Conference paper Open Access

JUXTAPOSING VISUAL LAYOUTS – AN APPROACH FOR SOLVING ANALYTICAL AND EXPLORATORY TASKS THROUGH ARRANGING VISUAL INTERFACES

Kawa Nazemi; Dirk Burkhardt


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.2542952</identifier>
  <creators>
    <creator>
      <creatorName>Kawa Nazemi</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-2907-2740</nameIdentifier>
      <affiliation>Darmstadt Univeristy of Applied Sciences</affiliation>
    </creator>
    <creator>
      <creatorName>Dirk Burkhardt</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-6507-7899</nameIdentifier>
      <affiliation>Darmstadt Univeristy of Applied Sciences</affiliation>
    </creator>
  </creators>
  <titles>
    <title>JUXTAPOSING VISUAL LAYOUTS – AN APPROACH FOR SOLVING ANALYTICAL AND EXPLORATORY TASKS THROUGH ARRANGING VISUAL INTERFACES</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <subjects>
    <subject>Information Visualization, Visual Analytics, visual tasks, visual interfaces</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2018-09-17</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="ConferencePaper"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/2542952</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.2542951</relatedIdentifier>
  </relatedIdentifiers>
  <version>1</version>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Interactive visualization and visual analytics systems enables solving a variety of tasks. Starting with simple&lt;br&gt;
search tasks for outliers, anomalies etc. in data to analytical comparisons, information visualizations may&lt;br&gt;
lead to a faster and more precise solving of tasks. There exist a variety of methods to support users in the process&lt;br&gt;
of task solving, e.g. superimposing, juxtaposing or partitioning complex visual structures. Commonly all&lt;br&gt;
these methods make use of a single data source that is visualized at the same time. We propose in this paper an&lt;br&gt;
approach that goes beyond the established methods and enables visualizing different databases, data-sets and&lt;br&gt;
sub-sets of data with juxtaposed visual interfaces. Our approach should be seen as an expandable method. Our&lt;br&gt;
main contributions are an in-depth analysis of visual task models and an approach for juxtaposing visual layouts as&lt;br&gt;
visual interfaces to enable solving complex tasks.&lt;/p&gt;</description>
  </descriptions>
</resource>
157
115
views
downloads
All versions This version
Views 157157
Downloads 115115
Data volume 54.7 MB54.7 MB
Unique views 139139
Unique downloads 103103

Share

Cite as