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ABSTRACT17

State estimation of hydraulics (i.e. pressure and flows) in water distribution networks is18

an important tool for efficient and resilient operation. However, hydraulic state estimation19

is a challenging task in practice due to the scarcity of measurements and the presence of sev-20

eral modeling uncertainties. Standard state estimation techniques may produce unreliable21

estimates with no information of the estimation error magnitude, especially when historical22

data are used in place of missing measurements. In this paper, we propose a comprehensive23
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methodology for generating hydraulic state bounding estimates by considering both mea-24

surement and parametric uncertainties. The methodology is based on solving the nonlinear25

interval hydraulic equations using bounding linearization, a technique that restricts the non-26

linearities within a convex set, thus converting the problem in a form which is solvable using27

linear optimization. An iterative procedure improves the bounding linearization, converging28

to the tightest possible bounds. Simulation results demonstrate that the proposed method-29

ology produces tight state bounds that can replace Monte-Carlo simulations.30

Keywords: interval, bounds, optimization, state estimation, water distribution networks31

INTRODUCTION32

The water industry is being modernized with the installation of sensors for monitoring33

Water Distribution Networks (WDN) and computer systems to process these data. Inte-34

grated platforms are already being developed that algorithmically combine real-time sensor35

measurements from Supervisory Control and Data Acquisition (SCADA) systems, geographic36

information systems (GIS), and hydraulic models to provide useful information to the op-37

erators. A state estimation algorithm infers the complete system state, such as water flows38

in pipes, consumer water demands, pressures at nodes and tank levels, using the available39

measurement set and network equations. A complete view of the network state supports40

the decision-making process and enables the efficient operation of these systems, improves41

customer service and enables the early detection of emergency events, thus minimizing their42

impact. Examples of the use of state estimation in real systems include the use for online43

burst detection (Okeya et al. 2014) as well as for online modelling (Machell et al. 2010) and44

control of WDN (Rao and Salomons 2007).45

Standard state estimation techniques require a measurement set that makes the system46

observable, i.e. the sensor number and locale ensure that the system state can be calculated47

(Bargiela 1985; Nagar and Powell 2000; Dı́az et al. 2016). Additionally, the statistical48

characterization of sensor measurement error is needed to give more weight to measurements49

originating from more accurate sensors. Then, using a mathematical model of the network, a50
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state estimation algorithm can infer the system state. Many approaches have been proposed51

to solve the state estimation problem for water systems, such as Kalman Filtering and52

Weighted Least Squares (WLS), with the latter being the most widely used and varied. The53

above methods produce a point in state-space and are referred to as point state estimation54

(Powell et al. 1988; Andersen et al. 2001; Kang and Lansey 2009).55

State estimation in WDN is a challenging task, mainly due to the scarcity of measure-56

ments. In contrast to other large scale engineering systems (e.g. power systems) where the57

number of measurements guarantees observability, in WDN observability is almost never58

achievable with the available measurements. Some parts of the WDN may be widely moni-59

tored, such as the transport network, however even a single sensor failure could make these60

parts unobservable (Vrachimis et al. 2016). The large area covered by WDN and the large61

number of system states is one of the main reasons that an impractical number of sensors62

must be installed to guarantee observability. A common practice to reduce the complexity,63

is to skeletonize the network by treating a group of consumers as a single demand point. It64

is then possible to use pseudo-measurements, which are demand estimates determined from65

population densities and historical data, to complement the missing measurements (Hutton66

et al. 2014). Recent advances in water demands research have also made possible the higher67

resolution modeling of water demands, thus reducing the need for skeletonization of networks68

and increasing the accuracy of state estimation (Avni et al. 2015).69

The use of pseudo-measurements may introduce new problems to the state estimation70

process, as they are highly uncertain and the resulting estimates may deviate significantly71

from the real system state. This in turn could affect other algorithms which rely on state-72

estimation, such as feedback control or fault-diagnosis. Efforts have been made to charac-73

terize the uncertainty of pseudo-measurements (Bargiela and Hainsworth 1989), but it is74

improbable that a statistical characterization will be available. Thus, standard state es-75

timation techniques such as WLS may not be capable of producing a reliable measure of76

the estimation error. Consequently, researchers have tried to combine online estimation of77
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demands with state estimation, in order for the latter to be more accurate (Preis et al. 2011).78

Another significant source of uncertainty which complicates WDN state estimation is79

modelling and parameter uncertainty. Recent works provide explicit expressions for the80

sensitivity of the state estimation problem to these uncertainties (Dı́az et al. 2018). Typically,81

the network topology is assumed known, especially after the process of skeletonization which82

simplifies the network graph. However, even when the topology is known, pipe parameters83

such as length and diameter are rarely known accurately and estimates are used in place.84

This is especially true for pipe roughness coefficients, which along with length and diameter,85

are used to calculate the headloss across pipes. This is why, even with an observable sensor86

configuration, model calibration is required a priori or during state estimation for the latter87

to produce feasible solutions (Gao 2017). Model calibration can be considered as the inverse88

problem of state estimation, during which estimates of the unknown model parameters are89

calculated based on measurements (Kapelan et al. 2003; Savic et al. 2009). But even after90

calibration, it is possible that the calculated parameter set satisfies the constraints imposed91

by measurements, but deviates from the true parameter set.92

Considering the many unknowns and uncertainties in WDN state-estimation, it is evident93

that accurate state-estimates are difficult to be generated without some kind of trade-off. A94

practical approach for state estimation in the presence of demand and modeling uncertainty,95

is interval state estimation (Bargiela et al. 2003;  Langowski and Brdys 2007). This approach96

models the uncertainties on input data as intervals, defined by lower and upper bounds.97

Then, considering this bounded uncertainty, interval state estimation provides lower and98

upper bounds on the state estimates, in contrast to point state estimation methods which99

only provide a single point. Providing a range of values for each state, is often more useful100

to an operator than providing point estimates which give no indication on their proximity101

to the true state value. Additionally, having reliable interval state estimation is essential in102

many methodologies related to event and fault detection such as leakage detection (Pérez103

et al. 2009), water contamination detection (Eliades et al. 2015) and sensor fault detection104
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(Vrachimis et al. 2015).105

The use of bounds for the representation of measurement uncertainty and the subsequent106

calculation of state estimate bounds was introduced in (Bargiela and Hainsworth 1989). This107

idea was further developed in (Brdys and Chen 1994) as the set-bounded state estimation108

problem. The process of calculating bounds for state estimates caused by measurement un-109

certainty is also referred to as Confidence Limit Analysis which can be solved using different110

approaches, including Neural Networks (Gabrys and Bargiela 1997), the Error Maximization111

method (Arsene et al. 2011), the Ellipsoid method and Linear Programming (Bargiela et al.112

