


surface temperature is projected to rise throughout the 21st century un-6

der all assessed emission scenarios [2]. Such global warming directly affects7

precipitations because the water holding capacity of air increases by about8

7% per degree C [3] that leads to more water vapor being retained in the9

atmosphere. Storms, thunderstorms, extra-tropical rains, snow, are there-10

fore supplied with more moisture and produce more extreme precipitation11

events. Such events are observed to be widely occurring, even where total12

precipitation is decreasing, and, in combination with rapid snow melting,13

they increases the risk of flooding.14

Given that floods are usually weather-induced, meteorological services15

provide local authorities with a periodical weather and flood hazard forecast16

that contains an encoded alert level on a predetermined set of geographical17

areas. The alert level is used to trigger actions according to a predefined18

operational procedure, which can encompass monitoring activities aimed at19

assessing in-field circumstances or at rapidly detecting the occurrence of the20

flood.21

When a flood strikes, authorities and first responders can rely on satellite-22

based mapping (e.g., through Copernicus EMS [4]) in order to understand23

the extend and the impact of floods both in the response and in the post24

disaster phase. One of the most significant transformations in cartography25

over the last years has been the radical shift from static maps to live and26

dynamic maps. The growing volume of real-time geo-referenced data and27

the availability of multiple data sources are largely responsible for this shift28

towards real-time mapping. The data is generated all over the world both29

from physical sensors and from humans collecting the data. Despite highly30

specialized and capable emergency management systems, ordinary citizens31

are usually the first on the scene in an emergency or disaster, and remain32

long after official services have ceased. Citizens often play vital roles in33

helping the emergency response and the recovery of the affected individuals,34

and can provide valuable assistance to official agencies. People equipped with35

mobile devices act as a mass of multimedia sensors. This evolving network36

of human sensors generates a significant amount of real-time data, especially37

via social media platforms such as Facebook, YouTube, Flickr, and Twitter,38

which is the most widely used in times of crisis [5].39

The use of on-line social media platforms during emergency events, cou-40

pled with the ubiquity of mobile devices capable of providing high-resolution41

geolocated multimedia content, offers the opportunity to exploit the gener-42

ated data in order to (i) detect the occurrence of an event in real time, and43
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(ii) gather useful real-time on-field observations in order to improve satellite44

mapping and situational awareness.45

However, including data from social media in emergency management46

processes poses several challenges, including the availability of location in-47

formation, the truthfulness and accuracy of the shared information, as well48

as the big volume, velocity, and variety of data.49

This paper assesses the feasibility to establish an automatic set of ser-50

vices aimed at linking weather forecasting with event detection and infor-51

mation extraction using social media streams. We take as case study the52

data generated within Twitter, before and during a recent weather-induced53

flood in north Italy, assessing the dynamics of the data generation process54

and the extraction of valuable information for the key stakeholders of emer-55

gency management: meteorological agencies, who issue weather forecasts and56

alerts, and first responders, who have to act in the response phase.57

The paper is organized as follows. In Section 2 we review related works on58

extreme weather forecasting and social media analysis for emergency manage-59

ment, while in Section 3 we describe our case study. In Section 4 we outline60

the proposed solution and the components involved. Section 5 describes the61

methodology adopted by the different components, while in Sections 6 and 762

implementations and results are presented, respectively. Finally, conclusions63

and future works are outlined in Section 8.64

2. Related Works65

2.1. Weather Extremes: impact on society66

Extreme weather conditions can cause disruption of critical infrastruc-67

tures, damage to private and public assets, and even deaths. The impacts of68

extreme weather events on society have been recently investigated in numer-69

ous studies, e.g., EU-funded projects EWENT 1, MOWE-IT 2 and RAIN 3.70

Both the EWENT and MOWE-IT projects focused on the impacts of adverse71

weather on the European transportation system, whereas in RAIN the focus72

was on four types of Critical Infrastructures (CI): roads, railways, electric73

power supplies and telecommunication infrastructure. The outcome of the74

RAIN project revealed that the most important weather phenomena having75

1www.ewent.vtt.fi
2www.mowe-it.eu
3rain-project.eu
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negative impacts on CIs are freezing precipitation, snowfall, snow loading76

and snow storms, windstorms and heavy precipitation causing flooding [6].77

A common practice within national weather services and meteorologi-78

cal forecasters is to issue warnings against adverse weather events based79

on specific thresholds, which are relevant for a given region. The warnings80

typically cover a 24-hour or 48-hour time span, but many weather services81

also produce the so-called early warnings in the 2-5 day range. Warnings82

at the European level are provided by the Meteoalarm 4 service under the83

EUMETNET (European Meteorological Services Network) umbrella, where84

most European national weather services generate the original local input to85

the Meteoalarm framework.86

Heavy precipitation events often trigger severe floods that can cause large87

damages. Rainfall can be highly variable with respect to duration, intensity88

or spatial extent. Both short-duration and heavy downpours or long-lasting89

and moderate rainfalls can have negative impacts. The stakeholder and90

weather service interviews realized within the RAIN project revealed that91

a universal impact-threshold value cannot be defined for heavy precipitation.92

The thresholds being highlighted varied between 20 mm/hour to 30 mm/hour93

for short-term heavy precipitation events, and from 50 mm/day up to 10094

mm/day for longer-lasting rain events [7]. Instead of using fixed precipita-95

tion threshold values, another approach is to use local return values, i.e. the96

amount of precipitation per time unit, exceeded on average every N years (N97

being for example 5, 10, 50, 100 etc.) [7], [8]. This method is suitable for98

research purposes, whereas the use of a fixed threshold is more convenient99

for operational forecasting and warning procedures. Figure 1 shows the dis-100

tribution of the 10-year return level for 24-hour precipitation in Europe. The101

highest values are seen over elevated regions (e.g., the Alps), but also in some102

coastal areas (Norwegian coast). There are also areas with high return levels103

in the Mediterranean region as a consequence of humid air advection towards104

inland by cyclones coming from the sea.105

Also the climate change signal was investigated in the RAIN project. The106

results show that the number of heavy precipitation events increases with107

increasing greenhouse gas concentrations [7], [8]. The highest increases108

were found in northern Scandinavia, western Ireland and western Scotland.109

The increase in the number of events was found both for the longer-lasting110

4meteoalarm.eu
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accumulative rain events and for the short-term high-intensity events, with111

