Conference paper Open Access

Joint state-parameter estimation for a control-oriented LES wind farm model

Doekemeijer, Bart M; Boersma, Sjoerd; Pao, Lucy Y; van Wingerden, Jan-Willem


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.2556513</identifier>
  <creators>
    <creator>
      <creatorName>Doekemeijer, Bart M</creatorName>
      <givenName>Bart M</givenName>
      <familyName>Doekemeijer</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-2757-1615</nameIdentifier>
      <affiliation>Delft University of Technology</affiliation>
    </creator>
    <creator>
      <creatorName>Boersma, Sjoerd</creatorName>
      <givenName>Sjoerd</givenName>
      <familyName>Boersma</familyName>
      <affiliation>Delft University of Technology</affiliation>
    </creator>
    <creator>
      <creatorName>Pao, Lucy Y</creatorName>
      <givenName>Lucy Y</givenName>
      <familyName>Pao</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-9450-8902</nameIdentifier>
      <affiliation>University of Colorado Boulder</affiliation>
    </creator>
    <creator>
      <creatorName>van Wingerden, Jan-Willem</creatorName>
      <givenName>Jan-Willem</givenName>
      <familyName>van Wingerden</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-3061-7442</nameIdentifier>
      <affiliation>Delft University of Technology</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Joint state-parameter estimation for a control-oriented LES wind farm model</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <subjects>
    <subject>wind farm control</subject>
    <subject>state estimation</subject>
    <subject>closed-loop</subject>
    <subject>kalman filtering</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2018-08-03</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="ConferencePaper"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/2556513</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.2556512</relatedIdentifier>
  </relatedIdentifiers>
  <version>final</version>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by-nc-sa/3.0/legalcode">Creative Commons Attribution Non Commercial Share Alike 3.0 Unported</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Wind farm control research typically relies on computationally inexpensive, surrogate models for real-time optimization. However, due to the large time delays involved, changing atmospheric conditions and tough-to-model flow and turbine dynamics, these surrogate models need constant calibration. In this paper, a novel real-time (joint state-parameter) estimation solution for a medium-fidelity dynamical wind farm model is presented. In this work, we demonstrate the estimation of the freestream wind speed, local turbulence, and local wind field in a two-turbine wind farm using exclusively turbine power measurements. The estimator employs an Ensemble Kalman filter with a low computational cost of approximately 1.0 s per timestep on a dual-core notebook CPU. This work presents an essential building block for real-time wind farm control using computationally efficient dynamical wind farm models.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/727477/">727477</awardNumber>
      <awardTitle>Closed Loop Wind Farm Control</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
102
104
views
downloads
All versions This version
Views 102102
Downloads 104104
Data volume 116.0 MB116.0 MB
Unique views 9595
Unique downloads 9696

Share

Cite as