
Python in Heliophysics Community Meeting
November 13-15, 2018

DOI: 10.5281/zenodo.2537188

Meeting materials are located at ​http://heliopython.org/meetings/

http://heliopython.org/meetings/

Table of Contents
Python in Heliophysics Community Meeting 1

Participants 2

Introduction 3
State of the Field 3

Meeting Overview 6

Unconference Outbrief Summaries 7
Internal Data Representation 7
HDEE call 8
Base objects (time, coordinates, units) 8
Atomic data 9
Unified Downloader 9
Licenses 11
CDF convergence 11

Recommendations and Actions 11

Future work 12

Conclusion 12

Final agenda 13

Participants
Will Barnes, Rice University
Julie Barnum, LASP
Robert Candey, GSFC
Baptiste Cecconi, Observatoire de Paris
Steven Christe, GSFC
Alexandria Ware DeWolfe, LASP
Jeremy Faden, Cottage Systems
Eric Grimes, UC Berkeley
Bernie Harris, GSFC
Bryan Harter, LASP
Liam Kilcommons, University of Colorado
Alan Loh, Observatoire de Paris
Bob McGuire, GSFC
Stuart Mumford
Ayris Narock, GSFC
Quynh Nhu Nguyen, Observatoire de Paris
Jonathan Niehof, University of New Hampshire
Armando Maldonado
Nicholas Murphy, CfA
Russ Panneton, LASP
Asher Pembroke, GSFC
Chris Piker, University of Iowa
Kevin Reardon, NSO
Aaron Roberts, GSFC
Anthony Rogers, University of New Hampshire
Daniel Ryan, GSFC
Sabrina Savage, MSFC
Russell Stoneback, UT Dallas
Fraser Watson, NSO
Don Woodraska, LASP

Introduction
In 2018, the Python in Heliophysics Community (PyHC) was established to bring together developers
from the different Python software packages for heliophysics in order to increase collaboration and
coordination of software development efforts. The goals of this group are to share knowledge and
recommendations, develop standards for new and existing projects, and provide support for tools and
libraries that are used by multiple projects. Numerous software projects in various branches of
heliophysics are currently being developed in or converted to Python. While there are some
commonalities between these projects, there has thus far been only limited unified community effort to
settle on standards and ensure that related software packages are interoperable.

We began this effort with a meeting at the Triennial Earth-Sun Summit (TESS) in spring 2018, and held
bi-weekly telecons starting in July. We agreed that an in-person meeting would help us clarify the path
forward and establish priorities. Our first community meeting was held at LASP in Boulder, Colorado, on
November 13-15, 2018. The meeting consisted of a mix of presentations, discussions, and an
“unconference,” which allowed us to organize a set of discussions based around consensus on topics of
interest. This report summarizes the discussions and outcomes of this meeting, and is intended to act both
as a report to NASA, a historical document capturing the status of this project, and a resource for other
communities which may choose to carry out a similar effort.

State of the Field
At the time of this writing there are a total of 51 Python packages that are self-reported as being part of
PyHC (listed on the heliopython.org website). This represents a total of approximately 200,000 lines of
Python code as well as 100,000 comment lines as measured using the open source ​Ohcount library​ for
counting lines of source code (openhub.net). The vast majority (>90%) of this code is currently available
on GitHub and is therefore open source and follows an open development model. The top five largest
projects (see Figure 1) in terms of lines of code+comments are in order of decreasing size PlasmaPy,
SunPy, SpacePy, PyDARN, and SpiceyPy. In total, these 5 projects represent 62% of the total codebase
while the other 46 projects represent the other 38%.

https://github.com/blackducksoftware/ohcount

Figure 1​: A size comparison of Heliophysics Python projects as measured by total lines of
code+comments. The five largest package represent about 62% of the total code base with the remaining
46 projects accounting for the other 38%.