the latter being more relevant.112

Blöschl et al. (2017) [9] have recently studied the impact of changing113

climate on the timing of European floods by analyzing a large dataset of114

flood observations from the past five decades, 1960-2010. A clear shift in115

the timing of floods was found. Springtime flooding caused by melting snow116

has become earlier in northeastern Europe due to increasing temperatures,117

whereas earlier soil moisture maxima have led to earlier winter floods in118

Western Europe. Around the North Sea as well as in some areas of the119

Mediterranean coast, delayed winter storms associated with polar warming120

have led to late-winter floods.121

2.2. Social Media in emergency context122

Recently, the use of social media during emergencies and how it can be123

exploited to enhance situational awareness, has received much attention. In124

the work done by Olteanu et al. [10], the authors present the result of a125

crowdsourcing campaign aimed to describe what to expect from social me-126

dia data across a variety of emergencies (natural disasters, terrorist attacks,127

explosions, etc.) in terms of volume, informative level, type and source.128

Twenty-six events have been considered, among which two Italian ones (one129

earthquake and one flood). A similar crowdsourcing approach has been used130

by the UK and Irish Met Offices [11]. Event detection from social media131

data was investigated in [12], where Sakaki et al. propose a system to auto-132

matically detect earthquakes in Japan using a probabilistic approach on the133

volume of Tweets, while Klein et al. [13] propose a Natural Language Pro-134

cessing (NLP) approach coupled with a clustering algorithm to tag Tweets135

as related to an emergency event or not. Similarly to ours, a lightweight vol-136

umetric approach is proposed in [14], where features are stored on a Cloud137

platform. Multivariate analysis is proposed in [15], but this method would138

pose a severe limits in using parallel computing to scale up the solution. An139

overview of semi-supervised methods for anomaly detection in time series140

can be found in [16]. Several works has been done concerning the classifi-141

cation of online data into information classes or topics. The closest work to142

ours on the emergency context is the one by Caragea et al. [17], which com-143

pares several approaches to classify text messages written during the Haiti144
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earthquake and gathered by the Ushahidi platform5 into different informa-145

tion classes. Another similar study is the one done by Asakura et al. [18],146

where a NLP techniques are used to understand whether a flood event has147

occurred taking into account also GPS information contained in the Tweets.148

2.3. Novel Contributions149

Our work is different because we propose a novel set of services that links150

meteorological forecasts with social media analysis. We propose a trans-151

disciplinary methodology that exploits the availability of meteorological fore-152

casts to (i) identify areas at risk and (ii) start a targeted monitoring through153

social media to acknowledge the occurrence of the forecasted weather events,154

(iii) detect associated natural hazards (floods in our study), and (iv) auto-155

matically filter the social media stream to retain only informative content.156

Here the concept of informativeness is defined as everything that can be useful157

to improve the situational awareness for both citizens and authorities about158

an emergency event. We envision two types of end-users for the proposed ser-159

vices. Firstly, hydro-met agencies (forecasters) who are interested to receive160

on-field observations as acknowledgments of model outputs. Secondly, first161

responders and local authorities who are interested to receive event detection162

alerts and relevant contextual information that can be exploited in order to163

understand the extent and criticality of an ongoing event when there is no164

personnel on the field.165

3. The Case Study: flood in northern Italy166

Twitter is the most studied social network in the emergency domain [5],167

probably due to the ease of sending and extracting information and to its168

open data policy. Twitter is categorized as a micro-blogging service, which is169

a form of communication that allows users to send brief text messages (for-170

merly up to 140 characters, recently updated to 280), also known as Tweets,171

or media such as photographs or audio clips. By default, all user posts are172

public, and they can be automatically retrieved using Twitter’s Application173

Program Interfaces (API), which can be freely used under the limitations174

specified in the terms of service [19]. As shown in Vieweg et al. [20], Twitter175

is also used to give situational information during emergency events: during176

5https://www.ushahidi.com/
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the Boston Bombing in 2013, it has been estimated that 27,800,000 Tweets177

were written about that event. Furthermore, the information provided by178

Twitter can very easily become viral (i.e., spread rapidly and on a vast scale179

across the Web) thanks to Retweets, which are generated when a user re-180

posts (forwards) a message from another user. For all the aforementioned181

characteristics, we select Twitter as the social media platform to investigate.182

Among all natural hazards, flood is one the most devastating. The imme-183

diate consequences of floods are loss of human life, damage to property, and184

destruction of crops. Long-term consequences of floods include disruptions185

to supplies of clean water, psychological impacts, degradation of the electric186

power infrastructure, but also impacts on health care, education and envi-187

ronment. As has been analyzed by the U.S. F.E.M.A. (Federal Emergency188

Management Agency) [21], flood losses in the United States averaged $2.4189

billion per year for the last decade, making flood the number one natural190

disaster in the United States.191

Due to the aforementioned reasons, we select a weather-induced flood as192

our case study. However, the architecture of the proposed set of service is193

general and it can be easily extended to all hazards that depend on meteo-194

rological conditions, e.g., wildfires, landslides, avalanches.195

We consider the flood in Northern Italy of November 2016, the details of196

which are fully available in the online official report [22] created by the Pied-197

mont Region. The heavy rains fallen between November 22nd and November198

25th in Piedmont (North-West Italian region) caused an significant flood,199

which mainly involved mountain areas and affected homes and infrastruc-200

tures (roads and railways). On the 24th and 25th, the rainfall measured at201

stations near Turin reached over 50 mm per day. The event caused the evac-202

uation of 1477 people in the affected areas, it left 350 people stranded and203

it caused, unfortunately, the death of a person. An alert was issued Novem-204

ber 22nd but the first reports were sent to the Civil Protection during the205

morning of November 23rd. The first flood of the Tanaro river was reported206

on the 24th, while during the day of November 25th floods occurred also in207

the area of South Torino (Piedmont’s chief town) causing the evacuation of208

200 people. The flooding of the river Tanaro (the second longest river in209

Piedmont) happened again in the night between November 25th and Novem-210

ber 26th, affecting the city of Alessandria and nearby municipalities. The211

relevance of this event is also confirmed from the Copernicus EMS activation212

(EMSR 192) that produced several delineation and grading maps [23].213
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4. A novel set of services to link early warning to emergency re-214

sponse215

This section describes the user-centered set of services proposed within216

this paper, which aims to link the early warning to the emergency response217

phase coupling weather forecasts together with social media monitoring and218

analysis.219

In our approach, social media analysis focuses on volume and textual220

features in order to allow a scalable and real-time analysis aimed at event221

detection and data extraction. Therefore, we leave out Social Network Anal-222

ysis (SNA) on users communities because it would be computationally im-223

practical, especially in case of large events that reach a world-wide news224

coverage.225

The proposed set of services is composed of 4 different modules:226

• Weather Forecast227

• Social Media Monitoring228

• Event Detection on Social Media Streams229

• Informativeness Classification of Social Media Content230

We assume that background social media monitoring jobs are always present231

in order to monitor the aggregated volume of content associated to a set of232

topics (in our work case extreme weather conditions and flood) and languages233

the end-user is interested in. The aggregated volumes are needed by the234

Event Detection module, as explained in Section 5.3. We also assume that235

end-users are allowed to define topics and languages, and that one monitoring236

job per topic-language is launched. The details about the topic definition and237

the social monitoring approach are given in Section 5.2. As shown in Figure238

2, the process starts from the production of weather forecasts, which are used239

to identify areas that could be subject to extreme weather, i.e., areas at risk.240

