PT AU BA BE GP AF BF CA TI SO SE BS LA DT CT CY CL SP HO DE ID AB C1 RP EM RI OI FU FX CR NR TC Z9 U1 U2 PU PI PA SN EI BN J9 JI PD PY VL IS PN SU SI MA BP EP AR DI D2 EA EY PG WC SC GA UT PM OA HC HP DA J Pang, YM; Tian, YJ; Fu, CH; Wang, B; Li, JC; Ren, YP; Wan, R Pang, Yumeng; Tian, Yongjun; Fu, Caihong; Wang, Bin; Li, Jianchao; Ren, Yiping; Wan, Rong Variability of coastal cephalopods in overexploited China Seas under climate change with implications on fisheries management FISHERIES RESEARCH English Article Cephalopod; Chinese coastal area; Population fluctuation; Life history strategy; Climate change SQUID PHOTOLOLIGO-EDULIS; EL-NINO EVENTS; SWORDTIP-SQUID; REGIME SHIFTS; TODARODES-PACIFICUS; STOCK FLUCTUATIONS; LOLIGO-BLEEKERI; NORTH PACIFIC; JAPAN SEA; FOOD-WEB Cephalopods (squids, cuttlefish and octopus) have increased globally over the past decades, which may be attributed to their strong phenotypic plasticity, allowing them to adapt quickly to a changing ocean environment. The global proliferation of cephalopods may yield important ecosystem effects worldwide. However, information on cephalopods variability in Chinese waters is still scant. Coastal cephalopods, in spite of chronic overexploitation, form a vital component of the catch composition in China Seas. In this paper, we review the status and trends of coastal cephalopods in China Seas and explore their responses to environmental variability. We focus on four commercially-important coastal cephalopod species, including golden cuttlefish (Sepia esculenta Hoyle), Japanese loligo squid (Loligo japonica Steenstrup), common Chinese cuttlefish (Sepiella maindroni de Rochebrune) and swordtip squid (Uroteuthis edulis Hoyle). Even though spatial distributions of these four species partially overlap, their differing life history strategies with respect to factors such as growth, distribution, migration, and spawning patterns, have led to differing population responses to environmental variability. As a result, an overall increasing trend in cephalopod production has been apparent since the 1990s, accompanied by major changes in species composition. Catch trends of the four species show either decadal patterns of significant decline or increase in the late 1980s to mid-1990s. Statistical analysis indicates different responses to environmental warming, with Japanese loligo squid and swordtip squid seeming to benefit from warmer environment while golden cuttlefish and common Chinese cuttlefish seeming to respond negatively. Our study has allowed us to explore the impacts of environmental changes on Chinese coastal cephalopods in the overexploited ecosystems of the China Seas and to conclude that fluctuations of coastal cephalopods are mainly driven by large scale environmental variations associated with climate change and/or marine ecosystem regime shifts. [Pang, Yumeng; Tian, Yongjun; Wang, Bin; Li, Jianchao; Ren, Yiping; Wan, Rong] Ocean Univ China, Fisheries Coll, Yushan Rd 5, Qingdao 266003, Peoples R China; [Tian, Yongjun] Qingdao Natl Lab Marine Sci & Technol, Lab Marine Fisheries Sci & Food Prod Proc, Qingdao 266071, Peoples R China; [Fu, Caihong] Fisheries & Oceans Canada, Pacific Biol Stn, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada; [Pang, Yumeng] Univ Tokyo, Atmosphere & Ocean Res Inst, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778564, Japan Tian, YJ (reprint author), Ocean Univ China, Fisheries Coll, Yushan Rd 5, Qingdao 266003, Peoples R China. yjtian@ouc.edu.cn Fundamental Research Funds for the Central Universities [201562030, 201762015, 20182201] This research is partially supported by the "Fundamental Research Funds for the Central Universities" to Ocean University of China [Grant No. 201562030, No. 201762015 and No. 20182201]. We thank Professor Yoshiro Watanabe (University of Tokyo) and two anonymous reviewers for their insightful comments, and thank Professor Andrew Bakun (University of Miami) and Lisa Christensen (Pacific Biological Station, Fisheries and Oceans Canada) for the proofreading and their valuable comments. Anderson SC, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0014735; [Anonymous], 1998, KOREAN ANN FISHERIES; [Anonymous], 2015, CHINA FISHERIES YB 1; Arkhipkin AI, 2015, REV FISH SCI AQUAC, V23, P92, DOI 10.1080/23308249.2015.1026226; Belkin IM, 2009, PROG OCEANOGR, V81, P207, DOI 10.1016/j.pocean.2009.04.011; Caddy JF, 1998, REV FISH BIOL FISHER, V8, P431, DOI 10.1023/A:1008807129366; Cai WJ, 2015, NAT CLIM CHANGE, V5, P132, DOI [10.1038/NCLIMATE2492, 10.1038/nclimate2492]; Cai WJ, 2014, NAT CLIM CHANGE, V4, P111, DOI [10.1038/nclimate2100, 10.1038/NCLIMATE2100]; Chavez FP, 2003, SCIENCE, V299, P217, DOI 10.1126/science.1075880; Chen B. L., 2001, CHIN FISH EC, P37; Chen XJ, 2008, FISH RES, V89, P211, DOI 10.1016/j.fishres.2007.10.012; Ciannelli L, 2004, ECOLOGY, V85, P3418, DOI 10.1890/03-0755; Crozier LG, 2014, EVOL APPL, V7, P68, DOI 10.1111/eva.12135; Doubleday ZA, 2016, CURR BIOL, V26, pR406, DOI 10.1016/j.cub.2016.04.002; FAO Fisheries and Aquaculture Department, 2016, STAT WORLD FISH AQ; Friedland KD, 2007, CONT SHELF RES, V27, P2313, DOI 10.1016/j.csr.2007.06.001; Ge Y. C., 1991, MAR FISH, P56; Gordoa A, 2000, FISH RES, V48, P185, DOI 10.1016/S0165-7836(00)00160-0; Guan B. X., 1994, PATTERNS STRUCTURES, P17; Hao Zhen-lin, 2007, Shengtaixue Zazhi, V26, P601; Hare SR, 2000, PROG OCEANOGR, V47, P103, DOI 10.1016/S0079-6611(00)00033-1; Hastie T, 1990, GEN ADDITIVE MODELS; Hays GC, 2005, TRENDS ECOL EVOL, V20, P337, DOI 10.1016/j.tree.2005.03.004; Huang Z., 2008, S CHINA FISHERIES SC, V4, P1; Hunsicker ME, 2010, FISH FISH, V11, P421, DOI 10.1111/j.1467-2979.2010.00369.x; Jin XS, 1996, FISH RES, V26, P337, DOI 10.1016/0165-7836(95)00422-X; Jin XS, 2004, ESTUAR COAST SHELF S, V59, P163, DOI 10.1016/j.ecss.2003.08.005; Lehodey P, 2006, J CLIMATE, V19, P5009, DOI 10.1175/JCLI3898.1; Li J. J., 2011, J ZHEJIANG OCEAN U N, V30, P381; Li J. Y., 1963, PERIOD OCEAN U CHINA, V2, P69; [李涛 Li Tao], 2011, [中国海洋大学学报. 自然科学版, Journal of Ocean University of China], V41, P41; Lin L.S., 2009, J DALIAN FISH U, V1; Liu R. Y., 2004, SCI TECHNOL REV, P28; Liu Zun-lei, 2015, Yingyong Shengtai Xuebao, V26, P901; Mantua NJ, 2002, J OCEANOGR, V58, P35, DOI 10.1023/A:1015820616384; Maynou F, 2008, J MARINE SYST, V71, P294, DOI 10.1016/j.jmarsys.2006.09.008; McGowan JA, 1998, SCIENCE, V281, P210, DOI 10.1126/science.281.5374.210; Ni Z.Y., 1982, MAR SCI, V9, P41; O'Dor R.K., 1998, FAO (Food and Agriculture Organization of the United Nations) Fisheries Technical Paper, V376, P233; Ottersen G, 2010, J MARINE SYST, V79, P343, DOI 10.1016/j.jmarsys.2008.12.013; Otto S. A., 2018, INDPERFORM EVALUATIO; Otto SA, 2018, ECOL INDIC, V84, P619, DOI 10.1016/j.ecolind.2017.05.045; Park YC, 2002, FISHERIES SCI, V68, P89, DOI 10.2331/fishsci.68.sup1_89; Pauly D, 2005, B MAR SCI, V76, P197; Pecl GT, 2008, REV FISH BIOL FISHER, V18, P373, DOI 10.1007/s11160-007-9077-3; Peel G. T., 2004, OECOLOGIA, V139, P515; Pierce G. J., 2008, REV CEPHALOPOD ENV I, P49; PIERCE GJ, 1994, FISH RES, V21, P255, DOI 10.1016/0165-7836(94)90108-2; Pinheiro J. C., 2000, LINEAR MIXED EFFECTS, P3; Qiu X. Y., 1986, AQUAC RES, V7; Quetglas A, 2015, FISHERIES MANAG ECOL, V22, P349, DOI 10.1111/fme.12131; R Development Core Team, 2017, R LANG ENV STAT COMP; Rayner NA, 2003, J GEOPHYS RES-ATMOS, V108, DOI 10.1029/2002JD002670; Ren Y. P., 2005, PERIOD OCEAN U CHINA, V5; Robin JP, 1999, J APPL ECOL, V36, P101, DOI 10.1046/j.1365-2664.1999.00384.x; Robinson CJ, 2013, FISH RES, V137, P97, DOI 10.1016/j.fishres.2012.09.006; Rodionov SN, 2004, GEOPHYS RES LETT, V31, DOI 10.1029/2004GL019448; Sakurai Y, 2000, ICES J MAR SCI, V57, P24, DOI 10.1006/jmsc.2000.0667; Sakurai Y, 2002, FISHERIES SCI, V68, P226, DOI 10.2331/fishsci.68.sup1_226; Sato N, 2009, ICES J MAR SCI, V66, P811, DOI 10.1093/icesjms/fsp145; Sugimoto T, 2001, PROG OCEANOGR, V49, P113, DOI 10.1016/S0079-6611(01)00018-0; Tang Y. M., 1986, J ZHEJIANG COLL FISH, V5, P147; Tian Y, 2004, J MARINE SYST, V52, P235, DOI 10.1016/j.jmarsys.2004.04.004; Tian YJ, 2008, PROG OCEANOGR, V77, P127, DOI 10.1016/j.pocean.2008.03.007; Tian YJ, 2013, ICES J MAR SCI, V70, P968, DOI 10.1093/icesjms/fst015; Tian Y, 2009, FISH RES, V100, P78, DOI 10.1016/j.fishres.2009.06.005; Wang KY, 2008, FISH RES, V90, P178, DOI 10.1016/j.fishres.2007.10.015; Wang KY, 2013, B MAR SCI, V89, P677, DOI 10.5343/bms.2012.1044; Wang KY, 2010, J MAR SCI TECH-TAIW, V18, P99; Watson R, 2001, NATURE, V414, P534, DOI 10.1038/35107050; Wei Liu-Zhi, 2005, Zhongguo Haiyang Daxue Xuebao, V35, P923; [吴常文 Wu Changwen], 2010, [海洋与湖沼, Oceanologia et Limnologia Sinica], V41, P39; [吴强 Wu Qiang], 2015, [海洋科学, Marine Sciences], V39, P16; Xavier JC, 2015, J MAR BIOL ASSOC UK, V95, P999, DOI 10.1017/S0025315414000782; Yamaguchi T, 2015, AQUAT BIOL, V24, P53, DOI 10.3354/ab00635; Yan J. J., 1981, T OCEANOL LIMNOL, P53; Yan L. P., 2007, MAR SCI, V4; Ye Y., 2011, REV STATE WORLD MAR, V3; Yu W, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0122997; [朱文斌 Zhu Wenbin], 2014, [海洋与湖沼, Oceanologia et Limnologia Sinica], V45, P436; Zuur A., 2009, ZERO TRUNCATED ZERO, P261 81 0 0 8 8 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0165-7836 1872-6763 FISH RES Fish Res. DEC 2018 208 22 33 10.1016/j.fishres.2018.07.004 12 Fisheries Fisheries GW6XL WOS:000447108300004 2018-11-22 J Marchegiani, V; Zampieri, F; Della Barbera, M; Troisi, A Marchegiani, Vanessa; Zampieri, Fabio; Della Barbera, Mila; Troisi, Alfonso Gender differences in the interrelations between digit ratio, psychopathic traits and life history strategies PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Digit ratio; 2D:4D; Prenatal sex hormones; Psychopathy; Life history theory; Gender differences SECONDARY PSYCHOPATHY; JUVENILE PSYCHOPATHY; PERSONALITY; CONSTRUCTS; VARIANTS; 2D4D The primary purpose of this study was to assess the relationship between prenatal exposure to sex hormones, as measured by digit ratio (2D:4D), and psychopathic personality traits while controlling for the confounding effect of life history strategy. The secondary purpose was to confirm the hypothesis that primary and secondary psychopathy reflect a faster life history strategy. In a nonclinical sample of 137 volunteers, we measured the right and left hand digit ratios, personality traits reflecting primary and secondary psychopathy, and life history strategies. In a hierarchical regression analysis, males with lower levels of prenatal testosterone exposure, as measured by the left hand 2D:4D, scored higher on the subscale measuring primary psychopathy. Neither the right hand 2D:4D nor the left hand 2D:4D were significant predictors of secondary psychopathy. In the female subsample, digit ratios did not correlate with either primary or secondary psychopathy. Males with faster life history strategies scored higher on both primary and secondary psychopathy. By contrast, among the female participants, there was no significant correlation between the life history score and primary psychopathy, and the correlation with secondary psychopathy was significant but relatively weak. These findings suggest that the neurodevelopmental pathways to psychopathy may differ according to sex. [Marchegiani, Vanessa; Zampieri, Fabio; Della Barbera, Mila] Univ Padua, Med Sch, Dept Cardiac Thorac & Vasc Sci, Padua, Italy; [Troisi, Alfonso] Univ Roma Tor Vergata, Int Med Sch, Rome, Italy Troisi, A (reprint author), Univ Roma Tor Vergata, Dept Syst Med, Via Montpellier 1, I-00133 Rome, Italy. alfonso.troisi@uniroma2.it Allaway HC, 2009, AM J HUM BIOL, V21, P365, DOI 10.1002/ajhb.20892; Anderson NE, 2014, RESTOR NEUROL NEUROS, V32, P103, DOI 10.3233/RNN-139001; Blanchard A., 2010, BRIT J FORENSIC PRAC, V12, P23, DOI [10.5042/bjfp.2010.0183, DOI 10.5042/BJFP.2010.0183]; Blanchard A, 2016, PERS INDIV DIFFER, V99, P67, DOI 10.1016/j.paid.2016.04.077; Brinkley CA, 2001, PERS INDIV DIFFER, V31, P1021, DOI 10.1016/S0191-8869(00)00178-1; Cale EM, 2002, CLIN PSYCHOL REV, V22, P1179, DOI 10.1016/S0272-7358(01)00125-8; Carre JM, 2015, PSYCHONEUROENDOCRINO, V62, P319, DOI 10.1016/j.psyneuen.2015.08.023; Chua K. J., 2017, EVOLUTIONARY PSYCHOL, V15; Edens JF, 2006, J ABNORM PSYCHOL, V115, P131, DOI 10.1037/0021-843X.115.1.131; Faul F, 2009, BEHAV RES METHODS, V41, P1149, DOI 10.3758/BRM.41.4.1149; Figueredo AJ, 2013, PERS INDIV DIFFER, V55, P251, DOI 10.1016/j.paid.2012.04.033; Fink B, 2004, PERS INDIV DIFFER, V37, P495, DOI 10.1016/j.paid.2003.09.018; Gervais MM, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2773; Gladden PR, 2008, EVOL HUM BEHAV, V29, P319, DOI 10.1016/j.evolhumbehav.2008.03.003; Gladden PR, 2009, PERS INDIV DIFFER, V46, P270, DOI 10.1016/j.paid.2008.10.010; Glenn AL, 2011, AGGRESS VIOLENT BEH, V16, P371, DOI 10.1016/j.avb.2011.03.009; Hare R. D., 1993, CONSCIENCE DISTURBIN; Hicks BM, 2012, PERSONAL DISORD, V3, P209, DOI 10.1037/a0025084; Jonason PK, 2017, FRONT PSYCHOL, V8, DOI 10.3389/fpsyg.2017.01476; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Karpman B., 1941, J CRIMINOLOGY PSYCHO, V3, P112; Kempe V, 2011, PERS INDIV DIFFER, V50, P430, DOI 10.1016/j.paid.2010.10.024; Kimonis ER, 2017, DEV PSYCHOPATHOL, V29, P1149, DOI 10.1017/S0954579416001206; Kimonis ER, 2017, DEV PSYCHOBIOL, V59, P161, DOI 10.1002/dev.21473; Koenigs M, 2010, NEUROPSYCHOLOGIA, V48, P2198, DOI 10.1016/j.neuropsychologia.2010.04.012; LEVENSON MR, 1995, J PERS SOC PSYCHOL, V68, P151, DOI 10.1037/0022-3514.68.1.151; Lyons MT, 2015, J PSYCHOL, V149, P570, DOI 10.1080/00223980.2014.925845; Manning J, 2014, FRONT ENDOCRINOL, V5, DOI 10.3389/fendo.2014.00009; Manning JT, 2002, DIGIT RATIO POINTER; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; Newman JP, 2005, J ABNORM PSYCHOL, V114, P319, DOI 10.1037/0021-843X.114.2.319; Olderbak S, 2014, PERS INDIV DIFFER, V58, P82, DOI 10.1016/j.paid.2013.10.012; Richardson G. B., 2017, EVOLUTIONARY PSYCHOL, V15; Sefcek J. A., 2007, THESIS; Strouts PH, 2017, PERS INDIV DIFFER, V115, P128, DOI 10.1016/j.paid.2016.03.047; Vidal S, 2010, LAW HUMAN BEHAV, V34, P150, DOI 10.1007/s10979-009-9175-y; Waldman I. D., 2006, HDB PSYCHOPATHY, P205; Yildirim BO, 2012, PSYCHIAT RES, V200, P984, DOI 10.1016/j.psychres.2012.07.044 38 0 0 20 20 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. DEC 1 2018 135 108 112 10.1016/j.paid.2018.07.004 5 Psychology, Social Psychology GV5LY WOS:000446144900016 2018-11-22 J Collett, RA; Baker, AM; Fisher, DO Collett, Rachael A.; Baker, Andrew M.; Fisher, Diana O. Prey productivity and predictability drive different axes of life-history variation in carnivorous marsupials PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article Dasyuridae; life history; seasonality; fast - slow continuum; iteroparity; semelparity FAST-SLOW CONTINUUM; REPRODUCTIVE STRATEGIES; DASYURID MARSUPIALS; NATURAL-SELECTION; EVOLUTION; SIZE; MAMMALS; BIRDS; MORTALITY; PATTERNS Variation in life-history strategies has usually been characterized as a single fast-slow continuum of life-history variation, in which mean lifespan increases with age at maturity as reproductive output at each breeding event declines. Analyses of plants and animals suggest that strategies of reproductive timing can vary on an independent axis, with iteroparous species at one extreme and semelparous species at the other. Insectivorous marsupials in the Family Dasyuridae have an unusually wide range of life-history strategies on both purported axes. We test and confirm that reproductive output and degree of iteroparity are independent in females across species. Variation in reproductive output per episode is associated with mean annual rainfall, which predicts food availability. Position on the iteroparity-semelparity axis is not associated with annual rainfall, but species in regions of unpredictable rainfall have longer maximum lifespans, more potential reproductive events per year, and longer breeding seasons. We suggest that these two axes of life-history variation arise because reproductive output is limited by overall food availability, and selection for high offspring survival favours concentrated breeding in seasonal environments. Longer lifespans are favoured when reproductive opportunities are dispersed over longer periods in environments with less predictable food schedules. [Collett, Rachael A.; Fisher, Diana O.] Univ Queensland, Sch Biol Sci, Brisbane, Qld 4072, Australia; [Baker, Andrew M.] Queensland Univ Technol, Sch Earth Environm & Biol Sci, Brisbane, Qld 4000, Australia Collett, RA (reprint author), Univ Queensland, Sch Biol Sci, Brisbane, Qld 4072, Australia. rachael.collett@uqconnect.edu.au Australian Government's National Environmental Science Program through the Threatened Species Recovery Hub; Australian Research Council fellowship [FTll0100191] This research is supported by the Australian Government's National Environmental Science Program through the Threatened Species Recovery Hub and an Australian Research Council fellowship, Grant/Award no. FTll0100191. [Anonymous], 2016, CLIM DAT ONL; ASHMOLE N. P., 1963, IBIS, V103b, P458, DOI 10.1111/j.1474-919X.1963.tb06766.x; Badyaev AV, 2001, ECOLOGY, V82, P2948, DOI 10.2307/2679973; Becker FS, 2018, AM NAT, V191, P250, DOI 10.1086/695315; Beckman J, 2007, MOL ECOL, V16, P1069, DOI 10.1111/j.1365-294X.2006.03209.x; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Brown JH, 2006, P NATL ACAD SCI USA, V103, P17595, DOI 10.1073/pnas.0608522103; Bunnell F.L., 1981, P75; Bywater KA, 2010, MAMMAL REV, V40, P212, DOI 10.1111/j.1365-2907.2010.00160.x; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; Clutton-Brock TH, 1982, RED DEER BEHAV ECOLO; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; Collett RA, 2017, ECOL EVOL, V7, P7527, DOI 10.1002/ece3.3275; COLWELL RK, 1974, ECOLOGY, V55, P1148, DOI 10.2307/1940366; Congdon J.D., 1982, Biology of Reptilia, V13, P233; Danforth BN, 1999, P ROY SOC B-BIOL SCI, V266, P1985, DOI 10.1098/rspb.1999.0876; Descamps S, 2009, P R SOC B, V276, P1129, DOI 10.1098/rspb.2008.1401; Dewar RE, 2007, P NATL ACAD SCI USA, V104, P13723, DOI 10.1073/pnas.0704346104; DICKMAN CR, 1992, J MAMMAL, V73, P143, DOI 10.2307/1381875; DUNLOP J N, 1982, Records of the Western Australian Museum, V10, P47; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Fisher DO, 2013, P NATL ACAD SCI USA, V110, P17910, DOI 10.1073/pnas.1310691110; Fisher DO, 2011, BEHAV ECOL SOCIOBIOL, V65, P593, DOI 10.1007/s00265-010-1060-7; Fisher DO, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0015226; Fisher DO, 2001, ECOLOGY, V82, P3531, DOI 10.1890/0012-9658(2001)082[3531:TEBOLH]2.0.CO;2; Gaillard J.-M, 2016, ENCY EVOLUTIONARY BI, V2, P312; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; Harvey P.H., 1989, Oxford Surveys in Evolutionary Biology, V6, P13; Healy K, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0298; Johnson CN, 1998, J ANIM ECOL, V67, P689, DOI 10.1046/j.1365-2656.1998.00232.x; Jones JH, 2011, CURR BIOL, V21, pR708, DOI 10.1016/j.cub.2011.08.025; Jones M, 2003, PREDATORS POUCHES BI; Karsten KB, 2008, P NATL ACAD SCI USA, V105, P8980, DOI 10.1073/pnas.0802468105; KIRKWOOD TBL, 1979, PROC R SOC SER B-BIO, V205, P531, DOI 10.1098/rspb.1979.0083; Krajewski C, 2000, BIOL J LINN SOC, V71, P417; Krol E, 2003, J EXP BIOL, V206, P4283, DOI 10.1242/jeb.00676; LORD REXFORD D., 1960, AMER MIDLAND NAT, V64, P488, DOI 10.2307/2422677; Lovich JE, 2015, BIOL J LINN SOC, V115, P399, DOI 10.1111/bij.12505; May-Collado LJ, 2015, PEERJ, V3, DOI 10.7717/peerj.805; NAGELKERKE NJD, 1991, BIOMETRIKA, V78, P691, DOI 10.1093/biomet/78.3.691; Nilsen EB, 2009, J ANIM ECOL, V78, P585, DOI 10.1111/j.1365-2656.2009.01523.x; Oakwood M, 2001, P ROY SOC B-BIOL SCI, V268, P407, DOI 10.1098/rspb.2000.1369; Oli MK, 2004, BASIC APPL ECOL, V5, P449, DOI 10.1016/j.baae.2004.06.002; Orzack SH, 2001, ECOLOGY, V82, P2659, DOI 10.2307/2679944; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Pinheiro J, 2018, LINEAR NONLINEAR MIX; Read D, 1995, AUSTR MUSEUM COMPLET, P107; Reside AE, 2012, ECOL EVOL, V2, P705, DOI 10.1002/ece3.197; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 2004, NATURE, V431, P1095, DOI 10.1038/nature02936; Ricklefs RE, 2010, P NATL ACAD SCI USA, V107, P10314, DOI 10.1073/pnas.1005862107; Rollinson N, 2013, AM NAT, V182, P76, DOI 10.1086/670648; Salguero-Gomez R, 2016, P NATL ACAD SCI USA, V113, P230, DOI 10.1073/pnas.1506215112; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; Sibly RM, 2007, P NATL ACAD SCI USA, V104, P17707, DOI 10.1073/pnas.0707725104; Sibly RM, 2009, AM NAT, V173, pE185, DOI 10.1086/598680; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Speakman JR, 2010, INTEGR COMP BIOL, V50, P793, DOI 10.1093/icb/icq049; Stearns S., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Symonds M. R., 2014, MODERN PHYLOGENETIC, P105; Turbill C, 2011, P ROY SOC B-BIOL SCI, V278, P3355, DOI 10.1098/rspb.2011.0190; Van Dyck S, 2013, FIELD COMPANION MAMM; Venable DL, 2007, ECOLOGY, V88, P1086, DOI 10.1890/06-1495; Virgos E, 2006, BIOL J LINN SOC, V88, P603, DOI 10.1111/j.1095-8312.2006.00646.x; Ward SJ, 1998, J MAMMAL, V79, P999, DOI 10.2307/1383108; Whorley JR, 2007, J MAMMAL, V88, P1404, DOI 10.1644/06-MAMM-A-382R.1; Wilkinson GS, 2002, AGING CELL, V1, P124, DOI 10.1046/j.1474-9728.2002.00020.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 74 0 0 0 0 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. NOV 7 2018 285 1890 20181291 10.1098/rspb.2018.1291 8 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology GZ5ZK WOS:000449510600002 30381377 2018-11-22 J Hasselman, DJ; Bentzen, P; Narum, SR; Quinn, TP Hasselman, Daniel J.; Bentzen, Paul; Narum, Shawn R.; Quinn, Thomas P. Formation of population genetic structure following the introduction and establishment of non-native American shad (Alosa sapidissima) along the Pacific Coast of North America BIOLOGICAL INVASIONS English Article American shad; Biological invasions; Population structure; Evolutionary divergence; Anadromous fish MULTILOCUS GENOTYPE DATA; LOCAL SELECTIVE SWEEPS; COLUMBIA RIVER; LIFE-HISTORY; INVASION GENETICS; CHINOOK SALMON; REPRODUCTIVE CHARACTERISTICS; DIFFERENTIATION MEASURE; MULTIPLE INTRODUCTIONS; CONTEMPORARY EVOLUTION Biological invasions provide opportunities to examine contemporary evolutionary processes in novel environments. American shad, an anadromous fish native to the Atlantic Coast of North America, was introduced to California in 1871 and established spawning populations along the Pacific Coast that may provide insights into the dynamics of dispersal, colonization, and the establishment of philopatry. Using 13 neutral microsatellite loci we genotyped anadromous, freshwater resident and landlocked American shad from 14 locations along the US Pacific Coast to resolve population genetic structure. We observed significant differences in multilocus allele frequency distributions in nearly all (61/66; 92%) pairwise comparisons of non-native anadromous, freshwater resident and landlocked populations, and detected significant genetic differentiation for most (55/66; 83%) of these comparisons. Genetic divergence between landlocked and anadromous populations is due to genetic drift in isolation because of a physical migration barrier. However, some reproductive isolating mechanism maintains genetic differentiation between sympatric populations in the Columbia River exhibiting alternative life history strategies (i.e. anadromous vs. freshwater-type'). Non-native populations possessed genetic variants that were not observed in the species' native range and were strongly differentiated from Atlantic Coast populations (Our results indicate that philopatry became established shortly after dispersal and colonization along the Pacific Coast. This study contributes to our understanding of dynamic evolutionary processes during invasions. [Hasselman, Daniel J.; Quinn, Thomas P.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA; [Bentzen, Paul] Dalhousie Univ, Biol Dept, Marine Gene Probe Lab, Halifax, NS B3H 4R2, Canada; [Hasselman, Daniel J.; Narum, Shawn R.] Columbia River Intertribal Fish Commiss, Hagerman Fish Culture Expt Stn, 3059-F Natl Fish Hatchery Rd, Hagerman, ID 83332 USA Hasselman, DJ (reprint author), Columbia River Intertribal Fish Commiss, Hagerman Fish Culture Expt Stn, 3059-F Natl Fish Hatchery Rd, Hagerman, ID 83332 USA. hasselmandaniel@gmail.com Cooperative Institute for Limnology and Ecosystems Research at the University of Michigan; NOAA (Great Lakes Environmental Research Laboratory) Aquatic Invasive Species Program (AISP) Grant [NA07OAR4320006] This research would not have been possible without assistance from many federal (National Marine Fisheries Service, US Geological Survey, US Army Corps of Engineers) and state-level resource management agencies (Washington Department of Fish and Wildlife, Oregon Department of Fish and Wildlife, California Department of Fish and Wildlife), tribal governments (Columbia River Inter-Tribal Fish Commission, Yurok tribe, Karuk tribe), non-governmental organizations (Skagit River System Cooperative, Bonneville Power Administration), academic partners (University of Idaho, University of California Davis), and countless recreational fishers who collected specimens on our behalf. We thank members of the Marine Gene Probe Laboratory (M.C. McBride, I.P. Paterson) for laboratory assistance. We thank M. A Beaumont for assistance with the program 2MOD, and B. Wasserman for assistance creating associated figures. We thank T. Apgar for assistance with ArcGIS 10.2 in measuring distances among rivers, and K. Dlugosch for analytical advice. We also thank Phil Roni and Blake Feist for their contributions, three anonymous reviewers and an associate editor whose constructive comments greatly improved the quality of this manuscript. This work was conducted under IACUC protocol #2442-30 at the University of Washington and was supported by the Cooperative Institute for Limnology and Ecosystems Research at the University of Michigan and a NOAA (Great Lakes Environmental Research Laboratory) Aquatic Invasive Species Program (AISP) Grant (No. NA07OAR4320006) to DJH at the School of Aquatic and Fishery Sciences, University of Washington. Ahern SG, 1992, 96 FERC; Allendorf Fred W., 1996, P238; [Anonymous], 1982, FISH STUD MILL LAK 1; Arismendi I, 2014, REV FISH BIOL FISHER, V24, P919, DOI 10.1007/s11160-014-9351-0; Atlantic States Marine Fisheries Commission, 2007, STOCK ASSESSMENT REP, VIII; Atlantic States Marine Fisheries Commission, 2007, STOCK ASSESSMENT REP, VI; Baker CM, 2017, CONSERV LETT, V10, P41, DOI 10.1111/conl.12236; Barrett RDH, 2008, TRENDS ECOL EVOL, V23, P38, DOI 10.1016/j.tree.2007.09.008; Barrett SCH, 2015, MOL ECOL, V24, P1927, DOI 10.1111/mec.13014; Belkhir K, 2004, GENETIX 4 05 LOGICIE; Benjamini Y, 2001, ANN STAT, V29, P1165; BENTZEN P, 1989, CAN J FISH AQUAT SCI, V46, P1446, DOI 10.1139/f89-184; Bentzen P, 2005, GENETIC ANAL FRESHWA; Berdahl A, 2016, FISH FISH, V17, P525, DOI 10.1111/faf.12084; Bianco PG, 2002, MAR ECOL-P S Z N I, V23, P51, DOI 10.1111/j.1439-0485.2002.tb00007.x; Blackburn TM, 2015, MOL ECOL, V24, P1942, DOI 10.1111/mec.13075; Bock DG, 2015, MOL ECOL, V24, P2277, DOI 10.1111/mec.13032; Brown BL, 2000, CONSERV BIOL, V14, P294, DOI 10.1046/j.1523-1739.2000.98165.x; Chereshnev IA, 1989, VOP IKHTIOL, V3, P501; Ciancio JE, 2015, BIOL INVASIONS, V17, P2989, DOI 10.1007/s10530-015-0928-x; Ciofi C, 1999, P ROY SOC B-BIOL SCI, V266, P2269, DOI 10.1098/rspb.1999.0918; Colautti RI, 2015, MOL ECOL, V24, P1999, DOI 10.1111/mec.13162; Colautti RI, 2013, SCIENCE, V342, P364, DOI 10.1126/science.1242121; Collares-Pereira MJ, 1999, J FISH BIOL, V55, P658, DOI 10.1111/j.1095-8649.1999.tb00706.x; Crawford SS, 2008, REV FISH BIOL FISHER, V18, P313, DOI 10.1007/s11160-007-9079-1; Crispo E, 2007, EVOLUTION, V61, P2469, DOI 10.1111/j.1558-5646.2007.00203.x; Cristescu ME, 2015, MOL ECOL, V24, P2212, DOI 10.1111/mec.13117; Czesny S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0031803; Dadswell M. J., 1987, AM FISHERIES SOC S, V1, P313; DEMPSON J B, 1983, Naturaliste Canadien (Quebec), V110, P217; Dlugosch KM, 2008, MOL ECOL, V17, P431, DOI 10.1111/j.1365-294X.2007.03538.x; Dlugosch KM, 2015, MOL ECOL, V24, P2095, DOI 10.1111/mec.13183; Elphinstone MS, 2003, MOL ECOL NOTES, V3, P317, DOI 10.1046/j.1471-8286.2003.00397.x; ESRI, 2013, ARCGIS DESKT; Estoup A, 2010, MOL ECOL, V19, P4113, DOI 10.1111/j.1365-294X.2010.04773.x; Evanno G, 2005, MOL ECOL, V14, P2611, DOI 10.1111/j.1365-294X.2005.02553.x; Excoffier L, 2005, EVOL BIOINFORM, V1, P47; Facon B, 2006, TRENDS ECOL EVOL, V21, P130, DOI 10.1016/j.tree.2005.10.012; Falush D, 2003, GENETICS, V164, P1567; Faria R, 2004, MOL ECOL NOTES, V4, P586, DOI 10.1111/j.1471-8286.2004.00745.x; Faubet P, 2007, MOL ECOL, V16, P1149, DOI 10.1111/j.1365-294X.2006.03218.x; Ferrero V, 2015, MOL ECOL, V24, P2143, DOI 10.1111/mec.13056; Fonseca DM, 2000, MOL ECOL, V9, P1803, DOI 10.1046/j.1365-294x.2000.01070.x; GLEBE BD, 1981, CAN J FISH AQUAT SCI, V38, P806, DOI 10.1139/f81-109; Goudet J, 2001, FSTAT PROGRAM ESTIMA; Hanfling B, 2007, J FISH BIOL, V71, P115, DOI 10.1111/j.1095-8649.2007.01685.x; Haskell CA, 2017, T AM FISH SOC, V146, P291; Haskell CA, 2006, NORTHWEST SCI, V80, P47; Haskell CA, 2018, ECOL FRESHW FISH, V27, P310, DOI 10.1111/eff.12348; Haskell CA, 2013, T AM FISH SOC, V142, P606, DOI 10.1080/00028487.2012.728164; Hasselman DJ, 2013, MOL ECOL, V22, P1558, DOI 10.1111/mec.12197; Hasselman DJ, 2012, FISHERIES, V37, P103, DOI 10.1080/03632415.2012.659938; Hasselman DJ, 2010, CAN J FISH AQUAT SCI, V67, P1021, DOI 10.1139/F10-031; Hedrick PW, 2005, EVOLUTION, V59, P1633, DOI 10.1111/j.0014-3820.2005.tb01814.x; HEDRICK PW, 1986, ZOO BIOL, V5, P91, DOI 10.1002/zoo.1430050204; Hendricks ML, 2002, N AM J FISH MANAGE, V22, P243, DOI 10.1577/1548-8675(2002)022<0243:HOHRAS>2.0.CO;2; Hershberger PK, 2010, BIOL INVASIONS, V12, P3665, DOI 10.1007/s10530-010-9760-5; Hinrichsen RA, 2013, T AM FISH SOC, V142, P887, DOI 10.1080/00028487.2013.788553; HOLM S, 1979, SCAND J STAT, V6, P65; Huey RB, 2005, SPECIES INVASIONS: INSIGHTS INTO ECOLOGY, EVOLUTION, AND BIOGEORGRAPHY, P139; Hyndman RJ, 2013, HDRCDE HIGHEST DENSI; IHSSEN PE, 1992, CAN J FISH AQUAT SCI, V49, P1770, DOI 10.1139/f92-196; Jensen JL, 2005, BMC GENET, V6, DOI 10.1186/1471-2156-6-13; Jolly MT, 2012, MAR BIOL, V159, P675, DOI 10.1007/s00227-011-1845-x; Julian SE, 2007, MOL ECOL NOTES, V7, P805, DOI 10.1111/j.1471-8286.2007.01710.x; Keller SR, 2014, J EVOLUTION BIOL, V27, P616, DOI 10.1111/jeb.12330; Kinnison MT, 2003, J EVOLUTION BIOL, V16, P1257, DOI 10.1046/j.1420-9101.2003.00631.x; Kinnison MT, 2002, MOL ECOL, V11, P739, DOI 10.1046/j.1365-294X.2002.01477.x; Kinnison MT, 2001, EVOLUTION, V55, P1656; Lande R, 2015, MOL ECOL, V24, P2038, DOI 10.1111/mec.13037; Latch EK, 2006, CONSERV GENET, V7, P295, DOI 10.1007/s10592-005-9098-1; Leberg PL, 2002, MOL ECOL, V11, P2445, DOI 10.1046/j.1365-294X.2002.01612.x; LEGGETT WC, 1972, FISH BULL NATL OC AT, V70, P659; LEGGETT WC, 1978, J FISH RES BOARD CAN, V35, P1469, DOI 10.1139/f78-230; Lenormand T, 2002, TRENDS ECOL EVOL, V17, P183, DOI 10.1016/S0169-5347(02)02497-7; Limburg KE, 1998, CAN J FISH AQUAT SCI, V55, P431, DOI 10.1139/cjfas-55-2-431; Limburg KE, 2003, AM FISH S S, V35, P125; Limburg KE, 1996, CAN J FISH AQUAT SCI, V53, P220, DOI 10.1139/cjfas-53-1-220; Loader CR, 1996, ANN STAT, V24, P1602; Lowe S, 2001, 100 WORLDS WORST INV; Luikart G, 1998, J HERED, V89, P238, DOI 10.1093/jhered/89.3.238; LYNCH M, 1991, EVOLUTION, V45, P622, DOI 10.1111/j.1558-5646.1991.tb04333.x; McBride MC, 2015, CONSERV GENET, V16, P1209, DOI 10.1007/s10592-015-0733-1; Meirmans PG, 2006, EVOLUTION, V60, P2399, DOI 10.1111/j.0014-3820.2006.tb01874.x; MELVIN GD, 1986, CAN J FISH AQUAT SCI, V43, P640, DOI 10.1139/f86-077; Monk B., 1989, North American Journal of Fisheries Management, V9, P60, DOI 10.1577/1548-8675(1989)009<0060:EOFAWD>2.3.CO;2; Naciri-Graven Y, 2003, EVOLUTION, V57, P706; Naik PK, 2005, HYDROL PROCESS, V19, P1807, DOI [10.1002/hyp.5636, 10.1002/hyp.53636]; Narum SR, 2006, CONSERV GENET, V7, P783, DOI 10.1007/s10592-005-9056-y; Narum SR, 2017, EVOL APPL, V10, P402, DOI 10.1111/eva.12464; NEI M, 1983, J MOL EVOL, V19, P153, DOI 10.1007/BF02300753; NEI M, 1978, GENETICS, V89, P583; OLEARY JA, 1986, T AM FISH SOC, V115, P529, DOI 10.1577/1548-8659(1986)115<529:BLASRO>2.0.CO;2; Owens RW, 1998, J GREAT LAKES RES, V24, P723, DOI 10.1016/S0380-1330(98)70856-1; Palkovacs EP, 2008, MOL ECOL, V17, P582, DOI 10.1111/j.1365-294X.2007.03593.x; Palkovacs EP, 2014, FRESHWATER BIOL, V59, P1897, DOI 10.1111/fwb.12392; Parsley MJ, 2011, IMPACT AM SHAD COLUM; Peakall R, 2006, MOL ECOL NOTES, V6, P288, DOI 10.1111/j.1471-8286.2005.01155.x; Petersen JH, 2003, AM FISH S S, V35, P141; Peterson DP, 2003, BIOL INVASIONS, V5, P239, DOI 10.1023/A:1026155628599; Phillips BL, 2010, J EVOLUTION BIOL, V23, P2595, DOI 10.1111/j.1420-9101.2010.02118.x; Piry S, 1999, J HERED, V90, P502, DOI 10.1093/jhered/90.4.502; Pritchard JK, 2000, GENETICS, V155, P945; Puechmaille SJ, 2016, MOL ECOL RESOUR, V16, P608, DOI 10.1111/1755-0998.12512; Quinn TP, 2001, GENETICA, V112, P493, DOI 10.1023/A:1013348024063; R Development Core Team, 2013, R LANG ENV STAT COMP; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; Rollins LA, 2015, MOL ECOL, V24, P2264, DOI 10.1111/mec.13184; Rosales-Casian JA, 2015, CAL COOP OCEAN FISH, V56, P92; Rosenberg NA, 2004, MOL ECOL NOTES, V4, P137, DOI 10.1046/j.1471-8286.2003.00566.x; Rousset F, 1997, GENETICS, V145, P1219; Rousset F, 2008, MOL ECOL RESOUR, V8, P103, DOI 10.1111/j.1471-8286.2007.01931.x; Ryman N, 2006, MOL ECOL, V15, P2031, DOI 10.1111/j.1365-294X.2006.02839.x; Schlotterer C, 2005, MOL B INT U, P55, DOI 10.1007/0-387-27651-3_5; Schlotterer C, 2002, GENETICS, V160, P753; Shields BA, 2002, J PARASITOL, V88, P1033, DOI 10.2307/3285555; Smith BJ, 2007, J STAT SOFTW, V21, P1; Smith HM, 1895, US FISH COMMISSION B, V15, P379; Susquehanna River Anadromous Fish Restoration Committee, 1990, REST AM SHAD SUSQ RI; Takezaki N, 2010, MOL BIOL EVOL, V27, P747, DOI 10.1093/molbev/msp312; Talbot GB, 1958, ATLANTIC COAST MIGRA; TOOLE CL, 1980, AM ZOOL, V20, P812; Twining CW, 2017, CAN J FISH AQUAT SCI, V74, P609, DOI 10.1139/cjfas-2016-0136; Utter F, 2000, REV FISH BIOL FISHER, V10, P265, DOI 10.1023/A:1016686415022; Vaha JP, 2007, MOL ECOL, V16, P2638, DOI 10.1111/j.1365-294X.2007.03329.x; Van Oosterhout C, 2004, MOL ECOL NOTES, V4, P535, DOI 10.1111/j.1471-8286.2004.00684.x; Walburg CH, 1967, BIOL MANAGEMENT AM S; Waples RS, 2008, MOL ECOL, V17, P84, DOI 10.1111/j.1365-294X.2007.03510.x; Waples RS, 2017, EVOL APPL, V10, P667, DOI 10.1111/eva.12468; Waters JM, 2000, J FISH BIOL, V56, P622, DOI 10.1006/jfbi.1999.1179; WEIR BS, 1984, EVOLUTION, V38, P1358, DOI 10.1111/j.1558-5646.1984.tb05657.x; Weitkamp LA, 2015, FISH B-NOAA, V113, P213, DOI 10.7755/FB.113.2.9; Westley PAH, 2011, DIVERS DISTRIB, V17, P566, DOI 10.1111/j.1472-4642.2011.00751.x; Westley PAH, 2011, AM NAT, V177, P496, DOI 10.1086/658902; Williams JG, 2008, EVOL APPL, V1, P271, DOI 10.1111/j.1752-4571.2008.00027.x; Wilson GA, 2003, GENETICS, V163, P1177; Wydoski RS, 1979, INLAND FISHES WASHIN; Zydlewski J, 2003, J FISH BIOL, V63, P1521, DOI 10.1046/j.1095-8649.2003.00264.x 138 0 0 0 0 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 1387-3547 1573-1464 BIOL INVASIONS Biol. Invasions NOV 2018 20 11 3123 3143 10.1007/s10530-018-1763-7 21 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology GY6HN WOS:000448688100008 2018-11-22 J Seixas, VC; Paiva, PC; Russo, CAD Seixas, Victor Correa; Paiva, Paulo Cesar; de Moraes Russo, Claudia Augusta Comparative population genetics and demographic history of two polychaete species suggest that coastal lagoon populations evolve under alternate regimes of gene flow MARINE BIOLOGY English Article HEDISTE-DIVERSICOLOR POLYCHAETA; CAPITELLA-CAPITATA POLYCHAETA; COMPARATIVE PHYLOGEOGRAPHY; HABITAT DISCONTINUITY; MOLECULAR EVOLUTION; DNA POLYMORPHISM; GENERATION TIME; LIFE-HISTORY; BODY-SIZE; DISPERSAL Here, we compare the population genetic structure and the demographic history of two polychaete species along one bay and eight coastal lagoons distributed over similar to 200km of the Southwest Atlantic to understand the evolution of discontinuous and confined inland ocean-connected waters populations. A total of 515 sequences of COI and 16S were obtained for Laeonereis culveri and Capitella nonatoi. Levels of genetic diversity and population genetic structure were higher for C. nonatoi than L. culveri, possibly reflecting the differences in life-history strategies. Furthermore, the genetic diversity of both species was, in general, smaller in more confined populations. Populations of both species showed signs of recent demographic expansion, although it was more pronounced in C. nonatoi. As the population size of both species may reach high densities in highly eutrophic environments, these expansions are probably associated to the coastal lagoon formation, which favors the process of organic matter accumulation and the water oxygenation reduction. The general pattern of haplotype distribution revealed high levels of haplotype sharing among populations, mainly in L. culveri. On the other hand, the observed number of exclusive haplotypes indicates that the genetic exchange among populations is not as high as it may seem. This result suggests that coastal lagoons populations evolve under alternate regimes of soft (physiological barriers) and strong (physiological and physical barriers) gene flow restriction. [Seixas, Victor Correa; de Moraes Russo, Claudia Augusta] Univ Fed Rio de Janeiro, Inst Biol, Dept Genet, CCS, Av Carlos Chagas Filho 373,Sala A2-97,Bloco A, BR-21941570 Rio De Janeiro, RJ, Brazil; [Seixas, Victor Correa] Univ Fed Rio de Janeiro, Inst Biol, Programa Posgrad Ecol, CCS, Av Carlos Chagas Filho 373, BR-21941971 Rio De Janeiro, RJ, Brazil; [Paiva, Paulo Cesar] Univ Fed Rio de Janeiro, Inst Biol, Dept Zool, CCS, Av Carlos Chagas Filho 373,Sala A0-108,Bloco A, BR-21941902 Rio De Janeiro, RJ, Brazil Russo, CAD (reprint author), Univ Fed Rio de Janeiro, Inst Biol, Dept Genet, CCS, Av Carlos Chagas Filho 373,Sala A2-97,Bloco A, BR-21941570 Rio De Janeiro, RJ, Brazil. claudiaamrusso@gmail.com Paiva, Paulo Cesar de/0000-0003-1061-6549 Coordination for the Improvement of Higher Education Personnel (Education Ministry Brazil) [CAPES-PROEX/0487]; National Science and Technology Council (CNPq, Science and Technology Brazil); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (BR) [308387/2015-5]; Nacional de Desenvolvimento Cientifico e Tecnologico [443900/2014-0] The authors would like to thank the Coordination for the Improvement of Higher Education Personnel (CAPES-PROEX/0487, Education Ministry Brazil) for the Ph.D. and postdoctoral fellowship for VCS and the National Science and Technology Council (CNPq, Science and Technology Brazil) for the fellowships to PCP and to CAMR. The authors also thank Dr. Christine Ruta for providing samples of the Visgueiro Lagoon, and Dr. Antonio M. Sole-Cava for providing the facilities of Laboratorio de Biodiversidade Molecular (UFRJ) for sequencing samples. We thank the reviewers for the valuable comments. This paper is part of the Ph.D. requirements for VCS at the Genetics Graduate Program of the Federal University of Rio de Janeiro. This work was supported by the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (BR) (Grant No. 308387/2015-5), Nacional de Desenvolvimento Cientifico e Tecnologico (Grant No. 443900/2014-0). Adkins M, 2011, MAR BIOL RES, V7, P202, DOI 10.1080/17451000.2010.489612; Amador ES, 1997, BAIA GUANABARA ECOSS; Barbosa SS, 2013, BIOL J LINN SOC, V108, P821, DOI 10.1111/bij.12006; Barnes PB, 2013, DIVERS DISTRIB, V19, P1394, DOI 10.1111/ddi.12108; Barroso R, 2010, MAR BIOL, V157, P69, DOI 10.1007/s00227-009-1296-9; Beerli P, 1998, NATO ADV SCI I A-LIF, V306, P39; Bilton DT, 2002, ESTUAR COAST SHELF S, V55, P937, DOI 10.1006/ecss.2002.1037; Bromham L, 2009, BIOL LETTERS, V5, P401, DOI 10.1098/rsbl.2009.0136; Chandler EA, 2008, MOL ECOL, V17, P4079, DOI 10.1111/j.1365-294X.2008.03897.x; Collado GA, 2012, ZOOL J LINN SOC-LOND, V165, P795, DOI 10.1111/j.1096-3642.2012.00829.x; Cowen RK, 2009, ANNU REV MAR SCI, V1, P443, DOI 10.1146/annurev.marine.010908.163757; Cox LN, 2014, J BIOGEOGR, V41, P615, DOI 10.1111/jbi.12217; da Silva E, 2005, J COASTAL RES, P265; Darriba D, 2012, NAT METHODS, V9, P772, DOI 10.1038/nmeth.2109; DiBattista JD, 2013, J BIOGEOGR, V40, P1170, DOI 10.1111/jbi.12068; Dray S, 2007, J STAT SOFTW, V22, P1; Drummond AJ, 2012, MOL BIOL EVOL, V29, P1969, DOI 10.1093/molbev/mss075; Dupont L, 2009, MOL ECOL, V18, P442, DOI 10.1111/j.1365-294X.2008.04045.x; Ellegren H, 2016, NAT REV GENET, V17, P422, DOI 10.1038/nrg.2016.58; ELLSTRAND NC, 1993, ANNU REV ECOL SYST, V24, P217, DOI 10.1146/annurev.es.24.110193.001245; Enrich-Prast A, 2004, PESQUISAS LONGA DURA, P1; Excoffier L, 2010, MOL ECOL RESOUR, V10, P564, DOI 10.1111/j.1755-0998.2010.02847.x; Fitzpatrick BM, 2009, MOL ECOL, V18, P3961, DOI 10.1111/j.1365-294X.2009.04314.x; Floyd R, 2002, MOL ECOL, V11, P839, DOI 10.1046/j.1365-294X.2002.01485.x; Folmer O., 1994, Molecular Marine Biology and Biotechnology, V3, P294; Fu YX, 1997, GENETICS, V147, P915; Gillooly JF, 2005, P NATL ACAD SCI USA, V102, P140, DOI 10.1073/pnas.0407735101; Gonzalez-Wanguemert M, 2014, HELGOLAND MAR RES, V68, P357, DOI 10.1007/s10152-014-0396-1; Grant WS, 2012, MOL PHYLOGENET EVOL, V65, P203, DOI 10.1016/j.ympev.2012.06.006; GUELORGET O., 1983, TRAV LAB GEOL ECOLE, V16, P1; Hammer O, 2001, PALAEONTOL ELECTRON, V4, P9, DOI DOI 10.1016/J.BCP.2008.05.025; Hauser L, 2002, P NATL ACAD SCI USA, V99, P11742, DOI 10.1073/pnas.172242899; HEIP C, 1995, OPHELIA, V41, P113, DOI 10.1080/00785236.1995.10422040; Heled J, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-289; Ho SYW, 2011, MOL ECOL RESOUR, V11, P423, DOI 10.1111/j.1755-0998.2011.02988.x; Hudson R.R., 1990, Oxford Surveys in Evolutionary Biology, V7, P1; Jolly MT, 2006, MOL ECOL, V15, P1841, DOI 10.1111/j.1365-294X.2006.02910.x; Kennish MJ, 2002, ENVIRON CONSERV, V29, P78, DOI 10.1017/S0376892902000061; Kjerfve, 1994, ELSEVIER OCEANOG SER, V60, P1, DOI DOI 10.1016/S0422-9894(08)70006-0; Kjerfve B, 1996, ESTUAR COAST SHELF S, V42, P701, DOI 10.1006/ecss.1996.0045; Kjerfve B, 2001, ECOL STU AN, V144, P107; Kjerfve B., 1986, ESTUARINE VARIABILIT, P63, DOI DOI 10.1016/B978-0-12-761890-6.50009-5; LeitAo AS, 2014, THESIS; Librado P, 2009, BIOINFORMATICS, V25, P1451, DOI 10.1093/bioinformatics/btp187; Linke-Gamenick I, 2000, MAR ECOL PROG SER, V203, P191, DOI 10.3354/meps203191; Liu HJ, 2012, BIOCHEM SYST ECOL, V44, P70, DOI 10.1016/j.bse.2012.04.019; Marino IAM, 2010, ESTUAR COAST SHELF S, V87, P135, DOI 10.1016/j.ecss.2010.01.003; MARTIN AP, 1993, P NATL ACAD SCI USA, V90, P4087, DOI 10.1073/pnas.90.9.4087; Martin L, 1994, COASTAL LAGOON PROCE, P41, DOI DOI 10.1016/S0422-9894(08)70008-4; Mashiko K, 2000, J CRUSTACEAN BIOL, V20, P118, DOI 10.1651/0278-0372(2000)020[0118:DOPWDS]2.0.CO;2; MAZURKIEWICZ M, 1975, BIOL BULL, V149, P186, DOI 10.2307/1540489; Mendez N, 1997, J EXP MAR BIOL ECOL, V218, P263, DOI 10.1016/S0022-0981(97)00078-6; Milana V, 2012, MAR BIOL, V159, P399, DOI 10.1007/s00227-011-1817-1; Miller M. A., 2010, P GAT COMP ENV WORKS, P1; Muniz-Salazar R, 2006, MAR ECOL PROG SER, V309, P107, DOI 10.3354/meps309107; Muniz-Salazar R, 2005, MOL ECOL, V14, P711, DOI 10.1111/j.1365-294X.2005.02454.x; Olson MA, 2009, BIOL BULL-US, V217, P86, DOI 10.1086/BBLv217n1p86; Palumbi S., 1991, SIMPLE FOOLS GUIDE P; Paradis E, 2010, BIOINFORMATICS, V26, P419, DOI 10.1093/bioinformatics/btp696; Perez-Ruzafa A, 2005, HYDROBIOLOGIA, V550, P11, DOI 10.1007/s10750-005-4356-2; Perez-Ruzafa A, 2018, ESTUAR COAST SHELF S, DOI [10.1016/j.ecss.2018.02.031, DOI 10.1016/J.ECSS.2018.02.031]; Perez-Ruzafa A, 1993, PUBL ESPEC I ESP OCE, V11, P347; Pettibone MH, 1971, SMITHSONIAN CONTRIBU, V104; Plouviez S, 2009, MOL ECOL, V18, P3903, DOI 10.1111/j.1365-294X.2009.04325.x; R Core Team, 2018, R LANG ENV STAT COMP; Ramskov T, 2008, MAR ECOL PROG SER, V369, P181, DOI 10.3354/meps07584; Romiguier J, 2014, NATURE, V515, P261, DOI 10.1038/nature13685; Rosenberg NA, 2002, NAT REV GENET, V3, P380, DOI 10.1038/nrg795; Silva CF, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0177760; Smith LM, 2015, MAR BIOL, V162, P1319, DOI 10.1007/s00227-015-2671-3; TAJIMA F, 1989, GENETICS, V123, P585; Tamura K, 2011, MOL BIOL EVOL, V28, P2731, DOI 10.1093/molbev/msr121; Thomas JA, 2010, MOL BIOL EVOL, V27, P1173, DOI 10.1093/molbev/msq009; Mendes CLT, 2011, ZOOLOGIA-CURITIBA, V28, P365, DOI 10.1590/S1984-46702011000300011; TSUTSUMI H, 1987, MAR ECOL PROG SER, V36, P139, DOI 10.3354/meps036139; TSUTSUMI H, 1984, MAR BIOL, V80, P315, DOI 10.1007/BF00392827; Vergara-Chen C, 2013, J MOLLUS STUD, V79, P230, DOI 10.1093/mollus/eyt015; Virgilio M, 2006, MAR ECOL PROG SER, V326, P157, DOI 10.3354/meps326157; Virgilio M, 2009, MOL ECOL, V18, P1980, DOI 10.1111/j.1365-294X.2009.04170.x; Wangensteen OS, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0045067; Webster HE, 1880, ANN REPORT NEW YORK, V32, P101; WU CI, 1985, P NATL ACAD SCI USA, V82, P1741, DOI 10.1073/pnas.82.6.1741; Zanol J, 2010, MOL PHYLOGENET EVOL, V55, P660, DOI 10.1016/j.ympev.2009.12.024 83 0 0 0 0 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 0025-3162 1432-1793 MAR BIOL Mar. Biol. NOV 2018 165 11 179 10.1007/s00227-018-3437-5 16 Marine & Freshwater Biology Marine & Freshwater Biology GY8BI WOS:000448843000003 2018-11-22 J Le Coeur, C; Pisanu, B; Chapuis, JL; Robert, A Le Coeur, Christie; Pisanu, Benoit; Chapuis, Jean-Louis; Robert, Alexandre Within- and between-year variations of reproductive strategy and cost in a population of Siberian chipmunks OECOLOGIA English Article Capital and income breeders; Carry-over effects; Delayed survival cost of reproduction; Hibernation; Tamias sibiricus CAPTURE-RECAPTURE MODELS; LIFE-HISTORY VARIATION; INDIVIDUAL QUALITY; CAPITAL BREEDER; EMPIRICAL-EVIDENCE; SURVIVAL; AGE; MAMMALS; SUCCESS; SELECTION Reproduction costs depend on the general life-history strategies employed by organisms for resource acquisition, the decision rules on resource allocation, and the resource availability. Although the predictability of resource availability is expected to influence the breeding strategy, the relationship between predictability and strategy has rarely been investigated at the population level. One reason is that, while the resource availability is commonly variable in space and time, their predictability is generally assumed constant. Here, we addressed the temporal variation of the breeding strategy and its associated survival cost in a hibernating population of Tamias sibiricus, in which food resources vary in their availability between years and in their predictability within years. Based on 11years of mark-recapture data, we used multi-event modelling to investigate seasonal variations in reproduction costs of female chipmunks that breed twice a year (spring and summer). In summer, during which a large variety and quantity of resources is available (income breeding strategy), the proportion of breeding females was consistent across years and reproduction yielded no mortality cost. In contrast, in spring, the proportion of breeding females was positively correlated with the amount of resources available for hibernation (partial capital breeding strategy). Spring reproduction yielded no immediate cost, but induced a delayed mortality cost over the next winter if future unknown conditions were unfavorable. Our findings highlight complex temporal reproductive patterns in a short-lived species: not only does the modality of resource acquisition vary among seasons, but also the decision rule to breed and its associated cost. [Le Coeur, Christie; Pisanu, Benoit; Chapuis, Jean-Louis; Robert, Alexandre] Sorbonne Univ, CNRS, Museum Natl Hist Nat, Ctr Ecol & Sci Conservat CESCO, 61 Rue Buffon, F-75005 Paris, France Le Coeur, C (reprint author), Sorbonne Univ, CNRS, Museum Natl Hist Nat, Ctr Ecol & Sci Conservat CESCO, 61 Rue Buffon, F-75005 Paris, France. christielecoeur@gmail.com National Forest Office (Office National des Forets, France); Conseil Regional d'Ile-de-France; Conseil Departemental des Hauts-de-Seine; Ministere de l'Ecologie, du Developpement durable et de l'Energie We are thankful to the National Forest Office (Office National des Forets, France) for financial support and for allowing fieldwork in the site 'La Faisanderie'. This work was also funded by the Conseil Regional d'Ile-de-France, the Conseil Departemental des Hauts-de-Seine and the Ministere de l'Ecologie, du Developpement durable et de l'Energie. We are thankful to F. Bart, A. Bouiges, A. Bourgeois, N. Boyer, C. Huchery, C. Jerusalem, J. Marmet, M. Marsot and M. Roussel for their contribution in mark-recapture monitoring. Acker P, 2014, FUNCT ECOL, V28, P458, DOI 10.1111/1365-2435.12187; Bergeron P, 2011, ECOLOGY, V92, P2027, DOI 10.1890/11-0766.1; Bonnet X, 1998, OIKOS, V83, P333, DOI 10.2307/3546846; Bonnet X, 1999, EVOL ECOL, V13, P485, DOI 10.1023/A:1006712713698; Bouwhuis S, 2012, AM NAT, V179, pE15, DOI 10.1086/663194; Burnham KP, 2002, MODEL SELECTION MULT; Cam E, 1998, ECOLOGY, V79, P2917, DOI 10.1890/0012-9658(1998)079[2917:AANPPT]2.0.CO;2; Cam E, 2013, OIKOS, V122, P739, DOI 10.1111/j.1600-0706.2012.20532.x; Chapuis J-L, 2009, DATASHEET TAMIAS SIB; Choquet R, 2009, ENVIRON ECOL STAT SE, V3, P845, DOI 10.1007/978-0-387-78151-8_39; Choquet R, 2009, ECOGRAPHY, V32, P1071, DOI 10.1111/j.1600-0587.2009.05968.x; Creighton JC, 2009, AM NAT, V174, P673, DOI 10.1086/605963; Cubaynes S, 2011, BIOL LETTERS, V7, P303, DOI 10.1098/rsbl.2010.0778; Dall SRX, 2005, TRENDS ECOL EVOL, V20, P187, DOI 10.1016/j.tree.2005.01.010; Davis SE, 2005, ECOLOGY, V86, P1047, DOI 10.1890/04-0989; Debeffe L, 2017, ECOL EVOL, V7, P5580, DOI 10.1002/ece3.3082; Descamps S, 2009, P R SOC B, V276, P1129, DOI 10.1098/rspb.2008.1401; Dudash MR, 1997, ECOLOGY, V78, P484; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Frick WF, 2010, J ANIM ECOL, V79, P128, DOI 10.1111/j.1365-2656.2009.01615.x; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Gimenez O, 2018, OIKOS, V127, P664, DOI 10.1111/oik.04532; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; Hamel S, 2010, ECOL LETT, V13, P915, DOI 10.1111/j.1461-0248.2010.01478.x; Harrison XA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0077783; Harrison XA, 2011, J ANIM ECOL, V80, P4, DOI 10.1111/j.1365-2656.2010.01740.x; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hodges CJ, 2015, J EVOLUTION BIOL, V28, P1383, DOI 10.1111/jeb.12662; Houston AI, 2007, BEHAV ECOL, V18, P241, DOI 10.1093/beheco/arl080; Humphries MM, 2003, PHYSIOL BIOCHEM ZOOL, V76, P165, DOI 10.1086/367950; Inger R, 2010, J ANIM ECOL, V79, P974, DOI 10.1111/j.1365-2656.2010.01712.x; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; KAWAMICHI M, 1980, Japanese Journal of Ecology, V30, P211; Kawamichi M, 1984, HONYURUI KAGAKU MAMM, V48, P3; Kawamichi T., 1987, P173; Koivula M, 2003, ECOLOGY, V84, P398, DOI 10.1890/0012-9658(2003)084[0398:CORITW]2.0.CO;2; Koops MA, 2003, EVOL ECOL RES, V5, P29; Le Coeur C, 2016, OECOLOGIA, V181, P795, DOI 10.1007/s00442-016-3597-2; Le Coeur C, 2015, BEHAV ECOL, V26, P1285, DOI 10.1093/beheco/arv074; Le Coeur C, 2015, PARASITOL RES, V114, P2069, DOI 10.1007/s00436-015-4391-5; Lescroel A, 2009, J ANIM ECOL, V78, P798, DOI 10.1111/j.1365-2656.2009.01542.x; Lindstrom K, 2001, AM NAT, V158, P64, DOI 10.1086/320867; Marmet J, 2012, BEHAV ECOL SOCIOBIOL, V66, P1449, DOI 10.1007/s00265-012-1399-z; Marmet J, 2009, EUR J WILDLIFE RES, V55, P497, DOI 10.1007/s10344-009-0266-3; McCleery RH, 1996, J ANIM ECOL, V65, P96, DOI 10.2307/5703; Nevoux M, 2007, J ANIM ECOL, V76, P159, DOI 10.1111/j.1365-2656.2006.01191.x; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; Ognev SI, 1966, MAMMALS USSR ADJACEN, V4; Orzack SH, 2011, OIKOS, V120, P369, DOI 10.1111/j.1600-0706.2010.17996.x; Pilastro A, 2003, ECOLOGY, V84, P1784, DOI 10.1890/0012-9658(2003)084[1784:LLARSI]2.0.CO;2; Pinot A, 2014, BMC ECOL, V14, DOI 10.1186/1472-6785-14-17; Pisanu B, 2013, BIOL INVASIONS, V15, P1201, DOI 10.1007/s10530-012-0375-x; Pradel R, 2005, BIOMETRICS, V61, P442, DOI 10.1111/j.1541-0420.2005.00318.x; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Rauset GR, 2015, ECOLOGY, V96, P3153, DOI 10.1890/15-0262.1; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Robert A, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.1529; Robert A, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.1692; Robert A, 2012, ECOLOGY, V93, P1944, DOI 10.1890/11-1840.1; Roff Derek A., 1992; Ruf T, 2006, ECOLOGY, V87, P372, DOI 10.1890/05-0672; Ruf Thomas, 2012, P123; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; Stearns S., 1992, EVOLUTION LIFE HIST; Stephens PA, 2014, ECOLOGY, V95, P882, DOI 10.1890/13-1434.1; SWITZER PV, 1993, EVOL ECOL, V7, P533, DOI 10.1007/BF01237820; Tannerfeldt M, 1998, OIKOS, V83, P545, DOI 10.2307/3546681; Tarwater CE, 2017, BEHAV ECOL SOCIOBIOL, V71, DOI 10.1007/s00265-017-2309-1; Tavecchia G, 2005, J ANIM ECOL, V74, P201, DOI 10.1111/j.1365-2656.2005.00916.x; Tavecchia G, 2001, ECOLOGY, V82, P165, DOI 10.1890/0012-9658(2001)082[0165:SAARVI]2.0.CO;2; Toigo C, 2002, ECOSCIENCE, V9, P427; Torok J, 2004, OECOLOGIA, V141, P432, DOI 10.1007/s00442-004-1667-3; Turbill C, 2011, P ROY SOC B-BIOL SCI, V278, P3355, DOI 10.1098/rspb.2011.0190; Varpe O, 2009, OIKOS, V118, P363, DOI 10.1111/j.1600-0706.2008.17036.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 76 0 0 2 2 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia NOV 2018 188 3 765 776 10.1007/s00442-018-4259-3 12 Ecology Environmental Sciences & Ecology GX6KO WOS:000447870100011 30219947 2018-11-22 J Kvile, KO; Ashjian, C; Feng, ZX; Zhang, JL; Ji, RB Kvile, Kristina Oie; Ashjian, Carin; Feng, Zhixuan; Zhang, Jinlun; Ji, Rubao Pushing the limit: Resilience of an Arctic copepod to environmental fluctuations GLOBAL CHANGE BIOLOGY English Article Arctic Ocean; Calanus hyperboreus; climate change; expatriation; extreme environment; life cycle; peripheral population; resilience CALANUS-HYPERBOREUS; SEA-ICE; VERTICAL-DISTRIBUTION; GREENLAND SEA; NANSEN BASIN; LIFE-CYCLE; OCEAN; ZOOPLANKTON; SUMMER; FOOD Life history strategies such as multiyear life cycles, resting stages, and capital breeding allow species to inhabit regions with extreme and fluctuating environmental conditions. One example is the zooplankton species Calanus hyperboreus, whose life history is considered an adaptation to the short and unpredictable growth season in the central Arctic Ocean. This copepod is commonly described as a true Arctic endemic; however, by statistically analyzing compiled observational data, we show that abundances are relatively low and later stages and adults dominate in the central Arctic Ocean basins, indicating expatriation. Combining data analyses with individual-based modeling and energy requirement estimation, we further demonstrate that while C. hyperboreus can reach higher abundances in areas with greater food availability outside the central Arctic basins, the species' resilience to environmental fluctuations enables the life cycle to be completed in the central Arctic basins. Specifically, the energy level required to reach the first overwintering stage-a prerequisite for successful local production-is likely met in some-but not all-years. This fine balance between success and failure indicates that C. hyperboreus functions as a peripheral population in the central Arctic basins and its abundance will likely increase in areas with improved growth conditions in response to climate change. By illustrating a key Arctic species' resilience to extreme and fluctuating environmental conditions, the results of this study have implications for projections of future biogeography and food web dynamics in the Arctic Ocean, a region experiencing rapid warming and sea ice loss. [Kvile, Kristina Oie; Ashjian, Carin; Feng, Zhixuan; Ji, Rubao] Woods Hole Oceanog Inst, Dept Biol, Woods Hole, MA 02543 USA; [Zhang, Jinlun] Univ Washington, Appl Phys Lab, Seattle, WA 98105 USA Kvile, KO (reprint author), Woods Hole Oceanog Inst, Dept Biol, Woods Hole, MA 02543 USA. kkvile@whoi.edu Feng, Zhixuan/0000-0002-4774-7027; Kvile, Kristina Oie/0000-0003-2771-9077 National Science Foundation [ARC-1203425, PLR-1416920, PLR-1417677]; NASA Cryosphere Program [NNX15AG68G]; Woods Hole Oceanographic Institution, John H. Steele Postdoctoral Scholar award National Science Foundation, Grant/Award Number: ARC-1203425, PLR-1416920, PLR-1417677; NASA Cryosphere Program, Grant/Award Number: NNX15AG68G; Woods Hole Oceanographic Institution, John H. Steele Postdoctoral Scholar award Arrigo KR, 2015, PROG OCEANOGR, V136, P60, DOI 10.1016/j.pocean.2015.05.002; ARRIGO KR, 2011, J GEOPHYS RES-OCEANS, V116, DOI [10.1029/2011JC007151, DOI 10.1029/2011JC007151]; Ashjian CJ, 2003, DEEP-SEA RES PT I, V50, P1235, DOI 10.1016/S0967-0637(03)00129-8; Brody SR, 2013, J GEOPHYS RES-OCEANS, V118, P2345, DOI 10.1002/jgrc.20167; BROOKS JL, 1965, SCIENCE, V150, P28, DOI 10.1126/science.150.3692.28; Campbell RG, 2001, MAR ECOL PROG SER, V221, P161, DOI 10.3354/meps221161; Campbell RG, 2009, DEEP-SEA RES PT II, V56, P1274, DOI 10.1016/j.dsr2.2008.10.027; Choquet M, 2017, BIOL LETTERS, V13, DOI 10.1098/rsbl.2017.0588; CONOVER RJ, 1993, ARCTIC, V46, P303; CONOVER RJ, 1988, HYDROBIOLOGIA, V167, P127, DOI 10.1007/BF00026299; Corkett C.J., 1986, SYLLOGEUS, V58, P539; Daase M, 2013, CAN J FISH AQUAT SCI, V70, P871, DOI 10.1139/cjfas-2012-0401; Darnis G, 2014, J PLANKTON RES, V36, P1092, DOI 10.1093/plankt/fbu035; DAWSON JK, 1978, LIMNOL OCEANOGR, V23, P950, DOI 10.4319/lo.1978.23.5.0950; Falk-Petersen S, 2009, MAR BIOL RES, V5, P18, DOI 10.1080/17451000802512267; Feng ZX, 2018, GLOBAL CHANGE BIOL, V24, pE159, DOI 10.1111/gcb.13890; Feng ZX, 2016, J GEOPHYS RES-OCEANS, V121, P6137, DOI 10.1002/2016JC011784; Fetterer F., 2017, SEA ICE INDEX VERSIO; Hardie DC, 2010, ENVIRON REV, V18, P1, DOI 10.1139/A09-014; Hirche HJ, 2013, MAR BIOL, V160, P2469, DOI 10.1007/s00227-013-2242-4; Hirche HJ, 1997, MAR BIOL, V128, P607, DOI 10.1007/s002270050127; HIRCHE HJ, 1992, DEEP-SEA RES, V39, pS485, DOI 10.1016/S0198-0149(06)80017-8; HIRCHE HJ, 1991, POLAR BIOL, V11, P351; Ji RB, 2013, GLOBAL CHANGE BIOL, V19, P734, DOI 10.1111/gcb.12074; Ji RB, 2012, PROG OCEANOGR, V96, P40, DOI 10.1016/j.pocean.2011.10.001; JOHNSON MW, 1963, LIMNOL OCEANOGR, V8, P89, DOI 10.4319/lo.1963.8.1.0089; Jung-Madsen S, 2013, LIMNOL OCEANOGR, V58, P2109, DOI 10.4319/lo.2013.58.6.2109; Kaartvedt S., 2018, ICES J MAR SCI, DOI 10. 1093/icesjms/fsy001; Kaartvedt S, 2008, J PLANKTON RES, V30, P1203, DOI 10.1093/plankt/fbn075; Kiorboe T, 2006, OECOLOGIA, V148, P40, DOI 10.1007/s00442-005-0346-3; Kohlbach D, 2016, LIMNOL OCEANOGR, V61, P2027, DOI 10.1002/lno.10351; Kosobokova KN, 1998, POLAR BIOL, V19, P63; Kosobokova K, 2009, PROG OCEANOGR, V82, P265, DOI 10.1016/j.pocean.2009.07.006; Kosobokova KN, 2010, DEEP-SEA RES PT II, V57, P96, DOI 10.1016/j.dsr2.2009.08.009; Krumhansl KA, 2018, PROG OCEANOGR, V162, P202, DOI 10.1016/j.pocean.2018.02.018; Lane PVZ, 2008, J MARINE SYST, V70, P97, DOI 10.1016/j.jmarsys.2007.04.001; Langbehn TJ, 2017, GLOBAL CHANGE BIOL, V23, P5318, DOI 10.1111/gcb.13797; Larsen JN, 2014, CLIMATE CHANGE 2014: IMPACTS, ADAPTATION, AND VULNERABILITY, PT B: REGIONAL ASPECTS, P1567; Lee RF, 2006, MAR ECOL PROG SER, V307, P273, DOI 10.3354/meps307273; Lim E., 2011, NGDC43 NOAA NESDIS M, V22; Maps F, 2014, J PLANKTON RES, V36, P18, DOI 10.1093/plankt/fbt100; Nelson RJ, 2009, MAR ECOL PROG SER, V381, P129, DOI 10.3354/meps07940; NICHOLS JH, 1991, J PLANKTON RES, V13, P661, DOI 10.1093/plankt/13.3.661; Olli K, 2007, PROG OCEANOGR, V72, P84, DOI 10.1016/j.pocean.2006.08.002; Plourde S, 2003, MAR ECOL PROG SER, V255, P219, DOI 10.3354/meps255219; R Core Team, 2016, R LANG ENV STAT COMP; Ringuette M, 2002, DEEP-SEA RES PT II, V49, P5081, DOI 10.1016/S0967-0645(02)00179-0; Rutzen I., 2017, THESIS; Sainmont J, 2014, AM NAT, V184, P466, DOI 10.1086/677926; Slagstad D., 2015, FRONT MAR SCI, V2, DOI [10.3389/fmars.2015.00085, DOI 10.3389/FMARS.2015.00085, 10. 3389/fmars. 2015. 00085]; Soreide JE, 2008, DEEP-SEA RES PT II, V55, P2225, DOI 10.1016/j.dsr2.2008.05.024; Stearns SC, 2000, P NATL ACAD SCI USA, V97, P3309, DOI 10.1073/pnas.060289597; Swalethorp R, 2011, MAR ECOL PROG SER, V429, P125, DOI 10.3354/meps09065; Varpe O, 2015, ICES J MAR SCI, V72, P2532, DOI 10.1093/icesjms/fsv129; Varpe O, 2012, J PLANKTON RES, V34, P267, DOI 10.1093/plankt/fbr108; Visser AW, 2017, LIMNOL OCEANOGR, V62, P1155, DOI 10.1002/lno.10492; Wassmann P, 2015, PROG OCEANOGR, V139, P42, DOI 10.1016/j.pocean.2015.06.011; Wood SN, 2006, GEN ADDITIVE MODELS; Xu ZQ, 2018, ACTA OCEANOL SIN, V37, P87, DOI 10.1007/s13131-018-1166-8; Zhang JL, 2015, DEEP-SEA RES PT II, V118, P122, DOI 10.1016/j.dsr2.2015.02.008; Zhang JL, 2014, J GEOPHYS RES-OCEANS, V119, P297, DOI 10.1002/2013JC009301; Zhang JL, 2010, J GEOPHYS RES-OCEANS, V115, DOI 10.1029/2009JC005387; Zhang JL, 2003, MON WEATHER REV, V131, P845, DOI 10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2 63 0 0 9 9 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1354-1013 1365-2486 GLOBAL CHANGE BIOL Glob. Change Biol. NOV 2018 24 11 5426 5439 10.1111/gcb.14419 14 Biodiversity Conservation; Ecology; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology GX5CX WOS:000447760300033 30099832 2018-11-22 J Keesing, JK Keesing, John K. Rate of natural mortality in the sea star Archaster angulatus (Echinodermata: Asteroidea) JOURNAL OF THE MARINE BIOLOGICAL ASSOCIATION OF THE UNITED KINGDOM English Article Echinoderm; asteroid; growth; natural mortality; longevity ACANTHASTER-PLANCI L; OF-THORNS STARFISH; TYPICUS ECHINODERMATA; POPULATION-DYNAMICS; GROWTH-PARAMETERS; SIZE; ECHINOIDEA; MATURATION; ABUNDANCE; HISTORY The population size structure from a total of 876 individuals, together with published values of growth rate, maximum size and size at age were used to estimate an instantaneous rate of natural mortality (M) of 0.46-0.59 year(-1) in a population of the sea star Archaster angulatus from south-western Australia. Peak abundance (17%) of all animals sampled was 105-109 mm arm radius (means of 4.2-4.8 years of age) and only one per cent of sea stars are predicted to live beyond 8 years in the population studied. There are few comparable studies on sea stars but when compared with rates of natural mortality in other echinoderms (sea urchins), A. angulatus is intermediate among species which exhibit the extremes of life history strategies, that is, those which grow very rapidly and may live just two years or less and those with very slow growth rates and which may live for decades. [Keesing, John K.] CSIRO Oceans & Atmosphere, M097,35 Stirling Highway, Crawley 6009, Australia; [Keesing, John K.] Univ Western Australia, Oceans Inst, Indian Ocean Marine Res Ctr, M097,35 Stirling Highway, Crawley 6009, Australia Keesing, JK (reprint author), CSIRO Oceans & Atmosphere, M097,35 Stirling Highway, Crawley 6009, Australia.; Keesing, JK (reprint author), Univ Western Australia, Oceans Inst, Indian Ocean Marine Res Ctr, M097,35 Stirling Highway, Crawley 6009, Australia. john.keesing@csiro.au Western Australian Marine Sciences Institution (WAMSI) This study was funded in part by the Western Australian Marine Sciences Institution (WAMSI). BIRKELAND C, 1989, AM SCI, V77, P154; Bos AR, 2008, MAR BIOL, V156, P55, DOI 10.1007/s00227-008-1064-2; Bos AR, 2013, INVERTEBR REPROD DEV, V57, P113, DOI 10.1080/07924259.2012.689264; Bos AR, 2011, MAR BIOL, V158, P639, DOI 10.1007/s00227-010-1588-0; Boschma H., 1924, ZOOL ANZ, V58, P283; BREY T, 1991, ANTARCT SCI, V3, P251; Byrne Maria, 2013, P174; Clark A.M., 1971, MONOGRAPH SHALLOW WA; Clemente L. S., 1949, Natural and Applied Science Bulletin, V9, P297; Cockburn Sound Management Council, 2009, STAT COCKB SOUND 200; Cockburn Sound Management Council, 2010, STAT COCKB SOUND 201; Cockburn Sound Management Council, 2011, STAT COCKB SOUND 201; Cockburn Sound Management Council, 2012, STAT COCKB SOUND 201; Cockburn Sound Management Council, 2008, STAT COCKB SOUND 200; Doherty P.J., 1988, P131; Bacolod P.T., 1986, Philippine Scientist, V23, P1; EBERT TA, 1993, MAR BIOL, V117, P79, DOI 10.1007/BF00346428; EBERT TA, 1982, ECOL MONOGR, V52, P353, DOI 10.2307/2937351; EBERT TA, 1973, OECOLOGIA, V11, P281, DOI 10.1007/BF01882785; EBERT TA, 1975, AM ZOOL, V15, P755; Ebert TA, 2013, DEV AQUAC FISH SCI, V38, P83, DOI 10.1016/B978-0-12-396491-5.00007-1; Endean R., 1973, P389; FREIRE CA, 1992, MAR BIOL, V112, P625, DOI 10.1007/BF00346180; Galstoff P.S., 1939, B US BUR FISH, V49, P73; Jorgensen C, 2013, J SEA RES, V75, P8, DOI 10.1016/j.seares.2012.04.003; Keesing JK, 1996, OCEANOL ACTA, V19, P441; KEESING JK, 1992, MAR ECOL PROG SER, V85, P107, DOI 10.3354/meps085107; Keesing JK, 2017, INVERTEBR REPROD DEV, V61, P119, DOI 10.1080/07924259.2017.1287782; Keesing JK, 2011, MAR BIOL, V158, P1163, DOI 10.1007/s00227-011-1638-2; King M., 1995, FISHERIES BIOL ASSES; KOMATSU M, 1983, ANNOT ZOOL JAPON, V56, P187; Lawrence JM, 2011, J MAR BIOL ASSOC UK, V91, P1577, DOI 10.1017/S0025315410000871; Lawrence J.M., 2013, STARFISH BIOL ECOLOG; Lawrence JM, 1991, ECHINODERM RES, V1992, P39; LUCAS JS, 1984, J EXP MAR BIOL ECOL, V79, P129, DOI 10.1016/0022-0981(84)90214-4; Meretta PE, 2016, MAR ECOL-EVOL PERSP, V37, P1423, DOI 10.1111/maec.12359; MUKAI H, 1986, B MAR SCI, V38, P366; NOJIMA S, 1979, Publications from the Amakusa Marine Biological Laboratory Kyushu University, V5, P45; OHSHIMA HIROSHI, 1934, PROC IMP ACAD [TOKYO], V10, P180; OHSHIMA HIROSHI, 1934, PROC IMP ACAD [TOKYO], V10, P125; PAULY D, 1980, J CONSEIL, V39, P175; Regalado JM, 2010, SCI DILIMAN, V22, P41; Rose TH, 2012, OCEAN SCI, V8, P545, DOI 10.5194/os-8-545-2012; RUN JQ, 1988, MAR BIOL, V99, P247, DOI 10.1007/BF00391987; Russell MP, 1998, OPHELIA, V48, P137, DOI 10.1080/00785236.1998.10428681; SLOAN NA, 1981, J NAT HIST, V15, P407, DOI 10.1080/00222938100770311; YAMAGUCHI M, 1977, PAC SCI, V31, P13; YAMAGUCHI M, 1975, OECOLOGIA, V20, P321, DOI 10.1007/BF00345522; YAMAGUCHI M, 1974, PAC SCI, V28, P123; Yamaguchi M., 1976, MAR BIOL, V39, P57; Yeo S, 2015, INVERTEBR REPROD DEV, V59, P141, DOI 10.1080/07924259.2015.1047040; ZANN L, 1990, CORAL REEFS, V9, P135, DOI 10.1007/BF00258225 52 0 0 3 3 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0025-3154 1469-7769 J MAR BIOL ASSOC UK J. Mar. Biol. Assoc. U.K. NOV 2018 98 7 1689 1693 10.1017/S0025315417001126 5 Marine & Freshwater Biology Marine & Freshwater Biology GW9NA WOS:000447314500016 2018-11-22 J Ye, F; Ma, MH; Op den Camp, HJM; Chatzinotas, A; Li, L; Lv, MQ; Wu, SJ; Wang, Y Ye, Fei; Ma, Mao-Hua; Op den Camp, Huub J. M.; Chatzinotas, Antonis; Li, Lei; Lv, Ming-Quan; Wu, Sheng-Jun; Wang, Yu Different Recovery Processes of Soil Ammonia Oxidizers from Flooding Disturbance MICROBIAL ECOLOGY English Article Archaea; Ammonia-oxidizing communities; Response; Resistance; Resilience; Riparian zone MICROBIAL COMMUNITY; AGRICULTURAL SOIL; BACTERIA RATHER; REGIME SHIFTS; ARCHAEA; RESILIENCE; DIVERSITY; RESISTANCE; MICROORGANISMS; AMOA Understanding how microorganisms respond to environmental disturbance is one of the key focuses in microbial ecology. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are responsible for ammonia oxidation which is a crucial step in the nitrogen cycle. Although the physiology, distribution, and activity of AOA and AOB in soil have been extensively investigated, their recovery from a natural disturbance remains largely unknown. To assess the recovery capacities, including resistance and resilience, of AOA and AOB, soil samples were taken from a reservoir riparian zone which experienced periodically water flooding. The samples were classified into three groups (flooding, recovery, and control) for a high-throughput sequencing and quantitative PCR analysis. We used a relative quantitative index of both the resistance (RS) and resilience (RL) to assess the variation of gene abundance, alpha-diversity, and community composition. The AOA generally demonstrated a better recovery capability after the flooding disturbance compared to AOB. In particular, AOA were more resilient after the flooding disturbance. Taxa within the AOA and AOB showed different RS and RL values, with the most abundant taxa showing in general the highest RS indices. Soil NH4+ and Fe2+/Fe3+ were the main variables controlling the key taxa of AOA and AOB and probably influenced the resistance and resilience properties of AOA and AOB communities. The distinct mechanisms of AOA and AOB in maintaining community stability against the flooding disturbance might be linked to the different life-history strategies: the AOA community was more likely to represent r-strategists in contrast to the AOB community following a K-life strategy. Our results indicated that the AOA may play a vital role in ammonia oxidation in a fluctuating habitat and contribute to the stability of riparian ecosystem. [Ye, Fei; Ma, Mao-Hua; Lv, Ming-Quan; Wu, Sheng-Jun; Wang, Yu] Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing 400714, Peoples R China; [Ye, Fei; Lv, Ming-Quan] Univ Chinese Acad Sci, Beijing 100049, Peoples R China; [Op den Camp, Huub J. M.] Radboud Univ Nijmegen, IWWR, Dept Microbiol, NL-6525 AJ Nijmegen, Netherlands; [Chatzinotas, Antonis] UFZ Helmholtz Ctr Environm Res, Dept Environm Microbiol, D-04318 Leipzig, Germany; [Chatzinotas, Antonis] Ctr Integrat Biodivers Res iDiv, D-04103 Leipzig, Germany; [Li, Lei] Beijing Acad Sci & Technol, Beijing 100048, Peoples R China Wu, SJ; Wang, Y (reprint author), Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing 400714, Peoples R China. wsj@cigit.ac.cn; wangyu@cigit.ac.cn Wang, Yu/0000-0001-6390-8444 National Natural Science Foundation of China [41303053, 41571497, 41301540] This work was supported by the National Natural Science Foundation of China [41303053, 41571497, 41301540]. We are grateful to the Kaizhou Science & Technology Commission for the assistance in sampling and background data collection. Allison SD, 2008, P NATL ACAD SCI USA, V105, P11512, DOI 10.1073/pnas.0801925105; Bao S.D., 2000, CHEM ANAL AGR SOIL; Bao YH, 2015, EARTH-SCI REV, V150, P14, DOI 10.1016/j.earscirev.2015.07.005; Bapiri A, 2010, MICROB ECOL, V60, P419, DOI 10.1007/s00248-010-9723-5; BENDER EA, 1984, ECOLOGY, V65, P1, DOI 10.2307/1939452; Chen J, 2017, FRONT MICROBIOL, V8, DOI 10.3389/fmicb.2017.01384; Chen YL, 2013, APPL SOIL ECOL, V68, P36, DOI 10.1016/j.apsoil.2013.03.006; China Three Gorges Corporation, 2017, BRIEF INTR 3 GORG CO; Collie JS, 2004, PROG OCEANOGR, V60, P281, DOI 10.1016/j.pocean.2004.02.013; CONNELL JH, 1978, SCIENCE, V199, P1302, DOI 10.1126/science.199.4335.1302; de la Torre JR, 2008, ENVIRON MICROBIOL, V10, P810, DOI 10.1111/j.1462-2920.2007.01506.x; de Vries FT, 2013, FRONT MICROBIOL, V4, DOI 10.3389/fmicb.2013.00265; de Vries FT, 2012, NAT CLIM CHANGE, V2, P276, DOI [10.1038/nclimate1368, 10.1038/NCLIMATE1368]; DEAN WE, 1974, J SEDIMENT PETROL, V44, P242; DELEIJ FAAM, 1994, MICROBIAL ECOL, V27, P81, DOI 10.1007/BF00170116; Di HJ, 2009, NAT GEOSCI, V2, P621, DOI 10.1038/NGEO613; Di HJ, 2010, FEMS MICROBIOL ECOL, V72, P386, DOI 10.1111/j.1574-6941.2010.00861.x; Fenchel T, 2004, BIOSCIENCE, V54, P777, DOI 10.1641/0006-3568(2004)054[0777:TUOSSP]2.0.CO;2; Fetzer I, 2015, P NATL ACAD SCI USA, V112, P14888, DOI 10.1073/pnas.1505587112; Folke C, 2004, ANNU REV ECOL EVOL S, V35, P557, DOI 10.1146/annurev.ecolsys.35.021103.105711; Francis CA, 2005, P NATL ACAD SCI USA, V102, P14683, DOI 10.1073/pnas.0506625102; Griffiths BS, 2013, FEMS MICROBIOL REV, V37, P112, DOI 10.1111/j.1574-6976.2012.00343.x; Griffiths BS, 2000, OIKOS, V90, P279, DOI 10.1034/j.1600-0706.2000.900208.x; Hatzenpichler R, 2008, P NATL ACAD SCI USA, V105, P2134, DOI 10.1073/pnas.0708857105; He J, 2007, ENVIRON MICROBIOL, V9, P2364, DOI 10.1111/j.1462-2920.2007.01358.x; Jia ZJ, 2009, ENVIRON MICROBIOL, V11, P1658, DOI 10.1111/j.1462-2920.2009.01891.x; Karakoc C, 2017, BMC ECOL, V17, DOI 10.1186/s12898-017-0123-2; Ke XB, 2012, FEMS MICROBIOL ECOL, V80, P87, DOI 10.1111/j.1574-6941.2011.01271.x; Konneke M, 2005, NATURE, V437, P543, DOI 10.1038/nature03911; Langer U, 2004, J PLANT NUTR SOIL SC, V167, P267, DOI 10.1002/jpln.200421362; Lee SH, 2017, ISME J, V11, P1447, DOI 10.1038/ismej.2017.1; Leininger S, 2006, NATURE, V442, P806, DOI 10.1038/nature04983; Lennon JT, 2012, ECOLOGY, V93, P1867, DOI 10.1890/11-1745.1; Liu SP, 2015, APPL MICROBIOL BIOT, V99, P2715, DOI 10.1007/s00253-014-6307-1; Martens-Habbena W, 2009, NATURE, V461, P976, DOI 10.1038/nature08465; Meyer AF, 2004, APPL ENVIRON MICROB, V70, P483, DOI 10.1128/AEM.70.1.483-489.2004; Ng EL, 2015, SOIL BIOL BIOCHEM, V81, P58, DOI 10.1016/j.soilbio.2014.10.028; Nicol GW, 2006, TRENDS MICROBIOL, V14, P207, DOI 10.1016/j.tim.2006.03.004; Norton JM, 2002, ARCH MICROBIOL, V177, P139, DOI 10.1007/s00203-001-0369-z; Offre P, 2009, FEMS MICROBIOL ECOL, V70, P99, DOI 10.1111/j.1574-6941.2009.00725.x; Orwin KH, 2004, SOIL BIOL BIOCHEM, V36, P1907, DOI 10.1016/j.soilbio.2004.04.036; Ouyang Y, 2016, SOIL BIOL BIOCHEM, V96, P4, DOI 10.1016/j.soilbio.2016.01.012; Pachauri RK, 2007, CLIMATE CHANGE 2007, P104; Paine RT, 1998, ECOSYSTEMS, V1, P535, DOI 10.1007/s100219900049; Pester M, 2012, ENVIRON MICROBIOL, V14, P525, DOI 10.1111/j.1462-2920.2011.02666.x; PIMM SL, 1984, NATURE, V307, P321, DOI 10.1038/307321a0; Purkhold U, 2000, APPL ENVIRON MICROB, V66, P5368, DOI 10.1128/AEM.66.12.5368-5382.2000; Rotthauwe JH, 1997, APPL ENVIRON MICROB, V63, P4704; RYKIEL EJ, 1985, AUST J ECOL, V10, P361, DOI 10.1111/j.1442-9993.1985.tb00897.x; Santoro AE, 2008, ENVIRON MICROBIOL, V10, P1068, DOI 10.1111/j.1462-2920.2007.01547.x; Shade A, 2012, FRONT MICROBIOL, V3, DOI 10.3389/fmicb.2012.00417; STUMM W, 1992, GEOCHIM COSMOCHIM AC, V56, P3233, DOI 10.1016/0016-7037(92)90301-X; Tamura K, 2011, MOL BIOL EVOL, V28, P2731, DOI 10.1093/molbev/msr121; Thion C, 2014, FEMS MICROBIOL ECOL, V90, P380, DOI 10.1111/1574-6941.12395; Verhamme DT, 2011, ISME J, V5, P1067, DOI 10.1038/ismej.2010.191; Wang SY, 2011, APPL MICROBIOL BIOT, V90, P779, DOI 10.1007/s00253-011-3090-0; Wang YP, 2013, APPL MICROBIOL BIOT, V97, P6883, DOI 10.1007/s00253-013-4859-0; Wen ZF, 2017, ECOL INDIC, V83, P441, DOI 10.1016/j.2017.07.048; Xiang XJ, 2017, SOIL BIOL BIOCHEM, V107, P218, DOI 10.1016/j.soilbio.2017.01.012; Xie Z, 2014, SOIL BIOL BIOCHEM, V77, P89, DOI 10.1016/j.soilbio.2014.06.024; Yang F, 2012, ACTA ECOL SIN, V32, P89; Ye C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0121210; You J, 2009, WATER RES, V43, P1801, DOI 10.1016/j.watres.2009.01.016; Zheng GD, 2001, APPL GEOCHEM, V16, P1201 64 0 0 11 11 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0095-3628 1432-184X MICROB ECOL Microb. Ecol. NOV 2018 76 4 1041 1052 10.1007/s00248-018-1183-3 12 Ecology; Marine & Freshwater Biology; Microbiology Environmental Sciences & Ecology; Marine & Freshwater Biology; Microbiology GX0II WOS:000447393200017 29644407 2018-11-22 J Olsen, Z; McDonald, D; Bumguardner, B Olsen, Zachary; McDonald, Dusty; Bumguardner, Britt Intraspecific variation in life history strategies and implications for management: A case study of black drum (Pogonias cromis) in the Upper Laguna Madre, Texas USA FISHERIES RESEARCH English Article Life history; Age and growth; Reproduction; Black drum (Pogonias cromis); Hypersalinity GULF-OF-MEXICO; POPULATION REGULATION; REPRODUCTIVE-BIOLOGY; SELECTION; SALINITY; PATTERNS; IMPACTS; GROWTH; AGE Multivariate evaluation of life history strategies (LHSs) for fish species have a number of implications for population dynamics and viable management strategies. Here we examined intraspecific variation in LHSs among black drum (Pogonias cromis) populations, with focus on a population inhabiting the Upper Laguna Madre, Texas (a hypersaline estuary). Age, growth, and reproduction for this population were analyzed in the context of previously published life history data for this and other black drum populations along the western Atlantic and Gulf of Mexico coasts. Black drum from the Upper Laguna Madre were found to mature earlier than other populations. When analyzed in the context of other life history variables (fecundity, maximum age, maximum size, and growth rate) and compared to other populations of black drum throughout their range, LHS in the Upper Laguna Madre population was found to diverge away from the typical periodic LHS of sciaenids and towards the opportunistic side of the multivariate LHS spectrum. This variation in LHS is often indicative of populations existing in habitats that are productive yet subject to frequent and intense disturbance. Here, this disturbance is attributed to hypersalinity that has historically characterized the Upper Laguna Madre. This variation in LHS is further supported by observed population dynamics for this region presented in past work and has a number of potential management implications for this population. [Olsen, Zachary] Texas Parks & Wildlife Dept, Coastal Fisheries Div, Upper Laguna Madre Field Off, 6300 Ocean Dr, Corpus Christi, TX 78412 USA; [McDonald, Dusty] Texas Parks & Wildlife Dept, Inland Fisheries Div, Corpus Christi Fisheries Management Dist, Box 116, Mathis, TX 78368 USA; [Bumguardner, Britt] Texas Parks & Wildlife Dept, Perry R Bass Marine Fisheries Res Stn, 3864 FM 3280, Palacios, TX 77465 USA Olsen, Z (reprint author), Texas Parks & Wildlife Dept, Coastal Fisheries Div, Upper Laguna Madre Field Off, 6300 Ocean Dr, Corpus Christi, TX 78412 USA. zachary.olsen@tpwd.texas.gov; dusty.mcdonald@tpwd.texas.gov Ajemian MJ, 2018, ESTUAR COAST, V41, P1410, DOI 10.1007/s12237-017-0363-6; BECKMAN DW, 1990, T AM FISH SOC, V119, P537, DOI 10.1577/1548-8659(1990)119<0537:AAGOBD>2.3.CO;2; Breuer J.P., 1957, ECOLOGICAL SURVEY BA, P134; BROWNPETERSON N, 1988, FISH B-NOAA, V86, P373; Bumguardner B.W., 1996, F36R US DEP INT FISH; Clarke KR, 2015, PRIMER V7 USER MANUA; Collier A., 1950, INTRO HYDROGRAPHY TI, V1, P121; Fox J., 2011, R COMPANION APPL REG; Froese R., 2018, FISHBASE; Haddon M, 2001, MODELLING QUANTITATI; Hoese H.D., 1998, FISHEGULF MEXICO; Jones CM, 1998, FISH B-NOAA, V96, P451; Karel W.J., 1996, F36R US DEP INT FISH; King JR, 2003, FISHERIES MANAG ECOL, V10, P249, DOI 10.1046/j.1365-2400.2003.00359.x; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; MAC ARTHUR ROBERT H., 1967; Macchi GJ, 2002, FISH RES, V59, P83, DOI 10.1016/S0165-7836(01)00410-6; Martinez-Andrade F., 2015, MARINE RESOURCE MONI; Martinez-Andrade F., 2005, MANAGEMENT DATA SERI, V232; Montagna PA, 2002, ESTUARIES, V25, P1436, DOI 10.1007/BF02692237; MURPHY M D, 1989, Northeast Gulf Science, V10, P127; Murphy MD, 1998, FISH B-NOAA, V96, P382; Music J.L., 1984, GEORGIA DEP NATURAL, V38; NIELAND DL, 1993, T AM FISH SOC, V122, P318, DOI 10.1577/1548-8659(1993)122<0318:RBAAVO>2.3.CO;2; Ogle D. H., 2015, FSA FISHERIES STOCK; Olsen Zachary T., 2016, Texas Journal of Science, V68, P79; Olsen Zachary T., 2014, Gulf of Mexico Science, V32, P60; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; R Core Team, 2014, R LANG ENV STAT COMP; SIMMONS ERNEST G., 1962, PUBL INST MAR SCI, V8, P184; Tolan JM, 2007, ESTUAR COAST SHELF S, V72, P247, DOI 10.1016/j.ecss.2006.10.018; Tunnell J. W., 2002, LAGUNA MADRE TEXAS T; Van Diggelen AD, 2016, ESTUAR COAST, V39, P967, DOI 10.1007/s12237-015-0058-9; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242 35 0 0 4 4 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0165-7836 1872-6763 FISH RES Fish Res. NOV 2018 207 55 62 10.1016/j.fishres.2018.06.009 8 Fisheries Fisheries GQ9BC WOS:000442059900007 2018-11-22 J Nettersheim, J; Gerlach, G; Herpertz, S; Abed, R; Figueredo, AJ; Brune, M Nettersheim, Johanna; Gerlach, Gabriele; Herpertz, Stephan; Abed, Riadh; Figueredo, Aurelio J.; Bruene, Martin Evolutionary Psychology of Eating Disorders: An Explorative Study in Patients With Anorexia Nervosa and Bulimia Nervosa FRONTIERS IN PSYCHOLOGY English Article eating disorders; anorexia nervosa; bulimia; life history strategy; executive functioning; mate value; intrasexual competition LIFE-HISTORY THEORY; TO-HIP RATIO; SEXUAL SELECTION; EXECUTIVE FUNCTION; EXAMINATION-QUESTIONNAIRE; MATE PREFERENCES; CLINICAL-SAMPLE; PERSONALITY; STRATEGY; BEHAVIOR Prior research on non-clinical samples has lent support to the sexual competition hypothesis for eating disorders (SCH) where the drive for thinness can be seen as an originally adaptive strategy for women to preserve a nubile female shape, which, when driven to an extreme, may cause eating disorders. Restrictive versus impulsive eating behavior may also be relevant for individual differences in allocation of resources to either mating effort or somatic growth, reflected in an evolutionary concept called "Life History Theory" (LHT). In this study, we aimed to test the SCH and predictions from LHT in female patients with clinically manifest eating disorders. Accordingly, 20 women diagnosed with anorexia nervosa (AN), 20 with bulimia nervosa (BN), and 29 age-matched controls completed a package of questionnaires comprising measures for behavioral features and attitudes related to eating behavior, intrasexual competition, life history strategy, executive functioning and mating effort. In line with predictions, we found that relatively faster life history strategies were associated with poorer executive functioning, lower perceived own mate value, greater intrasexual competition for mates but not for status, and, in part, with greater disordered eating behavior. Comparisons between AN and BN revealed that individuals with BN tended to pursue a "fast" life history strategy, whereas people with AN were more similar to controls in pursuing a "slow" life history strategy. Moreover, intrasexual competition for mates was significantly predicted by the severity of disordered eating behavior. Together, our findings lend partial support to the SCH for eating disorders. We discuss the implications and limitations of our study findings. [Nettersheim, Johanna; Bruene, Martin] Ruhr Univ Bochum, LWL Univ Hosp Bochum, Dept Psychiat Psychotherapy & Prevent Med, Div Cognit Neuropsychiat, Bochum, Germany; [Gerlach, Gabriele; Herpertz, Stephan] Ruhr Univ Bochum, LWL Univ Hosp Bochum, Dept Psychosomat Med, Bochum, Germany; [Abed, Riadh] Minist Justice, Mental Hlth Tribunals, Sheffield, S Yorkshire, England; [Figueredo, Aurelio J.] Univ Arizona, Dept Psychol, Coll Sci, Sch Mind Brain & Behav, Tucson, AZ 85721 USA Brune, M (reprint author), Ruhr Univ Bochum, LWL Univ Hosp Bochum, Dept Psychiat Psychotherapy & Prevent Med, Div Cognit Neuropsychiat, Bochum, Germany. martin.bruene@rub.de Aardoom JJ, 2012, EAT BEHAV, V13, P305, DOI 10.1016/j.eatbeh.2012.09.002; Abed R, 2012, SCI WORLD J, DOI 10.1100/2012/290813; Abed RT, 1998, BRIT J MED PSYCHOL, V71, P525, DOI 10.1111/j.2044-8341.1998.tb01007.x; American Psychiatric Association, 2013, DIAGN STAT MAN MENT, DOI [10.1176/appi.books.9780890425596, DOI 10.1176/APPI.BOOKS.9780890425596]; Apostolou M, 2007, EVOL HUM BEHAV, V28, P403, DOI 10.1016/j.evolhumbehav.2007.05.007; Arnocky S, 2016, ENCY EVOLUTIONARY PS, P1; Berg KC, 2012, INT J EAT DISORDER, V45, P428, DOI 10.1002/eat.20931; Bovet J, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0123284; Brooks SJ, 2011, BMC PSYCHIATRY, V11, DOI 10.1186/1471-244X-11-179; Bruene Martin, 2016, Evolution Medicine and Public Health, P52, DOI 10.1093/emph/eow002; Bulik CM, 2016, CURR OPIN PSYCHIATR, V29, P383, DOI 10.1097/YCO.0000000000000275; Buss D. M., 1987, SOCIOBIOLOGY PSYCHOL, P335; BUSS DM, 1989, BEHAV BRAIN SCI, V12, P1, DOI 10.1017/S0140525X00023992; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; Cassin SE, 2005, CLIN PSYCHOL REV, V25, P895, DOI 10.1016/j.cpr.2005.04.012; Ciszewski S, 2014, EAT BEHAV, V15, P175, DOI 10.1016/j.eatbeh.2014.01.004; Condit V K, 1990, Hum Nat, V1, P391, DOI 10.1007/BF02734052; COOPER Z, 1989, BRIT J PSYCHIAT, V154, P807, DOI 10.1192/bjp.154.6.807; CRAWFORD CB, 1989, J COMP PSYCHOL, V103, P4, DOI 10.1037/0735-7036.103.1.4; Del Giudice M., 2018, EVOLUTIONARY PSYCHOP, DOI [10.1093/med-psych/9780190246846.001.0001, DOI 10.1093/MED-PSYCH/9780190246846.001.0001]; Del Giudice M, 2014, PSYCHOL INQ, V25, P261, DOI 10.1080/1047840X.2014.884918; Dickemann M., 1981, NATURAL SELECTION SO, P439; Eddy KT, 2008, AM J PSYCHIAT, V165, P245, DOI 10.1176/appi.ajp.2007.07060951; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Erskine HE, 2016, CURR OPIN PSYCHIATR, V29, P346, DOI 10.1097/YCO.0000000000000276; Faer LM, 2005, PSYCHOL PSYCHOTHER-T, V78, P397, DOI 10.1348/147608305X42929; Fairburn CG, 2008, COGNITIVE BEHAV THER; Ferguson CJ, 2011, REV GEN PSYCHOL, V15, P11, DOI 10.1037/a0022607; Fichter MM, 2016, INT J EAT DISORDER, V49, P391, DOI 10.1002/eat.22501; Figueredo A. J, 2016, EVOL PSYCHOL SCI, V3, P40, DOI [10.1007/s40806-016-0073-5, DOI 10.1007/S40806-016-0073-5]; Figueredo A. J., 2012, TEMAS PSICOLOGIA, V20, P87; Figueredo A. J., 2007, ARIZONA LIFE HIST BA; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Flatt T, 2011, MECH LIFE HIST EVOLU, DOI [10.1093/acprof:oso/9780199568765.001.0001, DOI 10.1093/ACPROF:OSO/9780199568765.001.0001]; Fujisawa TX, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0128548; Gatward N, 2007, EUR EAT DISORD REV, V15, P1, DOI 10.1002/erv.718; Geary DC, 2002, ADV CHILD DEV BEHAV, V30, P41, DOI 10.1016/S0065-2407(02)80039-8; Gioia GA, 2002, CHILD NEUROPSYCHOL, V8, P249, DOI 10.1076/chin.8.4.249.13513; Gladden PR, 2008, EVOL HUM BEHAV, V29, P319, DOI 10.1016/j.evolhumbehav.2008.03.003; Gordon R. A., 1990, ANOREXIA BULIMIA ANA; Gorsuch R. L, 1991, ANN C AM EV ASS C CH; Gual P, 2002, INT J EAT DISORDER, V31, P261, DOI 10.1002/eat.10040; Guisinger S, 2003, PSYCHOL REV, V110, P745, DOI 10.1037/0033-295X.110.4.745; Harris EC, 1998, BRIT J PSYCHIAT, V173, P11, DOI 10.1192/bjp.173.1.11; Hilbert A., 2006, EATING DISORDER EXAM; Hoek HW, 2003, INT J EAT DISORDER, V34, P383, DOI 10.1002/eat.10222; Hudson JI, 2007, BIOL PSYCHIAT, V61, P348, DOI 10.1016/j.biopsych.2006.03.040; Jacobi C., 2005, ARITH 2005, P59; Jauregui-Lobera I, 2011, NEUROPSYCH DIS TREAT, V7, P577, DOI 10.2147/NDT.S25186; Jeschke JM, 2009, EVOL ECOL, V23, P867, DOI 10.1007/s10682-008-9276-y; Juda MN, 2004, EVOL HUM BEHAV, V25, P200, DOI 10.1016/j.evolhumbehav.2004.02.001; Kaltiala-Heino R, 2001, J ADOLESCENT HEALTH, V28, P346, DOI 10.1016/S1054-139X(01)00195-1; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Katzman MA, 2004, CULT MED PSYCHIAT, V28, P463, DOI 10.1007/s11013-004-1065-7; Kaye W, 2008, PHYSIOL BEHAV, V94, P121, DOI 10.1016/j.physbeh.2007.11.037; Keel PK, 2010, INT J EAT DISORDER, V43, P195, DOI 10.1002/eat.20810; Keller B, 2013, ARCH PSYCHOL RELIG, V35, P71, DOI 10.1163/15736121-12341254; Kirsner BR, 2003, J AFFECT DISORDERS, V75, P131, DOI 10.1016/S0165-0327(02)00048-4; Li NP, 2010, EVOL HUM BEHAV, V31, P365, DOI 10.1016/j.evolhumbehav.2010.05.004; Li NP, 2011, PERS INDIV DIFFER, V50, P291, DOI 10.1016/j.paid.2010.10.005; Margraf J, 1994, DIPS HDB, DOI [10.1007/978-3-662-06753-6, DOI 10.1007/978-3-662-06753-6]; Mealey L, 2000, HUM NATURE-INT BIOS, V11, P105, DOI 10.1007/s12110-000-1005-3; Monzon BM, 2017, EUR J NEUROSCI, V46, P2297, DOI 10.1111/ejn.13659; Nesse RM, 2017, BEHAV BRAIN SCI, V40, DOI 10.1017/S0140525X16001503; Olderbak S, 2014, PERS INDIV DIFFER, V58, P82, DOI 10.1016/j.paid.2013.10.012; Pike KM, 2014, CURR OPIN PSYCHIATR, V27, P436, DOI 10.1097/YCO.0000000000000100; Puts DA, 2010, EVOL HUM BEHAV, V31, P157, DOI 10.1016/j.evolhumbehav.2010.02.005; Salmon C, 2008, HUM NATURE-INT BIOS, V19, P103, DOI 10.1007/s12110-008-9030-8; Salmon C, 2009, EVOL PSYCHOL-US, V7, P585; Seitz J, 2016, J NEURAL TRANSM, V123, P949, DOI 10.1007/s00702-016-1567-9; Shackelford TK, 2002, COGNITION EMOTION, V16, P299, DOI 10.1080/02699930143000202; SINGH D, 1993, J PERS SOC PSYCHOL, V65, P293, DOI 10.1037/0022-3514.65.2.293; SINGH D, 1994, INT J EAT DISORDER, V16, P283, DOI 10.1002/1098-108X(199411)16:3<283::AID-EAT2260160309>3.0.CO;2-Q; SINGH D, 1994, INT J OBESITY, V18, P731; Smith AR, 2011, J SOC CLIN PSYCHOL, V30, P531, DOI 10.1521/jscp.2011.30.5.531; Stearns S., 1992, EVOLUTION LIFE HIST; SURBEY MK, 1987, ETHOL SOCIOBIOL, V8, pS47; SYMON D, 1995, CHIC SEX HIST SOC, P80; Symons D, 1979, EVOLUTION HUMAN SEXU; Tchanturia K, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0028331; Vaillancourt T, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2013.0080; VINING DR, 1986, BEHAV BRAIN SCI, V9, P167, DOI 10.1017/S0140525X00021968; VOLAND E, 1989, ETHOL SOCIOBIOL, V10, P223, DOI 10.1016/0162-3095(89)90001-0; Volpe U, 2016, PSYCHIAT RES, V238, P225, DOI 10.1016/j.psychres.2016.02.048; WASSER SK, 1983, Q REV BIOL, V58, P513, DOI 10.1086/413545; Waxman SE, 2009, EUR EAT DISORD REV, V17, P408, DOI 10.1002/erv.952; Wenner CJ, 2013, INTELLIGENCE, V41, P102, DOI 10.1016/j.intell.2012.11.004; World Health Organization, 1993, ICD 10 CLASS MENT BE; Yilmaz Zeynep, 2015, Adv Genomics Genet, V5, P131 90 0 0 4 4 FRONTIERS MEDIA SA LAUSANNE AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND 1664-1078 FRONT PSYCHOL Front. Psychol. OCT 31 2018 9 2122 10.3389/fpsyg.2018.02122 12 Psychology, Multidisciplinary Psychology GY8RM WOS:000448900300001 30429818 DOAJ Gold 2018-11-22 J Altschul, DM; Hopkins, WD; Herrelko, ES; Inoue-Murayama, M; Matsuzawa, T; King, JE; Ross, SR; Weiss, A Altschul, Drew M.; Hopkins, William D.; Herrelko, Elizabeth S.; Inoue-Murayama, Miho; Matsuzawa, Tetsuro; King, James E.; Ross, Stephen R.; Weiss, Alexander Personality links with lifespan in chimpanzees ELIFE English Article PAN-TROGLODYTES PERSONALITY; REPRODUCTIVE SUCCESS; CAPTIVE CHIMPANZEES; ANIMAL PERSONALITY; ZOOLOGICAL PARKS; WILD CHIMPANZEES; 5-FACTOR MODEL; RECEPTOR GENE; EVOLUTION; DOMINANCE Life history strategies for optimizing individual fitness fall on a spectrum between maximizing reproductive efforts and maintaining physical health over time. Strategies across this spectrum are viable and different suites of personality traits evolved to support these strategies. Using data from 538 captive chimpanzees (Pan troglodytes) we tested whether any of the dimensions of chimpanzee personality - agreeableness, conscientiousness, dominance, extraversion, neuroticism, and openness - were associated with longevity, an attribute of slow life history strategies that is especially important in primates given their relatively long lives. We found that higher agreeableness was related to longevity in males, with weaker evidence suggesting that higher openness is related to longer life in females. Our results link the literature on human and nonhuman primate survival and suggest that, for males, evolution has favored the protective effects of low aggression and high quality social bonds. [Altschul, Drew M.; Weiss, Alexander] Univ Edinburgh, Sch Philosophy Psychol & Language Sci, Dept Psychol, Edinburgh, Midlothian, Scotland; [Altschul, Drew M.; Weiss, Alexander] Scottish Primate Res Grp, Edinburgh, Midlothian, Scotland; [Altschul, Drew M.] Ctr Cognit Ageing & Cognit Epidemiol, Edinburgh, Midlothian, Scotland; [Hopkins, William D.] Georgia State Univ, Neurosci Inst, Atlanta, GA 30303 USA; [Hopkins, William D.] Yerkes Natl Primate Res Ctr, Div Dev & Cognit Neurosci, Atlanta, GA USA; [Herrelko, Elizabeth S.] Smithsonian Inst, Natl Zool Pk, Washington, DC 20560 USA; [Herrelko, Elizabeth S.] Univ Stirling, Psychol Div, Stirling, Scotland; [Inoue-Murayama, Miho] Kyoto Univ, Wildlife Res Ctr, Kyoto, Japan; [Inoue-Murayama, Miho] Natl Inst Environm Studies, Wildlife Genome Collaborat Res Grp, Tsukuba, Ibaraki, Japan; [Matsuzawa, Tetsuro] Kyoto Univ, Inst Adv Study, Kyoto, Japan; [Matsuzawa, Tetsuro] Kyoto Univ, Primate Res Inst, Inuyama, Aichi, Japan; [Matsuzawa, Tetsuro] Japan Monkey Ctr, Inuyama, Aichi, Japan; [King, James E.] Univ Arizona, Dept Psychol, Tucson, AZ 85721 USA; [Ross, Stephen R.] Lincoln Pk Zoo, Lester E Fisher Ctr Study & Conservat Apes, Chicago, IL USA Altschul, DM (reprint author), Univ Edinburgh, Sch Philosophy Psychol & Language Sci, Dept Psychol, Edinburgh, Midlothian, Scotland.; Altschul, DM (reprint author), Scottish Primate Res Grp, Edinburgh, Midlothian, Scotland.; Altschul, DM (reprint author), Ctr Cognit Ageing & Cognit Epidemiol, Edinburgh, Midlothian, Scotland. dmaltschul@gmail.com Japan Society for the Promotion of Science [25118005, 25290082, D-1007]; Kyoto University Supporting program for interaction-based initiative team studies (SPIRITS); Ministry of Education, Culture, Sports, Science, and Technology [16H06283, 18310152, 21310150]; Medical Research Council [MR/K026992/1]; Daiwa Anglo-Japanese Foundation Small Grant [6515/6818]; University Of Edinburgh Development Trust Small Project Grant; National Institutes of Health Grants to the Yerkes Primate Research Center [NS-36605, NS-42867, RR 00165]; Leo S. Guthman Fund; Ministry of Education, Culture, Sports, Science, and Technology; Japan Society for the Promotion of Science Core-to-core CCSN Japan Society for the Promotion of Science Grant for Scientific Research (25118005,25290082) and Development Fund (D-1007) Miho Inoue-Murayama; Kyoto University Supporting program for interaction-based initiative team studies (SPIRITS) Miho Inoue-Murayama; Ministry of Education, Culture, Sports, Science, and Technology 16H06283 Tetsuro Matsuzawa; Medical Research Council Grant to the Centre for Cognitive Ageing and Cognitive Epidemiology (MR/K026992/1) Drew Altschul; Daiwa Anglo-Japanese Foundation Small Grant (6515/6818) Alexander Weiss; University Of Edinburgh Development Trust Small Project Grant Alexander Weiss; National Institutes of Health Grants to the Yerkes Primate Research Center (NS-36605,NS-42867,RR 00165) William Donald Hopkins; Ministry of Education, Culture, Sports, Science, and Technology Grant to Scientific Research (B) (18310152) (21310150) Miho Inoue-Murayama; Leo S. Guthman Fund Stephen Ross; Ministry of Education, Culture, Sports, Science, and Technology Leading Graduate Program PWS(U04) Tetsuro Matsuzawa; Japan Society for the Promotion of Science Core-to-core CCSN Tetsuro Matsuzawa; The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. Altschul DM, 2017, ROY SOC OPEN SCI, V4, DOI 10.1098/rsos.170169; Alvergne A, 2010, P NATL ACAD SCI USA, V107, P11745, DOI 10.1073/pnas.1001752107; Archie EA, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.1261; Benedetti A, 2004, STAT MED, V23, P3781, DOI 10.1002/sim.2073; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Blatchley BJ, 2010, COGN AFFECT BEHAV NE, V10, P414, DOI 10.3758/CABN.10.3.414; Bou-Hamad I, 2011, STAT SURV, V5, P44, DOI 10.1214/09-SS047; Brent LJN, 2017, P ROY SOC B-BIOL SCI, V284, DOI 10.1098/rspb.2017.0515; Bronikowski AM, 2011, SCIENCE, V331, P1325, DOI 10.1126/science.1201571; BUIRSKI P, 1978, ANIM BEHAV, V26, P123, DOI 10.1016/0003-3472(78)90011-8; Burnham KP, 2011, BEHAV ECOL SOCIOBIOL, V65, P23, DOI 10.1007/s00265-010-1029-6; Chapman Benjamin P, 2011, J Aging Res, V2011, P759170, DOI 10.4061/2011/759170; Cornwell W, 2017, CURR BIOL, V27, pR333, DOI 10.1016/j.cub.2017.03.049; COSTA PT, 1995, J PERS ASSESS, V64, P21, DOI 10.1207/s15327752jpa6401_2; Delgado MM, 2017, PSYCHOL BULL, V143, P823, DOI 10.1037/bul0000107; DIGMAN JM, 1990, ANNU REV PSYCHOL, V41, P417, DOI 10.1146/annurev.psych.41.1.417; Dingemanse NJ, 2005, BEHAVIOUR, V142, P1159, DOI 10.1163/156853905774539445; Dutton DM, 1997, INT J PRIMATOL, V18, P539, DOI 10.1023/A:1026311222491; ELLIS L, 1995, ETHOL SOCIOBIOL, V16, P257, DOI 10.1016/0162-3095(95)00050-U; Faraway JJ, 2016, EXTENDING LINEAR MOD, DOI [10.1201/b21296, DOI 10.1201/B21296]; Foster MW, 2009, AM J PRIMATOL, V71, P136, DOI 10.1002/ajp.20632; Freeman HD, 2013, AM J PRIMATOL, V75, P1042, DOI 10.1002/ajp.22168; Freeman HD, 2010, AM J PRIMATOL, V72, P653, DOI 10.1002/ajp.20833; Fu W, 2017, BIOSTATISTICS, V18, P352, DOI 10.1093/biostatistics/kxw047; Gale CR, 2017, PSYCHOL SCI, V28, P1345, DOI 10.1177/0956797617709813; Gilby IC, 2013, BEHAV ECOL SOCIOBIOL, V67, P373, DOI 10.1007/s00265-012-1457-6; GOLD KC, 1994, ZOO BIOL, V13, P509, DOI 10.1002/zoo.1430130513; Goodman MS, 2011, J APPL STAT, V38, P2523, DOI 10.1080/02664763.2011.559209; Goymann W, 2004, ANIM BEHAV, V67, P591, DOI 10.1016/j.anbehav.2003.08.007; Graham EK, 2017, J RES PERS, V70, P174, DOI 10.1016/j.jrp.2017.07.005; Gurven M, 2014, EVOL HUM BEHAV, V35, P17, DOI 10.1016/j.evolhumbehav.2013.09.002; Harcourt A.H., 1981, P265; Hastie TJ, 2017, STAT MODELS S, P249; Herrelko ES, 2012, AM J PRIMATOL, V74, P828, DOI 10.1002/ajp.22036; Herrelko ES, 2011, ASSESSMENT DEV COGNI; Hong KW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022144; Hopkins WD, 2012, GENES BRAIN BEHAV, V11, P552, DOI 10.1111/j.1601-183X.2012.00799.x; Huffman Michael A., 1994, P129; Jones JH, 2011, CURR BIOL, V21, pR708, DOI 10.1016/j.cub.2011.08.025; King JE, 2008, J COMP PSYCHOL, V122, P418, DOI 10.1037/a0013125; King JE, 2005, J PERS, V73, P389, DOI 10.1111/j.1467-6494.2005.00313.x; King JE, 1997, J RES PERS, V31, P257, DOI 10.1006/jrpe.1997.2179; Klein JP, 2005, SURVIVAL ANAL TECHNI; Koski SE, 2011, BEHAV ECOL SOCIOBIOL, V65, P2161, DOI 10.1007/s00265-011-1224-0; Kuhar CW, 2006, APPL ANIM BEHAV SCI, V96, P315, DOI 10.1016/j.applanim.2005.06.004; Latzman RD, 2015, NEUROIMAGE, V123, P63, DOI 10.1016/j.neuroimage.2015.08.041; Latzman RD, 2015, J PERS SOC PSYCHOL, V109, P889, DOI 10.1037/pspp0000040; MacLean EL, 2014, P NATL ACAD SCI USA, V111, pE2140, DOI 10.1073/pnas.1323533111; MacLean EL, 2012, ANIM COGN, V15, P223, DOI 10.1007/s10071-011-0448-8; Martin JE, 2005, APPL ANIM BEHAV SCI, V90, P167, DOI 10.1016/j.applanim.2004.08.019; Massen JJM, 2013, AM J PRIMATOL, V75, P947, DOI 10.1002/ajp.22159; Muller MN, 2005, ADV STUD BEHAV, V35, P275, DOI 10.1016/S0065-3454(05)35007-8; Murray L. E., 1998, International Zoo Yearbook, V36, P97, DOI 10.1111/j.1748-1090.1998.tb02890.x; Napier J. R., 1967, HDB LIVING PRIMATES; Pederson AK, 2005, J RES PERS, V39, P534, DOI 10.1016/j.jrp.2004.07.002; Pusey A, 1997, SCIENCE, V277, P828, DOI 10.1126/science.277.5327.828; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Roberts BW, 2007, PERSPECT PSYCHOL SCI, V2, P313, DOI 10.1111/j.1745-6916.2007.00047.x; Sapolsky RM, 2005, SCIENCE, V308, P648, DOI 10.1126/science.1106477; Sayers K, 2012, ANNU REV ANTHROPOL, V41, P119, DOI 10.1146/annurev-anthro-092611-145815; Seltmann M, 2018, ROY SOC OPEN SCI, V5, DOI 10.1098/rsos.172026; Seyfarth RM, 2012, P NATL ACAD SCI USA, V109, P16980, DOI 10.1073/pnas.1210780109; Silk JB, 2010, CURR BIOL, V20, P1359, DOI 10.1016/j.cub.2010.05.067; Smith BR, 2008, BEHAV ECOL, V19, P448, DOI 10.1093/beheco/arm144; Staes N, 2016, SCI REP-UK, V6, DOI 10.1038/srep38193; Stanford CB, 2012, ANNU REV ANTHROPOL, V41, P139, DOI 10.1146/annurev-anthro-092611-145724; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STEVENSON-HINDE J, 1978, Primates, V19, P473, DOI 10.1007/BF02373309; Strickhouser JE, 2017, HEALTH PSYCHOL, V36, P797, DOI 10.1037/hea0000475; Thompson NA, 2018, ECOL EVOL, V8, P1604, DOI 10.1002/ece3.3781; Turiano NA, 2015, HEALTH PSYCHOL, V34, P51, DOI 10.1037/hea0000038; TUTIN CEG, 1979, BEHAV ECOL SOCIOBIOL, V6, P29, DOI 10.1007/BF00293242; Uher J, 2008, J RES PERS, V42, P821, DOI 10.1016/j.jrp.2007.10.004; Uher J, 2013, INTEGR PSYCHOL BEHAV, V47, P1, DOI 10.1007/s12124-013-9230-6; VANHOOFF JA, 1970, EXPERIENTIA, V26, P549; Vazire S, 2007, HDB RES METHODS PERS, P190; Weiss A, 2006, J PERS SOC PSYCHOL, V90, P501, DOI 10.1037/0022-3514.90.3.501; Weiss A, 2000, BEHAV GENET, V30, P213, DOI 10.1023/A:1001966224914; Weiss A, 2009, AM J PRIMATOL, V71, P283, DOI 10.1002/ajp.20649; Weiss A, 2007, AM J PRIMATOL, V69, P1264, DOI 10.1002/ajp.20428; Weiss A, 2017, SCI DATA, V4, DOI 10.1038/sdata.2017.146; Weiss A, 2015, PSYCHOL SCI, V26, P1430, DOI 10.1177/0956797615589933; Weiss A, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2231; Weiss A, 2012, ANIM BEHAV, V83, P1355, DOI 10.1016/j.anbehav.2012.02.024; Weston SJ, 2018, J RES PERS, V73, P27, DOI 10.1016/j.jrp.2017.10.005; Wilson VAD, 2017, BEHAV GENET, V47, P215, DOI 10.1007/s10519-016-9822-2; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wood S. N., 2006, GEN ADDITIVE MODELS, DOI [10. 1201/9781420010404, DOI 10.1201/9781420010404] 89 0 0 6 6 ELIFE SCIENCES PUBLICATIONS LTD CAMBRIDGE SHERATON HOUSE, CASTLE PARK, CAMBRIDGE, CB3 0AX, ENGLAND 2050-084X ELIFE eLife OCT 9 2018 7 e33781 10.7554/eLife.33781 17 Biology Life Sciences & Biomedicine - Other Topics GW1TJ WOS:000446663600001 30296994 DOAJ Gold 2018-11-22 J Schubert, N; Freitas, C; Silva, A; Costa, MM; Barrote, I; Horta, PA; Rodrigues, AC; Santos, R; Silva, J Schubert, Nadine; Freitas, Catia; Silva, Andre; Costa, Monya M.; Barrote, Isabel; Horta, Paulo A.; Rodrigues, Ana Claudia; Santos, Rui; Silva, Joao Photoacclimation strategies in northeastern Atlantic seagrasses: Integrating responses across plant organizational levels SCIENTIFIC REPORTS English Article ZOSTERA-MARINA L; LEAF LIFE-SPAN; THALASSIA-TESTUDINUM; POSIDONIA-OCEANICA; CYMODOCEA-NODOSA; PHOTOSYNTHETIC CHARACTERISTICS; LIGHT-ABSORPTION; IN-SITU; SPECTRAL QUALITY; GENE-EXPRESSION Seagrasses live in highly variable light environments and adjust to these variations by expressing acclimatory responses at different plant organizational levels (meadow, shoot, leaf and chloroplast level). Yet, comparative studies, to identify species' strategies, and integration of the relative importance of photoacclimatory adjustments at different levels are still missing. The variation in photoacclimatory responses at the chloroplast and leaf level were studied along individual leaves of Cymodocea nodosa, Zostera marina and Z. noltei, including measurements of variable chlorophyll fluorescence, photosynthesis, photoprotective capacities, non-photochemical quenching and D1-protein repair, and assessments of variation in leaf anatomy and chloroplast distribution. Our results show that the slower-growing C. nodosa expressed rather limited physiological and biochemical adjustments in response to light availability, while both species of faster-growing Zostera showed high variability along the leaves. In contrast, the inverse pattern was found for leaf anatomical adjustments in response to light availability, which were more pronounced in C. nodosa. This integrative plant organizational level approach shows that seagrasses differ in their photoacclimatory strategies and that these are linked to the species' life history strategies, information that will be critical for predicting the responses of seagrasses to disturbances and to accordingly develop adequate management strategies. [Schubert, Nadine] Univ Fed Santa Catarina, Ctr Ciencias Fis & Matemat, Programa Posgrad Oceanog, Campus Trindade, Florianopolis, SC, Brazil; [Freitas, Catia; Silva, Andre; Costa, Monya M.; Barrote, Isabel; Santos, Rui; Silva, Joao] Univ Algarve, CCMAR Ctr Marine Sci, Campus Gambelas, P-8005139 Faro, Portugal; [Horta, Paulo A.; Rodrigues, Ana Claudia] Univ Fed Santa Catarina, Ctr Ciencias Biol, Dept Bot, Campus Trindade, Florianopolis, SC, Brazil Schubert, N (reprint author), Univ Fed Santa Catarina, Ctr Ciencias Fis & Matemat, Programa Posgrad Oceanog, Campus Trindade, Florianopolis, SC, Brazil. nadine_schubert@hotmail.com Schubert, Nadine/0000-0001-7161-7882 Fundacao para a Ciencia e Tecnologia (FCT), Portugal [PTDC/MAR-EST/4257/2014] The authors thank the staff of the Electron Microscopy Central Laboratory (LCME) at the Universidade Federal de Santa Catarina, Brazil. This paper is a contribution to the FCT project PTDC/MAR-EST/4257/2014 (GrassMet) funded by Fundacao para a Ciencia e Tecnologia (FCT), Portugal. Abadia Javier, 1993, P327; ABAL EG, 1994, J EXP MAR BIOL ECOL, V178, P113, DOI 10.1016/0022-0981(94)90228-3; Alexandre A, 2012, ECOL EVOL, V2, P2620, DOI 10.1002/ece3.333; BACKMAN TWH, 1991, CAN J BOT, V69, P1361, DOI 10.1139/b91-176; Biber PD, 2005, MAR SCI SER, P193; Borum J., 2004, EUROPEAN SEAGRASSES, P1; Brun FG, 2006, HELGOLAND MAR RES, V60, P59, DOI 10.1007/s10152-005-0017-0; Brun FG, 2002, MAR ECOL PROG SER, V225, P177, DOI 10.3354/meps225177; Buia M.C., 2000, Biologia Marina Mediterranea, V7, P167; Cabaco S, 2009, ESTUAR COAST SHELF S, V82, P301, DOI 10.1016/j.ecss.2009.01.020; Campbell SJ, 2007, ESTUAR COAST SHELF S, V73, P551, DOI 10.1016/j.ecss.2007.02.014; Casper-Lindley C, 1998, PHOTOSYNTH RES, V56, P277, DOI 10.1023/A:1006037516479; Cayabyab NM, 2007, NEW PHYTOL, V176, P108, DOI 10.1111/j.1469-8137.2007.02147.x; Cummings ME, 2003, AQUAT BOT, V75, P261, DOI 10.1016/S0304-3770(02)00180-8; Cunha AH, 2005, MAR BIOL, V146, P841, DOI 10.1007/s00227-004-1496-2; Curiel D., 1996, PLANT BIOSYST, V130, P353; Dalla Via J, 1998, MAR ECOL PROG SER, V163, P267, DOI 10.3354/meps163267; Dattolo E, 2014, MAR ENVIRON RES, V101, P225, DOI 10.1016/j.marenvres.2014.07.010; Dawson SP, 1996, MAR BIOL, V125, P629, DOI 10.1007/BF00349244; de los Santos CB, 2010, MAR ECOL PROG SER, V398, P127, DOI 10.3354/meps08343; DELASRIVAS J, 1989, PLANT PHYSIOL, V91, P190, DOI 10.1104/pp.91.1.190; Dennison W., 1979, LIGHT ADAPTATIONS PL; DENNISON WC, 1982, OECOLOGIA, V55, P137, DOI 10.1007/BF00384478; DENNISON WC, 1986, J EXP MAR BIOL ECOL, V98, P265, DOI 10.1016/0022-0981(86)90217-0; DUARTE CM, 1991, MAR ECOL PROG SER, V77, P289, DOI 10.3354/meps077289; Durako MJ, 2002, AQUAT BOT, V73, P173, DOI 10.1016/S0304-3770(02)00020-7; Enriquez S, 2005, MAR ECOL PROG SER, V289, P141, DOI 10.3354/meps289141; ENRIQUEZ S, 1994, OECOLOGIA, V98, P121, DOI 10.1007/BF00341462; Enriquez S, 2005, OECOLOGIA, V145, P235, DOI 10.1007/s00442-005-0111-7; Enriquez S, 2003, INT J PLANT SCI, V164, P125, DOI 10.1086/344759; Enriquez S, 2002, MAR BIOL, V140, P891, DOI 10.1007/s00227-001-0760-y; Haznedaroglu M.Z., 2009, HACET U J FACULTY PH, V29, P37; KUO J, 1990, AQUAT BOT, V36, P217, DOI 10.1016/0304-3770(90)90036-K; Larbi A, 2004, PHOTOSYNTH RES, V79, P59, DOI 10.1023/B:PRES.0000011919.35309.5e; Larkum AWD, 2006, SEAGRASSES: BIOLOGY, ECOLOGY AND CONSERVATION, P323; Li WT, 2013, ESTUAR COAST SHELF S, V118, P72, DOI 10.1016/j.ecss.2012.12.022; Lichtenberg M, 2015, NEW PHYTOL, V207, P559, DOI 10.1111/nph.13396; Longstaff BJ, 1999, AQUAT BOT, V65, P105, DOI 10.1016/S0304-3770(99)00035-2; Macic Vesna, 2014, Journal of the Black Sea Mediterranean Environment, V20, P253; Vasquez-Elizondo RM, 2017, PHOTOSYNTH RES, V132, P311, DOI 10.1007/s11120-017-0395-6; Marba N, 1996, MAR ECOL PROG SER, V133, P203, DOI 10.3354/meps133203; Matsuki S, 2006, ANN BOT-LONDON, V97, P813, DOI 10.1093/aob/mc1041; MAZZELLA L, 1981, BOT MAR, V24, P285, DOI 10.1515/botm.1981.24.5.285; MAZZELLA L, 1986, J EXP MAR BIOL ECOL, V100, P165, DOI 10.1016/0022-0981(86)90161-9; Mulo P, 2003, FUNCT PLANT BIOL, V30, P1097, DOI 10.1071/FP03147; Murchie EH, 1997, PLANT CELL ENVIRON, V20, P438, DOI 10.1046/j.1365-3040.1997.d01-95.x; Murchie EH, 1998, PLANT CELL ENVIRON, V21, P139, DOI 10.1046/j.1365-3040.1998.00262.x; OBRIEN TP, 1964, PROTOPLASMA, V59, P368, DOI 10.1007/BF01248568; Ochieng CA, 2010, J EXP MAR BIOL ECOL, V382, P117, DOI 10.1016/j.jembe.2009.11.007; Olesen B, 2002, MAR ECOL PROG SER, V236, P89, DOI 10.3354/meps236089; Olive I, 2013, MAR BIOL, V160, P285, DOI 10.1007/s00227-012-2087-2; Olive I, 2007, J EXP MAR BIOL ECOL, V345, P90, DOI 10.1016/j.jembe.2007.02.008; Park SR, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0156214; Peralta G, 2005, ESTUAR COAST SHELF S, V64, P347, DOI 10.1016/j.ecss.2005.02.027; Peralta G, 2003, AQUAT BOT, V75, P95, DOI 10.1016/S0304-3770(02)00168-7; Peralta G, 2000, HELGOLAND MAR RES, V54, P80, DOI 10.1007/s101520050005; Procaccini G, 2017, SCI REP-UK, V7, DOI 10.1038/srep42890; Ralph PJ, 2007, J EXP MAR BIOL ECOL, V350, P176, DOI 10.1016/j.jembe.2007.06.017; REICH PB, 1992, ECOL MONOGR, V62, P365, DOI 10.2307/2937116; Ruiz JM, 2001, MAR ECOL PROG SER, V215, P107, DOI 10.3354/meps215107; Sandoval-Gil JM, 2014, MAR ENVIRON RES, V95, P39, DOI 10.1016/j.marenvres.2013.12.011; Schubert N, 2015, LIMNOL OCEANOGR, V60, P286, DOI 10.1002/lno.10024; Shafer DJ, 2014, AQUAT BOT, V112, P91, DOI 10.1016/j.aquabot.2013.09.002; Short F, 2007, J EXP MAR BIOL ECOL, V350, P3, DOI 10.1016/j.jembe.2007.06.012; Silva ABD, 2015, THESIS; Silva J, 2005, J EXP MAR BIOL ECOL, V317, P87, DOI 10.1016/j.jembe.2004.11.010; Silva J, 2003, MAR ECOL PROG SER, V257, P37, DOI 10.3354/meps257037; Silva J, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0081058; Tuya F, 2016, SCI MAR, V80, P247, DOI 10.3989/scimar.04391.07A; VANKOOTEN O, 1990, PHOTOSYNTH RES, V25, P147, DOI 10.1007/BF00033156; Villazan B, 2016, MAR ECOL PROG SER, V545, P109, DOI 10.3354/meps11631; WATSON DJ, 1947, ANN BOT-LONDON, V11, P41, DOI 10.1093/oxfordjournals.aob.a083148; YAMAMOTO HY, 1972, BIOCHIM BIOPHYS ACTA, V267, P538, DOI 10.1016/0005-2728(72)90182-X 73 0 0 0 0 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 2045-2322 SCI REP-UK Sci Rep OCT 4 2018 8 14825 10.1038/s41598-018-33259-4 14 Multidisciplinary Sciences Science & Technology - Other Topics GV7QS WOS:000446325500037 30287907 DOAJ Gold 2018-11-22 J Huber, J; Dettman, DL; Williams, DG; Hultine, KR Huber, John; Dettman, David L.; Williams, David G.; Hultine, Kevin R. Gas exchange characteristics of giant cacti species varying in stem morphology and life history strategy AMERICAN JOURNAL OF BOTANY English Article Cactaceae; carbon isotope ratios; net assimilation rate; Sonoran Desert; stem economic trait spectrum; stem succulents; stem surface area to volume ratio CRASSULACEAN ACID METABOLISM; OPUNTIA-FICUS-INDICA; RELATIVE GROWTH-RATE; CARBON-ISOTOPE DISCRIMINATION; LEAF ECONOMICS SPECTRUM; NET ASSIMILATION RATE; SAGUARO CACTUS; CARNEGIEA-GIGANTEA; SONORAN DESERT; COLUMNAR CACTI Premise of the Study Methods Giant cacti species possess long cylindrical stems that store massive amounts of water and other resources to draw on for photosynthesis, growth, and reproduction during hot and dry conditions. Across all giant cacti taxa, stem photosynthetic surface area to volume ratio (S:V) varies by several fold. This broad morphological diversity leads to the hypothesis that giant cacti function along a predictable resource use continuum from a "safe" strategy reflected in low S:V, low relative growth rates (RGR), and low net assimilation rates (A(net)) to a high-risk strategy that is reflected in high S:V, RGR, and A(net). To test this hypothesis, whole-plant gas exchange, chlorophyll fluorescence, and whole-spine-tissue carbon isotope ratios (delta C-13) were measured in four giant cacti species varying in stem morphology and RGR. Measurements were conducted on five well-watered, potted plants per species. Key Results Conclusions Under conditions of mild diel temperatures and low atmospheric vapor pressure deficit, A(net), transpiration (E), and stomatal conductance (G(s)) were significantly higher, and water-use efficiency (A(net) : G(s)) was lower in fast-growing, multi-stemmed species compared to the slower growing, single-stemmed species. However, under warmer, less optimal conditions, gas exchange converged between stem types, and neither delta C-13 nor chlorophyll fluorescence varied among species. The results add to a growing body of evidence that succulent-stemmed plants function along a similar economic spectrum as leaf-bearing plants such that functional traits including stem RGR, longevity, morphology, and gas exchange are correlated across species with varying life-history strategies. [Huber, John; Hultine, Kevin R.] Desert Bot Garden, Dept Res Conservat & Collect, Phoenix, AZ 85008 USA; [Huber, John; Dettman, David L.] Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA; [Williams, David G.] Univ Wyoming, Dept Bot, Laramie, WY 82071 USA Hultine, KR (reprint author), Desert Bot Garden, Dept Res Conservat & Collect, Phoenix, AZ 85008 USA. khultine@dbg.org Binational Consortium for Regional Scientific Development and Innovation - National Council for Science and Technology, Mexico (CONACYT); University of Arizona's Agnese Nelms Haury Program in Environment and Social Justice The authors thank two anonymous reviewers for the very helpful comments on an earlier version of this manuscript. The authors thank Dan Koepke for field assistance and Ben McElhaney with technical assistance for building the gas exchange chambers. This work was supported by the Binational Consortium for Regional Scientific Development and Innovation, funded by the National Council for Science and Technology, Mexico (CONACYT), and the University of Arizona's Agnese Nelms Haury Program in Environment and Social Justice. Albert KR, 2005, PHYSIOL PLANTARUM, V124, P208, DOI 10.1111/j.1399-3054.2005.00502.x; ALCORN SM, 1961, SCIENCE, V133, P1594, DOI 10.1126/science.133.3464.1594; Borland A. M., 1996, CRASSULACEAN ACID ME; Borland AM, 2011, NEW PHYTOL, V191, P619, DOI 10.1111/j.1469-8137.2011.03781.x; Bronson DR, 2011, OECOLOGIA, V167, P861, DOI 10.1007/s00442-011-2021-1; Bustamante E, 2010, AM J BOT, V97, P2020, DOI 10.3732/ajb.1000071; Copetti D, 2017, P NATL ACAD SCI USA, V114, P12003, DOI 10.1073/pnas.1706367114; Cornelissen JHC, 1996, J ECOL, V84, P755, DOI 10.2307/2261337; Delgado-Fernandez M, 2016, RADIOCARBON, V58, P479, DOI 10.1017/RDC.2016.25; Dijkstra P., 1986, BIOL CONTROL PHOTOSY, P251; Drezner TD, 2014, J ARID ENVIRON, V104, P34, DOI 10.1016/j.jaridenv.2014.01.013; English NB, 2007, OECOLOGIA, V154, P247, DOI 10.1007/s00442-007-0832-x; English NB, 2010, PALAEOGEOGR PALAEOCL, V293, P108, DOI 10.1016/j.palaeo.2010.05.005; English NB, 2010, J GEOPHYS RES-BIOGEO, V115, DOI 10.1029/2009JG001008; EPRON D, 1992, PLANT CELL ENVIRON, V15, P809, DOI 10.1111/j.1365-3040.1992.tb02148.x; FARQUHAR GD, 1989, ANNU REV PLANT PHYS, V40, P503, DOI 10.1146/annurev.pp.40.060189.002443; Fleming TH, 1996, SOUTHWEST NAT, V41, P257; GAMON JA, 1989, OECOLOGIA, V79, P475, DOI 10.1007/BF00378664; GRIFFITHS H, 1992, PLANT CELL ENVIRON, V15, P1051, DOI 10.1111/j.1365-3040.1992.tb01655.x; GRIME JP, 1975, J ECOL, V63, P393, DOI 10.2307/2258728; Grime JP, 1979, PLANT STRATEGIES VEG; Hultine KR, 2016, OECOLOGIA, V182, P679, DOI 10.1007/s00442-016-3690-6; HUNT R, 1987, OIKOS, V50, P53, DOI 10.2307/3565401; INGLESE P, 1994, PHYSIOL PLANTARUM, V91, P708, DOI 10.1034/j.1399-3054.1994.910423.x; IUCN [International Union for Conservation of Nature], 2017, RED LIST THREAT SPEC; Kluge M., 1978, CRASSULACEAN ACID ME; Lajtha K, 1997, J ARID ENVIRON, V36, P579, DOI 10.1006/jare.1996.0240; Luttge U, 2006, NEW PHYTOL, V171, P7, DOI 10.1111/j.1469-8137.2006.01755.x; Luttge U, 2004, ANN BOT-LONDON, V93, P629, DOI 10.1093/aob/mch087; Mauseth JD, 2000, AM J BOT, V87, P1107, DOI 10.2307/2656647; Maxwell K, 2000, J EXP BOT, V51, P659, DOI 10.1093/jexbot/51.345.659; Medel-Narvaez A, 2006, PLANT ECOL, V187, P1, DOI 10.1007/s11258-006-9128-1; Nason JD, 2002, EVOLUTION, V56, P2214; Nobel P. S., 2003, ENV BIOL AGAVES CACT; Nobel P. S., 1988, ENV BIOL AGAVES CACT; Nogues S, 2008, RAPID COMMUN MASS SP, V22, P1017, DOI 10.1002/rcm.3460; OLEARY MH, 1988, BIOSCIENCE, V38, P328, DOI 10.2307/1310735; OSMOND CB, 1978, ANNU REV PLANT PHYS, V29, P379, DOI 10.1146/annurev.pp.29.060178.002115; Osnas JLD, 2013, SCIENCE, V340, P741, DOI 10.1126/science.1231574; PARKER KC, 1988, BOT GAZ, V149, P335, DOI 10.1086/337724; Pataki DE, 2006, GEOPHYS RES LETT, V33, DOI 10.1029/2005GL024822; Pierson EA, 2013, J ARID ENVIRON, V88, P57, DOI 10.1016/j.jaridenv.2012.08.008; Pimienta-Barrios E, 2005, INT J PLANT SCI, V166, P961, DOI 10.1086/449317; Pimienta-Barrios E, 2000, J ARID ENVIRON, V44, P73, DOI 10.1006/jare.1999.0570; Pons T. L., 1977, PLANT ECOL, V26, P29; POORTER H, 1990, OECOLOGIA, V83, P553, DOI 10.1007/BF00317209; Reich PB, 1997, P NATL ACAD SCI USA, V94, P13730, DOI 10.1073/pnas.94.25.13730; REICH PB, 1992, ECOL MONOGR, V62, P365, DOI 10.2307/2937116; Shipley B, 2006, FUNCT ECOL, V20, P565, DOI 10.1111/j.1365-2435.2006.01135.x; Steenbergh W.F., 1983, NATL PARK SERVICE SC, V17; Williams DG, 2014, J EXP BOT, V65, P3405, DOI 10.1093/jxb/eru174; Winter K, 2002, PLANT PHYSIOL, V129, P1843, DOI 10.1104/pp.002915; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403 53 0 0 1 1 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0002-9122 1537-2197 AM J BOT Am. J. Bot. OCT 2018 105 10 1688 1702 10.1002/ajb2.1166 15 Plant Sciences Plant Sciences GZ5TC WOS:000449490000008 30304560 2018-11-22 J Kolstad, AL; Austrheim, G; Solberg, EJ; De Vriendt, L; Speed, JDM Kolstad, Anders Lorentzen; Austrheim, Gunnar; Solberg, Erling J.; De Vriendt, Laurent; Speed, James D. M. Pervasive moose browsing in boreal forests alters successional trajectories by severely suppressing keystone species ECOSPHERE English Article Alces alces; bryophytes; Cervidae; diversity; Fennoscandia; forestry; Norway; silviculture; Sorbus aucuparia; succession LIFE-HISTORY STRATEGIES; WHITE-TAILED DEER; ALCES-ALCES; LAYER VEGETATION; FIELD LAYER; HERBIVORY; DENSITY; GROWTH; LANDSCAPE; DYNAMICS Large herbivores can shape young forest stands and determine the successional trajectory of forested ecosystems by selectively browsing palatable species at the sapling stage. Moose (Alces alces) is the dominant vertebrate herbivore in Fennoscandian boreal forests, and high population densities have raised concerns about potential negative effects on ecosystem functioning and properties including biological diversity and timber production. We used 31 herbivore exclosures in Norway to investigate how forests developed after clear-cutting with or without moose present. We tested how tree demography, abundances of understory plant functional groups, community composition, and plant diversity (including bryophytes) across multiple scales varied with moose exclusion. After seven years, the exclosures were dominated by deciduous trees, including many large rowan (Sorbus aucuparia) individuals, a functionally important keystone species. In contrast, the open plots subject to moose impacts (browsing, trampling, defecation) were dominated by economically important coniferous trees and there was next to no rowan recruitment to taller height classes. The biomass of large herbs and ferns was much greater inside exclosures. This study emphasizes the large immediate effect of moose on early successional boreal forest stands. Landscape-level alterations caused by reduced deciduous dominance, and a reduction in large flowering herbs is likely to lead to cascading effects on ecosystem functioning. The management of boreal production forests needs to account for the combined effects of silvicultural practices and ungulate herbivory to ensure ecosystem functioning, but this management goal may be jeopardized in our study regions due to drastically reduced abundance of keystone species. [Kolstad, Anders Lorentzen; Austrheim, Gunnar; Speed, James D. M.] Norwegian Univ Sci & Technol, NTNU Univ Museum, Dept Nat Hist, NO-7491 Trondheim, Norway; [Solberg, Erling J.] Norwegian Inst Nat Res NINA, NO-7485 Trondheim, Norway; [De Vriendt, Laurent] Laval Univ, Dept Biol, Quebec City, PQ G1V 0A6, Canada; [De Vriendt, Laurent] Univ Quebec Montreal, Ctr Forest Res CEF, Montreal, PQ H3C 3P8, Canada; [De Vriendt, Laurent] Laval Univ, Ctr Northern Studies CEN, Quebec City, PQ G1V 0A6, Canada Kolstad, AL (reprint author), Norwegian Univ Sci & Technol, NTNU Univ Museum, Dept Nat Hist, NO-7491 Trondheim, Norway. anders.kolstad@ntnu.no Albert A, 2015, OIKOS, V124, P1109, DOI 10.1111/oik.02512; Apollonio M, 2010, EUROPEAN UNGULATES T; Austrheim G, 2011, WILDLIFE BIOL, V17, P286, DOI 10.2981/10-038; Barwell LJ, 2015, J ANIM ECOL, V84, P1112, DOI 10.1111/1365-2656.12362; Beguin J, 2011, ECOL APPL, V21, P439, DOI 10.1890/09-2100.1; Bendiksen E., 2008, NINA RAPPORT, V367, P1; Bernes C., 2018, ENV EVIDENCE, V7, P1; Bjorneraas K, 2011, WILDLIFE BIOL, V17, P44, DOI 10.2981/10-073; Boulanger V, 2018, GLOBAL CHANGE BIOL, V24, pE485, DOI 10.1111/gcb.13899; Bright RM, 2014, GLOBAL CHANGE BIOL, V20, P607, DOI 10.1111/gcb.12451; Chollet S, 2013, ECOSCIENCE, V20, P352, DOI 10.2980/20-4-3627; Cote SD, 2014, ADV ECOL, V2014, P1; DAVIDSON DW, 1993, OIKOS, V68, P23, DOI 10.2307/3545305; Dufresne M, 2009, ECOSCIENCE, V16, P361, DOI 10.2980/16-3-3267; EDENIUS L, 1995, CAN J FOREST RES, V25, P529, DOI 10.1139/x95-060; Edenius L, 2002, SILVA FENN, V36, P57, DOI 10.14214/sf.550; Eichhorn MP, 2017, J APPL ECOL, V54, P1615, DOI 10.1111/1365-2664.12902; Felton A, 2016, AMBIO, V45, pS124, DOI 10.1007/s13280-015-0749-2; Flojgaard C, 2018, GLOBAL CHANGE BIOL, V24, P869, DOI 10.1111/gcb.14029; Fuller RJ, 2001, FORESTRY, V74, P193, DOI 10.1093/forestry/74.3.193; Glode D., 2004, 570 SKOGF; Hegland SJ, 2016, J VEG SCI, V27, P111, DOI 10.1111/jvs.12339; Hegland SJ, 2013, FOREST ECOL MANAG, V310, P267, DOI 10.1016/j.foreco.2013.08.031; Heikkila Risto, 2003, Alces, V39, P203; Herfindal I, 2015, FOREST ECOL MANAG, V348, P97, DOI 10.1016/j.foreco.2015.03.045; Hidding B, 2013, ECOLOGY, V94, P2852, DOI 10.1890/12-2015.1; Hobbs NT, 1996, J WILDLIFE MANAGE, V60, P695, DOI 10.2307/3802368; JONASSON S, 1988, OIKOS, V52, P101, DOI 10.2307/3565988; Kardol P, 2014, J ECOL, V102, P622, DOI 10.1111/1365-2745.12234; Kielland K, 1998, OIKOS, V82, P377, DOI 10.2307/3546979; Kolstad AL, 2018, ECOSYSTEMS, V21, P1027, DOI 10.1007/s10021-017-0202-4; Kuijper DPJ, 2010, J VEG SCI, V21, P1082, DOI 10.1111/j.1654-1103.2010.01217.x; Kuznetsova A, 2017, J STAT SOFTW, V82, P1; Lavsund Sten, 2003, Alces, V39, P109; Legendre P, 2001, OECOLOGIA, V129, P271, DOI 10.1007/s004420100716; Lilleeng MS, 2016, ECOL RES, V31, P777, DOI 10.1007/s11284-016-1391-6; Mansson J, 2007, SCAND J FOREST RES, V22, P407, DOI 10.1080/02827580701515023; Mathisen KM, 2010, J VEG SCI, V21, P705, DOI 10.1111/j.1654-1103.2010.01180.x; MCINNES PF, 1992, ECOLOGY, V73, P2059, DOI 10.2307/1941455; Meisingset E. L., 2015, NIBIO RAPPORT, V1, P1; Morris EK, 2014, ECOL EVOL, V4, P3514, DOI 10.1002/ece3.1155; Myking T, 2013, EUR J FOREST RES, V132, P399, DOI 10.1007/s10342-013-0684-3; Myking T, 2011, FORESTRY, V84, P61, DOI 10.1093/forestry/cpq044; Nuttle T, 2014, J ECOL, V102, P221, DOI 10.1111/1365-2745.12175; Oksanen J., 2018, R PACKAGE VERSION, V2, P4; PASTOR J, 1992, AM NAT, V139, P690, DOI 10.1086/285353; Persson IL, 2000, ANN ZOOL FENN, V37, P251; Persson IL, 2009, ECOLOGY, V90, P2724, DOI 10.1890/08-1662.1; Prins Herbert H. T., 2008, V195, P1; R Core Team, 2017, R LANG ENV STAT COMP; Rooney TP, 2009, PLANT ECOL, V202, P103, DOI 10.1007/s11258-008-9489-8; Rooney TP, 2003, FOREST ECOL MANAG, V181, P165, DOI 10.1016/S0378-1127(03)00130-0; Schmitz OJ, 2014, ECOSYSTEMS, V17, P344, DOI 10.1007/s10021-013-9715-7; Schulze ED, 2014, ANN FOR RES, V57, P267; Speed JDM, 2014, OIKOS, V123, P1270, DOI 10.1111/oik.01373; Speed JDM, 2013, ECOSCIENCE, V20, P311, DOI 10.2980/20-3-3619; Speed JDM, 2013, FOREST ECOL MANAG, V289, P289, DOI 10.1016/j.foreco.2012.10.051; Statistics Norway, 2017, NAT FOR INV; Su Y.-S., 2015, R2JAGS USING R RUN J; Tremblay JP, 2007, J APPL ECOL, V44, P552, DOI 10.1111/j.1365-2664.2007.01290.x; Tremblay JP, 2006, OECOLOGIA, V150, P78, DOI 10.1007/s00442-006-0504-2; Uotila A, 2005, FOREST ECOL MANAG, V215, P113, DOI 10.1016/j.foreco.2005.05.008; van den Brink PJ, 2009, ENVIRON MONIT ASSESS, V152, P271, DOI 10.1007/s10661-008-0314-6; Van Dyke Fred, 2002, Alces, V38, P55; Wam HK, 2016, ECOSYST SERV, V22, P280, DOI 10.1016/j.ecoser.2016.10.003; Wam HK, 2016, BASIC APPL ECOL, V17, P252, DOI 10.1016/j.baae.2015.11.006; Wam HK, 2010, CAN J ZOOL, V88, P1179, DOI 10.1139/Z10-084; Wardle DA, 2001, ECOL MONOGR, V71, P587, DOI 10.1890/0012-9615(2001)071[0587:IBMINZ]2.0.CO;2; Wickham H, 2009, USE R, P1, DOI 10.1007/978-0-387-98141-3_1 69 0 0 0 0 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2150-8925 ECOSPHERE Ecosphere OCT 2018 9 10 e02458 10.1002/ecs2.2458 19 Ecology Environmental Sciences & Ecology GZ6QM WOS:000449566200043 DOAJ Gold 2018-11-22 J Pirotte, JALM; Lorenzi, A; Foray, V; Hance, T Pirotte, Jennifer A-L M.; Lorenzi, Ange; Foray, Vincent; Hance, Thierry Impact of differences in nutritional quality of wingless and winged aphids on parasitoid fitness JOURNAL OF EXPERIMENTAL BIOLOGY English Article Aphid-parasitoid; Aphid polyphenism; Energetic reserves; Fitness; Host quality; Wing development ACYRTHOSIPHON-PISUM HARRIS; MORPH-SPECIFIC DIFFERENCES; LIFE-HISTORY STRATEGIES; PEA APHID; COLEMANI HYMENOPTERA; BIOLOGICAL-CONTROL; SITOBION-AVENAE; MYZUS-PERSICAE; BODY-SIZE; ENERGY-METABOLISM Winged aphids are described as hosts of lesser quality for parasitoids because a part of their resources is used to produce wings and associated muscles during their development. Host lipid content is particularly important for parasitoid larvae as they lack lipogenesis and therefore rely entirely on the host for this resource. The goal of this study was to determine to what extent winged and wingless aphids differ from a nutritional point of view and whether these differences impact parasitoid fitness, notably the lipid content. We analysed the energetic budget (proteins, lipids and carbohydrates) of aphids of different ages (third instars, fourth instars and adults) according to the morph (winged or wingless). We also compared fitness indicators for parasitoids emerging from winged and wingless aphids (third and fourth instars). We found that in third instars, parasitoids are able to inhibit wing development whereas this is not the case in fourth instars. Both winged instars allow the production of heavier and fattier parasitoids. The presence of wings in aphids seems to have little effect on the fitness of emerging parasitoids and did not modify female choice for oviposition. Finally, we demonstrate that Aphidius colemani, used as a biological control agent, is able to parasitize wingless as well as winged Myzus persicae, at least in the juvenile stages. If the parasitism occurs in third instars, the parasitoid will prevent the aphid from flying, which could in turn reduce virus transmission. [Pirotte, Jennifer A-L M.; Hance, Thierry] Catholic Univ Louvain, Ecol Interact & Biol Control, Biodivers Res Ctr, Earth & Life Inst, 4-5 Pl Croix Sud, B-1348 Louvain La Neuve, Belgium; [Lorenzi, Ange] Univ Montpellier, Microorganism & Insect Divers, Genomes & Interact DGIMI Lab, INRA,UMR 1333, Pl Eugene Bataillon,CC101, F-34095 Montpellier, France; [Foray, Vincent] CNRS, UMR 5237, Ctr Rech Biol Cellulaire Montpellier, 1919 Route Mende, F-34293 Montpellier 05, France Pirotte, JALM (reprint author), Catholic Univ Louvain, Ecol Interact & Biol Control, Biodivers Res Ctr, Earth & Life Inst, 4-5 Pl Croix Sud, B-1348 Louvain La Neuve, Belgium. jennifer.pirotte@uclouvain.be Universite catholique de Louvain; Fonds de la Recherche Fondamentale Collective [FRFC 6886819] This work was funded by the Universite catholique de Louvain (J.A.-L.M.P. for her work as a teaching assistant, A.L. for his work as a Master's student and T.H. for his work as Professor) and by the Fonds de la Recherche Fondamentale Collective (FRFC 6886819 to V.F.). Abramoff MD, 2004, BIOPHOTONICS INT, V11, P36, DOI DOI 10.1117/1.3589100; Amat I, 2012, ECOL ENTOMOL, V37, P480, DOI 10.1111/j.1365-2311.2012.01388.x; BAI B, 1992, FUNCT ECOL, V6, P302, DOI 10.2307/2389521; BAKER HG, 1973, NATURE, V241, P543, DOI 10.1038/241543b0; Barrette M, 2009, OECOLOGIA, V158, P757, DOI 10.1007/s00442-008-1175-y; BEENAKKERS AMT, 1985, PROG LIPID RES, V24, P19; BLUA MJ, 1992, OECOLOGIA, V92, P65, DOI 10.1007/BF00317263; Braendle C, 2006, HEREDITY, V97, P192, DOI 10.1038/sj.hdy.6800863; Brisson JA, 2010, PHILOS T R SOC B, V365, P605, DOI 10.1098/rstb.2009.0255; BUSH GL, 1976, SCIENCE, V193, P491, DOI 10.1126/science.941019; Cambier V, 2001, J CHEM ECOL, V27, P359, DOI 10.1023/A:1005636607138; Castaneda LE, 2010, J INSECT PHYSIOL, V56, P1920, DOI 10.1016/j.jinsphys.2010.08.015; CHOW A, 1991, ECOL ENTOMOL, V16, P403, DOI 10.1111/j.1365-2311.1991.tb00233.x; Christiansen-Weniger P, 1998, PHYSIOL ENTOMOL, V23, P208, DOI 10.1046/j.1365-3032.1998.233082.x; Clark RM, 2013, FUNCT ECOL, V27, P1126, DOI 10.1111/1365-2435.12103; CLEGG JM, 1982, CAN J ZOOL, V60, P2245, DOI 10.1139/z82-289; Clements A. N., 1992, BIOL MOSQUITOES DEV; CLOUTIER C, 1980, CAN J ZOOL, V58, P241, DOI 10.1139/z80-028; COCKBAIN AJ, 1961, J EXP BIOL, V38, P163; Colinet H, 2006, ENVIRON ENTOMOL, V35, P228, DOI 10.1603/0046-225X-35.2.228; Colinet H, 2005, ECOL ENTOMOL, V30, P473, DOI 10.1111/j.0307-6946.2005.00716.x; DABROWSKI ZT, 1988, J APPL ENTOMOL, V105, P450, DOI 10.1111/j.1439-0418.1988.tb00208.x; Demmon AS, 2004, ENVIRON ENTOMOL, V33, P1523, DOI 10.1603/0046-225X-33.6.1523; Derocles SAP, 2014, ENVIRON ENTOMOL, V43, P1327, DOI 10.1603/EN14114; Dixon AFG, 1999, ECOLOGY, V80, P1678, DOI 10.2307/176556; Dutton A, 1995, ENTOMOPHAGA, V40, P223, DOI 10.1007/BF02373070; ESSIG E. O., 1948, HILGARDIA, V18, P407; Feng MG, 2007, ECOL ENTOMOL, V32, P97, DOI 10.1111/j.1365-2311.2006.00849.x; Fernandez C, 1997, J APPL ENTOMOL, V121, P447, DOI 10.1111/j.1439-0418.1997.tb01433.x; Foray V, 2014, FUNCT ECOL, V28, P411, DOI 10.1111/1365-2435.12171; Foray V, 2012, PHYSIOL ENTOMOL, V37, P295, DOI 10.1111/j.1365-3032.2012.00831.x; GARDNER SM, 1984, ECOL ENTOMOL, V9, P149, DOI 10.1111/j.1365-2311.1984.tb00709.x; GERLING D, 1990, J INSECT BEHAV, V3, P501, DOI 10.1007/BF01052014; GILDOW FE, 1980, ANN ENTOMOL SOC AM, V73, P343, DOI 10.1093/aesa/73.3.343; Giron D, 2003, J INSECT PHYSIOL, V49, P141, DOI 10.1016/S0022-1910(02)00258-5; GROETERS FR, 1989, EVOL ECOL, V3, P313, DOI 10.1007/BF02285262; Hackermann J, 2007, J ANIM ECOL, V76, P376, DOI 10.1111/j.1365-2656.2006.01206.x; Harvey JA, 1997, ENTOMOL EXP APPL, V84, P93, DOI 10.1046/j.1570-7458.1997.00202.x; Hazell SP, 2005, ECOL ENTOMOL, V30, P293, DOI 10.1111/j.0307-6946.2005.00703.x; HOFSVANG T, 1986, ENTOMOPHAGA, V31, P261, DOI 10.1007/BF02373335; Ishikawa A, 2008, ZOOMORPHOLOGY, V127, P121, DOI 10.1007/s00435-008-0057-5; Ishikawa A, 2007, SOCIOBIOLOGY, V50, P881; Ishikawa A, 2009, EVOL DEV, V11, P680, DOI 10.1111/j.1525-142X.2009.00375.x; Jervis MA, 2001, J ANIM ECOL, V70, P442, DOI 10.1046/j.1365-2656.2001.00507.x; Jervis MA, 2008, ANNU REV ENTOMOL, V53, P361, DOI 10.1146/annurev.ento.53.103106.093433; Jones DB, 2003, ENVIRON ENTOMOL, V32, P425, DOI 10.1603/0046-225X-32.3.425; Kati A, 2010, J INSECT PHYSIOL, V56, P14, DOI 10.1016/j.jinsphys.2009.08.010; Keinan Y, 2012, BEHAV ECOL, V23, P1263, DOI 10.1093/beheco/ars111; Khatri D., 2017, THESIS; Khatri D, 2017, J ECON ENTOMOL, V110, P400, DOI 10.1093/jee/tow324; Khatri D, 2016, J ECON ENTOMOL, V109, P1539, DOI 10.1093/jee/tow105; Le Lann C, 2012, EVOL ECOL, V26, P79, DOI 10.1007/s10682-011-9498-2; Lee JC, 2004, ENTOMOL EXP APPL, V111, P189, DOI 10.1111/j.0013-8703.2004.00165.x; Li BP, 2004, ENTOMOL EXP APPL, V110, P249, DOI 10.1111/j.0013-8703.2004.00144.x; MACKAUER M, 1986, J INSECT PHYSIOL, V32, P275, DOI 10.1016/0022-1910(86)90039-9; Mackauer M, 2001, FUNCT ECOL, V15, P335, DOI 10.1046/j.1365-2435.2001.00532.x; MacKauer M., 1976, International biol Progm, V9, P51; MCBRIEN H, 1990, ENTOMOL EXP APPL, V56, P145, DOI 10.1111/j.1570-7458.1990.tb01392.x; Micheu S, 2000, AMINO ACIDS, V18, P157, DOI 10.1007/s007260050014; Muller CB, 2001, ECOL ENTOMOL, V26, P330, DOI 10.1046/j.1365-2311.2001.00321.x; Murata M, 2002, EUR J ENTOMOL, V99, P221, DOI 10.14411/eje.2002.031; NEWTON C, 1990, ENTOMOL EXP APPL, V55, P223, DOI 10.1111/j.1570-7458.1990.tb01366.x; Parker BJ, 2017, J ANIM ECOL, V86, P473, DOI 10.1111/1365-2656.12657; Peumans WJ, 1997, PLANTA, V201, P298, DOI 10.1007/s004250050070; Pirotte J., 2011, THESIS; Rauwald KS, 2001, ECOL APPL, V11, P1224, DOI 10.1890/1051-0761(2001)011[1224:BCIDAS]2.0.CO;2; Rivero A, 1999, RES POPUL ECOL, V41, P39, DOI 10.1007/PL00011981; ROFF DA, 1991, AM ZOOL, V31, P243; Romeis J, 2003, OECOLOGIA, V134, P528, DOI 10.1007/s00442-002-1144-9; Ryabov EV, 2009, P NATL ACAD SCI USA, V106, P8465, DOI 10.1073/pnas.0901389106; Sabri A, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074656; Sampaio MV, 2008, EUR J ENTOMOL, V105, P489, DOI 10.14411/eje.2008.063; Scaraffia PY, 2003, J INSECT PHYSIOL, V49, P591, DOI 10.1016/S0022-1910(03)00031-3; Shi SL, 2010, INSECT SCI, V17, P527, DOI 10.1111/j.1744-7917.2010.01332.x; Shull AF, 1940, GENETICS, V25, P287; Sorin M., 1958, SHIN KONCHU, V11, P2; Stary P, 2002, J APPL ENTOMOL, V126, P405, DOI 10.1046/j.1439-0418.2002.00663.x; Strand M. R., 2008, BEHAV ECOLOGY INSECT; Strohm E, 2000, OECOLOGIA, V123, P184, DOI 10.1007/s004420051004; STRONG FE, 1965, NATURE, V205, P1242, DOI 10.1038/2051242a0; Suarez RK, 2005, J EXP BIOL, V208, P3573, DOI 10.1242/jeb.01775; SYLVESTER EDWARD S., 1954, ANN ENT SOC AMER, V47, P397; Takada H, 1998, APPL ENTOMOL ZOOL, V33, P59, DOI 10.1303/aez.33.59; Thieme T, 2015, J APPL ENTOMOL, V139, P741, DOI 10.1111/jen.12262; TSUMUKI H, 1990, APPL ENTOMOL ZOOL, V25, P215, DOI 10.1303/aez.25.215; Van Emden HF, 2002, BIOCONTROL, V47, P607, DOI 10.1023/A:1020546621967; VANEMDEN HF, 1969, ANNU REV ENTOMOL, V14, P197, DOI 10.1146/annurev.en.14.010169.001213; VANHANDEL E, 1984, MOSQ NEWS, V44, P573; Visser B, 2008, J INSECT PHYSIOL, V54, P1315, DOI 10.1016/j.jinsphys.2008.07.014; Wackers FL, 2008, BIOL CONTROL, V45, P176, DOI 10.1016/j.biocontrol.2008.01.007; Walker AM, 2003, J ECON ENTOMOL, V96, P1685, DOI 10.1603/0022-0493-96.6.1685; WALL ROBERT E., 1933, ANN ENT SOC AMER, V26, P425; Walton MP, 2011, B ENTOMOL RES, V101, P443, DOI 10.1017/S000748531000074X; WEISSER WW, 1994, ENTOMOL EXP APPL, V70, P1, DOI 10.1111/j.1570-7458.1994.tb01753.x; Williams IS, 2000, J APPL ECOL, V37, P40, DOI 10.1046/j.1365-2664.2000.00465.x; Wu GM, 2011, ENVIRON ENTOMOL, V40, P737, DOI 10.1603/EN11018; Xu XL, 2011, ENTOMOL EXP APPL, V138, P128, DOI 10.1111/j.1570-7458.2010.01084.x; ZEBE E, 1993, J COMP PHYSIOL B, V163, P107; Zera AJ, 1997, ANNU REV ENTOMOL, V42, P207, DOI 10.1146/annurev.ento.42.1.207; Zera AJ, 2001, J INSECT PHYSIOL, V47, P1147, DOI 10.1016/S0022-1910(01)00096-8; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zhang Y, 2012, BIOL CONTROL, V62, P10, DOI 10.1016/j.biocontrol.2012.03.001; Zhang Y, 2009, BIOL CONTROL, V51, P475, DOI 10.1016/j.biocontrol.2009.08.008 103 0 0 1 1 COMPANY BIOLOGISTS LTD CAMBRIDGE BIDDER BUILDING, STATION RD, HISTON, CAMBRIDGE CB24 9LF, ENGLAND 0022-0949 1477-9145 J EXP BIOL J. Exp. Biol. OCT 2018 221 20 UNSP jeb185645 10.1242/jeb.185645 11 Biology Life Sciences & Biomedicine - Other Topics GY5OO WOS:000448628500012 30206107 2018-11-22 J Pietrzak, B; Grzesiuk, M; Dorosz, J; Mikulski, A Pietrzak, Barbara; Grzesiuk, Malgorzata; Dorosz, Julia; Mikulski, Andrzej When males outlive females: Sex-specific effects of temperature on lifespan in a cyclic parthenogen ECOLOGY AND EVOLUTION English Article cyclic parthenogen; Daphnia; longevity; phenotypic plasticity; sex; temperature DAPHNIA-MAGNA; VERTICAL MIGRATION; PHENOTYPIC PLASTICITY; HISTORY PARAMETERS; METABOLIC-ACTIVITY; FOOD CONCENTRATION; LONGEVITY; REPRODUCTION; PREDATION; PULEX Lifespans of males and females frequently differ as a consequence of different life history strategies adopted to maximize fitness. It is well visible in cyclic parthenogens, such as water fleas of the genus Daphnia, where males appear in the population usually only for periods when receptive females are available. Moreover, even within one sex, different life history strategies and mechanisms regulating lifespan may exist. Previous studies suggested that Daphnia males may regulate their lifespan by staying in colder waters than females. We hypothesize that such behavioral mechanism should be associated with stronger reaction to low temperature-that is greater lifespan extension in males than in females. In this study, we monitored survivorship of Daphnia magna females and males of three clonal lines cultured at 16 or 20 degrees C. The results did not provide a species-level corroboration of our hypothesis; instead, they revealed very strong intraspecific differences in the responses of male and female lifespan to temperature change. They further suggest the existence of parallel life history strategies, hypothesis whose tests would bring new insights into the ecology of males in cyclic parthenogens. [Pietrzak, Barbara; Grzesiuk, Malgorzata; Dorosz, Julia; Mikulski, Andrzej] Univ Warsaw, Fac Biol, Biol & Chem Res Ctr, Dept Hydrobiol, Warsaw, Poland Mikulski, A (reprint author), Univ Warsaw, Fac Biol, Biol & Chem Res Ctr, Dept Hydrobiol, Warsaw, Poland. a.mikulski@uw.edu.pl Pietrzak, Barbara/C-3421-2013 Pietrzak, Barbara/0000-0001-5446-6277 Narodowe Centrum Nauki [NN304 138940] Narodowe Centrum Nauki, Grant/Award Number: NN304 138940 Bartosiewicz M, 2015, J PLANKTON RES, V37, P417, DOI 10.1093/plankt/fbu108; Beck CW, 2000, EVOL ECOL RES, V2, P107; Bernatowicz P, 2011, ECOTOX ENVIRON SAFE, V74, P711, DOI 10.1016/j.ecoenv.2010.10.029; Bohrer RN, 1988, FUNCT ECOL, V2, P463, DOI 10.2307/2389389; Bosque T, 2001, J EXP MAR BIOL ECOL, V258, P55, DOI 10.1016/S0022-0981(00)00345-2; Bradley E., 1974, J AM STAT ASSOC, V72, P557; Brewer MC, 1998, PHILOS T ROY SOC B, V353, P805, DOI 10.1098/rstb.1998.0244; Brugnano C, 2009, MAR BIOL, V156, P331, DOI 10.1007/s00227-008-1086-9; Chen HY, 2014, CURR BIOL, V24, P2423, DOI 10.1016/j.cub.2014.08.055; Colbourne JK, 2011, SCIENCE, V331, P555, DOI 10.1126/science.1197761; Congdon JD, 2003, EXP GERONTOL, V38, P765, DOI 10.1016/S0531-5565(03)00106-2; DAVEY RB, 1983, J MED ENTOMOL, V20, P614, DOI 10.1093/jmedent/20.6.614; deMeester L, 1996, EVOLUTION, V50, P1293, DOI 10.1111/j.1558-5646.1996.tb02369.x; DesMeester L., 1993, ECOLOGY, V74, P1467; Dudycha JL, 2013, J PLANKTON RES, V35, P253, DOI 10.1093/plankt/fbt008; Dudycha JL, 1999, EVOLUTION, V53, P1744, DOI 10.1111/j.1558-5646.1999.tb04559.x; Duneau D, 2012, BMC BIOL, V10, DOI 10.1186/1741-7007-10-104; EBERT D, 1993, HEREDITY, V70, P344, DOI 10.1038/hdy.1993.49; Engert A, 2013, CHEMOSPHERE, V90, P2136, DOI 10.1016/j.chemosphere.2012.10.099; Euent S., 2008, ANN ENV SCI, V2, P7; Fedorka KM, 2004, EVOLUTION, V58, P2478; Gillooly JF, 2001, SCIENCE, V293, P2248, DOI 10.1126/science.1061967; Glaholt SP, 2016, J THERM BIOL, V60, P70, DOI 10.1016/j.jtherbio.2016.06.008; Gracey AY, 2004, P NATL ACAD SCI USA, V101, P16970, DOI 10.1073/pnas.0403627101; Gribble KE, 2014, EXP GERONTOL, V51, P28, DOI 10.1016/j.exger.2013.12.005; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Han CS, 2015, ANIM BEHAV, V109, P177, DOI 10.1016/j.anbehav.2015.08.017; Hazzard W., 1990, PRINCIPLES GERIATRIC, P37; HEBERT PDN, 1972, GENETICS, V71, P639; Henning-Lucass N, 2016, ECOL EVOL, V6, P881, DOI 10.1002/ece3.1924; HOBAEK A, 1990, ECOLOGY, V71, P2255, DOI 10.2307/1938637; HOLM S, 1979, SCAND J STAT, V6, P65; Horikawa M, 2015, PLOS GENET, V11, DOI 10.1371/journal.pgen.1005023; Ikuno E, 2008, ENVIRON TOXICOL, V23, P570, DOI 10.1002/tox.20403; Johnston RK, 2016, EXP GERONTOL, V78, P12, DOI 10.1016/j.exger.2016.02.014; Jones OR, 2014, NATURE, V505, P169, DOI 10.1038/nature12789; Keil G, 2015, BIOGERONTOLOGY, V16, P383, DOI 10.1007/s10522-015-9571-2; Kiorboe T, 2015, ECOLOGY, V96, P2225, DOI 10.1890/14-2205.1; KLEIVEN OT, 1992, OIKOS, V65, P197, DOI 10.2307/3545010; KORPELAINEN H, 1986, FRESHWATER BIOL, V16, P615, DOI 10.1111/j.1365-2427.1986.tb01004.x; LAMPERT W, 1989, FUNCT ECOL, V3, P21, DOI 10.2307/2389671; Lampert W., 2011, DAPHNIA DEV MODEL OR; Lampert W, 2012, COMP BIOCHEM PHYS C, V156, P130, DOI 10.1016/j.cbpc.2012.05.004; LeBlanc GA, 2015, FEBS J, V282, P4080, DOI 10.1111/febs.13393; Lurling M, 2006, ACTA HYDROCH HYDROB, V34, P375, DOI 10.1002/aheh.200500634; MacArthur JW, 1929, J EXP ZOOL, V53, P221, DOI 10.1002/jez.1400530205; MacArthur JW, 1929, J EXP ZOOL, V53, P243, DOI 10.1002/jez.1400530206; Machacek J, 2013, HYDROBIOLOGIA, V715, P113, DOI 10.1007/s10750-012-1419-z; Maklakov AA, 2013, BIOESSAYS, V35, P717, DOI 10.1002/bies.201300021; McDougall SJ, 1997, ENTOMOL EXP APPL, V83, P195, DOI 10.1046/j.1570-7458.1997.00172.x; Mikulski A, 2011, J CHEM ECOL, V37, P670, DOI 10.1007/s10886-011-9969-5; Mikulski A, 2009, FUND APPL LIMNOL, V174, P301, DOI 10.1127/1863-9135/2009/0174-0301; Mitchell SE, 2001, HYDROBIOLOGIA, V442, P145, DOI 10.1023/A:1017564105942; Munch SB, 2009, P NATL ACAD SCI USA, V106, P13860, DOI 10.1073/pnas.0900300106; ORCUTT JD, 1984, OECOLOGIA, V63, P300, DOI 10.1007/BF00390657; Pietrzak B, 2013, HYDROBIOLOGIA, V715, P125, DOI 10.1007/s10750-012-1420-6; Pietrzak B, 2010, HYDROBIOLOGIA, V643, P71, DOI 10.1007/s10750-010-0138-6; Pietrzak B, 2010, HYDROBIOLOGIA, V643, P51, DOI 10.1007/s10750-010-0135-9; Podrabsky JE, 2004, J EXP BIOL, V207, P2237, DOI 10.1242/jeb.01016; Promislow D. E. L., 2006, HDB BIOL AGING, P217; REEDE T, 1995, HYDROBIOLOGIA, V307, P207, DOI 10.1007/BF00032014; Schumpert CA, 2016, AGING-US, V8, P402, DOI 10.18632/aging.100909; Schwartz TS, 2016, EXP GERONTOL, V86, P62, DOI 10.1016/j.exger.2016.06.010; Schwarzenberger Anke, 2014, BMC Physiology, V14, P8, DOI 10.1186/s12899-014-0008-y; Sommer S, 2000, ANIM BEHAV, V59, P1087, DOI 10.1006/anbe.2000.1381; Spaak P, 2001, HYDROBIOLOGIA, V442, P185, DOI 10.1023/A:1017578221814; SPITZE K, 1992, AM NAT, V139, P229, DOI 10.1086/285325; Thompson O, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-00835-z; TOLLRIAN R, 1995, ECOLOGY, V76, P1691, DOI 10.2307/1940703; Valenzano DR, 2006, AGING CELL, V5, P275, DOI 10.1111/j.1474-9726.2006.00212.x; Van Voorhies WA, 1999, P NATL ACAD SCI USA, V96, P11399, DOI 10.1073/pnas.96.20.11399; Walsh MR, 2014, INTEGR COMP BIOL, V54, P822, DOI 10.1093/icb/icu078; WEIDER LJ, 1984, LIMNOL OCEANOGR, V29, P225, DOI 10.4319/lo.1984.29.2.0225; Xiao R, 2013, CELL, V152, P806, DOI 10.1016/j.cell.2013.01.020; Zhang B, 2015, CELL REP, V11, P1414, DOI 10.1016/j.celrep.2015.04.066 75 0 0 0 0 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. OCT 2018 8 19 9880 9888 10.1002/ece3.4473 9 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology GY7PA WOS:000448803000027 30386583 DOAJ Gold 2018-11-22 J Richard, R; Foster, S; Giron, D; Casas, J Richard, Romain; Foster, Stephen; Giron, David; Casas, Jerome A host-feeding wasp shares several features of nitrogen management with blood-feeding mosquitoes JOURNAL OF INSECT PHYSIOLOGY English Article Excretion; Uric acid; Parasitoid; Blood-feeding; Life-history strategies; Nutrient budget AEDES-AEGYPTI MOSQUITOS; NUTRIENT DYNAMICS; INSECT HEMOLYMPH; PARASITIC WASP; EGG-PRODUCTION; ALLOCATION; PROTEIN; INSIGHTS Adult feeding on hosts is common among parasitic wasps. The ingested host fluid is rich in nutrients, especially proteins. A study on Eupelmus vuilleti (Hymenoptera: Eupelmidae), a host-feeding parasitoid of larvae of Callosobruchus maculates (F.) (Coleoptera: Bruchidae), showed that the carbohydrates (maybe lipids) but not proteins, gained from host feeding accounted for the increased egg production. Thus, host protein is probably utilized for general adult metabolism, allowing conservation of carbohydrate and/or lipid resources for direct allocation to oocytes. In that case, there should be increased N excretion by female parasitoids. To test this, we studied the dynamics of excretion in E. vuilleti with and without host exposure. The aim of this work was threefold: (i) to identify the major N-containing compounds in adult excreta, (ii) to assess whether protein consumption during host feeding increased the amount of N excreted, and (iii), if so, to compare the increase in N excreted with the amount taken in during a single host feeding. We found that uric acid is the predominant N containing metabolite in excreta, although small quantities of urea and traces of allantoin were also found. A calculation of the N budget showed that the extra quantity of N excreted following a host meal corresponds to the quantity ingested, confirming that host-feeding in this species offers little or no net quantitative benefit in N allocation to oocytes, although the allocation of specific amino acids from host feeding cannot be discounted. Interestingly, host-feeding in parasitoids appears analogous to vertebrate blood-feeding in mosquitoes, both in terms of the N-containing compounds excreted and the offset of acquired N to metabolism, rather than to oocytes. Further comparative and detailed investigations of N excretion in insects living on other N-rich fluids might establish further metabolic commonalities. [Richard, Romain; Giron, David; Casas, Jerome] Univ Tours, CNRS, UMR 7261, IRBI, F-37200 Tours, France; [Foster, Stephen] North Dakota State Univ, SNRS, Dept Entomol, POB 6050, Fargo, ND 58108 USA; [Casas, Jerome] IUF, Paris, France; [Richard, Romain] Natl Sun Yat Sen Univ, 70 Lienhai Rd, Kaohsiung 80424, Taiwan Casas, J (reprint author), Univ Tours, CNRS, UMR 7261, IRBI, F-37200 Tours, France.; Casas, J (reprint author), IUF, Paris, France. casas@univ-tours.fr Casas, Jerome/D-9620-2011 Casas, Jerome/0000-0003-1666-295X projects AGROECO of the Region Centre, France; Fondation de France, France; United States Department of Agriculture [ND02388] The funding of the projects AGROECO of the Region Centre, France (to JC), of the Fondation de France, France (to RR and JC), and of the United States Department of Agriculture Hatch Project ND02388 (to SPF) is acknowledged. Bursell E, 1967, ADV INSECT PHYSIOL, P33, DOI DOI 10.1016/S0065-2806(08)60207-6; Casas J, 2005, ECOLOGY, V86, P545, DOI 10.1890/04-0812; Casas J, 2015, J INSECT PHYSIOL, V79, P27, DOI 10.1016/j.jinsphys.2015.05.005; Development Core Team R, 2011, R LANG ENV STAT COMP; Donini A., 2017, ACID BASE BALANCE NI, P109; FIRLING CE, 1977, J INSECT PHYSIOL, V23, P17, DOI 10.1016/0022-1910(77)90103-2; Fischbein D, 2016, ENTOMOL EXP APPL, V159, P172, DOI 10.1111/eea.12422; Gauthier N, 1999, J INSECT PHYSIOL, V45, P393, DOI 10.1016/S0022-1910(98)00138-3; Giron D, 2004, PHYSIOL ENTOMOL, V29, P436, DOI 10.1111/j.0307-6962.2004.00414.x; Giron D, 2002, FUNCT ECOL, V16, P750, DOI 10.1046/j.1365-2435.2002.00679.x; Godfray H. C. J., 1994, PARASITOIDS BEHAV EV; Heimpel GE, 2017, BIOL CONTROL ECOLOGY; Horvath TD, 2018, FASEB J, V32, P466, DOI 10.1096/fj.201700657R; Isoe J, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0065393; Jervis M. A., 2012, INSECT NATURAL ENEMI; Jervis MA, 2008, ANNU REV ENTOMOL, V53, P361, DOI 10.1146/annurev.ento.53.103106.093433; Klowden MJ, 2013, PHYSIOLOGICAL SYSTEMS IN INSECTS, 3RD EDITION, P1; Mariotti F, 2008, CRIT REV FOOD SCI, V48, P177, DOI 10.1080/10408390701279749; Muller D, 2017, J INSECT PHYSIOL, V101, P123, DOI 10.1016/j.jinsphys.2017.07.011; Petchampai N, 2016, ADV INSECT PHYSIOL, V51, P363, DOI 10.1016/bs.aiip.2016.04.002; Quicke D. L. J., 1997, PARASITIC WASPS; Richard R, 2009, ECOL MONOGR, V79, P465, DOI 10.1890/08-1566.1; Rivero A, 1999, P ROY SOC B-BIOL SCI, V266, P1169, DOI 10.1098/rspb.1999.0759; Rivero A, 2001, P ROY SOC B-BIOL SCI, V268, P1231, DOI 10.1098/rspb.2001.1645; Scaraffia PY, 2008, P NATL ACAD SCI USA, V105, P518, DOI 10.1073/pnas.0708098105; Strand Michael R., 2008, P113, DOI 10.1002/9780470696200.ch6; Wajnberg E., 2008, BEHAV ECOLOGY INSECT; Werren JH, 2010, SCIENCE, V327, P343, DOI 10.1126/science.1178028; WYATT GR, 1961, ANNU REV ENTOMOL, V6, P75, DOI 10.1146/annurev.en.06.010161.000451; WYATT GR, 1956, J GEN PHYSIOL, V39, P853, DOI 10.1085/jgp.39.6.853; Zhou GL, 2004, J INSECT PHYSIOL, V50, P337, DOI 10.1016/j.jinsphys.2004.02.003 31 0 0 4 4 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0022-1910 1879-1611 J INSECT PHYSIOL J. Insect Physiol. OCT 2018 110 1 5 10.1016/j.jinsphys.2018.08.005 5 Entomology; Physiology; Zoology Entomology; Physiology; Zoology GX2VB WOS:000447577100001 30118747 2018-11-22 J Bruijning, M; ten Berge, ACM; Jongejans, E Bruijning, Marjolein; ten Berge, Anne C. M.; Jongejans, Eelke Population-level responses to temperature, density and clonal differences in Daphnia magna as revealed by integral projection modelling FUNCTIONAL ECOLOGY English Article density dependence; integral projection models; integration across the life cycle; life-history strategies; population model; thermal tolerance; trade-offs; vital rates ECO-EVOLUTIONARY DYNAMICS; LIFE-HISTORY; RAPID EVOLUTION; CLIMATE-CHANGE; PHENOTYPIC PLASTICITY; STRUCTURED POPULATION; ENVIRONMENTAL-CHANGE; ECOLOGICAL DYNAMICS; PARTICLE TRACKING; TRAIT EVOLUTION 1. Raising global temperatures are predicted to have strong consequences for ectotherms, as metabolic rates depend directly on external temperatures. To understand consequences for population fitness, a full life cycle approach is important because (a) temperature can have opposite effects on different vital rates (growth, survival, reproduction) and (b) sensitivities of population growth rate to changes in vital rates can vary in magnitude. As vital rates are concurrently influenced by other factors, adequately predicting temperature effects requires factors such as body size, population density and genetics to be taken into account. 2. The aim of this study was to quantify the role of temperature on all vital rates of Daphnia magna individuals and their integrated effects on population dynamics. In addition, we evaluated how clonal lineages differed in their temperature response, both on the vital rate and population level. 3. We performed a laboratory experiment, in which we followed 40 populations (five clonal lineages x eight temperatures) during 80 days. Due to our novel set-up, we were able to quantify vital rates of individuals within those populations. We identified relations between vital rates and body size, lineage, temperature and population density and used a size-structured integral projection model to integrate the experimental effects over all vital rates. 4. We found negative density dependence in growth and reproduction, resulting in lineage-specific carrying capacities. Population fitness showed a thermal optimum that differed among genotypes. It is interesting that we found that clones had different life-history strategies, optimizing population fitness via different routes. As no lineage outperformed the others in all vital rates, we identified trade-offs between vital rates, which had strong effects on the dynamics of the population. Moreover, simulations suggest that the genetic composition of mixed populations is temperature-dependent. 5. Our results underscore the importance of studying individuals within their population when predicting responses to environmental change. The observed density effects, which were as strong as temperature effects but explained considerably more variation in population growth, would have been overlooked in life table experiments. Furthermore, differential temperature responses emphasize the importance of genetic variation in the ability of ectotherm species such as Daphnia magna to respond to climate change. [Bruijning, Marjolein; ten Berge, Anne C. M.; Jongejans, Eelke] Radboud Univ Nijmegen, Dept Anim Ecol & Physiol, Nijmegen, Netherlands Bruijning, M (reprint author), Radboud Univ Nijmegen, Dept Anim Ecol & Physiol, Nijmegen, Netherlands. M.Bruijning@science.ru.nl Jongejans, Eelke/0000-0003-1148-7419 [Anonymous], 1980, METH BEOORD VER WAT; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; ATKINSON D, 1995, J THERM BIOL, V20, P61, DOI 10.1016/0306-4565(94)00028-H; Barton K, 2016, R PACKAGE VERSION, V1, P6, DOI DOI 10.18637/JSS.V067.I01; Becks L, 2012, ECOL LETT, V15, P492, DOI 10.1111/j.1461-0248.2012.01763.x; Brooks ME, 2016, J ANIM ECOL, V85, P318, DOI 10.1111/1365-2656.12465; Bruijning M., 2018, DATA POPULATION LEVE, DOI [10. 17026/dans-2b8-gx7j, DOI 10.17026/DANS-2B8-GX7J)]; Bruijning M, 2018, METHODS ECOL EVOL, V9, P965, DOI 10.1111/2041-210X.12975; Burnham KP, 2004, SOCIOL METHOD RES, V33, P261, DOI 10.1177/0049124104268644; Burnham KP, 2002, MODEL SELECTION MULT; Cameron TC, 2013, ECOL LETT, V16, P754, DOI 10.1111/ele.12107; CARVALHO GR, 1987, J ANIM ECOL, V56, P469, DOI 10.2307/5061; Chevin LM, 2015, METHODS ECOL EVOL, V6, P981, DOI 10.1111/2041-210X.12389; Chevin LM, 2013, FUNCT ECOL, V27, P966, DOI 10.1111/j.1365-2435.2012.02043.x; Colbourne JK, 2011, SCIENCE, V331, P555, DOI 10.1126/science.1197761; Coulson T, 2011, SCIENCE, V334, P1275, DOI 10.1126/science.1209441; de Kroon H, 2000, ECOLOGY, V81, P607, DOI 10.1890/0012-9658(2000)081[0607:EAROMA]2.0.CO;2; De Meester L, 2011, INTEGR COMP BIOL, V51, P703, DOI 10.1093/icb/icr027; DEMEESTER L, 1995, NATURE, V378, P483; Duchet C, 2010, ECOTOXICOLOGY, V19, P1224, DOI 10.1007/s10646-010-0507-y; Dudycha JL, 1999, EVOLUTION, V53, P1744, DOI 10.1111/j.1558-5646.1999.tb04559.x; Ellner S. P., 2016, DATA DRIVEN MODELLIN, DOI [10. 1007/978-3-319-28893-2, DOI 10.1007/978-3-319-28893-2]; Ellner SP, 2006, AM NAT, V167, P410, DOI 10.1086/499438; Ellner SP, 2011, ECOL LETT, V14, P603, DOI 10.1111/j.1461-0248.2011.01616.x; FRANK PETER W., 1957, PHYSIOL ZOOL, V30, P287; Gabsi F, 2014, ANN LIMNOL-INT J LIM, V50, P9, DOI 10.1051/limn/2013067; Geerts AN, 2015, NAT CLIM CHANGE, V5, P665, DOI 10.1038/NCLIMATE2628; Giebelhausen B, 2001, FRESHWATER BIOL, V46, P281, DOI 10.1046/j.1365-2427.2001.00630.x; Gienapp P, 2008, MOL ECOL, V17, P167, DOI 10.1111/j.1365-294X.2007.03413.x; GLIWICZ ZM, 1990, NATURE, V343, P638, DOI 10.1038/343638a0; GOSER B, 1994, OECOLOGIA, V98, P354, DOI 10.1007/BF00324224; Grueber CE, 2011, J EVOLUTION BIOL, V24, P699, DOI 10.1111/j.1420-9101.2010.02210.x; GUISANDE C, 1993, FRESHWATER BIOL, V29, P463, DOI 10.1111/j.1365-2427.1993.tb00780.x; Gust KA, 2016, ECOTOXICOLOGY, V25, P1126, DOI 10.1007/s10646-016-1667-1; Hairston NG, 1999, NATURE, V401, P446, DOI 10.1038/46731; Henning-Lucass N, 2016, ECOL EVOL, V6, P881, DOI 10.1002/ece3.1924; Hoefnagel KN, 2018, ECOL EVOL, V8, P3828, DOI 10.1002/ece3.3933; Hoeting JA, 1999, STAT SCI, V14, P382; Hoffmann AA, 2011, NATURE, V470, P479, DOI 10.1038/nature09670; Huey RB, 2001, AM NAT, V158, P204, DOI 10.1086/321314; Jansen M, 2011, ECOTOXICOLOGY, V20, P543, DOI 10.1007/s10646-011-0627-z; Jaqaman K, 2008, NAT METHODS, V5, P695, DOI 10.1038/nmeth.1237; Jimenez-Melero R, 2013, FRESHWATER BIOL, V58, P1221, DOI 10.1111/fwb.12122; Jongejans E, 2011, ECOLOGY, V92, P86, DOI 10.1890/09-2226.1; Kingsolver JG, 2008, EVOL ECOL RES, V10, P251; KLEIVEN OT, 1992, OIKOS, V65, P197, DOI 10.2307/3545010; Lavergne S, 2010, ANNU REV ECOL EVOL S, V41, P321, DOI 10.1146/annurev-ecolsys-102209-144628; Lukacs PM, 2010, ANN I STAT MATH, V62, P117, DOI 10.1007/s10463-009-0234-4; Lurling M, 2010, WATER RES, V44, P309, DOI 10.1016/j.watres.2009.09.034; MacArthur JW, 1929, J EXP ZOOL, V53, P221, DOI 10.1002/jez.1400530205; MADIGAN D, 1994, J AM STAT ASSOC, V89, P1535, DOI 10.2307/2291017; McLean N, 2016, ECOL LETT, V19, P595, DOI 10.1111/ele.12599; Metcalf CJE, 2007, TRENDS ECOL EVOL, V22, P205, DOI 10.1016/j.tree.2006.12.001; Mitchell SE, 2000, J EVOLUTION BIOL, V13, P371; Ozgul A, 2012, AM NAT, V179, P582, DOI 10.1086/664999; Ozgul A, 2010, NATURE, V466, P482, DOI 10.1038/nature09210; Pantel JH, 2015, ECOL LETT, V18, P992, DOI 10.1111/ele.12480; Pelletier F, 2009, PHILOS T R SOC B, V364, P1483, DOI 10.1098/rstb.2009.0027; Pelletier F, 2007, SCIENCE, V315, P1571, DOI 10.1126/science.1139024; Pelletier F, 2012, P ROY SOC B-BIOL SCI, V279, P394, DOI 10.1098/rspb.2011.0827; Pietrzak B, 2011, J LIMNOL, V70, P345, DOI 10.3274/JL11-70-2-18; R Core Team, 2016, R LANG ENV STAT COMP; Raftery AE, 1997, J AM STAT ASSOC, V92, P179, DOI 10.2307/2291462; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Ronget V, 2017, TRENDS ECOL EVOL, V32, P909, DOI 10.1016/j.tree.2017.09.003; Salguero-Gomez R, 2010, AM NAT, V176, P710, DOI 10.1086/657044; Schoener TW, 2011, SCIENCE, V331, P426, DOI 10.1126/science.1193954; Smallegange IM, 2013, TRENDS ECOL EVOL, V28, P143, DOI 10.1016/j.tree.2012.07.021; Sommer S, 2016, J LIMNOL, V75, P30, DOI 10.4081/jlimnol.2016.1292; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stoks R, 2016, ECOL LETT, V19, P180, DOI 10.1111/ele.12551; Traill LW, 2014, P NATL ACAD SCI USA, V111, P13223, DOI 10.1073/pnas.1407508111; Turcotte MM, 2013, AM NAT, V181, pS46, DOI 10.1086/668078; Turcotte MM, 2011, ECOL LETT, V14, P1084, DOI 10.1111/j.1461-0248.2011.01676.x; van Benthem KJ, 2017, METHODS ECOL EVOL, V8, P75, DOI 10.1111/2041-210X.12627; Van Doorslaer W, 2010, CLIM RES, V43, P81, DOI 10.3354/cr00894; Van Doorslaer W, 2009, EVOLUTION, V63, P1867, DOI 10.1111/j.1558-5646.2009.00679.x; Villellas J, 2015, ECOL LETT, V18, P1139, DOI 10.1111/ele.12505; WOOD SN, 1994, ECOL MONOGR, V64, P23, DOI 10.2307/2937054; Yampolsky LY, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2744; Yang YH, 2007, ECONOMET THEOR, V23, P1, DOI 10.1017/S0266466607070016 81 0 0 17 17 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. OCT 2018 32 10 2407 2422 10.1111/1365-2435.13192 16 Ecology Environmental Sciences & Ecology GV7PX WOS:000446322200013 2018-11-22 J Cereghino, R; Pillar, VD; Srivastava, DS; de Omena, PM; MacDonald, AAM; Barberis, IM; Corbara, B; Guzman, LM; Leroy, C; Bautista, FO; Romero, GQ; Trzcinski, MK; Kratina, P; Debastiani, VJ; Goncalves, AZ; Marino, NAC; Farjalla, VF; Richardson, BA; Richardson, MJ; Dezerald, O; Gilbert, B; Petermann, J; Talaga, S; Piccoli, GCO; Jocque, M; Montero, G Cereghino, Regis; Pillar, Valerio D.; Srivastava, Diane S.; de Omena, Paula M.; MacDonald, A. Andrew M.; Barberis, Ignacio M.; Corbara, Bruno; Guzman, Laura M.; Leroy, Celine; Ospina Bautista, Fabiola; Romero, Gustavo Q.; Trzcinski, M. Kurtis; Kratina, Pavel; Debastiani, Vanderlei J.; Goncalves, Ana Z.; Marino, Nicholas A. C.; Farjalla, Vinicius F.; Richardson, Barbara A.; Richardson, Michael J.; Dezerald, Olivier; Gilbert, Benjamin; Petermann, Jana; Talaga, Stanislas; Piccoli, Gustavo C. O.; Jocque, Merlijn; Montero, Guillermo Constraints on the functional trait space of aquatic invertebrates in bromeliads FUNCTIONAL ECOLOGY English Article aquatic invertebrates; ecological strategies; functional diversity; functional trait space; niche hypervolume HABITAT; ECOLOGY; COMMUNITIES; DIVERSITY; NICHES; MACROINVERTEBRATES; ANIMALS; DRIVERS; TEMPLET; SYSTEMS 1. Functional traits are commonly used in predictive models that link environmental drivers and community structure to ecosystem functioning. A prerequisite is to identify robust sets of continuous axes of trait variation, and to understand the ecological and evolutionary constraints that result in the functional trait space occupied by interacting species. Despite their diversity and role in ecosystem functioning, little is known of the constraints on the functional trait space of invertebrate biotas of entire biogeographic regions. 2. We examined the ecological strategies and constraints underlying the realized trait space of aquatic invertebrates, using data on 12 functional traits of 852 taxa collected in tank bromeliads from Mexico to Argentina. Principal Component Analysis was used to reduce trait dimensionality to significant axes of trait variation, and the proportion of potential trait space that is actually occupied by all taxa was compared to null model expectations. Permutational Analyses of Variance were used to test whether trait combinations were clade-dependent. 3. The major axes of trait variation represented life-history strategies optimizing resource use and antipredator adaptations. There was evidence for trophic, habitat, defence and life-history niche axes. Bromeliad invertebrates only occupied 16%-23% of the potential space within these dimensions, due to greater concentrations than predicted under uniform or normal distributions. Thus, despite high taxonomic diversity, invertebrates only utilized a small number of successful ecological strategies. 4. Empty areas in trait space represented gaps between major phyla that arose from biological innovations, and trait combinations that are unviable in the bromeliad ecosystem. Only a few phylogenetically distant genera were neighbouring in trait space. Trait combinations aggregated taxa by family and then by order, suggesting that niche conservatism was a widespread mechanism in the diversification of ecological strategies. [Cereghino, Regis; MacDonald, A. Andrew M.] Univ Toulouse, CNRS, ECOLAB, Toulouse, France; [Pillar, Valerio D.; Debastiani, Vanderlei J.] Univ Fed Rio Grande do Sul, Dept Ecol, Porto Alegre, RS, Brazil; [Pillar, Valerio D.; Debastiani, Vanderlei J.] Univ Fed Rio Grande do Sul, Grad Program Ecol, Porto Alegre, RS, Brazil; [Srivastava, Diane S.; Guzman, Laura M.] Univ British Columbia, Dept Zool, Vancouver, BC, Canada; [Srivastava, Diane S.; Guzman, Laura M.] Univ British Columbia, Biodivers Res Ctr, Vancouver, BC, Canada; [de Omena, Paula M.; Romero, Gustavo Q.] Univ Estadual Campinas, Inst Biol, Dept Anim Biol, Lab Multitroph Interact & Biodivers, Campinas, SP, Brazil; [MacDonald, A. Andrew M.] Ctr Synth & Anal Biodivers CESAB FRB, Aix En Provence, France; [Barberis, Ignacio M.] Univ Nacl Rosario, Inst Invest Ciencias Agr, Fac Ciencias Agr, Zavalla, Argentina; [Corbara, Bruno] Univ Clermont Auvergne, Lab Microorganismes Genome & Environm, Aubiere, France; [Leroy, Celine] Univ Montpellier, CNRS, INRA, AMAP,IRD,CIRAD, Montpellier, France; [Leroy, Celine] ECOFOG, Campus Agron, Kourou, France; [Ospina Bautista, Fabiola] Andes Univ, Dept Biol Sci, Bogota, Colombia; [Trzcinski, M. Kurtis] Univ British Columbia, Dept Forest & Conservat Sci, Vancouver, BC, Canada; [Kratina, Pavel] Queen Mary Univ London, Sch Biol & Chem Sci, London, England; [Goncalves, Ana Z.] Univ Sao Paulo, Biosci Inst, Dept Bot, Sao Paulo, Brazil; [Marino, Nicholas A. C.; Farjalla, Vinicius F.] Univ Fed Rio De Janeiro, Inst Biol, Dept Ecol, Rio De Janeiro, RJ, Brazil; [Marino, Nicholas A. C.] Univ Fed Rio De Janeiro, Programa Posgrad Ecol, Rio De Janeiro, RJ, Brazil; [Richardson, Barbara A.; Richardson, Michael J.] Univ Puerto Rico, Inst Trop Ecosyst Studies, Luquillo LTER, San Juan, PR 00936 USA; [Dezerald, Olivier] Univ Lorraine, CNRS, Lab Interdisciplinaire Environm Continentau, Metz, France; [Gilbert, Benjamin] Univ Toronto, Dept Ecol & Evolutionary Biol, Toronto, ON, Canada; [Petermann, Jana] Berlin Brandenburg Inst Adv Biodivers Res, Berlin, Germany; [Petermann, Jana] Univ Salzburg, Dept Biosci, Salzburg, Austria; [Talaga, Stanislas] Inst Pasteur Guyane, Unite Entomol Med, Cayenne, France; [Piccoli, Gustavo C. O.] Univ Sao Paulo State, Dept Zool & Bot, Sao Jose Do Rio Preto, SP, Brazil; [Jocque, Merlijn] Royal Belgian Inst Nat Sci, Aquat & Terr Ecol, Brussels, Belgium; [Montero, Guillermo] Univ Nacl Rosario, Fac Ciencias Agr, Zavalla, Argentina Cereghino, R (reprint author), Univ Toulouse, CNRS, ECOLAB, Toulouse, France. regis.cereghino@univ-tlse3.fr Pillar, Valerio/0000-0001-6408-2891; Gilbert, Benjamin/0000-0002-4947-6822; Barberis, Ignacio Martin/0000-0002-6605-9270 CESAB-FRB; Labex CEBA [ANR-10-LABX-25-01]; BPE-FAPESP [2016/01209-9]; CNPq-Brazil [307689/2014-0, 401345/2014-9]; Royal Society of Edinburgh; Carnegie Trust for the Universities of Scotland; US NSF [DEB-0218039, DEB-0620910]; USDA IITF [01-1G11120101-001]; Saba Conservation Foundation; PNPD-CAPES [2014/04603-4, 20130877] CESAB-FRB; Labex CEBA, Grant/Award Number: ANR-10-LABX-25-01; BPE-FAPESP, Grant/Award Number: 2016/01209-9; CNPq-Brazil, Grant/Award Number: 307689/2014-0 and 401345/2014-9; Royal Society of Edinburgh; Carnegie Trust for the Universities of Scotland; US NSF, Grant/Award Number: DEB-0218039 and DEB-0620910; USDA IITF, Grant/Award Number: 01-1G11120101-001; Saba Conservation Foundation; PNPD-CAPES, Grant/Award Number: 2014/04603-4 and 20130877 Amundrud SL, 2015, ECOLOGY, V96, P1957, DOI 10.1890/14-1828.1; Armitage P. D, 1995, CHIRONOMIDAE BIOL EC, VXII, DOI [10.1007/978-94-011-0715-0, DOI 10.1007/978-94-011-0715-0]; Barnes R. S. K., 2009, INVERTEBRATES SYNTHE; BENTLEY MD, 1989, ANNU REV ENTOMOL, V34, P401, DOI 10.1146/annurev.en.34.010189.002153; Benzing D. H., 2000, BROMELIACEAE PROFILE, DOI [10.1017/CBO9780511565175, DOI 10.1017/CBO9780511565175]; Blonder B., 2017, ECOGRAPHY, V40, P1; Borcard D, 2011, USE R, P1, DOI 10.1007/978-1-4419-7976-6; Borges RM, 2008, PLANT SIGNAL BEHAV, V3, P367, DOI 10.4161/psb.3.6.5823; Brandl SJ, 2014, J ANIM ECOL, V83, P661, DOI 10.1111/1365-2656.12171; Brouard O, 2012, FRESHWATER BIOL, V57, P815, DOI 10.1111/j.1365-2427.2012.02749.x; Brown B, 2009, AIP CONF PROC, V1140, P1, DOI 10.1063/1.3183523; Cereghino R, 2011, FUNCT ECOL, V25, P954, DOI 10.1111/j.1365-2435.2011.01863.x; CHEVENET F, 1994, FRESHWATER BIOL, V31, P295, DOI 10.1111/j.1365-2427.1994.tb01742.x; Cornwell WK, 2006, ECOLOGY, V87, P1465, DOI 10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2; Dezerald O, 2017, FRESHWATER BIOL, V62, P229, DOI 10.1111/fwb.12862; Dezerald O, 2015, FRESHWATER BIOL, V60, P1917, DOI 10.1111/fwb.12621; Dezerald O, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0071735; Diaz S, 2016, NATURE, V529, P167, DOI 10.1038/nature16489; Doledec S., 1998, B N AM BENTHOLOGICAL, V15, P154; Dray S, 2015, PLANT ECOL, V216, P657, DOI 10.1007/s11258-014-0406-z; Dwyer JM, 2017, ECOL LETT, V20, P872, DOI 10.1111/ele.12781; Flenner I, 2009, ECOL ENTOMOL, V34, P735, DOI 10.1111/j.1365-2311.2009.01129.x; Frank J.H., 2009, Terrestrial Arthropod Reviews, V1, P125; Gonzalez A.L., 2017, FRONTIERS ECOLOGY EV, V5, P1, DOI [10. 3389/fevo. 2017. 00110, DOI 10.3389/FEVO.2017.00110, 10.3389/fevo.2017.00110]; Gullan PJ, 2014, INSECTS OUTLINE ENTO; HUTCHINSON GE, 1959, AM NAT, V93, P145, DOI 10.1086/282070; Kitching R. L., 2000, FOOD WEBS CONTAINER, DOI [10. 1017/CBO9780511542107, DOI 10.1017/CB09780511542107]; LAESSLE AM, 1961, ECOLOGY, V42, P499, DOI 10.2307/1932236; Leimar O, 2001, SELECTION, V2, P65, DOI DOI 10.1556/SELECT.2.2001.1-2.5; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; MERRITT R. W., 1996, INTRO AQUATIC INSECT; Moretti M, 2017, FUNCT ECOL, V31, P558, DOI 10.1111/1365-2435.12776; OLIVER DR, 1971, ANNU REV ENTOMOL, V16, P211, DOI 10.1146/annurev.en.16.010171.001235; PECKARSKY BL, 1982, BIOSCIENCE, V32, P261, DOI 10.2307/1308532; Petermann JS, 2015, ECOLOGY, V96, P428, DOI 10.1890/14-0304.1; Pianka ER, 2017, AM NAT, V190, P601, DOI 10.1086/693781; Pillar VD, 1999, J VEG SCI, V10, P895, DOI 10.2307/3237314; Podani J, 2005, J VEG SCI, V16, P497, DOI 10.1658/1100-9233(2005)16[497:MEAOOD]2.0.CO;2; Podani J, 2009, COMMUNITY ECOL, V10, P244, DOI 10.1556/ComEc.10.2009.2.15; Poff NL, 2006, J N AM BENTHOL SOC, V25, P730, DOI 10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2; RAUP DAVID M., 1966, J PALEONTOL, V40, P1178; Richardson BA, 2000, J TROP ECOL, V16, P167, DOI 10.1017/S0266467400001346; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; Srivastava DS, 2004, TRENDS ECOL EVOL, V19, P379, DOI 10.1016/j.tree.2004.04.010; Stearns S., 1992, EVOLUTION LIFE HIST; Tachet H, 2010, INVERTEBRES EAU DOUC; Thorp J. H., 2014, THORP COVICHS FRESHW; Tomanova S, 2007, FUND APPL LIMNOL, V170, P243, DOI 10.1127/1863-9135/2007/0170-0243; TOWNSEND CR, 1994, FRESHWATER BIOL, V31, P265, DOI 10.1111/j.1365-2427.1994.tb01740.x; Ulloa CU, 2017, SCIENCE, V358, P1614, DOI 10.1126/science.aao0398; Usseglio-Polatera P, 2000, FRESHWATER BIOL, V43, P175, DOI 10.1046/j.1365-2427.2000.00535.x; Vellend M, 2014, OIKOS, V123, P1420, DOI 10.1111/oik.01493; Vinogradova E. B., 2007, DIAPAUSE AQUATIC INV, P83; Violle C, 2014, P NATL ACAD SCI USA, V111, P13690, DOI 10.1073/pnas.1415442111; Wainwright PC, 2016, INTEGR COMP BIOL, V56, P479, DOI 10.1093/icb/icw081; Wilman H, 2014, ECOLOGY, V95, P2027, DOI DOI 10.1890/13-1917.1; Winemiller KO, 2015, ECOL LETT, V18, P737, DOI 10.1111/ele.12462 57 0 0 3 3 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. OCT 2018 32 10 2435 2447 10.1111/1365-2435.13141 13 Ecology Environmental Sciences & Ecology GV7PX WOS:000446322200015 2018-11-22 J Simler, AB; Metz, MR; Frangioso, KM; Meentemeyer, RK; Rizzo, DM Simler, Allison B.; Metz, Margaret R.; Frangioso, Kerri M.; Meentemeyer, Ross K.; Rizzo, David M. Novel disturbance interactions between fire and an emerging disease impact survival and growth of resprouting trees ECOLOGY English Article biological legacies; coast redwood; compounded disturbance; emerging infectious disease; Phytophthora ramorum; sudden oak death; tanoak; vegetative reproduction; wildfire SUDDEN OAK DEATH; PHYTOPHTHORA-RAMORUM; ARBUTUS-UNEDO; WOODY-PLANTS; CROWN FIRE; FOREST; PERSISTENCE; CALIFORNIA; REGENERATION; COMMUNITIES Human-altered ecological disturbances may challenge system resilience and disrupt biological legacies maintaining ecosystem recovery. Yet, the extent to which novel regimes challenge these legacies varies. This may be partially explained by differences in the vulnerability of life history strategies to disturbance characteristics. In the fire-prone, resprouter-dominated coast redwood forests of California, the introduced disease sudden oak death (SOD) alters fuel profiles, fire behavior, and aboveground tree mortality; however, this system is dominated by resprouting trees that are well-adapted to aboveground damage, and belowground survival of individuals may represent the principal biological legacy connecting pre- and post-fire communities. Much of the research exploring altered disturbances and forest recovery has focused on legacies determined by seed dispersal and aboveground survival of adults. In this work, we use pre- and post-fire data from a long-term monitoring network to assess the impacts of novel disturbance interactions between wildfire and SOD on the belowground survival and vegetative reproduction of resprouters. We found that increasing accumulation of coarse woody surface fuels from SOD-killed hosts decreased the likelihood of belowground survival for resprouting tanoak trees, but not for redwoods. Tanoaks' belowground survival was negatively related to substrate burn severity, which increased with the volume of surface fuels from hosts, suggesting heat damage as a possible mechanism influencing altered patterns of resprouter mortality. These impacts increased with decreasing tree size. By contrast, redwood and tanoak trees that survived both disturbances resprouted more vigorously, regardless of post-fire infection by P.ramorum, and generated similar recruitment at the stand level. Our results demonstrate that disease-fire interactions can narrow recruitment filters for resprouters, which could impact long-term population and demographic structure; yet, compounded disturbance may also reduce stand density and disease pressure, allowing competitive release of survivors. Resprouters displayed vulnerabilities to altered disturbance, but our research suggests that legacies maintained by resprouting may be more resilient to certain compounded disturbances, compared to seed-obligate species, because of high rates of individual survival under increasingly severe events. These trends have important implications for conservation of declining tree species in SOD-impacted forests, as well as predictions of human impacts in other disturbance-prone systems where resprouters are present. [Simler, Allison B.; Frangioso, Kerri M.; Rizzo, David M.] Univ Calif Davis, Dept Plant Pathol, Davis, CA 95616 USA; [Metz, Margaret R.] Lewis & Clark Coll, Dept Biol, Portland, OR 97219 USA; [Meentemeyer, Ross K.] North Carolina State Univ, Dept Forestry & Environm Resources, Raleigh, NC 27695 USA; [Meentemeyer, Ross K.] North Carolina State Univ, Ctr Geospatial Analyt, Raleigh, NC 27695 USA Simler, AB (reprint author), Univ Calif Davis, Dept Plant Pathol, Davis, CA 95616 USA. absimler@ucdavis.edu NSF-NIH Ecology and Evolution of Infectious Diseases program [DEB-1115664]; USDA Forest Service Pacific Southwest Research Station; USDA Forest Service Forest Health Protection, State and Private Forestry; Gordon and Betty Moore Foundation; NSF Graduate Research Fellowship We thank Heather Mehl, Richard Cobb, Tyler Bourret, Clay DeLong, Becky Hendricks, Joe DiRenzo, Izzy Miller, and many other members of the Rizzo Lab for field and laboratory support for this research. This manuscript benefited greatly from thoughtful advice provided by Malcolm North and feedback from two anonymous reviewers. We thank California State Parks, Los Padres National Forest, University of California Natural Reserve System, and numerous private landowners in Big Sur for facilitating research access. Further, this work would not have been possible without support provided by Feynner Arias, Sean McStay, Mark Readdie, and Landels-Hill Big Creek Reserve. This research was funded by the NSF-NIH Ecology and Evolution of Infectious Diseases program (DEB-1115664), USDA Forest Service Pacific Southwest Research Station, USDA Forest Service Forest Health Protection, State and Private Forestry, the Gordon and Betty Moore Foundation, and an NSF Graduate Research Fellowship awarded to A. Simler. Beh MM, 2012, NEW PHYTOL, V196, P1145, DOI 10.1111/j.1469-8137.2012.04352.x; Bellingham PJ, 2000, OIKOS, V89, P409, DOI 10.1034/j.1600-0706.2000.890224.x; Bond WJ, 2001, TRENDS ECOL EVOL, V16, P45, DOI 10.1016/S0169-5347(00)02033-4; Buma B, 2015, ECOSPHERE, V6, DOI 10.1890/ES15-00058.1; Buma B, 2011, ECOSPHERE, V2, DOI 10.1890/ES11-00038.1; Canadell J, 1998, FUNCT ECOL, V12, P31, DOI 10.1046/j.1365-2435.1998.00154.x; CANADELL J, 1991, VEGETATIO, V95, P119; Clarke PJ, 2013, NEW PHYTOL, V197, P19, DOI 10.1111/nph.12001; Clarke PJ, 2009, J ECOL, V97, P1374, DOI 10.1111/j.1365-2745.2009.01556.x; Clarke PJ, 2005, J ECOL, V93, P544, DOI 10.1111/j.1365-2745.2005.00971.x; Davidson J. M., 2003, PLANT HLTH PROGR, DOI [10.1094/PHP-2003-0707-01-DG, DOI 10.1094/PHP-2003-0707-01-DG]; Davidson JM, 2005, PHYTOPATHOLOGY, V95, P587, DOI 10.1094/PHYTO-95-0587; Davis FW, 2006, FIRE IN CALIFORNIA'S ECOSYSTEMS, P321; Davis FW, 2010, FOREST ECOL MANAG, V259, P2342, DOI 10.1016/j.foreco.2010.03.007; Dietze MC, 2008, ECOL MONOGR, V78, P331, DOI 10.1890/07-0271.1; Dileo MV, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098195; Enright NJ, 2011, PLANT ECOL, V212, P2071, DOI 10.1007/s11258-011-9970-7; Fairman TA, 2017, J VEG SCI, V28, P1151, DOI 10.1111/jvs.12575; FRANKLIN J F, 1990, Transactions of the North American Wildlife and Natural Resources Conference, P216; Frelich L. E., 2002, FOREST DYNAMICS DIST; Fusco EJ, 2016, ECOL APPL, V26, P2388, DOI 10.1002/eap.1395; Garboletto M., 2002, PSWGTR184, P811; Gelman A, 1992, STAT SCI, V7, P457, DOI DOI 10.1214/SS/1177011136; Grunwald NJ, 2012, TRENDS MICROBIOL, V20, P131, DOI 10.1016/j.tim.2011.12.006; Harvey BJ, 2014, ECOL APPL, V24, P1608, DOI 10.1890/13-1851.1; Harvey BJ, 2013, ECOLOGY, V94, P2475, DOI 10.1890/13-0188.1; Henson P., 1996, NATURAL HIST BIG SUR; Higgins SI, 2008, J ECOL, V96, P679, DOI 10.1111/j.1365-2745.2008.01391.x; Johnstone JF, 2016, FRONT ECOL ENVIRON, V14, P369, DOI 10.1002/fee.1311; Johnstone JF, 2010, GLOBAL CHANGE BIOL, V16, P1281, DOI 10.1111/j.1365-2486.2009.02051.x; Keeley JE, 2002, ENVIRON MANAGE, V29, P395, DOI [10.1007/s00267-001-0034-Y, 10.1004/s0267-001-0034-Y]; Keeley Jon E., 2006, Madrono, V53, P373, DOI 10.3120/0024-9637(2006)53[373:FSAPAI]2.0.CO;2; Konstantinidis P, 2006, FOREST ECOL MANAG, V225, P359, DOI 10.1016/j.foreco.2006.01.011; Kulakowski D, 2013, J VEG SCI, V24, P168, DOI 10.1111/j.1654-1103.2012.01437.x; Kuljian H, 2010, FOREST ECOL MANAG, V259, P2103, DOI 10.1016/j.foreco.2010.02.022; Maloney PE, 2005, J ECOL, V93, P899, DOI 10.1111/j.1365-2745.2005.01031.x; McPherson BA, 2010, FOREST ECOL MANAG, V259, P2248, DOI 10.1016/j.foreco.2010.02.020; Metz M., 2017, FOREST PHYTOPHTHORAS, V7, P30; Metz MR, 2013, ECOLOGY, V94, P2152, DOI 10.1890/13-0915.1; Metz MR, 2011, ECOL APPL, V21, P313, DOI 10.1890/10-0419.1; O'Hara KL, 2017, FORESTS, V8, DOI 10.3390/f8050144; Odion DC, 2000, ECOL MONOGR, V70, P149, DOI 10.1890/0012-9615(2000)070[0149:FSHATF]2.0.CO;2; Orville RE, 2008, B AM METEOROL SOC, V89, P180, DOI 10.1175/BAMS-89-2-180; Paniw M, 2018, J PLANT ECOL, V11, P475, DOI 10.1093/jpe/rtx019; Parke JL, 2007, PHYTOPATHOLOGY, V97, P1558, DOI 10.1094/PHYTO-97-12-1558; Pausas JG, 1997, J VEG SCI, V8, P703, DOI 10.2307/3237375; Pausas JG, 2016, NEW PHYTOL, V209, P945, DOI 10.1111/nph.13644; Premoli AC, 2005, MOL ECOL, V14, P2319, DOI 10.1111/j.1365-294X.2005.02629.x; R Core Team, 2017, R LANG ENV STAT COMP; Raffaele E, 1998, J VEG SCI, V9, P693, DOI 10.2307/3237287; Ramage BS, 2010, ECOSPHERE, V1, DOI 10.1890/ES10-00134.1; Rizzo DM, 2003, FRONT ECOL ENVIRON, V1, P197, DOI 10.1890/1540-9295(2003)001[0197:SODECA]2.0.CO;2; Rizzo DM, 2002, PLANT DIS, V86, P205, DOI 10.1094/PDIS.2002.86.3.205; SOUSA WP, 1984, ANNU REV ECOL SYST, V15, P353, DOI 10.1146/annurev.es.15.110184.002033; Stan Dev. Team, 2018, RSTAN R INT STAN R P; Stan Development Team, 2018, SHIN INT VIS NUM DIA; Steinbuck E., 2002, THESIS; Swiecki T., 2005, P SUDD OAK DEATH SCI, V196, P383; Turner MG, 2010, ECOLOGY, V91, P2833, DOI 10.1890/10-0097.1; Valachovic YS, 2011, FOREST ECOL MANAG, V261, P1973, DOI 10.1016/j.foreco.2011.02.024; Vesk PA, 2006, J ECOL, V94, P1027, DOI 10.1111/j.1365-2745.2006.01154.x; VILA M, 1994, J VEG SCI, V5, P145, DOI 10.2307/3236146; VILA M, 1995, J VEG SCI, V6, P411, DOI 10.2307/3236240; Welch KR, 2016, ECOSPHERE, V7, DOI 10.1002/ecs2.1609; White P. S., 1985, ECOLOGY NATURAL DIST, P3; Wright BR, 2007, INT J WILDLAND FIRE, V16, P317, DOI 10.1071/WF06094; Zeppel MJB, 2015, NEW PHYTOL, V206, P583, DOI 10.1111/nph.13205 67 0 0 13 13 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology OCT 2018 99 10 2217 2229 10.1002/ecy.2493 13 Ecology Environmental Sciences & Ecology GV6ZO WOS:000446270400010 30129261 2018-11-22 J Khursigara, AJ; Johansen, JL; Esbaugh, AJ Khursigara, Alexis J.; Johansen, Jacob L.; Esbaugh, Andrew J. Social competition in red drum (Sciaenops ocellatus) is influenced by crude oil exposure AQUATIC TOXICOLOGY English Article Oil spills; Polycyclic aromatic hydrocarbons; Social interactions TROUT ONCORHYNCHUS-MYKISS; MAHI CORYPHAENA-HIPPURUS; PITUITARY-INTERRENAL AXIS; LIFE-HISTORY STRATEGIES; RAINBOW-TROUT; ATLANTIC SALMON; CARDIAC-FUNCTION; METABOLIC-RATE; BROWN TROUT; FISH The present study examined impacts of crude oil exposure on dyad competition in juvenile red drum. Following the 2010 Deepwater Horizon oil spill, it has become well established that oil exposure can constrain maximum metabolic rate, reduce aerobic scope and exercise performance in marine fish. Aerobic scope is one of the physiological characteristics that is a known determinant of dominance in fish social hierarchy formation. As such, oil exposure may predispose individuals to subordinate social status, complete with the concomitant ecological costs. We tested this hypothesis on the gregarious Gulf of Mexico species, the red drum (Sciaenops ocellatus). Using a standard dyad, one-on-one, test design, we first assessed the parameters - including size and aerobic scope- that predict social dominance. Of the tested parameters, only aerobic scope was predictive of social dominance, with dominant individuals consistently having higher aerobic scopes than subordinates. Hierarchy formation between individuals exposed to one of two oil concentrations (5.7 +/- 0.5 and 9.0 +/- 0.2 mu gl(-1) Sigma PAH(50)) and unexposed conspecifics were then investigated. As hypothesized, fish exposed to both oil concentrations were more likely to be subordinate than what would occur by random chance. These results demonstrate that the physiological constraints imposed by oil exposure can affect social status and behavior in fishes, which can have downstream consequences for ecological fitness. [Khursigara, Alexis J.; Esbaugh, Andrew J.] Univ Texas Austin, Marine Sci Inst, 750 Channel View Dr, Port Aransas, TX 78373 USA; [Johansen, Jacob L.] New York Univ Abu Dhabi, Marine Biol, Abu Dhabi, U Arab Emirates Khursigara, AJ (reprint author), Univ Texas Austin, Marine Sci Inst, 750 Channel View Dr, Port Aransas, TX 78373 USA. akhursigara@utexas.edu Gulf of Mexico Research Initiative [SA-1520] This research was made possible by a grant from The Gulf of Mexico Research Initiative awarded to AJE, Grant No: SA-1520; Name: Relationship of Effects of Cardiac Outcomes in fish for Validation of Ecological Risk (RECOVER). Data are publicly available through the Gulf of Mexico Research Initiative Information & Data Cooperative (GRIIDC) at https://data.gulfresearchinitiative.org (DOI: 10.7266/N74B2ZQV). Abbott J.C., 1985, PATTERNS AGGRESSIVE, P42; ABBOTT JC, 1985, BEHAVIOUR, V92, P241; Adams CE, 1996, CAN J FISH AQUAT SCI, V53, P2446, DOI 10.1139/cjfas-53-11-2446; Ankley GT, 2010, ENVIRON TOXICOL CHEM, V29, P730, DOI 10.1002/etc.34; Brette F., 2014, EXCITATION CONTRACTI, P1681; Carls MG, 1999, ENVIRON TOXICOL CHEM, V18, P481, DOI 10.1897/1551-5028(1999)018<0481:SOFETW>2.3.CO;2; Chabot D, 2016, J FISH BIOL, V88, P81, DOI 10.1111/jfb.12845; Claireaux G, 2004, AQUAT LIVING RESOUR, V17, P335, DOI 10.1051/alr:2004043; Cutts CJ, 1999, OIKOS, V86, P479, DOI 10.2307/3546652; Cutts CJ, 2002, FUNCT ECOL, V16, P73, DOI 10.1046/j.0269-8463.2001.00603.x; Davoodi F, 2007, MAR POLLUT BULL, V54, P928, DOI 10.1016/j.marpolbul.2007.03.004; DiBattista JD, 2005, J EXP BIOL, V208, P2707, DOI 10.1242/jeb.01690; DiBattista JD, 2006, PHYSIOL BIOCHEM ZOOL, V79, P675, DOI 10.1086/504612; Earley RL, 2004, P ROY SOC B-BIOL SCI, V271, P7, DOI 10.1098/rspb.2003.2558; Elofsson UOE, 2000, GEN COMP ENDOCR, V118, P450, DOI 10.1006/gcen.2000.7487; Ern R, 2016, J COMP PHYSIOL B, V186, P447, DOI 10.1007/s00360-016-0971-7; Esbaugh AJ, 2016, J COMP PHYSIOL B, V186, P97, DOI 10.1007/s00360-015-0940-6; Esbaugh AJ, 2016, SCI TOTAL ENVIRON, V543, P644, DOI 10.1016/j.scitotenv.2015.11.068; Gilmour KM, 2005, INTEGR COMP BIOL, V45, P263, DOI 10.1093/icb/45.2.263; Hicken CE, 2011, P NATL ACAD SCI USA, V108, P7086, DOI 10.1073/pnas.1019031108; Hoglund E, 2000, J EXP BIOL, V203, P1711; HUNTINGFORD FA, 1990, J FISH BIOL, V36, P877, DOI 10.1111/j.1095-8649.1990.tb05635.x; Incardona JP, 2014, P NATL ACAD SCI USA, V111, pE1510, DOI 10.1073/pnas.1320950111; Jeffrey JD, 2014, GEN COMP ENDOCR, V196, P8, DOI 10.1016/j.ygcen.2013.11.010; Jeffrey JD, 2016, J EXP BIOL, V219, P1734, DOI 10.1242/jeb.138826; Jeffrey JD, 2012, GEN COMP ENDOCR, V176, P201, DOI 10.1016/j.ygcen.2012.01.016; Johansen JL, 2017, AQUAT TOXICOL, V187, P82, DOI 10.1016/j.aquatox.2017.04.002; Johansen J.L., 2017, NAT ECOL EVOL, V1, DOI [10.1038/x41559-017-0232-5, DOI 10.1038/X41559-017-0232-5]; Johnsson JI, 1999, J FISH BIOL, V54, P469, DOI 10.1111/j.1095-8649.1999.tb00846.x; JOHNSSON JI, 1994, ANIM BEHAV, V48, P177, DOI 10.1006/anbe.1994.1224; Johnsson JI, 1996, HORM BEHAV, V30, P13, DOI 10.1006/hbeh.1996.0003; Johnsson Joergen I., 2006, Fish Physiology, V24, P151; Jung JH, 2013, CHEMOSPHERE, V91, P1146, DOI 10.1016/j.chemosphere.2013.01.019; Khursigara AJ, 2017, SCI TOTAL ENVIRON, V579, P797, DOI 10.1016/j.scitotenv.2016.11.026; Killen SS, 2014, FUNCT ECOL, V28, P1367, DOI 10.1111/1365-2435.12296; Mager EM, 2014, ENVIRON SCI TECHNOL, V48, P7053, DOI 10.1021/es501628k; Mauduit F, 2016, AQUAT TOXICOL, V178, P197, DOI 10.1016/j.aquatox.2016.07.019; McCarthy ID, 2001, J FISH BIOL, V59, P1002, DOI 10.1006/jfbi.2001.1714; Metcalfe NB, 2016, J FISH BIOL, V88, P298, DOI 10.1111/jfb.12699; METCALFE NB, 1995, ANIM BEHAV, V49, P431, DOI 10.1006/anbe.1995.0056; METCALFE NB, 1989, PROC R SOC SER B-BIO, V236, P7, DOI 10.1098/rspb.1989.0009; Nelson D, 2017, COMP BIOCHEM PHYS C, V201, P58, DOI 10.1016/j.cbpc.2017.08.006; Nelson D, 2016, AQUAT TOXICOL, V180, P274, DOI 10.1016/j.aquatox.2016.10.012; Pan Y.K., 2016, J FISH BIOL, V1488-1493, DOI [10.1111/jfb, DOI 10.1111/JFB]; Pan YK, 2018, CHEMOSPHERE, V200, P143, DOI 10.1016/j.chemosphere.2018.02.028; Parikh VN, 2006, BEHAV BRAIN RES, V166, P291, DOI 10.1016/j.bbr.2005.07.011; Pavlidis M, 2011, BEHAV BRAIN RES, V225, P529, DOI 10.1016/j.bbr.2011.08.022; Rooker JR, 2010, MAR ECOL PROG SER, V407, P187, DOI 10.3354/meps08605; Scott GR, 2004, AQUAT TOXICOL, V68, P369, DOI 10.1016/j.aquatox.2004.03.016; Sloman KA, 2002, J FISH BIOL, V61, P1, DOI 10.1006/jfbi.2002.2038; Sloman KA, 2000, FISH PHYSIOL BIOCHEM, V23, P49, DOI 10.1023/A:1007855100185; Sloman KA, 2003, COMP BIOCHEM PHYS C, V135, P393, DOI 10.1016/S1532-0456(03)00139-X; Sloman KA, 2004, CAN J FISH AQUAT SCI, V61, P618, DOI 10.1139/F04-032; Sloman KA, 2001, PHYSIOL BIOCHEM ZOOL, V74, P383, DOI 10.1086/320426; Soto M. Andres, 1998, Gulf Research Reports, V10, P41; Stieglitz JD, 2016, ENVIRON TOXICOL CHEM, V35, P2613, DOI 10.1002/etc.3436; WINBERG S, 1992, J COMP PHYSIOL A, V170, P93; Winberg S, 1998, AM J PHYSIOL-REG I, V274, pR645, DOI 10.1152/ajpregu.1998.274.3.R645; Yamamoto T., 1998, J FISH BIOL, V281-290 59 0 0 2 2 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0166-445X 1879-1514 AQUAT TOXICOL Aquat. Toxicol. OCT 2018 203 194 201 10.1016/j.aquatox.2018.08.011 8 Marine & Freshwater Biology; Toxicology Marine & Freshwater Biology; Toxicology GV5MY WOS:000446147500021 30165313 2018-11-22 J Zhang, H; Urrutia-Cordero, P; He, L; Geng, H; Chaguaceda, F; Xu, J; Hansson, LA Zhang, Huan; Urrutia-Cordero, Pablo; He, Liang; Geng, Hong; Chaguaceda, Fernando; Xu, Jun; Hansson, Lars-Anders Life-history traits buffer against heat wave effects on predator-prey dynamics in zooplankton GLOBAL CHANGE BIOLOGY English Article climate change; copepods; heat waves; mesocosms; predator-prey; resting stage; rotifer; zooplankton CLIMATE-CHANGE; WARMING ALTERS; TEMPERATURE; SIZE; LAKES; COMMUNITIES; PHENOLOGY; ECOSYSTEM; RECRUITMENT; TERMINATION In addition to an increase in mean temperature, extreme climatic events, such as heat waves, are predicted to increase in frequency and intensity with climate change, which are likely to affect organism interactions, seasonal succession, and resting stage recruitment patterns in terrestrial as well as in aquatic ecosystems. For example, freshwater zooplankton with different life-history strategies, such as sexual or parthenogenetic reproduction, may respond differently to increased mean temperatures and rapid temperature fluctuations. Therefore, we conducted a long-term (18months) mesocosm experiment where we evaluated the effects of increased mean temperature (4 degrees C) and an identical energy input but delivered through temperature fluctuations, i.e., as heat waves. We show that different rotifer prey species have specific temperature requirements and use limited and species-specific temperature windows for recruiting from the sediment. On the contrary, co-occurring predatory cyclopoid copepods recruit from adult or subadult resting stages and are therefore able to respond to short-term temperature fluctuations. Hence, these different life-history strategies affect the interactions between cyclopoid copepods and rotifers by reducing the risk of a temporal mismatch in predator-prey dynamics in a climate change scenario. Thus, we conclude that predatory cyclopoid copepods with long generation time are likely to benefit from heat waves since they rapidly wake up even at short temperature elevations and thereby suppress fast reproducing prey populations, such as rotifers. In a broader perspective, our findings suggest that differences in life-history traits will affect predator-prey interactions, and thereby alter community dynamics, in a future climate change scenario. [Zhang, Huan; Urrutia-Cordero, Pablo; Chaguaceda, Fernando; Hansson, Lars-Anders] Lund Univ, Dept Biol, Aquat Ecol, SE-22362 Lund, Sweden; [Zhang, Huan; Xu, Jun] Chinese Acad Sci, Inst Hydrobiol, Wuhan, Hubei, Peoples R China; [Urrutia-Cordero, Pablo] Uppsala Univ, Dept Ecol & Genet, Limnol & Erken Lab, Uppsala, Sweden; [He, Liang] Nanchang Univ, Minist Educ, Key Lab Poyang Lake Environm & Resource Utilizat, Nanchang, Jiangxi, Peoples R China; [Geng, Hong] South Cent Univ Nationalities, Coll Life Sci, Wuhan, Hubei, Peoples R China; [Chaguaceda, Fernando] Uppsala Univ, Dept Ecol & Genet, Limnol Unit, Uppsala, Sweden Zhang, H (reprint author), Lund Univ, Dept Biol, Aquat Ecol, SE-22362 Lund, Sweden. Huan.Zhang@biol.lu.se China Scholarship Council; EU ERA-net BiodivERsA project LIMNOTIP through the Swedish Environmental Research Council for Spatial Planning and the Environment (FORMAS) China Scholarship Council; EU ERA-net BiodivERsA project LIMNOTIP through the Swedish Environmental Research Council for Spatial Planning and the Environment (FORMAS) Adrian R, 2006, GLOBAL CHANGE BIOL, V12, P652, DOI 10.1111/j.1365-2486.2006.01125.x; Alekseev VR, 1996, HYDROBIOLOGIA, V320, P15, DOI 10.1007/BF00016801; Bertani I, 2016, ECOSYSTEMS, V19, P16, DOI 10.1007/s10021-015-9914-5; Brandl Z, 2005, HYDROBIOLOGIA, V546, P475, DOI 10.1007/s10750-005-4290-3; Burian A, 2016, LIMNOL OCEANOGR, V61, P795, DOI 10.1002/lno.10241; Dossena M, 2012, P ROY SOC B-BIOL SCI, V279, P3011, DOI 10.1098/rspb.2012.0394; Downing JA, 2006, LIMNOL OCEANOGR, V51, P2388, DOI 10.4319/lo.2006.51.5.2388; Easterling DR, 2000, SCIENCE, V289, P2068, DOI 10.1126/science.289.5487.2068; Edwards M, 2004, NATURE, V430, P881, DOI 10.1038/nature02808; Ekvall MK, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0044614; ELGMORK K, 1981, HOLARCTIC ECOL, V4, P278; Fischer EM, 2013, NAT CLIM CHANGE, V3, P1033, DOI [10.1038/NCLIMATE2051, 10.1038/nclimate2051]; Frenken T, 2016, GLOBAL CHANGE BIOL, V22, P299, DOI 10.1111/gcb.13095; Frisch D, 2004, EVOL ECOL RES, V6, P541; Gerten D, 2000, LIMNOL OCEANOGR, V45, P1058, DOI 10.4319/lo.2000.45.5.1058; Gilbert JJ, 2017, HYDROBIOLOGIA, V796, P235, DOI 10.1007/s10750-016-2867-7; Gillooly JF, 2001, SCIENCE, V293, P2248, DOI 10.1126/science.1061967; Gillooly JF, 2002, NATURE, V417, P70, DOI 10.1038/417070a; Gyllstrom M, 2004, AQUAT SCI, V66, P274, DOI 10.1007/s00027-004-0712-y; Hairston NG, 2000, FRESHWATER BIOL, V45, P133; Hansson LA, 2013, NAT CLIM CHANGE, V3, P228, DOI 10.1038/NCLIMATE1689; Huber V, 2012, OECOLOGIA, V169, P245, DOI 10.1007/s00442-011-2186-7; Huber V, 2010, FRESHWATER BIOL, V55, P1769, DOI 10.1111/j.1365-2427.2010.02411.x; Jeppesen E, 2010, HYDROBIOLOGIA, V646, P73, DOI 10.1007/s10750-010-0171-5; Karl TR, 2003, SCIENCE, V302, P1719, DOI 10.1126/science.1090228; Kratina P, 2012, ECOLOGY, V93, P1421, DOI 10.1890/11-1595.1; Li ZQ, 2017, GLOBAL CHANGE BIOL, V23, P108, DOI 10.1111/gcb.13405; MAY L, 1987, HYDROBIOLOGIA, V147, P335, DOI 10.1007/BF00025763; McKee D, 2003, LIMNOL OCEANOGR, V48, P707, DOI 10.4319/lo.2003.48.2.0707; Moore MV, 1996, ARCH HYDROBIOL, V135, P289; Nicolle A, 2012, FRESHWATER BIOL, V57, P684, DOI 10.1111/j.1365-2427.2012.02733.x; R Development Core Team, 2017, R LANG ENV STAT COMP; Santer B, 1998, J MARINE SYST, V15, P327, DOI 10.1016/S0924-7963(97)00084-5; Sentis A, 2013, GLOBAL CHANGE BIOL, V19, P833, DOI 10.1111/gcb.12094; Shurin JB, 2012, PHILOS T R SOC B, V367, P3008, DOI 10.1098/rstb.2012.0243; Stahl-Delbanco A, 2003, J PLANKTON RES, V25, P1099, DOI 10.1093/plankt/25.9.1099; STEMBERGER RS, 1984, J GREAT LAKES RES, V10, P417, DOI 10.1016/S0380-1330(84)71858-2; Stenseth NC, 2002, P NATL ACAD SCI USA, V99, P13379, DOI 10.1073/pnas.212519399; Stocker TF, 2014, CLIMATE CHANGE 2013: THE PHYSICAL SCIENCE BASIS, P1; Thompson RM, 2013, ECOL LETT, V16, P799, DOI 10.1111/ele.12095; Urrutia-Cordero P, 2016, SCI REP-UK, V6, DOI 10.1038/srep29542; Vadeboncoeur Y, 2002, BIOSCIENCE, V52, P44, DOI 10.1641/0006-3568(2002)052[0044:PTLBTR]2.0.CO;2; Vasseur DA, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2612; Wetzel R. G., 2000, LIMNOLOGICAL ANAL; WILLIAMSON CE, 1983, HYDROBIOLOGIA, V104, P385, DOI 10.1007/BF00045996; Winder M, 2004, GLOBAL CHANGE BIOL, V10, P1844, DOI 10.1111/j.1365-2486.2004.00849.x; Winder M, 2004, ECOLOGY, V85, P2100, DOI 10.1890/04-0151; Wood SN, 2006, GEN ADDITIVE MODELS; Wyngaard G.A., 1982, P485; Yvon-Durocher G, 2011, GLOBAL CHANGE BIOL, V17, P1681, DOI 10.1111/j.1365-2486.2010.02321.x; Zhang H, 2015, LIMNOL OCEANOGR, V60, P1577, DOI 10.1002/lno.10122 51 0 0 8 8 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1354-1013 1365-2486 GLOBAL CHANGE BIOL Glob. Change Biol. OCT 2018 24 10 4747 4757 10.1111/gcb.14371 11 Biodiversity Conservation; Ecology; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology GV0DZ WOS:000445728800023 29963731 2018-11-22 J Zhang, H; John, R; Zhu, SD; Liu, H; Xu, QY; Qi, W; Liu, K; Chen, HYH; Ye, Q Zhang, Hui; John, Robert; Zhu, Shidan; Liu, Hui; Xu, Qiuyuan; Qi, Wei; Liu, Kun; Chen, Han Y. H.; Ye, Qing Shifts in functional trait-species abundance relationships over secondary subalpine meadow succession in the Qinghai-Tibetan Plateau OECOLOGIA English Article Functional traits; Linear mixed effects model; Species abundance; Succession; Trait-abundance relationship LIFE-HISTORY STRATEGIES; ECONOMICS SPECTRUM; PLANT-COMMUNITIES; SEED DORMANCY; GERMINATION; DIVERSITY; STRESS; FOREST; PHOTOSYNTHESIS; CHRONOSEQUENCE Although trait-based processes of community assembly during secondary succession invokes multiple factors that ultimately determine the presence or absence of a species, little is known regarding the impacts of functional traits on species abundance in successional plant communities. Here in species-rich subalpine secondary successional meadows of the Qinghai-Tibetan Plateau, we measured photosynthesis rate and leaf proline content that are related to plant growth and abiotic stress resistance, respectively, and seed germination rate that is closely correlated with plant germination strategy to test their influence on species abundance during succession. We used a linear mixed effects model framework to examine the shifts in trait-abundance relationships and the correlations among these three traits in successional communities. We observed significant shifts in trait-abundance relationships during succession, e.g., abundant species in early-successional meadows exhibited relatively high photosynthesis rates and leaf proline content, but showed low seed germination rates, whereas the converse were true in late successional communities. However, the correlations among the three traits were insignificant in most meadow communities. Our results show that functional traits associated with plant growth, stress resistance, and reproduction impose strong influence on species abundance during secondary subalpine meadow succession in the Qinghai-Tibetan Plateau. [Zhang, Hui; Zhu, Shidan; Liu, Hui; Xu, Qiuyuan; Ye, Qing] Chinese Acad Sci, Key Lab Vegetat Restorat & Management Degraded Ec, South China Bot Garden, 723 Xingke Rd, Guangzhou 510650, Guangdong, Peoples R China; [Zhang, Hui; Zhu, Shidan; Liu, Hui; Ye, Qing] Chinese Acad Sci, Guangdong Prov Key Lab Appl Bot, South China Bot Garden, 723 Xingke Rd, Guangzhou 510650, Guangdong, Peoples R China; [John, Robert] Indian Inst Sci Educ & Res, Dept Biol Sci, Mohanpur 741246, W Bengal, India; [Xu, Qiuyuan] Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China; [Qi, Wei; Liu, Kun] Lanzhou Univ, State Key Lab Grassland Agroecosyst, Sch Life Sci, Lanzhou 730000, Peoples R China; [Chen, Han Y. H.] Lake Head Univ, Fac Nat Resources Management, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada Ye, Q (reprint author), Chinese Acad Sci, Key Lab Vegetat Restorat & Management Degraded Ec, South China Bot Garden, 723 Xingke Rd, Guangzhou 510650, Guangdong, Peoples R China.; Ye, Q (reprint author), Chinese Acad Sci, Guangdong Prov Key Lab Appl Bot, South China Bot Garden, 723 Xingke Rd, Guangzhou 510650, Guangdong, Peoples R China. qye@scbg.ac.cn Chen, Han/A-1359-2008 Chen, Han/0000-0001-9477-5541 National Natural Science Foundation of China [31770469, 31300334, 31770448]; Chinese Academy of Sciences (CAS) through its CAS/SAFEA International Partnership Program for Creative Research Teams and Visiting Fellowship for Researchers from Developing countries [2014FFSA0001] This work was funded by the National Natural Science Foundation of China (31770469, 31300334 and 31770448), the Chinese Academy of Sciences (CAS) through its CAS/SAFEA International Partnership Program for Creative Research Teams and Visiting Fellowship for Researchers from Developing countries (2014FFSA0001). Adler PB, 2014, P NATL ACAD SCI USA, V111, P740, DOI 10.1073/pnas.1315179111; Baskin CC, 1998, SEEDS ECOLOGY BIOGEO; BAZZAZ FA, 1980, ANNU REV ECOL SYST, V11, P287, DOI 10.1146/annurev.es.11.110180.001443; BAZZAZ FA, 1975, ECOLOGY, V56, P485, DOI 10.2307/1934981; Chave J, 2009, ECOL LETT, V12, P351, DOI 10.1111/j.1461-0248.2009.01285.x; Cornwell WK, 2010, J ECOL, V98, P814, DOI 10.1111/j.1365-2745.2010.01662.x; Crain CM, 2008, ECOLOGY, V89, P2889, DOI 10.1890/07-1527.1; Douma JC, 2012, J ECOL, V100, P366, DOI 10.1111/j.1365-2745.2011.01932.x; Finch-Savage WE, 2006, NEW PHYTOL, V171, P501, DOI 10.1111/j.1469-8137.2006.01787.x; Fu JJ, 2016, BMC GENOMICS, V17, DOI 10.1186/s12864-016-3222-0; Granath G, 2010, ECOLOGY, V91, P3047, DOI 10.1890/09-2267.1; Hayes P, 2014, J ECOL, V102, P396, DOI 10.1111/1365-2745.12196; Hu XW, 2013, SEED SCI RES, V23, P133, DOI 10.1017/S0960258513000019; Hubbell Stephen P., 2001, V32, pi; Kirschbaum MUF, 2011, PLANT PHYSIOL, V155, P117, DOI 10.1104/pp.110.166819; Klein JA, 2004, ECOL LETT, V7, P1170, DOI 10.1111/j.1461-0248.2004.00677.x; Krasensky J, 2012, J EXP BOT, V63, P1593, DOI 10.1093/jxb/err460; Larios E, 2014, ECOLOGY, V95, P3213; Lebrija-Trejos E, 2010, ECOLOGY, V91, P386, DOI 10.1890/08-1449.1; Levine JM, 2003, ANNU REV ECOL EVOL S, V34, P549, DOI 10.1146/annurev.ecolsys.34.011802.132400; Li XL, 2013, LAND DEGRAD DEV, V24, P72, DOI 10.1002/ldr.1108; Liu K, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0069364; Lohbeck M, 2013, ECOLOGY, V94, P1211, DOI 10.1890/12-1850.1; Maestre FT, 2009, J ECOL, V97, P199, DOI 10.1111/j.1365-2745.2008.01476.x; Marin JA, 2009, ITEA-INF TEC ECON AG, V105, P282; Mason NWH, 2012, J ECOL, V100, P678, DOI [10.1111/j.1365-2745.2012.01965.X, 10.1111/j.1365-2745.2012.01965.x]; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; Millennium Ecosystem Assessment, 2005, MIL EC ASS EC HUM WE; Moles AT, 2006, OIKOS, V113, P91, DOI 10.1111/j.0030-1299.2006.14194.x; Orrock JL, 2010, AM J BOT, V97, P694, DOI 10.3732/ajb.0900051; Pineda-Garcia F, 2013, PLANT CELL ENVIRON, V36, P405, DOI 10.1111/j.1365-3040.2012.02582.x; Poorter L, 2010, NEW PHYTOL, V185, P481, DOI 10.1111/j.1469-8137.2009.03092.x; Prach K, 2011, TRENDS ECOL EVOL, V26, P119, DOI 10.1016/j.tree.2010.12.007; Ruf M, 2003, TREE PHYSIOL, V23, P257, DOI 10.1093/treephys/23.4.257; Sanchez E, 2002, PLANT GROWTH REGUL, V36, P261, DOI 10.1023/A:1016583430792; Shipley B, 2006, SCIENCE, V314, P812, DOI 10.1126/science.1131344; Spasojevic MJ, 2012, J ECOL, V100, P652, DOI 10.1111/j.1365-2745.2011.01945.x; Tielborger K, 2010, J ECOL, V98, P1216, DOI 10.1111/j.1365-2745.2010.01682.x; Umana MN, 2015, ECOL LETT, V18, P1329, DOI 10.1111/ele.12527; Walker LR, 2010, J ECOL, V98, P725, DOI 10.1111/j.1365-2745.2010.01664.x; WEIHER E, 1995, OIKOS, V74, P159, DOI 10.2307/3545686; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Zhang CH, 2014, NEW PHYTOL, V204, P496, DOI 10.1111/nph.12955; Zhang H, 2015, ECOGRAPHY, V38, P1176, DOI 10.1111/ecog.01123; Zhang H, 2013, OIKOS, V122, P952, DOI 10.1111/j.1600-0706.2012.20828.x; Zhang H, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049024; Zhu SD, 2013, PLANT CELL ENVIRON, V36, P879, DOI 10.1111/pce.12024 47 0 0 8 8 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia OCT 2018 188 2 547 557 10.1007/s00442-018-4230-3 11 Ecology Environmental Sciences & Ecology GU6LW WOS:000445426400019 30043232 2018-11-22 J Lind, CM; Moore, IT; Vernasco, B; Farrell, TM Lind, Craig M.; Moore, Ignacio T.; Vernasco, Ben J.; Farrell, Terence M. Seasonal testosterone and corticosterone patterns in relation to body condition and reproduction in a subtropical pitviper, Sistrurus miliarius GENERAL AND COMPARATIVE ENDOCRINOLOGY English Article Steroid hormone; Glucocorticoid; Snake; Reptile; Breeding season; Mating behavior THAMNOPHIS-SIRTALIS-PARIETALIS; SIDED GARTER SNAKES; DIAMOND-BACKED RATTLESNAKE; CROTALUS-ATROX SERPENTES; STEROID-HORMONE PROFILES; PLASMA SEX STEROIDS; MATING SEASON; EXOGENOUS CORTICOSTERONE; TIMBER RATTLESNAKES; STRESS RESPONSES Seasonal constraints on the timing and intensity of reproductive events shape observed variation in life history strategies across latitudes. Selection acts on the endocrine mechanisms that underlie reproductive investment. It is therefore important to examine the seasonal relationship between hormones and reproduction in geographically and phylogenetically diverse taxa. Snakes have proven to be a valuable model in investigations of seasonal hormone production and behavior in field-active vertebrates, but most research has focused on temperate populations from highly seasonal environments. To reduce this bias, we provide a description of the seasonal relationships among testosterone, corticosterone, body condition, and reproductive behavior in a subtropical population of Pygmy Rattlesnakes, Sistrurus miliarius. In central Florida, Sistrurus miliarius exhibits a prolonged breeding season (September-January) compared to most temperate zone snakes. Despite the extended breeding season, the pattern of testosterone in the population was highly seasonal and very similar to temperate pitvipers with a shorter mating season. Testosterone declined steadily through the mating season, but males sampled while engaging in mating behaviors had higher testosterone compared to solitary males throughout the mating season. Testosterone was negatively related to corticosterone throughout the breeding season and during times of year when the gonads were presumed to be quiescent and no mating behavior was observed. Testosterone was positively related to individual body condition both within and outside of the breeding season. A review of the literature reveals no consistent pattern regarding the relationship between corticosterone and testosterone in snakes, but suggests that the condition-dependence of steroid production may be consistent across snake taxa. [Lind, Craig M.; Farrell, Terence M.] Stetson Univ, Dept Biol, Deland, FL 32723 USA; [Lind, Craig M.] Stockton Univ, Dept Nat Sci & Math, Galloway, NJ 08201 USA; [Moore, Ignacio T.; Vernasco, Ben J.] Virginia Tech, Dept Biol Sci, Blacksburg, VA 24061 USA Lind, CM (reprint author), Stockton Univ, 101 Vera King Farris Dr, Galloway, NJ 08205 USA. Craig.Lind@stockton.edu National Science Foundation [IOS-1145625]; Hyatt and Cici Brown Fund at Stetson University We thank the many undergraduates, especially Ethan Royal and Ciera McCoy, at Stetson University who assisted with field sampling. We thank Candice Stevenson for access to the Lake Woodruff National Wildlife Refuge. This work was supported by National Science Foundation grant IOS-1145625 to ITM and by the Hyatt and Cici Brown Fund at Stetson University. All animal care practices and experimental procedures were approved and overseen by the IACUC committee at Stetson University (Protocol # SU-1001-2016). Aldridge RD, 2002, HERPETOL MONOGR, V16, P1, DOI 10.1655/0733-1347(2002)016[0001:EOTMSI]2.0.CO;2; Aldridge Robert D., 2009, Contemporary Herpetology, V2009, P1; ARNOLD SJ, 1994, AM NAT, V143, P317, DOI 10.1086/285606; Aubret F, 2002, HORM BEHAV, V42, P135, DOI 10.1006/hbeh.2002.1793; Bonier F, 2009, TRENDS ECOL EVOL, V24, P634, DOI 10.1016/j.tree.2009.04.013; Cease AJ, 2007, GEN COMP ENDOCR, V150, P124, DOI 10.1016/j.ygcen.2006.07.022; Claunch NM, 2017, GEN COMP ENDOCR, V248, P87, DOI 10.1016/j.ygcen.2017.02.008; Conant R., 1998, FIELD GUIDE REPTILES; CREWS D, 1991, P NATL ACAD SCI USA, V88, P3545, DOI 10.1073/pnas.88.9.3545; Dayger CA, 2013, HORM BEHAV, V64, P748, DOI 10.1016/j.yhbeh.2013.09.003; DENARDO DF, 1993, HORM BEHAV, V27, P184, DOI 10.1006/hbeh.1993.1014; Eikenaar C, 2012, AM NAT, V180, P642, DOI 10.1086/667891; Emerson Sharon B., 2001, P36; Garamszegi LZ, 2008, AM NAT, V172, P533, DOI 10.1086/590955; Goymann W, 2004, AM NAT, V164, P327, DOI 10.1086/422856; Graham SP, 2008, GEN COMP ENDOCR, V159, P226, DOI 10.1016/j.ygcen.2008.09.002; Hau M, 2008, GEN COMP ENDOCR, V157, P241, DOI 10.1016/j.ygcen.2008.05.008; Hau M, 2007, BIOESSAYS, V29, P133, DOI 10.1002/bies.20524; Hau M, 2010, P ROY SOC B-BIOL SCI, V277, P3203, DOI 10.1098/rspb.2010.0673; Heiken KH, 2016, GEN COMP ENDOCR, V237, P27, DOI 10.1016/j.ygcen.2016.07.023; Holding ML, 2014, PHYSIOL BIOCHEM ZOOL, V87, P363, DOI 10.1086/675938; Hoss SK, 2011, SOUTHEAST NAT, V10, P95, DOI 10.1656/058.010.0108; Husak JF, 2008, TRENDS ECOL EVOL, V23, P532, DOI 10.1016/j.tree.2008.06.007; JEMISON SC, 1995, J HERPETOL, V29, P129, DOI 10.2307/1565098; Kindermann C, 2013, COMP BIOCHEM PHYS A, V165, P223, DOI 10.1016/j.cbpa.2013.03.011; King RB, 2013, J HERPETOL, V47, P179, DOI 10.1670/12-001; Knapp R, 1997, GEN COMP ENDOCR, V107, P273, DOI 10.1006/gcen.1997.6923; Lancaster LT, 2008, J EVOLUTION BIOL, V21, P556, DOI 10.1111/j.1420-9101.2007.01478.x; Lind C, 2018, PHYSIOL BIOCHEM ZOOL, V91, P765, DOI 10.1086/695747; Lind CM, 2015, PHYSIOL BIOCHEM ZOOL, V88, P624, DOI 10.1086/683058; Lind CM, 2014, GEN COMP ENDOCR, V206, P72, DOI 10.1016/j.ygcen.2014.06.026; Lind CM, 2010, GEN COMP ENDOCR, V166, P590, DOI 10.1016/j.ygcen.2010.01.026; Lorch JM, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2015.0457; Lutterschmidt DI, 2004, HORM BEHAV, V46, P692, DOI 10.1016/j.yhbeh.2004.06.013; Lutterschmidt WI, 2009, J COMP PHYSIOL B, V179, P747, DOI 10.1007/s00360-009-0356-2; Maag D.W., 2017, THESIS; May PG, 1996, COPEIA, P389, DOI 10.2307/1446855; Mccoy CM, 2017, CONSERV PHYSIOL, V5, DOI 10.1093/conphys/cow077; MOORE FL, 1985, GEN COMP ENDOCR, V60, P252, DOI 10.1016/0016-6480(85)90321-1; Moore IT, 2000, PHYSIOL BIOCHEM ZOOL, V73, P307, DOI 10.1086/316748; Moore IT, 2000, ANIM BEHAV, V59, P529, DOI 10.1006/anbe.1999.1344; Moore IT, 2003, HORM BEHAV, V43, P39, DOI 10.1016/S0018-506X(02)00038-7; Moore IT, 2001, PHYSIOL BEHAV, V72, P669, DOI 10.1016/S0031-9384(01)00413-9; Moore M. C., 1992, BIOL REPTILIA, V18, P70; Narayan EJ, 2013, J EXP ZOOL PART A, V319, P471, DOI 10.1002/jez.1810; Narayan EJ, 2013, COMP BIOCHEM PHYS A, V164, P21, DOI 10.1016/j.cbpa.2012.10.001; Palacios MG, 2012, GEN COMP ENDOCR, V175, P443, DOI 10.1016/j.ygcen.2011.11.042; Perez-Rodriguez L, 2006, ANIM BEHAV, V72, P97, DOI 10.1016/j.anbehav.2005.09.021; Romero LM, 2002, GEN COMP ENDOCR, V128, P1; Rowe M.P., 2002, BIOL VIPERS; Ruiz M, 2010, HORM BEHAV, V57, P134, DOI 10.1016/j.yhbeh.2009.09.019; SAINTGIRONS H, 1993, GEN COMP ENDOCR, V91, P287; SAINTGIRONS H, 1982, HERPETOLOGICA, V38, P5; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; Schuett GW, 2006, GEN COMP ENDOCR, V149, P72, DOI 10.1016/j.ygcen.2006.05.005; Schuett Gordon W., 2004, Herpetological Review, V35, P229; Schuett GW, 2005, ANIM BEHAV, V70, P257, DOI 10.1016/j.anbehav.2004.09.028; Schuett GW, 1997, GEN COMP ENDOCR, V105, P417, DOI 10.1006/gcen.1996.6851; Shine R, 2003, P ROY SOC B-BIOL SCI, V270, P995, DOI 10.1098/rspb.2002.2307; Sivan J, 2012, GEN COMP ENDOCR, V179, P241, DOI 10.1016/j.ygcen.2012.08.021; Smith CF, 2010, J ZOOL, V280, P362, DOI 10.1111/j.1469-7998.2009.00669.x; Smith CF, 2015, BIOL J LINN SOC, V115, P185, DOI 10.1111/bij.12490; Sperry JH, 2009, J ZOOL, V278, P100, DOI 10.1111/j.1469-7998.2009.00549.x; Taylor E.N., 2016, RATTLESNAKES ARIZONA, P123; Taylor EN, 2011, HORMONES AND REPRODUCTION OF VERTEBRATES, VOL 3: REPTILES, P355; Taylor EN, 2004, GEN COMP ENDOCR, V136, P328, DOI 10.1016/j.ygcen.2004.01.008; Waye HL, 2008, GEN COMP ENDOCR, V155, P607, DOI 10.1016/j.ygcen.2007.08.005; WEIL MR, 1981, GEN COMP ENDOCR, V44, P44, DOI 10.1016/0016-6480(81)90354-3; Wikelski Martin, 2001, Trends in Ecology and Evolution, V16, P479, DOI 10.1016/S0169-5347(01)02279-0; WILSON EK, 1979, POULTRY SCI, V58, P178, DOI 10.3382/ps.0580178; Wingfield J.C., 1987, PROCESSING ENV INFOR, P121; Wingfield JC, 2001, BRAIN BEHAV EVOLUT, V57, P239, DOI 10.1159/000047243; WYNDHAM E, 1986, AM NAT, V128, P155, DOI 10.1086/284551; Yoccoz NG, 2002, P ROY SOC B-BIOL SCI, V269, P1523, DOI 10.1098/rspb.2002.2047; Zaidan F, 2003, COPEIA, P231, DOI 10.1643/0045-8511(2003)003[0231:TCAREI]2.0.CO;2 75 0 0 6 6 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0016-6480 1095-6840 GEN COMP ENDOCR Gen. Comp. Endocrinol. OCT 1 2018 267 51 58 10.1016/j.ygcen.2018.05.027 8 Endocrinology & Metabolism Endocrinology & Metabolism GT2YO WOS:000444366400007 29807034 2018-11-22 J Audzijonyte, A; Richards, SA Audzijonyte, Asta; Richards, Shane A. The Energetic Cost of Reproduction and Its Effect on Optimal Life-History Strategies AMERICAN NATURALIST English Article condition-dependent mortality; fisheries-induced evolution; indeterminate growth; maturation size; physiologically structured models; threshold reproduction cost COD GADUS-MORHUA; EXPLOITED FISH STOCKS; ATLANTIC COD; INDETERMINATE GROWTH; BALTIC COD; TROPHIC INTERACTIONS; RESOURCE-ALLOCATION; SIZE; EVOLUTIONARY; MODEL Trade-offs in energy allocation between growth, reproduction, and survival are at the core of life-history theory. While age-specific mortality is considered to be the main determinant of the optimal allocation, some life-history strategies, such as delayed or skipped reproduction, may be better understood when also accounting for reproduction costs. Here, we present a two-pool indeterminate grower model that includes survival and energetic costs of reproduction. The energetic cost sets a minimum reserve required for reproduction, while the survival cost reflects increased mortality from low postreproductive body condition. Three life-history parameters determining age-dependent energy allocation to soma, reserve, and reproduction are optimized, and we show that the optimal strategies can reproduce realistic emergent growth trajectories, maturation ages, and reproductive outputs for fish. The model predicts maturation phase shifts along the gradient of condition-related mortality and shows that increased harvesting will select for earlier maturation and higher energy allocation to reproduction. However, since the energetic reproduction cost sets limits on how early an individual can mature, an increase in fitness at high harvesting can only be achieved by diverting most reserves into reproduction. The model presented here can improve predictions of life-history responses to environmental change and human impacts because key life-history traits such as maturation age and size, maximum body size, and size-specific fecundity emerge dynamically. [Audzijonyte, Asta] Univ Tasmania, Inst Marine & Antarctic Studies, Hobart, Tas 7001, Australia; [Richards, Shane A.] Univ Tasmania, Sch Nat Sci, Hobart, Tas 7001, Australia; [Richards, Shane A.] CSIRO, Oceans & Atmosphere, Hobart, Tas 7001, Australia Audzijonyte, A (reprint author), Univ Tasmania, Inst Marine & Antarctic Studies, Hobart, Tas 7001, Australia. asta.audzijonyte@utas.edu.au Kone Foundation; Australian Research Council [DP170104240] The authors would like to thank Andre de Roos, Ken Haste Andersen, Anssi Vainikka, editors Daniel I. Bolnick and Jurgen Groeneveld, and two anonymous reviewers for constructive comments on early versions of the manuscript. This study was supported by the Kone Foundation and Australian Research Council Discovery Grant DP170104240. Alexander RM, 2003, PRINCIPLES ANIMAL LO; Andersen KH, 2007, ECOL MODEL, V204, P246, DOI 10.1016/j.ecolmodel.2007.01.002; Audzijonyte A, 2016, CONSERV BIOL, V30, P734, DOI 10.1111/cobi.12651; Audzijonyte A, 2013, EVOL APPL, V6, P585, DOI 10.1111/eva.12044; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Bertschy KA, 1999, ECOLOGY, V80, P2299, DOI 10.2307/176911; Boukal DS, 2014, J THEOR BIOL, V359, P199, DOI 10.1016/j.jtbi.2014.05.022; Charnov EL, 2001, P NATL ACAD SCI USA, V98, P9460, DOI 10.1073/pnas.161294498; Charnov EL, 2007, AM NAT, V170, pE129, DOI 10.1086/522840; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; De Roos AM, 2001, OIKOS, V94, P51, DOI 10.1034/j.1600-0706.2001.11313.x; de Roos AM, 2006, P R SOC B, V273, P1873, DOI 10.1098/rspb.2006.3518; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; Dutil JD, 2000, CAN J FISH AQUAT SCI, V57, P826, DOI 10.1139/cjfas-57-4-826; Ejsmond MJ, 2015, AM NAT, V186, pE111, DOI 10.1086/683119; Fey DP, 2006, ICES J MAR SCI, V63, P1045, DOI 10.1016/j.icesjms.2006.03.019; Folkvord A, 2014, CAN J FISH AQUAT SCI, V71, P1106, DOI 10.1139/cjfas-2013-0600; Giacomini HC, 2013, ECOL MODEL, V251, P32, DOI 10.1016/j.ecolmodel.2012.12.003; Heino M, 1999, J EVOLUTION BIOL, V12, P423; Hixon MA, 2014, ICES J MAR SCI, V71, P2171, DOI 10.1093/icesjms/fst200; HUTCHINGS JA, 1994, OIKOS, V70, P12, DOI 10.2307/3545693; Hutchings JA, 2005, CAN J FISH AQUAT SCI, V62, P824, DOI 10.1139/F05-081; ICES, 2013, NON TRADITIONAL REF; Isomaa M, 2014, BOREAL ENVIRON RES, V19, P39; Jorgensen C, 2006, CAN J FISH AQUAT SCI, V63, P186, DOI 10.1139/F05-209; Jorgensen C, 2006, CAN J FISH AQUAT SCI, V63, P200, DOI 10.1139/F05-210; Kjesbu OS, 1996, CAN J FISH AQUAT SCI, V53, P610, DOI 10.1139/cjfas-53-3-610; Kooijman S. A. L. M., 2000, DYNAMIC ENERGY MASS; Kooijman SALM, 2014, J SEA RES, V94, P19, DOI 10.1016/j.seares.2014.01.015; Koster F.W., 2003, ICES MAR SCI S, V219, P294; Kozlowski J, 2004, INTEGR COMP BIOL, V44, P480, DOI 10.1093/icb/44.6.480; Kozlowski J, 1996, P ROY SOC B-BIOL SCI, V263, P559, DOI 10.1098/rspb.1996.0084; Kuparinen A, 2012, EVOL APPL, V5, P245, DOI 10.1111/j.1752-4571.2011.00215.x; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; Morbey YE, 2013, ECOSPHERE, V4, DOI 10.1890/ES13-00259.1; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; Nisbet RM, 2012, J EXP BIOL, V215, P892, DOI 10.1242/jeb.059675; Persson L, 1998, THEOR POPUL BIOL, V54, P270, DOI 10.1006/tpbi.1998.1380; PIHL L, 1982, NETH J SEA RES, V15, P419, DOI 10.1016/0077-7579(82)90068-0; Quince C, 2008, J THEOR BIOL, V254, P197, DOI 10.1016/j.jtbi.2008.05.029; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Reznick D, 2002, LIFE HIST EVOLUTION; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Rideout RM, 2005, FISH FISH, V6, P50, DOI 10.1111/j.1467-2679.2005.00174.x; ROFF DA, 1983, CAN J FISH AQUAT SCI, V40, P1395, DOI 10.1139/f83-161; Rowe S, 2008, MAR ECOL PROG SER, V354, P257, DOI 10.3354/meps07175; Secor DH, 2007, J SEA RES, V57, P91, DOI 10.1016/j.seares.2006.09.004; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; Skjaeraasen JE, 2010, CAN J ZOOL, V88, P595, DOI 10.1139/Z10-033; Skjaeraasen JE, 2012, P NATL ACAD SCI USA, V109, P8995, DOI 10.1073/pnas.1200223109; Skjaeraasen JE, 2009, CAN J FISH AQUAT SCI, V66, P1582, DOI 10.1139/F09-102; Svedang H, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms5152; Trudel M, 2000, CAN J FISH AQUAT SCI, V57, P414, DOI 10.1139/cjfas-57-2-414; Uusi-Heikkila S, 2015, EVOL APPL, V8, P597, DOI 10.1111/eva.12268; Vainikka A, 2009, ICES J MAR SCI, V66, P248, DOI 10.1093/icesjms/fsn199; Vallin L, 2000, FISH RES, V49, P21, DOI 10.1016/S0165-7836(00)00194-6; van der Veer HW, 2009, J SEA RES, V62, P83, DOI 10.1016/j.seares.2009.02.001; Venturelli PA, 2010, ECOLOGY, V91, P2003, DOI 10.1890/09-1218.1 59 0 0 12 12 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. OCT 2018 192 4 E150 E162 10.1086/698655 13 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology GT1UW WOS:000444262900002 30205032 2018-11-22 J Abu Awad, D; Coron, C Abu Awad, Diala; Coron, Camille Effects of demographic stochasticity and life-history strategies on times and probabilities to fixation HEREDITY English Article POPULATION-SIZE; INBREEDING DEPRESSION; GENETIC DIVERSITY; MUTANT-GENES; SELECTION; DYNAMICS; ENVIRONMENT; DIFFUSION; EVOLUTION; MUTATION How life-history strategies influence the evolution of populations is not well understood. Most existing models stem from the Wright-Fisher model which considers discrete generations and a fixed population size, thus not taking into account any potential consequences of overlapping generations and demographic stochasticity on allelic frequencies. We introduce an individual-based model in which both population size and genotypic frequencies at a single bi-allelic locus are emergent properties of the model. Demographic parameters can be defined so as to represent a large range of r and K life-history strategies in a stable environment, and appropriate fixed effective population sizes are calculated so as to compare our model to the Wright-Fisher diffusion. Our results indicate that models with fixed population size that stem from the Wright-Fisher diffusion cannot fully capture the consequences of demographic stochasticity on allele fixation in long-lived species with low reproductive rates. This discrepancy is accentuated in the presence of demo-genetic feedback. Furthermore, we predict that populations with K life-histories should maintain lower genetic diversity than those with r life-histories. [Abu Awad, Diala] INRA, UMR AGAP 1334, 2 Pl Pierre Viala, F-34060 Montpellier 1, France; [Abu Awad, Diala] Tech Univ Munich, Sect Populat Genet, Liesel Beckmann Str 2, D-85354 Freising Weihenstephan, Germany; [Coron, Camille] Univ Paris Saclay, Univ Paris Sud, Lab Math Orsay, CNRS, F-91405 Orsay, France Abu Awad, D (reprint author), INRA, UMR AGAP 1334, 2 Pl Pierre Viala, F-34060 Montpellier 1, France.; Abu Awad, D (reprint author), Tech Univ Munich, Sect Populat Genet, Liesel Beckmann Str 2, D-85354 Freising Weihenstephan, Germany. diala.abu-awad@tum.de Abu Awad, Diala/0000-0002-2680-1223 Chair "Modelisation Mathematique et Biodiversite" of VEOLIA-Ecole Polytechnique-MNHN-F.X.; Mission for Inter-disciplinarity at CNRS; Investissement d'avenir project, LabEx LMH [ANR-11-LABX-0056-LMH]; Agence National de la Recherche [ANR SEAD - ANR-13-ADAP-0011] We thank Sylvain Billiard, Emmanuelle Porcher, Sally Otto, and Michael Whitlock for the helpful discussions. Numerical results presented in this paper were carried out using France Grille, CNRS and on the Biomed virtual organization of the European Grid Infrastructure (http://www.egi.eu) via DIRAC (http://diracgrid.org). This work was partially funded by the Chair "Modelisation Mathematique et Biodiversite" of VEOLIA-Ecole Polytechnique-MNHN-F.X., and was also supported by the Mission for Inter-disciplinarity at CNRS and by a public grant as part of the Investissement d'avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH. Diala Abu Awad was funded by the Agence National de la Recherche (ANR SEAD - ANR-13-ADAP-0011). Bataillon T, 2000, GENET RES, V75, P75, DOI 10.1017/S0016672399004048; CABALLERO A, 1992, GENETICS, V131, P493; CAMPILLO F, 1989, STOCH PROC APPL, V33, P245, DOI 10.1016/0304-4149(89)90041-0; Campillo F, 2017, COMMUN STAT-SIMUL C, P1; Champagnat N, 2006, THEOR POPUL BIOL, V69, P297, DOI 10.1016/j.tpb.2005.10.004; Champagnat N, 2007, ANN APPL PROBAB, V17, P102, DOI 10.1214/105051606000000628; Chen J, 2017, MOL BIOL EVOL, V34, P1417, DOI 10.1093/molbev/msx088; Coron C, 2015, ESAIM P SURV, V51, P122; Coron C, 2017, ARXIV170408199V1MATH; Coron C, 2016, J MATH BIOL, V72, P171, DOI 10.1007/s00285-015-0878-z; Day T, 2001, ELS, DOI [10.1038/npg.els.0001745, DOI 10.1038/NPG.ELS.0001745]; De Angelis D, 2014, F1000PRIME REPORTS, P6; EWENS WJ, 1967, HEREDITY, V22, P438, DOI 10.1038/hdy.1967.53; Fisher R. A., 1930, GENETICAL THEORY NAT; Glemin S, 2013, EVOLUTION, V67, P225, DOI 10.1111/j.1558-5646.2012.01778.x; Greenbaum G, 2015, J THEOR BIOL, V380, P98, DOI 10.1016/j.jtbi.2015.05.019; Hedgecock D, 2011, B MAR SCI, V87, P971, DOI 10.5343/bms.2010.1051; Iizuka M, 2002, GENETICS, V161, P381; Iizuka M, 2010, J MATH BIOL, V61, P359, DOI 10.1007/s00285-009-0304-5; KIMURA M, 1969, GENETICS, V61, P763; KIMURA M, 1962, GENETICS, V47, P713; Kimura M., 1970, MATH TOPICS POPULATI, P178; Lande R., 2003, OXFORD SERIES ECOLOG; Lin YT, 2012, J STAT PHYS, V148, P646, DOI 10.1007/s10955-012-0479-9; MORAN PAP, 1953, J ROY STAT SOC B, V15, P241; Mueller LD, 2009, FITNESS DEMOGRAPHY P; Orr HA, 2008, AM NAT, V172, P160, DOI 10.1086/589460; Orr HA, 2009, NAT REV GENET, V10, P531, DOI 10.1038/nrg2603; Otto SP, 1997, GENETICS, V146, P723; Parsons TL, 2010, GENETICS, V185, P1345, DOI 10.1534/genetics.110.115030; Romiguier J, 2014, NATURE, V515, P261, DOI 10.1038/nature13685; Roze D, 2004, GENETICS, V167, P1001, DOI 10.1534/genetics.103.025148; Schweinsberg J, 2003, STOCH PROC APPL, V106, P107, DOI 10.1016/S0304-4149(03)00028-0; Sjodin P, 2005, GENETICS, V169, P1061, DOI 10.1534/genetics.104.026799; Uecker H, 2011, GENETICS, V188, P915, DOI 10.1534/genetics.110.124297; Wahl LM, 2011, GENETICS, V188, P783, DOI 10.1534/genetics.111.131748; Wang JL, 2005, PHILOS T R SOC B, V360, P1395, DOI 10.1098/rstb.2005.1682; Waxman D, 2011, GENETICS, V188, P907, DOI 10.1534/genetics.111.129288; Wright S, 1931, GENETICS, V16, P0097; WRIGHT S, 1938, SCIENCE, V87, P430, DOI DOI 10.1126/SCIENCE.87.2263; Wu B, 2013, ECOL EVOL, V3, P1276, DOI 10.1002/ece3.500 41 0 0 7 7 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 0018-067X 1365-2540 HEREDITY Heredity OCT 2018 121 4 374 386 10.1038/s41437-018-0118-6 13 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity GT1QP WOS:000444248200007 30050060 2018-11-22 J Plouvier, WN; Wajnberg, E Plouvier, Wouter N.; Wajnberg, Eric Improving the efficiency of augmentative biological control with arthropod natural enemies: A modeling approach BIOLOGICAL CONTROL English Article Natural enemies; Behavioral ecology; Life-history traits; Individual-based model; Genetic algorithm; Cost efficiency HOST-PARASITOID DYNAMICS; GENETIC ALGORITHMS; INSECT PARASITOIDS; TIME ALLOCATION; DISPERSAL; ECOLOGY; REPRODUCTION; MECHANISMS; STRATEGIES; MORTALITY A better understanding of the life-history traits of biocontrol agents and their effect on population dynamics is key to obtaining more efficient pest control and generating higher economic returns for biocontrol practitioners. To this end, we constructed an optimality simulation model based on principles of the behavioral ecology of natural enemies. This model allows for the identification of the most important life-history traits of natural enemies (e.g., fecundity, longevity, attack rate, competition and dispersal), taking into account the costs and benefits for biocontrol practitioners. The model was kept general and was designed in such a way that it can be adapted to different target species and their specific ecology (natural enemy-pest-plant combination). Results indicate strong interactions between the optimized life-history traits of the biocontrol agents. Two different optimized life-history strategies for the agents were found with higher potential economic returns. These strategies differ most significantly in the plant-leaving decision and host handling time of the biocontrol agent, but also in their respective fecundity, longevity and dispersal ability. The preferred strategy depends on the number of agents released and the growth rate of the plant. Information from these optimality models can help to determine which agents should be released and how they should be released in a specific agro-ecological situation. [Plouvier, Wouter N.; Wajnberg, Eric] INRA, CNRS, UMR 1355 7254, 400 Route Chappes,BP 167, F-06903 Sophia Antipolis, France; [Wajnberg, Eric] INRIA, Projet Hephaistos, 2004 Route Lucioles,BP 93, F-06902 Sophia Antipolis, France; [Plouvier, Wouter N.] Wageningen Univ, POB 16, NL-6700 AA Wageningen, Netherlands Plouvier, WN (reprint author), INRA, CNRS, UMR 1355 7254, 400 Route Chappes,BP 167, F-06903 Sophia Antipolis, France. wouter.plouvier@inra.fr European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant [641456] The code of the simulation model was run on the cluster of the INRA MIGALE bioinformatics platform (http://migale.jouy.inra.fr). This work has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement [grant number 641456]. Bart Pannebakker and Bas Zwaan are thanked for continuous discussion and support in the development of this work. Patrick Coquillard is thanked for his help in building the simulation framework. Finally, we would like to thank the two anonymous referees for their valuable input. Bianchi FJJA, 2013, ECOL APPL, V23, P1531, DOI 10.1890/12-1819.1; Coll M., 2017, ENV PEST MANAGEMENT; Driessen G, 1999, J ANIM ECOL, V68, P445, DOI 10.1046/j.1365-2656.1999.00296.x; Ellers J, 2000, NETH J ZOOL, V50, P29, DOI 10.1163/156854200505784; Fauvergue X, 2009, POPUL ECOL, V51, P385, DOI 10.1007/s10144-009-0147-3; Hamblin S, 2013, METHODS ECOL EVOL, V4, P184, DOI 10.1111/2041-210X.12000; Hassell M.P., 1978, DYNAMICS ARTHROPOD P; HASSELL MP, 1969, NATURE, V223, P1133, DOI 10.1038/2231133a0; Heimpel GE, 2017, BIOL CONTROL ECOLOGY; Heimpel GE, 2011, BIOCONTROL, V56, P441, DOI 10.1007/s10526-011-9381-7; Hoffmeister Thomas S., 2008, P384, DOI 10.1002/9780470696200.ch17; Holling C. S., 1959, Canadian Entomologist, V91, P385; Hougardy E, 2006, BIOL CONTROL, V37, P206, DOI 10.1016/j.biocontrol.2005.09.001; Johnson CA, 2009, P R SOC B, V276, P3361, DOI 10.1098/rspb.2008.1958; JUDSON OP, 1994, TRENDS ECOL EVOL, V9, P9, DOI 10.1016/0169-5347(94)90225-9; Kenis M, 2008, 3 INT S BIOL CONTR A, P385; Lima EABF, 2009, NEOTROP ENTOMOL, V38, P699, DOI 10.1590/S1519-566X2009000600001; Lommen STE, 2017, ENTOMOL EXP APPL, V162, P108, DOI 10.1111/eea.12510; Mayhew PJ, 2016, ENTOMOL EXP APPL, V159, P147, DOI 10.1111/eea.12411; Mills NJ, 2010, BIOL CONTROL, V52, P255, DOI 10.1016/j.biocontrol.2009.03.018; Mills NJ, 1996, ECOL MODEL, V92, P121, DOI 10.1016/0304-3800(95)00177-8; Mitchell WA, 2009, OIKOS, V118, P1073, DOI 10.1111/j.1600-0706.2009.17204.x; Montovan KJ, 2015, AM NAT, V185, P538, DOI 10.1086/680036; Okuyama T, 2015, THEOR ECOL-NETH, V8, P327, DOI 10.1007/s12080-015-0253-0; Outreman Y, 1999, ANN SOC ENTOMOL FR, V35, P404; Pearce IG, 2006, J THEOR BIOL, V241, P876, DOI 10.1016/j.jtbi.2006.01.026; Roitberg BD, 2014, BIOL CONTROL, V75, P39, DOI 10.1016/j.biocontrol.2014.02.002; Ruxton GD, 2008, J THEOR BIOL, V250, P435, DOI 10.1016/j.jtbi.2007.10.022; Schofield P, 2005, J THEOR BIOL, V237, P1, DOI 10.1016/j.jtbi.2005.03.025; Spataro T, 2000, THEOR POPUL BIOL, V58, P197, DOI 10.1006/tpbi.2000.1483; Stratonovitch P, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0115631; TATAR M, 1993, EVOLUTION, V47, P1302, DOI 10.1111/j.1558-5646.1993.tb02156.x; van Alpen JJM, 2003, TRENDS ECOL EVOL, V18, P81, DOI 10.1016/S0169-5347(02)00035-6; vanRoermund HJW, 1997, BIOL CONTROL, V9, P25, DOI 10.1006/bcon.1997.0512; Vinatier F, 2009, ECOL MODEL, V220, P2244, DOI 10.1016/j.ecolmodel.2009.06.023; von Bertalanffy L., 1938, HUM BIOL, V10, P181; Wajnberg E, 2004, GENETICS, EVOLUTION AND BIOLOGICAL CONTROL, P19, DOI 10.1079/9780851997353.0019; Wajnberg E, 2013, CHEM ECOLOGY INSECT; Wajnberg E, 2006, BEHAV ECOL SOCIOBIOL, V60, P589, DOI 10.1007/s00265-006-0198-9; Wajnberg E, 2016, ENTOMOL EXP APPL, V158, P2, DOI 10.1111/eea.12378; Wajnberg E, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0038227 41 0 0 20 20 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 1049-9644 1090-2112 BIOL CONTROL Biol. Control OCT 2018 125 121 130 10.1016/j.biocontrol.2018.05.010 10 Biotechnology & Applied Microbiology; Entomology Biotechnology & Applied Microbiology; Entomology GO4PX WOS:000439995100016 2018-11-22 J Jonason, PK; Zeigler-Hill, V Jonason, Peter K.; Zeigler-Hill, Virgil The fundamental social motives that characterize dark personality traits PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Psychopathy; Narcissism; Machiavellianism; Sadism; Spitefulness; Motivations LIFE-HISTORY STRATEGIES; TRIAD TRAITS; FOUNDATIONS; PERSPECTIVE; PSYCHOLOGY; MOTIVATION; NEEDS A useful way of understanding personality traits is to examine the motivational nature of a trait because motives drive behaviors and influence attitudes. In two cross-sectional, self-report studies (N = 942), we examined the relationships between fundamental social motives and dark personality traits (Le., narcissism, psychopathy, sadism, spitefulness, and Machiavellianism) and examined the role of childhood socio-ecological conditions (Study 2 only). For example, we found that Machiavellianism and psychopathy were negatively associated with motivations that involved developing and maintaining good relationships with others. Sex differences in the darker aspects of personality were a function of, at least in part, fundamental social motives such as the desire for status. Fundamental social motives mediated the associations that childhood socio-ecological conditions had with the darker aspects of personality. Our results showed how motivational tendencies in men and women may provide insights into alternative life history strategies reflected in dark personality traits. [Jonason, Peter K.] Western Sydney Univ, Penrith, NSW, Australia; [Zeigler-Hill, Virgil] Oakland Univ, Rochester, MI 48063 USA Jonason, PK (reprint author), Western Sydney Univ, Sch Social Sci & Psychol, Milperra, NSW 2214, Australia. p.jonason@westernsydney.edu.au BAUMEISTER RF, 1995, PSYCHOL BULL, V117, P497, DOI 10.1037//0033-2909.117.3.497; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; Christie R., 1970, STUDIES MACHIAVELLIA; Cooper ML, 2000, J PERS, V68, P1059, DOI 10.1111/1467-6494.00126; Deci EL, 2000, PSYCHOL INQ, V11, P227, DOI 10.1207/S15327965PLI1104_01; Elliot AJ, 2001, PSYCHOL INQ, V12, P216; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Hayes A. F., 2013, INTRO MEDIATION MODE; Henrich J, 2010, BEHAV BRAIN SCI, V33, P111, DOI 10.1017/S0140525X10000725; Jonason PK, 2018, PERS INDIV DIFFER, V130, P76, DOI 10.1016/j.paid.2018.03.044; Jonason PK, 2018, PERS INDIV DIFFER, V120, P107, DOI 10.1016/j.paid.2017.08.036; Jonason PK, 2017, PERS INDIV DIFFER, V104, P180, DOI 10.1016/j.paid.2016.08.002; Jonason PK, 2016, EVOL PSYCHOL-US, V14, DOI 10.1177/1474704915623699; Jonason PK, 2016, PERS INDIV DIFFER, V94, P324, DOI 10.1016/j.paid.2016.01.039; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2010, PERS INDIV DIFFER, V48, P373, DOI 10.1016/j.paid.2009.11.003; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jones DN, 2014, ASSESSMENT, V21, P28, DOI 10.1177/1073191113514105; Jones DN, 2014, J INTERPERS VIOLENCE, V29, P1050, DOI 10.1177/0886260513506053; Kenrick DT, 2010, PERSPECT PSYCHOL SCI, V5, P292, DOI 10.1177/1745691610369469; Mace R, 2000, ANIM BEHAV, V59, P1, DOI 10.1006/anbe.1999.1287; Marcus DK, 2014, PSYCHOL ASSESSMENT, V26, P563, DOI 10.1037/a0036039; Neel R, 2016, J PERS SOC PSYCHOL, V110, P887, DOI 10.1037/pspp0000068; Paulhus D. L., 2013, COMPREHENSIVE UNPUB; Paulhus D. L., 2009, MANUAL SELF REPORT P; RASKIN RN, 1979, PSYCHOL REP, V45, P590, DOI 10.2466/pr0.1979.45.2.590; Richard FD, 2003, REV GEN PSYCHOL, V7, P331, DOI 10.1037/1089-2680.7.4.331; Schaller M, 2003, PERS SOC PSYCHOL B, V29, P637, DOI 10.1177/0146167203251526; Schonbrodt FD, 2013, J RES PERS, V47, P609, DOI 10.1016/j.jrp.2013.05.009; Semenyna SW, 2015, PERS INDIV DIFFER, V83, P37, DOI 10.1016/j.paid.2015.03.046; Sih A, 2004, Q REV BIOL, V79, P241, DOI 10.1086/422893; Spain SM, 2014, J ORGAN BEHAV, V35, pS41, DOI 10.1002/job.1894; Wilson E.O., 1975, P1 35 1 1 15 15 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. OCT 1 2018 132 98 107 10.1016/j.paid.2018.05.031 10 Psychology, Social Psychology GL7LL WOS:000437383100014 2018-11-22 J Chen, BB; Qu, WX Chen, Bin-Bin; Qu, Wenxiang Life history strategies and procrastination: The role of environmental unpredictability (vol 117, pg 23, 2017) PERSONALITY AND INDIVIDUAL DIFFERENCES English Correction [Chen, Bin-Bin; Qu, Wenxiang] Fudan Univ, Dept Psychol, 220 Handan Rd, Shanghai 200433, Peoples R China Chen, BB (reprint author), Fudan Univ, Dept Psychol, 220 Handan Rd, Shanghai 200433, Peoples R China. chenbinbin@fudan.edu.cn Chen BB, 2017, PERS INDIV DIFFER, V117, P23, DOI 10.1016/j.paid.2017.05.036 1 0 0 13 13 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. OCT 1 2018 132 134 134 10.1016/j.paid.2018.05.021 1 Psychology, Social Psychology GL7LL WOS:000437383100019 2018-11-22 J Pu, XC; Jin, GZ Pu, Xucai; Jin, Guangze Conspecific and phylogenetic density-dependent survival differs across life stages in two temperate old-growth forests in Northeast China FOREST ECOLOGY AND MANAGEMENT English Article Density dependence; Phylogenetic relatedness; Habitat variables; Species coexistence; Individual survival dynamics; Temperate forest SPECIES SHADE TOLERANCE; LOCAL BIOTIC NEIGHBORS; BORNEAN RAIN-FOREST; TROPICAL FOREST; SEEDLING SURVIVAL; SPATIAL-PATTERNS; HABITAT HETEROGENEITY; PLANT DIVERSITY; TREE GROWTH; HOST-RANGE Factors that control individual survival dynamics are pivotal determinants of forest diversity. Numerous studies have examined the relative importance of habitat variables and neighborhood effects on individual survival, while few studies have examined this importance in different forest types that largely vary topography. We examined the role of conspecific negative density dependence (CNDD), phylogenetic negative density dependence (PNDD) and habitat variables across life stages in two temperate old-growth forests in Northeast China. Using generalized linear mixed models (GLMMs), we tested whether individual survival is related to neighborhood effects and habitat variables. Our results showed that the relative importance of neighborhood effects and habitat variables to focal individual survival varied among life stages and sites. However, the best-fit models for three life stages (with the exception of seedling stage in the BKPF) at both sites all included habitat variables, indicating that these variables contribute to the patterns of focal individual survival. We found evidence of a CNDD effect, and the strength of this effect decreased as the life stages progressed and varied from a negative effect at the seedling stage to a positive one at the adult stage. This result confirms that the importance of CNDD-based survival at the seedling stage plays a particularly significant role in promoting the coexistence of tree species and maintaining forest diversity. We found evidence of PNDD in our forest, and the impact of heterospecific phylogenetic relatedness on focal individual survival was significantly negative; the strength of PNDD increased as the life stages progressed. The CNDD and PNDD widely varied among species, indicating the importance of including the relative abundance, life history strategies and functional traits of species when determining the factors that affect species sensitivity to neighborhood effects. The results of our study demonstrated that CNDD, PNDD and habitat variables all influence the individual survival of these temperate old growth forests, but the relative importance of these factors vary among life stages and species. Our results highlight the importance of combining multiple species, life stages, functional traits and large-scale studies for investigating elements that affect species coexistence in tree communities. [Pu, Xucai; Jin, Guangze] Northeast Forestry Univ, Ctr Ecol Res, Harbin 150040, Heilongjiang, Peoples R China Jin, GZ (reprint author), Northeast Forestry Univ, Ctr Ecol Res, Harbin 150040, Heilongjiang, Peoples R China. taxus@126.com Jin, Guangze/F-5271-2017 Jin, Guangze/0000-0002-9852-0965 National Natural Science Foundation of China [31730015]; Strategic Priority Research Program of the Chinese Academy of Sciences [XDPB0203]; Fundamental Research Funds for the Central Universities [2572017EA02] This study was financially supported by the National Natural Science Foundation of China (No. 31730015), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDPB0203) and the Fundamental Research Funds for the Central Universities (2572017EA02). Alvarez-Loayza P, 2011, J ECOL, V99, P1045, DOI 10.1111/j.1365-2745.2011.01835.x; Bagchi R, 2014, NATURE, V506, P85, DOI 10.1038/nature12911; Bai XJ, 2012, OECOLOGIA, V170, P755, DOI 10.1007/s00442-012-2348-2; Boege K, 2005, TRENDS ECOL EVOL, V20, P441, DOI 10.1016/j.tree.2005.05.001; Bolker BM, 2009, TRENDS ECOL EVOL, V24, P127, DOI 10.1016/j.tree.2008.10.008; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Burnham KP, 2002, J WILDLIFE MANAGE, V67, P175; Burns JH, 2011, P NATL ACAD SCI USA, V108, P5302, DOI 10.1073/pnas.1013003108; Chen L, 2010, ECOL LETT, V13, P695, DOI 10.1111/j.1461-0248.2010.01468.x; Chen LX, 2017, J NUTR BIOCHEM, V40, P1, DOI 10.1016/j.jnutbio.2016.05.005; Chen YX, 2016, ECOLOGY, V97, P776, DOI 10.1890/15-0625.1; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; Clark CJ, 2005, ECOLOGY, V86, P2684, DOI 10.1890/04-1325; CLARK DA, 1984, AM NAT, V124, P769, DOI 10.1086/284316; Coley PD, 1996, ANNU REV ECOL SYST, V27, P305, DOI 10.1146/annurev.ecolsys.27.1.305; Comita LS, 2007, J ECOL, V95, P482, DOI 10.1111/j.1365-2745.2007.01229.x; Comita LS, 2017, SCIENCE, V356, P1328, DOI 10.1126/science.aan6356; Comita LS, 2014, J ECOL, V102, P845, DOI 10.1111/1365-2745.12232; Comita LS, 2010, SCIENCE, V329, P330, DOI 10.1126/science.1190772; Comita LS, 2009, J ECOL, V97, P1346, DOI 10.1111/j.1365-2745.2009.01551.x; Comita LS, 2009, ECOLOGY, V90, P328, DOI 10.1890/08-0451.1; CONNELL J H, 1971, P298; Coomes DA, 2006, TRENDS ECOL EVOL, V21, P593, DOI 10.1016/j.tree.2006.09.002; Dixon P, 2003, J VEG SCI, V14, P927, DOI 10.1111/j.1654-1103.2003.tb02228.x; Gilbert GS, 2007, P NATL ACAD SCI USA, V104, P4979, DOI 10.1073/pnas.0607968104; Gilbert GS, 2012, EVOL APPL, V5, P869, DOI 10.1111/j.1752-4571.2012.00265.x; GILBERT GS, 1994, OECOLOGIA, V98, P100, DOI 10.1007/BF00326095; Harms KE, 2000, NATURE, V404, P493, DOI 10.1038/35006630; HilleRisLambers J, 2002, NATURE, V417, P732, DOI 10.1038/nature00809; Hubbell S.P., 2001, ANN ENTOMOL SOC AM, V98, P241; JANZEN DH, 1970, AM NAT, V104, P501, DOI 10.1086/282687; John R, 2007, P NATL ACAD SCI USA, V104, P864, DOI 10.1073/pnas.0604666104; Johnson DJ, 2014, ECOLOGY, V95, P2493, DOI 10.1890/13-2098.1; Johnson DJ, 2012, SCIENCE, V336, P904, DOI 10.1126/science.1220269; Kobe RK, 2011, ECOL LETT, V14, P503, DOI 10.1111/j.1461-0248.2011.01612.x; Kunstler G, 2016, NATURE, V529, P204, DOI 10.1038/nature16476; LaManna JA, 2017, SCIENCE, V356, P1389, DOI 10.1126/science.aam5678; LaManna JA, 2016, ECOL LETT, V19, P657, DOI 10.1111/ele.12603; Lebrija-Trejos E, 2016, ECOL LETT, V19, P1071, DOI 10.1111/ele.12643; Lebrija-Trejos E, 2014, ECOLOGY, V95, P940, DOI 10.1890/13-0623.1; Lin F, 2014, PLANT ECOL, V215, P795, DOI 10.1007/s11258-014-0332-0; Lin LX, 2012, J ECOL, V100, P905, DOI 10.1111/j.1365-2745.2012.01964.x; Liu XB, 2012, ECOL LETT, V15, P111, DOI 10.1111/j.1461-0248.2011.01715.x; Liu YY, 2014, J PLANT INTERACT, V9, P745, DOI 10.1080/17429145.2014.925146; Liu Y, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms10017; Lu JM, 2015, J PLANT ECOL, V8, P568, DOI 10.1093/jpe/rtv006; Mangan SA, 2010, NATURE, V466, P752, DOI 10.1038/nature09273; Marden JH, 2017, MOL ECOL, V26, P2498, DOI 10.1111/mec.13999; Messaoud Y, 2006, PLANT ECOL, V185, P319, DOI 10.1007/s11258-006-9106-7; Metz MR, 2012, J ECOL, V100, P969, DOI 10.1111/j.1365-2745.2012.01972.x; Metz MR, 2010, ECOLOGY, V91, P3675, DOI 10.1890/08-2323.1; Nathan R, 2000, TRENDS ECOL EVOL, V15, P278, DOI 10.1016/S0169-5347(00)01874-7; Newbery DM, 2013, ECOLOGY, V94, P2838, DOI 10.1890/13-0366.1; Paine CET, 2012, ECOL LETT, V15, P34, DOI 10.1111/j.1461-0248.2011.01705.x; Piao T, 2013, OECOLOGIA, V172, P207, DOI 10.1007/s00442-012-2481-y; Pu XC, 2017, ECOL EVOL, V7, P4582, DOI 10.1002/ece3.3030; Queenborough SA, 2007, ECOLOGY, V88, P2248, DOI 10.1890/06-0737.1; Russo SE, 2008, J ECOL, V96, P192, DOI 10.1111/j.1365-2745.2007.01330.x; SCHOENER TW, 1974, SCIENCE, V185, P27, DOI 10.1126/science.185.4145.27; Shibata M, 2010, ECOSCIENCE, V17, P137, DOI 10.2980/17-2-3163; Swenson NG, 2009, ECOLOGY, V90, P2161, DOI 10.1890/08-1025.1; Underwood N, 2014, Q REV BIOL, V89, P1, DOI 10.1086/674991; Uriarte M, 2004, J ECOL, V92, P348, DOI 10.1111/j.0022-0477.2004.00867.x; Uriarte M, 2010, ECOL LETT, V13, P1503, DOI 10.1111/j.1461-0248.2010.01541.x; Wang X, 2012, PLOS ONE, V7, DOI [10.1371/journal.pone.0047778, 10.1371/journal.pone.0029469, 10.1371/journal.pone.0032405, 10.1371/journal.pone.0040711]; Webb CO, 2006, ECOLOGY, V87, pS123, DOI 10.1890/0012-9658(2006)87[123:PSMSSA]2.0.CO;2; Wu H, 2017, FOREST ECOL MANAG, V384, P169, DOI 10.1016/j.foreco.2016.10.049; Wu JJ, 2016, ECOLOGY, V97, P1182, DOI 10.1890/14-2465.1; Zhang LW, 2011, PLANT SOIL, V347, P211, DOI 10.1007/s11104-011-0839-2; Zhu Y, 2018, ECOL LETT, V21, P506, DOI 10.1111/ele.12915; Zhu Y, 2015, J ECOL, V103, P957, DOI 10.1111/1365-2745.12414; Zhu Y, 2017, J VEG SCI, V28, P1166, DOI 10.1111/jvs.12580; Zhu Y, 2017, FOREST ECOL MANAG, V404, P354, DOI 10.1016/j.foreco.2017.09.004 73 0 0 12 12 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0378-1127 1872-7042 FOREST ECOL MANAG For. Ecol. Manage. SEP 15 2018 424 95 104 10.1016/j.foreco.2018.04.055 10 Forestry Forestry GM3AJ WOS:000437967900011 2018-11-22 J Luhring, TM; Vavra, JM; Cressler, CE; DeLong, JP Luhring, Thomas M.; Vavra, Janna M.; Cressler, Clayton E.; DeLong, John P. Predators modify the temperature dependence of life-history trade-offs ECOLOGY AND EVOLUTION English Article allocation; fecundity; fitness; phenotypic plasticity; predation; reproduction; thermal reaction norm INDUCED PHENOTYPIC PLASTICITY; THERMAL PERFORMANCE CURVES; BODY-SIZE; OFFSPRING SIZE; POPULATION-GROWTH; RAPID EVOLUTION; DAPHNIA-MAGNA; RESPONSES; REPRODUCTION; ECTOTHERMS Although life histories are shaped by temperature and predation, their joint influence on the interdependence of life-history traits is poorly understood. Shifts in one life-history trait often necessitate shifts in anotherstructured in some cases by trade-offsleading to differing life-history strategies among environments. The offspring size-number trade-off connects three traits whereby a constant reproductive allocation (R) constrains how the number (O) and size (S) of offspring change. Increasing temperature and size-independent predation decrease size at and time to reproduction which can lower R through reduced time for resource accrual or size-constrained fecundity. We investigated how O, S, and R in a clonal population of Daphnia magna change across their first three clutches with temperature and size-independent predation risk. Early in ontogeny, increased temperature moved O and S along a trade-off curve (constant R) toward fewer larger offspring. Later in ontogeny, increased temperature reduced R in the no-predator treatment through disproportionate decreases in O relative to S. In the predation treatment, R likewise decreased at warmer temperatures but to a lesser degree and more readily traded off S for O whereby the third clutch showed a constant allocation strategy of O versus S with decreasing R. Ontogenetic shifts in S and O rotated in a counterclockwise fashion as temperature increased and more drastically under risk of predation. These results show that predation risk can alter the temperature dependence of traits and their interactions through trade-offs. [Luhring, Thomas M.; Vavra, Janna M.; Cressler, Clayton E.; DeLong, John P.] Univ Nebraska Lincoln, Sch Biol Sci, Lincoln, NE 68588 USA Luhring, TM (reprint author), Univ Nebraska Lincoln, Sch Biol Sci, Lincoln, NE 68588 USA. tomluhring@gmail.com Luhring, Thomas/0000-0001-7982-5862 Amarasekare P, 2012, AM NAT, V179, P178, DOI 10.1086/663677; Angilletta MJ, 2009, BIO HABIT, P1; Angilletta MJ, 2004, INTEGR COMP BIOL, V44, P498, DOI 10.1093/icb/44.6.498; Atkinson D, 2001, EXPTL BIOL REV, P269; Atkinson D, 1997, TRENDS ECOL EVOL, V12, P235, DOI 10.1016/S0169-5347(97)01058-6; Beckerman AP, 2010, J ANIM ECOL, V79, P1069, DOI 10.1111/j.1365-2656.2010.01703.x; Benard MF, 2004, ANNU REV ECOL EVOL S, V35, P651, DOI 10.1146/annurev.ecolsys.35.021004.112426; Berger D, 2008, FUNCT ECOL, V22, P523, DOI 10.1111/j.1365-2435.2008.01392.x; BLACK AR, 1990, OECOLOGIA, V83, P117, DOI 10.1007/BF00324642; Bourdeau PE, 2009, ECOLOGY, V90, P1659, DOI 10.1890/08-1653.1; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Burks RL, 2001, J N AM BENTHOL SOC, V20, P615, DOI 10.2307/1468092; Burnside WR, 2014, OIKOS, V123, P1449, DOI 10.1111/oik.01199; Chua CM, 2013, MAR ECOL PROG SER, V475, P85, DOI 10.3354/meps10077; Ciota AT, 2014, J MED ENTOMOL, V51, P55, DOI 10.1603/ME13003; Crawford BA, 2012, ETHOLOGY, V118, P41, DOI 10.1111/j.1439-0310.2011.01983.x; Cressler CE, 2017, AM NAT, V190, pE13, DOI 10.1086/691779; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; Culler LE, 2014, OECOLOGIA, V176, P653, DOI 10.1007/s00442-014-3058-8; Davison R, 2014, J THEOR BIOL, V360, P251, DOI 10.1016/j.jtbi.2014.07.015; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; DeLong JP, 2017, ECOL EVOL, V7, P3940, DOI 10.1002/ece3.2955; EBERT D, 1993, ARCH HYDROBIOL, P453; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; Englund G, 2011, ECOL LETT, V14, P914, DOI 10.1111/j.1461-0248.2011.01661.x; Ernest SKM, 2003, ECOL LETT, V6, P990, DOI 10.1046/j.1461-0248.2003.00526.x; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Ghalambor CK, 2003, INTEGR COMP BIOL, V43, P431, DOI 10.1093/icb/43.3.431; Giebelhausen B, 2001, FRESHWATER BIOL, V46, P281, DOI 10.1046/j.1365-2427.2001.00630.x; GLAZIER DS, 1992, ECOLOGY, V73, P910, DOI 10.2307/1940168; Glazier DS, 2000, ECOL LETT, V3, P142, DOI 10.1046/j.1461-0248.2000.00132.x; Grigaltchik VS, 2012, P ROY SOC B-BIOL SCI, V279, P4058, DOI 10.1098/rspb.2012.1277; Hairston NG, 2005, ECOL LETT, V8, P1114, DOI 10.1111/j.1461-0248.2005.00812.x; Hammond KA, 1997, NATURE, V386, P457, DOI 10.1038/386457a0; Hickman CR, 2004, HERPETOLOGICA, V60, P203, DOI 10.1655/03-26; Kerkhoff AJ, 2005, GLOBAL ECOL BIOGEOGR, V14, P585, DOI 10.1111/j.1466-822x.2005.00187.x; Kilham SS, 1998, HYDROBIOLOGIA, V377, P147, DOI 10.1023/A:1003231628456; Kingsolver JG, 2008, EVOL ECOL RES, V10, P251; Kingsolver JG, 2009, AM NAT, V174, P755, DOI 10.1086/648310; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; Kremer CT, 2018, P ROY SOC B-BIOL SCI, V285, DOI 10.1098/rspb.2017.1942; Lim JN, 2014, EVOLUTION, V68, P2306, DOI 10.1111/evo.12446; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Lind J, 2005, BEHAV ECOL, V16, P945, DOI 10.1093/beheco/ari075; Luhring TM, 2016, CURR ZOOL, V62, P501, DOI 10.1093/cz/zow045; Luhring TM, 2015, OECOLOGIA, V178, P723, DOI 10.1007/s00442-015-3270-1; Novich RA, 2014, ECOSPHERE, V5, DOI 10.1890/ES14-00216.1; ORCUTT JD, 1983, LIMNOL OCEANOGR, V28, P720, DOI 10.4319/lo.1983.28.4.0720; Padfield D, 2016, ECOL LETT, V19, P133, DOI 10.1111/ele.12545; PEPIN P, 1991, CAN J FISH AQUAT SCI, V48, P503, DOI 10.1139/f91-065; Perrin N, 1988, FUNCT ECOL, V2, P283, DOI 10.2307/2389399; Protas M, 2008, EVOL DEV, V10, P196, DOI 10.1111/j.1525-142X.2008.00227.x; R Core Team, 2017, R LANG ENV STAT COMP; Relyea RA, 2001, ECOLOGY, V82, P523, DOI 10.2307/2679877; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Riessen HP, 1999, CAN J FISH AQUAT SCI, V56, P2487, DOI 10.1139/cjfas-56-12-2487; ROITBERG BD, 1993, NATURE, V364, P108, DOI 10.1038/364108a0; Rollinson N, 2015, EVOLUTION, V69, P2441, DOI 10.1111/evo.12753; Savage VM, 2004, AM NAT, V163, P429, DOI 10.1086/381872; Seebacher F, 2015, NAT CLIM CHANGE, V5, P61, DOI 10.1038/NCLIMATE2457; SIBLY RM, 1994, FUNCT ECOL, V8, P486, DOI 10.2307/2390073; Sinclair BJ, 2016, ECOL LETT, V19, P1372, DOI 10.1111/ele.12686; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STIBOR H, 1992, OECOLOGIA, V92, P162, DOI 10.1007/BF00317358; Thompson JN, 1998, TRENDS ECOL EVOL, V13, P329, DOI 10.1016/S0169-5347(98)01378-0; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VansBuskirk J., 2000, ECOLOGY, V81, P3009; Walls M, 1998, CAN J FISH AQUAT SCI, V55, P1961, DOI 10.1139/cjfas-55-8-1961; Walsh MR, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2205; Willott SJ, 1998, FUNCT ECOL, V12, P232, DOI 10.1046/j.1365-2435.1998.00180.x; Wood S. N., 2015, PACKAGE MGCV, P1, DOI [10. 1186/1471-2105-11-11. Bioconductor, DOI 10.1186/1471-2105-11-11.BIOCONDUCTOR]; Wood S. N., 2006, GEN ADDITIVE MODELS, DOI [10.1111/J.1541-0420.2007.00905_3.X, DOI 10.1111/J.1541-0420.2007.00905_3.X, 10.1111/j.1541-0420.2007.00905_3.x] 73 0 0 10 10 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. SEP 2018 8 17 8818 8830 10.1002/ece3.4381 13 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology GU8QR WOS:000445606000016 30271548 DOAJ Gold, Green Published 2018-11-22 J Stuby, L Stuby, Lisa Contributions to the Life History of Kuskokwim River Inconnu TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY English Article MACKENZIE RIVER; FRESH-WATER; STENODUS-LEUCICHTHYS; ANADROMOUS INCONNU; DIADROMOUS FISH; MIGRATION; SALMON; CHEMISTRY; PATTERNS; SYSTEM A radiotelemetry study conducted during 2007-2016 in the Kuskokwim River drainage in Alaska expands our understanding of the life history strategies of Inconnu Stenodus leucichthys. The Inconnu like other whitefish species has specific spawning habitat requirements and consequently spawn in very few areas. Documenting specific spawning, feeding, and overwintering areas is the necessary first step to ensure their habitats are protected. Four spawning areas in the upper Kuskokwim River were identified from radio-tracking and verified with on-site sampling. Inconnu arrived at their spawning areas during late July through mid-September and spawned during late September through early October. Postspawning outmigration occurred during 1-1.5weeks in mid-October. Most radio-tagged Inconnu made extensive postspawning downriver migrations and overwintered in the lower Kuskokwim River and in the brackish waters of the upper Kuskokwim Bay; however, some Inconnu made only short postspawning migrations and spent the winter in the middle and upper Kuskokwim River. After spring ice out, many fish that overwintered in the lower river swam upriver and spent summers feeding at the mouths of major tributaries. A high degree of site fidelity among years was observed for spawning, feeding, and overwintering areas. Habitat characteristics of spawning areas were similar with respect to spawning substrate, temperature, pH, conductivity, dissolved oxygen, and turbidity. Information gathered from this study can be used by to identify a reliable index stock for the spawning population that can be enumerated periodically to ensure the long-term sustainability of the population. [Stuby, Lisa] Alaska Dept Fish & Game, Div Sport Fish, 1300 Coll Rd, Fairbanks, AK 99701 USA Stuby, L (reprint author), Alaska Dept Fish & Game, Div Sport Fish, 1300 Coll Rd, Fairbanks, AK 99701 USA. lisa.stuby@alaska.gov USFWS, Office of Subsistence Management (OSM) [06-305, 10-305, 12-312] I thank M. Evenson, J. Savereide, J. Chythlook, D. Reed, L. St. Amand, C. Bear, M. Robinson, A. Matter, B. Wainwright, B. Collyard, D. Lorring, V. Davis, H. Scannell, and A. Garry, from ADFG Region III for project assistance and support. M. Thalhauser, L. Robbins, M. Smith, A. Nicori, G. Lindsey, and D Orabutt of Kuskokwim Native Association assisted with tagging and/or helped set up, download, and maintain the stationary tracking stations and incorporated the Inconnu frequencies into their aerial tracking flights. K. Whitworth, A. Runkle, and A. Nikolai of MTNT, Ltd. assisted with tagging and/or provided general support in communities at and upriver of McGrath. Thanks also to R. Brown of the USFWS for helpful advice. Funding was provided by the USFWS, Office of Subsistence Management (OSM Projects 06-305, 10-305, and 12-312). There is no conflict of interest declared in this article. ALT K T, 1988, Finnish Fisheries Research, V9, P127; Alt K. T., 1981, ANN PERFORMANCE REPO; Alt K. T., 1987, REV SHEEFISH STENODU; ALT KT, 1977, J FISH RES BOARD CAN, V34, P129, DOI 10.1139/f77-016; Baxter JS, 1999, CAN J ZOOL, V77, P1233, DOI 10.1139/cjz-77-8-1233; BEHNKE RJ, 1972, J FISH RES BOARD CAN, V29, P639, DOI 10.1139/f72-112; Benke A. C., 2005, RIVERS N AM; Brown R. J., 2008, ADV LIMNOLOGY, V63, P101; Brown R. J., 2012, FISHERY DATA SERIES, V12-54; Brown R. J., 2002, ALASKA FISHERIES DAT, V2002-1; Brown R. J., 2000, THESIS; Brown RJ, 2007, T AM FISH SOC, V136, P678, DOI 10.1577/T06-040.1; Brown RJ, 2009, CAN J FISH AQUAT SCI, V66, P1790, DOI 10.1139/F09-112; Chythlook J., 2014, 1427 AL DEP FISH GAM; Cochran W. G, 1977, SAMPLING TECHNIQUES; Compton R. R., 1962, MANUAL FIELD GEOLOGY; Gerken J. D., 2009, THESIS; GROSS MR, 1988, SCIENCE, V239, P1291, DOI 10.1126/science.239.4845.1291; Hander R. F., 2016, ANN REPORT PROJECT; Harris LN, 2010, CAN J FISH AQUAT SCI, V67, P905, DOI 10.1139/F10-027; Howland K. L., 2005, THESIS; Howland KL, 2004, ANN ZOOL FENN, V41, P205; Howland KL, 2001, T AM FISH SOC, V130, P725, DOI 10.1577/1548-8659(2001)130<0725:IOFAAI>2.0.CO;2; Howland KL, 2000, T AM FISH SOC, V129, P41, DOI 10.1577/1548-8659(2000)129<0041:MPOFAA>2.0.CO;2; Ireland R.R.W., 1985, HYDROLOGIC RECONNAIS; Jorgensen C, 2006, CAN J FISH AQUAT SCI, V63, P200, DOI 10.1139/F05-210; LABELLE M, 1994, CAN J FISH AQUAT SCI, V51, P552, DOI 10.1139/f94-058; Malard F, 2001, CAN J FISH AQUAT SCI, V58, P1319, DOI 10.1139/cjfas-58-7-1319; Malcolm IA, 2009, HYDROGEOL J, V17, P161, DOI 10.1007/s10040-008-0339-5; Morrow J. E., 1980, FRESHWATER FISHES AL; Neher TDH, 2013, T AM FISH SOC, V142, P1481, DOI 10.1080/00028487.2013.815660; Olsen J. B, 2017, 12700 US FISH WILDL; Rideout RM, 2005, FISH FISH, V6, P50, DOI 10.1111/j.1467-2679.2005.00174.x; Savereide J. W., 2016, FISHERY DATA SERIES, V16-31; Scott WB, 1973, FISHERIES RES BOARD, V184; Secor D., 1991, MANUAL OTOLITH REMOV; Smith NJ, 2015, N AM J FISH MANAGE, V35, P698, DOI 10.1080/02755947.2015.1052164; Snyder D.E., 1983, P165; Stuby L, 2018, ANN REPORT PROJECT; Stuby L., 2007, FISHERY DATA SERIES, V07-93; Tanner T. L, 2008, THESIS; Underwood Tevis J., 2000, North American Journal of Fisheries Management, V20, P386, DOI 10.1577/1548-8675(2000)020<0386:ALCAMO>2.3.CO;2 42 0 0 0 0 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0002-8487 1548-8659 T AM FISH SOC Trans. Am. Fish. Soc. SEP 2018 147 5 879 890 10.1002/tafs.10069 12 Fisheries Fisheries GT7EA WOS:000444682900008 2018-11-22 J Kennedy, PJ; Bartley, TJ; Gillis, DM; McCann, KS; Rennie, MD Kennedy, P. J.; Bartley, T. J.; Gillis, D. M.; McCann, K. S.; Rennie, M. D. Offshore Prey Densities Facilitate Similar Life History and Behavioral Patterns in Two Distinct Aquatic Apex Predators, Northern Pike and Lake Trout TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY English Article MIXED-EFFECTS MODELS; WALLEYE SANDER-VITREUS; SALVELINUS-NAMAYCUSH; ESOX-LUCIUS; CLIMATE-CHANGE; SIZE STRUCTURE; FOOD-QUALITY; FISH STOCKS; GROWTH; POPULATIONS Northern Pike Esox lucius are important aquatic apex predators in freshwater ecosystems across the Canadian Boreal Shield. Although Northern Pike have historically been described as nearshore ambush predators, larger individuals have been anecdotally observed foraging in offshore habitats. We used two province-wide data sets from Ontario, Canada, to investigate the degree to which Northern Pike are generalist predators by examining the influence of offshore prey fish densities on their life histories. To better understand whether the life history patterns observed were unique to Northern Pike or representative of aquatic apex predators generally, we compared Northern Pike life history and catch results to those of the Lake Trout Salvelinus namaycush, a well-known pelagic apex predator. We found that the asymptotic lengths of both Northern Pike and Lake Trout were positively related to Cisco Coregonus artedi CPUE. Furthermore, both Northern Pike and Lake Trout occupied offshore habitat more frequently in lakes with greater Cisco CPUEs. Northern Pike early growth and mortality rates were negatively related to Cisco CPUE but positively related to Yellow Perch Perca flavescens CPUE, suggesting that Northern Pike undergo ontogenetic shifts to foraging on Ciscoes later in life. Although the growth and mortality of these predators were related to prey availability, variation in the CPUEs of Northern Pike and Lake Trout was best explained by physical lake characteristics. Our study suggests that Northern Pike and Lake Trout respond similarly to Cisco CPUE across the Canadian Boreal Shield, consistent with research reported for other aquatic apex predators. Results of this work collectively suggest that generalist behavior and large-bodied life history strategies of Northern Pike are facilitated by the availability of Ciscoes. [Kennedy, P. J.; Gillis, D. M.; Rennie, M. D.] Univ Manitoba, Dept Biol Sci, 50 Sifton Rd, Winnipeg, MB R3T 2N2, Canada; [Bartley, T. J.] Univ Toronto Mississauga, Dept Biol, 3359 Mississauga Rd, Mississauga, ON L5L 1C6, Canada; [Bartley, T. J.; McCann, K. S.] Univ Guelph, Dept Integrat Biol, 50 Stone Rd East, Guelph, ON N1G 2W1, Canada; [Rennie, M. D.] Int Inst Sustainable Dev, Expt Lakes Area, 111 Lombard Ave,Suite 325, Winnipeg, MB R3B 0T4, Canada; [Rennie, M. D.] Lakehead Univ, Dept Biol, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada Kennedy, PJ (reprint author), Univ Manitoba, Dept Biol Sci, 50 Sifton Rd, Winnipeg, MB R3T 2N2, Canada. kennedypjames@gmail.com Rainy Lakes Fisheries Charity Trust; Natural Sciences and Engineering Research Council of Canada; Canada Research Chairs Program; International Institute for Sustainable Development-Experimental Lakes Area We thank George Morgan and Kim Armstrong (OMNRF) for providing data, John Gunn for the inspiration and discussions that initiated the project, and Cindy Chu for feedback on an earlier draft of the manuscript. Margaret Treble and the Fisheries and Oceans Canada staff supported laboratory and workspace access. This work was supported by grants from the Rainy Lakes Fisheries Charity Trust, Natural Sciences and Engineering Research Council of Canada (Discovery Grant), and Canada Research Chairs Program to M.D.R. and from the International Institute for Sustainable Development-Experimental Lakes Area to M.D.R. and P.K. There is no conflict of interest declared in this article. Bartley T.J., 2015, DNA BARCODES, V3, P30, DOI [10.1515/dna-2015-0005, DOI 10.1515/DNA-2015-0005]; Bates D, 2015, J STAT SOFTW, V67, P1; Beaudoin CP, 1999, OECOLOGIA, V120, P386, DOI 10.1007/s004420050871; Beverton R.J.H., 1987, Basic Life Sciences, V42, P161; BRODY S, 1945, BIOENERGETICS GROWTH; Bryan SD, 1996, J FRESHWATER ECOL, V11, P153, DOI 10.1080/02705060.1996.9663474; Carl LM, 2008, ENVIRON BIOL FISH, V83, P127, DOI 10.1007/s10641-007-9305-7; Casselman JM, 1996, CAN J FISH AQUAT SCI, V53, P161, DOI 10.1139/cjfas-53-S1-161; Charnov EL, 2007, AM NAT, V170, pE129, DOI 10.1086/522840; Charnov EL, 2010, ENVIRON BIOL FISH, V88, P293, DOI 10.1007/s10641-010-9642-9; Charnov Eric L., 1993, P1; Chezik K. A., 2014, CANADIAN J FISHERIES, V70, P1; Chezik K. A., 2014, CANADIAN J FISHERIES, V71, P1; Chu C, 2005, DIVERS DISTRIB, V11, P299, DOI 10.1111/j.1366-9516.2005.00153.x; COLBY PJ, 1987, CAN J FISH AQUAT SCI, V44, P104; Craig JF, 2008, HYDROBIOLOGIA, V601, P5, DOI 10.1007/s10750-007-9262-3; Craig J. F., 1996, PIKE BIOL EXPLOITATI, P202; DIANA JS, 1979, CAN J ZOOL, V57, P2121, DOI 10.1139/z79-279; Dodge D. P., 1985, MANUAL INSTRUCTIONS; Dolson R, 2009, OIKOS, V118, P1230, DOI 10.1111/j.1600-0706.2009.17351.x; GALLUCCI VF, 1979, T AM FISH SOC, V108, P14, DOI 10.1577/1548-8659(1979)108<14:RFATAS>2.0.CO;2; Gillooly JF, 2001, SCIENCE, V293, P2248, DOI 10.1126/science.1061967; Greer AT, 2016, ICES J MAR SCI, V73, P1051, DOI 10.1093/icesjms/fsw001; Gunn J. M., 2004, BOREAL SHIELD WATERS; Guzzo MM, 2017, P NATL ACAD SCI USA, V114, P9912, DOI 10.1073/pnas.1702584114; Hart J. L., 1931, CONTRIB CAN BIOL FIS, V21, P445; Heath DD, 1996, ENVIRON BIOL FISH, V45, P53, DOI 10.1007/BF00000627; Holt LE, 2015, BIOL LETTERS, V11, P1, DOI [10.1098/rsbl.2014.1032, DOI 10.1098/RSBL.2014.1032]; Jacobson P. C., 1992, ANAL FACTORS AFFECTI; Johnson PCD, 2014, METHODS ECOL EVOL, V5, P944, DOI 10.1111/2041-210X.12225; Kahle D, 2013, R J, V5, P144; Kaufman SD, 2009, N AM J FISH MANAGE, V29, P468, DOI 10.1577/M07-117.1; Kaufman SD, 2006, CAN J FISH AQUAT SCI, V63, P970, DOI 10.1139/F06-004; Kelly N. I., 2014, CONSERV PHYSIOL, V2, P1, DOI DOI 10.1093/C0NPHYS/C0U025; KERR SR, 1977, J FISH RES BOARD CAN, V34, P1952, DOI 10.1139/f77-261; KERR SR, 1971, J FISH RES BOARD CAN, V28, P809, DOI 10.1139/f71-121; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; Kuznetsova A, 2017, J STAT SOFTW, V82, P1; Mackenzie-Grieve JL, 2006, CAN J FISH AQUAT SCI, V63, P788, DOI 10.1139/F05-257; Makowecki R, 1973, THESIS; Malette M. D., 2005, PROVINCIAL SUMMARY N; Margenau Terry L., 1998, North American Journal of Fisheries Management, V18, P625, DOI 10.1577/1548-8675(1998)018<0625:FAGONP>2.0.CO;2; McDermid JL, 2010, CAN J FISH AQUAT SCI, V67, P314, DOI 10.1139/F09-183; McKinney ML, 1997, ANNU REV ECOL SYST, V28, P495, DOI 10.1146/annurev.ecolsys.28.1.495; McMeans BC, 2016, ECOL MONOGR, V86, P4, DOI 10.1890/15-0288.1; Morgan G. E., 2002, MANUAL INSTRUCTIONSF; Nakagawa S, 2013, METHODS ECOL EVOL, V4, P133, DOI 10.1111/j.2041-210x.2012.00261.x; Nilsson PA, 2000, OIKOS, V88, P539, DOI 10.1034/j.1600-0706.2000.880310.x; Oedekoven MA, 2000, ECOLOGY, V81, P66, DOI 10.1890/0012-9658(2000)081[0066:PQASPA]2.0.CO;2; PAULY D, 1980, J CONSEIL, V39, P175; Pazzia I, 2002, CAN J FISH AQUAT SCI, V59, P1593, DOI 10.1139/F02-128; Pierce RB, 2003, N AM J FISH MANAGE, V23, P331, DOI 10.1577/1548-8675(2003)023<0331:DDIGAS>2.0.CO;2; Pierce RB, 2005, T AM FISH SOC, V134, P231, DOI 10.1577/T03-211.1; Post DM, 2000, NATURE, V405, P1047, DOI 10.1038/35016565; Post JR, 2012, CAN J FISH AQUAT SCI, V69, P321, DOI 10.1139/F2011-163; PYKE GH, 1977, Q REV BIOL, V52, P137, DOI 10.1086/409852; Quinn G.P., 2002, EXPT DESIGN DATA ANA; R Core Team, 2014, R LANG ENV STAT COMP; Raat A. J. P., 1988, SYNOPSIS BIOL DATA N; Rennie MD, 2010, ECOGRAPHY, V33, P471, DOI 10.1111/j.1600-0587.2009.06160.x; Rennie MD, 2009, CAN J FISH AQUAT SCI, V66, P2096, DOI 10.1139/F09-139; Ricker W. E., 1975, B FISHERIES RES BOAR, V191; ROBSON D. S., 1961, TRANS AMER FISH SOC, V90, P181, DOI 10.1577/1548-8659(1961)90[181:CCAMR]2.0.CO;2; Roff Derek A., 1992; Rose KA, 2001, FISH FISH, V2, P293, DOI 10.1046/j.1467-2960.2001.00056.x; Sandstrom S., 2013, MANUAL INSTRUCTIONS; Scott WB, 1973, FISHERIES RES BOARD, V184; Shuter BJ, 1998, CAN J FISH AQUAT SCI, V55, P2161, DOI 10.1139/cjfas-55-9-2161; Shuter BJ, 2016, CAN J FISH AQUAT SCI, V73, P693, DOI 10.1139/cjfas-2015-0190; Smith MW, 2012, N AM J FISH MANAGE, V32, P956, DOI 10.1080/02755947.2012.711270; Stearns S., 1992, EVOLUTION LIFE HIST; Stephens D. M., 1986, FORAGING THEORY; STERNER RW, 1993, LIMNOL OCEANOGR, V38, P857, DOI 10.4319/lo.1993.38.4.0857; TRIPPEL EA, 1993, CAN J FISH AQUAT SCI, V50, P1442, DOI 10.1139/f93-165; TRIPPEL EA, 1989, CAN J FISH AQUAT SCI, V46, P1531, DOI 10.1139/f89-195; Tunney TD, 2012, NAT COMMUN, V3, DOI 10.1038/ncomms2098; Vander Zanden MJ, 1997, CAN J FISH AQUAT SCI, V54, P1142, DOI 10.1139/cjfas-54-5-1142; Vander Zanden MJ, 2002, ECOLOGY, V83, P2152, DOI 10.1890/0012-9658(2002)083[2152:FAIOBA]2.0.CO;2; Venturelli PA, 2006, T AM FISH SOC, V135, P1512, DOI 10.1577/T05-228.1; Venturelli PA, 2010, CAN J FISH AQUAT SCI, V67, P1057, DOI 10.1139/F10-041; Zuur A. F., 2009, MIXED EFFECTS MODELS; Zuur AF, 2010, METHODS ECOL EVOL, V1, P3, DOI 10.1111/j.2041-210X.2009.00001.x 82 0 0 3 3 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0002-8487 1548-8659 T AM FISH SOC Trans. Am. Fish. Soc. SEP 2018 147 5 972 995 10.1002/tafs.10090 24 Fisheries Fisheries GT7EA WOS:000444682900015 2018-11-22 J Spurgeon, JJ; Pegg, MA; Hamel, MJ; Steffensen, KD Spurgeon, J. J.; Pegg, M. A.; Hamel, M. J.; Steffensen, K. D. Spatial structure of large-river fish populations across main-stem and tributary habitats RIVER RESEARCH AND APPLICATIONS English Article connectivity; movement; multistate; population; rivers; survival SHOVELNOSE STURGEON; MISSOURI RIVER; FLATHEAD CATFISH; CHANNEL CATFISH; CONSERVATION; MANAGEMENT; MOVEMENTS; MIGRATIONS; PATTERNS; SURVIVAL The spatial variability in demographic parameters represents fundamental information for conservation and management of large-river fish populations. We assessed demographic processes including survival and movement across macroscale habitats in a large-river network using 2 candidate large-river species with contrasting life history strategies. We used mark-recapture data and a multistate model framework to estimate survival and transition probabilities between main-stem and tributary habitats for both channel catfish and shovelnose sturgeon. Annual survival for channel catfish was similar in main-stem and tributary habitats (range in S=0.47-0.58). Annual survival for shovelnose sturgeon was less in the tributary (S=0.68) compared with the main stem (S=0.83). The probability of movement among macroscale habitats differed between species. However, the greatest probability of movement occurred from the tributary to the main-stem for both channel catfish (=0.42) and shovelnose sturgeon (=0.27). Movement between main-stem and tributary rivers may be a prominent characteristic for both channel catfish and shovelnose sturgeon and could influence population demographic rates and abundance across systems. Riverine fish populations are likely structured across multiple salient scalesincluding tributary and main-stem habitats. Consideration of connectivity across tributary and main-stem habitats with respect to species' life history strategy and life stage may better integrate a systems' perspective for conservation and management of large-river fish populations. [Spurgeon, J. J.; Pegg, M. A.; Hamel, M. J.] Univ Nebraska Lincoln, Sch Nat Resources, Lincoln, NE 68588 USA; [Steffensen, K. D.] Nebraska Game & Parks Commiss, Lincoln, NE USA Spurgeon, JJ (reprint author), Univ Nebraska Lincoln, Sch Nat Resources, Lincoln, NE 68588 USA. spurgeonj@uapb.edu Nebraska Game and Parks Commission [F-75R, F-75-R]; University of Nebraska-Lincoln Nebraska Game and Parks Commission, Grant/Award Numbers: F-75R and F-75-R; University of Nebraska-Lincoln Blank A., 2012, THESIS; Bottcher JL, 2013, N AM J FISH MANAGE, V33, P585, DOI 10.1080/02755947.2013.785993; Braaten PJ, 2008, N AM J FISH MANAGE, V28, P808, DOI 10.1577/M06-285.1; Bramblett RG, 2001, T AM FISH SOC, V130, P1006, DOI 10.1577/1548-8659(2001)130<1006:HUAMOP>2.0.CO;2; Burnham K.P., 2002, MODEL SELECTION INFE; Butler SE, 2011, RIVER RES APPL, V27, P1182, DOI 10.1002/rra.1416; Cooke S. J., 2016, ENVIRON MONIT ASSESS, V188, P1; da Silva PS, 2015, RIVER RES APPL, V31, P313, DOI 10.1002/rra.2755; DAMES HR, 1989, T AM FISH SOC, V118, P670, DOI 10.1577/1548-8659(1989)118<0670:MOCAFC>2.3.CO;2; Fausch KD, 2002, BIOSCIENCE, V52, P483, DOI 10.1641/0006-3568(2002)052[0483:LTRBTG]2.0.CO;2; Galat DL, 2001, J N AM BENTHOL SOC, V20, P266, DOI 10.2307/1468321; Hamel MJ, 2015, CAN J FISH AQUAT SCI, V72, P71, DOI 10.1139/cjfas-2014-0238; Hamel MJ, 2012, N AM J FISH MANAGE, V32, P533, DOI 10.1080/02755947.2012.675961; HESSE LW, 1993, FISHERIES, V18, P5, DOI 10.1577/1548-8446(1993)018<0005:TMRH>2.0.CO;2; Hubert WA, 1999, AM FISH S S, V24, P3; Kappenman KM, 2009, T AM FISH SOC, V138, P927, DOI 10.1577/T07-265.1; Keenlyne KD, 1997, ENVIRON BIOL FISH, V48, P291, DOI 10.1023/A:1007349221987; Koster WM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0096044; Moore JW, 2015, CAN J FISH AQUAT SCI, V72, P785, DOI 10.1139/cjfas-2014-0478; Neely BC, 2009, ECOL FRESHW FISH, V18, P437, DOI 10.1111/j.1600-0633.2009.00360.x; Newcomb B.A., 1989, North American Journal of Fisheries Management, V9, P195, DOI 10.1577/1548-8675(1989)009<0195:WAOCCI>2.3.CO;2; Nunn AD, 2010, ECOL FRESHW FISH, V19, P153, DOI 10.1111/j.1600-0633.2009.00399.x; Pegg MA, 2003, AQUAT SCI, V65, P63, DOI 10.1007/s000270300005; Pellett DT, 1998, N AM J FISH MANAGE, V18, P85; Phelps Q., 2016, J APPL ICHTHYOL, V32, P249; Phelps QE, 2012, CAN J FISH AQUAT SCI, V69, P930, DOI 10.1139/F2012-038; Porreca AP, 2016, CAN J FISH AQUAT SCI, V73, P877, DOI 10.1139/cjfas-2015-0352; Pracheil BM, 2009, ECOL FRESHW FISH, V18, P603, DOI 10.1111/j.1600-0633.2009.00376.x; Pracheil BM, 2013, FRONT ECOL ENVIRON, V11, P124, DOI 10.1890/120179; Pracheil BM, 2012, FISHERIES, V37, P449, DOI 10.1080/03632415.2012.722877; Quist MC, 1999, T AM FISH SOC, V128, P522, DOI 10.1577/1548-8659(1999)128<0522:OHUOSS>2.0.CO;2; Quist Michael C., 1999, Prairie Naturalist, V31, P65; Radinger J, 2014, FISH FISH, V15, P456, DOI 10.1111/faf.12028; REYNOLDS LF, 1983, AUST J MAR FRESH RES, V34, P857; Richards RR, 2014, J APPL ICHTHYOL, V30, P1, DOI 10.1111/jai.12336; Robichaud D, 2017, T AM FISH SOC, V146, P611, DOI 10.1080/00028487.2017.1294542; Schlosser IJ, 1995, AM FISH S S, V17, P392; Siddons SF, 2017, RIVER RES APPL, V33, P578, DOI 10.1002/rra.3118; Spurgeon JJ, 2018, FISH RES, V198, P195, DOI 10.1016/j.fishres.2017.09.001; Thorp JH, 2006, RIVER RES APPL, V22, P123, DOI 10.1002/rra.901; Travnichek VH, 2004, FISHERIES MANAG ECOL, V11, P89, DOI 10.1046/j.1365-2400.2003.00377.x; Welker T. L., 2011, MISSOURI RIVER STAND, V1. 