
Formal Quality of Service assurances, ranking and

verification of cloud deployment options with a

probabilistic model checking method

Petar Kochovskia,b, Pavel D. Drobintsevb, Vlado Stankovskia,∗

aFaculty of Civil and Geodetic Engineering, University of Ljubljana, Ljubljana, Slovenia
bInstitute of Computer Science and Technology, Peter the Great St. Petersburg

Polytechnic University, St. Petersburg, Russian Federation

Abstract

Context: Existing software workbenches allow for the deployment of cloud
applications across a variety of Infrastructure-as-a-Service (IaaS) providers.
The expected workload, Quality of Service (QoS) and Non-Functional Re-
quirements (NFRs) must be considered before an appropriate infrastructure
is selected. However, this decision-making process is complex and time-
consuming. Moreover, the software engineer needs assurances that the se-
lected infrastructure will lead to an adequate QoS of the application.

Objective: The goal is to develop a new method for selection of an optimal
cloud deployment option, that is, an infrastructure and configuration for
deployment and to verify that all hard and as many soft QoS requirements
as possible will be met at runtime.

Method: A new Formal QoS Assurances Method (FoQoSAM), which re-
lies on stochastic Markov models is introduced to facilitate an automated
decision-making process. For a given workload, it uses QoS monitoring data
and a user-related metric in order to automatically generate a probabilistic
model. The probabilistic model takes the form of a finite automaton. It
is further used to produce a rank list of cloud deployment options. As a
result, any of the cloud deployment options can be verified by applying a
probabilistic model checking approach.

Results: Testing was performed by ranking deployment options for two

∗Corresponding author
Email address: vlado.stankovski@fgg.uni-lj.si (Vlado Stankovski)

Preprint submitted to Information and Software Technology January 11, 2019

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

cloud applications, File Upload and Video-conferencing. The FoQoSAM
method was compared to a baseline Analytic Hierarchy Process (AHP). The
results show that the first ranked cloud deployment options satisfy all hard
and at least one of the soft requirements for both methods, however, the
FoQoSAM method always satisfies at least an additional QoS requirement
compared to the baseline AHP method.

Conclusions: The proposed new FoQoSAM method is appropriate and
can be used in decision-making when ranking and verifying cloud deployment
options. Due to its practical utility it was integrated into the SWITCH
workbench.

Keywords: cloud, fog, edge, software engineering, decision-making,
equivalence classes, probabilistic model checking

1. Introduction

With the emergence of the Internet of Things (IoT), the potential for var-
ious smart applications is radically increasing in practically all areas [1, 2, 3].
Microservices architecture [4] is an approach to software development in
which a smart cloud application can be built as a suite of modular services.
A single microservice is understood as a small, independently versioned and
scalable customer-focused service with specific business goals, which com-
municates with clients and other services over standard protocols with well-
defined interfaces. A microservice has a firm module boundary, so that it can
be written in a programming language of the software engineer’s choice. Mi-
croservices are usually deployed in Virtual Machines (VM) or containers [5],
so that they can be seamlessly managed across the entire computing spec-
trum, starting from cloud data centres to Fog (e.g. routers, micro-servers)
and Edge (e.g. battery-powered, automated cars) computing nodes [6, 7].

Moreover, the development of various smart applications is supported
with new approaches, methodologies and workbenches that promise radical
improvements of the software life-cycle [8, 9, 10]. This is achieved through a
clear separation of the application design, deployment and operational (run-
time) phases. Advanced software engineering workbenches support the com-
position of applications from existing microservices, discovery and negoti-
ations of computing resources with Infrastructure-as-a-Service (IaaS) cloud
providers, Service Level Agreements, deployment and runtime orchestration
in multi-cloud environments [11, 12, 13, 14, 15]. The software engineering

2

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

process is cloud agnostic in the sense that a cloud application can be designed
and developed before an IaaS offer is selected [16].

This study focuses on the deployment phase, when the software engineer
has to select an appropriate IaaS offer and deploy the application or one of
its parts, such as a microservice. The Quality of Service (QoS) and Non-
Functional requirements (NFRs) of smart applications usually vary greatly,
which must be addressed in the deployment phase. For example, for a spe-
cific microservice and intended workload, it may be necessary to obtain a
high-speed processor, a large amount of memory, low latency, high band-
width, a specific geolocation for deployment, achieve low operational cost or
similar. The problem of selecting an appropriate computational resource,
that is, an infrastructure and configuration scheme where a microservice will
be deployed and run is not at all unimportant. The more criteria used, the
higher the complexity of the decision-making process [17, 18]. It is therefore
necessary to design new methods that can support the deployment of mi-
croservices, and which may be integrated into existing workbenches, such as
Juju, Fabric8 or SWITCH [19].

Therefore, the goal of this work is to develop a new method that can be
used by software engineers to automatically rank a list of cloud deployment
options for their microservices. In addition, the goal is to include a verifi-
cation step, thus providing assurances that all hard and as many soft QoS
requirements as possible will be met at runtime. The hypothesis of this work
contends that formal QoS assurances in the cloud application deployment
phase can be provided with a new probabilistic decision-making method.
Our approach relies on the theory and practice of stochastic Markov mod-
els [20, 21]. Hence, the objectives of this study have been set out to develop:

• a Markov-based probabilistic decision-making approach, which offers
the software engineer a set of optimal IaaS that would satisfy a specific
QoS of the application,

• an equivalence classification approach of available cloud deployment
options,

• a monitoring and context input method for the development of a prob-
ability model, and

• a design and implementation of the new method to be included in a
software engineering tool.

3

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

The new Formal QoS Assurances Method (FoQoSAM) is presented in de-
tail in this work. Section 2 presents related work and previous contributions
from academia and the software engineering industry. Section 3 provides a
thorough description of the new deployment methodology, which includes a
formal definition of the equivalence classification, a description of QoS and
NFR attributes and the actual probabilistic model. The developed com-
ponents that form the architecture of the proposed model are described in
section 4. In addition, the results of the experimental tests of the described
model are explained in section 5. Section 6 discusses the experimental results
and intended for work in the future. Finally, section 7 concludes the paper
and discusses future plans, including improvement of the developed model.

2. Related work

Existing studies have investigated the selection of optimal IaaS providers
with respect to the expected QoS, for example, studies related to load bal-
ancing [22, 23, 24, 25], resource management and allocation [26, 27, 28, 29],
resource provisioning [30, 31, 32] or service deployment and management
systems [33, 15].

As a result of the large array of different NFRs that can be taken into
account, the reviewed studies proposed multi-objective approaches for vari-
ous deployment scenarios on cloud infrastructures. For instance, Karim et
al. [34], Garg et al. [35] and Gonçalves et al. [36] describe deterministic ap-
proaches based on AHP, which has been the most frequently used method
for multi-criteria decision-making in the period 2000-2014 [37]. The AHP
takes into account the users QoS requirements in order to rank and select
cloud deployment options. However, the AHP can be computationally im-
practical in cases where it is used to compare a large number of parameters,
as it will generate a large number of embedded decisions. For example, if
AHP is used to rank 500 available cloud deployment options by compar-
ing 20 non-functional attributes, it will generate a decision tree with 10000
nodes. Zheng et al. [38] developed a framework for delivering optimal cloud
service selection, which also ranks the services according to the QoS they
must provide. However, in order to rank the cloud deployment options, their
framework only utilizes past data usage based on two network-level metrics
(throughput and response time). Guerrero et al. [39] presented an approach
for container resource allocation, which is based on the Non-dominated Sort
Genetic Algorithm (NSGA-II); however, possibilities to include or exclude

4

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

of QoS attributes are limited. In contrast to the above methods, our new
FoQoSAM method is designed to take into account the current deployment
context of the application, such as user preferences for geographic availability
and estimated workload.

Moreover, all of the methods described above are deterministic. They do
not a provide probabilistic evaluation for the success of the QoS, which is
important to achieve for critical business applications. Multiple studies of
different fields use the Markov Decision Processes (MDP) to deliver decision-
making results in non-deterministic cases, where unpredicted situations may
arise. For instance, MDP has been used to facilitate an optimal treatment for
patients [40] that has been tailored to individual patients, optimal charging
of specific electrical vehicles [41] and similar. Moreover, it has been applied
in the domain of artificial intelligence and reinforcement learning [42].