If no area is found, the same check is performed again upon the generation of241

the subsequent forecast. Note that we assume that forecasts are operationally242

produced with a given periodicity by a meteorological agency. If at least one243

area is found, parallel instances of the monitoring and of the event detection244

algorithm are started, where each instance is related to a topic-language pair.245

The event detection algorithm outputs with a given temporal resolution a246

binary signal, i.e., true if an event is detected, and false if not. In the first247

8



case (true), an alert containing the data that triggered the algorithm is sent248

to the end user for verification, while the detection continues until the next249

forecast becomes available. If the end user confirms the presence of the250

event, the filtering task is started on the corresponding topic-language pair.251

Each tweet matching this pair received by the monitoring module is fed to a252

classifier (Section 5.4) that retains only informative content and shows them253

to the end user. If the event is not confirmed, the event detection algorithm254

continues after a freeze time. When the event is over, the end user notifies255

the system, which resumes from the event detection block after the freeze256

time. This approach requires that the system implements a user interface,257

e.g., a web application, in order to handle the data and signal exchanges258

with end users. Note that the reception and the subsequent validation of an259

event alert (e.g., flood) may be the responsibility of hydro-met agencies or260

of civil protection departments according to the regional/national division261

of competences. Even if the output of the filtering module mainly targets262

public authorities and first responders who have to manage the event, it can263

be relayed to any of the stakeholders involved.264

5. Methodology265

This section is focused on the detailed explanation of all methodologies266

we propose. We devote one subsection for each step of the process described267

in Section 4.268

5.1. Extreme Weather Forecast269

Accurate predictions of severe weather events are extremely important for270

the society, the economy, and the environment. Due to the fact that weather271

forecasts are inherently uncertain, it is required that information about fore-272

cast uncertainty be provided to all users, i.e., that weather forecasts are given273

in probabilistic terms. Weather forecast accuracy is limited by (i) the inaccu-274

rate description of the initial, observed state of the atmosphere and (ii) by the275

prerequisite to use approximations and simplifications in the actual weather276

forecast model equations. Furthermore, even the smallest uncertainties in277

the initial conditions of the forecast model have a tendency to grow rapidly278

with the lead time time because of the chaotic nature of the atmosphere.279

Therefore, rather than integrating a single forecast from a supposedly best280

guess of the initial state, a better approach consists in starting the forecast281

from a number of slightly different initial conditions, and then deriving as282
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many outcomes from these initial conditions (Palmer, 2000 [24]). This ap-283

proach is called ensemble forecasting, and it outputs forecasts as probability284

distributions, from which local probabilities can be computed for different285

weather events by using thresholds. Similarly to what is operationally done286

by the most advanced weather centres, e.g., the ECMWF (European Cen-287

tre for Medium-Range Weather Forecasts), we propose to run operationally288

ensemble forecasts twice a day.289

5.2. Social Media Monitoring290

Today we are using an unprecedented wealth of social media platforms291

to share information about everything that is happening around us. In the292

emergency domain such information can become a powerful resource for as-293

sessing in near real-time the evolution of an hazardous event, its impact and294

how it is perceived by the affected population. Hence, the goal of the social295

media monitoring module consists in retrieving content related to selected296

hazards in order to extract contextual information that could be useful to297

citizens, forecasters, first responders, and decision makers.298

The social media platform monitored in our case study is Twitter, because299

it is a news-oriented social network and it has been used in many previous300

studies in the emergency domain (see: [20, 12, 13, 10]) that exploit and301

analyze Twitter content. Furthermore, Twitter data are openly accessible302

through public APIs.303

The monitoring process is triggered by the detection of an extreme weather304

event (possibly encoded in a hydro-meteo bulletin) that defines the geograph-305

ical regions at greater risk and the hazards to be monitored. Note that the306

monitoring is activated only on the language of the regions identified by the307

forecast and on predefined set of keywords, one for each of the considered308

hazards.309

To retrieve social media content, the Social Media Monitoring (SMM)310

modules relies on the Streaming API exposed by Twitter [25]: such APIs311

are designed to follow specific topics (or users) enabling low latency access312

to Twitter’s global stream of data by pushing messages, thus avoiding the313

overheads associated with polling an API endpoint. However, these public,314

cost-free, Streaming APIs are characterized by an overall volume limitation315

of 1% (randomly subsampled) of the total stream (see [19]), i.e., whenever316

the volume of a filtered stream is greater than 1% of the total stream.317

In order to avoid this subsampling and maximize the volume of retrieved318

relevant content, it is important to limit the off-topic content by configuring319
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the access to the global Twitter stream with one of the different filtering320

parameters exposed by the Streaming APIs. The main options that the321

Streaming API allows to filter the content are:322

• language: the language of the content;323

• locations: one or more geographical regions, identified by their bound-324

ing box (if set, only geolocalized tweets are retrieved);325

• follow: a list of authors ID;326

• track: a set of terms (words or hashtags) that should be present in327

the content. A track phrase includes one or more terms (separated by328

spaces) and a match is returned if at least one of the phrases is present329

in the Tweet, which will then be delivered to the stream.330

Among these filtering parameters, the SMM exploits the language and331

the track phrases. The follow parameter is not pertinent in our use case,332

since the module aims at retrieving all the content related to a topic regardless333

of the author. Instead, the locations parameter would be too restrictive334

because it retains only the geolocalized Tweets, which are less than 2% of335

the posts ([26]). The monitoring module is configured with a set of track336

phrases: one for each of the supported hazard types and languages.337

Track phrases are textual queries, expressed in a simple syntax: no exact338

matches or exclusions are possible. The content in each monitored stream339

is then processed through a Language Analysis pipeline (involving lemma-340

tization, key phrases detection, named entity recognition, classification and341

sentiment analysis) that enriches them with additional linguistic and seman-342

tic metadata; more details on the used pipeline can be found in [27]. After343

this pipeline, a second and more refined one is applied in order to filter out344

unrelated content (e.g., texts such as “landslide victory”, “flood of votes”,345

etc.). These classification rules are based on language and semantic features346

(e.g., lemmatization, proximity expressions, exclusions) and are manually347

composed by mother tongue domain experts. One set of rule for each topic348

(hazard) is required.349

The final output is stored in a database to be exploited by the other ser-350

vices, i.e., the Event Detection and the Informativeness Classification (Fil-351

tering) modules.352

Note that, regardless of the monitoring processes activated by weather353

forecasts, simple monitoring processes (one for each of the considered event)354
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is always present in order to compute the volume of social media content355

