
dividiti.com

or how to bring some order to R&D chaos and complexity

cKnowledge.org: accelerating open science and AI

with automated, portable, customizable and reusable

research components and workflows

Successful computer system

must be carefully co-designed

for real workloads

such as AI and ML

Many cross-disciplinary

R&D groups work on

these topics in 2018

Hardware

• All major vendors

(NVIDIA, Intel, Google,

ARM, Intel, IBM, AMD …)

AI models

Many groups in

academia & industry

(Google, OpenAI,

Microsoft, Facebook …)

AI software

• AI frameworks

(TensorFlow, MXNet,

PyTorch, CNTK, Theano)

• AI libraries

(cuDNN, libDNN, ArmCL,

OpenBLAS)

Integration/services

• Cloud services

(AWS, Google, Azure ...)

Data sets

Hardware Algorithms

LibrariesLibraries

Models

while trading off multiple constraints

(accuracy, speed, energy, size, costs)

and maximizing ROI

(faster time to market,

R&D sustainability,

much better than all competitors)

Many groups are working to co-design efficient SW/HW stacks for emerging workloads

Helping

the society

Healthcare

Agriculture

Finances

Automotive

Aerospace

Meteorology

Retail

Robotics

…

However, system complexity is growing rapidly

Mobile device Server

Data centers

Available libraries / skeletons

Compilers

Binary or byte code

Hardware,

simulators

Run-time environment

Run-time state

of the system

Inputs

Existing frameworks / algorithms

Various models

User front-end

(cloud, GRID, supercomputer, etc)

Algorithm / source code

Google Cloud, AWS, Microsoft Azure, XSEDE, PRACE, Watson…

Numerous models for TensorFlow, PyTorch, CNTK, MXNet

CUDA, MPI, OpenMP, TBB, OpenCL, StarPU, OmpSs …

C, C++, Java, Python, Fortran, byte code, assembler …

LLVM, GCC, ICC, Rose, PGI, functional programming …

cuBLAS, BLAS, MAGMA, ViennaCL, CLBlast, cuDNN, openBLAS,

clBLAS, libDNN, tinyDNN, ARM compute lib, libxsmm, TVM …

diverse hardware: heterogeneous, out-of-order, caches

(CPU, GPU, GPGPU, TPU, DSP, FPGA …)

Linux (CentOS, Ubuntu, RedHat, SUSE, Debian),

MacOS, Windows, BSD, Android …

1000+ AI/ML/systems papers published every year with new techniques and solutions

Many cross-disciplinary

R&D groups work on

these topics in 2018

Hardware

• All major vendors

(NVIDIA, Intel, Google,

ARM, Intel, IBM, AMD …)

AI models

Many groups in

academia & industry

(Google, OpenAI,

Microsoft, Facebook …)

AI software

• AI frameworks

(TensorFlow, MXNet,

PyTorch, CNTK, Theano)

• AI libraries

(cuDNN, libDNN, ArmCL,

OpenBLAS)

Integration/services

• Cloud services

(AWS, Google, Azure ...)

Numerous papers,

initiatives, tools and events

Numerous available models, data sets,

benchmarks, libraries and tools

Public optimization competitions

(Kaggle, LPIRC, SCC)

Popular online learning platforms

(Coursera, code.org)

?
Helping

the society

Healthcare

Agriculture

Finances

Automotive

Aerospace

Meteorology

Retail

Robotics

…

1000+ AI/ML/systems papers published every year with new techniques and solutions

Many cross-disciplinary

R&D groups work on

these topics in 2018

Hardware

• All major vendors

(NVIDIA, Intel, Google,

ARM, Intel, IBM, AMD …)

AI models

Many groups in

academia & industry

(Google, OpenAI,

Microsoft, Facebook …)

AI software

• AI frameworks

(TensorFlow, MXNet,

PyTorch, CNTK, Theano)

• AI libraries

(cuDNN, libDNN, ArmCL,

OpenBLAS)

Integration/services

• Cloud services

(AWS, Google, Azure ...)

Numerous papers,

initiatives, tools and events

Numerous available models, data sets,

benchmarks, libraries and tools

Public optimization competitions

(Kaggle, LPIRC, SCC)

Popular online learning platforms

(Coursera, code.org)

?

Can we now co-design

efficient systems?

Can we use AI in practice?