In this context, MDP is also suitable for application in the cloud-computing
domain, to address its non-deterministic properties. For instance, Yang et
al. [43] present an MDP-based method, whose purpose is to choose a deploy-
ment option that provides optimal performance to applications. In addition,
Su et al. [44] also proposed an MDP-based scheduling mechanism, which
supports a trade-off between three metrics (accuracy, data usage and com-
putational overhead) by implementing an iterative decision-making approach.
Nevertheless, to the best of our knowledge, the use of MDP to assure high
QoS of a deployed software component in the context of containers has not
yet been considered.

MDP also allows formal verification of the correctness for the placement of
a deployment decision. Llerena et al. [45] developed a technique for analysing
the effects of probabilistic values perturbations by verifying the reachabil-
ity properties of MDP models. The following studies [46, 47] have applied
such techniques to the problem of the horizontal scaling of VMs. However,
their computational complexity prevents the integration of such methods in
mainstream software engineering practices and this problem has not been
addressed adequately in the existing studies.

The present work complements the above efforts by focusing on aspects
related to dependability, computational complexity and formal assurances,
which are required for a method to find applications in mainstream software
engineering. Our method aims at automating the process of cloud deploy-
ment option selection, which is (1) optimal given the specific requirements
and usage context and (2) verified through a stochastic approach, which is
new in the domain. The new method supports the use of various NFRs, con-

5

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

tinuous accumulation of metrics during operation, and includes a mechanism
to deal with the computational complexity of the MDP model.

3. Decision-making process for microservice deployment

Our new method was developed to automatically rank all candidate de-
ployment options by taking into account the NFRs, and the potentially
unique usage context of the microservice. Additionally, we implemented a
formal approach, which is used to provide assurances to the software engineer
that the NFRs will be satisfied at runtime.

The process is illustrated in Figure 1. Here, we proceed by explaining the
individual steps involved.

Figure 1: Decision-making process for microservice deployment

1. Selection of NFRs: In this step, the software engineer selects all impor-
tant NFRs. Additionally, threshold values for any selected QoS metrics
are defined.
The software engineer can choose from a variety of QoS metrics (e.g.
throughput, latency, performance, resource utilisation, cost and sim-
ilar) and NFRs are categorically specified (e.g. specific geolocation).
This selection can differ significantly a microservice to microservice. In
this step, the software engineer must also decide, which NFRs represent
hard constraints and must be satisfied continuously during execution,
and which NFRs are desirable, but not mandatory (soft constraints).
Once the hard and soft constraints are defined, they are used in two
distinctive steps of the automated decision-making process. The hard

6

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

constraints are used as input parameters for the equivalence classifica-
tion (second step), while the soft constraints are used in the probabilis-
tic model generation and verification stage (third step).

2. Initial model generation and equivalence classification: The goal of this
step is to reduce the number of necessary computations when using the
FoQoSAM method. All multi-criteria decision-making processes have
a high degree of computational complexity, since MDP is known as a
P-complete problem [48]. Due to its nature, we have to reduce the
list of available deployment options that are provided as inputs to the
method.
In the beginning, a finite automaton is generated by using the list of
all available cloud deployment options (e.g. 1000 available cloud de-
ployment options). Every state of this initial model represents one
distinctive deployment option. Then we follow an automated process
in which the deployment options are classified into equivalence classes.
For example, a specific equivalence class may contain all deployment
options that contain a minimum of 8 CPUs, or all deployment op-
tions for which the CPU utilisation is less than 80%. The resulting
equivalence classes are enumerated and further used to generate the
probabilistic model.

3. Probabilistic Model Generation: The goal of this step is to generate a
probabilistic model, which is a stochastic model of randomly changing
systems. It incorporates: (1) the potential outcomes of the system (i.e.
the different deployment options within the equivalence class) and (2)
the probabilities that are assigned to the potential outcomes.
In order to build the probabilistic model, various QoS metrics that
represent the past and present performance status of the cloud deploy-
ment options are taken into account. These are collected and stored
in a time-series database by using a multi-level monitoring system,
which is part of the SWITCH workbench. The Probabilistic Model
Generation method receives all relevant metrics, such as the utilisation
percentage of the cloud deployment options’ resources, throughput, la-
tency, packet loss and other metrics. If available, Quality of Experience
(QoE) metrics gathered from previous executions may also be used.
Only those NFRs that are part of the hard and soft constraints are
used in the process. The method then calculates ranking scores for all
deployment options and ranks them.

4. Model Checking Verification: Following the generation of the proba-

7

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

bilistic model, the obtained result is verified by using a model checking
approach. This step verifies to what extent the NFRs are satisfied by
the available deployment options within each equivalence class.
Formal criteria are used to verify the results provided by the proba-
bilistic model. As an illustration, in this step the software engineer can
verify that the NFRs will be satisfied with a 95% probability rate for
the first ranked cloud deployment option. The calculated value is an
output of the probabilistic model and represents a formal assurance.

5. Ranking and deployment of cloud deployment options: The first ranked
deployment option is automatically selected and the microservice is
deployed.
This step proceeds under the assumption that the received formal as-
surance for the first ranked cloud deployment option, i.e. the one with
the highest score is acceptable to the software engineer.

With the specifications of hard and soft constraints and the expected for-
mal assurance before microservice deployment, the process is fully automated
and does not require any additional interactions with the software engineer.
The individual steps of this process are further elaborated in the following
sub-sections.

3.1. Non-functional requirements

The new FoQoSAM method is designed to operate with a potentially
large number of NFRs. NFRs are expressed by means of specific attributes
that many have real or categorical values. The authors [49] conclude that
attributes such as: geographical location, CPU utilisation, availability and
response time should be addressed to achieve high QoS of Big Data appli-
cations. Another study [50] addresses network-level metrics, such as band-
width, throughput, jitter, power efficiency and cost as important attributes
for their IoT applications.

Based on an analysis of important metrics, and in order to illustrate our
new method, we have made a selection of NFR attributes (metrics) to be
used in the decision-making process (see Table 1).

As many smart IoT-based applications are time-critical in nature, we also
developed two time-critical microservices (File Upload and Video-conferencing)
for experimentation. They are elaborated in detail in Section 5.1. The two
microservices require flawless data transfer, without signal delays or packet
loss. Hence, several network-level (e.g. throughput, response time, packet

8

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

Table 1: NFR attributes used for experimentation

NFR Description
Throughput (Gb/s) The rate at which data is transferred between

two endpoints, without losses. It measures the
quantity of data (TCP/UDP traffic) that a given
microservice can successfully transfer per unit of
time.

Latency (ms) Latency is a metric (a.k.a. attribute) that repre-
sents the time required for a packet to be trans-
ferred across the network. In our case it is mea-
sured as the round-trip time for the package to
reach a microservice and return to the client.

Packet loss (%) Packet loss is a metric measured at the
connection-point between the client and the run-
ning microservice.

QoE Quality of Experience (QoE) is a metric cal-
culated by using end-user satisfaction ratings.
End-users rate the quality of the received ser-
vice with grades within the range 1-5, where 1
is the worst and 5 is the best quality perceived.

CPU utilisation (%) This is a performance metric that represents the
sum of work handled by the CPU. CPU utili-
sation varies according to the workload of the
microservice.

Memory utilisation (%) This is a performance metric, which represents
the amount of vRAM used by the deployed ap-
plication.

Cost ($/month) This is the monthly cost of using a cloud infras-
tructure.

loss) and infrastructure-level attributes (e.g. cost, resource utilisation and
QoE) are used in our experiments.

3.2. Forming NFR equivalence classes of cloud deployment options

Using an MDP-based approach to rank a potentially large number of
cloud deployment options according to multiple constraints is a computa-
tionally intensive process. The number of necessary computations increases

9

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

with the number of available deployment options. Here, we reduce the input
list of available deployment options by forming equivalence classes based on
the selected NFR constraints.

Equivalence classes are subsets of a large set of elements, which satisfy a
precisely defined hard constraint that is also known as an equivalence rela-
tion. An equivalence relation is a strict mathematical definition that divides
any set into subsets. Any equivalence system must satisfy the following rules:
1) the equivalence classes are disjoint; 2) all element pairs within the same
equivalence class are equivalent to one another; 3) any two elements that do
not belong to the same equivalence class are not equivalent to one another.
Figure 2 depicts equivalence classification within a set of cloud deployment
options, where the location of the deployment options is used as an equiva-
lence relation. As a result, the set is divided into three equivalence classes,
which are composed of deployment options that are located in three regions:
Europe, the USA and Asia.

