Dataset Open Access

Rotation Equivariant CNNs for Digital Pathology

B. S. Veeling, J. Linmans, J. Winkens, T. Cohen, M. Welling

Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="" xmlns:oai_dc="" xmlns:xsi="" xsi:schemaLocation="">
  <dc:creator>B. S. Veeling, J. Linmans, J. Winkens, T. Cohen, M. Welling</dc:creator>
  <dc:description>The PatchCamelyon benchmark is a new and challenging image classification dataset. It consists of 327.680 color images (96 x 96px) extracted from histopathologic scans of lymph node sections. Each image is annoted with a binary label indicating presence of metastatic tissue. PCam provides a new benchmark for machine learning models: bigger than CIFAR10, smaller than imagenet, trainable on a single GPU.</dc:description>
  <dc:title>Rotation Equivariant CNNs for Digital Pathology</dc:title>
Views 2,861
Downloads 18,566
Data volume 41.6 TB
Unique views 2,553
Unique downloads 4,566


Cite as