Dataset Open Access

Experimental datasets for sentiment analysis and emotion mining - Emotion Mining Toolkit (EMTk)

Fabio Calefato; Filippo Lanubile; Nicole Novielli


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.2575509</identifier>
  <creators>
    <creator>
      <creatorName>Fabio Calefato</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-2654-1588</nameIdentifier>
      <affiliation>University of Bari, Italy</affiliation>
    </creator>
    <creator>
      <creatorName>Filippo Lanubile</creatorName>
      <affiliation>University of Bari, Italy</affiliation>
    </creator>
    <creator>
      <creatorName>Nicole Novielli</creatorName>
      <affiliation>University of Bari, Italy</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Experimental datasets for sentiment analysis and emotion mining - Emotion Mining Toolkit (EMTk)</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2019</publicationYear>
  <subjects>
    <subject>sentiment</subject>
    <subject>emotion</subject>
    <subject>polarity</subject>
    <subject>sentiment analysis</subject>
    <subject>emotion mining</subject>
    <subject>Stack Overflow</subject>
    <subject>Jira</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2019-02-22</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/2575509</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsSupplementTo">https://github.com/collab-uniba/EMTK_datasets/tree/v1.0</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.2575508</relatedIdentifier>
  </relatedIdentifiers>
  <version>v1.0</version>
  <rightsList>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;&lt;strong&gt;Description&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;Datasets for sentiment analysis and emotion mining, distributed with the Emotion Mining Toolkit (EMTk) Docker container (see &lt;a href="https://collab-uniba.github.io/EMTk"&gt;https://collab-uniba.github.io/EMTk&lt;/a&gt; for more):&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;Stack Overflow - A couple of gold standards of 4,000+ posts, manually annotated for mining both emotions and polarity.&lt;/li&gt;
	&lt;li&gt;Jira - A gold standard of ~4,000 issues, manually annotated for emotions.&lt;/li&gt;
&lt;/ul&gt;

&lt;p&gt;&lt;strong&gt;Citation&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;Please, see the references below for the papers to cite. Do not cite this Zenodo upload directly.&lt;/p&gt;</description>
    <description descriptionType="Other">{"references": ["F. Calefato, F. Lanubile, and N. Novielli (2017) \"Sentiment Polarity Detection for Software Development.\" Empirical Software Engineering Journal, DOI: 10.1007/s10664-017-9546-9.", "F. Calefato, F. Lanubile, N. Novielli (2017) \"EmoTxt: A Toolkit for Emotion Recognition from Text.\" In Proc. 7th Affective Computing and Intelligent Interaction (ACII'17), San Antonio, TX, USA, Oct. 23-26, 2017.", "N. Novielli, F. Calefato, F. Lanubile (2018) \"A Gold Standard for Emotions Annotation in Stack Overflow.\" In Proc. of the 15th International Conference on Mining Software Repositories (MSR 2018), Gothenburg, Sweden, May 28-29, 2018.", "M. Ortu, A. Murgia, G. Destefanis, P. Tourani, R. Tonelli, M. Marchesi, and B. Adams. 2016. The emotional side of software developers in JIRA. In Proc. of the 13th Int'l Conf. on Mining Software Repositories (MSR '16). ACM, New York, NY, USA, 480-483."]}</description>
  </descriptions>
</resource>
400
92
views
downloads
All versions This version
Views 400400
Downloads 9292
Data volume 167.8 MB167.8 MB
Unique views 371371
Unique downloads 8484

Share

Cite as