Can we now co-design

efficient systems?

Can we use AI in practice?

Helping

the society

Healthcare

Agriculture

Finances

Automotive

Aerospace

Meteorology

Retail

Robotics

…

Very few techniques are adopted by industry. They are often not ready due to:

Many cross-disciplinary

R&D groups work on

these topics in 2018

Hardware

• All major vendors

(NVIDIA, Intel, Google,

ARM, Intel, IBM, AMD …)

AI models

Many groups in

academia & industry

(Google, OpenAI,

Microsoft, Facebook …)

AI software

• AI frameworks

(TensorFlow, MXNet,

PyTorch, CNTK, Theano)

• AI libraries

(cuDNN, libDNN, ArmCL,

OpenBLAS)

Integration/services

• Cloud services

(AWS, Google, Azure ...)

• Technological chaos: continuously

changing algorithm/model/SW/HW stack

• Non-representative / outdated training sets

• No common experimental frameworks

and established methodologies

which can adapt to this chaos

• Numerous reproducibility issues

• Very little artifact reuse

• Very little tech. transfer from academia

(toy examples and too many papers)

Docker

images

Docker

images
VM

images

VM

images

• Docker and VM images hide the mess

but do not solve above problems

Public outcry in academia and industry

about research and education crisis

Helping

the society

Healthcare

Agriculture

Finances

Automotive

Aerospace

Meteorology

Retail

Robotics

…

Result

Program

Compiler

Binary and libraries

Architecture

Run-time environment

Algorithm

Idea

Worse: practically all projects develop some soft from scratch to perform similar tasks!

Data setState of the system

image corner detection

matmul OpenCL

compression

neural network CUDA

Ad-hoc scripts

to compile and

run a program

or a benchmark

Have some

common meta:

which datasets

can use, how to

compile, CMD, …

image-jpeg-0001

bzip2-0006

txt-0012

video-raw-1280x1024

Ad-hoc dirs for data

sets with some ad-hoc

scripts to find them,

extract features, etc

Have some

(common)

meta:

filename, size,

width, height,

colors, …

Ad-hoc scripts

to install packages

or set up environment

for code and data deps

on a given platform

Have some

common meta:

compilation,

linking and

optimization

flags

Creating ad-hoc project with many

add-hoc scripts and README files,

and sharing it via GitHub, GitLab, ...

doesn’t make it easily portable,

reusable and customizable!

Ad-hoc dirs and

scripts to record

and analyze

experiments

cvs speedups

txt hardware counters

xls table with graph

Have some

common meta:

features,

characteristics,

optimizations

GCC V8.1

LLVM V7.0

Intel Compilers 2017

Very often software from published papers die when students leave or projects finish!

image corner detection

matmul OpenCL

compression

neural network CUDA

meta.json

image-jpeg-0001

bzip2-0006

txt-0012

video-raw-1280x1024

meta.json

meta.json

meta.json

GCC V8.1

LLVM V7.0

Intel Compilers 2017

Python module

“program”

with functions:

compile and run

Python module

“soft”

with function:

setup

Python module

“dataset”

with function:

extract_features

Python module

“experiment”

with function:

add, get, analyze

Collective Knowledge concept (CK): share code and data as reusable components

data UID and alias

cvs speedups

txt hardware counters

xls table with graph

Provide unified Python APIs and JSON meta

descriptions for similar code and data objects

image corner detection

matmul OpenCL

compression

neural network CUDA

image-jpeg-0001

bzip2-0006

txt-0012

video-raw-1280x1024

GCC V8.1

LLVM V7.0

Intel Compilers 2017

Python module

“program”

with functions:

compile and run

Python module

“soft”

with function:

setup

Python module

“dataset”

with function:

extract_features

Python module

“experiment”

with function:

add, get, analyze

CK framework: help users handle reusable research components from command line

data UID and alias

JSON

input

JSON

input

JSON

input

JSON

input

JSON

output

JSON

output

JSON

output

JSON

output

CK: small python module (~200Kb); no extra dependencies; Linux; Win; MacOS

$ ck {function} {module UID}:{data} @input.json

meta.json

meta.json

meta.json

meta.json

cvs speedups

txt hardware counters

xls table with graph

cKnowledge.org/shared-modules.html

image corner detection

matmul OpenCL

compression

neural network CUDA

image-jpeg-0001

bzip2-0006

txt-0012

video-raw-1280x1024

GCC V8.1

LLVM V7.0

Intel Compilers 2017

Python module

“program”