Figure 2: Example classification of available cloud deployment options

In order to define equivalence classes formally, we first define two sets:
a set of NFRs and a set of deployment options. The NFR set is a set of
attributes’ sets NFR={{nr00, nr01, . . . , nr0n}, . . . , {nrm0, nrm1, . . . , nrmn}},
where nr represents a specific non-functional requirement (attribute), for ex-
ample: NFR = {{vCPU = 1, location = Europe, latency = 30}, {vCPU =
1, location = Europe, latency = 45}, {vCPU = 1, location = USA, latency =
200}}. The set of cloud deployment options is defined as I = {inf0, inf1, . . . , infm},
where inf is a deployment option, for example, I = {g1−small−EU, n1−
standard1−EU, n1−standard1−USA}.

The relationship between the elements of the NFR set and the elements
of the deployment options’ set is a bijective function: f : NFR→ I, where:
infm = f(nrm0, nrm1, . . . , nrmn). In other words, each attribute set from
the NFR collection is mapped to exactly one deployment option from set

10

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

I. This basically means that each deployment option is related to a unique
set of NFRs. For instance, the sets presented in the previous paragraph can
be associated to deployment options as follows: f(vCPU = 1, location =
Europe, latency = 30) = g1− small−EU , f(vCPU = 1, location =
Europe, latency = 45) = n1−standard1−EU , f(vCPU = 1, location =
USA, latency = 200) = n1−standard1−USA.

The next step is to build an equivalence class. Let e be a desired de-
ployment option that satisfies all hard constraints and e ∈ I. An equiv-
alence class [e] that is populated with deployment options equivalent to e,
has to satisfy the following condition [e] ⊂ I. Such equivalence class is de-
fined as: [e] = {inf ∈ I | inf ∼ e}, where inf ∼ e is used to denote
equivalence relation between two deployment options satisfying the condi-
tion ∀i∃j(nrinfj = nrei). This means that within the scope of the equiv-
alence class, the two deployment options e and inf will be equivalent if
each attribute of e has a corresponding attribute of inf with equal value.
For instance, an equivalence class of the sets presented in the paragraphs
above that is based on e = f(location = Europe) will be the following:
[e] = {g1− small − EU, n1− standard1− EU}.

Alongside the use of categorical values to form equivalence classes (such
as the use of geographic location), we can also use threshold values to achieve
the same, for example, by classifying all cloud deployment options that have
CPU utilisation of less than 80% in the same class.

3.3. Decision-making method

Our new decision-making method relies on MDP, which is a stochastic
process. It is a powerful mathematical framework for decision-making in dy-
namic environments, where the results are partly random and partly under
the control of a decision maker [51]. Its non-deterministic nature allows the
incorporation of multiple potential system behaviours in a single model. This
characteristic allows the MDP in our case to perform multiple simulations
from each state and aims at retrieving the optimal cloud deployment option
in the model. MDP is suitable for use because it is able to: 1) autonomously
select one of a number of possible events, situations or actions (e.g. better
CPU utilisation or higher/lower QoS); 2) implement a utility function, which
is calculated at each step of the process and generates a score for each cloud
deployment option; 3) verify the behaviour of the model in a specific mo-
ment in the future, thus providing for reliable decision-making. An MDP’s
output is hard to accurately predict, because it depends on variable input

11

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

parameters, such as network throughput, latency, resource utilisation and
other NFRs.

MDP is defined as a tuple M=(S, A, P, R, γ), where:

• S={S0,...,Sn} is a finite set of states, which in our study it is a set of
cloud deployment options;

• A={a0,...,an} is a finite set of actions, which in our study is shown as de-
ployment of cloud application to deployment option with higher/lower
QoS;

• P={st+1=s’ | st=s, at=a} is the transition probability from state s at
step t to state s’ at the next step due to an action a;

• R(s,s’) is the expected reward received after transitioning from state s
to state s’, due to action a.

• γ is called a discount factor, and represents the difference in importance
between current and future rewards. Its value is in the range 0-1.

The MDP model that was developed for this study follows the standard
tuple from the definition above. Its design and implementation are thor-
oughly described in the following sections.

3.3.1. Probabilistic model

Probabilistic models can be fairly complex. In order to illustrate them,
we provide a basic example. The probabilistic model is a finite automaton,
which is built by following the MDP definition from the previous section. It
is a necessary component used to generate the deployment options ranking
results. Such models are built separately for every microservice, and can
differ significantly due to the variability of the chosen input NFRs.

Each transition in the probabilistic model is a probabilistic choice over
multiple next states. The goal of this study is to provide a ranking list
of available cloud deployment options, hence, each state of the probabilistic
model represents a different cloud deployment option. At runtime, the values
of the NFR attributes can change, which is represented by probabilities. For
example, a transition in the automaton may reach one deployment option
with a 60% probability rate and another with a 40% probability rate, whereas
at another moment in time these probabilities can be different.

12

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

The transitions between states occur as the result of different (and in some
cases unpredicted) actions in the model, which imparts the non-deterministic
behaviour of the model. The model used for illustration (see Figure 3) im-
plements two actions: a deployment action, which is responsible for selecting
a deployment option and an idle action, which is activated if the current
deployment option has the optimal set of NFR attributes (i.e. their values)
requested by the software engineer.

In the probabilistic model, every action has a corresponding transition.
Because the equivalence class might contain many deployment options that
have different NFR (and QoS) attribute values, the deployment action could
be shown as higher QoS for deploying an application to a deployment option
with higher QoS, or lower QoS for selecting a deployment option with lower
QoS. Every action results in a compatible transition between the states in
the probabilistic model. For instance, a state that represents a deployment
option with lower QoS will have valid transitions to all states that represent
deployment options with a higher QoS. At the same time the same state
may also have to transition to itself and to those states with lower QoS.
Even though there are multiple transitions from one state, the result that
the probabilistic model generates depends on the transition probabilities and
state rewards. All transitions are mapped to a different probability value
due to differences in past QoS values. Moreover, every state in the model
is associated with a reward value. Thus, whenever the model decides to
transition from one state to another, it chooses the state that provides a
higher reward.

The reward and probability values represent the required input data for
the utility function, because they are necessary for calculating the ranking
score for every deployment option in the model. A more detailed description
on how the probabilities and the rewards are calculated is presented in the
next section.

Figure 3 presents an example of a simple probabilistic model that our
MDP-based method generates. It is composed of three deployment options,
where every state represents a different deployment option with different net-
work and computing performance. In this example, state 0 represents the
deployment option with the lowest QoS and state 2 represents the deploy-
ment option with the highest QoS. The different types of transitions are
represented with different colours. The transitions more QoS are shown in
red. They represent transitions from a deployment option with lower QoS to
a deployment option with higher QoS. The lower QoS transitions are shown

13

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

in green and are the opposite of more QoS. The idle action transitions are
shown in blue and are used to represent moments when the current state
satisfies the QoS requirements, or there is simply no deployment option with
a higher/lower QoS than the current one.

Figure 3: Example of a probabilistic model composed of cloud deployment options within
one equivalence class

3.3.2. Calculating the model probabilities and rewards

When designing the probabilistic model, the main task is to calculate the
probabilities for each transition and the rewards for each state. This section
describes how to estimate the probabilities and rewards in our probabilistic
model.

Essentially the transition probabilities must satisfy the Markov rule, which
states that the probability of the future states of the process depends only
upon the present state, and not on the states that preceded it in the past.
Hence, the probabilities that predict the future behaviour of the model are
only dependent on the current state of the model. For instance, when cal-
culating the transition probability between two cloud deployment options A
and B, the transition probability does not depend on the probability values
that were necessary to reach deployment option A. In order to develop this
probabilistic model, it is necessary to: (1) select an initial state of the prob-
abilistic model, (2) calculate the transition probabilities between the states
in the model, (3) calculate the reward values that are related to each state
in the model.

The transition probabilities are depicted as layers in a probabilistic deci-
sion tree, as shown in Figure 4 and explained as follows.

(A) The first level in the decision tree is necessary to determine the initial
state of the probabilistic model. The result of this probability estima-
tion is necessary, because it provides an initial state for the MDP. The

14

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

transitions of the initial action are equally probable, and they allow
the probabilistic model to commence the MDP from any available de-
ployment option within the equivalence class. Hence, this is calculated
using the following equation P1 = 1

Ntran
, where Ntran is the amount of

transitions of the same action from one state.

