Dataset Open Access

Rotation Equivariant CNNs for Digital Pathology

B. S. Veeling, J. Linmans, J. Winkens, T. Cohen, M. Welling


JSON-LD (schema.org) Export

{
  "description": "<p>The PatchCamelyon benchmark is a new and challenging image classification dataset. It consists of 327.680 color images (96 x 96px) extracted from histopathologic scans of lymph node sections. Each image is annoted with a binary label indicating presence of metastatic tissue. PCam provides a new benchmark for machine learning models: bigger than CIFAR10, smaller than imagenet, trainable on a single GPU.</p>", 
  "license": "https://opensource.org/licenses/MIT", 
  "creator": [
    {
      "affiliation": "University of Amsterdam", 
      "@type": "Person", 
      "name": "B. S. Veeling, J. Linmans, J. Winkens, T. Cohen, M. Welling"
    }
  ], 
  "url": "https://zenodo.org/record/2546921", 
  "datePublished": "2018-09-26", 
  "@context": "https://schema.org/", 
  "distribution": [
    {
      "contentUrl": "https://zenodo.org/api/files/60940a3d-05a6-48be-a9d3-fe90fc8295fc/camelyonpatch_level_2_split_test_meta.csv", 
      "encodingFormat": "csv", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/60940a3d-05a6-48be-a9d3-fe90fc8295fc/camelyonpatch_level_2_split_test_x.h5.gz", 
      "encodingFormat": "gz", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/60940a3d-05a6-48be-a9d3-fe90fc8295fc/camelyonpatch_level_2_split_test_y.h5.gz", 
      "encodingFormat": "gz", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/60940a3d-05a6-48be-a9d3-fe90fc8295fc/camelyonpatch_level_2_split_train_meta.csv", 
      "encodingFormat": "csv", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/60940a3d-05a6-48be-a9d3-fe90fc8295fc/camelyonpatch_level_2_split_train_x.h5.gz", 
      "encodingFormat": "gz", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/60940a3d-05a6-48be-a9d3-fe90fc8295fc/camelyonpatch_level_2_split_train_y.h5.gz", 
      "encodingFormat": "gz", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/60940a3d-05a6-48be-a9d3-fe90fc8295fc/camelyonpatch_level_2_split_valid_meta.csv", 
      "encodingFormat": "csv", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/60940a3d-05a6-48be-a9d3-fe90fc8295fc/camelyonpatch_level_2_split_valid_x.h5.gz", 
      "encodingFormat": "gz", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/60940a3d-05a6-48be-a9d3-fe90fc8295fc/camelyonpatch_level_2_split_valid_y.h5.gz", 
      "encodingFormat": "gz", 
      "@type": "DataDownload"
    }
  ], 
  "identifier": "https://doi.org/10.1007/978-3-030-00934-2_24", 
  "@id": "https://doi.org/10.1007/978-3-030-00934-2_24", 
  "@type": "Dataset", 
  "name": "Rotation Equivariant CNNs for Digital Pathology"
}
2,658
16,481
views
downloads
Views 2,658
Downloads 16,481
Data volume 38.6 TB
Unique views 2,368
Unique downloads 4,072

Share

Cite as