grouped by language and event type in a given time window. This aggregated356

data is stored in the database and exploited by the Event Detection module357

(see Section 5.3).358

5.3. Event Detection359

In this subsection we describe the proposed algorithm for event detection360

designed to detect emergencies, or anomalous phenomena. The Event De-361

tection Module (EDM) analyzes streams of data that are generated by the362

SMM component. These streams are differentiated by language and topic363

(event type / phenomenon), as described in Section 5.2. This brings three364

main advantages to the event detection procedure:365

1. it removes unnecessary noise that might hinder the detection of a spe-366

cific phenomenon;367

2. it provides a basic description of the event which is unfolding. An368

extreme weather forecast can potentially be related to several events369

(e.g., storms, floods, landslides);370

3. in some languages (such as Italian) most Tweets will be originated371

from the interested country. This helps in filtering relevant content,372

as the chance that posts apply to a local emergency are higher. By373

comparison, it is more difficult to understand if an English Tweet about374

floods relates to an Italian emergency.375

One of the main requirements of the EDM is to properly handle heteroge-376

neous data with respect to:377

• content: not only different events types, but also several events of the378

same type, as they might have very different behaviors ([10]);379

• type of emergency: some emergencies can be forecasted (e.g., flood)380

while others cannot (e.g, earthquakes), which translates into content381

related to the monitored hazards being available at different time scales;382

• volume: because the extent of emergency events in terms of affected383

people and geographical area can be very different, the volume of the384

generated social media content varies too. Furthermore, it also depends385

on the social media adoption (active users) in the affected area.386
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We propose a volume-based EDM that operates on the series of tweets, ag-387

gregating them in predetermined time-frames. As mentioned in Section 5.1388

the system does not keep a copy of each Tweet, unless it has been collected389

in relation to a validated event, while the aggregated volumes per time-frame390

are stored indefinitely for further analyses and tuning of the EDM.391

Our EDM builds upon the generalized Extreme Studentized Deviate test392

(ESD) ([28], [29]). We consider a discrete and integer time scale, where each393

time slot has the same size S. Given a language l and an event type e, let394

X l,e be the time series (stream) of volumes related to l and e. Once a new395

element of the time series Xl,e(t) is added at time t, the series is tested for396

outliers within a sliding window w = (t −W, t], where W is the number of397

time slots. If Xl,e(t) is considered an outlier, the alert is triggered. Therefore,398

the system works in near real-time, with a periodicity of S and, because it399

works on univariate time series, is also asynchronous on different streams.400

The basic ESD test is improved as in [30], where a volume-based method on401

heterogeneous Twitter production data has been developed and tested. This402

procedure takes into account seasonality in Twitter activity by using time403

series decomposition, which allows to detect local anomalies (inside seasonal404

patterns) on top of global anomalies (which are easier to identify). The most405

important patterns in the considered scenario are the day/night one and406

the weekend one. This technique avoids, for example, to under-report night407

events.408

The algorithm also employs the median instead of mean in the original ESD409

test, making it statistically more robust. This allows to properly account410

for low-volume data, for example in events happening in sparsely populated411

regions, where the Twitter community is smaller. Note that if the activity is412

near zero even in the emergency phase, the system can not be effectively used413

to provide early warning signals on smaller time-frames. However, relevant414

events are usually reported well beyond the original impact area, helping the415

detection module to trigger despite the low affected population.416

The anomaly detection procedure follows a two-step schema. If an event is417

detected, a summary of the content that triggered the algorithm is generated418

and forwarded together with the alert to help first responders in assessing419

and validating the detection. The summary considers all tweets at time t plus420

aggregated measures (see Section 6.3 for details). As explained in section 4,421

after one alert is sent a freeze time F in terms of number of slots is set before422

running the next detection. Also, as long as the event is in progress no more423

alerts are pushed (for that stream). When the event is declared to be over,424
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relevant historical data are saved and kept for future uses. Additionally, if425

the system incorrectly signals an event, the EDM is frozen for F in order not426

to provide first responders a series of false positives. In such case, no detailed427

data are saved.428

5.4. Informativeness Classification429

The objective of this component consists in classifying informativeness430

from tweet texts, thus classify tweets in “informative” and “not informative”431

classes. What is considered as informative depends on the user of the infor-432

mation, as such is considered as an arbitrary concept. In this study we defined433

informativeness as in [10], thus considering as informative all contributions434

that are relevant to the crisis situation and at the same time help to improve435

its understanding. Hence, Tweets in which the crisis situation is mentioned436

but do not contain information that is helpful to understand it are not con-437

sidered informative. In order to capture informativeness we consider Natural438

Language Processing (NLP) techniques based on vector representation of439

the Tweet text. In particular we focused on the fasttext 6 tool [31, 32, 33]440

developed in the Facebook AI Research group. In this approach n-grams441

are learned instead of words and a word is seen as a sum of n-grams. This442

method can be seen as an extension of the continuous skipgram model [34]443

because it takes into account sub-word informations. We choose this model444

in view of its performances in the analysis presented in fasttext, where it445

has shown good accuracy (comparable with other methods) and at the same446

time a faster learning process [32].447

The ability to discriminate between “informative” vs “not informative”448

tweets is a document binary classification problem. The standard metrics449

used in such cases are precision, recall and f-1 score. In this case, we focus450

on the performance of the algorithm for retrieving “informative” data. All451

the metrics refer to this specific class of tweets. In this sense, precision is452

the ability of the classifier not to label as “informative” a sample that is “not453

informative”, recall is the ability of the classifier to find all the “informative”454

samples and f-1 represent a sort of harmonic average of the two.455

6https://github.com/facebookresearch/fastText
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6. Implementation456