(B) The second level in the decision tree is necessary to calculate the tran-
sition probabilities between the states within the model. These prob-
ability values are used to compare the deployment options NFRs (and
QoS) between each other. It can determine whether the microservice
would achieve better quality in another state that can be reached from
the current one in one transition. The probability values of this level are
calculated using the following equation P2 = Nchosen

Nlisted
, where Nchosen is the

number of times a deployment option has been chosen for that specific
type of software component and the Nlisted is the number of times the
deployment option has been listed in an equivalence class.

In general, if the probabilistic model has n amount of states, the transi-
tion probabilities can be estimated by using the following expression: Pij =
P (P2ij P1ij)·P1ij∑n

k=1 P1ijP2ij
, where P (P2ij P1ij) is the probability that P2ij occurs,

given that P1ij has occurred.

Figure 4: Probabilistic decision tree

After estimating the probability values for each transition, it is neces-
sary to estimate the reward values for reaching the states within the model.
The reward values are scalar values, which are calculated according to Algo-
rithm 1. They depend on the data acquired from the monitoring measure-
ments and historical data from prior decisions. The algorithm inspects if
the states of the model satisfy the soft constraints, which have been set by
the software engineer. According to the algorithm, the more soft constraints

15

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

are violated by a deployment option, the lower the reward for reaching the
deployment option within the probabilistic model.

To calculate the ranking score for each deployment option, the method
implements utility function, which utilizes the transition probabilities and
reward values as input parameters. The utility function has the following
recursive form:
u(S) = r(S)+γmaxa

∑
S′ P (S ′|a, S)u(S ′) , where r(S) represents the reward

value for reaching a state, P(S’|a,S) is the transition probability value for
reaching state S’ from state S due to action a, and P(S’|a,S)u(S’) represents
the future, discounted rewards. The results that are generated by the utility
function are presented in Section 5.

Although, the reward values in the current model are based on seven
NFRs, the presented methodology is independent of the number and type
of NFR attributes that can be used to prepare the rewards for each state.
Thus, it can be extended with more attributes that could be implemented in
the future.

3.4. Probabilistic model-checking

The probabilistic model that is generated by following this process has a
finite number of states that allow the model’s output and behaviour to be
verified. The verification determines whether the system output conforms
to the hard and soft NFR constraints given by the software engineer. We
implemented an approach known as model checking that allows for auto-
mated analysis and verification of finite systems with random probabilistic
behaviour.

In our case, the probabilistic model is verified by using a Probabilistic
Computation Tree Logic (PCTL), which is a temporal logic that allows for the
probabilistic quantification of system specifications. The primary function of
PCTL is to verify whether the obligatory NFRs (hard constraints for NFRs)
and maximum number of optional NFRs (soft constraints for NFRs) were
satisfied.

Using PCTL the main verification criterion is as follows:
P=1[G(hard) & F (soft)], where hard is a conjunction of all hard con-

straints:
hard = hConstraint1&hConstraint2& . . .&hConstraintm; and soft is dis-
junction of all soft constraints:
soft = sConstraint1|sConstraint2| . . . |sConstraintn. The main verification
criterion can be translated as follows:

16

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

Algorithm 1 Algorithm for calculating the reward values in the probabilistic
model

1: Input parameters: Network Throughput (NT), Network Latency (NL),
Packet Loss (PL), CPU utilisation (CPU), Memory utilisation (MU),
Quality of Experience (QoE), Cost(C), Network Throughput Thresh-
old (NTT),Network Latency Threshold (NLT), Packet Loss Threshold
(PLT), CPU utilisation Threshold (CPUT), Memory utilisation Thresh-
old (MUT), Quality of Experience Threshold (QoET), Cost Threshold
(CT), size - number of cloud deployment options

2: Output parameters: rewards
3: count← 1
4: for each i in size do
5: if NT < NTT AND NL > NLT AND PL > PLT AND CPU >
CPUT AND MU > MUT AND QoE < QoET C > CT then

6: rewardsi ← 0
7: else
8: if NT < NTT then count← count+ 1
9: if NL > NLT then count← count+ 1

10: if PL > PLT then count← count+ 1
11: if CPU > CPUT then count← count+ 1
12: if MU > MUT then count← count+ 1
13: if QoE < QoET then count← count+ 1
14: if C > CT then count← count+ 1
15: rewardsi ← 1

count

16: end if
17: count← 1
18: end for

• Will the probability of satisfying all the hard constraints and at least
one soft constraint within the equivalence class equal 100%?

In order to narrow the verification, a maximisation criterion can be im-
plemented and therefore the following description can be used:
P=1[G(hard) & F [(soft) & (nfrV iolation ≤ minV iolations)]], where nfrVi-
olations is the amount of NFRs that are not satisfied by the current cloud
deployment option and minViolations is the minimum amount of NFR viola-
tions among all possible deployment options that are included in the model.
In this case the verification criterion can be translated as follows:

17

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

• Will the probability of satisfying all hard constraints and the maximum
number of soft constraints within the equivalence class equal 100%?

At the same time these PCTLs examine, whether the equivalence class
is populated with deployment options that satisfy the hard constraints and
whether the QoS probability score that was provided by the probabilistic
model satisfies the soft constraints.

However, by implementing model checking verification the system can
be verified according to various criteria. In the following, we present three
examples to indicate the wide scope of verification criteria that could be used
by the software engineer to assure that the system satisfies the required NFR
standards:

• What is the probability that higher/lower QoS would be achieved, given
that the microservice was redeployed from deployment option A to de-
ployment option B?

• What is the probability of the microservice operational cost being less
than 100$ if the QoE score is higher than 4?

• Will the probability of choosing the deployment option A instead of
deployment option B be less than 40%?

Using PCTL the above examples are presented with the following queries,
respectively:

• P=?[F (higherQoS) ∪ (chosenA ∪ chosenB)];
P=?[F (lowerQoS) ∪ (chosenA ∪ chosenB)];

• P=?[F (cost < 100$ &QoE > 4)];

• P<0.4[chosenA ∪ chosenB].

4. System architecture

Based on the process specified in the previous section we developed an
architecture and developed a system for formal QoS assurances. Our goal
was to integrate the new method with an existing software engineering tool.
In our architecture, we use the services of the SWITCH Workbench, which

18

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

Figure 5: System component diagram

is an Interactive Development Environment for Cloud applications [52, 53]
that allows us to integrate this new method into the workbench.

The flow of interactions between the components of this architecture is
presented in Figure 5.

The system is composed of two main components - a Probabilistic Com-
puting Trilogy (PCT) and a Monitoring System. PCT is a set of integrated
components that execute the previously described methods for generation
and verification of probabilistic models. It is designed to generate proba-
bilistic models in a dynamic manner, using measurements and additional
QoS- and NFR-related information.

The Monitoring System is composed of several sub-components. They are
responsible for monitoring the system during run-time and collecting data
that is necessary for the functioning of PCT. The first component, which ini-
tialises the work in PCT is the Equivalence Classification Component (ECC).
This component allocates all of the available cloud deployment options and
creates the initial model that is used as an input parameter for the equiv-
alence classification. Then the equivalence classification method examines

19

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

which deployment options satisfy the hard constraints and assigns them to
equivalence classes. Hence, ECC can arrange a large number of available
deployment options into equivalence classes.

For purposes of simplicity, the classification is based on service geolocation
in the two developed microservices (use cases). Thus, two deployment options
A and B will belong to the same equivalence class, if they are equivalent in
terms of the same criteria, such as running within the same region. Finally,
the ECC output (i.e. equivalence class) is sent to the Probabilistic Model
Generation Component (PMGC).

PMGC prepares a finite probabilistic model, the size of which is equal to
the size of the set that was provided by the ECC. In addition, PMGC calcu-
lates the values of the transition probabilities and the reward system. Both
components, ECC and PMGC were developed using Java-based technologies
and frameworks, such as Java Jersey for RESTful web services and Apache
Maven for software management.

The Model Checking Verification (MCV) component is used to verify the
probabilistic model generated by the PMGC. It allows for the probabilistic
quantification of the described properties by implementing probabilistic com-
putation tree logic (PCTL). In this way, MCV verifies the degree to which
the cloud deployment options would satisfy the microservice NFRs under
the specific constraints that were set up by the software engineer. Hence,
this component provides assurances to the software engineer that the system
short-lists the optimal set of deployment options for the microservice to run.
This component utilized the PRISM model checker [54], which is a tool used
to quantify and analyse probabilistic models.

