
1 
 

Germanium Photovoltaic Cells with MoOx Hole-1 

Selective Contacts 2 

A. Alcañiz(a), G. López(a), I. Martín(a), A. Jiménez (b), A. Datas(a,b), E. Calle(a), E. 3 

Ros (a), L.G. Gerling(a), C. Voz(a), C. del Cañizo(b), R. Alcubilla(a) 4 

 (a) Electronic Engineering Department, Universitat Politècnica de Catalunya, Jordi 5 

Girona 1-3, Barcelona 08034, Spain 6 

 (b) Instituto de Energía Solar, Universidad Politécnica de Madrid, 28040 Madrid, Spain. 7 

Keywords: germanium, MoOx, transition metal oxide, solar cell, thermophotovoltaics, 8 

photovoltaics. 9 

 10 

Abstract 11 

Very thin, thermally evaporated MoOx (x<3) layer has been used as transparent hole-selective 12 

contact on an n-type Germanium substrate to effectively demonstrate PV conversion capability. 13 

The fabricated MoOx/Ge heterojunction PV cell shows a photocurrent density of 44.8 mA/cm2 14 

under AM1.5G illumination, which is comparable to that of conventional Ge PV cells. 15 

However, a low open-circuit voltage of 138 mV is obtained, which might be explained by the 16 

presence of tunnelling mechanisms through the MoOx/Ge interface. To our knowledge, this is 17 

the first demonstration of a hole-selective contact made of transition metal oxide on an n-type 18 

semiconductor different from c-Si. Thus, this work may have important implications toward the 19 

development of new device architectures, such as novel low-cost Ge PV cells with possible 20 

applications in multijunction solar cells and thermophotovoltaics. 21 

Main text 22 

Historically, the driving force for the use of Ge in photovoltaic (PV) applications has been as a 23 

substrate for GaAs space solar cells (Miller and Harris 1980), the main reason being the higher 24 

thermal conductivity and the possibility of manufacturing thinner and lighter wafers with Ge 25 

than with GaAs. Later on, Ge/GaAs tandem solar cells were pursued to enhance the conversion 26 

efficiency (Chand et al. 1986) by using the Ge bottom cell to convert the infrared part of the 27 

solar spectrum. This progress eventually derived in the development of the current standard 28 

technology for space solar cells that consists of triple junction Ge/GaAs/GaInP structures, with 29 

AM0 conversion efficiencies in the range of 28-30%. These cells have been also used in 30 

terrestrial applications within concentrated-PV (CPV) systems, where they reached AM1.5D 31 

conversion efficiencies of 41.6% (R.R. King et al. 2009), just slightly below the current world-32 
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record for solar-to-electricity conversion efficiency of 46.0% (Dimroth et al. 2014). Apart from 33 

solar applications, Ge PV cells have been considered as a low-cost replacement for low band 34 

gap III-V semiconductors in thermophotovoltaic (TPV) converters, in which thermal radiation is 35 

directly converted into electricity by infrared sensitive PV devices (Bauer 2011; Chubb 2007). 36 

In this context, Ge TPV cells could be used in a broad range of applications such as waste heat 37 

recovery (Bauer et al. 2003), solar-thermal power (Ungaro, Gray, and Gupta 2015; Lenert et al. 38 

2014; Alejandro Datas and Algora 2013), space power (A. Datas and Martí 2017), and energy 39 

storage (Alejandro Datas et al. 2016), among many others.  40 

Current state of the art of Ge PV cells consist of p-n junctions created by diffusion of dopants at 41 

high temperatures (Bitnar 2003). For instance, p-n junctions in p-Ge have been created by 42 

diffusion of V-group atoms (typically P and As) during the first growing step of GaInP or GaAs 43 

nucleation layers within a Metal-Organic CVD (MOCVD) reactor at temperatures of ~ 650ºC 44 

(Fernandez et al. 2008; Fernández 2010; Barrigón Montañés 2014). Other groups have used the 45 

diffusion of Zn in n-Ge substrates within a LPE reactor (Khvostikov et al. 2002). In an effort to 46 

reduce manufacturing costs of standalone Ge PV cells, IMEC reported devices with p-n 47 

junctions created by spin-on diffusion of P on p-Ge by rapid thermal annealing at different 48 

temperatures (450-700 °C) (Posthuma et al. 2007; van der Heide 2009; van der Heide et al. 49 

2009) leading to the best reported 1-sun AM1.5G conversion efficiency for stand-alone Ge PV 50 

cells of 7.9% (van der Heide et al. 2009). Surface passivation has been accomplished by 51 

forming different kinds of heterojunctions on Ge surface, such as Ge/GaAs (Khvostikov et al. 52 

2002) or Ge/GaInP (Fernandez et al. 2008; Fernández 2010; Barrigón Montañés 2014) by 53 

