
Adaptive Edit-Distance and Regression
Approach for Post-OCR Text Correction

Thi-Tuyet-Hai Nguyen1(&), Mickael Coustaty1, Antoine Doucet1,
Adam Jatowt2, and Nhu-Van Nguyen1

1 L3i, University of La Rochelle, La Rochelle, France
{hai.nguyen,mickael.coustaty,antoine.doucet,

nhu-van.nguyen}@univ-lr.fr
2 Department of Social Informatics, Kyoto University, Kyoto, Japan

adam@dl.kuis.kyoto-u.ac.jp

Abstract. Post-processing is a crucial step in improving the performance of
OCR process. In this paper, we present a novel approach which explores a
modified way of candidate generating and candidate scoring at character level as
well as word level. These features are combined with some important features
suggested by related work for ranking candidates in a regression model. The
experimental results show that our approach has comparable results with the top
performing approaches in the Post-OCR text correction competition ICDAR
2017.

Keywords: Post-OCR processing � Noisy channel � Language model
Regression model

1 Introduction

Born-analog documents still contain massive knowledge which is valuable to our
society. For the purpose of preservation and easier accessibility, a lot of efforts have
been devoted to optical character recognition (OCR) systems to transform paper-based
documents into digital form. However, poor physical quality of documents and limi-
tations of text recognition techniques result in the low performance of OCR systems.
Erroneous OCR-generated texts not only prevent users from retrieving relevant
information but also cause reading difficulties. Post-processing is the last activity in
OCR pipeline, attempting to detect and correct OCR errors.

Diverse approaches have been conducted for OCR post-processing. They can be
divided into three main categories: manual error correction, dictionary-based error
correction and context-based error correction [2].

The first type lets humans manually review and correct OCR-ed texts. It requires
continuous manual intervention. Therefore, it is not only costly but also time-
consuming and error-prone.

This work has been supported by the European Union’s Horizon 2020 research and innovation
programme under grant 770299 (NewsEye).

© Springer Nature Switzerland AG 2018
M. Dobreva et al. (Eds.): ICADL 2018, LNCS 11279, pp. 278–289, 2018.
https://doi.org/10.1007/978-3-030-04257-8_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04257-8_29&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04257-8_29&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04257-8_29&domain=pdf
https://doi.org/10.1007/978-3-030-04257-8_29

The second type uses a lookup dictionary to search for misspelled words and
correct them automatically [17]. This kind of approach is easy to implement and use,
however, it is unable to correct errors due to their grammatical and semantic contexts.

Finally, the context-based approach type is proposed to eliminate the disadvantages
mentioned above. Most solutions of this type make use of the noisy channel model and
statistical language model. Some approaches apply machine translation techniques
which translate OCR output into corrected text in the same language. Some others
combine different features in a prediction model to avoid bias and select a more
accurate candidate from a pool of candidates.

The OCR post-processing consists of two parts: error detection and error correction.
In this paper, we focus on the second part with the given list of known error positions.
Our approach explores the noisy channel model, language model as well as other
features for generating and ranking candidates using machine learning techniques. The
evaluation results show that our method reaches comparable performance to the best
performing teams in the English monograph dataset of the Post-OCR text correction
competition ICDAR 2017 [4].

The remainder of this paper is organized as follows. In Sect. 2, we describe pre-
vious works related to OCR post-processing. Section 3 gives the detailed description of
our approach. The experimental results are shown and discussed in Sect. 4. Finally, we
give some conclusions in Sect. 5.

2 Related Work

The post-processing model detects and corrects misspellings of both non-words and
real-words in the OCR-ed text. The literature of this research field contains a rich
family of models, especially with the context-based type.

The dictionary-based type tries to correct misspelled words in isolation and does
not take the context other nearby errors into consideration [17]. This type is simple to
implement, but it cannot deal with real-word errors.

The context-based type considers grammatical and semantic contexts of errors and
is more promising to correct such real-word errors. Most of the techniques of this type
rely on noisy channel and language model. The others explore different machine
learning techniques to suggest correct candidates.

