038/nrn2297; Darnall BD, 2009, BRAIN BEHAV IMMUN, V23, P595, DOI 10.1016/j.bbi.2009.02.019; de Kloet ER, 2008, ENDOCRINOLOGY, V149, P3241, DOI 10.1210/en.2008-0471; de Rooij SR, 2006, PSYCHONEUROENDOCRINO, V31, P1257, DOI 10.1016/j.psyneuen.2006.09.007; DeCaro JA, 2008, DEV PSYCHOBIOL, V50, P183, DOI 10.1002/dev.20255; Decker SA, 2000, HORM BEHAV, V38, P29, DOI 10.1006/hbeh.2000.1597; Decker Seamus A, 2006, J Physiol Anthropol, V25, P91, DOI 10.2114/jpa2.25.91; DeSantis AS, 2007, J ADOLESCENT HEALTH, V41, P3, DOI 10.1016/j.jadohealth.2007.03.006; DRESSLER W W, 1991, Ethnicity and Disease, V1, P60; Dressler WW, 1999, HUM BIOL, V71, P583; Du J, 2009, P NATL ACAD SCI USA, V106, P3543, DOI 10.1073/pnas.0812671106; Elenkov IJ, 2000, ANN NY ACAD SCI, V917, P94; Ellis BJ, 2005, DEV PSYCHOPATHOL, V17, P303, DOI 10.1017/S0954579405050157; Ellison PT, 2007, AM J HUM BIOL, V19, P622, DOI 10.1002/ajhb.20662; Ellison PT, 2010, ANN NY ACAD SCI, V1204, P11, DOI 10.1111/j.1749-6632.2010.05611.x; ELLISON PT, 1993, HUM REPROD, V8, P2248, DOI 10.1093/oxfordjournals.humrep.a138015; Ellison PT, 2003, AM J HUM BIOL, V15, P342, DOI 10.1002/ajhb.10152; Ellison PT, 2002, HUM REPROD, V17, P3251, DOI 10.1093/humrep/17.12.3251; Ellison PT, 1996, HUM BIOL, V68, P955; Epel ES, 2000, PSYCHOSOM MED, V62, P623, DOI 10.1097/00006842-200009000-00005; Evans GW, 2007, PSYCHOL SCI, V18, P953, DOI 10.1111/j.1467-9280.2007.02008.x; Fernald LC, 2003, EUR J CLIN NUTR, V57, P1458, DOI 10.1038/sj.ejcn.1601710; Fernald LC, 1998, AM J CLIN NUTR, V68, P691; Fernald LCH, 2009, LANCET, V374, P1997, DOI 10.1016/S0140-6736(09)61676-7; Fish EW, 2004, ANN NY ACAD SCI, V1036, P167, DOI 10.1196/annals.1330.011; Flinn MV, 1997, AM J PHYS ANTHROPOL, V102, P33; Foster Z, 2005, AM J PHYS ANTHROPOL, V126, P343, DOI 10.1002/ajpa.20098; Galeeva A, 2010, VITAM HORM, V82, P367, DOI 10.1016/S0083-6729(10)82019-9; Glaser R, 2005, NAT REV IMMUNOL, V5, P243, DOI 10.1038/nri1571; Gluckman PD, 2010, GENOME MED, V2, DOI 10.1186/gm135; Gluckman PD, 2009, LANCET, V373, P1654, DOI 10.1016/S0140-6736(09)60234-8; Godoy R, 2005, SOC SCI MED, V61, P907, DOI 10.1016/j.socscimed.2005.01.007; Godoy R, 2010, AM J HUM BIOL, V22, P336, DOI 10.1002/ajhb.20996; Godoy R, 2010, ECON HUM BIOL, V8, P88, DOI 10.1016/j.ehb.2009.08.002; Godoy R, 2009, CURR ANTHROPOL, V50, P560, DOI 10.1086/599983; Godoy RA, 2006, SOC SCI MED, V63, P359, DOI 10.1016/j.socscimed.2006.01.021; Graves T. D., 1979, MED ANTHROPOL WIN, P23; Gunnar M, 2007, ANNU REV PSYCHOL, V58, P145, DOI 10.1146/annurev.psych.58.110405.085605; Gunnar MR, 2009, DEV PSYCHOPATHOL, V21, P69, DOI 10.1017/S0954579409000054; Gunnar MR, 2002, PSYCHONEUROENDOCRINO, V27, P199, DOI 10.1016/S0306-4530(01)00045-2; Gunnar MR, 2001, DEV PSYCHOPATHOL, V13, P515, DOI 10.1017/S0954579401003066; Gurven M, 2007, AM J HUM BIOL, V19, P376, DOI 10.1002/ajhb.20600; Gurven M, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006590; Hardie TL, 2002, PSYCHIAT RES, V112, P121, DOI 10.1016/S0165-1781(02)00182-8; Hauner KKY, 2008, PSYCHONEUROENDOCRINO, V33, P1344, DOI 10.1016/j.psyneuen.2008.07.011; Heim C, 2000, PSYCHONEUROENDOCRINO, V25, P1, DOI 10.1016/S0306-4530(99)00035-9; Hellhammer DH, 2009, PSYCHONEUROENDOCRINO, V34, P163, DOI 10.1016/j.psyneuen.2008.10.026; Hershberger AM, 2004, J CLIN ENDOCR METAB, V89, P4701, DOI 10.1210/jc.2003-031144; Hruschka DJ, 2005, PSYCHONEUROENDOCRINO, V30, P698, DOI 10.1016/j.psyneuen.2005.03.002; Huanca T., 2006, TSIMANE ORAL TRADITI; Ice GH, 2004, PSYCHONEUROENDOCRINO, V29, P355, DOI 10.1016/S0306-4530(03)00034-9; Ice GH, 2005, J CROSS-CULT GERONTO, V20, P91, DOI 10.1007/s10823-005-9085-5; JAMES GD, 1987, SOC SCI MED, V25, P981, DOI 10.1016/0277-9536(87)90002-5; Jasienska G, 2006, P NATL ACAD SCI USA, V103, P12759, DOI 10.1073/pnas.0605488103; Jessop DS, 2008, STRESS, V11, P1, DOI 10.1080/10253890701365527; Jones A, 2006, J CLIN ENDOCR METAB, V91, P1868, DOI 10.1210/jc.2005-2077; JONETZMENTZEL L, 1993, EUR J CLIN CHEM CLIN, V31, P525; Kajantie E, 2002, CLIN ENDOCRINOL, V57, P635, DOI 10.1046/j.1365-2265.2002.01659.x; KIRSCHBAUM C, 1994, PSYCHONEUROENDOCRINO, V19, P313, DOI 10.1016/0306-4530(94)90013-2; Klimes-Dougan B, 2001, DEV PSYCHOPATHOL, V13, P695, DOI 10.1017/S0954579401003157; Koupil I, 2005, CLIN ENDOCRINOL, V62, P661, DOI 10.1111/j.1365-2265.2005.02275.x; Kudielka BM, 2005, BIOL PSYCHOL, V69, P113, DOI 10.1016/j.biopsycho.2004.11.009; Kudielka BM, 2009, PSYCHONEUROENDOCRINO, V34, P2, DOI 10.1016/j.psyneuen.2008.10.004; Kuzawa CW, 2009, ANNU REV ANTHROPOL, V38, P131, DOI 10.1146/annurev-anthro-091908-164350; Kuzawa CW, 2005, AM J HUM BIOL, V17, P5, DOI 10.1002/ajhb.20091; Lee AL, 2002, BIPOLAR DISORD, V4, P117, DOI 10.1034/j.1399-5618.2002.01144.x; Leonard WR, 2008, ECON HUM BIOL, V6, P299, DOI 10.1016/j.ehb.2008.04.001; Levine S, 2005, PSYCHONEUROENDOCRINO, V30, P939, DOI 10.1016/j.psyneuen.2005.03.013; LOHMAN TG, 1988, ANTHROPOMETRIC STAND; Lupien SJ, 2000, BIOL PSYCHIAT, V48, P976, DOI 10.1016/S0006-3223(00)00965-3; Lupien SJ, 2009, NAT REV NEUROSCI, V10, P434, DOI 10.1038/nrn2639; McDade TW, 2008, AM J PHYS ANTHROPOL, V136, P478, DOI 10.1002/ajpa.20831; McDade T. W., 2010, HUMAN EVOLUTIONARY B, P58; McDade TW, 2010, P ROY SOC B-BIOL SCI, V277, P1129, DOI 10.1098/rspb.2009.1795; McDade TW, 2005, AM J PHYS ANTHROPOL, V128, P906, DOI 10.1002/ajpa.20222; McDade TW, 2002, MED ANTHROPOL Q, V16, P123, DOI 10.1525/maq.2002.16.2.123; McEwen BS, 2003, HORM BEHAV, V43, P2, DOI 10.1016/S0018-506X(02)00024-7; McEwen BS, 2001, HUM PSYCHOPHARM CLIN, V16, pS7, DOI 10.1002/hup.266; MCGARVEY S T, 1979, Human Biology, V51, P461; Meaney MJ, 2010, CHILD DEV, V81, P41, DOI 10.1111/j.1467-8624.2009.01381.x; Miller GE, 2002, HEALTH PSYCHOL, V21, P531, DOI 10.1037//0278-6133.21.6.531; Miller G, 2009, ANNU REV PSYCHOL, V60, P501, DOI 10.1146/annurev.psych.60.110707.163551; Miller GE, 2007, PSYCHOL BULL, V133, P25, DOI 10.1037/0033-2909.133.1.25; Moss HB, 1999, BIOL PSYCHIAT, V45, P1293, DOI 10.1016/S0006-3223(98)00216-9; Nadeau S, 2003, J NEUROSCI, V23, P5536; Nepomnaschy PA, 2006, P NATL ACAD SCI USA, V103, P3938, DOI 10.1073/pnas.0511183103; Nepomnaschy PA, 2004, AM J HUM BIOL, V16, P523, DOI 10.1002/ajhb.20057; Netherton C, 2004, PSYCHONEUROENDOCRINO, V29, P125, DOI 10.1016/S0306-4530(03)00150-6; Nunez-de la Mora A, 2007, PLOS MED, V4, P813, DOI 10.1371/journal.pmed.0040167; Nyberg C. H, 2009, THESIS NW U; Obel C, 2005, PSYCHONEUROENDOCRINO, V30, P647, DOI 10.1016/j.psyneuen.2004.11.006; Oberlander TF, 2008, EPIGENETICS, V3, P97, DOI 10.4161/epi.3.2.6034; Phillips DIW, 2007, J INTERN MED, V261, P453, DOI 10.1111/j.1365-2796.2007.01801.x; Pike RL, 2006, AM J HUM BIOL, V18, P729, DOI 10.1002/ajhb.20548; Power ML, 2006, AM J HUM BIOL, V18, P431, DOI 10.1002/ajhb.20521; Raison CL, 2003, AM J PSYCHIAT, V160, P1554, DOI 10.1176/appi.ajp.160.9.1554; Raudenbush SW, 2002, HIERARCHICAL LINEAR; Reyes-Garcia V, 2003, SCIENCE, V299, P1707, DOI 10.1126/science.1080274; Reyes-Garcia V, 2008, SOC SCI MED, V67, P2107, DOI 10.1016/j.socscimed.2008.09.029; Rivest S, 2003, BRAIN BEHAV IMMUN, V17, P13, DOI 10.1016/S0889-1591(02)00055-7; Romeo RD, 2005, VITAM HORM, V71, P1, DOI 10.1016/S0083-6729(05)71001-3; Romero LM, 2010, P ROY SOC B-BIOL SCI, V277, P3157, DOI 10.1098/rspb.2010.0678; Romero LM, 2009, HORM BEHAV, V55, P375, DOI 10.1016/j.yhbeh.2008.12.009; Rosmalen JGM, 2005, PSYCHONEUROENDOCRINO, V30, P483, DOI 10.1016/j.psyneuen.2004.12.007; Rosmond R, 2005, PSYCHONEUROENDOCRINO, V30, P1, DOI 10.1016/j.psyneuen.2004.05.007; ROSNER W, 1990, ENDOCR REV, V11, P80, DOI 10.1210/edrv-11-1-80; Sapolsky RM, 2001, P NATL ACAD SCI USA, V98, P12320, DOI 10.1073/pnas.231475998; Schulkin J, 2003, HORM BEHAV, V43, P21, DOI 10.1016/S0018-506X(02)00035-1; Shansky RM, 2004, MOL PSYCHIATR, V9, P531, DOI 10.1038/sj.mp.4001435; Sharrock KCB, 2008, AM J HUM BIOL, V20, P392, DOI 10.1002/ajhb.20765; Singer J. D., 2003, APPL LONGITUDINAL DA; Sloboda D. M., 2009, CURR GERONTOL GERIAT, P60874; Sorrells SF, 2007, BRAIN BEHAV IMMUN, V21, P259, DOI 10.1016/j.bbi.2006.11.006; Steptoe A, 2008, AM J EPIDEMIOL, V167, P96, DOI 10.1093/aje/kwm252; Sterling P., 1988, HDB LIFE STRESS COGN; Tanner S, 2009, AM J HUM BIOL, V21, P651, DOI 10.1002/ajhb.20944; Tornhage CJ, 2002, J PEDIATR ENDOCR MET, V15, P197; Tronick E, 2009, HARVARD REV PSYCHIAT, V17, P147, DOI 10.1080/10673220902899714; Tsigos C, 2002, J PSYCHOSOM RES, V53, P865, DOI 10.1016/S0022-3999(02)00429-4; Undurraga EA, 2010, MED ANTHROPOL Q, V24, P522, DOI 10.1111/j.1548-1387.2010.01121.x; Vasunilashorn S, 2010, AM J HUM BIOL, V22, P731, DOI 10.1002/ajhb.21074; Vedhara K, 2007, PSYCHONEUROENDOCRINO, V32, P865, DOI 10.1016/j.psyneuen.2007.06.006; Vitzthum VJ, 2009, YEARB PHYS ANTHROPOL, V52, P95, DOI 10.1002/ajpa.21195; Wallerius S, 2003, J ENDOCRINOL INVEST, V26, P616, DOI 10.1007/BF03347017; Weaver ICG, 2004, NAT NEUROSCI, V7, P847, DOI 10.1038/nn1276; Williams TD, 2008, PHILOS T R SOC B, V363, P1687, DOI 10.1098/rstb.2007.0003; Worthman CM, 2008, DEV PSYCHOPATHOL, V20, P233, DOI 10.1017/S0954579408000114; Worthman CM, 2005, AM J HUM BIOL, V17, P95, DOI 10.1002/ajhb.20096; Yehuda R, 2004, PSYCHIATRY, V67, P391, DOI 10.1521/psyc.67.4.391.56572; Yehuda Rachel, 2008, Prog Brain Res, V167, P121 160 14 15 0 9 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0306-4530 PSYCHONEUROENDOCRINO Psychoneuroendocrinology FEB 2012 37 2 178 190 10.1016/j.psyneuen.2011.06.002 13 Endocrinology & Metabolism; Neurosciences; Psychiatry Endocrinology & Metabolism; Neurosciences & Neurology; Psychiatry 888BW WOS:000299979800002 21719201 2018-11-12 J Poykko, H; Hyvarinen, M Poykko, Heikki; Hyvarinen, Marko To grow fast or to grow big? Time-limited larvae of Eilema depressum speed up their growth and reduce number of instars ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA English Article age and size at maturity; developmental plasticity; growth rate; instar number variability; Melanohalea exasperata; Parmelia sulcata; reaction norm; Lepidoptera; Arctiidae; Lithosiinae LICHEN SECONDARY METABOLITES; LIFE-HISTORY PLASTICITY; HOST-PLANT QUALITY; BODY-SIZE; PHENOTYPIC PLASTICITY; SEASONAL ENVIRONMENT; CLINAL VARIATION; REACTION NORMS; DIAPAUSE; LEPIDOPTERA According to life-history theory, longer development time may result in bigger adults. However, reaction norms describing age and size at maturity often follow an L-shaped form. This relationship is attributable to the simple notion that slowly growing individuals may not lengthen their development excessively after the maturation decision has been made, for example, when development is time limited in seasonal environments. In arthropods, growth occurs within instars, and thus the optimal growth strategy might be mediated by the phenotypic adjustment of instar numbers. We studied the relationship between age and size at maturity of a lichen-feeding moth, Eilema depressum (Esper) (Lepidoptera: Arctiidae: Lithosiinae), and the variability of instar numbers in relation to achieved adult body mass and time used for maturation. A positive relationship between age and size at maturity was found across developmental pathways and a negative one within the developmental pathways. Directly developing larvae had higher growth rates, attained smaller pupal mass, and passed fewer instars than larvae maturing after overwintering. Host quality did not affect whether larvae matured during the remaining or the next season. High variation in the number of instars together with variable growth rates indicates high plasticity in adaptation to varying environmental conditions. Our results also confirm previous results that instar number variability may be a key characteristic mediating age and size at maturity in insects. [Poykko, Heikki; Hyvarinen, Marko] Univ Oulu, Dept Biol, FIN-90014 Oulu, Finland Poykko, H (reprint author), Univ Oulu, Dept Biol, POB 3000, FIN-90014 Oulu, Finland. heikki.poykko@oulu.fi Hyvarinen, Marko/0000-0001-8736-0946 Ella and Georg Ehrnrooth's Foundation; Graduate School of Evolutionary Ecology; Oskar Oflund Foundation This study was financially supported by Ella and Georg Ehrnrooth's Foundation, Graduate School of Evolutionary Ecology and Oskar Oflund Foundation. We are grateful to Veijo Jormalainen, Toomas Tammaru, Juha Tuomi, and all members of the Invertebrate Evolution and Behavior Research Group (http://cc.oulu.fi/similar to inverteb) for their invaluable comments and suggestions on earlier versions of this manuscript. Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Angilletta MJ, 2004, INTEGR COMP BIOL, V44, P498, DOI 10.1093/icb/44.6.498; Awmack CS, 2002, ANNU REV ENTOMOL, V47, P817, DOI 10.1146/annurev.ento.47.091201.145300; Blanckenhorn WU, 1998, EVOLUTION, V52, P1394, DOI 10.1111/j.1558-5646.1998.tb02021.x; CLARE GK, 1990, NEW ZEAL J ZOOL, V17, P141, DOI 10.1080/03014223.1990.10422590; DALY HV, 1985, ANNU REV ENTOMOL, V30, P415, DOI 10.1146/annurev.en.30.010185.002215; Davidowitz G, 2003, EVOL DEV, V5, P188, DOI 10.1046/j.1525-142X.2003.03026.x; Denlinger DL, 2002, ANNU REV ENTOMOL, V47, P93, DOI 10.1146/annurev.ento.47.091201.145137; Esperk T, 2007, J ECON ENTOMOL, V100, P627, DOI 10.1603/0022-0493(2007)100[627:IVINOL]2.0.CO;2; Esperk T, 2007, ECOL ENTOMOL, V32, P243, DOI 10.1111/j.1365-2311.2007.00872.x; Etile E, 2008, OIKOS, V117, P135, DOI 10.1111/j.2007.0030-1299.16114.x; Fischer K, 2001, J EVOLUTION BIOL, V14, P210, DOI 10.1046/j.1420-9101.2001.00280.x; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Frago E, 2009, J INSECT PHYSIOL, V55, P952, DOI 10.1016/j.jinsphys.2009.06.013; Gadenne C, 1997, J INSECT PHYSIOL, V43, P425, DOI 10.1016/S0022-1910(96)00122-9; GARCIA-BARROS E, 1985, Boletin de la Asociacion Espanola de Entomologia, V9, P223; Gotthard K, 1998, J EVOLUTION BIOL, V11, P21; Gotthard K, 1999, OIKOS, V84, P453, DOI 10.2307/3546424; Gotthard K, 2010, J EVOLUTION BIOL, V23, P1129, DOI 10.1111/j.1420-9101.2010.01994.x; GOTTHARD K, 2001, ANIMAL DEV ECOLOGY, P287; Henwood B. P., 1997, Entomologist's Gazette, V48, P257; HONEK A, 1993, OIKOS, V66, P483, DOI 10.2307/3544943; Hopper KR, 1999, ANNU REV ENTOMOL, V44, P535, DOI 10.1146/annurev.ento.44.1.535; Hulden H, 2000, ATLAS FINNISH MACROL; Hunter MD, 1997, ECOLOGY, V78, P977, DOI 10.1890/0012-9658(1997)078[0977:HPQIDA]2.0.CO;2; Hutchinson JMC, 1997, PHILOS T R SOC B, V352, P113, DOI 10.1098/rstb.1997.0007; Kingsolver JG, 2007, P ROY SOC B-BIOL SCI, V274, P977, DOI 10.1098/rspb.2006.0036; Leimar O, 1996, OIKOS, V76, P228, DOI 10.2307/3546194; Lepidopterologen-Arbeitsgruppe, 2000, SCHMETT IHR LEB ART; MATTSON WJ, 1980, ANNU REV ECOL SYST, V11, P119, DOI 10.1146/annurev.es.11.110180.001003; Poykko H, 2005, ECOLOGY, V86, P2623, DOI 10.1890/04-1632; Poykko H, 2003, J ANIM ECOL, V72, P383, DOI 10.1046/j.1365-2656.2003.00709.x; Poykko H, 2010, J EVOLUTION BIOL, V23, P1278, DOI 10.1111/j.1420-9101.2010.01990.x; Reavey D., 1991, P293; ROFF D, 1980, OECOLOGIA, V45, P202, DOI 10.1007/BF00346461; Roff Derek A., 1992; Sehnal F, 1985, COMPREHENSIVE INSECT, V2, P1; Slansky F. Jr, 1985, P87; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Tauber J, 1986, SEASONAL ADAPTATIONS; Wedell N, 1997, OIKOS, V78, P569, DOI 10.2307/3545619; WIKLUND C, 1992, EVOLUTION, V46, P519, DOI 10.1111/j.1558-5646.1992.tb02055.x; WIPKING W, 1995, OECOLOGIA, V102, P202, DOI 10.1007/BF00333252; Wipking W, 2000, J INSECT PHYSIOL, V46, P127, DOI 10.1016/S0022-1910(99)00108-0; WIPKING W, 1994, SERIES ENTOM, V52, P313; WIPKING W, 1988, OECOLOGIA, V77, P557, DOI 10.1007/BF00377274 47 10 10 1 26 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0013-8703 1570-7458 ENTOMOL EXP APPL Entomol. Exp. Appl. FEB 2012 142 2 145 152 10.1111/j.1570-7458.2011.01208.x 8 Entomology Entomology 873WY WOS:000298916500008 2018-11-12 J Byrne, PG; Roberts, JD Byrne, Phillip G.; Roberts, J. Dale Evolutionary causes and consequences of sequential polyandry in anuran amphibians BIOLOGICAL REVIEWS English Article sexual selection; mating system; polyandry; evolution; genetic benefits; mate choice; external fertilization SPERM COMPETITION GAMES; FROG CRINIA-GEORGIANA; FEMALE MATING FREQUENCY; LEAF-FOLDING FROG; INCREASES FERTILIZATION SUCCESS; TREEFROG HYLA-CHRYSOSCELIS; AMAZONIAN POISON FROGS; NEST-SITE SELECTION; PUERTO-RICAN FROG; MATE CHOICE Among anuran amphibians (frogs and toads), there are two types of polyandry: simultaneous polyandry, where sperm from multiple males compete to fertilize eggs, and sequential polyandry, where eggs from a single female are fertilized by multiple males in a series of temporally separate mating events, and sperm competition is absent. Here we review the occurrence of sequential polyandry in anuran amphibians, outline theoretical explanations for the evolution of this mating system and discuss potential evolutionary implications. Sequential polyandry has been reported in a limited number of anurans, but its widespread taxonomic and geographic distribution suggests it may be common. There have been no empirical studies that have explicitly investigated the evolutionary consequences of sequential polyandry in anurans, but species with this mating pattern share an array of behavioural, morphological and physiological characteristics, suggesting that there has been common sexual selection on their reproductive system. Sequential polyandry may have a number of adaptive benefits, including spreading the risk of brood failure in unpredictable environments, insuring against male infertility, or providing genetic benefits, either through good genes, intrinsic compatibility or genetic diversity effects. Anurans with sequential polyandry provide untapped opportunities for innovative research approaches that will contribute significantly to understanding anuran evolution and also, more broadly, to the development of sexual-selection and life-history theory. [Byrne, Phillip G.] Univ Wollongong, Sch Biol Sci, Inst Conservat Biol & Environm Management, Wollongong, NSW 2522, Australia; [Roberts, J. Dale] Univ Western Australia, Ctr Evolutionary Biol, Crawley, WA 6009, Australia; [Roberts, J. Dale] Univ Western Australia, Sch Anim Biol M092, Crawley, WA 6009, Australia Byrne, PG (reprint author), Univ Wollongong, Sch Biol Sci, Inst Conservat Biol & Environm Management, Wollongong, NSW 2522, Australia. pbyrne@uow.edu.au Byrne, Phillip/0000-0003-2183-9959 Australian Research Council; Australian National University; Monash University; University of Witwatersrand; University of Wollongong; University of Western Australia P.G. Byrne and J.D. Roberts acknowledge the support of the Australian Research Council, the Australian National University, Monash University, the University of Witwatersrand, the University of Wollongong and the University of Western Australia. We also thank Brian Sullivan, Leigh Simmons, Bob Wong and Aimee Silla for comments on earlier versions of the manuscript. ABT G, 1993, BEHAV ECOL SOCIOBIOL, V32, P221; Achermann JC, 1999, MOL ENDOCRINOL, V13, P812, DOI 10.1210/me.13.6.812; Alcock J, 2009, ANIMAL BEHAV EVOLUTI; ARAK A, 1988, ANIM BEHAV, V36, P416, DOI 10.1016/S0003-3472(88)80012-5; Arak A., 1983, P181; ARNQVIST G, 1989, OIKOS, V56, P344, DOI 10.2307/3565619; Asay MJ, 2005, CHEM SIGNAL, V10, P24, DOI 10.1007/0-387-25160-X_4; Avise JC, 2002, ANNU REV GENET, V36, P19, DOI 10.1146/annurev.genet.36.030602.090831; BACKWELL PRY, 1990, HERPETOLOGICA, V46, P7; BACKWELL PRY, 1991, J HERPETOL, V25, P497, DOI 10.2307/1564780; BACKWELL PRY, 1991, HERPETOLOGICA, V47, P226; BALINSKY BI, 1985, S AFR J ZOOL, V20, P61; Ball MA, 1996, J THEOR BIOL, V180, P141, DOI 10.1006/jtbi.1996.0090; Ball MA, 1997, J THEOR BIOL, V186, P459, DOI 10.1006/jtbi.1997.0406; Barandun Jonas, 1997, Amphibia-Reptilia, V18, P347, DOI 10.1163/156853897X00404; Bastos RP, 1996, J HERPETOL, V30, P355, DOI 10.2307/1565172; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Baugh AT, 2009, BEHAV ECOL, V20, P1153, DOI 10.1093/beheco/arp120; Bergstrom J, 2002, ANIM BEHAV, V64, P49, DOI 10.1006/anbe.2002.3032; Birkhead T. R., 1998, SPERM COMPETITION SE; Birkhead T. R, 2000, PROMISCUITY EVOLUTIO; Birkhead TR, 1995, REPROD FERT DEVELOP, V7, P755, DOI 10.1071/RD9950755; BLAIR WF, 1960, ECOLOGY, V41, P165, DOI 10.2307/1931950; Booksmythe I, 2008, ANIM BEHAV, V76, P1775, DOI 10.1016/j.anbehav.2008.07.022; BOURNE GR, 1993, ANIM BEHAV, V45, P1051, DOI 10.1006/anbe.1993.1131; BRADFORD DF, 1988, PHYSIOL ZOOL, V61, P470, DOI 10.1086/physzool.61.5.30161269; BRADFORD DF, 1985, PHYSIOL ZOOL, V58, P491, DOI 10.1086/physzool.58.5.30158576; BRADFORD DF, 1990, PHYSIOL ZOOL, V63, P1157, DOI 10.1086/physzool.63.6.30152638; BROCKMANN HJ, 1994, BEHAV ECOL SOCIOBIOL, V35, P153, DOI 10.1007/BF00167954; BYRNE P. G., 2010, BEHAV ECOLO IN PRESS; Byrne PG, 2003, P ROY SOC B-BIOL SCI, V270, P2079, DOI 10.1098/rspb.2003.2433; Byrne PG, 2002, J EVOLUTION BIOL, V15, P347, DOI 10.1046/j.1420-9101.2002.00409.x; Byrne PG, 2004, BEHAV ECOL, V15, P857, DOI 10.1093/beheco/arh098; Byrne PG, 2002, J HERPETOL, V36, P125, DOI 10.1670/0022-1511(2002)036[0125:CCOBSP]2.0.CO;2; Byrne PG, 1999, P ROY SOC B-BIOL SCI, V266, P717, DOI 10.1098/rspb.1999.0695; Byrne PG, 2008, ANIM BEHAV, V76, P1157, DOI 10.1016/j.anbehav.2008.05.019; Byrne PG, 2007, ANIM BEHAV, V74, P1155, DOI 10.1016/j.anbehav.2006.10.033; Byrne PG, 2009, P R SOC B, V276, P115, DOI 10.1098/rspb.2008.0794; Byrne PG, 2008, COPEIA, P57, DOI 10.1643/CE-05-294; Chambers J, 2006, AUSTRAL ECOL, V31, P68, DOI 10.1111/j.1442-9993.2006.01544.x; CHARLESWORTH D, 1987, ANNU REV ECOL SYST, V18, P237, DOI 10.1146/annurev.ecolsys.18.1.237; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Coma R, 1997, J EXP MAR BIOL ECOL, V214, P107, DOI 10.1016/S0022-0981(97)00017-8; Crump M.L., 1974, Miscellaneous Publs Mus nat Hist Univ Kans, VNo. 61, P1; Crump Martha L., 1996, Advances in the Study of Behavior, V25, P109; CURTSINGER JW, 1991, AM NAT, V138, P93, DOI 10.1086/285206; Daly JW, 1998, J NAT PROD, V61, P162, DOI 10.1021/np970460e; DAVIES NB, 1979, ANIM BEHAV, V27, P1253, DOI 10.1016/0003-3472(79)90070-8; de Gaudemar B, 1998, J FISH BIOL, V53, P434, DOI 10.1006/jfbi.1998.0716; DeLay LS, 1996, CONDOR, V98, P300, DOI 10.2307/1369148; Denton JS, 1996, HERPETOL J, V6, P49; DeWoody JA, 2001, J HERED, V92, P167, DOI 10.1093/jhered/92.2.167; DEWSBURY DA, 1982, AM NAT, V119, P601, DOI 10.1086/283938; DEWSBURY DA, 1981, SOUTHWEST NAT, V26, P193, DOI 10.2307/3671115; Duellman WE, 1986, BIOL AMPHIBIANS; Dziminski MA, 2008, EVOLUTION, V62, P879, DOI 10.1111/j.1558-5646.2008.00328.x; Eberhard W. G., 1996, FEMALE CONTROL SEXUA; Emerson SB, 1997, BEHAV ECOL SOCIOBIOL, V41, P227, DOI 10.1007/s002650050383; EMLEN ST, 1976, BEHAV ECOL SOCIOBIOL, V1, P283, DOI 10.1007/BF00300069; EMLEN ST, 1977, COPEIA, P749; EMLEN ST, 1977, SCIENCE, V197, P215, DOI 10.1126/science.327542; Evans JP, 2005, EVOLUTION, V59, P106; FAIRBAIRN DJ, 1993, BEHAV ECOL, V4, P224, DOI 10.1093/beheco/4.3.224; Gerhardt HC, 2002, ACOUSTIC COMMUNICATI; GOMENDIO M, 1991, P ROY SOC B-BIOL SCI, V243, P181, DOI 10.1098/rspb.1991.0029; GRAFE TU, 1992, PHYSIOL ZOOL, V65, P153, DOI 10.1086/physzool.65.1.30158244; Griffith SC, 2002, MOL ECOL, V11, P2195, DOI 10.1046/j.1365-294X.2002.01613.x; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; Hettyey A., 2005, Herpetological Review, V36, P33; Hettyey A, 2005, COPEIA, P403, DOI 10.1643/CE-04-115R2; Hettyey A, 2003, BEHAV ECOL, V14, P294, DOI 10.1093/beheco/14.2.294; Hettyey A, 2009, ANIM BEHAV, V78, P1365, DOI 10.1016/j.anbehav.2009.09.006; Hettyey A, 2009, BIOL J LINN SOC, V96, P361, DOI 10.1111/j.1095-8312.2008.01126.x; Hosken DJ, 2003, EVOL BIOL, V33, P173; Hosken DJ, 1999, BEHAV ECOL, V10, P462, DOI 10.1093/beheco/10.4.462; HOWARD RD, 1985, EVOLUTION, V39, P260, DOI 10.1111/j.1558-5646.1985.tb05665.x; Immler S, 2009, BEHAV ECOL SOCIOBIOL, V63, P1219, DOI 10.1007/s00265-009-0744-3; Jaquiery J, 2010, EVOLUTION, V64, P108, DOI 10.1111/j.1558-5646.2009.00816.x; JENNIONS MD, 1993, BIOL J LINN SOC, V50, P211; Jennions MD, 2000, BIOL REV, V75, P21, DOI 10.1017/S0006323199005423; JENNIONS MD, 1992, ANIM BEHAV, V44, P1091, DOI 10.1016/S0003-3472(05)80321-5; Jennions MD, 1997, BIOL REV, V72, P283, DOI 10.1017/S0006323196005014; Karlsson K, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0012755; KATZ D. F., 1990, FERTILIZATION MAMMAL; KELLER L, 1995, ADV STUD BEHAV, V24, P291, DOI 10.1016/S0065-3454(08)60397-6; Kindle TK, 2006, CAN J ZOOL, V84, P1345, DOI 10.1139/Z06-127; King JR, 2005, MOL ECOL, V14, P653, DOI 10.1111/j.1365-294X.2005.02438.x; KLUGE AG, 1981, MISC PUBL MUS ZOOL, V160, P1; Kouba AJ, 2009, THERIOGENOLOGY, V71, P214, DOI 10.1016/j.theriogenology.2008.09.055; KRUPA J J, 1986, Prairie Naturalist, V18, P151; KRUPA JJ, 1988, COPEIA, P800, DOI 10.2307/1445408; Lank DB, 2002, BEHAV ECOL, V13, P209, DOI 10.1093/beheco/13.2.209; LEMCKERT FL, 1993, J HERPETOL, V27, P420, DOI 10.2307/1564830; LESCURE J, 1982, REV FRANCAISE AQUARI, V8, P107; Levins R., 1967, EVOLUTION CHANGING E; Levitan DR, 2005, INTEGR COMP BIOL, V45, P848, DOI 10.1093/icb/45.5.848; Levitan DR, 2002, ECOLOGY, V83, P464, DOI 10.2307/2680028; LIMERICK S, 1980, HERPETOLOGICA, V36, P69; Lips KR, 2001, OECOLOGIA, V128, P509, DOI 10.1007/s004420100687; Lode T, 2004, P ROY SOC B-BIOL SCI, V271, pS399, DOI 10.1098/rsbl.2004.0195; Lynch M, 1998, GENETICS ANAL QUANTI; MacColl ADC, 2003, EVOLUTION, V57, P2191; Marshall DJ, 2005, J EVOLUTION BIOL, V18, P735, DOI 10.1111/j.1420-9101.2004.00873.x; McLeod L, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006347; MILINSKI M, 1992, P ROY SOC B-BIOL SCI, V250, P229, DOI 10.1098/rspb.1992.0153; Mitchell NJ, 2002, AUST J ZOOL, V50, P225, DOI 10.1071/ZO01086; Mitchell NJ, 2001, P ROY SOC B-BIOL SCI, V268, P87, DOI 10.1098/rspb.2000.1334; Montanarin A, 2011, ETHOL ECOL EVOL, V23, P141, DOI 10.1080/03949370.2011.554884; MORRIS MR, 1989, BEHAV ECOL SOCIOBIOL, V25, P275, DOI 10.1007/BF00300054; Morrow EH, 2002, J EVOLUTION BIOL, V15, P702, DOI 10.1046/j.1420-9101.2002.00445.x; Neff BD, 2005, MOL ECOL, V14, P19, DOI 10.1111/j.1365-294X.2004.02395.x; Noble G. K., 1942, BULL AMER MUS NAT HIST, V80, P127; Nunn CL, 2000, SCIENCE, V290, P1168, DOI 10.1126/science.290.5494.1168; Parker GA, 2005, BIOL LETTERS, V1, P235, DOI 10.1098/rsbl.2004.0273; PARKER GA, 1990, P ROY SOC B-BIOL SCI, V242, P120, DOI 10.1098/rspb.1990.0114; PARKER GA, 1990, P ROY SOC B-BIOL SCI, V242, P127, DOI 10.1098/rspb.1990.0115; Parker GA, 1996, P ROY SOC B-BIOL SCI, V263, P1291, DOI 10.1098/rspb.1996.0189; PERRILL SA, 1983, COPEIA, P513; Peters SE, 2000, J EXP BIOL, V203, P3639; Poelman EH, 2008, J HERPETOL, V42, P270, DOI 10.1670/07-1031.1; Poelman EH, 2007, EVOL ECOL, V21, P215, DOI 10.1007/s10682-006-9000-8; Pomiankowski A, 2005, J INSECT PHYSIOL, V51, P1165, DOI 10.1016/j.jinsphys.2005.06.006; POUGH FH, 1983, ECOLOGY, V64, P244, DOI 10.2307/1937072; Prohl H, 2002, BEHAV ECOL, V13, P175, DOI 10.1093/beheco/13.2.175; Prohl H, 1999, BEHAV ECOL SOCIOBIOL, V46, P215, DOI 10.1007/s002650050612; PYBURN WF, 1970, COPEIA, P209; RABB GB, 1960, COPEIA, P271; Reyer HU, 2004, HERPETOLOGICA, V60, P349, DOI 10.1655/03-77; Reyer HU, 1999, P ROY SOC B-BIOL SCI, V266, P2101, DOI 10.1098/rspb.1999.0894; Rice WR, 1996, NATURE, V381, P232, DOI 10.1038/381232a0; RITKE ME, 1990, J HERPETOL, V24, P135, DOI 10.2307/1564220; ROBERTS J. D., 2011, ADV STUDY BEHAV, V3, P1; Roberts JD, 1999, ANIM BEHAV, V57, P721, DOI 10.1006/anbe.1998.1019; ROBERTSON JGM, 1990, ANIM BEHAV, V39, P639, DOI 10.1016/S0003-3472(05)80374-4; Roesli M, 2000, ANIM BEHAV, V60, P745, DOI 10.1006/anbe.2000.1519; RYAN MJ, 1983, ECOLOGY, V64, P1456, DOI 10.2307/1937500; Scarlata JK, 2003, J HERPETOL, V37, P580, DOI 10.1670/174-02N; SHAPIRO DY, 1994, ECOLOGY, V75, P1334, DOI 10.2307/1937458; Shapiro DY, 1996, BEHAV ECOL, V7, P19, DOI 10.1093/beheco/7.1.19; Sherman CDH, 2008, P R SOC B, V275, P971, DOI 10.1098/rspb.2007.1626; Sherman CDH, 2008, AUSTRAL ECOL, V33, P348, DOI 10.1111/j.1442-9993.2007.01823.x; Sherman CDH, 2009, BIOL LETTERS, V5, P232, DOI 10.1098/rsbl.2008.0796; Shine R, 1996, ECOLOGY, V77, P1808, DOI 10.2307/2265785; Short R.V., 1979, Advances in the Study of Behavior, V9, P131, DOI 10.1016/S0065-3454(08)60035-2; Shuster SM, 2009, P NATL ACAD SCI USA, V106, P10009, DOI 10.1073/pnas.0901132106; SIH A, 1990, AM NAT, V135, P284, DOI 10.1086/285044; SIH A, 1994, J FISH BIOL, V45, P111, DOI 10.1111/j.1095-8649.1994.tb01087.x; SILVERSTONE P A, 1973, Herpetologica, V29, P295; Simmons LW, 2009, J EVOLUTION BIOL, V22, P225, DOI 10.1111/j.1420-9101.2008.01628.x; Simmons LW, 2007, MOL ECOL, V16, P4613, DOI 10.1111/j.1365-294X.2007.03528.x; Simmons LW, 2005, ANNU REV ECOL EVOL S, V36, P125, DOI 10.1146/annurev.ecolsys.36.102403.112501; Skerratt FL, 2007, ECOHEALTH, V4, P125; SLATKIN M, 1974, NATURE, V250, P704, DOI 10.1038/250704b0; SMITHGILL SJ, 1979, AM NAT, V113, P563, DOI 10.1086/283413; St Mary CM, 2001, ETHOLOGY, V107, P1035, DOI 10.1046/j.1439-0310.2001.00747.x; Stearns SC., 1992, EVOLUTION LIFE HISTO; Stockley P, 1997, AM NAT, V149, P933, DOI 10.1086/286031; SULLIVAN B. K., 1995, AMPHIBIAN BIOL, V2; Summers K, 1997, BEHAV ECOL, V8, P260, DOI 10.1093/beheco/8.3.260; Taborsky M, 1998, TRENDS ECOL EVOL, V13, P222, DOI 10.1016/S0169-5347(97)01318-9; TELFORD SR, 1988, BEHAVIOUR, V106, P265, DOI 10.1163/156853988X00287; Telford SR, 1998, TRENDS ECOL EVOL, V13, P216, DOI 10.1016/S0169-5347(98)01372-X; TELFORD SR, 1990, COPEIA, P644; Thornhill R., 1983, EVOLUTION INSECT MAT; Thrall PH, 1997, AM NAT, V149, P485, DOI 10.1086/286001; Thumm K, 2002, AUST J ZOOL, V50, P151, DOI 10.1071/ZO01038; Torres-Vila LM, 2005, BEHAV ECOL, V16, P114, DOI 10.1093/beheco/arh138; TOWNSEND DS, 1994, J HERPETOL, V28, P34, DOI 10.2307/1564677; TRIVERS R., 1972, SEXUAL SELECTION DES, P133; Tsuji H, 1998, COPEIA, P769, DOI 10.2307/1447813; Tsuji H, 2000, HERPETOLOGICA, V56, P153; TUNNER H G, 1974, Zeitschrift fuer Zoologische Systematik und Evolutionsforschung, V12, P309; Ursprung E, 2011, MOL ECOL, V20, P1759, DOI 10.1111/j.1365-294X.2011.05056.x; Velez A, 2010, BEHAV ECOL SOCIOBIOL, V64, P1695, DOI 10.1007/s00265-010-0983-3; Vieites DR, 2004, NATURE, V431, P305, DOI 10.1038/nature02879; Villinger J, 2008, P R SOC B, V275, P1225, DOI 10.1098/rspb.2008.0022; Vladic T, 1997, J FISH BIOL, V50, P1088, DOI 10.1006/jfbi.1996.0373; Waldman B, 2004, BEHAV ECOL, V15, P88, DOI 10.1093/beheco/arg071; WALKER WF, 1980, AM NAT, V115, P780, DOI 10.1086/283600; WATSON PJ, 1991, ANIM BEHAV, V41, P343, DOI 10.1016/S0003-3472(05)80486-5; Wedell N, 2002, BEHAV ECOL, V13, P450, DOI 10.1093/beheco/13.4.450; Welch AM, 1998, SCIENCE, V280, P1928, DOI 10.1126/science.280.5371.1928; WELLS K D, 1976, Herpetologica, V32, P85; WELLS K. D., 1976, THESIS CORNELL U; WELLS KD, 1980, BEHAV ECOL SOCIOBIOL, V6, P199, DOI 10.1007/BF00569201; WELLS KD, 1979, BIOTROPICA, V11, P301, DOI 10.2307/2387922; Wells KD, 2007, ECOLOGY BEHAV AMPHIB; Weygoldt P., 1980, Salamandra, V16, P215; WEYGOLDT P, 1980, BEHAV ECOL SOCIOBIOL, V7, P329, DOI 10.1007/BF00300674; WHITE A., 1993, HERPETOLOGY AUSTR; Wogel H, 2005, J NAT HIST, V39, P2035, DOI 10.1080/00222930500044581; WOODRUFF D S, 1976, Journal of Herpetology, V10, P313, DOI 10.2307/1563068; WOODRUFF DS, 1976, COPEIA, P445, DOI 10.2307/1443357; Wyatt TD, 2003, PHEROMONES ANIMAL BE; Yasui Y, 1998, TRENDS ECOL EVOL, V13, P246, DOI 10.1016/S0169-5347(98)01383-4; Yasui Y, 2001, ECOL RES, V16, P605, DOI 10.1046/j.1440-1703.2001.00423.x; Yasui Y, 1997, AM NAT, V149, P573, DOI 10.1086/286006; ZEH DW, 1985, AM ZOOL, V25, P785; Zeh JA, 1996, P ROY SOC B-BIOL SCI, V263, P1711, DOI 10.1098/rspb.1996.0250; Zeh JA, 1998, P NATL ACAD SCI USA, V95, P13732, DOI 10.1073/pnas.95.23.13732; Zeineddine M, 2009, EVOLUTION, V63, P1498, DOI 10.1111/j.1558-5646.2009.00630.x; Zimmermann H., 1984, Aquarien Magazin, V18, P35; Zimmermann H., 1981, Zeitschrift des Koelner Zoo, V24, P83 203 17 17 1 52 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1464-7931 BIOL REV Biol. Rev. FEB 2012 87 1 209 228 10.1111/j.1469-185X.2011.00191.x 20 Biology Life Sciences & Biomedicine - Other Topics 871IU WOS:000298732300011 21740503 2018-11-12 J Sibly, RM; Zuo, WY; Kodric-Brown, A; Brown, JH Sibly, Richard M.; Zuo, Wenyun; Kodric-Brown, Astrid; Brown, James H. Rensch's Rule in Large Herbivorous Mammals Derived from Metabolic Scaling AMERICAN NATURALIST English Article sexual selection; size dimorphism SEXUAL SIZE DIMORPHISM; HOME-RANGE AREA; BODY-SIZE; SOCIAL-ORGANIZATION; POPULATION-DENSITY; MORTALITY-RATES; ALLOMETRY; ECOLOGY; MASS; MARSUPIALS Rensch's rule, which states that the magnitude of sexual size dimorphism tends to increase with increasing body size, has evolved independently in three lineages of large herbivorous mammals: bovids (antelopes), cervids (deer), and macropodids (kangaroos). This pattern can be explained by a model that combines allometry, life-history theory, and energetics. The key features are that female group size increases with increasing body size and that males have evolved under sexual selection to grow large enough to control these groups of females. The model predicts relationships among body size and female group size, male and female age at first breeding, death and growth rates, and energy allocation of males to produce body mass and weapons. Model predictions are well supported by data for these megaherbivores. The model suggests hypotheses for why some other sexually dimorphic taxa, such as primates and pin-nipeds (seals and sea lions), do or do not conform to Rensh's rule. [Sibly, Richard M.] Univ Reading, Sch Biol Sci, Reading RG6 6AS, Berks, England; [Zuo, Wenyun; Kodric-Brown, Astrid; Brown, James H.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA; [Brown, James H.] Santa Fe Inst, Santa Fe, NM 87501 USA Sibly, RM (reprint author), Univ Reading, Sch Biol Sci, Reading RG6 6AS, Berks, England. r.m.sibly@reading.ac.uk Sibly, Richard/0000-0001-6828-3543 National Science Foundation [DEB-0541625]; Howard Hughes Medical Institute-National Institute of Biomedical Imaging and Bioengineering Interfaces We thank E. Belding for help with data mining and M. Foellmer and D. Frynta for comments that helped us to improve the article. J.H.B. and W.Z. were supported by a Howard Hughes Medical Institute-National Institute of Biomedical Imaging and Bioengineering Interfaces grant, and R.M.S. and J.H.B. were supported by National Science Foundation grant DEB-0541625. Abouheif E, 1997, AM NAT, V149, P540, DOI 10.1086/286004; Blanckenhorn WU, 2005, ETHOLOGY, V111, P977, DOI 10.1111/j.1439-0310.2005.01147.x; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Calder W. A., 1984, SIZE FUNCTION LIFE H; Catchpole EA, 2004, J AGR BIOL ENVIR ST, V9, P1, DOI 10.1198/1085711043172; Clutton-Brock T.H., 1988, P325; Clutton-Brock T. H, 1982, RED DEER BEHAV ECOLO; Colwell RK, 2000, AM NAT, V156, P495, DOI 10.1086/303406; Croft D. B., 1989, KANGAROOS WALLABIES, V2, P505; Croft DB, 2006, MARSUPIALS, P229, DOI 10.1017/CBO9780511541889.010; Dale J, 2007, P R SOC B, V274, P2971, DOI 10.1098/rspb.2007.1043; DAMUTH J, 1981, NATURE, V290, P699, DOI 10.1038/290699a0; DAMUTH J, 1987, BIOL J LINN SOC, V31, P193, DOI 10.1111/j.1095-8312.1987.tb01990.x; Dial KP, 2008, TRENDS ECOL EVOL, V23, P394, DOI 10.1016/j.tree.2008.03.005; Ernest SKM, 2003, ECOLOGY, V84, P3402, DOI 10.1890/02-9002; Fairbairn DJ, 1997, ANNU REV ECOL SYST, V28, P659, DOI 10.1146/annurev.ecolsys.28.1.659; Fairbairn DJ, 2007, SEX SIZE GENDER ROLE; Fisher DO, 2001, ECOLOGY, V82, P3531, DOI 10.1890/0012-9658(2001)082[3531:TEBOLH]2.0.CO;2; Fisher DO, 2000, J ANIM ECOL, V69, P1083, DOI 10.1046/j.1365-2656.2000.00450.x; FISHER R. A., 1930, GENETICAL THEORY NAT; Frydlova P, 2010, BIOL J LINN SOC, V100, P293, DOI 10.1111/j.1095-8312.2010.01430.x; FULLER TK, 1989, J MAMMAL, V70, P184, DOI 10.2307/1381685; GEIST V, 1988, J ZOOL, V214, P45, DOI 10.1111/j.1469-7998.1988.tb04985.x; GEIST V, 1998, DEER WORLD THEIR EVO; GEORGIADIS N, 1985, AFR J ECOL, V23, P75, DOI 10.1111/j.1365-2028.1985.tb00718.x; Gordon AD, 2006, INT J PRIMATOL, V27, P27, DOI 10.1007/s10764-005-9003-2; Hou C, 2008, SCIENCE, V322, P736, DOI 10.1126/science.1162302; JARMAN P, 1983, BIOL REV, V58, P485, DOI 10.1111/j.1469-185X.1983.tb00398.x; JARMAN PJ, 1974, BEHAVIOUR, V48, P215, DOI 10.1163/156853974X00345; JARMAN PJ, 1989, KANGAROOS WALLABIES, V2, P527; Jetz W, 2004, SCIENCE, V306, P266, DOI 10.1126/science.1102138; Jorgenson JT, 1997, ECOLOGY, V78, P1019, DOI 10.2307/2265855; Kelt DA, 2001, AM NAT, V157, P637, DOI 10.1086/320621; Kelt DA, 1999, ECOLOGY, V80, P337; KENAGY GJ, 1990, J ANIM ECOL, V59, P73, DOI 10.2307/5159; Kodric-Brown A, 2006, P NATL ACAD SCI USA, V103, P8733, DOI 10.1073/pnas.0602994103; Lindenfors Patrik, 2007, P16; Loison A, 1999, EVOL ECOL RES, V1, P611; Mccoy MW, 2008, ECOL LETT, V11, P710, DOI 10.1111/j.1461-0248.2008.01190.x; McCoy MW, 2009, ECOL LETT, V12, P731, DOI 10.1111/j.1461-0248.2009.01338.x; Moses ME, 2008, AM NAT, V171, P632, DOI 10.1086/587073; Nagy KA, 2005, J EXP BIOL, V208, P1621, DOI 10.1242/jeb.01553; Owen-Smith R. N, 1988, MEGAHERBIVORES; OWENSMITH N, 1993, J ANIM ECOL, V62, P428, DOI 10.2307/5192; Peters R.H., 1983, P1; Reiss M. J., 1989, ALLOMETRY GROWTH REP; Rensch B., 1950, Bonner Zoologische Beitraege, V1, P58; Savage VM, 2004, FUNCT ECOL, V18, P257, DOI 10.1111/j.0269-8463.2004.00856.x; Sibly R.M., 1981, P109; Sibly RM, 1997, J ZOOL, V243, P1, DOI 10.1111/j.1469-7998.1997.tb05751.x; Smith RJ, 2002, INT J PRIMATOL, V23, P1095, DOI 10.1023/A:1019654100876; SOLBERG EJ, 1994, J MAMMAL, V75, P1069, DOI 10.2307/1382491; WHITE EP, METABOLIC E IN PRESS 54 9 10 1 37 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. FEB 2012 179 2 169 177 10.1086/663686 9 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 875AE WOS:000299000400006 22218307 2018-11-12 J Horvathova, T; Nakagawa, S; Uller, T Horvathova, Terezia; Nakagawa, Shinichi; Uller, Tobias Strategic female reproductive investment in response to male attractiveness in birds PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article maternal effects; reproductive investment; differential allocation; parental care; birds; phenotypic plasticity FLYCATCHER FICEDULA-ALBICOLLIS; SEXUAL SELECTION; PARENTAL CARE; BARN SWALLOW; DIFFERENTIAL ALLOCATION; OFFSPRING VIABILITY; LAYING ORDER; MATERNAL TESTOSTERONE; PLUMAGE COLORATION; EGG INVESTMENT Life-history theory predicts that individuals should adjust their reproductive effort according to the expected fitness returns on investment. Because sexually selected male traits should provide honest information about male genetic or phenotypic quality, females may invest more when paired with attractive males. However, there is substantial disagreement in the literature whether such differential allocation is a general pattern. Using a comparative meta-regression approach, we show that female birds generally invest more into reproduction when paired with attractive males, both in terms of egg size and number as well as food provisioning. However, whereas females of species with bi-parental care tend to primarily increase the number of eggs when paired with attractive males, females of species with female-only care produce larger, but not more, eggs. These patterns may reflect adaptive differences in female allocation strategies arising from variation in the signal content of sexually selected male traits between systems of parental care. In contrast to reproductive effort, female allocation of immune-stimulants, anti-oxidants and androgens to the egg yolk was not consistently increased when mated to attractive males, which probably reflects the context-dependent costs and benefits of those yolk compounds to females and offspring. [Horvathova, Terezia; Uller, Tobias] Univ Oxford, Dept Zool, Edward Grey Inst, Oxford OX1 3PS, England; [Horvathova, Terezia] Comenius Univ, Dept Zool, Fac Nat Sci, Bratislava 84215, Slovakia; [Nakagawa, Shinichi] Univ Otago, Dept Zool, Dunedin 9054, New Zealand Uller, T (reprint author), Univ Oxford, Dept Zool, Edward Grey Inst, S Parks Rd, Oxford OX1 3PS, England. tobias.uller@zoo.ox.ac.uk Nakagawa, Shinichi/B-5571-2011 Nakagawa, Shinichi/0000-0002-7765-5182 Marsden Fund; University of Otago We are grateful to all researchers who took their time to provide additional information or unpublished data and an anonymous reviewer for helpful comments. S.N. is supported by the Marsden Fund and the University of Otago Research Fund. Badyaev AV, 2008, J EVOLUTION BIOL, V21, P449, DOI 10.1111/j.1420-9101.2007.01498.x; Badyaev AV, 2006, J EVOLUTION BIOL, V19, P1044, DOI 10.1111/j.1420-9101.2006.01106.x; Badyaev AV, 2003, J EVOLUTION BIOL, V16, P1065, DOI 10.1046/j.1420-9101.2003.00628.x; Badyaev AV, 2002, BEHAV ECOL, V13, P591, DOI 10.1093/beheco/13.5.591; Bluhm CK, 2004, ANIM BEHAV, V68, P985, DOI 10.1016/j.anbehav.2004.01.012; Bolund E, 2009, P R SOC B, V276, P707, DOI 10.1098/rspb.2008.1251; Bonisoli-Alquati A, 2011, HORM BEHAV, V59, P75, DOI 10.1016/j.yhbeh.2010.10.013; Buchanan KL, 2000, P ROY SOC B-BIOL SCI, V267, P321, DOI 10.1098/rspb.2000.1003; BURLEY N, 1986, AM NAT, V127, P415, DOI 10.1086/284493; BURLEY N, 1988, AM NAT, V132, P611, DOI 10.1086/284877; Carere C, 2007, TRENDS ENDOCRIN MET, V18, P73, DOI 10.1016/j.tem.2007.01.003; CHAPMAN T, 1995, NATURE, V373, P241, DOI 10.1038/373241a0; Christians JK, 2002, BIOL REV, V77, P1, DOI 10.1017/S1464793101005784; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Cockburn A, 2006, P R SOC B, V273, P1375, DOI 10.1098/rspb.2005.3458; Cohen J, 1988, STAT POWER ANAL BEHA; Cunningham EJA, 2000, NATURE, V404, P74, DOI 10.1038/35003565; D'Alba L, 2010, BEHAV ECOL SOCIOBIOL, V64, P1037, DOI 10.1007/s00265-010-0919-y; Egger M, 1997, BMJ-BRIT MED J, V315, P629, DOI 10.1136/bmj.315.7109.629; Eising CM, 2001, P ROY SOC B-BIOL SCI, V268, P839, DOI 10.1098/rspb.2001.1594; Eising CM, 2003, ANIM BEHAV, V66, P1027, DOI 10.1006/anbe.2003.2287; Forstmeier W, 2004, BEHAV ECOL, V15, P555, DOI 10.1093/beheco/arh051; Gil D, 1999, SCIENCE, V286, P126, DOI 10.1126/science.286.5437.126; Gil D, 2001, TRENDS ECOL EVOL, V16, P21, DOI 10.1016/S0169-5347(00)02017-6; Gil D, 2008, ADV STUD BEHAV, V38, P337, DOI 10.1016/S0065-3454(08)00007-7; Gilbert L, 2006, P R SOC B, V273, P1765, DOI 10.1098/rspb.2006.3520; Gowaty PA, 2008, J EVOLUTION BIOL, V21, P1189, DOI 10.1111/j.1420-9101.2008.01559.x; Gowaty PA, 2007, P NATL ACAD SCI USA, V104, P15023, DOI 10.1073/pnas.0706622104; Groothuis TGG, 2005, BIOL LETTERS, V1, P78, DOI 10.1098/rsbl.2004.0233; Groothuis TGG, 2008, PHILOS T R SOC B, V363, P1647, DOI 10.1098/rstb.2007.0007; Gruebler MU, 2010, BEHAV ECOL, V21, P513, DOI 10.1093/beheco/arq017; Hadfield JD, 2010, J EVOLUTION BIOL, V23, P494, DOI 10.1111/j.1420-9101.2009.01915.x; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hargitai R, 2006, FUNCT ECOL, V20, P829, DOI 10.1111/j.1365-2435.2006.01171.x; Harris WE, 2009, PHILOS T R SOC B, V364, P1039, DOI 10.1098/rstb.2008.0299; Hasselquist D, 2009, PHILOS T R SOC B, V364, P51, DOI 10.1098/rstb.2008.0137; Hettyey A, 2010, ETHOLOGY, V116, P1, DOI 10.1111/j.1439-0310.2009.01704.x; Higgins JPT, 2003, BRIT MED J, V327, P557, DOI 10.1136/bmj.327.7414.557; HILL GE, 1991, NATURE, V350, P337, DOI 10.1038/350337a0; Houston AI, 2005, TRENDS ECOL EVOL, V20, P33, DOI 10.1016/j.tree.2004.10.008; Isaksson C, 2006, BEHAV ECOL SOCIOBIOL, V60, P556, DOI 10.1007/s00265-006-0200-6; Jones KS, 2009, AM NAT, V174, P122, DOI 10.1086/599299; Kelly NB, 2010, J EVOLUTION BIOL, V23, P2461, DOI 10.1111/j.1420-9101.2010.02111.x; Kingma SA, 2009, BEHAV ECOL, V20, P172, DOI 10.1093/beheco/arn130; Kokko H, 1998, P ROY SOC B-BIOL SCI, V265, P1871, DOI 10.1098/rspb.1998.0515; Krist M, 2011, BIOL REV, V86, P692, DOI 10.1111/j.1469-185X.2010.00166.x; Krist M, 2009, J ANIM ECOL, V78, P907, DOI 10.1111/j.1365-2656.2009.01536.x; Lipsey M. W., 2001, PRACTICAL METAANALYS; Loyau A, 2007, BEHAV ECOL SOCIOBIOL, V61, P1043, DOI 10.1007/s00265-006-0337-3; Lunn DJ, 2000, STAT COMPUT, V10, P325, DOI 10.1023/A:1008929526011; Magrath MJL, 2009, CURR BIOL, V19, P792, DOI 10.1016/j.cub.2009.03.068; Moore AJ, 1997, EVOLUTION, V51, P1352, DOI 10.1111/j.1558-5646.1997.tb01458.x; Muller W, 2007, AM NAT, V169, pE84, DOI 10.1086/511962; Nakagawa S, 2007, BIOL REV, V82, P591, DOI 10.1111/j.1469-185X.2007.00027.x; NORRIS KJ, 1990, BEHAV ECOL SOCIOBIOL, V27, P275; Oksanen TA, 1999, P ROY SOC B-BIOL SCI, V266, P1495, DOI 10.1098/rspb.1999.0806; PALOKANGAS P, 1994, ANIM BEHAV, V47, P443, DOI 10.1006/anbe.1994.1058; Partecke J, 2008, DEV NEUROBIOL, V68, P1538, DOI 10.1002/dneu.20676; Qvarnstrom A, 2001, TRENDS ECOL EVOL, V16, P95, DOI 10.1016/S0169-5347(00)02063-2; R Development Core Team, 2011, R LANG ENV STAT COMP; Ratikainen II, 2010, BEHAV ECOL, V21, P195, DOI 10.1093/beheco/arp168; Reed WL, 2009, AM NAT, V174, P685, DOI 10.1086/605962; Roff D. A., 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; Romano M, 2008, J EVOLUTION BIOL, V21, P1626, DOI 10.1111/j.1420-9101.2008.01599.x; Rubolini D, 2006, BEHAV ECOL SOCIOBIOL, V59, P344, DOI 10.1007/s00265-005-0057-0; Russell AF, 2007, SCIENCE, V317, P941, DOI 10.1126/science.1146037; Russell AF, 2007, P R SOC B, V274, P513, DOI 10.1098/rspb.2006.3698; Saino N, 1995, BEHAV ECOL, V6, P397, DOI 10.1093/beheco/6.4.397; Saino N, 2002, J EVOLUTION BIOL, V15, P735, DOI 10.1046/j.1420-9101.2002.00448.x; Saino N, 2002, P ROY SOC B-BIOL SCI, V269, P1729, DOI 10.1098/rspb.2002.2088; Schwabl H, 1996, COMP BIOCHEM PHYS A, V114, P271, DOI 10.1016/0300-9629(96)00009-6; Sheldon BC, 2000, TRENDS ECOL EVOL, V15, P397, DOI 10.1016/S0169-5347(00)01953-4; Smiseth PT, 2001, BEHAV ECOL, V12, P164, DOI 10.1093/beheco/12.2.164; STARCK JM, 1998, AVIAN GROWTH DEV EVO; Uller T, 2009, SEMIN CELL DEV BIOL, V20, P304, DOI 10.1016/j.semcdb.2008.11.013; Vezina F, 2002, PHYSIOL BIOCHEM ZOOL, V75, P377, DOI 10.1086/343137; Voltura KM, 2002, ETHOLOGY, V108, P1011, DOI 10.1046/j.1439-0310.2002.00831.x; Wolf JB, 1999, J EVOLUTION BIOL, V12, P1157 79 82 85 5 138 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. JAN 7 2012 279 1726 163 170 10.1098/rspb.2011.0663 8 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 856WD WOS:000297674300022 21632630 Green Published, Bronze 2018-11-12 J Richardson, GB; Hardesty, P Richardson, George B.; Hardesty, Patrick Immediate Survival Focus: Synthesizing Life History Theory and Dual Process Models to Explain Substance Use EVOLUTIONARY PSYCHOLOGY English Article life history strategies; dual process models; substance use ENVIRONMENTAL RISK; REPRODUCTIVE STRATEGIES; INDIVIDUAL-DIFFERENCES; FUTURE ORIENTATION; SENSATION SEEKING; GENERAL FACTOR; K-FACTOR; PERSONALITY; PERSPECTIVE; ADDICTION Researchers have recently applied evolutionary life history theory to the understanding of behaviors often conceived of as prosocial or antisocial. In addition, researchers have applied cognitive science to the understanding of substance use and used dual process models, where explicit cognitive processes are modeled as relatively distinct from implicit cognitive processes, to explain and predict substance use behaviors. In this paper we synthesized these two theoretical perspectives to produce an adaptive and cognitive framework for explaining substance use. We contend that this framework provides new insights into the nature of substance use that may be valuable for both clinicians and researchers. [Richardson, George B.] Univ Cincinnati, Sch Human Serv, Cincinnati, OH 45221 USA; [Hardesty, Patrick] Univ Louisville, Louisville, KY 40292 USA Richardson, GB (reprint author), Univ Cincinnati, Sch Human Serv, Cincinnati, OH 45221 USA. george.richardson@uc.edu Adams J, 2009, HEALTH PSYCHOL, V28, P529, DOI 10.1037/a0015198; Allen TJ, 1998, DRUG ALCOHOL DEPEN, V50, P137, DOI 10.1016/S0376-8716(98)00023-4; Beck AT, 1993, COGNITIVE THERAPY SU; Bogg T, 2004, PSYCHOL BULL, V130, P887, DOI 10.1037/0033-2909-130.6.887; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Bureau of Labor Statistics, 2005, NAT LONG SURV YOUTH; Carbon CC, 2012, Q J EXP PSYCHOL, V65, P2258, DOI 10.1080/17470218.2012.696121; Cavazos-Rehg PA, 2011, AIDS BEHAV, V15, P869, DOI 10.1007/s10461-010-9669-0; Chisholm JS, 1999, HUM NATURE-INT BIOS, V10, P51, DOI 10.1007/s12110-999-1001-1; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Conrey FR, 2007, SOC COGNITION, V25, P718, DOI 10.1521/soco.2007.25.5.718; Cunningham WA, 2004, J COGNITIVE NEUROSCI, V16, P1717, DOI 10.1162/0898929042947919; Cunningham WA, 2007, TRENDS COGN SCI, V11, P97, DOI 10.1016/j.tics.2006.12.005; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Eccles JS, 2002, ANNU REV PSYCHOL, V53, P109, DOI 10.1146/annurev.psych.53.100901.135153; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Field M., 2006, COGNITION ADDICTION, P31; Figueredo A. J., 2011, OXFORD HDB SEXUAL CO; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2009, TWIN RES HUM GENET, V12, P555, DOI 10.1375/twin.12.6.555; Fromme K., 1993, PSYCHOL ASSESSMENT, V5, P19, DOI DOI 10.1037/1040-3590.5.1.19; Geary DC, 2001, PARENT-SCI PRACT, V1, P5, DOI 10.1207/S15327922PAR011&2_2; Gilbert P, 1998, BRIT J MED PSYCHOL, V71, P447, DOI 10.1111/j.2044-8341.1998.tb01002.x; Gladden P., 2009, J EVOLUTIONARY PSYCH, V7, P167, DOI DOI 10.1556/JEP.7.2009.2.5; GLADDEN PR, 2008, PERSONALITY INDIVIDU, V46, P270, DOI DOI 10.1016/J.PAID.2008.10.010; Goldman MP, 2006, COGNITION ADDICTION, P31; Griffith J. W., 2009, PSYCHOL MED 1 VIEW, P1; Higgins E. T., 2004, HDB SELF REGULATION, P171; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; Hill EM, 2002, ADDICTION, V97, P401, DOI 10.1046/j.1360-0443.2002.00020.x; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Kendler KS, 2003, ARCH GEN PSYCHIAT, V60, P929, DOI 10.1001/archpsyc.60.9.929; Kilpatrick DG, 2000, J CONSULT CLIN PSYCH, V68, P19, DOI 10.1037//0022-006X.68.1.19; KLINGER E, 2004, HDB MOTIVATIONAL COU, P3, DOI DOI 10.1002/9780470713129.CH1; Kruger D. J., 2008, J SOCIAL EVOLUTIONAR, V2, P1, DOI DOI 10.1037/H0099336; Laub JH, 2000, AM J PSYCHIAT, V157, P96, DOI 10.1176/ajp.157.1.96; Lieberman M., 2007, SOCIAL NEUROSCIENCE, P290; MACDONALD K, 1995, J PERS, V63, P525, DOI 10.1111/j.1467-6494.1995.tb00505.x; MacDonald KB, 2008, PSYCHOL REV, V115, P1012, DOI 10.1037/a0013327; Margaron H, 2004, SUBST USE MISUSE, V39, P1423, DOI 10.1081/JA-120039399; Marlatt G.A., 2011, HARM REDUCTION PRAGM; McCusker C. G., 2006, COGNITION ADDICTION, P117; McCusker CG, 2001, ADDICTION, V96, P47, DOI 10.1046/j.1360-0443.2001.961474.x; MEALEY LR, 2000, SEX DIFFERENCES DEV; Munafo M., 2006, COGNITION ADDICTION; Nation M, 2006, AM J DRUG ALCOHOL AB, V32, P415, DOI 10.1080/00952990600753867; NESSE RM, 1994, ETHOL SOCIOBIOL, V15, P339, DOI 10.1016/0162-3095(94)90007-8; Nesse RM, 1996, WHY WE GET SICK NEW; Nobile M, 2007, DEV PSYCHOPATHOL, V19, P1147, DOI 10.1017/S0954579407000594; Office of National Drug Control Policy (ONDCP), 2004, EX OFF PRES PUBL, V207303; Peters RJ, 2005, AM J ADDICTION, V14, P478, DOI 10.1080/10550490500247206; Petry NM, 1998, ADDICTION, V93, P729, DOI 10.1046/j.1360-0443.1998.9357298.x; Putman P, 2004, EMOTION, V4, P305, DOI 10.1037/1528-3542.4.3.305; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Redish AD, 2008, BEHAV BRAIN SCI, V31, P461, DOI 10.1017/S0140525X08004986; Richardson G. B., SEX DRUGS RECI UNPUB; Robbins RN, 2004, J ADOLESCENT RES, V19, P428, DOI 10.1177/074355840328860; RoseKrasnor L, 1997, SOC DEV, V6, P111, DOI 10.1111/j.1467-9507.1997.tb00097.x; Ross LT, 2002, SOC BEHAV PERSONAL, V30, P453, DOI 10.2224/sbp.2002.30.5.453; Rushton JP, 2008, J RES PERS, V42, P1173, DOI 10.1016/j.jrp.2008.03.002; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Schutter D.J.L.G., 2007, SOCIAL NEUROSCIENCE, P197; Sefcek J. A., 2007, THESIS U ARIZONA; Shaffer H. J., 2012, APA ADDICTION SYNDRO, V1, pxxvii; Stacy A. W., 2006, COGNITION ADDICTION, P31; Stoel RD, 2006, BEHAV GENET, V36, P229, DOI 10.1007/s10519-005-9028-5; Tesser A., 1995, ADV SOCIAL PSYCHOL; The National Center on Addiction and Substance Abuse (CASA), 2005, SHOV; Torregrossa MM, 2008, BIOL PSYCHIAT, V63, P253, DOI 10.1016/j.biopsych.2007.11.014; Vigil-Colet A, 2004, PERS INDIV DIFFER, V37, P1431, DOI 10.1016/j.paid.2004.01.013; Volkow ND, 2007, ARCH NEUROL-CHICAGO, V64, P1575, DOI 10.1001/archneur.64.11.1575; Whiteside SP, 2001, PERS INDIV DIFFER, V30, P669, DOI 10.1016/S0191-8869(00)00064-7; Yucel M, 2007, AUST NZ J PSYCHIAT, V41, P957, DOI 10.1080/00048670701689444; Zimbardo PG, 1999, J PERS SOC PSYCHOL, V77, P1271, DOI 10.1037//0022-3514.77.6.1271; Zuckerman M, 1996, NEUROPSYCHOBIOLOGY, V34, P125, DOI 10.1159/000119303 77 9 9 0 10 EVOLUTIONARY PSYCHOL DAVIE C/O TOOD K SHACKELFORD, DIR, FLORIDA ATLANTIC UNIV, DEPT PSYCHOL, 2912 COLLEGE AVE, DAVIE, FL 33314 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. 2012 10 4 731 749 10.1177/147470491201000408 19 Psychology, Experimental Psychology 066DP WOS:000313200700008 23213672 DOAJ Gold 2018-11-12 J Tybur, JM; Bryan, AD; Hooper, AEC Tybur, Joshua M.; Bryan, Angela D.; Hooper, Ann E. Caldwell An Evolutionary Perspective on Health Psychology: New Approaches and Applications EVOLUTIONARY PSYCHOLOGY English Article health psychology; life history theory; tradeoffs; pathogen avoidance PHYSICAL-ACTIVITY; BEHAVIOR-CHANGE; OBESITY EPIDEMIC; UNITED-STATES; BIRTH-WEIGHT; RISK-TAKING; USE CONDOMS; US ADULTS; LIFE; INTENTIONS Although health psychologists' efforts to understand and promote health are most effective when guided by theory, health psychology has not taken full advantage of theoretical insights provided by evolutionary psychology. Here, we argue that evolutionary perspectives can fruitfully inform strategies for addressing some of the challenges facing health psychologists. Evolutionary psychology's emphasis on modular, functionally specialized psychological systems can inform approaches to understanding the myriad behaviors grouped under the umbrella of "health," as can theoretical perspectives used by evolutionary anthropologists, biologists, and psychologists (e.g., Life History Theory). We detail some early investigations into evolutionary health psychology, and we provide suggestions for directions for future research. [Tybur, Joshua M.] Vrije Univ Amsterdam, Dept Social & Org Psychol, Amsterdam, Netherlands; [Bryan, Angela D.] Univ Colorado, Dept Psychol & Neurosci, Boulder, CO 80309 USA; [Hooper, Ann E. Caldwell] Univ New Mexico, Dept Psychol, Albuquerque, NM 87131 USA Tybur, JM (reprint author), Vrije Univ Amsterdam, Dept Social & Org Psychol, Amsterdam, Netherlands. j.m.tybur@vu.nl Tybur, Joshua/P-5435-2014 Tybur, Joshua/0000-0002-0462-6508 Albarracin D, 2005, PSYCHOL BULL, V131, P856, DOI 10.1037/0033-2909.131.6.856; Andersen LG, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0008192; BARALDI E, 1991, EUR J PEDIATR, V150, P713, DOI 10.1007/BF01958761; Barkow L. Cosmides, ADAPTED MIND, P19; Barrett HC, 2006, PSYCHOL REV, V113, P628, DOI 10.1037/0033-295X.113.3.628; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Bribiescas RG, 2006, MEN EVOLUTIONARY LIF; Bryan A, 2001, J APPL SOC PSYCHOL, V31, P1911, DOI 10.1111/j.1559-1816.2001.tb00210.x; Bryan AD, 2009, PEDIATRICS, V124, pE1180, DOI 10.1542/peds.2009-0679; Buckworth J., 2007, HDB SPORT PSYCHOL, P509, DOI DOI 10.1002/9781118270011.CH23; Cahill K, 2010, COCHRANE DATABASE SY, V11; Calle EE, 2003, NEW ENGL J MED, V348, P1625, DOI 10.1056/NEJMoa021423; Centers for Medicare and Medicaid Research, 2011, NAT HLTH EXP PROJ 20; Charnov Eric L., 1993, P1; Cooper ML, 1999, HEALTH PSYCHOL, V18, P464; Dandona P, 2004, TRENDS IMMUNOL, V25, P4, DOI 10.1016/j.it.2003.10.013; DeScioli P., PSYCHOL B IN PRESS; DiClemente RJ, 2009, ARCH PEDIAT ADOL MED, V163, P1112, DOI 10.1001/archpediatrics.2009.205; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Ellison P. T., 2008, EN STUD HOM EV S PAL; Ellison PT, 2003, AM J HUM BIOL, V15, P342, DOI 10.1002/ajhb.10152; Ferguson CJ, 2011, REV GEN PSYCHOL, V15, P11, DOI 10.1037/a0022607; Fessler D. M. T., 2003, J COGNITION CULTURE, V3, P1, DOI [10.1163/156853703321598563, DOI 10.1163/156853703321598563]; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Fiore MC, 2008, TREATING TOBACCO USE; Flaxman SM, 2000, Q REV BIOL, V75, P113, DOI 10.1086/393377; Gangestad S. W., 2008, EVOLUTIONARY BIOL HU; Gerrard M, 1996, PSYCHOL BULL, V119, P390, DOI 10.1037//0033-2909.119.3.390; Getty T, 2002, AM NAT, V159, P363, DOI 10.1086/338992; Giles J, 2011, NATURE, V470, P18, DOI 10.1038/470018a; Goldenberg JL, 2008, PSYCHOL REV, V115, P1032, DOI 10.1037/a0013326; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Griskevicius V, 2009, J PERS SOC PSYCHOL, V96, P980, DOI 10.1037/a0013907; Hill SE, 2011, PERS SOC PSYCHOL B, V37, P383, DOI 10.1177/0146167210395603; Hillis SD, 1997, AM J OBSTET GYNECOL, V176, P103, DOI 10.1016/S0002-9378(97)80020-8; James WPT, 2008, INT J OBESITY, V32, pS120, DOI 10.1038/ijo.2008.247; JANZ NK, 1984, HEALTH EDUC QUART, V11, P1, DOI 10.1177/109019818401100101; JESSOR R, 1995, DEV PSYCHOL, V31, P923, DOI 10.1037/0012-1649.31.6.923; Johnson BT, 2010, AM J PUBLIC HEALTH, V100, P2193, DOI 10.2105/AJPH.2008.155200; Jonason PK, 2007, J SOC PSYCHOL, V147, P5, DOI 10.3200/SOCP.147.1.5-14; King AC, 2007, HEALTH PSYCHOL, V26, P718, DOI 10.1037/0278-6133.26.6.718; King DE, 2009, AM J MED, V122, P528, DOI 10.1016/j.amjmed.2008.11.013; Kokko H, 2002, P ROY SOC B-BIOL SCI, V269, P1331, DOI 10.1098/rspb.2002.2020; Li NP, 2010, EVOL HUM BEHAV, V31, P365, DOI 10.1016/j.evolhumbehav.2010.05.004; Lieberman D, 2007, NATURE, V445, P727, DOI 10.1038/nature05510; MANSON JAE, 1990, NEW ENGL J MED, V322, P882, DOI 10.1056/NEJM199003293221303; Marcus BH, 2007, HEALTH PSYCHOL, V26, P401, DOI 10.1037/0278-6133.26.4.401; McBride CM, 2012, AM J PUBLIC HEALTH, V102, P401, DOI 10.2105/AJPH.2011.300513; McEachan RRC, 2011, HEALTH PSYCHOL REV, V5, P97, DOI 10.1080/17437199.2010.521684; Mealey L, 1997, J SEX RES, V34, P223, DOI 10.1080/00224499709551887; Mokdad AH, 1999, JAMA-J AM MED ASSOC, V282, P1519, DOI 10.1001/jama.282.16.1519; Painter JE, 2008, ANN BEHAV MED, V35, P358, DOI 10.1007/s12160-008-9042-y; Pollan M, 2006, OMNIVORES DILEMMA; ROSENSTOCK IM, 1974, HEALTH EDUC QUART, V2, P328, DOI 10.1177/109019817400200403; ROZIN P, 1987, PSYCHOL REV, V94, P23, DOI 10.1037//0033-295X.94.1.23; Salmon C, 2008, HUM NATURE-INT BIOS, V19, P103, DOI 10.1007/s12110-008-9030-8; Schaller M, 2011, CURR DIR PSYCHOL SCI, V20, P99, DOI 10.1177/0963721411402596; Seefeldt V, 2002, SPORTS MED, V32, P143, DOI 10.2165/00007256-200232030-00001; Sheeran P, 1999, J APPL SOC PSYCHOL, V29, P1624, DOI 10.1111/j.1559-1816.1999.tb02045.x; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; SYMONS D, 1989, ETHOL SOCIOBIOL, V10, P131, DOI 10.1016/0162-3095(89)90016-2; Tooby J., 1992, PSYCHOL FDN CULTURE; Tooby J., 2005, HDB EVOLUTIONARY PSY, P5, DOI DOI 10.1002/9780470939376.CH1; Tooby J., 1992, ADAPTED MIND EVOLUTI, V163, P163, DOI DOI 10.1098/RSTB.2006.1991; Troiano RP, 2008, MED SCI SPORT EXER, V40, P181, DOI 10.1249/mss.0b013e31815a51b3; Tybur J. M., PSYCHOL REV IN PRESS; Tybur JM, 2011, PSYCHOL SCI, V22, P478, DOI 10.1177/0956797611400096; Vickers MH, 2003, AM J PHYSIOL-REG I, V285, pR271, DOI 10.1152/ajpregu.00051.2003; Warburton DER, 2006, CAN MED ASSOC J, V174, P801, DOI 10.1503/cmaj.051351; Webb TL, 2006, PSYCHOL BULL, V132, P249, DOI 10.1037/0033-2909.132.2.249; WILSON M, 1985, ETHOL SOCIOBIOL, V6, P59, DOI 10.1016/0162-3095(85)90041-X 74 6 6 1 33 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. 2012 10 5 855 867 10.1177/147470491201000508 13 Psychology, Experimental Psychology 066EV WOS:000313204100008 23253791 DOAJ Gold 2018-11-12 J Mobaek, R; Mysterud, A; Holand, O; Austrheim, G Mobaek, Ragnhild; Mysterud, Atle; Holand, Oystein; Austrheim, Gunnar Age class, density and temporal effects on diet composition of sheep in an alpine ecosystem BASIC AND APPLIED ECOLOGY English Article Climate effects; Density dependence; Foraging; Life history; Large mammals; Seasonality; Sheep LIFE-HISTORY TRAITS; LARGE HERBIVORE; RED DEER; POPULATION-DYNAMICS; HABITAT SELECTION; BIGHORN EWES; PATTERNS; DEPENDENCE; SYNCHRONY; PHENOLOGY Understanding diet selection is important since diet determines energy intake and therefore growth of ungulate populations. Yet very few studies have reported annual variation in diet. Density-dependent diet choice by large herbivores has been reported several times, but these studies are typically either short-term or they lack replication of the density treatment. In a landscape-scale experiment with 3 replicates of two densities (25 and 80 individuals/km(2)) of domestic sheep, we determined diet composition using microhistological analysis during 6 summer grazing seasons (2002-2007) in alpine habitats. We tested how age class, density and temporal variation (within season, annually, and over years) affected summer diet. There was marked evidence of additive effects of these factors on overall diet composition, but interactions were few. The interaction between density and annual variation was an important determinant of the proportion of the main forage component (Avenella flexuosa), but not of the proportions of herbs, Salix spp. and for "other" forage plants. Surprisingly, the density effect on this intermediate quality forage (A. flexuosa) was not consistent among years (both positive, negative and no effects), likely arising due to large variation in the proportion of the other forage plants. We discuss how foraging ecology can supplement the insight from life history theory in explaining variation in vital rates. [Mysterud, Atle] Univ Oslo, Dept Biol, CEES, NO-0316 Oslo, Norway; [Mobaek, Ragnhild; Holand, Oystein] Norwegian Univ Life Sci, Dept Anim & Aquacultural Sci, NO-1432 As, Norway; [Austrheim, Gunnar] Norwegian Univ Sci & Technol, Sect Nat Hist, Museum Nat Hist & Archaeol, NO-7491 Trondheim, Norway Mysterud, A (reprint author), Univ Oslo, Dept Biol, CEES, POB 1066 Blindern, NO-0316 Oslo, Norway. atle.mysterud@bio.uio.no Research Council of Norway [Pr. 183268/S30]; Directorate for nature management; Norwegian University of Life Sciences The study was financed by the Research Council of Norway (Pr. 183268/S30 and YFF to AM), the Directorate for nature management, and the Norwegian University of Life Sciences (PhD scholarship to RM). We thank Kyrre Kausrud, Camilla Iversen, Kristina Ehrlinger, Lars Korslund, Stephen Parfitt and Harald Askilsrud for collecting faeces samples, and Barbro Dahlberg for performing the microhistological analyses. We are grateful to Jean-Michel Gaillard, Ivar Herfindal, Rene Van der Wal and two anonymous referees for helpful comments to a previous draft, and to Leif Egil Loe and Nigel G. Yoccoz for help with script to plot mixed-effect models. Austrheim G, 2005, PLANT ECOL, V179, P217, DOI 10.1007/s11258-005-0197-3; Austrheim G, 2008, OIKOS, V117, P837, DOI 10.1111/j.2008.0030-1299.16543.x; Bailey DW, 1996, J RANGE MANAGE, V49, P386, DOI 10.2307/4002919; Bonenfant C, 2009, ADV ECOL RES, V41, P313, DOI 10.1016/S0065-2504(09)00405-X; BOWNS JE, 1986, J RANGE MANAGE, V39, P431, DOI 10.2307/3899445; Coulson T, 2001, SCIENCE, V292, P1528, DOI 10.1126/science.292.5521.1528; Daigle C, 2004, CAN FIELD NAT, V118, P360, DOI 10.22621/cfn.v118i3.13; DEMMENT MW, 1985, AM NAT, V125, P641, DOI 10.1086/284369; Evju M, 2006, ECOSCIENCE, V13, P459, DOI 10.2980/1195-6860(2006)13[459:SHSATA]2.0.CO;2; Evju M, 2009, OECOLOGIA, V161, P77, DOI 10.1007/s00442-009-1358-1; Festa-Bianchet M, 1998, BEHAV ECOL, V9, P144, DOI 10.1093/beheco/9.2.144; FOWLER CW, 1987, CURRENT MAMMALOGY, P401; FREELAND WJ, 1990, ECOLOGY, V71, P589, DOI 10.2307/1940312; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; Hebblewhite M, 2008, ECOL MONOGR, V78, P141, DOI 10.1890/06-1708.1; HOLECHEK JL, 1982, J RANGE MANAGE, V35, P309, DOI 10.2307/3898308; Jongman RHG, 1995, DATA ANAL COMMUNITY; Kausrud K, 2006, J ZOOL, V270, P63, DOI 10.1111/j.1469-7998.2006.00118.x; Langvatn R, 2004, AM NAT, V163, P763, DOI 10.1086/383594; Loe LE, 2005, J ANIM ECOL, V74, P579, DOI 10.1111/j.1365-2656.2005.00987.x; Marell A, 2006, BASIC APPL ECOL, V7, P13, DOI 10.1016/j.baae.2005.04.005; Martin JGA, 2010, AM NAT, V176, P414, DOI 10.1086/656267; McLoughlin PD, 2010, J ANIM ECOL, V79, P4, DOI 10.1111/j.1365-2656.2009.01613.x; Mobaek R., OIKOS IN PRESS; Mobaek R, 2009, OIKOS, V118, P209, DOI 10.1111/j.1600-0706.2008.16935.x; Morris DW, 2003, OECOLOGIA, V136, P1, DOI 10.1007/s00442-003-1241-4; Mysterud A., 2003, N ATLANTIC OSCILLATI, P235; Mysterud A, 2011, BASIC APPL ECOL, V12, P195, DOI 10.1016/j.baae.2011.03.002; Nicholson MC, 2006, J ZOOL, V269, P39, DOI 10.1111/j.1469-7998.2006.00051.x; Pettorelli N, 2005, P ROY SOC B-BIOL SCI, V272, P2357, DOI 10.1098/rspb.2005.3218; Pinheiro JC, 2000, MIXED EFFECTS MODELS; Ramp D, 2002, OIKOS, V98, P393, DOI 10.1034/j.1600-0706.2002.980304.x; SENFT RL, 1987, BIOSCIENCE, V37, P789, DOI 10.2307/1310545; Simard MA, 2008, J ANIM ECOL, V77, P678, DOI 10.1111/j.1365-2656.2008.01374.x; Smilauer P, 2003, MULTIVARIATE ANAL EC; Ter Braak C.J.F., 2002, CANOCO REFERENCE MAN; TERBRAAK CJF, 1988, ADV ECOL RES, V18, P271; Weladji Robert B., 2002, Rangifer, V22, P33; WHITE RG, 1983, OIKOS, V40, P377, DOI 10.2307/3544310 41 8 8 0 40 ELSEVIER GMBH, URBAN & FISCHER VERLAG JENA OFFICE JENA, P O BOX 100537, 07705 JENA, GERMANY 1439-1791 1618-0089 BASIC APPL ECOL Basic Appl. Ecol. 2012 13 5 466 474 10.1016/j.baae.2012.06.009 9 Ecology Environmental Sciences & Ecology 044XD WOS:000311657600009 2018-11-12 J Dawe, EG; Mullowney, DR; Moriyasu, M; Wade, E Dawe, Earl G.; Mullowney, Darrell R.; Moriyasu, Mikio; Wade, Elmer Effects of temperature on size-at-terminal molt and molting frequency in snow crab Chionoecetes opilio from two Canadian Atlantic ecosystems MARINE ECOLOGY PROGRESS SERIES English Article Snow crab; Terminal molt; Molting frequency; Size; Temperature; Atlantic Canada EASTERN BERING-SEA; ST-LAWRENCE; BONNE BAY; BREEDING MIGRATION; BENTHIC STAGES; SOUTHERN GULF; MAJIDAE; BRACHYURA; GROWTH; NEWFOUNDLAND The effect of temperature on molting frequency and size-at-terminal molt of the snow crab Chionoecetes opilio was investigated and compared between 2 Canadian Atlantic ecosystems based on spring and summer surveys. We found that the size-at-terminal molt was directly related to temperature but that the effect of temperature was much clearer and occurred at smaller sizes for females than for males. By focusing on recently molted (new-shelled) crabs, we showed that size-at-terminal molt is conditioned by temperature over a variable number of instars and intermolt periods leading up to the terminal molt. Crabs of both sexes larger than about 50 mm carapace width (CW), on annual molting schedules, sometimes skipped a molt. The frequency of skip-molting differed between the areas and sexes, and was directly related to size and inversely related to temperature. We develop a hypothesis to explain the relationships of terminal size with temperature and molting frequency that is consistent with life-history theory and snow crab bioenergetics and considers differences between the sexes. The implications to natural mortality and recruitment to fisheries are also discussed. [Dawe, Earl G.; Mullowney, Darrell R.] Fisheries & Oceans Canada, NW Atlantic Fisheries Ctr, St John, NF A1C 5X1, Canada; [Moriyasu, Mikio; Wade, Elmer] Fisheries & Oceans Canada, Gulf Fisheries Ctr, Moncton, NB E1C 9B6, Canada Dawe, EG (reprint author), Fisheries & Oceans Canada, NW Atlantic Fisheries Ctr, POB 5667, St John, NF A1C 5X1, Canada. earl.dawe@dfo-mpo.gc.ca Alunno-Bruscia M, 1998, CAN J FISH AQUAT SCI, V55, P459, DOI 10.1139/cjfas-55-2-459; Biron M, 2008, FISH RES, V91, P260, DOI 10.1016/j.fishres.2007.11.029; Brose U, 2010, FUNCT ECOL, V24, P28, DOI 10.1111/j.1365-2435.2009.01618.x; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Burmeister A, 2010, POLAR BIOL, V33, P775, DOI 10.1007/s00300-009-0755-6; Choi JS, 2007, 2007017 DFO CAN SCI; Comeau M, 1998, CAN J FISH AQUAT SCI, V55, P262, DOI 10.1139/cjfas-55-1-262; CONAN GY, 1986, CAN J FISH AQUAT SCI, V43, P1710, DOI 10.1139/f86-214; Conan GY, 1992, CAN TECH REP FISH AQ; Dawe E, 2011, 2011073 DFO CAN SCI; Dawe EG, 2010, FISH RES, V101, P70, DOI 10.1016/j.fishres.2009.09.008; Dawe EG, 2002, LOW WAKE FI, V19, P577; Dawe EG, 1997, 9707 DFO CAN SCI ADV; Dawe EG, 2008, 2008B02 ICES CM; Doubleday W. G., 1981, NAFO SCI COUNC STUD, V2, P7; Dutil JD, 2010, J SHELLFISH RES, V29, P1025, DOI 10.2983/035.029.0404; Elner RW, 1995, J EXP MAR BIOL ECOL, V193, P93, DOI 10.1016/0022-0981(95)00112-3; ELNER RW, 1992, AM ZOOL, V32, P524; ENNIS GP, 1990, CAN J FISH AQUAT SCI, V47, P2242, DOI 10.1139/f90-249; Ernst B, 2012, CAN J FISH AQUAT SCI, V69, P532, DOI 10.1139/F2011-173; Fisheries Resource Conservation Council (FRCC), 2005, FRCC05R1; FOYLE TP, 1989, J EXP BIOL, V145, P371; Godbout G, 2002, AQUACULTURE, V206, P323, DOI 10.1016/S0044-8486(01)00712-8; Hartnoll R.G, 1982, BIOL CRUSTACEA, P11; HARTNOLL RG, 1993, J CRUSTACEAN BIOL, V13, P647, DOI 10.2307/1549095; Hebert M, 2002, CRUSTACEANA, V75, P671, DOI 10.1163/156854002760202679; Hebert M, 2011, 2011082 DFO CAN SCI; HINES AH, 1989, B MAR SCI, V45, P356; LOVRICH GA, 1995, CAN J ZOOL, V73, P1712, DOI 10.1139/z95-203; Marcello LA, 2012, MAR ECOL PROG SER, V469, P249, DOI 10.3354/meps09766; Maynard DR, 1987, P OCEANS 87 OC INT W, V3, P962; McCallum B, 1996, NAFO SCI COUNCIL STU, V29, P93; Moriyasu Mikio, 2011, V15, P95; OHALLORAN MJ, 1988, J CRUSTACEAN BIOL, V8, P164, DOI 10.2307/1548309; Orensanz JM, 2007, J CRUSTACEAN BIOL, V27, P576; Paul A.J., 2001, Alaska Fishery Research Bulletin, V8, P132; Sainte-Marie B, 1999, MAR ECOL PROG SER, V181, P141, DOI 10.3354/meps181141; SAINTE-MARIE B, 1992, CAN J FISH AQUAT SCI, V49, P1282, DOI 10.1139/f92-144; SAINTE-MARIE B, 1995, CAN J FISH AQUAT SCI, V52, P903, DOI 10.1139/f95-091; Sainte-Marie B, 1998, 9838 DFO CAN SCI ADV; Sainte-Marie B, 2008, B MAR SCI, V83, P131; TAYLOR DM, 1985, FISH B-NOAA, V83, P707; Thompson R.J., 1990, P INT S KING TANN CR, P283; van der Meer J, 2006, TRENDS ECOL EVOL, V21, P136, DOI 10.1016/j.tree.2005.11.004; Walsh SJ, 1996, NAFO SCI COUN STUDIE, V29, P105 45 11 11 0 19 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. 2012 469 279 296 10.3354/meps09793 18 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography 043OK WOS:000311553600022 Bronze 2018-11-12 J Jonason, PK; Schmitt, DP Jonason, Peter K.; Schmitt, David P. What Have You Done For Me Lately? Friendship-Selection in the Shadow of the Dark Triad Traits EVOLUTIONARY PSYCHOLOGY English Article Dark Triad; friendship; evolutionary psychology; narcissism; psychopathy; Machiavellianism OPPOSITE-SEX FRIENDSHIP; TERM MATING STRATEGY; LIFE-HISTORY THEORY; GENETIC SIMILARITY; NARCISSISM; PERSONALITY; EVOLUTION; SOCIOBIOLOGY; MANIPULATION; COOPERATION The current studies examined how the Dark Triad personality traits (i.e., Machiavellianism, narcissism, and psychopathy) facilitate the strategic structuring of an individual's social environment in terms of same- and opposite-sex friends. In one study using normative questions (N = 267) and another using a budget-allocation task (N = 114), we found that the Dark Triad traits were associated with choosing friends for strategic purposes and to create a volatile environment. Narcissistic individuals reported relatively more reasons to form friendships, such as shared interests, makes me feel good, and intelligence. Women high in narcissism chose same-sex friends who were attractive and women high on Machiavellianism chose same-sex friends who have social status. Men high on psychopathy devalued traits associated with good social relationships in favor of friends who could facilitate their mating efforts and to offset risks incurred in their life history strategy. Results are discussed using the selection-manipulation-evocation framework for explaining how personality traits interact with social environments and integrated with findings from evolutionary biology. [Jonason, Peter K.] Univ Western Sydney, Sch Psychol, Bankstown, NSW, Australia; [Schmitt, David P.] Bradley Univ, Dept Psychol, Peoria, IL 61625 USA Jonason, PK (reprint author), Univ Western Sydney, Sch Psychol, Bankstown, NSW, Australia. p.jonason@uws.edu.au Ackerman JM, 2009, PERS SOC PSYCHOL B, V35, P1285, DOI 10.1177/0146167209335640; Aitken S., 2010, J SOCIAL EVOLUTIONAR, V4, P194, DOI DOI 10.1037/H0099290; Alexander R.D., 1979, SOCIAL EXCHANGE DEV, P197; Alvarez HP, 2000, AM J PHYS ANTHROPOL, V113, P435, DOI 10.1002/1096-8644(200011)113:3<435::AID-AJPA11>3.0.CO;2-O; AXELROD R, 1981, SCIENCE, V211, P1390, DOI 10.1126/science.7466396; Benenson JF, 2009, PSYCHOL SCI, V20, P184, DOI 10.1111/j.1467-9280.2009.02269.x; Bleske AL, 2000, PERS RELATIONSHIP, V7, P131, DOI 10.1111/j.1475-6811.2000.tb00008.x; Bleske-Rechek AL, 2001, PERS SOC PSYCHOL B, V27, P1310, DOI 10.1177/01461672012710007; Bogart LA, 2004, BASIC APPL SOC PSYCH, V26, P35, DOI 10.1207/s15324834basp2601_4; Braun V., 2006, QUALITATIVE RES PSYC, V3, P71, DOI DOI 10.1191/1478088706QP0630A; Buffardi LE, 2008, PERS SOC PSYCHOL B, V34, P1303, DOI 10.1177/0146167208320061; BULMER M, 1979, SOCIOL REV, V27, P651, DOI 10.1111/j.1467-954X.1979.tb00354.x; BUSS DM, 1987, J PERS SOC PSYCHOL, V52, P1219, DOI 10.1037/0022-3514.52.6.1219; BUSS DM, 1992, J PERS, V60, P477, DOI 10.1111/j.1467-6494.1992.tb00981.x; BUSS DM, 1987, J PERS SOC PSYCHOL, V53, P1214, DOI 10.1037//0022-3514.53.6.1214; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; BUSS DM, 1984, J PERS SOC PSYCHOL, V47, P361, DOI 10.1037//0022-3514.47.2.361; Caine Nancy G., 1993, P200; CHRISTIE R, 1970, STUDIES MACHIAVELLIA; Connor RC, 2003, ANIMAL SOCIAL COMPLEXITY, P115; Costa P. T., 1992, REVISED NEO PERSONAL; Cummins DD, 1999, EVOL HUM BEHAV, V20, P229, DOI 10.1016/S1090-5138(99)00008-2; De Waal Frans, 2000, CHIMPANZEE POLITICS; Duck S., 1991, UNDERSTANDING RELATI; Dunbar R. I. M., 1996, GROOMING GOSSIP EVOL; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Fischer C. S, 1982, DWELL FRIENDS PERSON; Foster JD, 2008, PERS SOC PSYCHOL B, V34, P1004, DOI 10.1177/0146167208316688; GOLDBERG LR, 1990, J PERS SOC PSYCHOL, V59, P1216, DOI 10.1037/0022-3514.59.6.1216; Gordon D. S., 2009, J SOCIAL EVOLUTIONAR, V3, P182, DOI DOI 10.1016/0092-6566(82)90044-7; Hill K, 2009, P ROY SOC B-BIOL SCI, V276, P3863, DOI 10.1098/rspb.2009.1061; Hrdy S.B., 2009, SUBSTITUTE PARENTS B, pxi; Jonason P.K., 2007, EVOLUTIONARY PSYCHOL, V5, P716; Jonason PK, 2012, PERS INDIV DIFFER, V52, P521, DOI 10.1016/j.paid.2011.11.023; Jonason PK, 2012, PERS INDIV DIFFER, V52, P449, DOI 10.1016/j.paid.2011.11.008; Jonason PK, 2011, PERS INDIV DIFFER, V51, P759, DOI 10.1016/j.paid.2011.06.025; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2010, PERS INDIV DIFFER, V49, P611, DOI 10.1016/j.paid.2010.05.031; Jonason PK, 2010, PSYCHOL ASSESSMENT, V22, P420, DOI 10.1037/a0019265; Jonason PK, 2010, PERS INDIV DIFFER, V48, P373, DOI 10.1016/j.paid.2009.11.003; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jones DN, 2011, PERS INDIV DIFFER, V51, P679, DOI 10.1016/j.paid.2011.04.011; Jones DN, 2010, SOC PSYCHOL PERS SCI, V1, P12, DOI 10.1177/1948550609347591; KENRICK DT, 1988, AM PSYCHOL, V43, P23, DOI 10.1037//0003-066X.43.1.23; Kowalski R.M, 2001, BEHAVING BADLY AVERS; Lee KB, 2005, PERS INDIV DIFFER, V38, P1571, DOI 10.1016/j.paid.2004.09.016; Lewis DMG, 2011, EVOL PSYCHOL-US, V9, P543; Li NP, 2006, J PERS SOC PSYCHOL, V90, P468, DOI 10.1037/0022-3514.90.3.468; McCrae RR, 2002, INT CUL PSY, P105; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; Morf CC, 2001, PSYCHOL INQ, V12, P177, DOI 10.1207/S15327965PLI1204_1; NISBETT RE, 1977, PSYCHOL REV, V84, P231, DOI 10.1037/0033-295X.84.3.231; Nunnally J.C., 1978, PSYCHOMETRIC THEORY; PACKER C, 1982, NATURE, V296, P740, DOI 10.1038/296740a0; Paulhus D. L., SELF REPORT IN PRESS; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; RASKIN R, 1988, J PERS SOC PSYCHOL, V54, P890, DOI 10.1037//0022-3514.54.5.890; Rushton J. P., 1995, RACE EVOLUTION BEHAV; RUSHTON JP, 1989, BEHAV BRAIN SCI, V12, P503, DOI 10.1017/S0140525X00057320; RUSHTON JP, 1989, ETHOL SOCIOBIOL, V10, P361; RUSHTON JP, 1987, ACTA GENET MED GEMEL, V36, P289, DOI 10.1017/S0001566000006048; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; SCHEEL D, 1991, ANIM BEHAV, V41, P697, DOI 10.1016/S0003-3472(05)80907-8; Schmitt N, 1996, PSYCHOL ASSESSMENT, V8, P350, DOI 10.1037/1040-3590.8.4.350; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; Silverman I., 2005, HDB EVOLUTIONARY PSY, P177; Silverman I, 2007, ARCH SEX BEHAV, V36, P261, DOI 10.1007/s10508-006-9168-6; Thornhill R, 2004, EVOLUTIONARY PSYCHOLOGY, PUBLIC POLICY AND PERSONAL DECISIONS, P249; Tooby J., 1992, ADAPTED MIND EVOLUTI, V163, P163, DOI DOI 10.1098/RSTB.2006.1991; TRIVERS RL, 1971, Q REV BIOL, V46, P35, DOI 10.1086/406755; Vigil JM, 2007, HUM NATURE-INT BIOS, V18, P143, DOI 10.1007/s12110-007-9003-3; Wilson E.O., 1975, P1; Wrangham RW, 1999, YEARB PHYS ANTHROPOL, V42, P1 73 31 31 1 51 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. 2012 10 3 400 421 10.1177/147470491201000303 22 Psychology, Experimental Psychology 020JX WOS:000309805900003 22947669 DOAJ Gold 2018-11-12 J Rao, LL; Wang, XT; Li, S Rao, Li-Lin; Wang, Xiao-Tian; Li, Shu Short-term modulation of temporal discounting in the view of life-history theory and optimal foraging theory INTERNATIONAL JOURNAL OF PSYCHOLOGY English Meeting Abstract [Rao, Li-Lin] Chinese Acad Sci, Beijing 100864, Peoples R China 0 0 0 0 1 PSYCHOLOGY PRESS HOVE 27 CHURCH RD, HOVE BN3 2FA, EAST SUSSEX, ENGLAND 0020-7594 INT J PSYCHOL Int. J. Psychol. 2012 47 1 SI 176 176 1 Psychology, Multidisciplinary Psychology 986WU WOS:000307377702144 2018-11-12 J Semmens, D; Swearer, SE Semmens, D.; Swearer, S. E. Trade-offs obscure the relationship between egg size and larval traits in the diadromous fish Galaxias maculatus MARINE ECOLOGY PROGRESS SERIES English Article Life history theory; Maternal effects; Offspring size; Phenotypic plasticity LIFE-HISTORY TRAITS; COD GADUS-MORHUA; FRESH-WATER FISH; MATERNAL INFLUENCES; OXYGEN-CONSUMPTION; METABOLIC-RATES; SURVIVAL; GROWTH; PERFORMANCE; SELECTION Egg size is one of the most frequently used surrogate measures of maternal investment and is strongly related to fitness-determining traits, such as offspring size in many marine animals, but the relationship is not universal. Because the amount of yolk allocated to eggs is finite, not all fitness-determining traits can be simultaneously maximised, and trade-offs should be expected. The results of the present study show that egg size (quantified as cross-sectional area) poorly predicts the size of larval morphological traits (length, yolk sac area, oil globule area, myomere depth, and eye area) in the native Australian fish Galaxias maculatus. Egg size was correlated with yolk sac size and larval body depth, but it explained <13% of the total variation in these traits. Moreover, egg size did not predict the time it took for larvae to hatch, nor did it predict the duration from hatching to starvation. However, when egg size and yolk sac size (i.e. yolk remaining at hatching) were both included as predictors, the fits with larval traits improved greatly (r(2) = 0.02 to 0.46 for larval length, r(2) = 0.11 to 0.17 for myomere depth, and r(2) < 0.001 to 0.14 for eye area). These findings indicate that there is a trade-off between the quantity of yolk at hatching and the size of larval morphological traits in G. maculatus. The remaining unexplained variation may be a consequence of trade-offs with other unmeasured traits, such as metabolic rate, and the potential that egg size is not a good proxy for maternal investment. [Semmens, D.; Swearer, S. E.] Univ Melbourne, Dept Zool, Melbourne, Vic 3010, Australia Semmens, D (reprint author), Univ Melbourne, Dept Zool, Melbourne, Vic 3010, Australia. dasemm@unimelb.edu.au SWEARER, STEPHEN/0000-0001-6381-9943 Australian Research Council Discovery Project Grant; Melbourne Research Scholarship We thank M. Elgar, M. McCormick and 3 anonymous reviewers for their helpful comments on the manuscript. This study was funded by an Australian Research Council Discovery Project Grant awarded to S.E.S, and D.S. was supported by a Melbourne Research Scholarship. These experiments complied with Australian law and were conducted with approval from the Animal Ethics Committee at the University of Melbourne. Allen JD, 2008, BIOL BULL-US, V214, P42, DOI 10.2307/25066658; BAILEY KM, 1989, ADV MAR BIOL, V25, P1; Bang A, 2005, MAR BIOL, V147, P1419, DOI 10.1007/s00227-005-0037-y; Bang A, 2004, J FISH BIOL, V64, P1285, DOI 10.1111/j.1095-8649.2004.00391.x; Bang A, 2007, MAR ECOL PROG SER, V331, P233, DOI 10.3354/meps331233; Barbee NC, 2011, MAR FRESHWATER RES, V62, P790, DOI 10.1071/MF10284; Benzie V., 1968, Proceedings of the New Zealand Ecological Society, VNo. 15, P31; BENZIE V, 1968, New Zealand Journal of Marine and Freshwater Research, V2, P606; Bernardo J, 1996, AM ZOOL, V36, P216; Berra TM, 1996, MAR FRESHWATER RES, V47, P845, DOI 10.1071/MF9960845; Bochdansky AB, 2005, MAR BIOL, V147, P1413, DOI 10.1007/s00227-005-0036-z; Chambers R. Christopher, 1997, Fish and Fisheries Series, V21, P63; CHAMBERS RC, 1989, FISH B-NOAA, V87, P515; Chambers RC, 1996, AM ZOOL, V36, P180; Cowen Robert K., 1997, Fish and Fisheries Series, V21, P423; DOCKER MF, 1986, CAN J ZOOL, V64, P1104, DOI 10.1139/z86-165; DUARTE CM, 1989, OECOLOGIA, V80, P401, DOI 10.1007/BF00379043; Fisher R, 2007, MAR ECOL PROG SER, V344, P257, DOI 10.3354/meps06927; Gagliano M, 2007, J ANIM ECOL, V76, P174, DOI 10.1111/j.1365-2656.2006.01187.x; Giesing ER, 2011, P ROY SOC B-BIOL SCI, V278, P1753, DOI 10.1098/rspb.2010.1819; Gunasekera RM, 1996, AQUACULTURE, V146, P121, DOI 10.1016/S0044-8486(96)01365-8; Hare JA, 1997, ECOLOGY, V78, P2415; Heath DD, 1998, MATERNAL EFFECTS AS ADAPTATIONS, P178; Herrera JC, 1996, OCEANOL ACTA, V19, P313; Heyer CJ, 2001, CAN J FISH AQUAT SCI, V58, P1477, DOI 10.1139/cjfas-58-7-1477; Hicks A, 2010, MAR FRESHWATER RES, V61, P1252, DOI 10.1071/MF10011; Holmes TH, 2009, OECOLOGIA, V159, P401, DOI 10.1007/s00442-008-1220-x; Iguchi K, 1999, J FISH BIOL, V54, P705, DOI 10.1006/jfbi.1998.0909; Kavanagh KD, 2003, BIOL J LINN SOC, V80, P187, DOI 10.1046/j.1095-8312.2003.00229.x; Kennedy J, 2007, J SEA RES, V58, P65, DOI 10.1016/j.seares.2007.01.003; Kerrigan BA, 1997, MAR BIOL, V127, P395, DOI 10.1007/s002270050026; Khan MA, 2005, AQUACULT NUTR, V11, P11, DOI 10.1111/j.1365-2095.2004.00318.x; LAGOMARSINO IV, 1988, COPEIA, P1086; Marshall DJ, 2008, ADV MAR BIOL, V53, P1, DOI 10.1016/S0065-2881(07)53001-4; Marteinsdottir G, 1998, J FISH BIOL, V52, P1241, DOI 10.1111/j.1095-8649.1998.tb00969.x; McDowall RM, 2006, FISH FISH, V7, P153, DOI 10.1111/j.1467-2979.2006.00217.x; MCDOWALL RM, 1994, B MAR SCI, V54, P385; McDowall RM, 1968, NZ MAR DEP FISH RES, V2, P1; MCEDWARD LR, 1987, EVOLUTION, V41, P914, DOI 10.1111/j.1558-5646.1987.tb05865.x; MCEDWARD LR, 1987, MAR ECOL PROG SER, V37, P159, DOI 10.3354/meps037159; MITCHELL CP, 1989, NEW ZEAL J MAR FRESH, V23, P325, DOI 10.1080/00288330.1989.9516369; Morgan Steven G., 1995, P279; Pakkasmaa S, 2006, J COMP PHYSIOL B, V176, P387, DOI 10.1007/s00360-005-0057-4; Pepin P, 1997, CAN J FISH AQUAT SCI, V54, P2, DOI 10.1139/cjfas-54-S1-2; R Development Core Team, 2011, R LANG ENV STAT COMP; Regnier T, 2010, J COMP PHYSIOL B, V180, P25, DOI 10.1007/s00360-009-0385-x; REZNICK D, 1993, ECOLOGY, V74, P2011, DOI 10.2307/1940844; Reznick D., 1991, UNITY EVOLUTIONARY B, V2, P780; Rossiter MC, 1996, ANNU REV ECOL SYST, V27, P451, DOI 10.1146/annurev.ecolsys.27.1.451; Semmens D, 2011, J FISH BIOL, V79, P980, DOI 10.1111/j.1095-8649.2011.03074.x; Semmens D, 2009, THESIS U MELBOURNE; Taborsky B, 2006, BIOL LETT-UK, V2, P225, DOI 10.1098/rsbl.2005.0422; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Waters JM, 2000, MOL ECOL, V9, P1815, DOI 10.1046/j.1365-294x.2000.01082.x; Waters JM, 1999, MOL PHYLOGENET EVOL, V11, P1, DOI 10.1006/mpev.1998.0554 56 4 4 1 27 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. 2012 461 165 174 10.3354/meps09814 10 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography 986PF WOS:000307354700013 Bronze 2018-11-12 J Miller, AA; Rucas, SL Miller, Alissa A.; Rucas, Stacey L. Sleep-Wake State Tradeoffs, Impulsivity and Life History Theory EVOLUTIONARY PSYCHOLOGY English Article sleep; life-history theory; impulsivity; firefighters SENSATION SEEKING; DECISION-MAKING; ONE NIGHT; DEPRIVATION; BEHAVIOR; RISK; WOMEN; MODEL; PERSONALITY; PROPENSITY Evolutionary ecological theory predicts that sleep-wake state tradeoffs may be related to local environmental conditions and should therefore correlate to alterations in behavioral life history strategies. It was predicted that firefighters who slept more and reported better quality sleep on average would exhibit lower impulsivity inclinations related to slower life history trajectories. UPPS impulsivity scores and self-reported sleep averages were analyzed and indicated a negative association between sleep variables and urgency and a positive association with premeditation. Perseverance, and in some cases premeditation, however, disclosed an unpredicted marginally significant positive association between increased and emergency nighttime waking-related sleep deprivation. Sensation seeking was not associated with sleep variables, but was strongly associated with number of biological children. This research contributes to understanding the implications of human sleep across ecological and behavioral contexts and implies further research is necessary for constructing evolutionarily oriented measures of impulsivity inclination and its meaning in the context of life history strategies. [Miller, Alissa A.] Washington State Univ, Dept Anthropol, Pullman, WA 99164 USA; [Rucas, Stacey L.] Calif Polytech State Univ San Luis Obispo, Dept Social Sci, San Luis Obispo, CA 93407 USA Miller, AA (reprint author), Washington State Univ, Dept Anthropol, Pullman, WA 99164 USA. amiller@wsu.edu Acheson A, 2007, PHYSIOL BEHAV, V91, P579, DOI 10.1016/j.physbeh.2007.03.020; AGUIAR GFD, 1991, CHRONOBIOLOGIA, V18, P9; Anderson JR, 1998, AM J PRIMATOL, V46, P63, DOI 10.1002/(SICI)1098-2345(1998)46:1<63::AID-AJP5>3.0.CO;2-T; Arendt J, 2006, CHRONOBIOL INT, V23, P21, DOI 10.1080/07420520500464361; Banks S, 2007, J CLIN SLEEP MED, V3, P519; Benington JH, 2000, SLEEP, V23, P959; Bernier A, 2010, CHILD DEV, V81, P1739, DOI 10.1111/j.1467-8624.2010.01507.x; Chaumet G, 2009, AVIAT SPACE ENVIR MD, V80, P73, DOI 10.3357/ASEM.2366.2009; Costa PT, 1992, REVISED NEOPERSONALI; Cross CP, 2010, EVOL PSYCHOL-US, V8, P779, DOI 10.1177/147470491000800418; Donohew L, 2000, PERS INDIV DIFFER, V28, P1079, DOI 10.1016/S0191-8869(99)00158-0; EYSENCK SBG, 1985, PERS INDIV DIFFER, V6, P613, DOI 10.1016/0191-8869(85)90011-X; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Harrison Y, 1999, ORGAN BEHAV HUM DEC, V78, P128, DOI 10.1006/obhd.1999.2827; Harrison Y, 2000, J EXP PSYCHOL-APPL, V6, P236, DOI 10.1037//1076-898X.6.3.236; HOWARD RC, 1994, PERS INDIV DIFFER, V16, P605, DOI 10.1016/0191-8869(94)90188-0; Keye D, 2009, EUR J PSYCHOL ASSESS, V25, P175, DOI 10.1027/1015-5759.25.3.175; McCoul MD, 2001, PERS INDIV DIFFER, V31, P1303, DOI 10.1016/S0191-8869(00)00222-1; Mckenna BS, 2007, J SLEEP RES, V16, P245, DOI 10.1111/j.1365-2869.2007.00591.x; McKenna J J, 1986, Med Anthropol, V10, P9; McKenna James J, 2005, Paediatr Respir Rev, V6, P134, DOI 10.1016/j.prrv.2005.03.006; Miller J, 2003, PERS INDIV DIFFER, V34, P1403, DOI 10.1016/S0191-8869(02)00122-8; Mischel W, 2002, CURR DIR PSYCHOL SCI, V11, P50, DOI 10.1111/1467-8721.00166; Nederkoorn C, 2009, INT J OBESITY, V33, P905, DOI 10.1038/ijo.2009.98; Nilsson JP, 2005, J SLEEP RES, V14, P1, DOI 10.1111/j.1365-2869.2005.00442.x; Opp M.R, 2009, BMC EVOLUTIONARY BIO, V9, P1; Ostaszewski P., 1997, EUROPEAN PSYCHOL, V2, P35, DOI DOI 10.1027/1016-9040.2.1.35; Pine A, 2010, J NEUROSCI, V30, P8888, DOI 10.1523/JNEUROSCI.6028-09.2010; Quinlan RJ, 2010, HUM NATURE-INT BIOS, V21, P124, DOI 10.1007/s12110-010-9085-1; Reynolds B, 2004, BEHAV PROCESS, V67, P343, DOI 10.1016/j.beproc.2004.06.003; Robbins RN, 2004, J ADOLESCENT RES, V19, P428, DOI 10.1177/074355840328860; Rodehn M, 1999, Nurs Stand, V13, P44; Saper CB, 2005, J COMP NEUROL, V493, P92, DOI 10.1002/cne.20770; Schmidt RE, 2010, J SLEEP RES, V19, P3, DOI 10.1111/j.1365-2869.2009.00741.x; Schmidt RE, 2008, BEHAV SLEEP MED, V6, P178, DOI 10.1080/15402000802162570; Shneerson JM, 2005, SLEEP MED GUIDE SLEE, P22; Sicard B, 2001, MIL MED, V166, P871; Siegel JM, 2005, NATURE, V437, P1264, DOI 10.1038/nature04285; Stenuit P, 2008, BIOL PSYCHOL, V77, P81, DOI 10.1016/j.biopsycho.2007.09.011; Venkatraman V, 2007, SLEEP, V30, P603, DOI 10.1093/sleep/30.5.603; Waldeck TL, 1997, J SUBST ABUSE, V9, P269, DOI 10.1016/S0899-3289(97)90021-3; Whiteside SP, 2001, PERS INDIV DIFFER, V30, P669, DOI 10.1016/S0191-8869(00)00064-7; Wingrove J, 1997, PERS INDIV DIFFER, V22, P333, DOI 10.1016/S0191-8869(96)00222-X; Worthman C.M, 2008, EVOLUTIONARY MED HLT, P291; Worthman CM, 2007, J FAM PSYCHOL, V21, P124, DOI 10.1037/0893-3200.21.1.124; Worthman CM, 2002, ADOLESCENT SLEEP PAT, P69 46 0 0 1 14 EVOLUTIONARY PSYCHOL DAVIE C/O TOOD K SHACKELFORD, DIR, FLORIDA ATLANTIC UNIV, DEPT PSYCHOL, 2912 COLLEGE AVE, DAVIE, FL 33314 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. 2012 10 2 173 186 14 Psychology, Experimental Psychology 973ZD WOS:000306398500001 22947632 DOAJ Gold 2018-11-12 J Frederick, MJ Frederick, Michael J. Birth Weight Predicts Scores on the ADHD Self-Report Scale and Attitudes Towards Casual Sex in College Men: A Short-Term Life History Strategy? EVOLUTIONARY PSYCHOLOGY English Article Life-history theory; development; ADHD; impulsivity; short-term strategy SYMPTOMS; STUDENTS; CHILDREN; DISEASE; HEALTH Early development can have long-term effects on physiology and behavior. While severe disturbances predictably lead to dysfunction, recent work in humans and animals has led to a growing appreciation for the more subtle ways in which early conditions can modulate behavioral tendencies later in life. Life history theory predicts that early cues signaling a stressful or suboptimal environment might lead an organism to adopt a strategy favoring short-term gains and early reproduction. Fifty college men reported their birth weight, completed the Attention-Deficit/Hyperactivity Disorder (ADHD) Self-Report Scale, and answered a series of questions about their sexual history and attitudes towards short-term sexual encounters. Lower birth weights were associated with higher scores on the ADHD scale (r = -.352; p <= .05) and more favorable attitudes towards casual sex (r = -.456; p <= 0.001). There was a significant interaction between birth weight and casual sex favorability in predicting number of sexual partners (F-1,F-46 = 4.994; p <= .05). This suggests that, although men who are smaller at birth may otherwise be at a disadvantage in reproductive terms, they may offset their reduced fitness by being more willing to engage in casual sex. Hamilton Coll, Dept Psychol, Clinton, NY 13323 USA Frederick, MJ (reprint author), Hamilton Coll, Dept Psychol, Clinton, NY 13323 USA. mjfreder@hamilton.edu Adler L, 2003, ADULT ADHD SELF REPO; Barker D. J. P., 1995, GROWTH, P255; Boonstra R, 1998, ECOL MONOGR, V68, P371, DOI 10.1890/0012-9615(1998)068[0371:TIOPIS]2.0.CO;2; Breslau N, 2000, BIOL PSYCHIAT, V47, P71, DOI 10.1016/S0006-3223(99)00131-6; Cameron N., 2004, SOC NEUR SAN DIEG CA; Daly M, 2005, Q REV BIOL, V80, P55, DOI 10.1086/431025; Faurie C, 2004, EVOL HUM BEHAV, V25, P1, DOI 10.1016/S1090-5138(03)00064-3; Gluckman P, 2006, MISMATCH WHY OUR WOR; Gluckman PD, 2010, J DEV ORIG HLTH DIS, V1, P6, DOI 10.1017/S2040174409990171; Gluckman PD, 2011, EVOL APPL, V4, P249, DOI 10.1111/j.1752-4571.2010.00164.x; GOLDSTEIN S, 1998, ADHD REPORT, V6, P1; Gudjonsson GH, 2010, PERS INDIV DIFFER, V48, P601, DOI 10.1016/j.paid.2009.12.015; HALES CN, 1992, DIABETOLOGIA, V35, P595, DOI 10.1007/BF00400248; Hartmann T., 1993, ATTENTION DEFICIT DI; Johnstone RA, 1996, EVOLUTION, V50, P1382, DOI 10.1111/j.1558-5646.1996.tb03912.x; Kelly YJ, 2001, INT J EPIDEMIOL, V30, P88, DOI 10.1093/ije/30.1.88; Lahti J, 2006, J CHILD PSYCHOL PSYC, V47, P1167, DOI 10.1111/j.1469-7610.2006.01661.x; Nettle D, 2010, AM J HUM BIOL, V22, P172, DOI 10.1002/ajhb.20970; PERUSSE D, 1993, BEHAV BRAIN SCI, V16, P267, DOI 10.1017/S0140525X00029939; Phillips DIW, 2001, BRIT MED J, V322, P771, DOI 10.1136/bmj.322.7289.771; Scheres A, 2008, J NEURAL TRANSM, V115, P221, DOI 10.1007/s00702-007-0813-6; ShelleyTremblay JF, 1996, J GENET PSYCHOL, V157, P443, DOI 10.1080/00221325.1996.9914877; Tripp G, 2009, NEUROPHARMACOLOGY, V57, P579, DOI 10.1016/j.neuropharm.2009.07.026 23 4 4 0 2 EVOLUTIONARY PSYCHOL DAVIE C/O TOOD K SHACKELFORD, DIR, FLORIDA ATLANTIC UNIV, DEPT PSYCHOL, 2912 COLLEGE AVE, DAVIE, FL 33314 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. 2012 10 2 342 351 10 Psychology, Experimental Psychology 973ZD WOS:000306398500012 22947643 DOAJ Gold 2018-11-12 J Kuparinen, A; Mantyniemi, S; Hutchings, JA; Kuikka, S Kuparinen, Anna; Mantyniemi, Samu; Hutchings, Jeffrey A.; Kuikka, Sakari Increasing biological realism of fisheries stock assessment: towards hierarchical Bayesian methods ENVIRONMENTAL REVIEWS English Review Bayesian statistics; fisheries management; harvesting; life histories; overfishing; stock assessment COD GADUS-MORHUA; SALMON ONCORHYNCHUS-GORBUSCHA; FISH POPULATION-SIZE; INDUCED EVOLUTION; LIFE-HISTORY; MARINE FISH; ATLANTIC COD; STRATEGY EVALUATION; NATURAL MORTALITY; RECREATIONAL FISHERIES Excessively high rates of fishing mortality have led to rapid declines of several commercially important fish stocks. To harvest fish stocks sustainably, fisheries management requires accurate information about population dynamics, but the generation of this information, known as fisheries stock assessment, traditionally relies on conservative and rather narrowly data-driven modelling approaches. To improve the information available for fisheries management, there is a demand to increase the biological realism of stock-assessment practices and to better incorporate the available biological knowledge and theory. Here, we explore the development of fisheries stock-assessment models with an aim to increasing their biological realism, and focus particular attention on the possibilities provided by the hierarchical Bayesian modelling framework and ways to develop this approach as a means of efficiently incorporating different sources of information to construct more biologically realistic stock-assessment models. The main message emerging from our review is that to be able to efficiently improve the biological realism of stock-assessment models, fisheries scientists must go beyond the traditional stock-assessment data and explore the resources available in other fields of biological research, such as ecology, life-history theory and evolutionary biology, in addition to utilizing data available from other stocks of the same or comparable species. The hierarchical Bayesian framework provides a way of formally integrating these sources of knowledge into the stock-assessment protocol and to accumulate information from multiple sources and over time. [Kuparinen, Anna] Univ Helsinki, Ecol Genet Res Unit, Dept Biosci, FIN-00014 Helsinki, Finland; [Mantyniemi, Samu; Kuikka, Sakari] Univ Helsinki, Fisheries & Environm Management Grp, Dept Environm Sci, FIN-00014 Helsinki, Finland; [Hutchings, Jeffrey A.] Dalhousie Univ, Dept Biol, Halifax, NS B3H 4R2, Canada; [Hutchings, Jeffrey A.] Univ Oslo, Dept Biol, Ctr Ecol & Evolutionary Synth, NO-0316 Oslo, Norway Kuparinen, A (reprint author), Univ Helsinki, Ecol Genet Res Unit, Dept Biosci, POB 65, FIN-00014 Helsinki, Finland. anna.kuparinen@helsinki.fi Mantyniemi, Samu/B-4219-2008 Mantyniemi, Samu/0000-0002-3367-6280; Kuikka, Sakari/0000-0001-8802-8013 Academy of Finland; Natural Sciences and Engineering Research Council of Canada; European Union [244706/ECOKNOWS] The research leading to these results has received funding from the Academy of Finland (AK), the Natural Sciences and Engineering Research Council of Canada (JH) and from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 244706/ECOKNOWS project (AK, SM, SK). However, this paper does not necessarily reflect the European Commission's views and in no way anticipates the Commission's future policy in the area. Adams CE, 1997, J FISH BIOL, V51, P750, DOI 10.1006/jfbi.1997.0476; ALM GUNNAR, 1959, REPT INST FRESHWATER RES DROTTNINGHOLM, V40, P5; Arendt JD, 2011, EVOLUTION, V65, P43, DOI 10.1111/j.1558-5646.2010.01112.x; Atkinson D, 1997, TRENDS ECOL EVOL, V12, P235, DOI 10.1016/S0169-5347(97)01058-6; Babcock R, 1999, CAN J FISH AQUAT SCI, V56, P1668, DOI 10.1139/cjfas-56-9-1668; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Berec L, 2007, TRENDS ECOL EVOL, V22, P185, DOI 10.1016/j.tree.2006.12.002; Berger J. O., 1992, J ITAL STAT SOC, V1, P17, DOI [10.1007/BF02589047, DOI 10.1007/BF02589047]; Berkeley SA, 2004, ECOLOGY, V85, P1258, DOI 10.1890/03-0706; Berkeley SA, 2004, FISHERIES, V29, P23, DOI 10.1577/1548-8446(2004)29[23:FSVPOA]2.0.CO;2; BERRIGAN D, 1994, OIKOS, V70, P474, DOI 10.2307/3545787; Bertschy KA, 1999, ECOLOGY, V80, P2299, DOI 10.2307/176911; Beyer E.B., 1989, DANA, V7, P45; Birkeland C, 2005, TRENDS ECOL EVOL, V20, P356, DOI 10.1016/j.tree.2005.03.015; Biro PA, 2008, P NATL ACAD SCI USA, V105, P2919, DOI 10.1073/pnas.0708159105; Brandon J. R., 2006, Journal of Cetacean Research and Management, V8, P225; Brannstrom A, 2005, P ROY SOC B-BIOL SCI, V272, P2065, DOI 10.1098/rspb.2005.3185; Brattey J., 2004, 2004083 CAN SCI ADV; Breen PA, 2003, MAR FRESHWATER RES, V54, P619, DOI 10.1071/MF02174; Buckland ST, 2007, STAT SCI, V22, P44, DOI 10.1214/088342306000000673; Bull B., 2002, 117 NIWA; Burnham K. P., 1998, MODEL SELECTION INFE; Butterworth DS, 2008, ICES J MAR SCI, V65, P1717, DOI 10.1093/icesjms/fsn178; Butterworth DS, 2010, ICES J MAR SCI, V67, P567, DOI 10.1093/icesjms/fsq009; Butterworth DS, 1999, ICES J MAR SCI, V56, P985, DOI 10.1006/jmsc.1999.0532; Charnov Eric L., 1993, P1; Coleman FC, 2004, SCIENCE, V305, P1958, DOI 10.1126/science.1100397; Conn PB, 2010, CAN J FISH AQUAT SCI, V67, P511, DOI 10.1139/F09-194; Conover DO, 2000, MAR ECOL PROG SER, V208, P303; Consuegra S, 2005, J FISH BIOL, V67, P129, DOI 10.1111/j.1095-8649.2005.00844.x; Cooke SJ, 2006, BIOL CONSERV, V128, P93, DOI 10.1016/j.biocon.2005.09.019; Cotter AJR, 2004, FISH FISH, V5, P235, DOI 10.1111/j.1467-2679.2004.00157.x; Courchamp F, 2008, ALLEE EFFECTS IN ECOLOGY AND CONSERVATION, P1; Denney NH, 2002, P ROY SOC B-BIOL SCI, V269, P2229, DOI 10.1098/rspb.2002.2138; Dhillon RS, 2004, COPEIA, P37, DOI 10.1643/CI-02-098R1; DICKERSIN K, 1990, JAMA-J AM MED ASSOC, V263, P1385, DOI 10.1001/jama.263.10.1385; EASTERBROOK PJ, 1991, LANCET, V337, P867, DOI 10.1016/0140-6736(91)90201-Y; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; Food and Agriculture Organization of the United Nations (FAO), 2010, STAT WORLD FISH AQ; FRIDRIKSSON ARNI, 1934, CONS PERM INTERNAT EXPLOR MER RAPP ET PROCES VERBAUX REUNIONS, V86, P1; Froese R, 2008, FISH RES, V92, P231, DOI 10.1016/j.fishres.2008.01.005; Froese R, 2010, FISH FISH, V11, P194, DOI 10.1111/j.1467-2979.2009.00349.x; Gislason H, 2010, FISH FISH, V11, P149, DOI 10.1111/j.1467-2979.2009.00350.x; Goodwin NB, 2006, CAN J FISH AQUAT SCI, V63, P494, DOI 10.1139/f05-234; Gotelli NJ, 2008, PRIMER ECOLOGY; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; Green BS, 2008, ADV MAR BIOL, V54, P1, DOI 10.1016/S0065-2881(08)00001-1; Gulland J.A., 1965, 3 ICES CM; Hampton J, 2001, MAR FRESHWATER RES, V52, P937, DOI 10.1071/MF01049; He X, 2006, FISH B-NOAA, V104, P428; Heino M, 2002, B MAR SCI, V70, P639; Helser TE, 2004, ECOL MODEL, V178, P399, DOI 10.1016/j.ecolmodel.2004.02.013; Hilborn R, 2003, SCI MAR, V67, P15, DOI 10.3989/scimar.2003.67s115; Hilborn R, 1998, REV FISH BIOL FISHER, V8, P273, DOI 10.1023/A:1008877912528; Hilborn R., 1992, QUANTITATIVE FISHERI; Hilborn R, 2012, NAT RESOUR MODEL, V25, P122, DOI 10.1111/j.1939-7445.2011.00100.x; Hillary R, 2012, ECOLOGICAL IN PRESS; Hobbs NT, 2006, ECOL APPL, V16, P5, DOI 10.1890/04-0645; Hoeting JA, 1999, STAT SCI, V14, P382; Hutchings J.A., 2011, ECOLOGY CANADIAN CON; Hutchings J.A., 2002, HDB FISH BIOL FISHER, V1; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; Hutchings JA, 2005, CAN J FISH AQUAT SCI, V62, P824, DOI 10.1139/F05-081; Hutchings JA, 2004, BIOSCIENCE, V54, P297, DOI 10.1641/0006-3568(2004)054[0297:MFPCCF]2.0.CO;2; Hutchings JA, 2000, NATURE, V406, P882, DOI 10.1038/35022565; Hutchings JA, 2008, MOL ECOL, V17, P294, DOI 10.1111/j.1365-294X.2007.03485.x; Hutchings JA, 2012, ECOL APPL, V22, P1061, DOI 10.1890/11-1313.1; Hutchings JA, 2011, CAN J ZOOL, V89, P386, DOI [10.1139/Z11-022, 10.1139/z11-022]; Hutchings JA, 2009, EVOL APPL, V2, P324, DOI 10.1111/j.1752-4571.2009.00085.x; ICCAT, 2010, 2010 ATL BLUEF TUN S; ICES, 2010, 2010ACOM10 ICES CM; ICES, 2010, 2010ACOM06 ICES CM; ICES, 2010, WORKSH REV REC ADV S; ICES, 2008, 2008ACOM05 ICES CM; ICES, 2000, CMACFM05 ICES; ICES (International Council for the Exploration of the Sea), 2010, 2010ACOM11 ICES CM; ISC, 2008, PAC BLUEF TUN WORK G; JAYNES ET, 2003, PROBABILITY THEORY L; Jeffreys H., 1961, THEORY PROBABILITY; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Jorgensen C, 2010, CAN J FISH AQUAT SCI, V67, P1086, DOI 10.1139/F10-049; Keith DM, 2012, CAN J FISH AQUAT SCI, V69, P1150, DOI 10.1139/F2012-055; Kell LT, 2006, DEV AQUAC FISH SCI, V36, P379; Kell LT, 2005, ICES J MAR SCI, V62, P1483, DOI 10.1016/j.icesjms.2005.05.006; Kell LT, 2005, ICES J MAR SCI, V62, P750, DOI 10.1016/j.icesjms.2005.01.001; Kinas Paul G., 2007, Pan-American Journal of Aquatic Sciences, V2, P103; Kirkwood G.P., 1997, AM FISHERIES SOC S, P41; Kolody D., 2008, MULTIFAN CL STOCK AS; Koster FW, 2003, SCI MAR, V67, P101, DOI 10.3989/scimar.2003.67s1101; Kraak SBM, 2010, FISH FISH, V11, P119, DOI 10.1111/j.1467-2979.2009.00352.x; Kuparinen A, 2008, FISH FISH, V9, P201, DOI 10.1111/j.1467-2979.2008.00284.x; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; Kuparinen A, 2012, P ROY SOC B-BIOL SCI, V279, P2571, DOI 10.1098/rspb.2012.0120; Kuparinen A, 2012, EVOL APPL, V5, P245, DOI 10.1111/j.1752-4571.2011.00215.x; Kuparinen A, 2011, OECOLOGIA, V167, P435, DOI 10.1007/s00442-011-1989-x; Kuparinen A, 2009, EVOL APPL, V2, P234, DOI 10.1111/j.1752-4571.2009.00070.x; Lambert Yvan, 2009, Journal of Northwest Atlantic Fishery Science, V41, P93; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Law R, 2007, MAR ECOL PROG SER, V335, P271, DOI 10.3354/meps335271; Liermann M, 1997, CAN J FISH AQUAT SCI, V54, P1976, DOI 10.1139/f97-105; Linden A, 2011, ECOLOGY, V92, P1414, DOI 10.1890/10-1831.1; Link JS, 2010, ECOSYSTEM BASED FISH; Lohmueller KE, 2003, NAT GENET, V33, P177, DOI 10.1038/ng1071; Mantyniemi S, 2002, CAN J FISH AQUAT SCI, V59, P1748, DOI 10.1139/F02-146; Mantyniemi S, 2009, ICES J MAR SCI, V66, P2278, DOI 10.1093/icesjms/fsp206; Marshall DJ, 2008, OCEANOGR MAR BIOL, V46, P203, DOI 10.1201/9781420065756.ch5; Martell SJD, 2008, CAN J FISH AQUAT SCI, V65, P1586, DOI 10.1139/F08-055; McAllister MK, 1998, ICES J MAR SCI, V55, P1031, DOI 10.1006/jmsc.1998.0425; Megrey BA, 2005, ICES J MAR SCI, V62, P1256, DOI 10.1016/j.icejms.2005.05.018; Methot R.D., 2010, USER MANUAL STOCK SY; Methot R.D, 1990, INPFC B, V50, P259; Meyer R, 1999, CAN J FISH AQUAT SCI, V56, P1078, DOI 10.1139/cjfas-56-6-1078; Michielsens C, 2004, CAN J FISH AQUAT SCI, V61, P1032, DOI 10.1139/F04-048; Michielsens CGJ, 2008, CAN J FISH AQUAT SCI, V65, P962, DOI 10.1139/F08-015; Michielsens CGJ, 2006, CAN J FISH AQUAT SCI, V63, P1968, DOI 10.1139/F06-095; Michielsens CGJ, 2006, CAN J FISH AQUAT SCI, V63, P321, DOI 10.1139/F05-215; Millar RB, 2000, CAN J FISH AQUAT SCI, V57, P43, DOI 10.1139/f99-169; Millar RB, 1999, REV FISH BIOL FISHER, V9, P89, DOI 10.1023/A:1008838220001; Millar RB, 2000, J R STAT SOC C-APPL, V49, P327, DOI 10.1111/1467-9876.00195; Morita K, 2006, EVOLUTION, V60, P1516, DOI 10.1554/06-007.1; Morita K, 2009, BIOL LETTERS, V5, P628, DOI 10.1098/rsbl.2009.0290; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; Myers RA, 1998, ECOL APPL, V8, pS165, DOI 10.2307/2641375; Myers RA, 1998, REV FISH BIOL FISHER, V8, P285, DOI 10.1023/A:1008828730759; Myers RA, 2002, N AM J FISH MANAGE, V22, P351, DOI 10.1577/1548-8675(2002)022<0351:IBPWLD>2.0.CO;2; Myers RA, 2001, ICES J MAR SCI, V58, P937, DOI 10.1006/jmsc.2001.1109; Myers RA, 1998, FISH RES, V37, P51; Nash RDM, 2009, FISH RES, V95, P88, DOI 10.1016/j.fishres.2008.08.003; Newman KB, 2009, BIOMETRICS, V65, P572, DOI 10.1111/j.1541-0420.2008.01073.x; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Pacific Salmon Commission, 2010, 23 PAC SALM COMM; Parrish JK, 1999, ENVIRON BIOL FISH, V55, P157, DOI 10.1023/A:1007472602017; Patterson K, 2001, FISH FISH, V2, P125, DOI 10.1046/j.1467-2960.2001.00042.x; Patterson KR, 1999, CAN J FISH AQUAT SCI, V56, P208, DOI 10.1139/cjfas-56-2-208; Pauly D, 1998, SCIENCE, V279, P860, DOI 10.1126/science.279.5352.860; Perez KO, 2010, EVOLUTION, V64, P2450, DOI 10.1111/j.1558-5646.2010.00994.x; Peterman RM, 2004, ICES J MAR SCI, V61, P1331, DOI 10.1016/j.icesjms.2004.08.017; Pinsky M.L., 2011, P NATL ACAD IN PRESS; Portner HO, 2010, J FISH BIOL, V77, P1745, DOI 10.1111/j.1095-8649.2010.02783.x; POPE JG, 1982, J CONSEIL, V40, P176; Pope JG, 2006, ICES J MAR SCI, V63, P1029, DOI 10.1016/j.icesjms.2006.04.015; Post JR, 2002, FISHERIES, V27, P6, DOI 10.1577/1548-8446(2002)027<0006:CRF>2.0.CO;2; Pulkkinen H, 2011, MAR ECOL PROG SER, V443, P29, DOI 10.3354/meps09368; Punt AE, 1997, FISH RES, V29, P217, DOI 10.1016/S0165-7836(96)00539-5; Punt AE, 1997, REV FISH BIOL FISHER, V7, P35, DOI 10.1023/A:1018419207494; Punt AE, 1999, ICES J MAR SCI, V56, P860, DOI 10.1006/jmsc.1999.0538; Punt AE, 2007, ICES J MAR SCI, V64, P603, DOI 10.1093/icesjms/fsm035; Pyper BJ, 2001, CAN J FISH AQUAT SCI, V58, P1501, DOI 10.1139/cjfas-58-8-1501; Quesne W.J.F., 2012, J ANIM ECOL, V49, P20, DOI [10.1111/j.1365-2664.2011.02087.x, DOI 10.1111/J.1365-2664.2011.02087.X]; Quinn TJ, 1999, QUANTITATIVE FISH DY; Rahikainen M, 2004, FISH RES, V67, P111, DOI 10.1016/j.fishres.2003.09.047; Reynolds JD, 2005, P ROY SOC B-BIOL SCI, V272, P2337, DOI 10.1098/rspb.2005.3281; Reza F. M., 1961, INTRO INFORM THEORY; REZNICK DN, 1990, J EVOLUTION BIOL, V3, P185, DOI 10.1046/j.1420-9101.1990.3030185.x; Ricard D., 2012, FISH FISH IN PRESS; Rivot E, 2001, CAN J FISH AQUAT SCI, V58, P2284, DOI 10.1139/cjfas-58-11-2284; Rivot E, 2008, CAN J FISH AQUAT SCI, V65, P117, DOI 10.1139/F07-153; Rochet MJ, 2009, ICES J MAR SCI, V66, P754, DOI 10.1093/icesjms/fsp023; Rodd FH, 1997, ECOLOGY, V78, P419; Roff D. A., 2002, LIFE HIST EVOLUTION; Ruokolainen L, 2009, TRENDS ECOL EVOL, V24, P555, DOI 10.1016/j.tree.2009.04.009; Scarnecchia DL, 2007, REV FISH SCI, V15, P211, DOI 10.1080/10641260701486981; Schnute JT, 2001, CAN J FISH AQUAT SCI, V58, P10, DOI 10.1139/f00-150; SHEPHERD SA, 1995, MAR FRESHWATER RES, V46, P669, DOI 10.1071/MF9950669; Shimada Y, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0028859; Smith A.D.M., 1998, FISHERIES STOCK ASSE; Smith ADM, 2008, FISH RES, V94, P373, DOI 10.1016/j.fishres.2008.06.006; SOHN JJ, 1977, SCIENCE, V195, P199, DOI 10.1126/science.831271; STECF, 2005, 2 PLEN M BRUSS 7 11; Su ZM, 2004, CAN J FISH AQUAT SCI, V61, P2471, DOI 10.1139/f04-168; SUURONEN P, 1992, CAN J FISH AQUAT SCI, V49, P2104, DOI 10.1139/f92-234; Swain DP, 2007, P ROY SOC B-BIOL SCI, V274, P1015, DOI 10.1098/rapb.2006.0275; Swain DP, 2011, EVOL APPL, V4, P18, DOI 10.1111/j.1752-4571.2010.00128.x; Symes D, 1997, OCEAN COAST MANAGE, V35, P137, DOI 10.1016/S0964-5691(97)00030-6; Theriault V, 2007, J EVOLUTION BIOL, V20, P2266, DOI 10.1111/j.1420-9101.2007.01417.x; Thorson JT, 2011, CAN J FISH AQUAT SCI, V68, P1681, DOI 10.1139/F2011-086; Trippel EA, 1998, T AM FISH SOC, V127, P339, DOI 10.1577/1548-8659(1998)127<0339:ESAVAS>2.0.CO;2; Trippel Edward A., 1999, Journal of Northwest Atlantic Fishery Science, V25, P61, DOI 10.2960/J.v25.a6; Tukey J, 1977, EXPLORATORY DATA ANA; Uusi-Heikkila S, 2008, TRENDS ECOL EVOL, V23, P419, DOI 10.1016/j.tree.2008.04.006; Uusi-Heikkila S, 2011, P ROY SOC B-BIOL SCI, V278, P709, DOI 10.1098/rspb.2010.1507; Uusitalo L, 2005, ICES J MAR SCI, V62, P708, DOI 10.1016/j.icesjms.2005.02.005; Venturelli PA, 2010, ECOLOGY, V91, P2003, DOI 10.1890/09-1218.1; Venturelli PA, 2009, P ROY SOC B-BIOL SCI, V276, P919, DOI 10.1098/rspb.2008.1507; Vinther M, 2001, ICES J MAR SCI, V58, P311, DOI 10.1006/jmsc.2000.1012; Walsh MR, 2006, ECOL LETT, V9, P142, DOI 10.1111/j.1461-0248.2005.00858.x; Walters G.J., 1988, CAN J FISH AQUAT SCI, V45, P1848, DOI [10.1139/f88-217, DOI 10.1139/F88-217]; Wittgenstein L., 2001, TRACTATUS LOGICOPHI; Wootton R.J., 1998, ECOLOGY TELEOST FISH; Wyatt RJ, 2003, CAN J FISH AQUAT SCI, V60, P997, DOI 10.1139/F03-085; Wyatt RJ, 2002, CAN J FISH AQUAT SCI, V59, P695, DOI 10.1139/F02-041 191 27 27 5 65 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 1208-6053 1181-8700 ENVIRON REV Environ. Rev. 2012 20 2 135 151 10.1139/A2012-006 17 Environmental Sciences Environmental Sciences & Ecology 970CB WOS:000306104600004 2018-11-12 J De Baca, TC; Figueredo, AJ; Ellis, BJ De Baca, Tomas Cabeza; Figueredo, Aurelio Jose; Ellis, Bruce J. An Evolutionary Analysis of Variation in Parental Effort: Determinants and Assessment PARENTING-SCIENCE AND PRACTICE English Article LIFE-HISTORY THEORY; OFFSPRING RELATIONSHIPS; ENVIRONMENTAL RISK; FAMILY; SOCIALIZATION; MALTREATMENT; EXPRESSION; INVESTMENT; FRAMEWORK; CHILDREN Utilizing an evolutionary framework can elucidate the causes of variation in parental effort and guide measurement of relevant parenting constructs. The current article presents an evolutionary analysis of the determinants of parental effort and suggests that evolutionarily informed measures are needed to test evolutionary hypotheses. Towards this end, we employ evolutionary theory to guide development of new Parental Effort Scales, which supplement and extend extant methods for assessing coparenting. [De Baca, Tomas Cabeza] Univ Arizona, John & Doris Norton Sch Family & Consumer Sci, Tucson, AZ 85721 USA De Baca, TC (reprint author), Univ Arizona, John & Doris Norton Sch Family & Consumer Sci, 650 N Pk Ave, Tucson, AZ 85721 USA. tdebaca@email.arizona.edu Ahrons C., 1987, REMARRIAGE STEPPAREN, P225; BATESON P, 1994, TRENDS ECOL EVOL, V9, P399, DOI 10.1016/0169-5347(94)90066-3; Beaulieu DA, 2008, EVOL HUM BEHAV, V29, P249, DOI 10.1016/j.evolhumbehav.2008.01.002; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Bornstein MH, 2007, DEV PSYCHOL, V43, P850, DOI 10.1037/0012-1649.43.4.850; Brown J, 1998, CHILD ABUSE NEGLECT, V22, P1065, DOI 10.1016/S0145-2134(98)00087-8; Bugental DB, 2010, J EXP CHILD PSYCHOL, V106, P30, DOI 10.1016/j.jecp.2009.10.004; Bugental DB, 2004, DEV PSYCHOL, V40, P234, DOI 10.1037/0012-1649.40.2.234; Burch RL, 2000, EVOL HUM BEHAV, V21, P429, DOI 10.1016/S1090-5138(00)00056-8; Daly M., 1988, HOMICIDE; Draper P., 1988, SOCIOBIOLOGICAL PERS, P340, DOI DOI 10.1007/978-1-4612-3760-0_12; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Figueredo A. J., 2012, MEASUREMENT HU UNPUB; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Finer LB, 2006, PERSPECT SEX REPRO H, V38, P90, DOI 10.1363/3809006; Geary D. C., 1998, MALE FEMALE EVOLUTIO; Geary DC, 2001, PARENT-SCI PRACT, V1, P5, DOI 10.1207/S15327922PAR011&2_2; Geary DC, 2000, PSYCHOL BULL, V126, P55, DOI 10.1037/0033-2909.126.1.55; HALBERSTADT AG, 1986, J PERS SOC PSYCHOL, V51, P827, DOI 10.1037//0022-3514.51.4.827; HETHERINGTON ME, 1999, MONOGRAPHS SOC RES C, V259; Hrdy S. B., 1999, MOTHER NATURE HIST M; Kaplan H, 2001, FOUND HUM B, P293; Kuzawa CW, 2005, AM J HUM BIOL, V17, P5, DOI 10.1002/ajhb.20091; Lawson DW, 2009, EVOL HUM BEHAV, V30, P170, DOI 10.1016/j.evolhumbehav.2008.12.001; MANN J, 1992, ADAPTED MIND EVOLUTI, P367; Marlowe FW, 2003, CROSS-CULT RES, V37, P282, DOI 10.1177/1069397103254008; McHale JP, 2004, J ADULT DEV, V11, P221, DOI 10.1023/B:JADE.0000035629.29960.ed; MENDL M, 1988, J ZOOL, V215, P15, DOI 10.1111/j.1469-7998.1988.tb04882.x; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; RAGOZIN AS, 1982, DEV PSYCHOL, V18, P627, DOI 10.1037/0012-1649.18.4.627; Schlomer GL, 2011, PSYCHOL REV, V118, P496, DOI 10.1037/a0024043; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; Snyder D. K., 1981, MANUAL THEMARITAL SA; Sotomayor-Peterson M., 2012, COPARENTING TO UNPUB; Strassmann BI, 2002, P ROY SOC B-BIOL SCI, V269, P553, DOI 10.1098/rspb.2001.1912; Tinbergen N., 1963, Zeitschrift fuer Tierpsychologie, V20, P410; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Trumbo Stephen T., 1996, Advances in the Study of Behavior, V25, P3 38 10 10 0 18 PSYCHOLOGY PRESS HOVE 27 CHURCH RD, HOVE BN3 2FA, EAST SUSSEX, ENGLAND 1529-5192 PARENT-SCI PRACT Parent.