6; Welker T. L., 2011, PALLID STURGEON POPU, V16; White GC, 1999, BIRD STUDY, V46, P120; WILLIAMS B. K., 2002, ANAL MANAGEMENT ANIM 45 0 0 1 1 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1535-1459 1535-1467 RIVER RES APPL River Res. Appl. SEP 2018 34 7 807 815 10.1002/rra.3289 9 Environmental Sciences; Water Resources Environmental Sciences & Ecology; Water Resources GS9XB WOS:000444080300018 2018-11-22 J Geiger, R; Beaulieu, M; Franke, K; Fischer, K Geiger, Rina; Beaulieu, Michael; Franke, Kristin; Fischer, Klaus High male density favors maintenance over reproduction in a butterfly BEHAVIORAL ECOLOGY English Article courtship behavior; density-dependence; intraspecific competition; resource-allocation trade-off; social plasticity; strategic investment MALE MATING SUCCESS; BICYCLUS-ANYNANA BUTTERFLIES; MALE-MALE COMPETITION; PHENOTYPIC PLASTICITY; SPERM COMPETITION; LIFE-HISTORY; FEMALE LONGEVITY; IMMUNE FUNCTION; SIZE; PREFERENCES Environmental factors exert strong effects on phenotypic expression. A particularly intriguing factor capable of inducing such plastic responses is the social environment experienced by a specific individual. Such social effects may alter the fitness of focal individuals if they affect the expression of reproductive traits and thus life-history strategies. To examine this question, we investigated the effects of individual density on morphology, reproduction, and behavior of male Bicyclus anynana butterflies. Increasing density significantly increased male body mass and the probability to succeed in aggressive interactions and tended to increase abdomen fat content. At the same time, increasing density significantly decreased courtship activity and tended to decrease sperm number. These results suggest that individual density seemed to induce differential strategic investment into survival and somatic maintenance versus reproduction in male butterflies. Males kept at high densities apparently favored high body mass and storage, which may enable longer survival during times of intense intraspecific competition. Moreover, their competitiveness was enhanced as suggested by a higher success in aggressive interactions. Males kept at low density, in contrast, favored reproduction through increased courtship activity and sperm production. Our study illustrates that the effects of density on the expression of morphological and behavioral traits are complex and difficult to predict, owing to resource-allocation trade-offs resulting in prudent strategic investment. [Geiger, Rina; Beaulieu, Michael; Franke, Kristin; Fischer, Klaus] Greifswald Univ, Zool Inst & Museum, Loitzer Str 26, D-17489 Greifswald, Germany; [Fischer, Klaus] Univ Koblenz Landau, Inst Integrated Nat Sci, Univ Str 1, D-56070 Koblenz, Germany Fischer, K (reprint author), Univ Koblenz Landau, Inst Integrated Nat Sci, Univ Str 1, D-56070 Koblenz, Germany. klausfischer@uni-koblenz.de University of Greifswald We thank Ann-Christin Richter for help during experiments and 2 anonymous reviewers for constructive criticism. This work was supported by the University of Greifswald. Agnew P, 2002, ECOL ENTOMOL, V27, P396, DOI 10.1046/j.1365-2311.2002.00430.x; Bailey NW, 2011, BIOL LETTERS, V7, P217, DOI 10.1098/rsbl.2010.0659; Bauerfeind SS, 2005, OIKOS, V111, P514, DOI 10.1111/j.0030-1299.2005.13888.x; Beaulieu M, 2018, DRYAD DIGITAL REPOSI, DOI [10.5061/dryad.466k2sq, DOI 10.5061/DRYAD.466K2SQ]; Beaulieu M, 2017, HORM BEHAV, V93, P39, DOI 10.1016/j.yhbeh.2017.03.007; Beaulieu M, 2015, ANIM BEHAV, V109, P89, DOI 10.1016/j.anbehav.2015.08.010; Beaulieu M, 2015, EVOLUTION, V69, P1786, DOI 10.1111/evo.12697; Beck J, 1999, OECOLOGIA, V119, P140, DOI 10.1007/s004420050770; Begon M, 2014, ESSENTIALS ECOLOGY; BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1006/abio.1976.9999; Brakefield Paul M., 1997, V83, P65; Brakefield PM, 2001, J EVOLUTION BIOL, V14, P148, DOI 10.1046/j.1420-9101.2001.00248.x; BRAKEFIELD PM, 1991, ECOL ENTOMOL, V16, P291, DOI 10.1111/j.1365-2311.1991.tb00220.x; Buzatto BA, 2015, EVOLUTION, V69, P2613, DOI 10.1111/evo.12766; CADE WH, 1992, ANIM BEHAV, V43, P49, DOI 10.1016/S0003-3472(05)80070-3; CHRISTENSON TE, 1979, BEHAV ECOL SOCIOBIOL, V5, P87, DOI 10.1007/BF00302697; Courchamp F, 1999, TRENDS ECOL EVOL, V14, P405, DOI 10.1016/S0169-5347(99)01683-3; Dierks A, 2008, J INSECT PHYSIOL, V54, P1363, DOI 10.1016/j.jinsphys.2008.07.008; Ferkau C, 2006, ETHOLOGY, V112, P1117, DOI 10.1111/j.1439-0310.2006.01266.x; Fischer K, 2001, ANIM BEHAV, V61, P723, DOI 10.1006/anbe.2000.1662; Fischer K, 1999, J INSECT CONSERV, V3, P43, DOI 10.1023/A:1009630506216; Franke K, 2013, J EVOLUTION BIOL, V26, P517, DOI 10.1111/jeb.12064; Gage AR, 1996, BEHAV ECOL SOCIOBIOL, V38, P349, DOI 10.1007/s002650050251; GAGE MJG, 1991, ANIM BEHAV, V42, P1036, DOI 10.1016/S0003-3472(05)80162-9; Gonzalez-Santoyo I, 2012, ENTOMOL EXP APPL, V142, P1, DOI 10.1111/j.1570-7458.2011.01187.x; Goodsman DW, 2017, THEOR ECOL-NETH, V10, P255, DOI 10.1007/s12080-017-0327-2; Holveck MJ, 2015, ANIM BEHAV, V104, P229, DOI 10.1016/j.anbehav.2015.03.025; Janowitz SA, 2012, ETHOLOGY, V118, P1140, DOI 10.1111/eth.12017; Janowitz SA, 2010, BEHAV ECOL SOCIOBIOL, V64, P1999, DOI 10.1007/s00265-010-1011-3; Karl I, 2011, GLOBAL CHANGE BIOL, V17, P676, DOI 10.1111/j.1365-2486.2010.02277.x; Kehl T, 2015, FRONT ZOOL, V12, DOI 10.1186/s12983-015-0124-y; Kehl T, 2015, BEHAV ECOL SOCIOBIOL, V69, P1543, DOI 10.1007/s00265-015-1966-1; Kehl T, 2015, ENTOMOL EXP APPL, V155, P257, DOI 10.1111/eea.12305; Kehl T, 2012, J INSECT PHYSIOL, V58, P1028, DOI 10.1016/j.jinsphys.2012.05.008; Kemp DJ, 2001, BEHAV ECOL SOCIOBIOL, V49, P429, DOI 10.1007/s002650100318; Kemp DJ, 2000, BEHAV ECOL, V11, P591, DOI 10.1093/beheco/11.6.591; Kokko H, 2006, PHILOS T R SOC B, V361, P319, DOI 10.1098/rstb.2005.1784; Lewis Z, 2010, EUR J ENTOMOL, V107, P55, DOI 10.14411/eje.2010.006; Lupold S, 2017, EVOLUTION, V71, P1686, DOI 10.1111/evo.13246; Lyytinen A, 2004, P ROY SOC B-BIOL SCI, V271, P279, DOI 10.1098/rspb.2003.2571; Martin OY, 2004, J EVOLUTION BIOL, V17, P357, DOI 10.1046/j.1420-9101.2003.00668.x; Miner BG, 2005, TRENDS ECOL EVOL, V20, P685, DOI 10.1016/j.tree.2005.08.002; Molleman F, 2007, EXP GERONTOL, V42, P472, DOI 10.1016/j.exger.2007.01.008; Paukku S, 2005, J INSECT PHYSIOL, V51, P1220, DOI 10.1016/j.jinsphys.2005.06.012; Pigliucci M., 2001, PHENOTYPIC PLASTICIT; Rodriguez RL, 2013, ANIM BEHAV, V85, P1041, DOI 10.1016/j.anbehav.2013.01.006; Rolff J, 2004, AM NAT, V164, P559, DOI 10.1086/423715; Schippers P, 2011, ECOL MODEL, V222, P3061, DOI 10.1016/j.ecolmodel.2011.05.022; Scott J.A., 1973, Journal Res Lepid, V12, P225; Stearns S., 1992, EVOLUTION LIFE HIST; TROWBRIDGE CD, 1991, ECOLOGY, V72, P2193, DOI 10.2307/1941570; van't Hof AE, 2005, MOL ECOL NOTES, V5, P169, DOI 10.1111/j.1471-8268.2005.00870.x; VIA S, 1995, TRENDS ECOL EVOL, V10, P212, DOI 10.1016/S0169-5347(00)89061-8; VIRKKI N, 1969, Z ZELLFORSCH MIK ANA, V101, P13, DOI 10.1007/BF00335583; Wedell N, 1999, P ROY SOC B-BIOL SCI, V266, P1033, DOI 10.1098/rspb.1999.0740; Wedell N, 2002, TRENDS ECOL EVOL, V17, P313, DOI 10.1016/S0169-5347(02)02533-8; WESTEBERHARD MJ, 1989, ANNU REV ECOL SYST, V20, P249, DOI 10.1146/annurev.es.20.110189.001341; Westerman EL, 2014, J INSECT BEHAV, V27, P478, DOI 10.1007/s10905-014-9441-9; Xue DX, 2016, SCI REP-UK, V6, DOI 10.1038/srep23461; ZWAAN BJ, 1991, HEREDITY, V66, P29, DOI 10.1038/hdy.1991.4 60 0 0 5 5 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 1465-7279 BEHAV ECOL Behav. Ecol. SEP-OCT 2018 29 5 1031 1037 10.1093/beheco/ary073 7 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology GT2FV WOS:000444301900010 Bronze 2018-11-22 J Villalobos, S; Vamosi, JC Villalobos, Soraya; Vamosi, Jana C. Climate and habitat influences on bee community structure in Western Canada CANADIAN JOURNAL OF ZOOLOGY English Article pollination services; habitat specialization; environmental filtering; phylogenetic diversity; Osmia; Andrena; Ceratina; Bombus; Psithyrus; mason bees; mining bees; carpenter bees; bumble bees; cuckoo bumble bees ECOLOGICAL COMMUNITIES; PHYLOGENETIC SIGNAL; SPECIES RICHNESS; FLOWERING PLANTS; FORAGING RANGES; BODY-SIZE; DIVERSITY; DRIVERS; TRAITS; POLLINATORS The persistence of pollinators in a given habitat is determined in part by traits that affect their response to environmental variables. Here, we show that climate and habitat features are the main drivers of trait distribution in bees across spatially separated habitats. We determined that trait and clade filtering results in bee assemblages in Western Canada exhibiting clustering that is correlated with differences in temperature, humidity, and rainfall. Phylogenetic signals were detected in all traits associated with pollinator life-history strategies, including phenology. The Bombus Latreille, 1802 clade (including the social parasite subgenus Psithyrus Lepeletier, 1833) comprised a higher proportion of prairie bees, whereas assemblages in Garry oak sites exhibited higher representation from solitary bees (e.g., genera Osmia Panzer, 1806, Andrena Fabricius, 1775, Ceratina Latreille, 1802). Because these same traits influence which plant species are pollinated, this selective environmental occupancy within the two different habitats could promote local adaptation of flowering plant species pollinated by more social clades in prairies and more solitary bees in Garry oak. [Villalobos, Soraya; Vamosi, Jana C.] Univ Calgary, Dept Biol Sci, 2500 Univ Dr Northwest, Calgary, AB T2N 1N4, Canada Villalobos, S (reprint author), Univ Calgary, Dept Biol Sci, 2500 Univ Dr Northwest, Calgary, AB T2N 1N4, Canada. svillalo@ucalgary.ca Adderley LJ, 2015, INT J PLANT SCI, V176, P186, DOI 10.1086/679617; Amat-Valero M, 2013, PARASITOLOGY, V140, P1357, DOI 10.1017/S0031182013000929; Baldeck CA, 2016, OECOLOGIA, V182, P547, DOI 10.1007/s00442-016-3686-2; Beisner BE, 2006, ECOLOGY, V87, P2985, DOI 10.1890/0012-9658(2006)87[2985:TROEAS]2.0.CO;2; Bingham RA, 1998, NATURE, V391, P238, DOI 10.1038/34564; Brady SG, 2006, P ROY SOC B-BIOL SCI, V273, P1643, DOI 10.1098/rspb.2006.3496; BRAY JR, 1957, ECOL MONOGR, V27, P326; Cadotte MW, 2010, ECOL LETT, V13, P96, DOI 10.1111/j.1461-0248.2009.01405.x; CANPOLIN, 2012, CAN POLL IN; Chamberlain SA, 2014, OECOLOGIA, V176, P545, DOI 10.1007/s00442-014-3035-2; Chown SL, 2007, ADV INSECT PHYSIOL, V33, P50; Cliff A. D., 1973, SPATIAL AUTOCORRELAT; Cowan P. D, 2016, PACKAGE PICANTE; Davies KF, 2010, BIOL CONSERV, V143, P78, DOI 10.1016/j.biocon.2009.09.006; Dray S, 2013, 5558 UMR U LYON LAB; Duarte LDS, 2012, ECOGRAPHY, V35, P952, DOI 10.1111/j.1600-0587.2011.07193.x; ESCOFIER B, 1994, COMPUT STAT DATA AN, V18, P121, DOI 10.1016/0167-9473(94)90135-X; Fine PVA, 2011, ECOGRAPHY, V34, P552, DOI 10.1111/j.1600-0587.2010.06548.x; Frier SD, 2016, AGR ECOSYST ENVIRON, V219, P42, DOI 10.1016/j.agee.2015.12.011; Fritz SA, 2010, CONSERV BIOL, V24, P1042, DOI 10.1111/j.1523-1739.2010.01455.x; Fuchs M. A, 2001, GBEIEC00030 ENV CLIM; Gathmann A, 2002, J ANIM ECOL, V71, P757, DOI 10.1046/j.1365-2656.2002.00641.x; Greenleaf SS, 2007, OECOLOGIA, V153, P589, DOI 10.1007/s00442-007-0752-9; Kawecki TJ, 2004, ECOL LETT, V7, P1225, DOI 10.1111/j.1461-0248.2004.00684.x; Kembel S, 2010, INTRO PICANTE PACKAG; Kennedy CM, 2013, ECOL LETT, V16, P584, DOI 10.1111/ele.12082; Keppner EM, 2016, J COMP PHYSIOL A, V202, P691, DOI 10.1007/s00359-016-1112-1; Kerr JT, 2015, SCIENCE, V349, P177, DOI 10.1126/science.aaa7031; Kremen C, 2007, INSECT CONSERVATION, P203; Kuhsel S, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms8989; MacIvor JS, 2014, URBAN ECOSYST, V17, P139, DOI 10.1007/s11252-013-0321-4; Mayfield MM, 2010, GLOBAL ECOL BIOGEOGR, V19, P423, DOI 10.1111/j.1466-8238.2010.00532.x; Munkemuller T, 2012, METHODS ECOL EVOL, V3, P743, DOI 10.1111/j.2041-210X.2012.00196.x; Ollerton J, 2011, OIKOS, V120, P321, DOI 10.1111/j.1600-0706.2010.18644.x; Orme D., 2013, CAPER COMP ANAL PHYL; Parra JL, 2010, AM NAT, V176, P573, DOI 10.1086/656619; Pavoine S, 2011, J ECOL, V99, P165, DOI 10.1111/j.1365-2745.2010.01743.x; Peres-Neto PR, 2015, PLANT ECOL, V216, P709, DOI 10.1007/s11258-014-0405-0; Potts SG, 2010, TRENDS ECOL EVOL, V25, P345, DOI 10.1016/j.tree.2010.01.007; Ravigne V, 2009, AM NAT, V174, pE141, DOI 10.1086/605369; Rozen Jerome G. Jr, 2003, American Museum Novitates, V3413, P1, DOI 10.1206/0003-0082(2003)413<0001:EONAMO>2.0.CO;2; Sheffield CS, 2013, APIDOLOGIE, V44, P501, DOI 10.1007/s13592-013-0200-2; Sheffield CS, 2014, ARTHROPODS CANADIA 2, V4, P427, DOI DOI 10.3752/9780968932179.01111; STONE GN, 1989, J EXP BIOL, V147, P303; Straka JR, 2015, OECOLOGIA, V178, P249, DOI 10.1007/s00442-014-3169-2; Villalobos C, 2014, INTERSPECIFIC INTERA; VILLALOBOS S, 2016, PEERJ, V4, DOI DOI 10.7717/PEERJ.1740; Waser NM, 1996, ECOLOGY, V77, P1043, DOI 10.2307/2265575; Webb C., 2011, PHYLOCOM SOFTWARE AN; Webb CO, 2005, MOL ECOL NOTES, V5, P181, DOI 10.1111/j.1471-8286.2004.00829.x; Webb CO, 2002, ANNU REV ECOL SYST, V33, P475, DOI 10.1146/annurev.ecolysis.33.010802.150448; Weigelt P, 2015, SCI REP-UK, V5, DOI 10.1038/srep12213; Wray JC, 2015, LANDSCAPE ECOL, V30, P261, DOI 10.1007/s10980-014-0121-0; Zurbuchen A, 2010, BIOL CONSERV, V143, P669, DOI 10.1016/j.biocon.2009.12.003 54 0 0 7 7 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0008-4301 1480-3283 CAN J ZOOL Can. J. Zool. SEP 2018 96 9 1002 1009 10.1139/cjz-2017-0226 8 Zoology Zoology GT4SB WOS:000444493400010 2018-11-22 J Lait, LA; Carr, SM Lait, Linda A.; Carr, Steven M. Intraspecific mitogenomics of three marine species-at-risk: Atlantic, spotted, and northern wolffish (Anarhichas spp.) GENOME English Article phylogeography; conservation genetics; Pleistocene glaciations; population genetics; Anarhichas; species-at-risk MITOCHONDRIAL GENOME SEQUENCES; COD GADUS-MORHUA; POPULATION-STRUCTURE; GLACIAL REFUGIA; DNA; LUPUS; SOFTWARE; GENETICS; FISHES; SEA High-resolution mitogenomics of within-species relationships can answer such phylogeographic questions as how species survived the most recent glaciation, as well as identify contemporary factors such as physical barriers, isolation, and gene flow. We examined the mitogenomic population structure of three at-risk species of wolffish: Atlantic (Anarhichas lupus), spotted (A. minor), and northern (A. denticulatus). These species are extensively sympatric across the North Atlantic but exhibit very different life history strategies, a combination that results in concordant and discordant patterns of genetic variation and structure. Wolffish haplogroups were not structured geographically: Atlantic and spotted wolffish each comprised three shallow clades, whereas northern wolffish comprised two deeper but unstructured lineages. We suggest that wolffish species survived in isolation in multiple glacial refugia, either refugia within refugia (Atlantic and spotted wolffish) or more distant refugia (northern wolffish), followed by secondary admixture upon post-glacial recolonisation of the North Atlantic. [Lait, Linda A.; Carr, Steven M.] Mem Univ Newfoundland, Dept Biol, Genet Evolut & Mol Systemat Lab, St John, NF A1B 3X9, Canada; [Lait, Linda A.] Univ Guelph, Ctr Biodivers Genom, Guelph, ON N1G 2W1, Canada Lait, LA (reprint author), Mem Univ Newfoundland, Dept Biol, Genet Evolut & Mol Systemat Lab, St John, NF A1B 3X9, Canada.; Lait, LA (reprint author), Univ Guelph, Ctr Biodivers Genom, Guelph, ON N1G 2W1, Canada. lindaalait@gmail.com Natural Sciences and Engineering Research Council (NSERC) [367672010]; Department of Fisheries and Oceans University Partnership program; Natural Sciences and Engineering Research Council Alexander Graham Bell Canada Graduate Scholarship; Alberta Scholarships Program James Lougheed Award We would like to thank Fisheries and Oceans Canada for providing tissue samples, and everyone involved in the extraction and amplification of the samples: Dr. H.D. Marshall, Dr. K.A. Johnstone, Dr. A.T. Duggan, Dr. S.M.C. Flynn, L. MacDonald, E. Wells, O. Trela, and A. Genge. We thank Dr. P. Bentzen and Dr. M.R. McCusker for providing Atlantic and northern wolffish samples from their study. We also thank the editor and reviewers for constructive comments. This work was supported by the Natural Sciences and Engineering Research Council (NSERC Discovery Grant 367672010) and a grant from the Department of Fisheries and Oceans University Partnership program to S.M.C. L.A.L. acknowledges receipt of a Natural Sciences and Engineering Research Council Alexander Graham Bell Canada Graduate Scholarship and an Alberta Scholarships Program James Lougheed Award. Albikovskaya L.K., 1983, Northwest Atlantic Fisheries Organization Scientific Council Studies, P35; Albikovskaya LK, 1982, NAFO SCI COUNCIL STU, V3, P29; Amos W, 1998, PHILOS T ROY SOC B, V353, P177, DOI 10.1098/rstb.1998.0200; Arnason U, 2008, GENE, V421, P37, DOI 10.1016/j.gene.2008.05.024; Baker KD, 2009, ENVIRON BIOL FISH, V85, P79, DOI 10.1007/s10641-009-9465-8; Barsukov V.V., 1959, WOLFFISH ANARHICHADI; Benjamini Y, 2001, ANN STAT, V29, P1165; Bouckaert R, 2014, PLOS COMPUT BIOL, V10, DOI 10.1371/journal.pcbi.1003537; Carr S. M., 2009, LAB FOCUS, V13, P8; Carr SM, 2008, GENETICS, V180, P381, DOI 10.1534/genetics.108.089730; Carr SM, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0134207; Clement M, 2000, MOL ECOL, V9, P1657, DOI 10.1046/j.1365-294x.2000.01020.x; Cooper A, 2001, NATURE, V409, P704, DOI 10.1038/35055536; Corander J, 2007, MATH BIOSCI, V205, P19, DOI 10.1016/j.mbs.2006.09.015; Corander J, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-539; COSEWIC, 2001, COSEWIC ASS STAT REP; COSEWIC, 2000, COSEWIC ASS STAT REP; COSEWIC, 2012, COSEWIC ASS STAT REP; Coulson MW, 2006, GENOME, V49, P1115, DOI 10.1139/G06-083; Duggan A., 2007, THESIS; Excoffier L, 2010, MOL ECOL RESOUR, V10, P564, DOI 10.1111/j.1755-0998.2010.02847.x; Feutry P, 2014, BMC EVOL BIOL, V14, DOI 10.1186/s12862-014-0232-x; FishBase, 2013, REV DISTR MAPS AN DE; Frankham R, 1995, ANNU REV GENET, V29, P305, DOI 10.1146/annurev.ge.29.120195.001513; Gomez A., 2007, PHYLOGEOGRAPHY SO EU; Hewitt G, 2000, NATURE, V405, P907, DOI 10.1038/35016000; Hewitt GM, 2004, PHILOS T ROY SOC B, V359, P183, DOI 10.1098/rstb.2003.1388; Hiddink JG, 2008, FISH RES, V90, P6, DOI 10.1016/j.fishres.2007.11.025; Hilborn R, 2003, P NATL ACAD SCI USA, V100, P6564, DOI 10.1073/pnas.1037274100; Hoarau G, 2007, MOL ECOL, V16, P3606, DOI 10.1111/j.1365-294X.2007.03408.x; Hutchings JA, 2000, NATURE, V406, P882, DOI 10.1038/35022565; Inoue JG, 2001, MOL PHYLOGENET EVOL, V20, P275, DOI 10.1006/mpev.2001.0970; JOHANNESSEN T, 1993, AQUACULTURE, V115, P41, DOI 10.1016/0044-8486(93)90357-5; Johnstone KA, 2007, CAN J ZOOL, V85, P151, DOI 10.1139/Z06-191; Knaus Brian J., 2011, BMC Ecology, V11, P10, DOI 10.1186/1472-6785-11-10; Lait LA, 2018, ECOL EVOL, V8, P6420, DOI 10.1002/ece3.3873; Librado P, 2009, BIOINFORMATICS, V25, P1451, DOI 10.1093/bioinformatics/btp187; Maggs CA, 2008, ECOLOGY, V89, pS108, DOI 10.1890/08-0257.1; McCusker MR, 2011, MAR BIOL, V158, P1869, DOI 10.1007/s00227-011-1698-3; McCusker MR, 2010, MOL ECOL, V19, P4228, DOI 10.1111/j.1365-294X.2010.04806.x; McCusker MR, 2010, J HERED, V101, P591, DOI 10.1093/jhered/esq062; O'Dea NR, 2002, CAN FIELD NAT, V116, P423; PALUMBI SR, 1992, TRENDS ECOL EVOL, V7, P114, DOI 10.1016/0169-5347(92)90144-Z; PAVLOV DA, 1993, ICES J MAR SCI, V50, P271, DOI 10.1006/jmsc.1993.1029; Peakall R, 2006, MOL ECOL NOTES, V6, P288, DOI 10.1111/j.1471-8286.2005.01155.x; Peakall R, 2012, BIOINFORMATICS, V28, P2537, DOI 10.1093/bioinformatics/bts460; Pflaumann U, 2003, PALEOCEANOGRAPHY, V18, DOI 10.1029/2002PA000774; Pielou E. C., 1991, ICE AGE RETURN LIFE; Provan J, 2005, MOL ECOL, V14, P793, DOI 10.1111/j.1365-294X.2005.02447.x; Provan J, 2008, TRENDS ECOL EVOL, V23, P564, DOI 10.1016/j.tree.2008.06.010; ROFF DA, 1989, MOL BIOL EVOL, V6, P539; Rohling EJ, 1998, NATURE, V394, P162, DOI 10.1038/28134; Roman J, 2004, MOL ECOL, V13, P2891, DOI 10.1111/j.1365-294X.2004.02255.x; Rozas J, 2003, BIOINFORMATICS, V19, P2496, DOI 10.1093/bioinformatics/btg359; Shaw John, 2005, Journal of Northwest Atlantic Fishery Science, V37, P119, DOI 10.2960/J.v37.m565; Swofford D. L., 2003, PAUP PHYLOGENETIC AN; Tanaka M, 2004, GENOME RES, V14, P1832, DOI 10.1101/gr.2286304; Teacher AGF, 2012, BMC EVOL BIOL, V12, DOI 10.1186/1471-2148-12-248; TEMPLEMAN W, 1984, Journal of Northwest Atlantic Fishery Science, V5, P93; Vis ML, 1997, CAN J FISH AQUAT SCI, V54, P1813, DOI 10.1139/cjfas-54-8-1813; Wang ZF, 2010, J BIOGEOGR, V37, P2332, DOI 10.1111/j.1365-2699.2010.02379.x; Ward RD, 1995, J FISH BIOL, V47, P259, DOI 10.1111/j.1095-8649.1995.tb06060.x; Watling L, 1998, CONSERV BIOL, V12, P1180, DOI 10.1046/j.1523-1739.1998.0120061180.x 63 0 0 1 1 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0831-2796 1480-3321 GENOME Genome SEP 2018 61 9 625 634 10.1139/gen-2018-0043 10 Biotechnology & Applied Microbiology; Genetics & Heredity Biotechnology & Applied Microbiology; Genetics & Heredity GT0FA WOS:000444103900001 30001499 2018-11-22 J Sarma, MS; Kuo, PX; Bechayda, SA; Kuzawa, CW; Gettler, LT Sarma, Mallika S.; Kuo, Patty X.; Bechayda, Sonny Agustin; Kuzawa, Christopher W.; Gettler, Lee T. Exploring the links between early life and young adulthood social experiences and men's later life psychobiology as fathers PHYSIOLOGY & BEHAVIOR English Article Testosterone; Acute reactivity; Life history theory; Fatherhood; Developmental plasticity SALIVARY TESTOSTERONE; HISTORY STRATEGY; PREDICTS AGE; SEXUAL DEBUT; BEHAVIOR; STRESS; RISK; RESPONSES; MALES; MODEL Early life cues of environmental harshness and unpredictability have been hypothesized to influence within species variation in the timing of life history transitions and the dynamics of reproductive strategies, such as investments in mating and parenting. It is also believed that adolesence is an influential developmental period for male reproductive strategies, with those who achieve greater social and sexual success during that period maintaining faster life history strategies into adulthood. If correct, such early life and post-pubertal experiences could also help shape the psychobiological pathways that mediate reproductive strategies, including the well documented physiological shifts that occur when some men become parents. Drawing on a large sample of Filipino men (n = 417), we evaluate whether men who experienced cues of harshness or unpredictability in childhood or have earlier ages at sexual debut have elevated testosterone (T) as fathers. We also test whether males who experienced a combination of early life experiences of harshness or unpredictability and had earlier ages of sexual debut during adolescence had the most elevated T as fathers. We found that fathers who experienced early life harshness and who engaged in sex at an earlier age had elevated waking T. Among men transitioning to fatherhood across the 4.5-year follow-up period of this study, those who experienced unpredictability and who engaged in sex at an earlier age showed attenuated declines in waking T between baseline and follow-up. Complementing these findings, we found that fathers who first engaged in sex at later ages had greater acute declines in T when they played with their toddlers. We suggest that these patterns could reflect programming effects of sociosexual experiences during the years following the marked biological transitions that accompany puberty, which occur along with the better-studied effects of earlier life exposures to stressors. Overall, our results support the hypothesis that early life circumstances and social and sexual experiences, from early life to young adulthood, help calibrate physiological axes as key mechanisms coordinating dynamic life history strategies. [Sarma, Mallika S.; Kuo, Patty X.; Gettler, Lee T.] Univ Notre Dame, Dept Anthropol, 244 Corbett Hall, Notre Dame, IN 46556 USA; [Bechayda, Sonny Agustin] Univ San Carlos, USC Off Populat Studies Fdn, Metro Cebu, Philippines; [Bechayda, Sonny Agustin] Univ San Carlos, Dept Anthropol Sociol & Hist, Metro Cebu, Philippines; [Kuzawa, Christopher W.] Northwestern Univ, Dept Anthropol, Evanston, IL 60208 USA; [Kuzawa, Christopher W.] Northwestern Univ, Inst Policy Res, Evanston, IL USA; [Gettler, Lee T.] Univ Notre Dame, Eck Inst Global Hlth, Notre Dame, IN 46556 USA Gettler, LT (reprint author), Univ Notre Dame, Dept Anthropol, 244 Corbett Hall, Notre Dame, IN 46556 USA. lgettler@nd.edu Wenner Gren Foundation [7356, 8186]; National Science Foundation [BCS-0542182, BCS-0962212]; Interdisciplinary Obesity Center [RR20649]; Center for Environmental Health and Susceptibility [ES10126, 7-2004-E]; Wenner-Gren Foundation; National Science Foundation Work supported by: Wenner Gren Foundation (Gr. 7356; Gr. 8186), National Science Foundation (BCS-0542182; BCS-0962212), The Interdisciplinary Obesity Center (RR20649), and The Center for Environmental Health and Susceptibility (ES10126; project 7-2004-E). LTG was supported by the Wenner-Gren Foundation's Hunt Postdoctoral Writing Fellowship, and MSS was supported by a National Science Foundation Graduate Research Fellowship. The funding sources played no role in the conduct of the research or the preparation of this article. Abraham E., PHYSL BEHAV EPUB, P1; Adair LS, 2011, INT J EPIDEMIOL, V40, P619, DOI 10.1093/ije/dyq085; Belsky J, 2013, DEV PSYCHOPATHOL, V25, P1243, DOI 10.1017/S095457941300059X; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Braun K, 2014, J NEUROENDOCRINOL, V26, P697, DOI 10.1111/jne.12174; Carre JM, 2015, NEUROSCIENCE, V286, P171, DOI 10.1016/j.neuroscience.2014.11.029; Casto KV, 2016, HORM BEHAV, V82, P21, DOI 10.1016/j.yhbeh.2016.04.004; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Dickerson SS, 2004, PSYCHOL BULL, V130, P355, DOI 10.1037/0033-2909.130.3.355; Edelstein RS, 2015, AM J HUM BIOL, V27, P317, DOI 10.1002/ajhb.22670; Ellis BJ, 2008, CURR DIR PSYCHOL SCI, V17, P183, DOI 10.1111/j.1467-8721.2008.00571.x; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Feldman R, 2012, BIOL PSYCHIAT, V72, P175, DOI 10.1016/j.biopsych.2011.12.025; Feldman R, 2010, PSYCHONEUROENDOCRINO, V35, P1133, DOI 10.1016/j.psyneuen.2010.01.013; Fleming AS, 2002, HORM BEHAV, V42, P399, DOI 10.1006/hbeh.2002.1840; Flinn MV, 1996, HUM NATURE-INT BIOS, V7, P125, DOI 10.1007/BF02692108; Frisancho AR, 2009, AM J HUM BIOL, V21, P694, DOI 10.1002/ajhb.20891; Gettler L.T., 2016, CURR ANTHROPOL, V57, DOI [10.1017/CB09781107415324.004., DOI 10.1017/CBO9781107415324.004]; Gettler LT, 2017, HORM BEHAV, V87, P164, DOI 10.1016/j.yhbeh.2016.10.012; Gettler LT, 2015, ADAPT HUM BEHAV PHYS, V1, P124, DOI 10.1007/s40750-014-0018-9; Gettler LT, 2015, AM J PHYS ANTHROPOL, V158, P175, DOI 10.1002/ajpa.22783; Gettler LT, 2014, EVOL ANTHROPOL, V23, P146, DOI 10.1002/evan.21412; Gettler LT, 2013, HORM BEHAV, V64, P755, DOI 10.1016/j.yhbeh.2013.08.019; Gettler LT, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0041559; Gettler LT, 2011, HORM BEHAV, V60, P599, DOI 10.1016/j.yhbeh.2011.08.009; Gettler LT, 2011, P NATL ACAD SCI USA, V108, P16194, DOI 10.1073/pnas.1105403108; Gray P.B., 2017, HUM NATURE, P1, DOI [10.1007/s12110-016-9283-6., DOI 10.1007/S12110-016-9283-6]; Gray PB, 2006, P ROY SOC B-BIOL SCI, V273, P333, DOI 10.1098/rspb.2005.3311; Gray PB, 2002, EVOL HUM BEHAV, V23, P193, DOI 10.1016/S1090-5138(01)00101-5; Gray PB, 2017, HORM BEHAV, V91, P52, DOI 10.1016/j.yhbeh.2016.07.004; Gray Peter B., 2010, FATHERHOOD EVOLUTION; James J, 2012, DEV PSYCHOL, V48, P687, DOI 10.1037/a0026427; Kuo PX, 2016, DEV PSYCHOBIOL, V58, P303, DOI 10.1002/dev.21370; Kuzawa CW, 2016, ADAPT HUM BEHAV PHYS, V2, P166, DOI 10.1007/s40750-015-0038-0; Kuzawa CW, 2012, CURR ANTHROPOL, V53, pS369, DOI 10.1086/667410; Kuzawa CW, 2010, P NATL ACAD SCI USA, V107, P16800, DOI 10.1073/pnas.1006008107; Kyweluk M.A., 2017, EVOL HUM BEHAV, P1; Lawson D.W., 2017, ADAPT HUM BEHAY PHYS, P1; Li T., PHYSL BEHAV EPUB, P1; Mascaro JS, 2013, P NATL ACAD SCI USA, V110, P15746, DOI 10.1073/pnas.1305579110; Muller MN, 2009, P ROY SOC B-BIOL SCI, V276, P347, DOI 10.1098/rspb.2008.1028; Pechtel P, 2011, PSYCHOPHARMACOLOGY, V214, P55, DOI 10.1007/s00213-010-2009-2; Peper JS, 2011, PSYCHONEUROENDOCRINO, V36, P1101, DOI 10.1016/j.psyneuen.2011.05.004; Perini T, 2012, HORM BEHAV, V61, P191, DOI 10.1016/j.yhbeh.2011.12.004; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Quinlan RJ, 2010, HUM NATURE-INT BIOS, V21, P124, DOI 10.1007/s12110-010-9085-1; Raznahan A, 2010, P NATL ACAD SCI USA, V107, P16988, DOI 10.1073/pnas.1006025107; Rilling JK, 2013, NEUROPSYCHOLOGIA, V51, P731, DOI 10.1016/j.neuropsychologia.2012.12.017; Roney JR, 2015, CURR OPIN PSYCHOL, V1, P81, DOI 10.1016/j.copsyc.2014.11.003; Rosenbaum S., PHYSL BEHAV EPUB, P1; Sandfort TGM, 2008, AM J PUBLIC HEALTH, V98, P155, DOI 10.2105/AJPH.2006.097444; Santelli JS, 1998, FAM PLANN PERSPECT, V30, P271, DOI 10.2307/2991502; Schulz KM, 2009, ENDOCRINOLOGY, V150, P3690, DOI 10.1210/en.2008-1708; Sheppard P, 2012, BIOL LETTERS, V8, P237, DOI 10.1098/rsbl.2011.0747; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Trumble B.C., PARENTAL HORMONES AR, P1; Trumble BC, 2015, PHILOS T R SOC B, V370, DOI 10.1098/rstb.2015.0014; van Anders SM, 2013, FRONT NEUROENDOCRIN, V34, P198, DOI 10.1016/j.yfrne.2013.07.001; van Anders SM, 2012, HORM BEHAV, V61, P31, DOI 10.1016/j.yhbeh.2011.09.012; van Anders SM, 2011, PSYCHONEUROENDOCRINO, V36, P1265, DOI 10.1016/j.psyneuen.2011.06.001; Vanbillemont G, 2010, J CLIN ENDOCR METAB, V95, P1587, DOI 10.1210/jc.2009-2149; Weisman O, 2014, PROG NEURO-PSYCHOPH, V49, P47, DOI 10.1016/j.pnpbp.2013.11.006; West-Eberhard M. J, 2003, DEV PLASTICITY EVOLU 65 0 0 4 4 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0031-9384 PHYSIOL BEHAV Physiol. Behav. SEP 1 2018 193 A SI 82 89 10.1016/j.physbeh.2017.11.029 8 Psychology, Biological; Behavioral Sciences Psychology; Behavioral Sciences GR5TT WOS:000442705500008 29197496 2018-11-22 J Ruiz-Raya, F; Soler, M; Abaurrea, T; Chastel, O; Roncalli, G; Ibanez-Alamo, JD Ruiz-Raya, Francisco; Soler, Manuel; Abaurrea, Teresa; Chastel, Olivier; Roncalli, Gianluca; Ibanez-Alamo, Juan Diego Hormonal responses to non-mimetic eggs: is brood parasitism a physiological stressor during incubation? BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article Body condition; Corticosterone; Egg rejection; Hormonal stress response; Prolactin; Standardized stress protocol LONG-LIVED BIRD; LIFE-HISTORY STRATEGIES; SEX-SPECIFIC PATTERNS; REPRODUCTIVE SUCCESS; PROLACTIN SECRETION; BODY CONDITION; BASE-LINE; CORTICOSTERONE RESPONSES; ENVIRONMENTAL-CONDITIONS; ADRENOCORTICAL-RESPONSE Many host species have evolved sophisticated defences to mitigate the high fitness costs imposed by brood parasitism. Even though the physiological mechanisms behind such defences can offer important insights into the evolutionary relationship between brood parasites and hosts, they have received little attention so fat Hormones play a critical role in the regulation of bird reproduction, which make them a key element when investigating the physiological effects of brood parasitism on hosts. Here, we experimentally parasitized Eurasian blackbird (Turdus merula) nests with non-mimetic eggs to study its impact on the hormonal levels (corticosterone and prolactin) of females during incubation, as well as the magnitude of the response to the standardized stress protocol in parasitized and non-parasitized individuals. Parasitized females had higher baseline corticosterone levels and showed a poorer body condition than non-parasitized birds, while we found no differences for prolactin levels. Both parasitized and non-parasitized females responded to the standardized-stress protocol with a significant increase in corticosterone levels. However, the decrease in prolactin after the standardized stress protocol was significantly more pronounced in parasitized individuals. Our results suggest that the presence of a non-mimetic parasitic egg involves a stressful situation for hosts, negatively affecting the physical state of parasitized females. Unaffected prolactin levels of parasitized individuals could explain the absence of nest desertion found in this species in response to parasitism. Finally, both hormones were not correlated in blackbirds, confirming that their combined study provides valuable pieces of information on the endocrine mechanisms underlying behavioural responses in animals, including hosts of brood parasites. Significance statement Physiological mechanisms behind avian brood parasitism remain unclear. In this study, we assessed the effect of experimental parasitism on the hormonal profiles of hosts. We found that the presence of a non-mimetic egg in the nest modified baseline corticosterone levels, but not prolactin levels, of parasitized females and negatively impacted their body condition. Moreover, experimental parasitism affected the prolactin response to stress. These results expand previous information on the endocrine consequences of brood parasitism at other stages of the breeding cycle (nestling and fledgling stage) and might shed light on the hormonal mechanisms that underlie the host response against parasitic eggs. [Ruiz-Raya, Francisco; Soler, Manuel; Roncalli, Gianluca] Univ Granada, Fac Ciencias, Dept Zool, E-18071 Granada, Spain; [Abaurrea, Teresa] Univ St Andrews, Sch Psychol & Neurosci, St Marys Quad,South St, St Andrews KY16 9JP, Scotland; [Chastel, Olivier] Univ La Rochelle, CNRS, CEBC, UMR 7372, F-79360 La Rochelle, France; [Ibanez-Alamo, Juan Diego] Univ Groningen, Groningen Inst Evolutionary Life Sci, NL-9700 CC Groningen, Netherlands Ruiz-Raya, F (reprint author), Univ Granada, Fac Ciencias, Dept Zool, E-18071 Granada, Spain. fraruiz@correo.ugr.es Consejeria de Economia, Innovacion, Ciencia y Empleo; Junta de Andalucia [CVI-6653]; University of Granada/CEI BioTic Granada; Consejeria de Economia, Innovacion, Ciencia y Empleo from Junta de Andalucia; Fondo Europeo de Desarrollo Regional FEDER; CEI BioTic Granada Financial support has been provided by the Consejeria de Economia, Innovacion, Ciencia y Empleo; Junta de Andalucia (research project CVI-6653 to MS). FRR stay at the CEBC (France) was financed by a mobility grant from the University of Granada/CEI BioTic Granada 2014/2015 (cofounded by Consejeria de Economia, Innovacion, Ciencia y Empleo from Junta de Andalucia; Fondo Europeo de Desarrollo Regional FEDER; and CEI BioTic Granada). Adams NJ, 2011, APPL ANIM BEHAV SCI, V134, P246, DOI 10.1016/j.applanim.2011.07.001; Addis EA, 2011, OECOLOGIA, V167, P369, DOI 10.1007/s00442-011-2001-5; Angelier F, 2007, J ANIM ECOL, V76, P1181, DOI 10.1111/j.1365-2656.2007.01295.x; Angelier F, 2016, COMP BIOCHEM PHYS A, V196, P38, DOI 10.1016/j.cbpa.2016.02.010; Angelier F, 2016, HORM BEHAV, V77, P18, DOI 10.1016/j.yhbeh.2015.07.014; Angelier F, 2015, HORM BEHAV, V67, P28, DOI 10.1016/j.yhbeh.2014.11.009; Angelier F, 2013, GEN COMP ENDOCR, V190, P118, DOI 10.1016/j.ygcen.2013.05.022; Angelier F, 2013, GEN COMP ENDOCR, V182, P7, DOI 10.1016/j.ygcen.2012.10.008; Angelier F, 2009, PHYSIOL BIOCHEM ZOOL, V82, P590, DOI 10.1086/603634; Angelier F, 2009, GEN COMP ENDOCR, V163, P142, DOI 10.1016/j.ygcen.2009.03.028; Angelier F, 2009, FUNCT ECOL, V23, P784, DOI 10.1111/j.1365-2435.2009.01545.x; Aviles JM, 2004, ANIM BEHAV, V67, P951, DOI 10.1016/j.anbehav.2003.08.022; Breuner CW, 2008, GEN COMP ENDOCR, V157, P288, DOI 10.1016/j.ygcen.2008.05.017; Buntin John D., 1996, Advances in the Study of Behavior, V25, P161; Chastel O, 2005, HORM BEHAV, V47, P459, DOI 10.1016/j.yhbeh.2004.10.009; Chastel O, 2002, CONDOR, V104, P873, DOI 10.1650/0010-5422(2002)104[0873:POPSIR]2.0.CO;2; CHEREL Y, 1994, PHYSIOL ZOOL, V67, P1154, DOI 10.1086/physzool.67.5.30163887; Criscuolo F, 2002, GEN COMP ENDOCR, V125, P399, DOI 10.1006/gcen.2001.7767; DAVIES NB, 2000, CUCKOOS COWBIRDS OTH; Ibanez-Alamo JD, 2012, HORM BEHAV, V61, P590, DOI 10.1016/j.yhbeh.2012.02.008; Ibanez-Alamo JD, 2010, BIOL J LINN SOC, V101, P759, DOI 10.1111/j.1095-8312.2010.01543.x; Goutte A, 2011, HORM BEHAV, V59, P167, DOI 10.1016/j.yhbeh.2010.11.004; Grim T, 2011, J ANIM ECOL, V80, P508, DOI 10.1111/j.1365-2656.2010.01798.x; Groscolas R, 2008, HORM BEHAV, V53, P51, DOI 10.1016/j.yhbeh.2007.08.010; Hahn DC, 2017, GEN COMP ENDOCR, V240, P143, DOI 10.1016/j.ygcen.2016.10.004; HALL TR, 1986, GEN COMP ENDOCR, V62, P171, DOI 10.1016/0016-6480(86)90107-3; Hau M, 2010, P ROY SOC B-BIOL SCI, V277, P3203, DOI 10.1098/rspb.2010.0673; Heidinger BJ, 2010, FUNCT ECOL, V24, P1037, DOI 10.1111/j.1365-2435.2010.01733.x; Ibanez-Alamo JD, 2011, GEN COMP ENDOCR, V171, P232, DOI 10.1016/j.ygcen.2011.01.016; Jessop TS, 2001, J ZOOL, V254, P57, DOI 10.1017/S0952836901000553; Krause JS, 2015, PHYSIOL BIOCHEM ZOOL, V88, P589, DOI 10.1086/683321; Krause JS, 2014, COMP BIOCHEM PHYS A, V177, P35, DOI 10.1016/j.cbpa.2014.07.019; Landys MM, 2006, GEN COMP ENDOCR, V148, P132, DOI 10.1016/j.ygcen.2006.02.013; Lendvai AZ, 2010, HORM BEHAV, V58, P936, DOI 10.1016/j.yhbeh.2010.09.004; Lendvai AZ, 2008, HORM BEHAV, V53, P395, DOI 10.1016/j.yhbeh.2007.11.011; Lendvai AZ, 2007, P R SOC B, V274, P391, DOI 10.1098/rspb.2006.3735; Lenth RV, 2016, J STAT SOFTW, V69, P1, DOI 10.18637/jss.v069.i01; Lormee H, 2003, IBIS, V145, P212, DOI 10.1046/j.1474-919X.2003.00106.x; Lormee H, 2000, GEN COMP ENDOCR, V117, P413, DOI 10.1006/gcen.1999.7434; Macleod R, 2005, J ANIM ECOL, V74, P292, DOI 10.1111/j.1365-2656.2005.00923.x; Mark MM, 2013, J AVIAN BIOL, V44, P445, DOI 10.1111/j.1600-048X.2013.00100.x; Mark MM, 2013, HORM BEHAV, V63, P717, DOI 10.1016/j.yhbeh.2013.03.008; Martin-Vivaldi M, 2013, IBIS, V155, P140, DOI 10.1111/ibi.12000; Miller DA, 2009, HORM BEHAV, V56, P457, DOI 10.1016/j.yhbeh.2009.08.001; Mundry R, 2009, AM NAT, V173, P119, DOI 10.1086/593303; Nakagawa S, 2017, J R SOC INTERFACE, V14, DOI 10.1098/rsif.2017.0213; Nakagawa S, 2013, METHODS ECOL EVOL, V4, P133, DOI 10.1111/j.2041-210x.2012.00261.x; Nord A, 2015, NESTS, EGGS, AND INCUBATION: NEW IDEAS ABOUT AVIAN REPRODUCTION, P152; O'Dwyer TW, 2006, FUNCT ECOL, V20, P806, DOI 10.1111/j.1365-2435.2006.01168.x; O'Reilly KM, 2001, GEN COMP ENDOCR, V124, P1, DOI 10.1006/gcen.2001.7676; Ouyang JQ, 2011, P ROY SOC B-BIOL SCI, V278, P2537, DOI 10.1098/rspb.2010.2490; Partecke J, 2006, ECOLOGY, V87, P1945, DOI 10.1890/0012-9658(2006)87[1945:SATCUA]2.0.CO;2; Peig J, 2010, FUNCT ECOL, V24, P1323, DOI 10.1111/j.1365-2435.2010.01751.x; Peig J, 2009, OIKOS, V118, P1883, DOI 10.1111/j.1600-0706.2009.17643.x; Pinheiro J., 2014, R PACKAGE VERSION, V3, P1; Polacikova L, 2010, J AVIAN BIOL, V41, P111, DOI 10.1111/j.1600-048X.2010.04983.x; Preault M, 2005, BEHAV ECOL SOCIOBIOL, V58, P497, DOI 10.1007/s00265-005-0937-3; R Core Team, 2014, R LANG ENV STAT COMP; Riechert J, 2014, PHYSIOL BIOCHEM ZOOL, V87, P420, DOI 10.1086/675682; Roldan M, 2011, BEHAV ECOL, V22, P679, DOI 10.1093/beheco/arr041; Ruiz-Raya F, 2016, FRONT ZOOL, V13, DOI 10.1186/s12983-016-0148-y; Ruiz-Raya F, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0135624; Samas P, 2014, FRONT ZOOL, V11, DOI 10.1186/1742-9994-11-34; Samas P, 2011, ETHOLOGY, V117, P606, DOI 10.1111/j.1439-0310.2011.01917.x; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; SHARP PJ, 1988, J ENDOCRINOL, V118, P279, DOI 10.1677/joe.0.1180279; SILVER R, 1984, J EXP ZOOL, V232, P617, DOI 10.1002/jez.1402320330; Skaug H., 2016, GEN LINEAR MIXED MOD; Sockman KW, 2006, BIOL REV, V81, P629, DOI 10.1017/S1464793106007147; SOLER M, 1990, NATURE, V343, P748, DOI 10.1038/343748a0; Soler M, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0166283; Soler M, 2015, J AVIAN BIOL, V46, P369, DOI 10.1111/jav.00571; Soler M, 2014, BIOL REV, V89, P688, DOI 10.1111/brv.12075; Spee M, 2010, HORM BEHAV, V58, P762, DOI 10.1016/j.yhbeh.2010.07.011; Tartu S, 2015, SCI TOTAL ENVIRON, V505, P180, DOI 10.1016/j.scitotenv.2014.10.008; Whittingham MJ, 2006, J ANIM ECOL, V75, P1182, DOI 10.1111/j.1365-2656.2006.01141.x; Wingfield JC, 2003, J NEUROENDOCRINOL, V15, P711, DOI 10.1046/j.1365-2826.2003.01033.x; Wingfield JC, 2002, COMP BIOCHEM PHYS B, V132, P275, DOI 10.1016/S1096-4959(01)00540-1; Wingfield JC, 1998, AM ZOOL, V38, P191; WINGFIELD JC, 1994, PERSPECTIVES IN COMPARATIVE ENDOCRINOLOGY, P520; Wingfield JC, 2011, CURR ZOOL, V57, P363, DOI 10.1093/czoolo/57.3.363 81 1 1 10 10 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. SEP 2018 72 9 UNSP 153 10.1007/s00265-018-2565-8 11 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology GR6WB WOS:000442814200001 2018-11-22 J Pintar, MR; Resetarits, WJ Pintar, Matthew R.; Resetarits, William J., Jr. Filling ephemeral ponds affects development and phenotypic expression in Ambystoma talpoideum FRESHWATER BIOLOGY English Article life history trade-off; paedomorphosis; phenotype; polyphenism; temporary ponds WATER HABITAT GRADIENT; COMPLEX LIFE-CYCLES; AMPHIBIAN METAMORPHOSIS; ADAPTIVE PLASTICITY; COMMUNITY STRUCTURE; LARVAL SALAMANDERS; CLIMATE-CHANGE; DESERT PONDS; TADPOLES; DENSITY Populations and communities are often greatly affected by disturbances and variation in abiotic habitat conditions. Many of these effects are contingent on relatively predictable, yet still variable, environmental conditions that drive the life history strategies and development pathways of organisms in those habitats. However, much focus has been placed on aspects of such changes that cause mortality or movement from patches, whereas a multitude of outcomes can occur in natural systems. In lentic freshwater habitats, hydroperiod is a defining environmental characteristic, with temporary ponds supporting distinct communities of organisms with complex life cycles and plastic developmental trajectories. Little consideration has been given to the effects of refilling of ponds with variable hydroperiods, as lengthening the hydroperiod can extend the time organisms spend in their aquatic stages, allowing for the acquisition of more resources. We hypothesised that increasing the volume of small ponds and adding competitors (Ambystoma maculatum) at the time of filling would interactively affect the development and phenotypic expression of Ambystoma talpoideum. We introduced larval A.talpoideum to experimental mesocosms and manipulated water level (small, low volume mesocosms; filled, full mesocosms) and the addition of competitors (A.maculatum) at the time of filling in a 2x2 factorial design. We found that low volume mesocosms were dominated by metamorphs, while filling resulted in a more even mix of metamorphs, larvae and paedomorphs in full mesocosms. Filling resulted in larger metamorphs and paedomorphs, but did not affect larvae, whereas addition of A.maculatum shortened the larval period of metamorphs. We provide evidence that changes in abiotic habitat conditions, such as variation in the volume of ponds, can shift the development and phenotype of organisms. This plasticity may allow species to ensure the success of populations under both improvement and deterioration of environmental conditions. Hence, phenotypes like paedomorphic A.talpoideum can breed sooner than metamorphs, theoretically maximising the fitness of both individuals and populations. [Pintar, Matthew R.] Univ Mississippi, Dept Biol, University, MS 38677 USA; [Pintar, Matthew R.] Univ Mississippi, Ctr Water & Wetland Resources, University, MS 38677 USA Pintar, MR (reprint author), Univ Mississippi, Dept Biol, University, MS 38677 USA.; Pintar, MR (reprint author), Univ Mississippi, Ctr Water & Wetland Resources, University, MS 38677 USA. matthew.pintar@gmail.com Pintar, Matthew/0000-0003-0165-3882 Henry L. and Grace Doherty Foundation; University of Mississippi Henry L. and Grace Doherty Foundation; University of Mississippi Anderson TL, 2013, COPEIA, P284, DOI 10.1643/CE-12-034; Bates D, 2015, J STAT SOFTW, V67, P1; Batzer DP, 1996, ANNU REV ENTOMOL, V41, P75, DOI 10.1146/annurev.en.41.010196.000451; Berner D, 2011, OECOLOGIA, V166, P961, DOI 10.1007/s00442-011-1934-z; BERVEN KA, 1981, EVOLUTION, V35, P707, DOI 10.1111/j.1558-5646.1981.tb04931.x; BERVEN KA, 1983, AM ZOOL, V23, P85; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; Brady L. D, 2012, J ZOOL, V252, P61; Burraco P, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-07201-z; Chalcraft DR, 1999, OECOLOGIA, V119, P285, DOI 10.1007/s004420050788; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; COOPS H, 1995, FRESHWATER BIOL, V34, P13, DOI 10.1111/j.1365-2427.1995.tb00418.x; Denver RJ, 1998, ECOLOGY, V79, P1859, DOI 10.1890/0012-9658(1998)079[1859:APIAMR]2.0.CO;2; Denver RJ, 1997, AM ZOOL, V37, P172; Doyle JM, 2008, OECOLOGIA, V156, P87, DOI 10.1007/s00442-008-0977-2; Fox J., 2011, R COMPANION APPL REG; GOTTHARD K, 1995, OIKOS, V74, P3, DOI 10.2307/3545669; Hartel T, 2007, HYDROBIOLOGIA, V583, P173, DOI 10.1007/s10750-006-0490-8; Hecnar SJ, 1997, BIOL CONSERV, V79, P123, DOI 10.1016/S0006-3207(96)00113-9; HOBBS RJ, 1992, CONSERV BIOL, V6, P324, DOI 10.1046/j.1523-1739.1992.06030324.x; Hoffmann AA, 2011, NATURE, V470, P479, DOI 10.1038/nature09670; Houghton J. T., 1995, CLIMATE CHANGE 1995; JACKSON ME, 1993, ECOLOGY, V74, P342, DOI 10.2307/1939297; JULIANO SA, 1994, OECOLOGIA, V97, P369, DOI 10.1007/BF00317327; Katz RW, 2010, CLIMATIC CHANGE, V100, P71, DOI 10.1007/s10584-010-9834-5; Kohmatsu Y, 2001, ECOL RES, V16, P73, DOI 10.1046/j.1440-1703.2001.00373.x; Kuznetsova A, 2017, J STAT SOFTW, V82, P1; Lind MI, 2007, J EVOLUTION BIOL, V20, P1288, DOI 10.1111/j.1420-9101.2007.01353.x; McClain ME, 2003, ECOSYSTEMS, V6, P301, DOI 10.1007/s10021-003-0161-9; McKnight DM, 1999, BIOSCIENCE, V49, P985, DOI 10.2307/1313732; Miner BG, 2005, TRENDS ECOL EVOL, V20, P685, DOI 10.1016/j.tree.2005.08.002; MORAN NA, 1992, AM NAT, V139, P971, DOI 10.1086/285369; NEWMAN RA, 1987, OECOLOGIA, V71, P301, DOI 10.1007/BF00377299; NEWMAN RA, 1988, EVOLUTION, V42, P774, DOI 10.1111/j.1558-5646.1988.tb02495.x; Pechmann J.H.K., 1989, Wetlands Ecology and Management, V1, P3; Petranka J.W., 1998, SALAMANDERS US CANAD; PFENNIG D, 1990, OECOLOGIA, V85, P101, DOI 10.1007/BF00317349; Pintar MR, 2017, J HERPETOL, V51, P186, DOI 10.1670/16-019; POIANI KA, 1989, CAN J BOT, V67, P856, DOI 10.1139/b89-115; R Core Team, 2017, R LANG ENV STAT COMP; Relyea RA, 2001, ECOLOGY, V82, P523, DOI 10.2307/2679877; Rogers TN, 2008, CAN J FISH AQUAT SCI, V65, P2761, DOI 10.1139/F08-177; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; Ryan TJ, 2003, BIOL J LINN SOC, V80, P639, DOI 10.1111/j.1095-8312.2003.00260.x; Schafer ML, 2006, J VECTOR ECOL, V31, P123, DOI 10.3376/1081-1710(2006)31[123:DROTFM]2.0.CO;2; Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089; Schneider DW, 1996, J N AM BENTHOL SOC, V15, P64, DOI 10.2307/1467433; Schneider DW, 1997, OECOLOGIA, V110, P567, DOI 10.1007/s004420050197; SCOTT DE, 1993, AM MIDL NAT, V129, P397, DOI 10.2307/2426520; SEMLITSCH RD, 1987, ECOLOGY, V68, P994, DOI 10.2307/1938370; SEMLITSCH RD, 1985, OECOLOGIA, V65, P305, DOI 10.1007/BF00378903; SEMLITSCH RD, 1988, COPEIA, P978; SEMLITSCH RD, 1988, ECOLOGY, V69, P184, DOI 10.2307/1943173; SEMLITSCH RD, 1987, ECOLOGY, V68, P1003, DOI 10.2307/1938371; SIBLY RM, 1995, EVOL ECOL, V9, P242, DOI 10.1007/BF01237771; Skelly DK, 1996, COPEIA, P599; SKULASON S, 1995, TRENDS ECOL EVOL, V10, P366, DOI 10.1016/S0169-5347(00)89135-1; SMITH DC, 1987, ECOLOGY, V68, P344, DOI 10.2307/1939265; SOUSA WP, 1984, ANNU REV ECOL SYST, V15, P353, DOI 10.1146/annurev.es.15.110184.002033; Stanley EH, 2004, AQUAT SCI, V66, P130, DOI 10.1007/s00027-003-0646-9; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; Stoks R, 2003, ECOLOGY, V84, P1576, DOI 10.1890/0012-9658(2003)084[1576:PALHSL]2.0.CO;2; TEJEDO M, 1994, OIKOS, V71, P295, DOI 10.2307/3546278; Teplitsky C, 2003, OECOLOGIA, V134, P270, DOI 10.1007/s00442-002-1106-2; Thomaz SM, 2007, HYDROBIOLOGIA, V579, P1, DOI 10.1007/s10750-006-0285-y; THOMPSON JD, 1991, TRENDS ECOL EVOL, V6, P246, DOI 10.1016/0169-5347(91)90070-E; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; WALLS SC, 1987, CAN J ZOOL, V65, P2938, DOI 10.1139/z87-446; Walls SC, 1996, ANIM BEHAV, V52, P1157, DOI 10.1006/anbe.1996.0262; Warton DI, 2011, ECOLOGY, V92, P3, DOI 10.1890/10-0340.1; Waterkeyn A, 2008, FRESHWATER BIOL, V53, P1808, DOI 10.1111/j.1365-2427.2008.02005.x; Wellborn GA, 1996, ANNU REV ECOL SYST, V27, P337, DOI 10.1146/annurev.ecolsys.27.1.337; WESTEBERHARD MJ, 1989, ANNU REV ECOL SYST, V20, P249, DOI 10.1146/annurev.es.20.110189.001341; WHITEMAN HH, 1994, Q REV BIOL, V69, P205, DOI 10.1086/418540; WHITFORD WG, 1966, COPEIA, P515; WILBUR HM, 1980, ANNU REV ECOL SYST, V11, P67, DOI 10.1146/annurev.es.11.110180.000435; WILBUR HM, 1987, ECOLOGY, V68, P1437, DOI 10.2307/1939227; WILBUR HM, 1973, SCIENCE, V182, P1305, DOI 10.1126/science.182.4119.1305; Wissinger SA, 1999, ECOLOGY, V80, P2102; WOOTTON JT, 1994, ECOLOGY, V75, P151, DOI 10.2307/1939391 80 0 0 4 4 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0046-5070 1365-2427 FRESHWATER BIOL Freshw. Biol. SEP 2018 63 9 1173 1183 10.1111/fwb.13125 11 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology GQ5BR WOS:000441693300011 2018-11-22 J Lourenco, WR Lourenco, Wilson R. Scorpions and life-history strategies: from evolutionary dynamics toward the scorpionism problem JOURNAL OF VENOMOUS ANIMALS AND TOXINS INCLUDING TROPICAL DISEASES English Review Scorpion; Reproductive strategies; Embryonic; Postembryonic development POSTEMBRYONIC DEVELOPMENT; DESERT SCORPION; TITYUS; PARTHENOGENESIS; BUTHIDAE; POPULATION; KRAEPELIN; CHACTIDAE; LOURENCO; BIOLOGY This work aims to contribute to the general information on scorpion reproductive patterns in general including species that can be noxious to humans. Scorpions are unusual among terrestrial arthropods in several of their life-history traits since in many aspects their reproductive strategies are more similar to those of superior vertebrates than to those of arthropods in general. This communication focuses mainly on the aspects concerning embryonic and post-embryonic developments since these are quite peculiar in scorpions and can be directly connected to the scorpionism problem. As in previous similar contributions, the content of this communication is addressed mainly to non-specialists whose research embraces scorpions in several fields such as venom toxins and public health. A precise knowledge of reproductive strategies presented by several scorpion groups and, in particular, those of dangerous species may prove to be a useful tool in the interpretation of results dealing with scorpionism, and also lead to a better treatment of the problems caused by infamous scorpions. [Lourenco, Wilson R.] Sorbonne Univ, Museum Natl Hist Nat, Biodivers ISYEB, Inst Systemat,Evolut,CNRS,MNHN,UPMC,EPHE,UMR7205, CP 53,57 Rue Cuvier, F-75005 Paris, France Lourenco, WR (reprint author), Sorbonne Univ, Museum Natl Hist Nat, Biodivers ISYEB, Inst Systemat,Evolut,CNRS,MNHN,UPMC,EPHE,UMR7205, CP 53,57 Rue Cuvier, F-75005 Paris, France. wilson.lourenco@mnhn.fr Alexander A. J., 1959, Proceedings of the Zoological Society of London, V133, P145; ALEXANDER AJ, 1956, NATURE, V178, P867, DOI 10.1038/178867b0; ALEXANDER ANNE J., 1957, PROC ZOOL SOC LONDON, V128, P529; ANDERSON D, 1973, EMBRYOLOGY PHYLOGENY; ANGERMANN H, 1955, NATURWISSENSCHAFTEN, V42, P303, DOI 10.1007/BF00608947; Auber M., 1963, Ann Sei nat Paris (12), V5, P273; Auber M., 1959, Vie et Milieu, V10, P160; Fabre JH, 1907, SOUVENIRS ENTOMOLOGI; FRANCKE O F, 1981, Southwestern Naturalist, V25, P517, DOI 10.2307/3670851; Francke O.F., 1982, Revue Arachnologique, V4, P27; Huber Dietmar, 2002, Entomologische Mitteilungen aus dem Zoologischen Museum Hamburg, V14, P53; KOVOOR J, 1987, CR ACAD SCI III-VIE, V304, P259; Laurie M., 1891, Quarterly Journal of Microscopical Science, Vxxxii, P587; Laurie M, 1896, ANN MAG NAT HIST 6, V17, P185; Laurie M., 1896, ANN MAG NAT HIST 6, V18, P121, DOI DOI 10.1080/00222939608680422; Laurie M, 1890, Q J MICROSC SCI, V31, P105; Lourenco WR, 2008, J VENOM ANIM TOXINS, V14, P19, DOI 10.1590/S1678-91992008000100003; LOURENCO W R, 1979, Bulletin du Museum National d'Histoire Naturelle Section A Zoologie Biologie et Ecologie Animales, V1, P95; LOURENCO W R, 1991, Compte Rendu des Seances de la Societe de Biogeographie, V67, P171; Lourenco W.R., 1986, P62; Lourenco Wilson R., 2003, Entomologische Mitteilungen aus dem Zoologischen Museum Hamburg, V14, P129; Lourenco WR, 2018, J VENOM ANIM TOXINS, V24, DOI 10.1186/s40409-017-0138-3; Lourenco Wilson R., 2017, Onychium, V13, P17, DOI 10.5281/zenodo.546371; Lourenco WR, 2016, J VENOM ANIM TOXINS, V22, DOI 10.1186/s40409-016-0075-6; Lourenco WR, 2015, J VENOM ANIM TOXINS, V21, DOI 10.1186/s40409-015-0016-9; Lourenco WR, 2014, J VENOM ANIM TOXINS, V20, DOI 10.1186/1678-9199-20-8; Lourenco Wilson R., 2011, Boletin de la SEA, V49, P291; Lourenco Wilson R., 2010, Boletin de la SEA, V47, P293; Lourenco Wilson R., 2008, Entomologische Mitteilungen aus dem Zoologischen Museum Hamburg, V15, P7; Lourenco WR, 2008, CR BIOL, V331, P896, DOI 10.1016/j.crvi.2008.07.028; Lourenco Wilson R., 1994, Biogeographica (Paris), V70, P19; Lourenco Wilson R., 2000, Biogeographica (Paris), V76, P21; Lourenco Wilson R., 2007, Boletin de la S.E.A., P473; Lourenco Wilson R., 1991, Iheringia Serie Zoologia, V71, P5; Lourenco WR, 2006, ZOOL ANZ, V244, P181, DOI 10.1016/j.jcz.2005.09.001; Lourenco WR, 2002, EUROPEAN ARACHNOLOGY 2000, P71; Lourenco WR, 2003, ZOOL ANZ, V242, P63, DOI 10.1078/0044-5231-00087; Lourenco WR, 1996, J BIOGEOGR, V23, P681, DOI 10.1111/j.1365-2699.1996.tb00028.x; Lourenco WR, 2000, ZOOL ANZ, V239, P267; Lourenco WR, 1999, J ARACHNOL, V27, P149; Lourenco WR, 1995, J VENOM ANIM TOXINS, V1; Lourenco WR, 1996, J VENOM ANIM TOXINS, V2, P2; Lourenco WR, 2011, ENTOMOL MITT ZOOL MU, V15, P213; Lourenco WR, 1986, B ZOOL, P105; Lourenco WR, 1979, REV NORDEST BIOL, V2, P49; Maccary MA, 1810, MEMOIRE SCORPION QUI; MATHEW A. P., 1960, JOUR ZOOL SOC INDIA, V12, P220; Mathew AP, 1956, B RES I TRAVANCORE, V1, P1; Matthiesen F. A., 1961, Rev Agric Piracicaba, V36, P139; MATTHIESEN FA, 1962, EVOLUTION, V16, P255, DOI 10.2307/2406202; MATTHIESEN FA, 1970, AN ACAD BRAS CIENC, V42, P627; MATTHISEN F A, 1969, Bulletin du Museum National d'Histoire Naturelle, V41, P1367; Maury E. A., 1969, Physis Buenos Aires, V29, P131; Maury EA, 1968, PHYSIS, V27, P131; Millot J, 1949, TRAITE ZOOL, P387; PAVLOVSKIJ E., 1925, [ANN MUS ZOOL ACAD SCI URSS], V26, P137; Pavlovsky EN, 1924, TRAVAUX SOC NATURALI, V53, P76; Pflugfelder O, 1930, Z WISS ZOOL ABT A, V137, P1; Polis G.A., 1986, P111; Polis G.A., 1990, P161; Polis G.A., 1990, P247; POLIS GA, 1979, J ZOOL, V187, P517; POLIS GA, 1980, ECOLOGY, V61, P620, DOI 10.2307/1937428; SCHULTZE W., 1927, PHILIPPINE JOUR SCI, V32, P375; SHULOV A., 1960, BULL RES COUNC ISRAEL SECT B, V9B, P65; SHULOV A, 1958, Arch Inst Pasteur Alger, V36, P351; VANDEL A., 1928, BULL BIOL FRANCE ET BELGIQUE, V62, P164; Varela JC, 1961, GESTACION NACIMIENTO; WILLIAMS S C, 1969, Proceedings of the California Academy of Sciences, V37, P1; Yoshikura M.;., 1975, Kumamoto J Sci (Biol), V12, P71 70 0 0 2 2 BMC LONDON CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 1678-9199 J VENOM ANIM TOXINS J. Venom. Anim. Toxins Trop. Dis. AUG 22 2018 24 19 10.1186/s40409-018-0160-0 12 Toxicology; Tropical Medicine; Zoology Toxicology; Tropical Medicine; Zoology GR6XG WOS:000442822200001 30158956 DOAJ Gold 2018-11-22 J Guyonnet, JP; Cantarel, AAM; Simon, L; Haichar, FE Guyonnet, Julien P.; Cantarel, Amelie A. M.; Simon, Laurent; Haichar, Feth el Zahar Root exudation rate as functional trait involved in plant nutrient-use strategy classification ECOLOGY AND EVOLUTION English Article conservative strategy; exploitative strategy; plant functional trait; plant resource-use strategies; rhizosphere; root exudation level LEAF ECONOMICS SPECTRUM; NITROGEN ACQUISITION; COMMUNITY STRUCTURE; RHIZOSPHERE; CARBON; GRASSLAND; WORLDWIDE; ECOLOGY; AREA Plants adopt a variety of life history strategies to succeed in the Earth's diverse environments. Using functional traits which are defined as morphological, biochemical, physiological, or phonological characteristics measurable at the individual level, plants are classified according to their species' adaptative strategies, more than their taxonomy, from fast growing plant species to slower-growing conservative species. These different strategies probably influence the input and output of carbon (C)-resources, from the assimilation of carbon by photosynthesis to its release in the rhizosphere soil via root exudation. However, while root exudation was known to mediate plant-microbe interactions in the rhizosphere, it was not used as functional trait until recently. Here, we assess whether root exudate levels are useful plant functional traits in the classification of plant nutrient-use strategies and classical trait syndromes? For this purpose, we conducted an experiment with six grass species representing along a gradient of plant resource-use strategies, from conservative species, characterized by low biomass nitrogen (N) concentrations and a long lifespans, to exploitative species, characterized by high rates of photosynthesis and rapid rates of N acquisition. Leaf and root traits were measured for each grass and root exudate rate for each planted soil sample. Classical trait syndromes in plant ecology were found for leaf and root traits, with negative relationships observed between specific leaf area and leaf dry matter content or between specific root length and root dry matter content. However, a new root trait syndrome was also found with root exudation levels correlating with plant resource-use strategy patterns, specifically, between root exudation rate and root dry matter content. We therefore propose root exudation rate can be used as a key functional trait in plant ecology studies and plant strategy classification. [Guyonnet, Julien P.; Cantarel, Amelie A. M.; Haichar, Feth el Zahar] Univ Claude Bernard Lyon 1, Univ Lyon, Lab Ecol Microbienne, CNRS,UMR 5557,INRA,UMR 1418, Villeurbanne, France; [Simon, Laurent] Univ Claude Bernard Lyon 1, Univ Lyon, Univ Lyon 1, CNRS,UMR5023,LEHNA,ENTPE, Villeurbanne, France Haichar, FE (reprint author), Univ Lyon 1, Ecol Microbienne UMR5557, 16 Rue Dubois, Villeurbanne, France. zahar.haichar@univ-lyon1.fr Simon, Laurent/B-4641-2009 Simon, Laurent/0000-0003-1389-9871 CNRS, France (CNRS EC2CO research project "RhizoDen") Financial support was provided by the CNRS, France (CNRS EC2CO research project "RhizoDen"). Aerts RJ, 1999, AGR ECOSYST ENVIRON, V75, P1, DOI 10.1016/S0167-8809(99)00062-6; Alami Y, 2000, APPL ENVIRON MICROB, V66, P3393, DOI 10.1128/AEM.66.8.3393-3398.2000; Bais HP, 2006, ANNU REV PLANT BIOL, V57, P233, DOI 10.1146/annurev.arplant.57.032905.105159; Birouste M, 2012, ANN BOT-LONDON, V109, P463, DOI 10.1093/aob/mcr297; Bouchenak-Khelladi Y, 2008, MOL PHYLOGENET EVOL, V47, P488, DOI 10.1016/j.ympev.2008.01.035; Cantarel AAM, 2015, ECOLOGY, V96, P788, DOI 10.1890/13-2107.1; Cornelissen JHC, 2003, AUST J BOT, V51, P335, DOI 10.1071/BT02124; De Deyn GB, 2008, ECOL LETT, V11, P516, DOI 10.1111/j.1461-0248.2008.01164.x; Diaz S, 2013, ECOL EVOL, V3, P2958, DOI 10.1002/ece3.601; Fort F, 2013, J PLANT ECOL, V6, P211, DOI 10.1093/jpe/rts034; Garnier E, 2001, FUNCT ECOL, V15, P688, DOI 10.1046/j.0269-8463.2001.00563.x; Grassein F, 2015, ANN BOT-LONDON, V115, P107, DOI 10.1093/aob/mcu233; Grigulis K, 2013, J ECOL, V101, P47, DOI 10.1111/1365-2745.12014; Grime JP, 2006, J VEG SCI, V17, P255, DOI 10.1658/1100-9233(2006)17[255:TCATDI]2.0.CO;2; Groleau-Renaud V, 1998, PLANT SOIL, V201, P231, DOI 10.1023/A:1004316416034; Gross N, 2009, FUNCT ECOL, V23, P1167, DOI 10.1111/j.1365-2435.2009.01591.x; Guyonnet JP, 2017, FEMS MICROBIOL ECOL, V93, DOI 10.1093/femsec/fix022; Haichar FE, 2013, AGRONOMY-BASEL, V3, P621, DOI 10.3390/agronomy3040621; Haichar FE, 2014, SOIL BIOL BIOCHEM, V77, P69, DOI 10.1016/j.soilbio.2014.06.017; Haichar FE, 2008, ISME J, V2, P1221, DOI 10.1038/ismej.2008.80; Hummel I, 2007, NEW PHYTOL, V173, P313, DOI 10.1111/j.1469-8137.2006.01912.x; Jones DL, 2009, PLANT SOIL, V321, P5, DOI 10.1007/s11104-009-9925-0; Jones DL, 2004, NEW PHYTOL, V163, P459, DOI 10.1111/j.1469-8137.2004.01130.x; Katovska E., 2014, BIOGEOCHEMISTRY, V122, P47; Maire V, 2009, FUNCT ECOL, V23, P668, DOI 10.1111/j.1365-2435.2009.01557.x; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; Mommer L, 2012, NEW PHYTOL, V195, P725, DOI 10.1111/j.1469-8137.2012.04247.x; Moreau D, 2015, ECOLOGY, V96, P2300, DOI 10.1890/14-1761.1; Orwin KH, 2010, J ECOL, V98, P1074, DOI 10.1111/j.1365-2745.2010.01679.x; Osnas JLD, 2013, SCIENCE, V340, P741, DOI 10.1126/science.1231574; Personeni E, 2004, PLANT SOIL, V267, P129, DOI 10.1007/s11104-005-4656-3; Personeni E, 2007, J EXP BOT, V58, P2091, DOI 10.1093/jxb/erm065; Philippot L, 2013, NAT REV MICROBIOL, V11, P789, DOI 10.1038/nrmicro3109; Pratt RB, 2007, NEW PHYTOL, V174, P787, DOI 10.1111/j.1469-8137.2007.02061.x; Reich PB, 2003, INT J PLANT SCI, V164, pS143, DOI 10.1086/374368; Reich PB, 2014, J ECOL, V102, P275, DOI 10.1111/1365-2745.12211; Roumet C, 2006, NEW PHYTOL, V170, P357, DOI 10.1111/j.1469-8137.2006.01667.x; Roumet C, 2008, PLANT SOIL, V312, P69, DOI 10.1007/s11104-008-9635-z; Roumet C, 2016, NEW PHYTOL, V210, P815, DOI 10.1111/nph.13828; Sultan SE, 2000, TRENDS PLANT SCI, V5, P537, DOI 10.1016/S1360-1385(00)01797-0; Violle C, 2007, OIKOS, V116, P882, DOI 10.1111/j.2007.0030-1299.15559.x; Wahl S, 2000, NEW PHYTOL, V148, P459, DOI 10.1046/j.1469-8137.2000.00775.x; Watson L., 1992, GRASS GENERA WORLD; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403 44 1 1 5 5 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. AUG 2018 8 16 8573 8581 10.1002/ece3.4383 9 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology GU0NC WOS:000444946300066 30250724 DOAJ Gold 2018-11-22 J Sayago, R; Quesada, M; Aguilar, R; Ashworth, L; Lopezaraiza-Mikel, M; Marten-Rodriguez, S Sayago, Roberto; Quesada, Mauricio; Aguilar, Ramiro; Ashworth, Lorena; Lopezaraiza-Mikel, Martha; Marten-Rodriguez, Silvana Consequences of habitat fragmentation on the reproductive success of two Tillandsia species with contrasting life history strategies AOB PLANTS English Article Bromeliaceae; fragmentation; hummingbird pollination; monocarpy; polycarpy; reproductive success EPIPHYTIC BROMELIAD COMMUNITIES; TREE PACHIRA-QUINATA; DRY TROPICAL FOREST; GENETIC-STRUCTURE; PLANT; POLLINATION; LANDSCAPE; DIVERSITY; SECONDARY; MEXICO Fragmentation of natural habitats generally has negative effects on the reproductive success of many plant species; however, little is known about epiphytic plants. We assessed the impact of forest fragmentation on plant-pollinator interactions and female reproductive success in two epiphytic Tillandsia species with contrasting life history strategies (polycarpic and monocarpic) in Chamela, Jalisco, Mexico, over three consecutive years. Hummingbirds were the major pollinators of both species and pollinator visitation rates were similar between habitat conditions. In contrast, the composition and frequency of floral visitors significantly varied between habitat conditions in polycarpic and self-incompatible T. intermedia but not in monocarpic self-compatible T. makoyana. There were no differences between continuous and fragmented habitats in fruit set in either species, but T. makoyana had a lower seed set in fragmented than in continuous forests. In contrast, T. intermedia had similar seed set in both forest conditions. These results indicate that pollinators were effective under both fragmented and continuous habitats, possibly because the major pollinators are hummingbird species capable of moving across open spaces and human-modified habitats. However, the lower seed set of T. makoyana under fragmented conditions suggests that the amount and quality of pollen deposited onto stigmas may differ between habitat conditions. Alternatively, changes in resource availability may also cause reductions in seed production in fragmented habitats. This study adds to the limited information on the effects of habitat fragmentation on the reproductive success of epiphytic plants, showing that even related congeneric species may exhibit different responses to human disturbance. Plant reproductive systems, along with changes in pollinator communities associated with habitat fragmentation, may have yet undocumented consequences on gene flow, levels of inbreeding and progeny quality of dry forest tillandsias. [Sayago, Roberto; Lopezaraiza-Mikel, Martha] Univ Autonoma Guerrero, Fac Desarrollo Sustentable, Campus Costa Grande, Tecpan De Galeana 40900, Guerrero, Mexico; [Sayago, Roberto; Quesada, Mauricio; Aguilar, Ramiro; Ashworth, Lorena; Lopezaraiza-Mikel, Martha; Marten-Rodriguez, Silvana] Univ Nacl Autonoma Mexico, ENES, Lab Nacl Anal & Sintesis Ecol LANASE, Antigua Carretera Patzcuaro 8701, Morelia 58190, Michoacan, Mexico; [Sayago, Roberto; Quesada, Mauricio] Univ Nacl Autonoma Mexico, Inst Invest Ecosistemas & Sustentabilidad, Antigua Carretera Patzcuaro 8701, Morelia 58190, Michoacan, Mexico; [Aguilar, Ramiro; Ashworth, Lorena] Univ Nacl Cordoba, CONICET, Inst Multidisciplinario Biol Vegetal, CP X5000JJC, Cordoba, Argentina Marten-Rodriguez, S (reprint author), Univ Nacl Autonoma Mexico, ENES, Lab Nacl Anal & Sintesis Ecol LANASE, Antigua Carretera Patzcuaro 8701, Morelia 58190, Michoacan, Mexico. smartenr@enesmorelia.unam.mx Consejo Nacional de Ciencia y Tecnologia, Mexico (CONACYT Laboratorios Nacionales) [293701]; SAGARPA-CONACyT [291333]; PAPIIT [IA208416, IA207618, IV200418]; Consejo Nacional de Ciencia y Tecnologia, Mexico (Repositorio Institucional) [271432] This work was supported by grants from Consejo Nacional de Ciencia y Tecnologia, Mexico (CONACYT Laboratorios Nacionales 293701 and Repositorio Institucional 271432), SAGARPA-CONACyT (291333), PAPIIT (IA208416, IA207618 to S.M.-R. and IV200418 to M.Q.). Aguilar R, 2008, MOL ECOL, V17, P5177, DOI 10.1111/j.1365-294X.2008.03971.x; Aguilar R, 2006, ECOL LETT, V9, P968, DOI 10.1111/j.1461-0248.2006.00927.x; Aguirre A, 2010, J VEG SCI, V21, P6, DOI 10.1111/j.1654-1103.2009.01131.x; AIZEN MA, 1994, ECOLOGY, V75, P330, DOI 10.2307/1939538; Amasino R, 2009, GENOME BIOL, V10, DOI 10.1186/gb-2009-10-7-228; Tapia-Palacios MA, 2018, FOREST ECOL MANAG, V426, P18, DOI 10.1016/j.foreco.2017.10.015; Arizmendi MC, 2014, COLIBRIES MEXICO NOR; ARIZMENDI MD, 1990, BIOTROPICA, V22, P172; Bawa KS, 2003, AM J BOT, V90, P877, DOI 10.3732/ajb.90.6.877; Benzing D. H., 2000, BROMELIACEAE PROFILE; Benzing D. H, 1990, VASCULAR EPIPHYTES; Boelter CR, 2014, J VEG SCI, V25, P1090, DOI 10.1111/jvs.12154; Brys R, 2011, AM J BOT, V98, P1834, DOI 10.3732/ajb.1100154; Bush Stephen P., 1995, Selbyana, V16, P155; Buzato S, 2000, BIOTROPICA, V32, P824, DOI 10.1111/j.1744-7429.2000.tb00621.x; Cascante A, 2002, CONSERV BIOL, V16, P137, DOI 10.1046/j.1523-1739.2002.00317.x; Cascante-Marin A, 2006, BASIC APPL ECOL, V7, P520, DOI 10.1016/j.baae.2005.10.005; Cascante-Marin A, 2014, BIOTROPICA, V46, P425, DOI 10.1111/btp.12119; Cascante-Marin A, 2009, J TROP ECOL, V25, P63, DOI 10.1017/S0266467408005622; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Cunningham SA, 2000, P ROY SOC B-BIOL SCI, V267, P1149, DOI 10.1098/rspb.2000.1121; Einzmann HJR, 2017, BIODIVERS CONSERV, V26, P1393, DOI 10.1007/s10531-017-1306-z; Fahrig L, 2003, ANNU REV ECOL EVOL S, V34, P487, DOI 10.1146/annurev.ecolsys.34.011802.132419; FEINSINGER P, 1978, ECOL MONOGR, V48, P269, DOI 10.2307/2937231; Flores-Palacios A, 2004, PLANT ECOL, V173, P259, DOI 10.1023/B:VEGE.0000029337.92724.18; Fuchs EJ, 2003, CONSERV BIOL, V17, P149, DOI 10.1046/j.1523-1739.2003.01140.x; Garcia-Oliva F., 2002, HIST NATURAL CHAMELA, P3; Gentry Alwyn H., 1995, P146, DOI 10.1017/CBO9780511753398.007; Ghazoul J, 2004, BIOTROPICA, V36, P128, DOI 10.1111/j.1744-7429.2004.tb00304.x; Gonzalez-Astorga JG, 2004, ANN BOT-LONDON, V94, P545, DOI 10.1093/aob/mch171; Goverde M, 2002, BIOL CONSERV, V104, P293, DOI 10.1016/S0006-3207(01)00194-X; Hadley AS, 2018, BIOTROPICA, V50, P74, DOI 10.1111/btp.12487; Hadley AS, 2009, BIOL LETTERS, V5, P207, DOI 10.1098/rsbl.2008.0691; Herlihy CR, 2004, EVOLUTION, V58, P2693; Hofstede R.G.M., 1993, SELBYANA, V14, P37, DOI DOI 10.1007/SL1258-008-9519-6; Honnay O, 2005, NEW PHYTOL, V166, P723, DOI 10.1111/j.1469-8137.2005.01352.x; Kaehler Miriam, 2005, Braz. J. Bot., V28, P219, DOI 10.1590/S0100-84042005000200003; Keller LF, 2002, TRENDS ECOL EVOL, V17, P230, DOI 10.1016/S0169-5347(02)02489-8; Laurance WF, 2004, PHILOS T ROY SOC B, V359, P345, DOI 10.1098/rstb.2003.1430; LLOYD DG, 1992, INT J PLANT SCI, V153, P358, DOI 10.1086/297040; Lott EJ, 2006, NEOTROPICAL SAVANNAS, P307; Magrach A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0048743; Marten-Rodriguez S, 2015, J ECOL, V103, P1190, DOI 10.1111/1365-2745.12457; Martin PH, 2004, BIOTROPICA, V36, P297; Matallana G, 2010, PLANT SYST EVOL, V289, P57, DOI 10.1007/s00606-010-0332-z; Matos G, 2015, FLORA, V211, P1, DOI 10.1016/j.flora.2015.01.001; Mix C, 2006, BASIC APPL ECOL, V7, P59, DOI 10.1016/j.baae.2005.04.007; Munguia-Rosas MA, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0111742; Murren CJ, 2002, J ECOL, V90, P100, DOI 10.1046/j.0022-0477.2001.00638.x; Ornelas JF, 1995, CONSERVATION NEOTROP, P98; Parra-Tabla V, 2000, BIOL CONSERV, V94, P335, DOI 10.1016/S0006-3207(99)00187-1; Parra-Tabla V, 2011, BIOTROPICA, V43, P640, DOI 10.1111/j.1744-7429.2011.00752.x; Poorter L, 2005, J ECOL, V93, P268, DOI 10.1111/j.1365-2745.2005.00958.x; Quesada M., 2011, Seasonally dry tropical forests: ecology and conservation, P173; Quesada M, 2001, AM J BOT, V88, P2113, DOI 10.2307/3558436; QUESADA M, 2004, BIOD CONS COST RIC, P266; Quesada M, 2014, TROPICAL DRY FORESTS IN THE AMERICAS: ECOLOGY, CONSERVATION, AND MANAGEMENT, P17; Quesada M, 2009, FOREST ECOL MANAG, V258, P1014, DOI 10.1016/j.foreco.2009.06.023; Rossetti MR, 2017, ECOL LETT, V20, P264, DOI 10.1111/ele.12723; Sanchez-Azofeifa GA, 2009, FOREST ECOL MANAG, V258, P907, DOI 10.1016/j.foreco.2008.10.030; SAS Institute. Inc, 2008, SAS STAT 9 2 US GUID; Sayago R, 2016, THESIS; Sayago R, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2821; SOLTIS DE, 1987, AM J BOT, V74, P531, DOI 10.2307/2443832; STILES FG, 1977, SCIENCE, V198, P1177, DOI 10.1126/science.198.4322.1177; Storck-Tonon D, 2017, BIOL CONSERV, V214, P270, DOI 10.1016/j.biocon.2017.07.018; STOUFFER PC, 1995, CONSERV BIOL, V9, P1085, DOI 10.1046/j.1523-1739.1995.9051085.x; Trejo I, 2000, BIOL CONSERV, V94, P133, DOI 10.1016/S0006-3207(99)00188-3; TURNER IM, 1994, CONSERV BIOL, V8, P705, DOI 10.1046/j.1523-1739.1994.08030705.x; Volpe NL, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0167513; Werner FA, 2008, BIODIVERS CONSERV, V17, P3195, DOI 10.1007/s10531-008-9421-5; Werner FA, 2009, J VEG SCI, V20, P59, DOI 10.1111/j.1654-1103.2009.05286.x; YOUNG TP, 1991, TRENDS ECOL EVOL, V6, P285, DOI 10.1016/0169-5347(91)90006-J; Zotz G., 2009, V70, P147, DOI 10.1007/978-3-540-68421-3_7; Zotz G, 2016, PLANTS PLANTS THE BI 75 0 0 5 5 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 2041-2851 AOB PLANTS Aob Plants AUG 2018 10 4 ply038 10.1093/aobpla/ply038 12 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology GS2KS WOS:000443378200003 30018757 DOAJ Gold 2018-11-22 J Zadworny, M; Comas, LH; Eissenstat, DM Zadworny, Marcin; Comas, Louise H.; Eissenstat, David M. Linking fine root morphology, hydraulic functioning and shade tolerance of trees ANNALS OF BOTANY English Article Hydraulic conductance; root morphology; shade tolerance; t/d; trait plasticity; xylem diameter NUTRIENT FORAGING STRATEGIES; POTENTIAL GROWTH-RATE; CAVITATION RESISTANCE; WATER TRANSPORT; LIFE-SPAN; INTERSPECIFIC VARIATION; MYCORRHIZAL FUNGI; STRUCTURAL TRAITS; TEMPERATE TREES; LEAF STRUCTURE Background and Aims Understanding root traits and their trade-off with other plant processes is important for understanding plant functioning in natural ecosystems as well as agricultural systems. The aim of the present study was to determine the relationship between root morphology and the hydraulic characteristics of several orders of fine roots (<2 mm) for species differing in shade tolerance (low, moderate and high). Methods The morphological, anatomical and hydraulic traits across five distal root orders were measured in species with different levels of shade tolerance and life history strategies. The species studied were Acer negundo, Acer rubrum, Acer saccharum, Betula alleghaniensis, Betula lenta, Quercus alba, Quercus rubra, Pinus strobus and Pinus virginiana. Key Results Compared with shade-tolerant species. shade-intolerant species produced thinner absorptive roots with smaller xylem lumen diameters and underwent secondary development less frequently, suggesting that they had shorter life spans. Shade-tolerant species had greater root specific hydraulic conductance among these roots due to having larger diameter xylems, although these roots had a lower calculated critical tension for conduit collapse. In addition, shade-intolerant species exhibited greater variation in hydraulic conductance across different root growth rings in woody transport roots of the same root order as compared with shade-tolerant species. Conclusions Plant growth strategies were extended to include root hydraulic properties. It was found that shade intolerance in trees was associated with conservative root hydraulics but greater plasticity in number of xylem conduits and hydraulic conductance. Root traits of shade-intolerant species were consistent with the ability to proliferate roots quickly for rapid water uptake needed to support rapid shoot growth, while minimizing risk in uncertain environments. [Zadworny, Marcin] Polish Acad Sci, Inst Dendrol, Parkowa 5, PL-62035 Kornik, Poland; [Comas, Louise H.] USDA ARS, Water Management Res Unit, 2150 Ctr Ave,Bldg D,Suite 320, Ft Collins, CO 80526 USA; [Eissenstat, David M.] Penn State Univ, Intercoll Grad Degree Program Plant Biol, University Pk, PA 16802 USA; [Eissenstat, David M.] Penn State Univ, Dept Ecosyst Sci & Management, 201 Forest Resources Bldg, University Pk, PA 16802 USA Zadworny, M (reprint author), Polish Acad Sci, Inst Dendrol, Parkowa 5, PL-62035 Kornik, Poland. zadworny@man.poznan.pl Zadworny, Marcin/0000-0002-7352-5786 Polish Ministry of Science and Higher Education [11/MOB/2007/0]; Institute of Dendrology of the Polish Academy of Sciences; US National Science Foundation [IOS 07-19259, OEI 0613832] This work was supported by grants from the Polish Ministry of Science and Higher Education (project no. 11/MOB/2007/0), the Institute of Dendrology of the Polish Academy of Sciences and the US National Science Foundation (projects no. IOS 07-19259, OEI 0613832). We thank Sean Gleason, anonymous reviewers and the editor for helpful comments that greatly improved this paper. ABRAMS MD, 1995, TREE PHYSIOL, V15, P361, DOI 10.1093/treephys/15.6.361; Bagniewska-Zadworna A, 2012, AM J BOT, V99, P1417, DOI 10.3732/ajb.1100552; Baylis GTS, 1975, ENDOMYCORRHIZAS, P373; Blackman CJ, 2010, NEW PHYTOL, V188, P1113, DOI 10.1111/j.1469-8137.2010.03439.x; Brassard BW, 2009, CRIT REV PLANT SCI, V28, P179, DOI 10.1080/07352680902776572; Brundrett MC, 2002, NEW PHYTOL, V154, P275, DOI 10.1046/j.1469-8137.2002.00397.x; Burns R. M, 1990, SILVICS N AM; Casper BB, 1997, ANNU REV ECOL SYST, V28, P545, DOI 10.1146/annurev.ecolsys.28.1.545; CHAPIN FS, 1974, ECOLOGY, V55, P1180, DOI 10.2307/1935449; Chen HYH, 2013, CRIT REV PLANT SCI, V32, P151, DOI 10.1080/07352689.2012.734742; Chen WL, 2016, P NATL ACAD SCI USA, V113, P8741, DOI 10.1073/pnas.1601006113; Chen WL, 2013, GLOBAL ECOL BIOGEOGR, V22, P846, DOI 10.1111/geb.12048; Cheng L, 2016, ECOLOGY, V97, P2815, DOI 10.1002/ecy.1514; Cochard H, 1997, J EXP BOT, V48, P655, DOI 10.1093/jxb/48.3.655; Comas LH, 2012, INT J PLANT SCI, V173, P584, DOI 10.1086/665823; Comas LH, 2004, FUNCT ECOL, V18, P388, DOI 10.1111/j.0269-8463.2004.00835.x; Comas LH, 2002, OECOLOGIA, V132, P34, DOI 10.1007/s00442-002-0922-8; Comas LH, 2014, ECOL EVOL, V4, P2979, DOI 10.1002/ece3.1147; Eissenstat DM, 2015, NEW PHYTOL, V208, P114, DOI 10.1111/nph.13451; Eissenstat DM, 1997, ADV ECOL RES, V27, P1, DOI 10.1016/S0065-2504(08)60005-7; Eissenstat DM, 1999, NEW PHYTOL, V141, P309, DOI 10.1046/j.1469-8137.1999.00342.x; Fayle DCF, 1968, 9 U TOR FAC FOR; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Finer L, 1997, CAN J FOREST RES, V27, P304, DOI 10.1139/cjfr-27-3-304; Freschet GT, 2015, NEW PHYTOL, V206, P1247, DOI 10.1111/nph.13352; Gambetta GA, 2013, PLANT PHYSIOL, V163, P1254, DOI 10.1104/pp.113.221283; Gernandt DS, 2008, INT J PLANT SCI, V169, P1086, DOI 10.1086/590472; Giuliani R, 2013, PLANT PHYSIOL, V162, P1632, DOI 10.1104/pp.113.217497; Gleason SM, 2016, NEW PHYTOL, V209, P123, DOI 10.1111/nph.13646; Gravel D, 2010, OIKOS, V119, P475, DOI 10.1111/j.1600-0706.2009.17441.x; Grime JP, 2002, EVOL ECOL, V16, P299, DOI 10.1023/A:1019640813676; Guo DL, 2008, NEW PHYTOL, V180, P673, DOI 10.1111/j.1469-8137.2008.02573.x; Hacke UG, 2007, INT J PLANT SCI, V168, P1113, DOI 10.1086/520724; Hacke UG, 2001, OECOLOGIA, V126, P457, DOI 10.1007/s004420100628; Hacke UG, 2000, BASIC APPL ECOL, V1, P31, DOI 10.1078/1439-1791-00006; Hastwell GT, 2003, J ECOL, V91, P941, DOI 10.1046/j.1365-2745.2003.00832.x; Henry HAL, 1997, OIKOS, V80, P575, DOI 10.2307/3546632; Hernandez EI, 2010, PLANT ECOL, V207, P233, DOI 10.1007/s11258-009-9668-2; Huang BR, 2000, J AM SOC HORTIC SCI, V125, P260; Hubbard RM, 2001, PLANT CELL ENVIRON, V24, P113, DOI 10.1046/j.1365-3040.2001.00660.x; Jacobsen AL, 2007, ECOL MONOGR, V77, P99, DOI 10.1890/05-1879; Kong DL, 2017, NEW PHYTOL, V213, P1569, DOI 10.1111/nph.14344; Kong DL, 2014, NEW PHYTOL, V203, P863, DOI 10.1111/nph.12842; Kotowska MM, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00191; Lehto T, 2011, MYCORRHIZA, V21, P71, DOI 10.1007/s00572-010-0348-9; Lens F, 2011, NEW PHYTOL, V190, P709, DOI 10.1111/j.1469-8137.2010.03518.x; Liu BT, 2015, NEW PHYTOL, V208, P125, DOI 10.1111/nph.13434; Long YQ, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0057153; Lopez OR, 2005, TREE PHYSIOL, V25, P1553, DOI 10.1093/treephys/25.12.1553; Lusk CH, 2000, OECOLOGIA, V123, P318, DOI 10.1007/s004420051018; Maddison W. P., 2010, MESQUITE MODULAR SYS, V2, P74; Maherali H, 1997, OECOLOGIA, V112, P472, DOI 10.1007/s004420050334; McCormack ML, 2015, NEW PHYTOL, V207, P505, DOI 10.1111/nph.13363; McCormack ML, 2012, NEW PHYTOL, V195, P823, DOI 10.1111/j.1469-8137.2012.04198.x; Midford P. E., 2010, PDAP PDTREE PACKAGE; Muhsin TM, 2002, NEW PHYTOL, V153, P153, DOI 10.1046/j.0028-646X.2001.00297.x; Niinemets U, 2006, ECOL MONOGR, V76, P521, DOI 10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2; Norby RJ, 2001, CLIMATIC CHANGE, V51, P415, DOI 10.1023/A:1012510619424; Oakley TH, 2000, EVOLUTION, V54, P397; PERSSON H, 1995, PLANT SOIL, V168, P161, DOI 10.1007/BF00029324; PETERSON RL, 2004, MYCORRHIZAS ANATOMY; Poorter H, 2012, NEW PHYTOL, V193, P30, DOI 10.1111/j.1469-8137.2011.03952.x; Pregitzer KS, 2002, ECOL MONOGR, V72, P293, DOI 10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2; Rewald B, 2011, PLANT CELL ENVIRON, V34, P33, DOI 10.1111/j.1365-3040.2010.02223.x; Sanchez-Gomez D, 2006, NEW PHYTOL, V170, P795, DOI 10.1111/j.1469-8137.2006.01711.x; Sanchez-Gomez D, 2006, TREE PHYSIOL, V26, P1425, DOI 10.1093/treephys/26.11.1425; Schenk HJ, 2006, J ECOL, V94, P725, DOI 10.1111/j.1365-2745.2006.01124.x; SPERRY JS, 1994, ECOLOGY, V75, P1736, DOI 10.2307/1939633; Sperry JS, 2002, FUNCT ECOL, V16, P367, DOI 10.1046/j.1365-2435.2002.00628.x; Trubat R, 2006, TREES-STRUCT FUNCT, V20, P334, DOI 10.1007/s00468-005-0045-z; Valenzuela-Estrada LR, 2009, J EXP BOT, V60, P1241, DOI 10.1093/jxb/ern367; Valladares F, 2003, PROG BOT, V64, P439; Wagner KR, 1998, OECOLOGIA, V117, P53, DOI 10.1007/s004420050631; Wahl S, 2001, ANN BOT-LONDON, V88, P1071, DOI 10.1006/anbo.2001.1551; Walker L. R., 2003, PRIMARY SUCCESSION E; Walters MB, 1999, NEW PHYTOL, V143, P143, DOI 10.1046/j.1469-8137.1999.00425.x; Wikstrom N, 2001, P ROY SOC B-BIOL SCI, V268, P2211, DOI 10.1098/rspb.2001.1782; Wyka TP, 2012, OECOLOGIA, V170, P11, DOI 10.1007/s00442-012-2279-y; Xia MX, 2010, NEW PHYTOL, V188, P1065, DOI 10.1111/j.1469-8137.2010.03423.x; Zadworny M, 2016, NEW PHYTOL, V212, P389, DOI 10.1111/nph.14048; Zavala MA, 2007, J THEOR BIOL, V244, P440, DOI 10.1016/j.jtbi.2006.08.024 81 0 0 20 20 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0305-7364 1095-8290 ANN BOT-LONDON Ann. Bot. AUG 1 2018 122 2 239 250 10.1093/aob/mcy054 12 Plant Sciences Plant Sciences GP6GW WOS:000440977500008 29897405 2018-11-22 J Chen, W; Olden, JD Chen, William; Olden, Julian D. Evaluating transferability of flow-ecology relationships across space, time and taxonomy FRESHWATER BIOLOGY English Article environmental flows; species traits; flow regulation; flow-ecology; freshwater fish LIFE-HISTORY STRATEGIES; RIPARIAN PLANT GUILDS; ENVIRONMENTAL FLOWS; WATER MANAGEMENT; CLIMATE-CHANGE; REGIMES; RIVER; RESPONSES; ECOSYSTEMS; BIODIVERSITY Environmental flow assessments are becoming increasingly central to ecologically-sustainable river management. Rigorous evaluations of flow-ecology relationships serve a vital role in guiding these assessments to meet targeted ecosystem objectives. However, limited resources and widespread environmental change are outpacing the ability to gain knowledge of species' flow responses and assess environmental needs for rivers individually. Successfully transferring flow-ecology relationships across space and time would facilitate regional-scale environmental flow assessments, yet the necessary contexts for such success remains a knowledge gap. Here, we leverage long-term, multi-species datasets across multiple river basins in southwestern United States as a case study to explore whether relationships between species abundances and hydrological conditions are transferable across space and time. Additionally, we evaluate the potential for ecological guilds based on fluvial dependence and life-history strategies to facilitate the transfer of flow-ecology knowledge across taxonomic boundaries. Species varied in the spatial transferability of their flow-ecology relationships. Spatial transferability was similar when comparing a species' flow-ecology relationships within a river basin versus across different river basins, although transferability was considerably greater across free-flowing rivers compared to regulated rivers. Species' flow-ecology relationships transferred through time just as well as across space. Ecological guilds defined according to fluvial dependence and life-history strategies offered just as much potential for transferring flow-ecology knowledge among species as transferring within species across space or time. Our study provides insights into transferring flow-ecology knowledge to support effective, regional-scale environmental flows. Further research into developing transferable flow-ecology relationships for a wide range of environmental predictors and biological responses across different spatial scales and flow regimes will enable us to keep pace with the increasing demand for science to inform sustainable river management. [Chen, William] Univ Washington, Quantitat Ecol & Resource Management Program, Seattle, WA 98195 USA; [Chen, William; Olden, Julian D.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA Olden, JD (reprint author), Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA. olden@uw.edu National Science Foundation Graduate Research Fellowship; H. Mason Keeler Endowed Professorship National Science Foundation Graduate Research Fellowship; H. Mason Keeler Endowed Professorship Acreman MC, 2014, HYDROLOG SCI J, V59, P433, DOI 10.1080/02626667.2014.886019; Acreman M, 2014, FRONT ECOL ENVIRON, V12, P466, DOI 10.1890/130134; Allan JD, 2004, ANNU REV ECOL EVOL S, V35, P257, DOI 10.1146/annurev.ecolsys.35.120202.110122; Arthington A., 2012, ENV FLOWS SAVING RIV; Arthington AH, 2006, ECOL APPL, V16, P1311, DOI 10.1890/1051-0761(2006)016[1311:TCOPEF]2.0.CO;2; Arthington AH, 2010, FRESHWATER BIOL, V55, P1, DOI 10.1111/j.1365-2427.2009.02340.x; Balcombe SR, 2009, MAR FRESHWATER RES, V60, P146, DOI 10.1071/MF08118; Brisbane Declaration, 2007, 10 INT RIV S INT ENV; Brooks AJ, 2016, HYDROBIOLOGIA, V773, P23, DOI 10.1007/s10750-016-2676-z; Bunn SE, 2002, ENVIRON MANAGE, V30, P492, DOI 10.1007/s00267-002-2737-0; Davies PM, 2014, MAR FRESHWATER RES, V65, P133, DOI 10.1071/MF13110; Dunbar MJ, 2010, FRESHWATER BIOL, V55, P226, DOI 10.1111/j.1365-2427.2009.02306.x; Duran B. R., 2016, ENDANGERED FISH MONI; Evans MR, 2013, TRENDS ECOL EVOL, V28, P578, DOI 10.1016/j.tree.2013.05.022; Freeman MC, 2006, ENVIRON MANAGE, V38, P435, DOI 10.1007/s00267-005-0169-3; Gido KB, 2013, CAN J FISH AQUAT SCI, V70, P554, DOI 10.1139/cjfas-2012-0441; Giorgino T, 2009, J STAT SOFTW, V31, P1; Gippel CJ, 1998, REGUL RIVER, V14, P53, DOI 10.1002/(SICI)1099-1646(199801/02)14:1<53::AID-RRR476>3.0.CO;2-Z; Golden M. E., 2004, SUMMARY LOWER VIRGIN; Jaeger KL, 2014, P NATL ACAD SCI USA, V111, P13894, DOI 10.1073/pnas.1320890111; James GM, 2009, ANN STAT, V37, P2083, DOI 10.1214/08-AOS641; Keck BP, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0093237; Kennard MJ, 2007, CAN J FISH AQUAT SCI, V64, P1346, DOI 10.1139/F07-108; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; Lytle DA, 2017, ECOL APPL, V27, P1338, DOI 10.1002/eap.1528; Macnaughton CJ, 2016, FRESHWATER BIOL, V61, P1759, DOI 10.1111/fwb.12815; McManamay RA, 2015, ECOHYDROLOGY, V8, P460, DOI 10.1002/eco.1517; Mcmanamay RA, 2015, ECOL APPL, V25, P243, DOI 10.1890/14-0247.1; Merritt DM, 2010, FRESHWATER BIOL, V55, P206, DOI 10.1111/j.1365-2427.2009.02206.x; Milly PCD, 2008, SCIENCE, V319, P573, DOI 10.1126/science.1151915; Mims MC, 2013, FRESHWATER BIOL, V58, P50, DOI 10.1111/fwb.12037; Mims MC, 2012, ECOLOGY, V93, P35, DOI 10.1890/11-0370.1; Murphy DD, 2011, CONSERV BIOL, V25, P873, DOI 10.1111/j.1523-1739.2011.01711.x; Naiman RJ, 2008, CR GEOSCI, V340, P629, DOI 10.1016/j.crte.2008.01.002; Olden JD, 2006, ECOL MONOGR, V76, P25, DOI 10.1890/05-0330; Olden JD, 2016, CONSERV BIOL SER, P107; Olden JD, 2010, AM FISH S S, V73, P83; Olden JD, 2010, FRESHWATER BIOL, V55, P86, DOI 10.1111/j.1365-2427.2009.02179.x; Pahl-Wostl C, 2013, CURR OPIN ENV SUST, V5, P341, DOI 10.1016/j.cosust.2013.06.009; Patrick CJ, 2017, ECOL APPL, V27, P1605, DOI [10.1002/eap.1554/full, 10.1002/eap.1554]; Poff NL, 2007, P NATL ACAD SCI USA, V104, P5732, DOI 10.1073/pnas.0609812104; Poff NL, 2016, NAT CLIM CHANGE, V6, P25, DOI 10.1038/NCLIMATE2765; Poff NL, 2010, FRESHWATER BIOL, V55, P147, DOI 10.1111/j.1365-2427.2009.02204.x; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; Ramsay JO, 2005, FUNCTIONAL DATA ANAL; Razavi S, 2015, WATER RESOUR RES, V51, P1813, DOI 10.1002/2014WR015696; Richards C, 1997, FRESHWATER BIOL, V37, P219, DOI 10.1046/j.1365-2427.1997.d01-540.x; Richter BD, 2010, RIVER RES APPL, V26, P1052, DOI 10.1002/rra.1320; Rosenfeld JS, 2017, FRESHWATER BIOL, V62, P1305, DOI 10.1111/fwb.12948; Rulli MC, 2013, P NATL ACAD SCI USA, V110, P892, DOI 10.1073/pnas.1213163110; Seager R, 2007, SCIENCE, V316, P1181, DOI 10.1126/science.1139601; Shenton W, 2012, ENVIRON MANAGE, V50, P1, DOI 10.1007/s00267-012-9864-z; SIMBERLOFF D, 1991, ANNU REV ECOL SYST, V22, P115, DOI 10.1146/annurev.es.22.110191.000555; Statzner B, 2010, FRESHWATER BIOL, V55, P80, DOI 10.1111/j.1365-2427.2009.02369.x; Stein ED, 2017, ECOHYDROLOGY, V10, DOI 10.1002/eco.1869; Stewart-Koster B, 2014, HYDROLOG SCI J, V59, P629, DOI 10.1080/02626667.2013.860231; Stromberg JC, 2016, FRESHWATER BIOL, V61, P1259, DOI 10.1111/fwb.12686; Tennant DL, 1976, FISHERIES, V1, P6, DOI DOI 10.1577/1548-8446(1976)001<0006:IFRFFW>2.0.CO;2; Tharme RE, 2003, RIVER RES APPL, V19, P397, DOI 10.1002/rra.736; Wagener T, 2010, WATER RESOUR RES, V46, DOI 10.1029/2009WR008906; Webb JA, 2018, ENVIRON MANAGE, V61, P398, DOI 10.1007/s00267-017-0822-7; Welcomme RL, 2006, RIVER RES APPL, V22, P377, DOI 10.1002/rra.914; Wenger SJ, 2012, METHODS ECOL EVOL, V3, P260, DOI 10.1111/j.2041-210X.2011.00170.x; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Yarnell SM, 2015, BIOSCIENCE, V65, P963, DOI 10.1093/biosci/biv102; Yen JDL, 2015, METHODS ECOL EVOL, V6, P17, DOI 10.1111/2041-210X.12290 66 3 3 5 5 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0046-5070 1365-2427 FRESHWATER BIOL Freshw. Biol. AUG 2018 63 8 SI 817 830 10.1111/fwb.13041 14 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology GO2EL WOS:000439780800007 2018-11-22 J Arthington, AH; Kennen, JG; Stein, ED; Webb, JA Arthington, Angela H.; Kennen, Jonathan G.; Stein, Eric D.; Webb, J. Angus Recent advances in environmental flows science and water management-Innovation in the Anthropocene FRESHWATER BIOLOGY English Article ecohydrology; ecosystem services; environmental flows; river restoration; social-ecological resilience LIFE-HISTORY STRATEGIES; BASIN PLAN CHALLENGES; ECOLOGICAL LIMITS; RIPARIAN VEGETATION; RIVER ECOSYSTEMS; ALTERATION ELOHA; SPECIES TRAITS; CLIMATE-CHANGE; BIODIVERSITY; REGIMES The implementation of environmental flow regimes offers a promising means to protect and restore riverine, wetland and estuarine ecosystems, their critical environmental services and cultural/societal values. This Special Issue expands the scope of environmental flows and water science in theory and practice, offering 20 papers from academics, agency researchers and non-governmental organisations, each with fresh perspectives on the science and management of environmental water allocations. Contributions confront the grand challenge for environmental flows and water management in the Anthropocenethe urgent need for innovations that will help to sustain the innate resilience of social-ecological systems under dynamic and uncertain environmental and societal futures. Basin-scale and regional assessments of flow requirements mark a necessary advance in environmental water science in the face of rapid changes in water-resource management activities worldwide (e.g. increases in dams, diversions, retention and reuse). Techniques for regional-scale hydrological and ecohydrological modelling support ecological risk assessment and identification of priority flow management and river restoration actions. Changing flood-drought cycles, long-term climatic shifts and associated effects on hydrological, thermal and water quality regimes add enormous uncertainty to the prediction of future ecological outcomes, regardless of environmental water allocations. An improved capacity to predict the trajectories of ecological change in rivers degraded by legacies of past impact interacting with current conditions and future climate change is essential. Otherwise, we risk unrealistic expectations from restoration of river and estuarine flow regimes. A more robust, dynamic and predictive approach to environmental water science is emerging. It encourages the measurement of process rates (e.g. birth rate, colonisation rate) and species traits (e.g. physiological requirements, morphological adaptations) as well as ecosystem states (e.g. species richness, assemblage structure), as the variables representing ecological responses to flow variability and environmental water allocations. Another necessary development is the incorporation of other environmental variables such as water temperature and sedimentary processes in flow-ecological response models. Based on contributions to this Special Issue, several recent compilations and the wider literature, we identify six major scientific challenges for further exploration, and seven themes for advancing the management of environmental water. We see the emerging frontier of environmental flows and water science as urgent and challenging, with numerous opportunities for reinvigorated science and methodological innovation in the expanding enterprise of environmental water linked to ecological sustainability and social well-being. [Arthington, Angela H.] Griffith Univ, Australian Rivers Inst, Nathan, Qld, Australia; [Kennen, Jonathan G.] US Geol Survey, Lawrenceville, NJ USA; [Stein, Eric D.] Southern Calif Coastal Water Res Project, Costa Mesa, CA USA; [Webb, J. Angus] Univ Melbourne, Dept Infrastruct Engn, Parkville, Vic, Australia Arthington, AH (reprint author), Griffith Univ, Australian Rivers Inst, Brisbane, Qld, Australia. a.arthington@griffith.edu.au Kennen, Jonathan/0000-0002-5426-4445; Webb, James/0000-0003-0857-7878 Australian Rivers Institute; USGS National Water Census; Southern California Coastal Water Research Project; University of Melbourne Australian Rivers Institute; USGS National Water Census; Southern California Coastal Water Research Project; University of Melbourne Acreman MC, 2014, HYDROLOG SCI J, V59, P433, DOI 10.1080/02626667.2014.886019; Acreman MC, 2010, FRESHWATER BIOL, V55, P32, DOI 10.1111/j.1365-2427.2009.02181.x; Acreman M, 2014, FRONT ECOL ENVIRON, V12, P466, DOI 10.1890/130134; Arthington A. H., 2012, ENV FLOWS SAVING RIV, DOI [10. 1525/california/9780520273696. 001. 0001, DOI 10.1525/CALIF0RNIA/9780520273696.001.0001]; Arthington A. H., 2012, WATERLINES, V75; Arthington AH, 2006, ECOL APPL, V16, P1311, DOI 10.1890/1051-0761(2006)016[1311:TCOPEF]2.0.CO;2; Arthington AH, 2010, FRESHWATER BIOL, V55, P1, DOI 10.1111/j.1365-2427.2009.02340.x; Belmar O, 2011, ENVIRON MANAGE, V47, P992, DOI 10.1007/s00267-011-9661-0; BISHT DCS, 2011, INT J ADV SCI TECHNO, V31, P99; Bond NR, 2008, HYDROBIOLOGIA, V600, P3, DOI 10.1007/s10750-008-9326-z; Bond NR, 2018, FRESHWATER BIOL, V63, P804, DOI 10.1111/fwb.13060; Brisbane Declaration, 2007, 10 INT RIV S INT ENV; Buchanan C, 2013, FRESHWATER BIOL, V58, P2632, DOI 10.1111/fwb.12240; Bunn S. E., 2016, FRONT ENV SCI, V4, P1; Bunn SE, 2002, ENVIRON MANAGE, V30, P492, DOI 10.1007/s00267-002-2737-0; Capon SJ, 2017, WATER ECON POLICY, V3, DOI 10.1142/S2382624X16500375; Carlisle DM, 2010, RIVER RES APPL, V26, P118, DOI 10.1002/rra.1247; Cartwright J, 2017, WATER-SUI, V9, DOI 10.3390/w9030196; Chan TU, 2012, RIVER RES APPL, V28, P283, DOI 10.1002/rra.1456; Chen W, 2018, FRESHWATER BIOL, V63, P817, DOI 10.1111/fwb.13041; Conallin JC, 2017, WATER FOR THE ENVIRONMENT: FROM POLICY AND SCIENCE TO IMPLEMENTATION AND MANAGEMENT, P129, DOI 10.1016/B978-0-12-803907-6.00007-3; Craig LS, 2017, ELEMENTA-SCI ANTHROP, V5, DOI 10.1525/elementa.256; Cuffney TF, 2018, FRESHWATER BIOL, V63, P738, DOI 10.1111/fwb.13031; Davies PM, 2014, MAR FRESHWATER RES, V65, P133, DOI 10.1071/MF13110; Downes BJ, 2010, FRESHWATER BIOL, V55, P60, DOI 10.1111/j.1365-2427.2009.02377.x; Dudgeon D, 2006, BIOL REV, V81, P163, DOI 10.1017/S1464793105006950; Dunbar MJ, 2010, FRESHWATER BIOL, V55, P226, DOI 10.1111/j.1365-2427.2009.02306.x; Eamus D, 2006, AUST J BOT, V54, P91, DOI 10.1071/BT06029; Finn M, 2011, ECOSYSTEMS, V14, P1232, DOI 10.1007/s10021-011-9476-0; Frimpong E. A., 2010, AM FISHERIES SOC S, V79, P109; Gendaszek AS, 2018, FRESHWATER BIOL, V63, P917, DOI 10.1111/fwb.12987; Gillespie BR, 2015, FRESHWATER BIOL, V60, P410, DOI 10.1111/fwb.12506; Gleeson T., 2017, RIVER RES APPL, V2017, P1; Hain EF, 2018, FRESHWATER BIOL, V63, P928, DOI 10.1111/fwb.13048; Hart B, 2009, WATERLINES REPORT SE, V14; Hart BT, 2016, INT J WATER RESOUR D, V32, P819, DOI 10.1080/07900627.2015.1083847; Hart BT, 2016, INT J WATER RESOUR D, V32, P835, DOI 10.1080/07900627.2015.1084494; Hermoso V, 2012, FRESHWATER BIOL, V57, P1, DOI 10.1111/j.1365-2427.2011.02693.x; Horne A. C., 2017, FRONTIERS ENV SCI, V5, DOI [10. 3389/fenvs. 2017. 00089, DOI 10.3389/FENVS.2017.00089]; Horne A. C., 2017, WATER ENV POLICY SCI; Humphries P, 2009, BIOSCIENCE, V59, P673, DOI 10.1525/bio.2009.59.8.9; Jackson S, 2017, WATER FOR THE ENVIRONMENT: FROM POLICY AND SCIENCE TO IMPLEMENTATION AND MANAGEMENT, P173, DOI 10.1016/B978-0-12-803907-6.00009-7; James CS, 2016, ECOL EVOL, V6, P5950, DOI 10.1002/ece3.2249; Kendy E., 2012, PRACTICAL GUIDE ENV; Kennard MJ, 2007, CAN J FISH AQUAT SCI, V64, P1346, DOI 10.1139/F07-108; Kennen J. G., 2007, 20075206 US GEOL SUR; Kennen J. G., 2018, FRESHWATER BIOL; King J, 2003, RIVER RES APPL, V19, P619, DOI 10.1002/rra.709; King J, 2010, FRESHWATER BIOL, V55, P127, DOI 10.1111/j.1365-2427.2009.02316.x; Laize CLR, 2014, RIVER RES APPL, V30, P299, DOI 10.1002/rra.2645; Leigh C, 2010, MAR FRESHWATER RES, V61, P896, DOI 10.1071/MF10106; Liermann CAR, 2012, RIVER RES APPL, V28, P1340, DOI 10.1002/rra.1541; Lindenmayer DB, 2011, ECOSYSTEMS, V14, P47, DOI 10.1007/s10021-010-9394-6; Lynch D. T., 2018, FRESHWATER BIOL; Maas-Hebner K. G., 2015, ENVIRON MONIT ASSESS, V187, P1; Mackay SJ, 2014, ECOHYDROLOGY, V7, P1485, DOI 10.1002/eco.1473; Martin DM, 2015, FRESHWATER BIOL, V60, P1890, DOI 10.1111/fwb.12619; Mazor RD, 2018, FRESHWATER BIOL, V63, P786, DOI 10.1111/fwb.13062; McCluney KE, 2014, FRONT ECOL ENVIRON, V12, P48, DOI 10.1890/120367; McKenna J. E., 2018, FRESHWATER BIOL; Mcmanamay RA, 2015, ECOL APPL, V25, P243, DOI 10.1890/14-0247.1; McManamay RA, 2013, ENVIRON MANAGE, V51, P1210, DOI 10.1007/s00267-013-0055-3; Merritt DM, 2010, FRESHWATER BIOL, V55, P206, DOI 10.1111/j.1365-2427.2009.02206.x; Mierau DW, 2018, FRESHWATER BIOL, V63, P752, DOI 10.1111/fwb.12985; Milly PCD, 2008, SCIENCE, V319, P573, DOI 10.1126/science.1151915; Mims MC, 2013, FRESHWATER BIOL, V58, P50, DOI 10.1111/fwb.12037; Mims MC, 2012, ECOLOGY, V93, P35, DOI 10.1890/11-0370.1; Monk WA, 2018, FRESHWATER BIOL, V63, P891, DOI 10.1111/fwb.13030; Nestler J. M., 2016, J ECOHYDRAUL, V1, P5; Novak R., 2016, 20165164 US GEOL SUR; O'Brien GC, 2018, HYDROL EARTH SYST SC, V22, P957, DOI 10.5194/hess-22-957-2018; Olden JD, 2003, RIVER RES APPL, V19, P101, DOI 10.1002/rra.700; Olden JD, 2014, FRONT ECOL ENVIRON, V12, P176, DOI 10.1890/130076; Olden JD, 2010, FRESHWATER BIOL, V55, P86, DOI 10.1111/j.1365-2427.2009.02179.x; Pahl-Wostl C, 2013, CURR OPIN ENV SUST, V5, P341, DOI 10.1016/j.cosust.2013.06.009; Palmer M, 2004, SCIENCE, V304, P1251, DOI 10.1126/science.1095780; Palmer MA, 2010, FRESHWATER BIOL, V55, P205, DOI 10.1111/j.1365-2427.2009.02372.x; Poff NL, 2007, P NATL ACAD SCI USA, V104, P5732, DOI 10.1073/pnas.0609812104; Poff NL, 2018, FRESHWATER BIOL, V63, P1011, DOI 10.1111/fwb.13038; Poff NL, 2017, WATER FOR THE ENVIRONMENT: FROM POLICY AND SCIENCE TO IMPLEMENTATION AND MANAGEMENT, P203, DOI 10.1016/B978-0-12-803907-6.00011-5; Poff NL, 2016, NAT CLIM CHANGE, V6, P25, DOI 10.1038/NCLIMATE2765; Poff NL, 2013, CURR OPIN ENV SUST, V5, P667, DOI 10.1016/j.cosust.2013.11.006; Poff NL, 2010, FRESHWATER BIOL, V55, P147, DOI 10.1111/j.1365-2427.2009.02204.x; Poff NL, 2003, FRONT ECOL ENVIRON, V1, P298, DOI 10.1890/1540-9295(2003)001[0298:RFAWWE]2.0.CO;2; Poff NL, 1997, J N AM BENTHOL SOC, V16, P391, DOI 10.2307/1468026; Rahel FJ, 2008, CONSERV BIOL, V22, P521, DOI 10.1111/j.1523-1739.2008.00950.x; Richardson S., 2011, WATERLINES REPORT SE, V69; Rockstrom J, 2014, ECOHYDROLOGY, V7, P1249, DOI 10.1002/eco.1562; Rolls RJ, 2015, ENVIRON MANAGE, V55, P1315, DOI 10.1007/s00267-015-0462-8; Rolls RJ, 2014, ECOL INDIC, V39, P179, DOI 10.1016/j.ecolind.2013.12.017; Sanderson JS, 2012, RIVER RES APPL, V28, P1369, DOI 10.1002/rra.1542; Sengupta A, 2018, FRESHWATER BIOL, V63, P769, DOI 10.1111/fwb.13074; Shenton W, 2014, STOCH ENV RES RISK A, V28, P57, DOI 10.1007/s00477-013-0698-x; Shenton W, 2012, ENVIRON MANAGE, V50, P1, DOI 10.1007/s00267-012-9864-z; Steel AE, 2018, FRESHWATER BIOL, V63, P844, DOI 10.1111/fwb.12994; Stein ED, 2017, ECOHYDROLOGY, V10, DOI 10.1002/eco.1869; Stewardson M., 2018, FRESHWATER BIOL; Stewart-Koster B, 2010, FRESHWATER BIOL, V55, P243, DOI 10.1111/j.1365-2427.2009.02219.x; Stoffels RJ, 2018, FRESHWATER BIOL, V63, P996, DOI 10.1111/fwb.13061; Tharme RE, 2003, RIVER RES APPL, V19, P397, DOI 10.1002/rra.736; Thompson RM, 2018, FRESHWATER BIOL, V63, P986, DOI 10.1111/fwb.13029; Vorosmarty CJ, 2010, NATURE, V467, P555, DOI 10.1038/nature09440; Walsh CJ, 2014, LANDSCAPE ECOL, V29, P1171, DOI 10.1007/s10980-014-0050-y; Webb CT, 2010, ECOL LETT, V13, P267, DOI 10.1111/j.1461-0248.2010.01444.x; Webb JA, 2018, FRESHWATER BIOL, V63, P831, DOI 10.1111/fwb.13069; Webb JA, 2018, ENVIRON MANAGE, V61, P398, DOI 10.1007/s00267-017-0822-7; Webb JA, 2018, ENVIRON MANAGE, V61, P339, DOI 10.1007/s00267-017-0981-6; Webb JA, 2017, WATER FOR THE ENVIRONMENT: FROM POLICY AND SCIENCE TO IMPLEMENTATION AND MANAGEMENT, P287, DOI 10.1016/B978-0-12-803907-6.00014-0; Webb JA, 2010, FRESHWATER BIOL, V55, P108, DOI 10.1111/j.1365-2427.2009.02205.x; Wheeler K, 2018, FRESHWATER BIOL, V63, P906, DOI 10.1111/fwb.13001; Williamson T. N., 2015, 20155143 US GEOL SUR, DOI 10. 3133/sir20155143; Winemiller KO, 2016, SCIENCE, V351, P128, DOI 10.1126/science.aac7082; Zhang Y, 2012, RIVER RES APPL, V28, P989, DOI 10.1002/rra.1483; Zimmerman JKH, 2018, FRESHWATER BIOL, V63, P859, DOI 10.1111/fwb.13058 114 1 1 19 19 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0046-5070 1365-2427 FRESHWATER BIOL Freshw. Biol. AUG 2018 63 8 SI 1022 1034 10.1111/fwb.13108 13 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology GO2EL WOS:000439780800021 2018-11-22 J Barfield, SJ; Aglyamova, GV; Bay, LK; Matz, MV Barfield, Sarah J.; Aglyamova, Galina V.; Bay, Line K.; Matz, Mikhail V. Contrasting effects of Symbiodinium identity on coral host transcriptional profiles across latitudes MOLECULAR ECOLOGY English Article CLIMATE-CHANGE; GENE-EXPRESSION; REEF CORALS; HEAT-STRESS; THERMOTOLERANCE; HSP70; PATTERNS; STOICHIOMETRY; ZOOXANTHELLAE; RESILIENCE Reef-building corals can increase their resistance to heat-induced bleaching through adaptation and acclimatization and/or by associating with a more thermo-tolerant strain of algal symbiont (Symbiodinium sp.). Here, we show that these two adaptive pathways interact. We collected Acropora millepora corals from two contrasting thermal environments on the Great Barrier Reef: cooler, mid-latitude Orpheus Island, where all corals hosted a heat-sensitive clade C Symbiodinium, and warmer, low-latitude Wilkie Island, where corals hosted either a clade C or a more thermo-tolerant clade D. Corals were kept in a benign common garden to reveal differences in baseline gene expression, reflecting prior adaptation/long-term acclimatization. Model-based analysis identified gene expression differences between Wilkie and Orpheus corals that were negatively correlated with previously described transcriptome-wide signatures of heat stress, signifying generally elevated thermotolerance of Wilkie corals. Yet, model-free analyses of gene expression revealed that Wilkie corals hosting clade C were distinct from Wilkie corals hosting clade D, whereas Orpheus corals were more variable. Wilkie corals hosting clade C symbionts exhibited unique functional signatures, including downregulation of histone proteins and ion channels and upregulation of chaperones and RNA processing genes, putatively representing constitutive frontloading of stress response genes. Furthermore, clade C Symbiodinium exhibited constitutive expression differences between Wilkie and Orpheus, indicative of contrasting life history strategies. Our results demonstrate that hosting alternative Symbiodinium types is associated with different pathways of local adaptation for the coral host. These interactions could play a significant role in setting the direction of genetic adaptation to global warming in the two symbiotic partners. [Barfield, Sarah J.; Aglyamova, Galina V.; Matz, Mikhail V.] Univ Texas Austin, Dept Integrat Biol, 1 Univ Stn C0990, Austin, TX 78712 USA; [Bay, Line K.] Australian Inst Marine Sci, Townsville, Qld, Australia Barfield, SJ (reprint author), Univ Texas Austin, Dept Integrat Biol, 1 Univ Stn C0990, Austin, TX 78712 USA. sbarfield@utexas.edu Matz, Mikhail/0000-0001-5453-9819 Division of Environmental Biology [1054766] Division of Environmental Biology, Grant/Award Number: 1054766 Ainsworth TD, 2016, SCIENCE, V352, P338, DOI 10.1126/science.aac7125; Al-Zhgoul MB, 2013, RES VET SCI, V95, P502, DOI 10.1016/j.rvsc.2013.05.012; Alexander D. H., 2015, ADMIXTURE 1 3 SOFTWA; Ayre DJ, 2004, ECOL LETT, V7, P273, DOI 10.1111/j.1461-0248.2004.00585.x; Baker AC, 2004, NATURE, V430, P741, DOI 10.1038/430741a; Barshis DJ, 2014, MOL BIOL EVOL, V31, P1343, DOI 10.1093/molbev/msu107; Barshis DJ, 2013, P NATL ACAD SCI USA, V110, P1387, DOI 10.1073/pnas.1210224110; Baumgarten S, 2018, MOL ECOL, V27, P403, DOI 10.1111/mec.14452; Baums IB, 2014, MOL ECOL, V23, P4203, DOI 10.1111/mec.12788; Bay RA, 2014, CURR BIOL, V24, DOI 10.1016/j.cub.2014.10.044; Bayer T, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0035269; Bedulina DS, 2013, MOL ECOL, V22, P1416, DOI 10.1111/mec.12136; Berkelmans R, 2006, P R SOC B, V273, P2305, DOI 10.1098/rspb.2006.3567; Brown BE, 2005, MAR ECOL PROG SER, V296, P291, DOI 10.3354/meps296291; Brown BE, 1997, CORAL REEFS, V16, pS129, DOI 10.1007/s003380050249; Cedar H, 2009, NAT REV GENET, V10, P295, DOI 10.1038/nrg2540; Cooper TF, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0025536; DeSalvo MK, 2010, MOL ECOL, V19, P1174, DOI 10.1111/j.1365-294X.2010.04534.x; Dixon GB, 2015, SCIENCE, V348, P1460, DOI 10.1126/science.1261224; Dixon P, 2003, J VEG SCI, V14, P927, DOI 10.1111/j.1654-1103.2003.tb02228.x; Dong YW, 2010, BIOL BULL-US, V218, P87, DOI 10.1086/BBLv218n1p87; Donner SD, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005712; Elser JJ, 2003, ECOL LETT, V6, P936, DOI 10.1046/j.1461-0248.2003.00518.x; GEHRING WJ, 1995, P NATL ACAD SCI USA, V92, P2994, DOI 10.1073/pnas.92.7.2994; Great Barrier Reef Marine Park Authority, 2016, INT REP 2016 COR BLE; Gunesdogan U, 2014, ELIFE, V3, DOI 10.7554/eLife.02443; Guo M, 2016, PLANT SCI, V252, P246, DOI 10.1016/j.plantsci.2016.07.001; Jatkar AA, 2010, BIOMACROMOLECULES, V11, P883, DOI 10.1021/bm9012106; Kenkel CD, 2013, MOL ECOL, V22, P4335, DOI 10.1111/mec.12391; Kenkel CD, 2017, NAT ECOL EVOL, V1, DOI 10.1038/s41559-016-0014; Korneliussen TS, 2014, BMC BIOINFORMATICS, V15, DOI 10.1186/s12859-014-0356-4; Krebs RA, 1999, CELL STRESS CHAPERON, V4, P243, DOI 10.1379/1466-1268(1999)004<0243:ACOHEA>2.3.CO;2; Ladner JT, 2012, BMC EVOL BIOL, V12, DOI 10.1186/1471-2148-12-217; Langfelder P, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-559; Levin RA, 2016, MOL BIOL EVOL, V33, P2201, DOI 10.1093/molbev/msw119; Mata J, 2005, TRENDS BIOCHEM SCI, V30, P506, DOI 10.1016/j.tibs.2005.07.005; Mayfield AB, 2007, COMP BIOCHEM PHYS A, V147, P1, DOI 10.1016/j.cbpa.2006.12.042; Meyer E, 2011, MOL ECOL, V20, P3599, DOI 10.1111/j.1365-294X.2011.05205.x; Moya A, 2012, MOL ECOL, V21, P2440, DOI 10.1111/j.1365-294X.2012.05554.x; Oliver TA, 2011, CORAL REEFS, V30, P241, DOI 10.1007/s00338-010-0696-0; Oliver TA, 2009, MAR ECOL PROG SER, V378, P93, DOI 10.3354/meps07871; Palumbi S. R., 2012, SCIENCE, V14612, P895; Parkinson JE, 2015, SCI REP-UK, V5, DOI 10.1038/srep15667; Quigley KM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0094297; Rowan R, 2004, NATURE, V430, P742, DOI 10.1038/430742a; Seibt C, 2001, NATURWISSENSCHAFTEN, V88, P382, DOI 10.1007/s001140100240; Seneca FO, 2015, MOL ECOL, V24, P1467, DOI 10.1111/mec.13125; Stat Michael, 2011, Journal of Marine Biology, V2011, P1; Vrede T, 2004, ECOLOGY, V85, P1217, DOI 10.1890/02-0249; Wright RM, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-02685-1; Wright RM, 2015, BMC GENOMICS, V16, DOI 10.1186/s12864-015-1540-2 51 0 0 17 17 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. AUG 2018 27 15 3103 3115 10.1111/mec.14774 13 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GO6KA WOS:000440148900007 29924441 2018-11-22 J Whiting, JR; Magalhaes, IS; Singkam, AR; Robertson, S; D'Agostino, D; Bradley, JE; MacColl, ADC Whiting, James R.; Magalhaes, Isabel S.; Singkam, Abdul R.; Robertson, Shaun; D'Agostino, Daniele; Bradley, Janette E.; MacColl, Andrew D. C. A genetics-based approach confirms immune associations with life history across multiple populations of an aquatic vertebrate (Gasterosteus aculeatus) MOLECULAR ECOLOGY English Article adaptation; ecoimmunology; immune variation; life history evolution; population genetics; senescence MALE 3-SPINED STICKLEBACK; SCHISTOCEPHALUS-SOLIDUS; ECOLOGICAL IMMUNOLOGY; TRADE-OFFS; THREESPINE STICKLEBACKS; LOCAL ADAPTATION; EVOLUTIONARY PERSPECTIVE; THAMNOPHIS-ELEGANS; MAMMAL POPULATION; NATURAL VARIATION Understanding how wild immune variation covaries with other traits can reveal how costs and trade-offs shape immune evolution in the wild. Divergent life history strategies may increase or alleviate immune costs, helping shape immune variation in a consistent, testable way. Contrasting hypotheses suggest that shorter life histories may alleviate costs by offsetting them against increased mortality, or increase the effect of costs if immune responses are traded off against development or reproduction. We investigated the evolutionary relationship between life history and immune responses within an island radiation of three-spined stickleback, with discrete populations of varying life histories and parasitism. We sampled two short-lived, two long-lived and an anadromous population using qPCR to quantify current immune profile and RAD-seq data to study the distribution of immune variants within our assay genes and across the genome. Short-lived populations exhibited significantly increased expression of all assay genes, which was accompanied by a strong association with population-level variation in local alleles and divergence in a gene that may be involved in complement pathways. In addition, divergence around the eda gene in anadromous fish is likely associated with increased inflammation. A wider analysis of 15 populations across the island revealed that immune genes across the genome show evidence of having diverged alongside life history strategies. Parasitism and reproductive investment were also important sources of variation for expression, highlighting the caution required when assaying immune responses in the wild. These results provide strong, gene-based support for current hypotheses linking life history and immune variation across multiple populations of a vertebrate model. [Whiting, James R.; Magalhaes, Isabel S.; Singkam, Abdul R.; Robertson, Shaun; D'Agostino, Daniele; Bradley, Janette E.; MacColl, Andrew D. C.] Univ Nottingham, Sch Life Sci, Univ Pk, Nottingham, England; [Whiting, James R.] Univ Sussex, Sch Life Sci, JMS Bldg, Brighton BN1 9QG, E Sussex, England; [Magalhaes, Isabel S.] Univ Roehampton, Dept Life Sci, Whitelands Coll, London, England; [Singkam, Abdul R.] Univ Bengkulu, Pendidikan Biol JPMIPA FKIP, Bengkulu, Indonesia; [Robertson, Shaun] Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Glasgow, Lanark, Scotland Whiting, JR (reprint author), Univ Sussex, Sch Life Sci, JMS Bldg, Brighton BN1 9QG, E Sussex, England. j.whiting@sussex.ac.uk MacColl, Andrew/0000-0003-2102-6130; Robertson, Shaun/0000-0001-9754-5397; Santos Magalhaes, Isabel/0000-0003-2391-3577; D'Agostino, Daniele/0000-0003-2291-5749; Bradley, Janette/0000-0003-3973-7977; Whiting, James/0000-0001-8936-4991 Biotechnology and Biological Sciences Research Council (BBSRC) DTP studentship; Natural Environmental Research Council (NERC) [NE/J02239X/1] Funding for this work was provided through the Biotechnology and Biological Sciences Research Council (BBSRC) DTP studentship awarded to JRW and a Natural Environmental Research Council (NERC) grant (NE/J02239X/1) awarded to ADCM. Agarwala R, 2018, NUCLEIC ACIDS RES, V46, pD8, DOI 10.1093/nar/gkx1095; Ashley NT, 2012, ANNU REV ECOL EVOL S, V43, P385, DOI 10.1146/annurev-ecolsys-040212-092530; Barber I, 2010, PARASITOLOGY, V137, P411, DOI 10.1017/S0031182009991466; Barber I, 2008, BEHAVIOUR, V145, P647, DOI 10.1163/156853908792451403; Bech C, 2016, J COMP PHYSIOL B, V186, P503, DOI 10.1007/s00360-016-0964-6; Blount JD, 2003, SCIENCE, V300, P125, DOI 10.1126/science.1082142; Brown M, 2016, BMC GENOMICS, V17, DOI 10.1186/s12864-016-2701-7; Bustin SA, 2009, CLIN CHEM, V55, P611, DOI 10.1373/clinchem.2008.112797; Carbo-Ramirez P, 2015, AVIAN BIOL RES, V8, P167, DOI 10.3184/175815515X14371521830098; Catchen J, 2013, MOL ECOL, V22, P3124, DOI 10.1111/mec.12354; Christensen LL, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2016.1407; Clotfelter ED, 2007, BEHAV ECOL, V18, P1139, DOI 10.1093/beheco/arm090; Colosimo PF, 2005, SCIENCE, V307, P1928, DOI 10.1126/science.1107239; de Roij J, 2012, PARASITOLOGY, V139, P1478, DOI 10.1017/S0031182012000789; de Roij J, 2011, FUNCT ECOL, V25, P217, DOI 10.1111/j.1365-2435.2010.01775.x; DeFaveri J, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0080866; Dejaco C, 2006, EXP GERONTOL, V41, P339, DOI 10.1016/j.exger.2006.01.008; Dhinaut J, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-12769-7; Dopico XC, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms8000; Downs CJ, 2014, INTEGR COMP BIOL, V54, P340, DOI 10.1093/icb/icu082; Dufresne F, 1990, BEHAV ECOL, V1, P140, DOI 10.1093/beheco/1.2.140; Eikenaar C, 2016, BIOL LETTERS, V12, DOI 10.1098/rsbl.2016.0078; El Nagar A, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2016.0691; Excoffier L, 2010, MOL ECOL RESOUR, V10, P564, DOI 10.1111/j.1755-0998.2010.02847.x; Fassbinder-Orth CA, 2014, INTEGR COMP BIOL, V54, P396, DOI 10.1093/icb/icu023; Franceschi C, 2000, ANN NY ACAD SCI, V908, P244; Franceschi C, 2017, TRENDS ENDOCRIN MET, V28, P199, DOI 10.1016/j.tem.2016.09.005; Galli SJ, 2011, NAT IMMUNOL, V12, P1035, DOI 10.1038/ni.2109; Gambling SJ, 2012, CAN J ZOOL, V90, P284, DOI 10.1139/Z11-133; Ghai R, 2007, IMMUNOBIOLOGY, V212, P253, DOI 10.1016/j.imbio.2006.11.001; Graham AL, 2005, ANNU REV ECOL EVOL S, V36, P373, DOI 10.1146/annurev.ecolsys.36.102003.152622; Graham AL, 2002, Q REV BIOL, V77, P409, DOI 10.1086/344414; Grether GF, 2004, P ROY SOC B-BIOL SCI, V271, P45, DOI 10.1098/rspb.2003.2526; Gunther T, 2013, GENETICS, V195, P205, DOI 10.1534/genetics.113.152462; Hammer M, 2010, IMMUNOLOGY, V131, P395, DOI 10.1111/j.1365-2567.2010.03313.x; Hayward AD, 2014, AM NAT, V184, pS58, DOI 10.1086/676929; Hayward AD, 2009, P R SOC B, V276, P3477, DOI 10.1098/rspb.2009.0906; Hegemann A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0036358; Horrocks NPC, 2015, OECOLOGIA, V177, P281, DOI 10.1007/s00442-014-3136-y; Jackson JA, 2014, PLOS BIOL, V12, DOI 10.1371/journal.pbio.1001901; Jombart T, 2008, BIOINFORMATICS, V24, P1403, DOI 10.1093/bioinformatics/btn129; Jones FC, 2012, NATURE, V484, P55, DOI 10.1038/nature10944; Jones FC, 2012, CURR BIOL, V22, P83, DOI 10.1016/j.cub.2011.11.045; Jones J. W., 1950, J ANIM ECOL, V5, P9; Jovanovic M, 2015, SCIENCE, V347, DOI 10.1126/science.1259038; Kamath PL, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0077; Kim SY, 2016, J ANIM ECOL, V85, P705, DOI 10.1111/1365-2656.12468; Kopp EB, 2009, EVOL APPL, V2, P132, DOI 10.1111/j.1752-4571.2008.00062.x; La Cava A, 2004, NAT REV IMMUNOL, V4, P371, DOI 10.1038/nri1350; Lee KA, 2008, J ANIM ECOL, V77, P356, DOI 10.1111/j.1365-2656.2007.01347.x; Lee KA, 2006, INTEGR COMP BIOL, V46, P1000, DOI 10.1093/icb/icl049; Li JJ, 2014, PEERJ, V2, DOI 10.7717/peerj.270; Lindenstrom T, 2004, VET IMMUNOL IMMUNOP, V97, P137, DOI 10.1016/j.vetimm.2003.08.016; Lischer HEL, 2012, BIOINFORMATICS, V28, P298, DOI 10.1093/bioinformatics/btr642; Loiseau C, 2008, ECOL LETT, V11, P258, DOI 10.1111/j.1461-0248.2007.01141.x; Long KZ, 2004, AM J HUM BIOL, V16, P499, DOI 10.1002/ajhb.20064; Luoma RL, 2016, J EXP BIOL, V219, P1965, DOI 10.1242/jeb.138123; MacColl ADC, 2009, ECOGRAPHY, V32, P153, DOI 10.1111/j.1600-0587.2008.05486.x; Mackay F, 2002, NAT REV IMMUNOL, V2, P465, DOI 10.1038/nri844; Macnab V, 2011, HORM BEHAV, V60, P371, DOI 10.1016/j.yhbeh.2011.07.005; Magalhaes IS, 2016, MOL ECOL, V25, P4319, DOI 10.1111/mec.13746; Martin LB, 2011, FUNCT ECOL, V25, P1, DOI 10.1111/j.1365-2435.2010.01820.x; Martin LB, 2007, ECOLOGY, V88, P2516, DOI 10.1890/07-0060.1; Matson KD, 2006, P R SOC B, V273, P815, DOI 10.1098/rspb.2005.3376; Mayer M, 2015, AUSTRAL ECOL, V40, P683, DOI 10.1111/aec.12235; Milligan-Myhre K, 2016, DIS MODEL MECH, V9, P187, DOI 10.1242/dmm.021881; Mitra S, 2010, FEBS J, V277, P128, DOI 10.1111/j.1742-4658.2009.07460.x; Naylor C, 2016, TRENDS MOL MED, V22, P88, DOI 10.1016/j.molmed.2015.12.001; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Nussey DH, 2012, AGING CELL, V11, P178, DOI 10.1111/j.1474-9726.2011.00771.x; Nussey DH, 2009, FUNCT ECOL, V23, P809, DOI 10.1111/j.1365-2435.2009.01555.x; Palacios MG, 2013, PHYSIOL BIOCHEM ZOOL, V86, P547, DOI 10.1086/672371; Palacios MG, 2011, J ANIM ECOL, V80, P431, DOI 10.1111/j.1365-2656.2010.01785.x; Pap PL, 2015, OECOLOGIA, V177, P147, DOI 10.1007/s00442-014-3108-2; Pauwels K, 2014, FRESHWATER BIOL, V59, P1247, DOI 10.1111/fwb.12344; Pedersen AB, 2011, MOL ECOL, V20, P872, DOI 10.1111/j.1365-294X.2010.04938.x; Pfaffl MW, 2001, NUCLEIC ACIDS RES, V29, DOI 10.1093/nar/29.9.e45; Pike TW, 2010, BEHAV ECOL, V21, P1048, DOI 10.1093/beheco/arq102; Pinzon CJH, 2014, PEERJ, V2, DOI 10.7717/peerj.628; Poulin R, 2000, Q REV BIOL, V75, P277, DOI 10.1086/393500; Poulin R, 2011, ECOGRAPHY, V34, P540, DOI 10.1111/j.1600-0587.2010.06826.x; Previtali MA, 2012, OIKOS, V121, P1483, DOI 10.1111/j.1600-0706.2012.020215.x; Probst-Kepper M, 2010, BIOL DIRECT, V5, DOI 10.1186/1745-6150-5-8; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Quintana FJ, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009478; Rahman A., 2017, LIFE HIST EVOLUTION; Rahn AK, 2016, ZOOLOGY, V119, P395, DOI 10.1016/j.zool.2016.05.009; Rahn AK, 2016, INFECT GENET EVOL, V44, P261, DOI 10.1016/j.meegid.2016.07.011; Raj A, 2014, GENETICS, V197, P573, DOI 10.1534/genetics.114.164350; Rantala MJ, 2005, FUNCT ECOL, V19, P323, DOI 10.1111/j.1365-2435.2005.00979.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Robertson S, 2017, SCI REP-UK, V7, DOI 10.1038/srep42677; Robertson S, 2017, FISH SHELLFISH IMMUN, V60, P275, DOI 10.1016/j.fsi.2016.11.058; Robertson S, 2016, EVOL ECOL RES, V17, P263; Robertson S, 2016, MOL ECOL RESOUR, V16, P701, DOI 10.1111/1755-0998.12497; Rushbrook BJ, 2006, J FISH BIOL, V69, P870, DOI 10.1111/j.1095-8649.2006.01164.x; Sadier A, 2014, TRENDS GENET, V30, P24, DOI 10.1016/j.tig.2013.08.006; Scharsack JP, 2007, P ROY SOC B-BIOL SCI, V274, P1523, DOI 10.1098/rspb.2007.0210; Scharsack JP, 2007, P R SOC B, V274, P3151, DOI 10.1098/rspb.2007.1148; Scharsack JP, 2013, FISH SHELLFISH IMMUN, V35, P1779, DOI 10.1016/j.fsi.2013.08.029; Scharsack JP, 2004, DIS AQUAT ORGAN, V59, P141, DOI 10.3354/dao059141; SchmidHempel P, 2011, EVOLUTIONARY PARASITOLOGY: THE INTEGRATED STUDY OF INFECTIONS, IMMUNOLOGY, ECOLOGY, AND GENETICS, P1; Schneeberger K, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0108268; Secombes CJ, 2012, WOODHEAD PUBL FOOD S, P3; Sharick JT, 2015, FUNCT ECOL, V29, P367, DOI 10.1111/1365-2435.12330; Smedley D, 2015, NUCLEIC ACIDS RES, V43, pW589, DOI 10.1093/nar/gkv350; SNYDER RJ, 1990, OECOLOGIA, V84, P386, DOI 10.1007/BF00329764; Sparkman AM, 2009, J ANIM ECOL, V78, P1242, DOI 10.1111/j.1365-2656.2009.01587.x; Stevenson TJ, 2015, FRONT NEUROENDOCRIN, V37, P76, DOI 10.1016/j.yfrne.2014.10.002; Storey J. D., 2015, QVALUE Q VALUE ESTIM; Sugimoto K, 2017, DEV COMP IMMUNOL, V73, P156, DOI 10.1016/j.dci.2017.03.023; Tella JL, 2002, P ROY SOC B-BIOL SCI, V269, P1059, DOI 10.1098/rspb.2001.1951; Tieleman BI, 2005, P ROY SOC B-BIOL SCI, V272, P1715, DOI 10.1098/rspb.2005.3155; Uribe C, 2011, VET MED-CZECH, V56, P486; Wang L, 2017, DEV COMP IMMUNOL, V67, P322, DOI 10.1016/j.dci.2016.09.001; Wedekind C, 1998, J CHEM ECOL, V24, P787, DOI 10.1023/A:1022365315836; Whitlock MC, 2015, AM NAT, V186, pS24, DOI 10.1086/682949; Whoriskey F. G., 1994, EVOLUTIONARY BIOL TH, P399; Wickham H., 2016, GGPLOT2 ELEGANT GRAP, DOI [10. 1007/978-3-319-24277-4, DOI 10.1007/978-3-319-24277-4]; Windsor DA, 1998, INT J PARASITOL, V28, P1939, DOI 10.1016/S0020-7519(98)00153-2; Young RE, 2017, PARASITOLOGY, V144, P436, DOI 10.1017/S0031182016001815; Zapata A, 2006, FISH SHELLFISH IMMUN, V20, P126, DOI 10.1016/j.fsi.2004.09.005 123 0 0 15 15 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. AUG 2018 27 15 3174 3191 10.1111/mec.14772 18 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GO6KA WOS:000440148900012 29924437 Green Published, Other Gold 2018-11-22 J Freshwater, C; Burke, BJ; Scheuerell, MD; Grant, SCH; Trudel, M; Juanes, F Freshwater, Cameron; Burke, Brian J.; Scheuerell, Mark D.; Grant, Sue C. H.; Trudel, Marc; Juanes, Francis Coherent population dynamics associated with sockeye salmon juvenile life history strategies CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article WESTERN NORTH-AMERICA; BRITISH-COLUMBIA WATERS; ONCORHYNCHUS-NERKA; PACIFIC SALMON; FRASER-RIVER; SURVIVAL RATES; CHINOOK SALMON; TIME-SERIES; EGG SIZE; INDIVIDUAL IDENTIFICATION Although the importance of diversity to maintaining metapopulation stability is widely recognized, the ecological characteristics that lead to synchronous dynamics within population aggregates are often unclear. We used a constrained dynamic factor analysis to explore patterns of covariance in productivity among 16 Fraser River sockeye salmon (Oncorhynchus nerka) conservation units (CUs). Specifically, we tested whether coherent trends in productivity covaried with five distinct ecological attributes: physical characteristics of nursery lakes, large-scale management interventions, genetic similarity, adult migration phenology, or juvenile migratory traits. The top-ranked model had two trends based on nursery lake characteristics and juvenile migratory traits. One trend represented the dynamics of CUs that rear in nursery lakes prior to ocean entry and undergo relatively rapid marine migrations. The second included a sea-type CU, Harrison River, which enters the marine environment without rearing in a nursery lake and migrates more slowly. The uniform response of lake-type CUs, as well as Harrison River CU's unique life history, suggests that coherent trends are structured by traits that covary with broad life history type, rather than fine-scale characteristics. Furthermore, we document substantial temporal variability in the strength of synchronous dynamics among Fraser River CUs. Greater synchrony in recent years suggests that the importance of shared regional drivers, relative to local processes, may have increased. [Freshwater, Cameron; Trudel, Marc; Juanes, Francis] Univ Victoria, Dept Biol, Victoria, BC V8W 3N5, Canada; [Burke, Brian J.; Scheuerell, Mark D.] Northwest Fisheries Sci Ctr, NOAA Fisheries, Seattle, WA 98112 USA; [Grant, Sue C. H.] Fisheries & Oceans Canada, Delta, BC V3M 6A2, Canada; [Trudel, Marc] Fisheries & Oceans Canada, Pacif Biol Stn, Nanaimo, BC V9T 6N7, Canada; [Trudel, Marc] Fisheries & Oceans Canada, St Andrews Biol Stn, St Andrews, NB E5B 2L9, Canada Freshwater, C (reprint author), Univ Victoria, Dept Biol, Victoria, BC V8W 3N5, Canada. camfresh@uvic.ca Trudel, Marc/H-1955-2012 Trudel, Marc/0000-0002-3397-1642; Scheuerell, Mark/0000-0002-8284-1254 NSERC PGS-D3 Scholarship; Montalbano Scholar's Fellowship; Liber Ero Foundation; NSERC Discovery Grant We greatly appreciate the efforts of the many Pacific Salmon Commission and Fisheries and Oceans Canada (DFO) biologists who generated and contributed the time series data used in this analysis. We also thank the crew of the CCGS W.E. Ricker, who assisted with the collection of fish samples at sea. Eric R. Buhle provided valuable feedback on modeling approaches, and comments from two anonymous reviewers greatly improved this manuscript. Funding was provided by an NSERC PGS-D3 Scholarship, a Montalbano Scholar's Fellowship, the Liber Ero Foundation, and an NSERC Discovery Grant. All applicable national guidelines for the care and use of animals were followed. Akenhead Scott A., 2016, North Pacific Anadromous Fish Commission Bulletin, P391, DOI 10.23849/npafcb6/391.414; Anderson SC, 2015, ECOL APPL, V25, P559, DOI 10.1890/14-0266.1; BEACHAM TD, 1987, CAN J FISH AQUAT SCI, V44, P244, DOI 10.1139/f87-034; Beacham TD, 2006, T AM FISH SOC, V135, P174, DOI 10.1577/T05-149.1; Beacham TD, 2005, T AM FISH SOC, V134, P1124, DOI 10.1577/T05-005.1; BEACHAM TD, 1993, J FISH BIOL, V42, P485; BEACHAM TD, 1985, CAN J FISH AQUAT SCI, V42, P1755, DOI 10.1139/f85-220; Beacham TD, 2014, T AM FISH SOC, V143, P1386, DOI 10.1080/00028487.2014.935476; Beacham TD, 2014, T AM FISH SOC, V143, P876, DOI 10.1080/00028487.2014.889751; Beacham TD, 2010, CAN J FISH AQUAT SCI, V67, P1274, DOI 10.1139/F10-061; Beamish R. J., 2000, North American Journal of Fisheries Management, V20, P369, DOI 10.1577/1548-8675(2000)020<0369:ETAOJC>2.3.CO;2; Beamish RJ, 2016, T AM FISH SOC, V145, P348, DOI 10.1080/00028487.2015.1123182; Becker R., 2016, MAPS DRAW GEOGRAPHIC; Birtwell I.K., 1987, Canadian Special Publication of Fisheries and Aquatic Sciences, V96, P25; Blackbourn D. J, 1987, CAN SPEC PUBL FISH A, P296; Borcard D, 2012, ECOLOGY, V93, P1473; Borcard D, 2011, USE R, P1, DOI 10.1007/978-1-4419-7976-6; Bradford Michael J., 2000, North American Journal of Fisheries Management, V20, P661, DOI 10.1577/1548-8675(2000)020<0661:BROSST>2.3.CO;2; Braun DC, 2016, ECOGRAPHY, V39, P317, DOI 10.1111/ecog.01102; Braun DC, 2014, CAN J FISH AQUAT SCI, V71, P1198, DOI 10.1139/cjfas-2013-0326; Burgner R. L, 1991, PACIFIC SALMON LIFE; Carlson SM, 2008, EVOL APPL, V1, P222, DOI 10.1111/j.1752-4571.2008.00025.x; Carlson SM, 2011, CAN J FISH AQUAT SCI, V68, P1579, DOI 10.1139/F2011-084; CLARKE WC, 1981, AQUACULTURE, V22, P105, DOI 10.1016/0044-8486(81)90137-X; Connor EJ, 2004, N AM J FISH MANAGE, V24, P835, DOI 10.1577/M03-066.1; Cooke SJ, 2004, FISHERIES, V29, P22, DOI 10.1577/1548-8446(2004)29[22:AMTAHE]2.0.CO;2; Crossin GT, 2008, CAN J ZOOL, V86, P127, DOI 10.1139/Z07-122; Crozier L, 2006, J ANIM ECOL, V75, P1100, DOI 10.1111/j.1365-2656.2006.01130.x; DFO, 2014, 2014041 DFO CSAS, V2014, P041; DFO, 2016, RUN TIM DIV RAT MOD; DFO, 2016, 2016047 DFO CSAS, V2016, P047; Eliason EJ, 2011, SCIENCE, V332, P109, DOI 10.1126/science.1199158; Farley EV, 2011, ICES J MAR SCI, V68, P1138, DOI 10.1093/icesjms/fsr021; Ferriss BE, 2014, MAR ECOL PROG SER, V503, P247, DOI 10.3354/meps10726; FLEMING IA, 1990, ECOLOGY, V71, P1, DOI 10.2307/1940241; Freshwater C, 2016, CAN J FISH AQUAT SCI, V73, P1723, DOI 10.1139/cjfas-2015-0425; Freshwater C, 2016, CAN J FISH AQUAT SCI, V73, P1190, DOI 10.1139/cjfas-2015-0344; Furey NB, 2016, J ANIM ECOL, V85, P1307, DOI 10.1111/1365-2656.12565; Gouhier TC, 2014, METHODS ECOL EVOL, V5, P524, DOI 10.1111/2041-210X.12188; Grant S. C. H, 2011, 2011087 CAND SCI ADV; Griffiths JR, 2014, J APPL ECOL, V51, P1554, DOI 10.1111/1365-2664.12341; Griffiths JR, 2014, OIKOS, V123, P687, DOI 10.1111/j.1600-0706.2013.00801.x; Groot C, 1991, PACIFIC SALMON LIFE; Gustafson RG, 1999, ECOL FRESHW FISH, V8, P181, DOI 10.1111/j.1600-0633.1999.tb00069.x; Healey M. C, 1980, P N PAC AQ S FAIRB A, V82, P61; Healey M. C, 1978, 788 FISH MAR SERV; HEALEY MC, 1982, CAN J FISH AQUAT SCI, V39, P952, DOI 10.1139/f82-130; Holmes E. E., 2014, ANAL MULTIVARIATE TI; Holt CA, 2004, CAN J FISH AQUAT SCI, V61, P2455, DOI 10.1139/f04-193; Holtby L. B, 2007, 2007070 CSAS, V2007, P070; Jorgensen JC, 2016, ECOL EVOL, V6, P2472, DOI 10.1002/ece3.2031; Journey ML, 2018, FISH OCEANOGR, V27, P174, DOI 10.1111/fog.12243; Kilduff DP, 2015, P NATL ACAD SCI USA, V112, P10962, DOI 10.1073/pnas.1503190112; Liebhold A, 2004, ANNU REV ECOL EVOL S, V35, P467, DOI 10.1146/annurev.ecolsys.34.011802.132516; Loreau M, 2008, AM NAT, V172, pE48, DOI 10.1086/589746; Macdonald J. S, 2000, CAN TECH REP FISH AQ, V2315; Mackas D, 2013, PROG OCEANOGR, V115, P129, DOI 10.1016/j.pocean.2013.05.019; Malick MJ, 2017, FISH OCEANOGR, V26, P268, DOI 10.1111/fog.12190; Malick MJ, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0146009; Maxwell MR, 2006, N AM J FISH MANAGE, V26, P418, DOI 10.1577/M05-097.1; McCann KS, 2000, NATURE, V405, P228, DOI 10.1038/35012234; McKinnell S, 2014, FISH OCEANOGR, V23, P322, DOI 10.1111/fog.12063; McNeil W. J., 1966, Fishery Bulletin United States, V65, P495; Moore JW, 2014, J ANIM ECOL, V83, P1035, DOI 10.1111/1365-2656.12212; Moore JW, 2010, CONSERV LETT, V3, P340, DOI 10.1111/j.1755-263X.2010.00119.x; MORAN PAP, 1953, AUST J ZOOL, V1, P291, DOI 10.1071/ZO9530291; Mori AS, 2013, BIOL REV, V88, P349, DOI 10.1111/brv.12004; Mueter FJ, 2002, CAN J FISH AQUAT SCI, V59, P456, DOI 10.1139/f02-020; Mueter FJ, 2002, FISH OCEANOGR, V11, P205, DOI 10.1046/j.1365-2419.2002.00192.x; Nelitz M, 2011, 3 COH COMM; Neville C.-E. M., 2013, 9 NPAFC, V9, P65; Neville Chrys-Ellen M., 2016, North Pacific Anadromous Fish Commission Bulletin, P45, DOI 10.23849/npafcb6/45.60; Ohlberger J, 2016, ECOSPHERE, V7, DOI 10.1002/ecs2.1333; PARKER RR, 1968, J FISH RES BOARD CAN, V25, P757, DOI 10.1139/f68-068; Pearcy W. G., 1992, OCEAN ECOLOGY N PACI; Peterman RM, 2012, CAN J FISH AQUAT SCI, V69, P1255, DOI 10.1139/F2012-063; Peterman RM, 2003, CAN J FISH AQUAT SCI, V60, P809, DOI 10.1139/F03-069; Preikshot D, 2012, MAR COAST FISH, V4, P438, DOI 10.1080/19425120.2012.683235; R Core Team, 2017, R LANG ENV STAT COMP; Rogers LA, 2008, OIKOS, V117, P1578, DOI 10.1111/j.2008.0030-1299.16758.x; Rogers LA, 2011, GLOBAL CHANGE BIOL, V17, P2546, DOI 10.1111/j.1365-2486.2011.02415.x; Ruggerone GT, 2015, CAN J FISH AQUAT SCI, V72, P818, DOI 10.1139/cjfas-2014-0134; Satterthwaite WH, 2015, CAN J FISH AQUAT SCI, V72, P1860, DOI 10.1139/cjfas-2015-0169; Schindler DE, 2010, NATURE, V465, P609, DOI 10.1038/nature09060; Shortreed K. S, 2001, FACTORS LIMITING JUV; Sweeting RM, 2003, N AM J FISH MANAGE, V23, P492, DOI 10.1577/1548-8675(2003)023<0492:ROWCSB>2.0.CO;2; TAYLOR EB, 1991, AQUACULTURE, V98, P185, DOI 10.1016/0044-8486(91)90383-I; Tucker S, 2009, T AM FISH SOC, V138, P1458, DOI 10.1577/T08-211.1; Waples RS, 1995, AM FISH S S, V17, P8; WEIR BS, 1984, EVOLUTION, V38, P1358, DOI 10.1111/j.1558-5646.1984.tb05657.x; Ye H, 2015, P NATL ACAD SCI USA, V112, pE1569, DOI 10.1073/pnas.1417063112; Zuur AF, 2003, CAN J FISH AQUAT SCI, V60, P542, DOI 10.1139/F03-030 92 0 0 15 15 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0706-652X 1205-7533 CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. AUG 2018 75 8 1346 1356 10.1139/cjfas-2017-0251 11 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology GO3CE WOS:000439863600015 2018-11-22 J Leuschner, C; Meier, IC Leuschner, Christoph; Meier, Ina C. The ecology of Central European tree species: Trait spectra, functional trade-offs, and ecological classification of adult trees PERSPECTIVES IN PLANT ECOLOGY EVOLUTION AND SYSTEMATICS English Article Adult trees; Forest succession; Phylogenetic signal; Leaf traits; Root traits; Stress tolerance LEAF ECONOMICS SPECTRUM; LIFE-HISTORY STRATEGIES; SHADE-TOLERANCE; SUCCESSIONAL STATUS; PLANT-COMMUNITIES; FROST-RESISTANCE; FOREST TREES; DROUGHT; PHYSIOLOGY; TEMPERATE Plant functional traits offer insights into the plant-environment relationship and may help to understand how plants influence ecosystem functions. Applying trait-based models on climate and land-use change to forests is often hindered by poor data quality, as many data are estimates and traits are often parameterized for juvenile and not adult trees. For advancing theory building and improving the quality of trait data with relevance for adult trees, we compiled a unique trait database for the complete tree flora of Central Europe (42 species from 11 families), covering 38 morphological and physiological traits mostly parameterized with sun and shade crown and root data from adult trees. Despite only small variation in climate, several traits vary largely in this tree species sample, likely reflecting regional edaphic variation, while the influence of phylogenetic diversity is low and restricted to the angiosperm-gymnosperm divergence. The well-established shade tolerance-drought tolerance and wood density-drought sensitivity trade-offs are not supported by our data set, possibly due to the explicit consideration of adult trees and the absence of extended climatic gradients. For the 11 major tree species with high information density, a principal components analysis (PCA) identified three key functional traits, (i) minimum light demand of the adult trees' shade leaves, (ii) stand leaf area index (LAI), and (iii) maximum tree height, which allows distinguishing five tree functional groups, among them a mid-successional tree group. Only a small minority of traits changes significantly along the early-to-late successional axis, contradicting a main paradigm in forest succession research. The functional contrast between early-and late-successional trees is smaller in the sun canopy of adults than in seedlings or saplings, suggesting that trait data from juveniles cannot simply be extrapolated to adults. Focusing on adult trees and on traits with a more direct link to the underlying processes may significantly improve tree functional classification and trait-based models in forest ecology and biogeochemistry. [Leuschner, Christoph; Meier, Ina C.] Univ Goettingen, Albrecht von Haller Inst Plant Sci, Plant Ecol, Untere Karspule 2, D-37073 Gottingen, Germany Leuschner, C (reprint author), Univ Goettingen, Albrecht von Haller Inst Plant Sci, Plant Ecol, Untere Karspule 2, D-37073 Gottingen, Germany. cleusch@uni-goettingen.de; imeier1@uni-goettingen.de German Research Foundation (Deutsche Forschungsgemeinschaft DFG) [GRK 1086, ME 4156/2-1] This work was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft DFG) [grant numbers GRK 1086, ME 4156/2-1]. BATTAGLIA M, 1993, AUST J BOT, V41, P137, DOI 10.1071/BT9930137; Bazzaz F. A., 1994, EXPLOITATION ENV HET, P349; BAZZAZ FA, 1979, ANNU REV ECOL SYST, V10, P351, DOI 10.1146/annurev.es.10.110179.002031; Bonan GB, 2002, GLOBAL BIOGEOCHEM CY, V16, DOI 10.1029/2000GB001360; Brodribb TJ, 2017, NEW PHYTOL, V215, P9, DOI 10.1111/nph.14620; Browne MW, 1993, TESTING STRUCTURAL E, V154, P136, DOI DOI 10.1177/0049124192021002005; BRZEZIECKI B, 1994, FOREST ECOL MANAG, V69, P167, DOI 10.1016/0378-1127(94)90227-5; Cavender-Bares J, 2000, OECOLOGIA, V124, P8, DOI 10.1007/PL00008865; Charra-Vaskou K, 2012, ANN FOREST SCI, V69, P325, DOI 10.1007/s13595-011-0160-5; Charrier G, 2018, SCI ADV, V4, DOI 10.1126/sciadv.aao6969; Charrier G, 2014, PLANT PHYSIOL, V164, P992, DOI 10.1104/pp.113.228403; Charrier G, 2013, TREE PHYSIOL, V33, P1229, DOI 10.1093/treephys/tpt090; Chave J, 2009, ECOL LETT, V12, P351, DOI 10.1111/j.1461-0248.2009.01285.x; Ciccarelli FD, 2006, SCIENCE, V311, P1283, DOI 10.1126/science.1123061; Coomes DA, 2009, J ECOL, V97, P705, DOI 10.1111/j.1365-2745.2009.01507.x; de Bello F, 2010, BIODIVERS CONSERV, V19, P2873, DOI 10.1007/s10531-010-9850-9; Diaz S, 2007, P NATL ACAD SCI USA, V104, P20684, DOI 10.1073/pnas.0704716104; Diaz S, 2016, NATURE, V529, P167, DOI 10.1038/nature16489; Duquesnay A, 2000, TREE PHYSIOL, V20, P13; Ellenberg H, 1996, VEGETATION MITTELEUR; Ellenberg H., 1939, MITT FLORIST SOZIOL, V5, P3; Enquist B. J., 1999, SCALING BIOL, P167; Fenner M, 2005, ECOLOGY SEEDS; Field C, 1986, EC PLANT FORM FUNCTI, P25; Franklin J, 2016, P NATL ACAD SCI USA, V113, P3725, DOI 10.1073/pnas.1519911113; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; Grime JP, 1979, PLANT STRATEGIES VEG; He JS, 2005, TREES-STRUCT FUNCT, V19, P442, DOI 10.1007/s00468-004-0403-2; HUSTON M, 1987, AM NAT, V130, P168, DOI 10.1086/284704; Kattge J, 2011, GLOBAL CHANGE BIOL, V17, P2905, DOI 10.1111/j.1365-2486.2011.02451.x; Kienast F., 1987, ORNLTM10575; Kunstler G, 2016, NATURE, V529, P204, DOI 10.1038/nature16476; Kutsch WL, 2009, ECOL STUD-ANAL SYNTH, V207, P57, DOI 10.1007/978-3-540-92706-8_4; Laanisto L, 2015, GLOBAL ECOL BIOGEOGR, V24, P571, DOI 10.1111/geb.12288; LEEMANS R, 1987, VEGETATIO, V69, P147, DOI 10.1007/BF00038696; Leishman M. R., 2000, SEEDS ECOLOGY REGENE, P31, DOI DOI 10.1079/9780851994321.0031; LEUSCHNER C., 2017, ECOLOGY CENTRAL EURO, VI; Lohbeck M, 2013, ECOLOGY, V94, P1211, DOI 10.1890/12-1850.1; Lopes MS, 2010, FUNCT PLANT BIOL, V37, P147, DOI 10.1071/FP09121; Lusk CH, 2013, J ECOL, V101, P1531, DOI 10.1111/1365-2745.12152; Maherali H, 2006, PLANT CELL ENVIRON, V29, P571, DOI 10.1111/j.1365-3040.2005.01433.x; MANTEL N, 1970, BIOMETRICS, V26, P547, DOI 10.2307/2529108; MANTEL N, 1967, CANCER RES, V27, P209; Martin-StPaul N, 2017, ECOL LETT, V20, P1437, DOI 10.1111/ele.12851; Martinez-Vilalta J, 2010, J ECOL, V98, P1462, DOI 10.1111/j.1365-2745.2010.01718.x; Medeiros JS, 2011, PLANT CELL ENVIRON, V34, P43, DOI 10.1111/j.1365-3040.2010.02224.x; Midgley JJ, 2003, TRENDS ECOL EVOL, V18, P5, DOI 10.1016/S0169-5347(02)00016-2; Moorcroft PR, 2001, ECOL MONOGR, V71, P557, DOI 10.1890/0012-9615(2001)071[0557:AMFSVD]2.0.CO;2; Niinemets U, 1998, TREE PHYSIOL, V18, P681; Niinemets U, 2001, ECOLOGY, V82, P453, DOI 10.1890/0012-9658(2001)082[0453:GSCCOL]2.0.CO;2; Niinemets U, 2006, ECOL MONOGR, V76, P521, DOI 10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2; Nogueira A, 2004, PHOTOSYNTHETICA, V42, P351, DOI 10.1023/B:PHOT.0000046152.05364.77; Onoda Y, 2017, NEW PHYTOL, V214, P1447, DOI 10.1111/nph.14496; Ordonez JC, 2009, GLOBAL ECOL BIOGEOGR, V18, P137, DOI 10.1111/j.1466-8238.2008.00441.x; Peterson AG, 1999, OECOLOGIA, V118, P144, DOI 10.1007/s004420050712; Poorter L, 2004, PLANT BIOLOGY, V6, P746, DOI 10.1055/s-2004-821269; Poorter L, 1999, FUNCT ECOL, V13, P396, DOI 10.1046/j.1365-2435.1999.00332.x; Poorter L, 2006, ECOLOGY, V87, P1733, DOI 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2; Poorter L, 2006, ECOLOGY, V87, P1289, DOI 10.1890/0012-9658(2006)87[1289:AOMTST]2.0.CO;2; Poorter L, 2010, NEW PHYTOL, V185, P481, DOI 10.1111/j.1469-8137.2009.03092.x; PRENTICE IC, 1992, J BIOGEOGR, V19, P117, DOI 10.2307/2845499; PRENTICE IC, 1991, FOREST ECOL MANAG, V42, P79; Prinzing A, 2008, ECOL LETT, V11, P809, DOI 10.1111/j.1461-0248.2008.01189.x; RAAIMAKERS D, 1995, OECOLOGIA, V102, P120, DOI 10.1007/BF00333319; Raunkiaer C, 1934, LIFE FORMS PLANTS ST; Reich PB, 2003, INT J PLANT SCI, V164, pS143, DOI 10.1086/374368; Reich PB, 2012, P ROY SOC B-BIOL SCI, V279, P2128, DOI 10.1098/rspb.2011.2270; Schellberg J, 2012, GRASS FORAGE SCI, V67, P305, DOI 10.1111/j.1365-2494.2012.00867.x; SCHULZE ED, 1977, OECOLOGIA, V30, P239, DOI 10.1007/BF01833630; Schwilk DW, 2005, AM J BOT, V92, P404, DOI 10.3732/ajb.92.3.404; Sitch S, 2003, GLOBAL CHANGE BIOL, V9, P161, DOI 10.1046/j.1365-2486.2003.00569.x; SMITH T, 1989, VEGETATIO, V83, P49, DOI 10.1007/BF00031680; SOKAL ROBERT R., 1958, UNIV KANSAS SCI BULL, V38, P1409; Spurr S. H., 1980, FOREST ECOLOGY; Theophrastus, 1916, ENQUIRY PLANTS; TUCKER LR, 1973, PSYCHOMETRIKA, V38, P1, DOI 10.1007/BF02291170; Turner I.M., 2001, ECOLOGY TREES TROPIC; Van den Burg J., 1985, FOLIAR ANAL DETERM 1; Violle C, 2007, OIKOS, V116, P882, DOI 10.1111/j.2007.0030-1299.15559.x; WALTERS MB, 1993, OECOLOGIA, V94, P7, DOI 10.1007/BF00317294; Warren C. R., 2012, TERRESTRIAL PHOTOSYN, P465; Webb CO, 2008, BIOINFORMATICS, V24, P2098, DOI 10.1093/bioinformatics/btn358; Wheeler JK, 2005, PLANT CELL ENVIRON, V28, P800, DOI 10.1111/j.1365-3040.2005.01330.x; Woodward FI, 1996, J VEG SCI, V7, P306, DOI 10.1111/j.1654-1103.1996.tb00489.x; Wright IJ, 2007, ANN BOT-LONDON, V99, P1003, DOI 10.1093/aob/mcl066; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Wright IJ, 2002, NEW PHYTOL, V155, P403, DOI 10.1046/j.1469-8137.2002.00479.x; YANG YT, 2016, SCI REP UK, V6; Zanne AE, 2014, NATURE, V506, P89, DOI 10.1038/nature12872; Zanne AE, 2010, AM J BOT, V97, P207, DOI 10.3732/ajb.0900178 90 0 0 24 24 ELSEVIER GMBH, URBAN & FISCHER VERLAG JENA OFFICE JENA, P O BOX 100537, 07705 JENA, GERMANY 1433-8319 PERSPECT PLANT ECOL Perspect. Plant Ecol. Evol. Syst. AUG 2018 33 89 103 10.1016/j.ppees.2018.05.003 15 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology GO0XV WOS:000439670800009 2018-11-22 J Arcamone, JR; Jaureguiberry, P Arcamone, Julieta R.; Jaureguiberry, Pedro Germination response of common annual and perennial forbs to heat shock and smoke treatments in the Chaco Serrano, central Argentina AUSTRAL ECOLOGY English Article broad-leaved herbs; germination cues; life history strategies; post-fire regeneration; seed mass INDUCED SEED-GERMINATION; PLANT FUNCTIONAL TRAITS; FIRE-PRONE ECOSYSTEMS; SOIL TEMPERATURES; POSTFIRE SUCCESSION; CHARRED WOOD; STORED SEEDS; FOREST; DORMANCY; CORDOBA Fire is a key ecological factor affecting plant dynamics. In the last few decades, fire occurrence in the Chaco region has increased noticeably, challenging the adaptive capacity of plants to regenerate after a fire. Broad-leaved forb species have been much less studied than woody and graminoids, although they are an important component of fire dynamics. Here we analysed the germination response to heat shock of 70 and 110 degrees C, smoke and their combination in 10 broad-leaved herbaceous species frequently occurring in the Chaco Serrano of Cordoba province, central Argentina, including five annual (Bidens subalternans, Conyza bonariensis, Schkuhria pinnata, Tagetes minuta and Zinnia peruviana) and five perennial species (Borreria eryngioides, Sida rhombifolia, Solidago chilensis, Taraxacum officinale and Verbena litoralis). We also compared the response of annual versus perennial species. Six species had highest germination when treated with heat and smoke combined, whereas two had lowest germination under this treatment, indicating synergistic and antagonistic interaction of these factors respectively. Most of the species tolerated heat shock (i.e. germination was similar to that in control treatment), whereas others had higher germination in response to heat shock, especially under the moderate 70 degrees C treatment. Germination was higher than control (i.e. no heat and no smoke) after smoke treatment in four species. Perennial species showed higher average germination than annuals in both heat treatments and in the control. Annual species had higher average germination for all treatments involving smoke. The high variability observed at the species level, and the limited number of species studied calls for precaution in interpreting and extrapolating results. Nevertheless, our study shows a general positive response of both perennial and annual species to fire cues, suggesting an advantage of these species for colonizing post-fire environments, and being favoured under scenarios of increasingly frequent low-to-medium intensity fires. [Arcamone, Julieta R.] Univ Nacl Cordoba, CONICET, Inst Multidisciplinario Biol Vegetal, POB 495, RA-5000 Cordoba, Argentina; FCEFyN, POB 495, RA-5000 Cordoba, Argentina Arcamone, JR (reprint author), Univ Nacl Cordoba, CONICET, Inst Multidisciplinario Biol Vegetal, POB 495, RA-5000 Cordoba, Argentina. julietaarcamone@hotmail.com Jaureguiberry, Pedro/0000-0002-7392-5157 Akaike H., 1972, Proceedings of the 5th Hawaii international conference on system science, P249; Arganaraz JP, 2015, SCI TOTAL ENVIRON, V520, P1, DOI 10.1016/j.scitotenv.2015.02.081; Arganaraz JP, 2015, FIRE ECOL, V11, P55, DOI 10.4996/fireecology.1101055; AULD TD, 1991, AUST J ECOL, V16, P53, DOI 10.1111/j.1442-9993.1991.tb01481.x; Auld TD, 1996, AUST J ECOL, V21, P106, DOI 10.1111/j.1442-9993.1996.tb00589.x; Bates D., 2014, LME4 LINEAR MIXED EF, DOI DOI 10.18637/JSS.V067.I01; BAXTER BJM, 1994, ENVIRON EXP BOT, V34, P217, DOI 10.1016/0098-8472(94)90042-6; Beadle NCW, 1940, J ECOL, V28, P180, DOI 10.2307/2256168; BELLINGHAM PJ, 1994, J ECOL, V82, P747, DOI 10.2307/2261440; Boletta PE, 2006, FOREST ECOL MANAG, V228, P108, DOI 10.1016/j.foreco.2006.02.045; Bond WJ, 2005, TRENDS ECOL EVOL, V20, P387, DOI 10.1016/j.tree.2005.04.025; Bond WJ, 1999, OECOLOGIA, V120, P132, DOI 10.1007/s004420050841; Boo RM, 1996, J ARID ENVIRON, V32, P259, DOI 10.1006/jare.1996.0022; BRADSTOCK RA, 1992, AUST J ECOL, V17, P433, DOI 10.1111/j.1442-9993.1992.tb00826.x; BRADSTOCK RA, 1995, J APPL ECOL, V32, P76, DOI 10.2307/2404417; Bravo S, 2010, J ARID ENVIRON, V74, P1319, DOI 10.1016/j.jaridenv.2010.04.010; Bravo S, 2001, INT J WILDLAND FIRE, V10, P65, DOI 10.1071/WF01014; Bravo S, 2014, FOREST ECOL MANAG, V326, P36, DOI 10.1016/j.foreco.2014.04.009; Brown NAC, 1997, PLANT GROWTH REGUL, V22, P115, DOI 10.1023/A:1005852018644; Cabido M, 2010, B SOC ARGENT BOT, V45, P209; CABRERA AL, 1976, REGIONES FITOGEOGRAF; Capitanelli R., 1979, GEOGRAFIA FISICA PRO; Casillo J, 2012, AUSTRAL ECOL, V37, P452, DOI 10.1111/j.1442-9993.2011.02306.x; Chauhan B. S., 2008, INDIAN J WEED SCI, V40, P6; Cony MA, 1996, J ARID ENVIRON, V33, P225, DOI 10.1006/jare.1996.0058; Corbin JD, 2004, ECOLOGY, V85, P1273, DOI 10.1890/02-0744; Correia E, 1999, ACTA HORTIC, P89, DOI 10.17660/ActaHortic.1999.502.11; D'Agostino AB, 2012, REV BIOL TROP, V60, P1513; DI RIENZO J. A., 2017, MODELOS LINEALES GEN; Di Rienzo J. A., 2017, INFOSTAT VERSION 201; Di Rienzo JA, 2002, J AGRIC BIOL ENVIR S, V7, P129, DOI 10.1198/10857110260141193; DIXON KW, 1995, OECOLOGIA, V101, P185, DOI 10.1007/BF00317282; Doherty LC, 2000, SEED SCI RES, V10, P415; Enright NJ, 2001, AUSTRAL ECOL, V26, P132, DOI 10.1046/j.1442-9993.2001.01096.x; FENNER M, 1980, WEED RES, V20, P135, DOI 10.1111/j.1365-3180.1980.tb00058.x; Fenner M, 1999, FUNCT ECOL, V13, P546, DOI 10.1046/j.1365-2435.1999.00346.x; Ferreira A. G., 2001, Acta Botanica Brasilica, V15, P231, DOI 10.1590/S0102-33062001000200009; Floyd ML, 2006, INT J WILDLAND FIRE, V15, P247, DOI 10.1071/WF05066; Funes G, 2006, SEED SCI RES, V16, P77, DOI 10.1079/SSR2005229; Funes Guillermo, 2009, Ecol. austral, V19, P129; GARNIER E, 1994, NEW PHYTOL, V128, P725, DOI 10.1111/j.1469-8137.1994.tb04036.x; GARNIER E, 1992, J ECOL, V80, P665, DOI 10.2307/2260858; Ghebrehiwot HM, 2011, S AFR J BOT, V77, P718, DOI 10.1016/j.sajb.2011.03.006; Gilmour CA, 2000, AUST J BOT, V48, P603, DOI 10.1071/BT99029; Giorgis MA, 2013, B SOC ARGENT BOT, V48, P493; Giorgis Melisa A, 2011, Kurtziana, V36, P9; Grau HR, 2005, ENVIRON CONSERV, V32, P140, DOI 10.1017/S0376892905002092; Gurvich DE, 2005, AUSTRAL ECOL, V30, P789, DOI 10.1111/j.1442-9993.2005.01522.x; Hanley ME, 2003, OECOLOGIA, V134, P18, DOI 10.1007/s00442-002-1094-2; Hanley ME, 2001, ACTA OECOL, V22, P315, DOI 10.1016/S1146-609X(01)01124-9; Hanley ME, 2000, ACTA OECOL, V21, P315, DOI 10.1016/S1146-609X(00)01087-0; Harper J L., 1977, POPULATION BIOL PLAN; Instituto Nacional de Tecnologia Agropecuaria Ministerio de Agricultura Ganaderia y Pesca Presidencia de la Nacion, ATL MAL INTA VERS BE; Jager AK, 1996, S AFR J BOT, V62, P282; Jaureguiberry P, 2015, OECOLOGIA, V177, P689, DOI 10.1007/s00442-014-3161-x; Kattge J, 2011, GLOBAL CHANGE BIOL, V17, P2905, DOI 10.1111/j.1365-2486.2011.02451.x; Keeley J. E., 2000, Seeds: the ecology of regeneration in plant communities, P311, DOI 10.1079/9780851994321.0311; Keeley JE, 1998, J ECOL, V86, P27, DOI 10.1046/j.1365-2745.1998.00230.x; KEELEY JE, 1985, J ECOL, V73, P445, DOI 10.2307/2260486; Keeley JE, 1997, SCIENCE, V276, P1248, DOI 10.1126/science.276.5316.1248; KEELEY JE, 1991, BOT REV, V57, P81, DOI 10.1007/BF02858766; KEELEY JE, 1987, ECOLOGY, V68, P434, DOI 10.2307/1939275; Keeley JE, 1997, PLANT ECOL, V133, P153, DOI 10.1023/A:1009748603202; Keeley JE, 2012, OECOLOGIA, V169, P1043, DOI 10.1007/s00442-012-2253-8; KEELEY SC, 1981, ECOLOGY, V62, P1608, DOI 10.2307/1941516; Keith DA, 1997, OECOLOGIA, V112, P340, DOI 10.1007/s004420050318; Kenny BJ, 2000, AUSTRAL ECOL, V25, P664, DOI 10.1046/j.1442-9993.2000.01066.x; Kunst C., 2003, FUEGO ECOSISTEMAS AR, P39; Kunst C., 2011, B INFORM CIDEU, V10, P81; Ledesma R., 2011, DIVERSE RANGELANDS S, P456; LEISHMAN MR, 1995, J ECOL, V83, P517, DOI 10.2307/2261604; Lloret F, 1999, FUNCT ECOL, V13, P210, DOI 10.1046/j.1365-2435.1999.00309.x; Lloyd MV, 2000, AUSTRAL ECOL, V25, P610, DOI 10.1046/j.1442-9993.2000.01060.x; Luna B, 2007, ENVIRON EXP BOT, V60, P324, DOI 10.1016/j.envexpbot.2006.12.014; Maestre FT, 2001, ECOL APPL, V11, P1641, DOI 10.1890/1051-0761(2001)011[1641:PFUFBG]2.0.CO;2; Moles AT, 2004, J ECOL, V92, P384, DOI 10.1111/j.0022-0477.2004.00880.x; Montazeri N, 2013, FOOD SCI NUTR, V1, P102, DOI 10.1002/fsn3.9; Morello J., 1983, EXPANSION AGR FRONTI, P341; MORELLO JORGE H., 1959, REV AGRON NOROESTE ARGENT, V3, P5; Morris EC, 2000, AUST J BOT, V48, P179, DOI 10.1071/BT98051; Morrison DA, 2000, AUSTRAL ECOL, V25, P292, DOI 10.1111/j.1442-9993.2000.tb00031.x; Ne'eman G, 2009, OECOLOGIA, V159, P483, DOI 10.1007/s00442-008-1237-1; Ooi MKJ, 2014, ECOL EVOL, V4, P656, DOI 10.1002/ece3.973; Paula S, 2008, J ECOL, V96, P543, DOI 10.1111/j.1365-2745.2008.01359.x; Pausas JG, 2005, OIKOS, V109, P196, DOI 10.1111/j.0030-1299.2005.13596.x; Pausas JG, 2014, NEW PHYTOL, V204, P55, DOI 10.1111/nph.12921; Pausas JG, 2009, BIOSCIENCE, V59, P593, DOI 10.1525/bio.2009.59.7.10; Perez-Harguindeguy N, 2013, AUST J BOT, V61, P167, DOI 10.1071/BT12225; PITELKA LF, 1977, ECOLOGY, V58, P1055, DOI 10.2307/1936925; Plan Provincial de Manejo del Fuego (PPMF), 2007, GUIA PREV INC FOR CO; Plummer JA, 2001, SEED SCI TECHNOL, V29, P321; R Development Core Team, 2008, R LANG ENV STAT COMP; Reigosa M. J., 2004, ECOFISIOLOGIA GERMIN, P901; Rodriguez-Arevalo I, 2017, GENET RESOUR CROP EV, V64, P1141, DOI 10.1007/s10722-016-0427-7; Roumet C, 2006, NEW PHYTOL, V170, P357, DOI 10.1111/j.1469-8137.2006.01667.x; Seabloom EW, 2003, P NATL ACAD SCI USA, V100, P13384, DOI 10.1073/pnas.1835728100; SILVERTOWN J, 1993, J ECOL, V81, P465, DOI 10.2307/2261525; Spittler T. E., 1995, BRUSHFIRES CALIFORNI, P113; Thomas PB, 2003, AUSTRAL ECOL, V28, P674, DOI 10.1046/j.1442-9993.2003.1330.doc.x; Tierney DA, 2006, AUST J BOT, V54, P297, DOI 10.1071/BT05111; Tieu A, 2001, ANN BOT-LONDON, V88, P259, DOI 10.1006/anbo.2001.1451; Torres RC, 2014, AUSTRAL ECOL, V39, P346, DOI 10.1111/aec.12084; VALETTE JC, 1994, INT J WILDLAND FIRE, V4, P225, DOI 10.1071/WF9940225; Venier P, 2012, S AFR J BOT, V79, P19, DOI 10.1016/j.sajb.2011.11.005; Verzino Graciela, 2005, Ecol. apl., V4, P25; WASHITANI I, 1984, PLANT CELL ENVIRON, V7, P655; WELLS PV, 1969, EVOLUTION, V23, P264, DOI 10.1111/j.1558-5646.1969.tb03510.x; ZULOAGA F. O., 1994, MONOG SYST BOT, V47, P1; Zuloaga F. O., 1999, MONOGR SYST BOT MISS, V64, P1; Zuloaga F. O., 1996, MONOGRAPHS SYSTEMATI, V60, P1; Zuloaga-Aguilar S, 2011, ACTA OECOL, V37, P256, DOI 10.1016/j.actao.2011.02.009 111 0 0 5 5 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1442-9985 1442-9993 AUSTRAL ECOL Austral Ecol. AUG 2018 43 5 567 577 10.1111/aec.12593 11 Ecology Environmental Sciences & Ecology GM5QU WOS:000438195800009 2018-11-22 J Minter, M; Pearson, A; Lim, KS; Wilson, K; Chapman, JW; Jones, CM Minter, Melissa; Pearson, Aislinn; Lim, Ka S.; Wilson, Kenneth; Chapman, Jason W.; Jones, Christopher M. The tethered flight technique as a tool for studying life-history strategies associated with migration in insects ECOLOGICAL ENTOMOLOGY English Review Animal orientation; dispersal; insect movement; migration; tethered flight GRASSHOPPER MELANOPLUS-SANGUINIPES; AGROTIS-IPSILON LEPIDOPTERA; EXEMPTA WALKER LEPIDOPTERA; LONG-DURATION FLIGHT; HELICOVERPA-ARMIGERA LEPIDOPTERA; MONARCH BUTTERFLY MIGRATION; MILKWEED BUGS ONCOPELTUS; PRE-REPRODUCTIVE PERIOD; AFRICAN ARMYWORM MOTHS; COTTON-BOLLWORM MOTH 1. Every year billions of insects engage in long-distance, seasonal mass migrations which have major consequences for agriculture, ecosystem services and insect-vectored diseases. Tracking this movement in the field is difficult, with mass migrations often occurring at high altitudes and over large spatial scales. 2. As such, tethered flight provides a valuable tool for studying the flight behaviour of insects, giving insights into flight propensity (e.g. distance, duration and velocity) and orientation under controlled laboratory settings. By experimentally manipulating a variety of environmental and physiological traits, numerous studies have used this technology to study the flight behaviour of migratory insects ranging in size from aphids to butterflies. Advances in functional genomics promise to extend this to the identification of genetic factors associated with flight. Tethered flight techniques have been used to study migratory flight characteristics in insects for more than 50years, but have never been reviewed. 3. This study summarises the key findings of this technology, which has been employed in studies of species from six Orders. By providing detailed descriptions of the tethered flight systems, the present study also aims to further the understanding of how tethered flight studies support field observations, the situations under which the technology is useful and how it might be used in future studies. 4. The aim is to contextualise the available tethered flight studies within the broader knowledge of insect migration and to describe the significant contribution these systems have made to the literature. [Minter, Melissa] Univ York, Dept Biol, Heslington Way, York, N Yorkshire, England; [Minter, Melissa; Jones, Christopher M.] Rothamsted Res, Biointeract & Crop Protect, Harpenden, Herts, England; [Pearson, Aislinn; Lim, Ka S.] Rothamsted Res, Computat & Analyt Sci, Harpenden, Herts, England; [Wilson, Kenneth] Univ Lancaster, Lancaster Environm Ctr, Lancaster, England; [Chapman, Jason W.] Univ Exeter, Ctr Ecol & Conservat, Penryn, Cornwall, England; [Jones, Christopher M.] Univ Liverpool Liverpool Sch Trop Med, Vector Biol, Liverpool, Merseyside, England Jones, CM (reprint author), Univ Liverpool Liverpool Sch Trop Med, Vector Biol, Liverpool, Merseyside, England. chris.jones@lstmed.ac.uk UK Biotechnology and Biological Sciences Research Council (BBSRC) [BB/N012011/1]; UK-China Centre for Sustainable Intensification of Agriculture (CSIA); Chinese Academy of Agricultural Sciences (CASS); Agri-Tech in China: Newton Network+ (ATCNN) The authors would like to thank the reviewers for their constructive comments on the manuscript. We also thank Dr Don R. Reynolds for useful discussions concerning aspects of the review and Dr. Hayley B. C. Jones for the original copy of Fig. 3b. This work was supported by the UK Biotechnology and Biological Sciences Research Council (BBSRC) as part of a Future Leader Fellowship (grant number: BB/N012011/1) for Christopher M. Jones. Ka S. Lim is supported by the joint UK-China Centre for Sustainable Intensification of Agriculture (CSIA) led by Rothamsted Research and the Chinese Academy of Agricultural Sciences (CASS) and the Agri-Tech in China: Newton Network+ (ATCNN). Altizer SM, 2000, ECOL ENTOMOL, V25, P125, DOI 10.1046/j.1365-2311.2000.00246.x; Altizer S, 2011, SCIENCE, V331, P296, DOI 10.1126/science.1194694; ARMES NJ, 1991, PHYSIOL ENTOMOL, V16, P131, DOI 10.1111/j.1365-3032.1991.tb00549.x; Arrese EL, 2010, ANNU REV ENTOMOL, V55, P207, DOI 10.1146/annurev-ento-112408-085356; Attisano A., 2015, JOVE-J VIS EXP, V106, P1; Attisano A, 2013, ANIM BEHAV, V86, P651, DOI 10.1016/j.anbehav.2013.07.013; Avalos JA, 2014, B ENTOMOL RES, V104, P462, DOI 10.1017/S0007485314000121; BAKER PS, 1981, J COMP PHYSIOL, V141, P233, DOI 10.1007/BF01342669; Beenakkers A.M.T., 1981, P53; BERTHOLD P, 1994, P ROY SOC B-BIOL SCI, V257, P311, DOI 10.1098/rspb.1994.0131; Blackmer JL, 2004, ENVIRON ENTOMOL, V33, P1389, DOI 10.1603/0046-225X-33.5.1389; Bradley CA, 2005, ECOL LETT, V8, P290, DOI 10.1111/j.1461-0248.2005.00722.x; Brisson JA, 2016, CURR OPIN INSECT SCI, V13, P1, DOI 10.1016/j.cois.2015.09.011; Brisson JA, 2010, PHILOS T R SOC B, V365, P605, DOI 10.1098/rstb.2009.0255; Bruzzone OA, 2009, J EXP BIOL, V212, P731, DOI 10.1242/jeb.022517; Byrne DN, 1999, AGR FOREST METEOROL, V97, P309, DOI 10.1016/S0168-1923(99)00074-X; Chapman JW, 2008, CURR BIOL, V18, P514, DOI 10.1016/j.cub.2008.02.080; Chapman JW, 2015, ECOL LETT, V18, P287, DOI 10.1111/ele.12407; Chapman JW, 2011, ANNU REV ENTOMOL, V56, P337, DOI 10.1146/annurev-ento-120709-144820; Chen YY, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0141159; Cheng YZ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0030437; Clobert J, 2001, DISPERSAL; COLVIN J, 1993, HEREDITY, V70, P407, DOI 10.1038/hdy.1993.57; COLVIN J, 1993, PHYSIOL ENTOMOL, V18, P16, DOI 10.1111/j.1365-3032.1993.tb00444.x; COOTER RJ, 1993, ENVIRON ENTOMOL, V22, P339, DOI 10.1093/ee/22.2.339; Dao A, 2014, NATURE, V516, P387, DOI 10.1038/nature13987; Davis Andrew K., 2009, Psyche (Cambridge), V2009, P1; DINGLE H, 1966, J EXP BIOL, V44, P335; Dingle H, 2014, MIGRATION: THE BIOLOGY OF LIFE ON THE MOVE, 2ND EDITION, P1, DOI 10.1093/acprof:oso/9780199640386.001.0001; DINGLE H, 1965, J EXP BIOL, V42, P269; Dingle H, 2007, BIOSCIENCE, V57, P113, DOI 10.1641/B570206; Dorhout DL, 2011, J APPL ENTOMOL, V135, P25, DOI 10.1111/j.1439-0418.2010.01523.x; Dorhout DL, 2008, ENVIRON ENTOMOL, V37, P1280, DOI 10.1603/0046-225X(2008)37[1280:EFOMFB]2.0.CO;2; DUDLEY R, 1990, J EXP BIOL, V148, P19; Edwards JS, 2006, J EXP BIOL, V209, P4411, DOI 10.1242/jeb.02592; Froy O, 2003, SCIENCE, V300, P1303, DOI 10.1126/science.1084874; Fry SN, 2009, J EXP BIOL, V212, P1120, DOI 10.1242/jeb.020768; GATEHOUSE AG, 1980, PHYSIOL ENTOMOL, V5, P215, DOI 10.1111/j.1365-3032.1980.tb00229.x; GEWECKE M, 1975, J COMP PHYSIOL, V103, P79, DOI 10.1007/BF01380046; GOLDSWORTHY GJ, 1979, J INSECT PHYSIOL, V25, P183, DOI 10.1016/0022-1910(79)90097-0; Goldsworthy Graham, 2001, Symposia of the Royal Entomological Society of London, V20, P65; GU HN, 1992, HEREDITY, V68, P53, DOI 10.1038/hdy.1992.7; Guerra PA, 2013, CURR BIOL, V23, P419, DOI 10.1016/j.cub.2013.01.052; GUNN A, 1993, PHYSIOL ENTOMOL, V18, P149, DOI 10.1111/j.1365-3032.1993.tb00462.x; HAN EN, 1993, PHYSIOL ENTOMOL, V18, P183, DOI 10.1111/j.1365-3032.1993.tb00466.x; Hao YN, 2013, J ECON ENTOMOL, V106, P2043, DOI 10.1603/EC13218; Harrison JF, 2002, COMP BIOCHEM PHYS A, V133, P323, DOI 10.1016/S1095-6433(02)00163-0; Hedenstrom A, 2017, J AVIAN BIOL, V48, P37, DOI 10.1111/jav.01363; HEINRICH B, 1971, J EXP BIOL, V54, P141; Hoddle MS, 2015, J ECON ENTOMOL, V108, P2599, DOI 10.1093/jee/tov240; Hu G, 2016, SCIENCE, V354, P1584, DOI 10.1126/science.aah4379; JIANG XF, 2000, ACTA ECOLOGICA SINIC, V20, P288; Jiang XF, 2010, J INSECT PHYSIOL, V56, P1631, DOI 10.1016/j.jinsphys.2010.06.006; Jiang Xing-Fu, 2003, Acta Ecologica Sinica, V23, P738; Jiang XF, 2011, ENVIRON ENTOMOL, V40, P516, DOI 10.1603/EN10199; Johnson C. G., 1969, MIGRATION DISPERSAL; Jones CM, 2015, MOL ECOL, V24, P4901, DOI 10.1111/mec.13362; Jones HBC, 2016, ECOL EVOL, V6, P181, DOI 10.1002/ece3.1861; Kent JW, 1997, PHYSIOL ENTOMOL, V22, P231; Kent JW, 2001, PHYSIOL ENTOMOL, V26, P371, DOI 10.1046/j.0307-6962.2001.00257.x; King BL, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0046524; Kong HL, 2010, ENVIRON ENTOMOL, V39, P1579, DOI 10.1603/EN09314; KROGH A, 1952, J EXP BIOL, V29, P211; KUTSCH W, 1979, J INSECT PHYSIOL, V25, P299, DOI 10.1016/0022-1910(79)90016-7; KUTSCH W, 1981, J INSECT PHYSIOL, V27, P455, DOI 10.1016/0022-1910(81)90096-2; Liedvogel M, 2011, TRENDS ECOL EVOL, V26, P561, DOI 10.1016/j.tree.2011.07.009; Lim K.S., 2013, LIM KS, Patent No. PCT/GB2014/052466; Liu ZF, 2011, J ECON ENTOMOL, V104, P94, DOI 10.1603/EC10331; Lombaert E, 2014, J EVOLUTION BIOL, V27, P508, DOI 10.1111/jeb.12316; Lopez VM, 2014, J ECON ENTOMOL, V107, P1127, DOI 10.1603/EC13525; Lu YH, 2009, B ENTOMOL RES, V99, P543, DOI 10.1017/S000748530800655X; Luo LZ, 2002, ENVIRON ENTOMOL, V31, P1, DOI 10.1603/0046-225X-31.1.1; Markert MJ, 2016, G3-GENES GENOM GENET, V6, P905, DOI 10.1534/g3.116.027029; Marti-Campoy A., 2016, SENSORS, V16, P1; MCANELLY ML, 1986, BIOL BULL, V170, P368, DOI 10.2307/1541848; MCANELLY ML, 1986, BIOL BULL, V170, P378, DOI 10.2307/1541849; MCNEIL JN, 1995, INSECT MIGRATION: TRACKING RESOURCES THROUGH SPACE AND TIME, P279; Merlin C, 2013, GENOME RES, V23, P159, DOI 10.1101/gr.145599.112; Merlin C, 2012, CURR OPIN NEUROBIOL, V22, P353, DOI 10.1016/j.conb.2011.11.009; Merlin C, 2009, SCIENCE, V325, P1700, DOI 10.1126/science.1176221; Miller NG, 2011, BIOL LETTERS, V7, P43, DOI 10.1098/rsbl.2010.0525; Min KJ, 2004, J INSECT PHYSIOL, V50, P531, DOI 10.1016/j.jinsphys.2004.03.009; Min KJ, 2004, ARCH INSECT BIOCHEM, V55, P33, DOI 10.1002/arch.10109; Mouritsen H, 2002, P NATL ACAD SCI USA, V99, P10162, DOI 10.1073/pnas.152137299; Murata M, 2004, ZOOL SCI, V21, P181, DOI 10.2108/zsj.21.181; Nesbit RL, 2009, ANIM BEHAV, V78, P1119, DOI 10.1016/j.anbehav.2009.07.039; Nesbit R.L., 2009, THESIS U YORK UK; PADGHAM DE, 1983, B ENTOMOL RES, V73, P117, DOI 10.1017/S0007485300013857; PARKER WE, 1985, B ENTOMOL RES, V75, P35, DOI 10.1017/S0007485300014152; PARKER WE, 1985, B ENTOMOL RES, V75, P49, DOI 10.1017/S0007485300014164; Perez-Mendoza J, 2011, J ECON ENTOMOL, V104, P443, DOI 10.1603/EC10430; Rankin M.A., 1986, P27; RANKIN MA, 1980, BIOL BULL, V158, P356, DOI 10.2307/1540862; RANKIN MA, 1980, J INSECT PHYSIOL, V26, P67, DOI 10.1016/0022-1910(80)90111-0; Reppert SM, 2010, TRENDS NEUROSCI, V33, P399, DOI 10.1016/j.tins.2010.04.004; Riley JR, 1997, ENTOMOL EXP APPL, V83, P317, DOI 10.1046/j.1570-7458.1997.00186.x; ROFF DA, 1991, AM ZOOL, V31, P205; Roff DA, 2007, BIOSCIENCE, V57, P155, DOI 10.1641/B570210; SAPPINGTON TW, 1995, ARCH INSECT BIOCHEM, V29, P397, DOI 10.1002/arch.940290407; SAPPINGTON TW, 1991, ANN ENTOMOL SOC AM, V84, P560, DOI 10.1093/aesa/84.5.560; SAPPINGTON TW, 1992, ANN ENTOMOL SOC AM, V85, P188, DOI 10.1093/aesa/85.2.188; SAPPINGTON TW, 1992, ENVIRON ENTOMOL, V21, P677; Satterfield DA, 2013, CURR ZOOL, V59, P393, DOI 10.1093/czoolo/59.3.393; Schumacher P, 1997, PHYSIOL ENTOMOL, V22, P149, DOI 10.1111/j.1365-3032.1997.tb01152.x; Schumacher P, 1997, ENTOMOL EXP APPL, V85, P169, DOI 10.1046/j.1570-7458.1997.00247.x; SEYOUM E, 1994, J APPL ENTOMOL, V118, P310, DOI 10.1111/j.1439-0418.1994.tb00805.x; Shirai Y, 1998, B ENTOMOL RES, V88, P327, DOI 10.1017/S0007485300025943; SHIRAI Y, 1994, JARQ-JPN AGR RES Q, V28, P161; Simpson SJ, 2008, CURR BIOL, V18, pR364, DOI 10.1016/j.cub.2008.02.029; SLANSKY F, 1980, ENTOMOL EXP APPL, V28, P277, DOI 10.1111/j.1570-7458.1980.tb03027.x; Snelling EP, 2017, J EXP BIOL, V220, P4432, DOI 10.1242/jeb.168187; Snelling EP, 2012, J EXP BIOL, V215, P3317, DOI 10.1242/jeb.069799; Stefanescu C, 2013, ECOGRAPHY, V36, P474, DOI 10.1111/j.1600-0587.2012.07738.x; Stepanian P.M., 2016, ECOSPHERE, V7, P1; Taylor RAJ, 2010, J INSECT BEHAV, V23, P128, DOI 10.1007/s10905-010-9202-3; TEO LH, 1987, INSECT BIOCHEM, V17, P777, DOI 10.1016/0020-1790(87)90011-4; Troast D, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0148949; VANHANDEL E, 1974, J INSECT PHYSIOL, V20, P2329, DOI 10.1016/0022-1910(74)90020-1; VOGEL S, 1966, J EXP BIOL, V44, P567; Vogt JT, 2000, J INSECT PHYSIOL, V46, P697, DOI 10.1016/S0022-1910(99)00158-4; Wang FY, 2017, SCI REP-UK, V7, DOI 10.1038/srep39853; Wang XH, 2014, NAT COMMUN, V5, P1, DOI 10.1038/ncomms3957; Wanner H, 2006, PHYSIOL ENTOMOL, V31, P127, DOI 10.1111/j.1365-3032.2006.00494.x; Warrant E., 2016, FRONT BEHAV NEUROSCI, V10, P1; WEISFOGH T, 1952, PHILOS T ROY SOC B, V237, P1, DOI 10.1098/rstb.1952.0011; Wells T, 2016, ENV MICROBIOL REP, V8, P728, DOI 10.1111/1758-2229.12434; WILSON K, 1993, INSECT SCI APPL, V14, P325, DOI 10.1017/S1742758400014818; WOODROW KP, 1987, B ENTOMOL RES, V77, P113, DOI 10.1017/S0007485300011597; Yuan Q, 2007, MOL BIOL EVOL, V24, P948, DOI 10.1093/molbev/msm011; Zhan S, 2014, NATURE, V514, P317, DOI 10.1038/nature13812; Zhan S, 2011, CELL, V147, P1171, DOI 10.1016/j.cell.2011.09.052; Zhang Y, 2008, ENVIRON ENTOMOL, V37, P301, DOI 10.1603/0046-225X(2008)37[301:FPOTSA]2.0.CO;2; Zhao KF, 2011, CROP PROT, V30, P476, DOI 10.1016/j.cropro.2010.11.026; Zhu HS, 2009, BMC BIOL, V7, DOI 10.1186/1741-7007-7-14 134 1 1 13 13 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0307-6946 1365-2311 ECOL ENTOMOL Ecol. Entomol. AUG 2018 43 4 397 411 10.1111/een.12521 15 Entomology Entomology GL4HW WOS:000437112200001 30046219 Green Published, Other Gold 2018-11-22 J van Dijk, KJ; Digiantonio, G; Waycott, M van Dijk, Kor-jent; Digiantonio, Gina; Waycott, Michelle New microsatellite markers for the seagrass Amphibolis antarctica reveal unprecedented genetic diversity AQUATIC BOTANY English Article Polymorphism; Connectivity; Clonality; Australia; Temperate GENOTYPIC DIVERSITY; CLONAL ORGANISMS; COMPUTER-PROGRAM; ZOSTERA-MARINA; POPULATIONS; PCR The limited data available on the genetic diversity of the temperate seagrass Amphibolis antarctica indicate diversity may be extremely low. The available previous study was based on allozymes and restriction fragment length polymorphisms (RFLPs) as molecular markers. Numerous studies into other seagrass taxa have shown that these markers may not have the appropriate sensitivity to reveal genetic diversity. In order to determine if A. antractica is genuinely genetically depauperate, or if the genetic markers used were not suitable to capture the diversity, we developed novel microsatellites for this species. Forty-eight primer candidates were screened with a limited number of geographically diverse samples. Fourteen loci displayed adequate polymorphism and were arranged into three multiplex PCR panels for further testing. DNA samples of four populations were tested and statistics on locus population and genotypic diversity calculated. This is the first study that has found genetic diversity within A. antarctica, with allele numbers ranging between 2-10 per locus. Expected heterozygosity (H-E) for the four populations ranged between 0.355-0.507. This small-scale study has given the first insight into the genetic diversity of this species and has provided a tool to evaluate life-history strategies such as clonality, reproduction and dispersal of one of the most important southern Australian seagrass species. [van Dijk, Kor-jent; Waycott, Michelle] Univ Adelaide, Environm Inst, North Terrace, Adelaide, SA 5005, Australia; [van Dijk, Kor-jent; Waycott, Michelle] Univ Adelaide, Sch Biol Sci, North Terrace, Adelaide, SA 5005, Australia; [Digiantonio, Gina] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22903 USA; [Waycott, Michelle] State Herbarium South Australia, Dept Environm Water & Nat Resources, POB 1047, Adelaide, SA 5001, Australia van Dijk, KJ (reprint author), Univ Adelaide, Environm Inst, North Terrace, Adelaide, SA 5005, Australia.; van Dijk, KJ (reprint author), Univ Adelaide, Sch Biol Sci, North Terrace, Adelaide, SA 5005, Australia. korjent.vandijk@adelaide.edu.au Jones Conservation Fund This work was supported by the Jones Conservation Fund. The funding source was not involved in the design, collection, analysis, interpretation, or writing of this study. Alcala N, 2014, THEOR POPUL BIOL, V93, P75, DOI 10.1016/j.tpb.2014.02.003; Arnaud-Haond S, 2005, J HERED, V96, P434, DOI 10.1093/jhered/esi043; Arnaud-Haond S, 2007, MOL ECOL NOTES, V7, P15, DOI 10.1111/j.1471-8286.2006.01522.x; Bijak AL, 2014, APPL PLANT SCI, V2, DOI 10.3732/apps.1400082; Brownstein MJ, 1996, BIOTECHNIQUES, V20, P1004; denHartog C, 1970, SEA GRASSES WORLD; Dorken ME, 2001, J ECOL, V89, P339, DOI 10.1046/j.1365-2745.2001.00558.x; Green EP, 2003, WORLD ATLAS SEAGRASS; Hart D, 1997, NEAR SHORE SEAGRASS; Holleley CE, 2009, BIOTECHNIQUES, V46, P511, DOI 10.2144/000113156; Hughes AR, 2009, ECOLOGY, V90, P1412, DOI 10.1890/07-2030.1; Keenan K, 2013, METHODS ECOL EVOL, V4, P782, DOI 10.1111/2041-210X.12067; Kendrick GA, 2012, BIOSCIENCE, V62, P56, DOI 10.1525/bio.2012.62.1.10; Kuo J., 1990, BOT MAR, V117; Malausa T, 2011, MOL ECOL RESOUR, V11, P638, DOI 10.1111/j.1755-0998.2011.02992.x; Meglecz E, 2010, BIOINFORMATICS, V26, P403, DOI 10.1093/bioinformatics/btp670; Meirmans PG, 2004, MOL ECOL NOTES, V4, P792, DOI 10.1111/j.1471-8286.2004.00770.x; Nayar S, 2009, J EXP MAR BIOL ECOL, V373, P87, DOI 10.1016/j.jembe.2009.03.010; Nordlund LM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0163091; Procaccini G, 2007, J EXP MAR BIOL ECOL, V350, P234, DOI 10.1016/j.jembe.2007.05.035; RAYMOND M, 1995, J HERED, V86, P248, DOI 10.1093/oxfordjournals.jhered.a111573; Reusch TBH, 2006, MOL ECOL, V15, P277, DOI 10.1111/j.1365-294X.2005.02779.x; Reusch TBH, 1999, MAR BIOL, V133, P519, DOI 10.1007/s002270050492; Reynolds LK, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0038397; Rousset F, 2008, MOL ECOL RESOUR, V8, P103, DOI 10.1111/j.1471-8286.2007.01931.x; Schuelke M, 2000, NAT BIOTECHNOL, V18, P233, DOI 10.1038/72708; Tanner JE, 2015, ESTUAR COAST, V38, P668, DOI 10.1007/s12237-014-9823-4; Thomson JA, 2015, GLOBAL CHANGE BIOL, V21, P1463, DOI 10.1111/gcb.12694; Waycott M, 1996, HEREDITY, V76, P578, DOI 10.1038/hdy.1996.83; Waycott M., 2014, GUIDE SO TEMPERATE S; Waycott M, 2009, P NATL ACAD SCI USA, V106, P12377, DOI 10.1073/pnas.0905620106 31 0 0 8 8 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0304-3770 1879-1522 AQUAT BOT Aquat. Bot. AUG 2018 148 25 28 10.1016/j.aquabot.2018.04.002 4 Plant Sciences; Marine & Freshwater Biology Plant Sciences; Marine & Freshwater Biology GH7SB WOS:000433652600004 2018-11-22 J Aranguiz-Acuna, A; Perez-Portilla, P; De la Fuente, A; Fontaneto, D Aranguiz-Acuna, Adriana; Perez-Portilla, Pablo; De la Fuente, Ana; Fontaneto, Diego Life-history strategies in zooplankton promote coexistence of competitors in extreme environments with high metal content SCIENTIFIC REPORTS English Article BRACHIONUS-PLICATILIS ROTIFERA; SPECIES-DIVERSITY; FOOD-WEB; RESOURCE COMPETITION; MULTIPLE STRESSORS; GENETIC-STRUCTURE; NORTHERN CHILE; RESTING EGGS; REPRODUCTION; DIAPAUSE The toxicity of pollutants on aquatic communities is determined by the specific sensitivities and by the ecological relationships between species, although the role of ecological interactions on the specific sensitivity to pollutants is complex. We tested the effect of exposure to copper on the life-history strategies of two coexisting rotifer species of the genus Brachionus from Inca-Coya lagoon, an isolated water body located in Atacama Desert. The experiments looked at differences in the response to the stress by chemical pollution mimicking field conditions of copper exposure, levels of food, and salinity, between single-species cultures and coexisting species. Under single species cultures, B. 'Nevada' had lower densities, growth rates, and resting eggs production than B. quadridentatus; when in competition, B. 'Nevada' performed better than B. quadridentatus in most life-history traits. B. 'Nevada' was a copper-tolerant species, which outcompeted B. quadridentatus, more copper-sensitive, with higher levels of copper. Species-specific responses to environmental conditions and pollution, plus differential relationships between population density and production of resting eggs, resulted in reduced niche overlap between species, allowing stabilized coexistence. The extreme environmental conditions and the isolation of the Inca-Coya lagoon, make it an excellent model to understand the adaption of aquatic organisms to stressed environments. [Aranguiz-Acuna, Adriana; Perez-Portilla, Pablo; De la Fuente, Ana] Univ Catolica Norte, Dept Chem, Fac Sci, Angamos 0610, Antofagasta, Chile; [Fontaneto, Diego] Natl Res Council Italy, Inst Ecosyst Study CNR ISE, Largo Tonolli 50, I-28922 Pallanza, VB, Italy; [Aranguiz-Acuna, Adriana] Univ Catolica Norte, Ctr Invest Tecnol Agua Desierto CEITSAZA, Casilla 1280, Antofagasta, Chile Aranguiz-Acuna, A (reprint author), Univ Catolica Norte, Dept Chem, Fac Sci, Angamos 0610, Antofagasta, Chile.; Aranguiz-Acuna, A (reprint author), Univ Catolica Norte, Ctr Invest Tecnol Agua Desierto CEITSAZA, Casilla 1280, Antofagasta, Chile. aranguiz@ucn.cl Fontaneto, Diego/B-9710-2008 Fontaneto, Diego/0000-0002-5770-0353 FONDECYT [11130653] This study was funded by FONDECYT grant no. 11130653 to A. A.-A. The authors thank Dr. Jorge Valdes and Dr. Mauricio Cerda for their support in the field, and Dr. Martha Hengst and her laboratory staff for their support in molecular analysis. Aranguiz-Acuna A, 2017, ECOTOXICOLOGY, V26, P329, DOI 10.1007/s10646-017-1766-7; Aranguiz-Acuna A, 2016, ECOTOXICOLOGY, V25, P708, DOI 10.1007/s10646-016-1629-7; Aranguiz-Acuna A, 2015, OECOLOGIA, V177, P273, DOI 10.1007/s00442-014-3172-7; ASTM, 2012, E144091 ASTM; Barton K., 2016, MUMIN MULTIMODEL INF; Burnham KP, 2002, MODEL SELECTION MULT; Cadotte MW, 2007, P ROY SOC B-BIOL SCI, V274, P2739, DOI 10.1098/rspb.2007.0925; Ceulemans T, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0175160; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; Ciros-Perez J, 2004, LIMNOL OCEANOGR, V49, P40, DOI 10.4319/lo.2004.49.1.0040; Ciros-Perez J, 2001, J PLANKTON RES, V23, P1311, DOI 10.1093/plankt/23.12.1311; Ciros-Perez J, 2002, OECOLOGIA, V131, P35, DOI 10.1007/s00442-001-0856-6; Crawley M. J., 2012, R BOOK; D'Alelio D, 2016, SCI REP-UK, V6, DOI 10.1038/srep21806; Dahms HU, 2011, AQUAT TOXICOL, V101, P1, DOI 10.1016/j.aquatox.2010.09.006; De Laender F, 2009, ECOTOX ENVIRON SAFE, V72, P310, DOI 10.1016/j.ecoenv.2008.07.014; Fleeger JW, 2003, SCI TOTAL ENVIRON, V317, P207, DOI 10.1016/S0048-9697(03)00141-4; Foit K, 2012, AQUAT TOXICOL, V106, P25, DOI 10.1016/j.aquatox.2011.09.012; Folmer O., 1994, Molecular Marine Biology and Biotechnology, V3, P294; Forbes AE, 2002, OIKOS, V96, P433, DOI 10.1034/j.1600-0706.2002.960305.x; Fussmann GF, 2007, HYDROBIOLOGIA, V593, P111, DOI 10.1007/s10750-007-9041-1; Gabaldon C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0124406; Gabaldon C, 2015, J EXP MAR BIOL ECOL, V465, P142, DOI 10.1016/j.jembe.2015.01.016; Gabaldon C, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0057087; Garcia-Morales AE, 2013, MOL ECOL RESOUR, V13, P1097, DOI 10.1111/1755-0998.12080; Gergs A, 2013, SCI REP-UK, V3, DOI 10.1038/srep02036; Gilbert JJ, 2004, LIMNOL OCEANOGR, V49, P1341, DOI 10.4319/lo.2004.49.4_part_2.1341; Gilbert JJ, 2002, FRESHWATER BIOL, V47, P1633, DOI 10.1046/j.1365-2427.2002.00900.x; Gilbert JJ, 2007, HYDROBIOLOGIA, V593, P121, DOI 10.1007/s10750-007-9040-2; Gomez A, 2000, MOL ECOL, V9, P203, DOI 10.1046/j.1365-294x.2000.00849.x; Gomez A, 2002, EVOLUTION, V56, P1431; Gomez A, 1997, OECOLOGIA, V111, P350, DOI 10.1007/s004420050245; GUILLARD RR, 1962, CAN J MICROBIOL, V8, P229, DOI 10.1139/m62-029; Hampton SE, 2005, LIMNOL OCEANOGR, V50, P421, DOI 10.4319/lo.2005.50.2.0421; Heine-Fuster I, 2017, HYDROBIOLOGIA, V799, P249, DOI 10.1007/s10750-017-3221-4; Herbst DB, 2001, HYDROBIOLOGIA, V466, P209, DOI 10.1023/A:1014508026349; Hernandez KL, 2016, FRONT MICROBIOL, V7, DOI 10.3389/fmicb.2016.01857; Inostroza PA, 2016, ENVIRON SCI TECHNOL, V50, P11346, DOI 10.1021/acs.est.6b04629; Del Arco AI, 2015, ECOTOXICOLOGY, V24, P1362, DOI 10.1007/s10646-015-1512-y; Ivanova MB, 2006, RUSS J ECOL+, V37, P264, DOI 10.1134/S1067413606040084; Jackson MC, 2016, GLOBAL CHANGE BIOL, V22, P180, DOI 10.1111/gcb.13028; Kaneko G, 2005, HYDROBIOLOGIA, V546, P117, DOI 10.1007/s10750-005-4107-4; Kaya M, 2010, J LIMNOL, V69, P297, DOI 10.3274/JL10-69-2-11; Lapesa S, 2004, FRESHWATER BIOL, V49, P1053, DOI 10.1111/j.1365-2427.2004.01249.x; Latorre C, 2006, QUATERNARY RES, V65, P450, DOI 10.1016/j.yqres.2006.02.002; Leach TH, 2015, J PLANKTON RES, V37, P886, DOI 10.1093/plankt/fbv061; Maceda-Veiga A, 2017, SCI TOTAL ENVIRON, V574, P455, DOI 10.1016/j.scitotenv.2016.09.097; Marcial HS, 2005, HYDROBIOLOGIA, V546, P569, DOI 10.1007/s10750-005-4302-3; MARCUS NH, 1994, LIMNOL OCEANOGR, V39, P154, DOI 10.4319/lo.1994.39.1.0154; Marsh GP, 1864, MAN NATURE; Mills S, 2017, HYDROBIOLOGIA, V796, P39, DOI 10.1007/s10750-016-2725-7; Montero-Pau J, 2014, ECOL MODEL, V272, P76, DOI 10.1016/j.ecolmodel.2013.09.020; Montero-Pau J, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021530; Palumbi S. R., 1996, NUCL ACIDS, P205; Pell A, 2013, CHEMOSPHERE, V90, P556, DOI 10.1016/j.chemosphere.2012.08.028; Peters R. H., 1984, IBP HDB, P336; POURRIOT R, 1983, HYDROBIOLOGIA, V104, P213, DOI 10.1007/BF00045970; R Core Team, 2017, R LANG ENV STAT COMP; Ritz C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0146021; Rogalski MA, 2017, AM NAT, V189, P443, DOI 10.1086/691077; Romero L, 2003, APPL GEOCHEM, V18, P1399, DOI 10.1016/S0883-2927(03)00059-3; Sabina D'Ambrosio D., 2016, International Aquatic Research, V8, P65, DOI 10.1007/s40071-016-0125-2; Serra M, 1999, J EVOLUTION BIOL, V12, P263; SERRA M, 1993, HYDROBIOLOGIA, V255, P117, DOI 10.1007/BF00025829; Shurin JB, 2000, ECOLOGY, V81, P3074, DOI 10.2307/177402; Stelzer CP, 2006, LIMNOL OCEANOGR, V51, P125, DOI 10.4319/lo.2006.51.1.0125; Strayer DL, 2010, J N AM BENTHOL SOC, V29, P344, DOI 10.1899/08-171.1; Usinowicz J, 2017, NATURE, V550, P105, DOI 10.1038/nature24038; Viaene KPJ, 2015, ENVIRON TOXICOL CHEM, V34, P1751, DOI 10.1002/etc.2973; Vinebrooke RD, 2004, OIKOS, V104, P451, DOI 10.1111/j.0030-1299.2004.13255.x; Vogt RJ, 2013, LIMNOL OCEANOGR, V58, P1790, DOI 10.4319/lo.2013.58.5.1790; Wang CY, 2016, SCI TOTAL ENVIRON, V569, P352, DOI 10.1016/j.scitotenv.2016.06.164; Zhang Y, 2018, HYDROBIOLOGIA, V807, P313, DOI 10.1007/s10750-017-3407-9 73 0 0 10 10 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 2045-2322 SCI REP-UK Sci Rep JUL 23 2018 8 11060 10.1038/s41598-018-29487-3 10 Multidisciplinary Sciences Science & Technology - Other Topics GN8NP WOS:000439421600028 30038433 DOAJ Gold 2018-11-22 J Griebel, J; Utz, M; Hermisson, J; Wolinska, J Griebel, Johanna; Utz, Margarete; Hermisson, Joachim; Wolinska, Justyna The establishment of hybrids of the Daphnia longispina complex explained by a mathematical model incorporating different overwintering life history strategies PLOS ONE English Article SPECIES COMPLEX; TRANSGRESSIVE SEGREGATION; REPRODUCTIVE ISOLATION; SEXUAL REPRODUCTION; GENE FLOW; HYBRIDIZATION; DYNAMICS; COMMUNITIES; POPULATIONS; ADAPTATION Interspecific hybridization (i.e. mating between species) occurs frequently in animals. Among cyclical parthenogens, hybrids can proliferate and establish through parthenogenetic reproduction, even if their sexual reproduction is impaired. In water fleas of the Daphnia longispina species complex, interspecific hybrids hatch from sexually produced dormant eggs. However, fewer hybrid genotypes contribute to the dormant egg bank and their hatching rate from dormant eggs is reduced, compared to eggs resulting from intraspecific crosses. Therefore, Daphnia hybrids would benefit from adaptations that increase their survival over winter as parthenogenetic lineages, avoiding the need to re-establish populations after winter from sexually produced dormant eggs. Here, we constructed a mathematical model to examine the conditions that could explain the frequently observed establishment of hybrids in the D. longispina species complex. Specifically, we compared the outcome of hybrid and parental taxa competition given a reduced contribution of hybrids to hatchlings from the sexually produced dormant egg bank, but their increased ability to survive winter as parthenogenetic lineages. In addition, different growth rates of parental species and differences in average annual temperatures were evaluated for their influence on hybrid production and establishment. Our model shows that increased overwinter performance as parthenogenetic females can compensate for reduced success in sexual reproduction, across all tested scenarios for varying relative growth rates of parental species. This pattern holds true for lower annual temperatures, but at higher temperatures hybrids were less successful. Consequently, hybrids might become less abundant as temperatures rise due to climate change, resulting in reduced diversity and faster differentiation of the parental species. [Griebel, Johanna; Wolinska, Justyna] Leibniz Inst Freshwater Ecol & Inland Fisheries, Dept Ecosyst Res, Berlin, Germany; [Griebel, Johanna] Ludwig Maximilian Univ Munich, Dept Biol 2, Planegg Martinsried, Germany; [Utz, Margarete] Univ Groningen, Groningen Inst Evolutionary Life Sci, Groningen, Netherlands; [Hermisson, Joachim] Univ Vienna, Dept Math, Vienna, Austria; [Wolinska, Justyna] Free Univ Berlin, Dept Biol Chem Pharm, Inst Biol, Berlin, Germany Griebel, J (reprint author), Leibniz Inst Freshwater Ecol & Inland Fisheries, Dept Ecosyst Res, Berlin, Germany.; Griebel, J (reprint author), Ludwig Maximilian Univ Munich, Dept Biol 2, Planegg Martinsried, Germany. j_griebel@gmx.de German Science Foundation [WO 1587/4-1, 1587/6-1]; Leibniz Association This research was funded by the German Science Foundation grant to JW (WO 1587/4-1 and 1587/6-1). We thank the Leibniz Association's Open Access Publishing Funds for co-financing this publication. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Abbott R, 2013, J EVOLUTION BIOL, V26, P229, DOI 10.1111/j.1420-9101.2012.02599.x; Adrian R, 2009, LIMNOL OCEANOGR, V54, P2283, DOI 10.4319/lo.2009.54.6_part_2.2283; Brede N, 2009, P NATL ACAD SCI USA, V106, P4758, DOI 10.1073/pnas.0807187106; Burke JM, 2001, ANNU REV GENET, V35, P31, DOI 10.1146/annurev.genet.35.102401.085719; CASWELL H, 1986, AM NAT, V128, P707, DOI 10.1086/284598; De Meester L, 2002, ACTA OECOL, V23, P121, DOI 10.1016/S1146-609X(02)01145-1; Declerck S, 2003, J PLANKTON RES, V25, P93, DOI 10.1093/plankt/25.1.93; Domis LND, 2007, OECOLOGIA, V150, P682, DOI 10.1007/s00442-006-0549-2; Ebert D, 2005, ECOLOGY EPIDEMIOLOGY; Gorski PR, 1996, LIMNOL OCEANOGR, V41, P1815, DOI 10.4319/lo.1996.41.8.1815; Griebel J, 2016, J EVOLUTION BIOL, V29, P810, DOI 10.1111/jeb.12828; Griebel J, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0140275; Janko K, 2018, MOL ECOL, V27, P248, DOI 10.1111/mec.14377; Johannesson K, 1995, EVOLUTION, V49, P1180, DOI 10.1111/j.1558-5646.1995.tb04445.x; Kagawa K, 2018, ECOL LETT, V21, P264, DOI 10.1111/ele.12891; Keller B, 2004, LIMNOL OCEANOGR, V49, P1393, DOI 10.4319/lo.2004.49.4_part_2.1393; Keller B, 2008, PHILOS T R SOC B, V363, P2943, DOI 10.1098/rstb.2008.0044; Keller B, 2007, LIMNOL OCEANOGR, V52, P984, DOI 10.4319/lo.2007.52.3.0984; Lampert W, 2010, LIMNOL OCEANOGR, V55, P1893, DOI 10.4319/lo.2010.55.5.1893; Louette G, 2007, OIKOS, V116, P419, DOI 10.1111/j.2006.0030-1299.15381.x; Mathematica Wolfram Research Inc., MATHEMATICA; O'Reilly CM, 2015, GEOPHYS RES LETT, V42, P10773, DOI 10.1002/2015GL066235; Petrusek A, 2008, PHILOS T R SOC B, V363, P2931, DOI 10.1098/rstb.2008.0026; Pfennig KS, 2007, SCIENCE, V318, P965, DOI 10.1126/science.1146035; Pfennig KS, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2016.1329; Rieseberg LH, 1999, HEREDITY, V83, P363, DOI 10.1038/sj.hdy.6886170; Rieseberg LH, 2007, GENETICA, V129, P149, DOI 10.1007/s10709-006-9011-y; Schalau K, 2008, OECOLOGIA, V157, P531, DOI 10.1007/s00442-008-1081-3; Scheffer M, 2001, LIMNOL OCEANOGR, V46, P1780, DOI 10.4319/lo.2001.46.7.1780; Scheffer M, 1997, OIKOS, V80, P519, DOI 10.2307/3546625; Seda J, 2007, J PLANKTON RES, V29, P619, DOI 10.1093/plankt/fbm044; Seidendorf B, 2007, LIMNOL OCEANOGR, V52, P385, DOI 10.4319/lo.2007.52.1.0385; SOMMER U, 1986, ARCH HYDROBIOL, V106, P433; SPAAK P, 1995, OECOLOGIA, V104, P501, DOI 10.1007/BF00341348; STROSS RG, 1968, BIOL BULL, V134, P176, DOI 10.2307/1539976; WEIDER LJ, 1991, OECOLOGIA, V87, P506, DOI 10.1007/BF00320413; WOLF HG, 1987, HYDROBIOLOGIA, V145, P213, DOI 10.1007/BF02530282; Wolinska J, 2006, P ROY SOC B-BIOL SCI, V273, P1977, DOI 10.1098/rspb.2006.3523; Wolinska J, 2007, FRESHWATER BIOL, V52, P1198, DOI 10.1111/j.1365-2427.2007.01757.x; Yin MB, 2014, BMC EVOL BIOL, V14, DOI 10.1186/1471-2148-14-80; Yin MB, 2010, MOL ECOL, V19, P4168, DOI 10.1111/j.1365-294X.2010.04807.x 41 0 0 2 2 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One JUL 19 2018 13 7 e0200802 10.1371/journal.pone.0200802 14 Multidisciplinary Sciences Science & Technology - Other Topics GN5RC WOS:000439120000054 30024954 DOAJ Gold 2018-11-22 J Perez-Ruzafa, A; Perez-Marcos, M; Marcos, C Perez-Ruzafa, Angel; Perez-Marcos, Maria; Marcos, Concepcion From fish physiology to ecosystems management: Keys for moving through biological levels of organization in detecting environmental changes and anticipate their consequences ECOLOGICAL INDICATORS English Article Conservation; Biological organization levels; Physiology; Epigenetic; Dynamic energy budget; Energy allocation rules; Life story strategies; Bioindicators; Scaling indicators ECOLOGICAL-QUALITY STATUS; LIFE-HISTORY STRATEGIES; FOOD-WEB INDICATORS; MEDITERRANEAN COASTAL LAGOON; BENTHIC BIOTIC INDEXES; MARINE RESERVES; GENE-EXPRESSION; ANTHROPOGENIC DRIVERS; ECONOMIC UNCERTAINTY; THERMAL TOLERANCE Tackling environmental problems not only requires the detection of harmful agents or the drivers that induce changes in ecosystems and their effects, but also knowledge of their action mechanisms and the processes involved in order to design solutions, recover the damaged systems and, above all, prevent any deterioration before it occurs. In recent years conservation physiology has been proposed as a discipline that could play an important role in this context. However, the main problem in generalizing physiological indicators in order to assess ecological status is the leap in scale from the internal physiology of an individual to its relevance for ecosystem functioning. In this paper, we propose that the study of the physiological bases and epigenetic mechanisms that determine the allocation of energy resources, in the context of Dynamic Energy Budget theory, can be the hinge that allows us to pass from the physiology of the individual to the scale of population dynamics, the structure of populations and ecosystems. This proposal is based on the strong relationship shown by the parameters of the life story of individuals, such as body growth rate, maximum size, life expectancy or generation time, with the parameters that determine population growth and the ecological strategies of the species. There is growing evidence that the relationship between these parameters is not completely fixed and does not only respond to evolutionary scales, but may be flexible within certain limits throughout ontogeny and the life of individuals, producing consequences in populations in response to environmental conditions, environmental stress and, in the case of fish, the effects of fishing. Lay summary: Biological index to detect environmental impacts can be applied from cell to ecosystem scale. However, at lower levels, although they give important information on the mechanisms involved it is difficult to infer the real consequences of the detected changes on the ecosystems. The review of the regularities existing in ecological guilds relationships of fishes suggests that the study of the physiological and epigenetic bases that determine the allocation of energy resources in the context of Dynamic Energy Budget theory can be the hinge that allows us to pass from the effects on the physiology of the individual to the scale of population dynamics and ecosystems when modelling the consequences of changes in environmental stress. [Perez-Ruzafa, Angel; Marcos, Concepcion] Univ Murcia, Fac Biol, Dept Ecol & Hidral, Campus Excelencia Int Mare Nostrum, Campus Espinardo, E-30100 Murcia, Spain; [Perez-Marcos, Maria] Inst Murciano Invest & Desarrallo Agr & Alimentar, C Mayor S-N, E-30150 Murcia, Spain Perez-Ruzafa, A (reprint author), Univ Murcia, Fac Biol, Dept Ecol & Hidral, Campus Excelencia Int Mare Nostrum, Campus Espinardo, E-30100 Murcia, Spain. angelpr@um.es Perez-Ruzafa, Angel/A-3406-2009 Perez-Ruzafa, Angel/0000-0003-4769-8912 European Union [FA1004] This work arose from discussions held during the European Union Cooperation in Science and Technology (COST) Action (FA1004) on the "Conservation Physiology of Marine Fishes". We wish to express our appreciation to all participants in the various meetings. Abel P. D., 1989, WATER POLLUTION BIOL; Andersen KH, 2008, THEOR POPUL BIOL, V73, P490, DOI 10.1016/j.tpb.2008.02.001; [Anonymous], 2000, OFFICIAL J L; Axiak V, 1991, ECOTOXICOLOGY MARINE, P132; BARNES RSK, 1989, T RSE EARTH, V80, P235; Bergstrom L, 2016, ESTUAR COAST SHELF S, V183, P62, DOI 10.1016/j.ecss.2016.10.027; Berthelsen A, 2018, ECOL INDIC, V85, P634, DOI 10.1016/j.ecolind.2017.10.060; Beyer J, 2014, MAR ENVIRON RES, V96, P81, DOI 10.1016/j.marenvres.2013.10.008; Birk S, 2012, ECOL INDIC, V18, P31, DOI 10.1016/j.ecolind.2011.10.009; Blanck A, 2007, J BIOGEOGR, V34, P862, DOI 10.1111/j.1365-2699.2006.01654.x; Borja A, 2015, MAR POLLUT BULL, V97, P85, DOI 10.1016/j.marpolbul.2015.06.030; Brauko KM, 2016, ECOL INDIC, V64, P258, DOI 10.1016/j.ecolind.2016.01.008; Broeg K, 1999, HELGOLAND MAR RES, V53, P171, DOI 10.1007/s101520050023; Caselle JE, 2011, CAN J FISH AQUAT SCI, V68, P288, DOI 10.1139/F10-140; Cazan AM, 2015, ECOTOXICOLOGY, V24, P626, DOI 10.1007/s10646-014-1410-8; Chaoui L, 2012, MOL ECOL, V21, P5497, DOI 10.1111/mec.12062; Claudet J, 2010, ECOL APPL, V20, P830, DOI 10.1890/08-2131.1; Claudet J, 2008, ECOL LETT, V11, P481, DOI 10.1111/j.1461-0248.2008.01166.x; Cloern JE, 2001, MAR ECOL PROG SER, V210, P223, DOI 10.3354/meps210223; Cognetti G, 2000, MAR POLLUT BULL, V40, P7, DOI 10.1016/S0025-326X(99)00173-3; Cooke SJ, 2014, CONSERV PHYSIOL, V2, DOI 10.1093/conphys/cou024; Cooke SJ, 2013, CONSERV PHYSIOL, V1, DOI 10.1093/conphys/cot001; Corsi I, 2003, OCEANOL ACTA, V26, P129, DOI 10.1016/S0399-1784(02)01237-9; Damuth J, 2001, P NATL ACAD SCI USA, V98, P2113, DOI 10.1073/pnas.051011198; Das SK, 2015, INT J OBESITY, V39, P869, DOI 10.1038/ijo.2014.210; DeFaveri J, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0080866; Delorme NJ, 2016, COMP BIOCHEM PHYS A, V198, P33, DOI 10.1016/j.cbpa.2016.03.020; DeMartini EE, 2016, J FISH BIOL, V88, P523, DOI 10.1111/jfb.12831; Dondero F., 2015, COASTAL ECOSYSTEMS E, P143; Dorval E, 2015, J FISH BIOL, V87, P286, DOI 10.1111/jfb.12718; Dunlop ES, 2007, T AM FISH SOC, V136, P749, DOI 10.1577/T06-126.1; Dunlop ES, 2015, ECOL APPL, V25, P1860, DOI 10.1890/14-1862.1; ELGAR MA, 1990, OIKOS, V59, P283, DOI 10.2307/3545546; Fay G, 2013, ECOL MODEL, V265, P45, DOI 10.1016/j.ecolmodel.2013.05.016; Feral J.-P., 2003, EUROPEAN MARINE BIOD, P127; Forbes VE, 2006, ENVIRON TOXICOL CHEM, V25, P272, DOI 10.1897/05-257R.1; Froese R, 2008, FISHBASE; Fulton EA, 2005, ICES J MAR SCI, V62, P540, DOI 10.1016/j.icesjms.2004.12.012; Galloway TS, 2001, ECOTOXICOLOGY, V10, P5, DOI 10.1023/A:1008939520263; Gamito S, 2008, NATO SCI PEACE SECUR, P323, DOI 10.1007/978-1-4020-8558-1_19; Garcia-Charton JA, 2008, J NAT CONSERV, V16, P193, DOI 10.1016/j.jnc.2008.09.007; Garcia-Charton JA, 1999, FISH RES, V42, P1; GRAY JS, 1982, NETH J SEA RES, V16, P424, DOI 10.1016/0077-7579(82)90048-5; Greytak SR, 2005, AQUAT TOXICOL, V71, P371, DOI 10.1016/j.aquatox.2004.12.007; Gubbay S., 2004, REV MARINE ENV INDIC, P74; Halpern BS, 2003, ECOL APPL, V13, pS117; Halpern BS, 2003, P ROY SOC B-BIOL SCI, V270, P1871, DOI 10.1098/rspb.2003.2405; HARDING LE, 1992, MAR POLLUT BULL, V25, P23, DOI 10.1016/0025-326X(92)90178-9; Hart MK, 2011, CORAL REEFS, V30, P543, DOI 10.1007/s00338-011-0737-3; Heck KL, 2007, ESTUAR COAST, V30, P371, DOI 10.1007/BF02819384; HEIP C, 1995, OPHELIA, V41, P113, DOI 10.1080/00785236.1995.10422040; Henriques S, 2013, ECOL INDIC, V25, P65, DOI 10.1016/j.ecolind.2012.09.003; Hofmann B, 2013, J MARRIAGE FAM, V75, P503, DOI 10.1111/jomf.12011; Horodysky AZ, 2015, REV FISH BIOL FISHER, V25, P425, DOI 10.1007/s11160-015-9393-y; Huete-Ortega M, 2012, P ROY SOC B-BIOL SCI, V279, P1815, DOI 10.1098/rspb.2011.2257; ICES, 2008, 2008MHC01 ICES CM; Jorgensen EH, 2014, MAR GENOM, V14, P71, DOI 10.1016/j.margen.2013.10.005; Kamstra JH, 2015, ENVIRON SCI POLLUT R, V22, P16262, DOI 10.1007/s11356-014-3466-7; Kamukuru AT, 2005, FISHERIES MANAG ECOL, V12, P45, DOI 10.1111/j.1365-2400.2004.00418.x; Kearney M, 2012, FUNCT ECOL, V26, P167, DOI 10.1111/j.1365-2435.2011.01917.x; Khedhri I, 2017, MAR POLLUT BULL, V114, P515, DOI 10.1016/j.marpolbul.2016.10.023; Kooijman S.A.L.M., 2010, DYNAMIC ENERGY BUDGE; Kooijman S. A. L. M., 2000, DYNAMIC ENERGY MASS; KOOIJMAN SAL, 1993, DYNAMIC ENERGY BUDGE; KOOIJMAN SALM, 1986, J THEOR BIOL, V121, P269, DOI 10.1016/S0022-5193(86)80107-2; Kooijman SALM, 2014, J SEA RES, V94, P19, DOI 10.1016/j.seares.2014.01.015; Kooijman SALM, 2014, BIOL REV, V89, P849, DOI 10.1111/brv.12082; Krebs C J., 1999, ECOLOGICAL METHODOLO; Kreyenfeld M, 2015, KOLNER Z SOZIOL SOZ, V67, P59, DOI 10.1007/s11577-015-0325-6; KUO CM, 1974, AQUACULTURE, V3, P25, DOI 10.1016/0044-8486(74)90096-9; Kuparinen A, 2012, P ROY SOC B-BIOL SCI, V279, P2571, DOI 10.1098/rspb.2012.0120; Lennox R, 2014, CONSERV PHYSIOL, V2, DOI 10.1093/conphys/cou003; LEONTIEF W, 1979, POPUL DEV REV, V5, P1, DOI 10.2307/1972316; LLOYD R, 1972, PROC R SOC SER B-BIO, V180, P439, DOI 10.1098/rspb.1972.0030; Lloyd R, 1991, ECOTOXICOLOGY MARINE, P219; Lonsdale DJ, 2009, AQUAT BIOL, V6, P263, DOI 10.3354/ab00130; Luo XX, 2016, ACTA OCEANOL SIN, V35, P50, DOI 10.1007/s13131-016-0842-9; Lyons BP, 2017, MAR ENVIRON RES, V124, P118, DOI 10.1016/j.marenvres.2015.12.010; MAC ARTHUR ROBERT H., 1967; Maino JL, 2014, J ANIM ECOL, V83, P20, DOI 10.1111/1365-2656.12085; Makhija DT, 2014, J PHARMACOL PHARMACO, V5, P39, DOI 10.4103/0976-500X.124422; Maltby L, 1999, ECOL APPL, V9, P431, DOI 10.1890/1051-0761(1999)009[0431:SSTIOO]2.0.CO;2; Margalef R, 1974, ECOLOGIC; Modica L, 2016, ECOL INDIC, V67, P21, DOI 10.1016/j.ecolind.2016.02.010; Moore MN, 2004, MUTAT RES-FUND MOL M, V552, P247, DOI 10.1016/j.mrfmmm.2004.06.028; Mulik J, 2017, MAR POLLUT BULL, V120, P192, DOI 10.1016/j.marpolbul.2017.05.014; Newell RIE, 2007, MAR ECOL PROG SER, V341, P293, DOI 10.3354/meps341293; Nisbet RM, 2000, J ANIM ECOL, V69, P913, DOI 10.1046/j.1365-2656.2000.00448.x; Odom E. P., 2006, FUNDAMENTALS ECOLOGY; Odum EP, 2000, CONCEPTS AND CONTROVERSIES IN TIDAL MARSH ECOLOGY, P3; OFFICIAL JOURNAL OF THE EUROPEAN UNION, 2008, OFFICIAL J EUROPEA L; Oleksiak MF, 2008, AQUAT TOXICOL, V90, P161, DOI 10.1016/j.aquatox.2008.08.010; Ostman O, 2017, J APPL ECOL, V54, P557, DOI 10.1111/1365-2664.12719; Ota K, 2012, NATURWISSENSCHAFTEN, V99, P23, DOI 10.1007/s00114-011-0864-2; Otto SA, 2018, ECOL INDIC, V84, P619, DOI 10.1016/j.ecolind.2017.05.045; Pecquerie L, 2009, J SEA RES, V62, P93, DOI 10.1016/j.seares.2009.06.002; Pennycuick C. J., 1992, NEWTON RULES BIOL; Perez-Dominguez R, 2012, ECOL INDIC, V23, P34, DOI 10.1016/j.ecolind.2012.03.006; Perez-Ruzafa A, 2005, HYDROBIOLOGIA, V550, P11, DOI 10.1007/s10750-005-4356-2; Perez-Ruzafa A, 2004, J FISH BIOL, V64, P202, DOI 10.1046/j.1095-8649.2004.00301.x; Perez-Ruzafa A, 2002, HYDROBIOLOGIA, V475, P359, DOI 10.1023/A:1020343510060; Perez-Ruzafa A, 2008, J NAT CONSERV, V16, P187, DOI 10.1016/j.jnc.2008.09.008; Perez-Ruzafa A., 2015, COASTAL ECOSYSTEMS E, P89; Perez-Ruzafa A., 2011, TRANSIT WATERS B, V5, P50, DOI DOI 10.1285/I1825229XV5N1P50; Perez-Ruzafa A, 2013, ESTUAR COAST SHELF S, V132, P17, DOI 10.1016/j.ecss.2012.04.011; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Pitacco V, 2018, MAR POLLUT BULL, V129, P813, DOI 10.1016/j.marpolbul.2017.10.085; Plank MJ, 2016, B MATH BIOL, V78, P280, DOI 10.1007/s11538-016-0143-7; Portner HO, 2010, J EXP BIOL, V213, P881, DOI 10.1242/jeb.037523; Portner HO, 2012, MAR ECOL PROG SER, V470, P273, DOI 10.3354/meps10123; Polacik M, 2014, J EVOLUTION BIOL, V27, P854, DOI 10.1111/jeb.12359; Pontzer H, 2016, NATURE, V533, P390, DOI 10.1038/nature17654; Porte C, 2006, COMP BIOCHEM PHYS C, V143, P303, DOI 10.1016/j.cbpc.2006.03.004; Portner HO, 2002, COMP BIOCHEM PHYS A, V132, P739, DOI 10.1016/S1095-6433(02)00045-4; Pujolar JM, 2012, BMC GENOMICS, V13, DOI 10.1186/1471-2164-13-507; Raerinne JP, 2013, BIOSCIENCE, V63, P191, DOI 10.1525/bio.2013.63.3.7; Riesch R, 2015, J ANIM ECOL, V84, P1732, DOI 10.1111/1365-2656.12425; Rombouts I, 2013, ECOL INDIC, V24, P353, DOI 10.1016/j.ecolind.2012.07.001; Salas F, 2006, OCEAN COAST MANAGE, V49, P308, DOI 10.1016/j.ocecoaman.2006.03.001; Sanchez W, 2009, TRAC-TREND ANAL CHEM, V28, P150, DOI 10.1016/j.trac.2008.10.012; Sanchez-Moyano JE, 2017, MAR ENVIRON RES, V132, P41, DOI 10.1016/j.marenvres.2017.10.014; Sarkar A, 2006, ECOTOXICOLOGY, V15, P333, DOI 10.1007/s10646-006-0069-1; SCHEFFER M, 1998, ECOLOGY SHALLOW LAKE; SEWELL MA, 1990, INVERTEBR REPROD DEV, V17, P1, DOI 10.1080/07924259.1990.9672081; Sigovini M, 2013, HYDROBIOLOGIA, V717, P41, DOI 10.1007/s10750-013-1565-y; Simboura N, 2008, MAR POLLUT BULL, V56, P116, DOI 10.1016/j.marpolbul.2007.09.042; Simboura N., 2002, MEDITERRANEAN MARINE, V3, P77, DOI DOI 10.12681/MMS.249; Sivadas SK, 2016, MAR POLLUT BULL, V106, P62, DOI 10.1016/j.marpolbul.2016.03.026; Sogard SM, 2011, B MAR SCI, V87, P857, DOI 10.5343/bms.2010.1045; Sousa T, 2008, PHILOS T R SOC B, V363, P2453, DOI 10.1098/rstb.2007.2230; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; Tam JC, 2017, ICES J MAR SCI, V74, P2040, DOI 10.1093/icesjms/fsw230; Taylor BM, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2423; Taylor BT, 2014, ECOGRAPHY, V37, P1; Teixeira H, 2010, MAR POLLUT BULL, V60, P589, DOI 10.1016/j.marpolbul.2009.11.005; Than L., 2015, CHINA J CHIN MAT MED, V40, P822; Thorn R., 1989, STRUCTURAL STABILITY; Torres MA, 2017, ECOL INDIC, V77, P67, DOI 10.1016/j.ecolind.2017.01.030; Torres MA, 2008, ECOTOX ENVIRON SAFE, V71, P1, DOI 10.1016/j.ecoenv.2008.05.009; Trip EDL, 2014, J ANIM ECOL, V83, P866, DOI 10.1111/1365-2656.12183; Valles H, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0086291; van der Oost R, 2003, ENVIRON TOXICOL PHAR, V13, P57, DOI 10.1016/S1382-6689(02)00126-6; Venier P, 2006, MUTAT RES-FUND MOL M, V602, P121, DOI 10.1016/j.mrfmmm.2006.08.007; Vila R, 2014, DRUG FUTURE, V39, P557, DOI 10.1358/dof.2014-39.8.2214012; Zhang J, 2014, PHYSICA A, V405, P278, DOI 10.1016/j.physa.2014.03.040 145 0 0 11 11 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 1470-160X 1872-7034 ECOL INDIC Ecol. Indic. JUL 2018 90 334 345 10.1016/j.ecolind.2018.03.019 12 Biodiversity Conservation; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology GO7QL WOS:000440266100035 2018-11-22 J Neuheimer, AB; MacKenzie, BR; Payne, MR Neuheimer, Anna B.; MacKenzie, Brian R.; Payne, Mark R. Temperature-dependent adaptation allows fish to meet their food across their species' range SCIENCE ADVANCES English Article COD GADUS-MORHUA; HADDOCK MELANOGRAMMUS-AEGLEFINUS; SIZE-AT-AGE; GROWING DEGREE-DAY; ATLANTIC COD; CLIMATE-CHANGE; DEVELOPMENT RATES; BORNHOLM BASIN; WARMING WATERS; EGG-PRODUCTION In seasonal environments, timing is everything: Ecosystem dynamics are controlled by how well predators can match their prey in space and time. This match of predator and prey is thought to be particularly critical for the vulnerable larval life stages of many fish, where limited parental investment means that population survival can depend on how well larvae match the timing of their food. We develop and apply novel metrics of thermal time to estimate the timing of unobserved stages of fish larvae and their prey across the north Atlantic. The result shows that previously identified life-history strategies are adaptive in that they allow parents to "predict" a beneficial environment for their offspring and meet larval fish food timing that varies by 99 days across a species' range. [Neuheimer, Anna B.] Univ Hawaii Manoa, Dept Oceanog, Sch Ocean & Earth Sci & Technol, Honolulu, HI 96822 USA; [Neuheimer, Anna B.] Aarhus Univ, Aarhus Inst Adv Studies, DK-8000 Aarhus C, Denmark; [MacKenzie, Brian R.; Payne, Mark R.] Tech Univ Denmark DTU Aqua, Natl Inst Aquat Resources, DK-2800 Lyngby, Denmark Neuheimer, AB (reprint author), Univ Hawaii Manoa, Dept Oceanog, Sch Ocean & Earth Sci & Technol, Honolulu, HI 96822 USA.; Neuheimer, AB (reprint author), Aarhus Univ, Aarhus Inst Adv Studies, DK-8000 Aarhus C, Denmark. abneuheimer@gmail.com Payne, Mark/C-6844-2008 Payne, Mark/0000-0001-5795-2481; Neuheimer, Anna/0000-0002-9470-7140 European Union 7th Framework Programme (FP7 2007-2013) [308299]; Horizon 2020 research and innovation programme [727852]; AIAS-COFUND Fellowship at the Aarhus Institute of Advanced Studies; Aarhus University Research Foundation (Aarhus Universitets Forskningsfond); European Union's Seventh Framework Programme, Marie Curie Actions [609033]; Danmarks Grundforskningsfond We thank S. Tsoukali for the discussions regarding egg development rates for marine fish. We thank R. Hedeholm for providing the Greenland temperature data. The study has been supported by the European Union 7th Framework Programme (FP7 2007-2013) under grant agreement number 308299 (NACLIM) and the Horizon 2020 research and innovation programme under grant agreement number 727852 (Blue-Action). This work was completed during an AIAS-COFUND Fellowship to A.B.N. at the Aarhus Institute of Advanced Studies, which receives funding from the Aarhus University Research Foundation (Aarhus Universitets Forskningsfond) and the European Union's Seventh Framework Programme, Marie Curie Actions (grant agreement 609033). We thank the Center for Macroecology, Evolution and Climate, where some initial concepts and planning of this work was conducted by A.B.N. and B.R.M., and which has received funding from the Danmarks Grundforskningsfond. Albouy-Boyer S, 2016, J PLANKTON RES, V38, P589, DOI 10.1093/plankt/fbw020; Allen JM, 2014, GLOBAL CHANGE BIOL, V20, P1251, DOI 10.1111/gcb.12364; ANDERSON JT, 1990, MAR ECOL PROG SER, V67, P127, DOI 10.3354/meps067127; Asch RG, 2015, P NATL ACAD SCI USA, V112, pE4065, DOI 10.1073/pnas.1421946112; Bradbury IR, 2000, CAN J FISH AQUAT SCI, V57, P1761, DOI 10.1139/cjfas-57-9-1761; Brander K., 1993, Northwest Atlantic Fisheries Organization Scientific Council Studies, V18, P13; BRANDER K, 1992, CAN J FISH AQUAT SCI, V49, P238, DOI 10.1139/f92-028; Burrow JF, 2011, J PLANKTON RES, V33, P1153, DOI 10.1093/plankt/fbr015; Busch KET, 2009, MAR BIOL RES, V5, P286, DOI 10.1080/17451000802441319; Campbell RG, 2001, MAR ECOL PROG SER, V221, P161, DOI 10.3354/meps221161; DAVENPORT J, 1980, J FISH BIOL, V16, P249, DOI 10.1111/j.1095-8649.1980.tb03702.x; Debes H, 2008, HYDROBIOLOGIA, V600, P247, DOI 10.1007/s10750-007-9238-3; Drinkwater KF, 2005, ICES J MAR SCI, V62, P1327, DOI 10.1016/j.icejms.2005.05.015; Durant JM, 2007, CLIM RES, V33, P271, DOI 10.3354/cr033271; Dzierzbicka-Glowacka L, 2004, J PLANKTON RES, V26, P49, DOI 10.1093/plankt/fbh002; ELLERTSEN B, 1989, RAP PROCES, V191, P209; Fahey M. P., 1999, NMFSNE124 NOAA; Folkvord A, 2005, CAN J FISH AQUAT SCI, V62, P1037, DOI 10.1139/F05-008; Forrest J, 2010, PHILOS T R SOC B, V365, P3101, DOI 10.1098/rstb.2010.0145; FORTIER L, 1995, MAR ECOL PROG SER, V120, P11, DOI 10.3354/meps120011; Geffen AJ, 2006, J FISH BIOL, V69, P1060, DOI 10.1111/j.1095-8649.2006.01181.x; Gentleman WC, 2008, ICES J MAR SCI, V65, P399, DOI 10.1093/icesjms/fsn047; Gronkjaer P, 1997, MAR ECOL PROG SER, V154, P91, DOI 10.3354/meps154091; Heath MR, 2007, FISH OCEANOGR, V16, P169, DOI 10.1111/j.1365-2419.2006.00423.x; Hjort J, 1914, RAPP P V REUN CONS I, V20, P1; International Council for the Exploration of the Sea (ICES), 2005, 274 ICES; Jordaan A, 2003, BIG FISH BANG, P45; Jordaan A., 2002, THESIS; Koeller P, 2009, SCIENCE, V324, P791, DOI 10.1126/science.1170987; LAURENCE GC, 1978, MAR BIOL, V50, P1, DOI 10.1007/BF00390536; LAURENCE GC, 1976, J CONSEIL, V36, P220; LeClus F, 1995, S AFR J MARINE SCI, V16, P1; Lee HW, 2003, J PLANKTON RES, V25, P261, DOI 10.1093/plankt/25.3.261; Lester RE, 2014, GLOBAL CHANGE BIOL, V20, P3471, DOI 10.1111/gcb.12634; Mackas DL, 2007, PROG OCEANOGR, V75, P223, DOI 10.1016/j.pocean.2007.08.010; Melle W, 2014, PROG OCEANOGR, V129, P244, DOI 10.1016/j.pocean.2014.04.026; MILLER CB, 1993, MAR ECOL PROG SER, V102, P15, DOI 10.3354/meps102015; Minkowski H., 1908, COMMUNICATION 0921; Myers R.A., 1993, Fisheries Oceanography, V2, P154, DOI 10.1111/j.1365-2419.1993.tb00131.x; Neuheimer AB, 2011, NAT CLIM CHANGE, V1, P110, DOI [10.1038/nclimate1084, 10.1038/NCLIMATE1084]; Neuheimer AB, 2010, J MARINE SYST, V81, P122, DOI 10.1016/j.jmarsys.2009.12.009; Neuheimer AB, 2007, CAN J FISH AQUAT SCI, V64, P375, DOI 10.1139/F07-003; Neuheimer AB, 2014, ECOLOGY, V95, P3364, DOI 10.1890/13-2370.1; Neuheimer AB, 2012, GLOBAL CHANGE BIOL, V18, P1812, DOI 10.1111/j.1365-2486.2012.02673.x; Opdal AF, 2011, MAR ECOL PROG SER, V439, P255, DOI 10.3354/meps09335; PAULY D, 1988, ENVIRON BIOL FISH, V22, P261, DOI 10.1007/BF00004892; Peck MA, 2012, ADV ECOL RES, V47, P177, DOI 10.1016/B978-0-12-398315-2.00003-X; Pepin P, 1997, CAN J FISH AQUAT SCI, V54, P2, DOI 10.1139/cjfas-54-S1-2; R Core Team, 2016, R LANG ENV STAT COMP; Reglero P, 2018, P ROY SOC B-BIOL SCI, V285, DOI 10.1098/rspb.2017.1405; Riche O, 2014, J MARINE SYST, V131, P36, DOI 10.1016/j.jmarsys.2013.11.003; Rowlands WL, 2008, CAN J FISH AQUAT SCI, V65, P1297, DOI 10.1139/F08-041; SINCLAIR M, 1984, CAN J FISH AQUAT SCI, V41, P1055, DOI 10.1139/f84-123; Swalethorp R, 2016, MAR ECOL PROG SER, V555, P185, DOI 10.3354/meps11816; Tarifeno E, 2008, ENVIRON BIOL FISH, V81, P387, DOI 10.1007/s10641-007-9208-7; Thome C, 2016, CAN J FISH AQUAT SCI, V73, P1213, DOI 10.1139/cjfas-2015-0286; THOMPSON AB, 1991, MAR ECOL PROG SER, V68, P213; Tsoukali S, 2016, MAR ECOL PROG SER, V555, P151, DOI 10.3354/meps11758; Venturelli PA, 2010, CAN J FISH AQUAT SCI, V67, P1057, DOI 10.1139/F10-041; vonHerbing IH, 1996, MAR BIOL, V124, P593, DOI 10.1007/BF00351041; Voss R, 2003, FISH RES, V63, P97, DOI [10.1016/S0165-7836(02)00282-5, 10.1016/S0165-7836(02)00249-7]; Warton DI, 2006, BIOL REV, V81, P259, DOI 10.1017/S1464793106007007; Warton DI, 2012, METHODS ECOL EVOL, V3, P257, DOI 10.1111/j.2041-210X.2011.00153.x; Wieland Kai, 1994, Dana, V10, P163 64 0 0 3 3 AMER ASSOC ADVANCEMENT SCIENCE WASHINGTON 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA 2375-2548 SCI ADV Sci. Adv. JUL 2018 4 7 eaar4349 10.1126/sciadv.aar4349 8 Multidisciplinary Sciences Science & Technology - Other Topics GS0IN WOS:000443176100017 30050985 DOAJ Gold, Green Published 2018-11-22 J Rolo, V; Olivier, PI; van Aarde, RJ Rolo, Victor; Olivier, Pieter I.; van Aarde, Rudi J. Determinants of canopy gap characteristics in rehabilitating coastal dune forests APPLIED VEGETATION SCIENCE English Article canopy openness; hierarchical Bayesian models; multi-stemming; random forest classification; size frequency distribution; SPOT6 TROPICAL FOREST; SOUTH-AFRICA; REGENERATION; TREES; DISTURBANCE; RESTORATION; DYNAMICS; GROWTH; COMMUNITIES; MORTALITY QuestionsWhat drives canopy gap formation in regenerating coastal dune forest? Does canopy gap size frequency distribution differ between new and old-growth forests? Can canopy gaps divert regenerating trajectories? LocationRehabilitating coastal dune forest, KwaZulu-Natal, South Africa. MethodsWe mapped canopy gaps in regenerating dune forest patches of varying age, which develop after seeding of the pioneer Vachellia kosiensis, and a reference forest by means of unsupervised classification of multi-spectral satellite images. We tested if gap formation can be explained by abiotic (exposure to winds) and/or biotic (tree density at early stages) variables. We calculated the scaling exponent of a power-law model to quantify if gap size frequency differed between new and old-growth forests. Finally, we measured canopy openness, tree height and number of stems to validate canopy gap classification and assess the consequences of canopy gaps on regenerating trajectories. ResultsExposure to winds and tree density at early stages were both significant predictors of gap presence. Gaps were more likely to be present along dune ridges and areas with low tree density than valleys and areas with high tree density at early stages. Large gaps were common in both new and old-growth forests. The scaling exponent was positively related to regeneration age, indicating a reduction in gap size as the forest aged. Areas with open canopies had shorter individual trees that were more likely to be multi-stemmed than areas with closed canopies. ConclusionCanopy gaps are an important component of new and old-growth coastal dune forests dynamics. Although gaps are filled during forest development, changes in individual life-history strategies and morphology may alter regeneration trajectories. However, because their effect is partly controlled by the exposure to wind and tree density at early stages, it can also be manipulated by management to ensure nucleation, which could accelerate forest recovery. [Rolo, Victor; Olivier, Pieter I.; van Aarde, Rudi J.] Univ Pretoria, Conservat Ecol Res Unit, Pretoria, South Africa; [Rolo, Victor] Univ Extremadura, Forest Res Grp, Indehesa, Plasencia, Spain Rolo, V (reprint author), Univ Pretoria, Conservat Ecol Res Unit, Pretoria, South Africa. victorroloromero@gmail.com Rolo, Victor/0000-0001-5854-9512 National Research Foundation of South Africa (NRF); Technology and Human Resources for Industry Programme (THRIP); Richards Bay Minerals National Research Foundation of South Africa (NRF); Technology and Human Resources for Industry Programme (THRIP); Richards Bay Minerals Asner GP, 2003, REMOTE SENS ENVIRON, V87, P521, DOI 10.1016/j.rse.2003.08.006; Asner GP, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0060875; Baraloto C, 2012, J APPL ECOL, V49, P861, DOI 10.1111/j.1365-2664.2012.02164.x; Barnes R. D., 1996, ACACIA KARROO MONOGR; Bastin JF, 2015, SCI REP-UK, V5, DOI 10.1038/srep13156; Bastin JF, 2014, ECOL APPL, V24, P1984, DOI 10.1890/13-1574.1; Bond WJ, 2003, INT J PLANT SCI, V164, pS103, DOI 10.1086/374191; BROKAW NVL, 1982, BIOTROPICA, V14, P158, DOI 10.2307/2387750; BROKAW NVL, 1985, ECOLOGY, V66, P682, DOI 10.2307/1940529; Burgess Neil D., 2000, COASTAL FORESTS E AF; Chambers JQ, 2007, TRENDS ECOL EVOL, V22, P414, DOI 10.1016/j.tree.2007.05.001; Chapman L, 2000, METEOROL APPL, V7, P335, DOI 10.1017/S1350482700001729; DENSLOW JS, 1980, BIOTROPICA, V12, P47, DOI 10.2307/2388156; Dietze MC, 2008, ECOL MONOGR, V78, P331, DOI 10.1890/07-0271.1; Fahey RT, 2007, J ECOL, V95, P1098, DOI 10.1111/j.1365-2745.2007.01283.x; Forbes A, 2017, ECOL MANAG RESTOR, V18, P78, DOI 10.1111/emr.12239; Forbes AS, 2016, RESTOR ECOL, V24, P336, DOI 10.1111/rec.12313; Frazer G. W., 1999, GAP LIGHT ANAL GLA V; Galetti M, 2013, SCIENCE, V340, P1086, DOI 10.1126/science.1233774; Garbarino M, 2012, ANN FOREST SCI, V69, P617, DOI 10.1007/s13595-011-0177-9; Goulamoussene Y, 2017, BIOGEOSCIENCES, V14, P353, DOI 10.5194/bg-14-353-2017; Gourlay ID, 1996, FOREST ECOL MANAG, V88, P289, DOI 10.1016/S0378-1127(96)03782-6; Grainger MJ, 2013, AFR J ECOL, V51, P11, DOI 10.1111/j.1365-2028.2012.01348.x; Griffiths ME, 2007, PLANT ECOL, V189, P227, DOI 10.1007/s11258-006-9179-3; Hobbs N. T., 2015, BAYESIAN MODELS STAT, DOI [10. 1515/9781400866557, DOI 10.1515/9781400866557]; Jennings SB, 1999, FORESTRY, V72, P59, DOI 10.1093/forestry/72.1.59; King DA, 2006, J ECOL, V94, P670, DOI 10.1111/j.1365-2745.2006.01112.x; Lamb D, 2005, SCIENCE, V310, P1628, DOI 10.1126/science.1111773; Larson AJ, 2015, ECOLOGY, V96, P2855, DOI 10.1890/15-0628.1; Liao JB, 2015, SCI REP-UK, V5, DOI 10.1038/srep11721; Lindenmayer DB, 2012, SCIENCE, V338, P1305, DOI 10.1126/science.1231070; Malahlela O, 2014, INT J REMOTE SENS, V35, P6397, DOI 10.1080/01431161.2014.954061; Mikita T., 2015, Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, V63, P793, DOI 10.11118/actaun201563030793; Mucina L., 2006, STRELITZIA, V19, P584; Nzunda EF, 2008, FUNCT ECOL, V22, P577, DOI 10.1111/j.1365-2435.2008.01405.x; Nzunda EF, 2007, J VEG SCI, V18, P693, DOI 10.1658/1100-9233(2007)18[693:MTISCD]2.0.CO;2; Obiri JAF, 2004, J VEG SCI, V15, P539, DOI 10.1658/1100-9233(2004)015[0539:CVDICG]2.0.CO;2; Pasanen H, 2016, EUR J FOREST RES, V135, P697, DOI 10.1007/s10342-016-0965-8; Pfeifer M, 2012, REMOTE SENS ENVIRON, V118, P103, DOI 10.1016/j.rse.2011.11.009; Pinage ER, 2016, IFOREST, V9, P461, DOI 10.3832/ifor1534-008; Pretzsch H, 2009, FOREST DYNAMICS, GROWTH AND YIELD: FROM MEASUREMENT TO MODEL, P1, DOI 10.1007/978-3-540-88307-4_1; Rolo V, 2017, RESTOR ECOL, V25, P788, DOI 10.1111/rec.12501; Rolo V, 2016, FOREST ECOL MANAG, V377, P26, DOI 10.1016/j.foreco.2016.06.039; Schnitzer SA, 2001, ECOLOGY, V82, P913, DOI 10.1890/0012-9658(2001)082[0913:TGATMO]2.0.CO;2; Sturtz S, 2005, J STAT SOFTW, V12, P1; vanAarde RJ, 1996, LANDSCAPE URBAN PLAN, V34, P277, DOI 10.1016/0169-2046(95)00237-5; vansAarde R., 2014, COASTAL CONSERVATION; Vleut I, 2013, J TROP ECOL, V29, P173, DOI 10.1017/S0266467413000126; Zahawi RA, 2013, J APPL ECOL, V50, P88, DOI 10.1111/1365-2664.12014 49 0 0 4 4 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1402-2001 1654-109X APPL VEG SCI Appl. Veg. Sci. JUL 2018 21 3 451 460 10.1111/avsc.12380 10 Plant Sciences; Ecology; Forestry Plant Sciences; Environmental Sciences & Ecology; Forestry GR5IB WOS:000442660900010 2018-11-22 J Kvalnes, T; Roberg, AA; Jensen, H; Holand, H; Parn, H; Saether, BE; Ringsby, TH Kvalnes, Thomas; Roberg, Anja As; Jensen, Henrik; Holand, Hakon; Paern, Henrik; Saether, Bernt-Erik; Ringsby, Thor Harald Offspring fitness and the optimal propagule size in a fluctuating environment JOURNAL OF AVIAN BIOLOGY English Article Egg volume; individual fitness; Passer domesticus; plasticity; survival EGG SIZE; HOUSE SPARROW; INDIVIDUAL OPTIMIZATION; REPRODUCTIVE OUTPUT; PASSER-DOMESTICUS; PARENTAL QUALITY; PARUS-MAJOR; CLUTCH SIZE; GREAT TITS; SURVIVAL Propagule size is an important maternal effect on offspring fitness and phenotype in birds and other oviparous animals. The performance of propagules often increases with size, but a fluctuating environment may introduce temporal variation in the optimal phenotype. Understanding these mechanisms will provide novel insights into the eco-evolutionary dynamics of life history strategies in parental reproductive investment. We investigated the interaction between propagule size (measured as egg volume) and environmental conditions on offspring mortality and phenotype in a Norwegian house sparrow population. Increased propagule size reduced offspring mortality in early life, with more pronounced effects under heavy precipitation. However, the optimal propagule size for low offspring mortality until recruitment shifted from large to small as temperature increased. Propagule size had no significant effect on fledgling body mass and tarsus length. These results reveal a potential for eco-evolutionary dynamics in propagule size, as populations adapt to fluctuating environmental conditions. The ultimate outcome of this dynamic process will also depend on variation in parental fitness and tradeoffs with other life-history traits, particularly clutch size. [Kvalnes, Thomas; Roberg, Anja As; Jensen, Henrik; Holand, Hakon; Paern, Henrik; Saether, Bernt-Erik; Ringsby, Thor Harald] Norwegian Univ Sci & Technol NTNU, Dept Biol, Ctr Biodivers Dynam, NO-7491 Trondheim, Norway Kvalnes, T (reprint author), Norwegian Univ Sci & Technol NTNU, Dept Biol, Ctr Biodivers Dynam, NO-7491 Trondheim, Norway. thomas.kvalnes@ntnu.no Jensen, Henrik/0000-0001-7804-1564 Research Council of Norway [204304, 221956]; Research Council of Norway through Centres of Excellence funding scheme [223257]; Norwegian University of Science and Technology Funding was provided by the Research Council of Norway through grant no. 204304 and 221956, and its Centres of Excellence funding scheme (grant no. 223257), and the Norwegian University of Science and Technology. Allen RM, 2008, AM NAT, V171, P225, DOI 10.1086/524952; Amundsen T, 1996, J ANIM ECOL, V65, P545, DOI 10.2307/5735; Anderson T. R., 2006, BIOL UBIQUITOUS HOUS; Andreasson F, 2016, J EXP BIOL, V219, P2212, DOI 10.1242/jeb.135350; Bates D, 2015, J STAT SOFTW, V67, P1; Billing AM, 2012, MOL ECOL, V21, P1487, DOI 10.1111/j.1365-294X.2012.05490.x; BOLTON M, 1991, J ANIM ECOL, V60, P949, DOI 10.2307/5424; Both C, 1998, P ROY SOC B-BIOL SCI, V265, P2303, DOI 10.1098/rspb.1998.0575; Brooks ME, 2017, R J, V9, P378; Burnham KP, 2002, MODEL SELECTION MULT; Chevin LM, 2017, AM NAT, V190, P786, DOI 10.1086/694121; Chevin LM, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000357; Dias GM, 2010, OIKOS, V119, P154, DOI 10.1111/j.1600-0706.2009.17725.x; Einum S, 1999, P ROY SOC B-BIOL SCI, V266, P2095, DOI 10.1098/rspb.1999.0893; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Garant D, 2007, EVOLUTION, V61, P1546, DOI 10.1111/j.1558-5646.2007.00128.x; Heath DD, 1998, MATERNAL EFFECTS AS ADAPTATIONS, P178; Hendry AP, 2001, AM NAT, V157, P387, DOI 10.1086/319316; IVANOV BE, 1987, EKOL POL-POL J ECOL, V35, P699; Janzen FJ, 2009, J EVOLUTION BIOL, V22, P2222, DOI 10.1111/j.1420-9101.2009.01838.x; KAPLAN RH, 1992, ECOLOGY, V73, P280, DOI 10.2307/1938739; Koch LK, 2014, BMC EVOL BIOL, V14, DOI 10.1186/1471-2148-14-125; Krist M, 2011, BIOL REV, V86, P692, DOI 10.1111/j.1469-185X.2010.00166.x; Kvalnes T., 2018, DRYAD DIGITAL REPOSI, DOI DOI 10.5061/DRYAD.M74C7M9; Kvalnes T, 2013, OECOLOGIA, V171, P391, DOI 10.1007/s00442-012-2437-2; Marshall DJ, 2008, ECOLOGY, V89, P2506, DOI 10.1890/07-0267.1; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4; Nord A, 2016, BIOL LETTERS, V12, DOI 10.1098/rsbl.2016.0087; Oberg M, 2015, ECOL EVOL, V5, P345, DOI 10.1002/ece3.1345; OJANEN M, 1983, ANN ZOOL FENN, V20, P57; Olofsson H, 2009, P ROY SOC B-BIOL SCI, V276, P2963, DOI 10.1098/rspb.2009.0500; Pettifor RA, 2001, J ANIM ECOL, V70, P62, DOI 10.1046/j.1365-2656.2001.00465.x; Ricklefs RE, 2006, P ROY SOC B-BIOL SCI, V273, P2077, DOI 10.1098/rspb.2006.3544; Ringsby TH, 2002, ECOLOGY, V83, P561, DOI 10.1890/0012-9658(2002)083[0561:ASDOAH]2.0.CO;2; Ringsby TH, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.2331; Roff D. A., 2002, LIFE HIST EVOLUTION; Rollinson N, 2016, BIOL REV, V91, P1134, DOI 10.1111/brv.12214; Rollinson N, 2013, AM NAT, V182, P76, DOI 10.1086/670648; Rollinson N, 2013, ECOLOGY, V94, P315, DOI 10.1890/2-0552.1; Saether BE, 2015, TRENDS ECOL EVOL, V30, P273, DOI 10.1016/j.tree.2015.03.007; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Tuljapurkar S, 2009, PHILOS T R SOC B, V364, P1499, DOI 10.1098/rstb.2009.0021; WILLIAMS TD, 1994, BIOL REV, V69, P35, DOI 10.1111/j.1469-185X.1994.tb01485.x 44 0 0 12 12 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0908-8857 1600-048X J AVIAN BIOL J. Avian Biol. JUL 2018 49 7 UNSP e01786 10.1111/jav.01786 6 Ornithology Zoology GO5CP WOS:000440036000014 2018-11-22 J Boyd, RJ; Kelly, TR; MacDougall-Shackleton, SA; MacDougall-Shackleton, EA Boyd, R. J.; Kelly, T. R.; MacDougall-Shackleton, S. A.; MacDougall-Shackleton, E. A. Alternative reproductive strategies in white-throated sparrows are associated with differences in parasite load following experimental infection BIOLOGY LETTERS English Article alternative reproductive strategies; avian malaria; host-parasite interactions; immunocompetence handicap hypothesis; plasmodium; Zonotrichia albicollis ZONOTRICHIA-ALBICOLLIS; IMMUNOCOMPETENCE HANDICAP; PHILOMACHUS-PUGNAX; POLYMORPHISM; SEX; PLASMODIUM; PATTERNS; IMMUNE; MORPH; ASSAY Immune defences often trade off with other life-history components. Within species, optimal allocation to immunity may differ between the sexes or between alternative life-history strategies. White-throated sparrows (Zonotrichia albicollis) are unusual in having two discrete plumage morphs, white-striped and tan-striped. Within each sex, white-striped individuals are more aggressive and provide less parental care than tan-striped individuals. We extended immunocompetence handicap models, which predict sex differences in immunity and parasitism, to hypothesize that infection susceptibility should be greater in white-striped than tan-striped birds. We inoculated birds of both morphs with malarial parasites. Contrary to our prediction, among birds that became infected, parasite loads were higher in tan-striped than white-striped individuals and did not differ between the sexes. Circulating androgen levels did not differ between morphs but were higher in males than females. Our findings are not consistent with androgen-mediated immunosuppression. Instead, morph differences in immunity could reflect social interactions or life-history-related differences in risk of injury, and/or genetic factors. Although plumage and behavioural morphs of white-throated sparrow may differ in disease resistance, these differences do not parallel sex differences that have been reported in animals, and do not appear to be mediated by differences in androgen levels. [Boyd, R. J.; Kelly, T. R.; MacDougall-Shackleton, S. A.; MacDougall-Shackleton, E. A.] Univ Western Ontario, Biol Dept, Adv Facil Avian Res, London, ON N6A 5B7, Canada; [MacDougall-Shackleton, S. A.] Univ Western Ontario, Psychol Dept, Adv Facil Avian Res, London, ON N6A 5C2, Canada MacDougall-Shackleton, EA (reprint author), Univ Western Ontario, Biol Dept, Adv Facil Avian Res, London, ON N6A 5B7, Canada. emacdoug@uwo.ca NSERC [293123-RGPIN, 217381-RGPIN] This work was supported by NSERC Canada Discovery Grants to E.A.M.-S. (293123-RGPIN) and S.A.M.-S. (217381-RGPIN). Boyd RJ, 2018, DRYAD DIGITAL REPOSI, DOI [10.5061/dryad.hp26sv7, DOI 10.5061/DRYAD.HP26SV7]; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Griffiths R, 1998, MOL ECOL, V7, P1071, DOI 10.1046/j.1365-294x.1998.00389.x; GROSS MR, 1980, P NATL ACAD SCI-BIOL, V77, P6937, DOI 10.1073/pnas.77.11.6937; Hellgren O, 2004, J PARASITOL, V90, P797, DOI 10.1645/GE-184R1; Horton BM, 2014, ANIM BEHAV, V93, P207, DOI 10.1016/j.anbehav.2014.04.015; Jukema J, 2006, BIOL LETT-UK, V2, P161, DOI 10.1098/rsbl.2005.0416; LANK DB, 1995, NATURE, V378, P59, DOI 10.1038/378059a0; Lee KA, 2006, INTEGR COMP BIOL, V46, P1000, DOI 10.1093/icb/icl049; Lozano GA, 2013, CAN J ZOOL, V91, P212, DOI 10.1139/cjz-2012-0324; Michopoulos V, 2007, AUK, V124, P1330, DOI 10.1642/0004-8038(2007)124[1330:AGATDP]2.0.CO;2; Poulin R, 1996, AM NAT, V147, P287, DOI 10.1086/285851; R Core Team, 2017, R LANG ENV STAT COMP; Roberts ML, 2004, ANIM BEHAV, V68, P227, DOI 10.1016/j.anbehav.2004.05.001; Sacchi R, 2007, AMPHIBIA-REPTILIA, V28, P408, DOI 10.1163/156853807781374700; Sarquis-Adamson Y, 2016, ROY SOC OPEN SCI, V3, DOI 10.1098/rsos.160216; Schneider DS, 2008, NAT REV IMMUNOL, V8, P889, DOI 10.1038/nri2432; Sinervo B, 1996, NATURE, V380, P240, DOI 10.1038/380240a0; Spinney LH, 2006, HORM BEHAV, V50, P762, DOI 10.1016/j.yhbeh.2006.06.034; Tuttle EM, 2016, CURR BIOL, V26, P344, DOI 10.1016/j.cub.2015.11.069; Tuttle EM, 2003, BEHAV ECOL, V14, P425, DOI 10.1093/beheco/14.3.425; Venables W. N, 2002, MODERN APPL STAT S; Walther EL, 2014, PARASITOL RES, V113, P3319, DOI 10.1007/s00436-014-3995-5; WATT DJ, 1984, AUK, V101, P110; Zuk M, 1996, INT J PARASITOL, V26, P1009, DOI 10.1016/S0020-7519(96)80001-4 25 0 0 12 12 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 1744-957X BIOL LETTERS Biol. Lett. JUL 2018 14 7 20180194 10.1098/rsbl.2018.0194 4 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology GO6GV WOS:000440138500007 29973391 2018-11-22 J Gregoir, AF; Thore, ESJ; Philippe, C; Pinceel, T; Brendonck, L; Vanschoenwinkel, B Gregoir, Arnout Francis; Thore, Eli Samuel Joachim; Philippe, Charlotte; Pinceel, Tom; Brendonck, Luc; Vanschoenwinkel, Bram Squeezing out the last eggannual fish increase reproductive efforts in response to a predation threat ECOLOGY AND EVOLUTION English Article life history; Nothobranchius; phenotypic plasticity; predation risk LIFE-HISTORY EVOLUTION; GUPPIES POECILIA-RETICULATA; INDUCED PLASTICITY; ANNUAL KILLIFISH; TRADE-OFF; NOTHOBRANCHIUS-FURZERI; ANTIPREDATOR BEHAVIOR; PHENOTYPIC PLASTICITY; TRINIDADIAN GUPPIES; GENETIC-BASIS Both constitutive and inducible antipredator strategies are ubiquitous in nature and serve to maximize fitness under a predation threat. Inducible strategies may be favored over constitutive defenses depending on their relative cost and benefit and temporal variability in predator presence. In African temporary ponds, annual killifish of the genus Nothobranchius are variably exposed to predators, depending on whether larger fish invade their habitat from nearby rivers during floods. Nonetheless, potential plastic responses to predation risk are poorly known. Here, we studied whether Nothobranchius furzeri individuals adjust their life history in response to a predation threat. For this, we monitored key life history traits in response to cues that signal the presence of predatory pumpkinseed sunfish (Lepomis gibbosus). While growth rate, adult body size, age at maturation, and initial fecundity were not affected, peak and total fecundity were higher in the predation risk treatment. This contrasts with known life history strategies of killifish from permanent waters, which tend to reduce reproduction in the presence of predators. Although our results show that N.furzeri individuals are able to detect predators and respond to their presence by modulating their reproductive output, these responses only become evident after a few clutches have been deposited. Overall our findings suggest that, in the presence of a predation risk, it can be beneficial to increase the production of life stages that can persist until the predation risk has faded. [Gregoir, Arnout Francis; Thore, Eli Samuel Joachim; Philippe, Charlotte; Pinceel, Tom; Brendonck, Luc; Vanschoenwinkel, Bram] Univ Leuven, Anim Ecol Global Change & Sustainable Dev, Leuven, Belgium; [Philippe, Charlotte] Univ Antwerp, Syst Physiol & Ecotoxicol Res, Antwerp, Belgium; [Pinceel, Tom] Univ Free State, Ctr Environm Management, Bloemfontein, South Africa; [Brendonck, Luc] Northwest Univ, Res Unit Environm Sci & Management, Potchefstroom, South Africa; [Vanschoenwinkel, Bram] Vrije Univ Brussel, Dept Biol, Community Ecol Lab, Brussels, Belgium Gregoir, AF (reprint author), Univ Leuven, Anim Ecol Global Change & Sustainable Dev, Leuven, Belgium. arnout.gregoir@kuleuven.be Thore, Eli/0000-0002-0029-8404 FWO (Fonds Wetenschappelijk Onderzoek) [12F0716N]; KU Leuven Research Fund [PF/10/007] FWO (Fonds Wetenschappelijk Onderzoek), Grant/Award Number: 12F0716N; KU Leuven Research Fund, Grant/Award Number: PF/10/007 Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; Belk MC, 1998, OECOLOGIA, V113, P203, DOI 10.1007/s004420050369; Blazek R, 2013, EVODEVO, V4, DOI 10.1186/2041-9139-4-24; Cellerino A, 2016, BIOL REV, V91, P511, DOI 10.1111/brv.12183; Creel S, 2007, SCIENCE, V315, P960, DOI 10.1126/science.1135918; DALY M, 1992, ANIM BEHAV, V44, P1, DOI 10.1016/S0003-3472(05)80748-1; David M, 2014, BEHAV ECOL, V25, P1148, DOI 10.1093/beheco/aru101; Day T, 2002, EVOLUTION, V56, P877; Dill LM, 1999, BEHAV ECOL, V10, P452, DOI 10.1093/beheco/10.4.452; Dixson DL, 2010, ECOL LETT, V13, P68, DOI 10.1111/j.1461-0248.2009.01400.x; Dzikowski R, 2004, J EXP ZOOL PART A, V301A, P776, DOI 10.1002/jez.a.61; Edgell TC, 2009, AM NAT, V174, P434, DOI 10.1086/603639; Edmunds M., 1974, DEFENCE ANIMALS SURV; Figueira WF, 2007, ANIM BEHAV, V74, P329, DOI 10.1016/i.anbehav.2006.12.010; FRASER DF, 1992, ECOLOGY, V73, P959, DOI 10.2307/1940172; Furness AI, 2015, EVOLUTION, V69, P1461, DOI 10.1111/evo.12669; Gosline AK, 2008, AQUAT ECOL, V42, P693, DOI 10.1007/s10452-007-9138-7; Graf M, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011958; Gregoir AF, 2017, J FISH BIOL, V91, P880, DOI 10.1111/jfb.13385; HAAS R, 1976, EVOLUTION, V30, P614, DOI 10.1111/j.1558-5646.1976.tb00938.x; HOOGLAND R., 1956, BEHAVIOUR, V10, P205, DOI 10.1163/156853956X00156; Johnson JB, 2001, EVOLUTION, V55, P1486; Kats LB, 1998, ECOSCIENCE, V5, P361, DOI 10.1080/11956860.1998.11682468; Lass S, 2003, HYDROBIOLOGIA, V491, P221, DOI 10.1023/A:1024487804497; Laurila A, 1999, J ANIM ECOL, V68, P1123, DOI 10.1046/j.1365-2656.1999.00354.x; Laurila A, 1998, ECOGRAPHY, V21, P484, DOI 10.1111/j.1600-0587.1998.tb00440.x; Manassa RP, 2013, ANIM BEHAV, V86, P717, DOI 10.1016/j.anbehav.2013.07.003; Mateo JM, 2007, BEHAV ECOL SOCIOBIOL, V62, P37, DOI 10.1007/s00265-007-0436-9; Messina FJ, 1999, PHYSIOL ENTOMOL, V24, P358, DOI 10.1046/j.1365-3032.1999.00151.x; Messina FJ, 2003, J EVOLUTION BIOL, V16, P501, DOI 10.1046/j.1420-9101.2003.00535.x; Peacor SD, 2002, ECOL LETT, V5, P77, DOI 10.1046/j.1461-0248.2002.00287.x; Peckarsky BL, 2001, ECOLOGY, V82, P740, DOI 10.1890/0012-9658(2001)082[0740:VIMSAM]2.0.CO;2; Pinceel T, 2016, SCI REP-UK, V6, DOI 10.1038/srep29451; Pinceel T, 2015, BIOL J LINN SOC, V114, P941, DOI 10.1111/bij.12474; PITA D, 2015, PEER J, V3; Polacik M, 2016, NAT PROTOC, V11, P1396, DOI 10.1038/nprot.2016.080; Polaik M., 2013, HYDROBIOLOGIA, V721, P99; Reichard M, 2014, EVOL ECOL, V28, P1105, DOI 10.1007/s10682-014-9732-9; Reichard M, 2010, BIOL J LINN SOC, V100, P62, DOI 10.1111/j.1095-8312.2010.01406.x; Relyea RA, 2005, ECOLOGY, V86, P1723, DOI 10.1890/04-1920; Relyea RA, 2007, OECOLOGIA, V152, P389, DOI 10.1007/s00442-007-0675-5; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; REZNICK DN, 1990, J EVOLUTION BIOL, V3, P185, DOI 10.1046/j.1420-9101.1990.3030185.x; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089; SIH A, 1987, THEOR POPUL BIOL, V31, P1, DOI 10.1016/0040-5809(87)90019-0; Silberbush A, 2015, ACTA TROP, V150, P196, DOI 10.1016/j.actatropica.2015.08.001; Skelhorn J, 2010, BIOL J LINN SOC, V99, P1; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Smith KL, 2009, BEHAVIOUR, V146, P283, DOI 10.1163/156853909X410784; Stankowich T, 2005, P ROY SOC B-BIOL SCI, V272, P2627, DOI 10.1098/rspb.2005.3251; Stearns S., 1992, EVOLUTION LIFE HIST; Stevens M, 2005, BIOL REV, V80, P573, DOI 10.1017/S1464793105006810; Stevens M, 2009, PHILOS T R SOC B, V364, P423, DOI 10.1098/rstb.2008.0217; STIBOR H, 1992, OECOLOGIA, V92, P162, DOI 10.1007/BF00317358; Stoks R, 2016, ECOL LETT, V19, P180, DOI 10.1111/ele.12551; Terzibasi E, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003866; Tozzini ET, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-77; Urban MC, 2007, ECOLOGY, V88, P2587, DOI 10.1890/06-1946.1; Valenzano DR, 2006, AGING CELL, V5, P275, DOI 10.1111/j.1474-9726.2006.00212.x; Valenzano DR, 2006, CURR BIOL, V16, P296, DOI 10.1016/j.cub.2005.12.038; Vrtilek M, 2015, ECOL FRESHW FISH, V24, P616, DOI 10.1111/eff.12175; Wafters B. R., 2009, J AM KILLIFISH ASS, V42, P37; Wildekamp R. H., 2004, WORLD KILLIES ATLAS; Williams D.D., 2006, BIOL TEMPORARY WATER; Zanette LY, 2011, SCIENCE, V334, P1398, DOI 10.1126/science.1210908 69 1 1 7 7 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. JUL 2018 8 13 6390 6398 10.1002/ece3.3422 9 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology GO2BC WOS:000439769400002 30038743 DOAJ Gold 2018-11-22 J Poorter, L; Castilho, CV; Schietti, J; Oliveira, RS; Costa, FRC Poorter, Lourens; Castilho, Carolina, V; Schietti, Juliana; Oliveira, Rafael S.; Costa, Flavia R. C. Can traits predict individual growth performance? A test in a hyperdiverse tropical forest NEW PHYTOLOGIST English Article acclimation; Amazon; defense; functional traits; growth; plant strategies; plasticity; tropical rainforest PLANT FUNCTIONAL TRAITS; LIFE-HISTORY STRATEGIES; RAIN-FOREST; WOOD DENSITY; LEAF SIZE; DEMOGRAPHIC RATES; INTRASPECIFIC VARIABILITY; PHOTOSYNTHETIC TRAITS; ECONOMICS SPECTRUM; LIGHT INTERCEPTION The functional trait approach has, as a central tenet, that plant traits are functional and shape individual performance, but this has rarely been tested in the field. Here, we tested the individual-based trait approach in a hyperdiverse Amazonian tropical rainforest and evaluated intraspecific variation in trait values, plant strategies at the individual level, and whether traits are functional and predict individual performance. We evaluated > 1300 tree saplings belonging to > 383 species, measured 25 traits related to growth and defense, and evaluated the effects of environmental conditions, plant size, and traits on stem growth. A total of 44% of the trait variation was observed within species, indicating a strong potential for acclimation. Individuals showed two strategy spectra, related to tissue toughness and organ size vs leaf display. In this nutrient- and light-limited forest, traits measured at the individual level were surprisingly poor predictors of individual growth performance because of convergence of traits and growth rates. Functional trait approaches based on individuals or species are conceptually fundamentally different: the species-based approach focuses on the potential and the individual-based approach on the realized traits and growth rates. Counterintuitively, the individual approach leads to a poor prediction of individual performance, although it provides a more realistic view on community dynamics. [Poorter, Lourens] Wageningen Univ & Res, Forest Ecol & Forest Management Grp, POB 47, NL-6700 AA Wageningen, Netherlands; [Poorter, Lourens; Schietti, Juliana; Costa, Flavia R. C.] INPA, Coordenacao Pesquisa Biodiversidade, Caixa Postal 2223, BR-69008971 Manaus, Amazonas, Brazil; [Castilho, Carolina, V] Embrapa Roraima, Rodovia BR 174,Km 8,Caixa Postal 133, BR-69301970 Boa Vista, PR, Brazil; [Oliveira, Rafael S.] Univ Estadual Campinas, Inst Biol, Dept Biol Vegetal, Caixa Postal 6109, BR-13083970 Campinas, SP, Brazil Poorter, L (reprint author), Wageningen Univ & Res, Forest Ecol & Forest Management Grp, POB 47, NL-6700 AA Wageningen, Netherlands.; Poorter, L (reprint author), INPA, Coordenacao Pesquisa Biodiversidade, Caixa Postal 2223, BR-69008971 Manaus, Amazonas, Brazil. lourens.poorter@wur.nl Oliveira, Rafael/B-3422-2013 Oliveira, Rafael/0000-0002-6392-2526 CAPES Science Without Borders grant [078/21013]; INPA's Division of Reserves This study was funded by a CAPES Science Without Borders grant #078/21013 to F.R.C.C. and L.P. The study also benefited from 15 yr of research conducted under the Brazilian Biodiversity Program (PPBio) and the Brazilian LTER (PELD), which established and monitored the vegetation plots used here. We acknowledge the support of INPA's Division of Reserves and the invaluable help of Maria Aguida Lopes, Celio Braga, Lorena Rincon, Jefferson Rodrigues de Souza, Carlos Villacorta, Elisangela Xavier Rocha, Luiza Cosme, and Natalia Castro in the field and laboratory, and Giselle F. Campos on administration. We are grateful to two anonymous reviewers for their helpful comments. Albert CH, 2011, PERSPECT PLANT ECOL, V13, P217, DOI 10.1016/j.ppees.2011.04.003; Anten NPR, 2010, AM NAT, V175, P250, DOI 10.1086/649581; Baker TR, 2004, GLOBAL CHANGE BIOL, V10, P545, DOI [10.1111/j.1365-2486.2004.00751.x, 10.1111/j.1529-8817.2003.00751.x]; Baraloto C, 2010, ECOL LETT, V13, P1338, DOI 10.1111/j.1461-0248.2010.01517.x; Barto K., 2013, MUMIN MULTIMODEL INF; Bates D., 2014, LME4 LINEAR MIXED EF, DOI DOI 10.18637/JSS.V067.I01; CHAUVEL A, 1987, EXPERIENTIA, V43, P234, DOI 10.1007/BF01945546; Chave J, 2006, ECOL APPL, V16, P2356, DOI 10.1890/1051-0761(2006)016[2356:RAPVOW]2.0.CO;2; Cornelissen JHC, 1999, OECOLOGIA, V118, P248, DOI 10.1007/s004420050725; CORNER EJH, 1949, ANN BOT-LONDON, V13, P367, DOI 10.1093/oxfordjournals.aob.a083225; Coste S, 2010, ANN FOREST SCI, V67, DOI 10.1051/forest/2010020; Diaz S, 2016, NATURE, V529, P167, DOI 10.1038/nature16489; Evans GC, 1972, QUANTITATIVE ANAL PL; Falster DS, 2003, NEW PHYTOL, V158, P509, DOI 10.1046/j.1469-8137.2003.00765.x; Fine PVA, 2004, SCIENCE, V305, P663, DOI 10.1126/science.1098982; Fortunel C, 2016, ECOL LETT, V19, P1062, DOI 10.1111/ele.12642; Fortunel C, 2012, FUNCT ECOL, V26, P1153, DOI 10.1111/j.1365-2435.2012.02020.x; Friesen ML, 2011, ANNU REV ECOL EVOL S, V42, P23, DOI 10.1146/annurev-ecolsys-102710-145039; Grime JP, 1997, OIKOS, V79, P259, DOI 10.2307/3546011; Hodgson JG, 2011, ANN BOT-LONDON, V108, P1337, DOI 10.1093/aob/mcr225; Iida Y, 2014, J ECOL, V102, P641, DOI 10.1111/1365-2745.12221; Iida Y, 2014, ECOLOGY, V95, P353, DOI 10.1890/11-2173.1; Wright SJ, 2010, ECOLOGY, V91, P3664, DOI 10.1890/09-2335.1; Keeling HC, 2007, FOREST ECOL MANAG, V242, P431, DOI 10.1016/j.foreco.2007.01.060; King DA, 2006, J ECOL, V94, P670, DOI 10.1111/j.1365-2745.2006.01112.x; Kitajima K, 2002, AM J BOT, V89, P1925, DOI 10.3732/ajb.89.12.1925; KITAJIMA K, 1994, OECOLOGIA, V98, P419, DOI 10.1007/BF00324232; Kitajima K, 2008, TROPICAL FOREST COMM, P160; Kitajima K, 2010, NEW PHYTOL, V186, P708, DOI 10.1111/j.1469-8137.2010.03212.x; Kunstler G, 2016, NATURE, V529, P204, DOI 10.1038/nature16476; LAMBERS H, 1992, ADV ECOL RES, V23, P187, DOI 10.1016/S0065-2504(08)60148-8; Laughlin DC, 2013, TRENDS PLANT SCI, V18, P584, DOI 10.1016/j.tplants.2013.04.012; LOEHLE C, 1988, CAN J FOREST RES, V18, P209, DOI 10.1139/x88-032; Lusk CH, 2002, OECOLOGIA, V132, P188, DOI 10.1007/s00442-002-0974-9; Mangan SA, 2010, NATURE, V466, P752, DOI 10.1038/nature09273; Marques-Filho A. O., 1981, ACTA AMAZONICA, V11, P759; Martinez-Vilalta J, 2010, J ECOL, V98, P1462, DOI 10.1111/j.1365-2745.2010.01718.x; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; Messier J, 2017, ECOGRAPHY, V40, P685, DOI 10.1111/ecog.02006; Milla R, 2007, P ROY SOC B-BIOL SCI, V274, P2109, DOI 10.1098/rspb.2007.0417; Muller-Landau HC, 2004, BIOTROPICA, V36, P20, DOI 10.1111/j.1744-7429.2004.tb00292.x; Niinemets U, 2001, ECOLOGY, V82, P453, DOI 10.1890/0012-9658(2001)082[0453:GSCCOL]2.0.CO;2; Niklas KJ, 1999, AM J BOT, V86, P465, DOI 10.2307/2656806; Onoda Y, 2011, ECOL LETT, V14, P301, DOI 10.1111/j.1461-0248.2010.01582.x; Perez-Harguindeguy N, 2013, AUST J BOT, V61, P167, DOI 10.1071/BT12225; POORTER H, 1999, HDB FUNCTIONAL PLANT, P81; Poorter H, 2010, J EXP BOT, V61, P2043, DOI 10.1093/jxb/erp358; Poorter L, 2008, ECOLOGY, V89, P1908, DOI 10.1890/07-0207.1; Poorter L, 2006, ECOLOGY, V87, P1733, DOI 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2; Poorter L, 2006, ECOLOGY, V87, P1289, DOI 10.1890/0012-9658(2006)87[1289:AOMTST]2.0.CO;2; Poorter L, 2014, FUNCT ECOL, V28, P232, DOI 10.1111/1365-2435.12158; Prado JA, 2016, J ECOL, V104, P817, DOI 10.1111/1365-2745.12543; Quesada CA, 2012, BIOGEOSCIENCES, V9, P2203, DOI 10.5194/bg-9-2203-2012; R Core Team, 2014, R LANG ENV STAT COMP; Reich PB, 1999, ECOLOGY, V80, P1955, DOI 10.2307/176671; Reich PB, 2014, J ECOL, V102, P275, DOI 10.1111/1365-2745.12211; Renno CD, 2008, REMOTE SENS ENVIRON, V112, P3469, DOI 10.1016/j.rse.2008.03.018; Rozendaal DMA, 2006, FUNCT ECOL, V20, P207, DOI 10.1111/j.1365-2435.01105.x; Ruger N, 2012, ECOLOGY, V93, P2626, DOI 10.1890/12-0622.1; Santiago LS, 2004, OECOLOGIA, V140, P543, DOI 10.1007/s00442-004-1624-1; Siefert A, 2015, ECOL LETT, V18, P1406, DOI 10.1111/ele.12508; Sterck FJ, 2006, AM NAT, V167, P758, DOI 10.1086/503056; Sterck FJ, 2006, J ECOL, V94, P1192, DOI 10.1111/j.1365-2745.2006.01162.x; ter Steege H, 2006, NATURE, V443, P444, DOI 10.1038/nature05134; van der Sande MT, 2018, FUNCT ECOL, V32, P461, DOI 10.1111/1365-2435.12968; Villar R, 2013, AM J BOT, V100, P1969, DOI 10.3732/ajb.1200562; Violle C, 2007, OIKOS, V116, P882, DOI 10.1111/j.2007.0030-1299.15559.x; Violle C, 2012, TRENDS ECOL EVOL, V27, P244, DOI 10.1016/j.tree.2011.11.014; WELDEN CW, 1991, ECOLOGY, V72, P35, DOI 10.2307/1938900; Westoby M, 2003, OECOLOGIA, V135, P621, DOI [10.1007/s00442-003-1378-1, 10.1007/s00442-003-1231-6]; Westoby M, 1998, PLANT SOIL, V199, P213, DOI 10.1023/A:1004327224729; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Zieminska K, 2013, AOB PLANTS, V5, DOI 10.1093/aobpla/plt046 73 1 1 17 17 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0028-646X 1469-8137 NEW PHYTOL New Phytol. JUL 2018 219 1 109 121 10.1111/nph.15206 13 Plant Sciences Plant Sciences GI1TJ WOS:000434153200017 29774944 Other Gold 2018-11-22 J Nakov, T; Beaulieu, JM; Alverson, AJ Nakov, Teofil; Beaulieu, Jeremy M.; Alverson, Andrew J. Accelerated diversification is related to life history and locomotion in a hyperdiverse lineage of microbial eukaryotes (Diatoms, Bacillariophyta) NEW PHYTOLOGIST English Article anisogamy; diatoms; diversification; life history; motility; oogamy PHYLOGENETIC ANALYSES; PENALIZED LIKELIHOOD; SEXUAL REPRODUCTION; VERTICAL-MIGRATION; HANTZSCHIA-VIRGATA; MARINE SPECIATION; PENNATE DIATOMS; BENTHIC DIATOMS; EVOLUTION; DIVERGENCE Patterns of species richness are commonly linked to life history strategies. In diatoms, an exceptionally diverse lineage of photosynthetic heterokonts important for global photosynthesis and burial of atmospheric carbon, lineages with different locomotory and reproductive traits differ dramatically in species richness, but any potential association between life history strategy and diversification has not been tested in a phylogenetic framework. We constructed a time-calibrated, 11-gene, 1151-taxon phylogeny of diatoms - the most inclusive diatom species tree to date. We used this phylogeny, together with a comprehensive inventory of first-last occurrences of Cenozoic fossil diatoms, to estimate ranges of expected species richness, diversification and its variation through time and across lineages. Diversification rates varied with life history traits. Although anisogamous lineages diversified faster than oogamous ones, this increase was restricted to a nested clade with active motility in the vegetative cells. We propose that the evolution of motility in vegetative cells, following an earlier transition from oogamy to anisogamy, facilitated outcrossing and improved utilization of habitat complexity, ultimately leading to enhanced opportunity for adaptive divergence across a variety of novel habitats. Together, these contributed to a species radiation that gave rise to the majority of present-day diatom diversity. [Nakov, Teofil; Beaulieu, Jeremy M.; Alverson, Andrew J.] Univ Arkansas, Univ Arkansas 1, SCEN 601, Fayetteville, AR 72701 USA Nakov, T (reprint author), Univ Arkansas, Univ Arkansas 1, SCEN 601, Fayetteville, AR 72701 USA. tnakov@uark.edu National Science Foundation (NSF); Arkansas Economic Development Commission; NSF [DEB-1353131]; Simons Foundation [403249] We thank Jakub Witkowski (Uniwersytet Szczecinski, Poland) and Matt Ashworth (The University of Texas at Austin, TX, USA) for discussions on the diatom fossil record. Pat Kociolek (University of Colorado, Boulder, CO, USA) provided helpful information about diatom species numbers in AlgaeBase and DiatomBase. We thank Adam Siepielski (University of Arkansas, Fayetteville, AR, USA) and Edward Theriot (The University of Texas at Austin, TX, USA) for comments on an earlier version of the manuscript. This research used computational resources available through the Arkansas High Performance Computing Center, which was funded through multiple National Science Foundation (NSF) grants and the Arkansas Economic Development Commission. This work was supported by the NSF (grant no. DEB-1353131 to AJA) and by a grant from the Simons Foundation (403249, A.J.A.). Alfaro ME, 2009, P NATL ACAD SCI USA, V106, P13410, DOI 10.1073/pnas.0811087106; Alverson AJ, 2007, MOL PHYLOGENET EVOL, V45, P193, DOI 10.1016/j.ympev.2007.03.024; Alverson AJ, 2014, PALEOBIOLOGY, V40, P91, DOI 10.1666/12055; Andersen RA, 2004, AM J BOT, V91, P1508, DOI 10.3732/ajb.91.10.1508; Bapst DW, 2012, METHODS ECOL EVOL, V3, P803, DOI 10.1111/j.2041-210X.2012.00223.x; Barraclough TG, 2003, EVOLUTION, V57, P2166; Basu S, 2017, NEW PHYTOL, V215, P140, DOI 10.1111/nph.14557; Beaulieu JM, 2016, SYST BIOL, V65, P583, DOI 10.1093/sysbio/syw022; Bondoc KGV, 2016, MICROB ECOL, V72, P287, DOI 10.1007/s00248-016-0796-7; Bondoc KGV, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms10540; Brown JW, 2016, TURBOMEDUSA MODELLIN; Minh BQ, 2013, MOL BIOL EVOL, V30, P1188, DOI 10.1093/molbev/mst024; Bulmer MG, 2002, P ROY SOC B-BIOL SCI, V269, P2381, DOI 10.1098/rspb.2002.2161; CANNONE JJ, 2002, BMC BIOINFORMATICS, V3; Cermeno P, 2015, P NATL ACAD SCI USA, V112, P4239, DOI 10.1073/pnas.1412883112; Chepurnov VA, 1999, EUR J PHYCOL, V34, P1; Chepurnov VA, 2004, PHYCOL RES, V52, P1; Chepurnov VA, 2004, INT REV CYTOL, V237, P91; Cieslak A, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2978; Cohn SA, 2015, DIATOM RES, V30, P213, DOI 10.1080/0269249X.2015.1058295; Condamine FL, 2016, SCI REP-UK, V6, DOI 10.1038/srep19208; Consalvey M, 2004, DIATOM RES, V19, P181; Davidovich NA, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-15301-z; Davidovich NA, 2010, FOTTEA, V10, P251; Donoghue MJ, 2015, NEW PHYTOL, V207, P260, DOI 10.1111/nph.13367; Drebes G, 1977, BOTANICAL MONOGRAPHS, P250; Drummond CS, 2012, SYST BIOL, V61, P443, DOI 10.1093/sysbio/syr126; Duda TF, 2005, MOL ECOL, V14, P267, DOI 10.1111/j.1365-294X.2004.02397.x; Edgar RC, 2010, BIOINFORMATICS, V26, P2460, DOI 10.1093/bioinformatics/btq461; Edwards AR, 1991, NZ GEOLOGICAL SURVEY, V64; Foote M, 2000, PALEOBIOLOGY, V26, P74, DOI 10.1666/0094-8373(2000)26[74:OAECOT]2.0.CO;2; Frankenbach S, 2014, EUR J PHYCOL, V49, P429, DOI 10.1080/09670262.2014.974218; Gersonde R., 1990, P OCEAN DRILLING PRO, V113, P365, DOI DOI 10.2973/0DP.PR0C.SR.113.127.1990; Gillard J, 2013, ANGEW CHEM INT EDIT, V52, P854, DOI 10.1002/anie.201208175; Goldberg EE, 2010, SCIENCE, V330, P493, DOI 10.1126/science.1194513; Guiry MD, 2017, ALGAEBASE; Guiry MD, 2012, J PHYCOL, V48, P1057, DOI 10.1111/j.1529-8817.2012.01222.x; Harper M.A., 1977, BIOL DIATOMS, V13, P224; Harwood D.M., 1990, Proceedings of the Ocean Drilling Program Scientific Results, V113, P403; HARWOOD D. M., 2007, PALEONTOLOGICAL SOC, V13, P33; Harwood D.M., 1995, PALEONTOLOGICAL SOC, V8, P81; Hoek C, 1995, ALGAE INTRO PHYCOLOG; Hughes CE, 2014, P ROYAL SOC B, V281; IKEDA H, 2012, NAT COMMUN, V3; Kaczmarska I, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0181413; Kaczmarska I, 2013, DIATOM RES, V28, P263, DOI 10.1080/0269249X.2013.791344; Katoh K, 2013, MOL BIOL EVOL, V30, P772, DOI 10.1093/molbev/mst010; Kingston MB, 1999, ESTUARIES, V22, P81, DOI 10.2307/1352929; Kooistra WHCF, 2003, J PHYCOL, V39, P185, DOI 10.1046/j.1529-8817.2003.02083.x; Nguyen LT, 2015, MOL BIOL EVOL, V32, P268, DOI 10.1093/molbev/msu300; LAZARUS D, 1994, MATH GEOL, V26, P817, DOI 10.1007/BF02083119; Lazarus D, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0084857; Leclere L, 2009, SYST BIOL, V58, P509, DOI 10.1093/sysbio/syp044; Leslie AB, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1812; Maddison WP, 2015, SYST BIOL, V64, P127, DOI 10.1093/sysbio/syu070; Magallon S, 2001, EVOLUTION, V55, P1762, DOI 10.1111/j.0014-3820.2001.tb00826.x; Mann DG, 2013, J EUKARYOT MICROBIOL, V60, P414, DOI 10.1111/jeu.12047; Matsuda H, 1999, EVOL ECOL RES, V1, P769; Maynard Smith J., 1978, EVOLUTION SEX; Medlin LK, 2015, VIE MILIEU, V65, P219; Moeys S, 2016, SCI REP-UK, V6, DOI 10.1038/srep19252; Nakov T, 2014, PHYCOLOGIA, V53, P359, DOI 10.2216/14-002.1; Nawrocki EP, 2009, BIOINFORMATICS, V25, P1335, DOI 10.1093/bioinformatics/btp157; Norris RW, 2015, BIORXIV; PALMER JD, 1967, BIOL BULL, V132, P44, DOI 10.2307/1539877; PALUMBI SR, 1994, ANNU REV ECOL SYST, V25, P547, DOI 10.1146/annurev.es.25.110194.002555; PALUMBI SR, 1992, TRENDS ECOL EVOL, V7, P114, DOI 10.1016/0169-5347(92)90144-Z; PARKER GA, 1972, J THEOR BIOL, V36, P529, DOI 10.1016/0022-5193(72)90007-0; Parks MB, 2018, MOL BIOL EVOL, V35, P80, DOI 10.1093/molbev/msx268; PICKETTHEAPS J, 1991, J PHYCOL, V27, P718, DOI 10.1111/j.0022-3646.1991.00718.x; PICKETTHEAPS JD, 1986, J PHYCOL, V22, P334, DOI 10.1111/j.1529-8817.1986.tb00032.x; Poulsen NC, 1999, CELL MOTIL CYTOSKEL, V44, P23, DOI 10.1002/(SICI)1097-0169(199909)44:1<23::AID-CM2>3.3.CO;2-4; Rabosky DL, 2009, NATURE, V457, P183, DOI 10.1038/nature07435; Rainford JL, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0109085; Round F. E., 1990, DIATOMS BIOL MORPHOL; Ruck EC, 2016, MOL PHYLOGENET EVOL, V103, P155, DOI 10.1016/j.ympev.2016.07.023; Ruck EC, 2011, PROTIST, V162, P723, DOI 10.1016/j.protis.2011.02.003; Sanderson MJ, 2002, MOL BIOL EVOL, V19, P101, DOI 10.1093/oxfordjournals.molbev.a003974; Sato S, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026923; Sims PA, 2006, PHYCOLOGIA, V45, P361, DOI 10.2216/05-22.1; SMALL J, 1950, ANN BOT-LONDON, V14, P91, DOI 10.1093/oxfordjournals.aob.a083238; Small J, 1945, P ROYAL IRISH ACAD B, V51, P53; Small James, 1945, PROC ROY IRISH ACAD SECT B, V50, P295; Smith SA, 2012, BIOINFORMATICS, V28, P2689, DOI 10.1093/bioinformatics/bts492; Sorhannus U, 2012, PROTIST, V163, P252, DOI 10.1016/j.protis.2011.04.005; Stamatakis A, 2014, BIOINFORMATICS, V30, P1312, DOI 10.1093/bioinformatics/btu033; Tank DC, 2015, NEW PHYTOL, V207, P454, DOI 10.1111/nph.13491; Theriot EC, 2015, MOL PHYLOGENET EVOL, V89, P28, DOI 10.1016/j.ympev.2015.03.012; Togashi T, 2012, P NATL ACAD SCI USA, V109, P13692, DOI 10.1073/pnas.1203495109; Van Valen L, 1973, EVOL THEORY, V1, P1, DOI DOI 10.1017/CBO9781139173179 90 2 2 10 10 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0028-646X 1469-8137 NEW PHYTOL New Phytol. JUL 2018 219 1 462 473 10.1111/nph.15137 12 Plant Sciences Plant Sciences GI1TJ WOS:000434153200043 29624698 Other Gold 2018-11-22 J Whelan, J; Hingston, ST Whelan, Jodie; Hingston, Sean T. Can Everyday Brands Be Threatening? Responses to Brand Primes Depend on Childhood Socioeconomic Status JOURNAL OF CONSUMER PSYCHOLOGY English Article Childhood environments; Brand cues; Socioeconomic status; Self-esteem; Threat LIFE-HISTORY STRATEGIES; SELF-ESTEEM; SOCIAL-CLASS; CONSUMPTION; CHOICE; AFFIRMATION; PSYCHOLOGY; BEHAVIOR; LUXURY; SENSE The current work investigates whether childhood socioeconomic status influences how people respond to brands. Results from two experiments show that, perhaps counterintuitively, everyday brands-and not luxury brands-can threaten the self-esteem of people who had poor childhoods. Supported by the results of our pilot study, we argue this is because everyday brands represent a material norm that can be difficult for low-income consumers to achieve. Furthermore, our findings suggest that consumers from poor backgrounds may cope with this threat by becoming more self-interested, as indicated by decreased volunteer intentions. [Whelan, Jodie] York Univ, Toronto, ON, Canada; [Hingston, Sean T.] Western Univ, London, ON, Canada Whelan, J (reprint author), York Univ, Sch Adm Studies, 4700 Keele St, Toronto, ON M9N2H9, Canada. whelanj@yorku.ca Whelan, Jodie/0000-0001-5194-8609 York University This work was supported by York University. Ahuvia A. C., 1998, J MACROMARKETING, V18, P153, DOI DOI 10.1177/027614679801800207; Ahuvia AC, 2002, J CONSUM PSYCHOL, V12, P389, DOI 10.1207/15327660260382414; Aronson J, 1999, SCI CON SER, P127, DOI 10.1037/10318-006; BELK R, 1984, J CONSUM RES, V10, P386, DOI 10.1086/208977; Bergkvist L, 2007, J MARKETING RES, V44, P175, DOI 10.1509/jmkr.44.2.175; Carnelley KB, 2010, J SOC PERS RELAT, V27, P253, DOI 10.1177/0265407509360901; Chartrand TL, 2008, J CONSUM RES, V35, P189, DOI 10.1086/588685; Cheng SYY, 2012, J CONSUM PSYCHOL, V22, P280, DOI 10.1016/j.jcps.2011.05.005; Cohen GL, 2014, ANNU REV PSYCHOL, V65, P333, DOI 10.1146/annurev-psych-010213-115137; Connell PM, 2014, J CONSUM RES, V41, P119, DOI 10.1086/675218; Coupland JC, 2005, J CONSUM RES, V32, P106, DOI 10.1086/429604; Festinger L, 1954, HUM RELAT, V7, P117, DOI 10.1177/001872675400700202; Gordon D, 2000, POVERTY SOCIAL EXCLU; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Hamilton K, 2012, SOCIOLOGY, V46, P74, DOI 10.1177/0038038511416146; Hansen J, 2011, J ECON PSYCHOL, V32, P789, DOI 10.1016/j.joep.2011.05.005; Hayes A. F., 2013, INTRO MEDIATION MODE; Hayes AF, 2009, BEHAV RES METHODS, V41, P924, DOI 10.3758/BRM.41.3.924; Heatherton TF, 1998, PERS SOC PSYCHOL B, V24, P301, DOI 10.1177/0146167298243007; HEATHERTON TF, 1991, J PERS SOC PSYCHOL, V60, P895, DOI 10.1037/0022-3514.60.6.895; Henry P, 2004, PSYCHOL MARKET, V21, P375, DOI 10.1002/mar.20010; HILL RP, 1990, J CONSUM RES, V17, P303, DOI 10.1086/208559; Isaksen KJ, 2012, PSYCHOL MARKET, V29, P117, DOI 10.1002/mar.20509; John DR, 1999, J CONSUM RES, V26, P183, DOI 10.1086/209559; Johnson P. O, 1936, STAT RES MEMOIRS, P57, DOI DOI 10.1007/BF02310468; KASSER T, 1995, DEV PSYCHOL, V31, P907, DOI 10.1037//0012-1649.31.6.907; Kraus MW, 2012, SOC PERSONAL PSYCHOL, V6, P642, DOI 10.1111/j.1751-9004.2012.00453.x; Chaplin LN, 2014, J PUBLIC POLICY MARK, V33, P78, DOI 10.1509/jppm.13.050; Laran J, 2013, PSYCHOL SCI, V24, P167, DOI 10.1177/0956797612450033; Markus HR, 2010, J CONSUM RES, V37, P344, DOI 10.1086/651242; Martin KD, 2012, J CONSUM RES, V38, P1155, DOI 10.1086/661528; McFerran B, 2014, J CONSUM PSYCHOL, V24, P455, DOI 10.1016/j.jcps.2014.03.004; Mikulincer M, 2001, J PERS SOC PSYCHOL, V81, P1205, DOI 10.1037//0022-3514.81.6.1205; Miller KW, 2012, J BUS RES, V65, P1471, DOI 10.1016/j.jbusres.2011.10.013; Mittal C, 2016, J CONSUM RES, V43, P636, DOI 10.1093/jcr/ucw046; Mittal C, 2014, J PERS SOC PSYCHOL, V107, P621, DOI 10.1037/a0037398; Park LE, 2009, J PERS SOC PSYCHOL, V96, P203, DOI 10.1037/a0013933; Piff PK, 2010, J PERS SOC PSYCHOL, V99, P771, DOI 10.1037/a0020092; Pyszczynski T, 2004, PSYCHOL BULL, V130, P435, DOI 10.1037/0033-2909.130.3.435; Richins ML, 2015, J CONSUM RES, V41, P1333, DOI 10.1086/680087; Rosenberg M., 1965, SOC ADOLESCENT SELF, DOI [10.1515/9781400876136, DOI 10.1515/9781400876136]; Roux C, 2015, J CONSUM RES, V42, P615, DOI 10.1093/jcr/ucv048; Rucker DD, 2008, J CONSUM RES, V35, P257, DOI 10.1086/588569; SCHWARZ N, 1985, PUBLIC OPIN QUART, V49, P388, DOI 10.1086/268936; Sharma E, 2012, J CONSUM RES, V39, P545, DOI 10.1086/664038; Sherman DAK, 2000, PERS SOC PSYCHOL B, V26, P1046, DOI 10.1177/01461672002611003; Steele C. M., 1988, ADV EXPT SOCIAL PSYC, V21, P261, DOI DOI 10.1016/S0065-2601(08)60229-4; Stephens NM, 2011, SOC PSYCHOL PERS SCI, V2, P33, DOI 10.1177/1948550610378757; Tesser A., 1988, ADV EXPT SOCIAL PSYC, P181, DOI DOI 10.1016/S0065-2601(08)60227-0; Tynan C, 2010, J BUS RES, V63, P1156, DOI 10.1016/j.jbusres.2009.10.012; Van Lange P., 2007, SOCIAL PSYCHOL HDB B, P540; VANVUGT M, 1995, J APPL SOC PSYCHOL, V25, P258; Walasek L, 2018, J CONSUM PSYCHOL, V28, P138, DOI 10.1002/jcpy.1012; White AE, 2013, PSYCHOL SCI, V24, P715, DOI 10.1177/0956797612461919; White K, 2009, J MARKETING, V73, P109, DOI 10.1509/jmkg.73.4.109 57 1 1 8 8 JOHN WILEY & SONS LTD CHICHESTER THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND 1057-7408 1532-7663 J CONSUM PSYCHOL J. Consum. Psychol. JUL 2018 28 3 477 486 10.1002/jcpy.1029 10 Business; Psychology, Applied Business & Economics; Psychology GN1CX WOS:000438723300007 2018-11-22 J Akatov, VV; Akatova, TV; Chefranov, CG Akatov, V. V.; Akatova, T. V.; Chefranov, C. G. The Relationship of Dominance and Evenness with Productivity and Species Richness in Plant Communities with Different Organization Models RUSSIAN JOURNAL OF ECOLOGY English Article productivity; species richness; dominance; evenness; plant communities; life history strategies; competition; organization models DIVERSITY; COMPETITION; BIODIVERSITY; GRASSLAND; BIOMASS; INVASIONS; ABUNDANCE; TREE; INVASIBILITY; SUCCESSION The relationship between dominance and evenness in plant communities organized according to different models-competitive (alpine, subalpine, and low-mountain grasslands), stress-tolerant (alpine heaths and scrubs, subalpine fens, steppes, the forest herbaceous layer), and ruderal-has been analyzed in the Western Caucasus and Ciscaucasia. No correlation between evenness (dominance) and productivity has been revealed in communities of any type. The correlation between dominance and species richness is negative and, in most cases, linear, being stronger in competitive and ruderal than in stress-tolerant cenoses. The correlation between evenness and species richness in grassland communities (the competitive model) is strong, positive, and linear, while this correlation in ruderal and stress-tolerant communities is weak or absent. [Akatov, V. V.] Maikop State Technol Univ, Maykop 385000, Russia; [Akatova, T. V.; Chefranov, C. G.] Caucasian State Nat Biosphere Reserve, Maykop 385000, Russia Akatov, VV (reprint author), Maikop State Technol Univ, Maykop 385000, Russia. akatovmgti@mail.ru Russian Foundation for Basic Research [16-04-00228] This study was supported by the Russian Foundation for Basic Research, project no. 16-04-00228. Adler PB, 2011, SCIENCE, V333, P1750, DOI 10.1126/science.1204498; Akatov VV, 2012, RUSS J ECOL+, V43, P294, DOI 10.1134/S1067413612040030; Bartha S, 2014, APPL VEG SCI, V17, P201, DOI 10.1111/avsc.12066; Bell G, 2000, AM NAT, V155, P606, DOI 10.1086/303345; BENGTSSON J, 1994, TRENDS ECOL EVOL, V9, P246, DOI 10.1016/0169-5347(94)90289-5; BERGER WH, 1970, SCIENCE, V168, P1345, DOI 10.1126/science.168.3937.1345; BOBBINK R, 1987, BIOL CONSERV, V40, P301, DOI 10.1016/0006-3207(87)90122-4; Caruso T, 2007, BIODIVERS CONSERV, V16, P3277, DOI 10.1007/s10531-006-9137-3; CASWELL H, 1976, ECOL MONOGR, V46, P327, DOI 10.2307/1942257; Chalcraft DR, 2009, BIODIVERS CONSERV, V18, P91, DOI 10.1007/s10531-008-9457-6; Chase JM, 2005, FUNCT ECOL, V19, P182, DOI 10.1111/j.0269-8463.2005.00937.x; CORNELL HV, 1992, J ANIM ECOL, V61, P1, DOI 10.2307/5503; Csergo AM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0073533; Drobner U, 1998, OIKOS, V82, P295, DOI 10.2307/3546969; GRACE JB, 1991, FUNCT ECOL, V5, P583, DOI 10.2307/2389475; Grime J. P., 2001, PLANT STRATEGIES VEG; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; Hajkowicz S.A., 2007, I OCEANOGRAPHIQUE, V14, P22; Hautier Y, 2009, SCIENCE, V324, P636, DOI 10.1126/science.1169640; Hejda M, 2009, J ECOL, V97, P393, DOI 10.1111/j.1365-2745.2009.01480.x; Hierro JL, 2005, J ECOL, V93, P5, DOI [10.1111/j.0022-0477.2004.00953.x, 10.1111/j.1365-2745.2004.00953.x]; Hillebrand H, 2008, ECOLOGY, V89, P1510, DOI 10.1890/07-1053.1; HUBBELL SP, 1979, SCIENCE, V203, P1299, DOI 10.1126/science.203.4387.1299; HUSTON M, 1979, AM NAT, V113, P81, DOI 10.1086/283366; Johnston EL, 2009, ENVIRON POLLUT, V157, P1745, DOI 10.1016/j.envpol.2009.02.017; Keddy PA, 2001, COMPETITION; Kunte K, 2008, OIKOS, V117, P69, DOI 10.1111/j.2007.0030-1299.16125.x; Kuznetsova N. A., 2009, VIDY POSVYASHCHEN 75, P412; Lamb EG, 2008, AM NAT, V171, P777, DOI 10.1086/587528; [Лебедева В.X. Lebedeva V. Ch.], 2011, [Ботанический журнал, Botanical Journal, Botanicheskii zhurnal], V96, P3; Lonsdale WM, 1999, ECOLOGY, V80, P1522, DOI 10.2307/176544; Lososova Z, 2008, PRESLIA, V80, P291; Ma M, 2005, OIKOS, V111, P192, DOI 10.1111/j.0030-1299.2005.13049.x; Magguran A, 1988, ECOLOGICAL DIVERSITY; McKane RB, 2002, NATURE, V415, P68, DOI 10.1038/415068a; Mirkin BM, 2007, ZH OBSHCH BIOL, V68, P435; Mirkin B. M., 2012, SOVREMENNOE SOSTOYAN; MIRKIN BM, 1994, J VEG SCI, V5, P283, DOI 10.2307/3236163; Mulder CPH, 2004, OIKOS, V107, P50, DOI 10.1111/j.0030-1299.2004.13110.x; Olff H, 1998, APPL VEG SCI, V1, P15, DOI 10.2307/1479081; Onipchenko V. G, 2013, FUNKTSIONALNAYA FITO; Onipchenko VG, 1998, J VEG SCI, V9, P27, DOI 10.2307/3237220; PALMER MW, 1995, OIKOS, V73, P203, DOI 10.2307/3545909; Parker I.M., 1999, Biological Invasions, V1, P3, DOI 10.1023/A:1010034312781; Peet R. K., 1988, DIVERSITY PATTERN PL; PIELOU EC, 1966, J THEOR BIOL, V13, P131, DOI 10.1016/0022-5193(66)90013-0; PIPER JK, 1995, CAN J BOT, V73, P1635, DOI 10.1139/b95-177; Poggio SL, 2011, WEED RES, V51, P241, DOI 10.1111/j.1365-3180.2011.00845.x; Prach K, 1999, J VEG SCI, V10, P383, DOI 10.2307/3237067; Rabotnov T. A., 1983, FITOTSENOLOGIYA; Reinhart KO, 2005, ECOGRAPHY, V28, P573, DOI 10.1111/j.2005.0906-7590.04166.x; REJMANEK M., 1989, BIOL INVASIONS GLOBA, V37, P369; Richardson DM, 2006, PROG PHYS GEOG, V30, P409, DOI 10.1191/0309133306pp490pr; ROUTLEDGE RD, 1983, OIKOS, V40, P149, DOI 10.2307/3544211; Sasaki T, 2011, OECOLOGIA, V166, P761, DOI 10.1007/s00442-011-1916-1; Schwinning S, 1998, OECOLOGIA, V113, P447, DOI 10.1007/s004420050397; Silva IA, 2010, ACTA BOT BRAS, V24, P407, DOI 10.1590/S0102-33062010000200011; Smith B, 1996, OIKOS, V76, P70, DOI 10.2307/3545749; Somodi I, 2008, APPL VEG SCI, V11, P187, DOI 10.3170/2008-7-18354; Stirling G, 2001, AM NAT, V158, P286, DOI 10.1086/321317; Tilman David, 1993, P13; Tkacheva E. V., 2011, Russian Journal of Biological Invasions, V2, P268, DOI 10.1134/S2075111711040126; Tokhtar V. K., 2011, Russian Journal of Biological Invasions, V2, P273, DOI 10.1134/S2075111711040138; Vance-Chalcraft HD, 2010, BIOTROPICA, V42, P290, DOI 10.1111/j.1744-7429.2009.00600.x; VANDERMAAREL E, 1995, J VEG SCI, V6, P741, DOI 10.2307/3236445; Vasilevich V. I., 2015, Botanicheskii Zhurnal, V100, P372; Vasilevich V. I., 2014, Botanicheskii Zhurnal, V99, P226; Vasilevich V. I., 1991, Botanicheskii Zhurnal (St. Petersburg), V76, P1674; VERMEER JG, 1987, ACTA OECOL-OEC PLANT, V8, P321; Wilsey B, 2007, PLANT ECOL, V190, P259, DOI 10.1007/s11258-006-9206-4; Yodzis P., 1978, LECT NOTES BIOMATH, V25, P1; Zernov A. S., 2006, FLORA SEVERO ZAPADNO; Zhang J., 2015, TKDD, V9, P1, DOI DOI 10.2147/DDDT.S91823 73 0 0 4 4 PLEIADES PUBLISHING INC MOSCOW PLEIADES PUBLISHING INC, MOSCOW, 00000, RUSSIA 1067-4136 1608-3334 RUSS J ECOL+ Russ. J. Ecol. JUL 2018 49 4 296 305 10.1134/S1067413618040021 10 Ecology Environmental Sciences & Ecology GN0TE WOS:000438688700003 2018-11-22 J Montiglio, PO; Dammhahn, M; Messier, GD; Reale, D Montiglio, Pierre-Olivier; Dammhahn, Melanie; Messier, Gabrielle Dubuc; Reale, Denis The pace-of-life syndrome revisited: the role of ecological conditions and natural history on the slow-fast continuum BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article Behavior; Immunity; Life history strategies; Metabolism; Personality; Trait interaction STANDARD METABOLIC-RATE; WILD PASSERINE BIRD; TIT PARUS-MAJOR; PHENOTYPIC PLASTICITY; ANIMAL PERSONALITY; EXPLORATORY-BEHAVIOR; TRADE-OFFS; INDIVIDUAL-DIFFERENCES; ENERGY-EXPENDITURE; EASTERN CHIPMUNKS The pace-of-life syndrome (i.e., POLS) hypothesis posits that behavioral and physiological traits mediate the trade-off between current and future reproduction. This hypothesis predicts that life history, behavioral, and physiological traits will covary under clearly defined conditions. Empirical tests are equivocal and suggest that the conditions necessary for the POLS to emerge are not always met. We nuance and expand the POLS hypothesis to consider alternative relationships among behavior, physiology, and life history. These relationships will vary with the nature of predation risk, the challenges posed by resource acquisition, and the energy management strategies of organisms. We also discuss how the plastic response of behavior, physiology, and life history to changes in ecological conditions and variation in resource acquisition among individuals determine our ability to detect a fast-slow pace of life in the first place or associations among these traits. Future empirical studies will provide most insights on the coevolution among behavior, physiology, and life history by investigating these traits both at the genetic and phenotypic levels in varying types of predation regimes and levels of resource abundance. We revisit the pace-of-life syndrome hypothesis, suggesting that behaviors involving a risk of death or injury should coevolve with higher metabolic rates, higher fecundity, faster growth, and heightened mortality rates. Empirical support for this hypothesis is mixed. We show how relaxing some of the assumptions underlying the pace-of-life syndrome hypothesis allows us to consider alternative relationships among behavior, physiology, and life history, and why we fail to meet the predictions posed by the pace-of-life syndrome hypothesis in some populations. Our discussion emphasizes the need to re-integrate the role of the species' natural history, ecological conditions, and phenotypic plasticity in shaping relationships among behavior, physiology, and life history. [Montiglio, Pierre-Olivier; Dammhahn, Melanie; Messier, Gabrielle Dubuc; Reale, Denis] Univ Quebec Montreal, Dept Sci Biol, Case Postale 8888,Succursale Ctr Ville, Montreal, PQ H3C 3P8, Canada; [Montiglio, Pierre-Olivier] McGill Univ, Dept Biol & Redpath Museum, 1205 Dr Penfield Ave, Montreal, PQ H3A 1B1, Canada; [Dammhahn, Melanie] Univ Potsdam, Inst Biochem & Biol, Anim Ecol, Maulbeerallee 1, D-14469 Potsdam, Germany; [Messier, Gabrielle Dubuc] CEFE, CNRS, UMR 5175, 1919 Route Mende, F-34293 Montpellier 5, France Montiglio, PO (reprint author), Univ Quebec Montreal, Dept Sci Biol, Case Postale 8888,Succursale Ctr Ville, Montreal, PQ H3C 3P8, Canada.; Montiglio, PO (reprint author), McGill Univ, Dept Biol & Redpath Museum, 1205 Dr Penfield Ave, Montreal, PQ H3A 1B1, Canada. montiglio.pierre-olivier@uqam.ca Fonds de Recherche Quebec: Nature et Technologies (FRQNT); Natural Sciences and Engineering Research Council of Canada (NSERC); DFG [DA 1377/2-1, DA 1377/2-2]; NSERC Discovery grant POM was supported by post-doctoral fellowships from the Fonds de Recherche Quebec: Nature et Technologies (FRQNT) and the Natural Sciences and Engineering Research Council of Canada (NSERC). GDM was supported by a FRQNT and a NSERC doctoral fellowship. MD was supported by a DFG research fellowship (DA 1377/2-1) and DFG return fellowship (DA 1377/2-2). This research was supported by an NSERC Discovery grant to DR. Adriaenssens B, 2009, TRENDS ECOL EVOL, V24, P179, DOI 10.1016/j.tree.2008.12.003; Bergeron P, 2013, J EVOLUTION BIOL, V26, P766, DOI 10.1111/jeb.12081; Bergmuller R, 2010, TRENDS ECOL EVOL, V25, P504, DOI 10.1016/j.tree.2010.06.012; Bijleveld AI, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.3135; Binder TR, 2016, ANIM BEHAV, V121, P175, DOI 10.1016/j.anbehav.2016.09.006; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Biro PA, 2014, J ANIM ECOL, V83, P1186, DOI 10.1111/1365-2656.12210; Biro PA, 2010, TRENDS ECOL EVOL, V25, P653, DOI 10.1016/j.tree.2010.08.003; Bridger D, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2492; Brommer JE, 2014, BEHAV ECOL, V25, P802, DOI 10.1093/beheco/aru057; Brommer JE, 2013, BEHAV ECOL SOCIOBIOL, V67, P1027, DOI 10.1007/s00265-013-1527-4; Brommer JE, 2012, ECOL EVOL, V2, P3032, DOI 10.1002/ece3.412; Careau V, 2008, OIKOS, V117, P641, DOI 10.1111/j.0030-1299.2008.16513.x; Careau V, 2011, J EVOLUTION BIOL, V24, P2153, DOI 10.1111/j.1420-9101.2011.02344.x; Careau V, 2009, FUNCT ECOL, V23, P150, DOI 10.1111/j.1365-2435.2008.01468.x; Careau V, 2013, J EXP BIOL, V216, P418, DOI 10.1242/jeb.076794; Careau V, 2012, PHYSIOL BIOCHEM ZOOL, V85, P543, DOI 10.1086/666970; Charmantier A, 2008, SCIENCE, V320, P800, DOI 10.1126/science.1157174; Cutts CJ, 1998, J FISH BIOL, V52, P1026; Dammhahn M, 2018, BEHAV ECOL SOCIOBIOL, V72, DOI 10.1007/s00265-018-2473-y; Dammhahn M, 2017, FUNCT ECOL, V31, P866, DOI 10.1111/1365-2435.12797; Dingemanse NJ, 2013, ANIM BEHAV, V85, P1031, DOI 10.1016/j.anbehav.2012.12.032; Dingemanse NJ, 2012, BEHAV ECOL SOCIOBIOL, V66, P1543, DOI 10.1007/s00265-012-1416-2; Dingemanse NJ, 2012, J ANIM ECOL, V81, P116, DOI 10.1111/j.1365-2656.2011.01877.x; Dingemanse NJ, 2004, P ROY SOC B-BIOL SCI, V271, P847, DOI 10.1098/rspb.2004.2680; DIXON SM, 1987, CAN J ZOOL, V65, P2276, DOI 10.1139/z87-344; Dosmann A, 2015, ANIM BEHAV, V101, P179, DOI 10.1016/j.anbehav.2014.12.026; Dubuc Messier G, 2016, BEHAV ECOL, V28; Ellis BJ, 2014, DEV PSYCHOPATHOL, V26, P1, DOI 10.1017/S0954579413000849; Fitzpatrick BM, 2012, INT J ECOL, V2012, P32; FRASER DF, 1987, BEHAV ECOL SOCIOBIOL, V21, P203, DOI 10.1007/BF00292500; Gifford ME, 2014, PHYSIOL BIOCHEM ZOOL, V87, P384, DOI 10.1086/675974; Glazier DS, 2015, BIOL REV, V90, P377, DOI 10.1111/brv.12115; Gluckman PD, 2005, P ROY SOC B-BIOL SCI, V272, P671, DOI 10.1098/rspb.2004.3001; Guenther A, 2013, BEHAV ECOL, V24, P402, DOI 10.1093/beheco/ars177; HEADS PA, 1986, ECOL ENTOMOL, V11, P369, DOI 10.1111/j.1365-2311.1986.tb00315.x; Hoogenboom MO, 2013, BEHAV ECOL, V24, P253, DOI 10.1093/beheco/ars161; Husby A, 2010, EVOLUTION, V64, P2221, DOI 10.1111/j.1558-5646.2010.00991.x; Jablonszky M, 2018, BEHAV ECOL SOCIOBIOL, V72, DOI 10.1007/s00265-018-2461-2; Kontiainen P, 2009, BEHAV ECOL, V20, P789, DOI 10.1093/beheco/arp062; Lahti K, 2002, FUNCT ECOL, V16, P167, DOI 10.1046/j.1365-2435.2002.00618.x; LIMA SL, 1988, CAN J ZOOL, V66, P593, DOI 10.1139/z88-087; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Luttbeg B, 2010, PHILOS T R SOC B, V365, P3977, DOI 10.1098/rstb.2010.0207; MACARTHUR RH, 1966, AM NAT, V100, P603, DOI 10.1086/282454; Martin II LB, 2006, OECOLOGIA, V147, P565, DOI 10.1007/s00442-005-0314-y; Martin JGA, 2011, ECOL LETT, V14, P576, DOI 10.1111/j.1461-0248.2011.01621.x; Mathot KJ, 2015, TRENDS ECOL EVOL, V30, P199, DOI 10.1016/j.tree.2015.01.010; Mathot KJ, 2012, OIKOS, V121, P1009, DOI 10.1111/j.1600-0706.2012.20339.x; Mathot KJ, 2011, ECOL LETT, V14, P1254, DOI 10.1111/j.1461-0248.2011.01698.x; Miller JRB, 2014, J ANIM ECOL, V83, P214, DOI 10.1111/1365-2656.12111; Monaghan P, 2008, PHILOS T R SOC B, V363, P1635, DOI 10.1098/rstb.2007.0011; Montiglio PO, 2014, J ANIM ECOL, V83, P720, DOI 10.1111/1365-2656.12174; Montiglio PO, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0343; Muller T, 2015, FRONT ZOOL, V12, DOI 10.1186/1742-9994-12-S1-S8; Nicolaus M, 2012, P ROY SOC B-BIOL SCI, V279, P4885, DOI 10.1098/rspb.2012.1936; Niemela PT, 2013, BEHAV ECOL, V24, P935, DOI 10.1093/beheco/art014; Niemela PT, 2017, J ANIM ECOL, V86, P1033, DOI 10.1111/1365-2656.12688; Nussey DH, 2007, J EVOLUTION BIOL, V20, P831, DOI 10.1111/j.1420-9101.2007.01300.x; Pfennig DW, 2010, TRENDS ECOL EVOL, V25, P459, DOI 10.1016/j.tree.2010.05.006; Pigliucci M, 2005, TRENDS ECOL EVOL, V20, P481, DOI 10.1016/j.tree.2005.06.001; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Pruitt JN, 2011, ECOLOGY, V92, P1902, DOI 10.1890/11-0701.1; Quinn JL, 2011, J ANIM ECOL, V80, P918, DOI 10.1111/j.1365-2656.2011.01835.x; Reale D, 2000, ANIM BEHAV, V60, P589, DOI 10.1006/anbe.2000.1530; Reale D, 2003, ANIM BEHAV, V65, P463, DOI 10.1006/anbe.2003.2100; Reale D, 2009, J EVOLUTION BIOL, V22, P1599, DOI 10.1111/j.1420-9101.2009.01781.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Robinson MR, 2009, GENETICS, V181, P1639, DOI 10.1534/genetics.108.086801; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; Royaute R, 2018, BEHAV ECOL SOCIOBIOL, V72, DOI 10.1007/s00265-018-2472-z; Royaute R, 2015, ANIM BEHAV, V110, P163, DOI 10.1016/j.anbehav.2015.09.027; Santostefano F, 2017, P ROY SOC B-BIOL SCI, V284, DOI 10.1098/rspb.2017.1567; SCHEINER SM, 1993, ANNU REV ECOL SYST, V24, P35, DOI 10.1146/annurev.es.24.110193.000343; Schmitz OJ, 2004, ECOL LETT, V7, P153, DOI 10.1111/j.1461-0248.2003.00560.x; Speakman J, 1997, P NUTR SOC, V56, P1119, DOI 10.1079/PNS19970115; Stamps JA, 2007, ECOL LETT, V10, P355, DOI 10.1111/j.1461-0248.2007.01034.x; Stearns S., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Sultan SE, 2002, AM NAT, V160, P271, DOI 10.1086/341015; THOMAS DW, 1990, J MAMMAL, V71, P475, DOI 10.2307/1381967; Tieleman BI, 2005, P ROY SOC B-BIOL SCI, V272, P1715, DOI 10.1098/rspb.2005.3155; Timonin ME, 2011, J ZOOL, V284, P198, DOI 10.1111/j.1469-7998.2011.00792.x; Turbill C, 2011, P ROY SOC B-BIOL SCI, V278, P3355, DOI 10.1098/rspb.2011.0190; Urszan TJ, 2015, OECOLOGIA, V178, P129, DOI 10.1007/s00442-014-3207-0; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vuarin P, 2013, FUNCT ECOL, V27, P793, DOI 10.1111/1365-2435.12069; Walther GR, 2002, NATURE, V416, P389, DOI 10.1038/416389a; Wang IJ, 2014, MOL ECOL, V23, P5649, DOI 10.1111/mec.12938; West-Eberhard M. J, 2003, DEV PLASTICITY EVOLU; White SJ, 2016, BEHAVIOUR, V153, P1517, DOI 10.1163/1568539X-00003375; Wiersma P, 2005, J EXP BIOL, V208, P4091, DOI 10.1242/jeb.01854; Wikelski Martin, 2001, Trends in Ecology and Evolution, V16, P479, DOI 10.1016/S0169-5347(01)02279-0; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; YDENBERG RC, 1986, ADV STUD BEHAV, V16, P229, DOI 10.1016/S0065-3454(08)60192-8; Zylberberg M, 2014, ANIM BEHAV, V89, P115, DOI 10.1016/j.anbehav.2013.12.021 98 1 1 21 21 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. JUL 2018 72 7 UNSP 116 10.1007/s00265-018-2526-2 9 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology GK5FN WOS:000436200000001 2018-11-22 J Oikonomou, A; Leprieur, F; Leonardos, ID Oikonomou, Anthi; Leprieur, Fabien; Leonardos, Ioannis D. Ecomorphological diversity of freshwater fishes as a tool for conservation priority setting: a case study from a Balkan hotspot ENVIRONMENTAL BIOLOGY OF FISHES English Article Balkan peninsula; Conservation; Ecomorphology; Freshwater fishes; Originality LIFE-HISTORY STRATEGIES; FUNCTIONAL DIVERSITY; ENVIRONMENTAL-FACTORS; FUTURE CHALLENGES; HABITAT GRADIENTS; SPECIES RICHNESS; STREAM; ASSEMBLAGES; COMMUNITIES; TRAITS Biodiversity studies commonly focus on taxonomic diversity measures such as species richness and abundance. However, alternative measures based on ecomorphological traits are also critical for unveiling the processes shaping biodiversity and community assembly along environmental gradients. Our study presents the first analysis of habitat-trait-community structure in a Balkan biodiversity hotspot (Louros river, NW Greece), through the investigation of the relationships among freshwater fish assemblages' composition, morphological traits and habitat features. In order to provide a hierarchical classification of species' priority to protection measures, we highlight the most ecomorphologically distinct species using originality analysis. Our results suggest that the longitudinal changes of habitat variables (water temperature, depth, substrate, altitude) drive the local fish assemblages' structure highlighting the upstream-downstream gradient. We also present evidence for environmental filtering, establishing fish assemblages according to their ecomorphological traits. The calculation of the seven available indices of ecomorphological originality indicates that Valencia letourneuxi and Cobitis hellenica, which are endemic to Louros and threatened with extinction, exhibited the highest distinctiveness; thus their protection is of great importance. The methodological approach followed and the patterns described herein can contribute further to the application of community ecology theory to conservation, highlighting the need to use ecomorphological traits as a useful 'tool'. [Oikonomou, Anthi; Leonardos, Ioannis D.] Univ Ioannina, Zool Lab, Dept Biol Applicat & Technol, GR-45110 Ioannina, Greece; [Leprieur, Fabien] Univ Montpellier, UMR MARBEC Biodiversite Marine Exploitat & Conser, CNRS IFREMER IRD UM, Pl Eugene Bataillon, F-34095 Montpellier, France; [Oikonomou, Anthi] Hellen Ctr Marine Res Inst Marine Biol Resources, POB 712, Anavyssos 19013, Greece Oikonomou, A (reprint author), Univ Ioannina, Zool Lab, Dept Biol Applicat & Technol, GR-45110 Ioannina, Greece. anthi.oikon@gmail.com Greek State Scholarships Foundation (IKY) We express our gratitude to the drivers of the University of Ioannina for their help during the field samplings. We are also grateful to the personnel of the Amvrakikos Wetlands National Park for providing us with the necessary permissions. We also thank two anonymous reviewers for their constructive feedback. The research for this paper was partially financially supported by the Greek State Scholarships Foundation (IKY) mobility grants programme for short term training in recognized scientific/research centers abroad for candidate doctoral researchers. Angermeier PL, 1999, ECOL APPL, V9, P335, DOI 10.2307/2641189; Bady P, 2005, FRESHWATER BIOL, V50, P159, DOI 10.1111/j.1365-2427.2004.01287.x; Baillie J, 2012, PRICELESS WORTHLESS; Banarescu PM, 2004, BALKAN BIODIVERSITY: PATTERN AND PROCESS IN THE EUROPEAN HOTSPOT, P203; Barbieri R., 2015, MONOGRAPHMARINE SC, V8; Benjamini Y., 1995, J ROYAL STAT SOC B, V28, P9; Bobori D.C., 2001, Aquatic Ecosystem Health & Management, V4, P381, DOI 10.1080/146349801317276053; Brind'Amour A, 2011, ECOL APPL, V21, P363, DOI 10.1890/09-2178.1; Cadotte MW, 2011, J APPL ECOL, V48, P1079, DOI 10.1111/j.1365-2664.2011.02048.x; CEN, 2003, 140112003E CEN; Chan MD., 2001, THESIS; CLARKE KR, 1994, MAR BIOL, V118, P167, DOI 10.1007/BF00699231; Crivelli AJ, 2006, VALENCIA LETOURNEUXI, DOI [10.2305/IUCN.UK.2006.RLTS.T22830A9393054.en, DOI 10.2305/IUCN.UK.2006.RLTS.T22830A9393054.EN]; Dehling DM, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2015.2444; Delling B, 2011, ICHTHYOL EXPLOR FRES, V21, P331; Economidis PS, 2009, RED DATA BOOK THREAT, P86; Economou AN, 2007, MEDITERR MAR SCI, V8, P91, DOI 10.12681/mms.164; Economou AN, 1999, ENDANGERED FRESH WAT; Frimpong EA, 2010, AM FISH S S, V73, P109; GATZ A J JR, 1979, Tulane Studies in Zoology and Botany, V21, P91; Gkenas C, 2012, J APPL ICHTHYOL, V28, P75, DOI 10.1111/j.1439-0426.2011.01912.x; GORMAN OT, 1978, ECOLOGY, V59, P507, DOI 10.2307/1936581; Gothe E, 2017, FRESHWATER BIOL, V62, P397, DOI 10.1111/fwb.12875; Heino J, 2013, FRESHWATER BIOL, V58, P1539, DOI 10.1111/fwb.12164; Huang JX, 2011, J THEOR BIOL, V276, P99, DOI 10.1016/j.jtbi.2011.01.037; Hugueny B, 2010, AM FISH S S, V73, P29; HUMPHRIES CJ, 1995, ANNU REV ECOL SYST, V26, P93, DOI 10.1146/annurev.ecolsys.26.1.93; Ibanez C, 2009, ECOGRAPHY, V32, P658, DOI 10.1111/j.1600-0587.2008.05591.x; Isaac NJB, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000296; Kalogianni E, 2010, BIOLOGIA, V65, P128, DOI 10.2478/s11756-009-0231-3; Krystufek B, 2004, BALKAN BIODIVERSITY: PATTERN AND PROCESS IN THE EUROPEAN HOTSPOT, P1; Lamouroux N, 2002, ECOLOGY, V83, P1792, DOI 10.2307/3071765; Larsen S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0051115; Lasne E, 2007, RIVER RES APPL, V23, P877, DOI 10.1002/rra.1030; Legendre P, 1997, ECOLOGY, V78, P547; Logez M, 2010, J N AM BENTHOL SOC, V29, P1310, DOI 10.1899/09-125.1; Lyons KG, 2005, CONSERV BIOL, V19, P1019, DOI 10.1111/j.1523-1739.2005.00106.x; Magalhaes MF, 2002, FRESHWATER BIOL, V47, P1015, DOI 10.1046/j.1365-2427.2002.00830.x; Mason NWH, 2005, OIKOS, V111, P112, DOI 10.1111/j.0030-1299.2005.13886.x; Matthews W. J., 1998, PATTERNS FRESHWATER; MAY RM, 1990, NATURE, V347, P129, DOI 10.1038/347129a0; McKinney ML, 1997, ANNU REV ECOL SYST, V28, P495, DOI 10.1146/annurev.ecolsys.28.1.495; Mims MC, 2012, ECOLOGY, V93, P35, DOI 10.1890/11-0370.1; MOTTA PJ, 1995, ENVIRON BIOL FISH, V44, P11, DOI 10.1007/BF00005904; Mouillot D, 2008, BIOL CONSERV, V141, P1569, DOI 10.1016/j.biocon.2008.04.002; Nixon Kevin C., 1992, P216; Ntakis A, 2015, J APPL ICHTHYOL, V31, P180, DOI 10.1111/jai.12493; OBERDORFF T, 1993, HYDROBIOLOGIA, V259, P157, DOI 10.1007/BF00006595; Ohlberger J, 2006, J COMP PHYSIOL B, V176, P17, DOI 10.1007/s00360-005-0024-0; Oikonomou A, 2016, THESIS; Oikonomou A, 2014, HYDROBIOLOGIA, V738, P205, DOI 10.1007/s10750-014-1930-5; Olden JD, 2008, ECOLOGY, V89, P847, DOI 10.1890/06-1864.1; Olden JD, 2010, AM FISH S S, V73, P83; Olden JD, 2010, DIVERS DISTRIB, V16, P496, DOI 10.1111/j.1472-4642.2010.00655.x; PARENTI L.R., 1981, B AM MUS NAT HIST, V168, P335; Pavoine S, 2005, ECOL LETT, V8, P579, DOI 10.1111/j.1461-0248.2005.00752.x; Pease AA, 2015, HYDROBIOLOGIA, V753, P265, DOI 10.1007/s10750-015-2235-z; Pease AA, 2012, FRESHWATER BIOL, V57, P1060, DOI 10.1111/j.1365-2427.2012.02768.x; Petchey OL, 2002, ECOL LETT, V5, P402, DOI 10.1046/j.1461-0248.2002.00339.x; Poulos S, 2005, Z GEOMORPHOL, V135, P125; Pyron M, 2011, FRESHWATER BIOL, V56, P1579, DOI 10.1111/j.1365-2427.2011.02596.x; R Development Core Team, 2013, R LANG ENV STAT COMP; RAHEL FJ, 1991, T AM FISH SOC, V120, P319, DOI 10.1577/1548-8659(1991)120<0319:FAAHGI>2.3.CO;2; Redding DW, 2006, CONSERV BIOL, V20, P1670, DOI 10.1111/j.1523-1739.2006.00555.x; SCARNECCHIA D L, 1988, Regulated Rivers Research and Management, V2, P155, DOI 10.1002/rrr.3450020209; SCHLOSSER IJ, 1982, ECOL MONOGR, V52, P395, DOI 10.2307/2937352; SCHLUTER D, 1986, ECOLOGY, V67, P1073, DOI 10.2307/1939830; Spitz J, 2014, J ANIM ECOL, V83, P1137, DOI 10.1111/1365-2656.12218; Sternberg D, 2013, FRESHWATER BIOL, V58, P1767, DOI 10.1111/fwb.12166; Strecker AL, 2011, ECOL APPL, V21, P3002, DOI 10.1890/11-0599.1; Tedesco PA, 2008, OECOLOGIA, V156, P691, DOI 10.1007/s00442-008-1021-2; Tejerina-Garro FL, 2005, BRAZ ARCH BIOL TECHN, V48, P91, DOI 10.1590/S1516-89132005000100013; Tilman D, 1997, SCIENCE, V277, P1300, DOI 10.1126/science.277.5330.1300; TONN WM, 1990, AM NAT, V136, P345, DOI 10.1086/285102; TOWNSEND CR, 1994, FRESHWATER BIOL, V31, P265, DOI 10.1111/j.1365-2427.1994.tb01740.x; Tuset VM, 2014, ICHTHYOL RES, V61, P152, DOI 10.1007/s10228-014-0390-2; VANEWRIGHT RI, 1991, BIOL CONSERV, V55, P235, DOI 10.1016/0006-3207(91)90030-D; VANNOTE RL, 1980, CAN J FISH AQUAT SCI, V37, P130, DOI 10.1139/f80-017; Villeger S, 2017, AQUAT SCI, V79, P783, DOI 10.1007/s00027-017-0546-z; Villeger S, 2010, ECOL APPL, V20, P1512, DOI 10.1890/09-1310.1; Vogiatzi E, 2014, BIOL J LINN SOC, V111, P334, DOI 10.1111/bij.12206; Wainwright PC, 2002, ENVIRON BIOL FISH, V65, P47, DOI 10.1023/A:1019671131001; Wainwright Peter C., 1994, P42; WEBB PW, 1984, SCI AM, V251, P72, DOI 10.1038/scientificamerican0784-72; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1991, ECOL MONOGR, V61, P343, DOI 10.2307/2937046; WITTING L, 1995, BIOL CONSERV, V71, P205, DOI 10.1016/0006-3207(94)00041-N; Zalewski M., 1985, P3 88 0 0 8 8 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0378-1909 1573-5133 ENVIRON BIOL FISH Environ. Biol. Fishes JUL 2018 101 7 1121 1136 10.1007/s10641-018-0759-6 16 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology GJ5BL WOS:000435396100003 2018-11-22 J Beckman, NG; Bullock, JM; Salguero-Gomez, R Beckman, Noelle G.; Bullock, James M.; Salguero-Gomez, Roberto High dispersal ability is related to fast life-history strategies JOURNAL OF ECOLOGY English Article comparative demography; dispersal syndromes; fast-slow continuum; functional trait; life-history strategy; life-history trait; matrix population model; phylogenetic comparative analysis LONG-DISTANCE DISPERSAL; LEAF ECONOMICS SPECTRUM; SUB-ARCTIC FLORA; SEED DISPERSAL; PLANT TRAITS; STRUCTURED POPULATIONS; FUNCTIONAL TRAITS; PHOSPHORUS STOICHIOMETRY; INTRASPECIFIC VARIATION; ENVIRONMENTAL GRADIENT 1. Seed dispersal is an essential, yet often overlooked process in plant ecology and evolution, affecting adaptation capacity, population persistence and invasiveness. A species' ability to disperse is expected to covary with other life-history traits to form dispersal syndromes. Dispersal might be linked to the rate of life history, fecundity or generation time, depending on the relative selection pressures of bethedging, kin competition or maintaining gene flow. However, the linkage between dispersal and plant life-history strategies remains unknown because it is difficult to observe, quantify and manipulate the influence of dispersal over large spatio-temporal scales. 2. We integrate datasets describing plant vital rates, dispersal and functional traits to incorporate dispersal explicitly into the rich spectra of plant life-history strategies. For 141 plant species, we estimated dispersal ability by predicting maximum dispersal distances using allometric relationships based on growth form, dispersal mode, terminal velocity and seed mass. We derived life-history traits from matrix population models parameterized with field data from the COMPADRE Plant Matrix Database. We analysed the covariation in dispersal ability and life-history traits using multivariate techniques. 3. We found that three main axes of variation described plant dispersal syndromes: the fast-slow life-history continuum, the dispersal strategy axis and the reproductive strategy axis. On the dispersal strategy axis, species' dispersal abilities were positively correlated with aspects of fast life histories. Species with a high net reproductive rate, a long window of reproduction, low likelihood of escaping senescence and low shrinkage tendencies disperse their seeds further. The overall phylogenetic signal in our multidimensional analyses was low (Pagel's lambda < 0.24), implying a high degree of taxonomic generality in our findings. 4. Synthesis. Dispersal has been largely neglected in comparative demographic studies, despite its pivotal importance for populations. Our explicit incorporation of dispersal in a comparative life-history framework provides key insights to bridge the gap between dispersal ecology and life-history traits. Species with fast life-history strategies disperse their seeds further than slow-living plants, suggesting that longer dispersal distances may allow these species to take advantage of habitats varying unpredictably in space and time as a bet-hedging strategy. [Beckman, Noelle G.] Utah State Univ, Dept Biol, Logan, UT 84322 USA; [Beckman, Noelle G.] Utah State Univ, Ctr Ecol, Logan, UT 84322 USA; [Beckman, Noelle G.] Natl Socioenvironm Synth Ctr SESYNC, Annapolis, MD 21401 USA; [Bullock, James M.] NERC Ctr Ecol & Hydrol, Wallingford, Oxon, England; [Salguero-Gomez, Roberto] Univ Oxford, Dept Zool, Oxford, England; [Salguero-Gomez, Roberto] Max Planck Inst Demog Res, Evolutionary Demog Lab, Rostock, Germany; [Salguero-Gomez, Roberto] Univ Queensland, Ctr Excellence Environm Decis, St Lucia, Qld, Australia Beckman, NG (reprint author), Utah State Univ, Dept Biol, Logan, UT 84322 USA.; Beckman, NG (reprint author), Utah State Univ, Ctr Ecol, Logan, UT 84322 USA.; Beckman, NG (reprint author), Natl Socioenvironm Synth Ctr SESYNC, Annapolis, MD 21401 USA. noelle.beckman@usu.edu Bullock, James/F-9997-2011 Beckman, Noelle/0000-0001-5822-0610 Division of Biological Infrastructure [1052875]; Australian Research Council [DE140100505]; Natural Environment Research Council [NE/M018458/1, NEC06429] Division of Biological Infrastructure, Grant/Award Number: 1052875; Australian Research Council, Grant/Award Number: DE140100505; Natural Environment Research Council, Grant/Award Number: NE/M018458/1 and NEC06429 Ackerly DD, 2007, ECOL LETT, V10, P135, DOI 10.1111/j.1461-0248.2006.01006.x; Ally D, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000454; Almeida-Neto M, 2008, GLOBAL ECOL BIOGEOGR, V17, P503, DOI 10.1111/j.1466-8238.2008.00386.x; Augspurger CK, 2016, ECOL EVOL, V6, P1128, DOI 10.1002/ece3.1905; Baker H.G., 1965, GENETICS COLONIZING; Baraloto C, 2010, ECOL LETT, V13, P1338, DOI 10.1111/j.1461-0248.2010.01517.x; Baraloto C, 2010, FUNCT ECOL, V24, P208, DOI 10.1111/j.1365-2435.2009.01600.x; Barrett SCH, 2015, P NATL ACAD SCI USA, V112, P8859, DOI 10.1073/pnas.1501712112; Beckman NG, 2013, BIOTROPICA, V45, P666, DOI 10.1111/btp.12071; Bocanegra-González Kelly Tatiana, 2015, Bol. Cient. Mus. Hist. Nat. Univ. Caldas, V19, P17, DOI 10.17151/bccm.2015.19.1.2; Bonte D, 2017, OIKOS, V126, P472, DOI 10.1111/oik.03801; Bonte D, 2012, BIOL REV, V87, P290, DOI 10.1111/j.1469-185X.2011.00201.x; Boyle B, 2013, BMC BIOINFORMATICS, V14, DOI 10.1186/1471-2105-14-16; Buckley YM, 2005, J APPL ECOL, V42, P1020, DOI 10.1111/j.1365-2664.2005.01100.x; Bullock JM, 2017, J ECOL, V105, P6, DOI 10.1111/1365-2745.12666; Bullock JM, 2012, J ECOL, V100, P104, DOI 10.1111/j.1365-2745.2011.01910.x; Butterfield BJ, 2011, OECOLOGIA, V165, P477, DOI 10.1007/s00442-010-1741-y; Castro-Diez P, 1998, OECOLOGIA, V116, P57, DOI 10.1007/s004420050563; Castro-Diez P, 2000, OECOLOGIA, V124, P476, DOI 10.1007/s004420000473; Caswell H, 2001, MATRIX POPULATION MO; Cerabolini BEL, 2010, PLANT ECOL, V210, P253, DOI 10.1007/s11258-010-9753-6; Chen SC, 2017, ECOGRAPHY, V40, P531, DOI 10.1111/ecog.02010; Choat B, 2012, NATURE, V491, P752, DOI 10.1038/nature11688; Clobert J, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P1, DOI 10.1093/acprof:oso/9780199608898.001.0001; Clobert J, 2009, ECOL LETT, V12, P197, DOI 10.1111/j.1461-0248.2008.01267.x; COCHRAN ME, 1992, ECOL MONOGR, V62, P345, DOI 10.2307/2937115; Connell J. H., 1971, ROLE NATURAL ENEMIES, P298; Cornelissen JHC, 2003, J VEG SCI, V14, P311, DOI 10.1111/j.1654-1103.2003.tb02157.x; Cornelissen JHC, 1999, OECOLOGIA, V118, P248, DOI 10.1007/s004420050725; Cornwell WK, 2009, ECOL MONOGR, V79, P109, DOI 10.1890/07-1134.1; Cornwell WK, 2006, ECOLOGY, V87, P1465, DOI 10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2; Craven D, 2007, FOREST ECOL MANAG, V238, P335, DOI 10.1016/j.foreco.2006.10.030; Craven D, 2011, FOREST ECOL MANAG, V261, P1643, DOI 10.1016/j.foreco.2010.09.017; DEMETRIUS L, 1978, NATURE, V275, P213, DOI 10.1038/275213a0; Diaz S, 2004, J VEG SCI, V15, P295, DOI 10.1111/j.1654-1103.2004.tb02266.x; Diaz S, 2016, NATURE, V529, P167, DOI 10.1038/nature16489; Dressler R.L., 2003, MANUAL PLANTAS COSTA, V3, P1; Duputie A, 2013, INTERFACE FOCUS, V3, DOI 10.1098/rsfs.2013.0028; Durka W., 2002, BIOLFLOR DATENBANK B, P133; Dytham C, 2006, OIKOS, V113, P530, DOI 10.1111/j.2006.0030-1299.14395.x; ENRIGHT NJ, 1995, OECOLOGIA, V104, P79, DOI 10.1007/BF00365565; FITTER AH, 1994, J ECOL, V82, P415, DOI 10.2307/2261309; Flann C, 2009, GLOBAL COMPOSITAE CH; Flowers Tim, HAL DAT VERS 3 09; Flowers TJ, 2010, FUNCT PLANT BIOL, V37, P604, DOI 10.1071/FP09269; Fonseca CR, 2000, J ECOL, V88, P964, DOI 10.1046/j.1365-2745.2000.00506.x; FRANKLIN SB, 1995, J VEG SCI, V6, P99, DOI 10.2307/3236261; Freckleton RP, 2012, METHODS ECOL EVOL, V3, P940, DOI 10.1111/j.2041-210X.2012.00220.x; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Freschet GT, 2010, NEW PHYTOL, V186, P879, DOI 10.1111/j.1469-8137.2010.03228.x; Freschet GT, 2010, J ECOL, V98, P362, DOI 10.1111/j.1365-2745.2009.01615.x; Gachet S, 2005, BIODIVERS CONSERV, V14, P1023, DOI 10.1007/s10531-004-8411-5; GADGIL M, 1971, ECOLOGY, V52, P253, DOI 10.2307/1934583; Gallagher RV, 2012, J BIOGEOGR, V39, P1757, DOI 10.1111/j.1365-2699.2012.02773.x; Gallagher RV, 2011, J BIOGEOGR, V38, P828, DOI 10.1111/j.1365-2699.2010.02455.x; Green W.A., 2009, USDA PLANTS COMPILAT; GREENE DF, 1992, AM NAT, V139, P825, DOI 10.1086/285359; Guy AL, 2013, BOTANY, V91, P176, DOI 10.1139/cjb-2012-0162; HAMILTON WD, 1977, NATURE, V269, P578, DOI 10.1038/269578a0; HAMRICK JL, 1993, VEGETATIO, V108, P281; Han WX, 2012, GLOBAL ECOL BIOGEOGR, V21, P376, DOI 10.1111/j.1466-8238.2011.00677.x; Han WX, 2005, NEW PHYTOL, V168, P377, DOI 10.1111/j.1469-8137.2005.01530.x; Hastings A, 2005, ECOL LETT, V8, P91, DOI 10.1111/j.1461-0248.2004.00687.x; He JS, 2008, OECOLOGIA, V155, P301, DOI 10.1007/s00442-007-0912-y; He JS, 2006, NEW PHYTOL, V170, P835, DOI 10.1111/j.1469-8137.2006.01704.x; Hector A, 2010, J ANIM ECOL, V79, P308, DOI 10.1111/j.1365-2656.2009.01634.x; HORN JL, 1965, PSYCHOMETRIKA, V30, P179, DOI 10.1007/BF02289447; Hovestadt T, 2001, P ROY SOC B-BIOL SCI, V268, P385, DOI 10.1098/rspb.2000.1379; HOWE HF, 1982, ANNU REV ECOL SYST, V13, P201, DOI 10.1146/annurev.es.13.110182.001221; Howe HF, 2004, BIOSCIENCE, V54, P651, DOI 10.1641/0006-3568(2004)054[0651:WSDM]2.0.CO;2; JANZEN DH, 1970, AM NAT, V104, P501, DOI 10.1086/282687; Jordano P, 2017, J ECOL, V105, P75, DOI 10.1111/1365-2745.12690; Wright SJ, 2010, ECOLOGY, V91, P3664, DOI 10.1890/09-2335.1; Josse J, 2016, J STAT SOFTW, V70; Kattge J, 2011, GLOBAL CHANGE BIOL, V17, P2905, DOI 10.1111/j.1365-2486.2011.02451.x; Kattge J, 2009, GLOBAL CHANGE BIOL, V15, P976, DOI 10.1111/j.1365-2486.2008.01744.x; Kichenin E, 2013, FUNCT ECOL, V27, P1254, DOI 10.1111/1365-2435.12116; Kirkup D, 2005, TAXON, V54, P457, DOI 10.2307/25065373; Kisel Y, 2012, EVOLUTION, V66, P3035, DOI 10.1111/j.1558-5646.2012.01663.x; Kleyer M, 2008, J ECOL, V96, P1266, DOI 10.1111/j.1365-2745.2008.01430.x; Kot M, 1996, ECOLOGY, V77, P2027, DOI 10.2307/2265698; Kremer A, 2012, ECOL LETT, V15, P378, DOI 10.1111/j.1461-0248.2012.01746.x; Kroon H. D., 1997, ECOLOGY EVOLUTION CL; Kuhn I, 2004, DIVERS DISTRIB, V10, P363, DOI 10.1111/j.1366-9516.2004.00106.x; Levin SA, 2003, ANNU REV ECOL EVOL S, V34, P575, DOI 10.1146/annurev.ecolsys.34.011802.132428; Loarie SR, 2009, NATURE, V462, P1052, DOI 10.1038/nature08649; LOISELLE BA, 1990, OECOLOGIA, V82, P494, DOI 10.1007/BF00319792; Louault F, 2005, J VEG SCI, V16, P151, DOI 10.1658/1100-9233(2005)016[0151:PTAFTI]2.0.CO;2; McDonald PG, 2003, FUNCT ECOL, V17, P50, DOI 10.1046/j.1365-2435.2003.00698.x; MCPEEK MA, 1992, AM NAT, V140, P1010, DOI 10.1086/285453; Mencuccini M, 2003, PLANT CELL ENVIRON, V26, P163, DOI 10.1046/j.1365-3040.2003.00991.x; Milla R, 2011, ANN BOT-LONDON, V107, P455, DOI 10.1093/aob/mcq261; Mischkolz J. M., 2013, THESIS; Moles AT, 2009, J ECOL, V97, P923, DOI 10.1111/j.1365-2745.2009.01526.x; Moles AT, 2004, J ECOL, V92, P384, DOI 10.1111/j.0022-0477.2004.00880.x; Moretti M, 2009, ECOGRAPHY, V32, P299, DOI 10.1111/j.1600-0587.2008.05524.x; Muller-Landau HC, 2003, ECOLOGY, V84, P1957, DOI 10.1890/01-0617; Neubert MG, 2000, ECOLOGY, V81, P1613, DOI 10.1890/0012-9658(2000)081[1613:DADCAS]2.0.CO;2; Oksanen J, 2017, R PACKAGE VERSION, V2, P4; Ordonez JC, 2010, ECOLOGY, V91, P3218, DOI 10.1890/09-1509.1; Ordonez JC, 2010, AM NAT, V175, P225, DOI 10.1086/649582; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Paton AJ, 2008, TAXON, V57, P602, DOI 10.2307/25066027; Paula S, 2008, J ECOL, V96, P543, DOI 10.1111/j.1365-2745.2008.01359.x; Paula S., 2009, ECOLOGY, V90, P1420, DOI DOI 10.1890/08-1309.1; Peco B, 2005, BASIC APPL ECOL, V6, P175, DOI 10.1016/j.baae.2005.01.002; Pellissier L, 2016, NEW PHYTOL, V209, P1230, DOI 10.1111/nph.13649; Penuelas J, 2010, J CHEM ECOL, V36, P1255, DOI 10.1007/s10886-010-9862-7; Penuelas J, 2010, NEW PHYTOL, V187, P564, DOI 10.1111/j.1469-8137.2010.03360.x; Penuelas J, 2010, GLOBAL CHANGE BIOL, V16, P2171, DOI 10.1111/j.1365-2486.2009.02054.x; Petter G, 2016, FUNCT ECOL, V30, P188, DOI 10.1111/1365-2435.12490; Pierce S, 2007, PLANT BIOSYST, V141, P337, DOI 10.1080/11263500701627695; Pierce S, 2007, J ECOL, V95, P698, DOI 10.1111/j.1365-2745.2007.01242.x; Pierce S, 2013, FUNCT ECOL, V27, P1002, DOI 10.1111/1365-2435.12095; Piovesan G, 2005, ECOL RES, V20, P739, DOI 10.1007/s11284-005-0096-z; Prentice IC, 2011, NEW PHYTOL, V190, P169, DOI 10.1111/j.1469-8137.2010.03579.x; R Core Team, 2017, R LANG ENV STAT COMP; Reich PB, 2008, ECOL LETT, V11, P793, DOI 10.1111/j.1461-0248.2008.01185.x; Reich PB, 2009, OECOLOGIA, V160, P207, DOI 10.1007/s00442-009-1291-3; Revell LJ, 2012, METHODS ECOL EVOL, V3, P217, DOI 10.1111/j.2041-210X.2011.00169.x; Revelle W, 2017, PSYCH PROCEDURES PSY; ROFF DA, 1975, OECOLOGIA, V19, P217, DOI 10.1007/BF00345307; Ronce O, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P119; Rousset F, 2002, J EVOLUTION BIOL, V15, P515, DOI 10.1046/j.1420-9101.2002.00430.x; Royal Botanic Gardens Kew, 2016, SEED INF DAT SID VER; Saastamoinen M, 2018, BIOL REV, V93, P574, DOI 10.1111/brv.12356; Salguero-Gomez R., 2017, EVOLUTIONARY ECOLOGY, V32, P9; Salguero-Gomez R, 2016, P NATL ACAD SCI USA, V113, P230, DOI 10.1073/pnas.1506215112; Salguero-Gomez R, 2015, J ECOL, V103, P202, DOI 10.1111/1365-2745.12334; Salguero-Gomez R, 2010, AM NAT, V176, P710, DOI 10.1086/657044; Schupp EW, 2010, NEW PHYTOL, V188, P333, DOI 10.1111/j.1469-8137.2010.03402.x; Schweingruber F., 2005, THE XYLEM DATABASE; Schweingruber F. H., 2005, Forest Snow and Landscape Research, V79, P195; Sheremetev S., 2005, HERBS SOIL MOISTURE; SHIPLEY B, 1991, FUNCT ECOL, V5, P111, DOI 10.2307/2389561; SILVERTOWN J, 1997, PLANT LIFE HIST ECOL; Skarpaas O, 2007, AM NAT, V170, P421, DOI 10.1086/519854; Snyder RE, 2011, P ROY SOC B-BIOL SCI, V278, P739, DOI 10.1098/rspb.2010.1549; Soons MB, 2004, ECOLOGY, V85, P3056, DOI 10.1890/03-0522; Spiegel O, 2012, J ECOL, V100, P392, DOI 10.1111/j.1365-2745.2011.01886.x; Starrfelt J, 2010, AM NAT, V175, P38, DOI 10.1086/648605; STEARNS SC, 1999, EVOLUTION LIFE HIST; Stevens VM, 2014, ECOL LETT, V17, P1039, DOI 10.1111/ele.12303; Stevens VM, 2012, ECOL LETT, V15, P74, DOI 10.1111/j.1461-0248.2011.01709.x; Stott I, 2010, J ECOL, V98, P302, DOI 10.1111/j.1365-2745.2009.01632.x; Tamme R, 2014, ECOLOGY, V95, P505, DOI 10.1890/13-1000.1; Tewksbury JJ, 2001, NATURE, V412, P403, DOI 10.1038/35086653; The Plant List, 2013, VERSION 1 1; The Taxonomic Name Resolution Service, IPLANT COLL; Thomson FJ, 2018, NEW PHYTOL, V217, P407, DOI 10.1111/nph.14735; Thomson FJ, 2011, J ECOL, V99, P1299, DOI 10.1111/j.1365-2745.2011.01867.x; Tiansawat P, 2017, BIOTROPICA, V49, P871, DOI 10.1111/btp.12473; Travis JMJ, 2013, OIKOS, V122, P1532, DOI 10.1111/j.1600-0706.2013.00399.x; Travis JMJ, 2012, METHODS ECOL EVOL, V3, P628, DOI 10.1111/j.2041-210X.2012.00193.x; Uemura M, 2013, PHYSIOL PLANTARUM, V147, P1, DOI 10.1111/ppl.12004; USDA NRCS, PLANTS DAT; Vergutz L., 2012, GLOBAL DATABASE CARB; Vergutz L, 2012, ECOL MONOGR, V82, P205, DOI 10.1890/11-0416.1; White MA, 2000, EARTH INTERACT, V4, P1, DOI DOI 10.1175/1087-3562(2000)004<0003:PASA0T>2.0.C0;2; Williams JL, 2016, SCIENCE, V353, P482, DOI 10.1126/science.aaf6268; Wirth C, 2009, ECOL STUD-ANAL SYNTH, V207, P465, DOI 10.1007/978-3-540-92706-8_21; Wright IJ, 2007, ANN BOT-LONDON, V99, P1003, DOI 10.1093/aob/mcl066; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Wright IJ, 2006, NEW PHYTOL, V169, P309, DOI 10.1111/j.1469-8137.2005.01590.x; Wrycza TF, 2014, DEMOGR RES, V30, P1571, DOI 10.4054/DemRes.2014.30.57; Zanne AE, 2014, NATURE, V506, P89, DOI 10.1038/nature12872 166 1 1 38 38 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-0477 1365-2745 J ECOL J. Ecol. JUL 2018 106 4 1349 1362 10.1111/1365-2745.12989 14 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology GJ5TE WOS:000435444700003 Green Published, Other Gold 2018-11-22 J Garnier, E; Fayolle, A; Navas, ML; Damgaard, C; Cruz, P; Hubert, D; Richarte, J; Autran, P; Leurent, C; Violle, C Garnier, Eric; Fayolle, Adeline; Navas, Marie-Laure; Damgaard, Christian; Cruz, Pablo; Hubert, Daniel; Richarte, Jean; Autran, Paul; Leurent, Corentin; Violle, Cyrille Plant demographic and functional responses to management intensification: A long-term study in a Mediterranean rangeland JOURNAL OF ECOLOGY English Article axes of functional variation; colonization and survival; fertilization; grazing; life-history strategy; plant population and community dynamics; plant traits; variations in species abundance LEAF ECONOMICS SPECTRUM; FAST-SLOW CONTINUUM; DRY-MATTER CONTENT; POPULATION-DYNAMICS; COMMUNITY ECOLOGY; EXPLAIN VARIATION; TRAIT RESPONSES; TROPICAL TREES; VITAL-RATES; LIFE-CYCLE 1. Understanding how functional traits, which are key for plant functioning, relate to demographic parameters of populations is central to tackle pending issues in plant ecology such as the forecast of the fate of populations and communities in a changing world, the quantification of community assembly processes or the improvement of species distribution models. We addressed this question in the case of species from a Mediterranean rangeland of southern France. 2. Changes in species abundance in response to management intensification (fertilization and increased grazing pressure) were followed over a 28-year period. Probabilities of presence, and elasticities of the changes in the probability of space occupancy to colonization and survival, which are analogues of demographic parameters, were calculated for 53 species from the time series of abundance data using a space occupancy model. Nine quantitative traits pertaining to resource use, plant morphology, regeneration and phenology were measured on these species and related to demographic parameters. 3. The long-term dynamics of species in response to management intensification was associated with major changes in functional traits and strategies. Changes in the probability of occurrence-analogous to population growth rate-were correlated with traits describing the fast-slow continuum of leaf functioning. The elasticity of population growth rate to colonization was significantly related to reproductive plant height and seed mass, and to a lower extent, to leaf carbon isotopic ratio. 4. Synthesis. The functional response of species to management intensification corresponds to a shift along the second axis of a recently identified global spectrum of plant form and function, which maps, to some extent, onto the fast-slow continuum of life-history strategies. By contrast, the elasticity of colonization relates to the global spectrum axis capturing the size of organs. Seed mass contributes to this axis and is assumed to relate to one of the important traits structuring the reproductive strategy axis of life histories as well, namely net reproductive rate. While this mapping between functional and life-history traits is appealing, further tests in contrasting types of communities are required to assess its degree of generality. [Garnier, Eric; Fayolle, Adeline; Leurent, Corentin; Violle, Cyrille] Univ Paul Valery Montpellier, Univ Montpellier, CNRS, Ctr Ecol Fonct & Evolut,EPHE, 1919 Route Mende, F-34293 Montpellier 5, France; [Navas, Marie-Laure; Richarte, Jean] Univ Paul Valery Montpellier, Univ Montpellier, CNRS, Ctr Ecol Fonct & Evolut,EPHE,Montpellier SupAgro, Montpellier 5, France; [Damgaard, Christian] Aarhus Univ, Biosci, Silkeborg, Denmark; [Cruz, Pablo] INRA AGIR, UMR 1248, Castanet Tolosan, France; [Hubert, Daniel] INRA ERCC, UMR 868, Montpellier 1, France; [Autran, Paul] INRA, Unite Expt Fage, Roquefort Sur Soulzon, France Garnier, E (reprint author), Univ Paul Valery Montpellier, Univ Montpellier, CNRS, Ctr Ecol Fonct & Evolut,EPHE, 1919 Route Mende, F-34293 Montpellier 5, France. eric.garnier@cefe.cnrs.fr Damgaard, Christian/G-2441-2010; Garnier, Eric/D-1650-2012 Damgaard, Christian/0000-0003-3932-4312; Garnier, Eric/0000-0002-9392-5154 H2020 European Research Council [ERC-StG-2014-639706-CONSTRAINTS]; DivHerbe project (EcoGER National Programme) H2020 European Research Council, Grant/Award Number: ERC-StG-2014-639706-CONSTRAINTS; DivHerbe project (EcoGER National Programme) Ackerly DD, 2003, INT J PLANT SCI, V164, pS1, DOI 10.1086/374729; Adler PB, 2014, P NATL ACAD SCI USA, V111, P740, DOI 10.1073/pnas.1315179111; Bernard C., 2008, B SOC BOTANIQUE CTR, V31, P1; Bonhomme R, 2000, EUR J AGRON, V13, P1, DOI 10.1016/S1161-0301(00)00058-7; Caswell H, 2001, MATRIX POPULATION MO; CHAPIN FS, 1993, AM NAT, V142, pS78, DOI 10.1086/285524; Chollet S, 2014, ECOLOGY, V95, P737, DOI 10.1890/13-0751.1; Colwell R. K., 2013, ESTIMATES STAT ESTIM; Craine J., 2009, RESOURCE STRATEGIES, DOI [10. 1515/9781400830640, DOI 10.1515/9781400830640]; Damgaard C, 2017, OECOLOGIA, V183, P201, DOI 10.1007/s00442-016-3760-9; Damgaard C, 2011, METHODS ECOL EVOL, V2, P110, DOI 10.1111/j.2041-210X.2010.00053.x; Diaz S, 2007, GLOBAL CHANGE BIOL, V13, P313, DOI 10.1111/j.1365-2486.2006.01288.x; Diaz S, 2016, NATURE, V529, P167, DOI 10.1038/nature16489; Enquist BJ, 2015, ADV ECOL RES, V52, P249, DOI 10.1016/bs.aecr.2015.02.001; Fayolle A., 2008, THESIS; Flores O, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0105022; Franco M, 2004, ECOLOGY, V85, P531, DOI 10.1890/02-0651; Garnier E., 2016, PLANT FUNCTIONAL DIV; Garnier E., 2018, DRYAD DIGITAL REPOSI, DOI DOI 10.5061/DRYAD.8463Q13; Garnier E, 2007, ANN BOT-LONDON, V99, P967, DOI 10.1093/aob/mcm215; Garnier E, 2017, J ECOL, V105, P298, DOI 10.1111/1365-2745.12698; Grime JP, 1979, PLANT STRATEGIES VEG; Henery ML, 2001, OIKOS, V92, P479, DOI 10.1034/j.1600-0706.2001.920309.x; Hodgson JG, 2011, ANN BOT-LONDON, V108, P1337, DOI 10.1093/aob/mcr225; Wright SJ, 2010, ECOLOGY, V91, P3664, DOI 10.1890/09-2335.1; Jost Lou, 2011, P66; KEDDY PA, 1992, J VEG SCI, V3, P157, DOI 10.2307/3235676; Kleyer M, 2015, BASIC APPL ECOL, V16, P1, DOI 10.1016/j.baae.2014.11.002; Lajoie G, 2015, ECOLOGY, V96, P2912, DOI 10.1890/15-0156.1; Laughlin DC, 2015, TRENDS ECOL EVOL, V30, P487, DOI 10.1016/j.tree.2015.06.003; Laughlin DC, 2014, J ECOL, V102, P186, DOI 10.1111/1365-2745.12187; Lavorel S, 1997, TRENDS ECOL EVOL, V12, P474, DOI 10.1016/S0169-5347(97)01219-6; Lavorel S, 2002, FUNCT ECOL, V16, P545, DOI 10.1046/j.1365-2435.2002.00664.x; Leishman M. R., 2000, SEEDS ECOLOGY REGENE, P31, DOI DOI 10.1079/9780851994321.0031; Mason CM, 2016, ECOL LETT, V19, P54, DOI 10.1111/ele.12542; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; McIntyre S, 2001, J ECOL, V89, P209, DOI 10.1046/j.1365-2745.2001.00535.x; Molenat G, 2005, PROD ANIM, V18, P323; Moles AT, 2014, J VEG SCI, V25, P1167, DOI 10.1111/jvs.12190; Moles AT, 2004, J ECOL, V92, P384, DOI 10.1111/j.0022-0477.2004.00880.x; NOYMEIR I, 1989, J ECOL, V77, P290, DOI 10.2307/2260930; Pakeman RJ, 2004, J ECOL, V92, P893, DOI 10.1111/j.0022-0477.2004.00928.x; Perez-Harguindeguy N, 2013, AUST J BOT, V61, P167, DOI 10.1071/BT12225; Poorter L, 2008, ECOLOGY, V89, P1908, DOI 10.1890/07-0207.1; R Development Core Team, 2016, R LANG ENV STAT COMP; Raunkiaer C, 1934, LIFE FORMS PLANTS ST; Read QD, 2014, FUNCT ECOL, V28, P37, DOI 10.1111/1365-2435.12162; Reich PB, 1997, P NATL ACAD SCI USA, V94, P13730, DOI 10.1073/pnas.94.25.13730; Reich PB, 2014, J ECOL, V102, P275, DOI 10.1111/1365-2745.12211; Salguero-Gomez R., 2018, FUNCTIONAL ECOLOGY, V32; Salguero-Gomez R, 2017, NEW PHYTOL, V213, P1618, DOI 10.1111/nph.14289; Salguero-Gomez R, 2016, P NATL ACAD SCI USA, V113, P230, DOI 10.1073/pnas.1506215112; Salguero-Gomez R, 2015, J ECOL, V103, P202, DOI 10.1111/1365-2745.12334; Schippers P, 2001, OIKOS, V95, P198, DOI 10.1034/j.1600-0706.2001.950202.x; Shipley B, 2006, ECOLOGY, V87, P535, DOI 10.1890/05-1051; SHIPLEY B, 1992, AM NAT, V139, P467, DOI 10.1086/285339; Shipley B, 2016, OECOLOGIA, V180, P923, DOI 10.1007/s00442-016-3549-x; SILVERTOWN J, 1993, J ECOL, V81, P465, DOI 10.2307/2261525; SILVERTOWN J, 1992, FUNCT ECOL, V6, P130, DOI 10.2307/2389746; Simpson AH, 2016, GLOBAL ECOL BIOGEOGR, V25, P964, DOI 10.1111/geb.12457; Smart SM, 2017, FUNCT ECOL, V31, P1336, DOI 10.1111/1365-2435.12832; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stott I, 2010, J ECOL, V98, P302, DOI 10.1111/j.1365-2745.2009.01632.x; Thuiller W, 2014, ECOGRAPHY, V37, P1155, DOI 10.1111/ecog.00836; Violle C, 2007, OIKOS, V116, P882, DOI 10.1111/j.2007.0030-1299.15559.x; Visser MD, 2016, FUNCT ECOL, V30, P168, DOI 10.1111/1365-2435.12621; Westoby M, 2002, ANNU REV ECOL SYST, V33, P125, DOI 10.1146/annurev.ecolsys.33.010802.150452; WOODWARD FI, 1991, FUNCT ECOL, V5, P202, DOI 10.2307/2389258; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Wright IJ, 2005, GLOBAL ECOL BIOGEOGR, V14, P411, DOI 10.1111/j.1466-822x.2005.00172.x 70 1 1 18 18 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-0477 1365-2745 J ECOL J. Ecol. JUL 2018 106 4 1363 1376 10.1111/1365-2745.12996 14 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology GJ5TE WOS:000435444700004 Bronze 2018-11-22 J Thomas, PA; Stone, D; La Porta, N Thomas, Peter A.; Stone, Duncan; La Porta, Nicola Biological Flora of the British Isles: Ulmus glabra JOURNAL OF ECOLOGY English Article communities; conservation; Dutch elm disease; geographical and altitudinal distribution; germination; herbivory; mycorrhiza; reproductive biology DUTCH ELM DISEASE; OPHIOSTOMA-NOVO-ULMI; POSTDISPERSAL SEED PREDATION; TREE SPECIES DISTRIBUTION; LIFE-HISTORY STRATEGIES; ROTATED-LAMINA SYNDROME; NORTH EUROPEAN TREES; ROSALIA-ALPINA L.; POLYGONIA-C-ALBUM; WYCH ELM 1. This account presents information on all aspects of the biology of Ulmus glabra Hudson (wych elm) that are relevant to understanding its ecological characteristics and behaviour. The main topics are presented within the standard framework of the Biological Flora of the British Isles: distribution, habitat, communities, responses to biotic factors, responses to environment, structure and physiology, phenology, floral and seed characters, herbivores and disease, history and conservation. 2. Ulmus glabra is a large forest tree, and often an important canopy tree in ancient and semi-natural woodlands. It is primarily native to the north and west of Britain and much of mainland Europe. It is the only elm native to Ireland. It is the most distinct of the British elms in that it rarely suckers and sets abundant viable seed. Although found on limestone screes and cliffs, and hedgerows, it is primarily a woodland tree, especially on moist, basic soils. In many secondary woodlands, it often co-occurs with Acer pseudoplatanus and has ecological needs that are similar to Fraxinus excelsior. 3. Ulmus glabra has clusters of c. 25 hermaphrodite flowers appearing before the leaves on previous year's growth. Seeds are wind-dispersed, falling in April to July, but remain viable for only a few days. Nevertheless, seedling establishment can be abundant. Hybridisation with other northern European elms is common but hybrids are notoriously difficult to identify and therefore probably under-recorded. 4. The health and survival of wych elm in Europe has been seriously compromised since the 1970s due to Dutch elm disease caused by the fungus Ophiostoma novo-ulmi, transmitted by elm bark beetles (Scolytus spp.). To the south of its Scottish stronghold, many elms are reduced to small trees regrowing from basal sprouts or seeds. These trees tend to be reinfected once trunk diameter exceeds 10 cm. Fortunately for its long-term survival, seed production usually begins a number of years before they are reinfected. [Thomas, Peter A.] Keele Univ, Sch Life Sci, Keele, Staffs, England; [Stone, Duncan] Scottish Nat Heritage, Inverness, Scotland; [La Porta, Nicola] San Michele Adige, Fdn Edmund Mach, IASMA Res & Innovat Ctr, Trentino, Italy; [La Porta, Nicola] San Michele Adige, EFI Project Ctr Mt Forests MOUNTFOR, Trentino, Italy Thomas, PA (reprint author), Keele Univ, Sch Life Sci, Keele, Staffs, England. p.a.thomas@keele.ac.uk La Porta, Nicola/0000-0002-7080-3349 Aarrestad PA, 2000, NORD J BOT, V20, P449, DOI 10.1111/j.1756-1051.2000.tb01588.x; Abolafia J, 2016, ZOOTAXA, V4162, P245, DOI 10.11646/zootaxa.4162.2.3; Abraham F, 2000, BRIT WILDLIFE, V12, P86; Akatov PV, 2009, RUSS J ECOL+, V40, P33, DOI 10.1134/S1067413609010056; Alberti G, 2005, ANN FOREST SCI, V62, P831, DOI 10.1051/forest:2005089; American Chestnut Foundation, 2017, 2017 2027 STRAT PLAN; Anderbrant O, 2017, J APPL ENTOMOL, V141, P417, DOI 10.1111/jen.12354; ANDRZEJCZYK T, 1995, VEGETATIO, V117, P81, DOI 10.1007/BF00033261; Angulo A. O., 1991, Bosque, V12, P67; [Anonymous], 2011, WYCH ELM MYTHS USES; Martin JA, 2015, IFOREST, V8, P172, DOI 10.3832/ifor1224-008; APPLEBY RF, 1983, OECOLOGIA, V56, P30, DOI 10.1007/BF00378214; Armstrong JV, 1996, BOT J LINN SOC, V120, P39, DOI 10.1111/j.1095-8339.1996.tb00478.x; Ataolu C., 2010, HAYVANSAL URETIM, V51, P1; Atkins P.M., 1981, Entomologist's Gazette, V32, P280; AUSTAD I, 1990, VEGETATIO, V88, P1, DOI 10.1007/BF00032599; Aversano R, 2017, PLOS ONE, V12, DOI [10.1371/journal.pone.0186298, 10.1371/journal.pone.018]; Aytin A, 2016, J FORESTRY RES, V27, P225, DOI 10.1007/s11676-015-0136-7; Azevedo JL, 2016, GENET MOL BIOL, V39, P476, DOI [10.1590/1678-4685-GMB-2016-0056, 10.1590/1678-4685-gmb-2016-0056]; Balcar V., 2009, Zpravy Lesnickeho Vyzkumu, V54, P3; Baldi P, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.00944; BARSETT H, 1992, CARBOHYD POLYM, V17, P137, DOI 10.1016/0144-8617(92)90107-2; BARSETT H, 1992, CARBOHYD POLYM, V18, P125, DOI 10.1016/0144-8617(92)90134-C; BARSETT H, 1985, J CHROMATOGR, V329, P315, DOI 10.1016/S0021-9673(01)81938-5; BARSETT H, 1991, ACTA PHARM NORDICA, V3, P87; Bartnik C, 2015, POL J ECOL, V63, P440, DOI 10.3161/15052249PJE2015.63.3.013; Bayram S, 2008, TARIM BILIM DERG, V14, P386; Becker T., 2016, APPL VEG SCI, V20, P304; Ben Jouira H, 1998, PLANT CELL TISS ORG, V53, P153, DOI 10.1023/A:1006038923565; BENNETT KD, 1991, J BIOGEOGR, V18, P103, DOI 10.2307/2845248; BENNETT KD, 1983, NATURE, V303, P164, DOI 10.1038/303164a0; BENNETT KD, 1983, NEW PHYTOL, V95, P457, DOI 10.1111/j.1469-8137.1983.tb03512.x; Bergman C.A., 1993, ARCHAEOLOGICAL PAPER, V4, P95; BIRKS HJB, 1989, J BIOGEOGR, V16, P503, DOI 10.2307/2845208; BIRKS HJB, 1982, NEW PHYTOL, V90, P339, DOI 10.1111/j.1469-8137.1982.tb03266.x; Biroscikova M, 2004, PLANT CELL REP, V22, P640, DOI 10.1007/s00299-003-0749-8; Blank SM, 2014, J HYMENOPT RES, V41, P57, DOI 10.3897/JHR.41.8681; Blank SM, 2010, EUR J ENTOMOL, V107, P357, DOI 10.14411/eje.2010.045; BOLLARD E. G., 1957, AUSTRALIAN JOUR BIOL SCI, V10, P292; Boncina A, 2000, GLOBAL ECOL BIOGEOGR, V9, P201, DOI 10.1046/j.1365-2699.2000.00155.x; Borlea G. F., 2004, Investigacion Agraria, Sistemas y Recursos Forestales, V13, P29; Bosu PP, 2007, J ECON ENTOMOL, V100, P1808, DOI 10.1603/0022-0493(2007)100[1808:SOESAH]2.0.CO;2; Boudon-Padieu E., 2004, Investigacion Agraria, Sistemas y Recursos Forestales, V13, P71; Bowditch E., 2016, HIGHLANDS CURRENT ST; Bozilova ED, 2000, NEW PHYTOL, V148, P315, DOI 10.1046/j.1469-8137.2000.00754.x; Braschler B, 2007, J ANIM ECOL, V76, P415, DOI 10.1111/j.1365-2656.2007.01217.x; Brasier CM, 2008, PLANT PATHOL, V57, P792, DOI 10.1111/j.1365-3059.2008.01886.x; BRASIER CM, 1973, NATURE, V242, P607, DOI 10.1038/242607a0; BRASIER CM, 1991, MYCOPATHOLOGIA, V115, P151, DOI 10.1007/BF00462219; Brewis A., 1996, FLORA HAMPSHIRE; British Mycological Society, 2018, FUNG PROC DAT; Brockmann-Jerosh H., 1918, MITTEILUNGEN GEOGRAP, V18, P131; Brookes A., 2016, DIS RESISTANCE ELMS; Brostrom A, 2008, VEG HIST ARCHAEOBOT, V17, P461, DOI 10.1007/s00334-008-0148-8; BRUMMITT R.K., 1992, VASCULAR PLANT FAMIL; BRUNET J, 1991, Svensk Botanisk Tidskrift, V85, P377; Brunet J, 2016, NORD J BOT, V34, P120, DOI 10.1111/njb.01010; Brunet J, 2014, BASIC APPL ECOL, V15, P114, DOI [10.1016/j.baae.2014.02.002, 10.1016/j.baae.201.02.002]; Bryant David, 2011, Scottish Birds, V31, P311; BRZEZIECKI B, 1994, FOREST ECOL MANAG, V69, P167, DOI 10.1016/0378-1127(94)90227-5; Bugaa W., 2015, WIZY ULMUS GLABRA HU; Buiteveld J, 2015, IFOREST, V8, P158, DOI 10.3832/ifor1209-008; BURDEN RS, 1984, PHYTOCHEMISTRY, V23, P383, DOI 10.1016/S0031-9422(00)80336-2; Burton RF, 2004, ANN BOT-LONDON, V93, P149, DOI 10.1093/aob/mch024; Bussler Heinz, 2016, Naturschutz und Landschaftsplanung, V48, P273; Butterfly Conservation, 2018, BUTT BREEDS 1 TIM 13; Campos JA, 2011, PLANT BIOSYST, V145, P172, DOI 10.1080/11263504.2011.602738; Carrion JS, 2008, QUATERNARY SCI REV, V27, P2118, DOI 10.1016/j.quascirev.2008.08.016; Carter A., 2016, EATING ELM SEEDS; Caudullo G., 2016, EUROPEAN ATLAS FORES, P186; CHARLTON WA, 1993, CAN J BOT, V71, P222, DOI 10.1139/b93-024; CHARLTON WA, 1993, CAN J BOT, V71, P211, DOI 10.1139/b93-023; Chmielarz P, 2010, ACTA BIOL HUNG, V61, P224, DOI 10.1556/ABiol.61.2010.2.10; Christy M., 1922, J BOT LONDON, V60, P36; Chuine I, 1999, PLANT CELL ENVIRON, V22, P1, DOI 10.1046/j.1365-3040.1999.00395.x; Chytry M, 2010, J BIOGEOGR, V37, P767, DOI 10.1111/j.1365-2699.2009.02256.x; Cicek E., 2006, Pakistan Journal of Biological Sciences, V9, P697; Cicek E, 2007, J ENVIRON BIOL, V28, P423; CLARIDGE DW, 1986, ECOL ENTOMOL, V11, P31, DOI 10.1111/j.1365-2311.1986.tb00277.x; Cogolludo-Agustin MA, 2000, HEREDITY, V85, P157, DOI 10.1046/j.1365-2540.2000.00740.x; Coleman M, 2000, BOT J LINN SOC, V133, P241, DOI 10.1006/bojl.1999.0331; Coleman M., 2009, WYCH ELM; Collin E., 2000, THE ELMS, P281, DOI [10. 1007/978-1-4615-4507-1, DOI 10.1007/978-1-4615-4507-1]; Collin E., 2004, SISTEMAS RECURSOS FO, V13, P261; Collins Graham A., 1999, British Journal of Entomology and Natural History, V12, P137; Commarmot B., 1981, Schweizerische Zeitschrift fur Forstwesen, V132, P99; Commarmot Brigitte, 2005, Forest Snow and Landscape Research, V79, P45; Conservation Foundation, 2017, GREAT BRIT ELM EXP; Corredoira E, 2002, ANN BOT-LONDON, V89, P637, DOI 10.1093/aob/mcf080; Costello L. R., 1990, Journal of Arboriculture, V16, P225; COULTHERD P, 1978, Q J FOREST, V72, P67; Cox K, 2014, TREE GENET GENOMES, V10, P813, DOI 10.1007/s11295-014-0722-4; Cozzi A., 2000, MONTI BOSCHI, V51, P42; Curn V., 2014, Journal of Forest Science (Prague), V60, P511; DAMBROSIO N, 1992, RADIAT ENVIRON BIOPH, V31, P51, DOI 10.1007/BF01211512; DAUMANN E, 1975, Preslia (Prague), V47, P14; DBIF, 2018, DAT INS THEIR FOOD P; de Vernal A., 1989, ACTA PHYTOGEOGR SUEC, V105, P387; Delfan B., 2014, J HERBMED PHARM, V3, P71; Diekmann M, 1996, FOREST ECOL MANAG, V86, P1, DOI 10.1016/S0378-1127(96)03795-4; Dobson M. C., 2009, TOLERANCE TREES SHRU; Dodson J, 2013, J ARCHAEOL SCI, V40, P1700, DOI 10.1016/j.jas.2012.11.022; Dorion N., 2004, Investigacion Agraria, Sistemas y Recursos Forestales, V13, P237; Dostal J., 2011, Zpravy Lesnickeho Vyzkumu, V56, P9; Douglass J., 2010, BACK TREES SCOTLANDS; Drobyshev IV, 2001, FOREST ECOL MANAG, V140, P151, DOI 10.1016/S0378-1127(00)00324-8; Dunn C. P., 2000, ELMS BREEDING CONSER, DOI [10. 1007/978-1-4615-4507-1, DOI 10.1007/978-1-4615-4507-1]; Durkovic J, 2015, J AM SOC HORTIC SCI, V140, P3; Durkovic J, 2014, ANN BOT-LONDON, V114, P47, DOI 10.1093/aob/mcu076; Durkovic J, 2010, PLANT CELL TISS ORG, V101, P221, DOI 10.1007/s11240-010-9680-1; DURSUN S, 1993, SOIL BIOL BIOCHEM, V25, P1513, DOI 10.1016/0038-0717(93)90006-W; Edlin H. L., 1956, TREES WOODS AND MAN; Edwards B., 2005, BACK BRINK MANAGEMEN; EHRENBERG CE, 1949, HEREDITAS, V35, P1; Elakovich S. D., 1987, ACS SYM SER, P93, DOI [10. 1021/symposium, DOI 10.1021/SYMPOSIUM]; Ellenberg H, 1991, SCRIPTA GEOBOT, V18, P1; Elvisto T, 2016, P EST ACAD SCI, V65, P431, DOI 10.3176/proc.2016.4.09; Elwes H. J., 1913, TREES GREAT BRITAIN, VII; Emmet A. M., 1979, FIELD GUIDE SMALLER; Emmet A. M., 1991, MOTHS BUTTERFLIES 2, V7; EPPO, 2005, EPPO B, V35, P416; Eriksson G, 2001, CAN J FOREST RES, V31, P577, DOI 10.1139/cjfr-31-4-577; Erritzoe Johannes, 2010, International Studies on Sparrows, V34, P23; Evelyn J., 1664, SYLVA; Evstigneev O. I., 2017, Lesovedenie, P45; Evstigneev O. I., 1997, Byulleten' Moskovskogo Obshchestva Ispytatelei Prirody Otdel Biologicheskii, V102, P34; Faccoli M, 2016, B ENTOMOL RES, V106, P359, DOI 10.1017/S0007485315001157; Faccoli M, 1997, USDA NE EXP, V236, P172; Falkengren-Grerup U, 1998, ENVIRON POLLUT, V102, P415, DOI 10.1016/S0269-7491(98)80062-6; Fenwick G. A., 1998, Mycologist, V12, P30; Fiorin L, 2016, NEW PHYTOL, V209, P216, DOI 10.1111/nph.13577; Flo D, 2014, SCAND J FOREST RES, V29, P77, DOI 10.1080/02827581.2013.863380; Fontaine F. J., 1968, DENDROFLORA, V5, P37; Forster E. S., 1954, COLUMELLA AGR, VII; Fregoni M., 1991, ORIGINI VITE VITICOL; FREMSTAD E, 1983, Nordic Journal of Botany, V3, P393, DOI 10.1111/j.1756-1051.1983.tb01954.x; Friedrich P., 1970, PROTO INDO EUROPEAN; FRYE J, 1992, Z NATURFORSCH C, V47, P683; Fuentes-Utrilla P., 2004, Investigacion Agraria, Sistemas y Recursos Forestales, V13, P7; Gabrych M, 2016, ECOL ENG, V86, P95, DOI 10.1016/j.ecoleng.2015.10.022; Gailite A, 2005, J PLANT INTERACT, V1, P61, DOI 10.1080/17429140500254728; Gambi G., 1980, MONTI BOSCHI, V7, P549; Ganley RJ, 2016, PLANT PATHOL, V65, P1047, DOI 10.1111/ppa.12527; GARBETT GG, 1981, NEW PHYTOL, V88, P573, DOI 10.1111/j.1469-8137.1981.tb04101.x; Gartland K. M. A., 2000, ELMS BREEDING CONSER, P259, DOI [10. 