Tong et al. [20] explored multiple features, including character n-grams, confusion
probabilities, and word bi-gram language model to fix errors. Using some features
similar to the ones in Tong et al., WFST-PostOCR approach (the participant in the
Post-OCR text correction competition) [4] applied the probabilistic character error
model and language model. However, these models were compiled into weighted
finite-state edit transducers (WFST). The best token sequence was the best path of
WFST. This team achieved the third rank with 28% improvement, which confirmed the
importance of error model and language model in correcting erroneous OCR-ed text.

Other promising approaches of competition, including Multi-Modular Domain-
Tailored (MMDT), Character Level Attention Model (CLAM), Character-based Sta-
tistical and Neural Machine Translation (Char-SMT/NMT), are based on machine
translation techniques.

Adaptive Edit-Distance and Regression Approach 279

MMDT [18] approach combined many modules from word level (Original words,
Spell checker, Compounder, Word splitter, Text-Internal Vocabulary) to sentence level
(Statistical Machine Translation) for candidate suggestion. Then, the decision module
of Moses decoder [13] was used to rank candidates. In our opinion, Text-Internal
Vocabulary function, which suggests high-frequency words in OCR-ed text as cor-
rection of errors with a small distance, easily leads to bias.

Two other competition approaches (Char-SMT/NMT, CLAM) rely on character
based machine translation technique. There are however some limits of machine
translation at character level. Character-level models enable to produce non-words
which may be close to the reference. It is necessary to ensure that words generated by a
character-level model should be valid words before ranking and suggesting them as
relevant candidates. Tiedemann [19] suggested to include a string similarity measure as
feature function. Furthermore, Afli et al. [1] demonstrated that machine translation at
word level is better than at character level.

Other approaches applied a regression model in candidate ranking. Kissos et al.
[12] extracted six features to train a linear regressor, including confusion probability
with a single edition, unigram frequency, context feature (backward bi-gram frequency,
forward bi-gram frequency), term frequency in the OCR-ed text, and word confidence.
In our opinion, the unigram frequency feature is not a good feature because it does not
take run-on errors into account, for example, for the error “doubtfud.of” the possible
correct candidate is “doubtfull of” which is bi-gram instead of unigram. In addition,
similar to internal vocabulary feature of MMDT, term frequency feature also easily
causes bias. Furthermore, this approach did not consider an important feature used in
real-word error correction [10], which is the similarity between error and candidate.

Mei et al. [15] also suggested to rank candidates using a predictive model. They
extracted six features of each candidate. Besides word n-gram and candidate frequency
features, they paid attention to string similarity which is missing from Kissos’
approach. However, they ignored another important feature (confusion probability)
which is used in several successful post-processing approaches [6, 12, 14, 20].

Our method belongs to the context-based approach type. We propose to make use
of confusion probability obtained from the noisy channel model of multiple editions
(instead of single edition), and context probability given by language model. Then,
these two features and some essential features suggested by related works [12, 15] are
used to train a regression model. The experimental results show that our multi-modular
approach is comparable to the ones of the teams participating in the Post-OCR text
correction competition ICDAR 2017.

3 Regression Approach for Post-OCR Text Correction

We explore all information related to error from characters constituting error to context
words surrounding error to suggest correct candidates. Our approach is divided into
three steps: candidate generating and weighting relying on an adaptive edit-distance,
candidate scoring using language model and candidate ranking based on a regression
model. Details of each step are discussed in the following subsections.

280 T.-T.-H. Nguyen et al.

3.1 Candidate Generating and Weighting Based on an Adaptive
Edit-Distance (Step 1)

In the first step, we generate candidates based on the character candidate graph which
can deal with run-on and split-word errors. We then score such candidates using a
modified confusion probability.

Candidate Generating: A string can be generated from the other string by edit
operations of three edition types (deletion, insertion, or substitution). Therefore, we
create the character candidate graph based on a “seed” word (an OCR error) with three
corresponding node types (deletion, insertion, or substitution). Then we use this graph
to generate candidates by one or more edit operations. More specifically, if two
characters are generated from one “seed” character, this is a deletion node; otherwise, if
one character is generated from two adjacent “seed” characters, it is an insertion node.
In case that one character is substituted by one “seed” character, we have a substitution
node.

Training dataset reveals that insertion and deletion caused by two adjacent char-
acters are more common than those caused by three or more adjacent characters,
therefore in this paper, we limit to two adjacent characters.