-Sci. Pract. 2012 12 2-3 SI 94 104 10.1080/15295192.2012.680396 11 Family Studies; Psychology, Developmental Family Studies; Psychology 961RZ WOS:000305487200002 2018-11-12 J Mims, MC; Olden, JD Mims, Meryl C.; Olden, Julian D. Life history theory predicts fish assemblage response to hydrologic regimes ECOLOGY English Article disturbance; flow regime; freshwater fishes; life history; traits; United States ALTERED FLOW REGIMES; FRESH-WATER FISHES; AMERICAN FISHES; RIVER SYSTEMS; UNITED-STATES; STRATEGIES; HABITAT; TEMPLET; TRAITS; RECOMMENDATIONS The hydrologic regime is regarded as the primary driver of freshwater ecosystems, structuring the physical habitat template, providing connectivity, framing biotic interactions, and ultimately selecting for specific life histories of aquatic organisms. In the present study, we tested ecological theory predicting directional relationships between major dimensions of the flow regime and life history composition of fish assemblages in perennial free-flowing rivers throughout the continental United States. Using long-term discharge records and fish trait and survey data for 109 stream locations, we found that 11 out of 18 relationships (61%) tested between the three life history strategies (opportunistic, periodic, and equilibrium) and six hydrologic metrics (two each describing flow variability, predictability, and seasonality) were statistically significant (P <= 0.05) according to quantile regression. Our results largely support a priori hypotheses of relationships between specific flow indices and relative prevalence of fish life history strategies, with 82% of all significant relationships observed supporting predictions from life history theory. Specifically, we found that (1) opportunistic strategists were positively related to measures of flow variability and negatively related to predictability and seasonality, (2) periodic strategists were positively related to high flow seasonality and negatively related to variability, and (3) the equilibrium strategists were negatively related to flow variability and positively related to predictability. Our study provides important empirical evidence illustrating the value of using life history theory to understand both the patterns and processes by which fish assemblage structure is shaped by adaptation to natural regimes of variability, predictability, and seasonality of critical flow events over broad biogeographic scales. [Mims, Meryl C.; Olden, Julian D.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA Mims, MC (reprint author), Univ Washington, Sch Aquat & Fishery Sci, 1122 NE Boat St, Seattle, WA 98195 USA. mmims@uw.edu Mims, Meryl/0000-0003-0570-988X; Olden, Julian/0000-0003-2143-1187 University of Washington; National Science Foundation [DGE-0718124]; John N. Cobb Scholarship in Fisheries; University of Washington's School of Aquatic and Fishery Sciences; U.S. Environmental Protection Agency [833834] We thank Alan Herlihy for providing the fish occurrence data, LeRoy Poff and Zach Shattuck for their contributions to the trait database, and Dave Lawrence for his assistance with ensuring consistent taxonomy. Tim Essington, Josh Lawler, Daniel Schindler, and two anonymous reviewers provided valuable comments that greatly improved the manuscript. Funding for M. C. Mims was provided by a University of Washington Top Scholar Graduate Fellowship and a National Science Foundation Graduate Research Fellowship (Grant No. DGE-0718124), and by the John N. Cobb Scholarship in Fisheries and the H. Mason Keeler Endowment for Excellence through University of Washington's School of Aquatic and Fishery Sciences. J. D. Olden acknowledges funding support from the U.S. Environmental Protection Agency Science to Achieve Results (STAR) Program (Grant No. 833834). Blanck A, 2007, FRESHWATER BIOL, V52, P843, DOI 10.1111/j.1365-2427.2007.01736.x; Bunn SE, 2002, ENVIRON MANAGE, V30, P492, DOI 10.1007/s00267-002-2737-0; Cade BS, 2003, FRONT ECOL ENVIRON, V1, P412, DOI 10.1890/1540-9295(2003)001[0412:AGITQR]2.0.CO;2; Eros T., 2005, LARGE RIVERS, V16, P289; Falcone J. A., 2010, Ecology, V91, P621, DOI 10.1890/09-0889.1; Freeman MC, 2001, ECOL APPL, V11, P179, DOI 10.1890/1051-0761(2001)011[0179:FAHEOJ]2.0.CO;2; Gilliom R. J., 1995, DESIGN NATL WATER QU; Herlihy AT, 2006, AM FISH S S, V48, P87; Hughes RM, 2000, HYDROBIOLOGIA, V422, P429, DOI 10.1023/A:1017029107669; Jackson DA, 2001, CAN J FISH AQUAT SCI, V58, P157, DOI 10.1139/cjfas-58-1-157; JUNK W J, 1989, Canadian Special Publication of Fisheries and Aquatic Sciences, V106, P110; Kelly V., 2008, THESIS OREGON STATE; Kennard MJ, 2010, RIVER RES APPL, V26, P137, DOI 10.1002/rra.1249; Kleinschmidt Associates, 2008, SMALLM BASS BROOK TR; KOENKER R, 1978, ECONOMETRICA, V46, P33, DOI 10.2307/1913643; Koenker R., 2005, QUANTREG QUANTILE RE; Konrad CP, 2008, FRESHWATER BIOL, V53, P1983, DOI 10.1111/j.1365-2427.2008.02024.x; Lamouroux N, 2002, ECOLOGY, V83, P1792, DOI 10.2307/3071765; Larned ST, 2010, J AM WATER RESOUR AS, V46, P541, DOI 10.1111/j.1752-1688.2010.00433.x; Legendre P., 1998, NUMERICAL ECOLOGY; Logez M, 2010, J N AM BENTHOL SOC, V29, P1310, DOI 10.1899/09-125.1; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; Lytle DA, 2001, AM NAT, V157, P525, DOI 10.1086/319930; MAC ARTHUR ROBERT H., 1967; Martin FD, 2008, HYDROBIOLOGIA, V598, P139, DOI 10.1007/s10750-007-9146-6; Mathews R, 2007, J AM WATER RESOUR AS, V43, P1400, DOI 10.1111/j.1752-1688.2007.00099.x; McCann K, 1998, ECOLOGY, V79, P2957, DOI 10.2307/176529; Merritt DM, 2010, FRESHWATER BIOL, V55, P206, DOI 10.1111/j.1365-2427.2009.02206.x; Mims MC, 2010, ECOL FRESHW FISH, V19, P390, DOI 10.1111/j.1600-0633.2010.00422.x; Minckley WL, 1999, GREAT BASIN NAT, V59, P230; Naiman RJ, 2008, CR GEOSCI, V340, P629, DOI 10.1016/j.crte.2008.01.002; Olden J. D., 2010, COMMUNITY ECOLOGY ST, P83; Olden JD, 2006, ECOL MONOGR, V76, P25, DOI 10.1890/05-0330; Olden JD, 2003, RIVER RES APPL, V19, P101, DOI 10.1002/rra.700; Olden JD, 2010, DIVERS DISTRIB, V16, P496, DOI 10.1111/j.1472-4642.2010.00655.x; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Poff NL, 2010, FRESHWATER BIOL, V55, P147, DOI 10.1111/j.1365-2427.2009.02204.x; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; Poff NL, 1996, FRESHWATER BIOL, V36, P71, DOI 10.1046/j.1365-2427.1996.00073.x; POFF NL, 1995, ECOLOGY, V76, P606, DOI 10.2307/1941217; R Development Core Team, 2005, R 2 11 0 R PROJ STAT; RESH VH, 1988, J N AM BENTHOL SOC, V7, P433, DOI 10.2307/1467300; Richter BD, 2006, RIVER RES APPL, V22, P297, DOI 10.1002/rra.892; Rogers W. H, 1992, STATA TECHNICAL B, V9, P16; Rosenbaum P. R., 1995, J AM STAT ASSOC, V90, P1423; Simley J. D., 2009, NATL MAP HYDROGRAPHY; Souchon Y, 2008, RIVER RES APPL, V24, P506, DOI 10.1002/rra.1134; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; Statzner B, 1997, FRESHWATER BIOL, V38, P109, DOI 10.1046/j.1365-2427.1997.00195.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Tedesco PA, 2008, OECOLOGIA, V156, P691, DOI 10.1007/s00442-008-1021-2; Tockner K, 2000, HYDROL PROCESS, V14, P2861, DOI 10.1002/1099-1085(200011/12)14:16/17<2861::AID-HYP124>3.0.CO;2-F; TOWNSEND CR, 1994, FRESHWATER BIOL, V31, P265, DOI 10.1111/j.1365-2427.1994.tb01740.x; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1722, DOI 10.1111/j.1365-2427.2008.02035.x; Vogel R. M., 2005, USGS HYDROCLIMATIC D; Winemiller K. O., 2005, CANADIAN J FISHERIES, V52, P875; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242 60 113 114 3 141 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 0012-9658 ECOLOGY Ecology JAN 2012 93 1 35 45 10.1890/11-0370.1 11 Ecology Environmental Sciences & Ecology 915AU WOS:000301996100007 22486085 2018-11-12 J Hulshof, CM; Stegen, JC; Swenson, NG; Enquist, CAF; Enquist, BJ Hulshof, Catherine M.; Stegen, James C.; Swenson, Nathan G.; Enquist, Carolyn A. F.; Enquist, Brian J. Interannual variability of growth and reproduction in Bursera simaruba: the role of allometry and resource variability ECOLOGY English Article allocation; allometry; Bursera simaruba; Costa Rica; life history theory; tropical dry forest TROPICAL FORESTS; DRY-FOREST; PLANTS; COSTS; FRUIT; SIZE; ALLOCATION; RESPONSES; TREE; POPULATIONS Plants are expected to differentially allocate resources to reproduction, growth, and survival in order to maximize overall fitness. Life history theory predicts that the allocation of resources to reproduction should occur at the expense of vegetative growth. Although it is known that both organism size and resource availability can influence life history traits, few studies have addressed how size dependencies of growth and reproduction and variation in resource supply jointly affect the coupling between growth and reproduction. In order to understand the relationship between growth and reproduction in the context of resource variability, we utilize a long-term observational data set consisting of 670 individual trees over a 10-year period within a local population of Bursera simaruba (L.) Sarg. We (1) quantify the functional form and variability in the growth-reproduction relationship at the population and individual-tree level and (2) develop a theoretical framework to understand the allometric dependence of growth and reproduction. Our findings suggest that the differential responses of allometric growth and reproduction to resource availability, both between years and between microsites, underlie the apparent relationship between growth and reproduction. Finally, we offer an alternative approach for quantifying the relationship between growth and reproduction that accounts for variation in allometries. [Hulshof, Catherine M.; Enquist, Brian J.] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA; [Stegen, James C.] Univ N Carolina, Dept Biol, Chapel Hill, NC 27599 USA; [Swenson, Nathan G.] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA; [Enquist, Carolyn A. F.] Univ Arizona, Sch Nat Resources & Environm, Tucson, AZ 85721 USA; [Enquist, Carolyn A. F.] USA, Natl Phenol Network, Tucson, AZ 85719 USA; [Enquist, Carolyn A. F.] Wildlife Soc, Bethesda, MD 20814 USA; [Enquist, Brian J.] Santa Fe Inst, Santa Fe, NM 87501 USA; [Enquist, Brian J.] Conservat Int, Trop Ecol Assessment & Monitoring TEAM Initiat, Arlington, VA 22202 USA Hulshof, CM (reprint author), Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA. hulshof@email.arizona.edu Stegen, James/Q-3078-2016; Swenson, Nathan/A-3514-2012 Stegen, James/0000-0001-9135-7424; Swenson, Nathan/0000-0003-3819-9767; Enquist, Brian/0000-0002-6124-7096; Hulshof, Catherine/0000-0002-2200-8076 NSF [DBI-0906005, DBI-0805618]; TEAM from Conservation International; NSF ATB [DEB-0133974] Warm thanks to D. Venable, T. Huxman, and two anonymous reviewers for providing valuable and enlightening comments. We also thank G. C. Stevens for providing his impressive original data set; without it this study would not have been possible. C. M. Hulshof was supported by a NSF Graduate Diversity Fellowship and partially supported by a TEAM fellowship to B. J. Enquist from Conservation International. J. C. Stegen was supported by a NSF Postdoctoral Fellowship in Bioinformatics (DBI-0906005). N. G. Swenson was supported by a NSF Postdoctoral Fellowship in Bioinformatics (DBI-0805618). B. J. Enquist was supported by an NSF ATB award (DEB-0133974). ACOSTA FJ, 1993, OIKOS, V68, P267, DOI 10.2307/3544839; Bazzaz F. A., 2000, Seeds: the ecology of regeneration in plant communities, P1, DOI 10.1079/9780851994321.0001; Bazzaz FA, 1985, STUDIES PLANT DEMOGR, P373; Bonser SP, 2009, PERSPECT PLANT ECOL, V11, P31, DOI 10.1016/j.ppees.2008.10.003; Calder W. A., 1984, SIZE FUNCTION LIFE H; CHAPIN FS, 1987, BIOSCIENCE, V37, P49, DOI 10.2307/1310177; Chave J, 2005, OECOLOGIA, V145, P87, DOI 10.1007/s00442-005-0100-x; Chiarello N. R., 1991, RESPONSE PLANTS MULT, P161, DOI 10.1016/B978-0-08-092483-0.50013-X; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; DENSLOW JS, 1990, ECOLOGY, V71, P165, DOI 10.2307/1940257; Dunphy BK, 2007, AM J BOT, V94, P1786, DOI 10.3732/ajb.94.11.1786; Enquist BJ, 1999, NATURE, V401, P907, DOI 10.1038/44819; Enquist BJ, 2007, NATURE, V449, P218, DOI 10.1038/nature06061; FOX JF, 1991, ECOLOGY, V72, P1013, DOI 10.2307/1940601; GREENBERG R, 1995, J TROP ECOL, V11, P619, DOI 10.1017/S0266467400009184; Grime J. P., 1979, PLANT STRATEGIES VEG; Hagnauer W., 1993, SISTEMA AGROECOLOGIC; HARPER JL, 1970, J ECOL, V58, P681, DOI 10.2307/2258529; Hartshorn G., 1983, COSTA RICAN NATURAL, P118; Holdridge L. R., 1971, FOREST ENV TROPICAL; HUBBELL SP, 1980, OIKOS, V35, P214, DOI 10.2307/3544429; ISOBE T, 1990, ASTROPHYS J, V364, P104, DOI 10.1086/169390; JANZEN DH, 1988, ANN MO BOT GARD, V75, P105, DOI 10.2307/2399468; Kerkhoff AJ, 2009, J THEOR BIOL, V257, P519, DOI 10.1016/j.jtbi.2008.12.026; Knops JMH, 2007, P NATL ACAD SCI USA, V104, P16982, DOI 10.1073/pnas.0704251104; Koenig WD, 2009, AM NAT, V173, P682, DOI 10.1086/597605; Levins R., 1968, EVOLUTION CHANGING E; Moles AT, 2004, J ECOL, V92, P384, DOI 10.1111/j.0022-0477.2004.00880.x; Niklas K.J., 1994, PLANT ALLOMETRY SCAL; Niklas KJ, 2003, EVOL ECOL RES, V5, P79; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; PETERS RH, 1988, OECOLOGIA, V74, P612, DOI 10.1007/BF00380061; PITELKA LF, 1980, AM J BOT, V67, P942, DOI 10.2307/2442435; R Development Core Team, 2011, R LANG ENV STAT COMP; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Roff Derek A., 1992; SAMSON DA, 1986, AM NAT, V127, P667, DOI 10.1086/284512; SCOTT PE, 1984, BIOTROPICA, V16, P319, DOI 10.2307/2387943; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; Stevens G. C., 1983, COSTA RICAN NATURAL, P201; STEVENS GC, 1987, ECOLOGY, V68, P77, DOI 10.2307/1938806; Sugiyama S, 1998, FUNCT ECOL, V12, P280, DOI 10.1046/j.1365-2435.1998.00187.x; THOMPSON K, 1981, AM NAT, V117, P205, DOI 10.1086/283700; TUOMI J, 1983, AM ZOOL, V23, P25; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Warton DI, 2006, BIOL REV, V81, P259, DOI 10.1017/S1464793106007007; Weiner J, 2009, J ECOL, V97, P1220, DOI 10.1111/j.1365-2745.2009.01559.x; Wheelwright NT, 2004, P NATL ACAD SCI USA, V101, P8051, DOI 10.1073/pnas.0402735101; WILLIAMSON GB, 1984, B TORREY BOT CLUB, V111, P51, DOI 10.2307/2996210; Wright SJ, 1999, ECOLOGY, V80, P1632, DOI 10.1890/0012-9658(1999)080[1632:TENOSO]2.0.CO;2; YOUNG TP, 1984, J ECOL, V72, P637, DOI 10.2307/2260073 51 6 6 0 34 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology JAN 2012 93 1 180 190 10.1890/11-0740.1 11 Ecology Environmental Sciences & Ecology 915AU WOS:000301996100020 22486098 2018-11-12 J Rotella, JJ; Link, WA; Chambert, T; Stauffer, GE; Garrott, RA Rotella, Jay J.; Link, William A.; Chambert, Thierry; Stauffer, Glenn E.; Garrott, Robert A. Evaluating the demographic buffering hypothesis with vital rates estimated for Weddell seals from 30 years of mark-recapture data JOURNAL OF ANIMAL ECOLOGY English Article demography; environmental canalization; Leptonychotes weddellii; marine mammal; pinniped; population dynamics POPULATION-GROWTH RATE; SOUTHERN ELEPHANT SEALS; AGE-SPECIFIC SURVIVAL; ANTARCTIC FUR SEALS; LONG-LIVED SEABIRD; LIFE-HISTORIES; TEMPORAL VARIATION; ENVIRONMENTAL STOCHASTICITY; CLIMATE-CHANGE; MCMURDO-SOUND 1. Life-history theory predicts that those vital rates that make larger contributions to population growth rate ought to be more strongly buffered against environmental variability than are those that are less important. Despite the importance of the theory for predicting demographic responses to changes in the environment, it is not yet known how pervasive demographic buffering is in animal populations because the validity of most existing studies has been called into question because of methodological deficiencies. 2. We tested for demographic buffering in the southern-most breeding mammal population in the world using data collected from 5558 known-age female Weddell seals over 30 years. We first estimated all vital rates simultaneously with mark-recapture analysis and then estimated process variance and covariance in those rates using a hierarchical Bayesian approach. We next calculated the population growth rate's sensitivity to changes in each of the vital rates and tested for evidence of demographic buffering by comparing properly scaled values of sensitivity and process variance in vital rates. 3. We found evidence of positive process covariance between vital rates, which indicates that all vital rates are affected in the same direction by changes in annual environment. Despite the positive correlations, we found strong evidence that demographic buffering occurred through reductions in variation in the vital rates to which population growth rate was most sensitive. Process variation in vital rates was inversely related to sensitivity measures such that variation was greatest in breeding probabilities, intermediate for survival rates of young animals and lowest for survival rates of older animals. 4. Our work contributes to a small but growing set of studies that have used rigorous methods on long-term, detailed data to investigate demographic responses to environmental variation. The information from these studies improves our understanding of life-history evolution in stochastic environments and provides useful information for predicting population responses to future environmental change. Our results for an Antarctic apex predator also provide useful baselines from a marine ecosystem when its top-and middle-trophic levels were not substantially impacted by human activity. [Rotella, Jay J.; Chambert, Thierry; Stauffer, Glenn E.; Garrott, Robert A.] Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA; [Link, William A.] US Geol Survey, Patuxent Wildlife Res Ctr, Laurel, MD 20708 USA Rotella, JJ (reprint author), Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA. rotella@montana.edu Chambert, Thierry/0000-0002-9450-9080 National Science Foundation, Division of Polar Programs [DEB-0635739]; NSF; Raytheon Polar Services Company; Antarctic Support Associates; United States Navy and Air Force; Petroleum Helicopters Incorporated We thank the many individuals who have worked on projects associated with the Erebus Bay Weddell seal population since the 1960s. We thank J. D. Nichols for helpful suggestions during analysis, and we thank D. B. Siniff for discussions that improved this manuscript. We are grateful to J.-M. Gaillard, J. D. Nichols and two anonymous reviewers for their useful comments on earlier drafts of the manuscript. The project was supported by the National Science Foundation, Division of Polar Programs (grant no. DEB-0635739 to R. A. Garrott, J. J. Rotella, and D. B. Siniff) and prior NSF grants to R. A. Garrott, J. J. Rotella, D. B. Siniff and J. W. Testa. Logistical support for fieldwork in Antarctica was provided by Raytheon Polar Services Company, Antarctic Support Associates, the United States Navy and Air Force, and Petroleum Helicopters Incorporated. Animal handling protocol was approved by Montana State University's Animal Care and Use Committee (Protocol #41-05). Altwegg R, 2007, AM NAT, V169, P47, DOI 10.1086/510215; Amason A.N., 1981, CANADIAN J FISHERIES, V38, P1077; Barbraud C, 2011, J ANIM ECOL, V80, P89, DOI 10.1111/j.1365-2656.2010.01752.x; Beauplet G, 2006, OIKOS, V112, P430, DOI 10.1111/j.0030-1299.2006.14412.x; Beauplet G, 2005, J ANIM ECOL, V74, P1160, DOI 10.1111/j.1365-2656.2005.01016.x; BENTON TG, 1995, EVOL ECOL, V9, P559, DOI 10.1007/BF01237655; Benton TG, 1996, AM NAT, V147, P115, DOI 10.1086/285843; Benton TG, 1999, TRENDS ECOL EVOL, V14, P467, DOI 10.1016/S0169-5347(99)01724-3; Berteaux D, 2006, CLIMATE RES, V32, P95, DOI 10.3354/cr032095; Boyce MS, 2006, TRENDS ECOL EVOL, V21, P141, DOI 10.1016/j.tree.2005.11.018; Boyd IL, 2000, FUNCT ECOL, V14, P623, DOI 10.1046/j.1365-2435.2000.t01-1-00463.x; BOYD IL, 1995, J ANIM ECOL, V64, P505, DOI 10.2307/5653; Bradshaw CJA, 2000, J AGRIC BIOL ENVIR S, V5, P475, DOI 10.2307/1400661; Bradshaw CJA, 2002, POLAR BIOL, V25, P650, DOI 10.1007/s00300-002-0396-5; BRAULT S, 1993, ECOLOGY, V74, P1444, DOI 10.2307/1940073; Brooks SP, 1998, J COMPUT GRAPH STAT, V7, P434, DOI 10.2307/1390675; CAM E, 2002, AM NAT, V159, P97; Cameron MF, 2004, CAN J ZOOL, V82, P601, DOI 10.1139/Z04-025; Cameron MF, 2007, ANTARCT SCI, V19, P149, DOI 10.1017/S0954102007000223; Caswell H, 1999, P NATL ACAD SCI USA, V96, P3308, DOI 10.1073/pnas.96.6.3308; CASWELL H, 1978, THEOR POPUL BIOL, V14, P215, DOI 10.1016/0040-5809(78)90025-4; Caswell H, 2001, MATRIX POPULATION MO; Clutton-Brock TH, 1988, REPROD SUCCESS, P472; Coulson T, 2005, J ANIM ECOL, V74, P789, DOI 10.1111/j.1365-2656.2005.00975.x; de Little Siobhan C., 2007, BMC Ecology, V7, P3, DOI 10.1186/1472-6785-7-3; Doak DF, 2005, AM NAT, V166, pE14, DOI 10.1086/430642; Doherty PF, 2004, OIKOS, V105, P606; Engen S, 2009, AM NAT, V174, P795, DOI 10.1086/647930; Festa-Bianchet M, 2003, J ANIM ECOL, V72, P640, DOI 10.1046/j.1365-2656.2003.00735.x; Festa-Bianchet M, 1998, AM NAT, V152, P367, DOI 10.1086/286175; Forcada J, 2008, GLOBAL CHANGE BIOL, V14, P2473, DOI 10.1111/j.1365-2486.2008.01678.x; Frederiksen M, 2008, J ANIM ECOL, V77, P1020, DOI 10.1111/j.1365-2656.2008.01422.x; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; Gimenez O, 2010, ECOLOGY, V91, P951, DOI 10.1890/09-1903.1; Hadley GL, 2007, J ANIM ECOL, V76, P448, DOI 10.1111/j.1365-2656.2007.01219.x; Hadley GL, 2006, J ANIM ECOL, V75, P1058, DOI 10.1111/j.1365-2656.2006.01118.x; Heppell SS, 1998, COPEIA, P367, DOI 10.2307/1447430; Hindle AG, 2009, J EXP BIOL, V212, P790, DOI 10.1242/jeb.025387; JENKINS D, 1963, J ANIM ECOL, V32, P317, DOI 10.2307/2598; Jenouvrier S, 2005, OIKOS, V108, P511, DOI 10.1111/j.0030-1299.2005.13351.x; Jongejans E, 2010, ECOL LETT, V13, P736, DOI 10.1111/j.1461-0248.2010.01470.x; Karell P, 2009, J ANIM ECOL, V78, P1050, DOI 10.1111/j.1365-2656.2009.01563.x; King R., 2009, BAYESIAN ANAL POPULA; Koons DN, 2009, OIKOS, V118, P972, DOI 10.1111/j.1600-0706.2009.16399.x; Lake S, 2008, MAR ECOL PROG SER, V366, P259, DOI 10.3354/meps07502; LEWONTIN RC, 1969, P NATL ACAD SCI USA, V62, P1056, DOI 10.1073/pnas.62.4.1056; Link WA, 2010, BAYESIAN INFERENCE WITH ECOLOGICAL APPLICATIONS, P1; LINK WA, 1994, OIKOS, V69, P539, DOI 10.2307/3545869; Link WA, 2002, ECOLOGY, V83, P3299, DOI 10.2307/3072080; Lunn D, 2009, STAT MED, V28, P3049, DOI 10.1002/sim.3680; McMahon CR, 2009, J EXP MAR BIOL ECOL, V372, P36, DOI 10.1016/j.jembe.2009.02.006; McMahon CR, 2005, P ROY SOC B-BIOL SCI, V272, P923, DOI 10.1098/rspb.2004.3038; McMahon CR, 2005, MAR ECOL PROG SER, V288, P273, DOI 10.3354/meps288273; McMahon CR, 2003, J ANIM ECOL, V72, P61, DOI 10.1046/j.1365-2656.2003.00685.x; Morris WF, 2004, AM NAT, V163, P579, DOI 10.1086/382550; Nevoux M, 2010, OECOLOGIA, V162, P383, DOI 10.1007/s00442-009-1482-y; NICHOLS JD, 1992, J WILDLIFE MANAGE, V56, P485, DOI 10.2307/3808863; Nur N, 1999, BIRD STUDY, V46, P92; Oli MK, 2003, AM NAT, V161, P422, DOI 10.1086/367591; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; Pfister CA, 1998, P NATL ACAD SCI USA, V95, P213, DOI 10.1073/pnas.95.1.213; Pistorius PA, 2000, J WILDLIFE MANAGE, V64, P373, DOI 10.2307/3803235; Pistorius PA, 1999, OECOLOGIA, V121, P201, DOI 10.1007/s004420050922; Proffitt KM, 2008, MAR MAMMAL SCI, V24, P677, DOI 10.1111/j.1748-7692.2008.00207.x; Proffitt KM, 2007, OIKOS, V116, P1683, DOI 10.1111/j.2007.0030-1299.16139.x; Proffitt KM, 2007, ECOSYSTEMS, V10, P119, DOI 10.1007/s10021-006-9003-x; R Development Core Team, 2010, R LANG ENV STAT COMP; Reid JM, 2004, J ANIM ECOL, V73, P777, DOI 10.1111/j.0021-8790.2004.00854.x; Ricklefs RE, 2010, P NATL ACAD SCI USA, V107, P10314, DOI 10.1073/pnas.1005862107; Rotella JJ, 2009, ECOLOGY, V90, P975, DOI 10.1890/08-0971.1; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Schofield MR, 2009, ENVIRON ECOL STAT, V16, P369, DOI 10.1007/s10651-007-0069-1; Sim IMW, 2011, J ANIM ECOL, V80, P159, DOI 10.1111/j.1365-2656.2010.01750.x; SINIFF DB, 1977, ECOL MONOGR, V47, P319, DOI 10.2307/1942520; Smith WO, 2007, PHILOS T R SOC B, V362, P95, DOI 10.1098/rstb.2006.1956; STIRLING I, 1969, ECOLOGY, V50, P573, DOI 10.2307/1936247; TESTA JW, 1987, ECOL MONOGR, V57, P149, DOI 10.2307/1942622; TULJAPURKAR SD, 1982, THEOR POPUL BIOL, V21, P141, DOI 10.1016/0040-5809(82)90010-7; Tuljapurkar Shripad, 2006, Ecol Lett, V9, P327, DOI 10.1111/j.1461-0248.2006.00881.x; Tuljapurkar S, 2009, PHILOS T R SOC B, V364, P1499, DOI 10.1098/rstb.2009.0021; van de Pol M, 2010, ECOLOGY, V91, P1192; van Tienderen PH, 2000, ECOLOGY, V81, P666, DOI 10.1890/0012-9658(2000)081[0666:EATLBD]2.0.CO;2; VAUPEL JW, 1979, DEMOGRAPHY, V16, P439, DOI 10.2307/2061224; Wheatley KE, 2006, J ANIM ECOL, V75, P724, DOI 10.1111/j.1365-2656.01093.x; White GC, 1999, BIRD STUDY, V46, P120; Williams B. K., 2002, ANAL MANAGEMENT ANIM 88 30 31 3 63 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. JAN 2012 81 1 162 173 10.1111/j.1365-2656.2011.01902.x 12 Ecology; Zoology Environmental Sciences & Ecology; Zoology 859BO WOS:000297849300017 21939440 Bronze 2018-11-12 J Schroeder, J; Burke, T; Mannarelli, ME; Dawson, DA; Nakagawa, S Schroeder, J.; Burke, T.; Mannarelli, M. -E.; Dawson, D. A.; Nakagawa, S. Maternal effects and heritability of annual productivity JOURNAL OF EVOLUTIONARY BIOLOGY English Article Aves; evolution of ageing; heritability of fitness; life-history evolution; quantitative genetics WILD BIRD POPULATION; SPARROWS PASSER-DOMESTICUS; REPRODUCTIVE SUCCESS; LIFE-HISTORY; HOUSE SPARROWS; INDIVIDUAL QUALITY; PARENTAL CARE; AGE; SENESCENCE; EVOLUTION Within-individual consistency and among-individual heterogeneity in fitness are prerequisites for selection to take place. Within-individual variation in productivity between years, however, can vary considerably, especially when organisms become older and more experienced. We examine individual consistency in annual productivity, the covariation between survival and annual productivity, and the sources of variation in annual productivity, while accounting for advancing age, to test the individual-quality and resource-allocation life-history theory hypotheses. We use long-term data from a pedigreed, wild population of house sparrows. Within-individual annual productivity first increased and later decreased with age, but there were no selective mortality due to individual quality and no correlation between lifespan and productivity. Individuals were consistent in their annual productivity (C = 0.49). Narrow-sense heritability was low (h2 = 0.09), but maternal effects explained much of the variation (M = 0.33). Such effects can influence evolutionary processes and are of major importance for our understanding of how variation in fitness can be maintained. [Schroeder, J.; Burke, T.; Mannarelli, M. -E.; Dawson, D. A.; Nakagawa, S.] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England; [Nakagawa, S.] Univ Otago, Dept Zool, Dunedin, New Zealand; [Nakagawa, S.] Max Planck Inst Ornithol, Dept Behav Ecol & Evolutionary Genet, Seewiesen, Germany Schroeder, J (reprint author), Univ Sheffield, Dept Anim & Plant Sci, Alfred Denny Bldg,Western Bank, Sheffield S10 2TN, S Yorkshire, England. julia.schroeder@gmail.com Schroeder, Julia/B-1436-2010; Burke, Terry/B-3196-2011; Nakagawa, Shinichi/B-5571-2011 Schroeder, Julia/0000-0002-4136-843X; Burke, Terry/0000-0003-3848-1244; Nakagawa, Shinichi/0000-0002-7765-5182 NERC [NE/F006071/1]; Humbolt Fellowship; Natural Environment Research Council [NE/F006071/1, NBAF010001] We thank the Lundy Company and their staff for allowing us to work on Lundy Island and for invaluable support in the field. We thank Ian Owens, Hannah Dugdale and Martijn Hammers for conceptual contributions and inspiring discussions, Ian Cleasby, Maria Karlsson, Nancy Ockendon, Duncan Gillespie and Simon Griffith for field data collection, and Sophy Allen for molecular work. This work was funded by the grant NE/F006071/1 from NERC to TB, and SN was supported by a Humbolt Fellowship. Bengtson Sven-Axel, 2004, Frodskaparrit, V51, P237; Bouwhuis S, 2010, J EVOLUTION BIOL, V23, P636, DOI 10.1111/j.1420-9101.2009.01929.x; Bouwhuis S, 2009, P R SOC B, V276, P2769, DOI 10.1098/rspb.2009.0457; Bouwhuis S, 2010, J ANIM ECOL, V79, P1251, DOI 10.1111/j.1365-2656.2010.01730.x; Brommer J.E., 2009, HEREDITY, V104, P363; Cam E, 2002, AM NAT, V159, P96, DOI 10.1086/324126; Charmantier A, 2006, P ROY SOC B-BIOL SCI, V273, P225, DOI 10.1098/rspb.2005.3294; Cleasby IR, 2010, BIOL J LINN SOC, V101, P680, DOI 10.1111/j.1095-8312.2010.01515.x; Coulson T, 2006, P ROY SOC B-BIOL SCI, V273, P547, DOI 10.1098/rspb.2005.3357; Dawson D.A., MOL ECOL RE IN PRESS; FISHER R. A., 1930, GENETICAL THEORY NAT; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hatch MI, 2007, J AVIAN BIOL, V38, P603, DOI 10.1111/j.0908-8857.2007.04044.x; Kirkwood TBL, 2005, MECH AGEING DEV, V126, P1011, DOI 10.1016/j.mad.2005.03.021; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Lailvaux SP, 2011, P ROY SOC B-BIOL SCI, V278, P321, DOI 10.1098/rspb.2010.1591; Limmer B, 2009, ANIM BEHAV, V77, P1095, DOI 10.1016/j.anbehav.2009.01.015; Magnussen Egdfinn, 2009, Frodskaparrit, V57, P182; McCleery RH, 2008, P R SOC B, V275, P963, DOI 10.1098/rspb.2007.1418; Merila J, 2000, AM NAT, V155, P301, DOI 10.1086/303330; Monaghan P, 2008, FUNCT ECOL, V22, P371, DOI 10.1111/j.1365-2435.2008.01418.x; Nakagawa S, 2007, J EVOLUTION BIOL, V20, P1674, DOI 10.1111/j.1420-9101.2007.01403.x; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; Ockendon N, 2009, BEHAV ECOL, V20, P305, DOI 10.1093/beheco/arp006; Priest NK, 2002, EVOLUTION, V56, P927; R Development Core Team, 2010, R LANG ENV STAT COMP; Rattiste K, 2004, P ROY SOC B-BIOL SCI, V271, P2059, DOI 10.1098/rspb.2004.2832; Reed TE, 2008, AM NAT, V171, pE89, DOI 10.1086/524957; Reid JM, 2010, J ANIM ECOL, V79, P851, DOI 10.1111/j.1365-2656.2010.01669.x; Schroeder J, 2011, J AVIAN BIOL, V42, P271, DOI 10.1111/j.1600-048X.2010.05271.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Teplitsky C, 2009, EVOLUTION, V63, P716, DOI 10.1111/j.1558-5646.2008.00581.x; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WETTON JH, 1995, P ROY SOC B-BIOL SCI, V260, P91, DOI 10.1098/rspb.1995.0064; Wheelwright NT, 2003, ANIM BEHAV, V65, P435, DOI 10.1006/anbe.2003.2086; Wilson AJ, 2007, CURR BIOL, V17, P2136, DOI 10.1016/j.cub.2007.11.043; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002 39 22 22 1 36 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. JAN 2012 25 1 149 156 10.1111/j.1420-9101.2011.02412.x 8 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 861IX WOS:000298013700013 22082138 Bronze 2018-11-12 J Willisch, CS; Biebach, I; Koller, U; Bucher, T; Marreros, N; Ryser-Degiorgis, MP; Keller, LF; Neuhaus, P Willisch, Christian S.; Biebach, Iris; Koller, Ursina; Bucher, Thomas; Marreros, Nelson; Ryser-Degiorgis, Marie-Pierre; Keller, Lukas F.; Neuhaus, Peter Male reproductive pattern in a polygynous ungulate with a slow life-history: the role of age, social status and alternative mating tactics EVOLUTIONARY ECOLOGY English Article Growth; Life-history; Polygynous ungulate; Reproduction; Survival SEXUAL SIZE DIMORPHISM; WHITE-TAILED DEER; MALE FALLOW DEER; MALE ALPINE IBEX; BUCKS DAMA-DAMA; CAPRA-IBEX; POPULATION FLUCTUATIONS; TERRITORIAL UNGULATE; COMPUTER-PROGRAM; BREEDING SUCCESS According to life-history theory age-dependent investments into reproduction are thought to co-vary with survival and growth of animals. In polygynous species, in which size is an important determinant of reproductive success, male reproduction via alternative mating tactics at young age are consequently expected to be the less frequent in species with higher survival. We tested this hypothesis in male Alpine ibex (Capra ibex), a highly sexually dimorphic mountain ungulate whose males have been reported to exhibit extremely high adult survival rates. Using data from two offspring cohorts in a population in the Swiss Alps, the effects of age, dominance and mating tactic on the likelihood of paternity were inferred within a Bayesian framework. In accordance with our hypothesis, reproductive success in male Alpine ibex was heavily biased towards older, dominant males that monopolized access to receptive females by adopting the 'tending' tactic, while success among young, subordinate males via the sneaking tactic 'coursing' was in general low and rare. In addition, we detected a high reproductive skew in male Alpine ibex, suggesting a large opportunity for selection. Compared with other ungulates with higher mortality rates, reproduction among young male Alpine ibex was much lower and more sporadic. Consistent with that, further examinations on the species level indicated that in polygynous ungulates the significance of early reproduction appears to decrease with increasing survival. Overall, this study supports the theory that survival prospects of males modulate the investments into reproduction via alternative mating tactics early in life. In the case of male Alpine ibex, the results indicate that their life-history strategy targets for long life, slow and prolonged growth and late reproduction. [Willisch, Christian S.; Biebach, Iris; Koller, Ursina; Bucher, Thomas; Keller, Lukas F.] Univ Zurich, Inst Evolutionary Biol & Environm Studies, CH-8057 Zurich, Switzerland; [Willisch, Christian S.; Neuhaus, Peter] Univ Neuchatel, Dept Ecoethol, Inst Biol, CH-2009 Neuchatel, Switzerland; [Marreros, Nelson; Ryser-Degiorgis, Marie-Pierre] Univ Bern, Ctr Fish & Wildlife Hlth, Vetsuisse Fac, CH-3001 Bern, Switzerland; [Neuhaus, Peter] Univ Calgary, Dept Biol Sci, Calgary, AB T2N 1N4, Canada Willisch, CS (reprint author), Univ Zurich, Inst Evolutionary Biol & Environm Studies, Winterthurerstr 190, CH-8057 Zurich, Switzerland. willichristian@yahoo.com Marreros, Nelson/0000-0001-6802-4912 Federal Office of the Environment (FOEN) We thank J-C Roch, as well as K. Bieri Willisch, P. Decristophoris, P. Deleury, I. Glanzmann, N. Grandjean, C. Hebeisen, B. Hofer, I. Leathwood, H. Nimmervoll, B. Nussberger, L. Senn, C. Wittker, and numerous volunteers for their help with the captures, data collection and laboratory work. We are grateful to J. Hadfield, E. Postma and P. Wandeler for their assistance with genetic and statistical analyses. We thank R. Bshary, A. McElligott and M. Taborsky for comments and discussions on earlier drafts of the manuscript. The paper benefited greatly from the comments by two anonymous referees and J. A. Endler. Many thanks go to the authorities of the Canton Vaud who made this study in the population 'Cape au Moine' (VD) possible. Financial support by the Federal Office of the Environment (FOEN) is gratefully acknowledged. APPLEBY MC, 1982, BEHAVIOUR, V80, P259, DOI 10.1163/156853982X00382; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Bergeron P, 2010, BEHAV ECOL SOCIOBIOL, V64, P1299, DOI 10.1007/s00265-010-0944-x; Biebach I, 2009, MOL ECOL, V18, P5046, DOI 10.1111/j.1365-294X.2009.04420.x; Bonenfant C, 2009, J ANIM ECOL, V78, P161, DOI 10.1111/j.1365-2656.2008.01477.x; Clutton-Brock T.H., 1988, P325; Clutton-Brock T. H, 1982, RED DEER BEHAV ECOLO; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; CLUTTONBROCK TH, 1988, BEHAV ECOL SOCIOBIOL, V23, P281, DOI 10.1007/BF00300575; CLUTTONBROCK TH, 1992, J ANIM ECOL, V61, P381, DOI 10.2307/5330; Coltman DW, 2002, P ROY SOC B-BIOL SCI, V269, P165, DOI 10.1098/rspb.2001.1851; Coltman DW, 1999, MOL ECOL, V8, P1199, DOI 10.1046/j.1365-294x.1999.00683.x; Coltman DW, 1999, AM NAT, V154, P730, DOI 10.1086/303274; Coltman DW, 2003, NATURE, V426, P655, DOI 10.1038/nature02177; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Cote SD, 2000, BEHAVIOUR, V137, P1541, DOI 10.1163/156853900502718; De Vries H, 1998, ANIM BEHAV, V55, P827, DOI 10.1006/anbe.1997.0708; DEVRIES H, 1993, BEHAVIOUR, V125, P157, DOI 10.1163/156853993X00218; Dobson FS, 2007, ECOSCIENCE, V14, P292, DOI 10.2980/1195-6860(2007)14[292:FASLHO]2.0.CO;2; Grotan V, 2008, GLOBAL CHANGE BIOL, V14, P218, DOI 10.1111/j.1365-2486.2007.01484.x; Hadfield JD, 2006, MOL ECOL, V15, P3715, DOI 10.1111/j.1365-294X.2006.03050.x; Harris RB, 2002, WILDLIFE SOC B, V30, P634; HARVEY PH, 1985, NATURE, V315, P319, DOI 10.1038/315319a0; Hogg JT, 1997, BEHAV ECOL SOCIOBIOL, V41, P33, DOI 10.1007/s002650050361; Isvaran K, 2005, CURR SCI INDIA, V89, P1192; Johnson PCD, 2007, GENETICS, V175, P827, DOI 10.1534/genetics.106.064618; Jones ME, 2008, P NATL ACAD SCI USA, V105, P10023, DOI 10.1073/pnas.0711236105; Kalinowski ST, 2007, MOL ECOL, V16, P1099, DOI 10.1111/j.1365-294X.2007.03089.x; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Loison A, 1999, EVOL ECOL RES, V1, P611; Lups P, 2007, BEITRAGE JAGD WILDFO, V32, P495; McElligott AG, 1998, ETHOLOGY, V104, P789; McElligott AG, 2002, P ROY SOC B-BIOL SCI, V269, P1129, DOI 10.1098/rspb.2002.1993; McElligott AG, 2000, BEHAV ECOL SOCIOBIOL, V48, P203, DOI 10.1007/s002650000234; Nussey DH, 2009, AM NAT, V174, P342, DOI 10.1086/603615; Oliveira RF, 2008, ALTERNATIVE REPRODUCTIVE TACTICS: AN INTEGRATIVE APPROACH, P1, DOI 10.1017/CBO9780511542602; Pelletier F, 2005, BEHAV ECOL, V16, P280, DOI 10.1093/beheco/arh162; Pemberton JM, 1999, BIOL J LINN SOC, V68, P289, DOI 10.1006/bijl.1999.0342; PEMBERTON JM, 1992, BEHAV ECOL, V3, P66, DOI 10.1093/beheco/3.1.66; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Preston BT, 2001, NATURE, V409, P681, DOI 10.1038/35055617; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; RATTI P, 1977, Z JAGDWISS, V23, P188, DOI 10.1007/BF01905758; Ricca MA, 2002, J WILDLIFE MANAGE, V66, P1255, DOI 10.2307/3802958; Roed KH, 2005, J WILDLIFE MANAGE, V69, P1163, DOI 10.2193/0022-541X(2005)069[1163:VIMRSI]2.0.CO;2; Roed KH, 2002, MOL ECOL, V11, P1239, DOI 10.1046/j.1365-294X.2002.01509.x; Say L, 2003, MOL ECOL, V12, P2793, DOI 10.1046/j.1365-294X.2003.01945.x; Shuster S.M., 2003, MONOGRAPHS BEHAV ECO; Sorin AB, 2004, J MAMMAL, V85, P356, DOI 10.1644/1545-1542(2004)085<0356:PAFWDO>2.0.CO;2; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stevenson I. R., 2004, SOAY SHEEP DYNAMICS; Stevenson IR, 1995, P ROY SOC B-BIOL SCI, V262, P267, DOI 10.1098/rspb.1995.0205; Taberlet P, 1999, TRENDS ECOL EVOL, V14, P323, DOI 10.1016/S0169-5347(99)01637-7; Toigo C, 2003, OIKOS, V101, P376, DOI 10.1034/j.1600-0706.2003.12073.x; Toigo C, 2007, J ANIM ECOL, V76, P679, DOI 10.1111/j.1365-2656.2007.01254.x; Valiere N, 2002, MOL ECOL NOTES, V2, P377, DOI 10.1046/j.1471-8286.2002.00228.x; Vanpe C, 2008, BEHAV ECOL, V19, P309, DOI 10.1093/beheco/arm132; Vanpe C, 2009, J MAMMAL, V90, P661, DOI 10.1644/08-MAMM-A-137R.1; Wehausen JD, 2004, J HERED, V95, P503, DOI 10.1093/jhered/esh068; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Willisch CS, 2010, BEHAV ECOL, V21, P372, DOI 10.1093/beheco/arp200; Willisch CS, 2009, J MAMMAL, V90, P1421, DOI 10.1644/08-MAMM-A-316R1.1; Wilson GA, 2002, CAN J ZOOL, V80, P1537, DOI [10.1139/z02-147, 10.1139/Z02-147]; Wolff JO, 1998, OIKOS, V83, P529, DOI 10.2307/3546680 66 27 27 1 85 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 EVOL ECOL Evol. Ecol. JAN 2012 26 1 187 206 10.1007/s10682-011-9486-6 20 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 862PN WOS:000298105900014 2018-11-12 J Nebel, S; Bauchinger, U; Buehler, DM; Langlois, LA; Boyles, M; Gerson, AR; Price, ER; McWilliams, SR; Guglielmo, CG Nebel, Silke; Bauchinger, Ulf; Buehler, Deborah M.; Langlois, Lillie A.; Boyles, Michelle; Gerson, Alexander R.; Price, Edwin R.; McWilliams, Scott R.; Guglielmo, Christopher G. Constitutive immune function in European starlings, Sturnus vulgaris, is decreased immediately after an endurance flight in a wind tunnel JOURNAL OF EXPERIMENTAL BIOLOGY English Article constitutive immune function; European starlings; Sturnus vulgaris; life-history trade-off; migratory flight; wind tunnel PHYSIOLOGICAL TRADE-OFFS; ECOLOGICAL IMMUNOLOGY; REPRODUCTIVE EFFORT; LIFE-HISTORY; ANTIBODY RESPONSIVENESS; MULTIVARIATE-ANALYSIS; EVOLUTIONARY ECOLOGY; PIED FLYCATCHERS; OXIDATIVE STRESS; MIGRATORY BIRDS Life-history theory predicts that animals face a trade-off in energy allocation between performing strenuous exercise, such as migratory flight, and mounting an immune response. We experimentally tested this prediction by studying immune function in European starlings, Sturnus vulgaris, flown in a wind tunnel. Specifically, we predicted that constitutive immune function decreases in response to training and, additionally, in response to immediate exercise. We compared constitutive immune function among three groups: (1). 'untrained' birds that were kept in cages and were not flown; (2). 'trained' birds that received flight training over a 15 day period and performed a 1-4 h continuous flight, after which they rested for 48 h before being sampled; and (3). 'post-flight' birds that differed from the. 'trained' group only in being sampled immediately after the final flight. A bird in our trained group represents an individual during migration that has been resting between migratory flights for at least 2 days. A bird in our post-flight group represents an individual that has just completed a migratory flight and has not yet had time to recover. Three of our four indicators (haptoglobin, agglutination and lysis) showed the predicted decrease in immune function in the post-flight group, and two indicators (haptoglobin, agglutination) showed the predicted decreasing trend from the untrained to trained to post-flight group. Haptoglobin levels were negatively correlated with flight duration. No effect of training or flight was detected on leukocyte profiles. Our results suggest that in European starlings, constitutive immune function is decreased more as a result of immediate exercise than of exercise training. Because of the recent emergence of avian-borne diseases, understanding the trade-offs and challenges faced by long-distance migrants has gained a new level of relevance and urgency. [Nebel, Silke; Gerson, Alexander R.; Price, Edwin R.; Guglielmo, Christopher G.] Univ Western Ontario, Dept Biol, Adv Facil Avian Res, London, ON N6A 5B7, Canada; [Bauchinger, Ulf; Langlois, Lillie A.; Boyles, Michelle; McWilliams, Scott R.] Univ Rhode Isl, Dept Nat Resources Sci, Kingston, RI 02881 USA; [Buehler, Deborah M.] Royal Ontario Museum, Dept Nat Hist, Toronto, ON M5S 2C6, Canada; [Buehler, Deborah M.] Univ Toronto, Toronto, ON M5S 3B2, Canada Nebel, S (reprint author), Univ Western Ontario, Dept Biol, Adv Facil Avian Res, London, ON N6A 5B7, Canada. snebel2@uwo.ca Nebel, Silke/D-4993-2009; Gerson, Alexander/E-3313-2010; Price, Edwin/E-3080-2010; McWilliams, Scott/B-8728-2013 Price, Edwin/0000-0001-6042-7020; McWilliams, Scott/0000-0002-9727-1151; Buehler, Deborah/0000-0003-3669-6364 US National Science Foundation [IOS-0748349]; United States Department of Agriculture [RIAES-538748]; University of Rhode Island; Natural Science and Engineering Council of Canada [NSERC] [311901-2005]; Canada Foundation for Innovation [11826]; Ontario Research Fund [11743]; University of Western Ontario [SG10-18]; Natural Science and Engineering Council of Canada [PDF-373488-2009]; Netherlands Organisation for Scientific Research [NWO] [Rubicon 825.09.0190] Funding was provided to S.R.M. by the US National Science Foundation [grant no. IOS-0748349], the United States Department of Agriculture [grant no. RIAES-538748] and the University of Rhode Island, and to C.G.G. by the Natural Science and Engineering Council of Canada [NSERC Discovery Grant; 311901-2005 RGPIN], the Canada Foundation for Innovation [grant no. 11826], the Ontario Research Fund [grant no. 11743], and the University of Western Ontario Academic Development Fund [grant no. SG10-18]. D. M. B. was supported by the Natural Science and Engineering Council of Canada [NSERC grant no. PDF-373488-2009] and the Netherlands Organisation for Scientific Research [NWO; Rubicon 825.09.0190]. Alonso-Alvarez C, 2001, CAN J ZOOL, V79, P101, DOI 10.1139/cjz-79-1-101; Altizer SM, 2000, ECOL ENTOMOL, V25, P125, DOI 10.1046/j.1365-2311.2000.00246.x; Altizer S, 2011, SCIENCE, V331, P296, DOI 10.1126/science.1194694; Apanius V, 1998, ADV STUD BEHAV, V27, P133; Ardia DR, 2008, AVIAN IMMUNOLOGY, P421, DOI 10.1016/B978-012370634-8.50025-1; Ardia DR, 2005, ECOLOGY, V86, P2040, DOI 10.1890/04-1619; BAJ Z, 1994, INT J SPORTS MED, V15, P319, DOI 10.1055/s-2007-1021067; Buehler DM, 2008, PHYSIOL BIOCHEM ZOOL, V81, P673, DOI 10.1086/588591; Buehler DM, 2008, PHILOS T R SOC B, V363, P247, DOI 10.1098/rstb.2007.2138; Buehler DM, 2010, AUK, V127, P394, DOI 10.1525/auk.2010.09017; Buehler DM, 2009, PHYSIOL BIOCHEM ZOOL, V82, P561, DOI 10.1086/603635; Buehler DM, 2008, AM NAT, V172, P783, DOI 10.1086/592865; BUEHLER DM, 2010, INTEGR COMP BIOL, V50, P261; Butler P.J., 1990, P300; Campbell T. W., 2007, AVIAN EXOTIC ANIMAL; CAMPBELL TW, 1995, AVIAN HEMATOLOGY CYT; CARDINET GH, 1964, CALIF VET, V18, P31; Cooper CE, 2002, BIOCHEM SOC T, V30, P280, DOI 10.1042/bst0300280; Davis AK, 2008, FUNCT ECOL, V22, P760, DOI 10.1111/j.1365-2435.2008.01467.x; Davis AK, 2005, J FIELD ORNITHOL, V76, P334, DOI 10.1648/0273-8570-76.4.334; Deerenberg C, 1997, P ROY SOC B-BIOL SCI, V264, P1021, DOI 10.1098/rspb.1997.0141; DELERS F, 1988, BIOCHEM CELL BIOL, V66, P208, DOI 10.1139/o88-028; Dhabhar FS, 2002, INTEGR COMP BIOL, V42, P556, DOI 10.1093/icb/42.3.556; DHABHAR FS, 1995, J IMMUNOL, V154, P5511; Dobryszycka W, 1997, EUR J CLIN CHEM CLIN, V35, P647; DOLBEER RA, 1982, J FIELD ORNITHOL, V53, P28; EARLE RA, 1993, ARDEA, V81, P21; Exton MS, 1997, APPETITE, V29, P369, DOI 10.1006/appe.1997.0116; FOLSTAD I, 1991, CAN J ZOOL, V69, P2423, DOI 10.1139/z91-340; Gerson AR, 2011, SCIENCE, V333, P1434, DOI 10.1126/science.1210449; GLEESON M, 1995, CLIN EXP IMMUNOL, V102, P210; Gleeson M, 2007, J APPL PHYSIOL, V103, P693, DOI 10.1152/japplphysiol.00008.2007; Graham AL, 2010, SCIENCE, V330, P662, DOI 10.1126/science.1194878; GROSS WB, 1983, AVIAN DIS, V27, P972, DOI 10.2307/1590198; GUTTERIDGE JMC, 1987, BIOCHIM BIOPHYS ACTA, V917, P219, DOI 10.1016/0005-2760(87)90125-1; Hasselquist D, 2007, J EXP BIOL, V210, P1123, DOI 10.1242/jeb.02712; Hoffmann D, 2010, J MED VIROL, V82, P446, DOI 10.1002/jmv.21704; Johnson Craig R., 1993, Oceanography and Marine Biology an Annual Review, V31, P177; Juul-Madsen HR, 2008, AVIAN IMMUNOLOGY, P129, DOI 10.1016/B978-012370634-8.50010-X; KING JR, 1974, AVIAN ENERGETICS, V15, P4; Klasing KC, 1998, POULTRY SCI, V77, P983, DOI 10.1093/ps/77.7.983; Klasing Kirk C., 2004, Acta Zoologica Sinica, V50, P961; Kraaijeveld AR, 2001, P ROY SOC B-BIOL SCI, V268, P259, DOI 10.1098/rspb.2000.1354; Landys-Ciannelli MM, 2002, J AVIAN BIOL, V33, P451, DOI 10.1034/j.1600-048X.2002.03051.x; Lee KA, 2006, INTEGR COMP BIOL, V46, P1000, DOI 10.1093/icb/icl049; Lim YK, 2000, KIDNEY INT, V58, P1033, DOI 10.1046/j.1523-1755.2000.00261.x; Liu J, 2005, SCIENCE, V309, P1206, DOI 10.1126/science.1115273; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Lopez P, 2005, BIOL LETT-UK, V1, P404, DOI 10.1098/rsbl.2005.0360; Marra PP, 2004, BIOSCIENCE, V54, P393, DOI 10.1641/0006-3568(2004)054[0393:WNVAW]2.0.CO;2; Martin LB, 2005, CAN J ZOOL, V83, P780, DOI 10.1139/Z05-062; Martin LB, 2008, PHILOS T R SOC B, V363, P321, DOI 10.1098/rstb.2007.2142; Matson KD, 2005, DEV COMP IMMUNOL, V29, P275, DOI 10.1016/j.dci.2004.07.006; Matson KD, 2006, P ROY SOC B-BIOL SCI, V273, P2267, DOI 10.1098/rspb.2006.3590; Mauck RA, 2005, FUNCT ECOL, V19, P1001, DOI 10.1111/j.1365-2435.2005.01060.x; Mendes L, 2005, OIKOS, V109, P396, DOI 10.1111/j.0030-1299.2005.13509.x; Moreno J, 1999, P ROY SOC B-BIOL SCI, V266, P1105, DOI 10.1098/rspb.1999.0750; Nieman DC, 1999, SPORTS MED, V27, P73, DOI 10.2165/00007256-199927020-00001; NIEMAN DC, 1995, MED SCI SPORT EXER, V27, P986, DOI 10.1249/00005768-199507000-00006; NIEMAN DC, 1997, INT J SPORTS MED S1, V18, P91; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Ochsenbein AF, 2000, IMMUNOL TODAY, V21, P624, DOI 10.1016/S0167-5699(00)01754-0; OLSON CL, 1976, PSYCHOL BULL, V83, P579, DOI 10.1037/0033-2909.83.4.579; Pedersen BK, 2000, PHYSIOL REV, V80, P1055; PEIRCE MA, 1981, J NAT HIST, V15, P419, DOI 10.1080/00222938100770321; Piersma T, 1996, CONDOR, V98, P363, DOI 10.2307/1369154; Reed Kurt D, 2003, Clin Med Res, V1, P5; Rolff J, 2003, SCIENCE, V301, P472, DOI 10.1126/science.1080623; Sanz JJ, 2004, J ANIM ECOL, V73, P441, DOI 10.1111/j.0021-8790.2004.00815.x; Schmid-Hempel P, 2003, TRENDS ECOL EVOL, V18, P27, DOI 10.1016/S0169-5347(02)00013-7; Senturk UK, 2005, J APPL PHYSIOL, V99, P1434, DOI 10.1152/japplphysiol.01392.2004; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Sokal R.R., 1995, BIOMETRY; Tella JL, 2002, P ROY SOC B-BIOL SCI, V269, P1059, DOI 10.1098/rspb.2001.1951; TVEDE N, 1991, Scandinavian Journal of Medicine and Science in Sports, V1, P163; van Gils JA, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000184; WILLMER P, 2000, ENV PHYSL ANIMALS; Wolach B, 1998, SCAND J MED SCI SPOR, V8, P91; Zar J.H, 1999, BIOSTATISTICAL ANAL; Zuur A. F., 2009, MIXED EFFECTS MODELS 80 31 31 3 46 COMPANY OF BIOLOGISTS LTD CAMBRIDGE BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND 0022-0949 J EXP BIOL J. Exp. Biol. JAN 2012 215 2 272 278 10.1242/jeb.057885 7 Biology Life Sciences & Biomedicine - Other Topics 866TA WOS:000298404800014 22189771 Bronze 2018-11-12 J Dunkel, CS; Kim, JK; Papini, DR Dunkel, Curtis S.; Kim, Jwa K.; Papini, Dennis R. The General Factor of Psychosocial Development and its relation to the General Factor of Personality and Life History strategy PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Psychosocial development; Life History theory; General Factor of Personality HIGHER-ORDER FACTORS; SOCIAL DESIRABILITY; K-FACTOR; IDENTITY CONSOLIDATION; BIG 5; INVENTORY; GENERATIVITY; COVITALITY; VALIDITY; HEALTH It was hypothesized that the eight Erilcsonian psychosocial stages form a single latent variable or General Factor of Psychosocial Development (GFPD) and that this latent factor is associated with the General Factor of Personality (GFP) and Life History (LH) strategy to the extent that the variables form a higher order Super-K factor. Correlational analyses and confirmatory factor analyses each supported the hypothesized GFPD. Additionally, correlational and confirmatory factor analyses supported the hypothesis that the three variables form a single Super-K factor. The results of Study 3 suggest that the relationship between the psychosocial stages and between the GFPD. GFP, and LH strategy remained after controlling for social desirable response biases. (C) 2011 Elsevier Ltd. All rights reserved. [Dunkel, Curtis S.] Western Illinois Univ, Dept Psychol, Macomb, IL 61455 USA; [Kim, Jwa K.; Papini, Dennis R.] Middle Tennessee State Univ, Murfreesboro, TN USA Dunkel, CS (reprint author), Western Illinois Univ, Dept Psychol, Macomb, IL 61455 USA. c-dunkel@wiu.edu AMOS, 2009, AMOS VERS 18 COMP SO; Anusic I, 2009, J PERS SOC PSYCHOL, V97, P1142, DOI 10.1037/a0017159; Ashton MC, 2009, PERS SOC PSYCHOL REV, V13, P79, DOI 10.1177/1088868309338467; Backstrom M, 2007, EUR J PSYCHOL ASSESS, V23, P63, DOI 10.1027/1015-5759.23.2.63; Backstrom M, 2009, J RES PERS, V43, P335, DOI 10.1016/j.jrp.2008.12.013; Byrne B. M., 2010, STRUCTURAL EQUATION; Digman JM, 1997, J PERS SOC PSYCHOL, V73, P1246, DOI 10.1037/0022-3514.73.6.1246; Dunkel CS, 2011, PERS INDIV DIFFER, V51, P34, DOI 10.1016/j.paid.2011.03.005; Dunkel CS, 2010, EVOL PSYCHOL-US, V8, P492; Dunkel CS, 2010, PERS INDIV DIFFER, V48, P681, DOI 10.1016/j.paid.2009.12.014; Dunkel CS, 2009, REV GEN PSYCHOL, V13, P13, DOI 10.1037/a0013687; Erdle S, 2010, PERS INDIV DIFFER, V48, P762, DOI 10.1016/j.paid.2010.01.025; Erikson E. H, 1968, IDENTITY YOUTH CRISI; Erikson E. H., 1950, CHILDHOOD SOC; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2009, TWIN RES HUM GENET, V12, P555, DOI 10.1375/twin.12.6.555; Giosan C., 2006, EVOLUTIONARY PSYCHOL, V4, P394, DOI DOI 10.1177/147470490600400131; Hawley G. A, 1988, MEASURES PSYCHOSOCIA; John O. P., 2008, HDB PERSONALITY THEO, P114, DOI DOI 10.1037/0021-9010.87.3.530; Markstrom CA, 1997, J YOUTH ADOLESCENCE, V26, P705, DOI 10.1023/A:1022348709532; MCADAMS DP, 1992, J PERS SOC PSYCHOL, V62, P1003, DOI 10.1037//0022-3514.62.6.1003; McCrae RR, 2008, J PERS SOC PSYCHOL, V95, P442, DOI 10.1037/0022-3514.95.2.442; Musek J, 2007, J RES PERS, V41, P1213, DOI 10.1016/j.jrp.2007.02.003; OCHSE R, 1986, J PERS SOC PSYCHOL, V50, P1240, DOI 10.1037/0022-3514.50.6.1240; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PROMISLOW DEL, 1991, ACTA OECOL, V12, P119; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; REYNOLDS WM, 1982, J CLIN PSYCHOL, V38, P119, DOI 10.1002/1097-4679(198201)38:1<119::AID-JCLP2270380118>3.0.CO;2-I; ROSENTHAL DA, 1981, J YOUTH ADOLESCENCE, V10, P525, DOI 10.1007/BF02087944; Rushton J. P., 2011, WILEY BLACKWELL HDB, P134; Rushton JP, 2010, TWIN RES HUM GENET, V13, P131, DOI 10.1375/twin.13.2.131; Rushton JP, 2009, TWIN RES HUM GENET, V12, P356, DOI 10.1375/twin.12.4.356; SAUCIER G, 1994, J PERS ASSESS, V63, P506, DOI 10.1207/s15327752jpa6303_8; Schwartz SJ, 2010, AM J HEALTH BEHAV, V34, P214; Schwartz SJ, 2007, IDENTITY, V7, P27, DOI 10.1080/15283480701319583; van der Linden D, 2010, J RES PERS, V44, P669, DOI 10.1016/j.jrp.2010.08.007; van der Linden D, 2010, J RES PERS, V44, P315, DOI 10.1016/j.jrp.2010.03.003 40 12 12 0 10 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. JAN 2012 52 2 202 206 10.1016/j.paid.2011.10.016 5 Psychology, Social Psychology 868KT WOS:000298522900017 2018-11-12 J Marini, MA; Borges, FJA; Lopes, LE; Sousa, NOM; Grassler, DT; Santos, LR; Paiva, LV; Duca, C; Manica, LT; Rodrigues, SS; Franca, LF; Costa, PM; Franca, LC; Heming, NM; Silveira, MB; Pereira, ZP; Lobo, Y; Medeiros, RCS; Roper, JJ Marini, Miguel A.; Borges, Fabio J. A.; Lopes, Leonardo E.; Sousa, Nadinni O. M.; Grassler, Daniel T.; Santos, Luane R.; Paiva, Luciana V.; Duca, Charles; Manica, Lilian T.; Rodrigues, Sheila S.; Franca, Leonardo F.; Costa, Priscila M.; Franca, Letice C.; Heming, Neander M.; Silveira, Mariana B.; Pereira, Zelia P.; Lobo, Yonara; Medeiros, Rita C. S.; Roper, James J. BREEDING BIOLOGY OF BIRDS IN THE CERRADO OF CENTRAL BRAZIL ORNITOLOGIA NEOTROPICAL English Article Eggs; nests; reproduction; savanna; Central Brazil We report the nesting biology of birds in the Cerrado (savanna, both natural and anthropic) of the Federal District of central Brazil, with emphasis on nests, eggs, nesting periods, brood patches, reproductive behavior and period of nesting activity. With 196 nests of 42 species found from 2002 through 2009, we found that most species nested from September to November/December, at the onset of the rainy season, with extensive overlap among species. Contrary to expected for a tropical region, the breeding season period of most species was brief, and lasted 3-4 months. As expected for a tropical region, most species laid two eggs, but clutch sizes reached a maximum of six eggs in a few species. The strong seasonality of the Cerrado, with a rainy season of 7-8 months, is apparently the most important factor that limits breeding and other activities (ex. molt) in this region. Few studies like this are available for the Neotropical region, yet they are fundamental and are still needed and useful for the development of life history theory. Therefore, we recommend that breeding biology receives much more emphasis in future research than to date. Accepted 27 September 2012. [Marini, Miguel A.] Univ Brasilia, Dept Zool, BR-70910900 Brasilia, DF, Brazil; [Borges, Fabio J. A.; Grassler, Daniel T.; Santos, Luane R.; Paiva, Luciana V.; Duca, Charles; Manica, Lilian T.; Franca, Leonardo F.; Costa, Priscila M.; Franca, Letice C.; Heming, Neander M.; Silveira, Mariana B.; Pereira, Zelia P.; Lobo, Yonara] Univ Brasilia, Programa Posgrad Ecol, BR-70910900 Brasilia, DF, Brazil; [Lopes, Leonardo E.; Sousa, Nadinni O. M.; Rodrigues, Sheila S.; Medeiros, Rita C. S.] Univ Brasilia, Programa Posgrad Biol Anim, BR-70910900 Brasilia, DF, Brazil Marini, MA (reprint author), Univ Brasilia, Dept Zool, BR-70910900 Brasilia, DF, Brazil. marini@unb.br Duca, Charles/I-2993-2015; Roper, James/H-7986-2012 Duca, Charles/0000-0003-3903-8260; Roper, James/0000-0002-2947-5136; Heming, Neander/0000-0003-2461-5045 CNPq; CAPES; FAP-DF; Programa de Pos-graduacao em Ecologia; Programa de Pos-graduacao em Biologia Animal (UnB); FINATEC; FUNPAR; Neotropical Grassland Conservancy We thank CNPq for the Productivity scholarship for MAM, and to CNPq and CAPES for the many authors that had a students scholarship. The research project that led to this work was funded by CNPq, FAP-DF, Programa de Pos-graduacao em Ecologia, Programa de Pos-graduacao em Biologia Animal (UnB), FINATEC, FUNPAR, and Neotropical Grassland Conservancy. We thank ESE-CAE (SEMARH/DF) and the private owners of Jardim Morumbi for authorization to use their properties, and IBAMA for banding authorizations. Aguilar TM, 2008, J FIELD ORNITHOL, V79, P24, DOI 10.1111/j.1557-9263.2008.00142.x; Borges FJA, 2008, REV BRAS ORNITOL, V16, P38; Borges FJA, 2010, BIODIVERS CONSERV, V19, P223, DOI 10.1007/s10531-009-9718-z; Antas P. T. Z., 2009, AVES COMUNS PLANALTO; Auer SK, 2007, CONDOR, V109, P321, DOI 10.1650/0010-5422(2007)109[321:BBOPIA]2.0.CO;2; BAILLIE SR, 1990, IBIS, V132, P151, DOI 10.1111/j.1474-919X.1990.tb01035.x; Begon M, 2006, ECOLOGY INDIVIDUALS; BELTON W, 1984, B AM MUS NAT HIST, V178, P369; BELTON W, 1985, B AM MUS NAT HIST, V180, pU3; Bennett P. M., 2002, EVOLUTIONARY ECOLOGY; Brannstrom C, 2008, LAND USE POLICY, V25, P579, DOI 10.1016/j.landusepol.2007.11.008; BRASIL, 2007, MAP COB VEG BIOM BRA; BROWN JL, 1987, HELPING COMMUNAL BRE; Buzzeti Dante, 2005, Atualidades Ornitologicas, V127, P4; Carvalho CBV., 2007, Braz. J. Biol., V67, P275, DOI 10.1590/S1519-69842007000200012; CRUZ A, 1989, WILSON BULL, V101, P62; Da Silva JMC, 2002, BIOSCIENCE, V52, P225, DOI 10.1641/0006-3568(2002)052[0225:BPACIT]2.0.CO;2; da Silva Jose Maria Cardoso, 1995, Steenstrupia, V21, P69; Dantas Santos Marcos Persio, 2007, Bulletin of the British Ornithologists' Club, V127, P249; de Medeiros RDS, 2007, REV BRAS ZOOL, V24, P12, DOI 10.1590/S0101-81752007000100002; de la Perla M., 2005, REPROD AVES ARGENTIN; Sousa NOD, 2007, REV BRAS ORNITOL, V15, P569; Nóbrega Paula Fernanda Albonette de, 2010, Pap. Avulsos Zool. (São Paulo), V50, P511, DOI 10.1590/S0031-10492010003100001; del Hoyo J, 2004, HDB BIRDS WORLD, V9; del Hoyo J, 2010, HDB BIRDS WORLD, V15; Del Hoyo J., 1994, HDB BIRDS WORLD, V2; Del Hoyo J, 1996, HDB BIRDS WORLD, V3; del Hoyo J, 2002, HDB BIRDS WORLD, V7; del Hoyo J., 2011, HDB BIRDS WORLD, V16; del Hoyo J., 2009, HDB BIRDS WORLD, V14; del Hoyo J, 2005, HDB BIRDS WORLD, P895; Del Hoyo J, 1997, HDB BIRDS WORLD, V4; Desante DE, 1998, AVIAN CONSERVATION: RESEARCH AND MANAGEMENT, P93; Di Giacomo A. G., 2005, HIST NATURAL PAISAJE, P201; DIAS BFS, 1990, CERRADO CARACTERIZAC, P583; Dias Raphael I., 2009, Oecologia Brasiliensis, V13, P183; Duca C, 2011, WILSON J ORNITHOL, V123, P259, DOI 10.1676/10-116.1; Dunning J.B Jr, 2007, CRC HDB AVIAN BODY M; Elliott A, 1992, HDB BIRDS WORLD, V1; Elliott A., 2003, HDB BIRDS WORLD, V8-16; Elliott A., 1999, HDB BIRDS WORLD, V5; EULER C., 1900, REV MUS PAULISTA, V4, P9; Faria LCR, 2008, REV BRAS ZOOL, V25, P172, DOI 10.1590/S0101-81752008000200003; Franca LF, 2009, EMU, V109, P265, DOI 10.1071/MU09052; Gomes HB, 2010, WILSON J ORNITHOL, V122, P600, DOI 10.1676/08-098.1; Greeney Harold F., 2004, Bulletin of the British Ornithologists' Club, V124, P28; Greeney Harold F., 2011, Bulletin of the British Ornithologists' Club, V131, P24; Gressler DT, 2011, ORNITOL NEOTROP, V22, P319; Gressler DT, 2007, REV BRAS ORNITOL, V15, P598; Hoffmann D, 2011, ZOOLOGIA-CURITIBA, V28, P305, DOI [10.1590/S1984-4670201100030000, 10.1590/S1984-46702011000300004]; Ihering H. von, 1900, REV MUS PAULISTA, V4, P191; IUCN (International Union for Conservation of Nature), 2008, 2008 IUCN RED LIST T; Janzen D., 1986, GUANACASTE NATL PARK; Johnson EI, 2012, J AVIAN BIOL, V43, P141, DOI 10.1111/j.1600-048X.2011.05574.x; KLINK CA, 1993, WORLDS SAVANNAS EC D, V12, P259; Lopes LE, 2005, BIRD CONSERV INT, V15, P337, DOI 10.1017/S0959270905000675; Lopes Leonardo Esteves, 2005, Pap. Avulsos Zool. (São Paulo), V45, P127, DOI 10.1590/S0031-10492005001200001; Manica LT, 2012, J ORNITHOL, V153, P149, DOI 10.1007/s10336-011-0718-x; Marchant S., 1959, Ibis, V101, P137, DOI 10.1111/j.1474-919X.1959.tb02370.x; MARCHANT S., 1960, IBIS, V102, P349, DOI 10.1111/j.1474-919X.1960.tb08415.x; Marini M. A., 2009, BIOTA NEOTROP, V9, P54; Marini MA, 2005, CONSERV BIOL, V19, P665, DOI 10.1111/j.1523-1739.2005.00706.x; MARINI MA, 1992, WILSON BULL, V104, P168; Marini MA, 2001, CONDOR, V103, P767, DOI 10.1650/0010-5422(2001)103[0767:APOMAR]2.0.CO;2; Marini MA, 2010, ORNITOL NEOTROP, V21, P581; Marini Miguel A., 1997, Ornitologia Neotropical, V8, P93; Marini Miguel Angelo, 2009, Neotropical Biology and Conservation, V4, P3, DOI 10.4013/nbc.2009.41.01; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; MMA, 1999, AR PRIOR CONS BIOD C; Myers N, 2000, NATURE, V403, P853, DOI 10.1038/35002501; NIMER E, 1979, CLIMATOLOGIA BRASIL; ONIKI Y, 1983, Revista Brasileira de Biologia, V43, P45; ONIKI Y, 1983, Ciencia e Cultura (Sao Paulo), V35, P1875; ONIKI Y, 1983, Ciencia e Cultura (Sao Paulo), V35, P1880; Paiya L. V., WILSON J OR IN PRESS; Pereira Z. P., 2011, THESIS; Piratelli Augusto Joao, 2000, Ararajuba, V8, P99; Prado A. D., 2006, ATUALIDADES ORNITOLO, V134, P4; Ratter JA, 1997, ANN BOT-LONDON, V80, P223, DOI 10.1006/anbo.1997.0469; Remsen Jr J. V., 2012, CLASSIFICATION BIRD; Repenning M, 2011, EMU, V111, P268, DOI 10.1071/MU10018; Ribeiro JF, 1998, CERRADO AMBIENTE FLO, P89; Ricklefs R. E., 1969, SMITHSON CONTRIB ZOO, V9, P1, DOI [DOI 10.5479/SI.00810282.9, 10.5479/si.00810282.9]; Ricklefs R. E., 1969, LIV BIRD, V15, P33; Robinson WD, 2000, J AVIAN BIOL, V31, P151, DOI 10.1034/j.1600-048X.2000.310207.x; Rodrigues LD, 2011, WILSON J ORNITHOL, V123, P726; Rodrigues M, 2009, REV BRAS ORNITOL, V17, P155; Roper James J., 2000, Ararajuba, V8, P85; Roper James J., 2003, Ornitologia Neotropical, V14, P1; Roper JJ, 2010, OIKOS, V119, P719, DOI 10.1111/j.1600-0706.2009.18047.x; Rubio Tatiana Colombo, 2008, Pap. Avulsos Zool. (São Paulo), V48, P181, DOI 10.1590/S0031-10492008001700001; SANTOS L. R., 2010, J FIELD ORNITHOL, V81, P252; Silva J. M. C., 2005, CERRADO ECOLOGIA BIO, P220; Silveira MB, 2012, CONDOR, V114, P435, DOI 10.1525/cond.2012.110022; Skutch A. F., 1985, ORNITHOLOGICAL MONOG, V36, P575, DOI DOI 10.2307/40168306; SNOW D. W., 1964, ZOOLOGICA [NEW YORK], V49, P1; Stutchbury B. J. M., 2001, BEHAV ECOLOGY TROPIC; Stutchbury BJM, 2008, WILSON J ORNITHOL, V120, P26, DOI 10.1676/07-018.1; Willis E. O., 1979, REVISED LIST BIRDS B; Wischhoff U, 2012, WILSON J ORNITHOL, V124, P166, DOI 10.1676/11-004.1; de Lima AMX, 2009, J TROP ECOL, V25, P605, DOI 10.1017/S0266467409990289; YOMTOV Y, 1994, CONDOR, V96, P170, DOI 10.2307/1369074; Zimmer KJ, 2001, AUK, V118, P56, DOI 10.1642/0004-8038(2001)118[0056:ACNSOF]2.0.CO;2 103 10 11 0 0 NEOTROPICAL ORNITHOLOGICAL SOC, USGS PATUXENT WILDLIFE RESEARCH CTR ATHENS UNIV GEORGIA, WARNELL SCH FOREST RESOURCES, ATHENS, GA 30602-2152 USA 1075-4377 ORNITOL NEOTROP ORNITOL. NEOTROP. 2012 23 3 385 405 21 Ornithology Zoology V40HI WOS:000209469300008 2018-11-12 J Scelza, BA Scelza, Brooke A. Female choice and extra-pair paternity in a traditional human population BIOLOGY LETTERS English Article extra-pair paternity; female choice; Himba; Namibia; life-history theory PARTIBLE PATERNITY; SELECTION; EVOLUTION; HISTORY Seeking out extra-pair paternity (EPP) is a viable reproductive strategy for females in many pair-bonded species. Across human societies, women commonly engage in extra-marital affairs, suggesting this strategy may also be an important part of women's reproductive decision-making. Here, I show that among the Himba 17 per cent of all recorded marital births are attributed by women to EPP, and EPP is associated with significant increases in women's reproductive success. In contrast, there are no cases of EPP among children born into 'love match' marriages. This rate of EPP is higher than has been recorded in any other small-scale society. These results illustrate the importance of seeking EPP as a mechanism of female choice in humans, while simultaneously showing it to be highly variable and context-dependent. Univ Calif Los Angeles, Dept Anthropol, Los Angeles, CA 90095 USA Scelza, BA (reprint author), Univ Calif Los Angeles, Dept Anthropol, 341 Haines Hall,POB 951553, Los Angeles, CA 90095 USA. bscelza@gmail.com UCLA Centre for the Study of Women; UCLA This research was funded by the UCLA Centre for the Study of Women and a UCLA Faculty Research Grant. Joan Silk and Eric Smith provided helpful comments on the manuscript. My research assistant Kemuu Jakurama was indispensable. Finally, I would like to thank the Himba for their hospitality, good humour and friendship. Anderson KG, 2006, CURR ANTHROPOL, V47, P513, DOI 10.1086/504167; Andersson M., 1994, SEXUAL SELECTION; Apostolou M, 2007, EVOL HUM BEHAV, V28, P403, DOI 10.1016/j.evolhumbehav.2007.05.007; Baker R. R., 1995, HUMAN SPERM COMPETIT; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Beckerman S, 1998, CURR ANTHROPOL, V39, P164, DOI 10.1086/204706; BETZIG L, 1989, CURR ANTHROPOL, V30, P654, DOI 10.1086/203798; Forstmeier W, 2002, P ROY SOC B-BIOL SCI, V269, P1479, DOI 10.1098/rspb.2002.2039; Goodale JC, 1971, TIWI WIVES STUDY WOM; Greiling H, 2000, PERS INDIV DIFFER, V28, P929, DOI 10.1016/S0191-8869(99)00151-8; Hrdy S. B., 1981, WOMAN NEVER EVOLVED; Hrdy SB, 2000, ANN NY ACAD SCI, V907, P75, DOI 10.1111/j.1749-6632.2000.tb06617.x; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; KAPLAN H, 1985, CURR ANTHROPOL, V26, P131, DOI 10.1086/203235; Marlowe FW, 2000, BEHAV PROCESS, V51, P45, DOI 10.1016/S0376-6357(00)00118-2; Mulder MB, 2009, HUM NATURE-INT BIOS, V20, P130, DOI 10.1007/s12110-009-9060-x; NEEL JV, 1975, AM J PHYS ANTHROPOL, V42, P25, DOI 10.1002/ajpa.1330420105; Petrie M, 1998, P NATL ACAD SCI USA, V95, P9390, DOI 10.1073/pnas.95.16.9390; Shostak M., 1981, NISA LIFE WORDS KUNG; Snyder BF, 2007, EVOLUTION, V61, P2457, DOI 10.1111/j.1558-5646.2007.00212.x; Walker RS, 2010, P NATL ACAD SCI USA, V107, P19195, DOI 10.1073/pnas.1002598107; Wiessner P, 2009, ORIG HUM BEHAV, V2, P251; Winking J, 2007, P R SOC B, V274, P1643, DOI 10.1098/rspb.2006.0437 23 43 43 1 29 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 BIOL LETTERS Biol. Lett. DEC 23 2011 7 6 889 891 10.1098/rsbl.2011.0478 3 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 846IQ WOS:000296890900028 21733870 Green Published, Bronze 2018-11-12 J Shaw, AK; Levin, SA Shaw, Allison K.; Levin, Simon A. To breed or not to breed: a model of partial migration OIKOS English Article RANDOMLY VARYING ENVIRONMENTS; ESS GERMINATION STRATEGIES; LEATHERBACK TURTLES; MARINE TURTLES; REPRODUCTION; POPULATION; DYNAMICS; EVOLUTION; PATTERNS; DENSITY Migration is used by a number of species as a strategy for dealing with a seasonally variable environment. In many migratory species, only some individuals migrate within a given season (migrants) while the rest remain in the same location (residents), a phenomenon called partial migration. Most examples of partial migration considered in the literature (both empirically and theoretically) fall into one of two categories: either species where residents and migrants share a breeding ground and winter apart, or species where residents and migrants share an overwintering ground and breed apart. However, a third form of partial migration can occur when non-migrating individuals actually forgo reproduction, essentially a special form of low-frequency reproduction. While this type of partial migration is well documented in many taxa, it is not often included in the partial migration literature, and has not been considered theoretically to date. In this paper we present a model for this partial migration scenario and determine under what conditions an individual should skip a breeding opportunity (resulting in partial migration), and under what conditions individuals should breed every chance they get (resulting in complete migration). In a constant environment, we find that partial migration is expected to occur when the mortality cost of migration is high, and when individuals can greatly increase their fecundity by skipping a year before breeding. In a stochastic environment, we find that an individual should skip migration more frequently with increased risk of a bad year (higher probability and severity), with higher mortality cost of migration, and with lower mortality cost of skipping. We discuss these results in the context of empirical data and existing life history theory. [Shaw, Allison K.; Levin, Simon A.] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA Shaw, AK (reprint author), Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA. akshaw@princeton.edu Shaw, Allison/E-7161-2010 Shaw, Allison/0000-0001-7969-8365 National Science Foundation [DGE-0646086] We would like to thank Iain Couzin, Henry Horn, Per Lundberg, Dan Rubenstein, Daniel Stanton and the Levin lab for helpful discussions and feedback, and the organizers of the CAnMove Symposium on Partial Migration for organizing this thematic on partial migration. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under grant no. DGE-0646086 to AKS. Aguilar R, 2005, J EXP MAR BIOL ECOL, V319, P117, DOI 10.1016/j.jembe.2004.08.030; Barta Z, 2006, OIKOS, V112, P580, DOI 10.1111/j.0030-1299.2006.14240.x; BELL JD, 1992, J FISH BIOL, V40, P107, DOI 10.1111/j.1095-8649.1992.tb02558.x; Benaim M, 2009, THEOR POPUL BIOL, V76, P19, DOI 10.1016/j.tpb.2009.03.007; Bock B.C., 1985, Contributions in Marine Science, V27, P435; Brodersen J, 2011, OIKOS, V120, P1838, DOI 10.1111/j.1600-0706.2011.19433.x; BULL JJ, 1979, AM NAT, V114, P296, DOI 10.1086/283476; CARR A, 1975, Biological Conservation, V8, P161, DOI 10.1016/0006-3207(75)90060-9; Caswell H, 2001, MATRIX POPULATION MO; Caut S, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001845; Chapman BB, 2011, OIKOS, V120, P1764, DOI 10.1111/j.1600-0706.2011.20131.x; COHEN D, 1966, J THEOR BIOL, V12, P119, DOI 10.1016/0022-5193(66)90188-3; COHEN D, 1967, AM NAT, V101, P5, DOI 10.1086/282464; COHEN D, 1968, J ECOL, V56, P219, DOI 10.2307/2258075; Corkeron PJ, 1999, MAR MAMMAL SCI, V15, P1228, DOI 10.1111/j.1748-7692.1999.tb00887.x; Craig AS, 1997, CAN J ZOOL, V75, P1923, DOI 10.1139/z97-822; Dingle H, 1996, MIGRATION BIOL LIFE; ELLNER S, 1985, THEOR POPUL BIOL, V28, P50, DOI 10.1016/0040-5809(85)90022-X; ELLNER S, 1985, THEOR POPUL BIOL, V28, P80, DOI 10.1016/0040-5809(85)90023-1; ELLNER S, 1987, AM NAT, V130, P798, DOI 10.1086/284746; Engelhard GH, 2005, BIOL LETT-UK, V1, P172, DOI 10.1098/rsbl.2004.0290; FERRIERE R, 1995, THEOR POPUL BIOL, V48, P126, DOI 10.1006/tpbi.1995.1024; Gardmark A, 2003, EVOL ECOL RES, V5, P239; GIBSON-HILL C. A., 1947, BULL RAFFLES MUS, V18, P43; Green PT, 1997, J TROP ECOL, V13, P17, DOI 10.1017/S0266467400010221; Griswold CK, 2010, P ROY SOC B-BIOL SCI, V277, P2711, DOI 10.1098/rspb.2010.0550; Hartnoll RG, 2007, J CRUSTACEAN BIOL, V27, P425, DOI 10.1651/S-2772.1; HASSELL MP, 1976, J ANIM ECOL, V45, P471, DOI 10.2307/3886; Hatase H, 2004, MAR BIOL, V144, P807, DOI 10.1007/s00227-003-1232-3; Hays GC, 2000, J THEOR BIOL, V206, P221, DOI 10.1006/jtbi.2000.2116; Hebblewhite M, 2011, OIKOS, V120, P1860, DOI 10.1111/j.1600-0706.2011.19436.x; Hughes G. R, 1995, BIOL CONSERVATION SE, P81; Husting E. L., 1965, Copeia, V1965, P352, DOI 10.2307/1440800; JENSEN GC, 1989, CAN J FISH AQUAT SCI, V46, P932, DOI 10.1139/f89-120; JONSSON N, 1991, J ANIM ECOL, V60, P937, DOI 10.2307/5423; Jorgensen C, 2006, CAN J FISH AQUAT SCI, V63, P200, DOI 10.1139/F05-210; KAITALA A, 1993, AM NAT, V142, P59, DOI 10.1086/285529; Lack D., 1944, British Birds, V37, P143; Lack David, 1943, BRIT BIRDS, V37, P122; Lalonde RG, 2006, AM NAT, V168, P127, DOI 10.1086/505155; Langston NE, 1996, OIKOS, V76, P498, DOI 10.2307/3546343; Le Bohec C, 2007, J ANIM ECOL, V76, P1149, DOI 10.1111/j.1365-2656.2007.01268.x; LUNDBERG P, 1987, J THEOR BIOL, V125, P351, DOI 10.1016/S0022-5193(87)80067-X; McGill BJ, 2007, ANNU REV ECOL EVOL S, V38, P403, DOI 10.1146/annurev.ecolsys.36.091704.175517; Mellinger DK, 2004, MAR MAMMAL SCI, V20, P48, DOI 10.1111/j.1748-7692.2004.tb01140.x; Menu F, 2000, AM NAT, V155, P724, DOI 10.1086/303355; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; MOORE R, 1982, AUST J MAR FRESH RES, V33, P671; Morrissey CA, 2004, CONDOR, V106, P815, DOI 10.1650/7455; MORTIMER JA, 1987, COPEIA, P103, DOI 10.2307/1446043; Musick John A., 1997, P137; Nevoux M, 2010, ECOLOGY, V91, P2416, DOI 10.1890/09-0143.1; Nilsson ALK, 2011, OIKOS, V120, P1784, DOI 10.1111/j.1600-0706.2011.19440.x; OLSEN A. M., 1954, AUSTRALIAN JOUR MARINE AND FRESHWATER RES, V5, P353; Pimentel R. A., 1960, AM MIDL NAT, V63, P470, DOI DOI 10.2307/2422806; POLLOCK BR, 1984, MAR ECOL PROG SER, V19, P17, DOI 10.3354/meps019017; Pritchard P. C. H., 1973, IUCN MONOGR MAR TU 2, V2, P1; QUINN SP, 1985, COPEIA, P613; Ricker W. E., 1975, FISHERIES RES BOARD, V191, P382; Rideout RM, 2005, FISH FISH, V6, P50, DOI 10.1111/j.1467-2679.2005.00174.x; ROERDINK JBTM, 1988, J MATH BIOL, V26, P199, DOI 10.1007/BF00277733; Russell Anthony P., 2005, P151, DOI 10.1007/3-540-26604-6_7; Saba VS, 2007, J APPL ECOL, V44, P395, DOI 10.1111/j.1365-2664.2007.01276.x; Schulz J.P., 1975, Zoologische Verh Leiden, VNo. 143, P1; Scott W.B., 1973, Bulletin Fish Res Bd Canada, V184, P1; SMITH JM, 1973, NATURE, V246, P15, DOI 10.1038/246015a0; Solow AR, 2002, ECOL LETT, V5, P742, DOI 10.1046/j.1461-0248.2002.00374.x; Taylor CM, 2007, BIOLOGY LETT, V3, P280, DOI 10.1098/rsbl.2007.0053; Thorpe J.E., 1994, Aquaculture and Fisheries Management, V25, P77; TULJAPURKAR S, 1993, THEOR POPUL BIOL, V43, P251, DOI 10.1006/tpbi.1993.1011; TWITTY V, 1964, P NATL ACAD SCI USA, V51, P51, DOI 10.1073/pnas.51.1.51; Wolcott T.G., 1988, P55, DOI 10.1017/CBO9780511753428.004 72 40 43 0 42 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos DEC 2011 120 12 1871 1879 10.1111/j.1600-0706.2011.19443.x 9 Ecology Environmental Sciences & Ecology 862LS WOS:000298093100012 2018-11-12 J Castellano, S; Cadeddu, G Castellano, Sergio; Cadeddu, Giorgia Does quality affect growth rate and age at maturity in species with indeterminate growth? EVOLUTIONARY ECOLOGY RESEARCH English Article amphibian; game theory; life-history theory; lifetime reproductive success; mate choice; sexual selection; skeletochronology SEXUAL SIZE DIMORPHISM; LIFE-HISTORY EVOLUTION; BODY-SIZE; RANA-TEMPORARIA; NATURAL-SELECTION; BUFO-VIRIDIS; ALLOCATION; PLASTICITY; TREEFROG; TRAITS Background: Life-history theory uses optimality models to predict among-population variation in age and size at first reproduction. To predict within-population variation in these traits, however, models should take into account the frequency-dependent effects of life-history strategies. Hypotheses: Growth rate costs that differ between individuals according to their quality are responsible for variation in life-history traits within a population. Theory incorporating such different costs will predict aspects of age and body size among male Tyrrhenian tree frogs, Hyla sarda (Anura: Hylidae), in a wild population. Mathematical method: Two-player, non-zero-sum game. Key assumptions: Growth is biphasic and decreases after sexual maturity. Males vary in their size and age at first reproduction. Growth imposes different survival costs on higher- and lower-quality males. Males of either higher or lower quality can choose to grow fast or slow, and to reach maturity early or late. Independent of their quality, larger males experience higher mating success. Theoretical predictions: Higher-quality males should grow faster than lower-quality males. Faster-growing males should mature sooner than slower-growing males. Field method: We measured the age and the body size of two groups of reproductive males: males that were first captured at the breeding site in 2007 and recaptured in 2008 (recaptured males), and males that were first captured in 2008 (newly captured males). Result: As predicted, recaptured males were larger than newly captured males of both the 2008 and 2007 age classes. [Castellano, Sergio; Cadeddu, Giorgia] Univ Turin, Dipartimento Biol Anim & Uomo, I-10123 Turin, Italy Castellano, S (reprint author), Univ Turin, Dipartimento Biol Anim & Uomo, Via Accademia Albertina 13, I-10123 Turin, Italy. sergio.castellano@unito.it BERNARDO J, 1994, AM NAT, V143, P14, DOI 10.1086/285594; Billerbeck JM, 2000, OECOLOGIA, V122, P210, DOI 10.1007/PL00008848; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; Brown CR, 1998, EVOLUTION, V52, P1461, DOI 10.1111/j.1558-5646.1998.tb02027.x; Cadeddu G, 2012, J ZOOL, V286, P285, DOI 10.1111/j.1469-7998.2011.00878.x; Castellano S, 1999, J ZOOL, V248, P83, DOI 10.1111/j.1469-7998.1999.tb01025.x; Castellano S, 2004, COPEIA, P659, DOI 10.1643/CE-03-182R2; Castellano S, 2011, ETHOL ECOL EVOL, V23, P329, DOI 10.1080/03949370.2011.575801; Castellano S, 2009, ANIM BEHAV, V77, P213, DOI 10.1016/j.anbehav.2008.08.035; Castellano S, 2009, BEHAV ECOL SOCIOBIOL, V63, P1109, DOI 10.1007/s00265-009-0756-z; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; FRANCILLON H, 1985, CR ACAD SCI III-VIE, V300, P327; Friedl TWP, 2005, ANIM BEHAV, V70, P1141, DOI 10.1016/j.anbehav.2005.01.01; GJERDE B, 1989, AQUACULTURE, V80, P25, DOI 10.1016/0044-8486(89)90271-8; GRAFEN A, 1990, J THEOR BIOL, V144, P517, DOI 10.1016/S0022-5193(05)80088-8; HOWARD RD, 1978, EVOLUTION, V32, P850, DOI 10.1111/j.1558-5646.1978.tb04639.x; Johansson F, 2001, ECOLOGY, V82, P1857, DOI 10.1890/0012-9658(2001)082[1857:LHPIAD]2.0.CO;2; Johnstone Rufus A., 1997, P155; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Lardner B, 2003, OECOLOGIA, V137, P541, DOI 10.1007/s00442-003-1390-5; Laugen AT, 2005, GENET RES, V86, P161, DOI 10.1017/S0016672305007810; Laugen AT, 2003, J EVOLUTION BIOL, V16, P996, DOI 10.1046/j.1420-9101.2003.00560.x; Laurila A, 2008, ECOLOGY, V89, P1399, DOI 10.1890/07-1521.1; Mangel M, 2005, AM NAT, V166, pE155, DOI 10.1086/444439; McElligott AG, 2001, BEHAV ECOL SOCIOBIOL, V49, P266, DOI 10.1007/s002650000293; Miller BLW, 2007, J EVOLUTION BIOL, V20, P1554, DOI 10.1111/j.1420-9101.2007.01331.x; Morey S, 2000, ECOLOGY, V81, P1736, DOI 10.1890/0012-9658(2000)081[1736:ACAOPI]2.0.CO;2; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; PARTRIDGE L, 1993, EVOLUTION, V47, P213, DOI 10.1111/j.1558-5646.1993.tb01211.x; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Roff Derek A., 1992; ROGERS KL, 1994, J HERPETOL, V28, P133, DOI 10.2307/1564611; Rosa CE, 2008, COMP BIOCHEM PHYS B, V149, P209, DOI 10.1016/j.cbpb.2007.09.010; Rosso A, 2005, EVOL ECOL, V18, P303, DOI 10.1007/s10682-004-0925-5; Scott DE, 2007, OECOLOGIA, V153, P521, DOI 10.1007/s00442-007-0755-6; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stock M, 2008, MOL PHYLOGENET EVOL, V49, P1019, DOI 10.1016/j.ympev.2008.08.029; Swain DP, 2007, P ROY SOC B-BIOL SCI, V274, P1015, DOI 10.1098/rapb.2006.0275; Thomas L.C., 1984, THEORY APPL; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vargas-Salinas F, 2006, AMPHIBIA-REPTILIA, V27, P419, DOI 10.1163/156853806778189936; Vindenes Y, 2008, AM NAT, V171, P455, DOI 10.1086/528965 44 0 0 0 12 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 1937-3791 EVOL ECOL RES Evol. Ecol. Res. NOV 2011 13 8 797 812 16 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 978TS WOS:000306769300003 2018-11-12 J Gamelon, M; Besnard, A; Gaillard, JM; Servanty, S; Baubet, E; Brandt, S; Gimenez, O Gamelon, Marlene; Besnard, Aurelien; Gaillard, Jean-Michel; Servanty, Sabrina; Baubet, Eric; Brandt, Serge; Gimenez, Olivier HIGH HUNTING PRESSURE SELECTS FOR EARLIER BIRTH DATE: WILD BOAR AS A CASE STUDY EVOLUTION English Article Birth timing; elastogram; exploited populations; population dynamics; selection gradient analyses; Sus scrofa scrofa MARK-RECAPTURE DATA; CLIMATE-CHANGE; EVOLUTIONARY CONSEQUENCES; TEMPORAL VARIATION; POPULATION-GROWTH; NATURAL-SELECTION; SUS-SCROFA; RED DEER; SURVIVAL; REPRODUCTION Exploitation by humans affects the size and structure of populations. This has evolutionary and demographic consequences that have typically being studied independent of one another. We here applied a framework recently developed applying quantitative tools from population ecology and selection gradient analysis to quantify the selection on a quantitative trait-birth date-through its association with multiple fitness components. From the long-term monitoring (22 years) of a wild boar (Sus scrofa scrofa) population subject to markedly increasing hunting pressure, we found that birth dates have advanced by up to 12 days throughout the study period. During the period of low hunting pressure, there was no detectable selection. However, during the period of high hunting pressure, the selection gradient linking breeding probability in the first year of life to birth date was negative, supporting current life-history theory predicting selection for early births to reproduce within the first year of life with increasing adult mortality. [Gamelon, Marlene; Besnard, Aurelien; Gimenez, Olivier] Ctr Ecol Fonct & Evolut, Unite Mixte Rech 5175, F-34293 Montpellier 5, France; [Gamelon, Marlene; Brandt, Serge] Off Natl Chasse & Faune Sauvage, F-59120 Chateauvillain, France; [Gaillard, Jean-Michel] Univ Lyon 1, Lab Biometrie & Biol Evolut, Unite Mixte Rech 5558, F-69622 Villeurbanne, France; [Servanty, Sabrina] USGS Patuxent Wildlife Res Ctr, Laurel, MD 20708 USA; [Servanty, Sabrina] Colorado State Univ, Colorado Cooperat Fish & Wildlife Res Unit, Ft Collins, CO 80523 USA; [Baubet, Eric] CNERA Cervides Sangliers, Off Natl Chasse & Faune Sauvage, F-01330 Montfort, Birieux, France Gamelon, M (reprint author), Ctr Ecol Fonct & Evolut, Unite Mixte Rech 5175, Campus CNRS,1919 Route Mende, F-34293 Montpellier 5, France. marlene.gamelon@univ-lyon1.fr; aurelien.besnard@cefe.cnrs.fr; jean-michel.gaillard@univ-lyon1.fr; sab.servanty@free.fr; eric.baubet@oncfs.gouv.fr; serge.brandt@oncfs.gouv.fr; olivier.gimenez@cefe.cnrs.fr Gimenez, Olivier/G-4281-2010 Gamelon, Marlene/0000-0002-9433-2369 ANR-JCJC [ANR-08-JCJC-0088-01] We are grateful to all those who helped capturing and marking wild boar, as well as those who helped collecting harvested wild boars, particularly P. Van den Bulck and G. Corbeau. We are grateful to the Office National des Forets and to F. Jehle, who allowed us to work on the study area. We thank A. Charmantier, T. Coulson, and one anonymous referee for their helpful comments that markedly improved our article. We warmly thank E. Bean for correcting our English. This work was supported by an ANR-JCJC grant, "Towards Capture-Recapture Mixed Models" (ANR-08-JCJC-0088-01). Allendorf FW, 2009, P NATL ACAD SCI USA, V106, P9987, DOI 10.1073/pnas.0901069106; Andersen KH, 2009, P NATL ACAD SCI USA, V106, P11657, DOI 10.1073/pnas.0901690106; Baubet Eric, 2009, Acta Silvatica & Lignaria Hungarica, V5, P159; Boonstra R, 1998, ECOL MONOGR, V68, P371, DOI 10.1890/0012-9615(1998)068[0371:TIOPIS]2.0.CO;2; BRAULT S, 1993, ECOLOGY, V74, P1444, DOI 10.2307/1940073; Burnham K. P., 2002, MODEL SELECTION MULT; Carroll SP, 2007, FUNCT ECOL, V21, P387, DOI 10.1111/j.1365-2435.2007.01289.x; Caswell H, 2001, MATRIX POPULATION MO; Choquet R, 2008, CAN J STAT, V36, P43, DOI 10.1002/cjs.5550360106; Choquet R, 2009, ENVIRON ECOL STAT SE, V3, P845, DOI 10.1007/978-0-387-78151-8_39; Coltman DW, 2003, NATURE, V426, P655, DOI 10.1038/nature02177; Coulson T, 2003, EVOLUTION, V57, P2879; Coulson T, 2010, J ANIM ECOL, V79, P1226, DOI 10.1111/j.1365-2656.2010.01734.x; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; Davison AC, 1997, BOOTSTRAP METHODS TH; de Kroon H, 2000, ECOLOGY, V81, P607, DOI 10.1890/0012-9658(2000)081[0607:EAROMA]2.0.CO;2; Dunn PO, 1999, P ROY SOC B-BIOL SCI, V266, P2487, DOI 10.1098/rspb.1999.0950; Fenberg PB, 2008, MOL ECOL, V17, P209, DOI 10.1111/j.1365-294X.2007.03522.x; Fernandez-Llario P, 2004, EUR J WILDLIFE RES, V50, P13, DOI 10.1007/s10344-003-0028-6; Festa-Bianchet M, 2003, ANIMAL BEHAVIOR AND WILDLIFE CONSERVATION, P191; FESTABIANCHET M, 1988, J MAMMAL, V69, P157, DOI 10.2307/1381764; FESTABIANCHET M, 1988, J ZOOL, V214, P653, DOI 10.1111/j.1469-7998.1988.tb03764.x; FISHER R. A., 1930, GENETICAL THEORY NAT; Gaillard J. M., 2003, CASE UNGULATES, P115; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; GAILLARD JM, 1992, OECOLOGIA, V90, P167, DOI 10.1007/BF00317173; GAILLARD JM, 1993, J MAMMAL, V74, P738, DOI 10.2307/1382296; Gimenez O, 2006, EVOLUTION, V60, P460; Gimenez O, 2008, AM NAT, V172, P441, DOI 10.1086/589520; Gimenez O, 2009, EVOLUTION, V63, P3097, DOI 10.1111/j.1558-5646.2009.00783.x; Hamel S, 2010, ECOL LETT, V13, P915, DOI 10.1111/j.1461-0248.2010.01478.x; Hilton-Taylor C., 2000, IUCN RED LIST THREAT, pxviii; Hine E, 2011, P NATL ACAD SCI USA, V108, P3659, DOI 10.1073/pnas.1011876108; Janzen FJ, 1998, EVOLUTION, V52, P1564, DOI 10.1111/j.1558-5646.1998.tb02237.x; Johnson PJ, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0012866; Keane A, 2005, BIOL CONSERV, V126, P216, DOI 10.1016/j.biocon.2005.05.011; Kingsolver JG, 2001, AM NAT, V157, P245, DOI 10.1086/319193; KREBS CJ, 1995, SCIENCE, V269, P1112, DOI 10.1126/science.269.5227.1112; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Lebreton JD, 2005, AUST NZ J STAT, V47, P49, DOI 10.1111/j.1467-842X.2005.00371.x; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Lebreton JD, 2009, ADV ECOL RES, V41, P87, DOI 10.1016/S0065-2504(09)00403-6; Legendre S, 1995, J APPL STAT, V22, P817, DOI 10.1080/02664769524649; Lomas LA, 2007, J WILDLIFE MANAGE, V71, P884, DOI 10.2193/2006-203; Mauget R., 1984, S INT SANGLIER TOULO, V22, P15; Metcalf CJE, 2007, TRENDS ECOL EVOL, V22, P205, DOI 10.1016/j.tree.2006.12.001; Moyes K, 2006, OIKOS, V115, P241, DOI 10.1111/j.2006.0030-1299.15200.x; Ozgul A, 2010, NATURE, V466, P482, DOI 10.1038/nature09210; Ozgul A, 2009, SCIENCE, V325, P464, DOI 10.1126/science.1173668; Parmesan C, 2006, ANNU REV ECOL EVOL S, V37, P637, DOI 10.1146/annurev.ecolsys.37.091305.110100; Pelletier F, 2007, SCIENCE, V315, P1571, DOI 10.1126/science.1139024; Pemberton JM, 2010, PHILOS T R SOC B, V365, P2431, DOI 10.1098/rstb.2010.0108; R DEVELOPMENT TEAM, 2009, R LANG ENV STAT COMP; RUTBERG AT, 1987, AM NAT, V130, P692, DOI 10.1086/284739; Sadleir R.M.F.S., 1987, P123; Schaub M, 2004, ECOLOGY, V85, P930, DOI 10.1890/03-0012; Servanty S, 2011, J APPL ECOL, V48, P835, DOI 10.1111/j.1365-2664.2011.02017.x; Servanty S, 2009, J ANIM ECOL, V78, P1278, DOI 10.1111/j.1365-2656.2009.01579.x; SLOBODKIN LAWRENCE B., 1961; Smekens MJ, 2001, ACTA OECOL, V22, P187, DOI 10.1016/S1146-609X(01)01120-1; Toigo C, 2003, OIKOS, V101, P376, DOI 10.1034/j.1600-0706.2003.12073.x; Toigo C, 2008, J WILDLIFE MANAGE, V72, P1532, DOI 10.2193/2007-378; Truve J, 2003, WILDLIFE BIOL, V9, P51; van Tienderen PH, 2000, ECOLOGY, V81, P666, DOI 10.1890/0012-9658(2000)081[0666:EATLBD]2.0.CO;2; Visser ME, 2008, P R SOC B, V275, P649, DOI 10.1098/rspb.2007.0997; Williams B. K., 2002, ANAL MANAGEMENT ANIM 67 30 30 0 84 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution NOV 2011 65 11 3100 3112 10.1111/j.1558-5646.2011.01366.x 13 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 843VK WOS:000296702800007 22023578 Bronze 2018-11-12 J Gooderham, K; Schulte-Hostedde, A Gooderham, Krista; Schulte-Hostedde, Albrecht Macroparasitism influences reproductive success in red squirrels (Tamiasciurus hudsonicus) BEHAVIORAL ECOLOGY English Article fitness; life-history traits; mammals; parasite richness AFRICAN GROUND-SQUIRREL; BODY CONDITION; TRADE-OFFS; ECOLOGICAL IMMUNOLOGY; EVOLUTIONARY ECOLOGY; ECTOPARASITE LOADS; GLAUCOMYS-SABRINUS; PARASITE INFECTION; IMMUNE DEFENSE; SPLEEN MASS Life-history theory predicts that all organisms have finite energy reserves. In order to optimize fitness, individuals must make trade-offs in allocating energy among survival, growth, and reproduction. Parasites have the ability to negatively impact host fitness and shift the balance of energy trade-offs. The aim of our study was to determine the relationships among parasite load and reproductive success in a free-living population of North American red squirrels (Tamiasciurus hudsonicus) in Algonquin Park, Ontario. We hypothesized that heavily parasitized individuals must allocate more energy toward immune function. As energy storage is finite, this will inevitably reduce the resources available for reproduction. Here, we show that parasite richness can compromise fitness through decreasing reproductive success. However, ectoparasite intensity increased with increasing reproductive success in males but not females, suggesting a possible trade-offs between secondary sexual characteristics in males and immunosuppressive qualities of testosterone. Our study provides unique evidence of the costs parasites exact on their hosts. It is among the relatively few studies conducted within an ecological context incorporating host fitness in relation to multiple parasite infections. [Gooderham, Krista; Schulte-Hostedde, Albrecht] Laurentian Univ, Dept Biol, Sudbury, ON P3E 2C6, Canada Schulte-Hostedde, A (reprint author), Laurentian Univ, Dept Biol, 935 Ramsey Lake Rd, Sudbury, ON P3E 2C6, Canada. aschultehostedde@laurentian.ca Schulte-Hostedde, Albrecht/C-2007-2009 NSERC; Canadian Foundation for Innovation; Ontario Ministry of Research and Innovation We would like to acknowledge NSERC and the Canadian Foundation for Innovation and the Ontario Ministry of Research and Innovation for financial support. Agnew P, 2000, MICROBES INFECT, V2, P891, DOI 10.1016/S1286-4579(00)00389-0; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Bonanno VL, 2009, BEHAV ECOL SOCIOBIOL, V63, P835, DOI 10.1007/s00265-009-0718-5; Bouslama Z, 2001, ECOSCIENCE, V8, P320, DOI 10.1080/11956860.2001.11682659; Brown ED, J HELMINTHOL, V68, P105; Corbin E, 2008, MAMMAL REV, V38, P108, DOI 10.1111/j.1365-2907.2007.00112.x; Degen AA, 2006, Micromammals and Macroparasites: From Evolutionary Ecology to Management, P371, DOI 10.1007/978-4-431-36025-4_19; Dowling DK, 2001, BEHAV ECOL SOCIOBIOL, V50, P257, DOI 10.1007/s002650100360; Ferrari N, 2004, ECOL LETT, V7, P88, DOI 10.1046/j.1461-0248.2003.00552.x; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Fox A, 2001, ECOL LETT, V4, P139, DOI 10.1046/j.1461-0248.2001.00207.x; Gangloff MM, 2008, HYDROBIOLOGIA, V610, P25, DOI 10.1007/s10750-008-9419-8; Gibbons LM, 2009, RVC FAO GUIDE VET DI; Gorrell JC, 2008, CAN J ZOOL, V86, P99, DOI 10.1139/Z07-123; Grear DA, 2009, ECOL LETT, V12, P528, DOI 10.1111/j.1461-0248.2009.01306.x; Gunn MR, 2005, MOL ECOL NOTES, V5, P650, DOI 10.1111/j.1471-8286.2005.01022.x; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; Heylen D, 2009, OIKOS, V118, P1499, DOI 10.1111/j.1600-0706.2009.17606.x; Hillegass MA, 2008, BEHAV ECOL, V19, P1006, DOI 10.1093/beheco/arn070; Hillegass MA, 2010, BEHAV ECOL, V21, P696, DOI 10.1093/beheco/arq041; Holland G, 1949, SIPONAPTERA CANADA; Hughes VL, 2001, J PARASITOL, V87, P49, DOI 10.1007/s004360000287; Hurd H, 2001, TRENDS PARASITOL, V17, P363, DOI 10.1016/S1471-4922(01)01927-4; IMS RA, 1987, J ANIM ECOL, V56, P585, DOI 10.2307/5070; Kalinowski ST, 2007, MOL ECOL, V16, P1099, DOI 10.1111/j.1365-294X.2007.03089.x; Khokhlova IS, 2002, J ZOOL, V258, P349, DOI 10.1017/S0952836902001498; Krasnov BR, 2005, OECOLOGIA, V146, P209, DOI 10.1007/s00442-005-0189-y; Kristan DM, 2004, PHYSIOL BIOCHEM ZOOL, V77, P440, DOI 10.1086/383513; Kruczek M, 1997, BEHAV PROCESS, V40, P171, DOI 10.1016/S0376-6357(97)00785-7; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; MacIntosh AJJ, 2010, PRIMATES, V51, P353, DOI 10.1007/s10329-010-0211-9; Meagher S, 2002, J PARASITOL, V88, P833, DOI 10.1645/0022-3395(2002)088[0833:EOTSOS]2.0.CO;2; Medvedev SG, 2006, MICROMAMMALS MACROPA, P371; Michalakis Yannis, 2009, P19; MINCHELLA DJ, 1981, AM NAT, V118, P876, DOI 10.1086/283879; Moore SL, 2002, SCIENCE, V297, P2015, DOI 10.1126/science.1074196; Morand S, 2000, CAN J ZOOL, V78, P1356, DOI 10.1139/cjz-78-8-1356; Morand S, 2006, MICROMAMMALS AND MACROPARASITES: FROM EVOLUTIONARY ECOLOGY TO MANAGEMENT, P3, DOI 10.1007/978-4-431-36025-4_1; Mougeot F, 2006, BEHAV ECOL, V17, P117, DOI 10.1093/beheco/arj005; MUNGER JC, 1989, ECOLOGY, V70, P904, DOI 10.2307/1941358; Neuhaus P, 2003, P ROY SOC B-BIOL SCI, V270, pS213, DOI 10.1098/rsbl.2003.0073; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Pacejka AJ, 1998, ECOLOGY, V79, P1797; Patterson LD, 2011, ANIM BEHAV, V81, P1129, DOI 10.1016/j.anbehav.2011.02.016; Pauli JN, 2004, J WILDLIFE DIS, V40, P579, DOI 10.7589/0090-3558-40.3.579; Perez-Orella C, 2005, CAN J ZOOL, V83, P1381, DOI 10.1139/Z05-126; Polak M, 1998, P ROY SOC B-BIOL SCI, V265, P2197, DOI 10.1098/rspb.1998.0559; POORBAUGH JOHN H., 1961, JOUR KANSAS ENTOMOL SOC, V34, P198; Poulin R, 1996, AM NAT, V147, P287, DOI 10.1086/285851; Radespiel U, 2000, AM J PRIMATOL, V51, P21, DOI 10.1002/(SICI)1098-2345(200005)51:1<21::AID-AJP3>3.0.CO;2-C; Roff D. A., 2002, LIFE HIST EVOLUTION; Romero LM, 2002, GEN COMP ENDOCR, V128, P1; ROSSANIGO CE, 1991, VET PARASITOL, V39, P115, DOI 10.1016/0304-4017(91)90067-6; Santos-Flores CJ, 2003, HYDROBIOLOGIA, V500, P145, DOI 10.1023/A:1024638620460; Scantlebury M, 2007, P R SOC B, V274, P2169, DOI 10.1098/rspb.2007.0690; Scantlebury M, 2010, J ZOOL, V282, P246, DOI 10.1111/j.1469-7998.2010.00734.x; Schmid-Hempel P, 2003, P ROY SOC B-BIOL SCI, V270, P357, DOI 10.1098/rspb.2002.2265; Schulte-Hostedde AI, 2011, J MAMMAL, V92, P221, DOI 10.1644/10-MAMM-A-020.1; Schwanz LE, 2008, BEHAV ECOL SOCIOBIOL, V62, P1351, DOI 10.1007/s00265-008-0563-y; Seivwright LJ, 2005, P ROY SOC B-BIOL SCI, V272, P2299, DOI 10.1098/rspb.2005.3233; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Sorci G, 1996, OIKOS, V76, P121, DOI 10.2307/3545754; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Thomas DW, 2007, FUNCT ECOL, V21, P947, DOI 10.1111/j.1365-2435.2007.01301.x; Thomas F., 2009, ECOLOGY EVOLUTION PA; Voordouw MJ, 2008, MALARIA J, V14, P1; WEDEKIND C, 1992, P ROY SOC B-BIOL SCI, V247, P169, DOI 10.1098/rspb.1992.0024; Yacob HT, 2006, VET PARASITOL, V137, P184, DOI 10.1016/j.vetpar.2006.01.020; Zuk M., 2002, AM NAT, V160, P9, DOI DOI 10.1086/342131 69 22 23 1 50 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 BEHAV ECOL Behav. Ecol. NOV-DEC 2011 22 6 1195 1200 10.1093/beheco/arr112 6 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology 838MB WOS:000296295000016 Bronze 2018-11-12 J Liu, JH; Lummaa, V Liu, Jianghua; Lummaa, Virpi Age at first reproduction and probability of reproductive failure in women EVOLUTION AND HUMAN BEHAVIOR English Article Delayed reproduction; Sexual maturity; Life history; Lineage persistence PREINDUSTRIAL HUMAN-POPULATIONS; LIFE-HISTORY TRAITS; MATERNAL AGE; NATURAL-SELECTION; BIRTH-WEIGHT; FECUNDITY; FITNESS; SUCCESS; HUMANS; PARENTHOOD Life history theory predicts a trade-off between fitness benefits and costs of delaying age at first reproduction (AFR). In many human populations, maternal AFR has been increasingly delayed beyond sexual maturity over the past decades, raising a question of whether any fitness benefits accrued outweigh costs incurred. To investigate the cost benefit trade-off concerning AFR in women, we construct a theoretical model and test its predictions using pedigree data from historical Finnish mothers. The model predicts that the probability of reproductive failure (no offspring produced reaching breeding) will increase with AFR if the benefit with delaying in terms of improvement to offspring quality (i.e., breeding probability) cannot offset the cost from decline in offspring quantity. The data show that offspring quantity declined significantly with delayed reproduction, while offspring quality remained initially constant before declining when AFR was delayed beyond 30. Consistent with the theoretical model's predictions, reproductive failure probability increased markedly with delaying AFR after 30, independently of maternal socioeconomic status. Our study is the first to investigate the associations between delay in AFR after sexual maturity and changes in not only offspring quantity but also offspring quality and suggest a significant evolutionary disadvantage of delayed AFR beyond 30 for lineage persistence in a predemographic transition society. (C) 2011 Elsevier Inc. All rights reserved. [Liu, Jianghua; Lummaa, Virpi] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England Liu, JH (reprint author), Univ Sheffield, Dept Anim & Plant Sci, Western Bank, Sheffield S10 2TN, S Yorkshire, England. jianghua.liu@sheffield.ac.uk University of Sheffield; Kone Foundation; European Research Council; Royal Society of London We thank Alexandra Alvergne, Andrew Beckerman, Fansuo Geng, Duncan Gillespie, Ben Hatchwell, Bobbi S. Low, Jenni Pettay, Ian Rickard, Matt Robinson, Andrew F. Russell, Jessica Stapley and Masao Yamashita for comments. We thank Lasse Iso-livari, Kimmo Pokkinen, Aino Siitonen and Timo Verho for collecting the genealogical data. We thank the University of Sheffield (JL), Kone Foundation (VL, JL), the European Research Council and the Royal Society of London (VL) for funding. Allal N, 2004, P ROY SOC B-BIOL SCI, V271, P465, DOI 10.1098/rspb.2003.2623; Buss D. M., 1999, EVOLUTIONARY PSYCHOL; Clutton-Brock T. H, 1982, RED DEER BEHAV ECOLO; Crawley M. J., 2007, R BOOK; Faraway J. J., 2006, EXTENDING LINEAR MOD; Fisher R. A., 1999, GENETICAL THEORY NAT; Frejka T, 2006, DEMOGR RES, V15, P147, DOI 10.4054/DemRes.2006.15.6; Geronimus AT, 1996, SOC SCI MED, V42, P589, DOI 10.1016/0277-9536(95)00159-X; Gillespie DOS, 2008, P R SOC B, V275, P713, DOI 10.1098/rspb.2007.1000; GRIFFITHS AJF, 2008, INTRO GENETIC ANAL; Hajnal J., 1965, POPULATION HIST ESSA, P101; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Hoekstra R. J., 2005, EVOLUTION; Hollier LM, 2000, OBSTET GYNECOL, V96, P701, DOI 10.1016/S0029-7844(00)01019-X; HRDY SB, 1992, ETHOL SOCIOBIOL, V13, P409, DOI 10.1016/0162-3095(92)90011-R; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; Kaar P, 1996, P ROY SOC B-BIOL SCI, V263, P1475, DOI 10.1098/rspb.1996.0215; Kannisto V., 1999, DEMOGR RES, V1, DOI [10.4054/DemRes.1999.1.1, DOI 10.4054/DEMRES.1999.1.1]; Kaplan H, 2002, AM J HUM BIOL, V14, P233, DOI 10.1002/ajhb.10041; KAPLAN HS, 1995, HUMAN REPROD DECISIO, P96; KAWECKI TJ, 1993, OIKOS, V66, P309, DOI 10.2307/3544819; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Lahdenpera M, 2007, P R SOC B, V274, P2437, DOI 10.1098/rspb.2007.0688; Lahdenpera M, 2004, NATURE, V428, P178, DOI 10.1038/nature02367; LEE KS, 1988, AM J OBSTET GYNECOL, V158, P84, DOI 10.1016/0002-9378(88)90783-1; Liao TF, 2000, QUAL QUANT, V34, P137, DOI 10.1023/A:1004798429785; Low BS, 2003, BIODEMOGRAPHY OF HUMAN REPRODUCTION AND FERTILITY, P105; Low BS, 2002, AM J HUM BIOL, V14, P149, DOI 10.1002/ajhb.10043; Lummaa V, 2001, P ROY SOC B-BIOL SCI, V268, P1977, DOI 10.1098/rspb.2001.1786; LUTTBEG B, 2000, HUMAN BEHAV ADAPTATI, P345; LUTZ W, 1987, FINNISH FERTILITY 17; Mace R, 1996, ETHOL SOCIOBIOL, V17, P263, DOI 10.1016/0162-3095(96)00044-1; Malthus TR, 1803, ESSAY PRINCIPLE POPU; Migliano AB, 2007, P NATL ACAD SCI USA, V104, P20216, DOI 10.1073/pnas.0708024105; MORING B, 1993, J FAM HIST, V18, P395, DOI 10.1177/036319909301800407; Moring B, 1996, CONTINUITY CHANGE, V11, P91, DOI 10.1017/S0268416000003106; Moring B., 2009, STEM FAMILY EURASIAN, P173; Mueller U, 2001, POPUL DEV REV, V27, P469, DOI 10.1111/j.1728-4457.2001.00469.x; MULDER MB, 1989, J BIOSOC SCI, V21, P179; MULDER MB, 1989, BEHAV ECOL SOCIOBIOL, V24, P145, DOI 10.1007/BF00292097; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Pettay JE, 2008, EVOLUTION, V62, P2297, DOI 10.1111/j.1558-5646.2008.00452.x; Pettay JE, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000606; R Development Core Team, 2009, R LANG ENV STAT COMP; RAYMOND EG, 1994, BRIT J OBSTET GYNAEC, V101, P301, DOI 10.1111/j.1471-0528.1994.tb13614.x; Rickard IJ, 2007, P ROY SOC B-BIOL SCI, V274, P2981, DOI 10.1098/rspb.2007.1051; Roff Derek A., 1992; SCHWARTZ D, 1982, NEW ENGL J MED, V306, P404, DOI 10.1056/NEJM198202183060706; Sear R, 2000, P ROY SOC B-BIOL SCI, V267, P1641, DOI 10.1098/rspb.2000.1190; Sobotka T., 2004, THESIS U GRONINGEN; SOININEN AM, 1974, OLD TRADITIONAL AGR; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tarin JJ, 1998, HUM REPROD, V13, P2371, DOI 10.1093/humrep/13.9.2371; VANLANDINGHAM MJ, 1988, AM J PUBLIC HEALTH, V78, P499, DOI 10.2105/AJPH.78.5.499; VANNOORDZAADSTRA BM, 1991, BMJ-BRIT MED J, V302, P1361, DOI 10.1136/bmj.302.6789.1361; VOLAND E, 1990, ETHOLOGY, V84, P144; Wirilander Kaarlo, 1974, HERRASVAKEA SUOMEN S; WOOD JW, 1994, DYNAMICS HUMAN REPRO 58 14 14 2 27 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 1879-0607 EVOL HUM BEHAV Evol. Hum. Behav. NOV 2011 32 6 433 443 10.1016/j.evolhumbehav.2010.10.007 11 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences 834JL WOS:000295955500007 2018-11-12 J Gillath, O; Landau, MJ; Selcuk, E; Goldenberg, JL Gillath, Omri; Landau, Mark J.; Selcuk, Emre; Goldenberg, Jamie L. Effects of low survivability cues and participant sex on physiological and behavioral responses to sexual stimuli JOURNAL OF EXPERIMENTAL SOCIAL PSYCHOLOGY English Article Sex; Death; Life history theory; Sexual selection; Implicit measures MORTALITY SALIENCE; LIFE; ATTACHMENT; CHILDHOOD; EVOLUTION; PRESSURE; STRESS; DEATH According to life history theory, environmental cues indicating that one's future survivability is low increase reproductive effort. This suggests that exposure to low survivability cues will increase people's preparedness to engage in sex. However, according to sexual selection theory and parental investment theory, evolutionary pressures favored a more conservative sexual strategy among women compared to men. We therefore hypothesized that men, but not women, would respond to low survivability cues with increased sexual preparedness. Accordingly, both subliminal and supraliminal death primes (as compared with control primes) led men, but not women, to exhibit increased physiological arousal in response to sexual images (Study 1), and stronger approach-oriented behavioral responses to sexual images (Study 2). Theoretical implications for life history theory are discussed. (C) 2011 Elsevier Inc. All rights reserved. [Gillath, Omri] Univ Kansas, Dept Psychol, Lawrence, KS 66045 USA; [Selcuk, Emre] Cornell Univ, Ithaca, NY 14853 USA; [Goldenberg, Jamie L.] Univ S Florida, Tampa, FL 33620 USA Gillath, O (reprint author), Univ Kansas, Dept Psychol, 1415 Jayhawk Blvd,Rm 518, Lawrence, KS 66045 USA. ogillath@ku.edu Gillath, Omri/0000-0001-8791-227X; Selcuk, Emre/0000-0002-2955-4221 Baumeister RF, 2001, PERS SOC PSYCHOL REV, V5, P242, DOI 10.1207/S15327957PSPR0503_5; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BOHLEN JG, 1984, ARCH INTERN MED, V144, P1745, DOI 10.1001/archinte.144.9.1745; Chen M, 1999, PERS SOC PSYCHOL B, V25, P215, DOI 10.1177/0146167299025002007; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; Chisholm JS, 1999, DEATH HOPE SEX STEPS; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Davis J, 2007, EVOL HUM BEHAV, V28, P228, DOI 10.1016/j.evolhumbehav.2007.02.003; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Ellis BJ, 1998, J PERS, V66, P383, DOI 10.1111/1467-6494.00017; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; FOX CA, 1969, J REPROD FERTIL, V19, P405; GADGIL M, 1972, AM NAT, V106, P14, DOI 10.1086/282748; GILLATH O, 2007, J SEX RES, V44, P1; Gillath O, 2010, EUR J SOC PSYCHOL, V40, P122, DOI 10.1002/ejsp.614; Goldenberg JL, 2002, J SEX RES, V39, P310, DOI 10.1080/00224490209552155; Goldenberg JL, 1999, J PERS SOC PSYCHOL, V77, P1173, DOI 10.1037/0022-3514.77.6.1173; Goldenberg JL, 2001, J EXP PSYCHOL GEN, V130, P427, DOI 10.1037//0096-3445.130.3.427; GRABER B, 1991, SEX ABUSE-J RES TR, V4, P151; GREENBERG J, 1994, J PERS SOC PSYCHOL, V67, P627, DOI 10.1037/0022-3514.67.4.627; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; James Long Company, 1999, IBI AN SYST; JARVIS BG, 2002, DIRECTRT RES SOFTWAR; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kim K, 1997, EVOL HUM BEHAV, V18, P109, DOI 10.1016/S1090-5138(96)00114-6; Landau MJ, 2006, J PERS SOC PSYCHOL, V90, P129, DOI 10.1037/0022-3514.90.1.129; Lang P. J., 2005, A6 U FLOR CTR RES PS; Roff D. A., 2002, LIFE HIST EVOLUTION; Simpson Jeffry A., 2008, HDB ATTACHMENT THEOR, P131; Solomon S., 1991, ADV EXPT SOCIAL PSYC, P91; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Vigil JM, 2006, J FAM PSYCHOL, V20, P597, DOI 10.1037/0893-3200.20.4.597; WASSER SK, 2001, REPROD ECOLOGY HUMAN, P137; Watson D, 1994, PANAS X MANUAL UNPUB; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 39 4 4 0 9 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0022-1031 J EXP SOC PSYCHOL J. Exp. Soc. Psychol. NOV 2011 47 6 1219 1224 10.1016/j.jesp.2011.05.003 6 Psychology, Social Psychology 833QO WOS:000295900200023 2018-11-12 J Cicero, L; Sivinski, J; Rull, J; Aluja, M Cicero, Lizette; Sivinski, John; Rull, Juan; Aluja, Martin Effect of larval host food substrate on egg load dynamics, egg size and adult female size in four species of braconid fruit fly (Diptera: Tephritidae) parasitoids JOURNAL OF INSECT PHYSIOLOGY English Article Reproductive investment; Egg-load dynamics; Tephritidae; Braconidae; Anastrepha ludens GENERALIZED LINEAR-MODELS; BODY-SIZE; FLIES DIPTERA; PHENOTYPIC PLASTICITY; BIOLOGICAL-CONTROL; ANASTREPHA SPP.; FITNESS CONSEQUENCES; VENTURIA-CANESCENS; OVIPOSITOR LENGTH; REACTION NORMS Life history theory predicts that individuals will allocate resources to different traits so as to maximize overall fitness. Because conditions experienced during early development can have strong downstream effects on adult phenotype and fitness, we investigated how four species of synovigenic, larval-pupal parasitoids that vary sharply in their degree of specialization (niche breadth) and life history (Diachasmimorpha longicaudata, Doryctobracon crawfordi, Opius hirtus and Utetes anastrephae), allocate resources acquired during the larval stage towards adult reproduction. Parasitoid larvae developed in a single host species reared on four different substrates that differed in quality. We measured parasitoid egg load at the moment of emergence and at 24 h, egg numbers over time, egg size, and also adult size. We predicted that across species the most specialized would have a lower capacity to respond to changes in host substrate quality than wasps with a broad host range, and that within species, females that emerged from hosts that developed in better quality substrates would have the most resources to invest in reproduction. Consistent with our predictions, the more specialized parasitoids were less plastic in some responses to host diet than the more generalist. However, patterns of egg load and size were variable across species. In general, there was a remarkable degree of reproductive effort-allocation constancy within parasitoid species. This may reflect more "time-limited" rather than "egg-limited" foraging strategies where the most expensive component of reproductive success is to locate and handle patchily-distributed and fruit-sequestered hosts. If so, egg costs, independent of degree of specialization, are relatively trivial and sufficient resources are available in fly larvae stemming from all of the substrates tested. (C) 2011 Elsevier Ltd. All rights reserved. [Cicero, Lizette; Rull, Juan; Aluja, Martin] Inst Ecol AC, Xalapa 91070, Veracruz, Mexico; [Sivinski, John] Ctr Med Agr & Vet Entomol, Gainesville, FL 32608 USA Cicero, L (reprint author), Inst Ecol AC, Km 2-5 Carretera Antigua A,Coatepec 351, Xalapa 91070, Veracruz, Mexico. liciju@gmail.com Cicero, Lizette/A-9848-2016; Aluja, Martin/Q-6810-2018 Cicero, Lizette/0000-0002-8486-5700; Aluja, Martin/0000-0002-2936-3011 Consejo Nacional de Ciencia y Tecnologia (CONACyT) [46846-Q]; Campana Nacional contra las Moscas de la Fruta (SAGARPA-IICA-INECOL); United States Department of Agriculture - Agricultural Research Service (USDA-ARS) This article is part of the Ph.D. Disseration of Lizette Cicero directed by Martin Aluja. Lizette Cicero acknowledges a fellowship by the Consejo Nacional de Ciencia y Tecnologia (CONACyT). We are grateful to Trevor Williams and two anonymous referees for many insightful suggestions for improvement and for identifying many weaknesses that guided us along the all-encompassing revision we ended up performing on a previous version of the manuscript. We thank Jovita Martinez Tlapa, Cecilia Arcos Martinez, Israel Peralta Mendez, Jesus Pale Pale, Brizia Gonzalez Luna, Carlo Sormani and Rafael Casas Ortega for technical assistance. This research was funded by CONACyT (46846-Q), Campana Nacional contra las Moscas de la Fruta (SAGARPA-IICA-INECOL), and the United States Department of Agriculture - Agricultural Research Service (USDA-ARS). Aluja M, 2000, P ENTOMOL SOC WASH, V102, P802; ALUJA M, 1994, ANNU REV ENTOMOL, V39, P155, DOI 10.1146/annurev.en.39.010194.001103; ALUJA M, 1990, ENTOMOPHAGA, V35, P39, DOI 10.1007/BF02374299; Aluja M, 1998, ANN ENTOMOL SOC AM, V91, P821, DOI 10.1093/aesa/91.6.821; Aluja M, 2003, ENVIRON ENTOMOL, V32, P1377, DOI 10.1603/0046-225X-32.6.1377; Aluja M, 2008, CASOS CONTROL BIOL M, P193; Aluja M, 2009, BIOCONTROL SCI TECHN, V19, P49, DOI 10.1080/09583150802377373; Arakawa R, 2004, APPL ENTOMOL ZOOL, V39, P177, DOI 10.1303/aez.2004.177; BLACKBURN TM, 1991, FUNCT ECOL, V5, P65, DOI 10.2307/2389556; Blough DK, 1999, J HEALTH ECON, V18, P153, DOI 10.1016/S0167-6296(98)00032-0; BLOUGH DK, 2000, HLTH SERV OUTCOMES R, V1, P185, DOI DOI 10.1023/A:1012597123667; Cancino J, 2009, BIOCONTROL SCI TECHN, V19, P193, DOI 10.1080/09583150802377423; Christians JK, 2002, BIOL REV, V77, P1, DOI 10.1017/S1464793101005784; Crawley M. J., 2007, R BOOK; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; Dmitriew C, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017399; Eben A, 2000, ENVIRON ENTOMOL, V29, P87, DOI 10.1603/0046-225X-29.1.87; Ellers J, 2000, AM NAT, V156, P650, DOI 10.1086/316990; Ellers J, 1997, J EVOLUTION BIOL, V10, P771, DOI 10.1007/s000360050053; Ellers J, 2003, OIKOS, V102, P164, DOI 10.1034/j.1600-0706.2003.12183.x; Fischer K, 2002, OECOLOGIA, V131, P375, DOI 10.1007/s00442-002-0913-9; FOOTE RH, 1993, HDB FRUIT FLIES DIPT; Fox CW, 2000, ECOLOGY, V81, P3029, DOI 10.1890/0012-9658(2000)081[3029:NSOSBE]2.0.CO;2; Fox CW, 1996, OECOLOGIA, V107, P541, DOI 10.1007/BF00333946; Garcia-Medel D, 2007, BIOL CONTROL, V43, P12, DOI 10.1016/j.biocontrol.2007.06.008; Gauld I. D., 1988, HYMENOPTERA, P332; Gotthard K, 2007, AM NAT, V169, P768, DOI 10.1086/516651; HARVEY JA, 1994, ECOLOGY, V75, P1420, DOI 10.2307/1937465; Harvey JA, 2004, ECOL ENTOMOL, V29, P35, DOI 10.1111/j.0307-6946.2004.00568.x; Harvey JA, 2001, J INSECT BEHAV, V14, P573, DOI 10.1023/A:1012219116341; HONEK A, 1993, OIKOS, V66, P483, DOI 10.2307/3544943; Jenner W, 2006, BASIC APPL ECOL, V7, P461, DOI 10.1016/j.baae.2005.07.010; JERVIS M, 1986, BIOL REV, V61, P461; Jervis MA, 2005, ECOL ENTOMOL, V30, P359, DOI 10.1111/j.0307-6946.2005.00712.x; Jervis MA, 2001, J ANIM ECOL, V70, P442, DOI 10.1046/j.1365-2656.2001.00507.x; Jervis MA, 2008, ANNU REV ENTOMOL, V53, P361, DOI 10.1146/annurev.ento.53.103106.093433; Kaspi R, 2002, PHYSIOL ENTOMOL, V27, P29, DOI 10.1046/j.1365-3032.2001.00264.x; Kassen R, 2002, J EVOLUTION BIOL, V15, P173, DOI 10.1046/j.1420-9101.2002.00377.x; LEATHER SR, 1988, OIKOS, V51, P386, DOI 10.2307/3565323; Lopez M, 1999, BIOL CONTROL, V15, P119, DOI 10.1006/bcon.1999.0711; Montoya P, 2000, BIOL CONTROL, V18, P216, DOI 10.1006/bcon.2000.0819; Nestel D, 2003, ANN ENTOMOL SOC AM, V96, P237, DOI 10.1603/0013-8746(2003)096[0237:LCAPPD]2.0.CO;2; ONEILL KM, 1990, J ZOOL, V220, P115, DOI 10.1111/j.1469-7998.1990.tb04297.x; Otto M, 1998, OECOLOGIA, V117, P353, DOI 10.1007/s004420050668; Ozkan C, 2007, J PEST SCI, V80, P79, DOI 10.1007/s10340-006-0155-4; PLUMMER CC, 1941, TECHNICAL B USDA, V775, P1; PRICE PW, 1972, ECOLOGY, V53, P190, DOI 10.2307/1935729; R Development Core Team, 2010, R LANG ENV STAT COMP; Rivero A, 2001, P ROY SOC B-BIOL SCI, V268, P1231, DOI 10.1098/rspb.2001.1645; Rosenheim JA, 1996, EVOLUTION, V50, P2089, DOI 10.1111/j.1558-5646.1996.tb03595.x; Rosenheim JA, 1999, EVOLUTION, V53, P376, DOI 10.1111/j.1558-5646.1999.tb03773.x; Sarfraz M, 2008, BIOL CONTROL, V44, P42, DOI 10.1016/j.biocontrol.2007.10.023; SENRAYAN R, 1991, J APPL ENTOMOL, V112, P237, DOI 10.1111/j.1439-0418.1991.tb01053.x; Shanbhag BA, 2000, COPEIA, P1062; Sivinski J, 1997, ANN ENTOMOL SOC AM, V90, P604, DOI 10.1093/aesa/90.5.604; Sivinski J, 2000, BIOL CONTROL, V18, P258, DOI 10.1006/bcon.2000.0836; Sivinski J, 2003, FLA ENTOMOL, V86, P143, DOI 10.1653/0015-4040(2003)086[0143:TEOOLI]2.0.CO;2; Sivinski J, 2001, ANN ENTOMOL SOC AM, V94, P886, DOI 10.1603/0013-8746(2001)094[0886:OLIAGO]2.0.CO;2; SIVINSKI JM, 1992, J INSECT BEHAV, V5, P491, DOI 10.1007/BF01058194; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; Steigenga MJ, 2005, J EVOLUTION BIOL, V18, P281, DOI 10.1111/j.1420-9101.2004.00855.x; Strand MR, 2000, PARASITOID POPULATION BIOLOGY, P139; THOMPSON JD, 1991, TRENDS ECOL EVOL, V6, P246, DOI 10.1016/0169-5347(91)90070-E; Thorne AD, 2006, P R SOC B, V273, P1099, DOI 10.1098/rspb.2005.3416; URRUTIA CMA, 2007, ENTOMOL EXP APPL, V123, P63, DOI DOI 10.1111/J.1570-7458.2007.00526.X; WALLIN H, 1992, ENTOMOL EXP APPL, V65, P129, DOI 10.1111/j.1570-7458.1992.tb01636.x; Wang XG, 2004, BEHAV ECOL SOCIOBIOL, V56, P513, DOI 10.1007/s00265-004-0829-y; WEDDERBURN RWM, 1974, BIOMETRIKA, V61, P439, DOI 10.2307/2334725; WESTEBERHARD MJ, 1989, ANNU REV ECOL SYST, V20, P249, DOI 10.1146/annurev.es.20.110189.001341; WHARTON RA, 1983, ANN ENTOMOL SOC AM, V76, P721, DOI 10.1093/aesa/76.4.721; Wheeler D, 1996, ANNU REV ENTOMOL, V41, P407, DOI 10.1146/annurev.en.41.010196.002203; Whitman D. W., 2009, Phenotypic plasticity of insects: mechanisms and consequences, P1; Zuur A. F., 2009, MIXED EFFECTS MODELS 73 12 12 0 29 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0022-1910 J INSECT PHYSIOL J. Insect Physiol. NOV 2011 57 11 1471 1479 10.1016/j.jinsphys.2011.07.014 9 Entomology; Physiology; Zoology Entomology; Physiology; Zoology 835YU WOS:000296074000003 21819991 2018-11-12 J Hou, C; Bolt, KM; Bergman, A Hou, Chen; Bolt, Kendra M.; Bergman, Aviv A general model for ontogenetic growth under food restriction PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article energy allocation; food restriction; growth; metabolism CHRONIC CALORIC RESTRICTION; ENERGY-EXPENDITURE; METABOLIC-RATE; DIETARY RESTRICTION; RHESUS-MONKEYS; LIFE-SPAN; BODY-TEMPERATURE; JAPANESE-QUAIL; PHYSIOLOGICAL VARIABLES; FEED RESTRICTION Food restriction (FR) retards animals' growth. Understanding the underlying mechanisms of this phenomenon is important to conceptual problems in life-history theory, as well as to applied problems in animal husbandry and biomedicine. Despite a considerable amount of empirical data published since the 1930s, there is no relevant general theoretical framework that predicts how animals vary their energy budgets and life-history traits under FR. In this paper, we develop such a general quantitative model based on fundamental principles of metabolic energy allocation during ontogeny. This model predicts growth curves under varying conditions of FR, such as the compensatory growth, different age at which FR begins, its degree and its duration. Our model gives a quantitative explanation for the counter-intuitive phenomenon that under FR, lower body temperature and lower metabolism lead to faster growth and larger adult size. This model also predicts that the animals experiencing FR reach the same fraction of their adult mass at the same age as their ad libitum counterparts. All predictions are well supported by empirical data from mammals and birds of varying body size, under different conditions of FR. [Hou, Chen; Bolt, Kendra M.; Bergman, Aviv] Albert Einstein Coll Med, Dept Syst & Computat Biol, Bronx, NY 10461 USA Bergman, A (reprint author), Albert Einstein Coll Med, Dept Syst & Computat Biol, Bronx, NY 10461 USA. aviv.bergman@einstein.yu.edu Hou, Chen/0000-0002-3665-225X Ellison Medical Foundation [AG-SS-2235]; NIH [R01-AG028872, P01-AG027734] This work has been supported by grants from the Ellison Medical Foundation Senior Scholar Award AG-SS-2235, and NIH grants R01-AG028872 and P01-AG027734. We gratefully acknowledge the careful reviews and excellent suggestions of two anonymous reviewers of earlier versions of this manuscript. ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; BALLOR DL, 1991, J APPL PHYSIOL, V71, P801; Blanc S, 2003, J CLIN ENDOCR METAB, V88, P16, DOI 10.1210/jc.2002-020405; BOYLE PC, 1981, AM J PHYSIOL, V241, pR392; BRODY S, 1964, BIOENERGETICS GROWTH; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Charnov EL, 2001, EVOL ECOL RES, V3, P521; Cummins K. W, 1971, Mitt int Verein theor angew Limnol, VNo. 18, P1; DeLany JP, 1999, J GERONTOL A-BIOL, V54, pB5, DOI 10.1093/gerona/54.1.B5; DERTING TL, 1989, ECOLOGY, V70, P587, DOI 10.2307/1940210; DUFFY PH, 1990, CHRONOBIOL INT, V7, P113, DOI 10.3109/07420529009056963; DUFFY PH, 1989, MECH AGEING DEV, V48, P117, DOI 10.1016/0047-6374(89)90044-4; Duffy PH, 1997, ENVIRON RES, V73, P242, DOI 10.1006/enrs.1997.3714; DULLOO AG, 1993, INT J OBESITY, V17, P115; Ehrhardt N, 2005, J COMP PHYSIOL B, V175, P193, DOI 10.1007/s00360-005-0475-3; Engelbregt MJT, 2000, PEDIATR RES, V48, P803, DOI 10.1203/00006450-200012000-00017; Evans SA, 2005, J APPL PHYSIOL, V99, P1336, DOI 10.1152/japplphysiol.01380.2004; Evans SA, 2005, AM J PHYSIOL-REG I, V288, pR1468, DOI 10.1152/ajpregu.000602.2004; EVEN PC, 1993, BRIT J NUTR, V70, P421, DOI 10.1079/BJN19930136; Faulks SC, 2006, J GERONTOL A-BIOL, V61, P781, DOI 10.1093/gerona/61.8.781; Ferguson M, 2007, MECH AGEING DEV, V128, P539, DOI 10.1016/j.mad.2007.07.005; Gillooly JF, 2001, SCIENCE, V293, P2248, DOI 10.1126/science.1061967; GLASS AR, 1976, PEDIATR RES, V10, P951, DOI 10.1203/00006450-197611000-00009; Hassan SM, 2003, POULTRY SCI, V82, P1163, DOI 10.1093/ps/82.7.1163; HOCKING PM, 1992, BRIT POULTRY SCI, V33, P253, DOI 10.1080/00071669208417464; Hou C, 2008, SCIENCE, V322, P736, DOI 10.1126/science.1162302; JIN YH, 1994, MECH AGEING DEV, V75, P59, DOI 10.1016/0047-6374(94)90028-0; KIRKWOOD RN, 1987, P NUTR SOC, V46, P177, DOI 10.1079/PNS19870026; Kirkwood TBL, 2005, MECH AGEING DEV, V126, P1011, DOI 10.1016/j.mad.2005.03.021; KOIZUMI A, 1992, J NUTR, V122, P1446; Kooijman S. A. L. M, 2000, DYNAMIC ENERGY MASS; Lane MA, 1996, P NATL ACAD SCI USA, V93, P4159, DOI 10.1073/pnas.93.9.4159; Lawler DF, 2008, BRIT J NUTR, V99, P793, DOI 10.1017/S0007114507871686; LETO S, 1976, J GERONTOL, V31, P149, DOI 10.1093/geronj/31.2.149; MACLEOD MG, 1978, BRIT POULTRY SCI, V19, P349, DOI 10.1080/00071667808416487; MACLEOD MG, 1979, BRIT POULTRY SCI, V20, P521, DOI 10.1080/00071667908416616; Masoro EJ, 2005, MECH AGEING DEV, V126, P913, DOI 10.1016/j.mad.2005.03.012; MCCARTER R, 1985, AM J PHYSIOL, V248, pE488; MCCARTER R, 1992, ENDOCRINOL METAB, V26, pE448; MCCARTER RJ, 1989, AM J PHYSIOL, V257, pE175; MCCARTER RJM, 1995, CLIN GERIATR MED, V11, P553, DOI 10.1016/S0749-0690(18)30256-8; McCay CM, 1935, J NUTR, V10, P63; MERRY BJ, 1979, J REPROD FERTIL, V57, P253; MOHAN PF, 1985, NUTR RES, V5, P1409, DOI 10.1016/S0271-5317(85)80051-8; Moscrip TD, 2000, J GERONTOL A-BIOL, V55, pB373, DOI 10.1093/gerona/55.8.B373; Moses ME, 2008, AM NAT, V171, P632, DOI 10.1086/587073; Nagy KA, 1999, ANNU REV NUTR, V19, P247, DOI 10.1146/annurev.nutr.19.1.247; NELSON W, 1986, J NUTR, V116, P2244; ORTIGUES I, 1995, BRIT J NUTR, V73, P209, DOI 10.1079/BJN19950024; Ottinger MA, 2005, MECH AGEING DEV, V126, P967, DOI 10.1016/j.mad.2005.03.017; PACHECO DMG, 1993, J NUTR, V123, P90; Peters R.H., 1983, P1; Ramsey JJ, 2000, FREE RADICAL BIO MED, V29, P946, DOI 10.1016/S0891-5849(00)00417-2; RAMSEY JJ, 1997, AM J PHYSIOL-ENDOC M, V35, pE901; Ricklefs RE, 2003, FUNCT ECOL, V17, P384, DOI 10.1046/j.1365-2435.2003.00745.x; Rikke BA, 2003, MECH AGEING DEV, V124, P663, DOI 10.1016/S0047-6374(03)00003-4; Rising R, 2006, NUTR METABOLISM, V3, DOI 10.1186/1743-7075-3-11; Robbins C.T., 1983, WILDLIFE FEEDING NUT; ROBINSON J J, 1990, Nutrition Research Reviews, V3, P253, DOI 10.1079/NRR19900015; Roff D. A., 2001, LIFE HIST EVOLUTION; ROTHWELL NJ, 1982, BIOSCIENCE REP, V2, P543, DOI 10.1007/BF01314214; Schoener T. W., 1971, A Rev Ecol Syst, V2, P369, DOI 10.1146/annurev.es.02.110171.002101; Speakman JR, 2005, J EXP BIOL, V208, P1717, DOI 10.1242/jeb.01556; Stearns S. C., 1992, EVOLUTION LIFE HIST; TAYLOR SCS, 1968, ANIM PROD, V10, P157, DOI 10.1017/S0003356100026106; van der Ziel CE, 2001, PHYSIOL BIOCHEM ZOOL, V74, P52, DOI 10.1086/319314; Weed JL, 1997, PHYSIOL BEHAV, V62, P97, DOI 10.1016/S0031-9384(97)00147-9; Weindruch R, 1988, RETARDATION AGING DI; WEINDRUCH RH, 1979, FED PROC, V38, P2007; West GB, 2001, NATURE, V413, P628, DOI 10.1038/35098076; Zubair AK, 1996, WORLD POULTRY SCI J, V52, P189, DOI 10.1079/WPS19960015; Zuo WY, 2009, SCIENCE, V325, DOI 10.1126/science.1171949 72 15 16 1 23 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. OCT 7 2011 278 1720 2881 2890 10.1098/rspb.2011.0047 10 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 811VS WOS:000294244900004 21345868 Green Published, Bronze 2018-11-12 J Greiffenstein, MF Greiffenstein, Manfred F. SECULAR IQ INCREASES BY EPIGENESIS? THE HYPOTHESIS OF COGNITIVE GENOTYPE OPTIMIZATION PSYCHOLOGICAL REPORTS English Article EVOLUTIONARY PSYCHOLOGY; BRAIN-DEVELOPMENT; INTELLIGENCE; TRENDS; MYOPIA; TWIN; PERSONALITY; COMPLEXITY; GENES; GIRLS The short timescale of massive secular IQ gains ("Flynn Effect") is inconsistent with positive selection of a recent gene mutation, but other genetic mechanisms are possible. Principles of evolutionary psychology, combined with secular trends, suggest an epigenetic explanation: the Cognitive Genome Optimization Hypothesis. Per life-history theory, favorable secular trends may change the phenotypic expression of the genotype which controls the neurophysiology of problem solving. The hypothesis posits two intermediate steps between reliable nutrition (the starting point) and higher IQs (ending point): (1) Earlier cognitive maturation and (2) further calibration of cognitive function by reliable social resources (cultural complexity, mandatory education). Unlike earlier generations, more resources can be deployed to cognitive maturation than to physical survival, and more time is available to calibrate cognitive processing into the upper end of the trait value range for intelligence. The secular trend of earlier puberty timing is critical: data show an association between puberty and higher IQ. Greiffenstein, MF (reprint author), 32121 Woodward Ave,Suite 201, Royal Oak, MI USA. mfgreiff@comcast.net CAMERON J. L., 2004, INTRODUCTION 3, P110; Caplan LJ, 2006, J MARRIAGE FAM, V68, P883, DOI 10.1111/j.1741-3737.2006.00302.x; CAREY S, 1980, DEV PSYCHOL, V16, P257, DOI 10.1037/0012-1649.16.4.257; Charnov Eric L., 1993, P1; Chechik G, 1998, NEURAL COMPUT, V10, P1759, DOI 10.1162/089976698300017124; Cole TJ, 2000, P NUTR SOC, V59, P317, DOI 10.1017/S0029665100000355; Confer JC, 2010, AM PSYCHOL, V65, P110, DOI 10.1037/a0018413; Dirani M, 2008, INVEST OPHTH VIS SCI, V49, P534, DOI 10.1167/iovs.07-1123; DOUGLAS JWB, 1964, J CHILD PSYCHOL PSYC, V5, P185, DOI 10.1111/j.1469-7610.1964.tb02140.x; Duchaine B, 2001, CURR OPIN NEUROBIOL, V11, P225, DOI 10.1016/S0959-4388(00)00201-4; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Euling S. Y., 2008, PEDIATRICS, V121, P172, DOI DOI 10.1542/PEDS.2007-1813D; Feinberg I., 1982, J PSYCHIATR RES, V17, P319; Feinberg I, 2010, BRAIN COGNITION, V72, P56, DOI 10.1016/j.bandc.2009.09.008; Feldkamper M, 2003, DEV OPHTHALMOL, V37, P34; Flieller A, 1999, DEV PSYCHOL, V35, P1048, DOI 10.1037//0012-1649.35.4.1048; Flynn JR, 2009, WHAT IS INTELLIGENCE: BEYOND THE FLYNN EFFECT, P1; FLYNN JR, 1987, PSYCHOL BULL, V101, P171, DOI 10.1037//0033-2909.101.2.171; FLYNN JR, 1987, PSYCHOL BULL, V101, P427, DOI 10.1037/h0090408; FLYNN JR, 2007, WHAT IS INTELLIGENCE; Giedd JN, 2004, ANN NY ACAD SCI, V1021, P77, DOI 10.1196/annals.1308.009; Giedd JN, 1999, NAT NEUROSCI, V2, P861, DOI 10.1038/13158; Greenfield PatriciaM., 1998, RISING CURVE LONG TE, P81, DOI DOI 10.1037/10270-003; HINSHAW S. P., 2009, ORIGINS HUMAN MIND; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Klump KL, 2006, TWIN RES HUM GENET, V9, P971, DOI 10.1375/183242706779462868; KOHN ML, 1978, AM J SOCIOL, V84, P24, DOI 10.1086/226739; Lemery-Chalfant K, 2006, TWIN RES HUM GENET, V9, P1030, DOI 10.1375/183242706779462363; Lenroot RK, 2006, NEUROSCI BIOBEHAV R, V30, P718, DOI 10.1016/j.neubiorev.2006.06.001; Lipsey M. W., 2001, PRACTICAL METAANALYS; LYNN R, 1990, PERS INDIV DIFFER, V11, P273, DOI 10.1016/0191-8869(90)90241-I; LYNN R, 1977, B BRIT PSYCHOL SOC, V30, P69; LYNN R, 1982, NATURE, V297, P222, DOI 10.1038/297222a0; Lynn R, 2002, IQ WEALTH NATIONS; Lynn R., 1998, RISING CURVE LONG TE, P207; Martorell R, 1998, RISING CURVE LONG TE, P183, DOI DOI 10.1037/10270-006; McClellan JM, 2006, JAMA-J AM MED ASSOC, V296, P582, DOI 10.1001/jama.296.5.582; MCGUE M, 1993, NATURE NURTURE PSYCH, P59, DOI DOI 10.1037/10131-003; Mendle J, 2007, DEV REV, V27, P151, DOI 10.1016/j.dr.2006.11.001; Mingroni MA, 2007, PSYCHOL REV, V114, P806, DOI 10.1037/0033-295X.114.3.806; MOISAN J, 1990, AM J EPIDEMIOL, V132, P953, DOI 10.1093/oxfordjournals.aje.a115738; Neisser U, 1998, RISING CURVE LONG TE, P3; Nesse RM, 2001, WESTERN J MED, V174, P358, DOI 10.1136/ewjm.174.5.358; Parent AS, 2003, ENDOCR REV, V24, P668, DOI 10.1210/er.2002-0019; Pollen AA, 2007, BRAIN BEHAV EVOLUT, V70, P21, DOI 10.1159/000101067; Schaie K Warner, 2005, Res Hum Dev, V2, P43, DOI 10.1207/s15427617rhd0201&2_3; SCHOOLER C, 1998, RISING CURVE LONG TE, P67, DOI DOI 10.1037/10270-002; Shangguan FF, 2009, PSYCHONEUROENDOCRINO, V34, P983, DOI 10.1016/j.psyneuen.2009.01.012; Shayer M, 2007, BRIT J EDUC PSYCHOL, V77, P25, DOI 10.1348/000709906X96987; Shayer M, 2009, BRIT J EDUC PSYCHOL, V79, P409, DOI 10.1348/978185408X383123; SHIELDS J., 1962, MONOZYGOTIC DIZYGOTI; Shields J, 1954, EUGEN REV, V45, P213; Sigman M., 1998, RISING CURVE LONG TE, P155, DOI DOI 10.1037/10270-005; SMITH JM, 1978, ANNU REV ECOL SYST, V9, P31, DOI 10.1146/annurev.es.09.110178.000335; Snow R. E., 1982, HDB HUMAN INTELLIGEN, P493; Stein ZA, 1975, FAMINE HUMAN DEV DUT; Stone CP, 1937, J COMP PSYCHOL, V23, P439, DOI 10.1037/h0060575; Storfer M, 1999, INT J NEUROSCI, V98, P153, DOI 10.3109/00207459908997465; Sundet JM, 2004, INTELLIGENCE, V32, P349, DOI 10.1016/j.intell.2004.06.004; Terman LM, 1973, STANFORD BINET INTEL; Tuddenham RD, 1948, AM PSYCHOL, V3, P54, DOI 10.1037/h0054962; van de Berg R, 2008, INVEST OPHTH VIS SCI, V49, P882, DOI 10.1167/iovs.07-0930; Wechsler D, 1949, WECHSLER INTELLIGENC; WECHSLER D., 1974, WECHSLER INTELIGENCE; Worthman CM, 1999, EVOLUTIONARY MEDICI NE, P135 65 5 5 0 6 AMMONS SCIENTIFIC, LTD MISSOULA PO BOX 9229, MISSOULA, MT 59807-9229 USA 0033-2941 PSYCHOL REP Psychol. Rep. OCT 2011 109 2 353 366 10.2466/03.04.10.19.PR0.109.5.353-366 14 Psychology, Multidisciplinary Psychology 854YR WOS:000297531200001 22238843 2018-11-12 J Mathes, EW Mathes, Eugene W. INVESTMENT IN PERSONAL DEVELOPMENT SCALE: A PRELIMINARY STUDY PSYCHOLOGICAL REPORTS English Article Life history theory suggests that reproduction of the species involves three areas of investment: personal development, mating, and nurturing offspring. Using the rational method of test construction, a 29-item scale was constructed to measure investment in personal development, the Investment in Personal Development Scale. Scale scores were statistically significantly correlated with age, year in school, identity commitment, and conscientiousness. Western Illinois Univ, Dept Psychol, Macomb, IL 61455 USA Mathes, EW (reprint author), Western Illinois Univ, Dept Psychol, Macomb, IL 61455 USA. EW-Mathes@wiu.edu BALISTRERI E, 1995, J ADOLESCENCE, V18, P179, DOI 10.1006/jado.1995.1012; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; JOHN OP, 1999, HDB PERSONALITY THEO, P102 3 0 0 0 4 AMMONS SCIENTIFIC, LTD MISSOULA PO BOX 9229, MISSOULA, MT 59807-9229 USA 0033-2941 PSYCHOL REP Psychol. Rep. OCT 2011 109 2 389 392 10.2466/07.PR0.109.5.389-392 4 Psychology, Multidisciplinary Psychology 854YR WOS:000297531200005 22238847 2018-11-12 J Levitis, DA; Lackey, LB Levitis, Daniel A.; Lackey, Laurie Bingaman A measure for describing and comparing postreproductive life span as a population trait METHODS IN ECOLOGY AND EVOLUTION English Article demography; life-history evolution; life-table methods; menopause; primates; simulation; Type I error REPRODUCTIVE PARAMETERS; POECILIA-RETICULATA; NATURAL-SELECTION; MENOPAUSE; SENESCENCE; EVOLUTION; MORTALITY; HUMANS; SURVIVAL; HISTORY 1. While classical life-history theory does not predict postreproductive life span (PRLS), it has been detected in a great number of taxa, leading to the view that it is a broadly conserved trait and attempts to reconcile theory with these observations. We suggest an alternative: the apparently wide distribution of significant PRLS is an artefact of insufficient methods. 2. PRLS is traditionally measured in units of time between each individual's last parturition and death, after excluding those individuals for whom this interval is short. A mean of this measure is then calculated as a population value. We show this traditional population measure (which we denote PrT) to be inconsistently calculated, inherently biased, strongly correlated with overall longevity, uninformative on the importance of PRLS in a population's life history, unable to use the most commonly available form of relevant data and without a realistic null hypothesis. Using data altered to ensure that the null hypothesis is true, we find a false-positive rate of 0 47 for PrT. 3. We propose an alternative population measure, using life-table methods. Postreproductive representation (PrR) is the proportion of adult years lived which are postreproductive. We briefly derive PrR and discuss its properties. We employ a demographic simulation, based on the null hypothesis of simultaneous and proportional decline in survivorship and fecundity, to produce a null distribution for PrR based on the age-specific rates of a population. 4. In an example analysis, using data on 84 populations of human and nonhuman primates, we demonstrate the ability of PrR to represent the effects of artificial protection from mortality and of humanness on PRLS. PrR is found to be higher for all human populations under a wide range of conditions than for any nonhuman primate in our sample. A strong effect of artificial protection is found, but humans under the most adverse conditions still achieve PrR of >0.3. 5. PrT should not be used as a population measure and should be used as an individual measure only with great caution. The use of PrRas an intuitive, statistically valid and intercomparable population life-history measure is encouraged. [Levitis, Daniel A.] Max Planck Inst Demog Res, Lab Evolutionary Biodemog, D-18057 Rostock, Germany; [Levitis, Daniel A.] Univ Calif Berkeley, Museum Vertebrate Zool, Berkeley, CA 94720 USA; [Levitis, Daniel A.] Univ Calif Berkeley, Dept Demog, Berkeley, CA 94720 USA; [Lackey, Laurie Bingaman] Int Species Informat Syst, Eagan, MN 55121 USA Levitis, DA (reprint author), Max Planck Inst Demog Res, Lab Evolutionary Biodemog, Konrad Zuse Str 1, D-18057 Rostock, Germany. levitis@demogr.mpg.de Max Planck Society; Ruth L. Kirschstein National Research Service Award (NIA) [T32-AG000246]; Museum of Vertebrate Zoology; [P01 AG022500] We thank Ronald Lee and his lab, D. Reznick, C. Moritz, E. Lacey, W. Koenig, O. Jones, I. Levitis and two anonymous reviewers for suggestions and encouragement. We thank ISIS and its members, N. Blurton-Jones and K. Hawkes, for providing us with data. DL's research was supported by the Max Planck Society, the Ruth L. Kirschstein National Research Service Award (NIA grant T32-AG000246), by Ronald Lee's subproject in P01 AG022500 and by the Museum of Vertebrate Zoology. Alvarez HP, 2000, AM J PHYS ANTHROPOL, V113, P435, DOI 10.1002/1096-8644(200011)113:3<435::AID-AJPA11>3.0.CO;2-O; Austad S. N, 1997, ZEUS SALMON BIODEMOG, P161; Biodemographic Database, 2010, BIOD DAT; Blurton-Jones N. G., 2002, AM J HUM BIOL, V14, P184, DOI DOI 10.1002/AJHB.10038; Bongaarts J, 1982, DETERMINANTS FERTILI; Bronikowski AM, 2002, ECOLOGY, V83, P2194, DOI 10.1890/0012-9658(2002)083[2194:PDCOPI]2.0.CO;2; Cant MA, 2008, P NATL ACAD SCI USA, V105, P5332, DOI 10.1073/pnas.0711911105; Carey JR, 2000, LONGEVITY RECORDS LI; Carlson SM, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0001286; CARO TM, 1995, INT J PRIMATOL, V16, P205, DOI 10.1007/BF02735478; Charlesworth B, 2000, GENETICS, V156, P927; Charnov Eric L., 1993, P1; Chen JJ, 2007, J GERONTOL A-BIOL, V62, P126, DOI 10.1093/gerona/62.2.126; Cohen AA, 2004, BIOL REV, V79, P733, DOI 10.1017/S1464793103006432; Doblhammer G, 2000, POP STUD-J DEMOG, V54, P169, DOI 10.1080/713779087; Fedigan L. M., 2007, COMPARISONS JAPANESE, P437; Foote AD, 2008, BIOL LETTERS, V4, P189, DOI 10.1098/rsbl.2008.0006; Gillespie DOS, 2010, AM NAT, V176, P159, DOI 10.1086/653668; GURVEN M, 2008, CULTURAL CONTEXT AGI, P53; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Hawkes K, 2009, AM J HUM BIOL, V21, P578, DOI 10.1002/ajhb.20890; Hill K, 1991, Hum Nat, V2, P313, DOI 10.1007/BF02692196; John A. M., 1988, PLANTATION SLAVES TR; Johnstone RA, 2010, P ROY SOC B-BIOL SCI, V277, P3765, DOI 10.1098/rspb.2010.0988; Kachel AF, 2010, P ROYAL SOC B, V278, P384; Kasuya T., 1984, Reports of the International Whaling Commission Special Issue, P259; KIDD NAC, 1985, ECOL ENTOMOL, V10, P357, DOI 10.1111/j.1365-2311.1985.tb00732.x; Kirkwood T. B. L, 1992, AM J CLIN NUTR, V28, P20; Kirkwood TBL, 2010, ANN NY ACAD SCI, V1204, P21, DOI 10.1111/j.1749-6632.2010.05520.x; KOYAMA N, 1992, PRIMATES, V33, P33, DOI 10.1007/BF02382761; Lahdenpera M, 2004, NATURE, V428, P178, DOI 10.1038/nature02367; Lee R, 2008, P NATL ACAD SCI USA, V105, P7124, DOI 10.1073/pnas.0710234105; McAuliffe K, 2005, TRENDS ECOL EVOL, V20, P650, DOI 10.1016/j.tree.2005.09.003; Michels KB, 1996, LANCET, V348, P1152, DOI 10.1016/S0140-6736(96)05418-9; Minois N, 2005, P NATL ACAD SCI USA, V102, P402, DOI 10.1073/pnas.0408332102; Mooney JC, 1999, ZOO BIOL, V18, P421, DOI 10.1002/(SICI)1098-2361(1999)18:5<421::AID-ZOO7>3.0.CO;2-6; Pavard S, 2008, AM J PHYS ANTHROPOL, V136, P194, DOI 10.1002/ajpa.20794; Pavelka MSM, 1999, AM J PHYS ANTHROPOL, V109, P455, DOI 10.1002/(SICI)1096-8644(199908)109:4<455::AID-AJPA3>3.0.CO;2-Z; Peccei JS, 2001, EVOL ANTHROPOL, V10, P43, DOI 10.1002/evan.1013; Preston S. H., 2001, DEMOGRAPHY MEASURING; R Development Core Team, 2010, R LANG ENV STAT COMP; Reznick D, 2006, PLOS BIOL, V4, P136, DOI 10.1371/journal.pbio.0040007; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; Steinsaltz D, 2011, PALEOBIOLOGY, V37, P113, DOI 10.1666/08056.1; Tuljapurkar S. D., 2007, PLOS ONE, V2, pe758; WACHTER KW, 1997, ZEUS SALMON BIODEMOG; Ward E. J., 2009, FRONTIERS ZOOLOGY, V4 48 20 20 0 26 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2041-210X 2041-2096 METHODS ECOL EVOL Methods Ecol. Evol. OCT 2011 2 5 446 453 10.1111/j.2041-210X.2011.00095.x 8 Ecology Environmental Sciences & Ecology 852CI WOS:000297323700003 22081792 Bronze, Green Accepted 2018-11-12 J Saraux, C; Robinson-Laverick, SM; Le Maho, Y; Ropert-Coudert, Y; Chiaradia, A Saraux, Claire; Robinson-Laverick, Sarah M.; Le Maho, Yvon; Ropert-Coudert, Yan; Chiaradia, Andre Plasticity in foraging strategies of inshore birds: how Little Penguins maintain body reserves while feeding offspring ECOLOGY English Article bimodal trips; body condition; chick rearing; Eudyptula minor; foraging strategies; Little Penguin; parental investment; Phillip Island, Victoria, Australia; trip duration EUDYPTULA-MINOR; PELAGIC SEABIRD; WANDERING ALBATROSSES; GEOGRAPHIC STRUCTURE; CROZET ISLANDS; CHICK GROWTH; FOOD; PATTERNS; SHEARWATER; SUCCESS Breeding animals face important time and energy constraints when caring for themselves and their offspring. For long-lived species, life-history theory predicts that parents should favor survival over current reproductive attempts, thus investing more into their own maintenance than the provisioning of their young. In seabirds, provisioning strategies may additionally be influenced by the distance between breeding sites and foraging areas, and offshore and inshore species should thus exhibit different strategies. Here, we examine the provisioning strategies of an inshore seabird using a long-term data set on more than 200 Little Penguins, Eudyptula minor. They alternated between two consecutive long and several short foraging trips all along chick rearing, a strategy almost never observed for inshore animals. Short trips allowed for regular provisioning of the chicks (high feeding frequency and larger meals), whereas long trips were performed when parent body mass was low and enabled them to rebuild their reserves, suggesting that adult body condition may be a key factor in initiating long trips. Inshore seabirds do use dual strategies of alternating short and long trips, but from our data, on a simpler and less flexible way than for offshore birds. [Saraux, Claire; Le Maho, Yvon; Ropert-Coudert, Yan] Univ Strasbourg, IPHC, F-67087 Strasbourg, France; [Saraux, Claire; Le Maho, Yvon; Ropert-Coudert, Yan] CNRS, UMR 7178, F-67037 Strasbourg, France; [Saraux, Claire] AgroParisTech, ENGREF, F-75732 Paris, France; [Robinson-Laverick, Sarah M.] Australian Antarctic Div, Kingston, Tas 7050, Australia; [Chiaradia, Andre] Phillip Isl Nat Pk, Res Dept, Cowes, Vic 3922, Australia Saraux, C (reprint author), Univ Strasbourg, IPHC, 23 Rue Becquerel, F-67087 Strasbourg, France. claire.saraux@iphc.cnrs.fr Saraux, Claire/0000-0001-5061-4009; Chiaradia, Andre/0000-0002-6178-4211 BHP-Billiton; Penguin Foundation; Australian Academy of Science We thank V. A. Viblanc for his great help and useful comments on the manuscript. We are especially grateful to T. Hart for his advice on statistics (especially the use of GLMM against use of Hidden Markov Models). We also thank two anonymous reviewers for very helpful suggestions. This study was based on data collected over several years; we are very grateful for all field assistance from several volunteers and students (in particular, J. Yorke, T. Daniel, P. Fallow, M. Salton, P. Wasiak, and R. Long) and the staff of the Phillip Island Nature Park (in particular, P. Dann, L. Renwick, and all field rangers). The Automated Penguin Monitoring System was kindly provided by the Australian Antarctic Division, with particular thanks to Knowles Kerry and Kym Newbery, as well as all engineers involved in the research and development of this system. We are also thankful for grants received from BHP-Billiton, Penguin Foundation, and the Australian Academy of Science. Ainley DG, 2004, ECOL MONOGR, V74, P159, DOI 10.1890/02-4073; Ainley DG, 2003, ECOLOGY, V84, P709, DOI 10.1890/0012-9658(2003)084[0709:PRCAGS]2.0.CO;2; Arnould JPY, 2004, EMU, V104, P261, DOI 10.1071/MU04035; Ballard G, 2010, MAR ECOL PROG SER, V405, P287, DOI 10.3354/meps08514; Bates D, 2009, LME4 LINEAR MIXED EF; Benvenuti S, 1998, AUK, V115, P57, DOI 10.2307/4089111; Birkhead T. R., 1985, BEHAV ECOLOGY, P147; Booth AM, 2000, IBIS, V142, P144, DOI 10.1111/j.1474-919X.2000.tb07696.x; Cannell BL, 1998, IBIS, V140, P467, DOI 10.1111/j.1474-919X.1998.tb04608.x; CHAURAND T, 1994, J ANIM ECOL, V63, P275, DOI 10.2307/5546; CHEREL Y, 1985, AM J PHYSIOL, V249, pR387; CHEREL Y, 1993, POLAR BIOL, V13, P355; Chiaradia A., 2010, ICES J MARINE SCI; Chiaradia A, 2006, ARDEA, V94, P257; Chiaradia Andre F., 1999, Marine Ornithology, V27, P13; Collins M, 1999, WILDLIFE RES, V26, P705, DOI 10.1071/WR98003; Congdon BC, 2005, MAR ECOL PROG SER, V301, P293, DOI 10.3354/meps301293; COSTA DP, 1991, AM ZOOL, V31, P111; Cullen JM, 2009, MAR ECOL PROG SER, V378, P269, DOI 10.3354/meps07881; Daniel TA, 2007, ANIM BEHAV, V74, P1241, DOI 10.1016/j.anbehav.2007.01.029; DRENT RH, 1980, ARDEA, V68, P225; GOODMAN D, 1974, AM NAT, V108, P247, DOI 10.1086/282906; Granadeiro JP, 1998, ANIM BEHAV, V56, P1169, DOI 10.1006/anbe.1998.0827; Hedd A., 1998, THESIS U TASMANIA HO; Kato A, 2008, AUK, V125, P588, DOI 10.1525/auk.2008.06273; Kerry K., 1993, P NIPR S POL BIOL TO; KLOMP NI, 1991, EMU, V91, P32, DOI 10.1071/MU9910032; Lescroel A, 2005, MAR ECOL PROG SER, V302, P245, DOI 10.3354/meps302245; Lewis S, 2001, NATURE, V412, P816, DOI 10.1038/35090566; Markman S, 2004, J ANIM ECOL, V73, P747, DOI 10.1111/j.0021-8790.2004.00847.x; MAUCK RA, 1995, ANIM BEHAV, V49, P999, DOI 10.1006/anbe.1995.0129; Murphy Mary E., 1996, P31; NUR N, 1988, ARDEA, V76, P155; Orians G.H., 1979, P155; Partridge L., 1985, P207; R Development Core Team, 2008, R LANG ENV STAT COMP; Robinson S, 2005, IBIS, V147, P483, DOI 10.1111/j.1474-919x.2005.00431.x; Ropert-Coudert Y, 2006, MAR BIOL, V149, P139, DOI 10.1007/s00227-005-0188-x; Ropert-Coudert Y, 2004, BEHAV ECOL, V15, P824, DOI 10.1093/beheco/arh086; Schultz MA, 2000, J AVIAN BIOL, V31, P287, DOI 10.1034/j.1600-048X.2000.310303.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; TRIVERS RL, 1974, AM ZOOL, V14, P249; WEAVERS BW, 1992, EMU, V91, P302; Weimerskirch H, 2000, ECOLOGY, V81, P309, DOI 10.1890/0012-9658(2000)081[0309:SDIPIA]2.0.CO;2; Weimerskirch H, 1997, BEHAV ECOL, V8, P635, DOI 10.1093/beheco/8.6.635; WEIMERSKIRCH H, 1986, IBIS, V128, P195, DOI 10.1111/j.1474-919X.1986.tb02669.x; Weimerskirch H, 1998, J ANIM ECOL, V67, P99, DOI 10.1046/j.1365-2656.1998.00180.x; Weimerskirch H, 1997, ECOLOGY, V78, P2051; WEIMERSKIRCH H, 1994, ANIM BEHAV, V47, P472, DOI 10.1006/anbe.1994.1065; Welcker J, 2009, J AVIAN BIOL, V40, P388, DOI 10.1111/j.1600-048X.2008.04620.x; WILLIAMS TD, 1990, J APPL ECOL, V27, P1042, DOI 10.2307/2404394; WILSON RP, 1989, COMP BIOCHEM PHYS A, V94, P461, DOI 10.1016/0300-9629(89)90121-7 53 28 28 1 46 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology OCT 2011 92 10 1909 1916 10.1890/11-0407.1 8 Ecology Environmental Sciences & Ecology 834JI WOS:000295955200006 22073782 Bronze 2018-11-12 J Lu, X; Yu, TL; Ke, DH Lu, Xin; Yu, Tonglei; Ke, Dianhua Helped ground tit parents in poor foraging environments reduce provisioning effort despite nestling starvation ANIMAL BEHAVIOUR English Article environmental variability; ground tit; helping behaviour; kin selection; life history; Parus humilis WHITE-WINGED CHOUGHS; COOPERATIVELY BREEDING BIRDS; REPRODUCTIVE SUCCESS; HATCHING ASYNCHRONY; HELPING-BEHAVIOR; KIN-SELECTION; COST; SURVIVAL; FITNESS; INVESTMENT Life history theory views parental effort as a dynamic response to current productivity benefits and personal survival costs. Classical provisioning models specific to avian cooperative breeding systems predict that nestling starvation caused by local food limitation will induce helped parents to maintain their effort to ensure fledging success. Yet, food shortages may impose such a high provisioning cost that selection favours parents that lighten their workload at the expense of offspring productivity. We tested this alternative prediction with the ground tit, Parus humilis, which is an insectivorous, facultative cooperative breeder; helpers are mostly philopatric male offspring. Our study was based on data from three breeding seasons over which rainfall, and hence food resources, varied greatly. Total amount of food delivered to the young was highest for group-fed broods in food-rich environments, although helped male and female parents invested less than their counterparts with no helpers, and provisioning rate of the latter in both types of environmental conditions was similar to that of group-fed broods in food-poor environments. The variation in care level was mirrored by the observed pattern of partial brood loss, the single largest cause limiting productivity. The lowered effort in association with increased brood reduction under poor foraging conditions suggests ground tit parents with helpers trade future fitness against current reproduction to cope with harsh, unpredictable environments. This finding broadens our understanding of interspecific variability of parental response to the presence of helpers across ecological gradients. (C) 2011 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. [Lu, Xin; Yu, Tonglei; Ke, Dianhua] Wuhan Univ, Dept Zool, Coll Life Sci, Wuhan 430072, Peoples R China Lu, X (reprint author), Wuhan Univ, Dept Zool, Coll Life Sci, Wuhan 430072, Peoples R China. luxinwh@gmail.com National Sciences Foundation of China [30830019] This work was funded by National Sciences Foundation of China (Grant 30830019). Thanks to Z. W. Peng, X. Y Ma, L. Q. Fan, Y. Y. Guo, J. J. Liang and R. Huo for their assistance in field data collection. The manuscript benefited from discussion with S. Y. Tang and W. Chen, and from comments by Drs J. Wright, A. Pilastro, A. Turner and three anonymous referees. Arnqvist G, 2005, SEXUAL CONFLICT; Blackmore CJ, 2007, J ZOOL, V273, P326, DOI 10.1111/j.1469-7998.2007.00332.x; Canestrari D, 2007, ANIM BEHAV, V73, P349, DOI 10.1016/j.anbehav.2006.04.013; CLARKE MF, 1984, BEHAV ECOL SOCIOBIOL, V14, P137, DOI 10.1007/BF00291904; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; CLUTTONBROCK TH, 1988, REPROD SUCCESS; Cockburn A, 1998, ANNU REV ECOL SYST, V29, P141, DOI 10.1146/annurev.ecolsys.29.1.141; Cockburn A, 2008, J ANIM ECOL, V77, P430, DOI 10.1111/j.1365-2656.2007.01351.x; Covas R, 2008, BEHAV ECOL SOCIOBIOL, V63, P103, DOI 10.1007/s00265-008-0640-2; CRICK HQP, 1992, IBIS, V134, P56, DOI 10.1111/j.1474-919X.1992.tb07230.x; Davis SE, 2005, ECOLOGY, V86, P1047, DOI 10.1890/04-0989; Dickinson J. L., 2004, COOPERATIVE BREEDING, P48; Dickinson JL, 1996, BEHAV ECOL, V7, P168, DOI 10.1093/beheco/7.2.168; Doerr ED, 2007, J ANIM ECOL, V76, P966, DOI 10.1111/j.1365-2656.2007.01280.x; Du B, 2010, BEHAV ECOL SOCIOBIOL, V64, P1631, DOI 10.1007/s00265-010-0976-2; Du B, 2009, MOL ECOL, V18, P3929, DOI 10.1111/j.1365-294X.2009.04336.x; Eguchi K, 2002, J ANIM ECOL, V71, P123, DOI 10.1046/j.0021-8790.2001.00585.x; EMLEN ST, 1991, J ANIM ECOL, V60, P309, DOI 10.2307/5462; Emlen Stephen T., 1997, P228; Erikstad KE, 1998, ECOLOGY, V79, P1781; Fitzmaurice GM, 2004, APPL LONGITUDINAL AN; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Hatchwell BJ, 1999, AM NAT, V154, P205, DOI 10.1086/303227; Hatchwell BJ, 2004, BEHAV ECOL, V15, P1, DOI 10.1093/beheco/arg091; Heinsohn R, 1995, EMU, V95, P252, DOI 10.1071/MU9950252; HEINSOHN R, 1994, P ROY SOC B-BIOL SCI, V256, P293, DOI 10.1098/rspb.1994.0083; HEINSOHN RG, 1992, EVOL ECOL, V6, P97, DOI 10.1007/BF02270705; Heinsohn Robert G., 2004, P67, DOI 10.1017/CBO9780511606816.005; Houston AI, 2005, TRENDS ECOL EVOL, V20, P33, DOI 10.1016/j.tree.2004.10.008; Johannessen LE, 2011, IBIS, V153, P373, DOI 10.1111/j.1474-919X.2011.01115.x; Ke D. H, 2009, THESIS WUHAN U; Ke DH, 2009, IBIS, V151, P321, DOI 10.1111/j.1474-919X.2009.00913.x; Khan MZ, 2002, BEHAV ECOL SOCIOBIOL, V51, P336, DOI 10.1007/s00265-001-0441-3; KOMDEUR J, 1994, BEHAV ECOL SOCIOBIOL, V34, P175, DOI 10.1007/s002650050031; Lack D., 1954, NATURAL REGULATION A; Legge S, 2000, ANIM BEHAV, V59, P1009, DOI 10.1006/anbe.2000.1382; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; Lu X, 2009, J ARID ENVIRON, V73, P1103, DOI 10.1016/j.jaridenv.2009.06.011; Luck GW, 2002, AM NAT, V160, P809, DOI 10.1086/343881; MacColl ADC, 2003, ANIM BEHAV, V66, P955, DOI 10.1006/anbe.2003.2268; Magrath RD, 1997, J ANIM ECOL, V66, P658, DOI 10.2307/5919; MAGRATH RD, 1990, BIOL REV, V65, P587, DOI 10.1111/j.1469-185X.1990.tb01239.x; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; Meade J, 2010, J ANIM ECOL, V79, P529, DOI 10.1111/j.1365-2656.2009.01656.x; NEWTON I, 1989, LIFETIME REPROD BIRD; Peng Z. W, 2007, THESIS WUHAN U; Rabenold K.N., 1990, P157, DOI 10.1017/CBO9780511752452.007; RAITT RJ, 1984, WILSON BULL, V96, P206; Remes V, 2002, EVOLUTION, V56, P2505; REYER HU, 1984, ANIM BEHAV, V32, P1163, DOI 10.1016/S0003-3472(84)80233-X; Roff Derek A., 1992; ROWLEY I, 1978, IBIS, V120, P178, DOI 10.1111/j.1474-919X.1978.tb06774.x; Russell AF, 2003, P NATL ACAD SCI USA, V100, P3333, DOI 10.1073/pnas.0636503100; te Marvelde L, 2009, ANIM BEHAV, V77, P727, DOI 10.1016/j.anbehav.2008.12.008; Wang C, 2011, MOL ECOL, V20, P2851, DOI 10.1111/j.1365-294X.2011.05070.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WOOLFENDEN GE, 1978, BIOSCIENCE, V28, P104, DOI 10.2307/1307423; Wright J, 1998, BEHAV ECOL SOCIOBIOL, V42, P423, DOI 10.1007/s002650050456 58 9 11 3 31 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 1095-8282 ANIM BEHAV Anim. Behav. OCT 2011 82 4 861 867 10.1016/j.anbehav.2011.07.024 7 Behavioral Sciences; Zoology Behavioral Sciences; Zoology 825HS WOS:000295262800034 2018-11-12 J Schaible, R; Ringelhan, F; Kramer, BH; Miethe, T Schaible, Ralf; Ringelhan, Felix; Kramer, Boris H.; Miethe, Tanja Environmental challenges improve resource utilization for asexual reproduction and maintenance in hydra EXPERIMENTAL GERONTOLOGY English Article Autophagy; Hormesis; Hydra; Longevity; Senescence; Trade-off; Life history DROSOPHILA-MELANOGASTER; LIFE-SPAN; CAENORHABDITIS-ELEGANS; DIETARY-RESTRICTION; CELL-CYCLE; CALORIC RESTRICTION; MILD STRESS; BODY-SIZE; TEMPERATURE; HORMESIS Variation in life history can reflect genetic differences, and may be caused by environmental effects on phenotypes. Understanding how these two sources of life history variation interact to express an optimal allocation of resources in a changing environment is central to life history theory. This study addresses variation in the allocation of resources to asexual reproduction and to maintenance of Hydra magnipapillata in relation to differences in temperature and food availability. Hydra is a non-senescent, persistent species with primarily clonal reproduction. We recorded changes in budding rate and mean survival under starvation, which indicate changes in the allocation of resources to asexual reproduction and maintenance. In constant conditions we observed a clear trade-off between asexual reproduction and maintenance, where budding increased linearly with food intake while starvation survival stayed rather constant. In contrast, an environment with fluctuations in temperature or food availability promotes maintenance and increases the survival chances of hydra under starvation. Surprisingly, asexual reproduction also tends to be positively affected by fluctuating environmental conditions, which suggests that in this case there is no clear trade-off between asexual reproduction and maintenance in hydra. Environmental stresses have a beneficial impact on the fitness-related phenotypical traits of the basal metazoan hydra. The results indicate that, if the stress occurs in hormetic doses, variable stressful and fluctuating environments can be salutary for hydra. A closer examination of this dynamic can therefore enable us to develop a deeper understanding of the evolution of aging and longevity. (C) 2011 Elsevier Inc. All rights reserved. [Schaible, Ralf; Ringelhan, Felix; Kramer, Boris H.; Miethe, Tanja] Max Planck Inst Demog Res, D-18057 Rostock, Germany Schaible, R (reprint author), Max Planck Inst Demog Res, Konrad Zuse Str 1, D-18057 Rostock, Germany. schaible@demogr.mpg.de Bochdanovits Z, 2003, J EVOLUTION BIOL, V16, P1159, DOI 10.1046/j.1420-9101.2003.00621.x; BODE HR, 1977, J CELL SCI, V24, P31; Boggs CL, 2009, FUNCT ECOL, V23, P27, DOI 10.1111/j.1365-2435.2009.01527.x; BOSCH TCG, 1984, DEV BIOL, V104, P161, DOI 10.1016/0012-1606(84)90045-9; Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223; CAMPBELL RD, 1967, J MORPHOL, V121, P19, DOI 10.1002/jmor.1051210103; Carey JR, 2008, AGING CELL, V7, P470, DOI 10.1111/j.1474-9726.2008.00389.x; Castilho AL, 2007, J CRUSTACEAN BIOL, V27, P548, DOI 10.1651/S-2788.1; Chera S, 2009, BBA-MOL CELL RES, V1793, P1432, DOI 10.1016/j.bbamcr.2009.03.010; DAVID CN, 1972, J CELL SCI, V11, P557; Galliot B, 2010, MOL REPROD DEV, V77, P837, DOI 10.1002/mrd.21206; Gomez FH, 2009, J THERM BIOL, V34, P17, DOI 10.1016/j.jtherbio.2008.09.003; Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855; Hulbert AJ, 2007, PHYSIOL REV, V87, P1175, DOI 10.1152/physrev.00047.2006; Lakowski B, 1998, P NATL ACAD SCI USA, V95, P13091, DOI 10.1073/pnas.95.22.13091; Le Bourg E, 1999, EXP GERONTOL, V34, P157, DOI 10.1016/S0531-5565(98)00077-1; Le Bourg E, 2009, BBA-GEN SUBJECTS, V1790, P1030, DOI 10.1016/j.bbagen.2009.01.004; Lee GD, 2006, AGING CELL, V5, P515, DOI 10.1111/j.1474-9726.2006.00241.x; Mangel M, 2008, FUNCT ECOL, V22, P422, DOI 10.1111/j.1365-2435.2008.01410.x; Marshall KE, 2010, P R SOC B, V277, P963, DOI 10.1098/rspb.2009.1807; Martinez DE, 1998, EXP GERONTOL, V33, P217, DOI 10.1016/S0531-5565(97)00113-7; MASORO EJ, 1988, J GERONTOL, V43, pB59, DOI 10.1093/geronj/43.3.B59; McCabe J, 1997, EVOLUTION, V51, P1164, DOI 10.1111/j.1558-5646.1997.tb03964.x; Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990; OTTO JJ, 1977, J CELL SCI, V28, P117; Ozdemir N, 2009, J ANIM VET ADV, V8, P669; PARK HD, 1972, J EXP ZOOL, V179, P283, DOI 10.1002/jez.1401790214; Parsons PA, 2005, BIOL REV, V80, P589, DOI 10.1017/S1464793105006822; Parsons PA, 2007, BIOGERONTOLOGY, V8, P233, DOI 10.1007/s10522-007-9080-z; Partridge L, 2005, MECH AGEING DEV, V126, P938, DOI 10.1016/j.mad.2005.03.023; Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002; Roff Derek A., 1992; SANYAL S, 1966, INDIAN J EXP BIOL, V4, P88; SCHROEDER LA, 1981, LIMNOL OCEANOGR, V26, P690, DOI 10.4319/lo.1981.26.4.0690; SCHROEDER LA, 1982, OECOLOGIA, V53, P238, DOI 10.1007/BF00545670; Semenchenko GV, 2004, BIOGERONTOLOGY, V5, P17, DOI 10.1023/B:BGEN.0000017681.46326.9e; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3; Terman A, 2005, BIOGERONTOLOGY, V6, P205, DOI 10.1007/s10522-005-7956-3; VERDONESMITH C, 1982, EXP GERONTOL, V17, P255, DOI 10.1016/0531-5565(82)90013-4; Yashin AI, 2001, MECH AGEING DEV, V122, P1477, DOI 10.1016/S0047-6374(01)00273-1 41 15 15 0 24 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0531-5565 1873-6815 EXP GERONTOL Exp. Gerontol. OCT 2011 46 10 794 802 10.1016/j.exger.2011.06.004 9 Geriatrics & Gerontology Geriatrics & Gerontology 825WO WOS:000295313000004 21763414 2018-11-12 J Haselhorst, MSH; Edwards, CE; Rubin, MJ; Weinig, C Haselhorst, Monia S. H.; Edwards, Christine E.; Rubin, Matthew J.; Weinig, Cynthia Genetic architecture of life history traits and environment-specific trade-offs MOLECULAR ECOLOGY English Article Brassica rapa; life history traits; meristem limitation; QTL x environment interactions; resource limitation LEAF ECONOMICS SPECTRUM; ARABIDOPSIS-THALIANA; DROSOPHILA-MELANOGASTER; BRASSICA-RAPA; FLOWERING TIME; NATURAL ENVIRONMENTS; THERMAL-ACCLIMATION; HERITABLE VARIATION; RESPONSE CURVES; AVENA-BARBATA Life history theory predicts the evolution of trait combinations that enhance fitness, and the occurrence of trade-offs depends in part on the magnitude of variation in growth rate or acquisition. Using recombinant inbred lines, we examined the genetic architecture of age and size at reproduction across abiotic conditions encountered by cultivars and naturalized populations of Brassica rapa. We found that genotypes are plastic to seasonal setting, such that reproduction was accelerated under conditions encountered by summer annual populations and genetic variances for age at reproduction varied across simulated seasonal settings. Using an acquisition-allocation model, we predicted the likelihood of trade-offs. Consistent with predicted relationships, we observed a trade-off where early maturity is associated with small size at maturity under simulated summer and fall annual conditions but not under winter annual conditions. The trade-off in the summer annual setting was observed despite significant genotypic variation in growth rate, which is often expected to decouple age and size at reproduction because rapidly growing genotypes could mature early and attain a larger size relative to slowly growing genotypes that mature later. The absence of a trade-off in the winter setting is presumably attributable to the absence of genotypic differences in age at reproduction. We observed QTL for age at reproduction that jointly regulated size at reproduction in both the summer and fall annual settings, but these QTL were environment-specific (i.e. different QTL contributed to the trade-off in the fall vs. summer annual settings). Thus, at least some of the genetic mechanisms underlying observed trade-offs differed across environments. [Haselhorst, Monia S. H.; Edwards, Christine E.; Rubin, Matthew J.; Weinig, Cynthia] Univ Wyoming, Dept Bot, Laramie, WY 82071 USA; [Haselhorst, Monia S. H.; Rubin, Matthew J.; Weinig, Cynthia] Univ Wyoming, Program Ecol, Laramie, WY 82071 USA Weinig, C (reprint author), Univ Wyoming, Dept Bot, 1000 E Univ Ave, Laramie, WY 82071 USA. cweinig@uwyo.edu Edwards, Christine/0000-0001-8837-4872 NSF [DBI-0605736] The authors thank O. Deninno, A. Faulconer and A. Hemenway for assistance with plant husbandry and trait measurements; C. A. Buerkle and Z. Gompert for assistance with creating figures; and Motypic means, genetic variances and M. Brock for assistance in QTL mapping. This research was funded by NSF grant DBI-0605736 to CW. ABRAMOFF MD, 2004, IMAGE PROCESSING IMA, V11, P36; ADLER LS, 1993, FUNCT ECOL, V7, P736, DOI 10.2307/2390196; Amasino R, 2010, PLANT J, V61, P1001, DOI 10.1111/j.1365-313X.2010.04148.x; Awadalla P, 1999, GENETICS, V152, P413; BENJAMINI Y, 1995, J ROY STAT SOC B MET, V57, P289; Blonder B, 2011, ECOL LETT, V14, P91, DOI 10.1111/j.1461-0248.2010.01554.x; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; Broman KW, 2003, BIOINFORMATICS, V19, P889, DOI 10.1093/bioinformatics/btg112; Busch F, 2007, PLANT PHYSIOL, V143, P1242, DOI 10.1104/pp.106.092312; CHURCHILL GA, 1994, GENETICS, V138, P963; Dechaine JM, 2007, NEW PHYTOL, V176, P874, DOI 10.1111/j.1469-8137.2007.02210.x; DIGGLE PK, 1993, AM J BOT, V80, P967, DOI 10.2307/2445518; Dillaway DN, 2010, PLANT CELL ENVIRON, V33, P888, DOI 10.1111/j.1365-3040.2010.02114.x; Dmitriew C, 2010, AM NAT, V175, P640, DOI 10.1086/652470; Doerge RW, 1996, GENETICS, V142, P285; Donohue K, 2000, EVOLUTION, V54, P1969; DORN LA, 1991, EVOLUTION, V45, P371, DOI 10.1111/j.1558-5646.1991.tb04411.x; Duffy NM, 1999, OIKOS, V84, P284, DOI 10.2307/3546723; Edwards C, 2011, GENETICS IN PRESS, DOI [10.1534/genetics.110.125112, DOI 10.1534/GENETICS.110.125112]; Edwards CE, 2011, HEREDITY, V106, P661, DOI 10.1038/hdy.2010.103; Edwards CE, 2009, THEOR APPL GENET, V119, P991, DOI 10.1007/s00122-009-1103-5; Fry JD, 1996, EVOLUTION, V50, P2316, DOI 10.1111/j.1558-5646.1996.tb03619.x; GALEN C, 1993, EVOLUTION, V47, P1073, DOI 10.1111/j.1558-5646.1993.tb02136.x; Gardner KM, 2008, J EVOLUTION BIOL, V21, P737, DOI 10.1111/j.1420-9101.2008.01522.x; GEBER MA, 1990, EVOLUTION, V44, P799, DOI 10.1111/j.1558-5646.1990.tb03806.x; GIESEL JT, 1986, AM NAT, V128, P593, DOI 10.1086/284590; Gurganus MC, 1998, GENETICS, V149, P1883; Gutteling EW, 2007, HEREDITY, V98, P206, DOI 10.1038/sj.hdy.6800929; Hadfield JD, 2010, AM NAT, V175, P116, DOI 10.1086/648604; HALEY CS, 1992, HEREDITY, V69, P315, DOI 10.1038/hdy.1992.131; HINATA K, 1984, Indian Journal of Genetics and Plant Breeding, V44, P102; Hoffmann AA, 1999, TRENDS ECOL EVOL, V14, P96, DOI 10.1016/S0169-5347(99)01595-5; Holland JB, 2006, CROP SCI, V46, P642, DOI 10.2135/cropsci2005.0191; HOLLOWAY GJ, 1990, HEREDITY, V64, P323, DOI 10.1038/hdy.1990.40; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; Iannucci A, 2008, FIELD CROP RES, V106, P156, DOI 10.1016/j.fcr.2007.11.005; JIANG CJ, 1995, GENETICS, V140, P1111; KOORNNEEF M, 1991, MOL GEN GENET, V229, P57, DOI 10.1007/BF00264213; Lambers H, 2008, PLANT PHYSL ECOLOGY, P10; Latta RG, 2009, EVOLUTION, V63, P2153, DOI 10.1111/j.1558-5646.2009.00701.x; Lou P, 2007, J EXP BOT, V58, P4005, DOI 10.1093/jxb/erm255; Iniguez-Luy FL, 2009, THEOR APPL GENET, V120, P31, DOI 10.1007/s00122-009-1157-4; Marino G, 2010, FUNCT ECOL, V24, P263, DOI 10.1111/j.1365-2435.2009.01630.x; MitchellOlds T, 1996, EVOLUTION, V50, P1849, DOI 10.1111/j.1558-5646.1996.tb03571.x; MitchellOlds T, 1996, EVOLUTION, V50, P140, DOI 10.1111/j.1558-5646.1996.tb04480.x; Norry FM, 2002, EVOLUTION, V56, P299; Ow LF, 2008, FUNCT PLANT BIOL, V35, P448, DOI 10.1071/FP08104; Ow LF, 2010, GLOBAL CHANGE BIOL, V16, P288, DOI 10.1111/j.1365-2486.2009.01892.x; Pigliucci M, 2001, OECOLOGIA, V127, P501, DOI 10.1007/s004420000613; Poorter H, 2001, PLANT GROWTH CARBON; Poorter H, 2010, J EXP BOT, V61, P2043, DOI 10.1093/jxb/erp358; Poorter H, 2009, NEW PHYTOL, V182, P565, DOI 10.1111/j.1469-8137.2009.02830.x; Price CA, 2010, AM J BOT, V97, P1808, DOI 10.3732/ajb.1000118; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; Roff DA, 2000, J EVOLUTION BIOL, V13, P434, DOI 10.1046/j.1420-9101.2000.00186.x; Roff Derek A., 1992; SAMSON DA, 1986, AM NAT, V127, P667, DOI 10.1086/284512; Sgro CM, 2004, HEREDITY, V93, P241, DOI 10.1038/sj.hdy.6800532; Shipley B, 2005, FUNCT ECOL, V19, P602, DOI 10.1111/j.1365-2435.2005.01008.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stinchcombe JR, 2002, EVOLUTION, V56, P1063; Ungerer MC, 2003, GENETICS, V165, P353; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VANOOIJEN JW, 1992, THEOR APPL GENET, V84, P803, DOI 10.1007/BF00227388; Vieira C, 2000, GENETICS, V154, P213; Voorrips RE, 2002, J HERED, V93, P77, DOI 10.1093/jhered/93.1.77; WANG S, 2007, WINDOWS QTL CARTOGRA; WATSON MA, 1984, AM NAT, V123, P411, DOI 10.1086/284212; Weinig C, 2004, BIOSCIENCE, V54, P627, DOI 10.1641/0006-3568(2004)054[0627:EEOTEO]2.0.CO;2; Weinig C, 2002, GENETICS, V162, P1875; Wesselingh RA, 1997, ECOLOGY, V78, P2118, DOI 10.1890/0012-9658(1997)078[2118:TSFFID]2.0.CO;2; WESTERMAN JM, 1970, HEREDITY, V25, P609, DOI 10.1038/hdy.1970.66; WILLIAMS PH, 1986, SCIENCE, V232, P1385, DOI 10.1126/science.232.4756.1385; WINDIG JJ, 1994, HEREDITY, V73, P459, DOI 10.1038/hdy.1994.144; Worley AC, 2003, AM NAT, V161, P153, DOI 10.1086/345461; Wright IJ, 2005, GLOBAL ECOL BIOGEOGR, V14, P411, DOI 10.1111/j.1466-822x.2005.00172.x; ZENG ZB, 1994, GENETICS, V136, P1457; ZENG ZB, 1993, P NATL ACAD SCI USA, V90, P10972, DOI 10.1073/pnas.90.23.10972; Zhao JJ, 2005, THEOR APPL GENET, V110, P1301, DOI 10.1007/s00122-005-1967-y 80 13 15 4 60 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. OCT 2011 20 19 4042 4058 10.1111/j.1365-294X.2011.05227.x 17 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology 824VJ WOS:000295230000009 21902746 2018-11-12 J Bergeron, P; Careau, V; Humphries, MM; Reale, D; Speakman, JR; Garant, D Bergeron, Patrick; Careau, Vincent; Humphries, Murray M.; Reale, Denis; Speakman, John R.; Garant, Dany The energetic and oxidative costs of reproduction in a free-ranging rodent FUNCTIONAL ECOLOGY English Article ageing; field metabolic rate; life-history theory; litter size; mammals; oxidative stress; wild population DOUBLY-LABELED WATER; CHIPMUNKS TAMIAS-STRIATUS; EASTERN CHIPMUNKS; INCREASED SUSCEPTIBILITY; MICROSATELLITE LOCI; ZEBRA FINCHES; STRESS; EXPENDITURE; DAMAGE; DETERMINANTS 1. As understanding of the energetic costs of reproduction in birds and mammals continues to improve, oxidative stress is an increasingly cited example of a non-energetic cost of reproduction that may serve as a proximal physiological link underlying life-history trade-offs. 2. Here, we provide the first study to measure daily energy expenditure (DEE) and oxidative damage in a wild population. We measured both traits on eastern chipmunks (Tamias striatus) and assessed their relationships with age, reproductive status, litter size and environmental conditions. 3. We found that both physiological traits were correlated with environmental characteristics (e. g. temperature, seasons). DEE tended to increase with decreasing temperature, while oxidative damage was lower in spring, after a winter of torpor expression, than in autumn. We also found that DEE decreased with age, while oxidative damage was elevated in young individuals, reduced in animals of intermediate age and tended to increase at older age. 4. After controlling for age and environmental variables, we found that both female DEE and oxidative damage increased with litter size, although the latter increased weakly. 5. Our results corroborate findings from laboratory studies but highlight the importance of considering environmental conditions, age and reproductive status in broader analyses of the causes and consequences of physiological costs of reproduction in wild animals. [Bergeron, Patrick; Garant, Dany] Univ Sherbrooke, Dept Biol, Sherbrooke, PQ J1K 2R1, Canada; [Careau, Vincent] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA; [Humphries, Murray M.] McGill Univ, Quebec City, PQ H9X 3V9, Canada; [Reale, Denis] Univ Quebec Montreal, Dept Sci Biol, Montreal, PQ H3C 3P8, Canada; [Speakman, John R.] Univ Aberdeen, Aberdeen Ctr Energy Regulat & Obes, Aberdeen AB24 2TZ, Scotland Bergeron, P (reprint author), Univ Sherbrooke, Dept Biol, Sherbrooke, PQ J1K 2R1, Canada. patrick.bergeron@usherbrooke.ca Careau, Vincent/A-9778-2008; John, Speakman/A-9494-2008; Garant, Dany/D-7406-2013 Careau, Vincent/0000-0002-2826-7837; John, Speakman/0000-0002-2457-1823; Garant, Dany/0000-0002-8091-1044 Natural Sciences and Engineering Research Council of Canada (NSERC); Fonds Quebecois de la Recherche sur la Nature et les Technologies (FQRNT) We are grateful to the technicians, research assistants and graduate students who helped with collecting data in the field and helped with laboratory analyses, especially P. Bourgault, M. Landry-Cuerrier, A.-M. Lavoie, G. Dubuc-Messier, J. Chambers and P.O. Montiglio. We thank D. Lafontaine who kindly provided the fluorometer and B. Heppell who helped us using it. We also thank the associate editor, an anonymous referee and D. Nussey for their comments on a previous version of the manuscript. P. B. and V. C. were supported by a postgraduate scholarship from the Natural Sciences and Engineering Research Council of Canada (NSERC) and from the Fonds Quebecois de la Recherche sur la Nature et les Technologies (FQRNT). This work was funded by NSERC Discovery Grants to D. R., M. M. H and D. G., as well as by a research team grant provided by the FQRNT to D. R., M. M. H, D. G., Don Kramer and Don Thomas. We are grateful to the Ruiter Valley Land Trust for allowing us to conduct this research within their boundaries. Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Alonso-Alvarez C, 2007, FUNCT ECOL, V21, P873, DOI 10.1111/j.1365-2435.2007.01300.x; Alonso-Alvarez C, 2006, EVOLUTION, V60, P1913, DOI 10.1111/j.0014-3820.2006.tb00534.x; Alonso-Alvarez C, 2010, PHYSIOL BIOCHEM ZOOL, V83, P110, DOI 10.1086/605395; Anderson SJ, 2007, MOL ECOL NOTES, V7, P513, DOI 10.1111/j.1471-8286.2006.01638.x; Beckman KB, 1998, PHYSIOL REV, V78, P547; Bertrand S, 2006, OECOLOGIA, V147, P576, DOI 10.1007/s00442-005-0317-8; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Burnham KP, 2002, MODEL SELECTION INFE; Careau V, 2010, OECOLOGIA, V162, P303, DOI 10.1007/s00442-009-1466-y; Chambers JL, 2010, J HERED, V101, P413, DOI 10.1093/jhered/esq029; Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x; Costantini D, 2010, FUNCT ECOL, V24, P950, DOI 10.1111/j.1365-2435.2010.01746.x; De Block M, 2008, P R SOC B, V275, P781, DOI 10.1098/rspb.2007.1515; DELAHAY RJ, 1995, PARASITOLOGY, V110, P473, DOI 10.1017/S0031182000064817; Descamps S, 2009, P R SOC B, V276, P1129, DOI 10.1098/rspb.2008.1401; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; EVEN PC, 2001, AM J PHYSIOL-REG I, V280, P1887; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; GARRATT M, P ROYAL S B IN PRESS; GIROUD S, 2009, AM J PHYSIOL-REG I, V297, pR959; Golden TR, 2002, AGING CELL, V1, P117, DOI 10.1046/j.1474-9728.2002.00015.x; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Horak P, 2010, FUNCT ECOL, V24, P960, DOI 10.1111/j.1365-2435.2010.01755.x; Humphries MM, 2000, ECOLOGY, V81, P2867, DOI 10.1890/0012-9658(2000)081[2867:TDOOLS]2.0.CO;2; Humphries MM, 2002, OECOLOGIA, V133, P30, DOI 10.1007/s00442-002-1014-5; Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682; Landry-Cuerrier M, 2008, ECOLOGY, V89, P3306, DOI 10.1890/08-0121.1; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Marshall TC, 1998, MOL ECOL, V7, P639, DOI 10.1046/j.1365-294x.1998.00374.x; Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Munro D, 2008, CAN J ZOOL, V86, P364, DOI 10.1139/Z08-008; Munro D, 2005, J ANIM ECOL, V74, P692, DOI 10.1111/j.1365-2656.2005.00968.x; Nilsson JA, 2002, P ROY SOC B-BIOL SCI, V269, P1735, DOI 10.1098/rspb.2002.2071; Nussey DH, 2009, FUNCT ECOL, V23, P809, DOI 10.1111/j.1365-2435.2009.01555.x; Orr AL, 2009, COMP BIOCHEM PHYS A, V153, P213, DOI 10.1016/j.cbpa.2009.02.016; Peters MB, 2007, MOL ECOL NOTES, V7, P877, DOI 10.1111/j.1471-8286.2007.01735.x; Ricklefs RE, 1996, AM NAT, V147, P1047, DOI 10.1086/285892; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Roberts SB, 2006, PHYSIOL REV, V86, P651, DOI 10.1152/physrev.00019.2005; Rubolini D, 2006, J EVOLUTION BIOL, V19, P1571, DOI 10.1111/j.1420-9101.2006.01121.x; Scantlebury M, 2005, PHYSIOL BEHAV, V84, P739, DOI 10.1016/j.physbeh.2005.02.022; Selman C, 2008, P ROY SOC B-BIOL SCI, V275, P1907, DOI 10.1098/rspb.2008.0355; SMITH LC, 1972, CAN J ZOOLOG, V50, P1069, DOI 10.1139/z72-145; SOHAL RS, 1993, P NATL ACAD SCI USA, V90, P7255, DOI 10.1073/pnas.90.15.7255; Sohal RS, 1996, SCIENCE, V273, P59, DOI 10.1126/science.273.5271.59; SOHAL RS, 1995, MECH AGEING DEV, V81, P15, DOI 10.1016/0047-6374(94)01578-A; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; Speakman JR, 2011, BIOESSAYS, V33, P255, DOI 10.1002/bies.201000132; Speakman JR, 2010, INTEGR COMP BIOL, V50, P793, DOI 10.1093/icb/icq049; Speakman JR, 2005, PHYSIOL BIOCHEM ZOOL, V78, P650, DOI 10.1086/430234; Speakman JR, 2004, AGING CELL, V3, P87, DOI 10.1111/j.1474-9728.2004.00097.x; SPEAKMAN JR, 1987, J THEOR BIOL, V127, P79, DOI 10.1016/S0022-5193(87)80162-5; SPEAKMAN JR, 1990, ANAL CHEM, V62, P703, DOI 10.1021/ac00206a011; SPEAKMAN JR, 1993, FUNCT ECOL, V7, P746; SPEAKMAN JR, 1994, FUNCT ECOL, V8, P336, DOI 10.2307/2389826; SPEAKMAN JR, 1997, DOUBLY LABELLED WATE; Stearns S. C., 1992, EVOLUTION LIFE HIST; Torres R, 2007, J ANIM ECOL, V76, P1161, DOI 10.1111/j.1365-2656.2007.01282.x; TRYON CA, 1973, J MAMMAL, V54, P145, DOI 10.2307/1378877; TZANKOFF SP, 1978, J APPL PHYSIOL, V45, P536; Visser GH, 1999, PHYSIOL BIOCHEM ZOOL, V72, P740, DOI 10.1086/316713; Wiersma P, 2004, P ROY SOC B-BIOL SCI, V271, pS360, DOI 10.1098/rsbl.2004.0171; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 65 60 63 1 63 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0269-8463 FUNCT ECOL Funct. Ecol. OCT 2011 25 5 1063 1071 10.1111/j.1365-2435.2011.01868.x 9 Ecology Environmental Sciences & Ecology 823OP WOS:000295132100014 Bronze 2018-11-12 J Kruger, DJ Kruger, Daniel J. Evolutionary theory in public health and the public health of evolutionary theory FUTURES English Article IMPRINTED GENES; DISEASE; RISK; SEX; SOCIOBIOLOGY; STRATEGIES; MORTALITY; CONFLICT; MEDICINE Evolutionary theory is the most powerful explanatory system in the life sciences and is the only framework that can unify knowledge in otherwise disparate fields of research. Considerable advances have been made in the application of evolutionary biology to health issues in recent decades. Health researchers and practitioners could benefit considerably from an understanding of the basic principles of evolution and how humans have been shaped by natural and sexual selection, even if they are not explicitly testing evolutionary hypotheses. Life History Theory is a powerful framework that can be used for examining modern human environments and developing environments that maximize opportunities for positive health outcomes. Many of the recommendations derived from this framework converge with the visions of current public health advocates. Despite the benefits of an evolutionary framework, the challenges that face those attempting to integrate evolutionary theory into public health are perhaps greater than those in the social sciences. Although considerable advancements in the understanding of health issues have already been made, health researchers with an evolutionary perspective are very few in number and face constraining disciplinary attributes. Advances in medical technology will continue to extend the boundaries of saving lives in danger, however traditional public health efforts may be reaching their limits of effectiveness in encouraging health-promoting behaviors. This may partially account for the current interest in broad social and policy change to enhance health and reduce health disparities amongst sub-populations. Such substantial physical and social restructuring will face many challenges and gradual progress may be enhanced by a strong foundation of evolutionary human science. The slow but eventual integration of evolutionary principles will gradually enhance the effectiveness of health interventions and provide an ultimate explanation for patterns in health outcomes that are otherwise puzzling. The speed at which the field of public health adopts a Darwinian framework has yet to be determined, and several futures are possible. This pace will depend on several factors, including the visible utility of evolutionary theory for addressing the health promotion goals of the field. (C) 2011 Elsevier Ltd. All rights reserved. Univ Michigan, Sch Publ Hlth, Ann Arbor, MI 48109 USA Kruger, DJ (reprint author), Univ Michigan, Sch Publ Hlth, 1420 Washington Hts, Ann Arbor, MI 48109 USA. djk2012@gmail.com Kruger, Daniel/0000-0002-2757-7016 BEST R, 1999, BUILDING VALUE PREDE, P11; Bostrom A, 2003, FUTURES, V35, P553, DOI 10.1016/S0016-3287(02)00100-3; Boyer P, 2000, PHILOS PSYCHOL, V13, P277, DOI 10.1080/09515080050128123; Bruening K, 1999, ENVIRON HEALTH PERSP, V107, P431, DOI 10.2307/3434623; Brummett BH, 2001, PSYCHOSOM MED, V63, P267, DOI 10.1097/00006842-200103000-00010; Buss D. M., 1994, EVOLUTION DESIRE STR; *CDCP, 1999, CHRON DIS THEIR RISK; Chisholm JS, 1999, DEATH HOPE SEX STEPS; *COMM SOC DET HLTH, 2008, CLOS GAP GEN HLTH EQ; CRAWFORD CB, 1989, AM PSYCHOL, V44, P1449, DOI 10.1037/0003-066X.44.12.1449; Cronin H, 1991, ANT PEACOCK ALTRUISM; Dawkins R, 2006, GOD DELUSION; Dobzhansky T, 2013, AM BIOL TEACH, V75, P87, DOI 10.2307/4444260; DUNBAR RIM, 1992, J HUM EVOL, V22, P469, DOI 10.1016/0047-2484(92)90081-J; Eaton SB, 1997, EUR J CLIN NUTR, V51, P207, DOI 10.1038/sj.ejcn.1600389; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Fila SA, 2006, INT J BEHAV NUTR PHY, V3, DOI 10.1186/1479-5868-3-11; Frumkin P, 2001, AM J PREV MED, V20, P234; Graves JAM, 1998, REPROD FERT DEVELOP, V10, P23, DOI 10.1071/R98014; Hadley C., 1998, DICHOTOMOUS MALE REP; Hancock T, 1995, FUTURES, V27, P935, DOI 10.1016/0016-3287(95)00060-7; Hawks J, 2007, P NATL ACAD SCI USA, V104, P20753, DOI 10.1073/pnas.0707650104; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; Hopcroft RL, 2006, EVOL HUM BEHAV, V27, P104, DOI 10.1016/j.evolhumbehav.2005.07.004; House JS, 2001, PSYCHOSOM MED, V63, P273, DOI 10.1097/00006842-200103000-00011; KENRICK DT, 1997, EVOLUTIONARY SOCIAL; Kevles Daniel J., 1985, NAME EUGENICS GENETI; Kim K, 1997, EVOL HUM BEHAV, V18, P109, DOI 10.1016/S1090-5138(96)00114-6; Kolbert Elizabeth, 2006, FIELD NOTES CATASTRO; Kruger DJ, 2006, HUM NATURE-INT BIOS, V17, P74, DOI 10.1007/s12110-006-1021-z; KRUGER DJ, 2008, AM COLL EP M TUCS AR; Kwiatkowski DP, 2005, AM J HUM GENET, V77, P171, DOI 10.1086/432519; Lindeberg S, 2007, DIABETOLOGIA, V50, P1795, DOI 10.1007/s00125-007-0716-y; Low BS, 1998, HANDBOOK OF EVOLUTIONARY PSYCHOLOGY, P131; MAC ARTHUR ROBERT H., 1967; Marlowe FW, 2007, CROSS-CULT RES, V41, P170, DOI 10.1177/1069397106297529; MARMOT MG, 1987, ANNU REV PUBL HEALTH, V8, P111, DOI 10.1146/annurev.pu.08.050187.000551; Martens P, 2002, FUTURES, V34, P635, DOI 10.1016/S0016-3287(02)00005-8; McMinn J, 2006, PLACENTA, V27, P540, DOI 10.1016/j.placenta.2005.07.004; MOORE T, 1991, TRENDS GENET, V7, P45, DOI 10.1016/0168-9525(91)90230-N; Nell V, 2002, CURR DIR PSYCHOL SCI, V11, P75, DOI 10.1111/1467-8721.00172; Nesse RM, 1995, WHY WE GET SICK NEW; NOVACEK MJ, 2001, COMMUNICATION; NUTTGENS P, 1997, STORY ARCHITECTURE; Pearce F., 2006, LAST GENERATION NATU; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; POYNTER J, 2006, HUMAN EXPT 2 YEARS 2, V2; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; READ AF, 2008, EVOLUTION HLTH DIS, P139; Reik W, 2003, J PHYSIOL-LONDON, V547, P35, DOI 10.1113/jphysiol.2002.033274; Roff Derek A., 1992; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Saad G, 2006, PSYCHOL MARKET, V23, P617, DOI 10.1002/mar.20149; Saad G., 2007, EVOLUTIONARY BASES C; Saad G, 2007, MED HYPOTHESES, V68, P692, DOI 10.1016/j.mehy.2006.08.012; Segerstrale Ullica, 2000, DEFENDERS TRUTH BATT; SKRIPAK J, 2006, PEDIATRICS S, V18, pS7; Stearns S. C., 1992, EVOLUTION LIFE HIST; Summers RW, 2005, GUT, V54, P87, DOI 10.1136/gut.2004.041749; Thompson EE, 2004, AM J HUM GENET, V75, P1059, DOI 10.1086/426406; TISHKOFF SA, 2007, NAT GENET, V39, P7; TRIVERS RL, 1974, AM ZOOL, V14, P249; Waltner-Toews D, 2000, FUTURES, V32, P655, DOI 10.1016/S0016-3287(00)00014-8; Wilson E. O., 1984, BIOPHILIA HUMAN BOND; Wilson EO, 1998, CONSILIENCE UNITY KN; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 67 1 1 0 30 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND 0016-3287 1873-6378 FUTURES Futures OCT 2011 43 8 SI 762 770 10.1016/j.futures.2011.05.019 9 Economics; Planning & Development Business & Economics; Public Administration 822TI WOS:000295072100005 2018-11-12 J Kindsvater, HK; Bonsall, MB; Alonzo, SH Kindsvater, H. K.; Bonsall, M. B.; Alonzo, S. H. Survival costs of reproduction predict age-dependent variation in maternal investment JOURNAL OF EVOLUTIONARY BIOLOGY English Article age-dependence; dynamic state-variable model; life-history theory; maternal effect; offspring size; reproductive investment OFFSPRING SIZE; NATURAL-SELECTION; CLUTCH SIZE; TRADE-OFF; EGG SIZE; MOTHERS; NUMBER; REFINEMENT; PHENOTYPE; EVOLUTION Life-history theory predicts that older females will increase reproductive effort through increased fecundity. Unless offspring survival is density dependent or female size constrains offspring size, theory does not predict variation in offspring size. However, empirical data suggest that females of differing age or condition produce offspring of different sizes. We used a dynamic state-variable model to determine when variable offspring sizes can be explained by an interaction between female age, female state and survival costs of reproduction. We found that when costs depend on fecundity, young females with surplus state increase offspring size and reduce number to minimize fitness penalties. When costs depend on total reproductive effort, only older females increase offspring size. Young females produce small offspring, because decreasing offspring size is less expensive than number, as fitness from offspring investment is nonlinear. Finally, allocation patterns are relatively stable when older females are better at acquiring food and are therefore in better condition. Our approach revealed an interaction between female state, age and survival costs, providing a novel explanation for observed variation in reproductive traits. [Kindsvater, H. K.; Alonzo, S. H.] Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT 06520 USA; [Bonsall, M. B.] Univ Oxford, Dept Zool, Math Ecol Res Grp, Oxford OX1 3PS, England; [Bonsall, M. B.] Univ Oxford, St Peters Coll, Oxford, England Kindsvater, HK (reprint author), Yale Univ, Dept Ecol & Evolutionary Biol, POB 208106, New Haven, CT 06520 USA. holly.kindsvater@yale.edu Kindsvater, Holly/0000-0001-7580-4095; Bonsall, Michael/0000-0003-0250-0423 US EPA STAR; Yale University; NSF; Royal Society This work was supported by the US EPA STAR Fellowship (H. K. K.), Yale University (S. H. A. and H. K. K.), NSF (S. H. A. and H. K. K) and the Royal Society (M. B. B.). We thank Michael Jennions and an anonymous reviewer for comments that greatly improved this manuscript. Beckerman AP, 2006, P ROY SOC B-BIOL SCI, V273, P485, DOI 10.1098/rspb.2005.3315; Beekey MA, 2004, AM MIDL NAT, V151, P274, DOI 10.1674/0003-0031(2004)151[0274:TEOSBC]2.0.CO;2; Berkeley SA, 2004, ECOLOGY, V85, P1258, DOI 10.1890/03-0706; Brown GP, 2009, PHILOS T R SOC B, V364, P1097, DOI 10.1098/rstb.2008.0247; CHARNOV EL, 1995, NATURE, V376, P418, DOI 10.1038/376418a0; CLARK CW, 2000, DYNAMIC STATE VARIAB; Cox RM, 2010, EVOLUTION, V64, P1321, DOI 10.1111/j.1558-5646.2009.00906.x; Creighton JC, 2009, AM NAT, V174, P673, DOI 10.1086/605963; Fischer K, 2006, J EVOLUTION BIOL, V19, P380, DOI 10.1111/j.1420-9101.2005.01046.x; Ford NB, 2010, HERPETOLOGICA, V66, P451, DOI 10.1655/09-057.1; Gagliano M, 2007, J ANIM ECOL, V76, P174, DOI 10.1111/j.1365-2656.2006.01187.x; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; Houston AI, 1999, MODELS ADAPTIVE BEHA; Kindsvater HK, 2010, EVOL ECOL RES, V12, P327; Mangel M., 1988, DYNAMIC MODELING BEH; Marshall DJ, 2010, ECOLOGY, V91, P2862, DOI 10.1890/09-0156.1; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Plaistow SJ, 2007, AM NAT, V170, P520, DOI 10.1086/521238; Podolsky RD, 2004, AM NAT, V163, P735, DOI 10.1086/382791; Sakai S, 2001, AM NAT, V157, P348, DOI 10.1086/319194; SHINE R, 1992, EVOLUTION, V46, P62, DOI 10.1111/j.1558-5646.1992.tb01985.x; Sinervo B, 1999, AM NAT, V154, pS26, DOI 10.1086/303281; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S. C., 1992, EVOLUTION LIFE HIST; STRATHMANN RR, 1982, AM NAT, V119, P91, DOI 10.1086/283892; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WINKLER DW, 1987, AM NAT, V129, P708, DOI 10.1086/284667 28 20 20 0 32 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1010-061X J EVOLUTION BIOL J. Evol. Biol. OCT 2011 24 10 2230 2240 10.1111/j.1420-9101.2011.02351.x 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 822NG WOS:000295054500013 21745251 Bronze 2018-11-12 J Bogdanowicz, AM; Olejniczak, P; Lembicz, M; Zukowski, W Bogdanowicz, Agnieszka M.; Olejniczak, Pawel; Lembicz, Marlena; Zukowski, Waldemar Costs of reproduction in life history of a perennial plant Carex secalina CENTRAL EUROPEAN JOURNAL OF BIOLOGY English Article Age; Biomass reduction; Common garden; Life history; Reproductive allocation SEED PRODUCTION; SIZE; ALLOCATION; POPULATIONS; ORCHIDACEAE; LIMITATION; CYPERACEAE; INTERPLAY; GROWTH; HERB We tested a hypothesis based on life history theory that examines reproductive costs incurred by individuals in consecutive years of their life. A multi-year dataset of resource allocation to vegetative and reproductive structures was analysed in Carex secalina - a perennial, monoecious sedge, reproducing only sexually. In a four-year garden experiment, we assessed above-ground biomass at the end of each season and reproductive allocation expressed as the total length of male and female spikes. The study was aimed at determining how size and age of a plant relates to its reproduction, and how the rate of reproduction affects the year-toyear biomass change in Carex secalina. We observed that after each reproductive episode, individuals had significantly smaller sizes and produced a lower number of generative tillers. The total production of reproductive structures decreased significantly with age in all populations. Moreover, the decrease in plant biomass was greater when more reproductive structures were produced in a previous year, which indicates that the plants incur costs of reproduction in terms of above-ground biomass production. [Bogdanowicz, Agnieszka M.; Lembicz, Marlena; Zukowski, Waldemar] Adam Mickiewicz Univ Poznan, Dept Plant Taxon, PL-61614 Poznan, Poland; [Olejniczak, Pawel] Polish Acad Sci, Inst Nat Conservat, PL-31120 Krakow, Poland Bogdanowicz, AM (reprint author), Adam Mickiewicz Univ Poznan, Dept Plant Taxon, PL-61614 Poznan, Poland. agab@amu.edu.pl Polish Ministry of Science and Higher Education [2P04C12030, NN305036134] We thank Elzbieta Obarska for helpful discussions and Maria Urbanska for her assistance in maintaining experimental plants in the garden. The work was supported by Polish Ministry of Science and Higher Education (projects 2P04C12030 and NN305036134). Alvarez-Cansino L, 2010, ANN BOT-LONDON, V106, P989, DOI 10.1093/aob/mcq197; Andersson S, 2006, CAN J BOT, V84, P904, DOI 10.1139/B06-041; Andrieu E, 2007, OECOLOGIA, V152, P515, DOI 10.1007/s00442-007-0662-x; ASHMAN TL, 1992, OECOLOGIA, V92, P266, DOI 10.1007/BF00317374; Bazzaz FA, 1985, STUDIES PLANT DEMOGR, P373; CALVO RN, 1990, AM J BOT, V77, P736, DOI 10.2307/2444365; Cao GX, 2008, PLANT ECOL, V194, P99, DOI 10.1007/s11258-007-9277-x; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; Cunningham SA, 1997, OECOLOGIA, V111, P36, DOI 10.1007/s004420050205; Dudash MR, 1997, ECOLOGY, V78, P484; HARTNETT DC, 1990, OECOLOGIA, V84, P254, DOI 10.1007/BF00318281; Hemborg AM, 1998, OIKOS, V83, P273, DOI 10.2307/3546838; Hemborg AM, 1998, ECOSCIENCE, V5, P517, DOI 10.1080/11956860.1998.11682495; Horibata S, 2007, ANN BOT-LONDON, V100, P565, DOI 10.1093/aob/mcm131; Jacquemyn H, 2010, J ECOL, V98, P1204, DOI 10.1111/j.1365-2745.2010.01697.x; Jongejans E, 2006, OECOLOGIA, V147, P369, DOI 10.1007/s00442-005-0325-8; Karlsson P. Staffan, 2005, P1, DOI 10.1016/B978-012088386-8/50001-6; KARLSSON PS, 1990, OIKOS, V59, P393, DOI 10.2307/3545151; Lembicz M, 2011, FLORA, V206, P158, DOI 10.1016/j.flora.2010.09.006; Lembicz Marlena, 2006, Polish Botanical Studies, V22, P343; Matsuyama S, 2008, ANN BOT-LONDON, V101, P1391, DOI 10.1093/aob/mcn048; Mendez M, 2003, OECOLOGIA, V137, P69, DOI 10.1007/s00442-003-1319-z; Milla R, 2006, PLANT BIOLOGY, V8, P103, DOI 10.1055/s-2005-872890; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; Primack R, 1998, AM J BOT, V85, P1672, DOI 10.2307/2446500; REEKIE EG, 1987, AM NAT, V129, P907, DOI 10.1086/284683; Reekie EG, 1998, CAN J BOT, V76, P43, DOI 10.1139/b97-160; Roff D. A., 2002, LIFE HIST EVOLUTION; Sato T, 2002, OIKOS, V96, P453, DOI 10.1034/j.1600-0706.2002.960307.x; SCHMID B, 1993, EVOLUTION, V47, P61, DOI 10.1111/j.1558-5646.1993.tb01199.x; SILVERTOWN J, 1999, AM NAT, V29, P321; Stearns S. C., 1992, EVOLUTION LIFE HIST; TUOMI J, 1983, AM ZOOL, V23, P25; Wang TH, 2006, CAN J BOT, V84, P485, DOI 10.1139/B06-011; Welham CVJ, 1998, CAN J BOT, V76, P166, DOI 10.1139/b97-176; Zukowski W, 2005, ACTA SOC BOT POL, V74, P141 36 3 3 1 14 VERSITA WARSAW SOLIPSKA 14A-1, 02-482 WARSAW, POLAND 1895-104X CENT EUR J BIOL Cent. Eur. J. Biol. OCT 2011 6 5 870 877 10.2478/s11535-011-0044-6 8 Biology Life Sciences & Biomedicine - Other Topics 814OE WOS:000294465300020 Other Gold 2018-11-12 J Jones, JH Jones, James Holland Primates and the Evolution of Long, Slow Life Histories CURRENT BIOLOGY English Review QUANTITATIVE GENETIC-ANALYSIS; BRAIN-SIZE EVOLUTION; NATURAL-SELECTION; CRANIAL MORPHOLOGY; HUMAN-POPULATION; FEMALE MAMMALS; HUMAN GROWTH; MORTALITY; HUMANS; DEMOGRAPHY Primates are characterized by relatively late ages at first reproduction, long lives and low fertility. Together, these traits define a life-history of reduced reproductive effort. Understanding the optimal allocation of reproductive effort, and specifically reduced reproductive effort, has been one of the key problems motivating the development of life-history theory. Because of their unusual constellation of life-history traits, primates play an important role in the continued development of life-history theory. In this review, I present the evidence for the reduced reproductive effort life histories of primates and discuss the ways that such life-history tactics are understood in contemporary theory. Such tactics are particularly consistent with the predictions of stochastic demographic models, suggesting a key role for environmental variability in the evolution of primate life histories. The tendency for primates to specialize in high-quality, high-variability food items may make them particularly susceptible to environmental variability and explains their low reproductive-effort tactics. I discuss recent applications of life-history theory to human evolution and emphasize the continuity between models used to explain peculiarities of human reproduction and senescence with the long, slow life histories of primates more generally. Stanford Univ, Dept Anthropol, Woods Inst Environm, Stanford, CA 94305 USA Jones, JH (reprint author), Stanford Univ, Dept Anthropol, Woods Inst Environm, 450 Serra Mall,Bldg 50, Stanford, CA 94305 USA. jhr1@stanford.edu Jones, James/0000-0003-1680-6757 NICHD NIH HHS [K01 HD051494, K01 HD051494-05] ABRAMS PA, 1993, EVOLUTION, V47, P877, DOI 10.1111/j.1558-5646.1993.tb01241.x; Amos W, 2010, P R SOC B, V277, P131, DOI 10.1098/rspb.2009.1473; ATCHLEY WR, 1984, EVOLUTION, V38, P1165, DOI 10.1111/j.1558-5646.1984.tb05640.x; ATCHLEY WR, 1984, GENET RES, V43, P289, DOI 10.1017/S0016672300026070; AUSTAD SN, 1992, AM J PRIMATOL, V28, P251, DOI 10.1002/ajp.1350280403; AUSTAD SN, 1993, J ZOOL, V229, P695, DOI 10.1111/j.1469-7998.1993.tb02665.x; AUSTAD SN, 1993, J GERONTOL, V46, pB47; Barrickman NL, 2008, J HUM EVOL, V54, P568, DOI 10.1016/j.jhevol.2007.08.012; Bird DW, 2002, HUM NATURE-INT BIOS, V13, P269, DOI 10.1007/s12110-002-1010-9; BISHAI D, 2003, DEMOGR RES, V8, P261, DOI DOI 10.4054/DEMRES.2003.8.9; Blomquist GE, 2010, EVOL ECOL, V24, P657, DOI 10.1007/s10682-009-9323-3; Blomquist GE, 2009, BIOL LETTERS, V5, P339, DOI 10.1098/rsbl.2009.0009; BOAG PT, 1981, SCIENCE, V214, P82, DOI 10.1126/science.214.4516.82; Bogin B, 1997, YEARB PHYS ANTHROPOL, V40, P63; Bronikowski AM, 2011, SCIENCE, V331, P1325, DOI 10.1126/science.1201571; Byars SG, 2010, P NATL ACAD SCI USA, V107, P1787, DOI 10.1073/pnas.0906199106; CASWELL H, 1982, AM NAT, V120, P317, DOI 10.1086/283993; CHAMOV EL, 1993, EVOL ANTHROPOL, V1, P191; CHAMOV EL, 1973, AM NAT, V107, P791; Chapman CA, 1999, J TROP ECOL, V15, P189, DOI 10.1017/S0266467499000759; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; Charnov Eric L., 1993, P1; Charpentier MJE, 2008, MOL ECOL, V17, P2026, DOI 10.1111/j.1365-294X.2008.03724.x; Cheverud JM, 1996, J EVOLUTION BIOL, V9, P5, DOI 10.1046/j.1420-9101.1996.9010005.x; Chu CYC, 2008, THEOR POPUL BIOL, V73, P171, DOI 10.1016/j.tpb.2007.11.005; COALE A, 1974, SCI AM, V231; Cohen AA, 2004, BIOL REV, V79, P733, DOI 10.1017/S1464793103006432; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Colman RJ, 2009, SCIENCE, V325, P201, DOI 10.1126/science.1173635; Conklin-Brittain NL, 1998, INT J PRIMATOL, V19, P971, DOI 10.1023/A:1020370119096; Curran LM, 2000, ECOL MONOGR, V70, P101, DOI 10.1890/0012-9615(2000)070[0101:VRTSVI]2.0.CO;2; de Magalhaes JP, 2009, J EVOLUTION BIOL, V22, P1770, DOI 10.1111/j.1420-9101.2009.01783.x; DEACON TW, 1990, INT J PRIMATOL, V11, P237, DOI 10.1007/BF02192870; DEACON TW, 1990, INT J PRIMATOL, V11, P193, DOI 10.1007/BF02192869; Deaner Robert O., 2003, P233; Dewar RE, 2007, P NATL ACAD SCI USA, V104, P13723, DOI 10.1073/pnas.0704346104; Dobzhansky T., 1950, American Scientist, V38, P209; Ernest SKM, 2003, ECOLOGY, V84, P3402, DOI 10.1890/02-9002; Excoffier L, 1999, P NATL ACAD SCI USA, V96, P10597, DOI 10.1073/pnas.96.19.10597; Fisher R. A., 1958, GENETICAL THEORY NAT; FLINN MV, 1989, SOCIOBIOLOGY SEXUAL, P206; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gage TB, 1998, ANNU REV ANTHROPOL, V27, P197, DOI 10.1146/annurev.anthro.27.1.197; GALDIKAS BMF, 1990, AM J PHYS ANTHROPOL, V83, P185, DOI 10.1002/ajpa.1330830207; Godoy R, 2005, J ANTHROPOL RES, V61, P157, DOI 10.3998/jar.0521004.0061.202; Gould L, 1999, INT J PRIMATOL, V20, P69, DOI 10.1023/A:1020584200807; Gurven M, 2006, P ROY SOC B-BIOL SCI, V273, P835, DOI 10.1098/rspb.2005.3380; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Harvey P.H., 1987, P181; HARVEY PH, 1985, EVOLUTION, V39, P559, DOI 10.1111/j.1558-5646.1985.tb00395.x; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hill K, 2001, J HUM EVOL, V40, P437, DOI 10.1006/jhev.2001.0469; HOLMES DJ, 1994, J MAMMAL, V75, P224, DOI 10.2307/1382255; Howell N., 1979, DEMOGRAPHY DOBE KUNG; HRDY SB, 1999, HIST MOTHERS INFANTS; Hurtado AM, 1996, ACHE LIFE HIST; Janson Charles H., 1993, P57; Jones JH, 2010, J ANIM ECOL, V79, P1262, DOI 10.1111/j.1365-2656.2010.01687.x; Jones JH, 2009, EVOL HUM BEHAV, V30, P305, DOI 10.1016/j.evolhumbehav.2009.01.005; Jones JH, 2005, AM J HUM BIOL, V17, P22, DOI 10.1002/ajhb.20099; Judge DS, 2000, J GERONTOL A-BIOL, V55, pB201, DOI 10.1093/gerona/55.4.B201; KACHEL AF, 2010, P ROYAL S B IN PRESS; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; KAPLAN H, 1994, POPUL DEV REV, V20, P753, DOI 10.2307/2137661; Kappeler PM, 1996, AM NAT, V148, P868, DOI 10.1086/285960; Keyfitz N., 1990, WORLD POPULATION GRO; KNOTT C, 2001, REPROD ECOLOGY, P299; Knott CD, 1998, INT J PRIMATOL, V19, P1061, DOI 10.1023/A:1020330404983; Kosova G, 2010, P NATL ACAD SCI USA, V107, P1772, DOI 10.1073/pnas.0906196106; Kozlowski J, 1997, AM NAT, V149, P352; Kramer KL, 2010, ANNU REV ANTHROPOL, V39, P417, DOI 10.1146/annurev.anthro.012809.105054; Kramer KL, 2010, EVOL ANTHROPOL, V19, P136, DOI 10.1002/evan.20265; Kramer KL, 2009, AM J HUM BIOL, V21, P430, DOI 10.1002/ajhb.20930; Kramer KL, 2005, EVOL ANTHROPOL, V14, P224, DOI 10.1002/evan.20082; Kramer KL, 2002, HUM NATURE-INT BIOS, V13, P299, DOI 10.1007/s12110-002-1011-8; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Lande R., 1985, P21; Lawler RR, 2009, OECOLOGIA, V161, P491, DOI 10.1007/s00442-009-1382-1; Lee RD, 2003, P NATL ACAD SCI USA, V100, P9637, DOI 10.1073/pnas.1530303100; Lee RD, 2002, POPUL DEV REV, V28, P475, DOI 10.1111/j.1728-4457.2002.00475.x; Leigh SR, 2001, EVOL ANTHROPOL, V10, P223, DOI 10.1002/evan.20002; LEIGH SR, 1994, AM J PHYS ANTHROPOL, V94, P499, DOI 10.1002/ajpa.1330940406; Lewontin R., 1965, GENETICS COLONIZING; MAC ARTHUR ROBERT H., 1967; Mangel M, 2001, EVOL ECOL RES, V3, P583; Marlowe F, 2010, HADZA HUNTER GATHERE; Marlowe FW, 2003, EVOL HUM BEHAV, V24, P217, DOI 10.1016/S1090-5138(03)00014-X; Marshall AJ, 2007, INT J PRIMATOL, V28, P1218, DOI 10.1007/s10764-007-9218-5; MARTIN RD, 2003, PRIMATE LIFE HIST SO; MEDAWAR PB, 1952, UNSOLVED PROBLEM BIO; Morris WF, 2011, AM NAT, V177, pE14, DOI 10.1086/657443; Mulder MB, 1998, TRENDS ECOL EVOL, V13, P266, DOI 10.1016/S0169-5347(98)01357-3; Newson L, 2005, PERS SOC PSYCHOL REV, V9, P360, DOI 10.1207/s15327957pspr0904_5; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; Ozgul A, 2009, SCIENCE, V325, P464, DOI 10.1126/science.1173668; Packer C, 1998, NATURE, V392, P807, DOI 10.1038/33910; PARKER GA, 1990, NATURE, V348, P27, DOI 10.1038/348027a0; PARTRIDGE L, 1992, EVOLUTION, V46, P76, DOI 10.1111/j.1558-5646.1992.tb01986.x; Pearl JC., 2000, CAUSALITY; Peccei JS, 2001, EVOL ANTHROPOL, V10, P43, DOI 10.1002/evan.1013; Pelletier F, 2007, SCIENCE, V315, P1571, DOI 10.1126/science.1139024; Phelan JP, 2005, AGEING RES REV, V4, P339, DOI 10.1016/j.arr.2005.06.001; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; PURVIS A, 1995, J ZOOL, V237, P259, DOI 10.1111/j.1469-7998.1995.tb02762.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Roseman CC, 2010, AM J PHYS ANTHROPOL, V143, P1, DOI 10.1002/ajpa.21341; Roseman CC, 2009, EVOL BIOL, V36, P282, DOI 10.1007/s11692-009-9067-6; Rothman JM, 2008, AM J PRIMATOL, V70, P1191, DOI 10.1002/ajp.20611; Saether BE, 1996, OIKOS, V77, P217, DOI 10.2307/3546060; SCHAFFER WM, 1983, AM NAT, V121, P418, DOI 10.1086/284070; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; Shattuck MR, 2010, P NATL ACAD SCI USA, V107, P4635, DOI 10.1073/pnas.0911439107; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stearns SC, 2010, NAT REV GENET, V11, P611, DOI 10.1038/nrg2831; Storz JF, 2002, EVOLUTION, V56, P817; THOMPSON ME, 2007, CURR BIOL, V17, P1; Tuljapurkar S., 1990, POPULATION DYNAMICS, V85; Turke P., 1988, HUMAN REPROD BEHAV D, P173; Tutin Caroline E.G., 1994, P181; van Noordwijk MA, 2005, AM J PHYS ANTHROPOL, V127, P79, DOI 10.1002/ajpa.10426; VANSCHAIK CP, 1993, ANNU REV ECOL SYST, V24, P353, DOI 10.1146/annurev.es.24.110193.002033; Vitousek PM, 1997, SCIENCE, V277, P494, DOI 10.1126/science.277.5325.494; Walker R, 2006, AM J PHYS ANTHROPOL, V129, P577, DOI 10.1002/ajpa.20306; Wich SA, 2007, AM J PRIMATOL, V69, P641, DOI 10.1002/ajp.20386; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WOOD JW, 1994, DYNAMICS HUMAN REPRO; Wrangham R, 2010, EVOL ANTHROPOL, V19, P187, DOI 10.1002/evan.20275; WRANGHAM RW, 1980, BEHAVIOUR, V75, P262, DOI 10.1163/156853980X00447; Wright SJ, 1999, ECOLOGY, V80, P1632, DOI 10.1890/0012-9658(1999)080[1632:TENOSO]2.0.CO;2; Zimmermann Elke, 2007, P1163, DOI 10.1007/978-3-540-33761-4_38 133 41 42 0 80 CELL PRESS CAMBRIDGE 50 HAMPSHIRE ST, FLOOR 5, CAMBRIDGE, MA 02139 USA 0960-9822 1879-0445 CURR BIOL Curr. Biol. SEP 27 2011 21 18 R708 R717 10.1016/j.cub.2011.08.025 10 Biochemistry & Molecular Biology; Cell Biology Biochemistry & Molecular Biology; Cell Biology 827IY WOS:000295423400015 21959161 Bronze, Green Accepted 2018-11-12 J Sommer, RJ; Ogawa, A Sommer, Ralf J.; Ogawa, Akira Hormone Signaling and Phenotypic Plasticity in Nematode Development and Evolution CURRENT BIOLOGY English Review CONTROLLING DAUER FORMATION; ELEGANS LARVAL DEVELOPMENT; AGE-1 PI3 KINASE; CAENORHABDITIS-ELEGANS; C-ELEGANS; LIFE-SPAN; PRISTIONCHUS-PACIFICUS; TRANSCRIPTION FACTOR; REPRODUCTIVE DEVELOPMENT; ENVIRONMENTAL CUES Phenotypic plasticity refers to the ability of an organism to adopt different phenotypes depending on environmental conditions. In animals and plants, the progression of juvenile development and the formation of dormant stages are often associated with phenotypic plasticity, indicating the importance of phenotypic plasticity for life-history theory. Phenotypic plasticity has long been emphasized as a crucial principle in ecology and as facilitator of phenotypic evolution. In nematodes, several examples of phenotypic plasticity have been studied at the genetic and developmental level. In addition, the influence of different environmental factors has been investigated under laboratory conditions. These studies have provided detailed insight into the molecular basis of phenotypic plasticity and its ecological and evolutionary implications. Here, we review recent studies on the formation of dauer larvae in Caenorhabditis elegans, the evolution of nematode parasitism and the generation of a novel feeding trait in Pristionchus pacificus. These examples reveal a conserved and co-opted role of an endocrine signaling module involving the steroid hormone dafachronic acid. We will discuss how hormone signaling might facilitate life-history and morphological evolution. [Sommer, Ralf J.; Ogawa, Akira] Max Planck Inst Dev Biol, Dept Evolutionary Biol, D-72076 Tubingen, Germany Sommer, RJ (reprint author), Max Planck Inst Dev Biol, Dept Evolutionary Biol, Spemannstr 37, D-72076 Tubingen, Germany. ralf.sommer@tuebingen.mpg.de ALBERT PS, 1988, DEV BIOL, V126, P270, DOI 10.1016/0012-1606(88)90138-8; ALBERT PS, 1981, J COMP NEUROL, V198, P435, DOI 10.1002/cne.901980305; ANDERSON GL, 1978, CAN J ZOOL, V56, P1786, DOI 10.1139/z78-244; Angelo G, 2009, SCIENCE, V326, P954, DOI 10.1126/science.1178343; Antebi A, 2000, GENE DEV, V14, P1512; Antebi A, 1998, DEVELOPMENT, V125, P1191; BARGMANN CI, 1991, SCIENCE, V251, P1243, DOI 10.1126/science.2006412; Barriere A, 2005, CURR BIOL, V15, P1176, DOI 10.1016/j.cub.2005.06.022; Baugh LR, 2006, CURR BIOL, V16, P780, DOI 10.1016/j.cub.2006.03.021; Beldade P, 2002, NATURE, V416, P844, DOI 10.1038/416844a; Bento G, 2010, NATURE, V466, P494, DOI 10.1038/nature09164; Blaxter ML, 1998, NATURE, V392, P71, DOI 10.1038/32160; Butcher RA, 2008, P NATL ACAD SCI USA, V105, P14288, DOI 10.1073/pnas.0806676105; Butcher RA, 2007, NAT CHEM BIOL, V3, P420, DOI 10.1038/nchembio.2007.3; Butcher RA, 2009, P NATL ACAD SCI USA, V106, P1875, DOI 10.1073/pnas.0810338106; CASSADA RC, 1975, DEV BIOL, V46, P326, DOI 10.1016/0012-1606(75)90109-8; Dieterich C, 2009, TRENDS GENET, V25, P203, DOI 10.1016/j.tig.2009.03.006; DORMAN JB, 1995, GENETICS, V141, P1399; Dumas KJ, 2010, DEV BIOL, V340, P605, DOI 10.1016/j.ydbio.2010.02.022; ESTEVEZ M, 1993, NATURE, V365, P644, DOI 10.1038/365644a0; Floyd R, 2002, MOL ECOL, V11, P839, DOI 10.1046/j.1365-294X.2002.01485.x; FRIEDMAN DB, 1988, GENETICS, V118, P75; Fuchs G., 1915, ZOOL JB, V38, P109; GEORGI LL, 1990, CELL, V61, P635, DOI 10.1016/0092-8674(90)90475-T; Gerisch B, 2004, DEVELOPMENT, V131, P1765, DOI 10.1242/dev.01068; Gerisch B, 2001, DEV CELL, V1, P841, DOI 10.1016/S1534-5807(01)00085-5; GILBERT SF, 2009, ECOLOGICAL DEV BIOL; GOLDEN JW, 1982, SCIENCE, V218, P578, DOI 10.1126/science.6896933; GOLDEN JW, 1984, DEV BIOL, V102, P368, DOI 10.1016/0012-1606(84)90201-X; GOTTLIEB S, 1994, GENETICS, V137, P107; Hallem EA, 2011, CURR BIOL, V21, P377, DOI 10.1016/j.cub.2011.01.048; Herrmann M, 2007, ZOOL SCI, V24, P883, DOI 10.2108/zsj.24.883; Herrmann M, 2010, BIOL J LINN SOC, V100, P170, DOI 10.1111/j.1095-8312.2010.01410.x; Hertweck M, 2004, DEV CELL, V6, P577, DOI 10.1016/S1534-5807(04)00095-4; Hirschmann H., 1951, Zoologische Jahrbuecher (Systematik), V80, P132; Holt SJ, 2003, MECH AGEING DEV, V124, P779, DOI 10.1016/S0047-6374(03)00132-5; Hong RL, 2008, EVOL DEV, V10, P273, DOI 10.1111/j.1525-142X.2008.00236.x; Hong RL, 2006, CURR BIOL, V16, P2359, DOI 10.1016/j.cub.2006.10.031; Hu PJ, 2007, WORMBOOK; Inoue T, 2000, DEV BIOL, V217, P192, DOI 10.1006/dbio.1999.9545; Jeong PY, 2005, NATURE, V433, P541, DOI 10.1038/nature03201; JEZYK PF, 1967, COMP BIOCHEM PHYSIOL, V23, P691, DOI 10.1016/0010-406X(67)90334-9; Jia KL, 2002, DEVELOPMENT, V129, P221; Jones SJM, 2001, GENOME RES, V11, P1346, DOI 10.1101/gr.184401; KENYON C, 1993, NATURE, V366, P461, DOI 10.1038/366461a0; Kim K, 2009, SCIENCE, V326, P994, DOI 10.1126/science.1176331; Kimura KD, 1997, SCIENCE, V277, P942, DOI 10.1126/science.277.5328.942; Kiontke K, 2010, CURR BIOL, V20, pR710, DOI 10.1016/j.cub.2010.07.009; KLASS M, 1976, NATURE, V260, P523, DOI 10.1038/260523a0; Kops GJPL, 1999, NATURE, V398, P630; LAMBSHEAD PJD, 1993, OCEANIS S D, V19, P5; Lee D.L., 2002, BIOL NEMATODES; Lee RYN, 2001, CURR BIOL, V11, P1950, DOI 10.1016/S0960-9822(01)00595-4; Li J, 2004, DEVELOPMENT, V131, P5741, DOI [10.1242/dev.01408, 10.1242/dev..01408]; Li WQ, 2003, GENE DEV, V17, P844, DOI 10.1101/gad.1066503; Lin K, 2001, NAT GENET, V28, P139, DOI 10.1038/88850; Mak HY, 2004, DEVELOPMENT, V131, P1777, DOI 10.1242/dev.01069; Martin R, 2008, ORG BIOMOL CHEM, V6, P4293, DOI 10.1039/b815064h; Matyash V, 2004, PLOS BIOL, V2, P1561, DOI 10.1371/journal.pbio.0020280; Maupas E., 1899, ARCH ZOOL EXP GEN, V3, P563; Mayer MG, 2011, P ROY SOC B-BIOL SCI, V278, P2784, DOI 10.1098/rspb.2010.2760; Moczek AP, 2004, AM NAT, V163, P184, DOI 10.1086/381741; Morris JZ, 1996, NATURE, V382, P536, DOI 10.1038/382536a0; Motola DL, 2006, CELL, V124, P1209, DOI 10.1016/j.cell.2006.01.037; Nemetschke L, 2010, CURR BIOL, V20, P1687, DOI 10.1016/j.cub.2010.08.014; Nijhout H. F., 1994, INSECT HORMONES; Ogawa A, 2009, CURR BIOL, V19, P67, DOI 10.1016/j.cub.2008.11.063; Ogawa A, 2011, DEVELOPMENT, V138, P1281, DOI 10.1242/dev.058909; Ogg S, 1997, NATURE, V389, P994, DOI 10.1038/40194; Ogg S, 1998, MOL CELL, V2, P887, DOI 10.1016/S1097-2765(00)80303-2; ORIORDAN VB, 1990, COMP BIOCHEM PHYS B, V95, P125, DOI 10.1016/0305-0491(90)90258-U; OSCHE G, 1956, ZOOLOGISCHER ANZEI S, V19, P391; Paradis S, 1999, GENE DEV, V13, P1438, DOI 10.1101/gad.13.11.1438; Paradis S, 1998, GENE DEV, V12, P2488, DOI 10.1101/gad.12.16.2488; Patel DS, 2008, DEVELOPMENT, V135, P2239, DOI 10.1242/dev.016972; Patterson GI, 1997, GENE DEV, V11, P2679, DOI 10.1101/gad.11.20.2679; POINAR GO, 1983, NATURAL HIST NEMATOD; Poulin R, 2007, EVOLUTIONARY ECOLOGY; Ren PF, 1996, SCIENCE, V274, P1389, DOI 10.1126/science.274.5291.1389; RIDDLE DL, 1981, NATURE, V290, P668, DOI 10.1038/290668a0; RIDDLE DL, 1997, C ELEGANS, V2; Rottiers V, 2006, DEV CELL, V10, P473, DOI 10.1016/j.devcel.2006.02.008; Schlichting C. D., 1998, PHENOTYPIC EVOLUTION; Sharma KK, 2009, MOL ENDOCRINOL, V23, P640, DOI 10.1210/me.2008-0415; Sommer RJ, 2009, NAT REV GENET, V10, P416, DOI 10.1038/nrg2567; Srinivasan J, 2008, NATURE, V454, P1115, DOI 10.1038/nature07168; STANCH TA, 1995, GENETICS, V139, P171; Streit A, 2008, PARASITOLOGY, V135, P285, DOI 10.1017/S003118200700399X; Sudhaus Walter, 2010, Palaeodiversity, P117; THOMAS JH, 1993, GENETICS, V134, P1105; Tian H, 2008, CURR BIOL, V18, P142, DOI 10.1016/j.cub.2007.12.048; von Lieven AF, 2000, J ZOOL SYST EVOL RES, V38, P37, DOI 10.1046/j.1439-0469.2000.381125.x; VOWELS JJ, 1992, GENETICS, V130, P105; WADSWORTH WG, 1989, DEV BIOL, V132, P167, DOI 10.1016/0012-1606(89)90214-5; Wang J, 2003, DEVELOPMENT, V130, P1621, DOI 10.1242/dev.00363; Wang Z, 2009, P NATL ACAD SCI USA, V106, P9138, DOI 10.1073/pnas.0904064106; Weller AM, 2010, J PARASITOL, V96, P525, DOI 10.1645/GE-2319.1; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Whitman DW, 2009, PHENOTYPIC PLASTICIT; Wolkow CA, 2002, J BIOL CHEM, V277, P49591, DOI 10.1074/jbc.M207866200; 2005, WORMBOOK 101 44 45 1 41 CELL PRESS CAMBRIDGE 50 HAMPSHIRE ST, FLOOR 5, CAMBRIDGE, MA 02139 USA 0960-9822 1879-0445 CURR BIOL Curr. Biol. SEP 27 2011 21 18 R758 R766 10.1016/j.cub.2011.06.034 9 Biochemistry & Molecular Biology; Cell Biology Biochemistry & Molecular Biology; Cell Biology 827IY WOS:000295423400020 21959166 Bronze 2018-11-12 J Charnov, EL; Zuo, WY Charnov, Eric L.; Zuo, Wenyun Growth, mortality, and life-history scaling across species EVOLUTIONARY ECOLOGY RESEARCH English Article allometry; body size; fish; maturity; optimal life history EVOLUTION; TEMPERATURE; FISHES; SIZE Hypothesis: Allometric scaling of mortality versus adult body size across species is predicted by evolutionary life-history theory to be present (and precise) only if all the species in the data set share the same value for the 'height' parameter in their body-size growth curves. Results: This basic prediction is tested and supported in a large fish data set, with the various species spanning the entire range of marine environments, and having about a 12 x range in growth curve height. [Charnov, Eric L.; Zuo, Wenyun] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA Charnov, EL (reprint author), Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. rlc@unm.edu Charnov EL, 2004, INTEGR COMP BIOL, V44, P494, DOI 10.1093/icb/44.6.494; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; Charnov EL, 2001, P NATL ACAD SCI USA, V98, P9460, DOI 10.1073/pnas.161294498; Charnov EL, 2008, ENVIRON BIOL FISH, V83, P185, DOI 10.1007/s10641-007-9315-5; Charnov EL, 2011, EVOL ECOL RES, V13, P553; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; Charnov Eric L., 1993, P1; Cury P, 2000, ECOL RES, V15, P101, DOI 10.1046/j.1440-1703.2000.00321.x; Griffiths D, 2007, CAN J FISH AQUAT SCI, V64, P249, DOI 10.1139/F07-002 9 1 1 1 22 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 EVOL ECOL RES Evol. Ecol. Res. SEP 2011 13 6 661 664 4 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 920XG WOS:000302441700008 2018-11-12 J Glenn, AL; Kurzban, R; Raine, A Glenn, Andrea L.; Kurzban, Robert; Raine, Adrian Evolutionary theory and psychopathy AGGRESSION AND VIOLENT BEHAVIOR English Article Psychopathy; Adaptation; Pathology; Genetic; Mutation LIFE-HISTORY THEORY; TAXOMETRIC ANALYSIS; PERSONALITY-TRAITS; MENTAL-DISORDERS; GENETIC MODELS; DARK TRIAD; BEHAVIOR; EMOTION; INTELLIGENCE; MODULATION Psychopathy represents a unique set of personality traits including deceitfulness, lack of empathy and guilt, impulsiveness, and antisocial behavior. Most often in the literature, psychopathy is described as pathology a disorder that has been linked to a variety of biological deficits and environmental risk factors. However, from an evolutionary perspective, psychopathy, while it could be a disorder, has been construed in the context of an adaptive strategy. In this article we will examine the strengths and weaknesses of two models suggesting that psychopathy is an adaptive strategy, and one model suggesting that it is a form of pathology resulting from accumulated mutations. Overall, we do not find that there is strong enough evidence to draw firm conclusions about one theory over another, but we highlight some areas where future research may be able to shed light on the issue. (C) 2011 Elsevier Ltd. All rights reserved. [Glenn, Andrea L.; Kurzban, Robert; Raine, Adrian] Univ Penn, Dept Psychol, Philadelphia, PA 19104 USA; [Raine, Adrian] Univ Penn, Dept Criminol, Philadelphia, PA 19104 USA; [Raine, Adrian] Univ Penn, Dept Psychiat, Philadelphia, PA 19104 USA Glenn, AL (reprint author), 3809 Walnut St, Philadelphia, PA 19104 USA. aglenn@sas.upenn.edu Anderson S. W., 1999, NAT NEUROSCI, V2, P1031; Arnett PA, 1997, CLIN PSYCHOL REV, V17, P903, DOI 10.1016/S0272-7358(97)00045-7; Babiak P., 2006, SNAKES SUITS PSYCHOP; Bagot RC, 2009, NEUROBIOL LEARN MEM, V92, P292, DOI 10.1016/j.nlm.2009.03.004; Barr KN, 2004, EVOLUTIONARY PSYCHOLOGY, PUBLIC POLICY AND PERSONAL DECISIONS, P293; BELMORE MF, 1994, J INTERPERS VIOLENCE, V9, P339, DOI 10.1177/088626094009003004; Benning SD, 2005, PSYCHOPHYSIOLOGY, V42, P753, DOI 10.1111/j.1469-8986.2005.00353.x; Bernstein DP, 1998, ADDICT BEHAV, V23, P855, DOI 10.1016/S0306-4603(98)00072-0; Blair RJR, 2007, ANN NY ACAD SCI, V1121, P461, DOI 10.1196/annals.1401.017; Blair RJR, 2005, DEV PSYCHOPATHOL, V17, P865, DOI 10.1017/S0954579405050418; Blair RJR, 2001, J ABNORM CHILD PSYCH, V29, P491, DOI 10.1023/A:1012225108281; BLAIR RJR, 2005, PSYCHOPATH EMOTION B; Blonigen DM, 2003, PERS INDIV DIFFER, V35, P179, DOI 10.1016/S0191-8869(02)00184-8; Bouchard TJ, 2001, BEHAV GENET, V31, P243; Buss DM, 2009, PERSPECT PSYCHOL SCI, V4, P359, DOI 10.1111/j.1745-6924.2009.01138.x; Cameron NM, 2008, J NEUROENDOCRINOL, V20, P795, DOI 10.1111/j.1365-2826.2008.01725.x; Chen CS, 1999, EVOL HUM BEHAV, V20, P309, DOI 10.1016/S1090-5138(99)00015-X; Cima M, 2008, BIOL PSYCHOL, V78, P75, DOI 10.1016/j.biopsycho.2007.12.011; Colledge E, 2001, PERS INDIV DIFFER, V30, P1175, DOI 10.1016/S0191-8869(00)00101-X; Cooke DJ, 1999, J ABNORM PSYCHOL, V108, P58, DOI 10.1037/0021-843X.108.1.58; Cornell DG, 1996, J CONSULT CLIN PSYCH, V64, P783, DOI 10.1037/0022-006X.64.4.783; Cosmides L., 2000, METAREPRESENTATIONS, P53; Dahle KP, 2006, INT J LAW PSYCHIAT, V29, P431, DOI 10.1016/j.ijlp.2006.03.001; Damasio AR, 2000, ARCH GEN PSYCHIAT, V57, P128, DOI 10.1001/archpsyc.57.2.128; DELGIUDICE M, NEUROSCIENC IN PRESS; Ebstein RP, 2006, MOL PSYCHIATR, V11, P427, DOI 10.1038/sj.mp.4001814; Edens JF, 2006, J ABNORM PSYCHOL, V115, P131, DOI 10.1037/0021-843X.115.1.131; Eisenberg DTA, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-173; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P7, DOI 10.1017/S0954579410000611; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Flor H, 2002, PSYCHOPHYSIOLOGY, V39, P505, DOI 10.1017/S0048577202394046; Gao Y, 2010, PSYCHOL MED, V40, P1007, DOI 10.1017/S0033291709991279; Gladden P., 2009, J EVOLUTIONARY PSYCH, V7, P167, DOI DOI 10.1556/JEP.7.2009.2.5; Gladden PR, 2009, PERS INDIV DIFFER, V46, P270, DOI 10.1016/j.paid.2008.10.010; Glenn AL, 2007, J ABNORM PSYCHOL, V116, P508, DOI 10.1037/0021-843X.116.3.508; Glenn AL, 2009, J PERS DISORD, V23, P384, DOI 10.1521/pedi.2009.23.4.384; Grafman J, 1996, NEUROLOGY, V46, P1231, DOI 10.1212/WNL.46.5.1231; Guay JP, 2007, J ABNORM PSYCHOL, V116, P701, DOI 10.1037/0021-843X.116.4.701; Hagen EH, 1999, EVOL HUM BEHAV, V20, P325, DOI 10.1016/S1090-5138(99)00016-1; Hanley C., 1973, INT J CRIMINOLOGY PE, V1, P69; Hare RD, 2003, HARE PSYCHOPATHY CHE; Haukka J, 2003, AM J PSYCHIAT, V160, P460, DOI 10.1176/appi.ajp.160.3.460; Ishikawa SS, 2001, J ABNORM PSYCHOL, V110, P423, DOI 10.1037//0021-843X.110.3.423; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2010, PERS INDIV DIFFER, V48, P373, DOI 10.1016/j.paid.2009.11.003; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Justus AN, 2007, PERS INDIV DIFFER, V43, P2057, DOI 10.1016/j.paid.2007.06.020; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; Keller MC, 2006, BEHAV BRAIN SCI, V29, P429; Keller MC, 2006, BEHAV BRAIN SCI, V29, P385, DOI 10.1017/S0140525X06009095; Ketelaar T, 2003, COGNITION EMOTION, V17, P429, DOI 10.1080/02699930143000662; Kosson DS, 2002, EMOTION, V2, P398, DOI 10.1037//1528-3542.2.4.398; Krischer MK, 2008, INT J LAW PSYCHIAT, V31, P253, DOI 10.1016/j.ijlp.2008.04.008; Lang S, 2002, ACTA PSYCHIAT SCAND, V106, P93, DOI 10.1034/j.1600-0447.106.s412.20.x; Larsson H, 2006, J ABNORM PSYCHOL, V115, P221, DOI 10.1037/0021-843X.115.2.221; Loney BR, 1998, J PSYCHOPATHOL BEHAV, V20, P231, DOI 10.1023/A:1023015318156; Loney BR, 2007, AGGRESSIVE BEHAV, V33, P242, DOI 10.1002/ab.20184; Lorber MF, 2004, PSYCHOL BULL, V130, P531, DOI 10.1037/0033-2909.130.4.531; Lykken D.T., 1995, ANTISOCIAL PERSONALI; MacCabe JH, 2009, PSYCHOL MED, V39, P1667, DOI 10.1017/S0033291709005431; Marshall LA, 1999, J PERS DISORD, V13, P211, DOI 10.1521/pedi.1999.13.3.211; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; MILGRAM S, 1963, J ABNORM PSYCHOL, V67, P371, DOI 10.1037/h0040525; Murphy D., 2000, EVOLUTION HUMAN MIND, P62; NESSE R, 1994, WHY WE GET SICK NEW; O'Leary MM, 2007, PSYCHONEUROENDOCRINO, V32, P183, DOI 10.1016/j.psyneuen.2006.12.004; ONEILL ML, 2003, INT J FORENSIC MENT, V2, P35; PATRICK CJ, 1993, J ABNORM PSYCHOL, V102, P82, DOI 10.1037/0021-843X.102.1.82; PATRICK CJ, 1994, PSYCHOPHYSIOLOGY, V31, P319, DOI 10.1111/j.1469-8986.1994.tb02440.x; Raine A, 2004, BIOL PSYCHIAT, V55, P185, DOI 10.1016/S0006-3223(03)00727-3; Raine A, 1998, NEUROPSY NEUROPSY BE, V11, P1; Raine A., 1993, PSYCHOPATHOLOGY CRIM; Raine A, 2010, BRIT J PSYCHIAT, V197, P186, DOI 10.1192/bjp.bp.110.078485; ROZIN P, 1994, J PERS SOC PSYCHOL, V66, P870, DOI 10.1037/0022-3514.76.4.574; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; RYAN MJ, 1989, BEHAV ECOL SOCIOBIOL, V24, P341, DOI 10.1007/BF00293262; Sadeh N, 2010, J ABNORM PSYCHOL, V119, P604, DOI 10.1037/a0019709; Salekin RT, 2004, J CLIN CHILD ADOLESC, V33, P731, DOI 10.1207/s15374424jccp3304_8; Stephens DW, 1986, FORAGING THEORY; Taylor J, 2003, J ABNORM CHILD PSYCH, V31, P633, DOI 10.1023/A:1026262207449; TOOBY J, 1990, J PERS, V58, P17, DOI 10.1111/j.1467-6494.1990.tb00907.x; Vitale JE, 2005, AGGRESSIVE BEHAV, V31, P99, DOI 10.1002/ab.20050; VRANA SR, 1988, J ABNORM PSYCHOL, V97, P487, DOI 10.1037/0021-843X.97.4.487; Walters GD, 2008, J PERS ASSESS, V90, P491, DOI 10.1080/00223890802248828; Weeden J, 2008, EVOL HUM BEHAV, V29, P327, DOI 10.1016/j.evolhumbehav.2008.03.004; WEILER BL, 1996, CRIMINAL BEHAV MENTA, V0006; Wernke MR, 2008, AGGRESS VIOLENT BEH, V13, P229, DOI 10.1016/j.avb.2008.04.004; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Wheatley T, 2005, PSYCHOL SCI, V16, P780, DOI 10.1111/j.1467-9280.2005.01614.x; Widom CS, 1985, AGGRESSION DANGEROUS, P57; YANG Y, 2005, BIOL PSYCHIAT, V15, P1103 91 52 52 0 45 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 1359-1789 AGGRESS VIOLENT BEH Aggress. Violent Behav. SEP-OCT 2011 16 5 SI 371 380 10.1016/j.avb.2011.03.009 10 Criminology & Penology; Psychology, Multidisciplinary Criminology & Penology; Psychology 815ML WOS:000294529600002 2018-11-12 J Fujita, M; Shell-Duncan, B; Ndemwa, P; Brindle, E; Lo, YJ; Kombe, Y; O'Connor, K Fujita, Masako; Shell-Duncan, Bettina; Ndemwa, Philip; Brindle, Eleanor; Lo, Yun-Jia; Kombe, Yeri; O'Connor, Kathleen Vitamin A Dynamics in Breastmilk and Liver Stores: A Life History Perspective AMERICAN JOURNAL OF HUMAN BIOLOGY English Article RELATIVE-DOSE-RESPONSE; RETINOL-BINDING-PROTEIN; RENDILLE PASTORALISTS; NORTHERN KENYA; SERUM RETINOL; MATERNAL-DIETARY; LACTATING WOMEN; PLASMA RETINOL; BETA-CAROTENE; DEFICIENCY Objectives: Newborns are dependent on breastmilk vitamin A for building hepatic stores of vitamin A that will become critical for survival after weaning. It has been documented that vitamin A concentrations in breastmilk decline across the first year postpartum in both well-nourished and malnourished populations. The reason for this decline has been assumed to be a sign of concurrently depleting maternal hepatic stores. This study investigates this assumption to clarify why the decline occurs, drawing on life history theory. Methods: A cross sectional survey was conducted among lactating mothers in Kenya in 2006. Data were used to examine (1) the relationship between liver vitamin A and time, (2) if the relationship between milk and liver vitamin A varies by time, and (3) by maternal parity. Results: The relationship between liver vitamin A and time fits the quadratic pattern with marginal significance (P = 0.071, n = 192); the liver vitamin A declined during early postpartum then recovered in late postpartum time, controlling covariates. The milk-liver vitamin A relationship varied by postpartum time periods (P = 0.03) and by maternal parity (P = 0.005). Mothers in earlier postpartum or higher parity had a stronger positive relationship between milk and liver vitamin A than mothers in later postpartum or lower parity. Conclusions: Our observations are consistent with life history tradeoffs and negate the assumption that maternal hepatic and milk vitamin A decline together. Rather, maternal liver vitamin A has a dynamic relationship with milk vitamin A, particularly depending on postpartum time and maternal parity. Am. J. Hum. Biol. 23:664-673, 2011. (C) 2011 Wiley-Liss, Inc. [Fujita, Masako] Michigan State Univ, Dept Anthropol, E Lansing, MI 48824 USA; [Shell-Duncan, Bettina; O'Connor, Kathleen] Univ Washington, Dept Anthropol, Seattle, WA 98195 USA; [Shell-Duncan, Bettina; Brindle, Eleanor; O'Connor, Kathleen] Univ Washington, Ctr Studies Demog & Ecol, Seattle, WA 98195 USA; [Ndemwa, Philip; Kombe, Yeri] Kenya Govt Med Res Ctr, Ctr Publ Hlth Res, Nairobi, Kenya; [Lo, Yun-Jia] Michigan State Univ, Dept Counseling Educ Psychol & Special Educ, E Lansing, MI 48824 USA; [Lo, Yun-Jia] Michigan State Univ, Ctr Stat Training & Consulting, E Lansing, MI 48824 USA Fujita, M (reprint author), Michigan State Univ, Dept Anthropol, 328 Baker Hall, E Lansing, MI 48824 USA. masakof@msu.edu Brindle, Eleanor/0000-0002-4272-0909 NSF Dissertation Improvement [0622358]; Wenner-Gren Foundation Research [7460]; Micronutrient Initiative (Ottawa) Contract grant sponsor: NSF Dissertation Improvement; Contract grant number: 0622358; Contract grant sponsor: Wenner-Gren Foundation Research; Contract grant number: 7460; Contract grant sponsor: Micronutrient Initiative (Ottawa). Ahmed F, 2003, PUBLIC HEALTH NUTR, V6, P447, DOI 10.1079/PHN2002454; BIERI JG, 1979, AM J CLIN NUTR, V32, P2143; Black R, 2003, B WORLD HEALTH ORGAN, V81, P79; BOEDIMAN D, 1979, J TROP PED ENV CH H, V25, P107, DOI 10.1093/tropej/25.4.107; Brindle E, 2010, J IMMUNOL METHODS, V362, P112, DOI 10.1016/j.jim.2010.09.014; Ellison P., 1991, APPLICATIONS BIOL AN, P14; Ellison PT, 2003, AM J HUM BIOL, V15, P342, DOI 10.1002/ajhb.10152; Erhardt, 2003, SIGHT LIFE VITAMIN A; Ettyang GA, 2003, ANN NUTR METAB, V47, P276, DOI 10.1159/000072400; Fawzi W, 2002, JAIDS-J ACQ IMM DEF, V31, P331, DOI 10.1097/00126334-200211010-00010; FRATKIN E, 1991, SURVIVING DROUGHT DE; Fratkin EM, 1999, CURR ANTHROPOL, V40, P729, DOI 10.1086/300093; Frisancho A. R, 1990, ANTHROPOMETRIC STAND, P1; Fujita M, 2008, AM J HUM BIOL, V20, P219; Fujita M, 2004, AM J PHYS ANTHROPOL, V123, P277, DOI 10.1002/ajpa.10310; Fujita M., 2006, J DEV ALTERNATIVE AR, V25, P88; FUJITA M, 2009, MICR FOR BEIJ CHIN M; Fujita M., 2008, THESIS U WASHINGTON; FUJITA M, 2009, AM J PHYS ANTHROPOL, V138, P130; FUJITA M, 2007, ANN M CAN ASS PHYS A; Fujita M, 2005, STUD HUM ECOL ADAPT, V1, P209; Fujita M, 2009, AM J CLIN NUTR, V90, P217, DOI 10.3945/ajcn.2009.27569; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GEBREMEDHIN M, 1976, AM J CLIN NUTR, V29, P441; GIBSON RS, 1990, PRINCIPLES NUTR ASSE, P37; Gross R, 1998, EUR J CLIN NUTR, V52, P884, DOI 10.1038/sj.ejcn.1600660; Haskell MJ, 1999, J MAMMARY GLAND BIOL, V4, P243, DOI 10.1023/A:1018745812512; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; JELLIFFE DB, 1978, AM J CLIN NUTR, V31, P492; KALTON G, 1983, INTRO SURVEY SAMPLIN, P5; KATZ J, 1995, J NUTR, V125, P2122; KELSEY JL, 1986, MONOGRAPHS EPIDEMIOL, V10; Lombardi J., 1998, COMP VERTEBRATE REPR, P353; LUCAS A, 1978, BRIT MED J, V1, P1018, DOI 10.1136/bmj.1.6119.1018; MCLAREN DS, 2001, SIGHT LIFE MANUAL VI; Nathan MA, 1996, SOC SCI MED, V43, P503, DOI 10.1016/0277-9536(95)00428-9; Newman V., 1993, VITAMIN A BREASTFEED; Panpanich R, 2002, ANN TROP PAEDIATR, V22, P321, DOI 10.1179/027249302125001976; Rice AL, 1999, J NUTR, V129, P356; Rice AL, 2000, AM J CLIN NUTR, V71, P799; Rice AL, 2000, ADV EXP MED BIOL, V478, P375; Rosales FJ, 1996, J LIPID RES, V37, P962; ROSE MR, 1983, AM ZOOL, V25, P15; Roth E. A., 1994, AM ANTHROPOL, V95, P597; Roth EA, 1999, HUM ECOL, V27, P517, DOI 10.1023/A:1018787826307; Roy SK, 1997, EUR J CLIN NUTR, V51, P302, DOI 10.1038/sj.ejcn.1600398; Shell-Duncan B, 2000, AM J PHYS ANTHROPOL, V113, P183, DOI 10.1002/1096-8644(200010)113:2<183::AID-AJPA4>3.0.CO;2-6; Shell-Duncan B, 2004, SOC SCI MED, V58, P2485, DOI 10.1016/j.socscimed.2003.09.016; SIBLY R, 1987, J THEOR BIOL, V125, P177, DOI 10.1016/S0022-5193(87)80039-5; Sobania N.W., 1988, ECOLOGY SURVIVAL CAS, P219; SOMMER A, 1982, ARCH OPHTHALMOL-CHIC, V100, P399; SOMMER A, 1996, VITAMIN A DEFICIENCY; StataCorp LP, 2004, STATA STAT SOFTW VER; Stearns S. C., 1992, EVOLUTION LIFE HIST; STOLTZFUS FTJ, 1993, AM J CLIN NUTR, V58, P167; Stoltzfus RJ, 1995, B WORLD HEALTH ORGAN, V73, P703; Stoltzfus RJ, 2002, ADV EXP MED BIOL, V503, P39; Tanumihardjo SA, 2005, AM J CLIN NUTR, V82, P1135; Thurnham DI, 2003, LANCET, V362, P2052, DOI 10.1016/S0140-6736(03)15099-4; Underwood B. A., 1994, AM J CLIN NUTR S, V59, P517; *UNICEF, 2004, VIT MIN DEF REP GLOB; VALLEGGIA CR, 2004, J BIOSOC SCI, V36, P573; Wang C D, 1999, J Perinatol, V19, P343, DOI 10.1038/sj.jp.7200204; WHO, 1998, SAF VIT A DOS PREGN; WHO, 2004, WORLD HLTH REP 2003; *WHO UNICEF IVACG, 1988, VIT A SUPPL GUID THE; WILLIAMS CD, 1983, ARCH DIS CHILD, V58, P550, DOI 10.1136/adc.58.7.550; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; World Health Organization, 1996, IND ASS VIT A DEF TH 69 11 12 0 7 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1042-0533 AM J HUM BIOL Am. J. Hum. Biol. SEP-OCT 2011 23 5 664 673 10.1002/ajhb.21195 10 Anthropology; Biology Anthropology; Life Sciences & Biomedicine - Other Topics 813TH WOS:000294392600012 21695742 Green Accepted 2018-11-12 J Eraly, D; Hendrickx, F; Backeljau, T; Bervoets, L; Lens, L Eraly, Debbie; Hendrickx, Frederik; Backeljau, Thierry; Bervoets, Lieven; Lens, Luc Direct and indirect effects of metal stress on physiology and life history variation in field populations of a lycosid spider ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY English Article Pardosa saltans; Metal; Metallothionein; Life history; Ecological effects; Field study CONTAMINATED GRASSLAND ECOSYSTEM; METALLOTHIONEIN-LIKE PROTEINS; ORCHESELLA-CINCTA COLLEMBOLA; INDUSTRIALLY POLLUTED AREAS; ISOPOD PORCELLIO SCABER; HEAVY-METALS; WOLF-SPIDER; TERRESTRIAL INVERTEBRATES; PIRATA-PIRATICUS; CADMIUM ACCUMULATION 1. Under stress, life history theory predicts reduced growth rates and adult sizes, reduced reproductive allocation, production of larger offspring and postponed reproduction. Both direct and indirect effects of metals can explain these trends, mainly linked to energetic constraints. Metallothionein-like proteins (MTLP's) are believed to be an important defense mechanism against the adverse effects of metals and other stressors. 