1007/978-1-4615-4507-1, DOI 10.1007/978-1-4615-4507-1]; Geerinck Daniel, 1999, Naturalistes Belges, V80, P443; Gellini R., 1973, BOT FORESTALE, V2; Gerra-Inohosa L., 2015, MEZINTNE, V29, P35; Ghelardini L, 2009, IFOREST, V2, P143, DOI 10.3832/ifor0508-002; Ghelardini L, 2006, CAN J FOREST RES, V36, P1982, DOI 10.1139/X06-092; Ghelardini L, 2010, TREE PHYSIOL, V30, P264, DOI 10.1093/treephys/tpp110; Gibbs J. N., 1994, 252 FOR AUTH; GIBBS JN, 1978, ANN APPL BIOL, V88, P219, DOI 10.1111/j.1744-7348.1978.tb00699.x; Giesecke T, 2008, QUATERNARY SCI REV, V27, P1296, DOI 10.1016/j.quascirev.2008.03.008; Giesecke T, 2005, VEG HIST ARCHAEOBOT, V14, P133, DOI 10.1007/s00334-005-0070-2; Giesecke T, 2010, J BIOGEOGR, V37, P1394, DOI 10.1111/j.1365-2699.2010.02296.x; Gil L, 2004, NATURE, V431, P1053, DOI 10.1038/4311053a; GIRLING MA, 1985, J ARCHAEOL SCI, V12, P347, DOI 10.1016/0305-4403(85)90063-9; Glavendekic Milka, 2013, Sumarstvo, V1-2, P47; Glenz C, 2006, FOREST ECOL MANAG, V235, P1, DOI 10.1016/j.foreco.2006.05.065; GODWIN H., 1940, NEW PHYTOL, V39, P370, DOI 10.1111/j.1469-8137.1940.tb07149.x; Godwin H., 1975, HIST BRIT VEGETATION; Goodall-Copestake WP, 2005, BIOL CONSERV, V122, P537, DOI 10.1016/j.biocon.2004.09.011; Gotmark F, 2005, FOREST ECOL MANAG, V214, P142, DOI 10.1016/j.foreco.2005.04.001; Gotmark Frank, 2006, Svensk Botanisk Tidskrift, V100, P80; Gravendeel Barbara, 2009, Entomologische Berichten (Amsterdam), V69, P30; Grbi M., 2015, P INT C REF CHALL, P60; Grime J.P., 2007, COMP PLANT ECOLOGY F; GRIME JP, 1981, J ECOL, V69, P1017, DOI 10.2307/2259651; Habjoerg A., 1975, Meldinger fra Norges Landbrukshoegskole, V54, P2; Habjoerg A., 1978, Meldinger fra Norges Landbrukshoegskole, V57, P1; Hahn K., 2007, ECOLOGICAL B, V52; HALLINGBACK T, 1992, BIOL CONSERV, V59, P163, DOI 10.1016/0006-3207(92)90577-A; Hannon GE, 2000, GLOBAL ECOL BIOGEOGR, V9, P101, DOI 10.1046/j.1365-2699.2000.00145.x; HANS AS, 1981, SILVAE GENET, V30, P149; HARBINSON J, 1984, ANN BOT-LONDON, V53, P841, DOI 10.1093/oxfordjournals.aob.a086754; HARLEY J L, 1987, New Phytologist, V105, P1, DOI 10.1111/j.1469-8137.1987.tb00674.x; Harvengt L, 2004, CAN J FOREST RES, V34, P43, DOI [10.1139/x03-193, 10.1139/X03-193]; Harwood TD, 2011, PLANT PATHOL, V60, P545, DOI 10.1111/j.1365-3059.2010.02391.x; Heinrichs Steffi, 2012, Biodiversity Ecol, V4, P49, DOI 10.7809/b-e.00059; Hejcman M, 2014, HOLOCENE, V24, P659, DOI 10.1177/0959683614526904; Hejcmanova P, 2014, VEG HIST ARCHAEOBOT, V23, P607, DOI 10.1007/s00334-013-0414-2; Heller NE, 2014, CONSERV BIOL, V28, P696, DOI 10.1111/cobi.12269; HELLIWELL DR, 1979, Q J FOREST, V73, P160; Henwood B. P., 1999, Entomologist's Gazette, V50, P238; Herlin ILS, 2000, LANDSCAPE ECOL, V15, P229, DOI 10.1023/A:1008170220639; Heshmati GA, 2007, INT J PLANT PROD, V1, P215; HEYBROEK H. M., 1963, ACTA BOT NEERLAND, V12, P1; Heybroek H. M., 1982, P DUTCH ELM DIS S WO, P78; Heybroek H. M., 1976, GROEN, V32, P237; Heybroek H. M., 1962, HDB PFLANZENZUCHTUNG, V6, P819; Heybroek HM, 2015, IFOREST, V8, P181, DOI 10.3832/ifor1244-008; HEYBROEK HM, 1993, DUTCH ELM DISEASE RESEARCH, P16; HEYBROEK HM, 1993, DUTCH ELM DISEASE RESEARCH, P1; Hill M. O., 2004, PLANTATT ATTRIBUTES; Holeksa J, 2009, FOREST ECOL MANAG, V257, P1577, DOI 10.1016/j.foreco.2009.01.008; Hollingsworth P. M., 2000, ELMS BREEDING CONSER, P3, DOI 10. 1007/978-1-4615-4507-1; Hopkins G. W., 1997, ENTOMOLOGISTS MONTHL, Vc, P255; Horntvedt R, 1997, EUR J FOREST PATHOL, V27, P73; Huberty J, 1904, B SOC CENTRALE FORES, V11, P484; Huberty J., 1904, B SOC CENTRALE FORES, V11, P853; Huberty J, 1904, B SOC CENTRALE FORES, V11, P408; Hulme PE, 1999, J ANIM ECOL, V68, P417, DOI 10.1046/j.1365-2656.1999.00294.x; Hulme PE, 1999, PLANT ECOL, V145, P149, DOI 10.1023/A:1009821919855; Huntley B, 1983, ATLAS PRESENT POLLEN; Huppe B., 1996, Forstarchiv, V67, P207; HUTTUNEN S, 1986, J ULTRA MOL STRUCT R, V94, P280; Imbrea I. M., 2016, Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Agriculture, V73, P247, DOI 10.15835/buasvmcn-agr:12412; Ingwell LL, 2011, CONSERV BIOL, V25, P182, DOI 10.1111/j.1523-1739.2010.01567.x; JACKSON G, 1949, J ECOL, V37, P38, DOI 10.2307/2256729; Janjic N., 1976, Sumarski List, V100, P142; Jansen S, 2004, NEW PHYTOL, V163, P51, DOI 10.1111/j.1469-8137.2004.01097.x; JEFFERS J N R, 1970, Silvae Genetica, V19, P31; Jeffers JNR, 1999, FORESTRY, V72, P183, DOI 10.1093/forestry/72.3.183; Jeffers JNR, 1996, J APPL STAT, V23, P571, DOI 10.1080/02664769623946; JENSEN TS, 1985, OIKOS, V44, P149, DOI 10.2307/3544056; JNCC, 2017, SPEC AR CONS HAB ACC; JOHNSON LPV, 1946, CAN J RES C, V24, P1, DOI 10.1139/cjr46c-001; JONES AT, 1973, ANN APPL BIOL, V75, P347, DOI 10.1111/j.1744-7348.1973.tb07983.x; Juriado I, 2009, LICHENOLOGIST, V41, P81, DOI 10.1017/S0024282909007889; Kalas J. A., 2006, NORSK RODLISTE 2006; Kalis AJ, 2003, QUATERNARY SCI REV, V22, P33, DOI 10.1016/S0277-3791(02)00181-6; Karczmarczuk R., 2002, WSZECHWIAT, V103, P151; Karlsson M., 2001, THESIS; Katanic Z, 2016, PLANT PATHOL, V65, P1430, DOI 10.1111/ppa.12524; KENNEDY CEJ, 1984, J ANIM ECOL, V53, P455, DOI 10.2307/4528; Kiaei M., 2011, American-Eurasian Journal of Agricultural & Environmental Sciences, V11, P257; Kirby K., 2006, THE WILDFLOWER KEY, P558; Kletecka Z, 1996, BIOLOGIA, V51, P143; Klincsek P., 1978, Kertgazdasag, V10, P39; Kmiec K., 2010, Annales Universitatis Mariae Curie-Sklodowska. Sectio EEE, Horticultura, V20, P7; Knight G. T., 2004, B IRISH BIOGEOGRAPHI, V28, P61; Kopinga Jitze, 1995, Journal of Arboriculture, V21, P17; KOTIRANTA H, 1993, ANN BOT FENN, V30, P211; Kowalski T., 2004, PHYTOPATHOL POL, V32, P61; Kremenetski CV, 1997, GEOGR PHYS QUATERN, V51, P391, DOI 10.7202/033138ar; Kuijper DPJ, 2010, J VEG SCI, V21, P1082, DOI 10.1111/j.1654-1103.2010.01217.x; Kullman L, 1998, BOREAS, V27, P153, DOI 10.1111/j.1502-3885.1998.tb00875.x; Kullman L, 2008, ARCT ANTARCT ALP RES, V40, P104, DOI 10.1657/1523-0430(06-120)[KULLMAN]2.0.CO;2; Kullman Leif, 2003, Svensk Botanisk Tidskrift, V97, P210; LA PORTA N, 1991, J HORTIC SCI BIOTECH, V66, P171, DOI 10.1080/00221589.1991.11516141; Lakomy P, 2016, DENDROBIOLOGY, V76, P137, DOI 10.12657/denbio.076.013; LANG A, 1970, ANN REV PLANT PHYSIO, V21, P537, DOI 10.1146/annurev.pp.21.060170.002541; LARCHER W, 1981, PLANT SYST EVOL, V137, P145, DOI 10.1007/BF00989871; Laschimke R, 2006, J PLANT PHYSIOL, V163, P996, DOI 10.1016/j.jplph.2006.05.004; LEEMANS R, 1992, FOREST ECOL MANAG, V48, P305, DOI 10.1016/0378-1127(92)90152-Y; Lefoe G., 2014, Plant Protection Quarterly, V29, P61; Lehto T, 2004, NEW PHYTOL, V163, P333, DOI 10.1111/j.1469-8137.2004.01105.x; Lindeman G. V., 2008, Lesovedenie, P3; LINDGREN BO, 1968, PHYTOCHEMISTRY, V7, P1407; Lindguist B., 1931, REP BOT SOC BRIT IS, V9, P785; LITTLE P, 1972, Environmental Pollution, V3, P241, DOI 10.1016/0013-9327(72)90007-9; Little P., 1993, ENVIRON POLLUT, V5, P159; Lobel S, 2009, OECOLOGIA, V161, P569, DOI 10.1007/s00442-009-1402-1; Logofet D.O., 2016, BIOL B REV, V6, P39; Loudon J. C., 1844, ARBORETUM FRUTICETUM; Loureiro J, 2007, PLANT BIOLOGY, V9, P541, DOI 10.1055/s-2007-965165; MACHARDY WE, 1973, PHYTOPATHOLOGY, V63, P98, DOI 10.1094/Phyto-63-98; Machon N, 1997, HEREDITY, V78, P12; Madhoushi M, 2016, BIORESOURCES, V11, P5169; Magnes M., 2001, Linzer Biologische Beitraege, V33, P607; Mahani MK, 2003, FOREST ECOL MANAG, V186, P207, DOI 10.1016/S0378-1127(03)00261-5; MAI DH, 1995, TERTIARE VEGETATIONS; Mala J, 2013, BIOL PLANTARUM, V57, P174, DOI 10.1007/s10535-012-0252-6; Malis F, 2016, GLOBAL CHANGE BIOL, V22, P1904, DOI 10.1111/gcb.13210; MALMER N, 1978, VEGETATIO, V36, P17, DOI 10.1007/BF01324768; Maniscalco M., 2009, 104 NAT C IT BOT SOC; Manning WJ, 2002, ENVIRON POLLUT, V119, P283, DOI 10.1016/S0269-7491(02)00102-1; Manojlovic Bozidar, 1995, Zastita Bilja, V46, P35; Martin-Benito D, 2005, CAN J FOREST RES, V35, P199, DOI [10.1139/x04-158, 10.1139/X04-158]; Matthioli P. A., 1544, DISCORSI MPA MATTHIO; MAURER R, 1993, PHYTOPATHOLOGY, V83, P971, DOI 10.1094/Phyto-83-971; Mayer H., 1977, WALDBAU SOZIOLOGISCH; MCGRANAHAN G, 1981, PHYTOPATHOLOGY, V71, P241; Meaka A., 2008, FOLIA CRYPTOGAMICA E, V44, P89; Medarevic M., 2011, GLASNIK SUMARSKOG FA, V104, P125, DOI [10. 2298/GSF1104125B, DOI 10.2298/GSF1104125B]; Mellert KH, 2011, J VEG SCI, V22, P635, DOI 10.1111/j.1654-1103.2011.01274.x; MELVILLE R, 1978, TAXON, V27, P345, DOI 10.2307/1220370; MELVILLE R., 1940, JOUR BOT, V78, P181; Melville R., 1939, Journal of Botany, British and Foreign, V77, P138; Melville R, 1944, NATURE, V153, P198, DOI 10.1038/153198c0; Melville R., 1975, HYBRIDIZATION FLORA, P292; Melville R., 1955, SPECIES STUDIES BRIT, P55; Menkis A, 2016, SCAND J FOREST RES, V31, P237, DOI 10.1080/02827581.2015.1076888; MERTON LFH, 1970, J ECOL, V58, P723, DOI 10.2307/2258532; Mezaka A, 2012, BIODIVERS CONSERV, V21, P3221, DOI 10.1007/s10531-012-0361-8; Michalcewicz Jakub, 2011, Polish Journal of Entomology, V80, P23, DOI 10.2478/v10200-011-0003-6; Miller F., 2000, ELMS BREEDING CONSER, P137, DOI [10. 1007/978-1-4615-4507-1, DOI 10.1007/978-1-4615-4507-1]; Miller LE, 2014, URBAN FOR URBAN GREE, V13, P892, DOI 10.1016/j.ufug.2014.10.001; Milner E., 2011, TREES BRITAIN IRELAN; Mioduszewski S., 2013, Lesne Prace Badawcze, V74, P149; MITTEMPERGHER L, 1991, SILVAE GENET, V40, P237; Mittempergher L, 2004, INVEST AGRAR-SIST R, V13, P161; Mittempergher L., 1993, MIGLIORAMENTO GENETI, P412; Mittempergher L., 2014, ENZYKLOPADIE HOLZGEW, P1; Mittempergher L., 2000, ELMS BREEDING CONSER, P103, DOI 10. 1007/978-1-4615-4507-1; Moe D., 1998, Norsk Geografisk Tidsskrift, V52, P57, DOI 10.1080/00291959808552385; Mohammadi MF, 2015, NUSANT BIOSCI, V7, P48; Moller AP, 2008, OECOLOGIA, V155, P845, DOI 10.1007/s00442-007-0944-3; Moller AP, 2003, INT J PLANT SCI, V164, P519, DOI 10.1086/374197; Moller AP, 1999, OIKOS, V85, P109, DOI 10.2307/3546796; MOLLER AP, 1995, J ANIM ECOL, V64, P697; Mountfort G., 1956, Ibis, V98, P490, DOI 10.1111/j.1474-919X.1956.tb01434.x; Muk H., 1986, POLSKI, V1, P9; Musa N, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0066149; Myking T, 2006, SCAND J FOREST RES, V21, P99, DOI 10.1080/02827580500539265; Myking T, 2002, BIODIVERS CONSERV, V11, P1681, DOI 10.1023/A:1016814817208; Myking T., 2001, AKTUELT SKOGFORSKNIN, V2, P1; Myking T, 2007, SCAND J FOREST RES, V22, P369, DOI 10.1080/02827580701672121; Nagel TA, 2016, EUR J FOREST RES, V135, P519, DOI 10.1007/s10342-016-0950-2; Nagel TA, 2010, PLANT ECOL, V208, P307, DOI 10.1007/s11258-009-9707-z; Napierala-Filipiak A, 2016, DENDROBIOLOGY, V76, P145, DOI 10.12657/denbio.076.014; Natural History Museum, 2018, BRIT ISL LIST LICH L; Navroodi I. Hassanzad, 2015, Journal of Forest Science (Prague), V61, P1, DOI 10.17221/30/2014-JFS; Newsome N, 2017, GRANA, V56, P377, DOI 10.1080/00173134.2016.1276618; NEWTON I, 1967, IBIS, V109, P33, DOI 10.1111/j.1474-919X.1967.tb00005.x; NICOLAI V, 1986, OECOLOGIA, V69, P148, DOI 10.1007/BF00399052; Nielsen LR, 2010, CONSERV GENET, V11, P257, DOI 10.1007/s10592-009-0028-5; NIENHAUS F, 1989, ANNU REV PHYTOPATHOL, V27, P165; Niinemets U, 2006, ECOL MONOGR, V76, P521, DOI 10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2; NILSSON A, 1980, Svensk Botanisk Tidskrift, V74, P311; Nisbet J., 1893, BRIT FOREST TREES TH, DOI [10. 5962/bhl. title. 26745, DOI 10.5962/BHL.TITLE.26745]; Nordbakken Jorn-Frode, 2010, Blyttia, V68, P245; Nordhagen R., 1954, DAN GEOL UNDERS, V80, P262; Nylin S, 1996, ECOSCIENCE, V3, P285, DOI 10.1080/11956860.1996.11682344; O'Donnell L, 2016, J ARCHAEOL SCI, V65, P161, DOI 10.1016/j.jas.2015.11.009; OBERDORFER E., 1992, SUDDEUTSCHE PFLANZ 4; OCONNELL M, 1980, NEW PHYTOL, V85, P301, DOI 10.1111/j.1469-8137.1980.tb04471.x; Odland A, 1999, ECOGRAPHY, V22, P548, DOI 10.1111/j.1600-0587.1999.tb00544.x; Okoow C., 1978, SYLWAN, V122, P63; Olsen C. C., 1978, Tidsskrift for Planteavl, V82, P280; Olsson MO, 2003, FOREST ECOL MANAG, V179, P311, DOI 10.1016/S0378-1127(02)00544-3; Omarova P. K., 2016, Lesovedenie, P209; Onaindia M, 2004, FOREST ECOL MANAG, V195, P341, DOI 10.1016/j.foreco.2004.02.059; Oostra S, 2006, SCAND J FOREST RES, V21, P364, DOI 10.1080/02827580600950172; Out W. A., 2015, QUATERN INT, V436, P41; Out WA, 2010, HOLOCENE, V20, P191, DOI 10.1177/0959683609350386; Paal J, 2009, ANN BOT FENN, V46, P525, DOI 10.5735/085.046.0605; Packham JR, 2012, J ECOL, V100, P1557, DOI 10.1111/j.1365-2745.2012.02017.x; Pacyniak C., 2003, Prace z Zakresu Nauk Lesnych, V94, P83; Pahlsson L., 1994, VEGETATIONSTYPER NOR; Palmisano Anna Marinari, 2000, Nematologia Mediterranea, V28, P279; Parker AG, 2002, PROG PHYS GEOG, V26, P1, DOI 10.1191/0309133302pp323ra; Pavlova D, 2015, BIOTECHNOL BIOTEC EQ, V29, pS8, DOI 10.1080/13102818.2015.1047167; Peace T. R., 1960, BULLETIN, V33; Peglar S. M., 1993, VEG HIST ARCHAEOBOT, V2, P61, DOI DOI 10.1007/BF00202; Pennington W, 1973, HOLOCENE, P79; Perea R, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0065573; PERRY I, 1987, NATURE, V326, P72, DOI 10.1038/326072a0; Peterken G.F., 1993, WOODLAND CONSERVATIO; PETERKEN GF, 1989, J ECOL, V77, P401, DOI 10.2307/2260758; Peterken GF, 1998, J ECOL, V86, P205, DOI 10.1046/j.1365-2745.1998.00255.x; Petrokas R., 2009, MISKININKYSTE, V1, P71; Petrokas R, 2008, BALT FOR, V14, P204; Petrokas R, 2014, BALT FOR, V20, P238; Petrokas R, 2012, BALT FOR, V18, P237; Petrokas R, 2011, BALT FOR, V17, P83; Piedallu C, 2016, J VEG SCI, V27, P387, DOI 10.1111/jvs.12370; PIGOTT CD, 1969, J ECOL, V57, P491, DOI 10.2307/2258394; PIGOTT CD, 1975, PHILOS T ROY SOC B, V270, P151, DOI 10.1098/rstb.1975.0006; PIGOTT CD, 1985, OECOLOGIA, V67, P367, DOI 10.1007/BF00384942; Pihlgren A., 2010, Svensk Botanisk Tidskrift, V104, P210; Pilcher J. R., 1968, ULSTER J ARCHAEOL, V31, P87; Pinon J, 2005, ANN FOREST SCI, V62, P689, DOI 10.1051/forest.2005066; Portela-Pereira Estevão, 2008, Silva Lus., V16, P263; Potter C, 2011, PHILOS T R SOC B, V366, P1966, DOI 10.1098/rstb.2010.0395; PRENTICE IC, 1991, FOREST ECOL MANAG, V42, P79; Preston CD, 2002, NEW ATLAS BRIT IRISH; Puspure Ilze, 2016, Proceedings of the Latvian Academy of Sciences Section B Natural Exact and Applied Sciences, V70, P131, DOI 10.1515/prolas-2016-0021; Rackham O, 2003, ANCIENT WOODLAND ITS; Rackham Oliver, 1986, HIST COUNTRYSIDE; Rahmani A., 2009, Iranian Journal of Forest and Poplar Research, V17, P99; RAIMONDO F M, 1977, Webbia, V31, P261; Randin CF, 2013, GLOBAL ECOL BIOGEOGR, V22, P913, DOI 10.1111/geb.12040; REDFERN D B, 1977, Scottish Forestry, V31, P105; REDFERN DB, 1981, T BRIT MYCOL SOC, V77, P381, DOI 10.1016/S0007-1536(81)80041-1; Rewald B, 2015, URBAN FOR URBAN GREE, V14, P432, DOI 10.1016/j.ufug.2015.04.011; Rhizopoulou S, 2016, BOT LETT, V163, P191, DOI 10.1080/23818107.2016.1166070; RHOADS A, 1980, Plant Disease, V64, P1106; Richens R. H., 1984, Watsonia, V15, P105; RICHENS R. H., 1961, FORESTRY, V34, P181; RICHENS R. H., 1961, FORESTRY, V34, P47; Richens R. H., 1976, Anali za Sumarstvo, V7, P107; Richens R. H., 1983, ELM; RICHENS RH, 1984, FORESTRY, V57, P75, DOI 10.1093/forestry/57.1.75; RICHENS RH, 1985, FORESTRY, V58, P9, DOI 10.1093/forestry/58.1.9; RICHENS RH, 1967, FORESTRY, V40, P185, DOI 10.1093/forestry/40.2.185; RICHENS RH, 1980, TAXON, V29, P305, DOI 10.2307/1220293; ROBERTS BR, 1966, FOREST SCI, V12, P44; Rodwell J.S., 1991, BRIT PLANT COMMUNITI, VI; Rodwell J. S., 2000, BRIT PLANT COMMUNITI, V5; Rohula G, 2014, ENVIRON EXP BOT, V99, P180, DOI 10.1016/j.envexpbot.2013.11.017; Rose D., 2011, 11 FOR COMM; Rossignoli A., 2003, ECOLOGIA, V17, P99; Rotheray G. E., 1988, ENTOMOL GAZ, V49, P271; ROWE JW, 1972, PHYTOCHEMISTRY, V11, P2513, DOI 10.1016/S0031-9422(00)88527-1; Royal Botanic Gardens Kew, 2018, SEED INF DAT; Royal Botanic Gardens Kew, 2017, UK NAT TREE SEED PRO; Ryss A, 2015, NEMATOLOGY, V17, P685, DOI 10.1163/15685411-00002902; Saumel I, 2013, PLANT ECOL, V214, P1257, DOI 10.1007/s11258-013-0249-z; Safdari V., 2011, IRANIAN J WOOD PAPER, V26, P564; Samonil P, 2008, PLANT ECOL, V196, P197, DOI 10.1007/s11258-007-9345-2; Samsone Ineta, 2012, Environmental and Experimental Biology, V10, P15; Santini A, 2005, FOREST PATHOL, V35, P183, DOI 10.1111/j.1439-0329.2005.00401.x; Santini A, 2004, P 2 INT ELM C NEW AP, V13, P37; Santini A, 2004, FOREST SYSTEMS, V13, P179; Santini A, 2008, EUPHYTICA, V163, P45, DOI 10.1007/s10681-007-9573-5; Santini A, 2010, FOREST ECOL MANAG, V260, P1017, DOI 10.1016/j.foreco.2010.06.025; Sanz M. J., 2009, OZONE INJURIES EUROP; SATCHELL J. E., 1967, P102; Savill P., 2013, The silviculture of trees used in British forestry, DOI 10.1079/9781780640266.0000; Scherl M, 2016, CHEM-EUR J, V22, P9498, DOI 10.1002/chem.201601739; SCHMELZER K., 1966, Arch. Forstw., V15, P107; Schweingruber FH, 1990, ANATOMY EUROPEAN WOO; Sebkova B, 2012, FOREST ECOL MANAG, V280, P9, DOI 10.1016/j.foreco.2012.05.030; Sell P., 2018, FLORA GREAT BRITAIN, V1; SENGONCA C, 1984, Z ANGEW ENTOMOL, V98, P413; Shahraji T. R., 2007, Indian Journal of Forestry, V30, P229; SHERALD J L, 1992, Journal of Arboriculture, V18, P57; Shilenkova OL, 2013, PEDOBIOLOGIA, V56, P147, DOI 10.1016/j.pedobi.2013.03.004; Shiranpour B., 2012, Iranian Journal of Forest and Poplar Research, V20, P691; Sinclair WA, 2000, PLANT DIS, V84, P1266, DOI 10.1094/PDIS.2000.84.12.1266; Skelly JM, 1999, WATER AIR SOIL POLL, V116, P227, DOI 10.1023/A:1005275431399; Skre O., 1993, MEDDELELSER SKOGFORS, V45, P1; Skrzypczynska M., 2006, Sylwan, V150, P35; SMALLEY E B, 1973, Hortscience, V8, P514; Smalley E. B., 2000, ELMS BREEDING CONSER, P215, DOI 10. 1007/978-1-4615-4507-1; Soldini M., 1974, REV GEN ROUTES AEROD, V10, P75; Solheim H, 2011, FOREST PATHOL, V41, P182, DOI 10.1111/j.1439-0329.2010.00650.x; Solla A, 2005, FOREST SCI, V51, P134; Sorensen R., 2015, Blyttia, V73, P175; Sorensson Mikael, 1996, Entomologisk Tidskrift, V117, P11; SOUTHWOOD TRE, 1961, J ANIM ECOL, V30, P1, DOI 10.2307/2109; SPARKS TH, 1995, J ECOL, V83, P321, DOI 10.2307/2261570; Stace C.A., 2015, HYBRID FLORA BRIT IS; Stace C.A., 2010, NEW FLORA BRIT ISLES; Stace C.H., 1975, HYBRIDIZATION FLORA; STAFFORD PJ, 1995, REV PALAEOBOT PALYNO, V88, P25, DOI 10.1016/0034-6667(95)98770-8; STAHL U, 1995, PLANT PHYSIOL, V107, P953, DOI 10.1104/pp.107.3.953; Stahl U, 1998, PLANT PHYSIOL, V117, P197, DOI 10.1104/pp.117.1.197; Stewart JR, 2001, TRENDS ECOL EVOL, V16, P608, DOI 10.1016/S0169-5347(01)02338-2; Stipes R., 1981, COMPENDIUM ELM DIS; STOCKMARR J, 1974, Grana, V14, P103; Stockmarr J., 1970, SPECIES IDENTIFICATI; Stoyanov N., 2004, Investigacion Agraria, Sistemas y Recursos Forestales, V13, P255; STURLUDOTTIR SA, 1985, NEW PHYTOL, V99, P323, DOI 10.1111/j.1469-8137.1985.tb03660.x; Suchara I., 1982, ZAHRADNICTVI, V9, P289; Sulekova A., 2011, Folia Oecologica, V38, P118; Sulusoglu M., 2014, SCI WORLD J, V2014; Sundberg Sebastian, 2015, Svensk Botanisk Tidskrift, V109, P188; Sutherland ML, 1997, PHYTOPATHOLOGY, V87, P576, DOI 10.1094/PHYTO.1997.87.6.576; Svenning JC, 2008, J ECOL, V96, P1117, DOI 10.1111/j.1365-2745.2008.01422.x; SYKES MT, 1995, WATER AIR SOIL POLL, V82, P415, DOI 10.1007/BF01182851; Sykes MT, 1996, J BIOGEOGR, V23, P203; Tavanaei G. H., 2009, IRANIAN J FOREST RAN, V6, P98; Tavankar F., 2015, Biodiversitas: Journal of Biological Diversity, V16, P1, DOI 10.13057/biodiv/d160101; Tcherepanov I. V., 2004, Botanicheskii Zhurnal (St. Petersburg), V89, P1787; Thill A., 1983, Bulletin des Recherches Agronomiques de Gembloux, V18, P241; Thomas PA, 2016, J ECOL, V104, P1158, DOI 10.1111/1365-2745.12566; Thompson K, 1997, SOIL SEED BANKS N W; Tinner W, 2000, HOLOCENE, V10, P565, DOI 10.1191/095968300674242447; TOLONEN M, 1980, ANN BOT FENN, V17, P7; Tomlinson I, 2010, J HIST GEOGR, V36, P121, DOI 10.1016/j.jhg.2009.07.003; Tosun F, 2004, J ETHNOPHARMACOL, V95, P273, DOI 10.1016/j.jep.2004.07.011; TOWNSEND A M, 1975, Silvae Genetica, V24, P18; TOWNSEND AM, 1979, PHYTOPATHOLOGY, V69, P643, DOI 10.1094/Phyto-69-643; TROCKENBRODT M, 1995, ANN BOT-LONDON, V75, P281, DOI 10.1006/anbo.1995.1022; TROCKENBRODT M, 1994, IAWA J, V15, P387, DOI 10.1163/22941932-90001373; TROCKENBRODT M, 1991, IAWA BULL, V12, P5, DOI 10.1163/22941932-90001199; Trockenbrodt M., 2001, STADT GRUN, V6, P430; Troels-Smith J., 1960, IVY MISTLETOE ELM CL; Trueman I.C., 2013, FLORA BIRMINGHAM BLA; TUOVINEN T, 1991, EXP APPL ACAROL, V12, P35, DOI 10.1007/BF01204398; Tylkowski T., 1999, Sylwan, V143, P39; Tyystjarvi P., 1984, TIEDOTE METSANJALOST, V1, P1; Uotila P., 1997, SORBIFOLIA, V28, P5; Urban J., 2003, Journal of Forest Science (Prague), V49, P359; Urban J., 2003, Journal of Forest Science (Prague), V49, P159; Urban J, 2013, ACTA HORTIC, V991, P301; Urban J, 2014, TREES-STRUCT FUNCT, V28, P1599, DOI 10.1007/s00468-014-1068-0; Venturas M, 2015, IFOREST, V8, P135, DOI 10.3832/ifor1201-008; Venturas M, 2014, FOREST ECOL MANAG, V312, P170, DOI 10.1016/j.foreco.2013.10.007; Venturas M, 2013, TREES-STRUCT FUNCT, V27, P1691, DOI 10.1007/s00468-013-0916-7; von Oheimb G, 2007, ACTA OECOL, V31, P229, DOI 10.1016/j.actao.2006.12.001; Vretiak P., 1993, LESNICTVI, V39, P123; Wadley FM, 1944, J AGRIC RES, V69, P0299; Wang B, 2006, MYCORRHIZA, V16, P299, DOI 10.1007/s00572-005-0033-6; WAREING PF, 1956, ANNU REV PLANT PHYS, V7, P191, DOI 10.1146/annurev.pp.07.060156.001203; Waring Paul, 2005, Entomologist's Record and Journal of Variation, V117, P80; Waring Paul, 2008, Entomologist's Record and Journal of Variation, V120, P29; WATSON MF, 1988, LICHENOLOGIST, V20, P327, DOI 10.1017/S0024282988000441; WEBBER J, 1981, NATURE, V292, P449, DOI 10.1038/292449a0; Webber J. F., 2000, ELMS BREEDING CONSER, P47, DOI [10. 1007/978-1-4615-4507-1, DOI 10.1007/978-1-4615-4507-1_3]; Weibull H, 2005, BIOL CONSERV, V122, P71, DOI 10.1016/j.biocon.2004.07.001; Weibull H, 2001, J BRYOL, V23, P55, DOI 10.1179/jbr.2001.23.1.55; Went J. C., 1954, TIJDSCHR PLANTENZIEK, V60, P140; White SM, 2017, BIOL INVASIONS, V19, P1825, DOI 10.1007/s10530-017-1393-5; Wilkinson G., 1978, EPITAPH FOR THE ELM; Willner Wolfgang, 2016, Hacquetia, V15, P15, DOI 10.1515/hacq-2016-0005; Woodland Trust, 2018, ANC TREE INV; WILLMOT A, 1980, J ECOL, V68, P269, DOI 10.2307/2259255; Winding A, 1997, BIOL FERT SOILS, V24, P133, DOI 10.1007/s003740050221; Zabihi H., 2008, Journal of Agricultural Sciences and Natural Resources, V15, P15; Zajc M., 2009, ELEMENTY GEOGRAFICZN; Zandigiacomo P, 2011, B INSECTOL, V64, P145; Zarinkamar Fatemeh, 2007, Pak J Biol Sci, V10, P199; Zaski A., 2009, LENE PRACE BADAWCZE, V70, P151; Zebec M., 2015, SUMAR LIST, V9-10, P429; Zuo LH, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0171264 509 0 0 8 8 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-0477 1365-2745 J ECOL J. Ecol. JUL 2018 106 4 1724 1766 10.1111/1365-2745.12994 43 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology GJ5TE WOS:000435444700032 Bronze 2018-11-22 J Ruger, N; Comita, LS; Condit, R; Purves, D; Rosenbaum, B; Visser, MD; Wright, SJ; Wirth, C Rueger, Nadja; Comita, Liza S.; Condit, Richard; Purves, Drew; Rosenbaum, Benjamin; Visser, Marco D.; Wright, S. J.; Wirth, Christian Beyond the fast-slow continuum: demographic dimensions structuring a tropical tree community ECOLOGY LETTERS English Article Barro Colorado Island; demography; functional traits; growth-survival trade-off; life-history strategies; long-lived pioneer; mortality; seed production; tropical forest; weighted Principal Component Analysis FUNCTIONAL TRAITS; TRADE-OFF; NEOTROPICAL FOREST; INTERSPECIFIC VARIATION; SEEDLING RECRUITMENT; SHADE TOLERANCE; GOOD PREDICTORS; GROWTH-RATES; LEAF TRAITS; CHANGE RANK Life-history theory posits that trade-offs between demographic rates constrain the range of viable life-history strategies. For coexisting tropical tree species, the best established demographic trade-off is the growth-survival trade-off. However, we know surprisingly little about co-variation of growth and survival with measures of reproduction. We analysed demographic rates from seed to adult of 282 co-occurring tropical tree and shrub species, including measures of reproduction and accounting for ontogeny. Besides the well-established fast-slow continuum, we identified a second major dimension of demographic variation: a trade-off between recruitment and seedling performance vs. growth and survival of larger individuals (>= 1 cm dbh) corresponding to a 'stature-recruitment' axis. The two demographic dimensions were almost perfectly aligned with two independent trait dimensions (shade tolerance and size). Our results complement recent analyses of plant life-history variation at the global scale and reveal that demographic trade-offs along multiple axes act to structure local communities. [Rueger, Nadja; Rosenbaum, Benjamin; Wirth, Christian] German Ctr Integrat Biodivers Res iDiv, Deutsch Pl 5e, D-04103 Leipzig, Germany; [Rueger, Nadja; Comita, Liza S.; Wright, S. J.] Smithsonian Trop Res Inst, Apartado 0843-03092, Ancona, Panama; [Comita, Liza S.] Yale Univ, Sch Forestry & Environm Studies, New Haven, CT 06511 USA; [Condit, Richard] Field Museum Nat Hist, 1400 S Lake Shore Dr, Chicago, IL 60605 USA; [Condit, Richard] Morton Arboretum, 4100 Illinois Rte 53, Lisle, IL 60532 USA; [Purves, Drew] DeepMind, London, England; [Rosenbaum, Benjamin] Friedrich Schiller Univ Jena, Inst Biodivers, Dornburger Str 159, D-07743 Jena, Germany; [Visser, Marco D.] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA; [Wirth, Christian] Univ Leipzig, AG Spezielle Bot & Funkt Biodiversitat, Johannisallee 21, D-04103 Leipzig, Germany; [Wirth, Christian] Max Planck Inst Biogeochem, Hans Knoll Str 10, D-07743 Jena, Germany Ruger, N (reprint author), German Ctr Integrat Biodivers Res iDiv, Deutsch Pl 5e, D-04103 Leipzig, Germany.; Ruger, N (reprint author), Smithsonian Trop Res Inst, Apartado 0843-03092, Ancona, Panama. nadja.rueger@idiv.de Ruger, Nadja/J-6393-2015 Ruger, Nadja/0000-0003-2371-4172 Deutsche Forschungsgemeinschaft DFG [RU 1536/3-1]; German Centre for integrative Biodiversity Research (iDiv) - Deutsche Forschungsgemeinschaft DFG [FZT 118]; NSF Long Term Research in Environmental Biology programme for seedling data collection [LTREB 1464389]; Netherlands Organization for Scientific Research [NWO-ALW 801-440 01-009]; Carbon Mitigation Initiative at Princeton University; F. H. Levinson Fund NR was funded by a research grant from Deutsche Forschungsgemeinschaft DFG (RU 1536/3-1). BR, NR and CW acknowledge the support of the German Centre for integrative Biodiversity Research (iDiv) funded by Deutsche Forschungsgemeinschaft DFG (FZT 118). The BCI plot has been made possible through the support of the U.S. National Science Foundation, the John D. and Catherine D. McArthur Foundation, and the Smithsonian Tropical Research Institute. LSC acknowledges support from the NSF Long Term Research in Environmental Biology programme for seedling data collection (LTREB 1464389). MDV acknowledges support from the Netherlands Organization for Scientific Research (NWO-ALW 801-440 01-009) and the Carbon Mitigation Initiative at Princeton University for the tree reproductive status census. Functional trait data were funded by the F. H. Levinson Fund. We thank the dozens of field assistants and botanists who have collected data in the BCI plot over the past 35 years. We thank Stephanie Bohlman for sharing crown observations from aerial photographs of trees at BCI, Adam Clark for helpful discussions and Roberto Salguero-Gomez and three anonymous reviewers for insightful comments that improved the MS considerably. Adler PB, 2014, P NATL ACAD SCI USA, V111, P740, DOI 10.1073/pnas.1315179111; Anderson-Teixeira KJ, 2015, GLOBAL CHANGE BIOL, V21, P528, DOI 10.1111/gcb.12712; Baraloto C, 2005, ECOLOGY, V86, P2461, DOI 10.1890/04-1956; Beeckman H., 2013, FOREST ECOL MANAG, V304, P417; Bohlman S, 2012, J ECOL, V100, P508, DOI 10.1111/j.1365-2745.2011.01935.x; Borcard D, 2011, USE R, P1, DOI 10.1007/978-1-4419-7976-6; Brown JH, 2006, P NATL ACAD SCI USA, V103, P17595, DOI 10.1073/pnas.0608522103; Comita LS, 2007, J VEG SCI, V18, P163, DOI 10.1658/1100-9233(2007)18[163:POWPSA]2.0.CO;2; Condit R., 1998, TROPICAL FOREST CENS; Dalling JW, 1997, J TROP ECOL, V13, P659, DOI 10.1017/S0266467400010853; Delchambre L, 2015, MON NOT R ASTRON SOC, V446, P3545, DOI 10.1093/mnras/stu2219; Diaz S, 2016, NATURE, V529, P167, DOI 10.1038/nature16489; FAVRICHON V, 1994, REV ECOL-TERRE VIE, V49, P379; Ford ED, 2001, OIKOS, V93, P153, DOI 10.1034/j.1600-0706.2001.930117.x; Gilbert B, 2006, ECOLOGY, V87, P1281, DOI 10.1890/0012-9658(2006)87[1281:LHTITT]2.0.CO;2; Grau HR, 1997, FOREST ECOL MANAG, V95, P161, DOI 10.1016/S0378-1127(97)00010-8; Grime J.P., 2012, EVOLUTIONARY STRATEG, P240; Hubbell S.P., 1983, TROPICAL RAIN FOREST, P25; Iida Y, 2014, J ECOL, V102, P641, DOI 10.1111/1365-2745.12221; Ishii H, 2002, FOLIA GEOBOT, V37, P63, DOI 10.1007/BF02803191; Wright SJ, 2010, ECOLOGY, V91, P3664, DOI 10.1890/09-2335.1; King DA, 2006, J TROP ECOL, V22, P11, DOI 10.1017/S0266467405002774; KITAJIMA K, 1994, OECOLOGIA, V98, P419, DOI 10.1007/BF00324232; Kitajima K, 2008, TROPICAL FOREST COMM, P160; Kohyama T, 2003, J ECOL, V91, P797, DOI 10.1046/j.1365-2745.2003.00810.x; KOHYAMA T, 1993, J ECOL, V81, P131, DOI 10.2307/2261230; Koons DN, 2008, AM NAT, V172, P797, DOI 10.1086/592867; Kooyman RM, 2009, ANN BOT-LONDON, V104, P987, DOI 10.1093/aob/mcp185; Lasky JR, 2015, ECOLOGY, V96, P2157, DOI 10.1890/14-1809.1; LATHAM RE, 1992, ECOLOGY, V73, P2129, DOI 10.2307/1941461; Lieberman D., 1990, FOREST DYNAMICS LA S, P509; Loehle C, 2000, AM NAT, V156, P14, DOI 10.1086/303369; Lusk CH, 2004, FUNCT ECOL, V18, P820, DOI 10.1111/j.0269-8463.2004.00897.x; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; Muller-Landau HC, 2008, J ECOL, V96, P653, DOI 10.1111/j.1365-2745.2008.01399.x; Muller-Landau HC, 2010, P NATL ACAD SCI USA, V107, P4242, DOI 10.1073/pnas.0911637107; Peres-Neto PR, 2001, OECOLOGIA, V129, P169, DOI 10.1007/s004420100720; Philipson CD, 2014, ECOL EVOL, V4, P3675, DOI 10.1002/ece3.1186; Poorter L, 2008, ECOLOGY, V89, P1908, DOI 10.1890/07-0207.1; Poorter L, 2006, ECOLOGY, V87, P1733, DOI 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2; Purves D, 2008, SCIENCE, V320, P1452, DOI 10.1126/science.1155359; R Development Core Team, 2016, R ALNG ENV STAT COMP; Reich PB, 2014, J ECOL, V102, P275, DOI 10.1111/1365-2745.12211; Ruger N, 2012, ECOLOGY, V93, P2626, DOI 10.1890/12-0622.1; Ruger N, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0025330; Salguero-Gomez R, 2017, NEW PHYTOL, V213, P1618, DOI 10.1111/nph.14289; Salguero-Gomez R, 2016, P NATL ACAD SCI USA, V113, P230, DOI 10.1073/pnas.1506215112; Stan Development Team, 2016, RSTAN R INT STAN VER; STEARNS SC, 1999, EVOLUTION LIFE HIST; Sterck FJ, 2006, AM NAT, V167, P758, DOI 10.1086/503056; Sterck FJ, 2013, J ECOL, V101, P971, DOI 10.1111/1365-2745.12076; Turner I.M., 2001, ECOLOGY TREES TROPIC; Uriarte M, 2012, ECOLOGY, V93, P191, DOI 10.1890/10-2422.1; Violle C, 2007, OIKOS, V116, P882, DOI 10.1111/j.2007.0030-1299.15559.x; Visser MD, 2016, FUNCT ECOL, V30, P168, DOI 10.1111/1365-2435.12621; WELDEN CW, 1991, ECOLOGY, V72, P35, DOI 10.2307/1938900; Westoby M, 1998, PLANT SOIL, V199, P213, DOI 10.1023/A:1004327224729; Wilson JB, 2012, J VEG SCI, V23, P796, DOI 10.1111/j.1654-1103.2012.01400.x; Wright SJ, 2016, ECOLOGY, V97, P2780, DOI 10.1002/ecy.1519; Wright SJ, 2005, ECOLOGY, V86, P848, DOI 10.1890/03-0750; York RA, 2011, RESTOR ECOL, V19, P14, DOI 10.1111/j.1526-100X.2009.00537.x; Zhu Y, 2018, ECOL LETT, V21, P506, DOI 10.1111/ele.12915 62 2 2 21 21 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1461-023X 1461-0248 ECOL LETT Ecol. Lett. JUL 2018 21 7 1075 1084 10.1111/ele.12974 10 Ecology Environmental Sciences & Ecology GJ3YN WOS:000435270600013 29744992 Green Published, Other Gold 2018-11-22 J Merot, C; Berdan, EL; Babin, C; Normandeau, E; Wellenreuther, M; Bernatchez, L Merot, Claire; Berdan, Emma L.; Babin, Charles; Normandeau, Eric; Wellenreuther, Maren; Bernatchez, Louis Intercontinental karyotype - environment parallelism supports a role for a chromosomal inversion in local adaptation in a seaweed fly PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article chromosomal inversions; environmental gradient; local adaptation; balancing selection; parrallelism; Diptera ALCOHOL-DEHYDROGENASE LOCUS; COELOPA-FRIGIDA; NATURAL-POPULATIONS; SEXUAL SELECTION; TRADE-OFFS; DROSOPHILA-MELANOGASTER; GENETIC-VARIATION; ADULT SIZE; POLYMORPHISM; EVOLUTION Large chromosomal rearrangements are thought to facilitate adaptation to heterogeneous environments by limiting genomic recombination. Indeed, inversions have been implicated in adaptation along environmental clines and in ecotype specialization. Here, we combine classical ecological studies and population genetics to investigate an inversion polymorphism previously documented in Europe among natural populations of the seaweed fly Coelopa frigida along a latitudinal cline in North America. We test if the inversion is present in North America and polymorphic, assess which environmental conditions modulate the inversion karyotype frequencies, and document the relationship between inversion karyotype and adult size. We sampled nearly 2000 flies from 20 populations along several environmental gradients to quantify associations of inversion frequencies to heterogeneous environmental variables. Genotyping and phenotyping showed a widespread and conserved inversion polymorphism between Europe and America. Variation in inversion frequency was significantly associated with environmental factors, with parallel patterns between continents, indicating that the inversion may play a role in local adaptation. The three karyotypes of the inversion are differently favoured across micro-habitats and represent life-history strategies likely to be maintained by the collective action of several mechanisms of balancing selection. Our study adds to the mounting evidence that inversions are facilitators of adaptation and enhance within-species diversity. [Merot, Claire; Babin, Charles; Normandeau, Eric; Bernatchez, Louis] Univ Laval, Dept Biol, Quebec City, PQ, Canada; [Berdan, Emma L.] Univ Gothenburg, Dept Marine Sci, Gothenburg, Sweden; [Wellenreuther, Maren] Univ Auckland, Sch Biol Sci, Auckland, New Zealand; [Wellenreuther, Maren] Seafood Res Unit, Port Nelson, Nelson, New Zealand Merot, C; Bernatchez, L (reprint author), Univ Laval, Dept Biol, Quebec City, PQ, Canada. claire.merot@gmail.com; louis.bernatchez@bio.ulaval.ca Natural Sciences and Engineering Research Council of Canada (NSERC); Canadian Research Chair; Swedish Research Council [2012-3996]; FRQNT; FRQS; Marie-Curie Fellowship (H2020-MSCA-IF-2015) [704920] This research was supported by a discovery research grant from the Natural Sciences and Engineering Research Council of Canada (NSERC) to L.B., by the Canadian Research Chair in genomics and conservation of aquatic resources held by L.B. and by the Swedish Research Council grant 2012-3996 to M.W. C.M. was supported by a post-doctoral fellowship from the FRQNT and FRQS. E.L.B. was supported by a Marie-Curie Fellowship (H2020-MSCA-IF-2015, 704920). Ayala D, 2017, EVOLUTION, V71, P686, DOI 10.1111/evo.13176; Ayala D, 2013, EVOLUTION, V67, P946, DOI 10.1111/j.1558-5646.2012.01836.x; Aziz JB, 1975, THESIS; Bates D., 2014, LME4 LINEAR MIXED EF; BENJAMINI Y, 1995, J ROY STAT SOC B MET, V57, P289; Borcard D, 2002, ECOL MODEL, V153, P51, DOI 10.1016/S0304-3800(01)00501-4; Borcard D, 2011, USE R, P1, DOI 10.1007/978-1-4419-7976-6; Burnham KP, 2003, MODEL SELECTION MULT; BUTLIN RK, 1985, HEREDITY, V54, P267, DOI 10.1038/hdy.1985.36; BUTLIN RK, 1985, HEREDITY, V54, P107, DOI 10.1038/hdy.1985.14; BUTLIN RK, 1989, HEREDITY, V62, P223, DOI 10.1038/hdy.1989.32; BUTLIN RK, 1984, HEREDITY, V52, P415, DOI 10.1038/hdy.1984.49; BUTLIN RK, 1982, HEREDITY, V48, P45, DOI 10.1038/hdy.1982.5; BUTLIN RK, 1982, HEREDITY, V49, P51, DOI 10.1038/hdy.1982.64; CHARLESWORTH B, 1976, GENETICS, V83, P181; Charlesworth B, 2018, GENETICS, V208, P377, DOI 10.1534/genetics.117.300426; Chouteau M, 2016, P NATL ACAD SCI USA, V113, P2164, DOI 10.1073/pnas.1519216113; Chown SL, 2010, BIOL REV, V85, P139, DOI 10.1111/j.1469-185X.2009.00097.x; DAY TH, 1983, HEREDITAS, V99, P135, DOI 10.1111/j.1601-5223.1983.tb00738.x; DAY TH, 1980, HEREDITY, V44, P321, DOI 10.1038/hdy.1980.29; DAY TH, 1987, HEREDITY, V58, P213, DOI 10.1038/hdy.1987.35; Dewey M, 2017, METAP METAANALYSIS S; DOBSON T, 1974, J NAT HIST, V8, P653, DOI 10.1080/00222937400770561; DOBZHANSKY T, 1947, GENETICS, V32, P142; DOBZHANSKY T, 1970, GENETICS EVOLUTIONAR; Edward DA, 2013, EVOLUTION, V67, P295, DOI 10.1111/j.1558-5646.2012.01754.x; Egglishaw H. J., 1961, Entomologist London, V94, P11; Endler J. A., 1977, GEOGRAPHIC VARIATION; Fick SE, 2017, INT J CLIMATOL, V37, P4302, DOI 10.1002/joc.5086; Fisher RA., 1923, P R SOC EDINB, V42, P321, DOI DOI 10.1017/S0370164600023993; GILBURN AS, 1994, P ROY SOC B-BIOL SCI, V257, P303, DOI 10.1098/rspb.1994.0130; Graffelman J, 2015, J STAT SOFTW, V64, P1; Hedrick PW, 2006, ANNU REV ECOL EVOL S, V37, P67, DOI 10.1146/annurev.ecolsys.37.091305.110132; Hereford J, 2009, AM NAT, V173, P579, DOI 10.1086/597611; Hijmans R.J., 2014, RASTER GEOGRAPHIC DA; Hoffmann AA, 2004, TRENDS ECOL EVOL, V19, P482, DOI 10.1016/j.tree.2004.06.013; Hoffmann AA, 2008, ANNU REV ECOL EVOL S, V39, P21, DOI 10.1146/annurev.ecolsys.39.110707.173532; IRIARTE PF, 2000, DROSOPHILA BUZZATII, V54, P1295; JAMES AC, 1995, GENETICS, V140, P659; Johnston SE, 2013, NATURE, V502, P93, DOI 10.1038/nature12489; Joron M, 2011, NATURE, V477, P203, DOI 10.1038/nature10341; Kapun M, 2016, MOL BIOL EVOL, V33, P1317, DOI 10.1093/molbev/msw016; Kirkpatrick M, 2006, GENETICS, V173, P419, DOI 10.1534/genetics.105.047985; Kirkpatrick M, 2017, J HERED, V108, P3, DOI 10.1093/jhered/esw041; Kirkpatrick M, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000501; Kirubakaran TG, 2016, MOL ECOL, V25, P2130, DOI 10.1111/mec.13592; Krimbas C. B., 1992, DROSOPHILA INVERSION; Kupper C, 2016, NAT GENET, V48, P79, DOI 10.1038/ng.3443; Kuznetsova A., 2015, PACKAGE IMERTEST R P; Lenormand T, 2000, GENETICS, V156, P423; Lenth RV, 2016, J STAT SOFTW, V69, P1, DOI 10.18637/jss.v069.i01; Letourneau J, 2018, EVOL APPL, V11, P577, DOI 10.1111/eva.12566; Lindtke D, 2017, MOL ECOL, V26, P6189, DOI 10.1111/mec.14280; Lowry DB, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000500; MacDonald C, 2002, MOL ECOL, V11, P1637, DOI 10.1046/j.1365-294X.2002.01559.x; Maier MJ, 2014, DIRICHLETREG DIRICHL; Mazerolle MJ, 2017, PACKAGE AICCMODAVG R; Merot C, 2018, DRYAD DIGITAL REPOSI, DOI [10.5061/dryad.pn2mq57, DOI 10.5061/DRYAD.PN2MQ57]; NEI M, 1967, GENETICS, V57, P625; Nei M, 2003, HEREDITY, V90, P411, DOI 10.1038/sj.hdy.6800287; Oksanen J., 2013, PACKAGE VEGAN R PACK; R Core Team, 2017, R LANG ENV STAT COMP; Roff DA, 2000, J EVOLUTION BIOL, V13, P434, DOI 10.1046/j.1420-9101.2000.00186.x; Rozas J, 2017, MOL BIOL EVOL, V34, P3299, DOI 10.1093/molbev/msx248; Savolainen O, 2013, NAT REV GENET, V14, P807, DOI 10.1038/nrg3522; Sbrocco E.J., 2013, ECOLOGY, V94, P979, DOI DOI 10.1890/12-1358.1; Shin J-H, 2016, PACKAGE LDHEATMAP R; Stein A, 2014, ECOL LETT, V17, P866, DOI 10.1111/ele.12277; Sturtevant AH, 1921, P NATL ACAD SCI USA, V7, P235, DOI 10.1073/pnas.7.8.235; Tuttle EM, 2016, CURR BIOL, V26, P344, DOI 10.1016/j.cub.2015.11.069; Wallberg A, 2017, PLOS GENET, V13, DOI 10.1371/journal.pgen.1006792; Wang J, 2013, NATURE, V493, P664, DOI 10.1038/nature11832; Wei T., 2017, STATISTICIAN, V56, P316; Wellenreuther M, 2017, J EVOLUTION BIOL, V30, P1068, DOI 10.1111/jeb.13064; Wellenreuther M, 2014, MOL ECOL, V23, P5398, DOI 10.1111/mec.12935; Zeileis A, 2016, PACKAGE BETAREG R PA 76 0 0 7 7 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. JUN 27 2018 285 1881 20180519 10.1098/rspb.2018.0519 10 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology GK9KA WOS:000436565200008 29925615 Other Gold 2018-11-22 J Manabe, A; Yamakawa, T; Ohnishi, S; Akamine, T; Narimatsu, Y; Tanaka, H; Funamoto, T; Ueda, Y; Yamamote, T Manabe, Akihiro; Yamakawa, Takashi; Ohnishi, Shuhei; Akamine, Tatsuro; Narimatsu, Yoji; Tanaka, Hiroshige; Funamoto, Tetsuichiro; Ueda, Yuji; Yamamote, Takeo A novel growth function incorporating the effects of reproductive energy allocation PLOS ONE English Article OPTIMAL RESOURCE-ALLOCATION; LIFE-HISTORY INVARIANTS; INDETERMINATE GROWTH; MODEL; MATURATION; PATTERNS; ANIMALS; ECOLOGY; FISHES; COST Ontogenetic growth functions provide basic information in biological and ecological studies. Various growth functions classified into the Putter model have been used historically, regardless of controversies over their appropriateness. Here, we present a novel growth function for fish and aquatic organisms (generalised q-VBGF) by considering an allocation schedule of allometrically produced surplus energy between somatic growth and reproduction. The generalised q-VBGF can track growth trajectories in different life history strategies from determinate to indeterminate growth by adjusting the value of the 'growth indeterminacy exponent' q. The timing of maturation and attainable body size can be adjusted by the 'maturation timing parameter' tau while maintaining a common growth trajectory before maturation. The generalised q-VBGF is a comprehensive growth function in which exponentials in the traditional monomolecular, von Bertalanffy, Gompertz, logistic, and Richards functions are replaced with q-exponentials defined in the non-extensive Tsallis statistics, and it fits to actual data more adequately than these conventional functions. The relationship between the estimated parameter values tau and rq forms a unique hyperbola, which provides a new insight into the continuum of life history strategies of organisms. [Manabe, Akihiro; Yamakawa, Takashi] Univ Tokyo, Grad Sch Agr & Life Sci, Tokyo, Japan; [Ohnishi, Shuhei] Tokai Univ, Sch Marine Sci & Technol, Shizuoka, Shizuoka, Japan; [Akamine, Tatsuro] Japan Fisheries Res & Educ Agcy, Natl Res Inst Fisheries Sci, Yokohama, Kanagawa, Japan; [Narimatsu, Yoji] Japan Fisheries Res & Educ Agcy, Hachinohe Lab, Tohoku Natl Fisheries Res Inst, Hachinohe, Aomori, Japan; [Tanaka, Hiroshige] Japan Fisheries Res & Educ Agcy, Natl Res Inst Far Seas Fisheries, Shimizu, Shizuoka, Japan; [Tanaka, Hiroshige; Funamoto, Tetsuichiro] Japan Fisheries Res & Educ Agcy, Hokkaido Natl Fisheries Res Inst, Kushiro, Hokkaido, Japan; [Ueda, Yuji] Japan Fisheries Res & Educ Agcy, Japan Sea Natl Fisheries Res Inst, Niigata, Niigata, Japan; [Yamamote, Takeo] Japan Fisheries Res & Educ Agcy, Obama Lab, Japan Sea Natl Fisheries Res Inst, Obama, Fukui, Japan Manabe, A; Yamakawa, T (reprint author), Univ Tokyo, Grad Sch Agr & Life Sci, Tokyo, Japan. manabe@aqua.fs.a.u-tokyo.ac.jp; ayamakw@mail.ecc.u-tokyo.ac.jp Yamamoto, Takeo/0000-0002-0872-4260 Fisheries Agency; Japan Fisheries Research and Education Agency Part of this study was conducted as the project 'Assessment of Fisheries Stocks in the Waters around Japan' and was financially supported by the Fisheries Agency and Japan Fisheries Research and Education Agency. The Fisheries Agency is not responsible for the contents of this manuscript. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Akaike H., 1973, P 2 INT S INF THEOR, P267, DOI DOI 10.1007/978-1-4612-1694-0_15; AKAMINE T, 1993, NIPPON SUISAN GAKK, V59, P1857; Alonso-Fernandez A, 2009, FISH RES, V99, P47, DOI 10.1016/j.fishres.2009.04.011; Amari S, 2011, ENTROPY, V13, P1070; Boukal DS, 2014, J THEOR BIOL, V359, P199, DOI 10.1016/j.jtbi.2014.05.022; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; CASE TJ, 1978, Q REV BIOL, V53, P243, DOI 10.1086/410622; Chapman EW, 2011, CAN J FISH AQUAT SCI, V68, P1934, DOI 10.1139/F2011-109; Czarnoleski M, 1998, ECOL LETT, V1, P5, DOI 10.1046/j.1461-0248.1998.0007b.x; Economo EP, 2005, ECOL LETT, V8, P353, DOI 10.1111/j.1461-0248.2005.00737.x; Froese R, 2006, J APPL ICHTHYOL, V22, P241, DOI 10.1111/j.1439-0426.2006.00805.x; Fujita S., 1965, Bulletin of the Japanese Society of Scientific Fisheries, V31, P258; Gompertz B., 1825, PHILOS T ROY SOC LON, V115, P513, DOI DOI 10.1098/RSTL.1825.0026; IWASA Y, 1989, AM NAT, V133, P480, DOI 10.1086/284931; JONSSON B, 1993, REV FISH BIOL FISHER, V3, P348, DOI 10.1007/BF00043384; Jusup M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021903; Karkach AS, 2006, DEMOGR RES, V15, P348; Katsukawa Y, 2002, POPUL ECOL, V44, P265, DOI 10.1007/s101440200030; KLEIBER MAX, 1932, HILGARDIA, V6, P315; Kooijman SALM, 2008, BIOL REV, V83, P533, DOI 10.1111/j.1469-185X.2008.00053.x; Kozlowski J, 1996, P ROY SOC B-BIOL SCI, V263, P559, DOI 10.1098/rspb.1996.0084; Kozlowski J, 1999, EVOL ECOL RES, V1, P423; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; MAC ARTHUR ROBERT H., 1967; Ohnishi S, 2014, J THEOR BIOL, V343, P174, DOI 10.1016/j.jtbi.2013.10.017; Ohnishi S, 2012, FISH B-NOAA, V110, P223; Picoli S, 2009, BRAZ J PHYS, V39, P468, DOI 10.1590/S0103-97332009000400023; Prince J, 2015, ICES J MAR SCI, V72, P194, DOI 10.1093/icesjms/fsu011; Putter A, 1920, PFLUG ARCH GES PHYS, V180, P298, DOI 10.1007/BF01755094; Quince C, 2008, J THEOR BIOL, V254, P197, DOI 10.1016/j.jtbi.2008.05.029; RICHARDS FJ, 1959, J EXP BOT, V10, P290, DOI 10.1093/jxb/10.2.290; SCHWARZ G, 1978, ANN STAT, V6, P461, DOI 10.1214/aos/1176344136; SEBENS KP, 1987, ANNU REV ECOL SYST, V18, P371, DOI 10.1146/annurev.es.18.110187.002103; Sheehan RJ, 1999, T AM FISH SOC, V128, P491, DOI 10.1577/1548-8659(1999)128<0491:BGIAFD>2.0.CO;2; SIBLY R, 1985, J THEOR BIOL, V112, P553, DOI 10.1016/S0022-5193(85)80022-9; Spillman W. J., 1924, LAW DIMINISHING RETU; TAYLOR BE, 1992, AM NAT, V139, P248, DOI 10.1086/285326; Tsallis C, 1994, QUIM NOVA, V17, P468; Tsallis C., 2009, INTRO NONEXTENSIVE S; VONBERTALANFFY L, 1957, Q REV BIOL, V32, P217, DOI 10.1086/401873; Wang ZP, 2002, AQUACULTURE, V204, P337, DOI 10.1016/S0044-8486(01)00845-6; West GB, 2001, NATURE, V413, P628, DOI 10.1038/35098076; WOOTTON RJ, 1976, J FISH BIOL, V8, P385, DOI 10.1111/j.1095-8649.1976.tb03967.x; YOKLAVICH MM, 1990, MAR ECOL PROG SER, V64, P13, DOI 10.3354/meps064013 44 0 0 5 5 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One JUN 26 2018 13 6 e0199346 10.1371/journal.pone.0199346 18 Multidisciplinary Sciences Science & Technology - Other Topics GK7JR WOS:000436377800031 29944689 DOAJ Gold 2018-11-22 J Gonzalez, P; Jiang, JZ; Lowe, CJ Gonzalez, Paul; Jiang, Jeffrey Z.; Lowe, Christopher J. The development and metamorphosis of the indirect developing acorn worm Schizocardium californicum (Enteropneusta: Spengelidae) FRONTIERS IN ZOOLOGY English Article Enteropneusta; Hemichordata; Indirect development; Metamorphosis; Planktotrophy; Schizocardium californicum; Tornaria DEVELOPING SEA-URCHIN; HELIOCIDARIS-ERYTHROGRAMMA; PTYCHODERA-FLAVA; NERVOUS-SYSTEM; TORNARIA LARVA; DEUTEROSTOME PHYLOGENY; HEMICHORDATA-ENTEROPNEUSTA; SACCOGLOSSUS-KOWALEVSKII; DORSOVENTRAL AXIS; GILL SLITS Background: Enteropneusts are benthic marine invertebrates that belong to the deuterostome phylum Hemichordata. The two main clades of enteropneusts are defined by differences in early life history strategies. In the Spengelidae and Ptychoderidae, development is indirect via a planktotrophic tornaria larva. In contrast, development in the Harrimanidae is direct without an intervening larval life history stage. Most molecular studies in the development and evolution of the enteropneust adult body plan have been carried out in the harrimanid Saccoglossus kowalevskii. In order to compare these two developmental strategies, we have selected the spengelid enteropneust Schizocardium californicum as a suitable indirect developing species for molecular developmental studies. Here we describe the methods for adult collecting, spawning and larval rearing in Schizocardium californicum, and describe embryogenesis, larval development, and metamorphosis, using light microscopy, immunocytochemistry and confocal microscopy. Results: Adult reproductive individuals can be collected intertidally and almost year-round. Spawning can be triggered by heat shock and large numbers of larvae can be reared through metamorphosis under laboratory conditions. Gastrulation begins at 17 h post-fertilization (hpf) and embryos hatch at 26 hpf as ciliated gastrulae. At 3 days post-fertilization (dpf), the tornaria has a circumoral ciliary band, mouth, tripartite digestive tract, protocoel, larval muscles and a simple serotonergic nervous system. The telotroch develops at 5 dpf. In the course of 60 days, the serotonergic nervous system becomes more elaborate, the posterior coeloms develop, and the length of the circumoral ciliary band increases. At the end of the larval stage, larval muscles disappear, gill slits form, and adult muscles develop. Metamorphosis occurs spontaneously when the larva reaches its maximal size (ca. 3 mm), and involves loss and reorganization of larval structures (muscles, nervous system, digestive tract), as well as development of adult structures (adult muscles, tripartite body organization). Conclusions: This study will enable future research in S. californicum to address long standing questions related to the evolution of axial patterning mechanisms, germ layer induction, neurogenesis and neural patterning, the mechanisms of metamorphosis, the relationships between larval and adult body plans, and the evolution of metazoan larval forms. [Gonzalez, Paul; Lowe, Christopher J.] Stanford Univ, Dept Biol, Hopkins Marine Stn, 120 Ocean View Blvd, Pacific Grove, CA 93950 USA; [Jiang, Jeffrey Z.] Univ Penn, Dept Chem, 231 South 34th St, Philadelphia, PA 19104 USA Lowe, CJ (reprint author), Stanford Univ, Dept Biol, Hopkins Marine Stn, 120 Ocean View Blvd, Pacific Grove, CA 93950 USA. clowe@stanford.edu Lowe, Christopher/0000-0002-7789-8643 NSERC; Myers Oceanographic and Marine Biology Trust; NASA Exobiology [NNX13AI68G]; NSF [1258169, 1656628] PG received a post-graduate fellowship from NSERC and a grant from Myers Oceanographic and Marine Biology Trust. CJL received support from NASA Exobiology NNX13AI68G and NSF grants 1258169 and 1656628. BALSER EJ, 1990, ACTA ZOOL-STOCKHOLM, V71, P235, DOI 10.1111/j.1463-6395.1990.tb01082.x; Bourlat SJ, 2006, NATURE, V444, P85, DOI 10.1038/nature05241; BRANDENBURGER JL, 1973, Z ZELLFORSCH MIK ANA, V142, P89, DOI 10.1007/BF00306706; Braun K, 2015, ORG DIVERS EVOL, V15, P423, DOI 10.1007/s13127-015-0206-x; BRIDGES TS, 1994, ACTA ZOOL-STOCKHOLM, V75, P371, DOI 10.1111/j.1463-6395.1994.tb00973.x; BURDONJONES C, 1952, PHILOS T ROY SOC B, V236, P553, DOI 10.1098/rstb.1952.0010; Cameron CB, 2012, ZOOTAXA, P79; Cameron CB, 2005, CAN J ZOOL, V83, P196, DOI 10.1139/Z04-190; Cannon JT, 2014, CURR BIOL, V24, P2827, DOI 10.1016/j.cub.2014.10.016; COLWIN AL, 1953, J MORPHOL, V92, P401, DOI 10.1002/jmor.1050920302; DAUTOV SS, 1992, BIOL BULL, V183, P463, DOI 10.2307/1542023; Ferkowicz MJ, 2001, EVOL DEV, V3, P24, DOI 10.1046/j.1525-142x.2001.00084.x; Franzen A, 2001, INVERTEBR REPROD DEV, V39, P37, DOI 10.1080/07924259.2001.9652465; GILMOUR THJ, 1982, CAN J ZOOL, V60, P3010, DOI 10.1139/z82-384; Gonzalez P, 2017, CURR BIOL, V27, P87, DOI 10.1016/j.cub.2016.10.047; Gonzalez P, 2009, BIOL J LINN SOC, V98, P898, DOI 10.1111/j.1095-8312.2009.01332.x; Haag ES, 1998, DEV GENES EVOL, V208, P188, DOI 10.1007/s004270050173; Hadfield M.G., 1975, P185; Halanych KM, 1995, MOL PHYLOGENET EVOL, V4, P72, DOI 10.1006/mpev.1995.1007; Hejnol A, 2009, P ROY SOC B-BIOL SCI, V276, P4261, DOI 10.1098/rspb.2009.0896; HENRY JJ, 1990, DEVELOPMENT, V110, P875; HENRY JJ, 1990, DEV BIOL, V141, P55, DOI 10.1016/0012-1606(90)90101-N; Henry JQ, 2001, EVOL DEV, V3, P375, DOI 10.1046/j.1525-142X.2001.01051.x; Hiebert LS, 2015, EVODEVO, V6, DOI 10.1186/s13227-015-0021-7; Hiebert LS, 2015, BMC BIOL, V13, DOI 10.1186/s12915-015-0133-5; Hyman L. H., 1959, SMALLER COELOMATE GR; Israel JW, 2016, PLOS BIOL, V14, DOI 10.1371/journal.pbio.1002391; Kauffman JS, 2003, DEV GENES EVOL, V213, P612, DOI 10.1007/s00427-003-0365-1; Kaul S, 2010, J MORPHOL, V271, P1240, DOI 10.1002/jmor.10868; Kaul-Strehlow S., 2015, EVOLUTIONARY DEV BIO, V6, P59; Kaul-Strehlow S, 2015, ORG DIVERS EVOL, V15, P405, DOI 10.1007/s13127-015-0201-2; Lacalli TC, 2001, ACTA ZOOL-STOCKHOLM, V82, P117, DOI 10.1046/j.1463-6395.2001.00075.x; Lin CY, 2016, J EXP ZOOL PART B, V326, P47, DOI 10.1002/jez.b.22665; Lowe CJ, 2015, NATURE, V520, P456, DOI 10.1038/nature14434; Lowe CJ, 2004, METHOD CELL BIOL, V74, P171; Lowe CJ, 2000, TOTOWA DEV BIOL PROT, P9; Metchnikoff V., 1881, ZOOL ANZ, V4, P139; Miyamoto N, 2007, ZOOL SCI, V24, P1278, DOI 10.2108/zsj.24.1278; Miyamoto N, 2010, EVOL DEV, V12, P416, DOI 10.1111/j.1525-142X.2010.00428.x; Morgan T. H., 1891, Journal of Morphology, Vv, P407; Morgan T. H., 1894, Journal of Morphology, Vix, P1; Nakajima Y, 2004, ZOOL SCI, V21, P69, DOI 10.2108/0289-0003(2004)21[69:DANOOT]2.0.CO;2; Nezlin LP, 2004, ZOOMORPHOLOGY, V123, P1, DOI 10.1007/s00435-003-0086-z; Nielsen C, 2007, J MORPHOL, V268, P551, DOI 10.1002/jmor.10533; RAFF RA, 1992, BIOESSAYS, V14, P211, DOI 10.1002/bies.950140403; Raff RA, 2008, PHILOS T R SOC B, V363, P1473, DOI 10.1098/rstb.2007.2237; RAO KP, 1953, J MORPHOL, V93, P1, DOI 10.1002/jmor.1050930102; Rottinger E, 2012, DEVELOPMENT, V139, P2463, DOI 10.1242/dev.066712; RUPPERT EE, 1986, BIOL BULL, V171, P188, DOI 10.2307/1541916; Sly BJ, 2003, INT J DEV BIOL, V47, P623; Smith MS, 2008, J EXP ZOOL PART B, V310B, P609, DOI 10.1002/jez.b.21233; STIASNY-WIJNHOFF GERADA, 1926, ZOOL ANZEIGER, V68, P159; Strathmann M. F., 1987, REPROD DEV MARINE IN; STRATHMANN R, 1976, MAR BIOL, V34, P317, DOI 10.1007/BF00398125; STRATHMANN RR, 1989, BIOL BULL, V176, P25, DOI 10.2307/1541885; Swalla BJ, 2008, PHILOS T R SOC B, V363, P1557, DOI 10.1098/rstb.2007.2246; Tagawa K, 1998, ZOOL SCI, V15, P85, DOI 10.2108/zsj.15.85; Tagawa K, 2016, CURR OPIN GENET DEV, V39, P71, DOI 10.1016/j.gde.2016.05.023; Tassia MG, 2016, PLOS ONE, V11, DOI [10.1371/journal.pone.016256, 10.1371/journal.pone.0162564]; TURBEVILLE JM, 1994, MOL BIOL EVOL, V11, P648; Urata M, 2004, ZOOL SCI, V21, P533, DOI 10.2108/zsj.21.533; Urata M, 2014, EVOL DEV, V16, P149, DOI 10.1111/ede.12075; Van der Horst C.J., 1939, HEMICHORDATA, V4, P1; WADA H, 1994, P NATL ACAD SCI USA, V91, P1801, DOI 10.1073/pnas.91.5.1801; Wijnhoff GS, 1927, TORNARIEN KRITIK BES; Wilson KA, 2005, EVOL DEV, V7, P416, DOI 10.1111/j.1525-142X.2005.05046.x; Wilson KA, 2005, EVOL DEV, V7, P401, DOI 10.1111/j.1525-142X.2005.05045.x; WRAY GA, 1989, DEV BIOL, V132, P458, DOI 10.1016/0012-1606(89)90242-X 68 0 0 5 5 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1742-9994 FRONT ZOOL Front. Zool. JUN 20 2018 15 26 10.1186/s12983-018-0270-0 24 Zoology Zoology GK1NI WOS:000435884800001 29977319 DOAJ Gold 2018-11-22 J Fay, MF Fay, Michael F. Orchid conservation: how can we meet the challenges in the twenty-first century? BOTANICAL STUDIES English Review Conservation priorities; Systematics; Phylogenetics; Population genetics; In situ conservation; Ex situ conservation; Integrated conservation; Mycorrhizas; Pollination; Illegal trade; CITES; Red List CYPRIPEDIUM-CALCEOLUS ORCHIDACEAE; INTERNATIONAL-TRADE; BIRD POLLINATION; DIVERSITY; HABITAT; EXTINCTION; COLLECTION; FLOWERS; FUNGUS; PLANTS With c. 28,000 species, orchids are one of the largest families of flowering plants, and they are also one of the most threatened, in part due to their complex life history strategies. Threats include habitat destruction and climate change, but many orchids are also threatened by unsustainable (often illegal and/or undocumented) harvest for horticulture, food or medicine. The level of these threats now outstrips our abilities to combat them at a species-by-species basis for all species in such a large group as Orchidaceae; if we are to be successful in conserving orchids for the future, we will need to develop approaches that allow us to address the threats on a broader scale to complement focused approaches for the species that are identified as being at the highest risk. [Fay, Michael F.] Royal Bot Gardens, Richmond TW9 3AB, Surrey, England; [Fay, Michael F.] Univ Western Australia, Sch Biol Sci, Crawley, WA 6009, Australia Fay, MF (reprint author), Royal Bot Gardens, Richmond TW9 3AB, Surrey, England. m.fay@kew.org Bogarin D, 2018, BOT J LINN SOC, V186, P510, DOI 10.1093/botlinnean/box087; Borba EL, 2014, BOT J LINN SOC, V175, P29, DOI 10.1111/boj.12136; Brooks TM, 2002, CONSERV BIOL, V16, P909, DOI 10.1046/j.1523-1739.2002.00530.x; Chase M. W., 2003, ORCHID CONSERVATION, P69; Chase MW, 2015, BOT J LINN SOC, V177, P151, DOI 10.1111/boj.12234; Cozzolino S, 2005, TRENDS ECOL EVOL, V20, P487, DOI 10.1016/j.tree.2005.06.004; Cribb PJ, 2003, ORCHID CONSERVATION, P1; Darwin C, 1862, VARIOUS CONTRIVANCES; Davies KL, 2013, BOT J LINN SOC, V173, P744, DOI 10.1111/boj.12094; de Boer HJ, 2017, P ROY SOC B-BIOL SCI, V284, DOI 10.1098/rspb.2017.1182; Delforge P., 2006, ORCHIDS EUROPE N AFR; Dixon KW, 2007, LANKESTERIANA, V7, P11; Dixon KW, 2003, ORCHID CONSERVATION; Ennos RA, 2012, BOT J LINN SOC, V168, P194, DOI 10.1111/j.1095-8339.2011.01206.x; Fay M, 2016, 2015 ANN REPORT ENV, P106; Fay MF, 2015, UNDOCUMENTED TRADE S; Fay MF, 2018, BOT J LINN SOC, V186, P587, DOI 10.1093/botlinnean/box104; Fay MF, 2016, ANN BOT-LONDON, V118, P89, DOI 10.1093/aob/mcw147; Fay MF, 2015, ANN BOT-LONDON, V116, P377, DOI 10.1093/aob/mcv142; Fay Michael F., 2015, Curtis's Botanical Magazine, V32, P3, DOI 10.1111/curt.12097; Fay MF, 2009, ANN BOT-LONDON, V104, P359, DOI [10.1093/aob/mcp190, 10.1093/aob/mcp195]; Gale SW, 2018, BOT J LINN SOC, V186, P425, DOI 10.1093/botlinnean/boy003; Gargiulo R, 2018, BOT J LINN SOC, V186, P560, DOI 10.1093/botlinnean/box105; Gebauer G, 2016, NEW PHYTOL, V211, P11, DOI 10.1111/nph.13865; GHORBANI A, 2014, TRAFFIC BULL, V26, P52; Higaki K, 2017, BOT STUD, V58, DOI 10.1186/s40529-017-0214-6; Hinsley A, 2018, BOT J LINN SOC, V186, P435, DOI 10.1093/botlinnean/box083; Hinsley A, 2017, CONSERV LETT, V10, P602, DOI 10.1111/conl.12316; Hutchings MJ, 2018, BOT J LINN SOC, V186, P498, DOI 10.1093/botlinnean/box086; IUCN, 2017, IUCN RED LIST THREAT; IUCN-SSC Species Conservation Planning Sub-Committee, 2017, GUID SPEC CONS PLANN, DOI [10.2305/IUCN.CH.2017.18.en, DOI 10.2305/IUCN.CH.2017.18.EN]; Jersakova J, 2006, BIOL REV, V81, P219, DOI 10.1017/S1464793105006986; Karremans AP, 2015, ANN BOT-LONDON, V116, P437, DOI 10.1093/aob/mcv086; Kendon JP, 2017, BOT STUD, V58, DOI 10.1186/s40529-017-0187-5; Koopowitz H., 2003, ORCHID CONSERVATION, P25; Koopowitz H, 2001, ORCHIDS THEIR CONSER; Kreziou A, 2016, ORYX, V50, P393, DOI 10.1017/S0030605315000265; Li JH, 2018, BOT J LINN SOC, V186, P473, DOI 10.1093/botlinnean/box084; Micheneau C, 2006, ANN BOT-LONDON, V97, P965, DOI 10.1093/aob/m1056; Micheneau C, 2010, ANN BOT-LONDON, V105, P355, DOI 10.1093/aob/mcp299; Micheneau C, 2009, BOT J LINN SOC, V161, P1, DOI 10.1111/j.1095-8339.2009.00995.x; OCA, 2017, ORCH CONS ALL; Pearman D, 2004, BRIT WILDLIFE, V15, P174; Pedersen HAE, 2007, BEE ORCHIDS EUROPE; Pedersen Henrik Æ., 2018, Lankesteriana, V18, P1, DOI 10.15517/lank.v18i1.32587; Phillips RD, 2014, ANN BOT-LONDON, V113, P629, DOI 10.1093/aob/mct295; Pillon Y, 2006, BIOL CONSERV, V129, P4, DOI 10.1016/j.biocon.2005.06.036; Ramsey MM, 2003, ORCHID CONSERVATION, P259; Rasmussen HN, 2018, BOT J LINN SOC, V186, P456, DOI 10.1093/botlinnean/box085; Reiter N, 2017, BOT J LINN SOC, V184, P122; Ricciardi A, 2009, TRENDS ECOL EVOL, V24, P248, DOI 10.1016/j.tree.2008.12.006; Roberts DL, 2008, P R SOC B, V275, P987, DOI 10.1098/rspb.2007.1683; Roberts DL, 2003, ORCHID CONSERVATION, P113; Swarts ND, 2017, CONSERVATION METHODS; Swarts ND, 2009, TRENDS PLANT SCI, V14, P590, DOI 10.1016/j.tplants.2009.07.008; Swarts ND, 2009, ANN BOT-LONDON, V104, P543, DOI 10.1093/aob/mcp025; van der Niet T, 2011, ANN BOT-LONDON, V107, P981, DOI 10.1093/aob/mcr048; Van der Niet T, 2015, BOT J LINN SOC, V177, P141, DOI 10.1111/boj.12229; Veldman S, 2014, TRAFFIC B, V26, P47; Vogt-Schilb H, 2016, ANN BOT-LONDON, V118, P115, DOI 10.1093/aob/mcw070; Willis KJ., 2017, STATE WORLDS PLANTS; Yeung EC, 2017, BOT STUD, V58, DOI 10.1186/s40529-017-0188-4; Zettler LW, 2017, BOT STUD, V58, DOI 10.1186/s40529-017-0209-3 63 1 1 26 26 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1999-3110 BOT STUD Bot. Stud. JUN 5 2018 59 16 10.1186/s40529-018-0232-z 6 Plant Sciences Plant Sciences GI7YL WOS:000434718400001 29872972 DOAJ Gold 2018-11-22 J Jahn, AE; Guaraldo, AC Jahn, Alex E.; Guaraldo, Andre C. Do Fork-tailed Flycatchers (Tyrannus s. savana) stop to molt during fall migration? REVISTA BRASILEIRA DE ORNITOLOGIA English Article intra-tropical migration; Mato Grosso do Sul; post-reproductive; remiges FEATHER MOLT; MIGRANTS; AREAS Fork-tailed Flycatchers (Tyrannus s. savana) breed from central to southern South America, then migrate to northern South America, where they undergo a winter molt. However, exactly when this winter molt begins is not known. Previous research showed that some Fork-tailed Flycatchers stopover for an extended period in Mato Grosso do Sul in late January/early February, during fall migration. We hypothesized that these flycatchers are suspending fall migration to initiate flight feather molt, as do congeners in North America. In February 2016, we located a roost of > 100 migratory flycatchers in Mato Grosso do Sul state and captured two adults and two juveniles, one of which was an adult female that was symmetrically molting the first primary feather. This is the furthest south that this species has been found molting flight feathers and suggests that some Fork-tailed Flycatchers undertake fall molt-migration to Mato Grosso do Sul. Further research on the relationship between timing of molt and migration of this and other birds that migrate within South America will be essential to evaluate the evolution of their life history strategies, seasonal interactions, and limitations they face throughout the year. [Jahn, Alex E.] Univ Estadual Paulista, Dept Zool, Rio Claro, SP, Brazil; [Guaraldo, Andre C.] Univ Fed Parana, Dept Zool, Curitiba, Parana, Brazil; [Jahn, Alex E.] Natl Zool Pk, Smithsonian Conservat Biol Inst, Migratory Bird Ctr, Washington, DC 20008 USA Jahn, AE (reprint author), Univ Estadual Paulista, Dept Zool, Rio Claro, SP, Brazil.; Jahn, AE (reprint author), Natl Zool Pk, Smithsonian Conservat Biol Inst, Migratory Bird Ctr, Washington, DC 20008 USA. jahna@si.edu Fundacao de Amparo a Pesquisa do Estado de Sao Paulo [2012/17225-2]; CAPES Postdoctoral Fellowship (PNPD/CAPES) [1459754]; Optics for the Tropics; Ministerio do Meio Ambiente, Brazil [40221-1]; CEMAVE, Brazil [3819/1] We are grateful to an anonymous reviewer and the editors for helpful comments. We thank the owners and manager of Fazenda Ribalta for access to the property. This study was funded by the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (#2012/17225-2) to A.E.J., a CAPES Postdoctoral Fellowship (PNPD/CAPES #1459754) to A.C.G., and by Optics for the Tropics, and was conducted under authorization of the Ministerio do Meio Ambiente, Brazil (40221-1), and CEMAVE, Brazil (3819/1). All procedures were in accordance with standards of the Animal Use Ethics Commission at UNESP-Rio Claro, Brazil under permit 3/2014. Carlisle JD, 2005, AUK, V122, P1070, DOI 10.1642/0004-8038(2005)122[1070:MSAADI]2.0.CO;2; Echeverry-Galvis MA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0061106; Fitzpatrick J. W, 2004, HDB BIRDS WORLD, V9, P170; Jahn AE, 2016, REV BRAS ORNITOL, V24, P116; Jahn AE, 2016, J FIELD ORNITHOL, V87, P143, DOI 10.1111/jofo.12147; Jenni L, 1994, MOULT AGEING EUROPEA; Leu M, 2002, BIOL CONSERV, V106, P45, DOI 10.1016/S0006-3207(01)00228-2; Pyle P., 1997, IDENTIFICATION GUI 1; Ralph C. J, 1993, HDB FIELD METHODS MO 9 0 0 0 0 SOC BRASILEIRA ORNITOLOGIA VICOSA C/O ROMULO RIBON, MUSEU ZOOLOGIA JOAO MOOJEN, LADEIRA DOS OPERARIOS 54-204, VICOSA, MG 36570-000, BRAZIL 0103-5657 REV BRAS ORNITOL Rev. Bras. Ornitol. JUN 2018 26 2 149 150 2 Ornithology Zoology GZ6ZG WOS:000449622100008 2018-11-22 J Garcia, DAZ; Costa, ADA; de Almeida, FS; Bialetzki, A; Orsi, ML Zoccal Garcia, Diego Azevedo; Augusto Costa, Alexandro Derly; de Almeida, Fernanda Simoes; Bialetzki, Andrea; Orsi, Mario Luis Spatial distribution and habitat use by early fish stages in a dammed river basin, Southern Brazil REVISTA DE BIOLOGIA TROPICAL English Article conservation; ichthyoplankton; non-native species; migratory species; regulated rivers; South America; spawning sites UPPER PARANA RIVER; MATO-GROSSO; NEOTROPICAL RESERVOIRS; LARVAE ASSEMBLAGES; FUTURE CHALLENGES; BAIA RIVER; SUL STATE; DIVERSITY; PATTERNS; BIODIVERSITY Fish diversity loss is threatened by the construction of dams as they prevent the regular natural dispersal among populations. Thus, conservation of key riverine habitats for fish reproduction may be essential for the recruitment of new native species of fish. The present study aimed to identify key habitats for fish spawning and early development in the Paranapanema River basin, as well as to determine the taxonomic composition, reproductive and life-history strategy, and to report spatial distribution of eggs, larvae and juveniles. The importance of lagoons, tributaries, and sub-tributaries was evaluated in the Paranapanema River basin between October 2012 and March 2013. Eggs and larvae samples were collected at dawn and dusk with conical plankton nets (0.5 mm mesh size), whereas juveniles were captured during the day with seine and sieve (0.5 cm mesh size). A total of 547 eggs, 904 larvae and 1 228 juveniles were captured. We observed that 2 larvae and 288 juveniles of non-migratory species, parental care, and equilibrium life-history strategy; predominated in lagoons and tributaries. On the other hand, 13 larvae and 60 juveniles of short migratory distance. no parental care, and periodic life-history strategy predominated in sub-tributaries. The highest densities of eggs were recorded in tributaries and sub-tributaries (Tukey's test, P= 0.001 and P= 0.03, respectively), and the highest densities of larvae were recorded for lagoons and tributaries (P- 0.005 and P = 0.0001, respectively). Captures of eggs and larvae were higher at night; while the highest catches per unit effort of juveniles were recorded for tributaries and sub-tributaries. Fish species that adopt different life-history strategies can use diverse types of habitats during the early stages. Lagoons, tributaries and sub-tributaries of the Paranapanema River play different roles in the reproductive success of fish fauna in a heavily modified basin. The preservation of spawning and nursery areas trapped between reservoirs is necessary for Neotropical fish species recruitment and survival. [Zoccal Garcia, Diego Azevedo; Augusto Costa, Alexandro Derly] Univ Estadual Londrina, Programa Posgrad Ciacias Biol, Londrina, Parana, Brazil; [de Almeida, Fernanda Simoes] Univ Estadual Londrina, Lab Genet & Ecol Anim, Londrina, Parana, Brazil; [Bialetzki, Andrea] Univ Estadual Maringa, Lab Ecol Ictioplancton NUPELIA, Maringa, Parana, Brazil; [Zoccal Garcia, Diego Azevedo; Augusto Costa, Alexandro Derly; Orsi, Mario Luis] Univ Estadual Londrina, Lab Ecol Peixes & Invasoes Biol, Rodovia Celso Garcia Cid,PR 445,Km 380, BR-86057970 Londrina, Parana, Brazil Garcia, DAZ (reprint author), Univ Estadual Londrina, Programa Posgrad Ciacias Biol, Londrina, Parana, Brazil.; Garcia, DAZ (reprint author), Univ Estadual Londrina, Lab Ecol Peixes & Invasoes Biol, Rodovia Celso Garcia Cid,PR 445,Km 380, BR-86057970 Londrina, Parana, Brazil. diegoazgarcia@hotmail.com; alexandrouenp@gmail.com; fernandasa@uel.br; bialetzki@nupelia.uem.br; orsi@uel.br Duke Energy International Geracao Paranapanema [3224/2012] We thank Angela Silva-Souza, Alexander Claro-Garcia, Angelo Agostinho, Fernando Pelicice, and Oscar Shibatta for reading our manuscript and giving suggestions for its improvement, and to the latter by the identification of juvenile fish. Aparecido de Souza, Edson Santana, and the LEPIB co-workers provided help during fieldwork. The project "Avaliacao genetica molecular e biologica das principais areas de recrutamento nas porcoes media e baixa do rio Paranapanema com mecanismo de otimizacao dos programas de conservacao e recuperacao do estoque pesqueiro", funded by the Duke Energy International Geracao Paranapanema (Process No3224/2012). We thank the anonymous reviewers for their help to improve the manuscript. Abilhoa V., 2004, LIVRO VERMELHO ANIMA, P581; Agostinho AA, 2007, AQUAT ECOSYST HEALTH, V10, P174, DOI 10.1080/14634980701341719; Agostinho AA, 2008, BRAZ J BIOL, V68, P1119, DOI 10.1590/S1519-69842008000500019; Agostinho A. A., 1995, LIMNOLOGY BRAZIL, P59; Agostinho A. A., 2007, ECOLOGIA MANEJO RECU; Agostinho AA, 2004, REV FISH BIOL FISHER, V14, P11, DOI 10.1007/s11160-004-3551-y; Agostinho AA, 2000, BIODIVERSITY IN WETLANDS: ASSESSMENT, FUNCTION AND CONSERVATION, VOL 1, P89; Agostinho AA, 2016, FISH RES, V173, P26, DOI 10.1016/j.fishres.2015.04.006; Agostinho Angelo Antonio, 2003, P19; Araujo-Lima C. A. R. M., 2001, Brazilian Journal of Biology, V61, P357; Barzotto E, 2015, ZOOLOGIA-CURITIBA, V32, P270, DOI 10.1590/S1984-46702015000400002; Baumgartner G, 2004, ENVIRON BIOL FISH, V71, P115, DOI 10.1007/s10641-004-0098-z; Baumgartner Gilmar, 1997, Revista Brasileira de Zoologia, V14, P551; Bialetzki A, 2005, ENVIRON BIOL FISH, V73, P37, DOI 10.1007/s10641-004-3795-3; Bialetzki A, 2004, J PLANKTON RES, V26, P1327, DOI 10.1093/plankt/fbh123; Casatti L., 2003, Braz. J. Biol., V63, P213, DOI 10.1590/S1519-69842003000200006; Casatti L, 2009, HYDROBIOLOGIA, V632, P273, DOI 10.1007/s10750-009-9849-y; da Silva PS, 2015, RIVER RES APPL, V31, P313, DOI 10.1002/rra.2755; da Silva PA, 2012, NEOTROP ICHTHYOL, V10, P425, DOI 10.1590/S1679-62252012005000012; de Avila-Simas S, 2014, NEOTROP ICHTHYOL, V12, P611, DOI 10.1590/1982-0224-20130116; de Graaf GJ, 1999, FISHERIES MANAG ECOL, V6, P109, DOI 10.1046/j.1365-2400.1999.00124.x; dos Santos FB, 2015, ENVIRON BIOL FISH, V98, P1895, DOI 10.1007/s10641-015-0406-4; Ferrareze M, 2011, BRAZ J BIOL, V71, P807, DOI 10.1590/S1519-69842011000500002; Godoy M. P., 1975, PEIXES BRASIL SUBORD, V4; Gogola TM, 2013, ECOL FRESHW FISH, V22, P95, DOI 10.1111/eff.12007; Hoeinghaus DJ, 2009, CONSERV BIOL, V23, P1222, DOI 10.1111/j.1523-1739.2009.01248.x; Hoffmann Ana Cecília, 2005, Iheringia, Sér. Zool., V95, P319, DOI 10.1590/S0073-47212005000300012; Latini AO, 2004, FISHERIES MANAG ECOL, V11, P71, DOI 10.1046/j.1365-2400.2003.00372.x; Lima AC, 2016, HYDROBIOLOGIA, V763, P207, DOI 10.1007/s10750-015-2377-z; Makrakis MC, 2012, J FISH BIOL, V81, P866, DOI 10.1111/j.1095-8649.2012.03346.x; Makrakis MC, 2005, ENVIRON BIOL FISH, V72, P99, DOI 10.1007/s10641-004-6596-9; Melo A. J. S., 2010, RESERVATORIOS NORDES, P503; Melo J. R. B., 2009, RESERVATORIO PEIXE A, P121; Nakatani K., 2001, OVOS LARVAS PEIXES A; Neves MP, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0141651; Nilsson C, 2005, SCIENCE, V308, P405, DOI 10.1126/science.1107887; Nunn AD, 2012, REV FISH BIOL FISHER, V22, P377, DOI 10.1007/s11160-011-9240-8; Orsi M. L., 2010, ESTRATEGIAS REPRODUT; Ortega JCG, 2015, HYDROBIOLOGIA, V746, P147, DOI 10.1007/s10750-014-2025-z; Pelicice FM, 2015, FISH FISH, V16, P697, DOI 10.1111/faf.12089; Pelicice FM, 2009, BIOL INVASIONS, V11, P1789, DOI 10.1007/s10530-008-9358-3; PETERS RH, 1986, LIMNOL OCEANOGR, V31, P1143, DOI 10.4319/lo.1986.31.5.1143; Petesse ML, 2012, ECOL ENG, V48, P109, DOI 10.1016/j.ecoleng.2011.06.033; Poff NL, 2007, P NATL ACAD SCI USA, V104, P5732, DOI 10.1073/pnas.0609812104; Poff NL, 2002, BIOSCIENCE, V52, P659, DOI 10.1641/0006-3568(2002)052[0659:HDVAWI]2.0.CO;2; Pompeu PS, 2012, RIVER RES APPL, V28, P504, DOI 10.1002/rra.1557; Reynalte-Tataje D. A., 2008, RESERVATORIO ITA EST, P159; Reynalte-Tataje DA, 2012, NEOTROP ICHTHYOL, V10, P837, DOI 10.1590/S1679-62252012000400017; Reynalte-Tataje DA, 2012, ENVIRON BIOL FISH, V94, P403, DOI 10.1007/s10641-011-9955-3; Reynalte-Tataje DA, 2011, NEOTROP ICHTHYOL, V9, P427, DOI 10.1590/S1679-62252011005000017; Rosa R., 2008, LIVRO VERMELHO FAUNA, P8; Vitule JRS, 2009, FISH FISH, V10, P98, DOI 10.1111/j.1467-2979.2008.00312.x; Strayer DL, 2010, J N AM BENTHOL SOC, V29, P344, DOI 10.1899/08-171.1; Suzuki FM, 2013, APPL ECOL ENV RES, V11, P645, DOI 10.15666/aeer/1104_645659.; Tanaka S., 1973, FAO FISH TECH PAP, V122, P33; Teresa FB, 2015, NEOTROP ICHTHYOL, V13, P361, DOI 10.1590/1982-0224-20130229; Vazzoler AEAM, 1996, BIOL REPROD PEIXES T; Vianna N.C., 2008, Acta Limnologica Brasiliensia, V20, P139; Vorosmarty CJ, 2010, NATURE, V467, P555, DOI 10.1038/nature09440; Winemiller KO, 1995, B FR PECHE PISCIC, P23, DOI 10.1051/kmae:1995007; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; Ziober S. R., 2007, ACTA LIMNOL BRAS, V19, P369 62 0 0 3 3 REVISTA DE BIOLOGIA TROPICAL SAN JOSE UNIVERSIDAD DE COSTA RICA CIUDAD UNIVERSITARIA, SAN JOSE, 00000, COSTA RICA 0034-7744 2215-2075 REV BIOL TROP Rev. Biol. Trop. JUN 2018 66 2 605 621 17 Biology Life Sciences & Biomedicine - Other Topics GM9WD WOS:000438605300009 DOAJ Gold 2018-11-22 J Salguero-Gomez, R; Violle, C; Gimenez, O; Childs, D Salguero-Gomez, Roberto; Violle, Cyrille; Gimenez, Olivier; Childs, Dylan Delivering the promises of trait-based approaches to the needs of demographic approaches, and vice versa FUNCTIONAL ECOLOGY English Editorial Material fast-slow continuum; fitness; functional trait; leaf economics spectrum; life-history trait; macroecology; selection gradient; vital rate FAST-SLOW CONTINUUM; INTEGRAL PROJECTION MODELS; PLANT FUNCTIONAL TRAITS; LIFE-HISTORY VARIATION; ECONOMICS SPECTRUM; INTRASPECIFIC VARIABILITY; GOOD PREDICTORS; COMMUNITY ECOLOGY; EUROPEAN FLORA; R PACKAGE 1. Few facets of biology vary more than functional traits and life-history traits. To explore this vast variation, functional ecologists and population ecologists have developed independent approaches that identify the mechanisms behind and consequences of trait variation. 2. Collaborative research between researchers using trait-based and demographic approaches remains scarce. We argue that this is a missed opportunity, as the strengths of both approaches could help boost the research agendas of functional ecology and population ecology. 3. This special feature, which spans three journals of the British Ecological Society due to its interdisciplinary nature, showcases state-of-the-art research applying trait-based and demographic approaches to examine relationships between organismal function, life history strategies and population performance across multiple kingdoms. Examples include the exploration of how functional trait x environment interactions affect vital rates and thus explain population trends and species occurrence; the coordination of seed traits and dispersal ability with the pace of life in plants; the incorporation of functional traits in dynamic energy budget models; or the discovery of linkages between microbial functional traits and the fast-slow continuum. 4. Despite their historical isolation, collaborative work between functional ecologists and population ecologists could unlock novel research pathways. We call for an integrative research agenda to evaluate which and when traits are functional, as well as their ability to describe and predict life history strategies and population dynamics. We highlight promising, complementary research avenues to overcome current limitations. These include a more explicit linkage of selection gradients in the context of functional trait-vital rate relationships, and the implementation of standardised protocols to track changes in traits and vital rates over time at the same location and individuals, thus allowing for the explicit incorporation of trade-offs in analyses of covariation of functional traits and life-history traits. [Salguero-Gomez, Roberto] Univ Oxford, Dept Zool, Oxford, England; [Salguero-Gomez, Roberto] Max Planck Inst Demog Res, Evolutionary Biodemog Lab, Rostock, Germany; [Salguero-Gomez, Roberto] Univ Queensland, Ctr Biodivers & Conservat Sci, St Lucia, Qld, Australia; [Violle, Cyrille; Gimenez, Olivier] Univ Paul Valery Montpellier 3, Univ Montpellier, CEFE, CNRS,EPHE,IRD, Montpellier, France; [Childs, Dylan] Univ Sheffield, Dept Anim & Plant Sci, Sheffield, S Yorkshire, England Salguero-Gomez, R (reprint author), Univ Oxford, Dept Zool, Radcliffe Observ Quarter, New Radcliffe House, Oxford OX2 6GG, England. rob.salguero@zoo.ox.ac.uk Childs, Dylan/0000-0002-0675-4933 Natural Environment Research Council [NERC IRF R/142195-11-1]; European Research Council [ERC-StG-2014-639706-CONSTRAINTS]; Agence Nationale de la Recherche [ANR-17-CE02-0018-01, ANR-16-CE02-0007]; Groupement de Recherche International "Dynamique de la biodiversite et traits d'histoire de vie" [GDRI BFC 44745] Natural Environment Research Council, Grant/Award Number: NERC IRF R/142195-11-1; European Research Council, Grant/Award Number: ERC-StG-2014-639706-CONSTRAINTS; Agence Nationale de la Recherche, Grant/Award Number: ANR-17-CE02-0018-01 and ANR-16-CE02-0007; Groupement de Recherche International "Dynamique de la biodiversite et traits d'histoire de vie", Grant/Award Number: GDRI BFC 44745 Adler PB, 2014, P NATL ACAD SCI USA, V111, P740, DOI 10.1073/pnas.1315179111; Adler PB, 2013, ECOL LETT, V16, P1294, DOI 10.1111/ele.12157; Adler PB, 2010, ECOL LETT, V13, P1019, DOI 10.1111/j.1461-0248.2010.01496.x; Albert CH, 2011, PERSPECT PLANT ECOL, V13, P217, DOI 10.1016/j.ppees.2011.04.003; Barks P., 2018, J ECOL, DOI [10. 1111/1365-2745. 12937, DOI 10.1111/1365-2745.12937]; Beckman NG, 2018, J ECOL, V106, P1349, DOI 10.1111/1365-2745.12989; Beissinger SR, 2015, BIOSCIENCE, V65, P121, DOI 10.1093/biosci/biu212; Bertelsmeier C, 2017, FUNCT ECOL, V31, P556, DOI 10.1111/1365-2435.12812; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Blonder B, 2018, J ECOL, V106, P1323, DOI 10.1111/1365-2745.12973; Blonder B, 2018, METHODS ECOL EVOL, V9, P305, DOI 10.1111/2041-210X.12865; Bogdziewicz M, 2018, NEW PHYTOL, V219, P98, DOI 10.1111/nph.15108; Bolnick DI, 2011, TRENDS ECOL EVOL, V26, P183, DOI 10.1016/j.tree.2011.01.009; Brousseau PM, 2018, J ANIM ECOL, V87, P1209, DOI 10.1111/1365-2656.12834; Brown J. H., 1995, MACROECOLOGY; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Calow P, 1987, FUNCT ECOL, V1, P57, DOI 10.2307/2389358; Caswell H, 2001, MATRIX POPULATION MO; Caswell H, 2013, J ECOL, V101, P585, DOI 10.1111/1365-2745.12088; Chagnon PL, 2013, TRENDS PLANT SCI, V18, P484, DOI 10.1016/j.tplants.2013.05.001; Chave J, 2009, ECOL LETT, V12, P351, DOI 10.1111/j.1461-0248.2009.01285.x; Cohen AA, 2012, TRENDS ECOL EVOL, V27, P428, DOI 10.1016/j.tree.2012.04.008; Conde DA, 2011, SCIENCE, V331, P1390, DOI 10.1126/science.1200674; Cornelissen JHC, 2003, AUST J BOT, V51, P335, DOI 10.1071/BT02124; Coutts SR, 2016, ECOL LETT, V19, P1429, DOI 10.1111/ele.12691; DEKROON H, 1986, ECOLOGY, V67, P1427, DOI 10.2307/1938700; Deroski S., 2008, ENCY ECOLOGY, P821, DOI [10. 1016/B978-008045405-4. 00153-1, DOI 10.1016/B978-008045405-4.00153-1]; Diaz S, 1997, J VEG SCI, V8, P463, DOI 10.2307/3237198; Diaz S, 2016, NATURE, V529, P167, DOI 10.1038/nature16489; Donovan LA, 2011, TRENDS ECOL EVOL, V26, P88, DOI 10.1016/j.tree.2010.11.011; DUNHAM AE, 1985, AM NAT, V126, P231, DOI 10.1086/284411; EBERT TA, 1999, PLANT ANIMAL POPULAT; Ellers J, 2018, J ANIM ECOL, V87, P933, DOI 10.1111/1365-2656.12838; Ellner S. P., 2016, DATA DRIVEN MODELLIN, DOI [10. 1007/978-3-319-28893-2, DOI 10.1007/978-3-319-28893-2]; ELLSWORTH DS, 1992, FUNCT ECOL, V6, P423, DOI 10.2307/2389280; Enquist BJ, 2015, ADV ECOL RES, V52, P249, DOI 10.1016/bs.aecr.2015.02.001; Evans MEK, 2016, TRENDS ECOL EVOL, V31, P860, DOI 10.1016/j.tree.2016.08.005; Flores O, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0105022; Froese R., 2014, ECOSYSTEM APPROACHES, P47; Funk JL, 2017, BIOL REV, V92, P1156, DOI 10.1111/brv.12275; Gaillard JM, 2005, AM NAT, V166, P119, DOI 10.1086/430330; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; Garnier E, 2004, ECOLOGY, V85, P2630, DOI 10.1890/03-0799; Garnier E., 2015, PLANT FUNCTIONAL DIV, DOI [10. 1093/acprof:oso/9780198757368. 001. 0001, DOI 10.1093/ACPROF:OSO/9780198757368.001.0001]; Garnier E, 2018, J ECOL, V106, P1363, DOI 10.1111/1365-2745.12996; Ghedini G, 2018, FUNCT ECOL, V32, P1447, DOI 10.1111/1365-2435.13103; Gibson D. J., 2014, METHODS COMP PLANT P, DOI [10. 1093/acprof:oso/9780199671465. 001. 0001, DOI 10.1093/ACPROF:OSO/9780199671465.001.0001]; Gimenez O, 2018, OIKOS, V127, P664, DOI 10.1111/oik.04532; Gonzalez EJ, 2016, METHODS ECOL EVOL, V7, P147, DOI 10.1111/2041-210X.12519; Griffith AB, 2016, J ECOL, V104, P271, DOI 10.1111/1365-2745.12547; Grime J. P., 2012, EVOLUTIONARY STRATEG, DOI [10. 1002/9781118223246, DOI 10.1002/9781118223246]; Gross N, 2017, NAT ECOL EVOL, V1, DOI 10.1038/s41559-017-0132; Harper J L., 1977, POPULATION BIOL PLAN; HARPER JOHN L., 1964, J ECOL, V52, P149; Hart SP, 2009, ECOLOGY, V90, P1670, DOI 10.1890/08-1745.1; Heppell S, 2000, ECOLOGY, V81, P605, DOI 10.1890/0012-9658(2000)081[0605:EAIPBM]2.0.CO;2; Hughes PW, 2017, ECOL EVOL, V7, P8232, DOI 10.1002/ece3.3341; Irwin A. J., 2017, BIORXIV, DOI [10. 1101/148312, DOI 10.1101/148312]; Iversen CM, 2017, NEW PHYTOL, V215, P15, DOI 10.1111/nph.14486; Jenouvrier S, 2018, J ANIM ECOL, V87, P906, DOI 10.1111/1365-2656.12827; Jones Kate E., 2009, Ecology (Washington D C), V90, P2648, DOI 10.1890/08-1494.1; Jones OR, 2014, NATURE, V505, P169, DOI 10.1038/nature12789; Jung V, 2010, J ECOL, V98, P1134, DOI 10.1111/j.1365-2745.2010.01687.x; Kattge J, 2011, GLOBAL CHANGE BIOL, V17, P2905, DOI 10.1111/j.1365-2486.2011.02451.x; KEDDY PA, 1992, FUNCT ECOL, V6, P621, DOI 10.2307/2389954; Klimesova J, 2017, ECOLOGY, V98, P1179, DOI 10.1002/ecy.1745; Knevel IC, 2003, J VEG SCI, V14, P611, DOI 10.1658/1100-9233(2003)014[0611:LTOTNE]2.0.CO;2; Kooijman SALM, 2007, BIOL REV, V82, P113, DOI 10.1111/j.1469-185X.2006.00006.x; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Kraft NJB, 2008, SCIENCE, V322, P580, DOI 10.1126/science.1160662; Kraft NJB, 2015, P NATL ACAD SCI USA, V112, P797, DOI 10.1073/pnas.1413650112; Kuebbing SE, 2018, ECOL MONOGR, V88, P245, DOI 10.1002/ecm.1289; Kuhn I, 2004, DIVERS DISTRIB, V10, P363, DOI 10.1111/j.1366-9516.2004.00106.x; KURTA A, 1991, OECOLOGIA, V87, P102, DOI 10.1007/BF00323786; Laliberte E, 2017, NEW PHYTOL, V213, P1597, DOI 10.1111/nph.14247; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Laughlin DC, 2018, ECOL LETT, V21, P411, DOI 10.1111/ele.12914; Lavorel S, 2002, FUNCT ECOL, V16, P545, DOI 10.1046/j.1365-2435.2002.00664.x; Lavorel S, 2013, J ECOL, V101, P4, DOI 10.1111/1365-2745.12031; Leibman L, 2018, FUNCT ECOL, V32, P1457, DOI 10.1111/1365-2435.13093; Lemaitre JF, 2018, J ANIM ECOL, V87, P921, DOI 10.1111/1365-2656.12833; Madin JS, 2016, SCI DATA, V3, DOI 10.1038/sdata.2016.17; Madin JS, 2016, TRENDS ECOL EVOL, V31, P419, DOI 10.1016/j.tree.2016.02.012; Maitner BS, 2018, METHODS ECOL EVOL, V9, P373, DOI 10.1111/2041-210X.12861; Marshall DJ, 2018, FUNCT ECOL, V32, P1436, DOI 10.1111/1365-2435.13099; Martinez-Garza C, 2013, FOREST ECOL MANAG, V303, P35, DOI 10.1016/j.foreco.2013.03.046; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; Silva MAM, 2017, BRAZ J BOT, V40, P761, DOI 10.1007/s40415-017-0389-9; Messier J, 2010, ECOL LETT, V13, P838, DOI 10.1111/j.1461-0248.2010.01476.x; Metcalf CJE, 2013, METHODS ECOL EVOL, V4, P195, DOI 10.1111/2041-210x.12001; Moles AT, 2018, J ECOL, V106, P1, DOI 10.1111/1365-2745.12887; Moretti M, 2017, FUNCT ECOL, V31, P558, DOI 10.1111/1365-2435.12776; Morris W.F., 2002, QUANTITATIVE CONSERV; Myhrvold N. P., 2015, ECOLOGY, V96, P3109, DOI DOI 10.1890/15-0846R.1); Negret B. E. S., 2016, ECOLOGIA FUNCIONAL C; NERC Centre for Population Biology, 2003, GLOB POP DYN DAT; Perez-Harguindeguy N., 2013, AUSTR J BOT, V64, P715; Poorter L, 2008, ECOLOGY, V89, P1908, DOI 10.1890/07-0207.1; Poorter L, 2006, ECOLOGY, V87, P1733, DOI 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2; PREGITZER KS, 1993, NEW PHYTOL, V125, P575, DOI 10.1111/j.1469-8137.1993.tb03905.x; Ramula S, 2009, J APPL ECOL, V46, P1048, DOI 10.1111/j.1365-2664.2009.01706.x; Razafindratsima OH, 2018, ECOLOGY, V99, P990, DOI 10.1002/ecy.2167; Reich PB, 2014, J ECOL, V102, P275, DOI 10.1111/1365-2745.12211; Renner SC, 2017, DATA, V2, DOI 10.3390/data2020012; Ricotta C, 2011, OECOLOGIA, V167, P181, DOI 10.1007/s00442-011-1965-5; Roff D. A., 2002, LIFE HIST EVOLUTION; Ronce O, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P119; Roumet C, 2016, NEW PHYTOL, V210, P815, DOI 10.1111/nph.13828; RUBNER M, 1908, PROBLEM LEBENSDAUR S; Ruger N, 2018, ECOL LETT, V21, P1075, DOI 10.1111/ele.12974; SAETHER BE, 1987, OIKOS, V48, P79, DOI 10.2307/3565691; Salguero-Gomez R., 2018, THE STRATEGO NETWORK; Salguero-Gomez R, 2017, NEW PHYTOL, V213, P1618, DOI 10.1111/nph.14289; Salguero-Gomez R, 2016, J ANIM ECOL, V85, P371, DOI 10.1111/1365-2656.12482; Salguero-Gomez R, 2016, P NATL ACAD SCI USA, V113, P230, DOI 10.1073/pnas.1506215112; Salguero-Gomez R, 2015, J ECOL, V103, P202, DOI 10.1111/1365-2745.12334; Santini L, 2018, GLOBAL ECOL BIOGEOGR, V27, P787, DOI 10.1111/geb.12756; SARUKHAN J, 1973, J ECOL, V61, P675, DOI 10.2307/2258643; Shefferson R. P., 2017, EVOLUTION SENESCENCE, DOI [10. 1017/9781139939867, DOI 10.1017/9781139939867]; Shipley B, 2006, SCIENCE, V314, P812, DOI 10.1126/science.1131344; Shipley B, 2016, OECOLOGIA, V180, P923, DOI 10.1007/s00442-016-3549-x; Silberbush M, 2013, PLANT ROOTS: THE HIDDEN HALF, 4TH EDITION; SILVERTOWN J, 1992, FUNCT ECOL, V6, P130, DOI 10.2307/2389746; Silvertown J, 1996, CONSERV BIOL, V10, P591, DOI 10.1046/j.1523-1739.1996.10020591.x; Smallegange IM, 2018, J ANIM ECOL, V87, P893, DOI 10.1111/1365-2656.12802; Stearns S., 1992, EVOLUTION LIFE HIST; Stearns S. C., 1982, EVOL DEV, P237, DOI DOI 10.1007/978-3-642-45532-2; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Strier KB, 2010, METHODS ECOL EVOL, V1, P199, DOI 10.1111/j.2041-210X.2010.00023.x; Sutherland WJ, 2013, J ECOL, V101, P58, DOI 10.1111/1365-2745.12025; Tamme R, 2014, ECOLOGY, V95, P505, DOI 10.1890/13-1000.1; Taudiere A, 2016, ECOGRAPHY, V39, P699, DOI 10.1111/ecog.01433; Teller BJ, 2016, METHODS ECOL EVOL, V7, P171, DOI 10.1111/2041-210X.12486; Tuljapurkar S., 1997, STRUCTURED POPULATIO, DOI [10. 1007/978-1-4615-5973-3, DOI 10.1007/978-1-4615-5973-3]; van der Meer J, 2006, TRENDS ECOL EVOL, V21, P136, DOI 10.1016/j.tree.2005.11.004; van Tienderen PH, 2000, ECOLOGY, V81, P666, DOI 10.2307/177368; Vasseur F, 2018, P NATL ACAD SCI USA, V115, P3416, DOI 10.1073/pnas.1709141115; Vindenes Y, 2008, AM NAT, V171, P455, DOI 10.1086/528965; Violle C, 2007, OIKOS, V116, P882, DOI 10.1111/j.2007.0030-1299.15559.x; Violle C, 2017, TRENDS ECOL EVOL, V32, P356, DOI 10.1016/j.tree.2017.02.002; Violle C, 2014, P NATL ACAD SCI USA, V111, P13690, DOI 10.1073/pnas.1415442111; Violle C, 2012, TRENDS ECOL EVOL, V27, P244, DOI 10.1016/j.tree.2011.11.014; Violle C, 2009, J PLANT ECOL-UK, V2, P87, DOI 10.1093/jpe/rtp007; Visser MD, 2016, FUNCT ECOL, V30, P168, DOI 10.1111/1365-2435.12621; Wang H, 2018, ECOLOGY, V99, P500, DOI 10.1002/ecy.2091; Wenk EH, 2018, J ECOL, V106, P1338, DOI 10.1111/1365-2745.12974; Wenk EH, 2015, ECOL EVOL, V5, P5521, DOI 10.1002/ece3.1802; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Wuest RO, 2018, OIKOS, V127, P472, DOI 10.1111/oik.04420; Yang J, 2018, TRENDS ECOL EVOL, V33, P326, DOI 10.1016/j.tree.2018.03.003 150 0 0 32 32 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. JUN 2018 32 6 1424 1435 10.1111/1365-2435.13148 12 Ecology Environmental Sciences & Ecology GJ5SL WOS:000435442500001 30034074 Other Gold, Green Published 2018-11-22 J Bubac, CM; Coltman, DW; Bowen, WD; Lidgard, DC; Lang, SLC; den Heyer, CE Bubac, Christine M.; Coltman, David W.; Bowen, W. Don; Lidgard, Damian C.; Lang, Shelley L. C.; den Heyer, Cornelia E. Repeatability and reproductive consequences of boldness in female gray seals BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article Boldness; Animal personality; Life history; Gray seal; Pinniped; Halichoerus grypus NORTHERN ELEPHANT SEAL; MIXED-EFFECTS MODELS; HALICHOERUS-GRYPUS; GREY SEALS; ANIMAL PERSONALITY; LIFE-HISTORY; INDIVIDUAL-DIFFERENCES; POSTWEANING FAST; SABLE ISLAND; BODY-SIZE Wild animals show consistent individual variation in behavior across time and/or contexts, now referred to as animal personality. While this variability may have important ecological and evolutionary implications, how and why variation in animal personality is maintained in a natural population remains unclear. In this study, we assessed the influence of environmental and biological sources of variation on behavioral responses measured along the shy-bold continuum in a long-lived, iteroparous marine mammal, the gray seal (Halichoerus grypus). Between 2008 and 2016, 469 females from the Sable Island, Nova Scotia breeding colony of gray seals were given a boldness score in response to a human approach, designed to stimulate maternal defense of offspring. Using generalized linear mixed-effects models (GLMM) in a Bayesian framework, we show that boldness is highly repeatable between and within years. There were age differences in boldness, with younger females being less bold than older, more experienced females providing some support for the life history trade-off hypothesis. We further used GLMMs to assess sources of variation on offspring weaning mass. We found that young females that were bolder produced heavier pups than shyer counterparts, and that pups produced by bolder females were on average 2 kg heavier than pups of shy females. These results provide further evidence that personality influences life history strategies, and illustrates the evolutionary potential of animal personality in response to selection. Consistent individual differences in behavior influence various aspects of ecology including species interactions, species distributions, and life history strategies. However, how and why this individual variation is maintained in a natural population remains uncertain. In this study, we assessed the influence of boldness, specifically maternal defense of offspring, on a component of reproductive success in a long-lived marine mammal. We showed highly repeatable behavioral differences, and found that boldness varied with age, with younger individuals being less bold than older individuals. Younger individuals that were bolder produced heavier offspring than shyer counterparts. Our study contributes to an under-represented group of animals, wild marine mammals, in the personality literature, and further prompts the investigation into the proximate and ultimate factors influencing personality in an ecologically important marine predator. [Bubac, Christine M.; Coltman, David W.] Univ Alberta, Dept Biol Sci, Edmonton, AB, Canada; [Bowen, W. Don; Lang, Shelley L. C.; den Heyer, Cornelia E.] Bedford Inst Oceanog, Populat Ecol Div, Dartmouth, NS, Canada; [Bowen, W. Don; Lidgard, Damian C.] Dalhousie Univ, Biol Dept, Halifax, NS, Canada Bubac, CM (reprint author), Univ Alberta, Dept Biol Sci, Edmonton, AB, Canada. bubac@ualberta.ca Department of Fisheries and Oceans, Canada from the Natural Sciences and Engineering Research Council of Canada [NETGP 375118-08, 36762-2012, 146522]; Alberta Innovates Technology Futures This work was supported by the Department of Fisheries and Oceans, Canada, a Research Network Grant (NETGP 375118-08), Discovery Grants to WDB (grant number 36762-2012), and to DWC (grant number 146522) from the Natural Sciences and Engineering Research Council of Canada. CMB has been funded by scholarship from Alberta Innovates Technology Futures. Ambs SM, 1999, ANIM BEHAV, V58, P527, DOI 10.1006/anbe.1999.1201; BAKER JR, 1984, J ZOOL, V203, P23; Bates D, 2015, J STAT SOFTW, V67, P1; Beekman M, 2017, BEHAV ECOL, V28, P617, DOI 10.1093/beheco/arx022; Bell AM, 2009, ANIM BEHAV, V77, P771, DOI 10.1016/j.anbehav.2008.12.022; Bergmuller R, 2010, TRENDS ECOL EVOL, V25, P504, DOI 10.1016/j.tree.2010.06.012; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Bishop AM, 2016, AQUAT MAMM, V42, P137, DOI 10.1578/AM.42.2.2016.137; BOAKE CRB, 1989, EVOL ECOL, V3, P173, DOI 10.1007/BF02270919; BONESS DJ, 1979, J ZOOL, V188, P477, DOI 10.1111/j.1469-7998.1979.tb03430.x; BONESS DJ, 1995, BEHAV ECOL SOCIOBIOL, V36, P1; BONESS DJ, 1982, CAN J ZOOL, V60, P2270, DOI 10.1139/z82-293; Bowen WD, 2007, MAR MAMMAL SCI, V23, P48, DOI 10.1111/j.1748-7692.2006.00085.x; Bowen WD, 2003, ICES J MAR SCI, V60, P1265, DOI 10.1016/S1054-3139(03)00147-4; Bowen WD, 2015, ECOL EVOL, V5, P1412, DOI 10.1002/ece3.1450; Breed GA, 2009, ECOLOGY, V90, P3209, DOI 10.1890/07-1483.1; Bridger D, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2492; Brown C, 2007, J FISH BIOL, V71, P1590, DOI 10.1111/j.1095-8649.2007.01627.x; Campioni L, 2016, J ZOOL, V298, P191, DOI 10.1111/jzo.12301; Carere C, 2011, CURR ZOOL, V57, P491, DOI 10.1093/czoolo/57.4.491; Carter AJ, 2013, BIOL REV, V88, P465, DOI 10.1111/brv.12007; Carter AJ, 2012, ANIM BEHAV, V83, P1051, DOI 10.1016/j.anbehav.2012.01.033; Catling P. M., 1984, Proceedings of the Nova Scotian Institute of Science, V34, P181; Christensen R. H. B., 2015, ORDINAL REGRESSION M; CHRISTENSON TE, 1978, BEHAVIOUR, V64, P158, DOI 10.1163/156853978X00495; COULSON JC, 1964, J ANIM ECOL, V33, P485, DOI 10.2307/2568; Dall SRX, 2004, ECOL LETT, V7, P734, DOI 10.1111/j.1461-0248.2004.00618.x; de Villemereuil P., 2013, METHODS ECOLOGY EVOL, V4, P260, DOI DOI 10.1111/2041-210X.12011; Delgado MD, 2008, AM NAT, V172, P475, DOI 10.1086/590964; Dingemanse NJ, 2005, BEHAVIOUR, V142, P1159, DOI 10.1163/156853905774539445; Dingemanse NJ, 2004, BEHAV ECOL, V15, P1023, DOI 10.1093/beheco/arh115; Dohm MR, 2002, FUNCT ECOL, V16, P273; Gosling SD, 2001, PSYCHOL BULL, V127, P45, DOI 10.1037/0033-2909.127.1.45; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hall AJ, 2001, J ANIM ECOL, V70, P138; Hammill MO, 2014, 2014037 DEP FISH OC; HARCOURT R, 1992, CAN J ZOOL, V70, P320, DOI 10.1139/z92-048; IVERSON SJ, 1993, PHYSIOL ZOOL, V66, P61, DOI 10.1086/physzool.66.1.30158287; Jungwirth A, 2017, BEHAV ECOL, V28, P629, DOI 10.1093/beheco/arx048; KOVACS KM, 1987, J ZOOL, V213, P697, DOI 10.1111/j.1469-7998.1987.tb03735.x; Lang SLC, 2009, ECOLOGY, V90, P2513, DOI 10.1890/08-1386.1; Lidgard DC, 2012, CAN J ZOOL, V90, P849, DOI 10.1139/Z2012-053; Lidgard DC, 2005, BEHAV ECOL, V16, P541, DOI 10.1093/beheco/ari023; Maillet Z, 2015, J ETHOL, V33, P47, DOI 10.1007/s10164-014-0416-2; Mansfield AW, 1977, TECH REPT FISH MAR S, V706, P1; Mayer M, 2016, BEHAVIOUR, V153, P313, DOI 10.1163/1568539X-00003343; Mellish JAE, 1999, PHYSIOL BIOCHEM ZOOL, V72, P677, DOI 10.1086/316708; Nakagawa S, 2013, METHODS ECOL EVOL, V4, P133, DOI 10.1111/j.2041-210x.2012.00261.x; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Noren DP, 2003, J COMP PHYSIOL B, V173, P443, DOI 10.1007/s00360-003-0353-9; Noren SR, 2008, PHYSIOL BIOCHEM ZOOL, V81, P269, DOI 10.1086/528777; Patrick SC, 2013, ECOL EVOL, V3, P4291, DOI 10.1002/ece3.748; Patrick SC, 2014, P ROY SOC LOND B BIO, V282; Pomeroy PP, 1999, J ANIM ECOL, V68, P235, DOI 10.1046/j.1365-2656.1999.00281.x; POMEROY PP, 1994, J ZOOL, V233, P429, DOI 10.1111/j.1469-7998.1994.tb05275.x; R Core Team, 2016, R LANG ENV STAT COMP; Reale D, 2000, ANIM BEHAV, V60, P589, DOI 10.1006/anbe.2000.1530; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Schuett W, 2010, BIOL REV, V85, P217, DOI 10.1111/j.1469-185X.2009.00101.x; Sih A, 2004, Q REV BIOL, V79, P241, DOI 10.1086/422893; Sih A, 2017, BEHAV ECOL, V28, P627, DOI 10.1093/beheco/arx032; Smith BR, 2008, BEHAV ECOL, V19, P448, DOI 10.1093/beheco/arm144; Stamps JA, 2012, ANIM BEHAV, V83, P1325, DOI 10.1016/j.anbehav.2012.02.017; Stamps JA, 2010, PHILOS T R SOC B, V365, P4029, DOI 10.1098/rstb.2010.0218; Turbill C, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0012019; Twiss SD, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049598; Twiss SD, 2010, AQUAT MAMM, V36, P234, DOI 10.1578/AM.36.3.2010.234; Weitzman J, 2017, OECOLOGIA, V183, P367, DOI 10.1007/s00442-016-3764-5; Wilson ADM, 2012, BEHAV ECOL, V23, P1316, DOI 10.1093/beheco/ars123; Wilson DS, 1998, PHILOS T ROY SOC B, V353, P199, DOI 10.1098/rstb.1998.0202; WILSON DS, 1994, TRENDS ECOL EVOL, V9, P442, DOI 10.1016/0169-5347(94)90134-1; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wolf M, 2012, TRENDS ECOL EVOL, V27, P452, DOI 10.1016/j.tree.2012.05.001; WORTHY GAJ, 1987, PHYSIOL ZOOL, V60, P352, DOI 10.1086/physzool.60.3.30162289 74 0 0 12 12 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. JUN 2018 72 6 UNSP 100 10.1007/s00265-018-2515-5 12 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology GI0SF WOS:000434079000001 2018-11-22 J Moon, JW; Krems, JA; Cohen, AB Moon, Jordan W.; Krems, Jaimie Arona; Cohen, Adam B. Religious People Are Trusted Because They Are Viewed as Slow Life-History Strategists PSYCHOLOGICAL SCIENCE English Article evolutionary psychology; religious beliefs; religion; life-history theory; trust; open data; open materials PREJUDICE; PERSPECTIVE; COGNITION; DISCOUNT; GODS Religious people are more trusted than nonreligious people. Although most theorists attribute these perceptions to the beliefs of religious targets, religious individuals also differ in behavioral ways that might cue trust. We examined whether perceivers might trust religious targets more because they heuristically associate religion with slow life-history strategies. In three experiments, we found that religious targets are viewed as slow life-history strategists and that these findings are not the result of a universally positive halo effect; that the effect of target religion on trust is significantly mediated by the target's life-history traits (i.e., perceived reproductive strategy); and that when perceivers have direct information about a target's reproductive strategy, their ratings of trust are driven primarily by his or her reproductive strategy, rather than religion. These effects operate over and above targets' belief in moralizing gods and offer a novel theoretical perspective on religion and trust. [Moon, Jordan W.; Krems, Jaimie Arona; Cohen, Adam B.] Arizona State Univ, Dept Psychol, 950 S McAllister Ave, Tempe, AZ 85287 USA Moon, JW (reprint author), Arizona State Univ, Dept Psychol, 950 S McAllister Ave, Tempe, AZ 85287 USA. jordan.w.moon@asu.edu Moon, Jordan/0000-0001-5102-3585; Krems, Jaimie Arona/0000-0002-2590-2241 Air Force Office of Scientific Research [FA9550-15-1-0008]; Psi Chi graduate research grant This research was supported by the Air Force Office of Scientific Research (Grant No. FA9550-15-1-0008) and a Psi Chi graduate research grant awarded to J.W. Moon. Baumard N, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.1593; Carter EC, 2012, EVOL HUM BEHAV, V33, P224, DOI 10.1016/j.evolhumbehav.2011.09.006; Cohen AB, 2006, J PERS, V74, P85, DOI 10.1111/j.1467-6494.2005.000370.x; Cohen AB, 2017, NAT HUM BEHAV, V1, DOI 10.1038/s41562-017-0157; Cottrell CA, 2005, J PERS SOC PSYCHOL, V88, P770, DOI 10.1037/0022-3514.88.5.770; Cottrell CA, 2007, J PERS SOC PSYCHOL, V92, P208, DOI 10.1037/0022-3514.92.2.208; Curry OS, 2008, PERS INDIV DIFFER, V44, P780, DOI 10.1016/j.paid.2007.09.023; Del Giudice M, 2015, HDB EVOLUTIONARY PSY, P88, DOI DOI 10.1002/9781119125563.EVPSYCH102; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Frankenhuis WE, 2016, CURR OPIN PSYCHOL, V7, P76, DOI 10.1016/j.copsyc.2015.08.011; Gervais WM, 2017, NAT HUM BEHAV, V1, DOI 10.1038/s41562-017-0151; Gervais WM, 2011, J PERS SOC PSYCHOL, V101, P1189, DOI 10.1037/a0025882; Gladden P., 2009, J EVOLUTIONARY PSYCH, V7, P167, DOI DOI 10.1556/JEP.7.2009.2.5; Hall DL, 2015, PSYCHOL SCI, V26, P1368, DOI 10.1177/0956797615576473; Hayes A. F., 2013, INTRO MEDIATION MODE; Hayes AF, 2014, BRIT J MATH STAT PSY, V67, P451, DOI 10.1111/bmsp.12028; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; LANDOLT MA, 1995, ETHOL SOCIOBIOL, V16, P3, DOI 10.1016/0162-3095(94)00012-V; Litman L, 2017, BEHAV RES METHODS, V49, P433, DOI 10.3758/s13428-016-0727-z; McCullough ME, 2016, PSYCHOL RELIG SPIRIT, V8, P149, DOI 10.1037/rel0000045; McCullough ME, 2009, PSYCHOL BULL, V135, P69, DOI 10.1037/a0014213; Neel R, 2013, PSYCHOL SCI, V24, P678, DOI 10.1177/0956797612458807; Norenzayan A, 2016, BEHAV BRAIN SCI, V39, DOI 10.1017/S0140525X14001356; Penke L, 2008, J PERS SOC PSYCHOL, V95, P1113, DOI 10.1037/0022-3514.95.5.1113; Petersen MB, 2015, PSYCHOL SCI, V26, P1681, DOI 10.1177/0956797615595622; Pirlott AG, 2016, J EXP SOC PSYCHOL, V66, P29, DOI 10.1016/j.jesp.2015.09.012; Purzycki BG, 2016, NATURE, V530, P327, DOI 10.1038/nature16980; Richerson P. J., 2005, NOT GENES ALONE CULT; Roes FL, 2003, EVOL HUM BEHAV, V24, P126, DOI 10.1016/S1090-5138(02)00134-4; Rowthorn R, 2011, P ROY SOC B-BIOL SCI, V278, P2519, DOI 10.1098/rspb.2010.2504; Schmitt DP, 2015, PSYCHOL RELIG SPIRIT, V7, P314, DOI 10.1037/rel0000036; Shariff AF, 2016, PERS SOC PSYCHOL REV, V20, P27, DOI 10.1177/1088868314568811; Simpson JA, 2007, CURR DIR PSYCHOL SCI, V16, P264, DOI 10.1111/j.1467-8721.2007.00517.x; Stearns S., 1992, EVOLUTION LIFE HIST; Tan JHW, 2008, J ECON PSYCHOL, V29, P832, DOI 10.1016/j.joep.2008.03.002; Weeden J, 2008, EVOL HUM BEHAV, V29, P327, DOI 10.1016/j.evolhumbehav.2008.03.004; Weeden J, 2013, EVOL HUM BEHAV, V34, P440, DOI 10.1016/j.evolhumbehav.2013.08.006; Williams KEG, 2016, P NATL ACAD SCI USA, V113, P310, DOI 10.1073/pnas.1519401113; Wilson DS, 2009, EVOL HUM BEHAV, V30, P190, DOI 10.1016/j.evolhumbehav.2008.12.002 40 0 0 5 5 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 0956-7976 1467-9280 PSYCHOL SCI Psychol. Sci. JUN 2018 29 6 947 960 10.1177/0956797617753606 14 Psychology, Multidisciplinary Psychology GI7TU WOS:000434705900009 29590005 2018-11-22 J Maronde, L; Losdat, S; Richner, H Maronde, Lea; Losdat, Sylvain; Richner, Heinz Do parasites and antioxidant availability affect begging behaviour, growth rate and resistance to oxidative stress? JOURNAL OF EVOLUTIONARY BIOLOGY English Article antioxidant availability; begging; early-life environment; great tit; growth rate; oxidative stress; parasites; parent-offspring conflict TITS CYANISTES-CAERULEUS; BLUE TITS; DIETARY ANTIOXIDANTS; PLUMAGE COLORATION; IMMUNE-RESPONSE; NESTLING BIRDS; HOUSE SPARROW; FEEDING RATES; GREAT TITS; TRADE-OFFS Early-life trade-offs faced by developing offspring can have long-term consequences for their future fitness. Young offspring use begging displays to solicit resources from their parents and have been selected to grow fast to maximize survival. However, growth and begging behaviour are generally traded off against self-maintenance. Oxidative stress, a physiological mediator of life-history trade-offs, may play a major role in this trade-off by constraining, or being costly to, growth and begging behaviour. Yet, despite implications for the evolution of life-history strategies and parent-offspring conflicts, the interplay between growth, begging behaviour and resistance to oxidative stress remains to be investigated. We experimentally challenged wild great tit (Parus major) offspring by infesting nests with a common ectoparasite, the hen flea (Ceratophyllus gallinae), and simultaneously tested for compensating effects of increased vitamin E availability, a common dietary antioxidant. We further quantified the experimental treatment effects on offspring growth, begging intensity and oxidative stress. Flea-infested nestlings of both sexes showed reduced body mass during the first half of the nestling phase, but this effect vanished short before fledging. Begging intensity and oxidative stress of both sexes were unaffected by both experimental treatments. Feeding rates were not affected by the experimental treatments, but parents of flea-infested nests fed nestlings with a higher proportion of caterpillars, the main source of antioxidants. Additionally, female nestlings begged significantly less than males in control nests, whereas both sexes begged at similar rates in vitamin E-supplemented nests. Our study shows that a parasite exposure does not necessarily affect oxidative stress levels or begging intensity, but suggests that parents can compensate for negative effects of parasitism by modifying food composition. Furthermore, our results indicate that the begging capacity of the less competitive sex is constrained by antioxidant availability. [Maronde, Lea; Losdat, Sylvain; Richner, Heinz] Univ Bern, Inst Ecol & Evolut, Bern, Switzerland; [Losdat, Sylvain] Univ Neuchatel, Inst Biol, 11 Rue Emile Argand, CH-2000 Neuchatel, Switzerland Losdat, S (reprint author), Univ Neuchatel, Inst Biol, 11 Rue Emile Argand, CH-2000 Neuchatel, Switzerland. s.losdat@gmail.com Swiss Federal Office for the Environment; Swiss National Science Foundation We thank Hanna Brindl and Sophie Labaude for assistance in field data collection. This study was approved by the Ethical Committee of the Agricultural Office of the Canton Bern (Switzerland) and by the Swiss Federal Office for the Environment. The study was supported by the Swiss National Science Foundation. Alonso-Alvarez C, 2007, FUNCT ECOL, V21, P873, DOI 10.1111/j.1365-2435.2007.01300.x; Arnold KE, 2010, BIOL J LINN SOC, V99, P708, DOI 10.1111/j.1095-8312.2010.01377.x; Arnott SA, 2006, EVOLUTION, V60, P1269; Banbura J, 2004, ACTA ORNITHOL, V39, P93; Bates D., 2014, J STAT SOFTW, V1406, P5823, DOI DOI 10.1111/J.1365-246X.2011.05142.X; Beaulieu M, 2013, ANIM BEHAV, V86, P17, DOI 10.1016/j.anbehav.2013.05.022; Boncoraglio G, 2012, BEHAV ECOL SOCIOBIOL, V66, P539, DOI 10.1007/s00265-011-1302-3; BRISKIE JV, 1994, P ROY SOC B-BIOL SCI, V258, P73, DOI 10.1098/rspb.1994.0144; Brown CR, 1995, P ROY SOC B-BIOL SCI, V262, P313, DOI 10.1098/rspb.1995.0211; Cantarero A, 2013, J AVIAN BIOL, V44, P591, DOI 10.1111/j.1600-048X.2013.00134.x; Noguera JC, 2012, BIOL LETTERS, V8, P61, DOI 10.1098/rsbl.2011.0756; Catoni C, 2008, ANIM BEHAV, V76, P1107, DOI 10.1016/j.anbehav.2008.05.027; Christe P, 1996, BEHAV ECOL, V7, P127, DOI 10.1093/beheco/7.2.127; Christensen R. H. B., 2015, REGRESSION MODELS OR, P6; Costantini D, 2014, OXIDATIVE STRESS HOR; Costantini D, 2006, J COMP PHYSIOL B, V176, P575, DOI 10.1007/s00360-006-0080-0; Costantini D, 2009, COMP BIOCHEM PHYS A, V153, P339, DOI 10.1016/j.cbpa.2009.03.010; Crocker D., 2002, PN0909 BRIT DEP ENV; de Ayala RM, 2006, BEHAV ECOL SOCIOBIOL, V60, P619, DOI 10.1007/s00265-006-0206-0; De Coster G, 2012, J AVIAN BIOL, V43, P177, DOI 10.1111/j.1600-048X.2012.05551.x; Devevey G, 2009, PARASITOLOGY, V136, P1351, DOI 10.1017/S0031182009990746; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Forstmeier W, 2011, BEHAV ECOL SOCIOBIOL, V65, P47, DOI 10.1007/s00265-010-1038-5; Gosler A., 1993, GREAT TIT; Hall ME, 2010, FUNCT ECOL, V24, P365, DOI 10.1111/j.1365-2435.2009.01635.x; Hasselquist D, 2012, ANIM BEHAV, V83, P1303, DOI 10.1016/j.anbehav.2012.03.025; Horak P, 2007, AM NAT, V170, P625, DOI 10.1086/521232; Hurtrez-Bousses S, 1998, ECOL LETT, V1, P17, DOI 10.1046/j.1461-0248.1998.00017.x; Kilner R, 1997, TRENDS ECOL EVOL, V12, P11, DOI 10.1016/S0169-5347(96)10061-6; Kilner RM, 2001, P NATL ACAD SCI USA, V98, P11394, DOI 10.1073/pnas.191221798; Kolliker M, 1998, ANIM BEHAV, V55, P215, DOI 10.1006/anbe.1997.0571; Larcombe SD, 2010, NATURWISSENSCHAFTEN, V97, P903, DOI 10.1007/s00114-010-0708-5; Leech SM, 1997, BEHAV ECOL, V8, P644, DOI 10.1093/beheco/8.6.644; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Lin YF, 2005, J NUTR, V135, P2457; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Lopez-Arrabe J, 2015, OECOLOGIA, V179, P29, DOI 10.1007/s00442-015-3321-7; Losdat S, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2012.0888; Maronde L, 2015, BEHAV ECOL, V26, P465, DOI 10.1093/beheco/aru215; Marri V, 2014, J EXP BIOL, V217, P1478, DOI 10.1242/jeb.096826; Matrkova J, 2014, J AVIAN BIOL, V45, P475, DOI 10.1111/jav.00368; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x; Moller A.P., 1990, NATO ASI Series Series G Ecological Sciences, V24, P269; Monaghan P, 2008, PHILOS T R SOC B, V363, P1635, DOI 10.1098/rstb.2007.0011; Moreno-Rueda G, 2016, IBIS, V158, P881, DOI 10.1111/ibi.12394; Moreno-Rueda G, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040367; Moreno-Rueda G, 2010, P ROY SOC B-BIOL SCI, V277, P2083, DOI 10.1098/rspb.2010.0109; Mougeot F, 2010, J EXP BIOL, V213, P400, DOI 10.1242/jeb.037101; Noguera JC, 2010, BEHAV ECOL, V21, P479, DOI 10.1093/beheco/arq005; Oddie KR, 2000, J ANIM ECOL, V69, P903, DOI 10.1046/j.1365-2656.2000.00438.x; Orledge JM, 2012, FUNCT ECOL, V26, P688, DOI 10.1111/j.1365-2435.2012.01977.x; Ortuno J, 2000, FISH SHELLFISH IMMUN, V10, P293, DOI 10.1006/fsim.1999.0238; Owen JP, 2010, TRENDS PARASITOL, V26, P530, DOI 10.1016/j.pt.2010.06.005; Perez-Rodriguez L, 2009, BIOESSAYS, V31, P1116, DOI 10.1002/bies.200900070; Price K, 1996, ANIM BEHAV, V51, P421, DOI 10.1006/anbe.1996.0039; R Development Core Team, 2014, R LANG ENV STAT COMP; RICHNER H, 1993, J ANIM ECOL, V62, P703, DOI 10.2307/5390; Ruuskanen S, 2010, HORM BEHAV, V57, P119, DOI 10.1016/j.yhbeh.2009.09.017; Sies H, 1991, OXIDATIVE STRESS OXI; Smith SM, 2016, ECOL EVOL, V6, P2833, DOI 10.1002/ece3.2080; Soler M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0111929; Sorci G, 2009, PHILOS T R SOC B, V364, P71, DOI 10.1098/rstb.2008.0151; Stearns S., 1992, EVOLUTION LIFE HIST; Surai PF, 1998, COMP BIOCHEM PHYS B, V120, P527, DOI 10.1016/S0305-0491(98)10039-1; SURAI PF, 2002, NATURAL ANTIOXIDANTS; TEATHER KL, 1992, BEHAV ECOL SOCIOBIOL, V31, P81, DOI 10.1007/BF00166340; Thomas K, 2001, CAN J ZOOL, V79, P346, DOI 10.1139/cjz-79-2-346; Tripet F, 1997, OIKOS, V78, P557, DOI 10.2307/3545617; Trivers R, 1972, SEXUAL SELECTION DES, P139; Tschirren B, 2004, J ANIM ECOL, V73, P814; Tschirren B, 2007, FUNCT ECOL, V21, P372, DOI 10.1111/j.1365-2435.2007.01235.x; von Engelhardt N, 2006, P ROY SOC B-BIOL SCI, V273, P65, DOI 10.1098/rspb.2005.3274; Weddle CB, 2000, CONDOR, V102, P684, DOI 10.1650/0010-5422(2000)102[0684:EOEONB]2.0.CO;2 74 0 0 4 4 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. JUN 2018 31 6 904 913 10.1111/jeb.13274 10 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity GI4RL WOS:000434358800011 29577502 2018-11-22 J Wilfahrt, PA Wilfahrt, Peter A. Functional trait shifts after disturbance reveal broad-scale variability in temperate forest regional recruitment processes JOURNAL OF VEGETATION SCIENCE English Article disturbance; ecological trade-off axes; plant functional traits; recruitment processes; resource acquisition; seedling layer; shade tolerance; succession; temperate forest ECONOMICS SPECTRUM; TREES; COMMUNITIES; DIVERSITY; HEIGHT; NORTH; CONSEQUENCES; BIOGEOGRAPHY; MECHANISMS; STRATEGIES QuestionDecreased above-ground biomass and subsequent changes in resource availability exert a strong influence on seedling recruitment in post-disturbance forests. Ecological trade-offs underlie recruitment processes, as species vary in resource allocation, dispersal and stress tolerance strategies. Functional traits that indicate resource acquisition-conservation trade-offs include leaf N content, wood density, maximum height, shade tolerance and drought tolerance, while seed mass can indicate species' dispersal strategies. This study looks for generality in post-disturbance trait responses, and asks whether these responses are additionally constrained or amplified by disturbance characteristics, climate and ecological provinces. LocationEastern US temperate forests. MethodsI leveraged a longitudinal, continental-scale database of post-disturbance forests to examine recruitment dynamics. Using multivariate, hierarchical Bayesian models, I examined how disturbance affects the traits of seedling layer communities where recruitment dynamics should be most evident, and compared this to undisturbed communities. I also examined how the traits underlying trade-off axes varied across disturbance properties, ecological provinces and climatic gradients. ResultsAll traits except leaf N showed significant, study-wide shifts in disturbed communities consistent with expectations of post-disturbance stands. In undisturbed plots, all traits had significant shifts in the opposite direction to those observed in disturbed plots, except leaf N and drought tolerance, where no change was observed. Disturbance severity increased the magnitude of response of several, but not all, trait responses in disturbed plots. The traits that had significant shifts were idiosyncratic across ecological provinces, indicating unique processes influencing disturbance responses across the system. Moreover, while climate strongly correlated with all traits prior to disturbance in the initial sampling periods, it was not correlated with disturbance responses. ConclusionsThis study demonstrates general, biome-wide trait shifts towards resource acquisition and bet-hedging dispersal strategies in post-disturbance forest seedling communities. At finer spatial scales, the traits underlying these trade-offs varied, indicating that disturbance-dependent species differ in life-history strategies across the system. This variation across ecological provinces appears independent of temperature and precipitation, suggesting that unmeasured abiotic or biotic variables influence recruitment. Seedling recruitment is critical in shaping future adult tree communities, and this study reveals large-scale contingencies in trait patterns associated with this process. [Wilfahrt, Peter A.] Univ N Carolina, Curriculum Environm & Ecol, Chapel Hill, NC 27515 USA Wilfahrt, PA (reprint author), Univ Bayreuth, Dept Disturbance Ecol, Bayreuth, Germany. peter.wilfahrt@uni-bayreuth.de Wilfahrt, Peter/0000-0003-1594-6512 UNC; Alma Holland Beers Scholarship I thank Peter White for numerous discussions and editorial comments while conceiving this study. Members of the UNC Plant Ecology Lab, Charles Mitchell and three anonymous reviewers all provided helpful insight on improving the manuscript. Jim Clark and Aaron Berdanier provided valuable feedback in developing the Bayesian models used for analysis. PAW was supported by UNC's Dr. W.C. Coker Fellowship and the Alma Holland Beers Scholarship. Ameztegui A, 2017, FUNCT ECOL, V31, P821, DOI 10.1111/1365-2435.12804; Auger S, 2013, J VEG SCI, V24, P419, DOI 10.1111/j.1654-1103.2012.01473.x; Berdanier AB, 2016, ECOL APPL, V26, P17, DOI 10.1890/15-0274; Bond WJ, 2001, TRENDS ECOL EVOL, V16, P45, DOI 10.1016/S0169-5347(00)02033-4; CANHAM CD, 1994, CAN J FOREST RES, V24, P337, DOI 10.1139/x94-046; Chave J, 2009, ECOL LETT, V12, P351, DOI 10.1111/j.1461-0248.2009.01285.x; Coomes DA, 2007, J ECOL, V95, P27, DOI 10.1111/j.1365-2745.2006.01179.x; Cote SD, 2004, ANNU REV ECOL EVOL S, V35, P113, DOI 10.1146/annurev.ecolsys.35.021103.105725; Coyle JR, 2014, ECOGRAPHY, V37, P814, DOI 10.1111/ecog.00473; Diaz S, 1999, J VEG SCI, V10, P651, DOI 10.2307/3237080; Falster DS, 2005, J ECOL, V93, P521, DOI 10.1111/j.1365-2745.2005.00992.x; Giehl ELH, 2015, J VEG SCI, V26, P889, DOI 10.1111/jvs.12288; Gilliam FS, 2006, J ECOL, V94, P1176, DOI 10.1111/j.1365-2745.2006.01155.x; Kunstler G, 2016, NATURE, V529, P204, DOI 10.1038/nature16476; Lasky JR, 2015, ECOLOGY, V96, P2157, DOI 10.1890/14-1809.1; Leishman M. R., 2000, SEEDS ECOLOGY REGENE, P31, DOI DOI 10.1079/9780851994321.0031; Loehle C, 1998, J BIOGEOGR, V25, P735, DOI 10.1046/j.1365-2699.1998.2540735.x; Lohbeck M, 2013, ECOLOGY, V94, P1211, DOI 10.1890/12-1850.1; Mason NWH, 2010, J ECOL, V98, P1422, DOI 10.1111/j.1365-2745.2010.01714.x; McNab W. H., 2005, WO76B US DEP AGR; Moles AT, 2007, GLOBAL ECOL BIOGEOGR, V16, P109, DOI [10.1111/j.1466-8238.2006.00259.x, 10.1111/j.1466-822x.2006.00259.x]; Mouillot D, 2013, TRENDS ECOL EVOL, V28, P167, DOI 10.1016/j.tree.2012.10.004; Muscarella R, 2017, ECOLOGY, V98, P2743, DOI 10.1002/ecy.1990; Myers JA, 2013, ECOL LETT, V16, P151, DOI 10.1111/ele.12021; Niinemets U, 2006, ECOL MONOGR, V76, P521, DOI 10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2; Nowacki GJ, 2008, BIOSCIENCE, V58, P123, DOI 10.1641/B580207; Pacala SW, 1996, ECOL MONOGR, V66, P1, DOI 10.2307/2963479; Peet R., 1981, FOREST SUCCESSION CO, P324, DOI 10. 1007/978-1-4612-5950-3; Pickett S. T. A., 1985, ECOLOGY NATURAL DIST; REICH PB, 1995, FUNCT ECOL, V9, P65, DOI 10.2307/2390092; Runkle J. R., 1985, The ecology of natural disturbance and patch dynamics, P17; Russell MB, 2014, FOREST ECOL MANAG, V328, P1, DOI 10.1016/j.foreco.2014.05.014; Schamp BS, 2009, OIKOS, V118, P564, DOI 10.1111/j.1600-0706.2009.16589.x; Siefert A, 2015, ECOL LETT, V18, P1406, DOI 10.1111/ele.12508; Swenson NG, 2012, GLOBAL ECOL BIOGEOGR, V21, P798, DOI 10.1111/j.1466-8238.2011.00727.x; Swenson NG, 2010, ECOLOGY, V91, P2234, DOI 10.1890/09-1743.1; Umana MN, 2015, ECOL LETT, V18, P1329, DOI 10.1111/ele.12527; Valladares F, 2008, ANNU REV ECOL EVOL S, V39, P237, DOI 10.1146/annurev.ecolsys.39.110707.173506; White PS, 2011, MANAG FOR ECOSYST, V21, P27, DOI 10.1007/978-94-007-1620-9_3; Wiens JJ, 2004, TRENDS ECOL EVOL, V19, P639, DOI 10.1016/j.tree.2004.09.011; Wilfahrt P. A., 2016, NATURAL DISTURBANCES, P295, DOI [10. 1007/978-3-319-21527-3, DOI 10.1007/978-3-319-21527-3]; Wilfahrt PA, 2014, FOREST ECOL MANAG, V324, P179, DOI 10.1016/j.foreco.2014.01.018; Wonkka CL, 2013, OIKOS, V122, P209, DOI 10.1111/j.1600-0706.2012.20346.x; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403 44 0 0 3 3 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1100-9233 1654-1103 J VEG SCI J. Veg. Sci. MAY 2018 29 3 491 500 10.1111/jvs.12628 10 Plant Sciences; Ecology; Forestry Plant Sciences; Environmental Sciences & Ecology; Forestry GN0JZ WOS:000438651900014 2018-11-22 J Nogueira, M; Nascimento, LS Nogueira Junior, Miodeli; Nascimento, Lorena Silva The ecology and developmental changes of meristic characters of the medusa Malagazzia carolinae (Hydrozoa: Leptothecata) from subtropical Southwestern Atlantic estuaries ZOOLOGISCHER ANZEIGER English Article Medusa; Morphology; Ontogeny; Abundance; Population dynamics; South atlantic ZOOPLANKTON COMMUNITY; VERTICAL MIGRATION; BRAZILIAN BIGHT; SOUTH BRAZIL; HYDROMEDUSAE; CNIDARIA; BAY; WATERS; JELLYFISH; PLANKTON In the present study we show that the meristic marginal characters of the hydromedusa Malagazzia carolinae changes through its ontogeny. We additionally present background-data on abundance and size composition spatial temporal dynamics of this poorly-known medusa from five subtropical Brazilian estuaries (similar to 24-26.5 degrees S). Data presented are important to improve taxonomy of the group and to track life-history strategies. The number of marginal structures varies considerably: tentacular bulbs ranged between 0 and 7, rudimentary bulbs between 0 and 12 and statocysts between 1 and 22 on each quadrant and their numbers tended to increase with bell diameter. Malagazzia carolinae was nearly absent from the open shallow shelf, and among the five estuaries sampled it was more common and abundant inside Babitonga and Guaratuba Bays, where a well-defined distribution was found, with peaks in January mostly in the inner sectors (mean 8-10 ind. 10 m(-3)). Although sampled in wide hydrographic conditions, M. carolinae was mostly found in intermediate salinities (21-26) and temperatures (22-29 degrees C), suggesting it is well adapted to thrive in estuarine subtropical and tropical systems. (C) 2018 Elsevier GmbH. All rights reserved. [Nogueira Junior, Miodeli] Univ Fed Paraiba, Dept Sistemat & Ecol, Cidade Univ, BR-58051900 Joao Pessoa, Paraiba, Brazil; [Nascimento, Lorena Silva] Univ Fed Parana, Ctr Estudos Mar, Lab Zooplancton, BR-83255976 Pontal Do Parana, Parana, Brazil Nogueira, M (reprint author), Univ Fed Paraiba, Dept Sistemat & Ecol, Cidade Univ, BR-58051900 Joao Pessoa, Paraiba, Brazil. miodeli@gmail.com; nascimento.s.lorena@gmail.com Nogueira Junior, Miodeli/0000-0001-5409-8312 "Fundacao Grupo Boticario de Protecao a Natureza" (Project BIOMAR) [BL0002_20111]; "Conselho Nacional de Desenvolvimento Cientifico e Tecnologico" (CNPq) [140945/2007-5]; "Fundacao de Amparo a Pesquisa do Estado de Sao Paulo" (FAPESP) [2011/09880-8, 11/21290-1]; "Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior" (CAPES) We appreciate the many colleagues that helped in the field campaigns, particularly Dr. Jose Maria Souza Conceicao and Dr. Henry Spach which helped with logistics and sampling structure in the Babitonga and/or Guaratuba campaigns. Samples and envi- ronmental data from Santos bay were provided by Dr. Marcio Hidekazu Ohkawara and Dr. Tulia Aguilar Martinez. Part of the samples and environmental data from Cananeia was kindly provided by Dr. Leonardo Kenji Miyashita. Dr. Martin Vinther Sorensen and two anonymous reviewers provided useful suggestions that helped to improve the original manuscript. The Paranagua sampling campaigns were supported by the "Fundacao Grupo Boticario de Protecao a Natureza" (Project BIOMAR, grant no. BL0002_20111). MNJ received support from "Conselho Nacional de Desenvolvimento Cientifico e Tecnologico" (CNPq, grant no. 140945/2007-5), and by the "Fundacao de Amparo a Pesquisa do Estado de Sao Paulo" (FAPESP, grant no. 2011/09880-8; Project no. 11/21290-1). LSN received scholarship from the "Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior" (CAPES). Akiyama Hisashi, 2013, Biogeography, V15, P95; Alvarino A., 1968, ANALES I BIOL SERIE, V1, P41; Apablaza Pedro, 2006, Investigaciones Marinas Universidad Catolica de Valparaiso, V34, P81; Boero F, 2008, MAR ECOL PROG SER, V356, P299, DOI 10.3354/meps07368; Bouillon J., 1984, Indo-Malayan Zoology, V1, P25; BOUILLON J, 1978, Revue de Zoologie Africaine, V92, P117; Bouillon J., 1984, Indo-Malayan Zoology, V1, P1; Bouillon J., 1986, Indo-Malayan Zoology, V3, P105; Bouillon J, 2004, SCI MAR, V68, P5, DOI 10.3989/scimar.2004.68s25; Bouillon J., 1988, Indo-Malayan Zoology, V5, P225; BOUILLON J, 1995, NEW ZEAL J ZOOL, V22, P223, DOI 10.1080/03014223.1995.9518038; BOUILLON J, 1991, CAH BIOL MAR, V32, P387; Bouillon J., 1999, S ATLANTIC ZOOPLANKT, P424; Brandini F.P., 2006, DIAGNOSTICO AMBIENTA, P112; Browne J.G., 2014, THESIS; Buecher Emmanuelle, 2005, African Invertebrates, V46, P27; Burkenroad MD, 1931, BIOL BULL-US, V61, P115, DOI 10.2307/1537049; Calder D.R., 1978, P87; Calder D. R, 1971, VIRGINIA I MARINE SC, V1, P1; Chazarreta J, 2015, BRAZ J OCEANOGR, V63, P83, DOI 10.1590/S1679-87592015076806302; Chen Hong-ju, 2010, Marine Sciences (Beijing), V34, P17; Chen-tsu H., 1962, J XIAMEN U NATUR SCI, V3, P206; CHOW T. H., 1958, ACTA ZOOL SINICA, V10, P173; Dai Yanyu, 1991, Asian Marine Biology, V8, P45; Dehmordi L.M., 2007, P PHYS SOC LIF SCI P; Du Fei-Yan, 2012, Acta Zootaxonomica Sinica, V37, P506; Du Ping, 2011, Chinese Journal of Applied and Environmental Biology, V17, P486, DOI 10.3724/SP.J.1145.2011.00486; Gershwin Lisa-ann, 2010, Memoirs of the Queensland Museum, V54, P47; Gravili C, 2013, MAR ECOL-EVOL PERSP, V34, P41, DOI 10.1111/maec.12023; [郭东晖 Guo Donghui], 2012, [海洋与湖沼, Oceanologia et Limnologia Sinica], V43, P584; Hopkins T. L., 1966, Publications of the Institute of Marine Science University of Texas, V11, P12; Jiang Huichao, 2015, Acta Ecologica Sinica, V35, P7308; Kimmerer WJ, 1998, LIMNOL OCEANOGR, V43, P1697, DOI 10.4319/lo.1998.43.7.1697; Kramp P. L., 1953, Scientific Reports Great Barrier Reef Expedition, V6, P259; KRAMP P. L., 1965, DANA REP CARLSBERG FOUND, V63, P1; Kramp P. L., 1959, Dana Reports, V46, P1; Kramp P. L., 1958, Records of the Indian Museum, V53, P339; Kramp P. L., 1968, DANA REP, V72, P1; Kramp P.L., 1962, MEDD NATURHIST FOREN, V124, P305; KRAMP PL, 1961, J MAR BIOL ASSOC UK, V40, P7, DOI 10.1017/S0025315400007347; Larson RJ, 1982, SMITHSONIAN CONTRIBU, V12, P253, DOI DOI 10.5479/SI.01960768.12.539; Leon Maria Eugenia, 2005, Vieraea, V33, P11; Li KZ, 2014, OCEANOLOGIA, V56, P583, DOI 10.5697/oc.56-3.583; Lin P., 2010, THESIS; Mayer A.G., 1910, B MADRAS GOVT MUS NA, V3, P1; Mayer A.G., 1900, B MUS COMP ZOOL HARV, V37, P1; Mediseh SD, 2017, IRAN J FISH SCI, V16, P422; Miyashita LK, 2012, J NAT HIST, V46, P1557, DOI 10.1080/00222933.2012.691997; Miyashita LK, 2016, MAR BIOL RES, V12, P133, DOI 10.1080/17451000.2015.1099678; Mosavi Dehmordi I., 2010, IRAN J BIOL, V23, P249; Nagale P., 2012, P NAT INAR BIOD CONS, P80; Nagata RM, 2014, J MAR BIOL ASSOC UK, V94, P1387, DOI 10.1017/S0025315414000617; Nair K. K., 1954, Bulletin of the Central Research Institute University of Travancore, V2C, P47; Nascimento L.S., 2016, THESIS; Navas-Pereira D., 1984, Dusenia, V14, P51; NAVAS-PEREIRA D, 1980, Revista Brasileira de Biologia, V40, P817; NAVAS-PEREIRA D, 1991, Boletim do Instituto Oceanografico, V39, P25; Navas-Pereira D., 1981, SEMINARIOS BIOL MARI, P221; Nicholas Y.W.L., 2012, CONTRIB MAR SCI, V2012, P57; Nogueira Junior M., 2018, PLANKTON ECOLOGY ATL; Nogueira M, 2017, J MAR BIOL ASSOC UK, V97, P1651, DOI 10.1017/S0025315416001120; Nogueira M, 2016, MAR BIODIVERS, V46, P737, DOI 10.1007/s12526-015-0421-x; Nogueira M, 2014, CONT SHELF RES, V89, P93, DOI 10.1016/j.csr.2014.02.022; Pages Frances, 1992, Scientia Marina, V56, P1; Palma S., 1995, INVEST MAR, V23, P49; RAMIREZ F C, 1980, Physis Seccion A los Oceanos y sus Organismos, V39, P33; Ramirez F.C., 1981, P443; Russell FS, 1953, MEDUSAE BRIT ISLES A; Salvador B, 2017, ESTUAR COAST SHELF S, V199, P1, DOI 10.1016/j.ecss.2017.09.019; Santhakumari V., 1997, Publications of the Seto Marine Biological Laboratory, V38, P53; Santhakumari V, 1999, INDIAN J MAR SCI, V28, P158; Santhakumari V, 1999, INDIAN J MAR SCI, V28, P150; Santhakumari V., 1993, J ZOOL SOC KERALA, V3, P37; Santhakumari V., 1971, J MAR BIOL ASSOC IND, V13, P211; Schlitzer R, 2017, OCEAN DATA VIEW; Schuchert P., 2016, MALAGAZZIA BOUILLON; Segura-Puertas Lourdes, 2003, Zootaxa, V194, P1; Silas E.G., 1975, Bulletin of the Department of Marine Sciences University of Cochin, V7, P329; Soltani T., 2014, J MAR SCI TECH, V12, P50; Souza D.P., 2013, THESIS; Sun S, 2012, CHIN J OCEANOL LIMN, V30, P507, DOI 10.1007/s00343-012-1179-7; Tundisi J.G., 1970, CONTR AVULSAS I OCEA, V19, P1; Uchida T., 1947, Journal of the Faculty of Science Hokkaido University Zoology, V9, P297; Vannucci M., 1973, P273; VANNUCCI M., 1957, BOL INST OCEANOGR, V8, P23; Vannucci M., 1963, S Bol Inst oceanogr S Paulo, V13, P143; Vineetha G, 2015, WETLANDS, V35, P597, DOI 10.1007/s13157-015-0650-6; Xu Z., 1983, CHINA J XIAMEN U NAT, V22, P364; Xu Z., 1974, OCEANOL TECHNOL SINI, V2, P17; Xu Z., 2008, FRONT BIOL CHINA, V3, P300, DOI DOI 10.1007/S11515-008-0057-3; Xu Z. Z., 1981, J XIAMEN U NATURAL S, V20, P373; Xu Zhao-li, 2009, Ying Yong Sheng Tai Xue Bao, V20, P177; ZAMPONI M O, 1983, Neotropica (La Plata), V29, P65; ZAMPONI M O, 1985, Neotropica (La Plata), V31, P155; Zamponi M.O., 1991, PLANKTON NEWSL, V15, P9; Zamponi Mauricio O., 1994, Plankton Newsletter, V19, P51; Zar JH, 2010, BIOSTATISTICAL ANAL; Zhang Fang, 2005, Oceanologia et Limnologia Sinica, V36, P507; Zhang HG, 2012, ECOL ENG, V44, P303, DOI 10.1016/j.ecoleng.2012.04.022; Zhang J., 1977, OCEANOL TECHNO SINIC, V7, P95; Zhang Jinbiao, 1979, Acta Oceanologica Sinica, V1, P127; Zhaoli Xu, 2006, Shengwu Duoyangxing, V14, P508; Zuo Tao, 2016, Acta Ecologica Sinica, V36, P5646 103 0 0 1 1 ELSEVIER GMBH, URBAN & FISCHER VERLAG JENA OFFICE JENA, P O BOX 100537, 07705 JENA, GERMANY 0044-5231 ZOOL ANZ Zool. Anz. MAY 2018 274 34 45 10.1016/j.jcz.2018.03.002 12 Zoology Zoology GL5MK WOS:000437211200004 2018-11-22 J Woronik, A; Stefanescu, C; Kakela, R; Wheat, CW; Lehmann, P Woronik, Alyssa; Stefanescu, Constanti; Kakela, Reijo; Wheat, Christopher W.; Lehmann, Philipp Physiological differences between female limited, alternative life history strategies: The Alba phenotype in the butterfly Colias croceus JOURNAL OF INSECT PHYSIOLOGY English Article Life history traits; Color morphs; Respirometry; Lipidomics; Growth rate; Colias; Alba INSECT FAT-BODY; GENETIC-POLYMORPHISM; RESOURCE-ALLOCATION; MITOCHONDRIAL-DNA; LEPIDOPTERA; PIERIDAE; PHYLOGENY; METABOLISM; ODONATA; ENERGY Across a wide range of taxa, individuals within populations exhibit alternative life history strategies (ALHS) where their phenotypes dramatically differ due to divergent investments in growth, reproduction and survivorship, with the resulting trade-offs directly impacting Darwinian fitness. Though the maintenance of ALHS within populations is fairly well understood, little is known regarding the physiological mechanisms that underlie ALHS and how environmental conditions can affect the evolution and expression of these phenotypes. One such ALHS, known as Alba, exists within females of many species in the butterfly genus Colias. Previous works in New World species not only found that female morphs differ in their wing color due to a reallocation of resources away from the synthesis of wing pigments to other areas of development, but also that temperature played an important role in these trade-offs. Here we build on previous work conducted in New World species by measuring life history traits and conducting lipidomics on individuals reared at hot and cold temperatures in the Old World species Colias croceus. Results suggest that the fitness of Alba and orange morphs likely varies with rearing temperature, where Alba females have higher fitness in cold conditions and orange in warm. Additionally shared traits between Old and New World species suggest the Alba mechanism is likely conserved across the genus. Finally, in the cold treatment we observe an intermediate yellow morph that may have decreased fitness due to slower larval development. This cost may manifest as disruptive selection in the field, thereby favoring the maintenance of the two discrete morphs. Taken together these results add insights into the evolution of, and the selection on, the Alba ALHS. [Woronik, Alyssa; Wheat, Christopher W.; Lehmann, Philipp] Stockholm Univ, Dept Zool, S-10691 Stockholm, Sweden; [Stefanescu, Constanti] Museum Nat Sci Granollers, Granollers 08402, Catalonia, Spain; [Stefanescu, Constanti] CREAF, Cerdanyola Del Valles 08193, Catalonia, Spain; [Kakela, Reijo] Univ Helsinki, Mol & Integrat Biosci, Fac Biol & Environm Sci, FI-00014 Helsinki, Finland Woronik, A (reprint author), Stockholm Univ, Dept Zool, S-10691 Stockholm, Sweden. alyssa.woronik@zoologi.su.se Lehmann, Philipp/0000-0001-8344-6830; Woronik, Alyssa/0000-0003-3017-6069 Academy of Finland [131155]; Swedish Research Council [2012-3715]; Knut and Alice Wallenberg Foundation [2012.0058] We would like to thank two anonymous reviews for comments that greatly improved this manuscript. We thank Jason Hill and Lovisa Wennerstrom for help with fieldwork, Hasina Nasser for help with rearing, Sandra Stalhandske for modeling advice, Ramprasad Neethiraj for help with the mean red analysis, and Bertil Borg for use of his camera. We also thank the Academy of Finland 131155, the Swedish Research Council 2012-3715, and the Knut and Alice Wallenberg Foundation 2012.0058 for funding. The authors declare no conflict of interest. Andres JA, 1999, HEREDITY, V82, P328, DOI 10.1038/sj.hdy.6884930; Arrese EL, 2001, J LIPID RES, V42, P225; Arrese EL, 2010, ANNU REV ENTOMOL, V55, P207, DOI 10.1146/annurev-ento-112408-085356; Bates D., 2015, J STAT SOFT, V67; BOGGS CL, 1981, AM NAT, V117, P692, DOI 10.1086/283753; Brunton CFA, 1998, HEREDITY, V80, P611; Crockett EL., 1998, CHOLESTEROL FUNCTION; Fisher R. A., 1930, GENETICAL THEORY NAT; FOLCH J, 1957, J BIOL CHEM, V226, P497; Fujimoto T, 2011, CSH PERSPECT BIOL, V3, DOI 10.1101/cshperspect.a004838; Futuyma D., 2013, EVOLUTION; GRAHAM SM, 1980, P NATL ACAD SCI-BIOL, V77, P3615, DOI 10.1073/pnas.77.6.3615; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; Hofbauer J, 2003, B AM MATH SOC, V40, P479, DOI 10.1090/S0273-0979-03-00988-1; HOFFMANN RJ, 1974, J INSECT PHYSIOL, V20, P1913, DOI 10.1016/0022-1910(74)90098-5; Kupper C, 2016, NAT GENET, V48, P79, DOI 10.1038/ng.3443; Lamichhaney S, 2015, NAT GENET, V48, P84, DOI DOI 10.1038/NG.3430); LANK DB, 1995, NATURE, V378, P59, DOI 10.1038/378059a0; Lehmann P, 2016, J EXP BIOL, V219, P3049, DOI 10.1242/jeb.142687; Limeri LB, 2016, BIOL J LINN SOC, V117, P716, DOI 10.1111/bij.12697; Nielsen MG, 2000, FUNCT ECOL, V14, P718, DOI 10.1046/j.1365-2435.2000.00472.x; Nielsen MG, 1998, FUNCT ECOL, V12, P149, DOI 10.1046/j.1365-2435.1998.00167.x; Pollock DD, 1998, ANN ENTOMOL SOC AM, V91, P524, DOI 10.1093/aesa/91.5.524; R Core Team, 2015, R LANG ENV STAT COMP; REMINGTON CL, 1954, ADV GENET, V6, P403, DOI 10.1016/S0065-2660(08)60133-9; SCHMIDTNIELSEN K, 1990, ANIMAL PHYSL ADAPTAT; Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089; Stearns S., 1992, EVOLUTION LIFE HIST; Tsubaki Y, 2003, POPUL ECOL, V45, P263, DOI 10.1007/s10144-003-0162-8; WATT WB, 1973, EVOLUTION, V27, P537, DOI 10.1111/j.1558-5646.1973.tb00703.x; Wheat CW, 2008, MOL PHYLOGENET EVOL, V47, P893, DOI 10.1016/j.ympev.2008.03.013 31 0 0 2 2 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0022-1910 1879-1611 J INSECT PHYSIOL J. Insect Physiol. MAY-JUN 2018 107 257 264 10.1016/j.jinsphys.2018.03.008 8 Entomology; Physiology; Zoology Entomology; Physiology; Zoology GI8DD WOS:000434751100031 29580782 2018-11-22 J Kawamata, K; Sato, M; Abe, K Kawamata, Kunihiko; Sato, Makoto; Abe, Kazuto Complete life cycle of the ostracod Euphilomedes nipponica (Myodocopida, Philomedidae) PLANKTON & BENTHOS RESEARCH English Article life history; Myodocopida; Ostracoda; Philomedidae; rearing We describe the complete life cycle of the ostracod Euphilomedes nipponica Hiruta, 1976. This was completed by collecting individuals from the sea once a month over the course of a year and through the parallel rearing of individuals under laboratory conditions. Females developed their first brood in mid-April, with 20-40 first instar offspring being released in early May. Because adult males did not live long, adult females produced subsequent broods without re-exposure to males, producing up to four broods in total by releasing juveniles at 1-month intervals. First instar individuals reached the fourth instar stage in less than 2 months during which time they molted three times. Molting paused at the fourth instar stage; thus, all offspring from the first to fourth broods reached the fourth instar stage by October. All individuals that have reached the fourth instar stage resume molting to the fifth instar stage in mid-January in response to unknown environmental cues, such as photoperiod and water temperature. Adult males appeared in March slightly earlier than females, with females initiating brooding again in April. This detailed information is expected to contribute toward improving our understanding of the life history strategies and reproductive modes of ostracod crustaceans. [Kawamata, Kunihiko; Sato, Makoto; Abe, Kazuto] Akita Univ, Fac Educ & Human Studies, Dept Biol, 1-1 Tegatagakuenmati, Akita, Akita 0108502, Japan Kawamata, K (reprint author), Akita Univ, Fac Educ & Human Studies, Dept Biol, 1-1 Tegatagakuenmati, Akita, Akita 0108502, Japan. kawamata@ed.akita-u.ac.jp Baker JH, 1977, ASPECTS ECOLOGY ZOOG, P245; COHEN AC, 1983, J CRUSTACEAN BIOL, V3, P235, DOI 10.2307/1548260; COHEN AC, 1990, J CRUSTACEAN BIOL, V10, P184, DOI 10.2307/1548480; Cohen Anne C., 2007, P417; Elofson Olof, 1941, ZOOL BIDRAG UPPSALA, V19, P215; FAGE LOUIS, 1933, ARCH ZOOL EXP ET GEN, V76, P105; Gerrish GA, 2008, J CRUSTACEAN BIOL, V28, P669, DOI 10.1651/07-2934.1; Henmi Yasuhisa, 2002, Benthos Research, V57, P103; HIRUTA S, 1980, Journal of the Hokkaido University of Education Section II B, V31, P41; HIRUTA S, 1976, Journal of the Faculty of Science Hokkaido University Series VI Zoology, V20, P579; Hiruta S., 1980, Journal of the Hokkaido University of Education Section II B, V30, P145; Hiruta S, 1983, J HOKKAIDO U ED 2 B, V33, P7; Home DJ, 1983, APPL OSTRACODA, P581; Kajiyama E, 1912, MYODOCOPA ZOOL MAG T, V24, P609; Lum KE, 2008, ZOOTAXA, P35; Mitome Ayumi, 2007, Japanese Journal of Benthology, V62, P3; Nakamura N, 1954, GENERAL VIEW FISHERI, P108; Okada Y., 1949, Bulletin of the Biogeographical Society of Japan, V14, P21; Skogsberg T., 1920, ZOOLOGISKA BIDRAG S, V1, P1; Wakayama N, 2007, J ZOOL, V273, P406, DOI 10.1111/j.1469-7998.2007.00344.x; Wakayama Norio, 2014, Science Journal of Kanagawa University, V25, P117; Wakayama Norio, 2010, Rishiri Studies, V29, P75 22 0 0 0 0 PLANKTON SOC JAPAN HOKKAIDO C/O MAR. BIODIVERSITY LAB, 3-1-1 MINATOMACHI, HAKODATE, HOKKAIDO, 041-8611, JAPAN 1880-8247 PLANKTON BENTHOS RES Plankton Benthos Res. MAY 2018 13 2 83 89 10.3800/pbr.13.83 7 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography GJ3VZ WOS:000435228200006 Bronze 2018-11-22 J Galen, SC; Borner, J; Martinsen, ES; Schaer, J; Austin, CC; West, CJ; Perkins, SL Galen, Spencer C.; Borner, Janus; Martinsen, Ellen S.; Schaer, Juliane; Austin, Christopher C.; West, Christopher J.; Perkins, Susan L. The polyphyly of Plasmodium: comprehensive phylogenetic analyses of the malaria parasites (order Haemosporida) reveal widespread taxonomic conflict ROYAL SOCIETY OPEN SCIENCE English Article Plasmodium; malaria; phylogeny; base composition bias; polyphyly RNA GENE-SEQUENCES; CODON-USAGE BIAS; COMPOSITIONAL HETEROGENEITY; APICOMPLEXAN PARASITES; MITOCHONDRIAL GENOME; NYCTERIA PARASITES; BASE COMPOSITION; HOST SWITCHES; CYTOCHROME-B; EVOLUTION The evolutionary relationships among the apicomplexan blood pathogens known as the malaria parasites (order Haemosporida), some of which infect nearly 200 million humans each year, has remained a vexing phylogenetic problem due to limitations in taxon sampling, character sampling and the extreme nucleotide base composition biases that are characteristic of this clade. Previous phylogenetic work on the malaria parasites has often lacked sufficient representation of the broad taxonomic diversity within the Haemosporida or the multi-locus sequence data needed to resolve deep evolutionary relationships, rendering our understanding of haemosporidian life-history evolution and the origin of the human malaria parasites incomplete. Here we present the most comprehensive phylogenetic analysis of the malaria parasites conducted to date, using samples from a broad diversity of vertebrate hosts that includes numerous enigmatic and poorly known haemosporidian lineages in addition to genome-wide multi-locus sequence data. We find that if base composition differences were corrected for during phylogenetic analysis, we recovered a well-supported topology indicating that the evolutionary history of the malaria parasites was characterized by a complex series of transitions in life-history strategies and host usage. Notably we find that Plasmodium, the malaria parasite genus that includes the species of human medical concern, is polyphyletic with the life-history traits characteristic of this genus having evolved in a dynamic manner across the phylogeny. We find support for multiple instances of gain and loss of asexual proliferation in host blood cells and production of haemozoin pigment, two traits that have been used for taxonomic classification as well as considered to be important factors for parasite virulence and used as drug targets. Lastly, our analysis illustrates the need for a widespread reassessment of malaria parasite taxonomy. [Galen, Spencer C.; Perkins, Susan L.] Amer Museum Nat Hist, Sackler Inst Comparat Genom, Cent Pk West & 79th St, New York, NY 10024 USA; [Galen, Spencer C.] Amer Museum Nat Hist, Richard Gilder Grad Sch, Cent Pk West & 79th St, New York, NY 10024 USA; [Borner, Janus] Univ Hamburg, Bioctr Grindel, Inst Zool, Martin Luther King Pl 3, D-20146 Hamburg, Germany; [Martinsen, Ellen S.] Smithsonian Conservat Biol Inst, Natl Zool Pk, Ctr Conservat Genom, POB 37012,MRC5503, Washington, DC 20013 USA; [Schaer, Juliane] Humboldt Univ, Dept Biol, D-10115 Berlin, Germany; [Austin, Christopher C.] Louisiana State Univ, Dept Biol Sci, Museum Nat Sci, Baton Rouge, LA 70803 USA; [West, Christopher J.] Wildlife Program, Klamath, CA 95548 USA Galen, SC; Perkins, SL (reprint author), Amer Museum Nat Hist, Sackler Inst Comparat Genom, Cent Pk West & 79th St, New York, NY 10024 USA.; Galen, SC (reprint author), Amer Museum Nat Hist, Richard Gilder Grad Sch, Cent Pk West & 79th St, New York, NY 10024 USA. spgalen@gmail.com; perkins@amnh.org Borner, Janus/0000-0001-9612-6668 National Science Foundation [NSF-DEB-1145984, NSF-DEB-1146033] This work was supported by the National Science Foundation grant NSF-DEB-1145984 to S.L.P. and NSF-DEB-1146033 to C.C.A. Abascal F, 2010, NUCLEIC ACIDS RES, V38, pW7, DOI 10.1093/nar/gkq291; Aurrecoechea C, 2009, NUCLEIC ACIDS RES, V37, pD539, DOI 10.1093/nar/gkn814; BENNETT GF, 1965, CAN J ZOOLOG, V43, P927, DOI 10.1139/z65-096; Bensch S, 2016, GENOME BIOL EVOL, V8, P1361, DOI 10.1093/gbe/evw081; Bertram MR, 2017, MOL PHYLOGENET EVOL, V109, P73, DOI 10.1016/j.ympev.2016.12.025; Bohme U, 2018, GENOME RES, V28, P547, DOI 10.1101/gr.218123.116; Borner J, 2016, MOL PHYLOGENET EVOL, V94, P221, DOI 10.1016/j.ympev.2015.09.003; Boundenga L, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0148958; BRAY RS, 1958, AM J TROP MED HYG, V7, P20, DOI 10.4269/ajtmh.1958.7.20; Chang BSW, 2000, MOL BIOL EVOL, V17, P1220, DOI 10.1093/oxfordjournals.molbev.a026405; Charif D., 2007, STRUCTURAL APPROACHE, P207, DOI DOI 10.1007/978-3-540-35306-5_10; Davalos LA, 2008, GENOMICS, V91, P433, DOI 10.1016/j.ygeno.2008.01.006; de Queiroz A, 2007, TRENDS ECOL EVOL, V22, P34, DOI 10.1016/j.tree.2006.10.002; Drummond AJ, 2012, MOL BIOL EVOL, V29, P1969, DOI 10.1093/molbev/mss075; Duval L, 2007, MALARIA J, V6, DOI 10.1186/1475-2875-6-157; ESCALANTE AA, 1995, MOL BIOL EVOL, V12, P616; Escalante AA, 1998, P NATL ACAD SCI USA, V95, P8124, DOI 10.1073/pnas.95.14.8124; ESCALANTE AA, 1994, P NATL ACAD SCI USA, V91, P11373, DOI 10.1073/pnas.91.24.11373; FALLIS AM, 1961, CAN J ZOOLOG, V39, P215, DOI 10.1139/z61-026; FEAGIN JE, 1994, ANNU REV MICROBIOL, V48, P81; Foster PG, 1999, J MOL EVOL, V48, P284, DOI 10.1007/PL00006471; Galen SC, 2018, DRYAD DIGITAL REPOSI, DOI [10.5061/dryad.kk628dt, DOI 10.5061/DRYAD.KK628DT]; Gao F, 1999, NATURE, V397, P436, DOI 10.1038/17130; Gardner MJ, 2002, NATURE, V419, P498, DOI 10.1038/nature01097; GARNHAM P. C. C, 1961, TRANS ROY SOC TROP MED AND HYG, V55, P497; Garnham P.C.C., 1966, MALARIA PARASITES OT; GARNHAM PCC, 1951, EXP PARASITOL, V1, P94, DOI 10.1016/0014-4894(51)90010-0; GARNHAM PCC, 1953, T ROY SOC TROP MED H, V47, P357, DOI 10.1016/S0035-9203(53)80016-7; GARNHAM PCC, 1948, T ROY SOC TROP MED H, V41, P601, DOI 10.1016/S0035-9203(48)90418-0; Greiner EC, 2011, J PARASITOL, V97, P1137, DOI 10.1645/GE-2332.1; Gruber KF, 2007, SYST BIOL, V56, P83, DOI 10.1080/10635150601182939; Hagner SC, 2007, PARASITOL RES, V101, P493, DOI 10.1007/s00436-007-0499-6; Harmon LJ, 2008, BIOINFORMATICS, V24, P129, DOI 10.1093/bioinformatics/btm538; Heath TA, 2008, J SYST EVOL, V46, P239, DOI 10.3724/SP.J.1002.2008.08016; Hedtke SM, 2006, SYSTEMATIC BIOL, V55, P522, DOI 10.1080/10635150600697358; Ho LST, 2014, SYST BIOL, V63, P397, DOI 10.1093/sysbio/syu005; Huang HT, 2010, SYST BIOL, V59, P573, DOI 10.1093/sysbio/syq047; Inagaki Y, 2004, SYST BIOL, V53, P582, DOI 10.1080/10635150490468756; Jermiin LS, 2004, SYST BIOL, V53, P638, DOI 10.1080/10635150490468648; Karadjian G, 2016, P NATL ACAD SCI USA, V113, P9834, DOI 10.1073/pnas.1610643113; Katoh K, 2013, MOL BIOL EVOL, V30, P772, DOI 10.1093/molbev/mst010; Krief S, 2010, PLOS PATHOG, V6, DOI 10.1371/journal.ppat.1000765; Kuo CH, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-108; Lanfear R, 2017, MOL BIOL EVOL, V34, P772, DOI 10.1093/molbev/msw260; Li CH, 2012, MOL PHYLOGENET EVOL, V63, P365, DOI 10.1016/j.ympev.2012.01.013; Liu WM, 2010, NATURE, V467, P420, DOI 10.1038/nature09442; Liu Y, 2014, SYST BIOL, V63, P862, DOI 10.1093/sysbio/syu049; LOCKHART PJ, 1992, J MOL EVOL, V34, P153; Lutz HL, 2016, MOL PHYLOGENET EVOL, V99, P7, DOI 10.1016/j.ympev.2016.03.004; Maia JP, 2016, PARASITOL INT, V65, P5, DOI 10.1016/j.parint.2015.09.003; Martinsen ES, 2008, MOL PHYLOGENET EVOL, V47, P261, DOI 10.1016/j.ympev.2007.11.012; Martinsen ES, 2016, SCI ADV, V2, DOI 10.1126/sciadv.1501486; Martinsen ES, 2013, MALARIA PARASITES: COMPARATIVE GENOMICS , EVOLUTION AND MOLECULAR BIOLOGY, P1; McCutchan TF, 1996, P NATL ACAD SCI USA, V93, P11889, DOI 10.1073/pnas.93.21.11889; McIntosh MT, 1998, MOL BIOCHEM PARASIT, V95, P69, DOI 10.1016/S0166-6851(98)00093-0; Miller MA, 2010, GAT COMP ENV WORKSH, DOI [DOI 10.1109/GCE.2010.5676129, 10.1109/gce.2010.5676129]; Mirarab S, 2014, BIOINFORMATICS, V30, pI541, DOI 10.1093/bioinformatics/btu462; Mirarab S, 2015, BIOINFORMATICS, V31, P44, DOI 10.1093/bioinformatics/btv234; Mooers AO, 2000, TRENDS ECOL EVOL, V15, P365, DOI 10.1016/S0169-5347(00)01934-0; Nikbakht H, 2014, GENOME, V57, P507, DOI 10.1139/gen-2014-0158; Nygaard S, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1001099; O'Grady P, 2008, BIOL LETTERS, V4, P195, DOI 10.1098/rsbl.2007.0575; O'Grady PM, 2009, FLY, V3, P10, DOI 10.4161/fly.3.1.7748; Outlaw DC, 2011, P NATL ACAD SCI USA, V108, P13183, DOI 10.1073/pnas.1109153108; Pacheco MA, 2018, MOL BIOL EVOL, V35, P383, DOI 10.1093/molbev/msx285; Palinauskas V, 2013, EXP PARASITOL, V133, P275, DOI 10.1016/j.exppara.2012.12.003; Peden J, 1997, CODONW; Perkins SL, 2002, J PARASITOL, V88, P972, DOI 10.1645/0022-3395(2002)088[0972:AMPOMP]2.0.CO;2; Perkins SL, 2016, TRENDS PARASITOL, V32, P772, DOI 10.1016/j.pt.2016.06.001; Perkins SL, 2014, J PARASITOL, V100, P11, DOI 10.1645/13-362.1; Philippe H, 2017, EUR J TAXON, V283, P1, DOI 10.5852/ejt.2017.283; Pick C, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-167; Pineda-Catalan O, 2013, J PARASITOL, V99, P1089, DOI 10.1645/13-296.1; Plotkin JB, 2011, NAT REV GENET, V12, P32, DOI 10.1038/nrg2899; Prugnolle F, 2013, P NATL ACAD SCI USA, V110, P8123, DOI 10.1073/pnas.1306004110; Qari SH, 1996, MOL PHYLOGENET EVOL, V6, P157, DOI 10.1006/mpev.1996.0068; R Core Team, 2014, R LANG ENV STAT COMP; Rambaut A, 2001, NATURE, V410, P1047, DOI 10.1038/35074179; Rambaut A, 2014, TRACER V1 5; Revell LJ, 2012, METHODS ECOL EVOL, V3, P217, DOI 10.1111/j.2041-210X.2011.00169.x; Rota-Stabelli O, 2013, SYST BIOL, V62, P121, DOI 10.1093/sysbio/sys077; Rutledge GG, 2017, NATURE, V542, P101, DOI 10.1038/nature21038; Salichos L, 2013, NATURE, V497, P327, DOI 10.1038/nature12130; Schaer J, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-07093-z; Schaer J, 2015, INT J PARASITOL, V45, P375, DOI 10.1016/j.ijpara.2015.01.008; Schaer J, 2013, P NATL ACAD SCI USA, V110, P17415, DOI 10.1073/pnas.1311016110; Schoch CL, 2009, SYST BIOL, V58, P224, DOI 10.1093/sysbio/syp020; Sharp PM, 2010, PHILOS T R SOC B, V365, P1203, DOI 10.1098/rstb.2009.0305; SHARP PM, 1986, NUCLEIC ACIDS RES, V14, P5125, DOI 10.1093/nar/14.13.5125; Silva JC, 2015, MOL BIOL EVOL, V32, P1354, DOI 10.1093/molbev/msv005; Singer GAC, 2000, MOL BIOL EVOL, V17, P1581, DOI 10.1093/oxfordjournals.molbev.a026257; Souto RP, 1996, MOL BIOCHEM PARASIT, V83, P141, DOI 10.1016/S0166-6851(96)02755-7; Stamatakis A, 2014, BIOINFORMATICS, V30, P1312, DOI 10.1093/bioinformatics/btu033; Suzuki Y, 1997, MOL BIOL EVOL, V14, P800, DOI 10.1093/oxfordjournals.molbev.a025820; Talavera-Lopez C, 2017, PLOS NEGLECT TROP D, V11, DOI 10.1371/journal.pntd.0005463; Tarrio R, 2000, MOL PHYLOGENET EVOL, V16, P344, DOI 10.1006/mpev.2000.0813; TELFORD SR, 1979, J PARASITOL, V65, P409, DOI 10.2307/3280285; Templeton TJ, 2016, PARASITOLOGY, V143, P1501, DOI 10.1017/S0031182016001141; Valkiunas G., 2004, AVIAN MALARIA PARASI; Videvall E, 2017, MOL ECOL, V26, P2939, DOI 10.1111/mec.14085; Witsenburg F, 2012, MALARIA J, V11, DOI 10.1186/1475-2875-11-53; WRIGHT F, 1990, GENE, V87, P23, DOI 10.1016/0378-1119(90)90491-9; Yabsley MJ, 2018, MALARIA J, V17, DOI 10.1186/s12936-017-2165-5; Zhong M, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-369; Zwickl DJ, 2002, SYST BIOL, V51, P588, DOI 10.1080/10635150290102339 105 2 2 2 2 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 2054-5703 ROY SOC OPEN SCI R. Soc. Open Sci. MAY 2018 5 5 171780 10.1098/rsos.171780 16 Multidisciplinary Sciences Science & Technology - Other Topics GH5TA WOS:000433498000032 29892372 DOAJ Gold 2018-11-22 J Morris, AB; Shaw, J Morris, Ashley B.; Shaw, Joey Markers in time and space: A review of the last decade of plant phylogeographic approaches MOLECULAR ECOLOGY English Review chloroplast DNA; divergence time estimation; ecological niche modelling; plant phylogeography ECOLOGICAL NICHE MODELS; CHLOROPLAST DNA; EVOLUTIONARY BIOLOGY; NONCODING REGIONS; NORTH-AMERICA; DATA SETS; TORTOISE; DIVERSIFICATION; ANGIOSPERMS; INTEGRATION Plant studies comprise a relatively small proportion of the phylogeographic literature, likely as a consequence of the fundamental challenges posed by the complex genomic structures and life history strategies of these organisms. Comparative plastomics (i.e., comparisons of mutation rates within and among regions of the chloroplast genome) across plant lineages has led to an increased understanding of which markers are likely to provide the most information at low taxonomic levels. However, the extent to which the results of such work have influenced the literature has not been fully assessed, nor has the extent to which plant phylogeographers explicitly analyse markers in time and space, both of which are integral components of the field. Here, we reviewed more than 400 publications from the last decade of plant phylogeography to specifically address the following questions: (i) What is the phylogenetic breadth of studies to date? (ii) What molecular markers have been used, and why were they chosen? (iii) What kinds of markers are most frequently used and in what combinations? (iv) How frequently are divergence time estimation and ecological niche modelling used in plant phylogeography? Our results indicate that chloroplast DNA sequence data remain the primary tool of choice, followed distantly by nuclear DNA sequences and microsatellites. Less than half (42%) of all studies use divergence time estimation, while even fewer use ecological niche modelling (14%). We discuss the implications of our findings, as well as the need for community standards on data reporting. [Morris, Ashley B.] Middle Tennessee State Univ, Dept Biol, Murfreesboro, TN 37130 USA; [Morris, Ashley B.] Middle Tennessee State Univ, Ctr Mol Biosci, Murfreesboro, TN 37130 USA; [Shaw, Joey] Univ Tennessee, Dept Biol Geol & Environm Sci, Chattanooga, TN USA Morris, AB (reprint author), Middle Tennessee State Univ, Dept Biol, Murfreesboro, TN 37130 USA. ashley.morris@mtsu.edu Alvarado-Serrano DF, 2014, MOL ECOL RESOUR, V14, P233, DOI 10.1111/1755-0998.12184; Andres JA, 2011, METHODS MOL BIOL, V772, P211, DOI 10.1007/978-1-61779-228-1_12; [Anonymous], 2013, PLANT LIST VERS 1 1; Avise J. C., 2000, PHYLOGEOGRAPHY HIST; Beck J, 2014, ECOL INFORM, V19, P10, DOI 10.1016/j.ecoinf.2013.11.002; Beheregaray LB, 2008, MOL ECOL, V17, P3754, DOI 10.1111/j.1365-294X.2008.03857.x; Boria RA, 2014, ECOL MODEL, V275, P73, DOI 10.1016/j.ecolmodel.2013.12.012; Brown JL, 2016, AM J BOT, V103, P153, DOI 10.3732/ajb.1500117; Carstens BC, 2007, EVOLUTION, V61, P1439, DOI 10.1111/j.1558-5646.2007.00117.x; Carstens BC, 2017, MOL PHYLOGENET EVOL, V116, P136, DOI 10.1016/j.ympev.2017.08.018; Chan LM, 2011, MOL PHYLOGENET EVOL, V59, P523, DOI 10.1016/j.ympev.2011.01.020; Collevatti RG, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00653; Davey JW, 2011, NAT REV GENET, V12, P499, DOI 10.1038/nrg3012; de Lima NE, 2014, J BIOGEOGR, V41, P673, DOI 10.1111/jbi.12269; Drummond AJ, 2012, MOL BIOL EVOL, V29, P1969, DOI 10.1093/molbev/mss075; Edwards SV, 2016, P NATL ACAD SCI USA, V113, P8025, DOI 10.1073/pnas.1601066113; Egan AN, 2012, AM J BOT, V99, P175, DOI 10.3732/ajb.1200020; Ekblom R, 2011, HEREDITY, V107, P1, DOI 10.1038/hdy.2010.152; Emerson KJ, 2010, P NATL ACAD SCI USA, V107, P16196, DOI 10.1073/pnas.1006538107; FitzJohn RG, 2014, J ECOL, V102, P1266, DOI 10.1111/1365-2745.12260; Garrick RC, 2015, MOL ECOL, V24, P1164, DOI 10.1111/mec.13108; Gavin DG, 2014, NEW PHYTOL, V204, P37, DOI 10.1111/nph.12929; Guichoux E, 2011, MOL ECOL RESOUR, V11, P591, DOI 10.1111/j.1755-0998.2011.03014.x; Hey J, 2007, P NATL ACAD SCI USA, V104, P2785, DOI 10.1073/pnas.0611164104; Hickerson MJ, 2006, EVOLUTION, V60, P2435; Hipp AL, 2018, NEW PHYTOL, V217, P439, DOI 10.1111/nph.14773; Hipsley CA, 2014, FRONT GENET, V5, DOI 10.3389/fgene.2014.00138; Knowles LL, 2002, MOL ECOL, V11, P2623, DOI 10.1046/j.1365-294X.2002.01637.x; Kozak KH, 2008, TRENDS ECOL EVOL, V23, P141, DOI 10.1016/j.tree.2008.02.001; Kumar S, 2016, MOL BIOL EVOL, V33, P863, DOI 10.1093/molbev/msw026; Lance SL, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0081853; Larson-Johnson K, 2016, NEW PHYTOL, V209, P418, DOI 10.1111/nph.13570; Lexer C, 2013, J BIOGEOGR, V40, P1013, DOI 10.1111/jbi.12076; Lozier JD, 2009, J BIOGEOGR, V36, P1623, DOI 10.1111/j.1365-2699.2009.02152.x; Maldonado C, 2015, GLOBAL ECOL BIOGEOGR, V24, P973, DOI 10.1111/geb.12326; Manos PS, 2007, SYSTEMATIC BIOL, V56, P412, DOI 10.1080/10635150701408523; McCormack JE, 2013, MOL PHYLOGENET EVOL, V66, P526, DOI 10.1016/j.ympev.2011.12.007; O'Reilly JE, 2015, TRENDS GENET, V31, P637, DOI 10.1016/j.tig.2015.08.001; Petit RJ, 2007, PHYLOGEOGRAPHY OF SOUTHERN EUROPEAN REFUGIA, P23, DOI 10.1007/1-4020-4904-8_2; Prince LM, 2015, APPL PLANT SCI, V3, DOI 10.3732/apps.1400085; Romeiro-Brito M, 2016, APPL PLANT SCI, V4, DOI 10.3732/apps.1500074; Roskov Y., 2017, SPECIES 2000 ITIS C; Sarkinen T, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0082266; Schaal BA, 1998, MOL ECOL, V7, P465, DOI 10.1046/j.1365-294x.1998.00318.x; Schellenberg JJ, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0146510; Selkoe KA, 2006, ECOL LETT, V9, P615, DOI 10.1111/j.1461-0248.2006.00889.x; Shaw J, 2005, AM J BOT, V92, P142, DOI 10.3732/ajb.92.1.142; Shaw J, 2007, AM J BOT, V94, P275, DOI 10.3732/ajb.94.3.275; Shaw J, 2014, AM J BOT, V101, P1987, DOI 10.3732/ajb.1400398; Soltis DE, 2006, MOL ECOL, V15, P4261, DOI 10.1111/j.1365-294X.2006.03061.x; Soltis Douglas E., 2016, Plant Diversity, V38, P264, DOI 10.1016/j.pld.2016.12.001; Soltis PS, 2017, AM J BOT, V104, P1281, DOI 10.3732/ajb.1700281; Sork VL, 2016, P NATL ACAD SCI USA, V113, P8064, DOI 10.1073/pnas.1602675113; Stevens PF., 2017, ANGIOSPERM PHYLOGENY; TABERLET P, 1991, PLANT MOL BIOL, V17, P1105, DOI 10.1007/BF00037152; Waltari E, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000563; WOLFE KH, 1987, P NATL ACAD SCI USA, V84, P9054, DOI 10.1073/pnas.84.24.9054; Zimmer EA, 2015, J SYST EVOL, V53, P371, DOI 10.1111/jse.12174 58 0 0 15 16 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. MAY 2018 27 10 2317 2333 10.1111/mec.14695 17 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GH6YC WOS:000433589000001 29675939 2018-11-22 J Vedder, O; Bouwhuis, S Vedder, Oscar; Bouwhuis, Sandra Heterogeneity in individual quality in birds: overall patterns and insights from a study on common terns OIKOS English Article LIFETIME REPRODUCTIVE SUCCESS; LONG-LIVED SEABIRD; AGE-SPECIFIC REPRODUCTION; KESTREL FALCO-TINNUNCULUS; TIT PARUS-MAJOR; NATURAL-SELECTION; GREAT TITS; BROOD SIZE; ENVIRONMENTAL VARIABILITY; DYNAMIC HETEROGENEITY While life-history theory predicts a tradeoff between reproduction and survival, positive covariance, indicative of heterogeneity in individual quality, is often reported among individuals from natural populations. We review longitudinal studies of wild bird populations that test the relationship between annual reproductive success and lifespan and find the majority to report a positive correlation, while none reports a negative correlation. Heterogeneity in individual quality in resource acquisition, masking resource-based tradeoffs, therefore appears to be common in birds. Considering that there is little evidence for heritable variation in fitness, heterogeneity in individual quality among adults may be due to life-long effects of developmental conditions. In a 20-year case study on common terns Sterna hirundo, we test for life-long effects of cohort quality and within-cohort nest quality, but find no significant effects on long-term proxies of quality. Since other studies do find strong life-long effects of developmental conditions, we suggest that the brood reduction strategy adopted by common terns, causing the majority of offspring to die rapidly after hatching, efficiently reduces variation in offspring quality at independence. As such, a brood reduction strategy may contribute to reduced heterogeneity in adult survival in stochastic environments, both suggested to be more common and adaptive in long-lived species. Further study is required to assess heterogeneity in individual reproduction, especially in relation to environmental stochasticity and species' life-history strategies, in order to assess whether the relative strength of selection in early and late life may indeed affect the magnitude of heterogeneity in individual quality over life, and how this is mediated by parent-offspring conflict. [Vedder, Oscar; Bouwhuis, Sandra] Inst Avian Res Vogelwarte Helgoland, Vogelwarte 21, DE-26386 Wilhelmshaven, Germany; [Vedder, Oscar] Univ Groningen, Groningen Inst Evolutionary Life Sci, POB 11103, NL-9700 CC Groningen, Netherlands Vedder, O (reprint author), Inst Avian Res Vogelwarte Helgoland, Vogelwarte 21, DE-26386 Wilhelmshaven, Germany. oscarvedder@hotmail.com 'Veni' grant of the division Earth and Life Sciences (ALW) of the Netherlands Organisation for Scientific Research (NWO) [863.14.010] O. Vedder was supported by a 'Veni' grant (863.14.010) of the division Earth and Life Sciences (ALW) of the Netherlands Organisation for Scientific Research (NWO). Aubry LM, 2009, ECOLOGY, V90, P2491, DOI 10.1890/08-1475.1; Balbontin J, 2012, J EVOLUTION BIOL, V25, P2298, DOI 10.1111/j.1420-9101.2012.02606.x; Balbontin J, 2007, J ANIM ECOL, V76, P915, DOI 10.1111/j.1365-2656.2007.01269.x; Becker PH, 2008, P NATL ACAD SCI USA, V105, P12349, DOI 10.1073/pnas.0804179105; Becker Peter H., 2004, BWP Update, V6, P91; Beckerman AP, 2002, TRENDS ECOL EVOL, V17, P263, DOI 10.1016/S0169-5347(02)02469-2; Blas J, 2009, ECOGRAPHY, V32, P647, DOI 10.1111/j.1600-0587.2008.05700.x; Bonnet T, 2016, AM NAT, V187, P60, DOI 10.1086/684158; Boonekamp JJ, 2014, ECOL LETT, V17, P599, DOI 10.1111/ele.12263; Bouwhuis S, 2009, P R SOC B, V276, P2769, DOI 10.1098/rspb.2009.0457; Bouwhuis S., 2017, EVOLUTION SENESCENCE; Bouwhuis S, 2015, EVOLUTION, V69, P1760, DOI 10.1111/evo.12692; Bouwhuis S, 2010, J AVIAN BIOL, V41, P615, DOI 10.1111/j.1600-048X.2010.05111.x; Bouwhuis S, 2010, J ANIM ECOL, V79, P1251, DOI 10.1111/j.1365-2656.2010.01730.x; Brown WP, 2009, ECOLOGY, V90, P218, DOI 10.1890/07-2061.1; Cam E, 2003, J ANIM ECOL, V72, P411, DOI 10.1046/j.1365-2656.2003.00708.x; Cam E, 2016, TRENDS ECOL EVOL, V31, P872, DOI 10.1016/j.tree.2016.08.002; Cam E, 2011, J ORNITHOL, V152, P187, DOI 10.1007/s10336-011-0707-0; Caswell H, 2001, MATRIX POPULATION MO; DAAN S, 1990, BEHAVIOUR, V114, P83, DOI 10.1163/156853990X00068; Danhardt A, 2011, ECOSYSTEMS, V14, P791, DOI 10.1007/s10021-011-9445-7; Descamps S, 2016, J EVOLUTION BIOL, V29, P1860, DOI 10.1111/jeb.12901; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; Drummond H, 2013, J EVOLUTION BIOL, V26, P625, DOI 10.1111/jeb.12087; Erikstad KE, 1998, ECOLOGY, V79, P1781; Evans SR, 2011, EVOLUTION, V65, P1623, DOI 10.1111/j.1558-5646.2011.01253.x; Fay R, 2017, FUNCT ECOL, V31, P1275, DOI 10.1111/1365-2435.12831; Fisher R. A., 1930, GENETICAL THEORY NAT; Froy H, 2013, ECOL LETT, V16, P642, DOI 10.1111/ele.12092; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Gimenez O, 2018, OIKOS, V127, P664, DOI 10.1111/oik.04532; Grafen A., 1988, REPROD SUCCESS, P454; GUSTAFSSON L, 1986, AM NAT, V128, P761, DOI 10.1086/284601; Hamel S, 2009, J ANIM ECOL, V78, P143, DOI 10.1111/j.1365-2656.2008.01459.x; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Hammers M, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040413; HOWE HF, 1976, ECOLOGY, V57, P1195, DOI 10.2307/1935044; Kim SY, 2011, OECOLOGIA, V166, P615, DOI 10.1007/s00442-011-1914-3; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; KOZLOWSKI J, 1989, EVOLUTION, V43, P1369, DOI 10.1111/j.1558-5646.1989.tb02588.x; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LAZARUS J, 1986, ANIM BEHAV, V34, P1791, DOI 10.1016/S0003-3472(86)80265-2; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Lopez-Idiaquez D, 2016, ECOL EVOL, V6, P1224, DOI 10.1002/ece3.1910; MAGRATH RD, 1989, NATURE, V339, P536, DOI 10.1038/339536a0; McCleery RH, 2004, AM NAT, V164, pE62, DOI 10.1086/422660; Medawar PB, 1952, UNSOLVED PROBLEM BIO; Merila J, 2000, AM NAT, V155, P301, DOI 10.1086/303330; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Millon A, 2011, J ANIM ECOL, V80, P968, DOI 10.1111/j.1365-2656.2011.01842.x; MOCK DW, 1995, TRENDS ECOL EVOL, V10, P130, DOI 10.1016/S0169-5347(00)89014-X; Muller M, 2013, AM NAT, V181, P125, DOI 10.1086/668601; Peron G, 2016, EVOLUTION, V70, P2909, DOI 10.1111/evo.13098; Pfister CA, 1998, P NATL ACAD SCI USA, V95, P213, DOI 10.1073/pnas.95.1.213; Postma E, 2014, QUANTITATIVE GENETICS IN THE WILD, P16; Potti J, 2013, J EVOLUTION BIOL, V26, P1445, DOI 10.1111/jeb.12145; RASBASH J, 2005, USERS GUIDE MLWIN VE; Reid JM, 2003, J ANIM ECOL, V72, P36, DOI 10.1046/j.1365-2656.2003.00673.x; Roff D. A., 2002, LIFE HIST EVOLUTION; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Saino N, 2012, J ANIM ECOL, V81, P1004, DOI 10.1111/j.1365-2656.2012.01989.x; Schroeder J, 2012, J EVOLUTION BIOL, V25, P149, DOI 10.1111/j.1420-9101.2011.02412.x; Schroeder J, 2015, P NATL ACAD SCI USA, V112, P4021, DOI 10.1073/pnas.1422715112; SLAGSVOLD T, 1984, AUK, V101, P685, DOI 10.2307/4086895; Stearns S., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Steiner UK, 2010, J ANIM ECOL, V79, P436, DOI 10.1111/j.1365-2656.2009.01653.x; Szostek KL, 2012, J ORNITHOL, V153, P313, DOI 10.1007/s10336-011-0745-7; TEMME DH, 1987, J THEOR BIOL, V126, P137, DOI 10.1016/S0022-5193(87)80225-4; Teplitsky C, 2009, EVOLUTION, V63, P716, DOI 10.1111/j.1558-5646.2008.00581.x; TINBERGEN JM, 1990, BEHAVIOUR, V114, P161, DOI 10.1163/156853990X00103; Torres R, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0027245; Tuljapurkar S, 2009, ECOL LETT, V12, P93, DOI 10.1111/j.1461-0248.2008.01262.x; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; Van de Pol M, 2006, J ANIM ECOL, V75, P616, DOI 10.1111/j.1365-2656.2006.01079.x; van de Pol MV, 2009, ANIM BEHAV, V77, P753, DOI 10.1016/j.anbehav.2008.11.006; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vedder O, 2017, P ROY SOC B-BIOL SCI, V284, DOI 10.1098/rspb.2016.2724; Visser ME, 1999, OIKOS, V85, P445, DOI 10.2307/3546694; Wheelwright NT, 2014, EVOLUTION, V68, P3325, DOI 10.1111/evo.12499; Wilkin TA, 2009, CURR BIOL, V19, P1998, DOI 10.1016/j.cub.2009.09.065; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002; Zhang H, 2015, J ANIM ECOL, V84, P797, DOI 10.1111/1365-2656.12321; Zhang H, 2015, ECOLOGY, V96, P71, DOI 10.1890/14-0064.1 86 2 2 15 15 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos MAY 2018 127 5 719 727 10.1111/oik.04273 9 Ecology Environmental Sciences & Ecology GF5RM WOS:000432025300006 2018-11-22 J Ohlberger, J; Ward, EJ; Schindler, DE; Lewis, B Ohlberger, Jan; Ward, Eric J.; Schindler, Daniel E.; Lewis, Bert Demographic changes in Chinook salmon across the Northeast Pacific Ocean FISH AND FISHERIES English Article age composition; climate; fishing; population demography; predation; size-structure WHALES ORCINUS-ORCA; MARINE MAMMAL PREDATORS; LIFE-HISTORY; POPULATION-DYNAMICS; BODY-SIZE; ONCORHYNCHUS-TSHAWYTSCHA; BRITISH-COLUMBIA; STABLE-ISOTOPE; TIME-SERIES; WEST-COAST The demographic structure of populations is affected by life history strategies and how these interact with natural and anthropogenic factors such as exploitation, climate change, and biotic interactions. Previous work suggests that the mean size and age of some North American populations of Chinook salmon (Oncorhynchus tshawytscha, Salmonidae) are declining. These trends are of concern because Chinook salmon are highly valued commercially for their exceptional size and because the loss of the largest and oldest individuals may lead to reduced population productivity. Using long-term data from wild and hatchery populations, we quantified changes in the demographic structure of Chinook salmon populations over the past four decades across the Northeast Pacific Ocean, from California through western Alaska. Our results show that wild and hatchery fish are becoming smaller and younger throughout most of the Pacific coast. Proportions of older age classes have decreased over time in most regions. Simultaneously, the length-at-age of older fish has declined while the length-at-age of younger fish has typically increased. However, negative size trends of older ages were weak or non-existent at the southern end of the range. While it remains to be explored whether these trends are caused by changes in climate, fishing practices or species interactions such as predation, our qualitative review of the potential causes of demographic change suggests that selective removal of large fish has likely contributed to the apparent widespread declines in average body sizes. [Ohlberger, Jan; Schindler, Daniel E.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA; [Ward, Eric J.] NOAA, Conservat Biol Div, Northwest Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA USA; [Lewis, Bert] Alaska Dept Fish & Game, Commercial Fisheries Div, 333 Raspberry Rd, Anchorage, AK 99518 USA Ohlberger, J (reprint author), Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA. janohl@uw.edu Ohlberger, Jan/0000-0001-6795-240X Cook Inlet Salmon Disaster Technical Committee through the Pacific States Marine Fisheries Commission Cook Inlet Salmon Disaster Technical Committee through the Pacific States Marine Fisheries Commission Adams J, 2016, ECOL INFORM, V34, P44, DOI 10.1016/j.ecoinf.2016.04.010; Allen B. M., 2013, NMFSAFSC277 NOAA US; Anderson CNK, 2008, NATURE, V452, P835, DOI 10.1038/nature06851; Bigler BS, 1996, CAN J FISH AQUAT SCI, V53, P455, DOI 10.1139/cjfas-53-2-455; Bromaghin JF, 2011, NAT RESOUR MODEL, V24, P1, DOI 10.1111/j.1939-7445.2010.00077.x; Bugaev A.V, 2015, IZVESTIA TINRO, V180, P273; Burnham KP, 2002, MODEL SELECTION MULT; Calduch-Verdiell N, 2014, CAN J FISH AQUAT SCI, V71, P1113, DOI 10.1139/cjfas-2014-0034; Center for Whale Research, 2017, SO RES KILL WHAL ID; Chasco B, 2017, CAN J FISH AQUAT SCI, V74, P1173, DOI 10.1139/cjfas-2016-0203; Chasco BE, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-14984-8; Cheung WWL, 2013, NAT CLIM CHANGE, V3, P254, DOI 10.1038/NCLIMATE1691; Chinook Technical Committee (CTC), 2016, 1602 CTC TCCHINOOK P; EBENMAN B, 1988, SIZE STRUCTURED POPU; Eldridge WH, 2010, ECOL APPL, V20, P1936, DOI 10.1890/09-1186.1; Ellis G. M., 2007, NO RESIDENT KILLER W; Ford JKB, 1998, CAN J ZOOL, V76, P1456, DOI 10.1139/cjz-76-8-1456; Ford JKB, 2006, MAR ECOL PROG SER, V316, P185, DOI 10.3354/meps316185; Gardner JL, 2011, TRENDS ECOL EVOL, V26, P285, DOI 10.1016/j.tree.2011.03.005; Hanson M. Bradley, 2010, Endangered Species Research, V11, P69, DOI 10.3354/esr00263; Hard J. J., 2009, P AM FISH SOC S, V70, P759; Hare SR, 1999, FISHERIES, V24, P6, DOI 10.1577/1548-8446(1999)024<0006:IPR>2.0.CO;2; Healey M. C., 1984, CAN J FISH AQUAT SCI, V41, P1; Healey M. C, 1991, PACIFIC SALMON LIFE, P313; Herman DP, 2005, MAR ECOL PROG SER, V302, P275, DOI 10.3354/meps302275; Hilborn R, 2012, EFFECTS SALMON FISHE; Hixon MA, 2014, ICES J MAR SCI, V71, P2171, DOI 10.1093/icesjms/fst200; Holmes EE, 2012, R J, V4, P11; Hosmer D. V, 2013, APPL LOGISTIC REGRES, DOI [10.1002/9781118548387, DOI 10.1002/9781118548387]; Hsieh CH, 2006, NATURE, V443, P859, DOI 10.1038/nature05232; Hutchings JA, 2005, PHILOS T ROY SOC B, V360, P315, DOI 10.1098/rstb.2004.1586; Irvine JR, 2009, 1199 NPAFC, V11991, P153; Jeffrey KM, 2017, CAN J FISH AQUAT SCI, V74, P191, DOI 10.1139/cjfas-2015-0600; Jenkins TM, 1999, ECOLOGY, V80, P941, DOI 10.1890/0012-9658(1999)080[0941:EOPDOI]2.0.CO;2; Johnson SP, 2009, ECOL RES, V24, P855, DOI 10.1007/s11284-008-0559-0; Johnstone JA, 2014, P NATL ACAD SCI USA, V111, P14360, DOI 10.1073/pnas.1318371111; JTC (Joint Technical Committee of the Yukon River US/Canada Panel), 2006, 3A0607 JTC AL DEP FI; Kalnay E, 1996, B AM METEOROL SOC, V77, P437, DOI 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2; Kendall NW, 2011, T AM FISH SOC, V140, P611, DOI 10.1080/00028487.2011.585575; Kilduff DP, 2015, P NATL ACAD SCI USA, V112, P10962, DOI 10.1073/pnas.1503190112; Larson WA, 2013, CAN J FISH AQUAT SCI, V70, P128, DOI 10.1139/cjfas-2012-0233; Lewis B, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0130184; Magera AM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0077908; Mantua NJ, 1997, B AM METEOROL SOC, V78, P1069, DOI 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2; Matkin CO, 2014, MAR MAMMAL SCI, V30, P460, DOI 10.1111/mms.12049; McNicol RE, 2010, T AM FISH SOC, V139, P727, DOI 10.1577/T09-033.1; Moore JW, 2011, CAN J FISH AQUAT SCI, V68, P1161, DOI 10.1139/F2011-054; Muto M. M., 2017, NMFSAFSC355 NOAA US; Ohlberger J, 2016, ECOSPHERE, V7, DOI 10.1002/ecs2.1333; Ohlberger J, 2013, FUNCT ECOL, V27, P991, DOI 10.1111/1365-2435.12098; Pahlke K. A., 1989, FISHERY RES B, V89-02; Pinheiro J. C, 2010, MIXED EFFECTS MODELS; Popova T. A., 2015, RES AQUATIC BIOL RES, V38, P29; Quinn T. P., 2005, BEHAV ECOLOGY PACIFI; R Core Team, 2016, R LANG ENV STAT COMP; RICKER WE, 1981, CAN J FISH AQUAT SCI, V38, P1636, DOI 10.1139/f81-213; Ruggerone GT, 2015, CAN J FISH AQUAT SCI, V72, P818, DOI 10.1139/cjfas-2014-0134; Ruggerone Gregory T., 2009, North Pacific Anadromous Fish Commission Bulletin, V5, P279; Ruggerone GT, 2004, CAN J FISH AQUAT SCI, V61, P1756, DOI 10.1139/F04-112; Schindler D, 2013, ARCTIC YUKON KUSKOKW; Schindler DE, 2010, NATURE, V465, P609, DOI 10.1038/nature09060; Schindler DE, 2003, FRONT ECOL ENVIRON, V1, P31, DOI 10.2307/3867962; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; Sheridan JA, 2011, NAT CLIM CHANGE, V1, P401, DOI 10.1038/NCLIMATE1259; Stan Development Team, 2016, RSTAN R INT STAN R P; Stan Development Team, 2016, MOD LANG US GUID REF; Stopha M., 2017, 5J1704 AL DEP FISH G; Thomas AC, 2017, CAN J FISH AQUAT SCI, V74, P907, DOI 10.1139/cjfas-2015-0558; Van Doornik DM, 2013, N AM J FISH MANAGE, V33, P693, DOI 10.1080/02755947.2013.790861; WALTERS CJ, 1993, T AM FISH SOC, V122, P34, DOI 10.1577/1548-8659(1993)122<0034:DDGACA>2.3.CO;2; Ward EJ, 2016, ECOSPHERE, V7, DOI 10.1002/ecs2.1276; Ward E. J., 2018, ATSAR APPL TIME SERI, DOI [10. 5281/zenodo. 1158021, DOI 10.5281/ZEN0D0.1158021]; Weitkamp LA, 2010, T AM FISH SOC, V139, P147, DOI 10.1577/T08-225.1; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; Zuur AF, 2003, CAN J FISH AQUAT SCI, V60, P542, DOI 10.1139/F03-030 75 2 2 16 16 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1467-2960 1467-2979 FISH FISH Fish. Fish. MAY 2018 19 3 533 546 10.1111/faf.12272 14 Fisheries Fisheries GF5EY WOS:000431990200010 Other Gold 2018-11-22 J Cavraro, F; Gheno, G; Ganzerla, R; Zucchetta, M; Franzoi, P; Malavasi, S Cavraro, Francesco; Gheno, Giulia; Ganzerla, Renzo; Zucchetta, Matteo; Franzoi, Piero; Malavasi, Stefano Habitat constraints on carotenoid-based coloration in a small euryhaline teleost ECOLOGY AND EVOLUTION English Article carotenoids; coastal lagoons; habitat structure; killifish; life history STICKLEBACKS GASTEROSTEUS-ACULEATUS; KILLIFISH APHANIUS-FASCIATUS; GUPPIES POECILIA-RETICULATA; MALE MATING SUCCESS; MEDITERRANEAN KILLIFISH; LIGHTING ENVIRONMENT; BLUEFIN KILLIFISH; SEXUAL COLORATION; LUCANIA-GOODEI; CICHLID FISH Display of bright and striking color patterns is a widespread way of communication in many animal species. Carotenoid-based coloration accounts for most of the bright yellow, orange, and red displays in invertebrates, fish, amphibians, reptiles, and birds, being widely considered a signal of individual health. This type of coloration is under the influence of several factors, such as sexual selection, predator pressure, pigment availability, and light transmission. Fish offer numerous examples of visual communication by means of color patterns. We used a small cyprinodontid fish, Aphanius fasciatus (Valenciennes, 1821), as a model species to assess habitat constraints on the color display in male caudal fin. Populations from natural and open/closed artificial habitats were tested for differences in the pigmentation of caudal fins. The most important factors explaining the intensity of coloration were the habitat type and the chlorophyll concentration in the sediment, followed by water turbidity; yellow fins were observed in natural habitats with low chlorophyll concentration and high water turbidity, while orange fins occurred in artificial habitats with high chlorophyll concentration and low turbidity. Furthermore, A. fasciatus in artificial habitats showed a higher somatic and a lower reproductive allotment with respect to natural habitats, according to the existing literature on the species. Furthermore, in closed artificial habitats, where the most intense reddish coloration of caudal fins was observed, a trade-off between somatic growth and the coloration intensity of a carotenoid-based sexual ornament has been observed; in these populations, intensity of caudal fin coloration was negatively related to the somatic allotment. Results of this study suggested how both the pigmentation of male's caudal fin and the life history strategies of the species are constrained by habitat characteristics. [Cavraro, Francesco; Zucchetta, Matteo; Franzoi, Piero; Malavasi, Stefano] Ca Foscari Univ Venice, Dept Environm Sci Informat & Stat, Venice, Italy; [Gheno, Giulia; Ganzerla, Renzo] Ca Foscari Univ Venice, Dept Mol Sci & Nanosyst, Venice, Italy Cavraro, F (reprint author), Ca Foscari Univ Venice, Dept Environm Sci Informat & Stat, Venice, Italy. cavraro@unive.it Alonso-Alvarez C, 2008, J EVOLUTION BIOL, V21, P1789, DOI 10.1111/j.1420-9101.2008.01591.x; Andersson Staffan, 2000, P47; Brigolin D, 2016, ESTUAR COAST SHELF S, V172, P60, DOI 10.1016/j.ecss.2016.01.038; Brown AC, 2014, FUNCT ECOL, V28, P612, DOI 10.1111/1365-2435.12205; Burtt E. H. J., 1979, BEHAV SIGNIFICANCE C, P209; Candolin U, 2007, J EVOLUTION BIOL, V20, P233, DOI 10.1111/j.1420-9101.2006.01207.x; Cavraro F, 2013, BIOL BULL-US, V225, P71, DOI 10.1086/BBLv225n2p71; Cavraro F., 2013, Transitional Waters Bulletin, V7, P23; Cavraro F, 2017, ECOL ENG, V99, P228, DOI 10.1016/j.ecoleng.2016.11.045; Cavraro F, 2014, J SEA RES, V85, P205, DOI 10.1016/j.seares.2013.05.004; Clotfelter ED, 2007, BEHAV ECOL, V18, P1139, DOI 10.1093/beheco/arm090; Cott HB, 1940, ADAPTIVE COLORATION; Deutsch JC, 1997, BIOL J LINN SOC, V62, P1; ENDLER JA, 1988, PHILOS T ROY SOC B, V319, P505, DOI 10.1098/rstb.1988.0062; ENDLER JA, 1995, EVOLUTION, V49, P456, DOI 10.1111/j.1558-5646.1995.tb02278.x; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; ENDLER JA, 1992, AM NAT, V139, pS125, DOI 10.1086/285308; Evans MR, 1996, BEHAV ECOL, V7, P1, DOI 10.1093/beheco/7.1.1; FRISCHKNECHT M, 1993, EVOL ECOL, V7, P439, DOI 10.1007/BF01237640; Fuller RC, 2004, EVOLUTION, V58, P1086; Fuller RC, 2002, P ROY SOC B-BIOL SCI, V269, P1457, DOI 10.1098/rspb.2002.2042; Gandolfi G., 1991, PESCI ACQUE INTERNE, P361; Grether GF, 2000, EVOLUTION, V54, P1712; Grether GF, 1999, P ROY SOC B-BIOL SCI, V266, P1317, DOI 10.1098/rspb.1999.0781; Grether GF, 2001, P ROY SOC B-BIOL SCI, V268, P1245, DOI 10.1098/rspb.2001.1624; Hailman J.P., 1979, P289; Hill GE, 1996, ETHOL ECOL EVOL, V8, P157, DOI 10.1080/08927014.1996.9522926; HOLM-HANSEN OSMUND, 1965, J CONS CONS PERMS INTE EXPLOR MER, V30, P3; Johnson AM, 2015, BEHAV ECOL, V26, P158, DOI 10.1093/beheco/aru164; Kalinowski CT, 2005, AQUACULTURE, V244, P223, DOI 10.1016/j.aquaculture.2004.11.001; Kodric-Brown A, 1998, AM ZOOL, V38, P70; KODRICBROWN A, 1989, BEHAV ECOL SOCIOBIOL, V25, P393, DOI 10.1007/BF00300185; Latscha T., 1990, CAROTENOIDS THEIR NA; Leonardos I, 2008, SCI MAR, V72, P393; Levin N, 2005, INT J REMOTE SENS, V26, P5475, DOI 10.1080/01431160500099444; Maan ME, 2010, BIOL J LINN SOC, V99, P398, DOI 10.1111/j.1095-8312.2009.01368.x; MacIntyre HL, 1996, ESTUARIES, V19, P186, DOI 10.2307/1352224; Malavasi S, 2010, MAR FRESHW BEHAV PHY, V43, P157, DOI 10.1080/10236244.2010.480837; Maltagliati F, 1999, MAR ECOL PROG SER, V179, P155, DOI 10.3354/meps179155; Marshall NJ, 2000, PHILOS T ROY SOC B, V355, P1243, DOI 10.1098/rstb.2000.0676; McGraw KJ, 2005, ANIM BEHAV, V69, P757, DOI 10.1016/j.anbehav.2004.06.022; MCMAHON TE, 1988, J FISH BIOL, V32, P825, DOI 10.1111/j.1095-8649.1988.tb05426.x; Mcneil GV, 2016, BIOL J LINN SOC, V118, P551, DOI 10.1111/bij.12748; Olson VA, 1998, TRENDS ECOL EVOL, V13, P510, DOI 10.1016/S0169-5347(98)01484-0; Pauers M. J., 2011, INT J EVOLUTIONARY B, V2011; Pike TW, 2010, BIOL LETTERS, V6, P191, DOI 10.1098/rsbl.2009.0815; Pinheiro J., 2017, NLME LINEAR NONLINEA, DOI DOI 10.5194/TC-10-2291-2016; Pinheiro J. C., 2000, MIXED EFFECTS MODELS, DOI [10.1007/978-1-4419-0318-1, DOI 10.1007/978-1-4419-0318-1]; REIMCHEN TE, 1989, EVOLUTION, V43, P450, DOI 10.1111/j.1558-5646.1989.tb04239.x; Rowland W.J., 1979, P381; Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089; Svensson PA, 2006, FUNCT ECOL, V20, P689, DOI 10.1111/j.1365-2435.2006.01151.x; Vinkler M, 2010, NATURWISSENSCHAFTEN, V97, P19, DOI 10.1007/s00114-009-0595-9; Webster IT, 2002, ESTUARIES, V25, P540, DOI 10.1007/BF02804889; Zang LY, 1997, FREE RADICAL BIO MED, V23, P1086, DOI 10.1016/S0891-5849(97)00138-X; Zuur A.F., 2009, MIXED EFFECTS MODELS, P574, DOI DOI 10.1007/978-0-387-87458-6 56 0 0 8 8 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. MAY 2018 8 9 4422 4430 10.1002/ece3.4003 9 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology GF5DY WOS:000431987300006 29760884 DOAJ Gold, Green Published 2018-11-22 J McFarlane, SE; Alund, M; Sirkia, PM; Qvarnstrom, A McFarlane, S. Eryn; Alund, Murielle; Sirkia, Paivi M.; Qvarnstrom, Anna Difference in plasticity of resting metabolic rate - the proximate explanation to different niche breadth in sympatric Ficedula flycatchers ECOLOGY AND EVOLUTION English Article cross-fostering; Ficedula flycatchers; plasticity; resting metabolic rate PHENOTYPIC FLEXIBILITY; PIED FLYCATCHER; ENERGY-EXPENDITURE; SIBERIAN HAMSTERS; CLIMATE-CHANGE; CLUTCH SIZE; FOOD-INTAKE; BODY-MASS; COEXISTENCE; ADAPTATION Variation in relative fitness of competing recently formed species across heterogeneous environments promotes coexistence. However, the physiological traits mediating such variation in relative fitness have rarely been identified. Resting metabolic rate (RMR) is tightly associated with life history strategies, thermoregulation, diet use, and inhabited latitude and could therefore moderate differences in fitness responses to fluctuations in local environments, particularly when species have adapted to different climates in allopatry. We work in a long-term study of collared (Ficedula albicollis) and pied flycatchers (Ficedula hypoleuca) in a recent hybrid zone located on the Swedish island of Oland in the Baltic Sea. Here, we explore whether differences in RMR match changes in relative performance of growing flycatcher nestlings across environmental conditions using an experimental approach. The fitness of pied flycatchers has previously been shown to be less sensitive to the mismatch between the peak in food abundance and nestling growth among late breeders. Here, we find that pied flycatcher nestlings have lower RMR in response to higher ambient temperatures (associated with low food availability). We also find that experimentally relaxed nestling competition is associated with an increased RMR in this species. In contrast, collared flycatcher nestlings did not vary their RMR in response to these environmental factors. Our results suggest that a more flexible nestling RMR in pied flycatchers is responsible for the better adaptation of pied flycatchers to the typical seasonal changes in food availability experienced in this hybrid zone. Generally, subtle physiological differences that have evolved when species were in allopatry may play an important role to patterns of competition, coexistence, or displacements between closely related species in secondary contact. [McFarlane, S. Eryn; Alund, Murielle; Qvarnstrom, Anna] Uppsala Univ, Evolutionary Biol Ctr, Anim Ecol Ecol & Genet, Uppsala, Sweden; [Sirkia, Paivi M.] Univ Helsinki, Finnish Museum Nat Hist, Zool Unit, Helsinki, Finland; [Sirkia, Paivi M.] Univ Turku, Dept Biol, Sect Ecol, Turku, Finland; [McFarlane, S. Eryn] Univ Edinburgh, Inst Evolutionary Biol, Edinburgh, Midlothian, Scotland McFarlane, SE (reprint author), Uppsala Univ, Evolutionary Biol Ctr, Anim Ecol Ecol & Genet, Uppsala, Sweden. eryn.mcfarlane@gmail.com Vetenskapsradet [621-2012-3722]; Suomen Akatemia [267430]; Natural Sciences and Engineering Research Council of Canada [PGSD-444379-2013]; Stiftelsen for Zoologisk Forskning Vetenskapsradet, Grant/Award Number: 621-2012-3722; Suomen Akatemia, Grant/Award Number: 267430; Natural Sciences and Engineering Research Council of Canada, Grant/Award Number: PGSD-444379-2013; Stiftelsen for Zoologisk Forskning Amarasekare P, 2001, AM NAT, V158, P572, DOI 10.1086/323586; Amarasekare P, 2003, ECOL LETT, V6, P1109, DOI 10.1046/j.1461-0248.2003.00530.x; Bates D., 2014, LME4 LINEAR MIXED EF, DOI DOI 10.18637/JSS.V067.I01; Belmaker J, 2011, GLOBAL ECOL BIOGEOGR, V20, P464, DOI 10.1111/j.1466-8238.2010.00615.x; Boratynski JS, 2017, PHYSIOL BIOCHEM ZOOL, V90, P139, DOI 10.1086/689870; Boratynski JS, 2016, J COMP PHYSIOL B, V186, P387, DOI 10.1007/s00360-016-0959-3; Both C, 2004, P ROY SOC B-BIOL SCI, V271, P1657, DOI 10.1098/rspb.2004.2770; Both C., 2010, FOOD AVAILABILITY MI, P129; Broggi J, 2007, FUNCT ECOL, V21, P528, DOI 10.1111/j.1365-2435.2007.01255.x; Burton T, 2011, P ROY SOC B-BIOL SCI, V278, P3465, DOI 10.1098/rspb.2011.1778; Bushuev AV, 2012, J ZOOL, V288, P245, DOI 10.1111/j.1469-7998.2012.00947.x; Chesson P, 1997, AM NAT, V150, P519, DOI 10.1086/286080; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; CHESSON PL, 1981, AM NAT, V117, P923, DOI 10.1086/283778; Cramer ERA, 2016, EVOLUTION, V70, DOI 10.1111/evo.12986; Darwin C, 1859, ORIGIN SPECIES MEANS; Forstmeier W, 2011, BEHAV ECOL SOCIOBIOL, V65, P47, DOI 10.1007/s00265-010-1038-5; Hadfield JD, 2013, EVOLUTION, V67, P2701, DOI 10.1111/evo.12144; Handelsman CA, 2013, INTEGR COMP BIOL, V53, P975, DOI 10.1093/icb/ict057; Keller I, 2012, MOL ECOL, V21, P782, DOI 10.1111/j.1365-294X.2011.05397.x; KERSTEN M, 1987, ARDEA, V75, P175; Klaassen M, 2004, COMP BIOCHEM PHYS A, V137, P639, DOI 10.1016/j.cbpb.2003.12.004; Kuznetsova A, 2014, LMERTEST TESTS RANDO; LASIEWSKI R. C., 1964, CONDOR, V66, P212, DOI 10.2307/1365646; Lewden A, 2012, J COMP PHYSIOL B, V182, P381, DOI 10.1007/s00360-011-0625-8; Lighton J. R., 2008, MEASURING METABOLIC, DOI [10. 1093/acprof:oso/9780195310610. 001. 0001, DOI 10.1093/ACPR0F:0S0/9780195310610.001.0001]; Lourdais O, 2004, OIKOS, V104, P551, DOI 10.1111/j.0030-1299.2004.12961.x; Lovegrove BG, 2003, J COMP PHYSIOL B, V173, P87, DOI 10.1007/s00360-002-0309-5; Lundberg A., 1992, PIED FLYCATCHER; McFarlane SE, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0161547; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; McKechnie AE, 2008, J COMP PHYSIOL B, V178, P235, DOI 10.1007/s00360-007-0218-8; MORENO J, 1989, ORNIS SCAND, V20, P123, DOI 10.2307/3676879; MORENO J, 1995, J ANIM ECOL, V64, P721, DOI 10.2307/5851; Mueller P, 2001, P NATL ACAD SCI USA, V98, P12550, DOI 10.1073/pnas.221456698; Nadachowska-Brzyska K, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003942; Nakagawa S, 2013, METHODS ECOL EVOL, V4, P133, DOI 10.1111/j.2041-210x.2012.00261.x; Naya DE, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1629; Nilsson JA, 2009, J EVOLUTION BIOL, V22, P1867, DOI 10.1111/j.1420-9101.2009.01798.x; Pigot AL, 2013, ECOL LETT, V16, P330, DOI 10.1111/ele.12043; Qvarnstrom A, 2005, BIOL LETTERS, V1, P68, DOI 10.1098/rsbl.2004.0265; Qvarnstrom A, 2016, EVOL APPL, V9, P119, DOI 10.1111/eva.12276; Qvarnstrom A, 2010, PHILOS T R SOC B, V365, P1841, DOI 10.1098/rstb.2009.0306; Qvarnstrom A, 2009, ECOLOGY, V90, P1948, DOI 10.1890/08-0494.1; R Core Team, 2013, R LANG ENV STAT COMP; Ronning B, 2007, J EVOLUTION BIOL, V20, P1815, DOI 10.1111/j.1420-9101.2007.01384.x; Rybinski J, 2016, EVOLUTION, V70, P2226, DOI 10.1111/evo.13019; Sanz JJ, 1997, J AVIAN BIOL, V28, P157, DOI 10.2307/3677309; Schmidt-Nielsen K, 1997, ANIMAL PHYSL ADAPTAT; Sirkia PM, 2018, EVOLUTION, V72, P363, DOI 10.1111/evo.13404; Somero GN, 2010, J EXP BIOL, V213, P912, DOI 10.1242/jeb.037473; Song ZG, 2006, PHYSIOL BEHAV, V89, P704, DOI 10.1016/j.physbeh.2006.08.016; Speakman JR, 1996, PHYSIOL ZOOL, V69, P746, DOI 10.1086/physzool.69.4.30164228; Spicer J., 2009, PHYSL DIVERSITY ECOL; Stager M, 2016, ECOGRAPHY, V39, P787, DOI 10.1111/ecog.01465; Stenseth NC, 2002, SCIENCE, V297, P1292, DOI 10.1126/science.1071281; Swanson DL, 2017, J COMP PHYSIOL B, V187, P1039, DOI 10.1007/s00360-017-1096-3; Tayleur C, 2015, GLOBAL ECOL BIOGEOGR, V24, P859, DOI 10.1111/geb.12308; Vallin N, 2012, EVOL ECOL, V26, P927, DOI 10.1007/s10682-011-9536-0; Versteegh MA, 2008, COMP BIOCHEM PHYS A, V150, P452, DOI 10.1016/j.cbpa.2008.05.006; Visser ME, 1998, P ROY SOC B-BIOL SCI, V265, P1867, DOI 10.1098/rspb.1998.0514; Wallace A. R., 1878, TROPICAL NATURE OTHE, DOI [10. 5962/bhl. title. 1261, DOI 10.5962/BHL.TITLE.1261]; Wiley C, 2007, J EVOLUTION BIOL, V20, P854, DOI 10.1111/j.1420-9101.2007.01316.x; Zub K, 2014, BIOL J LINN SOC, V113, P297, DOI 10.1111/bij.12306 64 0 0 2 2 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. MAY 2018 8 9 4575 4586 10.1002/ece3.3987 12 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology GF5DY WOS:000431987300020 29760898 DOAJ Gold, Green Published 2018-11-22 J Araya-Ajoy, YG; Bolstad, GH; Brommer, J; Careau, V; Dingemanse, NJ; Wright, J Araya-Ajoy, Yimen G.; Bolstad, Geir H.; Brommer, Jon; Careau, Vincent; Dingemanse, Niels J.; Wright, Jonathan Demographic measures of an individual's "pace of life": fecundity rate, lifespan, generation time, or a composite variable? BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article Fast-slowcontinuum; Individual variation; Life history trade-offs; Multi-level variation FAST-SLOW CONTINUUM; POPULATION-GROWTH RATE; HISTORY VARIATION; MAMMALIAN POPULATIONS; EMPIRICAL-EVIDENCE; TRADE-OFFS; REPRODUCTION; TRAITS; COSTS; COVARIATION Comparative analyses have demonstrated the existence of a "pace-of-life" (POL) continuum of life-history strategies, from fast-reproducing short-lived species to slow-reproducing long-lived species. This idea has been extended to the concept of a "pace-of-life syndrome" (POLS), an axis of phenotypic covariation among individuals within species, concerning morphological, physiological, behavioral and life-history traits. Several life-history metrics can be used to place species in the fast-slow continuum; here, we asked whether individual variation in POL can also be studied using similar life-history measures. We therefore translated measures commonly used in demographic studies into individual-level estimates. We studied fecundity rate, generation time, lifespan, age at first reproduction, fecundity at first reproduction, and principal component scores integrating these different metrics. Using simulations, we show how demographic stochasticity and individual variation in resources affect the ability to predict an individual's POL using these individual-level parameters. We found that their accuracy depends on how environmental stochasticity varies with the species' position on the fast-slow continuum and with the amount of (co) variation in life-history traits caused by individual differences in resources. These results highlight the importance of studying the sources of life-history covariation to determine whether POL explains the covariation between morphological, physiological, and behavioral traits within species. Our simulations also show that quantifying not only among-individual but also among-population patterns of life-history covariation helps in interpreting demographic estimates in the study of POLSs within species. Significance statement It has been demonstrated that there is a continuum of life-history strategies, from fast-reproducing short-lived species to slow-reproducing long-lived species. This pattern of variation in the tempo of life-history strategies has been named the pace-of-life continuum. Recently, it has been suggested that within a population, variation in pace of life explains differences between individuals in their morphological, behavioral, and physiological traits. This paper provides guidelines on how to quantify the pace of life of individuals using demographic approaches that have been developed to study the pace of life of species. [Araya-Ajoy, Yimen G.; Wright, Jonathan] Norwegian Univ Sci & Technol NTNU, CBD, Dept Biol, N-7491 Trondheim, Norway; [Bolstad, Geir H.] Norwegian Inst Nat Res NINA, N-7485 Trondheim, Norway; [Brommer, Jon] Univ Turku, Dept Biol, Univ Hill, Turku 20014, Finland; [Careau, Vincent] Univ Ottawa, Dept Biol, Canada Res Chair Funct Ecol, Ottawa, ON K1N 6N5, Canada; [Dingemanse, Niels J.] Ludwig Maximilian Univ Munich LMU, Dept Biol, Behav Ecol, Planegg, Martinsried, Germany Araya-Ajoy, YG (reprint author), Norwegian Univ Sci & Technol NTNU, CBD, Dept Biol, N-7491 Trondheim, Norway. yimencr@gmail.com Brommer, Jon/C-3613-2008; Careau, Vincent/A-9778-2008 Brommer, Jon/0000-0002-2435-2612; Careau, Vincent/0000-0002-2826-7837 European Research Council [ERC-2010-AdG 268,562]; Research Council of Norway [SFF-III 223257/F50] We are grateful to the sponsors, organizers, and participants of the VW-funded workshops "Towards a general theory of POLS," Hannover 2015-6, which inspired this journal topical collection and provided feedback during discussions of earlier versions of the ideas presented here. We also thank Jean-Michel Gaillard, Melanie Dammhahn, Denis Reale, and one anonymous reviewer for the insightful comments during the reviewing process. This work was supported by the European Research Council (ERC-2010-AdG 268,562) and the Research Council of Norway (SFF-III 223257/F50). Araya-Ajoy YG, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2645; Bauwens D, 1997, AM NAT, V149, P91, DOI 10.1086/285980; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Bjorkvoll E, 2012, AM NAT, V180, P372, DOI 10.1086/666983; Charlesworth B, 1994, EVOLUTION AGE STRUCT; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; Dammhahn M, 2018, BEHAV ECOL SOCIOBIOL; Descamps S, 2016, J EVOLUTION BIOL, V29, P1860, DOI 10.1111/jeb.12901; Dingemanse NJ, 2010, ANIM BEHAV, V79, P439, DOI 10.1016/j.anbehav.2009.11.024; Ferrari SLP, 2004, J APPL STAT, V31, P799, DOI 10.1080/0266476042000214501; FRY JD, 1993, EVOLUTION, V47, P327, DOI 10.1111/j.1558-5646.1993.tb01224.x; Gaillard JM, 2005, AM NAT, V166, P119, DOI 10.1086/430330; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; Gaillard JM, 2016, ENCY EVOLUTIONARY BI, P312; Goodwin NB, 2006, CAN J FISH AQUAT SCI, V63, P494, DOI 10.1139/f05-234; Grace JB, 2010, ECOL MONOGR, V80, P67, DOI 10.1890/09-0464.1; Hamel S, 2010, ECOL LETT, V13, P915, DOI 10.1111/j.1461-0248.2010.01478.x; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; Kendall BE, 2010, AM NAT, V175, P461, DOI 10.1086/650724; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; MacNulty DR, 2009, ECOL LETT, V12, P1347, DOI 10.1111/j.1461-0248.2009.01385.x; Mathot KJ, 2018, BEHAV ECOL SOCIOBIOL; Montiglio P-O, 2018, BEHAV ECOL SOCIOBIOL; Oli MK, 2005, AM NAT, V166, P124, DOI 10.1086/430332; Oli MK, 2004, BASIC APPL ECOL, V5, P449, DOI 10.1016/j.baae.2004.06.002; Oli MK, 2003, AM NAT, V161, P422, DOI 10.1086/367591; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff D, 1993, EVOLUTION LIFE HIST; Saether BE, 2005, NATURE, V436, P99, DOI 10.1038/nature03666; Saether BE, 2004, AM NAT, V164, P793, DOI 10.1086/425371; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Salguero-Gomez R, 2016, P NATL ACAD SCI USA, V113, P230, DOI 10.1073/pnas.1506215112; Santostefano F, 2017, P R SOC B, V284, P1864; Stearns S., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Tarka M, 2018, BEHAV ECOL SOCIOBIOL; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002; Wilson AJ, 2010, J ANIM ECOL, V79, P13, DOI 10.1111/j.1365-2656.2009.01639.x 46 0 0 13 13 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. MAY 2018 72 5 UNSP 75 10.1007/s00265-018-2477-7 14 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology GF1PJ WOS:000431706500001 2018-11-22 J Hilderbrand, GV; Gustine, DD; Mangipane, BA; Joly, K; Leacock, W; Mangipane, LS; Erlenbach, J; Sorum, MS; Cameron, MD; Belant, JL; Cambier, T Hilderbrand, G. V.; Gustine, D. D.; Mangipane, B. A.; Joly, K.; Leacock, W.; Mangipane, L. S.; Erlenbach, J.; Sorum, M. S.; Cameron, M. D.; Belant, J. L.; Cambier, T. Body size and lean mass of brown bears across and within four diverse ecosystems JOURNAL OF ZOOLOGY English Article age; body size; brown bear; lean mass; Ursus arctos; intraspecific variation; niche variation NICHE VARIATION HYPOTHESIS; URSUS-ARCTOS; INDIVIDUAL-DIFFERENCES; NORTHERN CANADA; RESOURCE USE; GROWTH; SALMON; ECOLOGY; HABITAT; LENGTH Variation in body size across populations of brown bears (Ursus arctos) is largely a function of the availability and quality of nutritional resources while plasticity within populations reflects utilized niche width with implications for population resiliency. We assessed skull size, body length, and lean mass of adult female and male brown bears in four Alaskan study areas that differed in climate, primary food resources, population density, and harvest regime. Full body-frame size, as evidenced by asymptotic skull size and body length, was achieved by 8-14years of age across populations and sexes. Lean body mass of both sexes continued to increase throughout their life. Differences between populations existed for all morphological measures in both sexes, bears in ecosystems with abundant salmon were generally larger. Within all populations, broad variation was seen in body size measures of adults with females displaying roughly a 2-fold difference in lean mass and males showing a 3- to 4-fold difference. The high level of intraspecific variation seen across and within populations suggests the presence of multiple life-history strategies and niche variation relative to resource partitioning, risk tolerance or aversion, and competition. Furthermore, this level of variation indicates broad potential to adapt to changes within a given ecosystem and across the species' range. [Hilderbrand, G. V.] US Geol Survey, Alaska Sci Ctr, Univ Dr, Anchorage, AK 99508 USA; [Gustine, D. D.] Natl Pk Serv, Grand Teton Natl Pk, Moose, WY USA; [Mangipane, B. A.] Natl Pk Serv, Lake Clark Natl Pk & Preserve, Port Alsworth, AK USA; [Joly, K.; Sorum, M. S.; Cameron, M. D.] Natl Pk Serv, Gates Arctic Natl Pk & Preserve, Fairbanks, AK USA; [Leacock, W.] US Fish & Wildlife Serv, Kodiak Natl Wildlife Refuge, Kodiak, AK USA; [Mangipane, L. S.; Belant, J. L.] Mississippi State Univ, Forest & Wildlife Res Ctr, Carnivore Ecol Lab, Mississippi State, MS 39762 USA; [Erlenbach, J.] Washington State Univ, Dept Zool, Pullman, WA 99164 USA; [Cambier, T.] Chena River Aviat, Fairbanks, AK USA Hilderbrand, GV (reprint author), US Geol Survey, Alaska Sci Ctr, Univ Dr, Anchorage, AK 99508 USA. ghilderbrand@usgs.gov Gustine, Dave/0000-0003-1087-1937; Cameron, Matthew/0000-0001-7347-4491; Hilderbrand, Grant/0000-0002-0051-8315 National Park Service; US Fish and Wildlife Service; US Geological Survey Funding was provided by the National Park Service, US Fish and Wildlife Service, and the US Geological Survey. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government. W. Deacy, A. Morehouse, J. Powers, A Greenblatt, M. Keller, J. DeCreeft, R. Richotte, C. Cebulski, D. Welty, I. Bedingfield, K. Rees, K. VanHatten, and J. and J. Cummings assisted with field data collection. K. Rode provided advice on analyses of growth rates. The efforts of M. Haroldson, T. Bartareau, and an anonymous reviewer greatly improved this manuscript. Bartareau TM, 2011, CAN J ZOOL, V89, P1128, DOI 10.1139/Z11-088; Bartareau TM, 2012, URSUS, V23, P12; Belant JL, 2006, ECOL APPL, V16, P2333, DOI 10.1890/1051-0761(2006)016[2333:IRPISU]2.0.CO;2; Belant JL, 2010, POLAR BIOL, V33, P31, DOI 10.1007/s00300-009-0682-6; Ben-David M, 2004, OECOLOGIA, V138, P465, DOI 10.1007/s00442-003-1442-x; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Bolnick DI, 2007, P NATL ACAD SCI USA, V104, P10075, DOI 10.1073/pnas.0703743104; Bolnick DI, 2003, AM NAT, V161, P1, DOI 10.1086/343878; Dahle B, 2003, BEHAV ECOL SOCIOBIOL, V54, P352, DOI 10.1007/s00265-003-0638-8; Dall SRX, 2012, ECOL LETT, V15, P1189, DOI 10.1111/j.1461-0248.2012.01846.x; Deacy W, 2016, ECOLOGY, V97, P1091, DOI 10.1890/15-1060.1; Deacy WW, 2017, P NATL ACAD SCI USA, V114, P10432, DOI 10.1073/pnas.1705248114; Derocher AE, 2002, J ZOOL, V256, P343, DOI 10.1017/S0952836902000377; Erlenbach JA, 2014, J MAMMAL, V95, P160, DOI 10.1644/13-MAMM-A-161; FARLEY SD, 1994, CAN J ZOOL, V72, P220, DOI 10.1139/z94-029; Gonzalez O, 2012, BEHAV ECOL SOCIOBIOL, V66, P1025, DOI 10.1007/s00265-012-1350-3; Gur H, 2012, J ZOOL, V287, P104, DOI 10.1111/j.1469-7998.2011.00893.x; Harley CDG, 2006, ECOL LETT, V9, P228, DOI 10.1111/j.1461-0248.2005.00871.x; HENSEL RJ, 1969, J WILDLIFE MANAGE, V33, P357, DOI 10.2307/3799836; Hilderbrand G.V, 2018, BROWN BEAR PHENOTYPI, DOI 10. 5066/F7MS3R0C; Hilderbrand GV, 1998, J WILDLIFE MANAGE, V62, P406, DOI 10.2307/3802306; Hilderbrand GV, 2000, J WILDLIFE MANAGE, V64, P178, DOI 10.2307/3802988; Hilderbrand GV, 1999, CAN J ZOOL, V77, P132, DOI 10.1139/cjz-77-1-132; Hilderbrand GV, 1999, CAN J ZOOL, V77, P1623, DOI 10.1139/cjz-77-10-1623; HOLM S, 1979, SCAND J STAT, V6, P65; Hudin NS, 2016, BEHAV ECOL, V27, P1833, DOI 10.1093/beheco/arw108; Jeffrey KM, 2017, CAN J FISH AQUAT SCI, V74, P191, DOI 10.1139/cjfas-2015-0600; Lafferty DJR, 2015, OIKOS, V124, P732, DOI 10.1111/oik.01741; Leclerc M, 2016, OECOLOGIA, V180, P697, DOI 10.1007/s00442-015-3500-6; Mangipane L.S., 2017, POLAR BIOL; Markon Carl J., 1995, Polar Record, V31, P179; McLellan BN, 2011, CAN J ZOOL, V89, P546, DOI 10.1139/Z11-026; Mowat G, 2006, CAN J ZOOL, V84, P473, DOI 10.1139/z06-016; O'Brien J.P., 2005, ALASKA FISHERIES DAT, V2005-15, P23; O'Neel S, 2015, BIOSCIENCE, V65, P499, DOI 10.1093/biosci/biv027; Pasitschniak-Arts M, 1993, AM J MAMMOLOGISTS, V439, P1, DOI DOI 10.HTTPS://D0I.0RG/10.2307; R Core Team, 2013, R LANG ENV STAT COMP; Rode KD, 2006, ECOLOGY, V87, P2636, DOI 10.1890/0012-9658(2006)87[2636:SDRSAH]2.0.CO;2; Rode KD, 2014, GLOBAL CHANGE BIOL, V20, P76, DOI 10.1111/gcb.12339; Rode KD, 2010, ECOL APPL, V20, P768, DOI 10.1890/08-1036.1; SAND H, 1995, OECOLOGIA, V102, P433, DOI 10.1007/BF00341355; Semmens BX, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006187; Servheen C., 1999, BEAR STATUS SURVEY C; SIDAK Z, 1967, J AM STAT ASSOC, V62, P626, DOI 10.2307/2283989; Smith BR, 2008, BEHAV ECOL, V19, P448, DOI 10.1093/beheco/arm144; Stahler DR, 2013, J ANIM ECOL, V82, P222, DOI 10.1111/j.1365-2656.2012.02039.x; Stanek AE, 2017, CAN J ZOOL, V95, P555, DOI 10.1139/cjz-2016-0203; Stoen OG, 2006, BEHAV ECOL SOCIOBIOL, V61, P1, DOI 10.1007/s00265-006-0231-z; TAYLOR WP, 1989, J WILDLIFE MANAGE, V53, P978, DOI 10.2307/3809598; Tinker MT, 2012, ECOL LETT, V15, P475, DOI 10.1111/j.1461-0248.2012.01760.x; Van Hemert C, 2015, BIOSCIENCE, V65, P718, DOI 10.1093/biosci/biv069; Van Valen L., 1965, AM NAT, V99, P377, DOI [10.1086/282379, DOI 10.1086/282379]; Villegas-Amtmann S, 2008, MAR ECOL PROG SER, V363, P299, DOI 10.3354/meps07457; Welch CA, 1997, ECOLOGY, V78, P1105, DOI 10.2307/2265862; Wilson RR, 2014, ARCTIC, V67, P472, DOI 10.14430/arctic4421; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Zar JH, 1999, BIOSTATISTICAL ANAL; Zedrosser A, 2007, J ANIM ECOL, V76, P368, DOI 10.1111/j.1365-2656.2006.01203.x 58 0 0 10 11 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0952-8369 1469-7998 J ZOOL J. Zool. MAY 2018 305 1 53 62 10.1111/jzo.12536 10 Zoology Zoology GF1AN WOS:000431663500007 2018-11-22 J Myers, PJ; Young, JK Myers, Patrick J.; Young, Julie K. Consistent individual behavior: evidence of personality in black bears JOURNAL OF ETHOLOGY English Article Novel object; Open field; Repeatability; Ursus americanus; Captive; Startle object; Activity ANIMAL PERSONALITY; OPEN-FIELD; URSUS-AMERICANUS; GASTEROSTEUS-ACULEATUS; NATAL DISPERSAL; UNITED-STATES; EARLY DEATH; BOLDNESS; WILD; EXPLORATION Personality is defined as consistency in individual differences in organismal behavior across time or context, a phenomenon of interest within behavioral and evolutionary ecology. Empirical data have revealed an ever-increasing number and diversity of taxa that display these phenotypic patterns in both wild and captive settings. Moreover, these behavioral traits are frequently linked to wild behavior, life history strategies, and measures of individual fitness. Understanding personality is of particular importance for some animals, such as large carnivores, which may express maladaptive behavior that can lead to conflict with humans. To date, few studies of personality exist on large carnivores and none have investigated the presence of personality in black bears (Ursus americanus). Through focal animal sampling, and open field, novel object, and startle object tests, we investigate the potential for personality in captive black bear cubs. Results indicate the presence of personality, with consistency in behavior across five metrics for the bold-shy axis, and eight sampling events measuring responses for the activity axis. Information presented here reveals the presence of personality in black bear cubs, and may provide a framework for future investigations into relationships of personality with ecology and life history. [Myers, Patrick J.] Utah State Univ, Dept Wildland Resources, 5230 Old Main Hill, Logan, UT 84322 USA; [Young, Julie K.] Utah State Univ, USDA, Natl Wildlife Res Ctr, Predator Res Facil,Dept Wildland Resources, 5230 Old Main Hill, Logan, UT 84322 USA Young, JK (reprint author), Utah State Univ, USDA, Natl Wildlife Res Ctr, Predator Res Facil,Dept Wildland Resources, 5230 Old Main Hill, Logan, UT 84322 USA. julie.young@usu.edu Utah Division of Wildlife Resources; Department of Wildland Resources at Utah State University; USDA National Wildlife Resource Center We wish to thank the Utah Division of Wildlife Resources for allowing us to conduct this study and for their technical support. We thank S. Brummer, E. Stevenson, J. Schultz, N. Floyd, and M. Davis at the USDA NWRC Predator Research Facility for their assistance. Earlier drafts of this manuscript were reviewed by F. Howe, K. Jordan, and two anonymous reviewers. Funding was provided by the Utah Division of Wildlife Resources, the Department of Wildland Resources at Utah State University, and the USDA National Wildlife Resource Center. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Adriaenssens B, 2011, BEHAV ECOL, V22, P135, DOI 10.1093/beheco/arq185; ALTMANN J, 1974, BEHAVIOUR, V49, P227, DOI 10.1163/156853974X00534; Bateman PW, 2012, J ZOOL, V287, P1, DOI 10.1111/j.1469-7998.2011.00887.x; Beckmann JP, 2003, J ZOOL, V261, P207, DOI 10.1017/S0952836903004126; Beecham JJ, 2007, P 2007 INT WORKSH RE, P23; Bell AM, 2007, ECOL LETT, V10, P828, DOI 10.1111/j.1461-0248.2007.01081.x; Bell AM, 2009, ANIM BEHAV, V77, P771, DOI 10.1016/j.anbehav.2008.12.022; Benson-Amram S, 2016, P NATL ACAD SCI USA, V113, P2532, DOI 10.1073/pnas.1505913113; Biro PA, 2012, ANIM BEHAV, V83, P1295, DOI 10.1016/j.anbehav.2012.01.036; Boon AK, 2007, ECOL LETT, V10, P1094, DOI 10.1111/j.1461-0248.2007.01106.x; Boyer N, 2010, J ANIM ECOL, V79, P538, DOI 10.1111/j.1365-2656.2010.01659.x; Bremner-Harrison S, 2004, ANIM CONSERV, V7, P313, DOI 10.1017/S1367943004001490; Brydges NM, 2008, J ANIM ECOL, V77, P229, DOI 10.1111/j.1365-2656.2007.01343.x; Burns JG, 2008, J COMP PSYCHOL, V122, P344, DOI 10.1037/0735-7036.122.4.344; Butlers SJ, 2006, BEHAVIOUR, V143, P535, DOI 10.1163/156853906776240632; Can OE, 2014, CONSERV LETT, V7, P501, DOI 10.1111/conl.12117; Careau V, 2008, OIKOS, V117, P641, DOI 10.1111/j.0030-1299.2008.16513.x; Caspi A, 2005, ANNU REV PSYCHOL, V56, P453, DOI 10.1146/annurev.psych.55.090902.141913; Cavigelli SA, 2003, P NATL ACAD SCI USA, V100, P16131, DOI 10.1073/pnas.2535721100; Chapman BB, 2010, BEHAV ECOL, V21, P501, DOI 10.1093/beheco/arq003; Cole EF, 2014, BIOL LETTERS, V10, DOI 10.1098/rsbl.2014.0178; Coleman K, 1998, ANIM BEHAV, V56, P927, DOI 10.1006/anbe.1998.0852; Cote J, 2007, P R SOC B, V274, P383, DOI 10.1098/rspb.2006.3734; Cote J, 2010, PHILOS T R SOC B, V365, P4065, DOI 10.1098/rstb.2010.0176; Dammhahn M, 2012, P ROY SOC B-BIOL SCI, V279, P2645, DOI 10.1098/rspb.2012.0212; Darwin Charles, 1861, ORIGIN SPECIES; Dingemanse NJ, 2010, TRENDS ECOL EVOL, V25, P81, DOI 10.1016/j.tree.2009.07.013; Dingemanse NJ, 2005, BEHAVIOUR, V142, P1159, DOI 10.1163/156853905774539445; Dingemanse NJ, 2003, P ROY SOC B-BIOL SCI, V270, P741, DOI 10.1098/rspb.2002.2300; Fagen R, 1996, ETHOLOGY, V102, P212; Fraser DF, 2001, AM NAT, V158, P124, DOI 10.1086/321307; Gamer M., 2012, IRR VARIOUS COEFFICI; Gosling SD, 2001, PSYCHOL BULL, V127, P45, DOI 10.1037/0033-2909.127.1.45; Gosling SD, 1998, J COMP PSYCHOL, V112, P107, DOI 10.1037/0735-7036.112.2.107; Groothuis TGG, 2011, DEV PSYCHOBIOL, V53, P641, DOI 10.1002/dev.20574; Herde A, 2013, BMC ECOL, V13, DOI 10.1186/1472-6785-13-49; Hostetler JA, 2009, BIOL CONSERV, V142, P2456, DOI 10.1016/j.biocon.2009.05.029; HUNTINGFORD FA, 1976, ANIM BEHAV, V24, P245, DOI 10.1016/S0003-3472(76)80034-6; Johnson HE, 2015, BIOL CONSERV, V187, P164, DOI 10.1016/j.biocon.2015.04.014; Johnson JC, 2005, BEHAV ECOL SOCIOBIOL, V58, P390, DOI 10.1007/s00265-005-0943-5; Johnson-Ulrich Z, 2016, ANIM COGN, V19, P1237, DOI 10.1007/s10071-016-1011-4; KAISER HF, 1991, PSYCHOL REP, V68, P855, DOI 10.2466/pr0.1991.68.3.855; Kallai J, 2007, BEHAV NEUROSCI, V121, P21, DOI 10.1037/0735-7044.121.1.21; Koolhaas JM, 1999, NEUROSCI BIOBEHAV R, V23, P925, DOI 10.1016/S0149-7634(99)00026-3; Kortet R, 2007, BIOL J LINN SOC, V91, P475, DOI 10.1111/j.1095-8312.2007.00812.x; Lantova P, 2011, ETHOLOGY, V117, P124, DOI 10.1111/j.1439-0310.2010.01860.x; Lariviere Serge, 2001, Mammalian Species, V647, P1, DOI 10.1644/1545-1410(2001)647<0001:UA>2.0.CO;2; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Linnell JDC, 1999, WILDLIFE SOC B, V27, P698; MACDONALD K, 1983, J COMP PSYCHOL, V97, P99; MCCALL RB, 1969, DEV PSYCHOL, V1, P750, DOI 10.1037/h0028200; McDougall PT, 2006, ANIM CONSERV, V9, P39, DOI 10.1111/j.1469-1795.2005.00004.x; Meehan CL, 2002, APPL ANIM BEHAV SCI, V79, P75, DOI 10.1016/S0168-1591(02)00118-1; Mettke-Hofmann C, 2002, ETHOLOGY, V108, P249, DOI 10.1046/j.1439-0310.2002.00773.x; Minderman J, 2010, BEHAV ECOL, V21, P1321, DOI 10.1093/beheco/arq151; R Core Team, 2016, R LANG ENV STAT COMP; Reale D, 2009, J EVOLUTION BIOL, V22, P1599, DOI 10.1111/j.1420-9101.2009.01781.x; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Reale D, 2010, PHILOS T R SOC B, V365, P3937, DOI 10.1098/rstb.2010.0222; Reinhold K, 2002, J HERED, V93, P400, DOI 10.1093/jhered/93.6.400; RENNER MJ, 1990, PSYCHOBIOLOGY, V18, P16; Rieucau G, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0044801; Seyfarth RM, 2012, P NATL ACAD SCI USA, V109, P16980, DOI 10.1073/pnas.1210780109; Sharma S, 2009, J COMP PHYSIOL A, V195, P225, DOI 10.1007/s00359-008-0400-9; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Sih A, 2008, ADV STUD BEHAV, V38, P227, DOI 10.1016/S0065-3454(08)00005-3; Smith BR, 2008, BEHAV ECOL, V19, P448, DOI 10.1093/beheco/arm144; Stamps J, 2010, BIOL REV, V85, P301, DOI 10.1111/j.1469-185X.2009.00103.x; STIRLING I, 1990, INT C BEAR, V8, P189; Stoinski TS, 2003, BEHAVIOUR, V140, P137, DOI 10.1163/156853903321671479; TREIT D, 1988, PHARMACOL BIOCHEM BE, V31, P959, DOI 10.1016/0091-3057(88)90413-3; Treves A, 2003, CONSERV BIOL, V17, P1491, DOI 10.1111/j.1523-1739.2003.00059.x; VALLE FP, 1970, AM J PSYCHOL, V83, P103, DOI 10.2307/1420860; van Oers K, 2004, P ROY SOC B-BIOL SCI, V271, P65, DOI 10.1098/rspb.2003.2518; Vonk J, 2012, ANIM BEHAV, V84, P953, DOI 10.1016/j.anbehav.2012.07.020; WALSH RN, 1976, PSYCHOL BULL, V83, P482, DOI 10.1037/0033-2909.83.3.482; Ward AJW, 2007, P R SOC B, V274, P1071, DOI 10.1098/rspb.2006.0231; WESTEBERHARD MJ, 1989, ANNU REV ECOL SYST, V20, P249, DOI 10.1146/annurev.es.20.110189.001341; WHITTIER JL, 1965, CAN J PSYCHOLOGY, V19, P224, DOI 10.1037/h0082909; Wilcove DS, 1998, BIOSCIENCE, V48, P607, DOI 10.2307/1313420; WILSON DS, 1994, TRENDS ECOL EVOL, V9, P442, DOI 10.1016/0169-5347(94)90134-1; Wolf M, 2012, TRENDS ECOL EVOL, V27, P452, DOI 10.1016/j.tree.2012.05.001 83 0 0 35 35 SPRINGER JAPAN KK TOKYO CHIYODA FIRST BLDG EAST, 3-8-1 NISHI-KANDA, CHIYODA-KU, TOKYO, 101-0065, JAPAN 0289-0771 1439-5444 J ETHOL J. Ethol. MAY 2018 36 2 117 124 10.1007/s10164-018-0541-4 8 Behavioral Sciences; Zoology Behavioral Sciences; Zoology GE4GI WOS:000431173000002 Green Published 2018-11-22 J Ryo, M; Yoshimura, C; Iwasaki, Y Ryo, Masahiro; Yoshimura, Chihiro; Iwasaki, Yuichi Importance of antecedent environmental conditions in modeling species distributions ECOGRAPHY English Article ESTIMATING SITE OCCUPANCY; LIFE-HISTORY STRATEGIES; RANDOM FORESTS; STREAM MACROINVERTEBRATES; SPATIAL AUTOCORRELATION; BIOTIC INTERACTIONS; NEIGHBOR MATRICES; THERMAL REGIMES; ECOLOGICAL DATA; FLOW REGIME Although species distributions can change in an unexpectedly short period of time, most species distribution models (SDMs) use only long-term averaged environmental conditions to explain species distributions. We aimed to demonstrate the importance of incorporating antecedent environmental conditions into SDMs in comparison to long-term averaged environmental conditions. We modeled the presence/absence of 18 fish species captured across 108 sampling events along a 50-km length of the Sagami River in Japan throughout the 1990s (one to four times per site at 45 sites). We constructed and compared the two types of SDMs: 1) a conventional model that uses only long-term averaged (10-yr) environmental conditions; and 2) a proposed model that incorporates environmental conditions 2 yr prior to a sampling event (antecedent conditions) together with long-term averages linked to life-history stages. These models both included geomorphological, hydrological, and sampling conditions as predictors. A random forest algorithm was applied for modeling and quantifying the relative importance of the predictors. For seven species, antecedent hydrological conditions were more important than the long-term averaged hydrological conditions. Furthermore, the distributions of two species with low prevalence could not be predicted using long-term averaged hydrological conditions but only using antecedent hydrological conditions. In conclusion, incorporating antecedent environmental factors linked with life-history stages at appropriate time scales can better explain changes in species distribution through time. [Ryo, Masahiro] Eawag Swiss Fed Inst Aquat Sci & Technol, Dubendorf, Switzerland; [Ryo, Masahiro] Free Univ Berlin, Berlin, Germany; [Ryo, Masahiro; Yoshimura, Chihiro] Tokyo Inst Technol, Meguro Ku, Tokyo, Japan; [Iwasaki, Yuichi] Natl Inst Adv Ind Sci & Technol, Res Inst Sci Safety & Sustainabil, Tsukuba, Ibaraki, Japan Ryo, M (reprint author), Eawag Swiss Fed Inst Aquat Sci & Technol, Dubendorf, Switzerland.; Ryo, M (reprint author), Free Univ Berlin, Berlin, Germany.; Ryo, M (reprint author), Tokyo Inst Technol, Meguro Ku, Tokyo, Japan. masahiroryo@gmail.com IWASAKI, Yuichi/A-4634-2009 IWASAKI, Yuichi/0000-0001-7006-8113 'Young Researchers Exchange Programme between Japan and Switzerland' under the Japanese-Swiss Science and Technology Programme [EG 11-2015]; JSPS research fellowship [26-11771]; KAKENHI [15K00592]; JST CREST The study was performed as part of a fellowship in the 'Young Researchers Exchange Programme between Japan and Switzerland' under the 'Japanese-Swiss Science and Technology Programme' (EG 11-2015) and supported by a JSPS research fellowship (26-11771), KAKENHI (15K00592), and JST CREST. Amorim F, 2015, MAMM BIOL, V80, P228, DOI 10.1016/j.mambio.2015.01.005; Araujo MB, 2012, ECOLOGY, V93, P1527, DOI 10.1890/11-1930.1; Battisti A, 2006, GLOBAL CHANGE BIOL, V12, P662, DOI 10.1111/j.1365-2486.2006.01124.x; Benda L, 2004, BIOSCIENCE, V54, P413, DOI 10.1641/0006-3568(2004)054[0413:TNDHHC]2.0.CO;2; Blanchet FG, 2008, ECOL MODEL, V215, P325, DOI 10.1016/j.ecolmodel.2008.04.001; Borcard D, 2002, ECOL MODEL, V153, P51, DOI 10.1016/S0304-3800(01)00501-4; Boulangeat I, 2012, ECOL LETT, V15, P584, DOI 10.1111/j.1461-0248.2012.01772.x; Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324; Breiman L., 1984, CLASSIFICATION REGRE; Chen IC, 2011, SCIENCE, V333, P1024, DOI 10.1126/science.1206432; Comte L, 2013, DIVERS DISTRIB, V19, P996, DOI 10.1111/ddi.12078; Cottenie K, 2005, ECOL LETT, V8, P1175, DOI 10.1111/j.1461-0248.2005.00820.x; DEANGELIS DL, 1987, ECOL MONOGR, V57, P1, DOI 10.2307/1942636; Dewson ZS, 2007, J N AM BENTHOL SOC, V26, P401, DOI 10.1899/06-110.1; Dextrase AJ, 2014, FRESHWATER BIOL, V59, P1799, DOI 10.1111/fwb.12384; Diaz-Uriarte R, 2006, BMC BIOINFORMATICS, V7, DOI 10.1186/1471-2105-7-3; Domisch S, 2015, FUND APPL LIMNOL, V186, P45, DOI 10.1127/fal/2015/0627; Domisch S, 2013, GLOBAL CHANGE BIOL, V19, P752, DOI 10.1111/gcb.12107; Dormann CF, 2007, ECOGRAPHY, V30, P609, DOI 10.1111/j.2007.0906-7590.05171.x; Dormann CF, 2007, GLOBAL ECOL BIOGEOGR, V16, P129, DOI 10.1111/j.1466-8238.2006.00279.x; Dray S, 2006, ECOL MODEL, V196, P483, DOI 10.1016/j.ecolmodel.2006.02.015; Elith J, 2009, ANNU REV ECOL EVOL S, V40, P677, DOI 10.1146/annurev.ecolsys.110308.120159; Enders EC, 2009, RIVER RES APPL, V25, P2, DOI 10.1002/rra.1214; Falke JA, 2012, ECOLOGY, V93, P858, DOI 10.1890/11-1515.1; Filipe AF, 2002, RIVER RES APPL, V18, P123, DOI 10.1002/rra.638; Freeman EA, 2008, ECOL MODEL, V217, P48, DOI 10.1016/j.ecolmodel.2008.05.015; George SD, 2015, FRESHWATER BIOL, V60, P2511, DOI 10.1111/fwb.12577; Ghedini G., 2015, CLIM CHANGE RES, V2, P6; Gorski K, 2012, RIVER RES APPL, V28, P1121, DOI 10.1002/rra.1499; Grabowski TB, 2007, SOUTHEAST NAT, V6, P471, DOI 10.1656/1528-7092(2007)6[471:EOFFOT]2.0.CO;2; Growns I, 2005, J FISH BIOL, V66, P404, DOI 10.1111/j.1095-8649.2004.00605.x; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hanski I, 1998, NATURE, V396, P41, DOI 10.1038/23876; Hapfelmeier A, 2013, COMPUT STAT DATA AN, V60, P50, DOI 10.1016/j.csda.2012.09.020; Hothorn T., 2015, LAB RECURSIVE PARTIT; Howard C, 2014, METHODS ECOL EVOL, V5, P506, DOI 10.1111/2041-210X.12184; Huang J, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0129995; Iwasaki Y, 2012, FRESHWATER BIOL, V57, P2173, DOI 10.1111/j.1365-2427.2012.02861.x; Jahnig SC, 2012, J BIOGEOGR, V39, P2253, DOI 10.1111/jbi.12009; Janitza S, 2013, BMC BIOINFORMATICS, V14, DOI 10.1186/1471-2105-14-119; Kanno Y, 2017, FRESHWATER BIOL, V62, P868, DOI 10.1111/fwb.12906; Kawanabe H., 2001, JAPANESE FRESHWATER; King AJ, 2009, RIVER RES APPL, V25, P1205, DOI 10.1002/rra.1209; Kinzig A. P., 2006, ECOL SOC, V11, P23; Kuemmerlen M, 2014, ECOL MODEL, V277, P77, DOI 10.1016/j.ecolmodel.2014.01.020; Kuhn M., 2015, CLASSIFICATION REGRE; Lancaster J, 2010, RIVER RES APPL, V26, P385, DOI 10.1002/rra.1274; Legendre P, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2728; Leibold MA, 2004, ECOL LETT, V7, P601, DOI 10.1111/j.1461-0248.2004.00608.x; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; MacKenzie DI, 2011, METHODS ECOL EVOL, V2, P612, DOI 10.1111/j.2041-210X.2011.00110.x; MacKenzie DI, 2003, ECOLOGY, V84, P2200, DOI 10.1890/02-3090; MacKenzie DI, 2002, ECOLOGY, V83, P2248, DOI 10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2; Magalhaes MF, 2007, FRESHWATER BIOL, V52, P1494, DOI 10.1111/j.1365-2427.2007.01781.x; McCluskey SM, 2008, FISH FISH, V9, P188, DOI 10.1111/j.1467-2979.2008.00283.x; Minomiya A., 2008, B KANAGAWA PREFECTUR, V3, P1; Muneepeerakul R, 2008, NATURE, V453, P220, DOI 10.1038/nature06813; Nicodemus KK, 2010, BMC BIOINFORMATICS, V11, DOI 10.1186/1471-2105-11-110; Ogle K, 2015, ECOL LETT, V18, P221, DOI 10.1111/ele.12399; Oksanen J, 2017, R PACKAGE VERSION, V2, P4; Olden JD, 2010, FRESHWATER BIOL, V55, P86, DOI 10.1111/j.1365-2427.2009.02179.x; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; RICHARDS LJ, 1986, CAN J FISH AQUAT SCI, V43, P1214, DOI 10.1139/f86-151; Rolls RJ, 2013, FRESHWATER BIOL, V58, P1804, DOI [10.1111/fwb.12169, 10.111]; Ryo M., 2017, DRYAD DIGITAL REPOSI, DOI [10. 5061/dryad. m41g1, DOI 10.5061/DRYAD.M41G1]; Ryo M, 2016, HYDROL EARTH SYST SC, V20, P3411, DOI 10.5194/hess-20-3411-2016; Ryo M, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133833; Santika T, 2014, DIVERS DISTRIB, V20, P786, DOI 10.1111/ddi.12189; Soininen J, 2014, GLOBAL ECOL BIOGEOGR, V23, P1264, DOI 10.1111/geb.12204; Strobl C, 2007, BMC BIOINFORMATICS, V8, DOI 10.1186/1471-2105-8-25; Strobl C, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-307; Tetzlaff D, 2005, HYDROBIOLOGIA, V549, P65, DOI 10.1007/s10750-005-4166-6; Thompson RM, 2013, ECOL LETT, V16, P799, DOI 10.1111/ele.12095; Thuiller W, 2013, ECOL LETT, V16, P94, DOI 10.1111/ele.12104; Tockner K, 2010, FRESHWATER BIOL, V55, P135, DOI 10.1111/j.1365-2427.2009.02371.x; Tonkin ZD, 2011, FRESHWATER BIOL, V56, P1769, DOI 10.1111/j.1365-2427.2011.02612.x; Vazquez DP, 2017, BIOL REV, V92, P22, DOI 10.1111/brv.12216; Vezza P, 2015, ENVIRON MODELL SOFTW, V67, P173, DOI 10.1016/j.envsoft.2015.01.005; Winder M, 2011, ECOL LETT, V14, P749, DOI 10.1111/j.1461-0248.2011.01635.x; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, OIKOS, V63, P318, DOI 10.2307/3545395; Yoshimura C, 2005, RIVER RES APPL, V21, P93, DOI 10.1002/rra.835 82 2 2 6 6 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0906-7590 1600-0587 ECOGRAPHY Ecography MAY 2018 41 5 825 836 10.1111/ecog.02925 12 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology GE0OU WOS:000430915200010 2018-11-22 J Rasmann, S; Vilas, JS; Glauser, G; Cartolano, M; Lempe, J; Tsiantis, M; Pannell, JR Rasmann, Sergio; Vilas, Julia Sanchez; Glauser, Gaetan; Cartolano, Maria; Lempe, Janne; Tsiantis, Miltos; Pannell, John R. Pleiotropic effect of the Flowering Locus C on plant resistance and defence against insect herbivores JOURNAL OF ECOLOGY English Article altitudinal gradients; flowering time; glucosinolates; growth-defence trade-off hypothesis; jasmonic acid; Pieris; plant-herbivore interaction NATURAL ALLELIC VARIATION; ARABIDOPSIS-THALIANA; CARDAMINE-HIRSUTA; RESOURCE AVAILABILITY; INDUCED RESPONSES; TRAITS; SPECIALIST; ACID; METAANALYSIS; GENERALIST Plants vary widely in the extent to which they defend themselves against herbivores. Because the resources available to plants are often site-specific, variation among sites dictates investment into defence and may reveal a growth-defence trade-off. Moreover, plants that have evolved different life-history strategies in different environments may situate themselves on this trade-off curve differently. For instance, plants that flower later have a longer vegetative life span and may accordingly defend themselves differently than those that flower earlier. Here, we tested whether late-flowering plants, with a longer vegetative life span, invest more in defence than early-flowering plants, using recombinant genotypes of the annual herb Cardamine hirsuta that differ in flowering time as a result of differences in the activity of the major floral repressor Flowering Locus C (FLC). We found that variation at FLC was mainly responsible for regulating flowering time and allocation to reproduction, but this partially depended on where the plants grew. We also found that variation at FLC mediated plant allocation to defence, with late-flowering plants producing higher levels of total glucosinolates and stress-related phytohormones. Nonetheless, plant growth and the qualitative values of plant defence and plant resistance against specialist herbivores were mainly independent from FLC.Synthesis. Our results highlight pleiotropic effects associated with flowering-time genes that might influence plant defence and plant-herbivore interactions. [Rasmann, Sergio] Univ Neuchatel, Inst Biol, Neuchatel, Switzerland; [Vilas, Julia Sanchez] Cardiff Univ, Cardiff Sch Biosci, Organisms & Environm Div, Cardiff, S Glam, Wales; [Glauser, Gaetan] Univ Neuchatel, Neuchatel Platform Analyt Chem, Neuchatel, Switzerland; [Cartolano, Maria; Lempe, Janne; Tsiantis, Miltos] Max Planck Inst Plant Breeding Res, Dept Comparat Dev & Genet, Cologne, Germany; [Pannell, John R.] Univ Lausanne, Dept Ecol & Evolut, Lausanne, Switzerland Rasmann, S (reprint author), Univ Neuchatel, Inst Biol, Neuchatel, Switzerland. sergio.rasmann@unine.ch SANCHEZ VILAS, JULIA/0000-0002-4049-8443 Schweizerischer Nationalfonds zur Forderung der Wissenschaftlichen Forschung [31003A_159869, PZ00P3_131956]; Max-Planck-Gesellschaft; Deutsche Forschungsgemeinschaft [TS 229/1-1] Schweizerischer Nationalfonds zur Forderung der Wissenschaftlichen Forschung, Grant/Award Number: 31003A_159869 and PZ00P3_131956; Max-Planck-Gesellschaft; Deutsche Forschungsgemeinschaft, Grant/Award Number: TS 229/1-1 Agrawal A. A., 2010, EVOLUTION SINCE DARW, P243; Agrawal AA, 2006, ECOLOGY, V87, pS132, DOI 10.1890/0012-9658(2006)87[132:PDS]2.0.CO;2; Agrawal AA, 2013, AM NAT, V181, pS35, DOI 10.1086/666727; Ali JG, 2012, TRENDS PLANT SCI, V17, P293, DOI 10.1016/j.tplants.2012.02.006; Alonso-Blanco C, 2003, GENETICS, V164, P711; Alonso-Blanco C, 1999, P NATL ACAD SCI USA, V96, P4710, DOI 10.1073/pnas.96.8.4710; Barkoulas M, 2008, NAT GENET, V40, P1136, DOI 10.1038/ng.189; Barton KE, 2010, AM NAT, V175, P481, DOI 10.1086/650722; Benderoth M, 2006, P NATL ACAD SCI USA, V103, P9118, DOI 10.1073/pnas.0601738103; Bodenhausen N, 2007, MOL PLANT MICROBE IN, V20, P1406, DOI 10.1094/MPMI-20-11-1406; Canales C, 2010, J PLANT RES, V123, P25, DOI 10.1007/s10265-009-0263-3; Cartolano M, 2015, P NATL ACAD SCI USA, V112, P10539, DOI 10.1073/pnas.1419791112; CATES RG, 1975, ECOLOGY, V56, P410, DOI 10.2307/1934971; CHAPIN FS, 1980, J ECOL, V68, P189; Cheverud J. M., 2000, CHARACTER CONCEPT EV, P411; CHEW FS, 1991, AM NAT, V138, P729, DOI 10.1086/285246; Chiang GCK, 2009, P NATL ACAD SCI USA, V106, P11661, DOI 10.1073/pnas.0901367106; Cipollini D, 2003, BASIC APPL ECOL, V4, P79, DOI 10.1078/1439-1791-00134; COLEY PD, 1985, SCIENCE, V230, P895, DOI 10.1126/science.230.4728.895; COLEY PD, 1983, ECOL MONOGR, V53, P209, DOI 10.2307/1942495; De Vos M, 2005, MOL PLANT MICROBE IN, V18, P923, DOI 10.1094/MPMI-18-0923; Endara MJ, 2011, FUNCT ECOL, V25, P389, DOI 10.1111/j.1365-2435.2010.01803.x; Erb M, 2010, CHEM-EUR J, V16, P10280, DOI 10.1002/chem.201001219; Erb M, 2009, PLANT SIGNAL BEHAV, V4, P636, DOI 10.1111/j.1365-313X.2009.03868.x; Farmer EE, 2003, CURR OPIN PLANT BIOL, V6, P372, DOI 10.1016/S1369-5266(03)00045-1; Fine PVA, 2004, SCIENCE, V305, P663, DOI 10.1126/science.1098982; Futuyma DJ, 2009, P NATL ACAD SCI USA, V106, P18054, DOI 10.1073/pnas.0904106106; Glauser G, 2014, METHODS MOL BIOL, V1062, P597, DOI 10.1007/978-1-62703-580-4_31; Glauser G, 2012, PHYTOCHEM ANALYSIS, V23, P520, DOI 10.1002/pca.2350; Hall MC, 2006, GENETICS, V172, P1829, DOI 10.1534/genetics.105.051227; Hay A, 2010, DEVELOPMENT, V137, P3153, DOI 10.1242/dev.030049; Hay AS, 2014, PLANT J, V78, P1, DOI 10.1111/tpj.12447; HERMS DA, 1992, Q REV BIOL, V67, P283, DOI 10.1086/417659; Howe GA, 2008, ANNU REV PLANT BIOL, V59, P41, DOI 10.1146/annurev.arplant.59.032607.092825; Huot B, 2014, MOL PLANT, V7, P1267, DOI 10.1093/mp/ssu049; Janzen D. H., 1971, A Rev Ecol Syst, V2, P465, DOI 10.1146/annurev.es.02.110171.002341; Johnson MTJ, 2016, ECOL ENTOMOL, V41, P112, DOI 10.1111/een.12280; Karban R, 1997, INDUCED RESPONSES HE, DOI [10. 7208/chicago/9780226424972. 001. 0001, DOI 10.7208/CHICAGO/9780226424972.001.0001, 10.7208/chicago/9780226424972.001.0001]; Katsir L, 2008, CURR OPIN PLANT BIOL, V11, P428, DOI 10.1016/j.pbi.2008.05.004; Kazan K, 2016, J EXP BOT, V67, P47, DOI 10.1093/jxb/erv441; KIDDLE GA, 1994, J EXP BOT, V45, P1343, DOI 10.1093/jxb/45.9.1343; Korner C, 2007, TRENDS ECOL EVOL, V22, P569, DOI 10.1016/j.tree.2007.09.006; Kooke R, 2012, J EXP BOT, V63, P3353, DOI 10.1093/jxb/err373; Korves TM, 2003, PLANT PHYSIOL, V133, P339, DOI 10.1104/pp.103.027094; Krimmel BA, 2014, ARTHROPOD-PLANT INTE, V8, P403, DOI 10.1007/s11829-014-9318-z; Loudet O, 2003, GENETICS, V163, P711; Marais DLD, 2013, ANNU REV ECOL EVOL S, V44, P5, DOI 10.1146/annurev-ecolsys-110512-135806; MAURICIO R, 1990, ECOL ENTOMOL, V15, P153, DOI 10.1111/j.1365-2311.1990.tb00796.x; McKay JK, 2003, MOL ECOL, V12, P1137, DOI 10.1046/j.1365-294X.2003.01833.x; Michaels SD, 1999, PLANT CELL, V11, P949, DOI 10.1105/tpc.11.5.949; Michaels SD, 2003, P NATL ACAD SCI USA, V100, P10102, DOI 10.1073/pnas.1531467100; Mitchell-Olds T, 2006, NATURE, V441, P947, DOI 10.1038/nature04878; Oksanen J., 2013, VEGAN COMMUNITY ECOL; Parachnowitsch AL, 2008, ECOLOGY, V89, P1802, DOI 10.1890/07-0555.1; Paul-Victor C, 2010, NEW PHYTOL, V187, P1102, DOI 10.1111/j.1469-8137.2010.03325.x; Pellissier L, 2016, J ECOL, V104, P1116, DOI 10.1111/1365-2745.12580; Pieterse CMJ, 2009, NAT CHEM BIOL, V5, P308, DOI 10.1038/nchembio.164; R Development Core Team, 2015, R LANG ENV STAT COMP; Rasmann S, 2014, ANNU PLANT REV, V47, P338, DOI 10.1002/9781118472507.ch10; Scarcelli N, 2007, P NATL ACAD SCI USA, V104, P16986, DOI 10.1073/pnas.0708209104; Schmelz EA, 2003, PLANTA, V216, P665, DOI 10.1007/s00425-002-0898-y; Schoonhoven L. M., 2005, INSECT PLANT BIOL; Swarup K, 1999, PLANT J, V20, P67, DOI 10.1046/j.1365-313X.1999.00577.x; Thaler JS, 2012, TRENDS PLANT SCI, V17, P260, DOI 10.1016/j.tplants.2012.02.010; Ton J, 2002, PLANT J, V29, P11, DOI 10.1046/j.1365-313x.2002.01190.x; van Dam NM, 2003, BASIC APPL ECOL, V4, P63, DOI 10.1078/1439-1791-00133; Wheeler R.E., 2010, MULTRESP LMPERM; Winter K, 2011, J EXP BOT, V62, P4037, DOI 10.1093/jxb/err106; Zust T, 2015, OIKOS, V124, P1404, DOI 10.1111/oik.02075 69 1 1 12 14 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-0477 1365-2745 J ECOL J. Ecol. MAY 2018 106 3 1244 1255 10.1111/1365-2745.12894 12 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology GC9NE WOS:000430123800038 Green Published 2018-11-22 J Parker, GA; Ramm, SA; Lehtonen, J; Henshaw, JM Parker, Geoff A.; Ramm, Steven A.; Lehtonen, Jussi; Henshaw, Jonathan M. The evolution of gonad expenditure and gonadosomatic index (GSI) in male and female broadcast-spawning invertebrates BIOLOGICAL REVIEWS English Review gonado-somatic index; gonad index; gonad expenditure; sperm competition; broadcast spawning; sperm casting; sex roles ANNUAL REPRODUCTIVE-CYCLE; PARACENTROTUS-LIVIDUS ECHINODERMATA; URCHIN LYTECHINUS-VARIEGATUS; PURPLE SEA-URCHIN; ABALONE HALIOTIS-DIVERSICOLOR; BRITTLE STARS ECHINODERMATA; BRACHIOPOD LIOTHYRELLA-UVA; SUB-ANTARCTIC ENVIRONMENT; SPERM COMPETITION GAMES; SEXUAL SIZE DIMORPHISM Sedentary broadcast-spawning marine invertebrates, which release both eggs and sperm into the water for fertilization, are of special interest for sexual selection studies. They provide unique insight into the early stages of the evolutionary succession leading to the often-intense operation of both pre- and post-mating sexual selection in mobile gonochorists. Since they are sessile or only weakly mobile, adults can interact only to a limited extent with other adults and with their own fertilized offspring. They are consequently subject mainly to selection on gamete production and gamete success, and so high gonad expenditure is expected in both sexes. We review literature on gonadosomatic index (GSI; the proportion of body tissue devoted to gamete production) of gonochoristic broadcast spawners, which we use as a proxy for gonad expenditure. We show that such taxa most often have a high GSI that is approximately equal in both sexes. When GSI is asymmetric, female GSI usually exceeds male GSI, at least in echinoderms (the majority of species recorded). Intriguingly, though, higher male GSI also occurs in some species and appears more common than female-biased GSI in certain orders of gastropod molluscs. Our limited data also suggest that higher male GSI may be the prevalent pattern in sperm casters (where only males release gametes). We explore how selection might have shaped these patterns using game theoretic models for gonad expenditure that consider possible trade-offs with (i) somatic maintenance or (ii) growth, while also considering sperm competition, sperm limitation, and polyspermy. Our models of the trade-off between somatic tissue (which increases survival) and gonad (which increases reproductive success) predict that GSI should be equal for the two sexes when sperm competition is intense, as is probably common in broadcast spawners due to synchronous spawning in aggregations. Higher female GSI occurs under low sperm competition. Sperm limitation appears unlikely to alter these conclusions qualitatively, but can also act as a force to keep male GSI high, and close to that of females. Polyspermy can act to reduce male GSI. Higher male than female GSI is predicted to be less common (as observed in the data), but can occur when ova/ovaries are sufficiently more resource-intensive to produce than sperm/testes, for which some evidence exists. We also show that sex-specific trade-offs between gonads and growth can generate different life-history strategies for males and females, with males beginning reproduction earlier. This could lead to apparently higher male GSI in empirical studies if immature females are included in calculations of mean GSI. The existence of higher male GSI nonetheless remains somewhat problematic and requires further investigation. When sperm limitation is low, we suggest that the natural logarithm of the male/female GSI ratio may be a suitable index for sperm competition level in broadcast spawners, and that this may also be considered as an index for internally fertilizing taxa. [Parker, Geoff A.] Univ Liverpool, Inst Integrat Biol, Dept Evolut Ecol & Behav, Liverpool L69 7ZB, Merseyside, England; [Ramm, Steven A.] Bielefeld Univ, Evolutionary Biol, D-33615 Bielefeld, Germany; [Lehtonen, Jussi] Univ New South Wales, Sch Biol Earth & Environm Sci, Evolut & Ecol Res Ctr, Sydney, NSW 2052, Australia; [Henshaw, Jonathan M.] Australian Natl Univ, Res Sch Biol, Div Ecol & Evolut, Canberra, ACT 2601, Australia; [Henshaw, Jonathan M.] Karl Franzens Univ Graz, Inst Zool, A-8010 Graz, Austria Parker, GA (reprint author), Univ Liverpool, Inst Integrat Biol, Dept Evolut Ecol & Behav, Liverpool L69 7ZB, Merseyside, England. gap@liv.ac.uk Henshaw, Jonathan/0000-0001-7306-170X; Ramm, Steven/0000-0001-7786-7364 Deutsche Forschungsgemeinschaft [RA 2468/1-1]; University of New South Wales Vice-Chancellor's Postdoctoral Research Fellowship; Australian Department of Education and Training; Osterreichischer Austauschdienst (OeAD-GmbH) We are most grateful to Omar Avila-Poveda, Francisco Benitez-Villalobos, Luciano Chiaverano, Greg Foster, Juliana Gimenez, Cathy Lucas, Tianlong Qiu, Paul Tyler, and several others for supplying papers and/or for their helpful email discussions. We also thank two anonymous reviewers whose suggestions have much improved the manuscript. Funding was provided by the Deutsche Forschungsgemeinschaft, research grant RA 2468/1-1 (S. A. R.), a University of New South Wales Vice-Chancellor's Postdoctoral Research Fellowship (J. L.), and the Australian Department of Education and Training and the Osterreichischer Austauschdienst (OeAD-GmbH) (J. M. H.). Acosta A, 1997, MAR BIOL, V128, P141, DOI 10.1007/s002270050077; Acosta V, 2009, J WORLD AQUACULT SOC, V40, P226, DOI 10.1111/j.1749-7345.2009.00245.x; Aguirre JD, 2016, AM NAT, V187, P647, DOI 10.1086/685892; Ahlfield T. E., 1977, THESIS; Ali I. M. Y., 2015, RES J FISHERIES HYDR, V10, P1; Almeida F. P., 1994, MATURATION GEORGES B, V94; Arafa S, 2012, SCI WORLD J, DOI 10.1100/2012/815935; Asha PS, 2008, AQUACULT INT, V16, P231, DOI 10.1007/s10499-007-9140-z; Ayres D. W. P., 2013, THESIS; Babcock R., 1992, MARINE FRESHWATER RE, V43, P525; Barbaglio A, 2007, COMP BIOCHEM PHYS A, V147, P466, DOI 10.1016/j.cbpa.2007.01.682; Barker M. F., 1985, ECHINODERMATA, P207; BARKER MF, 1991, MAR BIOL, V108, P97, DOI 10.1007/BF01313476; BAUER JC, 1976, B MAR SCI, V26, P273; BEACH DH, 1975, NATURE, V254, P135, DOI 10.1038/254135a0; Beekman M, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2015.0541; BELMAN BW, 1974, BIOL BULL, V146, P157, DOI 10.2307/1540614; BENINGER PG, 1987, CAN J ZOOL, V65, P495, DOI 10.1139/z87-077; Benitez-Villalobos F, 2007, CIENC MAR, V33, P49, DOI 10.7773/cm.v33i1.329; Benitez-Villalobos F, 2015, INVERTEBR REPROD DEV, V59, P237, DOI 10.1080/07924259.2015.1108935; Benitez-Villalobos F, 2012, AQUAT BIOL, V17, P119, DOI 10.3354/ab00467; Benitez-Villalobos F, 2012, J MAR BIOL ASSOC UK, V92, P1409, DOI 10.1017/S0025315412000070; Benitez-Villalobos F, 2010, DEEP-SEA RES PT I, V57, P157, DOI 10.1016/j.dsr.2009.09.006; BENNETT J, 1955, BIOL BULL, V109, P226, DOI 10.2307/1538723; Bishop JDD, 2006, INTEGR COMP BIOL, V46, P398, DOI 10.1093/icb/icj037; Bode M, 2007, EVOLUTION, V61, P2693, DOI 10.1111/j.1558-5646.2007.00232.x; BOIVIN Y, 1986, MAR BIOL, V92, P329, DOI 10.1007/BF00392673; BOOLOOTIAN RICHARD A., 1964, HELGOLANDER WISSENSCHAFTLICHE MEERESUNTERSUCH, V11, P186, DOI 10.1007/BF01612371; Bottger SA, 2002, J EXP ZOOL, V292, P660, DOI 10.1002/jez.10104; BOURGOIN A, 1990, J MAR BIOL ASSOC UK, V70, P57, DOI 10.1017/S0025315400034196; Brady SM, 2006, J EXP MAR BIOL ECOL, V335, P277, DOI 10.1016/j.jembe.2006.03.016; BRANCH GM, 1974, T ROY SOC S AFR, V41, P111, DOI 10.1080/00359197409520068; BRETOS M, 1983, BIOL BULL-US, V165, P559, DOI 10.2307/1541465; Brewin PE, 2000, MAR BIOL, V137, P543, DOI 10.1007/s002270000366; BROCKMANN HJ, 1994, BEHAV ECOL SOCIOBIOL, V35, P153, DOI 10.1007/s002650050082; Brockmann HJ, 2000, ANIM BEHAV, V60, P837, DOI 10.1006/anbe.2000.1547; BROCKMANN HJ, 1990, BEHAVIOUR, V114, P206, DOI 10.1163/156853990X00121; Brogger MI, 2013, AQUAT BIOL, V19, P275, DOI 10.3354/ab00537; Bronstein O, 2016, SCI REP-UK, V6, DOI 10.1038/srep29569; Bronstein O, 2015, CORAL REEFS, V34, P275, DOI 10.1007/s00338-014-1209-3; BROWN GG, 1973, BIOL BULL, V144, P462, DOI 10.2307/1540300; Bureau D., 1996, THESIS; BYRNE M, 1992, MAR BIOL, V114, P297, DOI 10.1007/BF00349533; CAMERON JL, 1986, CAN J ZOOL, V64, P168, DOI 10.1139/z86-027; Carvalho ALPS, 2002, MAR BIOL, V141, P947, DOI 10.1007/s00227-002-0881-y; CATALAN MAB, 1994, CAN J ZOOL, V72, P387, DOI 10.1139/z94-055; Chadwick-Furman NE, 2000, J EXP MAR BIOL ECOL, V249, P199, DOI 10.1016/S0022-0981(00)00204-5; CHAO SM, 1994, MAR BIOL, V119, P565, DOI 10.1007/BF00354319; CHARNOV E L, 1982; CHEN BY, 1992, MAR BIOL, V113, P271; CHESHER RH, 1969, B MAR SCI, V19, P72; Chiaverano L, 2004, HYDROBIOLOGIA, V530, P373, DOI 10.1007/s10750-004-2666-4; CHOAT JH, 1979, J EXP MAR BIOL ECOL, V41, P25, DOI 10.1016/0022-0981(79)90079-0; Choe S, 1963, BIOL JAPANESE COMMON; COCANOUR B, 1967, COMP BIOCHEM PHYSIOL, V20, P327, DOI 10.1016/0010-406X(67)90749-9; COHEN JA, 1983, B MAR SCI, V33, P274; COMA R, 1995, MAR ECOL PROG SER, V117, P173, DOI 10.3354/meps117173; CONAND C, 1981, B MAR SCI, V31, P523; CONAND C, 1993, MAR BIOL, V116, P439, DOI 10.1007/BF00350061; Conand C., 1982, INT ECH C BALK ROTT, P437; Conand C., 1985, ECHINODERMATA; Cossi PF, 2015, POLAR BIOL, V38, P1321, DOI 10.1007/s00300-015-1696-x; COSTELLOE J, 1985, MAR BIOL, V88, P155, DOI 10.1007/BF00397163; Crean AJ, 2008, P NATL ACAD SCI USA, V105, P13508, DOI 10.1073/pnas.0806590105; CURRIE DR, 1990, INVERTEBR REPROD DEV, V17, P25, DOI 10.1080/07924259.1990.9672084; Dale B, 2016, RES REP BIOL, V7, P47, DOI 10.2147/RRB.S84085; Dale B, 2011, J ASSIST REPROD GEN, V28, P199, DOI 10.1007/s10815-010-9513-5; Darwin C., 1871, DESCENT MAN SELECTIO; Delgado M, 2003, J SHELLFISH RES, V22, P435; Delroisse J, 2013, CAH BIOL MAR, V54, P593; DIX T G, 1970, New Zealand Journal of Marine and Freshwater Research, V4, P385; DOTAN A, 1990, AUST J MAR FRESH RES, V41, P457; Doyle G., 2011, THESIS; Drumm DJ, 2005, NEW ZEAL J MAR FRESH, V39, P141, DOI 10.1080/00288330.2005.9517297; Ebert TA, 2011, MAR BIOL, V158, P47, DOI 10.1007/s00227-010-1541-2; Engstrom N. A., 1974, THESIS; Engstrom N. A., 1982, P INT C ECHINODERMS, P447; ENGSTROM NA, 1980, INT J INVER REP DEV, V2, P237; Epherra L, 2015, MAR FRESHWATER RES, V66, P329, DOI 10.1071/MF14080; ERICKSON DL, 1985, COMP BIOCHEM PHYS A, V81, P117, DOI 10.1016/0300-9629(85)90276-2; Evans JP, 2013, BIOL BULL-US, V224, P166, DOI 10.1086/BBLv224n3p166; Fabbrocini A, 2010, J SHELLFISH RES, V29, P1051, DOI 10.2983/035.029.0407; FARMANFARMAIAN A, 1958, J EXP ZOOL, V138, P355, DOI 10.1002/jez.1401380209; Fearon JM, 2000, J REPROD FERTIL, V119, P293, DOI 10.1530/reprod/119.2.293; FERGUSON J C, 1974, Florida Scientist, V37, P57; FERGUSON JC, 1975, COMP BIOCHEM PHYS A, V51, P341, DOI 10.1016/0300-9629(75)90379-5; Fernandez C, 1997, MAR ECOL PROG SER, V152, P145, DOI 10.3354/meps152145; Filbee-Dexter K, 2015, AQUAT BIOL, V23, P71, DOI 10.3354/ab00607; FORD CHARLES E., 1964, PAC SCI, V18, P138; Foster G. G., 1997, THESIS; Foster GG, 1999, MAR BIOL, V134, P307, DOI 10.1007/s002270050548; FOSTER GG, 1995, INVERTEBR REPROD DEV, V27, P49, DOI 10.1080/07924259.1995.9672433; Franke ES, 2002, AM NAT, V160, P485, DOI 10.1086/342075; Fuji A., 1967, Memoirs of the Faculty of Fisheries Hokkaido University, V15, P83; FUJI AKIRA, 1960, BULL FAC FISH HOKKAIDO UNIV, V11, P1; FUJI AKIRA, 1960, BULL FAC FISH HOKKAIDO UNIV, V11, P49; Galley EA, 2008, DEEP-SEA RES PT II, V55, P2515, DOI 10.1016/j.dsr2.2008.07.002; Garrido M. J., 2001, Arquipelago Life and Marine Sciences Supplement, P77; Georgiades ET, 2006, J EXP MAR BIOL ECOL, V332, P188, DOI 10.1016/j.jembe.2005.11.014; GIESE AC, 1959, BIOL BULL, V116, P49, DOI 10.2307/1539155; Goffredo S, 2006, MAR BIOL, V148, P923, DOI 10.1007/s00227-005-0137-8; GONOR J J, 1972, Journal of Experimental Marine Biology and Ecology, V10, P89; Gori A, 2007, MAR BIOL, V151, P1571, DOI 10.1007/s00227-006-0595-7; Grange L. J., 2005, THESIS; Grange LJ, 2007, MAR BIOL, V153, P15, DOI 10.1007/s00227-007-0776-z; Grange LJ, 2004, MAR ECOL PROG SER, V278, P141, DOI 10.3354/meps278141; GRANT A, 1983, INT J INVER REP DEV, V6, P259, DOI 10.1080/01651269.1983.10510052; GREENFIELD L, 1958, J EXP ZOOL, V139, P507, DOI 10.1002/jez.1401390308; Gutierrez-Mendez I. S, 2013, SEXUALITY EARLY DEV, V1, P13, DOI [10.3354/sedao00003, DOI 10.3354/SEDAO00003]; GUTT J, 1992, POLAR BIOL, V11, P533; Guzman HM, 2003, MAR BIOL, V142, P271, DOI 10.1007/s00227-002-0939-x; Guzman HM, 2002, MAR BIOL, V141, P1077, DOI 10.1007/s00227-002-0898-2; Hamel J.F., 1995, SPC BECHE DE MER INF, V7, P12; HAMILTON WD, 1967, SCIENCE, V156, P477, DOI 10.1126/science.156.3774.477; HAYASHI I, 1980, J MAR BIOL ASSOC UK, V60, P415, DOI 10.1017/S0025315400028435; Hayward A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016557; Heino M, 1999, J EVOLUTION BIOL, V12, P423; HENDLER G, 1986, MAR ECOL-P S Z N I, V7, P115, DOI 10.1111/j.1439-0485.1986.tb00151.x; HENDLER G, 1982, BIOL BULL, V162, P273, DOI 10.2307/1540983; Hendler G. L., 1973, THESIS; Henninger TO, 2001, J MOLLUS STUD, V67, P385, DOI 10.1093/mollus/67.3.385; Henshaw JM, 2014, AM NAT, V184, pE32, DOI 10.1086/676641; Herrero-Perezrul MD, 1999, MAR BIOL, V135, P521, DOI 10.1007/s002270050653; HINES GA, 1992, GEN COMP ENDOCR, V87, P451, DOI 10.1016/0016-6480(92)90053-M; Hiremath S. V., 1994, 11 NAT S REPR BIOL C, V45, P26; HOLLAND ND, 1965, BIOL BULL, V128, P241, DOI 10.2307/1539553; Honma L. O., 1995, THESIS; HOOKER SH, 1995, MAR FRESHWATER RES, V46, P617, DOI 10.1071/MF9950617; Hopper DR, 1998, B MAR SCI, V63, P1; Horn P. L., 1983, THESIS; Hua N., 2014, J AQUACULTURE RES DE, V5; Hughes AD, 2005, MAR ECOL PROG SER, V305, P101, DOI 10.3354/meps305101; Ito S, 1998, SPC BECHE DE MER INF, V10, P24; Iwata F., 1982, PUBLICATIONS SETO MA, V17, P143; JANGOUX M, 1973, Netherlands Journal of Sea Research, V6, P389, DOI 10.1016/0077-7579(73)90024-0; Janicke T, 2016, SCI ADV, V2, DOI 10.1126/sciadv.1500983; Janicke T, 2013, EVOLUTION, V67, P3233, DOI 10.1111/evo.12189; Jayarsee V., 1994, B CENT MAR FISH RES, V46, P57; JONSSON N, 1991, J FISH BIOL, V39, P739, DOI 10.1111/j.1095-8649.1991.tb04403.x; Jumah Y. U., 2016, ABAH Bioflux, V8, P10; Kandeel K.E., 2013, EGYPT J AQUATIC RES, V39, P249, DOI DOI 10.1016/j.ejar.2013.12.003; KAPLAN RH, 1979, AM NAT, V113, P671, DOI 10.1086/283425; Keesing JK, 2011, MAR BIOL, V158, P1163, DOI 10.1007/s00227-011-1638-2; KELLER BD, 1983, ECOLOGY, V64, P1581, DOI 10.2307/1937512; Kerr AM, 2011, P ROY SOC B-BIOL SCI, V278, P75, DOI 10.1098/rspb.2010.1196; Kim D., 2000, THESIS; KIM Y S, 1968, Bulletin of the Faculty of Fisheries Hokkaido University, V19, P97; Kindred A. L., 2009, THESIS; Knigge T, 2015, J MOLLUS STUD, V81, P58, DOI 10.1093/mollus/eyu056; Knip DM, 2007, J EXP MAR BIOL ECOL, V351, P150, DOI 10.1016/j.jembe.2007.06.011; Kobayashi N., 1967, Publications of the Seto Marine Biological Laboratory, V14, P403; Kobayashi N., 1967, Publications of the Seto Marine Biological Laboratory, V15, P173; Kohler Sophie, 2009, Western Indian Ocean Journal of Marine Science, V8, P97; Kowalski R., 1955, KIELER MEERESFORSCH, V9, P201; KRISHNASWAMY S, 1967, CURR SCI INDIA, V36, P155; LARSON RJ, 1986, J PLANKTON RES, V8, P995, DOI 10.1093/plankt/8.5.995; LAWRENCE J M, 1973, Journal of Experimental Marine Biology and Ecology, V11, P263, DOI 10.1016/0022-0981(73)90026-9; Lawrence J.M., 1982, P331; Lawrence J. M., 2000, WORKSH COORD GREEN S; LAWRENCE JM, 1994, ZOOL SCI, V11, P133; Lee Ju Ha, 2001, Korean Journal of Biological Sciences, V5, P37; Lee Seung Ju, 2006, Journal of the Korean Fisheries Society, V39, P398; LEE SY, 1988, J MOLLUS STUD, V54, P317, DOI 10.1093/mollus/54.3.317; Lefebvre A, 1999, HYDROBIOLOGIA, V414, P25, DOI 10.1023/A:1003827532385; Lehtonen J, 2016, TRENDS ECOL EVOL, V31, P752, DOI 10.1016/j.tree.2016.07.006; Lehtonen J, 2016, EVOLUTION, V70, P1129, DOI 10.1111/evo.12926; Lehtonen J, 2015, ROY SOC OPEN SCI, V2, DOI 10.1098/rsos.150175; Lehtonen J, 2014, MOL HUM REPROD, V20, P1161, DOI 10.1093/molehr/gau068; Lehtonen J, 2011, BEHAV ECOL SOCIOBIOL, V65, P445, DOI 10.1007/s00265-010-1116-8; LEIGHTON BJ, 1991, DIS AQUAT ORGAN, V10, P71, DOI 10.3354/dao010071; Leonard Janet L., 2010, P15; LESSIOS HA, 1981, J EXP MAR BIOL ECOL, V50, P47, DOI 10.1016/0022-0981(81)90062-9; Levitan D, 1998, EVOLUTION, V52, P1043, DOI 10.1111/j.1558-5646.1998.tb01832.x; Levitan D.R., 1998, SPERM COMPETITION SE, P175; Levitan Don R., 2010, P365; Levitan DR, 2006, INTEGR COMP BIOL, V46, P298, DOI 10.1093/icb/icj025; Levitan DR, 2005, INTEGR COMP BIOL, V45, P848, DOI 10.1093/icb/45.5.848; LEVITAN DR, 1995, TRENDS ECOL EVOL, V10, P228, DOI 10.1016/S0169-5347(00)89071-0; Levitan DR, 2004, AM NAT, V164, P298, DOI 10.1086/423150; LEVITAN DR, 1993, AM NAT, V141, P517, DOI 10.1086/285489; Lodeiros CJ, 1999, REV BIOL TROP, V47, P411; Lotterhos K. E., 2010, EVOLUTION PRIMARY SE, P99; Lowe E. F., 1978, THESIS; Luttikhuizen PC, 2011, J EXP MAR BIOL ECOL, V396, P156, DOI 10.1016/j.jembe.2010.10.017; MacCord FS, 2004, MAR BIOL, V145, P603, DOI 10.1007/s00227-004-1344-4; MAGNIEZ P, 1983, MAR BIOL, V74, P55, DOI 10.1007/BF00394275; Mariante FLF, 2010, ZOOLOGIA-CURITIBA, V27, P897, DOI 10.1590/S1984-46702010000600010; Marshall DJ, 2005, J EVOLUTION BIOL, V18, P1244, DOI 10.1111/j.1420-9101.2005.00947.x; Martinez MI, 2011, INVERTEBR REPROD DEV, V55, P124, DOI 10.1080/07924259.2011.553423; Martinez-Pita I, 2008, SCI MAR, V72, P603; Martone RG, 2012, MAR ECOL PROG SER, V457, P85, DOI 10.3354/meps09693; Marzinelli EM, 2006, B MAR SCI, V79, P127; MAUZEY KP, 1966, BIOL BULL, V131, P127, DOI 10.2307/1539653; Maynard Smith J., 1982, EVOLUTION THEORY GAM; MCEDWARD LR, 1987, MAR ECOL PROG SER, V37, P159, DOI 10.3354/meps037159; McFadden CS, 2001, EVOLUTION, V55, P54; McHugh D, 1998, TRENDS ECOL EVOL, V13, P182, DOI 10.1016/S0169-5347(97)01285-8; MCPHERSON BF, 1969, B MAR SCI, V19, P194; MCPHERSON BF, 1968, B MAR SCI, V18, P400; Mecho A, 2015, J MAR BIOL ASSOC UK, V95, P805, DOI 10.1017/S0025315415000065; Meidel SK, 1998, MAR BIOL, V131, P461, DOI 10.1007/s002270050338; Meidel SK, 1999, MAR BIOL, V134, P155, DOI 10.1007/s002270050534; Meidlinger K, 1998, MAR BIOL, V132, P153, DOI 10.1007/s002270050381; Mendo T, 2016, MAR BIOL, V163, DOI 10.1007/s00227-015-2785-7; MENGE BA, 1975, MAR BIOL, V31, P87, DOI 10.1007/BF00390651; Menge BA, 1970, THESIS; Mercier A, 2011, J BIOL RHYTHM, V26, P82, DOI 10.1177/0748730410391948; Meretta PE, 2014, J SEA RES, V85, P222, DOI 10.1016/j.seares.2013.05.006; Mesterton-Gibbons M, 1999, P ROY SOC B-BIOL SCI, V266, P269, DOI 10.1098/rspb.1999.0632; Mezali K, 2014, INVERTEBR REPROD DEV, V58, P179, DOI 10.1080/07924259.2014.883337; Miloslavich P, 2010, J MAR BIOL ASSOC UK, V90, P509, DOI 10.1017/S0025315409991287; MLADENOV PV, 1983, B MAR SCI, V33, P363; Molinet C, 2010, REV BIOL MAR OCEANOG, V45, P19, DOI 10.4067/S0718-19572010000100002; Monaco CJ, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0104658; MOORE H. B., 1963, BULL MAR SCI GULF AND CARIBBEAN, V13, P23; MOORE HB, 1966, B MAR SCI, V16, P648; MOORE HILARY B., 1965, BULL MAR SCI, V15, P855; MOORE HILARY B., 1934, JOUR MARINE BIOL ASSOC UNITED KINGDOM, V19-20, P869; MOORE HILARY B., 1936, JOUR MARINE BIOL ASSOC UNITED KINGDOM, V20, P655; Morais S, 2003, J EXP MAR BIOL ECOL, V294, P61, DOI 10.1016/S0022-0981(03)00258-2; Morriconi E, 1999, SCI MAR, V63, P417, DOI 10.3989/scimar.1999.63s1417; Muthiga N. A., 2009, Western Indian Ocean Journal of Marine Science, V8, P183; Muthiga NA, 2009, ESTUAR COAST SHELF S, V84, P353, DOI 10.1016/j.ecss.2009.04.011; Muthiga N. A., 2008, P 11 INT COR REEF S, P356; Muthiga NA, 2006, MAR BIOL, V149, P585, DOI 10.1007/s00227-005-0224-x; Muthiga NA, 2005, MAR BIOL, V146, P445, DOI 10.1007/s00227-004-1449-9; Muthiga NA, 2003, MAR BIOL, V143, P669, DOI 10.1007/s00227-003-1095-7; NAGABHUSHANAM R, 1982, MAR BIOL, V67, P9, DOI 10.1007/BF00397089; Nagasawa K, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0129571; Najmudeen TM, 2007, MOLLUSCAN RES, V27, P140; Navarro PG, 2012, SCI MAR, V76, P741, DOI 10.3989/scimar.03543.15B; NICHOLS D, 1984, J MAR BIOL ASSOC UK, V64, P461, DOI 10.1017/S0025315400030125; NIMITZ MA, 1964, Q J MICROSC SCI, V105, P481; NOJIMA S, 1979, Publications from the Amakusa Marine Biological Laboratory Kyushu University, V5, P45; O Connor C. O, 1976, Thalassia Jugosl, V12, P245; Okamoto DK, 2016, AM NAT, V187, pE129, DOI 10.1086/685813; Olivares-Banuelos T, 2012, CIENC MAR, V38, P411, DOI 10.7773/cm.v38i2.1922; Omar H.A., 2013, Egyptian Journal of Aquatic Research, V39, P115; Onitsuka T, 2008, J SHELLFISH RES, V27, P843, DOI 10.2983/0730-8000(2008)27[843:SGAROA]2.0.CO;2; Onitsuka T, 2010, JARQ-JPN AGR RES Q, V44, P375, DOI 10.6090/jarq.44.375; Oyarzun ST, 1999, SCI MAR, V63, P439, DOI 10.3989/scimar.1999.63s1439; PAIN SL, 1982, MAR BIOL, V70, P41, DOI 10.1007/BF00397295; Park Kwan Ha, 2011, Korean Journal of Malacology, V27, P261; Parker GA, 2016, J ZOOL, V298, P3, DOI 10.1111/jzo.12297; Parker G.A., 1984, P1; Parker G.A., 2015, CURRENT PERSPECTIVES, P119; PARKER GA, 1992, J FISH BIOL, V41, P1, DOI 10.1111/j.1095-8649.1992.tb03864.x; PARKER GA, 1982, J THEOR BIOL, V96, P281, DOI 10.1016/0022-5193(82)90225-9; Parker GA, 2000, P ROY SOC B-BIOL SCI, V267, P1027, DOI 10.1098/rspb.2000.1106; Parker GA, 2014, CSH PERSPECT BIOL, V6, DOI 10.1101/cshperspect.a017509; Parker GA, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0836; Parker Geoff A., 2011, P17; Parker GA, 2010, BIOL REV, V85, P897, DOI 10.1111/j.1469-185X.2010.00140.x; PARRY GD, 1982, MAR BIOL, V67, P267, DOI 10.1007/BF00397667; Pearse J.S., 1981, Developments in Endocrinology, V11, P53; PEARSE JS, 1966, BIOL BULL, V130, P387, DOI 10.2307/1539745; PECK LS, 1989, J EXP MAR BIOL ECOL, V134, P25, DOI 10.1016/0022-0981(90)90054-G; Pedersen Soren Anker, 1994, Journal of Northwest Atlantic Fishery Science, V16, P75; Pemberton AJ, 2003, P ROY SOC B-BIOL SCI, V270, pS223, DOI 10.1098/rsbl.2003.0076; Perez AF, 2008, POLAR BIOL, V31, P443, DOI 10.1007/s00300-007-0370-3; Perez AF, 2013, REV BIOL MAR OCEANOG, V48, P459, DOI 10.4067/S0718-19572013000300005; Plank LR, 2002, J WORLD AQUACULT SOC, V33, P127, DOI 10.1111/j.1749-7345.2002.tb00487.x; Podolsky RD, 2004, AM NAT, V163, P735, DOI 10.1086/382791; Ram Mohan M. K., 2001, THESIS; Ramesh R., 2010, World Journal of Fish and Marine Sciences, V2, P14; Ramirez-Llodra E, 2002, MAR BIOL, V140, P773, DOI 10.1007/s00227-001-0750-0; Ramm SA, 2014, MOL HUM REPROD, V20, P1169, DOI 10.1093/molehr/gau070; Ramm SA, 2014, BIOL REV, V89, P874, DOI 10.1111/brv.12084; RAO KS, 1965, CURR SCI INDIA, V34, P87; Rasolofonirina Richard, 2005, Western Indian Ocean Journal of Marine Science, V4, P61; RUN JQ, 1988, MAR BIOL, V99, P247, DOI 10.1007/BF00391987; RUTHERFORD JC, 1973, MAR BIOL, V22, P167, DOI 10.1007/BF00391780; Santos R, 2016, AQUAC RES, V47, P2307, DOI 10.1111/are.12683; SARASWATHY M, 1973, HYDROBIOLOGIA, V43, P13, DOI 10.1007/BF00014253; Sasaki Y., 2008, AQUACULTURE SCI, V56, P211; Schafer S, 2011, MAR ENVIRON RES, V71, P70, DOI 10.1016/j.marenvres.2010.10.004; Scharer L, 2009, EVOLUTION, V63, P1377, DOI 10.1111/j.1558-5646.2009.00669.x; Scharer L, 2004, BEHAV ECOL SOCIOBIOL, V56, P420, DOI 10.1007/s00265-004-0802-9; Scheibling R. E., 1979, THESIS; SCHEIBLING RE, 1981, J EXP MAR BIOL ECOL, V54, P39, DOI 10.1016/0022-0981(81)90101-5; SCHEIBLING RE, 1982, MAR BIOL, V70, P51, DOI 10.1007/BF00397296; Scheibling RE, 2001, MAR BIOL, V139, P139; Scheibling RE, 2013, DEV AQUAC FISH SCI, V38, P381, DOI 10.1016/B978-0-12-396491-5.00026-5; SCHWARTZ D, 1981, REPROD NUTR DEV, V21, P979, DOI 10.1051/rnd:19810710; Sellem F, 2007, J MAR BIOL ASSOC UK, V87, P763, DOI 10.1017/S002531540705521X; Sereflisan H, 2013, PAK J ZOOL, V45, P1311; SEWELL MA, 1990, INVERTEBR REPROD DEV, V17, P1, DOI 10.1080/07924259.1990.9672081; SHEPHERD SA, 1974, AUST J MAR FRESH RES, V25, P49; Shiell GR, 2006, MAR BIOL, V148, P973, DOI 10.1007/s00227-005-0113-3; Siikavuopio SI, 2014, J WORLD AQUACULT SOC, V45, P481, DOI 10.1111/jwas.12138; Simmons LW, 2012, REPRODUCTION, V144, P519, DOI 10.1530/REP-12-0285; SIMPSON RD, 1981, J EXP MAR BIOL ECOL, V56, P33, DOI 10.1016/0022-0981(81)90006-X; Smith MD, 2014, ANIM BEHAV, V96, P127, DOI 10.1016/j.anbehav.2014.08.005; Smith R. H., 1971, THESIS; Soliman F. El., 1997, Qatar University Science Journal, V16, P95; Soong K, 2005, MAR ECOL PROG SER, V292, P195, DOI 10.3354/meps292195; Spirlet C, 1998, INVERTEBR REPROD DEV, V34, P69, DOI 10.1080/07924259.1998.9652355; Spirlet C, 2000, AQUACULTURE, V185, P85, DOI 10.1016/S0044-8486(99)00340-3; Stancyk S. E., 1974, THESIS; Stanwell-Smith D, 1998, MAR BIOL, V131, P479, DOI 10.1007/s002270050339; STEWART BG, 1995, MAR BIOL, V123, P543, DOI 10.1007/BF00349233; Stockley P, 1997, AM NAT, V149, P933, DOI 10.1086/286031; STRATHMANN RR, 1990, AM ZOOL, V30, P197; Stump R. J. W., 1994, THESIS; Styan CA, 1998, AM NAT, V152, P290, DOI 10.1086/286168; Styan CA, 2000, MAR BIOL, V137, P943, DOI 10.1007/s002270000401; Suzuki T, 2014, INT J DISTRIB SENS N, DOI 10.1155/2014/189643; Garcia YAT, 2015, REV BIOL TROP, V63, P243, DOI 10.15517/rbt.v63i2.23158; Taylor BE, 1996, AQUACULTURE, V140, P153, DOI 10.1016/0044-8486(96)80444-3; Taylor PD, 1996, EVOLUTION, V50, P2106, DOI 10.1111/j.1558-5646.1996.tb03598.x; Tenuzzo BA, 2012, ITAL J ZOOL, V79, P200, DOI 10.1080/11250003.2011.626803; Tiemann H, 2009, J MAR BIOL ASSOC UK, V89, P63, DOI 10.1017/S0025315408001264; Tomkins JL, 2002, ANIM BEHAV, V63, P1009, DOI 10.1006/anbe.2001.1994; Toro JE, 2002, MAR BIOL, V141, P897, DOI 10.1007/s00227-002-0897-3; Town J. C., 1979, THESIS; TUCKER JS, 1962, J EXP ZOOL, V150, P33, DOI 10.1002/jez.1401500106; TURNER RL, 1979, J EXP MAR BIOL ECOL, V36, P41, DOI 10.1016/0022-0981(79)90099-6; TUWO A, 1992, J MAR BIOL ASSOC UK, V72, P745, DOI 10.1017/S0025315400060021; Tyler PA, 2003, POLAR BIOL, V26, P727, DOI 10.1007/s00300-003-0548-2; TYLER PA, 1982, J MAR BIOL ASSOC UK, V62, P57, DOI 10.1017/S0025315400020105; Uthicke S, 2014, CORAL REEFS, V33, P831, DOI 10.1007/s00338-014-1165-y; Vahed K, 2011, BIOL LETTERS, V7, P261, DOI 10.1098/rsbl.2010.0840; Vat L. Z., 2000, THESIS; VITT LJ, 1978, AM NAT, V112, P595, DOI 10.1086/283300; VOGEL H, 1982, MATH BIOSCI, V58, P189, DOI 10.1016/0025-5564(82)90073-6; vonsBismark O., 1959, KIELER MEERESFORSCH, V15, P164; Wang Q, 2015, STEREOSELECTIVE MULTIPLE BOND-FORMING TRANSFORMATIONS IN ORGANIC SYNTHESIS, P87; Wangensteen OS, 2013, MAR BIOL, V160, P3157, DOI 10.1007/s00227-013-2303-8; WEBBER HH, 1969, MAR BIOL, V4, P152, DOI 10.1007/BF00347041; WEDI SE, 1983, BIOL BULL, V165, P458, DOI 10.2307/1541212; Welch W. R., 1967, AM BIOL TEACH, V29, P465; White M. D., 1998, THESIS; WILSON NHF, 1995, MAR FRESHWATER RES, V46, P629, DOI 10.1071/MF9950629; WILSON WH, 1991, B MAR SCI, V48, P500; YAMAMOTO T, 1985, B JPN SOC SCI FISH, V51, P357; Yong L, 2014, ENVIRON BIOL FISH, V97, P321, DOI 10.1007/s10641-013-0142-6; YOSHIOKA E, 1987, MAR BIOL, V96, P371, DOI 10.1007/BF00412520; Young CM, 2003, ECOSY WORLD, V28, P381; Yund PO, 2000, TRENDS ECOL EVOL, V15, P10, DOI 10.1016/S0169-5347(99)01744-9; Zhou Wei, 2001, Chinese Journal of Applied and Environmental Biology, V7, P254 340 1 1 20 25 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1464-7931 1469-185X BIOL REV Biol. Rev. MAY 2018 93 2 693 753 10.1111/brv.12363 61 Biology Life Sciences & Biomedicine - Other Topics GC3QR WOS:000429699100001 28921784 2018-11-22 J Rolls, RJ; Heino, J; Ryder, DS; Chessman, BC; Growns, IO; Thompson, RM; Gido, KB Rolls, Robert J.; Heino, Jani; Ryder, Darren S.; Chessman, Bruce C.; Growns, Ivor O.; Thompson, Ross M.; Gido, Keith B. Scaling biodiversity responses to hydrological regimes BIOLOGICAL REVIEWS English Review biotic homogenisation; climate change; community composition; diversity; drought; environmental flows; flow regulation; spatial scaling; species richness PLANT-SPECIES RICHNESS; ALTERED FLOW REGIMES; FRESH-WATER FISH; HYPORHEIC INVERTEBRATE ASSEMBLAGES; LIFE-HISTORY STRATEGIES; MURRAY-DARLING BASIN; BETA-DIVERSITY; MACROINVERTEBRATE ASSEMBLAGES; FUNCTIONAL DIVERSITY; ENVIRONMENTAL FLOWS Of all ecosystems, freshwaters support the most dynamic and highly concentrated biodiversity on Earth. These attributes of freshwater biodiversity along with increasing demand for water mean that these systems serve as significant models to understand drivers of global biodiversity change. Freshwater biodiversity changes are often attributed to hydrological alteration by water-resource development and climate change owing to the role of the hydrological regime of rivers, wetlands and floodplains affecting patterns of biodiversity. However, a major gap remains in conceptualising how the hydrological regime determines patterns in biodiversity's multiple spatial components and facets (taxonomic, functional and phylogenetic). We synthesised primary evidence of freshwater biodiversity responses to natural hydrological regimes to determine how distinct ecohydrological mechanisms affect freshwater biodiversity at local, landscape and regional spatial scales. Hydrological connectivity influences local and landscape biodiversity, yet responses vary depending on spatial scale. Biodiversity at local scales is generally positively associated with increasing connectivity whereas landscape-scale biodiversity is greater with increasing fragmentation among locations. The effects of hydrological disturbance on freshwater biodiversity are variable at separate spatial scales and depend on disturbance frequency and history and organism characteristics. The role of hydrology in determining habitat for freshwater biodiversity also depends on spatial scaling. At local scales, persistence, stability and size of habitat each contribute to patterns of freshwater biodiversity yet the responses are variable across the organism groups that constitute overall freshwater biodiversity. We present a conceptual model to unite the effects of different ecohydrological mechanisms on freshwater biodiversity across spatial scales, and develop four principles for applying a multi-scaled understanding of freshwater biodiversity responses to hydrological regimes. The protection and restoration of freshwater biodiversity is both a fundamental justification and a central goal of environmental water allocation worldwide. Clearer integration of concepts of spatial scaling in the context of understanding impacts of hydrological regimes on biodiversity will increase uptake of evidence into environmental flow implementation, identify suitable biodiversity targets responsive to hydrological change or restoration, and identify and manage risks of environmental flows contributing to biodiversity decline. [Rolls, Robert J.; Thompson, Ross M.] Univ Canberra, Inst Appl Ecol, Canberra, ACT 2601, Australia; [Rolls, Robert J.; Ryder, Darren S.; Growns, Ivor O.] Univ New England, Sch Environm & Rural Sci, Armidale, NSW 2351, Australia; [Heino, Jani] Finnish Environm Inst, Nat Environm Ctr, Biodivers, Oulu, Finland; [Chessman, Bruce C.] 7 Dalrymple Crescent, Pymble, NSW 2073, Australia; [Gido, Keith B.] Kansas State Univ, Div Biol, Ackert Hall, Manhattan, KS 66506 USA Rolls, RJ (reprint author), Univ Canberra, Inst Appl Ecol, Canberra, ACT 2601, Australia.; Rolls, RJ (reprint author), Univ New England, Sch Environm & Rural Sci, Armidale, NSW 2351, Australia. robert.rolls@canberra.edu.au Rolls, Robert/0000-0002-0402-411X Acreman MC, 2010, FRESHWATER BIOL, V55, P32, DOI 10.1111/j.1365-2427.2009.02181.x; Acreman M, 2014, FRONT ECOL ENVIRON, V12, P466, DOI 10.1890/130134; Adamek Z, 2016, POL J ENVIRON STUD, V25, P495, DOI 10.15244/pjoes/60243; Aguiar FC, 2006, PLANT ECOL, V184, P189, DOI 10.1007/s11258-005-9064-5; Akasaka M, 2012, ECOLOGY, V93, P967, DOI 10.1890/11-0879.1; Alexandre CM, 2013, RIVER RES APPL, V29, P1042, DOI 10.1002/rra.2591; Algarte VM, 2009, BRAZ J BIOL, V69, P609, DOI 10.1590/S1519-69842009000300015; Almeida BD, 2017, AUSTRAL ECOL, V42, P84, DOI 10.1111/aec.12403; Amoros C, 2002, FRESHWATER BIOL, V47, P761, DOI 10.1046/j.1365-2427.2002.00905.x; Anderson MJ, 2011, ECOL LETT, V14, P19, DOI 10.1111/j.1461-0248.2010.01552.x; Anderson MJ, 2006, ECOL LETT, V9, P683, DOI 10.1111/j.1461-0248.2006.00926.x; Angermeier P. L., 2010, COMMUNITY ECOLOGY ST; ARMCANZ & ANZECC, 1996, 3 SWR, P14; Arnan X, 2017, ECOGRAPHY, V40, P448, DOI 10.1111/ecog.01938; Arscott DB, 2010, J N AM BENTHOL SOC, V29, P530, DOI 10.1899/08-124.1; Arthaud F, 2012, AQUAT SCI, V74, P471, DOI 10.1007/s00027-011-0241-4; Arthington AH, 2003, RIVER RES APPL, V19, P377, DOI 10.1002/rra.745; Assis RL, 2015, PLANT ECOL, V216, P41, DOI 10.1007/s11258-014-0415-y; Atkinson CL, 2014, BIOL CONSERV, V176, P30, DOI 10.1016/j.biocon.2014.04.029; Baiser B, 2011, GLOBAL ECOL BIOGEOGR, V20, P134, DOI 10.1111/j.1466-8238.2010.00583.x; Baker DB, 2004, J AM WATER RESOUR AS, V40, P503, DOI 10.1111/j.1752-1688.2004.tb01046.x; Baldwin DS, 2013, MOL ECOL, V22, P1746, DOI 10.1111/mec.12190; Baselga A, 2010, GLOBAL ECOL BIOGEOGR, V19, P134, DOI 10.1111/j.1466-8238.2009.00490.x; Beche LA, 2009, ECOGRAPHY, V32, P778, DOI 10.1111/j.1600-0587.2009.05612.x; Beesley LS, 2010, MAR FRESHWATER RES, V61, P605, DOI 10.1071/MF09137; Beja P, 2010, BIODIVERS CONSERV, V19, P129, DOI 10.1007/s10531-009-9711-6; Belmar O, 2013, ECOHYDROLOGY, V6, P363, DOI 10.1002/eco.1274; Benke AC, 2000, ECOLOGY, V81, P2730, DOI 10.1890/0012-9658(2000)081[2730:FPDOAU]2.0.CO;2; Besemer K, 2009, APPL ENVIRON MICROB, V75, P7189, DOI 10.1128/AEM.01284-09; Bhamjee R, 2016, HYDROL PROCESS, V30, P888, DOI 10.1002/hyp.10677; Biggs BJF, 2002, LIMNOL OCEANOGR, V47, P1175, DOI 10.4319/lo.2002.47.4.1175; Biggs BJF, 2005, RIVER RES APPL, V21, P283, DOI 10.1002/rra.847; Bini LM, 2003, ACTA OECOL, V24, pS145, DOI 10.1016/S1146-609X(03)00040-7; Blanchet S, 2014, FRESHWATER BIOL, V59, P450, DOI 10.1111/fwb.12277; Bogan MT, 2013, FRESHWATER BIOL, V58, P1016, DOI 10.1111/fwb.12105; Bogan MT, 2011, FRESHWATER BIOL, V56, P2070, DOI 10.1111/j.1365-2427.2011.02638.x; Borics G, 2003, HYDROBIOLOGIA, V502, P145, DOI 10.1023/B:HYDR.0000004277.07316.c8; Bornette G, 1998, FRESHWATER BIOL, V39, P267, DOI 10.1046/j.1365-2427.1998.00273.x; Bortolini JC, 2016, HYDROBIOLOGIA, V763, P223, DOI 10.1007/s10750-015-2378-y; Boulton A. J., 2014, AUSTR FRESHWATER ECO; BOULTON AJ, 1995, ARCH HYDROBIOL, V134, P27; Boulton AJ, 2003, FRESHWATER BIOL, V48, P1173, DOI 10.1046/j.1365-2427.2003.01084.x; Brendonck L, 2015, OIKOS, V124, P741, DOI 10.1111/oik.01710; Brock MA, 2003, FRESHWATER BIOL, V48, P1207, DOI 10.1046/j.1365-2427.2003.01083.x; Budke JC, 2008, FLORA, V203, P162, DOI 10.1016/j.flora.2007.03.001; Buendia C, 2014, ECOHYDROLOGY, V7, P1105, DOI 10.1002/eco.1443; Bunn SE, 2002, ENVIRON MANAGE, V30, P492, DOI 10.1007/s00267-002-2737-0; Calle R, 2014, NORTH-WEST J ZOOL, V10, P36; Capon SJ, 2005, J ARID ENVIRON, V60, P283, DOI 10.1016/j.jaridenv.2004.04.004; Cardinale BJ, 2006, J ECOL, V94, P609, DOI 10.1111/j.1365-2745.2006.01107.x; Cardinale BJ, 2005, ECOLOGY, V86, P716, DOI 10.1890/03-0727; Cardoso P, 2014, J BIOGEOGR, V41, P749, DOI 10.1111/jbi.12239; Carlisle DM, 2011, FRONT ECOL ENVIRON, V9, P264, DOI 10.1890/100053; Carvalho JC, 2012, GLOBAL ECOL BIOGEOGR, V21, P760, DOI 10.1111/j.1466-8238.2011.00694.x; Casanova MT, 2000, PLANT ECOL, V147, P237, DOI 10.1023/A:1009875226637; Chakona A, 2008, HYDROBIOLOGIA, V607, P199, DOI 10.1007/s10750-008-9391-3; Chalmers AC, 2012, AUSTRAL ECOL, V37, P193, DOI 10.1111/j.1442-9993.2011.02262.x; Chappuis E, 2014, AQUAT BOT, V113, P72, DOI 10.1016/j.aquabot.2013.11.007; Chase JM, 2007, P NATL ACAD SCI USA, V104, P17430, DOI 10.1073/pnas.0704350104; Chessman BC, 2015, FRESHWATER BIOL, V60, P50, DOI 10.1111/fwb.12466; Chessman BC, 2014, WETLANDS, V34, P661, DOI 10.1007/s13157-014-0532-3; Chester ET, 2011, FRESHWATER BIOL, V56, P2094, DOI 10.1111/j.1365-2427.2011.02644.x; Chiarucci A, 2011, PHILOS T R SOC B, V366, P2426, DOI 10.1098/rstb.2011.0065; Clarke A, 2010, CAN J FISH AQUAT SCI, V67, P1649, DOI 10.1139/F10-087; CONNELL JH, 1978, SCIENCE, V199, P1302, DOI 10.1126/science.199.4335.1302; Couto AP, 2017, HERPETOLOGICA, V73, P10, DOI 10.1655/HERPETOLOGICA-D-16-00020.1; D'agata S, 2014, CURR BIOL, V24, P555, DOI 10.1016/j.cub.2014.01.049; Damasco G, 2013, J VEG SCI, V24, P384, DOI 10.1111/j.1654-1103.2012.01464.x; Datry T, 2014, ECOGRAPHY, V37, P94, DOI 10.1111/j.1600-0587.2013.00287.x; Datry T, 2007, FRESHWATER BIOL, V52, P1452, DOI 10.1111/j.1365-2427.2007.01775.x; Datry T, 2016, FRESHWATER BIOL, V61, P277, DOI 10.1111/fwb.12702; Datry T, 2014, FRESHWATER BIOL, V59, P1308, DOI 10.1111/fwb.12350; Datry T, 2012, FRESHWATER BIOL, V57, P716, DOI 10.1111/j.1365-2427.2012.02737.x; Datry T, 2012, FRESHWATER BIOL, V57, P563, DOI 10.1111/j.1365-2427.2011.02725.x; Davey AJH, 2007, FRESHWATER BIOL, V52, P1719, DOI 10.1111/j.1365-2427.2007.01800.x; Davidson TA, 2012, FRESHWATER BIOL, V57, P1253, DOI 10.1111/j.1365-2427.2012.02795.x; Davies PE, 2010, MAR FRESHWATER RES, V61, P764, DOI 10.1071/MF09043; Davies PM, 2014, MAR FRESHWATER RES, V65, P133, DOI 10.1071/MF13110; De Jager NR, 2016, APPL VEG SCI, V19, P164, DOI 10.1111/avsc.12189; de Macedo-Soares PHM, 2010, ECOL FRESHW FISH, V19, P7, DOI 10.1111/j.1600-0633.2009.00384.x; Death RG, 2005, OIKOS, V111, P392, DOI 10.1111/j.0030-1299.2005.13799.x; DEATH RG, 1995, ECOLOGY, V76, P1446, DOI 10.2307/1938147; Della Bella V, 2005, AQUAT CONSERV, V15, P583, DOI 10.1002/aqc.743; Detenbeck NE, 2005, J HYDROL, V309, P258, DOI 10.1016/j.jhydrol.2004.11.024; Devictor V, 2010, ECOL LETT, V13, P1030, DOI 10.1111/j.1461-0248.2010.01493.x; Dewson ZS, 2007, J N AM BENTHOL SOC, V26, P401, DOI 10.1899/06-110.1; Dos Santos AM, 2007, AUSTRAL ECOL, V32, P177, DOI 10.1111/j.1442-9993.2007.01665.x; Downes BJ, 2010, FRESHWATER BIOL, V55, P60, DOI 10.1111/j.1365-2427.2009.02377.x; Driver LJ, 2016, MAR FRESHWATER RES, V67, P1667, DOI 10.1071/MF15072; Dudgeon D, 2006, BIOL REV, V81, P163, DOI 10.1017/S1464793105006950; Edge CB, 2017, LANDSCAPE ECOL, V32, P647, DOI 10.1007/s10980-016-0472-9; Escalera-Vazquez LH, 2010, FRESHWATER BIOL, V55, P2557, DOI 10.1111/j.1365-2427.2010.02486.x; Euliss NH, 2004, WETLANDS, V24, P448, DOI 10.1672/0277-5212(2004)024[0448:TWCACF]2.0.CO;2; FAITH DP, 1992, BIOL CONSERV, V61, P1, DOI 10.1016/0006-3207(92)91201-3; Fausch KD, 2002, BIOSCIENCE, V52, P483, DOI 10.1641/0006-3568(2002)052[0483:LTRBTG]2.0.CO;2; Fazi S, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064109; Febria CM, 2012, ISME J, V6, P1078, DOI 10.1038/ismej.2011.173; Feminella JW, 1996, J N AM BENTHOL SOC, V15, P651, DOI 10.2307/1467814; Fernandes R, 2009, ENVIRON BIOL FISH, V85, P99, DOI 10.1007/s10641-009-9466-7; Ferreira LV, 1999, OECOLOGIA, V120, P582, DOI 10.1007/s004420050893; Finlayson B. L, 2004, STREAM HYDROLOGY INT; Fitzgerald DB, 2017, ECOLOGY, V98, P21, DOI 10.1002/ecy.1616; Foulquier A, 2014, FRESHWATER BIOL, V59, P463, DOI 10.1111/fwb.12278; Fraisse S, 2013, AQUAT ECOL, V47, P315, DOI 10.1007/s10452-013-9446-z; Freedman JA, 2014, HYDROBIOLOGIA, V727, P19, DOI 10.1007/s10750-013-1780-6; FRISSELL CA, 1986, ENVIRON MANAGE, V10, P199, DOI 10.1007/BF01867358; Fritz KM, 2005, MAR FRESHWATER RES, V56, P13, DOI 10.1071/MF04244; Frutos SM, 2006, ANN LIMNOL-INT J LIM, V42, P277, DOI 10.1051/limn/2006028; Fukami T, 2005, P ROY SOC B-BIOL SCI, V272, P2105, DOI 10.1098/rspb.2005.3277; Gallardo B, 2014, FRESHWATER BIOL, V59, P630, DOI 10.1111/fwb.12292; Garcia-Roger EM, 2013, FUND APPL LIMNOL, V183, P89, DOI 10.1127/1863-9135/2013/0429; Gaston K. J., 1996, BIODIVERSITY BIOL NU; Gaston K.J., 1998, BIODIVERSITY INTRO; Giam X, 2017, AQUAT SCI, V79, P705, DOI 10.1007/s00027-017-0530-7; Gomes LC, 2012, HYDROBIOLOGIA, V685, P97, DOI 10.1007/s10750-011-0870-6; Graham CH, 2008, ECOL LETT, V11, P1265, DOI 10.1111/j.1461-0248.2008.01256.x; Greenwood MJ, 2015, ECOHYDROLOGY, V8, P188, DOI 10.1002/eco.1499; Griffiths D, 2010, BIOL J LINN SOC, V100, P46, DOI 10.1111/j.1095-8312.2010.01404.x; Grubbs SA, 2011, AQUAT ECOL, V45, P185, DOI 10.1007/s10452-010-9345-5; Hamilton AJ, 2005, J ENVIRON MANAGE, V75, P89, DOI 10.1016/j.jenvman.2004.11.012; Hart DD, 1999, ANNU REV ECOL SYST, V30, P363, DOI 10.1146/annurev.ecolsys.30.1.363; Hassall C, 2011, BIODIVERS CONSERV, V20, P3189, DOI 10.1007/s10531-011-0142-9; Heino J., 2017, LIMNOLOGY OCEANOGRAP; Heino J, 2015, FRESHWATER BIOL, V60, P223, DOI 10.1111/fwb.12502; Heino J, 2011, FRESHWATER BIOL, V56, P1703, DOI 10.1111/j.1365-2427.2011.02610.x; Heino J, 2010, ECOL INDIC, V10, P112, DOI 10.1016/j.ecolind.2009.04.013; Horrigan N, 2008, CAN J FISH AQUAT SCI, V65, P670, DOI 10.1139/F07-191; Hui C, 2014, AM NAT, V184, P684, DOI 10.1086/678125; Iwasaki Y, 2012, FRESHWATER BIOL, V57, P2173, DOI 10.1111/j.1365-2427.2012.02861.x; Jacquemin SJ, 2011, J BIOGEOGR, V38, P982, DOI 10.1111/j.1365-2699.2010.02457.x; James CS, 2007, PLANT ECOL, V190, P205, DOI 10.1007/s11258-006-9201-9; Jansson R, 2007, ECOLOGY, V88, P131, DOI 10.1890/0012-9658(2007)88[131:TIOGDF]2.0.CO;2; Jardine TD, 2015, ECOLOGY, V96, P684, DOI 10.1890/14-0991.1; Jarzyna MA, 2016, TRENDS ECOL EVOL, V31, P527, DOI 10.1016/j.tree.2016.04.002; Jenkins KM, 2003, ECOLOGY, V84, P2708, DOI 10.1890/02-0326; Johnson RK, 2014, AQUAT SCI, V76, P51, DOI 10.1007/s00027-013-0311-x; Johnson SE, 2016, ECOLOGY, V97, P3019, DOI 10.1002/ecy.1556; Jurasinski G, 2009, OECOLOGIA, V159, P15, DOI 10.1007/s00442-008-1190-z; Katz GL, 2012, FRESHWATER BIOL, V57, P467, DOI 10.1111/j.1365-2427.2011.02714.x; Kennard MJ, 2007, CAN J FISH AQUAT SCI, V64, P1346, DOI 10.1139/F07-108; Keruzore AA, 2013, AQUAT CONSERV, V23, P301, DOI 10.1002/aqc.2288; Kiflawi M, 2003, J ANIM ECOL, V72, P447, DOI 10.1046/j.1365-2656.2003.00712.x; Kingsford RT, 2004, ECOLOGY, V85, P2478, DOI 10.1890/03-0470; Konrad CP, 2008, FRESHWATER BIOL, V53, P1983, DOI 10.1111/j.1365-2427.2008.02024.x; Kuglerova L, 2014, ECOLOGY, V95, P715, DOI 10.1890/13-0363.1; Kurzatkowski D, 2015, ACTA OECOL, V69, P21, DOI 10.1016/j.actao.2015.08.002; Lake PS, 2003, FRESHWATER BIOL, V48, P1161, DOI 10.1046/j.1365-2427.2003.01086.x; Lake PS, 2000, J N AM BENTHOL SOC, V19, P573, DOI 10.2307/1468118; Lamouroux N, 2002, ECOLOGY, V83, P1792, DOI 10.2307/3071765; Lansac-Toha FM, 2016, HYDROBIOLOGIA, V781, P81, DOI 10.1007/s10750-016-2824-5; Larimore RW, 1959, T AM FISH SOC, V88, P261, DOI DOI 10.1577/1548-8659(1959)88[261:DAROSF]2.0.CO;2; Larned ST, 2011, ECOHYDROLOGY, V4, P532, DOI 10.1002/eco.126; Larned ST, 2010, J AM WATER RESOUR AS, V46, P541, DOI 10.1111/j.1752-1688.2010.00433.x; Larned ST, 2010, FRESHWATER BIOL, V55, P717, DOI 10.1111/j.1365-2427.2009.02322.x; Laske SM, 2016, FRESHWATER BIOL, V61, P1090, DOI 10.1111/fwb.12769; Lasne E, 2007, BIOL CONSERV, V139, P258, DOI 10.1016/j.biocon.2007.07.002; Lawson JR, 2015, FRESHWATER BIOL, V60, P2208, DOI 10.1111/fwb.12649; Ledger ME, 2008, OECOLOGIA, V155, P809, DOI 10.1007/s00442-007-0950-5; Legendre P, 2014, GLOBAL ECOL BIOGEOGR, V23, P1324, DOI 10.1111/geb.12207; Legendre P, 2013, ECOL LETT, V16, P951, DOI 10.1111/ele.12141; Leigh C, 2009, FRESHWATER BIOL, V54, P549, DOI 10.1111/j.1365-2427.2008.02130.x; Leigh C, 2017, ECOGRAPHY, V40, P487, DOI 10.1111/ecog.02230; Leigh C, 2016, AQUAT SCI, V78, P291, DOI 10.1007/s00027-015-0427-2; Leigh C, 2013, ECOL INDIC, V32, P62, DOI 10.1016/j.ecolind.2013.03.006; Leira M, 2008, HYDROBIOLOGIA, V613, P171, DOI 10.1007/s10750-008-9465-2; Lepori F, 2006, BIOSCIENCE, V56, P809, DOI 10.1641/0006-3568(2006)56[809:DAABRC]2.0.CO;2; LEVIN SA, 1992, ECOLOGY, V73, P1943, DOI 10.2307/1941447; Li DJ, 2015, ECOLOGY, V96, P1030, DOI 10.1890/14-0893.1; Lind PR, 2006, FRESHWATER BIOL, V51, P2282, DOI 10.1111/j.1365-2427.2006.01650.x; Lopes PM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0109581; Lougheed VL, 2008, FRESHWATER BIOL, V53, P2402, DOI 10.1111/j.1365-2427.2008.02064.x; Zilli FL, 2011, HYDROBIOLOGIA, V663, P245, DOI 10.1007/s10750-010-0576-1; Mackay SJ, 2014, ECOHYDROLOGY, V7, P1485, DOI 10.1002/eco.1473; Magilligan FJ, 2005, GEOMORPHOLOGY, V71, P61, DOI 10.1016/j.geomorph.2004.08.017; Magurran A.E., 2004, MEASURING BIOL DIVER; Maltchik L, 2010, ENVIRON BIOL FISH, V88, P25, DOI 10.1007/s10641-010-9614-0; Marchetti MP, 2011, J FRESHWATER ECOL, V26, P459, DOI 10.1080/02705060.2011.577974; Marcogliese DJ, 2009, INT J PARASITOL, V39, P1345, DOI 10.1016/j.ijpara.2009.04.007; Marques MCM, 2009, PLANT ECOL DIVERS, V2, P57, DOI 10.1080/17550870902946569; Marshall JC, 2006, MAR FRESHWATER RES, V57, P61, DOI 10.1071/MF05021; McCargo JW, 2010, T AM FISH SOC, V139, P29, DOI 10.1577/T09-036.1; Mccluney KE, 2012, FRESHWATER BIOL, V57, P91, DOI 10.1111/j.1365-2427.2011.02698.x; McCune JL, 2013, J ECOL, V101, P1542, DOI 10.1111/1365-2745.12156; McGarvey DJ, 2016, J BIOGEOGR, V43, P1436, DOI 10.1111/jbi.12618; McGarvey DJ, 2014, FRESHW SCI, V33, P18, DOI 10.1086/674967; McGill BJ, 2015, TRENDS ECOL EVOL, V30, P104, DOI 10.1016/j.tree.2014.11.006; McHugh PA, 2015, ECOGRAPHY, V38, P700, DOI 10.1111/ecog.01193; McKinney ML, 1999, TRENDS ECOL EVOL, V14, P450, DOI 10.1016/S0169-5347(99)01679-1; McManamay RA, 2015, ECOHYDROLOGY, V8, P460, DOI 10.1002/eco.1517; Mcmanamay RA, 2015, ECOL APPL, V25, P243, DOI 10.1890/14-0247.1; McManamay RA, 2012, J HYDROL, V424, P217, DOI 10.1016/j.jhydrol.2012.01.003; McMullen LE, 2012, ECOL APPL, V22, P2164, DOI 10.1890/11-1650.1; Meynard CN, 2011, GLOBAL ECOL BIOGEOGR, V20, P893, DOI 10.1111/j.1466-8238.2010.00647.x; Miller AC, 1998, REGUL RIVER, V14, P179, DOI 10.1002/(SICI)1099-1646(199803/04)14:2<179::AID-RRR496>3.0.CO;2-S; Mims MC, 2012, ECOLOGY, V93, P35, DOI 10.1890/11-0370.1; Mouw JEB, 2009, RIVER RES APPL, V25, P929, DOI 10.1002/rra.1196; Murray-Hudson M, 2014, WETLANDS, V34, P927, DOI 10.1007/s13157-014-0554-x; Mustonen KR, 2016, FRESHW SCI, V35, P559, DOI 10.1086/685104; Naaf T, 2012, PLANT ECOL, V213, P431, DOI 10.1007/s11258-011-9990-3; Nielsen DL, 2013, HYDROBIOLOGIA, V708, P81, DOI 10.1007/s10750-011-0989-5; Niu SQ, 2012, FRESHWATER BIOL, V57, P2367, DOI 10.1111/fwb.12016; O'Dea CB, 2014, RHODORA, V116, P187, DOI 10.3119/12-17; Oberdorff T, 1995, ECOGRAPHY, V18, P345, DOI 10.1111/j.1600-0587.1995.tb00137.x; Olden JD, 2006, GLOBAL ECOL BIOGEOGR, V15, P113, DOI 10.1111/j.1466-822x.2006.00214.x; Olden JD, 2014, FRONT ECOL ENVIRON, V12, P176, DOI 10.1890/130076; Olden JD, 2010, DIVERS DISTRIB, V16, P496, DOI 10.1111/j.1472-4642.2010.00655.x; Padial AA, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0111227; Padial AA, 2009, AQUAT SCI, V71, P389, DOI 10.1007/s00027-009-0109-z; Paillex A, 2013, J APPL ECOL, V50, P97, DOI 10.1111/1365-2664.12018; Palmer MA, 2008, FRONT ECOL ENVIRON, V6, P81, DOI 10.1890/060148; Palmer MA, 2010, FRESHWATER BIOL, V55, P205, DOI 10.1111/j.1365-2427.2009.02372.x; Pasquaud S, 2015, ESTUAR COAST SHELF S, V154, P122, DOI 10.1016/j.ecss.2014.12.050; Passy SI, 2007, DIVERS DISTRIB, V13, P670, DOI 10.1111/j.1472-4642.2007.00361.x; Pavoine S, 2011, BIOL REV, V86, P792, DOI 10.1111/j.1469-185X.2010.00171.x; Pavoine S, 2016, METHODS ECOL EVOL, V7, P1152, DOI 10.1111/2041-210X.12591; Pavoine S, 2014, METHODS ECOL EVOL, V5, P666, DOI 10.1111/2041-210X.12193; Pegg MA, 2007, J BIOGEOGR, V34, P549, DOI 10.1111/j.1365-2699.2006.01624.x; Penha J, 2017, HYDROBIOLOGIA, V797, P115, DOI 10.1007/s10750-017-3164-9; Perkin JS, 2015, ECOL MONOGR, V85, P73, DOI 10.1890/14-0121.1; Petchey OL, 2006, ECOL LETT, V9, P741, DOI 10.1111/j.1461-0248.2006.00924.x; Pettit NE, 2001, REGUL RIVER, V17, P201, DOI 10.1002/rrr.624; Poff NL, 2007, P NATL ACAD SCI USA, V104, P5732, DOI 10.1073/pnas.0609812104; Poff NL, 2006, GEOMORPHOLOGY, V79, P264, DOI 10.1016/j.geomorph.2006.06.032; Poff NL, 2013, CURR OPIN ENV SUST, V5, P667, DOI 10.1016/j.cosust.2013.11.006; Poff NL, 2010, FRESHWATER BIOL, V55, P147, DOI 10.1111/j.1365-2427.2009.02204.x; Poff NL, 2010, FRESHWATER BIOL, V55, P194, DOI 10.1111/j.1365-2427.2009.02272.x; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; POFF NL, 1992, J N AM BENTHOL SOC, V11, P86, DOI 10.2307/1467885; POFF NL, 1995, ECOLOGY, V76, P606, DOI 10.2307/1941217; Pollock MM, 1998, ECOLOGY, V79, P94; Porst G, 2012, HYDROBIOLOGIA, V696, P47, DOI 10.1007/s10750-012-1181-2; Porter JL, 2007, PLANT ECOL, V188, P215, DOI 10.1007/s11258-006-9158-8; Procopio NA, 2012, ECOHYDROLOGY, V5, P306, DOI 10.1002/eco.220; Puckridge JT, 2010, MAR FRESHWATER RES, V61, P832, DOI 10.1071/MF09069; Puckridge JT, 1998, MAR FRESHWATER RES, V49, P55, DOI 10.1071/MF94161; Purvis A, 2000, NATURE, V405, P212, DOI 10.1038/35012221; Rahel FJ, 2010, AM FISH S S, V73, P311; Raulings EJ, 2010, FRESHWATER BIOL, V55, P701, DOI 10.1111/j.1365-2427.2009.02311.x; RESH VH, 1988, J N AM BENTHOL SOC, V7, P433, DOI 10.2307/1467300; Reyers B, 2012, BIOSCIENCE, V62, P503, DOI 10.1525/bio.2012.62.5.12; Riis T, 2003, LIMNOL OCEANOGR, V48, P1488, DOI 10.4319/lo.2003.48.4.1488; Riis T, 2008, FRESHWATER BIOL, V53, P1531, DOI 10.1111/j.1365-2427.2008.01987.x; Robach F, 1997, GLOBAL ECOL BIOGEOGR, V6, P267, DOI 10.2307/2997740; Robson BJ, 2005, FRESHWATER BIOL, V50, P944, DOI 10.1111/j.1365-2427.2005.01376.x; Rodrigues DJ, 2010, HERPETOLOGICA, V66, P124, DOI 10.1655/09-020R2.1; Rooney TP, 2007, BIOL CONSERV, V134, P447, DOI 10.1016/j.biocon.2006.07.008; Rose P, 2008, FRESHWATER BIOL, V53, P2626, DOI 10.1111/j.1365-2427.2008.02074.x; Santos AN, 2011, NORTHEAST NAT, V18, P7, DOI 10.1656/045.018.0102; Schalk CM, 2017, FRESHWATER BIOL, V62, P519, DOI 10.1111/fwb.12882; Schneider B, 2015, AQUAT BOT, V121, P67, DOI 10.1016/j.aquabot.2014.11.003; Schoen J, 2013, J FRESHWATER ECOL, V28, P271, DOI 10.1080/02705060.2012.739578; Schriever TA, 2015, FRESHW SCI, V34, P399, DOI 10.1086/680518; Serrano L, 2005, WETLANDS, V25, P101, DOI 10.1672/0277-5212(2005)025[0101:ZCAAHG]2.0.CO;2; Sheldon F, 2002, BIOL CONSERV, V103, P13, DOI 10.1016/S0006-3207(01)00111-2; Silver CA, 2012, ACTA OECOL, V39, P1, DOI 10.1016/j.actao.2011.10.001; Sim LL, 2013, FRESHW SCI, V32, P327, DOI 10.1899/12-024.1; Spencer M, 1999, ECOL LETT, V2, P157; Sponseller RA, 2013, ECOSPHERE, V4, DOI 10.1890/ES12-00225.1; Starr SM, 2014, LANDSCAPE ECOL, V29, P1017, DOI 10.1007/s10980-014-0037-8; Sternberg D, 2013, FRESHWATER BIOL, V58, P1767, DOI 10.1111/fwb.12166; Storey R, 2016, AQUAT SCI, V78, P395, DOI 10.1007/s00027-015-0443-2; Strayer DL, 2010, J N AM BENTHOL SOC, V29, P344, DOI 10.1899/08-171.1; Strecker AL, 2011, ECOL APPL, V21, P3002, DOI 10.1890/11-0599.1; Stromberg JC, 2005, RIVER RES APPL, V21, P925, DOI 10.1002/rra.858; Stromberg JC, 2009, WETLANDS, V29, P330, DOI 10.1672/08-124.1; Stubbington R, 2015, FRESHW SCI, V34, P344, DOI 10.1086/679467; Sullivan SMP, 2009, J FISH BIOL, V74, P1394, DOI 10.1111/j.1095-8649.2009.02205.x; Svec JR, 2005, FOREST ECOL MANAG, V214, P170, DOI 10.1016/j.foreco.2005.04.008; Swenson NG, 2011, AM J BOT, V98, P472, DOI 10.3732/ajb.1000289; Swirepik JL, 2016, RIVER RES APPL, V32, P1153, DOI 10.1002/rra.2975; Tedesco PA, 2008, OECOLOGIA, V156, P691, DOI 10.1007/s00442-008-1021-2; Thomaz SM, 2007, HYDROBIOLOGIA, V579, P1, DOI 10.1007/s10750-006-0285-y; Thoms MC, 2003, RIVER RES APPL, V19, P443, DOI 10.1002/rra.737; Timoner X, 2014, HYDROBIOLOGIA, V727, P185, DOI 10.1007/s10750-013-1802-4; Tornes E, 2013, FRESHWATER BIOL, V58, P2555, DOI 10.1111/fwb.12232; Tornwall Brett, 2015, Diversity-Basel, V7, P16; Townsend CR, 1997, LIMNOL OCEANOGR, V42, P938, DOI 10.4319/lo.1997.42.5.0938; Trentanovi G, 2013, DIVERS DISTRIB, V19, P738, DOI 10.1111/ddi.12028; Tucker CM, 2017, BIOL REV, V92, P698, DOI 10.1111/brv.12252; Turak E, 2017, BIOL CONSERV, V213, P272, DOI 10.1016/j.biocon.2016.09.005; Uchida Y, 2010, FRESHWATER BIOL, V55, P983, DOI 10.1111/j.1365-2427.2009.02335.x; Urban MC, 2004, ECOLOGY, V85, P2971, DOI 10.1890/03-0631; Van Den Brink F. W. B., 1996, Netherlands Journal of Aquatic Ecology, V30, P129; van der Nat D, 2002, ECOSYSTEMS, V5, P636, DOI 10.1007/s10021-002-0170-0; van Grunsvent RHA, 2015, TRENDS ECOL EVOL, V30, P563, DOI 10.1016/j.tree.2015.07.010; Van Looy K, 2017, SCI TOTAL ENVIRON, V580, P34, DOI 10.1016/j.scitotenv.2016.12.009; Vanschoenwinkel B, 2007, OIKOS, V116, P1255, DOI 10.1111/j.2007.0030-1299.15860.x; Villeger S, 2013, GLOBAL ECOL BIOGEOGR, V22, P671, DOI 10.1111/geb.12021; Villeger S, 2011, P NATL ACAD SCI USA, V108, P18003, DOI 10.1073/pnas.1107614108; Vinson MR, 2003, ECOGRAPHY, V26, P751, DOI 10.1111/j.0906-7590.2003.03397.x; Vorosmarty CJ, 2010, NATURE, V467, P555, DOI 10.1038/nature09440; WALKER KF, 1995, REGUL RIVER, V11, P85, DOI 10.1002/rrr.3450110108; Ward DP, 2013, ECOHYDROLOGY, V6, P312, DOI 10.1002/eco.1270; Ward JV, 2001, FRESHWATER BIOL, V46, P807, DOI 10.1046/j.1365-2427.2001.00713.x; Ward JV, 1999, REGUL RIVER, V15, P125, DOI 10.1002/(SICI)1099-1646(199901/06)15:1/3<125::AID-RRR523>3.0.CO;2-E; WARD JV, 1989, J N AM BENTHOL SOC, V8, P2, DOI 10.2307/1467397; Warfe DM, 2014, FRESHWATER BIOL, V59, P2064, DOI 10.1111/fwb.12407; Warren SD, 2007, RESTOR ECOL, V15, P606, DOI 10.1111/j.1526-100X.2007.00272.x; Webb EB, 2010, J WILDLIFE MANAGE, V74, P109, DOI 10.2193/2008-577; Werner EE, 2007, OIKOS, V116, P1697, DOI 10.1111/j.2007.0030-1299.15935.x; Westgate MJ, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4899; Whittaker RJ, 2001, J BIOGEOGR, V28, P453, DOI 10.1046/j.1365-2699.2001.00563.x; WHITTAKER ROBERT H., 1960, ECOL MONOGR, V30, P279, DOI 10.2307/1943563; WIENS JA, 1989, FUNCT ECOL, V3, P385, DOI 10.2307/2389612; Wiens JJ, 2015, ECOL LETT, V18, P1234, DOI 10.1111/ele.12503; Wintle BC, 2007, AUSTRAL ECOL, V32, P592, DOI 10.1111/j.1442-9993.2007.01753.x; Wissinger SA, 2009, J N AM BENTHOL SOC, V28, P12, DOI 10.1899/08-007.1; Wood PJ, 2005, HYDROBIOLOGIA, V545, P55, DOI 10.1007/s10750-005-2213-y; Xenopoulos MA, 2005, GLOBAL CHANGE BIOL, V11, P1557, DOI 10.1111/j.1365-2486.2005.01008.x; Xenopoulos MA, 2006, ECOLOGY, V87, P1907, DOI 10.1890/0012-9658(2006)87[1907:GWTFUS]2.0.CO;2; Yang W, 2016, RESTOR ECOL, V24, P731, DOI 10.1111/rec.12435; Zmihorski M, 2016, J APPL ECOL, V53, P587, DOI 10.1111/1365-2664.12588 312 1 1 43 64 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1464-7931 1469-185X BIOL REV Biol. Rev. MAY 2018 93 2 971 995 10.1111/brv.12381 25 Biology Life Sciences & Biomedicine - Other Topics GC3QR WOS:000429699100014 29115026 2018-11-22 J Fisher, DN; David, M; Rodriguez-Munoz, R; Tregenza, T Fisher, David N.; David, Morgan; Rodriguez-Munoz, Rolando; Tregenza, Tom Lifespan and age, but not residual reproductive value or condition, are related to behaviour in wild field crickets ETHOLOGY English Article behavioural type; Gryllus; life history; pace of life; personality ADAPTIVE PERSONALITY-DIFFERENCES; ANIMAL PERSONALITY; INDIVIDUAL CORRELATIONS; HISTORY STRATEGIES; INSECT POPULATION; SEXUAL SELECTION; BODY CONDITION; TRADE-OFFS; TRAITS; EVOLUTION Individuals frequently show long-term consistency in behaviour over their lifetimes, referred to as personality. Various models, revolving around the use of resources and how they are valued by individuals, attempt to explain the maintenance of these different behavioural types within a population, and evaluating them is the key for understanding the evolution of behavioural variation. The pace-of-life syndrome hypothesis suggests that differences in personalities result from divergent life-history strategies, with more active/risk-taking individuals reproducing rapidly but dying young. However, studies of wild animals provide only limited support for key elements of this and related hypotheses, such as a negative relationship between residual reproductive value and activity. Furthermore, alternative models make divergent predictions regarding the relationship between risk-taking behaviours and variables consistent in the short-term, such as condition. To test these predictions, we regularly measured willingness to leave a shelter and the activity level of wild adult field crickets (Gryllus campestris) at both short and long intervals over their entire adult lives. We found some support for a pace-of-life syndrome influencing personality, as lifespan was negatively related to willingness to leave the shelter and activity. Crickets did not appear to protect their assets however, as estimates of residual reproductive value were not related to behaviour. Although there was considerable variance attributed to the short-term consistency, neither trait was affected by phenotypic condition, failing to support either of the models we tested. Our study confirms that behaviours may covary with some life-history traits and highlights the scales of temporal consistency that are more difficult to explain. [Fisher, David N.; David, Morgan; Rodriguez-Munoz, Rolando; Tregenza, Tom] Univ Exeter, Ctr Ecol & Conservat, Penryn, Cornwall, England; [Fisher, David N.] Univ Guelph, Dept Integrat Biol, Guelph, ON, Canada; [David, Morgan] Univ Antwerp, Dept Biol Ethol, Drie Eiken Campus, Antwerp, Belgium; [David, Morgan] Drylaw House Gardens, Edinburgh, Midlothian, Scotland Tregenza, T (reprint author), Univ Exeter, Ctr Ecol & Conservat, Penryn, Cornwall, England. t.tregenza@exeter.ac.uk Fisher, David/0000-0002-4444-4450 Natural Environment Research Council [NE/H02249X/1, NE/H02364X/1] Natural Environment Research Council, Grant/Award Number: NE/H02249X/1 and NE/H02364X/1 Adriaenssens B, 2011, BEHAV ECOL, V22, P135, DOI 10.1093/beheco/arq185; Bell AM, 2009, ANIM BEHAV, V77, P771, DOI 10.1016/j.anbehav.2008.12.022; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Bolker B., 2012, COEFPLOT2; Bretman A, 2011, MOL ECOL, V20, P3045, DOI 10.1111/j.1365-294X.2011.05140.x; CLARK CW, 1994, BEHAV ECOL, V5, P159, DOI 10.1093/beheco/5.2.159; Dall SRX, 2004, ECOL LETT, V7, P734, DOI 10.1111/j.1461-0248.2004.00618.x; Dammhahn M, 2012, P ROY SOC B-BIOL SCI, V279, P2645, DOI 10.1098/rspb.2012.0212; David M, 2015, BEHAV ECOL SOCIOBIOL, V69, P1085, DOI 10.1007/s00265-015-1921-1; David M, 2012, ETHOLOGY, V118, P932, DOI 10.1111/j.1439-0310.2012.02085.x; David M, 2012, IBIS, V154, P372, DOI 10.1111/j.1474-919X.2012.01216.x; Dingemanse NJ, 2010, PHILOS T R SOC B, V365, P3947, DOI 10.1098/rstb.2010.0221; Dosmann A, 2015, ANIM BEHAV, V101, P179, DOI 10.1016/j.anbehav.2014.12.026; Dosmann AJ, 2015, ETHOLOGY, V121, P125, DOI 10.1111/eth.12320; Duckworth RA, 2010, AUK, V127, P752, DOI 10.1525/auk.2010.127.4.752; Ferrari C, 2013, ANIM BEHAV, V85, P1385, DOI 10.1016/j.anbehav.2013.03.030; Fisher DN, 2015, BEHAV ECOL, V26, P975, DOI 10.1093/beheco/arv048; Fisher DN, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0708; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hall ML, 2015, FRONT ECOL EVOL, V3, P28; Hawlena D, 2009, AMPHIBIA-REPTILIA, V30, P587, DOI 10.1163/156853809789647167; HEIDELBERGER P, 1983, OPER RES, V31, P1109, DOI 10.1287/opre.31.6.1109; Houston A. I., 1999, MODELS ADAPTIVE BEHA; Hunt J, 2005, AM NAT, V166, P79, DOI 10.1086/430672; Kluen E, 2014, BEHAV ECOL SOCIOBIOL, V68, P205, DOI 10.1007/s00265-013-1635-1; Luttbeg B, 2010, PHILOS T R SOC B, V365, P3977, DOI 10.1098/rstb.2010.0207; Mangel M, 2001, EVOL ECOL RES, V3, P583; Martin J, 2006, BEHAV ECOL SOCIOBIOL, V60, P778, DOI 10.1007/s00265-006-0221-1; McElreath R, 2007, NATURE, V450, pE5, DOI 10.1038/nature06326; Montiglio PO, 2015, BEHAV ECOL SOCIOBIOL, V69, P1, DOI 10.1007/s00265-014-1812-x; Montiglio PO, 2014, J ANIM ECOL, V83, P720, DOI 10.1111/1365-2656.12174; Nakagawa S, 2013, METHODS ECOL EVOL, V4, P133, DOI 10.1111/j.2041-210x.2012.00261.x; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Niemela PT, 2013, BEHAV ECOL, V24, P935, DOI 10.1093/beheco/art014; Niemela PT, 2015, BEHAV ECOL, V26, P936, DOI 10.1093/beheco/arv036; Niemela PT, 2014, TRENDS ECOL EVOL, V29, P245, DOI 10.1016/j.tree.2014.02.007; R Development Core Team, 2016, R FOUND STAT COMPUT, V1, P409; Reale D, 2009, J EVOLUTION BIOL, V22, P1599, DOI 10.1111/j.1420-9101.2009.01781.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Rillich J, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0028891; Rodriguez-Munoz R, 2010, SCIENCE, V328, P1269, DOI 10.1126/science.1188102; Schielzeth H, 2010, METHODS ECOL EVOL, V1, P103, DOI 10.1111/j.2041-210X.2010.00012.x; Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089; Schuett W, 2010, BIOL REV, V85, P217, DOI 10.1111/j.1469-185X.2009.00101.x; Seltmann MW, 2012, ANIM BEHAV, V84, P889, DOI 10.1016/j.anbehav.2012.07.012; Sih A, 2015, TRENDS ECOL EVOL, V30, P50, DOI 10.1016/j.tree.2014.11.004; Smith BR, 2008, BEHAV ECOL, V19, P448, DOI 10.1093/beheco/arm144; Stamps JA, 2007, ECOL LETT, V10, P355, DOI 10.1111/j.1461-0248.2007.01034.x; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; Wickham H, 2009, USE R, P1, DOI 10.1007/978-0-387-98141-3_1; Wilson DS, 1998, PHILOS T ROY SOC B, V353, P199, DOI 10.1098/rstb.1998.0202; Wolf M, 2007, NATURE, V450, pE5, DOI 10.1038/nature06327; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wolf M, 2012, TRENDS ECOL EVOL, V27, P452, DOI 10.1016/j.tree.2012.05.001; Wolf M, 2010, PHILOS T R SOC B, V365, P3959, DOI 10.1098/rstb.2010.0215 55 0 0 9 10 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0179-1613 1439-0310 ETHOLOGY Ethology MAY 2018 124 5 338 346 10.1111/eth.12735 9 Psychology, Biological; Behavioral Sciences; Zoology Psychology; Behavioral Sciences; Zoology GC7WC WOS:000430003100007 Other Gold, Green Published 2018-11-22 J Christie, MR; McNickle, GG; French, RA; Blouin, MS Christie, Mark R.; McNickle, Gordon G.; French, Rod A.; Blouin, Michael S. Life history variation is maintained by fitness trade-offs and negative frequency-dependent selection PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article Lotka-Volterra competition; evolutionary game theory; fitness; iteroparity; salmon ALTERNATIVE REPRODUCTIVE STRATEGIES; BAYESIAN PARENTAGE ANALYSIS; TROUT SALMO-GAIRDNERI; STEELHEAD TROUT; PACIFIC SALMON; ONCORHYNCHUS-MYKISS; SYSTEMATIC ACCOUNTABILITY; SEXUAL SELECTION; GENOTYPING ERROR; SOCKEYE-SALMON The maintenance of diverse life history strategies within and among species remains a fundamental question in ecology and evolutionary biology. By using a near-complete 16-year pedigree of 12,579 winter-run steelhead (Oncorhynchus mykiss) from the Hood River, Oregon, we examined the continued maintenance of two life history traits: the number of lifetime spawning events (semelparous vs. iteroparous) and age at first spawning (2-5 years). We found that repeat-spawning fish had more than 2.5 times the lifetime reproductive success of single-spawning fish. However, first-time repeat-spawning fish had significantly lower reproductive success than single-spawning fish of the same age, suggesting that repeat-spawning fish forego early reproduction to devote additional energy to continued survival. For single-spawning fish, we also found evidence for a fitness trade-off for age at spawning: older, larger males had higher reproductive success than younger, smaller males. For females, in contrast, we found that 3-year-old fish had the highest mean lifetime reproductive success despite the observation that 4-and 5-year-old fish were both longer and heavier. This phenomenon was explained by negative frequency-dependent selection: as 4-and 5-year-old fish decreased in frequency on the spawning grounds, their lifetime reproductive success became greater than that of the 3-year-old fish. Using a combination of mathematical and individual-based models parameterized with our empirical estimates, we demonstrate that both fitness trade-offs and negative frequency-dependent selection observed in the empirical data can theoretically maintain the diverse life history strategies found in this population. [Christie, Mark R.] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA; [Christie, Mark R.] Purdue Univ, Dept Forestry & Nat Resources, W Lafayette, IN 47907 USA; [McNickle, Gordon G.] Purdue Univ, Dept Bot & Plant Pathol, W Lafayette, IN 47907 USA; [McNickle, Gordon G.] Purdue Univ, Ctr Plant Pathol, W Lafayette, IN 47907 USA; [French, Rod A.] Oregon Dept Fish & Wildlife, The Dalles, OR 97058 USA; [Blouin, Michael S.] Oregon State Univ, Dept Integrat Biol, Corvallis, OR 97331 USA Christie, MR (reprint author), Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA.; Christie, MR (reprint author), Purdue Univ, Dept Forestry & Nat Resources, W Lafayette, IN 47907 USA. markchristie@purdue.edu McNickle, Gordon/F-3699-2017 McNickle, Gordon/0000-0002-7188-7265; Christie, Mark/0000-0001-7285-5364; Blouin, Michael/0000-0002-8439-2878 Purdue Biological Sciences Department; Purdue Forestry and Natural Resources Department; Bonneville Power Administration We thank W. Ardren, B. Cooper, V. Amarasinghe, M. Marine, B. Van Orman, and the Oregon State Center for Genome Research and Biotechnology for laboratory protocols and genotyping efforts. We also thank M. Ford, C. Searle, and M. Sparks for insightful discussions and the editor and anonymous reviewers for thought-provoking comments that greatly improved the manuscript. We acknowledge all ODFW staff members who collected field data, performed scale aging, and acquired tissue samples for this data set. This research was funded by support to M.R.C. from the Purdue Biological Sciences and Forestry and Natural Resources Departments and by a grant to M.S.B. from the Bonneville Power Administration. Adler PB, 2007, ECOL LETT, V10, P95, DOI 10.1111/j.1461-0248.2006.00996.x; Anderson EC, 2014, BIOINFORMATICS, V30, P743, DOI 10.1093/bioinformatics/btt588; Araki H, 2007, CONSERV BIOL, V21, P181, DOI 10.1111/j.1523-1739.2006.00564.x; BRADFORD MJ, 1995, CAN J FISH AQUAT SCI, V52, P1327, DOI 10.1139/f95-129; Carius HJ, 2001, EVOLUTION, V55, P1136; Carlson SM, 2011, HEREDITY, V106, P438, DOI 10.1038/hdy.2010.163; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; Christie MR, 2012, HEREDITY, V109, P254, DOI 10.1038/hdy.2012.39; Christie MR, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms10676; Christie MR, 2014, EVOL APPL, V7, P883, DOI 10.1111/eva.12183; Christie MR, 2013, BIOINFORMATICS, V29, P725, DOI 10.1093/bioinformatics/btt039; Christie MR, 2012, P NATL ACAD SCI USA, V109, P238, DOI 10.1073/pnas.1111073109; Christie MR, 2011, MOL ECOL, V20, P1263, DOI 10.1111/j.1365-294X.2010.04994.x; Christie MR, 2010, MOL ECOL RESOUR, V10, P115, DOI 10.1111/j.1755-0998.2009.02687.x; Cressman R, 2017, THEOR POPUL BIOL, V116, P1, DOI 10.1016/j.tpb.2017.04.003; Cunningham CJ, 2013, AM NAT, V181, P663, DOI 10.1086/670026; Darwin C., 1859, ORIGIN SPECIES; FLEMING IA, 1994, EVOLUTION, V48, P637, DOI 10.1111/j.1558-5646.1994.tb01350.x; Fleming IA, 1996, REV FISH BIOL FISHER, V6, P379, DOI 10.1007/BF00164323; Futuyma D.J., 2017, EVOLUTION; Gigord LDB, 2001, P NATL ACAD SCI USA, V98, P6253, DOI 10.1073/pnas.111162598; Grafen A, 1988, STUDIES INDIVIDUAL V, P454; Gross M.T., 1984, P55; GROSS MR, 1991, PHILOS T R SOC B, V332, P59, DOI 10.1098/rstb.1991.0033; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; HANKIN DG, 1993, CAN J FISH AQUAT SCI, V50, P347, DOI 10.1139/f93-040; Hatchwell BJ, 2000, ANIM BEHAV, V59, P1079, DOI 10.1006/anbe.2000.1394; Hendry AP, 2004, P ROY SOC B-BIOL SCI, V271, P259, DOI 10.1098/rspb.2003.2600; HOLTBY LB, 1986, CAN J FISH AQUAT SCI, V43, P1946, DOI 10.1139/f86-240; JORDAN DS, 1923, AM FOOD GAME FISHES; Keefer ML, 2008, CAN J FISH AQUAT SCI, V65, P2592, DOI 10.1139/F08-160; KESNER WD, 1972, CALIF FISH GAME, V58, P204; Koskella B, 2009, EVOLUTION, V63, P2213, DOI 10.1111/j.1558-5646.2009.00711.x; Leimar O, 2013, J THEOR BIOL, V339, P3, DOI 10.1016/j.jtbi.2013.08.005; Manly BF, 2006, RANDOMIZATION BOOTST; McMillan JR, 2012, ENVIRON BIOL FISH, V93, P343, DOI 10.1007/s10641-011-9921-0; Metcalf JC, 2003, TRENDS ECOL EVOL, V18, P471, DOI 10.1016/S0169-5347(03)00162-9; PARKER RR, 1962, J FISH RES BOARD CAN, V19, P561, DOI 10.1139/f62-037; Quinn T. P., 2015, CANADIAN J FISHERIES, V73, P1015; Quinn T. P., 2005, BEHAV ECOLOGY PACIFI; Quinn TP, 2011, T AM FISH SOC, V140, P45, DOI 10.1080/00028487.2010.550244; QUINN TP, 1994, ANIM BEHAV, V48, P751, DOI 10.1006/anbe.1994.1300; RICKER WE, 1976, J FISH RES BOARD CAN, V33, P1483, DOI 10.1139/f76-191; Ricklefs R, 2014, ECOLOGY EC NATURE; Ripa J, 2009, EVOL ECOL RES, V11, P305; Roff DA, 2000, J EVOLUTION BIOL, V13, P434, DOI 10.1046/j.1420-9101.2000.00186.x; ROUGHGARDEN J, 1972, AM NAT, V106, P683, DOI 10.1086/282807; Seamons TR, 2010, BEHAV ECOL SOCIOBIOL, V64, P505, DOI 10.1007/s00265-009-0866-7; Seamons TR, 2009, N AM J FISH MANAGE, V29, P396, DOI 10.1577/M08-044.1; Stearns S., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Vincent T. L., 2005, EVOLUTIONARY GAME TH; WARD BR, 1989, CAN J FISH AQUAT SCI, V46, P1853, DOI 10.1139/f89-233; WITHLER IL, 1966, J FISH RES BOARD CAN, V23, P365, DOI 10.1139/f66-031; Zimmerman CE, 2002, T AM FISH SOC, V131, P986, DOI 10.1577/1548-8659(2002)131<0986:IOSARR>2.0.CO;2 56 0 0 16 18 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. APR 24 2018 115 17 4441 4446 10.1073/pnas.1801779115 6 Multidisciplinary Sciences Science & Technology - Other Topics GD7MZ WOS:000430697500064 29643072 2018-11-22 J McManamay, RA; Smith, JG; Jett, RT; Mathews, TJ; Peterson, MJ McManamay, Ryan A.; Smith, John G.; Jett, Robert T.; Mathews, Teresa J.; Peterson, Mark J. Identifying non-reference sites to guide stream restoration and long-term monitoring SCIENCE OF THE TOTAL ENVIRONMENT English Article Restoration; Anthropogenic disturbance; Contamination; Stream; Fish communities; Landscape alteration CONTERMINOUS UNITED-STATES; LIFE-HISTORY STRATEGIES; RIVER RESTORATION; WATER-QUALITY; LAND-USE; POPULATION REGULATION; HABITAT MANIPULATION; TROUT POPULATIONS; IMPACT ASSESSMENT; COLORADO STREAMS The reference condition paradigm has served as the standard for assessing the outcomes of restoration projects, particularly their success in meeting project objectives. One limitation of relying solely on the reference condition in designing and monitoring restoration projects is that reference conditions do not necessarily elucidate impairments to effective restoration, especially diagnosing the causal mechanisms behind unsuccessful outcomes. We provide a spatial framework to select both reference and non-reference streams to guide restoration planning and long-term monitoring through reliance on anthropogenically altered ecosystems to understand processes that govern ecosystem biophysical properties and ecosystem responses to restoration practices. We then applied the spatial framework to East Fork Poplar Creek (EFPC), Tennessee (USA), a system receiving 30 years of remediation and pollution abatement actions from industrialization, pollution, and urbanization. Out of > 13,000 stream reaches, we identified anywhere from 4 to 48 reaches, depending on the scenario, that could be used in restoration planning and monitoring for specific sites. Preliminary comparison of fish species composition at these sites compared to EFPC sites were used to identify potential mechanisms limiting the ecological recovery following remediation. We suggest that understanding the relative role of anthropogenic pressures in governing ecosystem responses is required to successful, process-driven restoration. (c) 2017 Elsevier B.V. All rights reserved. [McManamay, Ryan A.; Smith, John G.; Jett, Robert T.; Mathews, Teresa J.; Peterson, Mark J.] Oak Ridge Natl Lab, Environm Sci Div, Bldg 1504,MS-6351, Oak Ridge, TN 37831 USA McManamay, RA (reprint author), Oak Ridge Natl Lab, Environm Sci Div, Bldg 1504,MS-6351, Oak Ridge, TN 37831 USA. mcmanamayra@ornl.gov US Department of Energy [DE-AC05-00OR22725]; Environmental Compliance Department of the Y-12 National Security Complex; Oak Ridge National Laboratory's Environmental Protection Services Division's Water Quality Programs The study was authored by employees of UT-Battelleunder contract DE-AC05-00OR22725 with the US Department of Energy. This research was sponsored by the Environmental Compliance Department of the Y-12 National Security Complex and by the Oak Ridge National Laboratory's Environmental Protection Services Division's Water Quality Programs. We thank Allison Fortner and two anonymous reviewers for providing valuable comments on earlier versions of this manuscript. Arthington AH, 2006, ECOL APPL, V16, P1311, DOI 10.1890/1051-0761(2006)016[1311:TCOPEF]2.0.CO;2; BALON EK, 1975, J FISH RES BOARD CAN, V32, P821, DOI 10.1139/f75-110; Beechie T, 2008, N AM J FISH MANAGE, V28, P891, DOI 10.1577/M06-174.1; Beisner BE, 2003, FRONT ECOL ENVIRON, V1, P376, DOI 10.2307/3868190; Bernhardt ES, 2007, RESTOR ECOL, V15, P482, DOI 10.1111/j.1526-100X.2007.00244.x; Bernhardt ES, 2011, ECOL APPL, V21, P1926, DOI 10.1890/10-1574.1; Bernhardt ES, 2005, SCIENCE, V308, P636, DOI 10.1126/science.1109769; Bohn BA, 2002, J ENVIRON MANAGE, V64, P355, DOI 10.1006/jema.2001.0496; Bond N. R., 2003, Ecological Management & Restoration, V4, P193, DOI 10.1046/j.1442-8903.2003.00156.x; Booth DB, 2005, J N AM BENTHOL SOC, V24, P724, DOI 10.1899/0887-3593(2005)024\[0724:CAPFRU\]2.0.CO;2; Brewer JS, 2009, RESTOR ECOL, V17, P4, DOI 10.1111/j.1526-100X.2008.00456.x; Brooks SC, 2011, ENVIRON POLLUT, V159, P219, DOI 10.1016/j.envpol.2010.09.009; Brown DG, 2005, ECOL APPL, V15, P1851, DOI 10.1890/03-5220; Burcher CL, 2006, J N AM BENTHOL SOC, V25, P356, DOI 10.1899/0887-3593(2006)25[356:PABROS]2.0.CO;2; Calabrese JM, 2014, GLOBAL ECOL BIOGEOGR, V23, P99, DOI 10.1111/geb.12102; Carlisle DM, 2003, BIOLOGICAL RESPONSE SIGNATURES: INDICATOR PATTERNS USING AQUATIC COMMUNITIES, P271; Clewell A., 2005, GUIDELINES DEV MANAG; Dallas HF, 2013, HYDROBIOLOGIA, V719, P483, DOI 10.1007/s10750-012-1305-8; Davies SP, 2006, ECOL APPL, V16, P1251, DOI 10.1890/1051-0761(2006)016[1251:TBCGAD]2.0.CO;2; Dubuis A, 2011, DIVERS DISTRIB, V17, P1122, DOI 10.1111/j.1472-4642.2011.00792.x; EBERHARDT LL, 1976, J ENVIRON MANAGE, V4, P27; Elith J, 2008, J ANIM ECOL, V77, P802, DOI 10.1111/j.1365-2656.2008.01390.x; Esselman PC, 2013, ECOL INDIC, V26, P163, DOI 10.1016/j.ecolind.2012.10.028; Etnier D. A., 1993, FISHES OF TENNESSEE; Feio MJ, 2014, SCI TOTAL ENVIRON, V476, P745, DOI 10.1016/j.scitotenv.2013.05.056; Gowan C, 1996, ECOL APPL, V6, P931, DOI 10.2307/2269496; Harris RR, 1999, ENVIRON MANAGE, V24, P55, DOI 10.1007/s002679900214; Hawkins CP, 2010, J N AM BENTHOL SOC, V29, P312, DOI 10.1899/09-092.1; Hilt S, 2011, OIKOS, V120, P766, DOI 10.1111/j.1600-0706.2010.18553.x; Hobbs RJ, 2009, TRENDS ECOL EVOL, V24, P599, DOI 10.1016/j.tree.2009.05.012; HSC (Horizon Systems Corporation), 2017, NHDPLUS VERS 2; Huang J., 2015, PLOS ONE; HUGHES RM, 1986, ENVIRON MANAGE, V10, P629, DOI 10.1007/BF01866767; Jenks G. F, 1967, INT YB CARTOGRAPHY, V7, P186; Kasten J. L, 1986, WATER CONSERVATION P, V21; King RS, 2005, ECOL APPL, V15, P137, DOI 10.1890/04-0481; Kondolf GM, 2008, ENVIRON MANAGE, V42, P933, DOI 10.1007/s00267-008-9162-y; Konrad CP, 2011, BIOSCIENCE, V61, P948, DOI 10.1525/bio.2011.61.12.5; Kosnicki E, 2014, ENVIRON MANAGE, V54, P494, DOI 10.1007/s00267-014-0320-0; Krumholz L. A, 1954, ORO587 OAK RIDG NAT; Loar J. M., 1992, YTS886 OAK RIDG Y 12; Loar JM, 2011, ENVIRON MANAGE, V47, P1010, DOI 10.1007/s00267-011-9625-4; Lunde KB, 2013, ENVIRON MANAGE, V51, P1262, DOI 10.1007/s00267-013-0057-1; Mathews TJ, 2014, ENVIRON TOXICOL CHEM, V33, P2273, DOI 10.1002/etc.2673; McManamay RA, 2017, P NATL ACAD SCI USA, V114, P9581, DOI 10.1073/pnas.1706201114; McManamay RA, 2016, HYDROBIOLOGIA, V771, P45, DOI 10.1007/s10750-015-2612-7; McManamay RA, 2015, CAN J FISH AQUAT SCI, V72, P1731, DOI 10.1139/cjfas-2015-0227; Mcmanamay RA, 2015, ECOL APPL, V25, P243, DOI 10.1890/14-0247.1; Meador MR, 2005, AM FISH S S, V47, P409; Meador MR, 2003, ENVIRON MANAGE, V31, P504, DOI 10.1007/s00267-002-2805-5; Midway SR, 2015, ENVIRON BIOL FISH, V98, P1295, DOI 10.1007/s10641-014-0359-z; Miller JR, 2007, RESTOR ECOL, V15, P382, DOI 10.1111/j.1526-100X.2007.00234.x; Miller JR, 2016, RESTOR ECOL, V24, P577, DOI 10.1111/rec.12378; Morandi B, 2014, J ENVIRON MANAGE, V137, P178, DOI 10.1016/j.jenvman.2014.02.010; Muotka T, 2002, BIOL CONSERV, V105, P243, DOI 10.1016/S0006-3207(01)00202-6; Murcia C, 2014, RESTOR ECOL, V22, P279, DOI 10.1111/rec.12100; Nagel DE, 2014, RMRSGTR321 USDA FOR; NFHP (National Fish Habitat Partnership), 2017, FISHS EYE STAT FISH; Ode PR, 2016, FRESHW SCI, V35, P237, DOI 10.1086/684003; Olden J. D, 2010, AM FISHERIES SOC S, V73, P109; Olivero Sheldon A, 2015, STREAM CLASSIFICATIO; OMERNIK JM, 1987, ANN ASSOC AM GEOGR, V77, P118, DOI 10.1111/j.1467-8306.1987.tb00149.x; Palmer MA, 2006, WATER RESOUR RES, V42, DOI 10.1029/2005WR004354; Palmer MA, 2005, J APPL ECOL, V42, P208, DOI 10.1111/j.1365-2664.2005.01004.x; Palmer MA, 2010, FRESHWATER BIOL, V55, P205, DOI 10.1111/j.1365-2427.2009.02372.x; Paul MJ, 2001, ANNU REV ECOL SYST, V32, P333, DOI 10.1146/annurev.ecolsys.32.081501.114040; Peoples BK, 2016, J BIOGEOGR, V43, P923, DOI 10.1111/jbi.12699; Peterson MJ, 2011, ENVIRON MANAGE, V47, P1005, DOI 10.1007/s00267-011-9627-2; Poff NL, 2010, FRESHWATER BIOL, V55, P147, DOI 10.1111/j.1365-2427.2009.02204.x; Ridgeway G., 2017, PACKAGE BBM GEN BOOS; Roni P, 2008, N AM J FISH MANAGE, V28, P856, DOI 10.1577/M06-169.1; Ryon M.G., 1988, Journal of the Tennessee Academy of Science, V63, P97; Ryon MG, 2011, ENVIRON MANAGE, V47, P1096, DOI 10.1007/s00267-010-9596-x; Scott MC, 2001, FISHERIES, V26, P6, DOI 10.1577/1548-8446(2001)026<0006:NIHATM>2.0.CO;2; Smith JG, 2016, ENVIRON TOXICOL CHEM, V35, P1159, DOI 10.1002/etc.3253; Smith JG, 2011, ENVIRON MANAGE, V47, P1077, DOI 10.1007/s00267-010-9610-3; STEWARTOATEN A, 1986, ECOLOGY, V67, P929, DOI 10.2307/1939815; Stoddard JL, 2006, ECOL APPL, V16, P1267, DOI 10.1890/1051-0761(2006)016[1267:SEFTEC]2.0.CO;2; Suding KN, 2011, ANNU REV ECOL EVOL S, V42, P465, DOI 10.1146/annurev-ecolsys-102710-145115; Tear TH, 2005, BIOSCIENCE, V55, P835, DOI 10.1641/0006-3568(2005)055[0835:HMIETR]2.0.CO;2; Troia MJ, 2016, ECOL EVOL, V6, P4654, DOI 10.1002/ece3.2225; UNDERWOOD AJ, 1994, ECOL APPL, V4, P3, DOI 10.2307/1942110; USFS (United States Department of Agriculture Forest Service), 2013, BEAR TREES VER IMP M; USGS (United States Geological Survey Patuxent Wildlife Research Center), 2017, PRESENCE; USGS (United States Geological Survey) United States Department of the Interior, 2016, NAT GAP AN PROGR PRO; Utz RM, 2009, ECOL INDIC, V9, P556, DOI 10.1016/j.ecolind.2008.08.008; Violin CR, 2011, ECOL APPL, V21, P1932, DOI 10.1890/10-1551.1; Walsh CJ, 2005, J N AM BENTHOL SOC, V24, P690, DOI 10.1899/0887-3593(2005)024\\[0690:SRIUCT\\]2.0.CO;2; WALTERS C, 1997, CONSERV ECOL, V1; White SL, 2011, CAN J FISH AQUAT SCI, V68, P2057, DOI 10.1139/F2011-125; Whittier TR, 2007, J N AM BENTHOL SOC, V26, P349, DOI 10.1899/0887-3593(2007)26[349:SRSFSB]2.0.CO;2; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Wolock DM, 2004, ENVIRON MANAGE, V34, pS71, DOI 10.1007/s00267-003-5077-9; Zheng L, 2008, J AM WATER RESOUR AS, V44, P1521, DOI 10.1111/j.1752-1688.2008.00257.x 95 0 0 11 32 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0048-9697 1879-1026 SCI TOTAL ENVIRON Sci. Total Environ. APR 15 2018 621 1208 1223 10.1016/j.scitotenv.2017.10.107 16 Environmental Sciences Environmental Sciences & Ecology FU9SJ WOS:000424196800119 29074249 2018-11-22 J Blanchoud, S; Rutherford, K; Zondag, L; Gemmell, NJ; Wilson, MJ Blanchoud, Simon; Rutherford, Kim; Zondag, Lisa; Gemmell, Neil J.; Wilson, Megan J. De novo draft assembly of the Botrylloides leachii genome provides further insight into tunicate evolution SCIENTIFIC REPORTS English Article WHOLE-BODY REGENERATION; ASCIDIAN CIONA-INTESTINALIS; HOMEOBOX GENE CLUSTERS; OIKOPLEURA-DIOICA; STEM-CELLS; SEQUENCE DATA; ASEXUAL REPRODUCTION; VENETIAN LAGOON; ORAL SIPHON; BLOOD-CELLS Tunicates are marine invertebrates that compose the closest phylogenetic group to the vertebrates. These chordates present a particularly diverse range of regenerative abilities and life-history strategies. Consequently, tunicates provide an extraordinary perspective into the emergence and diversity of these traits. Here we describe the genome sequencing, annotation and analysis of the Stolidobranchian Botrylloides leachii. We have produced a high-quality 159 Mb assembly, 82% of the predicted 194 Mb genome. Analysing genome size, gene number, repetitive elements, orthologs clustering and gene ontology terms show that B. leachii has a genomic architecture similar to that of most solitary tunicates, while other recently sequenced colonial ascidians have undergone genome expansion. In addition, ortholog clustering has identified groups of candidate genes for the study of colonialism and whole-body regeneration. By analysing the structure and composition of conserved gene linkages, we observed examples of cluster breaks and gene dispersions, suggesting that several lineage-specific genome rearrangements occurred during tunicate evolution. We also found lineage-specific gene gain and loss within conserved cell-signalling pathways. Such examples of genetic changes within conserved cell-signalling pathways commonly associated with regeneration and development that may underlie some of the diverse regenerative abilities observed in tunicates. Overall, these results provide a novel resource for the study of tunicates and of colonial ascidians. [Blanchoud, Simon; Rutherford, Kim; Zondag, Lisa; Gemmell, Neil J.; Wilson, Megan J.] Univ Otago, Sch Biomed Sci, Dept Anat, POB 56, Dunedin 9054, New Zealand; [Blanchoud, Simon] Univ Fribourg, Dept Biol, Fribourg, Switzerland Wilson, MJ (reprint author), Univ Otago, Sch Biomed Sci, Dept Anat, POB 56, Dunedin 9054, New Zealand. meganj.wilson@otago.ac.nz Rutherford, Kim/0000-0001-6277-726X; Gemmell, Neil/0000-0003-0671-3637 Otago BMS Deans Bequest and Department of Anatomy; Swiss National Science Foundation (SNSF) [P2ELP3_158873, PZ00P3_173981] Funding support was provided to M.J.W. by the Otago BMS Deans Bequest and Department of Anatomy. S.B. was supported by the Swiss National Science Foundation (SNSF) grant numbers P2ELP3_158873 and PZ00P3_173981. We would like to thank Peter Maxwell and the New Zealand eScience Infrastructure (NeSI); Christelle Dantec and ANISEED for help and advice during the annotation process, as well as for the accompanying B. leachii genome browser; Aude Blanchoud and James Smith for proofreading the manuscript. Abascal F, 2005, BIOINFORMATICS, V21, P2104, DOI 10.1093/bioinformatics/bti263; Agarwala R, 2016, NUCLEIC ACIDS RES, V44, pD7, DOI 10.1093/nar/gkv1290; Albalat R, 2016, NAT REV GENET, V17, P379, DOI 10.1038/nrg.2016.39; Ashburner M, 2000, NAT GENET, V25, P25, DOI 10.1038/75556; Auger H, 2010, DEV BIOL, V339, P374, DOI 10.1016/j.ydbio.2009.12.040; Ballarin L, 2001, BIOL BULL, V201, P59, DOI 10.2307/1543526; Bateman A, 2015, NUCLEIC ACIDS RES, V43, pD204, DOI 10.1093/nar/gku989; Belyaeva OV, 2015, CHEM-BIOL INTERACT, V234, P135, DOI 10.1016/j.cbi.2014.10.026; Belyaeva OV, 2009, BBA-GEN SUBJECTS, V1790, P1266, DOI 10.1016/j.bbagen.2009.06.002; Benazeraf B, 2013, ANNU REV CELL DEV BI, V29, P1, DOI 10.1146/annurev-cellbio-101011-155703; Berna L, 2014, GENOME BIOL EVOL, V6, P1724, DOI 10.1093/gbe/evu122; BERRILL NJ, 1947, Q J MICROSC SCI, V88, P393; Bock DG, 2012, P ROY SOC B-BIOL SCI, V279, P2377, DOI 10.1098/rspb.2011.2610; Bolger AM, 2014, BIOINFORMATICS, V30, P2114, DOI 10.1093/bioinformatics/btu170; Bostock M, 2011, IEEE T VIS COMPUT GR, V17, P2301, DOI 10.1109/TVCG.2011.185; Bradnam KR, 2013, GIGASCIENCE, V2, DOI 10.1186/2047-217X-2-10; Brown FD, 2012, DEV BIOL, V369, P151, DOI 10.1016/j.ydbio.2012.05.038; Brozovic M, 2016, NUCLEIC ACIDS RES, V44, pD808, DOI 10.1093/nar/gkv966; BRUNETTI R, 1976, VIE MILIEU A BIOL MA, V26, P105; BRUNETTI R, 1974, Bollettino di Zoologia, V41, P225; BRUNETTI R, 1980, MAR ECOL PROG SER, V2, P303, DOI 10.3354/meps002303; Brunetti R, 2015, J ZOOL SYST EVOL RES, V53, P186, DOI 10.1111/jzs.12101; BURIGHEI P, 1976, Bollettino di Zoologia, V43, P293; Camacho C, 2009, BMC BIOINFORMATICS, V10, DOI 10.1186/1471-2105-10-421; Canestro C, 2005, DEV BIOL, V285, P298, DOI 10.1016/j.ydbio.2005.06.039; Canestro C, 2006, EVOL DEV, V8, P394, DOI 10.1111/j.1525-142X.2006.00113.x; Chikhi R, 2014, BIOINFORMATICS, V30, P31, DOI 10.1093/bioinformatics/btt310; Chillakuri CR, 2012, SEMIN CELL DEV BIOL, V23, P421, DOI 10.1016/j.semcdb.2012.01.009; Cunningham TJ, 2015, NAT REV MOL CELL BIO, V16, P110, DOI 10.1038/nrm3932; Dahlberg C, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0004458; Dehal P, 2002, SCIENCE, V298, P2157, DOI 10.1126/science.1080049; Delcher AL, 1999, NUCLEIC ACIDS RES, V27, P4636, DOI 10.1093/nar/27.23.4636; Delsuc F, 2006, NATURE, V439, P965, DOI 10.1038/nature04336; Dobin A, 2013, BIOINFORMATICS, V29, P15, DOI 10.1093/bioinformatics/bts635; Eden E, 2009, BMC BIOINFORMATICS, V10, DOI 10.1186/1471-2105-10-48; Edvardsen RB, 2005, CURR BIOL, V15, pR12, DOI 10.1016/j.cub.2004.12.010; Ewels P., 2016, BIOINFORMATICS; Franchi N, 2011, IMMUNOBIOLOGY, V216, P725, DOI 10.1016/j.imbio.2010.10.011; FREEMAN G, 1964, J EXP ZOOL, V156, P157, DOI 10.1002/jez.1401560204; Garcia-Fernandez J, 2005, NAT REV GENET, V6, P881, DOI 10.1038/nrg1723; Gasparini F, 2008, EVOL DEV, V10, P591, DOI 10.1111/j.1525-142X.2008.00274.x; Gazave E, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-249; Gnerre S, 2011, P NATL ACAD SCI USA, V108, P1513, DOI 10.1073/pnas.1017351108; Goessling W, 2014, DIS MODEL MECH, V7, P769, DOI 10.1242/dmm.016352; GOLDIN A, 1948, BIOL BULL, V94, P184, DOI 10.2307/1538246; GRAHAM GJ, 1995, J THEOR BIOL, V175, P71, DOI 10.1006/jtbi.1995.0122; Griggio F, 2014, GENOME BIOL EVOL, V6, P931, DOI 10.1093/gbe/evu080; Guder C, 2006, ONCOGENE, V25, P7450, DOI 10.1038/sj.onc.1210052; Guindon S, 2010, SYST BIOL, V59, P307, DOI 10.1093/sysbio/syq010; Guruharsha KG, 2012, NAT REV GENET, V13, P654, DOI 10.1038/nrg3272; Gutierrez S, 2017, DEV BIOL, V423, P152, DOI 10.1016/j.ydbio.2017.01.012; Hamada M, 2015, DEV BIOL, V405, P304, DOI 10.1016/j.ydbio.2015.07.017; Wences AH, 2015, GENOME BIOL, V16, DOI 10.1186/s13059-015-0764-4; Hoegg S, 2005, TRENDS GENET, V21, P421, DOI 10.1016/j.tig.2005.06.004; Holland P. W., 2017, PHILOS T ROYAL SOC B, V372; Holt C, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-491; Ikuta T, 2010, DEVELOPMENT, V137, P1505, DOI 10.1242/dev.046938; Jackson Brian, 2011, Human Genomics, V5, P283; Janssen R, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-374; Jeanmougin F, 1998, TRENDS BIOCHEM SCI, V23, P403, DOI 10.1016/S0968-0004(98)01285-7; Jeffery WR, 2015, INT REV CEL MOL BIO, V319, P255, DOI 10.1016/bs.ircmb.2015.06.005; Jones DL, 2011, NAT CELL BIOL, V13, P506, DOI 10.1038/ncb0511-506; Jones P, 2014, BIOINFORMATICS, V30, P1236, DOI 10.1093/bioinformatics/btu031; Jue NK, 2016, GENOME BIOL EVOL, V8, P3171, DOI 10.1093/gbe/evw215; Karami A, 2015, INT J STEM CELLS, V8, P128, DOI 10.15283/ijsc.2015.8.2.128; Kent WJ, 2002, GENOME RES, V12, P656, DOI [10.1101/gr.229202. Article published online before March 2002, 10.1101/gr.229202]; Korf I, 2004, BMC BIOINFORMATICS, V5, DOI 10.1186/1471-2105-5-59; Kurn U, 2011, BIOL BULL-US, V221, P43, DOI 10.1086/BBLv221n1p43; Kusserow A, 2005, NATURE, V433, P156, DOI 10.1038/nature03158; Lauzon R. J., 2012, DEV BIOL; Lee SA, 2009, CHEM-BIOL INTERACT, V178, P182, DOI 10.1016/j.cbi.2008.09.019; Lemaire P, 2008, CURR BIOL, V18, pR620, DOI 10.1016/j.cub.2008.05.039; Li L, 2003, GENOME RES, V13, P2178, DOI 10.1101/gr.1224503; Loh KM, 2016, DEV CELL, V38, P643, DOI 10.1016/j.devcel.2016.08.011; Lowe TM, 1999, SCIENCE, V283, P1168, DOI 10.1126/science.283.5405.1168; Lowe TM, 1997, NUCLEIC ACIDS RES, V25, P955, DOI 10.1093/nar/25.5.955; Luke GN, 2003, P NATL ACAD SCI USA, V100, P5292, DOI 10.1073/pnas.0836141100; Luo RB, 2012, GIGASCIENCE, V1, DOI 10.1186/2047-217X-1-18; MacDonald BT, 2009, DEV CELL, V17, P9, DOI 10.1016/j.devcel.2009.06.016; Manni L, 2007, DEV DYNAM, V236, P335, DOI 10.1002/dvdy.21037; Marti-Solans J, 2016, MOL BIOL EVOL, V33, P2401, DOI 10.1093/molbev/msw118; Martin A, 2012, EVOL DEV, V14, P178, DOI 10.1111/j.1525-142X.2012.00534.x; MILLAR RH, 1971, ADV MAR BIOL, V9, P1, DOI 10.1016/S0065-2881(08)60341-7; Nawrocki EP, 2015, NUCLEIC ACIDS RES, V43, pD130, DOI 10.1093/nar/gku1063; Nawrocki EP, 2013, BIOINFORMATICS, V29, P2933, DOI 10.1093/bioinformatics/btt509; Nishida H, 2005, DEV DYNAM, V233, P1177, DOI 10.1002/dvdy.20469; Nydam ML, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0169944; O'Connell J, 2015, BIOINFORMATICS, V31, P2035, DOI 10.1093/bioinformatics/btv057; Pascual-Anaya J, 2013, BMC DEV BIOL, V13, DOI 10.1186/1471-213X-13-26; Piette J, 2015, Q REV BIOL, V90, P117, DOI 10.1086/681440; Primmer CR, 2013, MOL ECOL, V22, P3216, DOI 10.1111/mec.12309; Priyam A, 2015, SEQUENCESERVER MODER; Prud'homme B, 2002, CURR BIOL, V12, P1395, DOI 10.1016/S0960-9822(02)01068-0; Rice P, 2000, TRENDS GENET, V16, P276, DOI 10.1016/S0168-9525(00)02024-2; RINKEVICH B, 1995, P NATL ACAD SCI USA, V92, P7695, DOI 10.1073/pnas.92.17.7695; Rinkevich Y, 2007, DEV BIOL, V312, P131, DOI 10.1016/j.ydbio.2007.09.005; Rinkevich Y, 2007, PLOS BIOL, V5, P900, DOI 10.1371/journal.pbio.0050071; Rinkevich Y, 2013, DEV CELL, V24, P76, DOI 10.1016/j.devcel.2012.11.010; Rinkevich Y, 2008, BMC DEV BIOL, V8, DOI 10.1186/1471-213X-8-100; Ronquist F, 2012, SYST BIOL, V61, P539, DOI 10.1093/sysbio/sys029; Ross AC, 2011, ANNU REV NUTR, V31, P65, DOI 10.1146/annurev-nutr-072610-145127; Rubinstein ND, 2013, GENOME BIOL EVOL, V5, P1185, DOI 10.1093/gbe/evt081; SABBADIN A, 1975, DEV BIOL, V46, P79, DOI 10.1016/0012-1606(75)90088-3; Saito Y, 2001, BIOLOGY OF ASCIDIANS, P315; Santagati F, 2003, GENETICS, V165, P235; Sasakura Y., 2017, WILEY INTERDISCIP RE; Savigny JC, 1816, MEMOIRES ANIMAUX SAN; Seo HC, 2004, NATURE, V431, P67, DOI 10.1038/nature02709; Seo HC, 2001, SCIENCE, V294, P2506, DOI 10.1126/science.294.5551.2506; Sievers F, 2011, MOL SYST BIOL, V7, DOI 10.1038/msb.2011.75; Simakov O, 2015, NATURE, V527, P459, DOI 10.1038/nature16150; Simao FA, 2015, BIOINFORMATICS, V31, P3210, DOI 10.1093/bioinformatics/btv351; Simpson JT, 2014, BIOINFORMATICS, V30, P1228, DOI 10.1093/bioinformatics/btu023; Simpson JT, 2009, GENOME RES, V19, P1117, DOI 10.1101/gr.089532.108; Small KS, 2007, GENOME BIOL, V8, DOI 10.1186/gb-2007-8-3-r41; Smit A. F. A., 2013, REPEATMASKER OPEN 4; Smit AFA, 2008, REPEATMODELER OPEN 1; Sobreira TJP, 2011, P NATL ACAD SCI USA, V108, P226, DOI 10.1073/pnas.1011223108; Somorjai IML, 2012, P NATL ACAD SCI USA, V109, P517, DOI 10.1073/pnas.1100045109; Spagnuolo A, 2003, GENE, V309, P71, DOI 10.1016/S0378-1119(03)00488-8; Stach T, 2002, MOL PHYLOGENET EVOL, V25, P408, DOI 10.1016/S1055-7903(02)00305-6; Stanke Mario, 2003, Bioinformatics (Oxford), V19, pII215, DOI 10.1093/bioinformatics/btg1080; Stapley J, 2015, MOL ECOL, V24, P2241, DOI 10.1111/mec.13089; Stoick-Cooper CL, 2007, DEVELOPMENT, V134, P479, DOI 10.1242/dev.001123; Stolfi A, 2014, ELIFE, V3, DOI 10.7554/eLife.03728; Supek F, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021800; Takatori N, 2008, DEV GENES EVOL, V218, P579, DOI 10.1007/s00427-008-0245-9; Taketa DA, 2015, IMMUNOGENETICS, V67, P605, DOI 10.1007/s00251-015-0870-1; Tsagkogeorga G., 2009, BMC EVOLUTIONARY BIO, V9; Tsagkogeorga G, 2012, GENOME BIOL EVOL, V4, P852, DOI 10.1093/gbe/evs054; Tsagkogeorga G, 2010, J MOL EVOL, V71, P153, DOI 10.1007/s00239-010-9372-9; Velandia-Huerto CA, 2016, BMC GENOMICS, V17, DOI 10.1186/s12864-016-2934-5; Vinson JP, 2005, GENOME RES, V15, P1127, DOI 10.1101/gr.3722605; Voskoboynik A, 2007, FASEB J, V21, P1335, DOI 10.1096/fj.06-7337com; Voskoboynik A, 2015, INVERTEBR REPROD DEV, V59, P33, DOI 10.1080/07924259.2014.944673; Voskoboynik A, 2013, ELIFE, V2, DOI 10.7554/eLife.00569; Voskoboynik A, 2013, SCIENCE, V341, P384, DOI 10.1126/science.1238036; Wada S, 2003, DEV GENES EVOL, V213, P222, DOI 10.1007/s00427-003-0321-0; Wang W, 2007, MOL BIOL EVOL, V24, P784, DOI 10.1093/molbev/msl205; Zerbino DR, 2008, GENOME RES, V18, P821, DOI 10.1101/gr.074492.107; Zhan AB, 2015, MAR BIOL, V162, P2449, DOI 10.1007/s00227-015-2734-5; Zhang GF, 2012, NATURE, V490, P49, DOI 10.1038/nature11413; Zimin AV, 2013, BIOINFORMATICS, V29, P2669, DOI 10.1093/bioinformatics/btt476; Zondag LE, 2016, BMC GENOMICS, V17, DOI 10.1186/s12864-016-2435-6 144 0 0 7 9 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 2045-2322 SCI REP-UK Sci Rep APR 3 2018 8 5518 10.1038/s41598-018-23749-w 18 Multidisciplinary Sciences Science & Technology - Other Topics GB3ZK WOS:000428999200054 29615780 DOAJ Gold, Green Published 2018-11-22 J Kellett, KM; Shefferson, RP Kellett, Kimberly M.; Shefferson, Richard P. Temporal variation in reproductive costs and payoffs shapes the flowering strategy of a neotropical milkweed, Asclepias curassavica POPULATION ECOLOGY English Article Demography; Life history evolution; Optimality models; Reproductive costs; Stochastic population models INTEGRAL PROJECTION MODELS; LIFE-HISTORY PERSPECTIVE; LONG-LIVED PLANT; VARIABLE ENVIRONMENT; CLIMATE-CHANGE; EVOLUTIONARY DEMOGRAPHY; POPULATION-DYNAMICS; SIZE; CONSEQUENCES; PERENNIALS A central goal of evolutionary ecology is to understand the factors that select for particular life history strategies, such as delaying reproduction. For example, environmental variation and reproductive costs to survival and growth often select for reproductive delays in semelparous and iteroparous species. In this study, we examine how variation in reproductive cost, which we define as a reduction to growth, survival, or future reproduction after a reproductive event, may select for reproductive delay in an iteroparous Neotropical milkweed with no obvious reproductive season. We analyzed demographic data collected every 3 months for 3 years from four populations of Asclepias curassavica in Monteverde, Costa Rica. We detected costs of flowering to survival and growth that varied in magnitude between our 12 transition periods without a seasonal pattern. The populations also exhibited temporal variation in reproductive payoffs measured as seedling establishment. We incorporated these reproductive costs into demographic projection models, which predicted a delayed flowering strategy only when we included temporal variation in costs and payoffs. Temporal variation in reproductive costs and payoffs is an important selective force in the evolution of delayed flowering in iteroparous species. Further, a lack of predictable seasonal pattern to reproductive costs and payoffs may contribute to the lack of seasonal reproductive patterns observed in our study species and other Neotropical species. [Kellett, Kimberly M.] Georgia State Univ, Perimeter Coll, Dept Life & Earth Sci, Dunwoody, GA 30302 USA; [Kellett, Kimberly M.; Shefferson, Richard P.] Univ Tokyo, Grad Sch Arts & Sci, Org Programs Environm Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538902, Japan; [Shefferson, Richard P.] Univ Georgia, Odum Sch Ecol, Athens, GA 30602 USA Kellett, KM (reprint author), Georgia State Univ, Perimeter Coll, Dept Life & Earth Sci, Dunwoody, GA 30302 USA.; Kellett, KM (reprint author), Univ Tokyo, Grad Sch Arts & Sci, Org Programs Environm Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538902, Japan. kkellett@gsu.edu Sigma Xi [G2012162529]; Graduate Field Research Award from The Tinker Foundation Funding for this research provided in part by Sigma Xi Grants in Aid of Research Grant ID:. G2012162529 and a Graduate Field Research Award from The Tinker Foundation. Bates D, 2015, J STAT SOFTW, V67, P1; BAZZAZ FA, 1987, BIOSCIENCE, V37, P58, DOI 10.2307/1310178; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Boyce MS, 2006, TRENDS ECOL EVOL, V21, P141, DOI 10.1016/j.tree.2005.11.018; Burnham KP, 2002, MODEL SELECTION MULT; Childs DZ, 2010, P ROY SOC B-BIOL SCI, V277, P3055, DOI 10.1098/rspb.2010.0707; Childs DZ, 2004, P ROY SOC B-BIOL SCI, V271, P425, DOI 10.1098/rspb.2003.2597; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; Croat Thomas B, 1978, FLORA BARRO COLORADO; Crozier LG, 2008, EVOL APPL, V1, P252, DOI 10.1111/j.1752-4571.2008.00033.x; Easterling MR, 2000, ECOLOGY, V81, P694, DOI 10.1890/0012-9658(2000)081[0694:SSSAAN]2.0.CO;2; Gremer JR, 2014, ECOL LETT, V17, P380, DOI 10.1111/ele.12241; HART R, 1977, AM NAT, V111, P792, DOI 10.1086/283209; HORVITZ CC, 1988, ECOLOGY, V69, P1741, DOI 10.2307/1941152; Jacquemyn H, 2010, J ECOL, V98, P1204, DOI 10.1111/j.1365-2745.2010.01697.x; Koons DN, 2008, AM NAT, V172, P797, DOI 10.1086/592867; KOZLOWSKI J, 1986, THEOR POPUL BIOL, V29, P16; Law R, 1979, POPULATION DYNAMICS, P81; Malcolm S.B., 1991, P251; MANGEL M, 1994, DEEP-SEA RES PT II, V41, P75, DOI 10.1016/0967-0645(94)90063-9; Metcalf CJE, 2008, P NATL ACAD SCI USA, V105, P10466, DOI 10.1073/pnas.0800777105; Metcalf CJE, 2007, TRENDS ECOL EVOL, V22, P205, DOI 10.1016/j.tree.2006.12.001; Metcalf JC, 2003, TRENDS ECOL EVOL, V18, P471, DOI 10.1016/S0169-5347(03)00162-9; Miller TEX, 2012, P ROY SOC B-BIOL SCI, V279, P2831, DOI 10.1098/rspb.2012.0326; MOLE S, 1994, OIKOS, V71, P3, DOI 10.2307/3546166; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; Orzack Steven Hecht, 1993, Lecture Notes in Biomathematics, V98, P63; PRIMACK RB, 1990, AM NAT, V136, P638, DOI 10.1086/285120; Proaktor G, 2008, ECOLOGY, V89, P2604, DOI 10.1890/07-0833.1; R Core Team, 2014, R LANG ENV STAT COMP; Rees M, 2004, P ROY SOC B-BIOL SCI, V271, P471, DOI 10.1098/rspb.2003.2596; Rees M, 2006, AM NAT, V168, pE53, DOI 10.1086/505762; Rees M, 2009, ECOL MONOGR, V79, P575, DOI 10.1890/08-1474.1; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Roff D. A., 2002, LIFE HIST EVOLUTION; Shefferson RP, 2014, J ECOL, V102, P1318, DOI 10.1111/1365-2745.12281; Sletvold N, 2015, J ECOL, V103, P1205, DOI 10.1111/1365-2745.12430; Sletvold N, 2015, ECOL LETT, V18, P357, DOI 10.1111/ele.12417; Stearns S., 1992, EVOLUTION LIFE HIST; Stearns S.C., 1984, P13; TULJAPURKAR S, 1990, POPULATION DYNAMICS; WELLS TCE, 1967, J ECOL, V55, P83, DOI 10.2307/2257718; Wesselingh RA, 1997, ECOLOGY, V78, P2118, DOI 10.1890/0012-9658(1997)078[2118:TSFFID]2.0.CO;2; Williams JL, 2015, J ECOL, V103, P798, DOI 10.1111/1365-2745.12369; Wyatt R, 1997, BIOTROPICA, V29, P232, DOI 10.1111/j.1744-7429.1997.tb00029.x 45 1 1 3 3 SPRINGER JAPAN KK TOKYO CHIYODA FIRST BLDG EAST, 3-8-1 NISHI-KANDA, CHIYODA-KU, TOKYO, 101-0065, JAPAN 1438-3896 1438-390X POPUL ECOL Popul. Ecol. APR 2018 60 1-2 SI 77 87 10.1007/s10144-018-0618-5 11 Ecology Environmental Sciences & Ecology GK5ET WOS:000436197700007 2018-11-22 J Schuelke, T; Pereira, TJ; Hardy, SM; Bik, HM Schuelke, Taruna; Pereira, Tiago Jose; Hardy, Sarah M.; Bik, Holly M. Nematode-associated microbial taxa do not correlate with host phylogeny, geographic region or feeding morphology in marine sediment habitats MOLECULAR ECOLOGY English Article 16S rRNA; 18S rRNA; feeding ecology; host-associated microbiome; marine nematodes; metabarcoding SKIN MICROBIOME; SALT-MARSH; SP NOV.; DIVERSITY; GENUS; ECOLOGY; SEQUENCES; EVOLUTION; COMMUNITY; HEALTH Studies of host-associated microbes are critical for advancing our understanding of ecology and evolution across diverse taxa and ecosystems. Nematode worms are ubiquitous across most habitats on earth, yet little is known about host-associated microbial assemblages within the phylum. Free-living nematodes are globally abundant and diverse in marine sediments, with species exhibiting distinct buccal cavity (mouth) morphologies that are thought to play an important role in feeding ecology and life history strategies. Here, we investigated patterns in marine nematode microbiomes, by characterizing host-associated microbial taxa in 281 worms isolated from a range of habitat types (deep-sea, shallow water, methane seeps, Lophelia coral mounds, kelp holdfasts) across three distinct geographic regions (Arctic, Southern California and Gulf of Mexico). Microbiome profiles were generated from single worms spanning 33 distinct morphological genera, using a two-gene metabarcoding approach to amplify the V4 region of the 16S ribosomal RNA (rRNA) gene targeting bacteria/archaea and the V1-V2 region of the 18S rRNA gene targeting microbial eukaryotes. Contrary to our expectations, nematode microbiome profiles demonstrated no distinct patterns either globally (across depths and ocean basins) or locally (within site); prokaryotic and eukaryotic microbial assemblages did not correlate with nematode feeding morphology, host phylogeny or morphological identity, ocean region or marine habitat type. However, fine-scale analysis of nematode microbiomes revealed a variety of novel ecological interactions, including putative parasites and symbionts, and potential associations with bacterial/archaeal taxa involved in nitrogen and methane cycling. Our results suggest that in marine habitats, free-living nematodes may utilize diverse and generalist foraging strategies that are not correlated with host genotype or feeding morphology. Furthermore, some abiotic factors such as geographic region and habitat type do not appear to play an obvious role in structuring host-microbe associations or feeding preferences. [Schuelke, Taruna; Pereira, Tiago Jose; Bik, Holly M.] Univ Calif Riverside, Dept Nematol, Riverside, CA 92521 USA; [Hardy, Sarah M.] Univ Alaska, Sch Fisheries & Ocean Sci, Fairbanks, AK 99701 USA Bik, HM (reprint author), Univ Calif Riverside, Dept Nematol, Riverside, CA 92521 USA. holly.bik@ucr.edu North Pacific Research Board [1303]; Gulf of Mexico Research Initiative North Pacific Research Board, Grant/Award Number: NPRB Project 1303; Gulf of Mexico Research Initiative Ainsworth TD, 2015, ISME J, V9, P2261, DOI 10.1038/ismej.2015.39; Baquiran JP, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0067425; Bataille A, 2016, MICROB ECOL, V71, P221, DOI 10.1007/s00248-015-0653-0; Bayer B, 2016, ISME J, V10, P1051, DOI 10.1038/ismej.2015.200; Bayer C, 2009, ENV MICROBIOL REP, V1, P136, DOI 10.1111/j.1758-2229.2009.00019.x; Bhadury P, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026445; BIK HM, 2010, BMC EVOL BIOL, V10; Bik HM, 2012, TRENDS ECOL EVOL, V27, P233, DOI 10.1016/j.tree.2011.11.010; Blanco Y, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0114180; Blaxter ML, 1998, NATURE, V392, P71, DOI 10.1038/32160; Bokulich NA, 2013, NAT METHODS, V10, P57, DOI [10.1038/NMETH.2276, 10.1038/nmeth.2276]; Bourne DG, 2016, ANNU REV MICROBIOL, V70, P317, DOI 10.1146/annurev-micro-102215-095440; Bowman J, 2006, PROKARYOTES: A HANDBOOK ON THE BIOLOGY OF BACTERIA, VOL 5, THIRD EDITION, P266, DOI 10.1007/0-387-30745-1_15; Campinas Bezerra T.N., 2018, NEMYS WORLD DATABASE; Caporaso JG, 2012, ISME J, V6, P1621, DOI 10.1038/ismej.2012.8; Caporaso JG, 2010, NAT METHODS, V7, P335, DOI 10.1038/nmeth.f.303; Carugati L, 2015, MAR GENOM, V24, P11, DOI 10.1016/j.margen.2015.04.010; Cavalier-Smith T, 2003, PROTIST, V154, P341, DOI 10.1078/143446103322454112; Chauhan A., 2014, GENOME ANNOUNCEMENTS, V2; Cheng XY, 2013, SCI REP-UK, V3, DOI 10.1038/srep01869; Clarke K., 2006, PRIMER V6 USER MANUA; Creer S, 2010, MOL ECOL, V19, P4, DOI 10.1111/j.1365-294X.2009.04473.x; Danovaro R., 2009, METHODS STUDY DEEP S, DOI [10. 1201/9781439811382, DOI 10.1201/9781439811382]; De Barba M, 2014, MOL ECOL RESOUR, V14, P306, DOI 10.1111/1755-0998.12188; De Beeck MO, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0097629; De Ley P, 2002, J NEMATOL, V34, P296; Deagle BE, 2009, MOL ECOL, V18, P2022, DOI 10.1111/j.1365-294X.2009.04158.x; DeLeon-Rodriguez N, 2013, P NATL ACAD SCI USA, V110, P2575, DOI 10.1073/pnas.1212089110; Derycke S, 2016, MOL ECOL, V25, P2093, DOI 10.1111/mec.13597; Derycke S, 2010, ZOOL SCR, V39, P276, DOI 10.1111/j.1463-6409.2009.00420.x; Dewhirst FE, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0036067; Dheilly NM, 2017, MSYSTEMS, V2, DOI 10.1128/mSystems.00050-17; Dirksen P, 2016, BMC BIOL, V14, DOI 10.1186/s12915-016-0258-1; Distel DL, 2017, P NATL ACAD SCI USA, V114, pE3652, DOI 10.1073/pnas.1620470114; Dorn ES, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0180299; Dubilier N, 2008, NAT REV MICROBIOL, V6, P725, DOI 10.1038/nrmicro1992; Elhadyl A, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0177145; Fan L, 2013, ISME J, V7, P991, DOI 10.1038/ismej.2012.165; Findley K, 2009, EUKARYOT CELL, V8, P353, DOI 10.1128/EC.00373-08; Fonseca V. G., 2011, PROTOCOL EXCHANGE, DOI [10. 1038/nprot. 2010. 157, DOI 10.1038/NPROT.2010.157]; Gilbert JA, 2014, BMC BIOL, V12, DOI 10.1186/s12915-014-0069-1; Glasl B, 2016, ISME J, V10, P2280, DOI 10.1038/ismej.2016.9; He LM, 2014, MICROB ECOL, V67, P951, DOI 10.1007/s00248-014-0393-6; HELLWIGARMONIES M, 1991, HELGOLANDER MEERESUN, V45, P357, DOI 10.1007/BF02365525; Hentschel U, 2012, NAT REV MICROBIOL, V10, P641, DOI 10.1038/nrmicro2839; JENSEN P, 1987, MAR ECOL PROG SER, V35, P187, DOI 10.3354/meps035187; Kautz S, 2013, APPL ENVIRON MICROB, V79, P525, DOI 10.1128/AEM.03107-12; Kelly D. P., 2014, PROKARYOTES ALPHAPRO, P313, DOI DOI 10.1007/978-3-642-30197-1; Koneru SL, 2016, MOL ECOL, V25, P2312, DOI 10.1111/mec.13614; Kubo K, 2012, ISME J, V6, P1949, DOI 10.1038/ismej.2012.37; Larsen AM, 2015, MICROB ECOL, V70, P534, DOI 10.1007/s00248-015-0578-7; Leclerque A, 2008, APPL ENVIRON MICROB, V74, P5263, DOI 10.1128/AEM.00446-08; Lejzerowicz F, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0283; Leliaert F, 2012, CRIT REV PLANT SCI, V31, P1, DOI 10.1080/07352689.2011.615705; Lokmer A, 2015, ISME J, V9, P670, DOI 10.1038/ismej.2014.160; Lopez-Perez M, 2016, GENOME BIOL EVOL, V8, P1556, DOI 10.1093/gbe/evw098; Lorenzen S., 1994, The phylogenetic systematics of free living nematodes.; Lory S., 2014, PROKARYOTES, P197; McDonald D, 2012, ISME J, V6, P610, DOI 10.1038/ismej.2011.139; McKenzie VJ, 2012, ISME J, V6, P588, DOI 10.1038/ismej.2011.129; McMurdie PJ, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0061217; MEUNIER A, 1910, MICROPLANKTON MERS B; Meyer JM, 2017, ENVIRON MICROBIOL, V19, P1476, DOI 10.1111/1462-2920.13697; Moens T, 2000, MAR ECOL PROG SER, V205, P185, DOI 10.3354/meps205185; Moens T, 1999, MAR BIOL, V134, P585, DOI 10.1007/s002270050573; Moens T, 1997, J MAR BIOL ASSOC UK, V77, P211, DOI 10.1017/S0025315400033889; Moens T, 2013, NEMATODA, V2, P109, DOI DOI 10.1515/9783110274257.109; Moens T, 2004, NEMATOL MONOGR PERSP, V2, P529; Mohamed NM, 2010, ISME J, V4, P38, DOI 10.1038/ismej.2009.84; Moro I, 2003, PROTIST, V154, P331, DOI 10.1078/143446103322454103; Musat N, 2007, ENVIRON MICROBIOL, V9, P1345, DOI 10.1111/j.1462-2920.2006.01232.x; Nakagawa S, 2008, FEMS MICROBIOL ECOL, V65, P1, DOI 10.1111/j.1574-6941.2008.00502.x; Newton ILG, 2007, SCIENCE, V315, P998, DOI 10.1126/science.1138438; Nicks T, 2017, FRONT MICROBIOL, V8, DOI 10.3389/fmicb.2017.00384; Nunes-Alves C, 2015, NAT REV MICROBIOL, V13, P737, DOI 10.1038/nrmicro3588; Parfrey LW, 2011, FRONT MICROBIOL, V2, DOI 10.3389/fmicb.2011.00153; Park S, 2014, PROKARYOTES, P849; Pawlowski J, 2012, PLOS BIOL, V10, DOI 10.1371/journal.pbio.1001419; Platt H. M., 1983, FREELIVING MARINE 1; Platt H. M., 1988, SYNOPSIS FREELIVIN 2; Poulsen M, 2012, MOL ECOL, V21, P2054, DOI 10.1111/j.1365-294X.2012.05510.x; Price MN, 2009, MOL BIOL EVOL, V26, P1641, DOI 10.1093/molbev/msp077; Quast C, 2013, NUCLEIC ACIDS RES, V41, pD590, DOI 10.1093/nar/gks1219; R Core Team, 2017, R LANG ENV STAT COMP; Raghukumar S, 2002, EUR J PROTISTOL, V38, P127, DOI 10.1078/0932-4739-00832; Raghukumar S., 2011, BOT MAR, V54, P245; Ramirez-Llodra E, 2010, BIOGEOSCIENCES, V7, P2851, DOI 10.5194/bg-7-2851-2010; Rideout JR, 2014, PEERJ, V2, DOI 10.7717/peerj.545; Riisberg I, 2009, PROTIST, V160, P191, DOI 10.1016/j.protis.2008.11.004; Ross S. W., 2012, DEEPWATER PROGRAM ST; Salter SJ, 2014, BMC BIOL, V12, DOI 10.1186/s12915-014-0087-z; Sayavedra L, 2015, ELIFE, V4, DOI 10.7554/eLife.07966; Schommer NN, 2013, TRENDS MICROBIOL, V21, P660, DOI 10.1016/j.tim.2013.10.001; SEGATA N, 2011, GENOME BIOL, V12; Sharpton TJ, 2014, FRONT PLANT SCI, V5, DOI 10.3389/fpls.2014.00209; Skovgaard A, 2008, PROTIST, V159, P401, DOI 10.1016/j.protis.2008.02.003; Stamatakis A, 2014, BIOINFORMATICS, V30, P1312, DOI 10.1093/bioinformatics/btu033; Swanson KS, 2011, ISME J, V5, P639, DOI 10.1038/ismej.2010.162; Taylor FJR, 2008, BIODIVERS CONSERV, V17, P407, DOI 10.1007/s10531-007-9258-3; Thaler M, 2012, J EUKARYOT MICROBIOL, V59, P291, DOI 10.1111/j.1550-7408.2012.00631.x; Thompson JR, 2015, FRONT CELL INFECT MI, V4, DOI 10.3389/fcimb.2014.00176; Toledo AV, 2006, J INVERTEBR PATHOL, V92, P7, DOI 10.1016/j.jip.2005.10.005; Tsao HF, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-03642-8; Turnbaugh PJ, 2007, NATURE, V449, P804, DOI 10.1038/nature06244; Van Trappen S, 2004, INT J SYST EVOL MICR, V54, P1765, DOI 10.1099/ijs.0.63123-0; vonsVaupel Klein C., 2015, TREATISE ZOOLOGY ANA; Walke JB, 2017, ENVIRON MICROBIOL, V19, P3387, DOI 10.1111/1462-2920.13850; Walter J, 2011, ANNU REV MICROBIOL, V65, P411, DOI 10.1146/annurev-micro-090110-102830; Wang Q, 2007, APPL ENVIRON MICROB, V73, P5261, DOI 10.1128/AEM.00062-07; WARWICK RM, 1998, FREE LIVING MARINE 3; Wasserfallen A, 2000, INT J SYST EVOL MICR, V50, P43, DOI 10.1099/00207713-50-1-43; Weese JS, 2013, VET DERMATOL, V24, P137, DOI 10.1111/j.1365-3164.2012.01076.x; Werren JH, 1997, ANNU REV ENTOMOL, V42, P587, DOI 10.1146/annurev.ento.42.1.587; Wickham H, 2007, THE GGPLOT PACKAGE; WIESER W., 1953, ARKIV ZOOL, V4, P439; XIA XM, 2017, FRONT MICROBIOL, V8, P5224; Xu DP, 2005, J MAR BIOL ASSOC UK, V85, P787, DOI 10.1017/S0025315405011719; Xu ZX, 2016, ANTON LEEUW INT J G, V109, P371, DOI 10.1007/s10482-015-0639-4; Yan S, 2009, SYST APPL MICROBIOL, V32, P124, DOI 10.1016/j.syapm.2008.12.001; Yu DW, 2012, METHODS ECOL EVOL, V3, P613, DOI 10.1111/j.2041-210X.2012.00198.x; Yu XJ, 2006, PROKARYOTES: A HANDBOOK ON THE BIOLOGY OF BACTERIA, VOL 5, THIRD EDITION, P493, DOI 10.1007/0-387-30745-1_20; Zeale MRK, 2011, MOL ECOL RESOUR, V11, P236, DOI 10.1111/j.1755-0998.2010.02920.x; Zhalnina KV, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0101648 123 3 3 17 17 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. APR 2018 27 8 SI 1930 1951 10.1111/mec.14539 22 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GF1BV WOS:000431667800014 29600535 2018-11-22 J Xiang, XJ; Gibbons, SM; Li, H; Shen, HH; Fang, JY; Chu, HY Xiang, Xingjia; Gibbons, Sean M.; Li, He; Shen, Haihua; Fang, Jingyun; Chu, Haiyan Shrub encroachment is associated with changes in soil bacterial community composition in a temperate grassland ecosystem PLANT AND SOIL English Article Shrub encroachment; Bacterial community; Soil pH; Soil depth; Grassland ecosystem WOODY PLANT ENCROACHMENT; ORGANIC-CARBON; TIBETAN PLATEAU; MESIC GRASSLAND; MICROBIAL COMMUNITIES; JUNIPERUS-VIRGINIANA; RETAMA-SPHAEROCARPA; SEMIARID GRASSLAND; NEW-MEXICO; LAND-USE Aims The effects of shrub encroachment on plant and soil properties have been well studied. However, little is known about how shrub encroachment influences soil bacterial communities. We investigated the effects of shrub encroachment on grassland soil bacterial communities along a soil depth gradient in the Inner Mongolian region of China. Methods The belowground bacterial communities were examined using high-throughput sequencing of the 16S rRNA gene (V4-V5 region, Illumina MiSeq). Results Bacterial alpha-diversity was higher in shrub-encroached soils than in control grassland soils. Bacterial OTU richness was highest at 0-20 cm soil depths, while phylogenetic diversity was greatest at 10-20 cm soil depths. At each soil depth layer, shrub encroachment was associated with a significant shift in bacterial community composition. Change in soil pH was the factor most strongly related to change in bacterial community composition associated with shrub encroachment at all four depth horizons in the soils. Shrub encroachment appears to alter the distribution of bacterial life history strategies in the surface soil (i.e., showing an enrichment in copiotrophs and a depletion in oligotrophs) and shrubs are associated with an increase in nitrification potential in deeper soil horizons. Conclusions Our results indicate that the influence of shrub encroachment on bacterial community composition extends deep into the soil. The intensity of shrub encroachment at this study site suggests that this ecosystem is undergoing dramatic succession towards shrub-dominance, which will likely trigger shifts in ecosystem function. [Xiang, Xingjia; Chu, Haiyan] Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, East Beijing Rd 71, Nanjing 210008, Jiangsu, Peoples R China; [Xiang, Xingjia] Anhui Univ, Sch Resources & Environm Engn, Hefei 230601, Anhui, Peoples R China; [Xiang, Xingjia] Univ Chinese Acad Sci, Beijing 100049, Peoples R China; [Gibbons, Sean M.] MIT, Dept Biol Engn, Cambridge, MA 02139 USA; [Gibbons, Sean M.] Broad Inst MIT & Harvard, Cambridge, MA 02139 USA; [Li, He; Shen, Haihua; Fang, Jingyun] Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing 100093, Peoples R China; [Fang, Jingyun] Peking Univ, Dept Ecol, Coll Urban & Environm, Beijing 100871, Peoples R China; [Fang, Jingyun] Peking Univ, Key Lab Earth Surface Proc, Minist Educ, Beijing 100871, Peoples R China Chu, HY (reprint author), Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, East Beijing Rd 71, Nanjing 210008, Jiangsu, Peoples R China. hychu@issas.ac.cn National Program on Key Basic Research Project (973 Program) [2014CB954002]; Strategic Priority Research Program of Chinese Academy of Sciences [XDB15010101]; National Natural Science Foundation of China [41071121, 31330012] We thank Ms. Feng He and Mr. Jiawei Xiao from University of Chinese Academy of Sciences, for assistance in soil sampling. This work was supported by the National Program on Key Basic Research Project (973 Program, Grant #2014CB954002), Strategic Priority Research Program (Grant #XDB15010101) of Chinese Academy of Sciences, and National Natural Science Foundation of China (41071121; 31330012). ADAMOLI J, 1990, J BIOGEOGR, V17, P491, DOI 10.2307/2845381; Angel R, 2010, ISME J, V4, P553, DOI 10.1038/ismej.2009.136; ARCHER S, 1995, CLIMATIC CHANGE, V29, P91, DOI 10.1007/BF01091640; Baer SG, 2006, AGR ECOSYST ENVIRON, V115, P174, DOI 10.1016/j.agee.2006.01.004; Baker KL, 2009, SOIL BIOL BIOCHEM, V41, P2292, DOI 10.1016/j.soilbio.2009.08.010; Biddle JF, 2008, P NATL ACAD SCI USA, V105, P10583, DOI 10.1073/pnas.0709942105; Bragazza L, 2015, NEW PHYTOL, V205, P1175, DOI 10.1111/nph.13116; Breshears DD, 2006, FRONT ECOL ENVIRON, V4, P96, DOI 10.1890/1540-9295(2006)004[0096:TGCTIE]2.0.CO;2; Briggs JM, 2005, BIOSCIENCE, V55, P243, DOI 10.1641/0006-3568(2005)055[0243:AEITCA]2.0.CO;2; Briggs JM, 2002, AM MIDL NAT, V147, P287, DOI 10.1674/0003-0031(2002)147[0287:EOWPIT]2.0.CO;2; Brown JR, 1999, ECOLOGY, V80, P2385; Brown JR, 1998, LANDSCAPE ECOL, V13, P93, DOI 10.1023/A:1007939203931; Caporaso JG, 2010, NAT METHODS, V7, P335, DOI 10.1038/nmeth.f.303; Chen LY, 2015, LANDSCAPE ECOL, V30, P1627, DOI 10.1007/s10980-014-0044-9; Chu HY, 2016, ENVIRON MICROBIOL, V18, P1523, DOI 10.1111/1462-2920.13236; Coetsee C, 2013, J TROP ECOL, V29, P49, DOI 10.1017/S0266467412000697; Coetzee BWT, 2008, AFR J ECOL, V46, P449, DOI 10.1111/j.1365-2028.2007.00842.x; Costello DA, 2000, BIOL CONSERV, V96, P113, DOI 10.1016/S0006-3207(00)00058-6; D'Odorico P, 2010, ECOSPHERE, V1, DOI 10.1890/ES10-00073.1; Daims H, 2015, NATURE, V528, P504, DOI 10.1038/nature16461; Dussart E, 1998, J RANGE MANAGE, V51, P685, DOI 10.2307/4003613; Edgar RC, 2010, BIOINFORMATICS, V26, P2460, DOI 10.1093/bioinformatics/btq461; Eldridge DJ, 2011, ECOL LETT, V14, P709, DOI 10.1111/j.1461-0248.2011.01630.x; Fierer N, 2006, P NATL ACAD SCI USA, V103, P626, DOI 10.1073/pnas.0507535103; Gomez-Rey MX, 2013, PLANT SOIL, V371, P339, DOI 10.1007/s11104-013-1695-z; GROVER HD, 1990, CLIMATIC CHANGE, V17, P305, DOI 10.1007/BF00138373; Hart SC, 2005, FOREST ECOL MANAG, V220, P166, DOI 10.1016/j.foreco.2005.08.012; Hibbard KA, 2001, ECOLOGY, V82, P1999, DOI 10.2307/2680064; Houghton RA, 1999, SCIENCE, V285, P574, DOI 10.1126/science.285.5427.574; Jackson RB, 2002, NATURE, V418, P623, DOI 10.1038/nature00910; Jobbagy EG, 2000, ECOL APPL, V10, P423, DOI 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2; Kaye JP, 1997, TRENDS ECOL EVOL, V12, P139, DOI 10.1016/S0169-5347(97)01001-X; Knapp AK, 2008, GLOBAL CHANGE BIOL, V14, P615, DOI 10.1111/j.1365-2486.2007.01512.x; Kulmatiski A, 2013, NAT CLIM CHANGE, V3, P833, DOI [10.1038/NCLIMATE1904, 10.1038/nclimate1904]; Kurc SA, 2004, WATER RESOUR RES, V40, DOI 10.1029/2004WR003068; Leff JW, 2015, P NATL ACAD SCI USA, V112, P10967, DOI 10.1073/pnas.1508382112; Lett MS, 2003, J VEG SCI, V14, P487, DOI 10.1658/1100-9233(2003)014[0487:COSEIM]2.0.CO;2; Li HH, 2016, SCI REP-UK, V6, DOI 10.1038/srep31616; Liao JD, 2006, SOIL BIOL BIOCHEM, V38, P3184, DOI 10.1016/j.soilbio.2006.04.003; Lopez-Pintor A, 2006, ACTA OECOL, V29, P247, DOI 10.1016/j.actao.2005.11.001; Magoc T, 2011, BIOINFORMATICS, V27, P2957, DOI 10.1093/bioinformatics/btr507; McCarron JK, 2003, PLANT SOIL, V257, P183, DOI 10.1023/A:1026255214393; McClaran MP, 2008, GEODERMA, V145, P60, DOI 10.1016/j.geoderma.2008.02.006; McKinley DC, 2008, ECOSYSTEMS, V11, P454, DOI 10.1007/s10021-008-9133-4; Moleele NM, 1998, J ARID ENVIRON, V40, P245, DOI 10.1006/jare.1998.0451; Oksanen J, 2011, VEGAN COMMUNITY ECOL; Peng HY, 2013, CATENA, V109, P39, DOI 10.1016/j.catena.2013.05.008; R Development Core Team, 2006, R LANG ENV STAT COMP; Reynolds JF, 1999, ECOL MONOGR, V69, P69, DOI 10.1890/0012-9615(1999)069[0069:IODODS]2.0.CO;2; Rivest D, 2011, AGR ECOSYST ENVIRON, V141, P447, DOI 10.1016/j.agee.2011.04.018; Schlesinger WH, 1998, BIOGEOCHEMISTRY, V42, P169, DOI 10.1023/A:1005939924434; SCHLESINGER WH, 1990, SCIENCE, V247, P1043, DOI 10.1126/science.247.4946.1043; Scholes RJ, 1997, ANNU REV ECOL SYST, V28, P517, DOI 10.1146/annurev.ecolsys.28.1.517; Schweitzer JA, 2004, ECOL LETT, V7, P127, DOI 10.1111/j.1461-0248.2003.00562.x; Segata N, 2011, GENOME BIOL, V12, DOI 10.1186/gb-2011-12-6-r60; Shi Y, 2015, APPL ENVIRON MICROB, V81, P492, DOI 10.1128/AEM.03229-14; Smith DL, 2003, GLOBAL BIOGEOCHEM CY, V17, DOI 10.1029/2002GB001990; Soliveres S, 2014, FUNCT ECOL, V28, P530, DOI 10.1111/1365-2435.12196; Throop HL, 2008, GLOBAL CHANGE BIOL, V14, P2420, DOI 10.1111/j.1365-2486.2008.01650.x; Trumbore SE, 1997, P NATL ACAD SCI USA, V94, P8284, DOI 10.1073/pnas.94.16.8284; VANVEGTEN JA, 1984, VEGETATIO, V56, P3; Wallenstein MD, 2007, FEMS MICROBIOL ECOL, V59, P428, DOI 10.1111/j.1574-6941.2006.00260.x; Wang Q, 2007, APPL ENVIRON MICROB, V73, P5261, DOI 10.1128/AEM.00062-07; Xiang XJ, 2015, PLANT SOIL, V397, P347, DOI 10.1007/s11104-015-2633-z; Xiang XJ, 2014, SCI REP-UK, V4, DOI 10.1038/srep03829; Yannarell AC, 2014, MICROB ECOL, V67, P897, DOI 10.1007/s00248-014-0369-6; Yuan YL, 2014, FEMS MICROBIOL ECOL, V87, P121, DOI 10.1111/1574-6941.12197; Zhang XF, 2014, RES MICROBIOL, V165, P128, DOI 10.1016/j.resmic.2014.01.002; Zhang Z, 2006, J ARID ENVIRON, V67, P671, DOI 10.1016/j.jaridenv.2006.03.015; Zuur AF, 2010, METHODS ECOL EVOL, V1, P3, DOI 10.1111/j.2041-210X.2009.00001.x 70 0 0 34 36 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0032-079X 1573-5036 PLANT SOIL Plant Soil APR 2018 425 1-2 539 551 10.1007/s11104-018-3605-x 13 Agronomy; Plant Sciences; Soil Science Agriculture; Plant Sciences GE1QR WOS:000430992300038 2018-11-22 J Oro, D; Alvarez, D; Velando, A Oro, Daniel; Alvarez, David; Velando, Alberto Complex demographic heterogeneity from anthropogenic impacts in a coastal marine predator ECOLOGICAL APPLICATIONS English Article anthropogenic impacts; habitat heterogeneity; life histories; long-lived species; resilience; survival PRESTIGE OIL-SPILL; SHAGS PHALACROCORAX-ARISTOTELIS; LIFE-HISTORY TRAITS; LONG-LIVED SEABIRD; EUROPEAN SHAGS; CONSERVATION IMPLICATIONS; DIFFERENTIAL RESPONSES; POPULATION-DYNAMICS; SEXUAL-DIMORPHISM; COLONIAL SEABIRD Environmental drivers, including anthropogenic impacts, affect vital rates of organisms. Nevertheless, the influence of these drivers may depend on the physical features of the habitat and how they affect life history strategies depending on individual covariates such as age and sex. Here, the long-term monitoring (1994-2014) of marked European Shags in eight colonies in two regions with different ecological features, such as foraging habitat, allowed us to test several biological hypotheses about how survival changes by age and sex in each region by means of multi-event capture-recapture modeling. Impacts included fishing practices and bycatch, invasive introduced carnivores and the severe Prestige oil spill. Adult survival was constant but, unexpectedly, it was different between sexes. This difference was opposite in each region. The impact of the oil spill on survival was important only for adults (especially for females) in one region and lasted a single year. Juvenile survival was time dependent but this variability was not synchronized between regions, suggesting a strong signal of regional environmental variability. Mortality due to bycatch was also different between sex, age and region. Interestingly the results showed that the size of the fishing fleet is not necessarily a good proxy for assessing the impact of bycatch mortality, which may be more dependent on the fishing grounds and the fishing gears employed in each season of the year. Anthropogenic impacts affected survival differently by age and sex, which was expected for a long-lived organism with sexual size dimorphism. Strikingly, these differences varied depending on the region, indicating that habitat heterogeneity is demographically important to how environmental variability (including anthropogenic impacts) and resilience influence population dynamics. [Oro, Daniel] CSIC UIB, IMEDEA, Populat Ecol Grp, Esporles, Spain; [Oro, Daniel] CSIC, Theoret Ecol Lab, CEAB, Blanes, Spain; [Alvarez, David] Rio San Pedro 7, Oviedo, Spain; [Velando, Alberto] Univ Vigo, Dept Ecol & Biol Anim, Vigo, Spain Oro, D (reprint author), CSIC UIB, IMEDEA, Populat Ecol Grp, Esporles, Spain.; Oro, D (reprint author), CSIC, Theoret Ecol Lab, CEAB, Blanes, Spain. d.oro@csic.es Almaraz P, 2011, ECOLOGY, V92, P1948, DOI 10.1890/11-0181.1; Alvarez D, 2004, ARDEOLA, V51, P451; alvarez D., 2015, TECHNICAL REPORT; alvarez D., 2007, CORMORAN MONUDO ESPA; Alvarez David, 1998, Seabird, V20, P22; ANDERSON DJ, 1989, MAR ECOL PROG SER, V52, P209, DOI 10.3354/meps052209; Barros A, 2016, BIOL INVASIONS, V18, P3149, DOI 10.1007/s10530-016-1205-3; Barros A, 2014, BIOL LETTERS, V10, DOI 10.1098/rsbl.2013.1041; Barros A, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0071358; Bode A, 2011, CLIM RES, V48, P293, DOI 10.3354/cr00935; Bogdanova MI, 2014, BIOL CONSERV, V170, P292, DOI 10.1016/j.biocon.2013.12.025; Bonduriansky R, 2008, FUNCT ECOL, V22, P443, DOI 10.1111/j.1365-2435.2008.01417.x; Bugoni L, 2011, J ORNITHOL, V152, P261, DOI 10.1007/s10336-010-0577-x; Burnham KP, 2002, MODEL SELECTION MULT; Noguera JC, 2012, BIOL LETTERS, V8, P61, DOI 10.1098/rsbl.2011.0756; CASWELL H, 1983, AM ZOOL, V23, P35; Charlesworth B, 1997, CURR BIOL, V7, pR440, DOI 10.1016/S0960-9822(06)00213-2; CHARLESWORTH B, 1980, EVOLUTION AGE STRUCT; Choquet R, 2009, ENVIRON ECOL STAT SE, V3, P845, DOI 10.1007/978-0-387-78151-8_39; Clutton-Brock TH, 2007, P R SOC B, V274, P3097, DOI 10.1098/rspb.2007.1138; Cook TR, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0056297; Daunt F, 2007, BIOLOGY LETT, V3, P371, DOI 10.1098/rsbl.2007.0157; De Rijcke S., 2015, THESIS; Doherty PF, 2004, OIKOS, V105, P606; Fernandez-Chacon A, 2013, ECOGRAPHY, V36, P1117, DOI 10.1111/j.1600-0587.2013.00246.x; Frederiksen M, 2008, J ANIM ECOL, V77, P1020, DOI 10.1111/j.1365-2656.2008.01422.x; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Genovart M, 2017, GLOBAL CHANGE BIOL, V23, P3012, DOI 10.1111/gcb.13670; Gianuca D, 2017, BIOL CONSERV, V205, P60, DOI 10.1016/j.biocon.2016.11.028; Harris MP, 1996, BIRD STUDY, V43, P220, DOI 10.1080/00063659609461014; Igual JM, 2007, BIOL CONSERV, V137, P189, DOI 10.1016/j.biocon.2007.02.003; INDUROT, 2010, AN CAR SOC FLOT PESQ; Jenouvrier S, 2005, ECOLOGY, V86, P2889, DOI 10.1890/05-0514; Jiguet F, 2007, GLOBAL CHANGE BIOL, V13, P1672, DOI 10.1111/j.1365-2486.2007.01386.x; Laneri K, 2010, MAR ECOL PROG SER, V420, P241, DOI 10.3354/meps08847; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Lewis S, 2015, J ANIM ECOL, V84, P1490, DOI 10.1111/1365-2656.12419; Lewison R., 2012, Endangered Species Research, V17, P93, DOI 10.3354/esr00419; Lewison RL, 2014, P NATL ACAD SCI USA, V111, P5271, DOI 10.1073/pnas.1318960111; Loison A, 1999, ECOLOGY, V80, P2539, DOI 10.1890/0012-9658(1999)080[2539:ASSIFP]2.0.CO;2; MAGRAMA, 2012, ESTR MAR DEM MAR NOR; Martinez-Abrain A, 2003, POPUL ECOL, V45, P133, DOI 10.1007/s10144-003-0150-z; Martinez-Abrain A, 2001, WATERBIRDS, V24, P97, DOI 10.2307/1522248; Martinez-Abrain A, 2006, MAR ECOL PROG SER, V318, P271, DOI 10.3354/meps318271; Mills MSL, 2005, ANIM CONSERV, V8, P359, DOI 10.1017/S1367943005002386; Moreno R, 2011, MAR ECOL PROG SER, V442, P229, DOI 10.3354/meps09420; Munilla I, 2011, ECOSPHERE, V2, DOI 10.1890/ES11-00020.1; Nelson B, 2005, PELICANS CORMORANTS; Oro D., 2014, FRONT ECOL EVOL, V2, P79, DOI DOI 10.3389/FEV0.2014.00079; Oro D, 2014, ECOLOGY, V95, P446, DOI 10.1890/13-0331.1; Oro D, 2013, ECOL LETT, V16, P1501, DOI 10.1111/ele.12187; Oro D, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0042753; Oro D, 2010, ECOLOGY, V91, P1205, DOI 10.1890/09-0939.1; Ourens R., 2010, GESTION PESQUERA SOS; OWENS IPF, 1994, P ROY SOC B-BIOL SCI, V257, P1, DOI 10.1098/rspb.1994.0086; Pardo D, 2013, ECOLOGY, V94, P208, DOI 10.1890/12-0215.1; Parn H, 2009, J ANIM ECOL, V78, P1216, DOI 10.1111/j.1365-2656.2009.01597.x; Payo-Payo A, 2017, SCI REP-UK, V7, DOI 10.1038/srep42866; Pradel R, 2005, BIOMETRICS, V61, P442, DOI 10.1111/j.1541-0420.2005.00318.x; PROMISLOW DEL, 1992, P ROY SOC B-BIOL SCI, V250, P143, DOI 10.1098/rspb.1992.0142; Rolland V, 2010, GLOBAL CHANGE BIOL, V16, P1910, DOI 10.1111/j.1365-2486.2009.02070.x; Saino N, 2017, J ANIM ECOL, V86, P239, DOI 10.1111/1365-2656.12625; Salvador A., 2013, ENCICLOPEDIA VIRTUAL; Sanz-Aguilar A, 2016, BIOL CONSERV, V198, P33, DOI 10.1016/j.biocon.2016.03.034; Sanz-Aguilar A, 2009, ECOGRAPHY, V32, P637, DOI 10.1111/j.1600-0587.2009.05596.x; SNOW BARBARA, 1960, IBIS, V102, P554, DOI 10.1111/j.1474-919X.1960.tb07132.x; Stearns S., 1992, EVOLUTION LIFE HIST; Steiner UK, 2010, J ANIM ECOL, V79, P436, DOI 10.1111/j.1365-2656.2009.01653.x; Tavecchia G, 2001, ECOLOGY, V82, P165, DOI 10.1890/0012-9658(2001)082[0165:SAARVI]2.0.CO;2; Tavecchia G, 2008, ECOLOGY, V89, P77, DOI 10.1890/06-0326.1; Thiebot JB, 2014, IBIS, V156, P511, DOI 10.1111/ibi.12151; Towns D., 2011, SEABIRD ISLANDS ECOL; Velando A, 1999, MAR ECOL PROG SER, V188, P225, DOI 10.3354/meps188225; Velando A, 2000, ANIM BEHAV, V60, P181, DOI 10.1006/anbe.2000.1445; Velando A, 2005, MAR ECOL PROG SER, V302, P263, DOI 10.3354/meps302263; Velando A, 2005, J ORNITHOL, V146, P116, DOI 10.1007/s10336-004-0068-z; Velando A, 2002, BIOL CONSERV, V107, P59, DOI 10.1016/S0006-3207(02)00044-7; Velando A, 2002, IBIS, V144, P9, DOI 10.1046/j.0019-1019.2001.00002.x; Velando A, 2001, J ETHOL, V19, P121, DOI 10.1007/s101640170008; Velando A, 2008, PLAN CONSERVACION CO; Velando A, 2017, BIOL INVASIONS, V19, P1227, DOI 10.1007/s10530-016-1326-8; Velando A, 2015, MOL ECOL, V24, P1007, DOI 10.1111/mec.13092; Velando A, 2010, ENVIRON POLLUT, V158, P1275, DOI 10.1016/j.envpol.2010.01.029; Veran S, 2009, ECOL LETT, V12, P129, DOI 10.1111/j.1461-0248.2008.01268.x; Votier SC, 2008, J ANIM ECOL, V77, P974, DOI 10.1111/j.1365-2656.2008.01421.x; Watanuki Y, 2008, MAR ECOL PROG SER, V356, P283, DOI 10.3354/meps07266; Weimerskirch H, 1997, BIOL CONSERV, V79, P257, DOI 10.1016/S0006-3207(96)00084-5; Weimerskirch H, 2014, J EXP MAR BIOL ECOL, V450, P68, DOI 10.1016/j.jembe.2013.10.021; Wiens JA, 2007, BIOSCIENCE, V57, P769, DOI 10.1641/B570909 89 0 0 18 18 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1051-0761 1939-5582 ECOL APPL Ecol. Appl. APR 2018 28 3 612 621 10.1002/eap.1679 10 Ecology; Environmental Sciences Environmental Sciences & Ecology GD4IH WOS:000430466300002 29297945 Green Published 2018-11-22 J Meuthen, D; Baldauf, SA; Bakker, TCM; Thunken, T Meuthen, Denis; Baldauf, Sebastian A.; Bakker, Theo C. M.; Thuenken, Timo Neglected Patterns of Variation in Phenotypic Plasticity: Age- and Sex-Specific Antipredator Plasticity in a Cichlid Fish AMERICAN NATURALIST English Article Pelvicachromis taeniatus; Pelvicachromis kribensis; alarm cues; predation risk; ontogenetic plasticity; morphology CHEMICAL ALARM CUES; GUPPY POECILIA-RETICULATA; MUTUAL MATE CHOICE; PREDATOR-INDUCED PLASTICITY; FEMALE NUPTIAL COLORATION; LIFE-HISTORY STRATEGIES; FRESH-WATER SNAIL; CRUCIAN CARP; BODY-SIZE; INDUCIBLE DEFENSES The ability of organisms to plastically respond to changing environments is well studied. However, variation in phenotypic plasticity during ontogeny is less well understood despite its relevance of being an important source of phenotypic variation in nature. Here, we comprehensively study ontogenetic variation in morphological antipredator plasticity across multiple traits in Pelvicachromis taeniatus, a western African cichlid fish with sexually dimorphic ornamentation. In a split-clutch design, fish were raised under different levels of perceived predation risk (conspecific alarm cues or distilled water). Morphological plasticity varied substantially across ontogeny: it was first observable at an early juvenile stage where alarm cue-exposed fish grew faster. Subsequently, significant plasticity was absent until the onset of sexual maturity. Here, alarm cue-exposed males were larger than control males, which led to deeper bodies, longer dorsal spines, larger caudal peduncles, and increased eye diameters. Sexual ornamentation emerged delayed in alarm cue-exposed males. In later adulthood, the plastic responses receded. Despite small effect sizes, these responses represent putative adaptive plasticity, as they are likely to reduce predation risk. In females, we did not observe any plasticity. In accordance with theory, these results suggest fine-tuned expression of plasticity that potentially increases defenses during vulnerable developmental stages and reproductive output. [Meuthen, Denis; Baldauf, Sebastian A.; Bakker, Theo C. M.; Thuenken, Timo] Univ Bonn, Inst Evolutionary Biol & Ecol, Immenburg 1, D-53121 Bonn, Germany; [Meuthen, Denis] Univ Saskatchewan, Dept Biol, 112 Sci Pl, Saskatoon, SK S7N 5E2, Canada Meuthen, D (reprint author), Univ Bonn, Inst Evolutionary Biol & Ecol, Immenburg 1, D-53121 Bonn, Germany.; Meuthen, D (reprint author), Univ Saskatchewan, Dept Biol, 112 Sci Pl, Saskatoon, SK S7N 5E2, Canada. dmeuthen@evolution.uni-bonn.de Baldauf, Sebastian/0000-0003-4853-678X Deutsche Forschungsgemeinschaft (DFG) [TH 1615/1-1, BA 2885/5-1] We thank the Bakker research group for discussion. Furthermore, we are grateful to Leif Engqvist for statistical advice. Also, we thank Yannis Michalakis, Rebecca Fuller, and three anonymous reviewers for comments that considerably improved the manuscript. This research was funded by the Deutsche Forschungsgemeinschaft (DFG; BA 2885/5-1, TH 1615/1-1). Ab Ghani NI, 2016, BIOL J LINN SOC, V118, P520, DOI 10.1111/bij.12783; Abate ME, 2010, CURR ZOOL, V56, P36; ANDERSSON M, 1982, BIOL J LINN SOC, V17, P375, DOI 10.1111/j.1095-8312.1982.tb02028.x; Andersson M., 1994, SEXUAL SELECTION; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Auld JR, 2011, P ROY SOC B-BIOL SCI, V278, P2726, DOI 10.1098/rspb.2011.1150; Auld JR, 2010, P ROY SOC B-BIOL SCI, V277, P503, DOI 10.1098/rspb.2009.1355; Baldauf SA, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms6233; Baldauf SA, 2013, BEHAV ECOL SOCIOBIOL, V67, P1179, DOI 10.1007/s00265-013-1543-4; Baldauf SA, 2011, BEHAV ECOL, V22, P478, DOI 10.1093/beheco/arq226; Baldauf SA, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-129; Barlow G. W., 2000, THE CICHLID FISHES; Barreto RE, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0054642; Bell AM, 2011, J EVOLUTION BIOL, V24, P943, DOI 10.1111/j.1420-9101.2011.02247.x; Berejikian BA, 1999, CAN J FISH AQUAT SCI, V56, P830, DOI 10.1139/cjfas-56-5-830; Beston SM, 2017, ECOL EVOL, V7, P884, DOI 10.1002/ece3.2668; Beverton RJH, 1957, DYNAMICS EXPLOITED F; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; Blaustein AR, 2005, AM MIDL NAT, V154, P375, DOI 10.1674/0003-0031(2005)154[0375:ALOURC]2.0.CO;2; BOOTH CL, 1990, BIOL J LINN SOC, V40, P125, DOI 10.1111/j.1095-8312.1990.tb01973.x; Bourdeau PE, 2012, OIKOS, V121, P1175, DOI 10.1111/j.1600-0706.2012.20235.x; BOX GEP, 1964, J ROY STAT SOC B, V26, P211; BREDEN F, 1987, NATURE, V329, P831, DOI 10.1038/329831a0; Bressler K, 2004, ISR J AQUACULT-BAMID, V56, P5; BRONMARK C, 1992, SCIENCE, V258, P1348, DOI 10.1126/science.258.5086.1348; Brown GE, 2004, ANN ZOOL FENN, V41, P487; Callahan HS, 2008, ANN NY ACAD SCI, V1133, P44, DOI 10.1196/annals.1438.008; Ceballos CP, 2011, EVOL BIOL, V38, P163, DOI 10.1007/s11692-011-9117-8; CHARLESWORTH B, 1980, EVOLUTION AGE STRUCT; CHEN Y, 2004, IMAGE ANAL RECOGNITI, V3211, P269; Chivers DP, 2008, EVOL ECOL, V22, P561, DOI 10.1007/s10682-007-9182-8; Chivers DP, 2012, CHEMICAL ECOLOGY IN AQUATIC SYSTEMS, P127; CHIVERS DP, 1994, J FISH BIOL, V44, P273, DOI 10.1111/j.1095-8649.1994.tb01205.x; CHIVERS DP, 1994, ANIM BEHAV, V48, P597, DOI 10.1006/anbe.1994.1279; Chivers DP, 1998, ECOSCIENCE, V5, P338, DOI 10.1080/11956860.1998.11682471; Christe P, 2006, OIKOS, V114, P381, DOI 10.1111/j.2006.0030-1299.15130.x; Cichon M, 1997, P ROY SOC B-BIOL SCI, V264, P1383, DOI 10.1098/rspb.1997.0192; Collier A, 2008, J FRESHWATER ECOL, V23, P281, DOI 10.1080/02705060.2008.9664200; Connallon T, 2016, EVOLUTION, V70, P2186, DOI 10.1111/evo.13025; Connallon T, 2015, EVOLUTION, V69, P2333, DOI 10.1111/evo.12737; Connallon T, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2123; Craig JK, 2001, EVOLUTION, V55, P380, DOI 10.1111/j.0014-3820.2001.tb01301.x; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; Cumming G, 2005, AM PSYCHOL, V60, P170, DOI 10.1037/0003-066X.60.2.170; DeWitt TJ, 1999, ANIM BEHAV, V58, P397, DOI 10.1006/anbe.1999.1158; DeWitt TJ, 1998, TRENDS ECOL EVOL, V13, P77, DOI 10.1016/S0169-5347(97)01274-3; DEWITT TJ, 2004, PHENOTYPIC PLASTICIT, P1; Dufty AM, 2002, TRENDS ECOL EVOL, V17, P190, DOI 10.1016/S0169-5347(02)02498-9; Dybala KE, 2013, GLOBAL CHANGE BIOL, V19, P2688, DOI 10.1111/gcb.12228; Edgell TC, 2008, BIOL LETTERS, V4, P385, DOI 10.1098/rsbl.2008.0204; Eklov P, 2007, J FISH BIOL, V70, P155, DOI 10.1111/j.1095-8649.2006.01283.x; Ercit K, 2015, EVOLUTION, V69, P419, DOI 10.1111/evo.12579; Fischer B, 2014, AM NAT, V183, P108, DOI 10.1086/674008; Frommen JG, 2011, EVOL ECOL, V25, P641, DOI 10.1007/s10682-010-9454-6; Gadomski DM, 2005, N AM J FISH MANAGE, V25, P667, DOI 10.1577/M03-220.1; Gianoli E, 2012, BIOL J LINN SOC, V105, P1, DOI 10.1111/j.1095-8312.2011.01793.x; Godin JGJ, 2003, BEHAV ECOL, V14, P194, DOI 10.1093/beheco/14.2.194; Gosline AK, 2008, AQUAT ECOL, V42, P693, DOI 10.1007/s10452-007-9138-7; Hadfield JD, 2010, J STAT SOFTW, V33, P1; HAMBRIGHT KD, 1991, ARCH HYDROBIOL, V121, P389; HARVELL CD, 1990, Q REV BIOL, V65, P323, DOI 10.1086/416841; Hjelm J, 2001, OIKOS, V95, P311, DOI 10.1034/j.1600-0706.2001.950213.x; HOOGLAND R., 1956, BEHAVIOUR, V10, P205, DOI 10.1163/156853956X00156; Hooper RE, 1999, PHYSIOL ENTOMOL, V24, P364, DOI 10.1046/j.1365-3032.1999.00152.x; HOUDE AE, 1990, SCIENCE, V248, P1405, DOI 10.1126/science.248.4961.1405; Hoverman JT, 2005, OECOLOGIA, V144, P481, DOI 10.1007/s00442-005-0082-8; Humphries JM, 2004, J CEREAL SCI, V40, P151, DOI 10.1016/j.jcs.2004.07.005; Husak JF, 2006, ETHOLOGY, V112, P572, DOI 10.1111/j.1439-0310.2005.01189.x; Imre I, 2016, ENVIRON BIOL FISH, V99, P613, DOI 10.1007/s10641-016-0503-z; IWAMA GK, 1989, CAN J ZOOL, V67, P2065, DOI 10.1139/z89-294; Januszkiewicz AJ, 2007, BIOL J LINN SOC, V90, P25, DOI 10.1111/j.1095-8312.2007.00708.x; Kishida O, 2010, POPUL ECOL, V52, P37, DOI 10.1007/s10144-009-0182-0; KODRICBROWN A, 1984, AM NAT, V124, P309, DOI 10.1086/284275; Koga T, 2001, ANIM BEHAV, V62, P201, DOI 10.1006/anbe.2001.1740; Kokko H, 2002, PHILOS T ROY SOC B, V357, P319, DOI 10.1098/rstb.2001.0926; Koumoundouros G, 2001, MAR BIOL, V139, P817; LaFiandra EM, 2004, OECOLOGIA, V138, P350, DOI 10.1007/s00442-003-1412-3; Laforsch C, 2006, LIMNOL OCEANOGR, V51, P1466, DOI 10.4319/lo.2006.51.3.1466; Lamboj A., 2017, AM NATURALIST; Lamboj A, 2004, CICHLIDEN WESTLICHEN; Lamboj A, 2014, CYBIUM, V38, P205; LANDE R, 1980, EVOLUTION, V34, P292, DOI 10.1111/j.1558-5646.1980.tb04817.x; Langerhans RB, 2007, EVOLUTION, V61, P2056, DOI 10.1111/j.1558-5646.2007.00171.x; Langerhans RB, 2004, EVOLUTION, V58, P2305, DOI 10.1111/j.0014-3820.2004.tb01605.x; Lima SL, 1998, ADV STUD BEHAV, V27, P215; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Lindstrom L, 2006, J EVOLUTION BIOL, V19, P649, DOI 10.1111/j.1420-9101.2005.01043.x; Lonnstedt OM, 2013, SCI REP-UK, V3, DOI 10.1038/srep02259; MAGNHAGEN C, 1991, TRENDS ECOL EVOL, V6, P183, DOI 10.1016/0169-5347(91)90210-O; McCollum SA, 1996, EVOLUTION, V50, P583, DOI 10.1111/j.1558-5646.1996.tb03870.x; Metcalfe NB, 2003, EXP GERONTOL, V38, P935, DOI 10.1016/S0531-5565(03)00159-1; Meuthen D., 2014, F1000 RES, V1, P27, DOI DOI 10.12688/F1000RESEARCH.1-27.V2; Meuthen D, 2016, OECOLOGIA, V181, P947, DOI 10.1007/s00442-015-3478-0; Meuthen D, 2016, HYDROBIOLOGIA, V767, P37, DOI 10.1007/s10750-015-2473-0; Meuthen D, 2011, AQUAT BIOL, V13, P35, DOI 10.3354/ab00348; Morgan IJ, 2000, J FISH BIOL, V56, P637, DOI 10.1006/jfbi.1999.1183; Murren CJ, 2015, HEREDITY, V115, P293, DOI 10.1038/hdy.2015.8; NILSSON PA, 1995, OECOLOGIA, V104, P291, DOI 10.1007/BF00328363; Nilsson-Ortman V, 2015, HEREDITY, V115, P366, DOI 10.1038/hdy.2014.126; Ostrowski MF, 2002, HEREDITY, V88, P342, DOI 10.1038/sj/hdy/6800049; Pigliucci M, 1997, AM J BOT, V84, P887, DOI 10.2307/2446278; Pinheiro J. C., 2000, MIXED EFFECT MODELS; POCKLINGTON R, 1995, ANIM BEHAV, V49, P1122, DOI 10.1006/anbe.1995.0141; Pollock MS, 2005, ANN ZOOL FENN, V42, P485; Putter A, 1920, PFLUG ARCH GES PHYS, V180, P298, DOI 10.1007/BF01755094; R Core Team, 2016, R LANG ENV STAT COMP; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Relyea RA, 2003, ECOLOGY, V84, P1840, DOI 10.1890/0012-9658(2003)084[1840:PCAPGT]2.0.CO;2; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Roberts JA, 2007, BEHAV ECOL, V18, P236, DOI 10.1093/beheco/arl079; Robertson A. R., 1977, COLOR RES APPL, V2, P7, DOI DOI 10.1002/J.1520-6378.1977.TB00104.X; Roh E, 2004, BEHAVIOUR, V141, P1235, DOI 10.1163/1568539042729667; Ruell EW, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2019; Seebacher F, 2016, ROY SOC OPEN SCI, V3, DOI 10.1098/rsos.160316; Segers FHID, 2012, P ROY SOC B-BIOL SCI, V279, P1241, DOI 10.1098/rspb.2011.1290; Selden R, 2009, MAR BIOL, V156, P1057, DOI 10.1007/s00227-009-1150-0; Shatilova Y., 2008, THESIS; Sih A, 2000, TRENDS ECOL EVOL, V15, P3, DOI 10.1016/S0169-5347(99)01766-8; Skold HN, 2008, HORM BEHAV, V54, P549, DOI 10.1016/j.yhbeh.2008.05.018; Sofaer HR, 2013, J AVIAN BIOL, V44, P469, DOI 10.1111/j.1600-048X.2013.05719.x; Sommer S, 2000, ANIM BEHAV, V59, P1087, DOI 10.1006/anbe.2000.1381; Stabell OB, 1997, ENVIRON BIOL FISH, V49, P145; Stillwell RC, 2010, ANNU REV ENTOMOL, V55, P227, DOI 10.1146/annurev-ento-112408-085500; Stoks R, 2006, ECOLOGY, V87, P809, DOI 10.1890/0012-9658(2006)87[809:TCMPPI]2.0.CO;2; Stoks R, 2005, J ANIM ECOL, V74, P708, DOI 10.1111/j.1365-2656.2005.00969.x; STONER G, 1988, BEHAV ECOL SOCIOBIOL, V22, P285, DOI 10.1007/BF00299844; Stuart-Fox DM, 2003, ANIM BEHAV, V66, P541, DOI 10.1006/anbe.2003.2235; SULLIVAN KA, 1989, J ANIM ECOL, V58, P275, DOI 10.2307/5000; Svensson PA, 2005, J EXP BIOL, V208, P4391, DOI 10.1242/jeb.01925; Teder T, 2005, OIKOS, V108, P321, DOI 10.1111/j.0030-1299.2005.13609.x; Teplitsky C, 2005, OECOLOGIA, V145, P364, DOI 10.1007/s00442-005-0132-2; THOMAS P, 1991, AQUACULTURE, V96, P69, DOI 10.1016/0044-8486(91)90140-3; Thunken T, 2007, CURR BIOL, V17, P225, DOI 10.1016/j.cub.2006.11.053; Thunken T, 2012, P ROY SOC B-BIOL SCI, V279, P2959, DOI 10.1098/rspb.2012.0333; Touchon JC, 2008, OIKOS, V117, P634, DOI 10.1111/j.2008.0030-1299.16354.x; Urban MC, 2007, ECOLOGY, V88, P2587, DOI 10.1890/06-1946.1; Valimaki K, 2012, J ANIM ECOL, V81, P859, DOI 10.1111/j.1365-2656.2012.01971.x; van Heerwaarden B, 2016, FUNCT ECOL, V30, P1947, DOI 10.1111/1365-2435.12687; van Kleunen M, 2005, NEW PHYTOL, V166, P49, DOI 10.1111/j.1469-8137.2004.01296.x; Veilleux CC, 2014, BRAIN BEHAV EVOLUT, V83, P43, DOI 10.1159/000357830; Vollestad LA, 2004, ECOL FRESHW FISH, V13, P197, DOI 10.1111/j.1600-0633.2004.00048.x; von Bertalanffy L, 1934, ROUX ARCH DEV BIOL, V131, P613, DOI 10.1007/BF00650112; WALLS M, 1991, OECOLOGIA, V87, P43, DOI 10.1007/BF00323778; Weber MJ, 2012, J FISH BIOL, V80, P49, DOI 10.1111/j.1095-8649.2011.03140.x; West-Eberhard M. J, 2003, DEV PLASTICITY EVOLU; Wiedenmayer CP, 2009, NEUROSCI BIOBEHAV R, V33, P432, DOI 10.1016/j.neubiorev.2008.11.004; WINEMILLER KO, 1992, OIKOS, V63, P318, DOI 10.2307/3545395; Wisenden BD, 2000, PHILOS T ROY SOC B, V355, P1205, DOI 10.1098/rstb.2000.0668; Woods WA, 2007, AM NAT, V170, P702, DOI 10.1086/521964; Wright Sarah D., 2002, Plant Species Biology, V17, P119, DOI 10.1046/j.1442-1984.2002.00082.x; ZAHAVI A, 1975, J THEOR BIOL, V53, P205, DOI 10.1016/0022-5193(75)90111-3; ZEH DW, 1988, AM NAT, V132, P454, DOI 10.1086/284863; Zuk M, 1998, Q REV BIOL, V73, P415, DOI 10.1086/420412; Zuur A. F., 2009, MIXED EFFECTS MODELS 154 0 0 5 9 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. APR 2018 191 4 475 490 10.1086/696264 16 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology GA4GH WOS:000428287200006 29570404 2018-11-22 J Dezerald, O; Leroy, C; Corbara, B; Dejean, A; Talaga, S; Cereghino, R Dezerald, Olivier; Leroy, Celine; Corbara, Bruno; Dejean, Alain; Talaga, Stanislas; Cereghino, Regis Tank bromeliads sustain high secondary production in neotropical forests AQUATIC SCIENCES English Article Biomass turnover; Epiphytes; Functional traits; Food webs; Invertebrates; Rainforests HUMID TROPICAL FOREST; INVERTEBRATE COMMUNITIES; PUERTO-RICO; FOOD-WEB; FUNCTIONAL DIVERSITY; HABITAT SIZE; RAIN-FOREST; LIFE-CYCLE; ECOSYSTEMS; DECOMPOSITION In neotropical landscapes, a substantial fraction of the still waters available is found within tank bromeliads, plants which hold a few milliliters to several litres of rainwater within their leaf axils. The bromeliad ecosystem is integrated into the functioning of rainforest environments, but no study has ever estimated the secondary production, nor the biomass turnover rates of bromeliad macroinvertebrates in relation to other functional traits. We estimated secondary production at invertebrate population to metacommunity level in bromeliads of French Guiana. Coleoptera, Diptera and Crustacea with traits that confer resistance to drought had lower biomass turnover, longer generation times, and slower individual growth than species without particular resistance traits, suggesting convergent life history strategies in phylogenetically distant species. Detritivores and predators accounted for 87% and 13% of the overall annual production, respectively, but had similar production to biomass ratios. An average bromeliad sustained a production of 23.93 g dry mass m(-2) year(-1), a value which exceeds the medians of 5.0-14.8 g DM m(-2) year(-1) for lakes and rivers worldwide. Extrapolations to the total water volumes held by bromeliads at our field site yielded secondary production estimates of 226.8 +/- 32.5 g DM ha(-1) year(-1). We conclude that the ecological role of tank bromeliads in neotropical rainforests may be as important as that of other freshwater ecosystems. [Dezerald, Olivier; Dejean, Alain] Univ Guyane, Univ Antilles, UMR Ecol Forets Guyane, CNRS,AgroParisTech,CIRAD,INRA, Campus Agron, F-97379 Kourou, France; [Dezerald, Olivier] Univ Lorraine, UMR Lab Interdisciplinaire Environm Continentaux, CNRS, Campus Bridoux, F-57070 Metz, France; [Leroy, Celine] Univ Montpellier, CNRS, INRA, AMAP,IRD, Montpellier, France; [Corbara, Bruno] Univ Clermont Auvergne, CNRS, LMGE, F-63000 Clermont Ferrand, France; [Dejean, Alain; Cereghino, Regis] Univ Toulouse, Lab Ecol Fonct & Environm, Ecolab, CNRS,UPS,INPT, 118 Route Narbonne, F-31062 Toulouse, France; [Talaga, Stanislas] Univ Antilles, UMR Ecol Forets Guyane, Univ Guyane, AgroParisTech,CIRAD,CNRS,INRA, Campus Agron,BP 316, F-97379 Kourou, France Dezerald, O (reprint author), Univ Guyane, Univ Antilles, UMR Ecol Forets Guyane, CNRS,AgroParisTech,CIRAD,INRA, Campus Agron, F-97379 Kourou, France.; Dezerald, O (reprint author), Univ Lorraine, UMR Lab Interdisciplinaire Environm Continentaux, CNRS, Campus Bridoux, F-57070 Metz, France. olivier.dezerald@gmail.com Dejean, Alain/0000-0002-3561-2248; CORBARA, Bruno/0000-0003-4232-8234; Cereghino, Regis/0000-0003-3981-3159 Agence Nationale de la Recherche throught the Rainwebs project [ANR-12-BSV7-0022-01]; "Investissement d'Avenir" grant (Labex CEBA) [ANR-10-LABX-25-01]; CNRS; FSE; Universite de Guyane Financial support was provided by the Agence Nationale de la Recherche throught the Rainwebs project (grant ANR-12-BSV7-0022-01) and an "Investissement d'Avenir" grant (Labex CEBA, ref. ANR-10-LABX-25-01). OD and ST were funded by a PhD scholarship (CNRS and the FSE for OD; Universite de Guyane for ST). Amundrud SL, 2015, ECOLOGY, V96, P1957, DOI 10.1890/14-1828.1; Armbruster P, 2002, OIKOS, V96, P225, DOI 10.1034/j.1600-0706.2002.960204.x; Babler AL, 2008, J N AM BENTHOL SOC, V27, P108, DOI 10.1899/07-053.1; Benbow ME, 2003, ANN LIMNOL-INT J LIM, V39, P103, DOI 10.1051/limn/2003008; BENKE AC, 1984, ECOL MONOGR, V54, P25, DOI 10.2307/1942455; Benke AC, 2015, FRESHWATER BIOL, V60, P236, DOI 10.1111/fwb.12460; Benke AC, 2010, J N AM BENTHOL SOC, V29, P264, DOI 10.1899/08-075.1; Benzing D. H., 2000, BROMELIACEAE PROFILE; Brett MT, 2017, FRESHWATER BIOL, V62, P833, DOI 10.1111/fwb.12909; Brouard O, 2012, FRESHWATER BIOL, V57, P815, DOI 10.1111/j.1365-2427.2012.02749.x; Cereghino R, 2011, FUNCT ECOL, V25, P954, DOI 10.1111/j.1365-2435.2011.01863.x; Chessel D, 2004, R NEWS, V4, P5, DOI DOI 10.HTTP://DX.D0I.0RG/10.2307/3780087; Coq S, 2010, ECOLOGY, V91, P2080, DOI 10.1890/09-1076.1; Dezerald O, 2017, FRESHWATER BIOL, V62, P229, DOI 10.1111/fwb.12862; Dezerald O, 2015, FRESHWATER BIOL, V60, P1917, DOI 10.1111/fwb.12621; Dezerald O, 2014, HYDROBIOLOGIA, V723, P77, DOI 10.1007/s10750-013-1464-2; Dezerald O, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0071735; Farjalla VF, 2016, ECOLOGY, V97, P2147, DOI 10.1002/ecy.1432; Frank J.H., 2009, Terrestrial Arthropod Reviews, V1, P125; Gamez-Virues S, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms9568; Givnish TJ, 2011, AM J BOT, V98, P872, DOI 10.3732/ajb.1000059; Goncalves-Souza T, 2010, J ARACHNOL, V38, P270, DOI 10.1636/P09-58.1; Gratton C, 2009, ECOLOGY, V90, P2689, DOI 10.1890/08-1546.1; Haubrich CS, 2009, HYDROBIOLOGIA, V632, P347, DOI 10.1007/s10750-009-9841-6; HURYN AD, 1990, LIMNOL OCEANOGR, V35, P339, DOI 10.4319/lo.1990.35.2.0339; HYNES HBN, 1968, LIMNOL OCEANOGR, V13, P569, DOI 10.4319/lo.1968.13.4.0569; Lau DCP, 2014, ECOLOGY, V95, P1506, DOI 10.1890/13-1141.1; LeCraw RM, 2017, ECOGRAPHY, V40, P1445, DOI 10.1111/ecog.02796; Leroy C, 2017, HYDROBIOLOGIA, V802, P85, DOI 10.1007/s10750-017-3242-z; Leroy C, 2016, J PLANT ECOL, V9, P241, DOI 10.1093/jpe/rtv052; Marino NAC, 2017, GLOBAL CHANGE BIOL, V23, P673, DOI 10.1111/gcb.13399; Marino NAC, 2016, OIKOS, V125, P1017, DOI 10.1111/oik.02664; Marino NAC, 2011, HYDROBIOLOGIA, V678, P191, DOI 10.1007/s10750-011-0848-4; Merritt RW, 2008, INTRO AQUATIC INSECT; MORIN A, 1987, LIMNOL OCEANOGR, V32, P1342, DOI 10.4319/lo.1987.32.6.1342; Ngai JT, 2006, SCIENCE, V314, P963, DOI 10.1126/science.1132598; Peran A, 1999, HYDROBIOLOGIA, V400, P187, DOI 10.1023/A:1003717424687; Petermann JS, 2015, ECOLOGY, V96, P428, DOI 10.1890/14-0304.1; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PLANTE C, 1989, CAN J FISH AQUAT SCI, V46, P1489, DOI 10.1139/f89-191; Poelman EH, 2013, EVOL ECOL, V27, P661, DOI 10.1007/s10682-013-9633-3; R Core Team, 2015, R LANG ENV STAT COMP; Richardson BA, 1999, BIOTROPICA, V31, P321, DOI 10.1111/j.1744-7429.1999.tb00144.x; Richardson BA, 2000, J TROP ECOL, V16, P167, DOI 10.1017/S0266467400001346; Richardson BA, 2005, J ANIM ECOL, V74, P926, DOI 10.1111/j.1365-2656.2005.00990.x; Richardson BA, 2000, ECOL ENTOMOL, V25, P348, DOI 10.1046/j.1365-2311.2000.00255.x; Romero GQ, 2010, J ANIM ECOL, V79, P1122, DOI 10.1111/j.1365-2656.2010.01716.x; Sabagh LT, 2014, NATURWISSENSCHAFTEN, V101, P493, DOI 10.1007/s00114-014-1178-y; Starzomski BM, 2010, ECOL ENTOMOL, V35, P53, DOI 10.1111/j.1365-2311.2009.01155.x; Stead TK, 2005, LIMNOL OCEANOGR, V50, P398, DOI 10.4319/lo.2005.50.1.0398; Stork N. E., 1992, American Journal of Alternative Agriculture, V7, P38; Wallace JB, 2015, ECOLOGY, V96, P1213, DOI 10.1890/14-1589.1 52 0 0 7 9 SPRINGER BASEL AG BASEL PICASSOPLATZ 4, BASEL, 4052, SWITZERLAND 1015-1621 1420-9055 AQUAT SCI Aquat. Sci. APR 2018 80 2 UNSP 14 10.1007/s00027-018-0566-3 12 Environmental Sciences; Limnology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology GB9ZW WOS:000429435600010 2018-11-22 J Lenser, T; Tarkowska, D; Novak, O; Wilhelmsson, PKI; Bennett, T; Rensing, SA; Strnad, M; Theissen, GU Lenser, Teresa; Tarkowska, Danuse; Novak, Ondrej; Wilhelmsson, Per K. I.; Bennett, Tom; Rensing, Stefan A.; Strnad, Miroslav; Theissen, Guenter When the BRANCHED network bears fruit: how carpic dominance causes fruit dimorphism in Aethionema PLANT JOURNAL English Article Aethionema arabicum; auxin; BRANCHED1; carpic dominance; cytokinin; fruit development; fruit dimorphism; molecular evolution; phytohormones; shoot branching DIPTYCHOCARPUS-STRICTUS BRASSICACEAE; PHASEOLUS-VULGARIS L; PISUM-SATIVUM-L; APICAL DOMINANCE; ABSCISIC-ACID; AXILLARY BUD; ARABIDOPSIS-THALIANA; SEED HETEROMORPHISM; ATRIPLEX-SAGITTATA; DISPERSAL ABILITY Life in unpredictably changing habitats is a great challenge, especially for sessile organisms like plants. Fruit and seed heteromorphism is one way to cope with such variable environmental conditions. It denotes the production of distinct types of fruits and seeds that often mediate distinct life-history strategies in terms of dispersal, germination and seedling establishment. But although the phenomenon can be found in numerous species and apparently evolved several times independently, its developmental time course or molecular regulation remains largely unknown. Here, we studied fruit development in Aethionema arabicum, a dimorphic member of the Brassicaceae family. We characterized fruit morph differentiation by comparatively analyzing discriminating characters like fruit growth, seed abortion and dehiscence zone development. Our data demonstrate that fruit morph determination is a last-minute' decision happening in flowers after anthesis directly before the first morphotypical differences start to occur. Several growth experiments in combination with hormone and gene expression analyses further indicate that an accumulation balance of the plant hormones auxin and cytokinin in open flowers together with the transcript abundance of the Ae. arabicum ortholog of BRANCHED1, encoding a transcription factor known for its conserved function as a branching repressor, may guide fruit morph determination. Thus, we hypothesize that the plasticity of the fruit morph ratio in Ae. arabicum may have evolved through the modification of a preexisting network known to govern correlative dominance between shoot organs. Significance Statement Although the production of two distinct types of fruits is often found in plants that thrive in unpredictably changing habitats, no work has been reported yet examining the developmental time course or molecular basis of fruit dimorphism. Here, we discover the developmental time point of fruit morph determination in dimorphic Aethionema arabicum and identify molecular candidates that may mechanistically link fruit type determination to the developmental program governing carpic dominance. [Lenser, Teresa; Theissen, Guenter] Friedrich Schiller Univ Jena, Dept Genet, Philosophenweg 12, D-07743 Jena, Germany; [Tarkowska, Danuse; Novak, Ondrej; Strnad, Miroslav] Palacky Univ, Ctr Reg Hana Biotechnol & Agr Res, Lab Growth Regulators, Slechtitelu 27, CZ-78371 Olomouc, Czech Republic; [Tarkowska, Danuse; Novak, Ondrej; Strnad, Miroslav] Acad Sci Czech Republ, Inst Expt Bot, Slechtitelu 27, CZ-78371 Olomouc, Czech Republic; [Wilhelmsson, Per K. I.] Univ Marburg, Fac Biol, Plant Cell Biol, Karl von Frisch Str 8, D-35043 Marburg, Germany; [Bennett, Tom] Univ Leeds, Fac Biol Sci, Sch Biol, Leeds LS2 9JT, W Yorkshire, England Theissen, GU (reprint author), Friedrich Schiller Univ Jena, Dept Genet, Philosophenweg 12, D-07743 Jena, Germany. guenter.theissen@uni-jena.de Novak, Ondrej/F-7031-2014; Strnad, Miroslav/H-1858-2014 Novak, Ondrej/0000-0003-3452-0154; Strnad, Miroslav/0000-0002-2806-794X Deutsche Forschungsgemeinschaft (DFG) [TH 417/10-1]; Ministry of Education, Youth and Sports of the Czech Republic [RE 1697/8-1, LO1204]; IGA grant of Palacky University [IGA PrF 2017_013] The authors give sincere thanks to Heidi Kuster, Sandrina Lerch, Hana Martinkova, Ivan Petrik and Andrea Novotna for their excellent technical assistance and to Sara Mayland-Quellhorst for help with harvesting fruit material. The project was funded by grants from the Deutsche Forschungsgemeinschaft (DFG) to G.T. (TH 417/10-1) and S.A.R. (RE 1697/8-1), and from the Ministry of Education, Youth and Sports of the Czech Republic (the National Program for Sustainability I Nr. LO1204) and the IGA grant of Palacky University (IGA PrF 2017_013) to M.S. This work is part of the ERA-CAPS 'SeedAdapt' consortium project (www.seedadapt.eu). We thank all members of this consortium for fruitful cooperation and discussion. Abley K, 2016, ANN BOT-LONDON, V117, P733, DOI 10.1093/aob/mcw016; Afonso A, 2014, AM J BOT, V101, P892, DOI 10.3732/ajb.1400030; Aguilar-Martinez JA, 2007, PLANT CELL, V19, P458, DOI 10.1105/tpc.106.048934; Al-Shehbaz IA, 2006, PLANT SYST EVOL, V259, P89, DOI 10.1007/s00606-006-0415-z; Al-Shehbaz I.A., 2011, BRASSICACEAE MUSTARD; ALEXANDER MP, 1969, STAIN TECHNOL, V44, P117, DOI 10.3109/10520296909063335; ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1016/S0022-2836(05)80360-2; Antoniadi I, 2015, PLANT CELL, V27, P1955, DOI 10.1105/tpc.15.00176; Avino M, 2012, EVODEVO, V3, DOI 10.1186/2041-9139-3-20; BAKER GA, 1982, J ECOL, V70, P201, DOI 10.2307/2259873; BANGERTH F, 1989, PHYSIOL PLANTARUM, V76, P608, DOI 10.1111/j.1399-3054.1989.tb05487.x; Bangerth F, 2000, PLANT GROWTH REGUL, V31, P43, DOI 10.1023/A:1006398513703; Bartrina I, 2011, PLANT CELL, V23, P69, DOI 10.1105/tpc.110.079079; Baskin JM, 2014, PERSPECT PLANT ECOL, V16, P93, DOI 10.1016/j.ppees.2014.02.004; BEGONIA G B, 1990, Biotronics, V19, P7; Braun N, 2012, PLANT PHYSIOL, V158, P225, DOI 10.1104/pp.111.182725; CARBONELL J, 1980, PLANTA, V147, P444, DOI 10.1007/BF00380186; Chatfield SP, 2000, PLANT J, V24, P159, DOI 10.1046/j.1365-313x.2000.00862.x; Clamp M, 2004, BIOINFORMATICS, V20, P426, DOI 10.1093/bioinformatics/btg430; Cline MG, 1997, AM J BOT, V84, P1064, DOI 10.2307/2446149; Cruz-Mazo G, 2009, MOL PHYLOGENET EVOL, V53, P835, DOI 10.1016/j.ympev.2009.08.001; de Clavijo ER, 1998, INT J PLANT SCI, V159, P637, DOI 10.1086/297582; Dobrev PI, 2002, J CHROMATOGR A, V950, P21, DOI 10.1016/S0021-9673(02)00024-9; Domagalska MA, 2011, NAT REV MOL CELL BIO, V12, P211, DOI 10.1038/nrm3088; Dubois J, 2012, ANN BOT-LONDON, V110, P1245, DOI 10.1093/aob/mcs203; Dun EA, 2012, PLANT PHYSIOL, V158, P487, DOI 10.1104/pp.111.186783; Eldridge T, 2016, DEVELOPMENT, V143, P3394, DOI 10.1242/dev.135327; ELIASSON L, 1975, PHYSIOL PLANTARUM, V34, P117, DOI 10.1111/j.1399-3054.1975.tb03803.x; Emery RJN, 1998, J EXP BOT, V49, P555, DOI 10.1093/jexbot/49.320.555; Evans MEK, 2005, Q REV BIOL, V80, P431, DOI 10.1086/498282; Ferguson BJ, 2009, PLANT PHYSIOL, V149, P1929, DOI 10.1104/pp.109.135475; Fernandez IA, 2001, MOL PHYLOGENET EVOL, V20, P41, DOI 10.1006/mpev.2001.0954; Ferrandiz C, 1999, ANNU REV BIOCHEM, V68, P321, DOI 10.1146/annurev.biochem.68.1.321; Flokova K, 2014, PHYTOCHEMISTRY, V105, P147, DOI 10.1016/j.phytochem.2014.05.015; Franzke A, 2011, TRENDS PLANT SCI, V16, P108, DOI 10.1016/j.tplants.2010.11.005; Frickenhaus S., 2008, QUICKTREE SD; Galoch E, 1998, ACTA PHYSIOL PLANT, V20, P399, DOI 10.1007/s11738-998-0026-0; Gerlach D., 1984, BOT MIKROTECHNIK EIN; GOCAL GFW, 1991, PLANT PHYSIOL, V95, P344, DOI 10.1104/pp.95.2.344; Gomez-Roldan V, 2008, NATURE, V455, P189, DOI 10.1038/nature07271; Gonzalez-Grandio E, 2013, PLANT CELL, V25, P834, DOI 10.1105/tpc.112.108480; GRUBER J, 1990, PHYSIOL PLANTARUM, V79, P354; Hall JC, 2002, AM J BOT, V89, P1826, DOI 10.3732/ajb.89.11.1826; Howe K, 2002, BIOINFORMATICS, V18, P1546, DOI 10.1093/bioinformatics/18.11.1546; Imbert E, 2002, PERSPECT PLANT ECOL, V5, P13, DOI 10.1078/1433-8319-00021; Imbert E, 2001, OIKOS, V93, P126, DOI 10.1034/j.1600-0706.2001.930114.x; Ishiguro S, 2001, PLANT CELL, V13, P2191, DOI 10.1105/tpc.13.10.2191; Katoh K, 2013, MOL BIOL EVOL, V30, P772, DOI 10.1093/molbev/mst010; KNOX JP, 1984, J EXP BOT, V35, P239, DOI 10.1093/jxb/35.2.239; Langowski L, 2016, PLANT REPROD, V29, P149, DOI 10.1007/s00497-016-0278-6; Lenser T, 2016, PLANT PHYSIOL, V172, P1691, DOI 10.1104/pp.16.00838; Leyser O, 2005, CURR OPIN GENET DEV, V15, P468, DOI 10.1016/j.gde.2005.06.010; Lu JJ, 2013, PLANT ECOL, V214, P351, DOI 10.1007/s11258-013-0171-4; Lu JJ, 2015, PERSPECT PLANT ECOL, V17, P255, DOI 10.1016/j.ppees.2015.04.001; Lu JJ, 2013, ANN BOT-LONDON, V112, P1815, DOI 10.1093/aob/mct240; Lu JJ, 2010, ANN BOT-LONDON, V105, P999, DOI 10.1093/aob/mcq041; Mandak B, 1999, OECOLOGIA, V119, P63, DOI 10.1007/s004420050761; Mandak B, 2001, J ECOL, V89, P159, DOI 10.1046/j.1365-2745.2001.00536.x; Marsch-Martinez N, 2012, PLANT J, V72, P222, DOI 10.1111/j.1365-313X.2012.05062.x; Mason MG, 2014, P NATL ACAD SCI USA, V111, P6092, DOI 10.1073/pnas.1322045111; McCallum WB, 1905, BOT GAZ, V40, P0097, DOI 10.1086/328654; McCallum WB, 1905, BOT GAZ, V40, P0241, DOI 10.1086/328675; Muhlhausen A, 2013, PLANT J, V73, P824, DOI 10.1111/tpj.12079; Muller D, 2015, PLANT J, V82, P874, DOI 10.1111/tpj.12862; Niwa M, 2013, PLANT CELL, V25, P1228, DOI 10.1105/tpc.112.109090; Ongaro V, 2008, MOL PLANT, V1, P388, DOI 10.1093/mp/ssn007; Ozga JA, 2003, J PLANT GROWTH REGUL, V22, P73, DOI 10.1007/s00344-003-0024-9; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; PILLAY I, 1983, PLANT PHYSIOL, V71, P972, DOI 10.1104/pp.71.4.972; QUINLAN JD, 1971, J HORTIC SCI BIOTECH, V46, P525, DOI 10.1080/00221589.1971.11514431; Ramakers C, 2003, NEUROSCI LETT, V339, P62, DOI 10.1016/S0304-3940(02)01423-4; Rameau C, 2015, FRONT PLANT SCI, V5, DOI 10.3389/fpls.2014.00741; Rost B, 1999, PROTEIN ENG, V12, P85, DOI 10.1093/protein/12.2.85; Ruijter JM, 2009, NUCLEIC ACIDS RES, V37, DOI 10.1093/nar/gkp045; Ruttink T, 2007, PLANT CELL, V19, P2370, DOI 10.1105/tpc.107.052811; Sadeh A, 2009, EVOL ECOL, V23, P373, DOI 10.1007/s10682-007-9232-2; Schmulling T, 2003, J PLANT RES, V116, P241, DOI 10.1007/s10265-003-0096-4; Seale M, 2017, DEVELOPMENT, V144, P1661, DOI 10.1242/dev.145649; Sehra B, 2015, WIRES DEV BIOL, V4, P555, DOI 10.1002/wdev.193; Simons AM, 2011, P ROY SOC B-BIOL SCI, V278, P1601, DOI 10.1098/rspb.2011.0176; Smith H, 1997, PLANT CELL ENVIRON, V20, P840, DOI 10.1046/j.1365-3040.1997.d01-104.x; Smith HM, 2013, PLANT SCI, V207, P158, DOI 10.1016/j.plantsci.2013.02.014; Snow R., 1925, ANN BOT, V39, P841; Solms-Laubach H.G.z., 1901, BOT ZEITUNG, P61; Sorefan K, 2009, NATURE, V459, P583, DOI 10.1038/nature07875; Sotelo-Silveira M, 2014, PLANTA, V239, P1147, DOI 10.1007/s00425-014-2057-7; Spence J, 1996, J MICROSC-OXFORD, V181, P195, DOI 10.1046/j.1365-2818.1996.111391.x; Svacinova J, 2012, PLANT METHODS, V8, DOI 10.1186/1746-4811-8-17; Tarkowska D, 2014, PLANTA, V240, P55, DOI 10.1007/s00425-014-2063-9; Teichmann T, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00233; Thimann KV, 1933, P NATL ACAD SCI USA, V19, P714, DOI 10.1073/pnas.19.7.714; Thomas RG, 2011, J EXP BOT, V62, P1027, DOI 10.1093/jxb/erq330; Thomas RG, 2003, J EXP BOT, V54, P2091, DOI 10.1093/jxb/erg223; TUCKER DJ, 1976, ANN BOT-LONDON, V40, P1033, DOI 10.1093/oxfordjournals.aob.a085211; Umehara M, 2008, NATURE, V455, P195, DOI 10.1038/nature07272; van Gelderen K, 2016, MOL PLANT, V9, P857, DOI 10.1016/j.molp.2016.03.005; Vandesompele J, 2002, GENOME BIOL, V3, DOI 10.1186/gb-2002-3-7-research0034; VENABLE DL, 1995, AM J BOT, V82, P410, DOI 10.2307/2445587; VENABLE DL, 1980, OECOLOGIA, V46, P272, DOI 10.1007/BF00540137; Walker C.H., ANN PLANT R IN PRESS; WICKSON M, 1958, PHYSIOL PLANTARUM, V11, P62, DOI 10.1111/j.1399-3054.1958.tb08426.x; YAMAGUCHI H, 1990, BOT MAG TOKYO, V103, P177, DOI 10.1007/BF02489624; Yang F, 2015, ANN BOT-LONDON, V115, P137, DOI 10.1093/aob/mcu210; ZOHARY M., 1950, PALESTINE JOUR BOT JERUSALEM SER, V5, P28 104 2 2 5 11 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0960-7412 1365-313X PLANT J Plant J. APR 2018 94 2 352 371 10.1111/tpj.13861 20 Plant Sciences Plant Sciences GB2OD WOS:000428891700012 29418033 2018-11-22 J Birget, PLG; Greischar, MA; Reece, SE; Mideo, N Birget, Philip L. G.; Greischar, Megan A.; Reece, Sarah E.; Mideo, Nicole Altered life history strategies protect malaria parasites against drugs EVOLUTIONARY APPLICATIONS English Article gametocytes; life history evolution; nonclassical drug resistance; Plasmodium; pyrimethamine; transmission investment WITHIN-HOST COMPETITION; PLASMODIUM-FALCIPARUM; REPRODUCTIVE RESTRAINT; TRANSMISSION STRATEGIES; ARTEMISININ RESISTANCE; EVOLUTION; COMMITMENT; ERYTHROCYTES; CHEMOTHERAPY; INFECTIVITY Drug resistance has been reported against all antimalarial drugs, and while parasites can evolve classical resistance mechanisms (e.g., efflux pumps), it is also possible that changes in life history traits could help parasites evade the effects of treatment. The life history of malaria parasites is governed by an intrinsic resource allocation problem: specialized stages are required for transmission, but producing these stages comes at the cost of producing fewer of the forms required for within-host survival. Drug treatment, by design, alters the probability of within-host survival, and so should alter the costs and benefits of investing in transmission. Here, we use a within-host model of malaria infection to predict optimal patterns of investment in transmission in the face of different drug treatment regimes and determine the extent to which alternative patterns of investment can buffer the fitness loss due to drugs. We show that over a range of drug doses, parasites are predicted to adopt "reproductive restraint" (investing more in asexual replication and less in transmission) to maximize fitness. By doing so, parasites recoup some of the fitness loss imposed by drugs, though as may be expected, increasing dose reduces the extent to which altered patterns of transmission investment can benefit parasites. We show that adaptation to drug-treated infections could result in more virulent infections in untreated hosts. This work emphasizes that in addition to classical resistance mechanisms, drug treatment generates selection for altered parasite life history. Understanding how any shifts in life history will alter the efficacy of drugs, as well as any limitations on such shifts, is important for evaluating and predicting the consequences of drug treatment. [Birget, Philip L. G.; Reece, Sarah E.] Univ Edinburgh, Inst Evolutionary Biol, Edinburgh, Midlothian, Scotland; [Birget, Philip L. G.; Reece, Sarah E.] Univ Edinburgh, Inst Immunol & Infect Res, Edinburgh, Midlothian, Scotland; [Greischar, Megan A.; Mideo, Nicole] Univ Toronto, Dept Ecol & Evolutionary Biol, Toronto, ON, Canada Birget, PLG (reprint author), Univ Edinburgh, Inst Evolutionary Biol, Edinburgh, Midlothian, Scotland.; Birget, PLG (reprint author), Univ Edinburgh, Inst Immunol & Infect Res, Edinburgh, Midlothian, Scotland. philipbirget@gmail.com Greischar, Megan/0000-0002-7521-9344 FNR; University of Edinburgh; Royal Society; NERC; Wellcome Trust; Human Frontiers Science Program; Natural Sciences and Engineering Research Council of Canada FNR; University of Edinburgh; the Royal Society; NERC; Wellcome Trust; Human Frontiers Science Program; Natural Sciences and Engineering Research Council of Canada [Anonymous], 2015, ACH MAL MDG TARG REV; Babayan SA, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000525; Baruah S, 2009, INFECT GENET EVOL, V9, P853, DOI 10.1016/j.meegid.2009.05.006; Bell AS, 2006, EVOLUTION, V60, P1358, DOI 10.1554/05-611.1; Bell AS, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0037172; Birget PLG, 2017, P ROY SOC B-BIOL SCI, V284, DOI 10.1098/rspb.2017.1229; Bousema T, 2011, CLIN MICROBIOL REV, V24, P377, DOI 10.1128/CMR.00051-10; Brancucci NMB, 2015, NAT PROTOC, V10, P1131, DOI 10.1038/nprot.2015.072; BRUCE MC, 1990, PARASITOLOGY, V100, P191, DOI 10.1017/S0031182000061199; Buckling AGJ, 1997, P ROY SOC B-BIOL SCI, V264, P553, DOI 10.1098/rspb.1997.0079; Carter Lucy M., 2013, Evolution Medicine and Public Health, P135, DOI 10.1093/emph/eot011; Codd A, 2011, MALARIA J, V10, DOI 10.1186/1475-2875-10-56; de Roode JC, 2005, P NATL ACAD SCI USA, V102, P7624, DOI 10.1073/pnas.0500078102; de Roode JC, 2005, AM NAT, V166, P531, DOI 10.1086/491659; DEARSLY AL, 1990, PARASITOLOGY, V100, P359, DOI 10.1017/S0031182000078628; Dondorp AM, 2009, NEW ENGL J MED, V361, P455, DOI 10.1056/NEJMoa0808859; Gatton ML, 2013, EVOLUTION, V67, P1218, DOI 10.1111/evo.12063; Gautret P, 1996, J PARASITOL, V82, P900, DOI 10.2307/3284196; Greischar MA, 2016, EVOLUTION, V70, P1542, DOI 10.1111/evo.12969; Greischar MA, 2016, PLOS COMPUT BIOL, V12, DOI 10.1371/journal.pcbi.1004718; Greischar MA, 2016, PARASITOLOGY, V143, P905, DOI 10.1017/S0031182015000815; Greischar MA, 2014, AM NAT, V183, pE36, DOI 10.1086/674357; Hott A, 2015, ANTIMICROB AGENTS CH, V59, P3156, DOI 10.1128/AAC.00197-15; Huijben S, 2013, PLOS PATHOG, V9, DOI 10.1371/journal.ppat.1003578; Huijben S, 2010, EVOLUTION, V64, P2952, DOI 10.1111/j.1558-5646.2010.01068.x; Hyde JE, 2005, TRENDS PARASITOL, V21, P494, DOI 10.1016/j.pt.2005.08.020; Hyde JE, 2002, MICROBES INFECT, V4, P165, DOI 10.1016/S1286-4579(01)01524-6; Juliano JJ, 2010, P NATL ACAD SCI USA, V107, P20138, DOI 10.1073/pnas.1007068107; Kachur SP, 2006, TROP MED INT HEALTH, V11, P441, DOI 10.1111/j.1365-3156.2006.01588.x; KOELLA JC, 1995, THEOR POPUL BIOL, V47, P277, DOI 10.1006/tpbi.1995.1012; LANDAU I, 1965, CR HEBD ACAD SCI, V260, P3758; Landau I., 1978, RODENT MALARIA LIFE; Lew VL, 2003, BLOOD, V101, P4189, DOI 10.1182/blood-2002-08-2654; Lynch PA, 2008, PARASITOLOGY, V135, P1599, DOI 10.1017/S0031182008000309; McDonald V, 2009, PARASITOLOGY, V136, P1477, DOI 10.1017/S0031182009006349; Mckenzie FE, 1998, J THEOR BIOL, V193, P419, DOI 10.1006/jtbi.1998.0710; Mideo N, 2008, AM NAT, V172, pE214, DOI 10.1086/591684; Mideo N, 2008, P ROY SOC B-BIOL SCI, V275, P1217, DOI 10.1098/rspb.2007.1545; Mideo Nicole, 2016, Evolution Medicine and Public Health, P21, DOI 10.1093/emph/eov036; Miller MR, 2010, PLOS COMPUT BIOL, V6, DOI 10.1371/journal.pcbi.1000946; Paloque L, 2016, MALARIA J, V15, DOI 10.1186/s12936-016-1206-9; Paul REL, 2007, INFECT GENET EVOL, V7, P577, DOI 10.1016/j.meegid.2007.04.004; Peatey CL, 2009, J INFECT DIS, V200, P1518, DOI 10.1086/644645; Pollitt LC, 2011, AM NAT, V177, P358, DOI 10.1086/658175; Reece SE, 2010, P ROY SOC B-BIOL SCI, V277, P3123, DOI 10.1098/rspb.2010.0564; Reece SE, 2005, P ROY SOC B-BIOL SCI, V272, P511, DOI 10.1098/rspb.2004.2972; Saralamba S, 2011, P NATL ACAD SCI USA, V108, P397, DOI 10.1073/pnas.1006113108; Savill NJ, 2009, PLOS COMPUT BIOL, V5, DOI 10.1371/journal.pcbi.1000416; SCHMIDT W, 1994, BLOOD, V83, P3746; Schneider P, 2012, P ROY SOC B-BIOL SCI, V279, P4677, DOI 10.1098/rspb.2012.1792; Schneider P, 2008, MALARIA J, V7, DOI 10.1186/1475-2875-7-257; Sinha A, 2014, NATURE, V507, P253, DOI 10.1038/nature12970; Sokhna C, 2013, CLIN MICROBIOL INFEC, V19, P902, DOI 10.1111/1469-0691.12314; Taylor LH, 1997, PARASITOL TODAY, V13, P135, DOI 10.1016/S0169-4758(97)89810-9; Teuscher F, 2010, J INFECT DIS, V202, P1362, DOI 10.1086/656476; White NJ, 2014, MALARIA J, V13, DOI 10.1186/1475-2875-13-483; White NJ, 2014, LANCET, V383, P723, DOI 10.1016/S0140-6736(13)60024-0; White NJ, 2004, J CLIN INVEST, V113, P1084, DOI 10.1172/JCI200421682; White NJ, 1998, ANN TROP MED PARASIT, V92, P449; World Health Organization, 2015, GUID TREATM MAL 60 0 0 5 5 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1752-4571 EVOL APPL Evol. Appl. APR 2018 11 4 SI 442 455 10.1111/eva.12516 14 Evolutionary Biology Evolutionary Biology GB9TZ WOS:000429418200006 29636798 DOAJ Gold, Green Published 2018-11-22 J Khatri, D; He, XZ; Wang, Q Khatri, D.; He, X. Z.; Wang, Q. Effective biological control depends on life history strategies of both parasitoid and its host: evidence from Aphidius colemani-Myzus persicae System (vol 110, pg 400, 2017) JOURNAL OF ECONOMIC ENTOMOLOGY English Correction Khatri D, 2017, J ECON ENTOMOL, V110, P400, DOI 10.1093/jee/tow324; Lewis EG, 1942, SANKHYA, V6, P93; Lotka A. J., 1913, J WASH ACAD SCI, V3, P241 3 0 0 8 8 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 0022-0493 1938-291X J ECON ENTOMOL J. Econ. Entomol. APR 2018 111 2 1000 1000 10.1093/jee/tox322 1 Entomology Entomology GB8II WOS:000429319200066 Bronze 2018-11-22 J McNicholl, DG; Davoren, GK; Reist, JD McNicholl, D. G.; Davoren, G. K.; Reist, J. D. Life history variation across latitudes: observations between capelin (Mallotus villosus) from Newfoundland and the eastern Canadian Arctic POLAR BIOLOGY English Article Capelin; Climate change; Life history trait variation; Spawning ecology BARENTS SEA CAPELIN; REPRODUCTIVE EFFORT; FISH; EVOLUTION; GROWTH; ZOOPLANKTON; SURVIVAL; ECOLOGY; CLIMATE; STOCKS Life history trait variation within a species promotes regional-specific strategies that optimize fitness in a particular environment. Capelin (Mallotus villosus) is an important forage fish species with a circumpolar, temperate distribution, but has increased in relative abundance in Arctic regions recently. To examine for region-specific life history strategies, we compared life history characteristics (length, body condition, age of sexual maturity and growth) of spawning male capelin collected from the eastern Canadian Arctic, in Pangnirtung Fjord, Nunavut (66A degrees N; July 2014 and June-July 2015) with a sub-Arctic location on the northeast coast of Newfoundland (49A degrees N; July 2014 and 2015). First year growth was higher for sub-Arctic relative to Arctic capelin. In contrast, body condition (regression of total length versus mass) was lower for capelin in the Arctic compared to the sub-Arctic population. The age structure of spawning males suggested that Newfoundland capelin reached sexual maturity earlier, as the youngest spawners in Newfoundland were age 2+ (median age: 3+) relative to Pangnirtung where the median spawning age was 4+ (maximum age 5+). Overall, Arctic capelin were generally characterized by lower growth, especially in the first year, later age of reproduction, and lower body condition, relative to the sub-Arctic population. These differences may be the result of limited gene flow on the northern margins of this species' geographical distribution. They also support previously reported genetic distinction among the sub-Arctic and Arctic clades in the North Atlantic. [McNicholl, D. G.; Davoren, G. K.] Univ Manitoba, Dept Biol Sci, 50 Sifton Rd, Winnipeg, MB, Canada; [McNicholl, D. G.; Reist, J. D.] Fisheries & Oceans Canada, Inst Freshwater, 501 Univ Crescent, Winnipeg, MB, Canada McNicholl, DG (reprint author), Univ Manitoba, Dept Biol Sci, 50 Sifton Rd, Winnipeg, MB, Canada.; McNicholl, DG (reprint author), Fisheries & Oceans Canada, Inst Freshwater, 501 Univ Crescent, Winnipeg, MB, Canada. darcy.mcnicholl@gmail.com Fisheries and Oceans Canada; Natural Sciences and Engineering Research Council; University of Manitoba We thank R. Tallman for aid in sampling and support for fishes collected in Pangnirtung, and members of the Davoren Lab, University of Manitoba for assistance with sampling fishes collected in Newfoundland. This project is supported by Fisheries and Oceans Canada, Natural Sciences and Engineering Research Council Discovery Grant (GKD) and annual Ship Time Grants (GKD) along with annual University of Manitoba Faculty of Science Field Work Support Grants (GKD) and a University of Manitoba Faculty of Science Scholarship to DGM. BAILEY WB, 1957, J FISH RES BOARD CAN, V14, P731, DOI 10.1139/f57-030; Bergmann C., 1847, GOTTINGER STUDIEN, V3, P595; Beverton R.J.H., 1987, Basic Life Sciences, V42, P161; Blanck A, 2007, J BIOGEOGR, V34, P862, DOI 10.1111/j.1365-2699.2006.01654.x; CAMPANA SE, 1990, CAN J FISH AQUAT SCI, V47, P2219, DOI 10.1139/f90-246; Carroll SP, 2007, FUNCT ECOL, V21, P387, DOI 10.1111/j.1365-2435.2007.01289.x; Carscadden JE, 2013, PROG OCEANOGR, V114, P84, DOI 10.1016/j.pocean.2013.05.006; Carscadden JE, 2013, PROG OCEANOGR, V114, P64, DOI 10.1016/j.pocean.2013.05.005; CHARNOV EL, 1991, PHILOS T ROY SOC B, V332, P41, DOI 10.1098/rstb.1991.0031; Christiansen JS, 2008, J EXP MAR BIOL ECOL, V360, P47, DOI 10.1016/j.jembe.2008.04.003; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Daase M, 2013, CAN J FISH AQUAT SCI, V70, P871, DOI 10.1139/cjfas-2012-0401; Dodson JJ, 2007, MOL ECOL, V16, P5030, DOI 10.1111/j.1365-294X.2007.03559.x; Dunbar M, 1951, E ARCTIC WATERS SUMM; Eckert AJ, 2008, MOL PHYLOGENET EVOL, V49, P832, DOI 10.1016/j.ympev.2008.09.008; Flynn SR, 2001, J MAR BIOL ASSOC UK, V81, P307, DOI 10.1017/S0025315401003782; Gaston AJ, 2003, ARCTIC, V56, P227; Gjosaeter H, 1998, SARSIA, V83, P453, DOI 10.1080/00364827.1998.10420445; GJOSAETER H, 1987, ENVIRON BIOL FISH, V20, P293; Gjosaeter H, 2002, ICES J MAR SCI, V59, P959, DOI 10.1006/jmsc.2002.1240; Gjosaeter H, 1999, THESIS; Gjosaeter H, 1984, P SOV NORW S BAR SEA, P119; HASSEL A, 1991, POLAR RES, V10, P371, DOI 10.1111/j.1751-8369.1991.tb00660.x; Hedeholm R, 2010, ICES J MAR SCI, V67, P1128, DOI 10.1093/icesjms/fsq024; Hjermann DO, 2004, MAR ECOL PROG SER, V273, P229, DOI 10.3354/meps273229; Huse G, 1998, CAN J FISH AQUAT SCI, V55, P631, DOI 10.1139/cjfas-55-3-631; Hutchings JA, 2008, MOL ECOL, V17, P294, DOI 10.1111/j.1365-294X.2007.03485.x; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; LOENG H, 1989, Journal of Northwest Atlantic Fishery Science, V9, P103; Marcoux M, 2012, MAR ECOL PROG SER, V471, P283, DOI 10.3354/meps10029; Maxner E, 2016, FISH RES, V179, P202, DOI 10.1016/j.fishres.2016.03.002; Mowbray FK, 2002, ICES J MAR SCI, V59, P942, DOI 10.1006/jmsc.2002.1259; O'Driscoll RL, 2001, SARSIA, V86, P165, DOI 10.1080/00364827.2001.10420472; Penton PM, 2012, CAN J ZOOL, V90, P248, DOI 10.1139/Z11-132; Petrie B., 1988, NAFO SCI COUNC STUD, V12, P57; Praebel K, 2008, MAR ECOL PROG SER, V360, P189, DOI 10.3354/meps07363; Resetarits WJ, 1996, AM ZOOL, V36, P205; Rose GA, 2005, ICES J MAR SCI, V62, P1524, DOI 10.1016/j.icesjms.2005.05.008; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; Schindler DE, 2010, NATURE, V465, P609, DOI 10.1038/nature09060; Sexton JP, 2009, ANNU REV ECOL EVOL S, V40, P415, DOI 10.1146/annurev.ecolsys.110308.120317; SHACKELL NL, 1994, CAN J FISH AQUAT SCI, V51, P642, DOI 10.1139/f94-065; Stearns S., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Templeman W, 1948, RES B NEWFOUNDLAND G; Ulrich KL, 2013, THESIS; Vilhjalmsson Hjalmar, 1994, Rit Fiskideildar, V13, P1; Weisberg S, 2010, CAN J FISH AQUAT SCI, V67, P269, DOI 10.1139/F09-181; WINTERS G H, 1982, Journal of Northwest Atlantic Fishery Science, V3, P105; WINTERS GH, 1971, J FISH RES BOARD CAN, V28, P1029, DOI 10.1139/f71-149; Yurkowski DJ, 2016, OECOLOGIA, V180, P631, DOI 10.1007/s00442-015-3384-5 51 0 0 5 7 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0722-4060 1432-2056 POLAR BIOL Polar Biol. APR 2018 41 4 643 651 10.1007/s00300-017-2225-x 9 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology GA8QC WOS:000428603800005 2018-11-22 J Hilderbrand, GV; Gustine, DD; Mangipane, B; Joly, K; Leacock, W; Mangipane, L; Erlenbach, J; Sorum, MS; Cameron, MD; Belant, JL; Cambier, T Hilderbrand, Grant V.; Gustine, David D.; Mangipane, Buck; Joly, Kyle; Leacock, William; Mangipane, Lindsey; Erlenbach, Joy; Sorum, Mathew S.; Cameron, Matthew D.; Belant, Jerrold L.; Cambier, Troy Plasticity in physiological condition of female brown bears across diverse ecosystems POLAR BIOLOGY English Article Body composition; Brown bear; Energy; Plasticity; Ursus arctos BODY-COMPOSITION; GRIZZLY BEARS; LACTATION PERFORMANCE; KENAI PENINSULA; MASS GAIN; PROTEIN; ALASKA; WINTER; HIBERNATION; DYNAMICS Variation in life history strategies facilitates the near global distribution of mammals by expanding realized niche width. We investigated physiological plasticity in the spring body composition of adult female brown bears (Ursus arctos) across 4 diverse Alaskan ecosystems. Brown bears are a highly intelligent omnivore with a historic range spanning much of North America, Europe, and Asia. We hypothesized that body mass, fat mass, lean mass, and total caloric content would increase across populations with increasing food resource availability. Throughout their range, brown bears enter a period of torpor during winter months, decreasing their metabolic rate as an adaptation to this period of reduced food availability. They also give birth to and nourish offspring during this time. Due to this specific life history strategy, we further hypothesized that proportional body fat and the proportion of total calories derived from fat would be consistent across populations. Our results supported our first hypothesis: body, fat, and lean masses, and caloric content of bears across populations increased with the quality and abundance of available food. However, the proportional body fat content and proportion of calories from fat differed across populations indicating population-specific strategies to meet the demands of reduced seasonal food availability, offspring production and rearing, and climate as well as some plasticity to respond to environmental change or ecosystem perturbations. Investigations of body condition and energetics benefit from combined assessments of absolute, proportional, and caloric metrics to understand the nuances of brown bear physiological dynamics across and within populations. [Hilderbrand, Grant V.] US Geol Survey, Alaska Sci Ctr, 4210 Univ Dr, Anchorage, AK 99508 USA; [Gustine, David D.] Natl Pk Serv, Grand Teton Natl Pk, POB 170, Moose, WY 83012 USA; [Mangipane, Buck] Natl Pk Serv, Lake Clark Natl Pk & Preserve, Port Alsworth, AK 99653 USA; [Joly, Kyle; Sorum, Mathew S.; Cameron, Matthew D.] Natl Pk Serv, Gates Arctic Natl Pk & Preserve, 4175 Geist Rd, Fairbanks, AK 99709 USA; [Leacock, William] US Fish & Wildlife Serv, Kodiak Natl Wildlife Refuge, 1390 Buskin River Rd, Kodiak, AK 99615 USA; [Mangipane, Lindsey; Belant, Jerrold L.] Mississippi State Univ, Forest & Wildlife Res Ctr, Carnivore Ecol Lab, Starkville, MS 39762 USA; [Erlenbach, Joy] Washington State Univ, Sch Environm, Pullman, WA 99164 USA; [Cambier, Troy] Chena River Aviat, 1366 Wike Way, Fairbanks, AK 99709 USA Hilderbrand, GV (reprint author), US Geol Survey, Alaska Sci Ctr, 4210 Univ Dr, Anchorage, AK 99508 USA. ghilderbrand@usgs.gov Hilderbrand, Grant/0000-0002-0051-8315; Gustine, Dave/0000-0003-1087-1937; Cameron, Matthew/0000-0001-7347-4491 National Park Service; U.S. Fish and Wildlife Service; U.S. Geological Survey We thank biologists W. Deacy and A. Morehouse, wildlife veterinarian J. Powers, and pilots A. Greenblatt, M. Keller, J. DeCreeft, R. Richotte, C. Cebulski, D. Welty, I. Bedingfield, K. Rees, K. VanHatten, and J. and J. Cummings for their assistance with animal capture and handling. N. Svoboda and three anonymous reviewers provided insightful comments and improved the manuscript. Funding was provided by the National Park Service, U.S. Fish and Wildlife Service, and U.S. Geological Survey. All procedures performed in studies involving animals were in accordance with the ethical standards of the institutions or practice at which the studies were conducted. Use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Barboza PS, 2008, PHYSIOL BIOCHEM ZOOL, V81, P835, DOI 10.1086/590414; Bergmann C., 1847, GOTTINGER STUDIEN, V3, P595; Bolnick DI, 2003, AM NAT, V161, P1, DOI 10.1086/343878; Bowen WD, 2001, FUNCT ECOL, V15, P325, DOI 10.1046/j.1365-2435.2001.00530.x; Buck CL, 1999, J MAMMAL, V80, P1264, DOI 10.2307/1383177; Cramer W, 1999, GLOBAL CHANGE BIOL, V5, P1, DOI 10.1046/j.1365-2486.1999.00009.x; Deacy W, 2016, ECOLOGY, V97, P1091, DOI 10.1890/15-1060.1; Erlenbach JA, 2014, J MAMMAL, V95, P160, DOI 10.1644/13-MAMM-A-161; Farley SD, 1995, CAN J ZOOL, V73, P2216, DOI 10.1139/z95-262; FARLEY SD, 1994, CAN J ZOOL, V72, P220, DOI 10.1139/z94-029; Felicetti LA, 2003, PHYSIOL BIOCHEM ZOOL, V76, P256, DOI 10.1086/374279; Fortin JK, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0141983; Gustine DD, 2010, PHYSIOL BIOCHEM ZOOL, V83, P687, DOI 10.1086/652729; Harlow HJ, 1997, J THERM BIOL, V22, P21, DOI 10.1016/S0306-4565(96)00031-9; Hertel AG, 2017, OIKOS; Hilderbrand GV, 2013, CAN J ZOOL, V91, P1, DOI 10.1139/cjz-2012-0205; Hilderbrand GV, 1998, J WILDLIFE MANAGE, V62, P406, DOI 10.2307/3802306; Hilderbrand GV, 2000, J WILDLIFE MANAGE, V64, P178, DOI 10.2307/3802988; Hilderbrand GV, 1999, CAN J ZOOL, V77, P1623, DOI 10.1139/cjz-77-10-1623; Hilderbrand GV, 2017, BROWN BEAR SPRING EN; Hilderbrand GV, J ZOOL IN PRESS; HOLM S, 1979, SCAND J STAT, V6, P65; Hood WR, 2006, J COMP PHYSIOL B, V176, P807, DOI 10.1007/s00360-006-0102-y; Kuntz R, 2006, J EXP BIOL, V209, P4557, DOI 10.1242/jeb.02535; Lafferty DJR, 2015, OIKOS, V124, P732, DOI 10.1111/oik.01741; Lesage L, 2001, OECOLOGIA, V126, P30, DOI 10.1007/s004420000499; Lopez-Alfaro C, 2013, ECOL MODEL, V270, P1, DOI 10.1016/j.ecolmode1.2013.09.002; Mangipane L.S., 2017, POLAR BIOL; Mellish JAE, 1999, PHYSIOL BIOCHEM ZOOL, V72, P677, DOI 10.1086/316708; Monahan WB, 2016, ECOSPHERE, V7, DOI 10.1002/ecs2.1465; Monson DH, 2000, OIKOS, V90, P457, DOI 10.1034/j.1600-0706.2000.900304.x; Monteith KL, 2013, J ANIM ECOL, V82, P377, DOI 10.1111/1365-2656.12016; Mowat G, 2006, CAN J ZOOL, V84, P473, DOI 10.1139/z06-016; Oftedal OT, 2000, P NUTR SOC, V59, P99, DOI 10.1017/S0029665100000124; Pasitschniak-Arts M, 1993, AM J MAMMOLOGISTS, V439, P1, DOI DOI 10.HTTPS://D0I.0RG/10.2307; Robbins CT, 2007, OIKOS, V116, P1675, DOI 10.1111/j.2007.0030-1299.16140.x; Robbins CT, 2001, WILDLIFE FEEDING NUT; Rode KD, 2000, CAN J ZOOL, V78, P1640, DOI 10.1139/cjz-78-9-1640; Schwartz C. C., 2006, WILDLIFE MONOGR, V161, P18; Servheen C., 1999, BEAR STATUS SURVEY C; SIDAK Z, 1967, J AM STAT ASSOC, V62, P626, DOI 10.2307/2283989; Stanek AE, 2017, CAN J ZOOL, V95, P555, DOI 10.1139/cjz-2016-0203; Suring LH, 2002, URSUS, V13, P237; Suring LH, 2006, J WILDLIFE MANAGE, V70, P1580, DOI 10.2193/0022-541X(2006)70[1580:POLUBF]2.0.CO;2; TAYLOR WP, 1989, J WILDLIFE MANAGE, V53, P978, DOI 10.2307/3809598; Wilson RR, 2014, ARCTIC, V67, P472, DOI 10.14430/arctic4421; Winstanley RK, 1999, CAN J ZOOL, V77, P406, DOI 10.1139/cjz-77-3-406; Zar JH, 1999, BIOSTATISTICAL ANAL; Zuercher GL, 1999, J MAMMAL, V80, P443, DOI 10.2307/1383292 49 0 0 6 8 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0722-4060 1432-2056 POLAR BIOL Polar Biol. APR 2018 41 4 773 780 10.1007/s00300-017-2238-5 8 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology GA8QC WOS:000428603800016 2018-11-22 J Crandall, A; Magnusson, BM; Novilla, MLB Crandall, AliceAnn; Magnusson, Brianna M.; Novilla, M. Lelinneth B. Growth in Adolescent Self-Regulation and Impact on Sexual Risk-Taking: A Curve-of-Factors Analysis JOURNAL OF YOUTH AND ADOLESCENCE English Article Self-regulation; Sexual risk-taking; Family stress; Growth curve analysis; Structural equation modeling LIFE-HISTORY STRATEGIES; COGNITIVE CONTROL; AFRICAN-AMERICAN; STRESS; CHILDHOOD; YOUNG; PERSPECTIVE; TRANSITION; BEHAVIORS; ADULTHOOD Adolescent self-regulation is increasingly seen as an important predictor of sexual risk-taking behaviors, but little is understood about how changes in self-regulation affect later sexual risk-taking. Family financial stress may affect the development of self-regulation and later engagement in sexual risk-taking. We examined whether family financial stress influences self-regulation in early adolescence (age 13) and growth in self-regulation throughout adolescence (from age 13-17 years). We then assessed the effects of family financial stress, baseline self-regulation, and the development of self-regulation on adolescent sexual risk-taking behaviors at age 18 years. Using a curve-of-factors model, we examined these relationships in a 6-year longitudinal study of 470 adolescents (52% female) and their parents from a large northwestern city in the United States. Results indicated that family financial stress was negatively associated with baseline self-regulation but not with growth in self-regulation throughout adolescence. Both baseline self-regulation and growth in self-regulation were predictive of decreased likelihood of engaging in sexual risk-taking. Family financial stress was not predictive of later sexual risk-taking. Intervening to support the development of self-regulation in adolescence may be especially protective against later sexual risk-taking. [Crandall, AliceAnn; Magnusson, Brianna M.; Novilla, M. Lelinneth B.] Brigham Young Univ, Dept Hlth Sci, 4103 LSB, Provo, UT 84602 USA Crandall, A (reprint author), Brigham Young Univ, Dept Hlth Sci, 4103 LSB, Provo, UT 84602 USA. ali_crandall@byu.edu Brigham Young University (U.S.) College of Family, Home, and Social Science The Flourishing Families Project was funded by Brigham Young University (U.S.) College of Family, Home, and Social Science (Principal Investigator: Randal D. Day). Barbarin O, 2013, AM J ORTHOPSYCHIAT, V83, P156, DOI 10.1111/ajop.12024; Birthrong A, 2014, PERS INDIV DIFFER, V57, P8, DOI 10.1016/j.paid.2013.09.009; Blair C, 2010, CHILD DEV PERSPECT, V4, P181, DOI 10.1111/j.1750-8606.2010.00145.x; Browning CR, 2008, J HEALTH SOC BEHAV, V49, P269, DOI 10.1177/002214650804900303; Cavazos-Rehg PA, 2010, ARCH SEX BEHAV, V39, P664, DOI 10.1007/s10508-008-9397-y; Centers for Disease Control and Prevention, 2016, SEX TRANSM DIS SURV; Cheung GW, 2002, STRUCT EQU MODELING, V9, P233, DOI 10.1207/S15328007SEM0902_5; Crandall A, 2017, J YOUTH ADOLESCENCE, V46, P45, DOI 10.1007/s10964-016-0543-x; Crichton J, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0104943; Dahlin E, 2008, PSYCHOL AGING, V23, P720, DOI 10.1037/a0014296; Dariotis JK, 2011, PERSPECT SEX REPRO H, V43, P51, DOI 10.1363/4305111; Diamond A, 2007, SCIENCE, V318, P1387, DOI 10.1126/science.1151148; Duckworth AL, 2011, EDUC PSYCHOL-UK, V31, P17, DOI 10.1080/01443410.2010.506003; Duncan T. E., 2006, INTRO LATENT VARIABL; El-Sadr WM, 2010, NEW ENGL J MED, V362, P967, DOI 10.1056/NEJMp1000069; Evans GW, 2008, EARLY CHILD RES Q, V23, P504, DOI 10.1016/j.ecresq.2008.07.002; Finer LB, 2016, NEW ENGL J MED, V374, P843, DOI 10.1056/NEJMsa1506575; Fuhrmann D, 2015, TRENDS COGN SCI, V19, P558, DOI 10.1016/j.tics.2015.07.008; Gestsdottir S, 2008, HUM DEV, V51, P202, DOI 10.1159/000135757; Gibbons FX, 2012, DEV PSYCHOL, V48, P722, DOI 10.1037/a0026599; Griffin KW, 2012, INT J ENV RES PUB HE, V9, P1, DOI 10.3390/ijerph9010001; Hackman DA, 2015, DEVELOPMENTAL SCI, V18, P686, DOI 10.1111/desc.12246; Hampson SE, 2016, PERS INDIV DIFFER, V88, P120, DOI 10.1016/j.paid.2015.08.052; Harvard Center on the Developing Child, 2014, ENH PRACT EX FUNCT S; Kautz T., 2014, W20749 NAT BUR EC RE; Kavanaugh ML, 2017, SOC SCI MED, V174, P133, DOI 10.1016/j.socscimed.2016.12.024; King KM, 2013, J ABNORM CHILD PSYCH, V41, P57, DOI 10.1007/s10802-012-9665-0; Li MY, 2017, J DEV BEHAV PEDIATR, V38, P99, DOI 10.1097/DBP.0000000000000380; Little T. D., 2013, LONGITUDINAL STRUCTU; Lupien SJ, 2009, NAT REV NEUROSCI, V10, P434, DOI 10.1038/nrn2639; Moilanen KL, 2015, J SEX RES, V52, P758, DOI 10.1080/00224499.2014.959881; Mullainathan S., 2013, SCARCITY WHY HAVING; Murray D. W, 2015, 201521 OPRE US DEP H; Muthen L. K, 1998, MPLUS USERS GUIDE; Niendam TA, 2012, COGN AFFECT BEHAV NE, V12, P241, DOI 10.3758/s13415-011-0083-5; Novak SP, 2001, HEALTH PSYCHOL, V20, P196, DOI 10.1037//0278-6133.20.3.196; Ponnet K, 2015, J RES ADOLESCENCE, V25, P765, DOI 10.1111/jora.12171; Shonkoff JP, 2012, PEDIATRICS, V129, pE232, DOI 10.1542/peds.2011-2663; Spilman S. K., 2006, CRITICAL TRANSITIONS; StataCorp, 2014, STAT STAT SOFTW REL; Steinberg L, 2008, DEV REV, V28, P78, DOI 10.1016/j.dr.2007.08.002; Tsevat DG, 2017, AM J OBSTET GYNECOL, V216, P1, DOI 10.1016/j.ajog.2016.08.008; Turchik JA, 2009, ARCH SEX BEHAV, V38, P936, DOI 10.1007/s10508-008-9388-z; Umberson D, 2005, J MARRIAGE FAM, V67, P1332, DOI 10.1111/j.1741-3737.2005.00220.x; Volkow ND, 2014, NEW ENGL J MED, V370, P2219, DOI 10.1056/NEJMra1402309; Woltering S, 2009, MIND BRAIN EDUC, V3, P160, DOI 10.1111/j.1751-228X.2009.01066.x; World Health Organization (WHO), 2017, MAT NEWB CHILD AD HL; Yeager DS, 2014, J PERS SOC PSYCHOL, V107, P559, DOI [10.1037/a0037637.supp, 10.1037/a0037637]; Young Margaret B., 2012, Morbidity and Mortality Weekly Report, V61, P1 49 1 1 3 9 SPRINGER/PLENUM PUBLISHERS NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0047-2891 1573-6601 J YOUTH ADOLESCENCE J. Youth Adolesc. APR 2018 47 4 793 806 10.1007/s10964-017-0706-4 14 Psychology, Developmental Psychology FZ5ER WOS:000427615200008 28664311 2018-11-22 J Zhu, Y; Queenborough, SA; Condit, R; Hubbell, SP; Ma, KP; Comita, LS Zhu, Y.; Queenborough, S. A.; Condit, R.; Hubbell, S. P.; Ma, K. P.; Comita, L. S. Density-dependent survival varies with species life-history strategy in a tropical forest ECOLOGY LETTERS English Article fast-slow continuum; growth-mortality trade-off; intraspecific competition; Janzen-Connell hypothesis; niche partitioning; regeneration niche; shade tolerance; species coexistence SHADE TOLERANCE; FUNCTIONAL TRAITS; ECONOMICS SPECTRUM; NEOTROPICAL FOREST; SEEDLING SURVIVAL; PLANT DIVERSITY; TREE SEEDLINGS; RAIN-FOREST; DISPERSAL DISTANCE; STRESS TOLERANCE Species coexistence in diverse communities likely results from multiple interacting factors. Mechanisms such as conspecific negative density dependence (CNDD) and varying life-history strategies related to resource partitioning are known to influence plant fitness, and thereby community composition and diversity. However, we have little understanding of how these mechanisms interact and how they vary across life stages. Here, we document the interaction between CNDD and life-history strategy, based on growth-mortality trade-offs, from seedling to adult tree for 47 species in a tropical forest. Species' life-history strategies remained consistent across stages: fast-growing species had higher mortality than slow-growing species at all stages. In contrast, mean CNDD was strongest at early life stages (i.e. seedling, sapling). Fast-growing species tended to suffer greater CNDD than slow-growing species at several, but not all life stages. Overall, our results demonstrate that coexistence mechanisms interact across multiple life stages to shape diverse tree communities. [Zhu, Y.; Queenborough, S. A.; Comita, L. S.] Yale Univ, Sch Forestry & Environm Studies, New Haven, CT 06511 USA; [Zhu, Y.; Ma, K. P.] Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, 20 Nanxincun, Beijing 100093, Peoples R China; [Condit, R.] Morton Arboretum, 4100 Illinois Rte 53, Lisle, IL 60532 USA; [Condit, R.] Field Museum Nat Hist, 1400 S Lake Shore Dr, Chicago, IL 60605 USA; [Hubbell, S. P.] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA; [Hubbell, S. P.; Comita, L. S.] Smithsonian Trop Res Inst, Box 0843-03092, Balboa, Ancon, Panama Zhu, Y (reprint author), Yale Univ, Sch Forestry & Environm Studies, New Haven, CT 06511 USA.; Zhu, Y (reprint author), Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, 20 Nanxincun, Beijing 100093, Peoples R China. zhuyan1205@gmail.com Chinese Academy of Sciences [XDPB0203]; National key basic R&D program of China [2017YFA0605100]; China Scholarship Council (CSC); Yale University; National Science Foundation [NSF DEB 1242622, 1464389]; U.S. National Science Foundation Y.Z. was financially supported by Strategic Priority Research Program of the Chinese Academy of Sciences (XDPB0203), National key basic R&D program of China (2017YFA0605100), the State Scholarship Fund organised by China Scholarship Council (CSC) and Yale University. The BCI seedling census was funded by the National Science Foundation (NSF DEB 1242622 and 1464389 to L.S.C.). The BCI forest dynamics research project was founded by S.P. Hubbell and R.B. Foster and is now managed by R. Condit, S. Lao and R. Perez under the Center for Tropical Forest Science and the Smithsonian Tropical Research in Panama. We thank the BCI seedling and tree census crews for data collection; Rolando Perez, Salomon Aguilar and Robin Foster for botanical expertise; and Suzanne Lao for data management. Numerous organisations have provided funding, principally the U.S. National Science Foundation, and hundreds of field workers have contributed. We also thank Stephen Murphy, Meghna Krishnadas and three anonymous reviewers for helpful feedback on the manuscript. Adler PB, 2014, P NATL ACAD SCI USA, V111, P740, DOI 10.1073/pnas.1315179111; AUGSPURGER CK, 1984, OECOLOGIA, V61, P211, DOI 10.1007/BF00396763; AUGSPURGER CK, 1984, ECOLOGY, V65, P1705, DOI 10.2307/1937766; Bagchi R, 2014, NATURE, V506, P85, DOI 10.1038/nature12911; Bates D., 2016, LME4 LINEAR MIXEDEFF; Bolker BM, 2009, TRENDS ECOL EVOL, V24, P127, DOI 10.1016/j.tree.2008.10.008; Chave J, 2009, ECOL LETT, V12, P351, DOI 10.1111/j.1461-0248.2009.01285.x; Chen L, 2010, ECOL LETT, V13, P695, DOI 10.1111/j.1461-0248.2010.01468.x; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; COLEY PD, 1988, OECOLOGIA, V74, P531, DOI 10.1007/BF00380050; Coley PD, 1996, ANNU REV ECOL SYST, V27, P305, DOI 10.1146/annurev.ecolsys.27.1.305; Comita LS, 2007, J VEG SCI, V18, P163, DOI 10.1658/1100-9233(2007)18[163:POWPSA]2.0.CO;2; Comita LS, 2017, SCIENCE, V356, P1328, DOI 10.1126/science.aan6356; Comita LS, 2014, J ECOL, V102, P845, DOI 10.1111/1365-2745.12232; Comita LS, 2010, SCIENCE, V329, P330, DOI 10.1126/science.1190772; Comita LS, 2009, J ECOL, V97, P1346, DOI 10.1111/j.1365-2745.2009.01551.x; Comita LS, 2009, ECOLOGY, V90, P328, DOI 10.1890/08-0451.1; Condit R, 1996, J TROP ECOL, V12, P231, DOI 10.1017/S0266467400009433; Condit R., 2017, BCI 50 HA PLOT TAXON; Condit R., 1998, TROPICAL FOREST CENS; Condit R, 2006, SCIENCE, V313, P98, DOI 10.1126/science.1124712; CONNELL J H, 1971, P298; Fine PVA, 2006, ECOLOGY, V87, pS150, DOI 10.1890/0012-9658(2006)87[150:TGTAHS]2.0.CO;2; Freckleton RP, 2006, P R SOC B, V273, P2909, DOI 10.1098/rspb.2006.3660; Gelman A, 2006, TECHNOMETRICS, V48, P241, DOI 10.1198/004017005000000517; Getzin S, 2008, J ECOL, V96, P807, DOI 10.1111/j.1365-2745.2008.01377.x; Green PT, 2014, P NATL ACAD SCI USA, V111, P18649, DOI 10.1073/pnas.1321892112; Greenwood S, 2017, ECOL LETT, V20, P539, DOI 10.1111/ele.12748; GRUBB PJ, 1977, BIOL REV, V52, P107, DOI 10.1111/j.1469-185X.1977.tb01347.x; Harms KE, 2000, NATURE, V404, P493, DOI 10.1038/35006630; Heilmann-Clausen J, 2004, FOREST ECOL MANAG, V201, P105, DOI 10.1016/j.foreco.2004.07.010; HERMS DA, 1992, Q REV BIOL, V67, P283, DOI 10.1086/417659; HilleRisLambers J, 2012, ANNU REV ECOL EVOL S, V43, P227, DOI 10.1146/annurev-ecolsys-110411-160411; Hubbell S.P., 2005, BARRO COLORADO FORES; Hubbell S.P., 1983, TROPICAL RAIN FOREST, P25; Hubbell SP, 1999, SCIENCE, V283, P554, DOI 10.1126/science.283.5401.554; Hunt R, 1982, PLANT GROWTH CURVES; Inman-Narahari F, 2016, J ECOL, V104, P773, DOI 10.1111/1365-2745.12553; JANZEN DH, 1970, AM NAT, V104, P501, DOI 10.1086/282687; Johnson DJ, 2012, SCIENCE, V336, P904, DOI 10.1126/science.1220269; Wright SJ, 2010, ECOLOGY, V91, P3664, DOI 10.1890/09-2335.1; KITAJIMA K, 1994, OECOLOGIA, V98, P419, DOI 10.1007/BF00324232; Kitajima K, 2010, NEW PHYTOL, V186, P708, DOI 10.1111/j.1469-8137.2010.03212.x; Kobe RK, 2011, ECOL LETT, V14, P503, DOI 10.1111/j.1461-0248.2011.01612.x; Kobe RK, 1997, OIKOS, V80, P226, DOI 10.2307/3546590; KOBE RK, 1995, ECOL APPL, V5, P517, DOI 10.2307/1942040; Kobe RK, 1999, ECOLOGY, V80, P187, DOI 10.2307/176989; Kunstler G, 2016, NATURE, V529, P204, DOI 10.1038/nature16476; Kunstler G, 2009, J ECOL, V97, P685, DOI 10.1111/j.1365-2745.2009.01482.x; Laliberte E, 2015, NEW PHYTOL, V206, P507, DOI 10.1111/nph.13203; LaManna JA, 2017, SCIENCE, V356, P1389, DOI 10.1126/science.aam5678; LaManna JA, 2016, ECOL LETT, V19, P657, DOI 10.1111/ele.12603; Lebrija-Trejos E, 2016, ECOL LETT, V19, P1071, DOI 10.1111/ele.12643; Lebrija-Trejos E, 2014, ECOLOGY, V95, P940, DOI 10.1890/13-0623.1; Lin LX, 2012, J ECOL, V100, P905, DOI 10.1111/j.1365-2745.2012.01964.x; MACARTHUR R, 1967, AM NAT, V101, P377, DOI 10.1086/282505; Mangan SA, 2010, NATURE, V466, P752, DOI 10.1038/nature09273; Marden JH, 2017, MOL ECOL, V26, P2498, DOI 10.1111/mec.13999; McCarthy-Neumann S, 2008, ECOLOGY, V89, P1883, DOI 10.1890/07-0211.1; McCarthy-Neumann S, 2013, ECOLOGY, V94, P780, DOI 10.1890/12-1338.1; Muller-Landau HC, 2004, BIOTROPICA, V36, P20, DOI 10.1111/j.1744-7429.2004.tb00292.x; Myers JA, 2007, J ECOL, V95, P383, DOI 10.1111/j.1365-2745.2006.01207.x; Niinemets U, 2010, FOREST ECOL MANAG, V260, P1623, DOI 10.1016/j.foreco.2010.07.054; Paine CET, 2008, BIOTROPICA, V40, P432, DOI 10.1111/j.1744-7429.2007.00390.x; Peters HA, 2003, ECOL LETT, V6, P757, DOI 10.1046/j.1461-0248.2003.00492.x; Piao T, 2013, OECOLOGIA, V172, P207, DOI 10.1007/s00442-012-2481-y; Poorter L, 2006, ECOLOGY, V87, P1733, DOI 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2; Pratt RB, 2007, ECOL MONOGR, V77, P239, DOI 10.1890/06-0780; Pringle EG, 2007, PLANT ECOL, V193, P211, DOI 10.1007/s11258-006-9259-4; Queenborough SA, 2013, ANN BOT-LONDON, V112, P677, DOI 10.1093/aob/mct144; R Development Core Team, 2016, R LANG ENV STAT COMP; Reich PB, 1997, P NATL ACAD SCI USA, V94, P13730, DOI 10.1073/pnas.94.25.13730; Reich PB, 1998, FUNCT ECOL, V12, P327, DOI 10.1046/j.1365-2435.1998.00208.x; Reich PB, 2014, J ECOL, V102, P275, DOI 10.1111/1365-2745.12211; Ruger N, 2012, ECOLOGY, V93, P2626, DOI 10.1890/12-0622.1; Sack L, 2001, FUNCT ECOL, V15, P145, DOI 10.1046/j.1365-2435.2001.00507.x; Silvertown J, 2004, TRENDS ECOL EVOL, V19, P605, DOI 10.1016/j.tree.2004.09.003; Terborgh J, 2012, AM NAT, V179, P303, DOI 10.1086/664183; Valladares F, 2008, ANNU REV ECOL EVOL S, V39, P237, DOI 10.1146/annurev.ecolsys.39.110707.173506; Visser MD, 2016, FUNCT ECOL, V30, P168, DOI 10.1111/1365-2435.12621; Walters MB, 1996, ECOLOGY, V77, P841, DOI 10.2307/2265505; Wang X.G., 2012, PLOS ONE, V7; Westoby M, 2002, ANNU REV ECOL SYST, V33, P125, DOI 10.1146/annurev.ecolsys.33.010802.150452; Windsor D. M., 1990, CLIMATE MOISTURE VAR; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Wright SJ, 2002, OECOLOGIA, V130, P1, DOI 10.1007/s004420100809; Zhu K, 2015, ECOLOGY, V96, P2319, DOI 10.1890/14-1780.1; Zhu Y, 2015, J ECOL, V103, P957, DOI 10.1111/1365-2745.12414; Zhu Y, 2010, OIKOS, V119, P109, DOI 10.1111/j.1600-0706.2009.17758.x; ZIMMERMAN JK, 1994, J ECOL, V82, P911, DOI 10.2307/2261454 90 5 5 26 71 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1461-023X 1461-0248 ECOL LETT Ecol. Lett. APR 2018 21 4 506 515 10.1111/ele.12915 10 Ecology Environmental Sciences & Ecology FY6XY WOS:000427007400004 29446220 2018-11-22 J Berger, E; Haase, P; Schafer, RB; Sundermann, A Berger, Elisabeth; Haase, Peter; Schaefer, Ralf B.; Sundermann, Andrea Towards stressor-specific macroinvertebrate indices: Which traits and taxonomic groups are associated with vulnerable and tolerant taxa? SCIENCE OF THE TOTAL ENVIRONMENT English Article Trait-based biomonitoring; Micropollutants; Wastewater; Ecotoxicology; Multiple stressors FRESH-WATER MACROINVERTEBRATES; LIFE-HISTORY STRATEGIES; BENTHIC INVERTEBRATES; BIOLOGICAL TRAITS; MULTIPLE STRESSORS; INTRINSIC SENSITIVITY; ECOLOGICAL TRAITS; FUNCTIONAL TRAITS; ASSESSING STREAMS; COMMUNITIES Monitoring of macroinvertebrate communities is frequently used to define the ecological health status of rivers. Ideally, biomonitoring should also give an indication on the major stressors acting on the macroinvertebrate communities supporting the selection of appropriate management measures. However, most indices are affected by more than one stressor. Biological traits (e.g. size, generation time, reproduction) could potentially lead to more stressor-specific indices. However, such an approach has rarely been tested. In this study we classify 324 macroinvertebrate taxa as vulnerable (decreasing abundances) or tolerant (increasing abundances) along 21 environmental gradients (i.e. nutrients, major ions, oxygen and micropollutants) from 422 monitoring sites in Germany using Threshold Indicator Taxa Analysis (TITAN). Subsequently, we investigate which biological traits and taxonomic groups are associated with taxa classified as vulnerable or tolerant with regard to specific gradients. The response of most taxa towards different gradients was similar and especially high for correlated gradients. Traits associated with vulnerable taxa across most gradients included: larval aquatic life stages, isolated cemented eggs, reproductive cycle per year <1, scrapers, aerial and aquatic active dispersal and plastron respiration. Traits associated with tolerant taxa included: adult aquatic life stages, polyvoltinism, ovoviviparity or egg clutches in vegetation, food preference for dead animals or living microinvertebrates, substrate preference for macrophytes, microphytes, silt or mud and a body size >2-4 cm. Our results question whether stressor-specific indices based on macroinvertebrate assemblages can be achieved using single traits, because we observed that similar taxa responded to different gradients and also similar traits were associated with vulnerable and tolerant taxa across a variety of water quality gradients. Future studies should examine whether combinations of traits focusing on specific taxonomic groups achieve higher stressor specificity. (c) 2017 Elsevier B.V. All rights reserved. [Berger, Elisabeth; Haase, Peter; Sundermann, Andrea] Senckenberg Res Inst, Gelnhausen, Germany; [Berger, Elisabeth; Haase, Peter; Sundermann, Andrea] Nat Hist Museum Frankfurt, Dept River Ecol & Conservat, Gelnhausen, Germany; [Berger, Elisabeth; Sundermann, Andrea] Goethe Univ Frankfurt Main, Fac Biol Sci, Dept Aquat Ecotoxicol, Frankfurt, Germany; [Haase, Peter] Univ Duisburg Essen, Dept River & Floodplain Ecol, Fac Biol, Essen, Germany; [Berger, Elisabeth; Schaefer, Ralf B.] Univ Koblenz Landau, Inst Environm Sci, Dept Quantitat Landscape Ecol, Landau, Germany Berger, E (reprint author), Senckenberg Res Inst, Gelnhausen, Germany.; Berger, E (reprint author), Nat Hist Museum Frankfurt, Dept River Ecol & Conservat, Gelnhausen, Germany. berger@uni-landau.de Haase, Peter/A-5644-2011; Sundermann, Andrea/A-2938-2009; Schaefer, Ralf/E-1926-2011 Schaefer, Ralf/0000-0003-3510-1701 FAZIT-STIFTUNG Gemeinnutzige Verlagsgesellschaft mbH, Frankfurt We thank the Saxon State Agency for Environment, Agriculture and Geology (LfULG) and the Saxon State Company for Environment and Agriculture (BfUL) for the collection and provision of all chemical and macroinvertebrate data used in this study. Elisabeth Berger gratefully acknowledges funding by a non-profitable publishing group (FAZIT-STIFTUNG Gemeinnutzige Verlagsgesellschaft mbH, Frankfurt). The foundation took no influence on the content of the manuscript. Archaimbault V, 2010, FRESHWATER BIOL, V55, P1430, DOI 10.1111/j.1365-2427.2009.02281.x; ARMITAGE PD, 1983, WATER RES, V17, P333, DOI 10.1016/0043-1354(83)90188-4; Baird Donald J, 2008, Integr Environ Assess Manag, V4, P2, DOI 10.1897/IEAM_2007-063.1; Baker ME, 2010, METHODS ECOL EVOL, V1, P25, DOI 10.1111/j.2041-210X.2009.00007.x; Berger E, 2017, SCI TOTAL ENVIRON, V587, P1, DOI 10.1016/j.scitotenv.2017.02.031; Berger E, 2016, SCI TOTAL ENVIRON, V544, P864, DOI 10.1016/j.scitotenv.2015.12.006; Birk S, 2012, ECOL INDIC, V18, P31, DOI 10.1016/j.ecolind.2011.10.009; Bohmer J, 2004, LIMNOLOGICA, V34, P416, DOI 10.1016/S0075-9511(04)80010-0; Bohmer J, 2004, HYDROBIOLOGIA, V516, P215, DOI 10.1023/B:HYDR.0000025267.58196.5f; Bonada N, 2007, GLOBAL CHANGE BIOL, V13, P1658, DOI 10.1111/j.1365-2486.2007.01375.x; Boxall ABA, 2012, ENVIRON HEALTH PERSP, V120, P1221, DOI 10.1289/ehp.1104477; Cairns John Jr., 1993, P10; CHEVENET F, 1994, FRESHWATER BIOL, V31, P295, DOI 10.1111/j.1365-2427.1994.tb01742.x; Culp Joseph M., 2011, Integrated Environmental Assessment and Management, V7, P187, DOI 10.1002/ieam.128; Doledec S, 1999, FRESHWATER BIOL, V42, P737, DOI 10.1046/j.1365-2427.1999.00509.x; Doledec S, 2008, FRESHWATER BIOL, V53, P617, DOI 10.1111/j.1365-2427.2007.01924.x; Dufrene M, 1997, ECOL MONOGR, V67, P345, DOI 10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2; EC (European Commission), 2000, OFFICIAL J EUROPEA L, V327, P1, DOI DOI 10.1039/AP9842100196; Elliott J. Malcolm, 2008, Freshwater Reviews, V1, P189, DOI 10.1608/FRJ-1.2.4; EXTENCE C A, 1989, Regulated Rivers Research and Management, V4, P139, DOI 10.1002/rrr.3450040206; Friberg N, 2011, ADV ECOL RES, V44, P1, DOI 10.1016/B978-0-12-374794-5.00001-8; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; Haase P, 2004, LIMNOLOGICA, V34, P349, DOI 10.1016/S0075-9511(04)80005-7; Haase P., 2006, OPER TAXALISTE MINDE; Ieromina O, 2016, ECOTOXICOLOGY, V25, P1170, DOI 10.1007/s10646-016-1671-5; Kattge J, 2011, GLOBAL CHANGE BIOL, V17, P2905, DOI 10.1111/j.1365-2486.2011.02451.x; King R. S., 2014, APPL THRESHOLD CONCE, P231, DOI 10. 1007/978-1-4899-8041-0; Lange K, 2014, FRESHWATER BIOL, V59, P2431, DOI 10.1111/fwb.12437; Lenat DR, 2001, J N AM BENTHOL SOC, V20, P287, DOI 10.2307/1468323; Leps M, 2016, FRESHWATER BIOL, V61, P1773, DOI 10.1111/fwb.12817; Li FQ, 2016, SCI TOTAL ENVIRON, V569, P1570, DOI 10.1016/j.scitotenv.2016.06.251; Liess M, 2005, ENVIRON TOXICOL CHEM, V24, P954, DOI 10.1897/03-652.1; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; Diaz AM, 2008, FRESHWATER BIOL, V53, P1, DOI 10.1111/j.1365-2427.2007.01854.x; Menezes S, 2010, J APPL ECOL, V47, P711, DOI 10.1111/j.1365-2664.2010.01819.x; Mondy CP, 2016, SCI TOTAL ENVIRON, V572, P196, DOI 10.1016/j.scitotenv.2016.07.227; Mondy CP, 2014, FRESHWATER BIOL, V59, P584, DOI 10.1111/fwb.12289; Mondy CP, 2013, SCI TOTAL ENVIRON, V461, P750, DOI 10.1016/j.scitotenv.2013.05.072; Mondy CP, 2012, ECOL INDIC, V18, P452, DOI 10.1016/j.ecolind.2011.12.013; Piliere AFH, 2016, FRESHWATER BIOL, V61, P181, DOI 10.1111/fwb.12690; Piscart C, 2006, ARCH HYDROBIOL, V166, P185, DOI 10.1127/0003-9136/2006/0166-0185; Poff NL, 2006, J N AM BENTHOL SOC, V25, P730, DOI 10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2; R Core Team, 2016, R LANG ENV STAT COMP; Rasmussen JJ, 2012, ENVIRON POLLUT, V164, P142, DOI 10.1016/j.envpol.2012.01.007; Rico A, 2015, ENVIRON TOXICOL CHEM, V34, P1907, DOI 10.1002/etc.3008; Rubach MN, 2012, ECOTOXICOLOGY, V21, P2088, DOI 10.1007/s10646-012-0962-8; Rubach Mascha N., 2011, Integrated Environmental Assessment and Management, V7, P172, DOI 10.1002/ieam.105; Schafer RB, 2016, FRESHWATER BIOL, V61, P2116, DOI 10.1111/fwb.12811; Schafer RB, 2011, SCI TOTAL ENVIRON, V409, P2055, DOI 10.1016/j.scitotenv.2011.01.053; Schafer RB, 2007, SCI TOTAL ENVIRON, V382, P272, DOI 10.1016/j.scitotenv.2007.04.040; Serra SRQ, 2016, ECOL INDIC, V61, P282, DOI 10.1016/j.ecolind.2015.09.028; SOKAL ROBERT R., 1958, UNIV KANSAS SCI BULL, V38, P1409; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; Statzner B, 2010, FRESHWATER BIOL, V55, P80, DOI 10.1111/j.1365-2427.2009.02369.x; Sundermann A, 2015, ECOL INDIC, V57, P314, DOI 10.1016/j.ecolind.2015.04.043; TACHET H, 2000, INVERTEBRES EAU DOUC; Taylor J, 2015, P NATL ACAD SCI USA, V112, P7629, DOI 10.1073/pnas.1507583112; TOWNSEND CR, 1994, FRESHWATER BIOL, V31, P265, DOI 10.1111/j.1365-2427.1994.tb01740.x; Tullos DD, 2009, J N AM BENTHOL SOC, V28, P80, DOI 10.1899/07-122.1; Usseglio-Polatera P, 2000, FRESHWATER BIOL, V43, P175, DOI 10.1046/j.1365-2427.2000.00535.x; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1722, DOI 10.1111/j.1365-2427.2008.02035.x; Villeneuve B, 2018, SCI TOTAL ENVIRON, V612, P660, DOI 10.1016/j.scitotenv.2017.08.197; Winking C, 2014, FRESHWATER BIOL, V59, P1932, DOI 10.1111/fwb.12397 63 1 1 20 50 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0048-9697 1879-1026 SCI TOTAL ENVIRON Sci. Total Environ. APR 1 2018 619 144 154 10.1016/j.scitotenv.2017.11.022 11 Environmental Sciences Environmental Sciences & Ecology FU8ZA WOS:000424144200016 29145051 2018-11-22 J Needham, J; Merow, C; Chang-Yang, CH; Caswell, H; McMahon, SM Needham, Jessica; Merow, Cory; Chang-Yang, Chia-Hao; Caswell, Hal; McMahon, Sean M. Inferring forest fate from demographic data: from vital rates to population dynamic models PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article forest ecology; demography; individual-based models; integral projection models; population projections; life-history strategies INTEGRAL PROJECTION MODELS; TREE-SIZE DISTRIBUTIONS; TROPICAL FOREST; RAIN-FOREST; DENSITY-DEPENDENCE; NEOTROPICAL TREE; CLIMATE-CHANGE; GROWTH; LIGHT; DIVERSITY As population-level patterns of interest in forests emerge from individual vital rates, modelling forest dynamics requires making the link between the scales at which data are collected (individual stems) and the scales at which questions are asked (e.g. populations and communities). Structured population models (e.g. integral projection models (IPMs)) are useful tools for linking vital rates to population dynamics. However, the application of such models to forest trees remains challenging owing to features of tree life cycles, such as slow growth, long lifespan and lack of data on crucial ontogenic stages. We developed a survival model that accounts for size-dependent mortality and a growth model that characterizes individual heterogeneity. We integrated vital rate models into two types of population model; an analytically tractable form of IPM and an individual-based model (IBM) that is applied with stochastic simulations. We calculated longevities, passage times to, and occupancy time in, different life cycle stages, important metrics for understanding how demographic rates translate into patterns of forest turnover and carbon residence times. Here, we illustrate the methods for three tropical forest species with varying life-forms. Population dynamics from IPMs and IBMs matched a 34 year time series of data (albeit a snapshot of the life cycle for canopy trees) and highlight differences in life-history strategies between species. Specifically, the greater variation in growth rates within the two canopy species suggests an ability to respond to available resources, which in turn manifests as faster passage times and greater occupancy times in larger size classes. The framework presented here offers a novel and accessible approach to modelling the population dynamics of forest trees. [Needham, Jessica; Chang-Yang, Chia-Hao; McMahon, Sean M.] Smithsonian Inst, Forest Global Earth Observ, Smithsonian Environm Res Ctr, 647 Contees Wharf Rd, Edgewater, MD 21307 USA; [Merow, Cory] Yale Univ, Ecol & Evolutionary Biol, 165 Prospect St, New Haven, CT 06511 USA; [Caswell, Hal] Univ Amsterdam, IBED, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands Needham, J (reprint author), Smithsonian Inst, Forest Global Earth Observ, Smithsonian Environm Res Ctr, 647 Contees Wharf Rd, Edgewater, MD 21307 USA. needhamj@si.edu Chang-Yang, Chia-Hao/0000-0003-3635-4946 Clarendon Scholarship; New College Scholarship; BBSRC; USA National Science Foundation [NSF 640261]; [NSF DEB-1046113] This work formed part of J.N.'s PhD which was funded by a Clarendon Scholarship, a New College Scholarship and the BBSRC. S.M.M. and C.M. were partially funded by the USA National Science Foundation (NSF 640261 to S.M.M.). This project began and was developed at ForestGEO workshops in 2014 and 2016 (NSF DEB-1046113 to S.J. Davies). Adams TP, 2007, P ROY SOC B-BIOL SCI, V274, P3039, DOI 10.1098/rspb.2007.0891; Anderson-Teixeira KJ, 2015, GLOBAL CHANGE BIOL, V21, P528, DOI 10.1111/gcb.12712; Bennett AC, 2015, NAT PLANTS, V1, DOI [10.1038/NPLANTS.2015.139, 10.1038/nplants.2015.139]; BOTKIN DB, 1972, J ECOL, V60, P849, DOI 10.2307/2258570; Brienen RJW, 2006, J ECOL, V94, P481, DOI 10.1111/j.1365-2745.2005.01080.x; Caswell H, 2013, J ECOL, V101, P585, DOI 10.1111/1365-2745.12088; Caswell H, 2012, THEOR ECOL-NETH, V5, P403, DOI 10.1007/s12080-011-0132-2; Clark JS, 2010, SCIENCE, V327, P1129, DOI 10.1126/science.1183506; Cobb RC, 2012, J ECOL, V100, P712, DOI 10.1111/j.1365-2745.2012.01960.x; Comita LS, 2007, J VEG SCI, V18, P163, DOI 10.1658/1100-9233(2007)18[163:POWPSA]2.0.CO;2; CONDIT R, 1993, FOREST ECOL MANAG, V62, P107, DOI 10.1016/0378-1127(93)90045-O; CONDIT R, 1995, ECOL MONOGR, V65, P419, DOI 10.2307/2963497; Condit R., 1998, TROPICAL FOREST CENS; Condit R, 2006, SCIENCE, V313, P98, DOI 10.1126/science.1124712; Coomes DA, 2007, J ECOL, V95, P27, DOI 10.1111/j.1365-2745.2006.01179.x; Coomes DA, 2012, J ECOL, V100, P42, DOI 10.1111/j.1365-2745.2011.01920.x; Cramer W, 2001, GLOBAL CHANGE BIOL, V7, P357, DOI 10.1046/j.1365-2486.2001.00383.x; Croat Thomas B, 1978, FLORA BARRO COLORADO; DENSLOW JS, 1990, ECOLOGY, V71, P165, DOI 10.2307/1940257; Easterling MR, 2000, ECOLOGY, V81, P694, DOI 10.1890/0012-9658(2000)081[0694:SSSAAN]2.0.CO;2; Ellner S.P., 2016, DATA DRIVEN MODELLIN; Ellner SP, 2006, AM NAT, V167, P410, DOI 10.1086/499438; Enquist BJ, 2007, INT J PLANT SCI, V168, P729, DOI 10.1086/513479; Farrior CE, 2016, SCIENCE, V351, P155, DOI 10.1126/science.aad0592; Fisher JB, 2014, ANNU REV ENV RESOUR, V39, P91, DOI 10.1146/annurev-environ-012913-093456; Foster Robin B., 1982, ECOLOGY TROPICAL FOR, P67; Frasson RPD, 2015, J GEOPHYS RES-BIOGEO, V120, P2178, DOI 10.1002/2015JG003035; Friedlingstein P, 2006, J CLIMATE, V19, P3337, DOI 10.1175/JCLI3800.1; Friend AD, 2014, P NATL ACAD SCI USA, V111, P3280, DOI 10.1073/pnas.1222477110; Grote S, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0081787; Hubbell S.P., 2005, BARRO COLORADO FORES; Hubbell S.P., 1983, TROPICAL RAIN FOREST, P25; Hubbell SP, 1999, SCIENCE, V283, P554, DOI 10.1126/science.283.5401.554; Jucker T, 2017, GLOBAL CHANGE BIOL, V23, P177, DOI 10.1111/gcb.13388; King DA, 2005, FUNCT ECOL, V19, P445, DOI 10.1111/j.1365-2435.2005.00982.x; Kurz WA, 2008, NATURE, V452, P987, DOI 10.1038/nature06777; Leigh Egbert Giles, 1982, ECOLOGY TROPICAL FOR; Leigh Jr EG, 1999, TROPICAL FOREST ECOL; Lichstein JW, 2010, ECOL APPL, V20, P684, DOI 10.1890/08-2334.1; Lim TK., 2012, EDIBLE MED NONMEDICI, V2, P62; Lines ER, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013212; Malhi Y, 2002, J VEG SCI, V13, P439, DOI 10.1658/1100-9233(2002)013[0439:AINTMT]2.0.CO;2; McRoberts RE, 2005, J FOREST, V103, P304; Medvigy D, 2009, J GEOPHYS RES-BIOGEO, V114, DOI 10.1029/2008JG000812; Merow C, 2017, P NATL ACAD SCI USA, V114, pE3276, DOI 10.1073/pnas.1609633114; Merow C, 2014, ECOGRAPHY, V37, P1167, DOI 10.1111/ecog.00839; Merow C, 2014, ECOGRAPHY, V37, P1267, DOI 10.1111/ecog.00845; Merow C, 2014, METHODS ECOL EVOL, V5, P99, DOI 10.1111/2041-210X.12146; Metcalf CJE, 2008, P NATL ACAD SCI USA, V105, P10466, DOI 10.1073/pnas.0800777105; Metcalf CJE, 2015, METHODS ECOL EVOL, V6, P1007, DOI 10.1111/2041-210X.12405; Metcalf CJE, 2009, ECOLOGY, V90, P2766, DOI 10.1890/08-1645.1; MONSERUD RA, 1976, FOREST SCI, V22, P438; Moorcroft PR, 2006, TRENDS ECOL EVOL, V21, P400, DOI 10.1016/j.tree.2006.04.009; Muller-Landau HC, 2006, ECOL LETT, V9, P589, DOI 10.1111/j.1461-0248.2006.00915.x; Needham J, 2016, J ECOL, V104, P315, DOI 10.1111/1365-2745.12545; OBRIEN ST, 1995, ECOLOGY, V76, P1926, DOI 10.2307/1940724; Pacala SW, 1996, ECOL MONOGR, V66, P1, DOI 10.2307/2963479; PACALA SW, 1994, CAN J FOREST RES, V24, P2172, DOI 10.1139/x94-280; Paine CET, 2012, METHODS ECOL EVOL, V3, P245, DOI 10.1111/j.2041-210X.2011.00155.x; Parker GG, 2000, AM NAT, V155, P473, DOI 10.1086/303340; Pfister CA, 2005, ECOLOGY, V86, P2673, DOI 10.1890/04-1952; Picard N, 2003, FOREST ECOL MANAG, V180, P389, DOI [10.1016/S0378-1127(02)00653-9, 10.1016/S0378-1127(02)00635-9]; Purves D, 2008, SCIENCE, V320, P1452, DOI 10.1126/science.1155359; Purves DW, 2008, P NATL ACAD SCI USA, V105, P17018, DOI 10.1073/pnas.0807754105; R Core Team, 2017, R LANG ENV STAT COMP; Rebarber R, 2012, THEOR POPUL BIOL, V81, P81, DOI 10.1016/j.tpb.2011.11.002; Ruger N, 2009, J ECOL, V97, P1360, DOI 10.1111/j.1365-2745.2009.01552.x; Smith WB, 2002, ENVIRON POLLUT, V116, pS233, DOI 10.1016/S0269-7491(01)00255-X; Snyder RE, 2016, AM NAT, V188, pE28, DOI 10.1086/686996; Strigul N, 2008, ECOL MONOGR, V78, P523, DOI 10.1890/08-0082.1; Umana MN, 2016, AM NAT, V187, P99, DOI 10.1086/684174; Uriarte M, 2005, J ECOL, V93, P291, DOI 10.1111/j.1365-2745.2005.00984.x; vanderMeer PJ, 1996, VEGETATIO, V126, P167; West GB, 2001, NATURE, V413, P628, DOI 10.1038/35098076; Zuidema PA, 2009, AM NAT, V174, P709, DOI 10.1086/605981 75 0 0 8 13 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. MAR 14 2018 285 1874 20172050 10.1098/rspb.2017.2050 9 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology GB3FE WOS:000428940300001 29514966 Green Published, Other Gold 2018-11-22 J Fujiwara, M Fujiwara, Masami Selection of trilateral continuums of life history strategies under food web interactions SCIENTIFIC REPORTS English Article POPULATION REGULATION; TRINIDADIAN GUPPIES; COMMUNITY STRUCTURE; REPRODUCTIVE EFFORT; K-SELECTION; R-SELECTION; FISH; EVOLUTION; DIVERSITY; STABILITY The study of life history strategies has a long history in ecology and evolution, but determining the underlying mechanisms driving the evolution of life history variation and its consequences for population regulation remains a major challenge. In this study, a food web model with constant environmental conditions was used to demonstrate how multi-species consumer-resource interactions (food-web interactions) can create variation in the duration of the adult stage, age of maturation, and fecundity among species. The model included three key ecological processes: size-dependent species interactions, energetics, and transition among developmental stages. Resultant patterns of life history variation were consistent with previous empirical observations of the life history strategies of aquatic organisms referred to as periodic, equilibrium, and opportunistic strategies (trilateral continuums of life history strategies). Results from the simulation model suggest that these three life history strategies can emerge from food web interactions even when abiotic environmental conditions are held constant. [Fujiwara, Masami] Texas A&M Univ, Dept Wildlife & Fisheries Sci, College Stn, TX 77843 USA Fujiwara, M (reprint author), Texas A&M Univ, Dept Wildlife & Fisheries Sci, College Stn, TX 77843 USA. fujiwara@tamu.edu [Anonymous], 2012, MATLAB VER 7; Bassar RD, 2016, ECOL LETT, V19, P268, DOI 10.1111/ele.12563; Bergerot B, 2015, FRESHWATER BIOL, V60, P1279, DOI 10.1111/fwb.12561; BIRCH LC, 1948, J ANIM ECOL, V17, P15, DOI 10.2307/1605; Brommer JE, 2000, BIOL REV, V75, P377, DOI 10.1017/S000632310000551X; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; Charlesworth B, 1994, EVOLUTION AGE STRUCT; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; De Roos AM, 2008, THEOR POPUL BIOL, V73, P47, DOI 10.1016/j.tpb.2007.09.004; Fisher R. A., 1930, GENETICAL THEORY NAT; Fujiwara M, 2016, ECOL MODEL, V322, P10, DOI 10.1016/j.ecolmodel.2015.11.015; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; MAC ARTHUR ROBERT H., 1967; Meador MR, 2015, ENVIRON BIOL FISH, V98, P663, DOI 10.1007/s10641-014-0304-1; Mims MC, 2012, ECOLOGY, V93, P35, DOI 10.1890/11-0370.1; Nisbet RM, 2000, J ANIM ECOL, V69, P913, DOI 10.1046/j.1365-2656.2000.00448.x; Otto SB, 2007, NATURE, V450, P1226, DOI 10.1038/nature06359; Pecuchet L, 2017, GLOBAL ECOL BIOGEOGR, V26, P812, DOI 10.1111/geb.12587; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; RAND DA, 1994, PHILOS T ROY SOC B, V343, P261, DOI 10.1098/rstb.1994.0025; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.2307/3071970; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Rooney N, 2008, ECOL LETT, V11, P867, DOI 10.1111/j.1461-0248.2008.01193.x; Rooney N, 2012, TRENDS ECOL EVOL, V27, P40, DOI 10.1016/j.tree.2011.09.001; Rudolf VHW, 2011, ECOL LETT, V14, P75, DOI 10.1111/j.1461-0248.2010.01558.x; Rudolf VHW, 2013, ECOLOGY, V94, P1046, DOI 10.1890/12-0378.1; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; Shurin JB, 2006, P ROY SOC B-BIOL SCI, V273, P1, DOI 10.1098/rspb.2005.3377; Stanley CE, 2012, T AM FISH SOC, V141, P1000, DOI 10.1080/00028487.2012.675893; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stouffer DB, 2011, P NATL ACAD SCI USA, V108, P3648, DOI 10.1073/pnas.1014353108; Teichert N, 2017, ESTUAR COAST SHELF S, V188, P18, DOI 10.1016/j.ecss.2017.02.006; Tuljapurkar S, 2009, PHILOS T R SOC B, V364, P1499, DOI 10.1098/rstb.2009.0021; VANWINKLE W, 1993, T AM FISH SOC, V122, P459, DOI 10.1577/1548-8659(1993)122<0459:LLHTES>2.3.CO;2; Vasseur DA, 2004, ECOLOGY, V85, P1146, DOI 10.1890/02-3122; Wiedenmann J, 2009, BIOL CONSERV, V142, P2990, DOI 10.1016/j.biocon.2009.07.031; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; WINEMILLER KO, 1993, AM NAT, V142, P585, DOI 10.1086/285559; Wollrab S, 2013, ECOLOGY, V94, P2886, DOI 10.1890/12-1490.1; Zhou C, 2013, ECOL MODEL, V268, P25, DOI 10.1016/j.ecolmodel.2013.07.028 45 0 0 5 5 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 2045-2322 SCI REP-UK Sci Rep MAR 14 2018 8 4517 10.1038/s41598-018-22789-6 8 Multidisciplinary Sciences Science & Technology - Other Topics FZ1VS WOS:000427366200047 29540759 DOAJ Gold, Green Published 2018-11-22 J Tredennick, AT; Kleinhesselink, AR; Taylor, JB; Adler, PB Tredennick, Andrew T.; Kleinhesselink, Andrew R.; Taylor, J. Bret; Adler, Peter B. Ecosystem functional response across precipitation extremes in a sagebrush steppe PEERJ English Article Climate change; Ecosystem function; Sagebrush steppe; Plant community; Precipitation; Annual net primary producitivity CLIMATE EXTREMES; PRODUCTIVITY; VARIABILITY; SENSITIVITY; GRASSLANDS; FRAMEWORK; DYNAMICS Background. Precipitation is predicted to become more variable in the western United States, meaning years of above and below average precipitation will become more common. Periods of extreme precipitation are major drivers of interannual variability in ecosystem functioning in water limited communities, but how ecosystems respond to these extremes over the long-term may shift with precipitation means and variances. Long-term changes in ecosystem functional response could reflect compensatory changes in species composition or species reaching physiological thresholds at extreme precipitation levels. Methods. We conducted a five year precipitation manipulation experiment in a sagebrush steppe ecosystem in Idaho, United States. We used drought and irrigation treatments (approximately 50% decrease/increase) to investigate whether ecosystem functional response remains consistent under sustained high or low precipitation. We recorded data on aboveground net primary productivity (ANPP), species abundance, and soil moisture. We fit a generalized linear mixed effects model to determine if the relationship between ANPP and soil moisture differed among treatments. We used nonmetric multidimensional scaling to quantify community composition over the five years. Results. Ecosystem functional response, defined as the relationship between soil moisture and ANPP, was similar among irrigation and control treatments, but the drought treatment had a greater slope than the control treatment. However, all estimates for the effect of soil moisture on ANPP overlapped zero, indicating the relationship is weak and uncertain regardless of treatment. There was also large spatial variation in ANPP within-years, which contributes to the uncertainty of the soil moisture effect. Plant community composition was remarkably stable over the course of the experiment and did not differ among treatments. Discussion. Despite some evidence that ecosystem functional response became more sensitive under sustained drought conditions, the response of ANPP to soil moisture was consistently weak and community composition was stable. The similarity of ecosystem functional responses across treatments was not related to compensatory shifts at the plant community level, but instead may reflect the insensitivity of the dominant species to soil moisture. These species may be successful precisely because they have evolved life history strategies which buffer them against precipitation variability. [Tredennick, Andrew T.; Kleinhesselink, Andrew R.; Adler, Peter B.] Utah State Univ, Dept Wildland Resources, Logan, UT 84322 USA; [Tredennick, Andrew T.; Kleinhesselink, Andrew R.; Adler, Peter B.] Utah State Univ, Ecol Ctr, Logan, UT 84322 USA; [Kleinhesselink, Andrew R.] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA USA; [Taylor, J. Bret] ARS, USDA, US Sheep Expt Stn, Dubois, ID USA Tredennick, AT (reprint author), Utah State Univ, Dept Wildland Resources, Logan, UT 84322 USA.; Tredennick, AT (reprint author), Utah State Univ, Ecol Ctr, Logan, UT 84322 USA. atredenn@gmail.com Utah Agricultural Experiment Station, Utah State University; National Science Foundation [DBI-1400370, DEB-1353078, DEB-1054040] This research was supported by the Utah Agricultural Experiment Station, Utah State University, and approved as journal paper number 9035. The research was also supported by the National Science Foundation, through a Postdoctoral Research Fellowship in Biology and Mathematics to Andrew T. Tredennick (DBI-1400370), a Graduate Research Fellowship to Andrew R. Kleinhesselink, and grants DEB-1353078 and DEB-1054040 to Peter B. Adler. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Adler PB, 2012, J ECOL, V100, P478, DOI 10.1111/j.1365-2745.2011.01930.x; Avolio ML, 2015, ECOSPHERE, V6, DOI 10.1890/ES15-00317.1; Bates D, 2015, J STAT SOFTW, V67, P1; Blaisdell J, 1958, USDA TECHNICAL B; Bradford JB, 2014, ECOSYSTEMS, V17, P590, DOI 10.1007/s10021-013-9745-1; Byrne KM, 2011, RANGELAND ECOL MANAG, V64, P498, DOI 10.2111/REM-D-10-00145.1; Dalgleish HJ, 2011, ECOLOGY, V92, P75, DOI 10.1890/10-0780.1; De Boeck HJ, 2011, NEW PHYTOL, V189, P806, DOI 10.1111/j.1469-8137.2010.03515.x; Epstein HE, 1997, ECOLOGY, V78, P2628; Gelman A, 2009, DATA ANAL USING REGR; Gherardi LA, 2015, ECOL LETT, V18, P1293, DOI 10.1111/ele.12523; Gherardi LA, 2015, P NATL ACAD SCI USA, V112, P12735, DOI 10.1073/pnas.1506433112; Gherardi LA, 2013, ECOSPHERE, V4, DOI 10.1890/ES12-00371.1; Hill RR, 1920, ECOLOGY, V1, P270, DOI 10.2307/1929561; Hoover DL, 2014, ECOLOGY, V95, P2646, DOI 10.1890/13-2186.1; Hsu JS, 2012, GLOBAL CHANGE BIOL, V18, P2246, DOI 10.1111/j.1365-2486.2012.02687.x; Huxman TE, 2004, NATURE, V429, P651, DOI 10.1038/nature02561; Kleinhesselink AR, 2017, THESIS, P1; Knapp AK, 2017, GLOBAL CHANGE BIOL, V23, P1774, DOI 10.1111/gcb.13504; Knapp AK, 2015, OECOLOGIA, V177, P949, DOI 10.1007/s00442-015-3233-6; Knapp AK, 2012, FUNCT ECOL, V26, P1231, DOI 10.1111/j.1365-2435.2012.02053.x; Kulmatiski A, 2017, ECOSPHERE, V8, DOI 10.1002/ecs2.1738; La Pierre KJ, 2016, ECOSYSTEMS, V19, P521, DOI 10.1007/s10021-015-9949-7; Lemoine NP, 2016, METHODS ECOL EVOL, V7, P1396, DOI 10.1111/2041-210X.12582; Oksanen J, 2017, R PACKAGE VERSION, V2, P4; Peters DPC, 2012, GLOBAL CHANGE BIOL, V18, P151, DOI 10.1111/j.1365-2486.2011.02498.x; R Core Team, 2016, R LANG ENV STAT COMP; SALA OE, 1992, ECOLOGY, V73, P1175, DOI 10.2307/1940667; Seger J., 1987, Oxford Surveys in Evolutionary Biology, V4, P182; Smith MD, 2003, ECOL LETT, V6, P509, DOI 10.1046/j.1461-0248.2003.00454.x; Smith MD, 2011, J ECOL, V99, P656, DOI 10.1111/j.1365-2745.2011.01798.x; Smith MD, 2009, ECOLOGY, V90, P3279, DOI 10.1890/08-1815.1; Stan Development Team, 2016, STAN C LIB PROB SAMP; Stan Development Team, 2016, RSTAN R INT STAN VER; Wilcox KR, 2017, GLOBAL CHANGE BIOL, V23, P4376, DOI 10.1111/gcb.13706; Wilcox KR, 2016, ECOLOGY, V97, P561, DOI 10.1890/15-1437.1 36 0 0 7 7 PEERJ INC LONDON 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND 2167-8359 PEERJ PeerJ MAR 13 2018 6 e4485 10.7717/peerj.4485 19 Multidisciplinary Sciences Science & Technology - Other Topics FZ1GF WOS:000427324200005 29576958 DOAJ Gold, Green Published 2018-11-22 J Csatho, A; Birkas, B Csatho, Arpad; Birkas, Bela Early-Life Stressors, Personality Development, and Fast Life Strategies: An Evolutionary Perspective on Malevolent Personality Features FRONTIERS IN PSYCHOLOGY English Review life history theory; early-life stress; fast life strategies; personality development; the Dark Triad DARK TRIAD NARCISSISM; HISTORY STRATEGIES; REPRODUCTIVE STRATEGIES; DYING YOUNG; MACHIAVELLIANISM; CHILDHOOD; HEALTH; PSYCHOPATHY; ATTACHMENT; TRAITS Life history theory posits that behavioral adaptation to various environmental (ecological and/or social) conditions encountered during childhood is regulated by a wide variety of different traits resulting in various behavioral strategies. Unpredictable and harsh conditions tend to produce fast life history strategies, characterized by early maturation, a higher number of sexual partners to whom one is less attached, and less parenting of offspring. Unpredictability and harshness not only affects dispositional social and emotional functioning, but may also promote the development of personality traits linked to higher rates of instability in social relationships or more self-interested behavior. Similarly, detrimental childhood experiences, such as poor parental care or high parent-child conflict, affect personality development and may create a more distrustful, malicious interpersonal style. The aim of this brief review is to survey and summarize findings on the impact of negative early-life experiences on the development of personality and fast life history strategies. By demonstrating that there are parallels in adaptations to adversity in these two domains, we hope to lend weight to current and future attempts to provide a comprehensive insight of personality traits and functions at the ultimate and proximate levels. [Csatho, Arpad; Birkas, Bela] Univ Pecs, Inst Behav Sci, Med Sch, Pecs, Hungary Birkas, B (reprint author), Univ Pecs, Inst Behav Sci, Med Sch, Pecs, Hungary. bela.birkas@aok.pte.hu Hungarian Scientific Research Fund-OTKA [K 125437] This work was supported by the Hungarian Scientific Research Fund-OTKA (K 125437). Anacker C, 2014, DIALOGUES CLIN NEURO, V16, P321; Andras L, 2018, PERS INDIV DIFFER, V120, P213, DOI 10.1016/j.paid.2017.08.043; Beaver KM, 2015, CRIM JUSTICE BEHAV, V42, P546, DOI 10.1177/0093854814553620; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.1111/j.1467-8624.1991.tb01558.x; Belsky J, 2012, CURR DIR PSYCHOL SCI, V21, P310, DOI 10.1177/0963721412453588; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Belsky J, 2010, PSYCHOL SCI, V21, P1195, DOI 10.1177/0956797610379867; Bereczkei T, 2001, INT J BEHAV DEV, V25, P501, DOI 10.1080/01650250042000573; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Birkas B., 2015, AM J APPL PSYCHOL, V3, P109; Birkas B, 2016, PERS INDIV DIFFER, V88, P134, DOI 10.1016/j.paid.2015.09.007; Birkas B, 2015, PERS INDIV DIFFER, V86, P318, DOI 10.1016/j.paid.2015.06.035; Birkas B, 2015, PERS INDIV DIFFER, V74, P112, DOI 10.1016/j.paid.2014.09.046; Bjorklund DF, 2015, DEV REV, V38, P13, DOI 10.1016/j.dr.2015.07.002; Bjorklund DF, 2014, DEV REV, V34, P225, DOI 10.1016/j.dr.2014.05.005; Bohane L, 2017, CLIN PSYCHOL REV, V57, P75, DOI 10.1016/j.cpr.2017.07.005; Bowlby J., 1980, ATTACHMENT LOSS, V3; Briley DA, 2014, PSYCHOL BULL, V140, P1303, DOI 10.1037/a0037091; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Buss D, 2015, EVOLUTIONARY PSYCHOL; Chang L, 2018, EVOL HUM BEHAV, V39, P59, DOI 10.1016/j.evolhumbehav.2017.10.003; Chen BB, 2016, EVOL PSYCHOL-US, V14, DOI 10.1177/1474704916630314; Chisholm J. S., 1999, DEATH HOPE SEX STEPS; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; de Baca TC, 2016, ADAPT HUM BEHAV PHYS, V2, P93, DOI 10.1007/s40750-016-0042-z; Del Giudice M, 2015, HDB EVOLUTIONARY PSY, P88, DOI DOI 10.1002/9781119125563.EVPSYCH102; Del Giudice M, 2014, PSYCHOL INQ, V25, P261, DOI 10.1080/1047840X.2014.884918; Del Giudice M, 2012, PSYCHONEUROENDOCRINO, V37, P1614, DOI 10.1016/j.psyneuen.2012.05.014; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2013, HORM BEHAV, V64, P215, DOI 10.1016/j.yhbeh.2013.02.012; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Figueredo A. J., 2012, TEMAS PSICOLOGIA, V20, P87; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2013, PERS INDIV DIFFER, V55, P251, DOI 10.1016/j.paid.2012.04.033; Furnham A, 2013, SOC PERSONAL PSYCHOL, V7, P199, DOI 10.1111/spc3.12018; Gladden P. R., 2013, J METHODS MEASUREMEN, V4, P48, DOI DOI 10.2458/AZU_JMMSS.V4I1.17774; Gladden PR, 2009, PERS INDIV DIFFER, V46, P270, DOI 10.1016/j.paid.2008.10.010; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Hawkes K, 2006, SCH AM RES, P95; Heylighen F., 2004, SOCIAL INDICATORS RE, P1; Hurst JE, 2017, EVOL HUM BEHAV, V38, P1, DOI 10.1016/j.evolhumbehav.2016.06.001; Jonason PK, 2017, PERS INDIV DIFFER, V116, P38, DOI 10.1016/j.paid.2017.04.027; Jonason PK, 2016, EVOL PSYCHOL-US, V14, DOI 10.1177/1474704915623699; Jonason PK, 2015, PERS INDIV DIFFER, V78, P5, DOI 10.1016/j.paid.2015.01.008; Jonason PK, 2014, PERS INDIV DIFFER, V67, P30, DOI 10.1016/j.paid.2013.10.006; Jonason PK, 2013, EVOL PSYCHOL-US, V11, P172, DOI 10.1177/147470491301100116; Jonason PK, 2012, REV GEN PSYCHOL, V16, P192, DOI 10.1037/a0027914; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2010, PERS INDIV DIFFER, V49, P611, DOI 10.1016/j.paid.2010.05.031; Jones DN, 2011, PERS INDIV DIFFER, V51, P679, DOI 10.1016/j.paid.2011.04.011; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kennis M, 2013, NEUROSCI BIOBEHAV R, V37, P73, DOI 10.1016/j.neubiorev.2012.10.012; Kraus C, 2005, J ANIM ECOL, V74, P171, DOI 10.1111/j.1365-2656.2004.00910.x; Kundakovic M, 2015, NEUROPSYCHOPHARMACOL, V40, P141, DOI 10.1038/npp.2014.140; Lang A, 2015, SAGE OPEN, V5, DOI 10.1177/2158244015571639; Lang A, 2015, PERS INDIV DIFFER, V77, P81, DOI 10.1016/j.paid.2014.12.054; Lang A, 2014, PERS INDIV DIFFER, V63, P69, DOI 10.1016/j.paid.2014.01.065; Markon KE, 2005, J PERS SOC PSYCHOL, V88, P139, DOI 10.1037/0022-3514.88.1.139; McDonald MM, 2012, PERS INDIV DIFFER, V52, P601, DOI 10.1016/j.paid.2011.12.003; McFarlane Alexander, 2005, Journal of Integrative Neuroscience, V4, P27, DOI 10.1142/S0219635205000689; Muris P, 2017, PERSPECT PSYCHOL SCI, V12, P183, DOI 10.1177/1745691616666070; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Newton-Howes G, 2015, LANCET, V385, P727, DOI 10.1016/S0140-6736(14)61283-6; Ng HKS, 2014, PERS INDIV DIFFER, V70, P7, DOI 10.1016/j.paid.2014.06.006; Noser AE, 2014, J RES PERS, V53, P158, DOI 10.1016/j.jrp.2014.10.007; Ogle CM, 2015, PSYCHOL TRAUMA-US, V7, P324, DOI 10.1037/tra0000015; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; Pfattheicher S, 2016, PERS INDIV DIFFER, V97, P115, DOI 10.1016/j.paid.2016.03.015; Richardson EN, 2016, PERS INDIV DIFFER, V92, P148, DOI 10.1016/j.paid.2015.12.039; RIM Y, 1992, PERS INDIV DIFFER, V13, P487, DOI 10.1016/0191-8869(92)90079-5; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P769, DOI 10.1016/0191-8869(85)90088-1; Simpson J. A., 2011, HDB INTERPERSONAL PS, P75; Vize CE, 2018, PERSONAL DISORD, V9, P101, DOI 10.1037/per0000222; White AE, 2013, PSYCHOL SCI, V24, P715, DOI 10.1177/0956797612461919; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; Young E. S., 2017, SELF IDENT, P1, DOI [10.1080/15298868.2017.1353540, DOI 10.1080/15298868.2017.1353540] 78 0 0 14 19 FRONTIERS MEDIA SA LAUSANNE AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND 1664-1078 FRONT PSYCHOL Front. Psychol. MAR 12 2018 9 305 10.3389/fpsyg.2018.00305 6 Psychology, Multidisciplinary Psychology FY9OG WOS:000427195500001 29593609 DOAJ Gold, Green Published 2018-11-22 J Purzycki, BG; Ross, CT; Apicella, C; Atkinson, QD; Cohen, E; McNamara, RA; Willard, AK; Xygalatas, D; Norenzayan, A; Henrich, J Purzycki, Benjamin Grant; Ross, Cody T.; Apicella, Coren; Atkinson, Quentin D.; Cohen, Emma; McNamara, Rita Anne; Willard, Aiyana K.; Xygalatas, Dimitris; Norenzayan, Ara; Henrich, Joseph Material security, life history, and moralistic religions: A cross-cultural examination PLOS ONE English Article SUPERNATURAL PUNISHMENT; TRADE-OFF; FERTILITY; MORTALITY; EDUCATION; EVOLUTION; CONSEQUENCES; HYPOTHESIS; SOCIETIES; HUMANS Researchers have recently proposed that "moralistic" religions-those with moral doctrines, moralistic supernatural punishment, and lower emphasis on ritual-emerged as an effect of greater wealth and material security. One interpretation appeals to life history theory, predicting that individuals with "slow life history" strategies will be more attracted to moralistic traditions as a means to judge those with "fast life history" strategies. As we had reservations about the validity of this application of life history theory, we tested these predictions with a data set consisting of 592 individuals from eight diverse societies. Our sample includes individuals from a wide range of traditions, including world religions such as Buddhism, Hinduism and Christianity, but also local traditions rooted in beliefs in animism, ancestor worship, and worship of spirits associated with nature. We first test for the presence of associations between material security, years of formal education, and reproductive success. Consistent with popular life history predictions, we find evidence that material security and education are associated with reduced reproduction. Building on this, we then test whether or not these demographic factors predict the moral concern, punitiveness, attributed knowledge-breadth, and frequency of ritual devotions towards two deities in each society. Here, we find no reliable evidence of a relationship between number of children, material security, or formal education and the individual-level religious beliefs and behaviors. We conclude with a discussion of why life-history theory is an inadequate interpretation for the emergence of factors typifying the moralistic traditions. [Purzycki, Benjamin Grant; Ross, Cody T.] Max Planck Inst Evolutionary Anthropol, Leipzig, Germany; [Apicella, Coren] Univ Penn, Philadelphia, PA 19104 USA; [Atkinson, Quentin D.] Univ Auckland, Auckland, New Zealand; [Atkinson, Quentin D.] Max Planck Inst Sci Human Hist, Jena, Germany; [Cohen, Emma; Willard, Aiyana K.] Univ Oxford, Oxford, England; [McNamara, Rita Anne] Victoria Univ Wellington, Wellington, New Zealand; [Xygalatas, Dimitris] Univ Connecticut, Storrs, CT USA; [Norenzayan, Ara] Univ British Columbia, Vancouver, BC, Canada; [Henrich, Joseph] Harvard Univ, Cambridge, MA 02138 USA Purzycki, BG (reprint author), Max Planck Inst Evolutionary Anthropol, Leipzig, Germany. benjamin_purzycki@eva.mpg.de John Templeton Foundation; Social Sciences and Humanities Research Council of Canada [895-2011-1009] This work was supported by John Templeton Foundation (https://templeton.org/) and Social Sciences and Humanities Research Council of Canada (http://www.sshrc-crsh.gc.ca/home-accueil-eng.aspx [grant #895-2011-1009]). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. ABRAMS PA, 1993, EVOLUTION, V47, P877, DOI 10.1111/j.1558-5646.1993.tb01241.x; Baldini R., 2015, BIORXIV; Baumard Nicolas, 2015, Commun Integr Biol, V8, pe1046657, DOI 10.1080/19420889.2015.1046657; Baumard N, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.1593; Baumard N, 2015, CURR BIOL, V25, P10, DOI 10.1016/j.cub.2014.10.063; Baumard N, 2013, TRENDS COGN SCI, V17, P272, DOI 10.1016/j.tics.2013.04.003; Becker SO, 2010, J ECON GROWTH, V15, P177, DOI 10.1007/s10887-010-9054-x; Bellah Robert N., 2011, RELIG HUMAN EVOLUTIO; Botero CA, 2014, P NATL ACAD SCI USA, V111, P16784, DOI 10.1073/pnas.1408701111; Charnov EL, 2014, EVOL ECOL RES, V16, P435; Charnov EL, 2011, EVOL ECOL RES, V13, P661; Eibach RP, 2011, J EXP SOC PSYCHOL, V47, P694, DOI 10.1016/j.jesp.2010.12.009; Goodman A, 2012, P ROY SOC LOND B BIO; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Hruschka D, 2014, HUM NATURE-INT BIOS, V25, P567, DOI 10.1007/s12110-014-9217-0; Hungerman DM, 2014, J ECON BEHAV ORGAN, V104, P52, DOI 10.1016/j.jebo.2013.09.004; Inglehart R, 2012, SACRED SECULAR RELIG; Jaspers Karl, 2011, ORIGIN GOAL HIST; Johnson DDP, 2005, HUM NATURE-INT BIOS, V16, P410, DOI 10.1007/s12110-005-1017-0; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kaplan H, 1996, YEARB PHYS ANTHROPOL, V39, P91; Kaplan H, 2000, ADAPTATION HUMAN BEH, P283; Lawson DW, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2015.0145; Lawson DW, 2012, P ROY SOC B-BIOL SCI, V279, P4755, DOI 10.1098/rspb.2012.1635; Leslie P, 2002, AM J HUM BIOL, V14, P168, DOI 10.1002/ajhb.10044; MacDonald K, 1997, HUM NATURE-INT BIOS, V8, P327, DOI 10.1007/BF02913038; Nettle D, 2011, PHILOS T R SOC B, V366, P357, DOI 10.1098/rstb.2010.0073; Norenzayan A, 2016, BEHAV BRAIN SCI, V39, DOI 10.1017/S0140525X14001356; Peoples HC, 2012, HUM NATURE-INT BIOS, V23, P253, DOI 10.1007/s12110-012-9148-6; Purzycki BG, 2016, SCI DATA, V3, DOI 10.1038/sdata.2016.99; Purzycki BG, 2016, NATURE, V530, P327, DOI 10.1038/nature16980; Ross CT, 2016, EVOLUTION HUMAN BEHA; Schwadel P, 2015, J SCI STUD RELIG, V54, P402, DOI 10.1111/jssr.12187; Solt F, 2011, SOC SCI QUART, V92, P447, DOI 10.1111/j.1540-6237.2011.00777.x; Strassmann BI, 2002, P ROY SOC B-BIOL SCI, V269, P553, DOI 10.1098/rspb.2001.1912; Watts J, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2556; Whitehead H, 2009, EVOL HUM BEHAV, V30, P261, DOI 10.1016/j.evolhumbehav.2009.02.003; Winterhalder B, 2002, EVOL HUM BEHAV, V23, P59, DOI 10.1016/S1090-5138(01)00089-7; Winterhalder B, 2015, ENVIRON ARCHAEOL, V20, P337, DOI 10.1179/1749631415Y.0000000025 41 1 1 5 7 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One MAR 7 2018 13 3 e0193856 10.1371/journal.pone.0193856 14 Multidisciplinary Sciences Science & Technology - Other Topics FY5TA WOS:000426896800082 29513766 DOAJ Gold, Green Published 2018-11-22 J Treidel, LA; Chung, DJ; Williams, CM Treidel, L. A.; Chung, D. J.; Williams, C. M. Mitochondrial performance differs in concordance with life history strategies and energetic demands in the wing-polymorphic cricket, Gryllus firmus INTEGRATIVE AND COMPARATIVE BIOLOGY English Meeting Abstract Annual Meeting of the Society-for-Integrative-and-Comparative-Biology (SICB) JAN 03-07, 2018 San Francisco, CA Soc Integrat & Comparat Biol Univ Calif Berkeley, Berkeley, CA USA; Univ British Columbia, Vancouver, BC, Canada lisa.treidel@berkeley.edu 0 0 0 0 0 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1540-7063 1557-7023 INTEGR COMP BIOL Integr. Comp. Biol. MAR 2018 58 1 128-4 E237 E237 1 Zoology Zoology GB8FA WOS:000429309603067 2018-11-22 J Hockenberry, AJ; Stern, AJ; Amaral, LAN; Jewett, MC Hockenberry, Adam J.; Stern, Aaron J.; Amaral, Luis A. N.; Jewett, Michael C. Diversity of Translation Initiation Mechanisms across Bacterial Species Is Driven by Environmental Conditions and Growth Demands MOLECULAR BIOLOGY AND EVOLUTION English Article translation initiation; Shine-Dalgarno sequence; bacterial growth; genome evolution SHINE-DALGARNO SEQUENCE; RIBOSOME BINDING-SITES; TRANSFER-RNA GENES; ESCHERICHIA-COLI; BACILLUS-SUBTILIS; MESSENGER-RNA; CODON CHOICE; EXPRESSION; PROKARYOTES; GENOMES The Shine-Dalgarno (SD) sequence motif is frequently found upstream of protein coding genes and is thought to be the dominant mechanism of translation initiation used by bacteria. Experimental studies have shown that the SD sequence facilitates start codon recognition and enhances translation initiation by directly interacting with the highly conserved anti-SD sequence on the 30S ribosomal subunit. However, the proportion of SD-led genes within a genome varies across species and the factors governing this variation in translation initiation mechanisms remain largely unknown. Here, we conduct a phylogenetically informed analysis and find that species capable of rapid growth contain a higher proportion of SD-led genes throughout their genomes. We show that SD sequence utilization covaries with a suite of genomic features that are important for efficient translation initiation and elongation. In addition to these endogenous genomic factors, we further show that exogenous environmental factors may influence the evolution of translation initiation mechanisms by finding that thermophilic species contain significantly more SD-led genes than mesophiles. Our results demonstrate that variation in translation initiation mechanisms across bacterial species is predictable and is a consequence of differential life-history strategies related to maximum growth rate and environmental-specific constraints. [Hockenberry, Adam J.; Stern, Aaron J.; Amaral, Luis A. N.; Jewett, Michael C.] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA; [Hockenberry, Adam J.] Northwestern Univ, Interdisciplinary Program Biol Sci, Evanston, IL USA; [Amaral, Luis A. N.; Jewett, Michael C.] Northwestern Univ, Northwestern Inst Complex Syst, Evanston, IL 60208 USA; [Amaral, Luis A. N.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA; [Jewett, Michael C.] Northwestern Univ, Ctr Synthet Biol, Evanston, IL 60208 USA; [Jewett, Michael C.] Northwestern Univ, Simpson Querrey Inst BioNanotechnol, Evanston, IL 60208 USA Amaral, LAN; Jewett, MC (reprint author), Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA.; Amaral, LAN; Jewett, MC (reprint author), Northwestern Univ, Northwestern Inst Complex Syst, Evanston, IL 60208 USA.; Amaral, LAN (reprint author), Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA.; Jewett, MC (reprint author), Northwestern Univ, Ctr Synthet Biol, Evanston, IL 60208 USA.; Jewett, MC (reprint author), Northwestern Univ, Simpson Querrey Inst BioNanotechnol, Evanston, IL 60208 USA. adam.hockenberry@utexas.edu; m-jewett@northwestern.edu Jewett, Michael/E-3506-2010; Amaral, Luis N./C-5485-2009 Northwestern University Presidential Fellowship; Army Research Office [W911NF-16-1-0372]; National Science Foundation [MCB 1413563, MCB-1716766]; David and Lucile Packard Foundation; Camille-Dreyfus Teacher-Scholar Program The authors wish to thank Thomas Stoeger for helpful discussions and critical reading of the manuscript, and Helio Tejedor for general computational support. AJH acknowledges financial support from the Northwestern University Presidential Fellowship. LANA acknowledges a gift from Leslie and John Mac McQuown. MCJ acknowledges the Army Research Office (W911NF-16-1-0372), the National Science Foundation (MCB 1413563, MCB-1716766), the David and Lucile Packard Foundation, and the Camille-Dreyfus Teacher-Scholar Program. Barendt PA, 2013, ACS CHEM BIOL, V8, P958, DOI 10.1021/cb3005726; BARRICK D, 1994, NUCLEIC ACIDS RES, V22, P1287, DOI 10.1093/nar/22.7.1287; Bloom-Ackermann Z, 2014, PLOS GENET, V10, DOI 10.1371/journal.pgen.1004084; Bonde MT, 2016, NAT METHODS, V13, P233, DOI [10.1038/NMETH.3727, 10.1038/nmeth.3727]; Borujeni AE, 2017, NUCLEIC ACIDS RES, V45, P5437, DOI 10.1093/nar/gkx061; Borujeni AE, 2016, J AM CHEM SOC, V138, P7016, DOI 10.1021/jacs.6b01453; Borujeni AE, 2014, NUCLEIC ACIDS RES, V42, P2646, DOI 10.1093/nar/gkt1139; Brbic M, 2016, NUCLEIC ACIDS RES, V44, P10074, DOI 10.1093/nar/gkw964; Brown CT, 2016, NAT BIOTECHNOL, V34, P1256, DOI 10.1038/nbt.3704; Chang B, 2006, GENE, V373, P90, DOI 10.1016/j.gene.2006.01.033; CHEN HY, 1994, NUCLEIC ACIDS RES, V22, P4953, DOI 10.1093/nar/22.23.4953; Colussi TM, 2015, NATURE, V519, P110, DOI 10.1038/nature14219; Cortes T, 2013, CELL REP, V5, P1121, DOI 10.1016/j.celrep.2013.10.031; DESMIT MH, 1994, J MOL BIOL, V235, P173, DOI 10.1016/S0022-2836(05)80024-5; Devaraj A, 2010, MOL MICROBIOL, V78, P1500, DOI 10.1111/j.1365-2958.2010.07421.x; Diwan GD, 2016, GENOME BIOL EVOL, V8, P1722, DOI 10.1093/gbe/evw107; Duval M, 2013, PLOS BIOL, V11, DOI 10.1371/journal.pbio.1001731; Edgar RC, 2004, NUCLEIC ACIDS RES, V32, P1792, DOI 10.1093/nar/gkh340; Goodman DB, 2013, SCIENCE, V342, P475, DOI 10.1126/science.1241934; Gu WJ, 2010, PLOS COMPUT BIOL, V6, DOI 10.1371/journal.pcbi.1000664; Guiziou S, 2016, NUCLEIC ACIDS RES, V44, P7495, DOI 10.1093/nar/gkw624; Hecht A, 2017, NUCLEIC ACIDS RES, V45, P3615, DOI 10.1093/nar/gkx070; Hockenberry AJ, 2017, OPEN BIOL, V7, DOI 10.1098/rsob.160239; Hug LA, 2016, NAT MICROBIOL, V1, DOI [10.1038/NMICROBIOL.2016.48, 10.1038/nmicrobiol.2016.48]; Keller TE, 2012, GENOME BIOL EVOL, V4, P80, DOI 10.1093/gbe/evr129; Komarova AV, 2005, J BACTERIOL, V187, P1344, DOI 10.1128/JB.187.4.1344-1349.2005; Kosuri S, 2013, P NATL ACAD SCI USA, V110, P14024, DOI 10.1073/pnas.1301301110; Kramer P, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0094979; Krisko A, 2014, GENOME BIOL, V15, DOI 10.1186/gb-2014-15-3-r44; Kudla G, 2009, SCIENCE, V324, P255, DOI 10.1126/science.1170160; Lagesen K, 2007, NUCLEIC ACIDS RES, V35, P3100, DOI 10.1093/nar/gkm160; Li GW, 2012, NATURE, V484, P538, DOI 10.1038/nature10965; Lim K, 2012, MOL BIOL EVOL, V29, P2937, DOI 10.1093/molbev/mss101; Lowe TM, 2016, NUCLEIC ACIDS RES, V44, pW54, DOI 10.1093/nar/gkw413; Ma J, 2002, J BACTERIOL, V184, P5733, DOI 10.1128/JB.184.20.5733-5745.2002; Markley AL, 2015, ACS SYNTH BIOL, V4, P595, DOI 10.1021/sb500260k; Mohammad F, 2016, CELL REP, V14, P686, DOI 10.1016/j.celrep.2015.12.073; Na D, 2010, BMC SYST BIOL, V4, DOI 10.1186/1752-0509-4-71; Nakagawa S, 2010, P NATL ACAD SCI USA, V107, P6382, DOI 10.1073/pnas.1002036107; Napolitano MG, 2016, P NATL ACAD SCI USA, V113, pE5588, DOI 10.1073/pnas.1605856113; Omotajo D, 2015, BMC GENOMICS, V16, DOI 10.1186/s12864-015-1808-6; Orelle C, 2015, NATURE, V524, P119, DOI 10.1038/nature14862; Osada Y, 1999, BIOINFORMATICS, V15, P578, DOI 10.1093/bioinformatics/15.7.578; Ostrov N, 2016, SCIENCE, V353, P819, DOI 10.1126/science.aaf3639; Revell LJ, 2010, METHODS ECOL EVOL, V1, P319, DOI 10.1111/j.2041-210X.2010.00044.x; Roller BRK, 2016, NAT MICROBIOL, V1, DOI [10.1038/NMICROBIOL.2016.160, 10.1038/nmicrobiol.2016.160]; Sakai H, 2001, J MOL EVOL, V52, P164, DOI 10.1007/s002390010145; Salis HM, 2009, NAT BIOTECHNOL, V27, P946, DOI 10.1038/nbt.1568; Samhita L, 2014, J BACTERIOL, V196, P2607, DOI 10.1128/JB.01620-14; Scharff LB, 2011, PLOS GENET, V7, DOI 10.1371/journal.pgen.1002155; Schrader JM, 2014, PLOS GENET, V10, DOI 10.1371/journal.pgen.1004463; Shell SS, 2015, PLOS GENET, V11, DOI 10.1371/journal.pgen.1005641; SHINE J, 1974, Proceedings of the National Academy of Sciences of the United States of America, V71, P1342, DOI 10.1073/pnas.71.4.1342; Stamatakis A, 2014, BIOINFORMATICS, V30, P1312, DOI 10.1093/bioinformatics/btu033; Starmer J, 2006, PLOS COMPUT BIOL, V2, P454, DOI 10.1371/journal.pcbi.0020057; Stevenson BS, 2004, APPL ENVIRON MICROB, V70, P6670, DOI 10.1128/AEM.70.11.6670-6677.2004; Tauer C, 2014, MICROB CELL FACT, V13, DOI 10.1186/s12934-014-0150-z; Vieira-Silva S, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1000808; Vimberg V, 2007, BMC MOL BIOL, V8, DOI 10.1186/1471-2199-8-100; Weinstock MT, 2016, NAT METHODS, V13, P849, DOI 10.1038/nmeth.3970; Yamamoto H, 2016, P NATL ACAD SCI USA, V113, pE1180, DOI 10.1073/pnas.1524554113; Yang CY, 2016, G3-GENES GENOM GENET, V6, P3467, DOI 10.1534/g3.116.032227; Yano K, 2013, MICROBIOL-SGM, V159, P2225, DOI 10.1099/mic.0.067025-0; Yi JS, 2017, ACS SYNTH BIOL, V6, P555, DOI 10.1021/acssynbio.6b00263; Zheng XB, 2011, BMC GENOMICS, V12, DOI 10.1186/1471-2164-12-361 65 1 1 3 3 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0737-4038 1537-1719 MOL BIOL EVOL Mol. Biol. Evol. MAR 2018 35 3 582 592 10.1093/molbev/msx310 11 Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity FZ0LK WOS:000427260700006 29220489 2018-11-22 J Emms, SK; Hove, AA; Dudley, LS; Mazer, SJ; Verhoeven, AS Emms, Simon K.; Hove, Alisa A.; Dudley, Leah S.; Mazer, Susan J.; Verhoeven, Amy S. Could seasonally deteriorating environments favour the evolution of autogamous selfing and a drought escape physiology through indirect selection? A test of the time limitation hypothesis using artificial selection in Clarkia ANNALS OF BOTANY English Article Artificial selection; autogamy; Clarkia unguiculata; drought escape; flowering date; herkogamy; life history; mating system; photosynthetic rate; self-fertilization; time limitation hypothesis; water use efficiency MIXED MATING SYSTEMS; FLORAL TRAITS; ARABIDOPSIS-THALIANA; FLOWERING TIME; ANNUAL PLANT; GENETIC CORRELATIONS; NATURAL-SELECTION; JOINT EVOLUTION; LIFE-HISTORY; REPRODUCTIVE ASSURANCE Background and Aims The evolution of selfing from outcrossing may be the most common transition in plant reproductive systems and is associated with a variety of ecological circumstances and life history strategies. The most widely discussed explanation for these associations is the reproductive assurance hypothesis -the proposition that selfing is favoured because it increases female fitness when outcross pollen receipt is limited. Here an alternative explanation, the time limitation hypothesis, is addressed, one scenario of which proposes that selfing may evolve as a correlated response to selection for a faster life cycle in seasonally deteriorating environments. Methods Artificial selection for faster maturation (early flowering) or for low herkogamy was performed on Clarkia unguiculata (Onagraceae), a largely outcrossing species whose closest relative, C. exilis, has evolved higher levels of autogamous selfing. Direct responses to selection and correlated evolutionary changes in these traits were measured under greenhouse conditions. Direct responses to selection on early flowering and correlated evolutionary changes in the node of the first flower, herkogamy, dichogamy, gas exchange rates and water use efficiency (WUE) were measured under field conditions. Key Results Lines selected for early flowering and for low herkogamy showed consistent, statistically significant responses to direct selection. However, there was little or no evidence of correlated evolutionary changes in flowering date, floral traits, gas exchange rates or WUE. Conclusions These results suggest that the maturation rate and mating system have evolved independently in Clarkia and that the time limitation hypothesis does not explain the repeated evolution of selfing in this genus, at least through its indirect selection scenario. They also suggest that the life history and physiological components of drought escape are not genetically correlated in Clarkia, and that differences in gas exchange physiology between C. unguiculata and C. exilis have evolved independently of differences in mating system and life history. [Emms, Simon K.; Verhoeven, Amy S.] Univ St Thomas, Dept Biol, St Paul, MN 55105 USA; [Hove, Alisa A.] Warren Wilson Coll, Dept Biol, Asheville, NC 28815 USA; [Dudley, Leah S.] Univ Wisconsin Stout, Dept Biol, Menomonie, WI 54751 USA; [Mazer, Susan J.] Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USA Emms, SK (reprint author), Univ St Thomas, Dept Biol, St Paul, MN 55105 USA. skemms@stthomas.edu National Science Foundation [OIS-0718253, OIS-0718227]; University of St. Thomas We thank Dr Jennifer Cruise and undergraduates Kasey Diekmann, Rachael Eaton and Emily Novak for assistance with greenhouse work at UST, and undergraduates Bryce Rauterkus and Joel Kirskey for assistance with fieldwork in California. Numerous other undergraduates also helped with greenhouse work at both UST and UCSB. This work was supported by the National Science Foundation [OIS-0718253 to S.K.E. and A.S.V., and OIS-0718227 to S.J.M. and L.S.D.] and by the University of St. Thomas. Aarssen LW, 2000, OIKOS, V89, P606, DOI 10.1034/j.1600-0706.2000.890321.x; Amasino R, 2010, PLANT J, V61, P1001, DOI 10.1111/j.1365-313X.2010.04148.x; Armbruster WS, 2002, AM J BOT, V89, P37, DOI 10.3732/ajb.89.1.37; ARONSON J, 1992, OECOLOGIA, V89, P17, DOI 10.1007/BF00319010; ARROYO MTK, 1973, BRITTONIA, V25, P177, DOI 10.2307/2805936; Ashman TL, 2006, HEREDITY, V96, P343, DOI 10.1038/sj.hdy.6800815; BAKER H. G., 1965, The genetics of colonizing species: Proc. 1st Internat, Union biol Sci., Asilomar, California., P147; Barrett S., 1990, BIOL APPROACHES EVOL; Bartkowska MP, 2012, NEW PHYTOL, V193, P1039, DOI 10.1111/j.1469-8137.2011.04013.x; BENJAMINI Y, 1995, J ROY STAT SOC B MET, V57, P289; Burgess KS, 2007, HEREDITY, V99, P641, DOI 10.1038/sj.hdy.6801043; Busch JW, 2012, ANN BOT-LONDON, V109, P553, DOI 10.1093/aob/mcr219; Campbell DR, 2009, ANN BOT-LONDON, V103, P1557, DOI 10.1093/aob/mcp032; Campbell DR, 1996, EVOLUTION, V50, P1442, DOI 10.1111/j.1558-5646.1996.tb03918.x; CHARLESWORTH D, 1987, EVOLUTION, V41, P948, DOI 10.1111/j.1558-5646.1987.tb05869.x; CHARLESWORTH D, 1990, EVOLUTION, V44, P1469, DOI 10.1111/j.1558-5646.1990.tb03839.x; Charlesworth D, 2006, CURR BIOL, V16, pR726, DOI 10.1016/j.cub.2006.07.068; Conner JK, 2011, AM NAT, V178, P429, DOI 10.1086/661907; Darwin C., 1876, EFFECTS CROSS SELF F; Dawson TE, 2002, ANNU REV ECOL SYST, V33, P507, DOI 10.1146/annurev.ecolsys.33.020602.095451; Delph LF, 2004, EVOLUTION, V58, P1936; Delph LF, 2004, EVOL DEV, V6, P438, DOI 10.1111/j.1525-142X.2004.04052.x; Dudley LS, 2007, J EVOLUTION BIOL, V20, P2200, DOI 10.1111/j.1420-9101.2007.01421.x; Dudley LS, 2015, AM J BOT, V102, P962, DOI 10.3732/ajb.1400557; Dudley LS, 2012, AM J BOT, V99, P488, DOI 10.3732/ajb.1100387; Eckert CG, 2006, ECOLOGY EVOLUTION FL, P183; Eckhart Vincent M., 1999, Madrono, V46, P117; Eckhart VM, 2004, EVOLUTION, V58, P59; Elle E, 2010, AM J BOT, V97, P1894, DOI 10.3732/ajb.1000223; FENSTER CB, 1995, HEREDITY, V74, P258, DOI 10.1038/hdy.1995.39; Fisher RA, 1941, ANN EUGENIC, V11, P53, DOI 10.1111/j.1469-1809.1941.tb02272.x; Fishman L, 2008, NEW PHYTOL, V177, P802, DOI 10.1111/j.1469-8137.2007.02265.x; Franke DM, 2006, INT J PLANT SCI, V167, P83, DOI 10.1086/497648; Franks SJ, 2007, P NATL ACAD SCI USA, V104, P1278, DOI 10.1073/pnas.0608379104; Franks SJ, 2011, NEW PHYTOL, V190, P249, DOI 10.1111/j.1469-8137.2010.03603.x; Galloway LF, 2012, J ECOL, V100, P852, DOI 10.1111/j.1365-2745.2012.01967.x; Garcia LV, 2004, OIKOS, V105, P657, DOI 10.1111/j.0030-1299.2004.13046.x; Geber MA, 1997, OECOLOGIA, V109, P535, DOI 10.1007/s004420050114; Geber MA, 2003, INT J PLANT SCI, V164, pS21, DOI 10.1086/368233; GEBER MA, 1990, OECOLOGIA, V85, P153, DOI 10.1007/BF00319396; Goodwillie C, 2005, ANNU REV ECOL EVOL S, V36, P47, DOI 10.1146/annurev.ecolsys.36.091704.175539; Goodwillie C, 2010, NEW PHYTOL, V185, P311, DOI 10.1111/j.1469-8137.2009.03043.x; Gould B, 2014, J ECOL, V102, P95, DOI 10.1111/1365-2745.12188; Guerrant EO, 1989, EVOLUTIONARY ECOLOGY, P61; Hall MC, 2006, EVOLUTION, V60, P2466, DOI 10.1554/05-688.1; Heschel MS, 2005, AM J BOT, V92, P37, DOI 10.3732/ajb.92.1.37; HOLSINGER KE, 1991, AM NAT, V138, P606, DOI 10.1086/285237; Holsinger KE, 1996, EVOL BIOL, V29, P107; HOLTSFORD TP, 1992, EVOLUTION, V46, P216, DOI 10.1111/j.1558-5646.1992.tb01996.x; Hove AA, 2016, ECOL EVOL, V6, P6524, DOI 10.1002/ece3.2372; Igic B, 2013, NEW PHYTOL, V198, P386, DOI 10.1111/nph.12182; Ivey CT, 2016, ANN BOT-LONDON, V118, P897, DOI 10.1093/aob/mcw134; Ivey CT, 2012, ANN BOT-LONDON, V109, P583, DOI 10.1093/aob/mcr160; JAIN SK, 1976, ANNU REV ECOL SYST, V7, P469, DOI 10.1146/annurev.es.07.110176.002345; Jonas CS, 1999, AM J BOT, V86, P333, DOI 10.2307/2656755; Juenger TE, 2005, PLANT CELL ENVIRON, V28, P697, DOI 10.1111/j.1365-3040.2004.01313.x; Kenney AM, 2014, ECOL EVOL, V4, P4505, DOI 10.1002/ece3.1270; Kimball S, 2013, AM NAT, V182, P191, DOI 10.1086/671058; Kinoshita T, 2011, CURR BIOL, V21, P1232, DOI 10.1016/j.cub.2011.06.025; Kooyers NJ, 2015, PLANT SCI, V234, P155, DOI 10.1016/j.plantsci.2015.02.012; LANDE R, 1985, EVOLUTION, V39, P24, DOI 10.1111/j.1558-5646.1985.tb04077.x; Lendvai G, 2003, HEREDITY, V90, P336, DOI 10.1038/sj.hdy.6800249; Lloyd DG, 1987, FUNCT ECOL, V1, P83, DOI 10.2307/2389709; LLOYD DG, 1992, INT J PLANT SCI, V153, P370, DOI 10.1086/297041; LLOYD DG, 1979, AM NAT, V113, P67, DOI 10.1086/283365; Lovell JT, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1043; LUDLOW MM, 1989, STRUCTURAL AND FUNCTIONAL RESPONSES TO ENVIRONMENTAL STRESSES : WATER SHORTAGE, P269; Manzaneda AJ, 2015, EVOLUTION, V69, P2689, DOI 10.1111/evo.12776; Mazer SJ, 2004, AM J BOT, V91, P2041, DOI 10.3732/ajb.91.12.2041; Mazer SJ, 2010, INT J PLANT SCI, V171, P1029, DOI 10.1086/656305; McKay JK, 2003, MOL ECOL, V12, P1137, DOI 10.1046/j.1365-294X.2003.01833.x; McKay JK, 2008, EVOLUTION, V62, P3014, DOI 10.1111/j.1558-5646.2008.00474.x; Moeller DA, 2006, ECOLOGY, V87, P1510, DOI 10.1890/0012-9658(2006)87[1510:GSOPCR]2.0.CO;2; MOORE DM, 1965, EVOLUTION, V19, P104, DOI 10.1111/j.1558-5646.1965.tb01695.x; Morgan MT, 1997, AM NAT, V150, P618, DOI 10.1086/286085; Olsson K, 2002, J EVOLUTION BIOL, V15, P983, DOI 10.1046/j.1420-9101.2002.00457.x; ONeil P, 1997, EVOLUTION, V51, P267, DOI 10.1111/j.1558-5646.1997.tb02408.x; Runions CJ, 2000, AM J BOT, V87, P1439, DOI 10.2307/2656870; Runquist RDB, 2014, EVOLUTION, V68, P2885, DOI 10.1111/evo.12488; Schneider HE, 2016, AM J BOT, V103, P140, DOI 10.3732/ajb.1500108; Schoen DJ, 1996, PHILOS T R SOC B, V351, P1281, DOI 10.1098/rstb.1996.0111; Sherrard ME, 2006, EVOLUTION, V60, P2478, DOI 10.1554/06-150.1; Sletvold N, 2015, ECOLOGY, V96, P214, DOI 10.1890/14-0119.1; Snell Rebecca, 2005, BMC Ecology, V5, P2, DOI 10.1186/1472-6785-5-2; STEBBINS GL, 1957, AM NAT, V91, P337, DOI 10.1086/281999; Stebbins GL, 1974, FLOWERING PLANTS EVO; Takebayashi N, 2001, AM J BOT, V88, P1143, DOI 10.2307/3558325; Van Dijk H, 2009, J EXP BOT, V60, P3143, DOI 10.1093/jxb/erp142; VASEK FC, 1971, ECOLOGY, V52, P1046, DOI 10.2307/1933811; VASEK FC, 1968, AM NAT, V102, P25, DOI 10.1086/282521; VASEK FC, 1958, AM J BOT, V45, P150, DOI 10.2307/2439364; VASEK FC, 1977, SYST BOT, V2, P251, DOI 10.2307/2418458; VASEK FC, 1965, EVOLUTION, V19, P152, DOI 10.1111/j.1558-5646.1965.tb01702.x; VASEK FC, 1971, ECOLOGY, V52, P1038, DOI 10.2307/1933810; Weintraub MN, 2005, BIOGEOCHEMISTRY, V73, P359, DOI 10.1007/s10533-004-0363-z; Worley AC, 2000, EVOLUTION, V54, P1533; Wright SI, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.0133; Wu CA, 2010, OECOLOGIA, V162, P23, DOI 10.1007/s00442-009-1448-0 98 1 1 9 13 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0305-7364 1095-8290 ANN BOT-LONDON Ann. Bot. MAR 2018 121 4 753 766 10.1093/aob/mcx197 14 Plant Sciences Plant Sciences FZ8TX WOS:000427884200019 29351591 2018-11-22 J Wollebaek, J; Heggenes, J; Roed, KH Wollebaek, Jens; Heggenes, Jan; Roed, Knut H. Life histories and ecotype conservation in an adaptive vertebrate: Genetic constitution of piscivorous brown trout covaries with habitat stability ECOLOGY AND EVOLUTION English Article assortative mating; ecotype; feeding; habitat; life history; piscivory SALMON SALMO-SALAR; MULTILOCUS GENOTYPE DATA; FRESH-WATER RESIDENT; ATLANTIC SALMON; SALVELINUS-NAMAYCUSH; POPULATION-STRUCTURE; LAKE-SUPERIOR; FEROX TROUT; FINE-SCALE; BODY-SIZE Ecotype variation in species exhibiting different life history strategies may reflect heritable adaptations to optimize reproductive success, and potential for speciation. Traditionally, ecotypes have, however, been defined by morphometrics and life history characteristics, which may be confounded with individual plasticity. Here, we use the widely distributed and polytypic freshwater fish species brown trout (Salmo trutta) as a model to study piscivorous life history and its genetic characteristics in environmentally contrasting habitats; a large lake ecosystem with one major large and stable tributary, and several small tributaries. Data from 550 fish and 13 polymorphic microsatellites (H-e=0.67) indicated ecotype-specific genetic differentiation (=0.0170, p<.0001) among Bayesian assigned small riverine resident and large, lake migrating brown trout (>35cm), but only in the large tributary. In contrast, large trout did not constitute a distinct genetic group in small tributaries, or across riverine sites. Whereas life history data suggest a small, river resident and a large migratory piscivorous ecotype in all studied tributaries, genetic data indicated that a genetically distinct piscivorous ecotype is more likely to evolve in the large and relatively more stable river habitat. In the smaller tributaries, ecotypes apparently resulted from individual plasticity. Whether different life histories and ecotypes result from individual plasticity or define different genetic types, have important consequence for conservation strategies. [Wollebaek, Jens; Heggenes, Jan] Univ Coll Southeast Norway, Dept Nat Sci & Environm Hlth, Bo I Telemark, Norway; [Roed, Knut H.] Norwegian Univ Life Sci, Dept Basic Sci & Aquat Med, Oslo, Norway Wollebaek, J (reprint author), Univ Coll Southeast Norway, Dept Nat Sci & Environm Hlth, Bo I Telemark, Norway. jens.wollebak@usn.no University College of Southeast Norway The Laboratory of Freshwater Ecology and Inland fisheries (LFI), University of Oslo, is acknowledged for assistance in sampling and age analyses. Part of this work was funded by the University College of Southeast Norway. AASS P, 1990, MANAGEMENT OF FRESHWATER FISHERIES, P382; AASS P, 1989, Regulated Rivers Research and Management, V3, P255, DOI 10.1002/rrr.3450030125; Aass P., 1984, P277; Aass P., 1973, THESIS; Adams CE, 2016, J FISH BIOL, V88, P580, DOI 10.1111/jfb.12855; Allendorf FW, 2008, TRENDS ECOL EVOL, V23, P327, DOI 10.1016/j.tree.2008.02.008; Avise JC, 2002, ANNU REV GENET, V36, P19, DOI 10.1146/annurev.genet.36.030602.090831; Aykanat T, 2015, MOL ECOL, V24, P5158, DOI 10.1111/mec.13383; Baillie SM, 2016, BMC EVOL BIOL, V16, DOI 10.1186/s12862-016-0788-8; Baillie SM, 2016, J GREAT LAKES RES, V42, P204, DOI 10.1016/j.jglr.2016.02.001; Bernatchez S, 2016, MOL ECOL, V25, P4773, DOI 10.1111/mec.13795; Borgstrom R, 2005, ECOL FRESHW FISH, V14, P375, DOI 10.1111/j.1600-0633.2005.00112.x; BRANNAS E, 1995, EVOL ECOL, V9, P411, DOI 10.1007/BF01237763; Bremnes T., 2008, FISKERIBIOLOGISKE UN; CAMPBELL RN, 1979, J FISH BIOL, V14, P1; Carlson SM, 2008, FUNCT ECOL, V22, P663, DOI 10.1111/j.1365-2435.2008.01416.x; Carlsson J, 1999, J FISH BIOL, V55, P1290, DOI 10.1006/jfbi.1999.1123; CARVALHO GR, 1994, REV FISH BIOL FISHER, V4, P326, DOI 10.1007/BF00042908; CARVALHO GR, 1993, J FISH BIOL, V43, P53, DOI 10.1111/j.1095-8649.1993.tb01179.x; Charmantier A, 2005, P ROY SOC B-BIOL SCI, V272, P1415, DOI 10.1098/rspb.2005.3117; Ciannelli L, 2015, ICES J MAR SCI, V72, P285, DOI 10.1093/icesjms/fsu145; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Cornuet JM, 1996, GENETICS, V144, P2001; Couturier S, 2010, J WILDLIFE MANAGE, V74, P395, DOI 10.2193/2008-384; CRECCO VA, 1985, CAN J FISH AQUAT SCI, V42, P1640, DOI 10.1139/f85-205; Crispo E, 2008, J EVOLUTION BIOL, V21, P1460, DOI 10.1111/j.1420-9101.2008.01592.x; de Jong G, 2005, NEW PHYTOL, V166, P101, DOI 10.1111/j.1469-8137.2005.01322.x; Docker MF, 2003, CONSERV GENET, V4, P227, DOI 10.1023/A:1023355114612; Duguid RA, 2006, J FISH BIOL, V69, P89, DOI 10.1111/j.1095-8649.2006.01118.x; Edmands S, 2007, MOL ECOL, V16, P463, DOI 10.1111/j.1365-294X.2006.03148.x; Elliot JM, 1994, QUANTITATIVE ECOLOGY; Evanno G, 2005, MOL ECOL, V14, P2611, DOI 10.1111/j.1365-294X.2005.02553.x; Excoffier L, 2005, EVOL BIOINFORM, V1, P47; Falush D, 2003, GENETICS, V164, P1567; FERGUSON A, 1991, BIOL J LINN SOC, V43, P221, DOI 10.1111/j.1095-8312.1991.tb00595.x; Ferguson A., 2004, P ROYAL IRISH ACAD B, V104B, P33; Foote AD, 2009, MOL ECOL, V18, P5207, DOI 10.1111/j.1365-294X.2009.04407.x; Gharrett AJ, 2013, MOL ECOL, V22, P4457, DOI 10.1111/mec.12400; Goetz F, 2010, MOL ECOL, V19, P176, DOI 10.1111/j.1365-294X.2009.04481.x; Goudet J, 1995, J HERED, V86, P485, DOI 10.1093/oxfordjournals.jhered.a111627; Hanski I., 1997, METAPOPULATION BIOL; Heath DD, 2008, T AM FISH SOC, V137, P1268, DOI 10.1577/T05-278.1; Heggenes J, 2009, MOL ECOL, V18, P1100, DOI 10.1111/j.1365-294X.2009.04101.x; Hendry A. P., 2003, EVOLUTION ILLUMINATE; Hendry AP, 2009, CAN J FISH AQUAT SCI, V66, P1383, DOI 10.1139/F09-074; Heywood V. H., 1995, GLOBAL BIODIVERSITY; HINDAR K, 1991, HEREDITY, V66, P83, DOI 10.1038/hdy.1991.11; Huitfeldt-Kaas H., 1918, FERSKVANDSFISKENS UT; Indrelid S., 1985, HARDANGERVIDDA, P97; Ioannidis JPA, 2005, PLOS MED, V2, P696, DOI 10.1371/journal.pmed.0020124; Jackson DA, 2001, CAN J FISH AQUAT SCI, V58, P157, DOI 10.1139/cjfas-58-1-157; Jensen H, 2012, J FISH BIOL, V80, P2448, DOI 10.1111/j.1095-8649.2012.03294.x; Jensen H, 2008, CAN J FISH AQUAT SCI, V65, P1831, DOI 10.1139/F08-096; JONSSON N, 1991, J ANIM ECOL, V60, P937, DOI 10.2307/5423; Jonsson N, 1999, J FISH BIOL, V55, P1129, DOI 10.1111/j.1095-8649.1999.tb02064.x; Kalinowski ST, 2007, MOL ECOL, V16, P1099, DOI 10.1111/j.1365-294X.2007.03089.x; Keeley ER, 2007, J EVOLUTION BIOL, V20, P725, DOI 10.1111/j.1420-9101.2006.01240.x; KITCHELL JF, 1994, J FISH BIOL, V45, P209, DOI 10.1006/jfbi.1994.1224; Klemetsen A, 2003, ECOL FRESHW FISH, V12, P1, DOI 10.1034/j.1600-0633.2003.00010.x; Koskinen MT, 2002, NATURE, V419, P826, DOI 10.1038/nature01029; KRUEGER CC, 1987, T AM FISH SOC, V116, P785, DOI 10.1577/1548-8659(1987)116<785:SIONBT>2.0.CO;2; Kume M, 2010, J EVOLUTION BIOL, V23, P1436, DOI 10.1111/j.1420-9101.2010.02009.x; L'Abee-Lund JH, 2002, ECOL FRESHW FISH, V11, P260, DOI 10.1034/j.1600-0633.2002.00020.x; Labonne J, 2009, ANIM BEHAV, V77, P129, DOI 10.1016/j.anbehav.2008.09.018; Langella O., 1999, POPULATIONS 1 2 30 P; Langerhans RB, 2008, INTEGR COMP BIOL, V48, P750, DOI 10.1093/icb/icn092; Lea E., 1910, ICES PUBLICATION CIR, V53, P5; Lin J, 2008, HEREDITY, V101, P341, DOI 10.1038/hdy.2008.59; Mangel M, 1996, EVOL ECOL, V10, P249, DOI 10.1007/BF01237683; Mangel M, 2001, EXP GERONTOL, V36, P765, DOI 10.1016/S0531-5565(00)00240-0; Marshall DJ, 2008, ECOLOGY, V89, P2506, DOI 10.1890/07-0267.1; McDermid JL, 2010, CAN J FISH AQUAT SCI, V67, P314, DOI 10.1139/F09-183; McLaughlin RL, 1999, BEHAV ECOL SOCIOBIOL, V45, P386, DOI 10.1007/s002650050575; Mehner T, 2011, EVOL ECOL, V25, P547, DOI 10.1007/s10682-011-9468-8; Miller MP, 1997, TOOLS POPULATION GEN; Mittelbach GG, 1998, CAN J FISH AQUAT SCI, V55, P1454, DOI 10.1139/cjfas-55-6-1454; Morinville GR, 2006, J ANIM ECOL, V75, P693, DOI 10.1111/j.1365-2656.2006.01090.x; MORITZ C, 1994, TRENDS ECOL EVOL, V9, P373, DOI 10.1016/0169-5347(94)90057-4; Narum SR, 2004, J FISH BIOL, V65, P471, DOI [10.1111/j.0022-1112.2004.00461.x, 10.1111/j.1095-8649.2004.00461.x]; NEI M, 1983, GENETICS, V103, P557; Niehaus AC, 2006, J ANIM ECOL, V75, P686, DOI 10.1111/j.1365-2656.2006.01089.x; Northcote T.G., 1978, P326; Olofsson H, 2009, P ROY SOC B-BIOL SCI, V276, P2963, DOI 10.1098/rspb.2009.0500; Olsen JB, 2006, CONSERV GENET, V7, P613, DOI 10.1007/s10592-005-9099-0; Ostergaard S, 2003, MOL ECOL, V12, P3123, DOI 10.1046/j.1365-294X.2003.01976.x; OTTAWAY EM, 1981, J FISH BIOL, V19, P593, DOI 10.1111/j.1095-8649.1981.tb03825.x; Paetkau D, 1999, CONSERV BIOL, V13, P1507, DOI 10.1046/j.1523-1739.1999.98507.x; PAETKAU D, 1995, MOL ECOL, V4, P347, DOI 10.1111/j.1365-294X.1995.tb00227.x; Page RDM, 1996, COMPUT APPL BIOSCI, V12, P357; Palme A, 2013, CONSERV GENET, V14, P795, DOI 10.1007/s10592-013-0475-x; Peakall R, 2006, MOL ECOL NOTES, V6, P288, DOI 10.1111/j.1471-8286.2005.01155.x; Pearse DE, 2009, J HERED, V100, P515, DOI 10.1093/jhered/esp040; Pelletier F, 2009, PHILOS T R SOC B, V364, P1483, DOI 10.1098/rstb.2009.0027; Perez-Figueroa A, 2005, J EVOLUTION BIOL, V18, P191, DOI 10.1111/j.1420-9101.2004.00773.x; Perreault-Payette A, 2017, MOL ECOL, V26, P1477, DOI 10.1111/mec.14018; Piry S, 2004, J HERED, V95, P536, DOI 10.1093/jhered/esh074; POWER G, 1981, CAN J FISH AQUAT SCI, V38, P1601, DOI 10.1139/f81-210; Pritchard JK, 2000, GENETICS, V155, P945; Quinn T. P., 2005, BEHAV ECOLOGY PACIFI; QUINN TP, 1987, ENVIRON BIOL FISH, V18, P155, DOI 10.1007/BF00002604; Ramstad KM, 2010, EVOL ECOL, V24, P391, DOI 10.1007/s10682-009-9313-5; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; Rueffler C, 2006, TRENDS ECOL EVOL, V21, P238, DOI 10.1016/j.tree.2006.03.003; Sanchez-Hernandez J, 2017, ECOL EVOL, V7, P358, DOI 10.1002/ece3.2600; SCHAFFER WM, 1975, ECOLOGY, V56, P577, DOI 10.2307/1935492; Seehausen O, 2014, ANNU REV ECOL EVOL S, V45, P621, DOI 10.1146/annurev-ecolsys-120213-091818; Segura I, 2006, BIOL CONSERV, V133, P336, DOI 10.1016/j.biocon.2006.06.017; Sgro CM, 2004, HEREDITY, V93, P241, DOI 10.1038/sj.hdy.6800532; Simpson SJ, 1999, BIOL REV, V74, P461, DOI 10.1017/S000632319900540X; SKAALA O, 1989, J FISH BIOL, V34, P597, DOI 10.1111/j.1095-8649.1989.tb03338.x; Stuart T. A., 1957, FRESHWATER SALMON FI, V18, P1; Sultan SE, 2002, AM NAT, V160, P271, DOI 10.1086/341015; Taylor EB, 1999, REV FISH BIOL FISHER, V9, P299, DOI 10.1023/A:1008955229420; Taylor EB, 2016, HYDROBIOLOGIA, V783, P283, DOI 10.1007/s10750-015-2613-6; Turesson G, 1922, HEREDITAS, V3, P211, DOI 10.1111/j.1601-5223.1922.tb02734.x; Tysse Asmund, 2004, Fisken og Havet, V7, P1; Vaha JP, 2006, MOL ECOL, V15, P63, DOI 10.1111/j.1365-294X.2005.02773.x; Vaha JP, 2007, MOL ECOL, V16, P2638, DOI 10.1111/j.1365-294X.2007.03329.x; Valiquette E, 2014, EVOL APPL, V7, P625, DOI 10.1111/eva.12160; Van Oosterhout C, 2004, MOL ECOL NOTES, V4, P535, DOI 10.1111/j.1471-8286.2004.00684.x; Vandoni M, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0149997; WEIR BS, 1984, EVOLUTION, V38, P1358, DOI 10.1111/j.1558-5646.1984.tb05657.x; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; Wilson AJ, 2003, J EVOLUTION BIOL, V16, P584, DOI 10.1046/j.1420-9101.2003.00563.x; Wilson CC, 2008, N AM J FISH MANAGE, V28, P1307, DOI 10.1577/M05-190.1; Wollebaek J, 2008, N AM J FISH MANAGE, V28, P1249, DOI 10.1577/M07-069.1; Wollebaek J, 2012, AQUACULTURE, V356, P158, DOI 10.1016/j.aquaculture.2012.05.020; Wollebaek J, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-207; Wollebaek J, 2010, FRESHWATER BIOL, V55, P2626, DOI 10.1111/j.1365-2427.2010.02485.x; Wood CC, 2008, EVOL APPL, V1, P207, DOI 10.1111/j.1752-4571.2008.00028.x 130 0 0 7 9 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. MAR 2018 8 5 2729 2745 10.1002/ece3.3828 17 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology FY3ND WOS:000426725900030 29531690 DOAJ Gold, Green Published 2018-11-22 J Anton, RF; Schories, D; Wilson, NG; Wolf, M; Abad, M; Schrodl, M Anton, Roland F.; Schories, Dirk; Wilson, Nerida G.; Wolf, Maya; Abad, Marcos; Schroedl, Michael Host specificity versus plasticity: testing the morphology-based taxonomy of the endoparasitic copepod family Splanchnotrophidae with COI barcoding JOURNAL OF THE MARINE BIOLOGICAL ASSOCIATION OF THE UNITED KINGDOM English Article species delimitation; molecular phylogeny; DNA taxonomy; speciation; Copepoda; sea slugs; parasite SPECIES DELIMITATION METHOD; PHYLOGENETIC ANALYSIS; CAOS SOFTWARE; POECILOSTOMATOIDA; INVERTEBRATES; EVOLUTIONARY; ALIGNMENTS; CRUSTACEA; BLOCKS The Splanchnotrophidae is a family of highly modified endoparasitic copepods known to infest nudibranch or sacoglossan sea slug hosts. Most splanchnotrophid species appear to be specific to a single host, but some were reported from up to nine different host species. However, splanchnotrophid taxonomy thus far is based on external morphology, and taxonomic descriptions are, mostly, old and lack detail. They are usually based on few specimens, with intraspecific variability rarely reported. The present study used molecular data for the first time to test (1) the current taxonomic hypotheses, (2) the apparently strict host specificity of the genus Ismaila and (3) the low host specificity of the genus Splanchnotrophus with regard to the potential presence of cryptic species. Phylogenetic analyses herein used sequences of the barcoding region of the cytochrome oxidase I (COI) gene from 40 specimens representing 13 species of five genera. Species delimitation approaches include distance and barcoding gap analyses, haplotype networks and diagnostic nucleotides. Molecular results are largely compatible with the commonly accepted, morphology-based taxonomy of the Splanchnotrophidae. Strict host specificity could be confirmed for two Ismaila species. COI analyses also supported the idea that Splanchnotrophus angulatus is host-promiscuous. In Ismaila, morphology seems more suitable than barcoding to display speciation events via host switches in a recent Chilean radiation. In Splanchnotrophus, some genetic structure suggests ongoing diversification, which should be investigated further given the inadequate morphology-based taxonomy. The present study thus supports the presence of two different life history strategies in splanchnotrophids, which should be explored integratively. [Anton, Roland F.; Schroedl, Michael] SNSB Bavarian State Collect Zool Munich, Mollusca Dept, Munchhausenstr 21, D-81247 Munich, Germany; [Schories, Dirk] Univ Austral Chile, Inst Ciencias Marinas & Limnol, Valdivia, Chile; [Wilson, Nerida G.] Western Australian Museum, Mol Systemat Unit, Welshpool, WA 6106, Australia; [Wilson, Nerida G.] Univ Western Australia, Sch Anim Biol, Crawley, WA 6009, Australia; [Wolf, Maya] Univ Oregon, Dept Biol, Oregon Inst Marine Biol, Charleston, OR 97420 USA; [Abad, Marcos] Univ Santiago de Compostela, Estn Biol Marina Grana, Rua Ribeira 1, Ferrol 15590, A Grana, Spain; [Schroedl, Michael] Ludwig Maximilians Univ Munchen, Biozentrum, Dept Biol 2, Grosshaderner Str 2, D-82152 Planegg Martinsried, Germany; [Schroedl, Michael] GeoBioCtr LMU, Munich, Germany Anton, RF (reprint author), SNSB Bavarian State Collect Zool Munich, Mollusca Dept, Munchhausenstr 21, D-81247 Munich, Germany. rolandanton1@gmail.com Universitat of Bayern e.V; GeoBioCenter LMU/Germany; German Research Foundation [SCHR667/13-1, SCHR667/15-1] The study and the collection trip to southern Chile were financed by a graduate scholarship of the Universitat of Bayern e.V. and the GeoBioCenter LMU/Germany. Further support came from the German Research Foundation (SCHR667/13-1 and SCHR667/15-1). Abad M, 2011, THALASSAS, V27, P49; Anton RF, 2016, MAR BIODIVERS, V46, P183, DOI 10.1007/s12526-015-0350-8; Anton RF, 2013, SPIXIANA, V36, P183; Anton RF, 2013, SPIXIANA, V36, P201; Anton RF, 2013, ZOOL J LINN SOC-LOND, V167, P501, DOI 10.1111/zoj.12008; Bassett-Smith PW, 1903, P ZOOL SOC LOND, V1903, P104; Blanco-Berical L., 2014, PLOS CURRENTS TREE L, V6, DOI [10. 1371/currents. tol. cdf1378b74881f74887e74883b74801d74856b43791626d43791622, DOI 10.1371/CURRENTS.T0L.CDF1378B74881F74887E74883B74801D74856B43791626D43791622]; Canu E., 1891, Compte Rendu, Vcxiii, P435; Carmona L, 2014, ZOOL J LINN SOC-LOND, V170, P132, DOI 10.1111/zoj.12098; Castresana J, 2000, MOL BIOL EVOL, V17, P540, DOI 10.1093/oxfordjournals.molbev.a026334; Clement M, 2000, MOL ECOL, V9, P1657, DOI 10.1046/j.1365-294x.2000.01020.x; Deboutteville C. D., 1950, Vie et Milieu Paris, V1, P74; Folmer O., 1994, Molecular Marine Biology and Biotechnology, V3, P294; Gotto R.V., 1979, Advances in Marine Biology, V16, P1, DOI 10.1016/S0065-2881(08)60292-8; Gotto R.V., 2004, COMMENSAL PARASITIC; Hall T.A., 1999, NUCL ACIDS S SER, V41, P95, DOI DOI 10.1021/BK-1999-0734.CH008; Haumayr Ulrike, 2003, Spixiana, V26, P1; Hecht E, 1895, MEMOIRES SOC ZOOLOGI, V8, P539; Ho JS, 2001, HYDROBIOLOGIA, V453, P1, DOI 10.1023/A:1013139212227; Huson DH, 2006, MOL BIOL EVOL, V23, P254, DOI 10.1093/molbev/msj030; Huys R, 2001, J CRUSTACEAN BIOL, V21, P106, DOI 10.1651/0278-0372(2001)021[0106:SSACOP]2.0.CO;2; Jensen K.R., 1990, P 3 INT MAR BIOL WOR, V1, P291; Jorger KM, 2014, AM MALACOL BULL, V32, P290; Jorger KM, 2014, SPIXIANA, V37, P21; Jorger KM, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-323; Layton KKS, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0095003; Meier R, 2006, SYSTEMATIC BIOL, V55, P715, DOI 10.1080/10635150600969864; Miralles A, 2011, ZOOL SCR, V40, P16, DOI 10.1111/j.1463-6409.2010.00453.x; MONOD THEODORE, 1932, ANN PARA SITOL HUM ET COMP, V10, P129; O'Donoghue C. H., 1924, Journal of the Linnean Society London Zoology, V35, P521; Padula V, 2014, J MOLLUS STUD, V80, P575, DOI 10.1093/mollus/eyu052; Puillandre N, 2012, MOL ECOL, V21, P2671, DOI 10.1111/j.1365-294X.2012.05559.x; Puillandre N, 2012, MOL ECOL, V21, P1864, DOI 10.1111/j.1365-294X.2011.05239.x; Ronquist F, 2003, BIOINFORMATICS, V19, P1572, DOI 10.1093/bioinformatics/btg180; Salmen A, 2008, SPIXIANA, V31, P199; Sarkar IN, 2008, MOL ECOL RESOUR, V8, P1256, DOI 10.1111/j.1755-0998.2008.02235.x; Schrodl M., 2003, SEA SLUGS SO S AM HA; Schrodl M., 1997, OPISTHOBRANCH NEWSLE, V23, P45; Stamatakis A, 2014, BIOINFORMATICS, V30, P1312, DOI 10.1093/bioinformatics/btu033; Talavera G, 2007, SYSTEMATIC BIOL, V56, P564, DOI 10.1080/10635150701472164; Tamura K, 2011, MOL BIOL EVOL, V28, P2731, DOI 10.1093/molbev/msr121; Uyeno D, 2012, ZOOKEYS, P1, DOI 10.3897/zookeys.247.3698; Weis A, 2012, SYST BIODIVERS, V10, P361, DOI 10.1080/14772000.2012.716462; Xia XH, 2003, MOL PHYLOGENET EVOL, V26, P1, DOI 10.1016/S1055-7903(02)00326-3; Xia XH, 2009, PHYLOGENETIC HANDBOOK: A PRACTICAL APPROACH TO PHYLOGENETIC ANALYSIS AND HYPOTHESIS TESTING, 2ND EDITION, P615; YOSHIKOSHI K, 1975, B JPN SOC SCI FISH, V41, P929; Zhang JJ, 2013, BIOINFORMATICS, V29, P2869, DOI 10.1093/bioinformatics/btt499 47 0 0 2 7 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0025-3154 1469-7769 J MAR BIOL ASSOC UK J. Mar. Biol. Assoc. U.K. MAR 2018 98 2 231 243 10.1017/S002531541600120X 13 Marine & Freshwater Biology Marine & Freshwater Biology FY5NU WOS:000426876800003 2018-11-22 J Schaefer, M; Menz, S; Jeltsch, F; Zurell, D Schaefer, Merlin; Menz, Stephan; Jeltsch, Florian; Zurell, Damaris sOAR: a tool for modelling optimal animal life-history strategies in cyclic environments ECOGRAPHY English Article OPTIMAL ANNUAL ROUTINES; MIGRATORY BIRDS; BEHAVIOR; BIOLOGY; ECOLOGY; PHYSIOLOGY; CONTEXT Periodic environments determine the life cycle of many animals across the globe and the timing of important life history events, such as reproduction and migration. These adaptive behavioural strategies are complex and can only be fully understood (and predicted) within the framework of natural selection in which species adopt evolutionary stable strategies. We present sOAR, a powerful and user-friendly implementation of the well-established framework of optimal annual routine modelling. It allows determining optimal animal life history strategies under cyclic environmental conditions using stochastic dynamic programming. It further includes the simulation of population dynamics under the optimal strategy. sOAR provides an important tool for theoretical studies on the behavioural and evolutionary ecology of animals. It is especially suited for studying bird migration. In particular, we integrated options to differentiate between costs of active and passive flight into the optimal annual routine modelling framework, as well as options to consider periodic wind conditions affecting flight energetics. We provide an illustrative example of sOAR where food supply in the wintering habitat of migratory birds significantly alters the optimal timing of migration. sOAR helps improving our understanding of how complex behaviours evolve and how behavioural decisions are constrained by internal and external factors experienced by the animal. Such knowledge is crucial for anticipating potential species' response to global environmental change. [Schaefer, Merlin; Jeltsch, Florian] Univ Potsdam, Inst Biochem & Biol, Potsdam, Germany; [Schaefer, Merlin] Leibniz Ctr Agr Landscape Res ZALF, Muncheberg, Germany; [Menz, Stephan] Univ Potsdam, Inst Math, Potsdam, Germany; [Menz, Stephan] Bayer AG, Drug Discovery, Pharmaceut, Res Pharmacokinet, Berlin, Germany; [Zurell, Damaris] Swiss Fed Res Inst WSL, Birmensdorf, Switzerland Schaefer, M (reprint author), Univ Potsdam, Inst Biochem & Biol, Potsdam, Germany. merlin.schaefer@uni-potsdam.de Zurell, Damaris/0000-0002-4628-3558 DIP grants (DFG) [NA 846/1-1, WI 3576/1-1]; DFG-GRK [2118/1]; People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme under REA [624958]; Swiss National Science Foundation SNSF [PZ00P3_168136/1] We acknowledge the generous support of DIP grants (DFG) NA 846/1-1 and WI 3576/1-1 and DFG-GRK grants 2118/1 to FJ in the framework of the BioMove Research Training Group. DZ received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no. 624958, and from the Swiss National Science Foundation SNSF (grant no. PZ00P3_168136/1). Alerstam T., 1990, BIRD MIGRATION; Barta Z, 2008, PHILOS T R SOC B, V363, P211, DOI 10.1098/rstb.2007.2136; Bauer S, 2013, J ANIM ECOL, V82, P498, DOI 10.1111/1365-2656.12054; Bellman R, 1957, DYNAMIC PROGRAMMING; BERTSEKAS D, 2005, DYNAMIC PROGRAMMING; Brent R. P., 1973, ALGORITHMS MINIMIZAT; Clark C. W., 2000, DYNAMIC STATE VARIAB; Fero O, 2008, ECOL APPL, V18, P1563, DOI 10.1890/07-1012.1; Hake M, 2003, OIKOS, V103, P385, DOI 10.1034/j.1600-0706.2003.12145.x; Helm B, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.0016; Hostetler JA, 2015, AUK, V132, P433, DOI 10.1642/AUK-14-211.1; HOUSTON A, 1988, NATURE, V332, P29, DOI 10.1038/332029a0; Houston A. I., 1999, MODELS ADAPTIVE BEHA; Jeltsch F, 2013, MOV ECOL, V1, DOI 10.1186/2051-3933-1-6; Mangel M, 2015, B MATH BIOL, V77, P857, DOI 10.1007/s11538-014-9973-3; McNamara JM, 1998, J AVIAN BIOL, V29, P416, DOI 10.2307/3677160; McNamara JM, 2001, SIAM REV, V43, P413, DOI 10.1137/S0036144500385263; McNamara JM, 2008, PHILOS T R SOC B, V363, P301, DOI 10.1098/rstb.2007.2141; Nathan R, 2008, P NATL ACAD SCI USA, V105, P19052, DOI 10.1073/pnas.0800375105; Numata H., 2014, ANN LUNAR TIDAL CLOC; PARKER GA, 1990, NATURE, V348, P27, DOI 10.1038/348027a0; PENNYCUICK CJ, 1972, IBIS, V114, P178, DOI 10.1111/j.1474-919X.1972.tb02603.x; Stearns S. C., 2004, EVOLUTION LIFE HIST; Visser ME, 2010, PHILOS T R SOC B, V365, P3113, DOI 10.1098/rstb.2010.0111; Wilcove DS, 2008, PLOS BIOL, V6, P1361, DOI 10.1371/journal.pbio.0060188 25 1 1 3 7 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0906-7590 1600-0587 ECOGRAPHY Ecography MAR 2018 41 3 551 557 10.1111/ecog.03328 7 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology FY3MY WOS:000426725400011 Bronze 2018-11-22 J Hulsmann, L; Bugmann, H; Cailleret, M; Brang, P Hulsmann, Lisa; Bugmann, Harald; Cailleret, Maxime; Brang, Peter How to kill a tree: empirical mortality models for 18 species and their performance in a dynamic forest model ECOLOGICAL APPLICATIONS English Article dynamic vegetation models; empirical mortality models; European tree species; forest inventory data; forest reserves; generalized logistic regression; individual tree mortality; tree growth LIFE-HISTORY STRATEGIES; WESTERN UNITED-STATES; CLIMATE-CHANGE; VEGETATION MODELS; BRITISH-COLUMBIA; MOUNTAIN FORESTS; FUNCTIONAL TYPES; GROWTH-PATTERNS; SHADE TOLERANCE; RESEARCH PLOTS Dynamic Vegetation Models (DVMs) are designed to be suitable for simulating forest succession and species range dynamics under current and future conditions based on mathematical representations of the three key processes regeneration, growth, and mortality. However, mortality formulations in DVMs are typically coarse and often lack an empirical basis, which increases the uncertainty of projections of future forest dynamics and hinders their use for developing adaptation strategies to climate change. Thus, sound tree mortality models are highly needed. We developed parsimonious, species-specific mortality models for 18 European tree species using >90,000 records from inventories in Swiss and German strict forest reserves along a considerable environmental gradient. We comprehensively evaluated model performance and incorporated the new mortality functions in the dynamic forest model ForClim. Tree mortality was successfully predicted by tree size and growth. Only a few species required additional covariates in their final model to consider aspects of stand structure or climate. The relationships between mortality and its predictors reflect the indirect influences of resource availability and tree vitality, which are further shaped by species-specific attributes such as maximum longevity and shade tolerance. Considering that the behavior of the models was biologically meaningful, and that their performance was reasonably high and not impacted by changes in the sampling design, we suggest that the mortality algorithms developed here are suitable for implementation and evaluation in DVMs. In the DVM ForClim, the new mortality functions resulted in simulations of stand basal area and species composition that were generally close to historical observations. However, ForClim performance was poorer than when using the original, coarse mortality formulation. The difficulties of simulating stand structure and species composition, which were most evident for Fagus sylvatica L. and in long-term simulations, resulted from feedbacks between simulated growth and mortality as well as from extrapolation to very small and very large trees. Growth and mortality processes and their species-specific differences should thus be revisited jointly, with a particular focus on small andvery large trees in relation to their shade tolerance. [Hulsmann, Lisa; Brang, Peter] WSL Swiss Fed Inst Forest Snow & Landscape Res, Forest Resources & Management, Zurcherstr 111, CH-8903 Birmensdorf, Switzerland; [Hulsmann, Lisa; Bugmann, Harald; Cailleret, Maxime] Swiss Fed Inst Technol, Inst Terr Ecosyst, Forest Ecol, Univ Str 16, CH-8092 Zurich, Switzerland; [Hulsmann, Lisa] Univ Regensburg, Theoret Ecol, Univ Str 31, D-93053 Regensburg, Germany; [Cailleret, Maxime] WSL Swiss Fed Inst Forest Snow & Landscape Res, Forest Dynam, Zurcherstr 111, CH-8903 Birmensdorf, Switzerland Hulsmann, L (reprint author), WSL Swiss Fed Inst Forest Snow & Landscape Res, Forest Resources & Management, Zurcherstr 111, CH-8903 Birmensdorf, Switzerland.; Hulsmann, L (reprint author), Swiss Fed Inst Technol, Inst Terr Ecosyst, Forest Ecol, Univ Str 16, CH-8092 Zurich, Switzerland.; Hulsmann, L (reprint author), Univ Regensburg, Theoret Ecol, Univ Str 31, D-93053 Regensburg, Germany. lisa.huelsmann@ur.de Hulsmann, Lisa/B-6680-2017 Hulsmann, Lisa/0000-0003-4252-2715 Federal Office of the Environment; Swiss National Science Foundation [31003A_140968] This study relies on the enormous efforts invested in the monitoring of Swiss and German forest reserves since the 1950s. The monitoring in the Swiss reserves obtains significant funding by the Federal Office of the Environment. We would like to express our gratitude to Peter Meyer who kindly provided the data from Lower Saxony. In addition, we like to thank Nicolas Bircher and Johannes Sutmoller for processing the climate data and Andreas Ruckstuhl and Jurgen Zell for valuable statistical discussions. This study was funded by the Swiss National Science Foundation project "Predicting growth-dependent tree mortality: a key challenge for population ecology" (grant no. 31003A_140968). Adams HD, 2013, FRONT PLANT SCI, V4, DOI 10.3389/fpls.2013.00438; Allen CD, 2015, ECOSPHERE, V6, DOI 10.1890/ES15-00203.1; Allen CD, 2010, FOREST ECOL MANAG, V259, P660, DOI 10.1016/j.foreco.2009.09.001; Ammer C., 1996, FORSTLICHE FORSCHUNG; Anderegg WRL, 2015, NEW PHYTOL, V208, P674, DOI 10.1111/nph.13477; Bigler C, 2004, ECOL APPL, V14, P902, DOI 10.1890/03-5011; Bircher N., 2015, THESIS; Bircher N, 2015, ECOL APPL, V25, P1303, DOI 10.1890/14-1462.1; Brang P., 2011, WALDRESERVATE 50 JAH; Brang P., 2014, 100 JAHRE FORSCHUNG, P212; Brasier C. M., 2000, ELMS BREEDING CONSER, P61, DOI DOI 10.1007/978-1-4615-4507-1_4; Bravo-Oviedo A, 2006, FOREST ECOL MANAG, V222, P88, DOI 10.1016/j.foreco.2005.10.016; Breiman L., 1984, CLASSIFICATION REGRE; BRZEZIECKI B, 1994, FOREST ECOL MANAG, V69, P167, DOI 10.1016/0378-1127(94)90227-5; BUCHMAN RG, 1983, CAN J FOREST RES, V13, P601, DOI 10.1139/x83-087; Bugmann H, 2001, CLIMATIC CHANGE, V51, P259, DOI 10.1023/A:1012525626267; Bugmann H, 1996, J VEG SCI, V7, P359, DOI 10.2307/3236279; Bugmann H., 1994, THESIS; Bugmann HKM, 1996, ECOLOGY, V77, P2055, DOI 10.2307/2265700; Bugmann HKM, 2000, ECOL APPL, V10, P95, DOI 10.1890/1051-0761(2000)010[0095:EFCABA]2.0.CO;2; Burkhart H. E., 2012, MODELING FOREST TREE; Cailleret M, 2017, GLOBAL CHANGE BIOL, V23, P1675, DOI 10.1111/gcb.13535; Cailleret M, 2016, ECOL APPL, V26, P1827, DOI 10.1890/15-1402.1; Canham CD, 2016, ECOSPHERE, V7, DOI 10.1002/ecs2.1424; Condes S, 2015, EUR J FOREST RES, V134, P1095, DOI 10.1007/s10342-015-0912-0; Cressie N, 2009, ECOL APPL, V19, P553, DOI 10.1890/07-0744.1; Das AJ, 2016, ECOLOGY, V97, P2616, DOI 10.1002/ecy.1497; de Groot RS, 2002, ECOL ECON, V41, P393, DOI 10.1016/S0921-8009(02)00089-7; Didion M, 2011, CLIMATIC CHANGE, V109, P647, DOI 10.1007/s10584-011-0054-4; Dietze MC, 2011, GLOBAL CHANGE BIOL, V17, P3312, DOI 10.1111/j.1365-2486.2011.02477.x; Dobbertin M, 2005, EUR J FOREST RES, V124, P319, DOI 10.1007/s10342-005-0085-3; Eid T, 2001, FOREST ECOL MANAG, V154, P69, DOI 10.1016/S0378-1127(00)00634-4; Ellenberg H, 2009, VEGETATION ECOLOGY C; Evans MR, 2016, ECOL EVOL, V6, P4812, DOI 10.1002/ece3.2217; FRANKLIN JF, 1987, BIOSCIENCE, V37, P550, DOI 10.2307/1310665; Friend AD, 2014, P NATL ACAD SCI USA, V111, P3280, DOI 10.1073/pnas.1222477110; Gillner S, 2013, FOREST ECOL MANAG, V302, P372, DOI 10.1016/j.foreco.2013.03.032; GIVNISH TJ, 1988, AUST J PLANT PHYSIOL, V15, P63, DOI 10.1071/PP9880063; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; Grote R, 2016, TREES-STRUCT FUNCT, V30, P1467, DOI 10.1007/s00468-016-1446-x; HARCOMBE PA, 1987, BIOSCIENCE, V37, P557, DOI 10.2307/1310666; Harrell FE, 2015, REGRESSION MODELING; Hartig F, 2012, J BIOGEOGR, V39, P2240, DOI 10.1111/j.1365-2699.2012.02745.x; HASENAUER H., 2006, SUSTAINABLE FOREST M; Hastie T, 2001, ELEMENTS STAT LEARNI; Hawkes C, 2000, ECOL MODEL, V126, P225, DOI 10.1016/S0304-3800(00)00267-2; Hein S, 2009, FORESTRY, V82, P361, DOI 10.1093/forestry/cpn043; Heiri C., 2011, WALDRESERVATE 50 JAH, P74; Hillgarter F., 1971, THESIS; Holzwarth F, 2013, J ECOL, V101, P220, DOI 10.1111/1365-2745.12015; Hosmer DW, 2000, APPL LOGISTIC REGRES; Hulsmann L, 2017, CAN J FOREST RES, V47, P890, DOI 10.1139/cjfr-2016-0224; Hulsmann L, 2016, ECOL APPL, V26, P2463, DOI 10.1002/eap.1388; Keane RE, 2001, CLIMATIC CHANGE, V51, P509, DOI 10.1023/A:1012539409854; Kobe RK, 1997, CAN J FOREST RES, V27, P227, DOI 10.1139/cjfr-27-2-227; Kuhn M., 2013, APPL PREDICTIVE MODE; Larocque GR, 2011, ECOL MODEL, V222, P2570, DOI 10.1016/j.ecolmodel.2010.08.035; Larson AJ, 2010, CAN J FOREST RES, V40, P2091, DOI 10.1139/X10-149; Loehle C, 1996, ECOL MODEL, V90, P1, DOI 10.1016/0304-3800(96)83709-4; LORIMER CG, 1984, B TORREY BOT CLUB, V111, P193, DOI 10.2307/2996019; Lutz JA, 2015, NORTHWEST SCI, V89, P255, DOI 10.3955/046.089.0306; Manion P. D., 1981, TREE DIS CONCEPTS; Manusch C, 2012, ECOL MODEL, V243, P101, DOI 10.1016/j.ecolmodel.2012.06.008; McDowell NG, 2013, NEW PHYTOL, V200, P289, DOI 10.1111/nph.12502; Meddens AJH, 2012, ECOL APPL, V22, P1876, DOI 10.1890/11-1785.1; Meir P, 2015, NEW PHYTOL, V207, P28, DOI 10.1111/nph.13382; Meyer P, 2011, FOREST ECOL MANAG, V261, P342, DOI 10.1016/j.foreco.2010.08.037; Meyer P., 2015, NATURWALDER NIEDERSA, V2; Meyer P., 2006, NATURWALDER NIEDERSA, V1; Millar CI, 2015, SCIENCE, V349, P823, DOI 10.1126/science.aaa9933; Mina M., 2015, REGIONAL ENV CHANGE, V17, P49; MONSERUD RA, 1976, FOREST SCI, V22, P438; MOORE AD, 1989, ECOL MODEL, V45, P63, DOI 10.1016/0304-3800(89)90100-2; Mosteller F., 1977, DATA ANAL REGRESSION; Moustakas A, 2015, BMC ECOL, V15, DOI 10.1186/s12898-015-0038-8; Neuner S, 2015, GLOBAL CHANGE BIOL, V21, P935, DOI 10.1111/gcb.12751; Peterken GF, 1996, FORESTRY, V69, P125, DOI 10.1093/forestry/69.2.125; R Core Team, 2015, R STAT SOFTW R FDN S; Rasche L, 2012, ECOL MODEL, V232, P133, DOI 10.1016/j.ecolmodel.2012.03.004; Reyer CPO, 2015, J ECOL, V103, P5, DOI 10.1111/1365-2745.12337; Rowland L, 2015, NATURE, V528, P119, DOI 10.1038/nature15539; Ruiz-Benito P, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0056843; Sala A, 2010, NEW PHYTOL, V186, P274, DOI 10.1111/j.1469-8137.2009.03167.x; San-Miguel-Ayanz J, 2016, EUROPEAN ATLAS FORES; Seidl R, 2011, ECOL MODEL, V222, P903, DOI 10.1016/j.ecolmodel.2010.09.040; Sims A, 2009, ANN BOT FENN, V46, P336, DOI 10.5735/085.046.0409; Smith B, 2001, GLOBAL ECOL BIOGEOGR, V10, P621, DOI 10.1046/j.1466-822X.2001.00256.x; Stahel W., 2015, REGR0 BUILDING REGRE; Steinkamp J, 2015, J ECOL, V103, P31, DOI 10.1111/1365-2745.12335; Stephenson NL, 2011, ECOL MONOGR, V81, P527, DOI 10.1890/10-1077.1; Steyerberg EW, 2010, EPIDEMIOLOGY, V21, P128, DOI 10.1097/EDE.0b013e3181c30fb2; Svoboda M, 2010, FOREST ECOL MANAG, V260, P707, DOI 10.1016/j.foreco.2010.05.027; Temperli C, 2013, ECOL MONOGR, V83, P383, DOI 10.1890/12-1503.1; Temperli C, 2012, ECOL APPL, V22, P2065, DOI 10.1890/12-0210.1; Valladares F, 2008, ANNU REV ECOL EVOL S, V39, P237, DOI 10.1146/annurev.ecolsys.39.110707.173506; van Mantgem PJ, 2009, SCIENCE, V323, P521, DOI 10.1126/science.1165000; WARING RH, 1987, BIOSCIENCE, V37, P569, DOI 10.2307/1310667; Wehrli A, 2005, FOREST ECOL MANAG, V205, P149, DOI 10.1016/j.foreco.2004.10.043; Wehrli A, 2007, EUR J FOREST RES, V126, P131, DOI 10.1007/s10342-006-0142-6; Weiskittel AR, 2011, FOREST GROWTH AND YIELD MODELING, P1, DOI 10.1002/9781119998518; Wernsdorfer H, 2008, ECOL MODEL, V218, P290, DOI 10.1016/j.ecolmodel.2008.07.017; Woolley T, 2012, INT J WILDLAND FIRE, V21, P1, DOI 10.1071/WF09039; Wullschleger SD, 2014, ANN BOT-LONDON, V114, P1, DOI 10.1093/aob/mcu077; Wunder J., 2007, THESIS; Wunder J, 2008, OIKOS, V117, P815, DOI 10.1111/j.2008.0030-1299.16371.x; Wunder J, 2006, ECOL MODEL, V197, P196, DOI 10.1016/j.ecolmodel.2006.02.037; Wyckoff PH, 2002, J ECOL, V90, P604, DOI 10.1046/j.1365-2745.2002.00691.x; Yang YQ, 2013, FOREST SCI, V59, P177, DOI 10.5849/forsci.10-092 108 0 0 14 17 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1051-0761 1939-5582 ECOL APPL Ecol. Appl. MAR 2018 28 2 522 540 10.1002/eap.1668 19 Ecology; Environmental Sciences Environmental Sciences & Ecology FY0KE WOS:000426499100020 29266516 2018-11-22 J Modesto, V; Ilarri, M; Souza, AT; Lopes-Lima, M; Douda, K; Clavero, M; Sousa, R Modesto, Vanessa; Ilarri, Martina; Souza, Allan T.; Lopes-Lima, Manuel; Douda, Karel; Clavero, Miguel; Sousa, Ronaldo Fish and mussels: Importance of fish for freshwater mussel conservation FISH AND FISHERIES English Article co-extinctions; fish; freshwater mussels; hosts; secondary extinctions; Unionida MARGARITIFERA-MARGARITIFERA L.; LIFE-HISTORY STRATEGIES; CLIMATE-CHANGE; BIVALVIA UNIONIDAE; MISSISSIPPI RIVER; HOST FISH; UTTERBACKIA-IMBECILLIS; BIOLOGICAL INVASIONS; TESTING HYPOTHESES; GLOBAL DIVERSITY Co-extinctions are increasingly recognized as one of the major processes leading to the global biodiversity crisis, but there is still limited scientific evidence on the magnitude of potential impacts and causal mechanisms responsible for the decline of affiliate (dependent) species. Freshwater mussels (Bivalvia, Unionida), one of the most threatened faunal groups on Earth, need to pass through a parasitic larval (glochidia) phase using fishes as hosts to complete their life cycle. Here, we provide a synthesis of published evidence on the fish-mussel relationship to explore possible patterns in co-extinction risk and discuss the main threats affecting this interaction. We retrieved 205 publications until December 2015, most of which were performed in North America, completed under laboratory conditions and were aimed at characterizing the life cycle and/or determining the suitable fish hosts for freshwater mussels. Mussel species were reported to infest between one and 53 fish species, with some fish families (e.g., Cyprinidae and Percidae) being used more often as hosts than others. No relationship was found between the breadth of host use and the extinction risk of freshwater mussels. Very few studies focused on threats affecting the fish-mussel relationship, a knowledge gap that may impair the application of future conservation measures. Here, we identify a variety of threats that may negatively affect fish species, document and discuss the concomitant impacts on freshwater mussels, and suggest directions for future studies. [Modesto, Vanessa; Sousa, Ronaldo] Univ Minho, Dept Biol, CBMA Ctr Mol & Environm Biol, Braga, Portugal; [Modesto, Vanessa; Ilarri, Martina; Lopes-Lima, Manuel; Sousa, Ronaldo] Interdisciplinary Ctr Marine & Environm Res CIIMA, Terminal De Cruzeiros do, Portugal; [Souza, Allan T.] Czech Acad Sci, Inst Hydrobiol, Biol Ctr, Ceske Budejovice, Czech Republic; [Lopes-Lima, Manuel] InBIO, CIBIO Res Ctr Biodivers & Genet Resources, Vairao, Vila Do Conde, Portugal; [Douda, Karel] Czech Univ Life Sci Prague, Dept Zool & Fisheries, Prague, Czech Republic; [Clavero, Miguel] Estn Biol Donana CSIC, Seville, Spain Modesto, V (reprint author), Univ Minho, Dept Biol, CBMA Ctr Mol & Environm Biol, Braga, Portugal. vane.modesto@gmail.com Lopes-Lima, Manuel/N-1222-2014; CBMA, CBMA/J-1937-2016; Douda, Karel/D-4759-2011 Lopes-Lima, Manuel/0000-0002-2761-7962; CBMA, CBMA/0000-0002-2841-2678; Douda, Karel/0000-0002-7778-5147; Ilarri, Martina/0000-0001-6780-8221; Souza, Allan/0000-0002-1851-681X; Sousa, Ronaldo/0000-0002-5961-5515 Fundacao para a Ciencia e a Tecnologia [SFRH/BD/108298/2015, SFRH/BPD/90088/2012, SFRH/BD/115728/2016, PTDC/AGRFOR/1627/2014]; Grantova Agentura Ceske Republiky [1305872S] Fundacao para a Ciencia e a Tecnologia, Grant/Award Number: SFRH/BD/108298/2015, SFRH/BPD/90088/2012, SFRH/BD/115728/2016, PTDC/AGRFOR/1627/2014; Grantova Agentura Ceske Republiky, Grant/Award Number: 1305872S Addy S, 2012, SCI TOTAL ENVIRON, V432, P318, DOI 10.1016/j.scitotenv.2012.05.079; Allan JD, 2005, BIOSCIENCE, V55, P1041, DOI 10.1641/0006-3568(2005)055[1041:OOIW]2.0.CO;2; ALLAN JD, 1993, BIOSCIENCE, V43, P32, DOI 10.2307/1312104; Almodovar A, 2012, GLOBAL CHANGE BIOL, V18, P1549, DOI 10.1111/j.1365-2486.2011.02608.x; Araujo R, 2003, J CONCHOL, V38, P53; Atkinson CL, 2014, ECOSYSTEMS, V17, P485, DOI 10.1007/s10021-013-9736-2; Audzijonyte A, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2012.1103; Barnhart MC, 2008, J N AM BENTHOL SOC, V27, P370, DOI 10.1899/07-093.1; BAUER G, 1994, J ANIM ECOL, V63, P933, DOI 10.2307/5270; BAUER G, 1987, Archiv fuer Hydrobiologie Supplement, V76, P413; BAUER G, 1987, Archiv fuer Hydrobiologie Supplement, V76, P403; Bauer G., 2001, ECOLOGY EVOLUTION FR, P223; Blazek R, 2006, FOLIA PARASIT, V53, P98, DOI 10.14411/fp.2006.013; Box JB, 1999, J N AM BENTHOL SOC, V18, P99, DOI 10.2307/1468011; Brainwood M, 2008, RIVER RES APPL, V24, P1325, DOI 10.1002/rra.1087; Brodie JF, 2014, TRENDS ECOL EVOL, V29, P664, DOI 10.1016/j.tree.2014.09.012; Brook BW, 2008, TRENDS ECOL EVOL, V23, P453, DOI 10.1016/j.tree.2008.03.011; BUDDENSIEK V, 1995, BIOL CONSERV, V74, P33, DOI 10.1016/0006-3207(95)00012-S; Bunn SE, 2002, ENVIRON MANAGE, V30, P492, DOI 10.1007/s00267-002-2737-0; Caldwell ML, 2016, FRESHWATER BIOL, V61, P1035, DOI 10.1111/fwb.12756; Castaldelli G, 2013, AQUAT CONSERV, V23, P405, DOI 10.1002/aqc.2345; Clavero M, 2015, J APPL ECOL, V52, P960, DOI 10.1111/1365-2664.12446; Clavero M, 2013, FRESHWATER BIOL, V58, P1190, DOI 10.1111/fwb.12120; Clavero M, 2011, FRESHWATER BIOL, V56, P2145, DOI 10.1111/j.1365-2427.2011.02642.x; Closs GP, 2016, CONSERV BIOL SER, P1, DOI 10.1017/CBO9781139627085; Comte L, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms6053; Comte L, 2013, FRESHWATER BIOL, V58, P625, DOI 10.1111/fwb.12081; Cope WG, 2008, J N AM BENTHOL SOC, V27, P451, DOI 10.1899/07-094.1; Correa SB, 2015, BIOL CONSERV, V191, P159, DOI 10.1016/j.biocon.2015.06.019; Costa-Pereira R, 2015, BIOL CONSERV, V191, P809, DOI 10.1016/j.biocon.2015.07.011; Cucherousset J, 2011, FISHERIES, V36, P215, DOI 10.1080/03632415.2011.574578; Darwall WRT, 2011, CONSERV LETT, V4, P474, DOI 10.1111/j.1755-263X.2011.00202.x; Dickinson B. D., 2008, ELLIPSARIA, V10, P7; Dillon R. T., 2000, ECOLOGY FRESHWATER M; Dodd BJ, 2006, FISH SHELLFISH IMMUN, V21, P473, DOI 10.1016/j.fsi.2006.02.002; Donrovich SW, 2017, AQUAT CONSERV, V27, P1325, DOI 10.1002/aqc.2759; Douda K, 2012, ANIM CONSERV, V15, P536, DOI 10.1111/j.1469-1795.2012.00546.x; Douda K, 2012, BIOL INVASIONS, V14, P127, DOI 10.1007/s10530-011-9989-7; Douda K, 2018, HYDROBIOLOGIA, V810, P265, DOI 10.1007/s10750-016-2895-3; Douda K, 2015, AQUACULTURE, V445, P5, DOI 10.1016/j.aquaculture.2015.04.008; Douda K, 2014, J APPL ECOL, V51, P1085, DOI 10.1111/1365-2664.12264; Douda K, 2013, DIVERS DISTRIB, V19, P933, DOI 10.1111/ddi.12044; Dubansky B, 2011, BIOL BULL-US, V220, P97, DOI 10.1086/BBLv220n2p97; Dudgeon D, 2006, BIOL REV, V81, P163, DOI 10.1017/S1464793105006950; Dunn RR, 2009, P R SOC B, V276, P3037, DOI 10.1098/rspb.2009.0413; Larios-Lopez JE, 2015, ITAL J ZOOL, V82, P404, DOI 10.1080/11250003.2015.1018351; Fishbase, 2015, GLOB SPEC DAT FISH S; Fisher GR, 2002, J MOLLUS STUD, V68, P159, DOI 10.1093/mollus/68.2.159; FitzHugh TW, 2011, RIVER RES APPL, V27, P1192, DOI 10.1002/rra.1417; FMCS (FRESHWATER MOLLUSK CONSERVATION SOCIETY), 2016, FRESHWATER MOLLUSK B, V19, P1; Freeman MC, 2003, AM FISH S S, V35, P255; Fritts MW, 2013, J MOLLUS STUD, V79, P163, DOI 10.1093/mollus/eyt008; Garner JT, 1999, AM MIDL NAT, V141, P277, DOI 10.1674/0003-0031(1999)141[0277:RCOQMB]2.0.CO;2; Gerke N, 2001, CONSERV GENET, V2, P287; Gozlan RE, 2008, FISH FISH, V9, P106, DOI 10.1111/j.1467-2979.2007.00267.x; Graf D. L., 2015, FRESHWATER MUSSELS U; Graf DL, 2007, J MOLLUS STUD, V73, P291, DOI 10.1093/mollus/eym029; Graham CT, 2009, J FISH BIOL, V74, P1143, DOI 10.1111/j.1095-8649.2009.02180.x; Gu ZG, 2014, BIOINFORMATICS, V30, P2811, DOI 10.1093/bioinformatics/btu393; Haag WR, 2015, OECOLOGIA, V178, P1159, DOI 10.1007/s00442-015-3310-x; Haag WR, 2013, BIOL REV, V88, P745, DOI 10.1111/brv.12028; Haag WR, 2012, NORTH AMERICAN FRESHWATER MUSSELS: NATURAL HISTORY, ECOLOGY, AND CONSERVATION, P1, DOI 10.1017/CBO9781139048217; Haag WR, 2003, J N AM BENTHOL SOC, V22, P78, DOI 10.2307/1467979; Hastie LC, 2003, FRESHWATER BIOL, V48, P2107, DOI 10.1046/j.1365-2427.2003.01153.x; Hermoso V, 2011, ECOL APPL, V21, P175, DOI 10.1890/09-2011.1; Hilborn R, 2003, ANNU REV ENV RESOUR, V28, P359, DOI 10.1146/annurev.energy.28.050302.105509; Horky P, 2014, FRESHWATER BIOL, V59, P1452, DOI 10.1111/fwb.12357; Howard A. D., 1915, Nautilus Boston Mass, V29; Jacobson PJ, 1997, ENVIRON TOXICOL CHEM, V16, P2384, DOI 10.1897/1551-5028(1997)016<2384:SOGSOF>2.3.CO;2; Jansen W, 2001, ECOL STU AN, V145, P185; Jenkins M, 2003, SCIENCE, V302, P1175, DOI 10.1126/science.1088666; Jones KE, 2008, NATURE, V451, P990, DOI 10.1038/nature06536; JOSHI A, 1995, EVOL ECOL, V9, P82, DOI 10.1007/BF01237699; Karlsson S, 2014, HYDROBIOLOGIA, V735, P179, DOI 10.1007/s10750-013-1679-2; KAT PW, 1984, BIOL REV, V59, P189, DOI 10.1111/j.1469-185X.1984.tb00407.x; Kelly DW, 2009, ECOLOGY, V90, P2047, DOI 10.1890/08-1085.1; Kelner DE, 2000, J FRESHWATER ECOL, V15, P371, DOI 10.1080/02705060.2000.9663755; Kerckhove D. T., 2015, PLOS ONE, V10; Kneeland SC, 2008, J N AM BENTHOL SOC, V27, P150, DOI 10.1899/07-036.1; Koh LP, 2004, SCIENCE, V305, P1632, DOI 10.1126/science.1101101; Kolar CS, 2001, TRENDS ECOL EVOL, V16, P199, DOI 10.1016/S0169-5347(01)02101-2; Koops MA, 2004, FISH FISH, V5, P120, DOI 10.1111/j.1467-2979.2004.00149.x; Kovach RP, 2016, REV FISH BIOL FISHER, V26, P135, DOI 10.1007/s11160-015-9414-x; Larinier M, 2002, B FR PECHE PISCIC, P181, DOI 10.1051/kmae/2002102; Leibold MA, 2004, ECOL LETT, V7, P601, DOI 10.1111/j.1461-0248.2004.00608.x; Lellis W. A., 1998, TRIANNUAL UNIONID RE, V16, P23; Lellis WA, 2013, J FISH WILDL MANAG, V4, P75, DOI 10.3996/102012-JFWM-094; Leprieur F., 2008, PLOS BIOL, V6, P28, DOI DOI 10.1371/J0URNAL.PBI0.0060028; Leveque C, 2008, HYDROBIOLOGIA, V595, P545, DOI 10.1007/s10750-007-9034-0; Levine TD, 2012, FRESHWATER BIOL, V57, P1854, DOI 10.1111/j.1365-2427.2012.02844.x; Liermann CR, 2012, BIOSCIENCE, V62, P539, DOI 10.1525/bio.2012.62.6.5; Liew JH, 2016, FRESHWATER BIOL, V61, P1421, DOI 10.1111/fwb.12781; Limburg KE, 2009, BIOSCIENCE, V59, P955, DOI 10.1525/bio.2009.59.11.7; Lopes-Lima M, 2017, BIOL REV, V92, P572, DOI 10.1111/brv.12244; Lopes-Lima M, 2014, HYDROBIOLOGIA, V735, P1, DOI 10.1007/s10750-014-1902-9; Marchetti MP, 2004, ECOL APPL, V14, P1507, DOI 10.1890/03-5173; Marchetti MP, 2001, ECOL APPL, V11, P530, DOI 10.2307/3060907; Mcmanamay RA, 2015, ECOL APPL, V25, P243, DOI 10.1890/14-0247.1; Miller-Struttmann NE, 2015, SCIENCE, V349, P1541, DOI 10.1126/science.aab0868; MINNS CK, 1995, CAN J FISH AQUAT SCI, V52, P1499, DOI 10.1139/f95-144; Moir ML, 2010, CONSERV BIOL, V24, P682, DOI 10.1111/j.1523-1739.2009.01398.x; Nakano S, 1996, FRESHWATER BIOL, V36, P711, DOI 10.1046/j.1365-2427.1996.d01-516.x; Newton TJ, 2008, J N AM BENTHOL SOC, V27, P424, DOI 10.1899/07-076.1; NEZLIN LP, 1994, CAN J ZOOL, V72, P15, DOI 10.1139/z94-003; Ondrackova M, 2005, J APPL ICHTHYOL, V21, P345, DOI 10.1111/j.1439-0426.2005.00682.x; Osterling ME, 2013, AQUAT CONSERV, V23, P564, DOI 10.1002/aqc.2320; Osterling ME, 2010, J APPL ECOL, V47, P759, DOI 10.1111/j.1365-2664.2010.01827.x; Padilla DK, 2004, FRONT ECOL ENVIRON, V2, P131; Palkovacs EP, 2011, TRENDS ECOL EVOL, V26, P616, DOI 10.1016/j.tree.2011.08.004; Pelicice FM, 2015, FISH FISH, V16, P697, DOI 10.1111/faf.12089; Poff NL, 2007, P NATL ACAD SCI USA, V104, P5732, DOI 10.1073/pnas.0609812104; Poulin R, 2011, FRESHWATER BIOL, V56, P676, DOI 10.1111/j.1365-2427.2010.02425.x; R Development Core Team, 2014, R LANG ENV STAT COMP; Rabalais NN, 2002, BIOSCIENCE, V52, P129, DOI 10.1641/0006-3568(2002)052[0129:BSIPGO]2.0.CO;2; Rach JJ, 2006, N AM J AQUACULT, V68, P348, DOI 10.1577/A05-077.1; RAUSHER MD, 1984, EVOLUTION, V38, P582, DOI 10.1111/j.1558-5646.1984.tb00324.x; Reichard M, 2015, P ROY SOC B-BIOL SCI, V282, P167, DOI 10.1098/rspb.2015.1063; Reis J, 2014, FOLIA PARASIT, V61, P81; Ricciardi A, 1998, J ANIM ECOL, V67, P613, DOI 10.1046/j.1365-2656.1998.00220.x; Roberts AD, 1999, J N AM BENTHOL SOC, V18, P477, DOI 10.2307/1468380; Rogers SO, 2001, J N AM BENTHOL SOC, V20, P582, DOI 10.2307/1468089; Ruckelshaus MH, 2002, ANNU REV ECOL SYST, V33, P665, DOI [10.1146/annurev.ecolsys.33.010802.150504, 10.1146/annurev.ecolysis.33.010802.150504]; Salonen JK, 2016, AQUAT CONSERV, V26, P1130, DOI 10.1002/aqc.2614; Santos RMB, 2015, SCI TOTAL ENVIRON, V511, P477, DOI 10.1016/j.scitotenv.2014.12.090; Schmidt C, 2010, AQUAT CONSERV, V20, P735, DOI 10.1002/aqc.1150; Schwalb AN, 2015, FRESHWATER BIOL, V60, P911, DOI 10.1111/fwb.12544; Schwalb AN, 2011, AQUAT SCI, V73, P223, DOI 10.1007/s00027-010-0171-6; Serb JM, 2008, ANN MO BOT GARD, V95, P248, DOI 10.3417/2006103; Simberloff D, 2013, TRENDS ECOL EVOL, V28, P58, DOI 10.1016/j.tree.2012.07.013; Simic VM, 2014, SCI TOTAL ENVIRON, V497, P642, DOI 10.1016/j.scitotenv.2014.07.092; Slavik O, 2017, PHYSIOL BEHAV, V171, P127, DOI 10.1016/j.physbeh.2017.01.010; Smith C, 2004, J ZOOL, V262, P107, DOI 10.1017/S0952836903004497; Smith TB, 2008, MOL ECOL, V17, P1, DOI 10.1111/j.1365-294X.2007.03607.x; Sousa R, 2016, SCI TOTAL ENVIRON, V547, P405, DOI 10.1016/j.scitotenv.2016.01.003; Spooner DE, 2012, OECOLOGIA, V168, P533, DOI 10.1007/s00442-011-2110-1; Spooner DE, 2011, GLOBAL CHANGE BIOL, V17, P1720, DOI 10.1111/j.1365-2486.2010.02372.x; Strayer DL, 2012, ECOL APPL, V22, P1780, DOI 10.1890/11-1536.1; Strayer DL, 2004, BIOSCIENCE, V54, P429, DOI 10.1641/0006-3568(2004)054[0429:CPOPMN]2.0.CO;2; Strayer DL, 2008, FRESHW ECOL SER, V1, P1; Taeubert JE, 2014, AQUAT CONSERV, V24, P231, DOI 10.1002/aqc.2385; Taeubert JE, 2010, AQUAT CONSERV, V20, P728, DOI 10.1002/aqc.1147; Taraschewski H, 2006, J HELMINTHOL, V80, P99, DOI 10.1079/JOH2006364; Terui A, 2014, ECOL EVOL, V4, P3004, DOI 10.1002/ece3.1135; THELER JL, 1987, NAUTILUS, V101, P143; Thomas F, 2005, BEHAV PROCESS, V68, P185, DOI 10.1016/j.beproc.2004.06.010; Van Hassel J. H., 2006, FRESHWATER BIVALVE E, P1; Varandas S, 2013, AQUAT CONSERV, V23, P374, DOI 10.1002/aqc.2321; Vaughn CC, 2008, J N AM BENTHOL SOC, V27, P409, DOI 10.1899/07-058.1; Vaughn CC, 2018, HYDROBIOLOGIA, V810, P15, DOI 10.1007/s10750-017-3139-x; Vaughn CC, 2012, FRESHWATER BIOL, V57, P982, DOI 10.1111/j.1365-2427.2012.02759.x; Vaughn CC, 2001, FRESHWATER BIOL, V46, P1431, DOI 10.1046/j.1365-2427.2001.00771.x; Verity PG, 2002, ENVIRON CONSERV, V29, P207, DOI 10.1017/S0376892902000139; Villeger S, 2015, DIVERS DISTRIB, V21, P223, DOI 10.1111/ddi.12242; Watters G. T., 1994, ANNOTATED BIBLIO REP; Watters G. Thomas, 2007, P51; Watters GT, 1996, BIOL CONSERV, V75, P79, DOI 10.1016/0006-3207(95)00034-8; Watters GT, 1998, AM MIDL NAT, V139, P49; Woolhouse MEJ, 2005, TRENDS ECOL EVOL, V20, P238, DOI 10.1016/j.tree.2005.02.009; Xenopoulos MA, 2005, GLOBAL CHANGE BIOL, V11, P1557, DOI 10.1111/j.1365-2486.2005.01008.x; YOUNG M, 1984, ARCH HYDROBIOL, V99, P405; Zaffarano PL, 2008, EVOLUTION, V62, P1418, DOI 10.1111/j.1558-5646.2008.00390.x; Zieritz A, 2018, HYDROBIOLOGIA, V810, P29, DOI 10.1007/s10750-017-3104-8; Zieritz A, 2012, ECOL EVOL, V2, P740, DOI 10.1002/ece3.220 163 2 2 17 24 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1467-2960 1467-2979 FISH FISH Fish. Fish. MAR 2018 19 2 244 259 10.1111/faf.12252 16 Fisheries Fisheries FY0LO WOS:000426503000004 2018-11-22 J Worthington, TA; Echelle, AA; Perkin, JS; Mollenhauer, R; Farless, N; Dyer, JJ; Logue, D; Brewer, SK Worthington, Thomas A.; Echelle, Anthony A.; Perkin, Joshuah S.; Mollenhauer, Robert; Farless, Nicole; Dyer, Joseph J.; Logue, Daniel; Brewer, Shannon K. The emblematic minnows of the North American Great Plains: A synthesis of threats and conservation opportunities FISH AND FISHERIES English Article conservation; flow alteration; fragmentation; Great Plains; habitat complexity; non-native species GRANDE SILVERY MINNOW; NOTROPIS-SIMUS-PECOSENSIS; ARKANSAS RIVER SHINER; LOWER YELLOWSTONE RIVERS; FRESH-WATER FISHES; MIDDLE RIO-GRANDE; AESTIVALIS COMPLEX TELEOSTEI; ECOLOGICAL RISK-ASSESSMENT; EFFECTIVE POPULATION-SIZE; LIFE-HISTORY ATTRIBUTES Anthropogenic changes to the Great Plains rivers of North America have had a large, negative effect on a reproductive guild of pelagic-broadcast spawning (PBS) cyprinid fishes. The group is phylogenetically diverse, with multiple origins of the PBS mode. However, because of incomplete life-history information, PBS designation often relies only on habitat and egg characteristics. We identified 17 known or candidate PBS fishes and systematically synthesized the literature on their biology and ecology in relation to major threats to persistence. Research output on an individual species was unrelated to conservation status, but positively correlated with breadth of distribution. The PBS species have opportunistic life-history strategies and are typically short-lived (generally 1-3years) fishes. Many PBS species have truncated ranges showing declines in both distribution and abundance, especially those endemic to the Rio Grande catchment. Fundamental habitat associations are unknown for many species, particularly regarding seasonal shifts and early life stages. Critical thermal tolerances have been quantified for five PBS species and are generally >35 degrees C. Turbidity and salinity changes are linked to responses at multiple life stages, but information is lacking on interactions between water quality and quantity. Hydrologic alteration appears to be a primary threat to PBS species, through complex interactions with landscape fragmentation, and habitat change. We highlight areas where scientific and management communities are lacking information and underline areas of potential conservation gain. [Worthington, Thomas A.; Mollenhauer, Robert; Farless, Nicole; Dyer, Joseph J.; Logue, Daniel] Oklahoma State Univ, Oklahoma Cooperat Fish & Wildlife Res Unit, Stillwater, OK 74078 USA; [Echelle, Anthony A.] Oklahoma State Univ, Dept Integrat Biol, Stillwater, OK 74078 USA; [Perkin, Joshuah S.] Texas A&M Univ, Dept Wildlife & Fisheries Sci, College Stn, TX 77843 USA; [Brewer, Shannon K.] Oklahoma State Univ, US Geol Survey, Oklahoma Cooperat Fish & Wildlife Res Unit, Stillwater, OK 74078 USA; [Worthington, Thomas A.] Univ Cambridge, Dept Zool, Conservat Sci Grp, Cambridge, England Brewer, SK (reprint author), Oklahoma State Univ, US Geol Survey, Oklahoma Cooperat Fish & Wildlife Res Unit, Stillwater, OK 74078 USA. shannon.brewer@okstate.edu Worthington, Thomas/0000-0002-8138-9075; Brewer, Shannon/0000-0002-1537-3921 AL-RAWL ABDUL HAKIM, 1964, TRANS KANS ACAD SCI, V67, P154, DOI 10.2307/3626689; Albers JL, 2017, J FISH BIOL, V91, P58, DOI 10.1111/jfb.13329; Albers J. L., 2014, KANSAS FISHES, P178; Allendorf FW, 2003, CONSERV BIOL, V17, P24, DOI 10.1046/j.1523-1739.2003.02365.x; Allendorf FW, 2012, CONSERVATION GENETIC; Alo D, 2005, CONSERV BIOL, V19, P1138, DOI 10.1111/j.1523-1739.2005.00081.x; Amori G, 2000, BIODIVERS CONSERV, V9, P785, DOI 10.1023/A:1008971823774; Archdeacon TP, 2015, WEST N AM NATURALIST, V75, P271, DOI 10.3398/064.075.0304; Archdeacon TP, 2015, N AM J FISH MANAGE, V35, P578, DOI 10.1080/02755947.2015.1023405; Archdeacon TP, 2012, N AM J FISH MANAGE, V32, P648, DOI 10.1080/02755947.2012.681013; BALON EK, 1975, J FISH RES BOARD CAN, V32, P821, DOI 10.1139/f75-110; Barko VA, 2004, AM MIDL NAT, V152, P369, DOI 10.1674/0003-0031(2004)152[0369:IEGASP]2.0.CO;2; Barko VA, 2003, J FRESHWATER ECOL, V18, P377, DOI 10.1080/02705060.2003.9663973; BATTLE HI, 1960, J FISH RES BOARD CAN, V17, P245, DOI 10.1139/f60-020; Beatty S, 2017, BIOL CONSERV, V209, P188, DOI 10.1016/j.biocon.2017.02.007; BECKER G. C, 1983, FISHES WISCONSIN; Berry Charles R. Jr, 2004, Great Plains Research, V14, P89; BESTGEN K. R., 1990, OCC PAP MUS SW BIOL, V6, P1; Bestgen KR, 2010, T AM FISH SOC, V139, P433, DOI 10.1577/T09-085.1; Bestgen KR, 1996, COPEIA, P41; BESTGEN KR, 1989, AM MIDL NAT, V122, P228, DOI 10.2307/2425907; BESTGEN KR, 1991, SOUTHWEST NAT, V36, P225, DOI 10.2307/3671925; Birkeland C, 2004, BIOSCIENCE, V54, P1021, DOI 10.1641/0006-3568(2004)054[1021:RDTCR]2.0.CO;2; Blanchet S, 2010, EVOL APPL, V3, P291, DOI 10.1111/j.1752-4571.2009.00110.x; Bonner T. H., 2000, THESIS, P147; Bonner T. H., 1997, HABITAT USE EC UNPUB, P72; Bonner TH, 2000, J FRESHWATER ECOL, V15, P189, DOI 10.1080/02705060.2000.9663736; Bonner TH, 2002, T AM FISH SOC, V131, P1203, DOI 10.1577/1548-8659(2002)131<1203:EOTOPC>2.0.CO;2; BOTTRELL CLYDE E., 1964, TRANS AMER MICROSCOP SOC, V83, P391, DOI 10.2307/3224757; Bounds S. M., 1977, Proceedings of the Arkansas Academy of Science, V31, P112; Braaten PJ, 2002, T AM FISH SOC, V131, P931, DOI 10.1577/1548-8659(2002)131<0931:LHAOFA>2.0.CO;2; BRANSON BA, 1967, AM MIDL NAT, V78, P126, DOI 10.2307/2423375; Brito D, 2008, BIOL CONSERV, V141, P2912, DOI 10.1016/j.biocon.2008.08.016; Brito D, 2009, TROP CONSERV SCI, V2, P353, DOI 10.1177/194008290900200305; BRYAN JD, 1984, T AM FISH SOC, V113, P557, DOI 10.1577/1548-8659(1984)113<557:IOATPA>2.0.CO;2; Buchanan T.M., 1973, Proceedings of the Arkansas Academy of Science, V27, P27; Buchanan Thomas M., 2003, Journal of the Arkansas Academy of Science, V57, P18; Burkhead NM, 2012, BIOSCIENCE, V62, P798, DOI 10.1525/bio.2012.62.9.5; BURR B M, 1980, Brimleyana, P53; Caldwell CA, 2010, N AM J AQUACULT, V72, P57, DOI 10.1577/A09-011.1; Ceballos G, 2015, SCI ADV, V1, DOI 10.1126/sciadv.1400253; Chase NM, 2015, CAN J FISH AQUAT SCI, V72, P1575, DOI 10.1139/cjfas-2014-0574; Cheek CA, 2016, ECOL FRESHW FISH, V25, P340, DOI 10.1111/eff.12214; Chernoff B., 1982, OCCAS PAP MUS ZOOL U, V698, P1; CLARK T, 1979, Transactions of the Kansas Academy of Science, V82, P188, DOI 10.2307/3627408; Coleman C. G., 2015, THESIS, P52; Contreras-Balderas S, 2002, REV FISH BIOL FISHER, V12, P241, DOI 10.1023/A:1025053001155; Contreras-Balderas S, 2002, REV FISH BIOL FISHER, V12, P219, DOI 10.1023/A:1025048106849; Conway KW, 2016, ICHTHYOL EXPLOR FRES, V26, P305; COOK JA, 1992, COPEIA, P36; Cooke Steven J., 2012, Endangered Species Research, V17, P179, DOI 10.3354/esr00426; Costigan KH, 2012, J HYDROL, V444, P90, DOI 10.1016/j.jhydrol.2012.04.008; Cote D, 2009, LANDSCAPE ECOL, V24, P101, DOI 10.1007/s10980-008-9283-y; Cowley DE, 2009, SCI MAR, V73, P47, DOI 10.3989/scimar.2009.73s1047; Cowley DE, 2006, REV FISH SCI, V14, P169, DOI 10.1080/10641260500341619; Cowley DE, 2006, REV FISH SCI, V14, P111, DOI 10.1080/10641260500341494; Crites JW, 2012, J FRESHWATER ECOL, V27, P19, DOI 10.1080/02705060.2011.599988; Cross F.B., 1986, P363; CROSS F B, 1983, Transactions of the Kansas Academy of Science, V86, P93, DOI 10.2307/3627917; Cross F. B., 1970, SWest. Nat., V14, P370, DOI 10.2307/3668976; Cross F. B., 1953, Texas Journal of Science, V5, P252; Cross F.B., 1987, P155; Cross F. B., 1995, FISHES IN KANSAS; Cross F. B., 1967, HDB FISHES KANSAS; Cross F. B., 1985, ASSESSMENT DEWATERIN, P161; CROSS FB, 1950, AM MIDL NAT, V43, P128, DOI 10.2307/2421883; CUNNINGHAM G. R., 1995, P S DAK ACAD SCI, V74, P55; Dale J, 2015, AGR WATER MANAGE, V160, P144, DOI 10.1016/j.agwat.2015.07.007; Davenport SR, 2013, SOUTHWEST NAT, V58, P126, DOI 10.1894/0038-4909-58.1.126; DAVIS BJ, 1967, COPEIA, P1; Davis WN, 2010, FRESHWATER BIOL, V55, P2612, DOI 10.1111/j.1365-2427.2010.02480.x; Dawson V. K., 2003, INTEGRATED MANAGEMEN, P146; DEACON JE, 1979, FISHERIES, V4, P29; Dieterman DJ, 2005, J FRESHWATER ECOL, V20, P561, DOI 10.1080/02705060.2005.9664772; Dieterman DJ, 2004, T AM FISH SOC, V133, P577, DOI 10.1577/T03-002.1; Dieterman Douglas J., 2006, Prairie Naturalist, V38, P113; Dodds WK, 2004, BIOSCIENCE, V54, P205, DOI 10.1641/0006-3568(2004)054[0205:LOTETE]2.0.CO;2; Dudgeon D, 2006, BIOL REV, V81, P163, DOI 10.1017/S1464793105006950; Dudley R. K., 1997, HABITAT USE RIO GRAN; Dudley R. K., 2004, THESIS, P111; Dudley RK, 2007, ECOL APPL, V17, P2074, DOI 10.1890/06-1252.1; Durham BW, 2008, ECOL FRESHW FISH, V17, P528, DOI 10.1111/j.1600-0633.2008.00303.x; Durham BW, 2006, T AM FISH SOC, V135, P1644, DOI 10.1577/T05-133.1; Durham BW, 2014, AQUAT ECOL, V48, P91, DOI 10.1007/s10452-014-9469-0; Durham BW, 2009, T AM FISH SOC, V138, P666, DOI 10.1577/T07-234.1; Durham BW, 2009, COPEIA, P21, DOI 10.1643/CE-07-166; Durham BW, 2005, ENVIRON BIOL FISH, V72, P45, DOI 10.1007/s10641-004-4186-5; EBERLE M E, 1989, Transactions of the Kansas Academy of Science, V92, P24, DOI 10.2307/3628186; Eberle M. E., 2014, KANSAS FISHES, P155; Eberle Mark E., 1993, Transactions of the Kansas Academy of Science, V96, P114, DOI 10.2307/3628323; Eberle Mark E., 1997, Transactions of the Kansas Academy of Science, V100, P123, DOI 10.2307/3628000; ECHELLE AA, 1972, AM MIDL NAT, V88, P109, DOI 10.2307/2424492; Edwards R. J., 2013, E91R TX TEX PARKS WI, P40; Edwards RJ, 2002, REV FISH BIOL FISHER, V12, P119, DOI 10.1023/A:1025098229262; EDWARDS RJ, 1991, SOUTHWEST NAT, V36, P201, DOI 10.2307/3671922; Eisenhour David J., 2004, Bulletin Alabama Museum of Natural History, V23, P9; Eisenhour DJ, 1999, COPEIA, P969, DOI 10.2307/1447972; Etnier D. A, 1993, FISHES TENNESSEE; Everett SR, 2004, HYDROBIOLOGIA, V527, P183, DOI 10.1023/B:HYDR.0000043300.69401.66; Falke JA, 2011, ECOHYDROLOGY, V4, P682, DOI 10.1002/eco.158; Falke JA, 2010, T AM FISH SOC, V139, P1566, DOI 10.1577/T09-143.1; Fausch KD, 2002, BIOSCIENCE, V52, P483, DOI 10.1641/0006-3568(2002)052[0483:LTRBTG]2.0.CO;2; Fausch KD, 2008, BIOL INVASIONS, V10, P685, DOI 10.1007/s10530-007-9162-5; Fausch Kurt D., 1997, Ecological Studies, V125, P131; FELLEY J D, 1981, Southwestern Naturalist, V25, P564, DOI 10.2307/3670864; FELLEY JD, 1984, COPEIA, P442, DOI 10.2307/1445202; Finlayson B. J., 2000, ROTENONE USE FISHERI, P199; Flittner G. A., 1964, THESIS; Franssen NR, 2006, AM MIDL NAT, V156, P1, DOI 10.1674/0003-0031(2006)156[1:UOSITT]2.0.CO;2; Fuller P., 2015, USGS NONINDIGENOUS A; Fullerton AH, 2010, FRESHWATER BIOL, V55, P2215, DOI 10.1111/j.1365-2427.2010.02448.x; Furlow FB, 1996, ENVIRON BIOL FISH, V46, P382, DOI 10.1007/BF00005017; Galat DL, 1998, BIOSCIENCE, V48, P721, DOI 10.2307/1313335; Gates S, 2002, J ANIM ECOL, V71, P547, DOI 10.1046/j.1365-2656.2002.00634.x; Gaughan S., 2016, THESIS, P94; George AL, 2009, FISHERIES, V34, P529, DOI 10.1577/1548-8446-34.11.529; Gidmark NJ, 2014, FRESHWATER FISHES OF NORTH AMERICA, VOL 1: PETROMYZONTIDAE TO CATOSTOMIDAE, P354; Gido KB, 2007, ECOL FRESHW FISH, V16, P457, DOI 10.1111/j.1600-0633.2007.00235.x; Gido Keith B., 2002, Transactions of the Kansas Academy of Science, V105, P193, DOI 10.1660/0022-8443(2002)105[0193:LTCITF]2.0.CO;2; Gido KB, 2010, J N AM BENTHOL SOC, V29, P970, DOI 10.1899/09-116.1; GILBERT C R, 1978, Bulletin of the Florida State Museum Biological Sciences, V23, P1; Gilbert CR, 2017, ZOOTAXA, V4247, P501, DOI 10.11646/zootaxa.4247.5.1; Glibert PM, 2010, REV FISH SCI, V18, P211, DOI 10.1080/10641262.2010.492059; Goldstein R. J., 2000, AM AQUARIUM FISHES; GOTELLI NJ, 1993, OIKOS, V68, P36, DOI 10.2307/3545306; Griffith JA, 2003, J FRESHWATER ECOL, V18, P451, DOI 10.1080/02705060.2003.9663981; HALL GORDON E., 1956, SOUTHWESTERN NAT, V1, P16, DOI 10.2307/3668894; Hall RI, 1999, LIMNOL OCEANOGR, V44, P739, DOI 10.4319/lo.1999.44.3_part_2.0739; Hampton Douglas R., 1997, Proceedings of the South Dakota Academy of Science, V76, P11; Harel I, 2015, CELL, V160, P1013, DOI 10.1016/j.cell.2015.01.038; Harnik PG, 2012, TRENDS ECOL EVOL, V27, P608, DOI 10.1016/j.tree.2012.07.010; HARREL RC, 1967, AM MIDL NAT, V78, P428, DOI 10.2307/2485240; Hashim R, 2009, TROP LIFE SCI RES, V20, P29; Haslouer Stephen G., 2005, Transactions of the Kansas Academy of Science, V108, P32, DOI 10.1660/0022-8443(2005)108[0032:CSONFS]2.0.CO;2; HATCH MD, 1985, SOUTHWEST NAT, V30, P555, DOI 10.2307/3671049; Haworth MR, 2016, N AM J FISH MANAGE, V36, P744, DOI 10.1080/02755947.2016.1165772; Heard TC, 2012, WEST N AM NATURALIST, V72, P1; HEINS D C, 1981, Tulane Studies in Zoology and Botany, V22, P67; Hendrickson D. A., 2015, FISHES TEXAS PROJECT; Herbert ME, 2003, COPEIA, P273, DOI 10.1643/0045-8511(2003)003[0273:SVOHFA]2.0.CO;2; Herzog DP, 2009, J FRESHWATER ECOL, V24, P103, DOI 10.1080/02705060.2009.9664270; Hesse Larry W., 1994, Transactions of the Nebraska Academy of Sciences, V21, P99; Higgins CL, 2005, HYDROBIOLOGIA, V549, P197, DOI 10.1007/s10750-005-0844-7; HLOHOWSKYJ CP, 1989, COPEIA, P172; Hoagstrom CW, 2008, RIVER RES APPL, V24, P789, DOI 10.1002/rra.1082; Hoagstrom CW, 2008, COPEIA, P5, DOI 10.1643/CE-07-002; Hoagstrom CW, 2007, WEST N AM NATURALIST, V67, P161, DOI 10.3398/1527-0904(2007)67[161:ZPAFCO]2.0.CO;2; Hoagstrom Christopher W., 2006, Great Plains Research, V16, P117; Hoagstrom CW, 2015, CAN J FISH AQUAT SCI, V72, P527, DOI 10.1139/cjfas-2014-0191; Hoagstrom CW, 2015, FISH FISH, V16, P282, DOI 10.1111/faf.12054; Hoagstrom CW, 2014, J FRESHWATER ECOL, V29, P449, DOI 10.1080/02705060.2014.908422; Hoagstrom CW, 2011, BIOL CONSERV, V144, P21, DOI 10.1016/j.biocon.2010.07.015; Hoagstrom CW, 2010, AQUAT INVASIONS, V5, P141, DOI 10.3391/ai.2010.5.2.03; Hoagstrom CW, 2010, SOUTHWEST NAT, V55, P78, DOI 10.1894/GG-38.1; Hoagstrom Christopher W., 2006, Proceedings of the South Dakota Academy of Science, V85, P171; Hoagstrom Christopher W., 2009, Great Plains Research, V19, P27; Hoagstrom Christopher W., 2006, Proceedings of the South Dakota Academy of Science, V85, P213; Hoagstrom CW, 2005, TEX J SCI, V57, P35; Hollingsworth PR, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-272; Holmlund CM, 1999, ECOL ECON, V29, P253, DOI 10.1016/S0921-8009(99)00015-4; Houston J, 1998, CAN FIELD NAT, V112, P147; HRABIK R. A., 2015, FISHES NEBRASKA; HUBBS C, 1991, TEX J SCI, V43, P1; Hubbs C., 2008, ANNOTATED CHECKLIST, P87; Hubbs C. L., 1929, PUBL U OKLAHOMA BIOL, V1, P47; HUBBS CLARK, 1957, SOUTHWESTERN NAT, V2, P89, DOI 10.2307/3669496; HUBER R, 1992, ENVIRON BIOL FISH, V33, P153, DOI 10.1007/BF00002561; Hughes DA, 2005, RIVER RES APPL, V21, P899, DOI 10.1002/rra.857; Jackson ST, 2009, P NATL ACAD SCI USA, V106, P19685, DOI 10.1073/pnas.0901644106; Jelks HL, 2008, FISHERIES, V33, P372, DOI 10.1577/1548-8446-33.8.372; Johnston C.E., 1993, P600; Johnston CE, 1999, ENVIRON BIOL FISH, V55, P21, DOI 10.1023/A:1007576502479; Kehmeier JW, 2007, N AM J FISH MANAGE, V27, P750, DOI 10.1577/M06-016.1; Keller DL, 2014, ENVIRON MANAGE, V54, P465, DOI 10.1007/s00267-014-0318-7; KELSCH SW, 1994, J FRESHWATER ECOL, V9, P331, DOI 10.1080/02705060.1994.9664903; Kilgore D. L., 1965, Transactions of the Kansas Academy of Science, V68, P137, DOI 10.2307/3626356; Kuhajda B. R., 2006, STUDIES N AM DESERT, P72; Lee D. S., 1980, ATLAS N AM FRESHWATE; LEHTINEN SF, 1988, SOUTHWEST NAT, V33, P27, DOI 10.2307/3672085; Lindenmayer DB, 2006, HABITAT FRAGMENTATIO; Louda SM, 2003, CONSERV BIOL, V17, P73, DOI 10.1046/j.1523-1739.2003.02020.x; Lutterschmidt WI, 1997, CAN J ZOOL, V75, P1553, DOI 10.1139/z97-782; Luttrell Geffery R., 1995, Proceedings of the Oklahoma Academy of Science, V75, P61; Luttrell Geffery R., 2002, Transactions of the Kansas Academy of Science, V105, P153, DOI 10.1660/0022-8443(2002)105[0153:HCOTDO]2.0.CO;2; Luttrell GR, 1999, COPEIA, P981, DOI 10.2307/1447973; LYNCH JA, 1985, J SOIL WATER CONSERV, V40, P164; Lynch John D., 1996, Transactions of the Nebraska Academy of Sciences, V23, P65; MacKenzie D. L, 2006, OCCUPANCY ESTIMATION; Magana H. A., 2009, Reviews in Fisheries Science, V17, P468; Magana HA, 2013, REV FISH BIOL FISHER, V23, P507, DOI 10.1007/s11160-013-9313-y; Magana HA, 2012, ENVIRON BIOL FISH, V95, P201, DOI 10.1007/s10641-012-9977-5; Marchetti MP, 2004, ECOL APPL, V14, P1507, DOI 10.1890/03-5173; Marcogliese DJ, 2001, CAN J ZOOL, V79, P1331, DOI 10.1139/cjz-79-8-1331; Marks DE, 2001, TEX J SCI, V53, P327; MARSHALL C L, 1978, Proceedings of the Oklahoma Academy of Science, V58, P109; MATTHEWS W J, 1980, Southwestern Naturalist, V25, P51, DOI 10.2307/3671211; Matthews W.J., 1987, P111; MATTHEWS W J, 1974, Arkansas Academy of Science Proceedings, V28, P39; MATTHEWS WJ, 1979, AM MIDL NAT, V102, P374, DOI 10.2307/2424665; MATTHEWS WJ, 1990, FISHERIES, V15, P26, DOI 10.1577/1548-8446(1990)015<0026:PEOGWO>2.0.CO;2; MATTHEWS WJ, 1988, J N AM BENTHOL SOC, V7, P387, DOI 10.2307/1467298; Mayden R. L., 2004, HOMENAJE DOCTOR AR M, P299; Mayden RL, 2002, REV FISH BIOL FISHER, V12, P327, DOI 10.1023/A:1025056809814; McAllister CT, 2010, TEX J SCI, V62, P271; McCallum ML, 2006, HERPETOL CONSERV BIO, V1, P62; Medley CN, 2013, ECOHYDROLOGY, V6, P491, DOI 10.1002/eco.1373; MILLER DONALD R., 1953, PROC OKLAHOMA ACAD SCI, V34, P33; Miller R. J., 2004, FISHES OF OKLAHOMA; MILLER R R, 1986, Anales de la Escuela Nacional de Ciencias Biologicas Mexico, V30, P121; Miller R. R., 2005, FRESHWATER FISHES ME; MILLER RR, 1989, FISHERIES, V14, P22, DOI 10.1577/1548-8446(1989)014<0022:EONAFD>2.0.CO;2; MILLS CA, 1985, J FISH BIOL, V27, P209, DOI 10.1111/j.1095-8649.1985.tb03243.x; Miranda LE, 2014, RIVER RES APPL, V30, P347, DOI 10.1002/rra.2652; Miyazono S, 2015, SCI TOTAL ENVIRON, V511, P444, DOI 10.1016/j.scitotenv.2014.12.079; MOORE GEORGE A., 1950, TRANS AMER MICROSC SOC, V69, P69, DOI 10.2307/3223350; Moore George A., 1944, COPEIA, V1944, P209, DOI 10.2307/1438675; MORING JR, 1994, REHABILITATION OF FRESHWATER FISHERIES, P194; Moyer GR, 2005, MOL ECOL, V14, P1263, DOI 10.1111/j.1365-294X.2005.02481.x; Moyle Peter B., 2004, San Francisco Estuary & Watershed Science, V2, P1; Mueller JS, 2017, J FISH WILDL MANAG, V8, P79, DOI 10.3996/112015-JFWM-111; NatureServe, 2017, NATURESERVE EXPL ONL; Neebling TE, 2010, FISHERIES MANAG ECOL, V17, P369, DOI 10.1111/j.1365-2400.2010.00730.x; Nunn AD, 2003, FRESHWATER BIOL, V48, P579, DOI 10.1046/j.1365-2427.2003.01033.x; Offill K. R., 2003, THESIS, P80; OMERNIK JM, 1987, ANN ASSOC AM GEOGR, V77, P118, DOI 10.1111/j.1467-8306.1987.tb00149.x; Osborne MJ, 2014, MOL ECOL, V23, P5663, DOI 10.1111/mec.12970; Osborne MJ, 2013, CONSERV GENET, V14, P637, DOI 10.1007/s10592-013-0457-z; Osborne MJ, 2013, J HERED, V104, P437, DOI 10.1093/jhered/est013; Osborne MJ, 2012, EVOL APPL, V5, P553, DOI 10.1111/j.1752-4571.2011.00235.x; Osborne MJ, 2010, MOL ECOL, V19, P2832, DOI 10.1111/j.1365-294X.2010.04695.x; Osborne MJ, 2006, REV FISH SCI, V14, P127, DOI 10.1080/10641260500341544; Osborne MJ, 2005, ENVIRON BIOL FISH, V73, P463, DOI 10.1007/s10641-005-3215-3; Ostrand KG, 2004, T AM FISH SOC, V133, P1329, DOI 10.1577/T03-193.1; Ostrand KG, 2002, ECOL FRESHW FISH, V11, P137, DOI 10.1034/j.1600-0633.2002.00005.x; Ostrand KG, 2001, COPEIA, P563; Ostrand KG, 2001, T AM FISH SOC, V130, P742, DOI 10.1577/1548-8659(2001)130<0742:TDOAST>2.0.CO;2; Palmer MA, 2005, J APPL ECOL, V42, P208, DOI 10.1111/j.1365-2664.2005.01004.x; Palstra FP, 2008, MOL ECOL, V17, P3428, DOI 10.1111/j.1365-294X.2008.03842.x; Parham RW, 2009, SOUTHWEST NAT, V54, P382, DOI 10.1894/GG-28.1; Passell HD, 2007, ECOL APPL, V17, P2087, DOI 10.1890/06-1293.1; Patrikeev M, 2005, SOUTHWEST NAT, V50, P488, DOI 10.1894/0038-4909(2005)050[0488:OOTRSN]2.0.CO;2; Patton TM, 1998, CONSERV BIOL, V12, P1120, DOI 10.1046/j.1523-1739.1998.97087.x; PEARSON WD, 1989, OHIO J SCI, V89, P181; Pearsons T. N., 1989, THESIS, P89; Pegg MA, 2002, HYDROBIOLOGIA, V479, P155, DOI 10.1023/A:1021038207741; Pennock C. A., 2017, CANADIAN J FISHERIES; Pennock CA, 2017, AM MIDL NAT, V177, P57, DOI 10.1674/0003-0031-177.1.57; Perkin JS, 2011, RIVER RES APPL, V27, P566, DOI 10.1002/rra.1373; Perkin J. S., 2014, KANSAS FISHES, P181; Perkin JS, 2017, P NATL ACAD SCI USA, V114, P7373, DOI 10.1073/pnas.1618936114; Perkin JS, 2015, AQUAT CONSERV, V25, P639, DOI 10.1002/aqc.2501; Perkin JS, 2015, ECOL MONOGR, V85, P73, DOI 10.1890/14-0121.1; Perkin JS, 2013, T AM FISH SOC, V142, P1287, DOI 10.1080/00028487.2013.806352; Perkin JS, 2011, FISHERIES, V36, P371, DOI 10.1080/03632415.2011.597666; Perkin JS, 2009, AM MIDL NAT, V162, P276, DOI 10.1674/0003-0031-162.2.276; Petticrew M, 2001, BMJ-BRIT MED J, V322, P98, DOI 10.1136/bmj.322.7278.98; Pezold F., 1993, P SE FISHES COUNCIL, V27, P2; Pflieger W. L., 1997, FISHES MISSOURI; PIGG J, 1991, Proceedings of the Oklahoma Academy of Science, V71, P5; PIGG J, 1987, Proceedings of the Oklahoma Academy of Science, V67, P45; PIGG J, 1977, Proceedings of the Oklahoma Academy of Science, V57, P68; Pigg Jimmie, 1997, Proceedings of the Oklahoma Academy of Science, V77, P43; Pigg Jimmie, 1999, Proceedings of the Oklahoma Academy of Science, V79, P7; PLATANIA SP, 1991, SOUTHWEST NAT, V36, P186, DOI 10.2307/3671919; Platania SP, 1998, COPEIA, P559, DOI 10.2307/1447786; Poff NL, 2010, FRESHWATER BIOL, V55, P194, DOI 10.1111/j.1365-2427.2009.02272.x; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; POFF NL, 1990, ENVIRON MANAGE, V14, P629, DOI 10.1007/BF02394714; Polivka KM, 1999, ENVIRON BIOL FISH, V55, P265, DOI 10.1023/A:1007577411279; Pollard S. M., 2003, 47 ALB SUST RES DEV; POWER ME, 1995, BIOSCIENCE, V45, P159, DOI 10.2307/1312555; Pracheil BM, 2012, FISHERIES, V37, P449, DOI 10.1080/03632415.2012.722877; Price AL, 2010, N AM J FISH MANAGE, V30, P481, DOI 10.1577/M09-122.1; Pringle CM, 1997, J N AM BENTHOL SOC, V16, P425, DOI 10.2307/1468028; Propst D. L., 1999, 1 NEW MEX DEP GAM FI; PROPST DL, 1987, SOUTHWEST NAT, V32, P408, DOI 10.2307/3671468; PROPST DL, 1991, COPEIA, P29; Pullin AS, 2004, BIOL CONSERV, V119, P245, DOI 10.1016/j.biocon.2003.11.007; Quist MC, 2004, T AM FISH SOC, V133, P727, DOI 10.1577/T03-124.1; Rabeni Charles F., 1996, P111; RANEY EDWARD C., 1939, AMER MIDLAND NAT, V21, P674, DOI 10.2307/2420524; Reigh R.C., 1979, Prairie Naturalist, V11, P49; RHODES K, 1992, SOUTHWEST NAT, V37, P178, DOI 10.2307/3671666; Ridenour CJ, 2009, RIVER RES APPL, V25, P472, DOI 10.1002/rra.1175; Roach KA, 2015, CAN J FISH AQUAT SCI, V72, P1099, DOI 10.1139/cjfas-2014-0459; Robertson L., 1997, US C IRR DRAIN S 199, P407; ROBINSON DORTHEA TREVINO, 1959, COPEIA, V1959, P253, DOI 10.2307/1440404; Robison H.W., 1974, Proceedings of the Arkansas Academy of Science, V28, P59; Robison H.W., 1974, Proceedings of the Arkansas Academy of Science, V28, P65; ROBISON H W, 1974, Southwestern Naturalist, V19, P220, DOI 10.2307/3670289; Robison H. W., 1988, FISHES ARKANSAS; Rosenfeld J, 2003, T AM FISH SOC, V132, P953, DOI 10.1577/T01-126; Ross S. T., 2001, INLAND FISHES MISSIS; Royle JA, 2006, J AGR BIOL ENVIR ST, V11, P249, DOI 10.1198/108571106X129153; Royle JA, 2004, BIOMETRICS, V60, P108, DOI 10.1111/j.0006-341X.2004.00142.x; Sax DF, 2000, GLOBAL ECOL BIOGEOGR, V9, P363, DOI 10.1046/j.1365-2699.2000.00217.x; Schaefer JF, 2011, EVOL ECOL, V25, P1145, DOI 10.1007/s10682-011-9461-2; Scheurer JA, 2003, COPEIA, P1; Schleier JJ, 2008, BIOL INVASIONS, V10, P1277, DOI 10.1007/s10530-007-9202-1; Schlosser I.J., 1987, P17; SCHLOSSER IJ, 1990, ENVIRON MANAGE, V14, P621, DOI 10.1007/BF02394713; SCHLOSSER IJ, 1991, BIOSCIENCE, V41, P704, DOI 10.2307/1311765; Schramm HL, 2016, AM FISH S S, V84, P53; Shirey PD, 2008, J PALEOLIMNOL, V40, P263, DOI 10.1007/s10933-007-9156-4; Simon Thomas P., 1999, P97; Simons AM, 1999, COPEIA, P13, DOI 10.2307/1447380; Smith CD, 2014, AM MIDL NAT, V172, P160, DOI 10.1674/0003-0031-172.1.160; Smith P. W., 1979, FISHES ILLINOIS; Sophocleous M, 2002, HYDROGEOL J, V10, P52, DOI 10.1007/s10040-001-0170-8; Souchon Y, 2008, RIVER RES APPL, V24, P506, DOI 10.1002/rra.1134; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; STARRETT WC, 1950, AM MIDL NAT, V43, P112, DOI 10.2307/2421882; STARRETT WC, 1951, ECOLOGY, V32, P13, DOI 10.2307/1930969; STARRETT WC, 1950, ECOLOGY, V31, P216, DOI 10.2307/1932388; Steffensen KD, 2014, J FRESHWATER ECOL, V29, P413, DOI 10.1080/02705060.2014.909891; Stewart D. D., 1981, THESIS, P53; Sublette J. E., 1990, FISHES NEW MEXICO; Taylor C. M., 2014, KANSAS FISHES, P159; Taylor CM, 1996, COPEIA, P280, DOI 10.2307/1446844; TAYLOR CM, 1993, ECOGRAPHY, V16, P16, DOI 10.1111/j.1600-0587.1993.tb00054.x; TAYLOR CM, 1990, AM MIDL NAT, V123, P32, DOI 10.2307/2425757; Tewksbury JJ, 2014, BIOSCIENCE, V64, P300, DOI 10.1093/biosci/biu032; Thomas C., 2007, FRESHWATER FISHES TE; Troia MJ, 2016, ECOL EVOL, V6, P4654, DOI 10.1002/ece3.2225; Turner TF, 2006, P R SOC B, V273, P3065, DOI 10.1098/rspb.2006.3677; Underwood DM, 2003, COPEIA, P493; Urbanczyk A. C., 2012, THESIS, P74; US Fish and Wildlife Service, 2014, SPEC STAT ASS REP SH, P104; US Fish and Wildlife Service, 2001, UPD STAT REV SICKL C, P74; US Fish & Wildlife Service, 2010, RIO GRAND SILV MINN, P210; Warren ML, 2000, FISHERIES, V25, P7, DOI 10.1577/1548-8446(2000)025<0007:DDACSO>2.0.CO;2; Welker TL, 2004, ECOL FRESHW FISH, V13, P8, DOI 10.1111/j.0906-6691.2004.00036.x; Wilde G. R., 2007, DISTRIBUTION STATUS, P90; Wilde G. R., 2015, MONITORING RIPARIAN, P67; Wilde G. R, 2016, MIGRATION ARKANSAS R; Wilde GR, 2014, J FRESHWATER ECOL, V29, P453, DOI 10.1080/02705060.2014.908791; Wilde GR, 2013, J FRESHWATER ECOL, V28, P453, DOI 10.1080/02705060.2013.817358; Wilde GR, 2013, J FRESHWATER ECOL, V28, P445, DOI 10.1080/02705060.2013.785984; Wilde GR, 2008, T AM FISH SOC, V137, P1657, DOI 10.1577/T07-075.1; Wilde GR, 1999, TEX J SCI, V51, P203; Wilde GR, 2002, ENVIRON BIOL FISH, V65, P98, DOI 10.1023/A:1019620506520; Wilde GR, 2001, J FRESHWATER ECOL, V16, P403, DOI 10.1080/02705060.2001.9663829; Williams CS, 2007, ENVIRON BIOL FISH, V80, P7, DOI 10.1007/s10641-006-9118-0; Williams CS, 2006, AM MIDL NAT, V155, P84, DOI 10.1674/0003-0031(2006)155[0084:HALHAD]2.0.CO;2; WILLIAMS JE, 1990, J FISH BIOL, V37, P79, DOI 10.1111/j.1095-8649.1990.tb05023.x; WILLIAMS JE, 1989, FISHERIES, V14, P2, DOI 10.1577/1548-8446(1989)014<0002:FONAET>2.0.CO;2; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; WINSTON MR, 1991, T AM FISH SOC, V120, P98, DOI 10.1577/1548-8659(1991)120<0098:UEOFMS>2.3.CO;2; Witmer GW, 2011, CURR ZOOL, V57, P559, DOI 10.1093/czoolo/57.5.559; Worthington TA, 2016, ECOL MODEL, V342, P1, DOI 10.1016/j.ecolmodel.2016.09.016; Worthington TA, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0096599; Worthington TA, 2014, GLOBAL CHANGE BIOL, V20, P89, DOI 10.1111/gcb.12329; Yu SL, 2003, FISHERIES SCI, V69, P154, DOI 10.1046/j.1444-2906.2003.00600.x 353 1 1 2 4 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1467-2960 1467-2979 FISH FISH Fish. Fish. MAR 2018 19 2 271 307 10.1111/faf.12254 37 Fisheries Fisheries FY0LO WOS:000426503000006 2018-11-22 J Danko, A; Schaible, R; Pijanowska, J; Danko, MJ Danko, Aleksandra; Schaible, Ralf; Pijanowska, Joanna; Danko, Maciej J. Population density shapes patterns of survival and reproduction in Eleutheria dichotoma (Hydrozoa: Anthoathecata) MARINE BIOLOGY English Article K-SELECTION; LIFE-CYCLES; R-SELECTION; MORTALITY; CNIDARIA; SIZE; DYNAMICS; AGE; METAGENESIS; TEMPERATURE Budding hydromedusae have high reproductive rates due to asexual reproduction and can occur in high population densities along the coasts, specifically in tidal pools. In laboratory experiments, we investigated the effects of population density on the survival and reproductive strategies of a single clone of Eleutheria dichotoma. We found that sexual reproduction occurs with the highest rate at medium population densities. Increased sexual reproduction was associated with lower budding (asexual reproduction) and survival probability. Sexual reproduction results in the production of motile larvae that can, in contrast to medusae, seek to escape unfavorable conditions by actively looking for better environments. The successful settlement of a larva results in starting the polyp stage, which is probably more resistant to environmental conditions. This is the first study that has examined the life-history strategies of the budding hydromedusa E. dichotoma by conducting a long-term experiment with a relatively large sample size that allowed for the examination of age-specific mortality and reproductive rates. We found that most sexual and asexual reproduction occurred at the beginning of life following a very rapid process of maturation. The parametric models fitted to the mortality data showed that population density was associated with an increase in the rate of aging, an increase in the level of late-life mortality plateau, and a decrease in the hidden heterogeneity in individual mortality rates. The effects of population density on life-history traits are discussed in the context of resource allocation and the r/K-strategies' continuum concept. [Danko, Aleksandra; Schaible, Ralf; Danko, Maciej J.] Max Planck Inst Demog Res, Lab Evolutionary Biodemog, Konrad Zuse Str 1, D-18057 Rostock, Germany; [Pijanowska, Joanna] Univ Warsaw, Dept Hydrobiol, Zwirki & Wigury 101, PL-02089 Warsaw, Poland Danko, A; Danko, MJ (reprint author), Max Planck Inst Demog Res, Lab Evolutionary Biodemog, Konrad Zuse Str 1, D-18057 Rostock, Germany. adanko@demogr.mpg.de; danko@demogr.mpg.de Max Planck Institute for Demographic Research, Germany This work was funded by the Max Planck Institute for Demographic Research, Rostock, Germany, for A.D, R.S., and M.J.D. Bouillon J, 2004, SCI MAR, V68, P5, DOI 10.3989/scimar.2004.68s25; Camarda CG, 2012, J STAT SOFTW, V50, P1; Carey JR, 1995, EXP GERONTOL, V30, P605, DOI 10.1016/0531-5565(95)00013-5; Ceh J, 2015, SCI REP-UK, V5, DOI 10.1038/srep12037; Collins AG, 2002, J EVOLUTION BIOL, V15, P418, DOI 10.1046/j.1420-9101.2002.00403.x; COSTELLO JH, 1995, J PLANKTON RES, V17, P199, DOI 10.1093/plankt/17.1.199; Cox PR, 1972, LIFE TABLES; Danko MJ, 2017, EXP GERONTOL, V95, P107, DOI 10.1016/j.exger.2017.05.008; Danko MJ, 2015, J THEOR BIOL, V382, P137, DOI 10.1016/j.jtbi.2015.06.043; Danko MJ, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0186661; Eckman JE, 1996, J EXP MAR BIOL ECOL, V200, P207, DOI 10.1016/S0022-0981(96)02644-5; Fautin DG, 2002, CAN J ZOOL, V80, P1735, DOI 10.1139/Z02-133; Fraser C, 2006, J MAR BIOL ASSOC UK, V86, P699, DOI 10.1017/S0025315406013592; Gompertz B., 1825, PHILOS T ROY SOC LON, V115, P513, DOI DOI 10.1098/RSTL.1825.0026; HAUENSCHILD C, 1956, Z NATURFORSCH PT B, V11, P394; Hirano YM, 2000, SCI MAR, V64, P179, DOI 10.3989/scimar.2000.64s1179; Kaliszewicz A, 2013, ACTA ZOOL-STOCKHOLM, V94, P177, DOI 10.1111/j.1463-6395.2011.00536.x; Kawamura M, 2008, J MAR BIOL ASSOC UK, V88, P1601, DOI 10.1017/S0025315408002944; Klein J, 2003, SURVIVAL ANAL TECHNI, P243; KLEIVEN OT, 1992, OIKOS, V65, P197, DOI 10.2307/3545010; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Kozlowski J, 2006, POL J ECOL, V54, P585; Leissen S, 2009, STAT INFERENCE ECONO, P41; LOMNICKI A, 1978, J ANIM ECOL, V47, P461, DOI 10.2307/3794; Lomnicki A, 1988, POPULATION ECOLOGY I, P223; Ma XP, 2005, MAR BIOL, V147, P225, DOI 10.1007/s00227-004-1539-8; MAKEHAM WM, 1867, J I ACTUARIES, V13, P325; MANTEL N, 1967, BIOMETRICS, V23, P65, DOI 10.2307/2528282; Marshall DJ, 2007, BIOL BULL-US, V212, P6, DOI 10.2307/25066575; Mills CE, 2007, ENCY TIDEPOOLS ROCKY, P286; Missov T. I., 2016, PALGRAVE COMMUNICATI, V2, P15049, DOI 10.1057/palcomms.2015.49; Morandini AC, 2016, B MAR SCI, V92, P343, DOI 10.5343/bms.2016.1018; Ota R, 2000, MOL BIOL EVOL, V17, P798, DOI 10.1093/oxfordjournals.molbev.a026358; PETERS TM, 1977, ANNU REV ENTOMOL, V22, P431, DOI 10.1146/annurev.en.22.010177.002243; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Pietrzak B, 2015, EXP GERONTOL, V69, P1, DOI 10.1016/j.exger.2015.05.008; Pijanowska J, 2004, GENESIS, V38, P81, DOI 10.1002/gene.20000; Pletcher SD, 1999, J EVOLUTION BIOL, V12, P430; R Core Team, 2017, R LANG ENV STAT COMP; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.2307/3071970; Ringelhan F, 2015, THESIS; Schaible R, 2015, P NATL ACAD SCI USA, V112, P15701, DOI 10.1073/pnas.1521002112; SCHIERWATER B, 1989, J MORPHOL, V200, P255, DOI 10.1002/jmor.1052000304; Schierwater B, 1998, INVERTEBR REPROD DEV, V34, P139, DOI 10.1080/07924259.1998.9652646; Schierwater B., 1990, Advances in Invertebrate Reproduction, V5, P37; Schuchert P, 2009, REV SUISSE ZOOL, V116, P441, DOI 10.5962/bhl.part.117779; Stearns S., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; VAUPEL JW, 1979, DEMOGRAPHY, V16, P439, DOI 10.2307/2061224 49 1 1 1 1 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 0025-3162 1432-1793 MAR BIOL Mar. Biol. MAR 2018 165 3 48 10.1007/s00227-018-3309-z 10 Marine & Freshwater Biology Marine & Freshwater Biology FY4BE WOS:000426765000007 29497211 Other Gold, Green Published 2018-11-22 J Durkin, ES; Luong, LT Durkin, E. S.; Luong, L. T. Experimental evolution of infectious behaviour in a facultative ectoparasite JOURNAL OF EVOLUTIONARY BIOLOGY English Article artificial selection; Drosophila; evolution of parasitism; infectivity; Macrocheles muscaedomesticae; realized heritability DROSOPHILA-MACROCHELES SYSTEM; LIFE-HISTORY; PARASITISM; MITES; ACARI; HERITABILITY; REPRODUCTION; STRATEGIES; RESISTANCE; PHYLOGENY Parasitic lifestyles have evolved many times in animals, but how such life-history strategies evolved from free-living ancestors remains a great puzzle. Transitional symbiotic strategies, such as facultative parasitism, are hypothesized evolutionary stepping stones towards obligate parasitism. However, to consider this hypothesis, heritable genetic variation in infectious behaviour of transitional symbiotic strategies must exist. In this study, we experimentally evolved infectivity and estimated the additive genetic variation in a facultative parasite. We performed artificial selection experiments in which we selected for either increased or decreased propensity to infect in a facultatively parasitic mite (Macrocheles muscaedomesticae). Here, infectiousness was expressed in terms of mite attachment to a host (Drosophila hydei) and modelled as a threshold trait. Mites responded positively to selection for increased infectivity; realized heritability of infectious behaviour was significantly different from zero and estimated to be 16.6% (+/- 4.4% SE). Further, infection prevalence was monitored for 20 generations post-selection. Selected lines continued to display relatively high levels of infection, demonstrating a degree of genetic stability in infectiousness. Our study is the first to provide an estimate of heritability and additive genetic variation for infectious behaviour in a facultative parasite, which suggests natural selection can act upon facultative strategies with important implications for the evolution of parasitism. [Durkin, E. S.; Luong, L. T.] Univ Alberta, Dept Biol Sci, CW405,Biol Sci Bldg, Edmonton, AB T6G 2E9, Canada Durkin, ES (reprint author), Univ Alberta, Dept Biol Sci, CW405,Biol Sci Bldg, Edmonton, AB T6G 2E9, Canada. edurkin@ualberta.ca Natural Sciences and Engineering Research Council of Canada [435245] This research was funded by the Natural Sciences and Engineering Research Council of Canada, Discovery Grant #435245. We thank S. Fang and P. Phiri for their invaluable assistance with fly maintenance and some data collection. We also thank M. Polak for his help with heritability calculations and S. Bush for reviewing an earlier draft of our manuscript. ANDERSON RC, 1984, CAN J ZOOL, V62, P317, DOI 10.1139/z84-050; Athias-Binche F., 1993, Research and Reviews in Parasitology, V53, P73; ATHIASBINCHE F, 1993, CAN J ZOOL, V71, P1793, DOI 10.1139/z93-255; CROSS EA, 1988, ENVIRON ENTOMOL, V17, P309, DOI 10.1093/ee/17.2.309; Crossan J, 2007, EVOLUTION, V61, P675, DOI 10.1111/j.1558-5646.2007.00057.x; de Azevedo LH, 2015, PROG BIOL CONTROL, V19, P103, DOI 10.1007/978-3-319-15042-0_4; Dieterich C, 2009, TRENDS GENET, V25, P203, DOI 10.1016/j.tig.2009.03.006; Dowling A, 2015, PARASITE DIVERSITY AND DIVERSIFICATION: EVOLUTIONARY ECOLOGY MEETS PHYLOGENETICS, P265; Falconer D.S., 1996, INTRO QUANTITATIVE G; FARISH D J, 1971, Acarologia (Paris), V13, P16; Gilbert S. F., 2009, ECOLOGICAL DEV BIOL; HILL WG, 1971, BIOMETRICS, V27, P293, DOI 10.2307/2528996; Hoffmann AA, 2016, EVOLUTION, V70, DOI 10.1111/evo.12992; JALIL M, 1970, ANN ENTOMOL SOC AM, V63, P738, DOI 10.1093/aesa/63.3.738; LINDQUIST EE, 1989, CAN J ZOOL, V67, P1291, DOI 10.1139/z89-184; Littlewood DTJ, 1999, BIOL J LINN SOC, V68, P257, DOI 10.1006/bijl.1999.0341; Luong L.T., 2017, PARASITOLOGY, V23, P1; Luong LT, 2007, EVOLUTION, V61, P1391, DOI 10.1111/j.1558-5646.2007.00116.x; Luong LT, 2015, ECOL ENTOMOL, V40, P518, DOI 10.1111/een.12218; MASLOV DA, 1995, PARASITOL TODAY, V11, P30, DOI 10.1016/0169-4758(95)80106-5; Mironov SV, 2005, ZOOL ANZ, V243, P155, DOI 10.1016/j.jcz.2004.10.001; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; MUIR WM, 1986, BIOMETRICS, V42, P381, DOI 10.2307/2531058; Nachappa P, 2010, EVOL ECOL, V24, P631, DOI 10.1007/s10682-009-9318-0; Osche G., 1956, Verhandlungen der Deutschen Zoologischen Gesellschaft, V19, P391; Paterson S, 2007, P R SOC B, V274, P1467, DOI 10.1098/rspb.2006.0433; Polak M, 2003, J EVOLUTION BIOL, V16, P74, DOI 10.1046/j.1420-9101.2003.00500.x; Poulin R, 2007, EVOLUTIONARY ECOLOGY; Price P., 1980, EVOLUTIONARY BIOL PA; R Core Team, 2014, R LANG ENV STAT COMP; Reece SE, 2009, EVOL APPL, V2, P11, DOI 10.1111/j.1752-4571.2008.00060.x; Sgro CM, 2004, HEREDITY, V93, P241, DOI 10.1038/sj.hdy.6800532; Stasiuk SJ, 2012, EVODEVO, V3, DOI 10.1186/2041-9139-3-1; Stearns S., 1992, EVOLUTION LIFE HIST; WAAGE JK, 1979, BIOL J LINN SOC, V12, P187, DOI 10.1111/j.1095-8312.1979.tb00055.x; Weinstein SB, 2016, BIOL LETTERS, V12, DOI 10.1098/rsbl.2016.0324; West-Eberhard MJ, 2005, P NATL ACAD SCI USA, V102, P6543, DOI 10.1073/pnas.0501844102; Westwood JH, 2010, TRENDS PLANT SCI, V15, P227, DOI 10.1016/j.tplants.2010.01.004 38 0 0 4 5 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. MAR 2018 31 3 362 370 10.1111/jeb.13227 9 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity FY3OU WOS:000426731400003 29282821 2018-11-22 J Plard, F; Arlettaz, R; Schaub, M Plard, Floriane; Arlettaz, Raphael; Schaub, Michael Hoopoe males experience intra-seasonal while females experience inter-seasonal reproductive costs OECOLOGIA English Article Double-breeding; Environmental conditions; Individual quality; Trade-off; Upupa epops NATURAL-POPULATIONS; CLUTCH SIZE; PARENTAL INVESTMENT; INDIVIDUAL QUALITY; SEXUAL SELECTION; UPUPA-EPOPS; BROOD SIZE; TRADE-OFF; GREAT TIT; BIRDS Reproductive and survival costs due to reproductive investment are a central element for the evolution of life histories. Both intra- (reduction of reproductive performance of second brood due to investment in first brood) and inter-seasonal costs (reduction of reproductive performance or annual survival due to reproductive investment in preceding year) may appear in multiple breeding species. Knowledge about how trade-offs within and between seasons shape individual trajectories and influence fitness are crucial in life-history evolution, yet intra- and inter-seasonal reproductive costs are rarely analysed simultaneously. We investigated sex-specific differences in intra- and inter-seasonal reproductive and survival costs in response to previous reproductive effort in a monogamous, double-brooding bird, the hoopoe (Upupa epops), accounting for heterogeneity in individual and annual quality. Intra-seasonal reproductive costs were detected in males and inter-seasonal reproductive and survival costs were detected in females. In males, the probability of being a successful double breeder was negatively correlated with the number of hatchlings produced in the first brood. In females, the number of fledglings raised in the first brood was negatively correlated with the reproductive effort in the preceding season. Female annual survival was also negatively influenced by the number of broods produced in the previous reproductive season. Most of these reproductive costs were detected only in years with low productivity, suggesting that costs become evident when environmental conditions are harsh. Our results illustrate how different investment in current vs. future reproduction and survival shape different life-history strategies in males and females of a monogamous bird species. [Plard, Floriane; Schaub, Michael] Swiss Ornithol Inst, CH-6204 Sempach, Switzerland; [Arlettaz, Raphael] Univ Bern, Inst Ecol & Evolut, Div Conservat Biol, Baltzerstr 6a, CH-3012 Bern, Switzerland; [Arlettaz, Raphael] Swiss Ornithol Inst, Valais Field Stn, Rue Rhone 11, CH-1950 Sion, Switzerland Plard, F (reprint author), Swiss Ornithol Inst, CH-6204 Sempach, Switzerland. floriane.plard@vogelwarte.ch ANDERSSON M, 1980, ANIM BEHAV, V28, P536, DOI 10.1016/S0003-3472(80)80062-5; Arlettaz R, 2010, BIOSCIENCE, V60, P835, DOI 10.1525/bio.2010.60.10.10; Arlettaz R, 2010, J ORNITHOL, V151, P889, DOI 10.1007/s10336-010-0527-7; Barbraud C, 2005, ECOLOGY, V86, P682, DOI 10.1890/04-0075; Berube CH, 1999, ECOLOGY, V80, P2555, DOI 10.1890/0012-9658(1999)080[2555:IDLARS]2.0.CO;2; Birkhead TR, 1998, SPERM COMPETITION SE; BLACK JM, 1995, J ANIM ECOL, V64, P234, DOI 10.2307/5758; Bleu J, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2015.2600; Caro SM, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms10985; Chapman T, 2003, TRENDS ECOL EVOL, V18, P41, DOI 10.1016/S0169-5347(02)00004-6; Clutton-Brock TH, 2007, P R SOC B, V274, P3097, DOI 10.1098/rspb.2007.1138; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; Core Team R, 2014, R LANG ENV STAT COMP; Courchamp F, 1999, TRENDS ECOL EVOL, V14, P405, DOI 10.1016/S0169-5347(99)01683-3; Descamps S, 2009, BIOL LETTERS, V5, P278, DOI 10.1098/rsbl.2008.0704; DRENT RH, 1980, ARDEA, V68, P225; Festa-Bianchet M, 1998, AM NAT, V152, P367, DOI 10.1086/286175; Gelman A, 1992, STAT SCI, V7, P457, DOI DOI 10.1214/SS/1177011136; Griffith SC, 2002, MOL ECOL, V11, P2195, DOI 10.1046/j.1365-294X.2002.01613.x; Gruebler MU, 2008, ANIM BEHAV, V75, P1877, DOI 10.1016/j.anbehav.2007.12.002; HAHN DC, 1981, ANIM BEHAV, V29, P421, DOI 10.1016/S0003-3472(81)80101-7; Hamel S, 2010, ECOLOGY, V91, P2034, DOI 10.1890/09-1311.1; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HILDEBRANDT B, 2017, IBIS IN PRESS; Hoffmann J, 2015, IBIS, V157, P17, DOI 10.1111/ibi.12188; HOLMES RT, 1992, AUK, V109, P321, DOI 10.2307/4088201; KELLNER K, 2015, R PACKAGE VERSION, V1, P7; Kery M, 2012, BAYESIAN POPULATION ANALYSIS USING WINBUGS: A HIERARCHICAL PERSPECTIVE, P1; King R., 2009, BAYESIAN ANAL POPULA; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; Kokko H, 2008, J EVOLUTION BIOL, V21, P919, DOI 10.1111/j.1420-9101.2008.01540.x; Kolliker M, 2007, BEHAV ECOL SOCIOBIOL, V61, P1489, DOI 10.1007/s00265-007-0381-7; Lemaitre JF, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0209; Lessells CM, 2012, P ROY SOC B-BIOL SCI, V279, P1506, DOI 10.1098/rspb.2011.1690; Liker A, 2005, EVOLUTION, V59, P890, DOI 10.1554/04-560; Martin-Vivaldi M, 1999, BIRD STUDY, V46, P205, DOI 10.1080/00063659909461132; Merila J, 2001, GENETICA, V112, P199, DOI 10.1023/A:1013391806317; MICHENER GR, 1990, ECOLOGY, V71, P855, DOI 10.2307/1937357; MOLLER AP, 1992, OIKOS, V63, P309, DOI 10.2307/3545393; Monaghan P, 1997, TRENDS ECOL EVOL, V12, P270, DOI 10.1016/S0169-5347(97)01094-X; NUR N, 1988, ARDEA, V76, P155; Parejo D, 2006, BEHAV ECOL SOCIOBIOL, V60, P184, DOI 10.1007/s00265-005-0155-z; PLARD F, 2017, AM NAT; Plard F, 2014, PLOS BIOL, V12, DOI 10.1371/journal.pbio.1001828; Plummer M., 2003, P 3 INT WORKSH DISTR, V124; Queller DC, 1997, P ROY SOC B-BIOL SCI, V264, P1555, DOI 10.1098/rspb.1997.0216; RICKLEFS ROBERT E., 1965, CONDOR, V67, P505, DOI 10.2307/1365614; ROBINSON KD, 1991, AUK, V108, P277; Roff Derek A., 1992; Ryser S, 2016, ANIM BEHAV, V117, P15, DOI 10.1016/j.anbehav.2016.04.015; Santos ESA, 2012, J EVOLUTION BIOL, V25, P1911, DOI 10.1111/j.1420-9101.2012.02569.x; Schaub M, 2012, OECOLOGIA, V168, P97, DOI 10.1007/s00442-011-2070-5; Siefferman L, 2008, IBIS, V150, P32; Stearns S., 1992, EVOLUTION LIFE HIST; SYDEMAN WJ, 1995, CONDOR, V97, P1048, DOI 10.2307/1369543; Tavecchia G, 2005, J ANIM ECOL, V74, P201, DOI 10.1111/j.1365-2656.2005.00916.x; TINBERGEN JM, 1987, ARDEA, V75, P111; Tschumi M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0097679; VANDE POLM, 2006, AM NAT, V128, P137; Verhulst S, 1998, FUNCT ECOL, V12, P132, DOI 10.1046/j.1365-2435.1998.00165.x; Visser ME, 2005, P ROY SOC B-BIOL SCI, V272, P2561, DOI 10.1098/rspb.2005.3356; Weladji RB, 2008, OECOLOGIA, V156, P237, DOI 10.1007/s00442-008-0961-x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams TD, 2015, J ORNITHOL, V156, pS441, DOI 10.1007/s10336-015-1213-6; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002 65 0 0 6 6 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia MAR 2018 186 3 665 675 10.1007/s00442-017-4028-8 11 Ecology Environmental Sciences & Ecology FX8DF WOS:000426320400007 29248976 2018-11-22 J Yli-Renko, M; Pettay, JE; Vesakoski, O Yli-Renko, Maria; Pettay, Jenni E.; Vesakoski, Outi Sex and size matters: Selection on personality in natural prey-predator interactions BEHAVIOURAL PROCESSES English Article Idotea balthica; Life-history; Survival; Predation; Sex-differences; Littoral habitat ISOPOD IDOTEA-BALTICA; FITNESS CONSEQUENCES; BEHAVIORAL SYNDROMES; ANIMAL PERSONALITIES; LIFE-HISTORY; FUCUS-VESICULOSUS; MARINE HERBIVORE; POPULATIONS; EVOLUTION; BALTHICA Optimal life-history strategies are currently considered to be a major driving force for the maintenance of animal personalities. In this experimental study we tested whether naturally occurring predation causes personality dependent mortality of a marine isopod (Idotea balthica), which could maintain personality variation in nature. Moreover, as isopods are known to have sex-differences in behaviour, we were interested in whether personality-dependent predation was sex-specific. We also hypothesised that predation pressure among personality types could vary according to habitat type, as it has been shown in correlative studies that habitat may influence personality variation. We used natural predator (European perch Perca fluviatilis) of I. balthica and studied relative mortality of males and females with a different personality types in laboratory settings with two different habitats. We found that survival in males was lower than in females for high active individuals. Moreover, survival under predation was linked to body size differently in females and males. This, however, depended on personality class as larger size was advantageous for low-active males and middle- and high-active females. Conversely, smaller size was advantageous for low-active females and middle-active males. Size did not affect survival in high-active males. Our results suggest that predation can encourage life-history differences between sexes leading to different optimal life-history strategies and also maintains consistent activity for both sexes. [Yli-Renko, Maria; Pettay, Jenni E.; Vesakoski, Outi] Univ Turku, Dept Biol, FIN-20014 Turku, Finland; [Vesakoski, Outi] Univ Turku, Archipelago Res Inst, FIN-20014 Turku, Finland Yli-Renko, M (reprint author), Univ Turku, Dept Biol, FIN-20014 Turku, Finland. maria.yli-renko@utu.fi Emil Aaltonen Foundation; Ella and Georg Ehrnrooth Foundation; Finnish Cultural Fundation; Finnish Concordia Fund; Finnish Foundation for Nature Conservation; Kone Foundation We thank Kimmo Rasa, Esko Pettay, Lauri Rahkamaa, Meri Lindqvist, Anders Holm, Anne Hemmi, Janika Ulenius, and Kirsti, Risto, Olli and Johanna Vesakoski for assistance with the experiments. We are grateful for Archipelago Research Institute of the University of Turku for providing the facilities and Veijo Jormalainen for providing all the equipment for the experiment. We greatly appreciate the valuable comments by an anonymous referee on the manuscript and Jon Brommer, Sami Merilaita, and Emma Sharp on earlier drafts of this paper. We thank Kirsty Maurits and Leena Mantyla for improving the language of this paper. Animal welfare was respected during all stages of the study. The experiment was a 0-class experiment and did not require permission for the use of laboratory animals according to Finnish laws. This work was supported by Emil Aaltonen Foundation (MY-R), Ella and Georg Ehrnrooth Foundation (MY-R), Finnish Cultural Fundation (MY-R) and The Finnish Concordia Fund (MY-R), Finnish Foundation for Nature Conservation (OV), and Kone Foundation (OV, JP). Bell AM, 2009, ANIM BEHAV, V77, P771, DOI 10.1016/j.anbehav.2008.12.022; Bell AM, 2005, J EVOLUTION BIOL, V18, P464, DOI 10.1111/j.1420-9101.2004.00817.x; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Bostrom C, 2006, J EXP MAR BIOL ECOL, V335, P52, DOI 10.1016/j.jembe.2006.02.015; Brown C, 2007, J FISH BIOL, V71, P1590, DOI 10.1111/j.1095-8649.2007.01627.x; Brown C, 2005, ANIM BEHAV, V70, P1003, DOI 10.1016/j.anbehav.2004.12.022; Brydges NM, 2008, J ANIM ECOL, V77, P229, DOI 10.1111/j.1365-2656.2007.01343.x; Burger R, 2002, GENET RES, V80, P31, DOI 10.1017/S0016672302005682; Chippindale AK, 2001, P NATL ACAD SCI USA, V98, P1671, DOI 10.1073/pnas.041378098; Dall S.R.X., 2014, FRONT ECOL EVOL, V2, P1; Dingemanse N. J., 2013, ANIMAL PERSONALITIES, P201, DOI [10. 