After graph construction, Breadth First Search (BFS) with some heuristic tuned
from training dataset (maximum length of candidates, minimum confusion probability)
is used to deal with the complexity.

The example graph is shown in Fig. 1. If “ar.d” is an OCR error, all “seed”
characters ‘a’, ‘r’, ‘.’, and ‘d’ are denoted as yellow nodes. High frequency substitution
characters of ‘a’, ‘r’, ‘.’, and ‘d’ are ‘e’, ‘n’, ‘,’ and ‘l’, respectively, which are denoted
as green nodes. Two adjacent characters ‘r’, ‘.’ can be combined to generate the
character insertion node ‘n’ denoted as a red node; one “seed” character ‘d’ can be
divided into two characters “il” denoted as a blue node. One possible candidate of the
error “ar.d” in Fig. 1 is “and” which is generated from substitution node ‘a’, insertion
node ‘n’, and substitution node ‘d’.

By using the character candidate graph, our approach can deal with two difficult
error types, which are split-word errors (for instance, “appointed” is recognized as “ap
pointed”) and run-on errors (for example, “doubtfull of” is recognized as “doubtfud.
of”). However, there are some limitations in quality control of too many candidates
generated by one run-on error. Therefore, this paper only allows a punctuation and a
digit be substituted by the space.

Fig. 1. Example of character candidate graph (Color figure online)

Adaptive Edit-Distance and Regression Approach 281

Candidate Weighting: The conditional probability prðxjwÞ of the given source word
w recognized by the OCR software as the string x (also known as confusion probability
of source word and OCR string) can be estimated by the confusion probabilities of the
characters in x assuming that character recognition in OCR is an independent process
[20].

Let x1;i be the first i characters of OCR string x and let w1;j be the first j characters of
source string w. We define prðx1;ijw1;jÞ to be the conditional probability that the sub-
string w1;j is recognized as substring x1;i by the OCR process. prðx1;ijw1;jÞ can be
calculated as below:

pr x1;i
�
�w1;j

� � ¼ max
pr x1;i

�
�w1;j�1

� � � pr del wj
� �� �

pr x1;i�1
�
�w1;j

� � � pr ins xið Þð Þ
pr x1;i�1

�
�w1;j�1

� � � pr sub xijwj
� �� �

8
<

:
ð1Þ

In typical formula, the insertion, deletion conditioned on the previous character are
computed as follows [5].

pr del wj
� �� � ¼ del wj�1wj

� �

count wj�1wj
� � ; if deletion ð2Þ

pr ins xið Þð Þ ¼ ins wj�1xi
� �

count wj�1
� � ; if insertion ð3Þ

pr sub x1jwj
� �� � ¼ sub xi;wj

� �

count wj
� � ; if substitution ð4Þ

where del wj�1wj
� �

is a number of times that the source characters wj�1wj were rec-
ognized as wj�1 in the training set; ins wj�1xi

� �
is a number of times that wj�1 was

recognized as wj�1xi; sub xi;wj
� �

is a number of times that wj was recognized as xi.
These equations reveal that in order to calculate the confusion probability of insertion
and deletion, there must be the same previous character.

Because erroneous OCR characters frequently appear together, two or more error
characters can be recognized as one different correct character, or one character can be
recognized as different correct characters [11]. It means that the insertion, deletion can
depend on the different previous character instead of the same previous one. For
example, “li” can be wrongly recognized as ‘h’, ‘m’ can be wrongly recognized as ‘in’,
etc.

As a result, we propose to calculate the probability of deletion and insertion by
using the probability of substitution of many characters by one character or one
character by many characters.

pr del wj
� �� � ¼ pr sub xi�1jwj�1wj

� �� � ¼ sub xi�1;wj�1wj
� �

count wj�1wj
� � ; if deletion ð5Þ

282 T.-T.-H. Nguyen et al.

pr ins xið Þð Þ ¼ pr sub xi�1xijwj�1
� �� � ¼ sub xi�1xi;wj�1

� �

count wj�1
� � ; if insertion ð6Þ

For instance, the correction is “and”, and the error is “ar.d”. In this case, the correct
letter ‘n’ is recognized as the error characters “r.”. It is similar to insertion error type
except that it does not have the same previous character, so we cannot apply the typical
formula of insertion Eq. 3 directly. Typical approach (denoted as typical-prob. in
experiments) uses the substitution formula twice to calculate that confusion probability:

pr(‘ar.d’|‘and’) = pr(sub(‘a’|‘a’)) ∗ pr(sub(‘r’|‘n’))
∗pr(sub(‘.’|‘‘)) ∗ pr(sub(‘d’|‘d’))