2. We tested these predictions comparing six field populations of the wolf spider Pardosa saltans, three of which were on sites that are historically polluted with heavy metals. 3. As expected for life histories evolving under energetic constraints, adult size and condition correlated negatively and egg mass positively with Cd concentrations for a subset of four populations. In the population that showed the highest cadmium and zinc body burdens, reproductive output and allocation were lowest and reproduction was postponed. 4. Contrary to our expectation, for all six study populations MTLP concentrations did not increase in exposed populations, indicating that this defense mechanism cannot explain the observed variation in life histories. 5. We conclude that indirect and synergistic effects of metal pollution may be more important than physiological defense mechanisms in shaping life history traits in field populations. (C) 2011 Elsevier Inc. All rights reserved. [Eraly, Debbie; Hendrickx, Frederik; Lens, Luc] Univ Ghent, Dept Biol, Terr Ecol Unit, B-9000 Ghent, Belgium; [Hendrickx, Frederik; Backeljau, Thierry] Royal Belgian Inst Nat Sci, B-1000 Brussels, Belgium; [Backeljau, Thierry; Bervoets, Lieven] Univ Antwerp, Dept Biol, Ecophysiol Biochem & Toxicol Grp, B-2020 Antwerp, Belgium Eraly, D (reprint author), Univ Ghent, Dept Biol, Terr Ecol Unit, KL Ledeganckstr 35, B-9000 Ghent, Belgium. debbieraly@gmail.com; frederik.hendrickx@naturalsciences.be; Thierry.backeljau@naturalsciences.be; lieven.bervoets@ua.ac.be; luc.lens@ugent.be Hendrickx, Frederik/F-3149-2013; Bervoets, Lieven/E-5012-2015 Research Foundation Flanders [G.0202.06] We are indebted to K. Franck for help with experiments, S. Joosen for MT analysis and V. Mubiana for metal analysis. M. Van de Acker provided constructive comments which substantially improved the quality of this manuscript. This study was funded through research grant G.0202.06 of Research Foundation Flanders to LL, FH, J.-P. Maelfait and T. Backeljau. The funding source was not involved in the conception of this study or writing of the article. DE is a research assistant of FWO Flanders. Aisenberg A, 2009, ETHOLOGY, V115, P1127, DOI 10.1111/j.1439-0310.2009.01701.x; ALDERWEIRT M, 1990, STUDIEDOCUMENTEN KBI, V61; Amiard JC, 2006, AQUAT TOXICOL, V76, P160, DOI 10.1016/j.aquatox.2005.08.015; Bahrndorff S, 2006, ENVIRON POLLUT, V139, P550, DOI 10.1016/j.envpol.2005.05.024; BENGTSSON G, 1992, OIKOS, V63, P289, DOI 10.2307/3545390; BENGTSSON G, 1984, AMBIO, V13, P29; Bertin G, 2006, BIOCHIMIE, V88, P1549, DOI 10.1016/j.biochi.2006.10.001; Bizoux JP, 2004, BELG J BOT, V137, P91; BLUST R, 1988, J ANAL ATOM SPECTROM, V3, P387, DOI 10.1039/ja9880300387; Brandon R, 1991, ADAPTATION ENV; BREYMEYER A, 1969, Proceedings of the National Symposium on Radioecology, P715; BROWN BE, 1982, BIOL REV, V57, P621, DOI 10.1111/j.1469-185X.1982.tb00375.x; CALOW P, 1991, COMP BIOCHEM PHYS C, V100, P3, DOI 10.1016/0742-8413(91)90110-F; Clements WH, 2009, ENVIRON TOXICOL CHEM, V28, P1789, DOI 10.1897/09-140.1; COLVIN J, 1993, PHYSIOL ENTOMOL, V18, P109, DOI 10.1111/j.1365-3032.1993.tb00456.x; COUGHTREY PJ, 1979, OECOLOGIA, V39, P51, DOI 10.1007/BF00345996; Creamer RE, 2008, SOIL USE MANAGE, V24, P37, DOI 10.1111/j.1475-2743.2007.00131.x; Dabrio M, 2002, J INORG BIOCHEM, V88, P123, DOI 10.1016/S0162-0134(01)00374-9; Dallinger R, 1996, COMP BIOCHEM PHYS C, V113, P125, DOI 10.1016/0742-8413(95)02078-0; DALLINGER R, 1992, OECOLOGIA, V89, P32, DOI 10.1007/BF00319012; DALLINGER R, 1993, ECOTOXICOLOGY METALS; Danielson-Francois A, 2002, J ARACHNOL, V30, P20, DOI 10.1636/0161-8202(2002)030[0020:BCAMCI]2.0.CO;2; Das P, 1997, ENVIRON POLLUT, V98, P29, DOI 10.1016/S0269-7491(97)00110-3; De Bakker D, 2000, EKOL BRATISLAVA, V19, P45; Dhuyvetter H, 2007, EVOLUTION, V61, P184, DOI 10.1111/j.1558-5646.2007.00015.x; DONKER MH, 1993, OECOLOGIA, V96, P316, DOI 10.1007/BF00317500; DONKER MH, 1993, SETAC SP P, P383; Du Laing G, 2002, SCI TOTAL ENVIRON, V289, P71, DOI 10.1016/S0048-9697(01)01025-7; DUVIGNEAUD J, 1987, Naturalistes Belges, V68, P33; DUVIGNEAUD J, 1979, B COMMISSION ROYALE, V8, P217; EDGAR WD, 1971, J ANIM ECOL, V40, P303, DOI 10.2307/3248; Eraly D, 2010, ENVIRON POLLUT, V158, P2124, DOI 10.1016/j.envpol.2010.02.026; Eraly D, 2009, BEHAV ECOL, V20, P856, DOI 10.1093/beheco/arp072; FOELIX RF, 1996, BIOL SPIDERS; Forbes VE, 2006, ENVIRON TOXICOL CHEM, V25, P272, DOI 10.1897/05-257R.1; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Fox GA, 2003, EVOL ECOL RES, V5, P1; Graitson Eric, 2005, Notes Fauniques de Gembloux, V57, P49; HAGSTRUM DW, 1971, ANN ENTOMOL SOC AM, V64, P757, DOI 10.1093/aesa/64.4.757; Heikens A, 2001, ENVIRON POLLUT, V113, P385, DOI 10.1016/S0269-7491(00)00179-2; Hendrickx F, 2003, J ARACHNOL, V31, P331, DOI 10.1636/m01-98; Hendrickx F, 2004, ENVIRON POLLUT, V127, P335, DOI 10.1016/j.envpol.2003.09.001; Hendrickx F, 2003, OECOLOGIA, V134, P189, DOI 10.1007/s00442-002-1031-4; Hendrickx F, 2003, ECOTOX ENVIRON SAFE, V55, P287, DOI 10.1016/S0147-6513(02)00129-X; Hendrickx F, 2001, BELG J ZOOL, V131, P79; Hensbergen PJ, 2000, COMP BIOCHEM PHYS C, V125, P17, DOI 10.1016/S0742-8413(99)00087-0; Hollis L, 2001, ARCH ENVIRON CON TOX, V41, P468, DOI 10.1007/s002440010273; Hopkin S. P., 1993, HDB ECOTOXICOLOGY, P397; Hopkin S.P., 1989, ECOPHYSIOLOGY METALS; HOPKIN SP, 1985, B ENVIRON CONTAM TOX, V34, P183, DOI 10.1007/BF01609722; HUNTER BA, 1987, J APPL ECOL, V24, P573, DOI 10.2307/2403894; HUNTER BA, 1987, J APPL ECOL, V24, P587, DOI 10.2307/2403895; JANSSEN MPM, 1991, ARCH ENVIRON CON TOX, V20, P305, DOI 10.1007/BF01064395; Janssens TKS, 2009, INSECT SCI, V16, P3, DOI 10.1111/j.1744-7917.2009.00249.x; Jones DT, 1998, ENVIRON POLLUT, V99, P215, DOI 10.1016/S0269-7491(97)00188-7; JUNG CS, 2008, J ASIA-PAC ENTOMOL, V8, P185; Jung MP, 2007, WIT TR BIOMED HEALTH, V11, P229, DOI 10.2495/EHR070241; Jung MP, 2008, WATER AIR SOIL POLL, V195, P15, DOI 10.1007/s11270-008-9723-y; Kawecki TJ, 2004, ECOL LETT, V7, P1225, DOI 10.1111/j.1461-0248.2004.00684.x; KITO H, 1982, COMP BIOCHEM PHYS C, V73, P121, DOI 10.1016/0306-4492(82)90178-2; KLEIN D, 1994, ANAL BIOCHEM, V221, P405, DOI 10.1006/abio.1994.1434; Klerks PL, 2002, HUM ECOL RISK ASSESS, V8, P971, DOI 10.1080/1080-700291905774; KLERKS PL, 1987, ENVIRON POLLUT, V45, P173, DOI 10.1016/0269-7491(87)90057-1; KLERKS PL, 1993, SETAC SP P, P223; Kramarz P, 1999, B ENVIRON CONTAM TOX, V63, P531, DOI 10.1007/s001289901013; KRAMARZ P, 2000, DEMOGRAPHY ECOTOXICO, P91; Lagisz M, 2008, ECOTOXICOLOGY, V17, P59, DOI 10.1007/s10646-007-0176-7; LARSEN KJ, 1994, ENVIRON TOXICOL CHEM, V13, P503, DOI 10.1897/1552-8618(1994)13[503:DAOHMB]2.0.CO;2; LINDQVIST L, 1995, COMP BIOCHEM PHYS C, V111, P325, DOI 10.1016/0742-8413(95)00057-U; LINDQVIST L, 1994, ENVIRON TOXICOL CHEM, V13, P1669, DOI 10.1897/1552-8618(1994)13[1669:EOCAZD]2.0.CO;2; Lock K, 2003, EUR J SOIL BIOL, V39, P25, DOI 10.1016/S1164-5563(02)00006-7; LUDWIG M, 1988, PROTOPLASMA, V143, P43, DOI 10.1007/BF01282958; Lukkari T, 2004, ENVIRON POLLUT, V129, P377, DOI 10.1016/j.envpol.2003.12.008; MACNAIR MR, 1998, ENV STRESS ADAPTATIO, P3; Maelfait Jean-Pierre, 1998, P293; Maelfait JP, 1996, NATO ASI 2, V10, P165; Marczyk G., 1993, Science of the Total Environment, P1315; Mason AZ, 1995, METAL SPECIATION BIO, P479; Morgan AJ, 2007, ENVIRON SCI TECHNOL, V41, P1085, DOI 10.1021/es061992x; Mouneyrac C, 2002, AQUAT TOXICOL, V57, P225, DOI 10.1016/S0166-445X(01)00201-6; Nahmani J, 2002, EUR J SOIL BIOL, V38, P297, DOI 10.1016/S1164-5563(02)01169-X; Nordberg M, 1998, TALANTA, V46, P243, DOI 10.1016/S0039-9140(97)00345-7; Nosil P, 2008, MOL ECOL, V17, P2103, DOI 10.1111/j.1365-294X.2008.03715.x; NYFFELER M, 1981, DEUT ENTOMOL Z, V28, P297; Park JD, 2001, TOXICOLOGY, V163, P93, DOI 10.1016/S0300-483X(01)00375-4; POSTHUMA L, 1993, COMP BIOCHEM PHYS C, V106, P11, DOI 10.1016/0742-8413(93)90251-F; POSTHUMA L, 1993, OIKOS, V67, P235, DOI 10.2307/3545468; RABITSCH WB, 1995, ENVIRON POLLUT, V90, P249, DOI 10.1016/0269-7491(94)00100-R; READ KJ, 1998, WATER AIR SOIL POLL, V106, P17; RICE WR, 1994, P NATL ACAD SCI USA, V91, P225, DOI 10.1073/pnas.91.1.225; Roberts M. J., 1998, SPIDERS BRITAIN NO E; Roesijadi G, 1996, COMP BIOCHEM PHYS C, V113, P117, DOI 10.1016/0742-8413(95)02077-2; Rozen A, 2006, SOIL BIOL BIOCHEM, V38, P489, DOI 10.1016/j.soilbio.2005.06.003; SALO S, 1991, THESIS U HELSINKI; Santiago-Rivas S, 2007, TALANTA, V71, P1580, DOI 10.1016/j.talanta.2006.07.038; *SAS I INC, 2004, SAS STAT 9 1 US GUID; SHAW AJ, 1999, GENETICS ECOTOXICOLO, P9; Shirley MDF, 1999, EVOLUTION, V53, P826, DOI 10.1111/j.1558-5646.1999.tb05376.x; SIBLY R, 1986, J THEOR BIOL, V123, P311, DOI 10.1016/S0022-5193(86)80246-6; SIBLY RM, 1989, BIOL J LINN SOC, V37, P101, DOI 10.1111/j.1095-8312.1989.tb02007.x; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEGEMAN JJ, 1992, SETAC SP P, P235; Stone D, 2001, ENVIRON POLLUT, V113, P239, DOI 10.1016/S0269-7491(00)00134-2; Tamate T, 2000, OIKOS, V90, P209, DOI 10.1034/j.1600-0706.2000.900201.x; Tojal Catarina, 2002, ScientificWorldJournal, V2, P978; Topfer-Hofmann Gaby, 2000, Bulletin of the British Arachnological Society, V11, P257; TRANVIK L, 1993, J APPL ECOL, V30, P43, DOI 10.2307/2404269; TYLER G, 1989, WATER AIR SOIL POLL, V47, P189, DOI 10.1007/BF00279327; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; van Straalen NM, 2001, PEDOBIOLOGIA, V45, P451, DOI 10.1078/0031-4056-00099; VANHOOK RI, 1975, ENVIRON RES, V9, P76, DOI 10.1016/0013-9351(75)90051-1; VANSTRAALEN NM, 1987, J APPL ECOL, V24, P953, DOI 10.2307/2403992; Viarengo A, 1999, BIOMARKERS, V4, P455, DOI 10.1080/135475099230615; VIARENGO A, 1993, COMP BIOCHEM PHYS C, V104, P355, DOI 10.1016/0742-8413(93)90001-2; Weis AE, 2005, EVOL ECOL RES, V7, P161; Wilczek G, 2005, COMP BIOCHEM PHYS C, V141, P194, DOI 10.1016/j.cca.2005.06.007; Wilczek G, 2004, ENVIRON POLLUT, V132, P453, DOI 10.1016/j.envpol.2004.05.011; Wilczek G, 1996, FRESEN J ANAL CHEM, V354, P643; Wilczek G, 2000, EKOL BRATISLAVA, V19, P283; Wilczek G, 2008, ECOTOX ENVIRON SAFE, V70, P127, DOI 10.1016/j.ecoenv.2007.03.005; Winterer J, 2004, ECOL LETT, V7, P785, DOI 10.1111/j.1461-0248.2004.00626.x; Xie LT, 2004, AQUAT TOXICOL, V66, P73, DOI 10.1016/j.aquatox.2003.08.003; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 124 8 8 4 27 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0147-6513 ECOTOX ENVIRON SAFE Ecotox. Environ. Safe. SEP 2011 74 6 1489 1497 10.1016/j.ecoenv.2011.04.014 9 Environmental Sciences; Toxicology Environmental Sciences & Ecology; Toxicology 810DO WOS:000294105800005 21513981 2018-11-12 J Johow, J; Fox, M; Knapp, LA; Voland, E Johow, Johannes; Fox, Molly; Knapp, Leslie A.; Voland, Eckart The presence of a paternal grandmother lengthens interbirth interval following the birth of a granddaughter in Krummhorn (18th and 19th centuries) EVOLUTION AND HUMAN BEHAVIOR English Article Paternal grandmothers; Interbirth intervals; Life history theory; X-chromosomal relatedness; Krummhorn RESOURCE COMPETITION; LIFE; 19TH-CENTURY; POPULATION; INVESTMENT; EVOLUTION; REPRODUCTION; RESEMBLANCE; STRATEGIES; LACTATION Because only daughters inherit the paternal X-chromosome, an asymmetry in adaptive investment decisions has been suggested for certain patrilineal kin. Namely, paternal grandmothers (PGMs) may favor a granddaughter over a grandson, because (within the limits of paternity uncertainty) the former definitely carries one of their X-chromosomes, while the latter definitely does not. Here, we test the hypothesis that the PGMs' sex-specific favoritism influences reproductive scheduling. Using family-reconstitution data, we analyzed interbirth intervals (IBIs) in the historical population from the Krummhorn (Ostfriesland, Germany). In order to account for potentially timevarying effects on IBIs we applied (and combined) both the additive hazards regression of Aalen and the Cox proportional hazards model. We found that the presence of the PGM but not that of the maternal grandmother (MGM), correlates with the IBI following the birth of a grandchild as a function of the grandchild's sex. Specifically, in the presence of a PGM, the IBIs following the birth of a granddaughter are longer than in her absence. However, contrary to predictions from theoretical life history framework, model estimates for a PGM's effect on a mother's IBI did not significantly vary over time This study supports the hypothesis that PGM behavior differs according to her grandchild's sex. Further research should now explore the biological mechanism underlying this phenomenon. (C) 2011 Elsevier Inc. All rights reserved. [Johow, Johannes; Voland, Eckart] Univ Giessen, Zentrum Philosophie & Grundlagen Wissensch, D-35392 Giessen, Germany; [Fox, Molly; Knapp, Leslie A.] Univ Cambridge, Dept Biol Anthropol, Cambridge CB2 1TN, England Voland, E (reprint author), Univ Giessen, Zentrum Philosophie & Grundlagen Wissensch, D-35392 Giessen, Germany. eckart.voland@phil.uni-giessen.de Fox, Molly/0000-0001-9219-8971 Alvergne A, 2009, ANIM BEHAV, V78, P61, DOI 10.1016/j.anbehav.2009.03.019; Baldi I, 2006, AUST J STAT, V35, P77; Beise J, 2008, AM J HUM BIOL, V20, P325, DOI 10.1002/ajhb.20730; BROCKDORFF N, 2007, EPIGENETICS, P321; Coeurjolly JF, 2009, R J, V1, P26; COX DR, 1972, J R STAT SOC B, V34, P187; Euler H. A., 2008, FAM RELAT, P230; Fox M, 2010, P R SOC B, V277, P567, DOI 10.1098/rspb.2009.1660; GALDIKAS BMF, 1990, AM J PHYS ANTHROPOL, V83, P185, DOI 10.1002/ajpa.1330830207; HAMILTON W, 1964, J THEOR BIOL, V7, P7, DOI DOI 10.1016/0022-5193(64)90038-4; HAMILTON WD, 1964, J THEOR BIOL, V7, P17, DOI 10.1016/0022-5193(64)90039-6; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Hrdy S. B., 2009, MOTHERS OTHERS EVOLU; Isles AR, 2006, PHILOS T R SOC B, V361, P2229, DOI 10.1098/rstb.2006.1942; KRAUS D, 2009, PROPTEST TESTS PROPO; Leonetti DL, 2007, CURR ANTHROPOL, V48, P861, DOI 10.1086/520976; LOW BS, 1991, ETHOL SOCIOBIOL, V12, P411, DOI 10.1016/0162-3095(91)90024-K; MESSING S, 2010, WVIOPLOT WEIGHTED VI; PANTERBRICK C, 1991, J BIOSOC SCI, V23, P137; Penn DJ, 2007, P NATL ACAD SCI USA, V104, P553, DOI 10.1073/pnas.0609301103; Piperata BA, 2009, AM J HUM BIOL, V21, P817, DOI 10.1002/ajhb.20898; Platek SM, 2004, EVOL HUM BEHAV, V25, P394, DOI 10.1016/j.evolhumbehav.2004.08.007; Pollet TV, 2009, J BIOSOC SCI, V41, P355, DOI 10.1017/S0021932009003307; Quinlan RJ, 2005, CURR ANTHROPOL, V46, P471, DOI 10.1086/430017; R Development Core Team, 2010, R LANG ENV STAT COMP; Reiches MW, 2009, AM J HUM BIOL, V21, P421, DOI 10.1002/ajhb.20906; Rice WR, 2010, P ROY SOC B-BIOL SCI, V277, P2727, DOI 10.1098/rspb.2010.0409; Scheike T., 2010, TIMEREG TIMEREG PACK; Scheike TH, 2002, SCAND J STAT, V29, P75, DOI 10.1111/1467-9469.00065; Sear R, 2003, EVOL HUM BEHAV, V24, P25, DOI 10.1016/S1090-5138(02)00105-8; STRAKAGEIERSBAC.S, 1988, HOMO, V39, P171; Therneau T., 2009, SURVIVAL SURVIVAL AN; Tracer DP, 2009, AM J HUM BIOL, V21, P635, DOI 10.1002/ajhb.20928; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Vitzthum VJ, 2008, ANNU REV ANTHROPOL, V37, P53, DOI 10.1146/annurev.anthro.37.081407.085112; Voland E, 2000, EVOL ANTHROPOL, V9, P134; Voland E, 2002, BEHAV ECOL SOCIOBIOL, V52, P435, DOI 10.1007/s00265-002-0539-2; VOLAND E, 1995, HUM NATURE-INT BIOS, V6, P33, DOI 10.1007/BF02734134; VOLAND E, GRANDMOTHERHOOD EVOL; Voland E., 2005, GRANDMOTHERHOOD EVOL, P239; Willfuhr KP, 2009, AM J HUM BIOL, V21, P488, DOI 10.1002/ajhb.20909 41 6 6 0 19 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 EVOL HUM BEHAV Evol. Hum. Behav. SEP 2011 32 5 315 325 10.1016/j.evolhumbehav.2010.11.004 11 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences 810DJ WOS:000294105300003 2018-11-12 J Richter-Boix, A; Tejedo, M; Rezende, EL Richter-Boix, Alex; Tejedo, Miguel; Rezende, Enrico L. Evolution and plasticity of anuran larval development in response to desiccation. A comparative analysis ECOLOGY AND EVOLUTION English Article Anuran tadpoles; developmental plasticity; evolutionary trade-off; life-history theory; phylogenetic analyses ADAPTIVE PHENOTYPIC PLASTICITY; LIFE-HISTORY TRAITS; AMPHIBIAN METAMORPHOSIS; REACTION NORMS; RANA-TEMPORARIA; MOLECULAR PHYLOGENY; GLOBAL PATTERNS; GROWTH-RATES; SIZE; FROGS Anurans breed in a variety of aquatic habitats with contrasting levels of desiccation risk, which may result in selection for faster development during larval stages. Previous studies suggest that species in ephemeral ponds reduce their developmental times to minimize desiccation risks, although it is not clear how variation in desiccation risk affects developmental strategies in different species. Employing a comparative phylogenetic approach including data from published and unpublished studies encompassing 62 observations across 30 species, we tested if species breeding in ephemeral ponds (High risk) develop faster than those from permanent ponds (Low risk) and/or show increased developmental plasticity in response to drying conditions. Our analyses support shorter developmental times in High risk, primarily by decreasing body mass at metamorphosis. Plasticity in developmental times was small and did not differ between groups. However, accelerated development in High risk species generally resulted in reduced sizes at metamorphosis, while some Low risk species were able compensate this effect by increasing mean growth rates. Taken together, our results suggest that plastic responses in species breeding in ephemeral ponds are constrained by a general trade-off between development and growth rates. [Richter-Boix, Alex] Uppsala Univ, Dept Populat Biol & Conservat Biol, EBC, SE-75236 Uppsala, Sweden; [Tejedo, Miguel] CSIC, Estn Biol Donana, Dept Evolutionary Ecol, E-41092 Seville, Spain; [Rezende, Enrico L.] Univ Autonoma Barcelona, Grp Biol Evolutiva, Dept Genet & Microbiol, Bellaterra 08193, Barcelona, Spain Richter-Boix, A (reprint author), Uppsala Univ, Dept Populat Biol & Conservat Biol, EBC, Norbyvagen 18 D, SE-75236 Uppsala, Sweden. alex.richter@ebc.uu.se Richter-Boix, Alex/E-3990-2012; Rezende, Enrico/B-8029-2012 Richter-Boix, Alex/0000-0002-8559-5191; Rezende, Enrico/0000-0002-6245-9605 Direccion General de Investigacion Cientifica y Tecnica (MICINN) [CGL2004-01872/BOS, CGL2009-12767-C02-02]; Ministerio de Ciencia e Innovacion (MICINN, Spain) [BFU2009-07564]; Spanish Ministry of Education and Culture [MEC2007-0944]; Ministerio de Ciencia e Innovacion (Spain) We are very grateful to M. D. Boone, J. Loman for providing important unpublished data, F. Johansson, A. Laurila, C. Navas, R. Stoks, J. Wiens, and two anonymous reviewers for their comments on earlier versions of the manuscript. This research was partially funded by project (CGL2004-01872/BOS and CGL2009-12767-C02-02) from Direccion General de Investigacion Cientifica y Tecnica (MICINN), conceded to M. Tejedo and by the grant BFU2009-07564 from the Ministerio de Ciencia e Innovacion (MICINN, Spain) awarded to ELR. AR-B was supported by a Spanish Ministry of Education and Culture postdoctoral grant (MEC2007-0944). ELR is currently a Ramon y Cajal Fellow funded by the Ministerio de Ciencia e Innovacion (Spain). Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Adams MJ, 2000, ECOL APPL, V10, P559, DOI 10.1890/1051-0761(2000)010[0559:PPATEO]2.0.CO;2; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Babbitt KJ, 2003, CAN J ZOOL, V81, P1539, DOI 10.1139/Z03-131; Blomberg SP, 2003, EVOLUTION, V57, P717, DOI 10.1111/j.0014-3820.2003.tb00285.x; Boone MD, 2004, COPEIA, P683, DOI 10.1643/CE-03-229R1; Brady LD, 2000, J ZOOL, V252, P61; Buchholz DR, 2002, COPEIA, P180, DOI 10.1643/0045-8511(2002)002[0180:EPODIS]2.0.CO;2; Burnham K. P., 2002, MODEL SELECTION MULT; Cei Jose M., 1980, Monitore Zoologico Italiano Monografia, V2, P1; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; De Block M, 2008, EVOLUTION, V62, P485, DOI 10.1111/j.1558-5646.2007.00283.x; Denver RJ, 1997, AM ZOOL, V37, P172; DeWitt TJ, 1998, TRENDS ECOL EVOL, V13, P77, DOI 10.1016/S0169-5347(97)01274-3; Doughty Paul, 2004, P126; Faivovich J, 2005, B AM MUS NAT HIST, P6, DOI 10.1206/0003-0090(2005)294[0001:SROTFF]2.0.CO;2; Frost DR, 2006, B AM MUS NAT HIST, P8, DOI 10.1206/0003-0090(2006)297[0001:TATOL]2.0.CO;2; Garcia-Paris M, 2003, MOL PHYLOGENET EVOL, V28, P12, DOI 10.1016/S1055-7903(03)00036-8; Garland T, 2005, J EXP BIOL, V208, P3015, DOI 10.1242/jeb.01745; Garland T, 1999, SYST BIOL, V48, P547, DOI 10.1080/106351599260139; Gomes FR, 2009, J EVOLUTION BIOL, V22, P1088, DOI 10.1111/j.1420-9101.2009.01718.x; GOTTHARD K, 1995, OIKOS, V74, P3, DOI 10.2307/3545669; Harris RN, 1999, TADPOLES, P279; Hillis DM, 2005, MOL PHYLOGENET EVOL, V34, P299, DOI 10.1016/j.ympev.2004.10.007; Johansson F, 2001, ECOLOGY, V82, P1857, DOI 10.1890/0012-9658(2001)082[1857:LHPIAD]2.0.CO;2; Lannoo M, 2005, AMPHIBIAN DECLINES: THE CONSERVATION STATUS OF UNITED STATES SPECIES, P1; Leips J, 2000, ECOLOGY, V81, P2997, DOI 10.1890/0012-9658(2000)081[2997:ROTLTD]2.0.CO;2; Lind MI, 2007, J EVOLUTION BIOL, V20, P1288, DOI 10.1111/j.1420-9101.2007.01353.x; Marangoni F, 2009, J HERPETOL, V43, P546, DOI 10.1670/08-230R1.1; Merila J, 2004, J EVOLUTION BIOL, V17, P1132, DOI 10.1111/j.1420-9101.2004.00744.x; Morey SR, 2004, OIKOS, V104, P172, DOI 10.1111/j.0030-1299.2004.12623.x; NEWMAN RA, 1988, EVOLUTION, V42, P774, DOI 10.1111/j.1558-5646.1988.tb02495.x; NEWMAN RA, 1992, BIOSCIENCE, V42, P671, DOI 10.2307/1312173; Nunney L, 1996, EVOLUTION, V50, P1193, DOI 10.1111/j.1558-5646.1996.tb02360.x; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; Nylin S, 1996, EVOLUTION, V50, P1351, DOI 10.1111/j.1558-5646.1996.tb02377.x; PAGEL MD, 1992, J THEOR BIOL, V156, P431, DOI 10.1016/S0022-5193(05)80637-X; Pauly GB, 2004, EVOLUTION, V58, P2517; PFENNIG DW, 1992, FUNCT ECOL, V6, P167, DOI 10.2307/2389751; PURVIS A, 1993, SYST BIOL, V42, P569, DOI 10.2307/2992489; Read K, 2001, MOL PHYLOGENET EVOL, V21, P294, DOI 10.1006/mpev.2001.1014; Reques R, 1997, J EVOLUTION BIOL, V10, P829, DOI 10.1111/j.1420-9101.1997.tb00001.x; Richardson JML, 2001, AM NAT, V157, P282, DOI 10.1086/319196; Richter-Boix A, 2006, EVOL ECOL RES, V8, P1139; Roelants K, 2007, P NATL ACAD SCI USA, V104, P887, DOI 10.1073/pnas.0608378104; Rosenberg MS, 2000, METAWIN STAT SOFTWAR; Schauble CS, 2000, MOL PHYLOGENET EVOL, V16, P379, DOI 10.1006/mpev.2000.0803; Scott E, 2005, CLADISTICS, V21, P507, DOI 10.1111/j.1096-0031.2005.00079.x; SEMLITSCH RD, 1988, COPEIA, P978; SMITHGILL SJ, 1979, AM NAT, V113, P563, DOI 10.1086/283413; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Stoks R, 2006, ECOLOGY, V87, P1566, DOI 10.1890/0012-9658(2006)87[1566:PCOCGI]2.0.CO;2; Strobbe F, 2004, BIOL J LINN SOC, V83, P187, DOI 10.1111/j.1095-8312.2004.00379.x; Turkheimer FE, 2003, J CEREBR BLOOD F MET, V23, P490, DOI 10.1097/01.WCB.0000050065.57184.BB; Ultsch GR, 1999, TADPOLES, P189; Veith M, 2003, MOL PHYLOGENET EVOL, V26, P310, DOI 10.1016/S1055-7903(02)00324-X; Wells KD, 2007, ECOLOGY BEHAV AMPHIB; WERNER EE, 1986, AM NAT, V128, P319, DOI 10.1086/284565; Wiens JJ, 2007, AM NAT, V170, pS86, DOI 10.1086/519396; Wiens JJ, 2006, AM NAT, V168, P579, DOI 10.1086/507882; WILBUR HM, 1987, ECOLOGY, V68, P1437, DOI 10.2307/1939227; WILBUR HM, 1973, SCIENCE, V182, P1305, DOI 10.1126/science.182.4119.1305; WOODWARD BD, 1983, ECOLOGY, V64, P1549, DOI 10.2307/1937509 63 38 40 1 66 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. SEP 2011 1 1 15 25 10.1002/ece3.2 11 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 055TE WOS:000312439700003 22393479 DOAJ Gold, Green Published 2018-11-12 J Canestrari, D; Marcos, JM; Baglione, V Canestrari, D.; Marcos, J. M.; Baglione, V. Helpers at the nest compensate for reduced maternal investment in egg size in carrion crows JOURNAL OF EVOLUTIONARY BIOLOGY English Article carrion crows; cooperative breeding; egg size; helpers; maternal effects; maternal strategies COOPERATIVELY BREEDING BIRDS; CORVUS-CORONE-CORONE; REPRODUCTIVE SUCCESS; ALBUMIN REMOVAL; KIN SELECTION; BREEDERS; HYPOTHESIS; EVOLUTION; BENEFITS; QUALITY Life history theory predicts that mothers should trade off current and future reproductive attempts to maximize lifetime fitness. When breeding conditions are favourable, mothers may either increase investment in the eggs to improve the quality of the offspring or save resources for future reproduction as the good raising environment is likely to compensate for a 'bad start'. In cooperatively breeding birds, the presence of helpers improves breeding conditions so that mothers may vary the number, size and quality of the eggs in response to the composition of the group. Here, we show that in cooperatively breeding carrion crows Corvus corone corone, where nonbreeding males are more philopatric and more helpful at the nest than females, breeding females decreased egg size as the number of subordinate males in the group increased. However, despite the smaller investment in egg size, fledglings' weight increased in groups with more male subordinates, improving post-fledging survival and indicating that helpers fully compensated for the initial 'bad start'. These results highlight a 'hidden effect' of helpers that bears profound implications for understanding the ultimate function of helping. [Canestrari, D.; Marcos, J. M.; Baglione, V.] Univ Valladolid, Dept Agroforestry, Palencia 34004, Spain; [Baglione, V.] UVA INIA, Sustainable Forest Management Res Inst, Palencia, Spain Canestrari, D (reprint author), Univ Valladolid, Dept Agroforestry, Avda Madrid 44, Palencia 34004, Spain. daniela.canestrari@uva.es Baglione, Vittorio/D-6456-2014; Canestrari, Daniela/F-9696-2016 Canestrari, Daniela/0000-0001-9112-0208; Baglione, Vittorio/0000-0001-8464-7861 Spanish Ministry of Science and Innovation; ESF-EUROCORES TECT [CGL2008-01829BOS, SEJ2007-29836-E] We are grateful to two anonymous referees for improving the manuscript and to Walt Koenig for useful discussions. This work was supported by the Spanish Ministry of Science and Innovation through the 'Juan de la Cierva' program-FSE (to DC) and the projects CGL2008-01829BOS and SEJ2007-29836-E (COCOR 'Cooperation in Corvids' of the ESF-EUROCORES TECT program) to VB. Arnold KE, 1998, P ROY SOC B-BIOL SCI, V265, P739, DOI 10.1098/rspb.1998.0355; Baglione V, 2006, P R SOC B, V273, P1529, DOI 10.1098/rspb.2006.3481; Baglione V, 2003, SCIENCE, V300, P1947, DOI 10.1126/science.1082429; Baglione V, 2002, ANIM BEHAV, V64, P887, DOI 10.1006/anbe.2002.2007; Baglione V, 2002, AUK, V119, P790, DOI 10.1642/0004-8038(2002)119[0790:CBGOCC]2.0.CO;2; Baglione V, 2010, P ROY SOC B-BIOL SCI, V277, P3275, DOI 10.1098/rspb.2010.0745; Bonisoli-Alquati A, 2007, FUNCT ECOL, V21, P310, DOI 10.1111/j.1365-2435.2006.01226.x; Bonisoli-Alquati A, 2008, ECOLOGY, V89, P2315, DOI 10.1890/07-1066.1; BURLEY N, 1986, AM NAT, V127, P415, DOI 10.1086/284493; CANESTRARI D, 2005, BEHAV ECOL SOCIOBIOL, V52, P422, DOI DOI 10.1007/S00265-004-0879-1; Canestrari D, 2008, ANIM BEHAV, V76, P943, DOI 10.1016/j.anbehav.2008.05.013; Canestrari D, 2008, ANIM BEHAV, V75, P403, DOI 10.1016/j.anbehav.2007.05.005; Canestrari D, 2007, ANIM BEHAV, V73, P349, DOI 10.1016/j.anbehav.2006.04.013; Canestrari D, 2010, BEHAV ECOL, V21, P233, DOI 10.1093/beheco/arp177; CHIARATI E, 2011, BEHAV ECOL IN PRESS, DOI DOI 10.1007/200265-011-1187-1; Cockburn A, 1998, ANNU REV ECOL SYST, V29, P141, DOI 10.1146/annurev.ecolsys.29.1.141; CRAWLEY MJ, 2002, STAT COMPUTING; CRICK HQP, 1992, IBIS, V134, P56, DOI 10.1111/j.1474-919X.1992.tb07230.x; Cunningham EJA, 2000, NATURE, V404, P74, DOI 10.1038/35003565; Dickinson Janis L., 2004, P48, DOI 10.1017/CBO9780511606816.004; Griffin AS, 2002, TRENDS ECOL EVOL, V17, P15, DOI 10.1016/S0169-5347(01)02355-2; Griffiths R, 1998, MOL ECOL, V7, P1071, DOI 10.1046/j.1365-294x.1998.00389.x; Hatchwell BJ, 1999, AM NAT, V154, P205, DOI 10.1086/303227; Heinsohn Robert G., 2004, P67, DOI 10.1017/CBO9780511606816.005; HOYT DF, 1979, AUK, V96, P73; Koenig WD, 2009, BEHAV ECOL SOCIOBIOL, V63, P1659, DOI 10.1007/s00265-009-0773-y; KRIST M, 2010, BIOL REV IN PRESS; Krist M, 2009, J ANIM ECOL, V78, P907, DOI 10.1111/j.1365-2656.2009.01536.x; Monaghan P, 1998, P ROY SOC B-BIOL SCI, V265, P1731, DOI 10.1098/rspb.1998.0495; REID WV, 1990, EVOLUTION, V44, P1780, DOI 10.1111/j.1558-5646.1990.tb05248.x; Richardson DS, 2002, EVOLUTION, V56, P2313; Russell AF, 2008, P R SOC B, V275, P29, DOI 10.1098/rspb.2007.0821; Russell AF, 2007, SCIENCE, V317, P941, DOI 10.1126/science.1146037; Russell AF, 2009, PHILOS T R SOC B, V364, P1143, DOI 10.1098/rstb.2008.0298; Sheldon BC, 2000, TRENDS ECOL EVOL, V15, P397, DOI 10.1016/S0169-5347(00)01953-4; Stearns S. C., 1992, EVOLUTION LIFE HIST; Taborsky B, 2007, BEHAV ECOL, V18, P652, DOI 10.1093/beheco/arm026; Vinuela J, 1997, J ANIM ECOL, V66, P781, DOI 10.2307/5995; Visser ME, 2001, P ROY SOC B-BIOL SCI, V268, P1271, DOI 10.1098/rspb.2001.1661; WILLIAMS TD, 1994, BIOL REV, V69, P35, DOI 10.1111/j.1469-185X.1994.tb01485.x; Woxvold IA, 2005, J ANIM ECOL, V74, P1039, DOI 10.1111/j.1365-2656.2005.01001.x 41 23 23 1 47 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1010-061X J EVOLUTION BIOL J. Evol. Biol. SEP 2011 24 9 1870 1878 10.1111/j.1420-9101.2011.02313.x 9 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 807OX WOS:000293910500003 21605220 Bronze 2018-11-12 J Johnson, DW; Hixon, MA Johnson, D. W.; Hixon, M. A. Sexual and lifetime selection on body size in a marine fish: the importance of life-history trade-offs JOURNAL OF EVOLUTIONARY BIOLOGY English Article adaptation; balancing selection; coral reef fish; fitness; invisible fraction; mating success; optimal body size CARIBBEAN REEF FISH; BICOLOR DAMSELFISH; STEGASTES-PARTITUS; PHENOTYPIC SELECTION; REPRODUCTIVE SUCCESS; NATURAL-POPULATIONS; DEPENDENT MORTALITY; FEMALE CHOICE; EVOLUTION; GROWTH Many field measurements of viability and sexual selection on body size indicate that large size is favoured. However, life-history theory predicts that body size may be optimized and that patterns of selection may often be stabilizing rather than directional. One reason for this discrepancy may be that field estimates of selection tend to focus on limited components of fitness and may not fully measure life-history trade-offs. We use an 8-year, demographic field study to examine both sexual selection and lifetime selection on body size of a coral reef fish (the bicolour damselfish, Stegastes partitus). Selection via reproductive success of adults was very strong (standardized selection differential = 1.04). However, this effect was balanced by trade-offs between large adult size and reduced cumulative survival during the juvenile phase. When we measured lifetime fitness (net reproductive rate), selection was strongly stabilizing and only weakly directional, consistent with predictions from life-history theory. [Johnson, D. W.; Hixon, M. A.] Oregon State Univ, Dept Zool, Corvallis, OR 97331 USA Johnson, DW (reprint author), Natl Ctr Ecol Anal & Synth, 735 State St,Suite 300, Santa Barbara, CA 93101 USA. johnson@nceas.ucsb.edu NSF [OCE-00-93976, OCE-05-50709, OCE-08-51162]; NOAA, courtesy of the Caribbean Marine Research Center We are very thankful to many people who helped in the field and made this labour-intensive study possible: G. Almany, A. Altieri, T. Anderson, C. Bartels, E. Bartels, A. Bartholomew, M. Bond, K. Buch, B. Byrne, M. Carr, M. Christie, N. Ehlers, D. Frerich, L. Hatley, W. Head, S. Hixon, B. Kakuk, K. Kroecker, A. King, B. McLeod, J. Noell, M. Novak, K. Overholtzer-McLeod, C. Stallings, M. Webster and T. Young. We are also grateful to the staff of the Caribbean Marine Research Center (CMRC), especially T. Wolcott and B. Gadd, for greatly facilitating our long-term research. R. Lamb and M. Cook assisted with the laboratory analysis of egg mass data. Financial support was provided by NSF grants OCE-00-93976, OCE-05-50709 and OCE-08-51162 to M.A.H. and by grants to M.A.H. from NOAA's National Undersea Research Program, courtesy of the Caribbean Marine Research Center. R. Warner, J. Williams, W. Blanckenhorn and one anonymous reviewer provided helpful reviews of the manuscript. ARNOLD SJ, 1984, EVOLUTION, V38, P720, DOI 10.1111/j.1558-5646.1984.tb00345.x; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; Bolker BM, 2008, TRENDS ECOL EVOL, V24, P127, DOI DOI 10.1016/J.TREE.2008.10.008; BRODIE ED, 1995, TRENDS ECOL EVOL, V10, P313, DOI 10.1016/S0169-5347(00)89117-X; BRODIE ED, 1992, EVOLUTION, V46, P1284, DOI 10.1111/j.1558-5646.1992.tb01124.x; Carr MH, 2002, P NATL ACAD SCI USA, V99, P11241, DOI 10.1073/pnas.162653499; COLE KS, 1995, J FISH BIOL, V47, P181, DOI 10.1111/j.1095-8649.1995.tb01887.x; Emery A. R., 1968, COMP ECOLOGY DAMSELF; Endler JA, 1986, NATURAL SELECTION WI; Frederick JL, 1997, B MAR SCI, V61, P399; Grafen A., 1988, REPROD SUCCESS, P454; GULLAND J. A., 1959, JOUR CONSEIL PERM INTERNATL EXPLOR MER, V25, P47; Hadfield JD, 2008, P ROY SOC B-BIOL SCI, V275, P723, DOI 10.1098/rspb.2007.1013; Heino M, 1999, J EVOLUTION BIOL, V12, P423; Hixon M.A., 1991, P475; Hixon MA, 2005, ECOLOGY, V86, P2847, DOI 10.1890/04-1455; Hoey AS, 2006, P 10 INT COR REEF S, P420; HOWARD RD, 1985, EVOLUTION, V39, P260, DOI 10.1111/j.1558-5646.1985.tb05665.x; Hunt J, 2009, J EVOLUTION BIOL, V22, P13, DOI 10.1111/j.1420-9101.2008.01633.x; Johnson DW, 2010, J EVOLUTION BIOL, V23, P724, DOI 10.1111/j.1420-9101.2010.01938.x; Johnson DW, 2008, OECOLOGIA, V155, P43, DOI 10.1007/s00442-007-0882-0; Johnson DW, 2010, EVOLUTION, V64, P2614, DOI 10.1111/j.1558-5646.2010.01027.x; JOHNSON DW, EVOL APPL IN PRESS; Kingsolver JG, 2004, EVOLUTION, V58, P1608; Kingsolver JG, 2001, AM NAT, V157, P245, DOI 10.1086/319193; Kingsolver JG, 2007, BIOSCIENCE, V57, P561, DOI 10.1641/B570706; KNAPP RA, 1991, BEHAV ECOL, V2, P295, DOI 10.1093/beheco/2.4.295; Knapp RA, 1995, B MAR SCI, V57, P672; KNAPP RA, 1991, ANIM BEHAV, V41, P747, DOI 10.1016/S0003-3472(05)80341-0; KOZLOWSKI J, 1993, TRENDS ECOL EVOL, V8, P84, DOI 10.1016/0169-5347(93)90056-U; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Legendre P., 1998, NUMERICAL ECOLOGY; MCARDLE BH, 1988, CAN J ZOOL, V66, P2329, DOI 10.1139/z88-348; McCormick MI, 2006, ECOLOGY, V87, P1104, DOI 10.1890/0012-9658(2006)87[1104:MMCLTS]2.0.CO;2; Merila J, 2001, GENETICA, V112, P199, DOI 10.1023/A:1013391806317; MORSE WW, 1989, FISH B-NOAA, V87, P417; Myrberg A. A., 1972, ANIM BEHAV MONOGR, V5, P197; MYRBERG AA, 1972, BEHAVIOUR, V41, P207, DOI 10.1163/156853972X00013; PEPIN P, 1993, CAN J FISH AQUAT SCI, V50, P2166, DOI 10.1139/f93-242; Perez KO, 2010, EVOLUTION, V64, P2450, DOI 10.1111/j.1558-5646.2010.00994.x; Persson L, 1996, ECOLOGY, V77, P900, DOI 10.2307/2265510; Preziosi RF, 2000, EVOLUTION, V54, P558; R Development Core Team, 2009, R LANG ENV STAT COMP; Rasband W. S., 2009, IMAGE J; ROBERTSON DR, 1988, ECOLOGY, V69, P370, DOI 10.2307/1940435; Roff DA, 2006, J EVOLUTION BIOL, V19, P1920, DOI 10.1111/j.1420-9101.2006.01155.x; Roff D. A., 2002, LIFE HIST EVOLUTION; SCHLUTER D, 1991, P ROY SOC B-BIOL SCI, V246, P11, DOI 10.1098/rspb.1991.0118; SCHLUTER D, 1988, EVOLUTION, V42, P849, DOI 10.1111/j.1558-5646.1988.tb02507.x; SCHMALE MC, 1981, ANIM BEHAV, V29, P1172, DOI 10.1016/S0003-3472(81)80069-3; Siepielski AM, 2009, ECOL LETT, V12, P1261, DOI 10.1111/j.1461-0248.2009.01381.x; Sogard SM, 1997, B MAR SCI, V60, P1129; Sponaugle S, 1996, MAR FRESHWATER RES, V47, P433, DOI 10.1071/MF9960433; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; WADE MJ, 1989, EVOLUTION, V43, P1567, DOI 10.1111/j.1558-5646.1989.tb02606.x; WARNER RR, 1992, EVOLUTION, V46, P1421, DOI 10.1111/j.1558-5646.1992.tb01134.x; WOOTTON RJ, 1979, S ZOOL SOC LOND, V44, P133; Young KV, 2004, SCIENCE, V304, P65, DOI 10.1126/science.1094790 59 20 20 1 38 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1010-061X J EVOLUTION BIOL J. Evol. Biol. AUG 2011 24 8 1653 1663 10.1111/j.1420-9101.2011.02298.x 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 791WN WOS:000292699200003 21605216 Bronze 2018-11-12 J Verrier, D; Guinet, C; Authier, M; Tremblay, Y; Shaffer, S; Costa, DP; Groscolas, R; Arnould, JPY Verrier, Delphine; Guinet, Christophe; Authier, Matthieu; Tremblay, Yann; Shaffer, Scott; Costa, Daniel P.; Groscolas, Rene; Arnould, John P. Y. The ontogeny of diving abilities in subantarctic fur seal pups: developmental trade-off in response to extreme fasting? FUNCTIONAL ECOLOGY English Article aerobic dive limit; behavioural plasticity; diving behaviour; diving physiology; growth strategy; myoglobin; oxygen stores; weaning BODY OXYGEN STORES; LIONS EUMETOPIAS-JUBATUS; PUSILLUS-DORIFERUS PUPS; AEROBIC DIVE LIMIT; AMSTERDAM ISLAND; POSTFLEDGING SURVIVAL; ARCTOCEPHALUS-GAZELLA; FORAGING BEHAVIOR; SKELETAL-MUSCLES; WEDDELL SEALS 1. A major hypothesis of life-history theory is that conditions of early development affect future survival and reproductive success. Responses to detrimental environments during early ontogeny may involve trade-offs between current and future fitness. Yet, the functional mechanisms involved in such evolutionary trade-offs remain poorly documented. 2. The physiological and behavioural ontogeny of diving abilities was examined in subantarctic fur seal (Arctocephalus tropicalis Gray) pups to assess whether the repeated extreme fasts they naturally endure throughout the period of maternal dependence impacts on their development. 3. The ontogeny of pup body oxygen storage capacity was slow, in particular for the muscle compartment, which shows limited increase in myoglobin content (0.23-0.85 g 100 g wet muscle(-1)). As a consequence, by the time of weaning, mass-specific oxygen stores had only reached 76%, 24% and 61% of adult female capacity for blood, muscle and total, respectively. Concomitantly, in marked contrast to other pinniped infants, they spent decreasing amounts of time in water (16-7%) with age and exhibited very little diving experience and skills. 4. Overall, in addition to experiencing the longest fasting durations throughout the maternal dependence period, subantarctic fur seal pups demonstrate the lowest levels of mass-specific total oxygen stores and maximum dive duration of any otariid near the age of weaning reported to date. 5. Furthermore, dives that exceeded the calculated aerobic dive limit occurred with a very low frequency (0.04%), suggesting that behavioural limitations linked to the necessity to conserve energy to survive repeated fasting, rather than restricted oxygen storage capacity, constrained pup diving behaviour. 6. Hence, these animals appear to trade-off the early development of both their physiological and behavioural diving abilities in favour of body fat accumulation to survive the prolonged fasts they must endure and, potentially, provide a nutritional buffer while they locate appropriate food patches after weaning. While promoting pre-weaning survival, this strategy renders pups more vulnerable to unpredictable changes in environmental conditions and food availability at the transition to independent foraging and, thus, could have negative impact on post-weaning survival. [Verrier, Delphine] Univ Melbourne, Dept Zool, Parkville, Vic 3010, Australia; [Verrier, Delphine; Groscolas, Rene] UMR 7178 CNRS UdS, Dept Ecol Physiol & Ethol, Inst Pluridisciplinaire Hubert Curien, F-67087 Strasbourg 2, France; [Guinet, Christophe; Authier, Matthieu] UPR 1934 CNRS, Ctr Etud Biol Chize, F-79360 Villiers En Bois, France; [Tremblay, Yann; Shaffer, Scott; Costa, Daniel P.] Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, Inst Marine Sci, Long Marine Lab, Santa Cruz, CA 95060 USA; [Shaffer, Scott] San Jose State Univ, Dept Biol Sci, San Jose, CA 95192 USA; [Arnould, John P. Y.] Deakin Univ, Sch Life & Environm Sci, Burwood, Vic 3125, Australia Verrier, D (reprint author), Ctr Int Rech Med Franceville, Ctr Primatol, BP 769, Franceville, Gabon. ddlafouine@free.fr Shaffer, Scott/D-5015-2009 Shaffer, Scott/0000-0002-7751-5059; Costa, Daniel/0000-0002-0233-5782 French Polar Institute (IPEV) [119/109]; Sea World Research and Rescue Foundation; Terres Australes et Antarctiques Francaises; University of Melbourne, Australia The present research (project no. 119/109) was performed at Martin de Vivies station and supported by the French Polar Institute (IPEV). Financial and logistical support was also provided by Sea World Research and Rescue Foundation and Terres Australes et Antarctiques Francaises. D.V. was the recipient of an International Postgraduate Research Scholarship and Melbourne International Research Scholarship awarded by the University of Melbourne, Australia. We would like to thank Alan-Brice Rousset, Gwenn Le Corgne, Alexandre Allag, Bruno Dauteloup and Tanguy Deville for their help in the field. The technical assistance of Mike Weise and Stella Villegas in the laboratory was also much appreciated. Arnould JPY, 2003, J EXP BIOL, V206, P4497, DOI 10.1242/jeb.00703; Arnould JPY, 2002, J ZOOL, V256, P351, DOI 10.1017/S0952836902000389; Baker JD, 2000, CAN J ZOOL, V78, P100, DOI 10.1139/cjz-78-1-100; Baylis AMM, 2005, CAN J ZOOL, V83, P1149, DOI 10.1139/Z05-097; Beauplet G, 2005, J ANIM ECOL, V74, P1160, DOI 10.1111/j.1365-2656.2005.01016.x; Beauplet G, 2004, MAR ECOL PROG SER, V273, P211, DOI 10.3354/meps273211; Blas J, 2007, P NATL ACAD SCI USA, V104, P8880, DOI 10.1073/pnas.0700232104; BONNER WN, 1984, S ZOOL SOC LONDON, V51, P253; Burns JM, 2007, J COMP PHYSIOL B, V177, P687, DOI 10.1007/s00360-007-0167-2; Burns JM, 1996, J COMP PHYSIOL B, V166, P473, DOI 10.1007/BF02338290; Burns JM, 2005, PHYSIOL BIOCHEM ZOOL, V78, P1057, DOI 10.1086/432922; Burns JM, 1999, CAN J ZOOL, V77, P737, DOI 10.1139/cjz-77-5-737; BUTLER H, 2006, COMP BIOCH PHYSL A, V145, P1; Caley MJ, 1996, ANNU REV ECOL SYST, V27, P477, DOI 10.1146/annurev.ecolsys.27.1.477; CASTELLINI MA, 1981, J COMP PHYSIOL, V143, P191; CLOSE RI, 1972, PHYSIOL REV, V52, P129; Costa DP, 2007, AQUAT CONSERV, V17, pS44, DOI 10.1002/aqc.917; Costa DP, 1998, PHYSIOL ZOOL, V71, P208, DOI 10.1086/515911; Costa DP, 2004, ANNU REV PHYSIOL, V66, P209, DOI 10.1146/annurev.physiol.66.032102.114245; Costa DP, 2001, COMP BIOCHEM PHYS A, V129, P771, DOI 10.1016/S1095-6433(01)00346-4; Davis RW, 1999, J EXP BIOL, V202, P1091; ELSAYED H, 1995, CLIN LAB HAEMATOL, V17, P189; FestaBianchet M, 1997, CAN J ZOOL, V75, P1372, DOI 10.1139/z97-763; FOLDAGER N, 1991, COMPUT BIOL MED, V21, P35, DOI 10.1016/0010-4825(91)90033-6; Fowler SL, 2007, FUNCT ECOL, V21, P922, DOI 10.1111/j.1365-2435.2007.01295.x; Fowler SL, 2006, J ANIM ECOL, V75, P358, DOI 10.1111/j.1365-2656.2006.01055.x; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; Garry DJ, 1996, DEV GENET, V19, P146, DOI 10.1002/(SICI)1520-6408(1996)19:2<146::AID-DVG6>3.0.CO;2-9; GENTRY RL, 1986, FUR SEALS MATERNAL S; Georges JY, 2000, ECOLOGY, V81, P295, DOI 10.1890/0012-9658(2000)081[0295:MCITSF]2.0.CO;2; Georges JY, 2000, POLAR BIOL, V23, P59, DOI 10.1007/s003000050008; Guinet C, 2005, CAN J ZOOL, V83, P962, DOI 10.1139/Z05-087; Hall AJ, 2001, J ANIM ECOL, V70, P138; Hendry AP, 2007, FUNCT ECOL, V21, P455, DOI 10.1111/j.1365-2435.2007.01240.x; Horning M, 1997, MAR MAMMAL SCI, V13, P100, DOI 10.1111/j.1748-7692.1997.tb00614.x; Horning M, 1997, BEHAVIOUR, V134, P1211, DOI 10.1163/156853997X00133; *ICSH, 1978, J CLIN PATHOL, V31, P139; ILLIUS AW, 1990, J ANIM ECOL, V59, P89, DOI 10.2307/5160; Jorgensen C, 2001, J EXP BIOL, V204, P3993; Kooyman GL, 1998, ANNU REV PHYSIOL, V60, P19, DOI 10.1146/annurev.physiol.60.1.19; Le Boeuf Burney J., 1994, P121; Lestyk KC, 2009, J COMP PHYSIOL B, V179, P985, DOI 10.1007/s00360-009-0378-9; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; MARTIN P, 1984, ANIM BEHAV, V32, P1257, DOI 10.1016/S0003-3472(84)80245-6; McCafferty DJ, 1998, CAN J ZOOL, V76, P513, DOI 10.1139/cjz-76-3-513; McMahon CR, 2000, ANTARCT SCI, V12, P149; Merrick RL, 1997, CAN J ZOOL, V75, P776, DOI 10.1139/z97-099; Naef-Daenzer B, 2001, J ANIM ECOL, V70, P730, DOI 10.1046/j.0021-8790.2001.00533.x; Noren SR, 2005, PHYSIOL BIOCHEM ZOOL, V78, P482, DOI 10.1086/430228; Noren SR, 2002, J ZOOL, V258, P105, DOI 10.1017/S0952836902001243; Noren SR, 2001, J COMP PHYSIOL B, V171, P127, DOI 10.1007/s003600000161; OHATA CA, 1977, J THERM BIOL, V2, P141, DOI 10.1016/0306-4565(77)90020-1; Olsson O, 1997, POLAR BIOL, V18, P161, DOI 10.1007/s003000050172; ONO KA, 1987, BEHAV ECOL SOCIOBIOL, V21, P109, DOI 10.1007/BF02395438; Pitcher KW, 2005, CAN J ZOOL, V83, P1214, DOI 10.1139/Z05-098; Rea LD, 2007, CAN J ZOOL, V85, P190, DOI 10.1139/Z06-204; REYNAFARJE B, 1963, J LAB CLIN MED, V61, P138; Richmond JP, 2005, GEN COMP ENDOCR, V141, P240, DOI [10.1016/j.ygcen.2005.01.004, 10.1016/j.ycgen.2005.01.004]; Richmond JP, 2006, J COMP PHYSIOL B, V176, P535, DOI 10.1007/s00360-006-0076-9; Rutishauser MR, 2004, PHYSIOL BIOCHEM ZOOL, V77, P669, DOI 10.1086/421749; Spence-Bailey LM, 2007, J COMP PHYSIOL B, V177, P483, DOI 10.1007/s00360-007-0146-7; Stearns S. C., 1992, EVOLUTION LIFE HIST; TERRADOS N, 1990, J APPL PHYSIOL, V68, P2369; Thorson Philip H., 1994, P271; Trillmich F, 1991, PINNIPEDS EL NINO RE; VERRIER D, 2011, FUNCTIONAL ECOLOGY, DOI DOI 10.1111/J.1365-2435.2010.01823.X; Verrier D, 2009, AM J PHYSIOL-REG I, V297, pR1582, DOI 10.1152/ajpregu.90857.2008; Wang T, 2006, ANNU REV PHYSIOL, V68, P223, DOI 10.1146/annurev.physiol.68.040104.105739; Weise MJ, 2007, J EXP BIOL, V210, P278, DOI 10.1242/jeb.02643; WESTERTERP K, 1977, PHYSIOL ZOOL, V50, P331, DOI 10.1086/physzool.50.4.30155736; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 72 17 17 0 32 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0269-8463 FUNCT ECOL Funct. Ecol. AUG 2011 25 4 818 828 10.1111/j.1365-2435.2011.01846.x 11 Ecology Environmental Sciences & Ecology 786TE WOS:000292330000011 Bronze 2018-11-12 J Ahlstrom, T Ahlstrom, T. Life-History Theory, Past Human Populations and Climatic Perturbations INTERNATIONAL JOURNAL OF OSTEOARCHAEOLOGY English Article bioarchaeology; climate; life history theory; matrix population models; stature INTRAUTERINE GROWTH-RETARDATION; BIRTH-WEIGHT; DEVELOPMENTAL PLASTICITY; FETAL ORIGINS; MORTALITY; EVOLUTION; AGE; ENVIRONMENTS; PREGNANCY; FAMINE A sensitivity and elasticity analysis is performed on historical life-tables, that of Swedish females from 1751-1755 and 1966-1970, i.e. during and after the Little Ice Age. Coupled with life-history theory, this approach supplies us with some ideas on how stature can be understood as a proxy for conditions during the intrauterine growth, important if we aspire to calibrate proposed climatic perturbations and their effect on past societies. Matrix population models represent a versatile tool that has been used extensively in conservation biology, ecology, primatology and evolutionary demography. As of yet, applications in bioarchaeology/human osteology have been restricted to population forecasting. The following paper introduces matrix population models and discusses their use in bioarchaeology. Copyright (C) 2010 John Wiley & Sons, Ltd. Lund Univ, Inst Archaeol & Ancient Hist, S-22350 Lund, Sweden Ahlstrom, T (reprint author), Lund Univ, Inst Archaeol & Ancient Hist, Sandgatan 1, S-22350 Lund, Sweden. Torbjorn.Ahlstrom@ark.lu.se Adair LS, 2001, CIRCULATION, V104, P1034, DOI 10.1161/hc3401.095037; Alberts Susan C., 2003, P66; Barker D. J. P., 1998, MOTHERS BABIES HLTH; Barker DJP, 2002, INT J EPIDEMIOL, V31, P1235, DOI 10.1093/ije/31.6.1235; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; Bennike P., 1985, PALEOPATHOLOGY DANIS; Bogin B., 1999, PATTERNS HUMAN GROWT; Bogin B, 1998, BIOL STANDARD LIVING, P277; Buikstra J. E., 2006, BIOARCHAEOLOGY CONTE; CASE TJ, 2000, ILLUSTRATED GUIDE TH; Caswell H, 2001, MATRIX POPULATION MO; Chamberlain A., 2006, DEMOGRAPHY ARCHAEOLO; Cowie J, 2007, CLIMATE CHANGE: BIOLOGICAL AND HUMAN ASPECTS, P1; Cresswell JL, 1997, EARLY HUM DEV, V49, P143, DOI 10.1016/S0378-3782(97)00028-5; DOSSANTOS SI, 2004, BRIT J CANCER, V91, P519; DYKE B, 1981, ANNU REV ANTHROPOL, V10, P193, DOI 10.1146/annurev.an.10.100181.001205; Eriksson M, 2004, J INTERN MED, V255, P236, DOI 10.1046/j.1365-2796.2003.01289.x; Eveleth PB, 1991, WORLDWIDE VARIATION; FISHER R. A., 1930, GENETICAL THEORY NAT; Gage TB, 1998, ANNU REV ANTHROPOL, V27, P197, DOI 10.1146/annurev.anthro.27.1.197; Gilbert SF, 2001, DEV BIOL, V233, P1, DOI 10.1006/dbio.2001.0210; Gluckman PD, 2004, TRENDS ENDOCRIN MET, V15, P183, DOI 10.1016/j.tem.2004.03.002; HALES CN, 1992, DIABETOLOGIA, V35, P595, DOI 10.1007/BF00400248; Hawkes K, 2006, EVOLUTION HUMAN LIFE; Heijmans BT, 2008, P NATL ACAD SCI USA, V105, P17046, DOI 10.1073/pnas.0806560105; Hofsten E., 1976, SWEDISH POPULATION H; Hoppa Robert D., 2002, PALEODEMOGRAPHY AGE; Howell N., 1979, DEMOGRAPHY DOBE KUNG; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; Ibanez L, 2000, J CLIN ENDOCR METAB, V85, P2624, DOI 10.1210/jc.85.7.2624; Jones PD, 2004, REV GEOPHYS, V42, DOI 10.1029/2003RG000143; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Koziel S, 2002, J PAEDIATR CHILD H, V38, P268, DOI 10.1046/j.1440-1754.2002.00793.x; Kuzawa CW, 2005, AM J HUM BIOL, V17, P5, DOI 10.1002/ajhb.20091; Kuzawa CW, 2003, AM J CLIN NUTR, V77, P960; Larsen C., 1997, BIOARCHAEOLOGY INTER; LEFKOVITCH LP, 1965, BIOMETRICS, V21, P1, DOI 10.2307/2528348; LESLIE PH, 1945, BIOMETRIKA, V33, P183, DOI DOI 10.1093/BI0MET/33.3.183; Li HJ, 2003, AM J CLIN NUTR, V77, P1498; Lienhardt A, 2002, HORM RES, V57, P88, DOI 10.1159/000058108; LUMEY LH, 1994, SOC HIST MED, V7, P229, DOI 10.1093/shm/7.2.229; Malthus T., 1798, ESSAY PRINCIPLE POPU; Malthus Thomas, 1970, ESSAY PRINCIPLE POPU; McDade TW, 2001, AM J CLIN NUTR, V74, P543; Migliano AB, 2007, P NATL ACAD SCI USA, V104, P20216, DOI 10.1073/pnas.0708024105; Moore SE, 1997, NATURE, V388, P434, DOI 10.1038/41245; Morris WF, 2002, QUANTITATIVE CONSERV; Mulder MB, 1998, TRENDS ECOL EVOL, V13, P266, DOI 10.1016/S0169-5347(98)01357-3; National Central Bureau of Statistics, 1969, HIST STAT SWED 1; Paine Robert R., 2002, PALEODEMOGRAPHY AGE, P169; Paine RR, 2000, AM J PHYS ANTHROPOL, V112, P181, DOI 10.1002/(SICI)1096-8644(2000)112:2<181::AID-AJPA5>3.0.CO;2-9; Preston S. H., 2001, DEMOGRAPHY MEASURING; Ranta E., 2006, ECOLOGY POPULATIONS; Roff Derek A., 1992; SCOTT S, 1998, HUMAN DEMOGRAPHY DIS; Searle SR, 1982, MATRIX ALGEBRA USEFU; SILER W, 1979, ECOLOGY, V60, P750, DOI 10.2307/1936612; Siler W, 1983, Stat Med, V2, P373; STEARNS S, 1991, TRENDS ECOL EVOL, V6, P122, DOI 10.1016/0169-5347(91)90090-K; Stearns S. C., 1992, EVOLUTION LIFE HIST; Strauss RS, 1997, J PEDIATR-US, V130, P95, DOI 10.1016/S0022-3476(97)70316-0; USHER MB, 1966, J APPL ECOL, V3, P355, DOI 10.2307/2401258; van der Zee HA, 1998, HUNGER WINTER OCCUPI; Wahlund S, 1932, THESIS UPPSALA U UPP; Williams JT, 1992, INT J OSTEOARCHAEOL, V2, P131 65 3 3 0 18 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1047-482X 1099-1212 INT J OSTEOARCHAEOL Int. J. Osteoarchaeol. JUL-AUG 2011 21 4 407 419 10.1002/oa.1147 13 Anthropology; Archaeology Anthropology; Archaeology 808BR WOS:000293949000003 2018-11-12 J Schlomer, GL; Del Giudice, M; Ellis, BJ Schlomer, Gabriel L.; Del Giudice, Marco; Ellis, Bruce J. Parent-Offspring Conflict Theory: An Evolutionary Framework for Understanding Conflict Within Human Families PSYCHOLOGICAL REVIEW English Article parent-offspring conflict; life history theory; genomic imprinting; prenatal conflict; sibling relations ANTENATAL MATERNAL ANXIETY; HUMAN LIFE-HISTORY; RISK-FACTORS; SOCIAL BRAIN; TERMINAL INVESTMENT; MIDDLE CHILDHOOD; GENE-EXPRESSION; BIRTH-WEIGHT; DEVELOPMENTAL PLASTICITY; SIBLING RELATIONSHIPS Decades of research demonstrate that conflict shapes and permeates a broad range of family processes. In the current article, we argue that greater insight, integration of knowledge, and empirical achievement in the study of family conflict can be realized by utilizing a powerful theory from evolutionary biology that is barely known within psychology: parent-offspring conflict theory (POCT). In the current article, we articulate POCT for psychological scientists, extend its scope by connecting it to the broader framework of life history theory, and draw out its implications for understanding conflict within human families. We specifically apply POCT to 2 instances of early mother-offspring interaction (prenatal conflict and weaning conflict); discuss the effects of genetic relatedness on behavioral conflict between parents, children, and their siblings; review the emerging literature on parent-offspring conflict over the choice of mates and spouses; and examine parent-offspring conflict from the perspective of imprinted genes. This review demonstrates the utility of POCT, not only for explaining what is known about conflict within families but also for generating novel hypotheses, suggesting new lines of research, and moving us toward the "big picture" by integrating across biological and psychological domains of knowledge. [Schlomer, Gabriel L.] Univ Arizona, Norton Sch Family & Consumer Sci, Arizona Ctr Res & Outreach, Tucson, AZ 85721 USA; [Del Giudice, Marco] Univ Turin, Dept Psychol, Biol Social Behav Lab, Ctr Cognit Sci, I-10123 Turin, Italy Schlomer, GL (reprint author), Univ Arizona, Norton Sch Family & Consumer Sci, Arizona Ctr Res & Outreach, McClelland Pk,650 N Pk Ave, Tucson, AZ 85721 USA. schlomer@email.arizona.edu; marco.delgiudice@unito.it Del Giudice, Marco/F-7007-2010 Del Giudice, Marco/0000-0001-8526-1573 John and Doris Norton Endowment for Fathers, Parenting, and Families, Frances McClelland Institute, University of Arizona Gabriel L. Schlomer and Marco Del Giudice contributed equally to this article. Funding for this international collaboration was provided by the John and Doris Norton Endowment for Fathers, Parenting, and Families, Frances McClelland Institute, University of Arizona. We thank Dario Maestripieri for helpful comments on this article. We also thank Tomas Cabeza De Baca for his assistance on drafts of this article. ABELL TL, 1992, GASTROENTEROL CLIN N, V21, P835; Ahluwalia IB, 2005, PEDIATRICS, V116, P1408, DOI 10.1542/peds.2005-0013; Allen E, 2003, P NATL ACAD SCI USA, V100, P9940, DOI 10.1073/pnas.1737401100; Altmann J., 1980, BABOON MOTHERS INFAN; *AM DIAB ASS, 2004, DIABETES CARE S1, V27, pS88, DOI DOI 10.2337/DIACARE.27.2007.S88; Andrews PW, 2006, HUM NATURE-INT BIOS, V17, P190, DOI 10.1007/s12110-006-1017-8; Apicella CL, 2004, EVOL HUM BEHAV, V25, P371, DOI 10.1016/j.evolhumbehav.2004.06.003; Apicella CL, 2007, HUM NATURE-INT BIOS, V18, P22, DOI 10.1007/BF02820844; Apostolou M., 2007, EVOLUTIONARY PSYCHOL, V5, P70; Apostolou M, 2007, EVOL HUM BEHAV, V28, P403, DOI 10.1016/j.evolhumbehav.2007.05.007; Apostolou M, 2010, EVOL HUM BEHAV, V31, P39, DOI 10.1016/j.evolhumbehav.2009.06.010; Apostolou M, 2008, EVOL PSYCHOL, V6, P456; Apostolou M, 2008, EVOL PSYCHOL, V6, P303; Arck PC, 2001, HUM REPROD, V16, P1505, DOI 10.1093/humrep/16.7.1505; Arnett JJ, 1999, AM PSYCHOL, V54, P317, DOI 10.1037/0003-066X.54.5.317; Arngrimsson R, 2005, NAT GENET, V37, P460, DOI 10.1038/ng0505-460; Badcock C., 2009, IMPRINTED BRAIN GENE; Barash D.P., 2001, MYTH MONOGAMY FIDELI; Barratt MS, 1996, INT J BEHAV DEV, V19, P581, DOI 10.1177/016502549601900308; Barrett L, 2000, ETHOLOGY, V106, P645, DOI 10.1046/j.1439-0310.2000.00577.x; Bartolomei MS, 1997, ANNU REV GENET, V31, P493, DOI 10.1146/annurev.genet.31.1.493; BATESON P, 1994, TRENDS ECOL EVOL, V9, P399, DOI 10.1016/0169-5347(94)90066-3; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; Beaudet AL, 2002, AM J HUM GENET, V70, P1389, DOI 10.1086/340969; Beaulieu DA, 2008, EVOL HUM BEHAV, V29, P249, DOI 10.1016/j.evolhumbehav.2008.01.002; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 1999, HDB ATTACHMENT THEOR, P141; Bereczkei T, 2001, INT J BEHAV DEV, V25, P501, DOI 10.1080/01650250042000573; BERMAN CM, 1993, BEHAV ECOL SOCIOBIOL, V32, P391, DOI 10.1007/BF00168823; BOGIN B, 1997, AM J PHYS ANTHROPOL, V104, P63, DOI DOI 10.1002/(SICI)1096-8644(1997)25+<63::AID-AJPA3>3.0.CO;2-8; Boney CM, 2005, PEDIATRICS, V115, pE290, DOI 10.1542/peds.2004-1808; BORGERHOFF M, 2000, EVOL HUM BEHAV, V21, P391, DOI DOI 10.1016/S1090-5138(00)00054-4); Bornstein MH, 2007, DEV PSYCHOL, V43, P850, DOI 10.1037/0012-1649.43.4.850; Braza F, 2004, HUM ECOL, V32, P163, DOI 10.1023/B:HUEC.0000019761.98723.af; BRISKIE JV, 1994, P ROY SOC B-BIOL SCI, V258, P73, DOI 10.1098/rspb.1994.0144; Brown J, 1998, CHILD ABUSE NEGLECT, V22, P1065, DOI 10.1016/S0145-2134(98)00087-8; Brown WM, 2004, MED HYPOTHESES, V63, P377, DOI 10.1016/j.mehy.2004.05.010; Bugental DB, 2010, J EXP CHILD PSYCHOL, V106, P30, DOI 10.1016/j.jecp.2009.10.004; Bugental DB, 2004, DEV PSYCHOL, V40, P234, DOI 10.1037/0012-1649.40.2.234; BUHRMESTER D, 1992, CHILDRENS SIBLING RELATIONS, P19; BUHRMESTER D, 1990, CHILD DEV, V61, P1387, DOI 10.1111/j.1467-8624.1990.tb02869.x; Buller D., 2005, ADAPTING MINDS; Burch RL, 2000, EVOL HUM BEHAV, V21, P429, DOI 10.1016/S1090-5138(00)00056-8; Buunk AP, 2008, REV GEN PSYCHOL, V12, P47, DOI 10.1037/1089-2680.12.1.47; Buunk AP, 2010, J FAM PSYCHOL, V24, P391, DOI 10.1037/a0020252; Cassidy J, 2008, HDB ATTACHMENT; Chisholm JS, 1999, DEATH HOPE SEX STEPS; CIRICILLE VG, 1995, SIBLING RELATIONSHIP; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Collins W. A., 2006, CLOSE RELATIONSHIPS, P111; Crespi B, 2008, BEHAV BRAIN SCI, V31, P284, DOI 10.1017/S0140525X08004457; Crespi B, 2008, BEHAV BRAIN SCI, V31, P241, DOI 10.1017/S0140525X08004214; Crespi B, 2010, P NATL ACAD SCI USA, V107, P1736, DOI 10.1073/pnas.0906080106; CUNNINGHAM AS, 1991, J PEDIATR-US, V118, P659, DOI 10.1016/S0022-3476(05)80023-X; DALY M, 1980, J MARRIAGE FAM, V42, P277, DOI 10.2307/351225; Daly M., 1988, HOMICIDE; DALY M, 2005, COMMUNICATION; Daly M, 2007, FDN EVOLUTIONARY PSY, P383; Daly M., 1984, INFANTICIDE COMP EVO, P487; Davies W, 2005, NEUROSCI BIOBEHAV R, V29, P421, DOI 10.1016/j.neubiorev.2004.11.007; Davies W, 2008, FRONT NEUROENDOCRIN, V29, P413, DOI 10.1016/j.yfrne.2007.12.001; De Goede IHA, 2009, J YOUTH ADOLESCENCE, V38, P75, DOI 10.1007/s10964-008-9286-7; Del Giudice M., 2011, EVOLUTION PERSONALIT, P154; Del Giudice M., 2011, OXFORD HDB EVOLUTION, P65; Del Giudice M, 2007, MED HYPOTHESES, V68, P250, DOI 10.1016/j.mehy.2006.05.066; Del Giudice M, 2010, FRONT PSYCHOL, V1, DOI 10.3389/fpsyg.2010.00041; Del Giudice M, 2010, CHILD DEV PERSPECT, V4, P97, DOI 10.1111/j.1750-8606.2010.00125.x; Del Giudice M, 2009, DEV REV, V29, P1, DOI 10.1016/j.dr.2008.09.001; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Dickins BJA, 2008, BEHAV BRAIN SCI, V31, P267, DOI 10.1017/S0140525X08004287; Draper P., 1988, SOCIOBIOLOGICAL PERS, P340, DOI DOI 10.1007/978-1-4612-3760-0_12; Drummond H, 2001, ANIM BEHAV, V61, P517, DOI 10.1006/anbe.2000.1641; DUNN J, 1994, DEV PSYCHOL, V30, P315, DOI 10.1037/0012-1649.30.3.315; EASTERLING TR, 1990, OBSTET GYNECOL, V76, P1061; El-Sheikh M, 2004, DEV PSYCHOPATHOL, V16, P631, DOI 10.1017/S0954579404004705; El-Sheikh M, 2001, J ABNORM CHILD PSYCH, V29, P417, DOI 10.1023/A:1010447503252; ELLIS BJ, 2011, EVOLUTIONARY B UNPUB; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; ELLISON PT, 2001, FERTILE GROUND NATUR; ELLISSCHWABE M, 1986, J PSYCHOL, V120, P59, DOI 10.1080/00223980.1986.9712616; Feig DS, 2008, CAN MED ASSOC J, V179, P229, DOI 10.1503/cmaj.080012; Fessler DMT, 2005, AM J PHYS ANTHROPOL, V127, P95, DOI 10.1002/ajpa.20039; FISHER R. A., 1930, GENETICAL THEORY NAT; Flaxman SM, 2008, AM NAT, V172, P54, DOI 10.1086/588081; Flaxman SM, 2000, Q REV BIOL, V75, P113, DOI 10.1086/393377; Forbes LS, 1997, TRENDS ECOL EVOL, V12, P446, DOI 10.1016/S0169-5347(97)01179-8; Forbes S, 2002, TRENDS ECOL EVOL, V17, P115, DOI 10.1016/S0169-5347(01)02428-4; Fouts HN, 2005, CURR ANTHROPOL, V46, P29, DOI 10.1086/425659; Fouts HN, 2004, ETHNOLOGY, V43, P65, DOI 10.2307/3773856; Geary DC, 2000, PSYCHOL BULL, V126, P55, DOI 10.1037/0033-2909.126.1.55; Gluckman PD, 2007, AM J HUM BIOL, V19, P1, DOI 10.1002/ajhb.20590; GODFRAY HCJ, 1995, NATURE, V376, P133, DOI 10.1038/376133a0; GODFRAY HCJ, 1991, NATURE, V352, P328, DOI 10.1038/352328a0; GOLDBERG S, 1986, CHILD DEV, V57, P37, DOI 10.2307/1130635; GOMENDIO M, 1991, ANIM BEHAV, V42, P993, DOI 10.1016/S0003-3472(05)80152-6; GOSHEN R, 1994, AM J OBSTET GYNECOL, V170, P700, DOI 10.1016/S0002-9378(94)70254-3; GOTTLANDER K, 1987, ORNIS SCAND, V18, P269, DOI 10.2307/3676895; Grafen A., 1985, Oxford Surveys in Evolutionary Biology, V2, P28; Gray SJ, 1996, HUM BIOL, V68, P437; Gregg C, 2010, SCIENCE, V329, P643, DOI 10.1126/science.1190830; Guttman N, 2000, SOC SCI MED, V50, P1457, DOI 10.1016/S0277-9536(99)00387-1; Hagen EH, 2006, AM J PHYS ANTHROPOL, V130, P405, DOI 10.1002/ajpa.20272; Haig D, 1996, J EVOLUTION BIOL, V9, P357, DOI 10.1046/j.1420-9101.1996.9030357.x; Haig D, 2004, ANNU REV GENET, V38, P553, DOI 10.1146/annurev.genet.37.110801.142741; HAIG D, 1993, Q REV BIOL, V68, P495, DOI 10.1086/418300; Haig D, 1997, P ROY SOC B-BIOL SCI, V264, P1657, DOI 10.1098/rspb.1997.0230; Haig D, 2003, AM J HUM BIOL, V15, P320, DOI 10.1002/ajhb.10150; Haig D, 2000, PHILOS T ROY SOC B, V355, P1593, DOI 10.1098/rstb.2000.0720; Haig D, 2010, P NATL ACAD SCI USA, V107, P1731, DOI 10.1073/pnas.0904111106; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; HETHERINGTON ME, 1999, MONOGRAPHS SOC RES C, V259; HETHERINGTON ME, 1992, CHILD DEV, V57, P227; HOFER H, 1995, REV SUISSE ZOOL, V102, P895; Hofer H, 2008, BEHAV ECOL SOCIOBIOL, V62, P341, DOI 10.1007/s00265-007-0421-3; Hoffman CL, 2010, BEHAV ECOL, V21, P972, DOI 10.1093/beheco/arq098; Hrdy S, 1999, MOTHER NATURE MATERN; Huizink AC, 2002, J AM ACAD CHILD PSY, V41, P1078, DOI 10.1097/01.CHI.0000020276.43550.4B; Isles AR, 2006, PHILOS T R SOC B, V361, P2229, DOI 10.1098/rstb.2006.1942; Jankowiak W, 2000, EVOL HUM BEHAV, V21, P125, DOI 10.1016/S1090-5138(00)00027-1; Johnstone RA, 1996, P ROY SOC B-BIOL SCI, V263, P1677, DOI 10.1098/rspb.1996.0245; Kaplan HS, 2003, OFFSPRING, P170; Keller MC, 2008, BEHAV BRAIN SCI, V31, P273, DOI 10.1017/S0140525X08004342; Kelsey G, 2011, BIOESSAYS, V33, P362, DOI 10.1002/bies.201100004; Khashan AS, 2008, ARCH GEN PSYCHIAT, V65, P146, DOI 10.1001/archgenpsychiatry.2007.20; KILNER R, 1995, P ROY SOC B-BIOL SCI, V260, P343, DOI 10.1098/rspb.1995.0102; Kim KJ, 2001, DEV PSYCHOL, V37, P775, DOI 10.1037//0012-1649.37.6.775; KLOMP H, 1970, ARDEA, V58, P1; Kolliker M, 2005, AM NAT, V166, P506, DOI 10.1086/491687; Kolliker M, 2003, P ROY SOC B-BIOL SCI, V270, pS110, DOI 10.1098/rsbl.2003.0032; Kolliker M, 2001, ANIM BEHAV, V62, P395, DOI 10.1006/anbe.2001.1792; Konner M., 2005, HUNTER GATHERER CHIL, P19; Kushnick G, 2009, J BIOSOC SCI, V41, P183, DOI 10.1017/S0021932008002988; Kuzawa CW, 2007, AM J HUM BIOL, V19, P654, DOI 10.1002/ajhb.20659; Kuzawa CW, 2005, AM J HUM BIOL, V17, P5, DOI 10.1002/ajhb.20091; Langer O, 2005, AM J OBSTET GYNECOL, V192, P989, DOI 10.1016/j.ajog.2004.11.039; LAURSEN B, 1994, PSYCHOL BULL, V115, P197, DOI 10.1037//0033-2909.115.2.197; Laursen B, 1998, CHILD DEV, V69, P817, DOI 10.2307/1132206; Lawson DW, 2009, EVOL HUM BEHAV, V30, P170, DOI 10.1016/j.evolhumbehav.2008.12.001; Leonard M, 1996, BEHAV ECOL SOCIOBIOL, V38, P341, DOI 10.1007/s002650050250; Lessells CM, 1999, P ROY SOC B-BIOL SCI, V266, P1637, DOI 10.1098/rspb.1999.0826; LIND T, 1988, DIABETES MELLITUS PR, P75; Lindheimer MD, 2008, J AM SOC HYPERTENS, V2, P484, DOI 10.1016/j.jash.2008.10.001; Long TAF, 2005, J EVOLUTION BIOL, V18, P509, DOI 10.1111/j.1420-9101.2005.00888.x; Luke B, 2007, TWIN RES HUM GENET, V10, P778, DOI 10.1375/twin.10.5.778; Maestripieri D, 2002, INT J PRIMATOL, V23, P923, DOI 10.1023/A:1015537201184; MALKIN CM, 1994, J COMP FAM STUD, V25, P121; MANN J, 1992, ADAPTED MIND EVOLUTI, P367; Marlowe FW, 2003, CROSS-CULT RES, V37, P282, DOI 10.1177/1069397103254008; McCarton CM, 1996, PEDIATRICS, V98, P1167; McDade TW, 1998, J DEV BEHAV PEDIATR, V19, P286, DOI 10.1097/00004703-199808000-00008; McGue M, 2005, DEV PSYCHOL, V41, P971, DOI 10.1037/0012-1649.41.6.974; Meaney MJ, 2010, CHILD DEV, V81, P41, DOI 10.1111/j.1467-8624.2009.01381.x; MENDL M, 1988, J ZOOL, V215, P15, DOI 10.1111/j.1469-7998.1988.tb04882.x; MENDL M, 1994, BEHAV PROCESS, V31, P285, DOI 10.1016/0376-6357(94)90013-2; Mersky JP, 2009, CHILD MALTREATMENT, V14, P73, DOI 10.1177/1077559508318399; Miller G. F., 2000, MATING MIND SEXUAL C; Mohler E, 2006, EARLY HUM DEV, V82, P731, DOI 10.1016/j.earlhumdev.2006.02.010; MONTEMAYOR R, 1986, J ADOLESCENT RES, V1, P15, DOI DOI 10.1177/074355488611003; MOORE MP, 1983, BRIT MED J, V287, P580, DOI 10.1136/bmj.287.6392.580; Moreno-Rueda G, 2007, ARDEOLA, V54, P15; Nepomnaschy PA, 2006, P NATL ACAD SCI USA, V103, P3938, DOI 10.1073/pnas.0511183103; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; O'Connor TG, 2006, J CHILD PSYCHOL PSYC, V47, P498, DOI 10.1111/j.1469-7610.2005.01527.x; Ogbuanu CA, 2009, WOMEN HEALTH ISS, V19, P268, DOI 10.1016/j.whi.2009.03.005; Oudejans CBM, 2008, PLACENTA, V29, pS78, DOI 10.1016/j.placenta.2007.09.005; Overpeck MD, 1998, NEW ENGL J MED, V339, P1211, DOI 10.1056/NEJM199810223391706; PAIKOFF RL, 1991, PSYCHOL BULL, V110, P47, DOI 10.1037//0033-2909.110.1.47; PARKER GA, 1985, ANIM BEHAV, V33, P519, DOI 10.1016/S0003-3472(85)80075-0; PARKER GA, 1989, AM NAT, V133, P846, DOI 10.1086/284956; PARKER GA, 1979, ANIM BEHAV, V27, P1210, DOI 10.1016/0003-3472(79)90068-X; Parker GA, 2002, PHILOS T R SOC B, V357, P295, DOI 10.1098/rstb.2001.0950; Pave R, 2010, PRIMATES, V51, P221, DOI 10.1007/s10329-010-0189-3; Pepper GV, 2006, P R SOC B, V273, P2675, DOI 10.1098/rspb.2006.3633; Pickler RH, 2009, JOGNN-J OBST GYN NEO, V38, P468, DOI 10.1111/j.1552-6909.2009.01043.x; Pollet TV, 2007, EVOL HUM BEHAV, V28, P176, DOI 10.1016/j.evolhumbehav.2006.10.001; PROFET M, 1992, ADAPTED MIND EVOLUTI, P327; PRUETT CL, 1993, J DIVORCE REMARRIAGE, V19, P165, DOI 10.1300/J087v19n03_11; PRYCE CR, 1995, MOTHERHOOD IN HUMAN AND NONHUMAN PRIMATES, P1; PUGESEK BH, 1990, BEHAV ECOL SOCIOBIOL, V27, P211; PUGESEK BH, 1995, ANIM BEHAV, V49, P641; PUGESEK BH, 1990, ECOLOGY, V71, P811, DOI 10.2307/1940332; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P1, DOI 10.1016/S1090-5138(02)00104-6; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; RAGOZIN AS, 1982, DEV PSYCHOL, V18, P627, DOI 10.1037/0012-1649.18.4.627; Renk K, 2005, FAM J, V13, P139, DOI 10.1177/1066480704271190; Robson A, 1998, INFANT BEHAV DEV, V21, P331, DOI 10.1016/S0163-6383(98)90010-8; Roff Derek A., 1992; Ros HS, 1998, AM J EPIDEMIOL, V147, P1062; Ross Glynis, 2006, Aust Fam Physician, V35, P392; Royle NJ, 2004, POPUL ECOL, V46, P231, DOI 10.1007/s10144-004-0196-6; Royle NJ, 2002, NATURE, V416, P733, DOI 10.1038/416733a; Schalkwyk LC, 2010, AM J HUM GENET, V86, P196, DOI 10.1016/j.ajhg.2010.01.014; Scheper-Hughes Nancy, 1992, DEATH WEEPING VIOLEN; Schlomer GL, 2010, J RES ADOLESCENCE, V20, P287, DOI 10.1111/j.1532-7795.2010.00641.x; Schnitzer PG, 2005, PEDIATRICS, V116, pE687, DOI 10.1542/ped.205-0296; Scott-Phillips TC, 2011, PERSPECT PSYCHOL SCI, V6, P38, DOI 10.1177/1745691610393528; Sear R., 2011, EVOLUTIONARY PSYCHOL, P216; Smetana J, 1999, CHILD DEV, V70, P1447, DOI 10.1111/1467-8624.00105; SMETANA JG, 1991, DEV PSYCHOL, V27, P1000, DOI 10.1037//0012-1649.27.6.1000; SMETANA JG, 1989, CHILD DEV, V60, P1052, DOI 10.2307/1130779; SMETANA JG, 2005, CONFLICT CONTRADICTI, P69; Smiseth PT, 2008, P ROY SOC B-BIOL SCI, V275, P1823, DOI 10.1098/rspb.2008.0199; Smith M. L., 2007, THESIS; Soltis J, 2004, BEHAV BRAIN SCI, V27, P443; STAMPS J, 1985, BEHAVIOUR, V94, P1, DOI 10.1163/156853985X00253; Steinberg L, 2001, J RES ADOLESCENCE, V11, P1, DOI 10.1111/1532-7795.00001; Steinberg L, 1989, BIOL ADOLESCENT BEHA, P71; Sterns S., 1992, EVOLUTION LIFE HIST; Strassmann BI, 2002, P ROY SOC B-BIOL SCI, V269, P553, DOI 10.1098/rspb.2001.1912; Sulloway F. J., 1996, BORN REBEL BIRTH ORD; SYMONDS EM, 1980, J ROY SOC MED, V73, P871; Temrin H, 2000, P ROY SOC B-BIOL SCI, V267, P943, DOI 10.1098/rspb.2000.1094; Temrin H, 2011, CURR ZOOL, V57, P253, DOI 10.1093/czoolo/57.3.253; Thakkar KN, 2008, BEHAV BRAIN SCI, V31, P277, DOI 10.1017/S0140525X0800438X; THORNHILL R, 1993, HUM NATURE-INT BIOS, V4, P237, DOI 10.1007/BF02692201; Thornhill R, 1997, BIOL REV, V72, P497, DOI 10.1017/S0006323197005082; Tooley GA, 2006, EVOL HUM BEHAV, V27, P224, DOI 10.1016/j.evolhumbahev.2005.10.001; Trillmich F, 2008, BEHAV ECOL SOCIOBIOL, V62, P363, DOI 10.1007/s00265-007-0423-1; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; TRIVERS RL, 1974, AM ZOOL, V14, P249; Trumbo Stephen T., 1996, Advances in the Study of Behavior, V25, P3; Ubeda F, 2010, EVOLUTION, V64, P2587, DOI 10.1111/j.1558-5646.2010.01015.x; Ubeda F, 2008, ADV EXP MED BIOL, V626, P101; Ubeda F, 2008, PLOS BIOL, V6, P1678, DOI 10.1371/journal.pbio.0060208; Van den Bergh BRH, 2005, NEUROSCI BIOBEHAV R, V29, P237, DOI 10.1016/j.neubiorev.2004.10.007; Van den Bergh BRH, 2004, CHILD DEV, V75, P1085, DOI 10.1111/j.1467-8624.2004.00727.x; Volk A., 2007, EVOLUTIONARY PSYCHOL, V5, P1, DOI DOI 10.1556/JEP.2007.1018; Wall S., 1978, PATTERNS ATTACHMENT; Weladji RB, 2010, OECOLOGIA, V162, P261, DOI 10.1007/s00442-009-1443-5; Wessel J, 2002, ACTA OBSTET GYN SCAN, V81, P1021, DOI 10.1034/j.1600-0412.2002.811105.x; White PA, 2008, BEHAV ECOL SOCIOBIOL, V62, P353, DOI 10.1007/s00265-007-0422-2; Whittingham LA, 2003, ANIM BEHAV, V65, P1203, DOI 10.1006/anbe.2003.2178; Wilcox AJ, 2001, INT J EPIDEMIOL, V30, P1233, DOI 10.1093/ije/30.6.1233; Wilkins JF, 2003, NAT REV GENET, V4, P359, DOI 10.1038/nrg1062; WILKINS JF, 2008, GENOMIC IMPRINTING A, V626; Williams GC, 1966, ADAPTATION NATURAL S; WILSON MI, 1980, J BIOSOC SCI, V12, P333; ZAHAVI A, 1997, HANDICAP PRINCIPLE M; Zhao Q, 2008, INT J PRIMATOL, V29, P583, DOI 10.1007/s10764-008-9255-8 239 33 35 2 79 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0033-295X 1939-1471 PSYCHOL REV Psychol. Rev. JUL 2011 118 3 496 521 10.1037/a0024043 26 Psychology; Psychology, Multidisciplinary Psychology 792MQ WOS:000292750900004 21604906 2018-11-12 J Love, OP; Williams, TD Love, O. P.; Williams, T. D. Manipulating developmental stress reveals sex-specific effects of egg size on offspring phenotype JOURNAL OF EVOLUTIONARY BIOLOGY English Article developmental stress; egg size; European starling (Sturnus vulgaris); maternal effect; offspring quality; sex allocation STARLING STURNUS-VULGARIS; FLUCTUATING ASYMMETRY; FLIGHT PERFORMANCE; REARING CONDITIONS; REPRODUCTIVE INVESTMENT; HAEMATOPUS-OSTRALEGUS; COMPENSATORY GROWTH; IMMUNE-RESPONSE; TIT NESTLINGS; SURVIVAL The general lack of experimental evidence for strong, positive effects of egg size on offspring phenotype has led to suggestions that avian egg size is a neutral trait. To better understand the functional significance of intra-specific variation in egg size as a determinant of offspring fitness within a life-history (sex-specific life-history strategies) and an environmental (poor rearing conditions) context, we experimentally increased developmental stress (via maternal feather-clipping) in the sexually size-dimorphic European starling (Sturnus vulgaris) and measured phenotypic traits in offspring across multiple biological scales. As predicted by life-history theory, sons and daughters had different responses when faced with developmental stress and variation in egg size. In response to developmental stress, small egg size in normally faster-growing sons was associated with catch-up growth prior to attaining larger adult size, resulting in a reduction in developmental stability. Daughters apparently avoided this developmental instability by reducing growth rate and eventual adult body mass and size. Interestingly, large egg size provided offspring with greater developmental flexibility under poor growth conditions. Large-egg sons and daughters avoided the reduction in developmental stability, and daughters also showed enhanced escape performance during flight trials. Furthermore, large egg size resulted in elevated immune responses for both sexes under developmental stress. These findings show that there can be significant, but complex, context-specific effects of egg size on offspring phenotype at least up to fledging, but these can only be demonstrated by appreciating variation in the quality of the offspring environment and life histories. Results are therefore consistent with egg size playing a significant role in shaping the phenotypic outcome of offspring in species that show even greater intra-specific variation in egg size than starlings. [Love, O. P.] Univ Windsor, Windsor, ON N9B 3P4, Canada; [Williams, T. D.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada Love, OP (reprint author), Univ Windsor, 401 Sunset Ave, Windsor, ON N9B 3P4, Canada. olove@uwindsor.ca Natural Sciences and Engineering Research Council of Canada (NSERC) The Davis family at Davistead Dairy Farm generously supported our starling research; E. Rowland, J. Verspoor, E. Chin and L. Sheldon provided countless hours and hard work both in the field and laboratory. We thank C. Semeniuk for extremely helpful comments, and A. Roulin and one anonymous reviewer for help on an earlier version of the manuscript. The Natural Sciences and Engineering Research Council of Canada (NSERC) provided operating grants to TDW and OPL, and under-graduate awards to J. Verspoor and L. Sheldon. Alvarez D, 2007, OIKOS, V116, P1144, DOI 10.1111/j.2007.0030-1299.15861.x; Arnold KE, 2007, J AVIAN BIOL, V38, P356, DOI 10.1111/j.2007.0908-8857.03818.x; Bize P, 2002, OECOLOGIA, V132, P231, DOI 10.1007/s00442-002-0980-y; Blount JD, 2000, TRENDS ECOL EVOL, V15, P47, DOI 10.1016/S0169-5347(99)01774-7; Buchanan KL, 2003, P ROY SOC B-BIOL SCI, V270, P1149, DOI 10.1098/rspb.2003.2330; CABE PR, 1993, BIRDS N AM, P48; Chin EH, 2005, J AVIAN BIOL, V36, P549, DOI 10.1111/j.0908-8857.2005.03496.x; Chin EH, 2009, P R SOC B, V276, P499, DOI 10.1098/rspb.2008.1294; Christians JK, 2002, BIOL REV, V77, P1, DOI 10.1017/S1464793101005784; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Clutton-Brock T.H., 1988, REPROD SUCCESS STUDI; Fargallo JA, 2002, ECOL LETT, V5, P95, DOI 10.1046/j.1461-0248.2002.00290.x; Flux J. E. C., 1992, Notornis, V39, P293; Grindstaff JL, 2003, P ROY SOC B-BIOL SCI, V270, P2309, DOI 10.1098/rspb.2003.2485; GROOTHUIS TGG, 2005, NEUROSCI BIOBEHAV R, V29, P325; Heath DD, 2003, SCIENCE, V299, P1738, DOI 10.1126/science.1079707; HILL H, 2003, P NATL C UND RES NCU; Inness CLW, 2008, P ROY SOC B-BIOL SCI, V275, P1703, DOI 10.1098/rspb.2008.0357; Jager TD, 2000, IBIS, V142, P603, DOI 10.1111/j.1474-919X.2000.tb04460.x; Kolss M, 2009, EVOLUTION, V63, P2389, DOI 10.1111/j.1558-5646.2009.00718.x; Kontiainen P, 2008, J EVOLUTION BIOL, V21, P88, DOI 10.1111/j.1420-9101.2007.01468.x; Krist M, 2011, BIOL REV, V86, P692, DOI 10.1111/j.1469-185X.2010.00166.x; Krist M, 2009, J ANIM ECOL, V78, P907, DOI 10.1111/j.1365-2656.2009.01536.x; Lemberget T, 2009, OECOLOGIA, V159, P83, DOI 10.1007/s00442-008-1212-x; Love OP, 2009, GEN COMP ENDOCR, V163, P169, DOI 10.1016/j.ygcen.2008.10.001; Love OP, 2008, AM NAT, V172, pE135, DOI 10.1086/590959; Love OP, 2008, AM NAT, V172, pE99, DOI 10.1086/589521; Love OP, 2005, AM NAT, V166, P751, DOI 10.1086/497440; Marshall DJ, 2007, OIKOS, V116, P1957, DOI 10.1111/j.2007.0030-1299.16203.x; Martin LB, 2006, FUNCT ECOL, V20, P290, DOI 10.1111/j.1365-2435.01094.x; Martin LB, 2009, GEN COMP ENDOCR, V163, P70, DOI 10.1016/j.ygcen.2009.03.008; McNamara JM, 2005, BEHAV ECOL, V16, P1008, DOI 10.1093/beheco/ari087; MEATHREL CE, 1993, OECOLOGIA, V93, P162, DOI 10.1007/BF00317665; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Pfennig DW, 2000, EVOLUTION, V54, P1738; Pryke SR, 2009, SCIENCE, V323, P1605, DOI 10.1126/science.1168928; Raberg L, 2005, OECOLOGIA, V145, P496, DOI 10.1007/s00442-005-0133-1; REED CWL, 2009, AM NAT, V174, P685; Risch TS, 2000, CAN J ZOOL, V78, P967, DOI 10.1139/cjz-78-6-967; Roulin A, 2009, NATURWISSENSCHAFTEN, V96, P375, DOI 10.1007/s00114-008-0489-2; Rowland E, 2007, J AVIAN BIOL, V38, P612, DOI 10.1111/j.2007.0908-8857.04082.x; Saino N, 2010, P ROY SOC B-BIOL SCI, V277, P1203, DOI 10.1098/rspb.2009.2012; Shuster SM, 2009, P NATL ACAD SCI USA, V106, P10009, DOI 10.1073/pnas.0901132106; Smith HG, 1998, OECOLOGIA, V115, P59, DOI 10.1007/s004420050491; SMITH HG, 1995, ECOLOGY, V76, P1, DOI 10.2307/1940626; Soderman F, 2007, OECOLOGIA, V151, P593, DOI 10.1007/s00442-006-0611-0; Styrsky JD, 1999, P ROY SOC B-BIOL SCI, V266, P1253, DOI 10.1098/rspb.1999.0771; SWADDLE JP, 1994, ANIM BEHAV, V48, P986, DOI 10.1006/anbe.1994.1327; Travers M, 2010, ECOL LETT, V13, P980, DOI 10.1111/j.1461-0248.2010.01488.x; Tschirren B, 2003, J ANIM ECOL, V72, P839, DOI 10.1046/j.1365-2656.2003.00755.x; Van de Pol M, 2006, IBIS, V148, P203, DOI 10.1111/j.1474-919x.2006.00479.x; van Dongen S. V., 2006, J EVOLUTION BIOL, V19, P1727, DOI DOI 10.1111/J.1420-9101.2006.01175.X; Verspoor JJ, 2007, BEHAV ECOL, V18, P967, DOI 10.1093/beheco/arm089; Wagner EC, 2007, PHYSIOL BIOCHEM ZOOL, V80, P293, DOI 10.1086/512586; Walling CA, 2007, BEHAV ECOL SOCIOBIOL, V61, P1007, DOI 10.1007/s00265-006-0333-7; Williams EV, 2003, J AVIAN BIOL, V34, P371, DOI 10.1111/j.0908-8857.2003.02964.x; Williams TD, 2005, BIOSCIENCE, V55, P39, DOI 10.1641/0006-3568(2005)055[0039:MUTCOE]2.0.CO;2; WILLIAMS TD, 1994, BIOL REV, V68, P35, DOI DOI 10.1111/J.1469-185X.1994.TB01485.X; Winkler DW, 1995, AUK, V112, P737 59 8 8 1 33 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1010-061X J EVOLUTION BIOL J. Evol. Biol. JUL 2011 24 7 1497 1504 10.1111/j.1420-9101.2011.02282.x 8 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 791WK WOS:000292698700011 21569153 Bronze 2018-11-12 J Spencer, RJ; Janzen, FJ Spencer, Ricky-John; Janzen, Fredric J. Hatching Behavior in Turtles INTEGRATIVE AND COMPARATIVE BIOLOGY English Article PIG-NOSED TURTLE; LIFE-HISTORY STAGE; SEA-TURTLES; CARETTOCHELYS-INSCULPTA; HATCHLING TURTLES; CARETTA-CARETTA; CHRYSEMYS-PICTA; PREDATION RISK; REPRODUCTIVE SYNCHRONY; NOCTURNAL EMERGENCE Incubation temperature plays a prominent role in shaping the phenotypes and fitness of embryos, including affecting developmental rates. In many taxa, including turtles, eggs are deposited in layers such that thermal gradients alter developmental rates within a nest. Despite this thermal effect, a nascent body of experimental work on environmentally cued hatching in turtles has revealed unexpected synchronicity in hatching behavior. This review discusses environmental cues for hatching, physiological mechanisms behind synchronous hatching, proximate and ultimate causes for this behavior, and future directions for research. Four freshwater turtle species have been investigated experimentally, with hatching in each species elicited by different environmental cues and responding via various physiological mechanisms. Hatching of groups of eggs in turtles apparently involves some level of embryo-embryo communication and thus is not a purely passive activity. Although turtles are not icons of complex social behavior, life-history theory predicts that the group environment of the nest can drive the evolution of environmentally cued hatching. [Spencer, Ricky-John] Univ Western Sydney, Sch Nat Sci, Water & Wildlife Ecol Grp WWE, Penrith, NSW 1797, Australia; [Spencer, Ricky-John] Univ Western Sydney, Sch Nat Sci, NPAU, Penrith, NSW 1797, Australia; [Janzen, Fredric J.] Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Ames, IA 50011 USA Spencer, RJ (reprint author), Univ Western Sydney, Sch Nat Sci, Water & Wildlife Ecol Grp WWE, Locked Bag 1797, Penrith, NSW 1797, Australia. ricky.spencer@uws.edu.au School of Natural Sciences at the University of Western Sydney; Division of Animal Behavior (SICB) We are particularly grateful to K. Martin, K. Warkentin, and R. Strauthman for the invitation to present a manuscript to ICB and for organizing the symposium "Environmentally Cued Hatching across Taxa: Embryos Choose A Birthday" at the SICB 2011 annual conference. We also thank the Division of Animal Behavior (SICB) for sponsoring the symposium. This review was stimulated by valuable discussions with J. McGlashan and M. Thompson.; A research grant from the School of Natural Sciences at the University of Western Sydney supported travel to the symposium. Andrews R.M., 2004, P75; Birchard GF, 2000, J THERM BIOL, V25, P287, DOI 10.1016/S0306-4565(99)00100-X; BIRCHARD GF, 1995, PHYSIOL ZOOL, V65, P799; Booth D.T., 1991, P325, DOI 10.1017/CBO9780511585739.021; Bowen KD, 2005, J ZOOL, V267, P397, DOI 10.1017/S0952836905007533; Bradbury IR, 2005, LIMN OCEANOG, V86, P1873; Brent G A, 2000, Rev Endocr Metab Disord, V1, P27, DOI 10.1023/A:1010056202122; BUSTARD HR, 1967, NATURE, V214, P317, DOI 10.1038/214317a0; Buys N, 1998, AVIAN PATHOL, V27, P605, DOI 10.1080/03079459808419391; Cann J., 1998, AUSTR FRESHWATER TUR; CARR ARCHIE, 1961, ANIMAL BEHAVIOUR, V9, P68, DOI 10.1016/0003-3472(61)90051-3; Cassar-Malek I, 2007, DOMEST ANIM ENDOCRIN, V33, P91, DOI 10.1016/j.domaniend.2006.04.011; Chivers DP, 2001, OIKOS, V92, P135, DOI 10.1034/j.1600-0706.2001.920116.x; Colbert PL, 2010, FUNCT ECOL, V24, P112, DOI 10.1111/j.1365-2435.2009.01602.x; Costanzo JP, 2008, J EXP ZOOL PART A, V309A, P297, DOI 10.1002/jez.460; Crossley DA, 2003, J EXP BIOL, V206, P2703, DOI 10.1242/jeb.00476; DAVIES JC, 1983, CAN J ZOOL, V59, P1201; De Smit L, 2006, COMP BIOCHEM PHYS A, V145, P166, DOI 10.1016/j.cbpa.2006.06.046; DECUYPERE E, 1991, POULT SCI S, V22, P239; Deeming D. C., 1991, EGG INCUBATION ITS E; Depari Joseph A., 1996, Chelonian Conservation and Biology, V2, P5; Dewil E, 1996, BRIT POULTRY SCI, V37, P1003, DOI 10.1080/00071669608417931; DMIEL R, 1967, COPEIA, P332; Doody JS, 2003, J ZOOL, V259, P179, DOI 10.1017/S0952836902003217; Doody JS, 2001, CAN J ZOOL, V79, P1062, DOI 10.1139/cjz-79-6-1062; DOODY JS, 2004, BIOL J LINN SOC, V80, P1; DRIVER PM, 1965, NATURE, V206, P315, DOI 10.1038/206315a0; Du WG, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009557; Du WG, 2009, J EXP BIOL, V212, P1302, DOI 10.1242/jeb.027425; ECKRICH CE, 1995, HERPETOLOGICA, V51, P349; Ewert MA, 1985, BIOL REPTILIA, P76; Ferguson M.W.J., 1985, Biology of Reptilia, V14, P329; FOWDEN AL, 1995, REPROD FERT DEVELOP, V7, P351, DOI 10.1071/RD9950351; Frechette B, 2000, EURO J ENTOMOL, V76, P177; Georges A, 2005, PHYSIOL BIOCHEM ZOOL, V78, P18, DOI 10.1086/425200; GEORGES A, 1992, AUST J ZOOL, V40, P511, DOI 10.1071/ZO9920511; GEORGES A, 1988, DRY SEASON DISTRIBUT, P1; GEORGES A., 2008, CHELONIAN RES MONOGR, V5, P91; Georges Arthur, 2004, P79; GUTZKE WHN, 1987, PHYSIOL ZOOL, V60, P9, DOI 10.1086/physzool.60.1.30158624; GYURIS E, 1993, WILDLIFE RES, V20, P345, DOI 10.1071/WR9930345; HARVELL CD, 1990, Q REV BIOL, V65, P323, DOI 10.1086/416841; HIMMSHAGEN J, 1983, NUTR REV, V41, P261; IMS RA, 1990, AM NAT, V136, P485, DOI 10.1086/285109; Jackson DC, 2004, COMP BIOCHEM PHYS A, V139, P221, DOI 10.1016/j.cbpb.2004.09.005; Janzen FJ, 2000, ECOLOGY, V81, P2290; Kolbe JJ, 2002, COPEIA, P220, DOI 10.1643/0045-8511(2002)002[0220:EAOAEL]2.0.CO;2; Lack D., 1968, ECOLOGICAL ADAPTATIO; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; LOHMANN KJ, 1991, J EXP BIOL, V155, P37; LYNN W. GARDNER, 1960, AMER MIDLAND NAT, V64, P309, DOI 10.2307/2422664; MALONEY JE, 1990, COPEIA, P378, DOI 10.2307/1446343; Martin KLM, 2001, AM ZOOL, V41, P526, DOI 10.1668/0003-1569(2001)041[0526:BSIFPT]2.0.CO;2; Miller J.D., 1985, Biology of Reptilia, V14, P269; MROSOVSKY N, 1980, AM ZOOL, V20, P531; MROSOVSKY N, 1980, BIOL CONSERV, V18, P271, DOI 10.1016/0006-3207(80)90003-8; MROSOVSKY N, 1968, NATURE, V220, P1338, DOI 10.1038/2201338a0; MROSOVSKY N, 1978, ANIMAL MIGRATION NAV, P413; Nagle RD, 2004, CAN J ZOOL, V82, P1211, DOI 10.1139/Z04-096; O'Steen S, 1999, PHYSIOL BIOCHEM ZOOL, V72, P520, DOI 10.1086/316690; ODONOGHUE M, 1995, OIKOS, V74, P115, DOI 10.2307/3545680; Packard G. C., 1988, BIOL REPTILIA, V16, P524; PACKARD GC, 1987, ECOLOGY, V68, P983, DOI 10.2307/1938369; Peterson CC, 2005, J HERPETOL, V39, P678, DOI 10.1670/122-05N.1; PRITCHARD P C H, 1969, Bulletin of the Florida State Museum Biological Sciences, V13, P85; SALMON M, 1989, ETHOLOGY, V83, P215; SEXTON OJ, 1974, PHYSIOL ZOOL, V47, P91, DOI 10.1086/physzool.47.2.30155626; SIH A, 1993, AM NAT, V142, P947, DOI 10.1086/285583; Speer-Blank TM, 2004, COPEIA, P21; Spencer RJ, 2006, ECOLOGY, V87, P3109, DOI 10.1890/0012-9658(2006)87[3109:CDGIAL]2.0.CO;2; Spencer RJ, 2002, ECOLOGY, V83, P2136, DOI 10.2307/3072045; Spencer RJ, 2001, OIKOS, V93, P401, DOI 10.1034/j.1600-0706.2001.930305.x; STAMPER DL, 1990, COMP BIOCHEM PHYS A, V96, P67, DOI 10.1016/0300-9629(90)90042-Q; Testa JW, 2002, J MAMMAL, V83, P699, DOI 10.1644/1545-1542(2002)083<0699:DPONIS>2.0.CO;2; Thompson M. B., 1997, BIOL HUSBANDRY HEALT, P88; THOMPSON MB, 1989, RESP PHYSIOL, V76, P243, DOI 10.1016/0034-5687(89)90101-1; THOMPSON MB, 1988, COPEIA, P996; Tucker JK, 2008, BEHAV ECOL, V19, P35, DOI 10.1093/beheco/arm097; Tucker John K., 1997, Illinois Natural History Survey Biological Notes, V140, P1; Tucker John K., 1999, Chelonian Conservation and Biology, V3, P401; Vince M. A., 1969, P233; VINCE MA, 1971, ANIM BEHAV, V19, P62, DOI 10.1016/S0003-3472(71)80135-5; VITT LJ, 1991, CAN J ZOOL, V69, P504, DOI 10.1139/z91-077; Vonesh JR, 2000, COPEIA, P560, DOI 10.1643/0045-8511(2000)000[0560:DPOTAE]2.0.CO;2; Warkentin KM, 2000, ANIM BEHAV, V60, P503, DOI 10.1006/anbe.2000.1508; WARKENTIN KM, 1995, P NATL ACAD SCI USA, V92, P3507, DOI 10.1073/pnas.92.8.3507; WEBB GJW, 1986, J ZOOL B, V1, P512; Weisrock DW, 1999, FUNCT ECOL, V13, P94, DOI 10.1046/j.1365-2435.1999.00288.x; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; ZWEIFEL RG, 1989, AM MUS NOVIT, P18 90 21 22 0 58 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1540-7063 INTEGR COMP BIOL Integr. Comp. Biol. JUL 2011 51 1 100 110 10.1093/icb/icr045 11 Zoology Zoology 786MY WOS:000292313800010 21659391 Bronze 2018-11-12 J Saraux, C; Chiaradia, A; Le Maho, Y; Ropert-Coudert, Y Saraux, Claire; Chiaradia, Andre; Le Maho, Yvon; Ropert-Coudert, Yan Everybody needs somebody: unequal parental effort in little penguins BEHAVIORAL ECOLOGY English Article attendance patterns; individual quality; meal size; parental care; reproductive costs; seabirds BLUE-FOOTED BOOBY; EUDYPTULA-MINOR; FORAGING BEHAVIOR; BREEDING SUCCESS; SEX-DIFFERENCES; REPRODUCTIVE-PERFORMANCE; WANDERING ALBATROSSES; PROVISIONING RULES; MANX SHEARWATERS; ADELIE PENGUINS According to life-history theory, individuals optimize their decisions in order to maximize their fitness. This raises a conflict between parents, which need to cooperate to ensure the propagation of their genes but at the same time need to minimize the associated costs. Trading-off between benefits and costs of a reproduction is one of the major forces driving demographic trends and has shaped several different parental care strategies. Using little penguins (Eudyptula minor) as a model, we investigated whether individuals of a pair provide equal parental effort when raising offspring and whether their behavior was consistent over 8 years of contrasting resource availability. Using an automated identification system, we found that 72% of little penguin pairs exhibited unforced (i.e., that did not result from desertion of 1 parent) unequal partnership through the postguard stage. This proportion was lower in favorable years. Although being an equal pair appeared to be a better strategy, it was nonetheless the least often observed. Individuals that contributed less than their partner were not less experienced (measured by age), and gender did not explain differences between partners. Furthermore, birds that contributed little or that contributed a lot tended to be consistent in their level of contribution across years. We suggest that unequal effort during breeding may reflect differences in individual quality, and we encourage future studies on parental care to consider this consistent low and high contributor behavior when investigating differences in pair investment into its offspring. [Chiaradia, Andre] Res Dept, Cowes, Vic 3922, Australia; [Saraux, Claire; Le Maho, Yvon; Ropert-Coudert, Yan] Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, F-67087 Strasbourg, France; [Saraux, Claire; Le Maho, Yvon; Ropert-Coudert, Yan] Ctr Natl Rech Sci, Unite Mixte Rech 7178, F-67087 Strasbourg, France; [Saraux, Claire] AgroParisTech ENGREF, F-75732 Paris, France Chiaradia, A (reprint author), Res Dept, Phillip Isl Nat Pk,POB 97, Cowes, Vic 3922, Australia. achiaradia@penguins.org.au Chiaradia, Andre/0000-0002-6178-4211; Saraux, Claire/0000-0001-5061-4009 BHP-Billiton; Penguin Foundation; Australian Academy of Science Grants received from BHP-Billiton, Penguin Foundation and the Australian Academy of Science. Aho T, 1997, BEHAV ECOL SOCIOBIOL, V41, P49, DOI 10.1007/s002650050362; Andersson M., 1994, SEXUAL SELECTION; Arnould JPY, 2004, EMU, V104, P261, DOI 10.1071/MU04035; Barlow KE, 2002, IBIS, V144, P248, DOI 10.1046/j.1474-919X.2002.00046.x; Barta ZN, 2002, AM NAT, V159, P687, DOI 10.1086/339995; Bates D. M., 2009, IME4 LINEAR MIXED EF; Beaulieu M, 2009, ANIM BEHAV, V78, P313, DOI 10.1016/j.anbehav.2009.05.006; BERGERON P, 2010, J ANIM ECOL, V80, P361; Bethge P, 1997, J ZOOL, V242, P483; Bize P, 2009, P R SOC B, V276, P1679, DOI 10.1098/rspb.2008.1817; Bull L, 2000, NEW ZEAL J ZOOL, V27, P291, DOI 10.1080/03014223.2000.9518237; Cam E, 2000, J ANIM ECOL, V69, P380, DOI 10.1046/j.1365-2656.2000.00400.x; Chiaradia A, 2006, ARDEA, V94, P257; Chiaradia A, 2010, ICES J MAR SCI, V67, P1710, DOI 10.1093/icesjms/fsq067; Chiaradia Andre F., 1999, Marine Ornithology, V27, P13; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Collins M, 1999, WILDLIFE RES, V26, P705, DOI 10.1071/WR98003; Cullen JM, 2009, MAR ECOL PROG SER, V378, P269, DOI 10.3354/meps07881; Daniel TA, 2007, ANIM BEHAV, V74, P1241, DOI 10.1016/j.anbehav.2007.01.029; DANN P, 1988, EMU, V88, P101, DOI 10.1071/MU9880101; Dann P., 1990, P63; Daunt F, 2007, FUNCT ECOL, V21, P561, DOI 10.1111/j.1365-2435.2007.01260.x; DRENT RH, 1980, ARDEA, V68, P225; FASOLA M, 1995, CAN J ZOOL, V73, P1461, DOI 10.1139/z95-172; GALES R, 1990, AUST WILDLIFE RES, V17, P231; Gauthier-Clerc M, 2001, ANIM BEHAV, V62, P661, DOI 10.1006/anbe.2001.1803; GOODEY W, 1993, EMU, V93, P180, DOI 10.1071/MU9930180; GUERRA M, 1995, BEHAVIOUR, V132, P479, DOI 10.1163/156853995X00162; Hamer KC, 2006, BEHAV ECOL, V17, P132, DOI 10.1093/beheco/arj008; HARRIS MP, 1992, IBIS, V134, P335, DOI 10.1111/j.1474-919X.1992.tb08012.x; Houston AI, 2005, TRENDS ECOL EVOL, V20, P33, DOI 10.1016/j.tree.2004.10.008; KERRY KR, 1993, WILDLIFE RES, V20, P725, DOI 10.1071/WR9930725; Komdeur J, 1996, BEHAV ECOL, V7, P417, DOI 10.1093/beheco/7.4.417; KORPIMAKI E, 1988, J ANIM ECOL, V57, P433, DOI 10.2307/4915; Lack D., 1968, ECOLOGICAL ADAPTATIO; LALONDE RG, 1991, AM NAT, V138, P680, DOI 10.1086/285242; Lewis S, 2005, IBIS, V147, P408, DOI 10.1111/j.1474-919x.2005.00428.x; Lewis S, 2002, P ROY SOC B-BIOL SCI, V269, P1687, DOI 10.1098/rspb.2002.2083; Markman S, 2004, J ANIM ECOL, V73, P747, DOI 10.1111/j.0021-8790.2004.00847.x; MAUCK RA, 1995, ANIM BEHAV, V49, P999, DOI 10.1006/anbe.1995.0129; Monaghan P, 2006, TRENDS ECOL EVOL, V21, P47, DOI 10.1016/j.tree.2005.11.007; NEWTON I, 1989, LIFETIME REPROD BIRD; Nisbet ICT, 2009, J AVIAN BIOL, V40, P296, DOI 10.1111/j.1600-048X.2008.04563.x; Numata M, 2000, NEW ZEAL J ZOOL, V27, P277, DOI 10.1080/03014223.2000.9518236; OWEN M, 1989, J ANIM ECOL, V58, P603, DOI 10.2307/4851; Quillfeldt P, 2004, ANIM BEHAV, V68, P613, DOI 10.1016/j.anbehav.2003.12.002; R Development Core Team, 2008, R LANG ENV STAT COMP; Robinson S, 2005, IBIS, V147, P483, DOI 10.1111/j.1474-919x.2005.00431.x; Saether B.-E., 1990, Current Ornithology, V7, P251; SCHMUTZ JA, 1993, CONDOR, V95, P222, DOI 10.2307/1369404; Schwagmeyer PL, 2003, ETHOLOGY, V109, P303, DOI 10.1046/j.1439-0310.2003.00868.x; Sidhu LA, 2007, AUK, V124, P815, DOI 10.1642/0004-8038(2007)124[815:MMAASI]2.0.CO;2; SMITH JM, 1977, ANIM BEHAV, V25, P1, DOI 10.1016/0003-3472(77)90062-8; SMITH JM, 1977, MEASURING SELECTION, P265; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Takahashi A, 2003, FUNCT ECOL, V17, P590, DOI 10.1046/j.1365-2435.2003.00772.x; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; VAUPEL JW, 1979, DEMOGRAPHY, V16, P439, DOI 10.2307/2061224; Velando A, 2003, J ANIM ECOL, V72, P846, DOI 10.1046/j.1365-2656.2003.00756.x; Wade MJ, 2002, AM NAT, V160, P285, DOI 10.1086/341520; Webb JN, 1999, ANIM BEHAV, V58, P983, DOI 10.1006/anbe.1999.1215; Weimerskirch H, 2000, ECOLOGY, V81, P309, DOI 10.1890/0012-9658(2000)081[0309:SDIPIA]2.0.CO;2; Weimerskirch H, 1997, ECOLOGY, V78, P2051; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002; WITKANDER U, 2000, J AVIAN BIOL, V31, P447; Yorke J., 2004, New Zealand Journal of Zoology, V31, P115; Zimmer I, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016098 67 11 11 2 49 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 1465-7279 BEHAV ECOL Behav. Ecol. JUL-AUG 2011 22 4 837 845 10.1093/beheco/arr049 9 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology 779AH WOS:000291750000021 Bronze 2018-11-12 J Hubbeling, D Hubbeling, Dieneke Life history theory as a possible explanation for teenage pregnancy PSYCHOLOGICAL MEDICINE English Letter INEQUALITY SW London & St Georges Mental Hlth NHS Trust, Springfield Univ Hosp, London, England Hubbeling, D (reprint author), SW London & St Georges Mental Hlth NHS Trust, Springfield Univ Hosp, London, England. dieneke@doctors.org.uk Geronimus AT, 1999, SOC SCI MED, V49, P1623, DOI 10.1016/S0277-9536(99)00246-4; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Nettle D, 2010, AM J HUM BIOL, V22, P172, DOI 10.1002/ajhb.20970; Webb RT, 2011, PSYCHOL MED, V41, P1867, DOI 10.1017/S0033291711000055; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 5 0 0 0 9 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0033-2917 PSYCHOL MED Psychol. Med. JUL 2011 41 7 1564 1564 10.1017/S0033291711000651 1 Psychology, Clinical; Psychiatry; Psychology Psychology; Psychiatry 780KL WOS:000291854700024 21557894 Bronze 2018-11-12 J Webb, RT; Abel, KM Webb, Roger T.; Abel, Kathryn M. Life history theory as a possible explanation for teenage pregnancy reply PSYCHOLOGICAL MEDICINE English Letter EXPECTANCY [Webb, Roger T.; Abel, Kathryn M.] Univ Manchester, Manchester Acad Hlth Sci Ctr, Manchester M13 9PL, Lancs, England Webb, RT (reprint author), Univ Manchester, Manchester Acad Hlth Sci Ctr, Manchester M13 9PL, Lancs, England. roger.webb@manchester.ac.uk Webb, Roger/0000-0001-8532-2647; Abel, Kathryn M/0000-0003-3538-8896 Boldsen JL, 1992, INT J ANTHR, V7, P1; Hobcraft J, 2001, BRIT J SOCIOL, V52, P495; Leyland AH, 2004, J EPIDEMIOL COMMUN H, V58, P296, DOI 10.1136/jech.2003.007278; Raleigh VS, 1997, J EPIDEMIOL COMMUN H, V51, P649, DOI 10.1136/jech.51.6.649; Seamark CJ, 1997, BRIT J GEN PRACT, V47, P175; WHAN EH, 2005, HEALTH CARE WOMEN IN, V26, P591; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 7 0 0 0 5 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0033-2917 PSYCHOL MED Psychol. Med. JUL 2011 41 7 1564 1565 2 Psychology, Clinical; Psychiatry; Psychology Psychology; Psychiatry 780KL WOS:000291854700025 2018-11-12 J Roksandic, M; Armstrong, SD Roksandic, Mirjana; Armstrong, Stephanie D. Using the Life History Model to Set the Stage(s) of Growth and Senescence in Bioarchaeology and Paleodemography AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY English Article skeletal biology; paleodemography; life history theory; bioarchaeology TOOTH CEMENTUM ANNULATION; SKELETAL AGE; DEATH DISTRIBUTIONS; DENTAL DEVELOPMENT; AURICULAR SURFACE; EVOLUTION; MORTALITY; MENARCHE; POPULATIONS; DEMOGRAPHY Paleodemography, the study of demographic parameters of past human populations, relies on assumptions including biological uniformitarianism, stationary populations, and the ability to determine point age estimates from skeletal material. These assumptions have been widely criticized in the literature and various solutions have been proposed. The majority of these solutions rely on statistical modeling, and have not seen widespread application. Most bioarchaeologists recognize that our ability to assess chronological age is inherently limited, and have instead resorted to large, qualitative, age categories. However, there has been little attempt in the literature to systematize and define the stages of development and ageing used in bioarchaeology. We propose that stages should be based in the human life history pattern, and their skeletal markers should have easily defined and clear endpoints. In addition to a standard five-stage developmental model based on the human life history pattern, current among human biologists, we suggest divisions within the adult stage that recognize the specific nature of skeletal samples. We therefore propose the following eight stages recognizable in human skeletal development and senescence: infancy, early childhood, late childhood, adolescence, young adulthood, full adulthood, mature adulthood, and senile adulthood. Striving toward a better prediction of chronological ages will remain important and could eventually help us understand to what extent past societies differed in the timing of these life stages. Furthermore, paleodemographers should try to develop methods that rely on the type of age information accessible from the skeletal material, which uses life stages, rather than point age estimates. Am J Phys Anthropol 145: 337-347, 2011. (C) 2011 Wiley-Liss, Inc. [Roksandic, Mirjana] Univ Winnipeg, Dept Anthropol, Winnipeg, MB R3B 2E9, Canada; [Armstrong, Stephanie D.] Univ Winnipeg, Dept Anthropol, Winnipeg, MB R3T 2N2, Canada Roksandic, M (reprint author), Univ Winnipeg, Dept Anthropol, 515 Portage Ave, Winnipeg, MB R3B 2E9, Canada. m.roksandic@uwinnipeg.ca Mowat, Stephanie/0000-0003-4840-6221; Roksandic, Mirjana/0000-0003-0291-6357 SSHRC [861-2009-0071]; NSERC-USRA Grant sponsor: SSHRC; Grant number: 861-2009-0071; Grant sponsor: NSERC-USRA. Acsadi G., 1970, HIST HUMAN LIFE SPAN; Albert AM, 1998, FORENSIC SCI INT, V97, P11, DOI 10.1016/S0379-0738(98)00143-1; Angel J., 1971, PEOPLE LERNA ANAL PR; ANGEL J L, 1969, American Journal of Physical Anthropology, V30, P427, DOI 10.1002/ajpa.1330300314; APTER D, 1980, CLIN ENDOCRINOL, V12, P107, DOI 10.1111/j.1365-2265.1980.tb02125.x; Aykroyd RG, 1999, AM ANTIQUITY, V64, P55, DOI 10.2307/2694345; Beall C. M., 1984, AGE ANTHR THEORY, P82; BENNETT KA, 1973, AM J PHYS ANTHROPOL, V39, P223, DOI 10.1002/ajpa.1330390212; BLAKELY RL, 1971, AM J PHYS ANTHROPOL, V34, P43, DOI 10.1002/ajpa.1330340104; BOCQUET JP, 1977, HOMME, V17, P65; Bocquet-Appel JP, 2008, RECENT ADVANCES IN PALAEODEMOGRAPHY, P63, DOI 10.1007/978-1-4020-6424-1_3; BocquetAppel JP, 1996, AM J PHYS ANTHROPOL, V99, P571, DOI 10.1002/(SICI)1096-8644(199604)99:4<571::AID-AJPA4>3.0.CO;2-X; BOCQUETAPPEL JP, 1985, J HUM EVOL, V14, P107, DOI 10.1016/S0047-2484(85)80001-4; BOCQUETAPPEL JP, 1982, J HUM EVOL, V11, P321, DOI 10.1016/S0047-2484(82)80023-7; Bogin B, 1997, YEARB PHYS ANTHROPOL, V40, P63; Bogin B, 1996, AM J HUM BIOL, V8, P703, DOI 10.1002/(SICI)1520-6300(1996)8:6<703::AID-AJHB2>3.0.CO;2-U; BOGIN B, 1990, BIOSCIENCE, V40, P16, DOI 10.2307/1311235; BOGIN B, 1994, ACTA PAEDIATR, V83, P29, DOI 10.1111/j.1651-2227.1994.tb13418.x; Bogin B., 1999, PATTERNS HUMAN GROWT; BOGIN B, 2003, PATTERNS GROWTH DEV, P15; Bogin B, 2001, GROWTH HUMANITY; Brooks S, 1990, HUMAN EVOLUTION, V5, P227, DOI DOI 10.1007/BF02437238; BUIKSTRA JE, 1985, AM ANTHROPOL, V87, P316, DOI 10.1525/aa.1985.87.2.02a00050; BUIKSTRA JE, 1997, INTEGRATING ARCHAEOL, V24, P367; Campbell B, 2006, AM J HUM BIOL, V18, P569, DOI 10.1002/ajhb.20528; Carmody RN, 2010, AM J PHYS ANTHROPOL, P76; CASTRO JMB, 2004, J ANTHROPOL RES, V60, P5; Chamberlain A., 2006, DEMOGRAPHY ARCHAEOLO; Chumlea WC, 2003, PEDIATRICS, V111, P110, DOI 10.1542/peds.111.1.110; DAINTON M, 1999, HUMAN GROWTH STUDIES, P32; Del Giudice M, 2009, DEV REV, V29, P1, DOI 10.1016/j.dr.2008.09.001; DeWitte SN, 2009, AM J PHYS ANTHROPOL, V139, P222, DOI 10.1002/ajpa.20974; Freedman DS, 2002, PEDIATRICS, V110, DOI 10.1542/peds.110.4.e43; GAGE TB, 1988, AM J PHYS ANTHROPOL, V76, P429, DOI 10.1002/ajpa.1330760403; Glenn N., 1977, COHORT ANAL; Gowland R., 2006, SOCIAL ARCHAEOLOGY F, P143; Greene D, 1986, HUM EVOL, V1, P193; HARVEY PH, 1985, EVOLUTION, V39, P559, DOI 10.1111/j.1558-5646.1985.tb00395.x; Hoppa R. D., 2002, PALEODEMOGRAPHY AGE, P1; Hoppa R. D., 2002, PALEODEMOGRAPHY AGE, P9; HOROWITZ S, 1988, AM J PHYS ANTHROPOL, V76, P189, DOI 10.1002/ajpa.1330760207; ISCAN M. YASAR, 1986, FORENSIC OSTEOLOGY A, P68; JACKES M, 1993, CURR ANTHROPOL, V34, P434, DOI 10.1086/204188; JACKES M, 2011, SOCIAL BIOARCHAEOLOG, P107, DOI DOI 10.1002/9781444390537.CH5; Jackes M, 2008, IRON GATES GORGE MES, P77; Jackes M, 2008, RECENT ADVANCES IN PALAEODEMOGRAPHY, P209, DOI 10.1007/978-1-4020-6424-1_8; KAPPELER PM, 2003, PRIMATE LIFE HIST SO, P107; Kemkes-Grottenthaler A., 2002, PALEODEMOGRAPHY AGE, P48; Key CA, 1994, INT J OSTEOARCHAEOL, V4, P193, DOI DOI 10.1002/0A.1390040304; KONIGSBERG LW, 1992, AM J PHYS ANTHROPOL, V89, P235, DOI 10.1002/ajpa.1330890208; Konigsberg Lyle W., 1994, Evolutionary Anthropology, V3, P92, DOI 10.1002/evan.1360030306; Kramer KL, 2010, AM J PHYS ANTHROPOL, V141, P235, DOI 10.1002/ajpa.21139; KROGMAN W, 1986, HUMAN SKELETON FOREN; Kvaal S.I., 1994, INT J OSTEOARCHAEOL, V4, P363; Lancaster HO, 1990, EXPECTATIONS LIFE ST; Lee P. C., 1996, Evolutionary Anthropology, V5, P87, DOI 10.1002/(SICI)1520-6505(1996)5:3<87::AID-EVAN4>3.0.CO;2-T; Leidy LE, 1996, AM J HUM BIOL, V8, P699, DOI 10.1002/(SICI)1520-6300(1996)8:6<699::AID-AJHB1>3.0.CO;2-P; LOVEJOY CO, 1985, AM J PHYS ANTHROPOL, V68, P15, DOI 10.1002/ajpa.1330680103; Mace R, 2000, ANIM BEHAV, V59, P1, DOI 10.1006/anbe.1999.1287; MADELINE LA, 1995, RADIOLOGY, V196, P747, DOI 10.1148/radiology.196.3.7644639; McDade TW, 2003, YEARB PHYS ANTHROPOL, V46, P100, DOI 10.1002/ajpa.10398; MCKINLEY KR, 1971, AM J PHYS ANTHROPOL, V34, P417, DOI 10.1002/ajpa.1330340311; MILNER GR, 1989, AM J PHYS ANTHROPOL, V80, P49, DOI 10.1002/ajpa.1330800107; MOERMAN ML, 1982, AM J OBSTET GYNECOL, V143, P528, DOI 10.1016/0002-9378(82)90542-7; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.2307/1130900; Mosothwane MN, 2004, S AFR ARCHAEOL BULL, V59, P45, DOI 10.2307/3889242; Muller HG, 2002, AM J PHYS ANTHROPOL, V117, P1; MURRAY KA, 1991, J FORENSIC SCI, V36, P1162; Nagaoka T, 2007, AM J PHYS ANTHROPOL, V134, P301, DOI 10.1002/ajpa.20670; Nagar Y, 2004, HUM EVOL, V19, P145; OWSLEY DW, 1979, AM J PHYS ANTHROPOL, V51, P145, DOI 10.1002/ajpa.1330510202; PAINE RR, 1989, AM J PHYS ANTHROPOL, V79, P51, DOI 10.1002/ajpa.1330790106; PETERSEN W, 1975, CURR ANTHROPOL, V16, P227, DOI 10.1086/201542; PIONTEK J, 1981, AM J PHYS ANTHROPOL, V54, P129, DOI 10.1002/ajpa.1330540116; Renz H, 2006, HOMO, V57, P29, DOI 10.1016/j.jchb.2005.09.002; ROKSANDIC M, 2002, FUT DIR PAL 3 INT WO; Roksandic M, 2009, AM J PHYS ANTHROPOL, V140, P583, DOI 10.1002/ajpa.21136; SATTENSPIEL L, 1983, AM ANTIQUITY, V48, P489, DOI 10.2307/280557; Scheuer L, 2000, DEV JUVENILE OSTEOLO; SCHWARTZ JH, 1995, SKELETON KEYS INTRO; Smith B. Holly, 1994, Yearbook of Physical Anthropology, V37, P177; SMITH BH, 1991, AM J PHYS ANTHROPOL, V86, P157, DOI 10.1002/ajpa.1330860206; SMITH BH, 1989, EVOLUTION, V43, P683, DOI 10.1111/j.1558-5646.1989.tb04266.x; Steyn M, 2003, WORLD ARCHAEOL, V35, P276, DOI 10.1080/0043824062000111425; STOTT GG, 1982, J DENT RES, V61, P814, DOI 10.1177/00220345820610063401; Strier KB, 2007, PRIMATE BEHAV ECOLOG; UBELAKER DH, 1978, HUMAN SKELETAL REMAI; VANGERVEN DP, 1983, J HUM EVOL, V12, P353, DOI 10.1016/S0047-2484(83)80162-6; WEEKS JR, 2005, POPULATION INTRO CON; Weinstein J., 2001, DEMOGRAPHY SCI POPUL; Wittwer-Backofen U, 2004, AM J PHYS ANTHROPOL, V123, P119, DOI 10.1002/ajpa.10303; Worthman CM, 1999, EVOLUTIONARY MEDICI NE, P135; Yoder C. J., 2003, J ARCHAEOL RES, V11, P43, DOI DOI 10.1023/A:1021200925063 93 26 26 0 24 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0002-9483 1096-8644 AM J PHYS ANTHROPOL Am. J. Phys. Anthropol. JUL 2011 145 3 337 347 10.1002/ajpa.21508 11 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology 781QX WOS:000291949700001 21469078 2018-11-12 J Dunkel, CS; Mathes, E; Harbke, C Dunkel, Curtis S.; Mathes, Eugene; Harbke, Colin Life history strategy, identity consolidation, and psychological well-being PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Life history; Identity; Well-being CONFIRMATORY FACTOR-ANALYSIS; SELF-CONCEPT; K-FACTOR; HIERARCHICAL STRUCTURE; FIT INDEXES; PERSONALITY; VALIDATION; COVITALITY; VALIDITY; MODELS Previous research has shown that individual differences in life history strategies co-vary with a large array of variables to the extent that latent variables from a number of psychological measures load on a single (Super-K) factor. Similar to research on the Super-K factor, the purpose of this study was to test the hypothesis that various measures of identity would load on a single factor and that this latent variable would in turn be associated with other variables reflecting life history strategy and psychological well-being, making a Super-K factor. A sample of 248 university students were administered a variety of questionnaires related to identity, life history strategy, and psychological well-being. Confirmatory factor analyses revealed the hypothesized Super-K factor and the relationship remained even when controlling for variance in social-desirable responding. The results are discussed in terms of the association between Erikson's theory of psychosocial development and life history theory. (C) 2011 Elsevier Ltd. All rights reserved. [Dunkel, Curtis S.; Mathes, Eugene; Harbke, Colin] Western Illinois Univ, Dept Psychol, Macomb, IL 61455 USA Dunkel, CS (reprint author), Western Illinois Univ, Dept Psychol, Wagonner Hall, Macomb, IL 61455 USA. c-dunkel@wiu.edu Ashton MC, 2009, PERS SOC PSYCHOL REV, V13, P79, DOI 10.1177/1088868309338467; Backstrom M, 2009, J RES PERS, V43, P335, DOI 10.1016/j.jrp.2008.12.013; BENTLER PM, 1990, PSYCHOL BULL, V107, P238, DOI 10.1037//0033-2909.107.2.238; BENTLER PM, 1980, PSYCHOL BULL, V88, P588, DOI 10.1037/0033-2909.107.2.238; Bentler PM, 2004, EQS 6 STRUCTURAL EQU; BERZONSKY MD, 1992, IDENTITY SYTLE UNPUB; BUSS DM, 1995, PSYCHOL INQ, V6, P1, DOI 10.1207/s15327965pli0601_1; Cote J. E., 1997, J ADOLESCENCE, V20, P421; DIENER E, 1985, J PERS ASSESS, V49, P71, DOI 10.1207/s15327752jpa4901_13; Dunkel CS, 2005, IDENTITY, V5, P21, DOI 10.1207/s1532706xid0501_2; Dunkel CS, 2010, EVOL PSYCHOL-US, V8, P492; Dunkel CS, 2010, PERS INDIV DIFFER, V48, P681, DOI 10.1016/j.paid.2009.12.014; Dunkel CS, 2009, REV GEN PSYCHOL, V13, P13, DOI 10.1037/a0013687; Erikson E. H, 1968, IDENTITY YOUTH CRISI; Erikson E. H., 1950, CHILDHOOD SOC; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Giosan C., 2006, EVOLUTIONARY PSYCHOL, V4, P394, DOI DOI 10.1177/147470490600400131; Gladden PR, 2010, PERS INDIV DIFFER, V48, P731, DOI 10.1016/j.paid.2010.01.016; GLADDEN PR, 2008, PERSONALITY INDIVIDU, V46, P270, DOI DOI 10.1016/J.PAID.2008.10.010; Graham J, 2009, J PERS SOC PSYCHOL, V96, P1029, DOI 10.1037/a0015141; Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118; Kendrick DT, 2010, PERSPECT PSYCHOL SCI, V5, P292; MARCIA JE, 1966, J PERS SOC PSYCHOL, V3, P551, DOI 10.1037/h0023281; Markstrom CA, 1997, J YOUTH ADOLESCENCE, V26, P705, DOI 10.1023/A:1022348709532; MARSH HW, 1988, J EDUC PSYCHOL, V80, P366, DOI 10.1037/0022-0663.80.3.366; MARSH HW, 1987, J EDUC MEAS, V24, P17, DOI 10.1111/j.1745-3984.1987.tb00259.x; MARSH HW, 1985, PSYCHOL BULL, V97, P562, DOI 10.1037//0033-2909.97.3.562; McCullough ME, 2002, J PERS SOC PSYCHOL, V82, P112, DOI 10.1037//0022-3514.82.1.112; OCHSE R, 1986, J PERS SOC PSYCHOL, V50, P1240, DOI 10.1037/0022-3514.50.6.1240; PROMISLOW DEL, 1991, ACTA OECOL, V12, P119; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; RINDSKOPF D, 1988, MULTIVAR BEHAV RES, V23, P51, DOI 10.1207/s15327906mbr2301_3; Rosenberg M., 1965, SOC ADOLESCENT SELF; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Schwartz SJ, 2010, AM J HEALTH BEHAV, V34, P214; Schwartz SJ, 2007, IDENTITY, V7, P27, DOI 10.1080/15283480701319583; Sefcek J. A., 2010, BIODEMOGRAPHY SOCIAL, V56, P41; Watson D., 1994, MANUAL POSITIVE NEGA 41 12 12 0 19 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. JUL 2011 51 1 34 38 10.1016/j.paid.2011.03.005 5 Psychology, Social Psychology 762UG WOS:000290506300006 2018-11-12 J Rohlenova, K; Morand, S; Hyrsl, P; Tolarova, S; Flajshans, M; Simkova, A Rohlenova, Karolina; Morand, Serge; Hyrsl, Pavel; Tolarova, Sona; Flajshans, Martin; Simkova, Andrea Are fish immune systems really affected by parasites? an immunoecological study of common carp (Cyprinus carpio) PARASITES & VECTORS English Article CHUB LEUCISCUS-CEPHALUS; RAINBOW-TROUT; SEASONAL-CHANGES; ONCORHYNCHUS-MYKISS; RUTILUS-RUTILUS; INNATE IMMUNITY; LIFE-HISTORY; ENVIRONMENTAL-TEMPERATURE; GONADAL MATURATION; DEFENSE-MECHANISMS Background: The basic function of the immune system is to protect an organism against infection in order to minimize the fitness costs of being infected. According to life-history theory, energy resources are in a trade-off between the costly demands of immunity and other physiological demands. Concerning fish, both physiology and immunity are influenced by seasonal changes (i.e. temporal variation) associated to the changes of abiotic factors (such as primarily water temperature) and interactions with pathogens and parasites. In this study, we investigated the potential associations between the physiology and immunocompetence of common carp (Cyprinus carpio) collected during five different periods of a given year. Our sampling included the periods with temporal variability and thus, it presented a different level in exposure to parasites. We analyzed which of two factors, seasonality or parasitism, had the strongest impact on changes in fish physiology and immunity. Results: We found that seasonal changes play a key role in affecting the analyzed measurements of physiology, immunity and parasitism. The correlation analysis revealed the relationships between the measures of overall host physiology, immunity and parasite load when temporal variability effect was removed. When analyzing separately parasite groups with different life-strategies, we found that fish with a worse condition status were infected more by monogeneans, representing the most abundant parasite group. The high infection by cestodes seems to activate the phagocytes. A weak relationship was found between spleen size and abundance of trematodes when taking into account seasonal changes. Conclusions: Even if no direct trade-off between the measures of host immunity and physiology was confirmed when taking into account the seasonality, it seems that seasonal variability affects host immunity and physiology through energy allocation in a trade-off between life important functions, especially reproduction