This code base has been developed by hundreds of individual contributors. In general, there is a roughly
linear relationship between the number of contributors and the total size of the project therefore the
largest projects have the largest number of contributors. PlasmaPy, SunPy, and PyDARN each have over
35 contributors with SunPy is the outlier with over 100 individual contributors. On the other hand the
majority of projects are smaller and depend on fewer contributors. The majority of projects (75%) have
less than 10 contributors while 50% have only 1 to 5 contributors (see Figure 2). Ten projects have only

one contributor.

Figure 2​: Most projects (~75%) have relatively few contributors (fewer than 10) while the largest projects
have a large number of contributors.

The age of a project may be an indicator of its maturity. The oldest project is 8.5 years old while the
youngest is only about 2 months old. The age of the project does not seem to correlate with the total lines
of code which suggests that most package are built to fulfill a certain scope and do not expand beyond
that scope.

Figure 3​: The cumulative age distribution of all projects. No project is older than 8.5 years old. About
50% of projects are between 2 and 3 years old while the remaining projects are from 3 to 8 years old.

Few projects make use of Sphinx for documentation (only 30%) while 43% of projects use some form of
automated testing.

Meeting Overview
The meeting was attended by 21 people, with several more attending remotely. Projects represented
included SunPy, SpacePy, pysat, PlasmaPy, ndcube, and Fiasco, as well as related efforts such as the
International Heliophysics Data Environment Alliance (IHDEA) and the Space Physics Data Facility
(SPDF). The meeting spanned two and a half days, and was held at the Laboratory for Atmospheric and
Space Physics (LASP) in Boulder, Colorado. The full agenda is attached at the end of this report. The first
day was primarily dedicated to presentations on the status and planned development of the major existing
Python software packages, with afternoon discussions of general software development standards and the
potential for developing unified software frameworks. Day two began with flash demonstrations of
software packages. The afternoon of day two was an “unconference” session, in which attendees wrote a
list of topics of interest, voted on which topics to discuss, and then held a series of parallel breakout
sessions on those topics. Each unconference session was led by one person and had another taking notes.
As the sessions were parallel, not all conference attendees were present at each session. The results of
those sessions are summarized below.

Discussion Summaries

Plan for Community Development
The scientific and open source software communities both support the open development of tools and the
broad dissemination of honest results. In this spirit, we propose that the first tools built as a community
support areas with foundational requirements for current tools as well as ease the development of future
tools.

The study of heliophysics spans a number of different sub communities, each with its own heritage of
instrumentation and software practices. It is not expected that a single package could successfully meet
the needs of the whole community. There are different technical challenges within each discipline that
necessitate different solutions and different approaches to science software. For example, solar
measurements are largely dominated by remote images however ionosphere/thermosphere measurements
can include remote images, radar measurements, in situ satellite based measurements, all-sky ground
based cameras, GPS networks, magnetometer networks, etc. A single package that tried to solve all
problems for everyone will likely not work for anyone.

Though there are a range of requirements for each community, there does exist a common ground across
heliophysics and development should begin there. All scientists need to perform some or all of the
following, such as download data (heliodownload), load data (heliodata), understand when/where a
measurement was performed (heliospacetime), transform measurements from one basis to another
(heliocoordinates), as well as express vectors in different systems (heliovector).

The development of each of these ‘helio’ packages is based on a hub and spoke model. The ‘helio’ name
is reserved for packages committed to a consistent user interface to support long term use by other
packages. One method to achieve this rigidity is to generally limit the ‘helio’ package functionality, the
hub, to glue binding other community packages, the spokes, that actually implement various functions
towards a common goal. As an example, consider the heliodata package. This package could present a
single user interface command, load, that accepts a filename and returns data in a standard format.
Internally, the actual loading of the file would be handled by outside packages. netCDF4 for netCDFs,
pyCDF for CDF files, pyhdf5 for HDF files, etc. As the python community evolves and data packages
change, the ‘heliodata’ can simply replace the underlying packages with updated versions all while
maintaining the same public interface.