Our approach (denoted as modified-prob. in experiments) applies the substitution
formula once:

pr(‘ar.d’|‘and’) = pr(sub(‘a’|‘a’)) ∗ pr(sub(‘r.’|‘n’)) ∗ pr(sub(‘d’|‘d’))

Our proposal also affects on creating the character confusion matrix. In particular, if
one character cð Þ is recognized as two characters which are different from character cð Þ,
it is insertion. If two characters c1; c2ð Þ as recognized as one character which is
different from characters c1; c2ð Þ, it is deletion. Otherwise, it is substitution.

3.2 Candidate Scoring Using Language Model (Step 2)

After generating and weighting candidates at character level, in the second step, we
utilize context information to score candidates of each OCR error.

Similar to some approaches of the context-based type, we consider the typical
statistical language model (SLM) to deal with this problem. Moreover, we also explore
the state-of-the-art recurrent neural network based language model (RNN-LM) [16] to
compare two types of language models in context of erroneous OCR-ed text. SLM and
LSTM are trained on the same training dataset used in “One Billion Word Language
Model Benchmark” of Chelba et al. [3]. Each candidate is weighted according to the
probability of trigram in SLM or that of predicting next word in RNN-LM.

In terms of SLM, the weight of each candidate is a sum of probabilities of three
trigrams related to that candidate. For example, we have a phrase “yield to thbse who
are”, and two candidates {“those”, “there”}, of the error “thbse”. The weight of each
candidate is calculated as follows:

weight1(‘‘those”) = pr(‘‘yield to those”) + pr(‘‘to those who”)
+ pr(‘‘those who are”)

weight1(‘‘there”) = pr(‘‘yield to there”) + pr(‘‘to there who”)
+ pr(‘‘there who are”)

Adaptive Edit-Distance and Regression Approach 283

For constructing RNN-LM, we apply one of the most common type of RNN - Long
Short Term Memory (LSTM) [8]. The weight of each candidate is a sum of proba-
bilities of predicting the next word related to that candidate. More specifically, LSTM
needs a seed which is a context to predict a next word. The candidate can appear in the
context (seed) or be the next word.

To compare with trigram language model, we keep the total length of the seed and
the next word to be three. For instance, we have the same phrase with SLM “yield to
thbse who are” with the same error candidate {“those”, “there”} of the error “thbse”,
the weight of each candidate is computed as below:

weight2(‘‘those”) = pr(seed = ‘‘yield to”, next − word = ‘‘those”)
+ pr(seed = ‘‘to those”, next − word = ‘‘who”)
+ pr(seed = ‘‘those who”, next − word = ‘‘are”)

weight2(‘‘there”) = pr(seed = ‘‘yield to”, next − word = ‘‘there”)
+ pr(seed = ‘‘to there”, next − word = ‘‘who”)
+ pr(seed = ‘‘there who”, next − word = ‘‘are”)

3.3 Candidate Ranking Based on a Regression Model (Step 3)

After generating candidates and weighting them at character level and word level in
two previous steps, this step reuses these features and some complementary features to
predict the confidence of each candidate becoming a correction by a regression model.
Then such confidence is used for candidate ranking. This step consists of two parts:
feature extraction and candidate ranking.

Feature Extraction. Four important features used in our approach are selected and
modified from a set of features of two related works [12, 15]. The first feature is
“Probability of 3-length sequences related to errors” is the modified version of context
feature, suggested by both of the related works; in terms of [12], this feature is
“backward/forward bigram frequency”; in terms of [15], this is “exact/relax-context
popularity”. The second feature is “Probability of n-gram candidate”, which is the
general version of “unigram frequency” of two related works. Two last important
features are features missing from each related work.