and fish condition. Host immunity measures were not found to be in a trade-off with the investigated physiological traits or functions, but we confirmed the immunosuppressive role of 11-ketotestosterone on fish immunity measured by complement activity. We suggest that the different parasite life-strategies influence different aspects of host physiology and activate the different immunity pathways. [Rohlenova, Karolina; Simkova, Andrea] Masaryk Univ, Fac Sci, Dept Bot & Zool, CS-61137 Brno, Czech Republic; [Morand, Serge] Univ Montpellier 2, CNRS, IRD, Inst Evolutionary Sci, F-34095 Montpellier, France; [Hyrsl, Pavel; Tolarova, Sona] Masaryk Univ, Fac Sci, Inst Expt Biol, CS-61137 Brno, Czech Republic; [Flajshans, Martin] Univ S Bohemia Ceske Budejovice, Res Inst Fish Culture & Hydrobiol Vodnany, Ceske Budejovice 38925, Czech Republic Simkova, A (reprint author), Masaryk Univ, Fac Sci, Dept Bot & Zool, Kotlarska 2, CS-61137 Brno, Czech Republic. simkova@sci.muni.cz Hyrsl, Pavel/N-3371-2017; Morand, Serge/M-5433-2018 Hyrsl, Pavel/0000-0002-4266-5727; Morand, Serge/0000-0003-3986-7659 Grant Agency of the Czech Republic [524/07/0188]; Ministry of Education [MSM6007665809]; Ichthyoparasitology Research Centre of the Ministry of Education, Youth and Sports of the Czech Republic [LC 522]; MU; Masaryk University [MSM0021622416] This study was funded by the Grant Agency of the Czech Republic, project No. 524/07/0188. MF was also supported by the Ministry of Education project MSM6007665809. KR was funded by the Ichthyoparasitology Research Centre of the Ministry of Education, Youth and Sports of the Czech Republic LC 522 and partially by the Rector's Programme in Support of MU Students' Creative Activities. AS was supported by the Research Project of Masaryk University (No. MSM0021622416) AINSWORTH AJ, 1991, COMP BIOCHEM PHYS A, V100, P907, DOI 10.1016/0300-9629(91)90313-2; Alvarez-Pellitero P, 2008, VET IMMUNOL IMMUNOP, V126, P171, DOI 10.1016/j.vetimm.2008.07.013; AVTALION RR, 1969, IMMUNOLOGY, V17, P927; Aydogdu A, 2002, B EUR ASSOC FISH PAT, V22, P343; Bly J.E., 1992, Fish & Shellfish Immunology, V2, P159, DOI 10.1016/S1050-4648(05)80056-7; BOLGER T, 1989, J FISH BIOL, V34, P171, DOI 10.1111/j.1095-8649.1989.tb03300.x; BORG B, 1994, COMP BIOCHEM PHYS C, V109, P219, DOI 10.1016/1367-8280(94)90135-X; Buchmann K, 1998, DIS AQUAT ORGAN, V32, P195, DOI 10.3354/dao032195; Buchmann K, 2002, INT J PARASITOL, V32, P309, DOI 10.1016/S0020-7519(01)00332-0; Buchtikova S, 2011, AQUACULTURE, V318, P169, DOI 10.1016/j.aquaculture.2011.05.013; BURROUGH RJ, 1978, J FISH BIOL, V13, P19, DOI 10.1111/j.1095-8649.1978.tb03409.x; Busacker G. P., 1990, METHODS FISH BIOL; Bush AO, 1997, J PARASITOL, V83, P575, DOI 10.2307/3284227; CARLSON E, 2008, IMMUNE SYSTEM FISH T; Chubb J. C., 1977, Advances in Parasitology, V15, P133, DOI 10.1016/S0065-308X(08)60528-X; COLLAZOS ME, 1994, FISH SHELLFISH IMMUN, V4, P231, DOI 10.1006/fsim.1994.1021; COLLAZOS ME, 1995, J COMP PHYSIOL B, V165, P71, DOI 10.1007/BF00264688; Dalmo RA, 1997, J FISH DIS, V20, P241, DOI 10.1046/j.1365-2761.1997.00302.x; Danilova N, 2005, NAT IMMUNOL, V6, P295, DOI 10.1038/ni1166; DOUBEK J, 2003, VET HAEMATOLOGY; Duffy JE, 2002, MAR ENVIRON RES, V54, P559, DOI 10.1016/S0141-1136(02)00176-9; DUPASQUIER L, 1993, EVOLUTION IMMUNE SYS; Ellis AE, 1999, FISH SHELLFISH IMMUN, V9, P291, DOI 10.1006/fsim.1998.0192; Ellis AE, 2001, DEV COMP IMMUNOL, V25, P827, DOI 10.1016/S0145-305X(01)00038-6; Ergens R., 1970, CAUSATIVE AGENTS PAR; Ersdal C, 2001, DIS AQUAT ORGAN, V45, P229, DOI 10.3354/dao045229; Esch G. W., 1990, PARASITE COMMUNITIES; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; GEORGIEV B, 1986, Helminthologia (Bratislava), V23, P279; GRIFFIN BR, 1983, DEV COMP IMMUNOL, V7, P253, DOI 10.1016/0145-305X(83)90006-X; GUSEV AV, 1985, IDENTIFICATION KEY 1; Hakalahti T, 2004, PARASITOLOGY, V128, P655, DOI 10.1017/S0031182004004986; Hakalahti T, 2003, PARASITOLOGY, V127, P79, DOI 10.1017/S0031182003003196; Hakoyama H, 2001, BIOL J LINN SOC, V72, P401, DOI 10.1006/bijl.2000.0507; Hansen JD, 2005, P NATL ACAD SCI USA, V102, P6919, DOI 10.1073/pnas.0500027102; Hanzelova V, 2003, PARASITOL RES, V91, P130, DOI 10.1007/s00436-003-0939-x; HARDING FA, 1990, NUCLEIC ACIDS RES, V18, P6369, DOI 10.1093/nar/18.21.6369; Harris PD, 1998, PARASITOLOGY, V117, P137, DOI 10.1017/S003118209800287X; Harrison AJ, 2006, DIS AQUAT ORGAN, V68, P167, DOI 10.3354/dao068167; Hernandez A, 2003, FISH SHELLFISH IMMUN, V15, P479, DOI 10.1016/S1050-4648(03)00024-X; Hou Y, 1999, FISHERIES SCI, V65, P850, DOI 10.2331/fishsci.65.850; Hou Y, 1999, FISHERIES SCI, V65, P844, DOI 10.2331/fishsci.65.844; Hutchinson TH, 1996, FISH SHELLFISH IMMUN, V6, P473, DOI 10.1006/fsim.1996.0045; JOHANSEN K, 1976, PERSPECTIVES EXPT BI, P219; Kadlec D, 2003, J HELMINTHOL, V77, P317, DOI 10.1079/JOH2003183; Kappe A, 2006, DIS AQUAT ORGAN, V70, P255, DOI 10.3354/dao070255; KEYMER AE, 1991, BEHAV ECOLOGY IMPACT; KHOTENOVSKY IA, 1985, MONOGENEA; Kortet R, 2004, ECOL FRESHW FISH, V13, P119, DOI 10.1111/j.1600-0633.2004.00039.x; Kortet R, 2003, BIOL J LINN SOC, V78, P117, DOI 10.1046/j.1095-8312.2003.00136.x; KOSKIVAARA M, 1991, Aqua Fennica, V21, P47; Kubala L, 1996, VET MED-CZECH, V41, P323; Lamkova K, 2007, PARASITOL RES, V101, P775, DOI 10.1007/s00436-007-0546-3; Langston AL, 2002, FISH SHELLFISH IMMUN, V12, P61, DOI 10.1006/fsim.2001.0354; Le Morvan C, 1998, J EXP BIOL, V201, P165; Lefebvre F, 2004, J FISH BIOL, V64, P435, DOI 10.1111/j.0022-1112.2004.00309.x; LENHARDT M, 1992, J FISH BIOL, V40, P709, DOI 10.1111/j.1095-8649.1992.tb02618.x; LUSKOVA V, 1997, ANN CYCLES NORMAL VA; Magnadottir B, 1999, COMP BIOCHEM PHYS B, V122, P181, DOI 10.1016/S0305-0491(98)10157-8; MALMBERG G, 1970, ARK ZOOL, V23, P1; Manning M. J., 1994, P69; MCEWAN AD, 1970, J COMP PATHOL, V80, P259, DOI 10.1016/0021-9975(70)90093-9; McKeown CA, 1997, INT J PARASITOL, V27, P377, DOI 10.1016/S0020-7519(96)00204-4; Modra H, 1998, ACTA VET BRNO, V67, P215, DOI 10.2754/avb199867040215; Molnar K, 2003, ACTA PARASITOL, V48, P222; Munoz G, 2007, J PARASITOL, V93, P17, DOI 10.1645/GE-969R.1; Nikoskelainen S, 2004, DEV COMP IMMUNOL, V28, P581, DOI 10.1016/j.dci.2003.10.003; Nikoskelainen S, 2002, DEV COMP IMMUNOL, V26, P797, DOI 10.1016/S0145-305X(02)00032-0; Ottova E, 2005, EVOL ECOL RES, V7, P581; Owens IPF, 1999, TRENDS ECOL EVOL, V14, P170, DOI 10.1016/S0169-5347(98)01580-8; PENNYCUICK L, 1971, PARASITOLOGY, V63, P378; Piersma T, 1997, TRENDS ECOL EVOL, V12, P134, DOI 10.1016/S0169-5347(97)01003-3; Poisot T, 2009, J FISH BIOL, V75, P1667, DOI 10.1111/j.1095-8649.2009.02400.x; PRAVDA D, 2003, HAEMATOLOGY FISHES; Reimchen TE, 2001, BIOL J LINN SOC, V73, P51, DOI 10.1006/bijl.2001.0523; Roff Derek A., 1992; ROHDE K, 1995, INT J PARASITOL, V25, P945, DOI 10.1016/0020-7519(95)00015-T; Rohlenova K, 2010, J BIOMED BIOTECHNOL, DOI 10.1155/2010/418382; Ruane NM, 2000, FISH SHELLFISH IMMUN, V10, P451, DOI 10.1006/fsim.1999.0260; Saha NR, 2002, FISH PHYSIOL BIOCHEM, V26, P379, DOI 10.1023/B:FISH.0000009275.25834.67; SANCHEZ C, 1993, VET IMMUNOL IMMUNOP, V36, P65, DOI 10.1016/0165-2427(93)90006-P; Scharsack JP, 2004, DIS AQUAT ORGAN, V59, P141, DOI 10.3354/dao059141; Scholz T., 1989, AMPHILINIDA CESTODA; SCOTT AL, 1985, DEV COMP IMMUNOL, V9, P241, DOI 10.1016/0145-305X(85)90115-6; Secombes C. J., 1996, Annual Review of Fish Diseases, V6, P167, DOI 10.1016/S0959-8030(96)90012-5; Secombes C.J., 1996, FISH IMMUNE SYSTEM O, P63; Simkova A, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-29; Sitja-Bobadilla A, 2008, FISH SHELLFISH IMMUN, V25, P358, DOI 10.1016/j.fsi.2008.03.018; Sitja-Bobadilla A, 2009, FOLIA PARASIT, V56, P143; Skarstein F, 2001, CAN J ZOOL, V79, P271, DOI 10.1139/cjz-79-2-271; SMYTH JD, 1983, PHYSL TREMATODES; SORCI G, 2007, ECOLOGIE EVOLUTIVE R; STOLEN JS, 1984, DEV COMP IMMUNOL, V8, P89, DOI 10.1016/0145-305X(84)90013-2; Suzuki Y, 1997, FISH PHYSIOL BIOCHEM, V17, P415, DOI 10.1023/A:1007795827112; Suzuki Y, 1996, FISHERIES SCI, V62, P754, DOI 10.2331/fishsci.62.754; SVOBODOVA Z, 1986, UNIVERSAL METHODS HE; Taskinen J, 2002, EVOL ECOL RES, V4, P919; Tschirren B, 2006, P R SOC B, V273, P1773, DOI 10.1098/rspb.2006.3524; Vainikka A, 2009, FUNCT ECOL, V23, P187, DOI 10.1111/j.1365-2435.2008.01482.x; Virta M, 1997, J IMMUNOL METHODS, V201, P215, DOI 10.1016/S0022-1759(96)00225-6; Walker PD, 2005, COMP BIOCHEM PHYS A, V141, pS90; WEBER RE, 1990, ANIMAL NUTRITION TRA, V2, P58; Zuk M, 2002, AM NAT, V160, pS9, DOI 10.1086/342131 103 31 33 1 43 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1756-3305 PARASITE VECTOR Parasites Vectors JUN 27 2011 4 120 10.1186/1756-3305-4-120 18 Parasitology; Tropical Medicine Parasitology; Tropical Medicine 808BK WOS:000293948100001 21708010 DOAJ Gold, Green Published 2018-11-12 J Tarwater, CE; Ricklefs, RE; Maddox, JD; Brawn, JD Tarwater, Corey E.; Ricklefs, Robert E.; Maddox, J. Dylan; Brawn, Jeffrey D. Pre-reproductive survival in a tropical bird and its implications for avian life histories ECOLOGY English Article age at reproduction; first-year survival; juvenile; life histories; post-fledging period; reproductive investment; survival; Thamnophilus atrinucha; tropical EXTENDED PARENTAL CARE; JUVENILE SURVIVAL; POPULATION; EVOLUTION; DISPERSAL; CONSEQUENCES; PASSERINES; PREDATION; PATTERNS; FITNESS The factors that affect survival until reproduction are essential to understanding the organization of life histories within and among species. Theory predicts, for example, that survival until reproduction influences the optimum level of reproductive investment by parents, which might partly explain prolonged parental care in species with high first-year survival. Tests and refinements of life-history theory have been hampered, however, by a lack of field-based estimates of pre-reproductive survival, especially for tropical species, which have been the subject of many comparative analyses. Tropical species are predicted to have higher first-year survival and delayed reproduction compared to Northern Hemisphere species. We estimated survival until reproduction, age at first reproduction, and sources of variation in juvenile survival in a Neotropical passerine, the Western Slaty-Antshrike (Thamnophilus atrinucha), in central Panama. We observed that fledged antshrikes had 76% survival through the dependent period and 48% survival to the age of 1 year; survival rate was lowest during the first week after leaving the nest. Timing of fledging within the breeding season, fledgling mass, and age at dispersal influenced survival, while sex of offspring and year did not. Individuals did not breed until two years of age, and post-fledging pre-reproductive survival was 41% of annual adult survival. High survival until reproduction in antshrikes balanced their low annual productivity, resulting in a stable population. Survival during the post-fledging period of dependence and the first year of independence in the Western Slaty-Antshrike exceeded estimates for Northern Hemisphere species. This difference appears to be associated with the extended post-fledging parental care, delayed dispersal, low costs of dispersal, and the less seasonal environment of antshrikes. [Tarwater, Corey E.; Brawn, Jeffrey D.] Univ Illinois, Program Ecol Evolut & Conservat Biol, Champaign, IL 61820 USA; [Ricklefs, Robert E.] Univ Missouri, Dept Biol, St Louis, MO 63121 USA; [Maddox, J. Dylan] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA; [Brawn, Jeffrey D.] Univ Illinois, Dept Nat Resources & Environm Sci, Urbana, IL 61801 USA Tarwater, CE (reprint author), Univ Calif Berkeley, Dept Environm Sci Policy & Management, 140 Mulford Hall, Berkeley, CA 94720 USA. tarwater@berkeley.edu National Science Foundation IRCEB [IBN-0212587]; University of Illinois; Smithsonian Tropical Research Institute; Cooper Ornithological Society; Wilson Ornithological Society We thank R. Bassar, S. Bassar, C. Batista, D. Buehler, A. Castillo, I. Gallo, B. Lascelles, and I. Ochoa for help in the field. Thanks to A. Suarez, P. Weatherhead, R. Fuller, and two anonymous reviewers for helpful comments on the manuscript. Thanks also to J. P. Kelley and T. J. Benson for general support. The Autoridad Nacional del Ambiente granted permission to work in the Republic of Panama. Thanks to the Smithsonian Tropical Research Institute for providing logistical support. This work was funded by National Science Foundation IRCEB grant IBN-0212587, and grants from the University of Illinois, Smithsonian Tropical Research Institute, Cooper Ornithological Society, and Wilson Ornithological Society. Adams AAY, 2006, ECOLOGY, V87, P178, DOI 10.1890/04-1922; Baker MB, 2004, ECOLOGY, V85, P1039, DOI 10.1890/02-0507; BRAWN JD, 1999, P 22 INT ORN C DURB, P297; Burnham KP, 2002, MODEL SELECTION INFE; Cam E, 2003, J ANIM ECOL, V72, P411, DOI 10.1046/j.1365-2656.2003.00708.x; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; Clark ME, 2007, ECOL MODEL, V209, P110, DOI 10.1016/j.ecolmodel.2007.06.008; Clutton-Brock T.H., 1988, REPROD SUCCESS STUDI; CLUTTONBROCK TH, 1987, J ANIM ECOL, V56, P53, DOI 10.2307/4799; Fridolfsson AK, 1999, J AVIAN BIOL, V30, P116, DOI 10.2307/3677252; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gradwohl J., 1982, ECOLOGY TROPICAL FOR, P347; Green DJ, 2001, J ANIM ECOL, V70, P505, DOI 10.1046/j.1365-2656.2001.00503.x; Greenberg R, 1997, J AVIAN BIOL, V28, P103, DOI 10.2307/3677303; GRIESSER M, 2010, NEW RES BEHAV CHEM E, P47; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; MAGRATH RD, 1991, J ANIM ECOL, V60, P335, DOI 10.2307/5464; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; McNamara JM, 2008, AM NAT, V172, P331, DOI 10.1086/589886; MOREAU R. E., 1944, IBIS, V86, P286, DOI 10.1111/j.1474-919X.1944.tb04093.x; Naef-Daenzer B, 2001, J ANIM ECOL, V70, P730, DOI 10.1046/j.0021-8790.2001.00533.x; Powell LA, 2007, CONDOR, V109, P949, DOI 10.1650/0010-5422(2007)109[949:AVODPU]2.0.CO;2; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; RAPPOLE JH, 1991, J FIELD ORNITHOL, V62, P335; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Ricklefs R.E., 1973, P366; RICKLEFS RE, 1977, AM NAT, V111, P453, DOI 10.1086/283179; Ricklefs RE, 2000, CONDOR, V102, P9, DOI 10.1650/0010-5422(2000)102[0009:DDEOAT]2.0.CO;2; RICKLEFS RE, 1977, AUK, V94, P86; Ricklefs RE, 2010, AM NAT, V175, P350, DOI 10.1086/650371; Ridley AR, 2008, J AVIAN BIOL, V39, P389, DOI 10.1111/j.2008.0908-8857.04479.x; Robinson WD, 2000, ECOL MONOGR, V70, P209, DOI 10.1890/0012-9615(2000)070[0209:FBCSIC]2.0.CO;2; Russell EM, 2004, BEHAV ECOL, V15, P831, DOI 10.1093/beheco/arh088; Russell EM, 2000, EMU, V100, P377, DOI 10.1071/MU0005S; SEUTIN G, 1991, CAN J ZOOL, V69, P82, DOI 10.1139/z91-013; Skutch A. F., 1985, ORNITHOLOGICAL MONOG, V36, P575, DOI DOI 10.2307/40168306; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; SULLIVAN KA, 1989, J ANIM ECOL, V58, P275, DOI 10.2307/5000; Tarwater CE, 2008, BEHAV ECOL SOCIOBIOL, V62, P1441, DOI 10.1007/s00265-008-0574-8; Tarwater CE, 2010, ANIM BEHAV, V80, P535, DOI 10.1016/j.anbehav.2010.06.017; Tarwater CE, 2010, J AVIAN BIOL, V41, P479, DOI 10.1111/j.1600-048X.2010.05006.x; Veasey JS, 2000, FUNCT ECOL, V14, P115, DOI 10.1046/j.1365-2435.2000.00391.x; White GC, 1999, BIRD STUDY, V46, P120; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams GC, 1966, ADAPTATION NATURAL S 47 37 37 0 60 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 0012-9658 1939-9170 ECOLOGY Ecology JUN 2011 92 6 1271 1281 10.1890/10-1386.1 11 Ecology Environmental Sciences & Ecology 791BD WOS:000292633900009 21797155 2018-11-12 J Del Giudice, M; Ellis, BJ; Shirtcliff, EA Del Giudice, Marco; Ellis, Bruce J.; Shirtcliff, Elizabeth A. The Adaptive Calibration Model of stress responsivity NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS English Review Adaptation; Allostasis; Biological sensitivity to context; Cortisol; Developmental switch point; Evolution; Gender; Life history strategies; Plasticity; Reactivity; Sex differences; Stress PITUITARY-ADRENAL AXIS; HUMAN LIFE-HISTORY; CALLOUS-UNEMOTIONAL TRAITS; EVOLUTIONARY-DEVELOPMENTAL THEORY; RESPIRATORY SINUS ARRHYTHMIA; SALIVARY CORTISOL RESPONSES; NERVOUS-SYSTEM ACTIVITY; TEND-AND-BEFRIEND; SEX-DIFFERENCES; INDIVIDUAL-DIFFERENCES This paper presents the Adaptive Calibration Model (ACM), an evolutionary-developmental theory of individual differences in the functioning of the stress response system. The stress response system has three main biological functions: (1) to coordinate the organism's allostatic response to physical and psychosocial challenges; (2) to encode and filter information about the organism's social and physical environment, mediating the organism's openness to environmental inputs; and (3) to regulate the organism's physiology and behavior in a broad range of fitness-relevant areas including defensive behaviors, competitive risk-taking, learning, attachment, affiliation and reproductive functioning. The information encoded by the system during development feeds back on the long-term calibration of the system itself, resulting in adaptive patterns of responsivity and individual differences in behavior. Drawing on evolutionary life history theory, we build a model of the development of stress responsivity across life stages, describe four prototypical responsivity patterns, and discuss the emergence and meaning of sex differences. The ACM extends the theory of biological sensitivity to context (BSC) and provides an integrative framework for future research in the field. (C) 2010 Elsevier Ltd. All rights reserved. [Del Giudice, Marco] Univ Turin, Dept Psychol, Ctr Cognit Sci, I-10123 Turin, Italy; [Ellis, Bruce J.] Univ Arizona, John & Doris Norton Sch Family & Consumer Sci, Tucson, AZ 85721 USA; [Shirtcliff, Elizabeth A.] Univ New Orleans, Dept Psychol, New Orleans, LA 70148 USA Del Giudice, M (reprint author), Univ Turin, Dept Psychol, Ctr Cognit Sci, Via Po 14, I-10123 Turin, Italy. marco.delgiudice@unito.it; bjellis@email.arizona.edu; birdie.shirtcliff@uno.edu Del Giudice, Marco/F-7007-2010 Del Giudice, Marco/0000-0001-8526-1573 Regione Piemonte, bando Scienze Umane e Sociali [L.R. n. 4/2006]; National Institute of Mental Health [K01 MH077687]; University of Arizona Marco Del Giudice was supported by the Regione Piemonte, bando Scienze Umane e Sociali 2008, L.R. n. 4/2006. Elizabeth Shirtcliff was supported by a grant from the National Institute of Mental Health for the duration of this project (K01 MH077687). International collaboration on this project was supported by the John & Doris Norton Endowment for Fathers, Parenting, and Families at the University of Arizona. Adam E.K., 2007, HUMAN BEHAV LEARNING, P264; Adkins-Regan E, 2005, HORMONES ANIMAL SOCI; af Klinteberg B., 2004, PSYCHOBIOLOGY PERSON, P429; Ahnert L, 2004, CHILD DEV, V75, P639, DOI 10.1111/j.1467-8624.2004.00698.x; Alexander N, 2011, BEHAV BRAIN RES, V216, P53, DOI 10.1016/j.bbr.2010.07.003; Alexander N, 2009, PSYCHONEUROENDOCRINO, V34, P1294, DOI 10.1016/j.psyneuen.2009.03.017; Alink LRA, 2008, DEV PSYCHOBIOL, V50, P427, DOI 10.1002/dev.20300; Alkon A, 2003, DEV PSYCHOBIOL, V42, P64, DOI 10.1002/dev.10082; Allison A.L., FIGHT FLIGH IN PRESS; Alvares GA, 2010, EXP CLIN PSYCHOPHARM, V18, P316, DOI 10.1037/a0019719; Amin Zenab, 2005, Behav Cogn Neurosci Rev, V4, P43, DOI 10.1177/1534582305277152; Archer J, 2009, BEHAV BRAIN SCI, V32, P249, DOI 10.1017/S0140525X09990951; Auchus RJ, 2004, CLIN ENDOCRINOL, V60, P288, DOI 10.1046/j.1365-2265.2003.01858.x; Bagdy G, 1996, BEHAV BRAIN RES, V73, P277; Bagot RC, 2009, NEUROBIOL LEARN MEM, V92, P292, DOI 10.1016/j.nlm.2009.03.004; Bakermans-Kranenburg M.J., 2009, SCAN, V3, P128; Baldwin JS, 2008, J ABNORM CHILD PSYCH, V36, P67, DOI 10.1007/s10802-007-9160-1; Barsegyan A, 2010, P NATL ACAD SCI USA, V107, P16655, DOI 10.1073/pnas.1011975107; Bateup HS, 2002, EVOL HUM BEHAV, V23, P181, DOI 10.1016/S1090-5138(01)00100-3; Bauer AM, 2002, J DEV BEHAV PEDIATR, V23, P102, DOI 10.1097/00004703-200204000-00007; Beauchaine T, 2001, DEV PSYCHOPATHOL, V13, P183, DOI 10.1017/S0954579401002012; Beauchaine TP, 2007, BIOL PSYCHOL, V74, P174, DOI 10.1016/j.biopsycho.2005.08.008; Belle D., 1987, GENDER STRESS, P257; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 1997, PSYCHOL INQ, V8, P182, DOI 10.1207/s15327965pli0803_3; BELSKY J, 2005, ORIGINS SOCIAL MIND, P139; Belsky J, 2007, CURR DIR PSYCHOL SCI, V16, P300, DOI 10.1111/j.1467-8721.2007.00525.x; Belsky J, 2010, PSYCHOL SCI, V21, P1195, DOI 10.1177/0956797610379867; Belsky J, 2009, PSYCHOL BULL, V135, P885, DOI 10.1037/a0017376; Bergman K, 2007, J AM ACAD CHILD PSY, V46, P1454, DOI 10.1097/chi.0b013e31814a62f6; BERNTSON GG, 1991, PSYCHOL REV, V98, P459, DOI 10.1037/0033-295X.98.4.459; Best JR, 2009, DEV REV, V29, P180, DOI 10.1016/j.dr.2009.05.002; Blair C, 2005, CHILD DEV, V76, P554, DOI 10.1111/j.1467-8624.2005.00863.x; Blair C, 2006, ANN NY ACAD SCI, V1094, P263, DOI 10.1196/annals.1376.031; Bogin B, 1997, YEARB PHYS ANTHROPOL, V40, P63; Bogin B, 1999, ANNU REV ANTHROPOL, V28, P109, DOI 10.1146/annurev.anthro.28.1.109; Booth A, 2008, J RES ADOLESCENCE, V18, P239, DOI 10.1111/j.1532-7795.2008.00559.x; Bosch JA, 2009, PSYCHOSOM MED, V71, P877, DOI 10.1097/PSY.0b013e3181baef05; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Boyce WT, 2001, BRIT J PSYCHIAT, V179, P144, DOI 10.1192/bjp.179.2.144; BOYCE WT, 1995, PSYCHOSOM MED, V57, P411, DOI 10.1097/00006842-199509000-00001; Boyce WT, 1995, ANN BEHAV MED, V17, P315, DOI 10.1007/BF02888596; BOYCE WT, 1996, CHILD DEV BEHAV PEDI; BRADBURN NM, 1979, IMPROVING INTERVIEW, P85; Brody S, 2002, PSYCHONEUROENDOCRINO, V27, P933, DOI 10.1016/S0306-4530(02)00007-0; Brown GR, 2009, TRENDS ECOL EVOL, V24, P297, DOI 10.1016/j.tree.2009.02.005; Bubier JL, 2009, J FAM PSYCHOL, V23, P500, DOI 10.1037/a0015555; Bugental DB, 2000, PSYCHOL BULL, V126, P187, DOI 10.1037/0033-2909.126.2.187; Byrnes JP, 1999, PSYCHOL BULL, V125, P367, DOI 10.1037//0033-2909.125.3.367; Calkins SD, 1998, SOC DEV, V7, P350, DOI 10.1111/1467-9507.00072; Calkins SD, 1997, DEV PSYCHOBIOL, V31, P125, DOI 10.1002/(SICI)1098-2302(199709)31:2<125::AID-DEV5>3.0.CO;2-M; Cameron NM, 2008, J NEUROENDOCRINOL, V20, P795, DOI 10.1111/j.1365-2826.2008.01725.x; Cameron N, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002210; Cameron NM, 2005, NEUROSCI BIOBEHAV R, V29, P843, DOI 10.1016/j.neubiorev.2005.03.022; Campbell B, 2006, AM J HUM BIOL, V18, P569, DOI 10.1002/ajhb.20528; Carter CS, 1998, PSYCHONEUROENDOCRINO, V23, P779; Carver CS, 2008, PSYCHOL BULL, V134, P912, DOI 10.1037/a0013740; Champagne DL, 2008, J NEUROSCI, V28, P6037, DOI 10.1523/JNEUROSCI.0526-08.2008; Champagne FA, 2010, PERSPECT PSYCHOL SCI, V5, P564, DOI 10.1177/1745691610383494; Chen J.Y., OXYTOCIN SO IN PRESS; Chichinadze K, 2008, PHYSIOL BEHAV, V94, P595, DOI 10.1016/j.physbeh.2008.03.020; Chisholm JS, 1999, HUM NATURE-INT BIOS, V10, P51, DOI 10.1007/s12110-999-1001-1; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Cicchetti D, 2001, DEV PSYCHOPATHOL, V13, P677, DOI 10.1017/S0954579401003145; Cicchetti D., 1995, DEV PSYCHOPATHOL, V2, P32; Cools R, 2008, TRENDS COGN SCI, V12, P31, DOI 10.1016/j.tics.2007.10.01; Costello EJ, 2003, ARCH GEN PSYCHIAT, V60, P837, DOI 10.1001/archpsyc.60.8.837; CRAWFORD CB, 1989, AM PSYCHOL, V44, P1449, DOI 10.1037/0003-066X.44.12.1449; Crijnen AAM, 1997, J AM ACAD CHILD PSY, V36, P1269, DOI 10.1097/00004583-199709000-00020; Curry OS, 2008, PERS INDIV DIFFER, V44, P780, DOI 10.1016/j.paid.2007.09.023; Daly M, 2005, Q REV BIOL, V80, P55, DOI 10.1086/431025; Daly M., 1984, INFANTICIDE COMP EVO, P487; Davis EP, 2011, J CHILD PSYCHOL PSYC, V52, P119, DOI 10.1111/j.1469-7610.2010.02314.x; Davis J, 2007, EVOL HUM BEHAV, V28, P228, DOI 10.1016/j.evolhumbehav.2007.02.003; de Weerth C, 2003, EARLY HUM DEV, V73, P39, DOI 10.1016/S0378-3782(03)00074-4; Deakin JFW, 2003, J NEURAL TRANSM-SUPP, P79; Del Giudice M., 2010, EVOLUTION PERSONALIT, P154; Del Giudice M, 2010, CHILD DEV PERSPECT, V4, P97, DOI 10.1111/j.1750-8606.2010.00125.x; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P45, DOI 10.1017/S0140525X09000272; Del Giudice M, 2009, DEV REV, V29, P1, DOI 10.1016/j.dr.2008.09.001; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Denollet J, 2000, J PSYCHOSOM RES, V49, P255, DOI 10.1016/S0022-3999(00)00177-X; Denollet J, 1996, LANCET, V347, P417, DOI 10.1016/S0140-6736(96)90007-0; Denson TF, 2009, MOTIV EMOTION, V33, P42, DOI 10.1007/s11031-008-9114-0; Derakshan N, 1997, J PERS SOC PSYCHOL, V73, P816, DOI 10.1037/0022-3514.73.4.816; Diamond LM, 2005, J SOC PERS RELAT, V22, P499, DOI 10.1177/0265407505054520; Dickerson SS, 2008, HEALTH PSYCHOL, V27, P116, DOI 10.1037/0278-6133.27.1.116; Dickerson SS, 2004, PSYCHOL BULL, V130, P355, DOI 10.1037/0033-2909.130.3.355; Dingemanse NJ, 2005, BEHAVIOUR, V142, P1159, DOI 10.1163/156853905774539445; Ditzen B, 2009, BIOL PSYCHIAT, V65, P728, DOI 10.1016/j.biopsych.2008.10.011; Domes G, 2010, PSYCHONEUROENDOCRINO, V35, P83, DOI 10.1016/j.psyneuen.2009.06.016; Donzella B, 2000, DEV PSYCHOBIOL, V37, P209, DOI 10.1002/1098-2302(2000)37:4<209::AID-DEV1>3.0.CO;2-S; Doussard-Roosevelt JA, 2003, DEV PSYCHOBIOL, V43, P230, DOI 10.1002/dev.10136; Draper P., 1988, SOCIOBIOLOGICAL PERS, P340, DOI DOI 10.1007/978-1-4612-3760-0_12; Dufty AM, 2002, TRENDS ECOL EVOL, V17, P190, DOI 10.1016/S0169-5347(02)02498-9; Ebling FJP, 2005, REPRODUCTION, V129, P675, DOI 10.1530/rep.1.00367; Eisenberg N, 2001, CHILD DEV, V72, P1112, DOI 10.1111/1467-8624.00337; El-Sheikh M, 2008, J ABNORM CHILD PSYCH, V36, P601, DOI 10.1007/s10802-007-9204-6; El-Sheikh M, 2009, MONOGR SOC RES CHILD, V74, P1, DOI 10.1111/j.1540-5834.2009.00501.x; Ellis B.J., 2010, EVOLUTION PERSONALIT; Ellis B.J., 2011, DEV PSYCHOPATHOL, V23; Ellis BJ, 2005, DEV PSYCHOPATHOL, V17, P303, DOI 10.1017/S0954579405050157; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2008, CURR DIR PSYCHOL SCI, V17, P183, DOI 10.1111/j.1467-8721.2008.00571.x; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Ellis BJ, 2006, DEV REV, V26, P175, DOI 10.1016/j.dr.2006.02.004; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Ellison P. T., 2009, ENDOCRINOLOGY SOCIAL, P54; ELLISON PT, 2001, FERTILE GROUND NATUR; Enebrink P, 2005, NORD J PSYCHIAT, V59, P431, DOI 10.1080/08039480500360690; Ennis M, 2001, STRESS HEALTH, V17, P253, DOI 10.1002/smi.904; Essex M.J., 2011, DEV PSYCHOPATHOL, V23; Evans GW, 2007, PSYCHOL SCI, V18, P953, DOI 10.1111/j.1467-9280.2007.02008.x; Evans GW, 2003, DEV PSYCHOL, V39, P924, DOI 10.1037/0012-1649.39.5.924; Fabes RA, 1997, J PERS SOC PSYCHOL, V73, P1107, DOI 10.1037/0022-3514.73.5.1107; Fairbanks Lynn A., 2009, P159; Figueredo A.J., 2009, BIOPSYCHOSOCIAL PERS; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Fink G, 1999, BEHAV BRAIN RES, V105, P53, DOI 10.1016/S0166-4328(99)00082-0; Flinn MV, 2006, DEV REV, V26, P138, DOI 10.1016/j.dr.2006.02.003; Flinn MV, 1996, HUM NATURE-INT BIOS, V7, P125, DOI 10.1007/BF02692108; FLINN MV, 2003, SOCIAL CULTURAL LIVE, P107; Forbes EE, 2010, BRAIN COGNITION, V72, P66, DOI 10.1016/j.bandc.2009.10.007; Fowles D. C., 2006, HDB PSYCHOPATHY, P14; Frick PJ, 2000, PSYCHOL ASSESSMENT, V12, P382, DOI 10.1037//1040-3590.12.4.382; Frick PJ, 2003, J ABNORM CHILD PSYCH, V31, P457, DOI 10.1023/A:1023899703866; Fries E, 2005, PSYCHONEUROENDOCRINO, V30, P1010, DOI 10.1016/j.psyneuen.2005.04.006; FULLER RW, 1992, FRONT NEUROENDOCRIN, V13, P250; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Ganzel BL, 2010, PSYCHOL REV, V117, P134, DOI 10.1037/a0017773; GARMEZY N, 1991, PEDIATR ANN, V20, P459, DOI 10.3928/0090-4481-19910901-05; Gatzke-Kopp LM, 2011, NEUROSCI BIOBEHAV R, V35, P794, DOI 10.1016/j.neubiorev.2010.09.013; Geary D. C., 2005, EVOLUTIONARY PSYCHOL, P483; Geary DC, 2000, PSYCHOL BULL, V126, P55, DOI 10.1037/0033-2909.126.1.55; Geary DC, 2002, ADV CHILD DEV BEHAV, V30, P41, DOI 10.1016/S0065-2407(02)80039-8; Geary DC, 2010, MALE FEMALE EVOLUTIO; Gell JS, 1998, J CLIN ENDOCR METAB, V83, P3695, DOI 10.1210/jc.83.10.3695; Gluckman PD, 2007, AM J HUM BIOL, V19, P1, DOI 10.1002/ajhb.20590; Gold PW, 2002, MOL PSYCHIATR, V7, P254, DOI 10.1038/sj/mp/4001032; Goldstein David S, 2008, Endocr Regul, V42, P111; Gonzalez-Bono E, 1999, HORM BEHAV, V35, P55, DOI 10.1006/hbeh.1998.1496; Gotlib IH, 2008, BIOL PSYCHIAT, V63, P847, DOI 10.1016/j.biopsych.2007.10.008; Gray Peter B., 2009, ENDOCRINOLOGY SOCIAL, P270; Grumbach M. M., 2003, WILLIAMS TXB ENDOCRI; Gunnar M., 2006, DEV PSYCHOPATHOLOGY, V2; Gunnar M.R., 2005, ATTACHMENT BONDING N, P245; Gunnar MR, 2009, PSYCHONEUROENDOCRINO, V34, P953, DOI 10.1016/j.psyneuen.2009.02.010; Gunnar MR, 2009, DEV PSYCHOPATHOL, V21, P69, DOI 10.1017/S0954579409000054; Gunnar MR, 2009, PSYCHONEUROENDOCRINO, V34, P62, DOI 10.1016/j.psyneuen.2008.08.013; Gunnar MR, 2002, PSYCHONEUROENDOCRINO, V27, P199, DOI 10.1016/S0306-4530(01)00045-2; Gunnar MR, 1997, DEV PSYCHOBIOL, V31, P65, DOI 10.1002/(SICI)1098-2302(199707)31:1<65::AID-DEV6>3.0.CO;2-S; Gustafsson PE, 2010, PSYCHONEUROENDOCRINO, V35, P1410, DOI 10.1016/j.psyneuen.2010.04.004; Gutteling BM, 2004, STRESS, V7, P257, DOI 10.1080/10253890500044521; Gutteling BM, 2005, PSYCHONEUROENDOCRINO, V30, P541, DOI 10.1016/j.psyneuen.2005.01.002; Habib KE, 2001, ENDOCRIN METAB CLIN, V30, P695, DOI 10.1016/S0889-8529(05)70208-5; Hagan MJ, 2011, PSYCHOPHARMACOLOGY, V214, P231, DOI 10.1007/s00213-010-1889-5; Hall J. R., 2006, HDB PSYCHOPATHY, P459; Haller J, 2006, NEUROSCI BIOBEHAV R, V30, P292, DOI 10.1016/j.neubiorev.2005.01.005; Haller J, 2005, EUR J PHARMACOL, V526, P89, DOI 10.1016/j.ejphar.2005.09.064; Haller J, 2004, J NEUROENDOCRINOL, V16, P550, DOI 10.1111/j.1365-2826.2004.01201.x; Hau M, 2007, BIOESSAYS, V29, P133, DOI 10.1002/bies.20524; Hawes DJ, 2009, CURR OPIN PSYCHIATR, V22, P357, DOI 10.1097/YCO.0b013e32832bfa6d; Hawley PH, 1999, DEV REV, V19, P97, DOI 10.1006/drev.1998.0470; Heinrichs M, 2003, BIOL PSYCHIAT, V54, P1389, DOI 10.1016/S0006-3223(03)00465-7; Herbison AE, 2007, HORM RES, V68, P75, DOI 10.1159/000110583; Herdt G, 2000, ARCH SEX BEHAV, V29, P587, DOI 10.1023/A:1002006521067; Herman JP, 2003, FRONT NEUROENDOCRIN, V24, P151, DOI 10.1016/j.yfrne.2003.07.001; Heyland A, 2005, BIOESSAYS, V27, P64, DOI 10.1002/bies.20136; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Hill-Soderlund AL, 2008, DEV PSYCHOBIOL, V50, P361, DOI 10.1002/dev.20302; HOFER MA, 1984, PSYCHOSOM MED, V46, P183, DOI 10.1097/00006842-198405000-00001; HRDY S, 1999, MOTHER NATURE; Hrdy S. B., 2009, MOTHERS OTHERS EVOLU; Hurlemann R, 2010, J NEUROSCI, V30, P4999, DOI 10.1523/JNEUROSCI.5538-09.2010; Ibanez L, 2000, ENDOCR REV, V21, P671, DOI 10.1210/er.21.6.671; Jackson JJ, 2009, BEHAV BRAIN SCI, V32, P31, DOI 10.1017/S0140525X09000132; Janson Charles H., 1993, P57; Jezova D, 1996, ACTA NEUROBIOL EXP, V56, P779; Joffe TH, 1997, J HUM EVOL, V32, P593, DOI 10.1006/jhev.1997.0140; Kajantie E, 2006, PSYCHONEUROENDOCRINO, V31, P151, DOI 10.1016/j.psyneuen.2005.07.002; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; Kaplan HS, 2003, OFFSPRING, P170; Katz LF, 2007, BIOL PSYCHOL, V74, P154, DOI 10.1016/j.biopsycho.2005.10.010; Keiley MK, 2003, J ABNORM CHILD PSYCH, V31, P267, DOI 10.1023/A:1023277413027; Kemp AH, 2010, BIOL PSYCHIAT, V67, P1067, DOI [10.1016/j.biopsych.2009.11.019, 10.1016/j.biopsych.2009.12.012]; Kern S, 2008, PSYCHONEUROENDOCRINO, V33, P517, DOI 10.1016/j.psyneuen.2008.01.010; Kessler RC, 2005, ARCH GEN PSYCHIAT, V62, P593, DOI 10.1001/archpsyc.62.6.593; Kiecolt-Glaser JK, 2003, J CONSULT CLIN PSYCH, V71, P176, DOI 10.1037/0022-006X.71.1.176; KiecoltGlaser JK, 1997, PSYCHOSOM MED, V59, P339, DOI 10.1097/00006842-199707000-00001; Kirk KM, 2001, EVOLUTION, V55, P423; KIRSCHBAUM C, 1995, PSYCHOSOM MED, V57, P23, DOI 10.1097/00006842-199501000-00004; Klimes-Dougan B, 2001, DEV PSYCHOPATHOL, V13, P695, DOI 10.1017/S0954579401003157; Knapp R, 2003, INTEGR COMP BIOL, V43, P658, DOI 10.1093/icb/43.5.658; Kokko H, 2008, J EVOLUTION BIOL, V21, P919, DOI 10.1111/j.1420-9101.2008.01540.x; Koob GF, 2008, PHILOS T R SOC B, V363, P3113, DOI 10.1098/rstb.2008.0094; Korte SM, 2005, NEUROSCI BIOBEHAV R, V29, P3, DOI 10.1016/j.neubiorev.2004.08.009; Kosfeld M, 2005, NATURE, V435, P673, DOI 10.1038/nature03701; Kramer KL, 2005, EVOL ANTHROPOL, V14, P224, DOI 10.1002/evan.20082; Kramer KL, 2002, HUM NATURE-INT BIOS, V13, P299, DOI 10.1007/s12110-002-1011-8; Kruger D. J., 2008, J SOCIAL EVOLUTIONAR, V2, P1, DOI DOI 10.1037/H0099336; Kruger DJ, 2006, HUM NATURE-INT BIOS, V17, P74, DOI 10.1007/s12110-006-1021-z; Kudielka BM, 2005, BIOL PSYCHOL, V69, P113, DOI 10.1016/j.biopsycho.2004.11.009; Kudielka BM, 2009, PSYCHONEUROENDOCRINO, V34, P2, DOI 10.1016/j.psyneuen.2008.10.004; Labrie F, 2005, J ENDOCRINOL, V187, P169, DOI 10.1677/joe.1.06264; Labrie F, 2001, FRONT NEUROENDOCRIN, V22, P185, DOI 10.1006/frne.2001.0216; Lancaster JB, 2009, ENDOCRINOLOGY SOCIAL, P95; Lancaster LT, 2008, J EVOLUTION BIOL, V21, P556, DOI 10.1111/j.1420-9101.2007.01478.x; Lancy D.F., HUM NAT IN PRESS; Lass-Hennemann J, 2010, P ROY SOC B-BIOL SCI, V277, P2175, DOI 10.1098/rspb.2010.0258; Laurent H, 2007, BIOL PSYCHOL, V76, P61, DOI 10.1016/j.biopsycho.2007.06.002; Leadbeater BJ, 1999, DEV PSYCHOL, V35, P1268, DOI 10.1037//0012-1649.35.5.1268; Legendre A, 1996, MERRILL PALMER QUART, V42, P554; Leimar O, 2006, AM NAT, V167, P367, DOI 10.1086/499566; Levesque M, 2010, AGGRESSIVE BEHAV, V36, P358, DOI 10.1002/ab.20362; Levine S, 2005, PSYCHONEUROENDOCRINO, V30, P939, DOI 10.1016/j.psyneuen.2005.03.013; Lewis M, 2002, CHILD DEV, V73, P1034, DOI 10.1111/1467-8624.00455; Li I, 2007, DEV PSYCHOBIOL, V49, P633, DOI 10.1002/dev.20239; Lighthall NR, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006002; Locke JL, 2006, BEHAV BRAIN SCI, V29, P259, DOI 10.1017/S0140525X0600906X; Lorber MF, 2004, PSYCHOL BULL, V130, P531, DOI 10.1037/0033-2909.130.4.531; Lovallo W.R., 2007, ENCY STRESS, P282; Luecken LJ, 2009, HORM BEHAV, V55, P412, DOI 10.1016/j.yhbeh.2008.12.007; MacDonald K, 1999, POPUL ENVIRON, V21, P223; Macri S, 2009, HORM BEHAV, V56, P391, DOI 10.1016/j.yhbeh.2009.07.006; Macri S, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0001015; MALARKEY WB, 1994, PSYCHOSOM MED, V56, P41, DOI 10.1097/00006842-199401000-00006; Manuck S. B., 2006, BIOL AGGRESSION, P65; Marazziti Donatella, 2006, Clin Pract Epidemiol Ment Health, V2, P28, DOI 10.1186/1745-0179-2-28; Marlowe FW, 2000, BEHAV PROCESS, V51, P45, DOI 10.1016/S0376-6357(00)00118-2; Marlowe FW, 2003, CROSS-CULT RES, V37, P282, DOI 10.1177/1069397103254008; Marsee MA, 2005, BEHAV SCI LAW, V23, P803, DOI 10.1002/bsl.662; Martorell GA, 2006, J FAM PSYCHOL, V20, P641, DOI 10.1037/0893-3200.20.4.641; MASON JW, 1968, PSYCHOSOM MED, V30, P576, DOI 10.1097/00006842-196809000-00020; Mazur A, 1997, EVOL HUM BEHAV, V18, P317, DOI 10.1016/S1090-5138(97)00013-5; McCarthy MM, 1996, PHYSIOL BEHAV, V60, P1209, DOI 10.1016/S0031-9384(96)00212-0; McCarthy MM, 1995, ADV EXP MED BIOL, V395, P235; McClintock MK, 1996, CURR DIR PSYCHOL SCI, V5, P178, DOI 10.1111/1467-8721.ep11512422; McCormack K, 2006, DEV PSYCHOBIOL, V48, P537, DOI 10.1002/dev.20157; McEwen BS, 2003, HORM BEHAV, V43, P2, DOI 10.1016/S0018-506X(02)00024-7; McEwen BS, 1998, ANN NY ACAD SCI, V840, P33, DOI 10.1111/j.1749-6632.1998.tb09546.x; McGlothlin JW, 2007, AM NAT, V170, P864, DOI 10.1086/522838; McIntyre M.H., 2009, ENDOCRINOLOGY SOCIAL, P225; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; Meaney MJ, 2010, CHILD DEV, V81, P41, DOI 10.1111/j.1467-8624.2009.01381.x; Miczek K. A., 2006, BIOL AGGRESSION, P114; Miller G. F., 2000, MATING MIND SEXUAL C; Miller GE, 2007, PSYCHOL BULL, V133, P25, DOI 10.1037/0033-2909.133.1.25; Mock DW, 2004, MORE KIN LESS KIND E; Mohler E, 2006, EARLY HUM DEV, V82, P731, DOI 10.1016/j.earlhumdev.2006.02.010; Moore TM, 2002, AGGRESSIVE BEHAV, V28, P299, DOI 10.1002/ab.90027; Mueller A, 2010, PSYCHONEUROENDOCRINO, V35, P289, DOI 10.1016/j.psyneuen.2009.07.002; MUNCK A, 1984, ENDOCR REV, V5, P25, DOI 10.1210/edrv-5-1-25; MURANAKA M, 1988, PSYCHOPHYSIOLOGY, V25, P330, DOI 10.1111/j.1469-8986.1988.tb01251.x; Murray-Close D, 2008, DEV PSYCHOL, V44, P1160, DOI 10.1037/a0012564; Nachmias M, 1996, CHILD DEV, V67, P508, DOI 10.2307/1131829; Nair A, 2007, NEUROPSYCHOPHARMACOL, V32, P1504, DOI 10.1038/sj.npp.1301276; Nakamura K, 2008, J ASSIST REPROD GEN, V25, P47, DOI 10.1007/s10815-008-9206-5; Nalivaiko E, 2009, NEUROSCI BIOBEHAV R, V33, P95, DOI 10.1016/j.neubiorev.2008.05.026; Nelson EE, 2005, PSYCHOL MED, V35, P163, DOI 10.1017/S0033291704003915; Nepomnaschy PA, 2006, P NATL ACAD SCI USA, V103, P3938, DOI 10.1073/pnas.0511183103; Nesse R. M., 2007, ENCY STRESS, P965; NETTER P, 1983, NEUROPSYCHOBIOLOGY, V10, P148, DOI 10.1159/000118002; NETTER P, 1987, J CLIN HYPERTENS, V3, P727; Netter P., 2004, PSYCHOBIOLOGY PERSON, P353; Netter P., 1991, STRESS EMOTION, V14, P187; Newton T.L., 1992, J PERS SOC PSYCHOL, V32, P790; Nijhout HF, 2003, EVOL DEV, V5, P9, DOI 10.1046/j.1525-142X.2003.03003.x; O'Connor TG, 2005, BIOL PSYCHIAT, V58, P211, DOI 10.1016/j.biopsych.2005.03.032; O'Leary MM, 2007, PSYCHONEUROENDOCRINO, V32, P183, DOI 10.1016/j.psyneuen.2006.12.004; O'Neal CR, 2010, CHILD DEV, V81, P290, DOI 10.1111/j.1467-8624.2009.01395.x; Obradovic J., 2011, DEV PSYCHOPATHOL, V23; Obradovic J, 2010, CHILD DEV, V81, P270, DOI 10.1111/j.1467-8624.2009.01394.x; Oitzl MS, 2010, NEUROSCI BIOBEHAV R, V34, P853, DOI 10.1016/j.neubiorev.2009.07.006; Oldehinkel AJ, 2004, DEV PSYCHOPATHOL, V16, P421, DOI 10.1017/S0954579404044591; Oskis A, 2011, J CHILD PSYCHOL PSYC, V52, P111, DOI 10.1111/j.1469-7610.2010.02296.x; Ouellet-Morin I, 2008, ARCH GEN PSYCHIAT, V65, P211, DOI 10.1001/archgenpsychiatry.2007.27; Oveis C, 2009, EMOTION, V9, P265, DOI 10.1037/a0015383; Pacak K, 2001, ENDOCR REV, V22, P502, DOI 10.1210/er.22.4.502; Pajer K, 2001, ARCH GEN PSYCHIAT, V58, P297, DOI 10.1001/archpsyc.58.3.297; Palmert MR, 2001, J CLIN ENDOCR METAB, V86, P4536, DOI 10.1210/jc.86.9.4536; Parker KJ, 2006, P NATL ACAD SCI USA, V103, P3000, DOI 10.1073/pnas.0506571103; PEDERSEN CA, 2005, ATTACHMENT BONDING N, P385; Pedersen SS, 2003, EUR J CARDIOV PREV R, V10, P241, DOI 10.1097/01.hjr.0000085246.65733.06; Pellegrini AD, 2001, MERRILL PALMER QUART, V47, P142, DOI 10.1353/mpq.2001.0004; PELLEGRINI AD, 2005, ORIGINS SOCIAL MIND, P219; Penke L., 2010, EVOLUTION PERSONALIT; Penke L, 2007, EUR J PERSONALITY, V21, P549, DOI 10.1002/per.629; PENNINGTON R, 1988, AM J PHYS ANTHROPOL, V77, P303, DOI 10.1002/ajpa.1330770304; Pereira Michael E., 1993, P3; Pettay JE, 2005, P NATL ACAD SCI USA, V102, P2838, DOI 10.1073/pnas.0406709102; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; Plant TM, 2004, HUM REPROD UPDATE, V10, P67, DOI 10.1093/humupd/dmh001; Popma A, 2007, BIOL PSYCHIAT, V61, P405, DOI 10.1016/j.biopsych.2006.06.006; Porges SW, 2007, BIOL PSYCHOL, V74, P116, DOI 10.1016/j.biopsycho.2006.06.009; PORGES SW, 1995, PSYCHOPHYSIOLOGY, V32, P301, DOI 10.1111/j.1469-8986.1995.tb01213.x; Porges SW, 2001, INT J PSYCHOPHYSIOL, V42, P123, DOI 10.1016/S0167-8760(01)00162-3; Porter RJ, 2004, PSYCHOPHARMACOLOGY, V173, P1, DOI 10.1007/s00213-004-1774-1; Powers SI, 2006, J PERS SOC PSYCHOL, V90, P613, DOI 10.1037/0022-3514.90.4.613; Propper C, 2008, CHILD DEV, V79, P1377, DOI 10.1111/j.1467-8624.2008.01194.x; Pruessner JC, 1997, PSYCHONEUROENDOCRINO, V22, P615, DOI 10.1016/S0306-4530(97)00072-3; Pruessner JC, 2010, PSYCHONEUROENDOCRINO, V35, P179, DOI 10.1016/j.psyneuen.2009.02.016; Quas JA, 2004, CHILD DEV, V75, P797, DOI 10.1111/j.1467-8624.2004.00707.x; Quas JA, 2000, DEV PSYCHOBIOL, V37, P153, DOI 10.1002/1098-2302(200011)37:3<153::AID-DEV4>3.0.CO;2-Y; Quinlan RJ, 2008, EVOL ANTHROPOL, V17, P227, DOI 10.1002/evan.20191; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Quirin M, 2008, PSYCHONEUROENDOCRINO, V33, P581, DOI 10.1016/j.psyneuen.2008.01.013; Raine A, 1997, J AM ACAD CHILD PSY, V36, P1457, DOI 10.1097/00004583-199710000-00029; RAUSTEVONWRIGHT M, 1981, PSYCHOPHYSIOLOGY, V18, P362; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Rodgers JL, 2001, CURR DIR PSYCHOL SCI, V10, P184, DOI 10.1111/1467-8721.00145; Roff D. A., 2002, LIFE HIST EVOLUTION; ROGOSCH FA, 1994, SOC DEV, V3, P291, DOI 10.1111/j.1467-9507.1994.tb00046.x; Roozendaal B, 2000, PSYCHONEUROENDOCRINO, V25, P213, DOI 10.1016/S0306-4530(99)00058-X; Rubin K.H., 2002, EMOTIONAL REGULATION, P81; Rubinow DR, 1998, BIOL PSYCHIAT, V44, P839, DOI 10.1016/S0006-3223(98)00162-0; Rutter M, 2004, DEV PSYCHOL, V40, P81, DOI 10.1037/0012-1649.40.1.81; Rutter M., 1993, J ADOLESCENT HEALTH, V14, P690; Sameroff A. J., 1996, 5 7 YEAR SHIFT AGE R; Sanchez MM, 2001, DEV PSYCHOPATHOL, V13, P419, DOI 10.1017/S0954579401003029; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; Scaramella LV, 1999, J RES ADOLESCENCE, V9, P111, DOI 10.1207/s15327795jra0902_1; SCARR S, 1992, CHILD DEV, V63, P1, DOI 10.2307/1130897; SCHANBERG SM, 1984, P SOC EXP BIOL MED, V175, P135; SCHLEGEL A, 1995, ETHOS, V23, P15, DOI 10.1525/eth.1995.23.1.02a00020; Schlotz W, 2008, PSYCHOSOM MED, V70, P787, DOI 10.1097/PSY.0b013e3181810658; Schmitt DP, 2005, BEHAV BRAIN SCI, V28, P247, DOI 10.1017/S0140525X05000051; Schommer NC, 2003, PSYCHOSOM MED, V65, P450, DOI 10.1097/01.PSY.0000035721.12441.17; Shirtcliff E.A., ATTACHMENT IN PRESS; Shirtcliff EA, 2005, DEV PSYCHOPATHOL, V17, P167, DOI 10.1017/S0954579405050091; Shirtcliff EA, 2008, DEV PSYCHOBIOL, V50, P690, DOI 10.1002/dev.20336; Shirtcliff EA, 2009, BEHAV SCI LAW, V27, P137, DOI 10.1002/bsl.862; Shoal GD, 2003, J AM ACAD CHILD PSY, V42, P1101, DOI 10.1097/01.CHI.0000070246.24125.6D; SIMON NG, 2006, BIOL AGGRESSION, P211; Smith J. M., 1998, EVOLUTIONARY GENETIC; SMITH PK, 2005, ORIGINS SOCIAL MIND, P271; Spangler G, 1998, INT J BEHAV DEV, V22, P681, DOI 10.1080/016502598384126; SROUFE LA, 1993, CHILD DEV, V64, P455, DOI 10.1111/j.1467-8624.1993.tb02921.x; Stark R, 2006, NEUROIMAGE, V32, P1290, DOI 10.1016/j.neuroimage.2006.05.046; Staton Lori, 2009, Dev Psychobiol, V51, P249, DOI 10.1002/dev.20361; Sterling P., 1988, HDB LIFE STRESS COGN, P629, DOI DOI 10.1016/0005-7967(90)90076-U; STGEORGE IM, 1994, J ADOLESCENT HEALTH, V15, P573; Stifter CA, 2001, SOC DEV, V10, P189, DOI 10.1111/1467-9507.00158; Storey AE, 2000, EVOL HUM BEHAV, V21, P79, DOI 10.1016/S1090-5138(99)00042-2; Stroud LR, 2002, BIOL PSYCHIAT, V52, P318, DOI 10.1016/S0006-3223(02)01333-1; Sugarman DB, 1997, J INTERPERS VIOLENCE, V12, P275, DOI 10.1177/088626097012002008; Surbey MK, 1998, HUM NATURE-INT BIOS, V9, P67, DOI 10.1007/s12110-998-1012-3; Susman EJ, 2006, NEUROSCI BIOBEHAV R, V30, P376, DOI 10.1016/j.neubiorev.2005.08.002; Tamres LK, 2002, PERS SOC PSYCHOL REV, V6, P2, DOI 10.1207/S15327957PSPR0601_1; Tarullo AR, 2006, HORM BEHAV, V50, P632, DOI 10.1016/j.yhbeh.2006.06.010; Taylor SE, 2000, PSYCHOL REV, V107, P411, DOI 10.1037/0033-295X.107.3.411; Taylor SE, 2008, J PERS SOC PSYCHOL, V95, P197, DOI 10.1037/0022-3514.95.1.197; Taylor SE, 2006, CURR DIR PSYCHOL SCI, V15, P273, DOI 10.1111/j.1467-8721.2006.00451.x; Theodoridou A, 2009, HORM BEHAV, V56, P128, DOI 10.1016/j.yhbeh.2009.03.019; Thrivikraman KV, 2000, BRAIN RES, V870, P87, DOI 10.1016/S0006-8993(00)02405-7; Tilbrook AJ, 2000, REV REPROD, V5, P105, DOI 10.1530/ror.0.0050105; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; Tops M, 2006, PSYCHOPHYSIOLOGY, V43, P653, DOI 10.1111/j.1469-8986.2006.00458.x; Tops M, 2006, PSYCHONEUROENDOCRINO, V31, P847, DOI 10.1016/j.psyneuen.2006.04.001; Tops M, 2010, FRONT PSYCHOL, V1, DOI 10.3389/fpsyg.2010.00152; Tops M, 2009, BRAIN COGNITION, V71, P427, DOI 10.1016/j.bandc.2009.03.009; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Troisi A, 2001, PHYSIOL BEHAV, V73, P443, DOI 10.1016/S0031-9384(01)00459-0; Uziel L, 2010, PERSPECT PSYCHOL SCI, V5, P243, DOI 10.1177/1745691610369465; Valentino R J, 1998, Adv Pharmacol, V42, P781; van Bokhoven I, 2005, J NEURAL TRANSM, V112, P1083, DOI 10.1007/s00702-004-0253-5; van den Bos R, 2009, PSYCHONEUROENDOCRINO, V34, P1449, DOI 10.1016/j.psyneuen.2009.04.016; van Goozen SHM, 1998, BIOL PSYCHIAT, V43, P156, DOI 10.1016/S0006-3223(98)00360-6; van Goozen SHM, 2000, J AM ACAD CHILD PSY, V39, P1438, DOI 10.1097/00004583-200011000-00019; van Goozen SHM, 2002, ARCH SEX BEHAV, V31, P247, DOI 10.1023/A:1015248803022; van Goozen SHM, 2007, PSYCHOL BULL, V133, P149, DOI 10.1037/0033-2909.133.1.149; van Honk J, 2003, NEUROREPORT, V14, P1993, DOI 10.1097/01.wnr.0000091690.72892.ec; van Marle HJF, 2009, BIOL PSYCHIAT, V66, P649, DOI 10.1016/j.biopsych.2009.05.014; vanLenthe F, 1996, INT J OBESITY, V20, P121; Verona E, 2006, BIOL PSYCHOL, V71, P33, DOI 10.1016/j.biopsycho.2005.02.001; Viau V, 2002, J NEUROENDOCRINOL, V14, P506, DOI 10.1046/j.1365-2826.2002.00798.x; Viau V, 2005, ENDOCRINOLOGY, V146, P137, DOI 10.1210/en.2004-0846; Wagner GP, 1996, EVOLUTION, V50, P967, DOI 10.1111/j.1558-5646.1996.tb02339.x; Wagner Guenter P., 2005, P33; Wang JJ, 2007, SOC COGN AFFECT NEUR, V2, P227, DOI 10.1093/scan/nsm018; Waschbusch DA, 2002, J ABNORM CHILD PSYCH, V30, P641, DOI 10.1023/A:1020867831811; WASSER SK, 1983, Q REV BIOL, V58, P513, DOI 10.1086/413545; WASSER SK, 1994, HUM NATURE-INT BIOS, V5, P293, DOI 10.1007/BF02692156; Weekes N, 2006, STRESS, V9, P199, DOI 10.1080/10253890601029751; WEINBERGER DA, 1979, J ABNORM PSYCHOL, V88, P369, DOI 10.1037/0021-843X.88.4.369; WEISFELD GE, 2005, ORIGINS SOCIAL MIND, P189; Weisfeld GE., 1999, EVOLUTIONARY PRINCIP; WEISFELD GE, 2005, EVOLUTIONARY PERSPEC, P331; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Westenberg PM, 2009, BIOL PSYCHOL, V82, P116, DOI 10.1016/j.biopsycho.2009.06.005; White DD, 2010, EVOL PSYCHOL-US, V8, P49; Williams PG, 2009, ANN BEHAV MED, V37, P126, DOI 10.1007/s12160-009-9100-0; WILLIAMS RB, 1982, SCIENCE, V218, P483, DOI 10.1126/science.7123248; WILLIAMS RB, 1987, AM J CARDIOL, V60, P27; WILSON DS, 1994, ETHOL SOCIOBIOL, V15, P219; WILSON DS, 1994, AM NAT, V144, P692, DOI 10.1086/285702; WILSON M, 2002, HORMONES BRAIN BEHAV, V5, P381, DOI DOI 10.1016/B978-012532104-4/50096-2; Winking J, 2007, P R SOC B, V274, P1643, DOI 10.1098/rspb.2006.0437; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wolf OT, 1999, BRAIN RES REV, V30, P264, DOI 10.1016/S0165-0173(99)00021-1; Worthman C.M., 2005, DEV PSYCHOBIOLOGY AG; Worthman CM, 2009, AM J HUM BIOL, V21, P772, DOI 10.1002/ajhb.20966; Worthman CM, 2005, AM J HUM BIOL, V17, P95, DOI 10.1002/ajhb.20096; Wust S, 2004, ANN NY ACAD SCI, V1032, P52, DOI 10.1196/annals.1314.005; Yan LJL, 2003, JAMA-J AM MED ASSOC, V290, P2138, DOI 10.1001/jama.290.16.2138; Yim IS, 2010, PSYCHONEUROENDOCRINO, V35, P241, DOI 10.1016/j.psyneuen.2009.06.014; ZAHAVI A, 1997, HANDICAP PRINCIPLE M; Zak PJ, 2005, HORM BEHAV, V48, P522, DOI 10.1016/j.yhbeh.2005.07.009 411 371 374 11 166 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0149-7634 1873-7528 NEUROSCI BIOBEHAV R Neurosci. Biobehav. Rev. JUN 2011 35 7 SI 1562 1592 10.1016/j.neubiorev.2010.11.007 31 Behavioral Sciences; Neurosciences Behavioral Sciences; Neurosciences & Neurology 788EM WOS:000292428200010 21145350 Green Accepted Y N 2018-11-12 J Evans, SR; Gustafsson, L; Sheldon, BC Evans, Simon R.; Gustafsson, Lars; Sheldon, Ben C. DIVERGENT PATTERNS OF AGE-DEPENDENCE IN ORNAMENTAL AND REPRODUCTIVE TRAITS IN THE COLLARED FLYCATCHER EVOLUTION English Article Aging; life-history; ornamentation; plumage coloration; senescence; sexual selection SECONDARY SEXUAL CHARACTER; BLUE-FOOTED BOOBY; WILD BIRD POPULATION; INFORMATION-CONTENT; HANDICAP PRINCIPLE; NATURAL-SELECTION; PHENOTYPIC PLASTICITY; MEASURING SENESCENCE; FICEDULA-ALBICOLLIS; CRYPTIC EVOLUTION Sexual ornaments are predicted to honestly signal individual condition. We might therefore expect ornament expression to show a senescent decline, in parallel with late-life deterioration of other characters. Conversely, life-history theory predicts the reduced residual reproductive value of older individuals will favor increased investment in sexually attractive traits. Using a 25-year dataset of more than 5000 records of breeding collared flycatchers (Ficedula albicollis) of known age, we quantify cross-sectional patterns of age-dependence in ornamental plumage traits and report long-term declines in expression that mask highly significant positive age-dependency. We partition this population-level age-dependency into its between- and within-individual components and show expression of ornamental white plumage patches exhibits within-individual increases with age in both sexes, consistent with life-history theory. For males, ornament expression also covaries with life span, such that, within a cohort, ornamentation indicates survival. Finally, we compared longitudinal age-dependency of reproductive traits and ornamental traits in both sexes, to assess whether these two trait types exhibit similar age-dependency. These analyses revealed contrasting patterns: reproductive traits showed within-individual declines in late-life females consistent with senescence; ornamental traits showed the opposite pattern in both males and females. Hence, our results for both sexes suggest that age-dependent ornament expression is consistent with life-history models of optimal signaling and, unlike reproductive traits, proof against senescence. [Evans, Simon R.; Sheldon, Ben C.] Univ Oxford, Dept Zool, Edward Grey Inst, Oxford OX1 2JD, England; [Gustafsson, Lars] Uppsala Univ, Evolutionary Biol Ctr, Dept Anim Biol, Uppsala, Sweden Evans, SR (reprint author), Univ Oxford, Dept Zool, Edward Grey Inst, Oxford OX1 2JD, England. simon.evans@zoo.ox.ac.uk Sheldon, Ben/A-8056-2010; Gustafsson, Lars/A-7634-2012 Sheldon, Ben/0000-0002-5240-7828; Gustafsson, Lars/0000-0001-6566-2863; Evans, Simon/0000-0002-8227-5838; Evans, Simon/0000-0001-5812-4039 Swedish Research Council; NERC We thank the numerous people who helped to collect data, A. Qvarnstrom and M. Robinson for their valuable advice and suggestions, two anonymous reviewers for their helpful comments, the Swedish Research Council for funding the long-term study and NERC for partial funding of this project, via a grant to BCS. ANDERSSON M, 1986, EVOLUTION, V40, P804, DOI 10.1111/j.1558-5646.1986.tb00540.x; Andersson M., 1994, SEXUAL SELECTION; Badyaev AV, 2003, J EVOLUTION BIOL, V16, P1065, DOI 10.1046/j.1420-9101.2003.00628.x; Bonduriansky R, 2008, FUNCT ECOL, V22, P443, DOI 10.1111/j.1365-2435.2008.01417.x; Bouwhuis S, 2009, P R SOC B, V276, P2769, DOI 10.1098/rspb.2009.0457; Brooks R, 2001, TRENDS ECOL EVOL, V16, P308, DOI 10.1016/S0169-5347(01)02147-4; Candolin U, 2000, ANIM BEHAV, V60, P417, DOI 10.1006/anbe.2000.1481; Candolin U, 2000, P ROY SOC B-BIOL SCI, V267, P2425, DOI 10.1098/rspb.2000.1301; Conover DO, 2009, ANN NY ACAD SCI, V1168, P100, DOI 10.1111/j.1749-6632.2009.04575.x; CONOVER DO, 1995, TRENDS ECOL EVOL, V10, P248, DOI 10.1016/S0169-5347(00)89081-3; Cordts R, 1996, ANIM BEHAV, V52, P269, DOI 10.1006/anbe.1996.0172; COTTON S, 2004, P ROY SOC LOND B BIO, V271, P772; Darwin C.R., 1871, DESCENT MAN SELECTIO; Forstmeier W, 2006, BEHAV ECOL SOCIOBIOL, V59, P634, DOI 10.1007/s00265-005-0090-z; Galvan I, 2009, FUNCT ECOL, V23, P302, DOI 10.1111/j.1365-2435.2008.01504.x; Garant D, 2004, AM NAT, V164, pE115, DOI 10.1086/424764; Garant D, 2004, EVOLUTION, V58, P634, DOI 10.1111/j.0014-3820.2004.tb01685.x; Gilmour A. R., 2009, ASREML USER GUIDE RE; GRAFEN A, 1990, J THEOR BIOL, V144, P517, DOI 10.1016/S0022-5193(05)80088-8; Graves BM, 2007, EVOL ECOL, V21, P663, DOI 10.1007/s10682-006-9144-6; Griffith SC, 2001, ANIM BEHAV, V61, P987, DOI 10.1006/anbe.2000.1666; GUSTAFSSON L, 1995, NATURE, V375, P311, DOI 10.1038/375311a0; Gustafsson L., 1989, P75; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Hansen TF, 1995, J EVOLUTION BIOL, V8, P759, DOI 10.1046/j.1420-9101.1995.8060759.x; Hegyi G, 2006, J EVOLUTION BIOL, V19, P228, DOI 10.1111/j.1420-9101.2005.00970.x; Hegyi G, 2002, J EVOLUTION BIOL, V15, P710, DOI 10.1046/j.1420-9101.2002.00449.x; Hegyi G, 2008, ANIM BEHAV, V75, P977, DOI 10.1016/j.anbehav.2007.08.009; Hegyi G, 2007, J AVIAN BIOL, V38, P698, DOI 10.1111/j.2007.0908-8857.04075.x; Hegyi G, 2010, NATURWISSENSCHAFTEN, V97, P567, DOI 10.1007/s00114-010-0672-0; Hunt J, 2006, AM NAT, V168, pE72, DOI 10.1086/506918; ISAKSSON C, 2007, ECOLOGY PHYSL CAROTE; IWASA Y, 1991, EVOLUTION, V45, P1431, DOI 10.1111/j.1558-5646.1991.tb02646.x; Jennions MD, 2001, Q REV BIOL, V76, P3, DOI 10.1086/393743; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; Karlsson L., 1986, Var Fagelvarld, V45, P131; Kokko H, 1997, BEHAV ECOL SOCIOBIOL, V41, P99, DOI 10.1007/s002650050369; Kruuk LEB, 2002, EVOLUTION, V56, P1683; Maklakov AA, 2007, AGING CELL, V6, P739, DOI 10.1111/j.1474-9726.2007.00333.x; Maklakov AA, 2009, AGING CELL, V8, P324, DOI 10.1111/j.1474-9726.2009.00479.x; Merila J, 2001, NATURE, V412, P76, DOI 10.1038/35083580; Michl G, 2002, P NATL ACAD SCI USA, V99, P5466, DOI 10.1073/pnas.082036699; Miller LK, 2005, EVOLUTION, V59, P2414; MOLLER AP, 1989, NATURE, V339, P132; MOLLER AP, 1994, EVOLUTION, V48, P1676, DOI 10.1111/j.1558-5646.1994.tb02204.x; Nisbet ICT, 2001, EXP GERONTOL, V36, P833, DOI 10.1016/S0531-5565(00)00244-8; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; Nussey DH, 2009, AM NAT, V174, P342, DOI 10.1086/603615; Part T, 1997, ANIM BEHAV, V54, P893, DOI 10.1006/anbe.1997.0514; PART T, 1989, J ANIM ECOL, V58, P305, DOI 10.2307/5002; Polak M, 1998, P ROY SOC B-BIOL SCI, V265, P2197, DOI 10.1098/rspb.1998.0559; Promislow D, 2003, BEHAV GENET, V33, P191, DOI 10.1023/A:1022562103669; Quinn GP, 2002, EXPT DESIGN DATA ANA; Qvarnstrom A, 1999, EVOLUTION, V53, P1564, DOI 10.1111/j.1558-5646.1999.tb05419.x; Qvarnstrom A, 2000, NATURE, V405, P344, DOI 10.1038/35012605; Rebke M, 2010, P NATL ACAD SCI USA, V107, P7841, DOI 10.1073/pnas.1002645107; Rivera-Gutierrez HF, 2010, ANIM BEHAV, V80, P451, DOI 10.1016/j.anbehav.2010.06.002; ROHWER S, 1988, AM NAT, V131, P556, DOI 10.1086/284806; Sadd B, 2006, J EVOLUTION BIOL, V19, P321, DOI 10.1111/j.1420-9101.2005.01062.x; Safran RJ, 2005, SCIENCE, V309, P2210, DOI 10.1126/science.1115090; Safran RJ, 2004, BEHAV ECOL, V15, P455, DOI 10.1093/beheco/arh035; Saino N, 1996, BEHAV ECOL, V7, P227, DOI 10.1093/beheco/7.2.227; Sheldon BC, 1997, P ROY SOC B-BIOL SCI, V264, P297, DOI 10.1098/rspb.1997.0042; Sheldon BC, 2003, EVOLUTION, V57, P406; Sheldon BC, 1999, ANIM BEHAV, V57, P285, DOI 10.1006/anbe.1998.0968; Svensson E, 1998, OIKOS, V83, P466, DOI 10.2307/3546674; Svensson L, 1994, IDENTIFICATION GUIDE; Torok J, 2003, BEHAV ECOL, V14, P382, DOI 10.1093/beheco/14.3.382; Torres R, 2003, BEHAV ECOL SOCIOBIOL, V55, P65, DOI 10.1007/s00265-003-0669-1; Torres R, 2007, J ANIM ECOL, V76, P1161, DOI 10.1111/j.1365-2656.2007.01282.x; van de Pol MV, 2009, ANIM BEHAV, V77, P753, DOI 10.1016/j.anbehav.2008.11.006; van desPol M., 2006, AM NAT, V167, P765; Vanpe C, 2007, AM NAT, V169, P481, DOI 10.1086/512046; VAUPEL JW, 1985, AM STAT, V39, P176, DOI 10.2307/2683925; VAUPEL JW, 1979, DEMOGRAPHY, V16, P339; Velando A, 2006, OECOLOGIA, V149, P535, DOI 10.1007/s00442-006-0457-5; Velando A, 2010, BIOL LETTERS, V6, P194, DOI 10.1098/rsbl.2009.0759; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Williams PD, 2006, TRENDS ECOL EVOL, V21, P458, DOI 10.1016/j.tree.2006.05.008; Wilson AJ, 2007, EVOL ECOL, V21, P337, DOI 10.1007/s10682-006-9106-z; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002; ZAHAVI A, 1977, J THEOR BIOL, V67, P603, DOI 10.1016/0022-5193(77)90061-3; ZAHAVI A, 1975, J THEOR BIOL, V53, P205, DOI 10.1016/0022-5193(75)90111-3 83 34 34 1 58 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution JUN 2011 65 6 1623 1636 10.1111/j.1558-5646.2011.01253.x 14 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 772XB WOS:000291270300009 21644953 2018-11-12 J van der Linden, D; te Nijenhuis, J; Cremers, M; van de Ven, C van der Linden, Dimitri; te Nijenhuis, Jan; Cremers, Myckel; van de Ven, Cyril General Factors of Personality in Six Datasets and a Criterion-Related Validity Study at the Netherlands Armed Forces INTERNATIONAL JOURNAL OF SELECTION AND ASSESSMENT English Article HIGHER-ORDER FACTORS; LIFE-HISTORY THEORY; BIG 5; SOCIAL DESIRABILITY; PERSONNEL-SELECTION; JOB-PERFORMANCE; 5-FACTOR MODEL; K-FACTOR; METAANALYSIS; QUESTIONNAIRE Several papers showed that a general factor occupies the top of the hierarchical structure of personality, the so-called General Factor of Personality (GFP). The first question is whether the GFP behaves similar to the general factor of mental ability (g), in that GFP scores from different personality questionnaires correlate highly. The second question is whether the GFP is related to real-life outcomes. In six large datasets (total N=21,754) collected in the Netherlands armed forces, the GFPs extracted from six personality questionnaires generally showed high degrees of correlation suggesting they measure the same construct. Moreover, GFP was related to drop-out from military training. This evidence strengthens the view that the GFP is a substantive construct with practical relevance. [van der Linden, Dimitri] Erasmus Univ, Inst Psychol, Rotterdam, Netherlands; [te Nijenhuis, Jan; Cremers, Myckel; van de Ven, Cyril] Dutch Minist Def, Def Behav Sci Serv Ctr, The Hague, Netherlands van der Linden, D (reprint author), Erasmus Univ, Inst Psychol, Rotterdam, Netherlands. vanderlinden@fsw.eur.nl te Nijenhuis, Jan/D-1015-2013 te Nijenhuis, Jan/0000-0002-1268-6121; Van der Linden, Dimitri/0000-0001-7098-8948 Anusic I, 2009, J PERS SOC PSYCHOL, V97, P1142, DOI 10.1037/a0017159; Ashton MC, 2007, PERS SOC PSYCHOL REV, V11, P150, DOI 10.1177/1088868306294907; Backstrom M, 2009, J RES PERS, V43, P335, DOI 10.1016/j.jrp.2008.12.013; BARRICK MR, 1991, PERS PSYCHOL, V44, P1, DOI 10.1111/j.1744-6570.1991.tb00688.x; Cattell RB, 1950, J SOC PSYCHOL, V31, P3, DOI 10.1080/00224545.1950.9918993; *CEBIR, 2007, PROF INT TEST; CREMERS M, 2007, HOE INTEGER ZIJN ONZ; DeYoung CG, 2002, PERS INDIV DIFFER, V33, P533, DOI 10.1016/S0191-8869(01)00171-4; Digman JM, 1997, J PERS SOC PSYCHOL, V73, P1246, DOI 10.1037/0022-3514.73.6.1246; DILCHERT S, 2006, ENCY CAREER DEV, P36; Dilchert S, 2008, Z PERSONALPSYCHOL, V7, P1, DOI 10.1026/1617-6391.7.1.1; DUEL J, 2006, GW06037 MIN DEF; Eysenck H. J., 1967, BIOL BASIS PERSONALI; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2009, TWIN RES HUM GENET, V12, P555, DOI 10.1375/twin.12.6.555; GOLDBERG LR, 1990, J PERS SOC PSYCHOL, V59, P1216, DOI 10.1037/0022-3514.59.6.1216; GUILFORD JP, 1949, GUILFORDZIMMERMAN TE; HERMANS HJM, 2004, PMT PRESTATIE MOTIVA; Hoekstra H. A., 2003, NEO PI R NEO FFI BIG; Hofstee WKB, 2001, INTELLIGENCE AND PERSONALITY: BRIDGING THE GAP IN THEORY AND MEASUREMENT, P43; Hogan J, 2007, J APPL PSYCHOL, V92, P1270, DOI 10.1037/0021-9010.92.5.1270; Hunter J.E., 2004, METHODS METAANALYSIS; Hunter J.E., 1990, METHODS METAANALYSIS; HUNTER JE, 1990, J APPL PSYCHOL, V75, P334, DOI 10.1037/0021-9010.75.3.334; Jensen A. R., 1998, G FACTOR SCI MENTAL; JENSEN AR, 1994, INTELLIGENCE, V18, P231, DOI 10.1016/0160-2896(94)90029-9; JENSEN AR, 1980, BIAS MENTAL TESTING; Judge TA, 2002, J APPL PSYCHOL, V87, P530, DOI 10.1037/0021.9010.87.3.530; Kurtz JE, 2008, PERS INDIV DIFFER, V45, P22, DOI 10.1016/j.paid.2008.02.012; *LAB APPL PSYCH, 1984, HANDL GUILF LTP TEMP; LUTEIJN F, 1985, NEDERLANDSE PERSOONL; McCrae RR, 2008, J PERS SOC PSYCHOL, V95, P442, DOI 10.1037/0022-3514.95.2.442; Musek J, 2007, J RES PERS, V41, P1213, DOI 10.1016/j.jrp.2007.02.003; Ones DS, 1996, J APPL PSYCHOL, V81, P660, DOI 10.1037/0021-9010.81.6.660; ONES DS, 1993, J APPL PSYCHOL, V78, P679, DOI 10.1037/0021-9010.78.4.679; Ones DS, 1998, HUM PERFORM, V11, P245, DOI 10.1207/s15327043hup1102&3_7; Petrides KV, 2010, PERS INDIV DIFFER, V48, P906, DOI 10.1016/j.paid.2010.02.019; Rushton JP, 2008, J RES PERS, V42, P1173, DOI 10.1016/j.jrp.2008.03.002; Rushton JP, 2010, TWIN RES HUM GENET, V13, P131, DOI 10.1375/twin.13.2.131; Rushton JP, 2009, J RES PERS, V43, P1091, DOI 10.1016/j.jrp.2009.06.002; Rushton JP, 2009, PERS INDIV DIFFER, V47, P571, DOI 10.1016/j.paid.2009.05.011; Rushton JP, 2009, PERS INDIV DIFFER, V47, P558, DOI 10.1016/j.paid.2009.05.009; Rushton JP, 2009, PERS INDIV DIFFER, V46, P437, DOI 10.1016/j.paid.2008.11.015; Salgado JF, 2002, INT J SELECT ASSESS, V10, P117, DOI 10.1111/1468-2389.00198; Spearman C, 1904, AM J PSYCHOL, V15, P201, DOI 10.2307/1412107; TENIJENHUIS J, 2008, PERSONEELSSELECTIE O; van der Linden D, 2010, J RES PERS, V44, P669, DOI 10.1016/j.jrp.2010.08.007; van der Linden D, 2010, J RES PERS, V44, P315, DOI 10.1016/j.jrp.2010.03.003; Van Rooy DL, 2004, J VOCAT BEHAV, V65, P71, DOI 10.1016/S0001-8791(03)00076-9; VANAMELSFOORT DJC, 2003, TM03A011 TNO TECHN M; VANDEVEN CPH, 2002, VERLOOP TIJDENS OPLE; VANKUIJK PHM, 2006, GW06074 MIN DEF; VERMEIJ AMA, 2006, P05055B MIN DEF; Veselka L, 2009, TWIN RES HUM GENET, V12, P254, DOI 10.1375/twin.12.3.254; VOS AJV, 2007, GW07092 MIN DEF; WETERINGS MP, 1998, 9809 GW MIN DEF 58 21 21 0 8 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0965-075X 1468-2389 INT J SELECT ASSESS Int. J. Sel. Assess. JUN 2011 19 2 157 169 10.1111/j.1468-2389.2011.00543.x 13 Psychology, Applied; Management Psychology; Business & Economics 763VB WOS:000290586700005 2018-11-12 J Griskevicius, V; Tybur, JM; Delton, AW; Robertson, TE Griskevicius, Vladas; Tybur, Joshua M.; Delton, Andrew W.; Robertson, Theresa E. The Influence of Mortality and Socioeconomic Status on Risk and Delayed Rewards: A Life History Theory Approach JOURNAL OF PERSONALITY AND SOCIAL PSYCHOLOGY English Article financial risk; temporal discounting; childhood development; socioeconomic status; mortality EVOLUTIONARY MODEL; REPRODUCTIVE STRATEGIES; PUBERTAL MATURATION; ENVIRONMENTAL RISK; DYING YOUNG; LIVING FAST; PERSPECTIVE; ATTACHMENT; EXPERIENCE; MOTIVES Why do some people take risks and live for the present, whereas others avoid risks and save for the future? The evolutionary framework of life history theory predicts that preferences for risk and delay in gratification should be influenced by mortality and resource scarcity. A series of experiments examined how mortality cues influenced decisions involving risk preference (e.g., $10 for sure vs. 50% chance of $20) and temporal discounting (e.g., $5 now vs. $10 later). The effect of mortality depended critically on whether people grew up in a relatively resource-scarce or resource-plentiful environment. For individuals who grew up relatively poor, mortality cues led them to value the present and gamble for big immediate rewards. Conversely, for individuals who grew up relatively wealthy, mortality cues led them to value the future and avoid risky gambles. Overall, mortality cues appear to propel individuals toward diverging life history strategies as a function of childhood socioeconomic status, suggesting important implications for how environmental factors influence economic decisions and risky behaviors. [Griskevicius, Vladas] Univ Minnesota, Dept Mkt, Carlson Sch Management, Minneapolis, MN 55455 USA; [Tybur, Joshua M.] Univ New Mexico, Dept Psychol, Albuquerque, NM 87131 USA; [Delton, Andrew W.; Robertson, Theresa E.] Univ Calif Santa Barbara, Dept Psychol, Santa Barbara, CA 93106 USA Griskevicius, V (reprint author), Univ Minnesota, Dept Mkt, Carlson Sch Management, Minneapolis, MN 55455 USA. vladasg@umn.edu Tybur, Joshua/P-5435-2014 Tybur, Joshua/0000-0002-0462-6508; Robertson, Theresa/0000-0001-8229-2323 NIH HHS [DP1 OD000516-05, DP1 OD000516] Ackerman JM, 2006, PSYCHOL SCI, V17, P836, DOI 10.1111/j.1467-9280.2006.01790.x; Adams J, 2009, BRIT J HEALTH PSYCH, V14, P83, DOI 10.1348/135910708X299664; Aiken L.S., 1991, MULTIPLE REGRESSION; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J., 2007, OXFORD HDB EVOLUTION, P237; Belsky J, 2010, PSYCHOL SCI, V21, P1195, DOI 10.1177/0956797610379867; Ben-Zur H, 2009, PERS SOC PSYCHOL REV, V13, P109, DOI 10.1177/1088868308330104; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; BRAVER SL, 1975, EDUC PSYCHOL MEAS, V35, P283, DOI 10.1177/001316447503500206; CARETTA CM, 1995, PHYSIOL BEHAV, V57, P901, DOI 10.1016/0031-9384(94)00344-5; Caspi A, 2003, SCIENCE, V301, P386, DOI 10.1126/science.1083968; Charnov Eric L., 1993, P1; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Cohen S, 2004, PSYCHOSOM MED, V66, P553, DOI 10.1097/01.psy.0000126200.05189.d3; Daan Serge, 1997, P311; Daly M, 2005, Q REV BIOL, V80, P55, DOI 10.1086/431025; Davis J, 2008, HUM NATURE-INT BIOS, V19, P426, DOI 10.1007/s12110-008-9052-2; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; DINAPOLI TP, 2008, 2008 COMPTROLLERS RE; Dohmen T, 2010, AM ECON REV, V100, P1238, DOI 10.1257/aer.100.3.1238; EiblEibesfeldt Irenaus, 1989, HUMAN ETHOLOGY; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; FEUER A, 2008, NY TIMES 0821, P1; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Francis D, 1999, SCIENCE, V286, P1155, DOI 10.1126/science.286.5442.1155; Galobardes B, 2004, EPIDEMIOL REV, V26, P7, DOI 10.1093/expirev/mxh008; Gangestad SW, 2007, J PERS SOC PSYCHOL, V92, P151, DOI 10.1037/0022-3514.92.1.151; Green L, 2004, PSYCHOL BULL, V130, P769, DOI 10.1037/0033-2909.130.5.769; Greenberg J., 1986, PUBLIC SELF PRIVATE, P189, DOI [DOI 10.1007/978-1-4613-9564-5_10, 10.1007/978-1-4613-9564-5_10 10. 1007/978-1-4613-9564-5_10]; Griskevicius V, 2007, J PERS SOC PSYCHOL, V93, P85, DOI 10.1037/0022-3514.93.1.85; Griskevicius V, 2006, J PERS SOC PSYCHOL, V91, P281, DOI 10.1037/0022-3514.91.2.281; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2009, J PERS SOC PSYCHOL, V96, P980, DOI 10.1037/a0013907; Haselton MG, 2006, PERS SOC PSYCHOL REV, V10, P47, DOI 10.1207/s15327957pspr1001_3; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Horn HS, 1978, BEHAVIOURAL ECOLOGY, P411; HORN HS, 1984, BEHAVIORAL ECOLOGY E, P279; Jablonka E, 2009, Q REV BIOL, V84, P131, DOI 10.1086/598822; Kacelnik A, 1996, AM ZOOL, V36, P402; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; Kenrick DT, 2010, PERSPECT PSYCHOL SCI, V5, P292, DOI 10.1177/1745691610369469; Kenrick DT, 2009, SOC COGNITION, V27, P764, DOI 10.1521/soco.2009.27.5.764; Kenrick DT, 2000, DEVELOPMENTAL SOCIAL PSYCHOLOGY OF GENDER, P35; Kruger DJ, 2006, HUM NATURE-INT BIOS, V17, P74, DOI 10.1007/s12110-006-1021-z; Low BS, 2008, CROSS-CULT RES, V42, P201, DOI 10.1177/1069397108317669; Low BS, 2002, AM J HUM BIOL, V14, P149, DOI 10.1002/ajhb.10043; LOW BS, 2000, ADAPTATION HUMAN BEH, P323; Maestripieri D, 2005, P NATL ACAD SCI USA, V102, P9726, DOI 10.1073/pnas.0504122102; Maner JK, 2005, J PERS SOC PSYCHOL, V88, P63, DOI [10.1037/0022-3514.88.1.63, 10.1037/0022-3514.1.63]; Miller GE, 2009, P NATL ACAD SCI USA, V106, P14716, DOI 10.1073/pnas.0902971106; Navarrete CD, 2009, PSYCHOL SCI, V20, P155, DOI 10.1111/j.1467-9280.2009.02273.x; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Nettle D, 2009, J THEOR BIOL, V257, P100, DOI 10.1016/j.jtbi.2008.10.033; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; RACHLIN H, 1991, J EXP ANAL BEHAV, V55, P233, DOI 10.1901/jeab.1991.55-233; RICE WR, 1994, TRENDS ECOL EVOL, V9, P235, DOI 10.1016/0169-5347(94)90258-5; Roff D. A., 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; RUBIN PH, 1979, ECON INQ, V17, P585, DOI 10.1111/j.1465-7295.1979.tb00549.x; SCHAFFER WM, 1983, AM NAT, V121, P418, DOI 10.1086/284070; Schaller M, 2003, PERS SOC PSYCHOL B, V29, P637, DOI 10.1177/0146167203251526; Simpson Jeffry A., 2008, HDB ATTACHMENT THEOR, P131; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; Tinbergen JM, 1999, BEHAV ECOL, V10, P504, DOI 10.1093/beheco/10.5.504; Van Vugt M, 2007, PSYCHOL SCI, V18, P19, DOI 10.1111/j.1467-9280.2007.01842.x; Walker RS, 2008, P ROY SOC B-BIOL SCI, V275, P827, DOI 10.1098/rspb.2007.1511; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Wilson M, 2004, P ROY SOC B-BIOL SCI, V271, pS177, DOI 10.1098/rsbl.2003.0134; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; Worthman CM, 2005, AM J HUM BIOL, V17, P95, DOI 10.1002/ajhb.20096 79 177 191 7 82 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0022-3514 1939-1315 J PERS SOC PSYCHOL J. Pers. Soc. Psychol. JUN 2011 100 6 1015 1026 10.1037/a0022403 12 Psychology, Social Psychology 770CW WOS:000291065600004 21299312 Green Accepted Y N 2018-11-12 J Decker, SA; Flinn, MV Decker, Seamus A.; Flinn, Mark V. Parenting Styles and Gender-Linked Drinking Behaviors in Dominica ETHOS English Article child development; mother-child; health; family; personality; alcohol LIFE-HISTORY THEORY; CARIBBEAN COMMUNITY; STRESS-RESPONSE; ATTACHMENT; CHILD; ACTIVATION; ADDICTION; EVOLUTION; DISORDER; CULTURE We explored links among adult alcohol consumption, personality, and retrospective childhood relationships with parents using psychometric instruments adapted for use among Dominicans (n=58; 25 men and 33 women). Compared to women, men consumed more alcohol and cigarettes, reported lower behavioral inhibition, and lower maternal "caringness" (all p <.05). Results suggest that, with respect to drinking, parenting styles predispose opposite developmental trends for men and women. Women who recalled their mothers as more caring tended to have higher behavioral activation seeking (BAS) scores and also to drink more. For men BAS was negatively correlated with maternal caring, but did not significantly correlate with alcohol consumption. Women who recalled their fathers as more controlling tended to drink less (p=.026), but men who recalled their fathers as more controlling tended to drink more (p=.0002). Maternal controllingness was also positively associated with alcohol consumption in men (p=.002), but showed no association with drinking in women. [Decker, Seamus A.] Univ Massachusetts, Dept Anthropol, Amherst, MA 01003 USA; [Flinn, Mark V.] Univ Missouri, Dept Anthropol, Columbia, MO 65211 USA Decker, SA (reprint author), Univ Massachusetts, Dept Anthropol, Amherst, MA 01003 USA. Flinn, Mark/0000-0002-8732-3085 Andersson P, 2003, NORD J PSYCHIAT, V57, P147, DOI 10.1080/08039480310000987; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Berry K, 2007, CLIN PSYCHOL REV, V27, P458, DOI 10.1016/j.cpr.2006.09.006; Bock Ph. K., 1988, RETHINKING PSYCHOL A; BOWLBY J, 1982, ATTACHMENT; Brenner SL, 2005, PSYCHOPHYSIOLOGY, V42, P108, DOI 10.1111/j.1469-8986.2005.00261.x; Brook JS, 2010, AM J ADDICTION, V19, P534, DOI 10.1111/j.1521-0391.2010.00083.x; Burns E, 2010, ADDICTION, V105, P601, DOI 10.1111/j.1360-0443.2009.02842.x; CARVER CS, 1994, J PERS SOC PSYCHOL, V67, P319, DOI 10.1037/0022-3514.67.2.319; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Comings DE, 2000, PROG BRAIN RES, V126, P325; Emery Robert E, 2005, Psychol Sci Public Interest, V6, P1, DOI 10.1111/j.1529-1006.2005.00020.x; Flinn MV, 2006, DEV REV, V26, P138, DOI 10.1016/j.dr.2006.02.003; FLINN MV, 1995, CURR ANTHROPOL, V36, P854, DOI 10.1086/204444; Flinn MV, 1997, AM J PHYS ANTHROPOL, V102, P33; FLINN MV, 1996, HUMAN NATURE, V7, P1125; FOWLER JS, 2004, NEUROBIOLOGY MENTAL, P740; Franken IHA, 2006, PERS INDIV DIFFER, V40, P1497, DOI 10.1016/j.paid.2005.12.005; Heinze MC, 1996, BEHAV SCI LAW, V14, P293; Hill EM, 2002, ADDICTION, V97, P401, DOI 10.1046/j.1360-0443.2002.00020.x; Hinton A., 1999, BIOCULTURAL APPROACH, P299; Ingham J. M., 1996, PSYCHOL ANTHR RECONS; Juffer F, 2005, J CHILD PSYCHOL PSYC, V46, P263, DOI 10.1111/j.1469-7610.2004.00353.x; Kleinbaum DG, 2008, APPL REGRESSION ANAL; Knyazev GG, 2004, PERS INDIV DIFFER, V37, P1565, DOI 10.1016/j.paid.2004.02.013; Koehler N, 2009, J SEX RES, V46, P366, DOI 10.1080/00224490902773996; Lende DH, 2002, ADDICTION, V97, P447, DOI 10.1046/j.1360-0443.2002.00022.x; MacCall CA, 2001, PRIMARY CARE PSYCHIA, V7, P137, DOI 10.1185/135525701753429317; Macfarlan SJ, 2008, HUM NATURE-INT BIOS, V19, P294, DOI 10.1007/s12110-008-9045-1; MacKenzie RD, 2008, J FORENSIC SCI, V53, P1443, DOI 10.1111/j.1556-4029.2008.00869.x; Marquez-Caraveo ME, 2007, SALUD MENT, V30, P58; Meyer C, 2004, INT J EAT DISORDER, V35, P229, DOI 10.1002/eat.10236; Myhr G, 2004, ACTA PSYCHIAT SCAND, V109, P447, DOI 10.1111/j.1600-0047.2004.00271.x; PARKER G, 1979, BRIT J MED PSYCHOL, V52, P1, DOI 10.1111/j.2044-8341.1979.tb02487.x; Quinlan RJ, 2005, CURR ANTHROPOL, V46, P471, DOI 10.1086/430017; Quinlan RJ, 2006, AM ANTHROPOL, V108, P464, DOI 10.1525/aa.2006.108.3.464; Quinn N., 2005, ANTHROPOL THEOR, V5, P477, DOI DOI 10.1177/1463499605059233; Raybeck D, 2005, ETHOS, V33, P295, DOI 10.1525/eth.2005.33.3.295; Rehm J, 2005, REV PANAM SALUD PUBL, V18, P241, DOI 10.1590/S1020-49892005000900003; Rohner RP, 2005, ETHOS, V33, P367, DOI 10.1525/eth.2005.33.3.367; Rutherford MJ, 1997, J CHILD ADOLES SUBST, V6, P43; RUTTER M, 1994, STRESS RISK RESILIEN; SCHEPERHUGHES N, 1985, ETHOS, V13, P291, DOI 10.1525/eth.1985.13.4.02a00010; SCHORE A, 1999, ATTACHMENT LOSS SERI, V1, P25; Shin SH, 2009, ADDICT BEHAV, V34, P277, DOI 10.1016/j.addbeh.2008.10.023; Stacy AW, 2010, ANNU REV CLIN PSYCHO, V6, P551, DOI 10.1146/annurev.clinpsy.121208.131444; Strauss Claudia, 1992, HUMAN MOTIVES CULTUR, P1; Wallace A.F.C., 1961, CULTURE PERSONALITY; Weisner TS, 2009, ETHOS, V37, P181, DOI 10.1111/j.1548-1352.2009.01037.x; WHITING J, 1978, MAKING PSYCHOL ANTHR, P39 50 4 4 0 9 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0091-2131 ETHOS Ethos JUN 2011 39 2 189 210 10.1111/j.1548-1352.2011.01184.x 22 Anthropology; Psychology, Multidisciplinary Anthropology; Psychology 759FE WOS:000290225300008 2018-11-12 J Kuriwada, T; Kumano, N; Shiromoto, K; Haraguchi, D Kuriwada, Takashi; Kumano, Norikuni; Shiromoto, Keiko; Haraguchi, Dai Age-dependent investment in death-feigning behaviour in the sweetpotato weevil Cylas formicarius PHYSIOLOGICAL ENTOMOLOGY English Article Life-history theory; mating history; residual reproductive value (RRV); tonic immobility PREDATOR-PREY INTERACTIONS; REPRODUCTIVE EFFORT; LIFE-HISTORY; CALLOSOBRUCHUS-CHINENSIS; ANTIPREDATOR STRATEGIES; MELOIMORPHA-JAPONICA; FABRICIUS COLEOPTERA; GENETIC CORRELATION; MATING-BEHAVIOR; FIELD CRICKETS Because life-history theory predicts that risky behaviours such as mating should increase as life expectancy decreases, predatory avoidance is expected to decrease with age. However, this prediction has not been examined. In the present study, the effect of age on death-feigning behaviour, a form of predatory avoidance behaviour in the sweetpotato weevil Cylas formicarius (Summers) (Coleoptera: Brentidae), is investigated by performing a longitudinal study. Because the effects of mating history and age usually cannot be distinguished, mating history is controlled. The results show that only female weevils decrease the investment in death-feigning behaviour with age, whereas male weevils do not show any age-related change. In addition, death-feigning behaviour of mated females is longer than that of virgin females, possibly because additional mating partners would be not needed by mated females. [Kuriwada, Takashi; Kumano, Norikuni; Shiromoto, Keiko; Haraguchi, Dai] Okinawa Prefectural Plant Protect Ctr, Okinawa 9020072, Japan Kuriwada, T (reprint author), Okinawa Prefectural Plant Protect Ctr, Okinawa 9020072, Japan. t.kuriwada@gmail.com Abrams PA, 2000, ANNU REV ECOL SYST, V31, P79, DOI 10.1146/annurev.ecolsys.31.1.79; Bilde T, 2006, BIOL LETTERS, V2, P23, DOI 10.1098/rsbl.2005.0392; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Cockerham KL, 1954, LA TECH B, V483, P1; DALGAARD P, 2002, INTRO STAT R; Dobson AJ, 2002, INTRO GEN LINEAR MOD; ENDLER JA, 1987, ANIM BEHAV, V35, P1376, DOI 10.1016/S0003-3472(87)80010-6; Gyssels FGM, 2005, ETHOLOGY, V111, P411, DOI 10.1111/j.1439-0310.2005.01076.x; Hansen LS, 2008, BEHAV ECOL, V19, P546, DOI 10.1093/beheco/arm165; HEATH RR, 1986, J CHEM ECOL, V12, P1489, DOI 10.1007/BF01012367; Honma A, 2006, P R SOC B, V273, P1631, DOI 10.1098/rspb.2006.3501; Hozumi N, 2005, J INSECT BEHAV, V18, P557, DOI 10.1007/s10905-005-5612-z; Hunt J, 2004, NATURE, V432, P1024, DOI 10.1038/nature03084; Hunt J, 2005, AM NAT, V166, P79, DOI 10.1086/430672; Judge KA, 2008, EVOLUTION, V62, P868, DOI 10.1111/j.1558-5646.2008.00318.x; Judge KA, 2010, CAN J ZOOL, V88, P219, DOI 10.1139/Z09-139; Kemp DJ, 2002, P ROY SOC B-BIOL SCI, V269, P1341, DOI 10.1098/rspb.2002.2000; Kokko H, 1997, BEHAV ECOL SOCIOBIOL, V41, P99, DOI 10.1007/s002650050369; Kuriwada T, 2006, ANN ENTOMOL SOC AM, V99, P1244, DOI 10.1603/0013-8746(2006)99[1244:FRINCW]2.0.CO;2; Kuriwada T, 2010, J APPL ENTOMOL, V134, P652, DOI 10.1111/j.1439-0418.2009.01457.x; Kuriwada T, 2011, J ETHOL, V29, P99, DOI 10.1007/s10164-010-0231-3; Kuriwada T, 2010, FLA ENTOMOL, V93, P39, DOI 10.1653/024.093.0105; Kuriwada T, 2009, ANIM BEHAV, V78, P1145, DOI 10.1016/j.anbehav.2009.07.031; Lima SL, 2002, TRENDS ECOL EVOL, V17, P70, DOI 10.1016/S0169-5347(01)02393-X; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Miyatake T, 2004, P ROY SOC B-BIOL SCI, V271, P2293, DOI 10.1098/rspb.2004.2858; Miyatake T, 2001, J INSECT BEHAV, V14, P421, DOI 10.1023/A:1011196420147; Miyatake T, 2001, ANN ENTOMOL SOC AM, V94, P612, DOI 10.1603/0013-8746(2001)094[0612:EOSODF]2.0.CO;2; MIYATAKE T., 2009, P ROY SOC LOND B BIO, V276, P2762; Miyatake T, 2008, ANIM BEHAV, V75, P113, DOI 10.1016/j.anbehav.2007.04.019; Nakayama S, 2010, POPUL ECOL, V52, P329, DOI 10.1007/s10144-009-0188-7; Nakayama S, 2010, BIOL LETTERS, V6, P18, DOI 10.1098/rsbl.2009.0494; Nakayama S, 2010, ETHOLOGY, V116, P108, DOI 10.1111/j.1439-0310.2009.01721.x; Nakayama S, 2009, EVOL ECOL, V23, P711, DOI 10.1007/s10682-008-9266-0; Ohno T, 2007, P R SOC B, V274, P555, DOI 10.1098/rspb.2006.3750; Poizat G, 1999, P ROY SOC B-BIOL SCI, V266, P1543, DOI 10.1098/rspb.1999.0813; R Development Core Team, 2009, R LANG ENV STAT COMP; Reinhard HJ, 1923, TEX AGR EXP B, V308, P1; Roff D. A., 2002, LIFE HIST EVOLUTION; Ruxton GD, 2004, AVOIDING ATTACK EVOL; SAKURATANI Y, 1994, APPL ENTOMOL ZOOL, V29, P307, DOI 10.1303/aez.29.307; Sherman M., 1954, HAWAII AGR EXPT STAT, V23, P1; SIH A, 1982, ECOLOGY, V63, P786, DOI 10.2307/1936799; Stearns S. C., 1992, EVOLUTION LIFE HIST; Sugimoto T, 1996, APPL ENTOMOL ZOOL, V31, P357, DOI 10.1303/aez.31.357; SUGIMOTO T, 1994, APPL ENTOMOL ZOOL, V29, P11, DOI 10.1303/aez.29.11; Venables W. N., 2002, MODERN APPL STAT S; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Williams GC, 1966, ADAPTATION NATURAL S 50 5 6 0 5 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0307-6962 PHYSIOL ENTOMOL Physiol. Entomol. JUN 2011 36 2 149 154 10.1111/j.1365-3032.2010.00777.x 6 Entomology Entomology 762OJ WOS:000290489000007 2018-11-12 J Beaulieu, M; Reichert, S; Le Maho, Y; Ancel, A; Criscuolo, F Beaulieu, Michael; Reichert, Sophie; Le Maho, Yvon; Ancel, Andre; Criscuolo, Francois Oxidative status and telomere length in a long-lived bird facing a costly reproductive event FUNCTIONAL ECOLOGY English Article Adelie penguin; breeding effort; long-lived species; oxidative stress; telomeres ADELIE PENGUINS; EXPERIMENTAL INCREASE; STRESS; LIFE; SURVIVAL; AGE P>1. Life-history theory predicts that high reproductive investment alters self-maintenance. Several mechanisms underlying the cost of reproduction have been previously suggested, but how parental effort may impact cell and organism maintenance remains largely unknown. The effects of oxidative stress - the imbalance between oxidative damage and defences - on telomere dynamics may underlie this relationship. Indeed, oxidative stress is associated with costly activities like breeding, and impacts telomere length that is known to predict survival in birds. According to life-history theory, long-lived species are expected to minimize the adverse effects of current reproduction on their body maintenance and should therefore enhance their antioxidant capacity and preserve their telomeres when breeding workload increases. 2. In this study, we tested this hypothesis by determining experimentally how the oxidative status and telomere length were modified when long-lived Adelie penguins (Pygoscelis adeliae) faced a costly reproductive event. The breeding workload was increased through a handicapping procedure that increased the cost of foraging and therefore chick-provisioning. 3. In agreement with our hypothesis, Adelie penguins substantially increased their antioxidant defences during a costly breeding effort, while oxidative damage and telomere length remained unchanged. 4. As expected in long-lived species, Adelie penguins subjected to increased breeding constraints appear to prioritize self-maintenance as shown by their increased antioxidant capacity. Moreover, the absence of effects of our experimental procedure on telomere length suggests no apparent impact of breeding workload on the senescence of this long-lived bird. However, to better understand the role of the couple 'oxidative status/telomeres' in the regulation of life-history strategies, further studies should examine: (i) the nature and the cost of additional antioxidant protection; (ii) the changes in the oxidative status of animals throughout their annual cycle and the consequences on telomere dynamics; and (iii) the repartition of antioxidant resources between young and parents. [Beaulieu, Michael; Reichert, Sophie; Le Maho, Yvon; Ancel, Andre; Criscuolo, Francois] CNRS Uds, Inst Pluridisciplinaire Hubert Curien IPHC, Dept Ecol Physiol Ethol DEPE, UMR 7178, F-67087 Strasbourg 2, France Beaulieu, M (reprint author), Univ N Carolina, Dept Biol, Coker Hall, Chapel Hill, NC 27599 USA. miklvet@hotmail.fr Beaulieu, Michael/A-5261-2011 Beaulieu, Michael/0000-0002-9948-269X French Polar Institute Paul-Emile Victor (IPEV); Terres Australes et Antarctiques Francaises (TAAF) This study was approved and supported by the French Polar Institute Paul-Emile Victor (IPEV) and the Terres Australes et Antarctiques Francaises (TAAF). We would like to thank T. Raclot, A. Dervaux, D. Lazin and A.M. Thierry for their great help in the field and H. Gachot and C. Tromp for their assistance in laboratory analyses. We also thank S. Parker who improved the English of this article. AINLEY DG, 1980, ECOLOGY, V61, P522, DOI 10.2307/1937418; Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Beaulieu M, 2010, J EXP BIOL, V213, P33, DOI 10.1242/jeb.035378; Beaulieu M, 2010, P ROY SOC B-BIOL SCI, V277, P1087, DOI 10.1098/rspb.2009.1881; Beaulieu M, 2009, ANIM BEHAV, V78, P313, DOI 10.1016/j.anbehav.2009.05.006; Beckman KB, 1998, PHYSIOL REV, V78, P547; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Bize P, 2009, P R SOC B, V276, P1679, DOI 10.1098/rspb.2008.1817; Blackburn EH, 2000, NATURE, V408, P53, DOI 10.1038/35040500; BLACKBURN EH, 1991, NATURE, V350, P569, DOI 10.1038/350569a0; CAWTHON RM, 2002, NUCLEIC ACIDS RES, V30, P47; CHAPPELL MA, 1993, BEHAV ECOL SOCIOBIOL, V33, P173, DOI 10.1007/BF00216598; Chubb AL, 2004, MOL PHYLOGENET EVOL, V30, P140, DOI 10.1016/S1055-7903(03)00159-3; Cohen AA, 2009, FUNCT ECOL, V23, P310, DOI 10.1111/j.1365-2435.2009.01540.x; Criscuolo F, 2009, J AVIAN BIOL, V40, P342, DOI 10.1111/j.1600-048X.2008.04623.x; CROXALL JP, 1982, J ANIM ECOL, V51, P177, DOI 10.2307/4318; CULIK B, 1991, J COMP PHYSIOL B, V161, P285, DOI 10.1007/BF00262310; Devevey G, 2010, J ORNITHOL, V151, P251, DOI 10.1007/s10336-009-0456-5; Epel ES, 2004, P NATL ACAD SCI USA, V101, P17312, DOI 10.1073/pnas.0407162101; Finkel T, 2003, CURR OPIN CELL BIOL, V15, P247, DOI 10.1016/S095500674(03)00002-4; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Golet GH, 2004, ECOL MONOGR, V74, P353, DOI 10.1890/02-4029; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hatakeyama H, 2008, MECH AGEING DEV, V129, P550, DOI 10.1016/j.mad.2008.05.006; Haussmann MF, 2003, P ROY SOC B-BIOL SCI, V270, P1387, DOI 10.1098/rspb.2003.2385; Kelly C, 2005, AM NAT, V166, P700, DOI 10.1086/497402; KERRY KR, 1993, WILDLIFE RES, V20, P725, DOI 10.1071/WR9930725; Larionov A, 2005, BMC BIOINFORMATICS, V6, DOI 10.1186/1471-2105-6-62; Monaghan P, 2006, TRENDS ECOL EVOL, V21, P47, DOI 10.1016/j.tree.2005.11.007; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Navarro J, 2007, OECOLOGIA, V151, P150, DOI 10.1007/s00442-006-0559-0; Partridge L, 2006, TRENDS ECOL EVOL, V21, P334, DOI 10.1016/j.tree.2006.02.008; REED TE, 2008, AM NAT, V171, P89; Richter T, 2007, EXP GERONTOL, V42, P1039, DOI 10.1016/j.exger.2007.08.005; Roff D. A., 2002, LIFE HIST EVOLUTION; Salomons HM, 2009, P R SOC B, V276, P3157, DOI 10.1098/rspb.2009.0517; Sanz JJ, 2000, J ANIM ECOL, V69, P74, DOI 10.1046/j.1365-2656.2000.00373.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; TAYLOR ROWLAND H., 1962, IBIS, V104, P176, DOI 10.1111/j.1474-919X.1962.tb08644.x; Vleck C. M., 2007, J ORNITHOL, V148, P611, DOI DOI 10.1007/S10336-007-0186-5; von Zglinicki T, 2002, TRENDS BIOCHEM SCI, V27, P339, DOI 10.1016/S0968-0004(02)02110-2; Wiersma P, 2004, P ROY SOC B-BIOL SCI, V271, pS360, DOI 10.1098/rsbl.2004.0171 43 61 61 2 76 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 FUNCT ECOL Funct. Ecol. JUN 2011 25 3 577 585 10.1111/j.1365-2435.2010.01825.x 9 Ecology Environmental Sciences & Ecology 758ON WOS:000290174500016 Bronze 2018-11-12 J Hou, C; Bolt, K; Bergman, A Hou, Chen; Bolt, Kendra; Bergman, Aviv A General Life History Theory for Effects of Caloric Restriction on Health Maintenance BMC SYSTEMS BIOLOGY English Article DISPOSABLE SOMA THEORY; DIETARY RESTRICTION; FOOD RESTRICTION; METABOLIC-RATE; ENERGY-EXPENDITURE; RHESUS-MONKEYS; OXIDATIVE STRESS; BODY-COMPOSITION; ONTOGENIC GROWTH; FISCHER-344 RATS Background: Caloric restriction (CR) has been shown to keep organisms in a relatively youthful and healthy state compared to ad libitum fed counterparts, as well as to extend the lifespan of a diverse set of organisms. Several attempts have been made to understand the underlying mechanisms from the viewpoint of energy tradeoffs in organisms' life histories. However, most models are based on assumptions which are difficult to justify, or are endowed with free-adjusting parameters whose biological relevancy is unclear. Results: In this paper, we derive a general quantitative, predictive model based on physiological data for endotherms. We test the hypothesis that an animal's state of health is correlated with biological mechanisms responsible for the maintenance of that animal's functional integrities. Such mechanisms require energy. By suppressing animals' caloric energy supply and biomass synthesis, CR alters animals' energy allocation strategies and channels additional energy to those maintenance mechanisms, therefore enhancing their performance. Our model corroborates the observation that CR's effects on health maintenance are positively correlated with the degree and duration of CR. Furthermore, our model shows that CR's effects on health maintenance are negatively correlated to the temperature drop observed in endothermic animals, and is positively correlated to animals' body masses. These predictions can be tested by further experimental research. Conclusion: Our model reveals how animals will alter their energy budget when food availability is low, and offers better understanding of the tradeoffs between growth and somatic maintenance; therefore shedding new light on aging research from an energetic viewpoint. [Hou, Chen; Bolt, Kendra; Bergman, Aviv] Albert Einstein Coll Med, Dept Syst & Computat Biol, Bronx, NY 10461 USA; [Hou, Chen] China Agr Univ, Key Lab Agr Engn Struct & Environm, Beijing 100094, Peoples R China Hou, C (reprint author), Albert Einstein Coll Med, Dept Syst & Computat Biol, Bronx, NY 10461 USA. houc75@gmail.com; aviv@einstein.yu.edu Hou, Chen/0000-0002-3665-225X Ellison Medical Foundation [AG-SS-2235]; NIH [R01-AG028872, P01-AG027734] We gratefully acknowledge the careful reviews and excellent suggestions of two anonymous reviewers of earlier versions of this manuscript. This work was supported by grants from the Ellison Medical Foundation Senior Scholar Award AG-SS-2235, and NIH grants R01-AG028872, and P01-AG027734. Abrams PA, 1995, EVOLUTION, V49, P1055, DOI 10.1111/j.1558-5646.1995.tb04433.x; [Anonymous], 1995, REV CLIN GERONTOL, V5, P247; BALLOR DL, 1991, J APPL PHYSIOL, V71, P801; Bartke A, 2001, NATURE, V414, P412, DOI 10.1038/35106646; Blanc S, 2003, J CLIN ENDOCR METAB, V88, P16, DOI 10.1210/jc.2002-020405; Bluher M, 2003, SCIENCE, V299, P572, DOI 10.1126/science.1078223; Brody S., 1945, BIOENERGETICS GROWTH; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; CALDER WA, 1983, J THEOR BIOL, V102, P135, DOI 10.1016/0022-5193(83)90266-7; Cichon M, 1997, P ROY SOC B-BIOL SCI, V264, P1383, DOI 10.1098/rspb.1997.0192; DeLany JP, 1999, J GERONTOL A-BIOL, V54, pB5, DOI 10.1093/gerona/54.1.B5; DEPAOLO LV, 1993, MODULATION AGING PRO, P221; DERTING TL, 1989, ECOLOGY, V70, P587, DOI 10.2307/1940210; Drenos F, 2005, MECH AGEING DEV, V126, P99, DOI 10.1016/j.mad.2004.09.026; DUFFY PH, 1989, MECH AGEING DEV, V48, P117, DOI 10.1016/0047-6374(89)90044-4; DULLOO AG, 1993, INT J OBESITY, V17, P115; Ehrhardt N, 2005, J COMP PHYSIOL B, V175, P193, DOI 10.1007/s00360-005-0475-3; Faulks SC, 2006, J GERONTOL A-BIOL, V61, P781, DOI 10.1093/gerona/61.8.781; Ferguson M, 2007, MECH AGEING DEV, V128, P539, DOI 10.1016/j.mad.2007.07.005; Frame LT, 1998, ENVIRON HEALTH PERSP, V106, P313; FURST A, 1987, HEALTH PHYS, V52, P527, DOI 10.1097/00004032-198705000-00001; Gillooly JF, 2001, SCIENCE, V293, P2248, DOI 10.1126/science.1061967; GONZALESPACHECO DM, 1993, J NUTR, V123, P90; Hales CN, 2002, J PHYSL, V547, P5; HAMILTON GD, 1985, BIOL REPROD, V32, P773, DOI 10.1095/biolreprod32.4.773; HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298; Hart RW, 1998, EXP GERONTOL, V33, P53, DOI 10.1016/S0531-5565(97)00063-6; Heilbronn LK, 2003, AM J CLIN NUTR, V78, P361; HOLEHAN AM, 1986, BIOL REV, V61, P329, DOI 10.1111/j.1469-185X.1986.tb00658.x; Holzenberger M, 2003, NATURE, V421, P182, DOI 10.1038/nature01298; HOU C, 2011, J GERONTOL A; HOU C, 2011, P R SOC LOND B; Hou C, 2008, SCIENCE, V322, P736, DOI 10.1126/science.1162302; Kirkwood TBL, 2005, MECH AGEING DEV, V126, P1011, DOI 10.1016/j.mad.2005.03.021; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; KIRKWOOD TBL, 1979, PROC R SOC SER B-BIO, V205, P531, DOI 10.1098/rspb.1979.0083; Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682; Kirkwood TBL, 1990, GENETIC EFFECTS AGIN, P9; LANE MA, 1995, AM J PHYSIOL-ENDOC M, V268, pE941; Lane MA, 1996, P NATL ACAD SCI USA, V93, P4159, DOI 10.1073/pnas.93.9.4159; Lawler DF, 2008, BRIT J NUTR, V99, P793, DOI 10.1017/S0007114507871686; Lee KP, 2008, P NATL ACAD SCI USA, V105, P2498, DOI 10.1073/pnas.0710787105; LINTS FA, 1989, GERONTOLOGY, V35, P36, DOI 10.1159/000212998; LIPMAN RD, 1995, AGING-CLIN EXP RES, V7, P136, DOI 10.1007/BF03324303; Lipman RD, 1998, AGING CLIN EXP RES, V10, P463, DOI 10.1007/BF03340160; Mair W, 2005, PLOS BIOL, V3, P1305, DOI 10.1371/journal.pbio.0030223; Mair W, 2008, ANNU REV BIOCHEM, V77, P727, DOI 10.1146/annurev.biochem.77.061206.171059; Masoro EJ, 2009, BBA-GEN SUBJECTS, V1790, P1040, DOI 10.1016/j.bbagen.2009.02.011; Masoro EJ, 2005, MECH AGEING DEV, V126, P913, DOI 10.1016/j.mad.2005.03.012; MASORO EJ, 1992, J GERONTOL, V47, pB202, DOI 10.1093/geronj/47.6.B202; MASORO EJ, 1982, P NATL ACAD SCI-BIOL, V79, P4239, DOI 10.1073/pnas.79.13.4239; MCCARTER R, 1985, AM J PHYSIOL, V248, pE488; MCCARTER RJ, 1992, AM J PHYSIOL, V263, pE448; MCCARTER RJ, 1989, AM J PHYSIOL, V257, pE175; MCCARTER RJM, 1995, CLIN GERIATR MED, V11, P553, DOI 10.1016/S0749-0690(18)30256-8; McCay CM, 1935, J NUTR, V10, P63; Mccoy MW, 2008, ECOL LETT, V11, P710, DOI 10.1111/j.1461-0248.2008.01190.x; Merker K, 2001, MECH AGEING DEV, V122, P595, DOI 10.1016/S0047-6374(01)00219-6; Merry BJ, 2002, INT J BIOCHEM CELL B, V34, P1340, DOI 10.1016/S1357-2725(02)00038-9; MERRY BJ, 1981, EXP GERONTOL, V16, P431, DOI 10.1016/0531-5565(81)90025-5; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Mitteldorf J, 2001, EVOLUTION, V55, P1902; MOHAN PF, 1983, J NUTR, V113, P79; Moses ME, 2008, AM NAT, V171, P632, DOI 10.1086/587073; O'Brien DM, 2008, CURR BIOL, V18, pR155, DOI 10.1016/j.cub.2008.01.021; ORTIGUES I, 1995, BRIT J NUTR, V73, P209, DOI 10.1079/BJN19950024; Pearl R, 1928, RATE LIVING; Peters R.H., 1983, P1; Ramsey JJ, 1997, AM J PHYSIOL-ENDOC M, V272, pE901; Ramsey JJ, 2000, FREE RADICAL BIO MED, V29, P946, DOI 10.1016/S0891-5849(00)00417-2; Rattan SIS, 2004, MECH AGEING DEV, V125, P285, DOI 10.1016/j.amd.2004.01.006; Rising R, 2006, NUTR METABOLISM, V3, DOI 10.1186/1743-7075-3-11; SABATINO F, 1991, J GERONTOL, V46, pB171, DOI 10.1093/geronj/46.5.B171; Savage VM, 2004, FUNCT ECOL, V18, P257, DOI 10.1111/j.0269-8463.2004.00856.x; Shanley DP, 2000, EVOLUTION, V54, P740, DOI 10.1111/j.0014-3820.2000.tb00076.x; Sinclair DA, 2005, MECH AGEING DEV, V126, P987, DOI 10.1016/j.mad.2005.03.019; Sohal R.S., 1986, P23; Sohal RS, 1996, SCIENCE, V273, P59, DOI 10.1126/science.273.5271.59; SONNTAG WE, 1992, J GERONTOL, V47, pB159, DOI 10.1093/geronj/47.5.B159; Speakman JR, 2002, J NUTR, V132, p1583S, DOI 10.1093/jn/132.6.1583S; STEWART J, 1988, ENDOCRINOLOGY, V123, P1934, DOI 10.1210/endo-123-4-1934; STUCHLIKOVA E, 1975, EXP GERONTOL, V10, P141, DOI 10.1016/0531-5565(75)90043-1; Tatar M, 2001, SCIENCE, V292, P107, DOI 10.1126/science.1057987; TURTURRO A, 1994, ANN NY ACAD SCI, V719, P159, DOI 10.1111/j.1749-6632.1994.tb56827.x; Turturro A, 1998, HUM EXP TOXICOL, V17, P454, DOI 10.1191/096032798678909089; WALFORD RL, 1983, MAXIMUM LIFESPAN; Weed JL, 1997, PHYSIOL BEHAV, V62, P97, DOI 10.1016/S0031-9384(97)00147-9; Weindruch R, 1988, RETARDATION AGING DI; West GB, 2001, NATURE, V413, P628, DOI 10.1038/35098076; West GB, 1997, SCIENCE, V276, P122, DOI 10.1126/science.276.5309.122; YU BP, 1994, P SOC EXP BIOL MED, V205, P97; Yu BP, 1996, FREE RADICAL BIO MED, V21, P651, DOI 10.1016/0891-5849(96)00162-1; YU BP, 1985, J GERONTOL, V40, P657, DOI 10.1093/geronj/40.6.657 93 7 7 0 7 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1752-0509 BMC SYST BIOL BMC Syst. Biol. MAY 19 2011 5 78 10.1186/1752-0509-5-78 13 Mathematical & Computational Biology Mathematical & Computational Biology 783TG WOS:000292106300001 21595962 DOAJ Gold, Green Published 2018-11-12 J Pinsky, ML; Jensen, OP; Ricard, D; Palumbi, SR Pinsky, Malin L.; Jensen, Olaf P.; Ricard, Daniel; Palumbi, Stephen R. Unexpected patterns of fisheries collapse in the world's oceans PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article body size; ecosystem-based management; food webs; life-history theory; marine conservation MARINE FOOD WEBS; LIFE-HISTORY STRATEGIES; EXTINCTION RISK; FISH; POPULATIONS; VULNERABILITY; MANAGEMENT; PACIFIC; EXPLOITATION; CONSERVATION Understanding which species are most vulnerable to human impacts is a prerequisite for designing effective conservation strategies. Surveys of terrestrial species have suggested that large-bodied species and top predators are the most at risk, and it is commonly assumed that such patterns also apply in the ocean. However, there has been no global test of this hypothesis in the sea. We analyzed two fisheries datasets (stock assessments and landings) to determine the life-history traits of species that have suffered dramatic population collapses. Contrary to expectations, our data suggest that up to twice as many fisheries for small, low trophic-level species have collapsed compared with those for large predators. These patterns contrast with those on land, suggesting fundamental differences in the ways that industrial fisheries and land conversion affect natural communities. Even temporary collapses of small, low trophic-level fishes can have ecosystem-wide impacts by reducing food supply to larger fish, seabirds, and marine mammals. [Pinsky, Malin L.; Palumbi, Stephen R.] Stanford Univ, Hopkins Marine Stn, Dept Biol, Pacific Grove, CA 93950 USA; [Jensen, Olaf P.] Rutgers State Univ, Inst Marine & Coastal Sci, New Brunswick, NJ 08901 USA; [Ricard, Daniel] Dalhousie Univ, Dept Biol Sci, Halifax, NS B3H 4J1, Canada Pinsky, ML (reprint author), Stanford Univ, Hopkins Marine Stn, Dept Biol, Pacific Grove, CA 93950 USA. malin.pinsky@gmail.com Pinsky, Malin/K-2884-2015; Ricard, Daniel/G-1814-2014; Jensen, Olaf/E-4947-2011 Pinsky, Malin/0000-0002-8523-8952; National Science Foundation; National Defense Science and Engineering Graduate fellowships; David H. Smith Postdoctoral Fellowship; National Science Foundation Comparative Analysis of Marine Ecosystem Organizaton [1041678]; Census of Marine Life/Future of Marine Animal Populations; Natural Sciences and Engineering Research Council; Canadian Foundation for Innovation This research was part of a National Center for Ecological Analysis and Synthesis Distributed Graduate Seminar. We thank T. Branch, R. Hilborn, and B. Worm for insightful feedback. J. Baum, C. Minto, R. Froese, and S. Tracey helped with database development. This work was supported in part by National Science Foundation and National Defense Science and Engineering Graduate fellowships (to M. L. P.), a David H. Smith Postdoctoral Fellowship (to O.P.J.), National Science Foundation Comparative Analysis of Marine Ecosystem Organizaton Grant 1041678 (to O.P.J.), and the Census of Marine Life/Future of Marine Animal Populations (D. R.); financial support for the assessment database was provided by Natural Sciences and Engineering Research Council grants to J. A. Hutchings and a Canadian Foundation for Innovation grant to H. Lotze. Baillie J., 2004, 2004 IUCN RED LIST T; Bakun A, 2003, FISH OCEANOGR, V12, P458, DOI 10.1046/j.1365-2419.2003.00258.x; Baum JK, 2003, SCIENCE, V299, P389, DOI 10.1126/science.1079777; BAUMGARTNER TR, 1992, CAL COOP OCEAN FISH, V33, P24; BEVERTON RJH, 1990, J FISH BIOL, V37, P5, DOI 10.1111/j.1095-8649.1990.tb05015.x; Burnham K. P., 2002, MODEL SELECTION MULT, P488; Byrnes JE, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000295; Cardillo M, 2005, SCIENCE, V309, P1239, DOI 10.1126/science.1116030; Charnov Eric L., 1993, P1; Chavez FP, 2003, SCIENCE, V299, P217, DOI 10.1126/science.1075880; Costello C, 2008, SCIENCE, V321, P1678, DOI 10.1126/science.1159478; Crawford RJM, 2007, J ORNITHOL, V148, pS253, DOI 10.1007/s10336-007-0228-z; Cury P, 2000, ICES J MAR SCI, V57, P603, DOI 10.1006/jmsc.2000.0712; de Mutsert K, 2008, P NATL ACAD SCI USA, V105, P2740, DOI 10.1073/pnas.0704354105; Denney NH, 2002, P ROY SOC B-BIOL SCI, V269, P2229, DOI 10.1098/rspb.2002.2138; Dobson AJ, 2002, INTRO GEN LINEAR MOD; DUFFY DC, 1983, BIOL CONSERV, V26, P227, DOI 10.1016/0006-3207(83)90075-7; Dulvy NK, 2002, CONSERV BIOL, V16, P440, DOI 10.1046/j.1523-1739.2002.00416.x; Dulvy NK, 2000, CONSERV BIOL, V14, P283, DOI 10.1046/j.1523-1739.2000.98540.x; Dulvy NK, 2003, FISH FISH, V4, P25, DOI 10.1046/j.1467-2979.2003.00105.x; Essington TE, 2006, P NATL ACAD SCI USA, V103, P3171, DOI 10.1073/pnas.0510964103; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Fisher DO, 2004, TRENDS ECOL EVOL, V19, P391, DOI 10.1016/j.tree.2004.05.004.; Fisher JAD, 2010, MAR ECOL PROG SER, V405, P1, DOI 10.3354/meps08601; Frederiksen M, 2004, J APPL ECOL, V41, P1129, DOI 10.1111/j.0021-8901.2004.00966.x; Frisk MG, 2001, CAN J FISH AQUAT SCI, V58, P969, DOI 10.1139/cjfas-58-5-969; Fryxell JM, 2010, SCIENCE, V328, P903, DOI 10.1126/science.1185802; Guenette S, 2006, CAN J FISH AQUAT SCI, V63, P2495, DOI 10.1139/F06-136; Hilborn R., 1992, QUANTITATIVE FISHERI; Holker F, 2007, SCIENCE, V316, P1285, DOI 10.1126/science.1139114; Hutchings JA, 2000, NATURE, V406, P882, DOI 10.1038/35022565; Jennings S, 1999, J ANIM ECOL, V68, P617, DOI 10.1046/j.1365-2656.1999.00312.x; Jennings S, 1999, CONSERV BIOL, V13, P1466, DOI 10.1046/j.1523-1739.1999.98324.x; Jennings S, 1998, P ROY SOC B-BIOL SCI, V265, P333, DOI 10.1098/rspb.1998.0300; King JR, 2003, FISHERIES MANAG ECOL, V10, P249, DOI 10.1046/j.1365-2400.2003.00359.x; Mullon C, 2005, FISH FISH, V6, P111, DOI 10.1111/j.1467-2979.2005.00181.x; Myers RA, 2003, NATURE, V423, P280, DOI 10.1038/nature01610; Olden JD, 2007, GLOBAL ECOL BIOGEOGR, V16, P694, DOI 10.1111/j.1466-8238.2007.00337.x; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Pauly D, 1998, SCIENCE, V279, P860, DOI 10.1126/science.279.5352.860; Reynolds JD, 2005, P ROY SOC B-BIOL SCI, V272, P2337, DOI 10.1098/rspb.2005.3281; Roff D. A., 2002, LIFE HIST EVOLUTION; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; Sethi SA, 2010, P NATL ACAD SCI USA, V107, P12163, DOI 10.1073/pnas.1003236107; vonBertalanffy L, 1938, HUM BIOL, V10, P181; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; Worm B, 2006, SCIENCE, V314, P787, DOI 10.1126/science.1132294; Worm B, 2009, SCIENCE, V325, P578, DOI 10.1126/science.1173146 48 104 108 1 106 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. MAY 17 2011 108 20 8317 8322 10.1073/pnas.1015313108 6 Multidisciplinary Sciences Science & Technology - Other Topics 765OZ WOS:000290719600050 21536889 Bronze, Green Published Y N 2018-11-12 J Rogers, L; Koch, A Rogers, Lock; Koch, Alan The evolution of sex-change timing under environmental uncertainty: a test by simulation EVOLUTIONARY ECOLOGY RESEARCH English Article asymmetric fitness surface; early sex change; genetic algorithm; probabilistic size-advantage THALASSOMA-BIFASCIATUM PISCES; CORAL-REEF FISH; BLUEHEAD WRASSE; JENSENS INEQUALITY; NATURAL-SELECTION; LABRIDAE; HERMAPHRODITISM; REPRODUCTION; ANIMALS Background: Life-history theory predicts that selection for changing from an initial sex to a second sex exists when the size- or age-specific reproductive-rate curves for males and females cross. The optimal timing of sex change will be the size or age at which the curves cross. But wild populations of many sex-changing fishes do not follow this prediction; individuals generally change sex at a size or age at which the sex that they become cannot yet reproduce. This phenomenon is termed 'early sex change'. Question: Does uncertainty in the advent of successful reproduction in the second sex favour the evolution of early sex change? Method: Genetically explicit simulation to track the evolution of sex change timing. Key assumption: Reproduction in the initial sex (female) is assured but of low value, whereas reproduction in the second sex (male) is uncertain but of high value. Organisms: Our model is primarily based on the natural history of the bluehead wrasse, Thalassoma bifasciatum, but is designed to apply to many other species of sex-changing fishes. Results: Early sex change rapidly evolved under the conditions of the model. Moreover, the timing of sex change became highly variable within a population. The mean age of switching from female to male depended on the ratio of male to female reproductive rates: the higher the ratio, the earlier the mean age at which females switched. A second mechanism for early sex change arose from the asymmetrical fitness surface of females: those that switch earlier than the optimum time pay a smaller fitness penalty than those that switch later. [Rogers, Lock] Agnes Scott Coll, Dept Biol, Decatur, GA 30030 USA; [Koch, Alan] Agnes Scott Coll, Dept Math, Decatur, GA 30030 USA Rogers, L (reprint author), Agnes Scott Coll, Dept Biol, 141 E Coll Ave, Decatur, GA 30030 USA. lrogers@agnesscott.edu ALDENHOVEN JM, 1986, AUST J MAR FRESH RES, V37, P353; BRODIE ED, 1995, TRENDS ECOL EVOL, V10, P313, DOI 10.1016/S0169-5347(00)89117-X; Darwin C., 1859, ORIGIN SPECIES MEANS; GHISELIN MT, 1969, Q REV BIOL, V44, P189, DOI 10.1086/406066; HOFFMAN SG, 1985, EVOLUTION, V39, P915, DOI 10.1111/j.1558-5646.1985.tb00432.x; Holland J., 1975, ADAPTATION NATURAL A; Iwasa Y, 1991, BEHAV ECOL, V2, P56, DOI 10.1093/beheco/2.1.56; LEIGH EG, 1976, P NATL ACAD SCI USA, V73, P3656, DOI 10.1073/pnas.73.10.3656; Martin TL, 2008, AM NAT, V171, pE102, DOI 10.1086/527502; Moyer J. T., 1984, J ETHOL, V2, P63; Petersen CW, 2001, BEHAV ECOL, V12, P237, DOI 10.1093/beheco/12.2.237; PHILLIPS PC, 1989, EVOLUTION, V43, P1209, DOI 10.1111/j.1558-5646.1989.tb02569.x; Rogers L, 2003, BEHAV ECOL, V14, P447, DOI 10.1093/beheco/14.3.447; Rogers L, 2001, AM NAT, V158, P543, DOI 10.1086/323119; Rogers L., 1998, THESIS U KENTUCKY LE; Ruel JJ, 1999, TRENDS ECOL EVOL, V14, P361, DOI 10.1016/S0169-5347(99)01664-X; SCHULTZ ET, 1991, ENVIRON BIOL FISH, V30, P333, DOI 10.1007/BF02028849; Seger J., 1987, Oxford Surveys in Evolutionary Biology, V4, P182; THRESHER RE, 1979, MAR BIOL, V53, P161, DOI 10.1007/BF00389187; Warner R.R., 1978, SMITH CONT ZOOL, P254; Warner R. R., 1977, P 3 INT S COR REEFS, V1, P275; WARNER RR, 1984, EVOLUTION, V38, P148, DOI 10.1111/j.1558-5646.1984.tb00268.x; WARNER RR, 1992, EVOLUTION, V46, P1421, DOI 10.1111/j.1558-5646.1992.tb01134.x; WARNER RR, 1975, AM NAT, V109, P61, DOI 10.1086/282974; WARNER RR, 1991, BIOL BULL-US, V181, P199, DOI 10.2307/1542090; WARNER RR, 1975, SCIENCE, V190, P633, DOI 10.1126/science.1188360 26 2 2 0 16 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 EVOL ECOL RES Evol. Ecol. Res. MAY 2011 13 4 387 399 13 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 873GA WOS:000298867900005 2018-11-12 J Shustack, DP; Rodewald, AD Shustack, Daniel P.; Rodewald, Amanda D. Nest predation reduces benefits to early clutch initiation in northern cardinals Cardinalis cardinalis JOURNAL OF AVIAN BIOLOGY English Article BIRDS BREEDING SEASONS; MAGPIES PICA-PICA; REPRODUCTIVE SUCCESS; MIGRATORY BIRD; GREAT TIT; LAYING DATE; BLUE TITS; URBAN; SIZE; TIME Life history theory and empirical studies suggest that early breeding confers higher reproductive success, but the extent to which this advantage can be generalized to human-dominated systems and across species is less well understood. We studied the fitness consequences of clutch initiation for 181 female northern cardinals Cardinalis cardinalis and 1228 nests in forests within urban and rural landscapes of Ohio, USA between 2004-2007. Cardinals that bred earlier made significantly more nesting attempts, but cumulative number of young fledged was similar to that of later-breeding individuals. The expected number of fledglings produced per successful nest was unrelated to date and remained similar to 1.8 fledglings across the season, despite the fact that nest survival rates improved dramatically as the season progressed. Because the probability of resighting breeding individuals in subsequent years was unrelated to first clutch initiation date, we have no evidence that clutch initiation affected adult survival. The absence of a clear benefit to early breeding appears to be a consequence of high rates of nest predation early in the breeding season. [Shustack, Daniel P.; Rodewald, Amanda D.] Ohio State Univ, Sch Environm & Nat Res, Columbus, OH 43210 USA; [Shustack, Daniel P.] Massachusetts Coll Liberal Arts, Environm Stud Dept, N Adams, MA 01247 USA Shustack, DP (reprint author), Ohio State Univ, Sch Environm & Nat Res, 2021 Coffey Rd,210 Kottman Hall, Columbus, OH 43210 USA. Daniel.Shustack@mcla.edu Rodewald, Amanda/I-6308-2016; Rodewald, Amanda/D-2038-2012 Rodewald, Amanda/0000-0002-6719-6306; NSF [DEB-0340879, DEB-0639429]; Ohio Division of Wildl.; US Fish and Wildl. Service; Ohio Agricultural Research and Development Center Funding was provided by the NSF DEB-0340879 and DEB-0639429 to ADR, Ohio Division of Wildl. and US Fish and Wildl. Service through the State Wildl. Grant program, and the Ohio Agricultural Research and Development Center. We are grateful to M. H. Bakermans, K. L. Borgmann, L. J. Kearns, F. V. L. Leston, J. R. Smith-Castro and N. Sundell-Turner for their dedicated efforts in the field and laboratory. We thank the following technicians for their help in the field: T. Brown, M. Carll, J. Fullerton, A. Gilmore, B. Graves, J. Gray, S. Hazzard, A. Highland, L. Hitchcock, M. Howie, E. Interis, T. Jones, M. Kanode, J. Kim, L. Koerner, S. Landes, W. Li, T. Magarian, A. Maruster, L. McArthur, J. McConnell, D. Miller, J. Morcillo-Blanco, M. Nelson, E. Norris, C. O'Dell., A. Peterson, M. Santiago, K. Upstrom, B. Van Allen, and A. Vitz. We are grateful to the Franklin County Metro Parks, Columbus Recreation and Parks, Ohio Division of Wildl., the Nature Conserv., City of Bexley, Gahanna Parks and Recr. and private landowners for their cooperation and access to sites. Sound recordings of northern cardinals used for capturing individuals were provided by the Borror Lab. of Bioacoustics, The Ohio State Univ., Columbus, OH, all rights reserved. Banding was conducted under the USFWS banding permit to Paul Rodewald. Antonov A, 2003, ORNIS FENNICA, V80, P21; BARBA E, 1995, J ANIM ECOL, V64, P642, DOI 10.2307/5806; BOMAN R, 2001, AVIAN ECOLOGY CONSER, P383; Chamberlain DE, 2009, IBIS, V151, P1, DOI 10.1111/j.1474-919X.2008.00899.x; CRAMP S, 1972, IBIS, V114, P163, DOI 10.1111/j.1474-919X.1972.tb02601.x; Drent RH, 2006, ARDEA, V94, P305; EDEN SF, 1985, J ZOOL, V205, P325; Erz W., 1966, Ostrich Suppl, VNo. 6, P357; Garcia-Del-Rey E, 2006, IBIS, V148, P564, DOI 10.1111/j.1474-919X.2006.00569.x; Gardner JL, 2008, EMU, V108, P90, DOI 10.1071/MU06058; Grimm NB, 2008, SCIENCE, V319, P756, DOI 10.1126/science.1150195; Gruebler MU, 2010, J AVIAN BIOL, V41, P282, DOI 10.1111/j.1600-048X.2009.04865.x; Grzybowski JA, 2005, AUK, V122, P280, DOI 10.1642/0004-8038(2005)122[0280:RDSFIS]2.0.CO;2; Halkin Sylvia L., 1999, Birds of North America, V440, P1; Hill GE, 2004, SCIENCE, V306, P2201, DOI 10.1126/science.1107749; Jones SL, 2010, WILSON J ORNITHOL, V122, P455, DOI 10.1676/08-171.1; KLOMP H, 1970, ARDEA, V58, P1; Lack D., 1968, ECOLOGICAL ADAPTATIO; MADSEN M, 2007, POLAR BIOL, V30, P1363; Marra PP, 1998, SCIENCE, V282, P1884, DOI 10.1126/science.282.5395.1884; Moller AP, 2006, J ANIM ECOL, V75, P657, DOI 10.1111/j.1365-2656.2006.01086.x; Morales J, 2007, ECOSCIENCE, V14, P31, DOI 10.2980/1195-6860(2007)14[31:EMILSA]2.0.CO;2; MORNEAU F, 1995, LANDSCAPE URBAN PLAN, V32, P55, DOI 10.1016/0169-2046(94)00177-5; Murray BG, 2007, J FIELD ORNITHOL, V78, P401, DOI 10.1111/j.1557-9263.2007.00129.x; Newton I., 1998, POPULATION LIMITATIO; NILSSON JA, 1994, J ANIM ECOL, V63, P200, DOI 10.2307/5595; Nilsson JA, 1996, P ROY SOC B-BIOL SCI, V263, P711, DOI 10.1098/rspb.1996.0106; Norris DR, 2004, P ROY SOC B-BIOL SCI, V271, P59, DOI 10.1098/rspb.2003.2569; NORRIS K, 1993, J ANIM ECOL, V62, P287, DOI 10.2307/5360; Ortega YK, 2006, OECOLOGIA, V149, P340, DOI 10.1007/s00442-006-0438-8; PERRINS CM, 1989, WILSON BULL, V101, P236; PERRINS CM, 1970, IBIS, V112, P242, DOI 10.1111/j.1474-919X.1970.tb00096.x; R Development Core Team, 2008, R LANG ENV STAT COMP; Reudink MW, 2009, P R SOC B, V276, P1619, DOI 10.1098/rspb.2008.1452; Ricklefs RE, 2000, CONDOR, V102, P3, DOI 10.1650/0010-5422(2000)102[0003:LSAMTE]2.0.CO;2; Rodewald AD, 2008, ECOLOGY, V89, P515, DOI 10.1890/07-0358.1; Rodewald AD, 2010, BIOL INVASIONS, V12, P33, DOI 10.1007/s10530-009-9426-3; RODEWARLD AD, ECOLOGY IN PRESS; Rollinson Daniel J., 2002, Urban Ecosystems, V6, P257, DOI 10.1023/B:UECO.0000004826.52945.ed; Roos S, 2002, OECOLOGIA, V133, P608, DOI 10.1007/s00442-002-1056-8; Rotella J. J., 2004, Animal Biodiversity and Conservation, V27, P187; Runge Michael C., 2005, P375; Schiegg K, 2007, IBIS, V149, P365, DOI 10.1111/j.1474-919X.2007.00654.x; Schoech SJ, 2003, AUK, V120, P1114, DOI 10.1642/0004-8038(2003)120[1114:DDATPI]2.0.CO;2; SCOTT DM, 1987, WILSON BULL, V99, P708; Shaffer TL, 2004, AUK, V121, P526, DOI 10.1642/0004-8038(2004)121[0526:AUATAN]2.0.CO;2; Sheldon BC, 2003, EVOLUTION, V57, P406; SHUSTACK DP, 2008, THESIS OHIO STATE U; Small SL, 2007, CONDOR, V109, P721, DOI 10.1650/0010-5422(2007)109[721:STPDIA]2.0.CO;2; Stanley TR, 2002, J FIELD ORNITHOL, V73, P292, DOI 10.1648/0273-8570-73.3.292; Verboven N, 1998, OIKOS, V81, P511, DOI 10.2307/3546771; VERHULST S, 1995, ECOLOGY, V76, P2392, DOI 10.2307/2265815; Verhulst S, 2008, PHILOS T R SOC B, V363, P399, DOI 10.1098/rstb.2007.2146; VITZ AC, CONDOR IN PRESS; VONBROMSSEN A, 1980, ORNIS SCAND, V11, P173, DOI 10.2307/3676121; Wiggins DA, 1998, AUK, V115, P1063, DOI 10.2307/4089524; Williams TD, 2005, BIOSCIENCE, V55, P39, DOI 10.1641/0006-3568(2005)055[0039:MUTCOE]2.0.CO;2; Wilson S, 2007, CONDOR, V109, P377, DOI 10.1650/0010-5422(2007)109[377:NSPIWP]2.0.CO;2 58 8 8 3 31 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0908-8857 J AVIAN BIOL J. Avian Biol. MAY 2011 42 3 204 209 10.1111/j.1600-048X.2011.05231.x 6 Ornithology Zoology 788XN WOS:000292477800002 2018-11-12 J Pollitt, LC; MacGregor, P; Matthews, K; Reece, SE Pollitt, Laura C.; MacGregor, Paula; Matthews, Keith; Reece, Sarah E. Malaria and trypanosome transmission: different parasites, same rules? TRENDS IN PARASITOLOGY English Review AFRICAN TRYPANOSOMES; INTRASPECIFIC COMPETITION; REPRODUCTIVE RESTRAINT; PHENOTYPIC PLASTICITY; PLASMODIUM-CHABAUDI; EVOLUTION; BRUCEI; VIRULENCE; INFECTIONS; ECOLOGY African trypanosomes produce different specialized stages for within-host replication and between-host transmission and therefore face a resource allocation trade-off between maintaining the current infection (survival) and investment into transmission (reproduction). Evolutionary theory predicts the resolution of this trade-off will significantly affect virulence and infectiousness. The application of life history theory to malaria parasites has provided novel insight into their strategies for survival and reproduction; how this framework can now be applied to trypanosomes is discussed. Specifically, predictions for how parasites trade-off investment in survival and transmission in response to variation in the within-host environment are outlined. An evolutionary approach has the power to explain why patterns of investment vary between strains and during infections, giving important insights into parasite biology. [Pollitt, Laura C.; Reece, Sarah E.] Univ Edinburgh, Sch Biol Sci, Inst Evolutionary Biol, Edinburgh EH9 3JT, Midlothian, Scotland; [MacGregor, Paula; Matthews, Keith] Univ Edinburgh, Sch Biol Sci, Inst Immunol & Infect Res, Edinburgh EH9 3JT, Midlothian, Scotland; [Matthews, Keith; Reece, Sarah E.] Univ Edinburgh, Sch Biol Sci, Ctr Immun Infect & Evolut, Edinburgh EH9 3JT, Midlothian, Scotland Pollitt, LC (reprint author), Univ Edinburgh, Sch Biol Sci, Inst Evolutionary Biol, Edinburgh EH9 3JT, Midlothian, Scotland. laura.pollitt@ed.ac.uk Reece, Sarah/C-9447-2009 Reece, Sarah/0000-0001-6716-6732; MacGregor, Paula/0000-0003-0919-3745 NERC; Wellcome Trust We thank Nicole Mideo and Giles K.P. Barra for discussion as well as three anonymous reviewers for improving the manuscript. LCP is supported by a NERC studentship and PM, KM and SER by the Wellcome Trust. Alizon S, 2009, J EVOLUTION BIOL, V22, P245, DOI 10.1111/j.1420-9101.2008.01658.x; Antunes LCM, 2009, CRIT REV MICROBIOL, V35, P69, DOI 10.1080/10408410902733946; Babiker HA, 2008, TRENDS PARASITOL, V24, P525, DOI 10.1016/j.pt.2008.08.001; BALBER AE, 1972, EXP PARASITOL, V31, P307, DOI 10.1016/0014-4894(72)90122-1; Balmer O, 2009, ECOLOGY, V90, P3367, DOI 10.1890/08-2291.1; Berriman M, 2005, SCIENCE, V309, P416, DOI 10.1126/science.1112642; Brown SP, 2008, ECOL LETT, V11, P44, DOI 10.1111/j.1461-0248.2007.01125.x; Buckling A, 1999, PARASITOLOGY, V118, P339, DOI 10.1017/S0031182099003960; Buckling A, 1999, EXP PARASITOL, V93, P45, DOI 10.1006/expr.1999.4429; de Roode JC, 2005, P NATL ACAD SCI USA, V102, P7624, DOI 10.1073/pnas.0500078102; Dean S, 2009, NATURE, V459, P213, DOI 10.1038/nature07997; Ernande B, 2004, J EVOLUTION BIOL, V17, P613, DOI 10.1111/j.1420-9101.2004.00691.x; Fischer B, 2009, AM NAT, V173, pE108, DOI 10.1086/596536; Foster KR, 2005, SCIENCE, V308, P1269, DOI 10.1126/science.1108158; Gardner A, 2009, J EVOLUTION BIOL, V22, P659, DOI 10.1111/j.1420-9101.2008.01681.x; Graham AL, 2008, P NATL ACAD SCI USA, V105, P566, DOI 10.1073/pnas.0707221105; Griffin AS, 2004, NATURE, V430, P1024, DOI 10.1038/nature02744; Hammill E, 2008, J EVOLUTION BIOL, V21, P705, DOI 10.1111/j.1420-9101.2008.01520.x; Harrington WE, 2009, P NATL ACAD SCI USA, V106, P9027, DOI 10.1073/pnas.0901415106; Lythgoe KA, 2007, P NATL ACAD SCI USA, V104, P8095, DOI 10.1073/pnas.0606206104; MacGregor P, 2010, J MOL MED, V88, P865, DOI 10.1007/s00109-010-0637-y; Mackinnon MJ, 2010, SCIENCE, V328, P866, DOI 10.1126/science.1185410; MacLeod A, 2001, PARASITOLOGY, V123, P475, DOI 10.1017/S0031182001008666; Matthews KR, 2004, TRENDS PARASITOL, V20, P40, DOI 10.1016/j.pt.2003.10.016; McCulloch R, 2009, TRENDS PARASITOL, V25, P359, DOI 10.1016/j.pt.2009.05.007; Mideo N, 2008, CELL MICROBIOL, V10, P1947, DOI 10.1111/j.1462-5822.2008.01208.x; Mideo N, 2008, P ROY SOC B-BIOL SCI, V275, P1217, DOI 10.1098/rspb.2007.1545; Mideo N, 2009, TRENDS PARASITOL, V25, P261, DOI 10.1016/j.pt.2009.03.001; Morrison LJ, 2009, PLOS NEGLECT TROP D, V3, DOI 10.1371/journal.pntd.0000557; Morrison LJ, 2008, INFECT GENET EVOL, V8, P847, DOI 10.1016/j.meegid.2008.08.005; Oberholzer M, 2010, PLOS PATHOG, V6, DOI 10.1371/journal.ppat.1000739; Palumbi SR, 2001, SCIENCE, V293, P1786, DOI 10.1126/science.293.5536.1786; Paul REL, 2003, ECOL LETT, V6, P866, DOI 10.1046/j.1461-0248.2003.00509.x; Pedersen AB, 2007, TRENDS ECOL EVOL, V22, P133, DOI 10.1016/j.tree.2006.11.005; Pigliucci M, 2005, TRENDS ECOL EVOL, V20, P481, DOI 10.1016/j.tree.2005.06.001; POLLITT LC, AM NAT IN PRESS; Poulin R, 2007, EVOLUTIONARY ECOLOGY; Read AF, 2001, SCIENCE, V292, P1099, DOI 10.1126/science.1059410; Reece SE, 2008, NATURE, V453, P609, DOI 10.1038/nature06954; Reece SE, 2010, P ROY SOC B-BIOL SCI, V277, P3123, DOI 10.1098/rspb.2010.0564; Reece SE, 2009, EVOL APPL, V2, P11, DOI 10.1111/j.1752-4571.2008.00060.x; Reece SE, 2005, P ROY SOC B-BIOL SCI, V272, P511, DOI 10.1098/rspb.2004.2972; Roditi I, 2008, CURR OPIN MICROBIOL, V11, P345, DOI 10.1016/j.mib.2008.06.006; Roff D. A., 2002, LIFE HIST EVOLUTION; Schneider P, 2008, MALARIA J, V7, DOI 10.1186/1475-2875-7-257; Stearns S. C., 1992, EVOLUTION LIFE HIST; Taylor JE, 2006, TRENDS GENET, V22, P614, DOI 10.1016/j.tig.2006.08.003; TURNER CMR, 1995, PARASITOLOGY, V111, P289, DOI 10.1017/S0031182000081841; Vassella E, 1997, J CELL SCI, V110, P2661; Wargo AR, 2007, P NATL ACAD SCI USA, V104, P19914, DOI 10.1073/pnas.0707766104; Wargo AR, 2007, P R SOC B, V274, P2629, DOI 10.1098/rspb.2007.0873; Wargo AR, 2006, EXP PARASITOL, V112, P13, DOI 10.1016/j.exppara.2005.08.013; West SA, 2009, MONOGRAPHS POPULATIO; West SA, 2006, NAT REV MICROBIOL, V4, P597, DOI 10.1038/nrmicro1461 54 20 24 0 20 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND 1471-4922 1471-5007 TRENDS PARASITOL Trends Parasitol. MAY 2011 27 5 197 203 10.1016/j.pt.2011.01.004 7 Parasitology Parasitology 767XI WOS:000290891700004 21345732 Other Gold, Green Published 2018-11-12 J McIntyre, MH; Kacerosky, PM McIntyre, Matthew H.; Kacerosky, Pamela M. Age and Size at Maturity in Women: A Norm of Reaction? AMERICAN JOURNAL OF HUMAN BIOLOGY English Article MENARCHEAL AGE; ADULT STATURE; BODY-SIZE; SECULAR CHANGES; PHENOTYPIC PLASTICITY; PHYSICAL DEVELOPMENT; PUBERTAL MATURATION; SEXUAL ORIENTATION; SOUTHERN MEXICO; HUMAN-EVOLUTION Objectives: We present the first review and meta-analysis of the association between adult stature and age at menarche over a broad range of human societies. We then outline possible biological explanations for observed empirical associations. Methods: We analyzed the association between adult stature and age at menarche in 141 samples from published reports, including 35 samples for which the within-sample association was also reported. Results: Overall and in small-scale societies, later age at menarche is associated with shorter adult stature. However, both between and within samples from industrialized societies, later age at menarche is associated with taller adult stature. Conclusions: The pattern of associations between adult stature and age at menarche may be explicable as a norm of reaction that evolved according to predictions of life history theory. However, nonadaptive explanations are also plausible, especially for the positive association observed in industrialized societies. Am. J. Hum. Biol. 23: 305-312, 2011. (c) 2010 Wiley-Liss, Inc. [McIntyre, Matthew H.; Kacerosky, Pamela M.] Univ Cent Florida, Dept Anthropol, Orlando, FL 32816 USA McIntyre, MH (reprint author), Univ Cent Florida, Dept Anthropol, 309 Howard Phillips Hall,4000 Cent Florida Blvd, Orlando, FL 32816 USA. mmcintyr@mail.ucf.edu Allal N, 2004, P ROY SOC B-BIOL SCI, V271, P465, DOI 10.1098/rspb.2003.2623; BERRIGAN D, 1994, OIKOS, V70, P474, DOI 10.2307/3545787; BIELICKI T, 1994, AM J HUM BIOL, V6, P245, DOI 10.1002/ajhb.1310060213; Biro FM, 2001, J PEDIATR-US, V138, P636, DOI 10.1067/mpd.2001.114476; Bogaert AF, 1998, PERS INDIV DIFFER, V24, P115, DOI 10.1016/S0191-8869(97)00111-6; Bogaert AF, 2010, ARCH SEX BEHAV, V39, P110, DOI 10.1007/s10508-008-9398-x; Bratberg GH, 2006, EUR J PEDIATR, V165, P787, DOI 10.1007/s00431-006-0174-4; BURGESS AP, 1964, HUM BIOL, V36, P177; CHANG KSF, 1969, GROWTH DEV CHINESE C; CHARNOV EL, 1990, J EVOLUTION BIOL, V3, P139, DOI 10.1046/j.1420-9101.1990.3010139.x; CHARNOV EL, 1991, EVOL ECOL, V5, P63, DOI 10.1007/BF02285246; Charnov Eric L., 1993, P1; CLEGG EJ, 1980, J BIOSOC SCI, V12, P83; Cole TJ, 2000, P NUTR SOC, V59, P317, DOI 10.1017/S0029665100000355; CONTRERAS ML, 1981, ARCH LATINOAM NUTR, V31, P740; Cronk CE, 1996, AM J HUM BIOL, V8, P31, DOI 10.1002/(SICI)1520-6300(1996)8:1<31::AID-AJHB3>3.0.CO;2-T; DANKERHOPFE H, 1986, YEARB PHYS ANTHROPOL, V29, P81; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; do Lago MJ, 2007, REV ASSOC MED BRAS, V53, P20, DOI 10.1590/S0104-42302007000100013; DUBROVA YE, 1995, HUM BIOL, V67, P755; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Ellison PT, 2007, AM J HUM BIOL, V19, P622, DOI 10.1002/ajhb.20662; ELLISON PT, 1982, HUM BIOL, V54, P269; ELLISON PT, 1981, AM J PHYS ANTHROPOL, V56, P71, DOI 10.1002/ajpa.1330560108; Ersoy B, 2004, EARLY HUM DEV, V76, P115, DOI 10.1016/j.earlhumdev.2003.11.001; FRISCH RE, 1970, SCIENCE, V169, P397, DOI 10.1126/science.169.3943.397; Georgiadis E, 1997, ANN HUM BIOL, V24, P55, DOI 10.1080/03014469700004772; Gluckman PD, 2005, TRENDS ECOL EVOL, V20, P527, DOI 10.1016/j.tree.2005.08.001; Hardy R, 2006, J HYPERTENS, V24, P59, DOI 10.1097/01.hjh.0000198033.14848.93; HARVEY RG, 1973, STUDY HUMAN BIOL 2 N; Haspelmath M., 2008, WORLD ATLAS LANGUAGE; HAUTVAST J, 1971, HUM BIOL, V43, P421; HEINZ NPM, 1963, MEMOIRES ACAD ROYALE, V12, P27; Helle S, 2008, EVOL HUM BEHAV, V29, P189, DOI 10.1016/j.evolhumbehav.2007.11.009; Hill K, 2007, J HUM EVOL, V52, P443, DOI 10.1016/j.jhevol.2006.11.003; Hwang JY, 2003, ANN HUM BIOL, V30, P434, DOI 10.1080/0301446031000111393; *ICMR, 1972, GROWTH PHYS DEV IND; Jones JH, 2009, EVOL HUM BEHAV, V30, P305, DOI 10.1016/j.evolhumbehav.2009.01.005; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Khanna G, 2004, COLLEGIUM ANTROPOL, V28, P571; Koziel SS, 2001, AM J HUM BIOL, V13, P15, DOI 10.1002/1520-6300(200101/02)13:1<15::AID-AJHB1002>3.0.CO;2-P; Kramer KL, 2010, AM J PHYS ANTHROPOL, V141, P235, DOI 10.1002/ajpa.21139; Kuzawa CW, 2009, ANNU REV ANTHROPOL, V38, P131, DOI 10.1146/annurev-anthro-091908-164350; MALCOLM LA, 1970, HUM BIOL, V42, P293; MALCOLM LA, 1969, AM J PHYS ANTHROPOL, V31, P39, DOI 10.1002/ajpa.1330310106; MALINA RM, 1983, AM J PHYS ANTHROPOL, V60, P437, DOI 10.1002/ajpa.1330600405; MALINA RM, 1979, MONOGR SOC RES CHILD, V44, P59, DOI 10.2307/1165885; Malina RM, 2004, ANN HUM BIOL, V31, P634, DOI 10.1080/03014460400018085; Malina RM, 2010, AM J PHYS ANTHROPOL, V141, P463, DOI 10.1002/ajpa.21167; MARTINS DM, 1968, DYNAMICS CHILD GROWT; Monaghan P, 2008, PHILOS T R SOC B, V363, P1635, DOI 10.1098/rstb.2007.0011; Okasha M, 2001, ANN HUM BIOL, V28, P68; Onat T, 1995, AM J HUM BIOL, V7, P741, DOI 10.1002/ajhb.1310070609; Onland-Moret NC, 2005, AM J EPIDEMIOL, V162, P623, DOI 10.1093/aje/kwi260; Padez C, 2003, AM J HUM BIOL, V15, P415, DOI 10.1002/ajhb.10159; Piersma T, 2003, TRENDS ECOL EVOL, V18, P228, DOI 10.1016/S0169-5347(03)00036-3; Pigliucci M, 2005, TRENDS ECOL EVOL, V20, P481, DOI 10.1016/j.tree.2005.06.001; Qin T, 1996, AM J HUM BIOL, V8, P417, DOI 10.1002/(SICI)1520-6300(1996)8:4<417::AID-AJHB1>3.0.CO;2-V; ROCHE AF, 1979, MONOGR SOC RES CHILD, V44, P3, DOI 10.2307/1165883; SABHARWAL KP, 1966, HUM BIOL, V38, P131; SHANGOLD MM, 1989, SOUTHERN MED J, V82, P443, DOI 10.1097/00007611-198904000-00009; SHARMA K, 1988, ANN HUM BIOL, V15, P431, DOI 10.1080/03014468800000032; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STGEORGE IM, 1994, J ADOLESCENT HEALTH, V15, P573; Tanner J, 1976, WORLDWIDE VARIATION; TANNER JM, 1962, HUM BIOL, V34, P187; Vizmanos B, 2001, AM J HUM BIOL, V13, P409, DOI 10.1002/ajhb.1065.abs; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; Walker R, 2006, AM J PHYS ANTHROPOL, V129, P577, DOI 10.1002/ajpa.20306; WARK ML, 1969, MED J AUSTRALIA, V2, P129; WELLENS R, 1992, AM J HUM BIOL, V4, P783, DOI 10.1002/ajhb.1310040610; Wells JCK, 2003, J THEOR BIOL, V221, P143, DOI 10.1006/jtbi.2003.3183; Wells JCK, 2007, BEST PRACT RES CL EN, V21, P415, DOI 10.1016/j.beem.2007.04.007; Wells JCK, 2006, BIOL REV, V81, P183, DOI 10.1017/S1464793105006974; Wells JCK, 2010, AM J HUM BIOL, V22, P1, DOI 10.1002/ajhb.20994 76 20 23 0 25 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1042-0533 AM J HUM BIOL Am. J. Hum. Biol. MAY 2011 23 3 305 312 10.1002/ajhb.21122 8 Anthropology; Biology Anthropology; Life Sciences & Biomedicine - Other Topics 747XN WOS:000289354700003 21484909 2018-11-12 J Bell, AM; Dingemanse, NJ; Hankison, SJ; Langenhof, MBW; Rollins, K Bell, A. M.; Dingemanse, N. J.; Hankison, S. J.; Langenhof, M. B. W.; Rollins, K. Early exposure to nonlethal predation risk by size-selective predators increases somatic growth and decreases size at adulthood in threespined sticklebacks JOURNAL OF EVOLUTIONARY BIOLOGY English Article fish; Gasterosteus aculeatus; growth; life history evolution; phenotypic plasticity; size at maturity LIFE-HISTORY EVOLUTION; GUPPIES POECILIA-RETICULATA; QUEEN-CHARLOTTE ISLANDS; GASTEROSTEUS-ACULEATUS; TRADE-OFF; INDUCED PLASTICITY; DAPHNIA-PULEX; BEHAVIORAL-DIFFERENCES; PHENOTYPIC PLASTICITY; SOCKEYE-SALMON Predation has an important influence on life history traits in many organisms, especially when they are young. When cues of trout were present, juvenile sticklebacks grew faster. The increase in body size as a result of exposure to cues of predators was adaptive because larger individuals were more likely to survive predation. However, sticklebacks that had been exposed to cues of predators were smaller at adulthood. This result is consistent with some life history theory. However, these results prompt an alternative hypothesis, which is that the decreased size at adulthood reflects a deferred cost of early rapid growth. Compared to males, females were more likely to survive predation, but female size at adulthood was more affected by cues of predators than male size at adulthood, suggesting that size at adulthood might be more important to male fitness than to female fitness. [Bell, A. M.] Univ Illinois, Sch Integrat Biol, Urbana, IL 61801 USA; [Dingemanse, N. J.] Max Planck Inst Ornithol, Dept Behav Ecol & Evolutionary Genet, Seewiesen, Germany; [Hankison, S. J.] Ohio Wesleyan Univ, Delaware, OH 43015 USA; [Langenhof, M. B. W.] Univ Groningen, Anim Ecol Grp, Ctr Ecol & Evolutionary Studies, NL-9700 AB Groningen, Netherlands; [Langenhof, M. B. W.] Univ Groningen, Dept Behav Biol, Ctr Behav & Neurosci, NL-9700 AB Groningen, Netherlands; [Rollins, K.] Illinois State Univ, Bloomington, IL USA Bell, AM (reprint author), Univ Illinois, Sch Integrat Biol, 505 S Goodwin Ave, Urbana, IL 61801 USA. alisonmb@life.uiuc.edu Langenhof, M. Rohaa/0000-0003-3434-4357 Netherlands Organisation for Scientific Research [863.05.002] We thank Judy Stamps, Bob Wootton and David Alvarez for advice about growth, and Steve Kreuger, Lindsay Marquardt and David Ernst for technical help. Judy Stamps, Helen Rodd, Anna Price and Dorina Szuroczki provided helpful comments on the manuscript. NJD was supported by the Netherlands Organisation for Scientific Research (grant 863.05.002). This work was carried out under approval from the Animal Care and Use Committee at the University of Illinois (Protocol #06178). Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Arendt JD, 2005, P ROY SOC B-BIOL SCI, V272, P333, DOI 10.1098/rspb.2004.2899; Ball SL, 1996, ECOLOGY, V77, P1116, DOI 10.2307/2265580; Beckerman AP, 2007, OECOLOGIA, V152, P335, DOI 10.1007/s00442-006-0642-6; BELK MC, 1995, J FISH BIOL, V47, P237, DOI 10.1111/j.1095-8649.1995.tb01891.x; Bell AM, 2005, J EVOLUTION BIOL, V18, P464, DOI 10.1111/j.1420-9101.2004.00817.x; Bell AM, 2004, ANIM BEHAV, V68, P1339, DOI 10.1016/j.anbehav.2004.05.007; Bell MA, 1994, EVOLUTIONARY BIOL TH; Biro PA, 2004, P ROY SOC B-BIOL SCI, V271, P2233, DOI 10.1098/rspb.2004.2861; BRONMARK C, 1992, SCIENCE, V258, P1348, DOI 10.1126/science.258.5086.1348; Calvete C, 2005, BIOL CONSERV, V121, P623, DOI 10.1016/j.biocon.2004.06.013; Candolin U, 2003, EVOLUTION, V57, P862; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; Dingemanse NJ, 2009, P R SOC B, V276, P1285, DOI 10.1098/rspb.2008.1555; Dufresne F, 1990, BEHAV ECOL, V1, P140, DOI 10.1093/beheco/1.2.140; EDLEY MT, 1988, BIOL J LINN SOC, V34, P309, DOI 10.1111/j.1095-8312.1988.tb01966.x; Endler JA, 1986, NATURAL SELECTION WI; FRASER DF, 1987, BEHAV ECOL SOCIOBIOL, V21, P203, DOI 10.1007/BF00292500; Gosline AK, 2008, AQUAT ECOL, V42, P693, DOI 10.1007/s10452-007-9138-7; Gotthard K, 2000, J ANIM ECOL, V69, P896, DOI 10.1046/j.1365-2656.2000.00432.x; Huntingford F.A., 1994, P277; Jennions MD, 2002, OECOLOGIA, V132, P44, DOI 10.1007/s00442-002-0942-4; Johansson F, 2009, J ANIM ECOL, V78, P772, DOI 10.1111/j.1365-2656.2009.01530.x; Johnson JB, 2001, EVOLUTION, V55, P1486; Johnson JB, 1999, COPEIA, P948, DOI 10.2307/1447970; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Kraak SBM, 1998, ANIM BEHAV, V56, P859, DOI 10.1006/anbe.1998.0822; Kraak SBM, 1999, BEHAV ECOL, V10, P696, DOI 10.1093/beheco/10.6.696; KRUEGER DA, 1981, LIMNOL OCEANOGR, V26, P219, DOI 10.4319/lo.1981.26.2.0219; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LEIMAR O, 1994, P ROY SOC B-BIOL SCI, V258, P121, DOI 10.1098/rspb.1994.0151; Lynch M, 1998, GENETICS ANAL QUANTI; Magnhagen C, 2004, J FISH BIOL, V64, P612, DOI [10.1111/j.1095-8649.2004.00325.x, 10.1046/j.1095-8649.2003.00325.x]; Mangel M, 2001, EVOL ECOL RES, V3, P583; Martin-Smith KM, 2002, J ANIM ECOL, V71, P413, DOI 10.1046/j.1365-2656.2002.00609.x; McPeek MA, 2001, ECOLOGY, V82, P1535, DOI 10.2307/2679798; MCPHAIL JD, 1977, HEREDITY, V38, P53, DOI 10.1038/hdy.1977.7; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; MITTELBACH GG, 1981, ECOLOGY, V62, P1370, DOI 10.2307/1937300; MOODIE GEE, 1976, SYST ZOOL, V25, P49, DOI 10.2307/2412778; MOODIE GEE, 1972, CAN J ZOOLOG, V50, P721, DOI 10.1139/z72-099; Morgan IJ, 2001, P ROY SOC B-BIOL SCI, V268, P295, DOI 10.1098/rspb.2000.1365; Peckarsky BL, 2001, ECOLOGY, V82, P740, DOI 10.2307/2680193; Peichel CL, 2001, NATURE, V414, P901, DOI 10.1038/414901a; Perez KO, 2010, EVOLUTION, V64, P2450, DOI 10.1111/j.1558-5646.2010.00994.x; Poizat G, 1999, P ROY SOC B-BIOL SCI, V266, P1543, DOI 10.1098/rspb.1999.0813; Quinn TP, 1999, OECOLOGIA, V121, P273, DOI 10.1007/s004420050929; Quinn TP, 2001, T AM FISH SOC, V130, P995, DOI 10.1577/1548-8659(2001)130<0995:SASSMO>2.0.CO;2; REIMCHEN TE, 1991, COPEIA, P1098, DOI 10.2307/1446106; Reimchen Thomas E., 1994, P240; REZNICK D, 1983, ECOLOGY, V64, P862, DOI 10.2307/1937209; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; Rodd FH, 1997, ECOLOGY, V78, P419; ROFF DA, 1983, CAN J FISH AQUAT SCI, V40, P1395, DOI 10.1139/f83-161; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; Schmidt BR, 2005, J EVOLUTION BIOL, V18, P415, DOI 10.1111/j.1420-9101.2004.00822.x; Sillett KB, 2000, OIKOS, V91, P468, DOI 10.1034/j.1600-0706.2000.910307.x; SMITH C, 1995, ENVIRON BIOL FISH, V43, P63, DOI 10.1007/BF00001818; Sparkes TC, 1996, OECOLOGIA, V106, P85, DOI 10.1007/BF00334410; SPITZE K, 1991, EVOLUTION, V45, P82, DOI 10.1111/j.1558-5646.1991.tb05268.x; Stamps JA, 2007, ECOL LETT, V10, P355, DOI 10.1111/j.1461-0248.2007.01034.x; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1981, EVOLUTION, V35, P455, DOI 10.1111/j.1558-5646.1981.tb04906.x; TAYLOR BE, 1992, AM NAT, V139, P248, DOI 10.1086/285326; TOLLRIAN R, 1995, ECOLOGY, V76, P1691, DOI 10.2307/1940703; Urban MC, 2007, ECOLOGY, V88, P2587, DOI 10.1890/06-1946.1; Van Buskirk J, 2002, AM NAT, V160, P87, DOI 10.1086/340599; Walsh MR, 2009, EVOLUTION, V63, P3201, DOI 10.1111/j.1558-5646.2009.00785.x; WELLBORN GA, 1994, ECOLOGY, V75, P2104, DOI 10.2307/1941614; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; WERNER EE, 1986, AM NAT, V128, P319, DOI 10.1086/284565; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wootton RJ, 1984, FUNCTIONAL BIOL STIC 75 23 23 2 34 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1010-061X J EVOLUTION BIOL J. Evol. Biol. MAY 2011 24 5 943 953 10.1111/j.1420-9101.2011.02247.x 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 752LM WOS:000289692700002 21375647 Green Accepted, Bronze 2018-11-12 J Sanchez-Humanes, B; Sork, VL; Espelta, JM Sanchez-Humanes, Belen; Sork, Victoria L.; Maria Espelta, Josep Trade-offs between vegetative growth and acorn production in Quercus lobata during a mast year: the relevance of crop size and hierarchical level within the canopy OECOLOGIA English Article Cost of reproduction; Growth; Mast-seeding; Modular organization; Valley oak PINUS-CONTORTA TREES; EVOLUTIONARY ECOLOGY; REPRODUCTIVE EFFORT; SEED PRODUCTION; NOTHOFAGUS-TRUNCATA; POLLEN MOVEMENT; STYRAX-OBASSIA; WOODY-PLANTS; DOUGLAS-FIR; RING GROWTH The concept of trade-offs between reproduction and other fitness traits is a fundamental principle of life history theory. For many plant species, the cost of sexual reproduction affects vegetative growth in years of high seed production through the allocation of resources to reproduction at different hierarchical levels of canopy organization. We have examined these tradeoffs at the shoot and branch level in an endemic California oak, Quercus lobata, during a mast year. To determine whether acorn production caused a reduction in vegetative growth, we studied trees that were high and low acorn producers, respectively. We observed that in both low and high acorn producers, shoots without acorns located adjacent to reproductive shoots showed reduced vegetative growth but that reduced branch-level growth on acorn-bearing branches occurred only in low acorn producers. The availability of local resources, measured as previous year growth, was the main factor determining acorn biomass. These findings show that the costs of reproduction varied among hierarchical levels, suggesting some degree of physiological autonomy of shoots in terms of acorn production. Costs also differed among trees with different acorn crops, suggesting that trees with large acorn crops had more available resources to allocate for growth and acorn production and to compensate for immediate local costs of seed production. These findings provide new insight into the proximate mechanisms for mast-seeding as a reproductive strategy. [Sanchez-Humanes, Belen; Maria Espelta, Josep] Autonomous Univ Barcelona, Ctr Ecol Res & Forestry Applicat CREAF, Bellaterra 08193, Spain; [Sork, Victoria L.] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA; [Sork, Victoria L.] Univ Calif Los Angeles, Inst Environm, Los Angeles, CA 90095 USA Sanchez-Humanes, B (reprint author), Autonomous Univ Barcelona, Ctr Ecol Res & Forestry Applicat CREAF, Bellaterra 08193, Spain. belen.sanchez@creaf.uab.es Espelta, Josep Maria/I-3891-2016 Espelta, Josep Maria/0000-0002-0242-4988 Ministerio de Educacion y Ciencia; Ministerio de Ciencia e Innovacion [MCINN CGL2008-04847-C02-02]; National Science Foundation [NSF-DEB-0089445] We acknowledge UCLA and UAB statistical consultants Xiao Chen, Philip Ender, Rose Medeiros, and Llorenc Badiella for their valuable help with the data analysis. We thank Andy Lentz, Doug Scofield, Brian Alfaro, and staff of the UCSB Sedgwick Reserve for logistical assistance in the Weld and Ignacio Bartomeus for statistical assistance. We also thank Dave Kelly and two anonymous reviewers for their highly valuable comments on the manuscript. BSH was supported by the FPU program (Ministerio de Educacion y Ciencia) for research stages abroad and the Ministerio de Ciencia e Innovacion (MCINN CGL2008-04847-C02-02). V.L. Sork was supported by National Science Foundation (NSF-DEB-0089445). Our work complied with the current laws of the USA. ABRAHAMSON WG, 1975, ECOLOGY, V56, P721, DOI 10.2307/1935508; Alley JC, 1998, NEW ZEAL J BOT, V36, P453, DOI 10.1080/0028825X.1998.9512583; ASHMAN TL, 1994, AM NAT, V144, P300, DOI 10.1086/285676; Brienen RJW, 2006, FOREST ECOL MANAG, V237, P179, DOI 10.1016/j.foreco.2006.09.042; Bullock SH, 2004, ECOLOGY, V85, P2114, DOI 10.1890/03-3115; Buonaccorsi JP, 2003, J THEOR BIOL, V224, P107, DOI 10.1016/S0022-5193(03)00148-6; CHAPIN FS, 1989, AM NAT, V133, P1, DOI 10.1086/284898; CREMER KW, 1992, FOREST ECOL MANAG, V52, P179, DOI 10.1016/0378-1127(92)90501-Y; Despland E, 1997, AM J BOT, V84, P928, DOI 10.2307/2446283; DICK JM, 1990, TREE PHYSIOL, V6, P151, DOI 10.1093/treephys/6.2.151; DICK JM, 1990, TREE PHYSIOL, V6, P105, DOI 10.1093/treephys/6.1.105; DOUST JL, 1988, ECOLOGY, V69, P741, DOI 10.2307/1941023; EIS S, 1965, CAN J BOTANY, V43, P1553, DOI 10.1139/b65-165; ELKASSABY YA, 1992, CAN J BOT, V70, P1429, DOI 10.1139/b92-179; Espelta JM, 2008, ECOLOGY, V89, P805, DOI 10.1890/07-0217.1; Fox JC, 2001, FOREST ECOL MANAG, V154, P261, DOI 10.1016/S0378-1127(00)00632-0; GROSS HL, 1972, CAN J BOT, V50, P2431, DOI 10.1139/b72-312; Hasegawa S, 2003, J PLANT RES, V116, P183, DOI 10.1007/s10265-003-0085-7; Henriksson J, 2000, ANN BOT-LONDON, V86, P503, DOI 10.1006/anbo.2000.1206; Herrera CM, 1998, AM NAT, V152, P576, DOI 10.1086/286191; Ichie T, 2005, TREES-STRUCT FUNCT, V19, P703, DOI 10.1007/s00468-005-0434-3; Isagi Y, 1997, J THEOR BIOL, V187, P231, DOI 10.1006/jtbi.1997.0442; Janzen D. H., 1971, A Rev Ecol Syst, V2, P465, DOI 10.1146/annurev.es.02.110171.002341; Kawamura K, 2006, NEW PHYTOL, V171, P69, DOI 10.1111/j.1469-8137.2006.01737.x; KELLY D, 1994, TRENDS ECOL EVOL, V9, P465, DOI 10.1016/0169-5347(94)90310-7; Kelly D, 2002, ANNU REV ECOL SYST, V33, P427, DOI 10.1146/annurev.ecolsys.33.020602.095433; Koenig WD, 2003, OIKOS, V102, P581, DOI 10.1034/j.1600-0706.2003.12272.x; Koenig WD, 1998, NATURE, V396, P225, DOI 10.1038/24293; KOENIG WD, 1994, ECOLOGY, V75, P99, DOI 10.2307/1939386; KOENIG WD, 1994, CAN J FOREST RES, V24, P2105, DOI 10.1139/x94-270; Korner C, 2003, J ECOL, V91, P4, DOI 10.1046/j.1365-2745.2003.00742.x; Liebhold A, 2004, OIKOS, V104, P156, DOI 10.1111/j.0030-1299.2004.12722.x; MITCHELL RJ, 1992, FUNCT ECOL, V6, P123, DOI 10.2307/2389745; Miyazaki Y, 2002, ANN BOT-LONDON, V89, P767, DOI 10.1093/aob/mcf107; Miyazaki Y, 2007, PLANT SPEC BIOL, V22, P53, DOI 10.1111/j.1442-1984.2007.00176.x; Monks A, 2006, AUSTRAL ECOL, V31, P366, DOI 10.1111/j.1442=9993.2006.01565.x; MORRIS R. F., 1951, FOREST CHRON, V27, P40; NEWELL EA, 1991, J ECOL, V79, P365, DOI 10.2307/2260719; NIENSTAEDT H, 1985, CAN J FOREST RES, V15, P498, DOI 10.1139/x85-082; Norton DA, 1988, FUNCT ECOL, V2, P399, DOI 10.2307/2389413; Obeso JR, 1997, J ECOL, V85, P159, DOI 10.2307/2960648; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; Obeso JR, 2004, PERSPECT PLANT ECOL, V6, P217, DOI 10.1078/1433-8319-00080; Obeso JR, 2004, EVOL ECOL, V18, P133, DOI 10.1023/B:EVEC.0000021137.74661.82; OBESO JR, 1993, FUNCT ECOL, V7, P150, DOI 10.2307/2389881; PAVLIK BM, 1991, OAKS CALIFORNIA; Pluess AR, 2009, FOREST ECOL MANAG, V258, P735, DOI 10.1016/j.foreco.2009.05.014; REEKIE EG, 1987, AM NAT, V129, P876, DOI 10.1086/284681; REEKIE EG, 1987, AM NAT, V129, P907, DOI 10.1086/284683; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Roff Derek A., 1992; Sgro CM, 2004, HEREDITY, V93, P241, DOI 10.1038/sj.hdy.6800532; SILVERTOWN JW, 1980, BIOL J LINN SOC, V14, P235, DOI 10.1111/j.1095-8312.1980.tb00107.x; Snook LK, 2005, FOREST ECOL MANAG, V206, P221, DOI 10.1016/j.foreco.2004.11.003; SORK VL, 1993, VEGETATIO, V108, P133; Sork VL, 2002, MOL ECOL, V11, P1657, DOI 10.1046/j.1365-294X.2002.01574.x; SORK VL, 1993, ECOLOGY, V74, P528, DOI 10.2307/1939313; SORK VL, 1993, ANN SCI FOREST, V30, P128; Suzuki A, 2000, TREES-STRUCT FUNCT, V14, P329, DOI 10.1007/s004680050226; Suzuki AA, 2005, AM J BOT, V92, P2003, DOI 10.3732/ajb.92.12.2003; TUOMI J, 1983, AM ZOOL, V23, P25; Vieira J, 2009, TREES-STRUCT FUNCT, V23, P257, DOI 10.1007/s00468-008-0273-0; WARDLAW IF, 1990, NEW PHYTOL, V116, P341, DOI 10.1111/j.1469-8137.1990.tb00524.x; WATSON MA, 1984, ANNU REV ECOL SYST, V15, P233, DOI 10.1146/annurev.es.15.110184.001313; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WOOLLONS RC, 1990, NEW ZEAL J ECOL, V13, P9; Wright S, 1920, J AGRIC RES, V20, P0557; Yasumura Y, 2006, FOREST ECOL MANAG, V229, P228, DOI 10.1016/j.foreco.2006.04.003; ZIMMERMANN MH, 1983, XYLEM STRUCTURE DEAS 69 27 33 6 59 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia MAY 2011 166 1 101 110 10.1007/s00442-010-1819-6 10 Ecology Environmental Sciences & Ecology 749DJ WOS:000289442000010 21049300 Green Published, Other Gold 2018-11-12 J Christensen, A; Andersen, K Christensen, Asbjorn; Andersen, Ken Haste General Classification of Maturation Reaction-Norm Shape from Size-based Processes BULLETIN OF MATHEMATICAL BIOLOGY English Article Optimal life-history theory; Growth; Mortality; Fisheries induced evolution; Climate change impact FISHERIES-INDUCED EVOLUTION; LIFE-HISTORY EVOLUTION; EVOLVING FISH STOCKS; DEPENDENT MORTALITY; AGE; GROWTH; MATURITY; MODEL; POPULATIONS; PREDICTIONS Phenotypic plasticity of size at maturation is commonly described using size-age maturation reaction norms (MRNs). MRNs for age and size at maturation are analyzed and classified into three general categories related to different size scalings of growth and mortality. The underlying model for growth and mortality is based on processes at the level of the individual, and is motivated by the energy budget of fish. MRN shape is a balance between opposing factors and depends on subtle details of size dependence of growth and mortality. MRNs with both positive and negative slopes are predicted, and for certain mortality conditions also a lower critical spawning mass. The model is applied to predict a generic fishery-induced evolutionary response and allows assessment of climate change impact on MRNs. Our work stresses the importance of using realistic size dependence of mortality and growth, since this strongly influences the predicted MRNs and sensitivity to harvest pressure. [Christensen, Asbjorn; Andersen, Ken Haste] DTU Aqua, Charlottenlund Slot, DK-2920 Charlottenlund, Denmark Christensen, A (reprint author), DTU Aqua, Charlottenlund Slot, DK-2920 Charlottenlund, Denmark. asc@aqua.dtu.dk; kha@aqua.dtu.dk Andersen, Ken Haste/0000-0002-8478-3430 EU [44133] This work has in part been supported by EU FP6 project RECLAIM (Contract No. 44133). For comments to the manuscript we are grateful to Patrizio Mariani. Andersen KH, 2007, ECOL MODEL, V204, P246, DOI 10.1016/j.ecolmodel.2007.01.002; Andersen KH, 2009, P NATL ACAD SCI USA, V106, P11657, DOI 10.1073/pnas.0901690106; BERRIGAN D, 1994, J EVOLUTION BIOL, V7, P549, DOI 10.1046/j.1420-9101.1994.7050549.x; Blanchard JL, 2005, ICES J MAR SCI, V62, P405, DOI 10.1016/j.icesjms.2005.01.006; Browman HI, 2008, SCIENCE, V320, P47, DOI 10.1126/science.320.5872.47b; CHAMBERS RC, 1997, EARLY LIFE HIST RECR, P63; Cury PM, 2005, ICES J MAR SCI, V62, P430, DOI 10.1016/j.icesjms.2004.12.006; Day T, 1997, AM NAT, V149, P381, DOI 10.1086/285995; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; Dunlop ES, 2007, T AM FISH SOC, V136, P749, DOI 10.1577/T06-126.1; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; Ernande B, 2004, P ROY SOC B-BIOL SCI, V271, P415, DOI 10.1098/rspb.2003.2519; Gardmark A, 2006, P ROY SOC B-BIOL SCI, V273, P2185, DOI 10.1098/rspb.2006.3562; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 1998, CAN J FISH AQUAT SCI, V55, P1971, DOI 10.1139/cjfas-55-8-1971; Heino M, 2008, B MAR SCI, V83, P69; Jobling M, 1994, FISH FISHERIES SERIE, V13; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Law R, 2007, MAR ECOL PROG SER, V335, P271, DOI 10.3354/meps335271; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; Peters R.H., 1983, P1; Quince C, 2008, J THEOR BIOL, V254, P197, DOI 10.1016/j.jtbi.2008.05.029; Reiss MJ, 1991, ALLOMETRY GROWTH REP; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Taborsky B, 2003, P ROY SOC B-BIOL SCI, V270, P713, DOI 10.1098/rspb.2002.2255; Thorpe JE, 2007, MAR ECOL PROG SER, V335, P285, DOI 10.3354/meps335285; Thygesen UH, 2005, P ROY SOC B-BIOL SCI, V272, P1323, DOI 10.1098/rspb.2005.3094; VINBERG GG, 1956, FISH RES BOARD CAN, V194, P1; WARE DM, 1975, J FISH RES BOARD CAN, V32, P33, DOI 10.1139/f75-005; West GB, 2001, NATURE, V413, P628, DOI 10.1038/35098076; Wright PJ, 2007, MAR ECOL PROG SER, V335, P279, DOI 10.3354/meps335279 33 2 2 0 6 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0092-8240 1522-9602 B MATH BIOL Bull. Math. Biol. MAY 2011 73 5 1004 1027 10.1007/s11538-010-9550-3 24 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology 746KW WOS:000289246600004 20556532 2018-11-12 J De Luca, PA; Cocroft, RB De Luca, Paul A.; Cocroft, Reginald B. The Influence of Age on Male Mate-Searching Behaviour in Thornbug Treehoppers ETHOLOGY English Article MALE MATING SUCCESS; UMBONIA-CRASSICORNIS HOMOPTERA; YELLOW DUNG FLY; SEXUAL SELECTION; OLDER MALES; MALE COMPETITION; DEPENDENT EXPRESSION; SOCIAL-ENVIRONMENT; ENERGY RESERVES; FLIGHT CAPACITY One prediction from life-history theory is that males should increase investment in reproductive effort as they age because the opportunity for future reproductive events declines. However, older males may not be able to increase their reproductive effort if condition declines with age. The effect of age-related changes in condition may be especially important for energetically costly activities such as moving within and between habitat patches while searching for mates. Although such searching is a component of many mating systems, the relationship between age and active mate searching has not been investigated. We investigated whether mate-searching effort increased with age in the thornbug treehopper, Umbonia crassicornis (Hemiptera: Membracidae). In this species, males search for females using a 'fly-call-walk' strategy consisting of three phases: (1) flying from one plant to another; (2) walking and signalling while on a plant; and (3) close-range courtship of encountered females. We measured several aspects of mate-searching behaviour over the month-long period of a male's reproductive lifetime. Over the relevant period of male sexual activity (19-33 d), male condition remained stable. However, older males (25-33 d) did not search more actively than younger males as predicted; instead, younger males (19 d) had greater plant-to-plant flight activity and found females faster. Within-plant walking rates and courtship duration did not differ among age classes. These results suggest that thornbug males may be investing so heavily in mate searching at younger ages that they are unable to increase investment in searching effort when they get older. As a result, older males are likely to be at a competitive disadvantage when active searching is required to locate sparsely distributed females. [De Luca, Paul A.; Cocroft, Reginald B.] Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA De Luca, PA (reprint author), Univ Toronto Scarborough, Dept Biol Sci, 1265 Mil Trail, Toronto, ON M1C 1A4, Canada. paul.deluca@utoronto.ca University of Missouri Research Board We thank current and former members of the Cocroft Lab (J. Hamel, G. McNett, K. Ramaswamy, R. Rodriguez and L. Sullivan) for their suggestions regarding many aspects of the design of this study. We also thank H. C. Gerhardt, J. Schul, R. Semlitsch, and M. V. Flinn for their comments on previous versions of this manuscript. This manuscript also benefited from the comments of two anonymous reviewers. B. Sonderman provided much assistance in helping to maintain the colony of U. crassicornis at the greenhouse on the MU campus. We are very grateful to P. Kendra (USDA-ARS, Miami), R. Hammer (Castellow Hammock Park, Homestead), P. Griffith (Montgomery Botanical Center, Miami), and Dr. Ethan H. Freid for helping us locate populations of U. crassicornis in south Florida in 2006. This research was supported by a University of Missouri Research Board Grant to R. B. C. Alonso JC, 2010, BEHAV ECOL SOCIOBIOL, V64, P1589, DOI 10.1007/s00265-010-0972-6; Andersson M., 1994, SEXUAL SELECTION; Bailey WJ, 2003, PHYSIOL ENTOMOL, V28, P157, DOI 10.1046/j.1365-3032.2003.00337.x; Bertram SM, 2000, ANIM BEHAV, V60, P333, DOI 10.1006/anbe.2000.1473; Bitton PP, 2007, ANIM BEHAV, V74, P1777, DOI 10.1016/j.anbehav.2007.03.018; Blanckenhorn WU, 2003, BEHAV ECOL, V14, P612, DOI 10.1093/beheco/arg052; Bonsall MB, 2004, P ROY SOC B-BIOL SCI, V271, P1143, DOI 10.1098/rspb.2004.2722; Brooks R, 2001, TRENDS ECOL EVOL, V16, P308, DOI 10.1016/S0169-5347(01)02147-4; Brown GP, 1999, BEHAV ECOL SOCIOBIOL, V47, P9, DOI 10.1007/s002650050644; Casey T.M., 1989, P257; CLARIDGE MF, 1985, ANNU REV ENTOMOL, V30, P297, DOI 10.1146/annurev.en.30.010185.001501; Claridge Michael F., 1994, P216; Cocroft R. B., 2006, INSECT SOUNDS COMMUN, P321; Cocroft RB, 2003, J INSECT BEHAV, V16, P79, DOI 10.1023/A:1022801429033; Cocroft RB, 2002, BEHAV ECOL, V13, P125, DOI 10.1093/beheco/13.1.125; Cokl A, 1999, ANIM BEHAV, V58, P1277, DOI 10.1006/anbe.1999.1272; Coley PD, 1996, ANNU REV ECOL SYST, V27, P305, DOI 10.1146/annurev.ecolsys.27.1.305; Collatz K.-G., 1986, P55; CONNER J, 1989, ANIM BEHAV, V38, P503, DOI 10.1016/S0003-3472(89)80043-0; CONOVER WJ, 1980, PRACTICAL NONPARAMET; Cotton S, 2004, P ROY SOC B-BIOL SCI, V271, P771, DOI 10.1098/rspb.2004.2688; De Luca PA, 2008, BEHAV ECOL SOCIOBIOL, V62, P1869, DOI 10.1007/s00265-008-0616-2; De Luca PA, 2009, BEHAV ECOL SOCIOBIOL, V63, P1787, DOI 10.1007/s00265-009-0803-9; DEFRAIPONT M, 1993, ANIM BEHAV, V46, P961, DOI 10.1006/anbe.1993.1277; Demary K, 2006, ETHOLOGY, V112, P485, DOI 10.1111/j.1439-0310.2005.01176.x; DEWINTER AJ, 1990, BIOL J LINN SOC, V40, P191, DOI 10.1111/j.1095-8312.1990.tb01975.x; Diaz ER, 2004, BIOL BULL-US, V206, P134, DOI 10.2307/1543637; Dunn PO, 2007, BEHAV ECOL SOCIOBIOL, V61, P449, DOI 10.1007/s00265-006-0272-3; Duvall D, 1997, ANIM BEHAV, V54, P329, DOI 10.1006/anbe.1996.0418; Engqvist L, 2009, ANIM BEHAV, V78, P491, DOI 10.1016/j.anbehav.2009.05.021; Felton A, 2006, BEHAV ECOL SOCIOBIOL, V59, P786, DOI 10.1007/s00265-005-0124-6; Fischer J, 2004, BEHAV ECOL SOCIOBIOL, V56, P140, DOI 10.1007/s00265-003-0739-4; Fischer K, 2008, P ROY SOC B-BIOL SCI, V275, P1517, DOI 10.1098/rspb.2007.1455; Forbes MR, 1996, CAN J ZOOL, V74, P1479, DOI 10.1139/z96-162; Forstmeier W, 2006, BEHAV ECOL SOCIOBIOL, V59, P634, DOI 10.1007/s00265-005-0090-z; Garamszegi LZ, 2007, ETHOLOGY, V113, P246, DOI 10.1111/j.1439-0310.2007.01337.x; Gil D, 2001, ANIM BEHAV, V62, P689, DOI 10.1006/anbe.2001.1812; HEDRICK AV, 1986, BEHAV ECOL SOCIOBIOL, V19, P73, DOI 10.1007/BF00303845; HOGLUND J, 1987, BEHAV ECOL SOCIOBIOL, V21, P211, DOI 10.1007/BF00292501; HOWARD RD, 1978, EVOLUTION, V32, P850, DOI 10.1111/j.1558-5646.1978.tb04639.x; Hunt J, 2004, NATURE, V432, P1024, DOI 10.1038/nature03084; HUNT RE, 1994, J NEW YORK ENTOMOL S, V102, P266; HUNT RE, 1991, BEHAV ECOL SOCIOBIOL, V28, P315, DOI 10.1007/BF00164380; Jacot A, 2007, ETHOLOGY, V113, P615, DOI 10.1111/j.1439-0310.2007.01360.x; Jordan LA, 2010, J EVOLUTION BIOL, V23, P2403, DOI 10.1111/j.1420-9101.2010.02104.x; Judge KA, 2008, EVOLUTION, V62, P868, DOI 10.1111/j.1558-5646.2008.00318.x; Kasumovic MM, 2007, BEHAV ECOL, V18, P189, DOI 10.1093/beheco/arl072; Kemp DJ, 2008, BEHAV ECOL, V19, P1, DOI 10.1093/beheco/arm094; Kemp DJ, 2006, ETHOLOGY, V112, P471, DOI 10.1111/j.1439-0310.2005.01173.x; Kokko H, 1997, BEHAV ECOL SOCIOBIOL, V41, P99, DOI 10.1007/s002650050369; Kotiaho JS, 2002, BEHAV ECOL, V13, P791, DOI 10.1093/beheco/13.6.791; Kutsch W., 1989, P51; Marden JH, 2000, ANNU REV PHYSIOL, V62, P157, DOI 10.1146/annurev.physiol.62.1.157; MARDEN JH, 1994, ANIM BEHAV, V48, P1023, DOI 10.1006/anbe.1994.1335; Masters K. L, 1997, THESIS PRINCETON U P; Matsubara K, 2005, ZOOL SCI, V22, P587, DOI 10.2108/zsj.22.587; McKamey SH, 1996, SYST ENTOMOL, V21, P295, DOI 10.1111/j.1365-3113.1996.tb00602.x; MEAD FW, 1962, 8 FL DEP AGR CONS SE; Miller LK, 2005, EVOLUTION, V59, P2414; Miranda X, 2006, ANN ENTOMOL SOC AM, V99, P374, DOI 10.1603/0013-8746(2006)099[0374:SSRACJ]2.0.CO;2; OTRONEN M, 1995, FUNCT ECOL, V9, P683, DOI 10.2307/2390161; PARKER GA, 1974, BEHAVIOUR, V48, P157, DOI 10.1163/156853974X00327; PARKER GA, 1978, BEHAV ECOLOGY EVOLUT, P214; Radwan J, 2005, ANIM BEHAV, V69, P1101, DOI 10.1016/j.anbehav.2004.09.006; RITCHIE MG, 1995, P ROY SOC B-BIOL SCI, V262, P21, DOI 10.1098/rspb.1995.0171; Roberts SP, 2005, J EXP BIOL, V208, P4193, DOI 10.1242/jeb.01862; *SAS I INC, 2003, JMP IN STAT DISC SOF; Schaefer D, 2003, ETHOLOGY, V109, P385, DOI 10.1046/j.1439-0310.2003.00881.x; Scheffer SJ, 1996, BEHAV ECOL SOCIOBIOL, V38, P17, DOI 10.1007/s002650050212; SHUSTER SM, 2003, MG BEH ECOL, pR7; Sikkel PC, 1998, BEHAV ECOL, V9, P439, DOI 10.1093/beheco/9.5.439; SOHAL RS, 1976, GERONTOLOGY, V22, P317; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stewart KW, 2006, CONT T ENT, P179; Sullivan-Beckers L, 2010, EVOLUTION, V64, P3158, DOI 10.1111/j.1558-5646.2010.01073.x; Uy JAC, 2001, AM NAT, V158, P530, DOI 10.1086/323118; Wong BBM, 2005, BIOL REV, V80, P559, DOI 10.1017/S1464793105006809; WOOD TK, 1985, FLA ENTOMOL, V68, P151, DOI 10.2307/3494339; WOOD TK, 1974, CAN ENTOMOL, V106, P143, DOI 10.4039/Ent106143-2; WOOD TK, 1984, AM MIDL NAT, V112, P58, DOI 10.2307/2425457; WOOD TK, 1974, CAN ENTOMOL, V106, P169, DOI 10.4039/Ent106169-2; WOODHEAD AP, 1986, ANIM BEHAV, V34, P1874, DOI 10.1016/S0003-3472(86)80273-1; WOOLBRIGHT LL, 1990, ANIM BEHAV, V40, P135, DOI 10.1016/S0003-3472(05)80673-6; ZEIGLER DD, 1985, ENTOMOL NEWS, V96, P157 84 9 9 0 9 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0179-1613 1439-0310 ETHOLOGY Ethology MAY 2011 117 5 440 450 10.1111/j.1439-0310.2011.01893.x 11 Psychology, Biological; Behavioral Sciences; Zoology Psychology; Behavioral Sciences; Zoology 746NR WOS:000289254500010 2018-11-12 J Coall, DA; Hertwig, R Coall, David A.; Hertwig, Ralph Grandparental Investment: A Relic of the Past or a Resource for the Future? CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE English Article child development; demographic transition; grandmother hypothesis; grandparental investment; intergenerational transfers FAMILY; GRANDCHILDREN; SOLICITUDE; EVOLUTION; HEALTH; BONDS From changing diapers and minding the kids when school is out to providing support when they set fire to the carpet, grandparents can be invaluable to have around. What motivates grandparents to lend a hand? Several disciplines have offered answers. The most important accounts come from life-history theory and evolutionary psychology, sociology, and economics. These accounts exist side-by-side, but there is little theoretical integration among them. But regardless of whether grandparental investment is traced back to ancestral selection pressure or attributed to an individual grandparent's values or norms, one important question is, What impact does it have in industrialized, low-fertility, low-mortality societies? We briefly review the initial evidence concerning the impact of grandparental investment in industrialized societies and conclude that in difficult circumstances, grandparents can provide the support that safeguards their grandchildren's development. Additional cross-disciplinary research to examine the effects of intergenerational transfers in our evolutionarily unique environment of grandparenthood is needed. [Coall, David A.] Univ Western Australia, Nedlands, WA 6009, Australia; [Coall, David A.] Edith Cowan Univ, Churchlands, WA 6018, Australia; [Hertwig, Ralph] Univ Basel, CH-4003 Basel, Switzerland Coall, DA (reprint author), Univ Western Australia, Fremantle Hosp, Sch Psychiat & Clin Neurosci, 1 Alma St,W Block,Level 6, Fremantle, WA 6160, Australia. david.coall@uwa.edu.au Hertwig, Ralph/B-3468-2015 Hertwig, Ralph/0000-0002-9908-9556; Coall, David/0000-0002-0488-2683 BARRO RJ, 1974, J POLIT ECON, V82, P1095, DOI 10.1086/260266; BECKER GS, 1974, J POLIT ECON, V82, P1063, DOI 10.1086/260265; Bengtson VL, 2001, J MARRIAGE FAM, V63, P1, DOI 10.1111/j.1741-3737.2001.00001.x; BENGTSON VL, 1991, J MARRIAGE FAM, V53, P856, DOI 10.2307/352993; Botcheva LB, 2004, INT J PSYCHOL, V39, P157, DOI 10.1080/00207590344000321; Coall DA, 2010, BEHAV BRAIN SCI, V33, P1, DOI 10.1017/S0140525X09991105; COOMBS CH, 1977, PSYCHOL REV, V84, P216, DOI 10.1037/0033-295X.84.2.216; DALY M, 1980, J MARRIAGE FAM, V42, P277, DOI 10.2307/351225; Euler HA, 1996, HUM NATURE-INT BIOS, V7, P39, DOI 10.1007/BF02733489; Fox M, 2010, P R SOC B, V277, P567, DOI 10.1098/rspb.2009.1660; Friedman D, 2008, RATION SOC, V20, P31, DOI 10.1177/1043463107085436; Hank K, 2009, J FAM ISSUES, V30, P53, DOI 10.1177/0192513X08322627; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Hrdy S. B., 2009, MOTHERS OTHERS EVOLU; Hughes ME, 2007, J GERONTOL B-PSYCHOL, V62, pS108, DOI 10.1093/geronb/62.2.S108; Laferrere A., 2006, HDB EC GIVING ALTRUI, V2, P889; Lahdenpera M, 2004, NATURE, V428, P178, DOI 10.1038/nature02367; Mulder MB, 1998, TRENDS ECOL EVOL, V13, P266, DOI 10.1016/S0169-5347(98)01357-3; Murphy M., 2003, POPULATION TRENDS, V112, P36; Richerson Peter J., 2005, NOT GENES ALONE CULT; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; Sear R, 2011, POPUL DEV REV, V37, P81, DOI 10.1111/j.1728-4457.2011.00379.x; Szinovacz M. E, 1998, HDB GRANDPARENTHOOD, P257; Szinovacz ME, 1998, GERONTOLOGIST, V38, P37, DOI 10.1093/geront/38.1.37; TINSLEY BJ, 1987, INT J AGING HUM DEV, V25, P259, DOI 10.2190/91M7-1JMA-UQV6-0VH3; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; *US BUR CENS, 2009, CB09FF16; Voland E., 2005, GRANDMOTHERHOOD EVOL; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Ythier J. M., 2006, HDB EC GIVING ALTRUI, V2, P971, DOI DOI 10.1016/S1574-0714(06)02014-8 30 25 26 1 20 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 0963-7214 1467-8721 CURR DIR PSYCHOL SCI Curr. Dir. Psychol. APR 2011 20 2 93 98 10.1177/0963721411403269 6 Psychology, Multidisciplinary Psychology 841JO WOS:000296508800005 2018-11-12 J Quinodoz, S; Thomas, MA; Dunkel, J; Schoz, EM Quinodoz, Sofia; Thomas, Michael A.; Dunkel, Joern; Schoetz, Eva-Maria The More the Merrier? JOURNAL OF STATISTICAL PHYSICS English Article Life-history theory; Planarians; Asexual reproduction; Entropy; Optimization PLANARIAN DUGESIA-JAPONICA; STEM-CELLS; TRADE-OFF; CLUTCH SIZE; GREAT TITS; REGENERATION; NUMBER; NEOBLASTS; FISSION; ENTROPY The trade-off between traits in life-history strategies has been widely studied for sexual and parthenogenetic organisms, but relatively little is known about the reproduction strategies of asexual animals. Here, we investigate clonal reproduction in the freshwater planarian Schmidtea mediterranea, an important model organism for regeneration and stem cell research. We find that these flatworms adopt a randomized reproduction strategy that comprises both asymmetric binary fission and fragmentation (generation of multiple offspring during a reproduction cycle). Fragmentation in planarians has primarily been regarded as an abnormal behavior in the past; using a large-scale experimental approach, we now show that about one third of the reproduction events in S. mediterranea are fragmentations, implying that fragmentation is part of their normal reproductive behavior. Our analysis further suggests that certain characteristic aspects of the reproduction statistics can be explained in terms of a maximum relative entropy principle. [Quinodoz, Sofia; Thomas, Michael A.; Schoetz, Eva-Maria] Princeton Univ, Lewis Sigler Inst, Carl Icahn Lab 170, Princeton, NJ 08544 USA; [Dunkel, Joern] Univ Cambridge, Dept Appl Math & Theoret Phys, Ctr Math Sci, Cambridge CB3 0WA, England Schoz, EM (reprint author), Princeton Univ, Lewis Sigler Inst, Carl Icahn Lab 170, Princeton, NJ 08544 USA. quinodoz@princeton.edu; matthree@princeton.edu; j.dunkel@damtp.cam.ac.uk; eschoetz@princeton.edu Dunkel, Jorn/B-6140-2008 Dunkel, Jorn/0000-0001-8865-2369 Lewis-Sigler Fellowship This work was inspired by a discussion EMS had with I. Fiete at UT Austin. The authors thank J. Talbot and B. Lincoln for help with worm care, R. Sedgewick and K. Wayne for their Java file I/O libraries, B. Liu, J.T. Bonner, A. Ott and W. Bialek for fruitful discussions, and A. Ott for comments on the manuscript. EMS was funded by the Lewis-Sigler Fellowship. Agata Kiyokazu, 2008, P59, DOI 10.1007/978-1-4020-8274-0_4; Alvarado AS, 2002, DEVELOPMENT, V129, P5659, DOI 10.1242/dev.00167; BAGUNA J, 1981, NATURE, V290, P14, DOI 10.1038/290014b0; BAGUNA J, 1989, DEVELOPMENT, V107, P77; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; Bronstedt H.V., 1969, PLANARIAN REGENERATI; CALOW P, 1979, AM ZOOL, V19, P715; Charnov EL, 2006, AM NAT, V167, P578, DOI 10.1086/501141; Dunkel J, 2011, PHYS BIOL, V8, DOI 10.1088/1478-3975/8/2/026003; Hori I, 2001, BELG J ZOOL, V131, P117; Hori I, 1998, HYDROBIOLOGIA, V383, P131, DOI 10.1023/A:1003415105630; JAYNES ET, 1968, IEEE T SYST SCI CYB, VSSC4, P227, DOI 10.1109/TSSC.1968.300117; KAWAKATSU M, 1959, B KYOTO GAKUGEI U B, P35; KULLBACK S, 1951, ANN MATH STAT, V22, P79, DOI 10.1214/aoms/1177729694; Mora T, 2010, P NATL ACAD SCI USA, V107, P5405, DOI 10.1073/pnas.1001705107; Newmark PA, 2002, NAT REV GENET, V3, P210, DOI 10.1038/nrg759; Oviedo NJ, 2007, DEVELOPMENT, V134, P3121, DOI 10.1242/dev.006635; Peter R, 2001, MAR ECOL-P S Z N I, V22, P35, DOI 10.1046/j.1439-0485.2001.00743.x; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; Reddien PW, 2005, SCIENCE, V310, P1327, DOI 10.1126/science.1116110; Reddien PW, 2004, ANNU REV CELL DEV BI, V20, P725, DOI 10.1146/annurev.cellbio.20.010403.095114; Sheiman I. M., 2006, Russian Journal of Developmental Biology, V37, P102, DOI 10.1134/S1062360406020068; SINERVO B, 1991, SCIENCE, V252, P1300, DOI 10.1126/science.252.5010.1300; SINERVO B, 1992, SCIENCE, V258, P1927, DOI 10.1126/science.258.5090.1927; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SMITH HG, 1989, J ANIM ECOL, V58, P383, DOI 10.2307/4837; Stearns S. C., 1992, EVOLUTION LIFE HIST; THOMAS M, 2011, SAPLING SCA IN PRESS; Visser ME, 1999, OIKOS, V85, P445, DOI 10.2307/3546694; Walker RS, 2008, P ROY SOC B-BIOL SCI, V275, P827, DOI 10.1098/rspb.2007.1511; WEHRL A, 1978, REV MOD PHYS, V50, P221, DOI 10.1103/RevModPhys.50.221; ZACCANTI F, 1986, J EXP ZOOL, V238, P319, DOI 10.1002/jez.1402380306 32 6 6 0 6 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0022-4715 J STAT PHYS J. Stat. Phys. APR 2011 142 6 1324 1336 10.1007/s10955-011-0157-3 13 Physics, Mathematical Physics 749DV WOS:000289443500013 2018-11-12 J Marty, L; Dieckmann, U; Rochet, MJ; Ernande, B Marty, Lise; Dieckmann, Ulf; Rochet, Marie-Joelle; Ernande, Bruno Impact of Environmental Covariation in Growth and Mortality on Evolving Maturation Reaction Norms AMERICAN NATURALIST English Article phenotypic plasticity; growth-reproduction trade-off; source-sink population structure; density dependence; selection gradient LIFE-HISTORY EVOLUTION; SPATIALLY HETEROGENEOUS ENVIRONMENTS; FISHERIES-INDUCED EVOLUTION; NORTHEAST ARCTIC COD; PHENOTYPIC PLASTICITY; ADAPTIVE DYNAMICS; DEVELOPMENTAL THRESHOLDS; MATHEMATICALLY CORRECT; BIOLOGICALLY RELEVANT; DENSITY-DEPENDENCE Maturation age and size have important fitness consequences through their effects on survival probabilities and body sizes. The evolution of maturation reaction norms in response to environmental covariation in growth and mortality is therefore a key subject of life-history theory. The eco-evolutionary model we present and analyze here incorporates critical features that earlier studies of evolving maturation reaction norms have often neglected: the trade-off between growth and reproduction, source-sink population structure, and population regulation through density-dependent growth and fecundity. We report the following findings. First, the evolutionarily optimal age at maturation can be decomposed into the sum of a density-dependent and a density-independent component. These components measure, respectively, the hypothetical negative age at which an individual's length would be 0 and the delay in maturation relative to this offset. Second, along any growth trajectory, individuals mature earlier when mortality is higher. This allows us to deduce, third, how the shapes of evolutionarily optimal maturation reaction norms depend on the covariation between growth and mortality (positive or negative, linear or curvilinear, and deterministic or probabilistic). Providing eco-evolutionary explanations for many alternative reaction-norm shapes, our results appear to be in good agreement with current empirical knowledge on maturation dynamics. [Marty, Lise; Ernande, Bruno] IFREMER, Lab Ressources Halieut, F-62231 Boulogne, France; [Dieckmann, Ulf; Ernande, Bruno] Int Inst Appl Syst & Anal, Evolut & Ecol Program, A-2361 Laxenburg, Austria; [Rochet, Marie-Joelle] IFREMER, F-44311 Nantes 03, France Marty, L (reprint author), IFREMER, Lab Ressources Halieut, 150 Quai Gambetta,BP 699, F-62231 Boulogne, France. lise.marty@ifremer.fr Dieckmann, Ulf/E-1424-2011; Ernande, Bruno/C-1182-2008 Dieckmann, Ulf/0000-0001-7089-0393; Ernande, Bruno/0000-0002-0727-5774 European Commission under the European Community; European Science Foundation; Austrian Science Fund; Austrian Ministry of Science and Research; Vienna Science and Technology Fund; European Community through the Marie Curie Research Training Network [MRTN-CT-2004-005578] This study has been carried out with financial support from the European Commission, as part of the Specific Targeted Research Project on "fisheries-induced evolution" (FinE; contract SSP-2006-044276) under the Scientific Support to Policies cross-cutting activities of the European Community's Sixth Framework Programme. It does not necessarily reflect the views of the European Commission and does not anticipate the Commission's future policy in this area. U.D. acknowledges additional support by the European Science Foundation, the Austrian Science Fund, the Austrian Ministry of Science and Research, and the Vienna Science and Technology Fund, as well as by the European Community's Sixth Framework Programme, through the Marie Curie Research Training Network on "fisheries-induced adaptive changes in exploited stocks" (FishACE; contract MRTN-CT-2004-005578). Abrams PA, 2001, ECOL LETT, V4, P166, DOI 10.1046/j.1461-0248.2001.00199.x; ABRAMS PA, 1993, EVOL ECOL, V7, P465, DOI 10.1007/BF01237642; ABRAMS PA, 1991, ECOLOGY, V72, P1242, DOI 10.2307/1941098; ADOLPH SC, 1993, AM NAT, V142, P273, DOI 10.1086/285538; ANHOLT BR, 1995, ECOLOGY, V76, P2230, DOI 10.2307/1941696; Barot S, 2005, ICES J MAR SCI, V62, P56, DOI 10.1016/j.icesjms.2004.10.004; Barot S, 2004, ECOL APPL, V14, P1257, DOI 10.1890/03-5066; Berkeley SA, 2004, ECOLOGY, V85, P1258, DOI 10.1890/03-0706; BERRIGAN D, 1994, J EVOLUTION BIOL, V7, P549, DOI 10.1046/j.1420-9101.1994.7050549.x; Beverton R.J.H., 1959, LIFESPAN ANIMALS CIB, V5, P142; BOGGS CL, 1993, ECOLOGY, V74, P433, DOI 10.2307/1939305; Brown JH, 2005, FUNCT ECOL, V19, P735, DOI 10.1111/j.1365-2435.2005.01022.x; BROWN JS, 1992, EVOL ECOL, V6, P360, DOI 10.1007/BF02270698; Burd M, 2006, ECOLOGY, V87, P2755, DOI 10.1890/0012-9658(2006)87[2755:APFRIM]2.0.CO;2; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CHARNOV EL, 1990, EVOL ECOL, V4, P273, DOI 10.1007/BF02214335; Charnov EL, 2001, P NATL ACAD SCI USA, V98, P9460, DOI 10.1073/pnas.161294498; Day T, 1997, AM NAT, V149, P381, DOI 10.1086/285995; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; de Roos A. M., 1997, STRUCTURED POPULATIO, P119; DEMPSTER ER, 1955, COLD SPRING HARB SYM, V20, P25, DOI 10.1101/SQB.1955.020.01.005; DEROOS AM, 1992, AM NAT, V139, P123, DOI 10.1086/285316; Dieckmann U, 1996, J MATH BIOL, V34, P579, DOI 10.1007/BF02409751; Dieckmann U, 2006, J THEOR BIOL, V241, P370, DOI 10.1016/j.jtbi.2005.12.002; Dunlop ES, 2007, T AM FISH SOC, V136, P749, DOI 10.1577/T06-126.1; Dunlop ES, 2009, EVOL APPL, V2, P371, DOI 10.1111/j.1752-4571.2009.00089.x; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; Engelhard GH, 2004, MAR ECOL PROG SER, V272, P245, DOI 10.3354/meps272245; Ernande B, 2004, P ROY SOC B-BIOL SCI, V271, P415, DOI 10.1098/rspb.2003.2519; Ernande B, 2004, J EVOLUTION BIOL, V17, P613, DOI 10.1111/j.1420-9101.2004.00691.x; Geritz SAH, 1998, EVOL ECOL, V12, P35, DOI 10.1023/A:1006554906681; GOMULKIEWICZ R, 1992, EVOLUTION, V46, P390, DOI 10.1111/j.1558-5646.1992.tb02047.x; Grift RE, 2007, MAR ECOL PROG SER, V334, P213, DOI 10.3354/meps334213; Grift RE, 2003, MAR ECOL PROG SER, V257, P247, DOI 10.3354/meps257247; Heino M, 2002, ICES J MAR SCI, V59, P562, DOI 10.1006/jmsc.2002.1192; HOLT RD, 1992, EVOL ECOL, V6, P433, DOI 10.1007/BF02270702; HOUSTON AI, 1992, EVOL ECOL, V6, P243, DOI 10.1007/BF02214164; IWASA I, 1991, EVOLUTION, V45, P1431; Jorgensen C, 2009, EVOL APPL, V2, P356, DOI 10.1111/j.1752-4571.2009.00075.x; KAWECKI TJ, 1993, EVOL ECOL, V7, P155, DOI 10.1007/BF01239386; KIRKPATRICK M, 1989, J MATH BIOL, V27, P429, DOI 10.1007/BF00290638; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Kozlowski J, 2004, FUNCT ECOL, V18, P283, DOI 10.1111/j.0269-8463.2004.00830.x; KOZLOWSKI J, 1986, THEOR POPUL BIOL, V29, P16; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; LACEY EP, 1988, ECOLOGY, V69, P220, DOI 10.2307/1943178; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LESTER NP, 2004, P ROYAL SOC B, V271, P1548; LEVENE H, 1953, AM NAT, V87, P331, DOI 10.1086/281792; MESZENA G, 2001, SELECTION, V2, P1585; Metz J.A., 1996, WP96004 IIASA; Metz JAJ, 2008, EVOL ECOL RES, V10, P629; Metz J. A. J., 1986, DYNAMICS PHYSL STRUC; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; Metz JAJ, 2001, P ROY SOC B-BIOL SCI, V268, P499, DOI 10.1098/rspb.2000.1373; Mollet FM, 2007, MAR ECOL PROG SER, V351, P189, DOI 10.3354/meps07138; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; Okamoto KW, 2009, EVOL APPL, V2, P415, DOI 10.1111/j.1752-4571.2009.00095.x; Olsen E, 2005, CAN J FISH AQUAT SCI, V62, P811, DOI 10.1139/F05-065; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Parvinen K, 2006, J MATH BIOL, V52, P1, DOI 10.1007/s00285-005-0329-3; PAULY D, 1980, J CONSEIL, V39, P175; PERRIN N, 1990, FUNCT ECOL, V4, P53, DOI 10.2307/2389652; Plaistow SJ, 2004, P ROY SOC B-BIOL SCI, V271, P919, DOI 10.1098/rspb.2004.2682; Ravigne V, 2004, EVOL ECOL RES, V6, P125; Ravigne V, 2009, AM NAT, V174, pE141, DOI 10.1086/605369; Stearns S.C., 1984, P13; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STILING P, 1988, J ANIM ECOL, V57, P581, DOI 10.2307/4926; STUBBS M, 1977, J ANIM ECOL, V46, P677, DOI 10.2307/3837; Theriault V, 2008, EVOL APPL, V1, P409, DOI 10.1111/j.1752-4571.2008.00022.x; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; VANTIENDEREN PH, 1991, EVOLUTION, V45, P1317, DOI 10.1111/j.1558-5646.1991.tb02638.x; Walters C, 1999, REV FISH BIOL FISHER, V9, P187, DOI 10.1023/A:1008991021305; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; Werner EE, 1996, ECOLOGY, V77, P157, DOI 10.2307/2265664; Wesselingh RA, 1997, ECOLOGY, V78, P2118, DOI 10.1890/0012-9658(1997)078[2118:TSFFID]2.0.CO;2; Wootton R.J., 1998, ECOLOGY TELEOST FISH 81 14 15 0 27 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. APR 2011 177 4 E98 E118 10.1086/658988 21 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 746IF WOS:000289237700001 21460562 2018-11-12 J Gibbs, M; Wiklund, C; Van Dyck, H Gibbs, Melanie; Wiklund, Christer; Van Dyck, Hans Temperature, rainfall and butterfly morphology: does life history theory match the observed pattern? ECOGRAPHY English Article MELITAEA-CINXIA LEPIDOPTERA; RECENT CLIMATE-CHANGE; IN-FLIGHT MORPHOLOGY; PARARGE-AEGERIA L.; HABITAT FRAGMENTATION; LANDSCAPE STRUCTURE; PHENOTYPIC PLASTICITY; WING MORPHOLOGY; RANGE EXPANSION; REACTION NORMS Butterfly distribution and abundance is known to be influenced by temperature and rainfall. What is not clear, however, is how life history and flight morphological traits are affected by changes in local weather conditions. During the period 1989-1999, we explored the effects of ambient temperature and rainfall during larval development on adult phenotypic traits (body mass, forewing loading, forewing surface area and forewing length) in a Swedish population of the speckled wood butterfly Pararge aegeria. As different seasonal cohorts correspond to different developmental pathways (larval hibernating, pupal hibernating and directly developing), we analysed these morphological time series relative to developmental pathway. Phenotypic variation in response to the temperature and rainfall levels experienced during larval development differed in both magnitude and direction depending on the developmental pathway, and hence seasonal cohort, examined (i.e. there was a pathway-specific response). We suggest that through its developmental flexibility P. aegeria may be able to adjust to variation in weather conditions over time. Other less flexible species, however, may not be so fortunately buffered. To truly estimate the impact of climate change on biodiversity more fine-scale, local studies are required that examine the mechanisms underlying the response of species to climate change. [Gibbs, Melanie] NERC Ctr Ecol & Hydrol, Wallingford OX10 8BB, Oxon, England; [Van Dyck, Hans] Catholic Univ Louvain, Behav Ecol & Conservat Grp, Biodivers Res Ctr, Earth & Life Inst, BE-1348 Louvain, Belgium; [Wiklund, Christer] Stockholm Univ, Dept Zool, SE-10691 Stockholm, Sweden Gibbs, M (reprint author), NERC Ctr Ecol & Hydrol, Maclean Bldg,Benson Lane, Wallingford OX10 8BB, Oxon, England. Hans.Vandyck@uclouvain.be Univ. catholique de Louvain (UCL) [FSR06]; Natural Environment Research Council [CEH010021] This research is supported by a FSR research grant of the Univ. catholique de Louvain (UCL) to HVD (Grant FSR06). This is publication no. BRC 186 of the Biodiversity Research Centre (UCL, Louvain-la-Neuve). Casper J. Breuker provided useful comments on an earlier version of the manuscript. Azerefegne F, 2001, J ANIM ECOL, V70, P1032, DOI 10.1046/j.0021-8790.2001.00556.x; Bale JS, 2002, GLOBAL CHANGE BIOL, V8, P1, DOI 10.1046/j.1365-2486.2002.00451.x; Berwaerts K, 1998, NETH J ZOOL, V48, P241; Berwaerts K, 2002, FUNCT ECOL, V16, P484, DOI 10.1046/j.1365-2435.2002.00650.x; BRAKEFIELD PM, 1995, J EVOLUTION BIOL, V8, P559, DOI 10.1046/j.1420-9101.1995.8050559.x; Breuker CJ, 2007, EUR J ENTOMOL, V104, P445, DOI 10.14411/eje.2007.064; Crozier LG, 2004, OECOLOGIA, V141, P148, DOI 10.1007/s00442-004-1634-z; DANTHANARAYANA W, 1976, OECOLOGIA, V26, P121, DOI 10.1007/BF00582890; DAVIES NB, 1978, ANIM BEHAV, V26, P138, DOI 10.1016/0003-3472(78)90013-1; Davies ZG, 2006, J ANIM ECOL, V75, P247, DOI 10.1111/j.1365-2656.2006.01044.x; Dempster J. P., 1991, CONSERVATION INSECTS, P143; DEMPSTER JP, 1976, ECOL ENTOMOL, V1, P71, DOI 10.1111/j.1365-2311.1976.tb01207.x; Dennis R.L.H., 1993, BUTTERFLIES CLIMATE; Dennis RLH, 2006, BIOL CONSERV, V129, P291, DOI 10.1016/j.biocon.2005.10.043; DENNIS RLH, 1989, BIOL J LINN SOC, V38, P323, DOI 10.1111/j.1095-8312.1989.tb01581.x; Dudley R., 2000, BIOMECHANICS INSECT; ELIASSON CU, 2005, BUTTERFLIES HESPERID; Forister ML, 2003, GLOBAL CHANGE BIOL, V9, P1130, DOI 10.1046/j.1365-2486.2003.00643.x; Gibbs M, 2010, PHYSIOL ENTOMOL, V35, P29, DOI 10.1111/j.1365-3032.2009.00706.x; Gotthard K, 2007, AM NAT, V169, P768, DOI 10.1086/516651; HENRIKSEN HJ, 1982, BUTTERFLIES SCANDINA; Hill Jane K., 2005, P519, DOI 10.1079/9780851998121.0519; Hill JK, 1999, OECOLOGIA, V121, P165, DOI 10.1007/s004420050918; Hill JK, 1999, BIOL CONSERV, V87, P277, DOI 10.1016/S0006-3207(98)00091-3; Hill JK, 2001, ECOL LETT, V4, P313, DOI 10.1046/j.1461-0248.2001.00222.x; Hill JK, 1999, P ROY SOC B-BIOL SCI, V266, P1197, DOI 10.1098/rspb.1999.0763; Hughes CL, 2003, P ROY SOC B-BIOL SCI, V270, pS147, DOI 10.1098/rsbl.2003.0049; Karlsson B, 2005, P ROY SOC B-BIOL SCI, V272, P1257, DOI 10.1098/rspb.2005.3074; Karlsson B, 2005, J ANIM ECOL, V74, P99, DOI 10.1111/j.1365-2656.2004.00902.x; Koehl MAR, 1996, ANNU REV ECOL SYST, V27, P501, DOI 10.1146/annurev.ecolsys.27.1.501; Kooi RE, 1996, ENTOMOL EXP APPL, V80, P149, DOI 10.1111/j.1570-7458.1996.tb00906.x; McCarty JP, 2001, CONSERV BIOL, V15, P320, DOI 10.1046/j.1523-1739.2001.015002320.x; McLaughlin JF, 2002, P NATL ACAD SCI USA, V99, P6070, DOI 10.1073/pnas.052131199; Menzel A, 2006, GLOBAL ECOL BIOGEOGR, V15, P498, DOI 10.1111/j.1466-822x.2006.00247.x; Merckx T, 2006, FUNCT ECOL, V20, P436, DOI 10.1111/j.1365-2435.2006.01124.x; Merckx T, 2006, OIKOS, V113, P226, DOI 10.1111/j.2006.0030-1299.14501.x; Merckx T, 2003, P ROY SOC B-BIOL SCI, V270, P1815, DOI 10.1098/rspb.2003.2459; Morecroft MD, 2002, GLOBAL ECOL BIOGEOGR, V11, P7, DOI 10.1046/j.1466-822X.2002.00174.x; Norberg U, 2002, BIOL J LINN SOC, V77, P445, DOI 10.1046/j.1095-8312.2002.00115.x; NORDSTROM F, 1955, K FYSIOGR SALLSK HAN, V66, P1; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; NYLIN S, 1995, BIOL J LINN SOC, V55, P143, DOI 10.1006/bijl.1995.0033; *OPT, 1999, OPT 6 5 1 US GUID TE; Parmesan C, 2003, NATURE, V421, P37, DOI 10.1038/nature01286; Parmesan C, 1999, NATURE, V399, P579, DOI 10.1038/21181; Parmesan C, 2006, ANNU REV ECOL EVOL S, V37, P637, DOI 10.1146/annurev.ecolsys.37.091305.110100; POLLARD E, 1988, J APPL ECOL, V25, P819, DOI 10.2307/2403748; Roff Derek A., 1992; Roy DB, 2003, OECOLOGIA, V134, P439, DOI 10.1007/s00442-002-1121-3; Roy DB, 2000, GLOB CHANGE BIOL, V6, P407, DOI 10.1046/j.1365-2486.2000.00322.x; Roy DB, 2001, J ANIM ECOL, V70, P201, DOI 10.1046/j.1365-2656.2001.00480.x; Schweiger O, 2006, LANDSCAPE ECOL, V21, P989, DOI 10.1007/s10980-005-6057-7; SHREEVE TG, 1986, ECOL ENTOMOL, V11, P325, DOI 10.1111/j.1365-2311.1986.tb00309.x; Talloen W, 2004, EVOLUTION, V58, P360, DOI 10.1111/j.0014-3820.2004.tb01651.x; Thomas CD, 1998, J ANIM ECOL, V67, P485, DOI 10.1046/j.1365-2656.1998.00213.x; Van Dyck H, 2002, J EVOLUTION BIOL, V15, P216, DOI 10.1046/j.1420-9101.2002.00384.x; Van Dyck H, 2005, BASIC APPL ECOL, V6, P535, DOI 10.1016/j.baae.2005.03.005; Van Dyck H, 1999, TRENDS ECOL EVOL, V14, P172, DOI 10.1016/S0169-5347(99)01610-9; Van Dyck Hans, 2003, P353; VanDyck H, 1997, ECOL ENTOMOL, V22, P116, DOI 10.1046/j.1365-2311.1997.00041.x; VanDyck H, 1997, ANIM BEHAV, V53, P39, DOI 10.1006/anbe.1996.0276; Walther GR, 2005, TRENDS ECOL EVOL, V20, P648, DOI 10.1016/j.tree.2005.10.008; WICKMAN PO, 1983, ANIM BEHAV, V31, P1206, DOI 10.1016/S0003-3472(83)80027-X; WIKLUND C, 1983, ECOL ENTOMOL, V8, P233, DOI 10.1111/j.1365-2311.1983.tb00503.x 64 9 9 2 56 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0906-7590 1600-0587 ECOGRAPHY Ecography APR 2011 34 2 336 344 10.1111/j.1600-0587.2010.06573.x 9 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology 745EZ WOS:000289150000016 2018-11-12 J Walsh, MR; Reznick, DN Walsh, Matthew R.; Reznick, David N. EXPERIMENTALLY INDUCED LIFE-HISTORY EVOLUTION IN A KILLIFISH IN RESPONSE TO THE INTRODUCTION OF GUPPIES EVOLUTION English Article Indirect effects; life-history evolution; predator-prey; Rivulus FISH BRACHYRHAPHIS-RHABDOPHORA; NATURAL-SELECTION; POECILIA-RETICULATA; DROSOPHILA-MELANOGASTER; TRADE-OFF; CONTEMPORARY MICROEVOLUTION; PHENOTYPIC PLASTICITY; ARTIFICIAL SELECTION; ADAPTIVE EVOLUTION; BODY-WEIGHT Life-history theory predicts that increased predation on juvenile age/size-classes favors delayed maturation and decreased reproductive investment. Although this theory has received correlative support, experimental tests in nature are rare. In 1976 and 1981, guppies (Poecilia reticulata) were transplanted into localities that previously only contained a killifish, Rivulus hartii. This situation presents an opportunity to experimentally test this life-history prediction because guppies prey upon young Rivulus. We evaluated the response to selection in Rivulus by measuring phenotypic and genotypic divergence between introduction and upstream "control" localities that lack guppies. Contrary to expectations, Rivulus from the introduction sites evolved earlier maturation and increased reproductive investment within 25 years. Such evolutionary changes parallel previous investigations on natural communities of Rivulus, but do not comply with predictions of age/size-specific theory. Guppies also caused reduced densities and increased growth rates of Rivulus, which are hypothesized indirect effects of predation. Additional life-history theories show that changes in density and growth can interact with predator-induced mortality to alter the predicted trajectory of evolution. We discuss how these latter frameworks improve the fit between theory and evolution in Rivulus. [Walsh, Matthew R.; Reznick, David N.] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA; [Walsh, Matthew R.] Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT 06520 USA Walsh, MR (reprint author), Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA. matthew.walsh@yale.edu National Science Foundation [DEB0808039, DEB0416085, EF0623632] We thank D. Fraser, M. Schrader, C. Oufiero, J. Ogren, E. Kam, and R. Sandhu for field or laboratory assistance. D. Roff, L. Nunney, the Reznick lab, and three anonymous reviewers provided helpful comments. This work was supported by a National Science Foundation Doctoral Dissertation Improvement Grant DEB0808039, and National Science Foundation Grants DEB0416085 and EF0623632 to DNR. Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; Barrett RDH, 2008, SCIENCE, V322, P255, DOI 10.1126/science.1159978; Bassar RD, 2010, P NATL ACAD SCI USA, V107, P3616, DOI 10.1073/pnas.0908023107; BIERBAUM TJ, 1989, EVOLUTION, V43, P382, DOI 10.1111/j.1558-5646.1989.tb04234.x; Charlesworth B., 1980, EVOLUTION AGE STRUCT; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; Ernande B, 2004, P ROY SOC B-BIOL SCI, V271, P415, DOI 10.1098/rspb.2003.2519; FALCONER DS, 1952, J GENET, V51, P67, DOI 10.1007/BF02986705; Fraser DF, 1999, ECOLOGY, V80, P597, DOI 10.1890/0012-9658(1999)080[0597:HQIAHR]2.0.CO;2; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gardmark A, 2006, P ROY SOC B-BIOL SCI, V273, P2185, DOI 10.1098/rspb.2006.3562; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; GILLIAM JF, 1993, ECOLOGY, V74, P1856, DOI 10.2307/1939943; GINGERICH PD, 1983, SCIENCE, V222, P159, DOI 10.1126/science.222.4620.159; Gotelli NJ, 1998, PRIMER ECOLOGY; Hedges LV, 1999, ECOLOGY, V80, P1150, DOI 10.2307/177062; Hendry AP, 1999, EVOLUTION, V53, P1637, DOI 10.1111/j.1558-5646.1999.tb04550.x; HILLESHEIM E, 1992, EVOLUTION, V46, P745, DOI 10.1111/j.1558-5646.1992.tb02080.x; HILLESHEIM E, 1991, EVOLUTION, V45, P1909, DOI 10.1111/j.1558-5646.1991.tb02696.x; Houde A. E., 1997, SEX COLOR MATE CHOIC; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; Jennions MD, 2002, OECOLOGIA, V132, P44, DOI 10.1007/s00442-002-0942-4; Johnson JB, 2001, EVOLUTION, V55, P1486; Johnson JB, 2001, OECOLOGIA, V126, P142, DOI 10.1007/s004420000504; Kinnison MT, 2001, GENETICA, V112, P145, DOI 10.1023/A:1013375419520; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; KUSANO T, 1982, RES POPUL ECOL, V24, P329, DOI 10.1007/BF02515580; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; Losos JB, 2004, NATURE, V432, P505, DOI 10.1038/nature03039; Losos JB, 1997, NATURE, V387, P70, DOI 10.1038/387070a0; LYNCH M, 1980, Q REV BIOL, V55, P23, DOI 10.1086/411614; Magurran AE, 2005, EVOLUTIONARY ECOLOGY; Martin TE, 1996, AM NAT, V147, P1028, DOI 10.1086/285891; McPeek MA, 2004, AM NAT, V163, pE88, DOI 10.1086/382755; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MUELLER LD, 1991, SCIENCE, V253, P433, DOI 10.1126/science.1907401; MUELLER LD, 1981, P NATL ACAD SCI-BIOL, V78, P1303, DOI 10.1073/pnas.78.2.1303; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; Palkovacs EP, 2009, PHILOS T R SOC B, V364, P1617, DOI 10.1098/rstb.2009.0016; PRICE TD, 1984, EVOLUTION, V38, P483, DOI 10.1111/j.1558-5646.1984.tb00314.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 2001, GENETICA, V112, P183, DOI 10.1023/A:1013352109042; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; ROFF D, 1981, AM NAT, V118, P405, DOI 10.1086/283832; Roff Derek A., 1992; Scheiner Samuel M., 1993, P94; Schluter D, 2000, ECOLOGY ADAPTIVE RAD; Schmitz OJ, 2004, ECOL LETT, V7, P153, DOI 10.1111/j.1461-0248.2003.00560.x; Schroder A, 2009, P NATL ACAD SCI USA, V106, P2671, DOI 10.1073/pnas.0808279106; Sparkes TC, 1996, OECOLOGIA, V106, P85, DOI 10.1007/BF00334410; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Stearns SC., 1992, EVOLUTION LIFE HISTO; TAYLOR BE, 1992, AM NAT, V139, P248, DOI 10.1086/285326; Walsh MR, 2008, P NATL ACAD SCI USA, V105, P594, DOI 10.1073/pnas.0710051105; Walsh MR, 2011, FUNCT ECOL, V25, P227, DOI 10.1111/j.1365-2435.2010.01786.x; Walsh MR, 2010, EVOLUTION, V64, P1583, DOI 10.1111/j.1558-5646.2009.00922.x; Walsh MR, 2009, EVOLUTION, V63, P3201, DOI 10.1111/j.1558-5646.2009.00785.x; WELLBORN GA, 1994, ECOLOGY, V75, P2104, DOI 10.2307/1941614; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; WOOTTON JT, 1994, ANNU REV ECOL SYST, V25, P443, DOI 10.1146/annurev.es.25.110194.002303; Young KV, 2004, SCIENCE, V304, P65, DOI 10.1126/science.1094790 64 24 25 0 44 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution APR 2011 65 4 1021 1036 10.1111/j.1558-5646.2010.01188.x 16 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 745IE WOS:000289158300009 21062280 Bronze 2018-11-12 J Jarvi-Laturi, M; Lindstrom, K; Kvarnemo, C; Svensson, O Jarvi-Laturi, M.; Lindstrom, K.; Kvarnemo, C.; Svensson, O. Sand goby males trade off between defence against egg predators and sneak intrusions JOURNAL OF ZOOLOGY English Article alternative reproductive tactics; egg predation; Gobiidae; Hinia reticulata; Nassarius nitidus; nest defence; reproductive success; sneaking GENETIC MATING PATTERNS; POMATOSCHISTUS-MINUTUS; BEHAVIORAL-RESPONSES; MALE COMPETITION; PARENTAL CARE; 2 POPULATIONS; NEST DEFENSE; COMMON GOBY; MALE SIZE; RISK According to life-history theory, a care-taking parent should balance investment in current and future reproduction in such a way that it maximizes lifetime reproductive success. In the sand goby Pomatoschistus minutus, a small marine fish with paternal care, nest-guarding males may lose current reproductive success to both parasitically fertilizing males and egg predators. Here, we observed sand gobies at a marine and a brackish site, two geographically distant and ecologically different habitats. In a field experiment, we found that sand gobies at the marine site suffered from severe egg predation by netted dogwhelks Nassarius nitidus, which are lacking at the brackish site. Because egg laying takes hours and several females often lay eggs sequentially in one nest, the risk of parasitic spawnings and egg predation overlaps in time during breeding activities. Hypothesizing that egg predators might influence the success of parasitic spawnings, we then simulated these natural conditions in a laboratory experiment with the presence or absence of egg predators, combined with the presence of sneaker males. As expected, in the egg predator treatment, egg-guarding males had to compromise between defence behaviours and thus had less time to devote to defence against sneaker males. Sneaker males took advantage of the situation and approached the nests more actively than in the predator-free treatment. However, the increase in approaches did not result in more successful parasitic fertilizations by sneaker males, as determined using microsatellite DNA. Nevertheless, in nature the adjustment of time budgets by the egg-guarding male are likely to have serious fitness consequences, both if the male fails to defend his paternity and if he fails to defend his offspring. [Kvarnemo, C.; Svensson, O.] Univ Gothenburg, Dept Zool, SE-40530 Gothenburg, Sweden; [Jarvi-Laturi, M.] Univ Helsinki, Div Ecol & Evolutionary Biol, Dept Biosci, Helsinki, Finland; [Lindstrom, K.] Abo Akad Univ, Dept Biosci, Turku, Finland Svensson, O (reprint author), Univ Gothenburg, Dept Zool, Box 463, SE-40530 Gothenburg, Sweden. ola.svensson@zool.gu.se Kvarnemo, Charlotta/D-3529-2012; Svensson, Ola/F-5232-2013; Lindstrom, Kai/B-5479-2008 Svensson, Ola/0000-0003-3752-3131; Lindstrom, Kai/0000-0002-8356-5538 Onni Talas foundation; Swedish research council; Finnish Academy; Stockholm Marine Research Centre We thank Daniel Simonsson for help with the field experiment and Annika Dahlgren for assistance with the laboratory experiment. Funding was provided by Onni Talas foundation (M.J.L.), the Swedish research council (C.K.), the Finnish Academy (K.L.), and the Stockholm Marine Research Centre (O.S.). This research was carried out with an ethical permit from the Swedish National Board for Laboratory Animals (Dnr 133-2002) and the University of Helsinki (HY 67-04). Avise JC, 2002, ANNU REV GENET, V36, P19, DOI 10.1146/annurev.genet.36.030602.090831; Brownstein MJ, 1996, BIOTECHNIQUES, V20, P1004; Candolin U, 2001, OIKOS, V95, P225, DOI 10.1034/j.1600-0706.2001.950204.x; Candolin U, 1997, BEHAV ECOL SOCIOBIOL, V41, P81, DOI 10.1007/s002650050367; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; CROWLEY PH, 1991, AM NAT, V137, P567, DOI 10.1086/285184; Dill LM, 1999, BEHAV ECOL, V10, P452, DOI 10.1093/beheco/10.4.452; ENDLER JA, 1987, ANIM BEHAV, V35, P1376, DOI 10.1016/S0003-3472(87)80010-6; Figueira WF, 2007, ANIM BEHAV, V74, P329, DOI 10.1016/i.anbehav.2006.12.010; Forsgren E, 1996, EVOLUTION, V50, P646, DOI 10.1111/j.1558-5646.1996.tb03875.x; Forsgren E., 1999, BEHAV CONSERVATION L, P249; GLOOR GB, 1993, GENETICS, V135, P81; Jones AG, 2001, MOL ECOL, V10, P461, DOI 10.1046/j.1365-294x.2001.01193.x; Jones JC, 1999, BEHAVIOUR, V136, P819, DOI 10.1163/156853999501586; Komdeur J, 2001, P ROY SOC B-BIOL SCI, V268, P2103, DOI 10.1098/rspb.2001.1750; KVARNEMO C, 2010, J FISH BIOL, V7, P1609; Larmuseau MHD, 2007, MOL ECOL NOTES, V7, P147, DOI 10.1111/j.1471-8286.2006.01559.x; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; LINDSTROM K, 1988, OIKOS, V53, P67, DOI 10.2307/3565664; Lindstrom K, 2005, BEHAV ECOL, V16, P70, DOI 10.1093/beheco/arh132; LINDSTROM K, 1993, ETHOL ECOL EVOL, V5, P97, DOI 10.1080/08927014.1993.9523117; LINDSTROM K, 1992, BEHAV ECOL SOCIOBIOL, V30, P53; Lissaker M, 2006, BEHAV ECOL SOCIOBIOL, V60, P864, DOI 10.1007/s00265-006-0230-0; MAGNHAGEN C, 1991, MAR ECOL PROG SER, V70, P11, DOI 10.3354/meps070011; MAGNHAGEN C, 1991, TRENDS ECOL EVOL, V6, P183, DOI 10.1016/0169-5347(91)90210-O; MAGNHAGEN C, 1995, ANIM BEHAV, V50, P1123, DOI 10.1016/0003-3472(95)80111-1; Magnhagen Carin, 2008, P499; Mandelik Y, 2003, EVOL ECOL RES, V5, P501; Morrell LJ, 2004, BEHAV ECOL SOCIOBIOL, V56, P539, DOI 10.1007/s00265-004-0821-6; Olsson O, 2002, ANIM BEHAV, V63, P981, DOI 10.1006/anbe.2001.1985; Singer A, 2006, J EVOLUTION BIOL, V19, P1641, DOI 10.1111/j.1420-9101.2006.01114.x; Svensson O, 2003, J EVOLUTION BIOL, V16, P896, DOI 10.1046/j.1420-9101.2003.00591.x; Svensson O, 2007, BEHAV ECOL, V18, P410, DOI 10.1093/beheco/arl098; TABORSKY M, 1994, ADV STUD BEHAV, V23, P1, DOI 10.1016/S0065-3454(08)60351-4; TRAVERS SE, 1991, ECOLOGY, V72, P2123, DOI 10.2307/1941564 35 5 5 2 23 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0952-8369 J ZOOL J. Zool. APR 2011 283 4 269 275 10.1111/j.1469-7998.2011.00788.x 7 Zoology Zoology 732VF WOS:000288217100006 2018-11-12 J Lienard, P Lienard, Pierre Life stages and risk-avoidance: Status- and context-sensitivity in precaution systems NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS English Review Precaution psychology; Life history theory; Female risk-avoidance and pregnancy; Coalitional psychology OBSESSIVE-COMPULSIVE DISORDER; HISTORY EVOLUTION; DISGUST SENSITIVITY; GENDER-DIFFERENCES; SEX-DIFFERENCES; REPRODUCTIVE STRATEGIES; INTRASEXUAL AGGRESSION; RITUALIZED BEHAVIOR; CONTAMINATION FEAR; NATURAL-SELECTION Human typical life history involves specific tradeoffs, resulting in the selection of specific cognitive adaptations, among which a suite of age- and gender-specific precaution systems sensitive to variations in the physical and social environment. Precaution systems take into account the individual's status and life-stage, information about specific threats, as well as the fact that the organism can or cannot address those threats unassisted. Systematic variation in individual decision-making and behavior in risky situations provide insights into the operation of those precaution systems. The literature survey is completed by data gathered among the pastoral Turkana of Kenya showing how variations in precautions and risk avoidance correlate with age, sex, and social conditions. (C) 2010 Elsevier Ltd. All rights reserved. Univ Nevada, Dept Anthropol, Las Vegas, NV 89154 USA Lienard, P (reprint author), Univ Nevada, Dept Anthropol, 4505 S Maryland Pkwy,Box 455003, Las Vegas, NV 89154 USA. pierre.lienard@unlv.edu A. P. Association, 2000, DIAGN STAT MAN MENT; Abramowitz JS, 2003, J ANXIETY DISORD, V17, P461, DOI 10.1016/S0887-6185(02)00206-2; AINSWORTH MDS, 1991, AM PSYCHOL, V46, P333, DOI 10.1037/0003-066X.46.4.333; Altemus M., 2001, MANAGEMENT PSYCHIAT, P149; Archer J, 2009, BEHAV BRAIN SCI, V32, P249, DOI 10.1017/S0140525X09990951; BELL MJ, 2007, CHILDREN DISABILITIE, P71; Benenson JF, 2008, INT J PRIMATOL, V29, P1019, DOI 10.1007/s10764-008-9283-4; Benenson JF, 2009, BEHAV BRAIN SCI, V32, P268, DOI 10.1017/S0140525X0999046X; Benenson JF, 2009, PSYCHOL SCI, V20, P184, DOI 10.1111/j.1467-9280.2009.02269.x; Bengtson V. L, 2009, HDB THEORIES AGING; Bjorklund F, 2004, SCAND J PSYCHOL, V45, P279, DOI 10.1111/j.1467-9450.2004.00406.x; Blasi C. Hernandez, 2008, ANUARIO PSICOLOGIA, V39, P177; BORGERHOFF M, 2000, EVOL HUM BEHAV, V21, P391, DOI DOI 10.1016/S1090-5138(00)00054-4); Boyer P, 2006, BEHAV BRAIN SCI, V29, P595, DOI 10.1017/S0140525X06009332; Boyer P, 2006, BEHAV BRAIN SCI, V29, P635, DOI 10.1017/S0140525X06009575; Boyer P, 2011, NEUROSCI BIOBEHAV R, V35, P1034, DOI 10.1016/j.neubiorev.2010.08.010; BROOKE R, 1999, TURKANA HERDERS DRY, P88; Brown B. Bradford, 1990, THRESHOLD DEV ADOLES, P171, DOI DOI 10.1037/0022-3514.52.1.47; Byrnes JP, 1999, PSYCHOL BULL, V125, P367, DOI 10.1037//0033-2909.125.3.367; Campbell A, 1999, BEHAV BRAIN SCI, V22, P203; Campbell A, 2004, J SEX RES, V41, P16, DOI 10.1080/00224490409552210; Campbell A., 2005, HDB EVOLUTIONARY PSY, P628; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; Charnov Eric L., 1993, P1; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Conway CA, 2007, HORM BEHAV, V51, P202, DOI 10.1016/j.yhbeh.2006.10.002; Coyne SM, 2006, AGGRESSIVE BEHAV, V32, P294, DOI 10.1002/ab.20126; Crystal SR, 1999, PHYSIOL BEHAV, V67, P181, DOI 10.1016/S0031-9384(99)00055-4; Curtis VA, 2007, J EPIDEMIOL COMMUN H, V61, P660, DOI 10.1136/jech.2007.062308; Daly M, 1990, Hum Nat, V1, P81, DOI 10.1007/BF02692147; Daly M., 1988, HOMICIDE; DALY M, 2001, EVOLUTIONARY PSYCHOL, P1; Deacon B, 2007, BEHAV RES THER, V45, P2110, DOI 10.1016/j.brat.2007.03.008; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Diamond J. M., 1992, 3 CHIMPANZEE EVOLUTI; Dobson FS, 2008, CURR SCI INDIA, V95, P862; Ermer E, 2008, EVOL HUM BEHAV, V29, P106, DOI 10.1016/j.evolhumbehav.2007.11.002; Fessler DMT, 2005, EVOL HUM BEHAV, V26, P344, DOI 10.1016/j.evolhumbehav.2004.12.001; Fessler DMT, 2004, ORGAN BEHAV HUM DEC, V95, P107, DOI 10.1016/j.obhdp.2004.06.006; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Fisher R. A., 1999, GENETIC THEORY NATUR; Flaxman SM, 2000, Q REV BIOL, V75, P113, DOI 10.1086/393377; Frank R. H, 1985, CHOOSING RIGHT POND; Gat Azar, 2008, WAR HUMAN CIVILIZATI; Geary David C., 2010, MALE FEMALE EVOLUTIO, P213; Geary DC, 2003, DEV REV, V23, P444, DOI 10.1016/j.dr.2003.08.001; Gritsiuk R I, 1969, Pediatriia, V48, P8; GULLIVER P, 1951, COMMUNICATIONS SCH A, V26; GULLIVER PH, 1958, AM ANTHROPOL, V60, P900, DOI 10.1525/aa.1958.60.5.02a00100; HAIDT J, 1994, PERS INDIV DIFFER, V16, P701, DOI 10.1016/0191-8869(94)90212-7; Harris CR, 2006, JUDGM DECIS MAK, V1, P48; Hawkes K, 1997, CURR ANTHROPOL, V38, P551, DOI 10.1086/204646; HAWKES K, 1998, P NATL ACAD SCI US, V95; Hawkes K, 2006, SCH AM RES, P95; Hawkes Kristen, 2003, P204; Hawley PH, 2008, INT J BEHAV DEV, V32, P76, DOI 10.1177/0165025407084054; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; Huizink AC, 2004, EARLY HUM DEV, V79, P81, DOI 10.1016/j.earlhumdev.2004.04.014; Jason Grotuss, 2007, [心理学报, Acta Psychologica Sinica], V39, P439; Jeschke JM, 2009, EVOL ECOL, V23, P867, DOI 10.1007/s10682-008-9276-y; Jones B, 2006, PSYCHOL SCI, V17, P283, DOI 10.1111/j.1467-9280.2006.01699.x; Jones JH, 2009, EVOL HUM BEHAV, V30, P305, DOI 10.1016/j.evolhumbehav.2009.01.005; Jones NB, 2002, HUM NATURE-INT BIOS, V13, P199, DOI 10.1007/s12110-002-1008-3; JONES NB, 2002, JUVENILE PRIMATES LI, P309; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; Kaplan H., 2009, HDB THEORIES AGING, P39; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; KLEIN HR, 1950, ANXIETY PREGNANCY CH; Koji K., 1990, AFRICAN STUDY MONO S, V12, P51; Kraus C, 2005, J ANIM ECOL, V74, P171, DOI 10.1111/j.1365-2656.2004.00910.x; Labad J, 2005, J CLIN PSYCHIAT, V66, P428, DOI 10.4088/JCP.v66n0404; LACK D, 1948, EVOLUTION, V2, P95, DOI 10.2307/2405371; LAMPHEAR J, 1988, J AFR HIST, V29, P27; Lamphear J., 1989, ATTRACTION OPPOSITES, P235; Lancaster JB, 2000, PERSP ETHOL, V13, P47; Lancaster JB, 1983, HUMANS ADAPT BIOCULT, P33; Leckman JF, 2004, J NEURAL TRANSM, V111, P753, DOI 10.1007/s00702-003-0067-x; Lefebvre L, 2006, BRAIN BEHAV EVOLUT, V68, P218, DOI 10.1159/000094359; Locke JL, 2006, BEHAV BRAIN SCI, V29, P259, DOI 10.1017/S0140525X0600906X; MacArthur R. H., 2001, THEORY ISLAND BIOGEO; Maina G, 1999, PSYCHIAT RES, V89, P49, DOI 10.1016/S0165-1781(99)00090-6; McAndrew FT, 2009, AGGRESS VIOLENT BEH, V14, P330, DOI 10.1016/j.avb.2009.04.006; MESQUIDA CG, 2003, RESOURCES MATING MAL, P63; Messinger DS, 2008, HUMAN DEVELOPMENT IN THE TWENTY-FIRST CENTURY: VISIONARY IDEAS FROM SYSTEMS SCIENTISTS, P225; Moore SL, 2002, SCIENCE, V297, P2015, DOI 10.1126/science.1074196; Muehlenbein MP, 2005, AM J HUM BIOL, V17, P527, DOI 10.1002/ajhb.20419; Muller H. K., 1989, CHANGING GENERATIONS; MULLER HK, 1991, B SCH ORIENTAL AFR 3, P554; NEZIROGLU F, 1992, AM J PSYCHIAT, V149, P947; ODLINGSMEE FJ, 2007, SOCIAL BRAIN MATTERS, P189; Olatunji BO, 2004, BEHAV RES THER, V42, P93, DOI 10.1016/S0005-7967(03)00102-5; Osinski J, 2009, PERS INDIV DIFFER, V47, P374, DOI 10.1016/j.paid.2009.04.011; PAINE RL, 2006, EVOLUTION HUMAN LIFE; PINKER S, 2009, MEN WOMEN REAL GENDE; Potts M., 2008, SEX WAR BIOL EXPLAIN; PROFET M, 1992, ADAPTED MIND EVOLUTI, P327; RACHMAN S, 1978, BEHAV RES THER, V16, P233, DOI 10.1016/0005-7967(78)90022-0; Randolph JF, 2008, J SEX MED, V5, P2274, DOI 10.1111/j.1743-6109.2008.00919.x; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.2307/3071970; REZNICK D, 1983, ECOLOGY, V64, P862, DOI 10.2307/1937209; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Robinson WD, 2010, AUK, V127, P253, DOI 10.1525/auk.2010.127.2.253; RODSETH L, 1991, CURR ANTHROPOL, V32, P221, DOI 10.1086/203952; Roff D. A., 2002, LIFE HIST EVOLUTION; Rohrmann S, 2008, J PSYCHOPHYSIOL, V22, P65, DOI 10.1027/0269-8803.22.2.65; Ross D, 2007, LANG SCI, V29, P710, DOI 10.1016/j.langsci.2006.12.008; Rozin P., 2009, DISGUST ITS DISORDER, P9, DOI [DOI 10.1037/11856-001, 10.1037/11856-001]; SINGH U, 1991, PSYCHOL STUD, V36, P108; Sjogren B, 1997, J PSYCHOSOM OBST GYN, V18, P266, DOI 10.3109/01674829709080698; STANDLEY K, 1979, AM J OBSTET GYNECOL, V135, P22; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stearns S. C., 2008, FDN EVOLUTIONARY PSY, P47; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1984, AM NAT, V123, P56, DOI 10.1086/284186; Sterelny Kim, 2007, SOCIAL INTELLIGENCE, P375; Stevenson RJ, 2009, EVOL HUM BEHAV, V30, P363, DOI 10.1016/j.evolhumbehav.2009.02.005; STRASSMANN B, 1962, P BIOL SCI, V269, P553; Szechtman H, 2004, PSYCHOL REV, V111, P111, DOI 10.1037/0033-295X.111.1.111; Thompson ME, 2008, INT J PRIMATOL, V29, P815, DOI 10.1007/s10764-008-9273-6; TIGER L, 1970, MEN GROUPS; Trivers R. L., 1972, SEXUAL SELECTION DES, P137; TRIVERS RL, 1974, AM ZOOL, V14, P249; Uguz F, 2007, COMPR PSYCHIAT, V48, P441, DOI 10.1016/j.comppsych.2007.05.001; van Schaik CP, 2006, SCH AM RES, P127; WIENPAHL J, 1984, LIVESTOCK PRODUCTION; WILSON M, 1985, ETHOL SOCIOBIOL, V6, P59, DOI 10.1016/0162-3095(85)90041-X; Woody EZ, 2011, NEUROSCI BIOBEHAV R, V35, P1019, DOI 10.1016/j.neubiorev.2010.08.003; Wrangham R., 1996, DEMONIC MALES APES O; Wrangham R. W., 2006, CONFLICT, P43; Wrangham RW, 2004, ANN NY ACAD SCI, V1036, P233, DOI 10.1196/annals.1330.015; ZAHAVI A, 1997, HANDICAP PRINCIPAL M; Zuk M, 1996, INT J PARASITOL, V26, P1009, DOI 10.1016/S0020-7519(96)80001-4 136 16 17 0 15 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0149-7634 NEUROSCI BIOBEHAV R Neurosci. Biobehav. Rev. MAR 2011 35 4 SI 1067 1074 10.1016/j.neubiorev.2010.09.007 8 Behavioral Sciences; Neurosciences Behavioral Sciences; Neurosciences & Neurology 742EK WOS:000288923800009 20883720 2018-11-12 J Lu, X Lu, Xin Reproductive Ecology of Three Tibetan Waterbird Species, with Special Reference to Life-History Alterations along Elevational Gradients ZOOLOGICAL STUDIES English Article Anas platyrhynchos; Fulica atra; Gallinula chlorpus; High elevation; Life history CONSPECIFIC BROOD PARASITISM; IMPOUNDED CATTAIL MARSH; COOT FULICA-ATRA; CLUTCH-SIZE; BREEDING ECOLOGY; NEST SUCCESS; AVIAN EGG; GEOGRAPHIC PATTERNS; COMMON MOORHEN; INCUBATION Xin Lu (2011) Reproductive ecology of three Tibetan waterbird species, with special reference to life-history alterations along elevational gradients. Zoological Studies 50(2): 192-202. Life-history theory predicts that birds nesting at higher elevations will have lower reproductive output due to ecological constraints. Higher-elevation birds should allocate more energy into individual offspring through producing fewer and larger eggs to allow their offspring to better survive the harsh environments. To test the prediction, I collected reproductive data on 3 waterbirds, the Mallard Anas platyrhynchos, Common Moorhen Gallinula chlorpus and Eurasian Coot Fulica atra, at Lhalu Wetland (3650 m in elevation), the largest marshland with macrophytes on the Tibetan Plateau. These birds became regular nesters after prohibition of yak grazing and reed harvesting in the wetland since 2003. Mallards laid eggs from mid-Apr. to mid-June, moorhens from early May to mid-June, and coots from mid-May to late June. Clutch size and egg size of these high-elevation waterbirds were smaller or intermediate compared to those of their lowland counterparts, partially supporting the prediction. The pattern might be associated with a balance between environmental harshness and allocation of body reserves in terms of the number of clutches produced annually, and the number and size of eggs within a clutch across elevational gradients. The high-elevation mallards and moorhens primarily used reeds Phragmites australis as nesting habitat (with 92% and 68% of nests located there, respectively), whereas coots preferred rushes Juncus effusus (77%). Predation by mammals and flooding contributed to about 1/2 of the failed mallard and moorhen nests, whereas predation was responsible for the majority of coot nest loss. My data also suggest the importance of wetland management based on species-specific habitat requirements for conserving this breeding waterbird assemblage. http://zoolstud.sinica.edu.tw/Journals/50.2/192.pdf Wuhan Univ, Dept Zool, Coll Life Sci, Wuhan 430072, Peoples R China Lu, X (reprint author), Wuhan Univ, Dept Zool, Coll Life Sci, Wuhan 430072, Peoples R China. luxinwh@gmail.com stud, zool/G-4030-2011 National Key Technology Research and Development Program [2007BAC06B03] I thank X.S. Wu, G.H. Gong, X.H. Zeng, D.H. Ke, X.Y. Ma and R. Ci for assistance during field work, L.E. Johannessen for providing critical references, and J. Comely for comments on a draft of the manuscript. This study was conducted in the Field Research Station for Tibetan Wildlife, which is jointly administered by Wuhan Univ. (Wuhan, China) and Tibet Univ. (Lhasa, China). The National Key Technology Research and Development Program (Grant 2007BAC06B03) provided support for this study. Ackerman JT, 2003, BEHAV ECOL SOCIOBIOL, V54, P264, DOI 10.1007/s00265-003-0628-x; Alisauskas Ray T., 1992, P30; AR A, 1980, AM ZOOL, V20, P373; ARNOLD TW, 1991, CONDOR, V93, P1032, DOI 10.2307/3247744; ARNOLD TW, 1993, J WILDLIFE MANAGE, V57, P578, DOI 10.2307/3809285; Badyaev AV, 2001, ECOLOGY, V82, P2948, DOI 10.2307/2679973; Badyaev AV, 1997, OECOLOGIA, V111, P365, DOI 10.1007/s004420050247; BANNOR BK, 2010, BIRDS N AM ONLINE; Bellrose F. C., 1980, DUCKS GEESE SWANS N; BRINKHOF MWG, 1993, J ANIM ECOL, V62, P577, DOI 10.2307/5206; Brisbin I. Lehr Jr, 2002, Birds of North America, V697, P1; BRUSSARD PF, 1984, ANNU REV ECOL SYST, V15, P25, DOI 10.1146/annurev.es.15.110184.000325; CAREY C, 2002, AVIAN INCUBATION BEH, P238; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; Christians JK, 2002, BIOL REV, V77, P1, DOI 10.1017/S1464793101005784; COWARDIN LM, 1985, WILDLIFE MONOGR, V92, P1; Cramp S, 1977, BIRDS W PALEARCTIC; CRAMP S, 1980, HDB BIRDS EUROPE MID, V2; Dillon ME, 2006, INTEGR COMP BIOL, V46, P49, DOI 10.1093/icb/icj007; DUEBBERT HF, 1983, J WILDLIFE MANAGE, V47, P309; DUNN EH, 1987, J FIELD ORNITHOL, V58, P355; DUNZHU GS, 2008, TIBET SCI TECH, V6, P26; ELDRIDGE JL, 1988, AUK, V105, P102; Hardie DC, 2010, ENVIRON REV, V18, P1, DOI 10.1139/A09-014; HELM RN, 1987, J FIELD ORNITHOL, V58, P55; HILDEN O, 1964, ANN ZOOL FENN, V1, P153; HILL DA, 1984, ORNIS SCAND, V15, P115, DOI 10.2307/3675948; HOCHACHKA W, 1990, ECOLOGY, V71, P1279, DOI 10.2307/1938265; HOYT DF, 1979, AUK, V96, P73; HUXLEY CR, 1976, BIRD STUDY, V23, P1, DOI 10.1080/00063657609476478; Jamieson IG, 2000, AUK, V117, P250, DOI 10.1642/0004-8038(2000)117[0250:HROCBP]2.0.CO;2; JIANG XZ, 1983, AQUATIC INVERTEBRATE; Johnson LS, 2006, CONDOR, V108, P591, DOI 10.1650/0010-5422(2006)108[591:CIESAC]2.0.CO;2; KLETT AT, 1988, J WILDLIFE MANAGE, V52, P431, DOI 10.2307/3801586; KRAPU G L, 1979, Wildlife Society Bulletin, V7, P104; KRUSE AD, 1996, J WILDLIFE MANAGE, V60, P238; LACK D, 1967, WILDFOWL TRUST ANNU, V18, P125; Lack D., 1968, ECOLOGICAL ADAPTATIO; Lack D., 1954, NATURAL REGULATION A; Lang Aaron, 2007, Forktail, V23, P1; Laubergs A., 2004, ACTA U LATVIEN BIOL, V676, P107; Li Chun, 2008, Xibei Zhiwu Xuebao, V28, P2514; Liu Huanjin, 1985, Zoological Research, V6, P174; Loffler H., 1969, Verhandlungen der Internationalen Vereinigung fuer Theoretische und Angewandte Limnologie, V17, P373; LOKEMOEN JT, 1990, WILDLIFE MONOGR, P1; Lu X, 2005, J ORNITHOL, V146, P72, DOI 10.1007/s10336-004-0058-1; Lu X, 2009, J ARID ENVIRON, V73, P1103, DOI 10.1016/j.jaridenv.2009.06.011; Lu X, 2008, J ORNITHOL, V149, P41, DOI 10.1007/s10336-007-0210-9; Lu X, 2010, WILSON J ORNITHOL, V122, P395, DOI 10.1676/09-104.1; Lu X, 2010, J FIELD ORNITHOL, V81, P167, DOI 10.1111/j.1557-9263.2010.00274.x; LYON BE, 1993, ANIM BEHAV, V46, P911, DOI 10.1006/anbe.1993.1273; MARTIN TE, 1993, BIOSCIENCE, V43, P523, DOI 10.2307/1311947; MAYFIELD HF, 1975, WILSON BULL, V87, P456; MCRAE SB, 1995, ANIM BEHAV, V49, P1073, DOI 10.1006/anbe.1995.0136; NANCY D, 2010, MALLARD ANAS PLATYRH; Owen M., 1980, WILD GEESE WORLD THE; PALMER RS, 1976, HDB N AM BIRDS, V2; POST W, 1991, J FIELD ORNITHOL, V62, P195; Post W, 2000, J FIELD ORNITHOL, V71, P437, DOI 10.1648/0273-8570-71.3.437; RAHN H, 1974, CONDOR, V76, P147, DOI 10.2307/1366724; Rubolini D, 2008, AUK, V125, P374, DOI 10.1525/auk.2008.07018; Samraoui F, 2007, WATERBIRDS, V30, P133, DOI 10.1675/1524-4695(2007)030[0133:TREOTC]2.0.CO;2; Scott DA, 1989, DIRECTORY ASIAN WETL; Shah GM, 2009, INDIAN BIRDS, V4, P106; Stanevicius Vitas, 2005, Acta Zoologica Lituanica, V15, P324; Stevenson IR, 2000, NATURE, V406, P366, DOI 10.1038/35019151; Su Hualong, 1997, Chinese Journal of Zoology, V32, P26; Wang BH, 1992, XIZANG TIBET INSECT; Wang D., 2003, THESIS WUHAN U WUHAN; Wang J.