Conference paper Open Access

Image Aesthetics Assessment using Fully Convolutional Neural Networks

Apostolidis, Konstantinos; Mezaris, Vasileios


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:cnt="http://www.w3.org/2011/content#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://zenodo.org/record/2539133">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/Text"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/2539133</dct:identifier>
    <foaf:page rdf:resource="https://zenodo.org/record/2539133"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Apostolidis, Konstantinos</foaf:name>
        <foaf:givenName>Konstantinos</foaf:givenName>
        <foaf:familyName>Apostolidis</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Information Technologies Institute / Centre for Research &amp; Technology - Hellas</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Mezaris, Vasileios</foaf:name>
        <foaf:givenName>Vasileios</foaf:givenName>
        <foaf:familyName>Mezaris</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Information Technologies Institute / Centre for Research &amp; Technology - Hellas</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>Image Aesthetics Assessment using Fully Convolutional Neural Networks</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2019</dct:issued>
    <dcat:keyword>Image Aesthetics</dcat:keyword>
    <dcat:keyword>Deep Learning</dcat:keyword>
    <dcat:keyword>Fully Convolutional Neural Networks</dcat:keyword>
    <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/H2020/687786/"/>
    <schema:funder>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </schema:funder>
    <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/H2020/732665/"/>
    <schema:funder>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </schema:funder>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2019-01-10</dct:issued>
    <dct:language rdf:resource="http://publications.europa.eu/resource/authority/language/ENG"/>
    <owl:sameAs rdf:resource="https://zenodo.org/record/2539133"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/2539133</skos:notation>
      </adms:Identifier>
    </adms:identifier>
    <owl:sameAs rdf:resource="https://doi.org/10.1007/978-3-030-05710-7_30"/>
    <dct:isPartOf rdf:resource="https://zenodo.org/communities/emma-h2020"/>
    <dct:isPartOf rdf:resource="https://zenodo.org/communities/invid-h2020"/>
    <dct:description>&lt;p&gt;This paper presents a new method for assessing the aesthetic quality of images. Based on the findings of previous works on this topic, we propose a method that addresses the shortcomings of existing ones, by: a) Making possible to feed higher-resolution images in the network, by introducing a fully convolutional neural network as the classier. b) Maintaining the original aspect ratio of images in the input of the network, to avoid distortions caused by re-scaling. And c) combining local and global features from the image for making the assessment of its aesthetic quality. The proposed method is shown to achieve state of the art results on a standard large-scale benchmark dataset.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dct:license rdf:resource="http://creativecommons.org/licenses/by/4.0/legalcode"/>
        <dcat:accessURL rdf:resource="https://zenodo.org/record/2539133"/>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
  <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/H2020/687786/">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">687786</dct:identifier>
    <dct:title>In Video Veritas – Verification of Social Media Video Content for the News Industry</dct:title>
    <frapo:isAwardedBy>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </frapo:isAwardedBy>
  </foaf:Project>
  <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/H2020/732665/">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">732665</dct:identifier>
    <dct:title>Enriching Market solutions for content Management and publishing with state of the art multimedia Analysis techniques</dct:title>
    <frapo:isAwardedBy>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </frapo:isAwardedBy>
  </foaf:Project>
</rdf:RDF>
74
57
views
downloads
Views 74
Downloads 57
Data volume 58.2 MB
Unique views 71
Unique downloads 48

Share

Cite as