The following subsections provide details on the implementation of each457

module.458

6.1. Weather Forecast459

Ensemble-based early warning products have been developed to forecast460

severe weather events by utilizing both the ECMWF-ENS (European Cen-461

tre for Medium-Range Weather Forecasts Ensemble prediction system, 51462

members) and GLAMEPS (Grand Limited Area Ensemble Prediction Sys-463

tem, 52 members) models. These products estimate the occurrence proba-464

bilities of heavy rainfall, strong winds, and extreme high/low temperatures,465

and it is routinely produced for the whole European area. The forecasted466

occurrence probability of the different severe weather events is computed ac-467

cording to pre-defined thresholds. However, as was highlighted in Section 5.1,468

for weather forecasting and warning services a fixed threshold is suitable and469

it is typically used in operational forecasting globally. Here, when studying470

the skill of the forecasts in the Piedmont case, we have used 50 mm as the471

threshold for the 24h rainfall, which is at the lower boundary of the range472

of values, 50-100 mm/24h, attained from the stakeholder interviews carried473

out in the RAIN project [6].474

Since ensemble forecasts are typically under-dispersive and/or biased they475

should be calibrated by utilizing statistical methods. If forecast system is un-476

der dispersive, the range of possible ensemble solutions is too small compared477

to what frequently happens. Bias can be either positive or negative, and it478

means that the predicted ensemble mean is systematically either larger or479

smaller than observation on average. Most of the recently used statistical480

methods share a general approach of correcting the current forecast by us-481

ing past forecast errors, as has been done for deterministic forecasts in the482

so-called Model Output Statistics (MOS) procedure introduced originally by483

Glahn and Lowry (1972) [35]. This process makes use of information from484

prior forecasts and observations to produce probabilistic forecasts or to im-485

prove their reliability. The method providing the best outcome is dependent486

on the weather variable being forecasted. Statistical calibration is found to487

be useful at a variety of time scales including short forecast lead times, and488

even lead times of up to two weeks.489
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6.2. Social Media Monitoring490

The monitoring module was implemented in Java and Scala as a job491

within the Spark Streaming architecture [36], which is an open source infras-492

tructure designed to deal with real-time data analysis, transformations and493

operations. CELI proprietary resources were used in the Language Analysis494

pipeline [27]. Storage was performed on PostgreSQL, which is a well known495

open source database [37].496

In the proposed case study the language of the monitored content is497

Italian and the set of keywords used as track phrases for filtering the social498

stream consist of:499

• Flood specific keywords: alluvione, alluvioni, esondazione, eson-500

dazioni, esondato, esondata, esondare, allagato, allagata, allagamen-501

to, allagamenti, “cedimento argini”, “cedimento argini”, “ceduto argi-502

ne”, “cede argine”, “ceduto argini”, “cedono argini”, angelidelfango,503

inondazione, inondazioni504

• Weather related keywords: maltempo, allertameteo, meteo, piog-505

gia, piogge, piove, piovere, piovuto, piover, nubifragio, nubifragi, “bom-506

ba d’acqua”, “bombe d’acqua”, bombadacqua, bombedacqua, allarme-507

maltempo508

• Other hazard related keywords: slavina, slavine, smottamento,509

smottamenti, idrogeologico, idrogeologici, frana, frane, franare, franato,510

franata, franate, franati511

These keywords generates what we define as the Monitoring stream.512

The fine grained classification rule operating on the use case data, defining513

the Event Detection stream, is:514

• maltempo [alluvione] [esondare] [allagare] [inondare] “[cedere] [argine]”515

∼4 angelidelfango -([voto] [politica] [elezioni])516

Terms enclosed between [ ] match on the lemmatized form of the textual517

content (i.e., [allagare] is a verb and it will match on any form and tense of518

that verb). Terms preceded by a minus sign represent term that should not519

be present in the retrieved content. Expressions followed by a tilde and a520

number N are proximity expressions that identify documents containing all521

the terms in the expression, each one within a maximum distance of N terms522

between the others.523
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Neither the track phrases nor the classification rules contain any reference524

to a specific geographical entity. This allows the component to work indepen-525

dently from the location of the hazard, so it can be used to detect new events526

without having a mandatory a named entity recognition/disambiguation527

component.528

6.3. Event Detection529

We implemented the EDM in the R language, using the AnomalyDetec-530

tion7 for the the ESD, and SparkR8 for accessing an Apache Spark cluster,531

which is used to computed the volumetric measure. Tweet streams are stored532

in the PostgreSQL and aggregated according to the language l, and event533

type e.534

For each l and e, we store a 1 hour time series X l,e and a 15-minute time535

series Y l,e. X l,e is tested regularly (every hour), checking if the new entry536

Xl,e(t) is an outlier. If an outlier is detected at t0 using X l,e, we start testing537

Y l,e every 15 minutes and only after the outlier is confirmed also on time538

series at time (t ≥ t0) we issue the event detection alert. This is done to539

reduce the computational cost.540

Anomaly detection is implemented using the Seasonal Hybrid ESD Test541

([30]), which depends on four parameters p, w, th, α.542

• p is the piecewise median time window; we set p = 2 weeks, the mini-543

mum value allowing to take into account weekly periodicities, such as544

the weekend effect;545

• W is the sliding window size (mentioned in section 5.1) that we set to546

2 weeks, which is the minimum value to support p = 2 while keeping547

the procedure lightweight;548

• th: is the threshold for setting the percentile of the daily max values549

used to trigger the anomaly detection. We set thx = 0.95 (95th per-550

centile) and thy = 0.99 (99th percentile) for X l,e and Y l,e, respectively.551

• α: minimum level of statistical significance for anomalies; we set α =552

0.01. In our case studies, it is far less determinant than th. Statisti-553

cal significance can be used by further components of the system (see554

below).555

7https://github.com/twitter/AnomalyDetection
8https://spark.apache.org/docs/latest/sparkr.html
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We have empirically set such parameters in order to achieve the best accuracy556

on a wide data set comprising 280k tweets collected during 3 Italian emergen-557

cies (snow, earthquake, landslides) from Oct. 2016 to Jan. 2017. p and W558

can be safely increased depending on the computational power at disposal,559

as more data must be collected and analyzed with greater W and p. We did560

not register significant variations of the event detection accuracy with W .561

Conversely, thx and thy control the trade-off between Precision and Recall562

of the detection. In emergency management it is desirable to favor Recall563

compared to Precision, as (potential) disasters should never be missed in the564

detection phase. Hence, we choose a lower thx in order to keep the EDM sen-565

sitive enough, and an higher thy to precisely pinpoint the emergency event.566

If an anomaly is detected, the R module returns the binary signal true/false,567

the confidence level, and relevant metadata, i.e., the identifiers of the stream568

(including language l and event type e) and the time-stamp corresponding569

to the end of the slot that triggered the detection.570

6.4. Informativeness Classification Implementation571

To test the performance of fasttext in classifying informativeness of572

Tweets collected during emergencies, we look at the CrisisLexT269 database573

[10], a collection of tweets collected during 26 different crisis situations, which574

took place between years 2012 and 2013 at different locations of the world.575

All collected Tweets have been manually labeled by local citizens in different576

classes with respect to the event under study, i.e., “related and informative”,577