The correctness of the results offered by the PCT component strongly
relies on a Monitoring System that includes a Knowledge Base of various
microservices properties. The Monitoring System is a set of monitoring
components, such as probes for different QoS metrics, agents and a server,
which dynamically collect metrics during the application’s runtime. It has
an important role in the system, because it is used to measure metrics (e.g.
throughput, latency, CPU and memory utilisation), and this ensures that
the necessary QoS requirements are satisfied at runtime by any required mi-
croservice adaptation. Usually the Monitoring System starts operating when
a microservice container is deployed and started on a cloud deployment op-
tion. Jcatascopia [55] is used to implement the Monitoring System.

The Monitoring Agents are lightweight components that manage metrics
collection from Virtual Machine and container instances. The main purpose

20

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

of the Monitoring Agents is to collect the measured data, parse the data
and register the Monitoring Probes. The Monitoring Probes are components
created to collect low- and high-level metrics. Finally, the Monitoring Server
component is used to collect the monitored data from the Monitoring Agent
and forward it to a database, which in our case is a Time Series Database
(TSDB).

The Time Series Database is a database that is used for storing QoS
metrics. This database is optimised for rapid CRUD operations and does
not require complex data queries. In our experiments we use the open-source
Apache Cassandra1.

The Knowledge Base (KB) is developed by using the Jena Fuseki Open
Source libraries. It is used to collect complex information expressed in the
Resource Description Framework (RDF). This data is required by the ECC
and the MGC as input data. The KB is used to collect information about
the selected cloud deployment options, such as: geolocation, optimisation
of application type, the calculated NFR and QoE scores. Through the use
of SPARQL queries, the structured information from the KB is used when
preparing the equivalence classes and populating them with the correct con-
figurations.

5. Experiments and results

The developed system was experimentally tested with two different mi-
croservices (use cases). These have high QoE requirements; for example,
fast file uploads are needed for the first and high quality video-conferencing
performance is needed for the second. Both microservices are time-critical in
nature and are named File Upload and Jitsi Meet Video-conferencing. Both
microservices are designed for very dynamic multi-instance event-driven us-
age, which allows the software components to be deployed on a different
deployment option, used and terminated each time they have to be used
by a client. This provides two excellent testing cases for our new method.
For purposes of our experimentation, both applications are implemented as
Docker containers2, which is an advanced technology for microservices virtu-
alisation.

1http://cassandra.apache.org/
2https://www.docker.com/

21

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

This section summarizes our experimental results related to the construc-
tion and use of two FoQoSAM models for both use cases. It also compares
the results of the new MDP-based method with an AHP method as a baseline
multi-criteria decision-making method.

5.1. Use cases

5.1.1. File Upload

The goal of this use case is to determine an optimal IaaS for uploading
a large file, where high QoS requirements (e.g. high throughput and low
package loss) must be satisfied. Although file uploading operations represent
a rather simple usage scenario, they are network intensive. The network
throughput is therefore a very important requirement for this use case.

File Upload is a very basic software component, implemented as a ser-
vice. It is developed as a Java Servlet-based Web application that processes
the requests for uploading files on an HTTPS server. The implementation
allows determining different NFR thresholds for each upload operation, since
the container instance can be initiated on different cloud deployment options
for each upload. For instance, if a software engineer that has initiated the
container instance on one cloud deployment option does not receive the ex-
pected QoS due to the long upload time, the engineer can initiate the next
uploading operation using another deployment option. Manual selection of
deployment options is a time-consuming process and requires an advanced
knowledge of cloud deployment options. By implementing the FoQoSAM
method, the software engineer is automatically provided with an optimal
deployment option that satisfies the QoS requirements.

For the File Upload microservice the following NFR attributes were imple-
mented in the FoQoSAM method: service location, network latency, through-
put, packet loss and QoE threshold. The service location was used as a hard
constraint, whereas the other attributes were used as soft constraints.

5.1.2. WebRTC video-conferencing

The goal of the video-conferencing microservice is to determine an op-
timal placement deployment option for a high quality video-conference. In
contrast to the File Upload, the video-conferencing microservice provides
for communication between multiple parties with no interruptions or delays.
Hence, different QoS are important, such as low network latency.

22

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

The microservice was developed based on Jitsi Meet open-source tech-
nology3. The client-side of the application is run on Web browsers that
support the Real-Time Communication (RTC) protocol. This application is
composed of four components: 1) Jitsi Videobridge manages the audio/video
streams between participants; 2) Jicofo runs the video conferences; 3) Prosody
is responsible for the exchange of signalling messages; 4) The Web server uti-
lizes the WebRTC protocol to serve the application. For the current use case,
these components were packed into a single Docker container image and rep-
resent a single microservice, although other arrangements are also possible.
Also in this use case scenario, the microservice is deployed as a selected de-
ployment option that is started and destroyed for each video-conferencing
(usage) event.

We use the same NFR attributes as in the case of the File Upload mi-
croservice. However, due to the different nature of the software components,
different threshold values are used as constraints. The threshold values for
both use cases are shown in Section 5.3.

5.2. Experimental testbed

The goal of the experimental evaluation is to show that the proposed
method is fully functional, and that by utilizing multiple QoS constraints it
can provide autonomous deployment of containerized cloud applications on
optimal deployment options that satisfy the QoS requirements. The experi-
ments were executed in Ljubljana, Slovenia, from where the two microservices
were deployed. For testing purposes, let us assume that there were several
deployment scenarios in which the software engineer had different workload
requirements: 500 (Workload 1), 1000 (Workload 2) and 1500 (Workload 3)
requests every five seconds. The workload was actually generated by using
the httperf tool [56].

The software engineer(s) could deploy their microservices on one of 26
cloud deployment options that were hosted on Google Cloud Platform4 and
on the Academic and Research Network of Slovenia (ARNES)5. Google Cloud
Platform services are available at numerous locations in five regions around
the world: North America, South America, Europe, Asia, and Australia.
ARNES is the Academic and Research Network of Slovenia, which provides

3https://jitsi.org/jitsi-meet/
4https://cloud.google.com/
5https://www.arnes.si/

23

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

network services for research, educational and cultural purposes. As previ-
ously described, geolocation is one of the NFR attributes that is used for the
experiments. Therefore, for purposes of experimental evaluation, our imple-
mented microservices were run in five different locations: Ljubljana, Frank-
furt, Iowa, Taiwan and Tokyo. The experimental evaluation was performed
on standard VMI configurations with no additional performance optimisa-
tion. They are enumerated (id) and their properties listed in Table 2. Three
people participated in the evaluation as software engineers.

Table 2: Cloud deployment options used in the experiments

Infrastructure id vCPU RAM Location
ARNES 0 1 4 Europe

g1-small 1 1 1.7
Asia

Europe
USA

n1-standard 1 2 1 3.75
Asia

Europe
USA

n1-standard 2 3 2 7
Asia

Europe
USA

n1-standard 4 4 4 15
Asia

Europe
USA

n1-standard 8 5 8 30
Asia

Europe
USA

In order to investigate the influence of geolocation on network perfor-
mance, the microservices were deployed on all 26 deployment options. The
results obtained for each microservice are summarized in Table 3 and Table 4.
As can be concluded from the results in the tables, network latency is heavily
affected by the distance between the location of the engineers (also poten-
tially users) and geolocation of the deployment option. Hence, the greater
the geographic distance from Ljubljana, the higher the latency. Because of
the significant impact of the geolocation on the QoE of both microservices,
the deployment option location was selected as a hard constraint for the
generation of the probabilistic model.

24

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

Table 3: Average network performance at different geolocations of the video-conferencing
microservice

Location Latency Throughput Packet loss
Ljubljana 9.03 0.039 0.00
Frankfurt 31.75 1.462 0.00
Iowa 331.78 1.531 0.00
Taiwan 624.98 1.821 0.00
Tokyo 570.56 1.710 0.00

Table 4: Average network performance on different geolocations of the File Upload mi-
croservice

Location Latency Throughput Packet loss
Ljubljana 6.87 0.038 0.00
Frankfurt 134.75 24.57 0.00
Iowa 216.05 25.23 0.00
Taiwan 710.77 25.89 0.00
Tokyo 655.87 26.80 0.00

5.3. Decision-making results

The initial model was composed of 26 cloud deployment options. By us-
ing the equivalence classification method, the amount of deployment options
was reduced to just six. Thus, the equivalence classification method signifi-
cantly reduced the size of the probabilistic model. Although the computing
complexity of the probabilistic model with 26 deployment options results in
minimum computational overhead in practice, the method must check all
the transitions between the states in the model. For instance, if there are
transitions between all 26 states within the probabilistic model and they are
all connected to each other, the method would have to check 676 transitions.
Moreover, for a model with 260 states, the method would have to check
67600 transitions. In some cases the number of transitions could dramati-
cally increase to some thousands, which could have a significant impact on
the computational complexity of the method. Hence, reducing the number
of states in the model significantly reduces the computational time.