with functions:

compile and run

Python module

“soft”

with function:

setup

Python module

“dataset”

with function:

extract_features

Python module

“experiment”

with function:

add, get, analyze

data UID and alias

JSON

input

JSON

output

CK: small python module (~200Kb); no extra dependencies; Linux; Win; MacOS

Assemble workflows from shared components

meta.json

meta.json

meta.json

meta.json

cvs speedups

txt hardware counters

xls table with graph

cKnowledge.org/shared-programs.html

CK framework: help users develop research workflows from shared components

setupsetup softsoft

findfind

extract featuresextract features
datasetdataset

compilecompile

runrun

addadd

replayreplay
experimentexperiment

autotuneautotune

programprogram

TensorFlowTensorFlow

PyTorchPyTorch

ARM compute libARM compute lib

image classificationimage classification

object detectionobject detection

ImageNetImageNet

Car video streamCar video stream

Real surveillance camera Real surveillance camera

GEMM OpenCLGEMM OpenCL

convolution CPUconvolution CPU

performance resultsperformance results

training / accuracytraining / accuracy

bugsbugs

with some desc.with some desc.

with some desc.with some desc.

with some desc.with some desc.

with some desc.with some desc.

with some desc.with some desc.

with some desc.with some desc.

with some desc.with some desc.

with some desc.with some desc.

with some desc.with some desc.

with some desc.with some desc.

CK directory structure

CK framework: provide simple and unified directory structure for research projects

CK framework: provide simple and unified directory structure for research projects

setup soft

find

extract features
dataset

compile

run

add

replay
experiment

autotune

program

TensorFlow

PyTorch

ARM compute lib

image classification

object detection

ImageNet

Car video stream

Real surveillance camera

GEMM OpenCL

convolution CPU

performance results

training / accuracy

bugs

JSON file

JSON file

JSON file

JSON file

JSON file

JSON file

JSON file

JSON file

JSON file

JSON file

/ 1st level directory – CK modules / 2nd level dir - CK entries / CK meta info

Python modulePython moduleJSON APIJSON API holder for original artifactholder for original artifact CK metaCK meta

JSON file

JSON file

JSON file

cKnowledge.org/shared-repos.html

We've already converted multiple AI frameworks, artifacts and programs to the CK

ICC 17.0

CUDA 9.0

GCC 8.0

LLVM 7.0

Databases, local repositories

A
d

-h
o

c
in

it

sc
ri

p
ts

Ad-hoc

scripts to

process CSV,

XLS, TXT, etc.

Ad-hoc experimental workflows

P
ro

g
ra

m
C

K
 p

ro
g

ra
m

C
K

 p
ip

e
li

n
e

CK

compiler

CK AI

framework

CK math

library CK experiment

Caffe

OpenCL

Caffe CUDA

TensorFlow

CPU/CUDA

MAGMA

cuBLAS

OpenBLAS

ViennaCL

CLBlast Stat. analysis,

predictive

analytics,

visualization

http://cKnowledge.org/shared-programs.html

• github.com/ctuning/ck-scc18

• github.com/ctuning/ck-tensorflow

• github.com/dividiti/ck-caffe

We've already converted multiple AI frameworks, artifacts and programs to the CK

ICC 17.0

CUDA 9.0

GCC 8.0

LLVM 7.0

Databases, local repositories

A
d

-h
o

c
in

it

sc
ri

p
ts

Ad-hoc

scripts to

process CSV,

XLS, TXT, etc.

U
n

if
ie

d
 A

P
I

(i
n

p
u

t)

U
n

if
ie

d
 A

P
I

(i
n

p
u

t)
 Read

program

meta

Detect all software

dependencies; ask user

If multiple versions exists

Prepare

environment

Compile

program

Run

program

U
n

if
ie

d
 A

P
I

(o
u

tp
u

t)

U
n

if
ie

d
 A

P
I

(o
u

tp
u

t)

Ad-hoc experimental workflows

P
ro

g
ra

m
C

K
 p

ro
g

ra
m

C
K

 p
ip

e
li

n
e

CK

compiler

CK AI

framework

CK math

library CK experiment

JSONJSON

CK program module can automatically adapt

to underlying environment via dependencies

Source files and auxiliary scriptsSource files and auxiliary scripts

CK program entry (native directory)CK program entry (native directory)