2003). All these approaches assume a known network model which can be linearized in order113

to solve the non-linear equations that characterize WDN and provide state bounds based114

on measurement uncertainty. Few methodologies can guarantee the inclusion of the true115

state in the bounds based on given uncertainty, while the effect of modeling uncertainty is116

not considered. Another approach that could incorporate modeling uncertainty is the use117

of Monte-Carlo Simulations (MCS), where state bound estimates are obtained by randomly118

generating and evaluating a large number of model parameter sets or realizations (Pasha119

and Lansey 2010). This approach requires a sufficiently large number of simulations, and120

even then some cases may not be covered, leading to underestimation of the range of the121

true state bounds.122

In this work we propose a new interval hydraulic state-estimation approach for WDN that123

considers the combined effect of bounded measurement and modeling uncertainties. The124

proposed methodology calculates the bounds on state estimates using the nonlinear form125

of the network equations, by also modeling pressure-dependent demands and background126

leakages. The nonlinear modeling guarantees that when accurate uncertainty bounds are127

provided, the bounds on state estimates will include the true system state. This is achieved128

using bounding linearization, a technique which restricts the nonlinearities within a convex129

set, thus converting the hydraulic equations in a form where the minimum and maximum of130

each state can be found using linear optimization. Then, an iterative procedure is followed131
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to minimize the distance between upper and lower state bounds, by improving the bounding132

linearization at each step and converging to the tightest possible bounds. The contributions133

of this work are:134

• The consideration of both modeling uncertainty, in the form of uncertain parameters,135

as well as measurement uncertainty in the interval state estimation problem for WDN.136

• The development of a novel algorithm that calculates tight hydraulic bounding esti-137

mates based on the considered uncertainties.138

• The use of the nonlinear form of the hydraulic equations which also considers pressure-139

dependent demands and background leakages, in order to ensure that the bounding140

estimates guarantee the inclusion of the true system state if the uncertainties have141

been accurately represented.142

This paper is organized as follows: Section “Problem formulation” formulates the prob-143

lem of hydraulic state estimation in WDN where the uncertainty on model parameters and144

measurements is represented by intervals. Section “Iterative Hydraulic Interval State Es-145

timation” presents a methodology to solve this problem based on the Iterative Hydraulic146

Interval State Estimation (IHISE) algorithm. In Section “Case Studies” this methodology147

is applied on different benchmark water networks and its performance is assessed.148

PROBLEM FORMULATION149

The topology of a WDN is modeled by a directed graph denoted as G = (N ,L). Let150

N = {1, · · · , nn} be the set of all nodes, where |N | = nn is the total number of nodes. These151

represent junctions of pipes, consumer water demand locations, reservoirs and tanks. The152

unknown quantity associated with nodes is the hydraulic head, indicated by hi. Reservoirs153

and water tanks that have level sensors installed, can be considered as nodes with known154

head. We define the set of nodes with unknown head Nu = {1, · · · , nu}, where |Nu| = nu155

is the number of nodes with unknown head. The set of nodes with known head is defined156

as Nh = {nu + 1, · · · , nn}, where |Nh| = nh is the number of nodes with known head and157
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N = Nu∪Nh. Each node j with unknown head is associated with a water consumer demand158

at the node location, denoted by qext,j.159

Let L = {1, · · · , nl} be the set of links, where |L| = nl is the total number of links.160

These represent network pipes, water pumps and pipe valves, with the last two being the161

main hydraulic control elements in a water network. We define the set of links that represent162

pipes as Lp = {1, · · · , np}, where |Lp| = np is the total number of pipes. We also define163

the set of links that represent pumps as Lpu = {np + 1, · · · , nl}, where |Lpu| = npu is the164

total number of pumps. The unknown quantity associated with a link i is the water flow,165

indicated by qi.166

Formulation of hydraulic equations167

It is a common practice in WDN to receive sensor measurements of flows, pressures or168

tank water levels at constant time intervals, which typically range from five minutes to one169

hour. These sensors may also give an average measurement for the elapsed time interval, thus170

fast changing dynamics (e.g. pressure transients) are neglected. As a result, standard state171

estimation in WDN is carried out at steady state, with the system state being recalculated172

when measurements arrive.173

In this work we assume that only lower and upper bounds on measurements are available.174

The bounds can be derived from real sensor measurements, or from population densities and175

historical data (pseudo-measurements). The measurement bounds are available at every176

discrete time step k for all nodal demand outflows and for all tank and reservoir levels.177

This sensor configuration guarantees the topological observability of the network. Other178

sensor configurations are also possible, given that they satisfy the topological observability179

condition, which can be checked using the algorithm in (Dı́az et al. 2017). The vector of180

measured external water demand outflow is indicated by q̄ext(k) ∈ Rnu . The known head181

vector, which results from tank and reservoir level measurements, is indicated by h̄ext(k) ∈182

Rnl . The unknown state of the network are the water flows in pipes q̄(k) ∈ Rnl and the183

unknown hydraulic heads at nodes h̄(k) ∈ Rnu .184
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The state is calculated using a hydraulic model of a WDN, which is a set of equations185

derived from the laws of: 1) conservation of energy and 2) conservation of mass in the186

network. In this work we use the pipe formulation of these equations as used by (Todini and187

Pilati 1987), which has been shown to be robust in computer simulations (Rossman 2000).188

The only dynamic component of these equations are the changing tank levels (Boulos et al.189

2006). Because tank levels are assumed to be measured, the resulting hydraulic equations190

are not dynamic, thus the discrete time notation k is omitted. The formulation of these191

equations follows.192

Conservation of energy equations193

Energy in WDN is associated with the head at nodes and when water flows through a194

network link i which connects two nodes, a flow dependent head function fi(qi) describes195

the change in head. In the case of pipes, energy is dissipated due to friction of water flowing196

through the pipe, resulting in head-loss between two connected nodes. Head-loss depends197

on the water flow through the pipe but also on pipe parameters. Each pipe i ∈ Lp is198

characterized by pipe length li, pipe diameter di and pipe roughness coefficient ci. All these199

quantities are used in the empirical Hazen-Williams (H-W) formula (Boulos et al. 2006) to200

calculate head-loss. The effect of pipe parameters in this formula is aggregated in the H-W201

resistance coefficient ri of each pipe, which is a function f rHW : R+ × R+ × R+ 7→ R+ of202

pipe parameters, defined as: ri = f rHW (ci, di, li). The head-loss across pipe i ∈ Lp is then203

calculated using the H-W formula as follows:204

fi(qi) = ri |qi|(ν−1) qi , (1)205

where ν is a constant exponent associated with the H-W formula and qi is the water flow in206

pipe i.207

Another example of network element are pumps i ∈ Lpu which are characterized by a208

head-flow curve, which is used to relate the flow through the pump to the head-gain across209

