Conference paper Open Access

Low-complexity decoders for non-binary turbo codes

Klaimi, Rami; Abdel Nour, Charbel; Douillard, Catherine; Farah, Joumana


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/2560058</identifier>
  <creators>
    <creator>
      <creatorName>Klaimi, Rami</creatorName>
      <givenName>Rami</givenName>
      <familyName>Klaimi</familyName>
      <affiliation>IMT Atlantique</affiliation>
    </creator>
    <creator>
      <creatorName>Abdel Nour, Charbel</creatorName>
      <givenName>Charbel</givenName>
      <familyName>Abdel Nour</familyName>
      <affiliation>IMT Atlantique</affiliation>
    </creator>
    <creator>
      <creatorName>Douillard, Catherine</creatorName>
      <givenName>Catherine</givenName>
      <familyName>Douillard</familyName>
      <affiliation>IMT Atlantique</affiliation>
    </creator>
    <creator>
      <creatorName>Farah, Joumana</creatorName>
      <givenName>Joumana</givenName>
      <familyName>Farah</familyName>
      <affiliation>IMT Atlantique</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Low-complexity decoders for non-binary turbo codes</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <subjects>
    <subject>Turbo codes</subject>
    <subject>correlation in decoding</subject>
    <subject>interleaving</subject>
    <subject>asymptotic performance</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2018-12-03</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Conference paper</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/2560058</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1109/ISTC.2018.8625359</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/epic_h2020</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Following the increasing interest in non-binary coding schemes, turbo codes over different Galois fields have started to be considered recently. While showing improved performance when compared to their binary counterparts, the decoding complexity of this family of codes remains a main obstacle to their adoption in practical applications. In this work, a new low-complexity variant of the Min-Log-MAP algorithm is proposed. Thanks to the introduction of a bubble sorter for the different metrics used in the Min-Log-MAP decoder, the number of required computations is significantly reduced. A reduction by a factor of 6 in the number of additions and compare-select operations can be achieved with only a minor impact on error rate performance. With the use of an appropriate quantization, the resulting decoder paves the way for a future hardware implementation.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/760150/">760150</awardNumber>
      <awardTitle>Enabling Practical Wireless Tb/s Communications with Next Generation Channel Coding</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
30
27
views
downloads
Views 30
Downloads 27
Data volume 33.5 MB
Unique views 28
Unique downloads 24

Share

Cite as