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Abstract.  The paper deals with a new analytical model of the classical load of a heat 
supply system. The proposed model offers better quality approximation of actual 
consumption curves. The model includes two components - a power function (the 
Sochinsky-Rossander model) and a modified logistics function for which their integrals are, 
in essence, traced. Determination of TM time allows to calculate the load factor and the 
annual energy consumption. 
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Introduction 
Lately the interest in modeling the load curve has increased, being determined by 

the fact that the integration of a significant share of variable (photovoltaic and wind) 
renewable energy sources into the energy systems raises the issue of flexibility of 
traditional systems on both demand and supply/production side [1]. 

In this context, knowing the energy consumption and production regime, the 
possibilities for their modification, as well as their analytical description becomes more and 
more important [2 - 3]. 

For heat supply systems (HSS) a new analytical model for the load duration curve 
was proposed. Hence, new calculation formulae for the amount of energy, full load duration 
and load factor are needed. 
The most complete information regarding the consumption / production regime of a node 
could be provided by the recorded load curve; where the area under the curve represents 
the amount of energy consumed / produced. 
Usually, it is sufficient that a load curve is characterized only by those three values – the 
peak qM, average qmed and minimum qmin  load. In most practical applications, produced both 
at energy systems‖ planning/design and at operational phase, instead of the average value 
qmed, another indicator of the consumption or production regime is widely used – full load 
duration TM. 

The TM indicator is defined as a time period (duration) for which the amount of 
energy consumed during a time period (day, month, year), determined with the equation – 
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M MQ q T  , is equal to the real amount consumed during that period of time- Q q( )dt  . 

Both variables - qmed  and  TM  equally allow to evaluate the annual energy consumption as a 
product of med anq    and 

M Mq T , while the usefulness of TM  is net superior to qmed. 
This is due to the fact that the duration TM being divided by the number of hours in a year 
(constant value), τan= 8760 h, leads to another indicator – load factor FS, M an M*FS T / T   , 
which serves as a parameter that characterizes the consumption regime of an entire 
category of consumers [4]. 

So, the parameter TM is of great importance for calculating and optimization of 
energy systems. 

Herewith, the emphasis is put on obtaining the calculation formula for the TM for load 
duration curve (LDC) for a new analytical model of this curve. 

 

1. Description of the new analitical model of the Ldc 
Generally, a heat or electrical load duration curve (LDC) indicates in a synthetic mode 

how the load varies over time. The heat load duration curve of a system that supplies heat 
to end-users within an urban area (to the whole range of end-users: from residential 
consumers to industry) is going in a downwards direction, with small slope elements (SmS - 
CP) on concave and/or convex curves, as well as steep slope elements (StS - CA). 
In order to obtain an LDC as close as possible to the real one, a new analytical model was 
proposed which allows creating curves that comprise all the characteristic elements of an 
LDC. This six-parameter model includes two functions - a capacity function and a modified 
sigmoidal function. 

The first equation is well known as Sochinsky-Rossander equation [5-12], while the 
second is a sigmoid described by a classical logistic function [13-14], slightly modified in 
order to adapt it to the specificity of the problem. 
The q( )  shall be the function that describes the variation of heat load q over the time τ, τ = 
0…8760 h/yr. Based on all mentioned above, the load duration curve can be described by – 

 

   SR Lq( ) q q ( )     , (1) 

 

where SRq ( )  represents the Sochinsky-Rossander (SR) load function, 
 

         min
SR M

M an

q
q ( )  q 1 -  (1- ) ( )  

q

 
    

 
   (2a)    

SR * M min* *q ( )  q 1-  (1- q )       
 

(2b) 

 

and Lq ( )  - is a modified logistic function,  
 

         
0

L M m  ( )

an

k
q ( )  q (1 )

1 e
  

 
    

  
   (3a)    

* 0*
L * M *m  ( )

k
q ( )  q (1 )

1 e
   

 
        

(3b) 

 

Taking into consideration the formulae (1)-(3) the proposed model for LDC q( )  takes the 
form: 
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in absolute units in relative units (normalized) 

     
0

min
M m  ( )

M an an

q k
q( )  q 1 (1 ) ( )  (1 )

q 1 e



  

  
         

   

  (4a) 
* 0*

* M min* * *m  ( )

k
 q( ) q 1 (1 q )    (1 )   

1 e



   

 
             

(4b) 

The graph of the function q(τ) described above is presented in the figure 1. 