8 Vrachimis et al., August 9, 2017



the pump, according to each pump specifications. This is given by:210

fi(qi) = −(w1 − w2q
w3
i ) , (2)211

where w1, w2, w3 ∈ R are coefficients of the pump head-flow curve, while the minus sign212

indicates that in the case of pumps there is head-gain instead of head-loss.213

The energy equations for all the network links, considering elements modeled by (1) and214

(2), can be written as follows:215

fi(qi) +
∑
j∈Nu

(Bij hj) = hext,i, i ∈ L, (3)216

where:217

• hj is the unknown head of node j ∈ Nu.218

• B ∈ Rnl×nu is the incidence flow matrix, indicating the connectivity of nodes with219

links. Element Bij = +1 if the direction of link i enters node j; element Bij = −1 if220

the direction of link i leaves from node j; otherwise Bij = 0. Nodes with known head221

are excluded from this matrix.222

• hext,i is the sum of known (measured) heads that appear in each equation i ∈ L. In223

vector notation, the known head vector is given by h̄ext ∈ Rnl .224

Conservation of mass equations225

The conservation of mass law for a node j ∈ Nu is similar to Kirchhoff’s current law in226

electric circuit analysis and can be summarized as follows: the sum of branch water flows227

from pipes incident to a node j must be equal to the node’s external water demand qext,j.228

A demand-driven modeling approach assumes that the demand at each node is indepen-229

dent of the pressure at that node. However, this analysis is not valid when power outages, fire230

fighting, pipe breaks or temporarily closed portions of a WDN lead to pressure-deficit condi-231

tions. In those cases, the consumers do not receive the requested demand, thus the modeling232
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of demand is no longer valid and a pressure-dependent demand modeling is recommended.233

The pressure-demand relationship can be modeled by multiplying the user requested demand234

qext,j at node j by the pressure depended function fext,j(hj), which is given by (Wagner et al.235

1988; Giustolisi and Laucelli 2011; Klise et al. 2017):236

fext,j (hj) =


0 hj 6 Hmin,j(

hj−Hmin,j

Hreq,j−Hmin,j

)0.5

Hmin,j 6 hj 6 Hreq,j

1 hj > Hreq,j

. (4)237

In (4), Hreq,j is the head above which the consumer can receive the requested demand qext,j238

(depends on node elevation), Hmin,j is the minimum desired head at node j (depends on239

node elevation) below which the consumer does not receive any water.240

Background leakage flows are also present in real WDN and are modeled as an added241

demand component at nodes. Leakage flows are pressure-depended and are modeled similarly242

to pressure-driven demands as follows (Giustolisi et al. 2008):243

qleak,j(hj) =

 βj(hj − Zj)γj , hj − Zj > 0

0 hj − Zj 6 0
(5)244

where Zj is the elevation of node j, and βj and γj are leakage parameters depending on pipe245

deterioration and material.246

The conservation of mass equations, considering all the nodes of the network, can be247

written using the incidence flow matrix as follows:248

∑
i∈L

(
B>ij qi

)
= qext,j fext,j(hj) + qleak,j(hj), j ∈ Nu. (6)249

In vector notation, the requested external water demands for all nodes are given by q̄ext ∈ Rnu
250

and the leakage flow at nodes by q̄leak ∈ Rnu . Equations (3) and (6) define the network state,251

which are the water flows in pipes and hydraulic heads at nodes, indicated by x̄ = [q̄> h̄>]>.252
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Measurement and parameter uncertainty253

As mentioned in the “Introduction” section, we consider sensor measurements, or pseudo-254

measurements that are uncertain, with a bounded measurement error. We assume that255

these are available for all nodal demand outflows, as well as for all tank and reservoir levels,256

guaranteeing an observable sensor configuration. The network topology is available in the257

hydraulic model, but pipe parameters are only approximately known.258

The uncertainties are modeled in this work using intervals, which is equivalent to a259

uniform probability distribution. For notational convenience, we adopt the convention of260

denoting intervals in bold. Let v̄ = [v̄l, v̄u] be a closed interval vector, where v̄l is the lower261

bound vector and v̄u is the upper bound vector, such that: v̄ = {v̄ ∈ Rn : vli ≤ vi ≤ vui ,∀ i =262

{1, .., n}}, and n is the size of the vector. Note that calculations performed in equations263

containing intervals require the use of interval arithmetic (Daumas et al. 2009; Kearfott264

1996; Moore et al. 2009).265

The uncertain requested water demands and the reservoir/tank levels are given by the266

interval vectors q̄ext =
[
q̄ l
ext, q̄

u
ext

]
and h̄ext =

[
h̄ lext, h̄

u
ext

]
respectively. Note that, mea-267

surement bounds that are derived from nodes with actual sensors, do not require to be268

accompanied by a pressure-dependent function, so fext,j (hj) = 1.269

We also consider the uncertainty on the head function fi (qi). When this function contains270

uncertain parameters, these will be modelled as intervals defined by a lower and upper bound,271

and the head function will be indicated in bold as fi (qi). Uncertainty in pipe parameters272

is included in the uncertain H-W coefficients ri. These are calculated using uncertain pipe273

parameters, which are the roughness coefficients ci, diameter di and length li. For a certain274

pipe i, the uncertain H-W coefficient is given by: ri =
[
r li , r

u
i

]
. An interval H-W coefficient275

transforms the pipe headloss function given by (1), into an interval function given by:276

fi (qi) = ri |qi|ν−1qi, i ∈ Lp (7)277
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Similarly, for i corresponding to a pump with an uncertain pump curve, (2) becomes:278

fi(qi) = −(w1 −w2q
w3
i ), i ∈ Lpu. (8)279

The uncertainty is considered in the case of leakage modeling, is on the leakage param-280

eters, which can be represented by the intervals βj =
[
βlj, β

u
j

]
and γj =

[
γlj, γ

u
j

]
. This will281

result in an interval leakage function qleak,j(hj).282

As a practical note, a calibration pre-step of network topology parameters is recom-283

mended, as it will reduce the uncertainty of these parameters in the sense that their bound-284

aries will be more restrictive. As a result, the bounded state estimates calculated by the285

IHISE algorithm will be less conservative. In this work the parameter boundaries are as-286

sumed constant for all time steps, because these parameters vary very slowly over time. The287

parameters can be updated whenever a calibration procedure takes place for the network.288