The preselected soft constraints that were used to generate the reward
values for the probabilistic model were the following: for the File Upload
microservice: latency<100 ms, throughput>4.0 Gb/s, QoE>4.0, CPU util-
isation <50% and memory utilisation <70% and cost<100 $/month; for

25

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

the video-conferencing microservice: latency<50 ms, throughput>0.1 Gb/s,
QoE>4.0, CPU utilisation <50%, memory utilisation <70% and cost <100
$/month. The soft constraints were compared to the infrastructure-level and
network-level monitoring measurements that were gathered by the NetData6

monitoring tool; and prior usage data, which was collected during the testing
phase of the cloud applications.

Figure 6 and Figure 7 illustrate the probabilistic models, which are com-
posed of the cloud deployment options that satisfy the equivalence class cri-
teria, and are based on the microservices for the Workload 1 (500 requests).

Figure 6: Experimentally-derived probabilistic model for the File Upload microservice
under Workload 1

The results, presented in Table 5 and Table 6, show that the new method
provides a ranking mechanism for cloud deployment options according to the
score calculated to achieve high QoS success. The results rely strongly on
the reward system; therefore, deployment configurations with higher rewards
usually have higher ranking scores. The different workloads obviously influ-
ence the QoS values of the deployment options. Consequently, the ranking
results and scores generated by the FoQoSAM method differ with workloads
as well. This shows that the user is offered an optimal deployment option
with high QoS with respect to the monitoring measurements at the time of
deployment (i.e. at the moment a decision for deployment is taken). For
instance, g1-small provided the highest QoS for the File Upload microservice
according to the requirements of Workload 500, while n1-standard provides

6https://github.com/firehol/netdata

26

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

Figure 7: Experimentally-derived probabilistic model for the video conferencing microser-
vice under Workload 1

the highest QoS according to Workload 1500 requirements. In addition,
g1-small provides the highest QoS for the video-conferencing microservice
according to Workload 1000 requirements, while n1-standard provides the
highest QoS according to Workload 1500 requirements.

Table 5: Decision-making results for the File Upload microservice

id
Workload 500 Workload 1000 Workload 1500
Rank Score Rank Score Rank Score

0 V 11.29 VI 11.77 V 11.94
1 II 11.74 II 12.84 II 13.13
2 II 11.69 IV 12.19 III 12.35
3 I 12.37 I 12.90 I 13.09
4 VI 11.27 III 11.81 VI 11.90
5 IV 11.69 V 12.06 IV 12.35

In order to prove the correctness of the generated results, the model was
verified using the verification criteria described in Section 3.4. The goal of
the verification was to check if: (1) the cloud deployment options that were
taken into account by the method satisfy the hard constraints set by the
software engineers; (2) the optimal cloud deployment option for deployment
of the application satisfies the maximum amount of soft constraints. The
results from the verification process are presented in Table 7 and Table 8.

In general, the output results meet with our expectations, and show that
the integrated constraints within the model influence the overall QoS score

27

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

Table 6: Decision-making results for the Videoconferencing microservice

id
Workload 500 Workload 1000 Workload 1500
Rank Score Rank Score Rank Score

0 VI 13.83 VI 13.61 V 13.48
1 I 16.27 I 16.07 II 14.65
2 II 14.91 II 14.73 III 14.62
3 V 14.25 IV 13.67 I 16.05
4 III 14.87 V 14.08 VI 13.46
5 IV 14.19 III 14.69 IV 13.91

Table 7: Verification of the decision-making results for the File Upload microservice against
the hard and soft constraints

id
Workload 500 Workload 1000 Workload 1500
i* ii** i ii i ii

0 + - + - + -
1 + - + + + +
2 + - + - + -
3 + + + + + +
4 + - + - + -
5 + - + - + -

*i: Criterion 1 = G(hardConstraints).
**ii: Criterion 2 = F [(soft)&nfrV iolation ≤ minV iolations].

Table 8: Verification of the decision-making results for the Videoconferencing microservice
against the hard and soft constraints

id
Workload 500 Workload 1000 Workload 1500
i* ii** i ii i ii

0 + - + - + -
1 + + + + + -
2 + - - - + -
3 + - - - + +
4 + - - - + -
5 + - - - + -

*i: Criterion 1 = G(hardConstraints).
**ii: Criterion 2 = F [(soft)&nfrV iolation ≤ minV iolations].

28

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

of the deployment options.
In the final stage of the experimental evaluation, we compare this new

FoQoSAM method with the AHP baseline method (see Section 2). In order
to generate the ranking results, AHP applied the same input parameters as
FoQoSAM. For purposes of comparing them as pairs, AHP considered a set
of evaluation criteria (i.e. NFRs) and a set of alternative options (i.e. cloud
deployment options). As shown in Figure 8, the hierarchy is structured in
three layers. The first layer is the goal of the analysis, which is the selec-
tion of an optimal cloud deployment option. The second layer is populated
by seven evaluation criteria that are used to compute the vector of criteria
weights. The third layer is composed of six cloud deployment alternatives
that are to be ranked by AHP. In our case, the AHP was implemented in
three consecutive steps.

• Computing the vector of criteria weights: At this step, a pairwise com-
parison matrix is composed, which is used to compute the criteria
weights. In our case, the matrix had dimensions 7 × 7, because its
size depends of the number of evaluation criteria considered. Because
in the current case all of the criteria had equal importance, they all had
equal importance weight. The vector of criteria weights was calculated
by averaging the entries of each row from the comparison matrix.

• Computing the matrix of alternative scores: During this step, all of
the alternatives are compared to each other with respect to the set of
criteria. Because, each alternative is connected to each criterion, the
method produces seven comparison matrices with dimensions 6 × 6.
The method first populates a vector with the average values for the
entries of each row of the comparison matrices. The resulting vectors
are column vectors in the matrix of alternative scores. The resulting
matrix of alternatives scores in our case had dimensions of 6× 7.

• Ranking the alternatives: The ranking results are obtained as a vector,
which is a derived by multiplying the vector of criteria weights and the
matrix of alternative scores.

The results obtained from the AHP method are presented in Table 9,
where they are compared to the MDP results. In order to compare the
results from both methods, we define the metric N as the number of QoS
metrics, whose thresholds are violated. From the tables it can be seen that

29

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

Figure 8: AHP hierarchy of NFRs and available cloud deployment options

the two methods selected the same cloud deployment option as optimal for
deployment on just two occasions, for the File Upload under Workload 1500
and for the Videoconferencing under Workload 1000.

In contrast to the AHP method, FoQoSAM always tends to select a de-
ployment option that does not violate the QoS metrics thresholds. Therefore,
the method ranks the deployment options in order of lowest number of QoS
threshold violations to the highest number of QoS threshold violations. Our
method generates its ranking list by executing multiple simulations from
random initial states of the probabilistic model, thus exploring all possible
alternatives before providing the ranking list. During our simulations, the
FoQoSAM method checks whether the current state in the model delivers
the optimal QoS and what action should be selected in order to reach such
a state. In contrast, the AHP method derives its ranking by implementing a
pairwise comparison of the deployment options attributes, without consider-
ing the user QoS requirements.

Table 9: Comparison of method ranking results with respect to the number of QoS thresh-
old violations for the File Upload microservice

id
Workload 500 Workload 1000 Workload 1500

MDP* AHP N** MDP AHP N MDP AHP N
0 V II 4 VI IV 4 V III 4
1 II VI 3 II VI 2 II VI 2
2 III IV 3 IV I 3 III V 3
3 I V 2 I III 2 I I 2
4 VI III 4 III V 4 VI IV 4
5 IV I 3 V II 3 IV II 3

*The MDP based

FoQoSAM method;
**N = Number of metrics with threshold violations.

30

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

Table 10: Comparison of method ranking results with respect to the number of QoS
threshold violations for the Videoconferencing microservice

id
Workload 500 Workload 1000 Workload 1500

MDP* AHP N** MDP AHP N MDP AHP N
0 VI IV 4 VI III 4 V III 4
1 I II 1 I I 1 II VI 2
2 II III 2 II II 2 III II 2
3 V VI 3 IV VI 4 I V 1
4 III V 2 V IV 3 VI IV 3
5 IV I 3 III V 2 IV I 4

*The MDP based

FoQoSAM method;
**N = Number of metrics with threshold violations.