-s., 1990, Chinese Journal of Zoology, V25, P24; Xing LL, 1989, J INNERMONGOLIA U, V20, P521; Yom-Tov Y, 2001, IBIS, V143, P133, DOI 10.1111/j.1474-919X.2001.tb04177.x; Zeng XH, 2009, ARDEOLA, V56, P173; ZHAO KY, 1988, VEGETATION TIBET, P225; Zheng Z. X., 1983, AVIFAUNA TIBET; [周才平 Zhou Caiping], 2004, [地理学报, Acta Geographica Sinica], V59, P74; Zicus MC, 2004, CONDOR, V106, P506, DOI 10.1650/7453; 2010, CHINA WETLAND 78 8 11 0 15 ACAD SINICA INST ZOOLOGY TAIPEI EDITORIAL OFFICE, TAIPEI 115, TAIWAN 1021-5506 ZOOL STUD Zool. Stud. MAR 2011 50 2 192 202 11 Zoology Zoology 741BB WOS:000288837000005 2018-11-12 J Molloy, PP; Paddack, MJ; Reynolds, JD; Gage, MJG; Cote, IM Molloy, Philip P.; Paddack, Michelle J.; Reynolds, John D.; Gage, Matthew J. G.; Cote, Isabelle M. Relative size-at-sex-change in parrotfishes across the Caribbean: is there variance in a supposed life-history invariant? EVOLUTIONARY ECOLOGY English Article Hermaphroditism; Invariant life-history analysis; Protandry; Protogyny; Sex allocation theory; Sex change CHRYSOBLEPHUS-PUNICEUS PISCES; PROTOGYNOUS HERMAPHRODITE; SPARISOMA-VIRIDE; SOCIAL-CONTROL; BODY-SIZE; LOGISTIC DISTRIBUTION; CORAL-REEFS; GROWTH; FISH; ANIMALS Invariant life-history theory has been used to identify parallels in life histories across diverse taxa. One important invariant life-history model predicts that, given simple assumptions and conditions, size-at-sex-change relative to maximum attainable body size (relative size-at-sex-change, RSSC) will be invariant across populations and species in sequential hermaphrodites. Even if there are broad species-wide limits to RSSC, populations could fine-tune RSSC to local conditions and, consequently, exhibit subtle but important differences in timing of sex change. Previous analyses of the invariant sex-change model have not explicitly considered the potential for meaningful differences in RSSC within the confines of a broader 'invariance'. Furthermore, these tests differ in their geographical and taxonomic scope, which could account for their conflicting conclusions. We test the model using several populations of three female-first sex-changing Caribbean parrotfish species. We first test for species-wide invariance using traditional log-log regressions and randomisation analyses of population-specific point estimates of RSSC. We then consider error around these point estimates, which is rarely incorporated into invariant analyses, to test for differences among populations in RSSC. Log-log regressions could not unequivocally diagnose invariance in RSSC across populations; randomisation tests identified an invariant RSSC in redband parrotfish only. Analyses that incorporated within-population variability in RSSC revealed differences among populations in timing of sex change, which were independent of geography for all species. While RSSC may be evolutionarily constrained (as in redband parrotfish), within these bounds the timing of sex change may vary among populations. This variability is overlooked by traditional invariant analyses and not predicted by the existing invariant model. [Molloy, Philip P.] Univ British Columbia, Project Seahorse, Vancouver, BC V6T 1ZA, Canada; [Molloy, Philip P.; Paddack, Michelle J.; Reynolds, John D.; Cote, Isabelle M.] Simon Fraser Univ, Dept Biol Sci, Burnaby, BC V5A 1S6, Canada; [Molloy, Philip P.; Paddack, Michelle J.; Gage, Matthew J. G.] Univ E Anglia, Sch Biol Sci, Norwich NR4 7TJ, Norfolk, England; [Paddack, Michelle J.] Santa Barbara City Coll, Santa Barbara, CA 93109 USA Molloy, PP (reprint author), Univ British Columbia, Project Seahorse, 2202 Main Mall, Vancouver, BC V6T 1ZA, Canada. philip.p.molloy@gmail.com; mjpaddack@sbcc.edu; reynolds@sfu.ca; m.gage@uea.ac.uk; imcote@sfu.ca Reynolds, John/L-6345-2015; Gage, Matthew/E-5539-2011 Reynolds, John/0000-0002-0459-0074; John and Pamela Salter Charitable Trust; BBSRC [02/A1/S/08113]; Leverhulme studentship [SAS/30146]; Government of Canada; Conservation International; National Center for Caribbean Coral Reef Research (NCORE) through EPA [R828020]; NSERC of Canada; Natural Environment Research Council [NE/C004442/1] Thanks to Fab* and Earth2Ocean labs at Simon Fraser University, Jenn Sunday, Maria Jose Juan Jorda, Arne Mooers, Wendy Palen, Nick Dulvy, Stuart West, Nick Colegrave, Wolf Blanckenhorn, Martin Reichard and two anonymous reviewers for helpful feedback on earlier versions of this manuscript, Alex Chubaty for help with R coding, and Marianne Fish for help creating Fig. 2. Particular thanks to Pete Buston for his suggestions regarding the framework of this manuscript, Table 1 and other useful comments. This is a contribution from the Earth2Ocean Group and Project Seahorse. P.P.M. was supported by the John and Pamela Salter Charitable Trust, a BBSRC studentship 02/A1/S/08113, a Leverhulme studentship # SAS/30146, a Government of Canada post-doctoral research fellowship and Conservation International's Marine Management Area Science program. M.J.P. was supported by the National Center for Caribbean Coral Reef Research (NCORE) through EPA grant #R828020. I.M.C. and J.D.R. were supported by NSERC of Canada Discovery Grants. Allsop DJ, 2003, J EVOLUTION BIOL, V16, P921, DOI 10.1046/j.1420-9101.2003.00590.x; Allsop DJ, 2003, NATURE, V425, P783, DOI 10.1038/425783a; Alonzo SH, 2004, FISH B-NOAA, V102, P1; ANTLE C, 1970, BIOMETRIKA, V57, P397, DOI 10.1093/biomet/57.2.397; BANNEROT S, 1987, OCEAN RES M, P561; Buston PM, 2004, NATURE, V428, DOI 10.1038/nature02512; Charnov EL, 2000, EVOL ECOL RES, V2, P1067; Charnov Eric L., 1993, P1; Chen MH, 2002, MAR BIOL, V140, P337, DOI 10.1007/s002270100700; Choat JH, 2006, MAR ECOL PROG SER, V318, P237, DOI 10.3354/meps318237; Choat JH, 1996, MAR ECOL PROG SER, V145, P33, DOI 10.3354/meps145033; Cipriani R, 2005, J EVOLUTION BIOL, V18, P1613, DOI 10.1111/j.1420-9101.2005.00949.x; CLIFTON KE, 1995, MAR ECOL PROG SER, V116, P39, DOI 10.3354/meps116039; Collin R, 2006, EVOLUTION, V60, P735, DOI 10.1111/j.0014-3820.2006.tb01152.x; Crossman DJ, 2001, LIMNOL OCEANOGR, V46, P1596, DOI 10.4319/lo.2001.46.7.1596; DeMartini EE, 2005, MAR ECOL PROG SER, V297, P259, DOI 10.3354/meps297259; Fairhurst L, 2007, AFR J MAR SCI, V29, P79, DOI 10.2989/AJMS.2007.29.1.7.71; Gardner A, 2005, AM NAT, V165, P551, DOI 10.1086/429526; GARRATT PA, 1993, S AFR J MARINE SCI, V13, P187, DOI 10.2989/025776193784287176; Gavio MA, 2006, J CRUSTACEAN BIOL, V26, P295, DOI 10.1651/C-2619.1; GHISELIN MT, 1969, Q REV BIOL, V44, P189, DOI 10.1086/406066; Gust N, 2002, MAR BIOL, V140, P1039, DOI 10.1007/s00227-001-0773-6; Hamilton SL, 2007, ECOL APPL, V17, P2268, DOI 10.1890/06-1930.1; Heubel KU, 2008, BIOL LETTERS, V4, P224, DOI 10.1098/rsbl.2007.0630; JONES GP, 1980, COPEIA, P660; LEIGH EG, 1976, P NATL ACAD SCI USA, V73, P3656, DOI 10.1073/pnas.73.10.3656; Linde M, 2008, J EVOLUTION BIOL, V21, P914, DOI 10.1111/j.1420-9101.2008.01508; Mackie MC, 2003, CORAL REEFS, V22, P133, DOI 10.1007/s00338-003-0296-3; Molloy PP, 2007, ANIM CONSERV, V10, P30, DOI 10.1111/j.1469-1795.2006.00065.x; Munday PL, 2004, CAN J FISH AQUAT SCI, V61, P323, DOI 10.1139/F04-057; Munday PL, 2006, TRENDS ECOL EVOL, V21, P89, DOI 10.1016/j.tree.2005.10.020; Munoz RC, 2003, AM NAT, V161, P749, DOI 10.1086/374345; Nee S, 2005, SCIENCE, V309, P1236, DOI 10.1126/science.1114488; NEMTZOV SC, 1985, ENVIRON BIOL FISH, V14, P199, DOI 10.1007/BF00000827; Paddack MJ, 2009, J FISH BIOL, V75, P2509, DOI 10.1111/j.1095-8649.2009.02451.x; POLICANSKY D, 1982, ANNU REV ECOL SYST, V13, P471, DOI 10.1146/annurev.es.13.110182.002351; PUNT AE, 1993, S AFR J MARINE SCI, V13, P109, DOI 10.2989/025776193784287293; Robertson D., 1978, SMITHSON CONTRIB ZOO, V255, P1, DOI DOI 10.5479/SI.00810282.255); SCHAFER RE, 1973, BIOMETRICS, V29, P449, DOI 10.2307/2529168; SHAPIRO DY, 1981, J ZOOL, V193, P105; vanRooij JM, 1997, MAR BIOL, V128, P385, DOI 10.1007/s002270050104; VANROOIJ JM, 1995, MAR ECOL PROG SER, V122, P93, DOI 10.3354/meps122093; Vincent A, 1998, BEHAVIORAL ECOLOGY AND CONSERVATION BIOLOGY, P209; Walker SPW, 2004, MAR ECOL PROG SER, V266, P201, DOI 10.3354/meps266201; WARNER RR, 1975, AM NAT, V109, P61, DOI 10.1086/282974; WARNER RR, 1991, BIOL BULL-US, V181, P199, DOI 10.2307/1542090; Warton DI, 2006, BIOL REV, V81, P259, DOI 10.1017/S1464793106007007; Westneat MW, 2005, MOL PHYLOGENET EVOL, V36, P370, DOI 10.1016/j.ympev.2005.02.001; Zar J.H, 1999, BIOSTATISTICAL ANAL 49 2 2 0 35 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 EVOL ECOL Evol. Ecol. MAR 2011 25 2 429 446 10.1007/s10682-010-9404-3 18 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 724NP WOS:000287583700014 2018-11-12 J Gibbs, M; Wiklund, C; Van Dyck, H Gibbs, M.; Wiklund, C.; Van Dyck, H. Phenotypic plasticity in butterfly morphology in response to weather conditions during development JOURNAL OF ZOOLOGY English Article adult phenotype; development; environment; flight morphology; Pararge aegeria; plasticity; seasonal variation; weather IN-FLIGHT MORPHOLOGY; MELITAEA-CINXIA LEPIDOPTERA; LIFE-HISTORY TRAITS; PARARGE-AEGERIA; LANDSCAPE STRUCTURE; HABITAT FRAGMENTATION; REACTION NORMS; TEMPERATURE; DESIGN; CLIMATE In seasonal environments, phenotypic plasticity in response to gradual changes in environmental variables may result in the production of discrete seasonal morphs. Production of the appropriate seasonal morph at the correct time relies on individuals interpreting environmental cues during their development. The speckled wood butterfly Pararge aegeria (L.) has previously been shown to have developmental and phenotypic plasticity across seasons and space (habitats). Here, we examine the developmental sensitivity of different seasonal cohorts of female P. aegeria to changes in local weather conditions over time (1989-1999) and determine how such temporal climatic variation affects adult phenotype development. We observed trait- and cohort-specific changes of adult phenotype development in response to local temporal changes in temperature and rainfall levels. We discuss our findings using current life-history theory and consider the potential for changes in local weather conditions to influence population variability in butterfly morphology and performance. [Gibbs, M.; Van Dyck, H.] Catholic Univ Louvain, Behav Ecol & Conservat Grp, Biodivers Res Ctr, Earth & Life Inst, B-1348 Louvain, Belgium; [Gibbs, M.] NERC Ctr Ecol & Hydrol, Wallingford, Oxon, England; [Wiklund, C.] Stockholm Univ, Dept Zool, S-10691 Stockholm, Sweden Van Dyck, H (reprint author), Catholic Univ Louvain, Behav Ecol & Conservat Grp, Biodivers Res Ctr, Earth & Life Inst, Croix Sud 4-5, B-1348 Louvain, Belgium. hans.vandyck@uclouvain.be Universite catholique de Louvain (UCL) [FSR06]; Natural Environment Research Council [CEH010021] This research is supported by an FSR research grant of the Universite catholique de Louvain (UCL) to H.V.D. (Grant FSR06). This is publication no BRC 193 of the Biodiversity Research Centre (UCL, Louvain-la-Neuve). Casper J. Breuker provided valuable comments and statistical advice. ANDERSON MC, 1964, J ECOL, V52, P643, DOI 10.2307/2257853; Azevedo RBR, 1998, EVOLUTION, V52, P1353, DOI 10.1111/j.1558-5646.1998.tb02017.x; BERRIGAN D, 1991, FUNCT ECOL, V5, P448, DOI 10.2307/2389817; Berwaerts K, 1998, NETH J ZOOL, V48, P241; BETTS CR, 1988, J EXP BIOL, V138, P271; Bots J, 2009, CAN J ZOOL, V87, P86, DOI 10.1139/Z08-141; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; BRAKEFIELD PM, 1995, J EVOLUTION BIOL, V8, P559, DOI 10.1046/j.1420-9101.1995.8050559.x; Breuker C. J., 2010, MORPHOMETRICS NONMOR, P271; Breuker CJ, 2007, EUR J ENTOMOL, V104, P445, DOI 10.14411/eje.2007.064; Dennis R.L.H., 1993, BUTTERFLIES CLIMATE; Dudley R., 2000, BIOMECHANICS INSECT; Fric Z, 2002, EVOL ECOL RES, V4, P1017; Fric Z, 2006, EVOL ECOL RES, V8, P1511; GIBBS M, 2010, ECOGRAPHY IN PRESS; Gibbs M, 2010, J INSECT PHYSIOL, V56, P1275, DOI 10.1016/j.jinsphys.2010.04.009; Gotthard K, 2007, AM NAT, V169, P768, DOI 10.1086/516651; HENRIKSEN HJ, 1982, BUTTERFLIES SCANDINA; Hill JK, 2002, P ROY SOC B-BIOL SCI, V269, P2163, DOI 10.1098/rspb.2002.2134; Hill JK, 2001, ECOL LETT, V4, P313, DOI 10.1046/j.1461-0248.2001.00222.x; Karlsson B, 2005, P ROY SOC B-BIOL SCI, V272, P1257, DOI 10.1098/rspb.2005.3074; Karlsson B, 2005, J ANIM ECOL, V74, P99, DOI 10.1111/j.1365-2656.2004.00902.x; Merckx T, 2006, FUNCT ECOL, V20, P436, DOI 10.1111/j.1365-2435.2006.01124.x; Merckx T, 2006, OIKOS, V113, P226, DOI 10.1111/j.2006.0030-1299.14501.x; Merckx T, 2003, P ROY SOC B-BIOL SCI, V270, P1815, DOI 10.1098/rspb.2003.2459; Morecroft MD, 2002, GLOBAL ECOL BIOGEOGR, V11, P7, DOI 10.1046/j.1466-822X.2002.00174.x; Norberg U, 2002, BIOL J LINN SOC, V77, P445, DOI 10.1046/j.1095-8312.2002.00115.x; NORDSTROM F, 1955, DISTRIBUTION BUTTERF; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; NYLIN S, 1989, BIOL J LINN SOC, V38, P155, DOI 10.1111/j.1095-8312.1989.tb01571.x; Parmesan C, 1999, NATURE, V399, P579, DOI 10.1038/21181; Piersma T, 2003, TRENDS ECOL EVOL, V18, P228, DOI 10.1016/S0169-5347(03)00036-3; Pigliucci M, 2005, TRENDS ECOL EVOL, V20, P481, DOI 10.1016/j.tree.2005.06.001; POLLARD E, 1988, J APPL ECOL, V25, P819, DOI 10.2307/2403748; Przybylo R, 2000, J ANIM ECOL, V69, P395, DOI 10.1046/j.1365-2656.2000.00401.x; RAVENSCROFT NOM, 1994, J APPL ECOL, V31, P623, DOI 10.2307/2404153; Roff Derek A., 1992; Roy DB, 2001, J ANIM ECOL, V70, P201, DOI 10.1046/j.1365-2656.2001.00480.x; Schlichting C. D., 1998, PHENOTYPIC EVOLUTION; Schweiger O, 2006, LANDSCAPE ECOL, V21, P989, DOI 10.1007/s10980-005-6057-7; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; Stevens DJ, 2004, J THERM BIOL, V29, P205, DOI 10.1016/j.jtherbio.2004.02.005; Talloen W, 2004, EVOLUTION, V58, P360, DOI 10.1111/j.0014-3820.2004.tb01651.x; Van Dyck H, 2002, J EVOLUTION BIOL, V15, P216, DOI 10.1046/j.1420-9101.2002.00384.x; Van Dyck H, 1999, TRENDS ECOL EVOL, V14, P172, DOI 10.1016/S0169-5347(99)01610-9; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; WIKLUND C, 1983, ECOL ENTOMOL, V8, P233, DOI 10.1111/j.1365-2311.1983.tb00503.x; Woltereck R., 1909, VERH DTSCH ZOOL GES, P110 49 5 5 3 29 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0952-8369 1469-7998 J ZOOL J. Zool. MAR 2011 283 3 162 168 10.1111/j.1469-7998.2010.00756.x 7 Zoology Zoology 723SA WOS:000287526000002 2018-11-12 J Berzins, LL; Gilchrist, HG; Matson, KD; Burness, G Berzins, Lisha L.; Gilchrist, H. Grant; Matson, Kevin D.; Burness, Gary Sex-Specific Effects of Increased Incubation Demand on Innate Immunity in Black Guillemots PHYSIOLOGICAL AND BIOCHEMICAL ZOOLOGY English Article CLUTCH-SIZE; REPRODUCTIVE EFFORT; COLLARED FLYCATCHER; FUTURE REPRODUCTION; ENERGY-EXPENDITURE; TREE SWALLOWS; PARUS-MAJOR; GREAT TITS; TRADE-OFFS; COSTS Life-history theory predicts that there should be negative fitness consequences, in terms of future reproduction and survival, for parents with increased reproductive effort. We examined whether increased incubation demand affected innate immunity and body condition by performing a clutch-size manipulation experiment in black guillemots (Cepphus grylle). We found that plasma from males incubating experimentally enlarged clutches exhibited significantly reduced lysis titers compared with plasma from males incubating control clutches, while this was not observed in females. The increased incubation demand also impacted agglutination titers differently in males and females, although the effect of treatment was not significant in either sex. Among all birds, lysis titers increased and haptoglobin concentrations decreased from mid-to late incubation. Natural antibody-mediated agglutination titers and body condition were highly repeatable within the incubation bout and between years. This suggests that agglutination titers may serve as a reliable and resilient index of the immunological character of individuals in future studies. Overall, this study demonstrates that increased incubation demand impacts indices of innate immunity differently in males and females. The potential for different components of the immune system to be impacted sex-specifically should be considered in future studies linking immune function and life-history trade-offs. [Burness, Gary] Trent Univ, Dept Biol, Peterborough, ON K9J 7B8, Canada; [Berzins, Lisha L.] Trent Univ, Environm & Life Sci Grad Program, Peterborough, ON K9J 7B8, Canada; [Gilchrist, H. Grant] Carleton Univ, Environm Canada, Natl Wildlife Res Ctr, Sci & Technol Branch, Ottawa, ON K1A 0H3, Canada; [Matson, Kevin D.] Univ Groningen, Ctr Ecol & Evolutionary Studies, NL-9700 CC Groningen, Netherlands Burness, G (reprint author), Trent Univ, Dept Biol, Peterborough, ON K9J 7B8, Canada. garyburness@trentu.ca Matson, Kevin/G-3855-2010 Matson, Kevin/0000-0002-4373-5926 Canadian Wildlife Service; Science and Technology Branch of Environment Canada; Polar Continental Shelf Project; Nunavut Research Trust; Science Horizons; Natural Sciences and Engineering Research Council (NSERC); Northern Scientific Training Program of Indian; Northern Affairs Canada; Ontario Graduate Scholarship; ArcticNet grant; Netherlands Organisation for Scientific Research [863.08.026]; NSERC; Canadian Foundation for Innovation This work was supported by both the Canadian Wildlife Service and the Science and Technology Branch of Environment Canada. Further funding was provided by the Polar Continental Shelf Project, the Nunavut Research Trust, Science Horizons, the Natural Sciences and Engineering Research Council (NSERC) E-bird Canada project, the Northern Scientific Training Program of Indian and Northern Affairs Canada, an Ontario Graduate Scholarship to L.L.B., an ArcticNet grant to H.G.G, a Netherlands Organisation for Scientific Research Veni grant to K.D.M. (863.08.026), and an NSERC Discovery Grant and Canadian Foundation for Innovation New Opportunities grant to G.B. We thank J. Straka, I. Buttler, J. Hiscock, R. Kelly, and the East Bay Island field crew (2006-2007) for assistance in the field. We also thank the anonymous reviewers for their comments on earlier drafts of this manuscript, M. A. Versteegh for her helpful discussions regarding the statistical analysis, and Dr. B. I. Tieleman for allowing L.L.B. to visit her lab at the University of Groningen, Netherlands. ANKNEY CD, 1977, AUK, V94, P275; Ardia DR, 2006, CONDOR, V108, P601, DOI 10.1650/0010-5422(2006)108[601:GVITTB]2.0.CO;2; Ardia DR, 2005, J ANIM ECOL, V74, P517, DOI 10.1111/j.1365-2656.2005.00950.x; Ardia DR, 2003, P ROY SOC B-BIOL SCI, V270, P1679, DOI 10.1098/rspb.2003.2424; Bates D, 2008, LME4 LINEAR MIXED EF; Berzins LL, 2008, PHYSIOL BIOCHEM ZOOL, V81, P383, DOI 10.1086/529461; Berzins LL, 2009, WATERBIRDS, V32, P459, DOI 10.1675/063.032.0313; Bourgeon S, 2007, DEV COMP IMMUNOL, V31, P720, DOI 10.1016/j.dci.2006.11.009; Bourgeon S, 2006, PHYSIOL BIOCHEM ZOOL, V79, P793, DOI 10.1086/504609; Buehler DM, 2008, AM NAT, V172, P783, DOI 10.1086/592865; Cichon M, 2000, OECOLOGIA, V125, P453, DOI 10.1007/s004420000461; Clinchy M, 2004, P ROY SOC B-BIOL SCI, V271, P2473, DOI 10.1098/rspb.2004.2913; Dawson RD, 2008, AUK, V125, P889, DOI 10.1525/auk.2008.07165; de Heij ME, 2007, J EXP BIOL, V210, P2006, DOI 10.1242/jeb.001420; Deerenberg C, 1997, P ROY SOC B-BIOL SCI, V264, P1021, DOI 10.1098/rspb.1997.0141; FALCONER DS, 1981, INTRO QUANTITATIVE G; GASTON AJ, 1998, AUKS ALCIDAE; Griffiths R, 1998, MOL ECOL, V7, P1071, DOI 10.1046/j.1365-294x.1998.00389.x; HAFTORN S, 1985, AUK, V102, P470; Hanssen SA, 2005, P ROY SOC B-BIOL SCI, V272, P1039, DOI 10.1098/rspb.2005.3057; Hipfner JM, 1997, J AVIAN BIOL, V28, P271, DOI 10.2307/3676939; Horak P, 2003, BEHAV ECOL SOCIOBIOL, V54, P105, DOI 10.1007/s00265-003-0608-1; Ilmonen P, 2002, OECOLOGIA, V130, P199, DOI 10.1007/s004420100804; JACOBSEN KO, 1995, ECOLOGY, V76, P1636, DOI 10.2307/1938164; Klasing Kirk C., 2004, Acta Zoologica Sinica, V50, P961; Lee KA, 2006, INTEGR COMP BIOL, V46, P1000, DOI 10.1093/icb/icl049; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Matson KD, 2005, DEV COMP IMMUNOL, V29, P275, DOI 10.1016/j.dci.2004.07.006; Matson KD, 2006, P ROY SOC B-BIOL SCI, V273, P2267, DOI 10.1098/rspb.2006.3590; MEHLUM F, 1993, COLON WATERBIRD, V16, P45, DOI 10.2307/1521555; Monaghan P, 1997, TRENDS ECOL EVOL, V12, P270, DOI 10.1016/S0169-5347(97)01094-X; MORENO J, 1995, J ANIM ECOL, V64, P721, DOI 10.2307/5851; Moreno J, 1999, P ROY SOC B-BIOL SCI, V266, P1105, DOI 10.1098/rspb.1999.0750; MORENO J, 1991, IBIS, V133, P186, DOI 10.1111/j.1474-919X.1991.tb04830.x; Ochsenbein AF, 2000, IMMUNOL TODAY, V21, P624, DOI 10.1016/S0167-5699(00)01754-0; Paredes R, 2010, IBIS, V152, P48, DOI 10.1111/j.1474-919X.2009.00973.x; Quaye IK, 2008, T ROY SOC TROP MED H, V102, P735, DOI 10.1016/j.trstmh.2008.04.010; R Development Core Team, 2008, R LANG ENV STAT COMP; Raberg L, 1998, P ROY SOC B-BIOL SCI, V265, P1637, DOI 10.1098/rspb.1998.0482; RICHNER H, 1995, P NATL ACAD SCI USA, V92, P1192, DOI 10.1073/pnas.92.4.1192; Roitt I, 1996, IMMUNOLOGY; SALL J, 2005, JMP START STAT; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; SZEKELY T, 1994, IBIS, V136, P341, DOI 10.1111/j.1474-919X.1994.tb01105.x; Thomson DL, 1998, BIOL REV, V73, P293, DOI 10.1017/S0006323198005180; Tulp I, 2006, J AVIAN BIOL, V37, P207, DOI 10.1111/j.2006.0908-8857.03519.x; Verboven N, 2002, ANIM BEHAV, V63, P951, DOI 10.1006/anbe.2001.1971; von Schantz T, 1999, P ROY SOC B-BIOL SCI, V266, P1; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams Joseph B., 1996, P375; Winkler DW, 1996, ECOLOGY, V77, P922, DOI 10.2307/2265512; Wojczulanis-Jakubas K, 2009, ORNIS FENNICA, V86, P140 52 4 4 0 11 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 1522-2152 PHYSIOL BIOCHEM ZOOL Physiol. Biochem. Zool. MAR 2011 84 2 222 229 10.1086/658373 8 Physiology; Zoology Physiology; Zoology 725MK WOS:000287648600011 21166545 Green Published 2018-11-12 J Fogarty, S; Cote, J; Sih, A Fogarty, Sean; Cote, Julien; Sih, Andrew Social Personality Polymorphism and the Spread of Invasive Species: A Model AMERICAN NATURALIST English Article behavioral syndromes; invasion; dispersal; sociability; network DENSITY-DEPENDENT DISPERSAL; SPATIALLY STRUCTURED POPULATIONS; TRANSPORTATION NETWORK; ANTIPREDATOR BEHAVIOR; ANIMAL PERSONALITIES; BIOLOGICAL INVASIONS; FITNESS CONSEQUENCES; NATURAL COMMUNITIES; NATAL DISPERSAL; RANGE EXPANSION Ecological invasions are a major worldwide problem exacting tremendous economic and ecological costs. Efforts to explain variability in invasion speed and impact by searching for combinations of ecological conditions and species traits associated with invasions have met with mixed success. We use a simulation model that integrates insights from life-history theory, animal personalities, network theory, and spatial ecology to derive a new mechanism for explaining variation in animal invasion success. We show that spread occurs most rapidly when (1) a species includes a mix of life-history or personality types that differ in density-dependent performance and dispersal tendencies, (2) the differences between types are of intermediate magnitude, and (3) patch connections are intermediate in number and widely spread. Within-species polymorphism in phenotype (e.g., life-history strategies or personality), a feature not included in previous models, is important for overcoming the fact that different traits are associated with success in different stages of the invasion process. Polymorphism in sociability (a personality type) increases the speed of the invasion front, since asocial individuals colonize empty patches and facilitate the local growth of social types that, in turn, induce faster dispersal by asocials at the invasion edge. The results hold implications for the prediction of invasion impacts and the classification of traits associated with invasiveness. [Fogarty, Sean; Cote, Julien; Sih, Andrew] Univ Calif Davis, Dept Environm Sci & Policy, Davis, CA 95616 USA Fogarty, S (reprint author), Univ Calif Davis, Dept Environm Sci & Policy, Davis, CA 95616 USA. spfogarty@ucdavis.edu Cote, Julien/B-7809-2011 Cote, Julien/0000-0002-4453-5969 Fyssen Foundation; University of California-Davis Jastro-Shields; National Science Foundation [IOB-0446276] This research was supported by a Fyssen Foundation fellowship to J.C., a University of California-Davis Jastro-Shields grant to S.F., and funding from National Science Foundation IOB-0446276. We thank R. McElreath and S. Schreiber for helping us clarify the presentation of the model and the Sih lab members and C. Boettiger for comments at all stages of manuscript preparation. We also thank two anonymous reviewers for comments on an earlier version of this manuscript. BARNARD CJ, 1981, ANIM BEHAV, V29, P543, DOI 10.1016/S0003-3472(81)80117-0; Bergmuller R, 2010, PHILOS T R SOC B, V365, P2751, DOI 10.1098/rstb.2010.0124; Bolnick DI, 2003, AM NAT, V161, P1, DOI 10.1086/343878; Clobert J, 2009, ECOL LETT, V12, P197, DOI 10.1111/j.1461-0248.2008.01267.x; Colautti RI, 2004, DIVERS DISTRIB, V10, P135, DOI 10.1111/j.1366-9516.2004.00061.x; Colizza V, 2006, P NATL ACAD SCI USA, V103, P2015, DOI 10.1073/pnas.0510525103; CONNELL JH, 1977, AM NAT, V111, P1119, DOI 10.1086/283241; Cote J, 2008, P ROY SOC B-BIOL SCI, V275, P2851, DOI 10.1098/rspb.2008.0783; Cote J, 2007, P R SOC B, V274, P383, DOI 10.1098/rspb.2006.3734; Cote J, 2010, PHILOS T R SOC B, V365, P4065, DOI 10.1098/rstb.2010.0176; COTE J, 2010, P ROYAL SOC B, DOI DOI 10.1098/RSPB.2010.1892; Cote J, 2010, P ROY SOC B-BIOL SCI, V277, P1571, DOI 10.1098/rspb.2009.2128; Dall SRX, 2004, ECOL LETT, V7, P734, DOI 10.1111/j.1461-0248.2004.00618.x; DENNO RF, 1991, AM NAT, V138, P1513, DOI 10.1086/285298; DeWitt TJ, 1999, ANIM BEHAV, V58, P397, DOI 10.1006/anbe.1999.1158; Dingemanse NJ, 2005, BEHAVIOUR, V142, P1159, DOI 10.1163/156853905774539445; Dingemanse NJ, 2003, P ROY SOC B-BIOL SCI, V270, P741, DOI 10.1098/rspb.2002.2300; Dingemanse NJ, 2004, P ROY SOC B-BIOL SCI, V271, P847, DOI 10.1098/rspb.2004.2680; Duckworth RA, 2008, AM NAT, V172, pS4, DOI 10.1086/588289; Duckworth RA, 2007, P NATL ACAD SCI USA, V104, P15017, DOI 10.1073/pnas.0706174104; Duckworth RA, 2009, EVOLUTION, V63, P968, DOI 10.1111/j.1558-5646.2009.00625.x; Dyer JRG, 2009, BEHAV ECOL, V20, P165, DOI 10.1093/beheco/arn129; Edelaar P, 2008, EVOLUTION, V62, P2462, DOI 10.1111/j.1558-5646.2008.00459.x; Enfjall K, 2005, OIKOS, V108, P465, DOI 10.1111/j.0030-1299.2005.13261.x; Enfjall K, 2009, OIKOS, V118, P291, DOI 10.1111/j.1600-0706.2008.16863.x; Floerl O, 2005, BIOL INVASIONS, V7, P589, DOI 10.1007/s10530-004-0952-8; Fonseca DM, 1996, OIKOS, V75, P49, DOI 10.2307/3546320; Fraser DF, 2001, AM NAT, V158, P124, DOI 10.1086/321307; Guimera R, 2005, P NATL ACAD SCI USA, V102, P7794, DOI 10.1073/pnas.0407994102; HASTINGS A, 1980, THEOR POPUL BIOL, V18, P363, DOI 10.1016/0040-5809(80)90059-3; Hojesjo J, 2004, BEHAV ECOL SOCIOBIOL, V56, P286, DOI 10.1007/s00265-004-0784-7; Ioannou CC, 2008, ANIM BEHAV, V75, P1383, DOI 10.1016/j.anbehav.2007.09.012; Ioannou CC, 2009, AM NAT, V173, P499, DOI 10.1086/597219; Jeschke JM, 2005, P NATL ACAD SCI USA, V102, P7198, DOI 10.1073/pnas.0501271102; Johnson JC, 2007, ANIM BEHAV, V74, P1131, DOI 10.1016/j.anbehav.2007.02.006; Jokela M, 2008, PSYCHOL SCI, V19, P831, DOI 10.1111/j.1467-9280.2008.02164.x; Kim SY, 2009, ECOLOGY, V90, P230, DOI 10.1890/08-0133.1; Kolar CS, 2001, TRENDS ECOL EVOL, V16, P199, DOI 10.1016/S0169-5347(01)02101-2; Krause J, 2002, LIVING GROUPS; Kun A, 2006, OIKOS, V115, P308, DOI 10.1111/j.2006.0030-1299.15061.x; Kuperman M, 2001, PHYS REV LETT, V86, P2909, DOI 10.1103/PhysRevLett.86.2909; Kurvers R. H. J. M., 2009, P ROYAL SOC B, V277, P601; LEWIS MA, 1993, THEOR POPUL BIOL, V43, P141, DOI 10.1006/tpbi.1993.1007; LODGE DM, 1993, TRENDS ECOL EVOL, V8, P133, DOI 10.1016/0169-5347(93)90025-K; Mack RN, 2000, ECOL APPL, V10, P689, DOI 10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2; Matthysen E, 2005, ECOGRAPHY, V28, P403, DOI 10.1111/j.0906-7590.2005.04073.x; McNamara JM, 2004, NATURE, V428, P745, DOI 10.1038/nature02432; McNamara JM, 2009, P R SOC B, V276, P605, DOI 10.1098/rspb.2008.1182; MCPEEK MA, 1992, AM NAT, V140, P1010, DOI 10.1086/285453; Moksnes PO, 2004, MAR ECOL PROG SER, V281, P181, DOI 10.3354/meps281181; Moyle PB, 2006, BIOSCIENCE, V56, P515, DOI 10.1641/0006-3568(2006)56[515:PISFFI]2.0.CO;2; Muirhead JR, 2005, J APPL ECOL, V42, P80, DOI 10.1111/j.1365-2664.2004.00988.x; NEE S, 1992, J ANIM ECOL, V61, P37, DOI 10.2307/5506; Newman MEJ, 1999, PHYS REV E, V60, P7332, DOI 10.1103/PhysRevE.60.7332; Newman MEJ, 2002, PHYS REV LETT, V89, DOI 10.1103/PhysRevLett.89.208701; Pastor-Satorras R, 2001, PHYS REV LETT, V86, P3200, DOI 10.1103/PhysRevLett.86.3200; Pimentel D, 2005, ECOL ECON, V52, P273, DOI 10.1016/j.ecolecon.2004.10.002; Pruitt JN, 2011, P ROY SOC B-BIOL SCI, V278, P1209, DOI 10.1098/rspb.2010.1700; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Rehage JS, 2005, BEHAV ECOL SOCIOBIOL, V57, P256, DOI 10.1007/s00265-004-0850-1; Rehage JS, 2004, BIOL INVASIONS, V6, P379, DOI 10.1023/B:BINV.0000034618.93140.a5; Sakai AK, 2001, ANNU REV ECOL SYST, V32, P305, DOI 10.1146/annurev.ecolsys.32.081501.114037; Sih A, 2005, BEHAVIOUR, V142, P1417, DOI 10.1163/156853905774539454; Sih A, 2004, Q REV BIOL, V79, P241, DOI 10.1086/422893; Sih A, 2010, OIKOS, V119, P610, DOI 10.1111/j.1600-0706.2009.18039.x; Smith BR, 2008, BEHAV ECOL, V19, P448, DOI 10.1093/beheco/arm144; SOUSA WP, 1984, ANNU REV ECOL SYST, V15, P353, DOI 10.1146/annurev.es.15.110184.002033; SOUSA WP, 1979, ECOL MONOGR, V49, P227, DOI 10.2307/1942484; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Suarez AV, 2001, P NATL ACAD SCI USA, V98, P1095, DOI 10.1073/pnas.98.3.1095; TILMAN D, 1994, ECOLOGY, V75, P2, DOI 10.2307/1939377; Tollrian R., 1998, ECOLOGY EVOLUTION IN; Travis JMJ, 1999, P ROY SOC B-BIOL SCI, V266, P1837, DOI 10.1098/rspb.1999.0854; Turner MG, 1998, ECOSYSTEMS, V1, P511, DOI 10.1007/s100219900047; van Kleunen M, 2010, ECOL LETT, V13, P947, DOI 10.1111/j.1461-0248.2010.01503.x; van Oers K, 2005, BEHAVIOUR, V142, P1185, DOI 10.1163/156853905774539364; Vitousek PM, 1997, NEW ZEAL J ECOL, V21, P1; Watts DJ, 1998, NATURE, V393, P440, DOI 10.1038/30918; Williamson M, 1996, ECOLOGY, V77, P1661, DOI 10.2307/2265769; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835 80 81 81 4 116 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 AM NAT Am. Nat. MAR 2011 177 3 273 287 10.1086/658174 15 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 730AO WOS:000287996000001 21460537 2018-11-12 J Jordana, X; Kohler, M Jordana, Xavier; Koehler, Meike Enamel microstructure in the fossil bovid Myotragus balearicus (Majorca, Spain): Implications for life-history evolution of dwarf mammals in insular ecosystems PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY English Article Insularity; Dwarfism; Life history; Dental Microstructure; Paleohistology; Body size BATE 1909 ARTIODACTYLA; BODY-SIZE; ISLAND RULE; RESOURCE AVAILABILITY; DENTAL DEVELOPMENT; OCEANIC ISLANDS; TEETH; DEER; PALEONTOLOGY; PERIODICITY The causes underlying the evolution of insular dwarfs and giants are a matter of ongoing debate. Because body size is among the principle life history traits, recent works aim to understand the evolution of insular dwarfs in the framework of life history theory. However, the hypotheses put forward so far are conflicting. Early studies, suggested that dwarfing is a consequence of selection for an increased reproduction associated to an accelerated life history (formerly r-selection). Recent work, however, based on the analysis of bone histology of the fossil insular dwarf bovid Myotragus balearicus (Balearic Islands, Spain), concluded that dwarfing on islands results from a decrease in growth rate associated to a slow life history (formerly K-selection) in response to selective forces peculiar to insular conditions. In the present work, we reconstruct the schedule of certain life history traits by estimating the rate of dental development and eruption times in M. balearicus and, for comparisons, in an extant caprine (Ovis aries). We used histological techniques to calculate crown formation time, daily secretion rate and crown extension rate, in the lower molars. Eruption pattern in M. balearicus was analysed through the radiological images of an ontogenetic series of mandibles. Our results show that dental crowns grew at slower rates and the period of crown formation was more extended in the dwarfed fossil bovid than in other extant caprines, resulting in dental development and eruption time that doubles that of extant bovids of similar body size. This suggests an important delay in life history schedules. Concordant with the delayed dental development, the striking hypsodonty of Myotragus is indicative of an extended lifespan. These results, together with previous findings from long bone histology, provide empirical evidence for a shift towards a slow life history in this insular dwarfed mammal. Density-dependent resource limitation is hypothesized as the main trigger of the life history and body size evolution of Myotragus. (C) 2010 Elsevier B.V. All rights reserved. [Jordana, Xavier] Univ Autonoma Barcelona, Dept Paleobiol, Inst Catala Paleontol ICP, E-08193 Barcelona, Spain; [Koehler, Meike] Univ Autonoma Barcelona, Catalan Inst Res & Adv Studies, Inst Catala Paleontol ICP, E-08193 Barcelona, Spain Jordana, X (reprint author), Univ Autonoma Barcelona, Dept Paleobiol, Inst Catala Paleontol ICP, E-08193 Barcelona, Spain. xavier.jordana@icp.cat; meike.kohler@icp.cat Jordana, Xavier/L-9301-2014; Jordana, Xavier/G-7537-2017 Jordana, Xavier/0000-0001-8990-4388; Jordana, Xavier/0000-0002-6016-6630; Kohler, Meike/0000-0001-9228-3164 Spanish Ministry of Science and Innovation [CGL2008-06204/BTE]; ICREA We thank C. Constantino for the access to the collections of the Museu Balear de Ciencies Naturals; A. Nieto for access to the material of the Zooarchaeological Laboratory at Universitat de Lleida; M. Marquez of Banc de Teixits Animals de Catalunya (BTAC) at Universitat Autonoma de Barcelona for provide recent samples; Hospital Mutua de Terrassa for CT-scan study; R. Garcia and J. Fortuny for technical help; and G. Macho, N. Marin and S. Esteban for constructive discussions on the manuscript. We are grateful to Tim Bromage and an anonymous reviewer for their useful comments and suggestions on the manuscript. This work was supported by the Spanish Ministry of Science and Innovation (CGL2008-06204/BTE). Alba DM, 2002, HUMAN EVOLUTION THROUGH DEVELOPMENTAL CHANGE, P28; ALBON SD, 1983, J ANIM ECOL, V52, P969, DOI 10.2307/4467; Alcover JA, 1999, BIOL J LINN SOC, V66, P57, DOI 10.1111/j.1095-8312.1999.tb01917.x; ALCOVER JA, 1981, CHIMERAS PAST; BATE DMA, 1909, GEOLOGICAL MAGA 1205, V543, P385; Beynon AD, 1998, J HUM EVOL, V35, P163, DOI 10.1006/jhev.1998.0230; Bover P, 2008, QUATERN INT, V182, P135, DOI 10.1016/j.quaint.2007.06.039; BOYDE A, 1988, SCANNING MICROSCOPY, V2, P1479; Boyde Alan, 1963, 3 INT M FOR IMM MED, P36; BOYER P, 1999, BIOL J LINN SOC, V68, P401; BROMAGE TG, 1991, AM J PHYS ANTHROPOL, V86, P205, DOI 10.1002/ajpa.1330860209; Bromage TG, 2002, WORLD ISLANDS PREHIS, P420; Bromage TG, 2009, CALCIFIED TISSUE INT, V84, P388, DOI 10.1007/s00223-009-9221-2; Brown JH, 2006, P NATL ACAD SCI USA, V103, P17595, DOI 10.1073/pnas.0608522103; BROWN JH, 1993, AM NAT, V142, P573, DOI 10.1086/285558; Burness GP, 2001, P NATL ACAD SCI USA, V98, P14518, DOI 10.1073/pnas.251548698; Carranza J, 2004, NATURE, V432, P215, DOI 10.1038/nature03004; Dean M. C., 2001, NATURE, V414, P628, DOI DOI 10.1038/414628A; Dean MC, 2006, P ROY SOC B-BIOL SCI, V273, P2799, DOI 10.1098/rspb.2006.3583; Dirks W, 2009, FRONT ORAL BIOL, V13, P3, DOI 10.1159/000242381; Festa-Bianchet M, 2004, BEHAV ECOL, V15, P305, DOI 10.1093/beheco/arh014; Festa-Bianchet M, 1998, BEHAV ECOL, V9, P144, DOI 10.1093/beheco/9.2.144; FOSTER JB, 1964, NATURE, V202, P234, DOI 10.1038/202234a0; Gould S.J., 1977, ONTOGENY PHYLOGENY; Grant Peter R., 1998, P1; HEANEY LR, 1978, EVOLUTION, V32, P29, DOI 10.1111/j.1558-5646.1978.tb01096.x; Hillson S., 2005, TEETH CAMBRIDGE MANU; Hooijer DA, 1951, SCI MON, V72, P3; Iinuma YM, 2004, J VET MED SCI, V66, P665, DOI 10.1292/jvms.66.665; Kohler M, 2003, COUR FOR SEKENBG, V243, P111; Kohler M, 2004, BRAIN BEHAV EVOLUT, V63, P125, DOI 10.1159/000076239; Kohler M., 2010, ISLANDS EVOLUTION, V19, P261; Kohler M, 2010, P NATL ACAD SCI USA, V107, pE28, DOI 10.1073/pnas.0915090107; Kohler M, 2009, P NATL ACAD SCI USA, V106, P20354, DOI 10.1073/pnas.0813385106; LISTER AM, 1993, NATURE, V362, P288, DOI 10.1038/362288a0; Lomolino MV, 2005, J BIOGEOGR, V32, P1683, DOI 10.1111/j.1365-2699.2005.01314.x; LOMOLINO MV, 1985, AM NAT, V125, P310, DOI 10.1086/284343; MAC ARTHUR ROBERT H., 1967; Macho GA, 2002, BIOL J LINN SOC, V75, P271, DOI 10.1046/j.1095-8312.2002.00013.x; MCNAB BK, 1994, AM NAT, V144, P643, DOI 10.1086/285698; McNab BK, 2002, ECOL LETT, V5, P693, DOI 10.1046/j.1461-0248.2002.00365.x; McNab BK, 2002, PHYSL ECOLOGY VERTEB; McNab BK, 2010, OECOLOGIA, V164, P13, DOI 10.1007/s00442-010-1621-5; Meiri S, 2006, J BIOGEOGR, V33, P1571, DOI 10.1111/j.1365-2699.2006.01523.x; Meiri S, 2010, P NATL ACAD SCI USA, V107, pE27, DOI 10.1073/pnas.0914098107; Moya-Sola S., 1983, Acta Geologica Hispanica, V17, P77; Moya-Sola S., 2007, MONOGRAFIES SOC HIST, V14, P155; Moya-Sola Salvador, 1999, P435; Nowak R. M, 1991, WALKERS MAMMALS WORL; Palkovacs EP, 2003, OIKOS, V103, P37, DOI 10.1034/j.1600-0706.2003.12502.x; Palombo MR, 2008, QUATERN INT, V182, P160, DOI 10.1016/j.quaint.2007.08.037; Palombo M. R., 2001, WORLD ELEPHANTS, P486; PerezBarberia FJ, 1996, ACTA THERIOL, V41, P217, DOI 10.4098/AT.arch.96-22; Raia P, 2003, EVOL ECOL, V17, P293, DOI 10.1023/A:1025577414005; Raia P, 2006, EVOLUTION, V60, P1731; Ramis D, 2001, J ARCHAEOL SCI, V28, P265, DOI 10.1006/jasc.2000.0548; RICKLEFS RE, 2001, EC NATURE, P199; Roff D. A., 2002, LIFE HIST EVOLUTION; SCHWARTZ CT, 2002, P NATL ACAD SCI USA, V99, P6124; Silver I., 1969, SCI ARCHAEOL, P250; Sinclair ARE, 2003, NATURE, V425, P288, DOI 10.1038/nature01934; Sisson S, 1975, ANATOMY DOMESTIC ANI; Smith TM, 2008, EVOL ANTHROPOL, V17, P213, DOI 10.1002/evan.20176; Smith TM, 2008, J HUM EVOL, V54, P205, DOI 10.1016/j.jhevol.2007.09.020; Smith TM, 2007, P NATL ACAD SCI USA, V104, P6128, DOI 10.1073/pnas.0700747104; Smith TM, 2006, J ANAT, V208, P99, DOI 10.1111/j.1469-7580.2006.00499.x; Smith TM, 2003, J HUM EVOL, V44, P283, DOI 10.1016/S0047-2484(03)00006-X; Sondaar P. Y., 1977, MAJOR PATTERNS VERTE, P671; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tafforeau P, 2007, PALAEOGEOGR PALAEOCL, V246, P206, DOI 10.1016/j.palaeo.2006.10.001; van Valen L., 1973, EVOL THEORY, V1, P31; Veiberg V, 2007, BIOLOGY LETT, V3, P268, DOI 10.1098/rsbl.2006.0610 72 36 36 1 29 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0031-0182 PALAEOGEOGR PALAEOCL Paleogeogr. Paleoclimatol. Paleoecol. FEB 1 2011 300 1-4 59 66 10.1016/j.palaeo.2010.12.008 8 Geography, Physical; Geosciences, Multidisciplinary; Paleontology Physical Geography; Geology; Paleontology 725CI WOS:000287622400006 2018-11-12 J Balbontin, J; de Lope, F; Hermosell, IG; Mousseau, TA; Moller, AP Balbontin, J.; de Lope, F.; Hermosell, I. G.; Mousseau, T. A.; Moller, A. P. Determinants of age-dependent change in a secondary sexual character JOURNAL OF EVOLUTIONARY BIOLOGY English Article among-individual component; life-history theory; phenotypic plasticity; selection; senescence; within-individual component SWALLOW HIRUNDO-RUSTICA; BARN SWALLOWS; REPRODUCTIVE EFFORT; NATURAL-SELECTION; MIGRATORY BIRD; TERMINAL INVESTMENT; MONOGAMOUS SWALLOW; MORTALITY-RATES; ORNAMENT SIZE; ARRIVAL DATE Many secondary sexual characters vary in a systematic way with the age of individuals, with young and old individuals displaying at lower levels than individuals of intermediate age. Analyses quantifying the within-individual and among-individual components of phenotypic variation can help partition effects of phenotypic plasticity and selective mortality. We analysed phenotypic variation in the expression of a secondary sexual character, tail length, in male and female barn swallows Hirundo rustica from four European populations studied during 11-26 years, using linear mixed effect models to describe age-related expression. Tail length increased from yearlings to intermediate aged birds with a subsequent decrease at old age. In males, this age-related pattern was because of both within-subject and between-subject effects, with no difference among populations. Males having longer lifespan had shorter tails when young than those having shorter lifespan. Females showed similar patterns of age-related variation as males, with no difference among populations. The major difference between sexes was that the between-subject effects (i.e. disappearance effects or selection) were much more important for males compared to females for which lifetime variation in tail length was mainly because of a within-subject effect (i.e., a plastic response). These findings suggest that whereas males trade greater expression of the secondary sexual character at young age against longevity, that was not the case for females. This is consistent with tail length being more costly in males than in females, with the cost of long tails potentially being offset by elevated mating success, whereas that is not the case in females. [Moller, A. P.] Univ Paris 11, CNRS UMR 8079, Lab Ecol Syst & Evolut, F-91405 Orsay, France; [Balbontin, J.] Fac Biol, Area Zool, Dept Fisiol & Zool, Seville, Spain; [de Lope, F.; Hermosell, I. G.] Univ Extremadura, Dept Anat Biol Celular & Zool, Badajoz, Spain; [Mousseau, T. A.] Univ S Carolina, Dept Biol Sci, Columbia, SC 29208 USA Moller, AP (reprint author), Univ Paris 11, CNRS UMR 8079, Lab Ecol Syst & Evolut, Batiment 362, F-91405 Orsay, France. anders.moller@u-psud.fr Garcia Hermosell, Ignacio/H-1800-2012; Balbontin, Javier/H-5932-2015 Garcia Hermosell, Ignacio/0000-0002-5785-2269; Balbontin, Javier/0000-0003-1539-2636 Spanish Ministry of Education and Science [CGL-2009-08976] Thanks to all the people who helped obtain field data, especially A. Barbosa, N. Cadee, J. Cuervo, L. Garamszegi, D. Gil, F. Mateos, S. Merino, J. Moreno, C. Navarro and P. Ninni. Thank you also to Guadalupe M. Nisa for her invaluable help and support. The Spanish Ministry of Education and Science (CGL-2009-08976) supported this research. The Spanish Ministry of Education and Science supported IGH through a predoctoral 'FPI' fellowship. Andersson M., 1994, SEXUAL SELECTION; Balbontin J, 2007, J ANIM ECOL, V76, P915, DOI 10.1111/j.1365-2656.2007.01269.x; Balbontin J, 2009, J ANIM ECOL, V78, P981, DOI 10.1111/j.1365-2656.2009.01573.x; Bouwhuis S, 2009, P R SOC B, V276, P2769, DOI 10.1098/rspb.2009.0457; Brooks R, 2001, TRENDS ECOL EVOL, V16, P308, DOI 10.1016/S0169-5347(01)02147-4; Burnham KP, 2002, MODEL SELECTION INFE; Camplani A, 1999, P ROY SOC B-BIOL SCI, V266, P1111, DOI 10.1098/rspb.1999.0751; Catchpole EA, 2004, J AGR BIOL ENVIR ST, V9, P1, DOI 10.1198/1085711043172; Clutton-Brock TH, 2007, P R SOC B, V274, P3097, DOI 10.1098/rspb.2007.1138; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Cuervo JJ, 1996, OECOLOGIA, V108, P252, DOI 10.1007/BF00334648; de Lope F., 1983, Donana Acta Vertebrata, V10, P91; DELOPE F, 1993, EVOLUTION, V47, P1152, DOI 10.1111/j.1558-5646.1993.tb02142.x; Ellegren H, 1997, NATURE, V389, P593, DOI 10.1038/39303; Fox CW, 2003, FUNCT ECOL, V17, P619, DOI 10.1046/j.1365-2435.2003.00781.x; Gaillard J.-M., 2004, Animal Biodiversity and Conservation, V27, P47; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Hansen TF, 1995, J EVOLUTION BIOL, V8, P759, DOI 10.1046/j.1420-9101.1995.8060759.x; Hermosell IG, 2007, ARDEOLA, V54, P93; Loison A, 1999, ECOLOGY, V80, P2539, DOI 10.2307/177239; MANNING JT, 1985, J THEOR BIOL, V116, P349, DOI 10.1016/S0022-5193(85)80273-3; Marzal A, 2008, J EVOLUTION BIOL, V21, P979, DOI 10.1111/j.1420-9101.2008.01545.x; McCleery RH, 2008, P R SOC B, V275, P963, DOI 10.1098/rspb.2007.1418; MEDAWAR PB, 1952, UNSOLVED PROBLEM BIO; Moller AP, 2005, AGE, V27, P307, DOI 10.1007/s11357-005-4557-7; MOLLER AP, 1990, ANIM BEHAV, V39, P458, DOI 10.1016/S0003-3472(05)80409-9; MOLLER AP, 1992, J EVOLUTION BIOL, V5, P603, DOI 10.1046/j.1420-9101.1992.5040603.x; MOLLER AP, 1991, EVOLUTION, V45, P1823, DOI 10.1111/j.1558-5646.1991.tb02690.x; MOLLER AP, 1988, NATURE, V332, P640, DOI 10.1038/332640a0; Moller AP, 1999, J ANIM ECOL, V68, P163, DOI 10.1046/j.1365-2656.1999.00274.x; Moller AP, 2002, ECOLOGY, V83, P2220, DOI 10.2307/3072053; Moller AP, 2006, EVOLUTION, V60, P856; Moller AP, 2005, J ANIM ECOL, V74, P1102, DOI 10.1111/j.1365-2656.2005.01009.x; Moller AP, 2003, EVOLUTION, V57, P2139, DOI 10.1554/03-051; Moller AP, 2003, BEHAV ECOL, V14, P707, DOI 10.1093/beheco/arg051; Moller AP, 1998, BEHAV ECOL SOCIOBIOL, V43, P345, DOI 10.1007/s002650050501; MOLLER AP, 1995, J EVOLUTION BIOL, V8, P3, DOI 10.1046/j.1420-9101.1995.8010003.x; MOLLER AP, 1994, BEHAV ECOL, V5, P188; MOLLER AP, 1994, SEXUAL SELECTION BAR; Nussey DH, 2009, AM NAT, V174, P342, DOI 10.1086/603615; Nussey DH, 2005, SCIENCE, V310, P304, DOI 10.1126/science.1117004; OWENSMITH N, 1993, J ANIM ECOL, V62, P428, DOI 10.2307/5192; PROMISLOW DEL, 1992, P ROY SOC B-BIOL SCI, V247, P203, DOI 10.1098/rspb.1992.0030; *R DEV COR TEAM, 2006, LANG ENV STAT COMP; Reid JM, 2010, J ANIM ECOL, V79, P851, DOI 10.1111/j.1365-2656.2010.01669.x; Reid JM, 2003, J ANIM ECOL, V72, P765, DOI 10.1046/j.1365-2656.2003.00750.x; Roff Derek A., 1992; Rose M. R, 1991, EVOLUTIONARY BIOL AG; Royall RM, 1997, STAT EVIDENCE LIKELI; Stearns S. C., 1992, EVOLUTION LIFE HIST; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; van de Pol MV, 2009, ANIM BEHAV, V77, P753, DOI 10.1016/j.anbehav.2008.11.006; Velando A, 2006, P R SOC B, V273, P1443, DOI 10.1098/rspb.2006.3480; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 55 12 12 1 37 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. FEB 2011 24 2 440 448 10.1111/j.1420-9101.2010.02183.x 9 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 706HI WOS:000286208400021 21175908 Bronze 2018-11-12 J Hawley, DM; Altizer, SM Hawley, Dana M.; Altizer, Sonia M. Disease ecology meets ecological immunology: understanding the links between organismal immunity and infection dynamics in natural populations FUNCTIONAL ECOLOGY English Review coinfection; defense; immune defence; sickness behaviour; superspreader; seasonality; within-host dynamics BUMBLEBEE BOMBUS-TERRESTRIS; RANGING AFRICAN BUFFALO; HOST-NEMATODE SYSTEM; TRADE-OFFS; HOUSE FINCHES; SICKNESS BEHAVIOR; EVOLUTIONARY ECOLOGY; AMPHIBIAN IMMUNITY; SEASONAL-CHANGES; GLOBAL CLIMATE P>1. Ecological immunology and disease ecology are two relatively young disciplines that apply ecological approaches and principles to traditionally non-ecological fields. In both cases, an ecological perspective has allowed new insights to emerge by focusing attention on variation over space and time, and by emphasizing the role of the environment in shaping individual responses and the outcome of host-pathogen interactions. Here we review the growing conceptual interface between these two rapidly evolving fields. 2. Areas of synergy between ecological immunology and disease ecology aim to translate variation in within-host processes (e.g. immunity) into between-host dynamics (e.g. parasite transmission). Emerging areas of synergy include potential immune mechanisms that underlie host heterogeneity in disease susceptibility, teasing apart the effects of environmental factors such as seasonality and climate on host susceptibility and pathogen dynamics, and predicting the outcome of co-infection by functionally distinct groups of parasites that elicit different immune responses. 3. In some cases, practical limitations have constrained the merging of ideas in ecological immunology and disease ecology. We discuss several logistical challenges, including dissecting the relative roles of host exposure and susceptibility, establishing links between measures of immunity and pathogen resistance in wild populations, and incorporating relevant immune variation into prevailing disease ecology modeling frameworks. 4. Future work at the interface of these two fields should advance understanding of life-history theory, host-pathogen dynamics, and physiological ecology, and will also contribute to targeted approaches for wildlife health and zoonotic disease prevention. [Hawley, Dana M.] Virginia Tech, Dept Biol, Blacksburg, VA 24061 USA; [Altizer, Sonia M.] Univ Georgia, Odum Sch Ecol, Athens, GA 30602 USA Hawley, DM (reprint author), Virginia Tech, Dept Biol, Blacksburg, VA 24061 USA. hawleyd@vt.edu Hawley, Dana/0000-0001-9573-2914 National Science Foundation [DEB-0643831, EF-0622705] We thank L. B. Martin, D.A. Ardia, V. Ezenwa, and two anonymous reviewers for significantly improving this manuscript. Financial support to S. Altizer (DEB-0643831) and D. Hawley (EF-0622705) was provided by the National Science Foundation. Adamo SA, 2004, ANIM BEHAV, V68, P1443, DOI 10.1016/j.anbehav.2004.05.005; Adelman JS, 2009, INTEGR COMP BIOL, V49, P202, DOI 10.1093/icb/icp028; ADELMAN JS, 2010, FUNCTIONAL IN PRESS, DOI DOI 10.1111/J.1365-2435.2010.01702.X; Altizer S, 2006, ECOL LETT, V9, P467, DOI 10.1111/j.1461-0248.2005.00879.x; Altizer S, 2004, J ANIM ECOL, V73, P309, DOI 10.1111/j.0021-8790.2004.00807.x; Altizer S, 2003, TRENDS ECOL EVOL, V18, P589, DOI 10.1016/j.tree.2003.08.013; ANDERSON RM, 1979, NATURE, V280, P361, DOI 10.1038/280361a0; ANDERSON RM, 1986, PHILOS T ROY SOC B, V314, P533, DOI 10.1098/rstb.1986.0072; ANDERSON RM, 1981, PHILOS T R SOC B, V291, P451, DOI 10.1098/rstb.1981.0005; Arakawa H, 2010, HORM BEHAV, V57, P330, DOI 10.1016/j.yhbeh.2010.01.002; Aubert A, 1997, BRAIN BEHAV IMMUN, V11, P107, DOI 10.1006/brbi.1997.0485; Baer B, 2006, ECOL ENTOMOL, V31, P591, DOI 10.1111/j.1365-2311.2006.00825.x; BAUCOM RS, 2010, FUNCTIONAL IN PRESS; Beechler BR, 2009, J WILDLIFE DIS, V45, P57, DOI 10.7589/0090-3558-45.1.57; Behringer DC, 2006, NATURE, V441, P421, DOI [10.1038/441421a, 10.1038/441421]; Blount JD, 2003, OIKOS, V102, P340, DOI 10.1034/j.1600-0706.2003.12413.x; Boots M, 2009, PHILOS T R SOC B, V364, P27, DOI 10.1098/rstb.2008.0160; Bouwman KM, 2010, BIOL LETTERS, V6, P462, DOI 10.1098/rsbl.2010.0020; Bradley JE, 2008, PARASITOLOGY, V135, P807, DOI 10.1017/S0031182008000322; Buehler DM, 2008, AM NAT, V172, P783, DOI 10.1086/592865; Bundy D, 2000, PARASITOL TODAY, V16, P273, DOI 10.1016/S0169-4758(00)01689-6; Cannell JJ, 2006, EPIDEMIOL INFECT, V134, P1129, DOI 10.1017/S0950268806007175; Cattadori IM, 2008, INT J PARASITOL, V38, P371, DOI 10.1016/j.ijpara.2007.08.004; Cattadori IM, 2005, P ROY SOC B-BIOL SCI, V272, P1163, DOI 10.1098/rspb.2004.3050; Cattadori IM, 2006, MICROMAMMALS AND MACROPARASITES: FROM EVOLUTIONARY ECOLOGY TO MANAGEMENT, P349, DOI 10.1007/978-4-431-36025-4_18; Clay CA, 2009, P R SOC B, V276, P1305, DOI 10.1098/rspb.2008.1693; Cohn DWH, 2006, PHYSIOL BEHAV, V87, P932, DOI 10.1016/j.physbeh.2006.02.011; Collinge SK, 2006, DIS ECOLOGY COMMUNIT; Cornell SJ, 2008, P R SOC B, V275, P511, DOI 10.1098/rspb.2007.1415; de Roode JC, 2010, EVOLUTION, V64, P502, DOI 10.1111/j.1558-5646.2009.00845.x; Doums C, 2000, CAN J ZOOL, V78, P1060, DOI 10.1139/cjz-78-6-1060; Dowell SF, 2001, EMERG INFECT DIS, V7, P369; Dwyer G, 1997, AM NAT, V150, P685, DOI 10.1086/286089; Fedorka KM, 2007, BEHAV ECOL, V18, P231, DOI 10.1093/beheco/arl067; Fedorka KM, 2005, CAN J ZOOL, V83, P1012, DOI 10.1139/Z05-095; Ferrari N, 2004, ECOL LETT, V7, P88, DOI 10.1046/j.1461-0248.2003.00552.x; FESTABIANCHET M, 1989, J ANIM ECOL, V58, P785, DOI 10.2307/5124; Fisher MC, 2007, ANIM CONSERV, V10, P420, DOI 10.1111/j.1469-1795.2007.00148.x; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Funk S, 2009, P NATL ACAD SCI USA, V106, P6872, DOI 10.1073/pnas.0810762106; GRAHAM A, 2010, FUNCTIONAL IN PRESS; Graham AL, 2002, Q REV BIOL, V77, P409, DOI 10.1086/344414; Graham AL, 2008, P NATL ACAD SCI USA, V105, P566, DOI 10.1073/pnas.0707221105; Graham AL, 2007, TRENDS PARASITOL, V23, P284, DOI 10.1016/j.pt.2007.04.005; Grear DA, 2009, ECOL LETT, V12, P528, DOI 10.1111/j.1461-0248.2009.01306.x; Guy R, 2009, LANCET INFECT DIS, V9, P747, DOI 10.1016/S1473-3099(09)70300-7; Gylfe A, 2000, NATURE, V403, P724, DOI 10.1038/35001663; HART BL, 1988, NEUROSCI BIOBEHAV R, V12, P123, DOI 10.1016/S0149-7634(88)80004-6; HARVELL CD, 2007, OCEANOGRAPHY, V20, P58; Hawley DM, 2007, CAN J ZOOL, V85, P752, DOI 10.1139/Z07-053; Hawley DM, 2006, HORM BEHAV, V49, P417, DOI 10.1016/j.yhbeh.2005.09.003; Heinze J, 2010, CURR BIOL, V20, P249, DOI 10.1016/j.cub.2009.12.031; Hochachka WM, 2006, ORNITHOLOGICAL MONOG, V60, P30; Honkavaara J, 2009, ENTOMOL EXP APPL, V132, P165, DOI 10.1111/j.1570-7458.2009.00877.x; Hutchings MR, 2007, P R SOC B, V274, P1839, DOI 10.1098/rspb.2007.0398; Jackson JA, 2004, INT J PARASITOL, V34, P1237, DOI 10.1016/j.ijpara.2004.07.009; Jackson JA, 2009, BMC BIOL, V7, DOI 10.1186/1741-7007-7-16; Johnson RW, 2002, VET IMMUNOL IMMUNOP, V87, P443, DOI 10.1016/S0165-2427(02)00069-7; Johnson RW, 1996, AM J PHYSIOL-REG I, V270, pR192; Jolles AE, 2008, ECOLOGY, V89, P2239, DOI 10.1890/07-0995.1; Keil D, 2001, J IMMUNOL, V167, P4543, DOI 10.4049/jimmunol.167.8.4543; Kennedy MW, 2006, TRENDS ECOL EVOL, V21, P653, DOI 10.1016/j.tree.2006.09.017; KENT S, 1992, P NATL ACAD SCI USA, V89, P9117, DOI 10.1073/pnas.89.19.9117; Kiesecker JM, 1999, P NATL ACAD SCI USA, V96, P9165, DOI 10.1073/pnas.96.16.9165; Knowles SCL, 2009, FUNCT ECOL, V23, P405, DOI 10.1111/j.1365-2435.2008.01507.x; Kourilsky P, 2001, TRENDS IMMUNOL, V22, P502, DOI 10.1016/S1471-4906(01)02012-9; Lazzaro BP, 2009, PHILOS T R SOC B, V364, P15, DOI 10.1098/rstb.2008.0141; Li YG, 2004, AM J EPIDEMIOL, V160, P719, DOI 10.1093/aje/kwh273; Lipsitch M, 2009, P NATL ACAD SCI USA, V106, P3645, DOI 10.1073/pnas.0900933106; LLOYD S, 1983, VET IMMUNOL IMMUNOP, V4, P153, DOI 10.1016/0165-2427(83)90057-0; Lloyd-Smith JO, 2005, NATURE, V438, P355, DOI 10.1038/nature04153; Lloyd-Smith JO, 2004, P ROY SOC B-BIOL SCI, V271, P625, DOI 10.1098/rspb.2003.2632; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Maizels RM, 2003, NAT REV IMMUNOL, V3, P733, DOI 10.1038/nri1183; Maniero GD, 1997, J COMP PHYSIOL B, V167, P256, DOI 10.1007/s003600050072; MARTENS WJM, 1995, ENVIRON HEALTH PERSP, V103, P458, DOI 10.2307/3432584; Martin LB, 2008, PHILOS T R SOC B, V363, P321, DOI 10.1098/rstb.2007.2142; Matson KD, 2006, P R SOC B, V273, P815, DOI 10.1098/rspb.2005.3376; MAY RM, 1978, J ANIM ECOL, V47, P249, DOI 10.2307/3934; McKean KA, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-76; Modjarrad K, 2005, J INFECT DIS, V192, P1277, DOI 10.1086/444543; Moore J, 2002, PARASITES BEHAV ANIM; Moore SL, 2002, SCIENCE, V297, P2015, DOI 10.1126/science.1074196; Moret Y, 2009, OIKOS, V118, P371, DOI 10.1111/j.1600-0706.2008.17187.x; Mougeot F, 2006, BEHAV ECOL, V17, P117, DOI 10.1093/beheco/arj005; Mougeot F, 2005, AM NAT, V166, P158, DOI 10.1086/431256; Mougeot F, 2005, J ANIM ECOL, V74, P488, DOI 10.1111/j.1365-2656.2005.00947.x; Mougeot F, 2004, BEHAV ECOL, V15, P930, DOI 10.1093/beheco/arh087; Munson L, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002545; Mydlarz LD, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001811; Nelson R., 2002, SEASONAL PATTERNS ST; Nelson RJ, 1996, Q REV BIOL, V71, P511, DOI 10.1086/419555; Noden BH, 1995, PARASITOLOGY, V111, P539, DOI 10.1017/S0031182000077003; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Nunn CL, 2009, PHILOS T R SOC B, V364, P61, DOI 10.1098/rstb.2008.0148; Otti O, 2008, ECOL ENTOMOL, V33, P577, DOI 10.1111/j.1365-2311.2008.00998.x; Owen JC, 2008, CAN J ZOOL, V86, P638, DOI 10.1139/7-08-038; Owen JC, 2006, CONDOR, V108, P389, DOI 10.1650/0010-5422(2006)108[389:SDIICO]2.0.CO;2; Owen J, 2006, ECOHEALTH, V3, P79, DOI 10.1007/s10393-006-0025-9; Owen JC, 2008, J ETHOL, V26, P383, DOI 10.1007/s10164-008-0092-1; Owen-Ashley NT, 2006, J EXP BIOL, V209, P3062, DOI 10.1242/jeb.02371; Owen-Ashley NT, 2006, HORM BEHAV, V49, P15, DOI 10.1016/j.yhbeh.2005.04.009; Parry HE, 2004, AQUAT TOXICOL, V69, P311, DOI 10.1016/j.aquatox.2004.06.003; Pascual M, 2006, P NATL ACAD SCI USA, V103, P5829, DOI 10.1073/pnas.0508929103; Pedersen AB, 2007, TRENDS ECOL EVOL, V22, P133, DOI 10.1016/j.tree.2006.11.005; Perkins SE, 2003, INT J PARASITOL, V33, P909, DOI 10.1016/S0020-7519(03)00128-0; Raffel TR, 2006, FUNCT ECOL, V20, P819, DOI 10.1111/j.1365-2435.2006.01159.x; RANTALA MJ, 2000, P ROY SOC LOND B BIO, V269, P1681; Read AF, 2008, PLOS BIOL, V6, P2638, DOI 10.1371/journal.pbio.1000004; Reichert TA, 2004, AM J EPIDEMIOL, V160, P492, DOI 10.1093/aje/kwh227; Riddell C, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0007621; Rizzoli A., 2002, ECOLOGY WILDLIFE DIS; Rohr JR, 2010, P NATL ACAD SCI USA, V107, P8269, DOI 10.1073/pnas.0912883107; Rolff J, 2002, P ROY SOC B-BIOL SCI, V269, P867, DOI 10.1098/rspb.2002.1959; Sadd BM, 2009, EVOL APPL, V2, P113, DOI 10.1111/j.1752-4571.2008.00057.x; Sadd BM, 2005, BIOL LETT-UK, V1, P386, DOI 10.1098/rsbl.2005.0369; Sandland GJ, 2003, TRENDS PARASITOL, V19, P571, DOI 10.1016/j.pt.2003.10.006; Schulenburg H, 2009, PHILOS T R SOC B, V364, P3, DOI 10.1098/rstb.2008.0249; Seivwright LJ, 2005, P ROY SOC B-BIOL SCI, V272, P2299, DOI 10.1098/rspb.2005.3233; Shaw DJ, 1995, PARASITOLOGY, V111, pS111, DOI 10.1017/S0031182000075855; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; SINDERMANN CJ, 1990, PRINCIPAL DIS FISH S; Soper G A, 1939, Bull N Y Acad Med, V15, P698; Suhonen J, 2010, OECOLOGIA, V162, P541, DOI 10.1007/s00442-009-1470-2; Suwanchaichinda C, 1998, J MED ENTOMOL, V35, P157, DOI 10.1093/jmedent/35.2.157; Swinton J., 2002, P83; Temime L, 2009, P NATL ACAD SCI USA, V106, P18420, DOI 10.1073/pnas.0900974106; Tregenza T, 2006, ANIM BEHAV, V72, P809, DOI 10.1016/j.anbehav.2006.01.019; Tripet F, 2008, TRENDS PARASITOL, V24, P219, DOI 10.1016/j.pt.2008.02.008; Viboud C, 2006, PLOS MED, V3, P468, DOI 10.1371/journal.pmed.0030089; Viney ME, 2005, TRENDS ECOL EVOL, V20, P665, DOI 10.1016/j.tree.2005.10.003; von Essen MR, 2010, NAT IMMUNOL, V11, P344, DOI 10.1038/ni.1851; Voordouw MJ, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-76; Voordouw MJ, 2008, MALARIA J, V7, DOI 10.1186/1475-2875-7-103; Walson JL, 2008, AIDS, V22, P1601, DOI 10.1097/QAD.0b013e32830a502e; Walters DR, 2008, PHYSIOL MOL PLANT P, V73, P95, DOI 10.1016/j.pmpp.2009.03.002; Ward JR, 2007, MAR ECOL PROG SER, V329, P115, DOI 10.3354/meps329115; Weber TP, 2007, EMERG INFECT DIS, V13, P1139, DOI 10.3201/eid1308.070319; White ANJ, 2009, BMC INFECT DIS, V9, DOI 10.1186/1471-2334-9-196; WOBESER G, 2006, ESSENTIALS DIS ECOLO; Wolday D, 2002, JAIDS, V31, P56, DOI 10.1097/01.QAI.0000026520.02173.F7; Woolhouse MEJ, 1997, P NATL ACAD SCI USA, V94, P338, DOI 10.1073/pnas.94.1.338; Woolhouse MEJ, 1998, PARASITOL TODAY, V14, P428, DOI 10.1016/S0169-4758(98)01318-0; YATES A, 2009, P ROY SOC LOND B BIO, V273, P3075; Ye YXH, 2009, PLOS PATHOG, V5, DOI 10.1371/journal.ppat.1000385; Zuk M, 2006, BIOL LETT-UK, V2, P521, DOI 10.1098/rsbl.2006.0539 146 139 142 9 216 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. FEB 2011 25 1 48 60 10.1111/j.1365-2435.2010.01753.x 13 Ecology Environmental Sciences & Ecology 709VC WOS:000286468500006 Bronze 2018-11-12 J Ardia, DR; Parmentier, HK; Vogel, LA Ardia, Daniel R.; Parmentier, Henk K.; Vogel, Laura A. The role of constraints and limitation in driving individual variation in immune response FUNCTIONAL ECOLOGY English Review constraints; ecoimmunology; epigenetics; genetics; individual variation; life history tradeoffs; polarization RED-BLOOD-CELLS; MAJOR HISTOCOMPATIBILITY COMPLEX; PRIMARY ANTIBODY-RESPONSE; QUANTITATIVE TRAIT LOCI; REGULATORY T-CELLS; SHEEP ERYTHROCYTES; NATURAL-SELECTION; DROSOPHILA-MELANOGASTER; EVOLUTIONARY ECOLOGY; DIVERGENT SELECTION P>1. Life history theory predicts that immunity should be plastic and reflect environmental contexts. However, individual variation in immune investment may arise not just because of individual adjustment, but because of developmental, physiological, genetic or immunological constraints which lead to non-adaptive responses by limiting or eliminating flexibility in immune investment. Constraints can arise because organisms are single integrated units with interconnected and interacting components, in which physiological and genetic control mechanisms may limit or constrain immunity. We review some of the key underlying genetic and physiological factors that may constrain the occurrence and intensity of immune responses. 2. A major part of individual variability may rest on variation in genetic background. Genetic-based constraints can limit or influence immune responses, particularly through pleiotropy and epistatic interactions. In addition, genetic variation, an important driver of variation in antigen recognition and immune system polarization, can be constrained through linkage disequilibrium and genetic drift. Epigenetic changes can also constrain or limit immune responses in future generations based on individual experience. 3. The immune system itself can influence individual flexibility in immune investment. Throughout development individuals face tradeoffs within the immune system that favour the expression of one trait at the expense of another. Ontogenetic differences can cause juveniles and adults to produce entirely different immune responses to the same pathogen. T-helper 1 (Th1)/T-helper 1 (Th2) polarization during infection also imposes constraints upon an individual's immune responsiveness, with the consequence that hosts cannot simultaneously mount strong responses using both Th1 and Th2 cells. In addition, evidence suggests that flexibility in immune responses becomes constrained with age through accumulation of memory cells at the expense of naive cells, decreased function of cells involved in adaptive and innate immunity, and programming of HPA-immune interactions. 4. In summary, selection on a particular immune trait can have effects on other immune components or phenotypic characters, as revealed by artificial selection studies. In particular selection for increased investment in compartments of the immune system leads to decreased investment in other competing life history functions and/or marked changes in other immune components. The role of past experience, even the past experience of parents, may limit and constrain immune responses through influencing the ontogeny of immunity, as well as through epigenetic influences. [Ardia, Daniel R.] Franklin & Marshall Coll, Dept Biol, Lancaster, PA 17604 USA; [Parmentier, Henk K.] Wageningen Inst Anim Sci, Dept Anim Sci, Adaptat Physiol Grp, NL-6709 PG Wageningen, Netherlands; [Vogel, Laura A.] Illinois State Univ, Sch Biol Sci, Normal, IL 61790 USA Ardia, DR (reprint author), Franklin & Marshall Coll, Dept Biol, Lancaster, PA 17604 USA. daniel.ardia@fandm.edu Vogel, Laura/0000-0002-9305-175X Abbas AK, 1996, NATURE, V383, P787, DOI 10.1038/383787a0; Adamo SA, 2008, J EXP BIOL, V211, pII, DOI 10.1242/jeb.016907; Adamo SA, 2006, ANIM BEHAV, V72, P235, DOI 10.1016/j.anbehav.2006.01.011; Adriaansen-Tennekes R, 2009, POULTRY SCI, V88, P1879, DOI 10.3382/ps.2009-00150; Ahtiainen JJ, 2006, BEHAV ECOL SOCIOBIOL, V60, P826, DOI 10.1007/s00265-006-0226-9; Altizer S, 2006, ECOL LETT, V9, P467, DOI 10.1111/j.1461-0248.2005.00879.x; Ardia D.R., 2005, OECOLOGIA, V145, P326; Ardia DR, 2007, ECOGRAPHY, V30, P23, DOI 10.1111/j.2006.0906-7590.04939.x; Ardia DR, 2005, ECOLOGY, V86, P2040, DOI 10.1890/04-1619; Aune TM, 2009, IMMUNOLOGY, V126, P299, DOI 10.1111/j.1365-2567.2008.03026.x; Baelmans R, 2004, TROP ANIM HEALTH PRO, V36, P731, DOI 10.1023/B:TROP.0000045967.45580.ef; Bartolomucci A, 2007, FRONT NEUROENDOCRIN, V28, P28, DOI 10.1016/j.yfrne.2007.02.001; BEACH RS, 1982, SCIENCE, V218, P469, DOI 10.1126/science.7123244; Beadell JS, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000896; Bernatchez L, 2003, J EVOLUTION BIOL, V16, P363, DOI 10.1046/j.1420-9101.2003.00531.x; Betelli E., 2007, NAT REV IMMUNOL, V8, P345; BIOZZI G, 1979, IMMUNOLOGY, V36, P427; Bossdorf O, 2008, ECOL LETT, V11, P106, DOI 10.1111/j.1461-0248.2007.01130.x; Bowden TJ, 2007, FISH SHELLFISH IMMUN, V22, P695, DOI 10.1016/j.fsi.2006.08.016; Bowden TJ, 2008, FISH SHELLFISH IMMUN, V25, P373, DOI 10.1016/j.fsi.2008.03.017; Caruso C, 2004, ANN NY ACAD SCI, V1028, P1, DOI 10.1196/annals.1322.001; CHANDRA RK, 1980, AM J CLIN NUTR, V33, P736; Cichon M, 2003, J EVOLUTION BIOL, V16, P1205, DOI 10.1046/j.1420-9101.2003.00611.x; Cicin-Sain L, 2007, P NATL ACAD SCI USA, V104, P19960, DOI 10.1073/pnas.0705905104; COHEN IR, 1992, IMMUNOL TODAY, V13, P490, DOI 10.1016/0167-5699(92)90024-2; Cordoba-Aguilar A, 2009, ECOL ENTOMOL, V34, P228, DOI 10.1111/j.1365-2311.2008.01061.x; Cotter PF, 2005, POULTRY SCI, V84, P220, DOI 10.1093/ps/84.2.220; Cotter SC, 2004, J EVOLUTION BIOL, V17, P421, DOI 10.1046/j.1420-9101.2003.00655.x; Cuenco KT, 2009, J INFECT DIS, V200, P1271, DOI 10.1086/605844; Ewerton PD, 2007, IMMUNOGENETICS, V59, P625, DOI 10.1007/s00251-007-0229-3; DAMBROSIO D, 1995, SCIENCE, V268, P293, DOI 10.1126/science.7716523; DARWIN C, 1859, ORIGIN SPECIES; de Groot NG, 2008, HUM IMMUNOL, V69, pS117, DOI 10.1016/j.humimm.2008.08.245; Decuypere E, 2007, WORLD POULTRY SCI J, V63, P115, DOI 10.1079/WPS2005133; DEVRIES RG, 1988, PERSPECTIVES AUTOIMM, P1; Dhabhar FS, 1999, P NATL ACAD SCI USA, V96, P1059, DOI 10.1073/pnas.96.3.1059; Doums C, 2002, ECOL ENTOMOL, V27, P138, DOI 10.1046/j.1365-2311.2002.00388.x; Duan SJ, 2007, CELL MOL IMMUNOL, V4, P353; Duchemin MB, 2007, AQUACULTURE, V264, P73, DOI 10.1016/j.aquaculture.2006.12.030; DUNNINGTON EA, 1989, ANIM GENET, V20, P213; EDFORSLILJA I, 1985, Z TIERZ ZUCHTUNGSBIO, V102, P308; EDFORSLILJA I, 1994, VET IMMUNOL IMMUNOP, V40, P1, DOI 10.1016/0165-2427(94)90011-6; FERNANDES G, 1979, P NATL ACAD SCI USA, V76, P457, DOI 10.1073/pnas.76.1.457; Finch CE, 2004, SCIENCE, V305, P1736, DOI 10.1126/science.1092556; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; FRAKER PJ, 1977, J NUTR, V107, P1889; Franceschi C, 2000, ANN NY ACAD SCI, V908, P244; Freitak D, 2007, BMC BIOL, V5, DOI 10.1186/1741-7007-5-56; Fumagalli M, 2009, J EXP MED, V206, P1395, DOI 10.1084/jem.20082779; Gehad AE, 1999, VET IMMUNOL IMMUNOP, V68, P13, DOI 10.1016/S0165-2427(99)00008-2; Globerson A, 2000, IMMUNOL TODAY, V21, P515, DOI 10.1016/S0167-5699(00)01714-X; Graham AL, 2002, Q REV BIOL, V77, P409, DOI 10.1086/344414; Graham AL, 2005, J INFECT DIS, V191, P410, DOI 10.1086/426871; Greene JA, 2009, MALARIA J, V8, DOI 10.1186/1475-2875-8-50; Grindstaff JL, 2008, J EXP BIOL, V211, pI, DOI 10.1242/jeb.017459; Hansen T. F., 2004, EVOLUTIONARY BIOL CO, p130 150; Haussmann MF, 2005, OECOLOGIA, V145, P270, DOI 10.1007/s00442-005-0123-3; Hawley DM, 2007, FUNCT ECOL, V21, P520, DOI 10.1111/j.1365-2435.2007.01254.x; Hoffmann JA, 2003, NATURE, V426, P33, DOI 10.1038/nature02021; Hughes AL, 1999, CELL MOL LIFE SCI, V56, P94, DOI 10.1007/s000180050010; Hughes AL, 2002, IMMUNOL REV, V190, P161, DOI 10.1034/j.1600-065X.2002.19012.x; Hughes AL, 1998, ANNU REV GENET, V32, P415, DOI 10.1146/annurev.genet.32.1.415; Huntoon KM, 2008, J LEUKOCYTE BIOL, V84, P170, DOI 10.1189/jlb.0208100; Ihle S, 2006, MOL BIOL EVOL, V23, P790, DOI 10.1093/molbev/msj096; Irikura VM, 2002, J IMMUNOL, V169, P393, DOI 10.4049/jimmunol.169.1.393; Jacot A, 2005, P ROY SOC B-BIOL SCI, V272, P63, DOI 10.1098/rspc.2004.2919; Jirtle RL, 2007, NAT REV GENET, V8, P253, DOI 10.1038/nrg2045; Kachamakova NM, 2006, FISH SHELLFISH IMMUN, V21, P404, DOI 10.1016/j.fsi.2006.01.005; Karell P, 2008, FUNCT ECOL, V22, P682, DOI 10.1111/j.1365-2435.2008.01425.x; Klasing KC, 1998, POULTRY SCI, V77, P1119, DOI 10.1093/ps/77.8.1119; KOENE P, 1997, P 5 EUR S POULTR WEL, P99; Koolhaas JM, 2008, BRAIN BEHAV IMMUN, V22, P662, DOI 10.1016/j.bbi.2007.11.006; KREUKNIET MB, 1995, VET IMMUNOL IMMUNOP, V44, P377, DOI 10.1016/0165-2427(94)05304-B; Kreukniet MB, 1996, VET IMMUNOL IMMUNOP, V51, P157, DOI 10.1016/0165-2427(95)05505-3; KREUKNIET MB, 1994, POULTRY SCI, V73, P336, DOI 10.3382/ps.0730336; Kvell K, 2007, CLIN DEV IMMUNOL, P1, DOI 10.1155/2007/83671; Lan Q, 2007, IMMUNOGENETICS, V59, P839, DOI 10.1007/s00251-007-0253-3; Lazzaro BP, 2004, SCIENCE, V303, P1873, DOI 10.1126/science.1092447; Le Souef PN, 2006, EUR RESPIR J, V28, P1258, DOI 10.1183/09031936.06.00088006; Lee KA, 2005, OECOLOGIA, V145, P244, DOI 10.1007/s00442-005-0113-5; LEHMKE H, 2009, AUTOIMMUN REV, V8, P394; Leshchinsky TV, 2001, DEV COMP IMMUNOL, V25, P629, DOI 10.1016/S0145-305X(01)00023-4; Levi-Acobas F, 2009, GENES IMMUN, V10, P297, DOI 10.1038/gene.2009.22; Lifjeld JT, 2002, OECOLOGIA, V130, P185, DOI 10.1007/s004420100798; Little TJ, 2004, J MOL EVOL, V59, P498, DOI 10.1007/s00239-004-2641-8; LOCHMILLER RL, 1993, AUK, V110, P503, DOI 10.2307/4088414; Love OP, 2008, AM NAT, V172, pE99, DOI 10.1086/589521; Macri S, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0001015; Maj T, 2007, REPROD DOMEST ANIM, V42, P343, DOI 10.1111/j.1439-0531.2006.00787.x; Martin LB, 2004, ECOLOGY, V85, P2323, DOI 10.1890/03-0365; Martin LB, 2008, PHILOS T R SOC B, V363, P321, DOI 10.1098/rstb.2007.2142; Martin LB, 2009, GEN COMP ENDOCR, V163, P70, DOI 10.1016/j.ygcen.2009.03.008; Matzinger P, 2002, SCIENCE, V296, P301, DOI 10.1126/science.1071059; McEwen BS, 1997, BRAIN RES REV, V23, P79, DOI 10.1016/S0165-0173(96)00012-4; MITCHISON N A, 1991, Current Biology, V1, P87, DOI 10.1016/0960-9822(91)90286-6; Mocchegiani E, 2006, EXP GERONTOL, V41, P1094, DOI 10.1016/j.exger.2006.08.010; Monaghan P, 2008, FUNCT ECOL, V22, P371, DOI 10.1111/j.1365-2435.2008.01418.x; Morrison ES, 2009, J AVIAN BIOL, V40, P573, DOI 10.1111/j.1600-048X.2009.04910.x; Nelson RJ, 1996, Q REV BIOL, V71, P511, DOI 10.1086/419555; NEPOM GT, 1988, CURR OPIN IMMUNOL, V1, P107, DOI 10.1016/0952-7915(88)90061-1; Neuberger MS, 2000, PHILOS T ROY SOC B, V355, P357, DOI 10.1098/rstb.2000.0573; Palacios MG, 2007, P R SOC B, V274, P951, DOI 10.1098/rspb.2006.0192; Parmentier HK, 2004, POULTRY SCI, V83, P1133, DOI 10.1093/ps/83.7.1133; Parmentier HK, 1996, AVIAN DIS, V40, P634, DOI 10.2307/1592275; PARMENTIER HK, 1995, VET IMMUNOL IMMUNOP, V48, P155, DOI 10.1016/0165-2427(94)05411-K; Parmentier HK, 2004, DEV COMP IMMUNOL, V28, P39, DOI 10.1016/S0145-305X(03)00087-9; Parmentier HK, 2002, VET IMMUNOL IMMUNOP, V90, P91, DOI 10.1016/S0165-2427(02)00231-3; PETTITO JM, 1999, BRAIN BEHAV IMMUN, V13, P175; Picciotto MR, 1998, PHYSIOL REV, V78, P1131; Piersma T, 1997, OIKOS, V80, P623, DOI 10.2307/3546640; Piertney SB, 2006, HEREDITY, V96, P7, DOI 10.1038/sj.hdy.6800724; PINARD MH, 1993, GENET SEL EVOL, V25, P191, DOI 10.1051/gse:19930206; Raberg L, 2003, EVOLUTION, V57, P1670, DOI 10.1554/02-417; Rantala MJ, 2003, FUNCT ECOL, V17, P534, DOI 10.1046/j.1365-2435.2003.00764.x; Reid JM, 2006, BIOL LETTERS, V2, P573, DOI 10.1098/rsbl.2006.0544; Rolff J, 2002, P ROY SOC B-BIOL SCI, V269, P867, DOI 10.1098/rspb.2002.1959; Rolff J, 2004, AM NAT, V164, P559, DOI 10.1086/423715; Rubenstein DR, 2008, GEN COMP ENDOCR, V159, P10, DOI 10.1016/j.ygcen.2008.07.013; Saino N, 2007, BEHAV ECOL, V18, P513, DOI 10.1093/beheco/arm004; Sawalha AH, 2008, AUTOIMMUNITY, V41, P245, DOI 10.1080/08916930802024145; Schwarzenbach GA, 2006, EVOLUTION, V60, P1612, DOI 10.1554/06-090.1; Shanley DP, 2009, TRENDS IMMUNOL, V30, P374, DOI 10.1016/j.it.2009.05.001; Sih A, 2004, Q REV BIOL, V79, P241, DOI 10.1086/422893; Siva-Jothy MT, 1998, PHYSIOL ENTOMOL, V23, P274, DOI 10.1046/j.1365-3032.1998.233090.x; Siwek M, 2004, POULTRY SCI, V83, P853, DOI 10.1093/ps/83.6.853; Siwek M, 2003, POULTRY SCI, V82, P1845, DOI 10.1093/ps/82.12.1845; SMITH JM, 1985, Q REV BIOL, V60, P265, DOI 10.1086/414425; Spencer SJ, 2006, NEUROPSYCHOPHARMACOL, V31, P1910, DOI 10.1038/sj.npp.1301004; Star L, 2007, POULTRY SCI, V86, P1090; STRACHAN DP, 1989, BRIT MED J, V299, P1259, DOI 10.1136/bmj.299.6710.1259; Tollenaere C, 2008, J EVOLUTION BIOL, V21, P1307, DOI 10.1111/j.1420-9101.2008.01563.x; Travers MA, 2008, FISH SHELLFISH IMMUN, V25, P800, DOI 10.1016/j.fsi.2008.08.003; UBOSI CO, 1985, AVIAN DIS, V29, P347, DOI 10.2307/1590495; Uhrberg M, 2005, MOL IMMUNOL, V42, P471, DOI 10.1016/j.molimm.2004.07.029; UNI Z, 1992, ANIM GENET, V23, P379; van den Brand H, 2004, BRIT POULTRY SCI, V45, P787, DOI 10.1080/00071660400014218; Veiga JP, 1998, OIKOS, V82, P313, DOI 10.2307/3546971; Verhulst S, 1999, P NATL ACAD SCI USA, V96, P4478, DOI 10.1073/pnas.96.8.4478; Vermijlen D, 2007, J IMMUNOL, V178, P4304, DOI 10.4049/jimmunol.178.7.4304; Viney ME, 2005, TRENDS ECOL EVOL, V20, P665, DOI 10.1016/j.tree.2005.10.003; Vuillermin PJ, 2009, ALLERGY, V64, P348, DOI 10.1111/j.1398-9995.2009.01970.x; Wijga S, 2009, POULTRY SCI, V88, P1805, DOI 10.3382/ps.2009-00064; Williams PD, 2006, TRENDS ECOL EVOL, V21, P458, DOI 10.1016/j.tree.2006.05.008; Williamson SH, 2007, PLOS GENET, V3, P901, DOI 10.1371/journal.pgen.0030090; Wilson CB, 2009, NAT REV IMMUNOL, V9, P91, DOI 10.1038/nri2487; Yonash N, 2000, POULTRY SCI, V79, P1418, DOI 10.1093/ps/79.10.1418; Zerofsky M, 2005, AGING CELL, V4, P103, DOI 10.1111/j.1474-9728.2005.00147.x; Zhao L, 2007, J LEUKOCYTE BIOL, V81, P1386, DOI 10.1189/jlb.0506364; Zimmerman LM, 2010, J EXP BIOL, V213, P1477, DOI 10.1242/jeb.037770; Zuany-Amorim C, 2002, NAT MED, V8, P625, DOI 10.1038/nm0602-625 150 57 59 4 68 WILEY-BLACKWELL PUBLISHING, INC MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0269-8463 FUNCT ECOL Funct. Ecol. FEB 2011 25 1 61 73 10.1111/j.1365-2435.2010.01759.x 13 Ecology Environmental Sciences & Ecology 709VC WOS:000286468500007 Bronze 2018-11-12 J Griskevicius, V; Delton, AW; Robertson, TE; Tybur, JM Griskevicius, Vladas; Delton, Andrew W.; Robertson, Theresa E.; Tybur, Joshua M. Environmental Contingency in Life History Strategies: The Influence of Mortality and Socioeconomic Status on Reproductive Timing JOURNAL OF PERSONALITY AND SOCIAL PSYCHOLOGY English Article life history theory; reproductive timing; childhood development; socioeconomic status; mortality EVOLUTIONARY-DEVELOPMENTAL THEORY; BIOLOGICAL SENSITIVITY; PUBERTAL MATURATION; TERROR MANAGEMENT; DYING YOUNG; LIVING FAST; HUMANS; PERSPECTIVE; PERSONALITY; MOTIVES Why do some people have children early, whereas others delay reproduction? By considering the trade-offs between using one's resources for reproduction versus other tasks, the evolutionary framework of life history theory predicts that reproductive timing should be influenced by mortality and resource scarcity. A series of experiments examined how mortality cues influenced the desire to have children sooner rather than later. The effects of mortality depended critically on whether people grew up in a relatively resource-scarce or resource-plentiful environment. For individuals growing up relatively poor, mortality cues produced a desire to reproduce sooner-to want children now, even at the cost of furthering one's education or career. Conversely, for individuals growing up relatively wealthy, mortality cues produced a desire to delay reproduction-to further one's education or career before starting a family. Overall, mortality cues appear to shift individuals into different life history strategies as a function of childhood socioeconomic status, suggesting important implications for how environmental factors can influence fertility and family size. [Griskevicius, Vladas] Univ Minnesota, Carlson Sch Management, Dept Mkt, Minneapolis, MN 55455 USA; [Delton, Andrew W.; Robertson, Theresa E.] Univ Calif Santa Barbara, Dept Psychol, Santa Barbara, CA 93106 USA; [Tybur, Joshua M.] Univ New Mexico, Dept Psychol, Albuquerque, NM 87131 USA Griskevicius, V (reprint author), Univ Minnesota, Carlson Sch Management, Dept Mkt, 321 19th Ave S,Suite 3-150, Minneapolis, MN 55455 USA. vladasg@umn.edu Tybur, Joshua/P-5435-2014 Tybur, Joshua/0000-0002-0462-6508; Robertson, Theresa/0000-0001-8229-2323 NIH HHS [DP1 OD000516-05, DP1 OD000516] Ackerman JM, 2006, PSYCHOL SCI, V17, P836, DOI 10.1111/j.1467-9280.2006.01790.x; Aiken L.S., 1991, MULTIPLE REGRESSION; Alexander R. D., 1987, BIOL MORAL SYSTEMS; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J., 2007, OXFORD HDB EVOLUTION, P237; Belsky J, 2009, PSYCHOL BULL, V135, P885, DOI 10.1037/a0017376; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Buss DM, 1997, PSYCHOL INQ, V8, P22, DOI 10.1207/s15327965pli0801_3; CARETTA CM, 1995, PHYSIOL BEHAV, V57, P901, DOI 10.1016/0031-9384(94)00344-5; Charnov Eric L., 1993, P1; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Cohen S, 2004, PSYCHOSOM MED, V66, P553, DOI 10.1097/01.psy.0000126200.05189.d3; DAAN S, 1997, BEHAVIOURAL ECOLOGY; Daly M., 1988, HOMICIDE; Davis J, 2008, HUM NATURE-INT BIOS, V19, P426, DOI 10.1007/s12110-008-9052-2; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; EiblEibesfeldt Irenaus, 1989, HUMAN ETHOLOGY; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2005, DEV PSYCHOPATHOL, V17, P303, DOI 10.1017/S0954579405050157; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Fletcher G., 2006, EVOLUTION SOCIAL PSY, P189; Galobardes B, 2004, EPIDEMIOL REV, V26, P7, DOI 10.1093/expirev/mxh008; Geronimus AT, 1996, HUM NATURE-INT BIOS, V7, P323, DOI 10.1007/BF02732898; GREENBERG J, 1986, SPR S SOC P, P189; GRISKEVICIUS V, 2010, ENV CONTINGENC UNPUB; Griskevicius V, 2007, J PERS SOC PSYCHOL, V93, P85, DOI 10.1037/0022-3514.93.1.85; Griskevicius V, 2006, J PERS SOC PSYCHOL, V91, P281, DOI 10.1037/0022-3514.91.2.281; Griskevicius V, 2009, J PERS SOC PSYCHOL, V96, P980, DOI 10.1037/a0013907; Haselton MG, 2006, PERS SOC PSYCHOL REV, V10, P47, DOI 10.1207/s15327957pspr1001_3; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Horn H. S., 1984, BEHAV ECOLOGY EVOLUT; Horn HS, 1978, BEHAVIOURAL ECOLOGY, P411; Jain A, 2004, J ETHNOPHARMACOL, V90, P171, DOI 10.1016/j.jep.2003.09.041; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; Kaplan HS, 2003, OFFSPRING, P170; Kenrick DT, 2010, PERSPECT PSYCHOL SCI, V5, P292, DOI 10.1177/1745691610369469; Kenrick DT, 2009, SOC COGNITION, V27, P764, DOI 10.1521/soco.2009.27.5.764; Kenrick DT, 2000, DEVELOPMENTAL SOCIAL PSYCHOLOGY OF GENDER, P35; Kirkpatrick LA, 1999, J PERS, V67, P921, DOI 10.1111/1467-6494.00078; Klein SB, 2010, MEM COGNITION, V38, P13, DOI 10.3758/MC.38.1.13; Kruger DJ, 2006, HUM NATURE-INT BIOS, V17, P74, DOI 10.1007/s12110-006-1021-z; LACK D, 1950, IBIS, V92, P288, DOI 10.1111/j.1474-919X.1950.tb01753.x; Landau M. J., 2007, EVOLUTIONARY PSYCHOL, V5, DOI [10. 1177/147470490700500303, DOI 10.1177/147470490700500303]; Li NP, 2009, PERS SOC PSYCHOL B, V35, P923, DOI 10.1177/0146167209334786; Low BS, 2008, CROSS-CULT RES, V42, P201, DOI 10.1177/1069397108317669; Low BS, 2002, AM J HUM BIOL, V14, P149, DOI 10.1002/ajhb.10043; LOW BS, 2000, ADAPTATION HUMAN BEH, P323; Lummaa V, 2003, AM J HUM BIOL, V15, P370, DOI 10.1002/ajhb.10155; Maner JK, 2005, J PERS SOC PSYCHOL, V88, P63, DOI [10.1037/0022-3514.88.1.63, 10.1037/0022-3514.1.63]; Mathews TJ, 2009, NCHS DATA BRIEF, V21; Miller GE, 2009, P NATL ACAD SCI USA, V106, P14716, DOI 10.1073/pnas.0902971106; Navarrete C. D., 2005, EVOLUTIONARY PSYCHOL, V3, P297, DOI DOI 10.1177/147470490500300121; Navarrete CD, 2009, PSYCHOL SCI, V20, P155, DOI 10.1111/j.1467-9280.2009.02273.x; Navarrete CD, 2004, GROUP PROCESS INTERG, V7, P370, DOI 10.1177/1368430204046144; Nettle D, 2006, AM PSYCHOL, V61, P622, DOI 10.1037/0003-066X.61.6.622; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Nettle D, 2009, J THEOR BIOL, V257, P100, DOI 10.1016/j.jtbi.2008.10.033; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Roff D. A., 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; SCHAFFER WM, 1983, AM NAT, V121, P418, DOI 10.1086/284070; Schaller M, 2003, PERS SOC PSYCHOL B, V29, P637, DOI 10.1177/0146167203251526; Simpson Jeffry A., 2008, HDB ATTACHMENT THEOR, P131; Stearns S. C., 1992, EVOLUTION LIFE HIST; Suddendorf T, 2007, BEHAV BRAIN SCI, V30, P299, DOI 10.1017/S0140525X07001975; Tinbergen JM, 1999, BEHAV ECOL, V10, P504, DOI 10.1093/beheco/10.5.504; *US CENS, 2000, CENS 2000 SUMM FIL 3; *US CENT DIS CONTR, 2004, BIRTHS TABL; *US FED BUR INV, 2004, UNIFORM CRIME REPORT; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; Walker RS, 2008, CURR ANTHROPOL, V49, P115, DOI 10.1086/524763; Walker RS, 2008, P ROY SOC B-BIOL SCI, V275, P827, DOI 10.1098/rspb.2007.1511; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; Worthman CM, 2005, AM J HUM BIOL, V17, P95, DOI 10.1002/ajhb.20096 83 118 124 6 51 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0022-3514 1939-1315 J PERS SOC PSYCHOL J. Pers. Soc. Psychol. FEB 2011 100 2 241 254 10.1037/a0021082 14 Psychology, Social Psychology 716HA WOS:000286958500004 20873933 Green Accepted 2018-11-12 J O'Connor, CM; Yick, CY; Gilmour, KM; Van Der Kraak, G; Cooke, SJ O'Connor, Constance M.; Yick, Claire Y.; Gilmour, Kathleen M.; Van Der Kraak, Glen; Cooke, Steven J. The glucocorticoid stress response is attenuated but unrelated to reproductive investment during parental care in a teleost fish GENERAL AND COMPARATIVE ENDOCRINOLOGY English Article Parental care; Parental investment; Cortisol; Androgens; Offspring age; Brood size; Offspring number; Brood manipulation JUVENILE CHINOOK SALMON; BASS MICROPTERUS-DOLOMIEUI; SMALLMOUTH BASS; PHYSIOLOGICAL STRESS; LEPOMIS-MACROCHIRUS; PLASMA-CORTISOL; RAINBOW-TROUT; K-SELECTION; MODULATION; BEHAVIOR We investigated whether circulating glucocorticoids and androgens are correlated with reproductive investment in smallmouth bass (Micropterus dolomieu), a teleost fish with sole paternal care. Circulating cortisol and androgens prior to and 25 min following a standardized 3 min emersion stressor were quantified for non-reproductive and parental fish across the parental care period. To experimentally investigate the influence of reproductive investment on endocrine parameters, we manipulated brood size (reduced, enlarged, sham-treated, or unmanipulated) 24 h prior to sampling parental fish. We predicted that fish guarding offspring would exhibit increased androgens and baseline cortisol levels, and an attenuated cortisol response to the stressor when compared with non-reproductive individuals. We further predicted that these effects would scale with reproductive investment. As predicted, parental care-providing fish exhibited lower post-stress plasma cortisol concentrations than non-reproductive fish. This difference was strongest early during parental care. However, no differences in baseline or post-stress cortisol concentrations were detected among parents guarding offspring with varying brood sizes. There was, however, a trend for parental fish to exhibit an increased cortisol response following brood manipulation, regardless of the direction of change in brood size, a response that likely reflected disturbance. No differences were found in baseline cortisol concentrations. Circulating androgens were found to be highest during early parental care, and no differences were found among parents guarding manipulated broods. Collectively, these findings demonstrate that the endocrine stress response is affected by reproductive status, but the response in this model species does not appear to be scaled according to reproductive investment as predicted by life-history theory. (C) 2010 Elsevier Inc. All rights reserved. [O'Connor, Constance M.; Cooke, Steven J.] Carleton Univ, Ottawa Carleton Inst Biol, Fish Ecol & Conservat Physiol Lab, Ottawa, ON K1S 5B6, Canada; [Yick, Claire Y.; Cooke, Steven J.] Carleton Univ, Inst Environm Sci, Ottawa, ON K1S 5B6, Canada; [Gilmour, Kathleen M.] Univ Ottawa, Dept Biol, Ottawa, ON K1N 6N5, Canada; [Van Der Kraak, Glen] Univ Guelph, Coll Biol Sci, Dept Integrat Biol, Guelph, ON N1G 2W1, Canada O'Connor, CM (reprint author), Carleton Univ, Ottawa Carleton Inst Biol, Fish Ecol & Conservat Physiol Lab, 1125 Colonel Dr, Ottawa, ON K1S 5B6, Canada. coconno4@connect.carleton.ca Cooke, Steven/F-4193-2010 Cooke, Steven/0000-0002-5407-0659 NSERC; Carleton University; Ontario Graduate Scholarship All fish were sampled under an Ontario Ministry of Natural Resources Scientific Collection Permit and handled in accordance with the guidelines of the Canadian Council on Animal Care. This research was supported by NSERC Discovery Grants to S.J.C., K.M.G., and G.V.D.K., and a Research Achievement Award from Carleton University to S.J.C. C.Y.Y. was supported by an NSERC Undergraduate Student Research Award. C.M.O. was supported by an Ontario Graduate Scholarship, and by Carleton University. The authors wish to also thank members and friends of the Cooke Lab for assistance with fieldwork, particularly Jake Davis, Cody Dey, Emily Fobert, Eric Fontaine, Marie-Ange Gravel, Kyle Hanson, Sean Landsman, Sarah McConnachie, Rana Sunder, Alex Wilson, and Samantha Wilson. Particular thanks to Jacquie Matsumoto for her assistance with the testosterone assays. BARTON BA, 1987, AQUACULTURE, V62, P299, DOI 10.1016/0044-8486(87)90172-4; BARTON BA, 1986, T AM FISH SOC, V115, P245, DOI 10.1577/1548-8659(1986)115<245:MADECP>2.0.CO;2; Bokony V, 2009, AM NAT, V173, P589, DOI 10.1086/597610; Bonier F, 2009, TRENDS ECOL EVOL, V24, P634, DOI 10.1016/j.tree.2009.04.013; Breuner CW, 2008, GEN COMP ENDOCR, V157, P288, DOI 10.1016/j.ygcen.2008.05.017; BROWN JA, 1984, ANIM BEHAV, V32, P113, DOI 10.1016/S0003-3472(84)80329-2; CARMICHAEL GJ, 1983, PROG FISH CULT, V45, P110, DOI 10.1577/1548-8659(1983)45[110:PEOHAH]2.0.CO;2; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Cooke SJ, 2006, OECOLOGIA, V148, P235, DOI 10.1007/s00442-006-0375-6; Cooke SJ, 2002, AM FISH S S, V31, P489; Davis KB, 2001, J WORLD AQUACULT SOC, V32, P422, DOI 10.1111/j.1749-7345.2001.tb00469.x; Denver RJ, 2009, INTEGR COMP BIOL, V49, P339, DOI 10.1093/icb/icp082; Dey CJ, 2010, HORM BEHAV, V58, P599, DOI 10.1016/j.yhbeh.2010.06.016; FLOS R, 1988, AQUACULTURE, V71, P99, DOI 10.1016/0044-8486(88)90277-3; Fuzzen MLM, 2011, HORMONES AND REPRODUCTION OF VERTEBRATES, VOL 1: FISHES, P103; GAMPERL AK, 1994, REV FISH BIOL FISHER, V4, P215, DOI 10.1007/BF00044129; Greenberg N, 2002, INTEGR COMP BIOL, V42, P508, DOI 10.1093/icb/42.3.508; Greenberg N, 1987, REPROD ENDOCRINOLOGY, P389; KINDLER PM, 1989, GEN COMP ENDOCR, V75, P446, DOI 10.1016/0016-6480(89)90180-9; King V.W., 2006, AQUAC RES, V37, P1685; Knapp R, 1999, HORM BEHAV, V35, P81, DOI 10.1006/hbeh.1998.1499; Lendvai AZ, 2007, P R SOC B, V274, P391, DOI 10.1098/rspb.2006.3735; Lima LC, 2006, J WORLD AQUACULT SOC, V37, P89, DOI 10.1111/j.1749-7345.2006.00011.x; Lyytikainen T, 2002, ENVIRON BIOL FISH, V64, P195, DOI 10.1023/A:1016017822700; Magee SE, 2006, HORM BEHAV, V49, P598, DOI 10.1016/j.yhbeh.2005.12.003; MAULE AG, 1988, T AM FISH SOC, V117, P245, DOI 10.1577/1548-8659(1988)117<0245:PEOCAT>2.3.CO;2; McMaster M, 1992, CAN TECH REP FISH AQ; Mommsen TP, 1999, REV FISH BIOL FISHER, V9, P211, DOI 10.1023/A:1008924418720; Moore IT, 2003, HORM BEHAV, V43, P39, DOI 10.1016/S0018-506X(02)00038-7; O'Connor CM, 2009, PHYSIOL BIOCHEM ZOOL, V82, P709, DOI 10.1086/605914; Oliveira RF, 2002, COMP BIOCHEM PHYS B, V132, P203, DOI 10.1016/S1096-4959(01)00523-1; Philipp David P., 1997, North American Journal of Fisheries Management, V17, P557, DOI 10.1577/1548-8675(1997)017<0557:TIOCAR>2.3.CO;2; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PIANKA ER, 1972, AM NAT, V106, P581, DOI 10.1086/282798; Pottinger TG, 2000, J FISH BIOL, V56, P667, DOI 10.1006/jfbi.1999.1188; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; RIDGWAY MS, 1988, CAN J ZOOL, V66, P1722, DOI 10.1139/z88-248; RIDGWAY MS, 1989, ETHOLOGY, V80, P47; Romero LM, 2004, TRENDS ECOL EVOL, V19, P249, DOI 10.1016/j.tree.2004.03.008; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; SARGENT RC, 1985, BEHAV ECOL SOCIOBIOL, V17, P43, DOI 10.1007/BF00299427; Schreck CB, 2001, AQUACULTURE, V197, P3, DOI 10.1016/S0044-8486(01)00580-4; SILVERIN B, 1986, GEN COMP ENDOCR, V64, P67, DOI 10.1016/0016-6480(86)90029-8; SMITH C, 1995, REV FISH BIOL FISHER, V5, P7, DOI 10.1007/BF01103363; Suski CD, 2007, J ANIM ECOL, V76, P730, DOI 10.1111/j.1365-2656.2007.01242.x; Suski CD, 2003, T AM FISH SOC, V132, P210, DOI 10.1577/1548-8659(2003)132<0210:TEOCAR>2.0.CO;2; TRIVERS RL, 1974, AM ZOOL, V14, P249; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wingfield JC, 2003, J NEUROENDOCRINOL, V15, P711, DOI 10.1046/j.1365-2826.2003.01033.x; Wingfield JC, 1998, AM ZOOL, V38, P191; WINGFIELD JC, 1986, HORM BEHAV, V20, P405, DOI 10.1016/0018-506X(86)90003-6; Zar J.H, 1999, BIOSTATISTICAL ANAL; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 54 21 21 0 14 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0016-6480 GEN COMP ENDOCR Gen. Comp. Endocrinol. JAN 15 2011 170 2 SI 215 221 10.1016/j.ygcen.2010.11.004 7 Endocrinology & Metabolism Endocrinology & Metabolism 708ND WOS:000286367600002 21074532 2018-11-12 J Lawler, RR Lawler, Richard R. Demographic Concepts and Research Pertaining to the Study of Wild Primate Populations AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY English Article life cycle; population growth rate; behavioral ecology; life history; population genetics; conservation MONKEYS MACACA-MULATTA; LIFE-HISTORY; GENETIC CONSEQUENCES; CONSERVATION BIOLOGY; NATURAL-SELECTION; SOCIAL-STRUCTURE; INDIVIDUAL FITNESS; RECAPTURE DATA; MATING SYSTEM; EVOLUTION Demography is the study of individuals as members of a population. The dynamics of a population are determined by collectively analyzing individual schedules of survival, growth, and reproduction. Together, these schedules are known as the vital rates of the population. The vital rates, along with dispersal, contribute to population structure, which refers to how the population is organized by age, sex, density, and social groups. I briefly review the history of anthropological demography as it pertains to wild primates and then I discuss basic demographic concepts and approaches for studying wild primate populations. I then turn to demographic studies of wild primate demography. Primates are generally characterized by high adult survival probabilities relative to survival at other age/stage classes and most primate populations have population growth rates near equilibrium. Changes in adult survival have the greatest impact on population growth rate (i.e., fitness) relative to other demographic traits such as juvenile/yearling survival or age at first reproduction. I discuss how these demographic patterns, and others, connect to topics and issues in behavioral ecology, life history theory, population genetics, and conservation biology. These connections help reaffirm the fact that the vital rates are both targets and agents of evolutionary change. In this regard, demographic studies of wild primates provide a critical link between the proximate socioecological processes that operate in a species and the long-term phylogenetic patterns that characterize a species. Yrbk Phys Anthropol 54:63-85, 2011. (C) 2011 Wiley Periodicals, Inc. James Madison Univ, Dept Sociol & Anthropol, Harrisonburg, VA 22807 USA Lawler, RR (reprint author), James Madison Univ, Dept Sociol & Anthropol, MSC 7501,Sheldon Hall, Harrisonburg, VA 22807 USA. lawler.jmu@gmail.com National Science Foundation [DBI 0305074, DEB 0531988, BCS 0820298]; Boston University Grant sponsor: National Science Foundation; Grant number: DBI 0305074; Grant number: DEB 0531988; Grant number: BCS 0820298. Grant sponsor: Boston University. ABRAMS PA, 1993, EVOLUTION, V47, P877, DOI 10.1111/j.1558-5646.1993.tb01241.x; ALBERTS SC, 1995, AM NAT, V145, P279, DOI 10.1086/285740; Alberts Susan C., 2003, P66; Allendorf FW, 2006, CONSERVATION GENETIC; Altmann J, 2005, BEHAV ECOL SOCIOBIOL, V57, P490, DOI 10.1007/s00265-004-0870-x; ALTMANN SA, 1991, P NATL ACAD SCI USA, V88, P420, DOI 10.1073/pnas.88.2.420; ALTMANN SA, 1979, PRIMATE ECOLOGY HUMA, P47; Amstrup SC, 2005, HANDBOOK OF CAPTURE-RECAPTURE ANALYSIS, P1; Andelman S.J, 1986, P201; AOKI K, 1984, Primates, V25, P171, DOI 10.1007/BF02382389; Arora N, 2010, P NATL ACAD SCI USA, V107, P21376, DOI 10.1073/pnas.1010169107; Arroyo-Rodriguez V, 2008, AM J PRIMATOL, V70, P114, DOI 10.1002/ajp.20463; Barfield M, 2011, AM NAT, V177, P397, DOI 10.1086/658903; Beaumont MA, 1999, GENETICS, V153, P2013; Bessinger SR, 2002, POPULATION VIABILITY; Blomquist G.E., 2011, PRIMATES PERSPECTIVE, P418; Blomquist GE, 2009, BIOL LETTERS, V5, P339, DOI 10.1098/rsbl.2009.0009; Blomquist Gregory E., 2009, P117, DOI 10.1007/978-0-387-78705-3_5; Bonhomme M, 2008, MOL ECOL, V17, P1009, DOI 10.1111/j.1365-294X.2007.03645.x; Bonner J.T., 1965, SIZE CYCLE ESSAY STR; BOYCE MS, 1992, ANNU REV ECOL SYST, V23, P481, DOI 10.1146/annurev.es.23.110192.002405; Bronikowski AM, 2002, P NATL ACAD SCI USA, V99, P9591, DOI 10.1073/pnas.142675599; Bronikowski AM, 2011, SCIENCE, V331, P1325, DOI 10.1126/science.1201571; Bruford Michael W., 2010, Endangered Species Research, V12, P249, DOI 10.3354/esr00295; Buckland ST, 2010, INT J PRIMATOL, V31, P833, DOI 10.1007/s10764-010-9431-5; Buckland ST, 2010, INT J PRIMATOL, V31, P485, DOI 10.1007/s10764-010-9408-4; BURGER R, 1995, EVOLUTION, V49, P151, DOI 10.1111/j.1558-5646.1995.tb05967.x; Caswell H, 2000, ECOLOGY, V81, P619, DOI 10.1890/0012-9658(2000)081[0619:PARPAT]2.0.CO;2; CASWELL H, 1982, AM NAT, V120, P317, DOI 10.1086/283993; Caswell H, 1996, ECOLOGY, V77, P870, DOI 10.2307/2265507; Caswell H, 2001, MATRIX POPULATION MO; Caswell H, 2007, TRENDS ECOL EVOL, V22, P173, DOI 10.1016/j.tree.2007.01.006; Caswell H, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020809; CAUGHLEY G, 1994, J ANIM ECOL, V63, P215, DOI 10.2307/5542; CAUGHLEY G, 1977, ANAL VERTEBRATE POPU; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; Charnov Eric L., 1993, P1; Charpentier MJE, 2007, AM J PRIMATOL, V69, P1370, DOI 10.1002/ajp.20445; CHESSER RK, 1991, GENETICS, V129, P573; CHESSER RK, 1991, GENETICS, V127, P437; CHESSER RK, 1993, GENETICS, V135, P1221; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Conroy M. J., 2009, QUANTITATIVE CONSERV; Cooch EG, J ORNITHOL; Coulson T, 2006, P ROY SOC B-BIOL SCI, V273, P547, DOI 10.1098/rspb.2005.3357; Cowlishaw G, 2000, PRIMATE CONSERVATION; Danchin E., 2008, BEHAV ECOLOGY; Davis D. E., 1957, Journal of Mammalogy, V38, P374, DOI 10.2307/1376235; DEEVEY ES, 1947, Q REV BIOL, V22, P283, DOI 10.1086/395888; DELURY DB, 1947, BIOMETRICS, V3, P145, DOI 10.2307/3001390; Di Fiore Anthony, 2009, P211, DOI 10.1007/978-0-387-78705-3_9; Dittus WPJ, 1975, SOCIOECOLOGY PSYCHOL, P125; Dittus WPJ, 1979, BEHAVIOUR, V69, P266; DOBSON AP, 1989, CONSERV BIOL, V3, P362, DOI 10.1111/j.1523-1739.1989.tb00242.x; Dugatkin L. A., 1998, GAME THEORY ANIMAL B; Dunbar R.I.M., 1987, P240; Dunbar R. I. M., 1988, PRIMATE SOCIAL SYSTE; DUNBAR RIM, 1976, ANIM BEHAV, V24, P84, DOI 10.1016/S0003-3472(76)80102-9; DUNBAR RIM, 1979, PRIMATE ECOLOGY HUMA, P65; Dunham AE, 2008, BIOL CONSERV, V141, P287, DOI 10.1016/j.biocon.2007.10.006; Fashing PJ, 2000, AM J PRIMATOL, V50, P139, DOI 10.1002/(SICI)1098-2345(200002)50:2<139::AID-AJP4>3.0.CO;2-N; FISHER R. A., 1930, GENETICAL THEORY NAT; Frankham R, 1995, ANNU REV GENET, V29, P305, DOI 10.1146/annurev.ge.29.120195.001513; Fujiwara M, 2002, ECOLOGY, V83, P3257, DOI 10.2307/3072076; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gage TB, 1998, ANNU REV ANTHROPOL, V27, P197, DOI 10.1146/annurev.anthro.27.1.197; GAGE TB, 1986, HUM BIOL, V58, P275; GAGE TB, 1988, AM J PHYS ANTHROPOL, V76, P429, DOI 10.1002/ajpa.1330760403; Godfrey Laurie R., 2002, P113; Goossens B, 2006, PLOS BIOL, V4, P285, DOI 10.1371/journal.pbio.0040025; Grimm V, 2005, INDIVIDUAL BASED MOD; Hamilton W. D, 1971, MAN BEAST COMP SOCIA, P57; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Hammond RL, 2006, P ROY SOC B-BIOL SCI, V273, P479, DOI 10.1098/rspb.2005.3257; HANSON WR, 1963, WILDLIFE MONOGR, V9, P1; Harcourt AH, 2005, J APPL ECOL, V42, P630, DOI 10.1111/j.1365-2664.2005.01037.x; Hassel-Finnegan HM, 2008, INT J PRIMATOL, V29, P1175, DOI 10.1007/s10764-008-9301-6; HEDRICK PW, 2005, GENETICS POPULATIONS; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; Jack KM, 2009, BEHAVIOUR, V146, P429, DOI 10.1163/156853909X410612; Janson Charles H., 2003, P103; Janson Charles H., 1993, P57; Jenouvrier S, 2010, AM NAT, V175, P379; Johnson-Hanks J, 2007, DEMOGR RES, V16, DOI 10.4054/DemRes.2007.16.1; JOLLY A, 1985, EVOLUTION PRIMATE BE; Jones JH, 2010, J ANIM ECOL, V79, P1262, DOI 10.1111/j.1365-2656.2010.01687.x; JORDE LB, 1974, J ANTHROPOL RES, V30, P199, DOI 10.1086/jar.30.3.3629844; Kappeler PM, 2004, PRIMATE LIFE HIST SO; Kappeler PM, 1999, NATURWISSENSCHAFTEN, V85, P18; KELKER GH, 1947, J WILDLIFE MANAGE, V11, P177, DOI 10.2307/3795562; Kertzer DI, 2005, HDB POPULATION, P525; KIRKLAND SJ, 1994, SIAM J MATRIX ANAL A, V15, P1092, DOI 10.1137/S0895479893249228; Kokko H, 2008, J EVOLUTION BIOL, V21, P919, DOI 10.1111/j.1420-9101.2008.01540.x; Koyama N, 2002, PRIMATES, V43, P291, DOI 10.1007/BF02629604; Koyama N, 2001, PRIMATES, V42, P1, DOI 10.1007/BF02640684; Kraus C, 2008, P ROY SOC B-BIOL SCI, V275, P1635, DOI 10.1098/rspb.2008.0200; Krause J, 2002, LIVING GROUPS; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Lande R., 2003, STOCHASTIC POPULATIO; LANGERGRABER KE, 2007, PLOS ONE, V10, pE973, DOI DOI 10.1371/JOURNAL.PONE.0000973; Lawler RR, 2007, AM J PHYS ANTHROPOL, V132, P267, DOI 10.1002/ajpa.20507; Lawler RR, 2011, POPUL ECOL, V53, P229, DOI 10.1007/s10144-010-0206-9; Lawler RR, 2009, OECOLOGIA, V161, P491, DOI 10.1007/s00442-009-1382-1; LAWLER RR, 2003, MOL ECOL, V12, P2301; Lawler RR, 2009, AM J PHYS ANTHR S, V48, P262; Lawler RR, 2010, OPEN ANTHR J, V3, P206; Lee PC, 1999, COMP PRIMATE SOCIOEC; Leopold A, 1933, GAME MANAGEMENT; Lewontin R. C., 1965, P77; Link WA, 2002, J APPL STAT, V29, P207, DOI 10.1080/02664760120108700a; Lotterhos KE, 2011, EVOLUTION, V65, P1693, DOI 10.1111/j.1558-5646.2011.01249.x; LYNCH M, 1995, AM NAT, V146, P489, DOI 10.1086/285812; Marshall Andrew J., 2009, P311; McGraw JB, 1996, AM NAT, V147, P47, DOI 10.1086/285839; MEDAWAR PB, 1952, UNSOLVED PROBLEM BIO; MELNICK DJ, 1984, AM J PHYS ANTHROPOL, V63, P341, DOI 10.1002/ajpa.1330630402; MELNICK DJ, 1987, GENETICA, V73, P117; MELNICK DJ, 1983, BEHAV ECOL SOCIOBIOL, V12, P229, DOI 10.1007/BF00290775; Metcalf CJE, 2007, P R SOC B, V274, P2153, DOI 10.1098/rspb.2007.0561; Metcalf CJE, 2007, TRENDS ECOL EVOL, V22, P205, DOI 10.1016/j.tree.2006.12.001; Miller PS, 2005, VERSION 9 50 USERS M; Moore Jim, 1993, P392; Morris WF, 2011, AM NAT, V177, pE14, DOI 10.1086/657443; Nichols JD, 2002, J APPL STAT, V29, P539, DOI 10.1080/02664760120108809; Nunney L, 2000, EVOL BIOL, V32, P179; NUNNEY L, 1993, EVOLUTION, V47, P1329, DOI 10.1111/j.1558-5646.1993.tb02158.x; Pelletier F, 2007, SCIENCE, V315, P1571, DOI 10.1126/science.1139024; Pereira ME, 2000, PRIMATE MALES, P271; Pereira Michael E., 2003, P149; PERES C A, 1991, Oryx, V25, P89; Pope Theresa R., 1996, P119; Pope TR, 1998, J MAMMAL, V79, P692, DOI 10.2307/1383081; POPE TR, 1992, EVOLUTION, V46, P1112, DOI 10.1111/j.1558-5646.1992.tb00623.x; Quick HF, 1963, WILDLIFE INVESTIGATI, P190; Rankin DJ, 2007, OIKOS, V116, P335, DOI 10.1111/j.2006.0030-1299.15451.x; Rice SH, 2004, EVOLUTIONARY THEORY; Richard AF, 1985, PRIMATES NATURE; Rivkin-Fish M, 2003, AM ANTHROPOL, V105, P289, DOI 10.1525/aa.2003.105.2.289; Roff D. A., 2002, LIFE HIST EVOLUTION; ROSS C, 1988, J ZOOL, V214, P199, DOI 10.1111/j.1469-7998.1988.tb04717.x; ROTH EA, 2004, CULTURE BIOL ANTHR D; Rowell TE, 1967, PRIMATE ETHOLOGY, P283; Rudran R, 2003, INT J PRIMATOL, V24, P924; SADE DS, 1976, YEARB PHYS ANTHROPOL, V20, P253; Severinghaus C, 1955, NEW YORK FISH GAME J, V2, P242; Shattuck MR, 2010, P NATL ACAD SCI USA, V107, P4635, DOI 10.1073/pnas.0911439107; SILER W, 1979, ECOLOGY, V60, P750, DOI 10.2307/1936612; Skalski J. R., 2005, WILDLIFE DEMOGRAPHY; SOULE ME, 1985, BIOSCIENCE, V35, P727, DOI 10.2307/1310054; Storz JF, 1999, J MAMMAL, V80, P553, DOI 10.2307/1383301; Storz JF, 2002, MOL BIOL EVOL, V19, P1981, DOI 10.1093/oxfordjournals.molbev.a004022; Storz JF, 2002, EVOLUTION, V56, P817; Strier KB, 2010, METHODS ECOL EVOL, V1, P199, DOI 10.1111/j.2041-210X.2010.00023.x; STRIER KB, 1993, INT J PRIMATOL, V14, P513, DOI 10.1007/BF02215445; Strier KB, 2002, YEARB PHYS ANTHROPOL, V46, P2; Struhsaker TT, 2008, INT J PRIMATOL, V29, P19, DOI 10.1007/s10764-007-9146-4; Sugg DW, 1996, TRENDS ECOL EVOL, V11, P338, DOI 10.1016/0169-5347(96)20050-3; Sussman Robert W., 2011, PRIMATES PERSPECTIVE, P6; Teleki GE, 1976, J HUM EVOL, V6, P559; TRIVERS RL, 1974, AM J PHYS ANTHROPOL, V41, P163, DOI 10.1002/ajpa.1330410127; Tuljapurkar S., 1990, LECT NOTES BIOMATHEM, V85; Tuljapurkar S, 2010, ANN NY ACAD SCI, V1204, P65, DOI 10.1111/j.1749-6632.2010.05519.x; Tuljapurkar S, 2009, PHILOS T R SOC B, V364, P1499, DOI 10.1098/rstb.2009.0021; Tuljapurkar SD, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000785; van Tienderen PH, 2000, ECOLOGY, V81, P666, DOI 10.1890/0012-9658(2000)081[0666:EATLBD]2.0.CO;2; VANTIENDEREN PH, 1995, ECOLOGY, V76, P2482, DOI 10.2307/2265822; VAUPEL JW, 1979, DEMOGRAPHY, V16, P439, DOI 10.2307/2061224; Vaupel JW, 1998, SCIENCE, V280, P855, DOI 10.1126/science.280.5365.855; Washburn S. L, 1961, SOCIAL LIFE EARLY MA, P58; Watts DP, 2000, PRIMATE MALES, P169; Whipple GC, 1919, VITAL STAT INTRO SCI; Wich SA, 2004, J HUM EVOL, V47, P385, DOI 10.1016/j.jhevol.2004.08.006; Wich SA, 2007, AM J PRIMATOL, V69, P641, DOI 10.1002/ajp.20386; Wiederholt R, 2010, ECOL MODEL, V221, P2482, DOI 10.1016/j.ecolmodel.2010.06.026; Williams B. K., 2002, ANAL MANAGEMENT ANIM; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams PD, 2006, TRENDS ECOL EVOL, V21, P458, DOI 10.1016/j.tree.2006.05.008; Wright S, 1931, GENETICS, V16, P0097; WRIGHT S, 1978, EVOLUTION GENETICS P, V4; Wright S, 1938, SCIENCE, V87, P430, DOI DOI 10.1126/SCIENCE.87.2263; Yearsley JM, 2002, MATH BIOSCI, V179, P131, DOI 10.1016/S0025-5564(02)00119-0 183 0 0 0 27 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0002-9483 AM J PHYS ANTHROPOL Am. J. Phys. Anthropol. 2011 146 53 63 85 10.1002/ajpa.21611 23 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology 908XR WOS:000301526900005 21997178 Bronze 2018-11-12 J Abrams, ET; Miller, EM Abrams, Elizabeth T.; Miller, Elizabeth M. The Roles of the Immune System in Women's Reproduction: Evolutionary Constraints and Life History Trade-Offs AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY English Article pregnancy; lactation; maternal effects; parent-offspring conflict PREMATURE OVARIAN FAILURE; NATURAL-KILLER-CELLS; INTRAUTERINE GROWTH-RETARDATION; HELICOBACTER-PYLORI INFECTION; ACUTE RESPIRATORY-INFECTION; INFANT-FEEDING PRACTICES; NORMAL MENSTRUAL-CYCLE; NECROSIS-FACTOR-ALPHA; FEMALE GENITAL-TRACT; TOLL-LIKE RECEPTORS Life history theory posits that, as long as survival is assured, finite resources are available for reproduction, maintenance, and growth/storage. To maximize lifetime reproductive success, resources are subject to trade-offs both within individuals and between current and future investment. For women, reproducing is costly and time-consuming; the bulk of available resources must be allocated to reproduction at the expense of more flexible systems like immune function. When reproducing women contract infectious diseases, the resources required for immune activation can fundamentally shift the patterns of resource allocation. Adding to the complexity of the reproductive-immune trade-offs in women are the pleiotropic effects of many immune factors, which were modified to serve key roles in mammalian reproduction. In this review, we explore the complex intersections between immune function and female reproduction to situate proximate immunological processes within a life history framework. After a brief overview of the immune system, we discuss some important physiological roles of immune factors in women's reproduction and the conflicts that may arise when these factors must play dual roles. We then discuss the influence of reproductive-immune trade-offs on the patterning of lifetime reproductive success: (1) the effect of immune activation/infectious disease on the timing of life history events; (2) the role of the immune system, immune activation, and infectious disease on resource allocation within individual reproductive events, particularly pregnancy; and (3) the role of the immune system in shaping the offspring's patterns of future life history trade-offs. We close with a discussion of future directions in reproductive immunology for anthropologists. Yrbk Phys Anthropol 54:134-154, 2011. (C) 2011 Wiley Periodicals, Inc. [Abrams, Elizabeth T.] Univ Illinois, Dept Anthropol, Chicago, IL 60607 USA; [Miller, Elizabeth M.] Northwestern Univ, Dept Anthropol, Evanston, IL 60208 USA Abrams, ET (reprint author), Univ Illinois, Dept Anthropol, Chicago, IL 60607 USA. eabrams@uic.edu Miller, Elizabeth/0000-0002-5046-380X Leakey Foundation; National Science Foundation [BCS-0750779]; Wenner-Gren Foundation for Anthropological Research Grant sponsor: The Leakey Foundation (EMM). Grant sponsor: The National Science Foundation Doctoral Dissertation Improvement; Grant number: BCS-0750779. Grant sponsor: Wenner-Gren Foundation for Anthropological Research (ETA). Abrams ET, 2011, AM ANTHROPOL, V113, P417, DOI 10.1111/j.1548-1433.2011.01351.x; Abrams ET, 2009, AM J HUM BIOL, V21, P643, DOI 10.1002/ajhb.20919; Aderem A, 1999, ANNU REV IMMUNOL, V17, P593, DOI 10.1146/annurev.immunol.17.1.593; Adu F D, 1995, Afr J Med Med Sci, V24, P385; Ahima RS, 2000, ANNU REV PHYSIOL, V62, P413, DOI 10.1146/annurev.physiol.62.1.413; Ahlstedt S, 1977, Ciba Found Symp, P115; Akira S, 2001, NAT IMMUNOL, V2, P675, DOI 10.1038/90609; Allen JE, 1997, IMMUNOL TODAY, V18, P387, DOI 10.1016/S0167-5699(97)01102-X; Almqvist C, 2008, ALLERGY, V63, P47, DOI 10.1111/j.1398-9995.2007.01524.x; Aluvihare VR, 2004, NAT IMMUNOL, V5, P266, DOI 10.1038/ni1037; Arifeen S, 2001, PEDIATRICS, V108, DOI 10.1542/peds.108.4.e67; ATHREYA BH, 1993, CLIN IMMUNOL IMMUNOP, V66, P201, DOI 10.1006/clin.1993.1026; Baecher-Lind LE, 2010, OBSTET GYNECOL SURV, V65, P53, DOI 10.1097/OGX.0b013e3181c9e7a1; Bailey MT, 2004, J PEDIATR GASTR NUTR, V38, P414, DOI 10.1097/00005176-200404000-00009; Bainbridge DRJ, 2000, REV REPROD, V5, P67, DOI 10.1530/revreprod/5.2.67; Beagley KW, 2003, FEMS IMMUNOL MED MIC, V38, P13, DOI 10.1016/S0928-8244(03)00202-5; Beck G, 1996, SCI AM, V275, P60, DOI 10.1038/scientificamerican1196-60; Beisel WR, 1996, J NUTR, V126, pS2611, DOI 10.1093/jn/126.suppl_10.2611S; BELVISI L, 1993, J ENDOCRINOL INVEST, V16, P889, DOI 10.1007/BF03348951; Biron CA, 1999, ANNU REV IMMUNOL, V17, P189, DOI 10.1146/annurev.immunol.17.1.189; Black RE, 2003, LANCET, V361, P2226, DOI 10.1016/S0140-6736(03)13779-8; Blell M, 2008, J BIOSOC SCI, V40, P563, DOI 10.1017/S0021932007002696; Bouman A, 2005, HUM REPROD UPDATE, V11, P411, DOI 10.1093/humupd/dmi008; Boyton RJ, 2002, BRIT MED BULL, V61, P1, DOI 10.1093/bmb/61.1.1; BRANDES JM, 1967, OBSTET GYNECOL, V30, P427; Broussard CN, 1998, GASTROENTEROL CLIN N, V27, P123, DOI 10.1016/S0889-8553(05)70350-2; BROWN KH, 1989, PEDIATRICS, V83, P31; BROWN PJ, 1986, HUM ECOL, V14, P311, DOI 10.1007/BF00889033; Brussow H, 1996, CLIN DIAGN LAB IMMUN, V3, P37; BUKOVSKY A, 1995, BIOL REPROD, V53, P1373, DOI 10.1095/biolreprod53.6.1373; Bukovsky A, 2008, AM J REPROD IMMUNOL, V59, P12, DOI 10.1111/j.1600-0897.2007.00562.x; Bukulmez O, 2000, HUM REPROD UPDATE, V6, P1, DOI 10.1093/humupd/6.1.1; CARBO N, 1995, ENDOCRINOLOGY, V136, P3579, DOI 10.1210/en.136.8.3579; Carter AM, 2010, PLACENTAL BED DISORD, P109; Chafetz I, 2007, AM J OBSTET GYNECOL, V197, DOI 10.1016/j.ajog.2007.02.025; Chaline J, 2003, J REPROD IMMUNOL, V59, P137, DOI 10.1016/S0165-0378(03)00043-3; Chernyshov VP, 2001, AM J REPROD IMMUNOL, V46, P220, DOI 10.1034/j.1600-0897.2001.d01-5.x; Chisenga M, 2005, J HUM LACT, V21, P266, DOI 10.1177/0890334405279251; Christodoulakos G, 2007, EUR J CONTRACEP REPR, V12, P194, DOI 10.1080/13625180701387266; CHROUSOS GP, 1995, NEW ENGL J MED, V332, P1351, DOI 10.1056/NEJM199505183322008; Ciardelli L, 2007, INT J IMMUNOPATH PH, V20, P335, DOI 10.1177/039463200702000213; Clemens JD, 1997, PEDIATRICS, V100, part. no., DOI 10.1542/peds.100.6.e2; Coe CL, 2005, NEUROSCI BIOBEHAV R, V29, P39, DOI 10.1016/j.neubiorev.2004.11.003; Colaco CALS, 1998, CELL MOL BIOL, V44, P883; Cole AM, 2006, CURR TOP MICROBIOL, V306, P199; Cole TJ, 2000, P NUTR SOC, V59, P317, DOI 10.1017/S0029665100000355; Cook IF, 2008, VACCINE, V26, P3551, DOI 10.1016/j.vaccine.2008.04.054; COULAM CB, 1979, AM J OBSTET GYNECOL, V133, P639, DOI 10.1016/0002-9378(79)90011-5; Cowans NJ, 2008, PRENATAL DIAG, V28, P121, DOI 10.1002/pd.1921; CRAMER DW, 1983, AM J OBSTET GYNECOL, V147, P1; Cripps A W, 1987, Adv Exp Med Biol, V216B, P1369; CRUZ JR, 1982, PEDIATR RES, V16, P272, DOI 10.1203/00006450-198204000-00004; Cummins AG, 1997, IMMUNOL CELL BIOL, V75, P419, DOI 10.1038/icb.1997.67; Cutolo M, 2002, ANN NY ACAD SCI, V966, P131, DOI 10.1111/j.1749-6632.2002.tb04210.x; Davis JA, 2006, FEMALE INFIDELITY AND PATERNAL UNCERTAINTY: EVOLUTIONARY PERSPECTIVES ON MALE ANTI-CUCKOLDRY TACTICS, P191, DOI 10.1017/CBO9780511617812.010; Dekel N, 2010, AM J REPROD IMMUNOL, V63, P17, DOI 10.1111/j.1600-0897.2009.00792.x; Delves PJ, 2000, NEW ENGL J MED, V343, P37, DOI 10.1056/NEJM200007063430107; Delves PJ, 2000, NEW ENGL J MED, V343, P108, DOI 10.1056/NEJM200007133430207; DEVEREUX WP, 1970, AM J OBSTET GYNECOL, V108, P78, DOI 10.1016/0002-9378(70)90208-5; Donovan SM, 2006, J PEDIATR-US, V149, pS49, DOI 10.1016/j.jpeds.2006.06.052; Dorman JS, 2001, DIABETES, V50, P1857, DOI 10.2337/diabetes.50.8.1857; Du Pasquier Louis, 1993, P199; Dufour DL, 2002, AM J HUM BIOL, V14, P584, DOI 10.1002/ajhb.10071; Elenkov IJ, 2004, ANN NY ACAD SCI, V1024, P138, DOI 10.1196/annals.1321.010; Ellison PT, 2003, AM J HUM BIOL, V15, P342, DOI 10.1002/ajhb.10152; Eschenbach DA, 2000, CLIN INFECT DIS, V30, P901, DOI 10.1086/313818; Fanaro S, 2003, ACTA PAEDIATR, V92, P48; Fantuzzi G, 2005, J ALLERGY CLIN IMMUN, V115, P911, DOI 10.1016/j.jaci.2005.02.023; Fernandez-Riejos P, 2010, MEDIAT INFLAMM, DOI 10.1155/2010/568343; Fessler DMT, 2002, CURR ANTHROPOL, V43, P19, DOI 10.1086/324128; Fisher Susan J, 2004, Reprod Biol Endocrinol, V2, P53, DOI 10.1186/1477-7827-2-53; Flaxman SM, 2000, Q REV BIOL, V75, P113, DOI 10.1086/393377; French SS, 2009, P R SOC B, V276, P4003, DOI 10.1098/rspb.2009.1199; Fried M, 1998, J IMMUNOL, V160, P2523; Fruhbeck G, 2001, AM J PHYSIOL-ENDOC M, V280, pE827; GIGLIO T, 1994, LIFE SCI, V54, P1305, DOI 10.1016/0024-3205(94)00508-7; Gillespie B, 2006, INT BREASTFEED J, V1, DOI 10.1186/1746-4358-1-4; Gillgrass AE, 2003, J VIROL, V77, P9845, DOI 10.1128/JVI.77.18.9845-9851.2003; Gleeson M, 2007, J APPL PHYSIOL, V103, P693, DOI 10.1152/japplphysiol.00008.2007; GOLDBERG GR, 1991, AM J CLIN NUTR, V54, P788; Goldenberg RL, 2000, NEW ENGL J MED, V342, P1500, DOI 10.1056/NEJM200005183422007; Goldman AS, 2002, J MAMMARY GLAND BIOL, V7, P277, DOI 10.1023/A:1022852700266; Golightly E, 2011, MOL CELL ENDOCRINOL, V335, P52, DOI 10.1016/j.mce.2010.08.005; Gregory RL, 1997, MED SCI SPORT EXER, V29, P1596, DOI 10.1097/00005768-199712000-00008; Grimaldi CM, 2002, J CLIN INVEST, V109, P1625, DOI 10.1172/JCI200214873; Grimble RF, 2002, CURR OPIN CLIN NUTR, V5, P551, DOI 10.1097/00075197-200209000-00015; Grindstaff JL, 2008, J EXP BIOL, V211, P654, DOI 10.1242/jeb.012344; Grindstaff JL, 2003, P ROY SOC B-BIOL SCI, V270, P2309, DOI 10.1098/rspb.2003.2485; Groer M, 2004, J HUM LACT, V20, P153, DOI 10.1177/0890334404264104; Gronlund MM, 1999, J PEDIATR GASTR NUTR, V28, P19, DOI 10.1097/00005176-199901000-00007; GROSSMAN C, 1989, J STEROID BIOCHEM, V34, P241, DOI 10.1016/0022-4731(89)90088-5; HAIG D, 1993, Q REV BIOL, V68, P495, DOI 10.1086/418300; Haig D, 1999, EVOLUTION IN HEALTH AND DISEASE, P77; Hanson LA, 2008, NESTLE NUTR WORKS SE, V61, P123, DOI 10.1159/0000113363; HENNART PF, 1991, AM J CLIN NUTR, V53, P32; Hisada M, 1999, J ACQ IMMUN DEF SYND, V22, P302; Hobel CJ, 2004, CLIN OBSTET GYNECOL, V47, P856, DOI 10.1097/01.grf.0000142512.38733.8c; Hoek A, 1997, ENDOCR REV, V18, P107, DOI 10.1210/er.18.1.107; Jabbour HN, 2009, REPRODUCTION, V138, P903, DOI 10.1530/REP-09-0247; Jakobsen MS, 1996, INT J EPIDEMIOL, V25, P115, DOI 10.1093/ije/25.1.115; Janeway CA, 2002, ANNU REV IMMUNOL, V20, P197, DOI 10.1146/annurev.immunol.20.083001.084359; Janeway Jr CA, 2005, IMMUNOBIOLOGY IMMUNE; JASON JM, 1984, PEDIATRICS, V74, P702; KARJALAINEN J, 1989, NEW ENGL J MED, V320, P881, DOI 10.1056/NEJM198904063201401; Keane FEA, 1997, INT J STD AIDS, V8, P489, DOI 10.1258/0956462971920631; Khan AD, 1996, AM J HUM BIOL, V8, P717, DOI 10.1002/(SICI)1520-6300(1996)8:6<717::AID-AJHB3>3.0.CO;2-Q; KING AE, 2003, REPROD BIOL ENDOCRIN, V1, P1; King AE, 2010, J STEROID BIOCHEM, V120, P116, DOI 10.1016/j.jsbmb.2010.01.003; Kleessen B, 2005, BRIT J NUTR, V93, pS35, DOI 10.1079/BJN20041346; Kliman HJ, 2000, AM J PATHOL, V157, P1759, DOI 10.1016/S0002-9440(10)64813-4; Koenig W, 1999, CIRCULATION, V99, P237, DOI 10.1161/01.CIR.99.2.237; KOVAR MG, 1984, PEDIATRICS, V74, P615; Lang TJ, 2004, CLIN IMMUNOL, V113, P224, DOI 10.1016/j.clim.2004.05.011; Larnkjaer A, 2006, PEDIATRICS, V117, P988, DOI 10.1542/peds.2005-2929; LAWRENCE RA, 2005, BREASTFEEDING GUIDE; Liu HY, 2002, J NEUROSCI RES, V70, P238, DOI 10.1002/jnr.10409; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Lockshin MD, 2005, HDB SYSTEMIC AUTOIMM, P3; Lonnerdal B, 1996, ACTA PAEDIATR, V85, P537, DOI 10.1111/j.1651-2227.1996.tb14081.x; Lord GM, 1998, NATURE, V394, P897, DOI 10.1038/29795; LUNDEQUIST B, 1985, ACTA PAEDIATR SCAND, V74, P45, DOI 10.1111/j.1651-2227.1985.tb10919.x; MacDonald TT, 2005, SCIENCE, V307, P1920, DOI 10.1126/science.1106442; Malhotra I, 2009, PLOS MED, V6, DOI 10.1371/journal.pmed.1000116; Marriott I, 2006, IMMUNOL RES, V34, P177, DOI 10.1385/IR:34:3:177; MARSHALL BR, 1975, JAMA-J AM MED ASSOC, V233, P1377, DOI 10.1001/jama.233.13.1377; Martin JT, 2000, EUR J PHARMACOL, V405, P251, DOI 10.1016/S0014-2999(00)00557-4; Mascart-Lemone F, 1991, Adv Exp Med Biol, V310, P201; Matalka KZ, 2003, NEUROENDOCRINOL LETT, V24, P185; Mayer L, 2003, PEDIATRICS, V111, P1595; McDade TW, 2000, AM J HUM BIOL, V12, P792, DOI 10.1002/1520-6300(200011/12)12:6<792::AID-AJHB7>3.0.CO;2-F; McDade TW, 2005, ANNU REV ANTHROPOL, V34, P495, DOI 10.1146/annurev.anthro.34.081804.120348; McDade TW, 1999, AM J HUM BIOL, V11, P705, DOI 10.1002/(SICI)1520-6300(199911/12)11:6<705::AID-AJHB1>3.0.CO;2-G; McDade TW, 2003, YEARB PHYS ANTHROPOL, V46, P100, DOI 10.1002/ajpa.10398; MEDAWAR PB, 1953, SYM SOC EXP BIOL, V7, P320; Medzhitov R, 2009, IMMUNITY, V30, P766, DOI 10.1016/j.immuni.2009.06.004; Michalakis KG, 2010, FERTIL STERIL, V94, P1949, DOI 10.1016/j.fertnstert.2010.05.010; Miller AA, 2006, AM J HUM BIOL, V18, P857, DOI 10.1002/ajhb.20566; Miller EM, 2011, BREASTFEEDING IMMUNI; Mitchell M, 2005, REPRODUCTION, V130, P583, DOI 10.1530/rep.1.00521; Mjihdi A, 2002, AM J PATHOL, V161, P673, DOI 10.1016/S0002-9440(10)64223-X; Moffett-King A, 2002, NAT REV IMMUNOL, V2, P656, DOI 10.1038/nri886; Moller AP, 1998, AM NAT, V152, P605, DOI 10.1086/286193; Moller AP, 1999, Q REV BIOL, V74, P3, DOI 10.1086/392949; Moormann AM, 1999, J INFECT DIS, V180, P1987, DOI 10.1086/315135; Mor G, 2010, AM J REPROD IMMUNOL, V63, P425, DOI 10.1111/j.1600-0897.2010.00836.x; Morrow Ardythe L, 2004, Semin Pediatr Infect Dis, V15, P221, DOI 10.1053/j.spid.2004.07.002; Mosmann TR, 1996, IMMUNOL TODAY, V17, P138, DOI 10.1016/0167-5699(96)80606-2; Moxley G, 2002, ARTHRITIS RHEUM, V46, P250, DOI 10.1002/1529-0131(200201)46:1<250::AID-ART10064>3.0.CO;2-T; Muehlenbein Michael P, 2006, Soc Biol, V53, P13; Muehlenbein MP, 2010, AM J HUM BIOL, V22, P546, DOI 10.1002/ajhb.21045; Muehlenbein MP, 2005, AM J HUM BIOL, V17, P527, DOI 10.1002/ajhb.20419; Mundy GR, 2007, NUTR REV, V65, pS147, DOI 10.1301/nr.2007.dec.S147-S151; NAKAGAWA H, 1981, BIOCHEM PHARMACOL, V30, P639; Nepomnaschy PA, 2006, P NATL ACAD SCI USA, V103, P3938, DOI 10.1073/pnas.0511183103; Nepomnaschy PA, 2007, ANN NY ACAD SCI, V1113, P350, DOI 10.1196/annals.1391.028; Ness RB, 1999, JNCI-J NATL CANCER I, V91, P1459, DOI 10.1093/jnci/91.17.1459; Ness RB, 2004, Q REV BIOL, V79, P383, DOI 10.1086/426089; Nesse RM, 2001, ANN NY ACAD SCI, V935, P75; Niyonsaba F, 2005, J DERMATOL SCI, V40, P157, DOI 10.1016/j.jdermsci.2005.07.009; Oddy Wendy H, 2002, Breastfeed Rev, V10, P5; Ogra PL, 2006, INFECT DIS FETUS NEW, P211; Ouwehand Arthur, 2002, European Journal of Nutrition, V41, P32; Parracho H, 2007, P NUTR SOC, V66, P405, DOI 10.1017/S0029665107005678; Pate JL, 2001, REPRODUCTION, V122, P665, DOI 10.1530/rep.0.1220665; PAUL WE, 2008, FUNDAMENTAL IMMUNOLO; Peacock N, 1991, Hum Nat, V2, P351, DOI 10.1007/BF02692197; Penders J, 2006, PEDIATRICS, V118, P511, DOI 10.1542/peds.2005-2824; PITCHERWILMOTT RW, 1980, CLIN EXP IMMUNOL, V41, P303; POPKIN BM, 1990, PEDIATRICS, V86, P874; PRENTICE A, 1984, ACTA PAEDIATR SCAND, V73, P796, DOI 10.1111/j.1651-2227.1984.tb17778.x; PROFET M, 1993, Q REV BIOL, V68, P335, DOI 10.1086/418170; PROFET M, 1992, ADAPTED MIND EVOLUTI, P327; Redman CWG, 2010, AM J REPROD IMMUNOL, V63, P534, DOI 10.1111/j.1600-0897.2010.00831.x; Richards JS, 2008, TRENDS ENDOCRIN MET, V19, P191, DOI 10.1016/j.tem.2008.03.001; Richman S, 2006, IMMUNOLOGY PREGNANCY; Rieger L, 2004, J SOC GYNECOL INVEST, V11, P488, DOI 10.1016/j.jsgi.2004.05.007; Rier SE, 1997, SEMIN REPROD ENDOCR, V15, P209, DOI 10.1055/s-2008-1068750; Roberts CW, 2001, CLIN MICROBIOL REV, V14, P476, DOI 10.1128/CMR.14.3.476-488.2001; Robillard PY, 2002, AM J REPROD IMMUNOL, V47, P104, DOI 10.1034/j.1600-0897.2002.1o043.x; Rogerson SJ, 2003, INFECT IMMUN, V71, P267, DOI 10.1128/IAI.71.1.267-270.2003; Romero R, 1998, AM J OBSTET GYNECOL, V179, P186, DOI 10.1016/S0002-9378(98)70271-6; Rosenstock SJ, 1996, AM J PUBLIC HEALTH, V86, P1539, DOI 10.2105/AJPH.86.11.1539; Rosenstock SJ, 2000, SCAND J PUBLIC HEALT, V28, P32, DOI 10.1177/140349480002800107; Safaeian M, 2009, J INFECT DIS, V199, P455, DOI 10.1086/596060; Salamonsen LA, 2000, HUM REPROD UPDATE, V6, P16, DOI 10.1093/humupd/6.1.16; Salminen S, 2004, GUT, V53, P1388, DOI 10.1136/gut.2004.041640; Sanchez-Guerrero J, 2001, AM J MED, V111, P464, DOI 10.1016/S0002-9343(01)00885-3; Sandborg C, 2002, J ADOLESCENT HEALTH, V30, P76, DOI 10.1016/S1054-139X(01)00386-X; Schramm C, 2001, AM J GASTROENTEROL, V96, P1587; Schulke L, 2008, HUM REPROD, V23, P1574, DOI 10.1093/humrep/den030; SEAMAN WE, 1979, J IMMUNOL, V122, P2541; Segal AW, 2005, ANNU REV IMMUNOL, V23, P197, DOI 10.1146/annurev.immunol.23.021704.115653; Segerstrom SC, 2004, PSYCHOL BULL, V130, P601, DOI 10.1037/0033-2909.130.4.601; SHAHID NS, 1995, LANCET, V346, P1252, DOI 10.1016/S0140-6736(95)91861-2; Shanley DP, 2009, TRENDS IMMUNOL, V30, P374, DOI 10.1016/j.it.2009.05.001; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; SHELLDUNCAN B, 1995, AM J HUM BIOL, V7, P339, DOI 10.1002/ajhb.1310070310; Shrier LA, 2003, J ADOLESCENT HEALTH, V32, P183, DOI 10.1016/S1054-139X(02)00536-0; Siristatidis C, 2006, J OBSTET GYNAECOL RE, V32, P162, DOI 10.1111/j.1447-0756.2006.00373.x; Sites CK, 2002, FERTIL STERIL, V77, P128, DOI 10.1016/S0015-0282(01)02934-X; Smithson G, 1998, J IMMUNOL, V161, P27; Stearns S. C., 1992, EVOLUTION LIFE HIST; STIMSON WH, 1988, SCAND J IMMUNOL, V28, P345, DOI 10.1111/j.1365-3083.1988.tb01459.x; Strassmann BI, 1999, J WOMENS HEALTH, V8, P193, DOI 10.1089/jwh.1999.8.193; Strassmann BI, 1996, Q REV BIOL, V71, P181, DOI 10.1086/419369; STYRT B, 1991, REV INFECT DIS, V13, P1139; Sullivan AD, 1999, J INFECT DIS, V179, P1580, DOI 10.1086/314752; Tanriverdi F, 2003, J ENDOCRINOL, V176, P293, DOI 10.1677/joe.0.1760293; Than NG, 2004, EUR J BIOCHEM, V271, P1065, DOI 10.1111/j.1432-1033.2004.04004.x; Thompson MS, 2009, MINERVA MED, V100, P357; TIERSON FD, 1986, AM J OBSTET GYNECOL, V155, P1017, DOI 10.1016/0002-9378(86)90337-6; Trinchieri G, 1995, Semin Immunol, V7, P83, DOI 10.1006/smim.1995.0012; TRIVERS RL, 1974, AM ZOOL, V14, P249; Trowsdale J, 2006, NAT IMMUNOL, V7, P241, DOI 10.1038/ni1317; Verthelyi D, 2001, INT IMMUNOPHARMACOL, V1, P983, DOI 10.1016/S1567-5769(01)00044-3; Vignali DAA, 2008, NAT REV IMMUNOL, V8, P523, DOI 10.1038/nri2343; Vitzthum VJ, 2009, YEARB PHYS ANTHROPOL, V52, P95, DOI 10.1002/ajpa.21195; Waldorf KMA, 2008, IMMUNOL INVEST, V37, P631, DOI 10.1080/08820130802205886; Weaver LT, 1998, ARCH DIS CHILD, V78, P235, DOI 10.1136/adc.78.3.235; Werner M, 2008, SCAND J GASTROENTERO, V43, P1232, DOI 10.1080/00365520802130183; Whitacre CC, 1999, SCIENCE, V283, P1277, DOI 10.1126/science.283.5406.1277; White HD, 1997, J IMMUNOL, V158, P3017; Whitten PL, 2009, AM J HUM BIOL, V21, P754, DOI 10.1002/ajhb.20939; Wiesenfeld HC, 2003, CLIN INFECT DIS, V36, P663, DOI 10.1086/367658; WILKS M, 1987, J MED MICROBIOL, V24, P241, DOI 10.1099/00222615-24-3-241; Wira CR, 2010, AM J REPROD IMMUNOL, V63, P544, DOI 10.1111/j.1600-0897.2010.00842.x; Wira CR, 2005, IMMUNOL REV, V206, P306, DOI 10.1111/j.0105-2896.2005.00287.x; Wong P, 2003, ANNU REV IMMUNOL, V21, P29, DOI 10.1146/annurev.immunol.21.120601.141114; Worthman C., 1999, HORMONES HLTH BEHAV, P47; YOSHIOKA H, 1983, PEDIATRICS, V72, P317; Yu L, 2009, AM J REPROD IMMUNOL, V62, P1, DOI 10.1111/j.1600-0897.2009.00712.x; ZAVALETA N, 1995, AM J CLIN NUTR, V62, P559 232 14 16 0 27 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0002-9483 1096-8644 AM J PHYS ANTHROPOL Am. J. Phys. Anthropol. 