Problem definition289

The problem of solving the hydraulic equations of a WDN when these contain uncertainty290

in the form of intervals, is reduced to finding the set of all point solutions for the state291

x̄ = [q̄> h̄>]>, that satisfy the following systems of equations:292

fi (qi) +
∑
j∈Nu

(Bij hj) = hext,i, i ∈ L (9a)293

∑
i∈L

(
B>ij qi

)
= qext,j fext,j(hj) + qleak,j(hj), , j ∈ Nu (9b)294

295

Problem (9) is a Nonlinear Interval System of Equations (NISE) and the set of solutions296

for x̄ that satisfy (9) may have a rather complex form that needs to be described with non-297

linear functions. This is why, in the literature, ‘interval solutions’ are most often considered,298

with the aim of finding the Interval Hull (IH) solution, i.e. the smallest interval vector x̄299

containing all solutions for the NISE. Finding the IH solution to general NISE is a very300

challenging problem; even for the general Linear Interval System of Equations (LISE), find-301
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ing the IH is an NP-hard problem. For this reason there are several solutions proposed in302

the literature that approximate the IH, either with an Outer Interval (OI) solution, which303

is any interval vector enclosing the IH solution, or with an INner Interval (INI) solution,304

which is any interval vector that is a subset of the IH solution. Most approaches deal with305

the problem of finding an OI solution, while the INI solution is used as a measure of the306

overestimation of the solution (Neumaier and Pownuk 2007; Kolev 2004a). An example of a307

method for finding the INI solution to a NISE are Monte-Carlo Simulations, where solutions308

are calculated by randomly generating and evaluating a large number of non-interval equa-309

tions with parameters within the defined intervals (Eliades et al. 2015). The set of solutions310

is always a subset of the IH solution.311

The literature on finding an OI solution to NISE is limited, but some approaches have312

been proposed, such as (Kolev 2004b), which uses affine arithmetic to represent the equations313

and interval linearization to deal with the nonlinearities. However, this approach does not314

consider interval multiplicative terms in the nonlinear functions, thus cannot be applied to315

(9). The solution to NISE can also be approached using optimization, as in (Jiang et al. 2008)316

where the task of solving nonlinear interval number programming problems was investigated.317

This method, however, does not ensure that the solution is an OI, thus it is not suitable for318

use with methodologies such as fault detection which require outer bounds on states.319

Good approaches in the literature that provide tight OI solutions exist for Linear Interval320

Systems of Equations (LISE) and are mainly divided in two categories. The first uses interval321

arithmetic (Daumas et al. 2009; Moore et al. 2009) to find the solution. Due to the fact322

that when using interval arithmetic to solve LISE, the solution interval is inherently an323

overestimation, iterative methods are used to approximate the IH solution, such as the Gauss324

Elimination method, LU decomposition method and the iterative Jacobi method (Zieniuk325

et al. 2015). The second category formulates LISE as an Interval Linear Programming326

problem, where intervals can exist both in the objective function and in the constraints327

(Chinneck and Ramadan 2000; Huang and Cao 2011). This approach is promising since328
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the formulation of the equations as a Linear Program provides the opportunity to add and329

manipulate constraints to the problem. Additionally, powerful software that solve Linear330

Programs efficiently exist, which reduce computation time.331

ITERATIVE HYDRAULIC INTERVAL STATE ESTIMATION332

In this work we propose an iterative method for finding an OI solution of the NISE in (9),333

named Iterative Hydraulic Interval State Estimation (IHISE), which closely approximates the334

IH solution. This method deals with the nonlinearities in (9) using bounding linearization,335

which encloses the interval nonlinearities in a convex set and converts (9) into a system336

of linear inequalities. The resulting linear inequalities are then appropriately formulated337

into a Linear Program and new bounds on the state variables are calculated. An iterative338

procedure then approximates the IH solution of (9) by using the new bounds on the states339

to improve the bounding linearization. Initial bounds on state variables can be defined from340

physical properties of WDN.341

The IHISE algorithm is comprised of five main steps:342

1. Find initial bounds on the state variables using physical constraints of the system.343

2. Use bounding linearization to bound the nonlinearities in a convex set.344

3. Formulate Linear Programs (LPs) for each state using the resulting linear inequalities.345

4. Solve one maximization and one minimization LP for each state to produce new upper346

and lower bounds.347

5. Iteratively improve the OI solution of (9) by repeating steps 2 to 4 until convergence348

of bounds.349

Next, the five steps of IHISE are described in detail.350

Step 1: Initial bounds on state vector351

The first step of the IHISE algorithm is to impose initial bounds on the state vector352

x̄ = [q̄> h̄>]> which should be an OI solution of (9). The initial bounds on the unknown head353

vector h̄ are given by the interval vector h̄(0) =
[
h̄l (0), h̄u (0)

]
and are chosen by considering354
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physical properties of the network. The minimum head vector h̄l (0) is set equal to the355

elevation of each node and the maximum head vector h̄u (0) is set equal to the sum of reservoir356

and pump heads, which is the maximum head that any node in the network can have.357

The special structure (9a), in which each equation contains only one flow state qi, allows358

us to use the initial bounds on heads h(0) to find the initial bounds on the flows. We rewrite359

(9a) as follows:360

fi (qi) = −
∑
j∈Nu

(
Bij h

(0)
j

)
+ hext,i = yi, (10)361

where yi =
[
yli, y

u
i

]
is a known interval derived from the known terms in (10) using interval362

analysis. The function fi (qi), when i ∈ Lp, is given by (7). This function is inclusion363

isotonic (Moore et al. 2009) meaning that if q1
i ⊆ q2

i then f(q1
i ) ⊆ f(q2

i ). This property364

enables the derivation of analytical bounds on the unknown pipe flows, by rearranging (10)365

with respect to qi, i ∈ Lp.366

In the case of pumps, fi(qi) is given by (8). This function is not inclusion isotonic in367

its whole range, but this property holds in the special case when qi > 0 or qi < 0. This368

implies that the flow direction in pump links needs to be known a priori, which is a valid369

assumption, since pumps are physically restricted to move water in one direction. Assuming370

that the flow in pump links is always positive, the bounds on flows qi, i ∈ Lpu can be found371

by rearranging (10) with respect to qi.372

The initial bounds on the flow state vector are denoted by q̄(0) =
[
q̄ l (0), q̄ u (0)

]
. An373

analytical derivation of these bounds for pipes and pumps is given in Appendix S1 of the374

Supplemental Data.375

Step 2: Bounding linearization of interval nonlinear terms376

This step aims at enclosing in a convex set S the nonlinear uncertain functions that377

exist in Problem (9). This will allow the formulation of a Linear Program. Problem (9)378

contains three nonlinear uncertain functions: fi(qi), qext,j fext,j(hj) and qleak,j(hj), which are379

all functions of one bounded variable. The bounds on these variables have been calculated380