As analyzed in Sect. 2, “similarity feature” is an important feature used in real-
word correction, which is ignored by [12]. Similarly, “confusion probability” is suc-
cessfully used in several post-processing approaches, but is ignored by [15]. As to other
features, we cannot use them because of different reasons. In fact, due to lack of
information from the dataset, “word confidence” is ignored. We also remove the feature
which is a part of other features, for example, “lexicon existence”, which is included in
“unigram frequency” feature. In addition, we refuse features that easily lead to bias
such as “term frequency in OCR-ed text”.

Let wc be a candidate, C be a set of all candidates, and we be an OCR error. The
details of each feature score are described in this section.

284 T.-T.-H. Nguyen et al.

Probability of 3-Length Sequences Related to Errors: This feature is the normalized
weight of step 2 mentioned in Sect. 3.2.

score wc;weð Þ ¼ weight2 wcð Þ
P

w0
c2C

weight2 w0
c

� � ð7Þ

Probability of n-Gram Candidate: Candidate can be a single word or a sequence of
multiple words, it means that candidate is word n-gram. Instead of using the frequency
of candidate and accepting 0 value if candidate is not in the training data, we use the
probability of candidate in word n-gram model which already applied smoothing
techniques for solving sparsity problem. This feature is the normalized probability of
candidate in word n-gram model.

score wc;weð Þ ¼ pr wcð Þ
P

w0
c2C

pr w0
c

� � ð8Þ

Longest Common Subsequence (LCS) is an alternative in qualifying the similarity
between two strings. Islam et al. [9] proposed two variations of LCS, including Nor-
malized Longest Common Subsequence (NLCS) and Normalized Maximal Consecu-
tive Longest Common Subsequence (NMCLCS).

NLCS considers the length of both the shorter and the longer string for normal-
ization, as follows:

NLCS wc;weð Þ ¼ 2 � len LCS wc;weð Þð Þ2
len wcð Þþ len weð Þ ð9Þ

MCLCS requires the consecutive common subsequence. There are three variations
of MCLCS with additional conditions. MCLCS1 and MCLCSn use substrings begin-
ning at the first and the n-th character, respectively; MCLCSz only considers substrings
ending at the last character.

NMCLCSi wc;weð Þ ¼ 2 � len MCLCSi wc;weð Þð Þ2
len wcð Þþ len weð Þ ð10Þ

where MCLCSi can be MCLCS1, MCLCSn or MCLCSz.

Confusion Probability: This feature is the normalized weight of step 1 in Sect. 3.1:

score wc;weð Þ ¼ weight1 wcð Þ
P

w0
c2C

weight1 w0
c

� � ð11Þ

Adaptive Edit-Distance and Regression Approach 285

Candidate Ranking. A regression model is used for scoring candidates. For training
and testing a regressor, if a candidate is a correction, its feature vector is labeled as 1.
Otherwise, the feature vector is labeled as 0. Candidate with the highest confidence is
suggested as the correction.

However, correcting run-on errors often produces irrelevant candidates which cause
a big difference between corrected word and ground truth one. For example, post-
processing tries to find the most suitable candidate from a dictionary for a run-on error
“where loan”, and suggests the top candidate such as “helios” which is totally different
from the GT “where I can”. Therefore, the final filter based on the edit distance between
error and its top candidate decides whether use the top candidate or keep the error.

4 Experiments

In this section, we first describe details of the dataset and metric used in the evaluation.
Then we analyze the performance of our approach in comparison with the results of the
teams taking part in the competition.

4.1 Evaluation Dataset

The English monograph dataset of the ICDAR 2017 Post-OCR text correction com-
petition [4] with 666 training documents and 41 testing documents is used for evalu-
ating our approach. These documents are selected from digital collections of the
National Library of France (BnF) and the British Library (BL). The corresponding GT
has been extracted from BnF’s internal projects and can be obtained through the
competition’s homepage1.

4.2 Evaluation Metric

We use the average Levenshtein distances as the evaluation metric, same as used in the
Post-OCR text correction competition ICDAR 2017 [4]. The metric can be viewed as
the modified version of character error rate, which considers the confidence of each
candidate to be the correction in case that there are many candidates of one error.

avgDistance ¼
Pn

i¼1 weighti � distance candidatei; correctWordið Þ
N

ð12Þ

where weighti is the confidence of candidatei to be the correct word, n is a number of
OCR errors, and N is a total number of characters in reference.

