Conference paper Open Access
Doekemeijer, Bart M;
Boersma, Sjoerd;
Pao, Lucy Y;
van Wingerden, Jan-Willem
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.2556513</identifier> <creators> <creator> <creatorName>Doekemeijer, Bart M</creatorName> <givenName>Bart M</givenName> <familyName>Doekemeijer</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-2757-1615</nameIdentifier> <affiliation>Delft University of Technology</affiliation> </creator> <creator> <creatorName>Boersma, Sjoerd</creatorName> <givenName>Sjoerd</givenName> <familyName>Boersma</familyName> <affiliation>Delft University of Technology</affiliation> </creator> <creator> <creatorName>Pao, Lucy Y</creatorName> <givenName>Lucy Y</givenName> <familyName>Pao</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-9450-8902</nameIdentifier> <affiliation>University of Colorado Boulder</affiliation> </creator> <creator> <creatorName>van Wingerden, Jan-Willem</creatorName> <givenName>Jan-Willem</givenName> <familyName>van Wingerden</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-3061-7442</nameIdentifier> <affiliation>Delft University of Technology</affiliation> </creator> </creators> <titles> <title>Joint state-parameter estimation for a control-oriented LES wind farm model</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2018</publicationYear> <subjects> <subject>wind farm control</subject> <subject>state estimation</subject> <subject>closed-loop</subject> <subject>kalman filtering</subject> </subjects> <dates> <date dateType="Issued">2018-08-03</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="ConferencePaper"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/2556513</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.2556512</relatedIdentifier> </relatedIdentifiers> <version>final</version> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by-nc-sa/3.0/legalcode">Creative Commons Attribution Non Commercial Share Alike 3.0 Unported</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Wind farm control research typically relies on computationally inexpensive, surrogate models for real-time optimization. However, due to the large time delays involved, changing atmospheric conditions and tough-to-model flow and turbine dynamics, these surrogate models need constant calibration. In this paper, a novel real-time (joint state-parameter) estimation solution for a medium-fidelity dynamical wind farm model is presented. In this work, we demonstrate the estimation of the freestream wind speed, local turbulence, and local wind field in a two-turbine wind farm using exclusively turbine power measurements. The estimator employs an Ensemble Kalman filter with a low computational cost of approximately 1.0 s per timestep on a dual-core notebook CPU. This work presents an essential building block for real-time wind farm control using computationally efficient dynamical wind farm models.</p></description> </descriptions> <fundingReferences> <fundingReference> <funderName>European Commission</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/727477/">727477</awardNumber> <awardTitle>Closed Loop Wind Farm Control</awardTitle> </fundingReference> </fundingReferences> </resource>
All versions | This version | |
---|---|---|
Views | 102 | 102 |
Downloads | 104 | 104 |
Data volume | 116.0 MB | 116.0 MB |
Unique views | 95 | 95 |
Unique downloads | 96 | 96 |