15 Vrachimis et al., August 9, 2017



in Step 1, such that for flow variables qi ∈
[
qli, q

u
i

]
and for head variables hj ∈

[
hlj, h

u
j

]
. The381

goal is to construct convex sets S that include all the points of the uncertain functions in382

the given range, e.g. fi(qi) ∈ S, ∀qi ∈
[
qli, q

u
i

]
, i ∈ L.383

In this work we design the convex sets S using bounding linearization (Kolev 2004b).384

This procedure can be used on any uncertain nonlinear function of one bounded variable385

and it encloses the function between two lines. For example, given the nonlinear uncertain386

function fi(qi) for an interval qi ∈
[
qli, q

u
i

]
, a lower line f lL,i(qi) = λliqi + βli and an upper line387

fuL,i(qi) = λui qi + βui can be designed such that:388

f lL,i(qi) ≤ fi(qi) ≤ fuL,i(qi), ∀qi ∈
[
qli, q

u
i

]
, i ∈ L (11)389

The goal of the bounding linearization procedure is to define the line parameters to minimize390

the area of the resulting convex set S. A detailed description on how to obtain linearization391

bounds for each of the nonlinear functions considered can be found in Appendix S2 of the392

Supplemental Data.393

Step 3: Formulation of Linear Program394

The bounding linearization of Step 2, yields linear inequality constraints for the interval395

functions fi(qi), qext,j fext,j(hj) and qleak,j(hj). These inequalities can replace these functions396

in (9) with new variables ζe,i, ζp,j and ζl,j respectively, thus transforming these equations into397

linear inequalities. Bound inequalities also arise on state variables qi and hj through Step 1.398
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The Linear Program will then have the following constraints:399

hlext,i ≤ ζe,i +
∑
j∈Nu

(Bij hj) ≤ huext,i, i ∈ L (12a)

∑
i∈L

(
B>ij qi

)
= ζp,j + ζl,j, j ∈ Nu (12b)

λle,iqi + βle,i ≤ ζe,i ≤ λue,iqi + βue,i, i ∈ L (12c)

λlp,jhj + βlp,j 6 ζp,j 6 λup,jhj + βup,j, j ∈ Nu. (12d)

λll,jhj + βll,j 6 ζl,j 6 λul,jhj + βul,j, j ∈ Nu. (12e)

qli ≤ qi ≤ qui i ∈ L (12f)

hlj ≤ hj ≤ huj j ∈ Nu (12g)

Note that the interval parameters in (9a) are eliminated through the use of their upper400

and lower bounds to convert them into the inequalities (12a) and (12b). The LP decision401

variables vector is defined as z̄ = [x̄>, ζ̄ >]> ∈ R(2nl+3nu) where x̄ =
[
q̄>, h̄>

]>
is the state402

vector and ζ̄ = [ζ̄e
>
, ζ̄l
>
, ζ̄l
>

]> is the auxiliary variable vector. Using the constraints (12a) -403

(12g), two LP problems can be formulated for obtaining lower (LPmin) and upper (LPmax)404

bounds on each state zi of the vector z̄:405

LPmin:
min
{x̄,ζ̄}

xi

s.t. (12a)− (12g)


LPmax:

max
{x̄,ζ̄}

xi

s.t. (12a)− (12g)


406

407

Step 4: Solution of the linear interval system of equations408

The objective of the optimization problem formulated in the previous section is to find409

the lower and upper bounds on the state vector x̄ that satisfy the inequalities (12a)-(12g). To410

achieve this, a total of 2(nl + nu) LPs must be solved where each problem will derive either411

the lower or upper bound of an individual state variable, indicated by x∗i . This procedure is412
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described in Algorithm 1.413

Algorithm 1 Solution of LISE using LP

begin

1: for i = 1 to nl + nu do
2: Minimize xi by solving problem LPmin
3: xli = x∗i
4: Maximize xi by solving problem LPmax
5: xui = x∗i
6: end for
7: x̄ =

[
x̄ l, x̄u

]
return x̄

Step 5: Iterative solution of the nonlinear interval system of equations414

In Algorithm 1 the linearized version of the original problem in (9) is solved. This is an415

outer interval solution to the nonlinear problem, which guarantees to include the interval hull416

solution. To find the smallest possible interval x̄ =
[
x̄ l, x̄u

]
that satisfies (9), an iterative417

method is used. At each iteration m, the range x̄bnd in which the optimization algorithm418

searches for an optimal solution becomes smaller and is redefined as x̄
(m+1)
bnd = x̄

(m)
bnd ∩ x̄ (m+1),419

where x̄(m+1) are the bounds calculated for the state vector x̄ at iteration m. The iterations420

stop when the bounds on the state vector remain relatively unchanged, i.e. the change is421

smaller than a small number ε. The relative change in bounds is computed as follows:422

e(m) ,
∣∣(x̄u (m) − x̄l (m)

)
−
(
x̄u (m−1) − x̄l (m−1)

)∣∣
1
. (13)423

The overall procedure for the solution of the NISE is described in Algorithm 2. The resulting424

bounds are an OI solution of these equations that approximate closely the IH solution.425

CASE STUDIES426

In this section, the IHISE algorithm is applied on different WDN in order to demon-427

strate the calculated bounds and evaluate the performance of the algorithm. An illustrative428

example is given in the “Illustrative example” section, where the bounds on different states429
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Algorithm 2 Iterative solution of NISE

begin

1: Define initial bounds h̄ (0) using physical properties.
2: Calculate initial bounds q̄ (0) using the procedure in Step 1.

3: x̄
(0)
bnd =

[
q̄(0)> h̄ (0)>

]>
4: m = 0
5: while e(m) > ε do
6: Bounding linearization of (9) for x̄ ∈ x̄

(m)
bnd

7: Formulate problems LPmin and LPmax
8: Find x̄ (m+1) using Algorithm 1
9: x̄

(m+1)
bnd = x̄

(m)
bnd ∩ x̄ (m+1)

10: m = m+ 1;
11: end while

return x̄ (m)

are shown graphically and compared with bounds obtained by MCS. In the section “Re-430

sults from benchmark networks” a more extensive analysis of the algorithm is presented,431

as it is applied on different benchmark networks with varying characteristics. The perfor-432

mance of the algorithm is evaluated by defining appropriate performance metrics and by433

comparing the IHISE bounds with bounds obtained by MCS. In the simulations we assumed434

a demand-driven modeling approach with no leakages, which translates into fext,j(hj) = 1435

and qleak,j(hj) = 0, j ∈ Nu in Problem (9). This modelling approach allows us to evaluate436

the performance of the algorithm using the established WDN simulation software EPANET437