.cm/meta.json – describes soft dependencies ,
data sets, and how to compile and run this program
.cm/meta.json – describes soft dependencies ,
data sets, and how to compile and run this program

CK entries associated with a given

module describe a given object

using meta.json while storing all

necessary files and sub-directories

Caffe

OpenCL

Caffe CUDA

TensorFlow

CPU/CUDA

MAGMA

cuBLAS

OpenBLAS

ViennaCL

CLBlast Stat. analysis,

predictive

analytics,

visualization

$ ck pull repo:ck-scc18
$ ck run program:seissol-proxy
$ ck show env

• github.com/ctuning/ck-scc18

• github.com/ctuning/ck-tensorflow

• github.com/dividiti/ck-caffe

CK framework: automatically adapt workflows to any complex software and hardware

local / env / 03ca0be16962f471 / env.sh
Tags: compiler,cuda,v8.0

local / env / 03ca0be16962f471 / env.sh
Tags: compiler,cuda,v8.0

local / env / 0a5ba198d48e3af3 / env.bat
Tags: lib,blas,cublas,v8.0

local / env / 0a5ba198d48e3af3 / env.bat
Tags: lib,blas,cublas,v8.0

Soft entries in CK describe how

to detect if a given software is

already installed, how to set up

all its environment including

all paths (to binaries, libraries,

include, aux tools, etc),

and how to detect its version

$ ck detect soft --tags=compiler,cuda$ ck detect soft --tags=compiler,cuda

$ ck detect soft:compiler.gcc$ ck detect soft:compiler.gcc

$ ck detect soft:compiler.llvm$ ck detect soft:compiler.llvm

$ ck list soft:compiler*$ ck list soft:compiler*

$ ck detect soft:lib.cublas$ ck detect soft:lib.cublas

Env entries are created in CK local

repo for all found software

instances together with their meta

and an auto-generated environment

script env.sh (on Linux) or env.bat

(on Windows)

Package entries describe how to

install a given software if it is not

already installed (using CK Python

plugin together with install.sh

script on Linux host or install.bat

on Windows host). Can be

connected with spack!

$ ck install package:caffemodel-bvlc-googlenet$ ck install package:caffemodel-bvlc-googlenet

$ ck install package:imagenet-2012-val$ ck install package:imagenet-2012-val

$ ck install package:lib-tensorflow-cuda$ ck install package:lib-tensorflow-cuda

$ ck list package:*caffemodel*$ ck list package:*caffemodel*

L
o

ca
l C

K
 r

ep
o

L
o

ca
l C

K
 r

ep
o

$ ck search soft --tags=blas$ ck search soft --tags=blas

$ ck show env$ ck show env

$ ck show env –tags=cublas$ ck show env –tags=cublas

$ ck rm env:* –tags=cublas$ ck rm env:* –tags=cublas

$ ck search package –tags=caffe$ ck search package –tags=caffe

$ ck list package:*tensorflow*$ ck list package:*tensorflow* $ ck install package:lib-caffe-bvlc-master-cuda-universal$ ck install package:lib-caffe-bvlc-master-cuda-universal

github.com/ctuning/ck/wiki/Portable-workflows

Missing part in many workflows/package managers: detect and plug in already installed software

CK workflows: help users autotune the whole AI/ML/SW/HW stack!

Collaboration with Raspberry Pi foundation: using CK to teach autotuning and ML:

cKnowledge.org/rpi-crowd-tuning

CK Python modules (wrappers) with a unified JSON API

C
K

 i
n

p
u

t
(J

S
O

N
/d

ic
t)

C
K

 o
u

tp
u

t
(J

S
O

N
/d

ic
t)Unified input

Behavior

Choices

Features

State

Action

Unified output

Behavior

Choices

Features

State

b = B(c , f , s)
… … … …

Formalized function B

of a behavior of any CK object

Flattened CK JSON vectors

(dict converted to vector)

to simplify statistical analysis,

machine learning

and data mining

Some

actions

Tools (compilers, profilers, etc) Generated files

Chain CK modules to implement research workflows such as multi-objective autotuning and co-design

Choose

exploration

strategy

Perform SW/HW DSE

(math transforms,

skeleton params,

compiler flags,

transformations …)

