Journal article Open Access

Semi-Supervised Online Structure Learning for Composite Event Recognition

Evangelos Michelioudakis; Alexander Artikis; Georgios Paliouras

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  <controlfield tag="005">20200120172834.0</controlfield>
  <controlfield tag="001">2541610</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">NCSR Demokritos</subfield>
    <subfield code="a">Alexander Artikis</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">NCSR Demokritos</subfield>
    <subfield code="a">Georgios Paliouras</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">655178</subfield>
    <subfield code="z">md5:831ff17fe2fbe9c3ecfe313e64e9f4e4</subfield>
    <subfield code="u"></subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-01-16</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-h2020_datacron</subfield>
    <subfield code="o"></subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">NCSR Demokritos</subfield>
    <subfield code="a">Evangelos Michelioudakis</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Semi-Supervised Online Structure Learning for Composite Event Recognition</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-h2020_datacron</subfield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">687591</subfield>
    <subfield code="a">Big Data Analytics for Time Critical Mobility Forecasting</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u"></subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Online structure learning approaches, such as those stemming from Statistical Relational Learning, enable the discovery of complex relations in noisy data streams. However, these methods assume the existence of fully-labelled training data, which is unrealistic for most real-world applications. We present a novel approach for completing the supervision of a semi-supervised structure learning task. We incorporate graph-cut minimisation, a technique that derives labels for unlabelled data, based on their distance to their labelled counterparts. In order to adapt graph-cut minimisation to first order logic, we employ a suitable structural distance for measuring the distance between sets of logical atoms. The labelling process is achieved online (single-pass) by means of a caching mechanism and the Hoeffding bound, a statistical tool to approximate globally-optimal decisions from locally-optimal ones. We evaluate our approach on the task of composite event recognition by using a benchmark dataset for human activity recognition, as well as a real dataset for maritime monitoring. The evaluation suggests that our approach can effectively complete the missing labels and eventually, improve the accuracy of the underlying structure learning system.&lt;/p&gt;</subfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.2541609</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.2541610</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
All versions This version
Views 5959
Downloads 3434
Data volume 22.3 MB22.3 MB
Unique views 5555
Unique downloads 3232


Cite as