(Rossman 2000).438

Illustrative example439

The benchmark network “Net1” shown in Fig. 1 provided by EPANET, is used to440

demonstrate the bounds on hydraulic states produced by the IHISE algorithm. The network441

parameters are shown in Table 1. Realistic water demand patterns, are assigned at each442

demand node.443

The IHISE algorithm is used to generate bounds on water flows in pipes and hydraulic444

heads at nodes of the network. The measurement uncertainty is defined as ±5% on the445

given water demands at nodes, which is the typical error given by manufacturers of water446
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flow meters. Modeling uncertainty is also considered and it is defined as ±5% on pipe Hazen-447

Williams coefficients. The simulation duration is 24 hours, with a discrete time step of one448

hour.449

Additionally, the same bounds are generated using Monte-Carlo Simulations (MCS) of the450

network in EPANET. The demands are randomly varied at each simulation within a range451

of ±5% of the given water demands at nodes. The uncertainty on pipe Hazen-Williams452

coefficients is achieved by analogously varying pipe lengths, as the Hazen-Williams coeffi-453

cients are linearly depended on this parameter. Uncertainty on pipe roughness coefficients454

and pipe diameter can also be considered, but the effect on Hazen-Williams coefficient will455

not be linear. The maximum and minimum value of each state is saved, defining the upper456

and lower bounds. The number of simulations is set to 30 000. Note that MCS provide an457

inner approximation of the bounds on each state and how close they are to the true bounds458

depends on the number of simulations. Given the possible variations of the same network459

for the given uncertainty, a sufficiently large number of simulations need to be performed460

in order for the MCS to converge to the true bounds. Nevertheless, especially in small net-461

works, the MCS bounds can be useful to evaluate the IHISE bounds, which are an outer462

approximation of the true bounds, by: 1) verifying the correctness of the IHISE bounds by463

checking if the MCS bounds are always a subset of the IHISE bounds and 2) evaluating the464

conservativeness of the IHISE bounds by measuring their distance from the MCS bounds.465

Simulation results for selected states which reflect the results for all the states are given466

in Fig. 2. The IHISE bounds are compared with bounds generated using MCS for each state.467

The figure illustrates that the MCS bounds are a subset of the IHISE bounds, while they468

are also closely approximated. Note that, the true unknown bounds are enclosed between469

the IHISE and MCS upper and lower bounds.470

Results from benchmark networks471

To evaluate the ability of IHISE to compute state bounds, five benchmark networks with472

varying characteristics are used: “Anytown”, which was used as the basis for the original473
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“Battle of the Network Optimization Models” (Walski et al. 1987), “Net1”, “Net2” and474

“Net3”, which are example networks in EPANET (Rossman 2000), and “ky3” from the475

Kentucky Infrastructure Authority database of water distribution models (Jolly et al. 2014).476

The networks and their characteristics are listed in Table 1.477

The networks were carefully selected to have multiple varying characteristics in terms of478

size, topology and types of elements they contain. Varying the network size, i.e. the number479

of nodes and links, demonstrates the scalability of the IHISE algorithm by considering the480

performance in networks with different number of states, i.e. heads at nodes and water flows481

at links. Varying the number of reservoirs and tanks, as well as the number of pumps in the482

network, reveals the ability of the algorithm to deal with these components. The topology of483

the networks is also considered, specifically the complexity that arises in calculating hydraulic484

states when the networks contain loops. This is quantified by calculating the circuit rank485

of the network indicated by γ, which is then normalized by the number of links nl of each486

network. The resulting metric is defined as the Loop Ratio, given by LR = γ/nl, 0 ≤ LR <487

1. A value of LR equal to zero means that there are no loops in the network, while LR488

approaches the value of one in the case of a fully connected graph.489

Note that the circuit rank of an undirected graph is defined as the number of independent490

cycles, or the minimum number of edges that must be removed from the graph to break all491

its cycles making it into a tree. It is calculated as r = m − n + c, where m is the number492

of edges in the given graph, n is the number of vertices and c is the number of connected493

components. The circuit rank is also known as the cyclomatic number and is used to indicate494

the complexity of a program’s source code (McCabe 1976).495

Monte-Carlo and IHISE Simulations496

For each network, a random demand scenario is assigned which produces a feasible solu-497

tion in EPANET, i.e. there are no negative pressures. Similar to the “Illustrative example”498

section, the demand and modeling uncertainty is consider equal to ±5%. The simulation499

duration for all networks is 24 hours, with a discrete time step of one hour. The total number500
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of simulation steps is defined as Ns = 24.501

MCS were performed for all networks using EPANET. The varying parameters are the502

nodal demands and pipe parameters, in the range defined by the assumed uncertainty. At503

each simulation, the minimum and maximum value of each state for each time step is saved,504

thus defining the lower and upper bounds on the state. Additionally, a robust estimate of the505

state under the considered uncertainties is calculated by taking all the simulated scenarios506

and calculating the mean value of each state at each time step. This is indicated by qµMC,i(k)507

for flow states and hµMC,j(k) for head states and will be referred to as the MCS state estimate.508

In order to perform an appropriate number of MCS and obtain quantifiable bounds for509

each network, a stopping criterion for the simulations is imposed, such that the change in510

all upper and lower flow-state and head-state bounds are less than ∆q(m3/h) and ∆h(m)511

respectively, for at least 5 000 consecutive simulations. The flows and heads in each network512

may belong in different value ranges, so ∆q and ∆h are calculated as a percentage of the513

absolute mean value of the MCS state estimates. The absolute mean value of flow-states514

and head-states respectively is given by:515

µq =
1

Ns

Ns∑
k=1

(
1

nl

nl∑
i=1

|qµMC,i(k)|

)

µh =
1

Ns

Ns∑
k=1

(
1

nn

nn∑
j=1

|hµMC,j(k)|

) (14)516

The defined accuracies are then calculated as ∆q = 1%(µq) and ∆h = 1%(µh). Using this517

approach, it is assumed that the bound accuracy is given by ∆q and ∆h. Note that while518

this approach provides a degree of confidence for the accuracy of MCS bounds, it is not519

guaranteed that the deviation of these bounds from the actual bounds cannot be larger.520

Using the IHISE algorithm, bounds for the state of all networks are computed, using521

the assumed uncertainty. As a technical note, due to the fact that the IHISE algorithm522

was designed from scratch without the use of other hydraulic solvers, the networks had to523

satisfy specific conditions in order for the current version of the algorithm to work and be524
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compared with the results from EPANET. The tank levels have to be measurable, so any525

tanks in the network model are replaced with variable head reservoirs. Control rules that526

open and close pumps depending on tank levels were removed from the model. Additionally,527

the head-loss formula should be set to Hazen-Williams. These limitations will be removed528

in future versions of the algorithm.529

Evaluation of bounds mean value530

An estimated value of the each state at each time step k is derived using the mean value531

of the IHISE bounds, which we will refer to as the IHISE state estimate. For flow-states532

this is calculated as qµIH,i(k) =
(
quIH,i(k) + qlIH,i(k)