Each ‘helio’ package is expected to be

- Pip installable
- Well documented with simple interfaces and appropriate unit tests
- Be available as its own package (not be wholly contained within another package)

Internal Data Representation
Led by Jon Niehof
Notes by Dan Ryan

Discussion of thinnest/lightest data object used by various projects: SpacePy dmarray; Komodo function
decorators for metadata; PySat Instrument objects; various SunPy objects. It was clear there was not an
obvious least-common-denominator for object types; however, we agreed that we should minimize
differences in behavior.
Recommendation​: basic container types should be based on numpy ndarray or xarray, or Pandas
dataframe.
Recommendation​: metadata for a container should be included as a key-value mapping (i.e. dict-like)
accessed through an attribute named “meta” or “attrs”; ideally both at this time (further research of the
existing ecosystem is planned to determine if one or the other is substantially more common)
Recommendation​: The underlying data container in an object should be exposed via a “data” attribute,
although not necessarily exclusively (e.g. for objects which are-a fundamental type, the data attribute may
simply self-reference.) Further research will determine whether it is possible to build an object that will
gracefully degrade to an ndarray by returning its data attribute in an array context; it was agreed that this
is desirable if possible (so all numpy operations can be applied to a container object.)

HDEE call
Notes by Nick Murphy

We discussed plans for writing a Heliophysics Data Environment Enhancements (HDEE) call for
proposals to be released in 2019, including duration and scope of funding opportunities.

Base objects (time, coordinates, units)
Led by Steve Christe
Notes by Dan Ryan
Link to raw notes
This session focused on discussing the use of base objects across packages. The goal was to reach a
consensus on the use of a set of common base objects in order to promote interoperability across
packages. This discussion focused on three areas; time, coordinates, and units.

For coordinates, multiple packages have implemented different approaches to coordinates and coordinate
conversions. SunPy makes use of the astropy coordinates framework. SpacePy has developed its own
Coords object class which currently depends on the Fortran-based IRBEM library for coordinate
conversions. PySat depends on the CGC4 and PyPHEM. A demo was provided of the astropy coordinates
framework which may be able to bring all packages under a single coordinate framework.

https://docs.google.com/document/d/1ZVQZE31SG5gnlhZAjTJiszDyHIdiWgoweUa70tSDYO0/edit?usp=sharing

Recommendation: Packages should consider using the ​Astropy Coordinate framework​ to determine
whether it has enough capabilities for all Heliophysics especially whether it can support quaternion
transformations (e.g. velocity).

For time, there three current standards across multiple packages. It was recognized by many that though
the Python datetime object is well-supported it is lacking key aspects such as leap seconds which can be a
burden. SunPy has recently switched to the ​Astropy Time​ objects which provides many advantages
including properly dealing with leap seconds. It can also easily output to datetime. One downside is that
the leap seconds are currently hard-coded which means that adding future leap seconds will require a new
astropy release forcing packages that depend on it to support a new version. SpacePy has developed the
time object referred to as TickTock. It handles leap seconds and ephemeris time therefore should be
compatible with AstroPy time.
Recommendation: Packages should consider using ​AstroPy time​ to determine whether it provides
the capabilities needed by this community.

There was only a short amount of time to discuss units. No unit objects were discussed but it was noted
that the AstroPy units package is powerful and well-supported. The following consensus
recommendations were agreed upon.

Recommendation: The use of units are a good idea and are recommended. Should be used for
user-facing API. Suggest considering astropy units.

Recommendation: When defining a unit string, use a string representation that is astropy units
compatible.

Another recommendation/realization is that as a community, we should agree on the values of
heliospheric constants.