7208/chicago/9780226922065. 001. 0001, DOI 10.7208/CHICAGO/9780226922065.001.0001]; Dingemanse NJ, 2007, J ANIM ECOL, V76, P1128, DOI 10.1111/j.1365-2656.2007.01284.x; Dingemanse NJ, 2005, BEHAVIOUR, V142, P1159, DOI 10.1163/156853905774539445; Dingemanse NJ, 2004, P ROY SOC B-BIOL SCI, V271, P847, DOI 10.1098/rspb.2004.2680; Edenbrow M, 2013, OIKOS, V122, P667, DOI 10.1111/j.1600-0706.2012.20556.x; Hemmi A, 2004, MAR BIOL, V145, P759, DOI 10.1007/s00227-004-1360-4; JORMALAINEN V, 1994, ETHOLOGY, V96, P46; JORMALAINEN V, 1989, ANIM BEHAV, V38, P576, DOI 10.1016/S0003-3472(89)80002-8; JORMALAINEN V, 1995, BEHAV ECOL SOCIOBIOL, V36, P43; Jormalainen V, 2001, OIKOS, V93, P77, DOI 10.1034/j.1600-0706.2001.930108.x; JORMALAINEN V, 1992, ANN ZOOL FENN, V29, P161; Kortet R, 2010, ECOL LETT, V13, P1449, DOI 10.1111/j.1461-0248.2010.01536.x; Krams I, 2013, ACTA ETHOL, V16, P163, DOI 10.1007/s10211-013-0147-3; Krams I, 2013, ENTOMOL EXP APPL, V148, P94, DOI 10.1111/eea.12079; Mattila JM, 2014, J EXP MAR BIOL ECOL, V455, P22, DOI 10.1016/j.jembe.2014.02.010; Merilaita S, 2000, OECOLOGIA, V122, P445, DOI 10.1007/s004420050965; Patrick SC, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0087269; Pruitt JN, 2008, ANIM BEHAV, V76, P871, DOI 10.1016/j.anbehav.2008.05.009; Pruitt JN, 2009, ANIM BEHAV, V78, P175, DOI 10.1016/j.anbehav.2009.04.016; Reale D, 2003, ANIM BEHAV, V65, P463, DOI 10.1006/anbe.2003.2100; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; SALEMAA H, 1979, OPHELIA, V18, P133, DOI 10.1080/00785326.1979.10425495; SALEMAA H, 1978, HEREDITAS, V88, P165; Schurch R, 2010, BEHAV ECOL, V21, P588, DOI 10.1093/beheco/arq024; Schuett W, 2010, BIOL REV, V85, P217, DOI 10.1111/j.1469-185X.2009.00101.x; Sih A, 2004, Q REV BIOL, V79, P241, DOI 10.1086/422893; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Smith BR, 2008, BEHAV ECOL, V19, P448, DOI 10.1093/beheco/arm144; Smith BR, 2010, BEHAV ECOL, V21, P919, DOI 10.1093/beheco/arq084; Stamps JA, 2007, ECOL LETT, V10, P355, DOI 10.1111/j.1461-0248.2007.01034.x; TUOMI J, 1988, ANN ZOOL FENN, V25, P145; Vesakoski O, 2009, J EVOLUTION BIOL, V22, P1545, DOI 10.1111/j.1420-9101.2009.01767.x; Vesakoski O., 2009, THESIS; Vesakoski O, 2008, BEHAV PROCESS, V79, P175, DOI 10.1016/j.beproc.2008.07.005; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wolf M, 2012, TRENDS ECOL EVOL, V27, P452, DOI 10.1016/j.tree.2012.05.001; Yli-Renko M, 2015, ETHOLOGY, V121, P135, DOI 10.1111/eth.12323 48 0 0 13 13 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0376-6357 1872-8308 BEHAV PROCESS Behav. Processes MAR 2018 148 20 26 10.1016/j.beproc.2017.12.023 7 Psychology, Biological; Behavioral Sciences; Zoology Psychology; Behavioral Sciences; Zoology FX4FT WOS:000426028800004 29287627 2018-11-22 J Montgomery, EM; Hamel, JF; Mercier, A Montgomery, E. M.; Hamel, J. -F.; Mercier, A. Ontogenetic variation in photosensitivity of developing echinoderm propagules JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY English Article Embryo; Larvae; Ontogeny; Phototaxis; Swimming capacity; Echinodermata; Swimming speed; Lecithotrophy; Planktotrophy URCHIN STRONGYLOCENTROTUS-DROEBACHIENSIS; LARVAL DEVELOPMENT; DENDRASTER-EXCENTRICUS; INVERTEBRATE LARVAE; BEHAVIORAL-RESPONSES; SPATIAL-DISTRIBUTION; VERTICAL MIGRATION; SENSORY MECHANISMS; SETTLING BEHAVIOR; LIGHT-INTENSITY Swimming behaviours and sensory abilities of early pelagic stages play a prominent role in the life history and ecology of sessile/sedentary benthic species, with implications for settlement, recruitment and dispersal. Light is a particularly important driver of navigational behaviour in the ocean, as a signal of key habitat characteristics (e.g., depth, shelter). Work to date on phototaxis has largely focused on planktotrophic larvae that feed during development, and much less on the larger lecithotrophic larvae that rely on maternal provisions (yolk). It remains unclear how responses to light might differ among ciliated propagules of different sizes and nutritional modes. The present study explored if/how phototactic responses are modulated by ontogeny (from embryo to larva), nutritional mode and light colour (wavelength) in ciliated propagules using four co-occurring species of echinoderms: the sea stars Asterias rubens and Crossaster papposus, the sea urchin Strongylocentrotus droebachiensis and the sea cucumber Cucumaria frondosa. Two types of behavioural responses to stimuli (white, red, and blue light) were examined: 1) taxis when the light stimulus was placed at one end of the chamber (net movement towards or away from the light stimulus) and 2) activity level, using a suite of swimming metrics, under uniform illumination. All four species consistently displayed some level of photosensitivity to white light and responses varied intra- and interspecifically. When the stimulus was red or blue light, planktotrophs modified their phototactic responses in a species- and stage-specific manner, while lecithotrophs generally displayed responses without a clear net direction. Swimming speeds displayed stage and species-specific variation under constant red or blue light, but swimming trajectories were consistently straighter under red light, resulting in greater displacement. Taken together, the results suggest that propagules of species with different life-history strategies respond to light stimuli in distinctive stage-wise manners. Interestingly, ontogenetic patterns were not conserved within nutritional modes or taxa. Further investigations of species-specific responses to light might help clarify its roles, in combination with factors such as buoyancy and gravity, in the ecology of propagules of benthic invertebrates. [Montgomery, E. M.; Mercier, A.] Mem Univ, Dept Ocean Sci, St John, NF A1C 5S7, Canada; [Hamel, J. -F.] SEVE, Portugal Cove St Philip, NF A1M 2B7, Canada Montgomery, EM (reprint author), Mem Univ, Dept Ocean Sci, St John, NF A1C 5S7, Canada. e.montgomery@mun.ca Natural Sciences and Engineering Research Council [311406]; Canadian Foundation for Innovation [11231]; NSERC CGS-D Award The authors wish to thank Memorial University Field Services for species collections, and K. Gamperl (Memorial University) for constructive comments on the manuscript. This work was completed with funding from a Natural Sciences and Engineering Research Council Discovery Grant (# 311406) and Canadian Foundation for Innovation Grant (# 11231) issued to A. Mercier and an NSERC CGS-D Award to E. Montgomery. Adams NL, 2001, MAR ECOL PROG SER, V213, P87, DOI 10.3354/meps213087; Anil AC, 2010, J EXP MAR BIOL ECOL, V392, P89, DOI 10.1016/j.jembe.2010.04.012; BARILE PJ, 1994, J EXP MAR BIOL ECOL, V183, P147; BAYNE BL, 1964, OIKOS, V15, P162, DOI 10.2307/3564753; BINGHAM BL, 1993, DEEP-SEA RES PT I, V40, P1, DOI 10.1016/0967-0637(93)90051-4; BOTERO L, 1982, Journal of Crustacean Biology, V2, P59, DOI 10.2307/1548113; Butler MJ, 2011, MAR ECOL PROG SER, V422, P223, DOI 10.3354/meps08878; BUTMAN CA, 1988, OPHELIA, V29, P43, DOI 10.1080/00785326.1988.10430818; Byrne M, 2010, MAR ENVIRON RES, V69, P234, DOI 10.1016/j.marenvres.2009.10.014; CAMERON JL, 1989, J EXP MAR BIOL ECOL, V127, P43, DOI 10.1016/0022-0981(89)90208-6; Campbell I, 2007, STAT MED, V26, P3661, DOI 10.1002/sim.2832; Chan KYK, 2012, INTEGR COMP BIOL, V52, P458, DOI 10.1093/icb/ics092; Chenouard N, 2014, NAT METHODS, V11, P281, DOI 10.1038/nmeth.2808; Civelek CV, 2013, J EXP MAR BIOL ECOL, V445, P1, DOI 10.1016/j.jembe.2013.03.010; Collin R, 2010, INVERTEBR BIOL, V129, P121, DOI 10.1111/j.1744-7410.2010.00196.x; Cowen RK, 2009, MAR SCI, V1; Dickey TD, 2011, PHYS TODAY, V64, P44, DOI 10.1063/1.3580492; Domenici P, 2003, J MAR BIOL ASSOC UK, V83, P285, DOI 10.1017/S0025315403007094h; DOREE M, 1976, P NATL ACAD SCI USA, V73, P1669, DOI 10.1073/pnas.73.5.1669; Ettinger-Epstein P, 2008, MAR ECOL PROG SER, V365, P103, DOI 10.3354/meps07503; Fox HM, 1925, P CAMB PHILOS SOC-B, V1, P219, DOI 10.1111/j.1469-185X.1925.tb00550.x; Gemmill JF, 1914, PHILOS T R SOC LON B, V205; Gemmill JF, 1920, Q J MICROSC SCI, V64, P155; HADFIELD MG, 1986, B MAR SCI, V39, P418; Hamel JF, 1996, CAN J FISH AQUAT SCI, V53, P253, DOI 10.1139/cjfas-53-2-253; HANEY JF, 1988, B MAR SCI, V43, P583; Hansen BW, 2010, J EXP BIOL, V213, P3237, DOI 10.1242/jeb.038810; HENDLER G, 1984, PSZNI MAR ECOL, V5, P379, DOI 10.1111/j.1439-0485.1984.tb00131.x; Hoist S., 2006, MAR BIOL, V151, P863; Jekely G, 2008, NATURE, V456, P395, DOI 10.1038/nature07590; Jekely G, 2009, PHILOS T R SOC B, V364, P2795, DOI 10.1098/rstb.2009.0072; Johnson KB, 2003, MAR ECOL PROG SER, V248, P125, DOI 10.3354/meps248125; LANG WH, 1979, BIOL BULL, V157, P166, DOI 10.2307/1541085; LATZ MI, 1977, BIOL BULL, V153, P163, DOI 10.2307/1540699; Leys SP, 2002, J COMP PHYSIOL A, V188, P199, DOI 10.1007/s00359-002-0293-y; Leys SP, 2001, BIOL BULL-US, V201, P323, DOI 10.2307/1543611; LYNCH WF, 1947, BIOL BULL, V92, P115, DOI 10.2307/1538162; McCarthy DA, 2002, MAR ECOL PROG SER, V241, P215, DOI 10.3354/meps241215; MCFARLAND WN, 1986, AM ZOOL, V26, P389; McHenry MJ, 2003, MAR BIOL, V142, P173, DOI 10.1007/s00227-002-0929-z; Meidel SK, 1999, J EXP MAR BIOL ECOL, V240, P161, DOI 10.1016/S0022-0981(99)00046-5; Meidel SK, 2001, BIOL BULL, V201, P84, DOI 10.2307/1543529; Mercier A, 2013, J EXP MAR BIOL ECOL, V449, P100, DOI 10.1016/j.jembe.2013.09.007; Mercier A, 2013, GLOBAL ECOL BIOGEOGR, V22, P517, DOI 10.1111/geb.12018; Mercier A, 2010, BEHAV ECOL SOCIOBIOL, V64, P1749, DOI 10.1007/s00265-010-0987-z; Metaxas A, 2008, B MAR SCI, V83, P471; Michalec FG, 2010, J PLANKTON RES, V32, P805, DOI 10.1093/plankt/fbq006; MILLER SE, 1986, J EXP MAR BIOL ECOL, V97, P95, DOI 10.1016/0022-0981(86)90070-5; MLADENOV PV, 1983, MAR BIOL, V73, P309, DOI 10.1007/BF00392257; MOGAMI Y, 1988, J EXP BIOL, V137, P141; Montgomery EM, 2017, MAR BIOL, V164, DOI 10.1007/s00227-017-3072-6; Mundy CN, 1998, J EXP MAR BIOL ECOL, V223, P235, DOI 10.1016/S0022-0981(97)00167-6; Nilsson DE, 2009, PHILOS T R SOC B, V364, P2833, DOI 10.1098/rstb.2009.0083; PARKS AL, 1989, BIOL BULL, V177, P96, DOI 10.2307/1541838; Pechenik JA, 1999, MAR ECOL PROG SER, V177, P269, DOI 10.3354/meps177269; PENNINGTON JT, 1986, J EXP MAR BIOL ECOL, V104, P69, DOI 10.1016/0022-0981(86)90098-5; PENNINGTON JT, 1986, B MAR SCI, V39, P234; Pizarro V., 2008, FORT LAUDERDALE FLOR, V1, P464; Prowse TAA, 2009, EVOL ECOL RES, V11, P1069; Richmond CE, 1996, MAR ECOL PROG SER, V133, P167, DOI 10.3354/meps133167; Robins PE, 2013, LIMNOL OCEANOGR, V58, P505, DOI 10.4319/lo.2013.58.2.0505; Roy A, 2012, MAR ECOL-EVOL PERSP, V33, P194, DOI 10.1111/j.1439-0485.2011.00480.x; RYLAND JS, 1960, J EXP BIOL, V37, P783; SALAZAR M H, 1970, Journal of Experimental Marine Biology and Ecology, V5, P254, DOI 10.1016/0022-0981(70)90004-3; SHIRLEY SM, 1988, MAR BEHAV PHYSIOL, V13, P369, DOI 10.1080/10236248809378686; So JJ, 2011, MAR BIOL, V158, P859, DOI 10.1007/s00227-010-1613-3; Staver JM, 2002, BIOL BULL, V203, P58, DOI 10.2307/1543458; SULKIN SD, 1975, BIOL BULL, V148, P333, DOI 10.2307/1540551; SVANE I, 1995, J EXP MAR BIOL ECOL, V187, P51, DOI 10.1016/0022-0981(94)00171-9; Svane I., 1989, Oceanography and Marine Biology an Annual Review, V27, P45; TAYLOR MH, 1984, T AM FISH SOC, V113, P484, DOI 10.1577/1548-8659(1984)113<484:LSOFR>2.0.CO;2; THORSON GUNNAR, 1964, OPHELIA, V1, P167; Tran C, 2013, INVERTEBR BIOL, V132, P195, DOI 10.1111/ivb.12025; Vaughn D, 2010, INTEGR COMP BIOL, V50, P552, DOI 10.1093/icb/icq037; Vazquez E, 1998, J EXP MAR BIOL ECOL, V231, P267, DOI 10.1016/S0022-0981(98)00094-X; Wendt DE, 2000, BIOL BULL, V198, P346, DOI 10.2307/1542690; YOSHIDA M, 1968, BIOL BULL, V134, P516, DOI 10.2307/1539869; Yoshida M., 1984, PHOTORECEPTION VISIO, P743; Young C. M., 1999, ENCY REPROD, V3, P89; YOUNG CM, 1982, BIOL BULL, V162, P457, DOI 10.2307/1540996; YOUNG CM, 1982, MAR BIOL, V69, P195, DOI 10.1007/BF00396899 81 1 1 7 12 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0022-0981 1879-1697 J EXP MAR BIOL ECOL J. Exp. Mar. Biol. Ecol. MAR 2018 500 63 72 10.1016/j.jembe.2017.12.003 10 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology FX6XL WOS:000426230500008 2018-11-22 J Kominoski, JS; Ruhi, A; Hagler, MM; Petersen, K; Sabo, JL; Sinha, T; Sankarasubramanian, A; Olden, JD Kominoski, John S.; Ruhi, Albert; Hagler, Megan M.; Petersen, Kelly; Sabo, John L.; Sinha, Tushar; Sankarasubramanian, Arumugam; Olden, Julian D. Patterns and drivers of fish extirpations in rivers of the American Southwest and Southeast GLOBAL CHANGE BIOLOGY English Article biodiversity loss; dams; flow regime; global change; imperiled species FRESH-WATER FISHES; LIFE-HISTORY STRATEGIES; ALTERED FLOW REGIMES; ENVIRONMENTAL FLOWS; SPECIES TRAITS; CLIMATE-CHANGE; ECOSYSTEM RESPONSES; NORTH-AMERICA; BIODIVERSITY; CONSERVATION Effective conservation of freshwater biodiversity requires spatially explicit investigations of how dams and hydroclimatic alterations among climate regions may interact to drive species to extinction. We investigated how dams and hydroclimatic alterations interact with species ecological and life history traits to influence past extirpation probabilities of native freshwater fishes in the Upper and Lower Colorado River (CR), Alabama-Coosa-Tallapoosa (ACT), and Apalachicola-Chattahoochee-Flint (ACF) basins. Using long-term discharge data for continuously gaged streams and rivers, we quantified streamflow anomalies (i.e., departure expected streamflow) at the sub-basin scale over the past half-century.Next, we related extirpation probabilities of native fishes in both regions to streamflow anomalies, river basin characteristics, species traits, and non-native species richness using binomial logistic regression. Sub-basin extirpations in the Southwest (n=95 Upper CR, n=130 Lower CR) were highest in lowland mainstem rivers impacted by large dams and in desert springs. Dampened flow seasonality, increased longevity (i.e., delayed reproduction), and decreased fish egg sizes (i.e., lower parental care) were related to elevated fish extirpation probability in the Southwest. Sub-basin extirpations in the Southeast (ACT n=46, ACF n=22) were most prevalent in upland rivers, with flow dependency, greater age and length at maturity, isolation by dams, and greater distance upstream. Our results confirm that dams are an overriding driver of native fish species losses, irrespective of basin-wide differences in native or non-native species richness. Dams and hydrologic alterations interact with species traits to influence community disassembly, and very high extirpation risks in the Southeast are due to interactions between high dam density and species restricted ranges. Given global surges in dam building and retrofitting, increased extirpation risks should be expected unless management strategies that balance flow regulation with ecological outcomes are widely implemented. [Kominoski, John S.] Florida Int Univ, Dept Biol Sci, Miami, FL 33199 USA; [Ruhi, Albert; Sabo, John L.] Arizona State Univ, Sch Life Sci, Tempe, AZ USA; [Ruhi, Albert; Sabo, John L.] Arizona State Univ, Julie Ann Wrigley Global Inst Sustainabil, Tempe, AZ USA; [Ruhi, Albert] Univ Maryland, Natl Socioenvironm Synth Ctr SESYNC, Annapolis, MD USA; [Ruhi, Albert] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA; [Hagler, Megan M.] Lewis & Clark Coll, Sponsored Res, Portland, OR 97219 USA; [Hagler, Megan M.; Petersen, Kelly] Univ Georgia, Odum Sch Ecol, Athens, GA 30602 USA; [Sinha, Tushar] Texas A&M Univ Kingsville, Dept Environm Engn, Kingsville, TX USA; [Sinha, Tushar; Sankarasubramanian, Arumugam] North Carolina State Univ, Dept Civil Construct & Environm Engn, Raleigh, NC USA; [Olden, Julian D.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA Kominoski, JS (reprint author), Florida Int Univ, Dept Biol Sci, Miami, FL 33199 USA. jkominos@fiu.edu National Science Foundation [CBET 1204368, 1204478, 1318140, DBI-1052875] National Science Foundation, Grant/Award Number: CBET 1204368, 1204478, 1318140, DBI-1052875 Acreman M, 2014, FRONT ECOL ENVIRON, V12, P466, DOI 10.1890/130134; Arthington A. H., 2012, ENV FLOWS SAVING RIV, V4; Arthington AH, 2016, AQUAT CONSERV, V26, P838, DOI 10.1002/aqc.2712; Boschung H. T. Jr., 2004, FISHES ALABAMA; Bunn SE, 2002, ENVIRON MANAGE, V30, P492, DOI 10.1007/s00267-002-2737-0; Chessman BC, 2013, BIOL CONSERV, V160, P40, DOI 10.1016/j.biocon.2012.12.032; Daufresne M, 2009, P NATL ACAD SCI USA, V106, P12788, DOI 10.1073/pnas.0902080106; Dornelas M, 2014, SCIENCE, V344, P296, DOI 10.1126/science.1248484; Dudgeon D, 2006, BIOL REV, V81, P163, DOI 10.1017/S1464793105006950; Freeman MC, 2005, AM FISH S S, V45, P557; Gelman A., 2007, DATA ANAL USING REGR; Gido KB, 2010, J N AM BENTHOL SOC, V29, P970, DOI 10.1899/09-116.1; Gillespie BR, 2015, FRESHWATER BIOL, V60, P410, DOI 10.1111/fwb.12506; Goldstein RM, 2004, T AM FISH SOC, V133, P971, DOI 10.1577/T03-080.1; Graf WL, 1999, WATER RESOUR RES, V35, P1305, DOI 10.1029/1999WR900016; Jaeger KL, 2014, P NATL ACAD SCI USA, V111, P13894, DOI 10.1073/pnas.1320890111; Jelks HL, 2008, FISHERIES, V33, P372, DOI 10.1577/1548-8446-33.8.372; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; McDonald R, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0048018; McManamay RA, 2012, J HYDROL, V424, P217, DOI 10.1016/j.jhydrol.2012.01.003; Mims MC, 2010, ECOL FRESHW FISH, V19, P390, DOI 10.1111/j.1600-0633.2010.00422.x; Mims MC, 2013, FRESHWATER BIOL, V58, P50, DOI 10.1111/fwb.12037; Moore JW, 2017, GLOBAL CHANGE BIOL, V23, P1871, DOI 10.1111/gcb.13536; Naimi B., 2013, USDM UNCERTAINTY ANA, V1, P1; Naimi B, 2014, ECOGRAPHY, V37, P191, DOI 10.1111/j.1600-0587.2013.00205.x; Olden JD, 2006, ECOL MONOGR, V76, P25, DOI 10.1890/05-0330; Olden JD, 2007, GLOBAL ECOL BIOGEOGR, V16, P694, DOI 10.1111/j.1466-8238.2007.00337.x; Olden JD, 2016, CONSERV BIOL SER, P107; Olden JD, 2014, FRONT ECOL ENVIRON, V12, P176, DOI 10.1890/130076; Page L. M., 1991, FIELD GUIDE FRESHWAT; Poff NL, 2007, P NATL ACAD SCI USA, V104, P5732, DOI 10.1073/pnas.0609812104; Poff NL, 2016, NAT CLIM CHANGE, V6, P25, DOI 10.1038/NCLIMATE2765; Poff NL, 2010, FRESHWATER BIOL, V55, P147, DOI 10.1111/j.1365-2427.2009.02204.x; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; POFF NL, 1992, J N AM BENTHOL SOC, V11, P86, DOI 10.2307/1467885; Poff NL, 1997, J N AM BENTHOL SOC, V16, P391, DOI 10.2307/1468026; R Core Team, 2013, R LANG ENV STAT COMP; Richter BD, 2010, RIVER RES APPL, V26, P1052, DOI 10.1002/rra.1320; Rolls RJ, 2015, ENVIRON MANAGE, V55, P1315, DOI 10.1007/s00267-015-0462-8; Rolls RJ, 2012, FRESHW SCI, V31, P1163, DOI 10.1899/12-002.1; Ruhi A., 2016, FRONT ECOL ENVIRON, V14, P1; Ruhi A, 2015, GLOBAL CHANGE BIOL, V21, P1482, DOI 10.1111/gcb.12780; Sabo JL, 2008, ECOL MONOGR, V78, P19, DOI 10.1890/06-1340.1; Sabo JL, 2010, P NATL ACAD SCI USA, V107, P21263, DOI 10.1073/pnas.1009734108; Seager R, 2007, SCIENCE, V316, P1181, DOI 10.1126/science.1139601; Seager R, 2013, NAT CLIM CHANGE, V3, P482, DOI [10.1038/NCLIMATE1787, 10.1038/nclimate1787]; Seager R, 2009, J CLIMATE, V22, P5021, DOI 10.1175/2009JCLI2683.1; Slack J. R., 1993, HYDROCLIMATIC DATA N; Strecker AL, 2011, ECOL APPL, V21, P3002, DOI 10.1890/11-0599.1; Vorosmarty CJ, 2010, NATURE, V467, P555, DOI 10.1038/nature09440; Vogel R. M., 2005, USGS HYDROCLIMATIC D; Weeks BC, 2016, P NATL ACAD SCI USA, V113, P10109, DOI 10.1073/pnas.1603866113; Wenger SJ, 2013, GLOBAL CHANGE BIOL, V19, P3343, DOI 10.1111/gcb.12294; Winemiller KO, 2016, SCIENCE, V351, P128, DOI 10.1126/science.aac7082; Zavaleta E, 2009, ANN NY ACAD SCI, V1162, P311, DOI 10.1111/j.1749-6632.2009.04448.x 55 1 1 8 19 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1354-1013 1365-2486 GLOBAL CHANGE BIOL Glob. Change Biol. MAR 2018 24 3 1175 1185 10.1111/gcb.13940 11 Biodiversity Conservation; Ecology; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology FW5YZ WOS:000425396700026 29139216 2018-11-22 J Oliveira, AG; Baumgartner, MT; Gomes, LC; Dias, RM; Agostinho, AA Oliveira, Anielly G.; Baumgartner, Matheus T.; Gomes, Luiz C.; Dias, Rosa M.; Agostinho, Angelo A. Long-term effects of flow regulation by dams simplify fish functional diversity FRESHWATER BIOLOGY English Article functional redundancy; ichthyofauna; intervention analysis; Parana River; Rao's quadratic entropy UPPER PARANA RIVER; ENVIRONMENTAL-IMPACT ASSESSMENT; LIFE-HISTORY STRATEGIES; MULTIVARIATE-ANALYSIS; SPECIES RICHNESS; MULTIPLE TRAITS; PATTERNS; ASSEMBLAGES; BIODIVERSITY; COMMUNITY The long-term impact of river regulation on fish functional diversity by a dam immediately upstream from the upper Parana River floodplain, Brazil, was evaluated. It was expected that the resulting alterations in natural flow, downstream from the dam, would negatively impact fish species, resulting in a functional simplification of the ichthyofauna. In addition, this effect was expected to be more pronounced in the directly affected main channel of the Parana River than in its tributaries, the Baia and Ivinhema rivers. Fish were sampled before (pre) and after (post) dam closure (the intervention). The functional traits used were diet, habitat use, mouth position, migration, parental care, internal fertilisation and maximum total length. Differences in trait composition between periods (pre and post) were tested using a PERMANOVA main-test. An indicator value analysis (IndVal) was applied to identify which traits significantly increased or decreased in abundance after the intervention. The indexes used were functional richness (FRic), Rao's quadratic entropy (FDQ) and functional redundancy (FRed). The intervention analysis based on linear models for time series was used to evaluate differences in these indexes over time. Traits most representative during pre-intervention were large-bodied species with long reproductive migrations, pelagic, with subterminal and superior mouths, and herbivorous. Traits most representative during the post-intervention were omnivorous species, with parental care, benthopelagic and insectivorous, which typically characterise fishes that inhabit stable environments. FRic decreased in Parana and Baia rivers after the construction of the dam. However, the Ivinhema River showed an increase in mean FRic in the post-intervention period. FDQ decreased substantially in all three rivers, while FRed increased. The combined results of FRic, FDQ and FRed corroborate the functional simplification hypothesis expected from flow regulation by dams on functional diversity. As expected, the most pronounced simplification occurred in the Parana River. Therefore, hydroelectric power plants can act as environmental filters strongly selecting functional traits of the downstream fish fauna, generating long-lasting impacts on ecosystem functioning and services. [Oliveira, Anielly G.; Baumgartner, Matheus T.; Gomes, Luiz C.; Dias, Rosa M.; Agostinho, Angelo A.] Programa Pos Grad Ecol Ambiente Aquat Continentai, Maringa, Parana, Brazil; [Oliveira, Anielly G.; Baumgartner, Matheus T.; Gomes, Luiz C.; Dias, Rosa M.; Agostinho, Angelo A.] Univ Estadual Maringa, Maringa, Parana, Brazil; [Gomes, Luiz C.; Agostinho, Angelo A.] Nucleo Pesquisas Limnol Ictiol & Aquicultura NUPE, Maringa, Parana, Brazil Oliveira, AG (reprint author), Programa Pos Grad Ecol Ambiente Aquat Continentai, Maringa, Parana, Brazil. anielly_oliveira@hotmail.com Gomes, Luiz/D-5886-2013 Agostinho, Angelo Antonio/0000-0002-4707-9444; Oliveira, Anielly/0000-0002-6185-1728 Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) and Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) Agostinho AA, 2008, BRAZ J BIOL, V68, P1119, DOI 10.1590/S1519-69842008000500019; Agostinho A. A., 2007, ECOLOGIA MANEJO RECU; Agostinho AA, 2004, REV FISH BIOL FISHER, V14, P11, DOI 10.1007/s11160-004-3551-y; Agostinho AA, 2016, FISH RES, V173, P26, DOI 10.1016/j.fishres.2015.04.006; Anderson MJ, 2001, AUSTRAL ECOL, V26, P32, DOI 10.1111/j.1442-9993.2001.01070.pp.x; Botta-Dukat Z, 2005, J VEG SCI, V16, P533, DOI 10.1658/1100-9233(2005)16[533:RQEAAM]2.0.CO;2; Box G. E. P., 1994, TIME SERIES ANAL; Box G. E. P., 1970, TIME SERIES ANAL; Buisson L, 2013, GLOBAL CHANGE BIOL, V19, P387, DOI 10.1111/gcb.12056; Bunn SE, 2002, ENVIRON MANAGE, V30, P492, DOI 10.1007/s00267-002-2737-0; Cardinale BJ, 2012, NATURE, V486, P59, DOI 10.1038/nature11148; Cianciaruso Marcus Vinicius, 2009, Biota Neotrop., V9, P93, DOI 10.1590/S1676-06032009000300008; de Souza EE, 2004, BIO INL WAT, P55; Dufrene M, 1997, ECOL MONOGR, V67, P345, DOI 10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2; EBERHARDT LL, 1991, ECOL MONOGR, V61, P53, DOI 10.2307/1942999; Empresa de Pesquisas Energeticas EPE, 2013, BAL EN NAC; Ernst R, 2006, BIOL CONSERV, V133, P143, DOI 10.1016/j.biocon.2006.05.028; Flynn DFB, 2009, ECOL LETT, V12, P22, DOI 10.1111/j.1461-0248.2008.01255.x; Fonseca CR, 2001, J ECOL, V89, P118, DOI 10.1046/j.1365-2745.2001.00528.x; Fourier J., 1988, THEORIE ANAL CHALEUR; Gonzalez C, 2011, TRATAMIENTO DATOS CO; GOWER JC, 1966, BIOMETRIKA, V53, P325, DOI 10.2307/2333639; Gubiani EA, 2007, ECOL FRESHW FISH, V16, P191, DOI 10.1111/j.1600-0633.2006.00211.x; Halpern BS, 2008, MAR ECOL PROG SER, V364, P147, DOI 10.3354/meps07553; Heino J, 2008, LIMNOL OCEANOGR, V53, P1446, DOI 10.4319/lo.2008.53.4.1446; Hoeinghaus DJ, 2009, CONSERV BIOL, V23, P1222, DOI 10.1111/j.1523-1739.2009.01248.x; Johnson PTJ, 2008, FRONT ECOL ENVIRON, V6, P359, DOI 10.1890/070156; JUNK W J, 1989, Canadian Special Publication of Fisheries and Aquatic Sciences, V106, P110; dos Santos NCL, 2017, HYDROBIOLOGIA, V802, P245, DOI 10.1007/s10750-017-3274-4; Laliberte E, 2010, ECOLOGY, V91, P299, DOI 10.1890/08-2244.1; Legendre P, 1998, NUMERICAL ECOLOGY; da Silva LGM, 2012, NEOTROP ICHTHYOL, V10, P751, DOI 10.1590/S1679-62252012000400008; Mims MC, 2013, FRESHWATER BIOL, V58, P50, DOI 10.1111/fwb.12037; Miranda LE, 2016, RIVER RES APPL, V32, P1187, DOI 10.1002/rra.2936; Morettin P. E., 2014, ANALISES SERIES TEMP; Mouillot D, 2013, TRENDS ECOL EVOL, V28, P167, DOI 10.1016/j.tree.2012.10.004; NEIFF JJ, 1990, INTERCIENCIA, V15, P424; Olden JD, 2006, ECOL MONOGR, V76, P25, DOI 10.1890/05-0330; Ortega JCG, 2015, HYDROBIOLOGIA, V745, P31, DOI 10.1007/s10750-014-2089-9; Pelicice FM, 2015, FISH FISH, V16, P697, DOI 10.1111/faf.12089; Petchey OL, 2002, P ROY SOC B-BIOL SCI, V269, P1721, DOI 10.1098/rspb.2002.2073; Petchey OL, 2002, ECOL LETT, V5, P402, DOI 10.1046/j.1461-0248.2002.00339.x; Pillar VD, 2009, J VEG SCI, V20, P334, DOI 10.1111/j.1654-1103.2009.05666.x; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; Pool TK, 2012, DIVERS DISTRIB, V18, P366, DOI 10.1111/j.1472-4642.2011.00836.x; Pool TK, 2010, CAN J FISH AQUAT SCI, V67, P1791, DOI 10.1139/F10-095; POWER ME, 1995, BIOSCIENCE, V45, P159, DOI 10.2307/1312555; R Core Team, 2016, R LANG ENV STAT COMP; Rahel FJ, 2007, FRESHWATER BIOL, V52, P696, DOI 10.1111/j.1365-2427.2006.01708.x; Rasmussen P. W., 2001, DESIGN ANAL ECOLOGIC, P158; Ricotta C, 2016, METHODS ECOL EVOL, V7, P1386, DOI 10.1111/2041-210X.12604; Santos D., 2012, THESIS; Santos F. J., 2004, INTRO SERIES FOURIER; Schilt CR, 2007, APPL ANIM BEHAV SCI, V104, P295, DOI 10.1016/j.applanim.2006.09.004; StatSoft Inc, 2004, STAT DAT AN SOFTW SY; Stevens RD, 2003, ECOL LETT, V6, P1099, DOI 10.1046/j.1461-0248.2003.00541.x; Stewart-Oaten A, 2001, ECOL MONOGR, V71, P305, DOI 10.1890/0012-9615(2001)071[0305:TASVIE]2.0.CO;2; STEWARTOATEN A, 1986, ECOLOGY, V67, P929, DOI 10.2307/1939815; Suzuki HI, 2009, BRAZ J BIOL, V69, P649, DOI 10.1590/S1519-69842009000300019; Thomaz SM, 2007, HYDROBIOLOGIA, V579, P1, DOI 10.1007/s10750-006-0285-y; Villeger S, 2008, ECOLOGY, V89, P2290, DOI 10.1890/07-1206.1; Villeger S, 2010, ECOL APPL, V20, P1512, DOI 10.1890/09-1310.1; WARD JV, 1995, REGUL RIVER, V11, P105, DOI 10.1002/rrr.3450110109; Winemiller KO, 2016, SCIENCE, V351, P128, DOI 10.1126/science.aac7082; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; Zarfl C, 2015, AQUAT SCI, V77, P161, DOI 10.1007/s00027-014-0377-0 66 2 2 23 79 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0046-5070 1365-2427 FRESHWATER BIOL Freshw. Biol. MAR 2018 63 3 293 305 10.1111/fwb.13064 13 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology FU8VG WOS:000424133500004 2018-11-22 J Albertson, LK; Ouellet, V; Daniels, MD Albertson, Lindsey K.; Ouellet, Valerie; Daniels, Melinda D. Impacts of stream riparian buffer land use on water temperature and food availability for fish JOURNAL OF FRESHWATER ECOLOGY English Article Riparian zone; macroinvertebrates; insects; salmonids; brook trout; restoration; food web TROUT SALVELINUS-FONTINALIS; NATIVE BROOK TROUT; CLIMATE-CHANGE; BROWN TROUT; HEADWATER STREAMS; TROPHIC MISMATCH; URBAN STREAMS; PREY SIZE; TERRESTRIAL; SUBSIDIES Restoration of degraded freshwater ecosystems has gained considerable attention in the USA over the past decades. However, most projects focus almost entirely on the restoration of physical habitat or specific water quality parameters, while ignoring critical ecological processes related to food web re-establishment. In this study, we investigate the impact of riparian habitat in different stages of restoration on food availability for fish in four streams in Pennsylvania, USA. The riparian buffer habitats ranged from open meadow to mature forest and included new to long-term restoration sites. We quantified abundance and community composition of aquatic macroinvertebrates and riparian arthropods with aerial and ground-dwelling life history strategies. We found that riparian habitat and water temperature exert a strong influence over potential food resources for fish, with the open meadow habitat having highest abundance of terrestrial and aquatic insects, lowest taxa richness, and possible multivoltine aquatic insect life-history. Our results provide insight into the importance of riparian buffer habitat and water temperature on the composition of food availability for fish species of concern such as brook trout. The significant differences emphasize the need to include food web dynamics into riparian habitat restoration design to guide future rehabilitation projects focusing on fish conservation. [Albertson, Lindsey K.; Ouellet, Valerie; Daniels, Melinda D.] Stroud Water Res Ctr, Avondale, PA 19311 USA; [Albertson, Lindsey K.] Montana State Univ, Ecol Dept, Bozeman, MT 59717 USA; [Ouellet, Valerie] Univ Birmingham, Sch Geog Earth & Environm Sci, Birmingham B15 2TT, W Midlands, England Ouellet, V (reprint author), Stroud Water Res Ctr, Avondale, PA 19311 USA.; Ouellet, V (reprint author), Univ Birmingham, Sch Geog Earth & Environm Sci, Birmingham B15 2TT, W Midlands, England. valeria.ouellet@gmail.com Ouellet, Valerie/I-3914-2018 Ouellet, Valerie/0000-0001-7410-1857; Daniels, Melinda/0000-0002-1577-3597 Stroud Water Research Center; Fonds de recherche du Quebec - Nature et technologies; National Science Foundation [DEB LTREB 1052716-1557063, REU 1550821]; Montana State University Stroud Water Research Center, Montana State University, the Fonds de recherche du Quebec - Nature et technologies, and National Science Foundation [grant number DEB LTREB 1052716-1557063], [grant number REU 1550821]. Alliance for the Chesapeake Bay (ACB), 2015, CHES BAY RIP FOR BUF; Baxter CV, 2005, FRESHWATER BIOL, V50, P201, DOI 10.1111/j.1365-2427.2004.01328.x; Beechie T, 2008, N AM J FISH MANAGE, V28, P891, DOI 10.1577/M06-174.1; Benke Arthur C., 2006, P691; Bernhardt ES, 2005, SCIENCE, V308, P636, DOI 10.1126/science.1109769; Bernot MJ, 2010, FRESHWATER BIOL, V55, P1874, DOI 10.1111/j.1365-2427.2010.02422.x; Biktashev VN, 2003, J PLANKTON RES, V25, P21, DOI 10.1093/plankt/25.1.21; Blann K, 2002, N AM J FISH MANAGE, V22, P441, DOI 10.1577/1548-8675(2002)022<0441:RORBTT>2.0.CO;2; Booth DB, 2005, J N AM BENTHOL SOC, V24, P724, DOI 10.1899/0887-3593(2005)024\[0724:CAPFRU\]2.0.CO;2; Booth DB, 2016, WATER-SUI, V8, DOI 10.3390/w8050174; Bradshaw WE, 2006, SCIENCE, V312, P1477, DOI 10.1126/science.1127000; Briers RA, 2004, HYDROL EARTH SYST SC, V8, P545, DOI 10.5194/hess-8-545-2004; Burke DM, 1998, AUK, V115, P96, DOI 10.2307/4089115; Carlson SM, 2007, J FISH BIOL, V71, P1430, DOI 10.1111/j.1095-8649.2007.01615.x; CONNELL JH, 1978, SCIENCE, V199, P1302, DOI 10.1126/science.199.4335.1302; Courtwright J, 2013, FRESHWATER BIOL, V58, P2423, DOI 10.1111/fwb.12221; CUSHING DH, 1990, ADV MAR BIOL, V26, P249, DOI 10.1016/S0065-2881(08)60202-3; Downing J., 1984, MANUAL METHODS ASSES, P1; Edwards M, 2004, NATURE, V430, P881, DOI 10.1038/nature02808; EPA, 2015, EPA600R14475F; FAUSCH KD, 1981, CAN J FISH AQUAT SCI, V38, P1220, DOI 10.1139/f81-164; Flebbe PA, 2006, T AM FISH SOC, V135, P1371, DOI 10.1577/T05-217.1; Haines T, 1982, P INT S AC PREC FISH; Harper MP, 2006, ECOL APPL, V16, P612, DOI 10.1890/1051-0761(2006)016[0612:ECOAMI]2.0.CO;2; Hauer F. R., 2007, METHODS STREAM ECOLO; HAYWARD RS, 1987, T AM FISH SOC, V116, P210, DOI 10.1577/1548-8659(1987)116<210:EEOPSA>2.0.CO;2; Henderson P. A., 2016, ECOLOGICAL METHODS; Hudy M, 2008, N AM J FISH MANAGE, V28, P1069, DOI 10.1577/M07-017.1; Humphries P, 2009, BIOSCIENCE, V59, P673, DOI 10.1525/bio.2009.59.8.9; Huston MA, 2014, ECOLOGY, V95, P2382, DOI 10.1890/13-1397.1; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; Jellyman PG, 2016, BIOL INVASIONS, V18, P3419, DOI 10.1007/s10530-016-1233-z; Kawaguchi Y, 2003, ECOLOGY, V84, P701, DOI 10.1890/0012-9658(2003)084[0701:TIIDTL]2.0.CO;2; Keeley ER, 2001, CAN J FISH AQUAT SCI, V58, P1122, DOI 10.1139/cjfas-58-6-1122; Lamberti GA, 1997, J N AM BENTHOL SOC, V16, P95, DOI 10.2307/1468241; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; MARTEN PS, 1992, PROG FISH CULT, V54, P1, DOI 10.1577/1548-8640(1992)054<0001:EOTVOT>2.3.CO;2; McCluney KE, 2014, FRONT ECOL ENVIRON, V12, P48, DOI 10.1890/120367; Merritt RW, 2008, INTRO AQUATIC INSECT; Mulholland PJ, 2001, FRESHWATER BIOL, V46, P1503, DOI 10.1046/j.1365-2427.2001.00773.x; Naiman RJ, 2012, P NATL ACAD SCI USA, V109, P21201, DOI 10.1073/pnas.1213408109; Nakano S, 2001, P NATL ACAD SCI USA, V98, P166, DOI 10.1073/pnas.98.1.166; Nilsson C, 2000, BIOSCIENCE, V50, P783, DOI 10.1641/0006-3568(2000)050[0783:AORECB]2.0.CO;2; Nislow KH, 2006, FRESHWATER BIOL, V51, P388, DOI 10.1111/j.1365-2427.2005.01492.x; Ouellet V, 2016, P 11 INT S EC FEB 7, P1; Pennsylvania Fish and Boat Commission (PFBC), 2009, STRAT PLAN MAN TROUT; Persson L., 1988, P203; Post E, 2008, PHILOS T R SOC B, V363, P2369, DOI 10.1098/rstb.2007.2207; Reeves GH, 1995, AM FISH SOC S, V17, P234; Rice KC, 2015, CLIMATIC CHANGE, V128, P127, DOI 10.1007/s10584-014-1295-9; Roon DA, 2016, CAN J FISH AQUAT SCI, V73, P1679, DOI 10.1139/cjfas-2015-0548; Seddon PJ, 2007, CONSERV BIOL, V21, P1388; SOTA T, 1988, RES POPUL ECOL, V30, P135, DOI 10.1007/BF02512608; Stewart GB, 2009, ECOL APPL, V19, P931, DOI 10.1890/07-1311.1; Stranko SA, 2012, RESTOR ECOL, V20, P747, DOI 10.1111/j.1526-100X.2011.00824.x; Sweeney B, 1991, GLOB WARM; Sweeney BW, 2014, J AM WATER RESOUR AS, V50, P560, DOI 10.1111/jawr.12203; Sweeney BW, 2004, P NATL ACAD SCI USA, V101, P14132, DOI 10.1073/pnas.0405895101; Utz RM, 2007, T AM FISH SOC, V136, P177, DOI 10.1577/T06-057.1; Van Leeuwen TE, 2016, BEHAV ECOL, V27, P385, DOI 10.1093/beheco/arv163; Wagner T, 2013, T AM FISH SOC, V142, P353, DOI 10.1080/00028487.2012.734892; Wallace JB, 1996, ANNU REV ENTOMOL, V41, P115, DOI 10.1146/annurev.en.41.010196.000555; WARD JV, 1982, ANNU REV ENTOMOL, V27, P97, DOI 10.1146/annurev.en.27.010182.000525; WATERS T F, 1988, Polskie Archiwum Hydrobiologii, V35, P545; Wehrly KE, 2007, T AM FISH SOC, V136, P365, DOI 10.1577/T06-163.1; Weisinger S., 2010, THESIS; Whitaker DM, 2000, CAN J ZOOL, V78, P740, DOI 10.1139/cjz-78-5-740; Wilson MK, 2014, FRESHWATER BIOL, V59, P187, DOI 10.1111/fwb.12257; Wipfli MS, 2010, FISHERIES, V35, P373, DOI 10.1577/1548-8446-35.8.373; Wipfli MS, 1997, CAN J FISH AQUAT SCI, V54, P1259, DOI 10.1139/cjfas-54-6-1259; Xu CL, 2010, J FISH BIOL, V76, P2342, DOI 10.1111/j.1095-8649.2010.02619.x; Yarnell SM, 2010, BIOSCIENCE, V60, P114, DOI 10.1525/bio.2010.60.2.6 72 1 1 17 28 TAYLOR & FRANCIS INC PHILADELPHIA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA 0270-5060 2156-6941 J FRESHWATER ECOL J. Freshw. Ecol. FEB 21 2018 33 1 195 210 10.1080/02705060.2017.1422558 16 Ecology; Limnology Environmental Sciences & Ecology; Marine & Freshwater Biology GB0GH WOS:000428723400001 DOAJ Gold 2018-11-22 J Frynta, D; Jancuchova-Laskova, J; Frydlova, P; Landova, E Frynta, Daniel; Jancuchova-Laskova, Jitka; Frydlova, Petra; Landova, Eva A comparative study of growth: different body weight trajectories in three species of the genus Eublepharis and their hybrids SCIENTIFIC REPORTS English Article SEXUAL SIZE DIMORPHISM; INVARIANT CLUTCH SIZE; GECKOS SQUAMATA; LIFE-HISTORY; OREOCHROMIS-NILOTICUS; METABOLIC CAPACITY; INDIVIDUAL GROWTH; GONADAL ANDROGENS; MONITOR LIZARDS; LACERTA-AGILIS An extensive research effort is devoted to the evolution of life-histories and processes underlying the variation in adult body weight; however, in this regard, some animal taxa remain neglected. Here we report rates and timing of growth recorded in two wild-derived populations of a model lizard species, Eublepharis macularius (M, W), other two related species, i.e., E. angramainyu (A) and E. sp. (D), and their between-species hybrids. We detected clear differences among the examined species/populations, which can be interpreted in the terms of "fast-slow" continuum of life-history strategies. The mean asymptotic body size was the highest in A and further decreased in the following order: M, W, and D. In contrast, the growth rate showed an opposite pattern. Counter-intuitively, the largest species exhibited the slowest growth rates. The final body size was determined mainly by the inflexion point. This parameter reflecting the duration of exponential growth increased with mean asymptotic body size and easily overcompensated the effect of decreasing growth rates in larger species. Compared to the parental species, the F-1 and backcross hybrids exhibited intermediate values of growth parameters. Thus, except for the case of the F-2 hybrid of MxA, we failed to detect deleterious effects of hybridization in these animals with temperature sex determination. [Frynta, Daniel; Jancuchova-Laskova, Jitka; Frydlova, Petra; Landova, Eva] Charles Univ Prague, Fac Sci, Dept Zool, Vinicna 7, CZ-12844 Prague 2, Czech Republic; [Landova, Eva] Natl Inst Mental Hlth, Topolova 748, CZ-25067 Klecany, Czech Republic Frydlova, P (reprint author), Charles Univ Prague, Fac Sci, Dept Zool, Vinicna 7, CZ-12844 Prague 2, Czech Republic. petra.frydlova@seznam.cz SVV project [260 434 / 2017]; Grant Agency of Charles University [754213]; Grant Agency of Czech Republic [17-15991 S] We would like to thank Veronika Musilova, Pavlina Sevcikova and Petra Suchomelova for taking care for animals, Klara Palupcikova and Barbora Somerova Opelkova for preliminary genetic analyses of the examined geckos, Lukas Kratochvil, Pavel Munclinger, Ivan Rehak and Petr Kodym for discussions and encouragement. We are grateful to Barbora Zampachova for critical reading and valuable comments and Jakub Polak and Silvie Radlova for proofreading and English improvements. The research was supported by the SVV project (260 434 / 2017), Grant Agency of Charles University (No. 754213) and Grant Agency of Czech Republic (17-15991 S). Abbott R, 2013, J EVOLUTION BIOL, V26, P229, DOI 10.1111/j.1420-9101.2012.02599.x; Ali M, 2003, FISH FISH, V4, P147, DOI 10.1046/j.1467-2979.2003.00120.x; Anderson S. C., 1999, CONTRIBUTIONS HERPET, V15; Arnold ML, 1997, NATURAL HYBRIDIZATIO; Bartley DM, 2000, REV FISH BIOL FISHER, V10, P325, DOI 10.1023/A:1016691725361; Bennett P., 2002, EVOLUTIONARY ECOLOGY; Bertalanffy L von, 1934, ARCH ENTWICKLUNGMECH, V131, P613, DOI DOI 10.1007/BF00650112(1934; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Boback SM, 2003, COPEIA, P81, DOI 10.1643/0045-8511(2003)003[0081:BSEISE]2.0.CO;2; Bosworth B, 2014, AQUACULTURE, V420, P147, DOI 10.1016/j.aquaculture.2013.10.026; BRADSHAW SD, 1971, J ZOOL, V165, P1; Bragg WK, 2000, BIOL J LINN SOC, V69, P319, DOI 10.1006/bijl.1999.0359; BULL JJ, 1988, J EVOLUTION BIOL, V1, P177, DOI 10.1046/j.1420-9101.1988.1020177.x; Burke JM, 2001, ANNU REV GENET, V35, P31, DOI 10.1146/annurev.genet.35.102401.085719; Chen ZJ, 2013, NAT REV GENET, V14, P471, DOI 10.1038/nrg3503; Clark TD, 2005, AM J PHYSIOL-REG I, V288, pR992, DOI 10.1152/ajpregu.00593.2004; Coomber P, 1997, J COMP NEUROL, V380, P409, DOI 10.1002/(SICI)1096-9861(19970414)380:3<409::AID-CNE9>3.0.CO;2-6; Cox RM, 2009, J EVOLUTION BIOL, V22, P1586, DOI 10.1111/j.1420-9101.2009.01772.x; Cox RM, 2005, J EXP BIOL, V208, P4679, DOI 10.1242/jeb.01948; Crews D, 1996, HORM BEHAV, V30, P474, DOI 10.1006/hbeh.1996.0051; Crews D, 1997, BRAIN RES, V758, P169, DOI 10.1016/S0006-8993(97)00222-9; Czerniejewski P, 2011, ACTA ICHTHYOL PISCAT, V41, P215, DOI 10.3750/AIP2011.41.3.09; Darwin C., 1871, DESCENT MAN SELECTIO; de Verdal H, 2014, AQUACULTURE, V430, P159, DOI 10.1016/j.aquaculture.2014.03.051; Dittrich-Reed DR, 2013, EVOL BIOL, V40, P310, DOI 10.1007/s11692-012-9209-0; Dobzhansky T, 1936, GENETICS, V21, P113; Dobzhansky T, 1937, GENETICS ORIGIN SPEC, V11; DUNHAM AE, 1978, ECOLOGY, V59, P770, DOI 10.2307/1938781; DUTTA H, 1994, GERONTOLOGY, V40, P97, DOI 10.1159/000213581; EKLUND J, 1977, NATURE, V265, P48, DOI 10.1038/265048b0; Fairbairn DJ, 1997, ANNU REV ECOL SYST, V28, P659, DOI 10.1146/annurev.ecolsys.28.1.659; Flores DL, 1995, HORM BEHAV, V29, P458, DOI 10.1006/hbeh.1995.1277; Fossen I, 1999, ICES J MAR SCI, V56, P689, DOI 10.1006/jmsc.1999.0486; Frydlova P, 2013, INTEGR ZOOL, V8, P39, DOI 10.1111/j.1749-4877.2012.00295.x; Frynta Daniel, 1997, Acta Societatis Zoologicae Bohemicae, V61, P3; Frynta D, 2010, ZOOL SCI, V27, P917, DOI 10.2108/zsj.27.917; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; Guarino FM, 2010, ACTA HERPETOL, V5, P23; Haenel GJ, 2002, OIKOS, V96, P70, DOI 10.1034/j.1600-0706.2002.10915.x; Hatfield T, 1999, EVOLUTION, V53, P866, DOI 10.1111/j.1558-5646.1999.tb05380.x; Jancuchova-Laskova J., 2015, PLOS ONE, V10; Jancuchova-Laskova J, 2015, CURR ZOOL, V61, P155; Johnson JI, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0106014; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; Kratochvil L, 2006, J ZOOL SYST EVOL RES, V44, P217, DOI 10.1111/j.1439-0469.2005.00339.x; Kratochvil L, 2003, FOLIA ZOOL, V52, P317; Kratochvil L, 2002, BIOL J LINN SOC, V76, P303, DOI 10.1111/j.1095-8312.2002.tb02089.x; Kratochvil L, 2007, FUNCT ECOL, V21, P171, DOI 10.1111/j.1365-2435.2006.01202.x; Kratochvil L, 2006, BIOL J LINN SOC, V88, P527, DOI 10.1111/j.1095-8312.2006.00627.x; Kubicka L, 2017, J EXP BIOL, V220, P787, DOI 10.1242/jeb.146597; Kubicka L, 2015, GEN COMP ENDOCR, V224, P273, DOI 10.1016/j.ygcen.2015.09.028; Kubicka L, 2013, GEN COMP ENDOCR, V188, P183, DOI 10.1016/j.ygcen.2013.03.016; Landova E, 2016, CURR ZOOL, V62, P439, DOI 10.1093/cz/zow050; Landova E, 2013, BEHAV ECOL SOCIOBIOL, V67, P1113, DOI 10.1007/s00265-013-1536-3; Lee R. M., 1912, ICES J MAR SCI, V1, P3, DOI [10.1093/icesjms/s1.63.3, DOI 10.1093/ICESJMS/S1.63.3]; Lee RM, 1921, NATURE, V106, P49; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; Lui JC, 2011, ENDOCR REV, V32, P422, DOI 10.1210/er.2011-0001; Mangel M, 2001, EVOL ECOL RES, V3, P583; Mayr Ernst, 1963, ANIMAL SPECIES EVOLU; Montanari SR, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0173212; Muller H. J., 1942, BIOL S, V6, P185; Muller H. J., 1940, NEW SYSTEMATICS, P185; Odierna G, 2001, ECOGRAPHY, V24, P332, DOI 10.1034/j.1600-0587.2001.240311.x; Olsson M, 2002, EVOLUTION, V56, P1867; PALOHEIMO JE, 1965, J FISH RES BOARD CAN, V22, P521, DOI 10.1139/f65-048; PARKER RR, 1959, J FISH RES BOARD CAN, V16, P721, DOI 10.1139/f59-052; Pfennig KS, 2007, SCIENCE, V318, P965, DOI 10.1126/science.1146035; Pokorna M, 2010, CHROMOSOME RES, V18, P809, DOI 10.1007/s10577-010-9154-7; Pokorna M, 2009, ZOOL J LINN SOC-LOND, V156, P168, DOI 10.1111/j.1096-3642.2008.00481.x; Roitberg ES, 2006, HERPETOL J, V16, P133; Rykena S, 2002, MERTENSIELLA, V13, P78; Schilthuizen M, 2011, HEREDITY, V107, P95, DOI 10.1038/hdy.2010.170; Schmidt-Nielsen K., 1984, SCALING WHY IS ANIMA; SCHOENER TW, 1978, COPEIA, P390, DOI 10.2307/1443602; Seufer H., 2005, EYELASH GECKOS CARE; SHINE R, 1992, AM NAT, V139, P1257, DOI 10.1086/285385; Starck JM, 1998, AVIAN GROWTH DEV EVO; Starostova Z, 2005, FUNCT ECOL, V19, P744, DOI 10.1111/j.1365-2435.2005.01020.x; Starostova Z, 2008, ZOOLOGY, V111, P377, DOI 10.1016/j.zool.2007.10.005; Starostova Z, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064715; Starostova Z, 2013, J EXP BIOL, V216, P1872, DOI 10.1242/jeb.079442; Starostova Z, 2009, AM NAT, V174, pE100, DOI 10.1086/603610; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; Taylor IG, 2013, FISH RES, V142, P75, DOI 10.1016/j.fishres.2012.08.021; Turelli M, 2000, GENETICS, V154, P1663; WAGNER E, 1980, Q REV BIOL, V55, P21; Walker TI, 1998, FISH RES, V39, P139, DOI 10.1016/S0165-7836(98)00180-5; West GB, 2001, NATURE, V413, P628, DOI 10.1038/35098076; West-Eberhard M. J, 2003, DEV PLASTICITY EVOLU; Willis PM, 2013, ACTA ETHOL, V16, P127, DOI 10.1007/s10211-013-0144-6; Winsor CP, 1932, P NATL ACAD SCI USA, V18, P1, DOI 10.1073/pnas.18.1.1; Yan BA, 2010, AQUAC RES, V41, pe336, DOI 10.1111/j.1365-2109.2010.02542.x 93 0 0 4 5 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 2045-2322 SCI REP-UK Sci Rep FEB 8 2018 8 2658 10.1038/s41598-018-19864-3 11 Multidisciplinary Sciences Science & Technology - Other Topics FV3DV WOS:000424449100036 29422546 DOAJ Gold 2018-11-22 J Kavanagh, PS; Kahl, BL Kavanagh, Phillip S.; Kahl, Bianca L. Are Expectations the Missing Link between Life History Strategies and Psychopathology? FRONTIERS IN PSYCHOLOGY English Article life history theory; psychopathology; evolutionary psychology; expectations; mismatch; predicative adaptive responses CHILDHOOD ADVERSITY; EXECUTIVE FUNCTION; RISK-TAKING; STRESS; MODEL; PERSONALITY; PERSPECTIVE; PLASTICITY; EVOLUTION; TRAITS Despite advances in knowledge and thinking about using life history theory to explain psychopathology there is still a missing link. That is, we all have a life history strategy, but not all of us develop mental health problems. We propose that the missing link is expectations - a mismatch between expected environmental conditions (including social) set by variations in life history strategies and the current environmental conditions. The mismatch hypothesis has been applied at the biological level in terms of health and disease and we believe that it can also be applied more broadly at the psychological level in terms of perceived expectations in the social environment and the resulting distress psychopathology- that manifests when our expectations are not met. [Kavanagh, Phillip S.] ISN Psychol, Inst Social Neurosci, Heidelberg, Vic, Australia; [Kavanagh, Phillip S.] Florey Inst Neurosci & Mental Hlth, Heidelberg, Vic, Australia; [Kavanagh, Phillip S.; Kahl, Bianca L.] Univ South Australia, Sch Psychol Social Work & Social Policy, Adelaide, SA, Australia Kavanagh, PS (reprint author), ISN Psychol, Inst Social Neurosci, Heidelberg, Vic, Australia.; Kavanagh, PS (reprint author), Florey Inst Neurosci & Mental Hlth, Heidelberg, Vic, Australia.; Kavanagh, PS (reprint author), Univ South Australia, Sch Psychol Social Work & Social Policy, Adelaide, SA, Australia. pkavanagh@isn.edu.au Kahl, Bianca/0000-0002-7194-3060 Altshuler DM, 2015, NATURE, V526, P68, DOI 10.1038/nature15393; American Psychiatric Association, 2013, DIAGN STAT MAN MENT, DOI [10.1176/appi.books.9780890425596, DOI 10.1176/APPI.BOOKS.9780890425596]; Beck AT, 2016, CLIN PSYCHOL SCI, V4, P596, DOI 10.1177/2167702616628523; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.1111/j.1467-8624.1991.tb01558.x; Cabeza de Baca T., 2016, EVOLUTIONARY BEHAV S, V10, P43, DOI DOI 10.1037/EBS0000056; Champagne DL, 2008, J NEUROSCI, V28, P6037, DOI 10.1523/JNEUROSCI.0526-08.2008; Champagne DL, 2009, SEMIN FETAL NEONAT M, V14, P136, DOI 10.1016/j.siny.2008.11.006; Collins NL, 2004, J PERS SOC PSYCHOL, V87, P363, DOI 10.1037/0022-3514.87.3.363; Daskalakis NP, 2012, PHYSIOL BEHAV, V106, P707, DOI 10.1016/j.physbeh.2012.01.015; Del Giudice M, 2015, HDB EVOLUTIONARY PSY, P88, DOI DOI 10.1002/9781119125563.EVPSYCH102; Del Giudice M, 2016, CLIN PSYCHOL SCI, V4, P299, DOI 10.1177/2167702615583628; Del Giudice M, 2014, PSYCHOL INQ, V25, P261, DOI 10.1080/1047840X.2014.884918; Del Giudice M, 2014, EVOL HUM BEHAV, V35, P415, DOI 10.1016/j.evolhumbehav.2014.05.007; Ellegren H, 2008, NATURE, V452, P169, DOI 10.1038/nature06737; Ellis B. J., 2016, DEV PSYCHOPATHOL, V1, P1, DOI DOI 10.1002/9781119125556.DEVPSY201; Ellis B. J., 2017, CHILD ADOLESCENT PSY; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2014, DEV PSYCHOPATHOL, V26, P1, DOI 10.1017/S0954579413000849; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Fagiolini M, 2009, CURR OPIN NEUROBIOL, V19, P207, DOI 10.1016/j.conb.2009.05.009; Figueredo A. J., 2017, EVOL BEHAV SCI, V12, P1, DOI [10.1037/ebs0000101, DOI 10.1037/EBS0000101]; Gladden PR, 2008, EVOL HUM BEHAV, V29, P319, DOI 10.1016/j.evolhumbehav.2008.03.003; Gladden PR, 2009, PERS INDIV DIFFER, V46, P270, DOI 10.1016/j.paid.2008.10.010; Gluckman PD, 2008, INT J OBESITY, V32, pS62, DOI 10.1038/ijo.2008.240; Gluckman PD, 2005, TRENDS ECOL EVOL, V20, P527, DOI 10.1016/j.tree.2005.08.001; Gluckman PD, 2004, SCIENCE, V305, P1733, DOI 10.1126/science.1095292; Gluckman PD, 2007, AM J HUM BIOL, V19, P1, DOI 10.1002/ajhb.20590; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Hill E., 2008, J SOCIO-ECON, V37, P1381, DOI DOI 10.1016/J.S0CEC.2006.12.081; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; Hill SE, 2016, PSYCHOL SCI, V27, P354, DOI 10.1177/0956797615621901; Hurst JE, 2017, EVOL HUM BEHAV, V38, P1, DOI 10.1016/j.evolhumbehav.2016.06.001; Jonason PK, 2012, REV GEN PSYCHOL, V16, P192, DOI 10.1037/a0027914; Kavanagh P. S., 2016, ENCY EVOLUTIONARY PS, P1, DOI DOI 10.1007/978-3-319-16999-6_1914-1; Kruger DJ, 2013, AM J HUM BIOL, V25, P225, DOI 10.1002/ajhb.22369; Kudinova AY, 2016, J ABNORM PSYCHOL, V125, P482, DOI 10.1037/abn0000158; Laucht M, 2000, J AM ACAD CHILD PSY, V39, P1229, DOI 10.1097/00004583-200010000-00009; Lee YS, 2009, ANN ACAD MED SINGAP, V38, P45; McEwen BS, 2003, HORM BEHAV, V43, P2, DOI 10.1016/S0018-506X(02)00024-7; McGowan PO, 2009, NAT NEUROSCI, V12, P342, DOI 10.1038/nn.2270; Mitropoulou V, 2004, SCHIZOPHR RES, V70, P27, DOI 10.1016/j.schres.2003.10.008; Mittal C, 2015, J PERS SOC PSYCHOL, V109, P604, DOI 10.1037/pspi0000028; Morrison S. F., 2011, CENTRAL NERVOUS SYST; Nesse RM, 2005, EVOL HUM BEHAV, V26, P88, DOI 10.1016/j.evolhumbehav.2004.08.002; Nettle D, 2006, P ROY SOC B-BIOL SCI, V273, P611, DOI 10.1098/rspb.2005.3349; Nettle D, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1343; Oomen CA, 2010, J NEUROSCI, V30, P6635, DOI 10.1523/JNEUROSCI.0247-10.2010; Pajer K, 2012, TRANSL PSYCHIAT, V2, DOI 10.1038/tp.2012.26; Reser JE, 2007, MED HYPOTHESES, V69, P383, DOI 10.1016/j.mehy.2006.12.031; Ross LT, 2002, SOC BEHAV PERSONAL, V30, P453, DOI 10.2224/sbp.2002.30.5.453; Schmidt MV, 2011, PSYCHONEUROENDOCRINO, V36, P330, DOI 10.1016/j.psyneuen.2010.07.001; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Sung S, 2016, PSYCHOL SCI, V27, P667, DOI 10.1177/0956797616631958; Wenner CJ, 2013, INTELLIGENCE, V41, P102, DOI 10.1016/j.intell.2012.11.004; Woodley of Menie M. A., 2017, EVOL PSYCHOL SCI, V3, P109, DOI [10.1007/s40806-016-0077-1, DOI 10.1007/S40806-016-0077-1]; Zilioli S, 2016, PSYCHOL SCI, V27, P1249, DOI 10.1177/0956797616658287 58 0 0 1 4 FRONTIERS MEDIA SA LAUSANNE PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND 1664-1078 FRONT PSYCHOL Front. Psychol. FEB 6 2018 9 89 10.3389/fpsyg.2018.00089 7 Psychology, Multidisciplinary Psychology FV0NF WOS:000424252600002 29467701 DOAJ Gold, Green Published 2018-11-22 J Peck, MA; Arvanitidis, C; Butenschon, M; Canu, DM; Chatzinikolaou, E; Cucco, A; Domenici, P; Fernandes, JA; Gasche, L; Huebert, KB; Hufnagl, M; Jones, MC; Kempf, A; Keyl, F; Maar, M; Mahevas, S; Marchal, P; Nicolas, D; Pinnegar, JK; Rivot, E; Rochette, S; Sell, AF; Sinerchia, M; Solidoro, C; Somerfield, PJ; Teal, LR; Travers-Trolet, M; van de Wolfshaar, KE Peck, Myron A.; Arvanitidis, Christos; Butenschon, Momme; Canu, Donata Melaku; Chatzinikolaou, Eva; Cucco, Andrea; Domenici, Paolo; Fernandes, Jose A.; Gasche, Loic; Huebert, Klaus B.; Hufnagl, Marc; Jones, Miranda C.; Kempf, Alexander; Keyl, Friedemann; Maar, Marie; Mahevas, Stephanie; Marchal, Paul; Nicolas, Deiphine; Pinnegar, John K.; Rivot, Etienne; Rochette, Sebastien; Sell, Anne F.; Sinerchia, Matteo; Solidoro, Cosimo; Somerfield, Paul J.; Teal, Lorna R.; Travers-Trolet, Morgan; van de Wolfshaar, Karen E. Projecting changes in the distribution and productivity of living marine resources: A critical review of the suite of modelling approaches used in the large European project VECTORS ESTUARINE COASTAL AND SHELF SCIENCE English Review Distribution; Modelling; Habitat; Resources; Man-induced effects CLIMATE-CHANGE IMPACTS; INDIVIDUAL-BASED MODEL; SMALL PELAGIC FISH; FOOD-WEB MODEL; TO-END MODELS; NORTH-SEA; ECOSYSTEM MODELS; ISIS-FISH; CONSERVATION PHYSIOLOGY; SPECIES DISTRIBUTIONS We review and compare four broad categories of spatially-explicit modelling approaches currently used to understand and project changes in the distribution and productivity of living marine resources including: 1) statistical species distribution models, 2) physiology-based, biophysical models of single life stages or the whole life cycle of species, 3) food web models, and 4) end-to-end models. Single pressures are rare and, in the future, models must be able to examine multiple factors affecting living marine resources such as interactions between: i) climate-driven changes in temperature regimes and acidification, ii) reductions in water quality due to eutrophication, iii) the introduction of alien invasive species, and/or iv) (over-)exploitation by fisheries. Statistical (correlative) approaches can be used to detect historical patterns which may not be relevant in the future. Advancing predictive capacity of changes in distribution and productivity of living marine resources requires explicit modelling of biological and physical mechanisms. New formulations are needed which (depending on the question) will need to strive for more realism in ecophysiology and behaviour of individuals, life history strategies of species, as well as trophodynamic interactions occurring at different spatial scales. Coupling existing models (e.g. physical, biological, economic) is one avenue that has proven successful. However, fundamental advancements are needed to address key issues such as the adaptive capacity of species/groups and ecosystems. The continued development of end-to-end models (e.g., physics to fish to human sectors) will be critical if we hope to assess how multiple pressures may interact to cause changes in living marine resources including the ecological and economic costs and trade-offs of different spatial management strategies. Given the strengths and weaknesses of the various types of models reviewed here, confidence in projections of changes in the distribution and productivity of living marine resources will be increased by assessing model structural uncertainty through biological ensemble modelling. (C) 2016 Elsevier Ltd. All rights reserved. [Peck, Myron A.; Huebert, Klaus B.; Hufnagl, Marc] Univ Hamburg, Inst Hydrobiol & Fisheries Sci, Olbersweg 24, D-22767 Hamburg, Germany; [Arvanitidis, Christos; Chatzinikolaou, Eva] Inst Marine Biol Biotechnol & Aquaculture, Hellen Ctr Marine Res, POB 2214, Iraklion 71003, Crete, Greece; [Butenschon, Momme; Fernandes, Jose A.; Somerfield, Paul J.] Plymouth Marine Lab, Prospect Pl, Plymouth PL13 DH, Devon, England; [Canu, Donata Melaku; Solidoro, Cosimo] OGS Ist Nazl Oceanog & Geofis Sperimentale, Borgo Grotta Gigante 42-C, I-34010 Sgonico, TS, Italy; [Cucco, Andrea; Domenici, Paolo; Sinerchia, Matteo] IAMC, CNR, Loc Sa Mardini, I-09170 Torregrande, Italy; [Gasche, Loic; Mahevas, Stephanie] IFREMER, Unite Ecol & Modeles Halieut, Rue Lile Yeu,BP21105, F-44311 Nantes, France; [Jones, Miranda C.; Pinnegar, John K.] Ctr Environm Fisheries & Aquaculture Sci, Lowestoft NR33 0HT, Suffolk, England; [Kempf, Alexander; Keyl, Friedemann; Sell, Anne F.] Inst Sea Fisheries, Thunen Inst, Palmaille 9, D-22767 Hamburg, Germany; [Maar, Marie] Univ Aarhus, Dept Biosci, Frederiksbotgvej 399,POB 358, DK-4000 Roskilde, Denmark; [Marchal, Paul; Travers-Trolet, Morgan] IFREMER, Lab Fishery Resources, 150 Quai Gambetta,BP 699, F-62321 Boulogne Sur Mer, France; [Nicolas, Deiphine] SAHIFOS, Lab, Citadel Hill, Plymouth PL1 2PB, Devon, England; [Rivot, Etienne] ESE Ecol & Ecosystem Hlth, UMR 985, Agrocampus Ouest, F-35042 Rennes, France; [Rochette, Sebastien] IFREMER, Unite Dynam Environm Cotier, Lab Applicat Geomat, BP 70, F-29280 Plouzane, France; [Teal, Lorna R.; van de Wolfshaar, Karen E.] Inst Marine Resources & Ecosyst Studies, Haringkade 1, Ijmuiden, Netherlands; [Huebert, Klaus B.] Univ Maryland, Ctr Environm Sci, Horn Point Lab, POB 775, Cambridge, MD 21613 USA; [Jones, Miranda C.] Univ British Columbia, Fisheries Ctr, Vancouver, BC, Canada Peck, MA (reprint author), Univ Hamburg, Inst Hydrobiol & Fisheries Sci, Olbersweg 24, D-22767 Hamburg, Germany. myron.peck@uni-hamburg.de Chatzinikolaou, Eva/G-9439-2011; Maar, Marie/C-5837-2008 Chatzinikolaou, Eva/0000-0002-7171-5105; Maar, Marie/0000-0001-8594-2993; Arvanitidis, Christos/0000-0002-6924-5255; Huebert, Klaus B./0000-0002-2432-7337; Peck, Myron/0000-0001-7423-1854 European Union [266445]; UK Natural Environment Research Council; Department for Environment, Food and Rural Affairs [NE/L003279/1] The research leading to these results has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration (FP7/2007-2013) within the Ocean of Tomorrow call under Grant Agreement No.266445 for the project Vectors of Change in Oceans and Seas Marine Life, Impact on Economic Sectors (VECTORS). This work is also a contribution to the EU Cost Action FA1004 "Conservation Physiology". PS acknowledges support from the UK Natural Environment Research Council and Department for Environment, Food and Rural Affairs [grant number NE/L003279/1, Marine Ecosystems Research Programme. The authors wish to thank Drs. Jason Link, Elizabeth Fulton and Oivind Fiksen as well as an anonymous reviewer for their helpful comments on an earlier version of this manuscript. This work also benefitted from discussions among members of the ICES Working Group on Integrated Physical biological and Ecosystem Modelling (WGIPEM) and the ICES-PICES Strategic Initiative on Climate Change Impacts on Marine Ecosystems (SICCME). Allen JI, 2007, J MARINE SYST, V64, P3, DOI 10.1016/j.jmarsys.2006.02.010; Allen JI, 2001, SARSIA, V86, P423, DOI 10.1080/00364827.2001.10420484; Altieri AH, 2008, ECOLOGY, V89, P2808, DOI 10.1890/07-0994.1; Anderson BJ, 2009, P R SOC B, V276, P1415, DOI 10.1098/rspb.2008.1681; Barange M, 2009, CLIMATE CHANGE IMPLI, P7; Bax N, 2003, MAR POLICY, V27, P313, DOI 10.1016/S0308-597X(03)00041-1; Beare DJ, 2004, MAR ECOL PROG SER, V284, P269, DOI 10.3354/meps284269; Beaugrand G, 2003, GLOBAL CHANGE BIOL, V9, P801, DOI 10.1046/j.1365-2486.2003.00632.x; Beaugrand G, 2003, NATURE, V426, P661, DOI 10.1038/nature02164; Blanchard J. L., 2011, THEORETICAL ECOLOGY, V4, P1; Blanchard JL, 2012, PHILOS T R SOC B, V367, P2979, DOI 10.1098/rstb.2012.0231; Brodeur RD, 2011, INTERDISCIPLINARY ST, P57; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Canu DM, 2010, CLIM RES, V42, P13, DOI 10.3354/cr00859; Cheung WWL, 2011, ICES J MAR SCI, V68, P1008, DOI 10.1093/icesjms/fsr012; Cheung WWL, 2009, FISH FISH, V10, P235, DOI 10.1111/j.1467-2979.2008.00315.x; Chown SL, 2007, P R SOC B, V274, P2531, DOI 10.1098/rspb.2007.0772; Christensen V, 2004, ECOL MODEL, V172, P109, DOI 10.1016/j.ecolmodel.2003.09.003; Christensen V, 2014, ECOSYSTEMS, V17, P1397, DOI 10.1007/s10021-014-9803-3; Clark Robin A., 2001, Environmental Reviews, V9, P131, DOI 10.1139/er-9-3-131; Cooke SJ, 2012, PHILOS T R SOC B, V367, P1757, DOI 10.1098/rstb.2012.0022; Cucco A, 2012, ECOL MODEL, V237, P132, DOI 10.1016/j.ecolmodel.2012.04.019; Daewel U, 2008, J PLANKTON RES, V30, P1, DOI 10.1093/plankt/fbm094; Daewel U, 2014, ICES J MAR SCI, V71, P254, DOI 10.1093/icesjms/fst125; Daewel U, 2011, CAN J FISH AQUAT SCI, V68, P426, DOI 10.1139/F10-164; Degnbol P., 2002, IIFET 2002; Diaz RJ, 2008, SCIENCE, V321, P926, DOI 10.1126/science.1156401; Doney SC, 2010, SCIENCE, V328, P1512, DOI 10.1126/science.1185198; Dulvy NK, 2008, J APPL ECOL, V45, P1029, DOI 10.1111/j.1365-2664.2008.01488.x; Durbin AG, 1998, ESTUARIES, V21, P449, DOI 10.2307/1352843; FAO, 2007, STAT WORLD FISH AQ 2; FAO, 2008, FAO FISH TECH GUI S2, V4; Fernandes JA, 2013, GLOBAL CHANGE BIOL, V19, P2596, DOI 10.1111/gcb.12231; Fernandes JA, 2013, ENVIRON MODELL SOFTW, V40, P245, DOI 10.1016/j.envsoft.2012.10.001; Fielding AH, 1997, ENVIRON CONSERV, V24, P38, DOI 10.1017/S0376892997000088; Frank KT, 2005, SCIENCE, V308, P1621, DOI 10.1126/science.1113075; Freitas V, 2010, PHILOS T R SOC B, V365, P3553, DOI 10.1098/rstb.2010.0049; Fry F.E.J., 1971, P1; Fry F.E.J., 1957, PHYSIOL FISHES, P1; Fulton EA, 2011, ICES J MAR SCI, V68, P1329, DOI 10.1093/icesjms/fsr032; Fulton EA, 2003, MAR ECOL PROG SER, V253, P1, DOI 10.3354/meps253001; Fulton EA, 2011, FISH FISH, V12, P171, DOI 10.1111/j.1467-2979.2011.00412.x; Fulton EA, 2010, J MARINE SYST, V81, P171, DOI 10.1016/j.jmarsys.2009.12.012; Galil BS, 2014, ETHOL ECOL EVOL, V26, P152, DOI 10.1080/03949370.2014.897651; Garcia S, 2003, 443 FAO; Gardmark A, 2013, ECOL APPL, V23, P742, DOI 10.1890/12-0267.1; Gasche L, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0077566; Gaston KJ, 1999, OIKOS, V84, P353, DOI 10.2307/3546417; Griffith GP, 2012, CONSERV BIOL, V26, P1145, DOI 10.1111/j.1523-1739.2012.01937.x; Guenette S, 2006, CAN J FISH AQUAT SCI, V63, P2495, DOI 10.1139/F06-136; Hanson PC, 1997, WISCUT97001 U WISC S; Hare SR, 2000, PROG OCEANOGR, V47, P103, DOI 10.1016/S0079-6611(00)00033-1; Hengl T., 2009, PRACTICAL GUIDE GEOS; Herborg LM, 2007, ECOL APPL, V17, P663, DOI 10.1890/06-0239; Hiddink JG, 2015, GLOBAL CHANGE BIOL, V21, P117, DOI 10.1111/gcb.12726; Hobbs RJ, 2009, TRENDS ECOL EVOL, V24, P599, DOI 10.1016/j.tree.2009.05.012; Hufnagl M, 2015, PROG OCEANOGR, V138, P486, DOI 10.1016/j.pocean.2014.04.029; Hufnagl M, 2011, ICES J MAR SCI, V68, P1170, DOI 10.1093/icesjms/fsr078; Hulme P. E., 2008, HDB EUROPEAN ALIEN S; Hunt GL, 2002, DEEP-SEA RES PT II, V49, P5821, DOI 10.1016/S0967-0645(02)00321-1; Huntley B, 2010, ECOGRAPHY, V33, P621, DOI 10.1111/j.1600-0587.2009.06023.x; Huret M, 2013, J MARINE SYST, V109, pS77, DOI 10.1016/j.jmarsys.2012.02.009; Huse G, 2008, CLIMATIC CHANGE, V87, P177, DOI 10.1007/s10584-007-9347-z; Hyder K, 2015, MAR POLICY, V61, P291, DOI 10.1016/j.marpol.2015.07.015; Jackson DJ, 2012, FRONT ZOOL, V9, DOI 10.1186/1742-9994-9-2; Jennings S, 2008, P ROY SOC B-BIOL SCI, V275, P1375, DOI 10.1098/rspb.2008.0192; Jennings S, 2010, J MARINE SYST, V79, P418, DOI 10.1016/j.jmarsys.2008.12.016; Jolliff JK, 2009, J MARINE SYST, V76, P64, DOI 10.1016/j.jmarsys.2008.05.014; Jones M. C., 2014, ICES J MAR SCI; Jones MC, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0054216; Jones MC, 2012, ECOL MODEL, V225, P133, DOI 10.1016/j.ecolmodel.2011.11.003; Jorgensen C., 2012, BIOL LETT; Kaplan I. C., 2012, FISH FISH; Kempf A, 2013, FISH OCEANOGR, V22, P174, DOI 10.1111/fog.12013; Kerr S. R., 2001, BIOMASS SPECTRUM PRE; Kishi MJ, 2011, J OCEANOGR, V67, P3, DOI 10.1007/s10872-011-0009-4; Koenigstein S, 2016, FISH FISH, V17, P972, DOI 10.1111/faf.12155; Kooijman S.A.L.M., 2010, DYNAMIC ENERGY BUDGE; Kraus G, 2002, CAN J FISH AQUAT SCI, V59, P1908, DOI [10.1139/f02-159, 10.1139/F02-159]; Kuhn W, 2008, J MARINE SYST, V74, P329, DOI 10.1016/j.jmarsys.2008.02.002; Lam VWY, 2012, AFR J MAR SCI, V34, P103, DOI 10.2989/1814232X.2012.673294; Lehodey P, 2008, PROG OCEANOGR, V78, P304, DOI 10.1016/j.pocean.2008.06.004; Lehuta S., 2013, CAN J FISH AQUATIC S, V70, P2013; Lehuta S, 2013, FISH RES, V143, P57, DOI 10.1016/j.fishres.2013.01.008; Lehuta S, 2010, ICES J MAR SCI, V67, P1063, DOI 10.1093/icesjms/fsq002; Libralato S., 2012, FOOD WEB TRAITS PROT, V143, P2182; Lindeboom HJ, 2011, ENVIRON RES LETT, V6, DOI 10.1088/1748-9326/6/3/035101; Littell JS, 2010, CLIMATIC CHANGE, V102, P129, DOI 10.1007/s10584-010-9858-x; Llope M, 2012, GLOBAL CHANGE BIOL, V18, P106, DOI 10.1111/j.1365-2486.2011.02492.x; Luisetti T, 2011, OCEAN COAST MANAGE, V54, P212, DOI 10.1016/j.ocecoaman.2010.11.003; Mackinson S, 2009, ECOL MODEL, V220, P2972, DOI 10.1016/j.ecolmodel.2008.10.021; Mahevas S, 2004, ECOL MODEL, V171, P65, DOI 10.1016/j.ecolmodel.2003.04.001; Marshall C. T., 2000, CAN J FISH AQUAT SCI, V57, P1; Marzloff M, 2009, J MARINE SYST, V75, P290, DOI 10.1016/j.jmarsys.2008.10.009; Maunder MN, 2006, ICES J MAR SCI, V63, P969, DOI 10.1016/j.icesjms.2006.03.016; Merino G, 2012, GLOBAL ENVIRON CHANG, V22, P795, DOI 10.1016/j.gloenvcha.2012.03.003; Merino G, 2010, J MARINE SYST, V81, P196, DOI 10.1016/j.jmarsys.2009.12.010; Metcalfe JD, 2012, PHILOS T R SOC B, V367, P1746, DOI 10.1098/rstb.2012.0017; Metcalfe K, 2015, J APPL ECOL, V52, P665, DOI 10.1111/1365-2664.12404; Milly PCD, 2008, SCIENCE, V319, P573, DOI 10.1126/science.1151915; Moller KO, 2012, MAR ECOL PROG SER, V468, P57, DOI 10.3354/meps09984; Morzaria-Luna HN, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0042917; Mueter FJ, 2006, PROG OCEANOGR, V68, P152, DOI 10.1016/j.pocean.2006.02.012; Nicolas D, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088447; Nisbet RM, 2012, J EXP BIOL, V215, P892, DOI 10.1242/jeb.059675; O'Connor MI, 2007, P NATL ACAD SCI USA, V104, P1266, DOI 10.1073/pnas.0603422104; Parent E., 2012, INTRO HIERARCHICAL B; Pearce J, 2000, ECOL MODEL, V133, P225, DOI 10.1016/S0304-3800(00)00322-7; Pearson RG, 2003, GLOBAL ECOL BIOGEOGR, V12, P361, DOI 10.1046/j.1466-822X.2003.00042.x; Peck MA, 2013, PROG OCEANOGR, V116, P220, DOI 10.1016/j.pocean.2013.05.012; Peck MA, 2012, J MARINE SYST, V93, P77, DOI 10.1016/j.jmarsys.2011.08.005; Pelletier D, 2009, ECOL MODEL, V220, P1013, DOI 10.1016/j.ecolmodel.2009.01.007; Perry AL, 2005, SCIENCE, V308, P1912, DOI 10.1126/science.1111322; Perry RI, 2010, J MARINE SYST, V79, P427, DOI 10.1016/j.jmarsys.2008.12.017; Petitgas P, 2013, FISH OCEANOGR, V22, P121, DOI 10.1111/fog.12010; Petitgas P, 2012, MAR ECOL PROG SER, V444, P1, DOI 10.3354/meps09451; Phillips SJ, 2008, ECOGRAPHY, V31, P161, DOI 10.1111/j.0906-7590.2008.5203.x; Pikitch EK, 2004, SCIENCE, V305, P346, DOI 10.1126/science.1098222; Pinnegar JK, 2014, ECOL MODEL, V272, P379, DOI 10.1016/j.ecolmodel.2013.09.027; Piroddi C, 2015, ECOL INDIC, V58, P175, DOI 10.1016/j.ecolind.2015.05.037; Plaganyi E.E., 2007, FAO FISHERIES TECHNI, V477, P108; Planque B, 2011, ICES J MAR SCI, V68, P1045, DOI 10.1093/icesjms/fsr007; Planque B, 2011, FISH OCEANOGR, V20, P1, DOI 10.1111/j.1365-2419.2010.00546.x; PLATT T, 1977, HELGOLAND WISS MEER, V30, P575, DOI 10.1007/BF02207862; Portner HO, 2010, J FISH BIOL, V77, P1745, DOI 10.1111/j.1095-8649.2010.02783.x; Portner HO, 2007, SCIENCE, V315, P95, DOI 10.1126/science.1135471; Portner HO, 2012, MAR ECOL PROG SER, V470, P273, DOI 10.3354/meps10123; Rabalais NN, 2010, BIOGEOSCIENCES, V7, P585, DOI 10.5194/bg-7-585-2010; Rijnsdorp AD, 2009, ICES J MAR SCI, V66, P1570, DOI 10.1093/icesjms/fsp056; Robinson LM, 2011, GLOBAL ECOL BIOGEOGR, V20, P789, DOI 10.1111/j.1466-8238.2010.00636.x; Rochette S, 2013, ECOL APPL, V23, P1659, DOI 10.1890/12-0336.1; Rombouts I, 2013, ECOL INDIC, V24, P353, DOI 10.1016/j.ecolind.2012.07.001; Rose KA, 1999, MAR ECOL PROG SER, V185, P113, DOI 10.3354/meps185113; Rose KA, 2015, PROG OCEANOGR, V138, P348, DOI 10.1016/j.pocean.2015.01.012; Rose KA, 2010, MAR COAST FISH, V2, P115, DOI 10.1577/C09-059.1; Sarah SL, 2015, MAR POLICY, V51, P281, DOI 10.1016/j.marpol.2014.08.017; Seebacher F, 2012, PHILOS T R SOC B, V367, P1607, DOI 10.1098/rstb.2012.0036; SHELDON RW, 1972, LIMNOL OCEANOGR, V17, P327, DOI 10.4319/lo.1972.17.3.0327; Shin YJ, 2004, AFR J MAR SCI, V26, P95, DOI 10.2989/18142320409504052; Shin YJ, 2001, AQUAT LIVING RESOUR, V14, P65, DOI 10.1016/S0990-7440(01)01106-8; Shurin JB, 2002, ECOL LETT, V5, P785, DOI 10.1046/j.1461-0248.2002.00381.x; Simpson SD, 2011, CURR BIOL, V21, P1565, DOI 10.1016/j.cub.2011.08.016; Soberon J, 2007, ECOL LETT, V10, P1115, DOI 10.1111/j.1461-0248.2007.01107.x; Solidoro C, 2000, MAR ECOL PROG SER, V199, P137, DOI 10.3354/meps199137; Speirs DC, 2010, FISH RES, V106, P474, DOI 10.1016/j.fishres.2010.09.023; Steenbeek J, 2013, ECOL MODEL, V263, P139, DOI 10.1016/j.ecolmodel.2013.04.027; Stips A, 2004, OCEAN DYNAM, V54, P266, DOI 10.1007/s10236-003-0077-0; Stock CA, 2011, PROG OCEANOGR, V88, P1, DOI 10.1016/j.pocean.2010.09.001; Stocker TF, 2013, CLIMATE CHANGE 2013; Sugihara G, 2012, SCIENCE, V338, P496, DOI 10.1126/science.1227079; Sumaila UR, 2011, NAT CLIM CHANGE, V1, P449, DOI 10.1038/NCLIMATE1301; Sunday JM, 2012, NAT CLIM CHANGE, V2, P686, DOI 10.1038/NCLIMATE1539; Sundby S, 2000, SARSIA, V85, P277, DOI 10.1080/00364827.2000.10414580; Sykes MT, 1996, J BIOGEOGR, V23, P203; Taylor AH, 2002, NATURE, V416, P629, DOI 10.1038/416629a; Teal L, 2016, ESTUAR COAS IN PRESS; Teal LR, 2012, GLOBAL CHANGE BIOL, V18, P3291, DOI 10.1111/j.1365-2486.2012.02795.x; Temming A, 2007, ECOSYSTEMS, V10, P865, DOI 10.1007/s10021-007-9066-3; Thomas L, 2005, AUST NZ J STAT, V47, P19, DOI 10.1111/j.1467-842X.2005.00369.x; Thuiller W, 2003, GLOBAL CHANGE BIOL, V9, P1353, DOI 10.1046/j.1365-2486.2003.00666.x; Travers M, 2007, PROG OCEANOGR, V75, P751, DOI 10.1016/j.pocean.2007.08.001; Travers M, 2010, J MARINE SYST, V79, P101, DOI 10.1016/j.jmarsys.2009.07.005; Travers M, 2009, ECOL MODEL, V220, P3089, DOI 10.1016/j.ecolmodel.2009.08.016; van der Veer HW, 2009, J SEA RES, V62, P83, DOI 10.1016/j.seares.2009.02.001; VECTORS, 2014, 422 VECTORS; Walters C, 2008, B MAR SCI, V83, P251; Werner FE, 2001, SARSIA, V86, P411, DOI 10.1080/00364827.2001.10420483; Yemane D, 2009, ICES J MAR SCI, V66, P378, DOI 10.1093/icesjms/fsn171 168 11 11 19 27 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0272-7714 1096-0015 ESTUAR COAST SHELF S Estuar. Coast. Shelf Sci. FEB 5 2018 201 SI 40 55 10.1016/j.ecss.2016.05.019 16 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography FY9TP WOS:000427210100005 Y N 2018-11-22 J Ostbye, K; Taugbol, A; Ravinet, M; Harrod, C; Pettersen, RA; Bernatchez, L; Vollestad, LA Ostbye, Kjartan; Taugbol, Annette; Ravinet, Mark; Harrod, Chris; Pettersen, Ruben Alexander; Bernatchez, Louis; Vollestad, Leif Asbjorn Ongoing niche differentiation under high gene flow in a polymorphic brackish water threespine stickleback (Gasterosteus aculeatus) population BMC EVOLUTIONARY BIOLOGY English Article Adaptation; Ectodysplasin; Evolution; Gill raker; Natural selection; Panmixia; Stable isotope analyses; Stn382; Theristina gasterostei; Trematoda spp NEIGHBOR-JOINING METHOD; BALTIC SEA; 3-SPINED STICKLEBACK; CRYPTOCOTYLE-CONCAVUM; NATURAL-SELECTION; ECTODYSPLASIN ALLELES; PARALLEL EVOLUTION; ADAPTIVE VARIATION; ARMOR REDUCTION; LIFE-HISTORY Background: Marine threespine sticklebacks colonized and adapted to brackish and freshwater environments since the last Pleistocene glacial. Throughout the Holarctic, three lateral plate morphs are observed; the low, partial and completely plated morph. We test if the three plate morphs in the brackish water Lake Engervann, Norway, differ in body size, trophic morphology (gill raker number and length), niche (stable isotopes; delta N-15, delta C-13, and parasites (Theristina gasterostei, Trematoda spp.)), genetic structure (microsatellites) and the lateral-plate encoding Stn382 (Ectodysplasin) gene. We examine differences temporally (autumn 2006/spring 2007) and spatially (upper/lower sections of the lake -reflecting low versus high salinity). Results: All morphs belonged to one gene pool. The complete morph was larger than the low plated, with the partial morph intermediate. The number of lateral plates ranged 8-71, with means of 64.2 for complete, 40.3 for partial, and 14.9 for low plated morph. Stickleback delta N-15 was higher in the lower lake section, while delta C-13 was higher in the upper section. Stickleback isotopic values were greater in autumn. The low plated morph had larger variances in delta N-15 and delta C-13 than the other morphs. Sticklebacks in the upper section had more T. gasterostei than in the lower section which had more Trematoda spp. Sticklebacks had less T. gasterostei, but more Trematoda spp. in autumn than spring. Sticklebacks with few and short rakers had more T. gasterostei, while sticklebacks with longer rakers had more Trematoda. spp. Stickleback with higher delta N-15 values had more T. gasterostei, while sticklebacks with higher delta N-15 and delta C-13 values had more Trematoda spp. The low plated morph had fewer Trematoda spp. than other morphs. Conclusions: Trait-ecology associations may imply that the three lateral plate morphs in the brackish water lagoon of Lake Engervann are experiencing ongoing divergent selection for niche and migratory life history strategies under high gene flow. As such, the brackish water zone may generally act as a generator of genomic diversity to be selected upon in the different environments where threespine sticklebacks can live. [Ostbye, Kjartan] Inland Norway Univ Appl Sci, Dept Forestry & Wildlife Management, Campus Evenstad, NO-2418 Elverum, Norway; [Ostbye, Kjartan; Ravinet, Mark; Pettersen, Ruben Alexander; Vollestad, Leif Asbjorn] Univ Oslo, Dept Biosci, CEES, POB 1066, N-0316 Oslo, Norway; [Taugbol, Annette] Norwegian Inst Nat Res NINA, N-2624 Lillehammer, Norway; [Harrod, Chris] Max Planck Inst Limnol, Dept Physiol Ecol, Postfach 165, D-24302 Plon, Germany; [Harrod, Chris] Univ Antofagasta, Fish & Stable Isotope Ecol Lab, Inst Ciencias Nat Alexander Von Humbolt, Ave Angamos 601, Antofagasta, Chile; [Bernatchez, Louis] Univ Laval, Dept Biol, Pavillon Charles Eugene Marchand 1030,Ave Med, Quebec City, PQ G1V 0A6, Canada Ostbye, K (reprint author), Inland Norway Univ Appl Sci, Dept Forestry & Wildlife Management, Campus Evenstad, NO-2418 Elverum, Norway.; Ostbye, K (reprint author), Univ Oslo, Dept Biosci, CEES, POB 1066, N-0316 Oslo, Norway. kjartan.ostbye@ibv.uic.no Harrod, Chris/A-8830-2008 Harrod, Chris/0000-0002-5353-1556 Research Council of Norway [170755/V20] This study was financially supported by the Research Council of Norway (grant no 170755/V20 to LAV). Antao T, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-323; BANBURA J, 1989, ZOOL SCR, V18, P157, DOI 10.1111/j.1463-6409.1989.tb00129.x; Barrett RDH, 2008, SCIENCE, V322, P255, DOI 10.1126/science.1159978; Barrett RDH, 2011, P ROY SOC B-BIOL SCI, V278, P233, DOI 10.1098/rspb.2010.0923; Barrett RDH, 2009, BIOL LETTERS, V5, P788, DOI 10.1098/rsbl.2009.0416; Barrett RDH, 2009, EVOLUTION, V63, P2831, DOI 10.1111/j.1558-5646.2009.00762.x; Beaumont MA, 1996, P ROY SOC B-BIOL SCI, V263, P1619, DOI 10.1098/rspb.1996.0237; Bell M. A, 1994, EVOLUTIONARY BIOL TH; Bell MA, 2004, EVOLUTION, V58, P814; Bell MA, 2010, ENVIRON BIOL FISH, V89, P189, DOI 10.1007/s10641-010-9712-z; Bjaerke O, 2010, ECOL FRESHW FISH, V19, P249, DOI 10.1111/j.1600-0633.2010.00409.x; Blegvad H., 1917, REP DAN BIOL STN, V24, P19; Blindheim T, 2005153S SIST SJANS; Borges JN, 2015, FOOD CONTROL, V50, P371, DOI 10.1016/j.foodcont.2014.09.021; Bowles E, 2016, CURR ZOOL, V62, P71, DOI 10.1093/cz/zov007; BREDER C. M., 1960, ZOOLOGICA [NEW YORK], V45, P155; Bykovskaya-Pavlovskaya IE, 1964, KEY PARASITES FRES 1, P180; Colosimo PF, 2005, SCIENCE, V307, P1928, DOI 10.1126/science.1107239; DeFaveri J, 2013, J EVOLUTION BIOL, V26, P1700, DOI 10.1111/jeb.12168; DeFaveri J, 2013, EVOLUTION, V67, P2530, DOI 10.1111/evo.12097; DeFaveri J, 2011, EVOLUTION, V65, P1800, DOI 10.1111/j.1558-5646.2011.01247.x; DELBEEK JC, 1987, J ANIM ECOL, V56, P949, DOI 10.2307/4959; Demchuk A, 2015, J MAR BIOL ASSOC UK, V95, P1635, DOI 10.1017/S0025315415000569; DONOGHUE S, 1986, ANN PARASIT HUM COMP, V61, P673, DOI 10.1051/parasite/1986616673; Dzikowski R, 2004, DIS AQUAT ORGAN, V59, P35, DOI 10.3354/dao059035; Earl DA, 2012, CONSERV GENET RESOUR, V4, P359, DOI 10.1007/s12686-011-9548-7; ElMayas H, 1995, J HELMINTHOL, V69, P285, DOI 10.1017/S0022149X00014851; Evanno G, 2005, MOL ECOL, V14, P2611, DOI 10.1111/j.1365-294X.2005.02553.x; FELSENSTEIN J, 1985, EVOLUTION, V39, P783, DOI 10.1111/j.1558-5646.1985.tb00420.x; Greenwood AK, 2016, GENETICS, V203, P677, DOI 10.1534/genetics.116.188342; Grey J, 2000, VERHANDLUNGEN INT VE, V27, P3187; GROSS HP, 1978, CAN J ZOOL, V56, P398, DOI 10.1139/z78-058; Grotan K, 2012, CAN J ZOOL, V90, P1386, DOI 10.1139/cjz-2012-0121; Guo BC, 2015, BMC BIOL, V13, DOI 10.1186/s12915-015-0130-8; HAGEN DW, 1972, EVOLUTION, V26, P32, DOI 10.1111/j.1558-5646.1972.tb00172.x; Halvorsen G, 2005, NINA MINIRAPPORT, V2005, P136; HANEK G, 1969, CAN J ZOOLOG, V47, P627, DOI 10.1139/z69-107; Harrod C, 2005, OECOLOGIA, V144, P673, DOI 10.1007/s00442-005-0161-x; Harrod C, 2010, J ANIM ECOL, V79, P1057, DOI 10.1111/j.1365-2656.2010.01702.x; Hendry AP, 2004, EVOL ECOL RES, V6, P1219; Hendry AP, 2004, EVOLUTION, V58, P2319; Isakov LS, 1966, FISH RES BD CAN TRAN, V780, P1; Jones FC, 2012, CURR BIOL, V22, P83, DOI 10.1016/j.cub.2011.11.045; Kiljunen M, 2006, J APPL ECOL, V43, P1213, DOI 10.1111/j.1365-2664.2006.01224.x; Kitano J, 2008, CURR BIOL, V18, P769, DOI 10.1016/j.cub.2008.04.027; KJENSMO JOHANNES, 1966, SCHWEIZ Z HYDROL, V28, P29, DOI 10.1007/BF02502999; KLEPAKER T, 1995, CAN J ZOOL, V73, P898, DOI 10.1139/z95-105; Klepaker T, 1996, COPEIA, P832; Klepaker TO, 2008, J ZOOL, V276, P81, DOI 10.1111/j.1469-7998.2008.00471.x; Klepaker T, 2012, EVOL ECOL RES, V14, P169; Konijnendijk N, 2015, ECOL EVOL, V5, P4174, DOI 10.1002/ece3.1671; Le Rouzic A, 2011, MOL ECOL, V20, P2483, DOI 10.1111/j.1365-294X.2011.05071.x; LEVSEN A, 1992, Fauna (Oslo), V45, P40; Lucek K, 2012, J HERED, V103, P579, DOI 10.1093/jhered/ess021; Lucek K, 2010, MOL ECOL, V19, P3995, DOI 10.1111/j.1365-294X.2010.04781.x; Marchinko KB, 2007, EVOLUTION, V61, P1084, DOI 10.1111/j.1558-5646.2007.00103.x; McCairns RJS, 2012, J EVOLUTION BIOL, V25, P1097, DOI 10.1111/j.1420-9101.2012.02496.x; Moller H., 1978, Journal of Fish Biology, V12, P311; Morozinska-Gogol J., 1999, BALTIC COAST ZONE, V3, P77; Morozinska-Gogol J., 2000, BALTIC COASTAL ZONE, V4, P87; Morozinska-Gogol J, 2015, OCEANOLOGIA, V57, P280, DOI 10.1016/j.oceano.2015.03.001; Nei M., 2000, MOL EVOLUTION PHYLOG; Nordstrom MC, 2010, J EXP MAR BIOL ECOL, V391, P101, DOI 10.1016/j.jembe.2010.06.015; Ostbye K, 2016, BMC EVOL BIOL, V16, DOI 10.1186/s12862-016-0676-2; Peddle JC, 2004, THESIS; Peeke HVS, 2000, BEHAVIOUR, V137, P1011, DOI 10.1163/156853900502402; Pinnegar JK, 1999, FUNCT ECOL, V13, P225, DOI 10.1046/j.1365-2435.1999.00301.x; Post DM, 2002, ECOLOGY, V83, P703, DOI 10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2; POULIN R, 1987, CAN J ZOOL, V65, P2793, DOI 10.1139/z87-421; Pritchard JK, 2000, GENETICS, V155, P945; Raeymaekers JAM, 2007, MOL ECOL, V16, P891, DOI 10.1111/j.1365-294X.2006.03190.x; Raeymaekers JAM, 2014, MOL ECOL, V23, P162, DOI 10.1111/mec.12582; Ravinet M, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0122825; Ravinet M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0112404; RAYMOND M, 1995, J HERED, V86, P248, DOI 10.1093/oxfordjournals.jhered.a111573; Reichenback-Klinke H, 1965, PRINCIPAL DIS LOWER; REIMCHEN TE, 1983, EVOLUTION, V37, P931, DOI 10.1111/j.1558-5646.1983.tb05622.x; Rennison DJ, 2015, AM NAT, V185, P150, DOI 10.1086/679280; Robertson S, 2017, SCI REP-UK, V7, DOI 10.1038/srep42677; Rybkina EV, 2016, EVOL ECOL RES, V17, P335; RZHETSKY A, 1992, MOL BIOL EVOL, V9, P945; SAITOU N, 1987, MOL BIOL EVOL, V4, P406; Sambrook J., 1989, MOL CLONING LAB MANU; Sanchez-Gonzales S, 2001, ECOL FRESHW FISH, V10, P191, DOI 10.1034/j.1600-0633.2001.100401.x; SAS Institute Inc, 2010, US JMP 9; Savoie VL, 2004, THESIS SAINT MARYS U; SCOTT T, 1913, BRIT PARASITIC COPEP, V1; Shulman SS, 1953, PARASITES FISHES WHI; SNYDER RJ, 1989, CAN J ZOOL, V67, P2448, DOI 10.1139/z89-345; SNYDER RJ, 1991, ENVIRON BIOL FISH, V31, P381, DOI 10.1007/BF00002363; Spence R, 2013, ECOL EVOL, V3, P1717, DOI 10.1002/ece3.581; Tamura K, 2004, P NATL ACAD SCI USA, V101, P11030, DOI 10.1073/pnas.0404206101; Tamura K, 2011, MOL BIOL EVOL, V28, P2731, DOI 10.1093/molbev/msr121; Taugbol A, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0106894; Taylor EB, 2000, P ROY SOC B-BIOL SCI, V267, P2375, DOI 10.1098/rspb.2000.1294; THORMAN S, 1983, MAR ECOL PROG SER, V10, P223, DOI 10.3354/meps010223; THRELFALL W, 1968, CAN J ZOOLOG, V46, P105, DOI 10.1139/z68-016; VALDEZ RA, 1974, T AM FISH SOC, V103, P632, DOI 10.1577/1548-8659(1974)103<632:TPOTSF>2.0.CO;2; van Duijn Jr C, 1967, DIS OF FISHES; Van Oosterhout C, 2004, MOL ECOL NOTES, V4, P535, DOI 10.1111/j.1471-8286.2004.00684.x; Vennerod K., 1984, METODEBOK LIMNOLOGI, P283; WALKEY M, 1970, J ZOOL, V162, P371; Webster MM, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021060; WOOTTON DM, 1957, J PARASITOL, V43, P271, DOI 10.2307/3274345; Yamaguti S., 1963, PARASITIC COPEPODA B; Zander CD, 2007, PARASITOL RES, V100, P287, DOI 10.1007/s00436-006-0282-0; ZANDER CD, 1984, HELGOLANDER MEERESUN, V37, P433, DOI 10.1007/BF01989322; Zander CD, 1999, PARASITOL RES, V85, P356, DOI 10.1007/s004360050562; Zander CD, 2002, PARASITOL RES, V88, P734, DOI 10.1007/s00436-002-0652-1; Zietara MS, 2002, PARASITOLOGY, V124, P39, DOI 10.1017/S0031182001008939 110 0 0 7 16 BMC LONDON CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 1471-2148 BMC EVOL BIOL BMC Evol. Biol. FEB 5 2018 18 10.1186/s12862-018-1128-y 18 Evolutionary Biology; Genetics & Heredity Evolutionary Biology; Genetics & Heredity FV3IO WOS:000424461700002 29402230 DOAJ Gold, Green Published 2018-11-22 J Hooper, AK; Lehtonen, J; Schwanz, LE; Bonduriansky, R Hooper, Amy K.; Lehtonen, Jussi; Schwanz, Lisa E.; Bonduriansky, Russell Sexual competition and the evolution of condition-dependent ageing EVOLUTION LETTERS English Article Ageing; condition-dependence; resource acquisition; resource allocation; secondary sexual traits; sexual selection ALTERNATIVE REPRODUCTIVE STRATEGIES; SWALLOWS HIRUNDO-RUSTICA; TRADE-OFFS; RESOURCE-ALLOCATION; LIFE-SPAN; RED DEER; SENESCENCE; AGE; SURVIVAL; SELECTION Increased individual resources (condition) can be correlated with either increased or decreased longevity. While variation in resource acquisition and allocation can account for some of this variation, the general conditions that select for either pattern remain unclear. Previous models suggest that nonlinearity of payoffs from investment in reproduction (e.g., male secondary sexual traits) can select for high-condition individuals that sacrifice longevity to increase reproductive opportunity. However, it remains unclear what mating systems or patterns of sexual competition might select for such life-history strategies. We used a model of condition-dependent investment to explore how expected payoffs from increased expression of secondary sexual traits affect optimal investment in lifespan. We find that nonlinearity of these payoffs results in a negative relationship between condition and lifespan under two general conditions: first, when there are accelerating marginal benefits from increasing investment; second, when individuals that invest minimally in secondary sexual trait expression can still achieve matings. In the second scenario, the negative relationship occurs due to selection on low-condition individuals to extend lifespan at the cost of secondary sexual trait expression. Our findings clarify the potential role of sexual selection in shaping patterns of condition-dependent ageing, and highlight the importance of considering the strategies of both low- and high-condition individuals when investigating patterns of condition-dependent ageing. [Hooper, Amy K.; Lehtonen, Jussi; Schwanz, Lisa E.; Bonduriansky, Russell] Univ New South Wales, Evolut & Ecol Res Ctr, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia Hooper, AK (reprint author), Univ New South Wales, Evolut & Ecol Res Ctr, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia. amy.hooper@unsw.edu.au Australian Research Council Future Fellowship This work was funded through an Australian Research Council Future Fellowship to R. B. The authors would like to thank N. Burke and E. Macartney for comments on previous drafts. We are very grateful to H. Kokko, J-F. Lemaitre, and Associate Editor Anne Charmantier for their helpful comments and constructive input. Adler MI, 2014, CSH PERSPECT BIOL, V6, DOI 10.1101/cshperspect.a017566; ANDERSSON M, 1982, BIOL J LINN SOC, V17, P375, DOI 10.1111/j.1095-8312.1982.tb02028.x; Berube CH, 1999, ECOLOGY, V80, P2555, DOI 10.1890/0012-9658(1999)080[2555:IDLARS]2.0.CO;2; Boggs CL, 2009, FUNCT ECOL, V23, P27, DOI 10.1111/j.1365-2435.2009.01527.x; Bonduriansky R, 2008, FUNCT ECOL, V22, P443, DOI 10.1111/j.1365-2435.2008.01417.x; Bonduriansky R, 2007, AM NAT, V169, P9, DOI 10.1086/510214; Bouwhuis S, 2009, P R SOC B, V276, P2769, DOI 10.1098/rspb.2009.0457; Bouwhuis S, 2012, AM NAT, V179, pE15, DOI 10.1086/663194; Clark RA, 1997, ETHOLOGY, V103, P531; Cotton S, 2004, P ROY SOC B-BIOL SCI, V271, P771, DOI 10.1098/rspb.2004.2688; Davison R, 2014, J THEOR BIOL, V360, P251, DOI 10.1016/j.jtbi.2014.07.015; Descamps S, 2016, J EVOLUTION BIOL, V29, P1860, DOI 10.1111/jeb.12901; Dunn PO, 2013, EVOLUTION, V67, P679, DOI 10.1111/j.1558-5646.2012.01799.x; Emlen DJ, 1997, BEHAV ECOL SOCIOBIOL, V41, P335, DOI 10.1007/s002650050393; EMLEN DJ, 1994, P ROY SOC B-BIOL SCI, V256, P131, DOI 10.1098/rspb.1994.0060; Evans MR, 2003, BIOL J LINN SOC, V80, P125, DOI 10.1046/j.1095-8312.2003.00224.x; Faivre B, 2003, SCIENCE, V300, P103, DOI 10.1126/science.1081802; Fromhage L, 2014, EVOLUTION, V68, P1332, DOI 10.1111/evo.12349; Giraudeau M, 2016, BIOL LETTERS, V12, DOI 10.1098/rsbl.2016.0077; Goncalves D, 2003, J FISH BIOL, V63, P528, DOI 10.1046/j.1095-8649.2003.00157.x; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; Hill GE, 2011, ECOL LETT, V14, P625, DOI 10.1111/j.1461-0248.2011.01622.x; Hooper AK, 2017, EVOLUTION, V71, P671, DOI 10.1111/evo.13172; Hughes KA, 2005, ANNU REV ENTOMOL, V50, P421, DOI 10.1146/annurev.ento.50.071803.130409; Hunt J, 2004, NATURE, V432, P1024, DOI 10.1038/nature03084; Jones OR, 2014, NATURE, V505, P169, DOI 10.1038/nature12789; Judge KA, 2008, EVOLUTION, V62, P868, DOI 10.1111/j.1558-5646.2008.00318.x; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Kokko H, 1998, EVOL ECOL, V12, P739, DOI 10.1023/A:1006541701002; Kokko H, 2001, ECOL LETT, V4, P322, DOI 10.1046/j.1461-0248.2001.00224.x; Kowald A, 2015, EXP GERONTOL, V71, P89, DOI 10.1016/j.exger.2015.08.006; Kruuk LEB, 2002, EVOLUTION, V56, P1683; LEBOEUF BJ, 1974, AM ZOOL, V14, P163; Lemaitre JF, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0209; Mangel M, 2005, AM NAT, V166, pE155, DOI 10.1086/444439; McCleery RH, 2008, P R SOC B, V275, P963, DOI 10.1098/rspb.2007.1418; Moller AP, 2002, ECOLOGY, V83, P2220, DOI 10.2307/3072053; Munguia-Steyer R, 2010, J EVOLUTION BIOL, V23, P175, DOI 10.1111/j.1420-9101.2009.01894.x; NUR N, 1984, J THEOR BIOL, V110, P275, DOI 10.1016/S0022-5193(84)80059-4; Preston BT, 2011, ECOL LETT, V14, P1017, DOI 10.1111/j.1461-0248.2011.01668.x; Radwan J, 2000, EXP APPL ACAROL, V24, P115, DOI 10.1023/A:1006492903270; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; Rowe L, 1996, P ROY SOC B-BIOL SCI, V263, P1415, DOI 10.1098/rspb.1996.0207; Saino N, 1997, P NATL ACAD SCI USA, V94, P549, DOI 10.1073/pnas.94.2.549; Setchell JM, 2005, ANIM BEHAV, V70, P1105, DOI 10.1016/j.anbehav.2005.02.021; Simmons LW, 2017, TRENDS ECOL EVOL, V32, P964, DOI 10.1016/j.tree.2017.09.011; Simons MJP, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040721; SUTTIE JM, 1983, J ZOOL, V201, P153; Thusius KJ, 2001, ANIM BEHAV, V62, P435, DOI 10.1006/anbe.2001.1758; van den Heuvel J, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0145544; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vinogradov AE, 1998, ACTA BIOTHEOR, V46, P157, DOI 10.1023/A:1001181921303; Zuk M, 1998, Q REV BIOL, V73, P415, DOI 10.1086/420412 54 2 2 1 1 JOHN WILEY & SONS LTD CHICHESTER THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND 2056-3744 EVOL LETT Evol. Lett. FEB 2018 2 1 37 48 10.1002/evl3.36 12 Evolutionary Biology Evolutionary Biology GW3AT WOS:000446762700004 30283663 DOAJ Gold 2018-11-22 J Bauer, JT; Koziol, L; Bever, JD Bauer, Jonathan T.; Koziol, Liz; Bever, James D. Ecology of Floristic Quality Assessment: testing for correlations between coefficients of conservatism, species traits and mycorrhizal responsiveness AOB PLANTS English Article Arbuscular mycorrhizal fungi; coefficients of conservatism; disturbance; Floristic Quality Assessment; functional traits; inoculation; succession; tallgrass prairie FUNCTIONAL TRAITS; ECONOMICS SPECTRUM; TALLGRASS PRAIRIE; DEMOGRAPHIC RATES; GROWTH-RATE; SEED SIZE; PLANT; WORLDWIDE; SOIL; PRODUCTIVITY Many plant species are limited to habitats relatively unaffected by anthropogenic disturbance, so protecting these undisturbed habitats is essential for plant conservation. Coefficients of conservatism (C values) were developed as indicators of a species' sensitivity to anthropogenic disturbance, and these values are used in Floristic Quality Assessment as a means of assessing natural areas and ecological restoration. However, assigning of these values is subjective and improved quantitative validation of C values is needed. We tested whether there are consistent differences in life histories between species with high and low C values. To do this, we grew 54 species of tallgrass prairie plants in a greenhouse and measured traits that are associated with trade-offs on the fast-slow continuum of life-history strategies. We also grew plants with and without mycorrhizal fungi as a test of these species' reliance on this mutualism. We compared these traits and mycorrhizal responsiveness to C values. We found that six of the nine traits we measured were correlated with C values, and together, traits predicted up to 50 % of the variation in C values. Traits including fast growth rates and greater investment in reproduction were associated with lower C values, and slow growth rates, long-lived leaves and high root: shoot ratios were associated with higher C values. Additionally, plants with high C values and a slow life history were more responsive to mutualisms with mycorrhizal fungi. Overall, our results connect C values with life-history trade-offs, indicating that high C value species tend to share a suite of traits associated with a slow life history. [Bauer, Jonathan T.] Indiana Univ, Dept Biol, 1001 E 3rd St, Bloomington, IN 47405 USA; [Koziol, Liz; Bever, James D.] Kansas Biol Survey, 2101 Constant Ave, Lawrence, KS 66047 USA; [Bever, James D.] Univ Kansas, Dept Ecol & Evolutionary Biol, 1200 Sunnyside Ave, Lawrence, KS 66045 USA Bauer, JT (reprint author), Indiana Univ, Dept Biol, 1001 E 3rd St, Bloomington, IN 47405 USA. jonathantbauer@gmail.com Agriculture and Food Research Initiative Competitive from the USDA National Institute of Food and Agriculture [2016-67011-25166, 2016-67012-24680]; National Science Foundation [DEB 0919434, 1556664]; SERDP [RC-2330] This project was supported by the Agriculture and Food Research Initiative Competitive Grant Nos. 2016-67011-25166 (L.K.) and 2016-67012-24680 (J.T.B.) from the USDA National Institute of Food and Agriculture. We also acknowledge support from National Science Foundation DEB 0919434 and 1556664 and from SERDP (RC-2330). Adler PB, 2014, P NATL ACAD SCI USA, V111, P740, DOI 10.1073/pnas.1315179111; Bauer JT, 2015, ECOSPHERE, V6, DOI 10.1890/ES14-00480.1; Bauer JT, 2012, OECOLOGIA, V170, P1089, DOI 10.1007/s00442-012-2363-3; Bekker RM, 1998, FUNCT ECOL, V12, P834, DOI 10.1046/j.1365-2435.1998.00252.x; Bernthal TW, 2003, DEV FLORISTIC QUALIT; Bried JT, 2013, ECOL INDIC, V34, P260, DOI 10.1016/j.ecolind.2013.05.012; Bried JT, 2012, NORTHEAST NAT, V19, P101, DOI 10.1656/045.019.s608; Cohen MJ, 2004, ECOL APPL, V14, P784, DOI 10.1890/02-5378; CONNELL JH, 1977, AM NAT, V111, P1119, DOI 10.1086/283241; Craine JM, 2003, PLANT ECOL, V165, P85, DOI 10.1023/A:1021414615001; Diaz S, 2016, NATURE, V529, P167, DOI 10.1038/nature16489; Gustavsson E, 2007, BIOL CONSERV, V138, P47, DOI 10.1016/j.biocon.2007.04.004; Helgason T, 1998, NATURE, V394, P431, DOI 10.1038/28764; Herman KD, 1997, NAT AREA J, V17, P265; Herrera-Peraza RA, 2016, ACTA BOT CUBANA, V215, P232; Hoekstra JM, 2005, ECOL LETT, V8, P23, DOI 10.1111/j.1461-0248.2004.00686.x; Hunt R, 1997, NEW PHYTOL, V135, P395, DOI 10.1046/j.1469-8137.1997.00671.x; Johnson NC, 1997, NEW PHYTOL, V135, P575, DOI 10.1046/j.1469-8137.1997.00729.x; Koziol L, 2017, J APPL ECOL, V54, P1301, DOI 10.1111/1365-2664.12843; Koziol L, 2016, ECOSPHERE, V7, DOI 10.1002/ecs2.1555; Koziol L, 2015, ECOLOGY, V96, P1768, DOI 10.1890/14-2208.1; Martinez-Vilalta J, 2010, J ECOL, V98, P1462, DOI 10.1111/j.1365-2745.2010.01718.x; Matthews JW, 2009, ECOL APPL, V19, P2093, DOI 10.1890/08-1371.1; Matthews JW, 2014, ECOLOGICAL INDICATOR, V52, P1; Middleton EL, 2015, ECOSPHERE, V6, DOI 10.1890/ES15-00152.1; Middleton EL, 2012, RESTOR ECOL, V20, P218, DOI 10.1111/j.1526-100X.2010.00752.x; Milburn SA, 2007, FLORISTIC QUALITY AS; Moeslund JE, 2016, BIORXIV, DOI [10.1101/057315, DOI 10.1101/057315]; MONK C, 1966, B TORREY BOT CLUB, V93, P402, DOI 10.2307/2483412; Perez-Harguindeguy N, 2013, AUST J BOT, V61, P167, DOI 10.1071/BT12225; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Poorter L, 2008, ECOLOGY, V89, P1908, DOI 10.1890/07-0207.1; Reich PB, 2014, J ECOL, V102, P275, DOI 10.1111/1365-2745.12211; REYNOLDS HL, 1993, AM NAT, V141, P51, DOI 10.1086/285460; Rocchio J., 2007, FLORISTIC QUALITY AS; Rothrock Paul E., 2005, Proceedings of the Indiana Academy of Science, V114, P9; Salguero-Gomez R, 2016, P NATL ACAD SCI USA, V113, P230, DOI 10.1073/pnas.1506215112; Smith M, 2005, ECOL APPL, V15, P1036, DOI 10.1890/04-0434; Spyreas G, 2012, J APPL ECOL, V49, P339, DOI 10.1111/j.1365-2664.2011.02100.x; Swink F, 1994, PLANTS CHICAGO REGIO; TAFT J. B., 1997, ERIGENIA, V15, P3; Taft JB, 2006, BIOL CONSERV, V131, P42, DOI [10.1016/j.biocon.2006.02.006, 10.1016/j.biocom.2006.02.006]; THOMPSON K, 1993, FUNCT ECOL, V7, P236, DOI 10.2307/2389893; TILMAN D, 1985, AM NAT, V125, P827, DOI 10.1086/284382; TILMAN D, 1991, ECOLOGY, V72, P685, DOI 10.2307/2937208; U.S. Army Corps of Engineers Chicago District, 2009, CHIC DISTR CHIC DIST; U.S. Fish and Wildlife Service (USFWS), 1990, DEC FALS AST REC PLA; Vogelsang KM, 2006, NEW PHYTOL, V172, P554, DOI 10.1111/j.1469-8137.2006.01854.x; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403 49 1 1 9 12 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 2041-2851 AOB PLANTS Aob Plants FEB 2018 10 1 plx073 10.1093/aobpla/plx073 13 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology FY9ZV WOS:000427226900012 29383232 DOAJ Gold, Green Published 2018-11-22 J Tonnabel, J; Schurr, FM; Boucher, F; Thuiller, W; Renaud, J; Douzery, EJP; Ronce, O Tonnabel, Jeanne; Schurr, Frank M.; Boucher, Florian; Thuiller, Wilfried; Renaud, Julien; Douzery, Emmanuel J. P.; Ronce, Ophelie Life-History Traits Evolved Jointly with Climatic Niche and Disturbance Regime in the Genus Leucadendron (Proteaceae) AMERICAN NATURALIST English Article functional traits; niche evolution; comparative analyses; bet hedging; seed bank; fire CANOPY SEED STORAGE; SOUTH-AFRICA; WOODY-PLANTS; STABILIZING SELECTION; BIODIVERSITY HOTSPOT; ADAPTIVE EVOLUTION; EMPIRICAL-EVIDENCE; PERSISTENCE NICHE; NATURAL-SELECTION; FIRE MANAGEMENT Organisms have evolved a diversity of life-history strategies to cope with variation in their environment. Persistence as adults and/or seeds across recruitment events allows species to dampen the effects of environmental fluctuations. The evolution of life cycles with overlapping generations should thus permit the colonization of environments with uncertain recruitment. We tested this hypothesis in Leucadendron (Proteaceae), a genus with high functional diversity native to fire-prone habitats in the South African fynbos. We analyzed the joint evolution of life-history traits (adult survival and seed-bank strategies) and ecological niches (climate and fire regime), using comparative methods and accounting for various sources of uncertainty. In the fynbos, species with canopy seed banks that are unable to survive fire as adults display nonoverlapping generations. In contrast, resprouters with an underground seed bank may be less threatened by extreme climatic events and fire intervals, given their iteroparity and long-lasting seed bank. Life cycles with nonoverlapping generations indeed jointly evolved with niches with less exposure to frost but not with those with less exposure to drought. Canopy seed banks jointly evolved with niches with more predictable fire return, compared to underground seed banks. The evolution of extraordinary functional diversity among fynbos plants thus reflects, at least in part, the diversity of both climates and fire regimes in this region. [Tonnabel, Jeanne; Schurr, Frank M.; Douzery, Emmanuel J. P.; Ronce, Ophelie] Univ Montpellier, CNRS, IRD, Inst Sci Evolut,Unite Mixte Rech 5554,EPHE, Pl Eugene Bataillon, F-34095 Montpellier 05, France; [Tonnabel, Jeanne] Univ Lausanne, Dept Ecol & Evolut, Biophore, Quartier UNIL Sorge, CH-1015 Lausanne, Switzerland; [Schurr, Frank M.] Univ Hohenheim, Inst Landscape & Plant Ecol, D-70593 Stuttgart, Germany; [Boucher, Florian; Thuiller, Wilfried; Renaud, Julien] Univ Grenoble Alpes, Lab Ecol Alpine LECA, F-38000 Grenoble, France; [Boucher, Florian; Thuiller, Wilfried; Renaud, Julien] CNRS, LECA, F-38000 Grenoble, France; [Boucher, Florian] Univ Stellenbosch, Dept Bot & Zool, Private Bag 11, ZA-7602 Matieland, South Africa Tonnabel, J (reprint author), Univ Montpellier, CNRS, IRD, Inst Sci Evolut,Unite Mixte Rech 5554,EPHE, Pl Eugene Bataillon, F-34095 Montpellier 05, France.; Tonnabel, J (reprint author), Univ Lausanne, Dept Ecol & Evolut, Biophore, Quartier UNIL Sorge, CH-1015 Lausanne, Switzerland. jeanne.tonnabel@unil.ch Boucher, Florian C./0000-0002-1151-0028 Ministry of Research and Higher Education; Agence National pour la Recherche project "Evorange" [ANR-09-PEXT-011]; European Research Council under the European Community's Seven Framework Programme FP7 [281422 TEEMBIO]; German Research Foundation (DFG) [SCHU 2259/5-1] In memoriam: Isabelle Olivieri initiated the work of our group on the evolutionary underpinnings of the extraordinary diversity of life history in the fynbos. We are grateful for this and for so many other things that she transmitted to us. For helpful discussions, we thank Sebastien Lavergne, Agnes Mignot, Isabelle Olivieri, Adam Wilson, Jeremy Midgley, Tony Rebelo, Daniele Silvestro, Joern Pagel, and John Pannell. We warmly thank Don Waller for his careful editing of our manuscript and two reviewers for their helpful comments. This work was supported by a PhD grant of the Ministry of Research and Higher Education to J.T., a grant from the Agence National pour la Recherche project "Evorange" (ANR-09-PEXT-011) to O.R. and W.T., a grant from the European Research Council under the European Community's Seven Framework Programme FP7/2007-2013 (281422 TEEMBIO) to W.T., J.R., and F.B., and a grant from the German Research Foundation (DFG; SCHU 2259/5-1) to F.M.S. The calculations were run on the cluster of the Institut des Sciences de l'Evolution-Montpellier (ISEM). This is publication ISEM 2017-189. Auld TD, 2006, PLANT ECOL, V187, P15, DOI 10.1007/s11258-006-9129-0; Barker NP, 2004, MOL PHYLOGENET EVOL, V33, P845, DOI 10.1016/j.ympev.2004.07.007; Beaulieu JM, 2012, EVOLUTION, V66, P2369, DOI 10.1111/j.1558-5646.2012.01619.x; Boettiger C, 2012, EVOLUTION, V66, P2240, DOI 10.1111/j.1558-5646.2011.01574.x; Bond W. J., 1996, FIRE PLANTS; Bond WJ, 2001, TRENDS ECOL EVOL, V16, P45, DOI 10.1016/S0169-5347(00)02033-4; Bond WJ, 2003, S AFR J BOT, V69, P79, DOI 10.1016/S0254-6299(15)30362-8; Boucher FC, 2014, AM NAT, V183, P573, DOI 10.1086/675506; Boucher FC, 2012, EVOLUTION, V66, P1255, DOI 10.1111/j.1558-5646.2011.01483.x; BROWN NAC, 1993, NEW PHYTOL, V123, P575, DOI 10.1111/j.1469-8137.1993.tb03770.x; Burnham KP, 2002, MODEL SELECTION MULT; Butler MA, 2004, AM NAT, V164, P683, DOI 10.1086/426002; Cayuela H, 2016, ECOLOGY, V97, P980, DOI 10.1890/15-0693.1; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; Childs DZ, 2010, P ROY SOC B-BIOL SCI, V277, P3055, DOI 10.1098/rspb.2010.0707; Clarke PJ, 2015, AM NAT, V185, P747, DOI 10.1086/681160; Cooper N, 2016, BIOL J LINN SOC, V118, P64, DOI 10.1111/bij.12701; Cooper N, 2010, AM NAT, V175, P727, DOI 10.1086/652466; COWLING RM, 1987, J APPL ECOL, V24, P645, DOI 10.2307/2403899; Cowling RM, 2001, P NATL ACAD SCI USA, V98, P5452, DOI 10.1073/pnas.101093498; Cramer MD, 2009, AUSTRAL ECOL, V34, P653, DOI 10.1111/j.1442-9993.2009.01971.x; de Klerk HM, 2012, INT J WILDLAND FIRE, V21, P36, DOI 10.1071/WF11002; de Villemereuil P, 2012, BMC EVOL BIOL, V12, DOI 10.1186/1471-2148-12-102; Enright NJ, 2015, FRONT ECOL ENVIRON, V13, P265, DOI 10.1890/140231; Enright NJ, 2014, J ECOL, V102, P1572, DOI 10.1111/1365-2745.12306; ENRIGHT NJ, 1992, ACTA OECOL, V13, P727; Enright NJ, 1998, J ECOL, V86, P946, DOI 10.1046/j.1365-2745.1998.00312.x; Enright NJ, 1998, J ECOL, V86, P960, DOI 10.1046/j.1365-2745.1998.00311.x; Evans M, 2014, SYST BIOL, V63, P698, DOI 10.1093/sysbio/syu035; Evans MEK, 2011, NEW PHYTOL, V191, P555, DOI 10.1111/j.1469-8137.2011.03697.x; Fischer B, 2011, EVOLUTION, V65, P1221, DOI 10.1111/j.1558-5646.2010.01198.x; Gremer JR, 2014, ECOL LETT, V17, P380, DOI 10.1111/ele.12241; Hansen TF, 1997, EVOLUTION, V51, P1341, DOI 10.1111/j.1558-5646.1997.tb01457.x; He TH, 2012, NEW PHYTOL, V194, P751, DOI 10.1111/j.1469-8137.2012.04079.x; Hernandez-Serrano A, 2013, AM J BOT, V100, P2349, DOI 10.3732/ajb.1300182; Hijmans RJ, 2005, INT J CLIMATOL, V25, P1965, DOI 10.1002/joc.1276; Holmes PM, 2002, AUSTRAL ECOL, V27, P110, DOI 10.1046/j.1442-9993.2002.01164.x; HUTCHINSON GE, 1957, COLD SPRING HARB SYM, V22, P415, DOI 10.1101/SQB.1957.022.01.039; Illing N, 2009, DEV GENES EVOL, V219, P331, DOI 10.1007/s00427-009-0293-9; Iwasa Y, 1997, EVOL ECOL, V11, P41, DOI 10.1023/A:1018483429029; Johnson JB, 2004, TRENDS ECOL EVOL, V19, P101, DOI 10.1016/j.tree.2003.10.013; Jump AS, 2006, MOL ECOL, V15, P3469, DOI 10.1111/j.1365-294X.2006.03027.x; Keeley J. E., 2012, FIRE MEDITERRANEAN E; Koons DN, 2008, AM NAT, V172, P797, DOI 10.1086/592867; Kostikova A, 2013, AM NAT, V182, P760, DOI 10.1086/673527; Kraaij T, 2013, KOEDOE, V55, DOI 10.4102/koedoe.v55i1.1104; LAMONT BB, 1991, BOT REV, V57, P277, DOI 10.1007/BF02858770; Langan SJ, 1997, PLANT CELL ENVIRON, V20, P425, DOI 10.1046/j.1365-3040.1997.d01-94.x; Linder HP, 2015, ANNU REV ECOL EVOL S, V46, P393, DOI 10.1146/annurev-ecolsys-112414-054322; Litsios G, 2014, EVOLUTION, V68, P453, DOI 10.1111/evo.12273; Lloret F, 2005, OECOLOGIA, V146, P461, DOI 10.1007/s00442-005-0206-1; Merow C, 2014, ECOGRAPHY, V37, P1167, DOI 10.1111/ecog.00839; Mesquita DO, 2016, AM NAT, V187, P689, DOI 10.1086/686055; Morris WF, 2008, ECOLOGY, V89, P19, DOI 10.1890/07-0774.1; Munkemuller T, 2015, FUNCT ECOL, V29, P627, DOI 10.1111/1365-2435.12388; Ng J, 2014, J EVOLUTION BIOL, V27, P2035, DOI 10.1111/jeb.12460; Ogburn RM, 2015, MOL PHYLOGENET EVOL, V92, P181, DOI 10.1016/j.ympev.2015.06.006; Ojeda F, 2005, NEW PHYTOL, V168, P155, DOI 10.1111/j.1469-8137.2005.01486.x; Olivieri I, 2016, EVOL APPL, V9, P196, DOI 10.1111/eva.12336; Onstein RE, 2016, GLOBAL ECOL BIOGEOGR, V25, P1239, DOI 10.1111/geb.12481; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; Pausas JG, 2014, NEW PHYTOL, V204, P55, DOI 10.1111/nph.12921; R Development Core Team, 2012, R LANG ENV STAT COMP; Rajon E, 2014, AM NAT, V184, pE1, DOI 10.1086/676506; Rebelo A. G., 2001, FIELD GUIDE PROTEAS; Sanderson MJ, 2002, MOL BIOL EVOL, V19, P101, DOI 10.1093/oxfordjournals.molbev.a003974; Sauquet H, 2009, MOL PHYLOGENET EVOL, V51, P31, DOI 10.1016/j.ympev.2008.12.013; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; Schnitzler J, 2011, SYST BIOL, V60, P343, DOI 10.1093/sysbio/syr006; Schulze R. E., 2014, EVOLUTION, V68, P2775; Schulze RE, 1997, TT8296 WAT RES COMM; Schurr FM, 2012, S AFR J SCI, V108, P10, DOI 10.4102/sajs.v108i11/12.1446; Scott MF, 2014, J EVOLUTION BIOL, V27, P2219, DOI 10.1111/jeb.12474; Silvestro D, 2015, METHODS ECOL EVOL, V6, P340, DOI 10.1111/2041-210X.12337; Simons AM, 2011, P ROY SOC B-BIOL SCI, V278, P1601, DOI 10.1098/rspb.2011.0176; Smith SA, 2009, P ROY SOC B-BIOL SCI, V276, P4345, DOI 10.1098/rspb.2009.1176; Starrfelt J, 2012, BIOL REV, V87, P742, DOI 10.1111/j.1469-185X.2012.00225.x; Steadma K. J., 2010, ANN BOT, V107, P303; Tonnabel J, 2014, EVOLUTION, V68, P2775, DOI 10.1111/evo.12480; Tonnabel J, 2014, MOL PHYLOGENET EVOL, V70, P37, DOI 10.1016/j.ympev.2013.07.027; Tonnabel J, 2012, J ECOL, V100, P1464, DOI 10.1111/j.1365-2745.2012.02023.x; Treurnicht M, 2016, J ECOL, V104, P331, DOI 10.1111/1365-2745.12508; Tufto J, 2015, EVOLUTION, V69, P2034, DOI 10.1111/evo.12716; Tuljapurkar S, 2009, PHILOS T R SOC B, V364, P1499, DOI 10.1098/rstb.2009.0021; van Wilgen BW, 2013, FRONT ECOL ENVIRON, V11, pE35, DOI 10.1890/120137; van Wilgen BW, 2010, J APPL ECOL, V47, P631, DOI 10.1111/j.1365-2664.2010.01800.x; Vila-Cabrera A, 2008, ECOSCIENCE, V15, P519, DOI 10.2980/15-4-3164; West AG, 2012, NEW PHYTOL, V195, P396, DOI 10.1111/j.1469-8137.2012.04170.x; Williams I. J. M., 1972, CONTRIBUTIONS BOLUS; Wilson A. W., 2012, THESIS; Wilson AM, 2015, P NATL ACAD SCI USA, V112, P9058, DOI 10.1073/pnas.1416710112; Wilson AM, 2010, ECOL MODEL, V221, P106, DOI 10.1016/j.ecolmodel.2009.09.016; Zanne AE, 2014, NATURE, V506, P89, DOI 10.1038/nature12872 93 0 0 3 9 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. FEB 2018 191 2 220 234 10.1086/695283 15 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology FT2BW WOS:000422944300008 29351009 2018-11-22 J Becker, FS; Tolley, KA; Measey, GJ; Altwegg, R Becker, Francois S.; Tolley, Krystal A.; Measey, G. John; Altwegg, Res Extreme Climate-Induced Life-History Plasticity in an Amphibian AMERICAN NATURALIST English Article adaptive plasticity; capital breeder; ectotherm; rainfall; survival; toad WILD BIRD POPULATION; REPRODUCTIVE ALLOCATION; PHENOTYPIC PLASTICITY; ANURA BUFONIDAE; MARKED ANIMALS; WINTER WEATHER; SURVIVAL; DYNAMICS; COSTS; RECRUITMENT Age-specific survival and reproduction are closely linked to fitness and therefore subject to strong selection that typically limits their variability within species. Furthermore, adult survival rate in vertebrate populations is typically less variable over time than other life-history traits, such as fecundity or recruitment. Hence, adult survival is often conserved within a population over time, compared to the variation in survival found across taxa. In stark contrast to this general pattern, we report evidence of extreme short-term variation of adult survival in Rose's mountain toadlet (Capensibufo rosei), which is apparently climate induced. Over 7 years, annual survival rate varied between 0.04 and 0.92, and 94% of this variation was explained by variation in breeding-season rainfall. Preliminary results suggest that this variation reflects adaptive life-history plasticity to a degree thus far unrecorded for any vertebrate, rather than direct rainfall-induced mortality. In wet years, these toads appeared to achieve increased reproduction at the expense of their own survival, whereas in dry years, their survival increased at the expense of reproduction. Such environmentally induced plasticity may reflect a diversity of life-history strategies not previously appreciated among vertebrates. [Becker, Francois S.; Tolley, Krystal A.] South African Natl Biodivers Inst, Cape Town, South Africa; [Becker, Francois S.; Altwegg, Res] Univ Cape Town, Dept Stat Sci, Ctr Stat Ecol Environm & Conservat, Cape Town, South Africa; [Tolley, Krystal A.] Univ Johannesburg, Dept Zool, Ctr Ecol Genom & Wildlife Conservat, ZA-2000 Johannesburg, South Africa; [Measey, G. John] Stellenbosch Univ, Ctr Excellence Invas Biol, Stellenbosch, South Africa; [Altwegg, Res] Univ Cape Town, African Climate & Dev Initiat, Rondebosch, South Africa Altwegg, R (reprint author), Univ Cape Town, Dept Stat Sci, Ctr Stat Ecol Environm & Conservat, Cape Town, South Africa.; Altwegg, R (reprint author), Univ Cape Town, African Climate & Dev Initiat, Rondebosch, South Africa. res.altwegg@gmail.com Tolley, Krystal/0000-0002-7778-1963 South African National Biodiversity Institute-National Biodiversity Monitoring Program; University of Cape Town; South African National Research Foundation (NRF) We thank Brad Anholt for commenting on the manuscript and Emily Cressey, Shelley Edwards, Paula Strauss, Tlou Manyelo, Tesray Linveeve, Tessa van der Lingen, and Hanlie Engelbrecht for assisting with the data gathering. We acknowledge the primary financial support of the South African National Biodiversity Institute-National Biodiversity Monitoring Program. Thanks to the University of Cape Town and the South African National Research Foundation (NRF) for additional funding. The NRF accepts no liability for opinions, findings, and conclusions or recommendations expressed in this publication. We thank South African National Parks (SANParks) for the permission to work at the breeding sites as well as their support and helpfulness during this project. In particular, we thank Leighan Mossop, Justin Buchman, and Marisa de Kock from SANParks for their personal involvement, assistance, and helpfulness during the project. Altwegg R, 2005, OIKOS, V110, P55, DOI 10.1111/j.0030-1299.2005.13723.x; Anholt BR, 2003, ECOLOGY, V84, P391, DOI 10.1890/0012-9658(2003)084[0391:OSORLA]2.0.CO;2; Bardsen BJ, 2008, ECOLOGY, V89, P829, DOI 10.1890/07-0414.1; Bardsen BJ, 2011, OIKOS, V120, P245, DOI 10.1111/j.1600-0706.2010.18597.x; Benton TG, 1999, EVOLUTION, V53, P677, DOI 10.1111/j.1558-5646.1999.tb05363.x; Blomberg EJ, 2012, ECOSPHERE, V3, DOI 10.1890/ES11-00304.1; Blomberg EJ, 2013, J AVIAN BIOL, V44, P149, DOI 10.1111/j.1600-048X.2012.00013.x; Bonnet X, 1998, OIKOS, V83, P333, DOI 10.2307/3546846; Bonnet X, 2002, ECOLOGY, V83, P2124, DOI 10.2307/3072044; Botero CA, 2015, P NATL ACAD SCI USA, V112, P184, DOI 10.1073/pnas.1408589111; Burnham KP, 2002, MODEL SELECTION MULT; Channing A, 2017, ZOOTAXA, V4232, P282, DOI 10.11646/zootaxa.4232.2.11; Charmantier A, 2008, SCIENCE, V320, P800, DOI 10.1126/science.1157174; Choquet R, 2009, ECOGRAPHY, V32, P1071, DOI 10.1111/j.1600-0587.2009.05968.x; Coulson T, 2001, SCIENCE, V292, P1528, DOI 10.1126/science.292.5521.1528; Cressey ER, 2015, ORYX, V49, P521, DOI 10.1017/S0030605313001051; DRENT RH, 1980, ARDEA, V68, P225; Edwards S, 2017, HERPETOL J, V27, P287; Ehrlen J, 2003, AM NAT, V162, P796, DOI 10.1086/379350; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; Gibbs JP, 2001, CONSERV BIOL, V15, P1175, DOI 10.1046/j.1523-1739.2001.0150041175.x; Grandison A.G.C., 1980, Bulletin of the British Museum (Natural History) Zoology, V39, P293; Hillman SS, 2014, PHYSIOL BIOCHEM ZOOL, V87, P105, DOI 10.1086/671109; JAMES FC, 1983, SCIENCE, V221, P184, DOI 10.1126/science.221.4606.184; Jones OR, 2014, NATURE, V505, P169, DOI 10.1038/nature12789; Karsten KB, 2008, P NATL ACAD SCI USA, V105, P8980, DOI 10.1073/pnas.0802468105; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; LEMCKERT FL, 1993, J HERPETOL, V27, P420, DOI 10.2307/1564830; Merila J, 2014, EVOL APPL, V7, P1, DOI 10.1111/eva.12137; Morano S, 2013, J MAMMAL, V94, P162, DOI 10.1644/12-MAMM-A-074.1; MORTON ML, 1981, COPEIA, P234, DOI 10.2307/1444067; Pfister CA, 1998, P NATL ACAD SCI USA, V95, P213, DOI 10.1073/pnas.95.1.213; Pradel R, 1996, BIOMETRICS, V52, P703, DOI 10.2307/2532908; Ranta E, 2002, J THEOR BIOL, V217, P391, DOI 10.1006/yjtbi.3029; Rebelo A. G, 2006, STRELITZIA; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; Saether BE, 1996, OIKOS, V77, P217, DOI 10.2307/3546060; Saether BE, 2000, SCIENCE, V287, P854, DOI 10.1126/science.287.5454.854; Skalski J.R., 1993, P9; Skalski J. R., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1980, OIKOS, V35, P266, DOI 10.2307/3544434; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; Teplitsky C, 2008, P NATL ACAD SCI USA, V105, P13492, DOI 10.1073/pnas.0800999105; Ummenhofer CC, 2017, PHILOS T R SOC B, V372, DOI 10.1098/rstb.2016.0135; Urban MC, 2014, EVOL APPL, V7, P88, DOI 10.1111/eva.12114; White GC, 1999, BIRD STUDY, V46, P120; WITHERS PC, 1984, J EXP ZOOL, V232, P11, DOI 10.1002/jez.1402320103 48 1 1 6 10 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. FEB 2018 191 2 250 258 10.1086/695315 9 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology FT2BW WOS:000422944300010 29351012 2018-11-22 J Pirotta, E; Mangel, M; Costa, DP; Mate, B; Goldbogen, JA; Palacios, DM; Huckstadt, LA; McHuron, EA; Schwarz, L; New, L Pirotta, Enrico; Mangel, Marc; Costa, Daniel P.; Mate, Bruce; Goldbogen, Jeremy A.; Palacios, Daniel M.; Huckstadt, Luis A.; McHuron, Elizabeth A.; Schwarz, Lisa; New, Leslie A Dynamic State Model of Migratory Behavior and Physiology to Assess the Consequences of Environmental Variation and Anthropogenic Disturbance on Marine Vertebrates AMERICAN NATURALIST English Article bioenergetic modeling; environmental changes; marine mammal; population consequences of disturbance; stochastic dynamic programming; uncertainty COASTAL UPWELLING SYSTEM; DAYTIME SURFACE SWARMS; ATLANTIC FIN WHALES; BAJA-CALIFORNIA; BLUE WHALES; NYCTIPHANES-SIMPLEX; BODY CONDITION; NORTH PACIFIC; WEST-COAST; EL-NINO Integrating behavior and physiology is critical to formulating new hypotheses on the evolution of animal life-history strategies. Migratory capital breeders acquire most of the energy they need to sustain migration, gestation, and lactation before parturition. Therefore, when predicting the impact of environmental variation on such species, a mechanistic understanding of the physiology of their migratory behavior is required. Using baleen whales as a model system, we developed a dynamic state variable model that captures the interplay among behavioral decisions, energy, reproductive needs, and the environment. We applied the framework to blue whales (Balaenoptera musculus) in the eastern North Pacific Ocean and explored the effects of environmental and anthropogenic perturbations on female reproductive success. We demonstrate the emergence of migration to track prey resources, enabling us to quantify the trade-offs among capital breeding, body condition, and metabolic expenses. We predict that periodic climatic oscillations affect reproductive success less than unprecedented environmental changes do. The effect of localized, acute anthropogenic impacts depended on whales' behavioral response to the disturbance; chronic, but weaker, disturbances had little effect on reproductive success. Because we link behavior and vital rates by modeling individuals' energetic budgets, we provide a general framework to investigate the ecology of migration and assess the population consequences of disturbance, while identifying critical knowledge gaps. [Pirotta, Enrico; New, Leslie] Washington State Univ, Sch Math, Vancouver, WA 98686 USA; [Mangel, Marc] Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA; [Mangel, Marc] Univ Bergen, Dept Biol, Theoret Ecol Grp, N-9020 Bergen, Norway; [Costa, Daniel P.; Huckstadt, Luis A.; McHuron, Elizabeth A.] Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, Santa Cruz, CA 95060 USA; [Mate, Bruce; Palacios, Daniel M.] Oregon State Univ, Marine Mammal Inst, Newport, OR 97365 USA; [Mate, Bruce; Palacios, Daniel M.] Oregon State Univ, Dept Fisheries & Wildlife, Newport, OR 97365 USA; [Goldbogen, Jeremy A.] Stanford Univ, Hopkins Marine Stn, Dept Biol, Pacific Grove, CA 93950 USA; [Schwarz, Lisa] Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95064 USA Pirotta, E (reprint author), Washington State Univ, Sch Math, Vancouver, WA 98686 USA. enrico.pirotta@wsu.edu Huckstadt, Luis/0000-0002-2453-7350 Office of Naval Research (ONR); ONR [N00014-08-1-1195]; E&P Sound and Marine Life Joint Industry Project of the International Association of Oil and Gas Producers; ONR Young Investigator Program [N00014-16-1-2477]; Tagging of Pacific Pelagics program; ONR; National Science Foundation; Alfred P. Sloan Foundation; Moore Foundation; Packard Foundation; National Geographic Society This research was developed in association with the Office of Naval Research (ONR)-supported Population Consequences of Acoustic Disturbance/Population Consequences of Disturbance working group and by ONR grant N00014-08-1-1195, the E&P Sound and Marine Life Joint Industry Project of the International Association of Oil and Gas Producers. J.A.G. was supported by funding from the ONR Young Investigator Program (award N00014-16-1-2477). We acknowledge the field crews, the research, and the administrative staff at the Oregon State University (OSU) Marine Mammal Institute for their support of blue whale tagging and telemetry data collection. These activities were conducted under authorization of the National Marine Fisheries Service Marine Mammal Protection Act/Endangered Species Act (research/enhancement permits 4495, 841, 369 -1440, 369-1757, and 14856) and the OSU Institutional Animal Care and Use Committee (permit 4495). Funding for these activities came from the Tagging of Pacific Pelagics program, the ONR, the National Science Foundation, the Alfred P. Sloan Foundation, the Moore Foundation, the Packard Foundation, and the National Geographic Society, with additional contributions from dozens of private donor gifts to the Marine Mammal Institute. We would also like to thank Ian Jonsen for suggestions on data analysis, as well as Jean Potvin, Elliott Hazen, and the OSU analytical team (Ladd Irvine, Barbara Lagerquist, Martha Winsor, and Tomas Follett) for useful discussions on the structure of the model and value of the parameters. The manuscript greatly benefited from inputs and comments of Editor-in-Chief Judith Bronstein, Associate Editor Jurgen Groeneveld, and two anonymous reviewers. Finally, we thank Emer Rogan and University College Cork for providing office space to E. P. Adachi T, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.2120; Alerstam T, 2003, OIKOS, V103, P247, DOI 10.1034/j.1600-0706.2003.12559.x; Bailey Helen, 2010, Endangered Species Research, V10, P93, DOI 10.3354/esr00239; Barlow J, 1997, ECOLOGY, V78, P535; Baxter K., 1989, ENERGY METABOLISM AN; Beale CM, 2004, ANIM BEHAV, V68, P1065, DOI 10.1016/j.anbehav.2004.07.002; Bejder L, 2009, MAR ECOL PROG SER, V395, P177, DOI 10.3354/meps07979; Benson SR, 2002, PROG OCEANOGR, V54, P279, DOI 10.1016/S0079-6611(02)00054-X; Braithwaite JE, 2015, CONSERV PHYSIOL, V3, DOI 10.1093/conphys/cov001; Braithwaite JE, 2015, POLAR BIOL, V38, P1195, DOI 10.1007/s00300-015-1685-0; Brinton E., 1962, Bulletin Scripps Institution of Oceanography, V8, P51; Brinton E., 1980, California Cooperative Oceanic Fisheries Investigations Reports, V21, P211; Brodeur R. D., 2005, GEOPHYS RES LETT, V33, DOI DOI 10.1029/2006GLO26614; Brody S., 1968, BIOENERGETICS GROWTH; CAIRNS D K, 1987, Biological Oceanography, V5, P261; Calambokidis J, 2009, MAR MAMMAL SCI, V25, P816, DOI 10.1111/j.1748-7692.2009.00298.x; Cartwright R, 2009, MAR MAMMAL SCI, V25, P659, DOI 10.1111/j.1748-7692.2009.00286.x; Chavez FP, 2002, PROG OCEANOGR, V54, P205, DOI 10.1016/S0079-6611(02)00050-2; Christiansen F, 2015, CONSERV LETT, V8, P424, DOI 10.1111/conl.12166; Christiansen F, 2014, FUNCT ECOL, V28, P579, DOI 10.1111/1365-2435.12200; Clark C.W, 2000, OXFORD SERIES ECOLOG; Clark WC, 2016, P NATL ACAD SCI USA, V113, P4570, DOI 10.1073/pnas.1601266113; Cohen J., 1977, STAT POWER ANAL BEHA; Cooke SJ, 2014, PHYSIOL BIOCHEM ZOOL, V87, P1, DOI 10.1086/671165; Croll DA, 2005, MAR ECOL PROG SER, V289, P117, DOI 10.3354/meps289117; Croll DA, 1998, DEEP-SEA RES PT II, V45, P1353, DOI 10.1016/S0967-0645(98)00031-9; Currey RJC, 2009, AQUAT CONSERV, V19, P658, DOI 10.1002/aqc.1015; de Guevara PL, 2008, J MAMMAL, V89, P559; De Silva-Davila R, 2002, J PLANKTON RES, V24, P1057, DOI 10.1093/plankt/24.10.1057; DeRuiter SL, 2016, MULTIVARIATE MIXED H, V1602, P1; Ellison WT, 2012, CONSERV BIOL, V26, P21, DOI 10.1111/j.1523-1739.2011.01803.x; Etnoyer P, 2006, DEEP-SEA RES PT II, V53, P340, DOI 10.1016/j.dsr2.2006.01.010; Fauchald P, 1999, AM NAT, V153, P603, DOI 10.1086/303203; Fernandez-Alamo MA, 2006, PROG OCEANOGR, V69, P318, DOI 10.1016/j.pocean.2006.03.003; Fiedler PC, 1998, DEEP-SEA RES PT II, V45, P1781, DOI 10.1016/S0967-0645(98)80017-9; Foley MM, 2010, MAR POLICY, V34, P955, DOI 10.1016/j.marpol.2010.02.001; Foukal NP, 2014, DEEP-SEA RES PT I, V92, P11, DOI 10.1016/j.dsr.2014.06.008; Friedlaender AS, 2016, ECOL APPL, V26, P1075, DOI 10.1002/15-0783; Gales NJ, 2009, MAR MAMMAL SCI, V25, P725, DOI 10.1111/j.1748-7692.2008.00279.x; GENDRON D, 1992, MAR ECOL PROG SER, V87, P1, DOI 10.3354/meps087001; George JC, 2015, PROG OCEANOGR, V136, P250, DOI 10.1016/j.pocean.2015.05.001; Gilpatrick James W. Jr., 2008, Journal of Cetacean Research and Management, V10, P9; Goldbogen JA, 2011, J EXP BIOL, V214, P131, DOI 10.1242/jeb.048157; Goldbogen J. A., 2009, P R SOC B, V277, P861; Goldbogen JA, 2015, FUNCT ECOL, V29, P951, DOI 10.1111/1365-2435.12395; Goldbogen JA, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.0657; GOMEZ JG, 1995, MAR ECOL PROG SER, V119, P63, DOI 10.3354/meps119063; Gomez-Gutierrez J, 2005, DEEP-SEA RES PT II, V52, P289, DOI 10.1016/j.dsr2.2004.09.023; Gomez-Gutierrez J, 2010, DEEP-SEA RES PT II, V57, P616, DOI 10.1016/j.dsr2.2009.10.011; GomezGutierrez J, 1996, MAR ECOL PROG SER, V138, P309, DOI 10.3354/meps138309; GomezGutierrez J, 1997, SCI MAR, V61, P27; GOMEZGUTIERREZ J, 1995, MAR ECOL PROG SER, V120, P41, DOI 10.3354/meps120041; Halpern BS, 2008, SCIENCE, V319, P948, DOI 10.1126/science.1149345; Harwood J, 2003, TRENDS ECOL EVOL, V18, P617, DOI 10.1016/j.tree.2003.08.001; Hazen EL, 2013, NAT CLIM CHANGE, V3, P234, DOI 10.1038/NCLIMATE1686; Hazen EL, 2015, SCI ADV, V1, DOI 10.1126/sciadv.1500469; Henson SA, 2007, J GEOPHYS RES-OCEANS, V112, DOI 10.1029/2006JC003960; Houston A. I., 1999, MODELS ADAPTIVE BEHA; Huang SL, 2009, MAR MAMMAL SCI, V25, P875, DOI 10.1111/j.1748-7692.2009.00288.x; Huggett A. S. G., 1950, J PHYSL, V4, P306; Hussey NE, 2015, SCIENCE, V348, DOI 10.1126/science.1255642; Ichihara T., 1962, Sci Rep Whales Res Inst Tokyo No, V16, P47; Inger R, 2009, J APPL ECOL, V46, P1145, DOI 10.1111/j.1365-2664.2009.01697.x; IPCC, 2014, IPCC CLIMATE CHANGE; Irvine LM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0102959; Jonsen ID, 2013, DEEP-SEA RES PT II, V88-89, P34, DOI 10.1016/j.dsr2.2012.07.008; Jonsen ID, 2005, ECOLOGY, V86, P2874, DOI 10.1890/04-1852; KAREIVA P, 1987, AM NAT, V130, P233, DOI 10.1086/284707; King SL, 2015, METHODS ECOL EVOL, V6, P1150, DOI 10.1111/2041-210X.12411; Kleiber M., 1975, FIRE LIFE INTRO ANIM; Le Boeuf BJ, 2005, BMC BIOL, V3, DOI 10.1186/1741-7007-3-9; Lennox RJ, 2016, CONSERV PHYSIOL, V4, DOI 10.1093/conphys/cov072; LOCKYER C, 1986, CAN J FISH AQUAT SCI, V43, P142, DOI 10.1139/f86-015; LOCKYER C, 1976, J CONSEIL, V36, P259; Lockyer C., 1987, SPECIAL PUBLICATION, V1, P183; Lockyer C, 1981, FAO FISHERIES SERIES, V3, P379; Lockyer C, 2007, J MAR BIOL ASSOC UK, V87, P1035, DOI 10.1017/S0025315407054720; Mackintosh N. A., 1929, Discovery Reports Cambridge, V1, P257; Malavear M. Y. G., 2002, MODELING ENERGETICS; Mangel M., 1988, DYNAMIC MODELING BEH; Marinovic BB, 2002, PROG OCEANOGR, V54, P265, DOI 10.1016/S0079-6611(02)00053-8; Mate BR, 1999, MAR MAMMAL SCI, V15, P1246, DOI 10.1111/j.1748-7692.1999.tb00888.x; Maxwell SM, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms3688; McHuron EA, 2017, METHODS ECOL EVOL, V8, P552, DOI 10.1111/2041-210X.12701; McMahon CR, 2003, J ANIM ECOL, V72, P61, DOI 10.1046/j.1365-2656.2003.00685.x; Miller CA, 2011, MAR ECOL PROG SER, V438, P267, DOI 10.3354/meps09174; Nabe-Nielsen J, 2014, ECOL MODEL, V272, P242, DOI 10.1016/j.ecolmodel.2013.09.025; National Academies of Sciences, 2016, APPR UND CUM EFF STR; National Research Council, 2005, MAR MAMM POP OC NOIS; New LF, 2014, MAR ECOL PROG SER, V496, P99, DOI 10.3354/meps10547; NORDOY ES, 1985, AM J PHYSIOL, V249, pR471; Noren DP, 2004, FUNCT ECOL, V18, P233, DOI 10.1111/j.0269-8463.2004.00840.x; Nowacek DP, 2007, MAMMAL REV, V37, P81, DOI 10.1111/j.1365-2907.2007.00104.x; Oftedal OT, 1997, J MAMMARY GLAND BIOL, V2, P205, DOI 10.1023/A:1026328203526; Pirotta E., 2015, P ROYAL SOC B, V282, P2015; Pirotta E., 2017, AM NATURALIST; Plaganyi EE, 2014, FISH FISH, V15, P1, DOI 10.1111/j.1467-2979.2012.00488.x; Poloczanska ES, 2013, NAT CLIM CHANGE, V3, P919, DOI [10.1038/nclimate1958, 10.1038/NCLIMATE1958]; POND CM, 1988, CAN J ZOOL, V66, P534, DOI 10.1139/z88-077; Potvin J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0044854; R Development Core Team, 2016, R LANG ENV STAT COMP; Reeves R., 2001, WORKSH HELD APR 26 2; REILLY JJ, 1990, J APPL PHYSIOL, V69, P885; SCHOENHERR JR, 1991, CAN J ZOOL, V69, P583, DOI 10.1139/z91-088; Schwing FB, 1996, NOAA TECH MEM NOAA, V231, P1; Schwing FB, 2006, GEOPHYS RES LETT, V33, DOI 10.1029/2006GL026911; Seyboth E, 2016, SCI REP-UK, V6, DOI 10.1038/srep28205; SMITH SE, 1988, B MAR SCI, V42, P76; Stephens PA, 2014, ECOLOGY, V95, P882, DOI 10.1890/13-1434.1; Stokes Donald E, 1997, PASTEURS QUADRANT BA; Thomas PO, 2016, MAR MAMMAL SCI, V32, P682, DOI 10.1111/mms.12281; Tomilin A. G., 1946, CR Acad Sci Moscou NS, V52, P277; Vikingsson Gisli A., 1997, Journal of Northwest Atlantic Fishery Science, V22, P77; Villegas-Amtmann S, 2015, ECOSPHERE, V6, DOI 10.1890/ES15-00146.1; WEINER J, 1992, TRENDS ECOL EVOL, V7, P384, DOI 10.1016/0169-5347(92)90009-Z; Whittemore C, 1998, SCI PRACTICE PIG PRO; Wiedenmann J, 2011, ECOL MODEL, V222, P3366, DOI 10.1016/j.ecolmodel.2011.07.013; Williams R, 2013, ICES J MAR SCI, V70, P1273, DOI 10.1093/icesjms/fst059; Williams TM, 1999, PHILOS T R SOC B, V354, P193, DOI 10.1098/rstb.1999.0371; Wood SN, 2006, GEN ADDITIVE MODELS 120 5 5 11 21 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. FEB 2018 191 2 E40 E56 10.1086/695135 17 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology FT2BW WOS:000422944300002 29351020 2018-11-22 J Paniw, M; Ozgul, A; Salguero-Gomez, R Paniw, Maria; Ozgul, Arpat; Salguero-Gomez, Roberto Interactive life-history traits predict sensitivity of plants and animals to temporal autocorrelation ECOLOGY LETTERS English Article Environmental variation; fast-slow continuum; life-history strategy; matrix population model; multivariate analysis; population projections; reproductive strategy; seed dormancy; vital rates FAST-SLOW CONTINUUM; STRUCTURED POPULATION-MODELS; VITAL-RATES; DEMOGRAPHIC VARIABILITY; STOCHASTIC ENVIRONMENTS; VARIABLE ENVIRONMENTS; CLIMATE-CHANGE; GROWTH-RATE; DYNAMICS; DISTURBANCE Temporal autocorrelation in demographic processes is an important aspect of population dynamics, but a comprehensive examination of its effects on different life-history strategies is lacking. We use matrix population models from 454 plant and animal populations to simulate stochastic population growth rates (log lambda(s)) under different temporal autocorrelations in demographic rates, using simulated and observed covariation among rates. We then test for differences in sensitivities, or changes of log lambda(s) to changes in autocorrelation among two major axes of life-history strategies, obtained from phylogenetically informed principal component analysis: the fast-slow and reproductive-strategy continua. Fast life histories exhibit highest sensitivities to simulated autocorrelation in demographic rates across reproductive strategies. Slow life histories are less sensitive to temporal autocorrelation, but their sensitivities increase among highly iteroparous species. We provide cross-taxonomic evidence that changes in the autocorrelation of environmental variation may affect a wide range of species, depending on complex interactions of life-history strategies. [Paniw, Maria; Ozgul, Arpat] Univ Zurich, Dept Evolutionary Biol & Environm Studies, CH-8057 Zurich, Switzerland; [Paniw, Maria] Univ Cadiz, Dept Biol, Puerto Real 11510, Spain; [Salguero-Gomez, Roberto] Univ Oxford, Dept Zool, Radcliffe Observ Quarter, New Radcliffe House,Woodstock Rd, Oxford OX2 6GG, England; [Salguero-Gomez, Roberto] Univ Sheffield, Dept Anim & Plant Sci, Western Bank, Alfred Denny Bldg, Sheffield S10 2TN, S Yorkshire, England; [Salguero-Gomez, Roberto] Univ Queensland, Ctr Biodivers & Conservat Sci, St Lucia, Qld 4071, Australia; [Salguero-Gomez, Roberto] Max Plank Inst Demog Res, Evolutionary Demog Lab, D-18057 Rostock, Germany Paniw, M (reprint author), Univ Zurich, Dept Evolutionary Biol & Environm Studies, CH-8057 Zurich, Switzerland.; Paniw, M (reprint author), Univ Cadiz, Dept Biol, Puerto Real 11510, Spain. maria.paniw@ieu.uzh.ch Salguero-Gomez, Roberto/0000-0002-6085-4433; Paniw, Maria/0000-0002-1949-4448 Max Planck Institute for Demographic Research; BREATHAL (Spanish Ministerio de Economia y Competitividad) [CGL2011-28759/BOS]; FPI scholarship; Spanish Ministerio de Economia y Competitividad; ERC Starting Grant [337785]; Australian Research Council [DE140100505]; NERC [R/142195-11-1] We thank H. Caswell, J.D. Lebreton and S. Tuljapurkar for helpful suggestions on the characterisation of life histories, Dr. Ezard and three anonymous reviewers for constructive criticism on earlier version of this work, and the Max Planck Institute for Demographic Research for support and open-access to COMPADRE & COMADRE. This study was partly financed by BREATHAL (CGL2011-28759/BOS; Spanish Ministerio de Economia y Competitividad). MP was supported by a FPI scholarship, a travel bursary granted by the Spanish Ministerio de Economia y Competitividad and an ERC Starting Grant (#337785) to AO and RSG was supported by the Australian Research Council (DE140100505) and NERC (R/142195-11-1). Akaike H., 1971, 2 INT S INF THEOR, P267; Angert AL, 2006, ECOLOGY, V87, P2014, DOI 10.1890/0012-9658(2006)87[2014:DOCAMP]2.0.CO;2; Boyce MS, 2006, TRENDS ECOL EVOL, V21, P141, DOI 10.1016/j.tree.2005.11.018; Buckley YM, 2010, ECOL LETT, V13, P1182, DOI 10.1111/j.1461-0248.2010.01506.x; Caceres CE, 1997, INVERTEBR BIOL, V116, P371, DOI 10.2307/3226870; Caswell H, 2001, MATRIX POPULATION MO, P722; COHEN JE, 1979, THEOR POPUL BIOL, V16, P159, DOI 10.1016/0040-5809(79)90011-X; CONNELL JH, 1978, SCIENCE, V199, P1302, DOI 10.1126/science.199.4335.1302; Doak DF, 2002, POPULATION VIABILITY ANALYSIS, P312; Ehrlen J, 2016, J ECOL, V104, P292, DOI 10.1111/1365-2745.12523; Engen S, 2013, METHODS ECOL EVOL, V4, P573, DOI 10.1111/2041-210X.12043; Ezard THG, 2010, ECOL MODEL, V221, P191, DOI 10.1016/j.ecolmodel.2009.09.017; Fey SB, 2017, GLOBAL CHANGE BIOL, V23, P635, DOI 10.1111/gcb.13468; Franco M, 2004, ECOLOGY, V85, P531, DOI 10.1890/02-0651; Franco M, 1996, PHILOS T R SOC B, V351, P1341, DOI 10.1098/rstb.1996.0117; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Gaillard J.-M, 2016, ENCY EVOLUTIONARY BI, V2, P312; Gamelon M, 2014, AM NAT, V184, P673, DOI 10.1086/677929; Garnier A, 2006, ECOL MODEL, V194, P141, DOI 10.1016/j.ecolmodel.2005.10.009; Gioria M, 2012, PRESLIA, V84, P327; Greenman JV, 2005, THEOR POPUL BIOL, V68, P217, DOI 10.1016/j.tpb.2005.06.007; Halley JM, 2004, FLUCT NOISE LETT, V4, pR1, DOI 10.1142/S0219477504001884; Heino M, 2003, BIOL CONSERV, V110, P315, DOI 10.1016/S0006-3207(02)00235-5; Jones OR, 2014, NATURE, V505, P169, DOI 10.1038/nature12789; Jongejans E, 2010, ECOL LETT, V13, P736, DOI 10.1111/j.1461-0248.2010.01470.x; Koons DN, 2016, ECOL LETT, V19, P1023, DOI 10.1111/ele.12628; Koons DN, 2009, OIKOS, V118, P972, DOI 10.1111/j.1600-0706.2009.16399.x; Koons DN, 2008, AM NAT, V172, P797, DOI 10.1086/592867; Laakso J, 2003, ECOL MODEL, V162, P247, DOI 10.1016/S0304-3800(02)00385-X; Levine JM, 2004, AM NAT, V164, P350, DOI 10.1086/422859; McDonald JL, 2017, NAT ECOL EVOL, V1, DOI 10.1038/s41559-016-0029; Metcalf CJE, 2007, P R SOC B, V274, P2153, DOI 10.1098/rspb.2007.0561; Metcalf CJE, 2015, METHODS ECOL EVOL, V6, P1007, DOI 10.1111/2041-210X.12405; Metcalf CJE, 2009, ECOLOGY, V90, P2766, DOI 10.1890/08-1645.1; Morris WF, 2006, ECOL LETT, V9, P1331, DOI 10.1111/j.1461-0248.2006.00988.x; Morris WF, 2004, AM NAT, V163, P579, DOI 10.1086/382550; Morris WF, 2008, ECOLOGY, V89, P19, DOI 10.1890/07-0774.1; Morris WF, 2011, AM NAT, V177, pE14, DOI 10.1086/657443; Nadeau CP, 2017, GLOBAL CHANGE BIOL, V23, P12, DOI 10.1111/gcb.13475; ORZACK SH, 1985, AM NAT, V125, P550, DOI 10.1086/284362; Post E, 2009, SCIENCE, V325, P1355, DOI 10.1126/science.1173113; Revell LJ, 2012, METHODS ECOL EVOL, V3, P217, DOI 10.1111/j.2041-210X.2011.00169.x; Ruokolainen L, 2009, TRENDS ECOL EVOL, V24, P555, DOI 10.1016/j.tree.2009.04.009; Saether BE, 2013, AM NAT, V182, P743, DOI 10.1086/673497; Salguero-Gomez R, 2017, NEW PHYTOL, V213, P1618, DOI 10.1111/nph.14289; Salguero-Gomez R, 2016, J ANIM ECOL, V85, P371, DOI 10.1111/1365-2656.12482; Salguero-Gomez R, 2016, P NATL ACAD SCI USA, V113, P230, DOI 10.1073/pnas.1506215112; Salguero-Gomez R, 2015, J ECOL, V103, P202, DOI 10.1111/1365-2745.12334; Schiesari L, 2013, CURR TOP DEV BIOL, V105, P213, DOI 10.1016/B978-0-12-396968-2.00008-7; Smallegange IM, 2014, AM NAT, V183, P784, DOI [10.1086/675817, 10.1086/675894]; Stearns S.C., 1992, EVOLIUTION LIFE HOIS, P247; STEELE JH, 1985, NATURE, V313, P355, DOI 10.1038/313355a0; Stige LC, 2007, P NATL ACAD SCI USA, V104, P16188, DOI 10.1073/pnas.0706813104; Tuljapurkar S, 2006, ECOL LETT, V9, P324, DOI 10.1111/j.1461-0248.2006.00881.x; Tuljapurkar S, 2003, AM NAT, V162, P489, DOI 10.1086/378648; TULJAPURKAR S, 1990, POPULATION DYNAMICS; TULJAPURKAR SD, 1982, THEOR POPUL BIOL, V21, P114, DOI 10.1016/0040-5809(82)90009-0; Tuljapurkar S, 2009, PHILOS T R SOC B, V364, P1499, DOI 10.1098/rstb.2009.0021; Turner MG, 2010, ECOLOGY, V91, P2833, DOI 10.1890/10-0097.1; Uller T, 2008, TRENDS ECOL EVOL, V23, P432, DOI 10.1016/j.tree.2008.04.005; VANDERMEIJDEN E, 1992, ACTA BOT NEERL, V41, P249, DOI 10.1111/j.1438-8677.1992.tb01333.x; Vasseur DA, 2004, ECOLOGY, V85, P1146, DOI 10.1890/02-3122 62 3 3 10 19 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1461-023X 1461-0248 ECOL LETT Ecol. Lett. FEB 2018 21 2 275 286 10.1111/ele.12892 12 Ecology Environmental Sciences & Ecology FX1PJ WOS:000425823900013 29266843 2018-11-22 J Saino, N; Ambrosini, R; Rubolini, D; Romano, M; Caprioli, M; Romano, A; Parolini, M Saino, Nicola; Ambrosini, Roberto; Rubolini, Diego; Romano, Maria; Caprioli, Manuela; Romano, Andrea; Parolini, Marco Carry-over effects of brood size on morphology, reproduction, and lifespan in barn swallows BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article Breeding success; Brood size manipulation; Lifespan; Survival; Trade-off; Wing length TITS PARUS-MAJOR; EARLY DEVELOPMENTAL CONDITIONS; HIRUNDO-RUSTICA; ZEBRA FINCHES; HISTORY TRAITS; ENVIRONMENTAL-CONDITIONS; COLLARED FLYCATCHER; PHENOTYPIC QUALITY; TELOMERE LENGTH; NATAL DISPERSAL Early life ecological conditions have well-documented short-term effects on offspring phenotype and survival, but the extent to which these effect carry-over into adulthood is much less known. Yet, unveiling such carry-over effects is essential to understand the evolution of parental life-history strategies. In altricial birds, the number of brood mates can affect competition regime and other nest ecological conditions, whose effects may be at least partly expressed in adulthood. We either increased or decreased the size of barn swallow (Hirundo rustica) broods and analyzed the consequences of brood size manipulation on morphological feather traits, breeding performance, and lifespan of the offspring when adult. Upon recruitment (age 1 year), individuals from enlarged broods had shorter wings, later reproduction, and lower breeding output than those from reduced broods. The negative effect of brood enlargement on wing length persisted at age 2 years. Recruits from enlarged broods had longer lifespan but the proportion of nestlings that were recruited tended to be smaller for enlarged compared to reduced broods. Hence, large brood size had negative phenotypic effects in adulthood. Our results also suggest that stronger viability selection on offspring from enlarged broods results in differential survival of highly viable offspring that express longer life expectancy when adult and/or that smaller reproductive effort of 1-year-old offspring from enlarged broods boosts their life expectancy, potentially compensating for reduced annual fecundity. Number of brood mates can thus have carry-over effects on fitness components, including lifespan, which should be incorporated in the analysis of complex reproductive trade-offs. Significance statement Ecological conditions in early life can affect survival and physical conditions but the extent to which these effects extend into adulthood is largely unknown. In this experiment, we altered the size of barn swallow broods and monitored the consequences of the change in competition regime in the brood of rearing in adulthood. When adult, individuals that had been reared in an enlarged brood had shorter wings and decreased breeding success. However, individuals from enlarged broods lived longer, possibly because only high-quality individuals from such broods survived through the first year of life. Thus, rearing conditions have important long-term effects, implying that parents have to optimize the number of offspring they decide to produce. [Saino, Nicola; Rubolini, Diego; Romano, Maria; Caprioli, Manuela; Romano, Andrea; Parolini, Marco] Univ Milan, Dept Environm Sci & Policy, Via Celoria 26, I-20133 Milan, Italy; [Ambrosini, Roberto] Univ Milano Bicocca, Dept Earth & Environm Sci, Piazza Sci 2, I-20126 Milan, Italy Saino, N (reprint author), Univ Milan, Dept Environm Sci & Policy, Via Celoria 26, I-20133 Milan, Italy. nicola.saino@unimi.it ROMANO, ANDREA/A-2780-2017 ROMANO, ANDREA/0000-0002-0945-6018 Alonso-Alvarez C, 2007, BIOL J LINN SOC, V91, P469, DOI 10.1111/j.1095-8312.2007.00811.x; Alonso-Alvarez C, 2006, EVOLUTION, V60, P1913, DOI 10.1111/j.0014-3820.2006.tb00534.x; BENJAMINI Y, 1995, J ROY STAT SOC B MET, V57, P289; Boncoraglio G, 2008, BEHAV ECOL SOCIOBIOL, V62, P729, DOI 10.1007/s00265-007-0498-8; Bonisoli-Alquati A, 2008, ECOLOGY, V89, P2315, DOI 10.1890/07-1066.1; Boonekamp JJ, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.3287; Bowers EK, 2015, J ANIM ECOL, V84, P473, DOI 10.1111/1365-2656.12294; Burness GP, 2000, J EXP BIOL, V203, P3513; Christe P, 1998, OIKOS, V83, P175, DOI 10.2307/3546559; Costanzo A, 2017, BEHAV ECOL, V28, P204, DOI 10.1093/beheco/arw147; Cramp S, 1998, COMPLETE BIRDS W PAL, P815; DeKogel CH, 1997, J ANIM ECOL, V66, P167; DeKogel CH, 1996, ANIM BEHAV, V51, P699, DOI 10.1006/anbe.1996.0073; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; Fitze PS, 2004, ECOLOGY, V85, P2018, DOI 10.1890/03-0138; Gil D, 2004, J EXP BIOL, V207, P2215, DOI 10.1242/jeb.01013; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; GUSTAFSSON L, 1995, NATURE, V375, P311, DOI 10.1038/375311a0; HAYWOOD S, 1992, P ROY SOC B-BIOL SCI, V249, P195, DOI 10.1098/rspb.1992.0103; Hegyi G, 2011, BEHAV ECOL SOCIOBIOL, V65, P1647, DOI 10.1007/s00265-011-1175-5; Jenni L, 1994, MOULT AGEING EUROPEA; Kim SY, 2015, BIOL LETTERS, V11, DOI 10.1098/rsbl.2015.0211; Laaksonen T, 2004, J ANIM ECOL, V73, P342, DOI 10.1111/j.0021-8790.2004.00811.x; Le Vaillant M, 2015, POLAR BIOL, V38, P2059, DOI 10.1007/s00300-015-1766-0; Lessells C.M., 1991, P32; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Lummaa V, 2002, TRENDS ECOL EVOL, V17, P141, DOI 10.1016/S0169-5347(01)02414-4; MAGRATH RD, 1991, J ANIM ECOL, V60, P335, DOI 10.2307/5464; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Moller AP, 2004, OIKOS, V104, P299, DOI 10.1111/j.0030-1299.2004.12844.x; Mousseau T. A., 1998, MATERNAL EFFECTS ADA; Naguib M, 2005, BIOL LETT-UK, V1, P95, DOI 10.1098/rsbl.2004.0277; Naguib M, 2008, ETHOLOGY, V114, P255, DOI 10.1111/j.1439-0310.2007.01466.x; Naguib M, 2006, P R SOC B, V273, P1901, DOI 10.1098/rspb.2006.3526; Neuenschwander S, 2003, BEHAV ECOL, V14, P457, DOI 10.1093/beheco/arg025; NUR N, 1988, EVOLUTION, V42, P351, DOI 10.1111/j.1558-5646.1988.tb04138.x; Nussey DH, 2011, ECOLOGY, V92, P1936, DOI 10.1890/11-0308.1; Pettifor RA, 2001, J ANIM ECOL, V70, P62, DOI 10.1046/j.1365-2656.2001.00465.x; Reichert S, 2015, J EXP BIOL, V218, P491, DOI 10.1242/jeb.109942; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Roff Derek A., 1992; Romano A, 2017, J EVOLUTION BIOL, V30, P1929, DOI 10.1111/jeb.13151; Romano A, 2014, ETHOL ECOL EVOL, V26, P80, DOI 10.1080/03949370.2013.800912; Romano A, 2017, BIOL REV, V92, P1582, DOI 10.1111/brv.12297; Rubolini D, 2007, P R SOC B, V274, P137, DOI 10.1098/rspb.2006.3696; Saino N, 1997, J ANIM ECOL, V66, P827, DOI 10.2307/5998; Saino N, 1999, J ANIM ECOL, V68, P999, DOI 10.1046/j.1365-2656.1999.00350.x; Saino N, 2002, OECOLOGIA, V133, P139, DOI 10.1007/s00442-002-1015-4; Saino N, 2000, AM NAT, V156, P637, DOI 10.1086/316996; Saino N, 2008, OECOLOGIA, V156, P441, DOI 10.1007/s00442-008-0971-8; Saino N, 2017, J AVIAN BIOL, V48, P1441, DOI 10.1111/jav.01469; Saino N, 2017, OECOLOGIA, V184, P799, DOI 10.1007/s00442-017-3918-0; Saino N, 2017, J ANIM ECOL, V86, P239, DOI 10.1111/1365-2656.12625; Saino N, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0060426; Saino N, 2012, J ANIM ECOL, V81, P1004, DOI 10.1111/j.1365-2656.2012.01989.x; Santos ESA, 2012, J EVOLUTION BIOL, V25, P1911, DOI 10.1111/j.1420-9101.2012.02569.x; Scandolara C, 2014, BEHAV ECOL, V25, P180, DOI 10.1093/beheco/art103; SEDINGER JS, 1995, ECOLOGY, V76, P2404, DOI 10.2307/2265816; Shutler D, 2006, ECOLOGY, V87, P2938, DOI 10.1890/0012-9658(2006)87[2938:TARCAC]2.0.CO;2; Simons MJP, 2015, AGEING RES REV, V24, P191, DOI 10.1016/j.arr.2015.08.002; SMITH HG, 1989, J ANIM ECOL, V58, P383, DOI 10.2307/4837; Stearns S., 1992, EVOLUTION LIFE HIST; Thomson RL, 2014, OECOLOGIA, V176, P423, DOI 10.1007/s00442-014-3020-9; Tinbergen JM, 2005, J ANIM ECOL, V74, P1112, DOI 10.1111/j.1365-2656.2005.01010.x; TINBERGEN JM, 1990, J ANIM ECOL, V59, P1113, DOI 10.2307/5035; Tschirren B, 2009, J EVOLUTION BIOL, V22, P387, DOI 10.1111/j.1420-9101.2008.01656.x; Turner A., 2006, BARN SWALLOW; Verhulst S, 2006, BIOL LETT-UK, V2, P478, DOI 10.1098/rsbl.2006.0496; Voillemot M, 2012, BMC ECOL, V12, DOI 10.1186/1472-6785-12-17; Wilkin TA, 2009, CURR BIOL, V19, P1998, DOI 10.1016/j.cub.2009.09.065; Young RC, 2017, MOL ECOL, V26, P3572, DOI 10.1111/mec.14121; Young RC, 2016, MAR ECOL PROG SER, V556, P251, DOI 10.3354/meps11864 73 1 1 5 13 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. FEB 2018 72 2 UNSP 30 10.1007/s00265-018-2446-1 12 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology FW6HI WOS:000425418600012 2018-11-22 J Minias, P; Wlodarczyk, R; Meissner, W Minias, Piotr; Wlodarczyk, Radoslaw; Meissner, Wlodzimierz Leukocyte profiles are associated with longevity and survival, but not migratory effort: A comparative analysis of shorebirds FUNCTIONAL ECOLOGY English Article birds; comparative method; H/L ratio; life history; migration; stress response FREE-LIVING VERTEBRATES; PHYSIOLOGICAL STRESS; COMPARATIVE BIOLOGY; PIED FLYCATCHERS; HANDLING STRESS; IMMUNE FUNCTION; PASSERINE BIRD; R PACKAGE; SIZE; CORTICOSTERONE Assessment of leukocyte profiles has become an increasingly popular tool in the fields of ecology and ecophysiology. The ratio of heterophils to lymphocytes (H/L ratio) is of special utility, as it reflects physiological adaptation of an organism to cope either with an infection through injury (via heterophils) or a communicable disease (via lymphocytes). Thus, elevated H/L ratios may constitute an adaptation to risky environments (i.e. associated with high risk of injury). While intra-population variation in avian H/L ratio has been extensively studied, we are aware of no studies that linked this trait to life-history components at the interspecific level. We measured H/L ratio in over 400 shorebirds from 19 species during their autumn migration through Central Europe. Phylogenetically informed comparative methods were used to test whether H/L ratio was related to: (1) annual survival and life span; (2) migratory effort, as measured with total migration distance and migratory energy reserves and (3) confounding variables such as body size or breeding latitude. A relatively strong phylogenetic signal and spatial phylogenetic autocorrelation indicated that most diversification in shorebird H/L ratios occurred relatively early in radiation of this group. Comparative analysis gave strong support for the negative associations of H/L ratio with residual life span and annual survival. In contrast, we found no support for the effect of migratory behaviour on H/L ratios, suggesting that leukocyte profiles in shorebirds may not constitute an important physiological adaptation for long-distance migration. Our study provided the first comparative evidence for a link between H/L ratios and important life-history traits in birds. Strong negative associations with annual survival and residual life span indicate that leukocyte profiles may form an adaptive basis for life-history strategies in birds. [Minias, Piotr; Wlodarczyk, Radoslaw] Univ Lodz, Fac Biol & Environm Protect, Dept Biodivers Studies & Bioeduc, Lodz, Poland; [Meissner, Wlodzimierz] Univ Gdansk, Dept Vertebrate Ecol & Zool, Avian Ecophysiol Unit, Gdansk, Poland Minias, P (reprint author), Univ Lodz, Fac Biol & Environm Protect, Dept Biodivers Studies & Bioeduc, Lodz, Poland. pminias@op.pl Meissner, Wlodzimierz/A-3657-2008 Meissner, Wlodzimierz/0000-0002-1259-2838; Meissner, Wlodzimierz/0000-0001-5995-9185; Wlodarczyk, Radoslaw/0000-0001-5932-0226; Minias, Piotr/0000-0002-7742-6750 Buehler DM, 2008, PHYSIOL BIOCHEM ZOOL, V81, P673, DOI 10.1086/588591; Busse P., 2015, BIRD RINGING STATION; Butler MA, 2004, AM NAT, V164, P683, DOI 10.1086/426002; Campo JL, 2002, POULTRY SCI, V81, P1448, DOI 10.1093/ps/81.10.1448; Cirule D, 2012, J ORNITHOL, V153, P161, DOI 10.1007/s10336-011-0719-9; D'Amico VL, 2017, J WILDLIFE DIS, V53, P437, DOI 10.7589/2016-02-039; Davis AK, 2008, FUNCT ECOL, V22, P760, DOI 10.1111/j.1365-2435.2008.01467.x; Davis A.K., 2004, ECOHEALTH, V1, P362, DOI DOI 10.1007/S10393-004-0134-2; Davis AK, 2005, J FIELD ORNITHOL, V76, P334, DOI 10.1648/0273-8570-76.4.334; de Magalhaes JP, 2009, J EVOLUTION BIOL, V22, P1770, DOI 10.1111/j.1420-9101.2009.01783.x; de Magalhaes JP, 2007, J GERONTOL A-BIOL, V62, P149; Dhabhar FS, 1996, J IMMUNOL, V157, P1638; Dhabhar FS, 1997, BRAIN BEHAV IMMUN, V11, P286, DOI 10.1006/brbi.1997.0508; Eeva T, 2005, J AVIAN BIOL, V36, P405, DOI 10.1111/j.0908-8857.2005.03449.x; Ericson PGP, 2006, BIOL LETT-UK, V2, P543, DOI 10.1098/rsbl.2006.0523; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Fokidis HB, 2008, J AVIAN BIOL, V39, P300, DOI [10.1111/j.2008.0908-8857.04248.x, 10.1111/j.0908-8857.2008.04248.x]; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Gamer M., 2012, IRR VARIOUS COEFFICI; Gelman A, 1992, STAT SCI, V7, P457, DOI DOI 10.1214/SS/1177011136; Genovese KJ, 2013, DEV COMP IMMUNOL, V41, P334, DOI 10.1016/j.dci.2013.03.021; GITTLEMAN JL, 1990, SYST ZOOL, V39, P227, DOI 10.2307/2992183; Gonzalez-Lagos C, 2010, J EVOLUTION BIOL, V23, P1064, DOI 10.1111/j.1420-9101.2010.01976.x; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; Guillerme T., 2014, MULTREE PACKAGE RUNN; Hadfield JD, 2010, J EVOLUTION BIOL, V23, P494, DOI 10.1111/j.1420-9101.2009.01915.x; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hansen TF, 1997, EVOLUTION, V51, P1341, DOI 10.1111/j.1558-5646.1997.tb01457.x; Hanssen SA, 2003, OECOLOGIA, V136, P457, DOI 10.1007/s00442-003-1282-8; Hinam HL, 2008, BIOL CONSERV, V141, P524, DOI 10.1016/j.biocon.2007.11.011; Ilmonen P, 2003, OECOLOGIA, V136, P148, DOI 10.1007/s00442-003-1243-2; Jetz W, 2012, NATURE, V491, P444, DOI 10.1038/nature11631; Johnstone CP, 2012, J COMP PHYSIOL B, V182, P861, DOI 10.1007/s00360-012-0656-9; Karlionova Natalia, 2007, Ringing & Migration, V23, P134; Kilgas P, 2006, PHYSIOL BIOCHEM ZOOL, V79, P565, DOI 10.1086/502817; Krams I, 2011, J ORNITHOL, V152, P889, DOI 10.1007/s10336-011-0672-7; Laaksonen T, 2004, J ANIM ECOL, V73, P342, DOI 10.1111/j.0021-8790.2004.00811.x; Laiolo P, 2007, BEHAV ECOL, V18, P507, DOI 10.1093/beheco/arm008; Landys-Ciannelli MM, 2002, PHYSIOL BIOCHEM ZOOL, V75, P101, DOI 10.1086/338285; Lobato E, 2005, ECOSCIENCE, V12, P27, DOI 10.2980/i1195-6860-12-1-27.1; Meissner W, 2009, J FIELD ORNITHOL, V80, P289, DOI 10.1111/j.1557-9263.2009.00232.x; Minias P., 2017, DRYAD DIGITAL REPOSI; Minias P, 2015, IBIS, V157, P528, DOI 10.1111/ibi.12262; Minias P, 2015, EVOL ECOL, V29, P283, DOI 10.1007/s10682-014-9752-5; Minias P, 2013, COMP BIOCHEM PHYS A, V165, P7, DOI 10.1016/j.cbpa.2013.02.008; Mizrahi DS, 2001, AUK, V118, P79, DOI 10.1642/0004-8038(2001)118[0079:POCSIM]2.0.CO;2; Moller AP, 2007, J EVOLUTION BIOL, V20, P750, DOI 10.1111/j.1420-9101.2006.01236.x; Moller AP, 1998, EVOL ECOL, V12, P945, DOI 10.1023/A:1006516222343; Moreno J, 2002, ECOSCIENCE, V9, P434, DOI 10.1080/11956860.2002.11682731; Owen JC, 2006, CONDOR, V108, P389, DOI 10.1650/0010-5422(2006)108[389:SDIICO]2.0.CO;2; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; Pap PL, 2015, OECOLOGIA, V177, P147, DOI 10.1007/s00442-014-3108-2; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Perez-Rodriguez L, 2008, NATURWISSENSCHAFTEN, V95, P821, DOI 10.1007/s00114-008-0389-5; Piersma T, 1998, J AVIAN BIOL, V29, P511, DOI 10.2307/3677170; Pinheiro J., 2014, R PACKAGE VERSION, V3, P1; PRATER AJ, 1977, GUIDE IDENTIFICATION; R Development Core Team, 2013, R LANG ENV STAT COMP; Revell LJ, 2012, METHODS ECOL EVOL, V3, P217, DOI 10.1111/j.2041-210X.2011.00169.x; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Romero LM, 2002, GEN COMP ENDOCR, V128, P1; SCHWABL H, 1991, J COMP PHYSIOL B, V161, P576, DOI 10.1007/BF00260747; Sol D, 2007, P R SOC B, V274, P763, DOI 10.1098/rspb.2006.3765; Suorsa P, 2004, P ROY SOC B-BIOL SCI, V271, P435, DOI 10.1098/rspb.2003.2620; Tacutu R, 2013, NUCLEIC ACIDS RES, V41, pD1027, DOI 10.1093/nar/gks1155; Tsigos C, 2002, J PSYCHOSOM RES, V53, P865, DOI 10.1016/S0022-3999(02)00429-4; Warnock N, 2010, J AVIAN BIOL, V41, P621, DOI 10.1111/j.1600-048X.2010.05155.x; Wilcoxen TE, 2013, CAN J ZOOL, V91, P789, DOI 10.1139/cjz-2013-0075; Williams SA, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.1664; Wingfield JC, 1998, AM ZOOL, V38, P191 70 1 1 3 14 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. FEB 2018 32 2 369 378 10.1111/1365-2435.12991 10 Ecology Environmental Sciences & Ecology FV1UJ WOS:000424350000013 2018-11-22 J Salguero-Gomez, R Salguero-Gomez, Roberto Implications of clonality for ageing research EVOLUTIONARY ECOLOGY English Article Clonal reproduction; CLO-PLA database; Demography; Fast-slow continuum; Genet; Life history strategy; Life history trait; Population LIFE-HISTORY VARIATION; MATRIX PROJECTION MODELS; CENTRAL-EUROPEAN FLORA; FAST-SLOW CONTINUUM; BUD-BANK TRAITS; HYDRAULIC SECTORIALITY; POPULATION-GROWTH; NATURAL-SELECTION; PLANT DEMOGRAPHY; TEMPERATE TREE Senescence, an organismal performance decline with age, has historically been considered a universal phenomenon by evolutionary biologists and zoologist. Yet, increasing fertility and survival with age are nothing new to plant ecologists, among whom it is common knowledge that senescence is not universal. Recently, these two realities have come into a confrontation, begging for the rephrasing of the classical question that has led ageing research for decades: "why do we senesce?" to a more practical "what are the mechanisms by which some organisms escape from senescence?" Plants are amenable to examining this question because of their rich repertoire of life history strategies. These include the existence of permanent seed banks, vegetative dormancy and ability to produce clones, among others. Here, I use a large number of high resolution demographic models from 181 species that reflect life history strategies and their trade-offs among herbaceous perennials, succulents and shrubs measured under field conditions worldwide to examine whether senescence rates of ramets from clonal plants differ from those of whole plants reproducing either strictly sexually, or with a combination of sexual and clonal mechanisms. Contrary to the initial expectation from the mutation accumulation theory of senescence, ramets of clonal plants were more likely to exhibit senescence than those species employing sexual reproduction. I discuss why these comparisons between ramets and genets are useful, as well as its implications and future directions for ageing research. [Salguero-Gomez, Roberto] Univ Oxford, Dept Zool, Radcliffe Observ Quarter, New Radcliffe House, Oxford OX2 6GG, England; [Salguero-Gomez, Roberto] Univ Queensland, Ctr Excellence Environm Decis, St Lucia, Qld 4072, Australia Salguero-Gomez, R (reprint author), Univ Oxford, Dept Zool, Radcliffe Observ Quarter, New Radcliffe House, Oxford OX2 6GG, England.; Salguero-Gomez, R (reprint author), Univ Queensland, Ctr Excellence Environm Decis, St Lucia, Qld 4072, Australia. rob.salguero@zoo.ox.ac.uk Australian Research Council Discovery Early Career Research Award fellowship [DE140100505]; UK Natural Environment Research Council independent research fellowship [NE/M018458/1] The data used in this work come from the COMPADRE Plant Matrix Database, which have been generously supported by the Laboratory of Evolutionary Biodemography at the Max Planck Institute for Demographic Research (MPIDR), led by J. Vaupel. I acknowledge financial support from an Australian Research Council Discovery Early Career Research Award fellowship (DE140100505) and from an UK Natural Environment Research Council independent research fellowship (NE/M018458/1). I thank J. Klimesova and T. Herben for their kind invitation to the Plant Clone Meeting in Trebon in 2015, as well as J. Klimesova, Z. Janovsky and an anonymous reviewer for constructive suggestions. Ally D, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000454; Barrett SCH, 2002, NAT REV GENET, V3, P274, DOI 10.1038/nrg776; Barrett SCH, 2010, PHILOS T R SOC B, V365, P99, DOI 10.1098/rstb.2009.0199; Baskin C. C., 2001, SEEDS ECOLOGY BIOGEO; Baudisch A, 2013, J ECOL, V101, P596, DOI 10.1111/1365-2745.12084; Baudisch A, 2012, SCIENCE, V338, P618, DOI 10.1126/science.1226467; BIERZYCHUDEK P, 1982, ECOL MONOGR, V52, P335, DOI 10.2307/2937350; Borcard D, 2011, USE R, P1, DOI 10.1007/978-1-4419-7976-6; Brito PH, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-354; Brown JS, 2005, AM J BOT, V92, P495, DOI 10.3732/ajb.92.3.495; Bruggeman J, 2003, GENETICS, V164, P479; Burger O, 2012, P NATL ACAD SCI USA, V109, P18210, DOI 10.1073/pnas.1215627109; Burns JH, 2010, J ECOL, V98, P334, DOI 10.1111/j.1365-2745.2009.01634.x; Caswell H, 2001, MATRIX POPULATION MO; Caswell H, 2013, J ECOL, V101, P585, DOI 10.1111/1365-2745.12088; COCHRAN ME, 1992, ECOL MONOGR, V62, P345, DOI 10.2307/2937115; de Kroon H, 2005, NEW PHYTOL, V166, P73, DOI 10.1111/j.1469-8137.2004.01310.x; DEMETRIUS L, 1978, NATURE, V275, P213, DOI 10.1038/275213a0; Eckert CG, 2002, EVOLUTIONARY ECOLOGY, V15, P501, DOI DOI 10.1023/A:1016005519651; Eckstein RL, 2006, PERSPECT PLANT ECOL, V8, P45, DOI 10.1016/j.ppees.2006.01.001; Finch CE, 1990, LONGEVITY SENESCENCE; Franco M, 2004, ECOLOGY, V85, P531, DOI 10.1890/02-0651; Franco M, 1996, PHILOS T R SOC B, V351, P1341, DOI 10.1098/rstb.1996.0117; Gaillard JM, 2005, AM NAT, V166, P119, DOI 10.1086/430330; GANAPATHI TR, 1992, PLANT CELL REP, V11, P571, DOI 10.1007/BF00233095; Garcia MB, 2011, J ECOL, V99, P1424, DOI 10.1111/j.1365-2745.2011.01871.x; Gardner SN, 1997, AM NAT, V150, P462, DOI 10.1086/286076; GOODMAN LA, 1969, BIOMETRICS, V25, P659, DOI 10.2307/2528566; GRIFFITHS AJF, 1992, ANNU REV GENET, V26, P351, DOI 10.1146/annurev.ge.26.120192.002031; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Hamilton WD, 1996, NARROW ROADS GENE LA, V1; Harper J L., 1977, POPULATION BIOL PLAN; Hayward AD, 2013, FUNCT ECOL, V27, P184, DOI 10.1111/1365-2435.12029; Heloir MC, 1997, PLANT CELL TISS ORG, V49, P223, DOI 10.1023/A:1005867908942; Herben T, 2014, ANN BOT-LONDON, V114, P377, DOI 10.1093/aob/mct308; Hinchliff CE, 2015, P NATL ACAD SCI USA, V112, P12764, DOI 10.1073/pnas.1423041112; Horvitz CC, 2008, AM NAT, V172, P203, DOI 10.1086/589453; Hutchings MJ, 2010, J ECOL, V98, P867, DOI 10.1111/j.1365-2745.2010.01661.x; HUTCHINGS MJ, 1986, BIOSCIENCE, V36, P178, DOI 10.2307/1310305; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; Jones OR, 2014, NATURE, V505, P169, DOI 10.1038/nature12789; Kattge J, 2011, GLOBAL CHANGE BIOL, V17, P2905, DOI 10.1111/j.1365-2486.2011.02451.x; Kelly D, 2002, ANNU REV ECOL SYST, V33, P427, DOI 10.1146/annurev.ecolsys.33.020602.095433; Kerkhoff AJ, 2004, EVOL ECOL RES, V6, P1003; Keyfitz N, 2005, STAT BIOL HEALTH, P1, DOI 10.1007/b139042; KEYFITZ N, 1977, APPL MATH DEMOGRAPHY; Klimesova J, 2017, ECOLOGY, V98, P1179, DOI 10.1002/ecy.1745; Klimesova J, 2009, J VEG SCI, V20, P511, DOI 10.1111/j.1654-1103.2009.01050.x; LEFKOVITCH LP, 1965, BIOMETRICS, V21, P1, DOI 10.2307/2528348; LEOPOLD AC, 1975, BIOSCIENCE, V25, P659, DOI 10.2307/1297034; LESLIE PH, 1945, BIOMETRIKA, V33, P183, DOI DOI 10.1093/BI0MET/33.3.183; Mardia KV, 1979, MULTIVARIATE ANAL; Mattison JA, 2012, NATURE, V489, P318, DOI 10.1038/nature11432; Medawar PB, 1952, UNSOLVED PROBLEM BIO; Mencuccini M, 2014, J ECOL, V102, P555, DOI 10.1111/1365-2745.12219; Metcalf CJE, 2013, METHODS ECOL EVOL, V4, P195, DOI 10.1111/2041-210x.12001; Morales M, 2013, J ECOL, V101, P555, DOI 10.1111/1365-2745.12080; Nooden LD, 2004, PLANT CELL DEATH PRO, P331; Orians CM, 2005, J EXP BOT, V56, P2267, DOI 10.1093/jxb/eri233; ORIVE ME, 1995, AM NAT, V145, P90, DOI 10.1086/285729; Pedersen B, 1999, LIFE HIST EVOLUTION, P239; Pfister CA, 2005, ECOLOGY, V86, P2673, DOI 10.1890/04-1952; Price EAC, 1996, VEGETATIO, V127, P41, DOI 10.1007/BF00054846; Revell LJ, 2009, EVOLUTION, V63, P3258, DOI 10.1111/j.1558-5646.2009.00804.x; Revell LJ, 2013, R PACKAGE PHYTOOLS; Rose M. R., 1991, EVOLUTIONARY BIOL AG; Salguero-Gomez R, 2017, NEW PHYTOL, V213, P1618, DOI 10.1111/nph.14289; Salguero-Gomez R, 2016, P NATL ACAD SCI USA, V113, P230, DOI 10.1073/pnas.1506215112; Salguero-Gomez R, 2015, J ECOL, V103, P202, DOI 10.1111/1365-2745.12334; Salguero-Gomez R, 2013, J ECOL, V101, P545, DOI 10.1111/1365-2745.12089; Salguero-Gomez R, 2011, NEW PHYTOL, V191, P173, DOI 10.1111/j.1469-8137.2011.03679.x; Salguero-Gomez R, 2011, NEW PHYTOL, V189, P229, DOI 10.1111/j.1469-8137.2010.03447.x; Salguero-Gomez R, 2010, J ECOL, V98, P250, DOI 10.1111/j.1365-2745.2009.01635.x; Schenk HJ, 2008, P NATL ACAD SCI USA, V105, P11248, DOI 10.1073/pnas.0804294105; Schenk HJ, 1999, PLANT ECOL, V141, P41, DOI 10.1023/A:1009895603783; Shefferson RP, 2017, EVOLUTION SENESCENCE; Silvertown J., 2001, INTRO PLANT POPULATI; Taylor JW, 2015, P NATL ACAD SCI USA, V112, P8901, DOI 10.1073/pnas.1503159112; van Buuren S, 2011, J STAT SOFTW, V45, P1; Vaupel JW, 2004, THEOR POPUL BIOL, V65, P339, DOI 10.1016/j.tpb.2003.12.003; VAUPEL JW, 1986, POP STUD-J DEMOG, V40, P147, DOI 10.1080/0032472031000141896; Whitaker TW, 1936, AM J BOT, V23, P517, DOI 10.2307/2436078; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; YOUNG TP, 1991, TRENDS ECOL EVOL, V6, P285, DOI 10.1016/0169-5347(91)90006-J; Zambrano J, 2014, BIOTROPICA, V46, P556, DOI 10.1111/btp.12144; Zanne AE, 2006, FUNCT ECOL, V20, P200, DOI 10.1111/j.1365-2435.2006.01101.x 86 0 0 5 10 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 1573-8477 EVOL ECOL Evol. Ecol. FEB 2018 32 1 9 28 10.1007/s10682-017-9923-2 20 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity FU7GW WOS:000424021400002 Other Gold 2018-11-22 J Fischbein, D; Villacide, JM; De La Vega, G; Corley, JC Fischbein, Deborah; Villacide, Jose M.; De La Vega, Gerardo; Corley, Juan C. Sex, life history and morphology drive individual variation in flight performance of an insect parasitoid ECOLOGICAL ENTOMOLOGY English Article Flight mills; flight morphological traits; flight patterns; insect movement; Megarhyssa nortoni; parasitoids PARARGE-AEGERIA; MATING STATUS; L LEPIDOPTERA; TRADE-OFFS; BODY-SIZE; DISPERSAL; REPRODUCTION; HYMENOPTERA; STRATEGIES; ALLOCATION 1. The movement of organisms can be driven by multiple factors and has implications for fitness and the spatial distribution of populations. Insects spend a large proportion of their adult lives foraging by flying for resources; however, their capability and motivation to move can vary across individuals. 2. The aims of this study were to examine interindividual and sex differences in flight performance and flight characteristics, using a flight mill bioassay, in Megarhyssa nortoni (Hymenoptera; Ichneumonidae), a parasitoid of the invasive woodwasp Sirex noctilio (Hymenoptera: Siricidae), one of the most important pests of pine afforestation worldwide. We also assessed the influence of morphological traits in combination with sex on flight and explored the cost of flight on longevity and mass loss. 3. The results show a difference between sexes in flight characteristics and performance. Females show greater total distance flown than males, and have a better capacity to undergo sustained flight. Sexual size dimorphism was also found and it was noted that size positively affects distances travelled. Females have a longer life span than males, yet no differences were noted in longevity within sex between individuals that did not fly and those that flew. Age did not influence flight performance of females or impacted on post-flight longevity. Females lost less body mass than males even after flying longer distances. 4. These results suggest that sex-specific behaviours probably govern flight abilities together with (and not only because of) morphological traits. The paper discusses sex-specific life-history strategies in parasitoids and their implications for biocontrol programmes. [Fischbein, Deborah; De La Vega, Gerardo; Corley, Juan C.] Consejo Nacl Invest Cient & Tecn, San Carlos De Bariloche, Rio Negro, Argentina; [Fischbein, Deborah; Villacide, Jose M.; De La Vega, Gerardo; Corley, Juan C.] INTA EEA Bariloche, Grp Ecol Poblac Insectos, Modesta Victoria 4450, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina Fischbein, D (reprint author), INTA EEA Bariloche, Grp Ecol Poblac Insectos, Modesta Victoria 4450, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina. deborah.fischbein@gmail.com Fischbein, Deborah/0000-0002-0457-0073 Agencia Nacional de Promocion Cientifica y Tecnologica [PICT 2014-527, PICT 2013-557]; Consejo Nacional de Investigaciones Cientificas y Tecnicas, CONICET [PIP 0730/14] We are thankful for the technical assistance offered by Ariel Mayoral and Josefina Lorhmann. This work was supported by PICT 2014-527 and PICT 2013-557 (Agencia Nacional de Promocion Cientifica y Tecnologica) and PIP 0730/14 (Consejo Nacional de Investigaciones Cientificas y Tecnicas, CONICET). DF, GV and JCC are Research Fellows of CONICET. JMV is Research Fellow of the Instituto Nacional de Tecnologia Agropecuaria (INTA). The authors have no conflict of interest regarding this publication. Authors' contributions: DF, JCC, and JMV conceived the ideas and designed the methodology; DF collected the data; DF and GV analysed the data; and DF and JCC led the writing of the manuscript. All authors contributed to critical interpretation of the data, revising the draft and gave their final approval for publication. DF and JCC provided the funds and organised the research programme. ANHOLT BR, 1990, OECOLOGIA, V83, P385, DOI 10.1007/BF00317564; Barbraud C, 2003, J ANIM ECOL, V72, P246, DOI 10.1046/j.1365-2656.2003.00695.x; Bellamy DE, 2001, ECOL ENTOMOL, V26, P571, DOI 10.1046/j.1365-2311.2001.00370.x; Benton TG, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P41; Berwaerts K, 2002, FUNCT ECOL, V16, P484, DOI 10.1046/j.1365-2435.2002.00650.x; Berwaerts K, 2006, BIOL J LINN SOC, V89, P675, DOI 10.1111/j.1095-8312.2006.00699.x; Bonte D, 2012, BIOL REV, V87, P290, DOI 10.1111/j.1469-185X.2011.00201.x; Bowler DE, 2005, BIOL REV, V80, P205, DOI 10.1017/S1464793104006645; Bowlin MS, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002154; Bruzzone OA, 2009, J EXP BIOL, V212, P731, DOI 10.1242/jeb.022517; Cameron EA, 2012, SIREX WOODWASP AND ITS FUNGAL SYMBIONT: RESEARCH AND MANAGEMENT OF A WORLDWIDE INVASIVE PEST, P103, DOI 10.1007/978-94-007-1960-6_8; Chapman R.F., 2007, INSECTS STRUCTURE FU; Clobert J, 2009, ECOL LETT, V12, P197, DOI 10.1111/j.1461-0248.2008.01267.x; CRANKSHAW OS, 1981, BEHAV ECOL SOCIOBIOL, V9, P1, DOI 10.1007/BF00299846; Dudley R., 2002, BIOMECHANICS INSECT; Elliott CG, 2012, PHYSIOL ENTOMOL, V37, P219, DOI 10.1111/j.1365-3032.2012.00835.x; Elliott CG, 2009, PHYSIOL ENTOMOL, V34, P71, DOI 10.1111/j.1365-3032.2008.00654.x; Fischbein D, 2011, J INSECT BEHAV, V24, P456, DOI 10.1007/s10905-011-9270-z; Guerra PA, 2011, BIOL REV, V86, P813, DOI 10.1111/j.1469-185X.2010.00172.x; Hanski I, 2006, J ANIM ECOL, V75, P91, DOI 10.1111/j.1365-2656.2005.01024.x; Hardy Ian C.W., 2005, P261, DOI 10.1007/1-4020-2625-0_5; HASSELL MP, 1973, J ANIM ECOL, V42, P693, DOI 10.2307/3133; Heimpel GE, 2011, BIOCONTROL, V56, P441, DOI 10.1007/s10526-011-9381-7; Jervis MA, 2008, ANNU REV ENTOMOL, V53, P361, DOI 10.1146/annurev.ento.53.103106.093433; Kidd NAC, 2007, INSECTS NATURAL ENEM, P435; KING B, 1993, J INSECT BEHAV, V6, P313, DOI 10.1007/BF01048112; Kisdi E, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P139; Liu Y., 2008, FRONT BIOL CHINA, V3, P375; Lukas J, 2010, ENTOMOL EXP APPL, V136, P80, DOI 10.1111/j.1570-7458.2010.01000.x; MATTHEWS R, 1979, THE FLORIDA ENTOMOLO, V62, P3; Matthysen E, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P3; NUTTALL M J, 1973, New Zealand Entomologist, V5, P112; Ode PJ, 1998, ECOL ENTOMOL, V23, P314, DOI 10.1046/j.1365-2311.1998.00134.x; R Core Development Team, 2016, R LANG ENV STAT COMP; Rasband W. S., 1997, IMAGEJ; Roland J, 1997, NATURE, V386, P710, DOI 10.1038/386710a0; Sarvary MA, 2008, J ECON ENTOMOL, V101, P314, DOI 10.1603/0022-0493(2008)101[314:DFPAFP]2.0.CO;2; Schumacher P, 1997, PHYSIOL ENTOMOL, V22, P149, DOI 10.1111/j.1365-3032.1997.tb01152.x; Shirai Y, 1995, RES POPUL ECOL, V37, P269, DOI 10.1007/BF02515829; YONG W, 1994, THE AUK, V111, P683; Zboralski A, 2016, BIOCONTROL, V61, P13, DOI 10.1007/s10526-015-9696-x; Zera AJ, 1997, ANNU REV ENTOMOL, V42, P207, DOI 10.1146/annurev.ento.42.1.207; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 43 1 1 9 22 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0307-6946 1365-2311 ECOL ENTOMOL Ecol. Entomol. FEB 2018 43 1 60 68 10.1111/een.12469 9 Entomology Entomology FR7IC WOS:000419240200007 Bronze 2018-11-22 J Spurgeon, JJ; Pegg, MA; Halden, NM Spurgeon, Jonathan J.; Pegg, Mark A.; Halden, Norman M. Mixed-origins of channel catfish in a large-river tributary FISHERIES RESEARCH English Article Otolith microchemistry; Connectivity; Population mixing; River network WESTSLOPE CUTTHROAT TROUT; MIDDLE MISSISSIPPI RIVER; FRESH-WATER FISHES; OTOLITH MICROCHEMISTRY; MISSOURI RIVER; TRACE-ELEMENT; GREAT-LAKES; MOVEMENTS; POPULATIONS; CONNECTIVITY An understanding of factors responsible for population structure including the origins of individuals from among habitats is fundamental to conservation and management of large-river fishes. The prevalence of population mixing of channel catfish Ictalurus punctatus was evaluated within a large-river tributary environment using information from recent environmental history and natal origin derived from otolith microchemistry. Trace elements in water and otoliths were assessed using univariate and multivariate statistical approaches. Water and otolith trace elements differed among river segments facilitating classification of channel catfish to the river segment of capture. Accuracy of the classification tree model for juvenile channel catfish ranged from 44% to 88%. Recent environmental and natal origin microchemistry signatures suggested the channel catfish population within a large-river tributary comprises individuals from multiple locations. Population demographics of channel catfish is likely influenced by mixing of individuals from across the riverine-network. Consideration of the importance of connectivity between main-stem and tributary systems may, therefore, benefit conservation and management of channel catfish and other large -river fishes displaying similar life-history strategies. [Spurgeon, Jonathan J.; Pegg, Mark A.] Univ Nebraska, Sch Nat Resources, Hardin Hall 314 3310 Holdredge St, Lincoln, NE 68583 USA; [Halden, Norman M.] Univ Manitoba, Dept Geol Sci, Winnipeg, MB, Canada Spurgeon, JJ (reprint author), Univ Nebraska, Sch Nat Resources, Hardin Hall 314 3310 Holdredge St, Lincoln, NE 68583 USA. jonathan.spurgeon@huskers.unl.edu Nebraska Game and Parks Commission through the National Sport Fish Restoration Fund [F-75-R]; University of Nebraska-Lincoln, Institute of Agriculture and Natural Resources We thank the Nebraska Game and Parks Commission for project funding through the National Sport Fish Restoration Fund (F-75-R) and the University of Nebraska-Lincoln, Institute of Agriculture and Natural Resources. We thank members of the Fremont Airboat Club for aiding in channel catfish sample collection. We thank P. Yang and Z. Song for their technical support along with the University of Manitoba LA-ICPMS facility. Abell R, 2007, BIOL CONSERV, V134, P48, DOI 10.1016/j.biocon.2006.08.017; Allan JD, 2005, BIOSCIENCE, V55, P1041, DOI 10.1641/0006-3568(2005)055[1041:OOIW]2.0.CO;2; Benda L, 2004, BIOSCIENCE, V54, P413, DOI 10.1641/0006-3568(2004)054[0413:TNDHHC]2.0.CO;2; Benjamin JR, 2014, CAN J FISH AQUAT SCI, V71, P131, DOI 10.1139/cjfas-2013-0279; Breiman L., 1984, CLASSIFICATION REGRE; Brodersen J, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0090294; Brodnik RM, 2016, CAN J FISH AQUAT SCI, V73, P416, DOI 10.1139/cjfas-2015-0161; Bronmark C, 2014, CAN J ZOOL, V92, P467, DOI 10.1139/cjz-2012-0277; Butler SE, 2011, RIVER RES APPL, V27, P1182, DOI 10.1002/rra.1416; Campana SE, 2001, CAN J FISH AQUAT SCI, V58, P30, DOI 10.1139/f00-177; Chapman BB, 2012, J FISH BIOL, V81, P456, DOI 10.1111/j.1095-8649.2012.03342.x; Chase NM, 2015, CAN J FISH AQUAT SCI, V72, P1575, DOI 10.1139/cjfas-2014-0574; Clarke AD, 2015, ENVIRON BIOL FISH, V98, P1583, DOI 10.1007/s10641-015-0384-6; Cooke S. J., 2016, ENVIRON MONIT ASSESS, V188, P1; DAMES HR, 1989, T AM FISH SOC, V118, P670, DOI 10.1577/1548-8659(1989)118<0670:MOCAFC>2.3.CO;2; De'ath G, 2000, ECOLOGY, V81, P3178, DOI 10.2307/177409; Duponchelle F, 2016, J APPL ECOL, V53, P1511, DOI 10.1111/1365-2664.12665; Eder BL, 2016, N AM J FISH MANAGE, V36, P140, DOI 10.1080/02755947.2015.1114538; Grant EHC, 2007, ECOL LETT, V10, P165, DOI 10.1111/j.1461-0248.2006.01007.x; Gwinn DC, 2015, FISH FISH, V16, P259, DOI 10.1111/faf.12053; Hamel MJ, 2016, RIVER RES APPL, V32, P320, DOI 10.1002/rra.2850; Hawkins SJ, 2016, FISH RES, V179, P333, DOI 10.1016/j.fishres.2016.01.015; HOGAN ZS, 2011, CONSERV ECOL, V77, P39; Holland Richard S., 1992, Transactions of the Nebraska Academy of Sciences, V19, P33; HUBERT WA, 1999, CATFISH 2000, V24, P3; Humston R, 2017, J FISH BIOL, V90, P528, DOI 10.1111/jfb.13073; Humston R, 2010, T AM FISH SOC, V139, P171, DOI 10.1577/T08-192.1; Jager HI, 2016, FISHERIES, V41, P140, DOI 10.1080/03632415.2015.1132705; Koehn JD, 2016, J FISH BIOL, V88, P1350, DOI 10.1111/jfb.12884; Laughlin TW, 2016, RIVER RES APPL, V32, P1808, DOI 10.1002/rra.3015; Loewen TN, 2015, FISH RES, V170, P116, DOI 10.1016/j.fishres.2015.05.025; Long JM, 2010, T AM FISH SOC, V139, P1775, DOI 10.1577/T10-102.1; Melancon S, 2005, CAN J FISH AQUAT SCI, V62, P2609, DOI 10.1139/F05-161; Mercier L, 2011, ECOL APPL, V21, P1352, DOI 10.1890/09-1887.1; Moore JW, 2015, CAN J FISH AQUAT SCI, V72, P785, DOI 10.1139/cjfas-2014-0478; Muhlfeld CC, 2012, CAN J FISH AQUAT SCI, V69, P906, DOI 10.1139/F2012-033; Neely BC, 2009, ECOL FRESHW FISH, V18, P437, DOI 10.1111/j.1600-0633.2009.00360.x; Newcomb B.A., 1989, North American Journal of Fisheries Management, V9, P195, DOI 10.1577/1548-8675(1989)009<0195:WAOCCI>2.3.CO;2; Nilsson C, 2005, SCIENCE, V308, P405, DOI 10.1126/science.1107887; Norman JD, 2015, BIOL INVASIONS, V17, P2999, DOI 10.1007/s10530-015-0929-9; Pangle KL, 2010, CAN J FISH AQUAT SCI, V67, P1475, DOI 10.1139/F10-076; Pegg MA, 2003, AQUAT SCI, V65, P63, DOI 10.1007/s000270300005; Pellett DT, 1998, N AM J FISH MANAGE, V18, P85; Porreca AP, 2016, CAN J FISH AQUAT SCI, V73, P877, DOI 10.1139/cjfas-2015-0352; Pracheil BM, 2009, ECOL FRESHW FISH, V18, P603, DOI 10.1111/j.1600-0633.2009.00376.x; Pracheil BM, 2014, FISHERIES, V39, P451, DOI 10.1080/03632415.2014.937858; Pracheil BM, 2013, FRONT ECOL ENVIRON, V11, P124, DOI 10.1890/120179; PUGH LL, 1999, CATFISH 2000, V24, P193; R Core Team, 2015, R LANG ENV STAT COMP; Ramsay AL, 2011, CAN J FISH AQUAT SCI, V68, P823, DOI 10.1139/F2011-027; Schaffler JJ, 2015, T AM FISH SOC, V144, P1, DOI 10.1080/00028487.2014.954056; SCHLOSSER IJ, 1995, EVOLUTION AQUATIC EC, V17, P392; Schoen LS, 2016, LIMNOL OCEANOGR, V61, P1800, DOI 10.1002/lno.10340; Schtickzelle N, 2007, FISH FISH, V8, P297, DOI 10.1111/j.1467-2979.2007.00256.x; Shiller AM, 2003, ENVIRON SCI TECHNOL, V37, P3953, DOI 10.1021/es0341182; Siddons S.F., 2017, RIVER RES APPL; Smith WE, 2014, J FISH BIOL, V84, P913, DOI 10.1111/jfb.12317; Spurgeon JJ, 2016, RIVER RES APPL, V32, P1841, DOI 10.1002/rra.3041; Sturrock AM, 2015, METHODS ECOL EVOL, V6, P806, DOI 10.1111/2041-210X.12381; Therneau TM, 2015, RPART PACKAG MANUAL, V4, P1, DOI DOI 10.HTTPS://CRAN.R-PR0JECT.0RG/PACKAGE=; Turner SM, 2015, T AM FISH SOC, V144, P873, DOI 10.1080/00028487.2015.1059888; Veinott G, 2012, ECOL FRESHW FISH, V21, P541, DOI 10.1111/j.1600-0633.2012.00574.x; Wells BK, 2003, T AM FISH SOC, V132, P409, DOI 10.1577/1548-8659(2003)132<0409:RBWOAS>2.0.CO;2; WENDEL JL, 1999, CATFISH 2000, V24, P203; Whitledge GW, 2007, T AM FISH SOC, V136, P1263, DOI 10.1577/T06-045.1; Woods RJ, 2010, CAN J FISH AQUAT SCI, V67, P1098, DOI 10.1139/F10-043; Zeigler JM, 2011, HYDROBIOLOGIA, V661, P289, DOI 10.1007/s10750-010-0538-7; Ziv G, 2012, P NATL ACAD SCI USA, V109, P5609, DOI 10.1073/pnas.1201423109 68 2 2 0 16 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0165-7836 1872-6763 FISH RES Fish Res. FEB 2018 198 195 202 10.1016/j.fishres.2017.09.001 8 Fisheries Fisheries FN7JJ WOS:000416194200021 2018-11-22 J Comte, L; Olden, JD Comte, Lise; Olden, Julian D. Evidence for dispersal syndromes in freshwater fishes PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article dispersal ability; life-history strategies; ecological specialization; co-adaptation; evolutionary trade-offs; repeatability TRAIT-BASED APPROACH; LIFE-HISTORY; ECOLOGICAL SPECIALIZATION; FRAGMENTED LANDSCAPES; CLIMATE-CHANGE; NORTH-AMERICA; EVOLUTION; STRATEGIES; DISTANCE; CONNECTIVITY Dispersal is a fundamental process defining the distribution of organisms and has long been a topic of inquiry in ecology and evolution. Emerging research points to an interdependency of dispersal with a diverse suite of traits in terrestrial organisms, however the extent to which such dispersal syndromes exist in freshwater species remains uncertain. Here, we test whether dispersal in freshwater fishes (1) is a fixed property of species, and (2) correlates with life-history, morphological, ecological and behavioural traits, using a global dataset of dispersal distances collected from the literature encompassing 116 riverine species and 196 locations. Our meta-analysis revealed a high degree of repeatability and heritability in the dispersal estimates and strong associations with traits related to life-history strategies, energy allocation to reproduction, ecological specialization and swimming skills. Together, these results demonstrate that similar to terrestrial organisms, the multi-dimensional nature of dispersal syndromes in freshwater species offer opportunities for the development of a unifying paradigm of movement ecology that transcend taxonomic and biogeographical realms. The high explanatory power of the models also suggests that trait-based and phylogenetic approaches hold considerable promises to inform conservation efforts in a rapidly changing world. [Comte, Lise; Olden, Julian D.] Univ Washington, Sch Aquat & Fishery Sci, Box 355020, Seattle, WA 98195 USA Comte, L (reprint author), Univ Washington, Sch Aquat & Fishery Sci, Box 355020, Seattle, WA 98195 USA. lcomte@uw.edu H. Mason Keeler Endowed Professorship (School of Aquatic and Fishery Sciences, University of Washington) Financial support was provided by a H. Mason Keeler Endowed Professorship (School of Aquatic and Fishery Sciences, University of Washington) to J.D.O. (also supporting L.C.). Baguette M, 2013, BIOL REV, V88, P310, DOI 10.1111/brv.12000; Berg MP, 2010, GLOBAL CHANGE BIOL, V16, P587, DOI 10.1111/j.1365-2486.2009.02014.x; Bitume EV, 2013, ECOL LETT, V16, P430, DOI 10.1111/ele.12057; Blanck A, 2007, J BIOGEOGR, V34, P862, DOI 10.1111/j.1365-2699.2006.01654.x; Bonte D, 2017, OIKOS, V126, P472, DOI 10.1111/oik.03801; Bonte D, 2012, BIOL REV, V87, P290, DOI 10.1111/j.1469-185X.2011.00201.x; Bowler DE, 2005, BIOL REV, V80, P205, DOI 10.1017/S1464793104006645; Bradbury IR, 2008, P ROY SOC B-BIOL SCI, V275, P1803, DOI 10.1098/rspb.2008.0216; Buoro M, 2014, ECOL LETT, V17, P756, DOI 10.1111/ele.12275; Burgess SC, 2016, BIOL REV, V91, P867, DOI 10.1111/brv.12198; Bush A, 2017, FRESHWATER BIOL, V62, P382, DOI 10.1111/fwb.12874; Clobert J, 2009, ECOL LETT, V12, P197, DOI 10.1111/j.1461-0248.2008.01267.x; Cote J, 2017, ECOGRAPHY, V40, P56, DOI 10.1111/ecog.02538; Dahirel M, 2015, J ANIM ECOL, V84, P228, DOI 10.1111/1365-2656.12276; de Villemereuil P., 2014, MODERN PHYLOGENETIC, P287; Delgado MD, 2010, J ANIM ECOL, V79, P620, DOI 10.1111/j.1365-2656.2009.01655.x; Doledec S, 2000, ECOLOGY, V81, P2914, DOI 10.1890/0012-9658(2000)081[2914:NSICAA]2.0.CO;2; Duputie A, 2013, INTERFACE FOCUS, V3, DOI 10.1098/rsfs.2013.0028; Dynesius M, 2000, P NATL ACAD SCI USA, V97, P9115, DOI 10.1073/pnas.97.16.9115; Edelaar P, 2008, EVOLUTION, V62, P2462, DOI 10.1111/j.1558-5646.2008.00459.x; Fullerton AH, 2010, FRESHWATER BIOL, V55, P2215, DOI 10.1111/j.1365-2427.2010.02448.x; Grant EHC, 2007, ECOL LETT, V10, P165, DOI 10.1111/j.1461-0248.2006.01007.x; Griffiths D, 2015, BIOL J LINN SOC, V116, P773, DOI 10.1111/bij.12638; Guerra PA, 2011, BIOL REV, V86, P813, DOI 10.1111/j.1469-185X.2010.00172.x; Hadfield J, 2016, MCMCGLMM COURSE NOTE; Hadfield JD, 2010, J EVOLUTION BIOL, V23, P494, DOI 10.1111/j.1420-9101.2009.01915.x; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hein AM, 2012, ECOL LETT, V15, P104, DOI 10.1111/j.1461-0248.2011.01714.x; Hovestadt T, 2011, J ANIM ECOL, V80, P1070, DOI 10.1111/j.1365-2656.2011.01848.x; Jocque M, 2010, GLOBAL ECOL BIOGEOGR, V19, P244, DOI 10.1111/j.1466-8238.2009.00510.x; Kisdi E, 2002, AM NAT, V159, P579, DOI 10.1086/339989; Koenig WD, 1996, TRENDS ECOL EVOL, V11, P514, DOI 10.1016/S0169-5347(96)20074-6; Lester SE, 2007, ECOL LETT, V10, P745, DOI 10.1111/j.1461-0248.2007.01070.x; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; Mims MC, 2010, ECOL FRESHW FISH, V19, P390, DOI 10.1111/j.1600-0633.2010.00422.x; Nakagawa S, 2013, METHODS ECOL EVOL, V4, P133, DOI 10.1111/j.2041-210x.2012.00261.x; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Nathan R, 2003, OIKOS, V103, P261, DOI 10.1034/j.1600-0706.2003.12146.x; Nathan R, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P187; Nathan R, 2008, P NATL ACAD SCI USA, V105, P19052, DOI 10.1073/pnas.0800375105; Nurmi T, 2011, J THEOR BIOL, V275, P78, DOI 10.1016/j.jtbi.2011.01.023; Pauly D., 1989, FISHBYTE NEWSLETTER, V7, P22; Pavoine S, 2014, ECOLOGY, V95, P3304, DOI 10.1890/13-2036.1; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; Poisot T, 2011, ECOL LETT, V14, P841, DOI 10.1111/j.1461-0248.2011.01645.x; R Development Core Team, 2014, R LANG ENV STAT COMP; Rabosky DL, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms2958; Radinger J, 2014, FISH FISH, V15, P456, DOI 10.1111/faf.12028; Ronce O, 2007, ANNU REV ECOL EVOL S, V38, P231, DOI 10.1146/annurev.ecolsys.38.091206.095611; Ronce O, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P119; Sambilay Jr V. C., 1990, FISHBYTE, V8, P16; Santini L, 2016, GLOBAL CHANGE BIOL, V22, P2415, DOI 10.1111/gcb.13271; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; Sternberg D, 2014, ECOGRAPHY, V37, P54, DOI 10.1111/j.1600-0587.2013.00362.x; Stevens VM, 2014, ECOL LETT, V17, P1039, DOI 10.1111/ele.12303; Stevens VM, 2012, ECOL LETT, V15, P74, DOI 10.1111/j.1461-0248.2011.01709.x; Stevens VM, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011123; Sutherland GD, 2000, CONSERV ECOL, V4; Tesson SVM, 2013, MOV ECOL, V1, DOI 10.1186/2051-3933-1-10; Travis JMJ, 2013, OIKOS, V122, P1532, DOI 10.1111/j.1600-0706.2013.00399.x; Urban MC, 2013, ANN NY ACAD SCI, V1297, P44, DOI 10.1111/nyas.12184; Van Dyck H, 2005, BASIC APPL ECOL, V6, P535, DOI 10.1016/j.baae.2005.03.005; Whitmee S, 2013, J ANIM ECOL, V82, P211, DOI 10.1111/j.1365-2656.2012.02030.x; Wiens JA, 2002, FRESHWATER BIOL, V47, P501, DOI 10.1046/j.1365-2427.2002.00887.x; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242 65 2 2 17 24 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. JAN 31 2018 285 1871 20172214 10.1098/rspb.2017.2214 9 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology FU3TN WOS:000423774700012 2018-11-22 J Pinceel, T; Buschke, F; Weckx, M; Brendonck, L; Vanschoenwinkel, B Pinceel, Tom; Buschke, Falko; Weckx, Margo; Brendonck, Luc; Vanschoenwinkel, Bram Climate change jeopardizes the persistence of freshwater zooplankton by reducing both habitat suitability and demographic resilience BMC ECOLOGY English Article Bet hedging; Dormancy; Diapause; Environmental change; Life history EVOLUTIONARY ASPECTS; EXTINCTION RISK; CHANGE IMPACTS; LIFE-HISTORY; EGG BANKS; BRANCHIOPODA; CRUSTACEA; INVERTEBRATES; DISPERSAL; METACOMMUNITY Background: Higher temperatures and increased environmental variability under climate change could jeopardize the persistence of species. Organisms that rely on short windows of rainfall to complete their life-cycles, like desert annual plants or temporary pool animals, may be particularly at risk. Although some could tolerate environmental changes by building-up banks of propagules (seeds or eggs) that buffer against catastrophes, climate change will threaten this resilience mechanism if higher temperatures reduce propagule survival. Using a crustacean model species from temporary waters, we quantified experimentally the survival and dormancy of propagules under anticipated climate change and used these demographic parameters to simulate long term population dynamics. Results: By exposing propagules to present-day and projected daily temperature cycles in an 8 month laboratory experiment, we showed how increased temperatures reduce survival rates in the propagule bank. Integrating these reduced survival rates into population models demonstrated the inability of the bank to maintain populations; thereby exacerbating extinction risk caused by shortened growing seasons. Conclusions: Overall, our study demonstrates that climate change could threaten the persistence of populations by both reducing habitat suitability and eroding life-history strategies that support demographic resilience. [Pinceel, Tom; Weckx, Margo; Brendonck, Luc] Katholieke Univ Leuven, Anim Ecol Global Change & Sustainable Dev, Charles Deberiotstr 32, B-3000 Louvain, Belgium; [Pinceel, Tom; Buschke, Falko] Univ Free State, Ctr Environm Management, POB 339, ZA-9300 Bloemfontein, South Africa; [Brendonck, Luc] North West Univ, Unit Environm Sci & Management, Water Res Grp, Private Bag X6001, ZA-2520 Potchefstroom, South Africa; [Vanschoenwinkel, Bram] Vrije Univ Brussel VUB, Dept Biol, Community Ecol Lab, Pl Laan 2, B-1050 Brussels, Belgium Pinceel, T (reprint author), Katholieke Univ Leuven, Anim Ecol Global Change & Sustainable Dev, Charles Deberiotstr 32, B-3000 Louvain, Belgium.; Pinceel, T (reprint author), Univ Free State, Ctr Environm Management, POB 339, ZA-9300 Bloemfontein, South Africa. tom.pinceel@kuleuven.be Buschke, Falko/G-1698-2012 Buschke, Falko/0000-0003-1167-7810 Research Foundation-Flanders (FWO) [12F0716 N]; Research Foundation-Flanders [3E090007, 3E110799]; Excellence Center 'Eco and socio-evolutionary dynamics' of the KU Leuven Research Fund [PF/10/007] TP is currently supported by a postdoctoral fellowship of the Research Foundation-Flanders (FWO, 12F0716 N). This research benefited from additional financial support from the Research Foundation-Flanders 3E090007 and 3E110799 and the Excellence Center 'Eco and socio-evolutionary dynamics' (PF/10/007) of the KU Leuven Research Fund. The funding agencies did not contribute directly to the design of the study, the collection, analysis and interpretation of the data nor to the writing of the manuscript. [Anonymous], 2014, SARVA S AFR RISK VUL; Brendonck L, 2000, ARCH HYDROBIOL, V148, P71; Brendonck L, 2008, HYDROBIOLOGIA, V595, P167, DOI 10.1007/s10750-007-9119-9; De Roeck ERM, 2005, HYDROBIOLOGIA, V542, P103, DOI 10.1007/s10750-004-2411-z; Evans MEK, 2005, Q REV BIOL, V80, P431, DOI 10.1086/498282; Foden WB, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0065427; Garcia-Roger EM, 2017, HYDROBIOLOGIA, V796, P223, DOI 10.1007/s10750-016-2869-5; Geerts AN, 2015, NAT CLIM CHANGE, V5, P665, DOI 10.1038/NCLIMATE2628; Gilman SE, 2010, TRENDS ECOL EVOL, V25, P325, DOI 10.1016/j.tree.2010.03.002; Gremer JR, 2014, ECOL LETT, V17, P380, DOI 10.1111/ele.12241; Hairston NG, 1996, LIMNOL OCEANOGR, V41, P1087, DOI 10.4319/lo.1996.41.5.1087; Hairston NG, 2002, INTEGR COMP BIOL, V42, P481, DOI 10.1093/icb/42.3.481; Hoffmann AA, 2011, NATURE, V470, P479, DOI 10.1038/nature09670; Moss B, 2012, SCI TOTAL ENVIRON, V434, P130, DOI 10.1016/j.scitotenv.2011.07.069; Nielsen DL, 2015, MAR FRESHWATER RES, V66, P1138, DOI 10.1071/MF14272; Ooi MKJ, 2009, GLOBAL CHANGE BIOL, V15, P2375, DOI 10.1111/j.1365-2486.2009.01887.x; Pachauri R. K., 2014, CLIMATE CHANGE 2014; Pacifici M, 2015, NAT CLIM CHANGE, V5, P215, DOI 10.1038/NCLIMATE2448; Pearson RG, 2014, NAT CLIM CHANGE, V4, P217, DOI [10.1038/nclimate2113, 10.1038/NCLIMATE2113]; Philippi TE, 2001, ISRAEL J ZOOL, V47, P387, DOI 10.1560/LU8G-9HVP-YR80-XCL0; Pinceel T, 2017, OECOLOGIA, V184, P161, DOI 10.1007/s00442-017-3858-8; Pinceel T, 2016, SCI REP-UK, V6, DOI 10.1038/srep29451; Pinceel T, 2013, FRESHW SCI, V32, P517, DOI 10.1899/12.157.1; Pyke CR, 2005, ECOSYSTEMS, V8, P95, DOI 10.1007/s10021-004-0086-y; Radzikowski J, 2013, J PLANKTON RES, V35, P707, DOI 10.1093/plankt/fbt032; Simons AM, 2011, P ROY SOC B-BIOL SCI, V278, P1601, DOI 10.1098/rspb.2011.0176; Spencer M, 2001, ISRAEL J ZOOL, V47, P397, DOI 10.1560/23F2-2XBW-252B-DU5C; Stoks R, 2014, EVOL APPL, V7, P42, DOI 10.1111/eva.12108; Tuytens K, 2014, FRESHWATER BIOL, V59, P955, DOI 10.1111/fwb.12319; Urban MC, 2016, SCIENCE, V353, P1113, DOI 10.1126/science.aad8466; Urban MC, 2015, SCIENCE, V348, P571, DOI 10.1126/science.aaa4984; Vandekerkhove J, 2005, FRESHWATER BIOL, V50, P96, DOI 10.1111/j.1365-2427.2004.01312.x; VANDERLINDEN A, 1986, MAR BIOL, V91, P239, DOI 10.1007/BF00569439; Vanschoenwinkel B, 2008, ECOGRAPHY, V31, P567, DOI 10.1111/j.0906-7590.2008.05442.x; Vanschoenwinkel B, 2013, ECOLOGY, V94, P2547, DOI 10.1890/12-1576.1; Vanschoenwinkel B, 2010, AQUAT ECOL, V44, P771, DOI 10.1007/s10452-010-9315-y; Vanschoenwinkel B, 2009, HYDROBIOLOGIA, V635, P363, DOI 10.1007/s10750-009-9929-z; Vanschoenwinkel B, 2009, FRESHWATER BIOL, V54, P1487, DOI 10.1111/j.1365-2427.2009.02198.x; Venable DL, 2007, ECOLOGY, V88, P1086, DOI 10.1890/06-1495; Ziervogel G, 2014, WIRES CLIM CHANGE, V5, P605, DOI 10.1002/wcc.295 40 0 0 4 9 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1472-6785 BMC ECOL BMC Ecol. JAN 24 2018 18 2 10.1186/s12898-018-0158-z 9 Ecology Environmental Sciences & Ecology FU3AJ WOS:000423721200001 29361977 DOAJ Gold, Green Published 2018-11-22 J Auer, SK; Dick, CA; Metcalfe, NB; Reznick, DN Auer, Sonya K.; Dick, Cynthia A.; Metcalfe, Neil B.; Reznick, David N. Metabolic rate evolves rapidly and in parallel with the pace of life history NATURE COMMUNICATIONS English Article GUPPIES POECILIA-RETICULATA; GENETIC CORRELATIONS; TRINIDADIAN GUPPIES; QUANTITATIVE GENETICS; NATURAL-POPULATION; WILD RODENT; SLOW PACE; EVOLUTION; BASAL; TRAITS Metabolic rates and life history strategies are both thought to set the "pace of life", but whether they evolve in tandem is not well understood. Here, using a common garden experiment that compares replicate paired populations, we show that Trinidadian guppy (Poecilia reticulata) populations that evolved a fast-paced life history in high-predation environments have consistently higher metabolic rates than guppies that evolved a slow-paced life history in low-predation environments. Furthermore, by transplanting guppies from high-to low-predation environments, we show that metabolic rate evolves in parallel with the pace of life history, at a rapid rate, and in the same direction as found for naturally occurring populations. Together, these multiple lines of inference provide evidence for a tight evolutionary coupling between metabolism and the pace of life history. [Auer, Sonya K.; Metcalfe, Neil B.] Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Glasgow G12 8QQ, Lanark, Scotland; [Dick, Cynthia A.; Reznick, David N.] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA Auer, SK (reprint author), Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Glasgow G12 8QQ, Lanark, Scotland. sonya.auer@gmail.com Metcalfe, Neil/C-5997-2009 Metcalfe, Neil/0000-0002-1970-9349 University of Glasgow Lister Bellahouston Travelling Fellowship; US National Science Foundation; European Research Council [322784]; US National Science Foundation [DEB-0623632EF, DEB-1258231] The authors thank Joshua Goldberg and Robert Prather for collecting fish in Trinidad and Yuridia Reynoso for helping to maintain the laboratory stocks. This research was funded by a University of Glasgow Lister Bellahouston Travelling Fellowship to S.K.A., a US National Science Foundation Pre-Doctoral Fellowship to C.A.D., a European Research Council Advanced grant (no. 322784) to N.B.M., and US National Science Foundation grants (DEB-0623632EF and DEB-1258231) to D.N.R. Anderson KJ, 2005, ECOL LETT, V8, P310, DOI 10.1111/j.1461-0248.2005.00723.x; Auer SK, 2017, FUNCT ECOL, V31, P1728, DOI 10.1111/1365-2435.12879; Auer SK, 2015, FUNCT ECOL, V29, P479, DOI 10.1111/1365-2435.12396; Auer SK, 2010, AM NAT, V176, P818, DOI 10.1086/657061; Bauwens D, 1997, AM NAT, V149, P91, DOI 10.1086/285980; Bech C, 2016, J COMP PHYSIOL B, V186, P503, DOI 10.1007/s00360-016-0964-6; Biro PA, 2010, TRENDS ECOL EVOL, V25, P653, DOI 10.1016/j.tree.2010.08.003; BLACKBURN TM, 1991, FUNCT ECOL, V5, P65, DOI 10.2307/2389556; Boratynski Z, 2013, EVOL ECOL, V27, P301, DOI 10.1007/s10682-012-9590-2; Bozinovic F, 2009, COMP BIOCHEM PHYS A, V152, P560, DOI 10.1016/j.cbpa.2008.12.015; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Burton T, 2011, P ROY SOC B-BIOL SCI, V278, P3465, DOI 10.1098/rspb.2011.1778; Careau V, 2009, FUNCT ECOL, V23, P150, DOI 10.1111/j.1365-2435.2008.01468.x; Careau V, 2015, INTEGRATIVE ORGANISMAL BIOLOGY, P219; Christie MR, 2012, P NATL ACAD SCI USA, V109, P238, DOI 10.1073/pnas.1111073109; Clark TD, 2013, J EXP BIOL, V216, P2771, DOI 10.1242/jeb.084251; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Fisher DO, 2001, ECOLOGY, V82, P3531, DOI 10.1890/0012-9658(2001)082[3531:TEBOLH]2.0.CO;2; Fredensborg BL, 2006, J ANIM ECOL, V75, P44, DOI 10.1111/j.1365-2656.2005.01021.x; GARLAND T, 1991, ANNU REV ECOL SYST, V22, P193, DOI 10.1146/annurev.es.22.110191.001205; Gingerich PD, 2001, GENETICA, V112, P127, DOI 10.1023/A:1013311015886; Glazier DS, 2015, BIOL REV, V90, P377, DOI 10.1111/brv.12115; GOTTHARD K, 1995, OIKOS, V74, P3, DOI 10.2307/3545669; HARVEY PH, 1991, AM NAT, V137, P556, DOI 10.1086/285183; Hendry AP, 2008, MOL ECOL, V17, P20, DOI 10.1111/j.1365-294X.2007.03428.x; Hendry AP, 1999, EVOLUTION, V53, P1637, DOI 10.1111/j.1558-5646.1999.tb04550.x; Hulbert AJ, 2004, PHYSIOL BIOCHEM ZOOL, V77, P869, DOI 10.1086/422768; Killen SS, 2016, AM NAT, V187, P592, DOI 10.1086/685893; Lovegrove BG, 2009, J COMP PHYSIOL B, V179, P391, DOI 10.1007/s00360-008-0322-4; Lovegrove BG, 2003, J COMP PHYSIOL B, V173, P87, DOI 10.1007/s00360-002-0309-5; Monaghan P, 2006, TRENDS ECOL EVOL, V21, P47, DOI 10.1016/j.tree.2005.11.007; Moore MP, 2016, ECOL LETT, V19, P435, DOI 10.1111/ele.12576; Mueller P, 2001, P NATL ACAD SCI USA, V98, P12550, DOI 10.1073/pnas.221456698; Nespolo RF, 2005, EVOLUTION, V59, P1829; Nespolo RF, 2017, AM NAT, V189, P13, DOI 10.1086/689598; PEARL R, 1928, RATE LIVING BEING AC; Piersma T, 2003, TRENDS ECOL EVOL, V18, P228, DOI 10.1016/S0169-5347(03)00036-3; Pires MN, 2010, BIOL J LINN SOC, V99, P784, DOI 10.1111/j.1095-8312.2010.01391.x; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Reynolds John D., 2001, Conservation Biology Series (Cambridge), V6, P147; Rezende EL, 2004, EVOLUTION, V58, P1361; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; REZNICK DN, 1990, J EVOLUTION BIOL, V3, P185, DOI 10.1046/j.1420-9101.1990.3030185.x; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Ricklefs RE, 2000, CONDOR, V102, P9, DOI 10.1650/0010-5422(2000)102[0009:DDEOAT]2.0.CO;2; Roff D. A., 2002, LIFE HIST EVOLUTION; Ronning B, 2007, J EVOLUTION BIOL, V20, P1815, DOI 10.1111/j.1420-9101.2007.01384.x; ROSENTHAL HL, 1952, BIOL BULL, V102, P30, DOI 10.2307/1538621; Sadowska ET, 2009, EVOLUTION, V63, P1530, DOI 10.1111/j.1558-5646.2009.00641.x; Sadowska ET, 2005, EVOLUTION, V59, P672; Stearns S., 1992, EVOLUTION LIFE HIST; TREVELYAN R, 1990, FUNCT ECOL, V4, P135, DOI 10.2307/2389332; Van Voorhies WA, 1999, P NATL ACAD SCI USA, V96, P11399, DOI 10.1073/pnas.96.20.11399; White CR, 2004, PHYSIOL BIOCHEM ZOOL, V77, P929, DOI 10.1086/425186; White CR, 2013, J COMP PHYSIOL B, V183, P1, DOI 10.1007/s00360-012-0676-5; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P9340, DOI 10.1073/pnas.0702212104; Willing EM, 2010, MOL ECOL, V19, P968, DOI 10.1111/j.1365-294X.2010.04528.x; Wone B, 2009, P R SOC B, V276, P3695, DOI 10.1098/rspb.2009.0980; Zub K, 2012, MOL ECOL, V21, P1283, DOI 10.1111/j.1365-294X.2011.05436.x 66 0 0 19 38 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 2041-1723 NAT COMMUN Nat. Commun. JAN 2 2018 9 14 10.1038/s41467-017-02514-z 6 Multidisciplinary Sciences Science & Technology - Other Topics FR8DZ WOS:000419306000005 29295982 DOAJ Gold, Green Published 2018-11-22 J Bergqvist, G; Paulson, S; Elmhagen, B Bergqvist, Goran; Paulson, Sam; Elmhagen, Bodil Effects of female body mass and climate on reproduction in northern wild boar WILDLIFE BIOLOGY English Article SUS-SCROFA; LITTER SIZE; CROP DAMAGE; POPULATIONS; PARAMETERS; SURVIVAL; GERMANY; EUROPE; AREA Mammalian life history strategies depend on climate conditions. Hence, reproductive parameters may vary regionally, and knowledge on such patterns are important for sustainable management. Wild boar research has been biased towards south and central Europe. Here we investigate the effects of mother's carcass mass, season and climate (summer temperature and precipitation as well as January temperature) on pregnancy rate and litter size in 601 free-ranging female wild boar from hemiboreal Sweden, close to the north border of wild boar distribution range in Europe. Pregnancy rate was on average 33.4 +/- 1.94% (mean +/- SE), whereas average litter size of pregnant females was 4.7 +/- 0.12. Pregnancy rate was highest during the seasonal reproduction peak in winter and spring, and both pregnancy rate and litter size increased significantly with increasing female body mass. The probability of a female being pregnant exceeded 50% when carcass mass exceeded 58 kg, equivalent to a live mass of 113 kg, and litter size increased by one for each 16 kg increase in female carcass mass. We found no significant effects of temporal variations in climate, and suggest that such variations were not sufficiently large to affect wild boar reproduction. Alternatively, the reproductive strategy of wild boar may be adjusted to prevailing regional climate conditions. In that case, other life history traits, such as mortality, may be more sensitive to short-term climate fluctuations. Wild boar management needs to take temporal variations in reproduction, as well as in resource availability, into consideration when deciding on prudent management actions. [Bergqvist, Goran] Swedish Assoc Hunting & Wildlife Management, SE-61191 Nykoping, Sweden; [Bergqvist, Goran] Swedish Univ Agr Sci, Southern Swedish Forest Res Ctr, POB 49, SE-23053 Alnarp, Sweden; [Elmhagen, Bodil] Stockholm Univ, Dept Zool, Stockholm, Sweden Bergqvist, G (reprint author), Swedish Assoc Hunting & Wildlife Management, SE-61191 Nykoping, Sweden.; Bergqvist, G (reprint author), Swedish Univ Agr Sci, Southern Swedish Forest Res Ctr, POB 49, SE-23053 Alnarp, Sweden. goran.bergqvist@jagareforbundet.se Elmhagen, Bodil/0000-0001-5496-4727 Swedish Association for Hunting and Wildlife Management Financing was provided by the Swedish Association for Hunting and Wildlife Management. BRONSON FH, 1985, BIOL REPROD, V32, P1, DOI 10.1095/biolreprod32.1.1; Bywater KA, 2010, MAMMAL REV, V40, P212, DOI 10.1111/j.1365-2907.2010.00160.x; Cai J, 2008, EUR J WILDLIFE RES, V54, P723, DOI 10.1007/s10344-008-0203-x; Cellina S., 2008, THESIS; Elmhagen B, 2015, AMBIO, V44, P39, DOI 10.1007/s13280-014-0606-8; Fernandez-Llario P, 1998, ACTA THERIOL, V43, P439, DOI 10.4098/AT.arch.98-54; Fonseca C, 2011, EUR J WILDLIFE RES, V57, P363, DOI 10.1007/s10344-010-0441-6; Frauendorf M, 2016, SCI TOTAL ENVIRON, V541, P877, DOI 10.1016/j.scitotenv.2015.09.128; Gamelon M, 2013, J ANIM ECOL, V82, P937, DOI 10.1111/1365-2656.12073; Gethoffer F, 2007, EUR J WILDLIFE RES, V53, P287, DOI 10.1007/s10344-007-0097-z; Grosbois V, 2008, BIOL REV, V83, P357, DOI 10.1111/j.1469-185X.2008.00047.x; Holland EP, 2009, ECOL MODEL, V220, P1203, DOI 10.1016/j.ecolmodel.2009.02.013; Jalas J., 1968, ANN BOT FENN, V3, P169; Jonsson L., 1986, Striae, V24, P125; Jordbruksverket, 2012, VAXTSK 2012 SOD OST, V12, P7; Keuling O, 2013, EUR J WILDLIFE RES, V59, P805, DOI 10.1007/s10344-013-0733-8; Kindberg J, 2008, ARSRAPPORT VILTOVERV, P2; Liberg Olof, 2010, P37; Malmsten A, 2017, ACTA VET SCAND, V59, DOI 10.1186/s13028-017-0321-0; Malmsten A, 2017, REPROD DOMEST ANIM, V52, P570, DOI 10.1111/rda.12947; Malmsten A, 2016, ACTA VET SCAND, V58, DOI 10.1186/s13028-016-0236-1; Massei G, 2015, PEST MANAG SCI, V71, P492, DOI 10.1002/ps.3965; Melis C, 2006, J BIOGEOGR, V33, P803, DOI 10.1111/j.1365-2699.2006.01434.x; Nahlik A, 2003, WILDLIFE BIOL, V9, P37; Nussey DH, 2007, J EVOLUTION BIOL, V20, P831, DOI 10.1111/j.1420-9101.2007.01300.x; Oja R, 2014, ACTA THERIOL, V59, P553, DOI 10.1007/s13364-014-0190-0; Roic B, 2005, J WILDLIFE DIS, V41, P796; Rosell C, 2012, ANIM BIODIV CONSERV, V35, P209; Schley L, 2003, MAMMAL REV, V33, P43, DOI 10.1046/j.1365-2907.2003.00010.x; Schley L, 2008, EUR J WILDLIFE RES, V54, P589, DOI 10.1007/s10344-008-0183-x; Servanty S, 2009, J ANIM ECOL, V78, P1278, DOI 10.1111/j.1365-2656.2009.01579.x; Swedish Meteorological and Hydrological Institute, 2013, TEMP PREC DAT CLIM S; The Swedish Forest Agency, 2012, SWED STAT YB FOR; Tokolyi J, 2014, BIOL J LINN SOC, V111, P719, DOI 10.1111/bij.12238; Vetter SG, 2016, ANIM BEHAV, V115, P193, DOI 10.1016/j.anbehav.2016.03.026; Vetter SG, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0132178 36 0 0 0 0 WILDLIFE BIOLOGY RONDE C/O JAN BERTELSEN, GRENAAVEJ 14, KALO, DK-8410 RONDE, DENMARK 0909-6396 1903-220X WILDLIFE BIOL Wildlife Biol. 2018 wlb.00421 10.2981/wlb.00421 6 Ecology; Zoology Environmental Sciences & Ecology; Zoology GW3TT WOS:000446831600001 DOAJ Gold 2018-11-22 J Woog, F; Ramanitra, N; Rasamison, AS; Tahiry, RL Woog, Friederike; Ramanitra, Narisoa; Rasamison, Andrianarivelosoa Solohery; Tahiry, Rasolondraibe Lovahasina Longevity in some Malagasy rainforest passerines OSTRICH English Article age; diet; longevity; Madagascar; mass; songbirds; taxonomic group SLOW PACE; BIRDS; LIFE; SENESCENCE; SIZE Data on longevity is a prerequisite to understand the life-history strategies of a species. For Malagasy songbirds no information has been previously published. Therefore, we studied their longevity in a capture-recapture effort in a rainforest in eastern Madagascar (Maromizaha, Andasibe) between 2003 and 2016. We present first data on the longevity of 23 species of Malagasy songbirds. A female Dark Newtonia Newtonia amphichroa (Vangidae) and a Grey-crowned Greenbul Bernieria cinereiceps (Bernieridae) attained an age of at least 12 years, followed by two male Madagascar Brush Warblers Nesillas typica (Acrocephalidae), female Madagascar Bulbul Hypsipetes madagascariensis (Pycnonotidae) and Madagascar Drongo Dicrurus forficatus (Dicruridae) that attained at least 10 years. There was much variation within some taxonomic groups, longevity did not increase with the mass of a bird species and most insectivorous birds lived longer than granivorous ones. [Woog, Friederike] Staatliches Museum Nat Kunde Stuttgart, Stuttgart, Germany; [Ramanitra, Narisoa] Univ Antananarivo, Ecole Normale Super, Ampefiloha, Madagascar; [Rasamison, Andrianarivelosoa Solohery; Tahiry, Rasolondraibe Lovahasina] Univ Antananarivo, Fac Sci, Ment Zool & Biodiversite Anim, Antananarivo, Madagascar Woog, F (reprint author), Staatliches Museum Nat Kunde Stuttgart, Stuttgart, Germany. friederike.woog@smns-bw.de Gesellschaft zur Forderung des Naturkundemuseums Stuttgart We are indebted to the Malagasy Government for permission to carry out this research. Our appreciation goes to the "NAT"-foundation and to GERP for inviting us to work at Maromizaha. We thank our Malagasy colleagues at the University of Antananarivo, ANGAP, the Ministere de l'Environnement, des Eaux et Forets and all the people that helped us in the field. The "Gesellschaft zur Forderung des Naturkundemuseums Stuttgart" funded part of this research. All observations, field work and sampling complied with the Malagasy regulations, and the ringing standard of the British Trust for Ornithology was followed (Redfern and Clark 2001). We sincerely thank Dieter Oschadleus and two anonymous reviewers for improving the manuscript. Backhurst G.C., 1977, Journal of the East Afric nat Hist Soc and natn Mus, VNo. 163, P1; Baker L, 2001, AFRING NEWS, V30, P44; Beauchamp G, 2010, BIOL LETTERS, V6, P42, DOI 10.1098/rsbl.2009.0691; Brown L, 1982, BIRDS AFRICA, V1; de Magalhaes JP, 2009, J EVOLUTION BIOL, V22, P1770, DOI 10.1111/j.1420-9101.2009.01783.x; de Swardt Dawid H., 2004, Afring News, V33, P38; de Swardt Dawid H., 2003, Afring News, V32, P11; Dowsett RJ., 1985, B ZAMBIAN ORNITHOLOG, V9, P30; Eck S., 2011, MEASURING BIRDS VOGE; Farner DS., 1955, RECENT STUDIES AVIAN, P397; Fry CH, 2004, BIRDS AFRICA, V7; Fry CH, 1988, BIRDS AFRICA, V3; Fry CH, 2000, BIRDS AFRICA, V6; Gurney J. H., 1899, Ibis, P19; Hanmer D.B., 2001, Afring News, V30, P3; Hanmer D.B., 1989, Nyala, V14, P21; Hanmer Dale B., 1997, Honeyguide, V43, P220; Healy K, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0298; Holmes DJ, 2001, EXP GERONTOL, V36, P869, DOI 10.1016/S0531-5565(00)00247-3; Jullien M, 2000, ECOLOGY, V81, P3416, DOI 10.2307/177504; Keith S, 1992, BIRDS AFRICA, V4; Lane S., 1995, Safring News, V24, P51; Langrand O., 1990, GUIDE BIRDS MADAGASC; LINDSTEDT SL, 1976, CONDOR, V78, P91, DOI 10.2307/1366920; Moller AP, 2007, J EVOLUTION BIOL, V20, P750, DOI 10.1111/j.1420-9101.2006.01236.x; Moller AP, 2006, J EVOLUTION BIOL, V19, P682, DOI 10.1111/j.1420-9101.2005.01065.x; Morris P, 1998, BIRDS MADAGASCAR PHO; Newton I., 2010, MIGRATION ECOLOGY BI; Oschadleus HD, 2013, OSTRICH, V84, P89, DOI 10.2989/00306525.2013.775190; Oschadleus HD, 2016, BIODIVERSITY OBSERVA, V7, P1; Partridge L, 2002, CURR BIOL, V12, pR544, DOI 10.1016/S0960-9822(02)01048-5; Peach WJ, 2001, OIKOS, V93, P235, DOI 10.1034/j.1600-0706.2001.930207.x; PRINZINGER R, 1993, COMP BIOCHEM PHYS A, V105, P609, DOI 10.1016/0300-9629(93)90260-B; Ratsimbazafy J, 2014, HOUSTON ZOO ANN REPO; Redfern PF, 2001, RINGERS MANUAL; Ricklefs RE, 2010, P NATL ACAD SCI USA, V107, P10314, DOI 10.1073/pnas.1005862107; Roberts P.J., 1987, Safring News, V16, P16; Ryan B. F., 2001, MINITAB HDB; Safford R., 2013, BIRDS AFRICA, VVIII; Sinclair I, 1998, BIRDS INDIAN OCEAN I; Symes Craig T., 2001, Afring News, V30, P35; Urban E.K., 1975, Bulletin Br Orn Club, V95, P96; Urban EK, 1997, BIRDS AFRICA, V5; Urban EK, 1986, BIRDS AFRICA, V2; Wasser DE, 2010, J ZOOL, V280, P103, DOI 10.1111/j.1469-7998.2009.00671.x; Wiersma P, 2012, J EXP BIOL, V215, P1662, DOI 10.1242/jeb.065144; Wikelski M, 2003, P ROY SOC B-BIOL SCI, V270, P2383, DOI 10.1098/rspb.2003.2500; Woog F, 2006, J ORNITHOL, V147, P275; Woog F, 2006, P GERM MAL RES COOP, P203 49 0 0 1 1 NATL INQUIRY SERVICES CENTRE PTY LTD GRAHAMSTOWN 19 WORCESTER STREET, PO BOX 377, GRAHAMSTOWN 6140, SOUTH AFRICA 0030-6525 1727-947X OSTRICH Ostrich 2018 89 3 281 286 10.2989/00306525.2018.1502693 6 Ornithology Zoology GS8NX WOS:000443969800010 2018-11-22 J Peres, PA; Terossi, M; Iguchi, J; Mantelatto, FL Peres, Pedro A.; Terossi, Mariana; Iguchi, Jully; Mantelatto, Fernando L. Can reproductive traits help to explain the coexistence of mud crabs Panopeus (Decapoda: Panopeidae)? A case of two sympatric species inhabiting an impacted mangrove area of Southern Brazil INVERTEBRATE REPRODUCTION & DEVELOPMENT English Article Panopeus americanus; Panopeus occidentalis; fecundity; life history strategies; sympatric species PACIFIC COSTA-RICA; AMERICANUS BRACHYURA; K-SELECTION; R-SELECTION; STRATEGIES; CRUSTACEA; ATLANTIC; ECOLOGY; SHRIMP; INVERTEBRATES Coexistence among species is commonly related to niche divergence. However, congenerics usually are very similar in their microhabitat selection and food consumption. Thus, divergent life history strategies may represent the mechanism that allows sympatry in related species. Here, we describe and compare reproductive features in two sympatric mud crabs Panopeus americanus and P. occidentalis in an impacted mangrove area in Southern Brazil. As these species are ecologically similar, we hypothesize that these species diverge in their reproductive traits, which could explain their coexistence. Crabs were collected every two months from September 2004 to July 2006. Reproductive features such as number and size of ovigerous females, breeding season, fecundity, reproductive output, and embryo volume were assessed. Panopeus americanus produced embryos during the entire sampled period, while P. occidentalis produced only between September and March. Panopeus americanus produced more embryos considering the size of the species, had significantly lower embryo volume, and higher reproductive output than P. occidentalis. These data permit to classify P. americanus as an r-strategist and P. occidentalis as a K-strategist regarding their reproductive traits. In conclusion, our results support the hypothesis that divergent reproductive features may allow coexistence of these mud crabs. [Peres, Pedro A.; Terossi, Mariana; Iguchi, Jully; Mantelatto, Fernando L.] Univ Sao Paulo, Dept Biol Sci & Letters Ribeirao Preto FFCLRP, Fac Philosophy, Lab Bioecol & Crustacean Systemat LBSC,Postgrad P, Ribeirao Preto, Brazil; [Terossi, Mariana] Univ Fed Rio Grande do Sul, Inst Biociencias, Dept Zool, Lab Carcinol, Porto Alegre, RS, Brazil Mantelatto, FL (reprint author), Univ Sao Paulo, Dept Biol Sci & Letters Ribeirao Preto FFCLRP, Fac Philosophy, Lab Bioecol & Crustacean Systemat LBSC,Postgrad P, Ribeirao Preto, Brazil. flmantel@usp.br Mantelatto, Fernando/0000-0002-8497-187X Fundacao de Amparo a Pesquisa do Estado de Sao Paulo - FAPESP [2002/08178-9, 2007/54358-2]; Scientific Initiation from Conselho Nacional de Desenvolvimento Cientifico e Tecnologico - CNPq [116692/2007-3]; Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior - CAPES; FAPESP [Ciencias do Mar II - 2005/2014 - 23038.004308/201414, 2017/12376-6]; CAPES; CNPq [PQ 304968/2014-5] This work was supported by the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo - FAPESP [grant number 2002/08178-9 and 2007/54358-2], Scientific Initiation from Conselho Nacional de Desenvolvimento Cientifico e Tecnologico - CNPq [grant number 116692/2007-3 to JMSI], PAP is grateful to Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior - CAPES and FAPESP for PhD scholarships [grant number Ciencias do Mar II - 2005/2014 - 23038.004308/201414 and 2017/12376-6, respectively], and MT to CAPES for MSc scholarship and FLM to CNPq for research scholarship [grant number PQ 304968/2014-5]. Angelini R, 2018, OCEAN COAST MANAGE, V164, P92, DOI 10.1016/j.ocecoaman.2018.02.007; BROWN KM, 1992, J EXP MAR BIOL ECOL, V160, P67, DOI 10.1016/0022-0981(92)90111-M; Castiglioni DDS, 2007, J NAT HIST, V41, P1571, DOI 10.1080/00222930701464604; CLARKE A, 1987, MAR ECOL PROG SER, V38, P89, DOI 10.3354/meps038089; Colpo KD, 2011, BIODIVERS CONSERV, V20, P3239, DOI 10.1007/s10531-011-0125-x; COREY S, 1991, CRUSTACEANA, V60, P270, DOI 10.1163/156854091X00056; Corte GN, 2017, PEERJ, V5, DOI 10.7717/peerj.3360; Echeverria-Saenz S, 2011, J CRUSTACEAN BIOL, V31, P434, DOI 10.1651/10-3400.1; Garcia-Guerrero M, 2006, BELG J ZOOL, V136, P249; GIESE AC, 1959, ANNU REV PHYSIOL, V21, P547, DOI 10.1146/annurev.ph.21.030159.002555; GUIDA VG, 1976, J EXP MAR BIOL ECOL, V25, P109, DOI 10.1016/0022-0981(76)90012-5; HINES AH, 1991, CAN J FISH AQUAT SCI, V48, P267, DOI 10.1139/f91-037; HINES AH, 1982, MAR BIOL, V69, P309, DOI 10.1007/BF00397496; Ingle R.W., 1985, Bulletin of the British Museum (Natural History) Zoology, V48, P233; Keunecke KA, 2012, J MAR BIOL ASSOC UK, V92, P343, DOI 10.1017/S0025315411000397; Kneitel JM, 2004, ECOL LETT, V7, P69, DOI 10.1046/j.1461-0248.2003.00551.x; Kuris A.M., 1991, Crustacean Issues, V7, P117; Losos JB, 2008, ECOL LETT, V11, P995, DOI 10.1111/j.1461-0248.2008.01229.x; MCDONALD J, 1982, MAR ECOL PROG SER, V8, P173, DOI 10.3354/meps008173; Melo GAS, 1996, MANUAL IDENTIFICACAO; Melo GAS, 2008, NAUPLIUS, V16, P1; MENGE BA, 1975, MAR BIOL, V31, P87, DOI 10.1007/BF00390651; Milke LM, 2001, INVERTEBR BIOL, V120, P67; Nagelkerken I, 2000, ESTUAR COAST SHELF S, V51, P31, DOI 10.1006/ecss.2000.0617; NEGREIROS-FRANSOZO M L, 1986, Revista Brasileira de Biologia, V46, P173; Nissling A, 2010, J SEA RES, V64, P190, DOI 10.1016/j.seares.2010.02.001; Paerl HW, 1999, MAR ECOL PROG SER, V176, P205, DOI 10.3354/meps176205; PARRY GD, 1981, OECOLOGIA, V48, P260, DOI 10.1007/BF00347974; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Rebolledo AP, 2016, MAR ECOL-EVOL PERSP, V37, P1210, DOI 10.1111/maec.12300; Rodriguez A, 1997, MAR ECOL PROG SER, V149, P133, DOI 10.3354/meps149133; Rodriguez EM, 2000, ECOTOX ENVIRON SAFE, V46, P202, DOI 10.1006/eesa.1999.1896; Sastry A.N., 1983, P179; Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089; Snedaker SC, 1993, IMPACT MANGROVES CLI, P282; SPIGHT TM, 1976, OECOLOGIA, V24, P283, DOI 10.1007/BF00381135; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Terossi M, 2010, J CRUSTACEAN BIOL, V30, P571, DOI 10.1651/09-3233.1; Thiel M, 2000, CRUSTACEAN ISS, V12, P211; TODD CD, 1981, MAR ECOL PROG SER, V4, P75, DOI 10.3354/meps004075; TURRA ALEXANDER, 2017, Ambient. soc., V20, P155, DOI 10.1590/1809-4422asoc166v2022017; Vergamini FG, 2008, J NAT HIST, V42, P1581, DOI 10.1080/00222930802109157; Vergamini FG, 2008, INVERTEBR REPROD DEV, V51, P1, DOI 10.1080/07924259.2008.9652251; WEHRTMANN IS, 1990, REV BIOL TROP, V38, P327; Amaral ACZ, 2010, BIOTA NEOTROP, V10, P219, DOI 10.1590/S1676-06032010000100022; Zampieri BD, 2016, MICROB ECOL, V72, P582, DOI 10.1007/s00248-016-0821-x; Zapata V, 2001, ENVIRON TOXICOL CHEM, V20, P1579, DOI 10.1897/1551-5028(2001)020<1579:EOCOHA>2.0.CO;2 47 0 0 2 2 TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND 0792-4259 2157-0272 INVERTEBR REPROD DEV Invertebr. Reprod. Dev. 2018 62 3 154 161 10.1080/07924259.2018.1465482 8 Reproductive Biology; Zoology Reproductive Biology; Zoology GS7MX WOS:000443887000004 2018-11-22 J Gwinn, DC; Ingram, BA Gwinn, Daniel C.; Ingram, Brett A. Optimising fishery characteristics through control of an invasive species: strategies for redfin perch control in Lake Purrumbete, Australia MARINE AND FRESHWATER RESEARCH English Article European perch; exotic species; overcompensation; recreational fisheries management LIFE-HISTORY STRATEGIES; FLUVIATILIS L; NONNATIVE FISHES; STOCKING DENSITY; LARGEMOUTH BASS; EURASIAN PERCH; POPULATION; GROWTH; MORTALITY; SIZE Invasive fish species can present difficult management problems, particularly when the species has recreational value. One such case is redfin perch in Lake Purrumbete, Australia, which have recreational value but have become invasive in the lake. In this study we evaluated removal strategies for redfin perch in Lake Purrumbete with the aim of improving the quality of the recreational fishery. We evaluated removal scenarios for redfin perch with a population model and conducted a sensitivity analysis to determine the robustness of our general results. The results suggest that removal scenarios that direct exploitation, on an annual time scale, at fish 150-mm total length, with high levels of exploitation, will result in the greatest reduction in small undesirable fish and the greatest increase in large desirable fish in the lake. This was consistent across most assumptions about life-history characteristics, density-dependent processes and population dynamics rates, suggesting that this management strategy is robust to most relevant biological uncertainties. Furthermore, exploiting redfin perch on an annual time scale would result in the lowest annual variation in the population because of disruption of the age and size structure. These results can help managers choose strategies to manipulate the fishery of Lake Purrumbete to achieve more desirable characteristics. [Gwinn, Daniel C.] Biometr Res, 3 Hulbert St, South Fremantle, WA 6162, Australia; [Gwinn, Daniel C.] Univ Western Australia, Sch Biol Sci, M004,35 Stirling Highway, Perth, WA 6009, Australia; [Ingram, Brett A.] Victorian Fisheries Author, Private Bag 20, Alexandra, Vic 3714, Australia Gwinn, DC (reprint author), Biometr Res, 3 Hulbert St, South Fremantle, WA 6162, Australia.; Gwinn, DC (reprint author), Univ Western Australia, Sch Biol Sci, M004,35 Stirling Highway, Perth, WA 6009, Australia. dgwinnbr@gmail.com Lake Purrumbete Angling Club (LPAC) Inc.; Victorian Government The authors acknowledge the funding that supported this work granted by the Lake Purrumbete Angling Club (LPAC) Inc. using funds from the Victorian Government to improve recreational fishing in Victoria through revenue from Recreational Fishing Licenses. The authors thank Rob Hems (LPAC) for his support of the work and Simon Conron (Victorian Fisheries Authority) for comments that improved this paper. The authors extend their thanks to three anonymous reviewers whose comments and suggestions greatly improved this work. Ahrens RNM, 2012, FISH FISH, V13, P41, DOI 10.1111/j.1467-2979.2011.00432.x; Allen M. S., 2013, BIOL MANAGEMENT INLA; Allen MS, 2011, T AM FISH SOC, V140, P1093, DOI 10.1080/00028487.2011.599259; [Anonymous], 2015, CAMPERDOWN CHRO 0921; BAGENAL TB, 1982, HYDROBIOLOGIA, V86, P201, DOI 10.1007/BF00005811; Baras E, 2003, AQUACULTURE, V219, P241, DOI 10.1016/S0044-8486(02)00349-6; Baxter A., 1989, 27 DEP CONS FOR LAND; Baxter A. F., 1985, A RYLAH I ENV RES TE, V16; Beverton RJH, 1957, DYNAMICS EXPLOITED F; Bonvechio TF, 2011, AM FISH S S, V77, P395; Britton JR, 2011, FISH FISH, V12, P256, DOI 10.1111/j.1467-2979.2010.00390.x; BUIJSE AD, 1992, FISH RES, V13, P95, DOI 10.1016/0165-7836(92)90021-K; Catalano MJ, 2011, N AM J FISH MANAGE, V31, P1153, DOI 10.1080/02755947.2011.646457; Coggins LG, 2007, FISH FISH, V8, P196, DOI 10.1111/j.1467-2679.2007.00247.x; Coggins LG, 2011, T AM FISH SOC, V140, P456, DOI 10.1080/00028487.2011.572009; CRAIG JF, 1983, J FISH BIOL, V22, P713, DOI 10.1111/j.1095-8649.1983.tb04231.x; CRAIG JF, 1978, FRESHWATER BIOL, V8, P59, DOI 10.1111/j.1365-2427.1978.tb01426.x; Department of Primary Industries, 2008, FISH VICT MAN REP SE, V59; Eddy S., 1998, 62 DEP NAT RES ENV F; Finlayson BJ, 2000, ROTENONE USE FISHERI; Garcia-Berthou E, 2007, J FISH BIOL, V71, P33, DOI 10.1111/j.1095-8649.2007.01668.x; GOLDSPINK CR, 1979, J FISH BIOL, V14, P489, DOI 10.1111/j.1095-8649.1979.tb03547.x; Gould WR, 1997, CAN J FISH AQUAT SCI, V54, P890, DOI 10.1139/cjfas-54-4-890; Gwinn DC, 2015, FISH FISH, V16, P259, DOI 10.1111/faf.12053; Gwinn DC, 2010, T AM FISH SOC, V139, P626, DOI 10.1577/T08-089.1; Hall K., 2010, 35 DEP PRIM IND FISH; Heibo E, 2005, ECOLOGY, V86, P3377, DOI 10.1890/04-1620; Hoddle MS, 2004, CONSERV BIOL, V18, P38, DOI 10.1111/j.1523-1739.2004.00249.x; HOENIG JM, 1983, FISH B-NOAA, V81, P898; Hunt TL, 2014, CAN J FISH AQUAT SCI, V71, P1554, DOI 10.1139/cjfas-2013-0517; Ingram B. A., 2016, OPTIONS MANAGING RED; JELLYMAN DJ, 1980, NEW ZEAL J MAR FRESH, V14, P391, DOI 10.1080/00288330.1980.9515881; Jennings S, 1998, P ROY SOC B-BIOL SCI, V265, P333, DOI 10.1098/rspb.1998.0300; Jensen AL, 1996, CAN J FISH AQUAT SCI, V53, P820, DOI 10.1139/cjfas-53-4-820; Jiang MY, 2018, J WORLD AQUACULT SOC, V49, P315, DOI 10.1111/jwas.12492; Karatayev VA, 2015, ECOSPHERE, V6, DOI 10.1890/ES14-00513.1; King JR, 2003, FISHERIES MANAG ECOL, V10, P249, DOI 10.1046/j.1365-2400.2003.00359.x; Kopf RK, 2017, NAT ECOL EVOL, V1, DOI 10.1038/s41559-017-0172; LECREN ED, 1958, J ANIM ECOL, V27, P287; Linlokken A, 1996, ANN ZOOL FENN, V33, P427; Lorenzen K, 2002, P ROY SOC B-BIOL SCI, V269, P49, DOI 10.1098/rspb.2001.1853; Lorenzen K, 2000, CAN J FISH AQUAT SCI, V57, P2374, DOI 10.1139/cjfas-57-12-2374; Lorenzen K, 2016, FISH RES, V180, P4, DOI 10.1016/j.fishres.2016.01.006; Marchetti MP, 2004, FRESHWATER BIOL, V49, P646, DOI 10.1111/j.1365-2427.2004.01202.x; McColl KA, 2017, J FISH DIS, V40, P1141, DOI 10.1111/jfd.12591; Messing RH, 2006, FRONT ECOL ENVIRON, V4, P132, DOI 10.1890/1540-9295(2006)004[0132:BCOISS]2.0.CO;2; Morgan DL, 2002, MAR FRESHWATER RES, V53, P1211, DOI 10.1071/MF02047; Myers RA, 1999, CAN J FISH AQUAT SCI, V56, P2404, DOI 10.1139/cjfas-56-12-2404; Ohlberger J, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0938; Ohlberger J, 2011, ECOLOGY, V92, P2175, DOI 10.1890/11-0410.1; Paxton CGM, 2004, J FISH BIOL, V65, P1622, DOI 10.1111/j.1095-8649.2004.00573.x; PEN LJ, 1992, AQUAT CONSERV, V2, P243, DOI 10.1002/aqc.3270020304; Pine WE, 2003, FISHERIES, V28, P10, DOI 10.1577/1548-8446(2003)28[10:AROTMF]2.0.CO;2; Pollock K. H., 1998, ENCY STAT SCI UPDATE, P109; Pomorin K, 2004, FISHERIES VICTORIA R, V05; POPOVA OA, 1977, J FISH RES BOARD CAN, V34, P1559, DOI 10.1139/f77-219; Ribeiro F, 2008, BIOL INVASIONS, V10, P89, DOI 10.1007/s10530-007-9112-2; Sabetian A, 2015, NEW ZEAL J MAR FRESH, V49, P119, DOI 10.1080/00288330.2014.958089; Schill DJ, 2017, N AM J FISH MANAGE, V37, P1054, DOI 10.1080/02755947.2017.1342720; Schroder A, 2014, TRENDS ECOL EVOL, V29, P614, DOI 10.1016/j.tree.2014.08.006; von Bertalanffy L., 1938, HUM BIOL, V10, P181; Walters C. J., 2004, FISHERIES ECOLOGY MA; WEATHERLEY AH, 1977, J FISH RES BOARD CAN, V34, P1464, DOI 10.1139/f77-210; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; Zipkin EF, 2008, CAN J FISH AQUAT SCI, V65, P2279, DOI 10.1139/F08-133; Zipkin EF, 2009, ECOL APPL, V19, P1585, DOI 10.1890/08-1467.1 66 0 0 3 3 CSIRO PUBLISHING CLAYTON UNIPARK, BLDG 1, LEVEL 1, 195 WELLINGTON RD, LOCKED BAG 10, CLAYTON, VIC 3168, AUSTRALIA 1323-1650 1448-6059 MAR FRESHWATER RES Mar. Freshw. Res. 2018 69 9 1333 1345 10.1071/MF17326 13 Fisheries; Limnology; Marine & Freshwater Biology; Oceanography Fisheries; Marine & Freshwater Biology; Oceanography GR2BW WOS:000442365500001 2018-11-22 J Bonier, F; Martin, PR; Small, TW; Danner, JE; Danner, RM; Nelson, WA; Moore, IT Bonier, Frances; Martin, Paul R.; Small, Thomas W.; Danner, Julie E.; Danner, Raymond M.; Nelson, William A.; Moore, Ignacio T. ENERGETIC COSTS AND STRATEGIES OF POST-JUVENAL MOLT IN AN EQUATORIAL BIRD, THE RUFOUS-COLLARED SPARROW (ZONOTRICHIA CAPENSIS) ORNITOLOGIA NEOTROPICAL English Article Energetic costs; Feather growth; Latitude; Post-juvenal molt; Rufous-collared Sparrow BASAL METABOLIC-RATE; CURRENT REPRODUCTIVE EFFORT; COMMON-GARDEN EXPERIMENT; LIFE-HISTORY EVOLUTION; BODY CONDITION; TRADE-OFFS; DIFFERENT LATITUDES; SLOW PACE; POPULATION; SURVIVAL Many tropical birds have slow-paced life history strategies, exhibiting lower metabolic rates, reduced annual investment in reproduction, and longer lifespans relative to birds at higher latitudes. Life history strategies have been relatively well documented in adult individuals in the tropics, but we know comparatively little about the immature life history stage. Here we examine strategies of feather replacement (molt) and fattening in immature Rufous-collared Sparrows (Zonotrichia capensis) in a high elevation equatorial population, following a parallel, previous study on an arctic congener, the White-crowned Sparrow (Zonotrichia leucophrys gambelii). In captivity, Rufouscollared Sparrows incurred energetic costs of experimentally induced feather growth, similar to those previously described for Zonotrichia at higher latitudes. In contrast, free-ranging immature Rufous-collared Sparrows in natural molt had fat stores that declined over time, opposite to patterns evident in arctic Zonotrichia that fatten before migration. Equatorial birds in good condition molted more heavily (controlling for fat stores), suggesting that body condition limits the intensity of molt. Heavily molting equatorial sparrows also had lower amounts of fat (controlling for body condition), suggesting a trade-off between allocation of resources to fat stores versus feather growth. Molt progressed slowly in Rufous-collared Sparrows relative to previously described patterns in their arctic congener, which is concordant with a slower pace-of-life syndrome in tropical, as compared with high latitude, birds. [Bonier, Frances; Martin, Paul R.; Nelson, William A.] Queens Univ, Dept Biol, Kingston, ON K7L 3N6, Canada; [Bonier, Frances; Small, Thomas W.; Danner, Julie E.; Danner, Raymond M.; Moore, Ignacio T.] Virginia Tech, Dept Biol Sci, Blacksburg, VA 24061 USA; [Small, Thomas W.] Univ Memphis, Dept Biol, Memphis, TN 38152 USA; [Danner, Raymond M.] Univ North Carolina Wilmington, Wilmington, NC 28403 USA Bonier, F (reprint author), Queens Univ, Dept Biol, Kingston, ON K7L 3N6, Canada.; Bonier, F (reprint author), Virginia Tech, Dept Biol Sci, Blacksburg, VA 24061 USA. bonierf@queensu.ca Virginia Tech Advance postdoctoral fellowship; National Science Foundation (NSF) International Research Fellowship [OISE-0700651, OISE-0602084]; Natural Sciences and Engineering Research Council of Canada; Baillie Family Endowment; NSF [IOS-0545735] We would like to thank Termas de Papallacta and Fundacion Terra for accommodations and access to field sites in Ecuador, and Sievert Rohwer for providing valuable feedback on an early version of the manuscript. We acknowledge funding from a Virginia Tech Advance postdoctoral fellowship (FB), National Science Foundation (NSF) International Research Fellowship (OISE-0700651 to FB; OISE-0602084 to TWS), Natural Sciences and Engineering Research Council of Canada Discovery Grant (PRM), a Baillie Family Endowment (PRM), and NSF Grant (IOS-0545735 to ITM). Barker FK, 2015, AUK, V132, P333, DOI 10.1642/AUK-14-110.1; Bonier F, 2007, ECOLOGY, V88, P2729, DOI 10.1890/07-0696.1; CONOVER DO, 1992, J FISH BIOL, V41, P161, DOI 10.1111/j.1095-8649.1992.tb03876.x; Dawson A, 2000, P ROY SOC B-BIOL SCI, V267, P2093, DOI 10.1098/rspb.2000.1254; Faaborg J, 2010, ECOL MONOGR, V80, P3, DOI 10.1890/09-0395.1; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Green AJ, 2001, ECOLOGY, V82, P1473, DOI 10.2307/2680003; Griffiths R, 1998, MOL ECOL, V7, P1071, DOI 10.1046/j.1365-294x.1998.00389.x; Guallar SX, 2016, WILSON J ORNITHOL, V128, P543, DOI 10.1676/1559-4491-128.3.543; Helm B, 1999, AUK, V116, P589, DOI 10.2307/4089321; Helm B, 2009, J EXP BIOL, V212, P1259, DOI 10.1242/jeb.025411; Hemborg C, 1999, J ANIM ECOL, V68, P429, DOI 10.1046/j.1365-2656.1999.00295.x; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; Lankford TE, 2001, EVOLUTION, V55, P1873, DOI 10.1111/j.0014-3820.2001.tb00836.x; LINDSTROM A, 1993, PHYSIOL ZOOL, V66, P490, DOI 10.1086/physzool.66.4.30163805; LINDSTROM A, 1994, ANIM BEHAV, V48, P1173, DOI 10.1006/anbe.1994.1349; Lovegrove BG, 2000, AM NAT, V156, P201, DOI 10.1086/303383; MAGRATH RD, 1991, J ANIM ECOL, V60, P335, DOI 10.2307/5464; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; Merila J, 2001, J EVOLUTION BIOL, V14, P918, DOI 10.1046/j.1420-9101.2001.00353.x; Moore IT, 2005, BEHAV ECOL, V16, P755, DOI 10.1093/beheco/ari049; Moore IT, 2004, ANIM BEHAV, V67, P411, DOI 10.1016/j.anbehav.2003.03.021; MOREAU R. E., 1944, IBIS, V86, P286, DOI 10.1111/j.1474-919X.1944.tb04093.x; MURPHY ME, 1992, ORNIS SCAND, V23, P304, DOI 10.2307/3676654; Naef-Daenzer B, 2001, J ANIM ECOL, V70, P730, DOI 10.1046/j.0021-8790.2001.00533.x; Newton I, 1998, POPULATION LIMITATIO; Nilsson JA, 1996, P ROY SOC B-BIOL SCI, V263, P711, DOI 10.1098/rspb.1996.0106; Peig J, 2009, OIKOS, V118, P1883, DOI 10.1111/j.1600-0706.2009.17643.x; Pfister C, 1998, AUK, V115, P904; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Ricklefs RE, 1997, ECOL MONOGR, V67, P23, DOI 10.1890/0012-9615(1997)067[0023:CDONWP]2.0.CO;2; RICKLEFS RE, 1976, IBIS, V118, P179, DOI 10.1111/j.1474-919X.1976.tb03065.x; Ricklefs RE, 2010, AM NAT, V175, P350, DOI 10.1086/650371; Rising J, 2016, HDB BIRDS WORLD ALIV; Robinson WD, 2008, AM NAT, V171, P532, DOI 10.1086/528964; Robinson WD, 2010, AUK, V127, P253, DOI 10.1525/auk.2010.127.2.253; Rubolini D, 2002, J ZOOL, V258, P441, DOI 10.1017/S0952836902001590; Schamber JL, 2009, J AVIAN BIOL, V40, P49, DOI 10.1111/j.1600-048X.2008.04462.x; SCHIELTZ PC, 1995, COMP BIOCHEM PHYS A, V112, P265, DOI 10.1016/0300-9629(95)00097-6; Serra L, 2007, J EVOLUTION BIOL, V20, P2028, DOI 10.1111/j.1420-9101.2007.01360.x; Serra L, 2001, J AVIAN BIOL, V32, P377, DOI 10.1111/j.0908-8857.2001.320415.x; Shaver G, 2003, DAILY SOIL TEMPERATU; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Strong AM, 2000, J ANIM ECOL, V69, P883, DOI 10.1046/j.1365-2656.2000.00447.x; Versteegh MA, 2008, COMP BIOCHEM PHYS A, V150, P452, DOI 10.1016/j.cbpa.2008.05.006; WEATHERS WW, 1989, ECOL MONOGR, V59, P223, DOI 10.2307/1942600; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P9340, DOI 10.1073/pnas.0702212104; Wikelski M, 2003, P ROY SOC B-BIOL SCI, V270, P2383, DOI 10.1098/rspb.2003.2500; WINGFIELD JC, 1978, PHYSIOL ZOOL, V51, P188, DOI 10.1086/physzool.51.2.30157866; WITTER MS, 1993, PHILOS T R SOC B, V340, P73, DOI 10.1098/rstb.1993.0050; Wojciechowski MS, 2009, J EXP BIOL, V212, P3068, DOI 10.1242/jeb.033001 52 0 0 0 0 NEOTROPICAL ORNITHOLOGICAL SOC, USGS PATUXENT WILDLIFE RESEARCH CTR ATHENS UNIV GEORGIA, WARNELL SCH FOREST RESOURCES, ATHENS, GA 30602-2152 USA 1075-4377 ORNITOL NEOTROP ORNITOL. NEOTROP. 2018 29 SI S19 S28 10 Ornithology Zoology GQ6UR WOS:000441862400004 2018-11-22 J Ferreira, LJ; Lopes, LE Ferreira, Luana Jessica; Lopes, Leonardo Esteves Breeding biology of the Pale-bellied Tyrant-manakin Neopelma pallescens (Aves: Pipridae) in south-eastern Brazil JOURNAL OF NATURAL HISTORY English Article Courtship behaviour; lek; Neotropical birds; reproduction PHYLOGENETIC ANALYSIS; DISPLAY BEHAVIOR; NATURAL-HISTORY; BIRDS; EVOLUTION; CLASSIFICATION The Pale-bellied Tyrant-manakin (Neopelma pallescens) inhabits semi-deciduous and riparian forests in central-north South America. Contrary to most manakins, there is no evident sexual dichromatism in the species and little is known about its breeding biology. We studied the breeding biology of a colour-banded population of the species from August to December 2016 and from August to October 2017 in the Campus Florestal of the Universidade Federal de Vicosa, south-eastern Brazil. The breeding season extended from early September to late November. The species is promiscuous, with males exhibiting simple courtship displays (exploded leks) in individual arenas. The nest (n=13) is a cup attached by its top lip between forked branches and is very simple, with a structural layer made with dry grass stems and heads, attached to the branch with spider silk. The outer and lining layers are absent. The mean clutch size was 1.8 eggs (n=11), which are oval and pale coloured, covered with spots of different shades of brown, often concentrated in the larger pole. Mean egg length and width (+/- SD) were 21.0 +/- 0.9x15.8 +/- 0.7mm (n=14) and the mean weight was 2.8 +/- 0.4g (n=10). The incubation period could not be estimated, but the nestling period was 15days (n=2). The simple percentage of successful nests was 15.4%, with 76.9% of the nests depredated and 7.7% abandoned. This is the first detailed study about the breeding biology of any Neopelma species, providing relevant data for the study of the evolution of life history strategies not only for the genus, but for the whole family Pipridae. [Ferreira, Luana Jessica; Lopes, Leonardo Esteves] Univ Fed Vicosa, Lab Biol Anim, IBF, Florestal, Brazil Lopes, LE (reprint author), Univ Fed Vicosa, Lab Biol Anim, IBF, Florestal, Brazil. leo.cerrado@gmail.com Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) [305401/20149]; Fundacao de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG) This work was supported by Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) [305401/20149] and Fundacao de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG). Alonso JA, 2003, CONDOR, V105, P552, DOI 10.1650/7159; Alvares CA, 2013, METEOROL Z, V22, P711, DOI 10.1127/0941-2948/2013/0507; ALVAREZ ALONSO J., 2001, COTINGA, V16, P87; Belcher C, 1937, IBIS, V1, P225; Birkhead T. R, 2016, MOST PERFECT THING I; Braga EM, 2010, ORNITOLOGIA CONSERVA, P395; CEMAVE, 1994, MAN AN AV SILV; Nóbrega Paula Fernanda Albonette de, 2010, Pap. Avulsos Zool. (São Paulo), V50, P511, DOI 10.1590/S0031-10492010003100001; Dickinson E.C., 2014, HOWARD MOORE COMPLET, V2; Ferreira DF, 2017, J NAT HIST, V51, P1; Gochfeld M., 1984, Behavior of Marine Animals, V5, P289; Hansell M., 2000, BIRD NESTS CONSTRUCT; Hoffmann D., 2010, COTINGA, V32, P142; IBGE, 2004, MAP BIOM BRAS 1 APR; Johnsgard PA, 1994, ARENA BIRDS SEXUAL S; KIRWAN G. M., 2011, COTINGAS MANAKINS; Kirwan Guy M., 2016, Bulletin of the British Ornithologists' Club, V136, P293; Krabbe N, 2007, REV BRAS ORNITOL, V15, P331; Lebbin Daniel J., 2007, Boletin SAO, V17, P119; Lees Alexander C., 2008, Cotinga, V29, P149; Lima CA, 2010, ORNITOL NEOTROP, V21, P425; Lopes LE, 2016, ATUAL ORNITOL, V193, P41; Marini MA, 2001, CONDOR, V103, P767, DOI 10.1650/0010-5422(2001)103[0767:APOMAR]2.0.CO;2; Marini Ma, 2010, ORNITOLOGIA CONSERVA, P297; Matta NE, 2004, MEM I OSWALDO CRUZ, V99, P271, DOI 10.1590/S0074-02762004000300005; Mckay BD, 2010, MOL PHYLOGENET EVOL, V55, P733, DOI 10.1016/j.ympev.2010.02.024; Munsell, 2000, MUNSELL SOIL COLOR C; Myers N, 2000, NATURE, V403, P853, DOI 10.1038/35002501; Nascimento J., 2000, ARARAJUBA, V8, P115; Nimer E, 1989, CLIMATOLOGIA BRASIL; Novaes FC, 1978, ORNITOLOGIA TERRITOR; Ohlson JI, 2013, MOL PHYLOGENET EVOL, V69, P796, DOI 10.1016/j.ympev.2013.06.024; ONIKI Y, 1979, BIOTROPICA, V11, P60, DOI 10.2307/2388174; PAYNE RB, 1984, ORNITHOL MONOGR, V33, P1, DOI DOI 10.2307/40166729; Pichorim Mauro, 2002, Ararajuba, V10, P149; Pinto O., 1940, Arquivos de Zoologia do Estado de Sao Paulo, V1, P219; Prum R. O., 2017, EVOLUTION BEAUTY DAR; Prum RO, 1998, ANIM BEHAV, V55, P977, DOI 10.1006/anbe.1997.0647; PRUM RO, 1994, EVOLUTION, V48, P1657, DOI 10.1111/j.1558-5646.1994.tb02203.x; Prum RO, 1996, CONDOR, V98, P722, DOI 10.2307/1369854; PRUM RO, 1990, ETHOLOGY, V84, P202; Roper James J., 2003, Ornitologia Neotropical, V14, P1; Schonwetter M, 1960, HDB OOLOGIE; SCHUBART OTTO, 1965, ARQ ZOOL ESTAD SAO PAULO, V12, P95; SCHWARTZ P, 1978, Living Bird, V17, P51; Sick H, 1997, ORNITOLOGIA BRASILEI; SICK HELMUT, 1967, LIVING BIRD, V6, P5; SICK HELMUT, 1959, BOL MUS NAC RIO DE JANEIRO ZOOL, V213, P1; Simon Jose Eduardo, 2005, ARARAJUBA, V13, P143; Skutch A. F., 1969, PACIFIC COAST AVIFAU, V35, P1; Snethlage H, 1928, J ORNITHOL, V76, P668; SNOW D. W., 1962, ZOOLOGICA [NEW YORK], V47, P65; SNOW D. W., 2004, HDB BIRDS WORLD, V9, P110; SNOW DAVID, 1961, IBIS, V103a, P110, DOI 10.1111/j.1474-919X.1961.tb02423.x; TOSTAIN O, 1988, Alauda, V56, P159; Turnhout E, 2016, CONSERV BIOL, V30, P532, DOI 10.1111/cobi.12696; Ubaid F. K., 2013, ORNITHOLOGIA, V5, P122; Von Ihering H, 1900, REV MUSEU PAUL, V419, pl; Walther BA, 2004, ORNITOL NEOTROP, V15, P41; Whittaker Andrew, 2009, Cotinga, V31, P20 60 0 0 3 3 TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND 0022-2933 1464-5262 J NAT HIST J. Nat. Hist. 2018 52 29-30 1893 1908 10.1080/00222933.2018.1498548 16 Biodiversity Conservation; Ecology; Zoology Biodiversity & Conservation; Environmental Sciences & Ecology; Zoology GP8LC WOS:000441160900001 2018-11-22 J Xu, QL; Li, JN; Xiang, XL; Tan, HX; Xi, YL Xu, Qiu-Lei; Li, Jia-Nan; Xiang, Xian-Ling; Tan, Hai-Xia; Xi, Yi-Long LIFE HISTORY STRATEGIES IN TWO BRACHIONUS CALYCIFLORUS (ROTIFERA) EVOLVING SPECIES: RESPONSES TO TEMPERATURE CHANGE FRESENIUS ENVIRONMENTAL BULLETIN English Article Brachionus calyciflorus; evolutionary entity; life history characteristics; strain; temperature GENETIC DIFFERENTIATION; PLICATILIS ROTIFERA; DIFFERENT ALGAE; DNA TAXONOMY; FRESH-WATER; COMPLEX; POPULATION; EVOLUTION; LAKES; DELIMITATION To gain a better understanding of the diversity of life history patterns, and compare the differences of life history strategies in rotifer subjecting to the endogenous and exogenous factors, the life history strategies in two Brachionus calyciflorus evolving species were detected at four temperatures. The results showed that the duration of reproductive period were significant different in distinct rotifer evolving species, and the net reproductive rate was not significantly correlated with the duration of reproductive period of rotifer. The two B. calyciflorus strains (ZJ and KM) adopt different life history strategies. Regardless of the effects of evolving species and temperature, the durations of developmental stages and life expectancy at hatching of the tropical strains (ZJ) were shorten than those of the subtropical strains (KM), indicating that the growth of tropical rotifer strain was faster than subtropical strain, but at the cost of net reproductive rate. Additionally, the intrinsic rate of increase in the two strains had an opposite variation trend with the duration of juvenile period and duration of embryonic development, so the maximum reproductive potential of population really depends negatively on the early period of life. All life-table parameters were affected by temperature significantly, and the durations of each developmental stage, mean lifespan and life expectancy at hatching shortened with the increasing temperature, in contrast the intrinsic rate of increase of the rotifers increased significantly and reached a maximum at 28 degrees C, suggesting higher temperature made the growth, development and metabolic rates of rotifer accelerate. [Xu, Qiu-Lei; Li, Jia-Nan; Xiang, Xian-Ling; Xi, Yi-Long] Anhui Normal Univ, Coll Life Sci, Wuhu 241000, Anhui, Peoples R China; [Xiang, Xian-Ling; Xi, Yi-Long] Key Lab Biot Environm & Ecol Safety Anhui Prov, Wuhu 241000, Anhui, Peoples R China; [Tan, Hai-Xia] Hebei Univ Environm Engn, Dept Ecol, Qinhuangdao 066102, Hebei, Peoples R China Xiang, XL (reprint author), Anhui Normal Univ, Coll Life Sci, Wuhu 241000, Anhui, Peoples R China. xlxiang@ahnu.edu.cn Xiang, Xianling/Q-6388-2018 Xiang, Xianling/0000-0002-1378-5877 Natural Science Foundation of China [31200324, 31470015]; Natural Science Foundation of Anhui Province [1708085MC79]; Science and Technology Program of Hebei Province [15273307]; Foundation of Provincial Key Laboratory of Conservation and Utilization for Important Biological Resource in Anhui This research was funded by Natural Science Foundation of China (31200324, 31470015), Natural Science Foundation of Anhui Province (1708085MC79), Science and Technology Program of Hebei Province (15273307) and Foundation of Provincial Key Laboratory of Conservation and Utilization for Important Biological Resource in Anhui. AWAISS A, 1992, AQUACULTURE, V105, P337, DOI 10.1016/0044-8486(92)90097-5; Cheng Xin-Feng, 2008, Acta Zoologica Sinica, V54, P245; Derry AM, 2003, LIMNOL OCEANOGR, V48, P675, DOI 10.4319/lo.2003.48.2.0675; Fabian D., 2012, NATURE ED KNOWLEDGE, V3, P24; Feng Li-Ke, 2004, Chinese Journal of Zoology, V39, P12; Fontaneto D, 2015, MAR BIODIVERS, V45, P433, DOI 10.1007/s12526-015-0319-7; Fontaneto D, 2014, INT REV HYDROBIOL, V99, P178, DOI 10.1002/iroh.201301719; Fontaneto D, 2009, MOL PHYLOGENET EVOL, V53, P182, DOI 10.1016/j.ympev.2009.04.011; Gilbert JJ, 2005, HYDROBIOLOGIA, V546, P257, DOI 10.1007/s10750-005-4205-3; Gomez A, 1997, OECOLOGIA, V111, P350, DOI 10.1007/s004420050245; Halsband-Lenk C, 2004, ICES J MAR SCI, V61, P709, DOI 10.1016/j.icesjms.2004.03.020; HERZIG A, 1983, HYDROBIOLOGIA, V104, P237, DOI 10.1007/BF00045974; Hu H. Y., 2005, J ANHUI NORMAL U, V28, P210; Hu HY, 2008, LIMNOLOGICA, V38, P56, DOI 10.1016/j.limno.2007.08.002; Hu Ke, 2010, Hupo Kexue, V22, P585; Jiang Dong-hai, 2007, Yingyong Shengtai Xuebao, V18, P2883; Kauler P, 2011, J FRESHWATER ECOL, V26, P399, DOI 10.1080/02705060.2011.563998; KORSTAD J, 1989, HYDROBIOLOGIA, V186, P43, DOI 10.1007/BF00048895; [LI Huabing 李化炳], 2008, [生态科学, Ecologic Science], V27, P431; Li S., 1959, ACTA HYDROBIOL SINIC, V4, P462; Gama-Flores JL, 2015, J THERM BIOL, V53, P135, DOI 10.1016/j.jtherbio.2015.10.005; Gama-Flores JL, 2014, INT REV HYDROBIOL, V99, P173, DOI 10.1002/iroh.201301722; Mills S, 2017, HYDROBIOLOGIA, V796, P39, DOI 10.1007/s10750-016-2725-7; Peltier WH, 1985, EPA600485013; Pons J, 2006, SYST BIOL, V55, P595, DOI 10.1080/10635150600852011; Pourriot R., 1986, AQUACULTURE, V5, P201; Puillandre N, 2012, MOL ECOL, V21, P1864, DOI 10.1111/j.1365-294X.2011.05239.x; Reznick DN, 2001, GENETICA, V112, P183, DOI 10.1023/A:1013352109042; Samna S.S.S., 2001, HYDROBIOLOGIA, V446, P75; Sanderson MJ, 2002, MOL BIOL EVOL, V19, P101, DOI 10.1093/oxfordjournals.molbev.a003974; Sarma SSS, 2005, HYDROBIOLOGIA, V542, P315, DOI 10.1007/s10750-004-3247-2; Schroder T, 2007, HYDROBIOLOGIA, V593, P129, DOI 10.1007/s10750-007-9066-5; Segers H, 2008, HYDROBIOLOGIA, V595, P49, DOI 10.1007/s10750-007-9003-7; SERRA M, 1994, HYDROBIOLOGIA, V277, P97, DOI 10.1007/BF00016757; Sih A, 2011, EVOL APPL, V4, P367, DOI 10.1111/j.1752-4571.2010.00166.x; Snell TW, 2014, INT REV HYDROBIOL, V99, P84, DOI 10.1002/iroh.201301707; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Sun D, 2012, J PLANKTON RES, V34, P864, DOI 10.1093/plankt/fbs050; Walczynska A, 2014, HYDROBIOLOGIA, V734, P17, DOI 10.1007/s10750-014-1859-8; Wallace R. L., 2006, GUIDES IDENTIFICATIO, V1; Wang XL, 2014, ANN LIMNOL-INT J LIM, V50, P289, DOI 10.1051/limn/2014024; Xi Y. L., 2000, J ANHUI NORMAL U, V4, P129; Xiang XL, 2017, ANN LIMNOL-INT J LIM, V53, P401, DOI 10.1051/limn/2017024; Xiang XL, 2011, MOL ECOL, V20, P3027, DOI 10.1111/j.1365-294X.2011.05147.x; Xiang XL, 2011, MOL PHYLOGENET EVOL, V59, P386, DOI 10.1016/j.ympev.2011.02.011; Yoshinaga T, 2000, J EXP MAR BIOL ECOL, V253, P253, DOI 10.1016/S0022-0981(00)00268-9; Zhang JJ, 2013, BIOINFORMATICS, V29, P2869, DOI 10.1093/bioinformatics/btt499 47 0 0 1 1 PARLAR SCIENTIFIC PUBLICATIONS (P S P) FREISING ANGERSTR. 12, 85354 FREISING, GERMANY 1018-4619 1610-2304 FRESEN ENVIRON BULL Fresenius Environ. Bull. 2018 27 5A 3645 3653 9 Environmental Sciences Environmental Sciences & Ecology GK8YZ WOS:000436522400053 2018-11-22 J Wetzer, R; Bruce, NL; Perez-Losada, M Wetzer, Regina; Bruce, Niel L.; Perez-Losada, Marcos Relationships of the Sphaeromatidae genera (Peracarida: Isopoda) inferred from 18S rDNA and 16S rDNA genes ARTHROPOD SYSTEMATICS & PHYLOGENY English Article Sphaeromatidae; 18S rDNA; 16S rDNA; Gnorimosphaeroma; Sphaeroma; Exosphaeroma; Cymodoce; Ischyromene; Cerceis; Dynamenella; phylogeny MULTIPLE SEQUENCE ALIGNMENT; EXTENDED PARENTAL CARE; WESTERN INDIAN-OCEAN; WOOD-BORING ISOPOD; CRUSTACEA-ISOPODA; MARINE ISOPOD; PARACERCEIS-SCULPTA; THERMOSPHAEROMA-THERMOPHILUM; SEX-RATIO; PHYLOGENY PERACARIDA The Sphaeromatidae has 100 genera and close to 700 species with a worldwide distribution. Most are abundant primarily in shallow (< 200 m) marine communities, but extend to 1.400 in, and are occasionally present in permanent freshwater habitats. They play an important role as prey for epibenthic fishes and are commensals and scavengers. Sphaeromatids' impressive exploitation of diverse habitats, in combination with diversity in female life history strategies and elaborate male combat structures, has resulted in extraordinary levels of homoplasy. We sequenced specimens from 39 genera for nuclear 18S rDNA and mitochondrial 16S rDNA genes, comprehensively reviewed the effects of alignments on tree topology, and performed Garli and MrBayes analyses. These data consistently retrieved clades (genus groups), Sphaemnia. Exosphaemnut, Cymodoce. lschymmene, Cerceis, and Dynantenella and the monogeneric clade of Gnorimo-sphaeroma. We define the major clades using morphological characters, attribute sampled taxa to consistently and strongly supported ones and suggest placement of unsampled genera based on their morphological characteristics. Within each Glade, we also highlight unresolved and poorly sampled genera. We point out taxonomic problems in hopes of encouraging further phylogenetic exploration. Although we identify clades containing consistent generic groups and are confident that some groups will prove stable and reliable, we feel our sampling is insufficient to propose nomenclatural changes at this time. [Wetzer, Regina] Nat Hist Museum Los Angeles Cty, Res & Collect, 900 Exposit Blvd, Los Angeles, CA 90007 USA; [Bruce, Niel L.] Museum Trop Queensland, 70-102 Flinders St, Townsville, Qld 4810, Australia; [Bruce, Niel L.] North West Univ, Unit Environm Sci & Management, Water Res Grp, Private Bag X6001, ZA-2520 Potchefstroom, South Africa; [Perez-Losada, Marcos] George Washington Univ, Milken Inst Sch Publ Hlth, Computat Biol Inst, Ashburn, VA 20148 USA; [Perez-Losada, Marcos] Univ Porto, Ctr Invest Biodiversidade & Recursos Genet, CIBIO InBIO, Campus Agr Vairao, P-4485661 Vairao, Portugal; [Perez-Losada, Marcos] Smithsonian Inst, US Natl Museum Nat Hist, Dept Invertebrate Zool, Washington, DC 20013 USA Wetzer, R (reprint author), Nat Hist Museum Los Angeles Cty, Res & Collect, 900 Exposit Blvd, Los Angeles, CA 90007 USA. rwetzer@nhm.org; niel.bruce@qm.qld.gov.au; mlosada@gwu.edu Queensland Museum; NSF Systematics grant [DEB-0129317] We are most grateful for all of the specimen contributions for both the morphological and genetic components of this project. We thank Cedric d'Udekem d'Acoz, Giovanni Bassey, Micah Bakenhaster, Penny Berents, Sarah Boyce-Elwell, Rick Brusca, Don Cadien, Savel Daniels, Sammy De Grave, Luis Dominguez G., Steven Fend, Wayne Fields, H.A. Garces B., Peter Glynn, Gavin Gouws, K. Gowlett-Holmes, Leslie Harris, Todd Haney, T.J. Hilbish, Alexandra Hiller-Galvis, Ivan Hinojosa, David Holdich, Ernie Iverson, M.G. Janech, Kevin Johnson, Coner Jones, Evrim Kalkan, Steven Keable, Rachel King, D. Knott, Li Li, Anne-Nina Lorz, R. Lord, Colin McLay, Kelly Merrin, Carlos Navarro, Roisin Nash, D. Neale, Pete Nelson, K. Neill, Jorgen Olesen, N.D. Pentcheff, Gary Poore, Wayne Price, Kirstin Ross, D. Christopher Rogers, Evangelina Schwindt, Tan See Hee, Stephen Shuster, Boris Sket, Darolyn Striley, Camm Swift, William Szelistowski, Martin Thiel, George Wilson, Mary Wicksten, and Matthew Yoder. Line drawings ornamenting the phylogenetic trees are by the following authors: BENVENUTI & MESSANA 2000; BENVENUTI et al. 2000; BOWMAN 1981; BRUCE 1994, 1997; BRUSCA et al. 2007; COLE & BANE 1978; ESPINOSA-PEREZ & HENDRICKX 2001; GEORGE & STROMBERG 1968; HALE 1929; HARRISON 1984a; HARRISON & HOLDICH 1982a,b, 1984; HOLDICH & HARRISON 1980, 1981; HOLDICH & JONES 1973; HURLEY & JANSEN 1977; IVERSON 1982; KENSLEY 1978; KENSLEY et al. 1997; KENSLEY & SCHOTTE 1989; KUSSAKIN 1979; LI 2000; LOYOLA E SILVA et al. 1999; MENZIES 1962; MULLER 1995; NIERSTRASZ 1931; RIOJA 1950; ROMAN 1974; SCHOTTE & KENSLEY 2005; SIVERTSEN & HOLTHUIS 1980; WALL et al. 2015; WETZER & BRUCE 1999, 2007; WETZER & MOWERY 2017. The British Museum contributed assorted unregistered sphaeromatids for morphology, and we thank Miranda Lowe, Paul Clark, and Geoff Boxshall for hosting NLB and RW's collection visit. Penny Berents and Stephen Keable (Australian Museum), Marilyn Schotte and the late Brian Kensley (National Museum of Natural History, Washington, D. C.), Peter Ng (National University of Singapore, Lee Kong Chian Natural History Museum) are profusely thanked for their support of the project, as well as access and assistance to their collections. Thank you Peter Ng for the memorable downpour field opportunities in Singapore. This project benefited from the field stations on Heron and Lizard Islands (Australia), Zanzibar, and Palau. We are grateful for the generosity of Hinterland Aviation and Macair Airlines (Australia) in getting all of our overweight supplies on and off the islands. A special thank you goes to Buccaneer Diving in Mombasa (Kenya) for donating their diving services to the project and making diving so easy. The Queensland Museum is thanked for granting travel funds to RW to visit the Queensland Museum in Townsville in 2012 and for supporting NLB's travel to LACM in 2009 and 2013. Thank you Jim Cline for your invaluable contributions to the isopod image gallery (http://isopods.nhm.org/images). A big thank you goes to Keith Crandall (then at Brigham Young University) for making not only his lab available, but also his home. Most the of sequencing resulted from the support of the Crandall-Whiting BYU labs. Special thanks goes to then post-docs/graduate students Katharina Dittmar, Megan Porter, Alexandra Hiller, and Sarah Boyce-Elwell and their help in conquering the initially obstinate 18S V9 regions.; We thank Kathy Omura for participating in our Tanzania adventure and wandering the Zanzibar streets in search of precious 95% ethanol, and Darolyn Striley for supporting the field operation in Palau. Phyllis Sun and Adam Wall are thanked for help with producing the presentations of the phylogenetic trees and submitting GenBank and tree files, respectively. Thank you N.D. Pentcheff for insuring NLB and RW were always same ocean diving, for hauling the thousands of rubble buckets to the surface, the live specimen sorting, writing code, creating web pages, and all of the necessary IT geekery. Two anonymous reviewers are thanked for their careful and thoughtful suggestions that improved the manuscript. This project was supported by NSF Systematics grant DEB-0129317. This is Contribution Number 2 of the NHM Diversity Initiative of the Southern California Ocean. This is contribution number #203 from the NWU-Water Research Group. ADAMS J, 1800, T LINN SOC LOND, V5, P7, DOI 10.1111/j.1096-3642.1800.tb00574.x; BAKER W. H., 1926, TRANS & PROC ROY SOC S AUSTRALIA, V50, P247; Baker W. H., 1908, Transactions of the Royal Society of South Australia, V32; BAKER W. H., 1928, TRANS & PROC ROY SOC S AUSTRALIA, V52, P49; BAKER W. H, 1911, T ROYAL SOC S AUSTR, V35, P89; Baratti M, 2005, J EXP MAR BIOL ECOL, V315, P225, DOI 10.1016/j.jembe.2004.09.020; Baratti M, 2011, J EXP MAR BIOL ECOL, V398, P73, DOI 10.1016/j.jembe.2010.12.008; Barnard K. H., 1940, Annals of the South African Museum, V32, P381; Barnard KH, 1914, ANN S AFR MUS, V10, P359; Barnard KH, 1914, ANN S AFR MUS, V10, p325a; Barnard KH, 1920, ANN S AFR MUS, V17, P319, DOI DOI 10.5962/BHL.PART.22318; Bate Spence C., 1866, Annals & Magazine of Natural History, Vvol. xvii, P24; Benson DA, 2008, NUCLEIC ACIDS RES, V36, pD25, DOI 10.1093/nar/gkm929; Benvenuti D, 2000, CRUSTACEANA, V73, P407, DOI 10.1163/156854000504499; Benvenuti D, 2000, TROP ZOOL, V13, P181, DOI 10.1080/03946975.2000.10531132; BOCQUET C., 1951, ARCH ZOOL EXPTL ET GEN, V87, P245; Boone P. L., 1923, Proceedings of the Biological Society of Washington, V36, P147; BOSC L.A.G., 1801, HIST NATURELLE CRUST, p[1, 1]; BOWMAN T E, 1981, Journal of Crustacean Biology, V1, P105, DOI 10.2307/1548208; BOWMAN T E, 1974, Records of the Australian Museum, V29, P235; Brandt A, 2003, INVERTEBR SYST, V17, P893, DOI 10.1071/IS02032; Brandt Angelika, 1998, Beaufortia, V48, P137; BRUCE N.L, 2010, WORLD MARINE FRESHWA; BRUCE N. L, 2002, ZOOLOGICAL CATALOGUE, P221; Bruce Niel L., 1997, Memoirs of the Museum of Victoria, V56, P145; Bruce Niel L., 2003, Memoirs of Museum Victoria, V60, P309; Bruce Niel L., 2009, Memoirs of Museum Victoria, V66, P35; Bruce Niel L., 1994, Memoirs of the Museum of Victoria, V54, P149; Bruce Niel L., 1993, Invertebrate Taxonomy, V7, P151, DOI 10.1071/IT9930151; Bruce Niel L., 1994, Memoirs of the Museum of Victoria, V54, P399; Bruce NL, 2005, ZOOTAXA, P1; Bruce NL, 2002, J MAR BIOL ASSOC UK, V82, P51; Bruce NL, 2001, CRUSTACEANA, V74, P1101, DOI 10.1163/15685400152691133; BRUCE NL, 1992, J NAT HIST, V26, P1263, DOI 10.1080/00222939200770711; Bruce NL, 1995, OPHELIA, V43, P127, DOI 10.1080/00785326.1995.10429829; BRUCE NL, 1994, J NAT HIST, V28, P1077, DOI 10.1080/00222939400770571; BRUSCA R C, 1991, Memoirs of the Queensland Museum, V31, P143; Brusca Richard C., 2007, P503; Buss L. W., 1981, POSTILLA, V184, P1; CARLTON JT, 1987, B MAR SCI, V41, P452; Castresana J, 2000, MOL BIOL EVOL, V17, P540, DOI 10.1093/oxfordjournals.molbev.a026334; Chilton C., 1892, Transactions of the New Zealand Institute, Vxxiv, P258; CHILTON C., 1925, RECORDS CANTERBURY M, V2, P321; CHILTON C., 1909, SUBANTARCTIC ISLANDS, P601; Chilton Charles, 1883, Transactions of the New Zealand Institute, Vxv, P69; Chilton Charles, 1883, Transactions of the New Zealand Institute, Vxv, P188; COLE GA, 1978, HYDROBIOLOGIA, V59, P223, DOI 10.1007/BF00036501; DALLWITZ M. J., 2006, USERS GUIDE DELTA SY; DALLWITZ MJ, 1980, TAXON, V29, P41, DOI 10.2307/1219595; Dana J. D., 1852, AM J SCI ARTS 2, V14, P297; DANA J. D., 1853, US EXPLORING EXPEDIT, P696; Darriba D, 2012, NAT METHODS, V9, P772, DOI 10.1038/nmeth.2109; DOLLFUS A., 1896, B MUSEEUM NATL HIST, V2, P137; DOW THOMAS G., 1958, BULL SOUTHERN CALIFORNIA ACAD SCI, V57, P93; Dreyer H, 2002, J CRUSTACEAN BIOL, V22, P217, DOI 10.1651/0278-0372(2002)022[0217:TSTNAT]2.0.CO;2; ELEFTHERIOU A, 1980, ESTUAR COAST MAR SCI, V11, P251, DOI 10.1016/S0302-3524(80)80082-X; Espinosa-Perez MD, 2001, P BIOL SOC WASH, V114, P640; Fabricius J. C., 1787, MANTISSA INSECTORUM, V1; FELSENSTEIN J, 1985, EVOLUTION, V39, P783, DOI 10.1111/j.1558-5646.1985.tb00420.x; Flabellifera E. J, 1931, ISOPODEN SIBOGA EXPE, P16; George R. Y, 1968, Crustaceana, V14, P225, DOI 10.1163/156854068X00827; GERSTAECKER A., 1856, ARCH NATURGESCH, V22, P101; Glynn P. W., 1968, Proceedings of the Biological Society of Washington, V81, P587; Hale H. M., 1929, P201; Hansen HJ, 1905, Q J MICROSC SCI, V49, P69; HARRISON K, 1984, Records of the Western Australian Museum, V11, P259; HARRISON K, 1982, Memoirs of the Queensland Museum, V20, P421; HARRISON K, 1991, Invertebrate Taxonomy, V5, P915, DOI 10.1071/IT9910915; HARRISON K, 1982, Journal of Crustacean Biology, V2, P84, DOI 10.2307/1548115; HARRISON K, 1984, ZOOL J LINN SOC-LOND, V81, P275, DOI 10.1111/j.1096-3642.1984.tb01175.x; HARRISON K, 1984, ZOOL J LINN SOC-LOND, V82, P363, DOI 10.1111/j.1096-3642.1984.tb00870.x; HASWELL W. A., 1881, P LINNEAN SOC NEW S, V5, P470, DOI DOI 10.5962/BHL.PART.15890; HEATH DJ, 1990, HEREDITY, V64, P419, DOI 10.1038/hdy.1990.53; Hilgendorf F., 1885, Sitzungsberichte Nat Fr, P185; HOLDICH D M, 1980, Memoirs of the Queensland Museum, V20, P163; HOLDICH D M, 1981, Records of the Australian Museum, V33, P617; HOLDICH DM, 1973, J ZOOL, V171, P385; HOLDICH DM, 1983, ZOOL SCR, V12, P127, DOI 10.1111/j.1463-6409.1983.tb00557.x; HOLDICH DM, 1981, CRUSTACEANA, V41, P286, DOI 10.1163/156854081X00868; Holmes Samuel J., 1904, Proceedings of the California Academy (3) Zool, Viii, P307; Hurley D.E, 1977, NZ OCEANOGRAPHIC I M, V63, P1, DOI DOI 10.1080/00288330.1970.9515360; IVERSON E W, 1982, Journal of Crustacean Biology, V2, P248, DOI 10.2307/1548005; JAVED W, 1988, HYDROBIOLOGIA, V169, P371, DOI 10.1007/BF00007560; Jormalainen V, 1999, ETHOLOGY, V105, P233, DOI 10.1046/j.1439-0310.1999.00386.x; Jormalainen V, 1997, OECOLOGIA, V111, P271, DOI 10.1007/s004420050235; Katoh K, 2002, NUCLEIC ACIDS RES, V30, P3059, DOI 10.1093/nar/gkf436; Katoh K, 2005, NUCLEIC ACIDS RES, V33, P511, DOI 10.1093/nar/gki198; Kensley B, 1997, P BIOL SOC WASH, V110, P74; KENSLEY B, 1987, P BIOL SOC WASH, V100, P1036; Kensley B, 1978, GUIDE MARINE ISOPODS; Kensley B, 1989, GUIDE MARINE ISOPOD; Kussakin O. G., 1967, P220; Kussakin O.G, 1979, NATL ACAD SCI USSR Z, V122, P1; Kussakin Oleg G., 1993, Invertebrate Taxonomy, V7, P1167, DOI 10.1071/IT9931167; Latreille P. A., 1802, HIST NATURELLE GENER; Latreille P. A., 1825, FAMILLES NATURELLES; Leach W. E., 1814, EDINBURGH ENCY, V7, P383, DOI DOI 10.5962/BHL.TITLE.53862; Leach WE, 1818, DICT SCI NATURELLES, V12, P338; LEVI C., 1950, CR HEBD ACAD SCI, V230, P245; Li Li, 2000, Records of the Australian Museum, V52, P137; Low MEY, 2012, ZOOTAXA, P67; Loyola e Silva J, 1999, ACTA BIOL PARANA CUR, V28, p109 ; Malyutina M.V, 1987, STUDIES LITTORAL FAR, p[47, 1]; Menzies R. J., 1968, Uitgaven Natuurwetenschappelijke Studiekring voor Suriname en de Nederlandse Antillen, VNo. 51, P1; Menzies R. J., 1954, American Museum Novitates, VNo. 1683, P1; MENZIES R.J., 1962, LUNDS U ARSSKR, V57, P1; MESSANA G, 1990, Tropical Zoology, V3, P243; Messana G, 2004, CRUSTACEANA, V77, P499, DOI 10.1163/1568540041643346; Miers E. J., 1884, P178; MIERS E.J, 1876, ANN MAGAZINE NATURAL, V17, P218; Miller M.A., 1975, P277; Miller M. A, 2010, GATEWAY COMPUTING EN; Milne Edwards H., 1834, HIST NATURELLE CRUST; MONTAGU G, 1894, T LINN SOC LOND, V7, P61; MULLER HG, 1995, CRUSTACEANA, V68, P350, DOI 10.1163/156854095X01475; NELLES L, 1984, NUCLEIC ACIDS RES, V12, P8749, DOI 10.1093/nar/12.23.8749; NOBILI G., 1906, ANNALES MUSEUM ZOOLO, V2, P16; Nunomura N., 1985, Bulletin of the Toyama Science Museum, P51; Palumbi S., 1991, SIMPLE FOOLS GUIDE P; PFEFFER G., 1887, JB HAMBURGISCHEN WIS, V4, P43; POORE G.C.B., 2002, CRUSTACEA MALACOSTRA; Poore Gary C. B., 1994, Memoirs of the Museum of Victoria, V54, P171; Posada D, 2004, SYST BIOL, V53, P793, DOI 10.1080/10635150490522304; Posada D, 2009, METHODS MOL BIOL, V537, P93, DOI 10.1007/978-1-59745-251-9_5; RACOVITZA E.-G, 1908, ARCH ZOOLOGIE EXPT G, V4, pLX; Racovitza Emile G., 1910, Archives de Zoologie Paris (Ser 5), V4; Rambaut A., 2009, TRACER MCMC TRACE AN; RICHARDSON H, 1905, MONOGRAPH ISOPODS N; RICHARDSON H, 1906, P US NATL MUS, V31, P1; Richardson H, 1910, BUREAU FISHERIES DOC, V736, P1, DOI 10.5962/bhl.title.82673; Richardson Harriet, 1909, Proceedings of the United States National Museum Smithsonian Institution Washington, V37; Rioja E., 1950, Anales del Instituto de Biologia Mexico, V21, P351; Roman M.-L., 1974, Tethys, V5, P351; ROMAN M.-L, 1999, MEMOIRES I OCEANOGRA, P177; Ronquist F, 2003, BIOINFORMATICS, V19, P1572, DOI 10.1093/bioinformatics/btg180; Ronquist F, 2012, SYST BIOL, V61, P539, DOI 10.1093/sysbio/sys029; SAIKI RK, 1988, SCIENCE, V239, P487, DOI 10.1126/science.2448875; SAY T., 1818, J ACADEMY NATURAL SC, V1, P423; SAY T., 1818, J ACAD NATURAL SCI P, V1, P161; SAY T, 1818, J ACADEMY NATURAL SC, V1, P313; SAY T., 1818, J ACAD NATURAL SCI P, V1, P374; SAY T., 1818, J ACAD NATURAL SCI P, V1, P155; SAY T., 1818, J ACAD NATURAL SCI P, V1, P381; Say T., 1818, J ACAD NATURAL SCI P, V1, P235; Say T., 1817, J ACAD NATURAL SCI P, V1, P57; Say T, 1818, J ACAD NATURAL SCI P, V1, P65; SAY T., 1818, J ACAD NATURAL SCI P, V1, P97; SBORDONI V, 1980, EXPERIENTIA, V36, P48, DOI 10.1007/BF02003963; Schotte M, 2005, J NAT HIST, V39, P1211, DOI 10.1080/0022293040005757; SHUSTER SM, 1992, BEHAVIOUR, V121, P231, DOI 10.1163/156853992X00381; SHUSTER SM, 1987, J CRUSTACEAN BIOL, V7, P318, DOI 10.2307/1548612; SHUSTER SM, 1981, ANIM BEHAV, V29, P698, DOI 10.1016/S0003-3472(81)80004-8; Shuster SM, 2001, CRUSTACEAN ISS, V13, P313; SHUSTER SM, 1991, ANIM BEHAV, V41, P1071, DOI 10.1016/S0003-3472(05)80645-1; SHUSTER SM, 1981, BIOL BULL-US, V161, P291, DOI 10.2307/1540805; Shuster SM, 1997, NATURE, V388, P373, DOI 10.1038/41089; Sivertsen E., 1980, Gunneria, P1; Sket B., 1964, International Journal of Speleology, V1, P163; Sket B., 1986, P423; Sket B, 2003, CRUSTACEANA, V76, P1347, DOI 10.1163/156854003323009858; Sket Boris, 2012, Acta Biologica Slovenica, V55, P71; Spears T, 2005, P BIOL SOC WASH, V118, P117, DOI 10.2988/0006-324X(2005)118[117:PMAIPI]2.0.CO;2; Stebbing T. R. R., 1900, Proceedings of the Zoological Society of London, P517; Stebbing T.R. R, 1905, REP CEYLON PEARL O S, V23, P1; Stebbing T.R. R., 1902, MAR INVEST S AFR 2, P1; Stebbing Thomas R. R., 1910, Transactions of the Linnean Society 2nd Ser Zoology London, V14; STEBBING TRR, 1893, HIST CRUSTACEA RECEN; Stebbing TRR, 1910, ANN S AFR MUS, V6, P281; Stimpson W., 1857, BOSTON J NAT HIST, V6, P503; STOCH F, 1984, Atti del Museo Civico di Storia Naturale di Trieste, V36, P61; Talavera G, 2007, SYSTEMATIC BIOL, V56, P564, DOI 10.1080/10635150701472164; Tavare S., 1986, LECT MATH LIFE SCI, V17, P57; Thiel M, 2000, J NAT HIST, V34, P737, DOI 10.1080/002229300299381; Thiel M, 2003, REV CHIL HIST NAT, V76, P205, DOI 10.4067/S0716-078X2003000200007; Thiel M, 2001, CRUSTACEAN ISS, V13, P267; Thiel M, 1999, MAR BIOL, V135, P321, DOI 10.1007/s002270050630; Thomson G. M., 1879, T P NZ I, V11, P230; Tinturier Hamelin E., 1963, Cahiers de Biologie Marine, V4, P473; Tinturier-Hamelin E., 1962, Archives de Zoologie Experimentale et Generale (Notes et Revue), V101, P54; Verhoeff K. W., 1943, Zeitschrift fuer Morphologie und Oekologie der Tiere Berlin, V40, P276, DOI 10.1007/BF00421684; Wagele J. W, 1989, ZOOLOGICA, V140; Wagele JW, 2003, MOL PHYLOGENET EVOL, V28, P536, DOI 10.1016/S1055-7903(03)00053-8; Wall AR, 2015, ZOOKEYS, P11, DOI 10.3897/zookeys.504.8049; Wetzer R, 2002, J CRUSTACEAN BIOL, V22, P1, DOI 10.1651/0278-0372(2002)022[0001:MGAIPP]2.0.CO;2; Wetzer R, 2001, CONTRIB ZOOL, V70, P23; Wetzer R, 1999, P BIOL SOC WASH, V112, P368; Wetzer R, 2007, ZOOTAXA, P39; Wetzer R, 2017, ZOOKEYS, P1, DOI 10.3897/zookeys.646.10626; Wetzer Regina, 2015, Biodivers Data J, pe4912, DOI 10.3897/BDJ.3.e4912; Wetzer R, 2013, ZOOTAXA, V3599, P161, DOI 10.11646/zootaxa.3599.2.3; Whitelegge T, 1901, MEMOIRS AUST MUSEUM, V1, P201; Whitelegge T, 1902, MEMOIRS AUSTR MUSEUM, V4, P247; Wiens JJ, 1998, SYST BIOL, V47, P568, DOI 10.1080/106351598260581; Wilson George D.F., 2003, Zootaxa, V245, P1; Wilson George D. F., 2009, Arthropod Systematics & Phylogeny, V67, P159; Woodward H, 1877, ENCYCL BRITANNICA, P632; Zwickl D, 2006, GENETIC ALGORITHM AP 197 0 0 1 1 SENCKENBERG NATURHISTORISCHE SAMMLUNGEN DRESDEN, MUSEUM TIERKUNDE DRESDEN KOENIGSBRUECKER LANDSTRASSE 159, DRESDEN, 00000, GERMANY 1863-7221 1864-8312 ARTHROPOD SYST PHYLO Arthropod. Syst. Phylogeny 2018 76 1 1 30 30 Entomology Entomology GJ4EB WOS:000435331900001 2018-11-22 J Krupic, D; Banai, B; Corr, PJ Krupic, Dino; Banai, Benjamin; Corr, Philip J. Relations Between the Behavioral Approach System (BAS) and Self-Reported Life History Traits JOURNAL OF INDIVIDUAL DIFFERENCES English Article reinforcement sensitivity theory; evolution; life history theory; behavioral approach system REINFORCEMENT SENSITIVITY THEORY; ENVIRONMENTAL RISK; SOCIAL DEVIANCE; K-FACTOR; PERSONALITY; STRATEGY; EVOLUTION; PERSPECTIVE; INHIBITION; DIMENSIONS The behavioral approach system (BAS) has been shown to be important in everyday life. However, its putative evolutionary origins have not been extensively studied. The purpose of this study was to explore relationships between BAS processes and life history strategies, or lifestyles, within life history theory. The BAS scales were assessed by the Reinforcement Sensitivity Theory of Personality Questionnaire (RST-PQ) and Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ-20), while lifestyles were measured by the Mini-K. Data from 457 participants (173 males) were analyzed by structural equation modelling, followed by set correlation to examine personality and Mini-K relationships. The structural model showed that RST-PQ Reward Interest, Goal-Drive Persistence and Reward Reactivity correlated with a slow lifestyle, while RST-PQ Impulsivity and (SPSRQ) Sensitivity to Reward (SR) did not correlate with the Mini-K. However, set correlation analysis revealed that SR correlated negatively with the Mini-K subscale Experience in romantic relationship and highlighted the importance of Insight, planning, and control in explaining the role of the BAS within slow lifestyle strategy. The findings are discussed in terms of possible evolutionary origins of the BAS. [Krupic, Dino; Banai, Benjamin] Univ Osijek, Fac Humanities & Social Sci, Dept Psychol, L Jaegera 9, Osijek 31000, Croatia; [Corr, Philip J.] City Univ London, Dept Psychol, London, England Krupic, D (reprint author), Univ Osijek, Fac Humanities & Social Sci, Dept Psychol, L Jaegera 9, Osijek 31000, Croatia. dkrupic@ffos.hr Aluja A, 2011, J PERS ASSESS, V93, P628, DOI 10.1080/00223891.2011.608760; Baumeister RF, 2016, MOTIV EMOTION, V40, P1, DOI 10.1007/s11031-015-9521-y; Bono JE, 2006, LEADERSHIP QUART, V17, P317, DOI 10.1016/j.leaqua.2006.04.008; Buss D.M., 2008, HDB PERSONALITY THEO, P29; Canli T., 2006, BIOL PERSONALITY IND, P60; CARVER CS, 1994, J PERS SOC PSYCHOL, V67, P319, DOI 10.1037/0022-3514.67.2.319; Cohen J., 2003, APPL MULTIPLE REGRES; Corr PJ, 2008, REINFORCEMENT SENSITIVITY THEORY OF PERSONALITY, P1; Corr PJ, 2016, PSYCHOL ASSESSMENT, V28, P1427, DOI 10.1037/pas0000273; Corr PJ, 2013, SOC PERSONAL PSYCHOL, V7, P158, DOI 10.1111/spc3.12016; Corr PJ, 2013, EMOT REV, V5, P285, DOI 10.1177/1754073913477507; Del Giudice M, 2015, HDB EVOLUTIONARY PSY, P88, DOI DOI 10.1002/9781119125563.EVPSYCH102; Del Giudice M, 2014, CHILD DEV PERSPECT, V8, P193, DOI 10.1111/cdep.12084; Del Giudice M, 2014, PSYCHOL INQ, V25, P261, DOI 10.1080/1047840X.2014.884918; DeYoung CG, 2007, J PERS SOC PSYCHOL, V93, P880, DOI 10.1037/0022-3514.93.5.880; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Figueredo A. J., 2012, TEMAS PSICOLOGIA, V20, P87; Figueredo A. J., 2007, ARIZONA LIFE HIST BA; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2013, PERS INDIV DIFFER, V55, P251, DOI 10.1016/j.paid.2012.04.033; Figueredo AJ, 2010, PSYCHOL EMOT MOTIV A, P3; Geary DC, 2002, ADV CHILD DEV BEHAV, V30, P41, DOI 10.1016/S0065-2407(02)80039-8; Gray J. A., 2000, NEUROPSYCHOLOGY ANXI; Hagen E. H., 2005, RES HUMAN DEV, V2, P87; Hasking PA, 2007, J ADOLESCENCE, V30, P739, DOI 10.1016/j.adolescence.2006.11.006; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kenrick DT, 2008, HANDBOOK OF APPROACH AND AVOIDANCE MOTIVATION, P273; Kruglanski A. W., 2015, EMERGING TRENDS SOCI, P1; Krupic D., 2017, PSIHOLOGIJSKE TEME, V26, P25; Krupic D, 2016, PERS INDIV DIFFER, V97, P19, DOI 10.1016/j.paid.2016.03.012; Krupic D, 2016, PERS INDIV DIFFER, V94, P223, DOI 10.1016/j.paid.2016.01.044; Kuzawa CW, 2012, CURR ANTHROPOL, V53, pS369, DOI 10.1086/667410; Lindsey E. W, 2016, SOCIAL DEV, V26, P349; MACDONALD K, 1995, J PERS, V63, P525, DOI 10.1111/j.1467-6494.1995.tb00505.x; MacDonald K.B., 2012, HDB TEMPERAMENT, P273; Manson JH, 2015, EVOL PSYCHOL-US, V13, P48, DOI 10.1177/147470491501300104; Olderbak S, 2014, PERS INDIV DIFFER, V58, P82, DOI 10.1016/j.paid.2013.10.012; Olderbak SG, 2010, PERS INDIV DIFFER, V49, P234, DOI 10.1016/j.paid.2010.03.041; Penke L, 2007, EUR J PERSONALITY, V21, P549, DOI 10.1002/per.629; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Sherman RA, 2013, J PERS SOC PSYCHOL, V105, P873, DOI 10.1037/a0033772; Sih A, 2012, PHILOS T R SOC B, V367, P2762, DOI 10.1098/rstb.2012.0216; Simpson J. A., 2011, HDB INTERPERSONAL PS, P75; Wenner CJ, 2013, INTELLIGENCE, V41, P102, DOI 10.1016/j.intell.2012.11.004; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Yildirim BO, 2012, PSYCHIAT RES, V197, P181, DOI 10.1016/j.psychres.2011.08.016 51 0 0 6 6 HOGREFE & HUBER PUBLISHERS GOTTINGEN MERKELSTR 3, D-37085 GOTTINGEN, GERMANY 1614-0001 2151-2299 J INDIVID DIFFER J. Individ. Differ. 2018 39 2 115 122 10.1027/1614-0001/a000256 8 Psychology, Social Psychology GB6YN WOS:000429221500006 2018-11-22 J Harrison, T; Gibbs, J; Winfree, R Harrison, Tina; Gibbs, Jason; Winfree, Rachael Forest bees are replaced in agricultural and urban landscapes by native species with different phenologies and life-history traits GLOBAL CHANGE BIOLOGY English Article Apoidea; fourth-corner; global change; land use; phenology; pollinator; richness; traits LAND-USE CHANGE; PLANT FLOWERING PHENOLOGY; BODY-SIZE; ENVIRONMENT RELATIONSHIPS; FUNCTIONAL DIVERSITY; BIODIVERSITY CHANGE; 4TH-CORNER PROBLEM; COMMUNITY ECOLOGY; UNITED-STATES; MANTEL TEST Anthropogenic landscapes are associated with biodiversity loss and large shifts in species composition and traits. These changes predict the identities of winners and losers of future global change, and also reveal which environmental variables drive a taxon's response to land use change. We explored how the biodiversity of native bee species changes across forested, agricultural, and urban landscapes. We collected bee community data from 36 sites across a 75,000 km(2) region, and analyzed bee abundance, species richness, composition, and life-history traits. Season-long bee abundance and richness were not detectably different between natural and anthropogenic landscapes, but community phenologies differed strongly, with an early spring peak followed by decline in forests, and a more extended summer season in agricultural and urban habitats. Bee community composition differed significantly between all three land use types, as did phylogenetic composition. Anthropogenic land use had negative effects on the persistence of several life-history strategies, including early spring flight season and brood parasitism, which may indicate adaptation to conditions in forest habitat. Overall, anthropogenic communities are not diminished subsets of contemporary natural communities. Rather, forest species do not persist in anthropogenic habitats, but are replaced by different native species and phylogenetic lineages preadapted to open habitats. Characterizing compositional and functional differences is crucial for understanding land use as a global change driver across large regional scales. [Harrison, Tina; Winfree, Rachael] Rutgers State Univ, Dept Ecol Evolut & Nat Resources, New Brunswick, NJ 08901 USA; [Gibbs, Jason] Univ Manitoba, Dept Entomol, Winnipeg, MB, Canada Harrison, T (reprint author), Rutgers State Univ, Dept Ecol Evolut & Nat Resources, New Brunswick, NJ 08901 USA. tinaharrison09@gmail.com Gibbs, Jason/0000-0002-4945-5423 federal Graduate Assistance in Areas of National Need (GAANN) fellowship through the Rutgers University Ecology & Evolution Graduate Program We thank Sam Droege at the USGS Patuxent Wildlife Research Center in Beltsville, Maryland for identifying 1,338 bee specimens of Nomada, and for sharing his data (3,500 of the 42,552 specimen records used for defining bee species' phenology). We also thank members of the Winfree lab for comments and support throughout this study's planning, analysis and writing, and three peer reviewers for helpful comments that improved the manuscript. This work was supported by a federal Graduate Assistance in Areas of National Need (GAANN) fellowship awarded to TH through the Rutgers University Ecology & Evolution Graduate Program. Anderson MJ, 2013, ECOL MONOGR, V83, P557, DOI 10.1890/12-2010.1; Anderson MJ, 2001, AUSTRAL ECOL, V26, P32, DOI 10.1111/j.1442-9993.2001.01070.pp.x; Arduser M., 2016, KEY OSMIA FEMALES KN; Baldock KCR, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2849; Bartomeus I, 2013, P NATL ACAD SCI USA, V110, P4656, DOI 10.1073/pnas.1218503110; Barwell LJ, 2015, J ANIM ECOL, V84, P1112, DOI 10.1111/1365-2656.12362; Bates D., 2015, R PACKAGE VERSION; Benjamin FE, 2014, J APPL ECOL, V51, P440, DOI 10.1111/1365-2664.12198; Blair RB, 1997, BIOL CONSERV, V80, P113, DOI 10.1016/S0006-3207(96)00056-0; Bouseman J. K., 1979, Transactions of the American Entomological Society, V104, P275; Brosi BJ, 2007, ECOL APPL, V17, P418, DOI 10.1890/06-0029; Buyantuyev A, 2012, LANDSCAPE URBAN PLAN, V105, P149, DOI 10.1016/j.landurbplan.2011.12.013; CANE JH, 1987, J KANSAS ENTOMOL SOC, V60, P145; Cariveau D. P., 2015, CURRENT OPINION INSE, V10, P1; Cariveau DP, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0151482; Center for International Earth Science Information Network - CIESIN - Columbia University, 2013, URB RUR POP LAND EST; Coelho BWT, 2004, SYST ENTOMOL, V29, P282, DOI 10.1111/j.0307-6970.2004.00243.x; Danforth B, 2007, CURR BIOL, V17, pR156, DOI 10.1016/j.cub.2007.01.025; De Palma A, 2016, SCI REP-UK, V6, DOI 10.1038/srep31153; De Palma A, 2015, J APPL ECOL, V52, P1567, DOI 10.1111/1365-2664.12524; Dornelas M, 2014, SCIENCE, V344, P296, DOI 10.1126/science.1248484; Dray S, 2008, ECOLOGY, V89, P3400, DOI 10.1890/08-0349.1; Dray S, 2007, J STAT SOFTW, V22, P1; Dunn RR, 2009, P R SOC B, V276, P3037, DOI 10.1098/rspb.2009.0413; Foster DR, 2003, FOREST ECOL MANAG, V185, P127, DOI 10.1016/S0378-1127(03)00251-2; Frishkoff LO, 2014, SCIENCE, V345, P1343, DOI 10.1126/science.1254610; Garnier E, 2007, ANN BOT-LONDON, V99, P967, DOI 10.1093/aob/mcm215; Gibbs J, 2011, ZOOTAXA, P1; Gibbs J, 2013, ZOOTAXA, V3672, P1, DOI 10.11646/zootaxa.3672.1.1; Gibson L, 2011, NATURE, V478, P378, DOI 10.1038/nature10425; Gonzalez A, 2016, ECOLOGY, V97, P1949, DOI 10.1890/15-1759.1; Gotlieb A, 2011, BASIC APPL ECOL, V12, P310, DOI 10.1016/j.baae.2010.12.003; Greenleaf SS, 2007, OECOLOGIA, V153, P589, DOI 10.1007/s00442-007-0752-9; Harmon LJ, 2010, EVOLUTION, V64, P2173, DOI 10.1111/j.1558-5646.2010.00973.x; Harrison T, 2015, FUNCT ECOL, V29, P879, DOI 10.1111/1365-2435.12486; Hedtke SM, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-138; Jauker F, 2009, LANDSCAPE ECOL, V24, P547, DOI 10.1007/s10980-009-9331-2; Klemm Matthias, 1996, Linnean Society Symposium Series, V18, P17; Kremen C, 2007, ECOL LETT, V10, P299, DOI 10.1111/j.1461-0248.2007.01018.x; La Berge W.E., 1973, Transactions American Ent Soc, V99, P235; Laberge W. E., 1987, Transactions of the American Entomological Society, V112, P191; LABERGE W E, 1980, Transactions of the American Entomological Society (Philadelphia), V106, P395; LABERGE W E, 1971, Transactions of the American Entomological Society (Philadelphia), V97, P441; LABERGE W E, 1975, Transactions of the American Entomological Society (Philadelphia), V101, P371; LaBerge W. E., 1977, Transactions of the American Entomological Society, V103, P1; LaBerge W. E., 1961, University of Kansas Science Bulletin, V42, P283; LaBerge W. E., 1986, T AM ENTOMOL SOC, V111, P440; LaBERGE WALLACE E., 1967, BULL UNIV NEBR STATE MUS, V7, P1; LABERGE WE, 1989, T AM ENTOMOL SOC, V115, P1; Lapointe FJ, 2001, J CLASSIF, V18, P109, DOI 10.1007/s00357-001-0007-0; Larkin L. L., 2016, ANDRENA; LAVERTY TM, 1988, CAN ENTOMOL, V120, P965, DOI 10.4039/Ent120965-11; Leong M, 2015, PEERJ, V3, DOI 10.7717/peerj.1141; Lopez-Uribe MM, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2016.0443; Mandelik Y, 2012, ECOL APPL, V22, P1535; MARKS PL, 1983, AM NAT, V122, P210, DOI 10.1086/284131; Mayfield MM, 2013, AM J BOT, V100, P1356, DOI 10.3732/ajb.1200461; Mayfield MM, 2005, ECOL APPL, V15, P423, DOI 10.1890/03-5369; Mayfield MM, 2005, ECOLOGY, V86, P2365, DOI 10.1890/05-0141; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; McGill BJ, 2015, TRENDS ECOL EVOL, V30, P104, DOI 10.1016/j.tree.2014.11.006; McGinley R. J., 1986, SMITHSONIAN CONTRIBU, V429, P1, DOI DOI 10.5479/SI.00810282.429; McKinney ML, 1999, TRENDS ECOL EVOL, V14, P450, DOI 10.1016/S0169-5347(99)01679-1; Mitchell T. B., 1962, Technical Bulletin North Carolina Agricultural Experiment Station, Vno. 152, P1; MITCHELL THEODORE B., 1960, N CAROLINA AGRIC EXPT STA TECH BULL, V141, P1; MOTTEN AF, 1986, ECOL MONOGR, V56, P21, DOI 10.2307/2937269; Muscarella R, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2015.2434; Neil Kaesha, 2006, Urban Ecosystems, V9, P243, DOI 10.1007/s11252-006-9354-2; Neil Kaesha, 2014, Ecological Processes, V3, P17; Newbold T, 2015, NATURE, V520, P45, DOI 10.1038/nature14324; Ollerton J, 2011, OIKOS, V120, P321, DOI 10.1111/j.1600-0706.2010.18644.x; OMERNIK JM, 1987, ANN ASSOC AM GEOGR, V77, P118, DOI 10.1111/j.1467-8306.1987.tb00149.x; Peres-Neto P. R., 2016, ECOGRAPHY, V40, P1; R Core Team, 2016, R LANG ENV STAT COMP; Rader R, 2014, DIVERS DISTRIB, V20, P908, DOI 10.1111/ddi.12221; Rehan SM, 2011, ZOOTAXA, P35; RIBBLE D W, 1968, Bulletin of the University of Nebraska State Museum, V8, P237; Rudel TK, 2005, GLOBAL ENVIRON CHANG, V15, P23, DOI 10.1016/j.gloenvcha.2004.11.001; Seto KC, 2012, P NATL ACAD SCI USA, V109, P16083, DOI 10.1073/pnas.1211658109; Sheffield CS, 2013, APIDOLOGIE, V44, P501, DOI 10.1007/s13592-013-0200-2; Storkey J, 2012, P ROY SOC B-BIOL SCI, V279, P1421, DOI 10.1098/rspb.2011.1686; Tabarelli M, 2012, BIOL CONSERV, V155, P136, DOI 10.1016/j.biocon.2012.06.020; ten Brink DJ, 2013, ANN BOT-LONDON, V111, P283, DOI 10.1093/aob/mcs253; ter Braak CJF, 2017, PEERJ, V5, DOI 10.7717/peerj.2885; ter Braak CJF, 2012, ECOLOGY, V93, P1525, DOI 10.1890/12-0126.1; Tylianakis JM, 2008, ECOL LETT, V11, P1351, DOI 10.1111/j.1461-0248.2008.01250.x; Umana MN, 2015, ECOL LETT, V18, P1329, DOI 10.1111/ele.12527; Vellend M, 2013, P NATL ACAD SCI USA, V110, P19456, DOI 10.1073/pnas.1312779110; Voigt W, 2007, GLOBAL CHANGE BIOL, V13, P1710, DOI 10.1111/j.1365-2486.2007.01398.x; Walker JS, 2009, FRONT ECOL ENVIRON, V7, P465, DOI 10.1890/080084; Webb CO, 2002, ANNU REV ECOL SYST, V33, P475, DOI 10.1146/annurev.ecolysis.33.010802.150448; Westphal C, 2008, ECOL MONOGR, V78, P653, DOI 10.1890/07-1292.1; Wheelock MJ, 2016, ENVIRON ENTOMOL, V45, P1099, DOI 10.1093/ee/nvw087; Winfree R, 2007, CONSERV BIOL, V21, P213, DOI 10.1111/j.1523-1739.2006.00574.x; Winfree R, 2011, ANNU REV ECOL EVOL S, V42, P1, DOI 10.1146/annurev-ecolsys-102710-145042; Winfree R, 2009, ECOLOGY, V90, P2068, DOI 10.1890/08-1245.1; Wray JC, 2014, ECOL ENTOMOL, V39, P83, DOI 10.1111/een.12070; Zeileis A, 2006, J STAT SOFTW, V16; Zuur A. F., 2009, MIXED EFFECTS MODELS 99 1 1 15 30 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1354-1013 1365-2486 GLOBAL CHANGE BIOL Glob. Change Biol. JAN 2018 24 1 287 296 10.1111/gcb.13921 10 Biodiversity Conservation; Ecology; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology FY0MR WOS:000426506100052 28976620 Bronze 2018-11-22 J Chevalier, M; Comte, L; Laffaille, P; Grenouillet, G Chevalier, Mathieu; Comte, Lise; Laffaille, Pascal; Grenouillet, Gael Interactions between species attributes explain population dynamics in stream fishes under changing climate ECOSPHERE English Article Bayesian inference; climate mean; climate variability; density dependence; growth rate; N-mixture models; trait-based approach; water temperature LIFE-HISTORY TRAITS; FOOD-WEB STRUCTURE; FRESH-WATER FISH; DENSITY-DEPENDENCE; TIME-SERIES; GLOBAL CHANGE; DEMOGRAPHIC COMPENSATION; EXTINCTION RISK; AGE STRUCTURE; VARIABILITY Species responses to climate change have been shown to vary in both direction and magnitude. Understanding these idiosyncratic responses is crucial if we are to predict extinction risk and set up efficient conservation strategies. The variations observed across species have been related to several species attributes including intrinsic traits such as physiological tolerances or life-history strategies but also to niche characteristics (e.g., niche breadth [NB], niche position [NP]). However, although previous studies have successfully linked species attributes to population dynamics or range shifts, few have considered synergistic effects to explain responses to climate variations. Here, we assessed whether five species attributes (fecundity, thermal safety margin, trophic position [TP], NB, and NP) explained interspecific differences in four parameters influencing population dynamics of 35 stream fish species at the French scale. We used Bayesian N-mixture models to estimate posterior distributions of the growth rate, the strength of density dependence, and the influence of both mean temperature and temperature variability on populations for each species. We then used phylogenetic generalized least squares (PGLS) models to investigate the influence of species attributes and their interactions on interspecific differences in each of the four parameter driving population dynamics. The percentage of variance explained by the PGLS models was relatively high (around 40% on average), indicating that species attributes are good predictors of species population dynamics. Furthermore, we showed that the influence of these single attributes was mediated by other attributes, especially NP and TP. Importantly, we found that models including interaction terms had greater support over simple additive models in explaining interspecific differences in population dynamics. Taken together, these results point to the importance of considering the interplay between species attributes in unraveling the mechanisms involved in population dynamics and understanding the vulnerability of species to global change. [Chevalier, Mathieu; Grenouillet, Gael] Univ Toulouse III Paul Sabatier, CNRS, Lab Evolut & Diversite Biol EDB UMR5174, ENFA, 118 Route Narbonne, F-31062 Toulouse, France; [Chevalier, Mathieu] Swedish Univ Agr Sci, Dept Ecol, Box 7044, S-75007 Uppsala, Sweden; [Comte, Lise] Univ Washington, Sch Aquat & Fishery Sci, 1122 NE Boat St, Seattle, WA 98105 USA; [Laffaille, Pascal] Univ Toulouse III Paul Sabatier, Ecolab Lab Ecol Fonct & Environm UMR5245, CNRS, ENSAT,INP, Ave Agrobiopole, F-31326 Castanet Tolosan, France; [Grenouillet, Gael] Inst Univ France, 1 Rue Descartes, F-75231 Paris, France Chevalier, M (reprint author), Univ Toulouse III Paul Sabatier, CNRS, Lab Evolut & Diversite Biol EDB UMR5174, ENFA, 118 Route Narbonne, F-31062 Toulouse, France.; Chevalier, M (reprint author), Swedish Univ Agr Sci, Dept Ecol, Box 7044, S-75007 Uppsala, Sweden. mathieu.chevalier38@gmail.com "Investissement d'Avenir" grant [ANR-10-LABX-0025, ANR-10-LABX-41] We are indebted to the French National Agency for Water and Aquatic Environment (Onema) for providing fish data and Paul Acker for stimulating discussions on Bayesian modeling. We also thank the CALMIP group, in particular Nicolas Renon for computational resources. EDB laboratory was supported by "Investissement d'Avenir" grants (CEBA, ref. ANR-10-LABX-0025; TULIP, ref. ANR-10-LABX-41). Abadi F, 2010, J APPL ECOL, V47, P393, DOI 10.1111/j.1365-2664.2010.01789.x; Angert AL, 2011, ECOL LETT, V14, P677, DOI 10.1111/j.1461-0248.2011.01620.x; Barton K., 2015, MUMIN MULTIMODEL INF; Bjorkvoll E, 2012, AM NAT, V180, P372, DOI 10.1086/666983; Bjornstad ON, 2001, SCIENCE, V293, P638, DOI 10.1126/science.1062226; Blackburn TM, 2009, GLOBAL CHANGE BIOL, V15, P2852, DOI 10.1111/j.1365-2486.2008.01841.x; Blanck A, 2007, J BIOGEOGR, V34, P862, DOI 10.1111/j.1365-2699.2006.01654.x; Bowler DE, 2015, BIOL CONSERV, V187, P41, DOI 10.1016/j.biocon.2015.03.034; Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324; Brook BW, 2008, TRENDS ECOL EVOL, V23, P453, DOI 10.1016/j.tree.2008.03.011; Buckley L. B., 2011, ANNU REV ECOL EVOL S, V43, P205; Burnham KP, 2002, MODEL SELECTION MULT; Carmona-Catot G, 2011, DIVERS DISTRIB, V17, P214, DOI 10.1111/j.1472-4642.2011.00743.x; Clark JS, 2004, ECOLOGY, V85, P3140, DOI 10.1890/03-0520; Comte L, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms6053; Comte L, 2013, FRESHWATER BIOL, V58, P625, DOI 10.1111/fwb.12081; Dail D, 2011, BIOMETRICS, V67, P577, DOI 10.1111/j.1541-0420.2010.01465.x; Dalgleish HJ, 2010, J ECOL, V98, P209, DOI 10.1111/j.1365-2745.2009.01585.x; Davidson AD, 2009, P NATL ACAD SCI USA, V106, P10702, DOI 10.1073/pnas.0901956106; Davies KF, 2004, ECOLOGY, V85, P265, DOI 10.1890/03-0110; Deutsch CA, 2008, P NATL ACAD SCI USA, V105, P6668, DOI 10.1073/pnas.0709472105; Doak DF, 2010, NATURE, V467, P959, DOI 10.1038/nature09439; Doledec S, 2000, ECOLOGY, V81, P2914, DOI 10.1890/0012-9658(2000)081[2914:NSICAA]2.0.CO;2; Dorazio RM, 2016, POPUL ECOL, V58, P31, DOI 10.1007/s10144-015-0503-4; Dray S, 2007, J STAT SOFTW, V22, P1; Festa-Bianchet M, 2003, J ANIM ECOL, V72, P640, DOI 10.1046/j.1365-2656.2003.00735.x; FOWLER CW, 1981, ECOLOGY, V62, P602, DOI 10.2307/1937727; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Freyhof J., 2007, HDB EUROPEAN FRESHWA; Froese R, 2017, FISHBASE; Gelman A, 1996, STAT SINICA, V6, P733; Gelman A, 1992, STAT SCI, V7, P457, DOI DOI 10.1214/SS/1177011136; Goodwin NB, 2006, CAN J FISH AQUAT SCI, V63, P494, DOI 10.1139/f05-234; Grueber CE, 2011, J EVOLUTION BIOL, V24, P699, DOI 10.1111/j.1420-9101.2010.02210.x; Hostetler JA, 2015, ECOLOGY, V96, P1713, DOI 10.1890/14-1487.1; Jeppsson T, 2014, ANIM CONSERV, V17, P332, DOI 10.1111/acv.12099; Jiguet F, 2007, GLOBAL CHANGE BIOL, V13, P1672, DOI 10.1111/j.1365-2486.2007.01386.x; Johnson JB, 2004, TRENDS ECOL EVOL, V19, P101, DOI 10.1016/j.tree.2003.10.013; Julliard R, 2004, GLOBAL CHANGE BIOL, V10, P148, DOI 10.1111/j.1365-2486.2003.00723.x; Knape J, 2011, P ROY SOC B-BIOL SCI, V278, P985, DOI 10.1098/rspb.2010.1333; Kutner M. H., 2005, APPL LINEAR STAT MOD; Lamouroux N, 2002, FRESHWATER BIOL, V47, P1543, DOI 10.1046/j.1365-2427.2002.00879.x; Lande R, 2006, AM NAT, V168, P76, DOI 10.1086/504851; Lawson CR, 2015, ECOL LETT, V18, P724, DOI 10.1111/ele.12437; Le Moigne P., 2002, DESCRIPTION ANAL CHA; Li HN, 2017, COMPUT STAT DATA AN, V107, P107, DOI 10.1016/j.csda.2016.10.008; Linnerud M, 2013, OIKOS, V122, P1207, DOI 10.1111/j.1600-0706.2012.20517.x; Lurgi M, 2012, PHILOS T R SOC B, V367, P3050, DOI 10.1098/rstb.2012.0239; Matias L, 2015, GLOBAL CHANGE BIOL, V21, P882, DOI 10.1111/gcb.12683; Moran EV, 2016, GLOBAL CHANGE BIOL, V22, P137, DOI 10.1111/gcb.13000; Moritz C, 2013, SCIENCE, V341, P504, DOI 10.1126/science.1237190; Morris WF, 2008, ECOLOGY, V89, P19, DOI 10.1890/07-0774.1; NAGELKERKE NJD, 1991, BIOMETRIKA, V78, P691, DOI 10.1093/biomet/78.3.691; Nakagawa S, 2011, BEHAV ECOL SOCIOBIOL, V65, P103, DOI 10.1007/s00265-010-1044-7; Olden JD, 2008, ECOLOGY, V89, P847, DOI 10.1890/06-1864.1; Pacifici M, 2015, NAT CLIM CHANGE, V5, P215, DOI 10.1038/NCLIMATE2448; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Pearson RG, 2014, NAT CLIM CHANGE, V4, P217, DOI [10.1038/nclimate2113, 10.1038/NCLIMATE2113]; Petchey OL, 1999, NATURE, V402, P69, DOI 10.1038/47023; Pinheiro J, 2015, NLME LINEAR NONLINEA; Plummer M., 2014, RJAGS BAYESIAN GRAPH; Plummer M., 2003, P 3 INT WORKSH DISTR, V2, P1, DOI DOI 10.3758/BF03193004; Poulet N, 2011, J FISH BIOL, V79, P1436, DOI 10.1111/j.1095-8649.2011.03084.x; PULLIAM HR, 1988, AM NAT, V132, P652, DOI 10.1086/284880; R Core Team, 2014, R LANG ENV STAT COMP; Reif J, 2010, IBIS, V152, P610, DOI 10.1111/j.1474-919X.2010.01036.x; Ricker W. E., 1958, BULLETIN; Rose KA, 2001, FISH FISH, V2, P293, DOI 10.1046/j.1467-2960.2001.00056.x; Royle JA, 2004, BIOMETRICS, V60, P108, DOI 10.1111/j.0006-341X.2004.00142.x; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Saether BE, 2002, PHILOS T ROY SOC B, V357, P1185, DOI 10.1098/rstb.2002.1119; Saether BE, 2008, J ANIM ECOL, V77, P869, DOI 10.1111/j.1365-2656.2008.01424.x; Schloesser Joshua T., 2012, Endangered Species Research, V16, P211, DOI 10.3354/esr00399; Solymos P, 2012, ENVIRONMETRICS, V23, P197, DOI 10.1002/env.1149; Soudijn FH, 2017, AM NAT, V190, P844, DOI 10.1086/694119; Stoklosa J, 2015, METHODS ECOL EVOL, V6, P412, DOI 10.1111/2041-210X.12217; Su Y-S, 2013, R2JAGS PACKAGE RUNNI; Sunday JM, 2014, P NATL ACAD SCI USA, V111, P5610, DOI 10.1073/pnas.1316145111; Thuiller W, 2005, GLOBAL ECOL BIOGEOGR, V14, P347, DOI 10.1111/j.1466-822x.2005.00162.x; TURCHIN P, 1990, NATURE, V344, P660, DOI 10.1038/344660a0; van de Pol M, 2010, ECOLOGY, V91, P1192; Villellas J, 2015, ECOL LETT, V18, P1139, DOI 10.1111/ele.12505; Voigt W, 2003, ECOLOGY, V84, P2444, DOI 10.1890/02-0266; Walther GR, 2002, NATURE, V416, P389, DOI 10.1038/416389a; Williams CK, 2003, ECOLOGY, V84, P2654, DOI 10.1890/03-0038; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, OIKOS, V63, P318, DOI 10.2307/3545395; Yamahira K, 2002, ECOLOGY, V83, P1252, DOI 10.2307/3071940 89 0 0 0 3 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2150-8925 ECOSPHERE Ecosphere JAN 2018 9 1 e02061 10.1002/ecs2.2061 16 Ecology Environmental Sciences & Ecology FX0JZ WOS:000425731000012 DOAJ Gold, Green Published 2018-11-22 J Montero-Serra, I; Garrabou, J; Doak, DF; Figuerola, L; Hereu, B; Ledoux, JB; Linares, C Montero-Serra, Ignasi; Garrabou, Joaquim; Doak, Daniel F.; Figuerola, Laura; Hereu, Bernat; Ledoux, Jean-Baptiste; Linares, Cristina Accounting for Life-History Strategies and Timescales in Marine Restoration CONSERVATION LETTERS English Article Comparative demography; coral reefs; Corallium rubrum; integral projection models; life-history tradeoffs; octocorals; restoration; Mediterranean sea; transplants MEDITERRANEAN RED CORAL; PRECIOUS CORALS; REEF CORALS; CONSERVATION; TRANSPLANTATION; MANAGEMENT; TRAITS; BIODIVERSITY; RECRUITMENT; POPULATIONS Understanding the drivers of restoration success is a central issue for marine conservation. Here, we explore the role of life-history strategies of sessile marine species in shaping restoration outcomes and their associated timescales. A transplantation experiment for the extremely slow-growing and threatened octocoral Corallium rubrum was highly successful over a relatively short term due to high survival and reproductive potential of the transplanted colonies. However, demographic projections predict that from 30 to 40 years may be required for fully functional C. rubrum populations to develop. More broadly, a comprehensive meta-analysis revealed a negative correlation between survival after transplanting and growth rates among sessile species. As a result, simulated dynamics for a range of marine sessile invertebrates predict that longer recovery times are positively associated with survival rates. These results demonstrate a tradeoff between initial transplantation efforts and the speed of recovery. Transplantation of slow-growing species will tend to require lower initial effort due to higher survival after transplanting, but the period required to fully recover habitat complexity will tend to be far longer. This study highlights the important role of life history as a driver of marine restoration outcomes and shows how demographic knowledge and modeling tools can help managers to anticipate the dynamics and timescales of restored populations. [Montero-Serra, Ignasi; Figuerola, Laura; Hereu, Bernat; Linares, Cristina] Univ Barcelona, Dept Biol Evolut Ecol & Ciencies Ambientals, Avda Diagonal 643, E-08028 Barcelona, Spain; [Garrabou, Joaquim; Ledoux, Jean-Baptiste] CSIC, Inst Ciencias Mar, Passeig Maritim Barceloneta 37-49, E-08003 Barcelona, Spain; [Garrabou, Joaquim] Univ Toulon & Var, Aix Marseille Univ, UM CNRS IRD 110, MIO, Campus Luminy Oceanomed,Batiment Mediterranee, F-13288 Marseille 09, France; [Doak, Daniel F.] Univ Colorado, Environm Studies Program, Boulder, CO 80309 USA; [Ledoux, Jean-Baptiste] Univ Porto, Interdisciplinary Ctr Marine & Environm Res, CIIMAR CIMAR, Rua Bragas 177, P-4050123 Oporto, Portugal Montero-Serra, I (reprint author), Univ Barcelona, Dept Biol Evolut Ecol & Ciencies Ambientals, Avda Diagonal 643, E-08028 Barcelona, Spain. monteroserra@gmail.com Linares, Cristina/0000-0003-3855-2743 Spanish MINECO [CTM2009-08045, CGL2012-32194]; Oak Foundation; TOTAL Foundation Perfect Project; European Union's Horizon research and innovation programme [689518]; FPI grant [BES-2013-066150]; Ramon y Cajal [RyC-2011-08134]; [SFRH/BPD/74400/2010] The authors thank the Agents Rurals de Catalunya for their invaluable work against red coral poaching. We are indebted to A Lorente for his support. We thank E Aspillaga and L Navarro for field assistance. P Capdevila, A Gori, K Kaplan, A Medrano, and two anonymous reviewers provided valuable comments on the manuscript. Funding was provided by the Spanish MINECO (CTM2009-08045 and CGL2012-32194), the Oak Foundation, the TOTAL Foundation Perfect Project, and the European Union's Horizon 2020 research and innovation programme under grant agreement No 689518 (MERCES). This output reflects only the author's view and the European Union cannot be held responsible for any use that may be made of the information contained therein. IMS was supported by a FPI grant (BES-2013-066150), CL by a Ramon y Cajal (RyC-2011-08134), and JBL by a Postdoctoral grant (SFRH/BPD/74400/2010). Authors are part of the Medrecover group (2014SGR1297). Adler PB, 2014, P NATL ACAD SCI USA, V111, P740, DOI 10.1073/pnas.1315179111; Airoldi L, 2007, OCEANOGR MAR BIOL, V45, P345; Bayraktarov E, 2016, ECOL APPL, V26, P1055, DOI 10.1890/15-1077; Bruckner AW, 2014, CURR OPIN ENV SUST, V7, P1, DOI 10.1016/j.cosust.2013.11.024; Bruckner AW, 2009, MAR ECOL PROG SER, V397, P319, DOI 10.3354/meps08110; Bull JW, 2014, CONSERV BIOL, V28, P799, DOI 10.1111/cobi.12243; Cabaitan PC, 2008, J EXP MAR BIOL ECOL, V357, P85, DOI 10.1016/j.jembe.2008.01.001; Cau A., 2013, ADAPTIVE MANAGEMENT; Darling ES, 2012, ECOL LETT, V15, P1378, DOI 10.1111/j.1461-0248.2012.01861.x; Dizon RT, 2006, MAR BIOL, V148, P933, DOI 10.1007/s00227-005-0142-y; DRAP P, 2013, 24 INT CIPA S STRASB, V40, P231; Edgar GJ, 2014, NATURE, V506, P216, DOI 10.1038/nature13022; Edwards A.J., 2007, CORAL REEF TARGETED, P38; Edwards AJ, 1998, MAR POLLUT BULL, V37, P474; Ellner SP, 2006, AM NAT, V167, P410, DOI 10.1086/499438; Garrabou J, 2002, J ANIM ECOL, V71, P966, DOI 10.1046/j.1365-2656.2002.00661.x; Glassom D, 2006, MAR ECOL PROG SER, V318, P111, DOI 10.3354/meps318111; Gomez ED, 2014, RESTOR ECOL, V22, P142, DOI 10.1111/rec.12041; Jackson JBC, 2001, SCIENCE, V293, P629, DOI 10.1126/science.292.5517.629; Kennedy EV, 2013, CURR BIOL, V23, P912, DOI 10.1016/j.cub.2013.04.020; Ledoux JB, 2010, MOL ECOL, V19, P4204, DOI 10.1111/j.1365-294X.2010.04814.x; Linares C, 2008, BIOL CONSERV, V141, P427, DOI 10.1016/j.biocon.2007.10.012; Linares C, 2012, CONSERV BIOL, V26, P88, DOI 10.1111/j.1523-1739.2011.01795.x; Linares C, 2010, MAR ECOL PROG SER, V402, P69, DOI 10.3354/meps08436; Lindenmayer DB, 2009, TRENDS ECOL EVOL, V24, P482, DOI 10.1016/j.tree.2009.03.005; Madin JS, 2016, SCI DATA, V3, DOI 10.1038/sdata.2016.17; Madin JS, 2014, ECOL LETT, V17, P1008, DOI 10.1111/ele.12306; Marba N, 1998, MAR ECOL PROG SER, V174, P269, DOI 10.3354/meps174269; Morris W.F., 2002, QUANTITATIVE CONSERV; Ortiz JC, 2014, NAT CLIM CHANGE, V4, P1090, DOI 10.1038/NCLIMATE2439; Palumbi SR, 2009, FRONT ECOL ENVIRON, V7, P204, DOI 10.1890/070135; Perring MP, 2015, ECOSPHERE, V6, DOI 10.1890/ES15-00121.1; Possingham HP, 2015, PLOS BIOL, V13, DOI 10.1371/journal.pbio.1002052; Precht William F., 2006, P1, DOI 10.1201/9781420003796.ch1; Benayas JMR, 2009, SCIENCE, V325, P1121, DOI 10.1126/science.1172460; Rinkevich B, 2014, CURR OPIN ENV SUST, V7, P28, DOI 10.1016/j.cosust.2013.11.018; Shaish L, 2010, ECOL ENG, V36, P1424, DOI 10.1016/j.ecoleng.2010.06.022; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Tsounis G, 2006, MAR BIOL, V148, P513, DOI 10.1007/s00227-005-0100-8; Tsounis G, 2010, OCEANOGR MAR BIOL, V48, P161, DOI 10.1201/EBK1439821169-c3; Vesk PA, 2008, BIOL CONSERV, V141, P174, DOI 10.1016/j.biocon.2007.09.010 41 3 3 7 10 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1755-263X CONSERV LETT Conserv. Lett. JAN-FEB 2018 11 1 10.1111/conl.12341 9 Biodiversity Conservation Biodiversity & Conservation FV8HA WOS:000424825900003 DOAJ Gold, Green Published 2018-11-22 J Conroy, CW; Calvert, J; Sherwood, GD; Grabowski, JH Conroy, Christian W.; Calvert, Jay; Sherwood, Graham D.; Grabowski, Jonathan H. Distinct responses of sympatric migrant and resident Atlantic cod phenotypes to substrate and temperature at a remote Gulf of Maine seamount ICES JOURNAL OF MARINE SCIENCE English Article Atlantic cod; behaviour; benthic habitat; gadid; Gadus morhua; internal waves; migrant; migration; migratory strategy; partial migration; red cod; resident; substrate; temperature; thermal condition GADUS-MORHUA L.; PARTIAL MIGRATION; PLACOPECTEN-MAGELLANICUS; POPULATION-STRUCTURE; VERTICAL MIGRATION; NORTHWEST ATLANTIC; BROADCAST SPAWNER; FOOD AVAILABILITY; STOCK STRUCTURE; SOCKEYE-SALMON Life-history strategies often vary within motile marine species, affecting morphometry, growth, diet, and fecundity. Atlantic cod (Gadus morhua) in the Gulf of Maine display marked variation in a number of life-history traits, exemplified by differences in body colour. Migratory behaviours are suspected to differ among these colour types, but have yet to be shown definitively. Here, we used the combination of an acoustic telemetry system and fine-scale benthic habitat maps to reveal that the red phenotype cod adhered to an isolated kelp forest covering <2 km(2) of a seamount in the central Gulf of Maine. Meanwhile, the olive phenotype cod adopted diel vertical migratory behaviour, possibly in response to a temperature gradient. Use of shallow, structured habitat was influenced by temperature and may be enabled by dynamic conditions related to internal waves that persist throughout the summer and early fall. Detections decreased in response to changing thermal conditions, although phenotypes reacted to these changes in distinct ways: the olive phenotype abandoned shallow habitat prior to peak summer temperatures, while the red phenotype remained until mid-fall when temperatures and temperature variability declined. Our findings support a link between morphometry, colour, behavioural strategies, and habitat preferences that may be widespread in Atlantic cod. [Conroy, Christian W.; Grabowski, Jonathan H.] Northeastern Univ, Coll Sci, Marine Sci Ctr, Dept Marine & Environm Sci, Nahant, MA 01908 USA; [Calvert, Jay] Univ Ulster, Sch Environm Sci, Ctr Coastal & Marine Res, Cromore Rd, Londonderry BT52 1SA, North Ireland; [Sherwood, Graham D.] Gulf Maine Res Inst, 350 Commercial St, Portland, ME 04101 USA Conroy, CW (reprint author), Northeastern Univ, Coll Sci, Marine Sci Ctr, Dept Marine & Environm Sci, Nahant, MA 01908 USA. conroy.chr@husky.neu.edu American Fisheries Society Marine Fisheries Section's Steven Berkeley Marine Conservation Fellowship This research was generously supported by The American Fisheries Society Marine Fisheries Section's Steven Berkeley Marine Conservation Fellowship. Ames EP, 2004, FISHERIES, V29, P10, DOI 10.1577/1548-8446(2004)29[10:ACSSIT]2.0.CO;2; ARNOLD GP, 1992, ICES J MAR SCI, V49, P357, DOI 10.1093/icesjms/49.3.357; Auster P. J., 2005, P AM ACAD UNDERWATER, P89; Baroarson H., 2017, CANADIAN J FISHERIES, DOI [10.1139/cjfas-2016-0307, DOI 10.1139/CJFAS-2016-0307]; Bjornsson B, 2002, CAN J FISH AQUAT SCI, V59, P494, DOI [10.1139/f02-028, 10.1139/F02-028]; Bjornsson B, 2001, ICES J MAR SCI, V58, P29, DOI 10.1006/jmsc.2000.0986; Bradbury IR, 2008, FISH RES, V91, P299, DOI 10.1016/j.fishres.2007.12.006; Burnham KP, 2002, MODEL SELECTION MULT; Carey JD, 2011, J SHELLFISH RES, V30, P569, DOI 10.2983/035.030.0301; Chapman BB, 2012, J FISH BIOL, V81, P456, DOI 10.1111/j.1095-8649.2012.03342.x; Chapman BB, 2011, OIKOS, V120, P1764, DOI 10.1111/j.1600-0706.2011.20131.x; Cheng Y., 2011, J GEOPHYS RES OCEANS, V116; CLAIREAUX G, 1995, J EXP BIOL, V198, P49; Claireaux G, 2000, J SEA RES, V44, P257, DOI 10.1016/S1385-1101(00)00053-8; Conroy CW, 2015, MAR ECOL PROG SER, V541, P179, DOI 10.3354/meps11474; Cote D, 2004, J FISH BIOL, V64, P665, DOI 10.1046/j.1095-8649.2003.00331.x; Dannevig A., 1953, RAPPORTS PROCES VERB, V136, P7; Dodson JJ, 2013, BIOL REV, V88, P602, DOI 10.1111/brv.12019; Dormann CF, 2013, ECOGRAPHY, V36, P27, DOI 10.1111/j.1600-0587.2012.07348.x; Dunn MR, 2002, J FISH BIOL, V61, P360, DOI 10.1006/jfbi.2002.2039; Espeland SH, 2007, ICES J MAR SCI, V64, P920, DOI 10.1093/icesjms/fsm028; Freitas C., 2015, ECOLOGY EVOLUTION; Freitas C, 2016, J ANIM ECOL, V85, P628, DOI 10.1111/1365-2656.12458; Freitas V, 2010, PHILOS T R SOC B, V365, P3553, DOI 10.1098/rstb.2010.0049; GARRETT C, 1979, ANNU REV FLUID MECH, V11, P339, DOI 10.1146/annurev.fl.11.010179.002011; Goode G. B., 1887, FISHERIES FISHERY IN; Gosse KR, 2004, ICES J MAR SCI, V61, P752, DOI 10.1016/j.icejms.2004.04.003; Grabowski TB, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017528; Green JM, 2000, J MAR BIOL ASSOC UK, V80, P1077, DOI 10.1017/S0025315400003143; HOP H, 1992, ICES J MAR SCI, V49, P453, DOI 10.1093/icesjms/49.4.453; Howe A. B., 2002, TR12 MASS DIV MAR FI, P1; Howell WH, 2008, FISH RES, V91, P123, DOI 10.1016/j.fishres.2007.11.021; Hutchings JA, 1999, CAN J FISH AQUAT SCI, V56, P97, DOI 10.1139/cjfas-56-1-97; Karlsen BO, 2013, MOL ECOL, V22, P5098, DOI 10.1111/mec.12454; Kerr LA, 2010, ICES J MAR SCI, V67, P1631, DOI 10.1093/icesjms/fsq053; Knutsen H, 2007, MAR ECOL PROG SER, V333, P249, DOI 10.3354/meps333249; Kovach AI, 2010, MAR ECOL PROG SER, V410, P177, DOI 10.3354/meps08612; Kuparinen A, 2016, ICES J MAR SCI, V73, P286, DOI 10.1093/icesjms/fsv181; LESSER MP, 1994, BIOL BULL, V187, P319, DOI 10.2307/1542289; LEVY DA, 1990, CAN J FISH AQUAT SCI, V47, P1796, DOI 10.1139/f90-204; Lindholm J, 2003, MAR TECHNOL SOC J, V37, P27, DOI 10.4031/002533203787537401; Lindholm J, 2007, MAR ECOL PROG SER, V342, P239, DOI 10.3354/meps342239; Lokkeborg S, 1999, ENVIRON BIOL FISH, V54, P345, DOI 10.1023/A:1007504712163; Lough R. G., 2004, NMFSNE190; Lundblad E.R., 2006, MAR GEOD, V29, P89, DOI DOI 10.1080/01490410600738021; MACDONALD PDM, 1979, J FISH RES BOARD CAN, V36, P987, DOI 10.1139/f79-137; McGonigle C, 2011, ESTUAR COAST SHELF S, V91, P87, DOI 10.1016/j.ecss.2010.10.016; Methratta ET, 2006, N AM J FISH MANAGE, V26, P473, DOI 10.1577/M05-041.1; Mills KE, 2013, OCEANOGRAPHY, V26, P191, DOI 10.5670/oceanog.2013.27; Morinville GR, 2008, ENVIRON BIOL FISH, V81, P171, DOI 10.1007/s10641-007-9186-9; Morris CJ, 2002, ICES J MAR SCI, V59, P666, DOI 10.1006/jmsc.2002.1228; Nakagawa S, 2013, METHODS ECOL EVOL, V4, P133, DOI 10.1111/j.2041-210x.2012.00261.x; Nathan R, 2008, P NATL ACAD SCI USA, V105, P19052, DOI 10.1073/pnas.0800375105; Neat FC, 2006, MAR BIOL, V148, P643, DOI 10.1007/s00227-005-0110-6; Neat F, 2007, P R SOC B, V274, P789, DOI 10.1098/rspb.2006.0212; Neuenfeldt S, 2013, J FISH BIOL, V82, P741, DOI 10.1111/jfb.12043; NOAA, 2016, STAT 44005; NOAA, 2016, SOL CALC; Palsson OK, 2003, CAN J FISH AQUAT SCI, V60, P1409, DOI 10.1139/F03-117; Pampoulie C, 2008, BEHAV GENET, V38, P76, DOI 10.1007/s10519-007-9175-y; Perkins H. C., 1997, B NATL RES I AQUAC S, V3, P101; Phillips SJ, 2006, ECOL MODEL, V190, P231, DOI 10.1016/j.ecolmodel.2005.03.026; Phillips SJ, 2008, ECOGRAPHY, V31, P161, DOI 10.1111/j.0906-7590.2008.5203.x; Pile AJ, 1996, MAR ECOL PROG SER, V141, P95, DOI 10.3354/meps141095; Pulido F, 2011, OIKOS, V120, P1776, DOI 10.1111/j.1600-0706.2011.19844.x; R Core Team, 2016, R LANG ENV STAT COMP; Rasband WS, 2012, IMAGE J; Ratz HJ, 2003, FISH RES, V60, P369, DOI 10.1016/S0165-7836(02)00132-7; Reubens JT, 2013, FISH RES, V139, P28, DOI 10.1016/j.fishres.2012.10.011; Riley S.J., 1999, INTERMOUNT J SCI, V5, P23; Robichaud D, 2004, FISH FISH, V5, P185, DOI 10.1111/j.1467-2679.2004.00141.x; ROSE GA, 1993, NATURE, V366, P458, DOI 10.1038/366458a0; Ruzzante DE, 2000, J FISH BIOL, V56, P431, DOI 10.1006/jfbi.1999.1168; SAIC, 2005, 05TR017 SAIC; Sherwood GD, 2016, ICES J MAR SCI, V73, P316, DOI 10.1093/icesjms/fsv215; Sherwood GD, 2010, ICES J MAR SCI, V67, P1640, DOI 10.1093/icesjms/fsq094; Skov C, 2011, P ROY SOC B-BIOL SCI, V278, P1414, DOI 10.1098/rspb.2010.2035; Steneck RS, 2002, ENVIRON CONSERV, V29, P436, DOI 10.1017/S0376892902000322; Stokesbury KDE, 2010, J SHELLFISH RES, V29, P369, DOI 10.2983/035.029.0212; Strand E, 2007, CAN J FISH AQUAT SCI, V64, P1747, DOI 10.1139/F07-135; Svedang H, 2006, J FISH BIOL, V69, P151, DOI 10.1111/j.1095-8649.2006.01272.x; Uchupi E, 2008, EARTH-SCI REV, V91, P27, DOI 10.1016/j.earscirev.2008.09.002; VADAS RL, 1988, J PHYCOL, V24, P338; Vemco, 2016, 69 KHZ SEA WAT RANG; Witman J. D., 1988, MAR RESOUR GULF MAIN, V88, P67; Witman JD, 2004, FOOD WEB AT THE LANDSCAPE LEVEL, P133; WITMAN JD, 1987, ECOL MONOGR, V57, P167, DOI 10.2307/1942623; WITMAN JD, 1993, P NATL ACAD SCI USA, V90, P1686, DOI 10.1073/pnas.90.5.1686; WITMAN JD, 1992, OECOLOGIA, V90, P305, DOI 10.1007/BF00317686; WITMAN JD, 1985, ECOL MONOGR, V55, P421, DOI 10.2307/2937130; Woody CA, 2002, J FISH BIOL, V60, P340, DOI 10.1006/jfbi.2001.1842; Wroblewski J, 2005, COAST MANAGE, V33, P411, DOI 10.1080/08920750500217930; Wysujack K, 2009, ECOL FRESHW FISH, V18, P52, DOI 10.1111/j.1600-0633.2008.00322.x; Yoneda M, 2005, ICES J MAR SCI, V62, P1387, DOI 10.1016/j.icesjms.2005.04.018 94 1 1 3 6 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 1054-3139 1095-9289 ICES J MAR SCI ICES J. Mar. Sci. JAN-FEB 2018 75 1 122 134 10.1093/icesjms/fsx101 13 Fisheries; Marine & Freshwater Biology; Oceanography Fisheries; Marine & Freshwater Biology; Oceanography FU8CR WOS:000424080500012 2018-11-22 J Tonkin, JD; Altermatt, F; Finn, DS; Heino, J; Olden, JD; Pauls, SU; Lytle, DA Tonkin, Jonathan D.; Altermatt, Florian; Finn, Debra S.; Heino, Jani; Olden, Julian D.; Pauls, Steffen U.; Lytle, David. A. The role of dispersal in river network metacommunities: Patterns, processes, and pathways FRESHWATER BIOLOGY English Article dendritic ecological networks; dispersal proxy; lotic; metacommunity dynamics; watercourse POPULATION GENETIC-STRUCTURE; FRESH-WATER FISHES; LOCAL ENVIRONMENTAL-FACTORS; ABEDUS-HERBERTI HEMIPTERA; CADDISFLY DRUSUS-DISCOLOR; SPINY MOUNTAIN CRAYFISH; LIFE-HISTORY STRATEGIES; ADULT AQUATIC INSECTS; OVERLAND DISPERSAL; STREAM NETWORKS 1. River networks are hierarchical dendritic habitats embedded within the terrestrial landscape, with varying connectivity between sites depending on their positions along the network. This physical organisation influences the dispersal of organisms, which ultimately affects metacommunity dynamics and biodiversity patterns. 