In the equations (1)-(4) the variables are as follows: 
 

M medq ,  q  and minq  - the maximum (calculated), average and minimum load value in the 
respective year; 

 med*q  and min*q  - relative values of the average load and respectively minimum load, 
divided to the maximum value - med* med Mq q / q ,  min* min Mq q / q ; 

 and *  - the actual absolute and relative time period, * an/      

β 
- power function exponent or non-uniformity coefficient of the load 

duration curve, 
med* min* med* = (q q ) / (1 q )      or  

M an min* an M =  (T T q ) / (T T )    ;   

k - the maximum value of the logistic component of the LDC, k ≈ 0.1-0.5; 

m - the slope of the curve q(τ) in the point 0    ; 

0  and 0*  
- the duration of the heating season, the absolute and relative value, 

0* 0 an/    ; 

an  - calendar year duration,  an = 8760 h; 

MT  and M*T  - full load duration, its absolute and relative value, M* M anT T /  . 

0 ≤ * 0* min*( , ,q )  ≤ 1;      0,01 ≤ β≤ 10;    30 ≤ m ≤ 300. 
 

 

 

The task is to find the equation for calculating the surface area under the load 
duration curve q( )  for the proposed model (4), which represents the volume of energy 

consumed during the period of time an , on one hand, and the full load duration, as well as 
the load factor related to this curve, on the other hand. 

Figure 1. Load duration curve and the 0  time moment of the slope. 
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2. Calculation of the area under the ldc 
The area under the load duration curve can be calculated by integration of the 

function (4) that describes this curve. Since the equation (4) has two components, one could 
find two areas: SRS - for the power-function SRq ( )  and respectively LS  for the logistic  

function Lq ( ) , and in the end the area under LDC -  CC SR LS S S   (figure 2). 

Case 1: Without splitting the curve in intervals 

The area under the Sochinsky-Rossander curve 

For the area under the SR curve (2b) one can write (figure 2) - 
1 1

SR SR * * M min* * *

0 0

S  q ( ) d q 1 (1 q ) d             

or SR M M SR*S q T   ,  

where M SR*T   is the full load duration for the SR curve, in relative units –  

 
1

M SR* min* * *

0

T  = 1 (1 q )  d


      . (5) 

Applying to (5) the integration rule for power-function - 
a 1

a x
x dx=  + c

a 1



 , for the duration

M SR*T   one can obtain: 
1

1

*
M SR* * min*

0

T (1 q )
1





 
     

 

 or, 
 

 

Figure 2. Areas under the SR curve, logistic curve and load duration curve. 
 

finally, min*
M SR*

q
 T   

1     






.  (6) 

The duration M SRT  , in hours per year - M SR M SR* anT = T      or 
 

min*
M SR an

q
 T =   

1     



 


. 

 

So, the calculation formula for the area SRS  is: 

 
min*

SR M M SR* M

q
S q T  q

1     



   


, (7) 
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and for the annual energy consumption is –  
 

min*
an SR M M SR M an

q
Q  q T  q

1     
 


    


. 

 

The area under the logistic curve 

The logistic function (3b) can be presented as the algebraic sum of two components -  

L * L1 * L2 *q ( ) q ( ) q ( )     , where 
* 0*

L1 * M m  ( )

k
q ( )  q

1 e
   

  


       

and      
* 0*

*
L2 * M m  ( )

k
q ( )  q

1 e
   

 
  


 . 