“related and not informative”, “not related”, and “not applicable”. We aim578

to implement a binary classifier that detects the class “related and informa-579

tive”. Hence, this class is our positive class and everything else is discarded,580

in other words, everything else is our negative class. This dataset presents581

two main difficulties with respect to other Twitter datasets used for text582

analysis: the corpus of labeled data is small (less than thousand tweets for583

each event, see Table 1) and the dataset is in different languages. The bal-584

ance of the analyzed Tweets (see Table 1) is in several cases greater than 0.5,585

the optimum balance for training of the classifier. However, we do not see586

any evidence that this imbalance influences the final performance, except in587

two cases (NY train crash and Philippines flood), thus we consider the data588

to be a valid training set.589

9http://crisislex.org/data-collections.html
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Event Name Num tweets Balance
Bohol earthquake 671 0.50
Boston bombings 658 0.47
Brazil nightclub fire 589 0.54
Colorado floods 804 0.81
Glasgow helicopter crash 688 0.56
LA airport shootings 738 0.68
Lac Megantic train crash 618 0.58
Manila floods 675 0.64
NY train crash 658 0.89
Queensland floods 807 0.73
Colorado wildfires 957 0.60
Russia meteor 881 0.47
Sardinia floods 744 0.61
Savar building collapse 456 0.55
Singapore haze 543 0.45
Spain train crash 656 0.81
Typhoon Yolanda 751 0.72
West Texas explosion 683 0.52
Costa Rica earthquake 1051 0.50
Guatemala earthquake 743 0.73
Italy earthquakes 737 0.66
Philipinnes floods 551 0.84
Typhoon Pablo 742 0.71
Venezuela refinery 766 0.57
Alberta floods 786 0.72
Australia bushfire 885 0.62

Table 1: CrisisLexT26 dataset analyzed in terms of number of Tweets and balance, where
balance means informative Tweets versus all.
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7. Results590

In this section we present the results achieved assessing the proposed set591

of service with the selected case study.592

7.1. Weather Forecast593

Quality developments of numerical weather prediction models are good594

indicators of forecast usefulness and applicability in different time scales. The595

predictability of the ECMWF model based precipitation was of the order of596

2 days in the mid-1990s and had increased up to 3.5 days by 2010 (Nurmi,597

et al. 2013 [38])). The trend in predictability improvement has been fairly598

linear during past decades with an increase of about one day per decade.599

Therefore, the predictability of precipitation is expected to improve also in600

the foreseeable future at a relatively constant rate and is today around 4601

days.602

The heavy precipitation event of our Piedmont case study (see Section 3)603

was well forecasted by the ECMWF ensemble model and is in good agreement604

with the above discussion. The probabilistic forecasts of accumulated pre-605

cipitation exceeding 50 mm during a 24-hour period (from 23rd of November606

18 UTC to 24th of November 18 UTC) in the Piedmont area (and southern607

France) can be seen in Figure 3. The figure shows four different forecast cy-608

cles made 234, 162, 90 and 30 hours ahead of the forecast valid time of 24th
609

of November (18 UTC) to highlight the forecast evolution with respect to610

the forecast lead time. In this particular case, the forecasted heavy rainfall611

probabilities were higher than 70% already as early as six days (162 hours)612

before the event, thus providing remarkably early warning guidance against613

an upcoming event. This is about two days earlier compared to the average614

precipitation forecast skill (approx. 4 days) explained above. Three days (90615

hours) before the event, the forecasted probability of heavy rain was very high616

(between 90 and 100%) over large areas in the Piedmont region. When heavy617

rainfall is predicted to occur over densely populated area, like in this case, it618

is common practice to initiate actions when heavy precipitation probability619

is over 50%.620

7.2. Social Media Monitoring621

With the configuration described in Section 6.2 the monitoring module622

collected 92,760 elements in the considered time range (from 19th to 26th of623

November, 2016). A dataset containing the raw JSON of these Tweets (a624
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textual file containing in each line the JSON serialization of a single Tweet)625

has been released as a public resource10 with a Creative Commons license.626

The published dataset consists only of the raw JSON (as it is provided by627

Twitter) and not the enrichments, i.e., metadata and classification computed.628

The published dataset contains:629

• 52,349 original Tweets (not considering Retweets)630

• 1,234 Tweets containing an exact localization (a point, based on the631

device GPS)632

• 2,150 Tweets containing an approximate localization (a bounding box,633

based on the device network connection)634

• 14,995 Tweets containing a photo, 7,181 of which unique (not consid-635

ering re-posts of the same photo)636

The distribution of the Tweets volume in the considered time range is637

reported in Figure 4. The tweets containing an exact localization are fully638

plotted on a map of Italy, reported in Figure 5. An additional map (Figure 6)639

shows the regions affected by the flood. In Table 2 we show the top 10 most640

province by number of Tweets per population, which we compute according641

to the province area (NUTS 3). We note that such frequency of Tweets in642

an area are not sufficient information to determine the origin of the event.643

7.2.1. Dataset Content Overview644

In this Subsection we show a qualitative representation of the content in645

the dataset and how it evolved during the event, by visualizing for each day646

the most frequent key phrases. Key phrases are extracted by the language647

analysis pipeline identifying specific patterns of terms with desired linguistic648

features (i.e. a noun followed by a preposition and another name or an649

adjective followed by a noun). Word Clouds are then computed by selecting650

the most frequent key phrases within a given time period.651

Figure 7 represents a Word Cloud of the most frequent key phrases ex-652

tracted on the 23rd of November, while 8, 9 and 10 on the following 3 days.653

It can be observed that the main topics emerging from the Word Cloud654

computed on the 23rd of November are related to alerts (“allerta meteo”,655

10https://www.zenodo.org/record/854385/files/PiemontFlood2016Dataset.zip
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# Region Province Tweets (T) Population (P) T/P ‰
1 Umbria Terni 103 229 071 0.4496
2 Liguria La Spezia 60 221 003 0.2715
3 Calabria Crotone 41 174 712 0.2347
4 Lombardia Milano 705 3 208 509 0.2197
5 Liguria Savona 56 280 707 0.1995
6 Apulia Taranto 87 586 061 0.1484
7 Piemonte Cuneo 71 590 421 0.1203
8 Piemonte Torino 255 2 282 197 0.1117
9 Lazio Roma 468 4 340 474 0.1078
10 Piemonte Biella 18 179 685 0.1002

Table 2: Top 10 most province by number of Tweets per population, computed according
to the Italian NUTS 3 level.