)
/2, and for head-states this is calculated533

as hµIH,j(k) =
(
huIH,j(k) + hlIH,j(k)

)
/2. The IHISE state estimates are compared with the534

MCS state estimates, by calculating the Absolute Percentage Deviation (APD) of the IHISE535

state estimates to the MCS state estimates. Note that data from time steps where the MCS536

state estimate is close to zero are excluded from the evaluation, as they produced large537

percentages that are not representative of the results. The comparison shows that, for all538

networks, the Mean APD was less than 1%, while 99% of the time, the APD was less than539

8%. This indicates that, when no statistical characterization of the uncertainties is available,540

the mean value of the IHISE algorithm bounds can be used as a robust estimate of the system541

state.542

Evaluation of bounds543

For the evaluation of the IHISE algorithm bounds, we compare the lower bounds xlIH =544

[qlIH hlIH ] and upper bounds xuIH = [quIH huIH ] of the IHISE algorithm with the lower bounds545

xlMC = [qlMC hlMC ] and upper bounds xuMC = [quMC huMC ] derived from MCS respectively.546

First, the validity of the IHISE bounds was checked, i.e. xlIH,i(k) < xlMC,i(k) and xuIH,i(k) >547

xuMC,i(k) for all states i and all time steps k. The test indicated that there were no bound548

violations for networks “Net1”, “Net2” and “Anytown”. For “Net3”, bound violations occur549

for two flow-states, in time steps when the MCS flow estimate is less than 10−4(m3/h) and550

the MCS bound width is less than 10−2(m3/h). For “ky3”, bound violations occur in 1.77%551
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of the time, in specific states where the difference in width of the IHISE bounds and MCS552

bounds is less than 0.4(m3/h) for flows and less than 0.005(m) for heads. The violation553

magnitude for any state and time step is less than 0.5% of the corresponding MCS state554

estimate. All the observed bound violations occur in cases where the IHISE bounds are555

very close to the MCS bounds. This can be explained by the fact that the IHISE algorithm556

uses a completely independent hydraulic solver than EPANET, thus differences in solutions557

may exist. Despite this fact, the differences in solutions made apparent by the violations558

are insignificant and the validity test of the IHISE can be considered succesful if these are559

attributed to modeling uncertainty which has not been taken into account.560

Next, the Absolute Deviation (AD) of the two sets of bounds is evaluated separately for561

flow-states and head-states, as they are measured in different units. The AD for flow-state562

lower and upper bound is defined as euq,i(k) = quIH,i(k) − quMC,i(k) and elq,i(k) = qlMC,i(k) −563

qlIH,i(k) respectively. Similarly, the AD for head-state lower and upper bounds is defined as564

elh,j(k) and euh,j(k) respectively. An illustration of lower and upper bound ADs is shown in565

Fig. 3. In Table 1 the mean AD for all states and time steps are shown for each network.566

The results indicate mean errors for upper and lower bounds that are close to the accuracy567

of MCS, ∆Q and ∆h.568

The area defined by the IHISE bounds is also an important evaluation metric. Since569

the duration of simulations is the same for all states, evaluating the area is equivalent to570

evaluating the width of the bounds. The width of the bounds for each time step is defined as571

the difference between the upper and lower bound for each time step. For IHISE flow-state572

bounds, for state i and time step k, the width is given by wqIH,i(k) = quIH,i(k)− qlIH,i(k).573

Similarly, the width of IHISE head-state bounds, for state j and time step k, is defined as574

whIH,j(k). The corresponding widths for MCS bounds are denoted by wqMC,i(k) and whMC,j(k).575

An illustration of bound widths is given in Fig. 3 In Table 1 the mean bound widths for576

all states and time steps are shown for each network. The mean IHISE bound widths577

is indicated by wqIH for flow-states and whIH for heads-states, while the MCS bounds are578
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similarly indicated by wqMC and whMC . As shown in Table 1, the difference between IHISE579

and MCS mean bound width for flow-states in different networks varies from 0.6(m3/h) in580

“Net2” to 37.5(m3/h) in “Net3”. Similarly, the mean bound width for head-states varies581

from 0.04(m) in “Net2” to 2.05(m) in “Net1”.582

In order for the bounds width to give meaningful insight into the accuracy of the algo-583

rithm, they must be normalized relative to the absolute mean value of states for each network,584

i.e. µq for flow-states and µh for head-states. Using this normalization, the bound width can585

be viewed as a percentage of each state’s uncertainty. The percent state uncertainty (PSU)586

is calculated using the bound width-to-mean ratio as follows:587

ηsalg = ±
(
wsalg/2

)
µs

100%, (15)588

where alg = {IH,MC} depending on the algorithm used, and s = {q, h} depending on the589

type of state. This will allow the comparison between the calculated state uncertainty and590

the uncertainty on the network inputs, i.e. the demand and parameter uncertainty. It is591

recalled that the uncertainty on demands and parameters is defined as a percentage of their592

estimated value, which was set at ±5% in these simulations.593

The average PSU for each network, indicated by ηsalg : alg = {IH,MC}, s = {q, h},594

is given in Table 1. For flow states, the PSU is, for both methods, close to the ±5%595

input uncertainty which will be used as a reference point. Typically MCS have slightly less596

uncertainty and IHISE slightly more, with the exclusion of the looped network “Anytown”597

where both methods have more uncertainty, and the small network “Net1”, where both598

methods have more. For head-states, the results are much different, as both methods produce599

much less state uncertainty than the reference point, except in the case of “Net1” where the600

uncertainty is near ±5%. The IHISE average PSU is at the worst case 2 times larger than601

the MCS average PSU. The worst cases present at the large network “ky3” but also in the602

highly looped network “Anytown”.603
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For additional insight, the maximum PSU for each network is calculated. This is calcu-604

lated using the MCS state estimate for each state i and time step k as follows: max(ηsalg) =605

max(wsalg,i(k)/sµi (k)) : alg = {IH,MC}, s = {q, h}. Note that time steps when MCS state606

estimates have values close to zero, were excluded from the evaluation as they produced607

large percentages that are not representative of the results. As observed in Table 1, the608

IHISE maximum PSU is at worst 3 times larger than the maximum PSU obtained by MCS.609

However, the maximum values of PSU occur in only a few occasions. This is illustrated in610

