Journal article Open Access

Connectivity Analysis in Clustered Wireless Sensor Networks Powered by Solar Energy

Mekikis, Prodomos-Vasileios; Kartsakli, Elli; Antonopoulos, Angelos; Alonso, Luis; Verikoukis, Christos


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Wireless-Powered Sensor Network</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Connectivity</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Clustered Poisson Process</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Battery-less sensors</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Solar Harvesting</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Zero-Energy Networks</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Stochastic Geometry</subfield>
  </datafield>
  <controlfield tag="005">20190126013244.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">Grant numbers : SPOT5G (TEC2017-87456-P). © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.</subfield>
  </datafield>
  <controlfield tag="001">2549598</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Iquadrat Informatica S.L.</subfield>
    <subfield code="a">Kartsakli, Elli</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)</subfield>
    <subfield code="a">Antonopoulos, Angelos</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Universitat Politècnica de Catalunya (UPC)</subfield>
    <subfield code="a">Alonso, Luis</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)</subfield>
    <subfield code="a">Verikoukis, Christos</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">2268342</subfield>
    <subfield code="z">md5:4f9196fe60feaf181d5cbc31e5141314</subfield>
    <subfield code="u">https://zenodo.org/record/2549598/files/Connectivity Analysis in Clustered Wireless.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-04-01</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:2549598</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">2389-2401</subfield>
    <subfield code="n">4</subfield>
    <subfield code="p">IEEE Transactions on Wireless Communications</subfield>
    <subfield code="v">17</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Iquadrat Informatica S.L.</subfield>
    <subfield code="a">Mekikis, Prodomos-Vasileios</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Connectivity Analysis in Clustered Wireless Sensor Networks Powered by Solar Energy</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">737434</subfield>
    <subfield code="a">Innovative smart components, modules and appliances for a truly connected, efficient and secure smart grid.</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">692480</subfield>
    <subfield code="a">Flexible FE/BE Sensor Pilot Line for the Internet of Everything</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">780315</subfield>
    <subfield code="a">Smart End-to-end Massive IoT Interoperability, Connectivity and Security</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Emerging 5G communication paradigms, such as machine-type communication, have triggered an explosion in ad-hoc applications that require connectivity among the nodes of wireless networks. Ensuring a reliable network operation under fading conditions is not straightforward, as the transmission schemes and the network topology, i.e., uniform or clustered deployments, affect the performance and should be taken into account. Moreover, as the number of nodes increases, exploiting natural energy sources and wireless energy harvesting (WEH) could be the key to the elimination of maintenance costs while also boosting immensely the network lifetime. In this way, zero-energy wireless-powered sensor networks (WPSNs) could be achieved, if all components are powered by green sources. Hence, designing accurate mathematical models that capture the network behavior under these circumstances is necessary to provide a deeper comprehension of such networks. In this paper, we provide an analytical model for the connectivity in a large-scale zero-energy clustered WPSN under two common transmission schemes, namely, unicast and broadcast. The sensors are WEH-enabled, while the network components are solar-powered and employ a novel energy allocation algorithm. In our results, we evaluate the tradeoffs among the various scenarios via extensive simulations and identify the conditions that yield a fully connected zero-energy WPSN.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1109/TWC.2018.2794963</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
18
26
views
downloads
Views 18
Downloads 26
Data volume 59.0 MB
Unique views 17
Unique downloads 22

Share

Cite as