“allerta arancione”, “allerta rossa”) and heavy rains ( “forti piogge”, “forti656

precipitazioni”, “pioggia in aumento”, “forte maltempo”, “temporali e schia-657

rite”). On the 24th the focus is both on maximum alert levels (“allerta658

massima”, “allarme maltempo”, “allerta arancione”) and on flood warn-659

ings and locations/rivers (“incubo alluvione”, “Piemonte e Liguria”, “fi-660

ume Tanaro”, “Tanaro nel cuneese”, “fiume Po”, “Po a torino”, “Tanaro661

in piena”). On the 25th, instead, the alerts topic is almost disappeared662

while floods and rivers topics are still present (“piena del Po”, “piena a663

Torino”, “esondazioni Piemonte”) as well as other themes related to the664

emergency caused by the flood (“Renzi a Torino”, “scuole chiuse”, “video-665

clip ufficiale”). Finally ,on the 26th the topics emerging from the Word Cloud666

include other events/locations (“maltempo in Sicilia”, “Po in Lombardia”)667

besides the flood in Piedmont and Liguria (“Tregua in Piemonte”, “frane in668

Liguria”).669

From this overview we can conclude that key phrases can be a useful670

instrument in order to assess the presence of given meteorological events,671

like floods, as well as the affected locations and rivers.672

7.3. Event Detection673

As described in Section 6.2, in our case study we considered : a more674

generic Monitoring, which combines extreme weather and floods, and a flood-675

specific one that was used for the Event Detection.676

A comparison between these two streams is reported in Figure 11, where it677
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can clearly be seen the difference in volumes, especially in the days prior to678

the emergency.679

We plot X l,e and Y l,e together with the positive signals (detected anomalies)680

with l=’it’ and e=’flood’ in the period surrounding the event in Figures 12681

and 13, respectively. Since no end-user was actually involved in the eval-682

uation, we show all detections. The hourly test for anomalies in X it,flood is683

first passed with 455 Tweets on the 24th of November at 10 UTC (11 CET).684

These Tweets were posted between 9 and 10 UTC. The subsequent test on685

Y it,flood is first passed at 10.30 UTC (11.30 CET).686

This result corresponds to the maximum alert level, which was reached be-687

tween morning and afternoon of the 24th of November, as mentioned in the688

official report by the Civil Protection. The exact time of the first flood is not689

mentioned in any official records at local/regional level, while the Event time690

reported by Copernicus EMS, is November 24th, 17.00 UTC (18.00 CET).691

Most frequent hashtags used in the flood stream in the hour of the alert692

were: #tanaro (131 tweets), #maltempo (115), #piemonte (54), #liguria693

(27), #allertameteopie (23). #piemonte, #allertameteopie, #liguria relates694

to the regions interested by the event (Piedmont and Liguria), while Tanaro695

is the main river whose waters caused the hazard. Most frequent named696

entities (locations) detected in the same hour were: Piedmont (212 tweets),697

Liguria (135), Tanaro River (125), Province of Turin (33), Garessio (19).698

Garessio is the town originally affected by the Tanaro river flood. We can699

see that a ranking of the tops hashtags and named entities is useful to spot700

the location of the flood.701

According to official statements 11, first responders received damage reports702

from on-field agents during the course of the 24th of November. Timing of703

the first social media alert appears to be in line with these reports, as Tweets704

concerning the Tanaro flooding were generated immediately after witnessing705

the hazard, prompting the warning system. In this case, both social media706

and on-field agents reports provided a quick alert. We do not claim that a707

social media early warning system, such as the one we propose, is necessarily708

more reactive than on-field personnel. However, the social media detection709

is extremely useful in case those agents are missing.710

11http://www.regione.piemonte.it/cgi-bin/montagna/pubblicazioni/

frontoffice/richiesta.cgi?id_settore=10&id_pub=1394&area=10&argomento=111
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7.4. Informativeness Classification711

7.4.1. CrisisLexT26 dataset Result712

In Table 3 we show the performance of fasttext in classifying informa-713

tiveness of the 26 crisis events. In order to maximize the amount of data714

in the learning phase, the analysis was performed for each single event us-715

ing all Tweets from the other 25 events for training. Thus, we have used716

the so called “leave-one-out” approach [39] in order to test the performance717

of the proposed method. Even if this reflects in learning simultaneously by718

using diverse languages, the obtained accuracy is greater than considering719

only Tweets in a single language, which corresponds, for each event, to the720

mother tongue of the country in which the event occurred.721

We obtain an average f-1 score of 78% on natural hazards, which shows722

the efficacy of the method. From the point of view of languages we can see723

that the Italian and the Russian language seem to be particularly challenging724

for the considered task. In the following, we will see how to improve these725

results for the Italian case study.726

7.4.2. Flood in Piedmont727

After the successful test with the CrisisLexT26 database we move forward728

to analyze the tweets collected before and during our case study, i.e., the flood729

in Piedmont. In particular, we choose around 1200 Tweets and manually730

annotate them according to informativeness. The considered Tweets were731

generated starting from the 19th until the 26th of November, 2016.732

In order to test the fasttext algorithm for this selection of Tweets we733

need to identify an appropriate corpus of tweets for the training phase. Hav-734

ing at our disposal the CrisisLexT26 database, we decided to test how per-735

formance changes using different subsets of this database. In particular, we736

train the algorithm in three different ways:737

• Italian: using only tweets connected with Italian emergencies;738

• Nat. hazards: using only tweets from natural hazards;739

• All: using all the tweets from CrisisLexT26.740

With the aim of early detection and monitoring of emergency events, we741

choose to not consider Tweets as a unique body but instead we group the742

Tweets generated in time intervals of two hours (the minimum time span for743
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Precision Recall f-1
Bohol earthquake 0.90 0.81 0.85
Boston bombings 0.85 0.51 0.64
Brazil nightclub fire 0.88 0.47 0.61
Colorado floods 0.91 0.81 0.86
Glasgow helicopter crash 0.81 0.72 0.76
LA airport shootings 0.87 0.78 0.82
Lac Megantic train crash 0.76 0.68 0.72
Manila floods 0.87 0.75 0.81
NY train crash 0.96 0.90 0.93
Queensland floods 0.87 0.76 0.81
Colorado wildfires 0.79 0.77 0.78
Russia meteor 0.72 0.44 0.54
Sardinia floods 0.90 0.41 0.56
Savar building collapse 0.68 0.69 0.68
Singapore haze 0.68 0.63 0.65
Spain train crash 0.93 0.74 0.83
Typhoon Yolanda 0.87 0.75 0.80
West Texas explosion 0.84 0.72 0.77
Costa Rica earthquake 0.75 0.87 0.81
Guatemala earthquake 0.92 0.83 0.87
Italy earthquakes 0.91 0.44 0.59
Philipinnes floods 0.91 0.88 0.89
Typhoon Pablo 0.91 0.82 0.86
Venezuela refinery 0.80 0.47 0.59
Alberta floods 0.88 0.69 0.77
Australia bushfire 0.83 0.77 0.80
Average 0.85 0.70 0.75
Average nat. haz. 0.87 0.73 0.78