The area LS  under the logistic curve is calculated by integrating the function 
L *q ( ) : 

1

L L * * M M L*

0

S  q ( ) d  q T      , 

and subsequently, the full load duration for the logistic curve M L*T   is – 

 

 
* 0*

1

M L* * * *m  ( )

0

k
T ( ) = (1 )  d

1 e
    

 
     

 . (8) 
 

By dividing the function L *q ( )  in those two components L1 *q ( )  and L2 *q ( ) , one shall 

operate with two areas - L1S  and L2S , so L L1 L2S S  S  , 
 

where 
1

L1 L1 * * M M L1*

0

S  q ( ) d q T     
 

(9) 
 

and     
1

L2 L2 * * M M L2*

0

S  q ( ) d q T      .  (10) 
 

For the indicator M L*T   similarly, one shall operate with two components - M L1*T   and M L2*T   
for which it yields: 

 
* 0*

1

M L1* * *m  ( )

0

1
T ( ) = k d  

1 e
    

 


 and (11) 
 

 
* 0*

1

*
M L1* * *m  ( )

0

T ( ) = k d  
1 e

    


 


. (12) 

 

Obviously,  M L* M L1* M L2*T  T T    . (13) 
So, in order to calculate the area under the logistic curve it is necessary to solve the 
integrals (11) and (12). 
As a result of integration of the function (11) for the duration M L1*T   it is obtain (see Annex 
1): 

0m (1 )

M L1*

k
T ln 1 e

m

 

     or 

  M L1* 0*  T  k (1- )       , (14) 
and in this case, according to formula (9) one can calculate also the area 
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 0*L1 M kq )S (1-    (15) 

As for the integral (12) – solving it raises problems; for this reason to determine L2S  we 

will move from integration to the planimetric curve analysis L1 *q ( )  and L2 *q ( )  (fig.3). 
 

 
Figure 3. Load duration curve q(τ) and functions SRq ( )  and Lq ( )  

 

The analysis of these curves allows establishing the existence of the next relationship: 

 
2

L2 L 0*1 MS S qS 0.5k (1 )      , (16) 
 

 M

2

0*k (1-S q 0. )5     . (17) 
 

Once the L2S  is known, we can also find the duration M L2*T   - 

 
2

0M *L2* k (1- T 0. )5      (18) 
 

So, for the area LS  a of the logistic curve, finally, one can get: 

 
2

0*L L1 L2 MS S  S q 0.5S k (1- )       , (19) 
 

and considering the equation L M M L*S   q T    for the duration M L*T   it is obtained:  

 
2

0M *L* k (1- T 0.5 )      (20) 
 

or in hours/year -  2

0*M L an T 0.5k (1- )       . (21) 
 

The annual energy consumption, which corresponds to the logistic curve – 

an L M M L M an

2

0*k (1- )  Q q T q 0.5       . 

Parameters of the load duration curve 

For the load duration curve, finally, it yields the following equations for calculating the main 
parameters: 
 

• the area under the  LDC (fig. 2) -  CC SR LS S S  ,  
and taking into consideration the equations (7) and (19) it yields: 

min*
CC an CC

2

0*M

q
S Q  q 0.5

1 
k (1-

   
)

 
  

 
     

 
 

• full load duration, in relative units - 
M CC* M SR* M L* T T T     

and taking into consideration the equation (6) and (20) it yields  -   
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2

0*
min*

M CC*

q
 T  0.5

1  
k (1- )

 
 

  
 


 


 


, (22) 

or in hours/year -    

 
m 2in*

M CC M CC a a* n n 0*

q
  T T 0.5  

1     
k (1- )   

 
     


 





  . (23) 

The load factor of the LDC:   CC M CC M CCn *aFS T / T   . 

The annual energy consumption, which corresponds to LDC, described through the equation 
(4), can be easily determined with the formula: 

an CC M M CCQ q T   ,  

where Mq  represents the peak annual load, while M CCT   is the full load duration, calculated 
with the formula (23). 

Case 2: By dividing the load duration curve in intervals 

Sochinsky-Rossander curve 
In case of division of the time axis, * , * = 0…1, in intervals, be it three:  0- 1 , 1 - 2 and 

2 -1, for the area 
1 2

S 
under the SR curve in the interval 1 2   , it yields –  

 

22

1 2

1 1

1

*
SR, SR * * M * min*S  q ( ) d   q (1 q )

1

 

 

 

 
         

 
 . (24) 

If we present this area as the product - 

1 2 1 2M M,S  q T     , for the equivalent duration 
1 2M,T  

 it yields –  

 
1 2

1 1

2 1
M,SR, an 2 1 min*T ( ) (1 q )

1

 

 

   
        

  
. (25) 

Obviously, for the considered case the following relation is valid –   

1 1 2 2

min*
M SR M,0 M, M, 1 an

q
 T T T T   

1     
     


     


. 