MOCVD or LPE (Khvostikov et al. 2002), or Ge/a-Si (Posthuma et al. 2007; van der Heide 54 

2009; van der Heide et al. 2009; Posthuma et al. 2005), Ge/SiNx (Nagashima, Okumura, and 55 

Yamaguchi 2007)  and Ge/a-SixC1-x (Fernandez et al. 2008; Fernández 2010) by PECVD.  56 

In order to further reduce the fabrication cost of Ge PV cells, it is desirable to eliminate the high 57 

temperature diffusion, and complex MOCVD or PECVD processes. In this regard, a particularly 58 

appealing option consists of substituting the doping step by carrier-selective coatings with 59 

surface passivation properties that could be deposited at low temperatures. For this purpose, 60 

high electron-affinity transition metal oxides (TMOs) such as MoO3, WO3, and V2O5, are very 61 

interesting candidates that have already been found effective to produce hole-selective contacts 62 

on both n-type and p-type c-Si (Gerling et al. 2016; Battaglia et al. 2014; Bullock et al. 2014). 63 

In this letter we report a Ge PV cell formed by a thin sub-stoichiometric MoOx (x<3) layer on 64 

top of an n-type crystalline Ge (c-Ge) substrate, which behaves as a hole selective contact. To 65 

our knowledge, this is the first demonstration of a hole-selective contact made with a TMO on 66 

an n-type semiconductor different than c-Si. Thus, it might open the door to new device 67 
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architectures, not only for PV applications, but also in photonics and CMOS electronics, where 68 

the integration of TMOs is being investigated (Sanchez et al. 2016), along with the use of 69 

different semiconductors having higher carrier mobilities and extended spectral response than c-70 

Si, such as Ge (Reboud et al. 2017; Toriumi and Nishimura 2017). 71 

The PV cell structure was fabricated on (100) oriented, Czochralski, n-type Ge substrates (ρ= 72 

0.37 Ω·cm, 350 μm-thick). The substrate was cleaned by HCl: H2O (33%) immediately prior to 73 

rear side passivation by PECVD of (i/n+) a-SiCx:H (4/15nm, x~0.2) and a-SiC (80nm) stack 74 

deposited at ~ 300ºC. Next, the rear contact was created by laser firing of the a-SiC stack to 75 

produce an array of ~ 60 µm diameter local diffusion points, separated by 600 µm pitch. Laser 76 

firing was accomplished by means of a ~1200 mW, = 1064 nm Nd/YAG laser system at a 77 

frequency of 4 kHz with 6 pulses per spot, following a similar approach than in (López et al. 78 

2018) . The rear contact was finalized by means of an e-beam evaporated Ti/Pd/Ag metal stack 79 

that provides lateral interconnection between fired points. The hole selective contact was 80 

formed at the front side of the device by means of very thin (nominally 20 nm) MoOx layer 81 

thermally evaporated from powdered MoO3 sources at ~8·10−6 mbar and a deposition rate of ~ 82 

0.2 Å/s. A 75 nm-thick ITO layer was subsequently deposited by RF-Sputtering on top of the 83 

MoOx layer to increase lateral electrical conductivity and minimize optical reflectivity. A sketch 84 

of the full PV cell structure and the TEM image of the MoOx/ITO interface are shown in Figure 85 

1, where a pronounced inter-diffusivity between the layers is clearly observed. The 1x1 cm2 86 

active area of the PV cells was defined by conventional lithographic techniques followed by 87 

mesa etching of the MoOx/ITO layers. Finally, the front Ag grid electrode (2 μm thick) was 88 

evaporated through a shadow mask for a 4% contacted area  89 

The current density-voltage (J-V) curve under 1-sun illumination is shown in Figure 2. The 90 

short-circuit current density (JSC= 44.8 mA/cm2) outperforms that of the best performing state of 91 

the art Ge PV cells (43.2 mA/cm2) (van der Heide et al. 2009). On the other hand, a much lower 92 

open circuit voltage (138 mV) is measured, compared to those reported in (Fernández 2010; van 93 

der Heide et al. 2009) (up to 265 mV), which ultimately results in a lower FF (40.9 %), partially 94 

due to a non-optimized metal grid that introduces a series resistance of 0.65 cm2. As a result, 95 

an AM1.5G conversion efficiency of 2.53 % is obtained. 96 

External quantum efficiency (EQE) of the PV cell is shown in Figure 3 at short-circuit 97 

conditions along with the EQE of Ge PV cells reported in (van der Heide 2009) for a direct 98 

comparison. The improved EQE for wavelengths shorter than 600 nm might be explained by the 99 

reduction of the recombination close to the front surface compared to the one existing in the 100 

highly-doped emitters (1019-1021 cm-3) used in (van der Heide 2009). Such a low recombination 101 

does not necessary indicate a good chemical surface passivation, i.e. strong reduction of 102 
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interface state density, but it could be related to a strong electric field that unbalances carrier 103 

densities, i.e. field-effect passivation. In order to measure the electrostatic potential barrier built 104 

at the junction (Vbi), capacitance-voltage measurements in reverse bias were performed 105 

following the same approach than in (Almora et al. 2017) where similar structures on c-Si 106 

substrates are characterized. This data can be obtained by fitting the C -2 vs. V curve, known as 107 

