Conference paper Open Access

Image Aesthetics Assessment using Fully Convolutional Neural Networks

Apostolidis, Konstantinos; Mezaris, Vasileios


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/2539133</identifier>
  <creators>
    <creator>
      <creatorName>Apostolidis, Konstantinos</creatorName>
      <givenName>Konstantinos</givenName>
      <familyName>Apostolidis</familyName>
      <affiliation>Information Technologies Institute / Centre for Research &amp; Technology - Hellas</affiliation>
    </creator>
    <creator>
      <creatorName>Mezaris, Vasileios</creatorName>
      <givenName>Vasileios</givenName>
      <familyName>Mezaris</familyName>
      <affiliation>Information Technologies Institute / Centre for Research &amp; Technology - Hellas</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Image Aesthetics Assessment using Fully Convolutional Neural Networks</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2019</publicationYear>
  <subjects>
    <subject>Image Aesthetics</subject>
    <subject>Deep Learning</subject>
    <subject>Fully Convolutional Neural Networks</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2019-01-10</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Text">Conference paper</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/2539133</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1007/978-3-030-05710-7_30</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/emma-h2020</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/invid-h2020</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;This paper presents a new method for assessing the aesthetic quality of images. Based on the findings of previous works on this topic, we propose a method that addresses the shortcomings of existing ones, by: a) Making possible to feed higher-resolution images in the network, by introducing a fully convolutional neural network as the classier. b) Maintaining the original aspect ratio of images in the input of the network, to avoid distortions caused by re-scaling. And c) combining local and global features from the image for making the assessment of its aesthetic quality. The proposed method is shown to achieve state of the art results on a standard large-scale benchmark dataset.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/687786/">687786</awardNumber>
      <awardTitle>In Video Veritas – Verification of Social Media Video Content for the News Industry</awardTitle>
    </fundingReference>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/732665/">732665</awardNumber>
      <awardTitle>Enriching Market solutions for content Management and publishing with state of the art multimedia Analysis techniques</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
67
52
views
downloads
Views 67
Downloads 52
Data volume 53.1 MB
Unique views 64
Unique downloads 44

Share

Cite as