Perform

stat.

analysis

Detect

(Pareto)

frontier

Model

behavior,

predict

optimizations

Reduce

complexity

Set

environment

for a given

tool version

CK program module

with pipeline function

Compile

program

Run

code

i

i

i i

First expose coarse grain high-level choices, features, system state and behavior characteristics

Crowdsource benchmarking and random exploration across diverse inputs and devices;

Keep best species (AI/SW/HW choices); model behavior; predict better optimizations and designs

Gradually expose more information and provide specification (top-down approach)

Autotuning and machine learning specification:

{

"characteristics":{
"execution times": ["10.3","10.1","13.3"],
"code size": "131938", ...},

"choices":{
"os":"linux", "os version":"2.6.32-5-amd64",
"compiler":"gcc", "compiler version":"4.6.3",
"compiler_flags":"-O3 -fno-if-conversion",
"platform":{"processor":"intel xeon e5520",

"l2":"8192“, ...}, ...},
"features":{

"semantic features": {"number_of_bb": "24", ...},
"hardware counters": {"cpi": "1.4" ...}, ... }

"state":{
"frequency":"2.27", ...}

}

CK flattened JSON key

##characteristics#execution_times@1

"flattened_json_key”:{
"type": "text”|"integer" | “float" | "dict" | "list”

| "uid",
"characteristic": "yes" | "no",
"feature": "yes" | "no",
"state": "yes" | "no",
"has_choice": "yes“ | "no",
"choices": [list of strings if categorical

choice],
"explore_start": "start number if numerical

range",
"explore_stop": "stop number if numerical

range",
"explore_step": "step if numerical range",
"can_be_omitted" : "yes" | "no"
...

}

Crowdsource experiments with the help of volunteers

across diverse models, data sets and platforms

Repositories of customizable, portable

and reusable research components with CK API

AI frameworks

TensorFlow

Caffe

Caffe2

CNTK

Torch

MXNet

Models

AlexNet

GoogleNet

VGG

ResNet

SqueezeNet

SqueezeDet

SSD

MobileNets

Data sets

KITTI

COCO

VOC

ImageNet

Real life objects

from the

community

Libraries

OpenBLAS

ViennaCL

CLBlast

cuBLAS

cuDNN

TVM

gemmlowp

ArmCL

CK JSON APICK JSON API
CK JSON API

CK JSON API
Targets

C
K

 J
S

O
N

 A
P

I

Linux

MacOS

Windows

Android

…

…

… …

…

Hardware

C
K

 J
S

O
N

 A
P

I

CPU

DSP

GPU

NN accelerators

…
FPGA

Customizable CK workflows

for real-world user tasks

Assemble scenarios such as image classifica6on as LEGO™

Simulators

Models

CK JSON API

Software

CK JSON API
Data sets

CK JSON API

Hardware

CK JSON API

Present best results, workflows and components

on a live scoreboard for fair comparison and reuse

cKnowledge.org/repo

CK long-term goal and vision: reboot and accelerate open science

Share complete workflows along with published papers

to automate artifact evaluation

and help the community build upon prior work

Help students learn multidisciplinary techniques,

quickly prototype new ones,

validate them in practice with companies,

and even contribute back new research components

Help companies select the most appropriate workflows,

save R&D costs, accelerate adoption of new techniques!

dividiti: connecting researchers and companies to solve real problems using CK

Non-profit community service

• Developing an open-source framework

for collaborative R&D (Collective Knowledge)

• Exchanging portable and reusable research

components (code, data and models)

• Assembling AI/ML workflows

for real problems

• Crowdsourcing AI/SW/HW autotuning and

co-design; helping mlperf.org

• Helping to validate/reproduce papers

Business

• Helping companies to select the most

efficient AI/ML/SW/HW stack for their

products, perform reproducible hackathons

and competitions, spot promising

techniques, validate them in practice, and

speed up R&D of innovative products

dividiti.com:

Mission: automate AI/SW/HW

co-design, reboot open science

and accelerate tech. transfer

2018: many cross-

disciplinary R&D groups

(ML/AI/systems)

AI hardware

• All major vendors

(Google, NVIDIA, ARM,

Intel, IBM, Qualcomm,

Apple, AMD …)

AI models

Many groups in

academia & industry

(Google, OpenAI,

Microsoft, Facebook …)

AI software

• AI frameworks

(TensorFlow, MXNet,

PyTorch, CNTK, Theano)

• AI libraries

(cuDNN, libDNN, ArmCL,

OpenBLAS)

AI integration/services

• Cloud services

(AWS, Google, Azure ...)