Table 3: Performance of the fasttext algorithm on the CrisisLexT26 dataset. Natural
hazard events are in bold.
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a sufficient data flow) and test the algorithm on each subset. Within this744

choice the average balance in the two classes for the intervals is 0.53%.745

The results are presented in Figure 14 and summarized in Table 4. The746

figure immediately highlights the difference between Italian emergencies only747

and the other two cases. In the “only-Italian” case we have a very high recall748

due to a poor precision performance: what happens is that the algorithm749

considers almost everything as informative. The balance between the two750

metrics improves when the corpus includes Tweets in all languages instead751

of a single one (Italian, in this case). This can be understood in terms of752

enlargement of the vocabulary. It is highly probable that, in Tweets regarding753

an Italian event, terms in foreign languages (e.g., English) appear. Thus,754

the performance of the classifier is improved by including Tweets in other755

languages in the training set. Moreover, focusing on Tweets connected with756

natural hazards helps. From the point of view of the ability of early detection757

we do not see any significant transition in the effectiveness of the algorithm758

capturing informativeness before or after the event.759

We also specifically checked the percentage of geolocalized tweets that760

are informative in the Piedmont dataset because a geolocalized and infor-761

mative Tweet could be especially useful. An additional manual annotation762

was performed on the 1,234 geolocalized Tweets to assess their relatedness763

and informativeness to the crisis. However, only 26 of them were related764

to the crisis, and only 18 of this subset is informative. We discovered that765

most geolocalized Tweets were generated by weather stations and contained766

weather reports, hence not referring to a specific event. In this case, geolo-767

calized Tweets were mostly useless for end users, who already have data from768

weather stations at their disposal.769

Summarizing the average results, reported in Table 4, we can say that the770

overall effectiveness of the method is close to 70% and that the performance771

is strongly connected with the training dataset. In this sense, we can expect772

a performance improvement by labeling additional data of future natural773

hazard emergencies.774

775

8. Conclusions and future works776

8.1. Conclusions777

We have shown how social media data can be used together with prob-778

abilistic weather forecasts to automatically detect an ongoing event and to779
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Precision Recall f-1
Italian 0.60 0.87 0.68
Relevant 0.72 0.72 0.69
All 0.72 0.67 0.66

Table 4: Different performances of the fasttext algorithm on Tweets connected with the
flood in Piedmont, using different training sets.

extract useful information. We used key phrase extraction as qualitative780

confirmation tool for weather forecasters, while the event detection plus the781

informativeness classification could be effectively used by emergency respon-782

ders. Our results show that machine learning methods trained on data gen-783

erated within past emergency events can generalize well on new data, which784

confirms the validity of our approach given the ever-changing nature of con-785

sidered disasters.786

8.2. Approach Limits and Future Work787

The presented version of the monitoring module collects social media data788

by purely leveraging on their textual content, without any consideration on789

authors accounts and if they should be trusted or not. This approach is po-790

tentially open to undesired content from fake accounts (i.e., bots and trolls).791

Other undesired data might be retrieved as well by the monitoring module792

when a track keyword is used outside of the emergency context. Ideally,793

the Language Analysis pipeline should filter them out, but since the filtering794

process is prone to errors, a certain number of undesired contents is bound795

to remain in the collected dataset.796

We decided to leave this issue out because in normal conditions such out-of-797

context data are continuously distributed over time and do not concentrate798

in a short period. Hence, they do not impact the Event Detection Mod-799

ule. However, investigating how to mitigate the effect of undesired content800

and/or fake accounts might be an interesting point for future research. Fil-801

tering layers could also be added or existing ones could employ more selective802

disambiguation rules. In the current system, we chose to favor Recall in de-803

tecting critical situations over Precision, as end users have to provide the804

final form of validation. Our work is based on the assumption that the Twit-805

ter data is freely available. However, should it be no longer the case in the806

future, a cost-benefit analysis should be performed in order to assess the807

sustainability of the proposed solution.808
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As future works we also intend to extend our analysis on more hazards809

and different languages, and exploit the use of image analysis. Deep learning810

techniques used for classifying images extracted from social media posts could811

contribute to both the Event detection (by adding up to existing text-based812

volumes) and the filtering (in case additional information is provided in the813

form of a photo). Available services such as Google Vision or Microsoft Cog-814

nitive Services could be used by a separate module that classifies the images,815

and a new study would be required to assess the performance improvements,816

if any. This approach could leverage widely used image-center social media817

like Instagram, as a data source for novel emergency management services.818
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Figure 1: 10-year return level of daily precipitation (mm) according to E-OBS data set
for the period 1981-2010 (Groenemeijer et al, 2016 [8]). The red box indicates the region
investigated in Figure 3.
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Figure 2: Flow of the proposed set of services. The diagram is realized according to the
Business Process Modeling Notation (BPMN).

34



Figure 3: Probabilistic forecasts for accumulated precipitation to exceed 50 mm/24h.
Every forecast is valid on 24th of November 2016 but they have different lead times: 234,
162, 90, and 30 hours. Analysis time and lead time is shown in parentheses. Black points
mark Barcelona (leftmost one), Turin and Milan, and blue lines mark the rivers Loire
(France) and Po (Italy).
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Figure 4: Tweets volume in the considered time range (from 19th to 26th of November,
2016).

Figure 5: Tweet localization in the considered time range (from 19th to 26th of November,
2016).
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Figure 6: Tweet localization in the considered time range (from 19th to 26th of November,
2016), focusing on the affected areas.

Figure 7: Key Phrases (23 November)
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Figure 8: Key Phrases (24 November)

Figure 9: Key Phrases (25 November)
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Figure 10: Key Phrases (26 November)
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Figure 11: Comparison between Monitoring and Anomaly Detection streams for Italian,
between November 21st and 27th 2016. The Monitoring stream (blue) contains Tweets
related to weather conditions and Floods. The Anomaly Detection stream (gray) contains
only Tweets related to Floods.
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Figure 12: Results of anomaly detection using ESD test on the 1-hour series of Italian
Tweets concerning Floods, between November 21st and 27th 2016. Anomalies appear as
large dots. First anomaly is detected on November 24th at 11:00 local time. Dotted line
marks the Event time according to Copernicus: November 24, 18:00 local time.
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ESD anomaly detection: Italian, Flood, 15−minute series

Figure 13: Results of anomaly detection using ESD test on the 15-minute series of Italian
tweets concerning Floods, between November 24th and 26th 2016. Anomalies appear as
large dots. First confirmation of 1-hour anomaly is obtained on November 24th at 11:30
local time. Dotted line marks the Event time according to Copernicus: November 24,
18:00 local time.
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Figure 14: Performance obtained for a selection of annotated Tweets collected before and
during the Piedmont flood in November 2016. The different lines refer to different datasets
used for training the fasttext algorithm. “Italian”: Tweets only in Italian are considered,
“all”: Tweets from all the 26 CrisisLexT26 events, “nat. hazards” Tweets related only to
natural hazards events. The dip in performances at -46 and 52 hours is connected with
the very low number of tweets connected with those intervals (1 and 4 tweets).
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