Preprint Open Access

Single Letter Patterned Representations and Fibonacci Sequence Values

Inder J. Taneja

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Palindromic Patterns, Number Patterns, Single Letter Representations, Fibonacci sequence</subfield>
  <controlfield tag="005">20200120163840.0</controlfield>
  <controlfield tag="001">2558522</controlfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">262642</subfield>
    <subfield code="z">md5:9f277a89166d545275ba412dcf5609a8</subfield>
    <subfield code="u"></subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-02-06</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o"></subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Formarly, Professor of Mathematics, Federal University of Santa Catarina, Florianópolis, SC, Brazil</subfield>
    <subfield code="a">Inder J. Taneja</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Single Letter Patterned Representations and Fibonacci Sequence Values</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u"></subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;This work brings representations of&lt;strong&gt; palindromic&lt;/strong&gt;&amp;nbsp;and &lt;strong&gt;number patterns&lt;/strong&gt;&amp;nbsp;in terms of &lt;strong&gt;single letter &amp;quot;a&amp;quot;&lt;/strong&gt;. Some examples of prime patterns are also considered. Different classifications of palindromic patterns are considered, such as palindromic decomposition, double symmetric patterns, number patterns decompositions, etc. Number patterns with powers are also studied. Some extensions to &lt;strong&gt;Pythagorean triples&lt;/strong&gt;&amp;nbsp;are also given. Study towards &lt;strong&gt;Fibonacci sequence&lt;/strong&gt;&amp;nbsp;and its extensions are also made. This work is revised and enlarged version of author&amp;#39;s previous work done in 2015.&lt;/p&gt;</subfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.2558521</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.2558522</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">preprint</subfield>
All versions This version
Views 918918
Downloads 280280
Data volume 73.5 MB73.5 MB
Unique views 821821
Unique downloads 248248


Cite as