2. We provide a conceptual synthesis of the role of river networks in structuring metacommunities in relation to dispersal processes in riverine ecosystems. We explore where the river network best explains observed metacommunity structure compared to other measurements of physical connectivity. We mostly focus on invertebrates, but also consider other taxonomic groups, including microbes, fishes, plants, and amphibians. 3. Synthesising studies that compared multiple spatial distance metrics, we found that the importance of the river network itself in explaining metacommunity patterns depended on a variety of factors, including dispersal mode (aquatic versus aerial versus terrestrial) and landscape type (arid versus mesic), as well as location- specific factors, such as network connectivity, land use, topographic heterogeneity, and biotic interactions. The river network appears to be less important for strong aerial dispersers and insects in arid systems than for other groups and biomes, but there is considerable variability. Borrowing from other literature, particularly landscape genetics, we developed a conceptual model that predicts that the explanatory power of the river network peaks in mesic systems for obligate aquatic dispersers. 4. We propose directions of future avenues of research, including the use of manipulative field and laboratory experiments that test metacommunity theory in river networks. While field and laboratory experiments have their own benefits and drawbacks (e.g. reality, control, cost), both are powerful approaches for understanding the mechanisms structuring metacommunities, by teasing apart dispersal and niche-related factors. 5. Finally, improving our knowledge of dispersal in river networks will benefit from expanding the breadth of cost-distance modelling to better infer dispersal from observational data; an improved understanding of life-history strategies rather than relying on independent traits; exploring individual-level variation in dispersal through detailed genetic studies; detailed studies on fine-scale environmental (e.g. daily hydrology) and organismal spatiotemporal variability; and synthesising comparative, experimental, and theoretical work. Expanding in these areas will help to push the current state of the science from a largely pattern-detection mode into a new phase of more mechanistically driven research. [Tonkin, Jonathan D.; Lytle, David. A.] Oregon State Univ, Dept Integrat Biol, Corvallis, OR 97331 USA; [Altermatt, Florian] Eawag Swiss Fed Inst Aquat Sci & Technol, Dept Aquat Ecol, Dubendorf, Switzerland; [Altermatt, Florian] Univ Zurich, Dept Evolutionary Biol & Environm Studies, Zurich, Switzerland; [Finn, Debra S.] Missouri State Univ, Dept Biol, Springfield, MO USA; [Heino, Jani] Finnish Environm Inst, Nat Environm Ctr, Biodivers, Oulu, Finland; [Olden, Julian D.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA; [Pauls, Steffen U.] Senckenberg Res Inst, Frankfurt, Germany; [Pauls, Steffen U.] Nat Hist Museum, Frankfurt, Germany Tonkin, JD (reprint author), Oregon State Univ, Dept Integrat Biol, Corvallis, OR 97331 USA. jdtonkin@gmail.com Pauls, Steffen/C-2192-2011 Altermatt, Florian/0000-0002-4831-6958; Tonkin, Jonathan/0000-0002-6053-291X Academy of Finland; Swiss National Science Foundation [PP00P3_150698]; Deutsche Forschungsgemeinschaft [PA 1617/2-1]; U.S. Department of Defense [SERDP RC-2511] Academy of Finland; Swiss National Science Foundation, Grant/Award Number: PP00P3_150698; Deutsche Forschungsgemeinschaft, Grant/Award Number: PA 1617/2-1; U.S. Department of Defense, Grant/Award Number: SERDP RC-2511 Alexander LC, 2011, FRESHWATER BIOL, V56, P1456, DOI 10.1111/j.1365-2427.2010.02566.x; Allan J. D., 2007, STREAM ECOLOGY STRUC; Alp M, 2012, FRESHWATER BIOL, V57, P969, DOI 10.1111/j.1365-2427.2012.02758.x; ALTERMATT F, 2017, FRESHWATER BIOL, V0063; Altermatt F, 2015, METHODS ECOL EVOL, V6, P218, DOI 10.1111/2041-210X.12312; Altermatt F, 2013, J BIOGEOGR, V40, P2249, DOI 10.1111/jbi.12178; Altermatt F, 2013, AQUAT ECOL, V47, P365, DOI 10.1007/s10452-013-9450-3; Baggiano O, 2011, FRESHWATER BIOL, V56, P230, DOI 10.1111/j.1365-2427.2010.02490.x; Balint M, 2011, NAT CLIM CHANGE, V1, P313, DOI 10.1038/NCLIMATE1191; Bilton DT, 2001, ANNU REV ECOL SYST, V32, P159, DOI 10.1146/annurev.ecolsys.32.081501.114016; Blanchet FG, 2008, ECOL MODEL, V215, P325, DOI 10.1016/j.ecolmodel.2008.04.001; Blanchet S, 2014, FRESHWATER BIOL, V59, P450, DOI 10.1111/fwb.12277; Boersma KS, 2014, SOUTHWEST NAT, V59, P301, DOI 10.1894/N09-FRG-07.1; Bohonak AJ, 2003, ECOL LETT, V6, P783, DOI 10.1046/j.1461-0248.2003.00486.x; Bolnick DI, 2011, TRENDS ECOL EVOL, V26, P183, DOI 10.1016/j.tree.2011.01.009; Bonada N, 2009, GLOBAL ECOL BIOGEOGR, V18, P202, DOI 10.1111/j.1466-8238.2008.00434.x; Bostock BM, 2006, BIOL J LINN SOC, V87, P537, DOI 10.1111/j.1095-8312.2006.00587.x; Boumans L., 2016, ECOLOGY EVOLUTION, V7, P1635; Briers RA, 2004, FRESHWATER BIOL, V49, P425, DOI 10.1111/j.1365-2427.2004.01198.x; Briers RA, 2003, ECOL ENTOMOL, V28, P31, DOI 10.1046/j.1365-2311.2003.00480.x; BRITTAIN JE, 1988, HYDROBIOLOGIA, V166, P77, DOI 10.1007/BF00017485; Brown B., 2017, FRESHWATER BIOL, V63, P48; Brown BL, 2010, J ANIM ECOL, V79, P571, DOI 10.1111/j.1365-2656.2010.01668.x; Brown BL, 2017, OECOLOGIA, V183, P643, DOI 10.1007/s00442-016-3792-1; Brown BL, 2011, J N AM BENTHOL SOC, V30, P310, DOI 10.1899/10-129.1; Bunn SE, 1997, J N AM BENTHOL SOC, V16, P338, DOI 10.2307/1468022; Bush A, 2017, FRESHWATER BIOL, V62, P382, DOI 10.1111/fwb.12874; Campbell R., 2010, THESIS; Canedo-Arguelles M, 2015, J BIOGEOGR, V42, P778, DOI 10.1111/jbi.12457; Carrara F, 2014, AM NAT, V183, P13, DOI 10.1086/674009; Carrara F, 2012, P NATL ACAD SCI USA, V109, P5761, DOI 10.1073/pnas.1119651109; Carraro L., 2017, FRESHWATER BIOL, V63, P114; Chester ET, 2015, FRESHWATER BIOL, V60, P2066, DOI 10.1111/fwb.12630; Chester ET, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0091925; Clarke A, 2008, FRESHWATER BIOL, V53, P1707, DOI 10.1111/j.1365-2427.2008.02041.x; Clarke A, 2010, DIVERS DISTRIB, V16, P725, DOI 10.1111/j.1472-4642.2010.00692.x; Collier KJ, 1998, HYDROBIOLOGIA, V361, P53; Coughlan NE, 2017, FRESHWATER BIOL, V62, P631, DOI 10.1111/fwb.12894; Couto T. B. A., 2017, CANADIAN J FISHERIES; Crook DA, 2015, SCI TOTAL ENVIRON, V534, P52, DOI 10.1016/j.scitotenv.2015.04.034; Datry T, 2016, OIKOS, V125, P149, DOI 10.1111/oik.02922; Datry T, 2016, FRESHWATER BIOL, V61, P277, DOI 10.1111/fwb.12702; Declerck SAJ, 2011, ECOGRAPHY, V34, P296, DOI 10.1111/j.1600-0587.2010.06462.x; Dexter KG, 2012, P NATL ACAD SCI USA, V109, P7787, DOI 10.1073/pnas.1203523109; Dias MS, 2013, ECOGRAPHY, V36, P683, DOI 10.1111/j.1600-0587.2012.07724.x; Didham RK, 2012, FUND APPL LIMNOL, V180, P27, DOI 10.1127/1863-9135/2012/0243; Dillon RT., 2004, ECOLOGY FRESHWATER M; Dong X., 2016, SCI REPORTS, V6, P1; Downes BJ, 2017, J APPL ECOL, V54, P588, DOI 10.1111/1365-2664.12759; Downes BJ, 2010, J ANIM ECOL, V79, P235, DOI 10.1111/j.1365-2656.2009.01620.x; Dudgeon D, 2006, BIOL REV, V81, P163, DOI 10.1017/S1464793105006950; Economo EP, 2011, AM NAT, V177, pE167, DOI 10.1086/659946; Eros T, 2017, FRESHWATER BIOL, V62, P215, DOI 10.1111/fwb.12857; Fausch KD, 2002, BIOSCIENCE, V52, P483, DOI 10.1641/0006-3568(2002)052[0483:LTRBTG]2.0.CO;2; Finn DS, 2007, FRESHWATER BIOL, V52, P1881, DOI 10.1111/j.1365-2427.2007.01813.x; Finn DS, 2006, MOL ECOL, V15, P3553, DOI 10.1111/j.1365-294X.2006.03034.x; Finn DS, 2016, FRESHWATER BIOL, V61, P702, DOI 10.1111/fwb.12740; Finn DS, 2011, J N AM BENTHOL SOC, V30, P963, DOI 10.1899/11-012.1; Finn DS, 2011, J N AM BENTHOL SOC, V30, P273, DOI 10.1899/10-035.1; Finn DS, 2008, ARCT ANTARCT ALP RES, V40, P638, DOI 10.1657/1523-0430(07-072)[FINN]2.0.CO;2; Fourtune L, 2016, FRESHWATER BIOL, V61, P1830, DOI 10.1111/fwb.12826; Fraser DF, 1999, ECOLOGY, V80, P597, DOI 10.1890/0012-9658(1999)080[0597:HQIAHR]2.0.CO;2; Fronhofer E. A., 2017, ECOGRAPHY, V40; Fronhofer EA, 2015, ECOL LETT, V18, P954, DOI 10.1111/ele.12475; Garcia RA, 2014, SCIENCE, V344, P486, DOI 10.1126/science.1247579; Geismar J, 2015, FRESHWATER BIOL, V60, P209, DOI 10.1111/fwb.12489; Gilliam JF, 2001, ECOLOGY, V82, P258, DOI 10.2307/2680101; Gothe E, 2013, J ANIM ECOL, V82, P449, DOI 10.1111/1365-2656.12004; Grant EHC, 2007, ECOL LETT, V10, P165, DOI 10.1111/j.1461-0248.2006.01007.x; Gronroos M, 2013, ECOL EVOL, V3, P4473, DOI 10.1002/ece3.834; Haase P., 2015, PEERJ PREPRINTS, V3; Heino J, 2008, ECOL ENTOMOL, V33, P614, DOI 10.1111/j.1365-2311.2008.01012.x; Heino J, 2017, ENVIRON REV, V25, P334, DOI 10.1139/er-2016-0110; Heino J, 2015, ECOL EVOL, V5, P1235, DOI 10.1002/ece3.1439; Heino J, 2015, FRESHWATER BIOL, V60, P845, DOI 10.1111/fwb.12533; Heino J, 2014, CURR OPIN INSECT SCI, V2, P7, DOI 10.1016/j.cois.2014.06.002; Heino J, 2013, BIOL REV, V88, P166, DOI 10.1111/j.1469-185X.2012.00244.x; Heino J, 2012, OIKOS, V121, P537, DOI 10.1111/j.1600-0706.2011.19715.x; Helton A., 2017, FRESHWATER BIOL, V63, P128; Hering D, 2009, AQUAT SCI, V71, P3, DOI 10.1007/s00027-009-9159-5; HERSHEY AE, 1993, ECOLOGY, V74, P2315, DOI 10.2307/1939584; Holyoak M., 2005, METACOMMUNITIES SPAT; Hoppeler F, 2016, FRESHWATER BIOL, V61, P1905, DOI 10.1111/fwb.12824; Hughes JM, 2009, BIOSCIENCE, V59, P573, DOI 10.1525/bio.2009.59.7.8; Jacobson B, 2010, LANDSCAPE ECOL, V25, P495, DOI 10.1007/s10980-009-9442-9; Jaeger KL, 2012, RIVER RES APPL, V28, P1843, DOI 10.1002/rra.1554; Jaeger KL, 2014, P NATL ACAD SCI USA, V111, P13894, DOI 10.1073/pnas.1320890111; Jamoneau A., 2017, FRESHWATER BIOL, V63, P62; Johansson ME, 1996, J VEG SCI, V7, P593, DOI 10.2307/3236309; JUNK W J, 1989, Canadian Special Publication of Fisheries and Aquatic Sciences, V106, P110; Karna OM, 2015, J ANIM ECOL, V84, P1342, DOI 10.1111/1365-2656.12397; Khazan ES, 2014, BIOL CONSERV, V177, P117, DOI 10.1016/j.biocon.2014.06.006; Kuglerova L, 2015, ECOLOGY, V96, P381, DOI 10.1890/14-0552.1; Kuusela K, 1996, ECOL ENTOMOL, V21, P171, DOI 10.1111/j.1365-2311.1996.tb01184.x; Lancaster J, 2013, AQUATIC ENTOMOLOGY, P1, DOI 10.1093/acprof:oso/9780199573219.001.0001; Lancaster J, 2017, OECOLOGIA, V184, P171, DOI 10.1007/s00442-017-3856-x; Lancaster J, 2017, ECOLOGY, V98, P565, DOI [10.1002/ecy.1671/suppinfo, 10.1002/ecy.1671]; Landeiro VL, 2011, FRESHWATER BIOL, V56, P1184, DOI 10.1111/j.1365-2427.2010.02563.x; Lawton JH, 1999, OIKOS, V84, P177, DOI 10.2307/3546712; Le Pichon C, 2009, ENVIRONMETRICS, V20, P512, DOI 10.1002/env.948; Legendre P, 2005, ECOL MONOGR, V75, P435, DOI 10.1890/05-0549; Leibold MA, 2004, ECOL LETT, V7, P601, DOI 10.1111/j.1461-0248.2004.00608.x; Leys M, 2017, MOL ECOL, V26, P1670, DOI 10.1111/mec.14026; Li F., 2015, PEERJ PREPRINTS, V3, pe1125, DOI DOI 10.7287/PEERJ.PREPRINTS.911V1; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Logue JB, 2011, TRENDS ECOL EVOL, V26, P482, DOI 10.1016/j.tree.2011.04.009; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; Lytle DA, 1999, J INSECT BEHAV, V12, P1, DOI 10.1023/A:1020940012775; Lytle DA, 2008, P R SOC B, V275, P453, DOI 10.1098/rspb.2007.1157; Macneale KH, 2005, FRESHWATER BIOL, V50, P1117, DOI 10.1111/j.1365-2427.2005.01387.x; Maloney KO, 2011, ECOGRAPHY, V34, P287, DOI 10.1111/j.1600-0587.2010.06518.x; Marques M, 2015, HYDROBIOLOGIA, V742, P81, DOI 10.1007/s10750-014-1968-4; Marquet PA, 2004, Frontiers of Biogeography: New Directions in the Geography of Nature, P191; McRae BH, 2006, EVOLUTION, V60, P1551, DOI 10.1111/j.0014-3820.2006.tb00500.x; MEFFE G K, 1988, Conservation Biology, V2, P157, DOI 10.1111/j.1523-1739.1988.tb00167.x; Miller MP, 2002, FRESHWATER BIOL, V47, P1660, DOI 10.1046/j.1365-2427.2002.00911.x; Miller WL, 2015, ECOSPHERE, V6, DOI 10.1890/ES15-00302.1; Mims MC, 2010, ECOL FRESHW FISH, V19, P390, DOI 10.1111/j.1600-0633.2010.00422.x; Mims MC, 2015, ECOLOGY, V96, P1371, DOI 10.1890/14-0490.1; Moran-Ordonez A, 2015, DIVERS DISTRIB, V21, P1230, DOI 10.1111/ddi.12342; Morrissey MB, 2009, AM NAT, V174, P875, DOI 10.1086/648311; Mossop KD, 2015, J BIOGEOGR, V42, P2374, DOI 10.1111/jbi.12596; MULLER K, 1982, OECOLOGIA, V52, P202, DOI 10.1007/BF00363837; Muller K., 1954, Report Institute of Freshwater Research Drottningholm, P133; Muneepeerakul R, 2008, NATURE, V453, P220, DOI 10.1038/nature06813; Murphy AL, 2015, ECOL EVOL, V5, P5252, DOI 10.1002/ece3.1741; Murphy NP, 2010, FRESHWATER BIOL, V55, P2499, DOI 10.1111/j.1365-2427.2010.02479.x; Murria C, 2013, FRESHWATER BIOL, V58, P2226, DOI 10.1111/fwb.12204; O'Connor MI, 2012, GLOBAL ECOL BIOGEOGR, V21, P693, DOI 10.1111/j.1466-8238.2011.00713.x; Olden JD, 2001, OECOLOGIA, V127, P572, DOI 10.1007/s004420000620; Olden JD, 2006, ECOL MONOGR, V76, P25, DOI 10.1890/05-0330; Olden JD, 2016, CONSERV BIOL SER, P107; Olden JD, 2010, DIVERS DISTRIB, V16, P496, DOI 10.1111/j.1472-4642.2010.00655.x; Padial AA, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0111227; Pauls SU, 2006, MOL ECOL, V15, P2153, DOI 10.1111/j.1365-294X.2006.02916.x; Petersen I, 2004, J APPL ECOL, V41, P934, DOI 10.1111/j.0021-8901.2004.00942.x; Petersen I, 1999, FRESHWATER BIOL, V42, P401, DOI 10.1046/j.1365-2427.1999.00466.x; Peterson EE, 2007, FRESHWATER BIOL, V52, P267, DOI 10.1111/j.1365-2427.2006.01686.x; Peterson EE, 2013, ECOL LETT, V16, P707, DOI 10.1111/ele.12084; Phillipsen IC, 2015, MOL ECOL, V24, P54, DOI 10.1111/mec.13003; Phillipsen IC, 2013, ECOGRAPHY, V36, P731, DOI 10.1111/j.1600-0587.2012.00002.x; Poff NL, 2006, J N AM BENTHOL SOC, V25, P730, DOI 10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2; Poff NL, 1997, J N AM BENTHOL SOC, V16, P391, DOI 10.2307/1468026; Ponniah M, 2006, MAR FRESHWATER RES, V57, P349, DOI 10.1071/MF05172; Ponniah M, 2004, EVOLUTION, V58, P1073; Radinger J, 2014, FISH FISH, V15, P456, DOI 10.1111/faf.12028; Ramalho RO, 2015, HYDROBIOLOGIA, V746, P135, DOI 10.1007/s10750-014-2052-9; Razeng E, 2017, FRESHWATER BIOL, V62, P1443, DOI 10.1111/fwb.12959; Razeng E, 2016, FRESHWATER BIOL, V61, P745, DOI 10.1111/fwb.12744; Rodriguez-Iturbe I., 2001, FRACTAL RIVER BASINS; Rodriguez-Iturbe R., 2009, WATER RESOUR RES, V45, P1; Sarremejane R, 2017, FRESHWATER BIOL, V62, P1073, DOI 10.1111/fwb.12926; Sauer J, 2011, BIODIVERS CONSERV, V20, P3133, DOI 10.1007/s10531-011-0140-y; Schmera D., 2017, FRESHWATER BIOL, V63, P74; Schmidt-Kloiber A, 2015, ECOL INDIC, V53, P271, DOI 10.1016/j.ecolind.2015.02.007; Schmiedel D, 2013, FOREST ECOL MANAG, V304, P437, DOI 10.1016/j.foreco.2013.04.027; Schriever TA, 2015, FRESHW SCI, V34, P399, DOI 10.1086/680518; Seymour M, 2016, FRESHWATER BIOL, V61, P1819, DOI 10.1111/fwb.12816; Seymour M, 2015, OIKOS, V124, P908, DOI 10.1111/oik.02354; Shama LNS, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-278; Sheldon F, 2010, MAR FRESHWATER RES, V61, P885, DOI 10.1071/MF09239; Short AEZ, 2009, MOL ECOL, V18, P403, DOI 10.1111/j.1365-294X.2008.04039.x; Shurin JB, 2009, OECOLOGIA, V159, P151, DOI 10.1007/s00442-008-1174-z; SIH A, 1982, ECOLOGY, V63, P786, DOI 10.2307/1936799; Siqueira T, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0043626; Spear SF, 2010, MOL ECOL, V19, P3576, DOI 10.1111/j.1365-294X.2010.04657.x; Stanford J. A., 1988, NATURE, V336, P403; STANFORD JA, 1993, J N AM BENTHOL SOC, V12, P48, DOI 10.2307/1467685; Stocker T. F., 2013, CONTRIBUTION WORKING; TACHET H, 2000, INVERTEBRES EAU DOUC; TAYLOR PD, 1993, OIKOS, V68, P571, DOI 10.2307/3544927; Teslenko VA, 2012, ZOOTAXA, P1; Theissinger K, 2013, J BIOGEOGR, V40, P236, DOI 10.1111/j.1365-2699.2012.02793.x; Thompson PL, 2017, NAT ECOL EVOL, V1, DOI 10.1038/s41559-017-0162; Thompson R, 2006, J ANIM ECOL, V75, P476, DOI 10.1111/j.1365-2656.2006.01068.x; Tonkin J. D., 2016, BIORXIV; Tonkin JD, 2017, ECOLOGY, V98, P1201, DOI 10.1002/ecy.1761; Tonkin JD, 2017, J BIOGEOGR, V44, P62, DOI 10.1111/jbi.12895; Tonkin JD, 2016, OIKOS, V125, P686, DOI 10.1111/oik.02717; Tonkin JD, 2016, FRESHWATER BIOL, V61, P607, DOI 10.1111/fwb.12728; Tonkin JD, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0135450; Tonkin JD, 2014, FRESHWATER BIOL, V59, P1843, DOI 10.1111/fwb.12387; TOWNSEND CR, 1991, OIKOS, V61, P347, DOI 10.2307/3545242; Tuomisto H, 2006, ECOLOGY, V87, P2697, DOI 10.1890/0012-9658(2006)87[2697:AOEBDU]2.0.CO;2; Van Leeuwen CHA, 2013, FRESHWATER BIOL, V58, P88, DOI 10.1111/fwb.12041; Vander Vorste R, 2016, FRESHWATER BIOL, V61, P1276, DOI 10.1111/fwb.12658; VANNOTE RL, 1980, CAN J FISH AQUAT SCI, V37, P130, DOI 10.1139/f80-017; Vellend M, 2005, AM NAT, V166, P199, DOI 10.1086/431318; Vellend M, 2014, OIKOS, V123, P1420, DOI 10.1111/oik.01493; Vellend M, 2010, Q REV BIOL, V85, P183, DOI 10.1086/652373; Ver Hoef JM, 2006, ENVIRON ECOL STAT, V13, P449, DOI 10.1007/s10651-006-0022-8; Verberk WCEP, 2013, FRESHW SCI, V32, P531, DOI 10.1899/12-092.1; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1722, DOI 10.1111/j.1365-2427.2008.02035.x; Walther AC, 2008, J FRESHWATER ECOL, V23, P337, DOI 10.1080/02705060.2008.9664207; WARD JV, 1994, HYDROBIOLOGIA, V287, P147, DOI 10.1007/BF00006903; Wiberg-Larsen P., 2004, THESIS; Wilcock HR, 2007, FRESHWATER BIOL, V52, P1907, DOI 10.1111/j.1365-2427.2007.01818.x; Winegardner AK, 2012, TRENDS ECOL EVOL, V27, P253, DOI 10.1016/j.tree.2012.01.007; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Woodward G, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2015.0274; Wubs ERJ, 2016, FRESHWATER BIOL, V61, P580, DOI 10.1111/fwb.12736; Zeller KA, 2012, LANDSCAPE ECOL, V27, P777, DOI 10.1007/s10980-012-9737-0; Zhang Y, 2014, AQUAT BIOL, V20, P185, DOI 10.3354/ab00560 203 10 10 35 59 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0046-5070 1365-2427 FRESHWATER BIOL Freshw. Biol. JAN 2018 63 1 SI 141 163 10.1111/fwb.13037 23 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology FT6RG WOS:000423280700012 Green Published, Bronze Y N 2018-11-22 J Gray, LJ; Simpson, SJ; Polak, M Gray, Lindsey J.; Simpson, Stephen J.; Polak, Michal Fruit flies may face a nutrient-dependent life-history trade-off between secondary sexual trait quality, survival and developmental rate JOURNAL OF INSECT PHYSIOLOGY English Article Drosophila melanogaster; Life-history; Nutrition; Sexual selection; Geometric framework DROSOPHILA-MELANOGASTER; FLUCTUATING ASYMMETRY; HANDICAP PRINCIPLE; IMMUNOCOMPETENCE HANDICAP; CARBOHYDRATE INTAKE; GENETIC-VARIATION; MATING SUCCESS; MATE CHOICE; GROWTH-RATE; SELECTION Optimal life-history strategies are those that best allocate finite environmental resources to competing traits. We used the geometric framework for nutrition to evaluate life-history strategies followed by Drosophila melanogaster by measuring the condition-dependent performance of life-history traits, including the morphology of male secondary sexual characters, sex combs. We found that depending on their rearing environment flies faced different forms of trait trade-offs and accordingly followed different life-history strategies. High-energy, high carbohydrate, low-protein diets supported development of the largest and most symmetrical sex combs, however, consistent with handicap models of sexual selection these foods were associated with reduced fly survival and developmental rate. Expressing the highest quality sex combs may have required secondary sexual trait quality to be traded-off with developmental rate, and our results indicated that flies unable to slow development died. As larval nutritional environments are predominantly determined by female oviposition substrate choice, we tested where mated female flies laid the most eggs. Mothers chose high-energy, high-protein foods associated with rapid larval development. Mothers avoided high-carbohydrate foods associated with maximal sex comb expression, showing they may avoid producing fewer 'sexy' sons in favour of producing offspring that develop rapidly. [Gray, Lindsey J.; Simpson, Stephen J.] Univ Sydney, Sch Life & Environm Sci, Charles Perkins Ctr, Sydney, NSW 2006, Australia; [Polak, Michal] Univ Cincinnati, Dept Biol Sci, Cincinnati, OH 45221 USA Gray, LJ (reprint author), Univ Sydney, Sch Life & Environm Sci, Charles Perkins Ctr, Sydney, NSW 2006, Australia. lindsey.gray@sydney.edu.au; stephen.simpson@sydney.edu.au; michal.polak@uc.edu CSIRO Office of the Chief Executive PhD studentship Thank you to Matt Renner for his singular assistance. Thank you also to Viet Pham, Tanja von Behrens, John Hunt, Alistair Senior and our anonymous reviewers for their assistance, it is sincerely appreciated. LJG was funded through a CSIRO Office of the Chief Executive PhD studentship. Ahuja A, 2011, GENETICA, V139, P505, DOI 10.1007/s10709-011-9572-2; de Carvalho MJA, 2017, ANIM BEHAV, V126, P195, DOI 10.1016/j.anbehav.2017.02.005; ANDERSSON M, 1982, BIOL J LINN SOC, V17, P375, DOI 10.1111/j.1095-8312.1982.tb02028.x; Andersson M., 1994, SEXUAL SELECTION; Andersson M, 2006, TRENDS ECOL EVOL, V21, P296, DOI 10.1016/j.tree.2006.03.015; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Berglund A, 1996, BIOL J LINN SOC, V58, P385, DOI 10.1111/j.1095-8312.1996.tb01442.x; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; Bunning H, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2144; CALOW P, 1982, AM NAT, V120, P416, DOI 10.1086/284001; CHAPMAN T, 1995, NATURE, V373, P241, DOI 10.1038/373241a0; Chen S, 2002, P NATL ACAD SCI USA, V99, P5664, DOI 10.1073/pnas.082102599; Cotton S, 2004, P ROY SOC B-BIOL SCI, V271, P771, DOI 10.1098/rspb.2004.2688; De Block M, 2005, ECOLOGY, V86, P185, DOI 10.1890/04-0116; Dickson BJ, 2008, SCIENCE, V322, P904, DOI 10.1126/science.1159276; Dongen SV, 2006, J EVOLUTION BIOL, V19, P1727, DOI 10.1111/j.1420-9101.2006.01175.x; Eberhard WG, 1985, SEXUAL SELECTION ANI; Emlen DJ, 2008, ANNU REV ECOL EVOL S, V39, P387, DOI 10.1146/annurev.ecolsys.39.110707.173502; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Giery ST, 2015, AM NAT, V186, P187, DOI 10.1086/682068; GRAFEN A, 1990, J THEOR BIOL, V144, P517, DOI 10.1016/S0022-5193(05)80088-8; HANSEN AJ, 1986, ANIM BEHAV, V34, P69, DOI 10.1016/0003-3472(86)90007-2; HEISLER IL, 1984, EVOLUTION, V38, P1283, DOI 10.1111/j.1558-5646.1984.tb05650.x; Hill GE, 2015, EVOL BIOL, V42, P251, DOI 10.1007/s11692-015-9331-x; House CM, 2016, FUNCT ECOL, V30, P769, DOI 10.1111/1365-2435.12567; Hoyer SC, 2008, CURR BIOL, V18, P159, DOI 10.1016/j.cub.2007.12.052; Hurtado-Gonzales JL, 2015, ETHOLOGY, V121, P45, DOI 10.1111/eth.12316; JARVI T, 1990, ETHOLOGY, V84, P123; Jennions MD, 2001, Q REV BIOL, V76, P3, DOI 10.1086/393743; Jensen K, 2015, AGING CELL, V14, P605, DOI 10.1111/acel.12333; Johansson F, 2001, ECOLOGY, V82, P1857, DOI 10.1890/0012-9658(2001)082[1857:LHPIAD]2.0.CO;2; JOHNSTONE RA, 1995, BIOL REV, V70, P1, DOI 10.1111/j.1469-185X.1995.tb01439.x; Jones SD, 2015, ZOOLOGY, V118, P439, DOI 10.1016/j.zool.2015.07.003; Keleman K, 2012, NATURE, V489, P145, DOI 10.1038/nature11345; Khila A, 2012, SCIENCE, V336, P585, DOI 10.1126/science.1217258; KODRICBROWN A, 1989, BEHAV ECOL SOCIOBIOL, V25, P393, DOI 10.1007/BF00300185; Kokko H, 1998, EVOL ECOL, V12, P739, DOI 10.1023/A:1006541701002; Kopp A, 2002, EVOL DEV, V4, P278, DOI 10.1046/j.1525-142X.2002.02017.x; KRAAIJEVELD AR, 1994, ECOL ENTOMOL, V19, P221, DOI 10.1111/j.1365-2311.1994.tb00413.x; Lee KP, 2004, J INSECT PHYSIOL, V50, P1171, DOI 10.1016/j.jinsphys.2004.10.009; Lee KP, 2008, P NATL ACAD SCI USA, V105, P2498, DOI 10.1073/pnas.0710787105; Lihoreau M, 2016, J EXP BIOL, V219, P2514, DOI 10.1242/jeb.142257; Markow TA, 1996, ANIM BEHAV, V52, P759, DOI 10.1006/anbe.1996.0220; MERILA J, 1995, SYST BIOL, V44, P97, DOI 10.2307/2413486; MOLLER AP, 1990, ANIM BEHAV, V40, P1185, DOI 10.1016/S0003-3472(05)80187-3; Morimoto J., 2016, SCI REP; Morris MR, 2012, FUNCT ECOL, V26, P723, DOI 10.1111/j.1365-2435.2012.01983.x; ODUM HT, 1955, AM SCI, V43, P331; Palmer A. Richard, 2003, P279; PALMER AR, 1986, ANNU REV ECOL SYST, V17, P391, DOI 10.1146/annurev.es.17.110186.002135; Panhuis TM, 2001, TRENDS ECOL EVOL, V16, P364, DOI 10.1016/S0169-5347(01)02160-7; Piper MDW, 2015, NAT METHODS, V12, P1098, DOI 10.1038/nmeth1115-1098d; Polak M, 2004, EVOLUTION, V58, P597, DOI 10.1111/j.0014-3820.2004.tb01682.x; Polak M, 2012, J EVOLUTION BIOL, V25, P277, DOI 10.1111/j.1420-9101.2011.02429.x; Polak M., 2003, DEV INSTABILITY CAUS; Polak M, 2007, P R SOC B, V274, P3133, DOI 10.1098/rspb.2007.1272; Polak M, 2016, BEHAV ECOL, V27, P444, DOI 10.1093/beheco/arv174; Polak M, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2012.1081; Polak M, 2009, BEHAV ECOL, V20, P753, DOI 10.1093/beheco/arp056; Prokop ZM, 2016, EVOLUTION, V70, P913, DOI 10.1111/evo.12898; Rapkin J, 2016, J EVOLUTION BIOL, V29, P395, DOI 10.1111/jeb.12794; Raubenheimer D, 2009, INTEGR COMP BIOL, V49, P329, DOI 10.1093/icb/icp050; Reddiex AJ, 2013, AM NAT, V182, P91, DOI 10.1086/670649; Refsnider JM, 2010, ANNU REV ECOL EVOL S, V41, P39, DOI 10.1146/annurev-ecolsys-102209-144712; REZNICK D, 1983, ECOLOGY, V64, P862, DOI 10.2307/1937209; Roberts ML, 2004, ANIM BEHAV, V68, P227, DOI 10.1016/j.anbehav.2004.05.001; Robinson BW, 2002, ENVIRON BIOL FISH, V63, P67, DOI 10.1023/A:1013820101348; Rodrigues MA, 2015, J INSECT PHYSIOL, V81, P69, DOI 10.1016/j.jinsphys.2015.07.002; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; Roulin A, 2016, BIOL REV, V91, P328, DOI 10.1111/brv.12171; Rowe L, 1996, P ROY SOC B-BIOL SCI, V263, P1415, DOI 10.1098/rspb.1996.0207; Schilder RJ, 2006, P NATL ACAD SCI USA, V103, P18805, DOI 10.1073/pnas.0603156103; Sentinella AT, 2013, FUNCT ECOL, V27, P1134, DOI 10.1111/1365-2435.12104; Sharma MD, 2011, BIOL J LINN SOC, V103, P923, DOI 10.1111/j.1095-8312.2011.01709.x; SIBLY R, 1984, J THEOR BIOL, V111, P463, DOI 10.1016/S0022-5193(84)80234-9; Simmons LW, 1995, BEHAV ECOL, V6, P376, DOI 10.1093/beheco/6.4.376; Simpson SJ, 2002, J EXP BIOL, V205, P121; Simpson SJ, 2012, NATURE NUTR UNIFYING; Skorupa DA, 2008, AGING CELL, V7, P478, DOI 10.1111/j.1474-9726.2008.00400.x; SOKOLOWSKI MB, 1987, CAN J ZOOL, V65, P461, DOI 10.1139/z87-071; SOKOLOWSKI MB, 1985, J INSECT PHYSIOL, V31, P857, DOI 10.1016/0022-1910(85)90103-9; Sokolowski MB, 2001, NAT REV GENET, V2, P879, DOI 10.1038/35098592; South SH, 2011, EVOLUTION, V65, P1594, DOI 10.1111/j.1558-5646.2011.01233.x; SPIESS EB, 1981, P NATL ACAD SCI-BIOL, V78, P3088, DOI 10.1073/pnas.78.5.3088; Stearns S., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Suzuki K, 1997, APPL ENTOMOL ZOOL, V32, P235, DOI 10.1303/aez.32.235; THOMPSON JN, 1988, ENTOMOL EXP APPL, V47, P3, DOI 10.1111/j.1570-7458.1988.tb02275.x; Thompson SN, 2003, J COMP PHYSIOL B, V173, P149, DOI 10.1007/s00360-002-0322-8; Tomkins JL, 2004, TRENDS ECOL EVOL, V19, P323, DOI 10.1016/j.tree.2004.03.029; Uller T, 2008, TRENDS ECOL EVOL, V23, P432, DOI 10.1016/j.tree.2008.04.005; Vonesh JR, 2006, ECOLOGY, V87, P556, DOI 10.1890/05-0930; Waddington C. H., 1957, STRATEGY GENES; Warbrick-Smith J, 2006, P NATL ACAD SCI USA, V103, P14045, DOI 10.1073/pnas.0605225103; ZAHAVI A, 1977, J THEOR BIOL, V67, P603, DOI 10.1016/0022-5193(77)90061-3; ZAHAVI A, 1975, J THEOR BIOL, V53, P205, DOI 10.1016/0022-5193(75)90111-3; Zeller M, 2016, ECOL EVOL, V6, P552, DOI 10.1002/ece3.1888 97 1 1 6 14 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0022-1910 1879-1611 J INSECT PHYSIOL J. Insect Physiol. JAN 2018 104 60 70 10.1016/j.jinsphys.2017.11.010 11 Entomology; Physiology; Zoology Entomology; Physiology; Zoology FT2XI WOS:000423008900008 29203178 2018-11-22 J Parsons, KT; Maisano, J; Gregg, J; Cotton, CF; Latour, RJ Parsons, K. T.; Maisano, J.; Gregg, J.; Cotton, C. F.; Latour, R. J. Age and growth assessment of western North Atlantic spiny butterfly ray Gymnura altavela (L. 1758) using computed tomography of vertebral centra ENVIRONMENTAL BIOLOGY OF FISHES English Article Myliobatiformes; Gymnuridae; HRXCT; Growth coefficient; Logistic growth model GULF-OF-MEXICO; REPRODUCTIVE-BIOLOGY; LIFE-HISTORY; ISKENDERUN BAY; SANDBAR SHARK; BATOIDS; MATURITY; STINGRAY; SKATES; CHONDRICHTHYES Life history strategies of batoid fishes have evolved within dynamic marine ecosystems. Adaptations in reproductive and developmental biology are paramount to the survival of species, and therefore knowledge of growth rates to maturity is fundamental for identifying constraints on the conservation of populations. The butterfly rays (Myliobatiformes: Gymnuridae) are highly derived batoids with generally low reproductive potentials for which age and growth information remains unknown. In this study we applied high-resolution X-ray computed tomography (HRXCT) to vertebral centra from a stingray for the first time to estimate age, and used a multimodel approach to investigate growth of spiny butterfly ray, Gymnura altavela. Estimated ages of the oldest male and female were 11 and 18 yrs. at disk widths (WD) 1355 mm and 2150 mm, respectively. Disk width-at-age data were analyzed using three growth models (von Bertalanffy, logistic, Gompertz), and the most parsimonious and empirically supported model was the logistic function with sex treated as a fixed effect on asymptotic disk width (WD infinity) and k parameters. Model parameter estimates were (males) WD infinity = 1285.46 +/- 67.27 mm, k = 0.60 +/- 0.10, and (females) WD infinity = 2173.51 +/- 129.78 mm, k = 0.27 +/- 0.04. Results indicated sexually dimorphic growth patterns, with males growing faster and reaching asymptotic size at earlier ages than females. These age and growth results are the first reported for the genus, and suggest that G. altavela grows at a similar rate as some teleosts and batoids, and relatively fast among chondrichthyans. [Parsons, K. T.; Gregg, J.; Latour, R. J.] Coll William & Mary, Virginia Inst Marine Sci, POB 1346, Gloucester Point, VA 23062 USA; [Maisano, J.] Univ Texas Austin, Dept Geol Sci, 2275 Speedway Stop C9000, Austin, TX 78712 USA; [Cotton, C. F.] Florida State Univ, Coastal & Marine Lab, 3618 Coastal Highway 98, St Teresa, FL 32358 USA Parsons, KT (reprint author), Coll William & Mary, Virginia Inst Marine Sci, POB 1346, Gloucester Point, VA 23062 USA. kparsons@vims.edu NOAA Chesapeake Bay Office; Virginia Environmental Endowment; U.S. Fish and Wildlife Service; Virginia Marine Resources Commission (ChesMMAP); Atlantic States Marine Fisheries Commission; Mid Atlantic Fisheries Management Council; Commercial Fisheries Research Foundation; Northeast Fisheries Science Center (NEAMAP); NOAA Fisheries (Silver Spring, MD) (VASMAP); Virginia Marine Resources Commission (Juvenile Fish and Blue Crab Survey); Virginia Institute of Marine Science, College of William Mary [3674] We thank the staff of the Virginia Institute of Marine Science (VIMS) Survey Programs (ChesMMAP, NEAMAP, VASMAP, Juvenile Fish and Blue Crab Survey) and the Northeast Fisheries Science Center Multispecies Bottom Trawl Survey for providing specimens for this study. We are grateful to Captains Jimmy Ruhle, Durand Ward and John Olney Jr. for their contributions to vessel operations, and John Galbraith for ensuring access to exceptionally large specimens. We also recognize Julia White and Kamila Aguiar Gabaldo for their assistance with processing vertebrae and HRXCT images. Thanks to M. Kolmann, J. McDowell, and E. Hilton for reviewing previous versions of this paper. Funding for VIMS Survey Programs was provided by: NOAA Chesapeake Bay Office, the Virginia Environmental Endowment, the U.S. Fish and Wildlife Service, and the Virginia Marine Resources Commission (ChesMMAP); the Atlantic States Marine Fisheries Commission, the Mid Atlantic Fisheries Management Council, the Commercial Fisheries Research Foundation, and the Northeast Fisheries Science Center (NEAMAP); NOAA Fisheries (Silver Spring, MD) (VASMAP); the U.S. Fish and Wildlife Service and the Virginia Marine Resources Commission (Juvenile Fish and Blue Crab Survey). This is contribution number 3674 of the Virginia Institute of Marine Science, College of William & Mary. Akaike H., 1973, 2 INT S INF THEOR, P267, DOI DOI 10.1007/978-1-4612-1694-0_; Alkusairy H, 2014, ACTA ICHTHYOL PISCAT, V44, P229, DOI 10.3750/AIP2014.44.3.07; Basusta A, 2012, J APPL ICHTHYOL, V28, P850, DOI 10.1111/j.1439-0426.2012.02013.x; BEAMISH RJ, 1981, CAN J FISH AQUAT SCI, V38, P982, DOI 10.1139/f81-132; BEVERTON R.J.H., 1957, FISHERY INVEST LON 2, VXIX, P533; Bigelow H.R., 1953, MEMOIRS SEARS FDN MA; Bini G, 1967, ATLANTE PESCI COSTE, VI, P206; Bornatowski H, 2014, J MAR BIOL ASSOC UK, V94, P1491, DOI 10.1017/S0025315414000472; BOWKER AH, 1948, J AM STAT ASSOC, V43, P572, DOI 10.2307/2280710; BRANDER K, 1981, NATURE, V290, P48, DOI 10.1038/290048a0; BROWN CA, 1988, COPEIA, P747; Burnham KP, 2002, MODEL SELECTION MULT; Cailliet GM, 2004, CRC MAR BIOL SER, P399; Cailliet GM, 2006, AGE GROWTH CHONDRICH, P211; CAMPANA SE, 1995, T AM FISH SOC, V124, P131, DOI 10.1577/1548-8659(1995)124<0131:GASMFD>2.3.CO;2; Capape C., 1992, Scientia Marina, V56, P347; CASEY JG, 1985, CAN J FISH AQUAT SCI, V42, P963, DOI 10.1139/f85-121; CHANG WYB, 1982, CAN J FISH AQUAT SCI, V39, P1208, DOI 10.1139/f82-158; Cuevas-Zimbron E, 2013, ENVIRON BIOL FISH, V96, P907, DOI 10.1007/s10641-012-0086-2; DAIBER FRANKLIN C., 1960, COPEIA, V1960, P137, DOI 10.2307/1440209; Dale JJ, 2012, MAR FRESHWATER RES, V63, P475, DOI 10.1071/MF11231; Dulvy NK, 2014, ELIFE, V3, DOI 10.7554/eLife.00590; Dulvy NK, 2000, CONSERV BIOL, V14, P283, DOI 10.1046/j.1523-1739.2000.98540.x; Ebert D. A., 2013, FAO SPECIES CATALOGU; Ebert DA, 2007, ENVIRON BIOL FISH, V80, P221, DOI 10.1007/s10641-007-9227-4; Evans GT, 1998, BIOMETRICS, V54, P620, DOI 10.2307/3109768; Fisher RA, 2013, MAR COAST FISH, V5, P224, DOI 10.1080/19425120.2013.812587; Frisk MG, 2008, ECOL APPL, V18, P234, DOI 10.1890/06-1392.1; Frisk MG, 2010, CRC MAR BIOL SER, P283; Froese R, 2006, J APPL ICHTHYOL, V22, P241, DOI 10.1111/j.1439-0426.2006.00805.x; Geraghty PT, 2012, J FISH BIOL, V80, P1292, DOI 10.1111/j.1095-8649.2011.03188.x; Goldman K. J., 2005, ELASMOBRANCH FISHERI, P97; Gopal Raje Sadashiv, 2003, Indian Journal of Fisheries, V50, P89; Heithaus MR, 2010, CRC MAR BIOL SER, P611; Henningsen AD, 1996, ZOO BIOL, V15, P135, DOI 10.1002/(SICI)1098-2361(1996)15:2<135::AID-ZOO4>3.0.CO;2-C; Hilton EJ, 2015, COPEIA, V103, P858, DOI 10.1643/CI-14-178; HOENIG J M, 1990, NOAA Technical Report NMFS, P1; HOENIG JM, 1995, CAN J FISH AQUAT SCI, V52, P364, DOI 10.1139/f95-038; Ismen A, 2003, FISH RES, V60, P169, DOI 10.1016/S0165-7836(02)00058-9; IUCN Red List, 2016, INT UN CONS NAT NAT; Jacobsen IP, 2011, J FISH BIOL, V78, P1249, DOI 10.1111/j.1095-8649.2011.02933.x; Jacobsen IP, 2010, J FISH BIOL, V77, P2405, DOI 10.1111/j.1095-8649.2010.02829.x; Jacobsen IP, 2009, J FISH BIOL, V75, P2475, DOI 10.1111/j.1095-8649.2009.02432.x; Kimura DK, 2008, CAN J FISH AQUAT SCI, V65, P1879, DOI 10.1139/F08-091; Kume G, 2008, FISHERIES SCI, V74, P736, DOI 10.1111/j.1444-2906.2008.01584.x; Maisey JG, 2001, J VERTEBR PALEONTOL, V21, P807, DOI 10.1671/0272-4634(2001)021[0807:CSRNCF]2.0.CO;2; Maisey JG, 2004, AM MUS NOVIT, P1, DOI 10.1206/0003-0082(2004)429<0001:MOTBIT>2.0.CO;2; Maisey JG, 2001, J MORPHOL, V250, P236, DOI 10.1002/jmor.1068; Mandelman J. W., 2012, FISH RES, V139, P76; MARTIN LK, 1988, COPEIA, P754; McEachran J. D., 1990, CHECKLIST FISHES E T, V1, P64; McEachran J. D., 1984, FISHES NE ATLANTIC M, V1, P203; McEachran JD, 1998, COPEIA, P271; MCEACHRAN JD, 2002, SPECIAL PUBLICATION, V5, P508; Mejia-Falla PA, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0096077; Mollet HF, 2002, MAR FRESHWATER RES, V53, P531, DOI 10.1071/MF01074; Moyer JK, 2015, J MORPHOL, V276, P797, DOI 10.1002/jmor.20380; MURAWSKI SA, 1991, FISHERIES, V16, P5, DOI 10.1577/1548-8446(1991)016<0005:CWMOMF>2.0.CO;2; NATANSON LJ, 1993, COPEIA, P199; Naylor G.J.P., 2012, B AM NATURAL HIST MU, V367, P263; Neer JA, 2005, ENVIRON BIOL FISH, V73, P321, DOI 10.1007/s10641-005-2136-5; O'Shea OR, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0077194; Okamura H, 2013, J FISH BIOL, V82, P1239, DOI 10.1111/jfb.12062; Ozbek Elif Ozgur, 2016, Journal of the Black Sea Mediterranean Environment, V22, P16; Quinn TJ, 1999, QUANTITATIVE FISH DY, P560; R Development Core Team, 2016, R LANG ENV STAT COMP; Ranzi S., 1934, Pubblicazioni della Stazione Zoologica di Napoli, V13, P331; Ricker W.E., 1979, FISH PHYSIOL, VVIII, P677; Ridewood WG, 1921, PHILOS T R SOC LON B, V210, P311, DOI 10.1098/rstb.1921.0008; Ritz C, 2008, USE R, P1; Robins CR, 1986, FIELD GUIDE ATLANTIC, P354; Romine JG, 2013, MAR COAST FISH, V5, P189, DOI 10.1080/19425120.2013.793631; SCHULTZE HP, 1991, ENVIRON BIOL FISH, V32, P159, DOI 10.1007/BF00007451; Schwartz FJ, 1984, SPECIAL PUBLICATION; Seber G, 1982, ESTIMATION ANIMAL AB, P654; Simpfendorfer CA, 2011, MAR FRESHWATER RES, V62, P518, DOI 10.1071/MF11086; Smart JJ, 2016, FISH FISH, V17, P955, DOI 10.1111/faf.12154; Smith WD, 2007, MAR FRESHWATER RES, V58, P54, DOI 10.1071/MF06083; SPRUGEL DG, 1983, ECOLOGY, V64, P209, DOI 10.2307/1937343; Stevens John D., 2005, P48; Sulikowski JA, 2003, FISH B-NOAA, V101, P405; Sulikowski JA, 2007, MAR FRESHWATER RES, V58, P98, DOI 10.1071/MF05178; Tamini LL, 2006, FISH RES, V77, P326, DOI 10.1016/j.fishres.2005.08.013; Teixeira EC, 2017, J APPL ICHTHYOL, V33, P594, DOI 10.1111/jai.13255; Thorson JT, 2009, FISH RES, V98, P75, DOI 10.1016/j.fishres.2009.03.016; Vooren C. M., 2007, IUCN RED LIST THREAT, V2007; Walker PA, 1996, ICES J MAR SCI, V53, P1085, DOI 10.1006/jmsc.1996.0135; Walker PA, 1998, ICES J MAR SCI, V55, P392, DOI 10.1006/jmsc.1997.0325; Walls RHL, 2016, IUCN RED LIST THREAT, V2016; White J, 2014, J FISH BIOL, V84, P1340, DOI 10.1111/jfb.12359; White WT, 2007, J FISH BIOL, V70, P1809, DOI 10.1111/j.1095-8649.2007.01458.x; White WT, 2002, MAR BIOL, V140, P699, DOI 10.1007/s00227-001-0756-7; White WT, 2001, MAR BIOL, V138, P135, DOI 10.1007/s002270000436; Wigley S. E., 2003, NOAA TECH MEMO NMFS, V171, P1992; Witmer LM, 2008, ANATOMICAL IMAGING: TOWARDS A NEW MORPHOLOGY, P67, DOI 10.1007/978-4-431-76933-0_6; Yokota L, 2012, J FISH BIOL, V81, P1315, DOI 10.1111/j.1095-8649.2012.03413.x; Zhu LX, 2009, CHIN J OCEANOL LIMN, V27, P457, DOI 10.1007/s00343-009-9236-6 97 0 0 5 16 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0378-1909 1573-5133 ENVIRON BIOL FISH Environ. Biol. Fishes JAN 2018 101 1 137 151 10.1007/s10641-017-0687-x 15 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology FS0KL WOS:000419462700010 2018-11-22 J Sample, C; Fryxell, JM; Bieri, JA; Federico, P; Earl, JE; Wiederholt, R; Mattsson, BJ; Flockhart, DTT; Nicol, S; Diffendorfer, JE; Thogmartin, WE; Erickson, RA; Norris, DR Sample, Christine; Fryxell, John M.; Bieri, Joanna A.; Federico, Paula; Earl, Julia E.; Wiederholt, Ruscena; Mattsson, Brady J.; Flockhart, D. T. Tyler; Nicol, Sam; Diffendorfer, Jay E.; Thogmartin, Wayne E.; Erickson, Richard A.; Norris, D. Ryan A general modeling framework for describing spatially structured population dynamics ECOLOGY AND EVOLUTION English Article connectivity; dispersal; metapopulations; migration; models; networks FREE-TAILED BATS; METAPOPULATION DYNAMICS; LANDSCAPE CONNECTIVITY; HABITAT SELECTION; GRAPH-THEORY; MIGRATION; DISPERSAL; CONSERVATION; ABUNDANCE; EVOLUTION Variation in movement across time and space fundamentally shapes the abundance and distribution of populations. Although a variety of approaches model structured population dynamics, they are limited to specific types of spatially structured populations and lack a unifying framework. Here, we propose a unified network-based framework sufficiently novel in its flexibility to capture a wide variety of spatiotemporal processes including metapopulations and a range of migratory patterns. It can accommodate different kinds of age structures, forms of population growth, dispersal, nomadism and migration, and alternative life-history strategies. Our objective was to link three general elements common to all spatially structured populations (space, time and movement) under a single mathematical framework. To do this, we adopt a network modeling approach. The spatial structure of a population is represented by a weighted and directed network. Each node and each edge has a set of attributes which vary through time. The dynamics of our network-based population is modeled with discrete time steps. Using both theoretical and real-world examples, we show how common elements recur across species with disparate movement strategies and how they can be combined under a unified mathematical framework. We illustrate how metapopulations, various migratory patterns, and nomadism can be represented with this modeling approach. We also apply our network-based framework to four organisms spanning a wide range of life histories, movement patterns, and carrying capacities. General computer code to implement our framework is provided, which can be applied to almost any spatially structured population. This framework contributes to our theoretical understanding of population dynamics and has practical management applications, including understanding the impact of perturbations on population size, distribution, and movement patterns. By working within a common framework, there is less chance that comparative analyses are colored by model details rather than general principles. [Sample, Christine] Emmanuel Coll, Dept Math, Boston, MA 02115 USA; [Fryxell, John M.; Flockhart, D. T. Tyler; Norris, D. Ryan] Univ Guelph, Dept Integrat Biol, Guelph, ON, Canada; [Bieri, Joanna A.] Univ Redlands, Dept Math, Redlands, CA 92373 USA; [Federico, Paula] Capital Univ, Dept Math Comp Sci & Phys, Columbus, OH USA; [Earl, Julia E.] Louisiana Tech Univ, Sch Biol Sci, Ruston, LA 71270 USA; [Wiederholt, Ruscena] Everglades Fdn, Palmetto Bay, FL USA; [Mattsson, Brady J.] Univ Nat Resources & Life Sci, Inst Silviculture, Vienna, Austria; [Nicol, Sam] EcoSci Precinct, CSIRO Land & Water, Dutton Pk, Qld, Australia; [Diffendorfer, Jay E.] US Geol Survey, Geosci & Environm Change Sci Ctr, Box 25046, Denver, CO 80225 USA; [Thogmartin, Wayne E.; Erickson, Richard A.] US Geol Survey, Upper Midwest Environm Sci Ctr, La Crosse, WI USA; [Mattsson, Brady J.] Univ Nat Resources & Life Sci BOKU, Inst Wildlife Biol & Game Management, Vienna, Austria Sample, C (reprint author), Emmanuel Coll, Dept Math, Boston, MA 02115 USA. samplec@emmanuel.edu Nicol, Samuel/I-1074-2012; Flockhart, Tyler/C-3132-2018 Nicol, Samuel/0000-0002-1160-7444; Flockhart, Tyler/0000-0002-5832-8610; Erickson, Richard/0000-0003-4649-482X; Diffendorfer, James/0000-0003-1093-6948 National Institute for Mathematical and Biological Synthesis' working group; National Science Foundation [DBI-1300426] National Institute for Mathematical and Biological Synthesis' working group; National Science Foundation, Grant/Award Number: #DBI-1300426 Bauer S, 2013, J ANIM ECOL, V82, P498, DOI 10.1111/1365-2656.12054; Betini GS, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.0110; Bretagnolle V, 2005, ANIM CONSERV, V8, P59, DOI 10.1017/S1367943004001866; BROWN JH, 1984, AM NAT, V124, P255, DOI 10.1086/284267; BROWN JH, 1995, ECOLOGY, V76, P2028, DOI 10.2307/1941678; Buler JJ, 2014, CONDOR, V116, P357, DOI 10.1650/CONDOR-13-162.1; Chapman BB, 2014, ANIMAL MOVEMENT ACROSS SCALES, P11; COLLINS SL, 1991, ECOLOGY, V72, P654, DOI 10.2307/2937205; Cottee-Jones HEW, 2016, ANIM CONSERV, V19, P227, DOI 10.1111/acv.12243; Donaldson MR, 2010, PHYSIOL BIOCHEM ZOOL, V83, P446, DOI 10.1086/649627; Erickson R. A., 2014, LETT BIOMATHEMATICS, V1, P157; Esler D, 2000, CONSERV BIOL, V14, P366, DOI 10.1046/j.1523-1739.2000.98147.x; Federico P, 2008, ECOL APPL, V18, P826, DOI 10.1890/07-0556.1; Flockhart DTT, 2015, J ANIM ECOL, V84, P155, DOI 10.1111/1365-2656.12253; Flockhart DTT, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0045080; Fortuna MA, 2006, P ROY SOC B-BIOL SCI, V273, P1429, DOI 10.1098/rspb.2005.3448; Fronhofer EA, 2012, ECOLOGY, V93, P1967, DOI 10.1890/11-1814.1; GADGIL M, 1971, ECOLOGY, V52, P253, DOI 10.2307/1934583; GASTON KJ, 1990, OIKOS, V58, P329, DOI 10.2307/3545224; Hanski I, 1999, METAPOPULATION ECOLO; Harrison XA, 2011, J ANIM ECOL, V80, P4, DOI 10.1111/j.1365-2656.2010.01740.x; Houston D.G, 1982, NO YELLOWSTONE ELK E; Iwamura T, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.0325; Jonzen N, 2011, ANIMAL MIGRATION: A SYNTHESIS, P91; Keeling MJ, 2000, SCIENCE, V290, P1758, DOI 10.1126/science.290.5497.1758; Kerr B, 2006, NATURE, V442, P75, DOI 10.1038/nature04864; Kirchner F, 2003, CONSERV BIOL, V17, P401, DOI 10.1046/j.1523-1739.2003.01392.x; Kneitel JM, 2003, AM NAT, V162, P165, DOI 10.1086/376585; Kubisch A, 2014, OIKOS, V123, P5, DOI 10.1111/j.1600-0706.2013.00706.x; Lamy T, 2013, AM NAT, V181, P479, DOI 10.1086/669676; Leirs H, 1997, NATURE, V389, P176; Levins R., 1970, LECT NOTES MATH, V2, P75; MacArthur R. H., 1972, GEOGRAPHICAL ECOLOGY; Mack J. A., 1993, SCI MONOGRAPH NAT PA, P270; Mattsson BJ, 2012, ECOL MODEL, V225, P146, DOI 10.1016/j.ecolmodel.2011.10.028; McCracken GF, 1997, J MAMMAL, V78, P348, DOI 10.2307/1382888; MCPEEK MA, 1992, AM NAT, V140, P1010, DOI 10.1086/285453; Middleton AD, 2013, ECOLOGY, V94, P1245, DOI 10.1890/11-2298.1; Minor ES, 2008, CONSERV BIOL, V22, P297, DOI 10.1111/j.1523-1739.2007.00871.x; Minor ES, 2007, ECOL APPL, V17, P1771, DOI 10.1890/06-1073.1; Morris DW, 2004, OIKOS, V107, P559; MORRIS DW, 1989, EVOL ECOL, V3, P80, DOI 10.1007/BF02147934; MORRIS DW, 1987, ECOL MONOGR, V57, P269, DOI 10.2307/2937087; Newton I., 2010, MIGRATION ECOLOGY BI; Nicol S, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2984; Noel F, 2013, BIOL CONSERV, V158, P167, DOI 10.1016/j.biocon.2012.07.029; Norris D. Ryan, 2006, Ornithological Monographs, V61, P14; Norris DR, 2006, BIOL LETT-UK, V2, P148, DOI 10.1098/rsbl.2005.0397; O'Connor CM, 2014, ECOSPHERE, V5, DOI 10.1890/ES13-00388.1; Peterman WE, 2013, LANDSCAPE ECOL, V28, P1601, DOI 10.1007/s10980-013-9906-9; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Proulx SR, 2005, TRENDS ECOL EVOL, V20, P345, DOI 10.1016/j.tree.2005.04.004; Prysby MD, 2004, MONARCH BUTTERFLY BIOLOGY AND CONSERVATION, P9; Rudnick D.A., 2012, ISSUES ECOLOGY, V16, P1; Runge JP, 2006, AM NAT, V167, P925, DOI 10.1086/503531; Sample C., 2017, NIMBIOS NETWORKCODE; Schaub M, 2011, J ORNITHOL, V152, P227, DOI 10.1007/s10336-010-0632-7; SINGER FJ, 1997, THE JOURNAL OF WILDL, V61, P12; Stanley CQ, 2015, CONSERV BIOL, V29, P164, DOI 10.1111/cobi.12352; TAPER ML, 2002, THE JOURNAL OF WILDL, V66, P106; Taylor CM, 2007, BIOLOGY LETT, V3, P280, DOI 10.1098/rsbl.2007.0053; Taylor CM, 2012, BIOL LETTERS, V8, P477, DOI 10.1098/rsbl.2011.0916; Taylor CM, 2010, THEOR ECOL-NETH, V3, P65, DOI 10.1007/s12080-009-0054-4; Tilman D., 1997, SPATIAL ECOLOGY ROLE, V30; Urban D, 2001, ECOLOGY, V82, P1205, DOI 10.1890/0012-9658(2001)082[1205:LCAGTP]2.0.CO;2; Urban DL, 2009, ECOL LETT, V12, P260, DOI 10.1111/j.1461-0248.2008.01271.x; Wiederholt R, 2013, ECOSPHERE, V4, DOI 10.1890/ES13-00023.1; Willson JD, 2012, ECOL APPL, V22, P1791, DOI 10.1890/11-0915.1; Willson JD, 2013, CONSERV BIOL, V27, P595, DOI 10.1111/cobi.12044 69 1 1 5 21 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. JAN 2018 8 1 493 508 10.1002/ece3.3685 16 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology FS0SE WOS:000419483200043 29321888 DOAJ Gold, Green Published 2018-11-22 J Amat, F; Meiri, S Amat, Felix; Meiri, Shai Geographical, climatic and biological constraints on age at sexual maturity in amphibians BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article amphibians; climate; demography LIFE-HISTORY TRAITS; BODY-SIZE; ALTITUDINAL VARIATION; WILDLIFE SCIENCE; K-SELECTION; R-SELECTION; GROWTH-RATE; EVOLUTION; PATTERNS; FROG Age at sexual maturity is a central life-history parameter, strongly related to key traits such as body size and longevity. It is influenced by environmental and intrinsic factors that affect growth rates and gonad development. Using data on the age at sexual maturity in 123 species of amphibians worldwide, we tested whether sexual maturity is delayed at high altitudes and latitudes, in cold and dry regions and on islands. We further tested whether sexual maturity is delayed in species with parental care and direct development (no tadpole stage). Using phylogenetic regression and correcting for body size, we found a positive relationship between latitude and sexual maturity. Surprisingly, altitude was negatively correlated with sexual maturity in small species. Temperature was negatively related to sexual maturity in females but not in males. Precipitation and seasonality did not effect on either sex. Species that engage in parental care or have direct-developing larvae mature early. We found no effect of insularity, contradicting the insular syndrome hypothesis. Meta-analyses revealed that, within species, sexual maturity is reached at younger ages in warm temperatures in aseasonal environments and in low altitudes. Thus, although life-history strategies affect maturation time, climate can further delay or accelerate development - probably through effects on metabolic rates and season length. [Amat, Felix] Museu Granollers Ciencies Nat, BiBIO, Area Herpetol, 102 Jardins Antoni Jonch Cuspinera, Granollers 08402, Catalonia, Spain; [Meiri, Shai] Tel Aviv Univ, Dept Zool, Fac Life Sci, IL-6997801 Tel Aviv, Israel; [Meiri, Shai] Tel Aviv Univ, Steinhardt Museum Nat Hist, IL-6997801 Tel Aviv, Israel Amat, F (reprint author), Museu Granollers Ciencies Nat, BiBIO, Area Herpetol, 102 Jardins Antoni Jonch Cuspinera, Granollers 08402, Catalonia, Spain. felixamat09@gmail.com Meiri, Shai/D-2403-2010 Meiri, Shai/0000-0003-3839-6330 ADLER GH, 1994, Q REV BIOL, V69, P473, DOI 10.1086/418744; Arnold TW, 2010, J WILDLIFE MANAGE, V74, P1175, DOI 10.2193/2009-367; Ashton KG, 2003, EVOLUTION, V57, P1151, DOI 10.1111/j.0014-3820.2003.tb00324.x; Bauwens D, 1997, AM NAT, V149, P91, DOI 10.1086/285980; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Blomberg SP, 2003, EVOLUTION, V57, P717, DOI 10.1111/j.0014-3820.2003.tb00285.x; Borenstein M., 2007, METAANALYSIS FIXED E; BRADFORD DF, 1990, PHYSIOL ZOOL, V63, P1157, DOI 10.1086/physzool.63.6.30152638; Brown DJ, 2013, AM MIDL NAT, V169, P303; Cadeddu G, 2012, J ZOOL, V286, P285, DOI 10.1111/j.1469-7998.2011.00878.x; CASTANET J, 1990, ANN SCI NAT ZOOL, V11, P191; CHARLESWORTH B, 1980, EVOLUTION AGE STRUCT; Charnov EL, 2001, P NATL ACAD SCI USA, V98, P9460, DOI 10.1073/pnas.161294498; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Covas R, 2012, P ROY SOC B-BIOL SCI, V279, P1531, DOI 10.1098/rspb.2011.1785; Davenport JM, 2016, J ZOOL, V299, P304, DOI 10.1111/jzo.12352; Dayan T, 1998, MAMMAL REV, V28, P99, DOI 10.1046/j.1365-2907.1998.00029.x; DUNHAM AE, 1985, AM NAT, V126, P231, DOI 10.1086/284411; GADGIL M, 1972, AM NAT, V106, P14, DOI 10.1086/282748; Gatten Robert E. Jr, 1992, P314; Gomez-Mestre I, 2012, EVOLUTION, V66, P3687, DOI 10.1111/j.1558-5646.2012.01715.x; Gouveia SF, 2016, J BIOGEOGR, V43, P2075, DOI 10.1111/jbi.12842; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; Gramapurohit NP, 2005, HERPETOL J, V15, P113; Guthery FS, 2008, J WILDLIFE MANAGE, V72, P1872, DOI 10.2193/2008-179; Guthery FS, 2005, J WILDLIFE MANAGE, V69, P457, DOI 10.2193/0022-541X(2005)069[0457:ITIWSC]2.0.CO;2; Hall T.A., 1999, NUCL ACIDS S SER, V41, P95, DOI DOI 10.1021/BK-1999-0734.CH008; Han X, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-27; Heinermann J, 2015, J NAT HIST, V49, P2213, DOI 10.1080/00222933.2015.1009513; Hijmans RJ, 2005, INT J CLIMATOL, V25, P1965, DOI 10.1002/joc.1276; Jorgensen C. Barker, 1992, P439; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; Leclair R, 1996, ECOGRAPHY, V19, P296, DOI 10.1111/j.1600-0587.1996.tb00239.x; Lou SL, 2012, ZOOL SCI, V29, P493, DOI 10.2108/zsj.29.493; Matsuki Takashi, 2009, Current Herpetology, V28, P41, DOI 10.3105/018.028.0201; Meiri S, 2013, GLOBAL ECOL BIOGEOGR, V22, P834, DOI 10.1111/geb.12053; Morrison C, 2003, J ANIM ECOL, V72, P270, DOI 10.1046/j.1365-2656.2003.00696.x; Navas CA, 1996, PHYSIOL ZOOL, V69, P1418; Novosolov M, 2013, J BIOGEOGR, V40, P2385, DOI 10.1111/jbi.12179; Oromi N, 2012, ZOOLOGY, V115, P30, DOI 10.1016/j.zool.2011.08.003; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Pyron RA, 2011, MOL PHYLOGENET EVOL, V61, P543, DOI 10.1016/j.ympev.2011.06.012; RAY CARLETON, 1960, JOUR MORPHOL, V106, P85, DOI 10.1002/jmor.1051060104; Reniers J, 2015, OECOLOGIA, V178, P931, DOI 10.1007/s00442-015-3258-x; Revell LJ, 2012, METHODS ECOL EVOL, V3, P217, DOI 10.1111/j.2041-210X.2011.00169.x; Richardson JS, 2000, P C BIOL MAN SPEC HA, V1, P407; Ridgway ID, 2011, J GERONTOL A-BIOL, V66, P183, DOI 10.1093/gerona/glq172; Roff D. A., 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; Ryan KJ, 2015, J HERPETOL, V49, P257, DOI 10.1670/12-230; RYAN MJ, 1983, ECOLOGY, V64, P1456, DOI 10.2307/1937500; RYSER J, 1989, OECOLOGIA, V78, P264, DOI 10.1007/BF00377165; Scharf I, 2015, GLOBAL ECOL BIOGEOGR, V24, P396, DOI 10.1111/geb.12244; Slavenko A, 2015, J BIOGEOGR, V42, P1246, DOI 10.1111/jbi.12516; Stamps J, 1997, EVOL ECOL, V11, P21, DOI 10.1023/A:1018479312191; Stearns S., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1984, AM NAT, V123, P56, DOI 10.1086/284186; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Stuart SN, 2004, SCIENCE, V306, P1783, DOI 10.1126/science.1103538; Summers K, 2006, P ROY SOC B-BIOL SCI, V273, P687, DOI 10.1098/rspb.2005.3368; Tamura K, 2012, P NATL ACAD SCI USA, V109, P19333, DOI 10.1073/pnas.1213199109; Wagner A, 2011, HERPETOL J, V21, P145; Wang Y, 2009, J ZOOL, V278, P65, DOI 10.1111/j.1469-7998.2009.00552.x; Wells K. D., 2007, ECOLOGY BEHAV AMPHIB; Yartsev VV, 2015, ASIAN HERPETOL RES, V6, P69; Yu TL, 2013, INTEGR ZOOL, V8, P315, DOI 10.1111/j.1749-4877.2012.00294.x 67 0 0 9 18 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0024-4066 1095-8312 BIOL J LINN SOC Biol. J. Linnean Soc. JAN 2018 123 1 34 42 10.1093/biolinnean/blx127 9 Evolutionary Biology Evolutionary Biology FS2LA WOS:000419609000004 2018-11-22 J Mell, H; Safra, L; Algan, Y; Baumard, N; Chevallier, C Mell, Hugo; Safra, Lou; Algan, Yann; Baumard, Nicolas; Chevallier, Coralie Childhood environmental harshness predicts coordinated health and reproductive strategies: A cross-sectional study of a nationally representative sample from France EVOLUTION AND HUMAN BEHAVIOR English Article Psychosocial acceleration theory; Childhood adversity; Life History Theory; Reproductive strategies; Health strategies; Structural equation modeling LIFE-HISTORY STRATEGIES; STRUCTURAL EQUATION MODELS; BODY-MASS INDEX; UNPREDICTABLE ENVIRONMENTS; INDIVIDUAL-DIFFERENCES; MENARCHE; RISK; MATURATION; MORTALITY; STRESS There is considerable variation in health and reproductive behaviours within and across human populations. Drawing on principles from Life History Theory, psychosocial acceleration theory predicts that individuals developing in harsh environments decrease their level of somatic investment and accelerate their reproductive schedule. Although there is consistent empirical support for this general prediction, most studies have focused on a few isolated life history traits and few have investigated the way in which individuals apply life strategies across reproductive and somatic domains to produce coordinated behavioural responses to their environment. In our study, we thus investigate the impact of childhood environmental harshness on both reproductive strategies and somatic investment by applying structural equation modeling (SEM) to cross-sectional survey data obtained in a representative sample of the French population (n = 1015, age: 19-87 years old, both genders). This data allowed us to demonstrate that (i) inter-individual variation in somatic investment (e.g. effort in looking after health) and reproductive timing (e.g. age at first birth) can be captured by a latent fast-slow continuum, and (ii) faster strategies along this continuum are predicted by higher childhood harshness. Overall, our results support the existence of a fast-slow continuum and highlight the relevance of the life history approach for understanding variations in reproductive and health related behaviours. (C) 2017 Elsevier Inc All rights reserved. [Mell, Hugo; Safra, Lou; Chevallier, Coralie] PSL Res Univ, Ecole Normale Super, INSERM U960, Dept Etud Cognit, F-75005 Paris, France; [Algan, Yann] OFCE, Sci Po, 27 Rue St Guillaume, F-75005 Paris, France; [Mell, Hugo; Baumard, Nicolas; Chevallier, Coralie] PSL Res Univ, Ecole Normale Super, Inst Jean Nicod, CNRS,UMR8129,Dept Etud Cognit, F-75005 Paris, France Mell, H (reprint author), Ecole Normale Super, Dept Etud Cognit, INSERM U960, CNRS UMR 8129, 29 Rue Ulm, F-75005 Paris, France. hugo.mell@ens.fr Institut d'Etudes Cognitives [ANR-10-LABX-0087 IEC, ANR-10-IDEX-0001-02 PSL*]; Institut national de la sante et de la recherche medicale (INSERM); ERC consolidator grant [8657]; Action Incitative - Ecole Normale Superieure This study was supported by the Institut d'Etudes Cognitives (ANR-10-LABX-0087 IEC and ANR-10-IDEX-0001-02 PSL*), the Institut national de la sante et de la recherche medicale (INSERM), an ERC consolidator grant (no. 8657) and an "Action Incitative" funding from the Ecole Normale Superieure. We are grateful to Anne L'Hote for programming the survey and to Celine Dusautois for her help in preliminary analyses. Almond D., 2007, LONG TERM EFFECTS 19; Baldini R., 2015, BIORXIV, V14647; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.1111/j.1467-8624.1991.tb01558.x; Belsky J, 2007, CHILD DEV, V78, P1302, DOI 10.1111/j.1467-8624.2007.01067.x; Belsky J, 2012, CURR DIR PSYCHOL SCI, V21, P310, DOI 10.1177/0963721412453588; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; Belsky J, 2009, PSYCHOL BULL, V135, P885, DOI 10.1037/a0017376; BENTLER PM, 1980, PSYCHOL BULL, V88, P588, DOI 10.1037/0033-2909.107.2.238; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Chen E, 2002, PSYCHOL BULL, V128, P295, DOI 10.1037/0033-2909.128.2.295; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Colleran H, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2015.0152; de Baca TC, 2017, CURR OPIN PSYCHOL, V15, P1, DOI 10.1016/j.copsyc.2017.02.005; de Rooij SR, 2010, P NATL ACAD SCI USA, V107, P16881, DOI 10.1073/pnas.1009459107; Del Giudice M, 2014, PSYCHOL INQ, V25, P261, DOI 10.1080/1047840X.2014.884918; Dong X, 2016, NATURE, V538, P257, DOI 10.1038/nature19793; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Etchison WC, 2011, SPORTS HEALTH, V3, P249, DOI 10.1177/1941738111404655; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Frankenhuis WE, 2016, CURR OPIN PSYCHOL, V7, P76, DOI 10.1016/j.copsyc.2015.08.011; Frankenhuis WE, 2011, P ROY SOC B-BIOL SCI, V278, P3558, DOI 10.1098/rspb.2011.0055; Frankenhuis WE, 2011, PERSPECT PSYCHOL SCI, V6, P336, DOI 10.1177/1745691611412602; Grace JB, 2008, ENVIRON ECOL STAT, V15, P191, DOI 10.1007/s10651-007-0047-7; Grace JB, 2010, ECOL MONOGR, V80, P67, DOI 10.1890/09-0464.1; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Guegan JF, 2001, EVOLUTION, V55, P1308; Hallsworth M, 2016, APPL BEHAV INSIGHTS; Hardt J, 2004, J CHILD PSYCHOL PSYC, V45, P260, DOI 10.1111/j.1469-7610.2004.00218.x; Hartman S., 2017, DEV PSYCHOP IN PRESS; Hartman S, 2015, DEV PSYCHOPATHOL, V27, P747, DOI 10.1017/S0954579414000856; HOFFMAN SD, 1993, DEMOGRAPHY, V30, P1, DOI 10.2307/2061859; Kaplan H, 2003, POPUL DEV REV, V29, P152; Kline RB, 2016, METHODOLOGY SOCIAL S; Lavy V., 2016, OUT AFRICA HUMAN CAP; Lawson DW, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2015.0145; LI KH, 1991, STAT SINICA, V1, P65; Lin M.-J., 2014, DOES UTERO EXPOSURE; Locke AE, 2015, NATURE, V518, P197, DOI 10.1038/nature14177; McCullough ME, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2104; Miller F C, 2000, J Pediatr Adolesc Gynecol, V13, P5, DOI 10.1016/S1083-3188(99)00035-2; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.2307/1130900; Nettle D, 2012, DEV PSYCHOL, V48, P718, DOI 10.1037/a0027507; Nettle D, 2011, PHILOS T R SOC B, V366, P357, DOI 10.1098/rstb.2010.0073; Nettle D, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013371; Nettle D, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0012690; Nettle D, 2010, AM J HUM BIOL, V22, P172, DOI 10.1002/ajhb.20970; Neugebauer R, 1999, JAMA-J AM MED ASSOC, V282, P455, DOI 10.1001/jama.282.5.455; Pepper GV, 2014, HUM NATURE-INT BIOS, V25, P378, DOI 10.1007/s12110-014-9204-5; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Rickard IJ, 2014, PERSPECT PSYCHOL SCI, V9, P3, DOI 10.1177/1745691613513467; Roff D. A., 2002, LIFE HIST EVOLUTION; Rosseel Y, 2012, J STAT SOFTW, V48, P1; Rubin DB, 2004, MULTIPLE IMPUTATION; Sassi F., 2008, OECD HLTH WORKING PA, V32; Schermelleh-Engel K., 2003, METHODS PSYCHOL RES, V8, P23, DOI DOI 10.1002/0470010940; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Steams S. C., 1992, EVOLUTION LIFE HIST; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Stringhini S, 2010, JAMA-J AM MED ASSOC, V303, P1159, DOI 10.1001/jama.2010.297; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; van Buuren S, 2011, J STAT SOFTW, V45, P1 66 2 2 2 3 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 1879-0607 EVOL HUM BEHAV Evol. Hum. Behav. JAN 2018 39 1 1 8 10.1016/j.evolhumbehav.2017.08.006 8 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences FR9WJ WOS:000419423600001 Green Published 2018-11-22 J Yu, L; Han, Y; Jiang, YL; Dong, TF; Lei, YB Yu, Lei; Han, Yan; Jiang, Yonglei; Dong, Tingfa; Lei, Yanbao Sex-specific responses of bud burst and early development to nongrowing season warming and drought in Populus cathayana CANADIAN JOURNAL OF FOREST RESEARCH English Article bud burst; nongrowing season; warming and drought; dioecious plant WATER-USE EFFICIENCY; SPRING PHENOLOGY; CLIMATE-CHANGE; PHYSIOLOGICAL-RESPONSES; ALTITUDINAL GRADIENT; DIOECIOUS PLANTS; CO2 ENRICHMENT; CARBON-DIOXIDE; TEMPERATURE; NITROGEN Bud burst is one of the most observable phenological stages in tree species, and its responses to environmental factors are found to be species-specific. Nevertheless, for dioecious plants, whether the bud burst responses are sex specific remains an open question, as do the underlying physiological mechanisms. Here, we investigated the effect of elevated temperature (+2 degrees C) and drought (30% field capacity) during December-March on bud development, gas exchange, water and nitrogen status, and carbohydrate metabolism in female and male Populus cathayana to understand how nongrowing season warming and drought modifies physiological and phenological traits. Our results showed that at ambient temperature, males experienced earlier bud burst than females. Winter warming significantly delayed bud burst and even synchronized it for both sexes because of the greater responsiveness of males. Although drought exerted little effect on the timing of bud burst, it significantly reduced bud fresh mass and limited bud growth by decreasing gas exchange capacity and nonstructural carbohydrate (NSC) accumulation; moreover, females were more affected by drought stress. The significant sex x watering x temperature interactions for delta C-13 and NSC indicate that sexual dimorphism in these condition-specific traits would increase along the environmental gradients, implying contrasting life history strategies in different ecological scenarios. The convergence in the time for bud burst caused by elevated temperature might exaggerate the competition among males, thus influencing the sex ratio, structure, and functioning of P. cathayana populations. [Yu, Lei; Han, Yan; Jiang, Yonglei; Lei, Yanbao] Chinese Acad Sci, Inst Mt Hazards & Environm, Key Lab Mt Surface Proc & Ecol Regulat, Chengdu 610041, Sichuan, Peoples R China; [Yu, Lei; Han, Yan; Jiang, Yonglei] Univ Chinese Acad Sci, Beijing 100039, Peoples R China; [Dong, Tingfa] China West Normal Univ, Minist Educ, Key Lab Southwest China Wildlife Resources Conser, Nanchong 637009, Sichuan, Peoples R China; [Dong, Tingfa] China West Normal Univ, Coll Life Sci, Nanchong 637009, Sichuan, Peoples R China Lei, YB (reprint author), Chinese Acad Sci, Inst Mt Hazards & Environm, Key Lab Mt Surface Proc & Ecol Regulat, Chengdu 610041, Sichuan, Peoples R China. leiyb@imde.ac.cn National Science Foundation of China [31370607]; Open Project Program from the CAS Key Laboratory of Mountain Surface Processes and Ecological Regulation This work was supported by the National Science Foundation of China (31370607) and the Open Project Program from the CAS Key Laboratory of Mountain Surface Processes and Ecological Regulation. The authors also thank Editage (https://www.editage.com/) for its linguistic assistance during the preparation of this manuscript. [Anonymous], J APPL ECOL, V20, P951, DOI [10.2307/2403139, DOI 10.2307/2403139]; Badeck FW, 2004, NEW PHYTOL, V162, P295, DOI 10.1111/j.1469-8137.2004.01059.x; Basler D, 2014, TREE PHYSIOL, V34, P377, DOI 10.1093/treephys/tpu021; Bertiller MB, 2002, INT J PLANT SCI, V163, P419, DOI 10.1086/339515; Bonhomme M, 2010, TREE PHYSIOL, V30, P89, DOI 10.1093/treephys/tpp103; Chen J, 2014, FUNCT ECOL, V28, P124, DOI 10.1111/1365-2435.12180; Chuine I, 2010, PHILOS T R SOC B, V365, P3149, DOI 10.1098/rstb.2010.0142; Chung H, 2013, J PLANT RES, V126, P447, DOI 10.1007/s10265-013-0565-3; Cleland EE, 2007, TRENDS ECOL EVOL, V22, P357, DOI 10.1016/j.tree.2007.04.003; Dong TF, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-00894-2; DORMLING I, 1968, Silvae Genetica, V17, P44; FIELD C, 1983, OECOLOGIA, V60, P384, DOI 10.1007/BF00376856; Field C. B., 2014, CAMBRIDGE, P1, DOI [10. 1016/ j. renene. 2009. 11. 012, DOI 10.1017/CB09781107415324]; Forrest JRK, 2014, AM NAT, V184, P338, DOI 10.1086/677295; Fu YSH, 2014, GLOBAL ECOL BIOGEOGR, V23, P1255, DOI 10.1111/geb.12210; Fu YSH, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0047324; Gu L, 2008, BIOSCIENCE, V58, P253, DOI 10.1641/B580311; Guo QX, 2016, FOREST ECOL MANAG, V364, P60, DOI 10.1016/j.foreco.2016.01.007; Han Y, 2013, TREE PHYSIOL, V33, P1043, DOI 10.1093/treephys/tpt086; Harrington CA, 2010, FOREST ECOL MANAG, V259, P798, DOI 10.1016/j.foreco.2009.06.018; Heide OM, 2003, TREE PHYSIOL, V23, P931, DOI 10.1093/treephys/23.13.931; Hollister RD, 2005, ECOLOGY, V86, P1562, DOI 10.1890/04-0520; Jeong SJ, 2011, GLOBAL CHANGE BIOL, V17, P2385, DOI 10.1111/j.1365-2486.2011.02397.x; Juvany M, 2015, J EXP BOT, V66, P6083, DOI 10.1093/jxb/erv343; Kellomaki S, 2001, ANN BOT-LONDON, V87, P669, DOI 10.1006/anbo.2001.1393; Kilpelainen A, 2006, TREES-STRUCT FUNCT, V20, P16, DOI 10.1007/s00468-005-0008-4; Kuster TM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0089724; Li CY, 2007, TREE PHYSIOL, V27, P399, DOI 10.1093/treephys/27.3.399; Li CY, 1999, PLANT SOIL, V214, P165, DOI 10.1023/A:1004708815973; Marchi S, 2005, J AM SOC HORTIC SCI, V130, P631; Martin KC, 2010, PLANT CELL ENVIRON, V33, P344, DOI 10.1111/j.1365-3040.2009.02072.x; Martinez-Vilalta J, 2016, ECOL MONOGR, V86, P495, DOI 10.1002/ecm.1231; Maurel K, 2004, TREE PHYSIOL, V24, P579, DOI 10.1093/treephys/24.5.579; Memmott J, 2007, ECOL LETT, V10, P710, DOI 10.1111/j.1461-0248.2007.01061.x; Menzel A, 2006, GLOBAL CHANGE BIOL, V12, P1969, DOI 10.1111/j.1365-2486.2006.01193.x; Mitchell AK, 1998, TREE PHYSIOL, V18, P749; Morbey YE, 2001, ECOL LETT, V4, P663, DOI 10.1046/j.1461-0248.2001.00265.x; Morin X, 2009, GLOBAL CHANGE BIOL, V15, P961, DOI 10.1111/j.1365-2486.2008.01735.x; MURATA T, 1968, PLANT PHYSIOL, V43, P1899, DOI 10.1104/pp.43.12.1899; Naudts K, 2013, PLANT SOIL, V369, P497, DOI 10.1007/s11104-013-1595-2; Naudts K, 2011, ENVIRON EXP BOT, V70, P151, DOI 10.1016/j.envexpbot.2010.08.013; Norby RJ, 2003, GLOBAL CHANGE BIOL, V9, P1792, DOI 10.1046/j.1529-8817.2003.00714.x; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; Olsen J.E., 2014, PLANT SCI, V5, P691, DOI [10.3389/fpls.2014.00691, DOI 10.3389/FPLS.2014.00691]; Ortiz PL, 2002, ANN BOT-LONDON, V89, P205, DOI 10.1093/aob/mcf028; Pagter M, 2015, AOB PLANTS, V7, DOI 10.1093/aobpla/plv024; Penuelas J, 2009, SCIENCE, V324, P887, DOI 10.1126/science.1173004; Piao SL, 2008, NATURE, V451, P49, DOI 10.1038/nature06444; Pletsers A, 2015, ANN FOREST SCI, V72, P941, DOI 10.1007/s13595-015-0491-8; RENNER SS, 1995, AM J BOT, V82, P596, DOI 10.2307/2445418; Robeson SM, 2004, GEOPHYS RES LETT, V31, DOI 10.1029/2003GL019019; Robinson DA, 2003, VADOSE ZONE J, V2, P444; Sakai A., 1987, FROST SURVIVAL PLANT, P124, DOI [10.1007/978-3-642-71745-1, DOI 10.1007/978-3-642-71745-1]; Sanz-Perez V, 2010, TREES-STRUCT FUNCT, V24, P89, DOI 10.1007/s00468-009-0381-5; Schaber J, 2003, INT J BIOMETEOROL, V47, P193, DOI 10.1007/s00484-003-0171-5; Schwartz MD, 2006, GLOBAL CHANGE BIOL, V12, P343, DOI 10.1111/j.1365-2486.2005.01097.x; Sherry RA, 2007, P NATL ACAD SCI USA, V104, P198, DOI 10.1073/pnas.0605642104; Stromme CB, 2015, PLANT CELL ENVIRON, V38, P867, DOI 10.1111/pce.12338; Tanino KK, 2010, PLANT MOL BIOL, V73, P49, DOI 10.1007/s11103-010-9610-y; Wang XZ, 2001, NEW PHYTOL, V150, P675, DOI 10.1046/j.1469-8137.2001.00138.x; Williams AP, 2013, NAT CLIM CHANGE, V3, P292, DOI [10.1038/NCLIMATE1693, 10.1038/nclimate1693]; Xu X, 2008, PLANT CELL ENVIRON, V31, P850, DOI 10.1111/j.1365-3040.2008.01799.x; YEMM EW, 1954, BIOCHEM J, V57, P508, DOI 10.1042/bj0570508; Yu HY, 2010, P NATL ACAD SCI USA, V107, P22151, DOI 10.1073/pnas.1012490107; Yu L, 2016, PHOTOSYNTHETICA, V54, P598, DOI 10.1007/s11099-016-0647-2; Zhang S, 2014, TREE PHYSIOL, V34, P343, DOI 10.1093/treephys/tpu025; Zhang S, 2011, J EXP BOT, V62, P675, DOI 10.1093/jxb/erq306; Zhang X, 2005, J ARID ENVIRON, V60, P567, DOI 10.1016/j.jaridenv.2004.07.008 68 0 0 8 27 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0045-5067 1208-6037 CAN J FOREST RES Can. J. For. Res. JAN 2018 48 1 68 76 10.1139/cjfr-2017-0259 9 Forestry Forestry FR5WZ WOS:000419138600007 2018-11-22 J Jenouvrier, S; Aubry, LM; Barbraud, C; Weimerskirch, H; Caswell, H Jenouvrier, Stephanie; Aubry, Lise M.; Barbraud, Christophe; Weimerskirch, Henri; Caswell, Hal Interacting effects of unobserved heterogeneity and individual stochasticity in the life history of the southern fulmar JOURNAL OF ANIMAL ECOLOGY English Article frailty; individual quality; latent; life expectancy; lifetime reproductive success CAPTURE-RECAPTURE MODELS; LONG-LIVED SEABIRD; POPULATION-DYNAMICS; FRAILTY MODELS; SURVIVAL; SENESCENCE; LONGEVITY; REPRODUCTION; VARIABILITY; CONSEQUENCES 1. Individuals are heterogeneous in many ways. Some of these differences are incorporated as individual states (e.g. age, size, breeding status) in population models. However, substantial amounts of heterogeneity may remain unaccounted for, due to unmeasurable genetic, maternal or environmental factors. 2. Such unobserved heterogeneity (UH) affects the behaviour of heterogeneous cohorts via intra-cohort selection and contributes to inter-individual variance in demographic outcomes such as longevity and lifetime reproduction. Variance is also produced by individual stochasticity, due to random events in the life cycle of wild organisms, yet no study thus far has attempted to decompose the variance in demographic outcomes into contributions from UH and individual stochasticity for an animal population in the wild. 3. We developed a stage-classified matrix population model for the southern fulmar breeding on Ile des Petrels, Antarctica. We applied multievent, multistate mark-recapture methods to estimate a finite mixture model accounting for UH in all vital rates and Markov chain methods to calculate demographic outcomes. Finally, we partitioned the variance in demographic outcomes into contributions from UH and individual stochasticity. 4. We identify three UH groups, differing substantially in longevity, lifetime reproductive output, age at first reproduction and in the proportion of the life spent in each reproductive state. - 14% of individuals at fledging have a delayed but high probability of recruitment and extended reproductive life span. - 67% of individuals are less likely to reach adulthood, recruit late and skip breeding often but have the highest adult survival rate. - 19% of individuals recruit early and attempt to breed often. They are likely to raise their offspring successfully, but experience a relatively short life span. Unobserved heterogeneity only explains a small fraction of the variances in longevity (5.9%), age at first reproduction (3.7%) and lifetime reproduction (22%). 5. UH can affect the entire life cycle, including survival, development and reproductive rates, with consequences over the lifetime of individuals and impacts on cohort dynamics. The respective role of UH vs. individual stochasticity varies greatly among demographic outcomes. We discuss the implication of our finding for the gradient of life-history strategies observed among species and argue that individual differences should be accounted for in demographic studies of wild populations. [Jenouvrier, Stephanie; Caswell, Hal] Woods Hole Oceanog Inst, Dept Biol, Woods Hole, MA 02543 USA; [Jenouvrier, Stephanie; Barbraud, Christophe; Weimerskirch, Henri] Univ La Rochelle, CNRS, Ctr Etud Biol Chize, UMR 7372, Villiers En Bois, France; [Aubry, Lise M.] Colorado State Univ, Fish Wildlife & Conservat Biol Dept, Ft Collins, CO 80523 USA; [Caswell, Hal] Univ Amsterdam, Inst Biodivers & Ecosyst Dynam, Amsterdam, Netherlands Jenouvrier, S (reprint author), Woods Hole Oceanog Inst, Dept Biol, Woods Hole, MA 02543 USA.; Jenouvrier, S (reprint author), Univ La Rochelle, CNRS, Ctr Etud Biol Chize, UMR 7372, Villiers En Bois, France. sjenouvrier@whoi.edu jenouvrier, stephanie/0000-0003-3324-2383 Institute Paul Emile Victor; Terres Australes et Antarctiques Francaises; Ocean Life Institute; WHOI Unrestricted funds; NSF [DEB-1257545, OPP-1246407]; European Research Council Advanced Grant [ERC-2012-ADG_20120314]; ERC Advanced Grant [322989] Institute Paul Emile Victor; Terres Australes et Antarctiques Francaises; Ocean Life Institute; WHOI Unrestricted funds; NSF, Grant/Award Number: DEB-1257545 and OPP-1246407; European Research Council Advanced Grant, Grant/Award Number: ERC-2012-ADG_20120314; ERC Advanced Grant, Grant/ Award Number: 322989 AALEN OO, 1994, STAT MED, V13, P2383, DOI 10.1002/sim.4780132209; Aubry LM, 2011, J ANIM ECOL, V80, P375, DOI 10.1111/j.1365-2656.2010.01784.x; Aubry LM, 2009, ECOLOGY, V90, P2491, DOI 10.1890/08-1475.1; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Bouwhuis S, 2009, P R SOC B, V276, P2769, DOI 10.1098/rspb.2009.0457; Burnham KP, 2002, MODEL SELECTION MULT; Cam E, 2002, AM NAT, V159, P96, DOI 10.1086/324126; Cam E, 2016, TRENDS ECOL EVOL, V31, P872, DOI 10.1016/j.tree.2016.08.002; Cam E, 2013, OIKOS, V122, P739, DOI 10.1111/j.1600-0706.2012.20532.x; CASWELL H, 2001, MATRIX POPULATION MO, V2; Caswell H., 2006, MAM2006, P319; Caswell H, 2014, DEMOGR RES, V31, P553, DOI 10.4054/DemRes.2014.31.19; Caswell H, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020809; Caswell H, 2009, OIKOS, V118, P1763, DOI 10.1111/j.1600-0706.2009.17620.x; Chambert T, 2014, J ANIM ECOL, V83, P1158, DOI 10.1111/1365-2656.12211; Chambert T, 2013, ECOL EVOL, V3, P2047, DOI 10.1002/ece3.615; Choquet R., 2009, ENV ECOLOGICAL STAT, V3, P207; Delord K, 2016, IBIS, V158, P569, DOI 10.1111/ibi.12365; Dobson FS, 2007, P NATL ACAD SCI USA, V104, P17565, DOI 10.1073/pnas.0708868104; Fay R., 2017, ECOLOGICAL MONOGRAPH; Fox GA, 2006, J ANIM ECOL, V75, P921, DOI 10.1111/j.1365-2656.2006.01110.x; Gaillard J., 1998, TRENDS ECOL EVOL, V13, P158; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Hamel S, 2017, BIOL REV, V92, P754, DOI 10.1111/brv.12254; Hartemink N, 2017, THEOR POPUL BIOL, V114, P107, DOI 10.1016/j.tpb.2017.01.001; Hougaard P, 1995, Lifetime Data Anal, V1, P255; Jenouvrier S, 2003, J ANIM ECOL, V72, P576, DOI 10.1046/j.1365-2656.2003.00727.x; Jenouvrier S., 2017, DRYAD DIGITAL REPOSI; Jenouvrier S, 2015, ECOL MONOGR, V85, P605, DOI 10.1890/14-1834.1; Johnson D. H, 1986, P 13 INT BIOM C SESS, V5, P1; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; Lebreton JD, 2009, ADV ECOL RES, V41, P87, DOI 10.1016/S0065-2504(09)00403-6; Lindberg MS, 2013, ECOL EVOL, V3, P4045, DOI 10.1002/ece3.767; Link WA, 2002, J APPL STAT, V29, P207, DOI 10.1080/02664760120108700a; LOMNICKI A, 1988, OIKOS, V52, P139, DOI 10.2307/3565240; METZ JAJ, 1986, DYNAMICS PHYSL STRUC; Oli MK, 2004, BASIC APPL ECOL, V5, P449, DOI 10.1016/j.baae.2004.06.002; Orzack SH, 2011, OIKOS, V120, P369, DOI 10.1111/j.1600-0706.2010.17996.x; Peron G, 2010, OIKOS, V119, P524, DOI 10.1111/j.1600-1706.2009.17882.x; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Plard F, 2015, J ANIM ECOL, V84, P1434, DOI 10.1111/1365-2656.12393; Pradel R, 2005, BIOMETRICS, V61, P442, DOI 10.1111/j.1541-0420.2005.00318.x; Rebke M, 2010, P NATL ACAD SCI USA, V107, P7841, DOI 10.1073/pnas.1002645107; Renyi A., 1970, PROBABILITY THEORY; RIDOUX V, 1989, POLAR BIOL, V9, P137, DOI 10.1007/BF00297168; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Sanchez-Blanco A, 2011, PLOS GENET, V7, DOI 10.1371/journal.pgen.1002047; Steiner UK, 2010, J ANIM ECOL, V79, P436, DOI 10.1111/j.1365-2656.2009.01653.x; Steiner UK, 2012, P NATL ACAD SCI USA, V109, P4684, DOI 10.1073/pnas.1018096109; Tuljapurkar S, 2009, ECOL LETT, V12, P367, DOI 10.1111/j.1461-0248.2009.01301.x; Tuljapurkar S, 2010, ANN NY ACAD SCI, V1204, P65, DOI 10.1111/j.1749-6632.2010.05519.x; van Daalen S, 2015, DEMOGR RES, V33, P561, DOI 10.4054/DemRes.2015.33.20; van Daalen SF, 2017, THEOR ECOL-NETH, V10, P355, DOI 10.1007/s12080-017-0335-2; VAUPEL JW, 1979, DEMOGRAPHY, V16, P439, DOI 10.2307/2061224; VAUPEL JW, 1985, AM STAT, V39, P176, DOI 10.2307/2683925; Vaupel JW, 1998, SCIENCE, V280, P855, DOI 10.1126/science.280.5365.855; Vindenes Y, 2008, AM NAT, V171, P455, DOI 10.1086/528965; Weladji RB, 2008, OECOLOGIA, V156, P237, DOI 10.1007/s00442-008-0961-x; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002; Wintrebert CMA, 2005, ECOL MODEL, V181, P203, DOI 10.1016/j.ecolmodel.2004.02.021; YASHIN AI, 1995, MECH AGEING DEV, V80, P147, DOI 10.1016/0047-6374(94)01567-6 61 3 3 8 16 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. JAN 2018 87 1 212 222 10.1111/1365-2656.12752 11 Ecology; Zoology Environmental Sciences & Ecology; Zoology FP8ZH WOS:000417935100020 28886208 Green Published, Other Gold 2018-11-22 J Hughes, MR; Van Leeuwen, TE; Cunningham, PD; Adams, CE Hughes, Martin R.; Van Leeuwen, Travis E.; Cunningham, Peter D.; Adams, Colin E. Parentally acquired differences in resource acquisition ability between brown trout from alternative life history parentage ECOLOGY OF FRESHWATER FISH English Article behaviour; dominance hierarchies; ferox trout; life history strategy; Salmo trutta SALMO-TRUTTA-L; JUVENILE ATLANTIC SALMON; STABLE-ISOTOPE ANALYSES; FEROX TROUT; SYMPATRIC POPULATIONS; LOUGH-MELVIN; GENETIC DIFFERENTIATION; DOMINANCE HIERARCHIES; SALVELINUS-ALPINUS; SOCIAL-DOMINANCE Dominance hierarchies, where they exist, affect individual food acquisition ability and fitness, both of which have the potential to influence life history pathways. Juvenile salmonids exhibit clear dominance hierarchies in early life. As one of the drivers for the adoption of alternative life histories in salmonids is the relative rate of resource acquisition, there is potential for juvenile behaviour to influence the subsequent life history strategy of the individual. Lacustrine brown trout, Salmo trutta, exhibit a multitude of life histories which includes among others the piscivorous (ferox) life history where individuals grow to large size and have delayed maturity and benthivorous and pelagic life histories where individuals grow to much smaller sizes, however mature earlier. Using a number of observable characteristics of dominance, this study compared differences in behaviour between size-matched pairs of progeny, reared under common garden conditions which are derived from alternative, co-existing life history strategy parents. We found that first-generation progeny of ferox trout were more aggressive, acquired more food, had lighter skin pigmentation and held more desirable positions than the progeny of benthivorous brown trout in an experimental stream system. Ferox trout progeny were dominant over benthivorous brown trout progeny in 90% of trials in dyadic contests. Given such clear differences in dominance, this study indicates that parentally acquired dominance-related differences, passed through either, or both, of genetic and nongenetic (e.g. maternal effects) means, are likely a contributing factor to the continued maintenance of distinct life history strategies of brown trout. [Hughes, Martin R.; Van Leeuwen, Travis E.; Adams, Colin E.] Univ Glasgow, Scottish Ctr Ecol & Nat Environm, Glasgow, Lanark, Scotland; [Cunningham, Peter D.] Wester Ross Fisheries Trust, Harbour Ctr, Gairloch, Scotland Hughes, MR (reprint author), Univ Glasgow, Scottish Ctr Ecol & Nat Environm, Glasgow, Lanark, Scotland. m.hughes.4@research.gla.ac.uk European Union's INTERREG IVA Programme European Union's INTERREG IVA Programme. ABBOTT JC, 1985, BEHAVIOUR, V92, P241; Adams C, 2000, AQUACULT INT, V8, P543, DOI 10.1023/A:1009255612529; Adams CE, 1998, AQUACULTURE, V167, P17, DOI 10.1016/S0044-8486(98)00302-0; APPLEBY MC, 1980, BEHAVIOUR, V74, P294, DOI 10.1163/156853980X00519; Burton T, 2011, FUNCT ECOL, V25, P1379, DOI 10.1111/j.1365-2435.2011.01897.x; CAMPBELL RN, 1971, J FISH BIOL, V3, P1, DOI 10.1111/j.1095-8649.1971.tb05902.x; CAMPBELL RN, 1979, J FISH BIOL, V14, P1; CLUTTONBROCK TH, 1986, ANIM BEHAV, V34, P460, DOI 10.1016/S0003-3472(86)80115-4; COLE BJ, 1981, SCIENCE, V212, P83, DOI 10.1126/science.212.4490.83; COWLISHAW G, 1991, ANIM BEHAV, V41, P1045, DOI 10.1016/S0003-3472(05)80642-6; Creel S, 2001, TRENDS ECOL EVOL, V16, P491, DOI 10.1016/S0169-5347(01)02227-3; Cutts CJ, 2001, CAN J FISH AQUAT SCI, V58, P961, DOI 10.1139/cjfas-58-5-961; DEWSBURY DA, 1982, Q REV BIOL, V57, P135, DOI 10.1086/412672; Dingemanse NJ, 2004, BEHAV ECOL, V15, P1023, DOI 10.1093/beheco/arh115; Dodson JJ, 2013, BIOL REV, V88, P602, DOI 10.1111/brv.12019; Duguid RA, 2006, J FISH BIOL, V69, P89, DOI 10.1111/j.1095-8649.2006.01118.x; ELLIS L, 1995, ETHOL SOCIOBIOL, V16, P257, DOI 10.1016/0162-3095(95)00050-U; ENS BJ, 1984, J ANIM ECOL, V53, P217, DOI 10.2307/4353; FERGUSON A, 1991, BIOL J LINN SOC, V43, P221, DOI 10.1111/j.1095-8312.1991.tb00595.x; FERGUSON A, 1981, J FISH BIOL, V18, P629, DOI 10.1111/j.1095-8649.1981.tb03805.x; Ferguson A., 2004, P ROYAL IRISH ACAD B, V104B, P33; FERGUSON MM, 1982, ANIM BEHAV, V30, P128, DOI 10.1016/S0003-3472(82)80247-9; FERGUSON MM, 1983, BEHAV GENET, V13, P213, DOI 10.1007/BF01065670; FOX SF, 1981, ECOLOGY, V62, P888, DOI 10.2307/1936985; Freyhof J., 2008, SALMO FEROX IUCN RED; Gilmour KM, 2005, INTEGR COMP BIOL, V45, P263, DOI 10.1093/icb/45.2.263; Greer R., 1995, FEROX TROUT ARCTIC C; Grey J, 2002, FRESHWATER BIOL, V47, P1235, DOI 10.1046/j.1365-2427.2002.00838.x; Grey J, 2001, ECOL FRESHW FISH, V10, P168, DOI 10.1034/j.1600-0633.2001.100306.x; Harwood AJ, 2002, ANIM BEHAV, V64, P85, DOI 10.1006/anbe.2002.3039; Hojesjo J, 2005, ANIM BEHAV, V69, P1037, DOI 10.1016/j.anbehav.2004.09.007; Hughes MR, 2016, J FISH BIOL, V88, P1648, DOI 10.1111/jfb.12919; Huntingford FA, 2004, J FISH BIOL, V65, P122, DOI 10.1111/j.1095-8649.2004.00562.x; HUNTINGFORD FA, 1990, J FISH BIOL, V36, P877, DOI 10.1111/j.1095-8649.1990.tb05635.x; Jensen H, 2012, J FISH BIOL, V80, P2448, DOI 10.1111/j.1095-8649.2012.03294.x; Kamler E, 2005, REV FISH BIOL FISHER, V15, P399, DOI 10.1007/s11160-006-0002-y; Kittilsen S, 2009, HORM BEHAV, V56, P292, DOI 10.1016/j.yhbeh.2009.06.006; Leblanc CAL, 2011, ETHOLOGY, V117, P664, DOI 10.1111/j.1439-0310.2011.01920.x; Mangel M, 2001, EXP GERONTOL, V36, P765, DOI 10.1016/S0531-5565(00)00240-0; Marra PP, 2001, AUK, V118, P92, DOI 10.1642/0004-8038(2001)118[0092:CODMHS]2.0.CO;2; McKeown NJ, 2010, J FISH BIOL, V76, P319, DOI 10.1111/j.1095-8649.2009.02490.x; MCVEIGH HP, 1995, CAN J FISH AQUAT SCI, V52, P1617, DOI 10.1139/f95-755; Metcalfe NB, 1998, CAN J FISH AQUAT SCI, V55, P93, DOI 10.1139/cjfas-55-S1-93; Metcalfe NB, 2003, J APPL ECOL, V40, P535, DOI 10.1046/j.1365-2664.2003.00815.x; METCALFE NB, 1989, PROC R SOC SER B-BIO, V236, P7, DOI 10.1098/rspb.1989.0009; Mittelbach GG, 1998, CAN J FISH AQUAT SCI, V55, P1454, DOI 10.1139/cjfas-55-6-1454; NAKANO S, 1995, J ANIM ECOL, V64, P75, DOI 10.2307/5828; Nicieza AG, 1999, FUNCT ECOL, V13, P793, DOI 10.1046/j.1365-2435.1999.00371.x; Persson L, 1996, ECOLOGY, V77, P900, DOI 10.2307/2265510; Preston AC, 2014, J FISH BIOL, V85, P882, DOI 10.1111/jfb.12478; PRODOHL PA, 1992, HEREDITAS, V117, P45, DOI 10.1111/j.1601-5223.1992.tb00006.x; R Core Team, 2016, R LANG ENV STAT COMP; ROSELER PF, 1984, BEHAV ECOL SOCIOBIOL, V15, P133, DOI 10.1007/BF00299381; SEYFARTH RM, 1976, ANIM BEHAV, V24, P917, DOI 10.1016/S0003-3472(76)80022-X; Thorne A, 2016, PEERJ, V4, DOI 10.7717/peerj.2646; Van Leeuwen TE, 2016, BEHAV ECOL, V27, P385, DOI 10.1093/beheco/arv163; WELLS KD, 1977, ECOLOGY, V58, P750, DOI 10.2307/1936211 57 1 1 2 7 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0906-6691 1600-0633 ECOL FRESHW FISH Ecol. Freshw. Fish JAN 2018 27 1 62 69 10.1111/eff.12323 8 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology FO9EP WOS:000417191100005 Bronze 2018-11-22 J Peoples, BK; Midway, SR; DeWeber, JT; Wagner, T Peoples, Brandon K.; Midway, Stephen R.; DeWeber, Jefferson T.; Wagner, Tyler Catchment-scale determinants of nonindigenous minnow richness in the eastern United States ECOLOGY OF FRESHWATER FISH English Article Cyprinidae; Darwin's naturalisation hypothesis; fish; invasive species; stream DARWINS NATURALIZATION HYPOTHESIS; WATER FISH INTRODUCTIONS; LIFE-HISTORY STRATEGIES; AMERICAN FRESH-WATER; PROPAGULE PRESSURE; NORTH-AMERICA; DETECTION PROBABILITIES; ESTABLISHMENT SUCCESS; BIOTIC HOMOGENIZATION; CALIFORNIA WATERSHEDS Understanding the drivers of biological invasions is critical for preserving aquatic biodiversity. Stream fishes make excellent model taxa for examining mechanisms driving species introduction success because their distributions are naturally limited by catchment boundaries. In this study, we compared the relative importance of catchment-scale abiotic and biotic predictors of native and nonindigenous minnow (Cyprinidae) richness in 170 catchments throughout the eastern United States. We compared historic and contemporary cyprinid distributional data to determine catchment-wise native/ nonindigenous status for 152 species. Catchment-scale model predictor variables described natural (elevation, precipitation, flow accumulation) and anthropogenic (developed land cover, number of dams) abiotic features, as well as native congener richness. Native congener richness may represent either biotic resistance via interspecific competition, or trait preadaptation according to Darwin's naturalisation hypothesis. We used generalised linear mixed models to examine evidence supporting the relative roles of abiotic and biotic predictors of cyprinid introduction success. Native congener richness was positively correlated with nonindigenous cyprinid richness and was the most important variable predicting nonindigenous cyprinid richness. Mean elevation had a weak positive effect, and effects of other abiotic factors were insignificant and less important. Our results suggest that at this spatial scale, trait preadaptation may be more important than intrageneric competition for determining richness of nonindigenous fishes. [Peoples, Brandon K.] Purdue Univ, Dept Forestry & Nat Resources, W Lafayette, IN 47907 USA; [Midway, Stephen R.] Louisiana State Univ, Dept Oceanog & Coastal Sci, Baton Rouge, LA 70803 USA; [DeWeber, Jefferson T.] Oregon State Univ, Dept Fisheries & Wildlife, Oregon Cooperat Fish & Wildlife Res Unit, Corvallis, OR 97331 USA; [Wagner, Tyler] Penn State Univ, US Geol Survey, Penn Cooperat Fish & Wildlife Res Unit, University Pk, PA 16802 USA; [Peoples, Brandon K.] Clemson Univ, Dept Forestry & Environm Conservat, Clemson, SC USA Midway, SR (reprint author), Louisiana State Univ, Dept Oceanog & Coastal Sci, Baton Rouge, LA 70803 USA. smidway@lsu.edu Purdue Department of Forestry and Natural Resources; United States Geological Survey Purdue Department of Forestry and Natural Resources; United States Geological Survey Albanese B, 2007, SOUTHEAST NAT, V6, P657, DOI 10.1656/1528-7092(2007)6[657:AFIDWE]2.0.CO;2; Alcaraz C, 2005, DIVERS DISTRIB, V11, P289, DOI 10.1111/j.1366-9516.2005.00170.x; Barbour M. T., 1999, RAPID BIOASSESSMENT; Barney JN, 2008, BIOL INVASIONS, V10, P259, DOI 10.1007/s10530-007-9127-8; Blackburn TM, 2011, TRENDS ECOL EVOL, V26, P333, DOI 10.1016/j.tree.2011.03.023; Bomford M, 2010, BIOL INVASIONS, V12, P2559, DOI 10.1007/s10530-009-9665-3; Burnham KP, 2002, MODEL SELECTION MULT; Catford JA, 2009, DIVERS DISTRIB, V15, P22, DOI 10.1111/j.1472-4642.2008.00521.x; Chrobock T, 2013, J ECOL, V101, P916, DOI 10.1111/1365-2745.12107; Cobo F, 2010, BIODIVERS CONSERV, V19, P3471, DOI 10.1007/s10531-010-9908-8; Copp GH, 2007, J FISH BIOL, V71, P148, DOI 10.1111/j.1095-8649.2007.01680.x; Copp GH, 2009, RISK ANAL, V29, P457, DOI 10.1111/j.1539-6924.2008.01159.x; Davis MA, 2000, J ECOL, V88, P528, DOI 10.1046/j.1365-2745.2000.00473.x; Didham RK, 2005, TRENDS ECOL EVOL, V20, P470, DOI 10.1016/j.tree.2005.07.006; Diez JM, 2008, ECOL LETT, V11, P674, DOI 10.1111/j.1461-0248.2008.01178.x; Domisch S, 2015, SCI DATA, V2, DOI 10.1038/sdata.2015.73; Drake DAR, 2014, FISHERIES, V39, P201, DOI 10.1080/03632415.2014.903835; Duggan IC, 2006, BIOL INVASIONS, V8, P377, DOI 10.1007/s10530-004-2310-2; Fausch KD, 2001, ECOL APPL, V11, P1438, DOI 10.2307/3060931; Gallagher RV, 2015, CONSERV BIOL, V29, P360, DOI 10.1111/cobi.12399; Garcia-Berthou E, 2007, J FISH BIOL, V71, P33, DOI 10.1111/j.1095-8649.2007.01668.x; Gido KB, 1999, FRESHWATER BIOL, V42, P387, DOI 10.1046/j.1365-2427.1999.444490.x; Gido KB, 2004, BIOL CONSERV, V118, P121, DOI 10.1016/j.biocon.2003.07.015; Gonzalez-Suarez M, 2015, AM NAT, V185, P737, DOI 10.1086/681105; Guo QF, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0097727; Hijmans RJ, 2005, INT J CLIMATOL, V25, P1965, DOI 10.1002/joc.1276; Hortal J, 2007, CONSERV BIOL, V21, P853, DOI 10.1111/j.1523-1739.2007.00686.x; Howes G.J., 1991, Fish and Fisheries Series, P1; Howeth JG, 2016, DIVERS DISTRIB, V22, P148, DOI 10.1111/ddi.12391; Jelks HL, 2008, FISHERIES, V33, P372, DOI 10.1577/1548-8446-33.8.372; Jeschke JM, 2006, GLOBAL CHANGE BIOL, V12, P1608, DOI 10.1111/j.1365-2486.2006.01213.x; Jiang L, 2010, AM NAT, V175, P415, DOI 10.1086/650720; Jin SM, 2013, REMOTE SENS ENVIRON, V132, P159, DOI 10.1016/j.rse.2013.01.012; Kennedy TA, 2002, NATURE, V417, P636, DOI 10.1038/nature00776; Kolar CS, 2002, SCIENCE, V298, P1233, DOI 10.1126/science.1075753; Leprieur F, 2008, DIVERS DISTRIB, V14, P291, DOI 10.1111/j.1472-4642.2007.00409.x; Leprieur F, 2009, J BIOGEOGR, V36, P1899, DOI 10.1111/j.1365-2699.2009.02107.x; Lockwood JL, 2005, TRENDS ECOL EVOL, V20, P223, DOI 10.1016/j.tree.2005.02.004; Lowe WH, 2006, BIOSCIENCE, V56, P591, DOI 10.1641/0006-3568(2006)56[591:LSISE]2.0.CO;2; Ludwig HR, 1996, FISHERIES, V21, P14, DOI 10.1577/1548-8446(1996)021<0014:ITOABV>2.0.CO;2; Mahoney PJ, 2015, DIVERS DISTRIB, V21, P64, DOI 10.1111/ddi.12240; Marchetti MP, 2004, ECOL APPL, V14, P1507, DOI 10.1890/03-5173; Marchetti MP, 2004, ECOL APPL, V14, P587, DOI 10.1890/02-5301; Marr SM, 2010, DIVERS DISTRIB, V16, P606, DOI 10.1111/j.1472-4642.2010.00669.x; Marr SM, 2013, HYDROBIOLOGIA, V719, P317, DOI 10.1007/s10750-013-1486-9; McGeoch MA, 2010, DIVERS DISTRIB, V16, P95, DOI 10.1111/j.1472-4642.2009.00633.x; McKinney CL, 2001, BIOL CONSERV, V100, P243; McKinney ML, 2002, DIVERS DISTRIB, V8, P311, DOI 10.1046/j.1472-4642.2002.00153.x; McManamay RA, 2015, CAN J FISH AQUAT SCI, V72, P1731, DOI 10.1139/cjfas-2015-0227; Moulton S. R., 2002, REVISED PROTOCOLS SA; Muneepeerakul R, 2008, NATURE, V453, P220, DOI 10.1038/nature06813; Murphy CA, 2015, FRESHW SCI, V34, P965, DOI 10.1086/681948; NatureServe, 2010, DIG DISTR MAPS FRESH; Olden JD, 2004, ECOLOGY, V85, P1867, DOI 10.1890/03-3131; Olden JD, 2006, ECOL MONOGR, V76, P25, DOI 10.1890/05-0330; Park DS, 2013, P NATL ACAD SCI USA, V110, P17915, DOI 10.1073/pnas.1309948110; Peoples BK, 2011, T AM FISH SOC, V140, P67, DOI 10.1080/00028487.2010.550237; Poff NL, 1997, J N AM BENTHOL SOC, V16, P391, DOI 10.2307/1468026; Pregler KC, 2015, T AM FISH SOC, V144, P89, DOI 10.1080/00028487.2014.968291; R Development Core Team, 2015, R LANG ENV STAT COMP; Rahel FJ, 2000, SCIENCE, V288, P854, DOI 10.1126/science.288.5467.854; Rahel FJ, 2007, FRESHWATER BIOL, V52, P696, DOI 10.1111/j.1365-2427.2006.01708.x; Ribeiro F, 2008, BIOL INVASIONS, V10, P89, DOI 10.1007/s10530-007-9112-2; Ricciardi A, 1999, CONSERV BIOL, V13, P1220, DOI 10.1046/j.1523-1739.1999.98380.x; Ricciardi A, 2004, ECOL LETT, V7, P781, DOI 10.1111/j.1461-0248.2004.00642.x; Ricciardi A, 2006, BIOL INVASIONS, V8, P1403, DOI 10.1007/s10530-006-0005-6; Rixon CAM, 2005, BIODIVERS CONSERV, V14, P1365, DOI 10.1007/s10531-004-9663-9; Ruesink JL, 2005, CONSERV BIOL, V19, P1883, DOI 10.1111/j.1523-1739.2005.00289.x; Sala OE, 2000, SCIENCE, V287, P1770, DOI 10.1126/science.287.5459.1770; Sanchez-Fernandez D, 2008, DIVERS DISTRIB, V14, P754, DOI 10.1111/j.1472-4642.2008.00474.x; Schlosser I. J., 1987, COMMUNITY EVOLUTIONA; Scott MC, 2001, FISHERIES, V26, P6, DOI 10.1577/1548-8446(2001)026<0006:NIHATM>2.0.CO;2; Simberloff D, 2013, INVASIVE SPECIES WHA; Simley J. D., 2009, NATL MAP HYDROGRAPHY; Snyder RJ, 2014, J GREAT LAKES RES, V40, P360, DOI 10.1016/j.jglr.2014.03.009; Stewart DR, 2016, DIVERS DISTRIB, V22, P225, DOI 10.1111/ddi.12383; Stohlgren TJ, 2006, BIOL INVASIONS, V8, P427, DOI 10.1007/s10530-005-6422-0; Strecker AL, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.3003; Thuiller W, 2010, DIVERS DISTRIB, V16, P461, DOI 10.1111/j.1472-4642.2010.00645.x; United States Environmental Protection Agency (USEPA), 2012, NAT HYDR DAT PLUS; van Wilgen NJ, 2011, DIVERS DISTRIB, V17, P172, DOI 10.1111/j.1472-4642.2010.00717.x; Villeger S, 2011, P NATL ACAD SCI USA, V108, P18003, DOI 10.1073/pnas.1107614108; White SL, 2014, AM MIDL NAT, V171, P311, DOI 10.1674/0003-0031-171.2.311; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242 85 0 0 1 4 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0906-6691 1600-0633 ECOL FRESHW FISH Ecol. Freshw. Fish JAN 2018 27 1 138 145 10.1111/eff.12331 8 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology FO9EP WOS:000417191100013 Bronze 2018-11-22 J Weybright, AD; Giannico, GR Weybright, Adam D.; Giannico, Guillermo R. Juvenile coho salmon movement, growth and survival in a coastal basin of southern Oregon ECOLOGY OF FRESHWATER FISH English Article coho salmon; condition dependence; life history; movement; tide gate LIFE-HISTORY STRATEGIES; ONCORHYNCHUS-KISUTCH; BRITISH-COLUMBIA; ATLANTIC SALMON; CARNATION CREEK; SOUTHEASTERN ALASKA; RIVERINE PONDS; DRAINAGE-BASIN; SOCIAL-STATUS; HABITAT USE Juvenile salmonids display highly variable spatial and temporal patterns of early dispersal that are influenced by density-dependent and density-independent factors. Although juvenile coho salmon (Oncorhynchus kisutch) movement patterns in streams and their relationship with body mass and growth have been examined in previous studies, most observations were limited to one season or one stream section. In this study, we monitored the movement of juvenile coho salmon throughout their period of residence in a coastal basin to identify prevalent dispersal strategies and their relationships with body mass, growth rates and survival. Our results revealed seasonally and spatially variable movement patterns. Juvenile coho salmon that dispersed to tidally affected reaches soon after emergence remained more mobile and expressed lower site fidelity than those individuals that remained in upper riverine reaches. We did not detect significantly different growth rates between sedentary and mobile individuals. Although a greater proportion of sedentary than mobile fish survived winter to emigrate from the creek in the spring, reach of residence at the onset of winter influenced these survival estimates. Hence, apparent summer-to-smolt survival for mobile individuals was greater than for sedentary fish in tidally influenced reaches, whereas in riverine reaches the sedentary strategy seemed to be favoured. Our research identified complex movement patterns that reflect phenotypic and life history variation, and underscores the importance of maintaining diverse freshwater and estuarine habitats that support juvenile coho salmon before marine migration. [Weybright, Adam D.] Wetlands & Wildlife Inc, Woodinville, WA 98077 USA; [Giannico, Guillermo R.] Oregon State Univ, Dept Fisheries & Wildlife, Corvallis, OR 97331 USA Weybright, AD (reprint author), Wetlands & Wildlife Inc, Woodinville, WA 98077 USA. adam@wetlands-wildlife.com Oregon Watershed Enhancement Board [206-244, 207-238]; Oregon Department of Fish and Wildlife Oregon Watershed Enhancement Board, Grant/Award Number: 206-244 and 207-238; Oregon Department of Fish and Wildlife Acolas ML, 2007, FISH RES, V86, P280, DOI 10.1016/j.fishres.2007.05.011; Anderson JH, 2013, ECOL FRESHW FISH, V22, P30, DOI 10.1111/j.1600-0633.2012.00589.x; Armstrong JB, 2013, ECOSYSTEMS, V16, P1429, DOI 10.1007/s10021-013-9693-9; Armstrong JB, 2013, ECOLOGY, V94, P2066, DOI 10.1890/12-1200.1; Bass AL, 2012, MAR COAST FISH, V4, P145, DOI 10.1080/19425120.2012.676384; Bell E, 2001, T AM FISH SOC, V130, P450, DOI 10.1577/1548-8659(2001)130<0450:FASOJC>2.0.CO;2; Bennett TR, 2015, ECOL FRESHW FISH, V24, P264, DOI 10.1111/eff.12144; Bowler DE, 2005, BIOL REV, V80, P205, DOI 10.1017/S1464793104006645; Bradford MJ, 1997, CAN J FISH AQUAT SCI, V54, P1585, DOI 10.1139/f97-065; Brakensiek KE, 2007, T AM FISH SOC, V136, P1423, DOI 10.1577/T06-211.1; Bramblett RG, 2002, T AM FISH SOC, V131, P498, DOI 10.1577/1548-8659(2002)131<0498:SUOSTA>2.0.CO;2; Brown Richard S., 1999, North American Journal of Fisheries Management, V19, P867, DOI 10.1577/1548-8675(1999)019<0867:ETCTRF>2.0.CO;2; CHAPMAN DW, 1962, J FISH RES BOARD CAN, V19, P1047, DOI 10.1139/f62-069; CHAPMAN DW, 1966, AM NAT, V100, P345, DOI 10.1086/282427; Craig BE, 2014, J FISH BIOL, V85, P31, DOI 10.1111/jfb.12433; CRONE RA, 1976, FISH B-NOAA, V74, P897; Ebersole JL, 2006, T AM FISH SOC, V135, P1681, DOI 10.1577/T05-144.1; Einum S, 2006, OIKOS, V113, P489, DOI 10.1111/j.2006.0030-1299.14806.x; Fausch KD, 1995, AM FISH S S, V17, P360; FAUSCH KD, 1984, CAN J ZOOL, V62, P441, DOI 10.1139/z84-067; Fox GA, 2005, ECOLOGY, V86, P1191, DOI 10.1890/04-0594; Gaggiotti Oscar E., 2004, P337, DOI 10.1016/B978-012323448-3/50016-7; Giannico G. R., 2005, ORESUT05001; Giannico GR, 1998, T AM FISH SOC, V127, P645, DOI 10.1577/1548-8659(1998)127<0645:EOFAFO>2.0.CO;2; Giannico GR, 2003, RIVER RES APPL, V19, P219, DOI 10.1002/rra.723; Giannico GR, 1999, CAN J FISH AQUAT SCI, V56, P2362, DOI 10.1139/cjfas-56-12-2362; Giannico GR, 2000, CAN J FISH AQUAT SCI, V57, P1804, DOI 10.1139/cjfas-57-9-1804; GOWAN C, 1994, CAN J FISH AQUAT SCI, V51, P2626, DOI 10.1139/f94-262; Grand TC, 1997, ANIM BEHAV, V53, P185, DOI 10.1006/anbe.1996.0287; HARTMAN GF, 1982, CAN J FISH AQUAT SCI, V39, P588, DOI 10.1139/f82-083; HARTMAN GF, 1987, CAN J FISH AQUAT SCI, V44, P262, DOI 10.1139/f87-035; HEGGENES J, 1993, J ANIM ECOL, V62, P295, DOI 10.2307/5361; HOLTBY LB, 1990, CAN J FISH AQUAT SCI, V47, P2181, DOI 10.1139/f90-243; Jones KK, 2014, J FISH BIOL, V85, P52, DOI 10.1111/jfb.12380; Kahler TH, 2001, CAN J FISH AQUAT SCI, V58, P1947, DOI 10.1139/cjfas-58-10-1947; Kennedy W. A., 1976, 665 FISH MAR SERV CA; Koski KV, 2009, ECOL SOC, V14; McCormick SD, 1998, CAN J FISH AQUAT SCI, V55, P77, DOI 10.1139/d98-011; METCALFE NB, 1995, ANIM BEHAV, V49, P431, DOI 10.1006/anbe.1995.0056; METCALFE NB, 1989, PROC R SOC SER B-BIO, V236, P7, DOI 10.1098/rspb.1989.0009; Miller BA, 2003, T AM FISH SOC, V132, P546, DOI 10.1577/1548-8659(2003)132<0546:RTASMO>2.0.CO;2; Milner AM, 2000, CAN J FISH AQUAT SCI, V57, P2319, DOI 10.1139/cjfas-57-11-2319; Montgomery DR, 1997, GEOL SOC AM BULL, V109, P596, DOI 10.1130/0016-7606(1997)109<0596:CRMIMD>2.3.CO;2; Murphy ML, 1997, CAN J FISH AQUAT SCI, V54, P2837, DOI 10.1139/cjfas-54-12-2837; Nickelson TE, 1998, CAN J FISH AQUAT SCI, V55, P2383, DOI 10.1139/cjfas-55-11-2383; NICKELSON TE, 1992, CAN J FISH AQUAT SCI, V49, P783, DOI 10.1139/f92-088; NIELSEN JL, 1992, T AM FISH SOC, V121, P617, DOI 10.1577/1548-8659(1992)121<0617:MFBDAG>2.3.CO;2; Pess GR, 2011, T AM FISH SOC, V140, P883, DOI 10.1080/00028487.2011.587752; PETERSON NP, 1982, CAN J FISH AQUAT SCI, V39, P1303, DOI 10.1139/f82-172; PETERSON NP, 1982, CAN J FISH AQUAT SCI, V39, P1308, DOI 10.1139/f82-173; Quinn TP, 2013, T AM FISH SOC, V142, P1058, DOI 10.1080/00028487.2013.793614; Quinn TP, 1996, CAN J FISH AQUAT SCI, V53, P1555, DOI 10.1139/cjfas-53-7-1555; R Development Core Team, 2005, R LANG ENV STAT COMP; Reeves GH, 2010, ENVIRON BIOL FISH, V87, P101, DOI 10.1007/s10641-009-9569-1; Rhodes JS, 1998, J FISH BIOL, V53, P1220; Rieman BE, 2000, ECOL FRESHW FISH, V9, P51, DOI 10.1034/j.1600-0633.2000.90106.x; Roni Philip, 2000, North American Journal of Fisheries Management, V20, P683, DOI 10.1577/1548-8675(2000)020<0683:EWSAIS>2.3.CO;2; SCRIVENER JC, 1984, CAN J FISH AQUAT SCI, V41, P1097, DOI 10.1139/f84-129; Shrimpton JM, 2014, J FISH BIOL, V85, P987, DOI 10.1111/jfb.12468; Solazzi MF, 2000, CAN J FISH AQUAT SCI, V57, P906, DOI 10.1139/cjfas-57-5-906; Tschaplinski P. J., 1982, P CARN CREEK WORKSH, P289; Zydlewski GB, 2006, FISHERIES, V31, P492, DOI 10.1577/1548-8446(2006)31[492:RMOFIS]2.0.CO;2 62 2 2 6 10 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0906-6691 1600-0633 ECOL FRESHW FISH Ecol. Freshw. Fish JAN 2018 27 1 170 183 10.1111/eff.12334 14 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology FO9EP WOS:000417191100016 Bronze 2018-11-22 J Lima, AC; Sayanda, D; Agostinho, CS; Machado, AL; Soares, AMVM; Monaghan, KA Lima, Ana C.; Sayanda, Diogo; Agostinho, Carlos S.; Machado, Ana L.; Soares, Amadeu M. V. M.; Monaghan, Kieran A. Using a trait-based approach to measure the impact of dam closure in fish communities of a Neotropical River ECOLOGY OF FRESHWATER FISH English Article biomonitoring; damming; fishes; functional diversity; traits; tropical river LIFE-HISTORY STRATEGIES; ALTERED FLOW REGIMES; FUNCTIONAL DIVERSITY; ECOLOGICAL RESPONSES; ENVIRONMENTAL FLOWS; SPECIES RICHNESS; PARANA RIVER; ASSEMBLAGES; BRAZIL; BASIN Damming is one of the main causes of the global decline in freshwater biodiversity. Yet, many hydroelectric dams are being built (or planned) in the Neotropics, where the high species diversity and lack of basic ecological knowledge provide a major obstacle to understanding the effects of this environmental change, which has been mostly described from the perspective of taxonomic change. However, this approach does not account for biological function. Trait-based analysis provides an alternative approach to bioassessment. We assessed the impact of dam closure on the functional structure of fish communities of a Neotropical river by applying trait-based analyses to the response of individual traits aggregated at the assemblage level. Fish data were collected during three distinct time periods (1 year before, 1 year after and 5 years after dam closure), at eight sites located downstream of the dam, in the reservoir, transition zone and upstream. The results indicated that reproduction strategies (migration and parental care) and diet (detritivores) were the trait categories mostly affected by the dam, with the response of downstream assemblages differing from upstream of the dam. A trait-based analysis to the impact of damming on fish communities appears to be a promising approach using an initial descriptive analysis of individual traits and regression models of multiple traits that reflect species' adaptation to the new environment. This study provides both an alternative and complementary approach to taxonomic assessment of impacts from damming, contributing towards a more robust evaluation of the response of fish communities to dams. [Lima, Ana C.; Machado, Ana L.; Soares, Amadeu M. V. M.; Monaghan, Kieran A.] Univ Aveiro, CESAM Ctr Environm & Marine Studies, Aveiro, Portugal; [Lima, Ana C.; Machado, Ana L.; Soares, Amadeu M. V. M.; Monaghan, Kieran A.] Univ Aveiro, Dept Biol, Aveiro, Portugal; [Sayanda, Diogo] Univ Lisbon, Fac Ciencias, Dept Estatist & Invest Operac, Lisbon, Portugal; [Agostinho, Carlos S.] Univ Fed Tocantins, Nucleo Estudos Ambientais Neamb, Porto Nacl, TO, Portugal; [Soares, Amadeu M. V. M.] Univ Fed Tocantins, Programa Posgrad Prod Vegetal, Gurupi, TO, Brazil Lima, AC (reprint author), Univ Aveiro, CESAM Ctr Environm & Marine Studies, Aveiro, Portugal.; Lima, AC (reprint author), Univ Aveiro, Dept Biol, Aveiro, Portugal. carolina.alveslima@gmail.com Soares, Amadeu/A-8304-2008; Machado, Ana/U-9736-2018 Soares, Amadeu/0000-0003-0879-9470; Machado, Ana/0000-0002-5213-6001; monaghan, kieran/0000-0002-3063-7817 Fundacao para a Ciencia e a Tecnologia [SFRH/BD/51408/2011] Fundacao para a Ciencia e a Tecnologia, Grant/Award Number: SFRH/BD/51408/2011 Agostinho AA, 2008, BRAZ J BIOL, V68, P1119, DOI 10.1590/S1519-69842008000500019; Agostinho AA, 2004, REV FISH BIOL FISHER, V14, P11, DOI 10.1007/s11160-004-3551-y; Agostinho AA, 1999, THEORETICAL RESERVOIR ECOLOGY AND ITS APPLICATIONS, P227; Agostinho AA, 2016, FISH RES, V173, P26, DOI 10.1016/j.fishres.2015.04.006; Agostinho CS, 2009, RESERVATORIO PEIXE A; Albrecht M. P., 2005, THESIS; Alexandre CM, 2013, RIVER RES APPL, V29, P1042, DOI 10.1002/rra.2591; Antonio RR, 2007, NEOTROP ICHTHYOL, V5, P177, DOI 10.1590/S1679-62252007000200012; Araujo ES, 2013, ECOL FRESHW FISH, V22, P543, DOI 10.1111/eff.12054; BALON EK, 1981, ENVIRON BIOL FISH, V6, P377, DOI 10.1007/BF00005769; BARTHEM RB, 1991, BIOL CONSERV, V55, P339, DOI 10.1016/0006-3207(91)90037-A; Buisson L, 2013, GLOBAL CHANGE BIOL, V19, P387, DOI 10.1111/gcb.12056; Cooper AR, 2016, ECOL INDIC, V61, P646, DOI 10.1016/j.ecolind.2015.10.016; Craven SW, 2010, ENVIRON MANAGE, V46, P181, DOI 10.1007/s00267-010-9511-5; de Merona B, 2003, ACTA OECOL, V24, P147, DOI 10.1016/S1146-609X(03)00065-1; de Merona B, 2001, ENVIRON BIOL FISH, V60, P375, DOI 10.1023/A:1011033025706; de Merona B., 2009, ANN LIMNOL-INT J LIM, V42, P53; Delariva RL, 2013, NEOTROP ICHTHYOL, V11, P891, DOI 10.1590/S1679-62252013000400017; Dias RM, 2005, BRAZ ARCH BIOL TECHN, V48, P467, DOI 10.1590/S1516-89132005000300017; Dormann CF, 2013, ECOGRAPHY, V36, P27, DOI 10.1111/j.1600-0587.2012.07348.x; Ernst R, 2006, BIOL CONSERV, V133, P143, DOI 10.1016/j.biocon.2006.05.028; Faraway J, 2006, EXTENDING LINEAR MOD; Finer M, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0035126; Frimpong EA, 2010, AM FISH S S, V73, P109; Froese R, 2016, FISHBASE; Gandini CV, 2014, NEOTROP ICHTHYOL, V12, P795, DOI 10.1590/1982-0224-20130151; Garavello JC, 2010, BRAZ J BIOL, V70, P575, DOI 10.1590/S1519-69842010000300014; Garcia-Berthou E, 2007, J FISH BIOL, V71, P33, DOI 10.1111/j.1095-8649.2007.01668.x; Garnier E, 2004, ECOLOGY, V85, P2630, DOI 10.1890/03-0799; Hoeinghaus DJ, 2007, J BIOGEOGR, V34, P324, DOI 10.1111/j.1365-2699.2006.01587.x; Hoeinghaus DJ, 2009, CONSERV BIOL, V23, P1222, DOI 10.1111/j.1523-1739.2009.01248.x; Laliberte E., 2014, FD MEASURING FUNCTIO; Lavorel S, 2002, FUNCT ECOL, V16, P545, DOI 10.1046/j.1365-2435.2002.00664.x; Lavorel S, 2008, FUNCT ECOL, V22, P134, DOI 10.1111/j.1365-2435.2007.01339.x; Leps J, 2006, PRESLIA, V78, P481; Lima AC, 2016, ECOHYDROLOGY, V9, P860, DOI 10.1002/eco.1688; Lima AC, 2016, HYDROBIOLOGIA, V763, P207, DOI 10.1007/s10750-015-2377-z; Marques E. E., 2009, RESERVATORIO PEIXE A, P51; Mcmanamay RA, 2015, ECOL APPL, V25, P243, DOI 10.1890/14-0247.1; Mims MC, 2010, ECOL FRESHW FISH, V19, P390, DOI 10.1111/j.1600-0633.2010.00422.x; Mims MC, 2013, FRESHWATER BIOL, V58, P50, DOI 10.1111/fwb.12037; Mouchet MA, 2010, FUNCT ECOL, V24, P867, DOI 10.1111/j.1365-2435.2010.01695.x; Mouillot D, 2013, TRENDS ECOL EVOL, V28, P167, DOI 10.1016/j.tree.2012.10.004; Norberg J, 2001, P NATL ACAD SCI USA, V98, P11376, DOI 10.1073/pnas.171315998; Olden JD, 2006, ECOL MONOGR, V76, P25, DOI 10.1890/05-0330; Olden JD, 2010, FRESHWATER BIOL, V55, P86, DOI 10.1111/j.1365-2427.2009.02179.x; Pease AA, 2012, FRESHWATER BIOL, V57, P1060, DOI 10.1111/j.1365-2427.2012.02768.x; Pelicice FM, 2015, FISH FISH, V16, P697, DOI 10.1111/faf.12089; Petchey OL, 2006, ECOL LETT, V9, P741, DOI 10.1111/j.1461-0248.2006.00924.x; Petchey OL, 2002, ECOL LETT, V5, P402, DOI 10.1046/j.1461-0248.2002.00339.x; Petesse ML, 2012, ECOL ENG, V48, P109, DOI 10.1016/j.ecoleng.2011.06.033; Petrere Miguel Jr, 1996, Lakes & Reservoirs Research and Management, V2, P111, DOI 10.1111/j.1440-1770.1996.tb00054.x; Poff NL, 2010, FRESHWATER BIOL, V55, P194, DOI 10.1111/j.1365-2427.2009.02272.x; R Development Core Team, 2012, R LANG ENV STAT COMP; Reis R., 2009, IUCN RED LIST THREAT; Ricotta C, 2011, OECOLOGIA, V167, P181, DOI 10.1007/s00442-011-1965-5; Ruffino M. L., 1995, NAGA ICLARM Q, V18, P41; Sabaj Mark H., 1999, Ichthyological Exploration of Freshwaters, V10, P217; Santos G. M., 2006, PEIXES COMERCIAIS MA; Suzuki H. I., 2004, STRUCTURE FUNCTIONIN, V6, P125; Thornton K.W., 1981, P S SURF WAT IMP AM, V1, P654; Tundisi J., 1999, THEORETICAL RESERVOI, P592; Ugland KI, 2003, J ANIM ECOL, V72, P888, DOI 10.1046/j.1365-2656.2003.00748.x; Vasconcelos LP, 2014, J FISH BIOL, V85, P1489, DOI 10.1111/jfb.12501; Venables W. N., 2002, ISSUES ACCURACY SCAL, V45, P868; Villeger S, 2010, ECOL APPL, V20, P1512, DOI 10.1890/09-1310.1; Violle C, 2007, OIKOS, V116, P882, DOI 10.1111/j.2007.0030-1299.15559.x; Vitorino Jr O. B., 2012, THESIS, P24; Webb JA, 2013, FRESHWATER BIOL, V58, P2439, DOI 10.1111/fwb.12234; Winemiller KO, 2016, SCIENCE, V351, P128, DOI 10.1126/science.aac7082; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040 71 0 0 10 30 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0906-6691 1600-0633 ECOL FRESHW FISH Ecol. Freshw. Fish JAN 2018 27 1 408 420 10.1111/eff.12356 13 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology FO9EP WOS:000417191100036 Bronze 2018-11-22 J Venkateswaran, V; Shrivastava, A; Kumble, ALK; Borges, RM Venkateswaran, Vignesh; Shrivastava, Amitabh; Kumble, Anusha L. K.; Borges, Renee M. Life-history strategy, resource dispersion and phylogenetic associations shape dispersal of a fig wasp community MOVEMENT ECOLOGY English Article Community ecology; Dispersal; Fig wasps; Flight fuel; Insect flight; Life history; Metabolic rate; Resource availability RESTING METABOLIC-RATE; TRADE-OFFS; PARASITOID WASPS; EGG MATURATION; EVOLUTION; INSECTS; FLIGHT; MUTUALISM; ECOLOGY; TRAITS Background: The combined influence of life-history strategy and resource dispersion on dispersal evolution of a biological community, and by extension, on community assemblage, has received sparse attention. Highly specialized fig wasp communities are ideal for addressing this question since the life-history strategies that affect their pace of life and the dispersion of their oviposition resources vary. We compared dispersal capacities of the wasp community of a widespread tropical fig, Ficus racemosa, by measuring flight durations, somatic lipid content and resting metabolic rates. Results: Wasp species exhibiting greater flight durations had higher energy reserves and resting metabolic rates. "Fast"-paced species showed higher dispersal capacities reflecting requirements for rapid resource location within short adult lifespans. Longer-lived "slow"-paced species exhibited lower dispersal capacities. Most dispersal traits were negatively related with resource dispersion while their variances were positively related with this variable, suggesting that resource dispersion selects for dispersal capacity. Dispersal traits exhibited a phylogenetic signal. Conclusions: Using a combination of phylogeny, trait functionality and community features, we explain how dispersal traits may have co-evolved with life-history strategies in fig wasps and influenced a predisposition for dispersal. We speculate how processes influencing dispersal trait expression of community members may affect resource occupancy and community assemblage. [Venkateswaran, Vignesh; Shrivastava, Amitabh; Kumble, Anusha L. K.; Borges, Renee M.] Indian Inst Sci, Ctr Ecol Sci, Bangalore 560012, Karnataka, India Borges, RM (reprint author), Indian Inst Sci, Ctr Ecol Sci, Bangalore 560012, Karnataka, India. renee@iisc.ac.in Department of Science and Technology (DST); DST-FIST; Department of Biotechnology; Ministry of Environment, Forests & Climate Change, Government of India The project utilized funds from the Department of Science and Technology (DST), DST-FIST, Department of Biotechnology, and Ministry of Environment, Forests & Climate Change, Government of India. Addo-Bediako A, 2002, FUNCT ECOL, V16, P332, DOI 10.1046/j.1365-2435.2002.00634.x; Agosta SJ, 2008, ECOL LETT, V11, P1123, DOI 10.1111/j.1461-0248.2008.01237.x; Ahmed S, 2009, P NATL ACAD SCI USA, V106, P20342, DOI 10.1073/pnas.0902213106; Aktipis CA, 2013, NAT REV CANCER, V13, P883, DOI 10.1038/nrc3606; Amat I, 2012, ECOL ENTOMOL, V37, P480, DOI 10.1111/j.1365-2311.2012.01388.x; Asplen MK, 2009, PHYSIOL ENTOMOL, V34, P350, DOI 10.1111/j.1365-3032.2009.00698.x; Bain A, 2016, EVOL ECOL, V30, P663, DOI 10.1007/s10682-016-9836-5; BEENAKKE.AM, 1969, J INSECT PHYSIOL, V15, P353, DOI 10.1016/0022-1910(69)90281-9; BLACKBURN TM, 1991, FUNCT ECOL, V5, P65, DOI 10.2307/2389556; Borges RM, 2015, CURR OPIN INSECT SCI, V8, P34, DOI 10.1016/j.cois.2015.01.011; Bowler DE, 2005, BIOL REV, V80, P205, DOI 10.1017/S1464793104006645; BRONSTEIN JL, 1990, ECOLOGY, V71, P2145, DOI 10.2307/1938628; Buoro M, 2014, ECOL LETT, V17, P756, DOI 10.1111/ele.12275; Cayuela H, 2016, ECOLOGY, V97, P2658, DOI 10.1002/ecy.1489; Compton SG, 2000, BIOTROPICA, V32, P515, DOI 10.1111/j.1744-7429.2000.tb00497.x; COMPTON SG, 1992, OECOLOGIA, V91, P68, DOI 10.1007/BF00317243; Cruaud A, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-178; DENNO RF, 1991, AM NAT, V138, P1513, DOI 10.1086/285298; Dobson FS, 2007, P NATL ACAD SCI USA, V104, P17565, DOI 10.1073/pnas.0708868104; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Duthie AB, 2015, AM NAT, V186, P151, DOI 10.1086/681621; Ellers J, 2004, EVOL ECOL RES, V6, P993; Ellers J, 2003, OIKOS, V102, P164, DOI 10.1034/j.1600-0706.2003.12183.x; Fjerdingstad EJ, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-133; Flatt T, 2013, Q REV BIOL, V88, P185, DOI 10.1086/671484; FOLCH J, 1957, J BIOL CHEM, V226, P497; Foray V, 2012, PHYSIOL ENTOMOL, V37, P295, DOI 10.1111/j.1365-3032.2012.00831.x; Friedenberg NA, 2003, ECOL LETT, V6, P953, DOI 10.1046/j.1461-0248.2003.00524.x; GARLAND T, 1992, SYST BIOL, V41, P18, DOI 10.2307/2992503; Ghara M, 2014, ARTHROPOD-PLANT INTE, V8, P191, DOI 10.1007/s11829-014-9300-9; Ghara M, 2010, ECOL ENTOMOL, V35, P139, DOI 10.1111/j.1365-2311.2010.01176.x; Glazier DS, 2015, BIOL REV, V90, P377, DOI 10.1111/brv.12115; Harrison RD, 2003, P ROY SOC B-BIOL SCI, V270, pS76, DOI 10.1098/rsbl.2003.0018; Heraty JM, 2013, CLADISTICS, V29, P466, DOI 10.1111/cla.12006; Herre EA, 2008, ANNU REV ECOL EVOL S, V39, P439, DOI 10.1146/annurev.ecolsys.37.091305.110232; HOULE D, 1992, GENETICS, V130, P195; Hughes KA, 2017, ANN NY ACAD SCI, V1389, P76, DOI 10.1111/nyas.13256; JANZEN DH, 1979, ANNU REV ECOL SYST, V10, P13, DOI 10.1146/annurev.es.10.110179.000305; Jeevanandam N, 2013, RAFFLES B ZOOL, V61, P343; Jervis MA, 2005, ECOL ENTOMOL, V30, P359, DOI 10.1111/j.0307-6946.2005.00712.x; Jervis MA, 2004, OIKOS, V107, P449, DOI 10.1111/j.0030-1299.2004.13453.x; Jousselin E, 2008, EVOLUTION, V62, P1777, DOI 10.1111/j.1558-5646.2008.00406.x; Kerdelhue C, 2000, ECOLOGY, V81, P2832, DOI 10.2307/177345; Kitching RL, 2001, ANNU REV ENTOMOL, V46, P729, DOI 10.1146/annurev.ento.46.1.729; KNIGHT JA, 1972, CLIN CHEM, V18, P199; Krishnan A, 2015, OECOLOGIA, V179, P797, DOI 10.1007/s00442-015-3372-9; Krishnan A, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0115118; Lighton JRB, 2008, MEASURING METABOLIC; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Machado CA, 2005, P NATL ACAD SCI USA, V102, P6558, DOI 10.1073/pnas.0501840102; Mayhew P. J., 2006, DISCOVERING EVOLUTIO; Munkemuller T, 2012, METHODS ECOL EVOL, V3, P743, DOI 10.1111/j.2041-210X.2012.00196.x; Munro JB, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0027023; Niitepold K, 2009, ECOLOGY, V90, P2223, DOI 10.1890/08-1498.1; Niven JE, 2005, BIOL LETTERS, V1, P346, DOI 10.1098/rsbl.2005.0311; Ranganathan Y, 2010, ENTOMOL EXP APPL, V137, P50, DOI 10.1111/j.1570-7458.2010.01038.x; Ranganathan Y, 2009, ANIM BEHAV, V77, P1539, DOI 10.1016/j.anbehav.2009.03.010; Reinhold K, 1999, FUNCT ECOL, V13, P217, DOI 10.1046/j.1365-2435.1999.00300.x; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Segar ST, 2014, ACTA OECOL, V57, P17, DOI 10.1016/j.actao.2013.03.0I4; Segar ST, 2013, ECOL LETT, V16, P1436, DOI 10.1111/ele.12183; Seyahooei MA, 2011, BIOL J LINN SOC, V103, P45, DOI 10.1111/j.1095-8312.2011.01637.x; Speakman JR, 2004, PHYSIOL BIOCHEM ZOOL, V77, P900, DOI 10.1086/427059; Speakman JR, 2003, P NUTR SOC, V62, P621, DOI 10.1079/PNS2003282; Srivastava DS, 2004, TRENDS ECOL EVOL, V19, P379, DOI 10.1016/j.tree.2004.04.010; Stevens VM, 2014, ECOL LETT, V17, P1039, DOI 10.1111/ele.12303; Stevens VM, 2013, EVOL APPL, V6, P630, DOI 10.1111/eva.12049; Stevens VM, 2012, ECOL LETT, V15, P74, DOI 10.1111/j.1461-0248.2011.01709.x; Stevens VM, 2010, BIOL REV, V85, P625, DOI 10.1111/j.1469-185X.2009.00119.x; Steyn VM, 2016, P R SOC B; Sullivan GT, 2017, ENV ENTOMOL; Sutton TL, 2016, MOL ECOL, V25, P882, DOI 10.1111/mec.13445; Symonds M. R., 2014, MODERN PHYLOGENETIC, P105; Taylor RAJ, 2010, J INSECT BEHAV, V23, P128, DOI 10.1007/s10905-010-9202-3; UNWIN DM, 1979, J EXP BIOL, V82, P377; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Weiblen GD, 2002, ANNU REV ENTOMOL, V47, P299, DOI 10.1146/annurev.ento.47.091201.145213; Yadav P, 2017, ACTA OECOL; Yu DW, 2001, AM NAT, V158, P49, DOI 10.1086/320865; Zera AJ, 2003, INTEGR COMP BIOL, V43, P607, DOI 10.1093/icb/43.5.607; Zera AJ, 1997, ANNU REV ENTOMOL, V42, P207, DOI 10.1146/annurev.ento.42.1.207; Zera AJ, 2006, AM NAT, V167, P889, DOI 10.1086/503578 82 2 2 4 10 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 2051-3933 MOV ECOL Mov. Ecol. DEC 6 2017 5 25 10.1186/s40462-017-0117-x 11 Ecology Environmental Sciences & Ecology FP4SM WOS:000417606700001 DOAJ Gold, Green Published 2018-11-22 J Campbell, RD; Rosell, F; Newman, C; Macdonald, DW Campbell, Ruairidh D.; Rosell, Frank; Newman, Chris; Macdonald, David W. Age-related changes in somatic condition and reproduction in the Eurasian beaver: Resource history influences onset of reproductive senescence PLOS ONE English Article LONG-LIVED BIRDS; LIFE-HISTORY; CASTOR-FIBER; NATURAL-SELECTION; BODY-MASS; OLDER MOTHERS; RED DEER; EVOLUTION; COSTS; POPULATION Using 15 years of data from a stable population of wild Eurasian beavers (Castor fiber), we examine how annual and lifetime access to food resources affect individual age-related changes in reproduction and somatic condition. We found an age-related decline in annual maternal reproductive output, after a peak at age 5-6. Rainfall, an established negative proxy of annual resource availability for beavers, was consistently associated with lower reproductive output for females of all ages. In contrast, breeding territory quality, as a measure of local resource history over reproductive lifetimes, caused differences in individual patterns of reproductive senescence; animals from lower quality territories senesced when younger. Litter size was unrelated to maternal age, although adult body weight increased with age. In terms of resource effects, in poorer years but not in better years, older mothers produced larger offspring than did younger mothers, giving support to the constraint theory. Overall, our findings exemplify state-dependent life-history strategies, supporting an effect of resources on reproductive senescence, where cumulative differences in resource access, and not just reproductive strategy, mediate long-term reproductive trade-offs, consistent with the disposable soma and reproductive restraint theories. We propose that flexible life-history schedules could play a role in the dynamics of populations exhibiting reproductive skew, with earlier breeding opportunities leading to an earlier senescence schedule through resource dependent mechanisms. [Campbell, Ruairidh D.; Rosell, Frank] Univ Coll Southeast Norway, Dept Nat Sci & Environm Hlth, Bo I Telemark, Norway; [Campbell, Ruairidh D.; Newman, Chris; Macdonald, David W.] Univ Oxford, Zool Dept, Wildlife Conservat Res Unit, Recanati Kaplan Ctr, Tubney, England; [Campbell, Ruairidh D.] Scottish Nat Heritage, Great Glen House, Inverness, Scotland Rosell, F (reprint author), Univ Coll Southeast Norway, Dept Nat Sci & Environm Hlth, Bo I Telemark, Norway. frank.rosell@usn.no University College of Southeast Norway; Peoples Trust for Endangered Species This study was financially supported by a University College of Southeast Norway grant to RDC and FR and through a grant from the Peoples Trust for Endangered Species to DWM, also supporting CN. ABRAMS PA, 1993, EVOLUTION, V47, P877, DOI 10.1111/j.1558-5646.1993.tb01241.x; Barton K., 2012, MUMIN MULTI MODEL IN; Bates D., 2015, LME4 LINEAR MIXED EF; Beirne C, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.1086; Berube CH, 1999, ECOLOGY, V80, P2555, DOI 10.1890/0012-9658(1999)080[2555:IDLARS]2.0.CO;2; BOGGS CL, 1992, FUNCT ECOL, V6, P508, DOI 10.2307/2390047; Bowen WD, 2006, J ANIM ECOL, V75, P1340, DOI 10.1111/j.1365-2656.2006.01157.x; Broussard DR, 2003, J ANIM ECOL, V72, P212, DOI 10.1046/j.1365-2656.2003.00691.x; Burnham KP, 2002, MODEL SELECTION MULT; Campbell R., 2010, THESIS; Campbell RD, 2005, BEHAV ECOL SOCIOBIOL, V58, P597, DOI 10.1007/s00265-005-0942-6; Campbell RD, 2013, GLOBAL CHANGE BIOL, V19, P1311, DOI 10.1111/gcb.12114; Campbell RD, 2012, GLOBAL CHANGE BIOL, V18, P2730, DOI 10.1111/j.1365-2486.2012.02739.x; Charmantier A, 2014, QUANTITATIVE GENETICS IN THE WILD, P68; Clutton-Brock T.H., 1988, REPROD SUCCESS STUDI; Clutton-Brock TH, 1998, TRENDS ECOL EVOL, V13, P288, DOI 10.1016/S0169-5347(98)01402-5; Crawford JC, 2008, J MAMMAL, V89, P575, DOI 10.1644/07-MAMM-A-251R1.1; CURIO E, 1983, IBIS, V125, P400, DOI 10.1111/j.1474-919X.1983.tb03130.x; de Magalhaes JP, 2002, EXP GERONTOL, V37, P769, DOI 10.1016/S0531-5565(02)00008-6; Dugdale HL, 2011, MOL ECOL, V20, P3261, DOI 10.1111/j.1365-294X.2011.05167.x; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Green WCH, 1990, BEHAV ECOL, V1, P148, DOI 10.1093/beheco/1.2.148; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; Hall ME, 2004, P ROY SOC B-BIOL SCI, V271, P1571, DOI 10.1098/rspb.2004.2768; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Hartman G, 1997, CAN J ZOOL, V75, P959, DOI 10.1139/z97-116; Hayflick L, 1994, HOW AND WHY WE AGE; Hayward AD, 2015, EXP GERONTOL, V71, P56, DOI 10.1016/j.exger.2015.08.003; Isaac JL, 2005, BIOL LETT-UK, V1, P271, DOI 10.1098/rsbl.2005.0326; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Kujoth GC, 2005, SCIENCE, V309, P481, DOI 10.1126/science.1112125; Lemaitre JF, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0209; Marshall DJ, 2010, ECOLOGY, V91, P2862, DOI 10.1890/09-0156.1; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; McNamara JM, 2009, P ROY SOC B-BIOL SCI, V276, P4061, DOI 10.1098/rspb.2009.0959; Medawar PB, 1952, UNSOLVED PROBLEM BIO; Merila J, 2000, AM NAT, V155, P301, DOI 10.1086/303330; Mysterud A, 2001, P ROY SOC B-BIOL SCI, V268, P911, DOI 10.1098/rspb.2001.1585; Nakagawa S, 2013, METHODS ECOL EVOL, V4, P133, DOI 10.1111/j.2041-210x.2012.00261.x; NOL E, 1987, J ANIM ECOL, V56, P301, DOI 10.2307/4816; NOLET BA, 1994, CAN J ZOOL, V72, P1227, DOI 10.1139/z94-164; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; Nussey DH, 2006, ECOL LETT, V9, P1342, DOI 10.1111/j.1461-0248.2006.00989.x; Nussey DH, 2013, AGEING RES REV, V12, P214, DOI 10.1016/j.arr.2012.07.004; Nussey DH, 2011, ECOLOGY, V92, P1936, DOI 10.1890/11-0308.1; Parker H, 2001, WILDLIFE BIOL, V7, P237; Penteriani V, 2009, OIKOS, V118, P321, DOI 10.1111/j.1600-0706.2008.17190.x; Pinheiro J., 2011, R PACKAGE VERSION, V3, P1; R Development Core Team, 2011, R LANG ENV STAT COMP; Reed TE, 2008, AM NAT, V171, pE89, DOI 10.1086/524957; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Ricklefs RE, 1998, AM NAT, V152, P24, DOI 10.1086/286147; Rosell F, 1999, WILDLIFE BIOL, V5, P119; Rosell F, 2001, WILDLIFE SOC B, V29, P269; Rosell F., 1999, BEVER; Schwarze D, BEAVER NATURAL HIST; Speakman JR, 2010, INTEGR COMP BIOL, V50, P793, DOI 10.1093/icb/icq049; SVENDSEN GE, 1989, CAN J ZOOL, V67, P336, DOI 10.1139/z89-049; Tafani M, 2013, OECOLOGIA, V172, P427, DOI 10.1007/s00442-012-2499-1; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wilsson L., 1971, VILTREVY, V8, P115 67 0 0 2 5 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One DEC 5 2017 12 12 e0187484 10.1371/journal.pone.0187484 23 Multidisciplinary Sciences Science & Technology - Other Topics FO8CU WOS:000417110700004 29206840 DOAJ Gold, Green Published 2018-11-22 J McMahon, KM; Evans, RD; van Dijk, KJ; Hernawan, U; Kendrick, GA; Lavery, PS; Lowe, R; Puotinen, M; Waycott, M McMahon, Kathryn M.; Evans, Richard D.; van Dijk, Kor-jent; Hernawan, Udhi; Kendrick, Gary A.; Lavery, Paul S.; Lowe, Ryan; Puotinen, Marji; Waycott, Michelle Disturbance Is an Important Driver of Clonal Richness in Tropical Seagrasses FRONTIERS IN PLANT SCIENCE English Article clonality; disturbance; cyclone; dugong grazing; sea surface temperature (SST) EELGRASS ZOSTERA-MARINA; GENOTYPIC DIVERSITY; GENETIC DIVERSITY; WESTERN-AUSTRALIA; MICROSATELLITE MARKERS; ASEXUAL REPRODUCTION; SEXUAL REPRODUCTION; HALOPHILA-OVALIS; SHARK BAY; POPULATION Clonality is common in many aquatic plant species, including seagrasses, where populations are maintained through a combination of asexual and sexual reproduction. One common measure used to describe the clonal structure of populations is clonal richness. Clonal richness is strongly dependent on the biological characteristics of the species, and how these interact with the environment but can also reflect evolutionary scale processes especially at the edge of species ranges. However, little is known about the spatial patterns and drivers of clonal richness in tropical seagrasses. This study assessed the spatial patterns of clonal richness in meadows of three tropical seagrass species, Thalassia hemprichii, Halodule uninervis, and Halophila ovalis, spanning a range of life-history strategies and spatial scales (2.5-4,711 km) in Indonesia and NW Australia. We further investigated the drivers of clonal richness using general additive mixed models for two of the species, H. uninervis and H. ovalis, over 8. latitude. No significant patterns were observed in clonal richness with latitude, yet disturbance combined with sea surface temperature strongly predicted spatial patterns of clonal richness. Sites with a high probability of cyclone disturbance had low clonal richness, whereas an intermediate probability of cyclone disturbance and the presence of dugong grazing combined with higher sea surface temperatures resulted in higher levels of clonal richness. We propose potential mechanisms for these patterns related to the recruitment and mortality rates of individuals as well as reproductive effort. Under a changing climate, increased severity of tropical cyclones and the decline in populations of mega-grazers have the potential to reduce clonal richness leading to less genetically diverse populations. [McMahon, Kathryn M.; Hernawan, Udhi; Lavery, Paul S.] Edith Cowan Univ, Sch Sci, Joondalup, WA, Australia; [McMahon, Kathryn M.; Hernawan, Udhi; Lavery, Paul S.] Edith Cowan Univ, Ctr Marine Ecosyst Res, Joondalup, WA, Australia; [McMahon, Kathryn M.; Lavery, Paul S.] Western Australian Marine Sci Inst, Crawley, WA, Australia; [Evans, Richard D.] Dept Biodivers Conservat & Attract, Sci & Conservat Div, Marine Sci Program, Kensington, WA, Australia; [Evans, Richard D.; Kendrick, Gary A.] Univ Western Australia, Sch Biol Sci, Crawley, WA, Australia; [Evans, Richard D.; Kendrick, Gary A.; Lowe, Ryan] UWA Oceans Inst, Crawley, WA, Australia; [van Dijk, Kor-jent; Waycott, Michelle] Univ Adelaide, Sch Biol Sci, Adelaide, SA, Australia; [Hernawan, Udhi] Lembaga Ilmu Pengetahuan Indonesia, Pusat Penelitian Oseanografi, Jakarta, Indonesia; [Lavery, Paul S.] CSIC, Ctr Estudios Avanzados Blanes, Blanes, Spain; [Lowe, Ryan] Univ Western Australia, Sch Earth Sci, Crawley, WA, Australia; [Puotinen, Marji] Univ Western Australia, Australian Inst Marine Sci, Indian Ocean Marine Res Ctr, Crawley, WA, Australia; [Waycott, Michelle] State Herbarium South Australia, Dept Environm Water & Nat Resources, Adelaide, SA, Australia McMahon, KM (reprint author), Edith Cowan Univ, Sch Sci, Joondalup, WA, Australia.; McMahon, KM (reprint author), Edith Cowan Univ, Ctr Marine Ecosyst Res, Joondalup, WA, Australia.; McMahon, KM (reprint author), Western Australian Marine Sci Inst, Crawley, WA, Australia. k.mcmahon@ecu.edu.au McMahon, Kathryn/A-6619-2008 McMahon, Kathryn/0000-0003-4355-6247; Waycott, Michelle/0000-0002-0822-0564; Lowe, Ryan/0000-0002-7080-8406 Chevron; Woodside; Western Australian Marine Science Institution Dredging Science Node; ECU International Postgraduate Research Scholarship; project of the Department of Education and Training [G100379]; Edith Cowan University [G100379, CRN2011:5]; University of Western Australia [G100379, CRN2011:5]; Western Australian Marine Science Institution (WAMSI Kimberley Research Program: Project 1.1.3 Ecological Connectivity); Indonesia Endowment Fund for Education (LPDP-Indonesia) We would like to thank Kathryn Dawkins, Natasha Dunham, and Ed Biffin for help in the lab. For field assistance we thank Nicole Ryan, Kevin Crane, Rachel Marshall, James McLaughlin, Roisin McCallum, Doug Bearham, J. P Hobbs, A. Isaac, S. Isaac, Abigail Moore, Bahtiar & K. Togaishamu, Wahyu Adi & Nur Annis, Try Al Tanto, Raismin Kotta, Yulius Suni, Ucu Y. Arbi, Susi Rahmawati, Supono, Alan, Alvi Sitepu, Ahmad Ainarwowan, Aliyadi, and Kadir Yamko. We thank Carlin Bowyer for assistance with compiling the remote sensing data. The majority of the Pilbara, Gascoyne, and Broome sample collections were funded by the Chevron-operated Wheatstone Project and the Woodside-operated Pluto Project for the State Environmental Offsets Program and administered by the Department of Biodiversity, Conservation and Attractions. The Wheatstone Project is a joint venture between Australian subsidiaries of Chevron, Kuwait Foreign Petroleum Exploration Company (KUFPEC), Woodside Petroleum Limited and Kyushu Electric Power Company, together with PE Wheatstone Pty Ltd (part owned by TEPCO). Some of the Pilbara samples were funded by the Western Australian Marine Science Institution Dredging Science Node. The Indonesian samples were funded by an ECU International Postgraduate Research Scholarship to UH; the G100379 project of the Department of Education and Training, Collaborative Research Network Program (Funding Agreement CRN2011:5, Edith Cowan University and University of Western Australia) to KM and PL; the Western Australian Marine Science Institution (WAMSI Kimberley Research Program: Project 1.1.3 Ecological Connectivity (KM); and the Indonesia Endowment Fund for Education (LPDP-Indonesia). Alexandre A, 2005, MAR ECOL PROG SER, V298, P115, DOI 10.3354/meps298115; ANDERSON PK, 1994, WILDLIFE RES, V21, P381, DOI 10.1071/WR9940381; Arnaud-Haond S, 2007, MOL ECOL, V16, P5115, DOI 10.1111/j.1365-294X.2007.03535.x; Arnaud-Haond S, 2010, ESTUAR COAST, V33, P878, DOI 10.1007/s12237-009-9238-9; Bienau MJ, 2016, AM J BOT, V103, P2105, DOI 10.3732/ajb.1600229; Billingham MR, 2003, MAR ECOL PROG SER, V265, P77, DOI 10.3354/meps265077; BIRCH WR, 1984, AQUAT BOT, V19, P343, DOI 10.1016/0304-3770(84)90048-2; Burnham KP, 2003, MODEL SELECTION MULT; Burt JA, 2016, MAR POLLUT BULL, V105, P473, DOI 10.1016/j.marpolbul.2015.09.025; Cabaco S, 2012, ECOL INDIC, V23, P116, DOI 10.1016/j.ecolind.2012.03.022; Chen ZQ, 2007, REMOTE SENS ENVIRON, V109, P207, DOI 10.1016/j.rse.2006.12.019; Chevron and Australia, 2010, DUG RES PLAN WHEATST; Coffroth MA, 1998, EVOLUTION, V52, P379, DOI 10.1111/j.1558-5646.1998.tb01639.x; Darling ES, 2012, ECOL LETT, V15, P1378, DOI 10.1111/j.1461-0248.2012.01861.x; DECOCK AWAM, 1981, AQUAT BOT, V10, P125, DOI 10.1016/0304-3770(81)90015-2; denHartog C, 1970, SEA GRASSES WORLD; Diaz-Almela E, 2007, CONSERV GENET, V8, P1377, DOI 10.1007/s10592-007-9288-0; Dorken ME, 2001, J ECOL, V89, P339, DOI 10.1046/j.1365-2745.2001.00558.x; Ehlers A, 2008, MAR ECOL PROG SER, V355, P1, DOI 10.3354/meps07369; Engelhardt KAM, 2014, BIOL CONSERV, V179, P6, DOI 10.1016/j.biocon.2014.08.011; ERIKSSON O, 1993, TRENDS ECOL EVOL, V8, P313, DOI 10.1016/0169-5347(93)90237-J; Evans SM, 2016, PEERJ, V4, DOI 10.7717/peerj.1633; Evans SM, 2014, CONSERV GENET, V15, P717, DOI 10.1007/s10592-014-0573-4; Foster NL, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0053283; Fraser MW, 2014, J ECOL, V102, P1528, DOI 10.1111/1365-2745.12300; Gales N, 2004, WILDLIFE RES, V31, P283, DOI 10.1071/WR02073; Graham NAJ, 2005, CORAL REEFS, V24, P118, DOI 10.1007/s00338-004-0466-y; Hall LM, 2006, MAR ECOL PROG SER, V310, P109, DOI 10.3354/meps310109; Hanebuth T, 2000, SCIENCE, V288, P1033, DOI 10.1126/science.288.5468.1033; Hangelbroek HH, 2002, MOL ECOL, V11, P2137, DOI 10.1046/j.1365-294X.2002.01598.x; Harper J L., 1977, POPULATION BIOL PLAN; Hernawan UE, 2017, MOL ECOL, V26, P1008, DOI 10.1111/mec.13966; Hidding B, 2014, OIKOS, V123, P1112, DOI 10.1111/oik.01136; HILLMAN K, 1995, AQUAT BOT, V51, P1, DOI 10.1016/0304-3770(95)00466-D; Hird SM, 2011, MOL ECOL RESOUR, V11, P743, DOI 10.1111/j.1755-0998.2011.03005.x; Hodgson A. J., 2008, DUGONG POPULATION TR; Honnay O, 2008, EVOL ECOL, V22, P299, DOI 10.1007/s10682-007-9202-8; Howells EJ, 2016, MAR POLLUT BULL, V105, P532, DOI 10.1016/j.marpolbul.2015.11.034; Hughes AR, 2009, ECOLOGY, V90, P1412, DOI 10.1890/07-2030.1; Hughes AR, 2004, P NATL ACAD SCI USA, V101, P8998, DOI 10.1073/pnas.0402642101; Hyndes GA, 2016, BIOSCIENCE, V66, P938, DOI 10.1093/biosci/biw111; Van Tussenbroek BI, 2016, ECOL EVOL, V6, P5542, DOI 10.1002/ece3.2309; Inglis GJ, 2000, J ECOL, V88, P88, DOI 10.1046/j.1365-2745.2000.00433.x; Jackson JBC, 2001, SCIENCE, V293, P629, DOI 10.1126/science.292.5517.629; Janssen T, 2004, BOT J LINN SOC, V146, P385, DOI 10.1111/j.1095-8339.2004.00345.x; Kamvar ZN, 2014, PEERJ, V2, DOI 10.7717/peerj.281; Kendrick GA, 2017, BIOL REV, V92, P921, DOI 10.1111/brv.12261; Kendrick GA, 2012, BIOSCIENCE, V62, P56, DOI 10.1525/bio.2012.62.1.10; Kilminster K, 2015, SCI TOTAL ENVIRON, V534, P97, DOI 10.1016/j.scitotenv.2015.04.061; Klotzbach PJ, 2011, J CLIMATE, V24, P1252, DOI 10.1175/2010JCLI3799.1; van Dijk JK, 2010, AQUAT BOT, V92, P63, DOI 10.1016/j.aquabot.2009.10.005; Lee KS, 2007, J EXP MAR BIOL ECOL, V350, P144, DOI 10.1016/j.jembe.2007.06.016; Les DH, 1997, SYST BOT, V22, P443, DOI 10.2307/2419820; Lough JM, 1998, CORAL REEFS, V17, P351, DOI 10.1007/s003380050139; Marsh H., 2012, ECOLOGY CONSERVATION; Marsh H, 2015, IUCN RED LIST THREAT, DOI [10.2305/IUCN.UK.2015-4.RLTS.T6909A43792211.en, DOI 10.2305/IUCN.UK.2015-4.RLTS.T6909A43792211.EN]; McConochie JD, 2004, OCEAN ENG, V31, P1757, DOI 10.1016/j.oceaneng.2004.03.009; McMahon K, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0878; Myers N, 2000, NATURE, V403, P853, DOI 10.1038/35002501; Olesen B, 2004, ESTUARIES, V27, P770, DOI 10.1007/BF02912039; Olsen JL, 2004, MOL ECOL, V13, P1923, DOI 10.1111/j.1365-294X.2004.02205.x; Ooi JLS, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0086782; Peakall R, 2006, MOL ECOL NOTES, V6, P288, DOI 10.1111/j.1471-8286.2005.01155.x; Peterson BK, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0037135; Pope LC, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0136275; PREEN A, 1995, MAR ECOL PROG SER, V124, P201, DOI 10.3354/meps124201; Puotinen M, 2016, SCI REP-UK, V6, DOI 10.1038/srep26009; Quiros TEAL, 2017, BIOL CONSERV, V209, P454, DOI 10.1016/j.biocon.2017.03.011; Ralph PJ, 2007, J EXP MAR BIOL ECOL, V350, P176, DOI 10.1016/j.jembe.2007.06.017; Rasheed MA, 2004, J EXP MAR BIOL ECOL, V310, P13, DOI 10.1016/j.jembe.2004.03.022; Reisch C, 2009, HERBACEOUS PLANT ECOLOGY: RECENT ADVANCES IN PLANT ECOLOGY, P335, DOI 10.1007/978-90-481-2798-6_28; Renema W, 2008, SCIENCE, V321, P654, DOI 10.1126/science.1155674; Reusch TBH, 2006, MOL ECOL, V15, P277, DOI 10.1111/j.1365-294X.2005.02779.x; Reusch TBH, 2005, P NATL ACAD SCI USA, V102, P2826, DOI 10.1073/pnas.0500008102; Reusch TBH, 1999, MAR BIOL, V133, P519, DOI 10.1007/s002270050492; Salo T, 2015, MAR ECOL PROG SER, V519, P129, DOI 10.3354/meps11083; Sebens K.P., 1985, P357; Short F, 2007, J EXP MAR BIOL ECOL, V350, P3, DOI 10.1016/j.jembe.2007.06.012; Short FT, 2011, BIOL CONSERV, V144, P1961, DOI 10.1016/j.biocon.2011.04.010; Sinclair EA, 2014, MAR ECOL PROG SER, V506, P87, DOI 10.3354/meps10812; Sobel AH, 2016, SCIENCE, V353, P242, DOI 10.1126/science.aaf6574; Stenstrom A, 2001, MOL ECOL, V10, P497, DOI 10.1046/j.1365-294x.2001.01238.x; Tartaglione CA, 2003, J CLIMATE, V16, P2925, DOI 10.1175/1520-0442(2003)016<2925:EIOHLP>2.0.CO;2; Thomas L, 2014, MAR ECOL PROG SER, V513, P111, DOI 10.3354/meps10893; Thomas L, 2017, GLOBAL CHANGE BIOL, V23, P2197, DOI 10.1111/gcb.13639; Thomson JA, 2015, GLOBAL CHANGE BIOL, V21, P1463, DOI 10.1111/gcb.12694; Tittensor DP, 2010, NATURE, V466, P1098, DOI 10.1038/nature09329; Tol SJ, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-04421-1; Tolman H. L., 2009, USER MANUAL SYSTEM D; Unsworth RKF, 2015, MAR POLLUT BULL, V100, P34, DOI 10.1016/j.marpolbul.2015.08.016; van Dijk KJ, 2014, APPL PLANT SCI, V2, DOI 10.3732/apps.1400078; van Tussenbroek BI, 2006, SEAGRASSES: BIOLOGY, ECOLOGY AND CONSERVATION, P409; vanGroenendael JM, 1996, PHILOS T ROY SOC B, V351, P1331, DOI 10.1098/rstb.1996.0116; Vellend M, 2014, MOL ECOL, V23, P2890, DOI 10.1111/mec.12756; Vik U, 2010, AM J BOT, V97, P988, DOI 10.3732/ajb.0900215; VILLACORTARATH C, 2016, JASUS EDWARDSII MAR, V0163; Wainwright BJ, 2013, CONSERV GENET RESOUR, V5, P939, DOI 10.1007/s12686-013-9937-1; Waits LP, 2001, MOL ECOL, V10, P249, DOI 10.1046/j.1365-294X.2001.01185.x; Wang MH, 2009, J GEOPHYS RES-OCEANS, V114, DOI 10.1029/2009JC005286; Waycott M., 2014, GUIDE TEMPERATE SO S; Waycott M, 2007, CLIMATE CHANGE GREAT, P193; Waycott M, 2004, GUIDE TROPICAL SEAGR; WILLIAMS SL, 1988, MAR ECOL PROG SER, V42, P63, DOI 10.3354/meps042063; Wood S. N., 2015, GAMMS GENERALIZED AD; Wu KY, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0156585; Xu NN, 2010, AM J BOT, V97, pE56, DOI 10.3732/ajb.1000111; Ye D, 2016, SCI REP-UK, V6, DOI 10.1038/srep26850; Ye D, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0094009; Zinke J., DIVERS DIST IN PRESS; Zipperle AM, 2010, AQUAT BOT, V93, P202, DOI 10.1016/j.aquabot.2010.05.002 110 0 0 12 26 FRONTIERS MEDIA SA LAUSANNE PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND 1664-462X FRONT PLANT SCI Front. Plant Sci. DEC 5 2017 8 2026 10.3389/fpls.2017.02026 14 Plant Sciences Plant Sciences FO7ET WOS:000417035200001 29259609 DOAJ Gold, Green Published 2018-11-22 J Bowman, TRS; McMillan, BR; St Clair, SB Bowman, Tiffanny R. Sharp; McMillan, Brock R.; St Clair, Samuel B. Rodent herbivory and fire differentially affect plant species recruitment based on variability in life history traits ECOSPHERE English Article desert; fire; folivory; Great Basin; herbivory; seedling; small mammals; top-down POPULUS-TREMULOIDES MICHX.; MOJAVE DESERT SHRUBLAND; SMALL MAMMALS; SEEDLING ESTABLISHMENT; ECOSYSTEM ENGINEERS; BIOTIC RESISTANCE; COMMUNITIES; GRASSLAND; INVASION; ECOLOGY Rodent consumers can have strong top-down effects on plant community development via seed predation, but their influence on seedling recruitment and how it varies depending on disturbance history and plant traits are largely unknown. Over a two-year period, we experimentally tested the influence of rodents and fire on seedling survival of 14 plant species with contrasting growth forms and life history traits in the Great Basin Desert. Seedling survival was dramatically increased by rodent exclusion and fire and was greater in 2013 than 2012. Rodent abundance was an order of magnitude lower in 2013 than 2012 and across both years showed a negative linear relationship with mean seedling survival of all 14 plant species (R-2 = -0.62). There was strong variability in plant species sensitivity to rodent herbivory with a more than 10-fold difference in mortality risk between the most sensitive species and the most resistant species and a high degree of variability in survival among all species. Mortality risk of forb species was double that of grass species and there was a trend toward higher mortality of native species compared to introduced species. The results suggest that rodent herbivory may be an important determinant of plant community assembly in desert ecosystems with plant life history strategies and growth form traits serving as important survival filters. Post-fire environments and low rodent years likely provide windows of opportunity for greater seedling recruitment due to a release from rodent herbivory pressure. [Bowman, Tiffanny R. Sharp; McMillan, Brock R.; St Clair, Samuel B.] Brigham Young Univ, Dept Plant & Wildlife Sci, Provo, UT 84602 USA St Clair, SB (reprint author), Brigham Young Univ, Dept Plant & Wildlife Sci, Provo, UT 84602 USA. stclair@byu.edu USDA NIFA [2010-38415-21908] Many thanks to Rachel Giannetta, Katie Francom, and Brandon White for assistance in the field and to Dr. Randy Larson who advised on the data analysis. The BLM and Brigham Young University's Lytle Ranch Preserve provided access to study sites. The BLM also provided NEPA clearance and conducted the controlled burns. This project was funded by USDA NIFA grant: 2010-38415-21908. The authors have no conflicts of interest to disclose. SBS and BRM conceived the ideas and designed methodology; TSB collected the data; TSB and SBS analyzed the data; SBS and TSB led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval for publication. Abbott LB, 2003, J RANGE MANAGE, V56, P56, DOI 10.2307/4003882; Allington GRH, 2013, ECOL LETT, V16, P158, DOI 10.1111/ele.12023; BATES D, 2014, J STAT SOFTWAR UNPUB, V4, P4, DOI DOI 10.18637/JSS.V067.I01; BATZLI GO, 1979, J MAMMAL, V60, P740, DOI 10.2307/1380189; BEATLEY JC, 1976, OECOLOGIA, V24, P21, DOI 10.1007/BF00545485; Bestelmeyer BT, 2007, J VEG SCI, V18, P363, DOI 10.1658/1100-9233(2007)18[363:DSIILG]2.0.CO;2; Bowman DMJS, 2011, J BIOGEOGR, V38, P2223, DOI 10.1111/j.1365-2699.2011.02595.x; Bowman DMJS, 2009, SCIENCE, V324, P481, DOI 10.1126/science.1163886; Brooks ML, 2004, BIOSCIENCE, V54, P677, DOI 10.1641/0006-3568(2004)054[0677:EOIAPO]2.0.CO;2; BROWN JH, 1990, OIKOS, V59, P290, DOI 10.2307/3545139; BROWN JH, 1990, SCIENCE, V250, P1705, DOI 10.1126/science.250.4988.1705; Carmona D, 2011, FUNCT ECOL, V25, P358, DOI 10.1111/j.1365-2435.2010.01794.x; Connolly BM, 2014, ECOLOGY, V95, P1759, DOI 10.1890/13-1774.1; Cubera E, 2009, J PLANT NUTR SOIL SC, V172, P565, DOI 10.1002/jpln.200800191; Duval BD, 2005, J ARID ENVIRON, V62, P541, DOI 10.1016/j.jaridenv.2005.01.012; Esque TC, 2010, OECOLOGIA, V164, P253, DOI 10.1007/s00442-010-1617-1; Falkenberg JC, 1998, J MAMMAL, V79, P558, DOI 10.2307/1382986; Freeman ED, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0108843; Gonzalez-Hernandez MP, 1999, J RANGE MANAGE, V52, P132, DOI 10.2307/4003506; GROVES CR, 1988, NORTHWEST SCI, V62, P205; HENDERSON CB, 1990, OECOLOGIA, V82, P333, DOI 10.1007/BF00317480; Horn KJ, 2012, J ARID ENVIRON, V77, P54, DOI 10.1016/j.jaridenv.2011.10.003; HULME PE, 1994, J ECOL, V82, P873, DOI 10.2307/2261451; JOHNSTON A., 1962, CANADIAN JOUR PLANT SCI, V42, P105; KOTLER BP, 1984, ECOLOGY, V65, P689, DOI 10.2307/1938041; Lenth RV, 2016, J STAT SOFTW, V69, P1, DOI 10.18637/jss.v069.i01; Lindroth RL, 2013, FOREST ECOL MANAG, V299, P14, DOI 10.1016/j.foreco.2012.11.018; Longland WS, 2013, RESTOR ECOL, V21, P285, DOI 10.1111/j.1526-100X.2012.00895.x; Maron JL, 2006, P R SOC B, V273, P2575, DOI 10.1098/rspb.2006.3587; Maron JL, 2012, J ECOL, V100, P1492, DOI 10.1111/j.1365-2745.2012.02027.x; Massey FP, 2007, J ECOL, V95, P414, DOI 10.1111/j.1365-2745.2007.01223.x; Massey FP, 2006, P R SOC B, V273, P2299, DOI 10.1098/rspb.2006.3586; Meyer SE, 2005, PLANT ECOL, V178, P171, DOI 10.1007/s11258-004-3038-x; Monasmith Tony J., 2010, International Journal of Ecology, V2010, P1, DOI 10.1155/2010/189271; Ostoja SM, 2009, DIVERS DISTRIB, V15, P863, DOI 10.1111/j.1472-4642.2009.00593.x; Pearson DE, 2016, BIOL CONSERV, V197, P8, DOI 10.1016/j.biocon.2016.02.029; Pearson DE, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0103824; Pearson DE, 2011, ECOLOGY, V92, P1748, DOI 10.1890/11-0164.1; Perez-Harguindeguy N, 2003, AUSTRAL ECOL, V28, P642, DOI 10.1046/j.1442-9993.2003.01321.x; PYKE DA, 1986, J ECOL, V74, P739, DOI 10.2307/2260395; R Core Team, 2014, R LANG ENV STAT COMP; Reichman OJ, 2002, TRENDS ECOL EVOL, V17, P44, DOI 10.1016/S0169-5347(01)02329-1; ROSENZWEIG ML, 1969, ECOLOGY, V50, P558, DOI 10.2307/1936246; Sharp Bowman T. R., 2017, OECOLOGIA; Sharp Bowman T. R., 2017, PLOS ONE; Shea K, 2002, TRENDS ECOL EVOL, V17, P170, DOI 10.1016/S0169-5347(02)02495-3; SIMONS LH, 1991, J MAMMAL, V72, P518, DOI 10.2307/1382135; Skliba J, 2008, J ETHOL, V26, P249, DOI 10.1007/s10164-007-0056-x; St Clair SB, 2016, ECOLOGY, V97, P1700, DOI 10.1002/ecy.1391; Therneau T, 2012, COXME MIXED EFFECTS; Therneau T, 2012, PACKAGE SURVIVAL ANA; Villalba JJ, 2014, J CHEM ECOL, V40, P1135, DOI 10.1007/s10886-014-0507-0; Wan HY, 2014, OIKOS, V123, P1479, DOI 10.1111/oik.01521; Western Forestry Leadership Coalition, 2009, TRUE COST WILDF W US; Zhang YM, 2003, MAMMAL REV, V33, P284, DOI 10.1046/j.1365-2907.2003.00020.x; Zwolak R, 2010, ECOLOGY, V91, P1124, DOI 10.1890/09-0332.1 56 1 1 4 6 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2150-8925 ECOSPHERE Ecosphere DEC 2017 8 12 e02016 10.1002/ecs2.2016 10 Ecology Environmental Sciences & Ecology FT8SJ WOS:000423423200001 DOAJ Gold 2018-11-22 J Jesmer, BR; Goheen, JR; Monteith, KL; Kauffman, MJ Jesmer, Brett R.; Goheen, Jacob R.; Monteith, Kevin L.; Kauffman, Matthew J. State-dependent behavior alters endocrine-energy relationship: implications for conservation and management ECOLOGICAL APPLICATIONS English Article conservation physiology; endocrinology; energy intake; energy reserves; glucocorticoids; large herbivore; moose (Alces alces); nutrition; ruminant; state-dependent foraging behavior; stress; triiodothyronine WHITE-TAILED DEER; THYROID-HORMONE METABOLISM; FOOD AVAILABILITY; GROWTH-HORMONE; LIFE-HISTORY; PHYSIOLOGICAL STRESS; MAMMALIAN HERBIVORES; POPULATION PROCESSES; NUTRITIONAL STRESS; PREDATION RISK Glucocorticoids (GC) and triiodothyronine (T3) are two endocrine markers commonly used to quantify resource limitation, yet the relationships between these markers and the energetic state of animals has been studied primarily in small-bodied species in captivity. Free-ranging animals, however, adjust energy intake in accordance with their energy reserves, a behavior known as state-dependent foraging. Further, links between life-history strategies and metabolic allometries cause energy intake and energy reserves to be more strongly coupled in small animals relative to large animals. Because GC and T3 may reflect energy intake or energy reserves, state-dependent foraging and body size may cause endocrine-energy relationships to vary among taxa and environments. To extend the utility of endocrine markers to large-bodied, free-ranging animals, we evaluated how state-dependent foraging, energy reserves, and energy intake influenced fecal GC and fecal T3 concentrations in free-ranging moose (Alces alces). Compared with individuals possessing abundant energy reserves, individuals with few energy reserves had higher energy intake and high fecal T3 concentrations, thereby supporting state-dependent foraging. Although fecal GC did not vary strongly with energy reserves, individuals with higher fecal GC tended to have fewer energy reserves and substantially greater energy intake than those with low fecal GC. Consequently, individuals with greater energy intake had both high fecal T3 and high fecal GC concentrations, a pattern inconsistent with previous documentation from captive animal studies. We posit that a positive relationship between GC and T3 may be expected in animals exhibiting state-dependent foraging if GC is associated with increased foraging and energy intake. Thus, we recommend that additional investigations of GC- and T3-energy relationships be conducted in free-ranging animals across a diversity of body size and life-history strategies before these endocrine markers are applied broadly to wildlife conservation and management. [Jesmer, Brett R.; Goheen, Jacob R.; Monteith, Kevin L.; Kauffman, Matthew J.] Univ Wyoming, Dept Zool & Physiol, Program Ecol, Laramie, WY 82071 USA; [Jesmer, Brett R.; Monteith, Kevin L.] Univ Wyoming, Dept Zool & Physiol, Wyoming Cooperat Fish & Wildlife Res Unit, Laramie, WY 82071 USA; [Monteith, Kevin L.] Univ Wyoming, Haub Sch Environm & Nat Resources, Laramie, WY 82072 USA; [Kauffman, Matthew J.] Univ Wyoming, Dept Zool & Physiol, US Geol Survey, Wyoming Cooperat Fish & Wildlife Res Unit, Laramie, WY 82071 USA Jesmer, BR (reprint author), Univ Wyoming, Dept Zool & Physiol, Program Ecol, Laramie, WY 82071 USA.; Jesmer, BR (reprint author), Univ Wyoming, Dept Zool & Physiol, Wyoming Cooperat Fish & Wildlife Res Unit, Laramie, WY 82071 USA. bjesmer@uwyo.edu Wyoming Game and Fish Department; Wyoming Wildlife-The Foundation; USDA National Forest Service, Bridger-Teton National Forest; University of Wyoming, National Park Service Research Center We thank B. Oates for help with logistics and fieldwork, S. Wasser and R. Booth for quantifying fecal GC and T3, B. Davitt and the staff of the Washington State Wildlife Habitat Lab for quantifying fecal N and NDF, J. Branen and the staff of BioTracking LLC for conducting the BioPryn Wild ELISA assays, and the Matson Laboratory for analyzing tooth age. This work was supported by grants from the Wyoming Game and Fish Department; Wyoming Wildlife-The Foundation; USDA National Forest Service, Bridger-Teton National Forest; and the University of Wyoming, National Park Service Research Center. Any mention of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Allen MS, 1996, J ANIM SCI, V74, P3063; Angelier F, 2008, GEN COMP ENDOCR, V156, P134, DOI 10.1016/j.ygcen.2007.12.001; ARNOLD GW, 1977, ANIM PROD, V24, P343, DOI 10.1017/S0003356100011855; BAHNAK BR, 1981, J WILDLIFE MANAGE, V45, P140, DOI 10.2307/3807882; BARRETT M W, 1982, Wildlife Society Bulletin, V10, P108; BIRTFRIESEN VL, 1989, ECOLOGY, V70, P357, DOI 10.2307/1937540; Bonier F, 2009, TRENDS ECOL EVOL, V24, P634, DOI 10.1016/j.tree.2009.04.013; Boonstra R, 2013, FUNCT ECOL, V27, P11, DOI 10.1111/1365-2435.12008; Breuner CW, 1998, GEN COMP ENDOCR, V111, P386, DOI 10.1006/gcen.1998.7128; BROWN RD, 1995, J WILDLIFE MANAGE, V59, P595, DOI 10.2307/3802468; BURGER AG, 1980, ACTA ENDOCRINOL-COP, V93, P322, DOI 10.1530/acta.0.0930322; CHEREL Y, 1988, AM J PHYSIOL, V254, pR170; CHEREL Y, 1988, AM J PHYSIOL, V254, pR178; Church D. C, 1988, RUMINANT ANIMAL DIGE; Cook RC, 2010, J WILDLIFE MANAGE, V74, P880, DOI 10.2193/2009-031; Creel S, 2002, CONSERV BIOL, V16, P809, DOI 10.1046/j.1523-1739.2002.00554.x; Creel S, 2009, P NATL ACAD SCI USA, V106, P12388, DOI 10.1073/pnas.0902235106; Crespi EJ, 2013, FUNCT ECOL, V27, P93, DOI 10.1111/1365-2435.12009; Cury PM, 2011, SCIENCE, V334, P1703, DOI 10.1126/science.1212928; Dallman MF, 1999, ENDOCRINOLOGY, V140, P4015, DOI 10.1210/en.140.9.4015; Daminet S, 2003, J VET MED A, V50, P213, DOI 10.1046/j.1439-0442.2003.00534.x; DANFORTH E, 1979, J CLIN INVEST, V64, P1336, DOI 10.1172/JCI109590; DANFORTH E, 1989, ANNU REV NUTR, V9, P201, DOI 10.1146/annurev.nu.09.070189.001221; Danforth E., 1984, CLIN ENDOCRINOLOGY M, P231; Dantzer B, 2014, CONSERV PHYSIOL, V2, DOI 10.1093/conphys/cou023; Dantzer B, 2010, GEN COMP ENDOCR, V167, P279, DOI 10.1016/j.ygcen.2010.03.024; Denver RJ, 2009, ANN NY ACAD SCI, V1163, P1, DOI 10.1111/j.1749-6632.2009.04433.x; Douyon L, 2002, ENDOCRIN METAB CLIN, V31, P173, DOI 10.1016/S0889-8529(01)00023-8; du Dot TJ, 2009, COMP BIOCHEM PHYS A, V152, P524, DOI 10.1016/j.cbpa.2008.12.010; EALES JG, 1988, AM ZOOL, V28, P351; Eberhardt LL, 2002, ECOLOGY, V83, P2841, DOI 10.1890/0012-9658(2002)083[2841:APFPAO]2.0.CO;2; Etheridge RD, 1998, ANIM FEED SCI TECH, V73, P21, DOI 10.1016/S0377-8401(98)00136-9; Falls JB, 2007, ECOL MONOGR, V77, P19, DOI 10.1890/05-1485; Gobush KS, 2014, GEN COMP ENDOCR, V195, P174, DOI 10.1016/j.ygcen.2013.10.020; Goymann W, 2005, ANN NY ACAD SCI, V1046, P35, DOI 10.1196/annals.1343.005; Goymann W, 2012, METHODS ECOL EVOL, V3, P757, DOI 10.1111/j.2041-210X.2012.00203.x; GREGORY PC, 1985, BRIT J NUTR, V53, P373, DOI 10.1079/BJN19850044; Hamel S, 2008, ANIM BEHAV, V75, P217, DOI 10.1016/j.anbehav.2007.04.028; HAYDEN JM, 1993, J ANIM SCI, V71, P3327, DOI 10.2527/1993.71123327x; Hayward LS, 2011, ECOSPHERE, V2, DOI 10.1890/ES10-00199.1; Hodgman TP, 1996, J RANGE MANAGE, V49, P215, DOI 10.2307/4002881; Houston A. I., 1999, MODELS ADAPTIVE BEHA; Kitaysky AS, 2007, MAR ECOL PROG SER, V352, P245, DOI 10.3354/meps07074; Kitaysky AS, 2010, FUNCT ECOL, V24, P625, DOI 10.1111/j.1365-2435.2009.01679.x; Kitaysky AS, 2005, HORM BEHAV, V47, P606, DOI 10.1016/j.yhbeh.2005.01.005; Kitaysky AS, 1999, FUNCT ECOL, V13, P577, DOI 10.1046/j.1365-2435.1999.00352.x; Kitaysky AS, 2001, BEHAV ECOL, V12, P619, DOI 10.1093/beheco/12.5.619; KOMAREK AR, 1993, J DAIRY SCI S1, V76, P250; KRAUSMAN PR, 1985, WILDLIFE SOC B, V13, P71; Leslie DM, 2008, J WILDLIFE MANAGE, V72, P1420, DOI 10.2193/2007-404; LINDSTEDT SL, 1985, AM NAT, V125, P873, DOI 10.1086/284385; Lynn SE, 2003, HORM BEHAV, V43, P150, DOI 10.1016/S0018-506X(02)00023-5; Marvier M, 2004, RISK ANAL, V24, P869, DOI 10.1111/j.0272-4332.2004.00485.x; McEwen BS, 2003, HORM BEHAV, V43, P2, DOI 10.1016/S0018-506X(02)00024-7; MERTENS DR, 1987, J ANIM SCI, V64, P1548; Meyer K, 2010, MAMMAL REV, V40, P221, DOI 10.1111/j.1365-2907.2010.00161.x; Millspaugh JJ, 2004, GEN COMP ENDOCR, V138, P189, DOI 10.1016/j.ygcen.2004.07.002; Millspaugh JJ, 2003, GEN COMP ENDOCR, V132, P21, DOI 10.1016/S0016-6480(03)00061-3; Monteith KL, 2014, WILDLIFE MONOGR, V186, P1, DOI 10.1002/wmon.1011; Monteith KL, 2013, J ANIM ECOL, V82, P377, DOI 10.1111/1365-2656.12016; Morrow CJ, 2002, GEN COMP ENDOCR, V126, P229, DOI 10.1006/gcen.2002.7797; MUBANGA G, 1985, SOUTHWEST NAT, V30, P573, DOI 10.2307/3671052; Oates B. A., 2016, EFFECTS PREDATORS RE; ODonoghue M, 1997, OIKOS, V80, P150, DOI 10.2307/3546526; Page BD, 2006, WILDLIFE SOC B, V34, P716, DOI 10.2193/0091-7648(2006)34[716:CPAESO]2.0.CO;2; Parker KL, 2009, FUNCT ECOL, V23, P57, DOI 10.1111/j.1365-2435.2009.01528.x; PETTERSSON LB, 1993, OECOLOGIA, V95, P353, DOI 10.1007/BF00320988; R Core Team, 2014, R LANG ENV STAT COMP; Rabiee AR, 2002, ANIM REPROD SCI, V72, P11, DOI 10.1016/S0378-4320(02)00067-2; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Romero LM, 2004, TRENDS ECOL EVOL, V19, P249, DOI 10.1016/j.tree.2004.03.008; Romero LM, 2001, P NATL ACAD SCI USA, V98, P7366, DOI 10.1073/pnas.131091498; ROYSTON JP, 1982, J R STAT SOC C-APPL, V31, P115; Sheriff MJ, 2013, ECOL LETT, V16, P271, DOI 10.1111/ele.12042; Skutelsky O, 1996, ANIM BEHAV, V52, P49, DOI 10.1006/anbe.1996.0151; Sower SA, 2009, GEN COMP ENDOCR, V161, P20, DOI 10.1016/j.ygcen.2008.11.023; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stephenson TR, 1998, CAN J ZOOL, V76, P717, DOI 10.1139/cjz-76-4-717; Taylor EN, 2005, OECOLOGIA, V144, P206, DOI 10.1007/s00442-005-0056-x; van Gils JA, 2006, ECOLOGY, V87, P1189, DOI 10.1890/0012-9658(2006)87[1189:FIATSE]2.0.CO;2; Van Soest PJ, 1994, NUTR ECOLOGY RUMINAN; VANSOEST PJ, 1991, J DAIRY SCI, V74, P3583, DOI 10.3168/jds.S0022-0302(91)78551-2; Wasser SK, 2011, FRONT ECOL ENVIRON, V9, P546, DOI 10.1890/100071; Wasser SK, 2010, GEN COMP ENDOCR, V168, P1, DOI 10.1016/j.ygcen.2010.04.004; Wasser SK, 2000, GEN COMP ENDOCR, V120, P260, DOI 10.1006/gcen.2000.7557; WASSER SK, 1993, J REPROD FERTIL, V97, P569; Welcker J, 2009, FUNCT ECOL, V23, P1081, DOI 10.1111/j.1365-2435.2009.01585.x; WHITE RG, 1983, OIKOS, V40, P377, DOI 10.2307/3544310; Wikelski M, 2006, TRENDS ECOL EVOL, V21, P38, DOI 10.1016/j.tree.2005.10.018; Wingfield JC, 2002, INTEGR COMP BIOL, V42, P600, DOI 10.1093/icb/42.3.600; Wingfield JC, 1998, AM ZOOL, V38, P191; Zheng WH, 2014, PHYSIOL BIOCHEM ZOOL, V87, P432, DOI 10.1086/675439 92 0 0 9 11 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1051-0761 1939-5582 ECOL APPL Ecol. Appl. DEC 2017 27 8 2303 2312 10.1002/eap.1608 10 Ecology; Environmental Sciences Environmental Sciences & Ecology FO5BA WOS:000416862700005 2018-11-22 J Barnum, TR; Weller, DE; Williams, M Barnum, Thomas R.; Weller, Donald E.; Williams, Meghan Urbanization reduces and homogenizes trait diversity in stream macroinvertebrate communities ECOLOGICAL APPLICATIONS English Article Appalachian; Coastal Plain; disturbance; environmental filter; functional traits; hydrology; impervious surface; Piedmont; quantile regression CONTERMINOUS UNITED-STATES; LIFE-HISTORY STRATEGIES; FUNCTIONAL DIVERSITY; MULTIPLE STRESSORS; BENTHIC MACROINVERTEBRATES; ENVIRONMENTAL GRADIENTS; BIOLOGICAL TRAITS; FISH ASSEMBLAGES; LIMITING FACTORS; FRESH-WATER More than one-half of the world's population lives in urban areas, so quantifying the effects of urbanization on ecological communities is important for understanding whether anthropogenic stressors homogenize communities across environmental and climatic gradients. We examined the relationship of impervious surface coverage (a marker of urbanization) and the structure of stream macroinvertebrate communities across the state of Maryland and within each of Maryland's three ecoregions: Coastal Plain, Piedmont, and Appalachian, which differ in stream geomorphology and community composition. We considered three levels of trait organization: individual traits, unique combinations of traits, and community metrics (functional richness, functional evenness, and functional divergence) and three levels of impervious surface coverage (low [<2.5%], medium [2.5% to 10%], and high [>10%]). The prevalence of an individual trait differed very little between low impervious surface and high impervious surface sites. The arrangement of trait combinations in community trait space for each ecoregion differed when impervious surface coverage was low, but the arrangement became more similar among ecoregions as impervious surface coverage increased. Furthermore, trait combinations that occurred only at low or medium impervious surface coverage were clustered in a subset of the community trait space, indicating that impervious surface affected the presence of only a subset of trait combinations. Functional richness declined with increasing impervious surface, providing evidence for environmental filtering. Community metrics that include abundance were also sensitive to increasing impervious surface coverage: functional divergence decreased while functional evenness increased. These changes demonstrate that increasing impervious surface coverage homogenizes the trait diversity of macroinvertebrate communities in streams, despite differences in initial community composition and stream geomorphology among ecoregions. Community metrics were also more sensitive to changes in the abundance rather than the gain or loss of trait combinations, showing the potential for trait-based approaches to serve as early warning indicators of environmental stress for monitoring and biological assessment programs. [Barnum, Thomas R.; Weller, Donald E.; Williams, Meghan] Smithsonian Environm Res Ctr, 647 Contees Wharf Rd, Edgewater, MD 21037 USA Barnum, TR (reprint author), Smithsonian Environm Res Ctr, 647 Contees Wharf Rd, Edgewater, MD 21037 USA. barnumt@si.edu Smithsonian Environmental Research Center We thank Scott Stranko, Dan Boward, and the entire MBSS team at the Maryland Department of Natural Resources who contributed years of effort to the generation of the MBSS data set. We also thank Chris Patrick, Sean McMahon, and members of the Weller lab for stimulating conversations during the study. We also thank the Smithsonian Environmental Research Center for funding T. R. Barnum's post-doctoral fellowship. Ator S. W., 2005, 1680 US GEOL SURV PR; Bonada N, 2007, HYDROBIOLOGIA, V589, P91, DOI 10.1007/s10750-007-0723-5; Booth DB, 1997, J AM WATER RESOUR AS, V33, P1077, DOI 10.1111/j.1752-1688.1997.tb04126.x; Brown BL, 2010, J ANIM ECOL, V79, P571, DOI 10.1111/j.1365-2656.2010.01668.x; Butterfield BJ, 2013, J ECOL, V101, P9, DOI 10.1111/1365-2745.12013; Cade BS, 2003, FRONT ECOL ENVIRON, V1, P412, DOI 10.2307/3868138; Cade BS, 1999, ECOLOGY, V80, P311; Cochran W. G, 1977, SAMPLING TECHNIQUES; Coleman MA, 2015, DIVERS DISTRIB, V21, P876, DOI 10.1111/ddi.12309; Colosimo MF, 2007, J AM WATER RESOUR AS, V43, P499, DOI 10.1111/j.1752-1688.2007.00039.x; Cornwell WK, 2009, ECOL MONOGR, V79, P109, DOI 10.1890/07-1134.1; Cornwell WK, 2006, ECOLOGY, V87, P1465, DOI 10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2; Cuffney TF, 2010, ECOL APPL, V20, P1384, DOI 10.1890/08-1311.1; DIAMOND J M, 1975, Biological Conservation, V7, P129, DOI 10.1016/0006-3207(75)90052-X; Doledec S, 2010, J N AM BENTHOL SOC, V29, P286, DOI 10.1899/08-090.1; Feminella JW, 2000, J N AM BENTHOL SOC, V19, P442, DOI 10.2307/1468106; Flynn DFB, 2009, ECOL LETT, V12, P22, DOI 10.1111/j.1461-0248.2008.01255.x; Foley JA, 2005, SCIENCE, V309, P570, DOI 10.1126/science.1111772; Gallardo B, 2014, FRESHWATER BIOL, V59, P630, DOI 10.1111/fwb.12292; Gerisch M, 2012, OIKOS, V121, P508, DOI 10.1111/j.1600-0706.2011.19749.x; Grimm NB, 2008, FRONT ECOL ENVIRON, V6, P264, DOI 10.1890/070147; Groffman P, 2006, ECOSYSTEMS, V9, P1, DOI 10.1007/s10021-003-0142-z; Groffman PM, 2014, FRONT ECOL ENVIRON, V12, P74, DOI 10.1890/120374; Hamilton N., 2016, GGTERN EXTENSION GGP; Heino J, 2015, ECOL EVOL, V5, P1235, DOI 10.1002/ece3.1439; Homer C, 2015, PHOTOGRAMM ENG REM S, V81, P345, DOI 10.14358/PERS.81.5.345; Jung V, 2010, J ECOL, V98, P1134, DOI 10.1111/j.1365-2745.2010.01687.x; King RS, 2011, ECOL APPL, V21, P1659, DOI 10.1890/10-1357.1; Koenker R., 2005, QUANTILE REGRESSION; Konrad CP, 2008, FRESHWATER BIOL, V53, P1983, DOI 10.1111/j.1365-2427.2008.02024.x; Kraft NJB, 2008, SCIENCE, V322, P580, DOI 10.1126/science.1160662; Laliberte E., 2014, FD MEASURING FUNCTIO; Laliberte E, 2010, ECOLOGY, V91, P299, DOI 10.1890/08-2244.1; Lamouroux N, 2002, ECOLOGY, V83, P1792, DOI 10.2307/3071765; Lancaster J, 2006, FRESHWATER BIOL, V51, P783, DOI 10.1111/j.1365-2427.2006.01518.x; Lange K, 2014, FRESHWATER BIOL, V59, P2431, DOI 10.1111/fwb.12437; Lebrija-Trejos E, 2010, ECOLOGY, V91, P386, DOI 10.1890/08-1449.1; Leitao RP, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2016.0084; Logez M, 2010, J N AM BENTHOL SOC, V29, P1310, DOI 10.1899/09-125.1; Maloney KO, 2012, METHODS ECOL EVOL, V3, P116, DOI 10.1111/j.2041-210X.2011.00124.x; Markewich H. W., 1990, Geomorphology, V3, P417, DOI 10.1016/0169-555X(90)90015-I; Mason NWH, 2005, OIKOS, V111, P112, DOI 10.1111/j.0030-1299.2005.13886.x; McKinney ML, 2006, BIOL CONSERV, V127, P247, DOI 10.1016/j.biocon.2005.09.005; Mondy CP, 2016, SCI TOTAL ENVIRON, V572, P196, DOI 10.1016/j.scitotenv.2016.07.227; Mouillot D, 2013, TRENDS ECOL EVOL, V28, P167, DOI 10.1016/j.tree.2012.10.004; Oksanen J, 2017, VEGAN COMMUNITY ECOL; Olden JD, 2007, GLOBAL ECOL BIOGEOGR, V16, P694, DOI 10.1111/j.1466-8238.2007.00337.x; Olden JD, 2010, AM FISH S S, V73, P83; OMERNIK JM, 1987, ANN ASSOC AM GEOGR, V77, P118, DOI 10.1111/j.1467-8306.1987.tb00149.x; Peel MC, 2007, HYDROL EARTH SYST SC, V11, P1633, DOI 10.5194/hess-11-1633-2007; Pickett STA, 2011, J ENVIRON MANAGE, V92, P331, DOI 10.1016/j.jenvman.2010.08.022; Pizzuto JE, 2000, GEOLOGY, V28, P79, DOI 10.1130/0091-7613(2000)028<0079:CGRIPU>2.0.CO;2; Pool TK, 2010, CAN J FISH AQUAT SCI, V67, P1791, DOI 10.1139/F10-095; R Core Team, 2016, R LANG ENV STAT COMP; Richards C, 1997, FRESHWATER BIOL, V37, P219, DOI 10.1046/j.1365-2427.1997.d01-540.x; Rogers W. H, 1992, STATA TECHNICAL B, V9, P16; Roth N. E., 2005, CBWPMANTAEA033, VII; Schriever TA, 2015, FRESHW SCI, V34, P399, DOI 10.1086/680518; Schueler TR, 2009, J HYDROL ENG, V14, P309, DOI 10.1061/(ASCE)1084-0699(2009)14:4(309); Scott MC, 2001, FISHERIES, V26, P6, DOI 10.1577/1548-8446(2001)026<0006:NIHATM>2.0.CO;2; Seto KC, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0023777; SHAFFER JP, 1995, ANNU REV PSYCHOL, V46, P561, DOI 10.1146/annurev.ps.46.020195.003021; Simova I, 2015, ECOGRAPHY, V38, P649, DOI 10.1111/ecog.00867; Statzner B, 2010, FRESHWATER BIOL, V55, P80, DOI 10.1111/j.1365-2427.2009.02369.x; Swain L. A., 2004, 1422A US GEOL SURV P; Thornbury W.D., 1965, REGIONAL GEOMORPHOLO; TOWNSEND CR, 1989, J N AM BENTHOL SOC, V8, P36, DOI 10.2307/1467400; Utz RM, 2011, J N AM BENTHOL SOC, V30, P25, DOI 10.1899/10-007.1; Utz RM, 2009, ECOL INDIC, V9, P556, DOI 10.1016/j.ecolind.2008.08.008; Villeger S, 2008, ECOLOGY, V89, P2290, DOI 10.1890/07-1206.1; Villeger S, 2013, GLOBAL ECOL BIOGEOGR, V22, P671, DOI 10.1111/geb.12021; Villeger S, 2010, ECOL APPL, V20, P1512, DOI 10.1890/09-1310.1; Walsh CJ, 2005, J N AM BENTHOL SOC, V24, P706, DOI 10.1899/0887-3593(2005)024\\[0706:TUSSCK\\]2.0.CO;2; Weiher E, 1998, OIKOS, V81, P309, DOI 10.2307/3547051 74 0 0 7 30 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1051-0761 1939-5582 ECOL APPL Ecol. Appl. DEC 2017 27 8 2428 2442 10.1002/eap.1619 15 Ecology; Environmental Sciences Environmental Sciences & Ecology FO5BA WOS:000416862700014 2018-11-22 J Martin, TE; Riordan, MM; Repin, R; Mouton, JC; Blake, WM Martin, Thomas E.; Riordan, Margaret M.; Repin, Rimi; Mouton, James C.; Blake, William M. Apparent annual survival estimates of tropical songbirds better reflect life history variation when based on intensive field methods GLOBAL ECOLOGY AND BIOGEOGRAPHY English Article apparent survival; egg temperature; embryonic development; latitudinal variation; life history; longevity; resighting TEMPERATE SONGBIRDS; NEST PREDATION; FOREST BIRDS; RATES; RECAPTURE; EVOLUTION; POPULATIONS; SELECTION; ECUADOR; HABITAT Aim: Adult survival is central to theories explaining latitudinal gradients in life history strategies. Life history theory predicts higher adult survival in tropical than north temperate regions given lower fecundity and parental effort. Early studies were consistent with this prediction, but standard-effort netting studies in recent decades suggested that apparent survival rates in temperate and tropical regions strongly overlap. Such results do not fit with life history theory. Targeted marking and resighting of breeding adults yielded higher survival estimates in the tropics, but this approach is thought to overestimate survival because it does not sample social and age classes with lower survival. We compared the effect of field methods on tropical survival estimates and their relationships with life history traits. Location: Sabah, Malaysian Borneo. Time period: 2008-2016. Major taxon: Passeriformes. Methods: We used standard-effort netting and resighted individuals of all social and age classes of 18 tropical songbird species over 8 years. We compared apparent survival estimates between these two field methods with differing analytical approaches. Results: Estimated detection and apparent survival probabilities from standard-effort netting were similar to those from other tropical studies that used standard-effort netting. Resighting data verified that a high proportion of individuals that were never recaptured in standard-effort netting remained in the study area, and many were observed breeding. Across all analytical approaches, addition of resighting yielded substantially higher survival estimates than did standard-effort netting alone. These apparent survival estimates were higher than for temperate zone species, consistent with latitudinal differences in life histories. Moreover, apparent survival estimates from addition of resighting, but not from standard-effort netting alone, were correlated with parental effort as measured by egg temperature across species. Main conclusions: Inclusion of resighting showed that standard-effort netting alone can negatively bias apparent survival estimates and obscure life history relationships across latitudes and among tropical species. [Martin, Thomas E.] Univ Montana, US Geol Survey, Montana Cooperat Wildlife Res Unit, Missoula, MT 59812 USA; [Riordan, Margaret M.; Mouton, James C.; Blake, William M.] Univ Montana, Montana Cooperat Wildlife Res Unit, Missoula, MT 59812 USA; [Repin, Rimi] Sabah Pk, Res & Educ, Kota Kinabalu Sabah, Malaysia; [Blake, William M.] MPG Ranch, Missoula, MT 59801 USA Martin, TE (reprint author), Univ Montana, Montana Cooperat Wildlife Res Unit, Missoula, MT 59812 USA. tom.martin@umontana.edu Martin, Thomas E/0000-0002-4028-4867 National Science Foundation [DEB-1241041, DEB-1651283, IOS-1656120] National Science Foundation, Grant/Award Number: DEB-1241041, DEB-1651283, IOS-1656120 Barker RJ, 1997, BIOMETRICS, V53, P666, DOI 10.2307/2533966; Blake JG, 2002, AUK, V119, P132, DOI 10.1642/0004-8038(2002)119[0132:MPISGA]2.0.CO;2; Blake JG, 2008, BIOTROPICA, V40, P485, DOI 10.1111/j.1744-7429.2007.00395.x; Blake JG, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0081028; Brawn J. D., 1999, P 22 INT ORN C; Burnham K.P., 1987, American Fisheries Society Monograph, P1; Burnham KP, 2002, MODEL SELECTION MULT; Charlesworth B, 1994, EVOLUTION AGE STRUCT; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; Dobzhansky T., 1950, American Scientist, V38, P209; Faaborg J, 1995, AUK, V112, P503, DOI 10.2307/4088741; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; FOGDEN MPL, 1972, IBIS, V114, P307, DOI 10.1111/j.1474-919X.1972.tb00831.x; Francis C. M., 1999, P 22 INT ORN C; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Jetz W, 2008, PLOS BIOL, V6, P2650, DOI 10.1371/journal.pbio.0060303; Johnston JP, 1997, AM NAT, V150, P771, DOI 10.1086/286093; KARR JR, 1990, AM NAT, V136, P277, DOI 10.1086/285098; Kendall WL, 1995, J APPL STAT, V22, P751, DOI 10.1080/02664769524595; Lack D., 1954, NATURAL REGULATION A; MacArthur R. H., 1972, GEOGRAPHICAL ECOLOGY; Martin TE, 2006, EVOLUTION, V60, P390; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; Martin TE, 2008, P NATL ACAD SCI USA, V105, P9268, DOI 10.1073/pnas.0709366105; Martin TE, 2015, SCIENCE, V349, P966, DOI 10.1126/science.aad1173; Martin TE, 2015, AM NAT, V186, P223, DOI 10.1086/681986; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MOREAU R. E., 1944, IBIS, V86, P286, DOI 10.1111/j.1474-919X.1944.tb04093.x; PAGEL MD, 1992, J THEOR BIOL, V156, P431, DOI 10.1016/S0022-5193(05)80637-X; Parker TH, 2006, BIOTROPICA, V38, P764, DOI 10.1111/j.1744-7429.2006.00210.x; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; POLLOCK KH, 1990, WILDLIFE MONOGR, P1; Pradel R, 1997, BIOMETRICS, V53, P60, DOI 10.2307/2533097; Roff D. A., 2002, LIFE HIST EVOLUTION; Ruiz-Gutierrez V, 2012, AUK, V129, P500, DOI 10.1525/auk.2012.11171; Sandercock BK, 2000, ECOLOGY, V81, P1351, DOI 10.1890/0012-9658(2000)081[1351:SROANP]2.0.CO;2; Skutch A. F., 1985, ORNITHOLOGICAL MONOG, V36, P575, DOI DOI 10.2307/40168306; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; SNOW D. W., 1962, ZOOLOGICA [NEW YORK], V47, P65; SNOW DW, 1974, CONDOR, V76, P262, DOI 10.2307/1366339; Sol D, 2007, P R SOC B, V274, P763, DOI 10.1098/rspb.2006.3765; White GC, 1999, BIRD STUDY, V46, P120; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WILLIS EO, 1974, ECOL MONOGR, V44, P153, DOI 10.2307/1942309; Wolfe JD, 2014, OIKOS, V123, P964, DOI 10.1111/oik.00849 47 1 1 4 9 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1466-822X 1466-8238 GLOBAL ECOL BIOGEOGR Glob. Ecol. Biogeogr. DEC 2017 26 12 1386 1397 10.1111/geb.12661 12 Ecology; Geography, Physical Environmental Sciences & Ecology; Physical Geography FQ3VK WOS:000418285700003 2018-11-22 J Schneider, JE; Deviche, P Schneider, Jill E.; Deviche, Pierre Molecular and Neuroendocrine Approaches to Understanding Trade-offs: Food, Sex, Aggression, Stress, and Longevity-An Introduction to the Symposium INTEGRATIVE AND COMPARATIVE BIOLOGY English Article; Proceedings Paper Symposium on Molecular and Neuroendocrine Approaches to the Study of Evolutionary Tradeoffs - Food, Sex, Stress, and Longevity at the Annual Meeting of the Society-for-Integrative-and-Comparative-Biology JAN 04-08, 2017 New Orleans, LA Soc Integrat & Comparat Biol LIFE-HISTORY EVOLUTION; CAENORHABDITIS-ELEGANS; LUTEINIZING-HORMONE; PEROMYSCUS-LEUCOPUS; JUVENILE-HORMONE; METABOLIC FUELS; SYRIAN-HAMSTERS; IMMUNE FUNCTION; FEMALE MAMMALS; GRYLLUS-FIRMUS Life history strategies are composed of multiple fitness components, each of which incurs costs and benefits. Consequently, organisms cannot maximize all fitness components simultaneously. This situation results in a dynamic array of trade-offs in which some fitness traits prevail at the expense of others, often depending on context. The identification of specific constraints and trade-offs has helped elucidate physiological mechanisms that underlie variation in behavioral and physiological life history strategies. There is general recognition that trade-offs are made at the individual and population level, but much remains to be learned concerning the molecular neuroendocrine mechanisms that underlie trade-offs. For example, we still do not know whether the mechanisms that underlie trade-offs at the individual level relate to trade-offs at the population level. To advance our understanding of trade-offs, we organized a group of speakers who study neuroendocrine mechanisms at the interface of traits that are not maximized simultaneously. Speakers were invited to represent research from a wide range of taxa including invertebrates (e.g., worms and insects), fish, nonavian reptiles, birds, and mammals. Three general themes emerged. First, the study of trade-offs requires that we investigate traditional endocrine mechanisms that include hormones, neuropeptides, and their receptors, and in addition, other chemical messengers not traditionally included in endocrinology. The latter group includes growth factors, metabolic intermediates, and molecules of the immune system. Second, the nomenclature and theory of neuroscience that has dominated the study of behavior is being re-evaluated in the face of evidence for the peripheral actions of so-called neuropeptides and neurotransmitters and the behavioral repercussions of these actions. Finally, environmental and ecological contexts continue to be critical in unmasking molecular mechanisms that are hidden when study animals are housed in enclosed spaces, with unlimited food, without competitors or conspecifics, and in constant ambient conditions. [Schneider, Jill E.] Lehigh Univ, Dept Biol Sci, 111 Res Dr, Bethlehem, PA 18015 USA; [Deviche, Pierre] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA Schneider, JE (reprint author), Lehigh Univ, Dept Biol Sci, 111 Res Dr, Bethlehem, PA 18015 USA. js0v@lehigh.edu Office of the Provost and the Department of Biological Sciences of Lehigh University; division of the Society for Integrative and Comparative Biology: DAB; division of the Society for Integrative and Comparative Biology: DCE; division of the Society for Integrative and Comparative Biology: DNB; National Science Foundation [IOS-1257876] This symposium was generously funded by the Office of the Provost and the Department of Biological Sciences of Lehigh University and by the following divisions of the Society for Integrative and Comparative Biology: DAB, DCE & DNB. This article was funded by IOS-1257876 from the National Science Foundation awarded to J. E. Schneider. Adkins-Regan E., 2005, HORMONES ANIMAL SOCI; Alerstam T., 1990, BIRD MIGRATION PHYSL, P331, DOI DOI 10.1007/978-3-642-74542-3_22.; Ashley NT, 2017, HORM BEHAV, V87, P25, DOI 10.1016/j.yhbeh.2016.10.004; BAIRLEIN F, 1994, ANNU REV NUTR, V14, P187, DOI 10.1146/annurev.nu.14.070194.001155; Barrios A, 2012, NAT NEUROSCI, V15, P1675, DOI 10.1038/nn.3253; BEACH FA, 1976, HORM BEHAV, V7, P105, DOI 10.1016/0018-506X(76)90008-8; Benoit SC, 2004, RECENT PROG HORM RES, V59, P267, DOI 10.1210/rp.59.1.267; Bentley GE, 2017, INTEGR COMP BIOL, V57, P1194, DOI 10.1093/icb/icx085; Blevins JE, 2013, REV ENDOCR METAB DIS, V14, P311, DOI 10.1007/s11154-013-9260-x; Bronson FH, 1989, MAMMALIAN REPROD BIO; Brozek JM, 2017, INTEGR COMP BIOL, V57, P1245, DOI 10.1093/icb/icx108; Bruning JC, 2000, SCIENCE, V289, P2122, DOI 10.1126/science.289.5487.2122; Clark RM, 2015, J EXP BIOL, V218, P298, DOI 10.1242/jeb.112888; Cox RM, 2010, FUNCT ECOL, V24, P1262, DOI 10.1111/j.1365-2435.2010.01756.x; Cox RM, 2009, PHYSIOL BIOCHEM ZOOL, V82, P686, DOI 10.1086/605391; Craig W, 1917, P NATL ACAD SCI USA, V3, P685, DOI 10.1073/pnas.3.12.685; Crespi EJ, 2017, SOC INTEGRATIVE COMP; Davies S, 2014, HORM BEHAV, V66, P41, DOI 10.1016/j.yhbeh.2014.04.003; Denver RJ, 2009, INTEGR COMP BIOL, V49, P339, DOI 10.1093/icb/icp082; Deviche P, 2017, INTEGR COMP BIOL, V57, P1184, DOI 10.1093/icb/icx112; Emmons SW, 2017, INTEGR COMP BIOL, V57, P1161, DOI 10.1093/icb/icx077; Ferkin MH, 2017, INTEGR COMP BIOL, V57, P1240, DOI 10.1093/icb/icx025; FINCH CE, 1995, Q REV BIOL, V70, P1, DOI 10.1086/418864; French AS, 2014, J INSECT PHYSIOL, V61, P8, DOI 10.1016/j.jinsphys.2013.12.005; Garrison JL, 2012, SCIENCE, V338, P540, DOI 10.1126/science.1226201; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; HART BL, 1988, NEUROSCI BIOBEHAV R, V12, P123, DOI 10.1016/S0149-7634(88)80004-6; Hau M, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P349; Heideman PD, 2010, AM J PHYSIOL-REG I, V298, pR1543, DOI 10.1152/ajpregu.00686.2009; Heideman PD, 2009, INTEGR COMP BIOL, V49, P550, DOI 10.1093/icb/icp014; HEISLER LE, 1994, NEUROENDOCRINOLOGY, V60, P297, DOI 10.1159/000126762; Hobbs NJ, 2012, BEHAV PROCESS, V91, P192, DOI 10.1016/j.beproc.2012.07.008; Horton BM, 2013, BEHAV GENET, V43, P60, DOI 10.1007/s10519-012-9574-6; Horton BM, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0048705; Huynh LY, 2011, HEREDITY, V106, P537, DOI 10.1038/hdy.2010.85; Jenkins NL, 2004, P ROY SOC B-BIOL SCI, V271, P2523, DOI 10.1098/rspb.2004.2897; KETTERSON ED, 1992, AM NAT, V140, pS33, DOI 10.1086/285396; Kirschman LJ, 2017, J INSECT PHYSIOL, V98, P199, DOI 10.1016/j.jinsphys.2017.01.009; Korte SM, 2005, NEUROSCI BIOBEHAV R, V29, P3, DOI 10.1016/j.neubiorev.2004.08.009; Kriegsfeld LJ, 2015, FRONT NEUROENDOCRIN, V37, P65, DOI 10.1016/j.yfrne.2014.12.001; Lipton J, 2004, J NEUROSCI, V24, P7427, DOI 10.1523/JNEUROSCI.1746-04.2004; Lopez-Esparza S, 2015, INT J DEV NEUROSCI, V42, P80, DOI 10.1016/j.ijdevneu.2015.02.010; LORENZ KZ, 1950, SYM SOC EXP BIOL, V4, P221; Lorenz TK, 2017, HORM BEHAV, V88, P122, DOI 10.1016/j.yhbeh.2016.11.009; Lucas AR, 2017, INTEGR COMP BIOL, V57, P1166, DOI 10.1093/icb/icx107; MCCANN JP, 1986, BIOL REPROD, V34, P630, DOI 10.1095/biolreprod34.4.630; McGuire NL, 2013, PEERJ, V1, DOI 10.7717/peerj.139; Merrill L, 2015, GEN COMP ENDOCR, V213, P65, DOI 10.1016/j.ygcen.2015.02.010; Mukhopadhyay A, 2007, TRENDS CELL BIOL, V17, P65, DOI 10.1016/j.tcb.2006.12.004; Reiff T, 2015, ELIFE, V4, DOI 10.7554/eLife.06930; Ross AW, 2009, J NEUROENDOCRINOL, V21, P610, DOI 10.1111/j.1365-2826.2009.01878.x; Sabatier Nancy, 2013, Front Endocrinol (Lausanne), V4, P35, DOI 10.3389/fendo.2013.00035; Samms RJ, 2015, CURR BIOL, V25, P2997, DOI 10.1016/j.cub.2015.10.010; Samms RJ, 2014, HORM BEHAV, V66, P180, DOI 10.1016/j.yhbeh.2014.03.013; Santoso P, 2017, AM J PHYSL ENDOCRINO; Schellekens H, 2015, ACS CHEM NEUROSCI, V6, P1186, DOI 10.1021/cn500318q; Schneider JE, 1998, HORM BEHAV, V33, P217, DOI 10.1006/hbeh.1998.1453; Schneider JE, 1999, AM J PHYSIOL-REG I, V277, pR1020, DOI 10.1152/ajpregu.1999.277.4.R1020; Schneider JE, 1997, AM J PHYSIOL-REG I, V272, pR400; Schneider JE, 2017, INTEGR COMP BIOL, V57, P1225, DOI 10.1093/icb/icx097; Schneider JE, 2013, HORM BEHAV, V64, P702, DOI 10.1016/j.yhbeh.2013.07.005; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Sullivan SD, 2002, BIOL REPROD, V66, P1702, DOI 10.1095/biolreprod66.6.1702; Sylvia KE, 2017, INTEGR COMP BIOL, V57, P1204, DOI 10.1093/icb/icx051; WADE GN, 1991, AM J PHYSIOL, V260, pR148; WADE GN, 1992, NEUROSCI BIOBEHAV R, V16, P235, DOI 10.1016/S0149-7634(05)80183-6; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Willis CKR, 2017, INTEGR COMP BIOL, V57, P1214, DOI 10.1093/icb/icx087; WINGFIELD JC, 1990, AM NAT, V136, P829, DOI 10.1086/285134; Woodside B, 2016, COMPR PHYSIOL, V6, P1493, DOI 10.1002/cphy.c150036; Woodside B, 2012, FRONT NEUROENDOCRIN, V33, P301, DOI 10.1016/j.yfrne.2012.09.002; Zendehdel M, 2012, J VET SCI, V13, P229, DOI 10.4142/jvs.2012.13.3.229; Zera AJ, 1997, ANNU REV ENTOMOL, V42, P207, DOI 10.1146/annurev.ento.42.1.207; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zera AJ, 2016, PHYSIOL ENTOMOL, V41, P313, DOI 10.1111/phen.12166; Zera AJ, 2016, J INSECT PHYSIOL, V95, P118, DOI 10.1016/j.jinsphys.2016.09.015; Zera AJ, 2016, INTEGR COMP BIOL, V56, P159, DOI 10.1093/icb/icw027 77 0 0 3 10 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1540-7063 1557-7023 INTEGR COMP BIOL Integr. Comp. Biol. DEC 2017 57 6 1151 1160 10.1093/icb/icx113 10 Zoology Zoology FQ4XS WOS:000418362700001 28992053 Green Published, Bronze 2018-11-22 J Nolan, ET; Downes, KJ; Richardson, A; Arkhipkin, A; Brickle, P; Brown, J; Mrowicki, RJ; Shcherbich, Z; Weber, N; Weber, SB Nolan, E. T.; Downes, K. J.; Richardson, A.; Arkhipkin, A.; Brickle, P.; Brown, J.; Mrowicki, R. J.; Shcherbich, Z.; Weber, N.; Weber, S. B. Life-history strategies of the rock hind grouper Epinephelus adscensionis at Ascension Island JOURNAL OF FISH BIOLOGY English Article age and growth; Epinephelidae; maturity; otoliths; reproduction; South Atlantic US VIRGIN-ISLANDS; SPAWNING AGGREGATIONS; REEF FISHES; RED HIND; SNAPPER COMPLEX; NASSAU GROUPER; NORTH-CAROLINA; SEX-CHANGE; GROWTH; AGE Epinephelus adscensionis sampled from Ascension Island, South Atlantic Ocean, exhibits distinct life-history traits, including larger maximum size and size at sexual maturity than previous studies have demonstrated for this species in other locations. Otolith analysis yielded a maximum estimated age of 25years, with calculated von Bertalanffy growth parameters of: L=5514, K=019, t(0)=-088. Monthly gonad staging and analysis of gonad-somatic index (I-G) provide evidence for spawning from July to November with an I-G peak in August (austral winter), during which time somatic growth is also suppressed. Observed patterns of sexual development were supportive of protogyny, although further work is needed to confirm this. Mean size at sexual maturity for females was 289cm total length (L-T; 95% C.I. 271-307cm) and no females were found >12years and 480cm L-T, whereas all confirmed males sampled were mature, >351cm L-T with an age range from 3 to 18years. The modelled size at which 50% of individuals were male was 418cm (95% C.I. 404-432cm). As far as is known, this study represents the first comprehensive investigation into the growth and reproduction of E. adscensionis at its type locality of Ascension Island and suggests that the population may be affected less by fisheries than elsewhere in its range. Nevertheless, improved regulation of the recreational fishery and sustained monitoring of abundance, length frequencies and life-history parameters are needed to inform long-term management measures, which could include the creation of marine reserves, size or temporal catch limits and stricter export controls. [Nolan, E. T.; Downes, K. J.; Richardson, A.; Brown, J.; Mrowicki, R. J.; Weber, N.; Weber, S. B.] Ascension Isl Govt Conservat & Fisheries Dept, ASCN 1ZZ, Georgetown, Ascension Islan; [Arkhipkin, A.; Shcherbich, Z.] Falkland Islands Govt Fisheries Dept, POB 598, Stanley, Falkland Island; [Brickle, P.] South Atlantic Environm Res Inst, Stanley, Falkland Island; [Brickle, P.] Univ Aberdeen, Sch Biol Sci Zool, Tillydrone Ave, Aberdeen AB24 2TZ, Scotland; [Brickle, P.] Shallow Marine Surveys Grp, POB 609, Stanley, Falkland Island Nolan, ET (reprint author), Ascension Isl Govt Conservat & Fisheries Dept, ASCN 1ZZ, Georgetown, Ascension Islan. emma.tnolan@hotmail.com U.K. Defra Darwin initiative [DPLUS021] This work was funded by a Darwin Plus grant (DPLUS021) from the U.K. Defra Darwin initiative awarded to Ascension Island Government and other project partners. The authors would like to thank the local fishing community of Ascension Island and the Shallow Marine Surveys Group (SMSG) for their invaluable support in providing samples. The authors would also like to thank J. H. Choat and D. R. Robertson for provision of data. BEAMISH RJ, 1981, CAN J FISH AQUAT SCI, V38, P982, DOI 10.1139/f81-132; Beets J, 1999, ENVIRON BIOL FISH, V55, P91, DOI 10.1023/A:1007404421518; Brewin PE, 2016, J MAR BIOL ASSOC UK, V96, P737, DOI 10.1017/S0025315415000892; Brickle P, 2006, POLAR BIOL, V29, P633, DOI 10.1007/s00300-005-0099-9; Brown-Peterson NJ, 2011, MAR COAST FISH, V3, P52, DOI 10.1080/19425120.2011.555724; Burgos JM, 2007, B MAR SCI, V80, P45; Burton ML, 2012, B MAR SCI, V88, P903, DOI 10.5343/bms.2011.1102; Campana SE, 2001, J FISH BIOL, V59, P197, DOI 10.1006/jfbi.2001.1668; Carlin JL, 2003, MAR BIOL, V143, P1057, DOI 10.1007/s00227-003-1151-3; Caselle JE, 2011, CAN J FISH AQUAT SCI, V68, P288, DOI 10.1139/F10-140; Chiappone M, 2000, MAR ECOL PROG SER, V198, P261, DOI 10.3354/meps198261; Choat J. H., 2008, ECOLOGICAL SURVEY ST; Coleman FC, 2000, FISHERIES, V25, P14, DOI 10.1577/1548-8446(2000)025<0014:LRF>2.0.CO;2; Coleman FC, 1999, AM FISH S S, V23, P233; COLIN PL, 1992, ENVIRON BIOL FISH, V34, P357, DOI 10.1007/BF00004740; Cushion N., 2008, P 11 INT COR REEF S, P1001; Domeier ML, 1997, B MAR SCI, V60, P698; Easter EE, 2016, MAR ECOL PROG SER, V543, P223, DOI 10.3354/meps11574; Erisman BE, 2008, ENVIRON BIOL FISH, V82, P23, DOI 10.1007/s10641-007-9246-1; Evans GT, 1998, BIOMETRICS, V54, P620, DOI 10.2307/3109768; Hamilton Richard, 2005, SPC LIVE REEF FISH I, V14, P7; Hamilton SL, 2007, ECOL APPL, V17, P2268, DOI 10.1890/06-1930.1; Hamilton SL, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024580; Hawkins JP, 2004, BIOL CONSERV, V115, P213, DOI 10.1016/S0006-3207(03)00119-8; Heyman WD, 2005, J FISH BIOL, V67, P83, DOI 10.1111/j.1095-8649.2005.00714.x; KIMURA DK, 1980, FISH B-NOAA, V77, P765; Kindsvater HK, 2017, FISH FISH, V18, P821, DOI 10.1111/faf.12208; Kline RJ, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019576; Koenig CC, 2017, B MAR SCI, V93, P391, DOI 10.5343/bms.2016.1013; Lester SE, 2009, MAR ECOL PROG SER, V384, P33, DOI 10.3354/meps08029; Liu M, 2004, J FISH BIOL, V65, P987, DOI 10.1111/j.1095-8649.2004.00503.x; LOWERREBARBIERI. S, 2011, MARINE AND COASTAL F, V3, P71; LUBBOCK R, 1980, J FISH BIOL, V17, P283, DOI 10.1111/j.1095-8649.1980.tb02762.x; Mackie MC, 2006, J FISH BIOL, V69, P176, DOI 10.1111/j.1095-8649.2006.01084.x; Mahmoud Hatem H., 2009, Global Veterinaria, V3, P414; Marino G, 2001, J FISH BIOL, V58, P909, DOI 10.1006/jfbi.2000.1502; de Mitcheson YS, 2013, FISH FISH, V14, P119, DOI 10.1111/j.1467-2979.2011.00455.x; Nemeth RS, 2007, ENVIRON BIOL FISH, V78, P365, DOI 10.1007/s10641-006-9161-x; Ochieng Ogongo Bernard, 2015, Journal of Fisheries and Aquatic Science, V10, P159, DOI 10.3923/jfas.2015.159.170; Ohta I, 2017, FISH OCEANOGR, V26, P350, DOI 10.1111/fog.12197; Ozen MR, 2012, TURK J FISH AQUAT SC, V12, P151, DOI 10.4194/1303-2712-v12_1_18; POTTS JC, 1995, B MAR SCI, V56, P784; Provost MM, 2015, FISHERIES, V40, P536, DOI 10.1080/03632415.2015.1093471; Rhodes KL, 2016, J FISH BIOL, V88, P1856, DOI 10.1111/jfb.12953; Robinson J, 2015, CORAL REEFS, V34, P371, DOI 10.1007/s00338-014-1243-1; Rocha L., 2008, IUCN RED LIST THREAT; Russ GR, 2004, ECOL APPL, V14, P597, DOI 10.1890/03-5076; Russell M. W., 2011, REEF FISH SPAWNING A, P371; Sadovy de Mitcheson Y. S., 2011, REEF FISH SPAWNING A; SADOVY Y, 1995, J FISH BIOL, V46, P961, DOI 10.1111/j.1095-8649.1995.tb01401.x; SADOVYDEMITCHES. Y, 2008, FISH AND FISHERIES, V9, P1; Shiffman DS, 2014, MAR POLICY, V50, P318, DOI 10.1016/j.marpol.2014.07.001; Silvano RAM, 2017, MAR POLICY, V75, P125, DOI 10.1016/j.marpol.2016.10.002; von Bertalanffy L., 1938, HUM BIOL, V10, P181; Wirtz P., 2014, J MAR BIOL ASSOC UK, V2014, P1 55 0 0 1 10 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-1112 1095-8649 J FISH BIOL J. Fish Biol. DEC 2017 91 6 1549 1568 10.1111/jfb.13410 20 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology FP7WQ WOS:000417850800002 29068043 2018-11-22 J Hengartner, MP Hengartner, Michael P. The Evolutionary Life History Model of Externalizing Personality: Bridging Human and Animal Personality Science to Connect Ultimate and Proximate Mechanisms Underlying Aggressive Dominance, Hostility, and Impulsive Sensation Seeking REVIEW OF GENERAL PSYCHOLOGY English Article personality; life history theory; stress; attachment; psychopathology GENE-ENVIRONMENT INTERPLAY; HIGHER-ORDER FACTORS; ALL-CAUSE MORTALITY; BIG 5; INDIVIDUAL-DIFFERENCES; 5-FACTOR MODEL; REPRODUCTIVE STRATEGY; CARDIOVASCULAR-DISEASE; SOCIOECONOMIC-STATUS; BEHAVIORAL SYNDROMES The present work proposes an evolutionary model of externalizing personality that defines variation in this broad psychobiological phenotype resulting from genetic influences and a conditional adaptation to high-risk environments with high extrinsic morbidity-mortality. Due to shared selection pressure, externalizing personality is coadapted to fast life history strategies and maximizes inclusive fitness under adverse environmental conditions by governing the major trade-offs between reproductive versus somatic functions, current versus future reproduction, and mating versus parenting efforts. According to this model, externalizing personality is a regulatory device at the interface between the individual and its environment that is mediated by 2 overlapping psychobiological systems, that is, the attachment and the stress-response system. The attachment system coordinates interpersonal behavior and intimacy in close relationships and the stress-response system regulates the responsivity to environmental challenge and both physiological and behavioral reactions to stress. These proximate mechanisms allow for the integration of neuroendocrinological processes underlying interindividual differences in externalizing personality. Hereinafter I further discuss the model's major implications for personality psychology, psychiatry, and public health policy. [Hengartner, Michael P.] Zurich Univ Appl Sci, Zurich, Switzerland Hengartner, MP (reprint author), Zurich Univ Appl Sci ZHAW, Dept Appl Psychol, POB 707, CH-8037 Zurich, Switzerland. michaelpascal.hengartner@zhaw.ch Hengartner, Michael/0000-0002-2956-2969 Ainsworth M., 1978, PATTERNS ATTACHMENT; Allen JP, 1998, CHILD DEV, V69, P1406, DOI 10.2307/1132274; Allen T. A., 2017, OXFORD HDB 5 FACTOR, P319, DOI 10. 1093/oxfordhb/9780199352487. 013. 26; Anusic I, 2016, J PERS SOC PSYCHOL, V110, P766, DOI 10.1037/pspp0000066; Barlow DH, 2014, CLIN PSYCHOL SCI, V2, P344, DOI 10.1177/2167702613505532; Bartholomew K, 1997, BRIT J MED PSYCHOL, V70, P249, DOI 10.1111/j.2044-8341.1997.tb01903.x; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; BAUMEISTER RF, 1995, PSYCHOL BULL, V117, P497, DOI 10.1037//0033-2909.117.3.497; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.1111/j.1467-8624.1991.tb01558.x; Belsky J, 1997, HUM NATURE-INT BIOS, V8, P361, DOI 10.1007/BF02913039; Belsky J., 2009, PERSPECT PSYCHOL SCI, P345; Belsky J, 2007, CHILD DEV, V78, P1302, DOI 10.1111/j.1467-8624.2007.01067.x; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Belsky J, 2010, PSYCHOL SCI, V21, P1195, DOI 10.1177/0956797610379867; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; Belsky J, 2009, PSYCHOL BULL, V135, P885, DOI 10.1037/a0017376; Berg V, 2013, J RES PERS, V47, P296, DOI 10.1016/j.jrp.2013.01.010; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Blair RJR, 2013, NAT REV NEUROSCI, V14, P786, DOI 10.1038/nrn3577; Bleidorn W, 2014, EUR J PERSONALITY, V28, P244, DOI 10.1002/per.1957; Bogg T, 2013, ANN BEHAV MED, V45, P278, DOI 10.1007/s12160-012-9454-6; Bouchard TJ, 2001, BEHAV GENET, V31, P243; Bowlby J, 1973, ATTACHMENT LOSS SEPA, V2; Bowlby J., 1988, SECURE BASE PARENT C; Bowlby J., 1969, ATTACHMENT LOSS ATTA, V1; Bowlby J., 1980, ATTACHMENT LOSS LOSS, V3; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Brennan KA, 1998, J PERS, V66, P835, DOI 10.1111/1467-6494.00034; Briley DA, 2014, PSYCHOL BULL, V140, P1303, DOI 10.1037/a0037091; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Burton T, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0311; Buss DM, 2009, PERSPECT PSYCHOL SCI, V4, P359, DOI 10.1111/j.1745-6924.2009.01138.x; Cameron NM, 2008, J NEUROENDOCRINOL, V20, P795, DOI 10.1111/j.1365-2826.2008.01725.x; Cameron NM, 2008, HORM BEHAV, V54, P178, DOI 10.1016/j.yhbeh.2008.02.013; Careau V, 2008, OIKOS, V117, P641, DOI 10.1111/j.0030-1299.2008.16513.x; Careau V, 2009, FUNCT ECOL, V23, P150, DOI 10.1111/j.1365-2435.2008.01468.x; Carere C, 2010, CURR ZOOL, V56, P728; Carver CS, 2010, ANNU REV PSYCHOL, V61, P679, DOI 10.1146/annurev.psych.093008.100352; Caspi A, 2005, ANNU REV PSYCHOL, V56, P453, DOI 10.1146/annurev.psych.55.090902.141913; Champagne DL, 2008, J NEUROSCI, V28, P6037, DOI 10.1523/JNEUROSCI.0526-08.2008; Champagne FA, 2009, CURR DIR PSYCHOL SCI, V18, P127, DOI 10.1111/j.1467-8721.2009.01622.x; Chapman BP, 2010, AM J EPIDEMIOL, V171, P83, DOI 10.1093/aje/kwp323; Charmantier A, 2006, P NATL ACAD SCI USA, V103, P6587, DOI 10.1073/pnas.0511123103; Chida Y, 2008, PSYCHOL BULL, V134, P829, DOI 10.1037/a0013342; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Clark LA, 2014, PERSONAL DISORD, V5, P55, DOI 10.1037/per0000063; Clark LA, 2009, CURR DIR PSYCHOL SCI, V18, P27, DOI 10.1111/j.1467-8721.2009.01600.x; Clutton-Brock TH, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2013.0074; Cohen LJ, 2017, ATTACH HUM DEV, V19, P58, DOI 10.1080/14616734.2016.1253639; Coid J, 2009, INT J LAW PSYCHIAT, V32, P65, DOI 10.1016/j.ijlp.2009.01.002; Colins OF, 2017, J PERS DISORD, V31, P49, DOI 10.1521/pedi_2016_30_237; Connor-Smith JK, 2007, J PERS SOC PSYCHOL, V93, P1080, DOI 10.1037/0022-3514.93.6.1080; Copping L. T., 2017, EVOLUTIONARY PSYCHOL; Cosmides L, 1999, J ABNORM PSYCHOL, V108, P453, DOI 10.1037//0021-843X.108.3.453; Costa PT, 2005, J AFFECT DISORDERS, V89, P45, DOI 10.1016/j.jad.2005.06.010; Costa PT, 2006, PSYCHOL BULL, V132, P26, DOI 10.1037/0033-2909.132.1.26; Cramer V, 2006, COMPR PSYCHIAT, V47, P178, DOI 10.1016/j.comppsych.2005.06.002; Crawford TN, 2007, EUR J PERSONALITY, V21, P191, DOI 10.1002/per.602; Cristea IA, 2017, JAMA PSYCHIAT, V74, P319, DOI 10.1001/jamapsychiatry.2016.4287; Cuijpers P, 2010, ARCH GEN PSYCHIAT, V67, P1086, DOI 10.1001/archgenpsychiatry.2010.130; Daly M, 2005, Q REV BIOL, V80, P55, DOI 10.1086/431025; Day FR, 2015, SCI REP-UK, V5, DOI 10.1038/srep11208; De Fruyt F, 2006, PSYCHOL ASSESSMENT, V18, P71, DOI 10.1034/1040-3590.18.1.71; de Vries RE, 2016, EVOL HUM BEHAV, V37, P407, DOI 10.1016/j.evolhumbehav.2016.04.001; Deary IJ, 2008, PSYCHOL SCI, V19, P874, DOI 10.1111/j.1467-9280.2008.02171.x; Del Giudice M, 2015, HDB EVOLUTIONARY PSY, P88, DOI DOI 10.1002/9781119125563.EVPSYCH102; Del Giudice M, 2014, CHILD DEV PERSPECT, V8, P193, DOI 10.1111/cdep.12084; Del Giudice M, 2014, PSYCHOL INQ, V25, P261, DOI 10.1080/1047840X.2014.884918; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Del Giudice M, 2009, DEV REV, V29, P1, DOI 10.1016/j.dr.2008.09.001; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Depue RA, 1999, BEHAV BRAIN SCI, V22, P491; Depue RA, 2011, INT REV PSYCHIATR, V23, P258, DOI 10.3109/09540261.2011.599315; DeYoung CG, 2006, J PERS SOC PSYCHOL, V91, P1138, DOI 10.1037/0022-3514.91.6.1138; DeYoung CG, 2010, SOC PERSONAL PSYCHOL, V4, P1165, DOI 10.1111/j.1751-9004.2010.00327.x; DeYoung CG, 2015, J RES PERS, V56, P33, DOI 10.1016/j.jrp.2014.07.004; DIGMAN JM, 1990, ANNU REV PSYCHOL, V41, P417, DOI 10.1146/annurev.psych.41.1.417; Digman JM, 1997, J PERS SOC PSYCHOL, V73, P1246, DOI 10.1037/0022-3514.73.6.1246; Dimsdale JE, 2008, J AM COLL CARDIOL, V51, P1237, DOI 10.1016/j.jacc.2007.12.024; Dingemanse NJ, 2010, PHILOS T R SOC B, V365, P3947, DOI 10.1098/rstb.2010.0221; Dingemanse NJ, 2004, P ROY SOC B-BIOL SCI, V271, P847, DOI 10.1098/rspb.2004.2680; Donnellan MB, 2008, PERS SOC PSYCHOL B, V34, P3, DOI 10.1177/0146167207309199; Dunkel C.S., 2013, J SOC EVOL CULTUR PS, V7, P12, DOI DOI 10.1037/H0099177; Dunkel CS, 2015, EVOL HUM BEHAV, V36, P374, DOI 10.1016/j.evolhumbehav.2015.02.006; Dunkel CS, 2015, ARCH SEX BEHAV, V44, P1705, DOI 10.1007/s10508-014-0445-5; Ehlert U, 2001, BIOL PSYCHOL, V57, P141, DOI 10.1016/S0301-0511(01)00092-8; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Ellis BJ, 2006, DEV REV, V26, P175, DOI 10.1016/j.dr.2006.02.004; Ellis BJ, 2014, DEV PSYCHOPATHOL, V26, P1, DOI 10.1017/S0954579413000849; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P7, DOI 10.1017/S0954579410000611; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Erola J, 2016, RES SOC STRAT MOBIL, V44, P33, DOI 10.1016/j.rssm.2016.01.003; EYSENCK HJ, 1992, PERS INDIV DIFFER, V13, P667, DOI 10.1016/0191-8869(92)90237-J; Ferguson CJ, 2010, J PERS SOC PSYCHOL, V98, P659, DOI 10.1037/a0018770; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Finch CE, 2010, P NATL ACAD SCI USA, V107, P1718, DOI 10.1073/pnas.0909606106; Fleeson W, 2009, J PERS SOC PSYCHOL, V97, P1097, DOI 10.1037/a0016786; Flinn MV, 2006, DEV REV, V26, P138, DOI 10.1016/j.dr.2006.02.003; Fraley RC, 2000, J PERS SOC PSYCHOL, V78, P350, DOI 10.1037/0022-3514.78.2.350; Frankenhuis WE, 2012, DEV PSYCHOL, V48, P628, DOI 10.1037/a0025629; Gage TB, 1998, ANNU REV ANTHROPOL, V27, P197, DOI 10.1146/annurev.anthro.27.1.197; Gilbert P, 2006, PSYCHOL MED, V36, P287, DOI 10.1017/S0033291705006112; Gilbert P., 2009, ADV PSYCHIAT TREATME, V15, P199, DOI DOI 10.1192/APT.BP.107.005264; Gladden PR, 2008, EVOL HUM BEHAV, V29, P319, DOI 10.1016/j.evolhumbehav.2008.03.003; Gladden PR, 2009, PERS INDIV DIFFER, V46, P270, DOI 10.1016/j.paid.2008.10.010; Glenn AL, 2008, PSYCHIAT CLIN N AM, V31, P463, DOI 10.1016/j.psc.2008.03.004; Glenn AL, 2011, AGGRESS VIOLENT BEH, V16, P371, DOI 10.1016/j.avb.2011.03.009; Gluckman PD, 2004, SCIENCE, V305, P1733, DOI 10.1126/science.1095292; Gluckman PD, 2007, AM J HUM BIOL, V19, P1, DOI 10.1002/ajhb.20590; Gluckman PD, 2011, EVOL APPL, V4, P249, DOI 10.1111/j.1752-4571.2010.00164.x; GOLDBERG LR, 1993, AM PSYCHOL, V48, P26, DOI 10.1037/0003-066X.48.1.26; Gosling SD, 2008, SOC PERSONAL PSYCHOL, V2, P985, DOI 10.1111/j.1751-9004.2008.00087.x; Gosling SD, 2001, PSYCHOL BULL, V127, P45, DOI 10.1037/0033-2909.127.1.45; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Groothuis TGG, 2005, NEUROSCI BIOBEHAV R, V29, P137, DOI 10.1016/j.neubiorev.2004.06.010; Gunderson JG, 2011, ARCH GEN PSYCHIAT, V68, P827, DOI 10.1001/archgenpsychiatry.2011.37; Hare RD, 2008, ANNU REV CLIN PSYCHO, V4, P217, DOI 10.1146/annurev.clinpsy.3.022806.091452; Hawley PH, 2011, J RES ADOLESCENCE, V21, P307, DOI 10.1111/j.1532-7795.2010.00732.x; Hawley PH, 2009, J SOC PERS RELAT, V26, P1097, DOI 10.1177/0265407509347939; Hawley PH, 1999, DEV REV, V19, P97, DOI 10.1006/drev.1998.0470; Hengartner MP, 2017, PERSONAL MENT HEALTH, V11, P132, DOI 10.1002/pmh.1366; Hengartner MP, 2017, STRESS HEALTH, V33, P35, DOI 10.1002/smi.2671; Hengartner MP, 2016, J PSYCHOSOM RES, V84, P44, DOI 10.1016/j.jpsychores.2016.03.012; Hengartner MP, 2015, PERSONAL MENT HEALTH, V9, P195, DOI 10.1002/pmh.1297; Hengartner MP, 2014, SOC PSYCH PSYCH EPID, V49, P317, DOI 10.1007/s00127-013-0707-x; Hengartner MP, 2013, J PSYCHIATR RES, V47, P1180, DOI 10.1016/j.jpsychires.2013.05.005; Hengartner MP, 2015, FRONT PSYCHIATRY, V6, DOI 10.3389/fpsyt.2015.00087; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Holtzman Nicholas S, 2013, Evol Psychol, V11, P1101; Hopwood CJ, 2015, J PERS DISORD, V29, P431, DOI 10.1521/pedi.2015.29.4.431; Hurst JE, 2017, EVOL HUM BEHAV, V38, P1, DOI 10.1016/j.evolhumbehav.2016.06.001; Israel S, 2014, J PERS SOC PSYCHOL, V106, P484, DOI 10.1037/a0035687; Jeronimus BF, 2013, PSYCHOL MED, V43, P2403, DOI 10.1017/S0033291713000159; Jeronimus BF, 2014, J PERS SOC PSYCHOL, V107, P751, DOI 10.1037/a0037009; Jokela M, 2014, PSYCHOL MED, V44, P2629, DOI 10.1017/S0033291714000257; Jokela M, 2014, J BEHAV MED, V37, P881, DOI 10.1007/s10865-013-9548-z; Jokela M, 2013, AM J EPIDEMIOL, V178, P667, DOI 10.1093/aje/kwt170; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jones JH, 2011, CURR BIOL, V21, pR708, DOI 10.1016/j.cub.2011.08.025; Jones JH, 2009, EVOL HUM BEHAV, V30, P305, DOI 10.1016/j.evolhumbehav.2009.01.005; Kato K, 2005, BEHAV GENET, V35, P147, DOI 10.1007/s10519-004-1015-8; Kawachi I, 1997, AM J PUBLIC HEALTH, V87, P1491, DOI 10.2105/AJPH.87.9.1491; Kendler KS, 2004, AM J PSYCHIAT, V161, P631, DOI 10.1176/appi.ajp.161.4.631; Knafo A, 2006, DEV PSYCHOL, V42, P771, DOI 10.1073/0012-1649.42.5.771; Kontiainen P, 2009, BEHAV ECOL, V20, P789, DOI 10.1093/beheco/arp062; Koolhaas JM, 2008, BRAIN BEHAV IMMUN, V22, P662, DOI 10.1016/j.bbi.2007.11.006; Koolhaas JM, 2010, FRONT NEUROENDOCRIN, V31, P307, DOI 10.1016/j.yfrne.2010.04.001; Korte SM, 2005, NEUROSCI BIOBEHAV R, V29, P3, DOI 10.1016/j.neubiorev.2004.08.009; Kortet R, 2010, ECOL LETT, V13, P1449, DOI 10.1111/j.1461-0248.2010.01536.x; Krueger RF, 1999, J PERS, V67, P39, DOI 10.1111/1467-6494.00047; Krueger RF, 2008, J PERS, V76, P1485, DOI 10.1111/j.1467-6494.2008.00529.x; KRUGER DJ, 2008, J SOCIAL EVOLUTIONAR, V2, P281, DOI DOI 10.1037/H0099339; Kubinski JS, 2017, EVOL HUM BEHAV, V38, P434, DOI 10.1016/j.evolhumbehav.2017.04.005; Kushner SC, 2011, J PERS DISORD, V25, P504, DOI 10.1521/pedi.2011.25.4.504; Lahey BB, 2009, AM PSYCHOL, V64, P241, DOI 10.1037/a0015309; Latzman RD, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0095741; Lee-Baggley D, 2005, J PERS, V73, P1141, DOI 10.1111/j.1467-6494.2005.00345.x; Lockenhoff CE, 2009, J TRAUMA STRESS, V22, P53, DOI 10.1002/jts.20385; Lorber MF, 2004, PSYCHOL BULL, V130, P531, DOI 10.1037/0033-2909.130.4.531; Lupien SJ, 2009, NAT REV NEUROSCI, V10, P434, DOI 10.1038/nrn2639; Lynam DR, 2009, YOUTH VIOLENCE JUV J, V7, P189, DOI 10.1177/1541204009333797; Lynam DR, 2005, J ABNORM CHILD PSYCH, V33, P431, DOI 10.1007/s10648-005-5724-0; MACDONALD K, 1995, J PERS, V63, P525, DOI 10.1111/j.1467-6494.1995.tb00505.x; MacDonald K, 2013, J AFFECT DISORDERS, V151, P932, DOI 10.1016/j.jad.2013.07.040; Machin S, 2011, ECON J, V121, P463, DOI 10.1111/j.1468-0297.2011.02430.x; Main M, 1996, J CONSULT CLIN PSYCH, V64, P237, DOI 10.1037/0022-006X.64.2.237; MAIN M, 1985, MONOGR SOC RES CHILD, V50, P66, DOI 10.2307/3333827; Mallinckrodt B, 2005, J COUNS PSYCHOL, V52, P358, DOI 10.1037/0022-0167.52.3.358; Malouff JM, 2010, J RES PERS, V44, P124, DOI 10.1016/j.jrp.2009.09.004; Manson JH, 2017, EVOL HUM BEHAV, V38, P552, DOI 10.1016/j.evolhumbehav.2017.01.005; Marceau K, 2015, DEV PSYCHOBIOL, V57, P742, DOI 10.1002/dev.21214; Markon KE, 2005, J PERS SOC PSYCHOL, V88, P139, DOI 10.1037/0022-3514.88.1.139; McCrae RR, 2000, J PERS SOC PSYCHOL, V78, P173, DOI 10.1037/0022-3514.78.1.173; McCrae RR, 2005, J PERS SOC PSYCHOL, V88, P547, DOI 10.1037/0022-3514.88.3.547; MCCRAE RR, 1992, J PERS, V60, P175, DOI 10.1111/j.1467-6494.1992.tb00970.x; McEwen BS, 2007, PHYSIOL REV, V87, P873, DOI 10.1152/physrev.00041.2006; McEwen BS, 2012, P NATL ACAD SCI USA, V109, P17180, DOI 10.1073/pnas.1121254109; MCEWEN BS, 1993, ARCH INTERN MED, V153, P2093, DOI 10.1001/archinte.153.18.2093; McFarlane AC, 2010, WORLD PSYCHIATRY, V9, P3; McNamara JM, 2008, NATURE, V451, P189, DOI 10.1038/nature06455; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; Meaney MJ, 2010, CHILD DEV, V81, P41, DOI 10.1111/j.1467-8624.2009.01381.x; Meaney MJ, 2001, ANNU REV NEUROSCI, V24, P1161, DOI 10.1146/annurev.neuro.24.1.1161; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Moffitt TE, 2011, P NATL ACAD SCI USA, V108, P2693, DOI 10.1073/pnas.1010076108; Mollica RH, 2001, JAMA-J AM MED ASSOC, V286, P546, DOI 10.1001/jama.286.5.546; Montiglio PO, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0343; Morey LC, 2013, ANNU REV CLIN PSYCHO, V9, P499, DOI 10.1146/annurev-clinpsy-050212-185637; Nakash-Eisikovits O, 2002, J AM ACAD CHILD PSY, V41, P1111, DOI 10.1097/01.CHI.000002058.43550.BD; Nesse RM, 2012, BMC MED, V10, DOI 10.1186/1741-7015-10-5; Nesse RM, 2011, EVOL APPL, V4, P264, DOI 10.1111/j.1752-4571.2010.00181.x; Nesse RM, 1999, NEUROSCI BIOBEHAV R, V23, P895, DOI 10.1016/S0149-7634(99)00023-8; Nettle D, 2006, AM PSYCHOL, V61, P622, DOI 10.1037/0003-066X.61.6.622; Nettle D, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1343; Nettle D, 2011, P ROY SOC B-BIOL SCI, V278, P1721, DOI 10.1098/rspb.2010.1726; Nettle D, 2010, PHILOS T R SOC B, V365, P4043, DOI 10.1098/rstb.2010.0061; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Neumann CS, 2008, J CONSULT CLIN PSYCH, V76, P893, DOI 10.1037/0022-006X.76.5.893; Neyer FJ, 2001, J PERS SOC PSYCHOL, V81, P1190, DOI 10.1037//0022-3514.81.6.1190; Niemela PT, 2012, FUNCT ECOL, V26, P450, DOI 10.1111/j.1365-2435.2011.01939.x; Noftle EE, 2006, J RES PERS, V40, P179, DOI 10.1016/j.jrp.2004.11.003; Nolte T, 2011, FRONT BEHAV NEUROSCI, V5, DOI 10.3389/fnbeh.2011.00055; Nordt C, 2006, LANCET, V367, P1830, DOI 10.1016/S0140-6736(06)68804-1; Ogilvie CA, 2014, AGGRESS VIOLENT BEH, V19, P322, DOI 10.1016/j.avb.2014.04.007; Ogle CM, 2014, J PERS, V82, P93, DOI 10.1111/jopy.12037; Ormel J, 2013, NEUROSCI BIOBEHAV R, V37, P59, DOI 10.1016/j.neubiorev.2012.09.004; Ott JC, 2011, SOC INDIC RES, V102, P3, DOI 10.1007/s11205-010-9719-z; Painter RC, 2008, HUM REPROD, V23, P2591, DOI 10.1093/humrep/den274; Patrick SC, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0087269; Penke L, 2007, EUR J PERSONALITY, V21, P549, DOI 10.1002/per.629; Pesonen AK, 2008, AM J HUM BIOL, V20, P345, DOI 10.1002/ajhb.20735; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Picardi A, 2011, J PERS, V79, P965, DOI 10.1111/j.1467-6494.2010.00707.x; Pilkonis P. A., 2005, MAJOR THEORIES PERSO, V2, P231; Placek CD, 2012, P ROY SOC B-BIOL SCI, V279, P4003, DOI 10.1098/rspb.2012.1022; Porges SW, 2007, BIOL PSYCHOL, V74, P116, DOI 10.1016/j.biopsycho.2006.06.009; Porges SW, 2001, INT J PSYCHOPHYSIOL, V42, P123, DOI 10.1016/S0167-8760(01)00162-3; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Pruitt JN, 2008, ANIM BEHAV, V76, P871, DOI 10.1016/j.anbehav.2008.05.009; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Reale D, 2009, J EVOLUTION BIOL, V22, P1599, DOI 10.1111/j.1420-9101.2009.01781.x; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Reidy DE, 2015, AGGRESS VIOLENT BEH, V24, P214, DOI 10.1016/j.avb.2015.05.018; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.2307/3071970; Richardson GB, 2017, EVOL PSYCHOL-US, V15, DOI 10.1177/1474704916666840; Rickard IJ, 2014, PERSPECT PSYCHOL SCI, V9, P3, DOI 10.1177/1745691613513467; Roberts B. W., 2017, J PERSONALITY; Roberts BW, 2007, PERSPECT PSYCHOL SCI, V2, P313, DOI 10.1111/j.1745-6916.2007.00047.x; Roberts BW, 2017, PSYCHOL BULL, V143, P117, DOI 10.1037/bul0000088; Roberts BW, 2006, PSYCHOL BULL, V132, P1, DOI 10.1037/0033-2909.132.1.1; Robins RW, 2002, J PERS, V70, P925, DOI 10.1111/1467-6494.05028; Robles TF, 2014, J PERS, V82, P515, DOI 10.1111/jopy.12052; Roff D. A., 2002, LIFE HIST EVOLUTION; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Rutter M, 2006, J CHILD PSYCHOL PSYC, V47, P226, DOI 10.1111/j.1469-7610.2005.01557.x; Salekin RT, 2010, BEHAV SCI LAW, V28, P235, DOI 10.1002/bsl.928; Samuel DB, 2008, CLIN PSYCHOL REV, V28, P1326, DOI 10.1016/j.cpr.2008.07.002; Schjolden J, 2007, BRAIN BEHAV EVOLUT, V70, P227, DOI 10.1159/000105486; Schmitt DP, 2008, J PERS SOC PSYCHOL, V94, P168, DOI 10.1037/0022-3514.94.1.168; Schmitt DP, 2004, EUR J PERSONALITY, V18, P301, DOI 10.1002/per.520; Schurch R, 2010, BEHAV ECOL, V21, P588, DOI 10.1093/beheco/arq024; Seivewright N, 2000, DEPRESS ANXIETY, V11, P105, DOI 10.1002/(SICI)1520-6394(2000)11:3<105::AID-DA4>3.3.CO;2-8; Shackman AJ, 2016, PSYCHOL BULL, V142, P1275, DOI 10.1037/bul0000073; Shaver P. R., 1999, HDB ATTACHMENT THEOR; SHAVER PR, 1992, PERS SOC PSYCHOL B, V18, P536, DOI 10.1177/0146167292185003; Shiner RL, 2009, DEV PSYCHOPATHOL, V21, P715, DOI 10.1017/S0954579409000406; Shonkoff JP, 2012, PEDIATRICS, V129, pE232, DOI 10.1542/peds.2011-2663; Shorey HS, 2006, REV GEN PSYCHOL, V10, P1, DOI 10.1037/1089-2680.10.1.1; Sibley CG, 2005, PERS SOC PSYCHOL B, V31, P1524, DOI 10.1177/0146167205276865; Sibley CG, 2007, J RES PERS, V41, P90, DOI 10.1016/j.jrp.2006.03.002; Sih A, 2004, Q REV BIOL, V79, P241, DOI 10.1086/422893; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Sih A, 2015, TRENDS ECOL EVOL, V30, P50, DOI 10.1016/j.tree.2014.11.004; Sih A, 2012, ECOL LETT, V15, P278, DOI 10.1111/j.1461-0248.2011.01731.x; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Skodol AE, 2005, PSYCHOL MED, V35, P443, DOI 10.1017/S003329170400354X; Smith GD, 2002, AM J PUBLIC HEALTH, V92, P1295, DOI 10.2105/AJPH.92.8.1295; Smith Sean M, 2006, Dialogues Clin Neurosci, V8, P383; Smith TW, 2006, ANNU REV CLIN PSYCHO, V2, P435, DOI 10.1146/annurev.clinpsy.2.022305.095257; Sorensen K, 2013, HUM REPROD, V28, P2865, DOI 10.1093/humrep/det283; Soto CJ, 2011, J PERS SOC PSYCHOL, V100, P330, DOI 10.1037/a0021717; Specht J, 2011, J PERS SOC PSYCHOL, V101, P862, DOI 10.1037/a0024950; Stamps JA, 2007, ECOL LETT, V10, P355, DOI 10.1111/j.1461-0248.2007.01034.x; Stearns S., 1992, EVOLUTION LIFE HIST; Stearns SC, 2000, P NATL ACAD SCI USA, V97, P3309, DOI 10.1073/pnas.060289597; Stearns SC, 2010, P NATL ACAD SCI USA, V107, P1691, DOI 10.1073/pnas.0914475107; Steinberg L, 2008, DEV PSYCHOL, V44, P1764, DOI 10.1037/a0012955; Steinberg L, 2008, DEV REV, V28, P78, DOI 10.1016/j.dr.2007.08.002; Sutin AR, 2010, PSYCHOL AGING, V25, P524, DOI 10.1037/a0018751; Sutin AR, 2010, J PERS, V78, P257, DOI 10.1111/j.1467-6494.2009.00615.x; Taylor RW, 2012, J EVOLUTION BIOL, V25, P614, DOI 10.1111/j.1420-9101.2012.02456.x; Taylor SE, 2000, PSYCHOL REV, V107, P411, DOI 10.1037/0033-295X.107.3.411; Taylor SE, 2006, CURR DIR PSYCHOL SCI, V15, P273, DOI 10.1111/j.1467-8721.2006.00451.x; Towne B, 2005, AM J PHYS ANTHROPOL, V128, P210, DOI 10.1002/ajpa.20106; Tuvblad C, 2011, ADV GENET, V75, P171, DOI 10.1016/B978-0-12-380858-5.00007-1; Tyrer P, 2015, PERSONAL MENT HEALTH, V9, P1, DOI 10.1002/pmh.1255; Ulrich-Lai YM, 2009, NAT REV NEUROSCI, V10, P397, DOI 10.1038/nrn2647; van den Berg SM, 2007, BEHAV GENET, V37, P661, DOI 10.1007/s10519-007-9161-4; Vinkers CH, 2014, DEPRESS ANXIETY, V31, P737, DOI 10.1002/da.22262; Vollrath M, 1998, J PERS DISORD, V12, P198, DOI 10.1521/pedi.1998.12.3.198; Vrticka P, 2012, FRONT HUM NEUROSCI, V6, DOI 10.3389/fnhum.2012.00212; Walton KE, 2017, J PERS, V85, P364, DOI 10.1111/jopy.12245; Waters E, 2000, CHILD DEV, V71, P684, DOI 10.1111/1467-8624.00176; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; Wolf M, 2008, P NATL ACAD SCI USA, V105, P15825, DOI 10.1073/pnas.0805473105; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wolf M, 2012, TRENDS ECOL EVOL, V27, P452, DOI 10.1016/j.tree.2012.05.001; Wolf M, 2012, AM NAT, V179, P679, DOI 10.1086/665656; Wright AGC, 2014, PERSONAL DISORD, V5, P43, DOI 10.1037/per0000037; Wright AGC, 2012, J ABNORM PSYCHOL, V121, P951, DOI 10.1037/a0027669; Wright ZE, 2017, J ABNORM PSYCHOL, V126, P416, DOI 10.1037/abn0000260; Yao SY, 2014, EVOL HUM BEHAV, V35, P481, DOI 10.1016/j.evolhumbehav.2014.06.007; ZUCKERMAN M, 1993, J PERS SOC PSYCHOL, V65, P757, DOI 10.1037//0022-3514.65.4.757 303 4 4 4 13 EDUCATIONAL PUBLISHING FOUNDATION-AMERICAN PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST, NE, WASHINGTON, DC 20002-4242 USA 1089-2680 1939-1552 REV GEN PSYCHOL Rev. Gen. Psychol. DEC 2017 21 4 330 353 10.1037/gpr0000127 24 Psychology, Multidisciplinary Psychology FP8NE WOS:000417900400005 2018-11-22 J Edwards, CB; Eynaud, Y; Williams, GJ; Pedersen, NE; Zgliczynski, BJ; Gleason, ACR; Smith, JE; Sandin, SA Edwards, Clinton B.; Eynaud, Yoan; Williams, Gareth J.; Pedersen, Nicole E.; Zgliczynski, Brian J.; Gleason, Arthur C. R.; Smith, Jennifer E.; Sandin, Stuart A. Large-area imaging reveals biologically driven non-random spatial patterns of corals at a remote reef CORAL REEFS English Article Coral reefs; Community structure; Landscape ecology; Spatial dispersion; Photomosaics; Palmyra Atoll CARIBBEAN CORAL; HERMATYPIC CORALS; TROPICAL FOREST; WAVE ENERGY; ECOLOGY; COMMUNITIES; DYNAMICS; SURVIVAL; REPRODUCTION; RECRUITMENT For sessile organisms such as reef-building corals, differences in the degree of dispersion of individuals across a landscape may result from important differences in life-history strategies or may reflect patterns of habitat availability. Descriptions of spatial patterns can thus be useful not only for the identification of key biological and physical mechanisms structuring an ecosystem, but also by providing the data necessary to generate and test ecological theory. Here, we used an in situ imaging technique to create large-area photomosaics of 16 plots at Palmyra Atoll, central Pacific, each covering 100 m(2) of benthic habitat. We mapped the location of 44,008 coral colonies and identified each to the lowest taxonomic level possible. Using metrics of spatial dispersion, we tested for departures from spatial randomness. We also used targeted model fitting to explore candidate processes leading to differences in spatial patterns among taxa. Most taxa were clustered and the degree of clustering varied by taxon. A small number of taxa did not significantly depart from randomness and none revealed evidence of spatial uniformity. Importantly, taxa that readily fragment or tolerate stress through partial mortality were more clustered. With little exception, clustering patterns were consistent with models of fragmentation and dispersal limitation. In some taxa, dispersion was linearly related to abundance, suggesting density dependence of spatial patterning. The spatial patterns of stony corals are non-random and reflect fundamental life-history characteristics of the taxa, suggesting that the reef landscape may, in many cases, have important elements of spatial predictability. [Edwards, Clinton B.; Eynaud, Yoan; Williams, Gareth J.; Pedersen, Nicole E.; Zgliczynski, Brian J.; Smith, Jennifer E.; Sandin, Stuart A.] Univ Calif San Diego, Scripps Inst Oceanog, Ctr Marine Biodivers & Conservat, La Jolla, CA 92093 USA; [Williams, Gareth J.] Bangor Univ, Sch Ocean Sci, Menai Bridge LL59 5AB, Anglesey, Wales; [Gleason, Arthur C. R.] Univ Miami, Phys Dept, 1320 Campo Sano Ave, Coral Gables, FL 33146 USA Edwards, CB (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, Ctr Marine Biodivers & Conservat, La Jolla, CA 92093 USA. clint@ucsd.edu Gordon and Betty Moore Foundation [3420]; UC San Diego Frontiers of Innovations Scholarship Program This work was made possible through funding provided by the Gordon and Betty Moore Foundation, Grant #3420, and the UC San Diego Frontiers of Innovations Scholarship Program. We are grateful to Gideon Butler, Sho Kodera and Tayler Fewell who contributed to image digitization. This is Palmyra Atoll Research Consortium contribution ##PARC-0125. Thank you to The Nature Conservancy and the Palmyra Atoll Research Consortium for logistical support and the United States Fish Wildlife Service for special use permit # 12533-13025 and access to the refuge. ANDERSON RM, 1982, NATURE, V296, P245, DOI 10.1038/296245a0; Baddeley A, 2015, SPATIAL POINT PATTER; BAK RPM, 1979, MAR BIOL, V54, P341, DOI 10.1007/BF00395440; BAK RPM, 1982, MAR BIOL, V69, P215, DOI 10.1007/BF00396901; Bellwood DR, 2004, NATURE, V429, P827, DOI 10.1038/nature02691; Bormann F. H., 2012, PATTERN PROCESS FORE; BRADBURY RH, 1981, MAR ECOL PROG SER, V5, P229, DOI 10.3354/meps005229; BRADBURY RH, 1983, MAR ECOL PROG SER, V11, P265, DOI 10.3354/meps011265; Brickner I, 2006, J EXP BIOL, V209, P1690, DOI 10.1242/jeb.02168; CARLON DB, 1993, J EXP MAR BIOL ECOL, V173, P247, DOI 10.1016/0022-0981(93)90056-T; CHADWICK NE, 1988, J EXP MAR BIOL ECOL, V123, P189, DOI 10.1016/0022-0981(88)90041-X; Condit R, 2000, SCIENCE, V288, P1414, DOI 10.1126/science.288.5470.1414; CONNELL JH, 1985, J EXP MAR BIOL ECOL, V93, P11, DOI 10.1016/0022-0981(85)90146-7; CONNELL JH, 1978, SCIENCE, V199, P1302, DOI 10.1126/science.199.4335.1302; Dale MRT, 2002, ECOGRAPHY, V25, P558, DOI 10.1034/j.1600-0587.2002.250506.x; DALE MRT, 1999, ECOLOGY, V88, P366; DANA TF, 1976, B MAR SCI, V26, P1; Deignan LK, 2015, CORAL REEFS, V34, P561, DOI 10.1007/s00338-014-1255-x; DEVANTIER LM, 1989, MAR ECOL PROG SER, V58, P191, DOI 10.3354/meps058191; Diaz-Pulido G, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005239; Edmunds PJ, 2015, LIMNOL OCEANOGR, V60, P840, DOI 10.1002/lno.10075; Furby KA, 2017, PEERJ, V5, DOI 10.7717/peerj.3204; GOREAU TF, 1959, ECOLOGY, V40, P67, DOI 10.2307/1929924; Gracias NR, 2003, IEEE J OCEANIC ENG, V28, P609, DOI 10.1109/JOE.2003.819156; Harms KE, 2000, NATURE, V404, P493, DOI 10.1038/35006630; HIGHSMITH RC, 1982, MAR ECOL PROG SER, V7, P207, DOI 10.3354/meps007207; HIGHSMITH RC, 1980, OECOLOGIA, V46, P322, DOI 10.1007/BF00346259; HUBBELL SP, 1992, OIKOS, V63, P48, DOI 10.2307/3545515; HUBBELL SP, 1979, SCIENCE, V203, P1299, DOI 10.1126/science.203.4387.1299; Hughes RN, 1987, FUNCT ECOL, V1, P63, DOI 10.2307/2389359; HUGHES TP, 1984, AM NAT, V123, P778, DOI 10.1086/284239; Hughes TP, 2000, ECOLOGY, V81, P2250, DOI 10.1890/0012-9658(2000)081[2250:RFLHAL]2.0.CO;2; HUGHES TP, 1992, TRENDS ECOL EVOL, V7, P292, DOI 10.1016/0169-5347(92)90225-Z; HUGHES TP, 1987, AM NAT, V129, P818, DOI 10.1086/284677; HUGHES TP, 1980, SCIENCE, V209, P713, DOI 10.1126/science.209.4457.713; HUTCHINSON G. EVELYN, 1953, PROC ACAD NAT SCI PHILADELPHIA, V105, P1; JACKSON JBC, 1985, AM SCI, V73, P265; JACKSON JBC, 1986, PHILOS T R SOC B, V313, P7, DOI 10.1098/rstb.1986.0022; JANZEN DH, 1970, AM NAT, V104, P501, DOI 10.1086/282687; Jolles AE, 2002, ECOLOGY, V83, P2373, DOI 10.2307/3071798; Karlson RH, 2007, ECOLOGY, V88, P170, DOI 10.1890/0012-9658(2007)88[170:AICSRA]2.0.CO;2; KENYON JC, 2010, ATOLL RES BULL DEC, P1; LEWIS JB, 1970, NATURE, V227, P1158, DOI 10.1038/2271158a0; LIEBERMAN D, 1985, J ECOL, V73, P915, DOI 10.2307/2260157; Lirman D, 2007, ENVIRON MONIT ASSESS, V125, P59, DOI 10.1007/s10661-006-9239-0; Marhaver KL, 2013, ECOLOGY, V94, P146, DOI 10.1890/12-0985.1; Newman MJH, 2006, ECOL LETT, V9, P1216, DOI 10.1111/j.1461-0248.2006.00976.x; Pisapia C, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0100969; R Core Team, 2016, R LANG ENV STAT COMP; REICHELT RE, 1984, MAR ECOL PROG SER, V17, P251, DOI 10.3354/meps017251; Riegl B, 2001, CORAL REEFS, V20, P67; Rietkerk M, 2008, TRENDS ECOL EVOL, V23, P169, DOI 10.1016/j.tree.2007.10.013; Roff G, 2014, MAR BIOL, V161, P1385, DOI 10.1007/s00227-014-2426-6; ROUTLEDGE RD, 1991, OIKOS, V60, P107, DOI 10.2307/3544999; Sandin SA, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001548; SEBENS KP, 1987, ANNU REV ECOL SYST, V18, P371, DOI 10.1146/annurev.es.18.110187.002103; Smith JE, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2015.1985; STIMSON J, 1974, ECOLOGY, V55, P445, DOI 10.2307/1935234; STIMSON JS, 1978, MAR BIOL, V48, P173, DOI 10.1007/BF00395017; SZMANT AM, 1986, CORAL REEFS, V5, P43, DOI 10.1007/BF00302170; TAYLOR LR, 1961, NATURE, V189, P732, DOI 10.1038/189732a0; TAYLOR LR, 1982, J ANIM ECOL, V51, P879, DOI 10.2307/4012; TURNER MG, 1989, ANNU REV ECOL SYST, V20, P171, DOI 10.1146/annurev.es.20.110189.001131; Velazquez E, 2016, ECOGRAPHY, V39, P1042, DOI 10.1111/ecog.01579; WALLACE CC, 1985, MAR BIOL, V88, P217, DOI 10.1007/BF00392585; Williams GJ, 2013, PEERJ, V1, DOI 10.7717/peerj.81; Wu JG, 2013, LANDSCAPE ECOL, V28, P999, DOI 10.1007/s10980-013-9894-9; Zvuloni A, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0004993 68 0 0 11 21 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0722-4028 1432-0975 CORAL REEFS Coral Reefs DEC 2017 36 4 1291 1305 10.1007/s00338-017-1624-3 15 Marine & Freshwater Biology Marine & Freshwater Biology FN0TA WOS:000415691300030 2018-11-22 J Kolarov, NT; Cvijanovic, M; Denoel, M; Ivanovic, A Kolarov, Natasa Tomasevic; Cvijanovic, Milena; Denoel, Mathieu; Ivanovic, Ana Morphological Integration and Alternative Life History Strategies: A Case Study in a Facultatively Paedomorphic Newt JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION English Article NEW-WORLD MONKEYS; TERRESTRIAL LOCOMOTION; TRITURUS-ALPESTRIS; EUROPEAN NEWTS; AMBYSTOMA-TIGRINUM; CRANIAL EVOLUTION; GENE-EXPRESSION; BODY-SIZE; PEDOMORPHOSIS; LIMB Tetrapod limbs are serially homologous structures that represent a particularly interesting model for studies on morphological integration, i.e. the tendency of developmental systems to produce correlated variation. In newts, limbs develop at an early larval stage and grow continuously, including after the habitat transition from water to land following metamorphosis. However, aquatic and terrestrial environments impose different constraints and locomotor modes that could affect patterns of morphological integration and evolvability. We hypothesize that this would be the case for alternative heterochronic morphs in newts, i.e. aquatic paedomorphs that keep gills at the adult stage and adult metamorphs that are able to disperse on land. To this end, we analyzed patterns and strengths of correlations between homologous skeletal elements of the fore- and hindlimbs as well as among skeletal elements within limbs in both phenotypes in the alpine newt, Ichthyosaura alpestris. Our results showed that metamorphs and paedomorphs had similar, general patterns of limb integration. Partial correlations between homologous limb elements and within limb elements were higher in paedomorphs when compared to metamorphs. A decrease in partial correlation between homologous limb elements in metamorphs is accompanied with a higher evolvability of the terrestrial morph. All these results indicate that environmental demands shaped the patterns of morphological integration of alpine newt limbs and that the observed diversity in correlation structure could be related to a qualitative difference in the modes of locomotion between the morphs. [Kolarov, Natasa Tomasevic; Cvijanovic, Milena] Univ Belgrade, Inst Biol Res Sinisa Stankovic, Belgrade, Serbia; [Denoel, Mathieu] Univ Liege, Behav Biol Unit, Freshwater & Ocean Sci Unit Res FOCUS, Lab Fish & Amphibian Ethol, Liege, Belgium; [Ivanovic, Ana] Univ Belgrade, Inst Zool, Fac Biol, Belgrade, Serbia Kolarov, NT (reprint author), Inst Biol Res Dr Sinisa Stankovic, Dept Evolutionary, Bul Despota Stefana 142, Belgrade 11060, Serbia. natasha@ibiss.bg.ac.rs Ivanovic, Ana/0000-0002-6247-8849; Denoel, Mathieu/0000-0002-3586-8323; Tomasevic Kolarov, Natasa/0000-0002-4785-7170 Ministry of Education, Science and Technological Development of the Republic of Serbia [173043]; Fonds de la Recherche Scientifique F.R.S.-FNRS [J.0112.16] Grant sponsors: Ministry of Education, Science and Technological Development of the Republic of Serbia under the project No. 173043 and Fonds de la Recherche Scientifique F.R.S.-FNRS under the project No. J.0112.16. Arntzen JW, 2015, CONTRIB ZOOL, V84, P85; Ashley-Ross MA, 2004, J EXP BIOL, V207, P461, DOI 10.1242/jeb.00769; Azizi E, 2004, ZOOLOGY, V107, P111, DOI 10.1016/j.zool.2004.03.002; Bell E, 2011, J EVOLUTION BIOL, V24, P2586, DOI 10.1111/j.1420-9101.2011.02381.x; BIEWENER AA, 1990, SCIENCE, V250, P1097, DOI 10.1126/science.2251499; Bininda-Emonds ORP, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-182; BLANCO MJ, 1992, EVOLUTION, V46, P677, DOI 10.1111/j.1558-5646.1992.tb02075.x; Blob RW, 1999, J EXP BIOL, V202, P1023; CHEVERUD JM, 1982, EVOLUTION, V36, P499, DOI 10.1111/j.1558-5646.1982.tb05070.x; CHEVERUD JM, 1988, EVOLUTION, V42, P958, DOI 10.1111/j.1558-5646.1988.tb02514.x; Deban SM, 2009, J EXP BIOL, V212, P2949, DOI 10.1242/jeb.032961; Denoel M, 2005, BIOL REV, V80, P663, DOI 10.1017/S1464793105006858; Denoel M, 2004, NATURWISSENSCHAFTEN, V91, P81, DOI 10.1007/s00114-003-0492-6; Denoel M, 2003, ACTA OECOL, V24, P55, DOI 10.1016/S1146-609X(03)00043-2; Denoel M, 2001, FRESHWATER BIOL, V46, P1387, DOI 10.1046/j.1365-2427.2001.00762.x; Denoel M, 2017, CURR ZOOL, V63, P165, DOI 10.1093/cz/zow054; Denoel M, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-278; DINGERKUS G, 1977, STAIN TECHNOL, V52, P229, DOI 10.3109/10520297709116780; Diogo R, 2014, J EXP ZOOL PART B, V322, P86, DOI 10.1002/jez.b.22549; Diogo R, 2013, BIOL REV, V88, P196, DOI 10.1111/j.1469-185X.2012.00247.x; Duki G, 1990, BRIT HERP SOC B, V34, P16; Duki G, 2015, B NAT HIST MUS, V8, P118; Fischer-Rousseau L, 2009, EVOL DEV, V11, P740, DOI 10.1111/j.1525-142X.2009.00381.x; FROLICH LM, 1992, J EXP BIOL, V162, P107; FROST HM, 1988, CALCIFIED TISSUE INT, V42, P145, DOI 10.1007/BF02556327; Glucksohn S, 1932, W ROUX ARCH ENTW MEC, V125, P341; Goswami A, 2006, EVOLUTION, V60, P169; Goswami A, 2010, QUANTITATIVE METHODS, P213, DOI DOI 10.1017/S1089332600001881; Gould S. J., 1977, ONTOGENY PHYLOGENY; Gvozdik L, 2006, EVOLUTION, V60, P2110; HALL BK, 1995, EVOL BIOL, V28, P1; Hall BK, 2005, BONES CARTILAGE DEV; Hallgrimsson B, 2002, YEARB PHYS ANTHROPOL, V45, P131, DOI 10.1002/ajpa.10182; Hallgrimsson B, 2009, EVOL BIOL, V36, P355, DOI 10.1007/s11692-009-9076-5; Hansen TF, 2008, J EVOLUTION BIOL, V21, P1201, DOI 10.1111/j.1420-9101.2008.01573.x; Hood G., 2004, POPTOOLS VER 2 62; Ivanovic A, 2005, AMPHIBIA-REPTILIA, V26, P485, DOI 10.1163/156853805774806223; KALEZIC M L, 1986, Amphibia-Reptilia, V7, P86, DOI 10.1163/156853886X00299; Kalezic ML, 1996, J ZOOL SYST EVOL RES, V34, P1; Kelly EM, 2011, BIOL J LINN SOC, V102, P22, DOI 10.1111/j.1095-8312.2010.01561.x; Klingenberg CP, 2014, PHILOS T R SOC B, V369, DOI 10.1098/rstb.2013.0249; Klingenberg CP, 2008, ANNU REV ECOL EVOL S, V39, P115, DOI 10.1146/annurev.ecolsys.37.091305.110054; Knight F C E, 1938, Wilhelm Roux Arch Entwickl Mech Org, V137, P461, DOI 10.1007/BF00596625; Kolarov NT, 2011, J EXP ZOOL PART B, V316B, P296, DOI 10.1002/jez.b.21401; Labonne G, 2014, EVOL DEV, V16, P224, DOI 10.1111/ede.12085; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; Laudet V, 2011, CURR BIOL, V21, pR726, DOI 10.1016/j.cub.2011.07.030; Lawler RR, 2008, AM J PHYS ANTHROPOL, V136, P204, DOI 10.1002/ajpa.20795; Lebedkina N.S., 2004, ADV AMPHIBIAN RES FO, V9, P1; Lewton KL, 2012, EVOL BIOL, V39, P126, DOI 10.1007/s11692-011-9143-6; Lleonart J, 2000, J THEOR BIOL, V205, P85, DOI 10.1006/jtbi.2000.2043; Magwene PM, 2001, EVOLUTION, V55, P1734; MANLY BFJ, 1991, RANDOMIZATION MONTE; Margulies EH, 2001, GENOME RES, V11, P1686, DOI 10.1101/gr.192601; Marroig G, 2001, EVOLUTION, V55, P2576; Marroig G, 2005, EVOLUTION, V59, P1128; Marroig G, 2004, AM J PHYS ANTHROPOL, V125, P266, DOI 10.1002/ajpa.10421; Martin-Serra A, 2015, EVOLUTION, V69, P321, DOI 10.1111/evo.12566; McNamara Kenneth J., 2012, Evolution Education and Outreach, V5, P203; Olson E. C., 1958, MORPHOLOGICAL INTEGR; Oromi N, 2016, SCI REP-UK, V6, DOI 10.1038/srep32046; Pavlicev M, 2009, EVOL BIOL, V36, P157, DOI 10.1007/s11692-008-9042-7; Petit F, 2017, NAT REV GENET, V18, P245, DOI 10.1038/nrg.2016.167; Porto A, 2009, EVOL BIOL, V36, P118, DOI 10.1007/s11692-008-9038-3; RAABCULLEN DM, 1994, CALCIFIED TISSUE INT, V55, P473, DOI 10.1007/BF00298562; Recuero E, 2014, MOL PHYLOGENET EVOL, V81, P207, DOI 10.1016/j.ympev.2014.09.014; Rohlf F. J, 2005, TPSDIG PROGRAM VERSI; Rolian C, 2009, EVOL BIOL, V36, P100, DOI 10.1007/s11692-009-9049-8; Schluter D, 1996, EVOLUTION, V50, P1766, DOI 10.1111/j.1558-5646.1996.tb03563.x; Schmidt M, 2009, EVOLUTION, V63, P749, DOI 10.1111/j.1558-5646.2008.00583.x; SEMLITSCH RD, 1989, EVOLUTION, V43, P105, DOI 10.1111/j.1558-5646.1989.tb04210.x; Sheets H. D., 2000, INTEGRATED MORPHOMET; Sheffield KM, 2011, J EXP BIOL, V214, P2603, DOI 10.1242/jeb.048736; Shou SM, 2005, DEV DYNAM, V234, P74, DOI 10.1002/dvdy.20514; SHUBIN NH, 1986, EVOL BIOL, V20, P319; Smirnov Sergei V., 2003, Russian Journal of Herpetology, V10, P93; Steinfartz S, 2007, J EXP ZOOL PART B, V308B, P139, DOI 10.1002/jez.b.21119; Vorobyeva E.I., 1996, Russian Journal of Herpetology, V3, P68; WAGNER GP, 1984, J MATH BIOL, V21, P77, DOI 10.1007/BF00275224; Whitaker J., 1990, GRAPHICAL MODELS APP; WHITEMAN HH, 1994, Q REV BIOL, V69, P205, DOI 10.1086/418540; WILBUR HM, 1973, SCIENCE, V182, P1305, DOI 10.1126/science.182.4119.1305; WILLIS JH, 1991, EVOLUTION, V45, P441, DOI 10.1111/j.1558-5646.1991.tb04418.x; Young NM, 2010, P NATL ACAD SCI USA, V107, P3400, DOI 10.1073/pnas.0911856107; Young NM, 2009, EVOL BIOL, V36, P88, DOI 10.1007/s11692-009-9053-z; Young NM, 2005, EVOLUTION, V59, P2691; Zelditch ML, 2004, EVOL DEV, V6, P194, DOI 10.1111/j.1525-142X.2004.04025.x 87 0 0 3 5 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1552-5007 1552-5015 J EXP ZOOL PART B J. Exp. Zool. Part B DEC 2017 328 8 737 748 10.1002/jez.b.22758 12 Evolutionary Biology; Developmental Biology; Zoology Evolutionary Biology; Developmental Biology; Zoology FN3TJ WOS:000415922200002 28664626 2018-11-22 J Penaluna, BE; Olson, DH; Flitcroft, RL; Weber, MA; Bellmore, JR; Wondzell, SM; Dunham, JB; Johnson, SL; Reeves, GH Penaluna, Brooke E.; Olson, Deanna H.; Flitcroft, Rebecca L.; Weber, Matthew A.; Bellmore, J. Ryan; Wondzell, Steven M.; Dunham, Jason B.; Johnson, Sherri L.; Reeves, Gordon H. Aquatic biodiversity in forests: a weak link in ecosystem services resilience BIODIVERSITY AND CONSERVATION English Article Freshwater biota; Forested streams and lakes; Salmonids; Amphibians; Ecological integrity; Native species; Final ecosystem services FRESH-WATER BIODIVERSITY; WESTERN UNITED-STATES; HEADWATER STREAMS; CLIMATE-CHANGE; PACIFIC-NORTHWEST; FOOD WEBS; AMPHIBIAN DECLINES; CHANNEL NETWORKS; RIVER CONTINUUM; LIFE-HISTORIES The diversity of aquatic ecosystems is being quickly reduced on many continents, warranting a closer examination of the consequences for ecological integrity and ecosystem services. Here we describe intermediate and final ecosystem services derived from aquatic biodiversity in forests. We include a summary of the factors framing the assembly of aquatic biodiversity in forests in natural systems and how they change with a variety of natural disturbances and human-derived stressors. We consider forested aquatic ecosystems as a multi-state portfolio, with diverse assemblages and life-history strategies occurring at local scales as a consequence of a mosaic of habitat conditions and past disturbances and stressors. Maintaining this multi-state portfolio of assemblages requires a broad perspective of ecosystem structure, various functions, services, and management implications relative to contemporary stressors. Because aquatic biodiversity provides multiple ecosystem services to forests, activities that compromise aquatic ecosystems and biodiversity could be an issue for maintaining forest ecosystem integrity. We illustrate these concepts with examples of aquatic biodiversity and ecosystem services in forests of northwestern North America, also known as Northeast Pacific Rim. Encouraging management planning at broad as well as local spatial scales to recognize multi-state ecosystem management goals has promise for maintaining valuable ecosystem services. Ultimately, integration of information from socio-ecological ecosystems will be needed to maintain ecosystem services derived directly and indirectly from forest aquatic biota. [Penaluna, Brooke E.; Olson, Deanna H.; Flitcroft, Rebecca L.; Wondzell, Steven M.; Johnson, Sherri L.; Reeves, Gordon H.] US Forest Serv, Pacific Northwest Res Stn, 3200 SW Jefferson Way, Corvallis, OR 97331 USA; [Weber, Matthew A.] US EPA, Western Ecol Div, 200 SW 35th St, Corvallis, OR 97333 USA; [Bellmore, J. Ryan; Dunham, Jason B.] US Geol Survey, Forest & Rangeland Ecosyst Sci Ctr, 3200 SW Jefferson Way, Corvallis, OR 97331 USA; [Bellmore, J. Ryan] US Forest Serv, Pacific Northwest Res Stn, 11175 Auke Lake Way, Juneau, AK 99801 USA Penaluna, BE (reprint author), US Forest Serv, Pacific Northwest Res Stn, 3200 SW Jefferson Way, Corvallis, OR 97331 USA. bepenaluna@fs.fed.us Alroy J, 2015, P NATL ACAD SCI USA, V112, P13003, DOI 10.1073/pnas.1508681112; American Rivers, 2014, AM RIV DAM REM DAT; ANDERSON NH, 1979, J FISH RES BOARD CAN, V36, P335, DOI 10.1139/f79-052; ANDERSON NH, 1979, ANNU REV ENTOMOL, V24, P351, DOI 10.1146/annurev.en.24.010179.002031; ANGERMEIER PL, 1994, BIOSCIENCE, V44, P690, DOI 10.2307/1312512; Araujo MB, 2006, J BIOGEOGR, V33, P1712, DOI 10.1111/j.1365-2699.2006.01482.x; Arismendi I, 2012, GEOPHYS RES LETT, V39, DOI 10.1029/2012GL051448; Ashkenas LR, 2004, ECOLOGY, V85, P1725, DOI 10.1890/03-0032; Behnke R. J, 2002, TROUT SALMON N AM; Bell K. P., 2003, Marine Resource Economics, V18, P15; Benda L, 2004, BIOSCIENCE, V54, P413, DOI 10.1641/0006-3568(2004)054[0413:TNDHHC]2.0.CO;2; Benda L, 2003, FOREST ECOL MANAG, V178, P105, DOI 10.1016/S0378-1127(03)00056-2; Benda L, 1997, WATER RESOUR RES, V33, P2849, DOI 10.1029/97WR02388; Benda L, 1997, WATER RESOUR RES, V33, P2865, DOI 10.1029/97WR02387; BENDA LE, 1990, CAN GEOTECH J, V27, P409, DOI 10.1139/t90-057; Best ML, 2014, ECOSPHERE, V5, DOI 10.1890/ES13-00302.1; Bisson PA, 2003, FOREST ECOL MANAG, V178, P213, DOI 10.1016/S0378-1127(03)00063-X; Boyd J., 2013, Agricultural and Resource Economics Review, V42, P1; Boyd J, 2016, INT REV ENV RESOUR E, DOI [10.1561/101.00000073, DOI 10.1561/101.00000073]; Boyd J, 2007, ECOL ECON, V63, P616, DOI 10.1016/j.ecolecon.2007.01.002; Brooks TM, 2006, SCIENCE, V313, P58, DOI 10.1126/science.1127609; Brown TC, 2008, J AM WATER RESOUR AS, V44, P1474, DOI 10.1111/j.1752-1688.2008.00252.x; Bryson RA, 1977, CLIMATES HUNGER MANK; Burnett KM, 2007, ECOL APPL, V17, P66, DOI 10.1890/1051-0761(2007)017[0066:DOSPRT]2.0.CO;2; Cardinale BJ, 2012, NATURE, V486, P59, DOI 10.1038/nature11148; Cederholm CJ, 1999, FISHERIES, V24, P6, DOI 10.1577/1548-8446(1999)024<0006:PSC>2.0.CO;2; Chelgren ND, 2015, ECOL APPL, V25, P1357, DOI 10.1890/14-1108.1; Collen B, 2014, GLOBAL ECOL BIOGEOGR, V23, P40, DOI 10.1111/geb.12096; Costanza R, 1997, NATURE, V387, P253, DOI 10.1038/387253a0; Cross WF, 2013, ECOL MONOGR, V83, P311, DOI 10.1890/12-1727.1; Crozier LG, 2008, EVOL APPL, V1, P252, DOI 10.1111/j.1752-4571.2008.00033.x; Cummins K.W., 1984, Internationale Vereinigung fuer Theoretische und Angewandte Limnologie Verhandlungen, V22, P1818; Daily GC, 1997, NATURES SERVICES SOC; Davic RD, 2004, ANNU REV ECOL EVOL S, V35, P405, DOI 10.1146/annurev.ecolsys.35.112202.130116; Den Boer P. J., 1968, Acta Biotheoretica, V18, P165; Dennison PE, 2014, GEOPHYS RES LETT, V41, P2928, DOI 10.1002/2014GL059576; Desjardins E, 2015, BIOL PHILOS, V30, P77, DOI 10.1007/s10539-014-9467-6; Dirzo R, 2014, SCIENCE, V345, P401, DOI 10.1126/science.1251817; Duda JJ, 2008, NORTHWEST SCI, V82, P1, DOI 10.3955/0029-344X-82.S.I.1; Dudgeon D, 2006, BIOL REV, V81, P163, DOI 10.1017/S1464793105006950; Dunham JB, 2007, ECOSYSTEMS, V10, P335, DOI 10.1007/s10021-007-9029-8; Dunham JB, 2004, FISHERIES, V29, P18, DOI 10.1577/1548-8446(2004)29[18:ATCONT]2.0.CO;2; Dunham JB, 2003, FOREST ECOL MANAG, V178, P183, DOI 10.1016/S0378-1127(03)00061-6; Ebersole JL, 1997, ENVIRON MANAGE, V21, P1, DOI 10.1007/s002679900001; Ehrlich P. R., 1981, EXTINCTION CAUSES CO; Estes JA, 2011, SCIENCE, V333, P301, DOI 10.1126/science.1205106; Falke JA, 2015, CAN J FISH AQUAT SCI, V72, P304, DOI 10.1139/cjfas-2014-0098; Fausch KD, 2002, BIOSCIENCE, V52, P483, DOI 10.1641/0006-3568(2002)052[0483:LTRBTG]2.0.CO;2; Fausch KD, 2006, RMRSGTR174 USDA FOR; Fausch KD, 2009, CONSERV BIOL, V23, P859, DOI 10.1111/j.1523-1739.2008.01159.x; Febria C.M., 2015, WATER ECOSYSTEM SERV, P26; Fisher B, 2009, ECOL ECON, V68, P643, DOI 10.1016/j.ecolecon.2008.09.014; Forest Ecosystem Management Assessment Team (FEMAT), 1993, FOR EC MAN EC EC SOC; Forman RT, 2002, ROAD ECOLOGY SCI SOL; Freeman MC, 2007, J AM WATER RESOUR AS, V43, P5, DOI 10.1111/j.1752-1688.2007.00002.x; Gienapp P, 2005, GLOBAL CHANGE BIOL, V11, P600, DOI 10.1111/j.1365-2486.2005.00925.x; GREGORY SV, 1991, BIOSCIENCE, V41, P540, DOI 10.2307/1311607; Gresswell RE, 1999, T AM FISH SOC, V128, P193, DOI 10.1577/1548-8659(1999)128<0193:FAAEIF>2.0.CO;2; Griebler C, 2015, FRESHW SCI, V34, P355, DOI 10.1086/679903; HAIRSTON NG, 1960, AM NAT, V94, P421, DOI 10.1086/282146; Hamer AJ, 2002, OECOLOGIA, V132, P445, DOI 10.1007/s00442-002-0968-7; HANEMANN M, 1991, AM J AGR ECON, V73, P1255, DOI 10.2307/1242453; Hanna R. Blair, 1999, Lake and Reservoir Management, V15, P87; HARR RD, 1986, WATER RESOUR RES, V22, P1095, DOI 10.1029/WR022i007p01095; HARR RD, 1988, WATER RESOUR BULL, V24, P1103; Hart DD, 2002, BIOSCIENCE, V52, P669, DOI 10.1641/0006-3568(2002)052[0669:DRCAOF]2.0.CO;2; Hassan MA, 2005, J AM WATER RESOUR AS, V41, P899, DOI 10.1111/j.1752-1688.2005.tb03776.x; HAWKINS CP, 1982, ECOLOGY, V63, P1840, DOI 10.2307/1940125; HAWKINS CP, 1983, CAN J FISH AQUAT SCI, V40, P1173, DOI 10.1139/f83-134; Healey MC, 1995, AM FISH S S, V17, P176; Hilborn R, 2003, P NATL ACAD SCI USA, V100, P6564, DOI 10.1073/pnas.1037274100; Hobbs RJ, 2008, ANNU REV ENV RESOUR, V33, P39, DOI 10.1146/annurev.environ.33.020107.113631; Hoffmann M, 2010, SCIENCE, V330, P1503, DOI 10.1126/science.1194442; Hooper DU, 2012, NATURE, V486, P105, DOI 10.1038/nature11118; Hooper DU, 2005, ECOL MONOGR, V75, P3, DOI 10.1890/04-0922; Humphries P, 2014, BIOSCIENCE, V64, P870, DOI 10.1093/biosci/biu130; Jentsch A, 2007, FRONT ECOL ENVIRON, V5, P365, DOI 10.1890/1540-9295(2007)5[365:ANGOCE]2.0.CO;2; Johnson PTJ, 2008, FRONT ECOL ENVIRON, V6, P359, DOI 10.1890/070156; Johnson SL, 2004, CAN J FISH AQUAT SCI, V61, P913, DOI [10.1139/f04-040, 10.1139/F04-040]; Johnson SL, 2000, HYDROL PROCESS, V14, P3031, DOI 10.1002/1099-1085(200011/12)14:16/17<3031::AID-HYP133>3.0.CO;2-6; Johnston RJ, 2011, ECOL ECON, V70, P2243, DOI 10.1016/j.ecolecon.2011.07.003; Jones JA, 2004, WATER RESOUR RES, V40, DOI 10.1029/2003WR002952; Jones KK, 2014, J FISH BIOL, V85, P52, DOI 10.1111/jfb.12380; Kareiva P.M., 1993, BIOTIC INTERACTIONS; Kats LB, 2003, DIVERS DISTRIB, V9, P99, DOI 10.1046/j.1472-4642.2003.00013.x; Kiester A. Ross, 2011, Herpetological Review, V42, P198; King S, 2016, RIVER RES APPL, V32, P418, DOI 10.1002/rra.2859; KONDOLF GM, 1993, WATER RESOUR RES, V29, P2275, DOI 10.1029/93WR00402; Kondolf GM, 1997, J AM WATER RESOUR AS, V33, P79, DOI 10.1111/j.1752-1688.1997.tb04084.x; Konrad CP, 2011, BIOSCIENCE, V61, P948, DOI 10.1525/bio.2011.61.12.5; Kremen C, 2005, ECOL LETT, V8, P468, DOI 10.1111/j.1461-0248.2005.00751.x; Landers DH, 2013, NATL ECOSYSTEM SERVI; Lawler JJ, 2014, P NATL ACAD SCI USA, V111, P7492, DOI 10.1073/pnas.1405557111; LAWTON JH, 1994, OIKOS, V71, P367, DOI 10.2307/3545824; Lichatowich J, 1999, SALMON RIVERS; Lindenmayer DB, 2002, MANAGING FOREST BIOD; Loomis JB, 1996, WATER RESOUR RES, V32, P441, DOI 10.1029/95WR03243; Lowe S., 2004, 100 WORLDS WORST INV; Luce CH, 2002, HYDROL PROCESS, V16, P2901, DOI 10.1002/hyp.5061; Luce CH, 2001, WATER RESOUR IMPACT, V3, P8; Lyashevska O, 2012, ECOL INDIC, V18, P485, DOI 10.1016/j.ecolind.2011.12.016; MAGNUSON JJ, 1979, AM ZOOL, V19, P331; Mahlum SK, 2011, INT J WILDLAND FIRE, V20, P240, DOI 10.1071/WF09132; Malison RL, 2010, CAN J FISH AQUAT SCI, V67, P570, DOI 10.1139/F10-006; MANGEL M, 1994, ECOLOGY, V75, P607, DOI 10.2307/1941719; Mansfield Carol, 2012, KLAMATH RIVER BASIN; Mantua N, 2004, AM FISH S S, V43, P127; Marris E, 2010, CONSERVATION MAGAZIN; Martel A, 2014, SCIENCE, V346, P630, DOI 10.1126/science.1258268; May CL, 2003, EARTH SURF PROC LAND, V28, P409, DOI 10.1002/esp.450; McCann KS, 2000, NATURE, V405, P228, DOI 10.1038/35012234; McKinney ML, 1999, TRENDS ECOL EVOL, V14, P450, DOI 10.1016/S0169-5347(99)01679-1; McLellen R, 2014, LIVING PLANET REPORT; Millennium Ecosystem Assessment, 2005, EC HUM WELL BEING SY; Miller D, 2003, FOREST ECOL MANAG, V178, P121, DOI 10.1016/S0378-1127(03)00057-4; Miller RJ, 1982, P SALM TROUT MIGR BE, P296; MINSHALL GW, 1985, CAN J FISH AQUAT SCI, V42, P1045, DOI 10.1139/f85-130; Minshall GW, 2003, FOREST ECOL MANAG, V178, P155, DOI 10.1016/S0378-1127(03)00059-8; MINSHALL GW, 1989, BIOSCIENCE, V39, P707, DOI 10.2307/1311002; Montgomery DR, 1999, J AM WATER RESOUR AS, V35, P397, DOI 10.1111/j.1752-1688.1999.tb03598.x; Moore RD, 2005, J AM WATER RESOUR AS, V41, P813; Muchow CL, 2000, P BIOL MAN SPEC HAB, P503; Muehlbauer JD, 2014, ECOLOGY, V95, P44, DOI 10.1890/12-1628.1; Muhlfeld CC, 2014, NAT CLIM CHANGE, V4, P620, DOI [10.1038/NCLIMATE2252, 10.1038/nclimate2252]; Murcia C, 2014, TRENDS ECOL EVOL, V29, P548, DOI 10.1016/j.tree.2014.07.006; NAEEM S, 1995, PHILOS T ROY SOC B, V347, P249, DOI 10.1098/rstb.1995.0025; NAEEM S, 1994, NATURE, V368, P734, DOI 10.1038/368734a0; Naiman R. J., 2005, RIPARIA ECOLOGY CONS; NAIMAN RJ, 1979, J FISH RES BOARD CAN, V36, P17, DOI 10.1139/f79-003; Nakano S, 2001, P NATL ACAD SCI USA, V98, P166, DOI 10.1073/pnas.98.1.166; National Inventory of Dams (NID), 2013, NAT INV DAMS NID; Neeson TM, 2015, P NATL ACAD SCI USA, V112, P6236, DOI 10.1073/pnas.1423812112; Neville H, 2009, T AM FISH SOC, V138, P1314, DOI 10.1577/T08-162.1; NID (National Inventory of Dams), 2013, NID NAT INV DAMS; Nislow KH, 2011, FRESHWATER BIOL, V56, P2135, DOI 10.1111/j.1365-2427.2011.02634.x; Northcote TG, 2008, FISHES FORESTRY WORL; Null SE, 2014, J ENVIRON MANAGE, V136, P121, DOI 10.1016/j.jenvman.2014.01.024; O'Connor JE, 2015, SCIENCE, V348, P496, DOI 10.1126/science.aaa9204; Olden JD, 2004, TRENDS ECOL EVOL, V19, P18, DOI 10.1016/j.tree.2003.09.010; Olden JD, 2010, FRESHWATER BIOL, V55, P86, DOI 10.1111/j.1365-2427.2009.02179.x; OLSEN D, 1991, RIVERS-STUD SCI ENV, V2, P44; Olson DH, 2007, FOREST ECOL MANAG, V246, P81, DOI 10.1016/j.foreco.2007.03.053; Olson DH, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0056802; Parmesan C, 2003, NATURE, V421, P37, DOI 10.1038/nature01286; Pate J, 1997, ECOL ECON, V20, P199, DOI 10.1016/S0921-8009(96)00080-8; Pearsons TN, 2008, FISHERIES, V33, P278, DOI 10.1577/1548-8446-33.6.278; Penaluna BE, 2016, ECOL FRESHW FISH, V25, P405, DOI 10.1111/eff.12221; Penaluna BE, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0135334; Perlin J., 1989, FOREST JOURNEY ROLE; Pess GR, 2014, REV FISH BIOL FISHER, V24, P881, DOI 10.1007/s11160-013-9339-1; Petchey OL, 2002, ECOL LETT, V5, P402, DOI 10.1046/j.1461-0248.2002.00339.x; Peterman WE, 2008, FRESHWATER BIOL, V53, P347, DOI 10.1111/j.1365-2427.2007.01900.x; Picco AM, 2008, CONSERV BIOL, V22, P1582, DOI 10.1111/j.1523-1739.2008.01025.x; Pilliod DS, 2003, FOREST ECOL MANAG, V178, P163, DOI 10.1016/S0378-1127(03)00060-4; Poff NL, 2007, P NATL ACAD SCI USA, V104, P5732, DOI 10.1073/pnas.0609812104; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; Poole GC, 2002, FRESHWATER BIOL, V47, P641, DOI 10.1046/j.1365-2427.2002.00922.x; Power ME, 2002, ECOL RES, V17, P451, DOI 10.1046/j.1440-1703.2002.00503.x; POWER ME, 1992, ECOLOGY, V73, P1675, DOI 10.2307/1940019; Pringle C, 2003, HYDROL PROCESS, V17, P2685, DOI 10.1002/hyp.5145; Progar RA, 2002, J FRESHWATER ECOL, V17, P391, DOI 10.1080/02705060.2002.9663913; Quinn T. P., 2005, BEHAV ECOLOGY PACIFI; Rashin EB, 2006, J AM WATER RESOUR AS, V42, P1307, DOI 10.1111/j.1752-1688.2006.tb05615.x; Reeves GH, 2003, CAN J FOREST RES, V33, P1363, DOI 10.1139/X03-095; Reeves GH, 1995, AM FISH S S, V17, P334; Reeves GH, 2006, NW FOREST PLAN 1 10, P181; Reid G. McG, 2013, International Zoo Yearbook, V47, P6, DOI 10.1111/izy.12020; Ricciardi A, 1999, CONSERV BIOL, V13, P1220, DOI 10.1046/j.1523-1739.1999.98380.x; Rieman BE, 2015, FISHERIES, V40, P124, DOI 10.1080/03632415.2015.1007205; Ringold PL, 2013, FRONT ECOL ENVIRON, V11, P98, DOI 10.1890/110156; Root TL, 2003, NATURE, V421, P57, DOI 10.1038/nature01333; Roper BB, 2001, NORTHWEST SCI, V75, P168; Rosenberger AE, 2015, FRESHW SCI, V34, P1571, DOI 10.1086/683338; Rundio D. E., 2003, COPEIA, V2003, P392; Sanderson BL, 2009, BIOSCIENCE, V59, P245, DOI 10.1525/bio.2009.59.3.9; Schindler DE, 2010, NATURE, V465, P609, DOI 10.1038/nature09060; SCHLOSSER IJ, 1991, BIOSCIENCE, V41, P704, DOI 10.2307/1311765; Sedell J.R., 1982, P210; Semlitsch RD, 2014, CAN J ZOOL, V92, P997, DOI 10.1139/cjz-2014-0141; Shoo LP, 2011, J APPL ECOL, V48, P487, DOI 10.1111/j.1365-2664.2010.01942.x; Snyder EB, 2002, CAN J FISH AQUAT SCI, V59, P564, DOI 10.1139/F02-021; Soto D, 2006, REV CHIL HIST NAT, V79, P97, DOI 10.4067/S0716-078X2006000100009; Spencer CN, 2003, FOREST ECOL MANAG, V178, P141, DOI 10.1016/S0378-1127(03)00058-6; Stednick J., 2008, HYDROLOGICAL BIOL RE; Steel EA, 2012, CAN J FISH AQUAT SCI, V69, P457, DOI 10.1139/F2011-161; Strayer DL, 2010, J N AM BENTHOL SOC, V29, P344, DOI 10.1899/08-171.1; Stuart SN, 2004, SCIENCE, V306, P1783, DOI 10.1126/science.1103538; Thackeray SJ, 2010, GLOBAL CHANGE BIOL, V16, P3304, DOI 10.1111/j.1365-2486.2010.02165.x; Townsend CR, 1996, BIOL CONSERV, V78, P13, DOI 10.1016/0006-3207(96)00014-6; Trombulak SC, 2000, CONSERV BIOL, V14, P18, DOI 10.1046/j.1523-1739.2000.99084.x; US GAO [United States General Accounting Office], 2001, US GEN ACC OFF PUBL; USDA [US Department of Agriculture Forest Service], 2008, STREAM SIM EC APPR P; USDA USDI [US Department of Agriculture and US Department of the Interior], 1994, REC DEC MAN HAB LAT; Van Kirk RW, 2001, WEST N AM NATURALIST, V61, P359; VANNOTE RL, 1980, CAN J FISH AQUAT SCI, V37, P130, DOI 10.1139/f80-017; Vorosmarty CJ, 2010, NATURE, V467, P555, DOI 10.1038/nature09440; Wake DB, 2008, P NATL ACAD SCI USA, V105, P11466, DOI 10.1073/pnas.0801921105; Walker B., 2006, RESILIENCE THINKING; Wallace KJ, 2007, BIOL CONSERV, V139, P235, DOI 10.1016/j.biocon.2007.07.015; Waples R., 2009, ECOLOGY SOC, V14, P1; Waples R.S., 1991, MAR FISH REV, V53, P11; Ward J. V., 1983, DYNAMICS LOTIC ECOSY, P29, DOI DOI 10.1007/S10661-006-9218-5; WARREN CE, 1979, BEHAV SCI, V24, P296, DOI 10.1002/bs.3830240503; Weber M.A., 2015, FRONT MAR SCI, V2, P1, DOI [10.3389/fmars.2015.00074, DOI 10.3389/FMARS.2015.00074]; Weber MA, 2015, LANDSCAPE URBAN PLAN, V133, P37, DOI 10.1016/j.landurbplan.2014.09.006; Welsh Hartwell H. Jr, 2011, Diversity, V3, P503; Wenger SJ, 2010, WATER RESOUR RES, V46, DOI 10.1029/2009WR008839; Westerling AL, 2006, SCIENCE, V313, P940, DOI 10.1126/science.1128834; Wheeler CA, 2015, RIVER RES APPL, V31, P1276, DOI 10.1002/rra.2820; Whiles MR, 2013, ECOSYSTEMS, V16, P146, DOI 10.1007/s10021-012-9602-7; Wiens JA, 2002, FRESHWATER BIOL, V47, P501, DOI 10.1046/j.1365-2427.2002.00887.x; Wipfli MS, 2002, FRESHWATER BIOL, V47, P957, DOI 10.1046/j.1365-2427.2002.00826.x; Wofford JEB, 2005, ECOL APPL, V15, P628, DOI 10.1890/04-0095; Wondzell SM, 2003, FOREST ECOL MANAG, V178, P75, DOI 10.1016/S0378-1127(03)00054-9; Wondzell SM, 1996, J N AM BENTHOL SOC, V15, P20, DOI 10.2307/1467430 215 3 3 7 36 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0960-3115 1572-9710 BIODIVERS CONSERV Biodivers. Conserv. DEC 2017 26 13 SI 3125 3155 10.1007/s10531-016-1148-0 31 Biodiversity Conservation; Ecology; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology FM7SP WOS:000415281200006 2018-11-22 J Barnagaud, JY; Gauzere, P; Zuckerberg, B; Prince, K; Svenning, JC Barnagaud, Jean-Yves; Gauzere, Pierre; Zuckerberg, Benjamin; Prince, Karine; Svenning, Jens-Christian Temporal changes in bird functional diversity across the United States OECOLOGIA English Article Breeding bird survey; Climate; Community dynamics; Ecological traits; NDVI; Non-linear trends LAND-USE INTENSIFICATION; BIODIVERSITY CHANGE; PHYLOGENETIC DIVERSITY; BIOTIC HOMOGENIZATION; CONTRASTING CHANGES; SPECIES RICHNESS; MASS EXTINCTION; NORTH-AMERICA; COMMUNITIES; TRAITS Global changes are modifying the structure of species assemblages, but the generality of resulting diversity patterns and of their drivers is poorly understood. Any such changes can be detected and explained by comparing temporal trends in taxonomic and functional diversity over broad spatial extents. In this study, we addressed three complementary questions: How did bird taxonomic and functional diversity change over the past 40 years in the conterminous United States? Are these trends non-linear? Can temporal variations in functional diversity be explained by broad-scale changes in climate and vegetation productivity? We quantified changes in taxonomic and functional diversity for 807 bird assemblages over the past four decades (1970-2011) considering a suite of 16 ecological traits for 435 species. We found increases in local bird species richness and taxonomic equitability that plateaued in the early 2000's while total abundance declined over the whole period. Functional richness, the total range of traits in an assemblage, increased due to the rising prevalence of species with atypical life-history strategies and under-represented habitat or trophic preferences. However, these species did not trigger major changes in the functional composition of bird assemblages. Inter-annual variations in climate and primary productivity explained the richness of bird life-history traits in local assemblages, suggesting that these traits are influenced by broad-scale environmental factors, while others respond more to more local drivers. Our results highlight that a comparative analysis of the multiple facets of functional diversity can raise novel insights on processes underlying temporal trends in biodiversity. [Barnagaud, Jean-Yves] PSL Res Univ, Biogeog & Ecol Vertebres, CNRS, EPHE,UM,SupAgro,IND,INRA,CEFE,UMR 5175, 1919 Route Mende, Montpellier, France; [Barnagaud, Jean-Yves; Svenning, Jens-Christian] Aarhus Univ, Sect Ecoinformat & Biodivers, Ny Munkegade 114, DK-8000 Aarhus, Denmark; [Gauzere, Pierre] Univ Montpellier, Inst Sci Evolut, CNRS, IRD, Pl Eugene Bataillon, F-34095 Montpellier 05, France; [Zuckerberg, Benjamin; Prince, Karine] Univ Wisconsin Madison, Dept Forest & Wildlife Ecol, 1630 Linden Dr, Madison, WI 53706 USA; [Prince, Karine] Univ Paris Sorbonne, CNRS MNHN UPMC, UMR 7204, CESCO, 43 Rue Buffon, F-75005 Paris, France Barnagaud, JY (reprint author), PSL Res Univ, Biogeog & Ecol Vertebres, CNRS, EPHE,UM,SupAgro,IND,INRA,CEFE,UMR 5175, 1919 Route Mende, Montpellier, France.; Barnagaud, JY (reprint author), Aarhus Univ, Sect Ecoinformat & Biodivers, Ny Munkegade 114, DK-8000 Aarhus, Denmark. jean-yves.barnagaud@cefe.cnrs.fr Prince, Karine/T-4491-2017 Prince, Karine/0000-0001-7739-7438 Aarhus University Research Foundation under the AU Ideas program; VILLUM FONDEN This study is a contribution by the Center for Informatics Research on Complexity in Ecology (CIRCE), funded by the Aarhus University Research Foundation under the AU Ideas program. JCS additionally considers this work a contribution to his VILLUM Investigator project "Biodiversity Dynamics in a Changing World" (BIOCHANGE) funded by VILLUM FONDEN. We wish to thank the Patuxent Wildlife Research Center for granting public access to the breeding bird survey data. We also thank Vincent Devictor and Olivier Gimenez for statistical advice and discussions on a previous version of the manuscript, and the Associate Editor and referees for constructive comments that improved substantially our work. Barnosky AD, 2011, NATURE, V471, P51, DOI 10.1038/nature09678; Bas Y, 2008, BIODIVERS CONSERV, V17, P3403, DOI 10.1007/s10531-008-9420-6; Blenckner T, 2002, GLOBAL CHANGE BIOL, V8, P203, DOI 10.1046/j.1365-2486.2002.00469.x; Cadotte MW, 2011, J APPL ECOL, V48, P1067, DOI 10.1111/j.1365-2664.2011.02056.x; Cadotte MW, 2011, J APPL ECOL, V48, P1079, DOI 10.1111/j.1365-2664.2011.02048.x; Calba S, 2014, GLOBAL ECOL BIOGEOGR, V23, P669, DOI 10.1111/geb.12148; Cardinale BJ, 2012, NATURE, V486, P59, DOI 10.1038/nature11148; Carmona CP, 2016, TRENDS ECOL EVOL, V31, P382, DOI 10.1016/j.tree.2016.02.003; Chase JM, 2010, SCIENCE, V328, P1388, DOI 10.1126/science.1187820; Cisneros LM, 2015, DIVERS DISTRIB, V21, P523, DOI 10.1111/ddi.12277; Currie DJ, 2017, GLOBAL ECOL BIOGEOGR, V26, P333, DOI 10.1111/geb.12538; DAVIES RB, 1987, BIOMETRIKA, V74, P33, DOI 10.2307/2336019; Devictor V, 2008, GLOBAL ECOL BIOGEOGR, V17, P252, DOI 10.1111/j.1466-8238.2007.00364.x; Devictor V, 2010, ECOL LETT, V13, P1030, DOI 10.1111/j.1461-0248.2010.01493.x; Dorazio R. M., 2008, HIERARCHICAL MODELIN; Dornelas M, 2014, SCIENCE, V344, P296, DOI 10.1126/science.1248484; Dornelas M, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.1931; Evans KL, 2006, GLOBAL ECOL BIOGEOGR, V15, P372, DOI 10.1111/j.1466-822x.2006.00228.x; Flynn DFB, 2009, ECOL LETT, V12, P22, DOI 10.1111/j.1461-0248.2008.01255.x; Gonzalez A, 2016, ECOLOGY, V97, P1949, DOI 10.1890/15-1759.1; Hijmans R. J., 2017, PACKAGE DISMO; Hooper DU, 2012, NATURE, V486, P105, DOI 10.1038/nature11118; Jarzyna MA, 2017, GLOBAL CHANGE BIOL, V23, P2999, DOI 10.1111/gcb.13571; Jarzyna MA, 2016, TRENDS ECOL EVOL, V31, P527, DOI 10.1016/j.tree.2016.04.002; Jiguet F, 2007, GLOBAL CHANGE BIOL, V13, P1672, DOI 10.1111/j.1365-2486.2007.01386.x; Jiguet F, 2011, CURR ZOOL, V57, P406, DOI 10.1093/czoolo/57.3.406; Jones J, 2003, ECOLOGY, V84, P3024, DOI 10.1890/02-0639; Keil P, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms9837; Kendall WL, 1996, AUK, V113, P823, DOI 10.2307/4088860; Korhonen JJ, 2010, ECOLOGY, V91, P508, DOI 10.1890/09-0392.1; La Sorte FA, 2005, GLOBAL ECOL BIOGEOGR, V14, P367, DOI 10.1111/j.1466-822x.2005.00160.x; Laliberte E, 2010, ECOLOGY, V91, P299, DOI 10.1890/08-2244.1; Laliberte E, 2010, ECOL LETT, V13, P76, DOI 10.1111/j.1461-0248.2009.01403.x; Lamanna C, 2014, P NATL ACAD SCI USA, V111, P13745, DOI 10.1073/pnas.1317722111; Lavorel S, 2002, FUNCT ECOL, V16, P545, DOI 10.1046/j.1365-2435.2002.00664.x; Legendre P, 2012, NUMERICAL ECOLOGY, V24; Magurran AE, 2010, PHILOS T R SOC B, V365, P3593, DOI 10.1098/rstb.2010.0296; Magurran AE, 2010, TRENDS ECOL EVOL, V25, P574, DOI 10.1016/j.tree.2010.06.016; Maire E, 2015, GLOBAL ECOL BIOGEOGR, V24, P728, DOI 10.1111/geb.12299; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; McGill BJ, 2015, TRENDS ECOL EVOL, V30, P104, DOI 10.1016/j.tree.2014.11.006; McKinney ML, 1999, TRENDS ECOL EVOL, V14, P450, DOI 10.1016/S0169-5347(99)01679-1; Mittelbach GG, 2015, TRENDS ECOL EVOL, V30, P241, DOI 10.1016/j.tree.2015.02.008; Monnet AC, 2014, GLOBAL ECOL BIOGEOGR, V23, P780, DOI 10.1111/geb.12179; Muggeo V.M.R., 2008, R NEWS, V8, P20, DOI DOI 10.1159/000323281; PearceHiggins JW, 2014, ECOL BIODIVERS CONS, P1, DOI 10.1017/CBO9781139047791; Pereira HM, 2006, TRENDS ECOL EVOL, V21, P123, DOI 10.1016/j.tree.2005.10.015; Petchey OL, 2006, ECOL LETT, V9, P741, DOI 10.1111/j.1461-0248.2006.00924.x; Prince K, 2015, GLOBAL CHANGE BIOL, V21, P572, DOI 10.1111/gcb.12740; Purschke O, 2013, J ECOL, V101, P857, DOI 10.1111/1365-2745.12098; Sauer J.R., 2011, N AM BREEDING BIRD S; Schipper AM, 2016, GLOBAL CHANGE BIOL, V22, P3948, DOI 10.1111/gcb.13292; Schleuning M, 2015, ECOGRAPHY, V38, P380, DOI 10.1111/ecog.00983; Sibley DA, 2014, SIBLEY GUIDE BIRDS; Sohl TL, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0112251; Soininen J, 2010, BIOSCIENCE, V60, P433, DOI 10.1525/bio.2010.60.6.7; Stegen JC, 2013, GLOBAL ECOL BIOGEOGR, V22, P202, DOI 10.1111/j.1466-8238.2012.00780.x; Vellend M, 2013, P NATL ACAD SCI USA, V110, P19456, DOI 10.1073/pnas.1312779110; Villeger S, 2008, ECOLOGY, V89, P2290, DOI 10.1890/07-1206.1; Violle C, 2007, OIKOS, V116, P882, DOI 10.1111/j.2007.0030-1299.15559.x; White EP, 2010, PHILOS T R SOC B, V365, P3633, DOI 10.1098/rstb.2010.0280; Wood SN, 2006, GEN ADDITIVE MODELS; Zuckerberg B, 2009, GLOBAL CHANGE BIOL, V15, P1866, DOI 10.1111/j.1365-2486.2009.01878.x; Zuur A., 2011, MIXED EFFECTS MODELS 64 1 1 5 42 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia DEC 2017 185 4 737 748 10.1007/s00442-017-3967-4 12 Ecology Environmental Sciences & Ecology FM4VW WOS:000415027100018 29058124 2018-11-22 J Muhling, BA; Lamkin, JT; Alemany, F; Garcia, A; Farley, J; Ingram, GW; Berastegui, DA; Reglero, P; Carrion, RL Muhling, Barbara A.; Lamkin, John T.; Alemany, Francisco; Garcia, Alberto; Farley, Jessica; Ingram, G. Walter, Jr.; Alvarez Berastegui, Diego; Reglero, Patricia; Laiz Carrion, Raul Reproduction and larval biology in tunas, and the importance of restricted area spawning grounds REVIEWS IN FISH BIOLOGY AND FISHERIES English Article Tuna; Fish larvae; Larval ecology; Life history strategy ATLANTIC BLUEFIN TUNA; GULF-OF-MEXICO; THUNNUS-THYNNUS LARVAE; NORTHWESTERN PACIFIC-OCEAN; WESTERN MEDITERRANEAN SEA; DEEP-WATER-HORIZON; LABORATORY-REARED LARVAL; AUXIS-ROCHEI LARVAE; SOUTHERN BLUEFIN; YELLOWFIN TUNA Tunas show a wide variety of life history strategies, spatial distributions and migratory behaviors, yet they share a common trait of spawning only in tropical and sub-tropical regions. The warm-water tuna species generally show significant overlap between spawning and feeding grounds, and longer spawning seasons of several months to near year-round. In contrast, the cool-water bluefin tunas migrate long distances between feeding and spawning grounds, and may spawn over periods as short as 2 months. Here, we examine the spatial distributions of tuna larvae in the world's oceans, and examine interspecific differences in the light of adult behaviors and larval ecology. We discuss the links between larval tuna and their oceanographic environments and relate these to current knowledge of larval growth, feeding and trophodynamics, with a focus on the better-studied bluefin tunas. We show that larval tunas have moderate to fast growth rates and selective feeding habits, and thus appear to be adapted for survival in warm, oligotrophic seas. We also examine the challenges of sustainably managing species which migrate across multiple management boundaries to reach spatio-temporally restricted spawning grounds and discuss the previous and future anthropogenic impacts on tuna spawning areas. [Muhling, Barbara A.] Princeton Univ, Program Atmospher & Ocean Sci, Forrestal Campus,Sayre Hall, Princeton, NJ 08544 USA; [Muhling, Barbara A.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA; [Lamkin, John T.] NOAA, Southeast Fisheries Sci Ctr, Natl Marine Fisheries Serv, Miami, FL USA; [Alemany, Francisco; Reglero, Patricia] COB, IEO, Palma De Mallorca, Balearic Island, Spain; [Garcia, Alberto; Laiz Carrion, Raul] Inst Espanol Oceanog, Ctr Oceanog Malaga, Malaga, Spain; [Farley, Jessica] Commonwealth Sci & Ind Res Org CSIRO Oceans & Atm, Hobart, Tas, Australia; [Ingram, G. Walter, Jr.] NOAA, Southeast Fisheries Sci Ctr, Natl Marine Fisheries Serv, Pascagoula, MS USA; [Alvarez Berastegui, Diego] Balearic Isl Coastal Observing & Forecasting Syst, Palma De Mallorca, Balearic Island, Spain Muhling, BA (reprint author), Princeton Univ, Program Atmospher & Ocean Sci, Forrestal Campus,Sayre Hall, Princeton, NJ 08544 USA. Barbara.Muhling@noaa.gov Reglero, Patricia/L-9031-2014 CSIRO Oceans and Atmosphere; NASA [NNX11AP76GS07, NNX08AL06G]; European Union [678193]; Balearic Island Observing and Forecasting System; Spanish Institute of Oceanography J. Roberts is thanked for the development of the MGET tool for processing satellite imagery. R. Brill, A. Hobday and L. Dagorn are thanked for conceiving and editing this collection of papers. The manuscript was significantly improved by feedback from D. Tommasi and F. Gonzalez Taboada, and two anonymous reviewers. This work was partially supported by funding from CSIRO Oceans and Atmosphere, NASA Grants NNX11AP76GS07 and NNX08AL06G, and the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 678193. The BLUEFIN TUNA Project driven by the Balearic Island Observing and Forecasting System (www.socib.es) and the Spanish Institute of Oceanography (www.ieo.es) financed DAB and part of the research developed in the Western Mediterranean. Akyuz E, 1957, DOCUMENT TECHNIQUES, V4, P93; Alemany F, 2006, J PLANKTON RES, V28, P473, DOI 10.1093/plankt/fbi123; Alemany F, 2010, PROG OCEANOGR, V86, P21, DOI 10.1016/j.pocean.2010.04.014; Alvarez-Berastegui D, 2016, ICES J MAR SCI, V73, P1851, DOI 10.1093/icesjms/fsw041; Alvarez-Berastegui D, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0109338; Aranda G, 2013, J SEA RES, V76, P154, DOI 10.1016/j.seares.2012.08.005; Arocha F, 2001, COL VOL SCI PAP ICCA, V52, P167; Ashida H, 2015, FISHERIES SCI, V81, P861, DOI 10.1007/s12562-015-0909-0; AZOV Y, 1991, MAR POLLUT BULL, V23, P225, DOI 10.1016/0025-326X(91)90679-M; Bailey KM, 1989, ADV MAR BIOL, V83, P287; Bakun A, 2006, PROG OCEANOGR, V68, P271, DOI 10.1016/j.pocean.2006.02.004; Bakun A, 2003, FISH OCEANOGR, V12, P458, DOI 10.1046/j.1365-2419.2003.00258.x; Bakun A, 2006, SCI MAR, V70, P105, DOI 10.3989/scimar.2006.70s2105; Bakun A, 2013, FISH FISH, V14, P424, DOI 10.1111/faf.12002; Balbin R, 2014, J MARINE SYST, V138, P70, DOI 10.1016/j.jmarsys.2013.07.004; Bard F.X., 1994, International Commission for the Conservation of Atlantic Tunas Collective Volume of Scientific Papers, V42, P204; Basson M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0116245; Bayliff W. H., 1994, FAO FISHERIES TECHNI, V336, P244; Bayliff WH, 1989, ANN REPORT INTERAMER; Bestley S, 2010, ECOLOGY, V91, P2373, DOI 10.1890/08-2019.1; Blank JM, 2007, J EXP BIOL, V210, P4254, DOI 10.1242/jeb.005835; Blank JM, 2004, J EXP BIOL, V207, P881, DOI 10.1242/jeb.00820; Block BA, 2005, NATURE, V434, P1121, DOI 10.1038/nature03463; Boustany AM, 2008, MAR BIOL, V156, P13, DOI 10.1007/s00227-008-1058-0; Boustany AM, 2010, PROG OCEANOGR, V86, P94, DOI 10.1016/j.pocean.2010.04.015; Bremer JRA, 1998, MAR BIOL, V132, P547, DOI 10.1007/s002270050420; Bremer JRA, 1997, J FISH BIOL, V50, P540, DOI 10.1111/j.1095-8649.1997.tb01948.x; Brothers EB, 1983, NOAA TECH REP NMFS, V8, P49; BUCKLEY LJ, 1984, MAR BIOL, V80, P291, DOI 10.1007/BF00392824; Butterworth DS, 2008, ICES J MAR SCI, V65, P1717, DOI 10.1093/icesjms/fsn178; Camilli R, 2010, SCIENCE, V330, P201, DOI 10.1126/science.1195223; Carlsson J, 2004, MOL ECOL, V13, P3345, DOI 10.1111/j.1365-294X.2004.02336.x; Catalan IA, 2011, J FISH BIOL, V78, P1545, DOI 10.1111/j.1095-8649.2011.02960.x; Catalan IA, 2007, SCI MAR, V71, P347, DOI 10.3989/scimar.2007.71n2347; Caton A., 1991, J SPECIES REP, P181; Cavallaro G, 1996, COLLECTIVE VOLUMES O, V46, P222; Cetti F, 1777, STORIA NATURALE SARD, P1; CHAMBERS RC, 1987, CAN J FISH AQUAT SCI, V44, P1936, DOI 10.1139/f87-238; Chen KS, 2006, FISHERIES SCI, V72, P985, DOI 10.1111/j.1444-2906.2006.01247.x; Chow S, 2006, J FISH BIOL, V68, P24, DOI 10.1111/j.1095-8649.2005.00945.x; Chust G, 2014, GLOBAL CHANGE BIOL, V20, P2124, DOI 10.1111/gcb.12562; Ciannelli L, 2015, ICES J MAR SCI, V72, P285, DOI 10.1093/icesjms/fsu145; Collette BB, 1983, FAO FISH SYNOPOSIS, V125, P137; Crone TJ, 2010, SCIENCE, V330, P634, DOI 10.1126/science.1195840; CURY P, 1989, CAN J FISH AQUAT SCI, V46, P670, DOI 10.1139/f89-086; D'Amico FC, 1816, OSSERVAZIONI PRACTIC, P215; DAVIS TLO, 1990, MAR ECOL PROG SER, V59, P63, DOI 10.3354/meps059063; DAVIS TLO, 1990, J PLANKTON RES, V12, P1295, DOI 10.1093/plankt/12.6.1295; Davis TLO, 2001, FISH B-NOAA, V99, P381; de Metrio G., 2005, International Commission for the Conservation of Atlantic Tunas Collective Volume of Scientific Papers, V58, P1337; Desse J, 1994, FOUILLES RECENTES KH, P335; Di Natale A., 2013, COLLECT VOL SCI PAP, V69, P857; Dicenta A., 1979, Rapports et Proces-Verbaux des Reunions Commission Internationale pour l'Exploration Scientifique de la Mer Mediterranee Monaco, V25-26, P191; Dicenta A., 1975, B I ESP OCEANOGR, V204, P27; Dicenta A., 1977, B I ESP OCEANOGR, V234, P109; Dicenta A, 1978, COLLECTIVE VOLUME SC, V7, P389; Dickhut RM, 2009, ENVIRON SCI TECHNOL, V43, P8522, DOI 10.1021/es901810e; Dickson KA, 2000, J EXP BIOL, V203, P3077; Dieuzeide R., 1951, Bull Sta Aquic Peche Castiglione (NS), VNo. 3, P85; Domingues R, 2016, FISH OCEANOGR, V25, P320, DOI 10.1111/fog.12152; DOTY M. S., 1956, JOUR CONSEIL PERM INTERNATL EXPLOR MER, V22, P33; Doumenge F, 1998, COLLECT VOL SCI PAP, V50, P783; Druon JN, 2016, PROG OCEANOGR, V142, P30, DOI 10.1016/j.pocean.2016.01.002; Duclerc J., 1973, Revue Trav Inst Peches Marit, V37, P163; Ehrembaum E, 1924, REPORTON DANISH OCEA, V2, P1; Estrada M, 1996, SCI MAR, V60, P55; Evans K, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0034550; FAO, 2014, STAT WORLD FISH AQ 2; Farley JH, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0125744; Farley JH, 1998, FISH B-NOAA, V96, P223; Farrington Jr SK, 1939, ATLANTIC GAME FISHIN, P1; FOLKVORD A, 1986, FISH B-NOAA, V84, P859; Fowler AM, 2008, FISH B-NOAA, V106, P405; Fromentin JM, 2005, FISH FISH, V6, P281, DOI 10.1111/j.1467-2979.2005.00197.x; Fujioka Ko, 2016, P101; Garcia A, 2013, FISH OCEANOGR, V22, P273, DOI 10.1111/fog.12021; Garcia A., 2003, International Commission for the Conservation of Atlantic Tunas Collective Volume of Scientific Papers, V55, P138; Garcia A, DEEP SEA RE IN PRESS, VII; Garcia A., 2004, COL VOL SCI PAP ICCA, V58, P1420; Garcia A, 2013, COLLECT VOL SCI PAP, V69, P292; Garcia A, 2006, SCI MAR, V70, P67, DOI 10.3989/scimar.2006.70s267; Gaughan DJ, 2001, MAR BIOL, V139, P831; Gaykov V.Z., 2008, International Commission for the Conservation of Atlantic Tunas Collective Volume of Scientific Papers, V62, P1610; Gordoa A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0136733; Graham JB, 2004, J EXP BIOL, V207, P4015, DOI 10.1242/jcb.01267; Habtes S, 2014, LIMNOL OCEANOGR-METH, V12, P86, DOI 10.4319/lom.2014.12.86; Hampton J, 1999, 12 M STAND COMM TUN; Hare JA, 1997, ECOLOGY, V78, P2415; Hazen EL, 2013, NAT CLIM CHANGE, V3, P234, DOI 10.1038/NCLIMATE1686; Heithaus MR, 2008, TRENDS ECOL EVOL, V23, P202, DOI 10.1016/j.tree.2008.01.003; Hobday Alistair J., 2016, P189; Hobday AJ, 2010, PROG OCEANOGR, V86, P291, DOI 10.1016/j.pocean.2010.04.023; Houde E.D., 1987, American Fisheries Society Symposium, P17; HOUDE ED, 1989, J FISH BIOL, V35, P29, DOI 10.1111/j.1095-8649.1989.tb03043.x; ICCAT, 2013, REP 2013 ATL BLUEF T; ICCAT, 1991, COL VOL SCI PAP, V36, P1; Incardona JP, 2014, P NATL ACAD SCI USA, V111, pE1510, DOI 10.1073/pnas.1320950111; Incardona JP, 2004, TOXICOL APPL PHARM, V196, P191, DOI 10.1016/j.taap.2003.11.026; Ingram GW, 2010, AQUAT LIVING RESOUR, V23, P35, DOI 10.1051/alr/2009053; Ingram GW, 2008, SCRS2008086 ICCAT; Ingram GW, 2015, SCRS2015035 ICCAT; Ingram Jr GW, 2013, ICCAT COLLECT VOL SC, V69, P1057; Itoh T, 2000, FISHERIES SCI, V66, P834, DOI 10.1046/j.1444-2906.2000.00135.x; Itoh T, 2006, FISHERIES SCI, V72, P53, DOI 10.1111/j.1444-2906.2006.01116.x; Itoh T, 1996, FISHERIES SCI, V62, P892, DOI 10.2331/fishsci.62.892; Itoh T, 2002, 7 M EXT SCI COMM COM; JENKINS GP, 1991, CAN J FISH AQUAT SCI, V48, P1358, DOI 10.1139/f91-162; JENKINS GP, 1990, MAR ECOL PROG SER, V63, P93, DOI 10.3354/meps063093; Juarez M, 1974, DISTRIBUCION FORMAS, P1; Kaji T, 1996, MAR FRESHWATER RES, V47, P261, DOI 10.1071/MF9960261; Kaji T, 1999, FISHERIES SCI, V65, P700, DOI 10.2331/fishsci.65.700; Karakulak S, 2004, J APPL ICHTHYOL, V20, P318, DOI 10.1111/j.1439-0426.2004.00561.x; Kawamura G, 2003, BIG FISH BANG, P123; Kelley S, 1993, SEAMAP 1984 AND 1985, V317; Kimura S, 2010, PROG OCEANOGR, V86, P39, DOI 10.1016/j.pocean.2010.04.018; Kitagawa T, 2010, J EXP MAR BIOL ECOL, V393, P23, DOI 10.1016/j.jembe.2010.06.016; Koched W, 2013, MEDITERR MAR SCI, V14, P5, DOI 10.12681/mms.314; Koched W, 2016, SCI MAR, V80, P187, DOI 10.3989/scimar.04332.27A; Laiz-Carrion R, 2010, RAPP COMM INT MER ME, V39, P563; Laiz-Carrion R, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133406; Laiz-Carrion R, 2013, MAR ECOL PROG SER, V475, P203, DOI 10.3354/meps10108; Lamkin John T., 2015, International Commission for the Conservation of Atlantic Tunas Collective Volume of Scientific Papers, V71, P1736; LANG KL, 1994, ENVIRON BIOL FISH, V39, P259, DOI 10.1007/BF00005128; LAURS RM, 1985, CAN J FISH AQUAT SCI, V42, P1552, DOI 10.1139/f85-194; Lehodey P, 2003, FISH OCEANOGR, V12, P483, DOI 10.1046/j.1365-2419.2003.00244.x; Lehodey P, 2010, PROG OCEANOGR, V86, P302, DOI 10.1016/j.pocean.2010.04.021; Lehodey P, 2011, VULNERABILITY TROPIC; Lehodey P, 2015, DEEP-SEA RES PT II, V113, P246, DOI 10.1016/j.dsr2.2014.10.028; LEIS JM, 1991, B MAR SCI, V48, P150; Levinson DH, 2004, B AM METEOROL SOC, V85, pS1, DOI 10.1175/BAMS-85-6-Levinson; Limas R Olvera, 1988, CIENC PESQ, V6, P119; Lindo-Atichati D, 2012, MAR ECOL PROG SER, V463, P245, DOI 10.3354/meps09860; Liu Y., 2015, REV FISH BIOL FISHER, V148, P56; Liu YY, 2012, J GEOPHYS RES-OCEANS, V117, DOI 10.1029/2011JC007555; Llopiz Joel K., 2015, International Commission for the Conservation of Atlantic Tunas Collective Volume of Scientific Papers, V71, P1710; Llopiz JK, 2015, DEEP-SEA RES PT II, V113, P113, DOI 10.1016/j.dsr2.2014.05.014; Llopiz JK, 2014, OCEANOGRAPHY, V27, P26, DOI 10.5670/oceanog.2014.84; Llopiz JK, 2010, LIMNOL OCEANOGR, V55, P983, DOI 10.4319/lo.2010.55.3.0983; LO NCH, 1992, CAN J FISH AQUAT SCI, V49, P2515, DOI 10.1139/f92-278; LOPEZJURADO JL, 1995, OCEANOL ACTA, V18, P235; Lutcavage ME, 1999, CAN J FISH AQUAT SCI, V56, P173, DOI 10.1139/cjfas-56-2-173; MacKenzie BR, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0039998; Madigan DJ, 2014, ECOLOGY, V95, P1674, DOI 10.1890/13-1467.1; Malca E, 2017, FISH RES, V190, P24, DOI 10.1016/j.fishres.2017.01.019; MARGULIES D, 1993, MAR BIOL, V115, P317, DOI 10.1007/BF00346350; Margulies D, 2007, FISH B-NOAA, V105, P249; Masuma Shukei, 2006, Bulletin of Fisheries Research Agency, P157; Mather F. J., 1995, NMFSSEFSC370 NOAA; Matsuura Hiroshi, 1997, Journal of Oceanography, V53, P421; MATSUURA Y, 1981, B MAR SCI, V31, P824; May RC, 1974, EARLY LIFE HIST FISH, P3, DOI DOI 10.1007/978-3-642-65852-5_1; MCCONNAUGHEY RA, 1993, FISH B-NOAA, V91, P107; McGowan M. F., 1986, INT COMM CONSERV ATL, V24, P182; MCGOWAN MF, 1989, FISH B-NOAA, V87, P615; Medina A, 2002, J FISH BIOL, V60, P203, DOI 10.1006/jfbi.2001.1835; Meekan MG, 2006, MAR ECOL PROG SER, V317, P237, DOI 10.3354/meps317237; Megalofonou P, 2000, J MAR BIOL ASSOC UK, V80, P753, DOI 10.1017/S0025315400002678; MILLER JM, 1979, B MAR SCI, V29, P19; Miyashita S, 2001, FISH B-NOAA, V99, P601; Miyashita Shigeru, 2000, Suisan Zoshoku, V48, P199; Montolio M, 1977, COLLECT VOL SCI PAP, V6, P337; Morote E, 2008, MAR ECOL PROG SER, V353, P243, DOI 10.3354/meps07206; Mowbray L, 1949, FISHING ATLANTIC OFF, p[1, 199]; Muhling BA, 2012, MAR POLLUT BULL, V64, P679, DOI 10.1016/j.marpolbul.2012.01.034; Muhling BA, 2015, J MARINE SYST, V148, P1, DOI 10.1016/j.jmarsys.2015.01.010; Muhling BA, 2013, MAR ECOL PROG SER, V486, P257, DOI 10.3354/meps10397; Muhling BA, 2011, B MAR SCI, V87, P687, DOI 10.5343/bms.2010.1101; Muhling BA, 2011, ICES J MAR SCI, V68, P1051, DOI 10.1093/icesjms/fsr008; Muhling BA, 2010, FISH OCEANOGR, V19, P526, DOI 10.1111/j.1365-2419.2010.00562.x; MULLERKARGER FE, 1991, J GEOPHYS RES-OCEANS, V96, P12645, DOI 10.1029/91JC00787; Murphy GI, 1990, COLLECT VOL SCI PAP, V32, P262; Nieblas AE, 2014, DEEP-SEA RES PT II, V107, P64, DOI 10.1016/j.dsr2.2013.11.007; Nishida T., 1998, International Commission for the Conservation of Atlantic Tunas Collective Volume of Scientific Papers, V48, P107; NISHIKAWA Y, 1985, FAR SEAS FISH RES LA, V12, P1; Oey LY, 2005, GEOPH MONOG SERIES, V161, P31; Okiyama M., 1974, Bulletin Japan Sea reg Fish Res Lab, VNo. 25, P89; Okochi Y, 2016, FISH RES, V174, P30, DOI 10.1016/j.fishres.2015.08.020; Oray IK, 2005, J APPL ICHTHYOL, V21, P236, DOI 10.1111/j.1439-0426.2005.00658.x; Patterson TA, 2008, FISH OCEANOGR, V17, P352, DOI 10.1111/j.1365-2419.2008.00483.x; Pennington M, 1996, FISH B-NOAA, V94, P498; PENNINGTON M, 1983, BIOMETRICS, V39, P281, DOI 10.2307/2530830; Piccinetti C, 1976, Rapports et Proces-Verbaux Reun Comm Int Explor Scient Mer Mediterr, V23, P55; Piccinetti C., 1996, BIOL MAR MEDIT, V3, P303; Piccinetti C, 1996, SCRS9657 ICCAT; Piccinetti C, 1977, RAPPORT COMMISSION I, V24, P5; Piccinetti C, 1978, TAVOLA ROTONDA PROBL; Pinot JM, 1995, OCEANOL ACTA, V18, P389; Platonenko S., 1997, COL VOL SCI PAP ICCA, V46, P496; POTOSCHI A, 1994, BIOL MARINA MEDITERR, V1, P119; Puncher GN, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0130407; PURCELL JE, 1985, B MAR SCI, V37, P739; PURCELL JE, 1987, MAR BIOL, V94, P157, DOI 10.1007/BF00392927; Radtke R.L., 1983, NOAA TECHNICAL REPOR, P99; Reglero P, 2014, AQUACULTURE, V433, P94, DOI 10.1016/j.aquaculture.2014.05.050; Reglero P, 2014, MAR ECOL PROG SER, V501, P207, DOI 10.3354/meps10666; Reglero P, 2012, MAR ECOL PROG SER, V463, P273, DOI 10.3354/meps09800; Reglero P, 2011, MAR ECOL PROG SER, V433, P205, DOI 10.3354/meps09187; Richards WJ, 1980, COLLECT VOL SCI PAP, V9, P433; Richards WJ, 1977, COLLECT VOL SCI PAP, V6, P335; Richards WJ, 1976, COL VOL SCI PAP ICCA, V5, P267; Richards WJ, 1990, COLL VOL SCI PAP ICC, V32, P240; Richards WJ, 1969, P S OC FISH RES TROP, V25, P289; Richardson DE, 2016, P NATL ACAD SCI USA, V113, P3299, DOI 10.1073/pnas.1525636113; Richardson DE, 2010, PROG OCEANOGR, V86, P8, DOI 10.1016/j.pocean.2010.04.005; Rivas L. R., 1954, Bulletin of Marine Science of the Gulf and Caribbean, V4, P302; Rodriguez-Roda J., 1975, Resultados Exped Cient Buque Oceanogr Cornide Saavedra, V4, P113; Rodriguez-Roda J, 1981, COL ICCAT VOL SCI PA, V15, P278; Rodriguez-Roda J, 1967, BARCELONA, V31, P33; RODRIGUEZRODA J, 1964, BIOLOGIA, V25, P33; Rooker JR, 2008, SCIENCE, V322, P742, DOI 10.1126/science.1161473; Rooker JR, 2007, REV FISH SCI, V15, P265, DOI 10.1080/10641260701484135; Rooker JR, 2014, MAR ECOL PROG SER, V504, P265, DOI 10.3354/meps10781; Rooker JR, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0076080; Roule L, 1917, ANN I OCEANOGRAPHIQU, V7, P1; Sabates A, 2001, SCI MAR, V65, P95, DOI 10.3989/scimar.2001.65n295; Sanchez-Velasco L, 1999, B MAR SCI, V65, P687; SARA R, 1973, Bollettino di Pesca Piscicoltura e Idrobiologia, V28, P217; Sara R, 1964, 7 FAO, P371; Satoh K, 2008, FISH RES, V89, P248, DOI 10.1016/j.fishres.2007.09.003; Satoh K, 2014, BULL FISH RES AGENCY, P81; Satoh K, 2013, MAR BIOL, V160, P691, DOI 10.1007/s00227-012-2124-1; Satoh K, 2010, MAR ECOL PROG SER, V404, P227, DOI 10.3354/meps08431; Schaefer Kurt M., 2001, Fish Physiology, V19, P225; Scharl C, 2004, NATURE, V427, P22; Schiller A, 2013, J GEOPHYS RES-OCEANS, V118, P3387, DOI 10.1002/jgrc.20250; Scordia C, 1938, MEMORIE BIOL MARINA, V5, P1; SCOTT GP, 1993, B MAR SCI, V53, P912; Scott GP, 1994, COLLECT VOL SCI PAP, V42, P211; Secor DH, 1995, CAN SPEC PUBL FISH A, V117, P19; Sella M, 1929, ATT CONV BIOL MAR AP, V1928, P1; Sella M, 1924, LINCEI ROMA 5, V5, P300; SELLA MASSIMO, 1929, MEM R COMITATO TALAS SOGRAFICO ITALIANO, V156, P1; Sen Gupta A, 2014, DEEP SEA RES 2, V113, P58; Servidad-Bacordo R, 2012, WCPFCSC82012SAIP03; Shiao JC, 2010, MAR ECOL PROG SER, V420, P207, DOI 10.3354/meps08867; Shimose Tamaki, 2016, P47; Smith PJ, 2001, NEW ZEAL J MAR FRESH, V35, P843, DOI 10.1080/00288330.2001.9517046; Sponaugle S, 2005, J FISH BIOL, V66, P822, DOI 10.1111/j.1095-8649.2005.00657.x; Stock CA, 2014, BIOGEOSCIENCES, V11, P7125, DOI 10.5194/bg-11-7125-2014; Stott PA, 2004, NATURE, V432, P610, DOI 10.1038/nature03089; Stramma L, 2012, NAT CLIM CHANGE, V2, P33, DOI 10.1038/NCLIMATE1304; Susuki Z, 2013, COLLECT VOL SCI PAP, V69, P229; Takasuka A, 2003, MAR ECOL PROG SER, V252, P223, DOI 10.3354/meps252223; Takasuka A, 2007, CAN J FISH AQUAT SCI, V64, P768, DOI 10.1139/F07-052; Tanabe T, 2001, FISHERIES SCI, V67, P563, DOI 10.1046/j.1444-2906.2001.00291.x; Tanaka M, 1996, SURVIVAL STRATEGIES IN EARLY LIFE STAGES OF MARINE RESOURCES, P125; Tanaka Y, 2008, J EXP MAR BIOL ECOL, V354, P56, DOI 10.1016/j.jembe.2007.10.007; Tanaka Y, 2007, FISHERIES SCI, V73, P378, DOI 10.1111/j.1444-2906.2007.01345.x; Tanaka Y, 2006, MAR ECOL PROG SER, V319, P225, DOI 10.3354/meps319225; Tanaka Yosuke, 2016, P19; Tanaka Y, 2014, AQUAC RES, V45, P537, DOI 10.1111/j.1365-2109.2012.03258.x; Teo SLH, 2007, MAR BIOL, V152, P1105, DOI 10.1007/s00227-007-0758-1; Teo SLH, 2007, MAR BIOL, V151, P1, DOI 10.1007/s00227-006-0447-5; Teo Steven L.H., 2016, P137; Teo SLH, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010756; Tilley JD, 2016, B MAR SCI, V92, P321, DOI 10.5343/bms.2015.1067; Tomczak M., 2003, REGIONAL OCEANOGRAPH; Torisawa S, 2015, BIOL ECOLOGY BLUEFIN, P309; Tseng MC, 2012, MAR FRESHWATER RES, V63, P198, DOI 10.1071/MF11126; Tsuji S., 1997, International Commission for the Conservation of Atlantic Tunas Collective Volume of Scientific Papers, V46, P161; Ueyanagi S., 1957, REPORT NANKAI REGION, V6, P113; UOTANI I, 1990, NIPPON SUISAN GAKK, V56, P713; Uriarte A, 2016, 19 IB S MAR BIOL STU; Uriarte A, 2016, SCI MAR, V80, P447, DOI 10.3989/scimar.04435.25A; Velez-Belchi P, 2001, SCI MAR, V65, P291, DOI 10.3989/scimar.2001.65s1291; VODIANITSKII V. A., 1954, TRUDY VSESOIUSNOVO N I INST [MORSKOVO] RYBNOVO KHOZIAISTVA I OKEANOGRAFII, V28, P240; Walter J, 2015, COLLECT VOL SCI PAP, V71, P1260; Walter JF, 2016, P NATL ACAD SCI USA, V113, pE4259, DOI 10.1073/pnas.1605962113; WEXLER JB, 1993, B IATTC, V20, P400; Wexler JB, 2007, FISH B-NOAA, V105, P1; Wexler Jeanne B., 2001, Inter-American Tropical Tuna Commission Bulletin, V22, P52; Wexler JB, 2011, J EXP MAR BIOL ECOL, V404, P63, DOI 10.1016/j.jembe.2011.05.002; YOUNG JW, 1990, MAR ECOL PROG SER, V61, P17, DOI 10.3354/meps061017 273 6 6 6 45 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0960-3166 1573-5184 REV FISH BIOL FISHER Rev. Fish. Biol. Fish. DEC 2017 27 4 697 732 10.1007/s11160-017-9471-4 36 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology FL7NU WOS:000414435900002 2018-11-22 J Murua, H; Rodriguez-Marin, E; Neilson, JD; Farley, JH; Juan-Jorda, MJ Murua, Hilario; Rodriguez-Marin, Enrique; Neilson, John D.; Farley, Jessica H.; Juan-Jorda, Maria Jose Fast versus slow growing tuna species: age, growth, and implications for population dynamics and fisheries management REVIEWS IN FISH BIOLOGY AND FISHERIES English Article Tuna species; Tuna growth; Fast versus slow growth; Population dynamics; Fishery management SOUTHERN BLUEFIN TUNA; ALBACORE THUNNUS-ALALUNGA; LIFE-HISTORY STRATEGIES; LENGTH-FREQUENCY DATA; TAG-RECAPTURE DATA; EASTERN ATLANTIC-OCEAN; WESTERN INDIAN-OCEAN; DORSAL FIN SPINES; YELLOWFIN TUNA; BIGEYE TUNA Growth models describe the change in length or weight as a function of age. Growth curves in tunas can take different forms from relatively simple von Bertalanffy growth curves (Atlantic bluefin, albacore tunas) to more complex two- or three-stanza growth curves (yellowfin, bigeye, skipjack, southern bluefin tunas). We reviewed the growth of the principal market tunas (albacore, bigeye, skipjack, yellowfin and the three bluefin tuna species) in all oceans to ascertain the different growth rates among tuna species and their implications for population productivity and resilience. Tunas are among the fastest-growing of all fishes. Compared to other species, tunas exhibit rapid growth (i.e., relatively high K) and achieve large body sizes (i.e., high L (a) ). A comparison of their growth functions reveals that tunas have evolved different growth strategies. Tunas attain asymptotic sizes (L (a) ), ranging from 75 cm FL (skipjack tuna) to 400 cm FL (Atlantic bluefin tuna), and reach L (a) at different rates (K), varying from 0.95 year(-1) (skipjack tuna) to 0.05 year(-1) (Atlantic bluefin tuna). Skipjack tuna (followed by yellowfin tuna) is considered the "fastest growing" species of all tunas. Growth characteristics have important implications for population dynamics and fisheries management outcomes since tunas, and other fish species, with faster growth rates generally support higher estimates of Maximum Sustainable Yield (MSY) than species with slower growth rates. [Murua, Hilario; Juan-Jorda, Maria Jose] AZTI, Pasaia, Gipuzkoa, Spain; [Rodriguez-Marin, Enrique] Spanish Inst Oceanog, Santander Oceanog Ctr, POB 240, Santander 39080, Spain; [Neilson, John D.] 10 Moss Dr, Chamcook, NB E5B 3G7, Canada; [Farley, Jessica H.] CSIRO Oceans & Atmosphere, Hobart, Tas, Australia Murua, H (reprint author), AZTI, Pasaia, Gipuzkoa, Spain. hmurua@azti.es Juan-Jorda, Maria Jose/0000-0002-4586-2400 Adam MS, 1996, IPTP COLL, V9, P239; Adam MS, 1999, THESIS; Aikawa H., 1938, Bulletin of the Japanese Society of Scientific Fisheries, V7, P79; Aikawa H., 1937, Bulletin of the Japanese Society of Scientific Fisheries, V6, P13; Aires-da-Silva AM, 2015, FISH RES, V163, P119, DOI 10.1016/j.fishres.2014.04.001; Allen R, 2010, 536 FAO FISH AQ; Amarasiri C, 1987, IPTP COLL VOL WORK D, V2, P1; Andrade HA, 1984, NOTAS TEC FACIMAR, V8, P83; Angilletta MJ, 2004, INTEGR COMP BIOL, V44, P498, DOI 10.1093/icb/44.6.498; [Anonymous], 2008, W SUMATRA TUNA TAGGI; [Anonymous], 2002, DIR AG EST WORKSH CC; [Anonymous], 2014, PACIFIC BLUEFIN TUNA; Antoine L, 1986, P INT COMM CONS ATL, P317; Antoine L, 1982, ICCAT SCI PAP, V17, P195; Arena P., 1980, Memorie di Biologia Marina e di Oceanografia, V10, P71; Arena P., 1980, Memorie di Biologia Marina e di Oceanografia, V10, P119; Atkinson D, 1997, TRENDS ECOL EVOL, V12, P235, DOI 10.1016/S0169-5347(97)01058-6; Atkinson D, 1994, ADV ECOL RES, V25, P158; Bard F., 1984, COLL VOL SCI PAP ICC, V20, P104; Bard F., 1991, ICCAT SCI PAP, V36, P182; Bard F.X., 1986, P ICCAT INT SKIPJ YR, V1, P301; Bard FX, 1980, COL SCI PAP ICCAT, V9, P365; BATTS B S, 1972, Chesapeake Science, V13, P193, DOI 10.2307/1351063; Bayliff W.H., 1991, Inter-American Tropical Tuna Commission Bulletin, V20, P1; Bayliff W. H., 1988, B INTERAMERICAN TROP, V19, P311; Bennetti DD, 2016, ADV TUNA AQUACULTURE; Berkeley SA, 2004, FISHERIES, V29, P23, DOI 10.1577/1548-8446(2004)29[23:FSVPOA]2.0.CO;2; BHATTACHARYA CG, 1967, BIOMETRICS, V23, P115, DOI 10.2307/2528285; Bigelow H. B., 1954, Fishery Bulletin United States, V53, P1; Bigelow K.A., 1993, 13 N PAC ALB WORKSH; Bigelow KA, 1995, 14 N PAC ALB WORKSH; Birkeland C, 2005, TRENDS ECOL EVOL, V20, P356, DOI 10.1016/j.tree.2005.03.015; Boyce DG, 2008, MAR ECOL PROG SER, V355, P267, DOI 10.3354/meps07237; Brill Richard W., 2001, Fish Physiology, V19, P79; Brill RW, 1996, COMP BIOCHEM PHYS A, V113, P3, DOI 10.1016/0300-9629(95)02064-0; BROCK VERNON E., 1954, PACIFIC SCI, V8, P94; Brothers EB, 1983, NOAA TECH REP NMFS, V8, P49; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Brunel T, 2013, ICES J MAR SCI, V70, P270, DOI 10.1093/icesjms/fss184; Brunel T, 2010, ICES J MAR SCI, V67, P1921, DOI 10.1093/icesjms/fsq032; Burgess MG, 2013, P NATL ACAD SCI USA, V110, P15943, DOI 10.1073/pnas.1314472110; Busawon Dheeraj S., 2015, International Commission for the Conservation of Atlantic Tunas Collective Volume of Scientific Papers, V71, P960; BUSHNELL PG, 1991, PHYSIOL ZOOL, V64, P787, DOI 10.1086/physzool.64.3.30158207; Butler MJA, 1977, COL VOL SCI PAP ICCA, V6, P318; CAMPANA SE, 1990, CAN J FISH AQUAT SCI, V47, P163, DOI 10.1139/f90-017; Campana SE, 2001, J FISH BIOL, V59, P197, DOI 10.1006/jfbi.2001.1668; Campana SE, 2001, CAN J FISH AQUAT SCI, V58, P30, DOI 10.1139/f00-177; CAMPANA SE, 1985, CAN J FISH AQUAT SCI, V42, P1014, DOI 10.1139/f85-127; Capisano C, 1991, COL VOL SCI PAP ICCA, V36, P182; Cardinale M, 2000, CAN J FISH AQUAT SCI, V57, P2402, DOI 10.1139/cjfas-57-12-2402; CAREY FG, 1966, P NATL ACAD SCI USA, V56, P1464, DOI 10.1073/pnas.56.5.1464; Carlander K.D., 1987, P3; Casselman J.M., 1987, P209; Cayre P, 1986, P ICCAT C INT SKIPJ, P309; Cayre P, 1984, COL VOL SCI PAP ICCA, V20, P180; Cayre P, 1979, COLL VOL SCI PAP, V8, P196; CCSBT, 2011, 16 M SCI COMM COMM C; Chang Shui-Kai, 1993, Journal of the Fisheries Society of Taiwan, V20, P1; CHANG WYB, 1982, CAN J FISH AQUAT SCI, V39, P1208, DOI 10.1139/f82-158; Charnov Eric L., 1993, P1; Chen KS, 2012, J FISH BIOL, V80, P2328, DOI 10.1111/j.1095-8649.2012.03292.x; Cheng Z, 2012, 4 SESS WORK PART TEM; Chi K. S., 1973, Acta oceanogr taiwan, VNo. 3, P199; Chur V.N., 1983, J ICHTHYOL, V23, P53; Clear NP, 2000, FISH B-NOAA, V98, P25; Clear NP, 2002, DIR AG EST WORKSH CC; Collette BB, 2011, SCIENCE, V333, P291, DOI 10.1126/science.1208730; Collette BB, 1983, FAO FISHERIES SYNOP, V2; Compean-Jimenez G., 1983, NOAA TECH REP NMFS, V8, P77; Cort J.L., 1991, International Commission for the Conservation of Atlantic Tunas Collective Volume of Scientific Papers, V35, P213; Cort JL, 2014, REV FISH SCI AQUAC, V22, P239, DOI 10.1080/23308249.2014.931173; Costello C, 2012, SCIENCE, V338, P517, DOI 10.1126/science.1223389; Csirke J., 1987, ICLARM C P, V13, P1; de Bruyn P, 2013, MAR POLICY, V38, P397, DOI 10.1016/j.marpol.2012.06.019; DEMOLINA AD, 1986, COLL VOL SCI PAP ICC, V25, P130; Dortel E, 2015, FISH RES, V163, P69, DOI 10.1016/j.fishres.2014.07.006; Draganik B., 1984, C VOL SCI PAP ICCAT, V20, P96; Drew K, 2006, B MAR SCI, V79, P847; Driggers W.B. III, 1999, International Commission for the Conservation of Atlantic Tunas Collective Volume of Scientific Papers, V49, P374; Duarte-Neto P, 2012, NEOTROP ICHTHYOL, V10, P149; Eveson JP, 2007, CAN J FISH AQUAT SCI, V64, P602, DOI 10.1139/F07-036; Eveson JP, 2015, FISH RES, V163, P58, DOI 10.1016/j.fishres.2014.05.016; Eveson JP, 2004, CAN J FISH AQUAT SCI, V61, P292, DOI 10.1139/F03-163; Eveson JP, 2011, IOTC2011WPTT30REV1; Eveson JP, 2008, 10 SESS WORK PART TR; Eveson P, 2012, IOTC2012WPTT1423; Eveson P, 2011, 16 M EXT SCI COMM CO; FABENS AJ, 1965, GROWTH, V29, P265; Farley J, 2003, AGE GROWTH BIGEYE TU; Farley JH, 2007, J FISH BIOL, V71, P852, DOI 10.1111/j.1095-8649.2007.01556.x; Farley JH, 2013, J FISH BIOL, V82, P1523, DOI 10.1111/jfb.12077; Farley JH, 2007, FISH RES, V83, P151, DOI 10.1016/j.fishres.2006.09.006; Farley JH, 2006, MAR FRESHWATER RES, V57, P713, DOI 10.1071/MF05255; Farley JH, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0096392; Farley JH, 2008, 4 SCI COMM M W CENTR; Farrugia A., 2001, COL VOL SCI PAP ICCA, V52, P771; Farrugio H., 1980, Cybium, P45; Filmalter JD, 2009, AFR J MAR SCI, V31, P271, DOI 10.2989/AJMS.2009.31.2.15.887; Fonteneau A., 1980, COLLECTIVE VOLUME SC, V9, P152; Fonteneau A., 2013, INT COMM CONS ATL CO, V69, P2059; Fonteneau A, 2008, 10 SESS WORK PART TR; Foreman Terry J., 1996, Inter-American Tropical Tuna Commission Bulletin, V21, P75; FOREMAN TJ, 1990, CALIF FISH GAME, V76, P181; FOURNIER DA, 1990, CAN J FISH AQUAT SCI, V47, P301, DOI 10.1139/f90-032; Fournier DA, 1998, CAN J FISH AQUAT SCI, V55, P2105, DOI 10.1139/cjfas-55-9-2105; Francis R.I.C.C., 1988, New Zealand Journal of Marine and Freshwater Research, V22, P42; FRANCIS RICC, 1990, J FISH BIOL, V36, P883, DOI 10.1111/j.1095-8649.1990.tb05636.x; Francis RICC, 1996, FISH B-NOAA, V94, P783; Francis RICC, 1995, BEL BAR LIB, P81; Fromentin Jean-Marc, 2006, International Commission for the Conservation of Atlantic Tunas Collective Volume of Scientific Papers, V59, P590; Fromentin JM, 2005, FISH FISH, V6, P281, DOI 10.1111/j.1467-2979.2005.00197.x; Fromentin JM, 2001, FISH RES, V53, P133, DOI 10.1016/S0165-7836(00)00299-X; Gaertner D., 1991, ICCAT COLLECTION VOL, V36, P479; Gaertner D, 2008, AQUAT LIVING RESOUR, V21, P349, DOI 10.1051/alr:200849; GAIKOV VV, 1980, COL VOL SCI PAP ICCA, V9, P294; Gascuel D, 1992, AQUAT LIVING RESOUR, V5, P155, DOI 10.1051/alr:992016; Geehan J, 2016, IOTC2016WPTT1807; Gilbert DJ, 1997, CAN J FISH AQUAT SCI, V54, P969, DOI 10.1139/cjfas-54-4-969; Gillooly JF, 2001, SCIENCE, V293, P2248, DOI 10.1126/science.1061967; Graham JB, 2004, J EXP BIOL, V207, P4015, DOI 10.1242/jcb.01267; Grewe PM, 1997, MAR BIOL, V127, P555, DOI 10.1007/s002270050045; Gunn JS, 2008, FISH RES, V92, P207, DOI 10.1016/j.fishres.2008.01.018; Hallier J.