Atomic data
Led by Nick Murphy and Will Barnes

For topics ranging from interpreting observations of the solar corona to understanding energetic neutral
atoms in the heliosphere, atomic data plays a vital role in heliophysics research. It is therefore necessary
that tools that provide easy access to atomic data be included in the heliophysics Python software
ecosystem. ​There should be a unified framework that provides a common interface for the needed
atomic data and derived quantities.​ Stable, long-term funding to cover atomic database maintenance
and tool development is critical. Data and software should be released under permissive open access and
open source licenses to maximize potential for scientific reproducibility. In particular, data released
under the Creative Commons Attribution 4.0 International license would require derived works to provide
information on the provenance of the data while permitting reuse, modification, and redistribution.

http://docs.astropy.org/en/stable/coordinates/index.html
http://docs.astropy.org/en/stable/time/
http://docs.astropy.org/en/stable/time/

Unified Downloader
Led by Steven Christe
Notes by Dan Ryan
Link to the raw notes

Current capabilities of existing packages to support data sources was reviewed. The following
summarizes the current state of affairs.

Data Provider Package Interface

Virtual Solar Observatory SunPy HTTP API

LYRA SunPy files directly from constructed
URL

GOES/XRS SunPy FITS files directly from
constructed URL

NOAA Indices SunPy Txt file

RHESSI Summary lightcurves SunPy

JSOC (serves SDO/AIA) SunPy HTTP API

Nobeyama Radio Telescope SunPy files

FERMI GBM SunPy files

MMS SPEDAS Restful API

THEMIS SPEDAS HTTP API

CDAWeb SPEDAS HAPI

CDAWeb CDF AI CDAS

MAVEN PyTplot Rest

Madrigal pysat

CDAAC pysat FTP (moving to sftp)

CDAWeb pysat HTTPS

LASP pysat HTTPS

https://docs.google.com/document/d/1rPuk0rNzjAnRCaJiHT__uFl7keOeIYjGaNlCeKgFSMo/edit?usp=sharing

Packages whose representatives were not present are missing from this list. A discussion on the basic
needs for a download client suggests that there is sufficient overlap in needed functionality that it is
possible to consider a single downloader to support all of our needs.

SunPy has developed a pluggable unified downloader, referred to as ​Fido​, which may provide most of
what is needed.

Recommendation: A single unified download interface should be developed to allow access to any
heliophysics data provider.

In order to accomplish this task, a new working group will be created. Steven Christe volunteered to lead
the group.

Licenses
Led by Nick Murphy
Notes by Armando Maldonado

Open source licenses can be permissive or copyleft. Permissively licensed code and adapted works may
be redistributed under different licenses, whereas copyleft code and adapted works must be released under
the same license. This restriction means that copyleft code cannot be incorporated into a permissively
licensed project, which in practice complicates code sharing and discourages use by businesses. ​We
recommend using a permissive license for open source scientific software​ (e.g., the Open Source
Initiative approved BSD 2-clause, BSD 3-clause, or BSD+Patent licenses), though developers should
check with their home institution as to legal requirements.

CDF convergence
Led by Jon Niehof
Notes by Baptiste Cecconi

Discussed existing Python CDF libraries (pycdf; pysatcdf; cdflib) and ways to reduce duplication.
Recommendations​ are:

1) pycdf improvements, particularly to the install process (and minimizing difficulties of other
dependencies with full SpacePy). Consideration of pulling pycdf out of SpacePy (but discussion
of how big projects should be, not clear this is necessary)

2) pycdf devs work with pysatcdf devs to ensure pycdf can address pysatcdf use cases; pysatcdf
functionality either incorporated into pycdf or thin wrapper around

3) pycdf and cdflib devs work together to expose a low-level interface (similar to CDF C internal
interface) so the pycdf interface can work with the cdflib pure-Python implementation. There was
agreement that a pure Python implementation may be of benefit. Eventually this may mean a
convergence between the two but not obvious this is immediately desirable.

4) New code and projects should use pycdf if practical.

https://docs.sunpy.org/en/stable/guide/acquiring_data/fido.html

5) General recommendation to all projects to file bug reports rather than forking or reimplementing;
and release often to avoid the need for forks.

Recommendations and Actions

Standards

The standards discussion held during the meeting led to the drafting of a standards document, ​Python in
Heliophysics Community (PyHC) Standards​. It is available to the community and has been signed by
representatives of the PyHC community. We recommend that existing projects do their best to conform to
these standards, and that new projects be held to the standards. Community education will be needed to
support the adoption of the standards; how best to achieve this should be an ongoing topic of discussion at
future PyHC meetings.