This official metric of the competition is intended to take into account partial
improvement, even when the word correction is not fully matching the GT.

The improvement percentage is calculated based on the comparison of the original
distance (the distance between the OCR output and GT) and the corrected distance (the
distance between the corrected output and GT).

1 https://sites.google.com/view/icdar2017-postcorrectionocr/, last visited on 28 June 2018.

286 T.-T.-H. Nguyen et al.

https://sites.google.com/view/icdar2017-postcorrectionocr/

4.3 Evaluation Results

By combining two ways of calculating step 1’s weight and two ways of calculating step
2’s weight, we consider four approaches in total: “typical-prob.SLM”, “modified-prob.
SLM”, “typical-prob.LSTM” and “modified-prob.LSTM”. The overall performance of
our approaches is shown in Table 1.

In terms of performance of step 1, as mentioned in Sect. 3.1, our approach of
calculating the confusion probability considered the common way in which erroneous
characters appear, therefore our suggestion “modified-prob.” strongly outperforms the
typical approach “typical-prob.” even with different techniques of step 2 (SLM or
LSTM).

As to the performance of step 2, in erroneous OCR-ed context, SLM has slightly
better performance than LSTM, with about 1.8% of relative increase of improvement in
case of “typical-prob.” and 2.4% in case of “modified-prob”.

Regarding the performance of step 3, experimental results show that gradient
boosting regression model [7] on top of decision trees with the least square loss
function outperforms other regression models.

Among 10 participants of the correction task in the Post-OCR text correction
ICDAR 2017, only six teams can improve the distance with GT, and other teams
almost deteriorate documents. These final results confirmed the difficulty of post-
processing step to deal with the noisy OCR output and the uncleaned GT.

Our best regression model (“modified-prob.SLM”) obtains higher performance than
9 teams. It should be emphasized that our approach is better than the multi-modular
approach of statistical machine translation approach and spelling checker (MMDT) and
the neural machine translation approach applied on post-OCR problem (CLAM), with
around 51% and 4.1% relative increase, respectively. Although our result is still lower
than the one of the best-performing participant (Char-SMT/NMT), it is unfair to
compare our multi-modular approach with the ensemble one. While our solution uses
only one best regression model to score candidates, Char-SMT/NMT trained several
models of both statistical and neural machine translation, and then combined the top
candidates generated from such models.

Table 1. Overall performance scores over English monograph dataset of the Post-OCR text
correction ICDAR 2017 with top 4 competition teams.

Approach Improvement (%)

Baselines
Char-SMT/NMT 43
CLAM 29
WFST-PostOCR 28
MMDT [18] 20
Proposed methods
modified-prob.SLM 30.2
modified-prob.LSTM 29.5
typical-prob.SLM 22.4
typical-prob.LSTM 22

Adaptive Edit-Distance and Regression Approach 287

In addition, if we recommend top 3, top 6 candidates for each error, the best
improvement percentage of our best approach “modified-prob.SLM” is 40.5% and
42.8%, respectively. It should be clear that the best improvement percentage is cal-
culated based on the original distance and the best corrected distance (the distance of
the most relevant candidate among the top n candidates with the GT word). In other
words, in semi-automatic mode, our multi-modular approach can suggest correct
candidates with the comparable performance with the ensemble approach of the winner
Char-SMT/NMT.

5 Conclusion

In this paper, we explored a modified method of generating and calculating the con-
fusion probability, which has better performance than the standard edit distance
method. When we compare the performance of SLM and LSTM in erroneous OCR-ed
contexts, the experiments show that SLM is slightly better than LSTM in terms of 3-
length sequence. Finally, by extracting important features suggested in two previous
works and using a regression model for candidate ranking, our best approach is
comparative with approaches in ICDAR2017 Competition on Post-OCR Text Cor-
rection though it still under-performs the ensemble approach of machine translation
techniques.

