Journal article Open Access

COPS: Cooperative Statistical Misbehavior Mitigation in Network-Coding-aided Wireless Networks

Antonopoulos, Angelos; Verikoukis, Christos


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/2549580</identifier>
  <creators>
    <creator>
      <creatorName>Antonopoulos, Angelos</creatorName>
      <givenName>Angelos</givenName>
      <familyName>Antonopoulos</familyName>
      <affiliation>Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)</affiliation>
    </creator>
    <creator>
      <creatorName>Verikoukis, Christos</creatorName>
      <givenName>Christos</givenName>
      <familyName>Verikoukis</familyName>
      <affiliation>Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)</affiliation>
    </creator>
  </creators>
  <titles>
    <title>COPS: Cooperative Statistical Misbehavior Mitigation in Network-Coding-aided Wireless Networks</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <subjects>
    <subject>Misbehavior detection</subject>
    <subject>packet forwarding</subject>
    <subject>cyber-physical systems</subject>
    <subject>malicious</subject>
    <subject>selfish</subject>
    <subject>non-parametric statistics</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2018-04-01</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/2549580</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1109/TII.2017.2754579</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;The altruistic user behavior and the isolation of malicious users are fundamental requirements for the proper operation of any cooperative network. However, the widespread use of new communication techniques that improve the cooperative performance (e.g., network coding) hinders the application of traditional schemes on malicious users detection, which are mainly based on packet overhearing. In this paper, we introduce a cooperative nonparametric statistical framework, namely COPS, for the mitigation of user misbehavior in network coding scenarios. Given that the behavior of adversaries cannot be characterized by certain probability distributions, the proposed scheme exploits two well-known nonparametric statistical methods, i.e., Kruskal-Wallis analysis and Conover-Iman multiple comparisons, for the detection and identification, respectively, of malicious users in the network. It is worth noting that the COPS framework does not require monitoring of the wireless channel and additional overhead, as its operation is based on the processing of the existing control packets. We assess the performance of the proposed scheme in various scenarios, showing that COPS is able to effectively handle attacks in the network, even when malicious users adopt a smart probabilistic misbehavior.&lt;/p&gt;</description>
    <description descriptionType="Other">Grant numbers : CellFive (TEC2014-60130-P).© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/737434/">737434</awardNumber>
      <awardTitle>Innovative smart components, modules and appliances for a truly connected, efficient and secure smart grid.</awardTitle>
    </fundingReference>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/722429/">722429</awardNumber>
      <awardTitle>5G System Technological Enhancements Provided by Fiber Wireless Deployments</awardTitle>
    </fundingReference>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/692480/">692480</awardNumber>
      <awardTitle>Flexible FE/BE Sensor Pilot Line for the Internet of Everything</awardTitle>
    </fundingReference>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/780315/">780315</awardNumber>
      <awardTitle>Smart End-to-end Massive IoT Interoperability, Connectivity and Security</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
39
24
views
downloads
Views 39
Downloads 24
Data volume 24.3 MB
Unique views 36
Unique downloads 23

Share

Cite as