Preprint Open Access

Palindromic-Type Pandigital Patterns in Pythagorean Triples

Inder J. Taneja

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Pythagorean triples, Pandigital patterns, Palindromic-type patterns, Pandigital patterns</subfield>
  <controlfield tag="005">20200120160725.0</controlfield>
  <controlfield tag="001">2544551</controlfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">783580</subfield>
    <subfield code="z">md5:41f90490ee7550488814b403052b5cdd</subfield>
    <subfield code="u"></subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-01-20</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o"></subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Formarly,  Professor of Mathematics, Federal University of Santa Catarina, Florianópolis, SC, Brazil</subfield>
    <subfield code="a">Inder J. Taneja</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Palindromic-Type  Pandigital Patterns in Pythagorean Triples</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u"></subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;This &amp;nbsp;paper brings examples of &lt;strong&gt;Palindromic-Type Pandigital Patterns in Pythagorean Triples&lt;/strong&gt;. These are constructed in a padronized way.&amp;nbsp;This means that in all the &lt;strong&gt;patterns&lt;/strong&gt; we have &lt;strong&gt;pandigital palindromic-type expressions&lt;/strong&gt;. The only change appears is in the middle terms and the last numbers of the first and third values. The results are obtained in such a way that we have patterns as: 9, 99, 999, 9999, 99999, etc. The construction is based on a procedure well known in the literature. There is very much uniformity among the results. In this work we have two different types of &lt;strong&gt;palindromic-type expressions&lt;/strong&gt;, such &amp;nbsp;as blocks of &lt;strong&gt;121&lt;/strong&gt;, &lt;strong&gt;12321&lt;/strong&gt;,&amp;nbsp; &lt;strong&gt;1234321&lt;/strong&gt;, ..., and blocks of &lt;strong&gt;10201&lt;/strong&gt;, &lt;strong&gt;102030201&lt;/strong&gt;, &lt;strong&gt;1020304030201&lt;/strong&gt;, .... This work is a combinations of author&amp;#39;s previous two works.&lt;/p&gt;</subfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.2544550</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.2544551</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">preprint</subfield>
All versions This version
Views 440440
Downloads 157157
Data volume 123.0 MB123.0 MB
Unique views 383383
Unique downloads 125125


Cite as