Logistic curve 

Through the interval τ = 0… 0  the logistic curve is unfolding on its inferior asymptote, so 
that for this case it yields:  

0 0L,0 M,L,0S T 0   . 

For any interval 1 - 2  that is after the point 0  it yields:  for the duration 
1 2M,L,T   ,

1 2M,L *, 10 2  T 0.5 k ((1- ) )         and for the area 
1 2L,S   - 

2

1 2 1 2

1

L, L M M,S  q ( ) d q T



   



     . 

The resulted load duration curve 

Finally, for the LDC we have: 

•   for any time interval 1 - 2  before the point in time 0 ,  the duration M,CCT
   -   

1 2

1 1

2 1
M,CC M,SR, 2 1 min*T T ( ) (1 q )

1

 

 

  
       

 
 

            and the area CCS :      
1 2CC SR M M,SR,S S  q T     ; 
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•   for any time interval after the point 0 , 
1 2 1 2M,CC M,SR, M,L,T T  T      

                      or   1 1

2 1
M,CC 2 1 min* 0 2* 1  T ( ) (1 q (1- )) 0.5 k ( )  

1

   
            






 

            and            
1 2CC SR L M M,CC,S S S q T      . 

3. Numerical example 
For the diversity of curves shown in fig. 4, with their known parameters (table 1), the 

full load durations TM-CC  were calculated for those two cases. 

Case 1: Without dividing the LDC in time intervals 

For the curves a) - h)  from figure 4 there were calculated the full load durations TM-SR, TM-L 
and TM-CC. Below, for a load duration curve – the curve c), the calculation of the three 
durations is exemplified: 

TM-CC  = TM-SR – TM-L  = 3129 – 631= 2498 h/an, 
where: 

M SR an min*( ) (T q / 1)      = 8760·(0,4+0,1)/(0,4+1) = 8760·0,357 = 3129 h/yr 

and        2

an 0*M L 0.5 k (1 )T       = 8760·0,5·0.4·(1-0,4)2 = 8760·0,08268 = 631 h/yr. 

The results of these calculations are presented in table 1. 

Case 3: By dividing the LDC in two time intervals 

While making the calculations aiming at optimization and analysis of options to 
meet the load by many energy sources, often the LDC is divided horizontally and/or 
vertically. 

The results of calculations made for the case of division of the annual duration in 
two time intervals are presented in table 2 and 3: the first covers the heating season  
(the interval 0 - 0 ), and the second – the other part of the year (interval 0 - an ). 

 

Table 1. The descriptive parameters of load duration curves and their  
full load durations TM-CC 

Figure qmin* β k m τ0, TM-SR TM-L TM-CC 

- r.u. r.u. r.u. r.u. h/yr h/yr h/yr h/yr 

a 0,1 0,08 0,1 30 2628 1460 215 1245 

b 0,1 0,2 0,22 100 3066 2190 407 1783 

c 0,1 0,4 0,4 300 3504 3129 631 2498 

d 0,1 0,5 0,45 300 4380 3504 493 3011 

e 0,1 0,6 0,5 300 5256 3833 350 3483 

f 0,35 0,7 0,4 50 6132 5411 158 5253 

g 0,35 1,4 0,8 50 7008 6388 140 6248 

h 0,35 5,0 3,0 50 7884 7811 131 7680 
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Figure 4. A range of load duration curves, which characterize a large diversity of possible 
real situations. 
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Table 2. Full load durations TM-SR, TM-L and TM-CC determined for those two intervals, in r.u. 