Mott-Schottky plot, using the following equation   1 𝐶2⁄ = 2(𝑉𝑏𝑖 − 𝑉 − 2𝑘𝐵𝑇 𝑞⁄ ) 𝑞𝜀𝑆𝑁𝐷⁄ , 108 

where symbols have their usual meanings. By applying this model to the experimental data, we 109 

get an almost perfect linear fit (R2=0.99988) leading to Vbi =317±4 mV. Additionally, the 110 

doping density (ND) can be obtained from the slope of the curves leading to a ND value of 111 

6.9±0.1·1015 cm-3, which fully agrees with the Ge substrate specifications. The calculated Vbi 112 

indicates that the surface is highly inverted, i.e. hole density at the surface is even higher than 113 

the doping density ND, reducing interface recombination due to the scarce availability of 114 

electrons. This might explain the relatively high EQE values measured under short-circuit 115 

conditions in the UV-visible range. 116 

In order to investigate the origin of the low VOC, a further understanding of the current 117 

mechanisms taking place in the MoOx/Ge heterojunction is needed. With this aim, open-circuit 118 

voltage (VOC) is measured as a function of photogenerated current (Jph) by means of a flash 119 

lamp. For every flash, Voc values of the cell are recorded in an oscilloscope, while Jph is 120 

estimated from the light intensity measured by a reference Ge PV cell (Kerr, Cuevas, and Sinton 121 

2001). It is well known that applying the superposition principle and taking into account that the 122 

device is kept under open-circuit conditions, Jph must be equal to the current that would be 123 

measured in the cell at dark conditions and the series resistance has no effect on the 124 

measurement. As a consequence, the analysis of Jph-VOC curves enables the extraction of useful 125 

information otherwise hidden by the series resistance effects in conventional dark J-V 126 

characteristics. This advantage is crucial in our devices given the combination of relatively high 127 

currents with significant series resistance. Figure 4 shows the Jph-Voc curves measured at 128 

temperatures ranging 293-323 K in 5 K steps. The experimental data are fitted to an exponential 129 

trend given by 𝐽𝑝ℎ = 𝐽0(𝑇)[exp(𝐴(𝑇) · 𝑉𝑂𝐶) − 1] and two examples for the highest and lowest 130 

temperature measurement are also shown in Figure 4. Notice that in this model no series 131 

resistance is included and consequently we have only two free parameters: the saturation current 132 

density, J0(T), and the exponential factor, A(T). In Figure 5 we show the Arrhenius plot of these 133 

parameters where a constant value of A ≈ 34 V-1 and an activation energy of 0.462 eV for J0(T) 134 

suggests that tunnelling mechanism dominates at the MoOx/Ge interface (Sze and Ng, n.d.). 135 

This tunnelling current jeopardizes the electron blocking properties of the junction leading to a 136 

high saturation current density and, thus, low Voc values. A deeper knowledge of the band 137 
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structure and interface characteristics of MoOx/Ge junction is needed to fully understand how 138 

this tunnel mechanism takes place and to improve the obtained Voc values.  139 

In conclusion, we have reported for the first time a heterojunction MoOx/Ge PV cell that 140 

effectively demonstrates the possibility of creating hole selective contacts in n-type c-Ge. 141 

Photovoltaic performance of the device shows excellent Jsc values (44.8 mA/cm2) mainly related 142 

to an enhanced spectral response at short wavelengths. On the other hand, low Voc values (138 143 

mV) might be explained by an excess of tunnel current at the MoOx/Ge interface resulting in 144 

high saturation currents. With evident room for improvement, these results could eventually 145 

open a new route for cost-reduction of Ge-based PV devices, including the development of new 146 

kind of low cost thermophotovoltaic converters. Eventually, it could also open the door for the 147 

integration of transition metal oxides in Ge photonics and CMOS electronics. 148 
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 262 

 263 

Figure 1. Sketch of the fabricated solar cell. Focus: TEM image of the MoOx interlayer of the 264 

final device 265 

  266 
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 267 

Figure 2. Current density-voltage curve of the Ge PV cell manufactured in this work under 268 

AM1.5 G illumination conditions. 269 
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 278 

Figure 3. External quantum efficiency of the Ge PV cell manufactured in this work along with 279 

that of  the Ge PV cell reported in (van der Heide 2009). 280 
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  283 

Figure 4. Jph-VOC curves at different temperatures from 293 to 333 K in 5 K steps. 284 

285 
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 286 

Figure 5. Activation energy and current as a function of temperature 287 