Software Framework

We discussed whether to adopt a unified software framework for all future heliophysics Python
development. The consensus was that we are not yet at a point where this is feasible, but we identified a
few opportunities for consolidation and coordination of existing code. A working group was established
to develop a unified download tool. Another group is investigating how to bring together the various
options for reading and writing CDF files.

Community Education

A Python ecosystem for heliophysics will be most useful if members of the heliophysics community are
proficient in Python. Blog posts and newsletter items may be used to build awareness of different
software projects. Software Carpentry workshops would help heliophysics students and scientists learn
computing skills that are often neglected in coursework (e.g., shell scripting, version control, and
introductory Python). Software Carpentry lessons for Python in heliophysics could be created, along with
resources such as an IDL to Python reference sheet. Workshops and tutorials at meetings provide
additional opportunities for community engagement and educations. Additional possibilities would be to
have week-long annual summer schools on Python in heliophysics or a Python in Heliophysics
conference. Continuing education for core package developers could include in-depth tutorials during
telecons or trainings in other venues.

Future work and conclusions
The community will continue to collaborate via bi-weekly telecons, and will hold in-person standalone
meetings twice yearly, as well as meeting at various conferences. The community intends to propose to
the upcoming Heliophysics Data Environment Enhancements (HDEE) funding opportunity to support

https://github.com/heliophysicsPy/standards/blob/master/standards.md
https://github.com/heliophysicsPy/standards/blob/master/standards.md

improvements to the infrastructure of the existing Python packages and potentially develop new code as
well. Potential proposals will be discussed in upcoming telecons.

This effort has thus far been highly beneficial to the community, resulting in increased communication,
consolidation of parallel efforts, development of funding opportunities, and tangible outcomes in the form
of the standards document and the improvements to the heliopython website. We encourage other
communities to work toward coordinating their development efforts as well, and welcome future
collaborations with other Python development communities in the sciences.

Final agenda

Tuesday, Nov 13, 2018

9:00 Introductions and welcome Alex DeWolfe

9:15 Project overview and meeting goals Aaron Roberts

 Overview of Existing Packages

9:45 SunPy Steven Christe

10:00 SpacePy Jon Niehof

10:15 Pysat Russell Stoneback

10:30 Break

11:00 SPEDAS Eric Grimes

11:15 ChiantiPy/Fiasco Will Barnes

11:30 PlasmaPy Nick Murphy

11:45 ndcube Dan Ryan

12:00 Lunch

13:00 HAPI Python Client Bob Weigel

13:15 SpiceyPy Andrew Annex

13:30 MASER Baptiste Cecconi

13:45 Development Standards Discussion Steven Christe

14:45 Break

15:00
Proposed development stack & software
framework Russell Stoneback

Wednesday, Nov 14, 2018

9:00
Flash Demos Session, ~5-10 min each: Asher Pembroke, Bryan Harter, Eric Grimes, Chris
Piker, Will Barnes, Abigail Azari, Dan Ryan

10:30 Break

10:45 Functionality Gaps and Overlap Aaron Roberts

11:15 Data formats, readers, writers, metadata Bobby Candey

12:00 Lunch

13:00 Unconference I: Internal data representations, HDEE call

14:00 Unconference II: Base objects, atomic data

15:00 Unconference III: Unified downloader, community licenses, CDF convergence

16:00 Unconference Outbrief

Thursday, Nov 15, 2018

9:00 How to encourage and maintain interoperability Baptiste Cecconi

9:30 Student Education and Program Design Armando Maldonado

10:00 Educating the Community Nick Murphy

10:30 Break

10:45 Funding Future Development Aaron Roberts

11:15 Summary & Path Forward Alex DeWolfe

12:00 Lunch

13:00 (OPTIONAL) Report Planning Alex DeWolfe