Real

use-cases

Healthcare

Agriculture

Finances

Automotive

Aerospace

Meteorology

Retail

Robotics

…

dividiti: connecting researchers and companies to solve real problems using CK

Recent practical use cases of CK

as a common research platform

cKnowledge.org/partners

Organizing reproducible tournaments to solve real problems and share all components

cKnowledge.org/request

Finding the most efficient AI/SW/HW stacks

across diverse models, data sets and platforms

via open competitions,

share them as reusable CK components

and visualize on a public scoreboard

Collective Knowledge Platform

Interdisciplinary

community

Organizers (A-Z)

Luis Ceze, University of Washington

Natalie Enright Jerger, University of Toronto

Babak Falsafi, EPFL

Grigori Fursin*, dividiti/cTuning foundation

Anton Lokhmotov*, dividiti

Thierry Moreau*, University of Washington

Adrian Sampson, Cornell University

Phillip Stanley Marbell, University of Cambridge

2018: many cross-

disciplinary R&D groups

(ML/AI/systems)

AI hardware

• All major vendors

(Google, NVIDIA, ARM,

Intel, IBM, Qualcomm,

Apple, AMD …)

AI models

Many groups in

academia & industry

(Google, OpenAI,

Microsoft, Facebook …)

AI software

• AI frameworks

(TensorFlow, MXNet,

PyTorch, CNTK, Theano)

• AI libraries

(cuDNN, libDNN, ArmCL,

OpenBLAS)

AI integration/services

• Cloud services

(AWS, Google, Azure ...)

Real

use-cases

Healthcare

Agriculture

Finances

Automotive

Aerospace

Meteorology

Retail

Robotics

…

* Workshop organizers

We formed advisory board (very strong interest from industry)

Advisory/industrial board (A-Z)

• Michaela Blott, Xilinx

• Unmesh Bordoloi, General Motors

• Ofer Dekel, Microsoft

• Maria Girone, CERN openlab

• Wayne Graves, ACM

• Vinod Grover, NVIDIA

• Sumit Gupta, IBM

• James Hetherington, Alan Turing Institute

• Steve Keckler, NVIDIA

• Wei Li, Intel

• Colin Osborne, ARM

• Andrew Putnam, Microsoft

• Boris Shulkin, Magna

• Greg Stoner, AMD

• Alex Wade, Chan Zuckerberg Initiative

• Peng Wu, Huawei

• Cliff Young, Google

Long term ReQuEST goal: simplify industrial adoption of novel AI/ML/system

techniques using common ML/SW/HW co-design framework (CK),

realistic workflows and reusable components!

Advisory board suggests algorithms,

data sets, models and platforms for

competitions.

As a 1st proof-of-concept suggested to build a

public repository of the most efficient, portable,

customizable and reusable image classification

algorithms in the CK format optimized across

diverse models, data sets and devices from IoT

to HPC in terms of accuracy, speed, energy, size,

complexity and costs.

ACM ReQuEST at ASPLOS’18

March 2018

We organized the 1st reproducible tournament at ACM ASPLOS’18

AlexNet, VGG16

Nvidia Jetson TX2;

Raspberry Pi

with ARM

TensorFlow; Keras;

Avro

ResNet-50;

Inception-V3; SSD

32-bit ; 8-bit

Intel C++ Compiler

17.0.5 20170817

Intel Caffe ;

BVLC Caffe

AWS; Xeon®

Platinum 8124M

OpenBLAS

vs ArmCL

GCC; LLVM

MXNet;

NNVM/TVM

Firefly-RK3399

VGG16, MobileNet

and ResNet-18

MXNet;

NNVM/TVM

Xilinx FGPA

(Pynq board)

ResNet-*

ArmCL 18.01 vs

18.02 vs dividiti

(OpenCL)

GCC

HiKey 960 (GPU)

MobileNets

Public validation at github.com/ctuning/ck-request-asplos18-results via GitHub issues.

All validated papers are published in the ACM DL

with all reusable CK components and workflows!