References

1. Afli, H., Barrault, L., Schwenk, H.: OCR error correction using statistical machine
translation. Int. J. Comput. Linguist. Appl. 7, 175–191 (2016)

2. Bassil, Y., Alwani, M.: OCR post-processing error correction algorithm using Google online
spelling suggestion. arXiv preprint arXiv:1204.0191 (2012)

3. Chelba, C., et al.: One billion word benchmark for measuring progress in statistical language
modeling (2013)

4. Chiron, G., Doucet, A., Coustaty, M., Moreux, J.P.: ICDAR2017 competition on post-OCR
text correction. In: 2017 14th IAPR International Conference on Document Analysis and
Recognition, ICDAR, vol. 1, pp. 1423–1428. IEEE (2017)

5. Church, K.W., Gale, W.A.: Probability scoring for spelling correction. Stat. Comput. 1(2),
93–103 (1991)

6. Evershed, J., Fitch, K.: Correcting noisy OCR: context beats confusion. In: Proceedings of
the First International Conference on Digital Access to Textual Cultural Heritage, pp. 45–51.
ACM (2014)

7. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat.
1189–1232 (2001)

8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997)

9. Islam, A., Inkpen, D.: Semantic text similarity using corpus-based word similarity and string
similarity. ACM Trans. Knowl. Discov. Data 2, 10 (2008)

10. Islam, A., Inkpen, D.: Real-word spelling correction using Google Web IT 3-grams. In:
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing,
vol. 3, pp. 1241–1249 (2009)

288 T.-T.-H. Nguyen et al.

http://arxiv.org/abs/1204.0191

11. Jones, M.A., Story, G.A., Ballard, B.W.: Integrating multiple knowledge sources in a
Bayesian OCR post-processor. In: International Journal on Document Analysis and
Recognition, p. 925–933 (1991)

12. Kissos, I., Dershowitz, N.: OCR error correction using character correction and feature-based
word classification. In: 2016 12th IAPR Workshop on Document Analysis Systems, DAS,
pp. 198–203. IEEE (2016)

13. Koehn, P., et al.: Moses: open source toolkit for statistical machine translation (2007)
14. Llobet, R., Navarro-Cerdan, J.R., Perez-Cortes, J.C., Arlandis, J.: Efficient OCR post-

processing combining language, hypothesis and error models. In: Hancock, E.R., Wilson, R.
C., Windeatt, T., Ulusoy, I., Escolano, F. (eds.) SSPR/SPR 2010. LNCS, vol. 6218, pp. 728–
737. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14980-1_72

15. Mei, J., Islam, A., Wu, Y., Moh’d, A., Milios, E.E.: Statistical learning for OCR text
correction. arXiv preprint arXiv:1611.06950 (2016)

16. Mikolov, T., Karafiát, M., Burget, L., Černocký, J., Khudanpur, S.: Recurrent neural
network based language model. In: Eleventh Annual Conference of the International Speech
Communication Association (2010)

17. Niwa, H., Kayashima, K.: Postprocessing for character recognition using keyword
information

18. Schulz, S., Kuhn, J.: Multi-modular domain-tailored OCR post-correction. In: Proceedings
of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 2716–
2726 (2017)

19. Tiedemann, J.: Character-based pivot translation for under-resourced languages and
domains. In: Proceedings of the 13th Conference of the European Chapter of the
Association for Computational Linguistics, pp. 141–151 (2012)

20. Tong, X., Evans, D.A.: A statistical approach to automatic OCR error correction in context.
In: Fourth Workshop on Very Large Corpora (1996)

Adaptive Edit-Distance and Regression Approach 289

http://dx.doi.org/10.1007/978-3-642-14980-1_72
http://arxiv.org/abs/1611.06950

	Adaptive Edit-Distance and Regression Approach for Post-OCR Text Correction
	Abstract
	1 Introduction
	2 Related Work
	3 Regression Approach for Post-OCR Text Correction
	3.1 Candidate Generating and Weighting Based on an Adaptive Edit-Distance (Step 1)
	3.2 Candidate Scoring Using Language Model (Step 2)
	3.3 Candidate Ranking Based on a Regression Model (Step 3)

	4 Experiments
	4.1 Evaluation Dataset
	4.2 Evaluation Metric
	4.3 Evaluation Results

	5 Conclusion
	References

