Conference paper Open Access

Multimodal Music Information Processing and Retrieval: Survey and Future Challenges

Simonetta, Federico; Ntalampiras, Stavros; Avanzini, Federico


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Multimodal music processing</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">music information retrieval</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">music description systems</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">information fusion</subfield>
  </datafield>
  <controlfield tag="005">20190410032507.0</controlfield>
  <controlfield tag="001">2565059</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">24-25 January 2019</subfield>
    <subfield code="g">MMRP</subfield>
    <subfield code="a">International Workshop on Multilayer Music Representation and Processing</subfield>
    <subfield code="c">Milan, Italy</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Milan</subfield>
    <subfield code="a">Ntalampiras, Stavros</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Milan</subfield>
    <subfield code="a">Avanzini, Federico</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">2036309</subfield>
    <subfield code="z">md5:20611dbada812fed5b7c6bb66d3182b3</subfield>
    <subfield code="u">https://zenodo.org/record/2565059/files/Multimodal_collaborative_music_information_processing_and_retrieval__survey_and_future_challenges.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">http://mmrp19.di.unimi.it/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-01-24</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-federicosimonetta</subfield>
    <subfield code="p">user-mir</subfield>
    <subfield code="o">oai:zenodo.org:2565059</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of Milan</subfield>
    <subfield code="0">(orcid)0000-0002-5928-9836</subfield>
    <subfield code="a">Simonetta, Federico</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Multimodal Music Information Processing and Retrieval: Survey and Future Challenges</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-federicosimonetta</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-mir</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Towards improving the performance in various music information processing tasks, recent studies exploit different modalities able to capture diverse aspects of music. Such modalities include audio recordings, symbolic music scores, midlevel representations, motion and gestural data, video recordings, editorial or cultural tags, lyrics and album cover arts. This paper critically reviews the various approaches adopted in Music Information Processing and Retrieval, and highlights how multimodal algorithms can help Music Computing applications. First, we categorize the related literature based on the application they address. Subsequently, we analyze existing information fusion approaches, and we conclude with the set of challenges that Music Information Retrieval and Sound and Music Computing research communities should focus in the next years.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">isbn</subfield>
    <subfield code="i">isPartOf</subfield>
    <subfield code="a">978-1-72811-649-5</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">arxiv</subfield>
    <subfield code="i">isIdenticalTo</subfield>
    <subfield code="a">arXiv:1902.05347</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="g">10--18</subfield>
    <subfield code="b">IEEE Conference Publishing Services</subfield>
    <subfield code="a">Milan, Italy</subfield>
    <subfield code="z">978-1-7281-1649-5</subfield>
    <subfield code="t">Proceedings of 2019 International Workshop on Multilayer Music Representation and Processing</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1109/MMRP.2019.8665366</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
89
62
views
downloads
Views 89
Downloads 62
Data volume 126.3 MB
Unique views 68
Unique downloads 51

Share

Cite as