Appendix S3 of Supplemental Data, where the distribution of the PSU for IHISE and MCS611

is plotted for network “ky3”.612

The different operating scenarios of the networks resulting by the changing demands613

may also affect the bounds of the IHISE algorithm. To evaluate this factor, the average614

difference in PSU for all flow-states η̄qIH(k)− η̄qMC(k) at each time step k is calculated. This615

is then compared to the average nodal demand in the network q̄ext(k) at each time step. By616

performing correlation analysis, we obtain a correlation of 0.9483, 0.9995, 1.0000, 0.9273 and617

0.9975 between these data, for the networks “Net1”, “Anytown”, “Net2”, “Net3” and “ky3”618

respectively. In Appendix S4 of Supplemental Data, this correlation is illustrated by plotting619

the average difference in PSU as a function of the average nodal demand for network “ky3”.620

The average difference in PSU follows the pattern of average nodal demands. This can be621

explained by the fact that the uncertainty on demands is proportional to the demand value,622

as it was assumed in the design of the simulations, and MCS bounds become less accurate623

when uncertainty in the network is larger, thus deviating more from the IHISE bounds.624

Simulation times625

The simulation time of either the IHISE algorithm or MCS for a single time step is626

also evaluated, along with the average iterations needed by the IHISE algorithm to solve a627

single time instance of the specific network and the number of MCS. The simulations were628

performed on a personal computer with Intel Core i5-2400 CPU at 3.10GHz. Simulation629

times of the IHISE algorithm are mainly depended on the size of the network, as observed in630
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Table 1. In Appendix S5 of Supplemental Data, an extrapolation of the simulation times for631

the IHISE algorithm compared to the simulation times of MCS based on the five networks632

of this case study is given. The estimated simulation time of the IHISE algorithm is always633

less than the MCS time with the defined accuracy, while the time difference becomes larger634

for larger networks.635

The simulation time also depends on the complexity of the network, as it is evident in636

Table 1 from the simulation time of the looped network “Anytown”. The IHISE algorithm637

needs more iterations to converge to a solution for this network compared to the ”Net2”638

which has similar number of states but is less looped. Similarly, more MCS are needed639

for the looped network “Anytown” than ”Net2” for them to converge to a defined bound640

accuracy.641

CONCLUSIONS642

In this work the problem of estimating bounds on WDN hydraulic states is addressed.643

A new methodology is proposed that generates interval state estimates. The proposed Iter-644

ative Hydraulic Interval State Estimation (IHISE) algorithm generates bounds on hydraulic645

states of the network, by taking into account the water demand uncertainty and modeling646

uncertainty in the form of uncertain pipe parameters. The uncertainties are modeled as647

intervals. The results show that the proposed methodology is able to generate tight bounds648

on hydraulic states and can be used in place of randomized methods such as Monte-Carlo649

Simulations (MCS).650

The advantage of this methodology over MCS is that the calculated bounds guarantee651

the inclusion of the true system state, while the iterative nature of the algorithm makes652

these bounds as tight as possible. An extension of this work is to use the generated bounds653

for fault diagnosis methods that detect and localize leakages in the network. The proposed654

methodology can be naturally used with model based fault-diagnosis and robust control655

methodologies, because many of these rely on the availability of bounding state estimates656

which are calculated by some knowledge of the system uncertainties. In the case of fault-657
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diagnosis, the bounding state estimates are used to create thresholds, which when violated658

is an indication of a fault (Puig 2010). Additionally, the bounds on hydraulic states of659

the network can be used to generate bounds on water quality states, since the dynamics of660

hydraulic and quality states of a water network are interconnected.661

A limitation of this methodology is that it does not model elements whose head function662

is depended on pressure, such as pressure reduction valves. This is something that will be663

considered in future work. Other elements that are used in WDN and are not modeled in this664

work, are pressure control valves, flow control valves etc. Future work will model a variety665

of additional components to be used with this methodology, and an interval hydraulic state666

estimation toolkit will be released. Additionally, more extensive simulations on how this667

methodology deals with pressure-driven demands and pressure-dependent leakages will be668

provided.669
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SUPPLEMENTAL DATA675

A detailed description of the derivation of initial bounds on flow states, as described in676

Step 1 of the IHISE algorithm in Section 3, is provided in Appendix S1. Appendix S2 contains677
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Networks: Net1 Anytown Net2 Net3 ky3
States 24 63 76 216 646
Loop Ratio 0.23 0.49 0.13 0.19 0.26
Junctions 9 19 35 92 269
Reservoirs 1 3 0 2 3
Tanks 1 0 1 3 3
Pipes 12 40 40 117 366
Pumps 1 1 0 2 5
Flow-states:
µq (m3/h) 551.98 75.93 13.33 469.02 42.12
∆q (m3/h) 5.52 0.76 0.13 4.69 0.42
euq (m3/h) 5.77 6.49 0.32 19.01 1.60
elq (m3/h) 6.82 6.54 0.32 20.04 1.62

wq
MC (m3/h) 32.55 10.85 0.96 42.64 2.91

wq
IH (m3/h) 42.75 23.54 1.56 80.15 6.08

ηq
MC (%) ±2.95 ±7.15 ±3.59 ±4.55 ±3.46
ηq
IH (%) ±3.87 ±15.50 ±5.86 ±8.54 ±7.22

max(ηq
MC) (%) ±19.33 ±78.62 ±23.12 ±95.71 ±62.53

max(ηq
IH) (%) ±37.86 ±205.80 ±40.52 ±190.35 ±190.07

Head-states:
µh (m) 63.06 42.92 43.69 52.89 48.04
∆h (m) 0.52 0.37 0.41 0.50 0.49
euh (m) 1.34 0.06 0.02 0.74 0.08
elh (m) 1.35 0.07 0.02 0.61 0.09
wh

MC (m) 6.10 0.11 0.03 1.49 0.29
wh

IH (m) 8.16 0.24 0.07 2.76 0.46
ηh
MC(%) ±4.84 ±0.13 ±0.04 ±1.41 ±0.30
ηh
IH (%) ±6.47 ±0.28 ±0.08 ±2.61 ±0.48

max(ηh
MC) (%) ±12.99 ±0.29 ±0.10 ±1.82 ±1.71

max(ηh
IH) (%) ±17.44 ±0.61 ±0.21 ±3.60 ±2.35

Times:
MCS Number 5849 28993 21805 13977 32695
MCS (min) 1.71 3.84 4.36 11.74 34.49
IHISE (min) 0.01 0.12 0.08 0.96 13.72
IHISE Iterations 7.44 13.48 9.00 14.56 16.40

TABLE 1. Results of the IHISE algorithm on benchmark networks.
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Fig. 1. The benchmark network “Net1”, on which the IHISE algorithm is demonstrated.
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Fig. 2. Comparison of selected pipes water flow bounds (above) and selected nodes hydraulic
head bounds (below), generated by Monte-Carlo Simulations (blue solid area) and the IHISE
algorithm (red dashed lines).
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