2011 146 53 134 154 10.1002/ajpa.21621 21 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology 908XR WOS:000301526900008 22101690 2018-11-12 S Lawler, RR Sussman, RW Lawler, Richard R. Demographic Concepts and Research Pertaining to the Study of Wild Primate Populations YEARBOOK OF PHYSICAL ANTHROPOLOGY, VOL 54 Yearbook of Physical Anthropology English Article; Book Chapter life cycle; population growth rate; behavioral ecology; life history; population genetics; conservation MONKEYS MACACA-MULATTA; LIFE-HISTORY; GENETIC CONSEQUENCES; CONSERVATION BIOLOGY; NATURAL-SELECTION; SOCIAL-STRUCTURE; INDIVIDUAL FITNESS; RECAPTURE DATA; MATING SYSTEM; EVOLUTION Demography is the study of individuals as members of a population. The dynamics of a population are determined by collectively analyzing individual schedules of survival, growth, and reproduction. Together, these schedules are known as the vital rates of the population. The vital rates, along with dispersal, contribute to population structure, which refers to how the population is organized by age, sex, density, and social groups. I briefly review the history of anthropological demography as it pertains to wild primates and then I discuss basic demographic concepts and approaches for studying wild primate populations. I then turn to demographic studies of wild primate demography. Primates are generally characterized by high adult survival probabilities relative to survival at other age/stage classes and most primate populations have population growth rates near equilibrium. Changes in adult survival have the greatest impact on population growth rate (i.e., fitness) relative to other demographic traits such as juvenile/yearling survival or age at first reproduction. I discuss how these demographic patterns, and others, connect to topics and issues in behavioral ecology, life history theory, population genetics, and conservation biology. These connections help reaffirm the fact that the vital rates are both targets and agents of evolutionary change. In this regard, demographic studies of wild primates provide a critical link between the proximate socioecological processes that operate in a species and the long-term phylogenetic patterns that characterize a species. Yrbk Phys Anthropol 54: 63-85, 2011. (C) 2011 Wiley Periodicals, Inc. James Madison Univ, Dept Sociol & Anthropol, Harrisonburg, VA 22807 USA Lawler, RR (reprint author), James Madison Univ, Dept Sociol & Anthropol, MSC 7501,Sheldon Hall, Harrisonburg, VA 22807 USA. lawler.jmu@gmail.com ABRAMS PA, 1993, EVOLUTION, V47, P877, DOI 10.1111/j.1558-5646.1993.tb01241.x; ALBERTS SC, 1995, AM NAT, V145, P279, DOI 10.1086/285740; Alberts Susan C., 2003, P66; Allendorf FW, 2006, CONSERVATION GENETIC; Altmann J, 2005, BEHAV ECOL SOCIOBIOL, V57, P490, DOI 10.1007/s00265-004-0870-x; ALTMANN SA, 1991, P NATL ACAD SCI USA, V88, P420, DOI 10.1073/pnas.88.2.420; ALTMANN SA, 1979, PRIMATE ECOLOGY HUMA, P47; Amstrup SC, 2005, HANDBOOK OF CAPTURE-RECAPTURE ANALYSIS, P1; Andelman S.J, 1986, P201; AOKI K, 1984, Primates, V25, P171, DOI 10.1007/BF02382389; Arora N, 2010, P NATL ACAD SCI USA, V107, P21376, DOI 10.1073/pnas.1010169107; Arroyo-Rodriguez V, 2008, AM J PRIMATOL, V70, P114, DOI 10.1002/ajp.20463; Barfield M, 2011, AM NAT, V177, P397, DOI 10.1086/658903; Beaumont MA, 1999, GENETICS, V153, P2013; Bessinger SR, 2002, POPULATION VIABILITY; Blomquist G.E., 2011, PRIMATES PERSPECTIVE, P418; Blomquist GE, 2009, BIOL LETTERS, V5, P339, DOI 10.1098/rsbl.2009.0009; Blomquist Gregory E., 2009, P117, DOI 10.1007/978-0-387-78705-3_5; Bonhomme M, 2008, MOL ECOL, V17, P1009, DOI 10.1111/j.1365-294X.2007.03645.x; Bonner J.T., 1965, SIZE CYCLE ESSAY STR; BOYCE MS, 1992, ANNU REV ECOL SYST, V23, P481, DOI 10.1146/annurev.es.23.110192.002405; Bronikowski AM, 2002, P NATL ACAD SCI USA, V99, P9591, DOI 10.1073/pnas.142675599; Bronikowski AM, 2011, SCIENCE, V331, P1325, DOI 10.1126/science.1201571; Bruford Michael W., 2010, Endangered Species Research, V12, P249, DOI 10.3354/esr00295; Buckland ST, 2010, INT J PRIMATOL, V31, P833, DOI 10.1007/s10764-010-9431-5; Buckland ST, 2010, INT J PRIMATOL, V31, P485, DOI 10.1007/s10764-010-9408-4; BURGER R, 1995, EVOLUTION, V49, P151, DOI 10.1111/j.1558-5646.1995.tb05967.x; Caswell H, 2000, ECOLOGY, V81, P619, DOI 10.1890/0012-9658(2000)081[0619:PARPAT]2.0.CO;2; CASWELL H, 1982, AM NAT, V120, P317, DOI 10.1086/283993; Caswell H, 1996, ECOLOGY, V77, P870, DOI 10.2307/2265507; Caswell H, 2001, MATRIX POPULATION MO; Caswell H, 2007, TRENDS ECOL EVOL, V22, P173, DOI 10.1016/j.tree.2007.01.006; Caswell H, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020809; CAUGHLEY G, 1994, J ANIM ECOL, V63, P215, DOI 10.2307/5542; CAUGHLEY G, 1977, ANAL VERTEBRATE POPU; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; Charnov Eric L., 1993, P1; Charpentier MJE, 2007, AM J PRIMATOL, V69, P1370, DOI 10.1002/ajp.20445; CHESSER RK, 1991, GENETICS, V129, P573; CHESSER RK, 1991, GENETICS, V127, P437; CHESSER RK, 1993, GENETICS, V135, P1221; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Conroy M. J., 2009, QUANTITATIVE CONSERV; Cooch EG, J ORNITHOL IN PRESS; Coulson T, 2006, P ROY SOC B-BIOL SCI, V273, P547, DOI 10.1098/rspb.2005.3357; Cowlishaw G, 2000, PRIMATE CONSERVATION; Danchin E., 2008, BEHAV ECOLOGY; Davis D. E., 1957, Journal of Mammalogy, V38, P374, DOI 10.2307/1376235; DEEVEY ES, 1947, Q REV BIOL, V22, P283, DOI 10.1086/395888; DELURY DB, 1947, BIOMETRICS, V3, P145, DOI 10.2307/3001390; Di Fiore Anthony, 2009, P211, DOI 10.1007/978-0-387-78705-3_9; Dittus WPJ, 1975, SOCIOECOLOGY PSYCHOL, P125; Dittus WPJ, 1979, BEHAVIOUR, V69, P266; DOBSON AP, 1989, CONSERV BIOL, V3, P362, DOI 10.1111/j.1523-1739.1989.tb00242.x; Dugatkin L. A., 1998, GAME THEORY ANIMAL B; Dunbar R.I.M., 1987, P240; DUNBAR RIM, 1976, ANIM BEHAV, V24, P84, DOI 10.1016/S0003-3472(76)80102-9; Dunbar RIM, 1988, RIMATE SOCIAL SYSTEM; DUNBAR RIM, 1979, PRIMATE ECOLOGY HUMA, P65; Dunham AE, 2008, BIOL CONSERV, V141, P287, DOI 10.1016/j.biocon.2007.10.006; Fashing PJ, 2000, AM J PRIMATOL, V50, P139, DOI 10.1002/(SICI)1098-2345(200002)50:2<139::AID-AJP4>3.0.CO;2-N; FISHER R. A., 1930, GENETICAL THEORY NAT; Frankham R, 1995, ANNU REV GENET, V29, P305, DOI 10.1146/annurev.ge.29.120195.001513; Fujiwara M, 2002, ECOLOGY, V83, P3257, DOI 10.2307/3072076; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gage TB, 1998, ANNU REV ANTHROPOL, V27, P197, DOI 10.1146/annurev.anthro.27.1.197; GAGE TB, 1986, HUM BIOL, V58, P275; GAGE TB, 1988, AM J PHYS ANTHROPOL, V76, P429, DOI 10.1002/ajpa.1330760403; Godfrey Laurie R., 2002, P113; Goossens B, 2006, PLOS BIOL, V4, P285, DOI 10.1371/journal.pbio.0040025; Grimm V, 2005, INDIVIDUAL BASED MOD; Hamilton W. D, 1971, MAN BEAST COMP SOCIA, P57; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Hammond RL, 2006, P ROY SOC B-BIOL SCI, V273, P479, DOI 10.1098/rspb.2005.3257; HANSON WR, 1963, WILDLIFE MONOGR, V9, P1; Harcourt AH, 2005, J APPL ECOL, V42, P630, DOI 10.1111/j.1365-2664.2005.01037.x; Hassel-Finnegan HM, 2008, INT J PRIMATOL, V29, P1175, DOI 10.1007/s10764-008-9301-6; HEDRICK PW, 2005, GENETICS POPULATIONS; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; Jack KM, 2009, BEHAVIOUR, V146, P429, DOI 10.1163/156853909X410612; Janson Charles H., 2003, P103; Janson Charles H., 1993, P57; Jenouvrier S, 2010, AM NAT, V175, P379; Johnson-Hanks J, 2007, DEMOGR RES, V16, DOI 10.4054/DemRes.2007.16.1; JOLLY A, 1985, EVOLUTION PRIMATE BE; Jones JH, 2010, J ANIM ECOL, V79, P1262, DOI 10.1111/j.1365-2656.2010.01687.x; JORDE LB, 1974, J ANTHROPOL RES, V30, P199, DOI 10.1086/jar.30.3.3629844; Kappeler PM, 2004, PRIMATE LIFE HIST SO; Kappeler PM, 1999, NATURWISSENSCHAFTEN, V85, P18; KELKER GH, 1947, J WILDLIFE MANAGE, V11, P177, DOI 10.2307/3795562; Kertzer DI, 2005, HDB POPULATION, P525; KIRKLAND SJ, 1994, SIAM J MATRIX ANAL A, V15, P1092, DOI 10.1137/S0895479893249228; Kokko H, 2008, J EVOLUTION BIOL, V21, P919, DOI 10.1111/j.1420-9101.2008.01540.x; Koyama N, 2002, PRIMATES, V43, P291, DOI 10.1007/BF02629604; Koyama N, 2001, PRIMATES, V42, P1, DOI 10.1007/BF02640684; Kraus C, 2008, P ROY SOC B-BIOL SCI, V275, P1635, DOI 10.1098/rspb.2008.0200; Krause J, 2002, LIVING GROUPS; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Lande R., 2003, STOCHASTIC POPULATIO; LANGERGRABER KE, 2007, PLOS ONE, V10, pE973, DOI DOI 10.1371/JOURNAL.PONE.0000973; Lawler RR, 2007, AM J PHYS ANTHROPOL, V132, P267, DOI 10.1002/ajpa.20507; Lawler RR, 2011, POPUL ECOL, V53, P229, DOI 10.1007/s10144-010-0206-9; Lawler RR, 2009, OECOLOGIA, V161, P491, DOI 10.1007/s00442-009-1382-1; LAWLER RR, 2003, MOL ECOL, V12, P2301; Lawler RR, 2009, AM J PHYS ANTHR S, V48, P262; Lawler RR, 2010, OPEN ANTHR J, V3, P206; Lee PC, 1999, COMP PRIMATE SOCIOEC; Leopold A, 1933, GAME MANAGEMENT; Lewontin R. C., 1965, P77; Link WA, 2002, J APPL STAT, V29, P207, DOI 10.1080/02664760120108700a; Lotterhos KE, 2011, EVOLUTION, V65, P1693, DOI 10.1111/j.1558-5646.2011.01249.x; LYNCH M, 1995, AM NAT, V146, P489, DOI 10.1086/285812; Marshall Andrew J., 2009, P311; McGraw JB, 1996, AM NAT, V147, P47, DOI 10.1086/285839; MEDAWAR PB, 1952, UNSOLVED PROBLEM BIO; MELNICK DJ, 1984, AM J PHYS ANTHROPOL, V63, P341, DOI 10.1002/ajpa.1330630402; MELNICK DJ, 1987, GENETICA, V73, P117; MELNICK DJ, 1983, BEHAV ECOL SOCIOBIOL, V12, P229, DOI 10.1007/BF00290775; Metcalf CJE, 2007, P R SOC B, V274, P2153, DOI 10.1098/rspb.2007.0561; Metcalf CJE, 2007, TRENDS ECOL EVOL, V22, P205, DOI 10.1016/j.tree.2006.12.001; Miller P. S., 2005, VORTEX STOCHASTIC SI; Moore Jim, 1993, P392; Morris WF, 2011, AM NAT, V177, pE14, DOI 10.1086/657443; Nichols JD, 2002, J APPL STAT, V29, P539, DOI 10.1080/02664760120108809; Nunney L, 2000, EVOL BIOL, V32, P179; NUNNEY L, 1993, EVOLUTION, V47, P1329, DOI 10.1111/j.1558-5646.1993.tb02158.x; Pelletier F, 2007, SCIENCE, V315, P1571, DOI 10.1126/science.1139024; Pereira ME, 2000, PRIMATE MALES, P271; Pereira Michael E., 2003, P149; PERES C A, 1991, Oryx, V25, P89; Pope Theresa R., 1996, P119; Pope TR, 1998, J MAMMAL, V79, P692, DOI 10.2307/1383081; POPE TR, 1992, EVOLUTION, V46, P1112, DOI 10.1111/j.1558-5646.1992.tb00623.x; Quick HF, 1963, WILDLIFE INVESTIGATI, P190; Rankin DJ, 2007, OIKOS, V116, P335, DOI 10.1111/j.2006.0030-1299.15451.x; Rice SH, 2004, EVOLUTIONARY THEORY; Richard AF, 1985, PRIMATES NATURE; Rivkin-Fish M, 2003, AM ANTHROPOL, V105, P289, DOI 10.1525/aa.2003.105.2.289; Roff D. A., 2002, LIFE HIST EVOLUTION; ROSS C, 1988, J ZOOL, V214, P199, DOI 10.1111/j.1469-7998.1988.tb04717.x; ROTH EA, 2004, CULTURE BIOL ANTHR D; Rowell TE, 1967, PRIMATE ETHOLOGY, P283; Rudran R, 2003, INT J PRIMATOL, V24, P924; SADE DS, 1976, YEARB PHYS ANTHROPOL, V20, P253; Severinghaus C, 1955, NEW YORK FISH GAME J, V2, P242; Shattuck MR, 2010, P NATL ACAD SCI USA, V107, P4635, DOI 10.1073/pnas.0911439107; SILER W, 1979, ECOLOGY, V60, P750, DOI 10.2307/1936612; Skalski J. R., 2005, WILDLIFE DEMOGRAPHY; SOULE ME, 1985, BIOSCIENCE, V35, P727, DOI 10.2307/1310054; Storz JF, 1999, J MAMMAL, V80, P553, DOI 10.2307/1383301; Storz JF, 2002, MOL BIOL EVOL, V19, P1981, DOI 10.1093/oxfordjournals.molbev.a004022; Storz JF, 2002, EVOLUTION, V56, P817; Strier KB, 2010, METHODS ECOL EVOL, V1, P199, DOI 10.1111/j.2041-210X.2010.00023.x; STRIER KB, 1993, INT J PRIMATOL, V14, P513, DOI 10.1007/BF02215445; Strier KB, 2002, YEARB PHYS ANTHROPOL, V46, P2; Struhsaker TT, 2008, INT J PRIMATOL, V29, P19, DOI 10.1007/s10764-007-9146-4; Sugg DW, 1996, TRENDS ECOL EVOL, V11, P338, DOI 10.1016/0169-5347(96)20050-3; Sussman Robert W., 2011, PRIMATES PERSPECTIVE, P6; Teleki GE, 1976, J HUM EVOL, V6, P559; TRIVERS RL, 1974, AM J PHYS ANTHROPOL, V41, P163, DOI 10.1002/ajpa.1330410127; Tuljapurkar S., 1990, LECT NOTES BIOMATHEM, V85; Tuljapurkar S, 2010, ANN NY ACAD SCI, V1204, P65, DOI 10.1111/j.1749-6632.2010.05519.x; Tuljapurkar S, 2009, PHILOS T R SOC B, V364, P1499, DOI 10.1098/rstb.2009.0021; Tuljapurkar SD, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000785; van Tienderen PH, 2000, ECOLOGY, V81, P666, DOI 10.1890/0012-9658(2000)081[0666:EATLBD]2.0.CO;2; VANTIENDEREN PH, 1995, ECOLOGY, V76, P2482, DOI 10.2307/2265822; VAUPEL JW, 1979, DEMOGRAPHY, V16, P439, DOI 10.2307/2061224; Vaupel JW, 1998, SCIENCE, V280, P855, DOI 10.1126/science.280.5365.855; Washburn S. L, 1961, SOCIAL LIFE EARLY MA, P58; Watts DP, 2000, PRIMATE MALES, P169; Whipple GC, 1919, VITAL STAT INTRO SCI; Wich SA, 2004, J HUM EVOL, V47, P385, DOI 10.1016/j.jhevol.2004.08.006; Wich SA, 2007, AM J PRIMATOL, V69, P641, DOI 10.1002/ajp.20386; Wiederholt R, 2010, ECOL MODEL, V221, P2482, DOI 10.1016/j.ecolmodel.2010.06.026; Williams B. K., 2002, ANAL MANAGEMENT ANIM; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams PD, 2006, TRENDS ECOL EVOL, V21, P458, DOI 10.1016/j.tree.2006.05.008; Wright S, 1931, GENETICS, V16, P0097; WRIGHT S, 1978, EVOLUTION GENETICS P, V4; Wright S, 1938, SCIENCE, V87, P430, DOI DOI 10.1126/SCIENCE.87.2263; Yearsley JM, 2002, MATH BIOSCI, V179, P131, DOI 10.1016/S0025-5564(02)00119-0 183 6 6 0 14 WILEY PERIODICALS SAN FRANCISCO 989 MARKET STREET, SAN FRANCISCO, CA 94103-1741 USA 0096-848X YEARB PHYS ANTHROPOL Yearb. Phys. Anthropol. 2011 54 63 85 10.1002/ajpa.21611 23 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology BYT51 WOS:000300172400005 Bronze 2018-11-12 S Abrams, ET; Miller, EM Sussman, RW Abrams, Elizabeth T.; Miller, Elizabeth M. The Roles of the Immune System in Women's Reproduction: Evolutionary Constraints and Life History Trade-Offs YEARBOOK OF PHYSICAL ANTHROPOLOGY, VOL 54 Yearbook of Physical Anthropology English Article; Book Chapter pregnancy; lactation; maternal effects; parent-offspring conflict PREMATURE OVARIAN FAILURE; NATURAL-KILLER-CELLS; INTRAUTERINE GROWTH-RETARDATION; HELICOBACTER-PYLORI INFECTION; ACUTE RESPIRATORY-INFECTION; INFANT-FEEDING PRACTICES; NORMAL MENSTRUAL-CYCLE; NECROSIS-FACTOR-ALPHA; FEMALE GENITAL-TRACT; TOLL-LIKE RECEPTORS Life history theory posits that, as long as survival is assured, finite resources are available for reproduction, maintenance, and growth/storage. To maximize lifetime reproductive success, resources are subject to trade-offs both within individuals and between current and future investment. For women, reproducing is costly and time-consuming; the bulk of available resources must be allocated to reproduction at the expense of more flexible systems like immune function. When reproducing women contract infectious diseases, the resources required for immune activation can fundamentally shift the patterns of resource allocation. Adding to the complexity of the reproductive-immune trade-offs in women are the pleiotropic effects of many immune factors, which were modified to serve key roles in mammalian reproduction. In this review, we explore the complex intersections between immune function and female reproduction to situate proximate immunological processes within a life history framework. After a brief overview of the immune system, we discuss some important physiological roles of immune factors in women's reproduction and the conflicts that may arise when these factors must play dual roles. We then discuss the influence of reproductive-immune trade-offs on the patterning of lifetime reproductive success: (1) the effect of immune activation/infectious disease on the timing of life history events; (2) the role of the immune system, immune activation, and infectious disease on resource allocation within individual reproductive events, particularly pregnancy; and (3) the role of the immune system in shaping the offspring's patterns of future life history trade-offs. We close with a discussion of future directions in reproductive immunology for anthropologists. Yrbk Phys Anthropol 54: 134-154, 2011. (C) 2011 Wiley Periodicals, Inc. [Abrams, Elizabeth T.] Univ Illinois, Dept Anthropol, Chicago, IL 60607 USA; [Miller, Elizabeth M.] Northwestern Univ, Dept Anthropol, Evanston, IL 60208 USA Abrams, ET (reprint author), Univ Illinois, Dept Anthropol, Chicago, IL 60607 USA. eabrams@uic.edu Abrams ET, 2011, AM ANTHROPOL, V113, P417, DOI 10.1111/j.1548-1433.2011.01351.x; Abrams ET, 2009, AM J HUM BIOL, V21, P643, DOI 10.1002/ajhb.20919; Aderem A, 1999, ANNU REV IMMUNOL, V17, P593, DOI 10.1146/annurev.immunol.17.1.593; Adu F D, 1995, Afr J Med Med Sci, V24, P385; Ahima RS, 2000, ANNU REV PHYSIOL, V62, P413, DOI 10.1146/annurev.physiol.62.1.413; Ahlstedt S, 1977, Ciba Found Symp, P115; Akira S, 2001, NAT IMMUNOL, V2, P675, DOI 10.1038/90609; Allen JE, 1997, IMMUNOL TODAY, V18, P387, DOI 10.1016/S0167-5699(97)01102-X; Almqvist C, 2008, ALLERGY, V63, P47, DOI 10.1111/j.1398-9995.2007.01524.x; Aluvihare VR, 2004, NAT IMMUNOL, V5, P266, DOI 10.1038/ni1037; Arifeen S, 2001, PEDIATRICS, V108, DOI 10.1542/peds.108.4.e67; ATHREYA BH, 1993, CLIN IMMUNOL IMMUNOP, V66, P201, DOI 10.1006/clin.1993.1026; Baecher-Lind LE, 2010, OBSTET GYNECOL SURV, V65, P53, DOI 10.1097/OGX.0b013e3181c9e7a1; Bailey MT, 2004, J PEDIATR GASTR NUTR, V38, P414, DOI 10.1097/00005176-200404000-00009; Bainbridge DRJ, 2000, REV REPROD, V5, P67, DOI 10.1530/revreprod/5.2.67; Beagley KW, 2003, FEMS IMMUNOL MED MIC, V38, P13, DOI 10.1016/S0928-8244(03)00202-5; Beck G, 1996, SCI AM, V275, P60, DOI 10.1038/scientificamerican1196-60; Beisel WR, 1996, J NUTR, V126, pS2611, DOI 10.1093/jn/126.suppl_10.2611S; BELVISI L, 1993, J ENDOCRINOL INVEST, V16, P889, DOI 10.1007/BF03348951; Biron CA, 1999, ANNU REV IMMUNOL, V17, P189, DOI 10.1146/annurev.immunol.17.1.189; Black RE, 2003, LANCET, V361, P2226, DOI 10.1016/S0140-6736(03)13779-8; Blell M, 2008, J BIOSOC SCI, V40, P563, DOI 10.1017/S0021932007002696; Bouman A, 2005, HUM REPROD UPDATE, V11, P411, DOI 10.1093/humupd/dmi008; Boyton RJ, 2002, BRIT MED BULL, V61, P1, DOI 10.1093/bmb/61.1.1; BRANDES JM, 1967, OBSTET GYNECOL, V30, P427; Broussard CN, 1998, GASTROENTEROL CLIN N, V27, P123, DOI 10.1016/S0889-8553(05)70350-2; BROWN KH, 1989, PEDIATRICS, V83, P31; BROWN PJ, 1986, HUM ECOL, V14, P311, DOI 10.1007/BF00889033; Brussow H, 1996, CLIN DIAGN LAB IMMUN, V3, P37; BUKOVSKY A, 1995, BIOL REPROD, V53, P1373, DOI 10.1095/biolreprod53.6.1373; Bukovsky A, 2008, AM J REPROD IMMUNOL, V59, P12, DOI 10.1111/j.1600-0897.2007.00562.x; Bukulmez O, 2000, HUM REPROD UPDATE, V6, P1, DOI 10.1093/humupd/6.1.1; CARBO N, 1995, ENDOCRINOLOGY, V136, P3579, DOI 10.1210/en.136.8.3579; Carter AM, 2010, PLACENTAL BED DISORD, P109; Chafetz I, 2007, AM J OBSTET GYNECOL, V197, DOI 10.1016/j.ajog.2007.02.025; Chaline J, 2003, J REPROD IMMUNOL, V59, P137, DOI 10.1016/S0165-0378(03)00043-3; Chernyshov VP, 2001, AM J REPROD IMMUNOL, V46, P220, DOI 10.1034/j.1600-0897.2001.d01-5.x; Chisenga M, 2005, J HUM LACT, V21, P266, DOI 10.1177/0890334405279251; Christodoulakos G, 2007, EUR J CONTRACEP REPR, V12, P194, DOI 10.1080/13625180701387266; CHROUSOS GP, 1995, NEW ENGL J MED, V332, P1351, DOI 10.1056/NEJM199505183322008; Ciardelli L, 2007, INT J IMMUNOPATH PH, V20, P335, DOI 10.1177/039463200702000213; Clemens JD, 1997, PEDIATRICS, V100, part. no., DOI 10.1542/peds.100.6.e2; Coe CL, 2005, NEUROSCI BIOBEHAV R, V29, P39, DOI 10.1016/j.neubiorev.2004.11.003; Colaco CALS, 1998, CELL MOL BIOL, V44, P883; Cole AM, 2006, CURR TOP MICROBIOL, V306, P199; Cole TJ, 2000, P NUTR SOC, V59, P317, DOI 10.1017/S0029665100000355; Cook IF, 2008, VACCINE, V26, P3551, DOI 10.1016/j.vaccine.2008.04.054; COULAM CB, 1979, AM J OBSTET GYNECOL, V133, P639, DOI 10.1016/0002-9378(79)90011-5; Cowans NJ, 2008, PRENATAL DIAG, V28, P121, DOI 10.1002/pd.1921; CRAMER DW, 1983, AM J OBSTET GYNECOL, V147, P1; Cripps A W, 1987, Adv Exp Med Biol, V216B, P1369; CRUZ JR, 1982, PEDIATR RES, V16, P272, DOI 10.1203/00006450-198204000-00004; Cummins AG, 1997, IMMUNOL CELL BIOL, V75, P419, DOI 10.1038/icb.1997.67; Cutolo M, 2002, ANN NY ACAD SCI, V966, P131, DOI 10.1111/j.1749-6632.2002.tb04210.x; Davis JA, 2006, FEMALE INFIDELITY AND PATERNAL UNCERTAINTY: EVOLUTIONARY PERSPECTIVES ON MALE ANTI-CUCKOLDRY TACTICS, P191, DOI 10.1017/CBO9780511617812.010; Dekel N, 2010, AM J REPROD IMMUNOL, V63, P17, DOI 10.1111/j.1600-0897.2009.00792.x; Delves PJ, 2000, NEW ENGL J MED, V343, P37, DOI 10.1056/NEJM200007063430107; Delves PJ, 2000, NEW ENGL J MED, V343, P108, DOI 10.1056/NEJM200007133430207; DEVEREUX WP, 1970, AM J OBSTET GYNECOL, V108, P78, DOI 10.1016/0002-9378(70)90208-5; Donovan SM, 2006, J PEDIATR-US, V149, pS49, DOI 10.1016/j.jpeds.2006.06.052; Dorman JS, 2001, DIABETES, V50, P1857, DOI 10.2337/diabetes.50.8.1857; Du Pasquier Louis, 1993, P199; Dufour DL, 2002, AM J HUM BIOL, V14, P584, DOI 10.1002/ajhb.10071; Elenkov IJ, 2004, ANN NY ACAD SCI, V1024, P138, DOI 10.1196/annals.1321.010; Ellison PT, 2003, AM J HUM BIOL, V15, P342, DOI 10.1002/ajhb.10152; Eschenbach DA, 2000, CLIN INFECT DIS, V30, P901, DOI 10.1086/313818; Fanaro S, 2003, ACTA PAEDIATR, V92, P48; Fantuzzi G, 2005, J ALLERGY CLIN IMMUN, V115, P911, DOI 10.1016/j.jaci.2005.02.023; Fernandez-Riejos P, 2010, MEDIAT INFLAMM, DOI 10.1155/2010/568343; Fessler DMT, 2002, CURR ANTHROPOL, V43, P19, DOI 10.1086/324128; Fisher Susan J, 2004, Reprod Biol Endocrinol, V2, P53, DOI 10.1186/1477-7827-2-53; Flaxman SM, 2000, Q REV BIOL, V75, P113, DOI 10.1086/393377; French SS, 2009, P R SOC B, V276, P4003, DOI 10.1098/rspb.2009.1199; Fried M, 1998, J IMMUNOL, V160, P2523; Fruhbeck G, 2001, AM J PHYSIOL-ENDOC M, V280, pE827; GIGLIO T, 1994, LIFE SCI, V54, P1305, DOI 10.1016/0024-3205(94)00508-7; Gillespie B, 2006, INT BREASTFEED J, V1, DOI 10.1186/1746-4358-1-4; Gillgrass AE, 2003, J VIROL, V77, P9845, DOI 10.1128/JVI.77.18.9845-9851.2003; Gleeson M, 2007, J APPL PHYSIOL, V103, P693, DOI 10.1152/japplphysiol.00008.2007; GOLDBERG GR, 1991, AM J CLIN NUTR, V54, P788; Goldenberg RL, 2000, NEW ENGL J MED, V342, P1500, DOI 10.1056/NEJM200005183422007; Goldman AS, 2002, J MAMMARY GLAND BIOL, V7, P277, DOI 10.1023/A:1022852700266; Golightly E, 2011, MOL CELL ENDOCRINOL, V335, P52, DOI 10.1016/j.mce.2010.08.005; Gregory RL, 1997, MED SCI SPORT EXER, V29, P1596, DOI 10.1097/00005768-199712000-00008; Grimaldi CM, 2002, J CLIN INVEST, V109, P1625, DOI 10.1172/JCI200214873; Grimble RF, 2002, CURR OPIN CLIN NUTR, V5, P551, DOI 10.1097/00075197-200209000-00015; Grindstaff JL, 2008, J EXP BIOL, V211, P654, DOI 10.1242/jeb.012344; Grindstaff JL, 2003, P ROY SOC B-BIOL SCI, V270, P2309, DOI 10.1098/rspb.2003.2485; Groer M, 2004, J HUM LACT, V20, P153, DOI 10.1177/0890334404264104; Gronlund MM, 1999, J PEDIATR GASTR NUTR, V28, P19, DOI 10.1097/00005176-199901000-00007; GROSSMAN C, 1989, J STEROID BIOCHEM, V34, P241, DOI 10.1016/0022-4731(89)90088-5; HAIG D, 1993, Q REV BIOL, V68, P495, DOI 10.1086/418300; Haig D, 1999, EVOLUTION IN HEALTH AND DISEASE, P77; Hanson LA, 2008, NESTLE NUTR WORKS SE, V61, P123, DOI 10.1159/0000113363; HENNART PF, 1991, AM J CLIN NUTR, V53, P32; Hisada M, 1999, J ACQ IMMUN DEF SYND, V22, P302; Hobel CJ, 2004, CLIN OBSTET GYNECOL, V47, P856, DOI 10.1097/01.grf.0000142512.38733.8c; Hoek A, 1997, ENDOCR REV, V18, P107, DOI 10.1210/er.18.1.107; Jabbour HN, 2009, REPRODUCTION, V138, P903, DOI 10.1530/REP-09-0247; Jakobsen MS, 1996, INT J EPIDEMIOL, V25, P115, DOI 10.1093/ije/25.1.115; Janeway CA, 2002, ANNU REV IMMUNOL, V20, P197, DOI 10.1146/annurev.immunol.20.083001.084359; Janeway Jr CA, 2005, IMMUNOBIOLOGY IMMUNE; JASON JM, 1984, PEDIATRICS, V74, P702; KARJALAINEN J, 1989, NEW ENGL J MED, V320, P881, DOI 10.1056/NEJM198904063201401; Keane FEA, 1997, INT J STD AIDS, V8, P489, DOI 10.1258/0956462971920631; Khan AD, 1996, AM J HUM BIOL, V8, P717, DOI 10.1002/(SICI)1520-6300(1996)8:6<717::AID-AJHB3>3.0.CO;2-Q; King Anne E, 2003, Reprod Biol Endocrinol, V1, P116, DOI 10.1186/1477-7827-1-116; King AE, 2010, J STEROID BIOCHEM, V120, P116, DOI 10.1016/j.jsbmb.2010.01.003; Kleessen B, 2005, BRIT J NUTR, V93, pS35, DOI 10.1079/BJN20041346; Kliman HJ, 2000, AM J PATHOL, V157, P1759, DOI 10.1016/S0002-9440(10)64813-4; Koenig W, 1999, CIRCULATION, V99, P237, DOI 10.1161/01.CIR.99.2.237; KOVAR MG, 1984, PEDIATRICS, V74, P615; Lang TJ, 2004, CLIN IMMUNOL, V113, P224, DOI 10.1016/j.clim.2004.05.011; Larnkjaer A, 2006, PEDIATRICS, V117, P988, DOI 10.1542/peds.2005-2929; LAWRENCE RA, 2005, BREASTFEEDING GUIDE; Liu HY, 2002, J NEUROSCI RES, V70, P238, DOI 10.1002/jnr.10409; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Lockshin MD, 2005, HDB SYSTEMIC AUTOIMM, P3; Lonnerdal B, 1996, ACTA PAEDIATR, V85, P537, DOI 10.1111/j.1651-2227.1996.tb14081.x; Lord GM, 1998, NATURE, V394, P897, DOI 10.1038/29795; LUNDEQUIST B, 1985, ACTA PAEDIATR SCAND, V74, P45, DOI 10.1111/j.1651-2227.1985.tb10919.x; MacDonald TT, 2005, SCIENCE, V307, P1920, DOI 10.1126/science.1106442; Malhotra I, 2009, PLOS MED, V6, DOI 10.1371/journal.pmed.1000116; Marriott I, 2006, IMMUNOL RES, V34, P177, DOI 10.1385/IR:34:3:177; MARSHALL BR, 1975, JAMA-J AM MED ASSOC, V233, P1377, DOI 10.1001/jama.233.13.1377; Martin JT, 2000, EUR J PHARMACOL, V405, P251, DOI 10.1016/S0014-2999(00)00557-4; Mascart-Lemone F, 1991, Adv Exp Med Biol, V310, P201; Matalka KZ, 2003, NEUROENDOCRINOL LETT, V24, P185; Mayer L, 2003, PEDIATRICS, V111, P1595; McDade TW, 2000, AM J HUM BIOL, V12, P792, DOI 10.1002/1520-6300(200011/12)12:6<792::AID-AJHB7>3.0.CO;2-F; McDade TW, 2005, ANNU REV ANTHROPOL, V34, P495, DOI 10.1146/annurev.anthro.34.081804.120348; McDade TW, 1999, AM J HUM BIOL, V11, P705, DOI 10.1002/(SICI)1520-6300(199911/12)11:6<705::AID-AJHB1>3.0.CO;2-G; McDade TW, 2003, YEARB PHYS ANTHROPOL, V46, P100, DOI 10.1002/ajpa.10398; MEDAWAR PB, 1953, SYM SOC EXP BIOL, V7, P320; Medzhitov R, 2009, IMMUNITY, V30, P766, DOI 10.1016/j.immuni.2009.06.004; Michalakis KG, 2010, FERTIL STERIL, V94, P1949, DOI 10.1016/j.fertnstert.2010.05.010; Miller AA, 2006, AM J HUM BIOL, V18, P857, DOI 10.1002/ajhb.20566; Miller EM, 2011, BREASTFEEDING IMMUNI; Mitchell M, 2005, REPRODUCTION, V130, P583, DOI 10.1530/rep.1.00521; Mjihdi A, 2002, AM J PATHOL, V161, P673, DOI 10.1016/S0002-9440(10)64223-X; Moffett-King A, 2002, NAT REV IMMUNOL, V2, P656, DOI 10.1038/nri886; Moller AP, 1998, AM NAT, V152, P605, DOI 10.1086/286193; Moller AP, 1999, Q REV BIOL, V74, P3, DOI 10.1086/392949; Moormann AM, 1999, J INFECT DIS, V180, P1987, DOI 10.1086/315135; Mor G, 2010, AM J REPROD IMMUNOL, V63, P425, DOI 10.1111/j.1600-0897.2010.00836.x; Morrow Ardythe L, 2004, Semin Pediatr Infect Dis, V15, P221, DOI 10.1053/j.spid.2004.07.002; Mosmann TR, 1996, IMMUNOL TODAY, V17, P138, DOI 10.1016/0167-5699(96)80606-2; Moxley G, 2002, ARTHRITIS RHEUM, V46, P250, DOI 10.1002/1529-0131(200201)46:1<250::AID-ART10064>3.0.CO;2-T; Muehlenbein Michael P, 2006, Soc Biol, V53, P13; Muehlenbein MP, 2010, AM J HUM BIOL, V22, P546, DOI 10.1002/ajhb.21045; Muehlenbein MP, 2005, AM J HUM BIOL, V17, P527, DOI 10.1002/ajhb.20419; Mundy GR, 2007, NUTR REV, V65, pS147, DOI 10.1301/nr.2007.dec.S147-S151; NAKAGAWA H, 1981, BIOCHEM PHARMACOL, V30, P639; Nepomnaschy PA, 2006, P NATL ACAD SCI USA, V103, P3938, DOI 10.1073/pnas.0511183103; Nepomnaschy PA, 2007, ANN NY ACAD SCI, V1113, P350, DOI 10.1196/annals.1391.028; Ness RB, 1999, JNCI-J NATL CANCER I, V91, P1459, DOI 10.1093/jnci/91.17.1459; Ness RB, 2004, Q REV BIOL, V79, P383, DOI 10.1086/426089; Nesse RM, 2001, ANN NY ACAD SCI, V935, P75; Niyonsaba F, 2005, J DERMATOL SCI, V40, P157, DOI 10.1016/j.jdermsci.2005.07.009; Oddy Wendy H, 2002, Breastfeed Rev, V10, P5; Ogra PL, 2006, INFECT DIS FETUS NEW, P211; Ouwehand Arthur, 2002, European Journal of Nutrition, V41, P32; Parracho H, 2007, P NUTR SOC, V66, P405, DOI 10.1017/S0029665107005678; Pate JL, 2001, REPRODUCTION, V122, P665, DOI 10.1530/rep.0.1220665; PAUL WE, 2008, FUNDAMENTAL IMMUNOLO; Peacock N, 1991, Hum Nat, V2, P351, DOI 10.1007/BF02692197; Penders J, 2006, PEDIATRICS, V118, P511, DOI 10.1542/peds.2005-2824; PITCHERWILMOTT RW, 1980, CLIN EXP IMMUNOL, V41, P303; POPKIN BM, 1990, PEDIATRICS, V86, P874; PRENTICE A, 1984, ACTA PAEDIATR SCAND, V73, P796, DOI 10.1111/j.1651-2227.1984.tb17778.x; PROFET M, 1993, Q REV BIOL, V68, P335, DOI 10.1086/418170; PROFET M, 1992, ADAPTED MIND EVOLUTI, P327; Redman CWG, 2010, AM J REPROD IMMUNOL, V63, P534, DOI 10.1111/j.1600-0897.2010.00831.x; Richards JS, 2008, TRENDS ENDOCRIN MET, V19, P191, DOI 10.1016/j.tem.2008.03.001; Richman S, 2006, IMMUNOLOGY PREGNANCY; Rieger L, 2004, J SOC GYNECOL INVEST, V11, P488, DOI 10.1016/j.jsgi.2004.05.007; Rier SE, 1997, SEMIN REPROD ENDOCR, V15, P209, DOI 10.1055/s-2008-1068750; Roberts CW, 2001, CLIN MICROBIOL REV, V14, P476, DOI 10.1128/CMR.14.3.476-488.2001; Robillard PY, 2002, AM J REPROD IMMUNOL, V47, P104, DOI 10.1034/j.1600-0897.2002.1o043.x; Rogerson SJ, 2003, INFECT IMMUN, V71, P267, DOI 10.1128/IAI.71.1.267-270.2003; Romero R, 1998, AM J OBSTET GYNECOL, V179, P186, DOI 10.1016/S0002-9378(98)70271-6; Rosenstock SJ, 1996, AM J PUBLIC HEALTH, V86, P1539, DOI 10.2105/AJPH.86.11.1539; Rosenstock SJ, 2000, SCAND J PUBLIC HEALT, V28, P32, DOI 10.1177/140349480002800107; Safaeian M, 2009, J INFECT DIS, V199, P455, DOI 10.1086/596060; Salamonsen LA, 2000, HUM REPROD UPDATE, V6, P16, DOI 10.1093/humupd/6.1.16; Salminen S, 2004, GUT, V53, P1388, DOI 10.1136/gut.2004.041640; Sanchez-Guerrero J, 2001, AM J MED, V111, P464, DOI 10.1016/S0002-9343(01)00885-3; Sandborg C, 2002, J ADOLESCENT HEALTH, V30, P76, DOI 10.1016/S1054-139X(01)00386-X; Schramm C, 2001, AM J GASTROENTEROL, V96, P1587; Schulke L, 2008, HUM REPROD, V23, P1574, DOI 10.1093/humrep/den030; SEAMAN WE, 1979, J IMMUNOL, V122, P2541; Segal AW, 2005, ANNU REV IMMUNOL, V23, P197, DOI 10.1146/annurev.immunol.23.021704.115653; Segerstrom SC, 2004, PSYCHOL BULL, V130, P601, DOI 10.1037/0033-2909.130.4.601; SHAHID NS, 1995, LANCET, V346, P1252, DOI 10.1016/S0140-6736(95)91861-2; Shanley DP, 2009, TRENDS IMMUNOL, V30, P374, DOI 10.1016/j.it.2009.05.001; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; SHELLDUNCAN B, 1995, AM J HUM BIOL, V7, P339, DOI 10.1002/ajhb.1310070310; Shrier LA, 2003, J ADOLESCENT HEALTH, V32, P183, DOI 10.1016/S1054-139X(02)00536-0; Siristatidis C, 2006, J OBSTET GYNAECOL RE, V32, P162, DOI 10.1111/j.1447-0756.2006.00373.x; Sites CK, 2002, FERTIL STERIL, V77, P128, DOI 10.1016/S0015-0282(01)02934-X; Smithson G, 1998, J IMMUNOL, V161, P27; Stearns S. C., 1992, EVOLUTION LIFE HIST; STIMSON WH, 1988, SCAND J IMMUNOL, V28, P345, DOI 10.1111/j.1365-3083.1988.tb01459.x; Strassmann BI, 1999, J WOMENS HEALTH, V8, P193, DOI 10.1089/jwh.1999.8.193; Strassmann BI, 1996, Q REV BIOL, V71, P181, DOI 10.1086/419369; STYRT B, 1991, REV INFECT DIS, V13, P1139; Sullivan AD, 1999, J INFECT DIS, V179, P1580, DOI 10.1086/314752; Tanriverdi F, 2003, J ENDOCRINOL, V176, P293, DOI 10.1677/joe.0.1760293; Than NG, 2004, EUR J BIOCHEM, V271, P1065, DOI 10.1111/j.1432-1033.2004.04004.x; Thompson MS, 2009, MINERVA MED, V100, P357; TIERSON FD, 1986, AM J OBSTET GYNECOL, V155, P1017, DOI 10.1016/0002-9378(86)90337-6; Trinchieri G, 1995, Semin Immunol, V7, P83, DOI 10.1006/smim.1995.0012; TRIVERS RL, 1974, AM ZOOL, V14, P249; Verthelyi D, 2001, INT IMMUNOPHARMACOL, V1, P983, DOI 10.1016/S1567-5769(01)00044-3; Vignali DAA, 2008, NAT REV IMMUNOL, V8, P523, DOI 10.1038/nri2343; Vitzthum VJ, 2009, YEARB PHYS ANTHROPOL, V52, P95, DOI 10.1002/ajpa.21195; Waldorf KMA, 2008, IMMUNOL INVEST, V37, P631, DOI 10.1080/08820130802205886; Weaver LT, 1998, ARCH DIS CHILD, V78, P235, DOI 10.1136/adc.78.3.235; Werner M, 2008, SCAND J GASTROENTERO, V43, P1232, DOI 10.1080/00365520802130183; Whitacre CC, 1999, SCIENCE, V283, P1277, DOI 10.1126/science.283.5406.1277; White HD, 1997, J IMMUNOL, V158, P3017; Whitten PL, 2009, AM J HUM BIOL, V21, P754, DOI 10.1002/ajhb.20939; Wiesenfeld HC, 2003, CLIN INFECT DIS, V36, P663, DOI 10.1086/367658; WILKS M, 1987, J MED MICROBIOL, V24, P241, DOI 10.1099/00222615-24-3-241; Wira CR, 2010, AM J REPROD IMMUNOL, V63, P544, DOI 10.1111/j.1600-0897.2010.00842.x; Wira CR, 2005, IMMUNOL REV, V206, P306, DOI 10.1111/j.0105-2896.2005.00287.x; Wong P, 2003, ANNU REV IMMUNOL, V21, P29, DOI 10.1146/annurev.immunol.21.120601.141114; Worthman C., 1999, HORMONES HLTH BEHAV, P47; YOSHIOKA H, 1983, PEDIATRICS, V72, P317; Yu L, 2009, AM J REPROD IMMUNOL, V62, P1, DOI 10.1111/j.1600-0897.2009.00712.x; ZAVALETA N, 1995, AM J CLIN NUTR, V62, P559 231 10 10 1 20 WILEY PERIODICALS SAN FRANCISCO 989 MARKET STREET, SAN FRANCISCO, CA 94103-1741 USA 0096-848X YEARB PHYS ANTHROPOL Yearb. Phys. Anthropol. 2011 54 134 154 10.1002/ajpa.21621 21 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology BYT51 WOS:000300172400008 2018-11-12 J Lordelo, ED; Seidl-de-Moura, ML; Vieira, ML; Bussab, VSR; Oliva, AD; Tokumaru, RS; Britto, RCS Lordelo, Eulina da Rocha; Seidl-de-Moura, Maria Lucia; Vieira, Mauro Luis; Raad Bussab, Vera Silvia; Oliva, Angela Donato; Tokumaru, Rosana Suemi; Souza Britto, Regina Celia Environment of Development and the Start of Brazilian Women's Reproductive Life PSICOLOGIA-REFLEXAO E CRITICA Portuguese Article Evolutionary Psychology; Life History Theory; Reproductive life; Pubertal Timing/Menarche FATHER ABSENCE; PUBERTAL MATURATION; RACIAL-DIFFERENCES; SEXUAL-MATURATION; LONGITUDINAL TEST; ADOLESCENT GIRLS; EARLY MENARCHE; TWIN FAMILIES; AGE; MODEL Several models inspired by the life history theory have assessed the patterns of human reproduction in developed countries with promising but inconclusive results. Considering the diversity of life conditions in Brazil, we investigated the relationship between the time of main events in female reproductive life, environmental conditions and psychosocial variables related to child-rearing. We interviewed 606 women in six different states in Brazil. Results corroborate the life history theory, showing associations among the investigated factors, especially between life conditions during childhood and the beginning of sexual life and reproduction, but not to sexual maturity. We suggest that landmarks in reproductive life, although related, can be under the influence of several phenomena. Diversity of life conditions in Brazil offers alternative contexts to hypotheses testing. [Lordelo, Eulina da Rocha] Univ Fed Bahia, Fac Filosofia & Ciencias Humanas, Dept Psicol, BR-40210909 Salvador, BA, Brazil; [Seidl-de-Moura, Maria Lucia; Oliva, Angela Donato] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil; [Vieira, Mauro Luis] Univ Fed Santa Catarina, Florianopolis, SC, Brazil; [Raad Bussab, Vera Silvia] Univ Sao Paulo, Sao Paulo, Brazil; [Oliva, Angela Donato] Univ Fed Rio de Janeiro, Rio De Janeiro, Brazil; [Tokumaru, Rosana Suemi] Univ Fed Espirito Santo, Vitoria, Brazil; [Souza Britto, Regina Celia] Fed Univ Para, BR-66059 Belem, Para, Brazil Lordelo, ED (reprint author), Univ Fed Bahia, Fac Filosofia & Ciencias Humanas, Dept Psicol, Rua Estr Sao Lazaro 197, BR-40210909 Salvador, BA, Brazil. eulina@ufba.br; mlseidl@gmail.com; maurolvieira@gmail.com; vsbussab@gmail.com; angeladonatoliva@uol.com.br; tokumaru@usp.br; rcsb@uol.com.br Anderson CA, 2007, BEHAV GENET, V37, P668, DOI 10.1007/s10519-007-9163-2; BELSKY J, 1991, CHILD DEV, V62, P682, DOI 10.2307/1131169; Belsky J, 2007, CHILD DEV, V78, P1302, DOI 10.1111/j.1467-8624.2007.01067.x; Blell M, 2008, J BIOSOC SCI, V40, P563, DOI 10.1017/S0021932007002696; Bogaert AF, 2008, J BIOSOC SCI, V40, P623, DOI 10.1017/S0021932007002386; Chisholm JS, 1999, HUM NATURE-INT BIOS, V10, P51, DOI 10.1007/s12110-999-1001-1; DANKERHOPFE H, 1986, YEARB PHYS ANTHROPOL, V29, P81; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Dunbar J, 2008, AM J PUBLIC HEALTH, V98, P1822, DOI 10.2105/AJPH.2007.120444; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2000, CHILD DEV, V71, P485, DOI 10.1111/1467-8624.00159; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; GAGE TB, 1989, HUMAN POPULATION BIO, P45; GRABER JA, 1994, DEV PSYCHOL, V30, P823, DOI 10.1037/0012-1649.30.6.823; Graham MJ, 1999, J BIOSOC SCI, V31, P257, DOI 10.1017/S0021932099002576; Hoier S, 2003, HUM NATURE-INT BIOS, V14, P209, DOI 10.1007/s12110-003-1004-2; *I BRAS GEOGR EST, 2009, PIB CAP 2003; *I BRAS GEOGR EST, 2009, CENS 2000; Kanazawa S, 2001, EVOL HUM BEHAV, V22, P329, DOI 10.1016/S1090-5138(01)00073-3; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; Kim K, 1998, J ADOLESCENCE, V21, P231, DOI 10.1006/jado.1998.0149; Kutner MH, 2005, APPL LINEAR STAT MOD; LAGO MJ, 2002, THESIS U FEDERAL RIO; Lordelo Eulina Rocha, 2006, Estud. psicol. (Natal), V11, P257, DOI 10.1590/S1413-294X2006000300002; Maestripieri D, 2004, DEVELOPMENTAL SCI, V7, P560, DOI 10.1111/j.1467-7687.2004.00380.x; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.2307/1130900; *NUCL EST VIOL U S, 2007, 3 REL NAC DIR HUM BR; Park SH, 1999, J ADOLESCENT HEALTH, V25, P97; PICANCO MRA, 1995, THESIS I FERNANDES F; Posner RB, 2006, SEX ROLES, V54, P315, DOI 10.1007/s11199-006-9003-5; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; ROWE DC, 1994, SOC BIOL, V41, P1; Rowe DC, 2002, EVOL HUM BEHAV, V23, P365, DOI 10.1016/S1090-5138(02)00102-2; Schmitt DP, 2005, BEHAV BRAIN SCI, V28, P247, DOI 10.1017/S0140525X05000051; Sun SMS, 2002, PEDIATRICS, V110, P911, DOI 10.1542/peds.110.5.911; Tavares C H, 2000, Cad Saude Publica, V16, P709, DOI 10.1590/S0102-311X2000000300019; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; UDRY JR, 1982, DEMOGRAPHY, V19, P53, DOI 10.2307/2061128; van den Berg SM, 2007, BEHAV GENET, V37, P661, DOI 10.1007/s10519-007-9161-4; Vigil JM, 2006, J FAM PSYCHOL, V20, P597, DOI 10.1037/0893-3200.20.4.597; Vitalle Maria Sylvia de Souza, 2003, Rev. Assoc. Med. Bras., V49, P429, DOI 10.1590/S0104-42302003000400036; Wu TJ, 2002, PEDIATRICS, V110, P752, DOI 10.1542/peds.110.4.752 44 0 0 0 4 UNIV FEDERAL RIO GRANDE SUL PORTO ALEGRE RS INST PSICOLOGIA, PPG EM PSICOLOGIA DA UFRGS, RUA RAMIRO BARCELOS 2600, PORTO ALEGRE RS, 90035-003, BRAZIL 0102-7972 PSICOL-REFLEX CRIT Psicol.-Reflex. Crit. JAN-MAR 2011 24 1 116 125 10 Psychology, Multidisciplinary Psychology 807EW WOS:000293878900014 DOAJ Gold 2018-11-12 J Luttikhuizen, PC; Honkoop, PJC; Drent, J Luttikhuizen, P. C.; Honkoop, P. J. C.; Drent, J. Intraspecific egg size variation and sperm limitation in the broadcast spawning bivalve Macoma balthica JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY English Article Stock-recruitment relationships; Life history theory; Sperm limitation; Sperm competition; Egg size MARINE BENTHIC INVERTEBRATES; FERTILIZATION SUCCESS; REPRODUCTIVE STRATEGIES; PHENOTYPIC PLASTICITY; FREE-SPAWNERS; SEA-URCHIN; WADDEN SEA; POPULATION; TEMPERATURE; LARVAL Broadcast spawners are exceptionally suited and simple models for studying parental investment in offspring, because direct post-spawning investment is nonexistent. However, a comprehensive understanding of the large variation that exists in their egg sizes is still lacking. One of the main hypotheses states that variation in fertilization conditions underlies some of the egg size variation, as larger eggs are larger targets for sperm. Here, we test the hypothesis that egg size may be locally tuned to expected ambient sperm concentrations during fertilization. In accordance with the hypothesis, we find that in the bivalve Macoma balthica (L) adult density as a proxy for sperm concentration correlates strongly (correlation coefficient -0.87) with egg size in the field. Optimisation modeling confirms the negative relationship between optimal egg size and sperm concentration for M. balthica and this is independent of the fertilization model used. Discrepancies between models and observations remaining include larger egg sizes overall and a concave predicted relationship that is not obvious in the data. The results suggest that in M. balthica sperm limitation may play a role in fertilization success and in shaping egg size variation, and that locations with high population densities may make disproportionately large contributions to the next generation. (C) 2010 Elsevier B.V. All rights reserved. [Luttikhuizen, P. C.; Honkoop, P. J. C.; Drent, J.] Royal Netherlands Inst Sea Res, Dept Marine Ecol, NL-1790 AB Den Burg, Netherlands Luttikhuizen, PC (reprint author), Royal Netherlands Inst Sea Res, Dept Marine Ecol, POB 59, NL-1790 AB Den Burg, Netherlands. pieternella.luttikhuizen@nioz.nl Luttikhuizen, Pieternella/D-9078-2012 NWO: PIONIER; NWO: NOP; NWO: MEERVOUD We thank J. van der Meer, S. Saraiva and T. Piersma for discussions, J. Beukema and R. Dekker for generously providing density data from their long-term monitoring data base, and four anonymous referees for their helpful comments. This work was partly supported by three NWO grants: a PIONIER grant to T. Piersma, an NOP grant top and PH and a MEERVOUD grant to PL. [RH] Bernardo J, 1996, AM ZOOL, V36, P216; Bertram DF, 1998, ECOLOGY, V79, P315, DOI 10.1890/0012-9658(1998)079[0315:EOMALN]2.0.CO;2; Beukema JJ, 2002, J SEA RES, V48, P111, DOI 10.1016/S1385-1101(02)00162-4; Bocher P, 2007, MAR BIOL, V151, P577, DOI 10.1007/s00227-006-0500-4; Bode M, 2007, EVOLUTION, V61, P2693, DOI 10.1111/j.1558-5646.2007.00232.x; Bos OG, 2007, MAR ECOL PROG SER, V330, P155, DOI 10.3354/meps330155; CADDY JF, 1967, CAN J ZOOLOG, V45, P955, DOI 10.1139/z67-105; Claereboudt C, 1999, ECOL MODEL, V121, P221; Crean AJ, 2008, P NATL ACAD SCI USA, V105, P13508, DOI 10.1073/pnas.0806590105; Dowling NA, 2004, CAN J FISH AQUAT SCI, V61, P247, DOI 10.1139/F03-165; Drent J, 2004, FUNCT ECOL, V18, P349, DOI 10.1111/j.0269-8463.2004.00839.x; Drent J, 2002, J EXP MAR BIOL ECOL, V275, P117, DOI 10.1016/S0022-0981(02)00141-7; Eckert GL, 2003, ECOLOGY, V84, P372, DOI 10.1890/0012-9658(2003)084[0372:EOTPPO]2.0.CO;2; George SB, 1999, J EXP MAR BIOL ECOL, V237, P203, DOI 10.1016/S0022-0981(98)00205-6; HARVEY M, 1989, J EXP MAR BIOL ECOL, V129, P199, DOI 10.1016/0022-0981(89)90103-2; Honkoop PJC, 1997, MAR ECOL PROG SER, V149, P155, DOI 10.3354/meps149155; Honkoop PJC, 1998, J EXP MAR BIOL ECOL, V220, P227, DOI 10.1016/S0022-0981(97)00107-X; Honkoop PJC, 1999, MAR ECOL PROG SER, V180, P297, DOI 10.3354/meps180297; Honkoop PJC, 1998, MAR ECOL PROG SER, V164, P229, DOI 10.3354/meps164229; Jantzen TM, 2001, MAR BIOL, V138, P1153; KENNEDY VS, 1989, VELIGER, V32, P29; LESSIOS HA, 1987, J EXP MAR BIOL ECOL, V114, P217; Levitan D.R., 1998, SPERM COMPETITION SE, P175; Levitan Don R., 1995, P123; Levitan DR, 2006, INTEGR COMP BIOL, V46, P298, DOI 10.1093/icb/icj025; Levitan DR, 2000, AM NAT, V156, P175, DOI 10.1086/303376; LEVITAN DR, 1993, AM NAT, V141, P517, DOI 10.1086/285489; Lundquist CJ, 2004, ECOL APPL, V14, P929, DOI 10.1890/02-5325; Luttikhuizen PC, 2002, GENOME, V45, P59, DOI 10.1139/g01-128; Luttikhuizen PC, 2003, J EVOLUTION BIOL, V16, P260, DOI 10.1046/j.1420-9101.2003.00510.x; Luttikhuizen PC, 2003, MOL ECOL, V12, P2215, DOI 10.1046/j.1365-294X.2003.01872.x; Luttikhuizen PC, 2004, J THEOR BIOL, V231, P333, DOI 10.1016/j.jtbi.2004.06.028; Marelli DC, 1999, J SHELLFISH RES, V18, P393; Marshall DJ, 2000, MAR ECOL PROG SER, V195, P305, DOI 10.3354/meps195305; MARSHALL DJ, 2008, ADV MAR BIOL, P1; Marshall DJ, 2008, AM NAT, V171, P214, DOI 10.1086/524954; McEdward LR, 2001, BIOL BULL, V200, P33, DOI 10.2307/1543083; Miles CM, 2007, MAR ECOL PROG SER, V340, P155, DOI 10.3354/meps340155; MYERS RA, 1995, SCIENCE, V269, P1106, DOI 10.1126/science.269.5227.1106; Pfister CA, 1996, ECOL APPL, V6, P298, DOI 10.2307/2269573; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; Phillips NE, 2007, BIOL BULL-US, V212, P12, DOI 10.2307/25066576; Podolsky RD, 2004, AM NAT, V163, P735, DOI 10.1086/382791; Podolsky RD, 2002, J EXP BIOL, V205, P1657; RAMIREZLLODRA ER, 2002, ADV MAR BIOL, V43, P88, DOI DOI 10.1016/S0065-2881(02)43004-0; Roff D. A., 2002, LIFE HIST EVOLUTION; Sinclair M., 1988, Aquatic Living Resources, V1, P71, DOI 10.1051/alr:1988009; Sinclair M., 1987, MARINE POPULATIONS E; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S. C., 1992, EVOLUTION LIFE HIST; Styan CA, 1998, AM NAT, V152, P290, DOI 10.1086/286168; Trivers RR, 1972, SEXUAL SELECTION DES; Van der Meer J, 2001, J ANIM ECOL, V70, P159, DOI 10.1046/j.1365-2656.2001.00469.x; VANCE RR, 1973, AM NAT, V107, P339, DOI 10.1086/282838; VANCE RR, 1973, AM NAT, V107, P353, DOI 10.1086/282839; VOGEL H, 1982, MATH BIOSCI, V58, P189, DOI 10.1016/0025-5564(82)90073-6; Wahle RA, 1999, MAR BIOL, V134, P127, DOI 10.1007/s002270050531; Yund PO, 2000, TRENDS ECOL EVOL, V15, P10, DOI 10.1016/S0169-5347(99)01744-9 58 12 12 1 33 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0022-0981 J EXP MAR BIOL ECOL J. Exp. Mar. Biol. Ecol. JAN 1 2011 396 2 156 161 10.1016/j.jembe.2010.10.017 6 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 710XN WOS:000286550400011 Bronze 2018-11-12 J Brunel-Pons, O; Alem, S; Greenfield, MD Brunel-Pons, Odette; Alem, Sylvain; Greenfield, Michael D. The complex auditory scene at leks: balancing antipredator behaviour and competitive signalling in an acoustic moth ANIMAL BEHAVIOUR English Article Achroia grisella; acoustic insect; Lepidoptera; life history theory; pyralid moth; sexual selection; trade-off; ultrasound signal LESSER WAX MOTH; PREDATION RISK; SEXUAL SELECTION; MATING-BEHAVIOR; PAIR FORMATION; RECEIVER BIAS; FEMALE CHOICE; BAT AVOIDANCE; ADVERTISEMENT; EVOLUTION Although sexual activity in many animal species is reduced when predation pressure intensifies, such reduction may be attenuated in accordance with age, demography or sexual competition. For example, males in lekking aggregations might forgo evasive behaviour and continue their signalling activity when exposed to predation for various reasons: the pressure to engage in signal competition with neighbours outweighs the risk of a predator attack, the per capita risk of attack is lower on larger leks, signals from neighbours within the lek mask predator cues, or limitations on general attention prevent a lekking male from simultaneously signalling and monitoring predators. We addressed the problem of balancing antipredator behaviour and signal competition in an acoustic pyralid moth, Achroia grisella, in which males gather in leks and broadcast an ultrasonic mating call. There is evidence that A. grisella can be menaced by substrate-gleaning bats and that singing males generally become silent upon perceiving bat echolocation signals or pulsed ultrasound bearing the characteristics of these signals. In this study, the incidence and duration of these silence responses were greatly reduced in lekking males compared with solitary individuals. Moreover, a moderate reduction in silence responses persisted when we broadcast, to individual males, song from a lek followed by bat echolocation stimuli. Thus, while signal masking may play a role in attenuating antipredator behaviour in lekking males, other factors, including signal competition and dilution of predation pressure, are probable influences as well. (C) 2010 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. [Brunel-Pons, Odette; Alem, Sylvain; Greenfield, Michael D.] Univ Tours, CNRS UMR 6035, Inst Rech Biol Insecte, F-37200 Tours, France Greenfield, MD (reprint author), Univ Tours, CNRS UMR 6035, Inst Rech Biol Insecte, F-37200 Tours, France. michael.greenfield@univ-tours.fr Greenfield, Michael/0000-0003-1935-3423 Agence Nationale de la Recherche de France [ANR-07-BLAN-0113-01]; Centre National de la Recherche Scientifique (CNRS); Universite Francois Rabelais de Tours; Consejo Nacional de Ciencia y Tecnologia de Mexico (CONACYT) [beca 197659] We thank Guy Bourdais, Bruno Brizard and Fabrice Vannier (I.R.B.I., Tours, France) for technical assistance in the laboratory, Jean-Pierre Chartier for helping us to collect our population of A. grisella, and the Agence Nationale de la Recherche de France (contrat ANR-07-BLAN-0113-01), the Centre National de la Recherche Scientifique (CNRS), the Universite Francois Rabelais de Tours and the Consejo Nacional de Ciencia y Tecnologia de Mexico (CONACYT; beca 197659 to OB) for their financial support. We also thank Marlene Goubault, Denis Limousin and two anonymous referees for valuable criticisms of the manuscript. ALEM S, 2010, BEHAV Ecology, V21, pE625; Arlettaz R, 2001, NATURE, V414, P742, DOI 10.1038/414742a; Bee MA, 1996, BEHAVIOUR, V133, P283, DOI 10.1163/156853996X00152; Bee MA, 2008, J COMP PSYCHOL, V122, P235, DOI 10.1037/0735-7036.122.3.235; Bradbury J.W., 1998, PRINCIPLES ANIMAL CO; Brandt LSE, 2005, ETHOLOGY, V111, P609, DOI 10.1111/j.1439-0310.2005.01085.x; Brandt LSE, 2004, J EVOLUTION BIOL, V17, P821, DOI 10.1111/j.1420-9101.2004.00716.x; Brinklov S, 2009, J EXP BIOL, V212, P11, DOI 10.1242/jeb.023226; BURK T, 1982, FLA ENTOMOL, V65, P90, DOI 10.2307/3494148; Candolin U, 1998, P ROY SOC B-BIOL SCI, V265, P1171, DOI 10.1098/rspb.1998.0415; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; DANCHIN E, 2005, ECOLOGIE COMPORTEMEM, P235; Dill LM, 1999, BEHAV ECOL, V10, P452, DOI 10.1093/beheco/10.4.452; Dukas R, 2004, BRAIN BEHAV EVOLUT, V63, P197, DOI 10.1159/000076781; Dukas R., 2009, COGNITIVE ECOLOGY; Farris HE, 1998, PHYSIOL ENTOMOL, V23, P322, DOI 10.1046/j.1365-3032.1998.234093.x; Faure PA, 2000, J COMP PHYSIOL A, V186, P129, DOI 10.1007/s003590050013; Fuller R, 1996, BEHAV ECOL, V7, P69, DOI 10.1093/beheco/7.1.69; Gerhardt HC, 2000, BEHAV ECOL SOCIOBIOL, V48, P243, DOI 10.1007/s002650000226; Greenfield M.D., 1990, P71; Greenfield MD, 2005, ADV STUD BEHAV, V35, P1, DOI 10.1016/S0065-3454(05)35001-7; Greenfield MD, 2003, ETHOLOGY, V109, P427, DOI 10.1046/j.1439-0310.2003.00886.x; GREENFIELD MD, 1983, BEHAVIOUR, V84, P287, DOI 10.1163/156853983X00534; Greenfield MD, 2000, ETHOL ECOL EVOL, V12, P259; Greenfield MD, 2009, ETHOLOGY, V115, P1137, DOI 10.1111/j.1439-0310.2009.01700.x; Greig EI, 2004, BEHAVIOUR, V141, P799, DOI 10.1163/1568539042265626; GWYNNE DT, 1989, TRENDS ECOL EVOL, V4, P54, DOI 10.1016/0169-5347(89)90144-4; HAMILTON WD, 1971, J THEOR BIOL, V31, P295, DOI 10.1016/0022-5193(71)90189-5; HEDRICK AV, 1993, ANIM BEHAV, V46, P193, DOI 10.1006/anbe.1993.1176; Hoglund J., 1995, LEKS; HOY RR, 1989, ANNU REV NEUROSCI, V12, P355, DOI 10.1146/annurev.neuro.12.1.355; Jang YW, 1996, ANIM BEHAV, V51, P1095, DOI 10.1006/anbe.1996.0111; Jia FY, 2001, J INSECT BEHAV, V14, P19, DOI 10.1023/A:1007893411662; Jones G, 2002, BEHAV ECOL, V13, P375, DOI 10.1093/beheco/13.3.375; KARBAN R, 1982, ECOLOGY, V63, P321, DOI 10.2307/1938949; Koga T, 1998, P ROY SOC B-BIOL SCI, V265, P1385, DOI 10.1098/rspb.1998.0446; Kunike G., 1930, Zeitschrift fuer Angewandte Entomologie, V16, P304; Lack D., 1968, ECOLOGICAL ADAPTATIO; Lafaille M, 2010, BEHAV ECOL SOCIOBIOL, V64, P1485, DOI 10.1007/s00265-010-0963-7; MAGNHAGEN C, 1991, TRENDS ECOL EVOL, V6, P183, DOI 10.1016/0169-5347(91)90210-O; Miller LA, 2001, BIOSCIENCE, V51, P570, DOI 10.1641/0006-3568(2001)051[0570:HSIDAA]2.0.CO;2; Neuweiler G., 2000, BIOL BATS; Rodriguez RL, 2004, PHYSIOL ENTOMOL, V29, P159, DOI 10.1111/j.1365-3032.2004.00380.x; SIH A, 1990, AM NAT, V135, P284, DOI 10.1086/285044; SPANGLER HG, 1984, PHYSIOL ENTOMOL, V9, P87, DOI 10.1111/j.1365-3032.1984.tb00684.x; TURCHIN P, 1989, ECOLOGY, V70, P1008, DOI 10.2307/1941369; Walker T.J., 1983, P45; WATERS DA, 1995, J EXP BIOL, V198, P475; West-Eberhard M.J., 1984, P283; Zuk M, 1998, Q REV BIOL, V73, P415, DOI 10.1086/420412 50 13 13 3 31 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 ANIM BEHAV Anim. Behav. JAN 2011 81 1 231 239 10.1016/j.anbehav.2010.10.010 9 Behavioral Sciences; Zoology Behavioral Sciences; Zoology 695ZY WOS:000285412900030 2018-11-12 J Johnston, JC Johnston, Jason C. Effects of stage in incubation, time in season, and proportion of original clutch remaining on nest desertion by house sparrows, Passer domesticus BEHAVIOUR English Article nest desertion; parental investment; clutch manipulation; reproductive value; Passer domesticus CUCULUS-CANORUS EGGS; PARENTAL INVESTMENT; FUTURE REPRODUCTION; COWBIRD PARASITISM; CONCORDE FALLACY; DABBLING DUCKS; DEFENSE; BROOD; SURVIVAL; YOUNG Life history theory predicts that individuals should maximize their fitness by balancing current investment in offspring versus future prospects for reproduction. Faced with reduction of their current clutch, birds should desert if the prospective opportunity would increase inclusive fitness more than continued investment in the reduced clutch. I studied nest desertion in response to clutch reduction by house sparrows (Passer domesticus) to determine if continuing investment in a reduced clutch differs based on proportion of original clutch remaining, stage in incubation, and ordinal date. Nests were reduced to two eggs early or late in incubation over two complete breeding seasons. Of 150 nests manipulated, 36 were deserted. Nests were more likely to be deserted when reduction occurred earlier in incubation, earlier in the season, and with a smaller proportion of original clutch remaining. This suggests that both time and brood size are used to assess the tradeoffs between current and future investment. However, near the end of the breeding season, the proportion of original clutch remaining and stage in incubation were less important, and low desertion was likely associated with a lack of re-nesting opportunities in the current season. Therefore, whether to desert or continue investing in a reduced clutch is a function of offspring reproductive value (RV) when there is opportunity for re-nesting in the same season. However, near the end of the season the decision is based on the residual reproductive value (RRV) of parents. [Johnston, Jason C.] Univ Delaware, Dept Entomol & Wildlife Ecol, Newark, DE 95716 USA Johnston, JC (reprint author), Univ Delaware, Dept Entomol & Wildlife Ecol, Newark, DE 19716 USA. jason.johnston@umpi.edu Ackerman JT, 2003, ANIM BEHAV, V66, P871, DOI 10.1006/anbe.2003.2283; Ackerman JT, 2003, BEHAV ECOL SOCIOBIOL, V54, P264, DOI 10.1007/s00265-003-0628-x; ARMSTRONG T, 1988, ANIM BEHAV, V36, P941, DOI 10.1016/S0003-3472(88)80180-5; Bourgeon S, 2006, POLAR BIOL, V29, P358, DOI 10.1007/s00300-005-0064-7; Brown WP, 2002, ECOLOGY, V83, P958, DOI 10.2307/3071905; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; COLEMAN RM, 1991, TRENDS ECOL EVOL, V6, P404, DOI 10.1016/0169-5347(91)90163-R; DAWKINS R, 1976, NATURE, V262, P131, DOI 10.1038/262131a0; Fernandez GJ, 2000, IBIS, V142, P29, DOI 10.1111/j.1474-919X.2000.tb07680.x; FISHER R. A., 1930, GENETICAL THEORY NAT; GOTZMAN J, 1967, ACTA ORNITHOL, V30, P83; GRAHAM DS, 1988, CONDOR, V90, P558; Hardy ICW, 1998, ANIM BEHAV, V56, P787, DOI 10.1006/anbe.1998.0833; HILL DP, 1994, ANIM BEHAV, V48, P1063, DOI 10.1006/anbe.1994.1340; Lowther Peter E., 1992, Birds of North America, V12, P1; MOCK DW, 1986, EVOLUTION, V40, P459, DOI 10.1111/j.1558-5646.1986.tb00499.x; MOKSNES A, 1993, BEHAV ECOL, V4, P120, DOI 10.1093/beheco/4.2.120; Moskat C, 1999, J AVIAN BIOL, V30, P175, DOI 10.2307/3677127; ONNEBRINK H, 1991, BEHAV ECOL SOCIOBIOL, V29, P61, DOI 10.1007/BF00164296; PETIT LJ, 1991, ANIM BEHAV, V41, P425, DOI 10.1016/S0003-3472(05)80843-7; REDONDO T, 1989, BEHAV ECOL SOCIOBIOL, V25, P369, DOI 10.1007/BF00302995; RYTKONEN S, 1995, ANIM BEHAV, V49, P1017, DOI 10.1006/anbe.1995.0131; SEALY SG, 1992, CONDOR, V94, P40, DOI 10.2307/1368794; Stearns S. C., 1992, EVOLUTION LIFE HIST; Szekely Tamas, 1996, Current Ornithology, V13, P271; TENCATE C, 1992, AUK, V109, P594; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Verboven N, 2002, ANIM BEHAV, V63, P951, DOI 10.1006/anbe.2001.1971; WESTNEAT DF, 1989, AUK, V106, P747; WIKLUND CG, 1990, BEHAV ECOL SOCIOBIOL, V26, P217; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams GC, 1966, ADAPTATION NATURAL S; WINGFIELD JC, 1979, GEN COMP ENDOCR, V38, P322, DOI 10.1016/0016-6480(79)90066-2; Winkler DW, 1991, BEHAV ECOL, V2, P133, DOI 10.1093/beheco/2.2.133; ZWICKEL FC, 1978, CONDOR, V80, P109, DOI 10.2307/1367803 35 1 1 0 16 BRILL ACADEMIC PUBLISHERS LEIDEN PLANTIJNSTRAAT 2, P O BOX 9000, 2300 PA LEIDEN, NETHERLANDS 0005-7959 BEHAVIOUR Behaviour 2011 148 9-10 1121 1135 10.1163/000579511X596589 15 Behavioral Sciences; Zoology Behavioral Sciences; Zoology 842OY WOS:000296610000007 2018-11-12 J Mazzotti, FJ; Cherkiss, MS; Hart, KM; Snow, RW; Rochford, MR; Dorcas, ME; Reed, RN Mazzotti, Frank J.; Cherkiss, Michael S.; Hart, Kristen M.; Snow, Ray W.; Rochford, Michael R.; Dorcas, Michael E.; Reed, Robert N. Cold-induced mortality of invasive Burmese pythons in south Florida BIOLOGICAL INVASIONS English Article Python molurus; Florida Everglades; Cold temperatures; Invasive species; Mortality; Thermoregulation LIFE-HISTORY THEORY; UNITED-STATES; POPULATIONS A recent record cold spell in southern Florida (2-11 January 2010) provided an opportunity to evaluate responses of an established population of Burmese pythons (Python molurus bivittatus) to a prolonged period of unusually cold weather. We observed behavior, characterized thermal biology, determined fate of radio-telemetered (n = 10) and non-telemetered (n = 104) Burmese pythons, and analyzed habitat and environmental conditions experienced by pythons during and after a historic cold spell. Telemetered pythons had been implanted with radio-transmitters and temperature-recording data loggers prior to the cold snap. Only one of 10 telemetered pythons survived the cold snap, whereas 59 of 99 (60%) non-telemetered pythons for which we determined fate survived. Body temperatures of eight dead telemetered pythons fluctuated regularly prior to 9 January 2010, then declined substantially during the cold period (9-11 January) and exhibited no further evidence of active thermoregulation indicating they were likely dead. Unusually cold temperatures in January 2010 were clearly associated with mortality of Burmese pythons in the Everglades. Some radio-telemetered pythons appeared to exhibit maladaptive behavior during the cold spell, including attempting to bask instead of retreating to sheltered refugia. We discuss implications of our findings for persistence and spread of introduced Burmese pythons in the United States and for maximizing their rate of removal. [Mazzotti, Frank J.; Cherkiss, Michael S.; Rochford, Michael R.] Univ Florida, Ft Lauderdale Res & Educ Ctr, Davie, FL 33314 USA; [Hart, Kristen M.] US Geol Survey, SE Ecol Sci Ctr, Davie, FL 33314 USA; [Snow, Ray W.] Natl Pk Serv, Homestead, FL 33034 USA; [Dorcas, Michael E.] Davidson Coll, Dept Biol, Davidson, NC 28035 USA; [Reed, Robert N.] US Geol Survey, Ft Collins Sci Ctr, Ft Collins, CO 80526 USA Mazzotti, FJ (reprint author), Univ Florida, Ft Lauderdale Res & Educ Ctr, 3205 Coll Ave, Davie, FL 33314 USA. fjma@ufl.edu US Geological Survey; US National Park Service Critical Ecosystems Studies Initiative; South Florida Water Management District This research was supported by the US Geological Survey Priority Ecosystems Science program, the US National Park Service Critical Ecosystems Studies Initiative, and the South Florida Water Management District. We thank T. Kiechkefer and T. Hill for tracking and collecting pythons, J. Vinci for making figures, S. Williams for formatting the manuscript, and R. Harvey for editing the manuscript. Everglades National Park agents, park staff, park partners, and visitors assisted by reporting observations and helping to recover pythons. We are especially indebted to B. Hill of the South Florida Water Management District for his reports. This manuscript was greatly improved by comments from H. Waddle, P. Schofield and both anonymous reviewers. Permits and approvals required for this research were obtained from the US National Park Service and the Animal Research Committee at the University of Florida. References to non-USGS products and services are provided for information only and do not constitute endorsement or warranty, expressed or implied, by the US Government, as to their suitability, content, usefulness, functioning, completeness, or accuracy. Adler K., 1993, HERPETOLOGY CHINA; Alexander Graham J., 2007, P50; Aubret F, 2009, J EXP BIOL, V213, P242, DOI [10.1242/jeb.035931, DOI 10.1242/JEB.035931]; Avery ML, 2010, BIOL INVASIONS, V12, P3649, DOI 10.1007/s10530-010-9761-4; Beaumont LJ, 2009, DIVERS DISTRIB, V15, P409, DOI 10.1111/j.1472-4642.2008.00547.x; BHUPATHY S, 1989, Journal of the Bombay Natural History Society, V86, P381; BRANDT LA, 1990, COPEIA, P867, DOI 10.2307/1446456; Butterfield BP, 2004, EXOTIC AMPHIBIANS RE; CASWELL H, 1982, AM NAT, V120, P317, DOI 10.1086/283993; Chiaraviglio M, 2003, AMPHIBIA-REPTILIA, V24, P65, DOI 10.1163/156853803763806957; Christy MT, 2010, J APPL ECOL, V47, P106, DOI 10.1111/j.1365-2664.2009.01753.x; DUNCAN RP, 2009, P ROY SOC LOND B BIO, V267, P1449; Fantz A., 2010, PYTHONS CITRUS IGUAN; Fitzpatrick MC, 2007, GLOBAL ECOL BIOGEOGR, V16, P24, DOI 10.1111/j.1466-822x.2006.00258.x; Franke J., 2001, REPTILES PETS EXAMIN; GROOMBRIDGE B, 1991, SECR CONV INT TRAD E; Hardy David L. Sr, 2000, Sonoran Herpetologist, V13, P110; Hardy Sr D.L., 1999, SONORAN HERPETOL, V12, P25; Hayes KR, 2008, BIOL INVASIONS, V10, P483, DOI 10.1007/s10530-007-9146-5; Heppell SS, 1998, COPEIA, P367, DOI 10.2307/1447430; Hoover C., 1998, US ROLE INT LIVE REP; Kingsbury Bruce A., 2009, P201; Kraus F., 2009, ALIEN REPTILES AMPHI; LANG JW, 1987, WILDLIFE MANAGEMENT, P301; LOFTUS WF, 2001, P 1 ANN M US GEOL SU; NOAA [National Oceanic and Atmospheric Administration], 2010, HIST COLD WEEK S FLO; Peterson Charles R., 1993, P241; Phillips SJ, 2009, ECOL APPL, V19, P181, DOI 10.1890/07-2153.1; Pimentel D, 2005, ECOL ECON, V52, P273, DOI 10.1016/j.ecolecon.2004.10.002; Pyron RA, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002931; QUINLAN P, 2010, COLD SNAP KILLS INJU; Randin CF, 2006, J BIOGEOGR, V33, P1689, DOI 10.1111/j.1365-2699.2006.01466.x; REED RN, 2009, US GEOL SURV OPEN FI, V1202, P1; REINERT HK, 1982, COPEIA, P702, DOI 10.2307/1444674; Rodda GH, 2009, BIOL INVASIONS, V11, P241, DOI 10.1007/s10530-008-9228-z; Schleich HH, 2002, AMPHIBIANS REPTILES; Shine R, 1996, PHYSIOL ZOOL, V69, P252, DOI 10.1086/physzool.69.2.30164182; Snow Ray W., 2007, P416; Snow Ray W., 2007, Herpetological Bulletin, V101, P5; Stanford James W., 2007, P175; Storey M, 1936, ECOLOGY, V17, P640, DOI 10.2307/1932762; STOREY M, 1937, ECOLOGY, V19, P10; van Wilgen NJ, 2009, ENVIRON MANAGE, V44, P590, DOI 10.1007/s00267-009-9311-y; Waller Tomas, 2007, P340; WATERS S, 2010, GAMEFISH SEASON CLOS; Whitaker R, 2004, SNAKES INDIA FIELD G; Wilcove DS, 1998, BIOSCIENCE, V48, P607, DOI 10.2307/1313420 47 25 25 0 123 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 1387-3547 BIOL INVASIONS Biol. Invasions JAN 2011 13 1 143 151 10.1007/s10530-010-9797-5 9 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology 695GT WOS:000285359300017 Other Gold 2018-11-12 J Milenkaya, O; Legge, S; Walters, JR Milenkaya, Olga; Legge, Sarah; Walters, Jeffrey R. Breeding biology and life-history traits of an Australasian tropical granivore, the Crimson Finch (Neochmia phaeton) EMU English Article SOCIALLY MONOGAMOUS PASSERINES; AVIAN CLUTCH SIZE; SURVIVAL RATES; NEST PREDATION; AUSTRALIAN PASSERINES; LATITUDINAL GRADIENTS; INDIRECT SELECTION; PARENTAL CARE; BIRDS; EVOLUTION The evolutionary basis of the latitudinal gradient in clutch-size is a major, unresolved question in life-history theory, the resolution of which is hampered by the lack of proportionate study of southern passerines. Here, we present detailed data on breeding biology and life history for an Australasian tropical granivore, the Crimson Finch (Neochmia phaeton), emphasising aspects of their life history that are atypical of southern passerines. We collected data over three breeding seasons at Mornington Wildlife Sanctuary in north-western Australia. Apparent annual survival of adults was high, at 70-96%. Crimson Finches were multi-brooded and laid 5.08 +/- 0.07 eggs per clutch. The rate of nest predation was high, with 59.7% of clutches lost to predation. Thus, Crimson Finch life history contradicts the leading explanation of the clutch-size gradient - that higher rates of nest predation and higher adult survival in southern species select for smaller clutch-sizes. Our findings are more consistent with other explanations of the clutch-size gradient, specifically those involving post-fledging parental care, diet, seasonality and phylogeny. Exploring life histories that differ from the norm may be particularly helpful in understanding latitudinal differences in these strategies. [Milenkaya, Olga; Walters, Jeffrey R.] Virginia Polytech Inst & State Univ, Dept Biol Sci, Blacksburg, VA 24061 USA; [Legge, Sarah] Australian Wildlife Conservancy, Mornington Wildlife Sanctuary, Derby, WA 6728, Australia; [Legge, Sarah] Charles Darwin Univ, Sch Environm Res, Darwin, NT 0909, Australia Milenkaya, O (reprint author), Virginia Polytech Inst & State Univ, Dept Biol Sci, Blacksburg, VA 24061 USA. olm@vt.edu Australian Wildlife Conservancy We are especially grateful to our field assistants Roy Churchwell and Evan Rehm for helping to collect these data. We thank the personnel at Mornington Wildlife Sanctuary and members of the Avian Ecology Laboratory at Virginia Tech. Michelle Hall, Stephen Murphy, Benjamin Phillips, Graeme Armstrong and two anonymous reviewers provided comments on earlier drafts of the manuscript. This study was funded by supporters of the Australian Wildlife Conservancy and based out of the WildlifeLink Centre for Research and Conservation at Mornington Wildlife Sanctuary. Anders AD, 2005, CONSERV BIOL, V19, P66, DOI 10.1111/j.1523-1739.2005.00543.x; Arnaiz-Villena Antonio, 2009, Open Ornithology Journal, V2, P29; Arnqvist G, 2005, AM NAT, V165, pS26, DOI 10.1086/429350; ASHMOLE N. P., 1963, IBIS, V103b, P458, DOI 10.1111/j.1474-919X.1963.tb06766.x; Auer SK, 2007, J AVIAN BIOL, V38, P278, DOI 10.1111/j.2007.0908-8857.04092.x; BIRKHEAD TR, 1992, BIOL J LINN SOC, V45, P363, DOI 10.1111/j.1095-8312.1992.tb00649.x; BRISKIE JV, 1993, AUK, V110, P875, DOI 10.2307/4088641; Carvalho CBV, 2006, CONDOR, V108, P579, DOI 10.1650/0010-5422(2006)108[579:BSOASM]2.0.CO;2; CHOUDHURY S, 1995, ANIM BEHAV, V50, P413, DOI 10.1006/anbe.1995.0256; Cowling S. J, 2006, HDB AUSTR NZ ANTARCT, V7; Ferretti V, 2005, P ROY SOC B-BIOL SCI, V272, P769, DOI 10.1098/rspb.2004.3039; Flores S, 2005, INTERCIENCIA, V30, P39; Garamszegi LZ, 2005, HORM BEHAV, V47, P389, DOI 10.1016/j.yhbeh.2004.11.008; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Gill F. B, 2003, ORNITHOLOGY; Griebeler EM, 2010, J EVOLUTION BIOL, V23, P888, DOI 10.1111/j.1420-9101.2010.01958.x; Griebeler EM, 2004, EVOL ECOL RES, V6, P679; Griffith SC, 2002, MOL ECOL, V11, P2195, DOI 10.1046/j.1365-294X.2002.01613.x; Griffith SC, 2007, AM NAT, V169, P274, DOI 10.1086/510601; IMMELMANN K, 1982, AUSTR FINCHES BUSH A; Jetz W, 2008, PLOS BIOL, V6, P2650, DOI 10.1371/journal.pbio.0060303; Johnston JP, 1997, AM NAT, V150, P771, DOI 10.1086/286093; Johnstone R. E., 1981, BIOL SURVEY MITCHELL, P171; KARR JR, 1990, AM NAT, V136, P277, DOI 10.1086/285098; KEMPENAERS B, 1993, ORNIS SCAND, V24, P84, DOI 10.2307/3676415; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LACK D, 1948, IBIS, V90, P25, DOI 10.1111/j.1474-919X.1948.tb01399.x; Lack D, 1949, IBIS, V91, P455, DOI [DOI 10.1111/J.1474-919X.1949.TB02294.X, 10.1111/j.1474-919X.1949.tb02294.x]; MACARTHUR RH, 1964, AM NAT, V98, P387, DOI 10.1086/282334; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; Martin TE, 2009, ANN NY ACAD SCI, V1168, P201, DOI 10.1111/j.1749-6632.2009.04577.x; Mcgregor R, 2007, IBIS, V149, P615, DOI 10.1111/j.1474-919X.2007.00670.x; MOREAU R. E., 1944, IBIS, V86, P286, DOI 10.1111/j.1474-919X.1944.tb04093.x; OWENS IPF, 1995, P ROY SOC B-BIOL SCI, V261, P227, DOI 10.1098/rspb.1995.0141; Payne R. B, 2005, NESTLING MOUTH MARKI; Peach WJ, 2001, OIKOS, V93, P235, DOI 10.1034/j.1600-0706.2001.930207.x; Pyle P., 1997, IDENTIFICATION GUI 1; Ricklefs RE, 2000, CONDOR, V102, P9, DOI 10.1650/0010-5422(2000)102[0009:DDEOAT]2.0.CO;2; Roff Derek A., 1992; ROWLEY I, 1991, BIRD POPULATION STUD, P22; Russell EM, 2004, BEHAV ECOL, V15, P831, DOI 10.1093/beheco/arh088; Sankamethawee W, 2009, CONDOR, V111, P675, DOI 10.1525/cond.2009.090006; Shephard M., 1989, AVICULTURE AUSTR KEE; Skutch A. F, 1985, NEOTROPICAL ORNITHOL, V36, P575; SLAGSVOLD T, 1982, OECOLOGIA, V54, P159, DOI 10.1007/BF00378388; Stearns S. C., 1992, EVOLUTION LIFE HIST; Storr G.M., 1977, SPECIAL PUBLICATION, V7; Stutchbury BJM, 1998, BEHAV ECOL SOCIOBIOL, V43, P221, DOI 10.1007/s002650050485; Styrsky JN, 2005, ECOLOGY, V86, P3238, DOI 10.1890/04-1613; Todd Michael K., 2002, Australian Bird Watcher, V19, P161; Todd MK, 2003, EMU, V103, P141, DOI 10.1071/MU02015; Vriends M. M., 2002, HANCOCK HOUSE ENCY E; Webb E. H, 1902, EMU, V2, P29; White GC, 1999, BIRD STUDY, V46, P120; Williams PR, 2005, AUSTRAL ECOL, V30, P79, DOI 10.1111/j.1442-9993.2004.01426.x; WYNDHAM E, 1986, AM NAT, V128, P155, DOI 10.1086/284551; YOMTOV Y, 1992, IBIS, V134, P374, DOI 10.1111/j.1474-919X.1992.tb08017.x; YOMTOV Y, 1987, AUST WILDLIFE RES, V14, P319 61 12 13 0 15 CSIRO PUBLISHING CLAYTON UNIPARK, BLDG 1, LEVEL 1, 195 WELLINGTON RD, LOCKED BAG 10, CLAYTON, VIC 3168, AUSTRALIA 0158-4197 1448-5540 EMU Emu 2011 111 4 312 320 10.1071/MU10088 9 Ornithology Zoology 854UC WOS:000297519000005 2018-11-12 J Dunkel, CS; Mathes, E Dunkel, Curtis S.; Mathes, Eugene The Effect of Individual Differences and Manipulated Life Expectancies on the Willingness to Engage in Sexual Coercion EVOLUTIONARY PSYCHOLOGY English Article sexual coercion; life history theory; life expectancy HISTORY STRATEGY; EVOLUTIONARY; PERSPECTIVE; RAPE; MORTALITY The role of the individual difference variables of mate value, short-term and long-term mating preferences, and life history strategy along with the manipulated variable of life expectancy were used to predict differences in the willingness to engage in sexually coercive behaviors. Short-term preferences and long-term preferences were correlated with the willingness to engage in sexual coercion at all life expectancies. Life history strategy was correlated with the willingness to engage in sexual coercion at only the shortest and longest life expectancies. Most importantly short-term and long-term mating preferences interacted with life expectancy to predict the willingness to engage in sexually coercive behaviors. Short life expectancies increased willingness in individuals with high short-term and low long-term preferences. The results are discussed in terms of the varying theories of sexual coercion with emphasis put on a life history approach. [Dunkel, Curtis S.; Mathes, Eugene] Western Illinois Univ, Dept Psychol, Macomb, IL 61455 USA Dunkel, CS (reprint author), Western Illinois Univ, Dept Psychol, Macomb, IL 61455 USA. c-dunkel@wiu.edu BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Cohen D. L., 2008, J EVOLUTIONARY PSYCH, V6, P25, DOI DOI 10.1556/1EP; Dunkel C., 2010, J SOCIAL EVOLUTIONAR, V4, P51, DOI DOI 10.1037/H0099301; Dunkel CS, 2010, EVOL PSYCHOL-US, V8, P492; Dunkel CS, 2010, PERS INDIV DIFFER, V48, P681, DOI 10.1016/j.paid.2009.12.014; Figueredo A. J., 2007, ARIZONA LIFE HIST BA; Figueredo AJ, 2000, BEHAV SCI LAW, V18, P309, DOI 10.1002/1099-0798(200003/06)18:2/3<309::AID-BSL394>3.3.CO;2-X; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Fisher M., 2008, J SOCIAL EVOLUTIONAR, V2, P156, DOI DOI 10.1037/H0099347; Geronimus AT, 1996, HUM NATURE-INT BIOS, V7, P323, DOI 10.1007/BF02732898; Giosan C., 2006, EVOLUTIONARY PSYCHOL, V4, P394, DOI DOI 10.1177/147470490600400131; Gladden PR, 2008, EVOL HUM BEHAV, V29, P319, DOI 10.1016/j.evolhumbehav.2008.03.003; Gottschall J, 2004, J SEX RES, V41, P129, DOI 10.1080/00224490409552221; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; Hunter John A, 2003, Sex Abuse, V15, P27, DOI 10.1177/107906320301500103; Jackson JJ, 2007, EVOL HUM BEHAV, V28, P382, DOI 10.1016/j.evolhumbehav.2007.04.005; McKibbin WF, 2008, REV GEN PSYCHOL, V12, P86, DOI 10.1037/1089-2680.12.1.86; PALMER CT, 1991, J SEX RES, V28, P365, DOI 10.1080/00224499109551614; PROMISLOW DEL, 1991, ACTA OECOL, V12, P119; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Sisco M. M., 2008, J SEX AGGRESS, V14, P253, DOI [10.1080=13552600802401283, DOI 10.1080/13552600802401283]; Struckman-Johnson C, 2002, J SEX RES, V39, P217, DOI 10.1080/00224490209552144; Testa M, 2007, J CONSULT CLIN PSYCH, V75, P52, DOI 10.1037/0022-006X.75.1.52; Thomas MSC, 2009, J SPEECH LANG HEAR R, V52, P336, DOI 10.1044/1092-4388(2009/07-0144); Thornhill R., 2000, NATURAL HIST RAPE BI; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 31 8 8 2 4 EVOLUTIONARY PSYCHOL DAVIE C/O TOOD K SHACKELFORD, DIR, FLORIDA ATLANTIC UNIV, DEPT PSYCHOL, 2912 COLLEGE AVE, DAVIE, FL 33314 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. 2011 9 4 588 599 12 Psychology, Experimental Psychology 882FI WOS:000299547500009 22947996 DOAJ Gold 2018-11-12 J Sugiyama, MS Sugiyama, Michelle Scalise The forager oral tradition and the evolution of prolonged juvenility FRONTIERS IN PSYCHOLOGY English Review embodied capital; foraging niche; information exchange; mental time travel; oral tradition; prolonged juvenility; social learning; storytelling The foraging niche is characterized by the exploitation of nutrient-rich resources using complex extraction techniques that take a long time to acquire. This costly period of development is supported by intensive parental investment. Although human life history theory tends to characterize this investment in terms of food and care, ethnographic research on foraging skill transmission suggests that the flow of resources from old-to-young also includes knowledge. Given the adaptive value of information, parents may have been under selection pressure to invest knowledge - e.g., warnings, advice - in children: proactive provisioning of reliable information would have increased offspring survival rates and, hence, parental fitness. One way that foragers acquire subsistence knowledge is through symbolic communication, including narrative. Tellingly, oral traditions are characterized by an old-to-young transmission pattern, which suggests that, in forager groups, storytelling might be an important means by which adults transfer knowledge to juveniles. In particular, by providing juveniles with vicarious experience, storytelling may expand episodic memory, which is believed to be integral to the generation of possible future scenarios (i.e., planning). In support of this hypothesis, this essay reviews evidence that: mastery of foraging knowledge and skill sets takes a long time to acquire; foraging knowledge is transmitted from parent to child; the human mind contains adaptations specific to social learning; full assembly of learning mechanisms is not complete in early childhood; and forager oral traditions contain a wide range of information integral to occupation of the foraging niche. It concludes with suggestions for tests of the proposed hypothesis. Univ Oregon, Dept Anthropol, Eugene, OR 97403 USA Sugiyama, MS (reprint author), Univ Oregon, Dept Anthropol, Condon Hall, Eugene, OR 97403 USA. mscalise@uoregon.edu Anderson J. W., 1972, ETHOLOGICAL STUDIES, P199; ANOOSHIAN LJ, 1981, CHILD DEV, V52, P341; BALDWIN DA, 1993, J CHILD LANG, V20, P395; Baldwin DA, 1996, CHILD DEV, V67, P3135, DOI 10.2307/1131771; Baron-Cohen S, 2005, ORIGINS SOCIAL MIND, P468; BARONCOHEN S, 1995, MINDBLINDNESS; Barrett H. Clark, 2005, ORIGINS SOCIAL MIND, P438; BERKES F, 1994, ARCTIC, V47, P350; Berndt Ronald M, 1964, WORLD 1 AUSTR INTRO; BIESELE M, 1978, SOC SCI INFORM, V17, P921, DOI 10.1177/053901847801700607; Biesele M., 1993, WOMEN MEAT; Biesele M., 1976, KALAHARI HUNTER GATH, P302; Biocca E., 1970, YANOAMA NARRATIVE WH; Bird D. W., 2005, HUNTER GATHERER CHIL, P129; Bird RB, 2002, HUM NATURE-INT BIOS, V13, P239, DOI 10.1007/s12110-002-1009-2; BLADES M, 1992, J ENVIRON PSYCHOL, V12, P175, DOI 10.1016/S0272-4944(05)80069-6; Blurton Jones N, 1989, COMP SOCIOECOLOGY BE, P367; Blurton Jones N. G., 1994, KEY ISSUES HUNTER GA, P189; Blythe J., 1985, 21 TASO MCMAST U; Boas Franz, 1898, TRADITIONS THOMPSON, VI, P1; Bock J, 2004, HUM NATURE-INT BIOS, V15, P63, DOI 10.1007/s12110-004-1004-x; Bock J, 2002, HUM NATURE-INT BIOS, V13, P161, DOI 10.1007/s12110-002-1007-4; Bock J, 2002, HUM NATURE-INT BIOS, V13, P153, DOI 10.1007/s12110-002-1006-5; Bock J., 2005, HUNTER GATHERER CHIL, P109; Bock J., 2001, INT ENCY SOCIAL BEHA, V8, P5561; BOEHM C, 1993, CURR ANTHROPOL, V34, P227, DOI 10.1086/204166; Boehm Christopher, 1999, HIERARCHY FOREST; Bogin B, 1997, YEARB PHYS ANTHROPOL, V40, P63; Bogin B., 1999, PATTERNS HUMAN GROWT; BOTT E, 1971, FAMILY SOCIAL NETWOR; Boulton Michael J., 1992, P429; Boyer P, 2001, RELIG EXPLAINED; Brody H., 2002, MAPS DREAMS; Bruner JS, 1976, PLAY ITS ROLE DEV EV; Buckley C, 2002, WORLD ARCHAEOL, V34, P26, DOI 10.1080/00438240220134241; BUTTERWORTH G, 1980, INT J BEHAV DEV, V3, P253, DOI 10.1177/016502548000300303; Byrne R. W., 1988, MACHIAVELLIAN INTELL; Byrne R. W., 1995, THINKING APE; Capp B., 2003, GOSSIPS MEET WOMEN F; Carey S., 2009, ORIGIN CONCEPTS; Carpenter M, 1998, INFANT BEHAV DEV, V21, P315, DOI 10.1016/S0163-6383(98)90009-1; Carpenter M, 1998, MONOGR SOC RES CHILD, V63; CHAGNON NA, 1997, YANOMAMO; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; Charnov Eric L., 1993, P1; Chase R. A., 1992, CHILD ENV, V9, P3; Chesterfield R., 1977, ED TRADITIONAL FOOD, V53; Cosmides L., 2000, METAREPRESENTATIONS, P53; Csibra G, 2003, COGNITIVE SCI, V27, P111; Csibra G, 1999, COGNITION, V72, P237, DOI 10.1016/S0010-0277(99)00039-6; d'Errico F, 2005, J HUM EVOL, V48, P3, DOI 10.1016/j.jhevol.2004.09.002; de Laguna F, 1995, TALES DENA; DeMarrais K. B., 1994, CHILDRENS PLAY DIVER, P179; Downs J. F., 1966, 2 WORLDS WASHO; DRAPER P, 1988, ETHNOLOGY, V27, P339, DOI 10.2307/3773398; Draper P., 1976, KALAHARI HUNTER GATH, P199; Dunbar R. I. M., 1996, GROOMING GOSSIP EVOL; Dunbar R.I.M, 2007, GUTS BRAINS, P91; DUNBAR RIM, 1992, J HUM EVOL, V22, P469, DOI 10.1016/0047-2484(92)90081-J; Emler N., 2001, NEW HDB LANGUAGE SOC, P317; Erdoes Richard, 1998, AM INDIAN TRICKSTER; FALK D, 1984, NAT HIST, V93, P36; Fiddick L, 2000, COGNITION, V77, P1, DOI 10.1016/S0010-0277(00)00085-8; Fischer J., 1981, HDB CROSS CULTURAL D, P739; Fitch WT, 2004, VIENNA SER THEOR BIO, P275; FLANNERY R, 1962, ANTHROPOS, V57, P475; Flinn MV, 2005, EVOL HUM BEHAV, V26, P10, DOI 10.1016/j.evolhumbehav.2004.08.005; Garvey C., 1990, CHILDRENS PLAY; Gergely G, 2002, NATURE, V415, P755; GERGELY G, 1995, COGNITION, V56, P165, DOI 10.1016/0010-0277(95)00661-H; Gibson K. R., 1999, MAMMALIAN SOCIAL LEA, P351; Gibson K. R., 1999, MAMMALIAN SOCIAL LEA, V73, P57; Goncu A, 2007, PLAY DEV EVOLUTIONAR; Goodale JC, 1971, TIWI WIVES STUDY WOM; GOODWIN G, 1939, MEMOIRS AM FOLKLORE, V33; Gould R.A., 1980, LIVING ARCHAEOLOGY; Gurven M, 2006, J HUM EVOL, V51, P454, DOI 10.1016/j.jhevol.2006.05.003; Gusinde M., 1975, FOLK LIT SELKNAM IND; Hames R, 1988, HUMAN REPROD BEHAV, P237; HAMES R, 1990, RISK UNCERTAINTY TRI, P89; Hamlin JK, 2007, NATURE, V450, P557, DOI 10.1038/nature06288; HAWKES K, 1995, CURR ANTHROPOL, V36, P688, DOI 10.1086/204420; Hawkes K, 1997, CURR ANTHROPOL, V38, P551, DOI 10.1086/204646; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; HAWKES K, 1989, COMP SOCIOECOLOGY BE, P341; Heerwagen JH, 2002, CHILDREN AND NATURE, P29; Heffley S., 1981, HUNTER GATHERER FORA, P126; Henshilwood CS, 2002, SCIENCE, V295, P1278, DOI 10.1126/science.1067575; HEWLETT BS, 1986, AM ANTHROPOL, V88, P922; HEWLETT BS, 1991, INTIMATE FATHERS; Hill K., 1992, HUMAN NATURE, V3, P185; Hill K., 1983, ADAPTIVE RESPONSES N, P139; Holloway R. L, 1996, HDB HUMAN SYMBOLIC E, P74; Hrdy S., 2005, HUNTER GATHERER CHIL, P65, DOI DOI 10.1177/1754073911430141; Hrdy S. B., 1999, MOTHER NATURE HIST M; Hrdy S. B., 2009, MOTHERS OTHERS EVOLU; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; Jacobs E., 1959, NEHALEM TILLAMOOK TA; Jones NB, 2002, HUM NATURE-INT BIOS, V13, P199, DOI 10.1007/s12110-002-1008-3; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kaplan H., 1992, EVOLUTIONARY ECOLOGY, P167; Kaplan H., 2007, GUTS BRAINS INTEGRAT, P47; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; Kaplan HS, 2003, RES PERSPECT LONGEV, P69; Kaplan HS, 2002, P NATL ACAD SCI USA, V99, P10221, DOI 10.1073/pnas.152502899; Kelly RL, 1995, FORAGING SPECTRUM; Konner M., 2010, EVOLUTION CHILDHOOD; Konner M., 2005, HUNTER GATHERER CHIL, P19; KONNER MJ, 1976, KALAHARI HUNTER GATH, P218; Konner MJ, 1976, KALAHARI HUNTER GATH, P325; Kramer KL, 2005, EVOL ANTHROPOL, V14, P224, DOI 10.1002/evan.20082; Kramer KL, 2002, HUM NATURE-INT BIOS, V13, P299, DOI 10.1007/s12110-002-1011-8; Kramer KL, 2005, MAYA CHILDREN HELPER; Kroeber A., 1980, KAROK MYTHS; Lancaster JB, 1983, HUMANS ADAPT BIOCULT, P33; Laughlin WS, 1968, MAN HUNTER, P304; Leacock Eleanor, 1954, MONTAGNAIS HUNTING T; LEE RB, 1984, DOBE KUNG; Lee RB, 1979, KUNG SAN MEN WOMEN W; Leonard W. R., 2007, GUTS BRAINS INTEGRAT, P29; Leslie A. M., 1994, MAPPING MIND DOMAIN, P119, DOI [DOI 10.1017/CBO9780511752902.006, 10.1017/CBO9780511752902.006]; LESLIE AM, 1987, PSYCHOL REV, V94, P412, DOI 10.1037//0033-295X.94.4.412; LEWIS D, 1978, AM PHILOS QUART, V15, P37; LIEBENBERG L, 1990, ART TRACKING; Locke JL, 2006, BEHAV BRAIN SCI, V29, P259, DOI 10.1017/S0140525X0600906X; Long John S., 1978, ONTARIO HIST, V70, P75; Lowie R., 1918, ANTHR PAPERS AM MU 1, VXXV; MacDonald DH, 1999, CURR ANTHROPOL, V40, P501, DOI 10.1086/200047; MacDonald K., 2007, GUTS BRAINS INTEGRAT, P107; MacDonald K, 2007, HUM NATURE-INT BIOS, V18, P386, DOI 10.1007/s12110-007-9019-8; Marlowe F, 2010, HADZA HUNTER GATHERE; Marlowe FW, 2005, EVOL ANTHROPOL, V14, P54, DOI 10.1002/evan.20046; Marshall L., 1976, KALAHARI HUNTER GATH, P349; Mason M., 2005, ISLANDERS REMEMBERED; McBrearty S, 2000, J HUM EVOL, V39, P453, DOI 10.1006/jhev.2000.0435; McDonald M., 1997, VOICES BAY TRADITION; MCILWRAITH TF, 1948, BELLA COOLA INDIANS, V2; MELTZOFF AN, 1995, DEV PSYCHOL, V31, P838, DOI 10.1037//0012-1649.31.5.838; Menzel C. R., 1997, MACHIAVELLIAN INTELL, P207; MITHEN SJ, 1990, THOUGHTFUL FORAGERS; Napanangka Y., 1995, FOOTPRINTS OUR LAND, P143; Nelson Richard K, 1969, HUNTERS NO ICE; NSAMENANG AB, 1992, HUMAN DEV CULTURAL C; O'Connell F., 1999, J HUM EVOL, V36, P461; Ohmagari K, 1997, HUM ECOL, V25, P197, DOI 10.1023/A:1021922105740; OHTSUKA R, 1989, AM J PHYS ANTHROPOL, V80, P31, DOI 10.1002/ajpa.1330800105; ONeill DK, 1996, CHILD DEV, V67, P659, DOI 10.1111/j.1467-8624.1996.tb01758.x; Onishi KH, 2005, SCIENCE, V308, P255, DOI 10.1126/science.1107621; Onishi KH, 2007, ACTA PSYCHOL, V124, P106, DOI 10.1016/j.actpsy.2006.09.009; Opler M, 1938, MYTHS TALES JICARILL; Opler Morris Edward, 1940, MYTHS LEGENDS LIPAN; Parsons E. C., 1929, KIOWA TALES; Pellegrini A. D., 2011, OXFORD HDB DEV PLAY; Pellegrini AD, 2004, HUM NATURE-INT BIOS, V15, P23, DOI 10.1007/s12110-004-1002-z; Pinker s, 1994, LANGUAGE INSTINCT; RADIN P, 1956, TRICKSTER; Ramsey J., 1977, COYOTE WAS GOING THE; Rasmussen K., 1931, NETSILIK ESKIMOS SOC, V8; Reader SM, 2002, P NATL ACAD SCI USA, V99, P4436, DOI 10.1073/pnas.062041299; Ridington R., 1988, TRAIL HEAVEN KNOWLED; Robinson RS, 2008, POP STUD-J DEMOG, V62, P25, DOI 10.1080/00324720701788590; Rogers J., 1960, CONTRIBUTIONS ANTHR, V60, P14; Rogoff B, 2003, CULTURAL NATURE HUMA; Russon A. E., 1997, MACHIAVELLIAN INTELL, P174; SCAIFE M, 1975, NATURE, V253, P265, DOI 10.1038/253265a0; Scalise Sugiyama M., 2005, LIT ANIMAL EVOLUTION, P177; Scalise Sugiyama Michelle, 2004, INTERDISCIPLINARY LI, V5.2, P108; Scalise Sugiyama Michelle, 2006, ANTHR SOCIAL HIST HE, P319; Scalise Sugiyama Michelle, 2008, OMETECA, V12, P24; Schacter DL, 2007, NAT REV NEUROSCI, V8, P657, DOI 10.1038/nrn2213; SCHOLNICK EK, 1990, DEV PSYCHOL, V26, P188; Senungetuk V, 1987, PLACE WINTER P TIULA; Shennan S. J, 1999, MAMMALIAN SOCIAL LEA, V72, P367; Silverman I., 2005, HDB EVOLUTIONARY PSY, P177; Sobel E, 2000, J ANTHROPOL ARCHAEOL, V19, P276, DOI 10.1006/jaar.2000.0365; SPELKE ES, 1992, PSYCHOL REV, V99, P605, DOI 10.1037//0033-295X.99.4.605; SPERBER D, 1985, MAN, V20, P73, DOI 10.2307/2802222; Stammbach E., 1988, MACHIAVELLIAN INTELL, P309; STEEN FF, 2001, J COGNITION CULTURE, V1, P289, DOI DOI 10.1163/156853701753678305; STEPHAN H, 1981, FOLIA PRIMATOL, V35, P1, DOI 10.1159/000155963; Sterelny K, 2011, PHILOS T R SOC B, V366, P809, DOI 10.1098/rstb.2010.0301; Steward J, 1938, BASIN PLATEAU ABORIG; Street B., 1972, ZANDE THEMES ESSASYS, P82; Sugiyama L., CREATING CO IN PRESS; Sugiyama L. S., 2000, HUMAN BEHAV ADAPTATI, P371; Sugiyama Lawrence, 2009, STUD LIT IMAGIN, V42, P1; Sugiyama Lawrence, 2008, 20 ANN M HUM BEH EV; Sugiyama MS, 2009, J CONSCIOUSNESS STUD, V16, P94; Sugiyama MS, 2001, PHILOS LITERATURE, V25, P233, DOI 10.1353/phl.2001.0035; Sugiyama MS, 1996, HUM NATURE-INT BIOS, V7, P403, DOI 10.1007/BF02732901; Sugiyama MS, 2001, EVOL HUM BEHAV, V22, P221; Sutton-Smith B, 1986, NARRATIVE PSYCHOL ST, P67; Tomasello M, 2005, BEHAV BRAIN SCI, V28, P675, DOI 10.1017/S0140525X05000129; Tomasello M, 1999, CULTURAL ORIGINS HUM; Tonkinson Robert, 1978, MARDUDJARA ABORIGINE; Tooby J, 2001, SUB-STANCE, P6; Tooby J., 1992, ADAPTED MIND EVOLUTI, V163, P163; Tucker B., 2005, HUNTER GATHERER CHIL, P147; WALKER AS, 1982, J EXP CHILD PSYCHOL, V33, P514, DOI 10.1016/0022-0965(82)90063-7; Walker R, 2002, J HUM EVOL, V42, P639, DOI 10.1006/jhev.2001.0541; WELLMAN HM, 1992, ANNU REV PSYCHOL, V43, P337, DOI 10.1146/annurev.ps.43.020192.002005; Whiten A, 1997, MACHIAVELLIAN INTELL; Wiessner P. W., 1982, POLITICS HIST BAND S, P61; WILBERT J, 1990, FOLK LIT YANOMAMI IN; Woodward AL, 1998, COGNITION, V69, P1, DOI 10.1016/S0010-0277(98)00058-4; YOST JA, 1983, ADAPTIVE RESPONSES N, P189; Yunupingu D., 1979, LAND RAINBOW SNAKE A 207 7 7 0 9 FRONTIERS RESEARCH FOUNDATION LAUSANNE PO BOX 110, LAUSANNE, 1015, SWITZERLAND 1664-1078 FRONT PSYCHOL Front. Psychol. 2011 2 133 10.3389/fpsyg.2011.00133 19 Psychology, Multidisciplinary Psychology V31DG WOS:000208863700144 21897825 DOAJ Gold, Green Published 2018-11-12 J Bulit, F; Massoni, V Bulit, Florencia; Massoni, Viviana Apparent survival and return rate of breeders in the southern temperate White-rumped Swallow Tachycineta leucorrhoa IBIS English Article mark-recapture; nesting success; Tachycineta bicolor; Tachycineta leucorrhoa LIFE-HISTORY EVOLUTION; SITE FIDELITY; TREE SWALLOW; BREEDING DISPERSAL; MARKED ANIMALS; BIRDS; NEST; PHILOPATRY; BICOLOR; QUALITY Life-histories and demographic parameters of southern temperate bird species have been little studied. We estimated return rates between years and sexes, and adult apparent survival and recapture probabilities with mark-recapture data on White-rumped Swallows and found a lower return rate of unsuccessful females. There was little support for influences of sex or year on survival rates. The estimates were equivalent to the lowest value reported for a northern congener, in contrast to the prediction of geographical variation under life-history theory. [Bulit, Florencia; Massoni, Viviana] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Ecol Genet & Evoluc, RA-1053 Buenos Aires, DF, Argentina Bulit, F (reprint author), Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Ecol Genet & Evoluc, Intendente Guiraldes 2160,C1428EGA Capital Fed, RA-1053 Buenos Aires, DF, Argentina. florbulit@ege.fcen.uba.ar University of Buenos Aires [UBACyT X-140, X-462]; CONICET [PIP - 5875]; CONICET, Argentina We thank R. Garcia, M. Barrionuevo and N. Zaldua for their field assistance, K. Dugger for advice with the program MARK, and the two reviewers and associate editor whose comments greatly improved the manuscript. We are indebted to G. Somoza, L. Miranda and C. Frasch, who provided logistic support at the InTeCh-CONICET. This study was made possible by University of Buenos Aires grants UBACyT X-140 and X-462, and CONICET PIP - 5875 to V. M. V. M. is a Research Fellow of CONICET, Argentina. F. B. is a doctoral candidate at the same institution. Anderson DR, 2000, J WILDLIFE MANAGE, V64, P912, DOI 10.2307/3803199; Bijleveld AI, 2009, BEHAV ECOL, V20, P736, DOI 10.1093/beheco/arp054; BOLLINGER EK, 1989, AUK, V106, P584; Bulit F, 2008, EMU, V108, P181, DOI 10.1071/MU07068; Clark RG, 1999, ECOLOGY, V80, P272, DOI 10.2307/176996; Clobert J., 2001, DISPERSAL; Cooch E. G, 2006, PROGRAM MARK GENTLE; COULSON JC, 1968, NATURE, V217, P478, DOI 10.1038/217478a0; Custer CM, 2007, ENVIRON TOXICOL CHEM, V26, P1056, DOI 10.1897/06-337R.1; Dugger KM, 2006, AUK, V123, P858, DOI 10.1642/0004-8038(2006)123[858:EOFBOF]2.0.CO;2; FERRETTI V, 2010, THESIS CORNELL U; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; GREENWOOD PJ, 1978, NATURE, V271, P52, DOI 10.1038/271052a0; GREENWOOD PJ, 1982, ANNU REV ECOL SYST, V13, P1, DOI 10.1146/annurev.es.13.110182.000245; Haas CA, 1998, AUK, V115, P929, DOI 10.2307/4089511; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; Martin TE, 1995, J APPL STAT, V22, P863, DOI 10.1080/02664769524676; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; Massoni V, 2007, IBIS, V149, P10; Murphy MT, 2000, AUK, V117, P902, DOI 10.1642/0004-8038(2000)117[0902:IRBTSC]2.0.CO;2; PART T, 1994, ANIM BEHAV, V48, P401, DOI 10.1006/anbe.1994.1254; Rappole JH, 2002, ARDEA, V90, P525; RIDGELY RS, 1989, BIRDS S AM, V1; ROBERTSON RJ, 1990, CAN J ZOOL, V68, P1046, DOI 10.1139/z90-152; Roff D. A., 2002, LIFE HIST EVOLUTION; SHIELDS WM, 1984, AUK, V101, P780, DOI 10.2307/4086904; Shutler D, 2003, AUK, V120, P619, DOI 10.1642/0004-8038(2003)120[0619:CACOTS]2.0.CO;2; Skutch A. F., 1985, ORNITHOLOGICAL MONOG, V36, P575, DOI DOI 10.2307/40168306; *STATS INC, 1995, STATISTICA WIND VERS; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stenhouse IJ, 2005, CONDOR, V107, P416, DOI 10.1650/7627; SWITZER PV, 1993, EVOL ECOL, V7, P533, DOI 10.1007/BF01237820; WALTERS JR, 1988, ETHOLOGY, V78, P275; White GC, 1999, BIRD STUDY, V46, P120; Winkler DW, 2004, CONDOR, V106, P768, DOI 10.1650/7634 39 5 5 1 15 WILEY-BLACKWELL PUBLISHING, INC MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0019-1019 IBIS Ibis JAN 2011 153 1 190 194 10.1111/j.1474-919X.2010.01079.x 5 Ornithology Zoology 690MH WOS:000285008400022 2018-11-12 J Li, YM; Xu, F; Guo, ZW; Liu, XA; Jin, CN; Wang, YP; Wang, SP Li, Yiming; Xu, Feng; Guo, Zhongwei; Liu, Xuan; Jin, Changnan; Wang, Yanping; Wang, Supen Reduced predator species richness drives the body gigantism of a frog species on the Zhoushan Archipelago in China JOURNAL OF ANIMAL ECOLOGY English Article age structure; insular body size; insular population; number of predator species; sexual size dimorphism ISLAND RULE; LIFE-HISTORY; RODENT POPULATIONS; SIZE; EVOLUTION; MAMMALS; SHIFTS; ECOLOGY; DISPLACEMENT; EXPLANATION P>1. Shifts in the body size of insular vertebrates have been an interesting theme in ecological and evolutionary studies. Four primary factors, including predation pressures, resource availability, inter-species competition and immigrant selection, have been proposed to explain the trend in insular body size. Life-history theory predicts that body size, average age, the proportion of old-aged members and the density of insular populations are negatively correlated with predator species richness, and that body size and population density are positively related to resource availability. The niche expansion hypothesis argues that a positive relationship is expected to exist between insular body size and prey size, which varies in response to extinction due to small or large competitors. The immigrant hypothesis predicts that insular body size is positively correlated with distance to the mainland. 2. We tested these hypotheses by using populations of rice frogs Rana limnocharis on 20 islands in the Zhoushan Archipelago and two sites of nearby mainland China. 3. The body size (snout-vent length) of rice frogs on half of the islands was larger before and after the variable of age was controlled for; rice frog density and prey availability was higher and prey size was larger on most of the islands as compared to the two mainland sites. On the islands, the body size and other features [e.g. average age, the proportion of old-aged frogs (ages 3 and 4) and density] of the rice frogs were negatively associated with predator species richness; female body size and other features were positively associated with prey availability. The inference of multivariate linear models based on corrected Akaike Information Criterion (AIC(c)) showed that the relative importance of predator species richness on body size and each of the other features was larger than that of prey availability, prey size and distance to the mainland. In addition, the parameters for predator species richness were all negative. 4. The results provided strong support for the life-history theory of predation pressures, but weak evidence for the life-history theory of prey availability, the niche expansion or the immigrant hypothesis. The reduced predator species richness was a dominant factor contributing to the body gigantism of rice frogs on the islands. [Li, Yiming; Xu, Feng; Guo, Zhongwei; Liu, Xuan; Jin, Changnan; Wang, Yanping; Wang, Supen] Chinese Acad Sci, Inst Zool, Key Lab Anim Ecol & Conservat Biol, Beijing 100101, Peoples R China; [Xu, Feng; Liu, Xuan; Jin, Changnan; Wang, Yanping; Wang, Supen] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China; [Wang, Yanping] Zhejiang Univ, Coll Life Sci, Hangzhou 310003, Zhejiang, Peoples R China Li, YM (reprint author), Chinese Acad Sci, Inst Zool, Key Lab Anim Ecol & Conservat Biol, 1 Datun Beichen W Rd, Beijing 100101, Peoples R China. liym@ioz.ac.cn Xu, Feng/A-8626-2011 Xu, Feng/0000-0001-8925-977X '973' program [2007CB411600]; Chinese Academy of Sciences [kscx2-yw-z-1021] We thank the Forestry and Environmental Protection departments of Zhoushan City, the Dinghai Region, Putuo Region, Daishan County, Liuheng, Xiushan, Meishan, Xiashi, Fodu, Damao, Dayushan and Huni for kindly providing data on predator species richness. We are grateful to Brad R. Murray and two reviewers for their comments on the manuscript. This work was supported by a grant from the '973' program (code: 2007CB411600) and the Chinese Academy of Sciences (code: kscx2-yw-z-1021). The work complies with the current laws of China in which it was performed. ADLER GH, 1994, Q REV BIOL, V69, P473, DOI 10.1086/418744; ANGERBJORN A, 1986, OIKOS, V47, P47, DOI 10.2307/3565918; Ball SL, 1996, ECOLOGY, V77, P1116, DOI 10.2307/2265580; Boback SM, 2003, EVOLUTION, V57, P345; Bromham L, 2007, BIOL LETTERS, V3, P398, DOI 10.1098/rsbl.2007.0113; Burnham K. P., 2002, MODEL SELECTION MULT; CASE TJ, 1978, ECOLOGY, V59, P1, DOI 10.2307/1936628; Chen Q., 1989, ANN CURRENT HIST PLA; Clegg SM, 2002, P ROY SOC B-BIOL SCI, V269, P1359, DOI 10.1098/rspb.2002.2024; *COMM CCAE, 1989, CHENGS COUNT ANN; *COMM DCAE, 1993, DAISH COUNT ANN; DAYAN T, 1994, ECOLOGY, V75, P1063, DOI 10.2307/1939430; DENG X, 1992, NATURAL SCI J HUMAN, V15, P5; DIAMOND JM, 1970, P NATL ACAD SCI USA, V67, P529, DOI 10.1073/pnas.67.2.529; Duellman WE, 1986, BIOL AMPHIBIANS; Fairbairn DJ, 1997, ANNU REV ECOL SYST, V28, P659, DOI 10.1146/annurev.ecolsys.28.1.659; Fei L., 1999, ATLAS AMPHIBIANS CHI; FOSTER JB, 1964, NATURE, V202, P234, DOI 10.1038/202234a0; GADOW H., 1901, CAMBRIDGE NATURAL HI, V8; GRANT PR, 1968, SYST ZOOL, V17, P319, DOI 10.2307/2412010; HASEGAWA M, 1994, COPEIA, P732; HEANEY LR, 1978, EVOLUTION, V32, P29, DOI 10.1111/j.1558-5646.1978.tb01096.x; Hirai T, 1999, COPEIA, P940; Huang M, 1990, FAUNA ZHEJIANG AMPHI; Jaeger R, 1994, MEASURING MONITORING, P103; Jinling Z., 1987, COMPREHENSIVE AGR PR; Johnson JB, 2004, TRENDS ECOL EVOL, V19, P101, DOI 10.1016/j.tree.2003.10.013; Lack D. L., 1976, ISLAND BIOL ILLUSTRA; Leary CJ, 2005, ANIM BEHAV, V70, P663, DOI 10.1016/j.anbehav.2004.12.013; Li Y, 1993, GEN LAWS SPECIES DIV; Li YM, 2006, OECOLOGIA, V148, P129, DOI 10.1007/s00442-006-0355-x; Lomolino MV, 2005, J BIOGEOGR, V32, P1683, DOI 10.1111/j.1365-2699.2005.01314.x; LOMOLINO MV, 1985, AM NAT, V125, P310, DOI 10.1086/284343; MCCOY ED, 1990, OIKOS, V58, P313, DOI 10.2307/3545222; Meiri S, 2005, AM NAT, V165, P505, DOI 10.1086/428297; Meiri S, 2008, P ROY SOC B-BIOL SCI, V275, P141, DOI 10.1098/rspb.2007.1056; Meiri S, 2006, J BIOGEOGR, V33, P1571, DOI 10.1111/j.1365-2699.2006.01523.x; Michaux JR, 2002, GLOBAL ECOL BIOGEOGR, V11, P427, DOI 10.1046/j.1466-822x.2002.00301.x; Pafilis P, 2009, NATURWISSENSCHAFTEN, V96, P1107, DOI 10.1007/s00114-009-0564-3; Palkovacs EP, 2003, OIKOS, V103, P37, DOI 10.1034/j.1600-0706.2003.12502.x; Pan QH, 2007, FIELD GUIDE MAMMALS; PATTERSON BD, 1983, EVOLUTION, V37, P375, DOI 10.1111/j.1558-5646.1983.tb05546.x; Pough FH, 2007, ILAR J, V48, P203; Raia P, 2006, EVOLUTION, V60, P1731; Redmer Michael, 2002, Illinois Natural History Survey Bulletin, V36, P163; ROTHSTEIN SI, 1973, AM NAT, V107, P598, DOI 10.1086/282862; RYSER J, 1989, OECOLOGIA, V78, P264, DOI 10.1007/BF00377165; SCHOENER TW, 1970, AM NAT, V104, P155, DOI 10.1086/282647; Sinclair ARE, 2003, NATURE, V425, P288, DOI 10.1038/nature01934; SMITH FA, 1992, FUNCT ECOL, V6, P265, DOI 10.2307/2389516; Stearns S. C., 1992, EVOLUTION LIFE HIST; Van Valen L, 1965, AM NAT, V99, P377, DOI DOI 10.1086/282379; VENABLES WN, 2008, INTRO R; WANG JT, 1980, J GEOGR, V35, P299; WANG Y, 2006, STUDY LIFE HIST SHIF; Welch JJ, 2009, P ROY SOC B-BIOL SCI, V276, P675, DOI 10.1098/rspb.2008.1180; Werner EE, 1995, J HERPETOL, V29, P600, DOI 10.2307/1564744; White TA, 2007, J BIOGEOGR, V34, P356, DOI 10.1111/j.1365-2699.2006.01599.x; Whittingham MJ, 2006, J ANIM ECOL, V75, P1182, DOI 10.1111/j.1365-2656.2006.01141.x; Wu ZJ, 2006, J ANIM ECOL, V75, P1071, DOI 10.1111/j.1365-2656.2006.01126.x; Yiming L, 1998, OECOLOGIA, V113, P557, DOI 10.1007/s004420050409; YUAN C, 1985, CHINESE J ZOOLOGY, V7, P3; ZHANG J, 1966, CHINESE J ZOOLOGY, V2, P5; ZHU X, 1990, J ZHEJIANG FORESTRY, V7, P8; Zhuge Y., 1990, FAUNA ZHEJIANG MAMMA; ZHUGE Y, 1990, FUANA ZHEJIANG AVES 66 16 19 1 24 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. JAN 2011 80 1 171 182 10.1111/j.1365-2656.2010.01746.x 12 Ecology; Zoology Environmental Sciences & Ecology; Zoology 691WD WOS:000285110600017 20840555 Bronze 2018-11-12 J Allen, DE; Little, TJ Allen, D. E.; Little, T. J. Identifying energy constraints to parasite resistance JOURNAL OF EVOLUTIONARY BIOLOGY English Article costs; Daphnia; immunity; trade-offs LIFE-HISTORY; DROSOPHILA-MELANOGASTER; TRADE-OFF; ECOLOGICAL IMMUNOLOGY; PASTEURIA-RAMOSA; IMMUNE DEFENSE; DAPHNIA-MAGNA; FRESH-WATER; REPRODUCTION; PREDATOR Life-history theory suggests that energetically expensive traits may trade off against each other, resulting in costs associated with the development or maintenance of a particular phenotype. The deployment of resistance mechanisms during parasite exposure is one such trait, and thus their potential benefit in fighting off parasites may be offset by costs to other fitness-related traits. In this study, we used trade-off theory as a basis to test whether stimulating an increased development rate in juvenile Daphnia would reveal energetic constraints to its ability to resist infection upon subsequent exposure to the castrating parasite, Pasteuria ramosa. We show that the presumably energetically expensive process of increased development rate does result in more infected hosts, suggesting that parasite resistance requires the allocation of resources from a limited source, and thus has the potential to be costly. [Allen, D. E.; Little, T. J.] Univ Edinburgh, IEB, Edinburgh EH9 3JT, Midlothian, Scotland Allen, DE (reprint author), Univ Edinburgh, IEB, Kings Bldg,Mayfield Rd, Edinburgh EH9 3JT, Midlothian, Scotland. desiree.allen@ed.ac.uk Little, Tom/B-7890-2009 Little, Tom/0000-0002-8945-0416 Wellcome Trust We thank Philip Wilson for laboratory assistance. DEA and TJL are supported by a Wellcome Trust Senior Research Fellowship in Basic Biomedical Sciences to TJL. ANDERSON RM, 1982, PARASITOLOGY, V85, P411, DOI 10.1017/S0031182000055360; Boersma M, 1998, AM NAT, V152, P237, DOI 10.1086/286164; Doughty P, 1998, ECOLOGY, V79, P1073, DOI 10.1890/0012-9658(1998)079[1073:REAALT]2.0.CO;2; Ebert D, 2004, AM NAT, V164, pS19, DOI 10.1086/424606; Ebert D, 1996, PHILOS T ROY SOC B, V351, P1689, DOI 10.1098/rstb.1996.0151; Fellowes MDE, 1998, P ROY SOC B-BIOL SCI, V265, P1553, DOI 10.1098/rspb.1998.0471; KLUTTGEN B, 1994, WATER RES, V28, P743, DOI 10.1016/0043-1354(94)90157-0; Kraaijeveld AR, 1997, NATURE, V389, P278; LANDWER AJ, 1994, OECOLOGIA, V100, P243, DOI 10.1007/BF00316951; Little TJ, 2007, J ANIM ECOL, V76, P1202, DOI 10.1111/j.1365-2656.2007.01290.x; LUNING J, 1992, OECOLOGIA, V92, P383, DOI 10.1007/BF00317464; MACHACEK J, 1995, J PLANKTON RES, V17, P1513, DOI 10.1093/plankt/17.7.1513; McKean KA, 2005, EVOLUTION, V59, P1510; Moret Y, 2000, SCIENCE, V290, P1166, DOI 10.1126/science.290.5494.1166; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Nunney L, 1996, EVOLUTION, V50, P1193, DOI 10.1111/j.1558-5646.1996.tb02360.x; Peters R. H., 1987, DAPHNIA MEM IST ITAL, V45, P1; Petrusek A, 2009, P NATL ACAD SCI USA, V106, P2248, DOI 10.1073/pnas.0808075106; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff Derek A., 1992; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; *SAS I INC, 2000, SAS ONL DOC VERS 8; Sgro CM, 1999, SCIENCE, V286, P2521, DOI 10.1126/science.286.5449.2521; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Stearns S. C., 1992, EVOLUTION LIFE HIST; STIBOR H, 1994, FUNCT ECOL, V8, P97, DOI 10.2307/2390117; STIBOR H, 1992, OECOLOGIA, V92, P162, DOI 10.1007/BF00317358; WEIDER LJ, 1993, OIKOS, V67, P385, DOI 10.2307/3545351; Zuk M, 2002, AM NAT, V160, pS9, DOI 10.1086/342131 29 13 14 1 39 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. JAN 2011 24 1 224 229 10.1111/j.1420-9101.2010.02152.x 6 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 696CC WOS:000285418500021 21210532 Bronze 2018-11-12 J Wright, PJ; Gibb, FM; Gibb, IM; Millar, CP Wright, Peter J.; Gibb, Fiona M.; Gibb, Iain M.; Millar, Colin P. Reproductive investment in the North Sea haddock: temporal and spatial variation MARINE ECOLOGY PROGRESS SERIES English Article Life-history theory; PMRN; Maturation; Fecundity; Haddock MELANOGRAMMUS-AEGLEFINUS L; COD GADUS-MORHUA; PROBABILISTIC REACTION NORMS; FISHERIES-INDUCED EVOLUTION; MATURATION REACTION NORMS; ATLANTIC SHELF SEAS; FISHING EFFORT; PLEURONECTES-PLATESSA; COMMUNITY STRUCTURE; AGE Maturation and fecundity have been examined since the 1970s in 2 putative sub-populations of North Sea haddock Melanogrammus aeglefinus. Reproductive investment within the western North Sea haddock sub-population significantly increased between the 1970s and 2000s, as was evident from both a decline in maturation probability and an increase in fecundity with size. A decline in maturation probability was also evident in males from the east North Sea, although the length at 50% probability of maturing (Lp50) at the beginning and end of the study period was much higher than in the west North Sea. The changes in reproductive traits could not be explained as a compensatory response, since the trend for increasing reproductive investment was not reversed when the North Sea stock recovered over the past decade. Indeed increased reproductive investment was accompanied by a reduction in somatic growth rate. Temperature immediately prior to secondary gametogenesis could partially explain inter-annual variation in female maturation probability and may have influenced the difference in sub-population trends. However, declines in maturation probability with cohort were still highly significant after accounting for a temperature effect, and differences in potential fecundity could not be explained by changes in somatic condition. Overall, it appears that west North Sea haddock have increased their reproductive effort, following decades of high mortality, consistent with an evolutionary response. [Wright, Peter J.; Gibb, Fiona M.; Gibb, Iain M.; Millar, Colin P.] Marine Scotland Sci, Marine Lab, Aberdeen AB11 9DB, Scotland Wright, PJ (reprint author), Marine Scotland Sci, Marine Lab, Aberdeen AB11 9DB, Scotland. p.wright@marlab.ac.uk WRIGHT, PETER/C-8536-2011 Scottish Government [MF0764]; European Commission; [SSP-2006-044276] This study has been carried out with financial support from the Scottish Government MF0764 project and the European Commission, as part of the Specific Targeted Research Project Fisheries-induced Evolution (FinE, contract no. SSP-2006-044276) under the Scientific Support to Policies cross-cutting activities of the European Community's Sixth Framework Programme. It does not necessarily reflect the views of the European Commission and does not anticipate the Commission's future policy in this area. We thank J. Hislop, D. Mennie, W. MacDonald and G. Strugnell for assistance in sample analysis; the masters and crews of FRV 'Scotia', MFVs 'Harvest Reaper', 'Seringa', 'Sunbeam' and 'Falcon' for help in sample collection and ICES for the provision of DATRAS data. Finally, M. Heino, A. Rijnsdorp and 2 anonymous reviewers provided helpful comments on an earlier version of this manuscript. Alekseyeva YEI, 1979, J ICHTHYOLOGY, V19, P56; Barot S, 2004, EVOL ECOL RES, V6, P659; CONOVER DO, 1995, TRENDS ECOL EVOL, V10, P248, DOI 10.1016/S0169-5347(00)89081-3; Davie A, 2007, AQUACULTURE, V270, P379, DOI 10.1016/j.aquaculture.2007.04.052; Dhillon RS, 2004, COPEIA, P37, DOI 10.1643/CI-02-098R1; Dickey-Collas M, 2003, ICES MAR SCI S, V219, P271; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; ELLIOTT AJ, 1991, CONT SHELF RES, V11, P453, DOI 10.1016/0278-4343(91)90053-9; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; Ernande B, 2004, P ROY SOC B-BIOL SCI, V271, P415, DOI 10.1098/rspb.2003.2519; Ferro RST, 2008, FISH RES, V94, P151, DOI 10.1016/j.fishres.2008.08.018; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Greenstreet SPR, 2009, ICES J MAR SCI, V66, P886, DOI 10.1093/icesjms/fsp068; Greenstreet SPR, 1999, FISH RES, V40, P107, DOI 10.1016/S0165-7836(98)00207-0; Grift RE, 2007, MAR ECOL PROG SER, V334, P213, DOI 10.3354/meps334213; Heath MR, 1998, FISH OCEANOGR, V7, P110; Hedger R, 2004, FISH RES, V70, P17, DOI 10.1016/j.fishres.2004.07.002; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 2011, PRAGMATIC EVOLUTION; Hislop J. R. G., 1984, FISH REPROD STRATEGI, P311; HISLOP JRG, 1978, J FISH BIOL, V13, P85, DOI 10.1111/j.1095-8649.1978.tb03416.x; HISLOP JRG, 1981, J CONSEIL, V39, P244; HISLOP JRG, 1988, J FISH BIOL, V32, P923, DOI 10.1111/j.1095-8649.1988.tb05435.x; ICES, 2009, REP WORK GROUP ASS D; JAMIESON A, 1989, J CONSEIL, V45, P248; Jennings S, 1999, FISH RES, V40, P125, DOI 10.1016/S0165-7836(98)00208-2; JONES R, 1983, J CONSEIL, V41, P50; JONES R, 1972, J CONSEIL, V34, P174; JONES R., 1959, JOUR CONSEIL PERM INTERNATL EXPLOR MER, V25, P58; Kokita T, 2003, MAR BIOL, V143, P593, DOI 10.1007/s00227-003-1104-x; Korsbrekke Knut, 1999, Journal of Northwest Atlantic Fishery Science, V25, P37, DOI 10.2960/J.v25.a4; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; LECREN ED, 1951, J ANIM ECOL, V20, P201; Marshall CT, 1998, CAN J FISH AQUAT SCI, V55, P1766, DOI 10.1139/cjfas-55-7-1766; Marteinsdottir G, 2002, MAR ECOL PROG SER, V235, P235, DOI 10.3354/meps235235; Morita K, 2009, BIOL LETTERS, V5, P628, DOI 10.1098/rsbl.2009.0290; Ottera H, 2006, ICES J MAR SCI, V63, P216, DOI 10.1016/j.icesjms.2005.11.004; Raitt DS, 1932, FISH SCOTLAND SCI IN, V1, P1; Rijnsdorp AD, 2005, CAN J FISH AQUAT SCI, V62, P833, DOI 10.1139/F05-039; RIJNSDORP AD, 1990, NETH J SEA RES, V25, P279, DOI 10.1016/0077-7579(90)90027-E; ROBB AP, 1982, J FISH BIOL, V20, P397, DOI 10.1111/j.1095-8649.1982.tb03933.x; Rochet MJ, 2000, OIKOS, V91, P255, DOI 10.1034/j.1600-0706.2000.910206.x; Roff Derek A., 1992; Saville A., 1959, MAR RES, V3, P1; Scott B, 1999, CAN J FISH AQUAT SCI, V56, P1882, DOI 10.1139/cjfas-56-10-1882; SKOGEN MD, 1995, ESTUAR COAST SHELF S, V41, P545, DOI 10.1016/0272-7714(95)90026-8; Skogen MD, 1998, 1898 I MAR RES; SWARTZMAN G, 1995, CAN J FISH AQUAT SCI, V52, P369, DOI 10.1139/f95-039; Thomas G, 2009, J EVOLUTION BIOL, V22, P88, DOI 10.1111/j.1420-9101.2008.01622.x; Tobin D, 2010, J FISH BIOL, V77, P1252, DOI 10.1111/j.1095-8649.2010.02739.x; Tobin D, 2011, J EXP MAR BIOL ECOL, V403, P9, DOI 10.1016/j.jembe.2011.03.018; Tormosova I. D., 1983, J ICHTHYOL, V23, P68; Trippel E.A., 1997, EARLY LIFE HIST RECR, P31; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; Trippel EA, 1997, 2157 FISH OC CAN; van Walraven L, 2010, J SEA RES, V64, P85, DOI 10.1016/j.seares.2009.07.003; Wright PJ, 2006, J FISH BIOL, V69, P181, DOI 10.1111/j.1095-8649.2006.01262.x; Wright PJ, 2007, MAR ECOL PROG SER, V335, P279, DOI 10.3354/meps335279; Wright PJ, 2010, MAR ECOL PROG SER, V400, P221, DOI 10.3354/meps08384; Wright PJ, 2009, FISH FISH, V10, P283, DOI 10.1111/j.1467-2979.2008.00322.x; Wright PJ, 2005, J ANIM ECOL, V74, P303, DOI 10.1111/j.1365-2656.2004.00924.x; Yoneda M, 2004, MAR ECOL PROG SER, V276, P237, DOI 10.3354/meps276237 63 23 23 0 11 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. 2011 432 149 160 10.3354/meps09168 12 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography 784NE WOS:000292163200013 Bronze 2018-11-12 J Devos, N; Renner, MAM; Gradstein, R; Shaw, AJ; Laenen, B; Vanderpoorten, A Devos, Nicolas; Renner, Matt A. M.; Gradstein, Robbert; Shaw, A. Jonathan; Laenen, Benjamin; Vanderpoorten, Alain Evolution of sexual systems, dispersal strategies and habitat selection in the liverwort genus Radula NEW PHYTOLOGIST English Article bryophyte; comparative methods; epiphytism; life-history theory; liverwort; Radula; sexual system; trade-off ANCESTRAL CHARACTER STATES; MATING SYSTEMS; METAPOPULATION PROCESSES; DESICCATION-TOLERANCE; CORRELATED EVOLUTION; HYLOCOMIUM-SPLENDENS; EPIPHYTIC BRYOPHYTES; DISCRETE CHARACTERS; GENETIC-STRUCTURE; BREEDING SYSTEM Shifts in sexual systems are among the most common and important transitions in plants and are correlated with a suite of life-history traits. The evolution of sexual systems and their relationships to gametophyte size, sexual and asexual reproduction, and epiphytism are examined here in the liverwort genus Radula. The sequence of trait acquisition and the phylogenetic correlations between those traits was investigated using comparative methods. Shifts in sexual systems recurrently occurred from dioecy to monoecy within facultative epiphyte lineages. Production of specialized asexual gemmae was correlated to neither dioecy nor strict epiphytism. The significant correlations among life-history traits related to sexual systems and habitat conditions suggest the existence of evolutionary trade-offs. Obligate epiphytes do not produce gemmae more frequently than facultative epiphytes and disperse by whole gametophyte fragments, presumably to avoid the sensitive protonemal stage in a habitat prone to rapid changes in moisture availability. As dispersal ranges correlate with diaspore size, this reinforces the notion that epiphytes experience strong dispersal limitations. Our results thus provide the evolutionary complement to metapopulation, metacommunity and experimental studies demonstrating trade-offs between dispersal distance, establishment ability, and life-history strategy, which may be central to the evolution of reproductive strategies in bryophytes. [Devos, Nicolas; Laenen, Benjamin; Vanderpoorten, Alain] Univ Liege, Inst Bot, B-4000 Liege, Belgium; [Renner, Matt A. M.] Royal Bot Gardens Sydney, Natl Herbarium New S Wales, Sydney, NSW 2000, Australia; [Gradstein, Robbert] Museum Natl Hist Nat, Dept Systemat & Evolut, F-75231 Paris 05, France; [Devos, Nicolas; Shaw, A. Jonathan] Duke Univ, Dept Biol, Durham, NC 27708 USA Devos, N (reprint author), Univ Liege, Inst Bot, B-22 Sart Tilman, B-4000 Liege, Belgium. nd28@duke.edu Renner, Matt/H-6322-2011; Devos, Nicolas/E-7490-2015 Renner, Matt/0000-0003-2286-7257; Gradstein, Robbert/0000-0002-3849-6457 Belgian Funds for Scientific Research (FNRS); Fonds Leopold III; NSF [EF-0531730-002] Many thanks are due to three anonymous reviewers for their constructive comments on a previous draft of this paper. A. Schafer-Verwimp, T. Pocs, and the Helsinki (H), Liege (LG), Missouri (MO), New York (NY), Edinburgh (E), Eszterhazy Karoly College (EGR), Auckland (AK), Goetingen (GOET), and the Australian National Botanical Gardens (CBG) herbaria are gratefully acknowledged for the loan of specimens. N.D., B. L. and A. V. acknowledge financial support from the Belgian Funds for Scientific Research (FNRS) and the Fonds Leopold III. This research was also supported by NSF Grant EF-0531730-002 to A.J.S. Barker D, 2005, PLOS COMPUT BIOL, V1, P24, DOI 10.1371/journal.pcbi.0010003; Barker D, 2007, BIOINFORMATICS, V23, P14, DOI 10.1093/bioinformatics/btl558; Barkman J. J., 1958, PHYTOSOCIOLOGY ECOLO; Barrett SCH, 2002, NAT REV GENET, V3, P274, DOI 10.1038/nrg776; Bush Stephen P., 1995, Selbyana, V16, P155; Case AL, 2008, INT J PLANT SCI, V169, P141, DOI 10.1086/523368; CHARLESWORTH B, 1978, AM NAT, V112, P975, DOI 10.1086/283342; Cheptou PO, 2007, OIKOS, V116, P271, DOI 10.1111/j.2006.0030-1299.14655.x; Chiou WL, 2002, AM FERN J, V92, P65, DOI 10.1640/0002-8444(2002)092[0065:TMSOSE]2.0.CO;2; Crandall-Stotler B., 2009, Edinburgh Journal of Botany, V66, P155, DOI 10.1017/S0960428609005393; Crawford M, 2009, EVOLUTION, V63, P1129, DOI 10.1111/j.1558-5646.2009.00615.x; De Craene LPR, 2006, SYST BOT, V31, P671, DOI 10.1600/036364406779695951; de Jong Tom J., 2000, Plant Species Biology, V15, P31, DOI 10.1046/j.1442-1984.2000.00028.x; DOYLE JJ, 1987, TAXON, V36, P715, DOI 10.2307/1221122; Dubois S, 2003, NEW PHYTOL, V157, P633, DOI 10.1046/j.1469-8137.2003.00684.x; During Heinjo J., 1992, P1; DURING HJ, 2007, NOVA HEDWIGIA S, V131, P133; Eppley SM, 2007, HEREDITY, V98, P38, DOI 10.1038/sj.hdy.6800900; Forrest LL, 2006, BRYOLOGIST, V109, P303, DOI 10.1639/0007-2745(2006)109[303:UTEHOT]2.0.CO;2; Fritsch R., 1991, BRYOPHYTORUM BIBLIOT, V40, P1; *GEN COD CORP, 1998, SEQ 4 01 REF ADV US; Gradstein S. Robbert, 2001, Memoirs of the New York Botanical Garden, V86, P1; Hedderson TA, 1995, J BRYOL, V18, P639, DOI 10.1179/jbr.1995.18.4.639; Hedderson TA, 2008, J BRYOL, V30, P1, DOI 10.1179/174328208X282175; Heilbuth JC, 2001, EVOLUTION, V55, P880, DOI 10.1554/0014-3820(2001)055[0880:TCODFS]2.0.CO;2; Heinken T, 2001, J BRYOL, V23, P293, DOI 10.1179/jbr.2001.23.4.293; Heinrichs J, 2005, CRYPTOGAMIE BRYOL, V26, P131; Hooper EA, 1997, AM J BOT, V84, P1664, DOI 10.2307/2446464; Huttunen S, 2004, MONOG SYST BOTAN, V98, P328; Karlin EF, 2011, MOL ECOL, V20, P753, DOI 10.1111/j.1365-294X.2010.04982.x; KIMMERER RW, 1993, BRYOLOGIST, V96, P73, DOI 10.2307/3243322; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V11, P276; Krellwitz EC, 2001, PHYCOLOGIA, V40, P330, DOI 10.2216/i0031-8884-40-4-330.1; Leon-Vargas Y, 2006, J BIOGEOGR, V33, P901, DOI 10.1111/j.1365-2699.2006.01468.x; Lobel S, 2006, J ECOL, V94, P856, DOI 10.1111/j.1365-2745.2006.01114.x; Lobel S, 2006, ECOGRAPHY, V29, P169, DOI 10.1111/j.2006.0906-7590.04348.x; LOBEL S, 2009, METAPOPULATION METAC; Lobel S, 2010, FUNCT ECOL, V24, P887, DOI 10.1111/j.1365-2435.2010.01705.x; Lobel S, 2009, J ECOL, V97, P176, DOI 10.1111/j.1365-2745.2008.01459.x; Longton RE, 1997, ADV BRYOLOG, V6, P65; LONGTON RE, 1983, NEW MANUAL BRYOLOGY, P386; MADDISON WP, 1992, MACCLADE ANAL PHYLOG; McDaniel SF, 2010, EVOLUTION, V64, P217, DOI 10.1111/j.1558-5646.2009.00797.x; Miller JS, 2003, EVOLUTION, V57, P74; MISHLER BD, 1988, J BRYOL, V15, P327, DOI 10.1179/jbr.1988.15.2.327; MOGIE M, 1992, EVOLUTION SEXUAL REP; NADOT S, 1994, PLANT SYST EVOL, V191, P27, DOI 10.1007/BF00985340; Nylander JAA, 2004, MRMODELTEST V2; Pacak A., 2000, J PLANT BIOTECHNOL, V2, P101; Pagel M, 1999, SYST BIOL, V48, P612, DOI 10.1080/106351599260184; PAGEL M, 1994, P ROY SOC B-BIOL SCI, V255, P37, DOI 10.1098/rspb.1994.0006; Pagel M, 2004, SYST BIOL, V53, P673, DOI 10.1080/10635150490522232; PAGEL M, 2002, BIOL EVOLUTION STAT, P148; PARSONS G, 2007, OECOLOGIA, V152, P112; POHJAMO M, 2003, PERSPECT PLANT ECOL, V6, P159; Pohjamo M, 2006, EVOL ECOL, V20, P415, DOI 10.1007/s10682-006-0011-2; Proctor MCF, 2007, BRYOLOGIST, V110, P595, DOI 10.1639/0007-2745(2007)110[595:DIBAR]2.0.CO;2; Rambaut A., 2007, TRACER V1 4; Renner SS, 2007, EVOLUTION, V61, P2701, DOI 10.1111/j.1558-5646.2007.00221.x; RENNER SS, 1995, AM J BOT, V82, P596, DOI 10.2307/2445418; Renner SS, 2001, SYST BIOL, V50, P700, DOI 10.1080/106351501753328820; ROBERT EC, 2004, NUCLEIC ACIDS RES, V32, P1792; Ronquist F, 2003, BIOINFORMATICS, V19, P1572, DOI 10.1093/bioinformatics/btg180; Rydgren K, 2006, OECOLOGIA, V147, P445, DOI 10.1007/s00442-005-0290-2; Rydgren K, 2003, BRYOLOGIST, V106, P212, DOI 10.1639/0007-2745(2003)106[0212:SCOSRI]2.0.CO;2; SAKAI AK, 1995, ECOLOGY, V76, P2517, DOI 10.2307/2265825; Schuster RM, 1966, HEPATICAE ANTHOCEROT, V1; Smith SD, 2010, NEW PHYTOL, V188, P354, DOI 10.1111/j.1469-8137.2010.03292.x; Snall T, 2005, ECOLOGY, V86, P106, DOI 10.1890/04-0531; Snall T, 2004, ECOGRAPHY, V27, P757, DOI 10.1111/j.0906-7590.2004.04026.x; Snall T, 2004, MOL ECOL, V13, P2109, DOI 10.1111/j.1365-294X.2004.02217.x; Soderstrom L, 1997, ADV BRYOLOG, V6, P205; SOULE M, 1971, Taxon, V20, P37, DOI 10.2307/1218532; SouzaChies TT, 1997, PLANT SYST EVOL, V204, P109, DOI 10.1007/BF00982535; Stark LR, 2009, AM J BOT, V96, P1712, DOI 10.3732/ajb.0900084; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Swofford DL, 2002, PAUP PHYLOGENETIC AN; TABERLET P, 1991, PLANT MOL BIOL, V17, P1105, DOI 10.1007/BF00037152; Taylor PJ, 2007, AM J BOT, V94, P1853, DOI 10.3732/ajb.94.11.1853; van Dulmen A, 2001, PLANT ECOL, V153, P73, DOI 10.1023/A:1017577305193; Vanderpoorten A, 2009, INTRODUCTION TO BRYOPHYTES, P1, DOI 10.1017/CBO9780511626838; Vanderpoorten A, 2010, BIOL REV, V85, P471, DOI 10.1111/j.1469-185X.2009.00111.x; Weller SG, 1999, ANNU REV ECOL SYST, V30, P167, DOI 10.1146/annurev.ecolsys.30.1.167; Wilson WG, 2003, AM NAT, V162, P220, DOI 10.1086/376584; Yamada K., 2003, MEMOIRS NEW YORK BOT, V87, P1; Zheng M, 2009, NOVA HEDWIGIA, V88, P229, DOI 10.1127/0029-5035/2009/0088-0229 86 33 33 1 36 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0028-646X NEW PHYTOL New Phytol. 2011 192 1 225 236 10.1111/j.1469-8137.2011.03783.x 12 Plant Sciences Plant Sciences 815VZ WOS:000294559400020 21649662 Bronze 2018-11-12