6. Discussion

In the course of our study, multiple infrastructure-level and network-level
metrics were investigated to determine the most effective hard and soft con-
straints for equivalence classification. In the experiments, the geographical
location is a hard constraint used to create deployment option equivalence
classes. Table 3 and Table 4 show that the location of the deployment option
and the distance between the engineer and the deployment option signifi-
cantly impact the network quality results. In our experiments, this specific
NFR enabled us to reduce the number of deployment options for considera-
tion by approximately 77%, thus reducing the time for computations. This
of course depends on the types of deployment options and hard constraints
that are used and in some situations it may not be possible to achieve such
reductions. On the other hand, the equivalence classification method may
be further improved. For instance, a taxonomy of application types could be
used to prepare equivalence classes according to the type of microservice (e.g.
database, time-critical service, logic calculations and so on), which may con-
tribute toward more precise and optimal classification of cloud deployment
options.

Since every application has different QoS requirements, the FoQoSAM
method allows us to extend the NFRs according to the application’s needs.
The current system only allows the use of quantitative NFRs, while NFRs
such as: safety, security and so on will be defined and integrated in our future
work.

The output results, which are presented in Table 5 and Table 6, demon-

31

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

strate that the proposed probabilistic decision-making mechanism ranks the
deployment options depending on the system QoS and the current measure-
ment data. The optimal results rely on multi-level QoS metrics and data on
past usage that is collected during runtime.

The different workloads have a direct impact on the network performance
and on resource utilisation. Hence, the overall QoS is influenced and the
user QoE ratings vary. As a result, the proposed model suggests different
optimal deployment options for deploying the two different applications. A
system like this can be further improved to be able to learn from information
contained in the KB and the user’s behaviour, so that it can provide more
precise assurances to the software engineer.

7. Conclusions

QoS and NFR assurances are essential requirements of software engineers
in the cloud application deployment phase. This study introduces a formal
modelling method called FoQoSAM that can be used for this purpose and
which is integrated in an existing software engineering tool, the SWITCH
workbench. This paves the way for the use of such probabilistic methods in
modern software engineering practices.

The developed methods take the necessary properties of the applications
along with QoS and other NFR metrics, and information from IaaS providers,
matches these properties and performs calculations in order to generate a
ranked list of available deployment options. The ranked list of deployment
options is accompanied by QoS assurances expressed as ranking scores.

The results of this process can therefore be very instrumental, which
is fully automated. In many situations when the applications need to be
deployed closer to the end-users, e.g. in Edge or Fog computing scenarios,
automated decision-making is essential to address complexity issues and to
avoid human errors.

This study presented two microservices with different QoS requirements,
and an application of the FoQoSAM method. The results show that the new
method is generic enough to model different microservices with different QoS
requirements. The proposed FoQoSAM modelling approach is not limited to
the NFR attributes considered in this study. It can be further expanded by
implementing additional NFRs to effectively address the QoS requirements
of any other microservice. Therefore, the use of our multi-level monitoring

32

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

system is an essential part of obtaining data in order to achieve the fine
grained results in the formal modelling process.

Following this study, we intend to enlarge the developed KB with in-
formation about the minimal QoS requirements of various application types.
This can then be applied directly using our equivalence classification method.
As such, the equivalence classification could organise the deployment options
into classes, where the QoS requirements would be predefined according to
the application type. As a result, software engineers would only need to
select the application type and the decision-making mechanism would pro-
vide them with a calculated formal QoS assurance for the deployment option
ranking results.

8. Acknowledgements

The research and development reported in this chapter have received
funding from the European Union's Horizon 2020 Research and Innovation
Programme under grant agreements no. 643963 (SWITCH project: Software
Workbench for Interactive, Time Critical and Highly self-adaptive Cloud ap-
plications), no. 644179 (ENTICE project: dEcentralized repositories for
traNsparent and efficienT vIrtual maChine opErations), and no. 815141
(DECENTER: Decentralised technologies for orchestrated Cloud-to-Edge in-
telligence). Funding was also received from the Slovenian Research Agency
under grant agreement no. BI-RU/16-18-043 (Internet of Things and cloud
computing as support for the development of new smart approaches in the
construction sector).

References

[1] A. Zanella, N. Bui, A. Castellani, L. Vangelista, M. Zorzi, Internet of
things for smart cities, IEEE Internet of Things journal 1 (1) (2014)
22–32.

[2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash,
Internet of things: A survey on enabling technologies, protocols, and
applications, IEEE Communications Surveys & Tutorials 17 (4) (2015)
2347–2376.

[3] P. Kochovski, V. Stankovski, Supporting smart construction with de-
pendable edge computing infrastructures and applications, Automation
in Construction 85 (2018) 182–192.

33

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

[4] J. Lewis, M. Fowler, Microservices: a definition of this new architectural
term, Mars.

[5] W. Felter, A. Ferreira, R. Rajamony, J. Rubio, An updated performance
comparison of virtual machines and linux containers, in: Performance
Analysis of Systems and Software (ISPASS), 2015 IEEE International
Symposium On, IEEE, 2015, pp. 171–172.

[6] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, R. Buyya, ifogsim: A
toolkit for modeling and simulation of resource management techniques
in the internet of things, edge and fog computing environments, Soft-
ware: Practice and Experience 47 (9) (2017) 1275–1296.

[7] A. V. Dastjerdi, R. Buyya, Fog computing: Helping the internet of
things realize its potential, Computer 49 (8) (2016) 112–116.

[8] M. Tahir, F. Khan, M. Babar, F. Arif, F. Khan, Framework for better
reusability in component based software engineering, the Journal of Ap-
plied Environmental and Biological Sciences (JAEBS) 6 (2016) 77–81.

[9] S. Kebir, I. Borne, D. Meslati, A genetic algorithm-based approach for
automated refactoring of component-based software, Information and
Software Technology 88 (2017) 17–36.

[10] L. Moonen, A. R. Yazdanshenas, Analyzing and visualizing information
flow in heterogeneous component-based software systems, Information
and Software Technology 77 (2016) 34–55.

[11] B. Sotomayor, R. S. Montero, I. M. Llorente, I. Foster, Virtual infras-
tructure management in private and hybrid clouds, IEEE Internet com-
puting 13 (5).

[12] A. Tosatto, P. Ruiu, A. Attanasio, Container-based orchestration in
cloud: state of the art and challenges, in: Complex, Intelligent, and
Software Intensive Systems (CISIS), 2015 Ninth International Confer-
ence on, IEEE, 2015, pp. 70–75.

[13] J. L. L. Simarro, R. Moreno-Vozmediano, R. S. Montero, I. M. Llorente,
Dynamic placement of virtual machines for cost optimization in multi-
cloud environments, in: High Performance Computing and Simulation
(HPCS), 2011 International Conference on, IEEE, 2011, pp. 1–7.

34

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

[14] S. K. Panda, P. K. Jana, Efficient task scheduling algorithms for het-
erogeneous multi-cloud environment, The Journal of Supercomputing
71 (4) (2015) 1505–1533.

[15] U. Paščinski, J. Trnkoczy, V. Stankovski, M. Cigale, S. Gec, Qos-aware
orchestration of network intensive software utilities within software de-
fined data centres, Journal of Grid Computing (2017) 1–28.

[16] V. Stankovski, D. Petcu, Developing a model driven approach for engi-
neering applications based on mosaic, Cluster computing 17 (1) (2014)
101–110.

[17] P. Bonissone, Research issues in multi criteria decision making (mcdm):
The impact of uncertainty in solution evaluation, in: Proceedings of the
12th international conference on processing and management of uncer-
tainty in knowledge-based systems (IPMU), Málaga, Spain, 2008, pp.
1409–1416.

[18] D. M. Curry, C. H. Dagli, Computational complexity measures for many-
objective optimization problems, Procedia Computer Science 36 (2014)
185–191.

[19] P. Štefanič, D. Kimovski, G. Suciu, Jr., V. Stankovski, Non-functional
requirements optimisation for multi-tier cloud applications: An early
warning system case study, IEEE, 2018.

[20] L. Rabiner, B. Juang, An introduction to hidden markov models, ieee
assp magazine 3 (1) (1986) 4–16.

[21] H. M. Taylor, S. Karlin, An introduction to stochastic modeling, Aca-
demic press, 2014.

