Dataset Open Access

UNICITY: A depth maps database for people detection in security airlocks

Joël Dumoulin; Olivier Canévet; Michael Villamizar; Hugo Nunes; Omar Abou Khaled; Elena Mugellini; Fabrice Moscheni; Jean-Marc Odobez


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">unicity dataset</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">depth images</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">computer vision</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">machine learning</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">people detection</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">video surveillance</subfield>
  </datafield>
  <controlfield tag="005">20190410032428.0</controlfield>
  <controlfield tag="001">2556679</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">27-30 November 2018</subfield>
    <subfield code="g">AVSS</subfield>
    <subfield code="a">International Conference on Advanced Video and Signal-based Surveillance</subfield>
    <subfield code="c">Auckland, New Zealand</subfield>
    <subfield code="n">Workshop</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Idiap Reserach Institute</subfield>
    <subfield code="a">Olivier Canévet</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Idiap Reserach Institute</subfield>
    <subfield code="a">Michael Villamizar</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Fastcom Technology SA</subfield>
    <subfield code="a">Hugo Nunes</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">HEIA-FR</subfield>
    <subfield code="a">Omar Abou Khaled</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">HEIA-FR</subfield>
    <subfield code="a">Elena Mugellini</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Fastcom Technology SA</subfield>
    <subfield code="a">Fabrice Moscheni</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Idiap Reserach Institute</subfield>
    <subfield code="a">Jean-Marc Odobez</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">55162</subfield>
    <subfield code="z">md5:87c46855cfec64d6a0bc5437c1f7705e</subfield>
    <subfield code="u">https://zenodo.org/record/2556679/files/code.zip</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">13550822603</subfield>
    <subfield code="z">md5:044ca71034bb35d6d25152c1f254638a</subfield>
    <subfield code="u">https://zenodo.org/record/2556679/files/data.zip</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">2806794</subfield>
    <subfield code="z">md5:934028aad23a39387e0a75a6a9ce92d9</subfield>
    <subfield code="u">https://zenodo.org/record/2556679/files/imgs.zip</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">10525</subfield>
    <subfield code="z">md5:9230af16464e6f1d0a81187cf62b05f9</subfield>
    <subfield code="u">https://zenodo.org/record/2556679/files/README.md</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">35</subfield>
    <subfield code="z">md5:5ff4981dcc6a41b83f21241e67ed1ade</subfield>
    <subfield code="u">https://zenodo.org/record/2556679/files/requirements.txt</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">https://avss2018.org/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-02-04</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire_data</subfield>
    <subfield code="o">oai:zenodo.org:2556679</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">HEIA-FR</subfield>
    <subfield code="a">Joël Dumoulin</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">UNICITY: A depth maps database for people detection in security airlocks</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;&lt;strong&gt;UNICITY: A depth maps database for people detection in security airlocks.&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;UNICITY consists of 58k images collected from 65 recorded sequences with one or two people performing different behaviors including attacks and trickeries, like for instance tailgating (when a person walks very close to another to get into a restricted area). It also provides full annotation of people such as the location of head and shoulders. As as result, UNICITY is perfectly suited for training and adapting machine learning algorithms for video surveillance applications.&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Main Features:&lt;/strong&gt;&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;UNICITY consists of 58k images using two depth sensors.&lt;/li&gt;
	&lt;li&gt;65 recorded sequences with one or two people performing different behaviors such as attacks and tailgating.&lt;/li&gt;
	&lt;li&gt;UNICITY also provides code for evaluation and visualization, and full annotation of people such as the location of head and shoulders.&lt;/li&gt;
	&lt;li&gt;This new dataset is perfectly suited for training and adapting machine learning algorithms for video surveillance applications.&lt;/li&gt;
&lt;/ul&gt;

&lt;p&gt;&lt;strong&gt;Citation&lt;/strong&gt;:&lt;/p&gt;

