Conference paper Open Access

PowerFactory-Python based assessment of frequency and transient stability in power systems dominated by power electronic interfaced generation

Jose Rueda; Peter Palensky; Jorge Mola-Jimenez; Arcadio Perilla; Da Wang; Mart van der Meijden


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-02-20</subfield>
  </datafield>
  <controlfield tag="005">20200120173902.0</controlfield>
  <controlfield tag="001">2573889</controlfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:2573889</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The deployment of variable renewable energy based power plants is increasing all over the world, however, unlike&lt;br&gt;
conventional power plants these are mostly connected to the grid via power electronic interfaces. High penetration of power&lt;br&gt;
electronic interfaced generation (PEIG) has an important impact&amp;nbsp;on the inertia of the system, which is of major concern for&lt;br&gt;
frequency and large disturbance rotor angle (transient) stability. Therefore, it is desirable to study the effectiveness of widely&lt;br&gt;
used approaches to assess the stability of a system with high penetration of PEIG. This paper concerns with the modelling and&lt;br&gt;
control aspects of a power system for the evaluation of the most widely used metrics (indicators) to assess the dynamics of the&lt;br&gt;
power system related to frequency and rotor angle stability. The functionalities of Python are used to automate the generation of&lt;br&gt;
operational scenarios, the execution of time domain simulations, and the extraction of signal records to compute the aforesaid&lt;br&gt;
indicators. The paper also provides a discussion about possible improvements in the application of these indicators in monitoring&lt;br&gt;
tasks.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Delft University of Technology</subfield>
    <subfield code="0">(orcid)0000-0003-3183-4705</subfield>
    <subfield code="a">Peter Palensky</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Delft University of Technology</subfield>
    <subfield code="a">Jorge Mola-Jimenez</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Delft University of Technology</subfield>
    <subfield code="a">Arcadio Perilla</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Delft University of Technology</subfield>
    <subfield code="a">Da Wang</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Delft University of Technology</subfield>
    <subfield code="a">Mart van der Meijden</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">733737</subfield>
    <subfield code="z">md5:0988f3502d8347d0498820ca20843558</subfield>
    <subfield code="u">https://zenodo.org/record/2573889/files/JMOLA_MSCPES_18.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Delft University of Technology</subfield>
    <subfield code="0">(orcid)0000-0001-7288-0228</subfield>
    <subfield code="a">Jose Rueda</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Frequency stability, key performance indicators, power electronics interfaced generation, power system dynamics, transient stability, wind power</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1109/MSCPES.2018.8405403</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">PowerFactory-Python based assessment of frequency and transient stability in power systems dominated by power electronic interfaced generation</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">691800</subfield>
    <subfield code="a">Massive InteGRATion of power Electronic devices</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
</record>
123
668
views
downloads
Views 123
Downloads 668
Data volume 490.1 MB
Unique views 121
Unique downloads 644

Share

Cite as