[22] J. Hu, J. Gu, G. Sun, T. Zhao, A scheduling strategy on load balancing
of virtual machine resources in cloud computing environment, in: Par-
allel Architectures, Algorithms and Programming (PAAP), 2010 Third
International Symposium on, IEEE, 2010, pp. 89–96.

[23] L. E. Li, T. Woo, Dynamic load balancing and scaling of allocated cloud
resources in an enterprise network, uS Patent App. 12/571,271 (Mar. 31
2011).

35

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

[24] M. Randles, D. Lamb, A. Taleb-Bendiab, A comparative study into dis-
tributed load balancing algorithms for cloud computing, in: Advanced
Information Networking and Applications Workshops (WAINA), 2010
IEEE 24th International Conference on, IEEE, 2010, pp. 551–556.

[25] Z. Chaczko, V. Mahadevan, S. Aslanzadeh, C. Mcdermid, Availability
and load balancing in cloud computing, in: International Conference on
Computer and Software Modeling, Singapore, Vol. 14, 2011.

[26] S. S. Manvi, G. K. Shyam, Resource management for infrastructure as
a service (iaas) in cloud computing: A survey, Journal of Network and
Computer Applications 41 (2014) 424–440.

[27] B. Jennings, R. Stadler, Resource management in clouds: Survey and
research challenges, Journal of Network and Systems Management 23 (3)
(2015) 567–619.

[28] N. C. Luong, P. Wang, D. Niyato, Y. Wen, Z. Han, Resource manage-
ment in cloud networking using economic analysis and pricing models:
A survey, IEEE Communications Surveys & Tutorials 19 (2) (2017) 954–
1001.

[29] N. Jain, I. Menache, Resource management for cloud computing plat-
forms, uS Patent 9,595,054 (Mar. 14 2017).

[30] S. Singh, I. Chana, Q-aware: Quality of service based cloud resource
provisioning, Computers & Electrical Engineering 47 (2015) 138–160.

[31] S. Chaisiri, B.-S. Lee, D. Niyato, Optimization of resource provisioning
cost in cloud computing, IEEE transactions on services Computing 5 (2)
(2012) 164–177.

[32] L. Zhang, Z. Li, C. Wu, Dynamic resource provisioning in cloud comput-
ing: A randomized auction approach, in: INFOCOM, 2014 Proceedings
IEEE, IEEE, 2014, pp. 433–441.

[33] R. Mijumbi, J. Serrat, J.-L. Gorricho, S. Latre, M. Charalambides,
D. Lopez, Management and orchestration challenges in network func-
tions virtualization, IEEE Communications Magazine 54 (1) (2016) 98–
105.

36

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

[34] R. Karim, C. Ding, A. Miri, An end-to-end qos mapping approach for
cloud service selection, in: Services (SERVICES), 2013 IEEE Ninth
World Congress on, IEEE, 2013, pp. 341–348.

[35] S. K. Garg, S. Versteeg, R. Buyya, A framework for ranking of cloud
computing services, Future Generation Computer Systems 29 (4) (2013)
1012–1023.

[36] R. Gonçalves Junior, T. Rolim, A. Sampaio, N. C. Mendonça, A multi-
criteria approach for assessing cloud deployment options based on non-
functional requirements, in: Proceedings of the 30th Annual ACM Sym-
posium on Applied Computing, ACM, 2015, pp. 1383–1389.

[37] A. Mardani, A. Jusoh, K. MD Nor, Z. Khalifah, N. Zakwan, A. Valipour,
Multiple criteria decision-making techniques and their applications–a re-
view of the literature from 2000 to 2014, Economic Research-Ekonomska
Istraživanja 28 (1) (2015) 516–571.

[38] Z. Zheng, X. Wu, Y. Zhang, M. R. Lyu, J. Wang, Qos ranking prediction
for cloud services, IEEE transactions on parallel and distributed systems
24 (6) (2013) 1213–1222.

[39] C. Guerrero, I. Lera, C. Juiz, Genetic algorithm for multi-objective op-
timization of container allocation in cloud architecture, Journal of Grid
Computing 16 (1) (2018) 113–135.

[40] C. C. Bennett, K. Hauser, Artificial intelligence framework for simu-
lating clinical decision-making: A markov decision process approach,
Artificial intelligence in medicine 57 (1) (2013) 9–19.

[41] E. B. Iversen, J. M. Morales, H. Madsen, Optimal charging of an electric
vehicle using a markov decision process, Applied Energy 123 (2014) 1–
12.

[42] A. Kolobov, Planning with markov decision processes: An ai perspec-
tive, Synthesis Lectures on Artificial Intelligence and Machine Learning
6 (1) (2012) 1–210.

[43] J. Yang, W. Lin, W. Dou, An adaptive service selection method for cross-
cloud service composition, Concurrency and Computation: Practice and
Experience 25 (18) (2013) 2435–2454.

37

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

[44] G. Su, T. Chen, Y. Feng, D. S. Rosenblum, P. Thiagarajan, An it-
erative decision-making scheme for markov decision processes and its
application to self-adaptive systems, in: International Conference on
Fundamental Approaches to Software Engineering, Springer, 2016, pp.
269–286.

[45] Y. R. S. Llerena, G. Su, D. S. Rosenblum, Probabilistic model check-
ing of perturbed mdps with applications to cloud computing, in: Pro-
ceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ACM, 2017, pp. 454–464.

[46] D. Tsoumakos, I. Konstantinou, C. Boumpouka, S. Sioutas, N. Koziris,
Automated, elastic resource provisioning for nosql clusters using
tiramola, in: Cluster, Cloud and Grid Computing (CCGrid), 2013 13th
IEEE/ACM International Symposium on, IEEE, 2013, pp. 34–41.

[47] A. Naskos, E. Stachtiari, A. Gounaris, P. Katsaros, D. Tsoumakos,
I. Konstantinou, S. Sioutas, Dependable horizontal scaling based on
probabilistic model checking, in: Cluster, Cloud and Grid Computing
(CCGrid), 2015 15th IEEE/ACM International Symposium on, IEEE,
2015, pp. 31–40.

[48] M. L. Littman, T. L. Dean, L. P. Kaelbling, On the complexity of solving
markov decision problems, in: Proceedings of the Eleventh conference
on Uncertainty in artificial intelligence, Morgan Kaufmann Publishers
Inc., 1995, pp. 394–402.

[49] R. Sandhu, S. K. Sood, Scheduling of big data applications on dis-
tributed cloud based on qos parameters, Cluster Computing 18 (2)
(2015) 817–828.

[50] L. Li, S. Li, S. Zhao, Qos-aware scheduling of services-oriented internet
of things, IEEE Transactions on Industrial Informatics 10 (2) (2014)
1497–1505.

[51] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming, John Wiley & Sons, 2014.

[52] Z. Zhao, A. Taal, A. Jones, I. Taylor, V. Stankovski, I. G. Vega, F. J.
Hidalgo, G. Suciu, A. Ulisses, P. Ferreira, et al., A software workbench

38

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

for interactive, time critical and highly self-adaptive cloud applications
(switch), in: Cluster, Cloud and Grid Computing (CCGrid), 2015 15th
IEEE/ACM International Symposium on, IEEE, 2015, pp. 1181–1184.

[53] Z. Zhao, P. Martin, J. Wang, A. Taal, A. Jones, I. Taylor, V. Stankovski,
I. G. Vega, G. Suciu, A. Ulisses, et al., Developing and operating time
critical applications in clouds: the state of the art and the switch ap-
proach, Procedia Computer Science 68 (2015) 17–28.

[54] M. Kwiatkowska, G. Norman, D. Parker, Prism 4.0: Verification of prob-
abilistic real-time systems, in: International conference on computer
aided verification, Springer, 2011, pp. 585–591.

[55] D. Trihinas, G. Pallis, M. D. Dikaiakos, Jcatascopia: Monitoring elas-
tically adaptive applications in the cloud, in: Cluster, Cloud and Grid
Computing (CCGrid), 2014 14th IEEE/ACM International Symposium
on, IEEE, 2014, pp. 226–235.

[56] D. Mosberger, T. Jin, httperfa tool for measuring web server perfor-
mance, ACM SIGMETRICS Performance Evaluation Review 26 (3)
(1998) 31–37.

39

petako_bt@hotmail.com
Typewritten text
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite this article as: Petar Kochovski, Pavel D. Drobintsev, Vlado Stankovski, Formal Quality of Service assurances, ranking and verification of cloud deployment options with a probabilistic model checking method, Information and Software Technology(2019), doi: https://doi.org/10.1016/j.infsof.2019.01.003