&lt;p&gt;Please cite the following paper if you use the UNICITY dataset in your work (papers, articles, reports, books, software, etc):&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;UNICITY: A depth maps database for people detection in security airlocks. J. Dumoulin, O. Canevet, M. Villamizar, H. Nunes, O.A. Khaled, E. Mugellini, F. Moscheni, and J.M Odobez. International Conference on Advanced Video and Signal-based Surveillance Workshop (AVSSW). November 2018.&lt;/li&gt;
&lt;/ul&gt;

&lt;p&gt;&lt;strong&gt;Contributors:&lt;/strong&gt;&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;Jo&amp;euml;l Dumoulin, HumanTech Institute, HES-SO Fribourg, Switzerland.&lt;/li&gt;
	&lt;li&gt;Olivier Can&amp;eacute;vet, Idiap Research Institute, Martigny, Switzerland.&lt;/li&gt;
	&lt;li&gt;Michael Villamizar, Idiap Research Institute, Martigny, Switzerland.&lt;/li&gt;
	&lt;li&gt;Hugo Nunes, Fastcom Technology SA, Lausanne, Switzerland.&lt;/li&gt;
	&lt;li&gt;Omar Abou Khaled, HumanTech Institute, HES-SO Fribourg, Switzerland.&lt;/li&gt;
	&lt;li&gt;Elena Mugellini, HumanTech Institute, HES-SO Fribourg, Switzerland.&lt;/li&gt;
	&lt;li&gt;Fabrice Moscheni, Fastcom Technology SA, Lausanne, Switzerland.&lt;/li&gt;
	&lt;li&gt;Jean-Marc Odobez, Idiap Research Institute, Martigny, Switzerland.&lt;/li&gt;
&lt;/ul&gt;

&lt;p&gt;&lt;strong&gt;Acknowledgement:&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;The work was supported by Innosuisse, the Swiss innovation agency, through the UNICITY (3D scene understanding through machine learning to secure entrance zones) project.&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Links:&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;Next links contain additional information about the dataset:&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;Innosuisse UNICITY project: &lt;a href="https://www.idiap.ch/en/scientific-research/projects/UNICITY"&gt;[link]&lt;/a&gt;&lt;/li&gt;
	&lt;li&gt;Paper describing the dataset: &lt;a href="http://publications.idiap.ch/index.php/publications/show/3939"&gt;[link]&lt;/a&gt;&lt;/li&gt;
	&lt;li&gt;Video presenting the dataset: &lt;a href="https://www.youtube.com/watch?time_continue=2&amp;amp;v=pGrnI12OhmA"&gt;[link]&lt;/a&gt;&lt;/li&gt;
	&lt;li&gt;Paper using the dataset for counting people and detecting intrusions: &lt;a href="http://michael-villamizar.com/avss18.html"&gt;[link]&lt;/a&gt;
	&lt;ul&gt;
		&lt;li&gt;WatchNet: Efficient and Depth-based Network for People Detection in Video Surveillance Systems.&lt;br&gt;
		M. Villamizar, A. Martinez-Gonzalez, O. Canevet and J-M. Odobez.&lt;br&gt;
		International Conference on Advanced Video and Signal-based Surveillance (AVSS) - 2018.&lt;/li&gt;
	&lt;/ul&gt;
	&lt;/li&gt;
&lt;/ul&gt;

&lt;p&gt;&lt;strong&gt;Contact&lt;/strong&gt;:&lt;/p&gt;

&lt;p&gt;For any questions, please contact:&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;Michael Villamizar, Idiap Research Institute, Martigny -Switzerland&lt;/li&gt;
&lt;/ul&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.2556678</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.2556679</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">dataset</subfield>
  </datafield>
</record>
547
471
views
downloads
All versions This version
Views 547551
Downloads 471471
Data volume 5.0 TB5.0 TB
Unique views 499502
Unique downloads 121121

Share

Cite as