Fig. 4 τ0* 
Interval  0 - τo Interval  τo - τan Total annually 

TM-SR TM-L TM-CC TM-SR TM-L TM-CC TM-SR TM-L TM-CC 

a 0,3 0,073 0 0,073 0,094 0,025 0,069 0,167 0,025 0,142 

b 
0,3
5 

0,137 0 0,137 0,113 0,046 0,066 0,250 0,046 0,204 

c 0,4 0,222 0 0,222 0,135 0,072 0,063 0,357 0,072 0,285 

d 0,5 0,288 0 0,288 0,112 0,056 0,056 0,400 0,056 0,344 

e 0,6 0,352 0 0,352 0,086 0,040 0,046 0,438 0,040 0,398 

f 0,7 0,491 0 0,491 0,126 0,018 0,108 0,618 0,018 0,600 

g 0,8 0,641 0 0,641 0,088 0,016 0,072 0,729 0,016 0,713 

h 0,9 0,842 0 0,842 0,049 0,015 0,034 0,892 0,015 0,877 

 

Table 3. Full load durations TM-SR, TM-L and TM-CC determined for those two intervals, in h/yr 

Figure 4 τ0* 
Interval 0 - τo Interval τo - τan Total annually 

TM-SR TM-L TM-CC TM-SR TM-L TM-CC TM-SR TM-L TM-CC 

a 2628 639 0 639 821 215 606 1460 215 1245 

b 3066 1202 0 1202 988 407 581 2190 407 1783 

c 3504 1943 0 1943 1186 631 555 3129 631 2498 

d 4380 2522 0 2522 982 493 489 3504 493 3011 

e 5256 3080 0 3080 753 350 403 3833 350 3483 

f 6132 4305 0 4305 1105 158 947 5411 158 5253 

g 7008 5619 0 5619 768 140 628 6388 140 6248 

h 7884 7380 0 7380 431 131 300 7811 131 7680 

Conclusions 
1. The load curve of a consumption or production node lays at the basis for calculations, 

analysis and optimizations of operating regimes of energy systems – both, at the 
technical design/planning phase and the operating one. 

2. The full load duration for a load duration curve is a key parameter of the energy 
consumption regime; it allows finding also other important parameters for optimal 
scaling of the elements of energy systems. 

3. The problem of determining the full load duration for a new analytical model of the 
heat load duration curve of a heating system is solved: with and without dividing the 
load duration curve in time intervals. 
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Annex 

Integration of the modified logistic function 
 

The initial logistic function will be presented as the sum of two functions: 

 
    

 
  

 0
1 2m ( x x )

k (1 x )
x f ( x f ) f ( x ) 

1 e
, (A1) 

where      
 

 0( x x1 m )
f

1
x k

1 e  
(A2) 

and          
 

 0( x x2 m )
f

x
x k

1 e
. (A3) 

First we shall find the primitive  1F x  of the function  1f x  -  

 
    

 
  0

1 1

1 m (x )1 x0 0

1
x f ( x )dx  k  

1 e
F dx  (A4) 

For this purpose we shall apply the substitution method: 

let 0m (x x )
u e

  
 , then 

0lnu m x  + mx   , du
mdx

u
  , whence du

dx
mu

  . 

We revert back to (A4) by changing the variable – 

 


    
  1

1 du k 1 du
F (u) k   

1 u mu m 1 u u  
(A5) 

or 

 
   

            
  1

k 1 u u du k 1 u du u du
F (u)  

m 1 u u m 1 u u 1 u u  
(A6) 

Taking into consideration the classical equations – 

 
du

ln u      c
u

 and  

du

ln 1 u   + c
1 u

, 

the formula (A6) transforms into – 

      1

k
F (u) ln u ln 1 u  

m
  or 

     1

1

k 1 u k
F (u)  ln      ln 1 u

m u m
, 

and, finally, by replacing the u it yields – 

 
    

      
 

0 0

1

m ( x x ) m ( 1 x )

1

0

k k
F ( x )  ln  1 e ln  1 e

m m

. (A7) 

Based on the fact that the constants  m  and  x0  are positive measures with intervals of 
values -   0 ≤ x0 ≤ 1  and   30 ≤ m ≤ 300, and the component 0m ( 1 x )

e
   has two big values, 

much higher than 1, it allows us to transform the equation (A7) – 

 
   

       0 0m ( 1 x ) m ( 1 x )

1 0

k k k
F  ln  1 e ln  e m (1 x )

m m m  
(A8) 

or, finally -    
1 0

 F k ( 1 x ) . (A9) 

For the integral of the function  2f x it yields – 

    2

2 0
  F 0.5k (1 x ) ,  (A10) 

and for the integral of the initial function  f x  it yields - 

 
2

L 1 1 0
 F  = F F 0.5k (1 x )      . (A11 
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