See ACM ReQuEST report: portalparts.acm.org/3230000/3229762/fm/frontmatter.pdf

8 intentions to submit and 5 submitted image classification workflows with unified Artifact Appendices

All results and research components are available via a live CK scoreboard

CK workflow1 with validated results

AWS with c5.18xlarge instance; Intel® Xeon® Platinum 8124M

From the authors: “The 8-bit optimized model is automatically

generated with a calibration process from FP32 model without the
need of fine-tuning or retraining. We show that the inference

throughput and latency with ResNet-50, Inception-v3 and SSD are
improved by 1.38X-2.9X and 1.35X-3X respectively with negligible

accuracy loss from IntelCaffe FP32 baseline and by 56X-75X and
26X-37X from BVLC Caffe.”

https://github.com/ctuning/ck-request-asplos18-caffe-intel

We are not announcing a single winner!

We show all multi-dimensional results at cKnowledge.org/repo

and let end-users select best ML/SW/HW stacks depending on their multiple constraints!

Multi-objective results for all AI/SW/HW stacks are presented on a live scoreboard

and become available for public comparison and further customization, optimization and reuse!

Other companies managed to quickly reproduce results and started using CK

Accelerate technology transfer: companies can now quickly validate published techniques in

their production environment using shared CK workflows (days instead of months)!

See joint Amazon-dividiti presentation at O’Reilly AI conference (October 2018):

conferences.oreilly.com/artificial-intelligence/ai-eu/public/schedule/detail/71549

Multi-objective results for all AI/SW/HW stacks are presented on a live scoreboard

and become available for public comparison and further customization, optimization and reuse!

CK can also automatically generate
a Docker image for this stack

CK assists
AWS market place
with collaboratively

optimized AI/ML stacks

Collective Knowledge is now a community effort
to unify, automate, systematize and crowdsource

development, optimization and comparison of efficient
software/hardware stacks for emerging AI/ML workloads

Dividiti shared CK workflows to autotune MobileNets designs

https://github.com/dividiti/ck-request-asplos18-mobilenets-armcl-opencl

“MobileNets: Efficient Convolutional Neural Networks for Mobile Vision

Applications” (Andrew G. Howard et al., 2017, https://arxiv.org/abs/1704.04861):

● Parameterised CNN family using depthwise separable convolutions.

● Channel multiplier: 1.00, 0.75, 0.50, 0.25 - marker shape (see below).

● Input image resolution: 224, 192, 160, 128 - marker size.

Arm Compute Library: open-source, optimised for Neon CPUs and Mali GPUs.

● 2 convolution approaches - marker shape depends on channel multiplier:

○ “Direct”: 1.00 - pentagon, 0.75 - square, 0.50 - triangle-up, 0.25 - circle.

○ “Matrix-multiplication” (MM):

1.00 - star, 0.75 - diamond, 0.50 - triangle-down, 0.25 - octagon.

● 4 library versions - marker colour:

○ “17.12”: no opts; “18.01”: dividiti’s direct+MM opts;

“18.03”: Arm’s MM opts; “dv/dt”: dividiti’s new direct opts.

Public results autotuning MobileNets designs using Arm Compute Library

https://github.com/dividiti/ck-request-asplos18-mobilenets-armcl-opencl

Continuously collect statistics, bugs and misclassifications at cKnowledge.org/repo

Winning solutions

on various frontiers

Firefly-RK3399

The number of distinct participated platforms:800+

The number of distinct CPUs: 260+

The number of distinct GPUs: 110+

The number of distinct OS: 280+

Power range: 1-10W

No need for a dedicated and expensive cloud –
volunteers help us validate research ideas

similar to SETI@HOME

Also collecting real images from users

for misclassifications to build an open

and continuously updated training set)!

