Journal article Open Access

COPS: Cooperative Statistical Misbehavior Mitigation in Network-Coding-aided Wireless Networks

Antonopoulos, Angelos; Verikoukis, Christos


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Misbehavior detection</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">packet forwarding</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">cyber-physical systems</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">malicious</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">selfish</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">non-parametric statistics</subfield>
  </datafield>
  <controlfield tag="005">20200120165313.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">Grant numbers : CellFive (TEC2014-60130-P).© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.</subfield>
  </datafield>
  <controlfield tag="001">2549580</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)</subfield>
    <subfield code="a">Verikoukis, Christos</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1010934</subfield>
    <subfield code="z">md5:05bfd57ddfaf1970f790da4957411e0b</subfield>
    <subfield code="u">https://zenodo.org/record/2549580/files/COPS_Cooperative Statistical Misbehavior.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-04-01</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:2549580</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">1436-1446</subfield>
    <subfield code="n">4</subfield>
    <subfield code="p">IEEE Transactions on Industrial Informatics</subfield>
    <subfield code="v">14</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)</subfield>
    <subfield code="a">Antonopoulos, Angelos</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">COPS: Cooperative Statistical Misbehavior Mitigation in Network-Coding-aided Wireless Networks</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">737434</subfield>
    <subfield code="a">Innovative smart components, modules and appliances for a truly connected, efficient and secure smart grid.</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">722429</subfield>
    <subfield code="a">5G System Technological Enhancements Provided by Fiber Wireless Deployments</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">692480</subfield>
    <subfield code="a">Flexible FE/BE Sensor Pilot Line for the Internet of Everything</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">780315</subfield>
    <subfield code="a">Smart End-to-end Massive IoT Interoperability, Connectivity and Security</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The altruistic user behavior and the isolation of malicious users are fundamental requirements for the proper operation of any cooperative network. However, the widespread use of new communication techniques that improve the cooperative performance (e.g., network coding) hinders the application of traditional schemes on malicious users detection, which are mainly based on packet overhearing. In this paper, we introduce a cooperative nonparametric statistical framework, namely COPS, for the mitigation of user misbehavior in network coding scenarios. Given that the behavior of adversaries cannot be characterized by certain probability distributions, the proposed scheme exploits two well-known nonparametric statistical methods, i.e., Kruskal-Wallis analysis and Conover-Iman multiple comparisons, for the detection and identification, respectively, of malicious users in the network. It is worth noting that the COPS framework does not require monitoring of the wireless channel and additional overhead, as its operation is based on the processing of the existing control packets. We assess the performance of the proposed scheme in various scenarios, showing that COPS is able to effectively handle attacks in the network, even when malicious users adopt a smart probabilistic misbehavior.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1109/TII.2017.2754579</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
45
34
views
downloads
Views 45
Downloads 34
Data volume 34.4 MB
Unique views 42
Unique downloads 32

Share

Cite as