Project deliverable Open Access

Orchestrator design, service programming and machine learning models ((D4.1)

Khalili, Hazmeh; Papageorgiou; Siddiqui, Shuaib; Barrera, Julio; Huici, Felipe; Yasukata, Kenichi; Ciulli, Nicola; Cruschelli, Paolo; Kraja, Elian; Francesconi, Elio; Preto, Ricardo; Albanese, Antonino; Costa, Viscardo; Colman, Carlos; Baldoni, Gabrielle; Sechkova, Teodora; Paolino, Michele


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Khalili, Hazmeh</dc:creator>
  <dc:creator>Papageorgiou</dc:creator>
  <dc:creator>Siddiqui, Shuaib</dc:creator>
  <dc:creator>Barrera, Julio</dc:creator>
  <dc:creator>Huici, Felipe</dc:creator>
  <dc:creator>Yasukata, Kenichi</dc:creator>
  <dc:creator>Ciulli, Nicola</dc:creator>
  <dc:creator>Cruschelli, Paolo</dc:creator>
  <dc:creator>Kraja, Elian</dc:creator>
  <dc:creator>Francesconi, Elio</dc:creator>
  <dc:creator>Preto, Ricardo</dc:creator>
  <dc:creator>Albanese, Antonino</dc:creator>
  <dc:creator>Costa, Viscardo</dc:creator>
  <dc:creator>Colman, Carlos</dc:creator>
  <dc:creator>Baldoni, Gabrielle</dc:creator>
  <dc:creator>Sechkova, Teodora</dc:creator>
  <dc:creator>Paolino, Michele</dc:creator>
  <dc:date>2019-02-06</dc:date>
  <dc:description>This document describes the components of the 5GCity architecture related to orchestration, service programming, and machine learning as main outcomes of tasks T4.1, T4.2, and T4.3. The overall 5GCity architecture is described in Deliverable D2.2 [1] and based on pilot requirements introduced in Deliverable D2.1 [2]. Our orchestration, service programming, and machine learning components are vital for addressing challenges of state-of-the-art 5G orchestrators and platforms, such as multi-tenancy support and efficient configuration and resource placement.</dc:description>
  <dc:identifier>https://zenodo.org/record/2558306</dc:identifier>
  <dc:identifier>10.5281/zenodo.2558306</dc:identifier>
  <dc:identifier>oai:zenodo.org:2558306</dc:identifier>
  <dc:language>eng</dc:language>
  <dc:relation>info:eu-repo/grantAgreement/EC/H2020/761508/</dc:relation>
  <dc:relation>doi:10.5281/zenodo.2558305</dc:relation>
  <dc:relation>url:https://zenodo.org/communities/5gcity</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>http://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>5g</dc:subject>
  <dc:subject>Orchestrator</dc:subject>
  <dc:title>Orchestrator design, service programming and machine learning models ((D4.1)</dc:title>
  <dc:type>info:eu-repo/semantics/report</dc:type>
  <dc:type>publication-deliverable</dc:type>
</oai_dc:dc>
125
96
views
downloads
All versions This version
Views 125126
Downloads 9696
Data volume 398.1 MB398.1 MB
Unique views 122123
Unique downloads 8787

Share

Cite as