T
im

e
 p

e
r

im
a

g
e

 (
se

co
n

d
s)

Cost(euros)

CK can crowdsource experiments across Android devices provided by volunteers

cknowledge.org/dnn-crowd-benchmarking-results

Let's dig further – (crowdsource) BLAS autotuning in Caffe on Firefly-RK3399

Collaboration between Marco Cianfriglia (Roma Tre University), Cedric Nugteren (TomTom),

Flavio Vella, Anton Lokhmotov and Grigori Fursin (dividiti)

Name Description Ranges

KWG 2D tiling at workgroup level {32,64}

KWI KWG kernel-loop can be unrolled by a factor KWI {1}

MDIMA Local Memory Re-shape {4,8}

MDIMC Local Memory Re-shape {8, 16, 32}

MWG 2D tiling at workgroup level {32, 64, 128}

NDIMB Local Memory Re-shape {8, 16, 32}

NDIMC Local Memory Re-shape {8, 16, 32}

NWG 2D tiling at workgroup level {16, 32}

SA manual caching using the local memory {0, 1}

SB manual caching using the local memory {0, 1}

STRM Striding within single thread for matrix A and C {0,1}

STRN Striding within single thread for matrix B {0,1}

VWM Vector width for loading A and C {8,16}

VWN Vector width for loading B {0,1}

Tunable parameters of OpenCL-based BLAS (github.com/CNugteren/CLBlast)

For now only two data sets (small & large)

Some extra constraints

to avoid illegal

combinations

Use different autotuners

and ML to speed up

design space exploration

based on probabilistic

focused search,

generic algorithms,

deep learning, SVM, KNN,

MARS, decision trees …

Let's dig further – autotuning BLAS (CLBlast) in Caffe on Firefly-RK3399

• Caffe with autotuned OpenBLAS (threads and batches) is the fastest

• Caffe with autotuned CLBlast is 6..7x faster than default version and competitive with

OpenBLAS-based version– now worth making adaptive selection at run-time.

Sharing results in a reproducible way with the community for validation and improvement:

https://nbviewer.jupyter.org/github/dividiti/ck-caffe-firefly-rk3399/

blob/master/script/batch_size-libs-models/analysis.20170531.ipynb

General Motors uses CK to select the most efficient platforms

CK workflows to evaluate DNN for live object detection and classification

across Nvidia, AMD, ARM and Intel platforms (CUDA, OpenCL, OpenMP …)

Performance, accuracy, power consumption practically never match official reports!

GM presentation about using CK: www.youtube.com/watch?v=1ldgVZ64hEI

CK is used to collaboratively advance quantum computing (QCK)

QCK helped us to organize the 1st quantum hackathon in Western Europe with Rigetti

and share all results, workflows and components for further reuse

cKnowledge.org/repo

For example, we improved these workflows to support the 2nd quantum hackathon

and compare results on a real 16-bit quantum machine provided by IBM!

cKnowledge.org/quantum

Quantum computers have the potential to solve certain problems dramatically faster

than conventional computers, with applications in areas such as machine learning,

drug discovery, materials, optimization, finance and cryptography.

We are building Quantum Collective Knowledge (QCK)

to help researchers share, compare or optimize different algorithms

across conventional and quantum platforms

Crowdsource experiments with the help of volunteers

across diverse models, data sets and platforms

Repositories of customizable, portable

and reusable research components

AI frameworks

TensorFlow

Caffe

Caffe2

CNTK

Torch

MXNet

Models

AlexNet

GoogleNet

VGG

ResNet

SqueezeNet

SqueezeDet

SSD

MobileNets

Data sets

KITTI

COCO

VOC

ImageNet

Real life objects

from the

community

Libraries

OpenBLAS

ViennaCL

CLBlast

cuBLAS

cuDNN

TVM

gemmlowp

ArmCL

CK JSON APICK JSON API
CK JSON API

CK JSON API
Targets

C
K

 J
S

O
N

 A
P

I

Linux

MacOS

Windows

Android

…

…

… …

…

Hardware

C
K

 J
S

O
N

 A
P

I

CPU

DSP

GPU

NN accelerators

…
FPGA

Customizable CK workflows

for real-world user tasks

Assemble scenarios such as image classifica6on as LEGO™

Simulators

Models

CK JSON API

Software

CK JSON API
Data sets

CK JSON API

Hardware

CK JSON API

Present best results, workflows and components

on a live scoreboard for fair comparison and reuse

cKnowledge.org/repo

Interested to join/support our community effort to reboot & accelerate open science?

Share complete workflows along with published papers

to automate artifact evaluation

and help the community build upon prior work

Help students learn multidisciplinary techniques,

quickly prototype new ones,

validate them in practice with companies,

and even contribute back new research components

Help companies select the most appropriate workflows,

reduce R&D costs, accelerate adoption of new techniques!

Contact us:

Grigori.Fursin@cTuning.org