-P., 2006, COLLECT VOL SCI PAP, V59, P411; Hallier J.P., 2005, COL VOL SCI PAP ICCA, V57, P181; HAMPTON J, 1991, FISH B-NOAA, V89, P577; Hampton J, 1998, 36 OC FISH PROGR, P1; Hamre J., 1960, ANN BIOL, V15, P197; Hattour A, 1984, B I NAT SCI TECH OCE, V11, P27; Hearn WS, 2003, FISH B-NOAA, V101, P58; Hearn WS, 1986, THESIS; Hilborn R., 1992, QUANTITATIVE FISHERI; Horodysky AZ, 2016, CONSERV PHYSIOL, V4, DOI 10.1093/conphys/cov059; Hoye SD, 2015, FISH RES, V163, P106, DOI 10.1016/j.fishres.2014.02.023; Hunt JJ, 1978, COLL VOL SCI PAP ICC, V7, P332; Hurley P. C. F., 1983, NOAA NMFS TECH REP, V8, P71; ICCAT, 2015, REP STAND COMM RES S; Ichinokawa M, 2008, ISC08PBFWG113; ISSF, 2016, 20162015 ISSF; Itoh T, 2000, FISHERIES SCI, V66, P834, DOI 10.1046/j.1444-2906.2000.00135.x; Itoh T, 1996, FISHERIES SCI, V62, P892, DOI 10.2331/fishsci.62.892; JENKINS GP, 1990, MAR ECOL PROG SER, V63, P93, DOI 10.3354/meps063093; Jennings S, 2001, MARINE FISHERIES ECO; Jennings S, 2008, ADVANCES IN FISHERIES SCIENCE: 50 YEARS ON FROM BEVERTON AND HOLT, P434, DOI 10.1002/9781444302653.ch18; Jobling Malcolm, 2002, P97, DOI 10.1002/9780470693803.ch5; Juan-Jorda MJ, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0070405; Juan-Jorda MJ, 2013, REV FISH BIOL FISHER, V23, P135, DOI 10.1007/s11160-012-9284-4; Juan-Jorda MJ, 2011, P NATL ACAD SCI USA, V108, P20650, DOI 10.1073/pnas.1107743108; Joseph J, 1969, B INTER AM TROP TUNA, V13; Josse E, 1979, OCCASIONAL PAPERS SP, V11, P83; Juan-Jorda MJ, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0322; Kalish JM, 1996, MAR ECOL PROG SER, V143, P1, DOI 10.3354/meps143001; Kalish JM, 1995, BEL BAR LIB, P723; Karakulak FS, 2011, TURK J ZOOL, V35, P801, DOI 10.3906/zoo-0909-30; Kawasaki T, 1965, JPN FISH RES PROT AS, V8, P1; Kayama S, 2007, FISHERIES SCI, V73, P958, DOI 10.1111/j.1444-2906.2007.01419.x; KEARNEY RE, 1991, REV AQUAT SCI, V4, P289; Kerandel JA, 2006, AGE GROWTH ALBACORE; Kikkawa B, 2001, 14 M STAND COMM TUN; King JR, 2003, FISHERIES MANAG ECOL, V10, P249, DOI 10.1046/j.1365-2400.2003.00359.x; KIRKWOOD GP, 1983, CAN J FISH AQUAT SCI, V40, P1405, DOI 10.1139/f83-162; Kitchell JF, 1978, PHYSL ECOLOGY TUNAS; Kolody DS, 2016, FISH RES, V180, P177, DOI 10.1016/j.fishres.2015.06.016; Kopf RK, 2011, ICES J MAR SCI, V68, P1884, DOI 10.1093/icesjms/fsr110; Kopf RK, 2010, AQUAT LIVING RESOUR, V23, P13, DOI 10.1051/alr/2009045; Korsmeyer KE, 1996, COMP BIOCHEM PHYS A, V113, P17, DOI 10.1016/0300-9629(95)02061-6; Korsmeyer Keith E., 2001, Fish Physiology, V19, P35; La Mesa M, 2005, SCI MAR, V69, P241, DOI 10.3989/scimar.2005.69n2241; LABELLE M, 1993, FISH B-NOAA, V91, P649; Landa J, 2015, FISH RES, V170, P190, DOI 10.1016/j.fishres.2015.06.002; LANG KL, 1994, ENVIRON BIOL FISH, V39, P259, DOI 10.1007/BF00005128; Langley A, 2016, 18 SESS WORK PART TR; Laslett GM, 2004, ICES J MAR SCI, V61, P218, DOI 10.1016/j.icesjms.2003.12.006; Laslett GM, 2002, CAN J FISH AQUAT SCI, V59, P976, DOI 10.1139/F02-069; LAURS RM, 1985, CAN J FISH AQUAT SCI, V42, P1552, DOI 10.1139/f85-194; Lee D. W., 1983, NOAA NMFS TECH REP, V8, P61; LEGUEN JC, 1973, FISH B-NOAA, V71, P175; LEHODEY P, 1999, 12 M STAND COMM TUN; Leigh GM, 2000, MAR FRESHWATER RES, V51, P143, DOI 10.1071/MF99029; Leroy B, 2000, 13 M STAND COMM TUN; Leroy B, 2001, 14 M STAND COMM TUN; Lessa R, 2004, FISH RES, V69, P157, DOI 10.1016/j.fishres.2004.05.007; Longhurst A, 2002, FISH RES, V56, P125, DOI 10.1016/S0165-7836(01)00351-4; Lumineau O, 2002, IOTC P, V5, P316; Luque PL, 2014, J FISH BIOL, V84, P1876, DOI 10.1111/jfb.12406; Magnuson JJ, 1978, FISH PHYSL, V7, P239; MARCILLE J, 1976, CAH ORSTOM OCEANOGR, V14, P153; Marsac F., 1991, WORKSH STOCK ASS YEL, P35; Marsac F, 1985, EXPERT CONSULTATION, V31; Marshall C. T., 2009, FISH REPROD BIOL IMP, P438; Marshall C. T., 2003, J NW ATL FISH SCI, V33, P161; Marshall T. C., 1998, CAN J FISH AQUAT SCI, V55, P1766; Martin CA Carles, 1975, CUBA I NAC PESCA REV, V1, P203; Mather F. J., 1995, NMFSSEFSC370 NOAA; Matsumoto WM, 1984, NOAA TECH REP NMFS C; Matsura Yasunobu, 2000, International Commission for the Conservation of Atlantic Tunas Collective Volume of Scientific Papers, V51, P395; Megalofonou P, 2000, J FISH BIOL, V57, P700, DOI 10.1111/j.1095-8649.2000.tb00269.x; Megalofonou P, 2006, J FISH BIOL, V68, P1867, DOI 10.1111/j.1095-8649.2006.01078.x; Megalofonou P, 2003, J APPL ICHTHYOL, V19, P189, DOI 10.1046/j.1439-0426.2003.00450.x; Moore H., 1951, FISH B, V52, P132; Morales-Nin B, 1992, 322 FAO FISH; Morales-Nin B, 2002, MANUAL FISH SCLEROCH, P31; Morgan MJ, 2009, CAN J FISH AQUAT SCI, V66, P404, DOI 10.1139/F09-009; Morize E, 2008, IND OC TUN COMM 10 S; Munro J. L., 1983, FISHBYTE, V1, P5; Murua H., 2003, Journal of Northwest Atlantic Fishery Science, V33, P23, DOI 10.2960/J.v33.a2; Murua H, 2015, FISH RES, V163, P1, DOI 10.1016/j.fishres.2014.07.001; Myers RA, 1997, CAN J FISH AQUAT SCI, V54, P978, DOI 10.1139/cjfas-54-4-978; Neghli N, 2014, COLL VOL SCI PAP ICC, V70, P232; Neilson JD, 2003, T AM FISH SOC, V132, P536, DOI 10.1577/1548-8659(2003)132<0536:AAGOCE>2.0.CO;2; Neilson JD, 2008, CAN J FISH AQUAT SCI, V65, P1523, DOI 10.1139/F08-127; Olafsdottir D., 2003, International Commission for the Conservation of Atlantic Tunas Collective Volume of Scientific Papers, V55, P1254; Ortiz de Zarate V., 1996, COLLECT VOL SCI PAP, V43, P331; Pagavino M., 1995, COLLECT VOL SCI PAP, V44, P303; Palomares MLD, 2009, HYDROBIOLOGIA, V616, P11, DOI 10.1007/s10750-008-9582-y; Palomares ML, 2008, FISHERIES CTR RES RE, V16; Panfili J, 2002, MANUAL FISH SCLEROCH, P31; Parrack ML, 1979, COL VOL SCI PAP ICCA, V8, P356; Pauly D., 1987, ICLARM Conference Proceedings, P7; PAULY D, 1981, MEERESFORSCHUNG, V28, P251; PAULY D., 1984, ICLARM FISHBYTE, V2, P1; Pauly D, 2010, EXCELLENCE ECOLOGY; Pauly D, 1987, P ICLARM C, V13; Pauly D, 1991, AQUABYTE, V4, P3; Pauly D., 1979, THESIS; Pelczarski W, 1992, 1992H12 ICES CM PEL; Pinsky ML, 2011, P NATL ACAD SCI USA, V108, P8317, DOI 10.1073/pnas.1015313108; Polacheck T, 2004, CAN J FISH AQUAT SCI, V61, P307, DOI 10.1139/F04-005; Prince ED, 1983, NOAA TECHNICAL REPOR, V8; Punt AE, 2008, CAN J FISH AQUAT SCI, V65, P1991, DOI 10.1139/F08-111; Quelle P., 2011, International Commission for the Conservation of Atlantic Tunas Collective Volume of Scientific Papers, V66, P1882; Radtke R.L., 1983, NOAA TECHNICAL REPOR, P99; RADTKE RL, 1989, J FISH BIOL, V35, P485, DOI 10.1111/j.1095-8649.1989.tb03000.x; Rees AJ, 1996, DIRECT ESTIMATION AG; Reeves SA, 2003, ICES J MAR SCI, V60, P314, DOI 10.1016/S1054-3139(03)00011-0; Renck CL, 2014, CAL COOP OCEAN FISH, V55, P135; Restrepo VR, 2010, AQUAT LIVING RESOUR, V23, P335, DOI 10.1051/alr/2011004; Reynolds JD, 2005, P ROY SOC B-BIOL SCI, V272, P2337, DOI 10.1098/rspb.2005.3281; Rivas LR, 1976, COL VOL SCI PAP ICCA, V5, P297; Rodriguez-Cabello Cristina, 2007, International Commission for the Conservation of Atlantic Tunas Collective Volume of Scientific Papers, V60, P1258; Rodriguez-Mann E., 2009, COLLECT VOL SCI PAP, V63, P121; Rodriguez-Marin E., 2004, International Commission for the Conservation of Atlantic Tunas Collective Volume of Scientific Papers, V56, P1168; Rodriguez-Marin E., 2007, COL VOL SCI PAP ICCA, V60, P1349; RODRIGUEZ-RODA JULIO, 1964, INVEST PESQUERA, V25, P33; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; Rooker JR, 2007, REV FISH SCI, V15, P265, DOI 10.1080/10641260701484135; Rothschild BJ, 1966, BU215M; Rouyer T, 2011, GLOBAL CHANGE BIOL, V17, P3046, DOI 10.1111/j.1365-2486.2011.02443.x; Santamaria N, 2009, J APPL ICHTHYOL, V25, P38, DOI 10.1111/j.1439-0426.2009.01191.x; Santamaria N, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0121924; Santiago J, 2005, ICES J MAR SCI, V62, P740, DOI 10.1016/j.icesjms.2005.01.015; Sardenne F, 2015, FISH RES, V163, P44, DOI 10.1016/j.fishres.2014.03.008; Schaefer Kurt M., 2009, Inter-American Tropical Tuna Commission Stock Assessment Report, V9, P203; Schaefer Kurt M., 1998, Inter-American Tropical Tuna Commission Bulletin, V21, P205; Schaefer Kurt M., 2006, Inter-American Tropical Tuna Commission Bulletin, V23, P35; Schindler DE, 2002, ECOL APPL, V12, P735, DOI 10.2307/3060985; Sella M, 1929, SPECIAL SCI REPORT F, V76; Shabotinets EI, 1968, T AZCHERNIRO, V28, P374; Shih CL, 2014, FISH RES, V149, P19, DOI 10.1016/j.fishres.2013.09.009; Shimose Tamaki, 2015, Bulletin of Fisheries Research Agency, P1; Shimose T, 2009, FISH RES, V100, P134, DOI 10.1016/j.fishres.2009.06.016; Shingu C., 1970, Bulletin Far Seas Fish Res Lab, VNo. 3,1970, P57; Shuford R.L., 2007, International Commission for the Conservation of Atlantic Tunas Collective Volume of Scientific Papers, V60, P330; Sibert JR, 1983, 10 S PAC COMM; Silva A, 2008, FISH RES, V90, P56, DOI 10.1016/j.fishres.2007.09.011; Siskey MR, 2016, FISH RES, V177, P13, DOI 10.1016/j.fishres.2016.01.004; SMITH DC, 1995, CAN J FISH AQUAT SCI, V52, P391, DOI 10.1139/f95-041; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stequert B, 2004, CYBIUM, V28, P163; Stequert B, 1996, FISH B-NOAA, V94, P124; Stequert B, 2000, IOTC P, P249; Stergiou Konstantinos I., 2000, Web Ecology, V1, P1; STOBBERUP KA, 1998, INT TROP TUN COMM, P81; Sun CL, 2001, FISH B-NOAA, V99, P502; Tanabe T, 2003, 16 M STAND COMM TUN; Tanaka Y, 2007, FISHERIES SCI, V73, P534, DOI 10.1111/j.1444-2906.2007.01365.x; Tankevich PB, 1982, J ICHTHYOLOGY, V22, P26; THOROGOOD J, 1986, T AM FISH SOC, V115, P913, DOI 10.1577/1548-8659(1986)115<913:NTFSOO>2.0.CO;2; THOROGOOD J, 1987, J FISH BIOL, V30, P7, DOI 10.1111/j.1095-8649.1987.tb05727.x; Timochina OI, 1991, TWS916069 IPTP; Trippel Edward A., 1997, Fish and Fisheries Series, V21, P31; Turner S. C., 1994, COL VOL SCI PAP ICCA, V42, P170; UCHIYAMA JH, 1981, FISH B-NOAA, V79, P151; Venturelli PA, 2009, P ROY SOC B-BIOL SCI, V276, P919, DOI 10.1098/rspb.2008.1507; Vilela H, 1960, B PESCA, V69, P11; Vilela M.J.A., 1991, FRENTE MARITIMO, V9, P29; von BERTALANFFY LUDWIG, 1938, HUMAN BIOL, V10, P181; Wang Xue-fang, 2010, Yingyong Shengtai Xuebao, V21, P756; Wang YG, 2000, FISH B-NOAA, V98, P874; Wegner NC, 2010, J MORPHOL, V271, P36, DOI 10.1002/jmor.10777; Wells RJD, 2013, FISH RES, V147, P55, DOI 10.1016/j.fishres.2013.05.001; WILD A, 1995, B MAR SCI, V57, P555; WILD A, 1980, Inter-American Tropical Tuna Commission Bulletin, V17, P509; Wild A, 1994, 336 FAO FISH TECH; Wild A., 1986, INTERAM TROP TUNA CO, V18, P421; Williams AJ, 2013, ICES J MAR SCI, V70, P1439, DOI 10.1093/icesjms/fst093; Williams AJ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0039318; Wilson C. A., 1987, AGE GROWTH FISH, P527; Wilson JA, 2009, J EXP MAR BIOL ECOL, V368, P9, DOI 10.1016/j.jembe.2008.09.005; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; Wright P.J., 2002, P31; Yabuta Y., 1960, REP NANKAI REG FISH, V12, P63; Yamanaka KL, 1990, INDOPAC TUNA DEV MGT; Yamasaki I, 2010, ISC101PBFWG10; YANG R-T, 1969, Bulletin Far Seas Fisheries Research Laboratory (Shimizu), V2, P1; YAO M, 1981, Bulletin of Tohoku National Fisheries Research Institute, P71; Yukinawa M., 1970, Bulletin Far Seas Fish Res Lab, VNo. 3,1970, P229 306 0 0 6 43 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0960-3166 1573-5184 REV FISH BIOL FISHER Rev. Fish. Biol. Fish. DEC 2017 27 4 733 773 10.1007/s11160-017-9474-1 41 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology FL7NU WOS:000414435900003 2018-11-22 J Schmolke, A; Kapo, KE; Rueda-Cediel, P; Thorbek, P; Brain, R; Forbes, V Schmolke, Amelie; Kapo, Katherine E.; Rueda-Cediel, Pamela; Thorbek, Pernille; Brain, Richard; Forbes, Valery Developing population models: A systematic approach for pesticide risk assessment using herbaceous plants as an example SCIENCE OF THE TOTAL ENVIRONMENT English Article Ecological modeling; Species management; Pesticide risk assessment; Endangered Species Act; Herbaceous plants; Mead's milkweed (Asclepias meadii) LIFE-HISTORY STRATEGIES; ECOLOGICAL RISK; POTENTIAL APPLICATION; PROTECTION GOALS; CHEMICALS; FUTURE; EXTINCTION; FRAMEWORK; PROTOCOL; SUPPORT Population models are used as tools in species management and conservation and are increasingly recognized as important tools in pesticide risk assessments. A wide variety of population model applications and resources on modeling techniques, evaluation and documentation can be found in the literature. In this paper, we add to these resources by introducing a systematic, transparent approach to developing population models. The decision guide that we propose is intended to help model developers systematically address data availability for their purpose and the steps that need to be taken in any model development. The resulting conceptual model includes the necessary complexity to address the model purpose on the basis of current understanding and available data. We provide specific guidance for the development of population models for herbaceous plant species in pesticide risk assessment and demonstrate the approach with an example of a conceptual model developed following the decision guide for herbicide risk assessment of Mead's milkweed (Asclepias meadii), a species listed as threatened under the US Endangered Species Act. The decision guide specific to herbaceous plants demonstrates the details, but the general approach can be adapted for other species groups and management objectives. Population models provide a tool to link population-level dynamics, species and habitat characteristics as well as information about stressors in a single approach. Developing such models in a systematic, transparent way will increase their applicability and credibility, reduce development efforts, and result in models that are readily available for use in species management and risk assessments. (C) 2017 Elsevier B.V. All rights reserved. [Schmolke, Amelie; Kapo, Katherine E.] Waterborne Environm Inc, 897B Harrison St SE, Leesburg, VA 20175 USA; [Rueda-Cediel, Pamela; Forbes, Valery] Univ Minnesota, Coll Biol Sci, St Paul, MN 55108 USA; [Thorbek, Pernille] Syngenta, Environm Safety, Jealotts Hill Int Res Ctr, Bracknell, Berks, England; [Brain, Richard] Syngenta Crop Protect LLC, Greensboro, NC USA Schmolke, A (reprint author), Waterborne Environm Inc, 897B Harrison St SE, Leesburg, VA 20175 USA. schmolkea@waterborne-env.com Forbes, Valery/0000-0001-9819-9385 Syngenta Crop Protection, LLC, Greensboro, North Carolina, USA This work was supported by Syngenta Crop Protection, LLC, Greensboro, North Carolina, USA. Aagaard A, 2014, EFSA J, V12, DOI 10.2903/j.efsa.2014.3589; Adler PB, 2014, P NATL ACAD SCI USA, V111, P740, DOI 10.1073/pnas.1315179111; Augusiak J, 2014, ECOL MODEL, V280, P117, DOI 10.1016/j.ecolmodel.2013.11.009; Barnthouse L., 2008, POPULATION LEVEL ECO; Berger U, 2008, PERSPECT PLANT ECOL, V9, P121, DOI 10.1016/j.ppees.2007.11.002; Caswell H, 2001, MATRIX POPULATION MO; Coulson T, 2008, ECOLOGY, V89, P1661, DOI 10.1890/07-1099.1; Crone EE, 2009, J APPL ECOL, V46, P673, DOI 10.1111/j.1365-2664.2009.01635.x; Forbes VE, 2008, ENVIRON TOXICOL CHEM, V27, P1987, DOI 10.1897/08-029.1; Forbes VE, 2016, ENVIRON TOXICOL CHEM, V35, P1904, DOI 10.1002/etc.3440; Forbes Valery E, 2010, Integr Environ Assess Manag, V6, P191, DOI 10.1002/ieam.25; Forbes Valery E., 2009, Integrated Environmental Assessment and Management, V5, P167, DOI 10.1897/IEAM_2008-029.1; Forbes VE, 2001, ENVIRON TOXICOL CHEM, V20, P442, DOI 10.1897/1551-5028(2001)020<0442:ACSEMA>2.0.CO;2; Galic N, 2014, ENVIRON TOXICOL CHEM, V33, P1446, DOI 10.1002/etc.2607; Galic Nika, 2010, Integrated Environmental Assessment and Management, V6, P338, DOI 10.1002/ieam.68; Grimm V., 2005, INDIVIDUAL BASED MOD; Grimm V, 2006, ECOL MODEL, V198, P115, DOI 10.1016/j.ecolmodel.2006.04.023; Grimm V, 2014, ECOL MODEL, V280, P129, DOI 10.1016/j.ecolmodel.2014.01.018; Grimm V, 2014, ECOL MODEL, V280, P1, DOI 10.1016/j.ecolmodel.2014.01.017; Grimm V, 2010, ECOL MODEL, V221, P2760, DOI 10.1016/j.ecolmodel.2010.08.019; Grimm V, 2009, ENVIRON SCI POLLUT R, V16, P614, DOI 10.1007/s11356-009-0228-z; Hanson N, 2012, ENVIRON SCI TECHNOL, V46, P5590, DOI 10.1021/es3008968; Hommen Udo, 2010, Integrated Environmental Assessment and Management, V6, P325, DOI 10.1002/ieam.69; Jakeman AJ, 2006, ENVIRON MODELL SOFTW, V21, P602, DOI 10.1016/j.envsoft.2006.01.004; Kendall BE, 2010, AM NAT, V175, P461, DOI 10.1086/650724; Melbourne BA, 2008, NATURE, V454, P100, DOI 10.1038/nature06922; Morris W.F., 2002, QUANTITATIVE CONSERV; National Research Council, 2013, ASS RISKS END THREAT; Natural Environmental Research Council (NERC) Centre for Population Biology Imperial College, 2010, GLOB POP DYN DAT VER; NatureServe, 2016, NATURESERVE EXPL ONL; Nienstedt KM, 2012, SCI TOTAL ENVIRON, V415, P31, DOI 10.1016/j.scitotenv.2011.05.057; ORESKES N, 1994, SCIENCE, V263, P641, DOI 10.1126/science.263.5147.641; Pastorok R.A., 2002, ECOLOGICAL MODELING; Railsback S.F, 2012, AGENT BASED INDIVIDU; Ryldel Jr E.J., 1996, ECOL MODEL, V90, P229; Salguero-Gomez R, 2016, P NATL ACAD SCI USA, V113, P230, DOI 10.1073/pnas.1506215112; Salguero-Gomez R, 2015, J ECOL, V103, P202, DOI 10.1111/1365-2745.12334; Salice CJ, 2012, J HERPETOL, V46, P675, DOI 10.1670/11-091; Schmolke A, 2017, ENVIRON TOXICOL CHEM, V36, P480, DOI 10.1002/etc.3576; Schmolke A, 2010, TRENDS ECOL EVOL, V25, P479, DOI 10.1016/j.tree.2010.05.001; Schmolke A, 2010, ENVIRON TOXICOL CHEM, V29, P1006, DOI 10.1002/etc.120; Smith M, 2005, ECOL APPL, V15, P1036, DOI 10.1890/04-0434; Stark JD, 2004, P NATL ACAD SCI USA, V101, P732, DOI 10.1073/pnas.0304903101; Thorbek P, 2010, ECOLOGICAL MODELS RE; US Fish and Wildlife Service, 2016, ECOS ENV CONS ONL SY 45 2 2 1 43 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0048-9697 1879-1026 SCI TOTAL ENVIRON Sci. Total Environ. DEC 1 2017 599 1929 1938 10.1016/j.scitotenv.2017.05.116 10 Environmental Sciences Environmental Sciences & Ecology FA2EL WOS:000405253500087 28549368 2018-11-22 J Dupoue, A; Brischoux, F; Lourdais, O Dupoue, Andreaz; Brischoux, Francois; Lourdais, Olivier Climate and foraging mode explain interspecific variation in snake metabolic rates PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article climate; ectotherm; lifestyle; metabolic cold adaptation; metabolic rate EVAPORATIVE WATER-LOSS; PRIMARY PRODUCTIVITY; SQUAMATE REPTILES; COLD ADAPTATION; TEMPERATURE; LIFE; EVOLUTION; RESPONSES; INSECTS; ECOLOGY The energy cost of self-maintenance is a critical facet of life-history strategies. Clarifying the determinant of interspecific variation in metabolic rate (MR) at rest is important to understand and predict ecological patterns such as species distributions or responses to climatic changes. We examined variation of MR in snakes, a group characterized by a remarkable diversity of activity rates and a wide distribution. We collated previously published MR data (n = 491 observations) measured in 90 snake species at different trial temperatures. We tested for the effects of metabolic state (standard MR (SMR) versus resting MR (RMR)), foraging mode (active versus ambush foragers) and climate (temperature and precipitation) while accounting for non-independence owing to phylogeny, body mass and thermal dependence. We found that RMR was 40% higher than SMR, and that active foragers have higher MR than species that ambush their prey. We found that MR was higher in cold environments, supporting the metabolic cold adaptation hypothesis. We also found an additive and positive effect of precipitation on MR suggesting that lower MR in arid environments may decrease dehydration and energetic costs. Altogether, our findings underline the complex influences of climate and foraging mode on MR and emphasize the relevance of these facets to understand the physiological impact of climate change. [Dupoue, Andreaz] Univ Paris 06, CNRS, iEES Paris, UPMC,UMR 7618, Tours 44-45,4 Pl Jussieu, F-75005 Paris, France; [Brischoux, Francois; Lourdais, Olivier] CNRS, UMR 7372, CEBC, F-79360 Villiers En Bois, France; [Lourdais, Olivier] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA Dupoue, A (reprint author), Univ Paris 06, CNRS, iEES Paris, UPMC,UMR 7618, Tours 44-45,4 Pl Jussieu, F-75005 Paris, France. andreaz.dupoue@gmail.com CNRS; ANR JCJC Ectoclim; Conseil Departemental des Deux-Sevres; Conseil Regional Poitou Charentes Financial support was provided by the CNRS, the ANR JCJC Ectoclim, the Conseil Departemental des Deux-Sevres and the Conseil Regional Poitou Charentes. Addo-Bediako A, 2002, FUNCT ECOL, V16, P332, DOI 10.1046/j.1365-2435.2002.00634.x; ALEKSIUK M, 1971, COMP BIOCHEM PHYSIOL, V39, P495, DOI 10.1016/0300-9629(71)90313-6; ANDREWS RM, 1985, PHYSIOL ZOOL, V58, P214, DOI 10.1086/physzool.58.2.30158569; Angilletta MJ, 2009, BIO HABIT, P1; Basson CH, 2017, FUNCT ECOL, V31, P856, DOI 10.1111/1365-2435.12795; Beaupre Steven J., 2007, P334, DOI 10.1017/CBO9780511752438.013; Bradshaw SD, 1997, HOMEOSTASIS DESERT R; Brischoux F, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017077; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Buckley LB, 2012, ANNU REV ECOL EVOL S, V43, P205, DOI 10.1146/annurev-ecolsys-110411-160516; Burton T, 2011, P ROY SOC B-BIOL SCI, V278, P3465, DOI 10.1098/rspb.2011.1778; Chamaille-Jammes S, 2006, GLOBAL CHANGE BIOL, V12, P392, DOI 10.1111/j.1365-2486.2005.01088.x; Chown SL, 1999, BIOL REV, V74, P87, DOI 10.1017/S000632319800526X; Chown SL, 2003, FUNCT ECOL, V17, P568, DOI 10.1046/j.1365-2435.2003.07622.x; Chown SL, 2002, COMP BIOCHEM PHYS A, V133, P791, DOI 10.1016/S1095-6433(02)00200-3; Clarke A, 2006, FUNCT ECOL, V20, P405, DOI 10.1111/j.1365-2435.2006.01109.x; Cox CL, 2015, EVOLUTION, V69, P2507, DOI 10.1111/evo.12742; Davis JR, 2009, PHYSIOL BIOCHEM ZOOL, V82, P739, DOI 10.1086/605933; Gaitan-Espitia JD, 2014, J EXP BIOL, V217, P2261, DOI 10.1242/jeb.101261; Dillon ME, 2010, NATURE, V467, P704, DOI 10.1038/nature09407; DMIEL R, 1972, AM J PHYSIOL, V223, P510; Dupoue A, 2015, PHYSIOL BEHAV, V144, P82, DOI 10.1016/j.physbeh.2015.02.042; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Gaston KJ, 2009, AM NAT, V174, P595, DOI 10.1086/605982; Gillooly JF, 2001, SCIENCE, V293, P2248, DOI 10.1126/science.1061967; GOOLISH EM, 1991, PHYSIOL ZOOL, V64, P485, DOI 10.1086/physzool.64.2.30158187; GREENSTONE MH, 1980, ECOLOGY, V61, P1255, DOI 10.2307/1936843; Guderley H, 2011, J COMP PHYSIOL B, V181, P53, DOI 10.1007/s00360-010-0499-1; HAYES JP, 1995, EVOLUTION, V49, P836, DOI 10.1111/j.1558-5646.1995.tb02320.x; Hernandez CE, 2013, METHODS ECOL EVOL, V4, P401, DOI 10.1111/2041-210X.12033; Hochachka PW, 2002, BIOCH ADAPTATION; Huey RB, 2009, P ROY SOC B-BIOL SCI, V276, P1939, DOI 10.1098/rspb.2008.1957; Hulbert AJ, 2008, COMP BIOCHEM PHYS A, V150, P196, DOI 10.1016/j.cbpa.2006.05.014; IPCC, 2014, J COMP PHYSL; Ives AR, 2007, SYSTEMATIC BIOL, V56, P252, DOI 10.1080/10635150701313830; Kearney M, 2012, FUNCT ECOL, V26, P167, DOI 10.1111/j.1365-2435.2011.01917.x; Kearney M, 2009, P NATL ACAD SCI USA, V106, P3835, DOI 10.1073/pnas.0808913106; Killen SS, 2016, AM NAT, V187, P592, DOI 10.1086/685893; Kohler A, 2011, HERPETOL J, V21, P17; Lighton JRB, 2008, MEASURING METABOLIC; Lourdais O, 2014, BIOL J LINN SOC, V111, P636, DOI 10.1111/bij.12223; Lourdais O, 2013, PHYSIOL BEHAV, V119, P149, DOI 10.1016/j.physbeh.2013.05.041; McCain CM, 2011, ECOL LETT, V14, P1236, DOI 10.1111/j.1461-0248.2011.01695.x; McCue MD, 2006, COPEIA, P818, DOI 10.1643/0045-8511(2006)6[818:COPVIT]2.0.CO;2; McKechnie AE, 2010, BIOL LETTERS, V6, P253, DOI 10.1098/rsbl.2009.0702; MCNAB BK, 1986, ECOL MONOGR, V56, P1, DOI 10.2307/2937268; Muir TJ, 2007, J COMP PHYSIOL B, V177, P917, DOI 10.1007/s00360-007-0190-3; Navas CA, 2008, COMP BIOCHEM PHYS A, V151, P344, DOI 10.1016/j.cbpa.2007.07.003; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; POUGH FH, 1980, AM NAT, V115, P92, DOI 10.1086/283547; Pyron RA, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-93; Raichlen DA, 2010, J COMP PHYSIOL B, V180, P301, DOI 10.1007/s00360-009-0399-4; TAIGEN TL, 1983, AM NAT, V122, P509, DOI 10.1086/284152; Terblanche JS, 2009, PHYSIOL BIOCHEM ZOOL, V82, P495, DOI 10.1086/605361; Therneau TM, 2015, COXME MIXED EFFECTS; Tieleman BI, 2003, P ROY SOC B-BIOL SCI, V270, P207, DOI 10.1098/rspb.2002.2205; UETZ P., 2013, REPTILE DATABASE; Wall M, 2013, CURR ZOOL, V59, P618, DOI 10.1093/czoolo/59.5.618; WEBB W, 1978, ECOLOGY, V59, P1239, DOI 10.2307/1938237; White C. R., 2011, P BIOL SCI, V279, P1740, DOI [10.1098/rspb.2011.2060, DOI 10.1098/RSPB.2011.2060]; White CR, 2007, P ROY SOC B-BIOL SCI, V274, P287, DOI 10.1098/rspb.2006.3727; White CR, 2013, J COMP PHYSIOL B, V183, P1, DOI 10.1007/s00360-012-0676-5; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P9340, DOI 10.1073/pnas.0702212104; Woods HA, 2010, P NATL ACAD SCI USA, V107, P8469, DOI 10.1073/pnas.0905185107 64 0 0 7 30 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. NOV 29 2017 284 1867 20172108 10.1098/rspb.2017.2108 6 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology FN9VQ WOS:000416391400017 29142118 2018-11-22 J Nacarino-Meneses, C; Jordana, X; Orlandi-Oliveras, G; Kohler, M Nacarino-Meneses, Carmen; Jordana, Xavier; Orlandi-Oliveras, Guillem; Kohler, Meike Reconstructing molar growth from enamel histology in extant and extinct Equus SCIENTIFIC REPORTS English Article LIFE-HISTORY STRATEGIES; MANDIBULAR CHEEK TEETH; DENTAL DEVELOPMENT; FEEDING ECOLOGY; POLLEN SEQUENCE; CROWN FORMATION; CARIHUELA CAVE; NORTH-AMERICA; FOSSIL HORSES; EVOLUTION The way teeth grow is recorded in dental enamel as incremental marks. Detailed analysis of tooth growth is known to provide valuable insights into the growth and the pace of life of vertebrates. Here, we study the growth pattern of the first lower molar in several extant and extinct species of Equus and explore its relationship with life history events. Our histological analysis shows that enamel extends beyond the molar's cervix in these mammals. We identified three different crown developmental stages (CDS) in the first lower molars of equids characterised by different growth rates and likely to be related to structural and ontogenetic modifications of the tooth. Enamel extension rate, which ranges from approximate to 400 mu m/d at the beginning of crown development to rates of approximate to 30 mu m/d near the root, and daily secretion rate (approximate to 17 mu m/d) have been shown to be very conservative within the genus. From our results, we also inferred data of molar wear rate for these equids that suggest higher wear rates at early ontogenetic stages (13 mm/y) than commonly assumed. The results obtained here provide a basis for future studies of equid dentition in different scientific areas, involving isotope, demographic and dietary studies. [Nacarino-Meneses, Carmen; Orlandi-Oliveras, Guillem; Kohler, Meike] Campus Univ Autonoma Barcelona, Inst Catala Paleontol Miquel Crusafont ICP, Bellaterra 08193, Barcelona, Spain; [Jordana, Xavier] UAB, BABVE Dept, Unitat Antropol Biol, Bellaterra 08193, Barcelona, Spain; [Kohler, Meike] ICREA, Pg Lluis Co 23, Barcelona 08010, Spain Nacarino-Meneses, C (reprint author), Campus Univ Autonoma Barcelona, Inst Catala Paleontol Miquel Crusafont ICP, Bellaterra 08193, Barcelona, Spain. carmen.nacarino@icp.cat Jordana, Xavier/G-7537-2017 Jordana, Xavier/0000-0002-6016-6630; Nacarino-Meneses, Carmen/0000-0003-2123-8758 Spanish Ministry of Economy and Competitiveness [CGL-2015-63777, BES-2013-066335]; Government of Catalonia [2014-SGR-1207]; FI-DGR grant from the Government of Catalonia AGAUR [2016FI_B00202] We thank T. Kaiser for permission to cut the teeth of the extant species. We are grateful to J. Madurell-Malapeira for his help in identifying the fossil species from La Carihuela. G. Prats-Munoz and M. Fernandez are acknowledged for the preparation of histological slices. We would also like to thank Jin Meng as editor of Scientific Reports, Tim Bromage and one anonymous reviewer for their valuable comments and suggestions. This work is supported by the Spanish Ministry of Economy and Competitiveness (CGL-2015-63777, PI: MK) and the Government of Catalonia (2014-SGR-1207, PI: MK; CERCA Programme, MK). C. Nacarino-Meneses holds a FPI grant from the Spanish Ministry of Economy and Competitiveness (BES-2013-066335) and G. Orlandi-Oliveras is supported by a FI-DGR 2016 grant from the Government of Catalonia AGAUR (2016FI_B00202). Bendrey R, 2015, ARCHAEOMETRY, V57, P1104, DOI 10.1111/arcm.12151; Boyde A, 1964, STRUCTURE DEV MAMMAL; BROMAGE TG, 1991, AM J PHYS ANTHROPOL, V86, P205, DOI 10.1002/ajpa.1330860209; Bromage TG, 2009, CALCIFIED TISSUE INT, V84, P388, DOI 10.1007/s00223-009-9221-2; Bryant JD, 1996, PALAIOS, V11, P397, DOI 10.2307/3515249; Bryant JD, 1996, PALAEOGEOGR PALAEOCL, V126, P75, DOI 10.1016/S0031-0182(96)00071-5; Burke A, 2003, QUATERNARY RES, V59, P459, DOI 10.1016/S0033-5894(03)00059-0; Calder W. A., 1984, SIZE FUNCTION LIFE H; Cantalapiedra JL, 2017, SCIENCE, V355, P627, DOI 10.1126/science.aag1772; CARRION JS, 1992, REV PALAEOBOT PALYNO, V71, P37, DOI 10.1016/0034-6667(92)90157-C; Carro S. C Samper, 2010, CIDARIS, P283; Churcher C., 1993, EQUUS GREVYI MAMM SP, V453, P1; D'Ambrosia AR, 2014, PALAEOGEOGR PALAEOCL, V414, P310, DOI 10.1016/j.palaeo.2014.09.014; Damuth J, 1990, BODY SIZE MAMMALIAN; Damuth J, 2011, BIOL REV, V86, P733, DOI 10.1111/j.1469-185X.2011.00176.x; Dean MC, 2006, P ROY SOC B-BIOL SCI, V273, P2799, DOI 10.1098/rspb.2006.3583; Dirks W, 2007, J HUM EVOL, V53, P309, DOI 10.1016/j.jhevol.2007.04.007; Dirks W, 2012, QUATERN INT, V255, P79, DOI 10.1016/j.quaint.2011.11.002; Dirks W, 2009, FRONT ORAL BIOL, V13, P3, DOI 10.1159/000242381; Dixon P. M., 1993, Equine Veterinary Education, V5, P317; Dixon P.M., 2011, EQUINE DENT, P51; Ernest SKM, 2003, ECOLOGY, V84, P3402, DOI 10.1890/02-9002; Feh C, 2001, BIOL CONSERV, V101, P51, DOI 10.1016/S0006-3207(01)00051-9; Fellows I, 2012, J STAT SOFTW, V49, P1; Fernandez S, 2007, GEOBIOS-LYON, V40, P75, DOI 10.1016/j.geobios.2006.01.004; FitzGerald CM, 2008, BIOL ANTHR HUMAN SKE, P237; Geigl EM, 2012, ANN ANAT, V194, P88, DOI 10.1016/j.aanat.2011.06.002; Hillson S., 2005, TEETH; Hogg RT, 2011, ANAT REC, V294, P2193, DOI 10.1002/ar.21503; Hoppe KA, 2004, PALAEOGEOGR PALAEOCL, V206, P355, DOI 10.1016/j.palaeo.200.01.012; HULBERT RC, 1982, PALEOBIOLOGY, V8, P159; Iinuma YM, 2004, J VET MED SCI, V66, P665, DOI 10.1292/jvms.66.665; IUCN, 2016, IUCN RED LIST THREAT; Janis C.M., 1988, Memoires du Museum National d'Histoire Naturelle Serie C Sciences de la Terre, V53, P367; Jordana X, 2014, BIOL J LINN SOC, V112, P657, DOI 10.1111/bij.12264; Jordana X, 2012, P ROY SOC B-BIOL SCI, V279, P3339, DOI 10.1098/rspb.2012.0689; Jordana X, 2011, PALAEOGEOGR PALAEOCL, V300, P59, DOI 10.1016/j.palaeo.2010.12.008; Kaczensky P, 2015, EQUUS HEMIONUS IUCN, DOI DOI 10.2305/IUCN.UK.2015-4.RLTS.T7951A45171204.EN; Kaiser TM, 2013, MAMMAL REV, V43, P34, DOI 10.1111/j.1365-2907.2011.00203.x; Kierdorf H, 2012, J ANAT, V220, P484, DOI 10.1111/j.1469-7580.2012.01482.x; Kierdorf H, 2014, ANAT REC, V297, P1935, DOI 10.1002/ar.22951; Kierdorf H, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074597; King S. R. B, 2016, EQUUS QUAGGA IUCN RE, DOI [10.2305/IUCN.UK.2016-2.RLTS.T41013A45172424.en, DOI 10.2305/IUCN.UK.2016-2.RLTS.T41013A45172424.EN]; Kirkland KD, 1996, AM J VET RES, V57, P31; Kohler M, 2009, J VERTEBR PALEONTOL, V29, p128A; Kohler Meike, 2010, P261; Kohler M, 2009, P NATL ACAD SCI USA, V106, P20354, DOI 10.1073/pnas.0813385106; Kohn MJ, 2004, GEOCHIM COSMOCHIM AC, V68, P403, DOI 10.1016/S0016-7037(03)00443-5; Levine M.A., 1982, BRITISH SERIES, P223; Lkhagvasuren D, 2015, SOME POPULATION CHAR; Lkhagvasuren Davaa, 2013, Journal of Species Research, V2, P85; MacFadden BJ, 2005, SCIENCE, V307, P1728, DOI 10.1126/science.1105458; MacFadden BJ, 2000, ANNU REV ECOL SYST, V31, P33, DOI 10.1146/annurev.ecolsys.31.1.33; Macho GA, 2002, BIOL J LINN SOC, V75, P271, DOI 10.1046/j.1095-8312.2002.00013.x; Mao Fang-Yuan, 2014, Vertebrata Palasiatica, V52, P153; Mendoza M, 2008, J ZOOL, V274, P134, DOI 10.1111/j.1469-7998.2007.00365.x; Metcalfe JZ, 2012, QUATERNARY RES, V77, P424, DOI 10.1016/j.yqres.2012.02.002; Nowak RM, 1999, WALKERS MAMMALS WORL; Orlando L, 2015, EQUIDS CURR BIOL, pR973; Orlando L, 2006, MOL ECOL, V15, P2083, DOI 10.1111/j.1365-294X.2006.02922.x; Ozaki M, 2010, J ZOOL, V280, P202, DOI 10.1111/j.1469-7998.2009.00653.x; Palombo MR, 2014, QUATERNARY SCI REV, V96, P50, DOI 10.1016/j.quascirev.2014.05.013; PENZHORN B L, 1982, Koedoe, P89; Peters R.H., 1983, P1; Rubenstein DI, 2016, EQUUS GREVYI IUCN RE, DOI [10.2305/IUCN.UK.2016-3.RLTS.T7950A89624491.en, DOI 10.2305/IUCN.UK.2016-3.RLTS.T7950A89624491.EN]; Schulz E, 2013, MAMMAL REV, V43, P111, DOI 10.1111/j.1365-2907.2012.00210.x; Silver I. A., 1963, P250; Sisson S., 1914, ANATOMY DOMESTIC ANI; Smith B. Holly, 2000, P212, DOI 10.1017/CBO9780511542626.015; SMITH BH, 1991, AM J PHYS ANTHROPOL, V86, P157, DOI 10.1002/ajpa.1330860206; SMITH BH, 1989, EVOLUTION, V43, P683, DOI 10.1111/j.1558-5646.1989.tb04266.x; Smith TM, 2008, EVOL ANTHROPOL, V17, P213, DOI 10.1002/evan.20176; Smith TM, 2008, J HUM EVOL, V54, P205, DOI 10.1016/j.jhevol.2007.09.020; Smith TM, 2006, J ANAT, V208, P99, DOI 10.1111/j.1469-7580.2006.00499.x; SMUTS G L, 1974, Journal of the Southern African Wildlife Management Association, V4, P103; Soana S, 1999, ANAT HISTOL EMBRYOL, V28, P273, DOI 10.1046/j.1439-0264.1999.00204.x; Spinage CA, 1972, AFR J ECOL, V10, P273; Stearns S., 1992, EVOLUTION LIFE HIST; Stromberg CAE, 2006, PALEOBIOLOGY, V32, P236, DOI 10.1666/0094-8373(2006)32[236:EOHIET]2.0.CO;2; Tafforeau P, 2007, PALAEOGEOGR PALAEOCL, V246, P206, DOI 10.1016/j.palaeo.2006.10.001; Trayler RB, 2017, GEOCHIM COSMOCHIM AC, V198, P32, DOI 10.1016/j.gca.2016.10.023; WANG Y, 1994, PALAEOGEOGR PALAEOCL, V107, P269, DOI 10.1016/0031-0182(94)90099-X 82 1 1 6 8 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 2045-2322 SCI REP-UK Sci Rep NOV 21 2017 7 15965 10.1038/s41598-017-16227-2 12 Multidisciplinary Sciences Science & Technology - Other Topics FN4NK WOS:000415983600053 29162890 DOAJ Gold, Green Published 2018-11-22 J Williams, CT; Klaassen, M; Barnes, BM; Buck, CL; Arnold, W; Giroud, S; Vetter, SG; Ruf, T Williams, Cory T.; Klaassen, Marcel; Barnes, Brian M.; Buck, C. Loren; Arnold, Walter; Giroud, Sylvain; Vetter, Sebastian G.; Ruf, Thomas Seasonal reproductive tactics: annual timing and the capital-to-income breeder continuum PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Review capital breeding; income breeding; phenology; resource allocation; life-history HARE LEPUS-EUROPAEUS; CLIMATE-CHANGE; OPPORTUNISTIC BREEDER; GROUND-SQUIRRELS; RED DEER; PHOTOPERIODIC RESPONSE; PHENOTYPIC PLASTICITY; POPULATION-DYNAMICS; CIRCANNUAL RHYTHMS; AVIAN REPRODUCTION Tactics of resource use for reproduction are an important feature of life-history strategies. A distinction is made between 'capital' breeders, which finance reproduction using stored energy, and 'income' breeders, which pay for reproduction using concurrent energy intake. In reality, vertebrates use a continuum of capital-to-income tactics, and, for many species, the allocation of capital towards reproduction is a plastic trait. Here, we review how trophic interactions and the timing of life-history events are influenced by tactics of resource use in birds and mammals. We first examine how plasticity in the allocation of capital towards reproduction is linked to phenological flexibility via interactions between endocrine/neuroendocrine control systems and the sensory circuits that detect changes in endogenous state, and environmental cues. We then describe the ecological drivers of reproductive timing in species that vary in the degree to which they finance reproduction using capital. Capital can be used either as a mechanism to facilitate temporal synchrony between energy supply and demand or as a means of lessening the need for synchrony. Within many species, an individual's ability to cope with environmental change may be more tightly linked to plasticity in resource allocation than to absolute position on the capital-to-income breeder continuum. This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'. [Williams, Cory T.; Barnes, Brian M.] Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK 99775 USA; [Klaassen, Marcel] Deakin Univ, Sch Life & Environm Sci, Ctr Integrat Ecol, 75 Pigdons Rd, Geelong, Vic 3216, Australia; [Buck, C. Loren] No Arizona Univ, Ctr Bioengn Innovat, Flagstaff, AZ 86011 USA; [Buck, C. Loren] No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA; [Arnold, Walter; Giroud, Sylvain; Vetter, Sebastian G.; Ruf, Thomas] Univ Vet Med Vienna, Res Inst Wildlife Ecol, A-1160 Vienna, Austria Williams, CT (reprint author), Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK 99775 USA. ctwilliams@alaska.edu Arnold, Walter/C-3394-2013; Klaassen, Marcel/B-4325-2008 Arnold, Walter/0000-0001-6785-5685; Klaassen, Marcel/0000-0003-3907-9599; Giroud, Sylvain/0000-0001-6621-7462 National Science Foundation [IOS-1147187, 1147232, 158056, 158160]; Austrian Science Fund [FWF P 20536 B17] This work was supported by the National Science Foundation to C.T.W., C.L.B. and B.M.B. (IOS-1147187, 1147232, 158056 & 158160) and the Austrian Science Fund to W.A. (FWF P 20536 B17). Akesson S, 2017, PHILOS T R SOC B, V372, DOI 10.1098/rstb.2016.0252; ALBON SD, 1987, J ANIM ECOL, V56, P69, DOI 10.2307/4800; BERGER J, 1992, ECOLOGY, V73, P323, DOI 10.2307/1938743; Bety J, 2003, AM NAT, V162, P110, DOI 10.1086/375680; Both C, 2006, NATURE, V441, P81, DOI 10.1038/nature04539; Boutin S, 2014, EVOL APPL, V7, P29, DOI 10.1111/eva.12121; Boutin S, 2006, SCIENCE, V314, P1928, DOI 10.1126/science.1135520; Boyd IL, 2000, FUNCT ECOL, V14, P623, DOI 10.1046/j.1365-2435.2000.t01-1-00463.x; Broussard DR, 2005, CAN J ZOOL, V83, P546, DOI 10.1139/Z05-044; Buck CL, 1999, J MAMMAL, V80, P430, DOI 10.2307/1383291; Buehler DM, 2008, PHILOS T R SOC B, V363, P247, DOI 10.1098/rstb.2007.2138; Calder W. A., 1984, SIZE FUNCTION LIFE H; Charmantier A, 2014, EVOL APPL, V7, P15, DOI 10.1111/eva.12126; Cutting KA, 2011, J AVIAN BIOL, V42, P505, DOI 10.1111/j.1600-048X.2011.05406.x; Daan S., 1988, P392; Derbyshire R, 2015, ECOLOGY, V96, P3005, DOI 10.1890/15-0191.1; Drent R., 1981, Verhandlungen der Ornithologischen Gesellschaft in Bayern, V23, P239; DRENT RH, 1980, ARDEA, V68, P225; Dunn PO, 2011, ECOLOGY, V92, P450, DOI 10.1890/10-0478.1; Durant JM, 2007, CLIM RES, V33, P271, DOI 10.3354/cr033271; Durant JM, 2013, MAR ECOL PROG SER, V474, P43, DOI 10.3354/meps10089; Duriez O, 2009, BEHAV ECOL, V20, P560, DOI 10.1093/beheco/arp032; Edwards M, 2004, NATURE, V430, P881, DOI 10.1038/nature02808; Farley SD, 1995, CAN J ZOOL, V73, P2216, DOI 10.1139/z95-262; Fletcher QE, 2013, OECOLOGIA, V173, P1203, DOI 10.1007/s00442-013-2699-3; Forbes S, 2009, NEUROSCI LETT, V460, P143, DOI 10.1016/j.neulet.2009.05.060; Fu Z, 2014, BIOL REPROD, V90, DOI 10.1095/biolreprod.113.115337; Fudickar AM, 2016, AM NAT, V187, P436, DOI 10.1086/685296; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; Gruebler MU, 2008, ECOLOGY, V89, P2736, DOI 10.1890/07-0786.1; Gwinner E, 1996, IBIS, V138, P47, DOI 10.1111/j.1474-919X.1996.tb04312.x; GWINNER E, 1977, NATURWISSENSCHAFTEN, V64, P44, DOI 10.1007/BF00439901; GWINNER E, 1990, SCIENCE, V249, P906, DOI 10.1126/science.249.4971.906; Hacklander K, 2002, J COMP PHYSIOL B, V172, P183, DOI 10.1007/s00360-001-0243-y; Hacklander K, 2002, PHYSIOL BIOCHEM ZOOL, V75, P19, DOI 10.1086/324770; Hahn S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0030242; HAHN TP, 1995, J EXP ZOOL, V272, P213, DOI 10.1002/jez.1402720306; Hahn TP, 1998, ECOLOGY, V79, P2365, DOI 10.1890/0012-9658(1998)079[2365:RSIAOB]2.0.CO;2; Harrison XA, 2011, J ANIM ECOL, V80, P4, DOI 10.1111/j.1365-2656.2010.01740.x; Hau M, 2017, PHILOS T R SOC B, V372, DOI 10.1098/rstb.2016.0249; Heldmaier G, 1989, ENERGY TRANSFORMATIO, P130; Hobson KA, 2015, AUK, V132, P624, DOI 10.1642/AUK-14-294.1; Houston AI, 2007, BEHAV ECOL, V18, P241, DOI 10.1093/beheco/arl080; Husby A, 2009, P R SOC B, V276, P1845, DOI 10.1098/rspb.2008.1937; Hut RA, 2014, CURR BIOL, V24, pR602, DOI 10.1016/j.cub.2014.05.061; Jaatinen K, 2016, FRONT ZOOL, V13, DOI 10.1186/s12983-016-0157-x; Jacobs JD, 2000, CONDOR, V102, P35, DOI 10.1650/0010-5422(2000)102[0035:ECOLCS]2.0.CO;2; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; Kauffman AS, 2005, J NEUROENDOCRINOL, V17, P489, DOI 10.1111/j.1365-2826.2005.01334.x; Kerby J, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0484; Klaassen M, 2001, NATURE, V413, P794, DOI 10.1038/35101654; Klaassen M, 2006, ARDEA, V94, P371; Klingerman Candice M, 2011, Front Endocrinol (Lausanne), V2, P101, DOI 10.3389/fendo.2011.00101; Kourkgy C, 2016, J ANIM ECOL, V85, P581, DOI 10.1111/1365-2656.12463; Kriegsfeld LJ, 2015, FRONT NEUROENDOCRIN, V37, P65, DOI 10.1016/j.yfrne.2014.12.001; Kronfeld-Schor N, 2017, PHILOS T R SOC B, V372, DOI 10.1098/rstb.2016.0248; LACK D, 1950, IBIS, V92, P288, DOI 10.1111/j.1474-919X.1950.tb01753.x; Lack D., 1968, ECOLOGICAL ADAPTATIO; Langvatn R, 2004, AM NAT, V163, P763, DOI 10.1086/383594; Lof ME, 2012, P ROY SOC B-BIOL SCI, V279, P3161, DOI 10.1098/rspb.2012.0431; Madsen J, 2007, POLAR BIOL, V30, P1363, DOI 10.1007/s00300-007-0296-9; McAllan BM, 2014, INTEGR COMP BIOL, V54, P516, DOI 10.1093/icb/icu093; McEwen BS, 2003, HORM BEHAV, V43, P2, DOI 10.1016/S0018-506X(02)00024-7; McGuire NL, 2013, PEERJ, V1, DOI 10.7717/peerj.139; McNamara JM, 2011, ECOL LETT, V14, P1183, DOI 10.1111/j.1461-0248.2011.01686.x; Meijer T, 1999, IBIS, V141, P399, DOI 10.1111/j.1474-919X.1999.tb04409.x; Merila J, 2014, EVOL APPL, V7, P1, DOI 10.1111/eva.12137; Merkle JA, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2016.0456; Moller AP, 2008, P NATL ACAD SCI USA, V105, P16195, DOI 10.1073/pnas.0803825105; Moyes K, 2011, GLOBAL CHANGE BIOL, V17, P2455, DOI 10.1111/j.1365-2486.2010.02382.x; Nakane Y, 2010, CELL TISSUE RES, V342, P341, DOI 10.1007/s00441-010-1073-6; Nakao N, 2008, NATURE, V452, P317, DOI 10.1038/nature06738; NICHOLLS TJ, 1988, PHYSIOL REV, V68, P133; Nuijten RJM, 2014, J AVIAN BIOL, V45, P113, DOI 10.1111/j.1600-048X.2013.00287.x; Nussey DH, 2005, SCIENCE, V310, P304, DOI 10.1126/science.1117004; Parmesan C, 2003, NATURE, V421, P37, DOI 10.1038/nature01286; Pasquier J, 2014, BMC EVOL BIOL, V14, DOI 10.1186/1471-2148-14-30; Perfito N, 2008, HORM BEHAV, V53, P567, DOI 10.1016/j.yhbeh.2008.01.002; Perfito N, 2007, FUNCT ECOL, V21, P291, DOI 10.1111/j.1365-2435.2006.01237.x; Perfito N, 2011, GEN COMP ENDOCR, V173, P20, DOI 10.1016/j.ygcen.2011.04.016; PERRINS CM, 1966, IBIS, V108, P132, DOI 10.1111/j.1474-919X.1966.tb07259.x; Piersma T, 2003, TRENDS ECOL EVOL, V18, P228, DOI 10.1016/S0169-5347(03)00036-3; Popescu FD, 2011, J COMP PHYSIOL B, V181, P681, DOI 10.1007/s00360-011-0559-1; Post E, 2008, PHILOS T R SOC B, V363, P2369, DOI 10.1098/rstb.2007.2207; Reed TE, 2013, SCIENCE, V340, P488, DOI 10.1126/science.1232870; ROWE L, 1994, AM NAT, V143, P698, DOI 10.1086/285627; Sandberg R, 1996, OIKOS, V77, P577, DOI 10.2307/3545949; Senechal E, 2011, OECOLOGIA, V165, P593, DOI 10.1007/s00442-010-1853-4; Shultz MT, 2009, MAR ECOL PROG SER, V393, P247, DOI 10.3354/meps08136; Si YL, 2015, SCI REP-UK, V5, DOI 10.1038/srep08749; Simonneaux V, 2013, FRONT NEUROSCI-SWITZ, V7, DOI 10.3389/fnins.2013.00022; Smith RK, 2005, MAMMAL REV, V35, P1, DOI 10.1111/j.1365-2907.2005.00057.x; Son YL, 2014, ENDOCRINOLOGY, V155, P1817, DOI 10.1210/en.2013-2076; Stawski C, 2014, J ZOOL, V292, P86, DOI 10.1111/jzo.12105; Stenseth NC, 2002, P NATL ACAD SCI USA, V99, P13379, DOI 10.1073/pnas.212519399; Stephens PA, 2014, ECOLOGY, V95, P882, DOI 10.1890/13-1434.1; Stephens PA, 2009, ECOLOGY, V90, P2057, DOI 10.1890/08-1369.1; Sun YX, 2007, NEUROENDOCRINOLOGY, V86, P215, DOI 10.1159/000109094; Tena-Sempere M, 2013, HORM METAB RES, V45, P919, DOI 10.1055/s-0033-1355399; Tena-Sempere M, 2013, ENDOCR DEV, V25, P69, DOI 10.1159/000346055; Thomas DW, 2001, SCIENCE, V291, P2598, DOI 10.1126/science.1057487; Turbill C, 2011, J EXP BIOL, V214, P963, DOI 10.1242/jeb.052282; Valencak TG, 2009, J EXP BIOL, V212, P231, DOI 10.1242/jeb.022640; Vander Wall S.B., 1990, FOOD HOARDING ANIMAL; Visser ME, 2015, PLOS BIOL, V13, DOI 10.1371/journal.pbio.1002120; Visser ME, 2010, PHILOS T R SOC B, V365, P3113, DOI 10.1098/rstb.2010.0111; Visser ME, 2005, P ROY SOC B-BIOL SCI, V272, P2561, DOI 10.1098/rspb.2005.3356; Wessels FJ, 2010, J INSECT PHYSIOL, V56, P1269, DOI 10.1016/j.jinsphys.2010.03.033; Williams CT, 2014, J ZOOL, V292, P112, DOI 10.1111/jzo.12103; Williams CT, 2016, ROY SOC OPEN SCI, V3, DOI 10.1098/rsos.160404; Williams CT, 2014, OECOLOGIA, V174, P777, DOI 10.1007/s00442-013-2826-1; Willisch CS, 2007, ETHOLOGY, V113, P97, DOI 10.1111/j.1439-0310.2006.01301.x; Wingfield JC, 2015, FRONT NEUROENDOCRIN, V37, P89, DOI 10.1016/j.yfrne.2014.11.005; WITTER MS, 1993, PHILOS T R SOC B, V340, P73, DOI 10.1098/rstb.1993.0050; Wood S, 2014, J ENDOCRINOL, V222, pR39, DOI 10.1530/JOE-14-0141; Wood SH, 2015, CURR BIOL, V25, P2651, DOI 10.1016/j.cub.2015.09.014; Yohannes E, 2010, J AVIAN BIOL, V41, P580, DOI 10.1111/j.1600-048X.2010.04965.x; Yoshimura T, 2003, NATURE, V426, P178, DOI 10.1038/nature02117 118 6 6 6 42 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8436 1471-2970 PHILOS T R SOC B Philos. Trans. R. Soc. B-Biol. Sci. NOV 19 2017 372 1734 20160250 10.1098/rstb.2016.0250 12 Biology Life Sciences & Biomedicine - Other Topics FJ3AE WOS:000412601700005 28993494 2018-11-22 J She, WW; Bai, YX; Zhang, YQ; Qin, SG; Liu, Z; Wu, B She, Weiwei; Bai, Yuxuan; Zhang, Yuqing; Qin, Shugao; Liu, Zhen; Wu, Bin Plasticity in Meristem Allocation as an Adaptive Strategy of a Desert Shrub under Contrasting Environments FRONTIERS IN PLANT SCIENCE English Article Artemisia ordosica; biomass allocation; desert shrub; life-history strategy; meristem fate; reproductive allocation; stressful environment MU US DESERT; REPRODUCTIVE ALLOCATION; RESOURCE-ALLOCATION; ARTEMISIA-ORDOSICA; HERBACEOUS PLANTS; NORTHERN CHINA; DUNE FIXATION; ALLOMETRY; GROWTH; AVAILABILITY The pattern of resource allocation to reproduction vs. vegetative growth is a core component of a plant's life-history strategy. Plants can modify their biomass allocation patterns to adapt to contrasting environments. Meristems can have alternative fates to commit to vegetative growth, reproduction, or remaining inactive (dormant or senescent/dead). However, knowledge about whether meristem fates can interpret adaptive changes in biomass allocation remains largely unknown. We measured aboveground plant biomass (a proxy of plant size) and meristem number of a dominant shrub Artemisia ordosica in three populations occupying different habitats in the Mu Us Desert of northern China. Size-dependent biomass allocation and meristem allocation among habitats were compared. The size-dependent biomass allocation and meristem allocation of A. ordosica strongly varied across habitats. There were significant positive linear relationships between meristem allocation and biomass allocation in all habitats, indicating that meristem allocation is an indicator of the estimated resource allocation to reproductive and vegetative organs in this species. Plasticity in meristem allocation was more likely caused by larger individuals having less active meristems due to environmental stress. Vegetative meristems (VM) were likely more vulnerable to environmental limitation than reproductive ones, resulting in the ratio of resource investment between vegetative and reproductive functions exhibiting plasticity in different habitats. A. ordosica invested a higher fraction of its resource to reproduction in the adverse habitat, while more resource to vegetative growth in the favorable habitat. A. ordosica adopts different resource allocation patterns to adapt to contrasting habitat conditions through altering its meristem fates. Our results suggest that the arid-adapted shrub A. ordosica deactivates more VM than reproductive ones to hedge against environmental stress, representing an important adaptive strategy. This information contributes to understand the life-history strategies of long-lived plants under stressful environments. [She, Weiwei; Bai, Yuxuan; Zhang, Yuqing; Qin, Shugao; Liu, Zhen; Wu, Bin] Beijing Forestry Univ, Sch Soil & Water Conservat, Yanchi Res Stn, Beijing, Peoples R China; [Zhang, Yuqing; Wu, Bin] Beijing Forestry Univ, Key Lab State Forestry Adm Soil & Water Conservat, Beijing, Peoples R China; [Qin, Shugao] Beijing Forestry Univ, Minist Educ, Engn Res Ctr Forestry Ecol Engn, Beijing, Peoples R China Zhang, YQ (reprint author), Beijing Forestry Univ, Sch Soil & Water Conservat, Yanchi Res Stn, Beijing, Peoples R China.; Zhang, YQ (reprint author), Beijing Forestry Univ, Key Lab State Forestry Adm Soil & Water Conservat, Beijing, Peoples R China. zhangyqbjfu@gmail.com National Natural Science Foundation of China [31470711]; National Key Research and Development Program of China [2016YFC0500905] This study was funded by the National Natural Science Foundation of China (31470711) and the National Key Research and Development Program of China (2016YFC0500905). Bonser SP, 2003, AM J BOT, V90, P404, DOI 10.3732/ajb.90.3.404; Bonser SP, 2001, J ECOL, V89, P72, DOI 10.1046/j.1365-2745.2001.00516.x; Bonser SP, 1996, OIKOS, V77, P347, DOI 10.2307/3546076; Bonser SP, 2009, PERSPECT PLANT ECOL, V11, P31, DOI 10.1016/j.ppees.2008.10.003; Delerue F, 2013, ANN FOREST SCI, V70, P219, DOI 10.1007/s13595-012-0260-x; DOUST JL, 1989, TRENDS ECOL EVOL, V4, P230, DOI 10.1016/0169-5347(89)90166-3; Gao GL, 2014, ECOL INDIC, V43, P236, DOI 10.1016/j.ecolind.2014.03.001; GEBER MA, 1990, EVOLUTION, V44, P799, DOI 10.1111/j.1558-5646.1990.tb03806.x; Gillespie LM, 2017, ANN BOT-LONDON, V119, P311, DOI 10.1093/aob/mcw264; Guo H, 2012, J ECOL, V100, P452, DOI 10.1111/j.1365-2745.2011.01884.x; Jia X, 2016, AGR FOREST METEOROL, V228, P120, DOI 10.1016/j.agrformet.2016.07.007; Jin Z, 2015, SCI REP-UK, V5, DOI 10.1038/srep14222; KOBAYASHI T, 1995, ECOL RES, V10, P339, DOI 10.1007/BF02347860; Lehtila K., 2005, REPROD ALLOCATION PL, P51; Li SL, 2011, J ECOL, V99, P610, DOI 10.1111/j.1365-2745.2010.01777.x; Li SL, 2010, ECOL RES, V25, P655, DOI 10.1007/s11284-010-0699-x; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; Poorter H, 2012, FRONT PLANT SCI, V3, DOI 10.3389/fpls.2012.00259; R Core Team, 2016, R LANG ENV STAT COMP; Reekie E., 2005, REPROD ALLOCATION PL, P189, DOI 10. 1016/B978-012088386-8/50007-7; Salguero-Gomez R, 2011, NEW PHYTOL, V189, P229, DOI 10.1111/j.1469-8137.2010.03447.x; Santos-del-Blanco L, 2013, J EVOLUTION BIOL, V26, P1912, DOI 10.1111/jeb.12187; She WW, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.01908; She WW, 2015, FORESTS, V6, P4529, DOI 10.3390/f6124385; Shefferson RP, 2009, J ECOL, V97, P1000, DOI 10.1111/j.1365-2745.2009.01525.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Tian DS, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0042833; Wang X. Y., 2008, RES SOIL WATER CONSE, V15, P38; Wang Y, 2016, BASIC APPL ECOL, V17, P388, DOI 10.1016/j.baae.2016.01.004; Warton DI, 2012, METHODS ECOL EVOL, V3, P257, DOI 10.1111/j.2041-210X.2011.00153.x; WATSON MA, 1984, AM NAT, V123, P411, DOI 10.1086/284212; Wei HX, 2016, ANN BOT-LONDON, V118, P541, DOI 10.1093/aob/mcw127; Weiner J, 2004, PERSPECT PLANT ECOL, V6, P207, DOI 10.1078/1433-8319-00083; Weiner J, 2009, J ECOL, V97, P1220, DOI 10.1111/j.1365-2745.2009.01559.x; Weiner J, 2009, BOTANY, V87, P475, DOI 10.1139/B09-012; Wickham H, 2009, USE R, P1, DOI 10.1007/978-0-387-98141-3_1; Xie JB, 2015, PERSPECT PLANT ECOL, V17, P454, DOI 10.1016/j.ppees.2015.09.007; [闫峰 Yan Feng], 2015, [地理研究, Geographical Research], V34, P455; Zhang HX, 2008, BOTANY, V86, P1291, DOI 10.1139/B08-079; Zhu L., 2015, THESIS 40 3 3 2 10 FRONTIERS MEDIA SA LAUSANNE PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND 1664-462X FRONT PLANT SCI Front. Plant Sci. NOV 9 2017 8 1933 10.3389/fpls.2017.01933 9 Plant Sciences Plant Sciences FM1SC WOS:000414759500001 29170676 DOAJ Gold, Green Published 2018-11-22 J Sato, N Sato, Noriyosi Seasonal changes in reproductive traits and paternity in the Japanese pygmy squid Idiosepius paradoxus MARINE ECOLOGY PROGRESS SERIES English Article Cephalopod; Microsatellites; Parentage; Multiple paternity; Seasonal change LOLIGO-VULGARIS-REYNAUDII; SPERM COMPETITION INTENSITY; MICROSATELLITE DNA ANALYSIS; CRYPTIC FEMALE CHOICE; MULTIPLE PATERNITY; PARENTAL GENOTYPES; GIANT CUTTLEFISH; OCTOPUS-VULGARIS; TEMPORAL-CHANGES; NORTHERN LIMITS Sperm production in males and sperm storage in females can change over an individual's reproductive timespan. This implies that the strength of sperm competition may also change with time. The seasonal pattern of reproductive traits and paternity in the Japanese pygmy squid, which has 2 life-history types (large and small types having long and short reproductive periods, respectively), were compared among 3 reproductive periods: early and late reproductive period of the large type and middle reproductive period of the small type. Although the gonad somatic index (GSI) decreased during one of the reproductive periods in males, the number of spermatophores and the spermatophoric complex somatic index (SCSI) increased. The GSI was higher in large-type males, whereas the SCSI was higher in the small type. Multiple paternity was de tected in all egg masses, and on average about 10 males were estimated to be sires in a single egg mass. Paternity numbers differed significantly between life-history types, whereas there were no significant differences between the early and late reproductive periods in the large type. These results imply that the Japanese pygmy squid is polyandrous and exposed to a very high level of sperm competition risk. Paternity numbers did not change during reproductive periods even when the reproductive traits changed between these periods. Seasonal changes in reproductive traits may have a minor effect on paternity in promiscuous animals. However, 2 life-history strategies were observed: large-type males, invested in transferring more sperm to one female, and small-type males that stored more spermatophores to copulate with many females. [Sato, Noriyosi] Nagasaki Univ, Grad Sch Fisheries Sci & Environm Studies, Nagasaki, Japan; [Sato, Noriyosi] Shimane Univ, Oki Marine Biol Stn, Matsue, Shimane, Japan Sato, N (reprint author), Nagasaki Univ, Grad Sch Fisheries Sci & Environm Studies, Nagasaki, Japan.; Sato, N (reprint author), Shimane Univ, Oki Marine Biol Stn, Matsue, Shimane, Japan. norico3000@gmail.com Sato, Noriyosi/0000-0001-5023-5375 Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists; faculty of Life and Environmental Science in Shimane University I thank 4 referees for their helpful comments. This research was financially supported by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists. The author also thanks the faculty of Life and Environmental Science in Shimane University for help in financial support for publishing this report. BIRKHEAD TR, 1991, BEHAV ECOL, V2, P267, DOI 10.1093/beheco/2.4.267; Birkhead TR, 1998, SPERM COMPETITION SE; Bo QK, 2016, MAR ECOL-EVOL PERSP, V37, P1073, DOI 10.1111/maec.12364; Boomsma JJ, 1998, BEHAV ECOL SOCIOBIOL, V42, P85, DOI 10.1007/s002650050415; Buresch KM, 2001, MAR ECOL PROG SER, V210, P161, DOI 10.3354/meps210161; Coleman SW, 2011, BIOL J LINN SOC, V103, P735, DOI 10.1111/j.1095-8312.2011.01673.x; Conrath CL, 2014, FISH B-NOAA, V112, P253, DOI 10.7755/FB.112.4.2; Demont M, 2011, FUNCT ECOL, V25, P1079, DOI 10.1111/j.1365-2435.2011.01861.x; Eberhard WG, 1996, FEMALE CONTROL SEXUA; Emery AM, 2001, MOL ECOL, V10, P1265, DOI 10.1046/j.1365-294X.2001.01258.x; Gomi T, 2008, ENTOMOL SCI, V11, P31, DOI 10.1111/j.1479-8298.2007.00245.x; Gonzalez-Pisani X, 2014, ZOOL SCI, V31, P244, DOI 10.2108/zs130089; Griffith SC, 2002, MOL ECOL, V11, P2195, DOI 10.1046/j.1365-294X.2002.01613.x; Iwata Y, 2005, MAR ECOL PROG SER, V298, P219, DOI 10.3354/meps298219; Iwata Y, 2015, J MOLLUS STUD, V81, P147, DOI 10.1093/mollus/eyu072; Iwata Y, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-236; Janssen R, 2015, ECOL EVOL, V5, P2916, DOI 10.1002/ece3.1560; Jones AG, 2005, MOL ECOL NOTES, V5, P708, DOI 10.1111/j.1471-8286.2005.01029.x; Jones OR, 2010, MOL ECOL RESOUR, V10, P551, DOI 10.1111/j.1755-0998.2009.02787.x; Kasugai T, 2013, THESIS; Kasugai Takashi, 2005, Phuket Marine Biological Center Research Bulletin, V66, P249; Kasugai Takashi, 2000, Venus the Japanese Journal of Malacology, V59, P37; Munehara H, 2010, ENVIRON BIOL FISH, V88, P323, DOI 10.1007/s10641-010-9644-7; Naud MJ, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0146995; Naud MJ, 2005, P ROY SOC B-BIOL SCI, V272, P1047, DOI 10.1098/rspb.2004.3031; Naud MJ, 2004, ANIM BEHAV, V67, P1043, DOI 10.1016/j.anbehav.2003.10.005; Olyott LJH, 2006, ICES J MAR SCI, V63, P1649, DOI 10.1016/j.icesjms.2006.06.011; Oosthuizen A, 2003, J MAR BIOL ASSOC UK, V83, P535, DOI 10.1017/S0025315403007458h; PARKER GA, 1970, BIOL REV, V45, P525, DOI 10.1111/j.1469-185X.1970.tb01176.x; Quinteiro J, 2011, MOLLUSCAN RES, V31, P15; R Development Core Team, 2015, R LANG ENV STAT COMP; Reichard M, 2008, MOL ECOL, V17, P642, DOI 10.1111/j.1365-294X.2007.03602.x; Salman A, 2004, J MAR BIOL ASSOC UK, V84, P781, DOI 10.1017/S0025315404009920; Sato N, 2008, J MAR BIOL ASSOC UK, V88, P391, DOI 10.1017/S0025315408000581; Sato N, 2017, EVOLUTION, V71, P111, DOI 10.1111/evo.13108; Sato N, 2013, AM MALACOL BULL, V31, P101, DOI 10.4003/006.031.0102; Sato N, 2014, EVOL BIOL, V41, P221, DOI 10.1007/s11692-013-9261-4; Sato N, 2013, MAR BIOL, V160, P553, DOI 10.1007/s00227-012-2112-5; Sato N, 2009, ICES J MAR SCI, V66, P811, DOI 10.1093/icesjms/fsp145; SAUER WH, 1990, S AFR J MARINE SCI, V9, P189; Shaw PW, 2004, MAR ECOL PROG SER, V270, P173, DOI 10.3354/meps270173; Shaw PW, 1997, MAR ECOL PROG SER, V160, P279, DOI 10.3354/meps160279; Simmons LW, 2007, MOL ECOL, V16, P4613, DOI 10.1111/j.1365-294X.2007.03528.x; Smith JM, 2005, AQUAT LIVING RESOUR, V18, P341, DOI 10.1051/alr:2005038; Squires ZE, 2015, BIOL J LINN SOC, V116, P277, DOI 10.1111/bij.12590; Squires ZE, 2014, MAR ECOL PROG SER, V511, P93, DOI 10.3354/meps10898; THORNHILL R, 1983, AM NAT, V122, P765, DOI 10.1086/284170; Uller T, 2008, MOL ECOL, V17, P2566, DOI 10.1111/j.1365-294X.2008.03772.x; Voight JR, 2009, INVERTEBR BIOL, V128, P26, DOI 10.1111/j.1744-7410.2008.00152.x; Wada T, 2005, J ETHOL, V23, P85, DOI 10.1007/s10164-005-0146-6; Wada T, 2010, ANIM BEHAV, V79, P613, DOI 10.1016/j.anbehav.2009.12.004; Wegener BJ, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0192 52 1 1 0 12 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. NOV 6 2017 582 121 131 10.3354/meps12338 11 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography FL9NA WOS:000414581400009 2018-11-22 J Vardakas, L; Kalogianni, E; Economou, AN; Koutsikos, N; Skoulikidis, NT Vardakas, Leonidas; Kalogianni, Eleni; Economou, Alcibiades N.; Koutsikos, Nicholas; Skoulikidis, Nikolaos T. Mass mortalities and population recovery of an endemic fish assemblage in an intermittent river reach during drying and rewetting FUNDAMENTAL AND APPLIED LIMNOLOGY English Article drought; endemic fish; mortality; recovery; intermittent stream; habitat; Mediterranean STREAM FISHES; MICROHABITAT USE; HEAT DEATH; DROUGHT; HABITAT; POOLS; SURVIVAL; EVENTS; COLONIZATION; CONSERVATION Desiccation and rewetting are the driving forces in intermittent streams that affect fish community attributes. A one-year field study was conducted at an intermittent reach of a Mediterranean river (Evrotas River, S. Greece) to assess the variation in fish community attributes (density, abundance, size structure and mortality of three endemic cyprinids) during the drying and the rewetting events, both at the reach and habitat scale. The progressive habitat shrinkage led initially to the confinement of the three species to the deepest habitats. The two smaller, limnophilic species, the Spartian minnowroach and the Evrotas minnow, exhibited higher resistance during the initial phase of the drought, attributed to their life-history strategies while the larger, habitat generalist Evrotas chub, presented lower resistance and high mortality rates, already at the onset of drought. Despite the high decrease in fish abundance, fish densities initially increased due to crowding effects. Upon flow resumption, fish rapidly recolonized the affected area, a sign of resilience of all species; however, total abundance and population size structure remained impacted. Identifying fish response patterns during drying and rewetting events in Mediterranean streams is extremely important from a biodiversity conservation perspective, especially under current climate change projections that indicate more frequent and extended drought events potentially leading to the decline and even the loss of threatened fish species. [Vardakas, Leonidas; Kalogianni, Eleni; Economou, Alcibiades N.; Koutsikos, Nicholas; Skoulikidis, Nikolaos T.] Hellen Ctr Marine Res, Inst Marine Biol Resources & Inland Waters, 46-7 Km Athens Souniou Ave,PO 19013Anavissos, Attica, Greece; [Vardakas, Leonidas] Univ Aegean, Dept Marine Sci, Univ Hill,PO 81100, Mitilini, Lesvos Island, Greece Vardakas, L (reprint author), Hellen Ctr Marine Res, Inst Marine Biol Resources & Inland Waters, 46-7 Km Athens Souniou Ave,PO 19013Anavissos, Attica, Greece.; Vardakas, L (reprint author), Univ Aegean, Dept Marine Sci, Univ Hill,PO 81100, Mitilini, Lesvos Island, Greece. louisvard@gmail.com European Union's Seventh Framework Programme [211732] The authors wish to thank D. Kommatas and Y. Papaspiratos for their participation in the field work and Th. Vavalidis and A. Vourka for their assistance in the statistical analyses. This research received funding from the European Union's Seventh Framework Programme (FP7/2007-2011) under grant agreement 211732 (MIRAGE project) and forms a part of L. Vardakas' PhD thesis at the University of the Aegean, Department of Marine Sciences, Greece. In order to conduct the field work, a permit was secured by the Ministry for Environment and Energy of Greece. Albanese B, 2009, FRESHWATER BIOL, V54, P1444, DOI 10.1111/j.1365-2427.2009.02194.x; Avery-Gomm S, 2014, CAN J FISH AQUAT SCI, V71, P1625, DOI 10.1139/cjfas-2013-0585; BAILEY RM, 1955, ECOLOGY, V36, P526, DOI 10.2307/1929598; Bernardo JM, 2003, RIVER RES APPL, V19, P521, DOI 10.1002/rra.726; Cowx I. G., 2003, CONSERVING NATURA 20, V4; Davey AJH, 2007, FRESHWATER BIOL, V52, P1719, DOI 10.1111/j.1365-2427.2007.01800.x; Dekar MP, 2007, ECOL FRESHW FISH, V16, P335, DOI 10.1111/j.1600-0633.2006.00226.x; DETENBECK NE, 1992, ENVIRON MANAGE, V16, P33, DOI 10.1007/BF02393907; Economou A.N., 1999, WORKSH WETL REST 12; Espirito-Santo HMV, 2017, ECOL FRESHW FISH, V26, P475, DOI 10.1111/eff.12292; Gasith A, 1999, ANNU REV ECOL SYST, V30, P51, DOI 10.1146/annurev.ecolsys.30.1.51; Grossman Gary D., 1994, Ecology of Freshwater Fish, V3, P141, DOI 10.1111/j.1600-0633.1994.tb00016.x; Hermoso V, 2011, MAR FRESHWATER RES, V62, P244, DOI 10.1071/MF09300; Hodges SW, 2011, AQUAT SCI, V73, P513, DOI 10.1007/s00027-011-0206-7; IUCN, 2016, IUCN RED LIST THREAT; Jonsson B, 2001, FUNCT ECOL, V15, P701, DOI 10.1046/j.0269-8463.2001.00572.x; Katz RA, 2015, CAN J FISH AQUAT SCI, V72, P1776, DOI 10.1139/cjfas-2015-0173; Kottelat Maurice, 2004, Ichthyological Exploration of Freshwaters, V15, P147; Lake PS, 2003, FRESHWATER BIOL, V48, P1161, DOI 10.1046/j.1365-2427.2003.01086.x; Larimore RW, 1959, T AM FISH SOC, V88, P261, DOI DOI 10.1577/1548-8659(1959)88[261:DAROSF]2.0.CO;2; Lonzarich DG, 1998, CAN J FISH AQUAT SCI, V55, P2141, DOI 10.1139/cjfas-55-9-2141; Magalhaes MF, 2007, FRESHWATER BIOL, V52, P1494, DOI 10.1111/j.1365-2427.2007.01781.x; Magoulick DD, 2003, FRESHWATER BIOL, V48, P1186, DOI 10.1046/j.1365-2427.2003.01089.x; Marsh-Matthews E, 2010, AM FISH S S, V73, P461; Marshall JC, 2016, FRESHWATER BIOL, V61, P1242, DOI 10.1111/fwb.12707; Martelo J, 2014, HYDROBIOLOGIA, V732, P93, DOI 10.1007/s10750-014-1850-4; Mas-Marti E, 2010, HYDROBIOLOGIA, V657, P167, DOI 10.1007/s10750-010-0292-x; Matthews W. J., 1998, PATTERNS FRESHWATER; MATTHEWS WJ, 1982, SOUTHWEST NAT, V27, P216, DOI 10.2307/3671147; MATTHEWS WJ, 1994, ENVIRON BIOL FISH, V39, P381, DOI 10.1007/BF00004807; Matthews WJ, 2003, FRESHWATER BIOL, V48, P1232, DOI 10.1046/j.1365-2427.2003.01087.x; May CL, 2004, N AM J FISH MANAGE, V24, P761, DOI 10.1577/M03-073.1; Meyer F. P., 1990, RESOURCE PUBLICATION, V177; Mosqueda C., 2011, P ENV SCI SEN THES S, P1; MUNDAHL ND, 1990, AM MIDL NAT, V123, P40, DOI 10.2307/2425758; NIEMI GJ, 1990, ENVIRON MANAGE, V14, P571, DOI 10.1007/BF02394710; Ostrand KG, 2000, TEX J SCI, V52, P255; Pavlov DS, 2008, HYDROBIOLOGIA, V609, P125, DOI 10.1007/s10750-008-9396-y; PETERSON JT, 1993, T AM FISH SOC, V122, P199, DOI 10.1577/1548-8659(1993)122<0199:CROFIE>2.3.CO;2; Pires AM, 1999, J FISH BIOL, V54, P235; Santos JM, 2008, AQUAT SCI, V70, P272, DOI 10.1007/s00027-008-8037-x; Sheldon A. L., 1994, COPEIA, V1994, P828; Skoulikidis NT, 2017, SCI TOTAL ENVIRON, V577, P1, DOI 10.1016/j.scitotenv.2016.10.147; Skoulikidis NT, 2017, SCI TOTAL ENVIRON, V575, P378, DOI 10.1016/j.scitotenv.2016.10.015; Skoulikidis NT, 2011, AQUAT SCI, V73, P581, DOI 10.1007/s00027-011-0228-1; Skoulikidis NT, 2009, LIMNOLOGICA, V39, P56, DOI 10.1016/j.limno.2008.01.002; Smilauer P., 1998, CANOCO REFERENCE MAN; Taylor CM, 1997, OECOLOGIA, V110, P560, DOI 10.1007/s004420050196; Taylor CM, 2001, ECOLOGY, V82, P2320, DOI 10.2307/2680234; TRAMER EJ, 1977, AM MIDL NAT, V97, P469, DOI 10.2307/2425110; Vardakas L, 2015, KNOWL MANAG AQUAT EC, DOI 10.1051/kmae/2015026; Vardakas L, 2017, AQUAT CONSERV, V27, P1270, DOI 10.1002/aqc.2735; Vlach P, 2005, FOLIA ZOOL, V54, P421; White RSA, 2016, GLOBAL CHANGE BIOL, V22, P3341, DOI 10.1111/gcb.13265 54 1 1 2 4 E SCHWEIZERBARTSCHE VERLAGSBUCHHANDLUNG STUTTGART NAEGELE U OBERMILLER, SCIENCE PUBLISHERS, JOHANNESSTRASSE 3A, D 70176 STUTTGART, GERMANY 1863-9135 FUND APPL LIMNOL Fundam. Appl. Limnol. NOV 2017 190 4 331 347 10.1127/fal/2017/1056 17 Limnology; Marine & Freshwater Biology Marine & Freshwater Biology FU3XJ WOS:000423785200006 2018-11-22 J de Oliveira, JC; de Queiroz, HL de Oliveira, Jomara Cavalcante; de Queiroz, Helder Lima Life history traits of two dwarf cichlids species in the white waters of the Amazonian floodplain ENVIRONMENTAL BIOLOGY OF FISHES English Article Reproductive biology; Apistogramma; First maturity; Varzea lakes PERCIFORMES CICHLIDAE; POPULATION REGULATION; REPRODUCTIVE-BIOLOGY; RIVER FLOODPLAINS; SEXUAL-DIMORPHISM; AMERICAN FISHES; ECOLOGY; PATTERNS The reproductive parameters are among the most important life history aspects of fishes influenced by environmental variation. During recent years, the main life history strategies of Amazonian fish species were defined mostly by a set of reproductive parameters. In the present work, we sought to describe important life history parameters, in particular on reproductive characteristics of Apistogramma agassizii and Apistogramma bitaeniata, found in floodplain lakes of the Brazilian Amazonia. The species presented a positive sexual dimorphism, and males were significantly bigger than females. For both sexes, four developmental phase of gonad maturation were detected, and based on those it was possible to identify mature, reproductive specimens throughout the entire period of the study. From the ovaries of mature females, fecundity and spawning type were determined. Low fecundity, short spawning periods, possibly separated only by few months, and total spawning are all good indications that A. agassizii and A. bitaeniata evolved an opportunistic strategy in their life history. [de Oliveira, Jomara Cavalcante; de Queiroz, Helder Lima] Inst Desenvolvimento Sustentavel Mamiraua, Lab Ecol & Biol Fishes, Tefe, AM, Brazil de Oliveira, JC (reprint author), Inst Desenvolvimento Sustentavel Mamiraua, Lab Ecol & Biol Fishes, Tefe, AM, Brazil. jomaracoliveira@gmail.com Instituto de Desenvolvimento Sustentavel Mamiraua - IDSM; Brazilian Ministry of Science, Technology and Innovation - MCTIC; INCT/ADAPTA We thank Jonas A. Oliveira for the help during work in the field and during identification of the specimens. Instituto de Desenvolvimento Sustentavel Mamiraua - IDSM provided support in the logistics and infrastructure, and partially funded the study. The Brazilian Ministry of Science, Technology and Innovation - MCTIC, and INCT/ADAPTA, supervised by Adalberto Val, provided the additional funds. We are very thankful to all field assistants involved, essential for the completion of this project. The ethical committee of Instituto de Desenvolvimento Sustentavel Mamiraua - IDSM, CEUAP Protocol 003/2013, granted the license necessary to carry this research project. ARAK A, 1988, EVOLUTION, V42, P820, DOI 10.1111/j.1558-5646.1988.tb02501.x; Aranha Jose Marcelo Rocha, 1999, Revista Brasileira de Zoologia, V16, P637; Ayres M, 2007, BIOESTAT APLICACOES, P324; Bromley PJ, 2003, ICES J MAR SCI, V60, P52, DOI 10.1006/jmsc.2002.1318; Brown-Peterson NJ, 2011, MAR COAST FISH, V3, P52, DOI 10.1080/19425120.2011.555724; Cacho MDRF, 2006, NEOTROP ICHTHYOL, V4, P87, DOI 10.1590/S1679-62252006000100009; Chellappa S., 2005, Braz. J. Biol., V65, P609, DOI 10.1590/S1519-69842005000400007; Chellappa S, 1999, VAL VMF BIOL TROPICA, P113; Crampton WGR, 2008, NEOTROP ICHTHYOL, V6, P599, DOI 10.1590/S1679-62252008000400008; de Araujo AS, 2012, SCI WORLD J, DOI 10.1100/2012/579051; de Lima AC, 2004, FRESHWATER BIOL, V49, P787, DOI 10.1111/j.1365-2427.2004.01228.x; Dias RL, 2003, ANAIS S BRASILEIRO A, V2, P135; Duponchelle F, 2008, P NATL ACAD SCI USA, V105, P15475, DOI 10.1073/pnas.0802343105; Espirito-Santo HMV, 2013, FRESHWATER BIOL, V58, P2494, DOI 10.1111/fwb.12225; Favero JMD, 2010, REV BRASILEIRA DEZOO, V12, P373; Godinho AL, 2010, ENVIRON BIOL FISH, V87, P143, DOI 10.1007/s10641-009-9574-4; da Silva TCG, 2015, AQUAT BIOL, V24, P35, DOI 10.3354/ab00631; Guerrero HY, 2009, FISH PHYSIOL BIOCHEM, V35, P189, DOI 10.1007/s10695-008-9249-7; Hercos AP, 2009, PEIXES ORNAMENTAIS R, P241; ITUASSU D. R., 2006, CICHLID ATLAS 2 NATU, V2, P352; Junk WJ, 2015, WETL ECOL MANAG, V23, P677, DOI 10.1007/s11273-015-9412-8; Lira de Souza Rosangela, 2011, Uakari, V7, P41; Louca V, 2010, J FISH BIOL, V76, P2469, DOI 10.1111/j.1095-8649.2010.02634.x; Lowe-McConnell RH, 1999, ESTUDOS ECOLOGICOS C, P374; Mims MC, 2012, ECOLOGY, V93, P35, DOI 10.1890/11-0370.1; Nikolsky G. V., 1963, ECOLOGY FISHES, P352; Pellegrin J., 1936, Bulletin Soc Acclimat France, V83, P56; Petry P, 2003, J FISH BIOL, V63, P547, DOI 10.1046/j.1095-8649.2003.00169.x; Pires THS, 2015, ENVIRON BIOL FISH, V98, P789, DOI 10.1007/s10641-014-0314-z; Prudente BD, 2015, ENVIRON BIOL FISH, V98, P11, DOI 10.1007/s10641-014-0232-0; QUEIROZ H. L., 2007, UAKARI, V3, P19; Rangel-Serpa F, 2015, NEOTROP ICHTHYOL, V13, P421, DOI 10.1590/1982-0224-20140091; Romer U, 2006, CICHLID ATLAS 2 NATU, V2, P398; Romer U, 2000, CICHLID ATLAS 1 NATU, V1, P27; Rossoni F, 2010, NEOTROP ICHTHYOL, V8, P379, DOI 10.1590/S1679-62252010000200018; Steindachner F, 1875, MATH NATURWISSENSCHA, V1, P61; Sturges HA, 1926, J AM STAT ASSOC, V21, P65, DOI 10.1080/01621459.1926.10502161; Vanin AS, 2017, ENVIRON BIOL FISH, V100, P69, DOI 10.1007/s10641-016-0556-z; Vazzoler AEAM, 1996, BIOL REPROD PEIXES T, P169; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Wootton R.J., 1984, P1; Zar J. H., 2009, BIOSTAT ANAL, P994 44 0 0 3 6 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0378-1909 1573-5133 ENVIRON BIOL FISH Environ. Biol. Fishes NOV 2017 100 11 1497 1505 10.1007/s10641-017-0660-8 9 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology FN4IA WOS:000415967500011 2018-11-22 J Hodgson, JG; Santini, BA; Marti, GM; Pla, FR; Jones, G; Bogaard, A; Charles, M; Font, X; Ater, M; Taleb, A; Poschlod, P; Hmimsa, Y; Palmer, C; Wilson, PJ; Band, SR; Styring, A; Diffey, C; Green, L; Nitsch, E; Stroud, E; Romo-Diez, A; Espuny, LD; Warham, G Hodgson, John G.; Santini, Bianca A.; Montserrat Marti, Gabriel; Royo Pla, Ferran; Jones, Glynis; Bogaard, Amy; Charles, Mike; Font, Xavier; Ater, Mohammed; Taleb, Abdelkader; Poschlod, Peter; Hmimsa, Younes; Palmer, Carol; Wilson, Peter J.; Band, Stuart R.; Styring, Amy; Diffey, Charlotte; Green, Laura; Nitsch, Erika; Stroud, Elizabeth; Romo-Diez, Angel; de Torres Espuny, Lluis; Warham, Gemma Trade-offs between seed and leaf size (seed-phytomer-leaf theory): functional glue linking regenerative with life history strategies aEuro broken vertical bar and taxonomy with ecology? ANNALS OF BOTANY English Article Allometry; canopy height; canopy structure; evolutionary canalization; functional traits; leaf dry matter content; leaf width; photosynthetic stems; phylogeny; phytomer; seed-phytomer-leaf (SPL) theory; trade-offs RELATIVE GROWTH-RATE; PLANT TRAITS; ECONOMICS SPECTRUM; SHEFFIELD FLORA; WEIGHT RECORDS; WOODY-PLANTS; LOCAL FLORA; BIG PLANTS; EVOLUTIONARY; MASS Background and Aims While the 'worldwide leaf economics spectrum' (Wright IJ, Reich PB, Westoby M, et al. 2004. The worldwide leaf economics spectrum. Nature428: 821-827) defines mineral nutrient relationships in plants, no unifying functional consensus links size attributes. Here, the focus is upon leaf size, a much-studied plant trait that scales positively with habitat quality and components of plant size. The objective is to show that this wide range of relationships is explicable in terms of a seed-phytomer-leaf (SPL) theoretical model defining leaf size in terms of trade-offs involving the size, growth rate and number of the building blocks (phytomers) of which the young shoot is constructed. Methods Functional data for 2400+ species and English and Spanish vegetation surveys were used to explore interrelationships between leaf area, leaf width, canopy height, seed mass and leaf dry matter content (LDMC). Key Results Leaf area was a consistent function of canopy height, LDMC and seed mass. Additionally, size traits are partially uncoupled. First, broad laminas help confer competitive exclusion while morphologically large leaves can, through dissection, be functionally small. Secondly, leaf size scales positively with plant size but many of the largest-leaved species are of medium height with basally supported leaves. Thirdly, photosynthetic stems may represent a functionally viable alternative to 'small seeds + large leaves' in disturbed, fertile habitats and 'large seeds + small leaves' in infertile ones. Conclusions Although key elements defining the juvenile growth phase remain unmeasured, our results broadly support SPL theory in that phytometer and leaf size are a product of the size of the initial shoot meristem (a parts per thousand... seed mass) and the duration and quality of juvenile growth. These allometrically constrained traits combine to confer ecological specialization on individual species. Equally, they appear conservatively expressed within major taxa. Thus, 'evolutionary canalization' sensu Stebbins (Stebbins GL. 1974. Flowering plants: evolution above the species level. Cambridge, MA: Belknap Press) is perhaps associated with both seed and leaf development, and major taxa appear routinely specialized with respect to ecologically important size-related traits. [Hodgson, John G.; Wilson, Peter J.; Band, Stuart R.] Univ Sheffield, Unit Comparat Plant Ecol, Sheffield S1 4ET, S Yorkshire, England; [Hodgson, John G.; Jones, Glynis; Palmer, Carol; Warham, Gemma] Univ Sheffield, Dept Archaeol, Sheffield S10 2TH, S Yorkshire, England; [Santini, Bianca A.] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN`, S Yorkshire, England; [Santini, Bianca A.] Univ Nacl Autonoma Mexico, Inst Ecol, Mexico City 04500, DF, Mexico; [Montserrat Marti, Gabriel] Inst Pirenaico Ecol CSIC, Dept Ecol Func & Biodiversidad, Aptdo 202, Zaragoza 30080, Spain; [Royo Pla, Ferran; de Torres Espuny, Lluis] Grp Recerca Cient Terres Ebre, C Rosa Maria Molas,25 A,2n B, Tortosa 43500, Spain; [Bogaard, Amy; Charles, Mike; Styring, Amy; Diffey, Charlotte; Green, Laura; Nitsch, Erika; Stroud, Elizabeth] Univ Oxford, Sch Archaeol, 36 Beaumont St, Oxford OX1 2PG, England; [Font, Xavier] Univ Barcelona, Dept Plant Biol, E-08028 Barcelona, Spain; [Ater, Mohammed; Hmimsa, Younes] Univ Abdelmalek Essaadi, Lab Diversite & Conservat Syst Biol LDICOSYB, Dept Biol, Fac Sci Tetouan, BP 2062, Tetouan 93030, Morocco; [Taleb, Abdelkader] Inst Agron & Vet Hassan II, Rabat, Morocco; [Poschlod, Peter] Univ Regensburg, Inst Bot, Fac Biol & Preclin Med, D-93040 Regensburg, Germany; [Romo-Diez, Angel] Inst Bot Barcelona, Parc Montju,Ave Muntanyans S-N, Barcelona 08038, Spain Hodgson, JG (reprint author), Univ Sheffield, Unit Comparat Plant Ecol, Sheffield S1 4ET, S Yorkshire, England.; Hodgson, JG (reprint author), Univ Sheffield, Dept Archaeol, Sheffield S10 2TH, S Yorkshire, England. j.hodgson@sheffield.ac.uk Natural Environment Research Council (UK); Comision Interministerial de Ciencia y Tecnologia (Spain); European Research Council (AGRICURB project) A considerable quantity of the data used in this project was collected during projects funded by Natural Environment Research Council (UK), Comision Interministerial de Ciencia y Tecnologia (Spain) and the European Research Council (AGRICURB project). We thank Philip Grime and other former colleagues for access to unpublished datasets from the Unit of Comparative Plant Ecology, Karl Niklas for his helpful contribution on biomechanics and Rafel Curto, Salvador Cardero Aguilera, Bryan Wheeler, Kathryn Hodgson and Chris Franks, who provided the photographs for Fig. 7. The paper, while only reflecting the views of the authors, has been enhanced by the insightful comments of Mark Rees and Bill Shipley and those of Simon Pierce, Trude Schwarzacher and a further anonymous reviewer. Aedo C., 1980, FLORA IBERICA PLANTA; BARLOW PW, 1994, BIOL REV, V69, P475, DOI 10.1111/j.1469-185X.1994.tb01248.x; Baskin CC, 2014, SEEDS: ECOLOGY, BIOGEOGRAPHY, AND EVOLUTION OF DORMANCY AND GERMINATION, 2ND EDITION, P1; Bolmgren K, 2008, OIKOS, V117, P424, DOI 10.1111/j.2007.0030-1299.16142.x; BOUTIN C, 1993, J VEG SCI, V4, P591, DOI 10.2307/3236124; Braun Blanquet J, 1953, ANALES ESTACION EXPT, V5; Bunting AH, 1966, GROWTH CEREALS GRASS, P20; Byng JW, 2016, BOT J LINN SOC, V181, P1, DOI 10.1111/boj.12385; CARTER RN, 1981, NATURE, V293, P644, DOI 10.1038/293644a0; Cerabolini BEL, 2010, PLANT ECOL, V210, P253, DOI 10.1007/s11258-010-9753-6; Cornelissen JHC, 1999, OECOLOGIA, V118, P248, DOI 10.1007/s004420050725; CORNER EJH, 1949, ANN BOT-LONDON, V13, P367, DOI 10.1093/oxfordjournals.aob.a083225; Cornwell WK, 2014, J ECOL, V102, P345, DOI 10.1111/1365-2745.12208; CSONTOS P, 2007, STUD BOT HUNG, V38, P179; Csontos P., 2003, STUDIA BOT HUNG, V34, P121; de Bello F, 2015, FOLIA GEOBOT, V50, P349, DOI 10.1007/s12224-015-9228-6; Diaz S, 2004, J VEG SCI, V15, P295, DOI 10.1111/j.1654-1103.2004.tb02266.x; Diaz S, 2016, NATURE, V529, P167, DOI 10.1038/nature16489; DIGGLE PK, 1995, ANNU REV ECOL SYST, V26, P531, DOI 10.1146/annurev.es.26.110195.002531; Dosio GAA, 2003, J EXP BOT, V54, P2541, DOI 10.1093/jxb/erg279; Edwards W, 2000, J BIOGEOGR, V27, P733, DOI 10.1046/j.1365-2699.2000.00424.x; Evans GC, 1972, QUANTITATIVE ANAL PL; Fenner M, 2005, ECOLOGY SEEDS; Font X., 2012, Plant Sociology, V49, P89, DOI 10.7338/pls2012492/07; Gagnon MJ, 1996, INT J PLANT SCI, V157, P262, DOI 10.1086/297345; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; Griffith AB, 2016, J ECOL, V104, P271, DOI 10.1111/1365-2745.12547; Grime J. P., 2001, PLANT STRATEGIES VEG; Grime J.P., 2007, COMP PLANT ECOLOGY; GRIME JP, 1975, J ECOL, V63, P393, DOI 10.2307/2258728; Grime JP, 2012, EVOLUTIONARY STRATEG; Harper J L., 1977, POPULATION BIOL PLAN; HARVEY PH, 1995, J ECOL, V83, P535, DOI 10.2307/2261606; Hodgson JG, 2011, ANN BOT-LONDON, V108, P1337, DOI 10.1093/aob/mcr225; Hodgson JG, 2010, ANN BOT-LONDON, V105, P573, DOI 10.1093/aob/mcq011; Hodgson JG, 1999, OIKOS, V85, P282, DOI 10.2307/3546494; Hodgson JG, 2005, BASIC APPL ECOL, V6, P119, DOI 10.1016/j.baae.2005.01.006; HODGSON JG, 1986, BIOL CONSERV, V36, P275, DOI 10.1016/0006-3207(86)90054-6; HODGSON JG, 1986, BIOL CONSERV, V36, P297, DOI 10.1016/0006-3207(86)90055-8; HODGSON JG, 1986, NEW PHYTOL, V104, P497, DOI 10.1111/j.1469-8137.1986.tb02916.x; Hodgson JG, 1989, PLANT TODAY, V2, P132; Hoyle GL, 2015, FRONTIERS PLANT SCI, V6; Hunt R, 1982, PLANT GROWTH CURVES; Hunt R, 2007, ANN BOT-LONDON, V99, P1023, DOI 10.1093/aob/mcm037; Iida Y, 2014, J ECOL, V102, P641, DOI 10.1111/1365-2745.12221; Kattge J, 2011, GLOBAL CHANGE BIOL, V17, P2905, DOI 10.1111/j.1365-2486.2011.02451.x; Keddy P, 2002, J VEG SCI, V13, P5, DOI 10.1658/1100-9233(2002)013[0005:RCPOSO]2.0.CO;2; Kleyer M, 2008, J ECOL, V96, P1266, DOI 10.1111/j.1365-2745.2008.01430.x; LECHOWICZ MJ, 1984, AM NAT, V124, P821, DOI 10.1086/284319; LEISHMAN MR, 1992, J ECOL, V80, P417, DOI 10.2307/2260687; Leslie AB, 2014, NEW PHYTOL, V203, P1119, DOI 10.1111/nph.12864; Lovett DL, 1981, J ECOL, V69, P743, DOI DOI 10.2307/2259633; MAZER SJ, 1989, ECOL MONOGR, V59, P153, DOI 10.2307/2937284; McDonald PG, 2003, FUNCT ECOL, V17, P50, DOI 10.1046/j.1365-2435.2003.00698.x; McMaster GS, 2005, J AGR SCI, V143, P137, DOI [10.1017/S0021859605005083, 10.1017/S0021859605005082]; Metcalf JC, 2003, TRENDS ECOL EVOL, V18, P471, DOI 10.1016/S0169-5347(03)00162-9; Metcalfe C. R., 1979, ANATOMY DICOTYLEDONS; MIDGLEY J, 1989, OECOLOGIA, V78, P427, DOI 10.1007/BF00379120; Moles AT, 2009, J ECOL, V97, P923, DOI 10.1111/j.1365-2745.2009.01526.x; Moles AT, 2006, OIKOS, V113, P91, DOI 10.1111/j.0030-1299.2006.14194.x; Moles AT, 2005, P NATL ACAD SCI USA, V102, P10540, DOI 10.1073/pnas.0501473102; MULLER F. M, 1978, SEEDLINGS N W EUROPE; Niklas K.J., 1994, PLANT ALLOMETRY SCAL; NIKLAS KJ, 1993, AM J BOT, V80, P461, DOI 10.2307/2445392; Oborny B, 2012, ECOL MODEL, V234, P3, DOI 10.1016/j.ecolmodel.2012.03.010; Panchen ZA, 2014, NEW PHYTOL, V203, P1208, DOI 10.1111/nph.12892; Parmesan C, 2015, ANN BOT-LONDON, V116, P849, DOI 10.1093/aob/mcv169; Perez-Harguindeguy N, 2013, AUST J BOT, V61, P167, DOI 10.1071/BT12225; Pierce S, 2017, FUNCT ECOL, V31, P444, DOI 10.1111/1365-2435.12722; Pierce S, 2014, PLANT ECOL, V215, P1351, DOI 10.1007/s11258-014-0392-1; Pla F Royo, 2006, FLORA VEGETACIO PLAN; PRIMACK RB, 1987, ANNU REV ECOL SYST, V18, P409, DOI 10.1146/annurev.es.18.110187.002205; Raunkiaer C, 1934, LIFE FORMS PLANTS ST; Rees M, 1996, PHILOS T ROY SOC B, V351, P1299, DOI 10.1098/rstb.1996.0113; Rees M, 2007, J ECOL, V95, P926, DOI 10.1111/j.1365-2745.2007.01277.x; Rees M, 2010, AM NAT, V176, pE152, DOI 10.1086/657037; Rivas-Martinez S., 2002, ITINERA GEOBOT, V15, P5; Royal Botanic Gardens of Kew, 2015, SEED INF DAT SID VER; Salguero-Gomez R, 2015, J ECOL, V103, P202, DOI 10.1111/1365-2745.12334; Salisbury E. J., 1942, REPROD CAPACITY PLAN; Santini BA, 2016, THESIS; Santini BA, 2017, FUNCT ECOL, V31, P1770, DOI 10.1111/1365-2435.12870; Schoener TW, 2011, SCIENCE, V331, P426, DOI 10.1126/science.1193954; SCHUEPP PH, 1993, NEW PHYTOL, V125, P477, DOI 10.1111/j.1469-8137.1993.tb03898.x; Schweingruber F. H., 2005, Forest Snow and Landscape Research, V79, P195; Shipley B, 2006, ECOLOGY, V87, P535, DOI 10.1890/05-1051; Shipley B, 2006, FUNCT ECOL, V20, P565, DOI 10.1111/j.1365-2435.2006.01135.x; Shipley B, 2002, NEW PHYTOL, V153, P359, DOI 10.1046/j.0028-646X.2001.00320.x; SHIPLEY B, 1989, J ECOL, V77, P1093, DOI 10.2307/2260825; Shipley B, 2016, OECOLOGIA, V180, P923, DOI 10.1007/s00442-016-3549-x; Smith DD, 2017, ANN BOT-LONDON, V119, P447, DOI 10.1093/aob/mcw231; Sonnier G, 2012, OIKOS, V121, P1103, DOI 10.1111/j.1600-0706.2011.19871.x; Stebbins GL, 1974, FLOWERING PLANTS EVO; THOMPSON K, 1989, AM NAT, V133, P722, DOI 10.1086/284947; Toeroek P., 2013, Acta Botanica Hungarica, V55, P429, DOI 10.1556/ABot.55.2013.3-4.17; Tozer WC, 2015, AM J BOT, V102, P367, DOI 10.3732/ajb.1400379; Tutin T. G., 1964, FLORA EUROPAEA, V1-5; Valladares F, 2008, ANNU REV ECOL EVOL S, V39, P237, DOI 10.1146/annurev.ecolsys.39.110707.173506; Warman L, 2011, OIKOS, V120, P813, DOI 10.1111/j.1600-0706.2010.19344.x; Warton DI, 2006, BIOL REV, V81, P259, DOI 10.1017/S1464793106007007; Westoby M, 2002, ANNU REV ECOL SYST, V33, P125, DOI 10.1146/annurev.ecolsys.33.010802.150452; WESTOBY M, 1995, J ECOL, V83, P531, DOI 10.2307/2261605; Westoby M, 2006, ECOLOGY, V87, pS163, DOI 10.1890/0012-9658(2006)87[163:PEAWSA]2.0.CO;2; WHITE J, 1979, ANNU REV ECOL SYST, V10, P109, DOI 10.1146/annurev.es.10.110179.000545; White J., 1984, PERSPECTIVES PLANT P, P15; WHITE PS, 1983, NEW PHYTOL, V95, P139, DOI 10.1111/j.1469-8137.1983.tb03477.x; Wiens JJ, 2010, ECOL LETT, V13, P1310, DOI 10.1111/j.1461-0248.2010.01515.x; Wright IJ, 2007, ANN BOT-LONDON, V99, P1003, DOI 10.1093/aob/mcl066; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Yates MJ, 2010, FUNCT ECOL, V24, P485, DOI 10.1111/j.1365-2435.2009.01678.x 110 2 2 4 18 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0305-7364 1095-8290 ANN BOT-LONDON Ann. Bot. NOV 2017 120 5 SI 633 652 10.1093/aob/mcx084 20 Plant Sciences Plant Sciences FM5JW WOS:000415071400003 28961937 Bronze 2018-11-22 J Naya, DE; Lardies, MA; Bozinovic, F Naya, Daniel E.; Lardies, Marco A.; Bozinovic, Francisco Physiological and life-history plasticity in a harvestman species: contrasting laboratory with field data ANNALES ZOOLOGICI FENNICI English Article BASAL METABOLIC-RATE; RESOURCE-ALLOCATION; DIET QUALITY; AMINO-ACIDS; CLUTCH SIZE; BODY-SIZE; FOOD; OPILIONES; ECOLOGY; REPRODUCTION Phenotypic plasticity is defined as the ability of an organism to produce different phenotypes in response to changes in internal or external environmental conditions. Experimental modification of animal diets has been widely used to study phenotypic plasticity in physiological and life-history traits. Here we compared the data from a previous experiment, conducted in a harvestman species, that was aimed to evaluate the effect of diet quality on maintenance costs (standard metabolic rate), growth rate, internal organ size (visceral mass) and fecundity (clutch mass and egg number), with new data obtained from field (mark-recapture) specimens. We assumed that of the two experimental diets tested before, animals in the field would probably consume the one of intermediate quality (i.e. have a generalist omnivorous diet), and then, we predicted that field animals should exhibit intermediate values for both physiological and life-history traits. We found that field animals and animals consuming a high quality diet showed a greater growth rate than animals consuming a poor quality diet. In addition, animals consuming a high quality diet showed a larger clutch mass than both field animals and animals consuming a poor quality diet, which, in turn, was related to higher maintenance costs. Our results illustrate how animals adopt different life history strategies according to the quality of the diet that is available, which is correlated with phenotypic adjustments at the anatomical and physiological levels. [Naya, Daniel E.] Univ Republica, Dept Ecol & Evoluc, Fac Ciencias, Igua 4225, Montevideo 11400, Uruguay; [Lardies, Marco A.] Univ Adolfo Ibanez, Dept Ciencias, Fac Artes Liberales, Santiago 6513677, Chile; [Bozinovic, Francisco] Pontificia Univ Catolica Chile, Ctr Appl Ecol & Sustainabil CAPES, Dept Ecol, Fac Ciencias Biol, Santiago 6513677, Chile Naya, DE (reprint author), Univ Republica, Dept Ecol & Evoluc, Fac Ciencias, Igua 4225, Montevideo 11400, Uruguay. dnaya@fcien.edu.uy Lardies, Marco/0000-0003-3525-1830 FONDECYT [3060046, 1140092]; Fondo Basal [FB 0002-2014] We thank Valentina Franco-Trecu for valuable comments to the original draft. This work was funded by FONDECYT 3060046 to DEN and 1140092 to MAL, and Fondo Basal FB 0002-2014 to FB. All experiments were conducted according to current Chilean law, and under permit SAG 698. Acosta Luis E., 2007, P309; Allard CM, 2005, ENVIRON ENTOMOL, V34, P6, DOI 10.1603/0046-225X-34.1.6; Bauerfeind SS, 2005, OIKOS, V111, P514, DOI 10.1111/j.0030-1299.2005.13888.x; Boggs CL, 2005, OECOLOGIA, V144, P353, DOI 10.1007/s00442-005-0076-6; BOGGS CL, 1992, FUNCT ECOL, V6, P508, DOI 10.2307/2390047; Brent CS, 2002, ENVIRON ENTOMOL, V31, P313, DOI 10.1603/0046-225X-31.2.313; Chang CL, 2004, ANN ENTOMOL SOC AM, V97, P529, DOI 10.1603/0013-8746(2004)097[0529:EOAAOL]2.0.CO;2; Chown S. L., 2004, INSECT PHYSL ECOLOGY; Cruz-Neto AP, 2004, PHYSIOL BIOCHEM ZOOL, V77, P877, DOI 10.1086/425187; Dmitriew C, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017399; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Gnaspini P, 1996, J ZOOL, V239, P417, DOI 10.1111/j.1469-7998.1996.tb05933.x; Helland S, 2003, MAR BIOL, V142, P1141, DOI 10.1007/s00227-003-1045-4; Jaksic FM, 2001, REV CHIL HIST NAT, V74, P477; KARASOV WH, 1986, TRENDS ECOL EVOL, V1, P101, DOI 10.1016/0169-5347(86)90034-0; Karasov WH, 2007, PHYSL ECOLOGY ANIMAL; Kleinteich A, 2015, OIKOS, V124, P130, DOI 10.1111/oik.01421; Lardies MA, 2004, J INSECT PHYSIOL, V50, P1127, DOI 10.1016/j.jinsphys.2004.10.005; Lardies MA, 2008, PHYSIOL ENTOMOL, V33, P193, DOI 10.1111/j.1365-3032.2008.00621.x; Machado G, 2000, J ARACHNOL, V28, P357, DOI 10.1636/0161-8202(2000)028[0357:TUOFBT]2.0.CO;2; Manly BFJ, 1986, MULTIVARIATE STAT ME; MARSHALL SD, 1994, FUNCT ECOL, V8, P118, DOI 10.2307/2390120; Mgbenka BO, 2005, AQUAC RES, V36, P479, DOI 10.1111/j.1365-2109.2005.01231.x; Naya DE, 2007, J INSECT PHYSIOL, V53, P132, DOI 10.1016/j.jinsphys.2006.11.004; Nespolo RF, 2002, J EXP BIOL, V205, P2697; Nyffeler M, 2001, ECOL ENTOMOL, V26, P617, DOI 10.1046/j.1365-2311.2001.00365.x; PHILLIPSON J, 1962, OIKOS, V13, P311, DOI 10.2307/3565092; POUGH FH, 1989, PHYSIOL ZOOL, V62, P199, DOI 10.1086/physzool.62.2.30156169; Roff D. A., 2002, EVOLUTION LIFE HIST; Sabino J, 1999, J ARACHNOL, V27, P675; Schaus MH, 2013, J ARACHNOL, V41, P219, DOI 10.1636/P12-88.1; Schmitz A, 2005, PHYSIOL ENTOMOL, V30, P75, DOI 10.1111/j.0307-6962.2005.00434.x; Sibly R.M., 1981, P109; SIBLY RM, 1991, FUNCT ECOL, V5, P184, DOI 10.2307/2389256; Skow CD, 2003, J ARACHNOL, V31, P305, DOI 10.1636/01-85; Speakman JR, 1996, PHYSIOL ZOOL, V69, P746, DOI 10.1086/physzool.69.4.30164228; Sterner Robert W., 1998, Aquatic Ecology, V32, P261, DOI 10.1023/A:1009949400573; Taylor EN, 2005, OECOLOGIA, V144, P206, DOI 10.1007/s00442-005-0056-x; Toft S, 1999, OECOLOGIA, V119, P191, DOI 10.1007/s004420050776; Vanfleteren JR, 1996, J EXP ZOOL, V274, P93; WEINER J, 1992, TRENDS ECOL EVOL, V7, P384, DOI 10.1016/0169-5347(92)90009-Z; YANG Y, 1994, FUNCT ECOL, V8, P36, DOI 10.2307/2390109; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zhang ZQ, 2011, ZOOTAXA, P7, DOI 10.11646/zootaxa.3703.1.1 44 0 0 1 8 FINNISH ZOOLOGICAL BOTANICAL PUBLISHING BOARD UNIV HELSINKI P O BOX 26, FI-00014 UNIV HELSINKI, FINLAND 0003-455X 1797-2450 ANN ZOOL FENN Ann. Zool. Fenn. NOV 2017 54 5-6 293 300 8 Ecology; Zoology Environmental Sciences & Ecology; Zoology FM4GD WOS:000414971000001 2018-11-22 J Serrano-Davies, E; O'Shea, W; Quinn, JL Serrano-Davies, Eva; O'Shea, William; Quinn, John L. Individual foraging preferences are linked to innovativeness and personality in the great tit BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article Personality; Daily food intake; Energy; Exploratory behaviour; Great tit PROBLEM-SOLVING PERFORMANCE; BLACK-CAPPED CHICKADEES; WILD BIRD POPULATION; RISK-TAKING BEHAVIOR; PARUS-MAJOR; EXPLORATORY-BEHAVIOR; PHENOTYPIC PLASTICITY; AVIAN PERSONALITIES; BOMBUS-TERRESTRIS; DIET SELECTION Personality and innovativeness are predicted to drive important functional behaviours that can influence life history strategies within populations. For example, the reactive-proactive personality axis is thought to reflect the 'pace of life' syndrome and predicts correlation with foraging; empirical evidence also suggests a positive correlation with routine-like behaviour. Similarly, the adaptive innovation hypothesis predicts that innovators may have a higher food intake when novel foraging opportunities arise, and that they should have a more diverse range of foraging tactics. Experimental tests of these hypotheses are limited. We conducted standardized assays of exploratory behaviour (an index of the reactive-proactive axis) and innovative problem-solving performance on wild-captured great tits, Parus major, temporarily brought into captivity from different woodland types. To test for dietary preferences, birds were provided with three different types of food, and their daily energy intake measured. We found no evidence of a significant relationship between exploratory behaviour and the amount of calories ingested. However, fast-exploring great tits consumed a higher proportion of sunflower seeds, while slower individuals preferred peanuts. Problem-solving performance was positively correlated with energy intake but not food preference. Peanuts accounted for a larger proportion of total daily energy intake for coniferous birds, which also lost more weight on average. Our results illustrate that a complex array of factors can determine foraging behaviour and success, including personality, innovativeness, state variables, time, and habitat origin. This highlights the challenge of explaining how selection acts on foraging performance over time. Significance statement Experimental tests assessing how personality and innovativeness drive functional behaviour within populations are limited. We studied these links by means of exploratory behaviour and innovative problem-solving performance tests in relation to food preference and energy intake in wild-captured great tits, Parus major, from two different habitats. Personality was related to dietary preference (fast explorers consumed a higher proportion of sunflower seeds, while slower individuals preferred peanuts), and problem-solving was related to energy intake. Moreover, we found differential diet selection between coniferous and deciduous birds. Our results show that foraging behaviour and body mass are driven by multiple factors, including personality, innovativeness, and habitat origin. [Serrano-Davies, Eva] Univ Castilla La Mancha, Fac Ciencias Ambient & Bioquim, Dept Ciencias Ambientales, Ave Carlos 3 S-N, Toledo 45071, Spain; [O'Shea, William; Quinn, John L.] Univ Coll Cork, Sch Biol Earth & Environm Sci, Distillery Fields, North Mall, Cork, Ireland Serrano-Davies, E (reprint author), Univ Castilla La Mancha, Fac Ciencias Ambient & Bioquim, Dept Ciencias Ambientales, Ave Carlos 3 S-N, Toledo 45071, Spain.; Quinn, JL (reprint author), Univ Coll Cork, Sch Biol Earth & Environm Sci, Distillery Fields, North Mall, Cork, Ireland. serranodaviese@gmail.com; j.quinn@ucc.ie Serrano-Davies, Eva/0000-0003-1796-3543 Marie Curie Career Integration Grant [334383]; Ministerio de Ciencia e Innovacion [EEBB-I-15-EEBB-10364]; Thomas Crawford Hayes fund for Biological Sciences This work was funded by a Marie Curie Career Integration Grant (334383) to JLQ. ES-D was funded by a short stay grant (EEBB-I-15-EEBB-10364) from Ministerio de Ciencia e Innovacion, and WOS was supported by Thomas Crawford Hayes fund for Biological Sciences. ALATALO RV, 1987, ECOLOGY, V68, P1773, DOI 10.2307/1939868; Amador JA, 2013, TROP ECOL, V54, P365; Arnold KE, 2007, P R SOC B, V274, P2563, DOI 10.1098/rspb.2007.0687; Baugh AT, 2013, GEN COMP ENDOCR, V189, P96, DOI 10.1016/j.ygcen.2013.04.030; Bell AM, 2009, ANIM BEHAV, V77, P771, DOI 10.1016/j.anbehav.2008.12.022; Biro D, 2003, ANIM COGN, V6, P213, DOI 10.1007/s10071-003-0183-x; Biro PA, 2010, TRENDS ECOL EVOL, V25, P653, DOI 10.1016/j.tree.2010.08.003; Black JM, 2006, WILD GOOSE DILEMMAS; Bo L, 2015, PAK J ZOOL, V47, P111; Bolnick DI, 2003, AM NAT, V161, P1, DOI 10.1086/343878; Bouwhuis S, 2014, OIKOS, V123, P56, DOI 10.1111/j.1600-0706.2013.00654.x; Burnham KP, 2016, SOCIOL METHOD RES, V33, P261; Careau V, 2008, OIKOS, V117, P641, DOI 10.1111/j.0030-1299.2008.16513.x; Charmantier A, 2008, SCIENCE, V320, P800, DOI 10.1126/science.1157174; CHARNOV EL, 1976, THEOR POPUL BIOL, V9, P129, DOI 10.1016/0040-5809(76)90040-X; Cole EF, 2012, CURR BIOL, V22, P1808, DOI 10.1016/j.cub.2012.07.051; Cole EF, 2012, P ROY SOC B-BIOL SCI, V279, P1168, DOI 10.1098/rspb.2011.1539; Cole EF, 2011, ANIM BEHAV, V81, P491, DOI 10.1016/j.anbehav.2010.11.025; Dall SRX, 2004, ECOL LETT, V7, P734, DOI 10.1111/j.1461-0248.2004.00618.x; David M, 2012, IBIS, V154, P372, DOI 10.1111/j.1474-919X.2012.01216.x; Davison AC, 1997, BOOTSTRAP METHODS TH; De Jong A, 2008, EUR J CLIN NUTR, V62, P263, DOI 10.1038/sj.ejcn.1602733; DeWitt TJ, 1998, TRENDS ECOL EVOL, V13, P77, DOI 10.1016/S0169-5347(97)01274-3; Dingemanse NJ, 2013, J ANIM ECOL, V82, P39, DOI 10.1111/1365-2656.12013; Dingemanse NJ, 2002, ANIM BEHAV, V64, P929, DOI 10.1006/anbe.2002.2006; Dingemanse NJ, 2004, BEHAV ECOL, V15, P1023, DOI 10.1093/beheco/arh115; Dingemanse NJ, 2003, P ROY SOC B-BIOL SCI, V270, P741, DOI 10.1098/rspb.2002.2300; Dingemanse NJ, 2004, P ROY SOC B-BIOL SCI, V271, P847, DOI 10.1098/rspb.2004.2680; Gibb J., 1957, Bird Study, V4, P207; Gonzalez MA, 2012, IBIS, V154, P260, DOI 10.1111/j.1474-919X.2012.01217.x; Gosling SD, 2001, PSYCHOL BULL, V127, P45, DOI 10.1037/0033-2909.127.1.45; Greno JL, 2008, J AVIAN BIOL, V39, P41, DOI 10.1111/j.2007.0908-8857.04120.x; Heise CD, 2003, CONDOR, V105, P496, DOI 10.1650/7183; HOLBROOK SJ, 1984, J EXP MAR BIOL ECOL, V79, P39, DOI 10.1016/0022-0981(84)90029-7; Ings TC, 2005, OECOLOGIA, V144, P508, DOI 10.1007/s00442-005-0081-9; Kidawa D, 2011, ACTA THERIOL, V56, P209, DOI 10.1007/s13364-011-0031-3; Korsten P, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms3362; Lefebvre L, 2004, BRAIN BEHAV EVOLUT, V63, P233, DOI 10.1159/000076784; Lefebvre L, 1997, ANIM BEHAV, V53, P549, DOI 10.1006/anbe.1996.0330; Lefebvre L, 2011, BIOL LETTERS, V7, P631, DOI 10.1098/rsbl.2010.0556; LI B., 2011, FEED REV, V1, P42; MILINSKI M, 1982, BEHAV ECOL SOCIOBIOL, V11, P109, DOI 10.1007/BF00300099; Mitschunas N, 2015, ACTA CHIROPTEROL, V17, P379, DOI 10.3161/15081109ACC2015.17.2.014; Morand-Ferron J, 2016, BIOL REV, V91, P367, DOI 10.1111/brv.12174; Morand-Ferron J, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133821; Morand-Ferron J, 2011, BEHAV ECOL, V22, P1241, DOI 10.1093/beheco/arr120; Mulungu LS, 2011, WILDLIFE RES, V38, P640, DOI 10.1071/WR11028; Murakami M, 2007, ECOL ENTOMOL, V32, P613, DOI 10.1111/j.1365-2311.2007.00917.x; Musseau C, 2015, ECOSPHERE, V6, DOI 10.1890/ES15-00109.1; Navalpotro H, 2016, ANIM BIODIV CONSERV, V39, P129; O'Shea W, 2017, BEHAV ECOL, V28, P1435, DOI 10.1093/beheco/arx104; Otter KA, 2007, ECOLOGY BEHAV CHICKA; Overington SE, 2009, ANIM BEHAV, V78, P1001, DOI 10.1016/j.anbehav.2009.06.033; Pagani-Nunez E, 2013, ACTA ORNITHOL, V48, P194, DOI 10.3161/000164513X678847; PARTRIDGE L, 1976, ANIM BEHAV, V24, P230, DOI 10.1016/S0003-3472(76)80119-4; Patrick SC, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026383; PERRINS CM, 1991, IBIS, V133, P49, DOI 10.1111/j.1474-919X.1991.tb07668.x; Petelle MB, 2015, J EVOLUTION BIOL, V28, P1840, DOI 10.1111/jeb.12700; Pravosudov VV, 1997, CURR ORNITHOL, V14, P189; PYKE GH, 1984, ANNU REV ECOL SYST, V15, P523, DOI 10.1146/annurev.es.15.110184.002515; Quinn JL, 2012, P ROY SOC B-BIOL SCI, V279, P1919, DOI 10.1098/rspb.2011.2227; Quinn JL, 2005, BEHAVIOUR, V142, P1377, DOI 10.1163/156853905774539391; Quinn JL, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2015.0184; Quinn JL, 2011, J ANIM ECOL, V80, P918, DOI 10.1111/j.1365-2656.2011.01835.x; Quinn JL, 2009, J ANIM ECOL, V78, P1203, DOI 10.1111/j.1365-2656.2009.01585.x; R Core Team, 2016, R LANG ENV STAT COMP; Reader S. M., 2003, ANIMAL INNOVATION IN; Reader SM, 2011, PHILOS T R SOC B, V366, P1017, DOI 10.1098/rstb.2010.0342; Reale D, 2010, PHILOS T R SOC B, V365, P3937, DOI 10.1098/rstb.2010.0222; Reif J, 2016, OIKOS, V125, P405, DOI 10.1111/oik.02276; RICHARDSON H, 1987, AUK, V104, P263; Riebli T, 2011, ANIM BEHAV, V81, P313, DOI 10.1016/j.anbehav.2010.11.001; Roth G, 2005, TRENDS COGN SCI, V9, P250, DOI 10.1016/j.tics.2005.03.005; Rubis B, 2010, MED CHEM, V6, P184, DOI 10.2174/1573406411006040184; Rudkowska I, 2010, MATURITAS, V66, P158, DOI 10.1016/j.maturitas.2009.12.015; SASVARI L, 1988, J APPL ECOL, V25, P807, DOI 10.2307/2403747; Schuett W, 2009, ANIM BEHAV, V77, P1041, DOI 10.1016/j.anbehav.2008.12.024; Shettleworth SJ, 2003, BRAIN BEHAV EVOLUT, V62, P108, DOI 10.1159/000072441; Shettleworth SJ, 2002, J EXP PSYCHOL ANIM B, V28, P227, DOI 10.1037//0097-7403.8.3.227; Sih A, 2004, Q REV BIOL, V79, P241, DOI 10.1086/422893; Slagsvold T, 2011, PHILOS T R SOC B, V366, P969, DOI 10.1098/rstb.2010.0343; Sol D, 2002, ANIM BEHAV, V63, P495, DOI 10.1006/anbe.2001.1953; Spaethe J, 2002, INSECT SOC, V49, P142, DOI 10.1007/s00040-002-8293-z; Stephens D. M., 1986, FORAGING THEORY; Suorsa P, 2003, P ROY SOC B-BIOL SCI, V270, P963, DOI 10.1098/rspb.2002.2326; Svensson L., 1992, IDENTIFICATION GUIDE; Toscano BJ, 2016, OECOLOGIA, V182, P55, DOI 10.1007/s00442-016-3648-8; van Oers K, 2004, P ROY SOC B-BIOL SCI, V271, P65, DOI 10.1098/rspb.2003.2518; Van Oers K, 2008, ANIM BEHAV, V76, P555, DOI 10.1016/j.anbehav.2008.03.011; VANBALEN JH, 1980, ARDEA, V68, P143; VANBUSKIRK J, 1989, BEHAV ECOL SOCIOBIOL, V24, P257, DOI 10.1007/BF00295206; Vel'ky M, 2011, FOLIA ZOOL, V60, P228; VERBEEK MEM, 1994, ANIM BEHAV, V48, P1113, DOI 10.1006/anbe.1994.1344; Vestjens JPM, 1983, IS BEECH NUT WINTER; Warton DI, 2011, ECOLOGY, V92, P3, DOI 10.1890/10-0340.1; Wetzel DP, 2012, MOL ECOL, V21, P406, DOI 10.1111/j.1365-294X.2011.05380.x; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wolf M, 2010, PHILOS T R SOC B, V365, P3959, DOI 10.1098/rstb.2010.0215 98 1 1 26 69 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. NOV 2017 71 11 UNSP 161 10.1007/s00265-017-2389-y 11 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology FK5UG WOS:000413566100003 2018-11-22 J Norden, N; Boukili, V; Chao, A; Ma, KH; Letcher, SG; Chazdon, RL Norden, Natalia; Boukili, Vanessa; Chao, Anne; Ma, K. H.; Letcher, Susan G.; Chazdon, Robin L. Opposing mechanisms affect taxonomic convergence between tree assemblages during tropical forest succession ECOLOGY LETTERS English Article Determinism; life-history strategies; stochasticity; succession; taxonomic similarity; tropical second-growth forests NORTHEASTERN COSTA-RICA; MIXED-EFFECTS MODELS; OLD-GROWTH FOREST; RAIN-FORESTS; NEOTROPICAL FORESTS; SPECIES COMPOSITION; SECONDARY FORESTS; LONG-TERM; COMMUNITIES; DYNAMICS Whether successional forests converge towards an equilibrium in species composition remains an elusive question, hampered by high idiosyncrasy in successional dynamics. Based on long-term tree monitoring in second-growth (SG) and old-growth (OG) forests in Costa Rica, we show that patterns of convergence between pairs of forest stands depend upon the relative abundance of species exhibiting distinct responses to the successional gradient. For instance, forest generalists contributed to convergence between SG and OG forests, whereas rare species and old-growth specialists were a source of divergence. Overall, opposing trends in taxonomic similarity among different subsets of species nullified each other, producing a net outcome of stasis over time. Our results offer an explanation for the limited convergence observed between pairwise communities and suggest that rare species and old-growth specialists may be prone to dispersal limitation, while the dynamics of generalists and second-growth specialists are more predictable, enhancing resilience in tropical secondary forests. [Norden, Natalia] Inst Invest Recursos Biol Alexander von Humboldt, 16-20 Ave Circunvalar, Bogota, Colombia; [Boukili, Vanessa] City Somerville, Off Strateg Planning & Community Dev, Somerville, MA 02143 USA; [Chao, Anne; Ma, K. H.] Natl Tsing Hua Univ, Inst Stat, Hsinchu 30043, Taiwan; [Letcher, Susan G.] SUNY Coll Purchase, Dept Environm Studies, 735 Anderson Hill Rd, Purchase, NY 10577 USA; [Letcher, Susan G.] Coll Atlantic, 105 Eden St, Bar Harbor, ME 04609 USA; [Chazdon, Robin L.] Int Inst Sustainabil, Estrada Dona Castorina 124, BR-22460320 Horto, RJ, Brazil; [Chazdon, Robin L.] Univ Connecticut, Dept Ecol & Evolutionary Biol, Storrs, CT 06263 USA Norden, N (reprint author), Inst Invest Recursos Biol Alexander von Humboldt, 16-20 Ave Circunvalar, Bogota, Colombia. nnorden@humboldt.org.co Andrew Mellon Foundation; US NSF awards [0424767, 0639393, 1147429, 1110722]; UConn Research Foundation; NASA ROSES Grant [NNH08ZDA001N-TE] lLong-term monitoring of trees was supported by grants to RLC from the Andrew Mellon Foundation, US NSF awards 0424767, 0639393, 1147429 and 1110722, UConn Research Foundation, and NASA ROSES Grant NNH08ZDA001N-TE. We are grateful to the staff at La Selva Biological Station, and to S. Li, S. Rodriguez, B. Salgado, E. Tenorio, A. Duque, V. Arroyo-Rodriguez and one anonymous reviewer for comments on a previous draft of this manuscript. Arroyo-Rodriguez V, 2017, BIOL REV, V92, P326, DOI 10.1111/brv.12231; Arroyo-Rodriguez V, 2013, J ECOL, V101, P1449, DOI 10.1111/1365-2745.12153; Bates D, 2015, J STAT SOFTW, V67, P1; Boukili VK, 2017, PERSPECT PLANT ECOL, V24, P37, DOI 10.1016/j.ppees.2016.11.003; Chao AN, 2014, ANNU REV ECOL EVOL S, V45, P297, DOI 10.1146/annurev-ecolsys-120213-091540; Chase JM, 2005, METACOMMUNITIES: SPATIAL DYNAMICS AND ECOLOGICAL COMMUNITIES, P335; Chazdon R. L, 2014, 2 GROWTH PROMISE TRO; Chazdon RL, 2005, ECOLOGY, V86, P1808, DOI 10.1890/04-0572; Chazdon RL., 2008, TROPICAL FOREST COMM, P384; Chazdon RL, 2007, PHILOS T R SOC B, V362, P273, DOI 10.1098/rstb.2006.1990; Chazdon RL, 2011, ECOLOGY, V92, P1332, DOI 10.1890/10-1345.1; Clements F. E., 1916, PLANT SUCCESSION ANA; CONNELL JH, 1977, AM NAT, V111, P1119, DOI 10.1086/283241; Dent DH, 2013, J VEG SCI, V24, P530, DOI 10.1111/j.1654-1103.2012.01482.x; Dent DH, 2009, BIOL CONSERV, V142, P2833, DOI 10.1016/j.biocon.2009.05.035; Dinno A., 2016, DUNNS TEST MULTIPLE; Finegan B, 1996, TRENDS ECOL EVOL, V11, P119, DOI 10.1016/0169-5347(96)81090-1; Gleason H., 1926, B TORREY BOT CLUB, V53, P7, DOI DOI 10.2307/2479933; Guariguata MR, 1997, PLANT ECOL, V132, P107, DOI 10.1023/A:1009726421352; Hubbell Stephen P., 2001, V32, pi; Wright SJ, 2010, ECOLOGY, V91, P3664, DOI 10.1890/09-2335.1; Jost Lou, 2011, P66; Lasky JR, 2014, P NATL ACAD SCI USA, V111, P5616, DOI 10.1073/pnas.1319342111; Lefcheck JS, 2016, METHODS ECOL EVOL, V7, P573, DOI 10.1111/2041-210X.12512; Leibold MA, 2015, ECOLOGY, V96, P3227, DOI 10.1890/14-2354.1; Letcher SG, 2015, J ECOL, V103, P1276, DOI 10.1111/1365-2745.12435; Letcher SG, 2009, BIOTROPICA, V41, P608, DOI 10.1111/j.1744-7429.2009.00517.x; Li SP, 2016, ECOL LETT, V19, P1101, DOI 10.1111/ele.12647; Longworth JB, 2014, BIOTROPICA, V46, P529, DOI 10.1111/btp.12143; McDade Lucinda A., 1994, P6; Melo FPL, 2013, TRENDS ECOL EVOL, V28, P462, DOI 10.1016/j.tree.2013.01.001; Muller-Landau H. C., 2002, Seed dispersal and frugivory: ecology, evolution and conservation. Third International Symposium-Workshop on Frugivores and Seed Dispersal, Sao Pedro, Brazil, 6-11 August 2000, P35, DOI 10.1079/9780851995250.0035; Nakagawa S, 2013, METHODS ECOL EVOL, V4, P133, DOI 10.1111/j.2041-210x.2012.00261.x; Norden N, 2015, P NATL ACAD SCI USA, V112, P8013, DOI 10.1073/pnas.1500403112; Norden N, 2009, ECOL LETT, V12, P385, DOI 10.1111/j.1461-0248.2009.01292.x; Pinheiro J, 2000, MIXED EFFECTS MODELS; Pitman NCA, 2001, ECOLOGY, V82, P2101, DOI 10.2307/2680219; R Core Team, 2016, R LANG ENV STAT COMP; Rees M, 2001, SCIENCE, V293, P650, DOI 10.1126/science.1062586; Rozendaal DMA, 2015, ECOL APPL, V25, P506, DOI 10.1890/14-0054.1; Seidler TG, 2006, PLOS BIOL, V4, P2132, DOI 10.1371/journal.pbio.0040344; ter Steege H, 2013, SCIENCE, V342, P325, DOI 10.1126/science.1243092; Terborgh J, 1996, ECOLOGY, V77, P561, DOI 10.2307/2265630; van Breugel M, 2007, BIOTROPICA, V39, P610, DOI 10.1111/j.1744-7429.2007.00316.x; Vandermeer J, 2004, ECOLOGY, V85, P575, DOI 10.1890/02-3140 45 2 2 9 27 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1461-023X 1461-0248 ECOL LETT Ecol. Lett. NOV 2017 20 11 1448 1458 10.1111/ele.12852 11 Ecology Environmental Sciences & Ecology FK0BT WOS:000413145900010 28941076 2018-11-22 J Dinh, T; Pinsof, D; Gangestad, SW; Haselton, MG Tran Dinh; Pinsof, David; Gangestad, Steven W.; Haselton, Martie G. Cycling on the fast track: Ovulatory shifts in sexual motivation as a proximate mechanism for regulating life history strategies EVOLUTION AND HUMAN BEHAVIOR English Article Life history; Fertility regulation; Ovulatory cycle; Sexual behavior MENSTRUAL-CYCLE; REPRODUCTIVE STRATEGIES; INDIVIDUAL-DIFFERENCES; FAMILY-STRUCTURE; MATE-RETENTION; ENERGY-BALANCE; FATHER ABSENCE; CLUTCH SIZE; TRADE-OFFS; CHILDHOOD In an ancestral world without modern contraception, how did women regulate their fertility? We argue that fertility may be regulated by context-dependent changes in sexual motivation that are specific to the high-fertility phase of the menstrual cycle. Accordingly, we predicted that ovulatory changes in sexual motivation would vary as a function of women's life history strategies, operationalized in terms of exposure to adverse childhood environments (high unpredictability, low SES, and low father quality). We tested this prediction in a sample of 1004 naturally cycling, pair-bonded women recruited using Amazon Mechanical Turk. Data show that women from adverse childhood backgrounds experienced higher in-pair sexual motivation and engaged in more in pair sexual behavior at high fertility, compared to women from childhood backgrounds with low adversity. Women from low-adversity childhood backgrounds were more likely to exhibit ovulatory decreases in sexual motivation at early stages in their relationships. We found little evidence, however, that childhood environments interact with conception risk to predict women's extra-pair motivation and behavior. Results offer evidence that women may possess evolved psychological and behavioral mechanisms for regulating the timing of reproduction. (C) 2017 Elsevier Inc. All rights reserved. [Tran Dinh; Gangestad, Steven W.] Univ New Mexico, Dept Psychol, MSCO3 2220, Albuquerque, NM 87131 USA; [Pinsof, David; Haselton, Martie G.] Univ Calif Los Angeles, Dept Psychol, Los Angeles, CA USA Dinh, T (reprint author), Univ New Mexico, Dept Psychol, MSCO3 2220, Albuquerque, NM 87131 USA. trandinh@unm.edu National Science Foundation; UCLA Academic Senate Faculty Research Grant We would like to thank Daniel Fessler, Melissa Fales, and Shimon Saphire-Bernstein for their thoughtful comments and Britt Ahlstrom for her kind assistance. This research was partially supported by a National Science Foundation graduate research fellowship awarded to the first author and a UCLA Academic Senate Faculty Research Grant. ADAMS DB, 1978, NEW ENGL J MED, V299, P1145, DOI 10.1056/NEJM197811232992101; Baker R. R., 1995, HUMAN SPERM COMPETIT; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BELLIS MA, 1990, ANIM BEHAV, V40, P997, DOI 10.1016/S0003-3472(05)81008-5; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.1111/j.1467-8624.1991.tb01558.x; Belsky J, 2012, CURR DIR PSYCHOL SCI, V21, P310, DOI 10.1177/0963721412453588; Beutel ME, 2008, BJU INT, V101, P76, DOI 10.1111/j.1464-410X.2007.07204.x; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Brezsnyak M, 2004, J SEX MARITAL THER, V30, P199, DOI 10.1080/00926230490262393; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Bullivant SB, 2004, J SEX RES, V41, P82, DOI 10.1080/00224490409552216; Burks DJ, 2000, NATURE, V407, P377, DOI 10.1038/35030105; Byers ES, 2005, J SEX RES, V42, P113, DOI 10.1080/00224490509552264; Caruso S, 2014, J SEX MED, V11, P211, DOI 10.1111/jsm.12348; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Cole LA, 2009, FERTIL STERIL, V91, P522, DOI 10.1016/j.fertnstert.2007.11.073; Del Giudice M, 2015, HDB EVOLUTIONARY PSY, P88, DOI DOI 10.1002/9781119125563.EVPSYCH102; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Ellison P. T., 2001, REPROD ECOLOGY HUMAN; Ellison PT, 2003, AM J HUM BIOL, V15, P342, DOI 10.1002/ajhb.10152; Evans JJ, 2012, HUM REPROD UPDATE, V18, P313, DOI 10.1093/humupd/dms004; Fehring RJ, 2006, JOGNN-J OBST GYN NEO, V35, P376, DOI 10.1111/j.1552-6909.2006.00051.x; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; FRASER AM, 1995, NEW ENGL J MED, V332, P1113, DOI 10.1056/NEJM199504273321701; FRISCH RE, 1985, PERSPECT BIOL MED, V28, P611; Gangestad SW, 2016, EVOL HUM BEHAV, V37, P85, DOI 10.1016/j.evolhumbehav.2015.09.001; Gangestad SW, 2010, EVOL HUM BEHAV, V31, P400, DOI 10.1016/j.evolhumbehav.2010.05.003; Gangestad SW, 2005, P ROY SOC B-BIOL SCI, V272, P2023, DOI 10.1098/rspb.2005.3112; Gangestad SW, 2002, P ROY SOC B-BIOL SCI, V269, P975, DOI 10.1098/rspb.2001.1952; Gildersleeve K, 2014, PSYCHOL BULL, V140, P1205, DOI 10.1037/a0035438; GODFRAY HCJ, 1991, ANNU REV ECOL SYST, V22, P409, DOI 10.1146/annurev.ecolsys.22.1.409; Grebe NM, 2013, PSYCHOL SCI, V24, P2106, DOI 10.1177/0956797613485965; Grillot RL, 2014, EVOL HUM BEHAV, V35, P176, DOI 10.1016/j.evolhumbehav.2014.01.001; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Guillermo CJ, 2010, BMC WOMENS HEALTH, V10, DOI 10.1186/1472-6874-10-19; Harden KP, 2014, PSYCHOL BULL, V140, P434, DOI 10.1037/a0033564; Haselton MG, 2006, HORM BEHAV, V49, P509, DOI 10.1016/j.yhbeh.2005.10.006; Henrich J, 2010, BEHAV BRAIN SCI, V33, P61, DOI 10.1017/S0140525X0999152X; Hill JW, 2008, AM J PHYSIOL-ENDOC M, V294, pE827, DOI 10.1152/ajpendo.00670.2007; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; HOGAN DP, 1985, AM J SOCIOL, V90, P825, DOI 10.1086/228146; HOWIE PW, 1982, CLIN ENDOCRINOL, V17, P315, DOI 10.1111/j.1365-2265.1982.tb01596.x; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Lack D, 1954, SIGNIFICANCE CLUTCH; Larson CM, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0044456; Laumann EO, 1999, JAMA-J AM MED ASSOC, V281, P537, DOI 10.1001/jama.281.6.537; Li Y, 2010, GYNECOL ENDOCRINOL, V26, P416, DOI 10.3109/09513591003632118; Lieberman D, 2011, PSYCHOL SCI, V22, P13, DOI 10.1177/0956797610390385; Low BS, 2008, CROSS-CULT RES, V42, P201, DOI 10.1177/1069397108317669; MARKOWITZ H, 1977, PROGR SEXOLOGY, P329; Mendle J, 2006, DEV PSYCHOL, V42, P533, DOI 10.1037/0012-1649.42.3.233; Mendle J, 2009, CHILD DEV, V80, P1463, DOI 10.1111/j.1467-8624.2009.01345.x; Mittal C, 2015, J PERS SOC PSYCHOL, V109, P604, DOI 10.1037/pspi0000028; Orvieto R, 2009, INT J GYNECOL OBSTET, V104, P53, DOI 10.1016/j.ijgo.2008.08.012; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; Peng YK, 1998, J NUTR, V128, P1672; Pillsworth EG, 2006, EVOL HUM BEHAV, V27, P247, DOI 10.1016/j.evolhumbehav.2005.10.002; Pillsworth EG, 2004, J SEX RES, V41, P55, DOI 10.1080/00224490409552213; Prasad A, 2014, HORM BEHAV, V66, P330, DOI 10.1016/j.yhbeh.2014.06.012; Regan P. C., 1996, CANADIAN J HUMAN SEX, V5, P145; Reuben A, 2016, J CHILD PSYCHOL PSYC, V57, P1103, DOI 10.1111/jcpp.12621; Roney JR, 2013, HORM BEHAV, V63, P636, DOI 10.1016/j.yhbeh.2013.02.013; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Snyder JK, 2013, ARCH SEX BEHAV, V42, P543, DOI 10.1007/s10508-012-9987-6; Sprecher S, 2004, HANDBOOK OF SEXUALITY IN CLOSE RELATIONSHIPS, P235; STANISLAW H, 1988, ARCH SEX BEHAV, V17, P499, DOI 10.1007/BF01542338; Stearns S. C, 1992, EVOLUTION LIFE HIST, V249; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stirnemann JJ, 2013, HUM REPROD, V28, P1110, DOI 10.1093/humrep/des449; Thornhill R., 2008, EVOLUTIONARY BIOL HU; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; WASSER SK, 1983, Q REV BIOL, V58, P513, DOI 10.1086/413545; Wilcox AJ, 2004, HUM REPROD, V19, P1539, DOI 10.1093/humrep/deh305; Wilcox AJ, 2001, CONTRACEPTION, V63, P211, DOI 10.1016/S0010-7824(01)00191-3; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WOOD JW, 1989, OXFORD REV REPROD B, V11, P61; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zietsch BP, 2016, CURR OPIN PSYCHOL, V7, P71, DOI 10.1016/j.copsyc.2015.08.014 83 0 0 3 6 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 1879-0607 EVOL HUM BEHAV Evol. Hum. Behav. NOV 2017 38 6 685 694 10.1016/j.evolhumbehav.2017.09.001 10 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences FK8ZL WOS:000413800100001 2018-11-22 J Xu, D; Schaum, CE; Lin, F; Sun, K; Munroe, JR; Zhang, XW; Fan, X; Teng, LH; Wang, YT; Zhuang, ZM; Ye, NH Xu, Dong; Schaum, Charlotte-Elisa; Lin, Fan; Sun, Ke; Munroe, James R.; Zhang, Xiao W.; Fan, Xiao; Teng, Lin H.; Wang, Yi T.; Zhuang, Zhi M.; Ye, Naihao Acclimation of bloom-forming and perennial seaweeds to elevated pCO(2) conserved across levels of environmental complexity GLOBAL CHANGE BIOLOGY English Article acclimation; CO2; environmental complexity; growth; photosynthesis; respiration; seaweed KELP MACROCYSTIS-PYRIFERA; OCEAN ACIDIFICATION; MARINE MACROALGAE; CLIMATE-CHANGE; BROWN MACROALGAE; PH FLUCTUATIONS; CO2; RESPONSES; GROWTH; GREEN Macroalgae contribute approximately 15% of the primary productivity in coastal marine ecosystems, fix up to 27.4 Tg of carbon per year, and provide important structural components for life in coastal waters. Despite this ecological and commercial importance, direct measurements and comparisons of the short-term responses to elevated pCO(2) in seaweeds with different life-history strategies are scarce. Here, we cultured several seaweed species (bloom forming/nonbloom forming/perennial/annual) in the laboratory, in tanks in an indoor mesocosm facility, and in coastal mesocosms under pCO(2) levels ranging from 400 to 2,000 mu atm. We find that, across all scales of the experimental setup, ephemeral species of the genus Ulva increase their photosynthesis and growth rates in response to elevated pCO(2) the most, whereas longer-lived perennial species show a smaller increase or a decrease. These differences in short-term growth and photosynthesis rates are likely to give bloom-forming green seaweeds a competitive advantage in mixed communities, and our results thus suggest that coastal seaweed assemblages in eutrophic waters may undergo an initial shift toward communities dominated by bloom-forming, short-lived seaweeds. [Xu, Dong; Lin, Fan; Zhang, Xiao W.; Fan, Xiao; Teng, Lin H.; Wang, Yi T.; Zhuang, Zhi M.; Ye, Naihao] Chinese Acad Fishery Sci, Yellow Sea Fisheries Res Inst, Qingdao, Peoples R China; [Xu, Dong; Ye, Naihao] Qingdao Natl Lab Marine Sci & Technol, Funct Lab Marine Fisheries Sci & Food Prod Proc, Qingdao, Peoples R China; [Schaum, Charlotte-Elisa] Univ Exeter, Biosci Environm & Sustainabil Inst, Penryn, England; [Sun, Ke] State Ocean Adm, Inst Oceanog 1, Qingdao, Peoples R China; [Sun, Ke] Qingdao Natl Lab Marine Sci & Technol, Lab Reg Oceanog & Numer Modeling, Qingdao, Peoples R China; [Munroe, James R.] Mem Univ Newfoundland, Dept Phys & Phys Oceanog, St John, NF, Canada Ye, NH (reprint author), Chinese Acad Fishery Sci, Yellow Sea Fisheries Res Inst, Qingdao, Peoples R China. yenh@ysfri.ac.cn Munroe, James/0000-0001-9098-6309 National Natural Science Foundation of China [41676145]; AoShan Talents Program [2015ASTPES03]; Qingdao National Laboratory for Marine Science and Technology; Science Fund for Distinguished Young Scholars of Shandong Province [JQ201509]; Program of Leading Talents of Qingdao [13-CX-27]; Talent Projects of Distinguished Scientific Scholars in Agriculture, Hi-Tech Research and Development Program (863) of China [2014AA022003]; National Science & Technology Pillar Program [2013BAD23B01]; National Basic Research Special Foundation of China [2013FY110700] National Natural Science Foundation of China, Grant/Award Number: 41676145; AoShan Talents Program, Grant/Award Number: 2015ASTPES03; Qingdao National Laboratory for Marine Science and Technology; Science Fund for Distinguished Young Scholars of Shandong Province, Grant/Award Number: JQ201509; Program of Leading Talents of Qingdao, Grant/Award Number: 13-CX-27; Talent Projects of Distinguished Scientific Scholars in Agriculture, Hi-Tech Research and Development Program (863) of China, Grant/Award Number: 2014AA022003; National Science & Technology Pillar Program, Grant/Award Number: 2013BAD23B01; National Basic Research Special Foundation of China, Grant/Award Number: 2013FY110700 Baggini C, 2015, J EXP MAR BIOL ECOL, V469, P98, DOI 10.1016/j.jembe.2015.04.019; Baggini C, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0106520; Beaugrand G, 2013, NAT CLIM CHANGE, V3, P263, DOI 10.1038/NCLIMATE1753; Best RJ, 2014, ECOLOGY, V95, P1308, DOI 10.1890/13-1480.1; Brennan G, 2015, NAT CLIM CHANGE, V5, P892, DOI 10.1038/NCLIMATE2682; Britton D, 2016, SCI REP-UK, V6, DOI 10.1038/srep26036; Brodie J, 2014, ECOL EVOL, V4, P2787, DOI 10.1002/ece3.1105; Cai WJ, 2011, NAT GEOSCI, V4, P766, DOI [10.1038/ngeo1297, 10.1038/NGEO1297]; Celis-Pla PSM, 2015, FRONT MAR SCI, V2, P26, DOI [10.3389/fmars.2015.00026, DOI 10.3389/FMARS.2015.00026]; Chen IC, 2011, SCIENCE, V333, P1024, DOI 10.1126/science.1206432; Collins S, 2014, EVOL APPL, V7, P140, DOI 10.1111/eva.12120; Cornwall CE, 2016, ICES J MAR SCI, V73, P572, DOI 10.1093/icesjms/fsv118; Cornwall CE, 2015, PHOTOSYNTH RES, V124, P181, DOI 10.1007/s11120-015-0114-0; Doropoulos C, 2012, ECOL LETT, V15, P338, DOI 10.1111/j.1461-0248.2012.01743.x; Enochs IC, 2015, NAT CLIM CHANGE, V5, P1083, DOI 10.1038/NCLIMATE2758; Fernandez PA, 2015, PHOTOSYNTH RES, V124, P293, DOI 10.1007/s11120-015-0138-5; Flynn KJ, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2604; Fourqurean JW, 2012, NAT GEOSCI, V5, P505, DOI 10.1038/ngeo1477; Guillard R. R. L., 1975, CULTURE MARINE INVER, P26, DOI DOI 10.1007/978-1-4615-8714-9_3; Hall-Spencer JM, 2008, NATURE, V454, P96, DOI 10.1038/nature07051; Hepburn CD, 2011, GLOBAL CHANGE BIOL, V17, P2488, DOI 10.1111/j.1365-2486.2011.02411.x; Hoffmann AA, 2011, NATURE, V470, P479, DOI 10.1038/nature09670; Hoppe C., 2015, 9 CENTR EUR DIAT M G; Hurd CL, 2011, GLOBAL CHANGE BIOL, V17, P3254, DOI 10.1111/j.1365-2486.2011.02473.x; Hutchins DA, 2013, NAT GEOSCI, V6, P790, DOI [10.1038/ngeo1858, 10.1038/NGEO1858]; Israel A, 2002, GLOBAL CHANGE BIOL, V8, P831, DOI 10.1046/j.1365-2486.2002.00518.x; Ji Y, 2016, J APPL PHYCOL, V28, P2953, DOI 10.1007/s10811-016-0840-5; Johnson VR, 2012, GLOBAL CHANGE BIOL, V18, P2792, DOI 10.1111/j.1365-2486.2012.02716.x; Koch M, 2013, GLOBAL CHANGE BIOL, V19, P103, DOI 10.1111/j.1365-2486.2012.02791.x; Kroeker KJ, 2013, NAT CLIM CHANGE, V3, P156, DOI [10.1038/NCLIMATE1680, 10.1038/nclimate1680]; Linares C, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0587; Longphuirt SN, 2013, MAR ECOL PROG SER, V493, P91, DOI 10.3354/meps10570; Martinez-Boti MA, 2015, NATURE, V518, P49, DOI 10.1038/nature14145; Mattson WJ, 2005, OIKOS, V111, P337, DOI 10.1111/j.0030-1299.2005.13634.x; Mineur F, 2010, PHYCOLOGIA, V49, P86, DOI 10.2216/09-45.1; Newcomb LA, 2015, BIOL LETTERS, V11, DOI 10.1098/rsbl.2014.1075; Nunes J, 2016, ICES J MAR SCI, V73, P887, DOI 10.1093/icesjms/fsv081; Pandolfi JM, 2011, SCIENCE, V333, P418, DOI 10.1126/science.1204794; Pierrot D. E., 2011, MS EXCEL PROGRAM DEV, DOI [10. 3334/CDIAC/otg. CO2SYS_XLS_CDIAC105a, DOI 10.3334/CDIAC/OTG.CO2SYS_XLS_CDIAC105A, 10.3334/CDIAC/otg.CO2SYS_XLS_CDIAC105a]; Porzio L, 2011, J EXP MAR BIOL ECOL, V400, P278, DOI 10.1016/j.jembe.2011.02.011; Raybaud V, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0066044; Roleda MY, 2012, GLOBAL CHANGE BIOL, V18, P854, DOI 10.1111/j.1365-2486.2011.02594.x; Schaum E, 2013, NAT CLIM CHANGE, V3, P298, DOI 10.1038/NCLIMATE1774; Schramm W, 1999, J APPL PHYCOL, V11, P69, DOI 10.1023/A:1008076026792; Shi DL, 2012, P NATL ACAD SCI USA, V109, pE3094, DOI 10.1073/pnas.1216012109; Smetacek V, 2013, NATURE, V504, P84, DOI 10.1038/nature12860; Tang YZ, 2011, HARMFUL ALGAE, V10, P480, DOI 10.1016/j.hal.2011.03.003; Teichberg M, 2010, GLOBAL CHANGE BIOL, V16, P2624, DOI 10.1111/j.1365-2486.2009.02108.x; Xu D, 2015, AQUAC RES, V46, P1699, DOI 10.1111/are.12327; Xu D, 2015, ENVIRON SCI TECHNOL, V49, P3548, DOI 10.1021/es5058924; Xu D, 2014, ENVIRON SCI TECHNOL, V48, P7738, DOI 10.1021/es404866z; Xu D, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033648; Xu JT, 2012, PLANT PHYSIOL, V160, P1762, DOI 10.1104/pp.112.206961; Young CS, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0155152 54 2 2 1 28 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1354-1013 1365-2486 GLOBAL CHANGE BIOL Glob. Change Biol. NOV 2017 23 11 4828 4839 10.1111/gcb.13701 12 Biodiversity Conservation; Ecology; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology FI9JI WOS:000412322700032 28346724 2018-11-22 J Angelstam, P; Pedersen, S; Manton, M; Garrido, P; Naumov, V; Elbakidze, M Angelstam, Per; Pedersen, Simen; Manton, Michael; Garrido, Pablo; Naumov, Vladimir; Elbakidze, Marine Green infrastructure maintenance is more than land cover: Large herbivores limit recruitment of key-stone tree species in Sweden LANDSCAPE AND URBAN PLANNING English Article Biodiversity conservation; Macroecology; Habitat restoration; Moose; Ecosystem management; Spatial planning MOOSE ALCES-ALCES; ROWAN SORBUS-AUCUPARIA; BIALOWIEZA PRIMEVAL FOREST; LIFE-HISTORY STRATEGIES; POPULUS-TREMULA L.; BIODIVERSITY CONSERVATION; DECIDUOUS FOREST; MODELING HABITAT; NORTHERN EUROPE; BOREAL FORESTS Due to anthropogenic alteration of stand composition and landscape pattern in Swedish forest landscapes managed for industrial wood production, remnant patches of deciduous forests and woodlands do not form a functional green infrastructure for biodiversity conservation. We assessed if large herbivore browsing hampers the restoration of deciduous forest as green infrastructure by reducing the recruitment of boreal and temperate deciduous tree species of particular importance for biodiversity conservation. A natural experiment approach was applied in the distinct Swedish temperate-boreal forest gradient in Sweden. We measured the potential for saplings of aspen, rowan, sallow and oak to become recruited into the population of ecologically mature trees, as well as the amount of tree and field layer food. Sampling was made in forest stands representing four strata of managed forest landscapes accessible to large herbivores (experiment) and human settlements avoided by large herbivores (control). All four focal deciduous tree species had lower damage levels in controls (towns and villages) compared to experimental (forest) sites. While tree forage was much more abundant in controls, field layer forage in controls was not different from experimental stands. For all tree species except aspen we found a positive relationship between damage levels and large herbivore abundance, to which moose contributed > 89%. We discuss the role of research design for assessing the impact of large herbivores on plants, and highlight the need for integration of multi-species wildlife management as well as conservation planning and management. [Angelstam, Per; Pedersen, Simen; Manton, Michael; Garrido, Pablo; Naumov, Vladimir; Elbakidze, Marine] Swedish Univ Agr Sci, Sch Forest Management, Fac Forest Sci, Forest Landscape Soc Res Network, POB 43, S-73921 Skinnskatteberg, Sweden; [Pedersen, Simen] Inland Norway Univ Appl Sci, Fac Appl Ecol & Agr Sci, Dept Forestry & Wildlife Management, N-2480 Evenstad, Koppang, Norway; [Manton, Michael] Aleksandras Stulginskis Univ, Inst Forest Biol & Silviculture, Fac Forest Sci & Ecol, Studentu G 13, LT-53362 Akademija, Kauno R, Lithuania Angelstam, P (reprint author), Swedish Univ Agr Sci, Sch Forest Management, Fac Forest Sci, Forest Landscape Soc Res Network, POB 43, S-73921 Skinnskatteberg, Sweden. per.angelstam@slu.se Manton, Michael/0000-0002-4812-6599; Angelstam, Per/0000-0003-2190-3172 Swedish Research Council Formas [2011-1737]; Swedish Institute [10976/2013]; Hedmark University of Applied Sciences This work was funded by the Swedish Research Council Formas [grant number 2011-1737] to Per Angelstam and by the Swedish Institute [grant number 10976/2013] to Marine Elbakidze, and with additional funding from Hedmark University of Applied Sciences. We thank Gintare Narauskaite, Jarno Huikuri and Lucie Jamelin for their dedication in providing field assistance. Albrectsen BR, 2010, FUNGAL DIVERS, V41, P17, DOI 10.1007/s13225-009-0011-y; Andersson K, 2013, SCAND J FOREST RES, V28, P143, DOI 10.1080/02827581.2012.723740; Angelstam P., 2000, ALCES, V36, P133; Angelstam P.., 2017, SCI PRACTICE LANDSCA, P124; Angelstam P., 2002, WILDLIFE LAND PEOPLE, P54; Angelstam P, 2017, ECOL APPL, V27, P1108, DOI 10.1002/eap.1506; Angelstam P, 2015, EUROPE'S CHANGING WOODS AND FORESTS FROM WILDWOOD TO MANAGED LANDSCAPES, P290, DOI 10.1079/9781780643373.0290; Angelstam P, 2013, AMBIO, V42, P254, DOI 10.1007/s13280-012-0372-4; Angelstam P, 2013, AMBIO, V42, P129, DOI 10.1007/s13280-012-0368-0; Angelstam P, 2011, SILVA FENN, V45, P1111, DOI 10.14214/sf.90; Augustine DJ, 1998, J WILDLIFE MANAGE, V62, P1165, DOI 10.2307/3801981; Axelsson R, 2013, AMBIO, V42, P241, DOI 10.1007/s13280-012-0378-y; Belair C., TECHNICAL SERIES, V52; Bergman KO, 2008, BIODIVERS CONSERV, V17, P139, DOI 10.1007/s10531-007-9235-x; Bergqvist G, 2014, SILVA FENN, V48, DOI 10.14214/sf.1077; Bergstrom R., 1987, Swedish Wildlife Research Supplement, V1, P213; Bjarstig Therese, 2014, International Journal of Biodiversity Science Ecosystem Services & Management, V10, P228, DOI 10.1080/21513732.2014.936508; Blicharska M, 2011, J ENVIRON PLANN MAN, V54, P1373, DOI 10.1080/09640568.2011.575297; Brown J. H., 1995, MACROECOLOGY; Cassing G, 2006, SCAND J FOREST RES, V21, P221, DOI 10.1080/02827580600673535; Cederlung G., 1980, Viltrevy (Stockholm), V11, P169; Civic K, 2014, J GREEN ENG, V4, P307; Cote SD, 2004, ANNU REV ECOL EVOL S, V35, P113, DOI 10.1146/annurev.ecolsys.35.021103.105725; De Jager NR, 2010, WILDLIFE BIOL, V16, P301, DOI 10.2981/09-105; DIAMOND J, 1986, COMMUNITY ECOLOGY, P3; DiGasper S. Wennberg, 2008, THESIS; Edenius L, 2002, SILVA FENN, V36, P57, DOI 10.14214/sf.550; Edenius L, 2011, J APPL ECOL, V48, P301, DOI 10.1111/j.1365-2664.2010.01923.x; Edman T, 2011, LANDSCAPE URBAN PLAN, V102, P16, DOI 10.1016/j.landurbplan.2011.03.004; Eisenberg C., 2010, WOLFS TOOTH KEYSTONE; Ellison AM, 2005, FRONT ECOL ENVIRON, V3, P479, DOI 10.2307/3868635; Ericsson G, 2001, ECOSCIENCE, V8, P344, DOI 10.1080/11956860.2001.11682662; European Commission, 2013, 249 COM EUR COMM; Fletcher J, 2015, EUROPE'S CHANGING WOODS AND FORESTS FROM WILDWOOD TO MANAGED LANDSCAPES, P116, DOI 10.1079/9781780643373.0116; Garrido P, 2017, LANDSCAPE URBAN PLAN, V158, P96, DOI 10.1016/j.landurbplan.2016.08.018; Gill R.M.A., 1992, DEER FORESTRY, V65, P145, DOI DOI 10.1093/F0RESTRY/65.2.145; GILL RMA, 1992, FORESTRY, V65, P363, DOI 10.1093/forestry/65.4.363-a; Gill RMA, 2001, FORESTRY, V74, P209, DOI 10.1093/forestry/74.3.209; Gill Robin, 2006, Conservation Biology Series (Cambridge), V11, P170; Gotmark FG, 2005, SCAND J FOREST RES, V20, P223, DOI 10.1080/02827580510008383; Hagglund B., 1977, STUDIA FORESTALIA SU, V138; Halme P, 2013, BIOL CONSERV, V167, P248, DOI 10.1016/j.biocon.2013.08.029; Hearn R, 2015, EUROPE'S CHANGING WOODS AND FORESTS FROM WILDWOOD TO MANAGED LANDSCAPES, P193, DOI 10.1079/9781780643373.0193; Hester A. J., 2006, LARGE HERBIVORE ECOL, V11; Hothorn T, 2010, FOREST ECOL MANAG, V260, P1416, DOI 10.1016/j.foreco.2010.07.019; Jaren Vemund, 2003, Alces, V39, P1; Jedrzejewska B, 1997, ACTA THERIOL, V42, P399; Jongman RHG, 2011, LANDSCAPE ECOL, V26, P311, DOI 10.1007/s10980-010-9567-x; Kuijper DPJ, 2010, J VEG SCI, V21, P1082, DOI 10.1111/j.1654-1103.2010.01217.x; Laurian C, 2012, ECOSCIENCE, V19, P69, DOI 10.2980/19-1-3461; Leonardsson J, 2015, FOREST ECOL MANAG, V354, P1, DOI 10.1016/j.foreco.2015.07.004; Lindqvist Sara, 2014, Alces, V50, P53; Linnell JD, 2013, CONFLICT COEXISTENCE; Malmgren U, 1982, VASTMANLANDS FLORA; Mansson J, 2007, SCAND J FOREST RES, V22, P407, DOI 10.1080/02827580701515023; Mansson J, 2011, EUR J WILDLIFE RES, V57, P1017, DOI 10.1007/s10344-011-0512-3; Manton MG, 2005, LANDSCAPE ECOL, V20, P827, DOI 10.1007/s10980-005-3703-z; Mathisen KM, 2012, EUR J WILDLIFE RES, V58, P535, DOI 10.1007/s10344-011-0601-3; Mathisen KM, 2011, ECOL RES, V26, P563, DOI 10.1007/s11284-011-0815-6; Mikusinski G, 2003, AMBIO, V32, P520, DOI 10.1639/0044-7447(2003)032[0520:DODSIV]2.0.CO;2; Motta R, 2003, FOREST ECOL MANAG, V181, P139, DOI 10.1016/S0378-1127(03)00128-2; Myking T, 2013, EUR J FOREST RES, V132, P399, DOI 10.1007/s10342-013-0684-3; Myking T, 2011, FORESTRY, V84, P61, DOI 10.1093/forestry/cpq044; Myrdal J., 2011, AGRARIAN HIST SWEDEN; Naturvardsverket, 2014, WILD WILDL MAN RES S; Nikula A, 2004, WILDLIFE BIOL, V10, P121; Nilsson SG, 2001, SCAND J FOREST RES, P10, DOI 10.1080/028275801300090546; Nilsson Sven G., 2006, Svensk Botanisk Tidskrift, V100, P393; Nuttle T, 2013, ECOL MONOGR, V83, P3, DOI 10.1890/11-2263.1; Painter LE, 2015, ECOLOGY, V96, P252, DOI 10.1890/14-0712.1; Paltto H, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024675; Paltto H, 2010, CONSERV BIOL, V24, P758, DOI 10.1111/j.1523-1739.2009.01423.x; Pedersen S., 2011, THESIS; Pedersen S, 2007, ECOSCIENCE, V14, P499, DOI 10.2980/1195-6860(2007)14[499:MWBATB]2.0.CO;2; Peterson RO, 2014, ANNU REV ECOL EVOL S, V45, P325, DOI 10.1146/annurev-ecolsys-120213-091634; R Core Team, 2016, R LANG ENV STAT COMP; Redford KH, 2011, PHILOS T R SOC B, V366, P2712, DOI 10.1098/rstb.2011.0118; Reyers B, 2010, CONSERV BIOL, V24, P957, DOI 10.1111/j.1523-1739.2010.01497.x; Salomaa A, 2017, ENVIRON PLAN C-POLIT, V35, P265, DOI 10.1177/0263774X16649363; Sandstrom C, 2013, INT J COMMONS, V7, P549; Sandstrom Camilla, 2009, Human Dimensions of Wildlife, V14, P37; Sandstrom U. G., 2002, PLANNING PRACTICE RE, V17, P373, DOI DOI 10.1080/02697450216356; Siitonen J, 2015, EUROPE'S CHANGING WOODS AND FORESTS FROM WILDWOOD TO MANAGED LANDSCAPES, P140, DOI 10.1079/9781780643373.0140; Silva M., 1995, CRC HDB MAMMALIAN BO; Stighall K, 2011, SCAND J FOREST RES, V26, P576, DOI 10.1080/02827581.2011.599813; Storms D, 2008, WILDLIFE BIOL, V14, P237, DOI 10.2981/0909-6396(2008)14[237:SVIDCA]2.0.CO;2; Suominen O, 1999, OIKOS, V84, P215, DOI 10.2307/3546716; Suominen O, 2003, FOREST ECOL MANAG, V175, P403, DOI 10.1016/S0378-1127(02)00142-1; Suominen O, 1999, ECOGRAPHY, V22, P651, DOI 10.1111/j.1600-0587.1999.tb00514.x; Thulin CG, 2015, EUR J WILDLIFE RES, V61, P649, DOI 10.1007/s10344-015-0945-1; Wabakken P, 2001, CAN J ZOOL, V79, P710, DOI 10.1139/cjz-79-4-710; Woodroffe R., PEOPLE WILDLIFE CONF; Zuur A. F., 2009, MIXED EFFECTS MODELS 93 0 0 7 37 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0169-2046 1872-6062 LANDSCAPE URBAN PLAN Landsc. Urban Plan. NOV 2017 167 368 377 10.1016/j.landurbplan.2017.07.019 10 Ecology; Environmental Studies; Geography; Geography, Physical; Urban Studies Environmental Sciences & Ecology; Geography; Physical Geography; Urban Studies FJ7SO WOS:000412959400035 2018-11-22 J Bank, S; Sann, M; Mayer, C; Meusemann, K; Donath, A; Podsiadlowski, L; Kozlov, A; Petersen, M; Krogmann, L; Meier, R; Rosa, P; Schmitt, T; Wurdack, M; Liu, SL; Zhou, X; Misof, B; Peters, RS; Niehuis, O Bank, Sarah; Sann, Manuela; Mayer, Christoph; Meusemann, Karen; Donath, Alexander; Podsiadlowski, Lars; Kozlov, Alexey; Petersen, Malte; Krogmann, Lars; Meier, Rudolf; Rosa, Paolo; Schmitt, Thomas; Wurdack, Mareike; Liu, Shanlin; Zhou, Xin; Misof, Bernhard; Peters, Ralph S.; Niehuis, Oliver Transcriptome and target DNA enrichment sequence data provide new insights into the phylogeny of vespid wasps (Hymenoptera: Aculeata: Vespidae) MOLECULAR PHYLOGENETICS AND EVOLUTION English Article Eumeninae; Raphiglossinae; Zethinae; RNA-seq; Transcriptomics; Phylogenomics NUCLEOTIDE-SEQUENCES; EUSOCIALITY; EVOLUTION; GENOME; TREE; CLASSIFICATION; ALIGNMENTS; LIFE; BEES; TOOL The wasp family Vespidae comprises more than 5000 described species which represent life history strategies ranging from solitary and presocial to eusocial and socially parasitic. The phylogenetic relationships of the major vespid wasp lineages (i.e., subfamilies and tribes) have been investigated repeatedly by analyzing behavioral and morphological traits as well as nucleotide sequences of few selected genes with largely incongruent results. Here we reconstruct their phylogenetic relationships using a phylogenomic approach. We sequenced the transcriptomes of 24 vespid wasp and eight outgroup species and exploited the transcript sequences for design of probes for enriching 913 single-copy protein-coding genes to complement the transcriptome data with nucleotide sequence data from additional 25 ethanol-preserved vespid species. Results from phylogenetic analyses of the combined sequence data revealed the eusocial subfamily Stenogastrinae to be the sister group of all remaining Vespidae, while the subfamily Eumeninae turned out to be paraphyletic. Of the three currently recognized eumenine tribes, Odynerini is paraphyletic with respect to Eumenini, and Zethini is paraphyletic with respect to Polistinae and Vespinae. Our results are in conflict with the current tribal subdivision of Eumeninae and thus, we suggest granting subfamily rank to the two major clades of "Zethini": Raphiglossinae and Zethinae. Overall, our findings corroborate the hypothesis of two independent origins of eusociality in vespid wasps and suggest a single origin of using masticated and salivated plant material for building nests by Raphiglossinae, Zethinae, Polistinae, and Vespinae. The inferred phylogenetic relationships and the open access vespid wasp target DNA enrichment probes will provide a valuable tool for future comparative studies on species of the family Vespidae, including their genomes, life styles, evolution of sociality, and co-evolution with other organisms. [Bank, Sarah; Sann, Manuela; Mayer, Christoph; Meusemann, Karen; Donath, Alexander; Petersen, Malte; Misof, Bernhard; Niehuis, Oliver] Zool Res Museum Alexander Koenig, Ctr Mol Biodivers Res, Adenauerallee 160, D-53113 Bonn, Germany; [Sann, Manuela; Meusemann, Karen; Wurdack, Mareike; Niehuis, Oliver] Univ Freiburg, Inst Biol Zool 1, Dept Evolutionary Biol & Ecol, Hauptstr 1, D-79104 Freiburg, Germany; [Podsiadlowski, Lars] Univ Bonn, Inst Evolutionary Biol & Ecol, Immenburg 1, D-53121 Bonn, Germany; [Kozlov, Alexey] Heidelberg Inst Theoret Studies, Sci Comp Grp, Schloss Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany; [Krogmann, Lars] State Museum Nat Hist, Dept Entomol, Rosenstein 1, D-70191 Stuttgart, Germany; [Meier, Rudolf] Natl Univ Singapore, 14 Sci Dr 4, Singapore 117543, Singapore; [Rosa, Paolo] Via Belvedere 8-D, I-20044 Bernareggio, MI, Italy; [Schmitt, Thomas; Wurdack, Mareike] Univ Wurzburg, Bioctr, Dept Anim Ecol & Trop Biol, D-97074 Wurzburg, Germany; [Liu, Shanlin] BGI Shenzhen, China Natl GeneBank Shenzhen, Shenzhen 518083, Guangdong, Peoples R China; [Liu, Shanlin] BGI Shenzhen, Shenzhen 518083, Guangdong, Peoples R China; [Liu, Shanlin] Univ Copenhagen, Nat Hist Museum Denmark, Ctr GeoGenet, Oster Voldgade 5-7, DK-1350 Copenhagen, Denmark; [Zhou, Xin] China Agr Univ, Beijing Adv Innovat Ctr Food Nutr & Human Hlth, Beijing 100193, Peoples R China; [Zhou, Xin] China Agr Univ, Dept Entomol, Beijing 100193, Peoples R China; [Peters, Ralph S.] Zool Res Museum Alexander Koenig, Arthropoda Dept, Ctr Taxon & Evolutionary Res, Adenauerallee 160, D-53113 Bonn, Germany Niehuis, O (reprint author), Univ Freiburg, Inst Biol Zool 1, Dept Evolutionary Biol & Ecol, Hauptstr 1, D-79104 Freiburg, Germany.; Peters, RS (reprint author), Zool Res Museum Alexander Koenig, Arthropoda Dept, Ctr Taxon & Evolutionary Res, Adenauerallee 160, D-53113 Bonn, Germany. r.peters@leibniz-zfmk.de; oliver.niehuis@biologie.uni-freiburg.de Donath, Alexander/F-2636-2015; Meier, Rudolf/A-7099-2011; Podsiadlowski, Lars/B-2796-2008; Meier, Rudolf/G-4213-2010 Donath, Alexander/0000-0001-5618-0547; Meier, Rudolf/0000-0002-4452-2885; Mayer, Christoph/0000-0001-5104-6621; Bank, Sarah/0000-0001-6952-1590; Petersen, Malte/0000-0001-7601-9873 Germany Research Foundation (DFG) [NI 1387/1-1, NI 1387/2-1, NI 1387/4-1, SCHM 2645/1-1, SCHM 2645/2-1]; BGI-Shenzhen; Chinese Universities Scientific Fund through China Agricultural University [2017QC114] This study has been enabled by the 1KITE consortium (www.lkite. org). Parts of it were supported by the Germany Research Foundation (DFG; NI 1387/1-1; NI 1387/2-1; NI 1387/4-1; SCHM 2645/1-1; SCHM 2645/2-1). Funding for transcriptome sequencing and assembly was supported by BGI-Shenzhen. X.Z. is also supported by the Chinese Universities Scientific Fund (2017QC114) through China Agricultural University. We thank A. Berg, S. Hopfenmiiller, and M. Staab for providing samples, Niklas Noll for bioinformatic input in the development of scripts used to conduct the permutation test, and V. Mauss and two anonymous reviewers for valuable comments on the manuscript. O.N. acknowledges Hessen Forst, the Israeli Nature and National Parks Protection Authority, the Mercantour National Park Service, and the Struktur- and Genehmigungsbehorde Slid for granting permissions to collect samples. All analyzed species were collected before October 2014. O.N. is indebted to J. Gusenleitner for help identifying vespid wasps. O.N. thanks N. Dorchin and M. Niehuis for supporting his field trips to Israel. B.M. and O.N. acknowledge C. Etzbauer and S. Kukowka for technical assistance. K.M., O.N., and S.B. acknowledge V. Achter and the Cologne High Efficient Operating Platform for Science (CHEOPS) at the Regionales Rechenzentrum Kan (RRZ) for bioinformatic and computational support. We thank Ondrej Hlinka, CSIRO, Australia for help when using the CSIRO HPC Cluster Pearcey. We furthermore acknowledge the Gauss Centre for Supercomputing e. V. for funding computing time on the GCS Supercomputer SuperMUC at the Leibniz Supercomputing Centre (LRZ). A.D., B.M., C.M., M.P., O.N., and R.S.P. acknowledge the Leibniz association for installing the graduate school Genomic Biodiversity Research, in the context of which the present study arose. Ababneh F, 2006, BIOINFORMATICS, V22, P1225, DOI 10.1093/bioinformatics/btl064; Aberer AJ, 2014, MOL BIOL EVOL, V31, P2553, DOI 10.1093/molbev/msu236; Aberer AJ, 2013, SYST BIOL, V62, P162, DOI 10.1093/sysbio/sys078; Archer M.E., 2012, VESPINE WASPS WORLD; Arevalo E, 2004, BMC EVOL BIOL, V4, DOI 10.1186/1471-2148-4-8; BISCHOFF H, 1927, BIOL HYMENOPTEREN; Bluthgen P, 1961, ABHANDLUNGEN DTSCH A, V2, P1; BOHART R. M., 1965, UNIV CALIF PUBLICATIONS ENTOMOL, V40, P1; Bolger AM, 2014, BIOINFORMATICS, V30, P2114, DOI 10.1093/bioinformatics/btu170; Bonasio R, 2010, SCIENCE, V329, P1068, DOI 10.1126/science.1192428; Bossert S, 2017, MOL PHYLOGENET EVOL, V111, P149, DOI 10.1016/j.ympev.2017.03.022; BOWKER AH, 1948, J AM STAT ASSOC, V43, P572, DOI 10.2307/2280710; Branstetter MG, 2017, CURR BIOL, V27, P1019, DOI 10.1016/j.cub.2017.03.027; Brothers Denis J., 1993, Journal of Hymenoptera Research, V2, P227; Budriene Anna, 2003, Acta Zoologica Lituanica, V13, P306; Camacho C, 2009, BMC BIOINFORMATICS, V10, DOI 10.1186/1471-2105-10-421; CARPENTER J M, 1990, Psyche (Cambridge), V97, P1, DOI 10.1155/1990/67312; Carpenter J.M., 1991, P7; CARPENTER J M, 1988, Psyche (Cambridge), V95, P211, DOI 10.1155/1988/45034; Carpenter J. M., 1993, BIOL REL AFR S AM P; Carpenter James M., 2006, American Museum Novitates, V3507, P1, DOI 10.1206/0003-0082(2006)3507[1:PRAYAT]2.0.CO;2; Carpenter JM, 2003, AM MUS NOVIT, P1, DOI 10.1206/0003-0082(2003)389<0001:OMPOVH>2.0.CO;2; CARPENTER JM, 1988, J NEW YORK ENTOMOL S, V96, P140; CARPENTER JM, 1982, SYST ENTOMOL, V7, P11, DOI 10.1111/j.1365-3113.1982.tb00124.x; CARPENTER JM, 1985, J NAT HIST, V19, P877, DOI 10.1080/00222938500770551; Carpenter JM, 1996, J KANSAS ENTOMOL SOC, V69, P384; CARPENTER JM, 1987, SYST ENTOMOL, V12, P413, DOI 10.1111/j.1365-3113.1987.tb00213.x; CRESPI BJ, 1995, BEHAV ECOL, V6, P109, DOI 10.1093/beheco/6.1.109; Czech L, 2017, MOL BIOL EVOL, V34, P1535, DOI 10.1093/molbev/msx055; Dell'Ampio E, 2014, MOL BIOL EVOL, V31, P239, DOI 10.1093/molbev/mst196; Eddy SR, 2011, PLOS COMPUT BIOL, V7, DOI 10.1371/journal.pcbi.1002195; Elsik CG, 2014, BMC GENOMICS, V15, DOI 10.1186/1471-2164-15-86; Evans H. E., 1970, WASPS; Faircloth BC, 2017, METHODS ECOL EVOL, V8, P1103, DOI 10.1111/2041-210X.12754; Faircloth BC, 2015, MOL ECOL RESOUR, V15, P489, DOI 10.1111/1755-0998.12328; FELSENSTEIN J, 1978, SYST ZOOL, V27, P401, DOI 10.2307/2412923; Ferton C, 1920, ANN SOC ENTOMOLOGIQU, V89, P329; Finn RD, 2006, NUCLEIC ACIDS RES, V34, pD247, DOI 10.1093/nar/gkj149; Finn RD, 2014, NUCLEIC ACIDS RES, V42, pD222, DOI 10.1093/nar/gkt1223; Gess Friedrich W., 1998, Journal of Hymenoptera Research, V7, P296; Gess S. K., 1996, POLLEN WASPS ECOLOGY, P1; Hansell M., 1985, Actes des Colloques Insectes Sociaux, V2, P57; Hermes MG, 2013, CLADISTICS, V30, P1; Hines HM, 2007, P NATL ACAD SCI USA, V104, P3295, DOI 10.1073/pnas.0610140104; Hoffmann S, 2014, GENOME BIOL, V15, DOI 10.1186/gb-2014-15-2-r34; Hoffmann S, 2009, PLOS COMPUT BIOL, V5, DOI 10.1371/journal.pcbi.1000502; Hunt J.H., 1991, P426; Hunt JH, 2005, SCIENCE, V308, P264, DOI 10.1126/science.1109724; HURVICH CM, 1989, BIOMETRIKA, V76, P297, DOI 10.1093/biomet/76.2.297; Iwata K., 1976, EVOLUTION INSTINCT C; Jermiin LS, 2004, SYST BIOL, V53, P638, DOI 10.1080/10635150490468648; Katoh K, 2016, BIOINFORMATICS, V32, P1933, DOI 10.1093/bioinformatics/btw108; Katoh K, 2013, MOL BIOL EVOL, V30, P772, DOI 10.1093/molbev/mst010; Kimsey L. S., 1991, CHRYSIDID WASPS WORL; Kozlov AM, 2015, BIOINFORMATICS, V31, P2577, DOI 10.1093/bioinformatics/btv184; Krenn HW, 2002, ARTHROPOD STRUCT DEV, V31, P103, DOI 10.1016/S1467-8039(02)00025-7; Krombein K. V., 1979, CATALOG HYMENOPTERA, P1469; KROMBEIN K. V., 1991, SMITHSONIAN CONTRIBU, V515, p1/52; Kuck P, 2010, FRONT ZOOL, V7, DOI 10.1186/1742-9994-7-10; Lanfear R, 2017, MOL BIOL EVOL, V34, P772, DOI 10.1093/molbev/msw260; Lanfear R, 2014, BMC EVOL BIOL, V14, DOI 10.1186/1471-2148-14-82; Le SQ, 2008, MOL BIOL EVOL, V25, P1307, DOI 10.1093/molbev/msn067; Lemmon AR, 2012, SYST BIOL, V61, P727, DOI 10.1093/sysbio/sys049; Li H, 2009, BIOINFORMATICS, V25, P2078, DOI 10.1093/bioinformatics/btp352; Litman JR, 2011, P ROY SOC B-BIOL SCI, V278, P3593, DOI 10.1098/rspb.2011.0365; Liu LA, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-302; Liu L, 2009, SYST BIOL, V58, P468, DOI 10.1093/sysbio/syp031; Liu L, 2009, MOL PHYLOGENET EVOL, V53, P320, DOI 10.1016/j.ympev.2009.05.033; Lopez-Osorio F, 2017, MOL PHYLOGENET EVOL, V107, P10, DOI 10.1016/j.ympev.2016.10.006; Mauss V., 2007, Denisia, P701; Mayer C, 2016, MOL BIOL EVOL, V33, P1875, DOI 10.1093/molbev/msw056; Meusemann K, 2010, MOL BIOL EVOL, V27, P2451, DOI 10.1093/molbev/msq130; Misof B, 2014, SCIENCE, V346, P763, DOI 10.1126/science.1257570; Misof B, 2013, BMC BIOINFORMATICS, V14, DOI 10.1186/1471-2105-14-348; Misof B, 2009, SYST BIOL, V58, P21, DOI 10.1093/sysbio/syp006; Nygaard S, 2011, GENOME RES, V21, P1339, DOI 10.1101/gr.121392.111; Pattengale ND, 2010, J COMPUT BIOL, V17, P337, DOI 10.1089/cmb.2009.0179; Peng Y, 2012, BIOINFORMATICS, V28, P1420, DOI 10.1093/bioinformatics/bts174; Perrard A, 2017, SYST ENTOMOL, V42, P379, DOI 10.1111/syen.12222; Peters RS, 2017, CURR BIOL, V27, P1013, DOI 10.1016/j.cub.2017.01.027; Petersen M, 2017, BMC BIOINFORMATICS, V18, DOI 10.1186/s12859-017-1529-8; Pickett KM, 2010, ARTHROPOD SYST PHYLO, V68, P3; Pilgrim EM, 2008, ZOOL SCR, V37, P539, DOI 10.1111/j.1463-6409.2008.00340.x; Rambaut A., 2016, FIGTREE VERSION 1 4; Richards OW, 1962, REVISIONAL STUDY MAS; Richards S, 2008, NATURE, V452, P949, DOI 10.1038/nature06784; Romiguier J, 2016, MOL BIOL EVOL, V33, P670, DOI 10.1093/molbev/msv258; Schmitz J, 1998, MOL PHYLOGENET EVOL, V9, P183, DOI 10.1006/mpev.1997.0460; Springer MS, 2016, MOL PHYLOGENET EVOL, V94, P1, DOI 10.1016/j.ympev.2015.07.018; Stamatakis A, 2014, BIOINFORMATICS, V30, P1312, DOI 10.1093/bioinformatics/btu033; Standage DS, 2016, MOL ECOL, V25, P1769, DOI 10.1111/mec.13578; STRASSMANN JE, 1994, ANIM BEHAV, V48, P813, DOI 10.1006/anbe.1994.1305; Strimmer K, 1997, P NATL ACAD SCI USA, V94, P6815, DOI 10.1073/pnas.94.13.6815; Suyama M, 2006, NUCLEIC ACIDS RES, V34, pW609, DOI 10.1093/nar/gkl315; Turillazzi S., 1991, P74; Vernier Richard, 1997, Bulletin de la Societe Neuchateloise des Sciences Naturelles, V120, P87; Waterhouse RM, 2013, NUCLEIC ACIDS RES, V41, pD358, DOI 10.1093/nar/gks1116; Weinstock GM, 2006, NATURE, V443, P931, DOI 10.1038/nature05260; Werren JH, 2010, SCIENCE, V327, P343, DOI 10.1126/science.1178028; Wurdack M, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.1777; Yoshikawa K., 1969, Nature & Life SE Asia, V6, P153 101 7 8 8 47 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 1055-7903 1095-9513 MOL PHYLOGENET EVOL Mol. Phylogenet. Evol. NOV 2017 116 213 226 10.1016/j.ympev.2017.08.020 14 Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity FJ4NE WOS:000412716400021 28887149 2018-11-22 J Bowman, TRS; McMillan, BR; St Clair, SB Bowman, Tiffanny R. Sharp; McMillan, Brock R.; St Clair, Samuel B. Rodent herbivory differentially affects mortality rates of 14 native plant species with contrasting life history and growth form traits OECOLOGIA English Article Consumers; Disturbance; Fire; Small mammal; Desert POPULUS-TREMULOIDES MICHX.; DESERT RODENT; DIPODOMYS-MERRIAMI; SEED PREDATION; MOJAVE DESERT; SMALL MAMMALS; BIOTIC RESISTANCE; FIRE; WILDFIRE; ESTABLISHMENT Ecosystems are transformed by changes in disturbance regimes including wildfire and herbivory. Rodent consumers can have strong top-down effects on plant community assembly through seed predation, but their impacts on post-germination seedling establishment via seedling herbivory need better characterization, particularly in deserts. To test the legacy effects of fire history, and native rodent consumers on seedling establishment, we evaluated factorial combinations of experimental exclusion of rodents and fire history (burned vs. unburned) on seedling survival of 14 native plant species that vary in their life history strategies and growth form in the Mojave Desert. Seedlings were placed into the experimental plots, and seedling survival was monitored daily for 8 days. The legacy effects of fire history had minimal effects on seedling survival, but rodent exclusion, year, and their interaction were strongly significant. Seedling survival rates were nearly sixfold greater in rodent exclusion plots compared to control plots in 2012 (53 vs. 9%) and 17-fold greater in 2013 (17 vs. 1%). The dramatic increase in seedling mortality from 2012 to 2013 was likely driven by an increase in rodent abundance and an outbreak of grasshoppers that appears to have intensified the rodent effect. There was strong variability in plant species survival in response to rodent herbivory with annual plants and forb species showing lower survival than perennial plants and shrub species. These results indicate that rodent consumers can strongly regulate seedling survival of native plant species with potentially strong regulatory effects on plant community development. [Bowman, Tiffanny R. Sharp; McMillan, Brock R.; St Clair, Samuel B.] Brigham Young Univ, Dept Plant & Wildlife Sci, Provo, UT 84602 USA St Clair, SB (reprint author), Brigham Young Univ, Dept Plant & Wildlife Sci, Provo, UT 84602 USA. stclair@byu.edu USDA NIFA [2010-38415-21908] Many thanks to Rachel Giannetta and Brandon White for assistance in the field and to Dr. Randy Larson who advised on the data analysis. The BLM and Brigham Young University's Lytle Ranch Preserve provided access to study sites. The BLM also provided NEPA clearance and conducted the controlled burns. This project was funded by USDA NIFA Grant: 2010-38415-21908. Abbott LB, 2003, J RANGE MANAGE, V56, P56, DOI 10.2307/4003882; Barton KE, 2013, ANN BOT-LONDON, V112, P643, DOI 10.1093/aob/mct139; BEATLEY JC, 1976, J MAMMAL, V57, P67, DOI 10.2307/1379513; Beck MJ, 2010, J ECOL, V98, P1300, DOI 10.1111/j.1365-2745.2010.01716.x; Bestelmeyer BT, 2007, J VEG SCI, V18, P363, DOI 10.1658/1100-9233(2007)18[363:DSIILG]2.0.CO;2; Bowman DMJS, 2011, J BIOGEOGR, V38, P2223, DOI 10.1111/j.1365-2699.2011.02595.x; Bowman DMJS, 2009, SCIENCE, V324, P481, DOI 10.1126/science.1163886; Bowman TR, 2015, CASCADING EFFECTS IN; Brooks ML, 2006, J ARID ENVIRON, V67, P148, DOI 10.1016/j.jaridenv.2006.09.027; BROWN JH, 1990, OIKOS, V59, P290, DOI 10.2307/3545139; BROWN JH, 1990, SCIENCE, V250, P1705, DOI 10.1126/science.250.4988.1705; Bukowski BE, 2013, ECOL APPL, V23, P546, DOI 10.1890/12-0844.1; Carmona D, 2011, FUNCT ECOL, V25, P358, DOI 10.1111/j.1365-2435.2010.01794.x; DALY M, 1992, ANIM BEHAV, V44, P1, DOI 10.1016/S0003-3472(05)80748-1; Duval BD, 2005, J ARID ENVIRON, V62, P541, DOI 10.1016/j.jaridenv.2005.01.012; Eiswerth ME, 2009, J ENVIRON MANAGE, V90, P1320, DOI 10.1016/j.jenvman.2008.07.009; Eiswerth ME, 2006, ECOL MODEL, V192, P286, DOI 10.1016/j.ecolmodel.2005.07.003; Falkenberg JC, 1998, J MAMMAL, V79, P558, DOI 10.2307/1382986; FLAKE LD, 1973, J MAMMAL, V54, P636, DOI 10.2307/1378963; Freeman ED, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0108843; GROVES CR, 1988, NORTHWEST SCI, V62, P205; Horn KJ, 2012, J ARID ENVIRON, V77, P54, DOI 10.1016/j.jaridenv.2011.10.003; Horn KJ, 2017, LANDSCAPE ECOL, V32, P635, DOI 10.1007/s10980-016-0466-7; Horn KJ, 2015, PLANT ECOL, V216, P1623, DOI 10.1007/s11258-015-0546-9; Howe HF, 2004, ECOL APPL, V14, P1295, DOI 10.1890/03-5182; HULME PE, 1994, J ECOL, V82, P873, DOI 10.2307/2261451; Jacquemyn H, 2005, ECOL APPL, V15, P2097, DOI 10.1890/04-1762; JAMESON EW, 1952, J MAMMAL, V33, P50, DOI 10.2307/1375640; Knutson KC, 2014, J APPL ECOL, V51, P1414, DOI 10.1111/1365-2664.12309; KOTLER BP, 1984, ECOLOGY, V65, P689, DOI 10.2307/1938041; Lenth R.V., 2014, LSMEANS LEAST SQUARE; Lindroth RL, 2013, FOREST ECOL MANAG, V299, P14, DOI 10.1016/j.foreco.2012.11.018; Longland WS, 2013, RESTOR ECOL, V21, P285, DOI 10.1111/j.1526-100X.2012.00895.x; Maron JL, 2006, ECOLOGY, V87, P113, DOI 10.1890/05-0434; Maron JL, 2006, P R SOC B, V273, P2575, DOI 10.1098/rspb.2006.3587; Maron JL, 2012, J ECOL, V100, P1492, DOI 10.1111/j.1365-2745.2012.02027.x; Meyer SE, 2005, PLANT ECOL, V178, P171, DOI 10.1007/s11258-004-3038-x; Monasmith TJ, 2010, INT J ECOL, V2010, P9; Ostoja SM, 2009, DIVERS DISTRIB, V15, P863, DOI 10.1111/j.1472-4642.2009.00593.x; Pearson DE, 2014, BIOL INVASIONS, V16, P1185, DOI 10.1007/s10530-013-0573-1; Pearson DE, 2016, BIOL CONSERV, V197, P8, DOI 10.1016/j.biocon.2016.02.029; Pearson DE, 2011, ECOLOGY, V92, P1748, DOI 10.1890/11-0164.1; Perez-Harguindeguy N, 2003, AUSTRAL ECOL, V28, P642, DOI 10.1046/j.1442-9993.2003.01321.x; PERKINS LA, 1976, AM MIDL NAT, V95, P507, DOI 10.2307/2424421; PYKE DA, 1986, J ECOL, V74, P739, DOI 10.2307/2260395; R Core Team, 2014, R LANG ENV STAT COMP; ROSENZWEIG ML, 1969, ECOLOGY, V50, P558, DOI 10.2307/1936246; SIMONS LH, 1991, J MAMMAL, V72, P518, DOI 10.2307/1382135; Sipos MP, 2002, SOUTHWEST NAT, V47, P276, DOI 10.2307/3672915; Sorensen JS, 2005, OECOLOGIA, V146, P415, DOI 10.1007/s00442-005-0236-8; St Clair SB, 2016, ECOLOGY, V97, P1700, DOI 10.1002/ecy.1391; Therneau T, 2012, COXME MIXED EFFECTS; Therneau T, 2012, PACKAGE SURVIVAL ANA; Villalba JJ, 2014, J CHEM ECOL, V40, P1135, DOI 10.1007/s10886-014-0507-0; Wan HY, 2014, OIKOS, V123, P1479, DOI 10.1111/oik.01521; WENT FW, 1949, ECOLOGY, V30, P26, DOI 10.2307/1932275; Zuur AF, 2010, METHODS ECOL EVOL, V1, P3, DOI 10.1111/j.2041-210X.2009.00001.x; Zwolak R, 2010, ECOLOGY, V91, P1124, DOI 10.1890/09-0332.1 58 1 1 7 22 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia NOV 2017 185 3 465 473 10.1007/s00442-017-3944-y 9 Ecology Environmental Sciences & Ecology FK7MO WOS:000413691100013 28887653 2018-11-22 J Liu, W; Zhong, WQ; Wan, XR Liu, Wei; Zhong, Wen-qin; Wan, Xin-rong Sex- and cohort-specific life-history strategies in Mongolian gerbils (Meriones unguiculatus) JOURNAL OF ARID ENVIRONMENTS English Article Meriones unguiculatus; Capture-Mark-Recapture method; Sexual selection; Monogamy strategies; Precipitation constraints; Adaptive switching SIZE DIMORPHISM; MATING SYSTEMS; BODY-MASS; REPRODUCTION; EVOLUTION; VOLES; POPULATION; SURVIVAL; GROWTH; CLETHRIONOMYS Information on life-history traits is crucial for understanding rodent evolution, ecology, and behavioral strategies. Here, we report on the results from a 4-year study that collected data on the sexual and seasonal cohort (winter C-1, spring C-2, and summer C-3) life-history traits of Mongolian gerbils (Meriones unguiculatus) maintained in a natural enclosure, using monthly live trapping, in Inner Mongolia (China). We found no sexual differences in the observed longevity, age of maturity, potential reproductive life span, or dispersal in the year of their birth, apart from a male-biased dispersal after gerbils overwintered as adults. Nevertheless, we did find cohort-specific life-history patterns in the above traits; for example, the C-1 females matured at a significantly earlier age than did the C-2 and C-3 females, while the C-3 gerbils commonly delayed their reproduction to the following year. Moreover, 21.7% of C-1 and 6.1% of C-2 females bred more than one litter, yet none of the C-3 females did so during their birth-year breeding season. The average number of litters per female of C-1 was greater than that of either C-2 or C-3 in their birth-year breeding season. Our results suggest that sex-specific life history traits may align with the predictions of sexual selection and the monogamy system hypothesis in Mongolian gerbils. In addition, the seasonal cohort-specific life-history traits revealed here lend support to the hypothesis of an adaptive switching behavior from fast to slow development in the later-born gerbils as opposed to the hypothesis of direct environmental limitation, although the slight inter-annual variation detected is consistent with the precipitation constraints. (C) 2017 Elsevier Ltd. All rights reserved. [Liu, Wei; Zhong, Wen-qin; Wan, Xin-rong] Chinese Acad Sci, State Key Lab Integrated Management Pest Insects, Inst Zool, Beichen Xilu,1, Beijing 100101, Peoples R China; [Liu, Wei] Univ Chinese Acad Sci, Beijing, Peoples R China Liu, W (reprint author), Chinese Acad Sci, State Key Lab Integrated Management Pest Insects, Inst Zool, Beichen Xilu,1, Beijing 100101, Peoples R China. liuwei@ioz.ac.cn; zhongwq@ioz.ac.cn; wanxr@ioz.ac.cn National Natural Science Foundation of China [31372211, 31470474]; Beijing Natural Science Foundation [5172024]; State Key Laboratory of Integrated Management of Pest Insects and Rodents [KSCX2-EW-N-005] We thank Bin WU, Yu-cai GUO, and the staff of the Plant Protection Station of Taibusiqi for their help with the fieldwork. We are grateful to Dr. Gui-ming WANG and two reviewers for their helpful comments on our manuscript. Wei LIU, Wen-qin ZHONG, and Xin-rong WAN were supported by a grant from the National Natural Science Foundation of China (No.:31372211 and 31470474), by the Beijing Natural Science Foundation (5172024), and by the State Key Laboratory of Integrated Management of Pest Insects and Rodents (KSCX2-EW-N-005). AGREN G, 1989, ANIM BEHAV, V37, P11, DOI 10.1016/0003-3472(89)90002-X; Andersson M., 1994, SEXUAL SELECTION; Aubert ML, 1996, ACTA PAEDIATR, V85, P86, DOI 10.1111/j.1651-2227.1996.tb14308.x; BOONSTRA R, 1993, J MAMMAL, V74, P224, DOI 10.2307/1381924; Boyce M. S., 1988, EVOLUTION LIFE HIST, P3; Clark MM, 2001, ANIM BEHAV, V62, P897, DOI 10.1006/anbe.2001.1827; Dobson FS, 2007, P NATL ACAD SCI USA, V104, P17565, DOI 10.1073/pnas.0708868104; Ergon T, 2007, ECOSCIENCE, V14, P330, DOI 10.2980/1195-6860(2007)14[330:OOOSRI]2.0.CO;2; Fleming T.H., 1979, ECOLOGY SMALL MAMMAL, pPl; FULLER WA, 1977, CAN J ZOOL, V55, P42, DOI 10.1139/z77-004; Gliwicz Joanna, 1996, Miscellania Zoologica (Barcelona), V19, P1; HARVEY P. H., 1988, EVOLUTION LIFE HIST, P213; HEALEY MC, 1967, ECOLOGY, V48, P377, DOI 10.2307/1932673; HESKE EJ, 1990, J MAMMAL, V71, P510, DOI 10.2307/1381789; Hoogland JL, 2003, J MAMMAL, V84, P1254, DOI 10.1644/BME-008; INNES DGL, 1994, MAMMAL REV, V24, P179, DOI 10.1111/j.1365-2907.1994.tb00142.x; Isaac JL, 2003, BEHAV ECOL, V14, P818, DOI 10.1093/beheco/arg076; Isaac JL, 2005, MAMMAL REV, V35, P101, DOI 10.1111/j.1365-2907.2005.00045.x; Johannesen E, 2000, OIKOS, V89, P37, DOI 10.1034/j.1600-0706.2000.890104.x; Kappeler PM, 2003, PRIMATE LIFE HIST SO; Kokko H, 1996, OIKOS, V77, P173, DOI 10.2307/3545599; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Kraus C, 2005, J ANIM ECOL, V74, P171, DOI 10.1111/j.1365-2656.2004.00910.x; Krebs C J., 1999, ECOLOGICAL METHODOLO; Lambin X, 2001, J ANIM ECOL, V70, P191, DOI 10.1046/j.1365-2656.2001.00494.x; Li XS, 2007, PHYSIOL BIOCHEM ZOOL, V80, P326, DOI 10.1086/513189; Li XS, 2005, J COMP PHYSIOL B, V175, P593, DOI 10.1007/s00360-005-0022-2; Liu W, 2007, J ARID ENVIRON, V68, P383, DOI 10.1016/j.jaridenv.2006.07.002; Liu W, 2009, J ZOOL, V278, P249, DOI 10.1111/j.1469-7998.2009.00574.x; Liu Wei, 2009, Shengtaixue Zazhi, V28, P1853; Liu W, 2009, J MAMMAL, V90, P832, DOI 10.1644/08-MAMM-A-265.1; Mikolajewski DJ, 2005, OIKOS, V110, P91, DOI 10.1111/j.0030-1299.2005.13766.x; MILLAR JS, 1970, CAN J ZOOLOG, V48, P1055, DOI 10.1139/z70-186; Negus N.C., 1988, EVOLUTION LIFE HIST, P65; Nunes Scott, 2007, P150; PERRIN MR, 1989, PERSP VERT, V6, P209; Prevot-Julliard AC, 1999, J ANIM ECOL, V68, P684, DOI 10.1046/j.1365-2656.1999.00307.x; Quinn G.P., 2002, EXPT DESIGN DATA ANA; RANDALL JA, 1991, BEHAV ECOL SOCIOBIOL, V28, P215; Restif O, 2010, P ROY SOC B-BIOL SCI, V277, P2247, DOI 10.1098/rspb.2010.0188; Roff Derek A., 1992; Scheibler E, 2006, MAMM BIOL, V71, P178, DOI 10.1016/j.mambio.2005.11.007; Scheibler E, 2004, PHYSIOL BEHAV, V81, P455, DOI 10.1016/j.physbeh.2004.02.011; Schulte-Hostedde AI, 2002, EVOLUTION, V56, P2519; Schulte-Hostedde Albrecht I., 2007, P115; SHINE R, 1989, Q REV BIOL, V64, P419, DOI 10.1086/416458; SPSS, 2004, SPSS WIND 13 0; Stearns S., 1992, EVOLUTION LIFE HIST; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Thiessen D., 1977, GERBILS BEHAV INVEST; Weckerly FW, 1998, J MAMMAL, V79, P33, DOI 10.2307/1382840; White G., 2007, PROGRAM MARK; Wilson DE, 2005, TAXONOMIC GEOGRAPHIC; Wittmer HU, 2007, J ANIM ECOL, V76, P946, DOI 10.1111/j.1365-2656.2007.01274.x; Xia W., 1982, Acta Theriologica Sinica, V2, P51 55 0 0 2 38 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0140-1963 1095-922X J ARID ENVIRON J. Arid. Environ. NOV 2017 146 18 26 10.1016/j.jaridenv.2017.07.007 9 Ecology; Environmental Sciences Environmental Sciences & Ecology FF6VR WOS:000409155600003 2018-11-22 J Chen, BB; Qu, WX Chen, Bin-Bin; Qu, Wenxiang Life history strategies and procrastination: The role of environmental unpredictability PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Procrastination; Life history; Slow/fast strategy; Environmental unpredictability CHILDHOOD ENVIRONMENTS; REPRODUCTIVE STRATEGY; INSECURE ATTACHMENT; RESOURCE CONTROL; PERSONALITY; RISK; ADOLESCENCE; UNCERTAINTY; ORIENTATION; ADULTHOOD Life history theory provides a unifying perspective on understanding human behaviors as adaptive strategies in response to particular environmental conditions. Procrastination, characterized by seeking immediate hedonic rewards and avoiding investment for future rewards, can be seen as a fast life history strategy in response to the unpredictable environment. The purpose of the present study was to examine the relationships between environmental unpredictability, life history strategies and procrastination. In two studies, participants completed a measure of environmental unpredictability, life history strategies and procrastination. Samples included 577 adolescents (Study 1) and 253 young adults (Study 2). Across two studies, we found that those who perceived environmental unpredictability reported greater levels of procrastination. Furthermore, a slow life history strategy mediated the association between perceptions of environmental unpredictability and procrastination. Implications for life history theory, conceptualizing procrastination, and future research directions are discussed. (C) 2017 Elsevier Ltd. All rights reserved. [Chen, Bin-Bin; Qu, Wenxiang] Fudan Univ, Shanghai, Peoples R China Chen, BB (reprint author), Fudan Univ, Dept Psychol, 220 Handan Rd, Shanghai 200433, Peoples R China. chenbinbin@fudan.edu.cn Teaching and Research Section of Shanghai Municipal Education Commission [JX09JC03201601]; School of Social Development and Public Policy at Fudan University This study was supported by Teaching and Research Section of Shanghai Municipal Education Commission (JX09JC03201601), and the research fund of the School of Social Development and Public Policy at Fudan University. Barbaro N., 2016, J INTERPERS IN PRESS; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.1111/j.1467-8624.1991.tb01558.x; Belsky J, 1997, HUM NATURE-INT BIOS, V8, P361, DOI 10.1007/BF02913039; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Chen BB, 2017, PERS INDIV DIFFER, V111, P215, DOI 10.1016/j.paid.2017.02.032; Chen BB, 2017, BEHAV BRAIN SCI, V40, P20, DOI 10.1017/S0140525X16000455; Chen BB, 2017, PERS INDIV DIFFER, V108, P128, DOI 10.1016/j.paid.2016.12.017; Chen BB, 2017, PERS INDIV DIFFER, V105, P213, DOI 10.1016/j.paid.2016.09.062; Chen BB, 2016, FRONT PSYCHOL, V7, DOI 10.3389/fpsyg.2016.01529; Chen BB, 2016, EVOL PSYCHOL-US, V14, DOI 10.1177/1474704916630314; Chen BB, 2012, INT J BEHAV DEV, V36, P389, DOI 10.1177/0165025412445440; Chen B, 2017, CLUSTER COMPUT, V20, P413, DOI 10.1007/s10586-017-0731-9; Chisholm J. S., 1999, DEATH HOPE SEX STEPS; Davis J, 2008, HUM NATURE-INT BIOS, V19, P426, DOI 10.1007/s12110-008-9052-2; Del Giudice M, 2015, HDB EVOLUTIONARY PSY, P88, DOI DOI 10.1002/9781119125563.EVPSYCH102; Del Giudice M, 2014, PSYCHOL INQ, V25, P261, DOI 10.1080/1047840X.2014.884918; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Diaz-Morales JF, 2008, PERS INDIV DIFFER, V45, P554, DOI 10.1016/j.paid.2008.06.018; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Ferrari J. R., 1998, PERSONALITY INDIVIDU, V26, P321, DOI DOI 10.1016/S0191-8869(98)00141-X; Ferrari J. R., 1995, PROCRASTINATION TASK; Ferrari J. R., 2010, STILL PROCRASTINATIN; FERRARI JR, 1994, J RES PERS, V28, P87, DOI 10.1006/jrpe.1994.1008; Figueredo AJ, 2015, HDB EVOLUTIONARY PSY, P943; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Gibbons FX, 2012, DEV PSYCHOL, V48, P722, DOI 10.1037/a0026599; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Gustavson DE, 2014, PSYCHOL SCI, V25, P1178, DOI 10.1177/0956797614526260; Hampson SE, 2016, PERS INDIV DIFFER, V88, P120, DOI 10.1016/j.paid.2015.08.052; Hill SE, 2016, PSYCHOL SCI, V27, P354, DOI 10.1177/0956797615621901; Hurst J. E., 2016, EVOL HUM BEHAV, V38, P1; Jonason PK, 2017, PERS INDIV DIFFER, V116, P38, DOI 10.1016/j.paid.2017.04.027; Jonason PK, 2016, EVOL PSYCHOL-US, V14, DOI 10.1177/1474704915623699; Kruger D. J., 2008, J SOCIAL EVOLUTIONAR, V2, P1, DOI [10.1037/h0099336, DOI 10.1037/H0099336]; Laran J, 2013, PSYCHOL SCI, V24, P167, DOI 10.1177/0956797612450033; LAY CH, 1986, J RES PERS, V20, P474, DOI 10.1016/0092-6566(86)90127-3; Little TD, 2002, STRUCT EQU MODELING, V9, P151, DOI 10.1207/S15328007SEM0902_1; Lu HJ, 2017, PERS INDIV DIFFER, V116, P157, DOI 10.1016/j.paid.2017.04.047; Lyons M, 2014, PERS INDIV DIFFER, V61-62, P34, DOI 10.1016/j.paid.2014.01.002; Maxwell SE, 2007, PSYCHOL METHODS, V12, P23, DOI 10.1037/1082-989X.12.1.23; Mittal C, 2014, J PERS SOC PSYCHOL, V107, P621, DOI 10.1037/a0037398; Muthen L. K., 2007, MPLUS STAT ANAL LATE; Olderbak SG, 2010, PERS INDIV DIFFER, V49, P234, DOI 10.1016/j.paid.2010.03.041; Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9101.88.5.879; Ponzi D, 2015, EVOL HUM BEHAV, V36, P117, DOI 10.1016/j.evolhumbehav.2014.09.008; Pychyl TA, 2002, PERS INDIV DIFFER, V33, P271, DOI 10.1016/S0191-8869(01)00151-9; Reynolds J. J., 2015, EVOLUTIONARY PSYCHOL, V13, P1; Sherman RA, 2013, J PERS SOC PSYCHOL, V105, P873, DOI 10.1037/a0033772; SOBEL ME, 1987, SOCIOL METHOD RES, V16, P155, DOI 10.1177/0049124187016001006; SOLOMON LJ, 1984, J COUNS PSYCHOL, V31, P503, DOI 10.1037//0022-0167.31.4.503; Steel P, 2001, PERS INDIV DIFFER, V30, P95, DOI 10.1016/S0191-8869(00)00013-1; Steel P, 2007, PSYCHOL BULL, V133, P65, DOI 10.1037/0033-2909.133.1.65; Steel P, 2010, PERS INDIV DIFFER, V48, P926, DOI 10.1016/j.paid.2010.02.025; Szepsenwol O, 2015, J PERS SOC PSYCHOL, V109, P1045, DOI 10.1037/pspi0000032; TUCKMAN BW, 1991, EDUC PSYCHOL MEAS, V51, P473, DOI 10.1177/0013164491512022; Vigil JM, 2006, J FAM PSYCHOL, V20, P597, DOI 10.1037/0893-3200.20.4.597; Wang XT, 2009, EVOL HUM BEHAV, V30, P77, DOI 10.1016/j.evolhumbehav.2008.09.006; Watson DC, 2001, PERS INDIV DIFFER, V30, P149, DOI 10.1016/S0191-8869(00)00019-2; Wheaton B., 1977, SOCIOL METHODOL, V8, P84, DOI [DOI 10.2307/270754, 10.2307/270754] 64 3 3 6 37 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. OCT 15 2017 117 23 29 10.1016/j.paid.2017.05.036 7 Psychology, Social Psychology FC0ZP WOS:000406567500005 2018-11-22 J Palacios, MG; Bronikowski, AM Palacios, Maria G.; Bronikowski, Anne M. Immune variation during pregnancy suggests immune component-specific costs of reproduction in a viviparous snake with disparate life-history strategies JOURNAL OF EXPERIMENTAL ZOOLOGY PART A-ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY English Article TRADE-OFFS; ECOLOGICAL IMMUNOLOGY; GARTER SNAKES; EVOLUTIONARY ECOLOGY; THAMNOPHIS-ELEGANS; HOUSE SPARROWS; TREE SWALLOWS; DEFENSE; LIZARD; BIRDS Growing evidence suggests the existence of trade-offs between immune function and reproduction in diverse taxa. Among vertebrates, however, there is still a taxonomic bias toward studies in endotherms, particularly birds. We tested the hypothesis that reproduction entails immune-related costs in the viviparous garter snake, Thamnophis elegans, from populations that exhibit two life-history strategies, termed ecotypes, with contrasting paces of life. Between the two ecotypes, we predicted lower immune function in gravid than non-gravid females of both strategies, but with relatively larger immunity costs in the ecotype that generally invests more in current reproduction. Across individuals, we predicted greater immune costs for females investing more in the present specific reproductive event (i.e., higher fecundity) irrespective of their ecotype. We assessed leukocyte profiles and measured bactericidal capacity of plasma (innate immunity) and T- and B-lymphocyte proliferation (adaptive immunity) in gravid and non-gravid females in their natural habitats. We also collected data on reproductive output from these same gravid females brought into captivity. Gravid females of both ecotypes showed lower T-lymphocyte proliferation responses to concanavalin A than non-gravid females, but no differential costs were observed between ecotypes. The remaining immune variables did not vary between gravid and non-gravid females. Among gravid females within each ecotype, those with larger reproductive output showed lower total leukocyte counts, suggesting a fecundity-dependent trade-off. Our study contributes to the comparative ecoimmunology of vertebrates by highlighting the immune component-specificity of trade-offs between reproduction and immune function and showing that costs can be fecundity-dependent in some, but not all cases. [Palacios, Maria G.; Bronikowski, Anne M.] Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Ames, IA USA Palacios, MG (reprint author), CCT CONICET CENPAT, Ctr Estudio Sistemas Marinos, Blvd Brown 2915, RA-2915 Puerto Madryn, Chubut, Argentina. gpalacios@cenpat-conicet.gob.ar National Science Foundation [DEB-0323379, IOS-0922528] Grant sponsor: National Science Foundation; Grant number: DEB-0323379, IOS-0922528. Adamo SA, 2001, ANIM BEHAV, V62, P417, DOI 10.1006/anbe.2001.1786; Ardia DR, 2005, ECOLOGY, V86, P2040, DOI 10.1890/04-1619; Ardia DR, 2005, J ANIM ECOL, V74, P517, DOI 10.1111/j.1365-2656.2005.00950.x; Beldomenico PM, 2008, J ANIM ECOL, V77, P984, DOI 10.1111/j.1365-2656.2008.01413.x; Bleu J, 2012, J EVOLUTION BIOL, V25, P1264, DOI 10.1111/j.1420-9101.2012.02518.x; Bleu J, 2013, PHYSIOL BIOCHEM ZOOL, V86, P690, DOI 10.1086/673099; Bleu J, 2012, P ROY SOC B-BIOL SCI, V279, P489, DOI 10.1098/rspb.2011.0966; BRONIKOWSKI AM, 1999, THAMNOPHIS ELEGANS E, V80, P2314; BRUNHAM RC, 1983, THE JOURNAL OF CLINI, V72, P1629; Buehler DM, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018592; Cox RM, 2010, FUNCT ECOL, V24, P1262, DOI 10.1111/j.1365-2435.2010.01756.x; Demas GE, 2011, J ANIM ECOL, V80, P710, DOI 10.1111/j.1365-2656.2011.01813.x; Fairbrother A, 2004, J TOXICOL ENV HEAL B, V7, P105, DOI 10.1080/10937400490258873; French SS, 2007, FUNCT ECOL, V21, P1115, DOI 10.1111/j.1365-2435.2007.01311.x; FRENCH SS, 2008, UROSAURUS ORNATUS GE, V155, P148, DOI DOI 10.1016/J.YGCEN.2007.04.007; French SS, 2007, AM NAT, V170, P79, DOI 10.1086/518569; Froebel KS, 1999, J IMMUNOL METHODS, V227, P85, DOI 10.1016/S0022-1759(99)00082-4; Graham SP, 2011, GEN COMP ENDOCR, V174, P348, DOI 10.1016/j.ygcen.2011.09.015; Grasman KA, 2002, INTEGR COMP BIOL, V42, P34, DOI 10.1093/icb/42.1.34; Gregory PT, 1998, AM NAT, V151, P477, DOI 10.1086/286134; Hanssen SA, 2005, P ROY SOC B-BIOL SCI, V272, P1039, DOI 10.1098/rspb.2005.3057; JONES G, 1973, J IMMUNOL, V111, P914; Knowles SCL, 2009, FUNCT ECOL, V23, P405, DOI 10.1111/j.1365-2435.2008.01507.x; Lee KA, 2006, INTEGR COMP BIOL, V46, P1000, DOI 10.1093/icb/icl049; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Martin II LB, 2006, OECOLOGIA, V147, P565, DOI 10.1007/s00442-005-0314-y; Martin LB, 2004, ECOLOGY, V85, P2323, DOI 10.1890/03-0365; Martin LB, 2007, ECOLOGY, V88, P2516, DOI 10.1890/07-0060.1; Matson KD, 2006, PHYSIOL BIOCHEM ZOOL, V79, P556, DOI 10.1086/501057; Matson KD, 2006, P R SOC B, V273, P815, DOI 10.1098/rspb.2005.3376; Meylan S, 2013, PHYSIOL BIOCHEM ZOOL, V86, P127, DOI 10.1086/668637; Miller DA, 2011, ECOLOGY, V92, P1658; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Palacios MG, 2013, PHYSIOL BIOCHEM ZOOL, V86, P547, DOI 10.1086/672371; Palacios MG, 2011, J ANIM ECOL, V80, P431, DOI 10.1111/j.1365-2656.2010.01785.x; PALACIOS MG, 2009, TACHYCINETA BICOLOR, V33, P456, DOI DOI 10.1016/J.DCI.2008.09.006; Pazos MA, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040502; Previtali MA, 2012, OIKOS, V121, P1483, DOI 10.1111/j.1600-0706.2012.020215.x; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Roitt IM, 1998, IMMUNOLOGY; SAAD AH, 1990, CHALCIDES OCELLATUS, V25, P279; Salvante KG, 2006, AUK, V123, P575, DOI 10.1642/0004-8038(2006)123[575:TFSIIF]2.0.CO;2; Schmid-Hempel P, 2003, P ROY SOC B-BIOL SCI, V270, P357, DOI 10.1098/rspb.2002.2265; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; SPARKMAN AM, 2009, THAMNOPHIS ELEGANS J, V78, P1242, DOI DOI 10.1111/J.1365-2656.2009.01587.X; Sparkman AM, 2007, P ROY SOC B-BIOL SCI, V274, P943, DOI 10.1098/rspb.2006.0072; Sparkman AM, 2014, COMP BIOCHEM PHYS A, V174, P11, DOI 10.1016/j.cbpa.2014.03.023; Stahlschmidt ZR, 2013, PHYSIOL BIOCHEM ZOOL, V86, P398, DOI 10.1086/670918; SURESH M, 1993, DEV COMP IMMUNOL, V17, P525, DOI 10.1016/S0145-305X(05)80008-4; Ujvari B, 2006, BEHAV ECOL, V17, P20, DOI 10.1093/beheco/ari091; Uller T, 2006, FUNCT ECOL, V20, P873, DOI 10.1111/j.1365-2435.2006.01163.x; Veiga JP, 1998, OIKOS, V82, P313, DOI 10.2307/3546971; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zimmerman LM, 2010, J EXP BIOL, V213, P661, DOI 10.1242/jeb.038315 54 2 2 4 9 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2471-5646 J EXP ZOOL PART A J. Exp. Zool. Part A-Ecol. Integr. Physiol. OCT 2017 327 8 513 522 10.1002/jez.2137 10 Zoology Zoology FS9HS WOS:000422728900004 29356424 2018-11-22 J Mannisto, E; Holopainen, JK; Haikio, E; Klemola, T Mannisto, Elisa; Holopainen, Jarmo K.; Haikio, Elina; Klemola, Tero A field study with geometrid moths to test the coevolution hypothesis of red autumn colours in deciduous trees ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA English Article autumn colouration; anthocyanins; Epirrita autumnata; Operophtera brumata; Lepidoptera; Geometridae; plant-insect interaction; adaptation; herbivory LIFE-HISTORY STRATEGIES; EPIRRITA-AUTUMNATA; BETULA-PUBESCENS; INSECT HERBIVORY; LEAF SENESCENCE; LEAVES; APHID; ANTHOCYANINS; COLORATION; PREFERENCE Red autumn colouration of trees is the result of newly synthesized anthocyanin pigments in senescing autumn leaves. As anthocyanin accumulation is costly and the trait is not present in all species, anthocyanins must have an adaptive significance in autumn leaves. According to the coevolution hypothesis of autumn colours, red autumn leaves warn herbivorous insects - especially aphids that migrate to reproduce in trees in the autumn - that the tree will not be a suitable host for their offspring in spring due to a high level of chemical defence or lack of nutrients. The signalling allows trees to avoid herbivores and herbivores to choose better host trees. In this study the coevolution hypothesis was tested with four deciduous tree species that have red autumn leaf colouration - European aspen (Populus tremula L.) (Salicaceae), rowan (Sorbus aucuparia L.) (Rosaceae), mountain birch [Betula pubescens ssp. czerepanovii (NI Orlova) Hamet-Ahti], and dwarf birch (Betula nana L.) (Betulaceae), and with two generalist herbivores, the autumnal moth [Epirrita autumnata (Borkhausen)] and the winter moth [Operophtera brumata (L.)] (both Lepidoptera: Geometridae). Anthocyanin concentrations of autumn leaves were determined from leaf samples and the growth performance parameters of the moth larvae on the study trees were measured in the spring. Trees with higher anthocyanin concentration in the autumn were predicted to be low-quality food for the herbivores. Our results clearly showed that anthocyanin concentration was not correlated with the growth performance of the moths in any of the studied tree species. Thus, our study does not support the coevolution hypothesis of autumn colours. [Mannisto, Elisa; Klemola, Tero] Univ Turku, Dept Biol, Sect Ecol, FI-20014 Turku, Finland; [Mannisto, Elisa] Univ Eastern Finland, Sch Forest Sci, POB 111, FI-80101 Joensuu, Finland; [Holopainen, Jarmo K.; Haikio, Elina] Univ Eastern Finland, Dept Environm & Biol Sci, POB 1627, FI-70211 Kuopio, Finland Mannisto, E (reprint author), Univ Eastern Finland, Sch Forest Sci, POB 111, FI-80101 Joensuu, Finland. elisa.mannisto@uef.fi Holopainen, Jarmo/B-1656-2008; Klemola, Tero/B-9235-2014 Holopainen, Jarmo/0000-0001-5026-3245; Klemola, Tero/0000-0002-8510-329X Finnish Cultural Foundation; Turku University Foundation We are grateful to Jorma Nurmi, Tommi Andersson, Tea Ammunet, Suvi Vanhakyla, and Kristiina Mutkala for their help in the field. We thank Markus Ahola, Erkki Korpimaki, Kai Ruohomaki, Palvi Salo, Samuli Lehtonen, Elina Vainio, Minna Vainio, Anneli and Ismo Vieno, and Timo Vuorisalo for allowing us to use the trees in their gardens. We are thankful to Virpi Tiihonen and Jaakko Rouhiainen for their efforts with anthocyanin measurements. Furthermore, we thank the staff of Kevo Subarctic Research Station for research facilities. Finally, Simcha Lev-Yadun and the two anonymous reviewers are thanked for their constructive comments on the manuscript. All the data are available from the authors upon request. This study was funded by Finnish Cultural Foundation (grant to EM) and Turku University Foundation (grant to TK). Archetti M, 2000, J THEOR BIOL, V205, P625, DOI 10.1006/jtbi.2000.2089; Archetti M, 2005, OIKOS, V110, P339, DOI 10.1111/j.0030-1299.2005.13656.x; Archetti M, 2004, P ROY SOC B-BIOL SCI, V271, P1219, DOI 10.1098/rspb.2004.2728; Archetti M, 2009, OIKOS, V118, P328, DOI 10.1111/j.1600-0706.2008.17164.x; Archetti M, 2009, TRENDS ECOL EVOL, V24, P166, DOI 10.1016/j.tree.2008.10.006; Briscoe AD, 2001, ANNU REV ENTOMOL, V46, P471, DOI 10.1146/annurev.ento.46.1.471; Burnham KP, 2002, MODEL SELECTION MULT; Chittka L, 2007, PLOS BIOL, V5, P1640, DOI 10.1371/journal.pbio.0050187.g001; Doring TF, 2009, P ROY SOC B-BIOL SCI, V276, P121, DOI 10.1098/rspb.2008.0858; Dormann CF, 2013, ECOGRAPHY, V36, P27, DOI 10.1111/j.1600-0587.2012.07348.x; Feild TS, 2001, PLANT PHYSIOL, V127, P566, DOI 10.1104/pp.127.2.566; Gitelson AA, 2001, PHOTOCHEM PHOTOBIOL, V74, P38, DOI 10.1562/0031-8655(2001)074<0038:OPANEO>2.0.CO;2; Gould KS, 2004, J BIOMED BIOTECHNOL, P314, DOI 10.1155/S1110724304406147; Hagen SB, 2003, ECOL LETT, V6, P807, DOI 10.1046/j.1461-0248.2003.00496.x; Hamet-Ahti L, 1998, RETKEILYKASVIO; Hamilton WD, 2001, P ROY SOC B-BIOL SCI, V268, P1489, DOI 10.1098/rspb.2001.1672; Heisswolf A, 2009, B ENTOMOL RES, V99, P73, DOI 10.1017/S0007485308006135; Hoch WA, 2001, TREE PHYSIOL, V21, P1; Holopainen JK, 2009, BIOL LETTERS, V5, P603, DOI 10.1098/rsbl.2009.0372; Holopainen JK, 2002, OIKOS, V99, P184, DOI 10.1034/j.1600-0706.2002.990119.x; Isaksen T, 2014, ENTOMOL EXP APPL, V152, P141, DOI 10.1111/eea.12209; Jepsen JU, 2013, ECOSYSTEMS, V16, P561, DOI 10.1007/s10021-012-9629-9; KALLIO P, 1978, REP KEVO SUBARCTIC, V14, P38; Karageorgou P, 2006, TREE PHYSIOL, V26, P613, DOI 10.1093/treephys/26.5.613; Karageorgou P, 2008, FLORA, V203, P648, DOI 10.1016/j.flora.2007.10.006; Kirchner SM, 2005, J INSECT PHYSIOL, V51, P1255, DOI 10.1016/j.jinsphys.2005.07.002; Klemola N, 2008, OIKOS, V117, P926, DOI 10.1111/j.2008.0030-1299.16611.x; Klemola N, 2009, ANN ZOOL FENN, V46, P380, DOI 10.5735/086.046.0504; Klemola T, 2002, OIKOS, V99, P83, DOI 10.1034/j.1600-0706.2002.990109.x; LARSON RA, 1988, PHYTOCHEMISTRY, V27, P969, DOI 10.1016/0031-9422(88)80254-1; Lee DW, 2003, ECOL RES, V18, P677, DOI 10.1111/j.1440-1703.2003.00588.x; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Lev-Yadun S, 2012, FLORA, V207, P80, DOI 10.1016/j.flora.2011.10.007; Lev-Yadun S, 2009, NEW PHYTOL, V183, P506, DOI 10.1111/j.1469-8137.2009.02904.x; MANCINELLI AL, 1988, PLANT PHYSIOL, V86, P652, DOI 10.1104/pp.86.3.652; Myking T, 2011, FORESTRY, V84, P61, DOI 10.1093/forestry/cpq044; Ramirez CC, 2008, J EVOLUTION BIOL, V21, P49, DOI 10.1111/j.1420-9101.2007.01469.x; Raspe O, 2000, J ECOL, V88, P910, DOI 10.1046/j.1365-2745.2000.00502.x; Ruohomaki K, 2000, POPUL ECOL, V42, P211, DOI 10.1007/PL00012000; SANGER JE, 1971, ECOLOGY, V52, P1075, DOI 10.2307/1933816; Seppanen E. J., 1970, SUURPERHOSTOUKKIEN R; Sinkkonen A, 2012, NEW PHYTOL, V195, P461, DOI 10.1111/j.1469-8137.2012.04156.x; Stroup W. W, 2013, GEN LINEAR MIXED MOD; Tammaru T, 1996, OIKOS, V77, P407, DOI 10.2307/3545931; Tenow O, 2007, J ANIM ECOL, V76, P258, DOI 10.1111/j.1365-2656.2006.01204.x; Tenow O., 1972, ZOOLOGISKA BIDRAG S2; Thorsson AETH, 2007, ANN BOT-LONDON, V99, P1183, DOI 10.1093/aob/mcm060 47 0 0 5 18 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0013-8703 1570-7458 ENTOMOL EXP APPL Entomol. Exp. Appl. OCT 2017 165 1 29 37 10.1111/eea.12626 9 Entomology Entomology FO5DF WOS:000416869200004 2018-11-22 J [Anonymous] [Anonymous] RESPONSES OF CONGENERS TO PAST CLIMATIC CHANGES: INFLUENCE OF CONTRASTING LIFE HISTORY STRATEGIES AMERICAN JOURNAL OF BOTANY English Editorial Material Ossa PG, 2017, AM J BOT, V104, P1533, DOI 10.3732/ajb.1700101 1 0 0 0 0 BOTANICAL SOC AMER INC ST LOUIS PO BOX 299, ST LOUIS, MO 63166-0299 USA 0002-9122 1537-2197 AM J BOT Am. J. Bot. OCT 2017 104 10 1432 1432 1 Plant Sciences Plant Sciences FL1LL WOS:000413976200004 2018-11-22 J Davis, CA; Orange, JP; Van Den Bussche, RA; Elmore, RD; Fuhlendorf, SD; Carroll, JM; Tanner, EP; Leslie, DM Davis, Craig A.; Orange, Jeremy P.; Van Den Bussche, Ronald A.; Elmore, R. Dwayne; Fuhlendorf, Samuel D.; Carroll, J. Matthew; Tanner, Evan P.; Leslie, David M., Jr. Extrapair paternity and nest parasitism in two sympatric quail AUK English Article Callipepla squamata; Colinus virginianus; extrapair paternity; intraspecific nest parasitism; Northern Bobwhite; reproductive strategies; Scaled Quail BOBWHITE COLINUS-VIRGINIANUS; NORTHERN BOBWHITE; MICROSATELLITE LOCI; PAIR PATERNITY; SCALED QUAIL; BIRDS; RATES; FERTILIZATIONS; ABUNDANCE; GENOTYPES We conducted a comparative study of 2 closely related and sympatric species, Northern Bobwhite (Colinus virginianus) and Scaled Quail (Callipepla squamata), to explore the drivers of interspecific variation in alternative reproductive strategies. Specifically, we used parentage analyses to determine rates of extrapair paternity and intraspecific brood parasitism for each species, and evaluated possible mechanisms for explaining variation in these rates between the 2 species. During 2013-2014, we genotyped hatched (n = 388 for Northern Bobwhite and n = 214 for Scaled Quail) and unhatched (n = 32 for Northern Bobwhite and n = 9 for Scaled Quail) eggshells from 34 Northern Bobwhite and 22 Scaled Quail nests in western Oklahoma, USA. Extrapair paternity occurred in 85% of Northern Bobwhite nests and 9% of Scaled Quail nests. The number of sires for each nest was greater in Northern Bobwhite nests(x = 2.29 6 +/- 0.14 SE sires per nest) than in Scaled Quail nests (x = 1.09 +/- 6 0.06 sires per nest). Intraspecific brood parasitism rates varied considerably between Northern Bobwhite 21%) and Scaled Quail (0%). Northern Bobwhites also parasitized Scaled Quail nests. Variation in extrapair paternity and intraspecific brood parasitism rates between the Northern Bobwhite and Scaled Quail appeared to be related to differences in their life history strategies (r-selected vs. K-selected strategy) as well as differences in breeding population densities. [Davis, Craig A.; Orange, Jeremy P.; Elmore, R. Dwayne; Fuhlendorf, Samuel D.; Carroll, J. Matthew; Tanner, Evan P.] Oklahoma State Univ, Dept Nat Resource Ecol & Management, Stillwater, OK 74078 USA; [Van Den Bussche, Ronald A.] Oklahoma State Univ, Dept Integrat Biol, Stillwater, OK 74078 USA; [Leslie, David M., Jr.] Oklahoma State Univ, US Geol Survey, Oklahoma Cooperat Fish & Wildlife Res Unit, Dept Nat Resource Ecol & Management, Stillwater, OK 74078 USA; [Orange, Jeremy P.] Univ Florida, Dept Geog, Coll Liberal Arts & Sci, Gainesville, FL 32611 USA Davis, CA (reprint author), Oklahoma State Univ, Dept Nat Resource Ecol & Management, Stillwater, OK 74078 USA. craig.a.davis@okstate.edu Pittman-Robertson Federal Aid to Wildlife Restoration Act under Oklahoma Department of Wildlife Conservation [W-161-R (F11AF00069)]; Pittman-Robertson Federal Aid to Wildlife Restoration Act under Oklahoma State University [W-161-R (F11AF00069)]; Bollenbach Endowed Chair in Wildlife Management; Groendyke Chair in Wildlife Conservation Funding was provided by the Pittman-Robertson Federal Aid to Wildlife Restoration Act under project W-161-R (F11AF00069) of the Oklahoma Department of Wildlife Conservation and Oklahoma State University, administered through the Oklahoma Cooperative Fish and Wildlife Research Unit (Oklahoma Department of Wildlife Conservation, Oklahoma State University, U. S. Geological Survey, U. S. Fish and Wildlife Service, and the Wildlife Management Institute cooperating). Additional funding was provided by the Bollenbach Endowed Chair in Wildlife Management and Groendyke Chair in Wildlife Conservation. None of the funders had any input into the content of this manuscript nor required their approval of the manuscript before submission or publication. Albrecht T, 2006, AM NAT, V167, P739, DOI 10.1086/502633; Arnold KE, 2002, P ROY SOC B-BIOL SCI, V269, P1263, DOI 10.1098/rspb.2002.2013; Bennett P., 2002, EVOLUTIONARY ECOLOGY; Brennan LA, 2014, BIRDS N AM; Bridges AS, 2001, J WILDLIFE MANAGE, V65, P10, DOI 10.2307/3803270; BURGER LW, 1995, J WILDLIFE MANAGE, V59, P417, DOI 10.2307/3802447; Bush KL, 2005, CONSERV GENET, V6, P867, DOI 10.1007/s10592-005-9040-6; Calkins J. D., 2014, BIRDS N AM; Dabbert C. B., 2009, BIRDS N AM; DeMaso SJ, 1997, J WILDLIFE MANAGE, V61, P846, DOI 10.2307/3802193; EADIE JM, 1988, CAN J ZOOL, V66, P1709, DOI 10.1139/z88-247; Faircloth B.C, 2008, THESIS; Faircloth BC, 2009, CONSERV GENET, V10, P535, DOI 10.1007/s10592-008-9559-4; Fiumera AC, 2001, J HERED, V92, P120, DOI 10.1093/jhered/92.2.120; Geffen E, 2001, ANIM BEHAV, V62, P1027, DOI 10.1006/anbe.2001.1855; Giuliano WM, 1998, COMP BIOCHEM PHYS A, V119, P781, DOI 10.1016/S1095-6433(98)01015-0; Griffith SC, 2002, MOL ECOL, V11, P2195, DOI 10.1046/j.1365-294X.2002.01613.x; Gutierrez R. J., 1993, QUAIL, V3, P8; Hess BD, 2012, AUK, V129, P133, DOI 10.1525/auk.2011.11095; Hosner PA, 2015, J BIOGEOGR, V42, P1883, DOI 10.1111/jbi.12555; Johnsgard P. A., 1988, QUAILS PARTRIDGES FR; Johnsgard P. A., 1973, GROUSE QUAILS N AM; Johnson PCD, 2007, GENETICS, V175, P827, DOI 10.1534/genetics.106.064618; Jones OR, 2010, MOL ECOL RESOUR, V10, P551, DOI 10.1111/j.1755-0998.2009.02787.x; Kalinowski ST, 2007, MOL ECOL, V16, P1099, DOI 10.1111/j.1365-294X.2007.03089.x; Lusk JJ, 2001, ECOL MODEL, V146, P3, DOI 10.1016/S0304-3800(01)00292-7; MULDER RA, 1994, P ROY SOC B-BIOL SCI, V255, P223, DOI 10.1098/rspb.1994.0032; Orange J. P., 2015, THESIS; Orange JP, 2014, CONSERV GENET RESOUR, V6, P929, DOI 10.1007/s12686-014-0243-3; Perez RM, 2002, P NATL QUAIL S, V5, P106; PETRIE M, 1991, TRENDS ECOL EVOL, V6, P315, DOI 10.1016/0169-5347(91)90038-Y; ROBERTSON GJ, 1992, CONDOR, V94, P871, DOI 10.2307/1369284; ROHWER FC, 1989, CAN J ZOOL, V67, P239, DOI 10.1139/z89-035; Sauer J. R., 2014, N AM BREEDING BIRD S; Schable NA, 2004, MOL ECOL NOTES, V4, P415, DOI 10.1111/j.1471-8286.2004.00670.x; Sefc KM, 2009, J HERED, V100, P197, DOI 10.1093/jhered/esn095; SORENSON MD, 1992, CAN J ZOOL, V70, P1856, DOI 10.1139/z92-253; Stoddard H. L., 1931, BOBWHITE QUAIL ITS H; Wahlund S, 1928, HEREDITAS, V11, P65, DOI 10.1111/j.1601-5223.1928.tb02483.x; WELCH BL, 1947, BIOMETRIKA, V34, P28, DOI 10.1093/biomet/34.1-2.28; Westneat DF, 1997, BEHAV ECOL SOCIOBIOL, V41, P205, DOI 10.1007/s002650050381; Wink Michael, 1999, Acta Ornithologica (Warsaw), V34, P91; YOMTOV Y, 1980, BIOL REV, V55, P93, DOI 10.1111/j.1469-185X.1980.tb00689.x 43 0 0 1 7 AMER ORNITHOLOGISTS UNION LAWRENCE ORNITHOLOGICAL SOC NORTH AMER PO BOX 1897, LAWRENCE, KS 66044-8897 USA 0004-8038 1938-4254 AUK AUK OCT 2017 134 4 811 820 10.1642/AUK-16-162.1 10 Ornithology Zoology FJ5YD WOS:000412829200003 2018-11-22 J Strugnell, JM; Allcock, AL; Watts, PC Strugnell, Jan M.; Allcock, A. Louise; Watts, Phillip C. Closely related octopus species show different spatial genetic structures in response to the Antarctic seascape ECOLOGY AND EVOLUTION English Article Antarctica; octopus; microsatellite; isolation by depth; Southern Ocean ADELIELEDONE-POLYMORPHA ROBSON; PARELEDONE-CHARCOTI JOUBIN; SOUTHERN-OCEAN; POPULATION-STRUCTURE; LARVAL DISPERSAL; MITOCHONDRIAL LINEAGES; MICROSATELLITE LOCI; 1905 CEPHALOPODA; TURQUETI JOUBIN; FISH Determining whether comparable processes drive genetic divergence among marine species is relevant to molecular ecologists and managers alike. Sympatric species with similar life histories might be expected to show comparable patterns of genetic differentiation and a consistent influence of environmental factors in shaping divergence. We used microsatellite loci to quantify genetic differentiation across the Scotia Arc in three species of closely related benthic octopods, Pareledone turqueti, P. charcoti, and Adelieledone polymorpha. The relative importance of environmental factors (latitude, longitude, depth, and temperature) in shaping genetic structure was investigated when significant spatial genetic structure was uncovered. Isolated populations of P. turqueti and A. polymorpha at these species' range margins were genetically different to samples close to mainland Antarctica; however, these species showed different genetic structures at a regional scale. Samples of P. turqueti from the Antarctic Peninsula, Elephant Island, and Signy Island were genetically different, and this divergence was associated primarily with sample collection depth. By contrast, weak or nonsignificant spatial genetic structure was evident across the Antarctic Peninsula, Elephant Island, and Signy Island region for A. polymorpha, and slight associations between population divergence and temperature or depth (and/or longitude) were detected. Pareledone charcoti has a limited geographic range, but exhibited no genetic differentiation between samples from a small region of the Scotia Arc (Elephant Island and the Antarctic Peninsula). Thus, closely related species with similar life history strategies can display contrasting patterns of genetic differentiation depending on spatial scale; moreover, depth may drive genetic divergence in Southern Ocean benthos. [Strugnell, Jan M.] James Cook Univ, Ctr Sustainable Trop Fisheries & Aquaculture, Marine Biol & Aquaculture, Townsville, Qld, Australia; [Strugnell, Jan M.] La Trobe Univ, Sch Life Sci, Dept Ecol Environm & Evolut, Melbourne, Vic, Australia; [Allcock, A. Louise] Natl Univ Ireland Galway, Ryan Inst, Galway, Ireland; [Allcock, A. Louise] Natl Univ Ireland Galway, Sch Nat Sci, Galway, Ireland; [Watts, Phillip C.] Univ Oulu, Dept Ecol & Genet, Oulu, Finland Strugnell, JM (reprint author), James Cook Univ, Marine Biol & Aquaculture, Townsville, Qld, Australia. jan.strugnell@jcu.edu.au Allcock, Louise/A-7359-2012 Allcock, Louise/0000-0002-4806-0040; Strugnell, Jan/0000-0003-2994-637X NERC/AFI [NE/C506321/1]; Lloyd's Tercentenary Fellowship; CoSyst; Antarctic Science Bursary; Systematics Association; Edith Mary Pratt Musgrave Fund; Australia and Pacific Science Foundation; Thomas Davies Research Fund; Finnish Academy [305532] NERC/AFI, Grant/Award Number: NE/C506321/1; Lloyd's Tercentenary Fellowship; CoSyst; Antarctic Science Bursary; Systematics Association; Edith Mary Pratt Musgrave Fund; Australia and Pacific Science Foundation; Thomas Davies Research Fund; Finnish Academy, Grant/Award Number: 305532 Allcock AL, 2011, DEEP-SEA RES PT II, V58, P242, DOI 10.1016/j.dsr2.2010.05.016; Allcock AL, 2005, ZOOL J LINN SOC-LOND, V143, P75, DOI 10.1111/j.1096-3642.2004.00146.x; Allcock AL, 2003, ANTARCT SCI, V15, P415, DOI 10.1017/S0954102003001512; Allcock AL, 2002, MAR BIOL, V140, P129, DOI 10.1007/s002270100687; Arnaud-Haond S, 2006, MOL ECOL, V15, P3515, DOI 10.1111/j.1365-294X.2006.02997.x; Baird HP, 2011, MOL ECOL, V20, P3439, DOI 10.1111/j.1365-294X.2011.05173.x; Barratt IM, 2008, POLAR BIOL, V31, P583, DOI 10.1007/s00300-007-0392-x; Baums IB, 2012, MOL ECOL, V21, P5418, DOI 10.1111/j.1365-294X.2012.05733.x; Boletzky S. von, 1974, Thalassia Jugosl, V10, P45; Chapuis MP, 2007, MOL BIOL EVOL, V24, P621, DOI 10.1093/molbev/msl191; Cowen RK, 2009, ANNU REV MAR SCI, V1, P443, DOI 10.1146/annurev.marine.010908.163757; DALY HI, 1994, ANTARCT SCI, V6, P163; Earl DA, 2012, CONSERV GENET RESOUR, V4, P359, DOI 10.1007/s12686-011-9548-7; Evanno G, 2005, MOL ECOL, V14, P2611, DOI 10.1111/j.1365-294X.2005.02553.x; Foll M, 2006, GENETICS, V174, P875, DOI 10.1534/genetics.106.059451; France SC, 1996, MAR BIOL, V126, P633, DOI 10.1007/BF00351330; Frankham R, 1997, HEREDITY, V78, P311, DOI 10.1038/hdy.1997.46; Gage J.D., 1991, DEEP SEA BIOL NATURA; Galarza JA, 2009, P NATL ACAD SCI USA, V106, P1473, DOI 10.1073/pnas.0806804106; Galindo HM, 2006, CURR BIOL, V16, P1622, DOI 10.1016/j.cub.2006.06.052; Gonzalez-Wevar CA, 2013, MOL ECOL, V22, P5221, DOI 10.1111/mec.12465; Goudet J, 2001, FSTAT PROGRAM ESTIMA; Gutt J, 2001, POLAR BIOL, V24, P553, DOI 10.1007/s003000100262; Hayes FE, 2004, J BIOGEOGR, V31, P1809, DOI 10.1111/j.1365-2699.2004.01139.x; Held C, 2005, SCI MAR, V69, P175, DOI 10.3989/scimar.2005.69s2175; Hoffman J., 2011, PLOS ONE, V7; Hoffman JI, 2011, MAR BIOL, V158, P287, DOI 10.1007/s00227-010-1558-6; Hoffman JI, 2011, J HERED, V102, P55, DOI 10.1093/jhered/esq094; Hunter RL, 2008, J HERED, V99, P137, DOI 10.1093/jhered/esm119; Jakobsson M, 2007, BIOINFORMATICS, V23, P1801, DOI 10.1093/bioinformatics/btm233; JAZDZEWSKI K, 1991, HYDROBIOLOGIA, V223, P105, DOI 10.1007/BF00047632; Johannesson K, 2006, MOL ECOL, V15, P2013, DOI 10.1111/j.1365-294X.2006.02919.x; Jost L, 2008, MOL ECOL, V17, P4015, DOI 10.1111/j.1365-294X.2008.03887.x; Keenan K, 2013, METHODS ECOL EVOL, V4, P782, DOI 10.1111/2041-210X.12067; Knutsen H, 2012, MAR ECOL PROG SER, V460, P233, DOI 10.3354/meps09728; Krabbe K, 2010, POLAR BIOL, V33, P281, DOI 10.1007/s00300-009-0703-5; Leese F, 2010, NATURWISSENSCHAFTEN, V97, P583, DOI 10.1007/s00114-010-0674-y; Lind CE, 2007, MOL ECOL, V16, P5193, DOI 10.1111/j.1365-294X.2007.03598.x; Lorz AN, 2013, POLAR BIOL, V36, P445, DOI 10.1007/s00300-012-1269-1; Manni F, 2004, HUM BIOL, V76, P173, DOI 10.1353/hub.2004.0034; Matschiner M, 2009, MOL ECOL, V18, P2574, DOI 10.1111/j.1365-294X.2009.04220.x; Meredith MP, 2005, GEOPHYS RES LETT, V32, DOI 10.1029/2005GL024042; Micheletti SJ, 2015, MOL ECOL, V24, P967, DOI 10.1111/mec.13083; Piatkowski Uwe, 2003, Berichte zur Polar- und Meeresforschung, V470, P32; Pritchard JK, 2000, GENETICS, V155, P945; Quattrini A. M., 2015, P ROYAL SOC B, V282, P1807; RAYMOND M, 1995, J HERED, V86, P248, DOI 10.1093/oxfordjournals.jhered.a111573; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; Rocha LA, 2002, MOL ECOL, V11, P243, DOI 10.1046/j.0962-1083.2001.01431.x; Rosenberg NA, 2004, MOL ECOL NOTES, V4, P137, DOI 10.1046/j.1471-8286.2003.00566.x; Rousset F, 2008, MOL ECOL RESOUR, V8, P103, DOI 10.1111/j.1471-8286.2007.01931.x; Ryman N, 2006, MOL ECOL NOTES, V6, P600, DOI 10.1111/j.1365-294X.2006.01378.x; Schuller M, 2011, POLAR BIOL, V34, P549, DOI 10.1007/s00300-010-0913-x; Selkoe KA, 2011, MAR ECOL PROG SER, V436, P291, DOI 10.3354/meps09238; Shum P, 2014, PEERJ, V2, DOI 10.7717/peerj.525; Sotka EE, 2004, MOL ECOL, V13, P2143, DOI 10.1111/j.1365-294X.2004.02225.x; Strugnell JM, 2012, MOL ECOL, V21, P2775, DOI 10.1111/j.1365-294X.2012.05572.x; Strugnell JM, 2009, MOL ECOL RESOUR, V9, P1239, DOI 10.1111/j.1755-0998.2009.02617.x; Strugnell JM, 2009, MOL ECOL RESOUR, V9, P1068, DOI 10.1111/j.1755-0998.2009.02580.x; Strugnell JM, 2008, CLADISTICS, V24, P853, DOI 10.1111/j.1096-0031.2008.00234.x; Sun JT, 2012, BMC GENET, V13, DOI 10.1186/1471-2156-13-8; Sundqvist L., 2013, ARXIV13040118; Thatje S, 2005, TRENDS ECOL EVOL, V20, P534, DOI 10.1016/j.tree.2005.07.010; Thompson AF, 2013, GEOPHYS RES LETT, V40, P5920, DOI 10.1002/2013GL058114; Thompson AF, 2009, J PHYS OCEANOGR, V39, P3, DOI 10.1175/2008JP03995.1; Thornhill DJ, 2008, MOL ECOL, V17, P5104, DOI 10.1111/j.1365-294X.2008.03970.x; Van Strien MJ, 2012, MOL ECOL, V21, P4010, DOI 10.1111/j.1365-294X.2012.05687.x; VansOosterhout C., 2003, MOL ECOL NOTES, V4, P535; Von Oheimb PV, 2013, BIOL J LINN SOC, V109, P526, DOI 10.1111/bij.12068; Whitehouse MJ, 2008, DEEP-SEA RES PT I, V55, P1218, DOI 10.1016/j.dsr.2008.06.002; Wilson NG, 2007, MAR BIOL, V152, P895, DOI 10.1007/s00227-007-0742-9; Wilson NG, 2009, MOL ECOL, V18, P965, DOI 10.1111/j.1365-294X.2008.04071.x; WRIGHT S, 1951, ANN EUGENIC, V15, P323; Young EF, 2015, EVOL APPL, V8, P486, DOI 10.1111/eva.12259; Zardus JD, 2006, MOL ECOL, V15, P639, DOI 10.1111/j.1365-294X.2005.02832.x 75 1 1 3 12 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. OCT 2017 7 19 8087 8099 10.1002/ece3.3327 13 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology FJ2AS WOS:000412523700044 29043058 DOAJ Gold, Green Published 2018-11-22 J Sengupta, S; Ergon, T; Leinaas, HP Sengupta, Sagnik; Ergon, Torbjorn; Leinaas, Hans Petter Thermal plasticity in postembryonic life history traits of a widely distributed Collembola: Effects of macroclimate and microhabitat on genotypic differences ECOLOGY AND EVOLUTION English Article differential selection pressure; latitudinal cline; microevolution; phenotypic plasticity; seasonal time constraints; springtails; thermal adaptation; trait mean MIXED-EFFECTS MODELS; OF-ALL-TEMPERATURES; REACTION NORMS; DROSOPHILA-MELANOGASTER; PHENOTYPIC PLASTICITY; NATURAL-POPULATIONS; BODY-SIZE; GENE FLOW; DESICCATION RESISTANCE; ARCTIC COLLEMBOLA Life history traits in many ectotherms show complex patterns of variation among conspecific populations sampled along wide latitudinal or climatic gradients. However, few studies have assessed whether these patterns can be explained better by thermal reaction norms of multiple life history traits, covering major aspects of the life cycle. In this study, we compared five populations of a Holarctic, numerically dominant soil microarthropod species, Folsomia quadrioculata, sampled from a wide latitudinal gradient (56-81 degrees N), for growth, development, fecundity, and survival across four temperatures (10, 15, 20, and 25 degrees C) in common garden experiments. We evaluated the extent to which macroclimate could explain differences in thermal adaptation and life history strategies among populations. The common garden experiments revealed large genotypic differences among populations in all the traits, which were little explained by latitude and macroclimate. In addition, the life history strategies (traits combined) hardly revealed any systematic difference related to latitude and macroclimate. The overall performance of the northernmost population from the most stochastic microclimate and the southernmost population, which remains active throughout the year, was least sensitive to the temperature treatments. In contrast, performance of the population from the most predictable microclimate peaked within a narrow temperature range (around 15 degrees C). Our findings revealed limited support for macroclimate-based predictions, and indicated that local soil habitat conditions related to predictability and seasonality might have considerable influence on the evolution of life history strategies of F. quadrioculata. This study highlights the need to combine knowledge on microhabitat characteristics, and demography, with findings from common garden experiments, for identifying the key drivers of life history evolution across large spatial scales, and wide climate gradients. We believe that similar approaches may substantially improve the understanding of adaptation in many terrestrial ectotherms with low dispersal ability. [Sengupta, Sagnik; Leinaas, Hans Petter] Univ Oslo, Dept Biosci, Oslo, Norway; [Ergon, Torbjorn] Univ Oslo, Dept Biosci, Ctr Ecol & Evolutionary Synth, Oslo, Norway Sengupta, S (reprint author), Univ Oslo, Dept Biosci, Oslo, Norway. sagnik.sengupta@ibv.uio.no Research Council of Norway [Pol-Nor/201992/93/2014]; Department of Biosciences, University of Oslo [2010/5300] Research Council of Norway, Grant/Award Number: Pol-Nor/201992/93/2014; Department of Biosciences, University of Oslo, Grant/Award Number: 2010/5300 Amarasekare P, 2017, AM NAT, V189, pE31, DOI 10.1086/690293; Angilletta MJ, 2004, INTEGR COMP BIOL, V44, P498, DOI 10.1093/icb/44.6.498; Angilletta MJ, 2003, TRENDS ECOL EVOL, V18, P234, DOI 10.1016/S0169-5347(03)00087-9; Barton M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0095258; Bates D, 2015, J STAT SOFTW, V67, P1; Berger D, 2014, J EVOLUTION BIOL, V27, P1975, DOI 10.1111/jeb.12452; Birkemoe T, 1998, PEDOBIOLOGIA, V42, P131; Birkemoe T, 1999, ECOGRAPHY, V22, P31, DOI 10.1111/j.1600-0587.1999.tb00452.x; Birkemoe T, 2001, ECOL ENTOMOL, V26, P100, DOI 10.1046/j.1365-2311.2001.00292.x; Bjor K., 1972, Meddelelser fra det Norske Skogforsoeksvesen, V30, P199; Blanckenhorn WU, 2004, INTEGR COMP BIOL, V44, P413, DOI 10.1093/icb/44.6.413; Cassel-Lundhagen A, 2011, J EVOLUTION BIOL, V24, P381, DOI 10.1111/j.1420-9101.2010.02174.x; Chahartaghi-Abnieh M., 2007, THESIS; Chimitova A., 2010, ENTOMOLOGICAL REV, V90, P957; Clarke A, 2003, TRENDS ECOL EVOL, V18, P573, DOI 10.1016/j.tree.2003.08.007; Condon C, 2014, EVOLUTION, V68, P720, DOI 10.1111/evo.12296; CONOVER DO, 1995, TRENDS ECOL EVOL, V10, P248, DOI 10.1016/S0169-5347(00)89081-3; Danks HV, 1999, EUR J ENTOMOL, V96, P83; Danks HV, 2004, INTEGR COMP BIOL, V44, P85, DOI 10.1093/icb/44.2.85; DEHARVENG L, 1995, HYDROBIOLOGIA, V312, P59, DOI 10.1007/BF00018887; Dixie B, 2015, ZOOKEYS, P145, DOI 10.3897/zookeys.515.9399; Ellers J, 2010, EVOL ECOL, V24, P523, DOI 10.1007/s10682-010-9375-4; Fjellberg Arne, 1994, Norsk Polarinstitutt Meddelelser, V133, P1; Forrest J, 2010, PHILOS T R SOC B, V365, P3101, DOI 10.1098/rstb.2010.0145; Forsman A, 2015, HEREDITY, V115, P276, DOI 10.1038/hdy.2014.92; Geiger R., 2003, CLIMATE NEAR GROUND, P684; GOTTHARD K, 1995, OIKOS, V74, P3, DOI 10.2307/3545669; GREGOIREWIBO C, 1976, REV ECOL BIOL SOL, V13, P491; HaarlOv N., 1960, OIKOS S, V3, P106; Hagvar S, 2010, ARCT ANTARCT ALP RES, V42, P422, DOI 10.1657/1938-4246-42.4.422; Hertzberg K, 2000, OECOLOGIA, V124, P381, DOI 10.1007/s004420000398; HERTZBERG K, 1994, ECOGRAPHY, V17, P349, DOI 10.1111/j.1600-0587.1994.tb00112.x; Hertzberg K, 1998, POLAR BIOL, V19, P302, DOI 10.1007/s003000050250; HUEY RB, 1984, EVOLUTION, V38, P441, DOI 10.1111/j.1558-5646.1984.tb00302.x; HUEY RB, 1989, TRENDS ECOL EVOL, V4, P131, DOI 10.1016/0169-5347(89)90211-5; JAMES AC, 1995, GENETICS, V140, P659; Janion C, 2010, EVOL ECOL, V24, P1365, DOI 10.1007/s10682-010-9405-2; Kaersgaard CW, 2004, J INSECT PHYSIOL, V50, P5, DOI 10.1016/j.jinsphys.2003.09.003; Klepsatel P, 2013, EVOLUTION, V67, P3573, DOI 10.1111/evo.12221; Lavelle P., 2001, SOIL ECOLOGY; Le Lagadec MD, 1998, J COMP PHYSIOL B, V168, P112, DOI 10.1007/s003600050127; LEINAAS HP, 1978, OIKOS, V31, P307, DOI 10.2307/3543655; LEINAAS HP, 1983, OECOLOGIA, V58, P194, DOI 10.1007/BF00399216; Lenormand T, 2002, TRENDS ECOL EVOL, V17, P183, DOI 10.1016/S0169-5347(02)02497-7; Liefting M, 2008, BIOL J LINN SOC, V94, P265, DOI 10.1111/j.1095-8312.2008.00969.x; Liefting M, 2009, EVOLUTION, V63, P1954, DOI 10.1111/j.1558-5646.2009.00683.x; Manenti T, 2017, ECOL EVOL, V7, P2716, DOI 10.1002/ece3.2904; MCALPINE JF, 1965, ARCTIC, V18, P73, DOI 10.14430/arctic3455; Nakagawa S, 2013, METHODS ECOL EVOL, V4, P133, DOI 10.1111/j.2041-210x.2012.00261.x; Nilsson-Ortman V, 2012, ECOLOGY, V93, P1340; Nygren GH, 2008, J INSECT SCI, V8; Oomen RA, 2016, CAN J ZOOL, V94, P257, DOI 10.1139/cjz-2015-0186; Palaima A, 2004, EVOL ECOL RES, V6, P215; Pigliucci M, 2005, TRENDS ECOL EVOL, V20, P481, DOI 10.1016/j.tree.2005.06.001; Pigliucci M, 2006, J EXP BIOL, V209, P2362, DOI 10.1242/jeb.02070; Pinheiro J., 2014, R PACKAGE VERSION, V3, P1; PONGE JF, 1993, PEDOBIOLOGIA, V37, P223; Ponge JF, 2000, BIOL FERT SOILS, V32, P508, DOI 10.1007/s003740000285; R Development Core Team, 2015, R LANG ENV STAT COMP; RASMUSSEN S, 1982, HOLARCTIC ECOL, V5, P412; Roff D. A., 2002, LIFE HIST EVOLUTION; Rusek J, 1998, BIODIVERS CONSERV, V7, P1207, DOI 10.1023/A:1008887817883; SAVILE D. B. O., 1961, CANADIAN JOUR BOT, V39, P909; Schmidt PS, 2005, EVOLUTION, V59, P1721; Schnug L, 2014, SOIL BIOL BIOCHEM, V74, P115, DOI 10.1016/j.soilbio.2014.03.007; Scriber J Mark, 2014, Insects, V5, P199, DOI 10.3390/insects5010199; Sengupta S., 2015, THESIS; Sengupta S, 2016, ECOL ENTOMOL, V41, P72, DOI 10.1111/een.12270; Sinclair BJ, 2012, PHYSIOL BIOCHEM ZOOL, V85, P594, DOI 10.1086/665388; SLATKIN M, 1987, SCIENCE, V236, P787, DOI 10.1126/science.3576198; Stam E, 1997, PEDOBIOLOGIA, V41, P88; Stam EM, 1996, OECOLOGIA, V107, P283, DOI 10.1007/BF00328444; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Trotta V, 2006, BMC EVOL BIOL, V6, DOI 10.1186/1471-2148-6-67; Tuljapurkar S, 2009, PHILOS T R SOC B, V364, P1499, DOI 10.1098/rstb.2009.0021; van Heerwaarden B, 2014, J EVOLUTION BIOL, V27, P2541, DOI 10.1111/jeb.12510; van Heerwaarden B, 2011, EVOLUTION, V65, P1048, DOI 10.1111/j.1558-5646.2010.01196.x; von Bertalanffy L., 1938, HUM BIOL, V10, P181; Zuur A. F., 2009, MIXED EFFECTS MODELS 79 1 1 9 15 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. OCT 2017 7 19 8100 8112 10.1002/ece3.3333 13 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology FJ2AS WOS:000412523700045 29043059 DOAJ Gold, Green Published 2018-11-22 J Hughes, PW Hughes, Patrick William Between semelparity and iteroparity: Empirical evidence for a continuum of modes of parity ECOLOGY AND EVOLUTION English Review annual; iteroparity; life history; parity; perennial; phenology; reproduction; semelparity LIFE-HISTORY VARIATION; FLOWERING-LOCUS-C; FEMALE THREESPINE STICKLEBACK; STEGODYPHUS-LINEATUS ERESIDAE; BIENNIAL DIGITALIS-PURPUREA; INTEGRAL PROJECTION MODELS; CAPELIN MALLOTUS-VILLOSUS; LOLIGO-VULGARIS-REYNAUDII; STATE-VARIABLE MODEL; COD BOREOGADUS-SAIDA The number of times an organism reproduces (i.e., its mode of parity) is a fundamental life-history character, and evolutionary and ecological models that compare the relative fitnesses of different modes of parity are common in life-history theory and theoretical biology. Despite the success of mathematical models designed to compare intrinsic rates of increase (i.e., density-independent growth rates) between annual-semelparous and perennial-iteroparous reproductive schedules, there is widespread evidence that variation in reproductive allocation among semelparous and iteroparous organisms alike is continuous. This study reviews the ecological and molecular evidence for the continuity and plasticity of modes of paritythat is, the idea that annual-semelparous and perennial-iteroparous life histories are better understood as endpoints along a continuum of possible strategies. I conclude that parity should be understood as a continuum of different modes of parity, which differ by the degree to which they disperse or concentrate reproductive effort in time. I further argue that there are three main implications of this conclusion: (1) that seasonality should not be conflated with parity; (2) that mathematical models purporting to explain the general evolution of semelparous life histories from iteroparous ones (or vice versa) should not assume that organisms can only display either an annual-semelparous life history or a perennial-iteroparous one; and (3) that evolutionary ecologists should base explanations of how different life-history strategies evolve on the physiological or molecular basis of traits underlying different modes of parity. [Hughes, Patrick William] Max Planck Inst Plant Breeding Res, Dept Plant Breeding & Genet, Cologne, Germany Hughes, PW (reprint author), Max Planck Inst Plant Breeding Res, Dept Plant Breeding & Genet, Cologne, Germany. whughes@mpipz.mpg.de Hughes, P. William/G-9119-2018 Hughes, P. William/0000-0003-4142-2579 Alexander von Humboldt-Stiftung; Natural Sciences and Engineering Research Council of Canada Alexander von Humboldt-Stiftung, Grant/Award Number: Postdoctoral Research Fellowship; Natural Sciences and Engineering Research Council of Canada, Grant/Award Number: Postdoctoral Research Fellowship Acker P, 2014, FUNCT ECOL, V28, P458, DOI 10.1111/1365-2435.12187; Agren J, 2017, EVOLUTION, V71, P550, DOI 10.1111/evo.13126; Agren J, 2012, NEW PHYTOL, V194, P1112, DOI 10.1111/j.1469-8137.2012.04112.x; Aikawa S, 2010, P NATL ACAD SCI USA, V107, P11632, DOI 10.1073/pnas.0914293107; Albani MC, 2012, PLOS GENET, V8, DOI 10.1371/journal.pgen.1003130; Albani MC, 2010, CURR TOP DEV BIOL, V91, P323, DOI 10.1016/S0070-2153(10)91011-9; ALCALA AC, 1967, COPEIA, P596; ALDRED RG, 1983, PHILOS T ROY SOC B, V301, P1, DOI 10.1098/rstb.1983.0021; Amasino R, 2009, GENOME BIOL, V10, DOI 10.1186/gb-2009-10-7-228; Amasino RM, 1996, CURR OPIN GENET DEV, V6, P480, DOI 10.1016/S0959-437X(96)80071-2; ARIZAGA S, 1995, OECOLOGIA, V101, P329, DOI 10.1007/BF00328819; Aubry S, 2005, DIVERS DISTRIB, V11, P539, DOI 10.1111/j.1366-9516.2005.00189.x; Austen EJ, 2015, J EVOLUTION BIOL, V28, P65, DOI 10.1111/jeb.12538; BAEG GH, 1993, VELIGER, V36, P228; Baker JA, 2015, HEREDITY, V115, P322, DOI 10.1038/hdy.2015.65; Baker JA, 2008, BEHAVIOUR, V145, P579, DOI 10.1163/156853908792451539; Baker RL, 2012, NEW PHYTOL, V196, P271, DOI 10.1111/j.1469-8137.2012.04245.x; BAKER WL, 1992, ARCTIC ALPINE RES, V24, P17, DOI 10.2307/1551316; Banta JA, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P114; Barry TP, 2010, GEN COMP ENDOCR, V165, P53, DOI 10.1016/j.ygcen.2009.06.003; Bastow R, 2004, NATURE, V427, P164, DOI 10.1038/nature02269; Baulier L, 2012, AQUAT LIVING RESOUR, V25, P151, DOI 10.1051/alr/2012014; Baum BR, 2013, GENOME, V56, P245, DOI 10.1139/gen-2012-0195; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Bell Michael A., 1994, P1; Benton TG, 1999, EVOLUTION, V53, P677, DOI 10.1111/j.1558-5646.1999.tb05363.x; Birmeta G, 2004, HEREDITAS, V140, P139, DOI 10.1111/j.1601-5223.2004.01792.x; Bisang I., 2008, FORDERT OKOLOGISIERU; BISWAS AK, 1987, PHYSIOL PLANTARUM, V71, P89, DOI 10.1111/j.1399-3054.1987.tb04622.x; Blumel M, 2015, CURR OPIN BIOTECH, V32, P121, DOI 10.1016/j.copbio.2014.11.023; Boletzky S. V., 1988, RAPP COMM INT MER ME, V31, P257; Bonnet X., 2011, REPROD BIOL PHYLOGEN, P645; Bonser SP, 2006, CAN J BOT, V84, P143, DOI [10.1139/B05-154, 10.1139/b05-154]; Bowers JE, 2000, J ARID ENVIRON, V45, P197, DOI 10.1006/jare.2000.0642; BRADSHAW WE, 1986, EVOLUTION, V40, P471, DOI 10.1111/j.1558-5646.1986.tb00500.x; Brenchley JL, 1996, HYDROBIOLOGIA, V327, P185; Brommer JE, 2012, ECOL EVOL, V2, P695, DOI 10.1002/ece3.60; BRYANT EH, 1971, AM NAT, V105, P75, DOI 10.1086/282703; BULMER MG, 1985, AM NAT, V126, P63, DOI 10.1086/284396; Bulmer MG, 1994, THEORETICAL EVOLUTIO; Buoro M, 2014, ECOL LETT, V17, P756, DOI 10.1111/ele.12275; Burd M, 2006, ECOLOGY, V87, P2755, DOI 10.1890/0012-9658(2006)87[2755:APFRIM]2.0.CO;2; Burghardt LT, 2016, NEW PHYTOL, V209, P1301, DOI 10.1111/nph.13685; Burghardt LT, 2015, AM NAT, V185, P212, DOI 10.1086/679439; Caicedo AL, 2004, P NATL ACAD SCI USA, V101, P15670, DOI 10.1073/pnas.0406232101; CALOW P, 1979, BIOL REV, V54, P23, DOI 10.1111/j.1469-185X.1979.tb00866.x; Castaings L., 2014, NATURE COMMUNICATION, V5, P1; Chandler GT, 2004, BOT J LINN SOC, V144, P123, DOI 10.1111/j.1095-8339.2003.00247.x; Chaparro OR, 2011, INVERTEBR BIOL, V130, P49, DOI 10.1111/j.1744-7410.2010.00218.x; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; Chase MW, 2005, ANN BOT-LONDON, V95, P191, DOI [10.1093/aob/mci012, 10.1093/aob/inci012]; Chiang GCK, 2013, EVOLUTION, V67, P883, DOI 10.1111/j.1558-5646.2012.01828.x; Chiang GCK, 2011, MOL ECOL, V20, P3336, DOI 10.1111/j.1365-294X.2011.05181.x; Chiang GCK, 2009, P NATL ACAD SCI USA, V106, P11661, DOI 10.1073/pnas.0901367106; Christiansen JS, 2008, J EXP MAR BIOL ECOL, V360, P47, DOI 10.1016/j.jembe.2008.04.003; Clark C. W., 2000, DYNAMIC STATE VARIAB; COHEN D, 1966, J THEOR BIOL, V12, P119, DOI 10.1016/0022-5193(66)90188-3; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Colihueque N, 2010, GENET MOL BIOL, V33, P578, DOI 10.1590/S1415-47572010000300032; Cooke SJ, 2004, FISHERIES, V29, P22, DOI 10.1577/1548-8446(2004)29[22:AMTAHE]2.0.CO;2; Corkum LD, 1997, OECOLOGIA, V111, P69, DOI 10.1007/s004420050209; Costantini L, 2008, BMC PLANT BIOL, V8, DOI 10.1186/1471-2229-8-38; COUPLAND G, 1995, TRENDS GENET, V11, P393, DOI 10.1016/S0168-9525(00)89122-2; Crespi BJ, 2002, EVOLUTION, V56, P1008; Cushing JM, 2015, CIM SER MATH SCI, V1, P215, DOI 10.1007/978-3-319-16118-1_12; Cushing JM, 2013, MATH BIOSCI ENG, V10, P1017, DOI 10.3934/mbe.2013.10.1017; Cushing JM, 2012, J BIOL DYNAM, V6, P80, DOI 10.1080/17513758.2012.716085; Cushing JM, 2009, J MATH BIOL, V59, P75, DOI 10.1007/s00285-008-0208-9; Da-Silva CQ, 2008, COMMUN STAT-SIMUL C, V37, P816, DOI 10.1080/03610910701884310; Danon A, 2000, PLANT PHYSIOL BIOCH, V38, P647, DOI 10.1016/S0981-9428(00)01178-5; Davies RW, 1996, ARCH HYDROBIOL, V138, P45; Davison RJ, 2016, NAT RESOUR MODEL, V29, P538, DOI 10.1111/nrm.12109; Davydova NV, 2005, LINEAR ALGEBRA APPL, V398, P185, DOI 10.1016/j.laa.2004.12.020; Denekamp NY, 2011, HYDROBIOLOGIA, V662, P51, DOI 10.1007/s10750-010-0518-y; Deng WW, 2011, P NATL ACAD SCI USA, V108, P6680, DOI 10.1073/pnas.1103175108; DesWilde J., 2010, FLOWERING PLANTS EUD, P56; DesWreede R., 1988, REPROD STRATEGIES AL; Dickhoff Walton W., 1989, P253; Diggle PK, 1997, INT J PLANT SCI, V158, pS99, DOI 10.1086/297510; DIGGLE PK, 1995, ANNU REV ECOL SYST, V26, P531, DOI 10.1146/annurev.es.26.110195.002531; Dittmar EL, 2014, MOL ECOL, V23, P4291, DOI 10.1111/mec.12857; Donohue K, 2015, TRENDS ECOL EVOL, V30, P66, DOI 10.1016/j.tree.2014.11.008; Doughty P, 1997, OECOLOGIA, V110, P508, DOI 10.1007/s004420050187; Drouineau H, 2014, CAN J FISH AQUAT SCI, V71, P1561, DOI 10.1139/cjfas-2014-0090; DRUFFEL ERM, 1995, GEOCHIM COSMOCHIM AC, V59, P5031, DOI 10.1016/0016-7037(95)00373-8; Drummond RSM, 2012, FRONT PLANT SCI, V2, DOI 10.3389/fpls.2011.00115; Edmunds GF, 1976, MAYFLIES N CENTRAL A; Einum S, 2007, EVOLUTION, V61, P232, DOI 10.1111/j.1558-5646.2007.00020.x; ELBADRY EA, 1966, ANN ENTOMOL SOC AM, V59, P458, DOI 10.1093/aesa/59.3.458; Ellner SP, 2006, AM NAT, V167, P410, DOI 10.1086/499438; EMLEN JM, 1970, ECOLOGY, V51, P588, DOI 10.2307/1934039; Eulgem T, 2000, TRENDS PLANT SCI, V5, P199, DOI 10.1016/S1360-1385(00)01600-9; Evans MEK, 2005, EVOLUTION, V59, P1914; Faden R. B., 2006, FLORA N AM, P22; FADEN RB, 1993, ANN MO BOT GARD, V80, P208, DOI 10.2307/2399824; FINCH CE, 1995, Q REV BIOL, V70, P1, DOI 10.1086/418864; Finch CE, 1998, J GERONTOL A-BIOL, V53, pB235, DOI 10.1093/gerona/53A.4.B235; FINK LS, 1986, ANIM BEHAV, V34, P1051, DOI 10.1016/S0003-3472(86)80164-6; Fisher DO, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0015226; Flatt T, 2004, GENETICA, V122, P141, DOI 10.1023/B:GENE.0000041000.22998.92; Fleming IA, 1998, CAN J FISH AQUAT SCI, V55, P59, DOI 10.1139/cjfas-55-S1-59; FOSTER RB, 1977, NATURE, V268, P624, DOI 10.1038/268624b0; Fowler S, 1999, EMBO J, V18, P4679, DOI 10.1093/emboj/18.17.4679; Franklin DC, 2008, J TROP FOR SCI, V20, P188; Franklin DC, 2004, J BIOGEOGR, V31, P773, DOI 10.1111/j.1365-2699.2003.01057.x; FRITZ RS, 1982, AM NAT, V120, P264, DOI 10.1086/283987; FUKUDA S., 1953, PROC JAPANESE ACAD, V29, P381; Furota T, 1999, J CRUSTACEAN BIOL, V19, P752, DOI 10.2307/1549299; Futami K, 2005, ETHOLOGY, V111, P1126, DOI 10.1111/j.1439-0310.2005.01126.x; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gagnon PR, 2008, J TORREY BOT SOC, V135, P309, DOI 10.3159/07-RA-054.1; Garcia de Leaniz C, 2007, BIOL REV, V82, P173, DOI 10.1111/j.1469-185X.2006.00004.x; Garcia MB, 2003, PLANT BIOLOGY, V5, P203, DOI 10.1055/s-2003-40728; Gertsch W. J., 1939, Bulletin of the American Museum of Natural History, V76, P277; Ghorai R., 2009, Indian Journal of Agricultural Research, V43, P303; Goldarazena A., 1997, International Journal of Acarology, V23, P261; GOLDING DW, 1994, P NATL ACAD SCI USA, V91, P11777, DOI 10.1073/pnas.91.25.11777; Gonzalez AF, 1996, SARSIA, V81, P107, DOI 10.1080/00364827.1996.10413616; Gonzalez Albarracin, 1994, THESIS; Gremer JR, 2014, ECOL LETT, V17, P380, DOI 10.1111/ele.12241; Grinsted L, 2014, EVOLUTION, V68, P1961, DOI 10.1111/evo.12411; GROSBERG RK, 1988, EVOLUTION, V42, P900, DOI 10.1111/j.1558-5646.1988.tb02510.x; Haggard KK, 1997, AM J BOT, V84, P239, DOI 10.2307/2446086; Hahn DA, 2008, FUNCT ECOL, V22, P1081, DOI 10.1111/j.1365-2435.2008.01451.x; Hall D, 2007, EVOLUTION, V61, P2849, DOI 10.1111/j.1558-5646.2007.00230.x; Hall MC, 2006, GENETICS, V172, P1829, DOI 10.1534/genetics.105.051227; HARVELL CD, 1988, ECOLOGY, V69, P1855, DOI 10.2307/1941162; Haston E, 2009, BOT J LINN SOC, V161, P128, DOI 10.1111/j.1095-8339.2009.01000.x; Hautekeete NC, 2009, ACTA OECOL, V35, P104, DOI 10.1016/j.actao.2008.08.004; Hautekeete NC, 2002, J ECOL, V90, P508, DOI 10.1046/j.1365-2745.2002.00688.x; Hautekeete NC, 2001, J EVOLUTION BIOL, V14, P795, DOI 10.1046/j.1420-9101.2001.00322.x; Hemmer-Hansen J, 2014, CONSERV GENET, V15, P213, DOI 10.1007/s10592-013-0532-5; Hendry AP, 2004, P ROY SOC B-BIOL SCI, V271, P259, DOI 10.1098/rspb.2003.2600; Henning-Lucass N, 2016, ECOL EVOL, V6, P881, DOI 10.1002/ece3.1924; HOP H, 1995, CAN J FISH AQUAT SCI, V52, P541, DOI 10.1139/f95-055; Hop H, 2013, MAR BIOL RES, V9, P878, DOI 10.1080/17451000.2013.775458; Hoving HJT, 2013, GLOBAL CHANGE BIOL, V19, P2089, DOI 10.1111/gcb.12198; Hughes PW, 2015, J EVOLUTION BIOL, V28, P2068, DOI 10.1111/jeb.12734; Hughes PW, 2014, AM J BOT, V101, P1323, DOI 10.3732/ajb.1400283; Hughes PW, 2014, BMC EVOL BIOL, V14, DOI 10.1186/1471-2148-14-90; Huo H., 2016, P NATL ACAD SCI USA, V1, P1; Huxman TE, 1997, INT J PLANT SCI, V158, P778, DOI 10.1086/297490; Iguchi K, 1996, ICHTHYOL RES, V43, P193, DOI 10.1007/BF02347591; Iguchi K, 2001, J FISH BIOL, V58, P520, DOI 10.1006/jfbi.2000.1470; Ikeda Yuzuru, 1993, P179; Imaizumi T, 2006, TRENDS PLANT SCI, V11, P550, DOI 10.1016/j.tplants.2006.09.004; Israel JW, 2016, PLOS BIOL, V14, DOI 10.1371/journal.pbio.1002391; IWASA Y, 1991, THEOR POPUL BIOL, V40, P246, DOI 10.1016/0040-5809(91)90055-K; Jabaily RS, 2013, BOT J LINN SOC, V171, P201, DOI 10.1111/j.1095-8339.2012.01307.x; Javois J, 2013, THEOR BIOSCI, V132, P123, DOI 10.1007/s12064-013-0176-5; Jimenez-Ambriz G, 2007, NEW PHYTOL, V173, P199, DOI 10.1111/j.1469-8137.2006.01923.x; Johanson U, 2000, SCIENCE, V290, P344, DOI 10.1126/science.290.5490.344; Jung JH, 2007, PLANT CELL, V19, P2736, DOI 10.1105/tpc.107.054528; Kaitala V, 2002, EVOL ECOL RES, V4, P169; Kapahi P, 2004, CURR BIOL, V14, P885, DOI 10.1016/j.cub.2004.03.059; Kardailsky I, 1999, SCIENCE, V286, P1962, DOI 10.1126/science.286.5446.1962; Katewa SD, 2011, EXP GERONTOL, V46, P382, DOI 10.1016/j.exger.2010.11.036; KEELER KH, 1987, AM J BOT, V74, P785, DOI 10.2307/2443859; KEELEY JE, 1986, AM MIDL NAT, V115, P1, DOI 10.2307/2425831; Keeley JE, 1999, AM NAT, V154, P383, DOI 10.1086/303243; Kenyon C, 2011, PHILOS T R SOC B, V366, P9, DOI 10.1098/rstb.2010.0276; Kew World Checklist (various authors), 2017, WORLD CHECKL SEL PLA; Kim CH, 2012, ACTA TROP, V122, P94, DOI 10.1016/j.actatropica.2011.12.006; Kim E, 2011, J ECOL, V99, P1237, DOI 10.1111/j.1365-2745.2011.01831.x; Kim SY, 2007, PLANT CELL REP, V26, P327, DOI 10.1007/s00299-006-0243-1; Kindsvater HK, 2016, ECOL LETT, V19, P687, DOI 10.1111/ele.12607; KIRCHOFF BK, 1992, CAN J BOT, V70, P2490, DOI 10.1139/b92-308; KIRKENDALL LR, 1985, AM NAT, V125, P189, DOI 10.1086/284337; Kiss L, 2005, J MOLLUS STUD, V71, P221, DOI 10.1093/mollus/eyi030; KITAJIMA K, 1989, ECOLOGY, V70, P1102, DOI 10.2307/1941379; Klemme I, 2009, J EVOLUTION BIOL, V22, P1944, DOI 10.1111/j.1420-9101.2009.01807.x; Koornneef M, 1998, ANNU REV PLANT PHYS, V49, P345, DOI 10.1146/annurev.arplant.49.1.345; Kotake T, 2003, PLANT CELL PHYSIOL, V44, P555, DOI 10.1093/pcp/pcg091; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; KOZLOWSKI J, 1986, THEOR POPUL BIOL, V29, P16; Kraaijeveld K, 2003, P ROY SOC B-BIOL SCI, V270, pS251, DOI 10.1098/rsbl.2003.0082; Kuss P, 2008, J ECOL, V96, P821, DOI 10.1111/j.1365-2745.2008.01374.x; LACEY EP, 1988, ECOLOGY, V69, P220, DOI 10.2307/1943178; Lamarque LJ, 2015, BIOL INVASIONS, V17, P1109, DOI 10.1007/s10530-014-0781-3; Laptikhovsky V.V., 1998, Ruthenica, V8, P77; Laptikhovsky V.V., 1999, RUSSIAN J MARINE BIO, V25, P342; Laroche J, 1999, MOL BIOL EVOL, V16, P441, DOI 10.1093/oxfordjournals.molbev.a026126; Lazaridou M, 2005, J MOLLUS STUD, V71, P247, DOI 10.1093/mollus/eyi032; Le Corre V, 2002, MOL BIOL EVOL, V19, P1261, DOI 10.1093/oxfordjournals.molbev.a004187; Leder EH, 2006, J HERED, V97, P74, DOI 10.1093/jhered/esj004; Ledger SE, 2010, NEW PHYTOL, V188, P803, DOI 10.1111/j.1469-8137.2010.03394.x; LEGGETT WC, 1978, J FISH RES BOARD CAN, V35, P1469, DOI 10.1139/f78-230; Leiner NO, 2008, J MAMMAL, V89, P153, DOI 10.1644/07-MAMM-A-083.1; Leinonen PH, 2013, MOL ECOL, V22, P709, DOI 10.1111/j.1365-294X.2012.05678.x; Lesica P, 2005, FUNCT ECOL, V19, P471, DOI 10.1111/j.1365-2435.2005.00972.x; LESICA P, 1995, AM J BOT, V82, P752, DOI 10.2307/2445615; Lessells CM, 2005, AM NAT, V165, pS46, DOI 10.1086/429356; Letschert JPW, 1993, WAGENINGEN AGR U PAP, V91, P1; LEWIS AR, 1993, CAN J FISH AQUAT SCI, V50, P20, DOI 10.1139/f93-003; Leys M, 2014, ECOL EVOL, V4, P1828, DOI 10.1002/ece3.1061; Linnaeus C., 1744, ORATIO TELLURIS HABI; Liu YQ, 2010, J INSECT SCI, V10, P1, DOI 10.1673/031.010.14140; Lopes GP, 2015, MAMM BIOL, V80, P1, DOI 10.1016/j.mambio.2014.08.004; MACKIE GL, 1983, CAN J ZOOL, V61, P860, DOI 10.1139/z83-112; MALTBY L, 1986, J ANIM ECOL, V55, P739, DOI 10.2307/4751; Marden JH, 2008, J EXP BIOL, V211, P3653, DOI 10.1242/jeb.023903; Pinol CM, 2011, THEOR BIOSCI, V130, P101, DOI 10.1007/s12064-010-0115-7; Marshall DJ, 2008, ADV MAR BIOL, V53, P1, DOI 10.1016/S0065-2881(07)53001-4; Martins EG, 2006, J MAMMAL, V87, P915, DOI 10.1644/05-MAMM-A-403R1.1; Matsumoto M, 2002, J INSECT PHYSIOL, V48, P765, DOI 10.1016/S0022-1910(02)00102-6; MCBLAIN BA, 1987, CAN J PLANT SCI, V67, P105, DOI 10.4141/cjps87-012; McCormick MA, 2011, PHILOS T R SOC B, V366, P17, DOI 10.1098/rstb.2010.0198; McMahon R., 2001, ECOLOGY CLASSIFICATI, P1056; McNamara JM, 1997, THEOR POPUL BIOL, V51, P94, DOI 10.1006/tpbi.1997.1291; Melo YC, 1999, MAR BIOL, V135, P307, DOI 10.1007/s002270050628; Mendez-Vigo B, 2011, PLANT PHYSIOL, V157, P1942, DOI 10.1104/pp.111.183426; Metcalf JC, 2003, TRENDS ECOL EVOL, V18, P471, DOI 10.1016/S0169-5347(03)00162-9; Meunier J, 2012, EVOL ECOL, V26, P669, DOI 10.1007/s10682-011-9510-x; Michaels SD, 1999, PLANT CELL, V11, P949, DOI 10.1105/tpc.11.5.949; Michaels SD, 2004, P NATL ACAD SCI USA, V101, P3281, DOI 10.1073/pnas.0306778101; Michaels SD, 2003, P NATL ACAD SCI USA, V100, P10102, DOI 10.1073/pnas.1531467100; Miller TEX, 2012, P ROY SOC B-BIOL SCI, V279, P2831, DOI 10.1098/rspb.2012.0326; Mills HR, 2012, GEN COMP ENDOCR, V178, P347, DOI 10.1016/j.ygcen.2012.06.013; Mironchenko A, 2014, J THEOR BIOL, V354, P12, DOI 10.1016/j.jtbi.2014.03.023; Mizoguchi T, 2005, PLANT CELL, V17, P2255, DOI 10.1105/tpc.105.033464; Mizuki I, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0105051; Montti L, 2011, ACTA OECOL, V37, P361, DOI 10.1016/j.actao.2011.04.004; Morse DH, 1996, EVOL ECOL, V10, P361, DOI 10.1007/BF01237723; MORSE DH, 1979, OECOLOGIA, V39, P309, DOI 10.1007/BF00345442; MORSE DH, 1994, J ARACHNOL, V22, P195; MURDOCH WW, 1966, AM NAT, V100, P5, DOI 10.1086/282396; Murphy EJ, 1999, EVOL ECOL, V13, P517, DOI 10.1023/A:1006783902331; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; Nahrgang J, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098452; Nesis Kir N., 1996, Ruthenica, V6, P23; Nichols KM, 2008, GENETICS, V179, P1559, DOI 10.1534/genetics.107.084251; Nichols PGH, 2007, FIELD CROP RES, V104, P10, DOI 10.1016/j.fcr.2007.03.016; NOBEL PS, 1977, BOT GAZ, V138, P1, DOI 10.1086/336888; Nolte AW, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-59; Nyumura N, 2015, ZOOL SCI, V32, P372, DOI 10.2108/zs150020; O'Malley KG, 2010, P ROY SOC B-BIOL SCI, V277, P3703, DOI 10.1098/rspb.2010.0762; Oizumi R, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098746; Oizumi R, 2013, J THEOR BIOL, V323, P76, DOI 10.1016/j.jtbi.2013.01.020; Omielan J., 1991, THESIS; Palmer JD, 2004, AM J BOT, V91, P1437, DOI 10.3732/ajb.91.10.1437; Panagakis A, 2017, AM NAT, V189, P667, DOI 10.1086/691388; Partridge L, 2010, PHILOS T R SOC B, V365, P147, DOI 10.1098/rstb.2009.0222; Pearse DE, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0012; PETERSON D L, 1983, Freshwater Invertebrate Biology, V2, P165, DOI 10.2307/1467147; Peterson JH, 2010, EVOL ECOL RES, V12, P347; Postma FM, 2016, P NATL ACAD SCI USA, V113, P7590, DOI 10.1073/pnas.1606303113; PUTTERILL J, 1995, CELL, V80, P847, DOI 10.1016/0092-8674(95)90288-0; Ragland GJ, 2011, J EXP BIOL, V214, P3948, DOI 10.1242/jeb.061085; Ranta E, 2000, EVOLUTION, V54, P145, DOI 10.1111/j.0014-3820.2000.tb00015.x; Ranta E, 2002, J THEOR BIOL, V217, P391, DOI 10.1006/yjtbi.3029; Ranta E, 2001, EVOL ECOL RES, V3, P759; Ranta E, 2000, AM NAT, V155, P294, DOI 10.1086/303318; Ratz T, 2016, OECOLOGIA, V182, P443, DOI 10.1007/s00442-016-3685-3; REDEI GP, 1962, GENETICS, V47, P443; Rees M, 1999, AM NAT, V154, P628, DOI 10.1086/303268; Rees M, 2002, P ROY SOC B-BIOL SCI, V269, P1509, DOI 10.1098/rspb.2002.2037; REINARTZ JA, 1984, J ECOL, V72, P897, DOI 10.2307/2259539; Remington DL, 2015, BMC PLANT BIOL, V15, DOI 10.1186/s12870-015-0606-2; Remington DL, 2013, GENETICS, V195, P1087, DOI 10.1534/genetics.113.151803; Richter-Boix A, 2014, ECOLOGY, V95, P2715, DOI 10.1890/13-1996.1; Ricklefs RE, 2008, FUNCT ECOL, V22, P379, DOI 10.1111/j.1365-2435.2008.01420.x; Rinehart JP, 2007, P NATL ACAD SCI USA, V104, P11130, DOI 10.1073/pnas.0703538104; Rinehart JP, 2000, INSECT BIOCHEM MOLEC, V30, P515, DOI 10.1016/S0965-1748(00)00021-7; Rion S, 2007, J EVOLUTION BIOL, V20, P1655, DOI 10.1111/j.1420-9101.2007.01405.x; Rocha F, 1996, J EXP MAR BIOL ECOL, V207, P177, DOI 10.1016/S0022-0981(96)02631-7; Rocha F, 2001, BIOL REV, V76, P291, DOI 10.1017/S1464793101005681; Rocha M, 2005, AM J BOT, V92, P1330, DOI 10.3732/ajb.92.8.1330; Roff Derek A., 1992; Rozas V, 2003, PLANT ECOL, V167, P193, DOI 10.1023/A:1023969822044; Rubenstein DR, 2011, P NATL ACAD SCI USA, V108, P10816, DOI 10.1073/pnas.1100303108; Rudnicki R, 2014, DISCRETE CONT DYN-B, V19, P2641, DOI 10.3934/dcdsb.2014.19.2641; Saastamoinen M, 2009, P ROY SOC B-BIOL SCI, V276, P1313, DOI 10.1098/rspb.2008.1464; Samach A, 2000, SCIENCE, V288, P1613, DOI 10.1126/science.288.5471.1613; Sato K, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms11625; Sauer WHH, 1999, MAR BIOL, V135, P315, DOI 10.1007/s002270050629; Schaffer W., 1974, AM NATURALIST, V108; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; Schaffer WM, 1975, ECOLOGY EVOLUTION CO, P142; Schlappi MR, 2006, PLANT PHYSIOL, V142, P1728, DOI 10.1104/pp.106.085571; Schneider JM, 1997, OIKOS, V79, P92, DOI 10.2307/3546094; Schneider JM, 2003, EVOL ECOL RES, V5, P731; Schneider MR, 2008, CYTOKINE GROWTH F R, V19, P173, DOI 10.1016/j.cytogfr.2008.01.003; Seamons TR, 2010, BEHAV ECOL SOCIOBIOL, V64, P505, DOI 10.1007/s00265-009-0866-7; Selman C, 2011, PHILOS T R SOC B, V366, P99, DOI 10.1098/rstb.2010.0243; Shama LNS, 2009, FRESHWATER BIOL, V54, P150, DOI 10.1111/j.1365-2427.2008.02102.x; Sheldon CC, 2000, P NATL ACAD SCI USA, V97, P3753, DOI 10.1073/pnas.060023597; Shindo C, 2005, PLANT PHYSIOL, V138, P1163, DOI 10.1104/pp.105.061309; SIEPEL H, 1994, BIOL FERT SOILS, V18, P263, DOI 10.1007/BF00570628; SILVERTOWN J, 1993, J ECOL, V81, P465, DOI 10.2307/2261525; SILVERTOWN J, 1989, ANNU REV ECOL SYST, V20, P349, DOI 10.1146/annurev.es.20.110189.002025; Simon S, 2015, MOL BIOL EVOL, V32, P2284, DOI 10.1093/molbev/msv110; Simpson GG, 2002, SCIENCE, V296, P285, DOI 10.1126/science.296.5566.285; Singh K. Chaoba, 1998, Indian Journal of Sericulture, V37, P89; Skubic E, 2004, J THEOR BIOL, V227, P487, DOI 10.1016/j.jtbi.2003.11.021; Sletvold N, 2005, J ECOL, V93, P727, DOI 10.1111/j.1365-2745.2005.01008.x; Sletvold N, 2002, J ECOL, V90, P958, DOI 10.1046/j.1365-2745.2002.00725.x; Sloat MR, 2014, REV FISH BIOL FISHER, V24, P689, DOI 10.1007/s11160-014-9344-z; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Smith FA, 2001, EVOL ECOL RES, V3, P595; Smith SE, 2000, J ECOL, V88, P139, DOI 10.1046/j.1365-2745.2000.00436.x; Snowden KC, 2005, PLANT CELL, V17, P746, DOI 10.1105/tpc104.027714; SNYDER RJ, 1991, COPEIA, P526; Song B, 2013, OECOLOGIA, V172, P359, DOI 10.1007/s00442-012-2518-2; Song Y, 2015, RIVER RES APPL, V31, P1311, DOI 10.1002/rra.2834; Sorefan K, 2003, GENE DEV, V17, P1469, DOI 10.1101/gad.256603; Spice EK, 2014, GEN COMP ENDOCR, V208, P116, DOI 10.1016/j.ygcen.2014.08.019; Springthorpe V, 2015, ELIFE, V4, DOI 10.7554/eLife.05557; STEBBINS GL, 1976, PLANT SYST EVOL, V125, P139, DOI 10.1007/BF00986147; Stegmann UE, 2002, ETHOLOGY, V108, P857, DOI 10.1046/j.1439-0310.2002.00818.x; Stevens JCB, 2016, J FISH BIOL, V89, P1931, DOI 10.1111/jfb.13083; Stinchcombe JR, 2004, P NATL ACAD SCI USA, V101, P4712, DOI 10.1073/pnas.0306401101; Su ZM, 2012, ECOL MODEL, V224, P76, DOI 10.1016/j.ecolmodel.2011.11.001; Suarez-Lopez P, 2001, NATURE, V410, P1116, DOI 10.1038/35074138; Sulaiman IM, 1996, BOT J LINN SOC, V121, P169, DOI 10.1111/j.1095-8339.1996.tb00751.x; Tallamy DW, 2004, J INSECT BEHAV, V17, P431, DOI 10.1023/B:JOIR.0000042532.50112.0c; Tallamy DW, 1999, ANIM BEHAV, V57, P727, DOI 10.1006/anbe.1998.1008; Tatar M, 2003, SCIENCE, V299, P1346, DOI 10.1126/science.1081447; Tatar M, 2001, AM NAT, V158, P248, DOI 10.1086/321320; Thomas H, 2013, NEW PHYTOL, V197, P696, DOI 10.1111/nph.12047; Thomas H, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-163; Thompson DW, 1907, HIST ANIMALS ARISTOT; THOMPSON L, 1994, J ECOL, V82, P63, DOI 10.2307/2261386; THREADGILL PF, 1981, AM MIDL NAT, V105, P277, DOI 10.2307/2424746; TINKLE DW, 1969, AM NAT, V103, P501, DOI 10.1086/282617; Tiwari SB, 2010, NEW PHYTOL, V187, P57, DOI 10.1111/j.1469-8137.2010.03251.x; Tower J, 1996, BIOESSAYS, V18, P799, DOI 10.1002/bies.950181006; Trumbo ST, 2013, EVOL BIOL, V40, P613, DOI 10.1007/s11692-013-9237-4; Turck F, 2008, ANNU REV PLANT BIOL, V59, P573, DOI 10.1146/annurev.arplant.59.032607.092755; Turck F, 2014, EVOLUTION, V68, P620, DOI 10.1111/evo.12286; Unwin MJ, 1999, CAN J FISH AQUAT SCI, V56, P1172, DOI 10.1139/cjfas-56-7-1172; VAHL O, 1981, OECOLOGIA, V51, P53, DOI 10.1007/BF00344652; Valverde F, 2004, SCIENCE, V303, P1003, DOI 10.1126/science.1091761; van Kleunen M, 2007, EVOL ECOL, V21, P185, DOI 10.1007/s10682-006-0019-7; van Wilgen B. W., 1992, REGENERATION STRATEG, P54; Varela-Lasheras I, 2014, EVODEVO, V5, DOI 10.1186/2041-9139-5-16; Vaupel JW, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0057133; Vecchione M, 1998, S AFR J MARINE SCI, V20, P421; Vervoort A, 2011, INT J PLANT SCI, V172, P366, DOI 10.1086/658152; VILLANUEVA R, 1992, MAR BIOL, V114, P265, DOI 10.1007/BF00349529; Vitousek MN, 2010, HORM BEHAV, V57, P140, DOI 10.1016/j.yhbeh.2009.09.020; VONBOLETZKY S, 1987, B MAR SCI, V40, P382; Wang RH, 2009, COMP BIOCHEM PHYS A, V153A, pS195, DOI 10.1016/j.cbpa.2009.04.438; Wang RH, 2009, NATURE, V459, P423, DOI 10.1038/nature07988; Wang Y, 2015, EUPHYTICA, V201, P275, DOI 10.1007/s10681-014-1209-y; Wanke S, 2006, PLANT BIOLOGY, V8, P93, DOI 10.1055/s-2005-873060; Wanntorp L, 2002, SYST BOT, V27, P512; Waples RS, 2016, HEREDITY, V117, P241, DOI 10.1038/hdy.2016.29; Ward P., 1987, NATURAL HIST NAUTILU; Ward P.D., 1983, P11; WATT WB, 1983, GENETICS, V103, P725; WATT WB, 1983, GENETICS, V103, P691; WEIMERSKIRCH H, 1992, OIKOS, V64, P464, DOI 10.2307/3545162; Wikan A, 2012, B MATH BIOL, V74, P1354, DOI 10.1007/s11538-012-9715-3; Wilczek AM, 2009, SCIENCE, V323, P930, DOI 10.1126/science.1165826; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams JL, 2009, AM NAT, V174, P660, DOI 10.1086/605999; WILLIAMS PH, 1986, SCIENCE, V232, P1385, DOI 10.1126/science.232.4756.1385; Winkler E, 2002, EVOL ECOL, V15, P281; Wolfe KM, 2004, ECOLOGY, V85, P1740, DOI 10.1890/03-3091; Xia QY, 2009, SCIENCE, V326, P433, DOI 10.1126/science.1176620; Xin DW, 2008, EUPHYTICA, V162, P155, DOI 10.1007/s10681-008-9652-2; Yanovsky MJ, 2002, NATURE, V419, P308, DOI 10.1038/nature00996; Yerkes T, 1999, BEHAV ECOL, V10, P30, DOI 10.1093/beheco/10.1.30; YOUNG TP, 1991, TRENDS ECOL EVOL, V6, P285, DOI 10.1016/0169-5347(91)90006-J; YOUNG TP, 1984, J ECOL, V72, P637, DOI 10.2307/2260073; YOUNG TP, 1981, AM NAT, V118, P27, DOI 10.1086/283798; YOUNG TP, 1990, EVOL ECOL, V4, P157, DOI 10.1007/BF02270913; Youson JH, 2006, GEN COMP ENDOCR, V148, P54, DOI 10.1016/j.ygcen.2005.10.015; Zeineddine M, 2009, EVOLUTION, V63, P1498, DOI 10.1111/j.1558-5646.2009.00630.x; Zera AJ, 1999, EVOLUTION, V53, P837, DOI 10.1111/j.1558-5646.1999.tb05377.x; Zhao ZW, 2002, P NATL ACAD SCI USA, V99, P16829, DOI 10.1073/pnas.262533999; Zippay ML, 2010, J SHELLFISH RES, V29, P429, DOI 10.2983/035.029.0220 372 2 2 6 29 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. OCT 2017 7 20 8232 8261 10.1002/ece3.3341 30 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology FK2JO WOS:000413308700008 29075446 DOAJ Gold, Green Published 2018-11-22 J Gora, EM; Bitzer, PM; Burchfield, JC; Schnitzer, SA; Yanoviak, SP Gora, Evan M.; Bitzer, Phillip M.; Burchfield, Jeffrey C.; Schnitzer, Stefan A.; Yanoviak, Stephen P. Effects of lightning on trees: A predictive model based on in situ electrical resistivity ECOLOGY AND EVOLUTION English Article abiotic factors; disturbance; lianas; mortality; Panama BARRO-COLORADO ISLAND; UNITED-STATES; FOREST; RESISTANCE; MORTALITY; DISCHARGES; DIAMETER; LOCATION; STRIKES; LIANAS The effects of lightning on trees range from catastrophic death to the absence of observable damage. Such differences may be predictable among tree species, and more generally among plant life history strategies and growth forms. We used field-collected electrical resistivity data in temperate and tropical forests to model how the distribution of power from a lightning discharge varies with tree size and identity, and with the presence of lianas. Estimated heating density (heat generated per volume of tree tissue) and maximum power (maximum rate of heating) from a standardized lightning discharge differed 300% among tree species. Tree size and morphology also were important; the heating density of a hypothetical 10m tall Alseis blackiana was 49 times greater than for a 30m tall conspecific, and 127 times greater than for a 30m tall Dipteryx panamensis. Lianas may protect trees from lightning by conducting electric current; estimated heating and maximum power were reduced by 60% (+/- 7.1%) for trees with one liana and by 87% (+/- 4.0%) for trees with three lianas. This study provides the first quantitative mechanism describing how differences among trees can influence lightning-tree interactions, and how lianas can serve as natural lightning rods for trees. [Gora, Evan M.; Yanoviak, Stephen P.] Univ Louisville, Dept Biol, Louisville, KY 40292 USA; [Bitzer, Phillip M.; Burchfield, Jeffrey C.] Univ Alabama, Dept Atmospher Sci, Huntsville, AL 35899 USA; [Schnitzer, Stefan A.] Marquette Univ, Dept Biol Sci, Milwaukee, WI 53233 USA; [Schnitzer, Stefan A.; Yanoviak, Stephen P.] Smithsonian Trop Res Inst, Balboa, Panama Yanoviak, SP (reprint author), Univ Louisville, Dept Biol, Louisville, KY 40292 USA. steve.yanoviak@louisville.edu Division of Environmental Biology [DEB-1354060, DEB-1354510, GRF-2015188266]; NSF; National Geographic Society Division of Environmental Biology, Grant/Award Number: DEB-1354060, DEB-1354510 and GRF-2015188266; NSF; National Geographic Society al Hagrey SA, 2006, NEAR SURF GEOPHYS, V4, P179; Albrecht RI, 2016, B AM METEOROL SOC, V97, P2051, DOI 10.1175/BAMS-D-14-00193.1; Anderson J. A. R., 1964, COMMONWEALTH FORESTR, V43, P145; Angyalossy V, 2015, ECOLOGY OF LIANAS, P253; [Anonymous], 1898, MONTHLY WEATHER REV, V26, P257; BAKER W W, 1973, Proceedings Tall Timbers Fire Ecology Conference, V13, P497; Bieker D, 2010, CAN J FOREST RES, V40, P1189, DOI 10.1139/X10-076; Bitzer PM, 2017, J GEOPHYS RES-ATMOS, V122, P1033, DOI 10.1002/2016JD025532; Bitzer PM, 2013, J GEOPHYS RES-ATMOS, V118, P3120, DOI 10.1002/jgrd.50271; Brunig E. F., 1964, Commonwealth Forestry Review, V43, P134; CAREY EV, 1994, BIOTROPICA, V26, P255, DOI 10.2307/2388846; CARTER JK, 1978, CAN J FOREST RES, V8, P90, DOI 10.1139/x78-015; Christensen-Dalsgaard KK, 2007, NEW PHYTOL, V176, P610, DOI 10.1111/j.1469-8137.2007.02227.x; Christian HJ, 2003, J GEOPHYS RES-ATMOS, V108, DOI 10.1029/2002JD002347; Courty MA, 2017, QUATERN INT, V431, P116, DOI 10.1016/j.quaint.2015.12.067; Covert R. N., 1924, MON WEATHER REV, V52, P492, DOI DOI 10.1175/1520-0493(1924)52<492:WA0I0S>2.0.CO;2; Defandorf F. M., 1955, J WASH ACAD SCI, V45, P333; DIENDORFER G, 1990, J GEOPHYS RES-ATMOS, V95, P13621, DOI 10.1029/JD095iD09p13621; FRANKLIN JF, 1987, BIOSCIENCE, V37, P550, DOI 10.2307/1310665; FUQUAY DM, 1972, J GEOPHYS RES, V77, P2156, DOI 10.1029/JC077i012p02156; Gora EM, 2015, CAN J FOREST RES, V45, P236, DOI 10.1139/cjfr-2014-0380; Heidler F, 2002, EUR T ELECTR POWER, V12, P141, DOI 10.1002/etep.4450120209; Heidler F., 1985, P 18 INT C LIGHTN PR, P63; HODGES JD, 1971, CAN ENTOMOL, V103, P44, DOI 10.4039/Ent10344-1; Hothorn T, 2008, BIOMETRICAL J, V50, P346, DOI 10.1002/bimj.200810425; KITAGAWA N, 1962, J GEOPHYS RES, V67, P637, DOI 10.1029/JZ067i002p00637; Knight D. H., 1987, LANDSCAPE HETEROGENE, P59; Komarek E. V, 1964, P TALL TIMBERS FIRE, V3, P139; Kurzel BP, 2006, BIOTROPICA, V38, P262, DOI 10.1111/j.1744-7429.2006.00135.x; Leigh Jr E.G, 1996, ECOLOGY TROPICAL FOR; Magnusson WE, 1996, J TROP ECOL, V12, P899, DOI 10.1017/S0266467400010166; Makela A, 2016, ATMOS RES, V172, P1, DOI 10.1016/j.atmosres.2015.12.009; Makela J., 2009, J LIGHTNING RES, V1, DOI [10.2174/1652803400901010009, DOI 10.2174/1652803400901010009]; Mascaro J, 2011, BIOGEOSCIENCES, V8, P1615, DOI 10.5194/bg-8-1615-2011; Muzika RM, 2015, J SUSTAIN FOREST, V34, P49, DOI 10.1080/10549811.2014.973991; OBRIEN ST, 1995, ECOLOGY, V76, P1926, DOI 10.2307/1940724; ORVILLE RE, 1968, SCIENCE, V162, P666, DOI 10.1126/science.162.3854.666; Plummer F. G., 1912, LIGHTNING RELATION F; PUTZ FE, 1984, ECOLOGY, V65, P1713, DOI 10.2307/1937767; R Development Core Team, 2016, R LANG ENV STAT COMP; Reynolds R. R., 1940, SO FORESTRY NOTES US, V31; Romps DM, 2014, SCIENCE, V346, P851, DOI 10.1126/science.1259100; Schnitzer SA, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0052114; Sharples A, 1933, ANN APPL BIOL, V20, P1, DOI 10.1111/j.1744-7348.1933.tb07425.x; SHUGART HH, 1987, BIOSCIENCE, V37, P596, DOI 10.2307/1310670; SMITH KT, 1984, CAN J FOREST RES, V14, P950, DOI 10.1139/x84-168; Stamm AJ, 1927, IND ENG CHEM, V19, P1021, DOI 10.1021/ie50213a022; Stephenson NL, 2011, ECOL MONOGR, V81, P527, DOI 10.1890/10-1077.1; STEVENS GC, 1987, ECOLOGY, V68, P77, DOI 10.2307/1938806; Stone G. E., 1914, B MASSACHUSETTS AGR, V156, P123; Stone GE, 1912, 24 ANN REPORT MASSAC, V31, P144; Taylor A. R., 1964, WEATHERWISE, V17, P61; Taylor A. R., 1974, P TALL TIMB FIR EC C, V13, P455; Taylor A. R., 1977, LIGHTNING, P831; Uman M. A., 2003, LIGHTNING PHYS EFFEC; Uman MA, 2001, LIGHTNING DISCHARGE; Uman MA, 2008, ART AND SCIENCE OF LIGHTNING PROTECTION, P1; Wakasa SA, 2012, GEOMORPHOLOGY, V161, P110, DOI 10.1016/j.geomorph.2012.04.005; Williams ER, 2005, ATMOS RES, V76, P272, DOI 10.1016/j.atmosres.2004.11.014; Yanoviak S. P., 2013, TREETOPS RISK CHALLE, P147, DOI DOI 10.1007/978-1-4614-7161-5_15.; Yanoviak SP, 2017, ECOL EVOL, V7, P5111, DOI 10.1002/ece3.3095; Yanoviak SP, 2015, CAN J FOREST RES, V45, P1258, DOI 10.1139/cjfr-2015-0081 62 2 2 2 8 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. OCT 2017 7 20 8523 8534 10.1002/ece3.3347 12 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology FK2JO WOS:000413308700030 29075468 DOAJ Gold, Green Published 2018-11-22 J Hirst, MJ; Griffin, PC; Sexton, JP; Hoffmann, AA Hirst, Megan J.; Griffin, Philippa C.; Sexton, Jason P.; Hoffmann, Ary A. Testing the niche-breadth-range-size hypothesis: habitat specialization vs. performance in Australian alpine daisies ECOLOGY English Article Australian alpine region; Brachyscome; common garden; endemism; habitat preference; rare species; reciprocal transplant experiment; seed; seedling; widespread species PHENOTYPIC PLASTICITY; RANUNCULUS-ADONEUS; LOCAL ADAPTATION; SNOW BUTTERCUP; TRADE-OFFS; GENE FLOW; PLANT; EVOLUTION; GRADIENTS; PATTERNS Relatively common species within a clade are expected to perform well across a wider range of conditions than their rarer relatives, yet experimental tests of this niche-breadth-range-size hypothesis remain surprisingly scarce. Rarity may arise due to trade-offs between specialization and performance across a wide range of environments. Here we use common garden and reciprocal transplant experiments to test the niche-breadth-range-size hypothesis, focusing on four common and three rare endemic alpine daisies (Brachyscome spp.) from the Australian Alps. We used three experimental contexts: (1) alpine reciprocal seedling experiment, a test of seedling survival and growth in three alpine habitat types differing in environmental quality and species diversity; (2) warm environment common garden, a test of whether common daisy species have higher growth rates and phenotypic plasticity, assessed in a common garden in a warmer climate and run simultaneously with experiment 1; and (3) alpine reciprocal seed experiment, a test of seed germination capacity and viability in the same three alpine habitat types as in experiment 1. In the alpine reciprocal seedling experiment, survival of all species was highest in the open heathland habitat where overall plant diversity is high, suggesting a general, positive response to a relatively productive, low-stress environment. We found only partial support for higher survival of rare species in their habitats of origin. In the warm environment common garden, three common daisies exhibited greater growth and biomass than two rare species, but the other rare species performed as well as the common species. In the alpine reciprocal seed experiment, common daisies exhibited higher germination across most habitats, but rare species maintained a higher proportion of viable seed in all conditions, suggesting different life history strategies. These results indicate that some but not all rare, alpine endemics exhibit stress tolerance at the cost of reduced growth rates in low-stress environments compared to common species. Finally, these findings suggest the seed stage is important in the persistence of rare species, and they provide only weak support at the seedling stage for the niche-breadth-range-size hypothesis. [Hirst, Megan J.; Griffin, Philippa C.; Hoffmann, Ary A.] Univ Melbourne, Sch Biosci, Inst Bio21, Parkville, Vic 3010, Australia; [Hirst, Megan J.] Royal Bot Gardens Victoria, Melbourne, Vic 3141, Australia; [Griffin, Philippa C.] Univ Melbourne, Melbourne Bioinformat, 187 Grattan St, Carlton, Vic 3053, Australia; [Griffin, Philippa C.] Univ Melbourne, EMBL Australia Bioinformat Resource, 187 Grattan St, Carlton, Vic 3053, Australia; [Sexton, Jason P.] Univ Calif, Sch Nat Sci, Merced, CA 95343 USA Hirst, MJ (reprint author), Univ Melbourne, Sch Biosci, Inst Bio21, Parkville, Vic 3010, Australia.; Hirst, MJ (reprint author), Royal Bot Gardens Victoria, Melbourne, Vic 3141, Australia. m.hirst@student.unimelb.edu.au Hirst, Megan/0000-0003-3822-8724 U.S. National Science Foundation [1003009] We thank Neville Walsh (Royal Botanic Gardens Victoria) for his generous assistance in the site selections at BHP and colleagues of the Royal Botanic Gardens Victoria and the Hoffmann and Hill Lab (Bio21). Thanks to Rachel Slatyer for the site map and Michael Nash for his assistance in setting up the experiments. M. J. Hirst thanks the Department of Sustainability and Environment for granting a research permit under the provisions of the Flora and Fauna Guarantee Act 1988 and the National Parks Act 1975 (Permit No: 10006030). M. J. Hirst thanks the Holsworth Wildlife Endowment-Equity Trustees Charitable Foundation, the Hansjorg Eichler Research Fund, and the Long Term Ecological Research Network (LTERN). J. P. Sexton was supported by the U.S. National Science Foundation (award no. 1003009) during this research. Alexander JM, 2015, NATURE, V525, P515, DOI 10.1038/nature14952; Andrieu E, 2007, BIODIVERS CONSERV, V16, P643, DOI 10.1007/s10531-005-2357-0; Baskin CC, 1998, SEEDS ECOLOGY BIOGEO; Boulangeat I, 2012, ECOL LETT, V15, P584, DOI 10.1111/j.1461-0248.2012.01772.x; Boulangeat I, 2012, J BIOGEOGR, V39, P204, DOI 10.1111/j.1365-2699.2011.02581.x; BROWN JH, 1984, AM NAT, V124, P255, DOI 10.1086/284267; Byars SG, 2007, EVOLUTION, V61, P2925, DOI 10.1111/j.1558-5646.2007.00248.x; Callaway RM, 2002, NATURE, V417, P844, DOI 10.1038/nature00812; Camac JS, 2015, OECOLOGIA, V178, P615, DOI 10.1007/s00442-015-3261-2; Dangremond EM, 2015, OECOLOGIA, V179, P1187, DOI 10.1007/s00442-015-3408-1; Frei ER, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098677; Fry JD, 1996, AM NAT, V148, pS84, DOI 10.1086/285904; Gaston K. J., 2003, STRUCTURE DYNAMICS G; Griffin PC, 2012, J PLANT ECOL, V5, P121, DOI 10.1093/jpe/rtr010; Griffith T, 2012, ECOL EVOL, V2, P778, DOI 10.1002/ece3.202; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; Gugger S, 2015, ANN BOT-LONDON, V116, P953, DOI 10.1093/aob/mcv155; Hennessy K., 2003, IMPACT CLIMATE CHANG; Hirst MJ, 2016, ECOL EVOL, V6, P5459, DOI 10.1002/ece3.2294; Hoyle GL, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00731; Imbert E, 2012, J PLANT ECOL-UK, V5, P305, DOI 10.1093/jpe/rtr033; Jusaitis M., 2011, S AUSTR NATURALIST, V85, P71; Klanderud K, 2003, HOLOCENE, V13, P1, DOI 10.1191/0959683603hl589ft; KRUCKEBERG AR, 1985, ANNU REV ECOL SYST, V16, P447, DOI 10.1146/annurev.es.16.110185.002311; Lacher I, 2016, ECOSPHERE, V7, DOI 10.1002/ecs2.1227; Lavergne S, 2003, ECOL LETT, V6, P398, DOI 10.1046/j.1461-0248.2003.00456.x; M'Baya J, 2013, INT J PLANT SCI, V174, P189, DOI 10.1086/668793; McDougall Keith L., 2007, Cunninghamia, V10, P1; McGlone MS, 2001, J BIOGEOGR, V28, P199, DOI 10.1046/j.1365-2699.2001.00525.x; Offord C. A., 2009, PLANT GERMPLASM CONS; Porter SS, 2013, EVOLUTION, V67, P599, DOI 10.1111/j.1558-5646.2012.01788.x; Rabinowitz D., 1981, BIOL ASPECTS RARE PL, P205; RASMUSSEN HN, 1993, AM J BOT, V80, P1374, DOI 10.2307/2445665; SCHERFF EJ, 1994, OIKOS, V69, P405, DOI 10.2307/3545853; Schwienbacher E, 2011, FLORA, V206, P845, DOI 10.1016/j.flora.2011.05.001; Sedlacek J, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0122395; Sexton JP, 2017, ANNU REV ECOL EVOL S, V48, P183, DOI 10.1146/annurev-ecolsys-110316-023003; Sheth SN, 2014, EVOLUTION, V68, P2917, DOI 10.1111/evo.12494; Short P. S., 2014, Journal of the Adelaide Botanic Gardens, V28, P1; Slatyer RA, 2013, ECOL LETT, V16, P1104, DOI 10.1111/ele.12140; Stanton ML, 1997, AM NAT, V150, P143, DOI 10.1086/286061; Valladares F, 2006, J ECOL, V94, P1103, DOI 10.1111/j.1365-2745.2006.01176.x; Venn SE, 2009, PLANT ECOL DIVERS, V2, P5, DOI 10.1080/17550870802691356; Verdu M, 2005, ECOLOGY, V86, P1385, DOI 10.1890/04-1647; Wahren CH, 2013, AUST J BOT, V61, P36, DOI 10.1071/BT12234; Whitlock MC, 1996, AM NAT, V148, pS65, DOI 10.1086/285902; Williams JW, 2007, FRONT ECOL ENVIRON, V5, P475, DOI 10.1890/070037; Williams R. J., 2014, BIODIVERSITY ENV CHA, P167 48 0 0 4 24 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology OCT 2017 98 10 2708 2724 10.1002/ecy.1964 17 Ecology Environmental Sciences & Ecology FI6QP WOS:000412121600020 28766693 Bronze 2018-11-22 J Landini, W; Collareta, A; Pesci, F; Di Celma, C; Urbina, M; Bianucci, G Landini, Walter; Collareta, Alberto; Pesci, Fabio; Di Celma, Claudio; Urbina, Mario; Bianucci, Giovanni A secondary nursery area for the copper shark Carcharhinus brachyurus from the late Miocene of Peru JOURNAL OF SOUTH AMERICAN EARTH SCIENCES English Article Carcharhinidae; Cerro Colorado; Ecospace utilization; Paleoecology; Pisco Formation; Tortonian PROTECTIVE GILL NETS; NEOGENE PISCO FORMATION; EASTERN PACIFIC-OCEAN; SOUTH-AFRICA; CARCHARODON LAMNIFORMES; MYLIOBATIS-GOODEI; BEAKED-WHALES; SPERM-WHALE; EAGLE RAY; FOSSIL The life history strategies of sharks often include the use of protected nursery areas by young-of-the-year and juveniles. Nursery areas can be primary (i.e., grounds where the sharks are born and spend the very first part of their lives) or secondary (i.e., grounds inhabited by slightly older but not yet mature individuals). Criteria utilized to recognize these strategic habitats include: high concentration of young sharks, high food availability, and low predation risk. Since the fossil record of sharks consists mainly of isolated teeth, identification of paleohurseries involves a series of problems due to difficult application of actualistic criteria. A rich shark tooth-bearing level (ST-low1) has recently been discovered in the upper Miocene deposits of the Pisco Formation exposed at Cerro Colorado (southern coast of Peru). Most of the teeth collected from this level belong to the extant copper shark Carcharhittus brachyurus. These teeth are small and compatible with those of extant juveniles. This observation, coupled with other paleoenvironmental considerations, indicates that the ST-low1 horizon could have represented a nursery ground for juvenile individuals of C brachyurus. The absence of very small-sized teeth (i.e., referable to young-of the -year) suggests a secondary nursery ground inhabited by immature copper sharks. Observations on the tooth size of other Lamniformes, Carcharhiniformes, and Myliobatiformes occurring along with C brachyurus point to a significantly juvenile structure of this elasmobranch assemblage, thus supporting the hypothesis of a communal use of the Cerro Colorado paleonursery. (C) 2017 Elsevier Ltd. All rights reserved. [Landini, Walter; Collareta, Alberto; Pesci, Fabio; Bianucci, Giovanni] Univ Pisa, Dipartimento Sci Terra, Via Santa Maria 53, I-56126 Pisa, Italy; [Collareta, Alberto] Dottorato Reg Sci Terra Pegaso, Via Santa Maria 53, I-56126 Pisa, Italy; [Di Celma, Claudio] Univ Camerino, Scuola Sci & Tecnol, Via Gentile 3 Varano, I-62032 Camerino, Italy; [Urbina, Mario] Univ Nacl Mayor San Marcos, Dept Paleontol Vertebrados, Museo Hist Nat, Ave Arenales 1256, Lima 14, Peru Collareta, A (reprint author), Univ Pisa, Dipartimento Sci Terra, Via Santa Maria 53, I-56126 Pisa, Italy. alberto.collareta@for.unipi.it Italian Ministero dell'Istruzione dell'Universita e della Ricerca (PRIN Project) [2012YJSBMK]; University of Pisa [PRA_2015_0028]; National Geographic Society Committee for Research Exploration grant [9410-13] This research was supported by a grant of the Italian Ministero dell'Istruzione dell'Universita e della Ricerca (PRIN Project 2012YJSBMK), by the University of Pisa (PRA_2015_0028), and by a National Geographic Society Committee for Research Exploration grant (9410-13) to Giovanni Bianucci. Adnet S, 2006, ACTA PALAEONTOL POL, V51, P477; Agostini V.N., 2005, THESIS; Apolin J., 2004, ACT 12 C PER GEOL SO, P401; Barron JA, 2003, DIATOM RES, V18, P203; Bass A.J., 1978, P545; Bass A.J., 1973, 32 OC RES I; Baum JK, 2003, SCIENCE, V299, P389, DOI 10.1126/science.1079777; Bethea DM, 2004, MAR ECOL PROG SER, V268, P245, DOI 10.3354/meps268245; Bianucci G, 2016, PEERJ, V4, DOI 10.7717/peerj.2479; Bianucci G, 2016, J MAPS, V12, P543, DOI 10.1080/17445647.2015.1048315; Bianucci G, 2010, PALAEONTOLOGY, V53, P1077, DOI 10.1111/j.1475-4983.2010.00995.x; Brand L, 2011, J S AM EARTH SCI, V31, P414, DOI 10.1016/j.jsames.2011.02.015; Brand LR, 2004, GEOLOGY, V32, P165, DOI 10.1130/G20079.1; BRANSTETTER S, 1990, ELASMOBRANCHS LIVING, P17; Bush A, 2002, J EXP MAR BIOL ECOL, V278, P157, DOI 10.1016/S0022-0981(02)00332-5; Cappo M.C, 1992, SAFISH MAGAZINE JUL, P10; Carrillo-Briceno JD, 2014, J S AM EARTH SCI, V51, P76, DOI 10.1016/j.jsames.2014.01.001; Carrillo-Briceno JD, 2013, REV CHIL HIST NAT, V86, P191, DOI 10.4067/S0716-078X2013000200008; Castro J. I., 1999, 380 FAO FISH; CASTRO JI, 1993, ENVIRON BIOL FISH, V38, P37, DOI 10.1007/BF00842902; Chiaramonte GE, 1998, MAR FRESHWATER RES, V49, P747, DOI 10.1071/MF97249; CLIFF G, 1991, S AFR J MARINE SCI, V10, P253; CLIFF G, 1992, S AFR J MARINE SCI, V12, P663; CLIFF G, 1989, S AFR J MARINE SCI, V8, P131, DOI 10.2989/02577618909504556; Collareta A, 2017, PALAEOGEOGR PALAEOCL, V469, P84, DOI 10.1016/j.palaeo.2017.01.001; Collareta A, 2017, RIV ITAL PALEONTOL S, V123, P11; Collareta A, 2015, SCI NAT-HEIDELBERG, V102, DOI 10.1007/s00114-015-1319-y; Compagno L.J.V., 1984, FAO FISHERIES SY 1 2, V4, P1; Cortes E, 1999, ICES J MAR SCI, V56, P707, DOI 10.1006/jmsc.1999.0489; De La Cruz A. Alvan, 2007, REV I INVESTIG FIGMM, V11, P51; de Rezende Gabriela Amaral, 2015, Boletim do Museu de Biologia Mello Leitao Nova Serie, V37, P255; DEMUIZON C, 1985, GEOL RUNDSCH, V74, P547, DOI 10.1007/BF01821211; Di Celma C, 2016, J MAPS, V12, P1020, DOI 10.1080/17445647.2015.1115783; Di Celma C, 2016, J MAPS, V12, P515, DOI 10.1080/17445647.2015.1047906; Di Celma C, 2017, RIV ITAL PALEONTOL S, V123, P255; Dudley SFJ, 2010, AFR J MAR SCI, V32, P383, DOI 10.2989/1814232X.2010.502641; Duffy C., 2003, IUCN RED LIST THREAT, V2003; DUNBAR RB, 1990, PALAEOGEOGR PALAEOCL, V77, P235, DOI 10.1016/0031-0182(90)90179-B; Ehret DJ, 2012, PALAEONTOLOGY, V55, P1139, DOI 10.1111/j.1475-4983.2012.01201.x; Ehret DJ, 2009, PALAIOS, V24, P329, DOI 10.2110/palo.2008.p08-077r; Ehret DJ, 2009, J VERTEBR PALEONTOL, V29, P1; Esperante R, 2008, PALAEOGEOGR PALAEOCL, V257, P344, DOI 10.1016/j.palaeo.2007.11.001; Esperante R, 2015, PALAEOGEOGR PALAEOCL, V417, P337, DOI 10.1016/j.palaeo.2014.09.029; Fergusson I.K., 1995, ANNOTATED ELAS UNPUB; Fieman D.M., 2016, COMP BODY SIZE SAND; Fischer J, 2011, J VERTEBR PALEONTOL, V31, P937, DOI 10.1080/02724634.2011.601729; Froeschke J, 2010, MAR ECOL PROG SER, V407, P279, DOI 10.3354/meps08546; Gariboldi K, 2017, NEWSL STRATIGR, V50, P417, DOI 10.1127/nos/2017/0345; Gariboldi K, 2015, PALAEOGEOGR PALAEOCL, V438, P81, DOI 10.1016/j.palaeo.2015.07.047; Garrick J.A, 1982, SHARKS GENUS CARCHAR, V13-14, P185; Gioncada A, 2016, GEOLOGY, V44, P839, DOI 10.1130/G38216.1; Gottfried MD, 1996, GREAT WHITE SHARKS, P55, DOI 10.1016/B978-012415031-7/50008-2; Heihaus Michael R., 2007, V50, P3; Heithaus MR, 2001, J ZOOL, V253, P53, DOI 10.1017/S0952836901000061; Heupel MR, 2007, MAR ECOL PROG SER, V337, P287, DOI 10.3354/meps337287; Heupel MR, 2014, MAR ECOL PROG SER, V495, P291, DOI 10.3354/meps10597; HOBBS NT, 1990, J WILDLIFE MANAGE, V54, P515, DOI 10.2307/3809344; Jardas I, 2004, CYBIUM, V28, P372; Kidwell Susan M., 1993, Short Courses in Paleontology, V6, P275; Kindlimann R., 1990, B LIMA, V69, P91; Knip DM, 2010, MAR ECOL PROG SER, V402, P1, DOI 10.3354/meps08498; Lambert O, 2017, ZOOL J LINN SOC-LOND, V179, P919, DOI 10.1111/zoj.12479; Lambert O, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.1530; Lambert O, 2014, NATURWISSENSCHAFTEN, V101, P517, DOI 10.1007/s00114-014-1182-2; Lambert O, 2013, J VERTEBR PALEONTOL, V33, P709, DOI 10.1080/02724634.2013.743405; Lambert O, 2010, NATURE, V466, P105, DOI 10.1038/nature09067; Lambert O, 2010, J MAMMAL, V91, P19, DOI 10.1644/08-MAMM-A-388R1.1; Lambert O, 2009, J VERTEBR PALEONTOL, V29, P910, DOI 10.1671/039.029.0304; Landini W, 2017, J S AM EARTH SCI, V73, P168, DOI 10.1016/j.jsames.2016.12.010; Litvinov FF, 1983, J ICHTHYOL, V23, P143; Lopes MS, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0154476; Lowe CG, 1996, ENVIRON BIOL FISH, V47, P203, DOI 10.1007/BF00005044; Lynch AMJ, 2010, AQUAT CONSERV, V20, P312, DOI 10.1002/aqc.1056; Molina JM, 2015, J SEA RES, V95, P106, DOI 10.1016/j.seares.2014.09.006; Martin R. E, 1999, TAPHONOMY PROCESS AP; Marx F.G., J ANATOMY IN PRESS; Muizon C. de, 1988, TROISIEME PARTIE ODO, p[1, 42]; MUNOZ-CHAPULI R, 1984, Cybium, V8, P1; Newman J.P., 2003, THESIS; Parham JF, 2010, J PALEONTOL, V84, P231, DOI 10.1666/09-077R.1; PARRISH RH, 1989, CAN J FISH AQUAT SCI, V46, P2019, DOI 10.1139/f89-251; Pimiento C, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010552; Psomadakis PN, 2009, ITAL J ZOOL, V76, P201, DOI 10.1080/11250000802364673; Purdy RW, 1996, GREAT WHITE SHARKS, P67, DOI 10.1016/B978-012415031-7/50009-4; Purdy RW, 2001, SM C PALEOB, V90, P71; Purdy RW, 1998, T AM PHILOS SOC, V88, P122, DOI 10.2307/1006671; Sanda Radek, 2004, Casopis Narodniho Muzea Rada Prirodovedna, V173, P51; Shimada K, 2002, J FOSSIL RES, V35, P28; SIMPFENDORFER CA, 1993, ENVIRON BIOL FISH, V37, P337, DOI 10.1007/BF00005200; SMALE MJ, 1991, S AFR J MARINE SCI, V11, P31, DOI 10.2989/025776191784287808; Springer S., 1967, SHARKS SKATES RAYS, P149, DOI DOI 10.1111/J.1095-8649.2012.03244.X; Stucchi M, 2016, ACTA PALAEONTOL POL, V61, P417, DOI 10.4202/app.00170.2015; Suarez M.E., 2003, ACT 10 C GEOL CHIL; Takakuwa Yuji, 2014, Bulletin of Gunma Museum of Natural History, V18, P77; Taylor SM, 2013, J FISH BIOL, V82, P228, DOI 10.1111/jfb.12003; TRICAS TC, 2001, BEHAV SENSORY BIOL E; WALTER JP, 1991, S AFR J MARINE SCI, V10, P37 97 5 5 4 10 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0895-9811 J S AM EARTH SCI J. South Am. Earth Sci. OCT 2017 78 164 174 10.1016/j.jsames.2017.07.003 11 Geosciences, Multidisciplinary Geology FI2NI WOS:000411775200012 2018-11-22 J Blier, PU; Abele, D; Munro, D; Degletagne, C; Rodriguez, E; Hagen, T Blier, Pierre U.; Abele, Doris; Munro, Daniel; Degletagne, Cyril; Rodriguez, Enrique; Hagen, Tory What modulates animal longevity? Fast and slow aging in bivalves as a model for the study of lifespan SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY English Review HYDROGEN-PEROXIDE PRODUCTION; TEMPERATE MUD CLAM; METABOLIC-RATE; ARCTICA-ISLANDICA; OXIDATIVE STRESS; MITOCHONDRIAL SUPEROXIDE; CELLULAR SENESCENCE; FREE-RADICALS; CYTOCHROME-C; FATTY-ACIDS Delineating the physiological and biochemical causes of aging process in the animal kingdom is a highly active area of research not only because of potential benefits for human health but also because aging process is related to life history strategies (growth and reproduction) and to responses of organisms to environmental conditions and stress. In this synthesis, we advocate studying bivalve species as models for revealing the determinants of species divergences in maximal longevity. This taxonomic group includes the longest living metazoan on earth (Arctica islandica), which insures the widest range of maximum life span when shorter living species are also included in the comparative model. This model can also be useful for uncovering factors modulating the pace of aging in given species by taking advantages of the wide disparity of lifespan among different populations of the same species. For example, maximal lifespan in different populations of A islandica range from approximately 36 years to over 500 years. In the last 15 years, research has revealed that either regulation or tolerance to oxidative stress is tightly correlated to longevity in this group which support further investigations on this taxon to unveil putative mechanistic links between Reactive Oxygen Species and aging process. (C) 2017 Elsevier Ltd. All rights reserved. [Blier, Pierre U.; Munro, Daniel; Rodriguez, Enrique] Univ Quebec, Dept Biol, Lab Physiol Anim Integrat, 300 Ursulines, Rimouski, PQ G5L 3A1, Canada; [Abele, Doris; Degletagne, Cyril] Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Dept Funct Ecol, Handelshafen 12, D-27570 Bremerhaven, Germany; [Hagen, Tory] Oregon State Univ, Linus Pauling Inst, 335 Linus Pauling Sci Ctr, Corvallis, OR 97331 USA; [Degletagne, Cyril] Univ Lyon 1, CNRS, ENTPE, Lab Ecol Hydrosyst Nat & Anthropises,UMR5023, Blvd 11 Novembre 1918, F-69622 Villeurbanne, France Blier, PU (reprint author), Univ Quebec, Dept Biol, Lab Physiol Anim Integrat, 300 Ursulines, Rimouski, PQ G5L 3A1, Canada. pierre_blier@uqar.ca Abele, Doris/0000-0002-5766-5017 NSERC This work was partially supported by a NSERC Discovery grant to PUB. The authors thank Dr France Dufresne for critical reading of the manuscript. Abele D, 2013, GERONTOLOGY, V59, P261, DOI 10.1159/000345331; Abele D, 2009, EXP GERONTOL, V44, P307, DOI 10.1016/j.exger.2009.02.012; Barja G, 2014, PROG MOL BIOL TRANSL, V127, P1, DOI 10.1016/B978-0-12-394625-6.00001-5; Barja G, 2014, J GERONTOL A-BIOL, V69, P1096, DOI 10.1093/gerona/glu020; Basova L, 2017, MAR BIOL, V164, DOI 10.1007/s00227-017-3110-4; Baumgart M, 2016, CELL SYST, V2, P122, DOI 10.1016/j.cels.2016.01.014; Belikova NA, 2007, INT J RADIAT ONCOL, V69, P176, DOI 10.1016/j.ijrobp.2007.03.043; BENAMIRA M, 1995, CARCINOGENESIS, V16, P93, DOI 10.1093/carcin/16.1.93; Bhattacharjee S, 2014, CURR SCI INDIA, V107, P1811; Bild W, 2013, J PHYSIOL BIOCHEM, V69, P147, DOI 10.1007/s13105-012-0162-2; Blier PU, 2014, CAN J ZOOL, V92, P591, DOI 10.1139/cjz-2013-0183; Bozek K, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-00037-7; Brand MD, 2010, EXP GERONTOL, V45, P466, DOI 10.1016/j.exger.2010.01.003; Buettner G. R., ARCH BIOCH BIOPHYS, V300; Butler PG, 2013, PALAEOGEOGR PALAEOCL, V373, P141, DOI 10.1016/j.palaeo.2012.01.016; Buttemer WA, 2010, FUNCT ECOL, V24, P971, DOI 10.1111/j.1365-2435.2010.01740.x; Calabrese V, 2011, MOL ASPECTS MED, V32, P279, DOI 10.1016/j.mam.2011.10.007; Charles A. L., 2016, AM J PHYSL CELL PHYS, V310; Chu CT, 2013, NAT CELL BIOL, V15, P1197, DOI 10.1038/ncb2837; Crockett E. L., 2008, J COMP PHYSL B, V178; Delaporte M, 2005, COMP BIOCHEM PHYS A, V140, P460, DOI 10.1016/j.cbpb.2005.02.009; Delhaye J, 2016, AGE, V38, P433, DOI 10.1007/s11357-016-9940-z; Duarte LC, 2014, AGE, V36, DOI 10.1007/s11357-014-9731-3; Galtier N, 2009, BIOL LETTERS, V5, P413, DOI 10.1098/rsbl.2008.0662; Galtier N, 2009, MITOCHONDRION, V9, P51, DOI 10.1016/j.mito.2008.11.006; Glazier DS, 2015, BIOL REV, V90, P377, DOI 10.1111/brv.12115; Goncalves RLS, 2015, J BIOL CHEM, V290, P209, DOI 10.1074/jbc.M114.619072; Gruber H, 2015, AGE, V37, DOI 10.1007/s11357-015-9831-8; Gruber H, 2014, EXP GERONTOL, V51, P38, DOI 10.1016/j.exger.2013.12.014; Hansen M, 2013, CELL METAB, V17, P10, DOI 10.1016/j.cmet.2012.12.003; HARMAN D, 1962, RADIAT RES, V16, P753, DOI 10.2307/3571274; Hekimi S, 2011, TRENDS CELL BIOL, V21, P569, DOI 10.1016/j.tcb.2011.06.008; Hua X, 2015, MOL BIOL EVOL, V32, P2633, DOI 10.1093/molbev/msv137; Hulbert AJ, 2007, PHYSIOL REV, V87, P1175, DOI 10.1152/physrev.00047.2006; Hulbert A. J., J COMP PHYSL B; Hutter E., AGING CELL, V6; Jahnke V. E., 2009, AM J PHYSL CELL PHYS, V296; Jobson RW, 2010, MOL BIOL EVOL, V27, P840, DOI 10.1093/molbev/msp293; Kalogeris T., REDOX BIOL; Kilada RW, 2007, ICES J MAR SCI, V64, P31, DOI 10.1093/icesjms/fsl001; KOHN RR, 1971, J GERONTOL, V26, P378, DOI 10.1093/geronj/26.3.378; KU HH, 1993, FREE RADICAL BIO MED, V15, P621, DOI 10.1016/0891-5849(93)90165-Q; Lambert AJ, 2007, AGING CELL, V6, P607, DOI 10.1111/j.1474-9726.2007.00312.x; Lee W. S., 1752, P R SOC B, V280; Li XX, 2015, J HISTOCHEM CYTOCHEM, V63, P301, DOI 10.1369/0022155415574818; Lopez-Otin C., 2013, CELL, V153; Malkin T., 1954, PROGR CHEM FATS OTHE, V2; Mannick JB, 2014, SCI TRANSL MED, V6, DOI 10.1126/scitranslmed.3009892; Munro D, 2017, J EXP BIOL, V220, P1170, DOI 10.1242/jeb.132142; Munro D, 2016, FREE RADICAL BIO MED, V96, P334, DOI 10.1016/j.freeradbiomed.2016.04.014; Munro D, 2015, J EXP MAR BIOL ECOL, V466, P76, DOI 10.1016/j.jembe.2015.02.003; Munro D, 2015, J GERONTOL A-BIOL, V70, P434, DOI 10.1093/gerona/glu054; Munro D, 2013, AGING CELL, V12, P584, DOI 10.1111/acel.12082; Munro D, 2012, AGING CELL, V11, P845, DOI 10.1111/j.1474-9726.2012.00847.x; Muntean D. M., 2016, OXID MED CELL LONGEV, V2016; Nabholz B, 2008, MOL BIOL EVOL, V25, P120, DOI 10.1093/molbev/msm248; Niitepold K, 2013, J EXP BIOL, V216, P1388, DOI 10.1242/jeb.080739; Pamplona R., 2011, J AGING RES, V2011; Pei H., OXID MED; Philipp E, 2005, MECH AGEING DEV, V126, P598, DOI 10.1016/j.mad.2004.12.003; Philipp E, 2005, MECH AGEING DEV, V126, P610, DOI 10.1016/j.mad.2005.02.002; Quinlan C. L., 2012, J BIOL CHEM, V287; Ren MD, 2014, PROG LIPID RES, V55, P1, DOI 10.1016/j.plipres.2014.04.001; Rey B, 2016, FREE RADICAL BIO MED, V97, P577, DOI 10.1016/j.freeradbiomed.2016.07.015; Ridgway ID, 2011, J GERONTOL A-BIOL, V66, P183, DOI 10.1093/gerona/glq172; Ristow M, 2010, EXP GERONTOL, V45, P410, DOI 10.1016/j.exger.2010.03.014; Rollo CD, 2010, AGING DIS, V1, P105; Sahm A., AGING CELL, V16; Salin K., 2015, BIOL LETT, V11; Salminen A, 2013, AGEING RES REV, V12, P520, DOI 10.1016/j.arr.2012.11.004; Saric A., FRONT GENET, V6; Schaar CE, 2015, PLOS GENET, V11, DOI 10.1371/journal.pgen.1004972; Speakman JR, 2005, J EXP BIOL, V208, P1717, DOI 10.1242/jeb.01556; Strahl J., COMP BIOCH PHYSL A, V158; Strahl J, 2011, J EXP BIOL, V214, P4223, DOI 10.1242/jeb.055178; Stuart J.A., 2014, LONGEV HEALTHSPAN, V3; TAYLOR AC, 1976, J MAR BIOL ASSOC UK, V56, P95, DOI 10.1017/S0025315400020464; Tschischka K, 2000, J EXP BIOL, V203, P3355; Tyurina YY, 2006, MOL PHARMACOL, V70, P706, DOI 10.1124/mol.106.022731; Ungvari Z., 2011, J GERONTOL A, V66; Valencak TG, 2007, AGING CELL, V6, P15, DOI 10.1111/j.1474-9726.2006.00257.x; Velarde MC, 2012, AGING-US, V4, P3, DOI 10.18632/aging.100423; Vladimirova I., BIOL B, V30; Watson SA, 2014, OECOLOGIA, V174, P45, DOI 10.1007/s00442-013-2767-8; Weinert BT, 2003, J APPL PHYSIOL, V95, P1706, DOI 10.1152/japplphysiol.00288.2003; Yun J, 2014, CELL METAB, V19, P757, DOI 10.1016/j.cmet.2014.01.011; Zhang YQ, 2017, REDOX BIOL, V11, P30, DOI 10.1016/j.redox.2016.10.014 87 0 0 3 16 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 1084-9521 SEMIN CELL DEV BIOL Semin. Cell Dev. Biol. OCT 2017 70 SI 130 140 10.1016/j.semcdb.2017.07.046 11 Cell Biology; Developmental Biology Cell Biology; Developmental Biology FI3BY WOS:000411832400016 28778411 2018-11-22 J Villeger, S; Brosse, S; Mouchet, M; Mouillot, D; Vanni, MJ Villeger, Sebastien; Brosse, Sebastien; Mouchet, Maud; Mouillot, David; Vanni, Michael J. Functional ecology of fish: current approaches and future challenges AQUATIC SCIENCES English Article Ocean; River; Biodiversity; Functional trait; Global change; Ecosystem services; Fish FRESH-WATER FISH; CORAL-REEF FISHES; LIFE-HISTORY STRATEGIES; DIETARY-MORPHOLOGICAL RELATIONSHIPS; LABRID FISHES; CENTRARCHID FISHES; FOOD-WEB; PHOSPHORUS-LIMITATION; POPULATION REGULATION; ECOSYSTEM PROCESSES Fish communities face increasing anthropogenic pressures in freshwater and marine ecosystems that modify their biodiversity and threaten the services they supply to human populations. To address these issues, studies have been increasingly focusing on functions of fish that are linked to their main ecological roles in aquatic ecosystems. Fish are indeed known to control other organisms through predation, mediate nutrient fluxes, and can act as ecosystem engineers. Here for each of the key functions played by fish, we present the functional traits that have already been used to assess them. We include traits measurable from observations on living individuals, morphological features measured on preserved organisms or traits categorized using information from the literature, and we discuss their respective advantages and limitations. We then list future research directions to foster a more complete functional approach for fish ecology that needs to incorporate functional traits describing, food provisioning and cultural services while accounting more frequently for intraspecific variability. Finally, we highlight ecological and evolutionary questions that could be addressed using meta-analyses of large trait databases, and how a trait-based framework could provide valuable insights on the mechanistic links between global changes, functional diversity of fish assemblages, and ecosystem services. [Villeger, Sebastien; Mouillot, David] Univ Montpellier, IRD, IFREMER, CNRS,UMR 9190,MARBEC,Lab Biodiversite Marine & Se, CC 093, F-34095 Montpellier 5, France; [Brosse, Sebastien] Univ Paul Sabatier, CNRS, UMR 5174, Lab Evolut & Diversite Biol,ENFA, 118 Route Narbonne, F-31062 Toulouse, France; [Mouchet, Maud] UPMC, MNHN, CNRS, UMR 7204,Ctr Ecol & Sci Conservat, 55 Rue Buffon,CP 51, F-75005 Paris, France; [Vanni, Michael J.] Miami Univ, Dept Biol, Oxford, OH 45056 USA Villeger, S (reprint author), Univ Montpellier, IRD, IFREMER, CNRS,UMR 9190,MARBEC,Lab Biodiversite Marine & Se, CC 093, F-34095 Montpellier 5, France. sebastien.villeger@cnrs.fr Villeger, Sebastien/C-6272-2011 Villeger, Sebastien/0000-0002-2362-7178; Brosse, Sebastien/0000-0002-3659-8177 CNRS (BIOHEFFECT RENUPEC); NSF [DEB-0918993] During manuscript preparation, S. Villeger was supported by a grant from the CNRS (BIOHEFFECT RENUPEC). M.J. Vanni was supported by NSF grant DEB-0918993 (an OPUS award). S. Brosse is a member of the lab EDB, part of the "Laboratoires d'Excellence (LABEX)" entitled TULIP (ANR-10-LABX-41) and CEBA (ANR-10-LABX-25). We thank Dr Mark Kennard and two anonymous reviewers for their constructive comments on an earlier version of this manuscript. Akin S, 2008, ACTA OECOL, V33, P144, DOI 10.1016/j.actao.2007.08.002; Albouy C, 2011, MAR ECOL PROG SER, V436, P17, DOI 10.3354/meps09240; Allgeier JE, 2015, ECOL MONOGR, V85, P117, DOI 10.1890/14-0331.1; Allgeier JE, 2014, GLOBAL CHANGE BIOL, V20, P2459, DOI 10.1111/gcb.12566; Allgeier JE, 2015, P NATL ACAD SCI USA, V112, pE2640, DOI 10.1073/pnas.1420819112; BALON EK, 1975, J FISH RES BOARD CAN, V32, P821, DOI 10.1139/f75-110; Barnett A, 2006, MAR ECOL PROG SER, V322, P249, DOI 10.3354/meps322249; Bellwood DR, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.3046; Bellwood DR, 2006, CURR BIOL, V16, P2434, DOI 10.1016/j.cub.2006.10.030; Bellwood DR, 2012, P ROY SOC B-BIOL SCI, V279, P1621, DOI 10.1098/rspb.2011.1906; Bellwood DR, 2006, P ROY SOC B-BIOL SCI, V273, P101, DOI 10.1098/rspb.2005.3276; Bellwood DR, 2003, ECOL LETT, V6, P281, DOI 10.1046/j.1461-0248.2003.00432.x; Bellwood DR, 2004, NATURE, V429, P827, DOI 10.1038/nature02691; Blake RW, 2004, J FISH BIOL, V65, P1193, DOI 10.1111/j.1095-8949.2004.00568.x; Blanchet S, 2010, ECOL LETT, V13, P421, DOI 10.1111/j.1461-0248.2009.01432.x; Blanck A, 2007, FRESHWATER BIOL, V52, P843, DOI 10.1111/j.1365-2427.2007.01736.x; Bolnick DI, 2011, TRENDS ECOL EVOL, V26, P183, DOI 10.1016/j.tree.2011.01.009; Bolnick DI, 2003, AM NAT, V161, P1, DOI 10.1086/343878; Bouletreau S, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0025732; Braig EC, 2003, HYDROBIOLOGIA, V490, P11, DOI 10.1023/A:1023405823216; Brandl SJ, 2014, CORAL REEFS, V33, P421, DOI 10.1007/s00338-013-1110-5; Brandl SJ, 2013, CORAL REEFS, V32, P835, DOI 10.1007/s00338-013-1042-0; Brandl SJ, 2014, OCEANOGR MAR BIOL, V52, P1; Brandl SJ, 2014, J ANIM ECOL, V83, P661, DOI 10.1111/1365-2656.12171; Bridge TCL, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2015.2332; Brind'Amour A, 2011, ECOL APPL, V21, P363, DOI 10.1890/09-2178.1; Buisson L, 2013, GLOBAL CHANGE BIOL, V19, P387, DOI 10.1111/gcb.12056; Burkepile DE, 2013, SCI REP-UK, V3, DOI 10.1038/srep01493; Cadotte MW, 2011, J APPL ECOL, V48, P1079, DOI 10.1111/j.1365-2664.2011.02048.x; Camp AL, 2015, P NATL ACAD SCI USA, V112, P8690, DOI 10.1073/pnas.1508055112; Carroll AM, 2004, J EXP BIOL, V207, P3873, DOI 10.1242/jeb.01227; Claverie T, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0112732; Clavero M, 2006, ECOL APPL, V16, P2313, DOI 10.1890/1051-0761(2006)016[2313:HDAIRO]2.0.CO;2; Clements KD, 2017, BIOL J LINN SOC, V120, P729; Cleveland A, 2003, MAR BIOL, V142, P35, DOI 10.1007/s00227-002-0916-4; Collar DC, 2008, BIOL LETTERS, V4, P84, DOI 10.1098/rsbl.2007.0509; Collar DC, 2006, EVOLUTION, V60, P2575; Cooke SJ, 2004, BIOSCIENCE, V54, P857, DOI 10.1641/0006-3568(2004)054[0857:TRORFI]2.0.CO;2; Cornelissen JHC, 2003, AUST J BOT, V51, P335, DOI 10.1071/BT02124; Cowan ZL, 2016, CORAL REEFS, V35, P1253, DOI 10.1007/s00338-016-1491-3; COWEY CB, 1993, P NUTR SOC, V52, P417, DOI 10.1079/PNS19930082; D'agata S, 2014, CURR BIOL, V24, P555, DOI 10.1016/j.cub.2014.01.049; Dejen E, 2006, J FISH BIOL, V69, P1356, DOI 10.1111/j.1095-8649.01197.x; Diaz S, 2001, TRENDS ECOL EVOL, V16, P646, DOI 10.1016/S0169-5347(01)02283-2; Diaz S, 2007, P NATL ACAD SCI USA, V104, P20684, DOI 10.1073/pnas.0704716104; Dumay O, 2004, J FISH BIOL, V64, P970, DOI 10.1111/j.1095-8649.2004.00365.x; Elser JJ, 2007, ECOL LETT, V10, P1135, DOI 10.1111/j.1461-0248.2007.01113.x; Flecker AS, 2004, ECOLOGY, V85, P2267, DOI 10.1890/03-0194; Fletcher T, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0703; Food and Agriculture Organization (FAO), 2010, STAT WORLD FISH AQ; Ford JR, 2013, OECOLOGIA, V172, P387, DOI 10.1007/s00442-012-2508-4; Fox RJ, 2008, CORAL REEFS, V27, P605, DOI 10.1007/s00338-008-0359-6; Fox RJ, 2008, MAR BIOL, V154, P325, DOI 10.1007/s00227-008-0927-x; Franco A, 2008, MAR ECOL PROG SER, V354, P219, DOI 10.3354/meps07203; Franssen NR, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2715; Friedman ST, 2016, J EVOLUTION BIOL, V29, P965, DOI 10.1111/jeb.12837; Froese R, 2017, FISHBASE; Frost PC, 2006, ECOL LETT, V9, P774, DOI 10.1111/j.1461-0248.2006.00919.x; Fulton CJ, 2007, CORAL REEFS, V26, P217, DOI 10.1007/s00338-007-0195-0; Fulton CJ, 2001, MAR BIOL, V139, P25; GATZ A J JR, 1979, Tulane Studies in Zoology and Botany, V21, P91; Graham NAJ, 2011, ECOL LETT, V14, P341, DOI 10.1111/j.1461-0248.2011.01592.x; Grubich J, 2003, BIOL J LINN SOC, V80, P147, DOI 10.1046/j.1095-8312.2003.00231.x; Hall Robert O. Jr., 2007, P286, DOI 10.1017/CBO9780511611223.016; Halpern BS, 2008, SCIENCE, V319, P948, DOI 10.1126/science.1149345; Higham TE, 2007, INTEGR COMP BIOL, V47, P82, DOI 10.1093/icb/icm021; Higham TE, 2007, J EXP BIOL, V210, P107, DOI 10.1242/jeb.02634; Holmlund CM, 1999, ECOL ECON, V29, P253, DOI 10.1016/S0921-8009(99)00015-4; Hood JM, 2005, OECOLOGIA, V146, P247, DOI 10.1007/s00442-005-0202-5; Ibanez C, 2007, AQUAT LIVING RESOUR, V20, P131, DOI 10.1051/alr:2007024; Jackson JBC, 2001, SCIENCE, V293, P629, DOI 10.1126/science.292.5517.629; Janetski DJ, 2009, OECOLOGIA, V159, P583, DOI 10.1007/s00442-008-1249-x; Januchowski-Hartley FA, 2013, ECOL LETT, V16, P191, DOI 10.1111/ele.12028; Karpouzi VS, 2003, J FISH BIOL, V62, P1353, DOI 10.1046/j.1095-8649.2003.00118.x; Kattge J, 2011, GLOBAL CHANGE BIOL, V17, P2905, DOI 10.1111/j.1365-2486.2011.02451.x; KEDDY PA, 1992, FUNCT ECOL, V6, P621, DOI 10.2307/2389954; Kobler A, 2009, OECOLOGIA, V161, P837, DOI 10.1007/s00442-009-1415-9; Konow N, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024113; KRAMER DL, 1995, ENVIRON BIOL FISH, V42, P129, DOI 10.1007/BF00001991; Krone R, 2008, CORAL REEFS, V27, P619, DOI 10.1007/s00338-008-0365-8; Lauder GV, 2015, ANNU REV MAR SCI, V7, P521, DOI 10.1146/annurev-marine-010814-015614; Lavorel S, 2002, FUNCT ECOL, V16, P545, DOI 10.1046/j.1365-2435.2002.00664.x; Layman CA, 2011, ECOL APPL, V21, P343, DOI 10.1890/10-1339.1; Leal MC, 2016, FISH FISH, V17, P459, DOI 10.1111/faf.12120; Leitao RP, 2017, ECOGRAPHY, V125, P336; Leprieur F., 2008, PLOS BIOL, V6, P28, DOI DOI 10.1371/J0URNAL.PBI0.0060028; Leray M, 2013, FRONT ZOOL, V10, DOI 10.1186/1742-9994-10-34; Luck GW, 2012, J ANIM ECOL, V81, P1065, DOI 10.1111/j.1365-2656.2012.01974.x; Luiz OJ, 2013, P NATL ACAD SCI USA, V110, P16498, DOI 10.1073/pnas.1304074110; Madin JS, 2016, SCI DATA, V3, DOI 10.1038/sdata.2016.17; Mason NWH, 2008, J ANIM ECOL, V77, P661, DOI 10.1111/j.1365-2656.2008.01379.x; Mason NWH, 2008, J ANIM ECOL, V77, P285, DOI 10.1111/j.1365-2656.2007.01350.x; Mason NWH, 2007, OECOLOGIA, V153, P441, DOI 10.1007/s00442-007-0727-x; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; McIntyre PB, 2008, ECOLOGY, V89, P2335, DOI 10.1890/07-1552.1; McIntyre PB, 2007, P NATL ACAD SCI USA, V104, P4461, DOI 10.1073/pnas.0608148104; MEYER JL, 1985, LIMNOL OCEANOGR, V30, P146, DOI 10.4319/lo.1985.30.1.0146; Mims MC, 2010, ECOL FRESHW FISH, V19, P390, DOI 10.1111/j.1600-0633.2010.00422.x; Moberg F, 1999, ECOL ECON, V29, P215, DOI 10.1016/S0921-8009(99)00009-9; Montana CG, 2014, ECOL MONOGR, V84, P91, DOI 10.1890/13-0708.1; Moretti M, 2017, FUNCT ECOL, V31, P558, DOI 10.1111/1365-2435.12776; Mouchet MA, 2013, OIKOS, V122, P247, DOI 10.1111/j.1600-0706.2012.20411.x; Mouillot D, 2014, P NATL ACAD SCI USA, V111, P13757, DOI 10.1073/pnas.1317625111; Mouillot D, 2013, TRENDS ECOL EVOL, V28, P167, DOI 10.1016/j.tree.2012.10.004; Mouillot D, 2011, CURR BIOL, V21, P1044, DOI 10.1016/j.cub.2011.05.005; Mouillot D, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017476; Munkemuller T, 2012, METHODS ECOL EVOL, V3, P743, DOI 10.1111/j.2041-210X.2012.00196.x; Myers RA, 2003, NATURE, V423, P280, DOI 10.1038/nature01610; Naeem S, 2012, SCIENCE, V336, P1401, DOI 10.1126/science.1215855; Nelson J. S., 2006, FISHES WORLD; Olden JD, 2006, ECOL MONOGR, V76, P25, DOI 10.1890/05-0330; Olden JD, 2008, ECOLOGY, V89, P847, DOI 10.1890/06-1864.1; Parravicini V, 2014, ECOL LETT, V17, P1101, DOI 10.1111/ele.12316; Pease AA, 2012, FRESHWATER BIOL, V57, P1060, DOI 10.1111/j.1365-2427.2012.02768.x; Peres-Neto PR, 2004, OECOLOGIA, V140, P352, DOI 10.1007/s0042-004-1578-3; Petchey OL, 2006, ECOL LETT, V9, P741, DOI 10.1111/j.1461-0248.2006.00924.x; Pilati A, 2007, OIKOS, V116, P1663, DOI 10.1111/j.2007.0030-1299.15970.x; Pinsky ML, 2011, P NATL ACAD SCI USA, V108, P8317, DOI 10.1073/pnas.1015313108; Portner HO, 2007, SCIENCE, V315, P95, DOI 10.1126/science.1135471; Porter MM, 2015, SCIENCE, V349, DOI 10.1126/science.aaa6683; Pouilly M, 2003, J FISH BIOL, V62, P1137, DOI 10.1046/j.1095-8649.2003.00108.x; Price SA, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.1428; Price SA, 2011, ECOL LETT, V14, P462, DOI 10.1111/j.1461-0248.2011.01607.x; Rabosky DL, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms2958; Safi K, 2011, PHILOS T R SOC B, V366, P2536, DOI 10.1098/rstb.2011.0024; Schaus MH, 2000, ECOLOGY, V81, P1701, DOI 10.1890/0012-9658(2000)081[1701:EOGSOP]2.0.CO;2; Scheffer M, 2003, LIMNOL OCEANOGR, V48, P1920, DOI 10.4319/lo.2003.48.5.1920; Schindler DE, 1997, SCIENCE, V277, P248, DOI 10.1126/science.277.5323.248; Schindler DE, 1997, ECOLOGY, V78, P1816; Schleuter D, 2012, GLOBAL ECOL BIOGEOGR, V21, P1083, DOI 10.1111/j.1466-8238.2012.00763.x; Schmitz L, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-338; Sereda JM, 2011, FRESHWATER BIOL, V56, P250, DOI 10.1111/j.1365-2427.2010.02491.x; Sibbing FA, 2001, REV FISH BIOL FISHER, V10, P393; Stallings CD, 2010, J EXP MAR BIOL ECOL, V389, P1, DOI 10.1016/j.jembe.2010.04.006; Sternberg D, 2014, ECOGRAPHY, V37, P54, DOI 10.1111/j.1600-0587.2013.00362.x; Suding KN, 2008, GLOBAL CHANGE BIOL, V14, P1125, DOI 10.1111/j.1365-2486.2008.01557.x; Swenson NG, 2012, GLOBAL ECOL BIOGEOGR, V21, P798, DOI 10.1111/j.1466-8238.2011.00727.x; Takahashi R, 2007, J FISH BIOL, V70, P1458, DOI 10.1111/j.1095-8649.2007.01423.x; Tanaka H, 2006, J FISH BIOL, V68, P1041, DOI 10.1111/j.1095-8649.2006.00988.x; Tarvainen M, 2008, J FISH BIOL, V73, P536, DOI 10.1111/j.1095-8649.2008.01953.x; Taylor BW, 2006, SCIENCE, V313, P833, DOI 10.1126/science.1128223; Tebbett SB, 2017, CORAL REEFS, V36, P803, DOI 10.1007/s00338-017-1571-z; Teletchea F, 2014, FISH FISH, V15, P181, DOI 10.1111/faf.12006; Tomas F, 2005, MAR ECOL PROG SER, V301, P95, DOI 10.3354/meps301095; Toussaint A, 2016, SCI REP-UK, V6, DOI 10.1038/srep22125; Vanni MJ, 2006, ECOLOGY, V87, P1696, DOI 10.1890/0012-9658(2006)87[1696:NCBFSR]2.0.CO;2; Vanni MJ, 2013, ECOLOGY, V94, P2195, DOI 10.1890/12-1559.1; Vanni MJ, 2002, ANNU REV ECOL SYST, V33, P341, DOI 10.1146/annurev.ecolsys.33.010802.150519; Vanni MJ, 2002, ECOL LETT, V5, P285, DOI 10.1046/j.1461-0248.2002.00314.x; Villeger S, 2014, GLOBAL ECOL BIOGEOGR, V23, P1450, DOI 10.1111/geb.12226; Villeger S, 2013, GLOBAL ECOL BIOGEOGR, V22, P671, DOI 10.1111/geb.12021; Villeger S, 2012, FRESHWATER BIOL, V57, P2330, DOI 10.1111/fwb.12009; Villeger S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040679; Villeger S, 2010, ECOL APPL, V20, P1512, DOI 10.1890/09-1310.1; Violle C, 2007, OIKOS, V116, P882, DOI 10.1111/j.2007.0030-1299.15559.x; Violle C, 2012, TRENDS ECOL EVOL, V27, P244, DOI 10.1016/j.tree.2011.11.014; Vorosmarty CJ, 2010, NATURE, V467, P555, DOI 10.1038/nature09440; Voesenek CJ, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0146682; Vrede T, 2011, OIKOS, V120, P886, DOI 10.1111/j.1600-0706.2010.18939.x; Wagner CE, 2009, FUNCT ECOL, V23, P1122, DOI 10.1111/j.1365-2435.2009.01589.x; Wagner HJ, 2001, BRAIN BEHAV EVOLUT, V57, P117, DOI 10.1159/000047231; Wainwright PC, 2004, BIOL J LINN SOC, V82, P1, DOI 10.1111/j.1095-8312.2004.00313.x; Wainwright PC, 2002, ENVIRON BIOL FISH, V65, P47, DOI 10.1023/A:1019671131001; WAINWRIGHT PC, 1995, ENVIRON BIOL FISH, V44, P97, DOI 10.1007/BF00005909; Wainwright P, 2007, INTEGR COMP BIOL, V47, P96, DOI 10.1093/icb/icm032; WEBB PW, 1984, SCI AM, V251, P72, DOI 10.1038/scientificamerican0784-72; Westneat MW, 2005, P ROY SOC B-BIOL SCI, V272, P993, DOI 10.1098/rspb.2004.3013; Whiles MR, 2009, LIMNOL OCEANOGR-METH, V7, P1; White CR, 2006, BIOL LETTERS, V2, P125, DOI 10.1098/rsbl.2005.0378; Wilson RW, 2009, SCIENCE, V323, P359, DOI 10.1126/science.1157972; Wilson RW, 2002, BBA-BIOMEMBRANES, V1566, P182, DOI 10.1016/S0005-2736(02)00600-4; Winemiller KO, 2015, ECOL LETT, V18, P737, DOI 10.1111/ele.12462; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1991, ECOL MONOGR, V61, P343, DOI 10.2307/2937046; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Yahel G, 2008, MAR ECOL PROG SER, V372, P195, DOI 10.3354/meps07688; Yeager LA, 2011, OECOLOGIA, V167, P157, DOI 10.1007/s00442-011-1959-3; Zhao T, 2014, ECOL EVOL, V4, P4649, DOI 10.1002/ece3.1260 178 6 6 10 92 SPRINGER BASEL AG BASEL PICASSOPLATZ 4, BASEL, 4052, SWITZERLAND 1015-1621 1420-9055 AQUAT SCI Aquat. Sci. OCT 2017 79 4 783 801 10.1007/s00027-017-0546-z 19 Environmental Sciences; Limnology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology FG9SY WOS:000410781000001 2018-11-22 J Carmignani, JR; Roy, AH Carmignani, Jason R.; Roy, Allison H. Ecological impacts of winter water level drawdowns on lake littoral zones: a review AQUATIC SCIENCES English Review Drawdown; Littoral zone; Macrophyte; Algae; Macroinvertebrate; Fish NORWEGIAN HYDROELECTRIC LAKES; LARGE SUBTROPICAL RESERVOIR; PUERTO-RICO RESERVOIR; NEW-ZEALAND LAKES; SHALLOW LAKES; AQUATIC MACROPHYTES; NORTHERN MINNESOTA; DEPTH-DISTRIBUTION; PLANT-COMMUNITIES; LARGEMOUTH BASS Freshwater littoral zones harbor diverse ecological communities and serve numerous ecosystem functions that are controlled, in part, by natural water level fluctuations. However, human alteration of lake hydrologic regimes beyond natural fluctuations threaten littoral zone ecological integrity. One type of hydrologic alteration in lakes is winter water level drawdowns, which are frequently employed for hydropower, flood control, and macrophyte control, among other purposes. Here, we synthesize the abiotic and biotic responses to annual and novel winter water level drawdowns in littoral zones of lakes and reservoirs. The dewatering, freezing, and increased erosion of exposed lakebeds drive changes in the littoral zone. Shoreline-specific physicochemical conditions such as littoral slope and shoreline exposure further induce modifications. Loss of fine sediment decreases nutrient availability over time, but desiccation may promote a temporary nutrient pulse upon re-inundation. Annual winter drawdowns can decrease taxonomic richness of macrophytes and benthic invertebrates and shift assemblage composition to favor taxa with r-selected life history strategies and with functional traits resistant to direct and indirect drawdown effects. Fish assemblages, though less directly affected by winter drawdowns (except where there is critically low dissolved oxygen), experience negative effects via indirect pathways like decreased food resources and spawning habitat. We identify eight general research gaps to guide future research that could improve our understanding about the complex effects of winter drawdowns on littoral zone ecology. [Carmignani, Jason R.] Univ Massachusetts, Organism & Evolutionary Biol Program, Amherst, MA 01003 USA; [Roy, Allison H.] Univ Massachusetts, US Geol Survey, Massachusetts Cooperat Fish & Wildlife Res Unit, Dept Environm Conservat, Amherst, MA 01003 USA Carmignani, JR (reprint author), Univ Massachusetts, Organism & Evolutionary Biol Program, Amherst, MA 01003 USA. jcarmignani@eco.umass.edu; aroy@eco.umass.edu Massachusetts Division of Fisheries and Wildlife This paper was funded by the Massachusetts Division of Fisheries and Wildlife. Feedback from Paula Furey greatly improved this manuscript. Thanks to Amy Smagula and Gabe Cries for their help locating relevant studies. Symbols on the diagrams are courtesy of the Integration and Application Network (https://www.ian.umces.edu/symbols). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Abrahams C, 2008, HYDROBIOLOGIA, V613, P33, DOI 10.1007/s10750-008-9470-5; Alasaarela E, 1989, RIVER BASIN MANAGEME, V5, P247; Alexander CM, 1988, P ANN C SE ASS FISH, V40, P15; [Anonymous], 2006, J PRACTICAL ECOLOGY, V6, P37; Aroviita J, 2008, HYDROBIOLOGIA, V613, P45, DOI 10.1007/s10750-008-9471-4; Arthaud F, 2012, AQUAT SCI, V74, P471, DOI 10.1007/s00027-011-0241-4; Bakker ES, 2016, AQUAT ECOL, V50, P485, DOI 10.1007/s10452-015-9556-x; Baldwin DS, 2000, REGUL RIVER, V16, P457, DOI 10.1002/1099-1646(200009/10)16:5<457::AID-RRR597>3.3.CO;2-2; Baldwin DS, 1996, LIMNOL OCEANOGR, V41, P1725, DOI 10.4319/lo.1996.41.8.1725; BARKO JW, 1986, ECOLOGY, V67, P1328, DOI 10.2307/1938689; Barwick DH, 2004, N AM J FISH MANAGE, V24, P76, DOI 10.1577/M02-163; Baumgartner D, 2008, HYDROBIOLOGIA, V613, P97, DOI 10.1007/s10750-008-9475-0; Beard TD, 1973, OVERWINTER DRAWDOWN; Beauchamp David A., 1994, North American Journal of Fisheries Management, V14, P385, DOI 10.1577/1548-8675(1994)014<0385:SHUBLZ>2.3.CO;2; Beklioglu M, 2006, ARCH HYDROBIOL, V166, P535, DOI 10.1127/0003-9136/2006/0166-0535; Benson N. G., 1973, GEOPHYS MONOGR SER, P683, DOI [DOI 10.1029/GM017P0683, 10.1029/GM017p0683]; BENSON NG, 1975, T AM FISH SOC, V104, P526, DOI 10.1577/1548-8659(1975)104<526:EOARFD>2.0.CO;2; Bettoli Phillip W., 1993, North American Journal of Fisheries Management, V13, P110, DOI 10.1577/1548-8675(1993)013<0110:ROARFC>2.3.CO;2; Black AR, 2003, NORTHWEST SCI, V77, P1; BLAIS JM, 1995, LIMNOL OCEANOGR, V40, P582, DOI 10.4319/lo.1995.40.3.0582; BLINDOW I, 1992, FRESHWATER BIOL, V28, P15, DOI 10.1111/j.1365-2427.1992.tb00558.x; Bornette G, 2011, AQUAT SCI, V73, P1, DOI 10.1007/s00027-010-0162-7; Boschilia SM, 2012, FRESHWATER BIOL, V57, P2641, DOI 10.1111/fwb.12035; Brauns M, 2008, HYDROBIOLOGIA, V613, P5, DOI 10.1007/s10750-008-9467-0; Brauns M, 2011, J APPL ECOL, V48, P916, DOI 10.1111/j.1365-2664.2011.02007.x; Cantonati M, 2014, FRESHW SCI, V33, P537, DOI 10.1086/675930; Cantonati M, 2014, FRESHW SCI, V33, P475, DOI 10.1086/676140; Cantonati M, 2009, EUR J PHYCOL, V44, P15, DOI 10.1080/09670260802079335; Casanova MT, 2000, PLANT ECOL, V147, P237, DOI 10.1023/A:1009875226637; CHICK JH, 1994, CAN J FISH AQUAT SCI, V51, P2873, DOI 10.1139/f94-286; Christensen DL, 1996, ECOL APPL, V6, P1143, DOI 10.2307/2269598; Combroux ICS, 2004, J VEG SCI, V15, P13, DOI 10.1658/1100-9233(2004)015[0013:PBARSO]2.0.CO;2; Cooke G.D, 2005, RESTORATION MANAGEME; COOKE GD, 1980, WATER RESOUR BULL, V16, P317; Coops H, 2003, HYDROBIOLOGIA, V506, P23, DOI 10.1023/B:HYDR.0000008595.14393.77; Coops H, 2002, LAKE RESERV MANAGE, V18, P293, DOI 10.1080/07438140209353935; Corstanje R, 2004, J ENVIRON QUAL, V33, P2357, DOI 10.2134/jeq2004.2357; Cott PA, 2008, J AM WATER RESOUR AS, V44, P328, DOI 10.1111/j.1752-1688.2007.00165.x; Cyr H, 1998, CAN J FISH AQUAT SCI, V55, P967, DOI 10.1139/cjfas-55-4-967; Danylchuk AJ, 2006, J FISH BIOL, V68, P681, DOI 10.1111/j.1095-8649.2006.00946.x; Danylchuk AJ, 2003, T AM FISH SOC, V132, P289, DOI 10.1577/1548-8659(2003)132<0289:NDAFLA>2.0.CO;2; de Vicente I, 2010, HYDROBIOLOGIA, V651, P253, DOI 10.1007/s10750-010-0304-x; Delong MD, 1995, EFFECTS LATE WINTER; Devlin SP, 2013, FRESHWATER BIOL, V58, P2389, DOI 10.1111/fwb.12218; DIEHL S, 1988, OIKOS, V53, P207, DOI 10.2307/3566064; Dupont JM, 1994, THESIS; Effler SW, 2004, J AM WATER RESOUR AS, V40, P251, DOI 10.1111/j.1752-1688.2004.tb01023.x; Erixon G., 1981, WAHLENBERGIA, V7, P61; Evtimova VV, 2016, FRESHWATER BIOL, V61, P251, DOI 10.1111/fwb.12699; Evtimova VV, 2014, J APPL ECOL, V51, P1282, DOI 10.1111/1365-2664.12297; FILLION DB, 1967, J APPL ECOL, V4, P1, DOI 10.2307/2401405; Fischer P, 2005, BEHAV ECOL, V16, P741, DOI 10.1093/beheco/ari047; Fiske S, 1989, EFFECTS WINTER LAKE; Fox J. L., 1977, LAKE DRAWDOWN METHOD; Francis TB, 2009, OIKOS, V118, P1872, DOI 10.1111/j.1600-0706.2009.17723.x; Free G, 2009, HYDROBIOLOGIA, V633, P123, DOI 10.1007/s10750-009-9869-7; Furey PC, 2006, J N AM BENTHOL SOC, V25, P19, DOI 10.1899/0887-3593(2006)25[19:LBMUCD]2.0.CO;2; Furey PC, 2004, LAKE RESERV MANAGE, V20, P280, DOI 10.1080/07438140409354158; GABOURY MN, 1984, CAN J FISH AQUAT SCI, V41, P118, DOI 10.1139/f84-011; GAFNY S, 1992, J FISH BIOL, V41, P863, DOI 10.1111/j.1095-8649.1992.tb02715.x; GASITH A, 1990, BROCK SPR S, P156; Gathman JP, 2011, WETLANDS, V31, P329, DOI 10.1007/s13157-010-0140-9; Gertzen EL, 2012, AQUAT ECOSYST HEALTH, V15, P397, DOI 10.1080/14634988.2012.728418; GOTTGENS JF, 1994, ARCH HYDROBIOL, V130, P179; Grimas U., 1961, Report Institute of Freshwater Research Drottningholm, Vno. 42, P183; Grimas U, 1965, I FRESHWATER RES DRO, V46, P5; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; Groen C. L., 1978, AM FISHERIES SOC SPE, V11, P278; HAKANSON L, 1977, CAN J EARTH SCI, V14, P397, DOI 10.1139/e77-040; Hall RI, 1999, CAN J FISH AQUAT SCI, V56, P1109, DOI 10.1139/cjfas-56-6-1109; Havens KE, 2004, AQUAT BOT, V78, P67, DOI 10.1016/j.aquabot.2003.09.005; Haxton TJ, 2009, J FISH BIOL, V74, P2216, DOI 10.1111/j.1095-8649.2009.02226.x; Haxton TJ, 2008, CAN J FISH AQUAT SCI, V65, P437, DOI 10.1139/F07-175; Heino J, 2008, LIMNOL OCEANOGR, V53, P1446, DOI 10.4319/lo.2008.53.4.1446; Hellsten S, 1996, REGUL RIVER, V12, P535; Hellsten S, 1996, HYDROBIOLOGIA, V340, P85, DOI 10.1007/BF00012738; Hellsten S, 1997, BOREAL ENVIRON RES, V2, P345; HELLSTEN SK, 2002, PROC INT ASSOC THE 2, V28, P601; Hellsten SK, 2000, THESIS; HEMAN ML, 1969, T AM FISH SOC, V98, P293; Hestland R. S., 1974, Hyacinth Control Journal, V12, P9; Hill NM, 1998, ENVIRON MANAGE, V22, P723, DOI 10.1007/s002679900142; Hofmann H, 2008, HYDROBIOLOGIA, V613, P85, DOI 10.1007/s10750-008-9474-1; Howard RJ, 2009, WETL ECOL MANAG, V17, P565, DOI 10.1007/s11273-009-9134-x; Hulsey AH, 1957, P ANN C SE ASS GAM F, V10, P285; James WF, 2001, ARCH HYDROBIOL, V151, P459; JENSEN HS, 1992, LIMNOL OCEANOGR, V37, P577, DOI 10.4319/lo.1992.37.3.0577; Kahl U, 2008, LIMNOLOGICA, V38, P258, DOI 10.1016/j.limno.2008.06.006; Kallemeyn L.W., 1987, North American Journal of Fisheries Management, V7, P513, DOI 10.1577/1548-8659(1987)7<513:CORLLA>2.0.CO;2; Kalleymeyn LW, 1987, MWR8 NAT PARK SERV M; Karchesky CM, 2004, N AM J FISH MANAGE, V24, P577, DOI 10.1577/M02-175.1; KASTER JL, 1978, FRESHWATER BIOL, V8, P283, DOI 10.1111/j.1365-2427.1978.tb01449.x; KEAST A, 1978, Environmental Biology of Fishes, V3, P7, DOI 10.1007/BF00006306; KEDDY PA, 1986, J GREAT LAKES RES, V12, P25, DOI 10.1016/S0380-1330(86)71697-3; Keto A, 2008, HYDROBIOLOGIA, V613, P133, DOI 10.1007/s10750-008-9478-x; Keto A, 2006, INT VER THEOR ANGEW, V29, P2103; Klotz RL, 2001, J LAKE RESERV MANAG, V37, P48; Koch EM, 2001, ESTUARIES, V24, P1, DOI 10.2307/1352808; Kohler Christopher C., 1993, North American Journal of Fisheries Management, V13, P125, DOI 10.1577/1548-8675(1993)013<0125:LBHSAF>2.3.CO;2; KOSKENNIEMI E, 1994, INT REV GES HYDROBIO, V79, P521, DOI 10.1002/iroh.19940790405; Kovalenko KE, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0101499; Kraft KJ, 1988, MWR12 NAT PARK SERV; Lantz KE, 1967, P ANN C SE ASS GAME, V18, P483; Larson JH, 2016, N AM J FISH MANAGE, V36, P1425, DOI 10.1080/02755947.2016.1214645; Leira M, 2008, HYDROBIOLOGIA, V613, P171, DOI 10.1007/s10750-008-9465-2; Lewin WC, 2004, FRESHWATER BIOL, V49, P410, DOI 10.1111/j.1365-2427.2004.01193.x; LORANG MS, 1993, J COASTAL RES, V9, P494; LUETTICH RA, 1990, LIMNOL OCEANOGR, V35, P1050, DOI 10.4319/lo.1990.35.5.1050; Luken JO, 2000, WETLANDS, V20, P479, DOI 10.1672/0277-5212(2000)020<0479:PCAWDS>2.0.CO;2; Magnuson JJ, 2000, SCIENCE, V289, P1743, DOI 10.1126/science.289.5485.1743; Mattson MD, 2004, EUTROPHICATION PLANT; MCAFEE ME, 1980, WATER RESOUR BULL, V16, P690; McCann KS, 2005, ECOL LETT, V8, P513, DOI 10.1111/j.1461-0248.2005.00742.x; McDowell CP, 2012, THESIS; McEwen DC, 2010, FRESHWATER BIOL, V55, P1086, DOI 10.1111/j.1365-2427.2009.02382.x; McGowan S, 2005, ECOSYSTEMS, V8, P694, DOI 10.1007/s10021-003-0152-x; Mills KH, 2002, ERGEB LIMNOL, V57, P209; Miranda L. E., 2007, Lakes & Reservoirs Research and Management, V12, P87, DOI 10.1111/j.1440-1770.2007.00327.x; Miranda LE, 2010, FISHERIES, V35, P175, DOI 10.1577/1548-8446-35.4.175; Miranda LE, 2000, FRESHWATER BIOL, V44, P617, DOI 10.1046/j.1365-2427.2000.00606.x; Mjelde M, 2013, HYDROBIOLOGIA, V704, P141, DOI 10.1007/s10750-012-1323-6; Nagrodski A, 2012, J ENVIRON MANAGE, V103, P133, DOI 10.1016/j.jenvman.2012.03.007; Neal JW, 2001, PROCEEDINGS OF THE FIFTY-FIFTH ANNUAL CONFERENCE OF THE SOUTHEASTERN ASSOCIATION OF FISH AND WILDLIFE AGENCIES, P156; Nichols S. A., 1975, Water Resources Bulletin, V11, P1137; Noges T, 1999, HYDROBIOLOGIA, V408, P277; Olila OG, 1997, ECOL ENG, V9, P157, DOI 10.1016/S0925-8574(97)10006-4; Olson ER, 2012, AQUAT BOT, V96, P31, DOI 10.1016/j.aquabot.2011.09.007; Ozen O, 2005, LAKE RESERV MANAGE, V21, P89, DOI 10.1080/07438140509354416; Ozen O, 2002, AM FISH S S, V31, P213; Paller Michael H., 1997, North American Journal of Fisheries Management, V17, P726, DOI 10.1577/1548-8675(1997)017<0726:ROARFC>2.3.CO;2; PALOMAKI R, 1993, ARCH HYDROBIOL, V128, P73; PALOMAKI R, 1994, HYDROBIOLOGIA, V286, P17, DOI 10.1007/BF00007277; Palomaki R, 1996, HYDROBIOLOGIA, V339, P85, DOI 10.1007/BF00008916; PATERSON CG, 1969, CAN J ZOOLOG, V47, P589, DOI 10.1139/z69-102; Peters JA, 2009, ENCY INLAND WATERS, V1, P79; PEVERLY JH, 1991, WATER AIR SOIL POLL, V57-8, P399, DOI 10.1007/BF00282903; Ploskey GR, 1983, E833 US DEP INT US A; Pratt TC, 2003, CAN J FISH AQUAT SCI, V60, P286, DOI 10.1139/F03-022; Pugh PJA, 1997, J EXP MAR BIOL ECOL, V210, P1, DOI 10.1016/S0022-0981(96)02711-6; Qiu S, 1996, MAR FRESHWATER RES, V47, P531, DOI 10.1071/MF9960531; Qiu S, 1995, MAR FRESHWATER RES, V46, P1039, DOI 10.1071/MF9951039; QIU S, 1994, AUST J MAR FRESH RES, V45, P1319; Randall RG, 2012, AQUAT ECOSYST HEALTH, V15, P385, DOI 10.1080/14634988.2012.734691; RENMAN G, 1993, HYDROBIOLOGIA, V251, P65, DOI 10.1007/BF00007166; RENMAN G, 1989, AQUAT BOT, V33, P243, DOI 10.1016/0304-3770(89)90040-5; Riis T, 2003, FRESHWATER BIOL, V48, P75, DOI 10.1046/j.1365-2427.2003.00974.x; Riis T, 2002, AQUAT BOT, V74, P133, DOI 10.1016/S0304-3770(02)00074-8; Rogers Kevin B., 1995, North American Journal of Fisheries Management, V15, P596, DOI 10.1577/1548-8675(1995)015<0596:EOAFDO>2.3.CO;2; RORSLETT B, 1989, HYDROBIOLOGIA, V175, P65, DOI 10.1007/BF00008476; RORSLETT B, 1988, HYDROBIOLOGIA, V164, P39, DOI 10.1007/BF00014349; RORSLETT B, 1984, AQUAT BOT, V19, P199, DOI 10.1016/0304-3770(84)90039-1; ROWAN DJ, 1992, CAN J FISH AQUAT SCI, V49, P2490, DOI 10.1139/f92-275; SAMAD F, 1986, J FRESHWATER ECOL, V3, P519, DOI 10.1080/02705060.1986.9665145; Sass GG, 2006, FISHERIES, V31, P321, DOI 10.1577/1548-8446(2006)31[321:FCAFWR]2.0.CO;2; SAVINO JF, 1989, ANIM BEHAV, V37, P311, DOI 10.1016/0003-3472(89)90120-6; Scheifhacken N, 2007, FUND APPL LIMNOL, V169, P115, DOI 10.1127/1863-9135/2007/0169-0115; SEPHTON TW, 1986, FRESHWATER BIOL, V16, P721, DOI 10.1111/j.1365-2427.1986.tb01013.x; Shantz M, 2004, HYDROL PROCESS, V18, P865, DOI 10.1002/hyp.1300; Shuter BJ, 2012, AQUAT SCI, V74, P637, DOI 10.1007/s00027-012-0274-3; Siver PA, 1986, LAKE RESERV MANAGE, V2, P69; Smagula AP, 2008, ASHUELOT POND WASHIN; SMITH DW, 1991, ENVIRON MANAGE, V15, P395, DOI 10.1007/BF02393886; Song KY, 2007, SCI TOTAL ENVIRON, V380, P13, DOI 10.1016/j.scitotenv.2006.11.035; Steinman A, 2009, AQUAT ECOL, V43, P1, DOI 10.1007/s10452-007-9147-6; Steinman AD, 2012, J GREAT LAKES RES, V38, P766, DOI 10.1016/j.jglr.2012.09.020; Stendera S, 2012, HYDROBIOLOGIA, V696, P1, DOI 10.1007/s10750-012-1183-0; Strayer DL, 2010, AQUAT SCI, V72, P127, DOI 10.1007/s00027-010-0128-9; Sutela T, 2013, ECOL INDIC, V24, P185, DOI 10.1016/j.ecolind.2012.06.015; Sutela T, 1995, ERGEB LIMNOL, V46, P465; Sutela T, 2002, HYDROBIOLOGIA, V485, P213, DOI 10.1023/A:1021322025688; Sutela T, 2011, HYDROBIOLOGIA, V675, P55, DOI 10.1007/s10750-011-0795-0; Swanson J, 2010, POSTDRAWDOWN COMPOSI; TARVER DP, 1980, J AQUAT PLANT MANAGE, V18, P19; TAZIK PP, 1982, J AQUAT PLANT MANAGE, V20, P19; Thomaz SM, 2006, HYDROBIOLOGIA, V570, P53, DOI 10.1007/s10750-006-0161-9; Tolonen KT, 2010, FUND APPL LIMNOL, V176, P43, DOI 10.1127/1863-9135/2010/0176-0043; Turner MA, 2005, CAN J FISH AQUAT SCI, V62, P991, DOI 10.1139/F05-003; Vadeboncoeur Y, 2006, J N AM BENTHOL SOC, V25, P379, DOI 10.1899/0887-3593(2006)25[379:SAADOV]2.0.CO;2; Vadeboncoeur Y, 2002, BIOSCIENCE, V52, P44, DOI 10.1641/0006-3568(2002)052[0044:PTLBTR]2.0.CO;2; Vadeboncoeur Y, 2008, ECOLOGY, V89, P2542, DOI 10.1890/07-1058.1; Vadeboncoeur Yvonne, 2002, ScientificWorldJournal, V2, P1449; Van Geest GJ, 2007, ECOSYSTEMS, V10, P36, DOI 10.1007/s10021-006-9000-0; Van Geest GJ, 2005, HYDROBIOLOGIA, V539, P239, DOI 10.1007/s10750-004-4879-y; Vander Zanden MJ, 2011, ECOSYSTEMS, V14, P894, DOI 10.1007/s10021-011-9454-6; VANR, 1990, LAK BOM DRAWD EV EFF; Verrill Donovan D., 1995, North American Journal of Fisheries Management, V15, P137, DOI 10.1577/1548-8675(1995)015<0137:EOAEBA>2.3.CO;2; Vuorio K, 2015, BOREAL ENVIRON RES, V20, P587; Wagner T, 2002, LAKE RESERV MANAGE, V18, P52, DOI 10.1080/07438140209353929; Wantzen KM, 2008, HYDROBIOLOGIA, V613, P1, DOI 10.1007/s10750-008-9466-1; Watts CJ, 2000, HYDROBIOLOGIA, V431, P27, DOI 10.1023/A:1004098120517; Weatherhead MA, 2001, HYDROBIOLOGIA, V462, P115, DOI 10.1023/A:1013178016080; Wegener W., 1975, Proceedings a Conf SEast Ass Game Fish Commnrs, V28, P144; Werner S, 2008, HYDROBIOLOGIA, V613, P143, DOI 10.1007/s10750-008-9479-9; White MS, 2008, HYDROBIOLOGIA, V613, P21, DOI 10.1007/s10750-008-9469-y; White MS, 2011, CAN J FISH AQUAT SCI, V68, P1695, DOI 10.1139/F2011-094; White MS, 2010, LIMNOL OCEANOGR, V55, P2275, DOI 10.4319/lo.2010.55.6.2275; WILCOX DA, 1992, WETLANDS, V12, P192; WILCOX DA, 1991, CAN J BOT, V69, P1542, DOI 10.1139/b91-198; Wilson JS, 2008, CHEM ECOL, V24, P379, DOI 10.1080/02757540802497582; Winfield IJ, 2004, LIMNOLOGICA, V34, P124, DOI 10.1016/S0075-9511(04)80031-8; Yamanaka H, 2013, FISHERIES MANAG ECOL, V20, P465, DOI 10.1111/fme.12033; Ziegler JP, 2017, OIKOS, V126, P1347, DOI 10.1111/oik.03517; Ziegler JP, 2015, ECOSPHERE, V6, DOI 10.1890/ES14-00158.1; Zohary T, 2011, INLAND WATERS, V1, P47, DOI 10.5268/IW-1.1.406 204 2 2 17 43 SPRINGER BASEL AG BASEL PICASSOPLATZ 4, BASEL, 4052, SWITZERLAND 1015-1621 1420-9055 AQUAT SCI Aquat. Sci. OCT 2017 79 4 803 824 10.1007/s00027-017-0549-9 22 Environmental Sciences; Limnology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology FG9SY WOS:000410781000002 Other Gold 2018-11-22 J Chang, HY; Chiu, MC; Chuang, YL; Tzeng, CS; Kuo, MH; Yeh, CH; Wang, HW; Wu, SH; Kuan, WH; Tsai, ST; Shao, KT; Lin, HJ Chang, Hao-Yen; Chiu, Ming-Chih; Chuang, Yi-Li; Tzeng, Chyng-Shyan; Kuo, Mei-Hwa; Yeh, Chao-Hsien; Wang, Hsiao-Wen; Wu, Sheng-Hai; Kuan, Wen-Hui; Tsai, Shang-Te; Shao, Kwang-Tsao; Lin, Hsing-Juh Community responses to dam removal in a subtropical mountainous stream AQUATIC SCIENCES English Article Chichiawan stream; Natural flow fluctuation; Dam removal; Oncorhynchus masou formosanus; Resistance ONCORHYNCHUS-MASOU-FORMOSANUS; FRESH-WATER MACROINVERTEBRATES; LIFE-HISTORY STRATEGIES; SEASONAL DYNAMICS; ALGAL BIOMASS; FLOW REGIMES; TAIWAN; HABITAT; RIVERS; SALMON Dam removal has the potential to efficiently solve the problems caused by fragmented stream habitats but may simultaneously cause negative impacts on biotic communities. To conserve the critically endangered Formosan landlocked salmon (Oncorhynchus masou formosanus), a 15-m-tall check dam was partially removed from the Chichiawan Stream at the end of May 2011, before the flood season. Using this dam removal experience, we aimed to cast dam removal as an action comparable to a natural flood event. We applied a before-after-control-impact (BACI) design and quantified the environmental factors and major biotic communities at four sampling sites in the stream bimonthly before (2010) and after (2012 and 2013) the dam removal and monthly in the year of the dam removal (2011). After the dam removal, a faster current velocity and more turbid water were observed at the downstream sites, and the area's deposition consisted of small-grained sediments. Despite this, our results show that the dam removal was performed during a suitable period. There was no obvious influence on tadpoles as they metamorphosed into adult frogs and left the stream before the dam removal. Fish exhibited a greater resistance to the alteration in flow resulting from the dam removal. An increase in fish abundance at the upstream sites after the dam removal suggests that the corridors created by the dam removal allowed access to more habitats for the fish. In particular, the periphyton biomass and aquatic insect densities decreased markedly at the downstream sites after the dam removal, but they recovered within a year, demonstrating the resilience of these taxa. Coleoptera, Plecoptera and Trichoptera were more resistant than the periphyton, Diptera and Ephemeroptera after the dam removal and an extreme flood event. In conclusion, the responses of stream communities to dam removal were similar to the responses to an extreme flood event. To mitigate the impacts caused by dam removal, our results suggest that stream communities may respond to dam removal as a natural flow alteration if the timing of the dam removal occurs just before the flood season. [Chang, Hao-Yen; Chiu, Ming-Chih; Chuang, Yi-Li; Wu, Sheng-Hai; Lin, Hsing-Juh] Natl Chung Hsing Univ, Dept Life Sci, Taichung 40227, Taiwan; [Tzeng, Chyng-Shyan] Natl Tsing Hua Univ, Inst Bioinformat & Struct Biol, Hsinchu 30013, Taiwan; [Kuo, Mei-Hwa] Natl Chung Hsing Univ, Dept Entomol, Taichung 40227, Taiwan; [Yeh, Chao-Hsien] Feng Chia Univ, Dept Water Resources Engn & Conservat, Taichung 40724, Taiwan; [Wang, Hsiao-Wen] Natl Cheng Kung Univ, Dept Hydraul & Ocean Engn, Tainan 70101, Taiwan; [Kuan, Wen-Hui] Ming Chi Univ Technol, Dept Safety Hlth & Environm Engn, New Taipei 24301, Taiwan; [Tsai, Shang-Te] TransWorld Univ, Dept Sustainable Tourism, Yunlin 64063, Taiwan; [Shao, Kwang-Tsao; Lin, Hsing-Juh] Acad Sinica, Biodivers Res Ctr, Taipei 11574, Taiwan Lin, HJ (reprint author), Natl Chung Hsing Univ, Dept Life Sci, Taichung 40227, Taiwan. hjlin@dragon.nchu.edu.tw Shei-Pa National Park Headquarters, Miaoli County, Taiwan This research was financially supported by Shei-Pa National Park Headquarters, Miaoli County, Taiwan. We thank Prof. Laurie Battle for proofreading the manuscript. Anderson MJ, 2001, AUSTRAL ECOL, V26, P32, DOI 10.1111/j.1442-9993.2001.01070.pp.x; Anderson MJ, 2008, PERMANOVA PRIMER GUI; Bednarek AT, 2001, ENVIRON MANAGE, V27, P803, DOI 10.1007/s002670010189; Bowes MJ, 2005, SCI TOTAL ENVIRON, V336, P225, DOI 10.1016/j.scitotenv.2004.05.026; Brewin PA, 2000, FRESHWATER BIOL, V44, P581, DOI 10.1046/j.1365-2427.2000.00608.x; Bunn SE, 2002, ENVIRON MANAGE, V30, P492, DOI 10.1007/s00267-002-2737-0; Chen C. H., 2012, THESIS; Chiu MC, 2016, MICROB ECOL, V72, P372, DOI 10.1007/s00248-016-0791-z; Chiu MC, 2012, ECOL ENTOMOL, V37, P145, DOI 10.1111/j.1365-2311.2012.01346.x; Chung LC, 2008, ZOOL STUD, V47, P25; Clarke K., 2006, PRIMER V6 USER MANUA; Clesceri L.S., 1998, STANDARD METHODS EXA; Connolly NM, 2004, J N AM BENTHOL SOC, V23, P251, DOI 10.1899/0887-3593(2004)023<0251:EOLDOO>2.0.CO;2; Dauble DD, 2003, N AM J FISH MANAGE, V23, P641, DOI 10.1577/M02-013; DOUGLAS I, 1992, PHILOS T ROY SOC B, V335, P397, DOI 10.1098/rstb.1992.0031; Gosner K. L., 1960, Herpetologica, V16, P183; Hart DD, 2002, BIOSCIENCE, V52, P669, DOI 10.1641/0006-3568(2002)052[0669:DRCAOF]2.0.CO;2; Holomuzki JR, 2000, J N AM BENTHOL SOC, V19, P670, DOI 10.2307/1468125; Hooke JM, 2016, GEOMORPHOLOGY, V263, P19, DOI 10.1016/j.geomorph.2016.03.021; Humphries P, 1999, ENVIRON BIOL FISH, V56, P129, DOI 10.1023/A:1007536009916; Huryn AD, 2000, ANNU REV ENTOMOL, V45, P83, DOI 10.1146/annurev.ento.45.1.83; JEFFREY SW, 1975, BIOCHEM PHYSIOL PFL, V167, P191; JOWETT IG, 1993, NEW ZEAL J MAR FRESH, V27, P241, DOI 10.1080/00288330.1993.9516563; Kawai T., 2005, AQUATIC INSECTS JAPA; Kibler K, 2011, J AM WATER RESOUR AS, V47, P408, DOI 10.1111/j.1752-1688.2011.00523.x; Kondolf GM, 1997, ENVIRON MANAGE, V21, P533, DOI 10.1007/s002679900048; Kottelat M, 1996, ONCORHYNCHUS FORMOSA, V1996; Lamouroux N, 2004, J N AM BENTHOL SOC, V23, P449, DOI 10.1899/0887-3593(2004)023<0449:BTOSMC>2.0.CO;2; Liao LY, 2012, ZOOL STUD, V51, P671; Lin HJ, 2012, AQUAT BIOL, V17, P269, DOI 10.3354/ab00481; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; MAC ARTHUR ROBERT H., 1967; Madej MA, 2001, WATER RESOUR RES, V37, P2259, DOI 10.1029/2001WR000229; Magilligan FJ, 2016, GEOMORPHOLOGY, V252, P158, DOI 10.1016/j.geomorph.2015.07.027; McArdle BH, 2001, ECOLOGY, V82, P290, DOI 10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2; McMullen LE, 2012, ECOL APPL, V22, P2164, DOI 10.1890/11-1650.1; MEFFE GK, 1987, AM MIDL NAT, V117, P177, DOI 10.2307/2425718; Merritt RW, 2008, INTRO AQUATIC INSECT; MILLIMAN JD, 1992, J GEOL, V100, P525, DOI 10.1086/629606; Olsen DA, 2005, FRESHWATER BIOL, V50, P839, DOI 10.1111/j.1365-2427.2005.01365.x; Pizzuto J, 2002, BIOSCIENCE, V52, P683, DOI 10.1641/0006-3568(2002)052[0683:EODROR]2.0.CO;2; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; QUINN JM, 1990, NEW ZEAL J MAR FRESH, V24, P411, DOI 10.1080/00288330.1990.9516433; RESH VH, 1988, J N AM BENTHOL SOC, V7, P433, DOI 10.2307/1467300; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.2307/3071970; Robinson CT, 2004, J N AM BENTHOL SOC, V23, P853, DOI 10.1899/0887-3593(2004)023<0853:IAHROM>2.0.CO;2; Sato T, 2011, ICHTHYOL RES, V58, P209, DOI 10.1007/s10228-011-0209-3; Seneviratne SI, 2012, MANAGING RISKS EXTRE, P109, DOI DOI 10.1017/CBO9781139177245.006; Smith GC, 2003, BIOSCIENCE, V53, P1048, DOI 10.1641/0006-3568(2003)053[1048:AEPOTB]2.0.CO;2; Speakman JR, 2005, J EXP BIOL, V208, P1717, DOI 10.1242/jeb.01556; Spellman F. R., 2001, STREAM ECOLOGY SELF; Tonetto AF, 2015, HYDROBIOLOGIA, V747, P33, DOI 10.1007/s10750-014-2120-1; Tonkin JD, 2009, RIVER RES APPL, V25, P1219, DOI 10.1002/rra.1213; Tsai JW, 2014, MAR FRESHWATER RES, V65, P25, DOI 10.1071/MF13058; Tullos DD, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0108091; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1722, DOI 10.1111/j.1365-2427.2008.02035.x; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1739, DOI 10.1111/j.1365-2427.2008.02036.x; Vinson MR, 2001, ECOL APPL, V11, P711, DOI 10.1890/1051-0761(2001)011[0711:LTDOAI]2.0.CO;2; Wang HW, 2016, RIVER RES APPL, V32, P1094, DOI 10.1002/rra.2929; WARWICK RM, 1987, MAR BIOL, V95, P193, DOI 10.1007/BF00409005; WARWICK RM, 1986, MAR BIOL, V92, P557, DOI 10.1007/BF00392515; Willett SD, 2003, GEOLOGY, V31, P945, DOI 10.1130/G19702.1; Woodward G, 2015, FRESHWATER BIOL, V60, P2497, DOI 10.1111/fwb.12592; World Commission on Dams, 2000, DAMS DEV NEW FRAM DE; Yan HY, 2000, ENVIRON BIOL FISH, V57, P314, DOI 10.1023/A:1007687825352; Yu SF, 2009, BOT STUD, V50, P73 66 0 0 11 45 SPRINGER BASEL AG BASEL PICASSOPLATZ 4, BASEL, 4052, SWITZERLAND 1015-1621 1420-9055 AQUAT SCI Aquat. Sci. OCT 2017 79 4 967 983 10.1007/s00027-017-0545-0 17 Environmental Sciences; Limnology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology FG9SY WOS:000410781000014 2018-11-22 J Precigout, PA; Claessen, D; Robert, C Precigout, Pierre-Antoine; Claessen, David; Robert, Corinne Crop Fertilization Impacts Epidemics and Optimal Latent Period of Biotrophic Fungal Pathogens PHYTOPATHOLOGY English Article life history theory; structured-population model RUST UREDOSPORE PRODUCTION; LIFE-HISTORY STRATEGIES; SEPTORIA-TRITICI BLOTCH; LEAF NITROGEN STATUS; WINTER-WHEAT; DISEASE-CONTROL; PUCCINIA-TRITICINA; POWDERY MILDEW; OPTIMAL ALLOCATION; SPORE PRODUCTION Crop pathogens are known to rapidly adapt to agricultural practices. Although cultivar resistance breakdown and resistance to pesticides have been broadly studied, little is known about the adaptation of crop pathogens to fertilization regimes and no epidemiological model has addressed that question. However, this is a critical issue for developing sustainable low-input agriculture. In this article, we use a model of life history evolution of biotrophic wheat fungal pathogens in order to understand how they could adapt to changes in fertilization practices. We focus on a single pathogen life history trait, the latent period, which directly determines the amount of resources allocated to growth and reproduction along with the speed of canopy colonization. We implemented three fertilization scenarios, corresponding to major effects of increased nitrogen fertilization on crops: (i) increase in nutrient concentration in leaves, (ii) increase of leaf lifespan, and (iii) increase of leaf number (tillering) and size that leads to a bigger canopy size. For every scenario, we used two different fitness measures to identify putative evolutionary responses of latent period to changes in fertilization level. We observed that annual spore production increases with fertilization, because it results in more resources available to the pathogens. Thus, diminishing the use of fertilizers could reduce biotrophic fungal epidemics. We found a positive relationship between the optimal latent period and fertilization when maximizing total spore production over an entire season. In contrast, we found a negative relationship between the optimal latent period and fertilization when maximizing the within-season exponential growth rate of the pathogen. These contrasting results were consistent over the three tested fertilization scenarios. They suggest that between-strain diversity in the latent period, as has been observed in the field, may be due to diversifying selection in different cultural environments. [Precigout, Pierre-Antoine; Claessen, David] Ecole Normale Super, Inst Biol, CNRS ENS INSERM UMR8197, 46 Rue Ulm, F-75005 Paris, France; [Robert, Corinne] Univ Paris Saclay, AgroParisTech, UMR ECOSYS INRA, F-78850 Thiverval Grignon, France Precigout, PA (reprint author), Ecole Normale Super, Inst Biol, CNRS ENS INSERM UMR8197, 46 Rue Ulm, F-75005 Paris, France. pierre-antoine.precigout@cri-paris.org Claessen, David/S-7596-2017 Claessen, David/0000-0001-7354-1316 Institut National de la Recherche Agronomique; Ecole Normale Superieure called "Towards an agro-ecological theory of plant-pathogen interactions" P.-A. Precigout received funding from the Institut National de la Recherche Agronomique in the form of a Contrat Jeunes Scientifiques grant. D. Claessen and C. Robert were supported through the Projet Incitatif grant from Ecole Normale Superieure called "Towards an agro-ecological theory of plant-pathogen interactions". We thank M. Maillard and M. Gelin for their contribution to the modelling work and C. Gigot for his advice during the redaction process. Abro MA, 2013, PHYTOPATHOLOGY, V103, P261, DOI 10.1094/PHYTO-08-12-0189-R; Agrios G. N., 2005, PLANT PATHOL, P562; ALEXANDER HM, 1985, PHYTOPATHOLOGY, V75, P449, DOI 10.1094/Phyto-75-449; AUST HJ, 1986, ANNU REV PHYTOPATHOL, V24, P491; BAINBRIDGE A, 1974, PLANT PATHOL, V23, P160, DOI 10.1111/j.1365-3059.1974.tb01842.x; Bernard F, 2013, NEW PHYTOL, V198, P232, DOI 10.1111/nph.12134; Biffen RH, 1905, J AGR SCI, V1, P4, DOI 10.1017/S0021859600000137; Calonnec A, 2013, EUR J PLANT PATHOL, V135, P479, DOI 10.1007/s10658-012-0111-5; COHEN D, 1976, AM NAT, V110, P801, DOI 10.1086/283103; COHEN D, 1971, J THEOR BIOL, V33, P299, DOI 10.1016/0022-5193(71)90068-3; de Roos A. M., 2013, MONOGRAPHS POPULATIO, V51; de Roos A. M., 2014, EBTTOOL ESCALATOR BO; de Roos Andre M., 1997, Population and Community Biology Series, V18, P119; Dordas C, 2008, AGRON SUSTAIN DEV, V28, P33, DOI 10.1051/agro:2007051; Duvivier M, 2016, EUR J PLANT PATHOL, V145, P405, DOI 10.1007/s10658-015-0854-x; El Jarroudi M, 2014, ENVIRON SCI POLLUT R, V21, P4797, DOI 10.1007/s11356-013-2463-6; ENGEN S, 1994, THEOR POPUL BIOL, V46, P232, DOI 10.1006/tpbi.1994.1026; ENGLISH JT, 1989, PHYTOPATHOLOGY, V79, P395, DOI 10.1094/Phyto-79-395; Fagard M, 2014, J EXP BOT, V65, P5643, DOI 10.1093/jxb/eru323; Farber DH, 2017, PHYTOPATHOLOGY, V107, P412, DOI 10.1094/PHYTO-07-16-0284-R; Ferrise R, 2010, FIELD CROP RES, V117, P245, DOI 10.1016/j.fcr.2010.03.010; FILELLA I, 1995, CROP SCI, V35, P1400, DOI 10.2135/cropsci1995.0011183X003500050023x; Fraaije BA, 2001, EUR J PLANT PATHOL, V107, P905, DOI 10.1023/A:1013119206261; Frezal L, 2009, PHYTOPATHOLOGY, V99, P1216, DOI 10.1094/PHYTO-99-10-1216; Garin G, 2014, ANN BOT-LONDON, V114, P795, DOI 10.1093/aob/mcu101; Garnica DP, 2014, PLOS PATHOG, V10, DOI 10.1371/journal.ppat.1004329; Gigot C, 2014, ANN BOT-LONDON, V114, P863, DOI 10.1093/aob/mcu098; Gilchrist MA, 2006, EVOLUTION, V60, P970; Greenhalgh D, 1997, MATH COMPUT MODEL, V25, P85, DOI 10.1016/S0895-7177(97)00009-5; Grover J., 1997, POPULATION COMMUNITY, V19; Haueisen J, 2016, CURR OPIN MICROBIOL, V32, P31, DOI 10.1016/j.mib.2016.04.015; Heesterbeek JAP, 2002, ACTA BIOTHEOR, V50, P189, DOI 10.1023/A:1016599411804; Heraudet V, 2008, EVOL ECOL RES, V10, P913; HERMS DA, 1992, Q REV BIOL, V67, P283, DOI 10.1086/417659; HINZMAN LD, 1986, REMOTE SENS ENVIRON, V19, P47, DOI 10.1016/0034-4257(86)90040-4; Hoffland E, 2000, PLANT SOIL, V218, P239, DOI 10.1023/A:1014960507981; Jensen B, 1997, PLANT PATHOL, V46, P191, DOI 10.1046/j.1365-3059.1997.d01-224.x; Jensen B., 1995, THESIS; Kilpatrick R. A., 1975, NE64 USDA AGR RES SE; Kiraly Z., 1964, J PHYTOPATHOL, V51, P252; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; KURSCHNER E, 1992, PLANT DIS, V76, P384; Lecompte F, 2010, PLANT PATHOL, V59, P891, DOI 10.1111/j.1365-3059.2010.02320.x; Lehman JS, 1997, PHYTOPATHOLOGY, V87, P170, DOI 10.1094/PHYTO.1997.87.2.170; Lemmens M, 2004, EUR J PLANT PATHOL, V110, P299, DOI 10.1023/B:EJPP.0000019801.89902.2a; LI MY, 1995, MATH BIOSCI, V125, P155, DOI 10.1016/0025-5564(95)92756-5; Loreau M, 1998, P NATL ACAD SCI USA, V95, P5632, DOI 10.1073/pnas.95.10.5632; Lovell DJ, 2004, PLANT PATHOL, V53, P170, DOI 10.1111/j.1365-3059.2004.00983.x; Lovell DJ, 1997, PLANT PATHOL, V46, P126, DOI 10.1046/j.1365-3059.1997.d01-206.x; MATSUYAMA N, 1973, PHYTOPATHOLOGY, V63, P1202, DOI 10.1094/Phyto-63-1202; Matsuyama N., 1975, ANN PHYTOPATHOL SOC, V4, P56; McDonald BA, 2002, ANNU REV PHYTOPATHOL, V40, P349, DOI 10.1146/annurev.phyto.40.120501.101443; McIntosh RA, 1997, ANNU REV PHYTOPATHOL, V35, P311, DOI 10.1146/annurev.phyto.35.1.311; Mendgen K, 2002, TRENDS PLANT SCI, V7, P352, DOI 10.1016/S1360-1385(02)02297-5; Montarry J, 2008, APPL ENVIRON MICROB, V74, P6327, DOI 10.1128/AEM.01200-08; Naseri R., 2010, American-Eurasian Journal of Agricultural and Environmental Science, V9, P79; Neumann S, 2004, PLANT PATHOL, V53, P725, DOI 10.1111/j.1365-3059.2004.01107.x; Olesen JE, 2003, J AGR SCI-CAMBRIDGE, V140, P15, DOI 10.1017/S0021859602002897; Olesen JE, 2003, J AGR SCI-CAMBRIDGE, V140, P1, DOI 10.1017/S0021859602002885; Pariaud B, 2013, EVOL APPL, V6, P303, DOI 10.1111/eva.12000; PARLEVLIET JE, 1979, ANNU REV PHYTOPATHOL, V17, P203, DOI 10.1146/annurev.py.17.090179.001223; Pringle A, 2002, TRENDS MICROBIOL, V10, P474, DOI 10.1016/S0966-842X(02)02447-2; Robert C, 2006, J EXP BOT, V57, P225, DOI 10.1093/jxb/eri153; Robert C, 2005, NEW PHYTOL, V165, P227, DOI 10.1111/j.1469-8137.2004.01237.x; Robert C, 2004, PHYTOPATHOLOGY, V94, P712, DOI 10.1094/PHYTO.2004.94.7.712; Robert C, 2002, PHYTOPATHOLOGY, V92, P762, DOI 10.1094/PHYTO.2002.92.7.762; Robert C, 2008, FUNCT PLANT BIOL, V35, P997, DOI 10.1071/FP08066; Roff D. A., 2002, LIFE HIST EVOLUTION; ROUMEN EC, 1993, EUPHYTICA, V69, P185, DOI 10.1007/BF00022364; Saint-Jean S, 2004, AGR FOREST METEOROL, V121, P183, DOI 10.1016/j.agrformet.2003.08.034; SAVARY S, 1995, PHYTOPATHOLOGY, V85, P959, DOI 10.1094/Phyto-85-959; Setti B, 2009, PHYTOPATHOL MEDITERR, V48, P195; SHANER G, 1980, PHYTOPATHOLOGY, V70, P1183, DOI 10.1094/Phyto-70-1183; SMITH HC, 1950, ANN APPL BIOL, V37, P570, DOI 10.1111/j.1744-7348.1950.tb00982.x; Suffert F, 2015, APPL ENVIRON MICROB, V81, P6367, DOI 10.1128/AEM.00529-15; Tilman D, 2001, SCIENCE, V294, P843, DOI 10.1126/science.1060391; van den Berg F, 2007, PLANT PATHOL, V56, P424, DOI 10.1111/j.1365-3059.2007.01565.x; VINCENT TL, 1980, THEOR POPUL BIOL, V17, P215, DOI 10.1016/0040-5809(80)90007-6; Walters DR, 2007, ANN APPL BIOL, V151, P307, DOI 10.1111/j.1744-7348.2007.00176.x; Walters D, 2007, PHYSIOL MOL PLANT P, V71, P3, DOI 10.1016/j.pmpp.2007.09.008; XUE GX, 1992, PHYTOPROTECTION, V73, P61, DOI 10.7202/706020ar 81 3 3 5 17 AMER PHYTOPATHOLOGICAL SOC ST PAUL 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA 0031-949X 1943-7684 PHYTOPATHOLOGY Phytopathology OCT 2017 107 10 1256 1267 10.1094/PHYTO-01-17-0019-R 12 Plant Sciences Plant Sciences FH1BD WOS:000410873500016 28453406 2018-11-22 J Tournier, E; Besnard, A; Tournier, V; Cayuela, H Tournier, Emilie; Besnard, Aurelien; Tournier, Virginia; Cayuela, Hugo Manipulating waterbody hydroperiod affects movement behaviour and occupancy dynamics in an amphibian FRESHWATER BIOLOGY English Article amphibians; Bombina variegata; dispersal; hydroperiod; movement SPATIALLY STRUCTURED POPULATIONS; ESTIMATING SITE OCCUPANCY; LIFE-HISTORY EVOLUTION; BOMBINA-VARIEGATA; HABITAT USE; DISPERSAL CHARACTERISTICS; REPRODUCTIVE ECOLOGY; SPECIES RICHNESS; E-SURGE; MODELS Species that occur in ephemeral habitats such as temporary waterbodies have evolved specific strategies that allow them to respond to spatial and temporal variations in water availability and quality. Their life-history strategies, involving complex life cycles, have evolved to allow individuals to escape deteriorating environmental conditions when a waterbody dries up. These adaptations have led to the emergence of complex movement behaviour, which might then be expected to affect the spatiotemporal dynamics of reproduction. To date, few empirical studies have investigated how the risks of waterbody drying out affects movement behaviour at the individual level and how movement decisions then shape waterbody occupancy dynamics. In this study, we examined this issue in an endangered amphibian, the yellow-bellied toad (Bombina variegata). For this purpose, we experimentally manipulated waterbody hydroperiod and collected capture-recapture and presence-absence data in 334 waterbodies located in 15 B.variegata populations in the region of Geneva (Switzerland) during a 5-year period (2012-2016). The results of our analyses reveal that the waterbody hydroperiod affects this species' movement behaviour. Adults were less likely to leave waterbodies with a long hydroperiod both intra- and inter-annually. In addition, breeding occupancy strongly depended on a waterbody's hydroperiod. In particular, interannual changes in breeding occurrence were less frequent in waterbodies with a long hydroperiod. Our findings show that the hydroperiod strongly affects ecological processes at different levels, from individuals' movement decisions to waterbody occupancy dynamics. The results demonstrate that adults adjust their movement decisions according to the risk of breeding failure driven by the hydroperiod, which then affects the waterbody occupancy dynamics. [Tournier, Emilie; Tournier, Virginia] NARIES Assoc, Biodivers Conservat Unit, Geneva, Switzerland; [Besnard, Aurelien; Cayuela, Hugo] PSL Res Univ, CNRS, INRA, EPHE,UM,SupAgro,IRD,UMR CEFE 5175, Montpellier, France; [Cayuela, Hugo] LEHNA, UMR 5023, Villeurbanne, France Cayuela, H (reprint author), PSL Res Univ, CNRS, INRA, EPHE,UM,SupAgro,IRD,UMR CEFE 5175, Montpellier, France.; Cayuela, H (reprint author), LEHNA, UMR 5023, Villeurbanne, France. hugo.cayuela51@gmail.com Department of Nature and Landscape of Geneva (DGAN) Department of Nature and Landscape of Geneva (DGAN) Altermatt F, 2008, OECOLOGIA, V157, P441, DOI 10.1007/s00442-008-1080-4; Altermatt F, 2010, ECOLOGY, V91, P2975, DOI 10.1890/09-2016.1; Anderson TL, 2015, ECOL APPL, V25, P1896, DOI 10.1890/14-2096.1; Angelibert S, 2003, ECOGRAPHY, V26, P13, DOI 10.1034/j.1600-0587.2003.03372.x; Baber MJ, 2004, OIKOS, V107, P16; Barandun J, 1998, COPEIA, P497, DOI 10.2307/1447450; Barandun J, 1997, J HERPETOL, V31, P107, DOI 10.2307/1565337; Barandun Jonas, 1997, Amphibia-Reptilia, V18, P347, DOI 10.1163/156853897X00404; Barandun Jonas, 1997, Amphibia-Reptilia, V18, P143, DOI 10.1163/156853897X00035; Bates AJ, 2006, OECOLOGIA, V150, P50, DOI 10.1007/s00442-006-0508-y; Bates D., 2014, LME4 LINEAR MIXED EF, DOI DOI 10.18637/JSS.V067.I01; Beniston M, 2007, CLIMATIC CHANGE, V81, P71, DOI 10.1007/s10584-006-9226-z; Blazek R, 2013, EVODEVO, V4, DOI 10.1186/2041-9139-4-24; Bowler DE, 2005, BIOL REV, V80, P205, DOI 10.1017/S1464793104006645; Buschmann H, 2002, AMPHIBIA-REPTILIA, V23, P362; Buxton VL, 2017, BIOSCIENCE, V67, P25, DOI 10.1093/biosci/biw149; Cayuela H, 2016, ECOSPHERE, V7, DOI 10.1002/ecs2.1246; Cayuela H, 2017, METHODS ECOL EVOL, V8, P1124, DOI 10.1111/2041-210X.12717; Cayuela H, 2017, ANIM BEHAV, V123, P179, DOI 10.1016/j.anbehav.2016.11.002; Cayuela H, 2016, BEHAV ECOL, V27, P1726, DOI 10.1093/beheco/arw100; Cayuela H, 2016, GLOBAL CHANGE BIOL, V22, P2676, DOI 10.1111/gcb.13290; Cayuela H, 2016, ECOLOGY, V97, P980, DOI 10.1890/15-0693.1; Cayuela H, 2014, OECOLOGIA, V176, P107, DOI 10.1007/s00442-014-3003-x; Cayuela H, 2013, BIOL INVASIONS, V15, P2001, DOI 10.1007/s10530-013-0427-x; Cayuela H, 2012, FRESHWATER BIOL, V57, P2629, DOI 10.1111/fwb.12034; Cayuela H, 2011, AMPHIBIA-REPTILIA, V32, P533, DOI 10.1163/156853811X614461; Choquet R, 2009, ENVIRON ECOL STAT SE, V3, P845, DOI 10.1007/978-0-387-78151-8_39; Clobert J, 2009, ECOL LETT, V12, P197, DOI 10.1111/j.1461-0248.2008.01267.x; Conrad KF, 1999, ECOGRAPHY, V22, P524, DOI 10.1111/j.1600-0587.1999.tb00541.x; Cruickshank SS, 2016, CONSERV BIOL, V30, P1112, DOI 10.1111/cobi.12688; Dolny A, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0100408; Furness AI, 2016, BIOL REV, V91, P796, DOI 10.1111/brv.12194; Galatowitsch ML, 2016, FRESHWATER BIOL, V61, P862, DOI 10.1111/fwb.12747; Gimenez O, 2014, METHODS ECOL EVOL, V5, P592, DOI 10.1111/2041-210X.12191; Goldberg FJ, 2006, CAN J ZOOL, V84, P699, DOI 10.1139/Z06-038; Gollmann Guenter, 2011, Herpetology Notes, V4, P333; Green AW, 2013, J APPL ECOL, V50, P1116, DOI 10.1111/1365-2664.12121; Greenberg CH, 2004, J HERPETOL, V38, P569, DOI 10.1670/5-04A; Hamer AJ, 2008, J HERPETOL, V42, P397, DOI 10.1670/07-0862.1; Hartel T, 2008, NORTH-WEST J ZOOL, V4, P79; Hartel T, 2011, FRESHWATER BIOL, V56, P2288, DOI 10.1111/j.1365-2427.2011.02655.x; Hecnar SJ, 1997, BIOL CONSERV, V79, P123, DOI 10.1016/S0006-3207(96)00113-9; Hillman S. S., 2009, ECOLOGICAL ENV PHYSL; Holstein TW, 2014, CURR BIOL, V24, pR159, DOI 10.1016/j.cub.2014.01.003; Kendall WL, 2009, ENVIRON ECOL STAT SE, V3, P765, DOI 10.1007/978-0-387-78151-8_35; Kyriakopoulou-Sklavounou P, 2012, ACTA HERPETOL, V7, P81; Laudet V, 2011, CURR BIOL, V21, pR726, DOI 10.1016/j.cub.2011.07.030; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Mackenzie DI, 2009, ECOLOGY, V90, P823, DOI 10.1890/08-0141.1; MacKenzie DI, 2003, ECOLOGY, V84, P2200, DOI 10.1890/02-3090; MacKenzie DI, 2002, ECOLOGY, V83, P2248, DOI 10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2; Matthysen E, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P3; McCauley SJ, 2010, ECOL ENTOMOL, V35, P377, DOI 10.1111/j.1365-2311.2010.01191.x; Murphy PJ, 2003, ECOL MONOGR, V73, P45, DOI 10.1890/0012-9615(2003)073[0045:DRSCIA]2.0.CO;2; Pichenot J., 2008, THESIS; Pittman SE, 2014, BIOL CONSERV, V169, P44, DOI 10.1016/j.biocon.2013.10.020; Pradel R, 2005, BIOMETRICS, V61, P442, DOI 10.1111/j.1541-0420.2005.00318.x; Revilla E, 2008, P NATL ACAD SCI USA, V105, P19120, DOI 10.1073/pnas.0801725105; Roff D, 1993, EVOLUTION LIFE HIST; Ronce O, 2007, ANNU REV ECOL EVOL S, V38, P231, DOI 10.1146/annurev.ecolsys.38.091206.095611; Sinsch U, 2014, CAN J ZOOL, V92, P491, DOI 10.1139/cjz-2013-0028; Smith GR, 1999, FRESHWATER BIOL, V41, P829, DOI 10.1046/j.1365-2427.1999.00445.x; Souchay G, 2014, ECOLOGY, V95, P2745, DOI 10.1890/13-1277.1; Taylor BE, 2006, CONSERV BIOL, V20, P792, DOI 10.1111/j.1523-1739.2005.00321.x; Thomas CD, 1999, J ANIM ECOL, V68, P647, DOI 10.1046/j.1365-2656.1999.00330.x; TRACY CR, 1976, ECOL MONOGR, V46, P293, DOI 10.2307/1942256; Trenham PC, 2001, ECOLOGY, V82, P3519, DOI 10.2307/2680169; Van Dyck H, 2005, BASIC APPL ECOL, V6, P535, DOI 10.1016/j.baae.2005.03.005; VANBUSKIRK J, 1991, ECOLOGY, V72, P1747; Warren SD, 2008, J WILDLIFE MANAGE, V72, P738, DOI 10.2193/2007-160; Wassens S, 2008, WILDLIFE RES, V35, P50, DOI 10.1071/WR07095; Werner EE, 2007, OIKOS, V116, P1713, DOI 10.1111/j.2007.0030-1299.16039.x; Werner EE, 2007, OIKOS, V116, P1697, DOI 10.1111/j.2007.0030-1299.15935.x; Wilbur HM, 2006, AM NAT, V168, P398, DOI 10.1086/506258; WILBUR HM, 1980, ANNU REV ECOL SYST, V11, P67, DOI 10.1146/annurev.es.11.110180.000435; WILBUR HM, 1973, SCIENCE, V182, P1305, DOI 10.1126/science.182.4119.1305; WILBUR HM, 1976, ECOLOGY, V57, P1289, DOI 10.2307/1935053 77 3 3 3 22 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0046-5070 1365-2427 FRESHWATER BIOL Freshw. Biol. OCT 2017 62 10 1768 1782 10.1111/fwb.12988 15 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology FG3QP WOS:000410094000009 2018-11-22 J Regehr, EV; Wilson, RR; Rode, KD; Runge, MC; Stern, HL Regehr, Eric V.; Wilson, Ryan R.; Rode, Karyn D.; Runge, Michael C.; Stern, Harry L. Harvesting wildlife affected by climate change: a modelling and management approach for polar bears JOURNAL OF APPLIED ECOLOGY English Article conservation; density dependence; habitat loss; harvest; hunting; polar bear Ursus maritimus; risk; state-dependent management; sustainable; threatened LIFE-HISTORY STRATEGIES; SEA-ICE; DENSITY-DEPENDENCE; URSUS-MARITIMUS; POPULATION STATUS; BEAUFORT SEA; HABITAT LOSS; CANADA; DEMOGRAPHY; DYNAMICS 1. The conservation of many wildlife species requires understanding the demographic effects of climate change, including interactions between climate change and harvest, which can provide cultural, nutritional or economic value to humans. 2. We present a demographic model that is based on the polar bear Ursus maritimus life cycle and includes density-dependent relationships linking vital rates to environmental carrying capacity (K). Using this model, we develop a state-dependent management framework to calculate a harvest level that (i) maintains a population above its maximum net productivity level (MNPL; the population size that produces the greatest net increment in abundance) relative to a changing K, and (ii) has a limited negative effect on population persistence. 3. Our density-dependent relationships suggest that MNPL for polar bears occurs at approximately 0.69 (95% CI = 0.63-0.74) of K. Population growth rate at MNPL was approximately 0.82 (95% CI = 0.79-0.84) of the maximum intrinsic growth rate, suggesting relatively strong compensation for human-caused mortality. 4. Our findings indicate that it is possible to minimize the demographic risks of harvest under climate change, including the risk that harvest will accelerate population declines driven by loss of the polar bear's sea-ice habitat. This requires that (i) the harvest rate - which could be 0 in some situations -accounts for a population's intrinsic growth rate, (ii) the harvest rate accounts for the quality of population data (e.g. lower harvest when uncertainty is large), and (iii) the harvest level is obtained by multiplying the harvest rate by an updated estimate of population size. Environmental variability, the sex and age of removed animals and risk tolerance can also affect the harvest rate. 5. Synthesis and applications. We present a coupled modelling and management approach for wildlife that accounts for climate change and can be used to balance trade-offs among multiple conservation goals. In our example application to polar bears experiencing sea-ice loss, the goals are to maintain population viability while providing continued opportunities for subsistence harvest. Our approach may be relevant to other species for which near-term management is focused on human factors that directly influence population dynamics within the broader context of climate-induced habitat degradation. [Regehr, Eric V.; Wilson, Ryan R.] US Fish & Wildlife Serv, Anchorage, AK 99503 USA; [Rode, Karyn D.] US Geol Survey, Anchorage, AK USA; [Runge, Michael C.] US Geol Survey, Laurel, MD USA; [Regehr, Eric V.; Stern, Harry L.] Univ Washington, Seattle, WA 98195 USA Regehr, EV (reprint author), US Fish & Wildlife Serv, Anchorage, AK 99503 USA.; Regehr, EV (reprint author), Univ Washington, Seattle, WA 98195 USA. eregehr@uw.edu Runge, Michael/0000-0002-8081-536X U.S. Fish and Wildlife Service (USFWS); U.S. Geological Survey (USGS); National Aeronautics and Space Administration [NNX13AN28G, NNX11A063G] Primary support was provided by U.S. Fish and Wildlife Service (USFWS) and U.S. Geological Survey (USGS). Support for H. Stern was provided by National Aeronautics and Space Administration grants NNX13AN28G and NNX11A063G. Intellectual input was provided by members of the Science and Traditional Ecological Knowledge Working Group of the Polar Bear Recovery Team. The findings and conclusions are those of the authors and do not necessarily represent the views of the USFWS. Any use of trade, firm or product names is for descriptive purposes only and does not reflect endorsement by the US Government. This paper was reviewed and approved by USGS under their Fundamental Science Practices policy (http://www.usgs.gov/fsp). Atwood TC, 2016, ECOSPHERE, V7, DOI 10.1002/ecs2.1370; Boyce MS, 2006, TRENDS ECOL EVOL, V21, P141, DOI 10.1016/j.tree.2005.11.018; Bromaghin JF, 2015, ECOL APPL, V25, P634, DOI 10.1890/14-1129.1; Caswell H, 2001, MATRIX POPULATION MO; Department of the Interior: Fish and Wildlife Service, 2008, FED REGISTER, V73, P28211; Derocher A.E., 1994, INT C BEAR RES MANAG, V3, P25; Di Minin E, 2016, TRENDS ECOL EVOL, V31, P99, DOI 10.1016/j.tree.2015.12.006; Dyck MG, 2006, URSUS, V17, P52, DOI 10.2192/1537-6176(2006)17[52:COPBKI]2.0.CO;2; Eberhardt LL, 2002, ECOLOGY, V83, P2841, DOI 10.1890/0012-9658(2002)083[2841:APFPAO]2.0.CO;2; EBERHARDT LL, 1990, J WILDLIFE MANAGE, V54, P587, DOI 10.2307/3809353; Fowler C.W., 1987, Current Mammalogy, V1, P401; GERRODETTE T, 1990, MAR MAMMAL SCI, V6, P1, DOI 10.1111/j.1748-7692.1990.tb00221.x; Guthery FS, 2013, J WILDLIFE MANAGE, V77, P33, DOI 10.1002/jwmg.450; Henle K, 2004, BIODIVERS CONSERV, V13, P9, DOI 10.1023/B:BIOC.0000004312.41575.83; Hunter CM, 2010, ECOLOGY, V91, P2883, DOI 10.1890/09-1641.1; IPCC W.I., 2014, CLIMATE CHANGE 2014, P1, DOI [10.1017/CBO9781107415324, DOI 10.1017/CBO9781107415379.003]; Kareiva P, 2012, BIOSCIENCE, V62, P962, DOI 10.1525/bio.2012.62.11.5; Laidre KL, 2008, ECOL APPL, V18, pS97, DOI 10.1890/06-0546.1; Laidre KL, 2015, CONSERV BIOL, V29, P724, DOI 10.1111/cobi.12474; Lande R, 1997, ECOLOGY, V78, P1341; Lunn NJ, 2016, ECOL APPL, V26, P1302, DOI 10.1890/15-1256; Lyons JE, 2008, J WILDLIFE MANAGE, V72, P1683, DOI 10.2193/2008-141; McCullough DR, 1999, J MAMMAL, V80, P1130, DOI 10.2307/1383164; Mclellan BN, 2017, J WILDLIFE MANAGE, V81, P218, DOI 10.1002/jwmg.21189; Molnar PK, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0085410; Molnar PK, 2009, J EXP BIOL, V212, P2313, DOI 10.1242/jeb.026146; Obbard ME, 2016, ARCT SCI, V2, P15, DOI 10.1139/as-2015-0027; Obbard M. E., 2010, POL BEARS P 15 WORK; Peacock E, 2013, J WILDLIFE MANAGE, V77, P463, DOI 10.1002/jwmg.489; Pfister CA, 1998, P NATL ACAD SCI USA, V95, P213, DOI 10.1073/pnas.95.1.213; Quinn T J, 1999, QUANTITATIVE FISH DY; Regehr E. V., 2015, 20151029 US GEOL SUR; Regehr E.V., 2017, DRYAD DIGITAL REPOSI; Regehr EV, 2016, BIOL LETTERS, V12, DOI 10.1098/rsbl.2016.0556; Regehr EV, 2010, J ANIM ECOL, V79, P117, DOI 10.1111/j.1365-2656.2009.01603.x; Rode KD, 2014, GLOBAL CHANGE BIOL, V20, P76, DOI 10.1111/gcb.12339; Runge MC, 2009, J WILDLIFE MANAGE, V73, P556, DOI 10.2193/2008-090; Seney EE, 2013, CONSERV BIOL, V27, P1138, DOI 10.1111/cobi.12167; Shadbolt T., 2012, ICON ICE INT TRADE M; Sinclair ARE, 2003, PHILOS T ROY SOC B, V358, P1729, DOI 10.1098/rstb.2003.1359; Stapleton S, 2016, MAR MAMMAL SCI, V32, P181, DOI 10.1111/mms.12251; Stern HL, 2016, CRYOSPHERE, V10, P2027, DOI 10.5194/tc-10-2027-2016; Stirling I, 1995, CAN J FISH AQUAT SCI, V52, P2594, DOI 10.1139/f95-849; Stirling I, 2011, ECOL APPL, V21, P859, DOI 10.1890/10-0849.1; Stirling Ian, 1997, Special Publication of the British Ecological Society, V13, P167; Stroeve JC, 2012, GEOPHYS RES LETT, V39, DOI 10.1029/2012GL052676; Sutherland WJ, 2001, WILDLIFE BIOL, V7, P131; TAYLOR BL, 1993, MAR MAMMAL SCI, V9, P360, DOI 10.1111/j.1748-7692.1993.tb00469.x; Taylor MK, 2008, WILDLIFE BIOL, V14, P52, DOI 10.2981/0909-6396(2008)14[52:SHOPBU]2.0.CO;2; Taylor MK, 2002, URSUS, V13, P185; TAYLOR MK, 1987, J WILDLIFE MANAGE, V51, P811, DOI 10.2307/3801746; Thiemann GW, 2008, ECOL MONOGR, V78, P591, DOI 10.1890/07-1050.1; Towns L, 2009, POLAR BIOL, V32, P1529, DOI 10.1007/s00300-009-0653-y; Vongraven Dag, 2012, Ursus Monograph Series, V5, P1; Voorhees H, 2014, ARCTIC, V67, P523, DOI 10.14430/arctic4425; Wade PR, 1998, MAR MAMMAL SCI, V14, P1, DOI 10.1111/j.1748-7692.1998.tb00688.x; Walther GR, 2002, NATURE, V416, P389, DOI 10.1038/416389a; Wiig O., 2015, IUCN RED LIST THREAT, DOI DOI 10.2305/IUCN.UK.2015-4.RLTS.T22823A14871490.EN; Williams BK, 2013, ENVIRON RES LETT, V8, DOI 10.1088/1748-9326/8/2/025004; Williams CK, 2013, J WILDLIFE MANAGE, V77, P4, DOI 10.1002/jwmg.429 60 3 3 18 118 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8901 1365-2664 J APPL ECOL J. Appl. Ecol. OCT 2017 54 5 1534 1543 10.1111/1365-2664.12864 10 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology FG8KB WOS:000410678700026 29081540 Green Published, Other Gold 2018-11-22 J DeHaan, PW; Von Bargen, J; Scheerer, PD DeHaan, Patrick W.; Von Bargen, Jennifer; Scheerer, Paul D. Genetic variation and the relationship between stream and lake ecotypes of a threatened desert Catostomid, the Warner sucker (Catostomus warnerensis) ECOLOGY OF FRESHWATER FISH English Article Warner sucker; genetics; microsatellites; life history variation; genetic assignments; population introductions ENDANGERED RAZORBACK SUCKER; EFFECTIVE POPULATION-SIZE; ALLELE FREQUENCY DATA; COMPUTER-PROGRAM; DAM REMOVAL; XYRAUCHEN-TEXANUS; BULL TROUT; MICROSATELLITE MARKERS; HABITAT FRAGMENTATION; CUTTHROAT TROUT Many fish species exhibit diverse life history strategies that help maintain population viability. An understanding of the relationships among these strategies is crucial for prioritising conservation actions. The Warner sucker, endemic to the Warner Lakes Basin in southern Oregon, USA, is one example of a taxon where a lack of information regarding relationships among life history strategies has hampered conservation efforts. Warner suckers have two distinct life history types: stream-type fish that have a fluvial life history and lake-type fish that have an adfluvial life history. There are advantages and disadvantages associated with each life history, and presently the relationship between life history types is not well understood. Our objectives were to determine the amount of genetic variation within and among tributary populations of Warner suckers and to determine the origins of suckers collected in the Warner Lakes. We collected individuals from four tributary populations, a refugial population, and Hart and Crump lakes and genotyped them at 16 microsatellite loci. Estimates of genetic variation among populations suggested low levels of gene flow (F-ST=0.153) and genetic variation among populations seemed to be influenced by population and habitat characteristics. Nearly all of the individuals collected in Hart and Crump lakes originated in a single tributary, Deep Creek, which likely reflects reduced habitat connectivity between most other tributaries and the Warner Lakes. Data presented in this study are useful for evaluating the status of Warner sucker populations and for prioritising conservation actions such as the removal and modification of barriers. [DeHaan, Patrick W.] US Fish & Wildlife Serv, Western Washington Fish & Wildlife Conservat Off, Lacey, WA 98503 USA; [Von Bargen, Jennifer] US Fish & Wildlife Serv, Abernathy Fish Technol Ctr, Longview, WA USA; [Scheerer, Paul D.] Oregon Dept Fish & Wildlife, Native Fish Invest Program, Corvallis, OR USA DeHaan, PW (reprint author), US Fish & Wildlife Serv, Western Washington Fish & Wildlife Conservat Off, Lacey, WA 98503 USA. patrick_dehaan@fws.gov U.S. Army Corps of Engineers; Oregon Department of Fish and Wildlife Funding for this project was provided by the U.S. Army Corps of Engineers and the Oregon Department of Fish and Wildlife. We would like to thank the numerous biologists and technicians from the Oregon Department of Fish and Wildlife and Bureau of Land Management who helped collect genetic samples used in this study; Wade Wilson for sharing unpublished microsatellite primer sequences; Matt Smith for assistance with producing the figures in this article; and Christian Smith, Patty Crandell, Rollie White, and two anonymous reviewers for providing helpful comments on this manuscript. The views and opinions in this manuscript do not necessarily represent the views of the U.S. Fish and Wildlife Service. Allendorf FW, 2007, CONSERVATION GENETIC; Auer NA, 1999, J GREAT LAKES RES, V25, P282, DOI 10.1016/S0380-1330(99)70737-9; Balazik MT, 2012, T AM FISH SOC, V141, P1465, DOI 10.1080/00028487.2012.703157; Baldwin E. M., 1974, GEOLOGY OF OREGON; Bessert ML, 2008, CONSERV GENET, V9, P821, DOI 10.1007/s10592-007-9401-4; BLUEWEISS L, 1978, OECOLOGIA, V37, P257, DOI 10.1007/BF00344996; Brenkman SJ, 2007, T AM FISH SOC, V136, P1, DOI 10.1577/T05-285.1; Cardall BL, 2007, MOL ECOL NOTES, V7, P457, DOI 10.1111/j.1471-8286.2006.01617.x; Chambers J. C., 2008, CLIMATE CHANGE GREAT; Cornuet JM, 1996, GENETICS, V144, P2001; Darden TL, 2014, COPEIA, P70, DOI 10.1643/CI-12-089; DeHaan PW, 2011, CAN J FISH AQUAT SCI, V68, P1952, DOI 10.1139/F2011-098; DeHaan PW, 2011, NORTHWEST SCI, V85, P463, DOI 10.3955/046.085.0305; Dowling TE, 2005, MOL ECOL, V14, P123, DOI 10.1111/j.1365-294X.2004.02408.x; Dowling TE, 2012, CONSERV GENET, V13, P1073, DOI 10.1007/s10592-012-0355-9; Duda JJ, 2008, NORTHWEST SCI, V82, P1, DOI 10.3955/0029-344X-82.S.I.1; Figge F, 2004, BIODIVERS CONSERV, V13, P827, DOI 10.1023/B:BIOC.0000011729.93889.34; Finger AJ, 2015, CONSERV GENET, V16, P743, DOI 10.1007/s10592-015-0697-1; Finger AJ, 2013, T AM FISH SOC, V142, P1430, DOI 10.1080/00028487.2013.811097; Frankham R, 2015, MOL ECOL, V24, P2610, DOI 10.1111/mec.13139; Garrigan D, 2002, ANIM CONSERV, V5, P95, DOI 10.1017/S1367943002002135; George AL, 2009, FISHERIES, V34, P529, DOI 10.1577/1548-8446-34.11.529; Goudet J, 2001, FSTAT PROGRAM ESTIMA; Greene CM, 2010, BIOL LETTERS, V6, P382, DOI 10.1098/rsbl.2009.0780; HANSKI I, 1991, BIOL J LINN SOC, V42, P3, DOI 10.1111/j.1095-8312.1991.tb00548.x; Hardy OJ, 2002, MOL ECOL NOTES, V2, P618, DOI 10.1046/j.1471-8286.2002.00305.x; Hellmair M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0113139; Hilborn R, 2003, P NATL ACAD SCI USA, V100, P6564, DOI 10.1073/pnas.1037274100; Hitt NP, 2012, T AM FISH SOC, V141, P1171, DOI 10.1080/00028487.2012.675918; Hopken MW, 2013, MOL ECOL, V22, P956, DOI 10.1111/mec.12156; Hubbs C. L., 1948, B U UTAH, V38, P191; Jaeger KL, 2014, P NATL ACAD SCI USA, V111, P13894, DOI 10.1073/pnas.1320890111; Jombart T, 2008, BIOINFORMATICS, V24, P1403, DOI 10.1093/bioinformatics/btn129; Jombart T, 2010, BMC GENET, V11, DOI 10.1186/1471-2156-11-94; Kalinowski ST, 2005, MOL ECOL NOTES, V5, P187, DOI 10.1111/j.1471-8286.2004.00845.x; Kalinowski ST, 2006, MOL ECOL NOTES, V6, P576, DOI 10.1111/j.1471-8286.2006.01256.x; Kamler E, 2005, REV FISH BIOL FISHER, V15, P399, DOI 10.1007/s11160-006-0002-y; Lewis PO, 2001, GENETIC DATA ANAL CO; Lippe C, 2006, MOL ECOL, V15, P1769, DOI 10.1111/j.1365-294X.2006.02902.x; McPhee MV, 2008, COPEIA, P191, DOI 10.1643/0-06-120; Meldgaard T, 2003, CONSERV GENET, V4, P735, DOI 10.1023/B:COGE.0000006115.14106.de; Mock KE, 2004, CONSERV GENET, V5, P631, DOI 10.1007/s10592-004-1849-x; Moore JW, 2014, J ANIM ECOL, V83, P1035, DOI 10.1111/1365-2656.12212; Muhlfeld CC, 2012, RIVER RES APPL, V28, P940, DOI 10.1002/rra.1494; Neville HM, 2006, LANDSCAPE ECOL, V21, P901, DOI 10.1007/s10980-005-5221-4; Northcote T. G., 1997, North American Journal of Fisheries Management, V17, P1029, DOI 10.1577/1548-8675(1997)017<1029:PISAMI>2.3.CO;2; Pess GR, 2008, NORTHWEST SCI, V82, P72, DOI 10.3955/0029-344X-82.S.I.72; Petty JT, 2012, T AM FISH SOC, V141, P1060, DOI 10.1080/00028487.2012.681102; Pierce R, 2013, T AM FISH SOC, V142, P68, DOI 10.1080/00028487.2012.720626; Pilliod DS, 2015, ECOL EVOL, V5, P3979, DOI 10.1002/ece3.1634; Piry S, 2004, J HERED, V95, P536, DOI 10.1093/jhered/esh074; Piry S, 1999, J HERED, V90, P502, DOI 10.1093/jhered/90.4.502; Puckett EE, 2014, MOL ECOL, V23, P2414, DOI 10.1111/mec.12748; QUELLER DC, 1989, EVOLUTION, V43, P258, DOI 10.1111/j.1558-5646.1989.tb04226.x; R Development Core Team, 2015, R LANG ENV STAT COMP; Rannala B, 1997, P NATL ACAD SCI USA, V94, P9197, DOI 10.1073/pnas.94.17.9197; RAYMOND M, 1995, J HERED, V86, P248, DOI 10.1093/oxfordjournals.jhered.a111573; Reed DH, 2003, CONSERV BIOL, V17, P230, DOI 10.1046/j.1523-1739.2003.01236.x; Reid SM, 2008, CAN J FISH AQUAT SCI, V65, P1892, DOI 10.1139/F08-093; Reid SM, 2008, CONSERV GENET, V9, P531, DOI 10.1007/s10592-007-9367-2; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; Richardson S. E., 2009, WARNER SUCKER INVEST; SADA DW, 2002, SM C EARTH, P277; Scheerer P. D., 2015, 2015 WARNER SUCKER I; Scheerer P. D., 2006, 2006 WARNER VALLEY F; Scheerer P. D., 2014, 2014 WARNER SUCKER I; Scheerer P. D., 2016, NW NATURALI IN PRESS; Scheerer P. D., 2007, WARNER SUCKER STREAM; Scheerer P. D., 2011, 201102 OR DEP FISH W; Scheerer P. D., 2008, WARNER VALLEY FISH I; Scheerer P. D., 2011, 2011 WARNER SUCKER I; Schindler DE, 2010, NATURE, V465, P609, DOI 10.1038/nature09060; Shepard BB, 2005, N AM J FISH MANAGE, V25, P1426, DOI 10.1577/M05-004.1; Smith CT, 2011, J FISH WILDL MANAG, V2, P72, DOI 10.3996/022010-JFWM-003; Snyder C. T., 1964, PLEISTOCENE LAKES GR; Stephen CL, 2005, J WILDLIFE MANAGE, V69, P1463, DOI 10.2193/0022-541X(2005)69[1463:GCORAE]2.0.CO;2; Tallmon DA, 2004, TRENDS ECOL EVOL, V19, P489, DOI 10.1016/j.tree.2004.07.003; Taylor EB, 2011, CAN J ZOOL, V89, P255, DOI 10.1139/Z10-114; Tranah GJ, 2001, MOL ECOL NOTES, V1, P55, DOI 10.1046/j.1471-8278.2000.00023.x; Turner TF, 2015, CONSERV GENET, V16, P399, DOI 10.1007/s10592-014-0666-0; Turner TF, 2009, CONSERV GENET, V10, P551, DOI 10.1007/s10592-008-9563-8; USFWS, 1998, REC PLAN NAT FISH WA; USFWS, 1985, FED REGISTER, P39117; Weide D.L, 1975, THESIS; White R. K., 1990, FINAL REPORT INVESTI; White R. K., 1991, SALVAGE OPERATIONS I; Wofford JEB, 2005, ECOL APPL, V15, P628, DOI 10.1890/04-0095; Yamamoto S, 2004, CONSERV GENET, V5, P529, DOI 10.1023/B:COGE.0000041029.38961.a0 88 0 0 2 13 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0906-6691 1600-0633 ECOL FRESHW FISH Ecol. Freshw. Fish OCT 2017 26 4 609 620 10.1111/eff.12305 12 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology FG0WF WOS:000409505000010 2018-11-22 J Braun, K; Stach, T Braun, Katrin; Stach, Thomas Structure and ultrastructure of eyes and brains of Thalia democratica (Thaliacea, Tunicata, Chordata) JOURNAL OF MORPHOLOGY English Article central nervous system; ciliary photoreceptor; rhabdomeric; salp; urochordate NERVOUS-SYSTEM; FINE-STRUCTURE; CIONA-INTESTINALIS; OIKOPLEURA-DIOICA; SALPS TUNICATA; EVOLUTION; PHOTORECEPTORS; PHYLOGENY; AMPHIOXUS; GENOME Salps are marine planktonic chordates that possess an obligatory alternation of reproductive modes in subsequent generations. Within tunicates, salps represent a derived life cycle and are of interest in considerations of the evolutionary origin of complex anatomical structures and life history strategies. In the present study, the eyes and brains of both the sexual, aggregate blastozooid and the asexual, solitary oozooid stage of Thalia democratica (Forskal, ) were digitally reconstructed in detail based on serial sectioning for light and transmission electron microscopy. The blastozooid stage of T. democratica possesses three pigment cup eyes, situated in the anterior ventral part of the brain. The eyes are arranged in a way that the optical axes of each eye point toward different directions. Each eye is an inverse eye that consists of two different cell types: pigment cells (pigc) and rhabdomeric photoreceptor cells (prcs). The oozooid stage of T. democratica is equipped with a single horseshoe-shaped eye, positioned in the anterior dorsal part of the brain. The opening of the horseshoe-shaped eye points anteriorly. Similar to the eyes of the blastozooid, the eye of the oozooid consists of pigment cells and rhabdomeric photoreceptor cells. The rhabdomeric photoreceptor cells possess apical microvilli that form a densely packed presumably photosensitive receptor part adjacent to the concave side of the pigc. We suggest correspondences of the individual eyes in the blastozooid stage to respective parts of the single horseshoe-shaped eye in the oozooid stage and hypothesize that the differences in visual structures and brain anatomies evolved as a result of the aggregate life style of the blastozooid as opposed to the solitary life style of the oozooid. [Braun, Katrin] Humboldt Univ, Inst Biol, Vergleichende Zool, Philippstr 13,Haus 2, D-10115 Berlin, Germany; [Stach, Thomas] Humboldt Univ, Inst Biol, Mol Parasitol, Philippstr 13,Haus 14, D-10115 Berlin, Germany Stach, T (reprint author), Humboldt Univ, Inst Biol, Mol Parasitol, Philippstr 13,Haus 14, D-10115 Berlin, Germany. thomas.stach@hu-berlin.de Braun, Katrin/0000-0002-5138-2198 Deutsche Forschungsgemeinschaft (DFG); German Academic Exchange Service (DAAD); Elsa-Neumann-Stipendium des Landes Berlin We thank Priv.-Doz. Dr. Carsten Muller (Universitat Greifswald) for collecting and kindly providing the fixed blastozooid stages used in this study. We are grateful for access to the Leica SPE CLSM granted by Priv.-Doz. Dr. Carsten Luter (Museum fur Naturkunde Berlin). Financial support by the Deutsche Forschungsgemeinschaft (DFG), the German Academic Exchange Service (DAAD) and the Elsa-Neumann-Stipendium des Landes Berlin is gratefully acknowledged. We are thankful to the invaluable help of Woody Lee and Scott Jones from the Smithsonian Marine Station in Fort Pierce, Florida in securing specimens. We are also indebted to Prof. Valerie Paul and Prof. Mary Rice for generously providing access to the facilities of the Smithsonian Marine Station. Albalat R, 2016, NAT REV GENET, V17, P379, DOI 10.1038/nrg.2016.39; Arendt D, 2003, INT J DEV BIOL, V47, P563; Banks MS, 2015, SCI ADV, V1, DOI 10.1126/sciadv.1500391; Bone Q., 1998, P55; Braun K, 2016, ZOOMORPHOLOGY, V135, P351, DOI 10.1007/s00435-016-0317-8; Braun K, 2015, ORG DIVERS EVOL, V15, P423, DOI 10.1007/s13127-015-0206-x; Brooks W. K., 1893, GENUS SALPA MEMOIRS, P1; Brunetti R, 2015, J ZOOL SYST EVOL RES, V53, P186, DOI 10.1111/jzs.12101; BURIGHEL P, 1997, MICROSCOPICAL ANATOM, V15, P221; Chamisso A. V., 1819, ANIMALIBUS QUIBUSDAM; COHEN AI, 1963, BIOL REV, V38, P427, DOI 10.1111/j.1469-185X.1963.tb00789.x; Darwin C., 1859, ORIGIN SPECIES; DAWKINS R, 1995, RIVER OUT EDEN DARWI; DE ROBERTIS E., 1960, JOUR GEN PHYSIOL, V43, P1; Delsuc F, 2006, NATURE, V439, P965, DOI 10.1038/nature04336; Delsuc F, 2008, GENESIS, V46, P592, DOI 10.1002/dvg.20450; Deng ZF, 2016, ADV FUNCT MATER, V26, P1995, DOI 10.1002/adfm.201504941; Denoeud F, 2010, SCIENCE, V330, P1381, DOI 10.1126/science.1194167; DILLY N, 1964, Q J MICROSC SCI, V105, P13; Dilly P.N., 1973, MICRON, V4, P11; Diogo R, 2015, NATURE, V520, P466, DOI 10.1038/nature14435; EAKIN RM, 1971, Z ZELLFORSCH MIK ANA, V112, P287; Fergus JLB, 2015, CURR BIOL, V25, P473, DOI 10.1016/j.cub.2014.12.010; Forskal P., 1775, POST MORTEM AUCTORIS, P112; Furchheim N., 2016, THESIS, P121; Gehring WJ, 1996, GENES CELLS, V1, P11, DOI 10.1046/j.1365-2443.1996.11011.x; Gehring WJ, 1999, TRENDS GENET, V15, P371, DOI 10.1016/S0168-9525(99)01776-X; Glaeser G., 2015, EVOLUTION EYE; Glaubrecht M, 2012, ZOOSYST EVOL, V88, P317, DOI 10.1002/zoos.201200024; Goppert E., 1893, UNTERSUCHUNGEN SEHOR, V19, P250; GORMAN ALF, 1971, SCIENCE, V172, P1052, DOI 10.1126/science.172.3987.1052; Govindarajan AF, 2011, J PLANKTON RES, V33, P843, DOI 10.1093/plankt/fbq157; HASZPRUNAR G, 1992, J EVOLUTION BIOL, V5, P13, DOI 10.1046/j.1420-9101.1992.5010013.x; Hecht S, 1918, J GEN PHYSIOL, V1, P147, DOI 10.1085/jgp.1.2.147; Huus J., 1950, ZOOLOGY ICELAND, P1; Jue NK, 2016, GENOME BIOL EVOL, V8, P3171, DOI 10.1093/gbe/evw215; KARNOVSKY MJ, 1965, J CELL BIOL, V27, pA137; Kingslake R, 2010, LENS DESIGN FUNDAMENTALS, 2ND EDITION, P1, DOI 10.1016/B978-0-12-374301-5.00005-X; Kusakabe T, 2007, PHOTOCHEM PHOTOBIOL, V83, P248, DOI 10.1562/2006-07-11-IR-965; Kusakabe TG, 2017, DIVERS COMMON ANIM, P153, DOI 10.1007/978-4-431-56469-0_7; Lacalli T. C., 2016, STRUCTURE EVOLUTION, P719; LACALLI TC, 1994, PHILOS T R SOC B, V344, P165, DOI 10.1098/rstb.1994.0059; Lacalli TC, 1998, PHILOS T ROY SOC B, V353, P1943, DOI 10.1098/rstb.1998.0347; Lamb TD, 2013, PROG RETIN EYE RES, V36, P52, DOI 10.1016/j.preteyeres.2013.06.001; Lee LP, 2005, SCIENCE, V310, P1148, DOI 10.1126/science.1115248; Lemaire P, 2011, DEVELOPMENT, V138, P2143, DOI 10.1242/dev.048975; Lowe CJ, 2015, NATURE, V520, P456, DOI 10.1038/nature14434; Mackie GO, 2005, CAN J ZOOL, V83, P151, DOI 10.1139/Z04-177; Madin LP, 1995, MAR FRESHW BEHAV PHY, V26, P175, DOI 10.1080/10236249509378938; Metcalf M. M., 1898, EYES SUBNEURAL GLAND, P305; Muller CHG, 2007, ARTHROPOD STRUCT DEV, V36, P463, DOI 10.1016/j.asd.2007.09.002; NELSON G, 1978, SYST ZOOL, V27, P324, DOI 10.2307/2412883; Neumann G., 1956, HDB ZOOLOGIE NATURGE, V5, P226; Nilsson D.-E., 1996, P149; Nilsson DE, 2009, PHILOS T R SOC B, V364, P2833, DOI 10.1098/rstb.2009.0083; NILSSON DE, 1994, P ROY SOC B-BIOL SCI, V256, P53, DOI 10.1098/rspb.1994.0048; Oakley TH, 2015, ANNU REV ECOL EVOL S, V46, P237, DOI 10.1146/annurev-ecolsys-110512-135907; OLSSON R, 1990, ZOOMORPHOLOGY, V110, P1, DOI 10.1007/BF01632806; Pennati R, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0122879; Piette J, 2015, Q REV BIOL, V90, P117, DOI 10.1086/681440; Porter ML, 2012, P ROY SOC B-BIOL SCI, V279, P3, DOI 10.1098/rspb.2011.1819; Ramirez MD, 2016, GENOME BIOL EVOL, V8, P3640, DOI 10.1093/gbe/evw248; Redikorzew W., 1905, GEGENBAURS MORPHOLOG, V34, P204; Reimann A, 2007, ARTHROPOD STRUCT DEV, V36, P408, DOI 10.1016/j.asd.2007.08.005; Richter S, 2010, FRONT ZOOL, V7, DOI 10.1186/1742-9994-7-29; SCHMIDTRHAESA A, 2007, EVOLUTION ORGAN SYST; Seo HC, 2001, SCIENCE, V294, P2506, DOI 10.1126/science.294.5551.2506; Song YM, 2013, NATURE, V497, P95, DOI 10.1038/nature12083; Stach T, 2002, MOL PHYLOGENET EVOL, V25, P408, DOI 10.1016/S1055-7903(02)00305-6; Stach T, 2008, P NATL ACAD SCI USA, V105, P7229, DOI 10.1073/pnas.0710196105; Stach T, 2014, DEEP METAZOAN PHYLOGENY: THE BACKBONE OF THE TREE OF LIFE, P425; Todaro F., 1893, SULL ORGANO VISIVO S, P374; Tsagkogeorga G, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-187; Ullrich-Luter EM, 2011, P NATL ACAD SCI USA, V108, P8367, DOI 10.1073/pnas.1018495108; Ussow M., 1876, MEM SOC IMP SCI NAT, V18, P1; Van Soest R. W. M., 1998, P231; Vopalensky P, 2012, P NATL ACAD SCI USA, V109, P15383, DOI 10.1073/pnas.1207580109; Warrant EJ, 2004, BIOL REV, V79, P671, DOI 10.1017/S1464793103006420; Wicht H, 2005, CAN J ZOOL, V83, P122, DOI 10.1139/Z04-163; WOLKEN JJ, 1963, J OPT SOC AM, V53, P1, DOI 10.1364/JOSA.53.000001 80 3 3 5 15 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0362-2525 1097-4687 J MORPHOL J. Morphol. OCT 2017 278 10 1421 1437 10.1002/jmor.20722 17 Anatomy & Morphology Anatomy & Morphology FG2JG WOS:000409923000008 28691238 2018-11-22 J Denley, D; Metaxas, A Denley, Danielle; Metaxas, Anna Lack of substrate specificity contributes to invasion success and persistence of Membranipora membranacea in the northwest Atlantic MARINE ECOLOGY PROGRESS SERIES English Article Invasive; Selective settlement; Invertebrate larvae; Life-history strategies; Bryozoans UNDERSTORY KELP ENVIRONMENTS; NOVA-SCOTIA; STRONGYLOCENTROTUS-DROEBACHIENSIS; POSTSETTLEMENT SURVIVAL; POPULATION-DYNAMICS; CYPHONAUTES LARVAE; ALGAL SUBSTRATA; POLYZOAN LARVAE; EASTERN CANADA; URCHIN BARRENS Selective settlement by planktonic larvae plays a significant role in determining the distribution and abundance of many species of marine invertebrates. For non-indigenous species, larval settlement behavior can determine invasive potential by influencing initial invasion success, secondary spread, and persistence of species outside their native environments. Membranipora membranacea is an ecologically significant invasive bryozoan in the northwest Atlantic, where settlers are most abundant on some but not all species of kelp. Whether the increased abundance of M. membranacea on select kelp species is the result of larval settlement preference remains unknown. In this study, we examine selective settlement by larvae of M. membranacea by (1) quantifying settlers in mixed kelp beds and determining whether larvae settle preferentially with respect to kelp species, (2) conducting laboratory settlement preference experiments using the most abundant kelp substrates in Nova Scotia, and (3) examining whether the presence of kelp beds provides a settlement cue for larvae by quantifying settlement of M. membranacea on plates deployed within and outside of kelp beds. Contrary to settlement behavior described for native populations, our results suggest that larvae of M. membranacea in invaded habitats do not exhibit preference for settling on particular kelp species or within kelp beds. Instead, larvae settle on substrates extending furthest above the primary substratum. Lack of substrate specificity suggests that M. membranacea will continue to persist in the northwest Atlantic despite significant declines in regional kelp abundance. Our results emphasize the importance of early life-history strategies in contributing to invasion success. [Denley, Danielle; Metaxas, Anna] Dalhousie Univ, Dept Oceanog, Halifax, NS B3H 4R2, Canada Denley, D (reprint author), Dalhousie Univ, Dept Oceanog, Halifax, NS B3H 4R2, Canada. danielle.denley@dal.ca Natural Sciences and Engineering Research Council (NSERC) Discovery grant; Dalhousie Faculty of Graduate Studies scholarship; Nova Scotia Scholarship; NSERC Canada Graduate Scholarship; Dalhousie Killam Scholarship We thank J. Lindley, R.E. Scheibling, K. Filbee-Dexter, J. O'Brien, E. Simonson, K. Sorochan, and K. Desilets for assistance with field work. R. E. Scheibling provided comments on an earlier version of the manuscript. This research was funded by a Natural Sciences and Engineering Research Council (NSERC) Discovery grant to A. M., and a Dalhousie Faculty of Graduate Studies scholarship, Nova Scotia Scholarship, NSERC Canada Graduate Scholarship, and Dalhousie Killam Scholarship to D. D. Amsler CD, 2006, ADV BOT RES, V43, P1, DOI 10.1016/S0065-2296(05)43001-3; ATKINS D, 1955, J MAR BIOL ASSOC UK, V34, P441, DOI 10.1017/S0025315400008742; BAK RPM, 1979, MAR BIOL, V54, P341, DOI 10.1007/BF00395440; BERNSTEIN BB, 1979, ECOL MONOGR, V49, P335, DOI 10.2307/1942488; Bohn K, 2015, HELGOLAND MAR RES, V69, P313, DOI 10.1007/s10152-015-0439-2; BURKE RD, 1983, CAN J ZOOL, V61, P1701, DOI 10.1139/z83-221; CANCINO JM, 1987, J EXP MAR BIOL ECOL, V112, P109, DOI 10.1016/0022-0981(87)90112-2; Hernandez JC, 2010, MAR ECOL PROG SER, V413, P69, DOI 10.3354/meps08684; Carlton JT, 1996, BIOL CONSERV, V78, P97, DOI 10.1016/0006-3207(96)00020-1; Creed JC, 2007, MAR ECOL PROG SER, V330, P101, DOI 10.3354/meps330101; Dafforn KA, 2009, BIOFOULING, V25, P277, DOI 10.1080/08927010802710618; De Blauwe Hans, 2001, Nederlandse Faunistische Mededelingen, V14, P103; DEBURGH ME, 1978, OIKOS, V31, P69; Denley D, 2017, MAR BIOL, V164, DOI 10.1007/s00227-017-3172-3; Denley D, 2016, ECOSPHERE, V7, DOI 10.1002/ecs2.1483; Dubois A, 2012, ALGAE-SEOUL, V27, P9, DOI 10.4490/algae.2012.27.1.009; DUGGINS DO, 1990, J EXP MAR BIOL ECOL, V143, P27, DOI 10.1016/0022-0981(90)90109-P; Dumont C, 2004, MAR ECOL PROG SER, V276, P93, DOI 10.3354/meps276093; DURANTE KM, 1991, MAR ECOL PROG SER, V77, P279, DOI 10.3354/meps077279; ECKMAN JE, 1991, OECOLOGIA, V87, P473, DOI 10.1007/BF00320409; ECKMAN JE, 1989, J EXP MAR BIOL ECOL, V129, P173, DOI 10.1016/0022-0981(89)90055-5; Filbee-Dexter K, 2016, MAR ECOL PROG SER, V543, P141, DOI 10.3354/meps11554; Folino-Rorem N, 2006, BIOL INVASIONS, V8, P89, DOI 10.1007/s10530-005-0330-1; Gagnon P, 2004, MAR BIOL, V144, P1191, DOI 10.1007/s00227-003-1270-x; Genovese SJ, 1999, LIMNOL OCEANOGR, V44, P1120, DOI 10.4319/lo.1999.44.4.1120; Harrington L, 2004, ECOLOGY, V85, P3428, DOI 10.1890/04-0298; Harris Larry G., 2001, Biological Invasions, V3, P9, DOI 10.1023/A:1011487219735; HIMMELMAN JH, 1983, OECOLOGIA, V59, P27, DOI 10.1007/BF00388068; KEOUGH MJ, 1986, ECOLOGY, V67, P846, DOI 10.2307/1939807; KNIGHTJONES EW, 1953, J EXP BIOL, V30, P584; Krumhansl KA, 2011, J EXP MAR BIOL ECOL, V407, P12, DOI 10.1016/j.jembe.2011.06.033; Krumhansl KA, 2011, MAR ECOL PROG SER, V421, P67, DOI 10.3354/meps08905; LAMBERT WJ, 1994, MAR BIOL, V120, P265, DOI 10.1007/BF00349687; LAMBERT WJ, 1992, MAR ECOL PROG SER, V88, P303, DOI 10.3354/meps088303; Lathlean JA, 2013, MAR ECOL PROG SER, V475, P155, DOI 10.3354/meps10105; Levin PS, 2002, ECOLOGY, V83, P3182, DOI 10.1890/0012-9658(2002)083[3182:CWEONS]2.0.CO;2; Lezzi M, 2016, MAR BIOL RES, V12, P830, DOI 10.1080/17451000.2016.1206940; Manriquez PH, 1996, MAR ECOL PROG SER, V138, P189, DOI 10.3354/meps138189; Matson PG, 2010, INVERTEBR BIOL, V129, P277, DOI 10.1111/j.1744-7410.2010.00203.x; MILLER MA, 1948, BIOL BULL, V94, P143, DOI 10.2307/1538351; MOORE P G, 1975, Marine Behaviour and Physiology, V3, P97; MORSE ANC, 1984, J EXP MAR BIOL ECOL, V75, P191, DOI 10.1016/0022-0981(84)90166-7; Naylor E, 2006, MAR FRESHW BEHAV PHY, V39, P13, DOI 10.1080/10236240600593344; OKAMURA B, 1988, J EXP MAR BIOL ECOL, V120, P105, DOI 10.1016/0022-0981(88)90083-4; OKAMURA B, 1985, J EXP MAR BIOL ECOL, V89, P69, DOI 10.1016/0022-0981(85)90082-6; OKAMURA B, 1992, ECOLOGY, V73, P1502, DOI 10.2307/1940693; Pratt MC, 2008, INTEGR COMP BIOL, V48, P808, DOI 10.1093/icb/icn052; Rius M, 2010, MAR ECOL PROG SER, V418, P151, DOI 10.3354/meps08810; RYLAND JS, 1960, J EXP BIOL, V37, P783; RYLAND JS, 1962, J ANIM ECOL, V31, P331, DOI 10.2307/2145; RYLAND JS, 1959, J EXP BIOL, V36, P613; Saier B, 2004, BOT MAR, V47, P265, DOI 10.1515/BOT.2004.031; Saunders M, 2008, MAR ECOL PROG SER, V369, P139, DOI 10.3354/meps07669; Saunders M, 2007, MAR ECOL PROG SER, V344, P95, DOI 10.3354/meps06924; Saunders MI, 2009, AQUAT BIOL, V8, P83, DOI 10.3354/ab00208; Saunders MI, 2009, MAR BIOL, V156, P2267, DOI 10.1007/s00227-009-1254-6; Scheibling RE, 2009, MAR ECOL PROG SER, V390, P1, DOI 10.3354/meps08207; Simons RD, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0152261; Sokal R.R., 1981, BIOMETRY, P691; STEINBERG PD, 1985, ECOL MONOGR, V55, P333, DOI 10.2307/1942581; STRICKER SA, 1989, B MAR SCI, V45, P387; THORSON GUNNAR, 1964, OPHELIA, V1, P167; Yorke AF, 2012, AQUAT BIOL, V16, P17, DOI 10.3354/ab00419; Yorke AF, 2011, MAR BIOL, V158, P2299, DOI 10.1007/s00227-011-1734-3; YOSHIOKA PM, 1982, ECOLOGY, V63, P457, DOI 10.2307/1938963; YOSHIOKA PM, 1986, B MAR SCI, V39, P408; Yoshioka PM, 1973, THESIS; Zabin CJ, 2009, MAR ECOL PROG SER, V381, P175, DOI 10.3354/meps07968; Zuur A. F., 2009, MIXED EFFECTS MODELS 69 0 0 4 4 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. SEP 29 2017 580 117 129 10.3354/meps12287 13 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography FR5FE WOS:000419091500008 2018-11-22 J Heavner, ME; Ramroop, J; Gueguen, G; Ramrattan, G; Dolios, G; Scarpati, M; Kwiat, J; Bhattacharya, S; Wang, R; Singh, S; Govind, S Heavner, Mary Ellen; Ramroop, Johnny; Gueguen, Gwenaelle; Ramrattan, Girish; Dolios, Georgia; Scarpati, Michael; Kwiat, Jonathan; Bhattacharya, Sharmila; Wang, Rong; Singh, Shaneen; Govind, Shubha Novel Organelles with Elements of Bacterial and Eukaryotic Secretion Systems Weaponize Parasites of Drosophila CURRENT BIOLOGY English Article VIRUS-LIKE PARTICLES; PROTEIN-STRUCTURE PREDICTION; CELLULAR IMMUNE-RESPONSE; LEPTOPILINA-HETEROTOMA; VIRULENCE FACTORS; WEB SERVICE; VENOM; SEQUENCE; WASP; INFECTION The evolutionary success of parasitoid wasps, a highly diverse group of insects widely used in biocontrol, depends on a variety of life history strategies in conflict with those of their hosts [1]. Drosophila melanogaster is a natural host of parasitic wasps of the genus Leptopilina. Attack by L. boulardi (Lb), a specialist wasp to flies of the melanogaster group, activates NF-kappa B-mediated humoral and cellular immunity. Inflammatory blood cells mobilize and encapsulate Lb eggs and embryos [2-5]. L. heterotoma (Lh), a generalist wasp, kills larval blood cells and actively suppresses immune responses. Spiked virus-like particles (VLPs) in wasp venom have clearly been linked to wasps' successful parasitism of Drosophila [6], but the composition of VLPs and their biotic nature have remained mysterious. Our proteomics studies reveal that VLPs lack viral coat proteins but possess a pharmacopoeia of (1) the eukaryotic vesicular transport system, (2) immunity, and (3) previously unknown proteins. These novel proteins distinguish Lh from Lb VLPs; notably, some proteins specific to Lh VLPs possess sequence similarities with bacterial secretion system proteins. Structure-informed analyses of an abundant Lh VLP surface and spike-tip protein, p40, reveal similarities to the needle-tip invasin proteins SipD and IpaD of Gram-negative bacterial type-3 secretion systems that breach immune barriers and deliver virulence factors into mammalian cells. Our studies suggest that Lh VLPs represent a new class of extracellular organelles and share pathways for protein delivery with both eukaryotic microvesicles and bacterial surface secretion systems. Given their mixed prokaryotic and eukaryotic properties, we propose the term mixed-strategy extracellular vesicle (MSEV) to replace VLP. [Heavner, Mary Ellen; Ramroop, Johnny; Gueguen, Gwenaelle; Govind, Shubha] CUNY City Coll, Biol, Convent Ave, New York, NY 10031 USA; [Heavner, Mary Ellen; Singh, Shaneen; Govind, Shubha] CUNY, Grad Ctr, Biochem, 5th Ave, New York, NY 10016 USA; [Ramroop, Johnny; Scarpati, Michael; Singh, Shaneen; Govind, Shubha] CUNY, Grad Ctr, Biol, 5th Ave, New York, NY 10016 USA; [Ramrattan, Girish] Hunter Coll, Biol Sci, Pk Ave, New York, NY 10065 USA; [Dolios, Georgia; Wang, Rong] Icahn Sch Med Mt Sinai, Genet & Genom Sci, Madison Ave, New York, NY 10029 USA; [Scarpati, Michael; Kwiat, Jonathan] Brooklyn Coll, Biol, Bedford Ave, Brooklyn, NY 11210 USA; [Bhattacharya, Sharmila] NASA, Ames Res Ctr, Space Biosci Res Branch, Moffett Blvd, Mountain View, CA 94035 USA Govind, S (reprint author), CUNY City Coll, Biol, Convent Ave, New York, NY 10031 USA.; Govind, S (reprint author), CUNY, Grad Ctr, Biochem, 5th Ave, New York, NY 10016 USA.; Govind, S (reprint author), CUNY, Grad Ctr, Biol, 5th Ave, New York, NY 10016 USA. sgovind@ccny.cuny.edu NASA [NNX15AB42G]; NSF [IOS-1121817]; NIH [1F31GM111052-01A1, G12MD007603-30] We would like to thank E. Miller, J. Crissman, and J. Berriman along with Govind and Singh lab members (M. Badri, H. Chiu, A. Hudgins, J. Morales, I. Paddibhatla, R. Rajwani, S. Shamburger, and B. Wey) for discussions, experimental assistance, and reagents. This work was supported by grants from NASA (NNX15AB42G), the NSF (IOS-1121817), and the NIH (1F31GM111052-01A1 and G12MD007603-30). Altschul SF, 1997, NUCLEIC ACIDS RES, V25, P3389, DOI 10.1093/nar/25.17.3389; Arizmendi O, 2016, INFECT IMMUN, V84, P1857, DOI 10.1128/IAI.01483-15; Asgari S, 2002, INSECT MOL BIOL, V11, P477, DOI 10.1046/j.1365-2583.2002.00356.x; Asgari S, 2011, ANNU REV ENTOMOL, V56, P313, DOI 10.1146/annurev-ento-120709-144849; Bateman A, 2015, NUCLEIC ACIDS RES, V43, pD204, DOI 10.1093/nar/gku989; BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1006/abio.1976.9999; Chen TW, 2012, BMC GENOMICS, V13, DOI 10.1186/1471-2164-13-S7-S9; Chiu H, 2002, CELL DEATH DIFFER, V9, P1379, DOI 10.1038/sj.cdd.4401134; Chiu HL, 2006, J GEN VIROL, V87, P461, DOI 10.1099/vir.0.81474-0; Colinet D, 2007, PLOS PATHOG, V3, P2029, DOI 10.1371/journal.ppat.0030203; Colinet D, 2013, INSECT BIOCHEM MOLEC, V43, P601, DOI 10.1016/j.ibmb.2013.03.010; Conesa A, 2005, BIOINFORMATICS, V21, P3674, DOI 10.1093/bioinformatics/bti610; Tommaso P, 2011, NUCLEIC ACIDS RES, V39, pW13, DOI 10.1093/nar/gkr245; Edgar RC, 2004, BMC BIOINFORMATICS, V5, P1, DOI 10.1186/1471-2105-5-113; Edgar RC, 2004, NUCLEIC ACIDS RES, V32, P1792, DOI 10.1093/nar/gkh340; Eswar N, 2003, NUCLEIC ACIDS RES, V31, P3375, DOI 10.1093/nar/gkg543; Fang SL, 2009, APPL ENVIRON MICROB, V75, P5237, DOI 10.1128/AEM.00532-09; Fauvarque MO, 2002, MICROB PATHOGENESIS, V32, P287, DOI 10.1006/mpat.2002.0504; Ferrarese R, 2009, J EXP BIOL, V212, P2261, DOI 10.1242/jeb.025718; Finn RD, 2010, NUCLEIC ACIDS RES, V38, pD211, DOI 10.1093/nar/gkp985; Fiser A, 2000, PROTEIN SCI, V9, P1753, DOI 10.1110/ps.9.9.1753; Formesyn EM, 2013, J INSECT PHYSIOL, V59, P795, DOI 10.1016/j.jinsphys.2013.05.004; Frishman D, 1995, PROTEINS, V23, P566, DOI 10.1002/prot.340230412; Goecks J, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064125; Gould SB, 2016, TRENDS MICROBIOL, V24, P525, DOI 10.1016/j.tim.2016.03.005; GROSS CH, 1994, J GEN VIROL, V75, P1115, DOI 10.1099/0022-1317-75-5-1115; Gueguen G, 2013, PLOS PATHOG, V9, DOI 10.1371/journal.ppat.1003580; Gueguen G, 2012, APPL ENVIRON MICROB, V78, P5962, DOI 10.1128/AEM.01058-12; Gueguen G, 2011, VIRUS RES, V160, P159, DOI 10.1016/j.virusres.2011.06.005; Heavner ME, 2014, CURR OPIN INSECT SCI, V6, P61, DOI 10.1016/j.cois.2014.09.016; Heavner ME, 2013, GENE, V526, P195, DOI 10.1016/j.gene.2013.04.080; Hekkelman ML, 2010, NUCLEIC ACIDS RES, V38, pW719, DOI 10.1093/nar/gkq453; Herniou EA, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2013.0051; Holm L, 2010, NUCLEIC ACIDS RES, V38, pW545, DOI 10.1093/nar/gkq366; Hueck CJ, 1998, MICROBIOL MOL BIOL R, V62, P379; John B, 2003, NUCLEIC ACIDS RES, V31, P3982, DOI 10.1093/nar/gkg460; Johnson S, 2007, J BIOL CHEM, V282, P4035, DOI 10.1074/jbc.M607945200; Jones P, 2014, BIOINFORMATICS, V30, P1236, DOI 10.1093/bioinformatics/btu031; Kalra H, 2012, PLOS BIOL, V10, DOI 10.1371/journal.pbio.1001450; Kanehisa M, 2016, J MOL BIOL, V428, P726, DOI 10.1016/j.jmb.2015.11.006; Keerthikumar S, 2016, J MOL BIOL, V428, P688, DOI 10.1016/j.jmb.2015.09.019; Kelley LA, 2009, NAT PROTOC, V4, P363, DOI 10.1038/nprot.2009.2; Krivov GG, 2009, PROTEINS, V77, P778, DOI 10.1002/prot.22488; Kroemer JA, 2006, J VIROL, V80, P12219, DOI 10.1128/JVI.01187-06; Krzywinski M, 2009, GENOME RES, V19, P1639, DOI 10.1101/gr.092759.109; Lamiable O, 2016, P NATL ACAD SCI USA, V113, P698, DOI 10.1073/pnas.1516122113; Lee HS, 2012, PROTEINS, V80, P93, DOI 10.1002/prot.23165; Lee MJ, 2009, ADV PARASIT, V70, P123, DOI 10.1016/S0065-308X(09)70005-3; Leipe DD, 2002, J MOL BIOL, V317, P41, DOI 10.1006/jmbi.2001.5378; LUTHY R, 1992, NATURE, V356, P83, DOI 10.1038/356083a0; Marchler-Bauer A, 2004, NUCLEIC ACIDS RES, V32, pW327, DOI 10.1093/nar/gkh454; Marchler-Bauer A, 2011, NUCLEIC ACIDS RES, V39, pD225, DOI 10.1093/nar/gkq1189; Martinson EO, 2016, MOL BIOL EVOL, V33, P1042, DOI 10.1093/molbev/msv348; Morales J, 2005, J INSECT PHYSIOL, V51, P181, DOI 10.1016/j.jinsphys.2004.11.002; Mortimer NT, 2013, P NATL ACAD SCI USA, V110, P9427, DOI 10.1073/pnas.1222351110; NEEDLEMAN SB, 1970, J MOL BIOL, V48, P443, DOI 10.1016/0022-2836(70)90057-4; Oyallon J, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0148978; Pathan M, 2015, PROTEOMICS, V15, P2597, DOI 10.1002/pmic.201400515; Pennacchio F, 2006, ANNU REV ENTOMOL, V51, P233, DOI 10.1146/annurev.ento.51.110104.151029; Pruitt KD, 2005, NUCLEIC ACIDS RES, V33, pD501, DOI 10.1093/nar/gki025; RIZKI RM, 1990, P NATL ACAD SCI USA, V87, P8388, DOI 10.1073/pnas.87.21.8388; Robert X, 2014, NUCLEIC ACIDS RES, V42, pW320, DOI 10.1093/nar/gku316; Roy A, 2012, NUCLEIC ACIDS RES, V40, pW471, DOI 10.1093/nar/gks372; Salazar-Jaramillo L, 2014, GENOME BIOL EVOL, V6, P273, DOI 10.1093/gbe/evu012; SALI A, 1993, J MOL BIOL, V234, P779, DOI 10.1006/jmbi.1993.1626; Schiavolin L, 2013, MOL MICROBIOL, V88, P268, DOI 10.1111/mmi.12185; Schlenke TA, 2007, PLOS PATHOG, V3, P1486, DOI 10.1371/journal.ppat.0030158; SHCHELKUNOV SN, 1993, VIRUS RES, V27, P25, DOI 10.1016/0168-1702(93)90110-9; Sievers F, 2011, MOL SYST BIOL, V7, DOI 10.1038/msb.2011.75; Silverman JM, 2011, CELL MICROBIOL, V13, P1, DOI 10.1111/j.1462-5822.2010.01537.x; Simpson RJ, 2012, J EXTRACELL VESICLES, V1, DOI 10.3402/jev.v1i0.18374; Sorrentino RP, 2002, DEV BIOL, V243, P65, DOI 10.1006/dbio.2001.0542; Strand MR, 2014, ANNU REV VIROL, V1, P333, DOI 10.1146/annurev-virology-031413-085451; Strand MR, 2012, PLOS PATHOG, V8, DOI 10.1371/journal.ppat.1002757; Trott O, 2010, J COMPUT CHEM, V31, P455, DOI 10.1002/jcc.21334; Vizcaino JA, 2016, NUCLEIC ACIDS RES, V44, P11033, DOI 10.1093/nar/gkw880; Wass MN, 2010, NUCLEIC ACIDS RES, V38, pW469, DOI 10.1093/nar/gkq406; Wiederstein M, 2007, NUCLEIC ACIDS RES, V35, pW407, DOI 10.1093/nar/gkm290; Wu ST, 2007, NUCLEIC ACIDS RES, V35, P3375, DOI 10.1093/nar/gkm251; Xiang ZX, 2002, P NATL ACAD SCI USA, V99, P7432, DOI 10.1073/pnas.102179699; Xu D, 2012, PROTEINS, V80, P1715, DOI 10.1002/prot.24065; Xu D, 2011, BIOPHYS J, V101, P2525, DOI 10.1016/j.bpj.2011.10.024; Yang JY, 2013, BIOINFORMATICS, V29, P2588, DOI 10.1093/bioinformatics/btt447; Zhang Y, 2005, NUCLEIC ACIDS RES, V33, P2302, DOI 10.1093/nar/gki524; Zhang Y, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-40 85 1 1 3 19 CELL PRESS CAMBRIDGE 50 HAMPSHIRE ST, FLOOR 5, CAMBRIDGE, MA 02139 USA 0960-9822 1879-0445 CURR BIOL Curr. Biol. SEP 25 2017 27 18 2869 + 10.1016/j.cub.2017.08.019 15 Biochemistry & Molecular Biology; Cell Biology Biochemistry & Molecular Biology; Cell Biology FI0AS WOS:000411581800035 28889977 2018-11-22 J Braccini, M; Taylor, S; Bruce, B; McAuley, R Braccini, Matias; Taylor, Stephen; Bruce, Barry; McAuley, Rory Modelling the population trajectory of West Australian white sharks ECOLOGICAL MODELLING English Article Demography; Risk; Monte Carlo simulation; Density dependence; Management; Conservation NORTH-ATLANTIC OCEAN; NATURAL MORTALITY; CARCHARODON-CARCHARIAS; ISURUS-OXYRINCHUS; SHORTFIN MAKO; CONSERVATION; AGE; GROWTH; FISH; ELASMOBRANCHS White sharks (Carcharodon carcharias) are globally distributed, protected in several countries, including Australia, and potentially dangerous to humans. Following a recent spate of fatal white shark attacks, the Government of Western Australia introduced a range of initiatives to mitigate shark hazards. An increasing trend in shark attacks over the last 20 years has been commonly perceived to be the result of an increase in population abundance since the species' protection in Australian waters in 1997. We modelled potential population productivity and trajectories using different scenarios of life-history strategies, unexploited population sizes, reconstructed fishery catches and post-capture mortality. Under zero fishing mortality, the potential annual increase in population abundance varied from 2 to 6% per year, depending upon the assumed life history strategy. Depending upon model inputs there was a wide range of potential declines in abundance since 1938/39 and significant differences in the potential population trajectories since protection. However, no scenario (n = 120) resulted in a total population increase of >31% since protection, with most scenarios showing population increase of 10% or less. We present a method for exploring the effects of alternative hypotheses about key population parameters when data are scarce and when scientific advice is required for guiding decision making and informing public debate. (C) 2017 Elsevier B.V. All rights reserved. [Braccini, Matias; Taylor, Stephen; McAuley, Rory] Western Australian Fisheries & Marine Res Labs, Dept Fisheries Western Australia, POB 20, North Beach, WA 6920, Australia; [Bruce, Barry] CSIRO Oceans & Atmosphere, POB 1538, Hobart, Tas 7001, Australia Braccini, M (reprint author), Western Australian Fisheries & Marine Res Labs, Dept Fisheries Western Australia, POB 20, North Beach, WA 6920, Australia. Matias.Braccini@fish.wa.gov.au WA Government's Shark Hazard Mitigation Strategy; Australian Government's National Environmental Science Program, Marine Biodiversity Hub This study was funded through the WA Government's Shark Hazard Mitigation Strategy. Barry Bruce was supported by the Australian Government's National Environmental Science Program, Marine Biodiversity Hub. Aires-da-Silva AM, 2007, MAR FRESHWATER RES, V58, P570, DOI 10.1071/MF06156; Andrews AH, 2015, ENVIRON BIOL FISH, V98, P971, DOI 10.1007/s10641-014-0326-8; Au D. W., 2008, SHARKS OPEN OCEAN BI, P298, DOI [10. 1002/9781444302516, DOI 10.1002/9781444302516.CH26]; Blower DC, 2012, MAR ECOL PROG SER, V455, P229, DOI 10.3354/meps09659; Bonfil R, 2005, SCIENCE, V310, P100, DOI 10.1126/science.1114898; Boustany AM, 2002, NATURE, V415, P35, DOI 10.1038/415035b; Bruce B, 2015, J FISH BIOL, V87, P1355, DOI 10.1111/jfb.12827; Bruce BD, 2006, MAR BIOL, V150, P161, DOI 10.1007/s00227-006-0325-1; Bruce B. D, 2008, SHARKS OPEN OCEAN, P69; Bruce Barry D., 2012, P225; Burgess GH, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098078; Cailliet G.M., 1985, Memoirs of the Southern California Academy of Sciences, V9, P49; Cailliet GM, 2004, CRC MAR BIOL SER, P399; Caswell H, 2001, MATRIX POPULATION MO; Chapple TK, 2011, BIOL LETTERS, V7, P581, DOI 10.1098/rsbl.2011.0124; CHEN S, 1989, NIPPON SUISAN GAKK, V55, P205; Christiansen HM, 2016, MAR BIOL, V163, DOI 10.1007/s00227-016-2916-9; Cope JM, 2013, FISH RES, V142, P3, DOI 10.1016/j.fishres.2012.03.006; Cortes E, 1998, FISH RES, V39, P199, DOI 10.1016/S0165-7836(98)00183-0; Cortes E, 2002, CONSERV BIOL, V16, P1048, DOI 10.1046/j.1523-1739.2002.00423.x; Courtney DL, 2016, N AM J FISH MANAGE, V36, P523, DOI 10.1080/02755947.2015.1131779; DEWHA, 2013, REC PLAN WHIT SHARK; Domeier M., 2013, ANIM BIOTELEM, V1, P2, DOI DOI 10.1186/2050-3385-1-2; Dudgeon CL, 2015, CONSERV GENET, V16, P1443, DOI 10.1007/s10592-015-0752-y; Dudgeon CL, 2012, J FISH BIOL, V80, P1789, DOI 10.1111/j.1095-8649.2012.03265.x; Dulvy NK, 2008, AQUAT CONSERV, V18, P459, DOI 10.1002/aqc.975; Francis MP, 2015, MAR FRESHWATER RES, V66, P900, DOI 10.1071/MF14186; Francis MP, 1996, GREAT WHITE SHARKS, P157, DOI 10.1016/B978-012415031-7/50016-1; Gislason H, 2010, FISH FISH, V11, P149, DOI 10.1111/j.1467-2979.2009.00350.x; Goldman K.J., 2008, SHARKS OPEN OCEAN BI, P95; Hamady LL, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0084006; HOENIG JM, 1983, FISH B-NOAA, V81, P898; Jensen AL, 1996, CAN J FISH AQUAT SCI, V53, P820, DOI 10.1139/cjfas-53-4-820; Kanive P. E., 2015, FRONTIERS MARINE SCI, V2, P1; Kenchington TJ, 2014, FISH FISH, V15, P533, DOI 10.1111/faf.12027; Lorenzen K, 1996, J FISH BIOL, V49, P627, DOI 10.1111/j.1095-8649.1996.tb00060.x; Malcolm H., 2001, REPORT ENV AUSTR MAR; McAuley RB, 2007, ICES J MAR SCI, V64, P1710, DOI 10.1093/icesjms/fsm146; McPherson JM, 2009, DIVERS DISTRIB, V15, P880, DOI 10.1111/j.1472-4642.2009.00596.x; Mollet HF, 2000, FISH B-NOAA, V98, P299; Mollet HF, 2002, MAR FRESHWATER RES, V53, P503, DOI 10.1071/MF01083; Muter BA, 2013, CONSERV BIOL, V27, P187, DOI 10.1111/j.1523-1739.2012.01952.x; Natanson LJ, 2006, ENVIRON BIOL FISH, V77, P367, DOI 10.1007/s10641-006-9127-z; Natanson LJ, 2015, MAR FRESHWATER RES, V66, P387, DOI 10.1071/MF14127; Neff C, 2012, COAST MANAGE, V40, P88, DOI 10.1080/08920753.2011.639867; Neff CL, 2013, MAR POLICY, V38, P545, DOI 10.1016/j.marpol.2012.06.017; O'Connor J., 2011, AGE GROWTH MOVEMENT; PAULY D, 1980, J CONSEIL, V39, P175; Pawle F., 2015, WEEKEND AUSTR, P17; PETERSON I, 1984, CAN J FISH AQUAT SCI, V41, P1117, DOI 10.1139/f84-131; Portnoy DS, 2009, CONSERV GENET, V10, P1697, DOI 10.1007/s10592-008-9771-2; R Development Core Team, 2011, R LANG ENV STAT COMP; REYNOLDS RW, 1994, J CLIMATE, V7, P929, DOI 10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2; Simpfendorfer CA, 2005, FAO FISH TECH PAP, V474, P143; Smith SE, 1998, MAR FRESHWATER RES, V49, P663, DOI 10.1071/MF97135; Sosa-Nishizaki Oscar, 2012, P393; Sprivulis P, 2014, AUSTRALAS MED J, V7, P137, DOI 10.4066/AMJ.2014.2008; Tanaka S, 2011, MAR FRESHWATER RES, V62, P548, DOI 10.1071/MF10130; Taylor IG, 2013, FISH RES, V142, P15, DOI 10.1016/j.fishres.2012.04.018; Taylor IG, 2005, LOW WAKE FI, V21, P807; Taylor S.M., 2016, 277 DEP FISH PERTH W; Then AY, 2015, ICES J MAR SCI, V72, P82, DOI 10.1093/icesjms/fsu136; Towner AV, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0066035; Ward-Paige CA, 2012, J FISH BIOL, V80, P1844, DOI 10.1111/j.1095-8649.2012.03246.x; Wetzel CR, 2011, FISH RES, V110, P342, DOI 10.1016/j.fishres.2011.04.024; Wintner SP, 1999, FISH B-NOAA, V97, P153; Wright S, 1931, GENETICS, V16, P0097 67 2 2 4 43 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0304-3800 1872-7026 ECOL MODEL Ecol. Model. SEP 24 2017 360 363 377 10.1016/j.ecolmodel.2017.07.024 15 Ecology Environmental Sciences & Ecology FI2MA WOS:000411771800033 2018-11-22 J Chin, K; Feldmann, RM; Tashman, JN Chin, Karen; Feldmann, Rodney M.; Tashman, Jessica N. Consumption of crustaceans by megaherbivorous dinosaurs: dietary flexibility and dinosaur life history strategies SCIENTIFIC REPORTS English Article HERBIVOROUS DINOSAURS; KAIPAROWITS FORMATION; MEDICINE FORMATION; SOUTHERN UTAH; GUT CONTENTS; CUTICLE; WOOD; FOSSIL; FUNGI; ARCHITECTURE Large plant-eating dinosaurs are usually presumed to have been strictly herbivorous, because their derived teeth and jaws were capable of processing fibrous plant foods. This inferred feeding behavior offers a generalized view of dinosaur food habits, but rare direct fossil evidence of diet provides more nuanced insights into feeding behavior. Here we describe fossilized feces (coprolites) that demonstrate recurring consumption of crustaceans and rotted wood by large Late Cretaceous dinosaurs. These multiliter coprolites from the Kaiparowits Formation are primarily composed of comminuted conifer wood tissues that were fungally degraded before ingestion. Thick fragments of laminar crustacean cuticle are scattered within the coprolite contents and suggest that the dinosaurian defecators consumed sizeable crustaceans that sheltered in rotting logs. The diet of decayed wood and crustaceans offered a substantial supply of plant polysaccharides, with added dividends of animal protein and calcium. Nevertheless, it is unlikely that the fossilized fecal residues depict year-round feeding habits. It is more reasonable to infer that these coprolites reflected seasonal dietary shifts-possibly related to the dinosaurs' oviparous breeding activities. This surprising fossil evidence challenges conventional notions of herbivorous dinosaur diets and reveals a degree of dietary flexibility that is consistent with that of extant herbivorous birds. [Chin, Karen] Univ Colorado, Dept Geol Sci, Boulder, CO 80309 USA; [Chin, Karen] Univ Colorado, Museum Nat Hist, Boulder, CO 80309 USA; [Feldmann, Rodney M.; Tashman, Jessica N.] Kent State Univ, Dept Geol, Kent, OH 44242 USA Chin, K (reprint author), Univ Colorado, Dept Geol Sci, Boulder, CO 80309 USA.; Chin, K (reprint author), Univ Colorado, Museum Nat Hist, Boulder, CO 80309 USA. Karen.Chin@colorado.edu Chin, Karen/0000-0003-4925-248X Alisauskas Ray T., 1992, P30; ANKNEY CD, 1980, AUK, V97, P684; BALL JP, 1990, NATO ADV SCI I G-ECO, V20, P95; Barboza PS, 2009, INTEGRATIVE WILDLIFE; Baron MG, 2017, NATURE, V543, P501, DOI 10.1038/nature21700; Barrett PM, 2014, ANNU REV EARTH PL SC, V42, P207, DOI 10.1146/annurev-earth-042711-105515; Barrett Paul M., 2000, P42, DOI 10.1017/CBO9780511549717.004; Bell R., 1970, ANIMAL POPULATIONS R, P111; BLANCHETTE RA, 1991, ANNU REV PHYTOPATHOL, V29, P381, DOI 10.1146/annurev.py.29.090191.002121; BOYDEN TC, 1976, EVOLUTION, V30, P73, DOI 10.1111/j.1558-5646.1976.tb00882.x; Brink KS, 2016, J R SOC INTERFACE, V13, DOI 10.1098/rsif.2016.0626; BRUNE A, 1995, APPL ENVIRON MICROB, V61, P2688; Bull EL, 2001, NORTHWEST SCI, V75, P244; Chin K, 1996, PALAIOS, V11, P280, DOI 10.2307/3515235; Chin K, 2007, PALAIOS, V22, P554, DOI 10.2110/palo.2006.p06-087r; Chin K, 2009, LETHAIA, V42, P185, DOI 10.1111/j.1502-3931.2008.00131.x; Crabtree D., 1987, THESES DISSERTATIONS; Dauphin Y, 2006, ANAL BIOANAL CHEM, V386, P1761, DOI 10.1007/s00216-006-0784-8; DeBlieux Donald D., 2013, P563; Dillaman Richard M., 2013, P140; Eaton J.G., 1990, Mountain Geologist, V27, P27; Echeverria-Saenz S., 2003, NAUPLIUS, V11, P91; FAGER EW, 1968, J ANIM ECOL, V37, P121, DOI 10.2307/2715; FARLOW JO, 1987, PALEOBIOLOGY, V13, P60; Flint PL, 1998, WILSON BULL, V110, P411; Graveland J, 1996, CAN J ZOOL, V74, P1035, DOI 10.1139/z96-115; Halffter G., 1982, NESTING BEHAV DUNG B; Hof CHJ, 1997, PALAIOS, V12, P420, DOI 10.2307/3515381; Houston DC, 1997, P NUTR SOC, V56, P1057, DOI 10.1079/PNS19970110; Hutson JM, 2013, J ARCHAEOL SCI, V40, P4139, DOI 10.1016/j.jas.2013.06.004; Janis C. M., 1992, ANN ZOOL FENN, V28, P201; Jarman P. J., 1979, SERENGETI DYNAMICS E, P130; JARMAN PJ, 1974, BEHAVIOUR, V48, P215, DOI 10.1163/156853974X00345; JENNISON MW, 1957, APPL MICROBIOL, V5, P87; Klasing KC, 1998, COMP AVIAN NUTR; Krapu Gary L., 1992, P1; Lamoot I, 2004, APPL ANIM BEHAV SCI, V86, P105, DOI 10.1016/j.applanim.2003.12.008; LAUNCHBAUGH KL, 1992, GREAT BASIN NAT, V52, P321; Lawton TF, 2003, J SEDIMENT RES, V73, P389, DOI 10.1306/100702730389; Leidy J., 1865, SMITHSON CONTRIB KNO, V14, P212; Mallon JC, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098605; Mallon JC, 2014, PALAEOGEOGR PALAEOCL, V394, P29, DOI 10.1016/j.palaeo.2013.11.014; Mallon JC, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0067182; Mantell G. A., 1851, PETRIFACTIONS THEIR; Miller I. M., 2013, TOP GRAND STAIRCASE, P107; Molnar RE, 2000, J VERTEBR PALEONTOL, V20, P194, DOI 10.1671/0272-4634(2000)020[0194:GCOASA]2.0.CO;2; Morris W. J., 1970, CONTRIBUTIONS SCI LO, V193; Owen-Smith RN, 1988, MEGAHERBIVORES INFLU; PROVENZA FD, 1995, J RANGE MANAGE, V48, P2, DOI 10.2307/4002498; READE AE, 1983, CAN J MICROBIOL, V29, P457, DOI 10.1139/m83-073; Robbins C. T, 1993, WILDLIFE FEEDING NUT; Roberts EM, 2005, CRETACEOUS RES, V26, P307, DOI 10.1016/j.cretres.2005.01.002; Roberts EM, 2007, SEDIMENT GEOL, V197, P207, DOI 10.1016/j.sedgeo.2006.10.001; Roura E, 2013, ANIM FEED SCI TECH, V180, P1, DOI 10.1016/j.anifeedsci.2012.11.001; Rowland HM, 2015, HDB OLFACTION GUSTAT, P957; Salgado L, 2017, SCI REP-UK, V7, DOI 10.1038/srep42778; Sampson S. D., 2010, LEARN LAND S GRAND S, P161; Sampson SD, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1186; Schwarze F, 2000, FUNGAL STRATEGIES WO; Tiffney B. H., 2012, COMPLETE DINOSAUR, P569; Tweet JS, 2008, PALAIOS, V23, P624, DOI 10.2110/palo.2007.p07-044r; Varricchio DJ, 2011, HIST BIOL, V23, P91, DOI 10.1080/08912963.2010.500379; Vincent JFV, 2004, ARTHROPOD STRUCT DEV, V33, P187, DOI 10.1016/j.asd.2004.05.006; Wallis IR, 2012, FUNGAL BIOL-UK, V116, P590, DOI 10.1016/j.funbio.2012.02.007; WallisDeVries MF, 1998, GRAZING CONSERVATION, P275; Waugh DA, 2006, J CRUSTACEAN BIOL, V26, P271, DOI 10.1651/S-2692.1; Waugh DA, 2009, J CRUSTACEAN BIOL, V29, P141, DOI 10.1651/08-3105.1; Weishampel DB, 1989, GEOLOGICAL SOC AM SP, V238, P87, DOI DOI 10.1130/SPE238-P87; WELINDER BS, 1974, COMP BIOCHEM PHYSIOL, V47, P779, DOI 10.1016/0300-9629(74)90037-1; WING SL, 1987, REV PALAEOBOT PALYNO, V50, P179, DOI 10.1016/0034-6667(87)90045-5; WITMER LM, 1995, FUNCTIONAL MORPHOLOGY IN VERTEBRATE PALEONTOLOGY, P19; Woodward HN, 2015, PALEOBIOLOGY, V41, P503, DOI 10.1017/pab.2015.19; ZADRAZIL F, 1982, EUR J APPL MICROBIOL, V15, P167, DOI 10.1007/BF00511242 73 2 2 1 14 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 2045-2322 SCI REP-UK Sci Rep SEP 21 2017 7 11163 10.1038/s41598-017-11538-w 11 Multidisciplinary Sciences Science & Technology - Other Topics FH8BI WOS:000411416400001 28935986 DOAJ Gold, Green Published 2018-11-22 J Latour, RJ; Gartland, J; Bonzek, CF Latour, Robert J.; Gartland, James; Bonzek, Christopher F. Spatiotemporal trends and drivers of fish condition in Chesapeake Bay MARINE ECOLOGY PROGRESS SERIES English Article Fish condition; Bottom-up controls; Chesapeake Bay; Ecosystem-based management; Linear mixed effects models; LME; Dynamic factor analysis; DFA DYNAMIC FACTOR-ANALYSIS; BASS MORONE-SAXATILIS; SMALL PELAGIC FISH; COD GADUS-MORHUA; CLIMATE-CHANGE; CONDITION INDEXES; STRIPED BASS; ENVIRONMENTAL VARIABILITY; NUTRIENT ENRICHMENT; BODY CONDITION Measures of condition in fishes are often used to assess the general well`-being of fish populations since condition reflects the biotic and abiotic factors experienced by individuals over moderate time scales. Fish condition can also be used as an indicator of ecosystem suitability in the context of ecosystembased management. From an ecosystem perspective, evaluation of fish condition is best described over multiple spatiotemporal scales and in a multi`-species context. This study analyzed 14 yr (2002-2015) of fisheries-independent trawl survey data to evaluate trends in condition for 16 demersal fishes inhabiting Chesapeake Bay, the largest estuary in the USA. Seasonal and spatial variability in condition were inferred from linear mixed`-effects models, while dynamic factor analysis (DFA) was used to reveal coherence among and drivers of annual trends in condition across all species and for 3 subgroups representing trophic guilds. Patterns of intra`-annual condition varied among species, likely reflecting life history strategies and physiological responses to seasonal environmental conditions, while spatial patterns showed improved condition for both coastal and oligohaline species with increasing distance from their source. Annual trends in condition showed remarkable coherence for all fishes and for species within each trophic guild, suggesting that factors influencing condition-based indicators of ecosystem suitability operate at the community level. Spring mean surface chl a concentration was included in the selected DFA model for nearly all groups (exception: benthivores) and was statistically significant for several species, indicating the importance of bottom`-up processes on bay-wide annual fish condition. [Latour, Robert J.; Gartland, James; Bonzek, Christopher F.] Virginia Inst Marine Sci, Coll William & Mary, Gloucester Point, VA 23062 USA Latour, RJ (reprint author), Virginia Inst Marine Sci, Coll William & Mary, Gloucester Point, VA 23062 USA. latour@vims.edu NOAA Chesapeake Bay Office; Virginia Environmental Endowment; US Fish and Wildlife Service; Virginia Marine Resources Commission The authors wish to acknowledge field and sample processing efforts of past and present members of the Multispecies Research Group at the Virginia Institute of Marine Science. Captains L.D. Ward, J. Olney Jr., and K. Mayer and past vessel crew members deserve thanks for their contributions to field operations. C. Peterson provided thoughtful insights regarding statistical analyses. Comments provided by 3 anonymous reviewers helped improve this manuscript. Funding was provided by the NOAA Chesapeake Bay Office, the Virginia Environmental Endowment, the US Fish and Wildlife Service, and the Virginia Marine Resources Commission. This is contribution no. 3660 of the Virginia Institute of Marine Science, College of William & Mary. Akaike H., 1973, 2 INT S INF THEOR, P267, DOI DOI 10.1007/978-1-4612-1694-0_; Arkema KK, 2006, FRONT ECOL ENVIRON, V4, P525, DOI 10.1890/1540-9295(2006)4[525:MEMFCT]2.0.CO;2; BAIRD D, 1989, ECOL MONOGR, V59, P329, DOI 10.2307/1943071; Beck MW, 2001, BIOSCIENCE, V51, P633, DOI 10.1641/0006-3568(2001)051[0633:TICAMO]2.0.CO;2; Breitburg D, 2002, ESTUARIES, V25, P767, DOI 10.1007/BF02804904; Breitburg DL, 2009, HYDROBIOLOGIA, V629, P31, DOI 10.1007/s10750-009-9762-4; Brosset P, 2015, MAR ECOL PROG SER, V529, P219, DOI 10.3354/meps11275; Brosset P, 2015, J EXP MAR BIOL ECOL, V462, P90, DOI 10.1016/j.jembe.2014.10.016; Browman HI, 2004, MAR ECOL PROG SER, V274, P269, DOI 10.3354/meps274269; BRUSH GS, 1989, LIMNOL OCEANOGR, V34, P1235, DOI 10.4319/lo.1989.34.7.1235; Buchheister A, 2015, J FISH BIOL, V86, P967, DOI 10.1111/jfb.12621; Buchheister A, 2013, MAR ECOL PROG SER, V481, P161, DOI 10.3354/meps10253; Burnham KP, 2002, MODEL SELECTION MULT; Craig JK, 2012, MAR ECOL PROG SER, V445, P75, DOI 10.3354/meps09437; Curtin R, 2010, MAR POLICY, V34, P821, DOI 10.1016/j.marpol.2010.01.003; Day J.W., 1989, ESTUARINE ECOLOGY; Diaz R. J., 1990, PERSPECTIVES CHESAPE, P25; DOWNING JA, 1990, CAN J FISH AQUAT SCI, V47, P1929, DOI 10.1139/f90-217; Dulvy NK, 2008, J APPL ECOL, V45, P1029, DOI 10.1111/j.1365-2664.2008.01488.x; Fahay MP, 2010, ECOLOGY ESTUARINE FI; Fulton T. W., 1904, 22 ANN REP FISH BOAR, P141; Gauthier DT, 2008, ECOL APPL, V18, P1718, DOI 10.1890/07-2083.1; Gauthier DT, 2010, APPL ENVIRON MICROB, V76, P6171, DOI 10.1128/AEM.01091-10; Hagy JD, 2004, ESTUARIES, V27, P634, DOI 10.1007/BF02907650; HETTLER WF, 1976, J FISH BIOL, V8, P55, DOI 10.1111/j.1095-8649.1976.tb03907.x; Hixon MA, 2005, ECOLOGY, V86, P2847, DOI 10.1890/04-1455; Hollowed AB, 2013, ICES J MAR SCI, V70, P1023, DOI 10.1093/icesjms/fst081; Holmes E. E., 2014, ANAL MULTIVARIATE TI; Hooper DU, 2005, ECOL MONOGR, V75, P3, DOI 10.1890/04-0922; Jackson JBC, 2001, SCIENCE, V293, P629, DOI 10.1126/science.292.5517.629; Jacobs J, 2009, APPL ENVIRON MICROB, V75, P7378, DOI 10.1128/AEM.01900-09; Jakob EM, 1996, OIKOS, V77, P61, DOI 10.2307/3545585; Jenkins R. E., 1994, FRESHWATER FISHES VI; Jumars PA, 2007, OCEANOGR MAR BIOL, V45, P89, DOI 10.1201/9781420050943.ch3; Jung S, 2003, ESTUAR COAST SHELF S, V58, P335, DOI 10.1016/S0272-7714(03)00085-4; Kemp WM, 2005, MAR ECOL PROG SER, V303, P1, DOI 10.3354/meps303001; Kotrschal K., 1990, J ZOOLOG SYST EVOL R, V28, P166, DOI [10.1111/j.1439-0469.1990.tb00374.x, DOI 10.1111/J.1439-0469.1990.TB00374.X]; Kraus RT, 2005, MAR ECOL PROG SER, V291, P301, DOI 10.3354/meps291301; Lambert Y, 1997, CAN J FISH AQUAT SCI, V54, P104, DOI 10.1139/f96-149; Latour RJ, 2012, CAN J FISH AQUAT SCI, V69, P247, DOI [10.1139/f2011-158, 10.1139/F2011-158]; LECREN ED, 1951, J ANIM ECOL, V20, P201; Lefcheck JS, 2014, ECOSPHERE, V5, DOI 10.1890/ES13-00284.1; Link J., 2010, ECOSYSTEM BASED FISH; Lloret J, 2002, ICES J MAR SCI, V59, P1215, DOI 10.1006/jmsc.2002.1294; Lotze HK, 2006, SCIENCE, V312, P1806, DOI 10.1126/science.1128035; Marshak AR, 2017, ICES J MAR SCI, V74, P414, DOI 10.1093/icesjms/fsw214; Martino EJ, 2010, MAR ECOL PROG SER, V409, P213, DOI 10.3354/meps08586; McPherson LR, 2011, ICES J MAR SCI, V68, P52, DOI 10.1093/icesjms/fsq148; MOSER ML, 1989, J FISH BIOL, V35, P703, DOI 10.1111/j.1095-8649.1989.tb03021.x; Murdy EO, 1997, FISHES CHESAPEAKE BA; Najjar RG, 2010, ESTUAR COAST SHELF S, V86, P1, DOI 10.1016/j.ecss.2009.09.026; Nakagawa S, 2013, METHODS ECOL EVOL, V4, P133, DOI 10.1111/j.2041-210x.2012.00261.x; Nixon SW, 2002, ESTUARIES, V25, P782, DOI 10.1007/BF02804905; NIXON SW, 1995, OPHELIA, V41, P199, DOI 10.1080/00785236.1995.10422044; North EW, 2004, ESTUAR COAST SHELF S, V60, P409, DOI 10.1016/j.ecss.2004.01.011; Nye JA, 2009, MAR ECOL PROG SER, V393, P111, DOI 10.3354/meps08220; Nys LN, 2015, J SEA RES, V103, P50, DOI 10.1016/j.seares.2015.05.006; ODUM WE, 1988, ANNU REV ECOL SYST, V19, P147, DOI 10.1146/annurev.es.19.110188.001051; PARRISH RH, 1995, FISH OCEANOGR, V4, P171, DOI 10.1111/j.1365-2419.1995.tb00070.x; Perry AL, 2005, SCIENCE, V308, P1912, DOI 10.1126/science.1111322; Pikitch EK, 2004, SCIENCE, V305, P346, DOI 10.1126/science.1098222; Pinto R, 2014, ECOL INDIC, V36, P644, DOI 10.1016/j.ecolind.2013.09.015; Pritchard D. W., 1967, ESTUARIES, P37; R Core Team, 2016, R LANG ENV STAT COMP; Ratz HJ, 2003, FISH RES, V60, P369, DOI 10.1016/S0165-7836(02)00132-7; Richards R. Anne, 1999, North American Journal of Fisheries Management, V19, P356, DOI 10.1577/1548-8675(1999)019<0356:ACHOEF>2.0.CO;2; RICKER WE, 1975, B FISH RES BOARD CAN, V191; Roessig JM, 2004, REV FISH BIOL FISHER, V14, P251, DOI 10.1007/s11160-004-6749-0; ROTHSCHILD BJ, 1994, MAR ECOL PROG SER, V111, P29, DOI 10.3354/meps111029; Scharf FS, 2000, MAR ECOL PROG SER, V208, P229, DOI 10.3354/meps208229; Schmidt-Nielsen K, 1997, ANIMAL PHYSL ADAPTAT; SEARLE SR, 1980, AM STAT, V34, P216, DOI 10.2307/2684063; Stachura MM, 2014, CAN J FISH AQUAT SCI, V71, P226, DOI 10.1139/cjfas-2013-0367; Stevenson RD, 2006, INTEGR COMP BIOL, V46, P1169, DOI 10.1093/icb/icl052; Vasconcelos RP, 2009, ESTUAR COAST SHELF S, V82, P128, DOI 10.1016/j.ecss.2009.01.002; Vila-Gispert A, 2001, J FISH BIOL, V58, P1658, DOI 10.1006/jfbi.2001.1574; Wagner CM, 1999, MAR ECOL PROG SER, V177, P197, DOI 10.3354/meps177197; WAHL CM, 1993, CAN J FISH AQUAT SCI, V50, P743, DOI 10.1139/f93-085; Wilberg MJ, 2011, MAR ECOL PROG SER, V436, P131, DOI 10.3354/meps09161; Wood RJ, 2009, CAN J FISH AQUAT SCI, V66, P496, DOI 10.1139/F09-013; Zuur A. F., 2009, MIXED EFFECTS MODELS; Zuur AF, 2003, CAN J FISH AQUAT SCI, V60, P542, DOI 10.1139/F03-030; Zuur AF, 2003, ENVIRONMETRICS, V14, P665, DOI 10.1002/env.611 83 0 0 7 9 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. SEP 14 2017 579 1 17 10.3354/meps12280 17 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography FR5EX WOS:000419090800001 Bronze 2018-11-22 J Sorochan, KA; Metaxas, A Sorochan, Kevin A.; Metaxas, Anna The effect of temperature on motility of the nauplius and cypris stages of the acorn barnacle Semibalanus balanoides MARINE ECOLOGY PROGRESS SERIES English Article Swimming speed; Random walk; Motility; Larval barnacle; Cypris; Nauplius; Meroplankton MARINE INVERTEBRATE LARVAE; VERTICAL-DISTRIBUTION; SWIMMING SPEEDS; THERMAL STRATIFICATION; HYDROSTATIC-PRESSURE; CRUSTACEAN LARVAE; ENCOUNTER RATES; PATTERNS; BEHAVIOR; PLANKTON Variability in motility of planktonic larval marine benthic invertebrates with environmental conditions can affect the dispersal and survival of individuals by its influence on encounters with food and predators, horizontal transport, and settlement. We quantified the swimming speed and directional persistence, expressed as a persistence time and persistence length(i.e. run duration, and run length of a random walker), of nauplii and cyprids of the acorn barnacle Semibalanus balanoides over a temperature range of 0 to 12 degrees C. We fit persistence time and length parameters in a correlated random walk model to displacement data obtained from video-recordings in 2D (horizontal and vertical dimensions). Nauplii (stages 2 and 6) were generally characterized by lower swimming speeds (nauplii: 0.98 to 2.54 mm s(-1); cyprids: 2.56 to 3.19 mm s(-1)), higher persistence times (nauplii: 1.18 to 5.49 s; cyprids: 0.29 to 0.92 s), and higher persistence lengths (nauplii: 1.52 to 11.12 mm; cyprids: 0.96 to 2.80 mm). Significant correlations be tween temperature and persistence length resulted from the effect of temperature on swimming speed for stage 6 nauplii and persistence time for cyprids. Analyses indicated directional bias of each swimming metric in the vertical dimension. Although the correlated random walk model is an idealized model of animal movement, we suggest that the quantification of directional persistence of larval marine benthic invertebrates can provide new insight into the evolutionary trade-offs associated with feeding and non-feeding life history strategies. [Sorochan, Kevin A.; Metaxas, Anna] Dalhousie Univ, Dept Oceanog, Halifax, NS B3H 4R2, Canada Sorochan, KA (reprint author), Dalhousie Univ, Dept Oceanog, Halifax, NS B3H 4R2, Canada. kevin.sorochan@dal.ca Natural Sciences and Engineering Research Council (NSERC); NSERC Postgraduate Scholarship; Dalhousie Faculty of Graduate studies scholarship John Batt and Jim Eddington provided assistance with experiments. Kelsey Desilets, Jared McLellan, and Nathan Grant provided assistance with larval rearing, stage identification, and larval track extraction, respectively. This research was supported by a Natural Sciences and Engineering Research Council (NSERC) Discovery grant to A.M. and a NSERC Postgraduate Scholarship and Dalhousie Faculty of Graduate studies scholarship to K.A.S. Anderson DT, 1994, LARVAL DEV METAMORPH, P197; Bianco G, 2014, J R SOC INTERFACE, V11, DOI 10.1098/rsif.2014.0164; Blair D, 2008, MATLAB PARTICLE TRAC; Bousfield E. L., 1954, Bulletin National Museum of Canada, VNo. 132, P112; Bousfield E. L., 1955, Bulletin National Museum of Canada, VNo. 137, P1; BUSKEY EJ, 1988, B MAR SCI, V43, P783; CHIA FS, 1984, CAN J ZOOL, V62, P1205, DOI 10.1139/z84-176; Codling EA, 2008, J R SOC INTERFACE, V5, P813, DOI 10.1098/rsif.2008.0014; CRISP D. J., 1962, CRUSTACEANA, V3, P207, DOI 10.1163/156854062X00436; CRISP DJ, 1973, MAR BIOL, V23, P327, DOI 10.1007/BF00389340; Daigle RM, 2012, J EXP MAR BIOL ECOL, V438, P14, DOI 10.1016/j.jembe.2012.09.004; Daigle RM, 2011, J EXP MAR BIOL ECOL, V409, P89, DOI 10.1016/j.jembe.2011.08.008; DiBacco C, 2011, MAR ECOL PROG SER, V433, P131, DOI 10.3354/meps09186; Dunn G A, 1983, Agents Actions Suppl, V12, P14; Fiksen O, 2007, MAR ECOL PROG SER, V347, P195, DOI 10.3354/meps06978; FORWARD RB, 1989, MAR BIOL, V102, P195, DOI 10.1007/BF00428280; FORWARD RB, 1990, BIOL BULL-US, V178, P195, DOI 10.2307/1541819; GERRITSEN J, 1977, J FISH RES BOARD CAN, V34, P73, DOI 10.1139/f77-008; Gorski PR, 1996, LIMNOL OCEANOGR, V41, P1815, DOI 10.4319/lo.1996.41.8.1815; GROSBERG RK, 1982, ECOLOGY, V63, P894, DOI 10.2307/1937228; HIDU H, 1978, ESTUARIES, V1, P252, DOI 10.2307/1351527; HIRCHE HJ, 1987, MAR BIOL, V94, P347, DOI 10.1007/BF00428240; Kiorboe T, 2005, LIMNOL OCEANOGR, V50, P1999, DOI 10.4319/lo.2005.50.6.1999; Kiorboe T, 2004, AQUAT MICROB ECOL, V35, P141, DOI 10.3354/ame035141; Kiorboe T, 2011, BIOL REV, V86, P311, DOI 10.1111/j.1469-185X.2010.00148.x; LANG WH, 1980, J EXP MAR BIOL ECOL, V42, P201, DOI 10.1016/0022-0981(80)90176-8; Larsen PS, 2009, J EXP MAR BIOL ECOL, V381, P67, DOI 10.1016/j.jembe.2009.09.021; Larsen PS, 2008, AQUAT BIOL, V4, P47, DOI 10.3354/ab00093; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; LINCOLN RJ, 1971, J EXP BIOL, V54, P677; Litchman E, 2013, J PLANKTON RES, V35, P473, DOI 10.1093/plankt/fbt019; LUCAS MI, 1979, MAR BIOL, V55, P221, DOI 10.1007/BF00396822; Matsuno K, 2012, ICES J MAR SCI, V69, P1205, DOI 10.1093/icesjms/fss119; McDonald K, 2004, BIOL BULL-US, V207, P93, DOI 10.2307/1543584; Menden-Deuer S, 2006, LIMNOL OCEANOGR, V51, P109, DOI 10.4319/lo.2006.51.1.0109; Metaxas A, 2009, BIOL BULL-US, V216, P257; Moison M, 2012, AQUAT BIOL, V16, P149, DOI 10.3354/ab00438; Ouellet P, 2006, FISH OCEANOGR, V15, P373, DOI 10.1111/j-1365-2419.2005.00394.x; Pineda J, 2002, MAR BIOL, V140, P789, DOI 10.1007/s00227-001-0751-z; Pineda J, 1999, LIMNOL OCEANOGR, V44, P1400, DOI 10.4319/lo.1999.44.6.1400; PODOLSKY RD, 1993, J EXP BIOL, V176, P207; Queiroga H, 2005, ADV MAR BIOL, V47, P107; RICE AL, 1964, J MAR BIOL ASSOC UK, V44, P163, DOI 10.1017/S0025315400024723; Schuech R., 2014, LIMNOL OCEANOGR FLUI, V4, P1, DOI DOI 10.1215/L0F3.V4.1; SHANKS AL, 1987, J EXP MAR BIOL ECOL, V114, P1; Singarajah K. V., 1969, Journal of Experimental Marine Biology and Ecology, V3, P171, DOI 10.1016/0022-0981(69)90015-X; Sorochan KA, 2017, J PLANKTON RES, V39, P815, DOI 10.1093/plankt/fbx034; Sorochan KA, 2015, MAR ECOL PROG SER, V541, P105, DOI 10.3354/meps11537; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; SULKIN SD, 1980, BIOL BULL, V159, P402, DOI 10.2307/1541103; Svetlichny L, 2017, J EXP MAR BIOL ECOL, V488, P24, DOI 10.1016/j.jembe.2016.12.005; Taylor GI, 1922, P LOND MATH SOC, V20, P196; Visser AW, 2007, J PLANKTON RES, V29, P447, DOI 10.1093/plankt/fbm029; Visser AW, 2006, OECOLOGIA, V148, P538, DOI 10.1007/s00442-006-0385-4; Walker G, 2004, J MAR BIOL ASSOC UK, V84, P737, DOI 10.1017/S002531540400983Xh; Walker G., 1987, Crustacean Issues, V5, P307; YULE AB, 1984, MAR BIOL LETT, V5, P1; Zar JH, 1999, BIOSTATISTICAL ANAL 58 0 0 6 12 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. SEP 14 2017 579 55 66 10.3354/meps12246 12 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography FR5EX WOS:000419090800004 2018-11-22 J Bloomer, RH; Dean, C Bloomer, R. H.; Dean, C. Fine-tuning timing: natural variation informs the mechanistic basis of the switch to flowering in Arabidopsis thaliana JOURNAL OF EXPERIMENTAL BOTANY English Review Arabidopsis; epigenetics; FLC; flowering; natural variation; vernalization QUANTITATIVE TRAIT LOCI; MADS-BOX GENES; CIS-REGULATORY VARIATION; INBRED LINE POPULATIONS; ENABLES DROUGHT ESCAPE; REPRESSIVE COMPLEX 2; TRANSCRIPTION FACTOR; BRASSICA-NAPUS; ANTISENSE TRANSCRIPTS; EPIGENETIC REGULATION The evolution of diverse life history strategies has allowed Arabidopsis thaliana to adapt to worldwide locations, spanning a range of latitudinal and environmental conditions. Arabidopsis thaliana accessions are either vernalization-requiring winter annuals or rapid cyclers, with extensive natural variation in vernalization requirement and response. Genetic and molecular analysis of this variation has enhanced our understanding of the mechanisms involved in life history determination, with translation to both natural and crop systems in the Brassicaceae and beyond. [Bloomer, R. H.; Dean, C.] John Innes Ctr, Norwich Res Pk, Norwich NR4 7UH, Norfolk, England Dean, C (reprint author), John Innes Ctr, Norwich Res Pk, Norwich NR4 7UH, Norfolk, England. caroline.dean@jic.ac.uk European Seventh Framework programme BBSRC ISP grant [BB/J004588/1]; Advanced ERC grant MEXTIM; EC Marie Curie Fellowship We would like to acknowledge funding from the European Seventh Framework programme BBSRC ISP grant BB/J004588/1, an Advanced ERC grant MEXTIM to CD, and an EC Marie Curie Fellowship to RB. Abe M, 2005, SCIENCE, V309, P1052, DOI 10.1126/science.1115983; Agren J, 2012, NEW PHYTOL, V194, P1112, DOI 10.1111/j.1469-8137.2012.04112.x; Aikawa S, 2010, P NATL ACAD SCI USA, V107, P11632, DOI 10.1073/pnas.0914293107; Albani MC, 2012, PLOS GENET, V8, DOI 10.1371/journal.pgen.1003130; Alonso-Blanco C, 2009, PLANT CELL, V21, P1877, DOI 10.1105/tpc.109.068114; Andres F, 2012, NAT REV GENET, V13, P627, DOI 10.1038/nrg3291; Angel A, 2015, P NATL ACAD SCI USA, V112, P4146, DOI 10.1073/pnas.1503100112; Angel A, 2011, NATURE, V476, P105, DOI 10.1038/nature10241; Atwell S, 2010, NATURE, V465, P627, DOI 10.1038/nature08800; Aukerman MJ, 2003, PLANT CELL, V15, P2730, DOI 10.1105/tpc.016238; Ausin I, 2004, NAT GENET, V36, P162, DOI 10.1038/ng1295; Baduel P, 2016, PLANT PHYSIOL, V171, P437, DOI 10.1104/pp.15.01875; Balasubramanian S, 2006, PLOS GENET, V2, P980, DOI 10.1371/journal.pgen.0020106; Balasubramanian S, 2006, NAT GENET, V38, P711, DOI 10.1038/ng1818; Berry S, 2015, ELIFE, V4, DOI 10.7554/eLife.07205; Bielenberg DG, 2004, J HERED, V95, P436, DOI 10.1093/jhered/esh057; Bielenberg DG, 2008, TREE GENET GENOMES, V4, P495, DOI 10.1007/s11295-007-0126-9; Boss PK, 2004, PLANT CELL, V16, pS18, DOI 10.1105/tpc.015958; Brachi B, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1000940; Castaings L, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms5457; Castillejo C, 2008, CURR BIOL, V18, P1338, DOI 10.1016/j.cub.2008.07.075; Choi K, 2011, PLANT CELL, V23, P289, DOI 10.1105/tpc.110.075911; CLARKE JH, 1994, MOL GEN GENET, V242, P81; Coustham V, 2012, SCIENCE, V337, P584, DOI 10.1126/science.1221881; Crevillen P, 2014, NATURE, V515, P587, DOI 10.1038/nature13722; Crevillen P, 2013, EMBO J, V32, P140, DOI 10.1038/emboj.2012.324; Csorba T, 2014, P NATL ACAD SCI USA, V111, P16160, DOI 10.1073/pnas.1419030111; Davidovich C, 2013, NAT STRUCT MOL BIOL, V20, P1250, DOI 10.1038/nsmb.2679; de Lucas M, 2008, NATURE, V451, P480, DOI 10.1038/nature06520; De Lucia F, 2008, P NATL ACAD SCI USA, V105, P16831, DOI 10.1073/pnas.0808687105; del Olmo I, 2016, NUCLEIC ACIDS RES, V44, P5597, DOI 10.1093/nar/gkw156; Dittmar EL, 2014, MOL ECOL, V23, P4291, DOI 10.1111/mec.12857; Doyle MR, 2005, PLANT J, V41, P376, DOI 10.1111/j.1365-313X.2004.02300.x; Duncan S, 2015, ELIFE, V4, DOI 10.7554/eLife.06620; Ehrenreich IM, 2009, GENETICS, V183, P325, DOI 10.1534/genetics.109.105189; El-Assal SED, 2001, NAT GENET, V29, P435, DOI 10.1038/ng767; El-Lithy ME, 2006, GENETICS, V172, P1867, DOI 10.1534/genetics.105.050617; El-Lithy ME, 2004, PLANT PHYSIOL, V135, P444, DOI 10.1104/pp.103.036822; Feng SH, 2008, NATURE, V451, P475, DOI 10.1038/nature06448; Finnegan EJ, 2007, CURR BIOL, V17, P1978, DOI 10.1016/j.cub.2007.10.026; Fletcher RS, 2016, G3-GENES GENOM GENET, V6, P793, DOI 10.1534/g3.115.021279; Fletcher RS, 2015, J EXP BOT, V66, P245, DOI 10.1093/jxb/eru423; Franks SJ, 2007, P NATL ACAD SCI USA, V104, P1278, DOI 10.1073/pnas.0608379104; Franks SJ, 2016, MOL ECOL, V25, P3622, DOI 10.1111/mec.13615; Gazzani S, 2003, PLANT PHYSIOL, V132, P1107, DOI 10.1104/pp.103.021212; Gendall AR, 2001, CELL, V107, P525, DOI 10.1016/S0092-8674(01)00573-6; Geraldo N, 2009, PLANT PHYSIOL, V150, P1611, DOI 10.1104/pp.109.137448; Greb T, 2007, CURR BIOL, V17, P73, DOI 10.1016/j.cub.2006.11.052; Greenup AG, 2010, PLANT PHYSIOL, V153, P1062, DOI 10.1104/pp.109.152488; Gu XF, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms2947; Gu XF, 2011, PLOS GENET, V7, DOI 10.1371/journal.pgen.1002366; Hawkes EJ, 2016, CELL REP, V16, P3087, DOI 10.1016/j.celrep.2016.08.045; Helliwell CA, 2006, PLANT J, V46, P183, DOI 10.1111/j.1365-313X.2006.02686.x; Helliwell CA, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021513; Hemming MN, 2011, PLANT SCI, V180, P447, DOI 10.1016/j.plantsci.2010.12.001; Heo JB, 2011, SCIENCE, V331, P76, DOI 10.1126/science.1197349; Hepworth J, 2015, PLANT PHYSIOL, V168, P1237, DOI 10.1104/pp.15.00496; Hoffmann MH, 2005, EVOLUTION, V59, P1425; Hornyik C, 2010, DEV CELL, V18, P203, DOI 10.1016/j.devcel.2009.12.009; Horton MW, 2012, NAT GENET, V44, P212, DOI 10.1038/ng.1042; Hou JN, 2012, BMC PLANT BIOL, V12, DOI 10.1186/1471-2229-12-238; Huang CH, 2016, MOL BIOL EVOL, V33, P394, DOI 10.1093/molbev/msv226; Hyun Y, 2016, DEV CELL, V37, P254, DOI 10.1016/j.devcel.2016.04.001; Hyun Y, 2013, DEVELOPMENT, V140, P156, DOI 10.1242/dev.084624; Irwin JA, 2016, PLANT J, V87, P597, DOI 10.1111/tpj.13221; Irwin JA, 2012, BMC PLANT BIOL, V12, DOI 10.1186/1471-2229-12-21; Jang S, 2008, EMBO J, V27, P1277, DOI 10.1038/emboj.2008.68; Jiang DH, 2009, PLANT CELL, V21, P1733, DOI 10.1105/tpc.109.067967; Jimenez S, 2010, PLANT MOL BIOL, V73, P157, DOI 10.1007/s11103-010-9608-5; Johanson U, 2000, SCIENCE, V290, P344, DOI 10.1126/science.290.5490.344; Jung JH, 2013, PLANT CELL, V25, P4378, DOI 10.1105/tpc.113.118364; Kardailsky I, 1999, SCIENCE, V286, P1962, DOI 10.1126/science.286.5446.1962; Kazan K, 2016, J EXP BOT, V67, P47, DOI 10.1093/jxb/erv441; Kemi U, 2013, NEW PHYTOL, V197, P323, DOI 10.1111/j.1469-8137.2012.04378.x; Kiefer C, 2017, MOL ECOL, V26, P3437, DOI 10.1111/mec.14084; Kim DH, 2017, DEV CELL, V40, P302, DOI 10.1016/j.devcel.2016.12.021; Kim SG, 2007, PLANTA, V226, P647, DOI 10.1007/s00425-007-0513-3; Kim S, 2006, PLANT CELL, V18, P2985, DOI 10.1105/tpc.106.045179; Kippes N, 2015, P NATL ACAD SCI USA, V112, pE5401, DOI 10.1073/pnas.1514883112; KOORNNEEF M, 1994, PLANT J, V6, P911, DOI 10.1046/j.1365-313X.1994.6060911.x; Kumar SV, 2012, NATURE, V484, P242, DOI 10.1038/nature10928; Le Corre V, 2002, MOL BIOL EVOL, V19, P1261, DOI 10.1093/oxfordjournals.molbev.a004187; LEE I, 1993, MOL GEN GENET, V237, P171; Lee JH, 2007, GENE DEV, V21, P397, DOI 10.1101/gad.1518407; Lee JH, 2013, SCIENCE, V342, P628, DOI 10.1126/science.1241097; Leida C, 2012, NEW PHYTOL, V193, P67, DOI 10.1111/j.1469-8137.2011.03863.x; Lempe J, 2005, PLOS GENET, V1, P109, DOI 10.1371/journal.pgen.0010006; Li D, 2008, DEV CELL, V15, P110, DOI 10.1016/j.devcel.2008.05.002; Li KX, 2007, PLANT GROWTH REGUL, V53, P195, DOI 10.1007/s10725-007-9218-7; Li PJ, 2015, GENE DEV, V29, P696, DOI 10.1101/gad.258814.115; Li PJ, 2014, GENE DEV, V28, P1635, DOI 10.1101/gad.245993.114; Li XR, 2016, PLANT BIOTECHNOL J, V14, P905, DOI 10.1111/pbi.12443; Liu FQ, 2007, MOL CELL, V28, P398, DOI 10.1016/j.molcel.2007.10.018; Liu FQ, 2010, SCIENCE, V327, P94, DOI 10.1126/science.1180278; Liu J, 2004, GENE DEV, V18, P2873, DOI 10.1101/gad.1217304; Long Y, 2007, GENETICS, V177, P2433, DOI 10.1531/genetics.107.080705; Lovell JT, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1043; Lutz U, 2017, ELIFE, V6, DOI [10.7554/eLife.22114, 10.7554/elife.22114]; Lutz U, 2015, PLOS GENET, V11, DOI 10.1371/journal.pgen.1005588; Marcer A, 2017, PLANT BIOL IN PRESS; Marquardt S, 2014, MOL CELL, V54, P156, DOI 10.1016/j.molcel.2014.03.026; Mazzitelli L, 2007, J EXP BOT, V58, P1035, DOI 10.1093/jxb/erl266; Mendez-Vigo B, 2013, NEW PHYTOL, V197, P1332, DOI 10.1111/nph.12082; Mendez-Vigo B, 2011, PLANT PHYSIOL, V157, P1942, DOI 10.1104/pp.111.183426; Michaels SD, 2003, P NATL ACAD SCI USA, V100, P10102, DOI 10.1073/pnas.1531467100; Mylne J, 2004, COLD SPRING HARB SYM, V69, P457, DOI 10.1101/sqb.2004.69.457; Mylne JS, 2006, P NATL ACAD SCI USA, V103, P5012, DOI 10.1073/pnas.0507427103; NAPPZINN K, 1957, Z INDUKT ABSTAMM VER, V88, P253, DOI 10.1007/BF00308342; Nishio H, 2016, GENES GENET SYST, V91, P15, DOI 10.1266/ggs.15-00071; Niu QF, 2016, J EXP BOT, V67, P239, DOI 10.1093/jxb/erv454; Okazaki K, 2007, THEOR APPL GENET, V114, P595, DOI 10.1007/s00122-006-0460-6; Oliver SN, 2009, P NATL ACAD SCI USA, V106, P8386, DOI 10.1073/pnas.0903566106; Osborn TC, 1997, GENETICS, V146, P1123; Pazhouhandeh M, 2011, P NATL ACAD SCI USA, V108, P3430, DOI 10.1073/pnas.1018242108; Pose D, 2013, NATURE, V503, P414, DOI 10.1038/nature12633; Quadrana L, 2016, ELIFE, V5, DOI [10.7554/elife.15716, 10.7554/eLife.15716]; Questa JI, 2016, SCIENCE, V353, P485, DOI 10.1126/science.aaf7354; Razi H, 2008, THEOR APPL GENET, V116, P179, DOI 10.1007/s00122-007-0657-3; Riboni M, 2016, J EXP BOT, V67, P6309, DOI 10.1093/jxb/erw384; Riboni M, 2013, PLANT PHYSIOL, V162, P1706, DOI 10.1104/pp.113.217729; Rosa S, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms13031; Rosa S, 2013, GENE DEV, V27, P1845, DOI 10.1101/gad.221713.113; Rosas U, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4651; Ruelens P, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms3280; Ryu JY, 2011, MOL CELLS, V32, P295, DOI 10.1007/s10059-011-0112-9; Salome PA, 2011, GENETICS, V188, P421, DOI 10.1534/genetics.111.126607; Sanchez-Bermejo E, 2012, PLANT CELL ENVIRON, V35, P1672, DOI 10.1111/j.1365-3040.2012.02518.x; Sasaki E, 2015, PLOS GENET, V11, DOI 10.1371/journal.pgen.1005597; Sasaki R, 2011, PLANT PHYSIOL, V157, P485, DOI 10.1104/pp.111.181982; Satake A, 2010, J THEOR BIOL, V266, P595, DOI 10.1016/j.jtbi.2010.07.019; Sawa M, 2007, SCIENCE, V318, P261, DOI 10.1126/science.1146994; Schlappi M, 2001, INT J PLANT SCI, V162, P527, DOI 10.1086/320141; Schwartz C, 2009, GENETICS, V183, P723, DOI 10.1534/genetics.109.104984; Schwartz YB, 2013, NAT REV GENET, V14, P853, DOI 10.1038/nrg3603; Searle I, 2006, GENE DEV, V20, P898, DOI [10.1101/gad.373506, 10.1101/gad.3733506]; Sharma N, 2017, PLANT PHYSIOL, V173, P1301, DOI 10.1104/pp.16.01161; Sheerin DJ, 2015, PLANT CELL, V27, P189, DOI 10.1105/tpc.114.134775; Shi JQ, 2009, GENETICS, V182, P851, DOI 10.1534/genetics.109.101642; Shindo C, 2005, PLANT PHYSIOL, V138, P1163, DOI 10.1104/pp.105.061309; Shindo C, 2006, GENE DEV, V20, P3079, DOI 10.1101/gad.405306; Simon M, 2008, GENETICS, V178, P2253, DOI 10.1534/genetics.107.083899; Simpson GG, 2002, SCIENCE, V296, P285, DOI 10.1126/science.296.5566.285; Slotte T, 2009, GENETICS, V183, P337, DOI 10.1534/genetics.109.103705; Song YH, 2012, SCIENCE, V336, P1045, DOI 10.1126/science.1219644; Stinchcombe JR, 2004, P NATL ACAD SCI USA, V101, P4712, DOI 10.1073/pnas.0306401101; Strange A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019949; Suarez-Lopez P, 2001, NATURE, V410, P1116, DOI 10.1038/35074138; Sung SB, 2004, NATURE, V427, P159, DOI 10.1038/nature02195; Sung SB, 2006, NAT GENET, V38, P706, DOI 10.1038/ng1795; Sureshkumar S, 2016, NAT PLANTS, V2, DOI [10.1038/nplants.2016.55, 10.1038/NPLANTS.2016.55]; Suter L, 2014, PLANT PHYSIOL, V166, P1928, DOI 10.1104/pp.114.247346; Swiezewski S, 2009, NATURE, V462, P799, DOI 10.1038/nature08618; Toomajian C, 2006, PLOS BIOL, V4, P732, DOI 10.1371/journal.pbio.0040137; Trevaskis B, 2007, TRENDS PLANT SCI, V12, P352, DOI 10.1016/j.tplants.2007.06.010; Vidigal DS, 2016, PLANT CELL ENVIRON, V39, P1737, DOI 10.1111/pce.12734; Wahl V, 2013, SCIENCE, V339, P704, DOI 10.1126/science.1230406; Wang JW, 2009, CELL, V138, P738, DOI 10.1016/j.cell.2009.06.014; Wang RH, 2009, NATURE, V459, P423, DOI 10.1038/nature07988; Wang ZW, 2014, P NATL ACAD SCI USA, V111, P7468, DOI 10.1073/pnas.1406635111; Weinig C, 2003, GENETICS, V165, P321; Wigge PA, 2005, SCIENCE, V309, P1056, DOI 10.1126/science.1114358; Wilczek AM, 2009, SCIENCE, V323, P930, DOI 10.1126/science.1165826; Wollenberg AC, 2012, PLANT CELL ENVIRON, V35, P2181, DOI 10.1111/j.1365-3040.2012.02548.x; Wu G, 2006, DEVELOPMENT, V133, P3539, DOI 10.1242/dev.02521; Wu Z, 2016, P NATL ACAD SCI USA, V113, P218, DOI 10.1073/pnas.1518369112; Xue ZH, 2016, MOL CELL, V64, P37, DOI 10.1016/j.molcel.2016.08.010; Yamaguchi A, 2005, PLANT CELL PHYSIOL, V46, P1175, DOI 10.1093/pcp/pci151; Yamane H, 2011, J EXP BOT, V62, P3481, DOI 10.1093/jxb/err028; Yan L, 2003, P NATL ACAD SCI USA, V100, P6263, DOI 10.1073/pnas.0937399100; Yan LL, 2004, SCIENCE, V303, P1640, DOI 10.1126/science.1094305; Yang HC, 2016, P NATL ACAD SCI USA, V113, P9369, DOI 10.1073/pnas.1605733113; Yang HC, 2014, CURR BIOL, V24, P1793, DOI 10.1016/j.cub.2014.06.047; Yuan WY, 2016, NAT GENET, V48, P1527, DOI 10.1038/ng.3712; Zhong WJ, 2013, PLANT MOL BIOL, V83, P247, DOI 10.1007/s11103-013-0086-4; Zuo ZC, 2011, CURR BIOL, V21, P841, DOI 10.1016/j.cub.2011.03.048 175 4 4 10 22 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0022-0957 1460-2431 J EXP BOT J. Exp. Bot. SEP 1 2017 68 20 5439 5452 10.1093/jxb/erx270 14 Plant Sciences Plant Sciences FO8SZ WOS:000417159100005 28992087 2018-11-22 J Struthers, DP; Gutowsky, LFG; Enders, EC; Smokorowski, KE; Watkinson, DA; Silva, AT; Cvetkovic, M; Bibeau, E; Cooke, SJ Struthers, Daniel P.; Gutowsky, Lee F. G.; Enders, Eva C.; Smokorowski, Karen E.; Watkinson, Douglas A.; Silva, Ana T.; Cvetkovic, Maja; Bibeau, Eric; Cooke, Steven J. Factors influencing the spatial ecology of Lake Sturgeon and Walleye within an impounded reach of the Winnipeg River ENVIRONMENTAL BIOLOGY OF FISHES English Article Lake Sturgeon; Walleye; Run-of-river Impoundments; Acoustic telemetry; Spatial ecology STIZOSTEDION-VITREUM-VITREUM; HYDROELECTRIC GENERATING-STATION; ACIPENSER-FULVESCENS; SPAWNING BEHAVIOR; NORTHERN ONTARIO; FRAGMENTED RIVER; MOVEMENT; HABITAT; MIGRATION; FISH Impoundments of free-flowing rivers for hydropower generation often confine fish to relatively small reaches that can restrict movement, limit habitat availability, and alter life history strategies. Here, acoustic telemetry was used to describe the seasonal habitat use, locomotory activity, and depth use for Lake Sturgeon (Acipenser fulvescens) and Walleye (Sander vitreus) within an impounded reach on the Winnipeg River, Manitoba, Canada. Lake Sturgeon foraged and overwintered in the riverine-lacustrine transitionary habitat as well as immediately below the tailrace of the upstream run-of-river facility. Walleye demonstrated high site fidelity to the upstream habitat situated near the tailrace of a hydropower facility. Contrary to Lake Sturgeon, that used multiple habitat types, Walleye used the tailrace for spawning, foraging, and overwintering, given their high residency rates throughout all months at this location. Activity for both species increased with water temperature and when residing in habitat types located farther upstream, but were minimally active during the winter season throughout the impounded reach. On average, Lake Sturgeon utilized 73% of the available depth while Walleye utilized 62% of the available depth across habitat types and months. Overall, the habitat located within the tailrace and below run-of-river facilities should be a conservation priority for both Lake Sturgeon and Walleye populations. There was persistent presence of Lake Sturgeon and Walleye throughout the spawning, foraging, and overwintering periods in the SSGS tailrace and within the first rkm downstream of the tailrace. The habitat proximal to run-of-river facilities generally encompasses small areas of the total potential habitat within impoundments, yet is important to both species studied here. The results provide information on the seasonal habitat use and biological responses to environmental cues for Lake Sturgeon and Walleye that will enhance management and ecological understanding for populations that are confined to impounded reaches. [Struthers, Daniel P.; Cooke, Steven J.] Carleton Univ, Dept Biol, Fish Ecol & Conservat Physiol Lab, Ottawa, ON K1S 5B6, Canada; [Gutowsky, Lee F. G.] Ontario Minist Nat Resources & Forestry, Aquat Resource & Monitoring Sect, Peterborough, ON K9L 1Z83, Canada; [Enders, Eva C.; Watkinson, Douglas A.] Fisheries & Oceans Canada, Freshwater Inst, 501 Univ Crescent, Winnipeg, MB R3T 2N6, Canada; [Smokorowski, Karen E.] Fisheries & Oceans Canada, Great Lakes Lab Fisheries & Aquat Sci, 1219 Queen St E, Marie, ON P6A 2E5, Canada; [Silva, Ana T.] Norwegian Inst Nat Res, POB 5685 Sluppen, N-7485 Trondheim, Norway; [Cvetkovic, Maja] Fisheries & Oceans Canada, Great Lakes Lab Fisheries & Aquat Sci, 867 Lakeshore Rd, Burlington, ON L7R 4A6, Canada; [Bibeau, Eric] Univ Manitoba, Dept Mech Engn, Winnipeg, MB R3T 0C4, Canada Struthers, DP (reprint author), Carleton Univ, Dept Biol, Fish Ecol & Conservat Physiol Lab, Ottawa, ON K1S 5B6, Canada. danstruthers88@gmail.com Natural Sciences and Engineering Research Council of Canada; Canadian Research Chairs Program; Fisheries and Oceans Canada; Species at Risk program; Fish Futures Inc. We would like to acknowledge W.M. Gardner, D.R. Leroux, A.D. Waterer, and A. Hossein Birjandi for their assistance with the field operations. S.J. Cooke and E. Bibeau are supported by the Natural Sciences and Engineering Research Council of Canada and the Canadian Research Chairs Program. K.E. Smokorowski and D. A. Watkinson received funding from Fisheries and Oceans Canada, and the Species at Risk program. D.P. Struthers received a scholarship provided by Fish Futures Inc. in support of this research. Allan JD, 1995, STREAMECOLOGY STRUCT, P220; Auer NA, 1996, CAN J FISH AQUAT SCI, V53, P152, DOI 10.1139/cjfas-53-S1-152; BAXTER RM, 1977, ANNU REV ECOL SYST, V8, P255, DOI 10.1146/annurev.es.08.110177.001351; Bednarek AT, 2001, ENVIRON MANAGE, V27, P803, DOI 10.1007/s002670010189; Bozek MA, 2011, BIOLOGY, MANAGEMENT, AND CULTURE OF WALLEYE AND SAUGER, P133; Bruch RM, 2002, J APPL ICHTHYOL, V18, P570, DOI 10.1046/j.1439-0426.2002.00421.x; Cada GF, 1998, INT REV HYDROBIOL, V83, P43; Caro T, 1998, BEHAV ECOLOGY CONSER; Caswell NM, 2004, J APPL ICHTHYOL, V20, P1, DOI 10.1111/j.1439-0426.2004.00499.x; Chiasson WB, 1997, CAN J FISH AQUAT SCI, V54, P2866, DOI 10.1139/cjfas-54-12-2866; CHRISTIE GC, 1988, CAN J FISH AQUAT SCI, V45, P301, DOI 10.1139/f88-036; Cooke SJ, 2004, TRENDS ECOL EVOL, V19, P334, DOI 10.1016/j.tree.2004.04.003; Cooke SJ, 2004, FISH FISH, V5, P21, DOI 10.1111/j.1467-2960.2004.00136.x; COSEWIC, 2005, COSEWIC ASS UPD STAT; Cott P., 2015, ENVIRON REV, V23, P1; CROWE WALTER R., 1962, TRANS AMER FISH SOC, V91, P350, DOI 10.1577/1548-8659(1962)91[350:HBIW]2.0.CO;2; Dempsey D, 2013, GREAT LAKE STURGEON, P192; DePhilip MM, 2005, ENVIRON BIOL FISH, V72, P455, DOI 10.1007/s10641-004-2864-y; DFO (Fisheries and Oceans Canada), 2010, 2010052 DFO CAN SCI; Einfalt LM, 2012, ECOL FRESHW FISH, V21, P560, DOI 10.1111/j.1600-0633.2012.00576.x; ELLIS DV, 1965, T AM FISH SOC, V94, P358, DOI 10.1577/1548-8659(1965)94[358:TSBOTW]2.0.CO;2; Fisheries Manitoba, 2012, MANITOBA LAKE STURGE; Forsythe PS, 2012, J FISH BIOL, V81, P35, DOI 10.1111/j.1095-8649.2012.03308.x; GEEN GH, 1974, J FISH RES BOARD CAN, V31, P913, DOI 10.1139/f74-108; Gutowsky LFG, 2013, ANIM BEHAV, V86, P365, DOI 10.1016/j.anbehav.2013.05.027; GYLLENSTEN U, 1985, J FISH BIOL, V26, P691, DOI 10.1111/j.1095-8649.1985.tb04309.x; Harkness WJK, 1961, LAKE STURGEON HIST I; Hartley KA, 1991, HABITAT INFORM REHAB; Haxton T, 2011, J APPL ICHTHYOL, V27, P45, DOI 10.1111/j.1439-0426.2011.01872.x; Haxton T, 2015, N AM J FISH MANAGE, V35, P537, DOI 10.1080/02755947.2015.1012278; Heupel MR, 2006, MAR FRESHWATER RES, V57, P1, DOI 10.1071/MF05091; Hrenchuk CL, 2009, THESIS, P153; Hussey NE, 2015, SCIENCE, V348, DOI 10.1126/science.1255642; KELSO JRM, 1978, J FISH BIOL, V12, P593, DOI 10.1111/j.1095-8649.1978.tb04206.x; Knights BC, 2002, T AM FISH SOC, V131, P507, DOI 10.1577/1548-8659(2002)131<0507:HAMOLS>2.0.CO;2; LAHAYE M, 1992, CAN J ZOOL, V70, P1681, DOI 10.1139/z92-234; Lucas M. C., 2001, MIGRATION FRESHWATER, V47; McDougall CA, 2014, N AM J FISH MANAGE, V34, P546, DOI 10.1080/02755947.2014.892547; McDougall CA, 2013, N AM J FISH MANAGE, V33, P1236, DOI 10.1080/02755947.2013.831001; McDougall CA, 2013, T AM FISH SOC, V142, P1508, DOI 10.1080/00028487.2013.815659; McKinley S, 1998, ENVIRON BIOL FISH, V51, P245, DOI 10.1023/A:1007493028238; Mosindy T, 1991, ASSESSMENT LAKE STUR; Murchie KJ, 2004, N AM J FISH MANAGE, V24, P1050, DOI 10.1577/M03-130.1; Olson D.E., 1978, AM FISHERIES SOC SPE, V11, P52; ONO RD, 1983, J FISH BIOL, V22, P395, DOI 10.1111/j.1095-8649.1983.tb04761.x; Palmer GC, 2005, N AM J FISH MANAGE, V25, P1448, DOI 10.1577/M05-019.1; Peterson DL, 2007, REV FISH BIOL FISHER, V17, P59, DOI 10.1007/s11160-006-9018-6; Pincock DG, 2011, DOC004691 AM SYST IN; Pinheiro J., 2015, R PACKAGE VERSION, V3, P1; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; Power M, 1997, T AM FISH SOC, V126, P549, DOI 10.1577/1548-8659(1997)126<0549:LVILSS>2.3.CO;2; Priegel G. R., 1970, Techn. Bull. Dep. nat. Resources Wisc., VNo. 45, P1; Priegel GR, 1974, WI DEP NATURAL RESOU; R Core Team, 2016, R LANG ENV STAT COMP; Raischi MC, 2016, ENVIRON ENG MANAG J, V15, P1081, DOI 10.30638/eemj.2016.120; Rogers Kevin B., 2007, P625; Rosenberg D. M., 1997, Environmental Reviews, V5, P27, DOI 10.1139/er-5-1-27; ROUSSOW G, 1957, J FISH RES BOARD CAN, V14, P553, DOI 10.1139/f57-016; Rusak JA, 1997, CAN J ZOOL, V75, P383, DOI 10.1139/z97-048; RYDER RA, 1977, J FISH RES BOARD CAN, V34, P1481, DOI 10.1139/f77-213; SAUNDERS DA, 1991, CONSERV BIOL, V5, P18, DOI 10.1111/j.1523-1739.1991.tb00384.x; Scott W.B., 1973, FISHERIES RES BOARD, V184, P966; Shao J, 2003, STAT MED, V22, P2429, DOI 10.1002/sim.1519; Skalski JR, 2002, CAN J FISH AQUAT SCI, V59, P1385, DOI 10.1139/F02-094; Sullivan MG, 2003, N AM J FISH MANAGE, V23, P1343, DOI 10.1577/M01-232AM; Summerfelt R.C., 1990, P213; SWENSON WA, 1973, J FISH RES BOARD CAN, V30, P1327, DOI 10.1139/f73-213; Thiem JD, 2013, CAN J ZOOL, V91, P175, DOI 10.1139/cjz-2012-0298; Vandergoot CS, 2011, N AM J FISH MANAGE, V31, P914, DOI 10.1080/02755947.2011.629717; Weeks JG, 2009, N AM J FISH MANAGE, V29, P791, DOI 10.1577/M08-007.1; Wilson ADM, 2015, CONSERV BIOL, V29, P1065, DOI 10.1111/cobi.12486; Wismer CA, 1987, GT LAKES FISH COMM S, V87; Zuur A. F., 2009, MIXED EFFECTS MODELS 73 0 0 6 19 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0378-1909 1573-5133 ENVIRON BIOL FISH Environ. Biol. Fishes SEP 2017 100 9 1085 1103 10.1007/s10641-017-0629-7 19 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology FI6SK WOS:000412126400005 2018-11-22 J Gangloff, EJ; Chow, M; Leos-Barajas, V; Hynes, S; Hobbs, B; Sparkman, AM Gangloff, Eric J.; Chow, Melinda; Leos-Barajas, Vianey; Hynes, Stephanie; Hobbs, Brooke; Sparkman, Amanda M. Integrating behaviour into the pace-of-life continuum: Divergent levels of activity and information gathering in fast-and slow-living snakes BEHAVIOURAL PROCESSES English Article Tongue flicks; Movement; Hidden Markov model; Predation; Habituation; Pace-of-life syndrome; Tharnnophis elegans HIDDEN MARKOV-MODELS; GARTER SNAKE; THAMNOPHIS-ELEGANS; ANTIPREDATOR RESPONSES; ANIMAL PERSONALITY; HISTORY ECOTYPES; OPEN-FIELD; INDIVIDUAL-DIFFERENCES; POPULATION-LEVEL; IMMUNE DEFENSE An animal's life history, physiology, and behaviour can be shaped by selection in a manner that favours strong associations among these aspects of an integrated phenotype. Recent work combining animal personality and life-history theory proposes that animals with faster life-history strategies (i.e., fast growth, high annual reproductive rate, short lifespan) should exhibit higher general activity levels relative to those with slower life history strategies, but empirical tests of within-species variation in these traits are lacking. In garter snakes from ecotypes which are known to differ in ecology, life -history strategy, and physiology, we tested for differences in tongue -flick rate as a measure of information gathering and movement patterns as a measure of general activity. Tongue flicks and movement were strongly positively correlated and both behaviours were repeatable across trials. Snakes from the fast-living ecotype were more active and showed evidence of habituation. The slow-living ecotype maintained low levels of activity throughout the trials. We propose that environmental factors, such as high predation, experienced by the fast-living ecotype select for both increased information-gathering and activity levels to facilitate efficient responses to repeated challenges. Thus, we offer evidence that behaviour is an important component of co-evolved suites of traits forming a general pace -of-life continuum in this system. [Gangloff, Eric J.] Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Ames, IA 50011 USA; [Chow, Melinda; Hynes, Stephanie; Hobbs, Brooke; Sparkman, Amanda M.] Westmont Coll, Dept Biol, 955 La Paz Rd, Santa Barbara, CA 93108 USA; [Leos-Barajas, Vianey] Iowa State Univ, Dept Stat, Ames, IA 50011 USA Sparkman, AM (reprint author), Westmont Coll, Dept Biol, 955 La Paz Rd, Santa Barbara, CA 93108 USA. sparkman@westmont.edu Oppenhuizen, Brooke/0000-0001-5499-3122; Leos-Barajas, Vianey/0000-0001-8016-773X Westmont College Undergraduate Research Fellowships; Iowa Science Foundation [15-11]; ISU Office of Biotechnology We are grateful to A. Bronikowski and to K. Martin for support in the lab and in the field. We also acknowledge constructive manuscript feedback from G. Burghardt, B. Danielson, P. Dixon, and F. Janzen. This project received funding support from Westmont College Undergraduate Research Fellowships to MC, SH, and BH and the Iowa Science Foundation (15-11). EJG received additional support from a fellowship from the ISU Office of Biotechnology. All animals were captured with the permission of the California Department of Fish and Wildlife (SCP 8727). The Institutional Animal Care and Use Committee (IACUC) at Iowa State University (protocol # 1-12-7285-J) and the Institutional Review Board (IRB) at Westmont College (protocol # 855) approved these methods. Adriaenssens B, 2011, BEHAV ECOL, V22, P135, DOI 10.1093/beheco/arq185; Almli Lynn M., 2006, Journal of Applied Animal Welfare Science, V9, P85, DOI 10.1207/s15327604jaws0902_1; ANDRY ML, 1972, PHYSIOL BEHAV, V9, P107, DOI 10.1016/0031-9384(72)90276-4; ARCHER J, 1973, ANIM BEHAV, V21, P205, DOI 10.1016/S0003-3472(73)80065-X; ARNOLD SJ, 1984, ANIM BEHAV, V32, P1108, DOI 10.1016/S0003-3472(84)80227-4; Beekman M, 2017, BEHAV ECOL, V28, P617, DOI 10.1093/beheco/arx022; Bell AM, 2009, ANIM BEHAV, V77, P771, DOI 10.1016/j.anbehav.2008.12.022; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Biro PA, 2015, ANIM BEHAV, V105, P223, DOI 10.1016/j.anbehav.2015.04.008; Bronikowski AM, 1999, ECOLOGY, V80, P2314, DOI 10.1890/0012-9658(1999)080[2314:TEEOLH]2.0.CO;2; Bronikowski AM, 2000, EVOLUTION, V54, P1760; Bronikowski A, 2010, INTEGR COMP BIOL, V50, P880, DOI 10.1093/icb/icq132; Burghardt G.M., 1977, P555; Burghardt G. M., 1980, CHEM SIGNALS VERTEBR, P275; Burghardt GM, 2012, ETHOLOGY, V118, P511, DOI 10.1111/j.1439-0310.2012.02040.x; Burns JG, 2008, ANIM BEHAV, V76, P911, DOI 10.1016/j.anbehav.2008.02.017; Careau V, 2008, OIKOS, V117, P641, DOI 10.1111/j.0030-1299.2008.16513.x; Careau V, 2009, FUNCT ECOL, V23, P150, DOI 10.1111/j.1365-2435.2008.01468.x; Careau V, 2010, AM NAT, V175, P753, DOI 10.1086/652435; Carter AJ, 2013, BIOL REV, V88, P465, DOI 10.1111/brv.12007; CHISZAR D, 1976, ANIM LEARN BEHAV, V4, P273, DOI 10.3758/BF03214049; CHISZAR D, 1975, B PSYCHONOMIC SOC, V5, P507; Crawford F., 1966, PSYCHON SCI, V4, P125; Dingemanse NJ, 2007, J ANIM ECOL, V76, P1128, DOI 10.1111/j.1365-2656.2007.01284.x; Finger JS, 2016, ANIM BEHAV, V116, P75, DOI 10.1016/j.anbehav.2016.03.032; FUENZALIDA CE, 1975, B PSYCHONOMIC SOC, V5, P221, DOI 10.3758/BF03337610; Gangloff E. J., 2017, MENDELEY DATA; Gangloff EJ, 2017, COMP BIOCHEM PHYS A, V205, P68, DOI 10.1016/j.cbpa.2016.12.019; Gangloff EJ, 2016, J EXP BIOL, V219, P2944, DOI 10.1242/jeb.143107; GILLIAM JF, 1987, ECOLOGY, V68, P1856, DOI 10.2307/1939877; GOVE D, 1983, ANIM BEHAV, V31, P718, DOI 10.1016/S0003-3472(83)80227-9; Gurarie E, 2016, J ANIM ECOL, V85, P69, DOI 10.1111/1365-2656.12379; Hall S. R. X., 2014, FRONT ECOL EVOL, V2; HERZOG HA, 1988, ETHOLOGY, V77, P250; HERZOG HA, 1986, J COMP PSYCHOL, V100, P372, DOI 10.1037//0735-7036.100.4.372; HERZOG HA, 1989, DEV PSYCHOBIOL, V22, P489, DOI 10.1002/dev.420220507; Kenward MG, 1997, BIOMETRICS, V53, P983, DOI 10.2307/2533558; KUBIE J, 1975, J COMP PHYSIOL PSYCH, V89, P667, DOI 10.1037/h0077061; Le Galliard JF, 2013, FUNCT ECOL, V27, P136, DOI 10.1111/1365-2435.12017; Leos-Barajas V, 2017, METHODS ECOL EVOL, V8, P161, DOI 10.1111/2041-210X.12657; Lillywhite H. B., 2014, SNAKES WORK STRUCTUR; Luttges M., 1970, COMMUN BEHAV BIOL, V5, P115; Manier MK, 2007, J EVOLUTION BIOL, V20, P1705, DOI 10.1111/j.1420-9101.2007.01401.x; Martin JGA, 2008, ANIM BEHAV, V75, P309, DOI 10.1016/j.anbehav.2007.05.026; Martins EP, 2014, BEHAV ECOL, V25, P368, DOI 10.1093/beheco/aru007; Miller DA, 2011, ECOLOGY, V92, P1658; Moore IT, 2000, ANIM BEHAV, V59, P529, DOI 10.1006/anbe.1999.1344; Nakayama S, 2017, J ANIM ECOL, V86, P192, DOI 10.1111/1365-2656.12603; Niemela PT, 2013, BEHAV ECOL, V24, P935, DOI 10.1093/beheco/art014; Palacios MG, 2013, PHYSIOL BIOCHEM ZOOL, V86, P547, DOI 10.1086/672371; Palacios MG, 2012, GEN COMP ENDOCR, V175, P443, DOI 10.1016/j.ygcen.2011.11.042; Palacios MG, 2011, J ANIM ECOL, V80, P431, DOI 10.1111/j.1365-2656.2010.01785.x; Patterson TA, 2008, TRENDS ECOL EVOL, V23, P87, DOI 10.1016/j.tree.2007.10.009; Patterson TA, 2009, J ANIM ECOL, V78, P1113, DOI 10.1111/j.1365-2656.2009.01583.x; Placyk JS, 2011, J COMP PSYCHOL, V125, P134, DOI 10.1037/a0022883; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Robert KA, 2010, AM NAT, V175, P147, DOI 10.1086/649595; Rodriguez-Prieto I, 2011, P ROY SOC B-BIOL SCI, V278, P266, DOI 10.1098/rspb.2010.1194; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Snijders T. A. B., 2012, MULTILEVEL ANAL INTR; Sokal R.R., 1995, BIOMETRY; Sparkman AM, 2013, AM MIDL NAT, V170, P66, DOI 10.1674/0003-0031-170.1.66; Sparkman AM, 2007, P ROY SOC B-BIOL SCI, V274, P943, DOI 10.1098/rspb.2006.0072; Sparkman AM, 2009, J ANIM ECOL, V78, P1242, DOI 10.1111/j.1365-2656.2009.01587.x; Stamps JA, 2007, ECOL LETT, V10, P355, DOI 10.1111/j.1461-0248.2007.01034.x; Stamps JA, 2016, BIOL REV, V91, P534, DOI 10.1111/brv.12186; Towner AV, 2016, FUNCT ECOL, V30, P1397, DOI 10.1111/1365-2435.12613; Wickham H, 2009, USE R, P1, DOI 10.1007/978-0-387-98141-3_1; Wolak ME, 2012, METHODS ECOL EVOL, V3, P129, DOI 10.1111/j.2041-210X.2011.00125.x; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Zucchini W, 2016, HIDDEN MARKOV MODELS 73 2 2 2 20 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0376-6357 1872-8308 BEHAV PROCESS Behav. Processes SEP 2017 142 156 163 10.10164/j.beproc.2007.06.006 8 Psychology, Biological; Behavioral Sciences; Zoology Psychology; Behavioral Sciences; Zoology FH9NR WOS:000411539500024 28648696 2018-11-22 J Kua, CS; Cannon, CH Kua, Chai-Shian; Cannon, Charles H. Patterns of genomic diversification reflect differences in life history and reproductive biology between figs (Ficus) and the stone oaks (Lithocarpus) GENOME English Article tropical biodiversity; reference-free; comparative genomics; kmers; Ficus; Fagaceae; Moraceae; Lithocarpus; Castanopsis; Trigonobalanus FAGACEAE; PHYLOGENY; TREE One of the remarkable aspects of the tremendous biodiversity found in tropical forests is the wide range of evolutionary strategies that have produced this diversity, indicating many paths to diversification. We compare two diverse groups of trees with profoundly different biologies to discover whether these differences are reflected in their genomes. Ficus (Moraceae), with its complex co-evolutionary relationship with obligate pollinating wasps, produces copious tiny seeds that are widely dispersed. Lithocarpus (Fagaceae), with generalized insect pollination, produces large seeds that are poorly dispersed. We hypothesize that these different reproductive biologies and life history strategies should have a profound impact on the basic properties of genomic divergence within each genus. Using shallow whole genome sequencing for six species of Ficus, seven species of Lithocarpus, and three outgroups, we examined overall genomic diversity, how it is shared among the species within each genus, and the fraction of this shared diversity that agrees with the major phylogenetic pattern. A substantially larger fraction of the genome is shared among species of Lithocarpus, a considerable amount of this shared diversity was incongruent with the general background history of the genomes, and each fig species possessed a substantially larger fraction of unique diversity than Lithocarpus. [Kua, Chai-Shian; Cannon, Charles H.] Xishuangbanna Trop Bot Garden, Key Lab Trop Ecol, Menglun 666303, Yunnan, Peoples R China; [Kua, Chai-Shian; Cannon, Charles H.] Morton Arboretum, Ctr Tree Sci, 4100 Illinois Route 53, Lisle, IL 60532 USA Kua, CS; Cannon, CH (reprint author), Xishuangbanna Trop Bot Garden, Key Lab Trop Ecol, Menglun 666303, Yunnan, Peoples R China.; Kua, CS; Cannon, CH (reprint author), Morton Arboretum, Ctr Tree Sci, 4100 Illinois Route 53, Lisle, IL 60532 USA. ckua@mortonarb.org; ccannon@mortonarb.org Yunnan Provincial Government High Level Talent Introduction grant, through the Department of Science and Technology This project was funded by the Yunnan Provincial Government High Level Talent Introduction grant, through the Department of Science and Technology. C.H.C. was supported by a gift from the Hamill Family Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Cannon CH, 2003, J BIOGEOGR, V30, P211, DOI 10.1046/j.1365-2699.2003.00829.x; Cannon CH, 2000, BOT J LINN SOC, V133, P343, DOI 10.1006/bojl.1999.0325; Cannon CH, 2015, FRONT GENET, V6, DOI 10.3389/fgene.2015.00183; Chen SC, 2014, TREE GENET GENOMES, V10, P977, DOI 10.1007/s11295-014-0736-y; Fan H, 2015, BMC GENOMICS, V16, DOI 10.1186/s12864-015-1647-5; FORMAN L. L., 1964, KEW BULL, V17, P381, DOI 10.2307/4113784; Grant V., 1971, PLANT SPECIATION; Hedges SB, 2006, BIOINFORMATICS, V22, P2971, DOI 10.1093/bioinformatics/btl505; Hoban S, 2016, AM NAT, V188, P379, DOI 10.1086/688018; JANZEN DH, 1979, ANNU REV ECOL SYST, V10, P13, DOI 10.1146/annurev.es.10.110179.000305; Kua CS, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0048995; Manos Paul S., 2008, Madrono, V55, P181, DOI 10.3120/0024-9637-55.3.181; Manos PS, 2001, INT J PLANT SCI, V162, P1361, DOI 10.1086/322949; Ohri D, 2004, PLANT BIOLOGY, V6, P555, DOI 10.1055/s-2004-821235; Petit RJ, 2006, ANNU REV ECOL EVOL S, V37, P187, DOI 10.1146/annurev.ecolsys.37.091305.110215; Plomion C, 2016, MOL ECOL RESOUR, V16, P254, DOI 10.1111/1755-0998.12425; Ronsted N, 2008, MOL PHYLOGENET EVOL, V48, P12, DOI 10.1016/j.ympev.2008.04.005; Slik JWF, 2015, P NATL ACAD SCI USA, V112, P7472, DOI 10.1073/pnas.1423147112; SOEPADMO E, 1970, Reinwardtia, V8, P197; Soepadmo E., 1972, FAGACEAE FLORA MALES, VI; Van Steenis C.G.G.J., 1950, FLORA MALESIANA SER, VI; Weiblen GD, 2002, ANNU REV ENTOMOL, V47, P299, DOI 10.1146/annurev.ento.47.091201.145213 22 2 2 1 12 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0831-2796 1480-3321 GENOME Genome SEP 2017 60 9 756 761 10.1139/gen-2016-0188 6 Biotechnology & Applied Microbiology; Genetics & Heredity Biotechnology & Applied Microbiology; Genetics & Heredity FG3RU WOS:000410102400006 28472589 2018-11-22 J Dahirel, M; Vong, A; Ansart, A; Madec, L Dahirel, Maxime; Vong, Alexandre; Ansart, Armelle; Madec, Luc Individual boldness is life stage-dependent and linked to dispersal in a hermaphrodite land snail ECOLOGICAL RESEARCH English Article Age; Animal personality; Behavioural syndromes; Dispersal costs; Life histories ANIMAL PERSONALITIES; CONSEQUENCES; EVOLUTION; REPEATABILITY; ONTOGENY; BEHAVIOR; ECOLOGY Both individual variation in dispersal tendency and animal personalities have been shown to be widespread in nature. They are often associated in personality-dependent dispersal, and both have major but underappreciated consequences for ecological and evolutionary dynamics. In addition, changes in animal personality can appear through ontogeny, leading to life stage-dependent behaviours. We investigated relationships between dispersal, life stage and boldness in an invertebrate with between- and within-life stages variation in dispersal tendency, the land snail Cornu aspersum. Latency to exit the shell following a simulated attack was repeatable, indicating boldness is a personality trait in Cornu aspersum. Subadults were bolder and more dispersive than adults. Dispersers were bolder than non-dispersers, independently of boldness changes between life stages. We discuss how these results can be explained in relation with life history strategies in this hermaphrodite species, in particular risk management in the context of reproductive investment. [Dahirel, Maxime] Univ Ghent, Dept Biol, Terr Ecol unit, Ghent, Belgium; [Dahirel, Maxime; Vong, Alexandre; Ansart, Armelle; Madec, Luc] Univ Rennes 1, CNRS, UMR Ecobio 6553, Rennes, France Dahirel, M (reprint author), Univ Ghent, Dept Biol, Terr Ecol unit, Ghent, Belgium. maxime.dahirel@yahoo.fr Dahirel, Maxime/0000-0001-8077-7765 Bailey S.E.R., 1989, Haliotis, V19, P23; Bates D, 2015, J STAT SOFTW; Benton TG, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P41; Bonte D, 2012, BIOL REV, V87, P290, DOI 10.1111/j.1469-185X.2011.00201.x; BRIDE J, 1991, REPROD NUTR DEV, V31, P81, DOI 10.1051/rnd:19910108; Core Team R., 2016, R LANG ENV STAT COMP; Cote J, 2010, PHILOS T R SOC B, V365, P4065, DOI 10.1098/rstb.2010.0176; Dahirel M, 2016, J ZOOL, V299, P98, DOI 10.1111/jzo.12328; Dahirel M, 2016, URBAN ECOSYST, V19, P1847, DOI 10.1007/s11252-016-0564-y; Dahirel M, 2016, OECOLOGIA, V181, P1117, DOI 10.1007/s00442-016-3636-z; Dan N, 1978, THESIS; De Vaufleury A. Gomot, 2001, P331; Dingemanse NJ, 2013, J ANIM ECOL, V82, P39, DOI 10.1111/1365-2656.12013; FALKNER G, 2001, SHELLED GASTROPODA W; Guiller A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049674; Gyuris E, 2012, ANIM BEHAV, V84, P103, DOI 10.1016/j.anbehav.2012.04.014; Kralj-Fiser S, 2014, ANIM BEHAV, V91, P41, DOI 10.1016/j.anbehav.2014.02.016; Luke SG, 2016, R BEHAV RES METHODS, DOI [10.3758/s13428-016-0809-y, DOI 10.3758/S13428-016-0809-Y]; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Niemela PT, 2012, FUNCT ECOL, V26, P450, DOI 10.1111/j.1365-2435.2011.01939.x; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Ronce O, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P119; Seaman B, 2015, BEHAV PROCESS, V115, P132, DOI 10.1016/j.beproc.2015.03.014; Smith BR, 2008, BEHAV ECOL, V19, P448, DOI 10.1093/beheco/arm144; Stevens VM, 2014, ECOL LETT, V17, P1039, DOI 10.1111/ele.12303; Welter-Schultes FW, 2012, EUROPEAN NONMARINE M; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wolf M, 2012, TRENDS ECOL EVOL, V27, P452, DOI 10.1016/j.tree.2012.05.001 28 0 0 5 20 SPRINGER JAPAN KK TOKYO CHIYODA FIRST BLDG EAST, 3-8-1 NISHI-KANDA, CHIYODA-KU, TOKYO, 101-0065, JAPAN 0912-3814 1440-1703 ECOL RES Ecol. Res. SEP 2017 32 5 751 755 10.1007/s11284-017-1484-x 5 Ecology Environmental Sciences & Ecology FF6LZ WOS:000409123700013 2018-11-22 J Birnie-Gauvin, K; Costantini, D; Cooke, SJ; Willmore, WG Birnie-Gauvin, Kim; Costantini, David; Cooke, Steven J.; Willmore, William G. A comparative and evolutionary approach to oxidative stress in fish: A review FISH AND FISHERIES English Review antioxidants; evolution; fish; oxidative ecology; oxidative stress; reactive oxygen species ANTARCTIC NOTOTHENIOID FISHES; FRESH-WATER FISH; EELPOUT ZOARCES-VIVIPARUS; MESSENGER-RNA EXPRESSION; CHUB LEUCISCUS-CEPHALUS; LAND-USE DRIVES; GLUTATHIONE-PEROXIDASE; ANTIOXIDANT DEFENSES; SUPEROXIDE-DISMUTASE; RAINBOW-TROUT Oxidative stress results from an imbalance between the production of reactive oxygen species and the antioxidants defences, in favour of the former. In recent years, the association between oxidative processes, environmental change and life histories has received much attention. However, most studies have focused on avian and mammalian taxonomic groups, with less attention given to fish, despite their ecological and socio-economic relevance. Here we present a review of the extrinsic and intrinsic factors that influence oxidative processes in fish, using a comparative and evolutionary approach. We demonstrate that oxidative stress plays a key role in shaping fish's responses to environmental change as well as life history strategies. We focus on representative examples to compare and contrast how levels of oxidative stress respond to changes in temperature, salinity and oxygen availability. Furthermore, we describe how emerging threats (i.e. pollution) affect oxidative stress parameters in fish. Oxidative stress indicators are increasingly being used as biomarkers to understand the mechanisms of various human-induced stressors, but also to understand the physiological consequences of how animals are distributed in space and time and influenced by different life stages. Despite the expansion of the field of ecological oxidative stress, we are only beginning to understand the complex ways in which oxidative stress may interact with both extrinsic and intrinsic factors in fish. We conclude with a research agenda for oxidative research on fish and note that there is need for further research particularly in the area of life history strategies and ecological implications of oxidative status, as this type of research has the potential to help us understand patterns and dynamics relevant to fish conservation. [Birnie-Gauvin, Kim; Cooke, Steven J.] Carleton Univ, Dept Biol, Fish Ecol & Conservat Physiol Lab, Ottawa, ON, Canada; [Birnie-Gauvin, Kim; Cooke, Steven J.; Willmore, William G.] Carleton Univ, Inst Environm Sci, Ottawa, ON, Canada; [Birnie-Gauvin, Kim; Willmore, William G.] Carleton Univ, Dept Biol, Ottawa, ON, Canada; [Costantini, David] Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Glasgow, Lanark, Scotland; [Costantini, David] Univ Antwerp, Dept Biol, Antwerp, Belgium; [Costantini, David] Museum Natl Hist Nat, UMR 7221, 7 Rue Cuvier, F-75231 Paris 05, France Birnie-Gauvin, K (reprint author), DTU Aqua, Sect Freshwater Fisheries & Ecol, Silkeborg, Denmark. kbir@aqua.dtu.dk Costantini, David/0000-0002-8140-8790 Natural Sciences and Engineering Research Council (NSERC); Research Foundation of Flanders (FWO) Natural Sciences and Engineering Research Council (NSERC); Research Foundation of Flanders (FWO). Abele D, 2012, OXIDATIVE STRESS IN AQUATIC ECOSYSTEMS, P1; Ahmad I, 2000, BBA-GEN SUBJECTS, V1523, P37, DOI 10.1016/S0304-4165(00)00098-2; Ahmad I, 2005, CHEMOSPHERE, V61, P267, DOI 10.1016/j.chemosphere.2005.01.069; Ahmad I, 2006, MUTAT RES-GEN TOX EN, V608, P16, DOI 10.1016/j.mrgentox.2006.04.020; Akerboom T P, 1981, Methods Enzymol, V77, P373; ALESSIO HM, 1988, J APPL PHYSIOL, V64, P1333; Ali M, 2004, ENVIRON INT, V30, P933, DOI 10.1016/j.envint.2004.03.004; Allan JD, 2004, ANNU REV ECOL EVOL S, V35, P257, DOI 10.1146/annurev.ecolsys.35.120202.110122; Almar M, 1998, J ENVIRON SCI HEAL B, V33, P769, DOI 10.1080/03601239809373177; Almroth BC, 2015, J EXP MAR BIOL ECOL, V468, P130, DOI 10.1016/j.jembe.2015.02.018; Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Amerand A, 2010, FISH PHYSIOL BIOCHEM, V36, P741, DOI 10.1007/s10695-009-9348-0; Aniagu SO, 2006, ENVIRON MOL MUTAGEN, V47, P616, DOI 10.1002/em.20247; [Anonymous], 2013, IPCC REPORT; Asada K, 1987, PHOTOINHIBITION, P228; Bagnyukova TV, 2007, J THERM BIOL, V32, P227, DOI 10.1016/j.jtherbio.2007.01.004; Bainy ACD, 1996, AQUAT TOXICOL, V34, P151, DOI 10.1016/0166-445X(95)00036-4; Barton BA, 2002, INTEGR COMP BIOL, V42, P517, DOI 10.1093/icb/42.3.517; BEAUCHAM.C, 1971, ANAL BIOCHEM, V44, P276, DOI 10.1016/0003-2697(71)90370-8; Beaulieu M, 2013, CONSERV PHYSIOL, V1, DOI 10.1093/conphys/cot004; Bejma J, 1999, J APPL PHYSIOL, V87, P465; Bergeron P, 2011, FUNCT ECOL, V25, P1063, DOI 10.1111/j.1365-2435.2011.01868.x; Ble-Castillo JL, 2005, BIOMED PHARMACOTHER, V59, P290, DOI 10.1016/j.biopha.2005.05.002; Blevins ZW, 2013, ECOL INDIC, V24, P224, DOI 10.1016/j.ecolind.2012.06.016; Blevins ZW, 2014, PHYSIOL BIOCHEM ZOOL, V87, P113, DOI 10.1086/670732; Blount J. D., 2015, BIOL REV CAMBRIDGE P, V28; BOTTINO NR, 1967, LIPIDS, V2, P489, DOI 10.1007/BF02533177; Brinkmann M, 2010, J SOIL SEDIMENT, V10, P1347, DOI 10.1007/s11368-010-0271-x; Brookes PS, 2005, FREE RADICAL BIO MED, V38, P12, DOI 10.1016/j.freeradbiomed.2004.10.016; Brooks SPJ, 1997, COMP BIOCHEM PHYS A, V118, P1103, DOI 10.1016/S0300-9629(97)00237-5; CADENAS E, 1989, ANNU REV BIOCHEM, V58, P79, DOI 10.1146/annurev.bi.58.070189.000455; Cadenas E, 1997, BIOFACTORS, V6, P391, DOI 10.1002/biof.5520060404; CAO GH, 1993, FREE RADICAL BIO MED, V14, P303, DOI 10.1016/0891-5849(93)90027-R; CARLBERG I, 1975, J BIOL CHEM, V250, P5475; Carvan MJ, 2001, SCI TOTAL ENVIRON, V274, P183, DOI 10.1016/S0048-9697(01)00742-2; CASSINI A, 1993, COMP BIOCHEM PHYS C, V106, P333, DOI 10.1016/0742-8413(93)90142-8; CHARNOV EL, 1991, EVOL ECOL, V5, P63, DOI 10.1007/BF02285246; Cheng CHC, 2007, PHILOS T R SOC B, V362, P2215, DOI 10.1098/rstb.2006.1946; CHEVREUIL M, 1995, SCI TOTAL ENVIRON, V162, P31, DOI 10.1016/0048-9697(95)04335-X; CHILDRESS JJ, 1995, TRENDS ECOL EVOL, V10, P30, DOI 10.1016/S0169-5347(00)88957-0; Choi CY, 2008, COMP BIOCHEM PHYS A, V149, P330, DOI 10.1016/j.cbpa.2008.01.013; Choi JE, 2010, AQUAT TOXICOL, V100, P151, DOI 10.1016/j.aquatox.2009.12.012; Clarke A, 1996, TRENDS ECOL EVOL, V11, P212, DOI 10.1016/0169-5347(96)10029-X; Cooke SJ, 2008, BIOSCIENCE, V58, P957, DOI 10.1641/B581009; Costantini D, 2014, OXIDATIVE STRESS HOR; Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x; Dalle-Donne I, 2003, CLIN CHIM ACTA, V329, P23, DOI 10.1016/S0009-8981(03)00003-2; DEUTSCH MJ, 1965, J ASSOC OFF AGR CHEM, V48, P1248; DIGUISEPPI J, 1984, CRC CR REV TOXICOL, V12, P315, DOI 10.3109/10408448409044213; Dijkstra PD, 2011, J EVOLUTION BIOL, V24, P2639, DOI 10.1111/j.1420-9101.2011.02389.x; Dolci GS, 2013, ECOTOX ENVIRON SAFE, V91, P103, DOI 10.1016/j.ecoenv.2013.01.013; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; DRAPER HH, 1993, FREE RADICAL BIO MED, V15, P353, DOI 10.1016/0891-5849(93)90035-S; Droge W, 2002, PHYSIOL REV, V82, P47; Dudgeon D, 2006, BIOL REV, V81, P163, DOI 10.1017/S1464793105006950; Ekambaram P., 2014, INT J SCI RES, V3, P164; Enzor LA, 2014, J EXP BIOL, V217, P3301, DOI 10.1242/jeb.108431; Falkowski PG, 2004, SCIENCE, V305, P354, DOI 10.1126/science.1095964; Fangue NA, 2009, J EXP BIOL, V212, P514, DOI 10.1242/jeb.024034; Farombi E O, 2007, Int J Environ Res Public Health, V4, P158, DOI 10.3390/ijerph2007040011; FLOHE L, 1984, METHOD ENZYMOL, V105, P114; Fontagne S, 2006, AQUACULTURE, V257, P400, DOI 10.1016/j.aquaculture.2006.01.025; Fontagne-Dicharry S, 2015, BRIT J NUTR, V113, P1876, DOI 10.1017/S0007114515001300; Fridovich I, 1998, J EXP BIOL, V201, P1203; Ghio AJ, 2002, ENVIRON HEALTH PERSP, V110, P89, DOI 10.1289/ehp.02110s1189; Goodwin T. W., 1984, BIOCH CAROTENOIDS; Gray JS, 1997, BIODIVERS CONSERV, V6, P153, DOI 10.1023/A:1018335901847; Grune T, 2000, BIOGERONTOLOGY, V1, P31, DOI 10.1023/A:1010037908060; Halliwell B., 2015, FREE RADICALS BIOL M; HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298; Heise K, 2006, COMP BIOCHEM PHYS A, V143, P494, DOI 10.1016/j.cbpa.2006.01.014; Heise K, 2006, J EXP BIOL, V209, P353, DOI 10.1242/jeb.01977; Helfman GS, 2009, DIVERSITY FISHES BIO; Hermes-Lima M, 1998, COMP BIOCHEM PHYS B, V120, P437, DOI 10.1016/S0305-0491(98)10053-6; Hofmann GE, 2000, J EXP BIOL, V203, P2331; Holmlund CM, 1999, ECOL ECON, V29, P253, DOI 10.1016/S0921-8009(99)00015-4; HUEY RB, 1984, EVOLUTION, V38, P441, DOI 10.1111/j.1558-5646.1984.tb00302.x; HUNG SSO, 1981, J NUTR, V111, P648; Ibarz A, 2010, PROTEOMICS, V10, P963, DOI 10.1002/pmic.200900528; JAMIESON D, 1986, ANNU REV PHYSIOL, V48, P703, DOI 10.1146/annurev.ph.48.030186.003415; Janssens BJ, 2000, J EXP BIOL, V203, P3717; Kasai H, 1997, MUTAT RES-REV MUTAT, V387, P147, DOI 10.1016/S1383-5742(97)00035-5; Kasting JF, 2002, SCIENCE, V296, P1066, DOI 10.1126/science.1071184; Kelly SA, 1998, ENVIRON HEALTH PERSP, V106, P375, DOI 10.2307/3434064; Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682; Koch RE, 2017, FUNCT ECOL, V31, P9, DOI 10.1111/1365-2435.12664; KOSHIO S, 1994, J AGR FOOD CHEM, V42, P1164, DOI 10.1021/jf00041a022; Lesser MP, 2006, ANNU REV PHYSIOL, V68, P253, DOI 10.1146/annurev.physiol.68.040104.110001; LEVINE RL, 1990, METHOD ENZYMOL, V186, P464; Levins R., 1968, EVOLUTION CHANGING E; Liu Y, 2007, AQUACULTURE, V265, P351, DOI 10.1016/j.aquaculture.2007.02.010; Lushchak VI, 2006, COMP BIOCHEM PHYS C, V143, P36, DOI 10.1016/j.cbpc.2005.11.018; Lushchak VI, 2005, INT J BIOCHEM CELL B, V37, P1670, DOI 10.1016/j.biocel.2005.02.024; Lushchak VI, 2005, INT J BIOCHEM CELL B, V37, P1319, DOI 10.1016/j.biocel.2005.01.006; Lushchak VI, 2001, AM J PHYSIOL-REG I, V280, pR100; Lushchak VI, 2007, COMP BIOCHEM PHYS B, V148, P390, DOI 10.1016/j.cbpb.2007.07.007; Lushchak VI, 2016, FISH PHYSIOL BIOCHEM, V42, P711, DOI 10.1007/s10695-015-0171-5; Lushchak VI, 2011, AQUAT TOXICOL, V101, P13, DOI 10.1016/j.aquatox.2010.10.006; Lynch AJ, 2016, FISHERIES, V41, P346, DOI 10.1080/03632415.2016.1186016; Malek RL, 2004, COMP BIOCHEM PHYS C, V138, P363, DOI 10.1016/j.cca.2004.08.014; Malm O, 1998, ENVIRON RES, V77, P73, DOI 10.1006/enrs.1998.3828; Martin I, 2006, MECH AGEING DEV, V127, P411, DOI 10.1016/j.mad.2006.01.008; Martinez-Alvarez RM, 2005, REV FISH BIOL FISHER, V15, P75, DOI 10.1007/s11160-005-7846-4; Martinez-Alvarez RM, 2002, J EXP BIOL, V205, P3699; McKenzie DJ, 2005, COMP BIOCHEM PHYS A, V141, pS166; Meador MR, 2003, ENVIRON MANAGE, V31, P504, DOI 10.1007/s00267-002-2805-5; Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x; Monteiro DA, 2010, ECOTOXICOLOGY, V19, P105, DOI 10.1007/s10646-009-0395-1; Mopper K., 2000, EFFECTS UV RAD MARIN, P101, DOI DOI 10.1017/CB09780511535444.005; Morales AE, 2004, COMP BIOCHEM PHYS C, V139, P153, DOI 10.1016/j.cca.2004.10.008; Mueller IA, 2012, J EXP BIOL, V215, P3655, DOI 10.1242/jeb.071811; Mueller IA, 2011, J EXP BIOL, V214, P3732, DOI 10.1242/jeb.062042; Murphy MP, 2011, CELL METAB, V13, P361, DOI 10.1016/j.cmet.2011.03.010; Nayak SB, 1999, EXP GERONTOL, V34, P365, DOI 10.1016/S0531-5565(99)00021-2; Nikinmaa M, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2974; Nisbet EG, 2001, NATURE, V409, P1083, DOI 10.1038/35059210; O'Brien KM, 2011, J EXP BIOL, V214, P275, DOI 10.1242/jeb.046854; O'Brien KM, 2010, INTEGR COMP BIOL, V50, P993, DOI 10.1093/icb/icq038; Oehlers LP, 2007, COMP BIOCHEM PHYS C, V145, P120, DOI 10.1016/j.cbpc.2006.06.005; Olsvik PA, 2005, COMP BIOCHEM PHYS C, V141, P314, DOI 10.1016/j.cbpc.2005.07.009; Otto DME, 1996, FISH PHYSIOL BIOCHEM, V15, P349, DOI 10.1007/BF02112362; OYANAGUI Y, 1984, ANAL BIOCHEM, V142, P290; PAGLIA DE, 1967, J LAB CLIN MED, V70, P158; Pandey S, 2003, SCI TOTAL ENVIRON, V309, P105, DOI 10.1016/S0048-9697(03)00006-8; Pascual P, 2003, CHEM-BIOL INTERACT, V145, P191, DOI 10.1016/S0009-2797(03)00002-4; Pike TW, 2007, P ROY SOC B-BIOL SCI, V274, P1591, DOI 10.1098/rspb.2007.0317; Piner P, 2007, ENVIRON TOXICOL, V22, P605, DOI 10.1002/tox.20286; Prieto P, 1999, ANAL BIOCHEM, V269, P337, DOI 10.1006/abio.1999.4019; RADI AAR, 1985, COMP BIOCHEM PHYS C, V81, P395, DOI 10.1016/0742-8413(85)90026-X; Rajkumar J.S.I., 2011, INT J PHARM BIOL SCI, V2, P41; Rayman MP, 2000, LANCET, V356, P233, DOI 10.1016/S0140-6736(00)02490-9; REZNICK AZ, 1994, METHOD ENZYMOL, V233, P357; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P134, DOI 10.1016/0169-5347(92)90150-A; Richter BD, 1997, CONSERV BIOL, V11, P1081, DOI 10.1046/j.1523-1739.1997.96236.x; Rider SA, 2009, AQUACULTURE, V295, P282, DOI 10.1016/j.aquaculture.2009.07.003; Robinson MK, 1997, J SURG RES, V69, P325, DOI 10.1006/jsre.1997.5062; Roe JH, 1943, J BIOL CHEM, V147, P399; Ross SW, 2001, COMP BIOCHEM PHYS C, V130, P289, DOI 10.1016/S1532-0456(01)00243-5; Rueda-Jasso R, 2004, AQUACULTURE, V231, P417, DOI 10.1016/S0044-8486(03)00537-4; Salas-Leiton E, 2009, MAR BIOTECHNOL, V11, P473, DOI 10.1007/s10126-008-9168-8; Sanz A, 2001, P 4 INT S STURG OSHK, P89; SARGENT JR, 1993, AQUACULTURE FUNDAMEN, V43, P103; SEWELL RBS, 1948, NATURE, V162, P949, DOI 10.1038/162949a0; Sies H, 2005, J NUTR, V135, P969; SINHA AK, 1972, ANAL BIOCHEM, V47, P389, DOI 10.1016/0003-2697(72)90132-7; Slaninova A, 2009, NEUROENDOCRINOL LETT, V30, P2; SMITH IK, 1988, ANAL BIOCHEM, V175, P408, DOI 10.1016/0003-2697(88)90564-7; Sohal RS, 2002, FREE RADICAL BIO MED, V33, P37, DOI 10.1016/S0891-5849(02)00856-0; Speakman JR, 2015, ECOL EVOL, V5, pS745, DOI 10.1002/ece3.1790; Stadtman ER, 1997, CHEM RES TOXICOL, V10, P485, DOI 10.1021/tx960133r; Stearns S., 1992, EVOLUTION LIFE HIST; STOREY KB, 1990, Q REV BIOL, V65, P145, DOI 10.1086/416717; Tapley DW, 1999, BIOL BULL, V196, P52, DOI 10.2307/1543166; Taylor JJ, 2015, COMP BIOCHEM PHYS A, V184, P97, DOI 10.1016/j.cbpa.2015.01.022; Tomanek L, 2010, J EXP BIOL, V213, P971, DOI 10.1242/jeb.038034; Valavanidis A, 2006, ECOTOX ENVIRON SAFE, V64, P178, DOI 10.1016/j.ecoenv.2005.03.013; Valko M, 2007, INT J BIOCHEM CELL B, V39, P44, DOI 10.1016/j.biocel.2006.07.001; Vinagre C, 2014, MAR ENVIRON RES, V97, P10, DOI 10.1016/j.marenvres.2014.01.007; WDZIECZAK J, 1982, COMP BIOCHEM PHYS B, V73, P361, DOI 10.1016/0305-0491(82)90298-X; Welker AF, 2013, COMP BIOCHEM PHYS A, V165, P384, DOI 10.1016/j.cbpa.2013.04.003; WHEELER CR, 1990, ANAL BIOCHEM, V184, P193, DOI 10.1016/0003-2697(90)90668-Y; Wiersma P, 2004, P ROY SOC B-BIOL SCI, V271, pS360, DOI 10.1098/rsbl.2004.0171; Wilhelm D, 2001, BRAZ J MED BIOL RES, V34, P719, DOI 10.1590/S0100-879X2001000600004; Wilson SM, 2014, PHYSIOL BIOCHEM ZOOL, V87, P346, DOI 10.1086/674798; Wilson SM, 2012, COMP BIOCHEM PHYS A, V162, P212, DOI 10.1016/j.cbpa.2012.02.023; WINSTON GW, 1991, COMP BIOCHEM PHYS C, V100, P173, DOI 10.1016/0742-8413(91)90148-M; WINSTON GW, 1991, AQUAT TOXICOL, V19, P137, DOI 10.1016/0166-445X(91)90033-6; Winter MJ, 2004, MUTAT RES-FUND MOL M, V552, P163, DOI 10.1016/j.mrfmmm.2004.06.014; WITAS H, 1984, COMP BIOCHEM PHYS C, V77, P409, DOI 10.1016/0742-8413(84)90036-7; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zhou XX, 2009, AQUACULTURE, V291, P78, DOI 10.1016/j.aquaculture.2009.03.007 171 10 10 5 32 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1467-2960 1467-2979 FISH FISH Fish. Fish. SEP 2017 18 5 928 942 10.1111/faf.12215 15 Fisheries Fisheries FF5YT WOS:000409078600009 2018-11-22 J Musiolek, D; Kocarek, P Musiolek, D.; Kocarek, P. Effect of substrate on the risk of being washed away by floods for the Groundhoppers Tetrix subulata and Tetrix tenuicornis (Orthoptera: Tetrigidae) RIVER RESEARCH AND APPLICATIONS English Article barometric pressure; behaviour; Caelifera; flood risk; habitat choice; Orthoptera; Tetrix RIPARIAN WOLF SPIDERS; PYGMY GRASSHOPPERS; FLASH-FLOOD; RAINFALL CUES; BEHAVIOR; BEETLES; ESCAPE; INVERTEBRATES; EVOLUTION; MOVEMENT Inundation zones of rivers are risky environments for terrestrial animals because of the regular or irregular occurrence of floods. Although animals in these zones have evolved several strategies to survive floods, behavioural anti-flooding strategies have seldom been studied but could play an important role in their life history strategies. We previously reported that the groundhopper Tetrix tenuicornis moves to dense vegetation in response to low atmospheric pressure (which may signal rain and flooding) but prefers mossy microhabitats and bare ground under high atmospheric pressure. In the current study, we found that the ability of the semi-aquatic groundhoppers T. tenuicornis and Tetrix subulata to withstand direct water flow was greater in patches of dense vegetation than in patches of moss or on bare ground. Even a relatively low water velocity led to water transport (presumably passive) of both species, perhaps because they lack arolia or other adhesive devices on their tarsi. This morphological limitation precludes vertical migration on vegetation, which is a common anti-flooding strategy in insects. Our results suggest that, by moving to dense vegetation in response to drops in atmospheric pressure, groundhoppers may reduce their risk of being washed away by floods. [Musiolek, D.; Kocarek, P.] Univ Ostrava, Dept Biol & Ecol, Fac Sci, Chittussiho 10, CZ-71000 Ostrava, Czech Republic; Univ Ostrava, Fac Sci, Inst Environm Technol, Ostrava, Czech Republic Musiolek, D (reprint author), Univ Ostrava, Dept Biol & Ecol, Fac Sci, Chittussiho 10, CZ-71000 Ostrava, Czech Republic. musiolekdavid@gmail.com Musiolek, David/0000-0002-4745-7783 Institutional Research Support [SGS22/PrF/2015, SGS20/PrF/2016]; University of Ostrava [CZ.1.05/2.1.00/19.0388] Institutional Research Support, Grant/Award Number: SGS22/PrF/2015 and SGS20/PrF/2016; University of Ostrava, Grant/Award Number: CZ.1.05/2.1.00/19.0388 Adamovic Z R, 1969, EKOLOGIYA, V4, P165; Adis J, 2002, FRESHWATER BIOL, V47, P711, DOI 10.1046/j.1365-2427.2002.00892.x; Allan J. D., 2007, STREAM ECOLOGY STRUC; Barry R. G., 2010, ATMOSPHERE WEATHER C; Bennet-Clark H.C., 1990, P173; Bertossa RC, 2011, PHILOS T R SOC B, V366, P2056, DOI 10.1098/rstb.2011.0035; Bilton DT, 2001, ANNU REV ECOL SYST, V32, P159, DOI 10.1146/annurev.ecolsys.32.081501.114016; Bloschl G, 2013, HYDROL EARTH SYST SC, V17, P5197, DOI 10.5194/hess-17-5197-2013; BONAN G. B., 2002, ECOLOGICAL CLIMATOLO; BRITTAIN JE, 1988, HYDROBIOLOGIA, V166, P77, DOI 10.1007/BF00017485; Crespo JE, 2012, J INSECT PHYSIOL, V58, P1562, DOI 10.1016/j.jinsphys.2012.09.010; Forsman A, 2000, EVOL ECOL, V14, P25, DOI 10.1023/A:1011024320725; Forsman A, 1999, ECOSCIENCE, V6, P35; Forsman A, 2011, EVOLUTION, V65, P2530, DOI 10.1111/j.1558-5646.2011.01324.x; Gerisch M, 2012, RIVER RES APPL, V28, P81, DOI 10.1002/rra.1438; Harz K., 1975, ORTHOPTERA EUROPE, VII; Hinton H.E., 1976, P43; Hoback WW, 1998, AM MIDL NAT, V140, P27, DOI 10.1674/0003-0031(1998)140[0027:SOIAAB]2.0.CO;2; Hochkirch A, 2000, ENTOMOL GEN, V25, P39; Hochkirch Axel, 1999, Articulata, V14, P31; Hochkirch A, 2007, EVOL ECOL, V21, P727, DOI 10.1007/s10682-006-9147-3; Hochkirch Axel, 2002, Articulata, V17, P19; Honma A, 2006, P R SOC B, V273, P1631, DOI 10.1098/rspb.2006.3501; Joy J, 1997, BIOL CONSERV, V82, P61, DOI 10.1016/S0006-3207(97)00006-2; Karpestam E, 2012, EVOL ECOL, V26, P893, DOI 10.1007/s10682-011-9530-6; Koarek P., 2013, ORTHOPTERA INSECTA O; Kocarek P, 2011, CENT EUR J BIOL, V6, P531, DOI 10.2478/s11535-011-0023-y; Kocarek P, 2010, J INSECT BEHAV, V23, P348, DOI 10.1007/s10905-010-9218-8; Kuravova K, 2017, ZOOL J LINN SOC-LOND, V179, P291, DOI 10.1111/zoj.12474; Kuravova K, 2017, ARTHROPOD-PLANT INTE, V11, P35, DOI 10.1007/s11829-016-9461-9; Kuravova K, 2015, ENTOMOL SCI, V18, P489, DOI 10.1111/ens.12145; Lambeets K, 2010, J ARACHNOL, V38, P313, DOI 10.1636/P09-52.1; Lambeets K, 2008, ANIM BIOL, V58, P389, DOI 10.1163/157075608X383692; LANIER GN, 1978, J CHEM ECOL, V4, P139, DOI 10.1007/BF00988050; Lock K, 1999, ENTOMOL GEN, V24, P177; Lytle D. A., 2008, Aquatic insects: challenges to populations, P122, DOI 10.1079/9781845933968.0122; Lytle DA, 2004, J INSECT BEHAV, V17, P169, DOI 10.1023/B:JOIR.0000028567.23481.16; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; Lytle DA, 1999, J INSECT BEHAV, V12, P1, DOI 10.1023/A:1020940012775; Lytle DA, 2007, J INSECT BEHAV, V20, P413, DOI 10.1007/s10905-007-9089-9; Majewski W, 2016, METEOROL HYDROL WATE, V4, P41, DOI 10.26491/mhwm/64636; Morse DH, 1997, J ARACHNOL, V25, P1; Musiolek D, 2016, SCI NAT-HEIDELBERG, V103, DOI 10.1007/s00114-016-1393-9; Naiman RJ, 1997, ANNU REV ECOL SYST, V28, P621, DOI 10.1146/annurev.ecolsys.28.1.621; Paranjape S.Y., 1987, P386; Pekar S, 2012, MODERN ANAL BIOL DAT, V2; Pellegrino AC, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0075004; Pushkar T. I., 2009, Vestnik Zoologii, V43, P15; R Core Team, 2016, R LANG ENV STAT COMP; Robinson CT, 2002, FRESHWATER BIOL, V47, P661, DOI 10.1046/j.1365-2427.2002.00921.x; Steenman A, 2015, ETHOL ECOL EVOL, V27, P93, DOI 10.1080/03949370.2014.885466; Tichy H, 2010, J NEUROPHYSIOL, V103, P3274, DOI 10.1152/jn.01043.2009; Tockner K, 2000, HYDROL PROCESS, V14, P2861, DOI 10.1002/1099-1085(200011/12)14:16/17<2861::AID-HYP124>3.0.CO;2-F; Tsurui K, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011446; Ward JV, 2002, FRESHWATER BIOL, V47, P517, DOI 10.1046/j.1365-2427.2002.00893.x; Zagvazdina NY, 2015, ANN ENTOMOL SOC AM, V108, P762, DOI 10.1093/aesa/sav069 56 1 1 2 8 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1535-1459 1535-1467 RIVER RES APPL River Res. Appl. SEP 2017 33 7 1071 1078 10.1002/rra.3167 8 Environmental Sciences; Water Resources Environmental Sciences & Ecology; Water Resources FF6GS WOS:000409105100009 2018-11-22 J Luong, LT; Brophy, T; Stolz, E; Chan, SJ Luong, Lien T.; Brophy, Taylor; Stolz, Emily; Chan, Solomon J. State-dependent parasitism by a facultative parasite of fruit flies PARASITOLOGY English Article aggregation; ectoparasite; Drosophila; Macrocheles; mite; phenotypic plasticity; host preference; state-dependent behaviour PHENOTYPIC PLASTICITY; EVOLUTIONARY CONSEQUENCES; ECTOPARASITIC MITES; BACTERIAL PARASITE; NATAL DISPERSAL; HOST; STRATEGIES; INFECTION; SELECTION; TRANSMISSION Parasites can evolve phenotypically plastic strategies for transmission such that a single genotype can give rise to a range of phenotypes depending on the environmental condition. State-dependent plasticity in particular can arise from individual differences in the parasite's internal state or the condition of the host. Facultative parasites serve as ideal model systems for investigating state-dependent plasticity because individuals can exhibit two life history strategies (free-living or parasitic) depending on the environment. Here, we experimentally show that the ectoparasitic mite Macrocheles subbadius is more likely to parasitize a fruit fly host if the female mite is mated; furthermore, the propensity to infect increased with the level of starvation experienced by the mite. Host condition also played an important role; hosts infected with moderate mite loads were more likely to gain additional infections in pairwise choice tests than uninfected flies. We also found that mites preferentially infected flies subjected to mechanical injury over uninjured flies. These results suggest that a facultative parasite's propensity to infect a host (i.e. switch from a free-living strategy) depends on both the parasite's internal state and host condition. Parasites often live in highly variable and changing environments, an infection strategy that is plastic is likely to be adaptive. [Luong, Lien T.; Brophy, Taylor; Stolz, Emily; Chan, Solomon J.] Univ Alberta, Dept Biol Sci, CW405 Biol Sci Bldg, Edmonton, AB T6G 2E9, Canada Luong, LT (reprint author), Univ Alberta, Dept Biol Sci, CW405 Biol Sci Bldg, Edmonton, AB T6G 2E9, Canada. lluong@ualberta.ca Luong, Lien/A-5839-2016 Luong, Lien/0000-0003-4350-4164; Brophy, Taylor/0000-0002-7761-5850 Natural Sciences and Engineering Research Council of Canada [435245]; NSERC The project was funded by a Natural Sciences and Engineering Research Council of Canada, Discovery Grant (L.T.L., grant number 435245). S.J.C. was funded by the NSERC Undergraduate Student Research Award. Agrawal AA, 2001, SCIENCE, V294, P321, DOI 10.1126/science.1060701; Bedhomme S, 2004, P ROY SOC B-BIOL SCI, V271, P739, DOI 10.1098/rspb.2003.2657; Beresford D. V., 2009, Systematic and Applied Acarology Special Publications, P1; Bonte D, 2012, BIOL REV, V87, P290, DOI 10.1111/j.1469-185X.2011.00201.x; Brown SP, 2012, TRENDS MICROBIOL, V20, P336, DOI 10.1016/j.tim.2012.04.005; Buckling AGJ, 1997, P ROY SOC B-BIOL SCI, V264, P553, DOI 10.1098/rspb.1997.0079; Campbell EO, 2016, PARASITOLOGY, V143, P787, DOI 10.1017/S0031182016000305; Cornet S, 2014, J ANIM ECOL, V83, P256, DOI 10.1111/1365-2656.12113; Dhooria M. S., 2016, FUNDAMENTALS APPL AC; FARISH D J, 1971, Acarologia (Paris), V13, P16; Fenton A, 2004, INT J PARASITOL, V34, P813, DOI 10.1016/j.ijpara.2004.02.003; Filipponi A., 1964, P 1 INT C AC, P92; Fordyce JA, 2006, J EXP BIOL, V209, P2377, DOI 10.1242/jeb.02271; Genovart M, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009774; Ghalambor CK, 2007, FUNCT ECOL, V21, P394, DOI 10.1111/j.1365-2435.2007.01283.x; Glass EV, 1998, EXP APPL ACAROL, V22, P31, DOI 10.1023/A:1006081323887; Harrison A, 2010, OIKOS, V119, P1099, DOI 10.1111/j.1600-0706.2009.18072.x; Harrison JF, 2012, ECOL ENVIRON PHYSIOL, P1, DOI 10.1093/acprof:oso/9780199225941.001.0001; HESS E, 1986, EXP APPL ACAROL, V2, P249, DOI 10.1007/BF01193957; Houston A. I., 1999, MODELS ADAPTIVE BEHA; HOUSTON AI, 1992, EVOL ECOL, V6, P243, DOI 10.1007/BF02214164; Kaltz O, 2003, EVOLUTION, V57, P1535; Luong LT, 2007, J EVOLUTION BIOL, V20, P79, DOI 10.1111/j.1420-9101.2006.01226.x; Luong LT, 2015, ECOL ENTOMOL, V40, P518, DOI 10.1111/een.12218; Mathot KJ, 2013, AM NAT, V182, P611, DOI 10.1086/673300; Mideo N, 2012, FUTURE MICROBIOL, V7, P17, DOI [10.2217/FMB.11.134, 10.2217/fmb.11.134]; NORVAL RAI, 1989, SCIENCE, V243, P364, DOI 10.1126/science.2911745; Pigliucci M., 2001, PHENOTYPIC PLASTICIT; Polak M, 1996, ECOLOGY, V77, P1379, DOI 10.2307/2265535; POLAK M, 1995, EVOLUTION, V49, P660, DOI 10.1111/j.1558-5646.1995.tb02302.x; Poulin R, 2003, EVOLUTION, V57, P2899; Poulin R, 2007, EVOLUTIONARY ECOLOGY; Powers KS, 2003, ETHOLOGY, V109, P725, DOI 10.1046/j.1439-0310.2003.00918.x; R Development Core Team, 2015, R LANG ENV STAT COMP; Reece SE, 2009, EVOL APPL, V2, P11, DOI 10.1111/j.1752-4571.2008.00060.x; Restif O, 2006, OIKOS, V114, P148, DOI 10.1111/j.2006.0030-1299.14611.x; Ruf D, 2011, ANIM BEHAV, V81, P1083, DOI 10.1016/j.anbehav.2011.02.028; Schlichting C, 1998, PHENOTYPIC EVOLUTION; Sih A, 2015, TRENDS ECOL EVOL, V30, P50, DOI 10.1016/j.tree.2014.11.004; Stankowich T, 2003, ANIM BEHAV, V66, P589, DOI 10.1006/anbe.2003.2232; Stasiuk SJ, 2012, EVODEVO, V3, DOI 10.1186/2041-9139-3-1; Taylor PD, 2006, THEOR POPUL BIOL, V69, P323, DOI 10.1016/j.tpb.2005.09.004; Thomas F, 2002, TRENDS PARASITOL, V18, P387, DOI 10.1016/S1471-4922(02)02339-5; Tseng M, 2006, AM NAT, V168, P565, DOI 10.1086/507997; Valera F, 2004, PARASITOLOGY, V129, P59, DOI 10.1017/S0031182004005232; Van Oosten AR, 2016, INT J PARASITOL, V46, P187, DOI 10.1016/j.ijpara.2015.11.002; Vizoso DB, 2005, J EVOLUTION BIOL, V18, P911, DOI 10.1111/j.1420-9101.2005.00920.x; Walter D. E., 2013, MITES ECOLOGY EVOLUT; Wang H, 2001, PARASITOLOGY, V123, P447, DOI 10.1017/S0031182001008654; Wertheim B, 2005, ANNU REV ENTOMOL, V50, P321, DOI 10.1146/annurev.ento.49.061802.123329; WESTEBERHARD MJ, 1989, ANNU REV ECOL SYST, V20, P249, DOI 10.1146/annurev.es.20.110189.001341; Wolinska J, 2009, TRENDS PARASITOL, V25, P236, DOI 10.1016/j.pt.2009.02.004; ZHANG ZQ, 1991, EXP APPL ACAROL, V11, P137, DOI 10.1007/BF01246086 53 1 1 0 11 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0031-1820 1469-8161 PARASITOLOGY Parasitology SEP 2017 144 11 1468 1475 10.1017/S0031182017000890 8 Parasitology Parasitology FE5TA WOS:000408272800007 28641605 2018-11-22 J Grist, H; Daunt, F; Wanless, S; Burthe, SJ; Newell, MA; Harris, MP; Reid, JM Grist, Hannah; Daunt, Francis; Wanless, Sarah; Burthe, Sarah J.; Newell, Mark A.; Harris, Mike P.; Reid, Jane M. Reproductive performance of resident and migrant males, females and pairs in a partially migratory bird JOURNAL OF ANIMAL ECOLOGY English Article carry-over effects; demography; European shag; fitness; phenology; population structure; seabird SHAGS PHALACROCORAX-ARISTOTELIS; POPULATION-DYNAMICS; BREEDING PERFORMANCE; EUROPEAN SHAG; LIFE-HISTORY; HATCH-DATE; AGE; EVOLUTION; SURVIVAL; SUCCESS 1. Quantifying among-individual variation in life-history strategies, and associated variation in reproductive performance and resulting demographic structure, is key to understanding and predicting population dynamics and life-history evolution. Partial migration, where populations comprise a mixture of resident and seasonally migrant individuals, constitutes a dimension of life-history variation that could be associated with substantial variation in reproductive performance. However, such variation has rarely been quantified due to the challenge of measuring reproduction and migration across a sufficient number of seasonally mobile males and females. 2. We used intensive winter (non-breeding season) resightings of colour-ringed adult European shags (Phalacrocorax aristotelis) from a known breeding colony to identify resident and migrant individuals. We tested whether two aspects of annual reproductive performance, brood hatch date and breeding success, differed between resident and migrant males, females and breeding pairs observed across three -consecutive winters and breeding seasons. 3. The sex ratios of observed resident and migrant shags did not significantly differ from each other or from 1:1, suggesting that both sexes are partially migratory and that migration was not sex-biased across surveyed areas. 4. Individual resident males and females hatched their broods 6 days earlier and fledged 0.2 more chicks per year than migrant males and females on average. Resident individuals of both sexes therefore had higher breeding success than migrants. 5. Hatch date and breeding success also varied with a pair's joint migratory strategy such that resident-resident pairs hatched their broods 12 days earlier than migrant-migrant pairs, and fledged 0.7 more chicks per year on average. However, there was no evidence of assortative pairing with respect to migratory strategy: observed frequencies of migrant-migrant and resident-resident pairs did not differ from those expected given random pairing. 6. These data demonstrate substantial variation in two key aspects of reproductive performance associated with the migratory strategies of males, females and breeding pairs within a partially migratory population. These patterns could reflect direct and/or indirect mechanisms, but imply that individual variation in migratory strategy and variation in pairing among residents and migrants could influence selection on migration and drive complex population and evolutionary dynamics. [Grist, Hannah; Reid, Jane M.] Univ Aberdeen, Inst Biol & Environm Sci, Sch Biol Sci, Aberdeen, Scotland; [Grist, Hannah; Daunt, Francis; Wanless, Sarah; Burthe, Sarah J.; Newell, Mark A.; Harris, Mike P.] Centre Ecol & Hydrol, Bush Estate, Penicuik, Midlothian, Scotland; [Grist, Hannah] Scottish Ornithologists Club, Waterston House, Aberlady, Scotland; [Grist, Hannah] Scottish Assoc Marine Sci, Oban, Argyll, Scotland Reid, JM (reprint author), Univ Aberdeen, Inst Biol & Environm Sci, Sch Biol Sci, Aberdeen, Scotland.; Daunt, F (reprint author), Centre Ecol & Hydrol, Bush Estate, Penicuik, Midlothian, Scotland. frada@ceh.ac.uk; jane.reid@abdn.ac.uk Grist, Hannah/0000-0001-7299-1868 Natural Environment Research Council (NERC); CEH; SOC; Joint Nature Conservation Committee; Royal Society Natural Environment Research Council (NERC); CEH; SOC; Joint Nature Conservation Committee; Royal Society ADRIAENSEN F, 1990, J ANIM ECOL, V59, P1077, DOI 10.2307/5033; Aebischer N. J., 1985, THESIS; AEBISCHER NJ, 1993, IBIS, V135, P225, DOI 10.1111/j.1474-919X.1993.tb02838.x; AEBISCHER NJ, 1995, IBIS, V137, P19, DOI 10.1111/j.1474-919X.1995.tb03215.x; Anderson AM, 2016, AUK, V133, P99, DOI 10.1642/AUK-15-129.1; Arnold JM, 2006, IBIS, V148, P98, DOI 10.1111/j.1474-919X.2006.00487.x; Bai ML, 2012, BEHAV ECOL, V23, P153, DOI 10.1093/beheco/arr168; Barlow EJ, 2013, IBIS, V155, P762, DOI 10.1111/ibi.12060; Bates D., 2014, LME4 LINEAR MIXED EF, DOI DOI 10.18637/JSS.V067.I01; Bearhop S, 2005, SCIENCE, V310, P502, DOI 10.1126/science.1115661; Bloch AM, 2010, CAN J ZOOL, V88, P1113, DOI 10.1139/Z10-079; Bogdanova MI, 2014, BIOL CONSERV, V170, P292, DOI 10.1016/j.biocon.2013.12.025; Bogdanova MI, 2011, P ROY SOC B-BIOL SCI, V278, P2412, DOI 10.1098/rspb.2010.2601; Boyle WA, 2008, J ANIM ECOL, V77, P1122, DOI 10.1111/j.1365-2656.2008.01451.x; Brodersen J, 2008, ECOLOGY, V89, P1195, DOI 10.1890/07-1318.1; Brommer JE, 2015, BEHAV ECOL SOCIOBIOL, V69, P293, DOI 10.1007/s00265-014-1842-4; Chapman BB, 2011, OIKOS, V120, P1764, DOI 10.1111/j.1600-0706.2011.20131.x; Daunt F, 2006, BEHAV ECOL SOCIOBIOL, V59, P381, DOI 10.1007/s00265-005-0061-4; Daunt F, 2014, ECOLOGY, V95, P2077, DOI 10.1890/13-1797.1; Daunt F, 1999, P ROY SOC B-BIOL SCI, V266, P1489, DOI 10.1098/rspb.1999.0805; Daunt F., 2000, THESIS; Espie RHM, 2000, ECOLOGY, V81, P3404; Frederiksen M, 2008, J ANIM ECOL, V77, P1020, DOI 10.1111/j.1365-2656.2008.01422.x; Gaillard JM, 2013, ECOLOGY, V94, P1261, DOI 10.1890/12-0710.1; Gillis EA, 2008, ECOLOGY, V89, P1687, DOI 10.1890/07-1122.1; Grayson KL, 2009, J ZOOL, V279, P71, DOI 10.1111/j.1469-7998.2009.00591.x; Grayson KL, 2009, ECOLOGY, V90, P306, DOI 10.1890/08-0935.1; Gremillet D, 1998, FUNCT ECOL, V12, P386, DOI 10.1046/j.1365-2435.1998.00199.x; Grist H., 2017, DRYAD DIGITAL REPOSI; Grist H, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098562; Griswold CK, 2010, P ROY SOC B-BIOL SCI, V277, P2711, DOI 10.1098/rspb.2010.0550; Gunnarsson TG, 2004, NATURE, V431, P646, DOI 10.1038/431646a; HARRIS MP, 1994, J AVIAN BIOL, V25, P268, DOI 10.2307/3677273; Harrison XA, 2011, J ANIM ECOL, V80, P4, DOI 10.1111/j.1365-2656.2010.01740.x; Hebblewhite M, 2011, OIKOS, V120, P1860, DOI 10.1111/j.1600-0706.2011.19436.x; Hegemann A, 2015, AM NAT, V186, P531, DOI 10.1086/682667; Jahn AE, 2010, J ANIM ECOL, V79, P983, DOI 10.1111/j.1365-2656.2010.01713.x; KAITALA A, 1993, AM NAT, V142, P59, DOI 10.1086/285529; Kokko H, 2011, OIKOS, V120, P1826, DOI 10.1111/j.1600-0706.2011.19438.x; Lewis S, 2015, J ANIM ECOL, V84, P1490, DOI 10.1111/1365-2656.12419; LINDHOLM A, 1994, CONDOR, V96, P898, DOI 10.2307/1369100; Lindstrom J, 2002, ECOL LETT, V5, P338, DOI 10.1046/j.1461-0248.2002.00317.x; LUNDBERG P, 1987, J THEOR BIOL, V125, P351, DOI 10.1016/S0022-5193(87)80067-X; POTTS GR, 1980, J ANIM ECOL, V49, P465, DOI 10.2307/4258; Pulido F, 2007, BIOSCIENCE, V57, P165, DOI 10.1641/B570211; R Development Core Team, 2008, R LANG ENV STAT COMP; Reid JM, 2010, J ANIM ECOL, V79, P851, DOI 10.1111/j.1365-2656.2010.01669.x; RIJKE AM, 1968, J EXP BIOL, V48, P185; Rolshausen G, 2013, ECOL EVOL, V3, P4278, DOI 10.1002/ece3.825; Sanz-Aguilar A, 2012, J ANIM ECOL, V81, P1171, DOI 10.1111/j.1365-2656.2012.01997.x; SNOW BARBARA, 1960, IBIS, V102, P554, DOI 10.1111/j.1474-919X.1960.tb07132.x; SNOW BARBARA K., 1963, BRIT BIRDS, V56-56, P77; Sponza S, 2013, ITAL J ZOOL, V80, P380, DOI 10.1080/11250003.2013.775365; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; Velando A, 2003, WATERBIRDS, V26, P473, DOI 10.1675/1524-4695(2003)026[0000:NSCOAB]2.0.CO;2; Velando A, 2001, CONDOR, V103, P544, DOI 10.1650/0010-5422(2001)103[0544:HGITCP]2.0.CO;2; Velez-Espino LA, 2013, THEOR POPUL BIOL, V85, P1, DOI 10.1016/j.tpb.2013.01.004; Vindenes Y, 2008, AM NAT, V171, P455, DOI 10.1086/528965; Wanless S., 1997, BWP Update, V1, P3; WARKENTIN IG, 1990, AUK, V107, P25; WARRINER JS, 1986, WILSON BULL, V98, P15 61 7 7 7 37 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. SEP 2017 86 5 1010 1021 10.1111/1365-2656.12691 12 Ecology; Zoology Environmental Sciences & Ecology; Zoology FD1TV WOS:000407320500004 28502109 Green Published, Other Gold 2018-11-22 J Briggs-Gonzalez, V; Bonenfant, C; Basille, M; Cherkiss, M; Beauchamp, J; Mazzotti, F Briggs-Gonzalez, Venetia; Bonenfant, Christophe; Basille, Mathieu; Cherkiss, Michael; Beauchamp, Jeff; Mazzotti, Frank Life histories and conservation of long-lived reptiles, an illustration with the American crocodile (Crocodylus acutus) JOURNAL OF ANIMAL ECOLOGY English Article capture-mark-recapture; crocodylian; demography; population dynamics; sensitivity analysis POPULATION-GROWTH RATE; REPRODUCTIVE ECOLOGY; NORTHERN AUSTRALIA; TEMPORAL VARIATION; MARKED ANIMALS; SURVIVAL; RATES; MAMMALS; MORTALITY; BIOLOGY Successful species conservation is dependent on adequate estimates of population dynamics, but age-specific demographics are generally lacking for many long-lived iteroparous species such as large reptiles. Accurate demographic information -allows estimation of population growth rate, as well as projection of future population sizes and quantitative analyses of fitness trade-offs involved in the evolution of life-history strategies. Here, a long-term capture-recapture study was conducted from 1978 to 2014 on the American crocodile (Crocodylus acutus) in southern Florida. Over the study period, 7,427 hatchlings were marked and 380 individuals were recaptured for as many as 25 years. We estimated survival to be strongly age dependent with hatchlings having the lowest survival rates (16%) but increasing to nearly 90% at adulthood based on mark-recapture models. More than 5% of the female population were predicted to be reproductive by age 8 years; the age-specific proportion of reproductive females steadily increased until age 18 when more than 95% of females were predicted to be reproductive. Population growth rate, estimated from a Leslie-Lefkovitch stage-class model, showed a positive annual growth rate of 4% over the study period. Using a prospective sensitivity analysis, we revealed that the adult stage, as expected, was the most critical stage for population growth rate; however, the survival of younger crocodiles before they became reproductive also had a surprisingly high elasticity. We found that variation in age-specific fecundity has very limited impact on population growth rate in American crocodiles. We used a comparative approach to show that the original life-history strategy of American crocodiles is actually shared by other large, long-lived reptiles: while adult survival rates always have a large impact on population growth, this decreases with declining increasing growth rates, in favour of a higher elasticity of the juvenile stage. Crocodiles, as a long-lived and highly fecund species, deviate from the usual association of life histories of "slow" species. Current management practices are focused on nests and hatchling survival; however, protection efforts that extend to juvenile crocodiles would be most effective for conservation of the species, especially in an ever-developing landscape. [Briggs-Gonzalez, Venetia; Basille, Mathieu; Beauchamp, Jeff; Mazzotti, Frank] Univ Florida, Ft Lauderdale Res & Educ Ctr, Dept Wildlife Ecol & Conservat, Ft Lauderdale, FL 33314 USA; [Bonenfant, Christophe] Univ Lyon, CNRS, UMR 5558, Lab Biomet & Biol Evolut, Villeurbanne, France; [Cherkiss, Michael] US Geol Survey, Wetland & Aquat Res Ctr, Ctr Collaborat Res, Ft Lauderdale, FL USA Briggs-Gonzalez, V (reprint author), Univ Florida, Ft Lauderdale Res & Educ Ctr, Dept Wildlife Ecol & Conservat, Ft Lauderdale, FL 33314 USA. vsbriggs@ufl.edu Basille, Mathieu/0000-0001-9366-7127; Bonenfant, Christophe/0000-0002-9924-419X Florida Power and Light Co. We thank current and past members of The Croc Docs (http://crocdoc.ifas.ufl.edu/) for crocodile captures and data collection, D. Bucklin for producing the species distribution map, M. Denton and S. Gonzalez for comments, and S. Caliz Gonzalez for the opportunity to work on this manuscript. We thank Florida Power and Light Co. for funding and logistical support. Use of trade, product or firm names does not imply endorsement by the U.S. Government. Animal subjects were treated ethically and research was conducted under FWS permit #TE077258-2 and adhered to animal welfare standards approved by the University of Florida IACUC #201509072 and ARC protocol # 005-12FTL. The authors acknowledge that there are no conflicts of interest related to this article. This article is dedicated to the memory of Rafael Crespo Jr. (1983-2014) without whose tireless efforts much of this work would not have been possible. Balaguera-Reina SA, 2015, S AM J HERPETOL, V10, P10, DOI 10.2994/SAJH-D-14-00024.1; Beckerman AP, 2002, TRENDS ECOL EVOL, V17, P263, DOI 10.1016/S0169-5347(02)02469-2; Bieber C, 2005, J APPL ECOL, V42, P1203, DOI 10.1111/j.1365-2664.2005.01094.x; BLAKE D K, 1975, Biological Conservation, V8, P261, DOI 10.1016/0006-3207(75)90004-X; Blomberg G. E. D., 1982, CROCODILES, P343; Bolker BM, 2009, TRENDS ECOL EVOL, V24, P127, DOI 10.1016/j.tree.2008.10.008; Bonnet X, 1999, BIOL CONSERV, V89, P39, DOI 10.1016/S0006-3207(98)00140-2; Brandt Laura A., 1995, Herpetological Natural History, V3, P29; Briggs-Gonzalez V., 2017, DRYAD DIGITAL REPOSI; Burnham KP, 2002, MODEL SELECTION MULT; Caswell H, 2000, ECOLOGY, V81, P619, DOI 10.2307/177364; Caswell H, 2001, MATRIX POPULATION MO; Chabreck R.H, 1966, P SEAST ASS GAME FIS, V20, P105; Charruau P, 2010, J NAT HIST, V44, P741, DOI 10.1080/00222930903490993; Cherkiss MS, 2011, ESTUAR COAST, V34, P529, DOI 10.1007/s12237-011-9378-6; COTT H. B., 1961, TRANS ZOOL SOC LONDON, V29, P211; Coulson T, 2005, J ANIM ECOL, V74, P789, DOI 10.1111/j.1365-2656.2005.00975.x; CROUSE DT, 1987, ECOLOGY, V68, P1412, DOI 10.2307/1939225; Frie AK, 2012, CAN J ZOOL, V90, P376, DOI 10.1139/Z11-140; GABY R, 1985, J HERPETOL, V19, P189, DOI 10.2307/1564172; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; Gaillard JM, 2005, AM NAT, V166, P119, DOI 10.1086/430330; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; Graham A., 1968, LAKE RUDOLF CROCODIL; Grigg G, 2015, BIOLOGY AND EVOLUTION OF CROCODYLIANS, P1; Haridas CV, 2005, AM NAT, V166, P481, DOI 10.1086/444444; Heppell SS, 1998, COPEIA, P367, DOI 10.2307/1447430; Heppell SS, 2000, ECOLOGY, V81, P654, DOI 10.2307/177367; Hussain SA, 1999, BIOL CONSERV, V87, P261; KUSHLAN JA, 1989, J HERPETOL, V23, P7, DOI 10.2307/1564310; LAAKE J. L., 2013, 201301 AFSC NOAA NAT; Lachish S, 2007, J ANIM ECOL, V76, P926, DOI 10.1111/j.1365-2656.2007.01272.x; Lance VA, 2003, EXP GERONTOL, V38, P801, DOI 10.1016/S0531-5565(03)00112-8; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Lebreton JD, 1991, BIRD POPULATION STUD, P105; LEBUFF CHARLES R., 1957, HERPETOLOGICA, V13, P25; LEFKOVITCH LP, 1965, BIOMETRICS, V21, P1, DOI 10.2307/2528348; LESLIE PH, 1966, J ANIM ECOL, V35, P291, DOI 10.2307/2396; LESLIE PH, 1945, BIOMETRIKA, V33, P183, DOI DOI 10.1093/BI0MET/33.3.183; Levy C., 1991, ENDANGERED SPECIES C; MAGNUSSON WE, 1982, J HERPETOL, V16, P121, DOI 10.2307/1563804; MAGNUSSON WE, 1983, J HERPETOL, V17, P86, DOI 10.2307/1563790; Mauger LA, 2012, REV BIOL TROP, V60, P1889; Mazzotti FJ, 2003, STATUS CONSERVATION; Mazzotti FJ, 1983, THESIS; Mazzotti FJ, 2007, J HERPETOL, V41, P122, DOI 10.1670/0022-1511(2007)41[122:ACCAIF]2.0.CO;2; Mazzotti FJ, 2009, ECOL INDIC, V9, pS137, DOI 10.1016/j.ecolind.2008.06.008; McIvor Carole C., 1994, P117; Moler P. E., 1991, 7532 BUR WILDL RES F; MOLONEY CL, 1994, BIOL CONSERV, V70, P195, DOI 10.1016/0006-3207(94)90163-5; OGDEN JC, 1978, J HERPETOL, V12, P183, DOI 10.2307/1563406; Oli MK, 1999, OIKOS, V86, P557, DOI 10.2307/3546660; Pfister CA, 1998, P NATL ACAD SCI USA, V95, P213, DOI 10.1073/pnas.95.1.213; Pike DA, 2008, ECOLOGY, V89, P607, DOI 10.1890/06-2162.1; Ponce-Campos P., 2012, IUCN RED LIST THREAT; PONTIER D, 1989, OECOLOGIA, V80, P390, DOI 10.1007/BF00379041; R Core Team, 2015, R LANG ENV STAT COMP; Richards Paul M., 2003, Herpetological Review, V34, P371; Richards Paul M., 2003, Florida Scientist, V66, P273; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Salguero-Gomez R, 2016, J ANIM ECOL, V85, P371, DOI 10.1111/1365-2656.12482; Salomon Y, 2013, CONSERV BIOL, V27, P134, DOI 10.1111/cobi.12007; SHAFFER ML, 1990, CONSERV BIOL, V4, P39, DOI 10.1111/j.1523-1739.1990.tb00265.x; Sibley RM, 2003, WILDLIFE POPULATION; THORBJARNARSON J B, 1988, Bulletin of the Florida State Museum Biological Sciences, V33, P1; Thorbjarnarson J. B., 2010, CROCODILES STATUS SU, P46; US Fish and Wildlife Service, 1975, FED REGISTER, V187, P44149; US Fish and Wildlife Service, 2007, FED REGISTER, V53, P13027; WEBB GJW, 1983, AUST WILDLIFE RES, V10, P383; WEBB GJW, 1978, AUST WILDLIFE RES, V5, P385; White GC, 1999, BIRD STUDY, V46, P120; Wilkinson PM, 1997, J WILDLIFE MANAGE, V61, P397, DOI 10.2307/3802596; Woodward AR, 1995, J HERPETOL, V29, P507, DOI 10.2307/1564733; Yangprapakorn U., 1971, IUCN PUBL S, V32, P98 75 1 1 9 43 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. SEP 2017 86 5 1102 1113 10.1111/1365-2656.12723 12 Ecology; Zoology Environmental Sciences & Ecology; Zoology FD1TV WOS:000407320500013 28657652 2018-11-22 J Moleon, M; Martinez-Carrasco, C; Muellerklein, OC; Getz, WM; Munoz-Lozano, C; Sanchez-Zapata, JA Moleon, Marcos; Martinez-Carrasco, Carlos; Muellerklein, Oliver C.; Getz, Wayne M.; Munoz-Lozano, Carlos; Sanchez-Zapata, Jose A. Carnivore carcasses are avoided by carnivores JOURNAL OF ANIMAL ECOLOGY English Article agent-based model; cannibalism; carrion; disease risk; evolution of host-parasite interactions; food webs; genetic algorithm; indirect interactions; scavenger NEOSPORA-CANINUM; SELECTIVE FORCE; FOOD-WEB; PARASITES; CANNIBALISM; INFECTION; TRANSMISSION; SCAVENGERS; EVOLUTION; PATTERNS Ecologists have traditionally focused on herbivore carcasses as study models in scavenging research. However, some observations of scavengers avoiding feeding on carnivore carrion suggest that different types of carrion may lead to differential pressures. Untested assumptions about carrion produced at different trophic levels could therefore lead ecologists to overlook important evolutionary processes and their ecological consequences. Our general goal was to investigate the use of mammalian carnivore carrion by vertebrate scavengers. In particular, we aimed to test the hypothesis that carnivore carcasses are avoided by other carnivores, especially at the intraspecific level, most likely to reduce exposure to parasitism. We take a three-pronged approach to study this principle by: (i) providing data from field experiments, (ii) carrying out evolutionary simulations of carnivore scavenging strategies under risks of parasitic infection, and (iii) conducting a literature-review to test two predictions regarding parasite life-history strategies. First, our field experiments showed that the mean number of species observed feeding at carcasses and the percentage of consumed carrion biomass were substantially higher at herbivore carcasses than at carnivore carcasses. This occurred even though the number of scavenger species visiting carcasses and the time needed by scavengers to detect carcasses were similar between both types of carcasses. In addition, we did not observe cannibalism. Second, our evolutionary simulations demonstrated that a risk of parasite transmission leads to the evolution of scavengers with generally low cannibalistic tendencies, and that the emergence of cannibalism-avoidance behaviour depends strongly on assumptions about parasitebased mortality rates. Third, our literature review indicated that parasite species potentially able to follow a carnivore-carnivore indirect cycle, as well as those transmitted via meat consumption, are rare in our study system. Our findings support the existence of a novel coevolutionary relation between carnivores and their parasites, and suggest that carnivore and herbivore carcasses play very different roles in food webs and ecosystems. [Moleon, Marcos; Sanchez-Zapata, Jose A.] Univ Miguel Hernandez, Dept Biol Aplicada, Elche, Spain; [Moleon, Marcos] CSIC, Dept Biol Conservac, Estn Biol Donana, Seville, Spain; [Martinez-Carrasco, Carlos; Munoz-Lozano, Carlos] Univ Murcia, Dept Sanidad Anim, Campus Excelencia Int Reg Campus Mare Nostrum, Murcia, Spain; [Muellerklein, Oliver C.; Getz, Wayne M.] Univ Calif Berkeley, Dept ESPM, Berkeley, CA USA; [Getz, Wayne M.] Univ KwaZulu Natal, Sch Math Sci, Durban, South Africa; [Moleon, Marcos] Univ Granada, Dept Zool, E-18071 Granada, Spain Moleon, M (reprint author), Univ Miguel Hernandez, Dept Biol Aplicada, Elche, Spain.; Moleon, M (reprint author), CSIC, Dept Biol Conservac, Estn Biol Donana, Seville, Spain.; Moleon, M (reprint author), Univ Granada, Dept Zool, E-18071 Granada, Spain. mmoleonpalz@hotmail.com CSIC, EBD Donana/C-4157-2011 CSIC, EBD Donana/0000-0003-4318-6602; Moleon, Marcos/0000-0002-3126-619X Ramon y Cajal Postdoctoral Program of the Spanish Ministry of Economy and Competitiveness [RYC-2015-19231]; Severo Ochoa Program for Centres of Excellence in R+D+I of the Spanish Ministry of Economy and Competitiveness [SEV-2012- 0262]; Spanish Ministry of Economy and Competitiveness; EU ERDF [CGL2006-10689/BOS, CGL2009-12753-C02-02, CGL2012-40013-C02-01/02, CGL2015-66966-C2-1-2-R] Ramon y Cajal Postdoctoral Program of the Spanish Ministry of Economy and Competitiveness, Grant/Award Number: RYC-2015-19231; Severo Ochoa Program for Centres of Excellence in R+D+I of the Spanish Ministry of Economy and Competitiveness, Grant/Award Number: SEV-2012- 0262; Spanish Ministry of Economy and Competitiveness and EU ERDF, Grant/Award Number: CGL2006-10689/BOS, CGL2009-12753-C02-02, CGL2012-40013-C02-01/02 and CGL2015-66966-C2-1-2-R Almeria S, 2007, VET PARASITOL, V143, P21, DOI 10.1016/j.vetpar.2006.07.027; ANDERSON RM, 1982, PARASITOLOGY, V85, P411, DOI 10.1017/S0031182000055360; Athreya V, 2016, ORYX, V50, P156, DOI 10.1017/S0030605314000106; Barton K, 2013, R PACKAGE VERSION, V1, P13; Blazquez M, 2009, ACTA OECOL, V35, P645, DOI 10.1016/j.actao.2009.06.002; Bolker BM, 2008, EVOL ECOL RES, V10, P105; Burnham KP, 2002, MODEL SELECTION MULT; Cantera OrtizdeUrbina J, 2005, REFRANERO LATINO EDI; Caro TM, 2003, BIOL CONSERV, V110, P67, DOI 10.1016/S0006-3207(02)00177-5; Cizauskas CA, 2014, BMC ECOL, V14, DOI 10.1186/s12898-014-0027-3; Collinge J, 2001, ANNU REV NEUROSCI, V24, P519, DOI 10.1146/annurev.neuro.24.1.519; Cordero delCampillo M, 1994, INDICE CATALOGO ZOOP; DeVault TL, 2003, OIKOS, V102, P225, DOI 10.1034/j.1600-0706.2003.12378.x; Donadio E, 2006, AM NAT, V167, P524, DOI 10.1086/501033; Donahoe SL, 2015, INT J PARASITOL-PAR, V4, P216, DOI 10.1016/j.ijppaw.2015.04.002; ELGAR MA, 1992, CANNIBALISM ECOLOGY; Figueroa Luis, 2007, Parasitologia Latinoamericana, V62, P79; Gamble HR, 2000, VET PARASITOL, V93, P393, DOI 10.1016/S0304-4017(00)00354-X; Gauss CBL, 2005, VET PARASITOL, V131, P151, DOI 10.1016/j.vetpar.2005.04.023; Getz W. M., 2015, P 2015 WINT SIM C, P689; Getz WM, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133732; Getz WM, 2011, ECOL LETT, V14, P113, DOI 10.1111/j.1461-0248.2010.01566.x; HART BL, 1990, NEUROSCI BIOBEHAV R, V14, P273, DOI 10.1016/S0149-7634(05)80038-7; Houde N, 2007, ECOL SOC, V12; Huang S, 2014, J ANIM ECOL, V83, P671, DOI 10.1111/1365-2656.12160; Jolles AE, 2008, ECOLOGY, V89, P2239, DOI 10.1890/07-0995.1; Kavaliers M., 2007, HORM BEHAV, V46, P272; Kiesecker JM, 1999, P NATL ACAD SCI USA, V96, P9165, DOI 10.1073/pnas.96.16.9165; KIRKPATRICK S, 1983, SCIENCE, V220, P671, DOI 10.1126/science.220.4598.671; Lafferty KD, 2006, P NATL ACAD SCI USA, V103, P11211, DOI 10.1073/pnas.0604755103; Linnell John D. C., 2000, Diversity and Distributions, V6, P169, DOI 10.1046/j.1472-4642.2000.00069.x; Lourenco R, 2014, BIOL REV, V89, P270, DOI 10.1111/brv.12054; Mateo-Tomas P, 2015, DIVERS DISTRIB, V21, P913, DOI 10.1111/ddi.12330; MEFFE GK, 1987, AM NAT, V129, P203, DOI 10.1086/284630; Moleon M., 2017, DRYAD DIGITAL REPOSI; Moleon M, 2015, BIOSCIENCE, V65, P1003, DOI 10.1093/biosci/biv101; Moleon M, 2015, OIKOS, V124, P1391, DOI 10.1111/oik.02222; Moleon M, 2014, BIOL REV, V89, P1042, DOI 10.1111/brv.12097; Moleon M, 2014, BIOSCIENCE, V64, P394, DOI 10.1093/biosci/biu034; Nakagawa S, 2013, METHODS ECOL EVOL, V4, P133, DOI 10.1111/j.2041-210x.2012.00261.x; Oksanen A, 2009, J PARASITOL, V95, P89, DOI 10.1645/GE-1590.1; Olson ZH, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0147798; Palomares F, 1999, AM NAT, V153, P492, DOI 10.1086/303189; Pfennig DW, 1998, ANIM BEHAV, V55, P1255, DOI 10.1006/anbe.1997.9996; POLIS GA, 1981, ANNU REV ECOL SYST, V12, P225, DOI 10.1146/annurev.es.12.110181.001301; Pradel E, 2007, P NATL ACAD SCI USA, V104, P2295, DOI 10.1073/pnas.0610281104; Prestrud KW, 2007, VET PARASITOL, V150, P6, DOI 10.1016/j.vetpar.2007.09.006; R Core Team, 2013, R LANG ENV STAT COMP; Ritchie EG, 2009, ECOL LETT, V12, P982, DOI 10.1111/j.1461-0248.2009.01347.x; Rudolf VHW, 2007, P R SOC B, V274, P1205, DOI 10.1098/rspb.2006.0449; Sanchez- Zapata J. A., 2007, TECHNICAL REPORT; Sebastian-Gonzalez E, 2016, ECOLOGY, V97, P95, DOI 10.1890/15-0212.1; Selva N, 2005, CAN J ZOOL, V83, P1590, DOI 10.1139/Z05-158; Selva N., 2004, THESIS; Sobrino R, 2008, VET PARASITOL, V155, P190, DOI 10.1016/j.vetpar.2008.05.009; Stephens PR, 2016, ECOL LETT, V19, P1159, DOI 10.1111/ele.12644; Thomas F, 1999, OIKOS, V84, P167, DOI 10.2307/3546879; Thompson RM, 2005, J ANIM ECOL, V74, P77, DOI 10.1111/j.1365-2656.2004.00899.x; Turner WC, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.1785; Wilson EE, 2011, TRENDS ECOL EVOL, V26, P129, DOI 10.1016/j.tree.2010.12.011; Zuur A. F., 2009, MIXED EFFECTS MODELS 61 4 4 4 21 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. SEP 2017 86 5 1179 1191 10.1111/1365-2656.12714 13 Ecology; Zoology Environmental Sciences & Ecology; Zoology FD1TV WOS:000407320500020 28609555 Green Published 2018-11-22 J Beziers, P; Ducrest, AL; Simon, C; Roulin, A Beziers, Paul; Ducrest, Anne-Lyse; Simon, Celine; Roulin, Alexandre Circulating testosterone and feather-gene expression of receptors and metabolic enzymes in relation to melanin-based colouration in the barn owl GENERAL AND COMPARATIVE ENDOCRINOLOGY English Article Testosterone; Androgen receptor; Estrogen receptor; 5-Alpha reductase; Melanin; Sex hormones; Gene expression IMMUNOCOMPETENCE HANDICAP HYPOTHESIS; SPARROWS PASSER-DOMESTICUS; BLACK PLUMAGE COLORATION; WHITE-THROATED SPARROW; DARK-EYED JUNCO; TYTO-ALBA; SEXUAL-DIFFERENTIATION; ENHANCES MELANOGENESIS; PHENOTYPIC INTEGRATION; CARDINALIS-CARDINALIS Knowledge of how and why secondary sexual characters are associated with sex hormones is important to understand their signalling function. Such a link can occur if i) testosterone participates in the elaboration of sex-traits, ii) the display of an ornament triggers behavioural response in conspecifics that induce a rise in testosterone, or iii) genes implicated in the elaboration of a sex-trait pleiotropically regulate testosterone physiology. To evaluate the origin of the co-variation between melanism and testosterone, we measured this hormone and the expression of enzymes involved in its metabolism in feathers of barn owl (Tyto alba) nestlings at the time of melanogenesis and in adults outside the period of melanogenesis. Male nestlings displaying smaller black feather spots had higher levels of circulating testosterone, potentially suggesting that testosterone could block the production of eumelanin pigments, or that genes involved in the production of small spots pleiotropically regulate testosterone production. In contrast, the enzyme 5 alpha-reductase, that metabolizes testosterone to DHT, was more expressed in feathers of reddish-brown than light-reddish nestlings. This is consistent with the hypothesis that testosterone might be involved in the expression of reddish-brown pheomelanic pigments. In breeding adults, male barn owls displaying smaller black spots had higher levels of circulating testosterone, whereas in females the opposite result was detected during the rearing period, but not during incubation. The observed sex- and age-specific co-variations between black spottiness and testosterone in nestling and adult barn owls may not result from testosterone-dependent melanogenesis, but from melanogenic genes pleiotropically regulating testosterone, or from colour-specific life history strategies that influence testosterone levels. (C) 2017 Elsevier Inc. All rights reserved. [Beziers, Paul; Ducrest, Anne-Lyse; Simon, Celine; Roulin, Alexandre] Univ Lausanne, Dept Ecol & Evolut, Biophore Bldg, CH-1015 Lausanne, Switzerland Beziers, P (reprint author), Univ Lausanne, Dept Ecol & Evolut, Biophore Bldg, CH-1015 Lausanne, Switzerland. paul.beziers@unil.ch Beziers, Paul/0000-0003-4602-0026 Swiss National Science Foundation; Fonds Herbette of the University of Lausanne The research was supported by the Swiss National Science Foundation and the Fonds Herbette of the University of Lausanne. We thank Laura Clement, Baudouin des Monstiers and other field assistants for their precious help in the field, Virginie Canoine for her help with sample processing and Luis Garcia San Jose, Vera Uva and two anonymous reviewers for comments on the manuscript. Acker P, 2015, J EVOLUTION BIOL, V28, P2027, DOI 10.1111/jeb.12717; Almasi B, 2015, BIOL J LINN SOC, V115, P376, DOI 10.1111/bij.12508; Almasi B, 2013, HORM BEHAV, V64, P161, DOI 10.1016/j.yhbeh.2013.03.001; Andersson M., 1994, SEXUAL SELECTION; Arnold AP, 2009, HORM BEHAV, V55, P570, DOI 10.1016/j.yhbeh.2009.03.011; Atwell JW, 2014, AM NAT, V184, pE147, DOI 10.1086/678398; Ball GF, 2008, PHILOS T R SOC B, V363, P1699, DOI 10.1098/rstb.2007.0010; Bokony V, 2005, CONDOR, V107, P775, DOI 10.1650/7784.1; Bokony V, 2008, BEHAV ECOL SOCIOBIOL, V62, P1229, DOI 10.1007/s00265-008-0551-2; Crews D, 1998, AM ZOOL, V38, P118; Dakin R, 2011, J AVIAN BIOL, V42, P405, DOI 10.1111/j.1600-048X.2011.05444.x; DESSIFULGHERI F, 1976, AGGRESSIVE BEHAV, V2, P223, DOI 10.1002/1098-2337(1976)2:3<223::AID-AB2480020307>3.0.CO;2-0; Diaz L C, 1986, Pediatr Dermatol, V3, P247, DOI 10.1111/j.1525-1470.1986.tb00522.x; Dreiss AN, 2010, BIOL J LINN SOC, V101, P689, DOI 10.1111/j.1095-8312.2010.01503.x; Ducrest AL, 2008, TRENDS ECOL EVOL, V23, P502, DOI 10.1016/j.tree.2008.06.001; Ducret V, 2016, MOL ECOL, V25, P4551, DOI 10.1111/mec.13781; Edwards EA, 1941, ENDOCRINOLOGY, V28, P119, DOI 10.1210/endo-28-1-119; Emaresi G, 2014, AM NAT, V183, P269, DOI 10.1086/674444; Enstrom DA, 1997, ANIM BEHAV, V54, P1135, DOI 10.1006/anbe.1997.0555; Fargallo JA, 2007, J ANIM ECOL, V76, P201, DOI 10.1111/j.1365-2656.2006.01193.x; Fargallo JA, 2014, BEHAV ECOL, V25, P76, DOI 10.1093/beheco/art088; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Garamszegi LZ, 2004, BEHAV ECOL, V15, P148, DOI 10.1093/beheco/arg108; Gonzalez G, 2002, ETHOLOGY, V108, P289, DOI 10.1046/j.1439-0310.2002.00779.x; GRUNT JA, 1952, ENDOCRINOLOGY, V51, P237, DOI 10.1210/endo-51-3-237; HAASE E, 1995, PIGM CELL RES, V8, P164, DOI 10.1111/j.1600-0749.1995.tb00658.x; Hamilton JB, 1938, SCIENCE, V88, P481, DOI 10.1126/science.88.2290.481; Hamilton JB, 1939, P SOC EXP BIOL MED, V40, P502; Hill G. E., 2006, BIRD COLOURATION, VII, P136; Hirobe T, 2010, ZOOL SCI, V27, P470, DOI 10.2108/zsj.27.470; Jawor JM, 2003, AUK, V120, P249, DOI 10.1642/0004-8038(2003)120[0249:MOHASS]2.0.CO;2; Jawor JM, 2004, ANIM BEHAV, V67, P875, DOI 10.1016/j.anbehav.2003.05.015; Jawor JM, 2004, ETHOLOGY, V110, P113, DOI 10.1111/j.1439-0310.2003.00962.x; Jian D, 2011, STEROIDS, V76, P1297, DOI 10.1016/j.steroids.2011.06.008; JONES IL, 1990, ANIM BEHAV, V39, P967, DOI 10.1016/S0003-3472(05)80962-5; Ketterson ED, 2005, AM NAT, V166, pS85, DOI 10.1086/444602; KETTERSON ED, 1992, AM NAT, V140, pS33, DOI 10.1086/285396; Ketterson ED, 2009, INTEGR COMP BIOL, V49, P365, DOI 10.1093/icb/icp057; Kim YJ, 2008, J CUTAN PATHOL, V35, P1121, DOI 10.1111/j.1600-0560.2008.00988.x; Kimball R. T., 2006, BIRD COLORATION, VI, P137; Kraak SBM, 1999, BEHAV ECOL, V10, P696, DOI 10.1093/beheco/10.6.696; Kunzler R, 2000, P ROY SOC B-BIOL SCI, V267, P999, DOI 10.1098/rspb.2000.1102; Lindsay WR, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026067; Lynn SE, 2008, GEN COMP ENDOCR, V157, P233, DOI 10.1016/j.ygcen.2008.05.009; Mcglothlin JW, 2008, J EVOLUTION BIOL, V21, P39, DOI 10.1111/j.1420-9101.2007.01471.x; Moller A. P., 1994, SEXUAL SELECTION BAR; Moore MC, 1998, AM ZOOL, V38, P133; Moreno J, 2014, J ORNITHOL, V155, P639, DOI 10.1007/s10336-014-1046-8; Muck C, 2011, BEHAV ECOL, V22, P1312, DOI 10.1093/beheco/arr133; Nakagawa S, 2013, METHODS ECOL EVOL, V4, P133, DOI 10.1111/j.2041-210x.2012.00261.x; Noble GK, 1940, ENDOCRINOLOGY, V26, P837, DOI 10.1210/endo-26-5-837; O'Neal DM, 2008, HORM BEHAV, V54, P571, DOI 10.1016/j.yhbeh.2008.05.017; Oribe E, 2012, GEN COMP ENDOCR, V177, P231, DOI 10.1016/j.ygcen.2012.04.016; Owen-Ashley NT, 2004, AM NAT, V164, P490, DOI 10.1086/423714; Peleg O, 2014, BIRD STUDY, V61, P572, DOI 10.1080/00063657.2014.958053; PHOENIX CH, 1959, ENDOCRINOLOGY, V65, P369, DOI 10.1210/endo-65-3-369; Quinn G.P., 2002, EXPT DESIGN DATA ANA; Quispe R, 2015, GEN COMP ENDOCR, V212, P100, DOI 10.1016/j.ygcen.2015.01.007; Roberts ML, 2004, ANIM BEHAV, V68, P227, DOI 10.1016/j.anbehav.2004.05.001; ROHWER S, 1975, EVOLUTION, V29, P593, DOI 10.1111/j.1558-5646.1975.tb00853.x; Roulin A, 2003, HEREDITY, V90, P359, DOI 10.1038/sj.hdy.6800260; Roulin A, 2004, EVOL ECOL RES, V6, P1083; Roulin A, 2015, J EVOLUTION BIOL, V28, P655, DOI 10.1111/jeb.12596; Roulin A, 2004, IBIS, V146, P509, DOI 10.1111/j.1474-919x.2004.00292.x; Roulin A, 2012, ANIM BEHAV, V84, P1229, DOI 10.1016/j.anbehav.2012.08.033; Roulin A, 2010, ECOL LETT, V13, P616, DOI 10.1111/j.1461-0248.2010.01459.x; Roulin A, 2009, NATURWISSENSCHAFTEN, V96, P375, DOI 10.1007/s00114-008-0489-2; Safran RJ, 2008, CURR BIOL, V18, pR461, DOI 10.1016/j.cub.2008.03.031; San-Jose L.M., 2016, MOL ECOL; Schwahn DJ, 2005, PIGM CELL RES, V18, P203, DOI 10.1111/j.1600-0749.2005.00229.x; SENAR JC, 2006, BIRD COLORATION, V2, P87; Siefferman L, 2013, PHYSIOL BIOCHEM ZOOL, V86, P323, DOI 10.1086/670383; Sinervo B, 1996, NATURE, V380, P240, DOI 10.1038/380240a0; Sinervo B, 2000, NATURE, V406, P985, DOI 10.1038/35023149; Spinney LH, 2006, HORM BEHAV, V50, P762, DOI 10.1016/j.yhbeh.2006.06.034; Strasser R, 2004, BEHAV ECOL SOCIOBIOL, V56, P491, DOI 10.1007/s00265-004-0810-9; Sun M, 2017, J STEROID BIOCHEM, V165, P236, DOI 10.1016/j.jsbmb.2016.06.012; Swett MB, 2009, PHYSIOL BIOCHEM ZOOL, V82, P572, DOI 10.1086/605392; Tadokoro T, 1997, J INVEST DERMATOL, V109, P513, DOI 10.1111/1523-1747.ep12336630; Tadokoro T, 2003, PIGM CELL RES, V16, P190, DOI 10.1034/j.1600-0749.2003.00019.x; Team R., 2015, RSTUDIO INT DEV R; Tuttle EM, 2003, BEHAV ECOL, V14, P425, DOI 10.1093/beheco/14.3.425; Vaillant S, 2003, MOL REPROD DEV, V65, P420, DOI 10.1002/mrd.10318; van den Brink V, 2012, ANIM BEHAV, V84, P805, DOI 10.1016/j.anbehav.2012.07.001; van den Brink V, 2012, BEHAV ECOL, V23, P473, DOI 10.1093/beheco/arr213; Vandesompele J, 2002, GENOME BIOL, V3, DOI 10.1186/gb-2002-3-7-research0034; Washburn BE, 2007, CONDOR, V109, P181, DOI 10.1650/0010-5422(2007)109[181:UACAEI]2.0.CO;2; Winters C. P., 2010, INTEGR COMP BIOL, pE82 88 3 3 1 13 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0016-6480 1095-6840 GEN COMP ENDOCR Gen. Comp. Endocrinol. SEP 1 2017 250 36 45 10.1016/j.ygcen.2017.04.015 10 Endocrinology & Metabolism Endocrinology & Metabolism FB3ZJ WOS:000406081000005 28457648 2018-11-22 J Akao, KA; Adair, L; Brase, GL Akao, Karen A.; Adair, Lora; Brase, Gary L. Parental attachment style, but not environmental quality, is associated with use of opposite-sex parents as a template for relationship partners PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Relationships; Attachment; Early environment; Sex differences; Templates LIFE-HISTORY STRATEGIES; MATE CHOICE; REPRODUCTIVE STRATEGIES; CHILDHOOD; PREFERENCES; ADOLESCENCE; SECURITY; HOMOGAMY Animal and human studies have suggested that some individuals use sexual imprinting, in which a template is created based on traits of one's opposite-sex parent (OSP), to assist in choosing potential mates. The current study investigates the role of parental attachment and early environment in the variance of using a sexual imprinted template. Two hundred twenty-nine undergraduate students from a Midwestern university completed the Parental Acceptance-Rejection Questionnaire (Rohner, 1990), answered questions on early environment, and rated traits of their opposite-sex parent, ideal partner, and acceptable partner. Results show varying evidence for sexual imprinting. In particular, there are correlations between secure attachment and stricter adherence to an opposite-sex parent template, especially for women, but no association between early environment and template variance. (C) 2016 Elsevier Ltd. All rights reserved. [Akao, Karen A.; Adair, Lora; Brase, Gary L.] Kansas State Univ, Dept Psychol Sci, 492 Bluemont Hall, Manhattan, KS 66506 USA Brase, GL (reprint author), Kansas State Univ, Dept Psychol Sci, 492 Bluemont Hall, Manhattan, KS 66506 USA. gbrase@ksu.edu Brase, Gary/0000-0002-9613-5529 Ainsworth M., 1978, PATTERNS ATTACHMENT; [Anonymous], 2009, HELLO CANADA OCT, P146; Antfolk J, 2015, EVOL HUM BEHAV, V36, P73, DOI 10.1016/j.evolhumbehav.2014.09.003; BARTHOLOMEW K, 1991, J PERS SOC PSYCHOL, V61, P226, DOI 10.1037//0022-3514.61.2.226; BATESON P, 1978, NATURE, V273, P659, DOI 10.1038/273659a0; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.1111/j.1467-8624.1991.tb01558.x; Bereczkei T, 2004, P ROY SOC B-BIOL SCI, V271, P1129, DOI 10.1098/rspb.2003.2672; Bereczkei T, 2002, PERS INDIV DIFFER, V33, P677, DOI 10.1016/S0191-8869(01)00182-9; Bowlby J., 1969, ATTACHMENT LOSS, V1; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; BUSS DM, 1989, BEHAV BRAIN SCI, V12, P1, DOI 10.1017/S0140525X00023992; Cassidy J., 2000, REV GEN PSYCHOL, V4, P111, DOI [DOI 10.1037/1089-2680.4.2.111, 10.1037/1089-2680.4.2.111, DOI 10.1037//1089-2680.4.2.111]; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; FEENEY JA, 1990, J PERS SOC PSYCHOL, V58, P281, DOI 10.1037/0022-3514.58.2.281; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Gyuris P, 2010, PERS INDIV DIFFER, V49, P467, DOI 10.1016/j.paid.2010.04.021; HAZAN C, 1987, J PERS SOC PSYCHOL, V52, P511, DOI 10.1037//0022-3514.52.3.511; HILL EM, 1994, ETHOL SOCIOBIOL, V15, P323, DOI 10.1016/0162-3095(94)90006-X; JEDLICKA D, 1984, J MARRIAGE FAM, V46, P65, DOI 10.2307/351864; KENRICK DT, 1992, BEHAV BRAIN SCI, V15, P75, DOI 10.1017/S0140525X00067595; Khaleque A, 2002, J MARRIAGE FAM, V64, P54, DOI 10.1111/j.1741-3737.2002.00054.x; LattyMann H, 1996, J SOC PERS RELAT, V13, P5, DOI 10.1177/0265407596131001; Lieberman D, 2007, NATURE, V445, P727, DOI 10.1038/nature05510; Little AC, 2003, EVOL HUM BEHAV, V24, P43, DOI 10.1016/S1090-5138(02)00119-8; Lorenz K., 1965, EVOLUTION MODIFICATI; Rohner R.P., 1990, HDB STUDY PARENTAL A; Schmitt DP, 2005, PERS SOC PSYCHOL B, V31, P747, DOI 10.1177/0146167204271843; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Sulutvedt U, 2014, PEERJ, V2, DOI 10.7717/peerj.595; Waters E, 2000, CHILD DEV, V71, P703, DOI 10.1111/1467-8624.00179; Wiszewska A, 2007, EVOL HUM BEHAV, V28, P248, DOI 10.1016/j.evolhumbehav.2007.02.006 33 0 0 4 19 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. SEP 1 2017 115 103 107 10.1016/j.paid.2016.04.071 5 Psychology, Social Psychology EX3LZ WOS:000403134900018 2018-11-22 J Bogdanova, MI; Butler, A; Wanless, S; Moe, B; Anker-Nilssen, T; Frederiksen, M; Boulinier, T; Chivers, LS; Christensen-Dalsgaard, S; Descamps, S; Harris, MP; Newell, M; Olsen, B; Phillips, RA; Shaw, D; Steen, H; Strom, H; Thorarinsson, TL; Daunt, F Bogdanova, Maria I.; Butler, Adam; Wanless, Sarah; Moe, Borge; Anker-Nilssen, Tycho; Frederiksen, Morten; Boulinier, Thierry; Chivers, Lorraine S.; Christensen-Dalsgaard, Signe; Descamps, Sebastien; Harris, Michael P.; Newell, Mark; Olsen, Bergur; Phillips, Richard A.; Shaw, Deryk; Steen, Harald; Strom, Hallvard; Thorarinsson, Thorkell L.; Daunt, Francis Multi-colony tracking reveals spatio-temporal variation in carry-over effects between breeding success and winter movements in a pelagic seabird MARINE ECOLOGY PROGRESS SERIES English Article Seasonal interactions; Migration; Reproduction; Life-history strategies; Geolocation; Black-legged kittiwake; Rissa tridactyla; North Atlantic KITTIWAKE RISSA-TRIDACTYLA; BLACK-LEGGED KITTIWAKE; LONG-DISTANCE MIGRANT; MIXED-EFFECTS MODELS; MIGRATORY BIRD; SEASONAL INTERACTIONS; REPRODUCTIVE SUCCESS; ANNUAL CYCLE; HABITAT USE; POPULATION Carry-over effects, whereby events in one season have consequences in subsequent seasons, have important demographic implications. Although most studies examine carry-over effects across 2 seasons in single populations, the effects may persist beyond the following season and vary across a species' range. To assess potential carry-over effects across the annual cycle and among populations, we deployed geolocation loggers on black-legged kittiwakes Rissa tridactyla at 10 colonies in the north-east Atlantic and examined relationships between the timing and destination of migratory movements and breeding success in the year of deployment and sub-sequent season. Both successful and unsuccessful breeders wintered primarily in the north-west Atlantic. Breeding success affected the timing of migration, whereby unsuccessful breeders departed the colony earlier, arrived at the post-breeding and main wintering areas sooner, and departed later the following spring. However, these patterns were only apparent in colonies in the south-west of the study region. Furthermore, the effect of breeding success was stronger on migration timing in the first part of the winter than later. Timing of migratory movements was weakly linked to subsequent breeding success, and there was no detectable association between breeding success in the 2 seasons. Our results indicate temporal structure and spatial heterogeneity in the strength of seasonal interactions among kittiwakes breeding in the north-east Atlantic. Variable fitness consequences for individuals from different colonies could have important implications for population processes across the species' range and suggest that the spatiotemporal dynamics of carry-over effects warrant further study. [Bogdanova, Maria I.; Wanless, Sarah; Harris, Michael P.; Newell, Mark; Daunt, Francis] Ctr Ecol & Hydrol, Bush Estate, Penicuik EH26 0QB, Midlothian, Scotland; [Butler, Adam] Biomath & Stat Scotland, Kings Bldg, Edinburgh EH9 3FD, Midlothian, Scotland; [Moe, Borge; Anker-Nilssen, Tycho; Christensen-Dalsgaard, Signe] Norwegian Inst Nat Res, N-7485 Trondheim, Norway; [Frederiksen, Morten] Aarhus Univ, Dept Biosci, DK-4000 Roskilde, Denmark; [Boulinier, Thierry] Univ Montpellier, Ctr Ecol Fonct & Evolut, UMR 5175, CNRS, F-34293 Montpellier, France; [Descamps, Sebastien; Steen, Harald; Strom, Hallvard] Norwegian Polar Res Inst, Fram Ctr, N-9296 Tromso, Norway; [Olsen, Bergur] Faroe Marine Res Inst, FR-100 Noatun, Torshavn, Denmark; [Phillips, Richard A.] British Antarctic Survey, Nat Environm Res Council, Cambridge CB3 0ET, England; [Thorarinsson, Thorkell L.] Northeast Iceland Nat Res Ctr, IS-640 Husavik, Iceland Bogdanova, MI (reprint author), Ctr Ecol & Hydrol, Bush Estate, Penicuik EH26 0QB, Midlothian, Scotland. marib@ceh.ac.uk Frederiksen, Morten/A-7542-2008 Frederiksen, Morten/0000-0001-5550-0537 Natural Environment Research Council (UK); Northern Ireland Environment Agency; Shetland Oil Terminal Environmental Advisory Group; Fram Centre (Norway); Norwegian Environment Agency; Norwegian SEAPOP Programme; French Polar Institute (IPEV) [333] We are very grateful to the numerous people involved in field data collection, in particular Jacob Gonzalez-Solis, David Gremillet, Aurore Ponchon, Jeremy Tornos and Rob Barrett. The work was funded by the Natural Environment Research Council (UK), Northern Ireland Environment Agency, Shetland Oil Terminal Environmental Advisory Group, Fram Centre (Norway), Norwegian Environment Agency (formerly Directorate for Nature Management), Norwegian SEAPOP Programme and French Polar Institute (IPEV programme no. 333). Procedures were conducted under licences and ethical guidelines relevant to all countries involved. Barton K., 2015, MUMIN MULTIMODEL INF; Bates D, 2015, J STAT SOFTW, V67, P1; Bearhop S, 2004, P ROY SOC B-BIOL SCI, V271, pS215, DOI 10.1098/rsbl.2003.0129; Black J. M., 1996, PARTNERSHIPS BIRDS S; Block BA, 2011, NATURE, V475, P86, DOI 10.1038/nature10082; Bogdanova MI, 2011, P ROY SOC B-BIOL SCI, V278, P2412, DOI 10.1098/rspb.2010.2601; Boulinier T, 2008, BIOL LETTERS, V4, P538, DOI 10.1098/rsbl.2008.0291; Burnham KP, 2002, MODEL SELECTION MULT; Calenge C, 2006, ECOL MODEL, V197, P516, DOI 10.1016/j.ecolmodel.2006.03.017; Cam E, 1998, ECOLOGY, V79, P2917, DOI 10.1890/0012-9658(1998)079[2917:AANPPT]2.0.CO;2; Catry P, 2013, ECOLOGY, V94, P1230, DOI 10.1890/12-2177.1; Clutton-Brock T.H., 1988, REPROD SUCCESS STUDI; Daunt F, 2006, BEHAV ECOL SOCIOBIOL, V59, P381, DOI 10.1007/s00265-005-0061-4; Daunt F, 2014, ECOLOGY, V95, P2077, DOI 10.1890/13-1797.1; Fieberg J, 2005, J WILDLIFE MANAGE, V69, P1346, DOI 10.2193/0022-541X(2005)69[1346:QHOTIO]2.0.CO;2; Frederiksen M, 2012, DIVERS DISTRIB, V18, P530, DOI 10.1111/j.1472-4642.2011.00864.x; Gasparini J, 2002, ECOL LETT, V5, P519, DOI 10.1046/j.1461-0248.2002.00345.x; Griffiths R, 1996, P ROY SOC B-BIOL SCI, V263, P1251, DOI 10.1098/rspb.1996.0184; Harris MP, 1997, ICES J MAR SCI, V54, P615, DOI 10.1006/jmsc.1997.0241; Harrison XA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0077783; Harrison XA, 2011, J ANIM ECOL, V80, P4, DOI 10.1111/j.1365-2656.2010.01740.x; Hoye BJ, 2012, J ANIM ECOL, V81, P657, DOI 10.1111/j.1365-2656.2011.01948.x; Inger R, 2010, J ANIM ECOL, V79, P974, DOI 10.1111/j.1365-2656.2010.01712.x; Jakobsen T, 2011, BARENTS SEA ECOSYSTE; Latta SC, 2016, IBIS, V158, P395, DOI 10.1111/ibi.12344; Legagneux P, 2012, P ROY SOC B-BIOL SCI, V279, P876, DOI 10.1098/rspb.2011.1351; Lewis S, 2001, MAR ECOL PROG SER, V221, P277, DOI 10.3354/meps221277; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Marra PP, 1998, SCIENCE, V282, P1884, DOI 10.1126/science.282.5395.1884; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Nakagawa S, 2013, METHODS ECOL EVOL, V4, P133, DOI 10.1111/j.2041-210x.2012.00261.x; NEWTON I, 1989, LIFETIME REPROD BIRD; Norris DR, 2007, CONDOR, V109, P535; Norris DR, 2004, P ROY SOC B-BIOL SCI, V271, P59, DOI 10.1098/rspb.2003.2569; Palsson OK, 2012, ICES J MAR SCI, V69, P1242, DOI 10.1093/icesjms/fss071; Paramor O. A. L., 2009, MEFEPO N SEA ATLAS; Phillips RA, 2007, MAR ECOL PROG SER, V345, P281, DOI 10.3354/meps06991; Phillips RA, 2005, ECOLOGY, V86, P2386, DOI 10.1890/04-1885; Phillips RA, 2004, MAR ECOL PROG SER, V266, P265, DOI 10.3354/meps266265; Pinheiro J., 2016, COMPUTER SOFTWARE, V3, P1, DOI DOI 10.1016/J.CR0PR0.2007.08.015; Ponchon A, 2015, J EXP MAR BIOL ECOL, V473, P138, DOI 10.1016/j.jembe.2015.08.013; R Core Team, 2015, R LANG ENV STAT COMP; Reiertsen TK, 2014, MAR ECOL PROG SER, V509, P289, DOI 10.3354/meps10825; Schultner J, 2014, MAR ECOL PROG SER, V496, P125, DOI 10.3354/meps10603; Senner NR, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0086588; Sorensen MC, 2009, J ANIM ECOL, V78, P460, DOI 10.1111/j.1365-2656.2008.01492.x; Stearns S., 1992, EVOLUTION LIFE HIST; Studds CE, 2005, ECOLOGY, V86, P2380, DOI 10.1890/04-1145; Summers RW, 1996, J ZOOL, V239, P197, DOI 10.1111/j.1469-7998.1996.tb05447.x; Ylonen H, 1998, OIKOS, V83, P419; Zuur A. F., 2009, MIXED EFFECTS MODELS 51 4 4 4 14 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. AUG 31 2017 578 167 181 10.3354/meps12096 15 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography FH6SY WOS:000411308800010 Bronze 2018-11-22 J Jonason, PK; Foster, JD; Egorova, MS; Parshikova, O; Csatho, A; Oshio, A; Gouveia, VV Jonason, Peter K.; Foster, Joshua D.; Egorova, Marina S.; Parshikova, Oksana; Csatho, Arpad; Oshio, Atsushi; Gouveia, Valdiney V. The Dark Triad Traits from a Life History Perspective in Six Countries FRONTIERS IN PSYCHOLOGY English Article narcissism; psychopathy; Machiavellianism; Dark Triad; life history theory; future consequences MATING STRATEGY; PERSONALITY; MACHIAVELLIANISM; PSYCHOPATHY; NARCISSISM Work on the Dark Triad traits has benefited from the use of a life history framework but it has been limited to primarily Western samples and indirect assessments of life history strategies. Here, we examine how the Dark Triad traits (i.e., psychopathy, Machiavellianism, and narcissism) relate to two measures of individual differences in life history strategies. In Study 1 (N = 937), we replicated prior observed links between life history strategies, as measured by the Mini-K, and the Dark Triad traits using samples recruited from three countries. In Study 2 (N = 1032), we measured life history strategies using the Consideration of Future Consequences Scale and correlated it with the Dark Triad traits in samples recruited from three additional countries. While there was some variability across participants' sex and country, the results were generally consistent in that psychopathy and (to a lesser extent) Machiavellianism were related to faster life history strategies and narcissism was related to slower life history strategies. These results add cross-cultural data and the use of two measures of life history speed to understand the Dark Triad traits from a life history perspective. [Jonason, Peter K.] Western Sydney Univ, Sch Social Sci & Psychol, Penrith, NSW, Australia; [Foster, Joshua D.] Univ S Alabama, Psychol, Mobile, AL USA; [Egorova, Marina S.; Parshikova, Oksana] Lomonosov Moscow State Univ, Moscow, Russia; [Csatho, Arpad] Univ Pecs, Pecs, Hungary; [Oshio, Atsushi] Waseda Univ, Shinjuku Ku, Tokyo, Japan; [Gouveia, Valdiney V.] Univ Fed Paraiba, Joao Pessoa, Paraiba, Brazil Jonason, PK (reprint author), Western Sydney Univ, Sch Social Sci & Psychol, Penrith, NSW, Australia. pjonason@westernsydney.edu.au Parshikova, Oxana/F-9551-2015 Oshio, Atsushi/0000-0002-2936-2916 Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Foster JD, 2015, PERS INDIV DIFFER, V73, P12, DOI 10.1016/j.paid.2014.08.042; Furnham A, 2013, SOC PERSONAL PSYCHOL, V7, P199, DOI 10.1111/spc3.12018; Henrich J, 2010, BEHAV BRAIN SCI, V33, P61, DOI 10.1017/S0140525X0999152X; Jonason PK, 2017, BEHAV BRAIN SCI, V40, DOI 10.1017/S0140525X16001199; Jonason PK, 2017, PERS INDIV DIFFER, V113, P120, DOI 10.1016/j.paid.2017.02.053; Jonason PK, 2017, ARCH SEX BEHAV, V46, P697, DOI 10.1007/s10508-017-0937-1; Jonason PK, 2015, PERS INDIV DIFFER, V81, P102, DOI 10.1016/j.paid.2014.10.045; Jonason PK, 2013, PERS INDIV DIFFER, V54, P572, DOI 10.1016/j.paid.2012.11.009; Jonason PK, 2012, PERS INDIV DIFFER, V53, P180, DOI 10.1016/j.paid.2012.03.007; Jonason PK, 2012, PERS INDIV DIFFER, V52, P449, DOI 10.1016/j.paid.2011.11.008; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2010, PERS INDIV DIFFER, V49, P611, DOI 10.1016/j.paid.2010.05.031; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jones D. N., 2009, HDB INDIVIDUAL DIFFE, P93; Jones DN, 2014, ASSESSMENT, V21, P28, DOI 10.1177/1073191113514105; Jones DN, 2014, J INTERPERS VIOLENCE, V29, P1050, DOI 10.1177/0886260513506053; Jones DN, 2011, PERS INDIV DIFFER, V51, P679, DOI 10.1016/j.paid.2011.04.011; McDonald MM, 2012, PERS INDIV DIFFER, V52, P601, DOI 10.1016/j.paid.2011.12.003; McHoskey JW, 1998, J PERS SOC PSYCHOL, V74, P192, DOI 10.1037//0022-3514.74.1.192; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; Nunnally JC, 1978, PSYCHOMETRIC THEORY; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; Persson BN, 2017, PERS INDIV DIFFER, V117, P74, DOI 10.1016/j.paid.2017.05.025; Schmitt N, 1996, PSYCHOL ASSESSMENT, V8, P350, DOI 10.1037//1040-3590.8.4.350; Shimotsukasa T., 2017, JPN J PERS, V26, P12, DOI [10.2132/personality.26.1.2, DOI 10.2132/PERSONALITY.26.1.2]; STRATHMAN A, 1994, J PERS SOC PSYCHOL, V66, P742, DOI 10.1037/0022-3514.66.4.742; Wilson E.O., 1975, P1 28 1 1 7 16 FRONTIERS MEDIA SA LAUSANNE AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND 1664-1078 FRONT PSYCHOL Front. Psychol. AUG 30 2017 8 1476 10.3389/fpsyg.2017.01476 6 Psychology, Multidisciplinary Psychology FF3AR WOS:000408768400001 28912740 DOAJ Gold, Green Published 2018-11-22 J Benvenuto, C; Coscia, I; Chopelet, J; Sala-Bozano, M; Mariani, S Benvenuto, C.; Coscia, I.; Chopelet, J.; Sala-Bozano, M.; Mariani, S. Ecological and evolutionary consequences of alternative sex-change pathways in fish SCIENTIFIC REPORTS English Article EFFECTIVE POPULATION-SIZE; LITHOGNATHUS-MORMYRUS PISCES; PAGELLUS-ERYTHRINUS LINNAEUS; MULTILOCUS GENOTYPE DATA; LIFE-HISTORY; MARINE FISH; SPONDYLIOSOMA-CANTHARUS; COMMON PANDORA; N-E; LINKAGE DISEQUILIBRIUM Sequentially hermaphroditic fish change sex from male to female (protandry) or vice versa (protogyny), increasing their fitness by becoming highly fecund females or large dominant males, respectively. These life-history strategies present different social organizations and reproductive modes, from nearrandom mating in protandry, to aggregate-and harem-spawning in protogyny. Using a combination of theoretical and molecular approaches, we compared variance in reproductive success (V-k*) and effective population sizes (N-e) in several species of sex-changing fish. We observed that, regardless of the direction of sex change, individuals conform to the same overall strategy, producing more offspring and exhibiting greater V-k* in the second sex. However, protogynous species show greater V-k*, especially pronounced in haremic species, resulting in an overall reduction of N-e compared to protandrous species. Collectively and independently, our results demonstrate that the direction of sex change is a pivotal variable in predicting demographic changes and resilience in sex-changing fish, many of which sustain highly valued and vulnerable fisheries worldwide. [Benvenuto, C.; Coscia, I.; Mariani, S.] Univ Salford, Sch Environm & Life Sci, Ecosyst & Environm Res Ctr, Salford M5 4WT, Lancs, England; [Chopelet, J.; Sala-Bozano, M.] Univ Coll Dublin, Sch Biol & Environm Sci, Dublin, Ireland Benvenuto, C (reprint author), Univ Salford, Sch Environm & Life Sci, Ecosyst & Environm Res Ctr, Salford M5 4WT, Lancs, England. c.benvenuto@salford.ac.uk Mariani, Stefano/A-2964-2012 Mariani, Stefano/0000-0002-5329-0553; Benvenuto, Chiara/0000-0002-8378-8168 Irish Research Council; Science Foundation Ireland We would like to thank all researchers that contributed to the empirical studies that generated the genotypes used here for parameter estimation. The manuscript benefited from extensive and constructive comments by Prof Robin Waples. The study was funded by the Irish Research Council and Science Foundation Ireland. Allsop DJ, 2004, EVOLUTION, V58, P1019; Alonzo SH, 2005, FISH B-NOAA, V103, P229; Alonzo SH, 2004, FISH B-NOAA, V102, P1; Araki H, 2007, MOL ECOL, V16, P953, DOI 10.1111/j.1365-294X.2006.03206.x; Avise JC, 2009, SEX DEV, V3, P152, DOI 10.1159/000223079; Buchholz-Sorensen M, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0159864; Busalacchi B, 2014, HELGOLAND MAR RES, V68, P491, DOI 10.1007/s10152-014-0404-5; BUXTON CD, 1990, ENVIRON BIOL FISH, V28, P113, DOI 10.1007/BF00751031; Chapuis MP, 2007, MOL BIOL EVOL, V24, P621, DOI 10.1093/molbev/msl191; Charlesworth B, 2009, NAT REV GENET, V10, P195, DOI 10.1038/nrg2526; Charnov EL, 2013, FISH FISH, V14, P213, DOI 10.1111/j.1467-2979.2012.00467.x; Chopelet J., 2010, THESIS; Chopelet J, 2009, FISH FISH, V10, P329, DOI 10.1111/j.1467-2979.2009.00329.x; Coelho R, 2010, BRAZ J OCEANOGR, V58, P233, DOI 10.1590/S1679-87592010000300006; Coscia I, 2016, HEREDITY, V117, P251, DOI 10.1038/hdy.2016.50; Coscia I, 2012, HEREDITY, V108, P537, DOI 10.1038/hdy.2011.120; Do C, 2014, MOL ECOL RESOUR, V14, P209, DOI 10.1111/1755-0998.12157; Dulcic J, 1998, SCI MAR, V62, P289; Falush D, 2003, GENETICS, V164, P1567; GARRATT PA, 1993, S AFR J MARINE SCI, V13, P187, DOI 10.2989/025776193784287176; GARRATT PA, 1985, INVEST REP OCEANOGR, V62, P1; GHISELIN MT, 1969, Q REV BIOL, V44, P189, DOI 10.1086/406066; Gilbert KJ, 2015, EVOLUTION, V69, P2154, DOI 10.1111/evo.12713; Gislason H, 2010, FISH FISH, V11, P149, DOI 10.1111/j.1467-2979.2009.00350.x; Gonzalez-Wanguemert N, 2007, MAR ECOL PROG SER, V334, P237; Goudet J, 2005, MOL ECOL NOTES, V5, P184, DOI 10.1111/j.1471-8278.2004.00828.x; Hamilton SL, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024580; Hare MP, 2011, CONSERV BIOL, V25, P438, DOI 10.1111/j.1523-1739.2010.01637.x; Hedrick P, 2005, EVOLUTION, V59, P1596; Jombart T, 2008, BIOINFORMATICS, V24, P1403, DOI 10.1093/bioinformatics/btn129; Jombart T, 2011, BIOINFORMATICS, V27, P3070, DOI 10.1093/bioinformatics/btr521; Kallianiotis A, 2005, SCI MAR, V69, P391, DOI 10.3989/scimar.2005.69n3391; Kazancioglu E, 2010, J EVOLUTION BIOL, V23, P2432, DOI 10.1111/j.1420-9101.2010.02108.x; Keenan K, 2013, METHODS ECOL EVOL, V4, P782, DOI 10.1111/2041-210X.12067; Kindsvater HK, 2016, ECOL EVOL, V6, P2125, DOI 10.1002/ece3.2012; Kraljevic M, 1997, FISH RES, V31, P249, DOI 10.1016/S0165-7836(97)00016-7; Kumarlal Kuldeep, 1998, Indian Journal of Fisheries, V45, P451; Kuparinen A, 2016, EVOL APPL, V9, P658, DOI 10.1111/eva.12373; Loke-Smith KA, 2012, MAR COAST FISH, V4, P599, DOI 10.1080/19425120.2012.707167; Lowerre-Barbieri S, 2017, FISH FISH, V18, P285, DOI 10.1111/faf.12180; de Mitcheson YS, 2013, FISH FISH, V14, P119, DOI 10.1111/j.1467-2979.2011.00455.x; Molloy PP, 2007, ANIM CONSERV, V10, P30, DOI 10.1111/j.1469-1795.2006.00065.x; Molloy PP, 2007, EVOLUTION, V61, P640, DOI 10.1111/j.1558-5646.2007.00050.x; Mouine N, 2011, J APPL ICHTHYOL, V27, P827, DOI 10.1111/j.1439-0426.2010.01518.x; Munday PL, 2010, REPRODUCTION AND SEXUALITY IN MARINE FISHES: PATTERNS AND PROCESSES, P241; NUNNEY L, 1995, EVOLUTION, V49, P389, DOI 10.1111/j.1558-5646.1995.tb02253.x; Pajuelo JG, 1998, FISH RES, V36, P75, DOI 10.1016/S0165-7836(98)00110-6; Pajuelo JG, 1999, ENVIRON BIOL FISH, V54, P325, DOI 10.1023/A:1007515301745; POLICANSKY D, 1982, ANNU REV ECOL SYST, V13, P471, DOI 10.1146/annurev.es.13.110182.002351; Portnoy DS, 2013, MOL ECOL, V22, P301, DOI 10.1111/mec.12128; Pritchard JK, 2000, GENETICS, V155, P945; R CORE TEAM-R, 2016, LANG ENV STAT COMP; ROSS RM, 1990, ENVIRON BIOL FISH, V29, P81, DOI 10.1007/BF00005025; Sala-Bozano M, 2009, MOL ECOL, V18, P4811, DOI 10.1111/j.1365-294X.2009.04404.x; SHAPIRO DY, 1987, BIOSCIENCE, V37, P490, DOI 10.2307/1310421; Shuster SM, 2003, MATING SYSTEMS STRAT; Staunton-Smith J, 2004, MAR FRESHWATER RES, V55, P787, DOI 10.1071/MF03198; Stockley P, 1997, AM NAT, V149, P933, DOI 10.1086/286031; Tanasichuk R. W., 1999, 99168 CAN STOCK ASS; Van Oosterhout C, 2004, MOL ECOL NOTES, V4, P535, DOI 10.1111/j.1471-8286.2004.00684.x; Vindenes Y, 2015, ECOL LETT, V18, P417, DOI 10.1111/ele.12421; Vitale S, 2011, J APPL ICHTHYOL, V27, P1086, DOI 10.1111/j.1439-0426.2011.01775.x; Waples RS, 2008, MOL ECOL RESOUR, V8, P753, DOI 10.1111/j.1755-0998.2007.02061.x; Waples RS, 2014, EVOLUTION, V68, P1722, DOI 10.1111/evo.12384; Waples RS, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1339; Waples RS, 2011, ECOLOGY, V92, P1513, DOI 10.1890/10-1796.1; Waples RS, 2010, EVOL APPL, V3, P244, DOI 10.1111/j.1752-4571.2009.00104.x; WARNER RR, 1988, ENVIRON BIOL FISH, V22, P81, DOI 10.1007/BF00001539; WARNER RR, 1975, FISH B-NOAA, V73, P262; WARNER RR, 1984, AM SCI, V72, P128; WARNER RR, 1975, AM NAT, V109, P61, DOI 10.1086/282974; WARNER RR, 1988, TRENDS ECOL EVOL, V3, P133, DOI 10.1016/0169-5347(88)90176-0; Wright S, 1931, GENETICS, V16, P0097 73 1 1 2 23 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 2045-2322 SCI REP-UK Sci Rep AUG 22 2017 7 9084 10.1038/s41598-017-09298-8 12 Multidisciplinary Sciences Science & Technology - Other Topics FE4CW WOS:000408163000002 28831108 DOAJ Gold, Green Published 2018-11-22 J Killen, SS; Marras, S; Nadler, L; Domenici, P Killen, Shaun S.; Marras, Stefano; Nadler, Lauren; Domenici, Paolo The role of physiological traits in assortment among and within fish shoals PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Review collective behaviour; sociality; metabolic rate; aerobic scope; ecophysiology; foraging CORAL-REEF FISH; ANTARCTIC NOTOTHENIOID FISHES; STANDARD METABOLIC-RATE; MOBILE ANIMAL GROUPS; SWIMMING SPEEDS; CLIMATE-CHANGE; TELEOST FISH; INTRASPECIFIC VARIATION; TEMPERATURE PREFERENCE; INDIVIDUAL-DIFFERENCES Individuals of gregarious species often group with conspecifics to which they are phenotypically similar. This among-group assortment has been studied for body size, sex and relatedness. However, the role of physiological traits has been largely overlooked. Here, we discuss mechanisms by which physiological traits-particularly those related to metabolism and locomotor performance-may result in phenotypic assortment not only among but also within animal groups. At the among-group level, varying combinations of passive assortment, active assortment, phenotypic plasticity and selective mortality may generate phenotypic differences among groups. Even within groups, however, individual variation in energy requirements, aerobic and anaerobic capacity, neurological lateralization and tolerance to environmental stressors are likely to produce differences in the spatial location of individuals or associations between group-mates with specific physiological phenotypes. Owing to the greater availability of empirical research, we focus on groups of fishes (i.e. shoals and schools). Increased knowledge of physiological mechanisms influencing among-and withingroup assortment will enhance our understanding of fundamental concepts regarding optimal group size, predator avoidance, group cohesion, information transfer, life-history strategies and the evolutionary effects of group membership. In a broader perspective, predicting animal responses to environmental change will be impossible without a comprehensive understanding of the physiological basis of the formation and functioning of animal social groups. This article is part of the themed issue 'Physiological determinants of social behaviour in animals'. [Killen, Shaun S.] Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Graham Kerr Bldg, Glasgow G12 8QQ, Lanark, Scotland; [Marras, Stefano; Domenici, Paolo] CNR, IAMC, I-09170 Torregrande, Oristano, Italy; [Nadler, Lauren] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92037 USA Killen, SS (reprint author), Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Graham Kerr Bldg, Glasgow G12 8QQ, Lanark, Scotland. shaun.killen@glasgow.ac.uk Killen, Shaun/0000-0003-4949-3988; Nadler, Lauren/0000-0001-8225-8344 Natural Environment Research Council [NE/J019100/1]; European Research Council [640004] S.S.K. was supported by Natural Environment Research Council Advanced Fellowship NE/J019100/1 and European Research Council starting grant 640004. ABRAHAMS MV, 1985, ENVIRON BIOL FISH, V13, P195, DOI 10.1007/BF00000931; Alexander R.D., 1974, ANNU REV ECOL SYST, V5, P325, DOI DOI 10.1146/ANNUREV.ES.05.110174.001545; ANDREWS RV, 1986, COMP BIOCHEM PHYS A, V85, P775, DOI 10.1016/0300-9629(86)90294-X; Anttila K, 2011, J FISH BIOL, V78, P552, DOI 10.1111/j.1095-8649.2010.02871.x; Archetti M, 2009, J THEOR BIOL, V261, P475, DOI 10.1016/j.jtbi.2009.08.018; Atton N, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0579; Auer SK, 2015, BIOL LETTERS, V11, DOI 10.1098/rsbl.2015.0793; Baracchi D, 2013, ANIM BEHAV, V85, P203, DOI 10.1016/j.anbehav.2012.10.027; Beers JM, 2011, PHYSIOL BIOCHEM ZOOL, V84, P353, DOI 10.1086/660191; Bibost AL, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0080907; Binning SA, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0121983; Binning SA, 2014, OECOLOGIA, V174, P623, DOI 10.1007/s00442-013-2794-5; Biro PA, 2010, TRENDS ECOL EVOL, V25, P653, DOI 10.1016/j.tree.2010.08.003; Bisazza A, 2005, P ROY SOC B-BIOL SCI, V272, P1677, DOI 10.1098/rspb.2005.3145; BLOCK BA, 1992, J EXP BIOL, V166, P267; Block HE, 2014, MAR ECOL PROG SER, V509, P303, DOI 10.3354/meps10859; Brierley AS, 2010, CURR BIOL, V20, P1758, DOI 10.1016/j.cub.2010.08.041; BROWN CR, 1986, ECOLOGY, V67, P1206, DOI 10.2307/1938676; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Buckley BA, 2014, PHYSIOL BIOCHEM ZOOL, V87, P499, DOI 10.1086/676664; Bumann D, 1997, BEHAVIOUR, V134, P1063, DOI 10.1163/156853997X00403; Burton T, 2011, P ROY SOC B-BIOL SCI, V278, P3465, DOI 10.1098/rspb.2011.1778; Chabot D, 2008, MAR POLLUT BULL, V57, P287, DOI 10.1016/j.marpolbul.2008.04.001; Chapman BB, 2011, ECOL LETT, V14, P871, DOI 10.1111/j.1461-0248.2011.01648.x; Charpentier MJE, 2010, ANIM BEHAV, V80, P101, DOI 10.1016/j.anbehav.2010.04.005; Claireaux G, 2007, PHILOS T R SOC B, V362, P2031, DOI 10.1098/rstb.2007.2099; Clark TD, 2010, J COMP PHYSIOL B, V180, P673, DOI 10.1007/s00360-009-0442-5; Conradt L, 2000, P ROY SOC B-BIOL SCI, V267, P2213, DOI 10.1098/rspb.2000.1271; Conradt L, 2009, AM NAT, V173, P304, DOI 10.1086/596532; Couzin ID, 2009, TRENDS COGN SCI, V13, P36, DOI 10.1016/j.tics.2008.10.002; Couzin ID, 2005, NATURE, V433, P513, DOI 10.1038/nature03236; Couzin ID, 2002, J THEOR BIOL, V218, P1, DOI 10.1006/yjtbi.3065; CREEL S, 1995, ANIM BEHAV, V50, P1325, DOI 10.1016/0003-3472(95)80048-4; CRESSWELL W, 1993, ANIM BEHAV, V46, P609, DOI 10.1006/anbe.1993.1231; Croft DP, 2009, P R SOC B, V276, P1899, DOI 10.1098/rspb.2008.1928; Croft DP, 2005, OECOLOGIA, V143, P211, DOI 10.1007/s00442-004-1796-8; Cutts CJ, 1999, OIKOS, V86, P479, DOI 10.2307/3546652; Dadda M, 2010, BIOL LETTERS, V6, P414, DOI 10.1098/rsbl.2009.0904; Davison W, 1997, COMP BIOCHEM PHYS A, V117, P67, DOI 10.1016/S0300-9629(96)00284-8; DeBlois EM, 1996, OECOLOGIA, V108, P192, DOI 10.1007/BF00333231; Diaz RJ, 2008, SCIENCE, V321, P926, DOI 10.1126/science.1156401; Domenici P, 2001, COMP BIOCHEM PHYS A, V131, P169, DOI 10.1016/S1095-6433(01)00465-2; Domenici P, 2002, P ROY SOC B-BIOL SCI, V269, P2103, DOI 10.1098/rspb.2002.2107; Domenici P, 2017, PHILOS T R SOC B, V372, DOI 10.1098/rstb.2016.0236; Domenici P, 2012, BIOL LETTERS, V8, P78, DOI 10.1098/rsbl.2011.0591; Donaldson MR, 2014, FRONT ECOL ENVIRON, V12, P565, DOI 10.1890/130283; Farine DR, 2014, ANIM BEHAV, V89, P141, DOI 10.1016/j.anbehav.2014.01.001; FARRELL AP, 1990, CAN J ZOOL, V68, P1174, DOI 10.1139/z90-174; FELS D, 1995, BEHAVIOUR, V132, P49, DOI 10.1163/156853995X00270; FISHELSON L, 1974, J FISH BIOL, V6, P119, DOI 10.1111/j.1095-8649.1974.tb04532.x; Fu SJ, 2015, AQUAT BIOL, V24, P1, DOI 10.3354/ab00633; Fu SJ, 2011, J EXP BIOL, V214, P2080, DOI 10.1242/jeb.053132; Glazier DS, 2005, BIOL REV, V80, P611, DOI 10.1017/S1464793105006834; Handelsman CA, 2013, INTEGR COMP BIOL, V53, P975, DOI 10.1093/icb/ict057; Hansen MJ, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0148334; Herbert-Read JE, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2564; Herbert-Read JE, 2015, ROY SOC OPEN SCI, V2, DOI 10.1098/rsos.140355; Herskin J, 1998, J FISH BIOL, V53, P366, DOI 10.1111/j.1095-8649.1998.tb00986.x; Hess S, 2015, SCI REP-UK, V5, DOI 10.1038/srep10561; Higham TE, 2015, INTEGR COMP BIOL, V55, P6, DOI 10.1093/icb/icv052; Hoare DJ, 2004, ANIM BEHAV, V67, P155, DOI 10.1016/j.anbehav.2003.04.004; Ioannou CC, 2015, AM NAT, V186, P284, DOI 10.1086/681988; Jayasundara N, 2013, J EXP BIOL, V216, P2111, DOI 10.1242/jeb.083873; Jobling M., 1995, FISH BIOENERGETICS; Jolles JW, 2015, ANIM BEHAV, V99, P147, DOI 10.1016/j.anbehav.2014.11.004; Jones KA, 2010, ETHOLOGY, V116, P147, DOI 10.1111/j.1439-0310.2009.01727.x; KERSTEN M, 1991, J ANIM ECOL, V60, P241, DOI 10.2307/5457; Killen SS, 2017, PHILOS T R SOC B, V372, DOI 10.1098/rstb.2016.0233; Killen SS, 2016, FUNCT ECOL, V30, P1358, DOI 10.1111/1365-2435.12634; Killen SS, 2016, AM NAT, V187, P592, DOI 10.1086/685893; Killen SS, 2015, FRONT PHYSIOL, V6, DOI 10.3389/fphys.2015.00111; Killen SS, 2014, FUNCT ECOL, V28, P1367, DOI 10.1111/1365-2435.12296; Killen SS, 2014, J ANIM ECOL, V83, P1513, DOI 10.1111/1365-2656.12244; Killen SS, 2013, TRENDS ECOL EVOL, V28, P651, DOI 10.1016/j.tree.2013.05.005; Killen SS, 2012, FUNCT ECOL, V26, P134, DOI 10.1111/j.1365-2435.2011.01920.x; Killen SS, 2012, P ROY SOC B-BIOL SCI, V279, P357, DOI 10.1098/rspb.2011.1006; Killen SS, 2010, ECOL LETT, V13, P184, DOI 10.1111/j.1461-0248.2009.01415.x; KRAMER DL, 1983, ENVIRON BIOL FISH, V8, P49, DOI 10.1007/BF00004945; Krause J, 2000, P ROY SOC B-BIOL SCI, V267, P2011, DOI 10.1098/rspb.2000.1243; Krause J, 2005, J FISH BIOL, V67, P866, DOI 10.1111/j.1095-8649.2005.00769.x; KRAUSE J, 1992, BEHAV ECOL SOCIOBIOL, V30, P177, DOI 10.1007/BF00166700; Krause J., 2002, LIVING GROUPS; Laskowski KL, 2014, ANIM BEHAV, V90, P287, DOI 10.1016/j.anbehav.2014.02.010; LASSIG BR, 1983, ENVIRON BIOL FISH, V9, P55, DOI 10.1007/BF00001058; Leblond C, 2006, BEHAVIOUR, V143, P1263, DOI 10.1163/156853906778691603; Lefrancois C, 2009, J FISH BIOL, V75, P1615, DOI 10.1111/j.1095-8649.2009.02387.x; Marnane MJ, 2000, J FISH BIOL, V57, P1590, DOI 10.1111/j.1095-8649.2000.tb02234.x; Marras S, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0065784; Marras S, 2015, BEHAV ECOL SOCIOBIOL, V69, P219, DOI 10.1007/s00265-014-1834-4; Marras S, 2012, ADAPT BEHAV, V20, P44, DOI 10.1177/1059712311426799; McCormick MI, 2010, MAR ECOL PROG SER, V407, P173, DOI 10.3354/meps08583; MCFARLAND WN, 1967, SCIENCE, V156, P260, DOI 10.1126/science.156.3772.260; McKenzie DJ, 2015, J EXP BIOL, V218, P3762, DOI 10.1242/jeb.122903; Meehl GA, 2000, B AM METEOROL SOC, V81, P427, DOI 10.1175/1520-0477(2000)081<0427:TIEWAC>2.3.CO;2; Metcalfe NB, 2016, J FISH BIOL, V88, P298, DOI 10.1111/jfb.12699; METCALFE NB, 1995, P ROY SOC B-BIOL SCI, V259, P207, DOI 10.1098/rspb.1995.0030; Nadler LE, 2016, J EXP BIOL, V219, P2802, DOI 10.1242/jeb.139493; Nakayama S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0036606; Neumeister H, 2010, J NEUROPHYSIOL, V104, P3180, DOI 10.1152/jn.00574.2010; Nilsson GE, 2012, RESP PHYSIOL NEUROBI, V184, P214, DOI 10.1016/j.resp.2012.07.012; Perez-Escudero A, 2014, NAT METHODS, V11, P743, DOI [10.1038/nmeth.2994, 10.1038/NMETH.2994]; Peuhkuri N, 1997, ANIM BEHAV, V54, P271, DOI 10.1006/anbe.1996.0453; Portner HO, 2008, SCIENCE, V322, P690, DOI 10.1126/science.1163156; Portner HO, 2007, SCIENCE, V315, P95, DOI 10.1126/science.1135471; RANTA E, 1992, ANIM BEHAV, V43, P160, DOI 10.1016/S0003-3472(05)80082-X; RANTA E, 1993, ANIM BEHAV, V46, P1032, DOI 10.1006/anbe.1993.1290; RANTA E, 1993, AM NAT, V142, P42, DOI 10.1086/285528; Reebs SG, 2000, ANIM BEHAV, V59, P403, DOI 10.1006/anbe.1999.1314; Robertson S, 2016, MOL ECOL RESOUR, V16, P701, DOI 10.1111/1755-0998.12497; Rosenfeld J, 2015, J ANIM ECOL, V84, P4, DOI 10.1111/1365-2656.12260; Rosenthal SB, 2015, P NATL ACAD SCI USA, V112, P4690, DOI 10.1073/pnas.1420068112; Seppa T, 2001, CAN J FISH AQUAT SCI, V58, P1380, DOI 10.1139/cjfas-58-7-1380; Shingles A, 2005, PHYSIOL BIOCHEM ZOOL, V78, P744, DOI 10.1086/432143; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Sih A, 2015, TRENDS ECOL EVOL, V30, P50, DOI 10.1016/j.tree.2014.11.004; Sinclair ELE, 2014, FUNCT ECOL, V28, P652, DOI 10.1111/1365-2435.12198; Sollid J, 2006, RESP PHYSIOL NEUROBI, V154, P241, DOI 10.1016/j.resp.2006.02.006; Stearns S., 1992, EVOLUTION LIFE HIST; Stumbo AD, 2012, J ANIM ECOL, V81, P1319, DOI 10.1111/j.1365-2656.2012.02012.x; Sumpter DJT, 2010, COLLECTIVE ANIMAL BEHAVIOR, P1; SWAIN DP, 1992, EVOLUTION, V46, P987, DOI 10.1111/j.1558-5646.1992.tb00614.x; Swaney W, 2001, ANIM BEHAV, V62, P591, DOI 10.1006/anbe.2001.1788; THEODORAKIS CW, 1989, ANIM BEHAV, V38, P496, DOI 10.1016/S0003-3472(89)80042-9; TREHERNE JE, 1981, ANIM BEHAV, V29, P911, DOI 10.1016/S0003-3472(81)80028-0; van Dijk PLM, 2002, OECOLOGIA, V130, P496, DOI 10.1007/s00442-001-0830-3; Van Leeuwen TE, 2012, J ANIM ECOL, V81, P395, DOI 10.1111/j.1365-2656.2011.01924.x; VanVuren D, 1996, ETHOLOGY, V102, P686; Videler J., 1993, FISH SWIMMING; Wannamaker CM, 2000, J EXP MAR BIOL ECOL, V249, P145, DOI 10.1016/S0022-0981(00)00160-X; Ward A. J. W., 2016, SOCIALITY BEHAV GROU; Ward AJW, 2002, BEHAV ECOL SOCIOBIOL, V52, P182, DOI 10.1007/s00265-002-0505-z; Ward AJW, 2008, P R SOC B, V275, P101, DOI 10.1098/rspb.2007.1283; Ward AJW, 2011, ANIM BEHAV, V82, P783, DOI 10.1016/j.anbehav.2011.07.010; WARE DM, 1978, J FISH RES BOARD CAN, V35, P220, DOI 10.1139/f78-036; Webster MM, 2006, BEHAV ECOL, V17, P959, DOI 10.1093/beheco/arl037; Webster MM, 2011, BIOL REV, V86, P759, DOI 10.1111/j.1469-185X.2010.00169.x; Westneat DF, 2000, ANIM BEHAV, V59, P467, DOI 10.1006/anbe.1999.1341; Yoon JD, 2011, LIMNOLOGY, V12, P197, DOI 10.1007/s10201-010-0337-x 138 15 15 4 53 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8436 1471-2970 PHILOS T R SOC B Philos. Trans. R. Soc. B-Biol. Sci. AUG 19 2017 372 1727 20160233 10.1098/rstb.2016.0233 13 Biology Life Sciences & Biomedicine - Other Topics EZ3RU WOS:000404628900003 28673911 Green Published, Other Gold 2018-11-22 J Maner, JK; Dittmann, A; Meltzer, AL; McNulty, JK Maner, Jon K.; Dittmann, Andrea; Meltzer, Andrea L.; McNulty, James K. Implications of life-history strategies for obesity PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article evolutionary psychology; evolutionary medicine; life history theory; health behavior; obesity BODY-MASS INDEX; ADVERSE CHILDHOOD EXPERIENCES; SOCIAL-CLASS; REPRODUCTIVE STRATEGY; SOCIOECONOMIC-STATUS; ADULT OBESITY; RISK; ENVIRONMENTS; IMPACT; UNPREDICTABILITY The association between low socioeconomic status (SES) and obesity is well documented. In the current research, a life history theory (LHT) framework provided an explanation for this association. Derived from evolutionary behavioral science, LHT emphasizes how variability in exposure to unpredictability during childhood gives rise to individual differences in a range of social psychological processes across the life course. Consistent with previous LHT research, the current findings suggest that exposure to unpredictability during childhood (a characteristic common to low SES environments) is associated with the adoption of a fast life-history strategy, one marked by impulsivity and a focus on short-term goals. We demonstrate that a fast life-history strategy, in turn, was associated with dysregulated weight-management behaviors (i.e., eating even in the absence of hunger), which were predictive of having a high body mass index (BMI) and being obese. In both studies, findings held while controlling for participants' current socioeconomic status, suggesting that obesity is rooted in childhood experiences. A serial mediation model in study 2 confirmed that effects of childhood SES on adult BMI and obesity can be explained in part by exposure to unpredictability, the adoption of a fast life-history strategy, and dysregulated-eating behaviors. These findings suggest that weight problems in adulthood may be rooted partially in early childhood exposure to unpredictable events and environments. LHT provides a valuable explanatory framework for understanding the root causes of obesity. [Maner, Jon K.; Meltzer, Andrea L.; McNulty, James K.] Florida State Univ, Dept Psychol, Tallahassee, FL 32306 USA; [Dittmann, Andrea] Northwestern Univ, Kellogg Sch Management, Dept Management & Org, Evanston, IL 60208 USA Maner, JK (reprint author), Florida State Univ, Dept Psychol, Tallahassee, FL 32306 USA. jkmaner@gmail.com BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.1111/j.1467-8624.1991.tb01558.x; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Ben-Shlomo Y, 2002, INT J EPIDEMIOL, V31, P285, DOI 10.1093/ije/31.2.285; Brisbois TD, 2012, OBES REV, V13, P347, DOI 10.1111/j.1467-789X.2011.00965.x; Centers for Disease Control and Prevention, 2016, DEF OV OB; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Dube SR, 2003, PEDIATRICS, V111, P564, DOI 10.1542/peds.111.3.564; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Figueredo A. J., 2014, EVOLUTIONARY BEHAV S, V8, P148, DOI DOI 10.1037/H0099837; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2015, EVOL PSYCHOL-US, V13, P299, DOI 10.1177/147470491501300202; Flegal KM, 2012, JAMA-J AM MED ASSOC, V307, P491, DOI 10.1001/jama.2012.39; Gluckman PD, 2005, TRENDS ECOL EVOL, V20, P527, DOI 10.1016/j.tree.2005.08.001; Gluckman PD, 2005, MATERN CHILD NUTR, V1, P130, DOI 10.1111/j.1740-8709.2005.00020.x; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Hayes A. F., 2013, INTRO MEDIATION MODE; Hill SE, 2016, PSYCHOL SCI, V27, P354, DOI 10.1177/0956797615621901; Hillis SD, 2001, FAM PLANN PERSPECT, V33, P206, DOI 10.2307/2673783; Jones JH, 2005, AM J HUM BIOL, V17, P22, DOI 10.1002/ajhb.20099; Kunzli N, 2000, EUR RESPIR J, V15, P131; Laitinen J, 2001, AM J CLIN NUTR, V74, P287; Marlowe FW, 2009, AM J PHYS ANTHROPOL, V140, P751, DOI 10.1002/ajpa.21040; Mittal C, 2015, J PERS SOC PSYCHOL, V109, P604, DOI 10.1037/pspi0000028; National Institutes of Health, 1998, NIH PUBLICATION; Nettle D, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1343; O'Dea JA, 2008, HEALTH SOC CARE COMM, V16, P282, DOI 10.1111/j.1365-2524.2008.00768.x; Olderbak S, 2014, PERS INDIV DIFFER, V58, P82, DOI 10.1016/j.paid.2013.10.012; Olson CM, 2007, APPETITE, V49, P198, DOI 10.1016/j.appet.2007.01.012; Pavela G, 2016, J GERONTOL B-PSYCHOL, V71, P889, DOI 10.1093/geronb/gbv028; Raudenbush S.W., 2011, HLM 7 HIERARCHICAL L; Sherman DK, 1997, J AM ACAD CHILD PSY, V36, P745, DOI 10.1097/00004583-199706000-00010; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Singh GK, 2011, J COMMUN HEALTH, V36, P94, DOI 10.1007/s10900-010-9287-9; Szepsenwol O, 2015, J PERS SOC PSYCHOL, V109, P1045, DOI 10.1037/pspi0000032; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; Wansink B, 2007, OBESITY, V15, P2920, DOI 10.1038/oby.2007.348; White AE, 2013, PSYCHOL SCI, V24, P715, DOI 10.1177/0956797612461919; Williamson DF, 2002, INT J OBESITY, V26, P1075, DOI 10.1038/sj.ijo.0802038 40 2 2 2 18 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. AUG 8 2017 114 32 8517 8522 10.1073/pnas.1620482114 6 Multidisciplinary Sciences Science & Technology - Other Topics FC8YZ WOS:000407129000049 28739939 Green Published, Bronze 2018-11-22 J Peiman, KS; Birnie-Gauvin, K; Larsen, MH; Colborne, SF; Gilmour, KM; Aarestrup, K; Willmore, WG; Cooke, SJ Peiman, Kathryn S.; Birnie-Gauvin, Kim; Larsen, Martin H.; Colborne, Scott F.; Gilmour, Kathleen M.; Aarestrup, Kim; Willmore, William G.; Cooke, Steven J. Morphological, physiological and dietary covariation in migratory and resident adult brown trout (Salmo trutta) ZOOLOGY English Article Cortisol; Life-history strategy; Oxidative stress; Partial migration; Individual specialization STABLE-ISOTOPE ANALYSES; PLASMA GROWTH-HORMONE; FRESH-WATER RESIDENT; OXIDATIVE STRESS; LIFE-HISTORY; ARCTIC CHARR; GEOMETRIC MORPHOMETRICS; SYMPATRIC SPECIATION; ATLANTIC SALMON; RAINBOW-TROUT The causes and consequences of trait relationships within and among the categories of physiology, morphology, and life-history remain poorly studied. Few studies cross the boundaries of these categories, and recent reviews have pointed out not only the dearth of evidence for among-category correlations but that trait relationships may change depending on the ecological conditions a population faces. We examined changes in mean values and correlations between traits in a partially migrant population of brown trout when migrant sea-run and resident stream forms were breeding sympatrically. Within each sex and life-history strategy group, we used carbon and nitrogen stable isotopes to assess trophic level and habitat use; assessed morphology which reflects swimming and foraging ability; measured circulating cortisol as it is released in response to stressors and is involved in the transition from salt to freshwater; and determined oxidative status by measuring oxidative stress and antioxidants. We found that sea-run trout were larger and had higher values of stable isotopes, cortisol and oxidative stress compared to residents. Most groups showed some correlations between morphology and diet, indicating individual resource specialization was occurring, and we found consistent correlations between morphology and cortisol. Additionally, relationships differed between the sexes (cortisol and oxidative status were related in females but not males) and between life -history strategies (habitat use was related to oxidative status in male sea-run trout but not in either sex of residents). The differing patterns of covariation between the two life-history strategies and between the sexes suggest that the relationships among phenotypic traits are subjected to different selection pressures, illustrating the importance of integrating multiple phenotypic measures across different trait categories and contrasting life -history strategies. (C) 2017 Elsevier GmbH. All rights reserved. [Peiman, Kathryn S.; Birnie-Gauvin, Kim; Cooke, Steven J.] Carleton Univ, Dept Biol, Fish Ecol & Conservat Physiol Lab, Ottawa, ON, Canada; [Peiman, Kathryn S.; Birnie-Gauvin, Kim; Cooke, Steven J.] Carleton Univ, Inst Environm Sci, Ottawa, ON, Canada; [Birnie-Gauvin, Kim; Willmore, William G.] Carleton Univ, Dept Biol, Ottawa, ON, Canada; [Birnie-Gauvin, Kim; Willmore, William G.] Carleton Univ, Inst Biochem, Ottawa, ON, Canada; [Birnie-Gauvin, Kim; Larsen, Martin H.; Aarestrup, Kim] Tech Univ Denmark, Sect Freshwater Fisheries Ecol, Natl Inst Aquat Resources, DTU AQUA, Silkeborg, Denmark; [Larsen, Martin H.] Danish Ctr Wild Salmon, Randers, Denmark; [Colborne, Scott F.] Univ Windsor, Great Lakes Inst Environm Res, Windsor, ON, Canada; [Gilmour, Kathleen M.] Univ Ottawa, Dept Biol, Ottawa, ON, Canada Peiman, KS (reprint author), Carleton Univ, Dept Biol, Fish Ecol & Conservat Physiol Lab, Ottawa, ON, Canada.; Peiman, KS (reprint author), Carleton Univ, Inst Environm Sci, Ottawa, ON, Canada. kathryn.peiman@carleton.ca Natural Sciences and Engineering Research Council (NSERC) of Canada; Canada Research Chairs Program; NSERC; Danish Rod Fund; Net Fish License Fund The authors thank Jorgen Skole Mikkelsen and Morten Came for assistance in the field. This work was supported by a Natural Sciences and Engineering Research Council (NSERC) of Canada Discovery Grant (DG) and E.W.R. Steacie Memorial Fellowship to SJ. Cooke, the Canada Research Chairs Program, NSERC DG and Research Tools and Instruments Grant to K.M. Gilmour, NSERC DG and CREATE grants to W.B. Willmore, and the Danish Rod and Net Fish License Funds to the Technical University of Denmark. Acolas ML, 2008, ECOL FRESHW FISH, V17, P382, DOI 10.1111/j.1600-0633.2007.00290.x; Adams C, 2003, J FISH BIOL, V62, P474, DOI 10.1046/j.0022-1112.2003.00044.x; Adams DC, 2004, ITAL J ZOOL, V71, P5, DOI 10.1080/11250000409356545; Alp A, 2005, TURK J VET ANIM SCI, V29, P285; Azodi M, 2015, ICHTHYOL RES, V62, P177, DOI 10.1007/s10228-014-0421-z; BAGLINIERE JL, 1989, J FISH BIOL, V34, P97, DOI 10.1111/j.1095-8649.1989.tb02960.x; Ballew NG, 2017, AM NAT, V189, P396, DOI 10.1086/690909; Barcellos LJG, 2010, AQUACULTURE, V300, P231, DOI 10.1016/j.aquaculture.2010.01.013; Barton BA, 2002, INTEGR COMP BIOL, V42, P517, DOI 10.1093/icb/42.3.517; Bayir A, 2011, COMP BIOCHEM PHYS B, V159, P191, DOI 10.1016/j.cbpb.2011.04.008; Beaudoin CP, 1999, OECOLOGIA, V120, P386, DOI 10.1007/s004420050871; Beaulieu M, 2015, OECOLOGIA, V177, P1211, DOI 10.1007/s00442-015-3267-9; Beaulieu M, 2010, P ROY SOC B-BIOL SCI, V277, P1087, DOI 10.1098/rspb.2009.1881; Blake RW, 2004, J FISH BIOL, V65, P1193, DOI 10.1111/j.1095-8949.2004.00568.x; Boel M, 2014, PHYSIOL BIOCHEM ZOOL, V87, P334, DOI 10.1086/674869; Bolnick DI, 2007, ANNU REV ECOL EVOL S, V38, P459, DOI 10.1146/annurev.ecolsys.38.091206.095804; Bolnick DI, 2003, AM NAT, V161, P1, DOI 10.1086/343878; Boula D, 2002, ENVIRON BIOL FISH, V64, P229, DOI 10.1023/A:1016054119783; Bridcut EE, 1995, CAN J FISH AQUAT SCI, V52, P2543, DOI 10.1139/f95-845; Briers RA, 2013, ECOL FRESHW FISH, V22, P137, DOI 10.1111/eff.12011; Butler MW, 2010, PHYSIOL BIOCHEM ZOOL, V83, P78, DOI 10.1086/648483; Carlsson J, 1999, J FISH BIOL, V55, P1290, DOI 10.1006/jfbi.1999.1123; CAWDERY S A H, 1988, Polskie Archiwum Hydrobiologii, V35, P267; Chapman BB, 2011, OIKOS, V120, P1764, DOI 10.1111/j.1600-0706.2011.20131.x; Charles K, 2004, MAR FRESHWATER RES, V55, P185, DOI 10.1071/MF03173; Costantini D, 2014, OXIDATIVE STRESS HOR; Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x; Costantini D, 2011, J COMP PHYSIOL B, V181, P447, DOI 10.1007/s00360-011-0566-2; Cucherousset J, 2005, CAN J FISH AQUAT SCI, V62, P1600, DOI 10.1139/F05-057; Dall SRX, 2012, ECOL LETT, V15, P1189, DOI 10.1111/j.1461-0248.2012.01846.x; del Villar-Guerra D, 2014, ECOL FRESHW FISH, V23, P594, DOI 10.1111/eff.12110; Dieckmann U, 1999, NATURE, V400, P354, DOI 10.1038/22521; Doebeli M, 2000, AM NAT, V156, pS77, DOI 10.1086/303417; Duguid RA, 2006, J FISH BIOL, V69, P89, DOI 10.1111/j.1095-8649.2006.01118.x; Eldoy SH, 2015, CAN J FISH AQUAT SCI, V72, P1366, DOI 10.1139/cjfas-2014-0560; Elliott JM, 1997, J FISH BIOL, V50, P1129, DOI 10.1006/jfbi.1996.0378; Estoup A, 1998, MOL ECOL, V7, P339, DOI 10.1046/j.1365-294X.1998.00362.x; Fairhurst GD, 2015, IBIS, V157, P273, DOI 10.1111/ibi.12232; Fairhurst GD, 2013, OECOLOGIA, V173, P731, DOI 10.1007/s00442-013-2678-8; FERGUSON A, 1991, BIOL J LINN SOC, V43, P221, DOI 10.1111/j.1095-8312.1991.tb00595.x; Flores AM, 2012, J COMP PHYSIOL B, V182, P77, DOI 10.1007/s00360-011-0600-4; France RL, 1995, LIMNOL OCEANOGR, V40, P1310, DOI 10.4319/lo.1995.40.7.1310; FRANCE RL, 1995, MAR ECOL PROG SER, V124, P307, DOI 10.3354/meps124307; GAMPERL AK, 1994, REV FISH BIOL FISHER, V4, P215, DOI 10.1007/BF00044129; Glennemeier KA, 2002, GEN COMP ENDOCR, V127, P16, DOI 10.1016/S0016-6480(02)00015-1; Grey J, 2001, ECOL FRESHW FISH, V10, P168, DOI 10.1034/j.1600-0633.2001.100306.x; Hansen MM, 2002, MOL ECOL, V11, P2523, DOI 10.1046/j.1365-294X.2002.01634.x; Harris G.S., 1971, FISH MANAGE, V2, P20; Harrison XA, 2011, J ANIM ECOL, V80, P4, DOI 10.1111/j.1365-2656.2010.01740.x; Hau M, 2016, ADV STUD BEHAV, V48, P41, DOI 10.1016/bs.asb.2016.01.002; HermesLima M, 1996, AM J PHYSIOL-REG I, V271, pR918; HOBSON KA, 1994, J ANIM ECOL, V63, P786, DOI 10.2307/5256; Hobson KA, 1999, OECOLOGIA, V120, P314, DOI 10.1007/s004420050865; Hoogenboom MO, 2012, COMP BIOCHEM PHYS A, V163, P379, DOI 10.1016/j.cbpa.2012.07.002; Hossie TJ, 2010, ECOSCIENCE, V17, P100, DOI 10.2980/17-1-3312; Hughes M.R., 2016, ECOL FRESHW FISH, P1; Hutchinson JJ, 2006, J FISH BIOL, V69, P1874, DOI 10.1111/j.1095-8649.2006.01234.x; Jensen H, 2012, J FISH BIOL, V80, P2448, DOI 10.1111/j.1095-8649.2012.03294.x; Jensen H, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0170582; JONSSON B, 1985, ENVIRON BIOL FISH, V14, P281, DOI 10.1007/BF00002633; JONSSON B, 1985, T AM FISH SOC, V114, P182, DOI 10.1577/1548-8659(1985)114<182:LHPOFR>2.0.CO;2; JONSSON B, 1989, FRESHWATER BIOL, V21, P71, DOI 10.1111/j.1365-2427.1989.tb01349.x; Jonsson B, 2001, J FISH BIOL, V58, P605, DOI 10.1006/jfbi.2000.1515; Karpestam E, 2011, EVOL ECOL RES, V13, P461; Kelly JF, 2000, CAN J ZOOL, V78, P1, DOI 10.1139/cjz-78-1-1; Killen SS, 2013, TRENDS ECOL EVOL, V28, P651, DOI 10.1016/j.tree.2013.05.005; Klemetsen A, 2003, ECOL FRESHW FISH, V12, P1, DOI 10.1034/j.1600-0633.2003.00010.x; Klingenberg CP, 2016, DEV GENES EVOL, V226, P113, DOI 10.1007/s00427-016-0539-2; Knutsen JA, 2004, J FISH BIOL, V64, P89, DOI 10.1046/j.1095-8649.2003.00285.x; Knutsen JA, 2001, J FISH BIOL, V59, P533, DOI 10.1006/jfbi.2001.1662; Lesser MP, 2006, ANNU REV PHYSIOL, V68, P253, DOI 10.1146/annurev.physiol.68.040104.110001; Martin RA, 2010, BIOL J LINN SOC, V100, P73, DOI 10.1111/j.1095-8312.2010.01380.x; McCarthy ID, 2004, J FISH BIOL, V65, P1435, DOI 10.1111/j.1095-8649.2004.00526.x; McCarthy ID, 2000, RAPID COMMUN MASS SP, V14, P1325; McCormick SD, 2006, GEN COMP ENDOCR, V147, P3, DOI 10.1016/j.ygcen.2005.12.009; McCormick SD, 2001, AM ZOOL, V41, P781, DOI 10.1668/0003-1569(2001)041[0781:ECOOIT]2.0.CO;2; McGraw KJ, 2010, FUNCT ECOL, V24, P947, DOI 10.1111/j.1365-2435.2010.01772.x; MCVEIGH HP, 1995, CAN J FISH AQUAT SCI, V52, P1617, DOI 10.1139/f95-755; Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x; Monet G, 2006, AQUAT LIVING RESOUR, V19, P47, DOI 10.1051/alr.2006004; O'Connor CM, 2014, ECOSPHERE, V5, DOI 10.1890/ES13-00388.1; Olofsson H, 1999, ECOL FRESHW FISH, V8, P59, DOI 10.1111/j.1600-0633.1999.tb00054.x; Olsson IC, 2004, J FISH BIOL, V65, P106, DOI 10.1111/j.1095-8649.2004.00430.x; Olsson IC, 2006, ECOL LETT, V9, P645, DOI 10.1111/j.1461-0248.2006.00909.x; Paez DJ, 2011, J EVOLUTION BIOL, V24, P245, DOI 10.1111/j.1420-9101.2010.02159.x; Pankhurst NW, 2011, GEN COMP ENDOCR, V170, P265, DOI 10.1016/j.ygcen.2010.07.017; Peiman K.S., 2017, AM NAT, P190; Peters L.D., 1994, MAR POLLUT B, V28; Petersson JCE, 2001, J FISH BIOL, V58, P487, DOI 10.1006/jfbi.2000.1468; Pisoschi AM, 2015, EUR J MED CHEM, V97, P55, DOI 10.1016/j.ejmech.2015.04.040; POLIS GA, 1984, AM NAT, V123, P541, DOI 10.1086/284221; Pottinger TG, 2003, COMP BIOCHEM PHYS B, V136, P403, DOI 10.1016/S1096-4959(03)00212-4; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Rikardsen AH, 2005, J FISH BIOL, V66, P1163, DOI 10.1111/j.1095-8649.2005.00655.x; Rikardsen AH, 2006, ICES J MAR SCI, V63, P466, DOI 10.1016/j.icesjms.2005.07.013; RINGLER NH, 1985, COPEIA, P918; ROBINSON BW, 1994, AM NAT, V144, P596, DOI 10.1086/285696; Rohlf FJ, 2015, HYSTRIX, V26, P9, DOI 10.4404/hystrix-26.1-11264; ROUGHGARDEN J, 1972, AM NAT, V106, P683, DOI 10.1086/282807; Rubenstein DR, 2004, TRENDS ECOL EVOL, V19, P256, DOI 10.1016/j.tree.2004.03.017; Sanchez-Hernandez J, 2012, NEW ADV CONTRIBUTION; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; SHIRVELL CS, 1983, T AM FISH SOC, V112, P355, DOI 10.1577/1548-8659(1983)112<355:MCBBTF>2.0.CO;2; Skoglund S, 2015, ECOL EVOL, V5, P3114, DOI 10.1002/ece3.1573; SKULASON S, 1995, TRENDS ECOL EVOL, V10, P366, DOI 10.1016/S0169-5347(00)89135-1; Smith TB, 1996, ANNU REV ECOL SYST, V27, P111, DOI 10.1146/annurev.ecolsys.27.1.111; SMITH TB, 1990, ECOLOGY, V71, P1246, DOI 10.2307/1938261; Speakman JR, 2015, ECOL EVOL, V5, pS745, DOI 10.1002/ece3.1790; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; SUMPTER JP, 1991, GEN COMP ENDOCR, V83, P94, DOI 10.1016/0016-6480(91)90109-J; Svanback R, 2004, J ANIM ECOL, V73, P973, DOI 10.1111/j.0021-8790.2004.00868.x; Svanback R, 2007, P ROY SOC B-BIOL SCI, V274, P839, DOI 10.1098/rspb.2006.0198; Van Leeuwen TE, 2017, ECOL FRESHW FISH, V26, P371, DOI 10.1111/eff.12281; Van Valen L., 1965, AM NAT, V99, P377, DOI [10.1086/282379, DOI 10.1086/282379]; Vitousek M.N., 2016, FRONT ECOL EVOL, V4, P56; Vuori K, 2012, J FISH BIOL, V81, P1815, DOI 10.1111/j.1095-8649.2012.03386.x; Warne RW, 2015, ECOL EVOL, V5, P557, DOI 10.1002/ece3.1360; Wilson DS, 1998, PHILOS T ROY SOC B, V353, P199, DOI 10.1098/rstb.1998.0202; Wilson SM, 2012, COMP BIOCHEM PHYS A, V162, P212, DOI 10.1016/j.cbpa.2012.02.023; Wysujack K, 2009, ECOL FRESHW FISH, V18, P52, DOI 10.1111/j.1600-0633.2008.00322.x; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 122 1 1 4 17 ELSEVIER GMBH, URBAN & FISCHER VERLAG JENA OFFICE JENA, P O BOX 100537, 07705 JENA, GERMANY 0944-2006 ZOOLOGY Zoology AUG 2017 123 79 90 10.1016/j.zool.2017.07.002 12 Zoology Zoology FJ0DD WOS:000412377800010 28807503 2018-11-22 J Ibler, B; Fischer, K Ibler, Benjamin; Fischer, Klaus Comparative analyses of life-history strategies in Asiatic and African wild asses using a demographical approach FOLIA ZOOLOGICA English Article life-history; trade-off; post-reproductive phase; reproductive phase; birth interval EQUUS-HEMIONUS; SOCIAL-ORGANIZATION; TRADE-OFFS; POPULATION; INVESTMENT; EVOLUTION; BEHAVIOR; ANIMALS; HORSES; HERD Trade-offs such as the ones between reproduction and longevity or present and future reproduction are believed to shape reproductive patterns. We here used zoo data to investigate trade-offs and life histories in four taxa of Asiatic (Epus hemionus ssp.) and African wild asses (Equus qfricanus ssp.). All taxa showed even in captivity peak birth rates during the periods of highest food availability in their natural environments. Sex-specific survival rates with females living longer than males were evident in kulan and onager but not in kiang and Somali wild ass, pointing towards different life-history strategies even among closely related taxa. Females achieved their highest reproductive output earlier in life than males, which is typical for polygynous mating systems. Offspring number and longevity were positively rather than negatively correlated. Taken together evidence for reproductive trade-offs was weak, though the length of the reproductive period was negatively related to birth rates within the reproductive period. Birth intervals increased with female age, probably reflecting detrimental effects of senescence. Despite several limitations, zoo data seem to be useful to better understand the reproductive biology of endangered, rare or cryptic species. [Ibler, Benjamin; Fischer, Klaus] Ernst Moritz Arndt Univ Greifswald, Zool Inst & Museum, Loitzer Str 26, D-17489 Greifswald, Germany; [Ibler, Benjamin] Dortmund Zool Garden, Mergeheichstr 80, D-44225 Dortmund, Germany Ibler, B (reprint author), Ernst Moritz Arndt Univ Greifswald, Zool Inst & Museum, Loitzer Str 26, D-17489 Greifswald, Germany.; Ibler, B (reprint author), Dortmund Zool Garden, Mergeheichstr 80, D-44225 Dortmund, Germany. benjamin.ibler@gmx.de Akesson M., 2008, PLOS ONE, V1, pe739; Badyaev AV, 2002, TRENDS ECOL EVOL, V17, P369, DOI 10.1016/S0169-5347(02)02569-7; Bahloul K, 2001, J ARID ENVIRON, V47, P309, DOI 10.1006/jare.2000.0714; Barnier F, 2012, ACTA OECOL, V42, P11, DOI 10.1016/j.actao.2011.11.007; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; Cameron EZ, 2000, ANIM BEHAV, V60, P359, DOI 10.1006/anbe.2000.1480; Clements MN, 2011, FUNCT ECOL, V25, P691, DOI 10.1111/j.1365-2435.2010.01812.x; Clutton-Brock T.H., 1988, REPROD SUCCESS STUDI; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; CluttonBrock TH, 1997, P ROY SOC B-BIOL SCI, V264, P1509, DOI 10.1098/rspb.1997.0209; Cohen AA, 2004, BIOL REV, V79, P733, DOI 10.1017/S1464793103006432; Dathe H., 1973, INT STUDBOOK AFRICAN, P6; Dathe H., 1971, INT STUDBOOK ASIATIC, P8; DUNCAN P, 1984, ANIM BEHAV, V32, P255, DOI 10.1016/S0003-3472(84)80345-0; Falconer DS, 1981, INTRO QUANTITATIVE G; Feh C, 2001, BIOL CONSERV, V101, P51, DOI 10.1016/S0006-3207(01)00051-9; Flatt T, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P1; Fowler C.W., 1987, Current Mammalogy, V1, P401; Gippoliti Spartaco, 2014, Zoologische Garten, V83, P146; Grange S, 2004, OECOLOGIA, V140, P523, DOI 10.1007/s00442-004-1567-6; Groves C. P., 1968, Z SAUGETIERKD, V32, P321; Judge DS, 2000, J GERONTOL A-BIOL, V55, pB201, DOI 10.1093/gerona/55.4.B201; Kirkpatrick JF, 2007, ZOO BIOL, V26, P237, DOI 10.1002/zoo.20109; Klingel H, 1998, APPL ANIM BEHAV SCI, V60, P103, DOI 10.1016/S0168-1591(98)00160-9; KLINGEL H, 1977, Z TIERPSYCHOL, V44, P323; Kruuk LEB, 2000, P NATL ACAD SCI USA, V97, P698, DOI 10.1073/pnas.97.2.698; Lahdenpera M, 2014, FRONT ZOOL, V11, DOI 10.1186/s12983-014-0054-0; Newton I, 1989, LIFETIME REPROD SUCC; Nowak RM, 1999, WALKERS MAMMALS WORL; Oakenfull E. Ann, 2000, Conservation Genetics, V1, P341, DOI 10.1023/A:1011559200897; Pelletier F, 2009, TRENDS ECOL EVOL, V24, P263, DOI 10.1016/j.tree.2008.11.013; Pohle C., 1973, INT STUDBOOK AFRICAN, V1-41; Pohle C., 1971, INT STUDBOOK ASIATIC, V1-46; Prins H. H., 1996, WILDLIFE ECOLOGY BEH, VI; PROMISLOW DEL, 1991, EVOLUTION, V45, P1869, DOI 10.1111/j.1558-5646.1991.tb02693.x; Puschrnann W., 2003, ZOOTIERHALTUNG SAUGE; Reznick D, 2006, PLOS BIOL, V4, P136, DOI 10.1371/journal.pbio.0040007; Roff D. A., 2002, EVOLUTION LIFE HIST; SALTZ D, 1995, ECOL APPL, V5, P327, DOI 10.2307/1942025; Siegmund A., 2006, DIERCKE SPEZIAL ANGE; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stewart KM, 2005, OECOLOGIA, V143, P85, DOI 10.1007/s00442-004-1785-y; Taborsky M, 2010, ANIMAL BEHAVIOUR: EVOLUTION AND MECHANISMS, P537, DOI 10.1007/978-3-642-02624-9_18; TRIVERS RL, 1976, SCIENCE, V191, P249, DOI 10.1126/science.1108197; Turbill C, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0012019; Volf J., 1996, NEUE BREHM BIICHEREI, V249; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 47 0 0 2 8 INST VERTEBRATE BIOLOGY AS CR BRNO KVETNA 8, BRNO 603 65, CZECH REPUBLIC 0139-7893 1573-1189 FOLIA ZOOL Folia Zool. AUG 2017 66 2 133 146 14 Zoology Zoology FH3KS WOS:000411046500007 2018-11-22 J Brand, P; Ramirez, SR Brand, Philipp; Ramirez, Santiago R. The Evolutionary Dynamics of the Odorant Receptor Gene Family in Corbiculate Bees GENOME BIOLOGY AND EVOLUTION English Article odorant receptors; chemosensory genes; birth-death process; genomic architecture; positive selection; honey bees MULTIPLE SEQUENCE ALIGNMENT; COPY NUMBER VARIATION; MALE ORCHID BEES; SOCIAL INSECTS; HONEY-BEE; CHEMORECEPTOR SUPERFAMILY; MOLECULAR EVOLUTION; MAXIMUM-LIKELIHOOD; APIS-MELLIFERA; HOST SPECIALIZATION Insects rely on chemical information to locate food, choose mates, and detect potential predators. It has been hypothesized that adaptive changes in the olfactory system facilitated the diversification of numerous insect lineages. For instance, evolutionary changes of Odorant Receptor (OR) genes often occur in parallel with modifications in life history strategies. Corbiculate bees display a diverse array of behaviors that are controlled through olfaction, including varying degrees of social organization, and manifold associations with floral resources. Here we investigated the molecular mechanisms driving the evolution of the OR gene family in corbiculate bees in comparison to other chemosensory gene families. Our results indicate that the genomic organization of the OR gene family has remained highly conserved for similar to 80 Myr, despite exhibiting major changes in repertoire size among bee lineages. Moreover, the evolution of OR genes appears to be driven mostly by lineage-specific gene duplications in few genomic regions that harbor large numbers of OR genes. A selection analysis revealed that OR genes evolve under positive selection, with the strongest signals detected in recently duplicated copies. Our results indicate that chromosomal translocations had a minimal impact on OR evolution, and instead local molecular mechanisms appear to be main drivers of OR repertoire size. Our results provide empirical support to the longstanding hypothesis that positive selection shaped the diversification of the OR gene family. Together, our results shed new light on the molecular mechanisms underlying the evolution of olfaction in insects. [Brand, Philipp; Ramirez, Santiago R.] Univ Calif Davis, Dept Ecol & Evolut, Ctr Populat Biol, Davis, CA 95616 USA; [Brand, Philipp] Univ Calif Davis, Ctr Populat Biol, Populat Biol Grad Grp, Davis, CA 95616 USA Brand, P (reprint author), Univ Calif Davis, Dept Ecol & Evolut, Ctr Populat Biol, Davis, CA 95616 USA.; Brand, P (reprint author), Univ Calif Davis, Ctr Populat Biol, Populat Biol Grad Grp, Davis, CA 95616 USA. pbrand@ucdavis.edu Brand, Philipp/0000-0003-4287-4753 German academic exchange service (Deutscher Akademischer Austauschdienst, DAAD); David and Lucile Packard Foundation; National Science Foundation [DEB1457753]; NIH S10 Instrumentation Grants [S10RR029668, S10RR027303, OD018174] We thank Michelle Stitzer, Judy Wexler, Mascha Koenen, the Ramirez lab, and two anonymous reviewers for valuable comments on the manuscript. We thank Hugh Robertson for sharing chemosensory gene sequences of the honey bee and bumble bee. P.B. was supported by a fellowship of the German academic exchange service (Deutscher Akademischer Austauschdienst, DAAD) for parts of the project. S.R.R. received support from the David and Lucile Packard Foundation and the National Science Foundation (DEB1457753). This work used the Vincent J. Coates Genomics Sequencing Laboratory at UC Berkeley, supported by NIH S10 Instrumentation Grants S10RR029668, S10RR027303, and OD018174. Almeida FC, 2014, GENOME BIOL EVOL, V6, P1669, DOI 10.1093/gbe/evu130; Benton R, 2009, CELL, V136, P149, DOI 10.1016/j.cell.2008.12.001; Bielawski JP, 2004, J MOL EVOL, V59, P121, DOI 10.1007/s00239-004-2597-8; Bosco G, 2007, GENETICS, V177, P1277, DOI 10.1534/genetics.107.075069; Brand P, 2017, G3117043687 G3 GEN G, Vg3; Brand P, 2015, BMC EVOL BIOL, V15, DOI 10.1186/s12862-015-0451-9; Briscoe AD, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003620; Cardoso-Moreira M, 2011, PLOS GENET, V7, DOI 10.1371/journal.pgen.1002340; Casola C, 2009, J MOL EVOL, V68, P679, DOI 10.1007/s00239-009-9241-6; Conceicao IC, 2008, J MOL EVOL, V66, P325, DOI 10.1007/s00239-008-9071-y; Croset V, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1001064; Dennis MY, 2017, NAT ECOL EVOL, V1, DOI 10.1038/s41559-016-0069; Dobritsa AA, 2003, NEURON, V37, P827, DOI 10.1016/S0896-6273(03)00094-1; Elmore T, 2001, INSECT BIOCHEM MOLEC, V31, P791, DOI 10.1016/S0965-1748(00)00184-3; Eltz T, 1999, J CHEM ECOL, V25, P157, DOI 10.1023/A:1020897302355; Engsontia P, 2008, INSECT BIOCHEM MOLEC, V38, P387, DOI 10.1016/j.ibmb.2007.10.005; Engsontia Patamarerk, 2015, BMC Research Notes, V8, P380, DOI 10.1186/s13104-015-1371-x; Engsontia P, 2014, J MOL EVOL, V79, P21, DOI 10.1007/s00239-014-9633-0; Eyres I, 2017, MOL ECOL, V26, P43, DOI 10.1111/mec.13818; Foret S, 2006, GENOME RES, V16, P1404, DOI 10.1101/gr.5075706; Gardiner A, 2008, MOL ECOL, V17, P1648, DOI 10.1111/j.1365-294X.2008.03713.x; Goldman-Huertas B, 2015, P NATL ACAD SCI USA, V112, P3026, DOI 10.1073/pnas.1424656112; Gould F, 2010, P NATL ACAD SCI USA, V107, P8660, DOI 10.1073/pnas.0910945107; Grabherr MG, 2011, NAT BIOTECHNOL, V29, P644, DOI 10.1038/nbt.1883; Grosse-Wilde E, 2011, P NATL ACAD SCI USA, V108, P7449, DOI 10.1073/pnas.1017963108; Gruter C, 2016, CURR OPIN NEUROBIOL, V38, P6, DOI 10.1016/j.conb.2016.01.002; Guo S, 2007, MOL BIOL EVOL, V24, P1198, DOI 10.1093/molbev/msm038; Haas BJ, 2013, NAT PROTOC, V8, P1494, DOI 10.1038/nprot.2013.084; Hallem EA, 2006, CELL, V125, P143, DOI 10.1016/j.cell.2006.01.050; Hallem EA, 2004, CELL, V117, P965, DOI 10.1016/j.cell.2004.05.012; Hansson BS, 2011, NEURON, V72, P698, DOI 10.1016/j.neuron.2011.11.003; Hastings PJ, 2009, NAT REV GENET, V10, P551, DOI 10.1038/nrg2593; Hou Y, 2012, PLOS GENET, V8, DOI 10.1371/journal.pgen.1002716; Innan H, 2010, NAT REV GENET, V11, P97, DOI 10.1038/nrg2689; Kapheim KM, 2015, SCIENCE, V348, P1139, DOI 10.1126/science.aaa4788; Katoh K, 2002, NUCLEIC ACIDS RES, V30, P3059, DOI 10.1093/nar/gkf436; Katoh K, 2005, NUCLEIC ACIDS RES, V33, P511, DOI 10.1093/nar/gki198; Katoh K, 2013, MOL BIOL EVOL, V30, P772, DOI 10.1093/molbev/mst010; Kirkness EF, 2010, P NATL ACAD SCI USA, V107, P12168, DOI 10.1073/pnas.1003379107; Klein AM, 2007, P ROY SOC B-BIOL SCI, V274, P303, DOI 10.1098/rspb.2006.3721; Kocher SD, 2011, J CHEM ECOL, V37, P1263, DOI 10.1007/s10886-011-0036-z; Kratz E, 2002, TRENDS GENET, V18, P29, DOI 10.1016/S0168-9525(01)02579-3; Leary GP, 2012, P NATL ACAD SCI USA, V109, P14081, DOI 10.1073/pnas.1204661109; LeBoeuf' AC, 2013, CURR OPIN NEUROBIOL, V23, P3, DOI 10.1016/j.conb.2012.08.008; Leonhardt SD, 2016, CELL, V164, P1277, DOI 10.1016/j.cell.2016.01.035; Leonhardt SD, 2017, J CHEM ECOL, V2, P1; McBride CS, 2007, GENETICS, V177, P1395, DOI 10.1534/genetics.107.078683; McBride CS, 2007, P NATL ACAD SCI USA, V104, P4996, DOI 10.1073/pnas.0608424104; McBride CS, 2014, NATURE, V515, P222, DOI 10.1038/nature13964; McKenzie SK, 2016, P NATL ACAD SCI USA, V113, P14091, DOI 10.1073/pnas.1610800113; Michener CD, 2007, BEES WORLD; Neafsey DE, 2015, SCIENCE, V347, DOI 10.1126/science.1258522; Nei M, 2005, ANNU REV GENET, V39, P121, DOI 10.1146/annurev.genet.39.073003.112240; Nei M, 2008, NAT REV GENET, V9, P951, DOI 10.1038/nrg2480; Niimura Y, 2005, GENE, V346, P13, DOI 10.1016/j.gene.2004.09.025; Nozawa M, 2007, P NATL ACAD SCI USA, V104, P7122, DOI 10.1073/pnas.0702133104; Obbard DJ, 2012, MOL BIOL EVOL, V29, P3459, DOI 10.1093/molbev/mss150; Park D, 2015, BMC GENOMICS, V16, DOI 10.1186/1471-2164-16-1; Pellegrino M, 2011, NATURE, V478, P511, DOI 10.1038/nature10438; Perry GH, 2008, GENOME RES, V18, P1698, DOI 10.1101/gr.082016.108; Perry GH, 2006, P NATL ACAD SCI USA, V103, P8006, DOI 10.1073/pnas.0602318103; Pokorny T, 2013, OECOLOGIA, V172, P417, DOI 10.1007/s00442-013-2620-0; Pond SLK, 2005, BIOINFORMATICS, V21, P676, DOI 10.1093/bioinformatics/bti079; Ramirez Santiago, 2002, Biota Colombiana, V3, P7; Ramirez SR, 2010, BIOL J LINN SOC, V100, P552, DOI 10.1111/j.1095-8312.2010.01440.x; Rivera MC, 1998, P NATL ACAD SCI USA, V95, P6239, DOI 10.1073/pnas.95.11.6239; Robertson HM, 2010, INSECT MOL BIOL, V19, P121, DOI 10.1111/j.1365-2583.2009.00979.x; Robertson HM, 2006, GENOME RES, V16, P1395, DOI 10.1101/gr.5057506; Romiguier J, 2016, MOL BIOL EVOL, V33, P670, DOI 10.1093/molbev/msv258; Ross L, 2015, J EVOLUTION BIOL, V28, P105, DOI 10.1111/jeb.12543; Roubik D.W, 2004, ORCHID BEES TROPICAL; Rueppell O, 2016, GENOME BIOL EVOL, V8, P3653, DOI 10.1093/gbe/evw269; Sadd BM, 2015, GENOME BIOL, V16, DOI 10.1186/s13059-015-0623-3; Sanchez-Gracia A, 2009, HEREDITY, V103, P208, DOI 10.1038/hdy.2009.55; Slaa EJ, 2006, APIDOLOGIE, V37, P293, DOI 10.1051/apido:2006022; Slater GS, 2005, BMC BIOINFORMATICS, V6, DOI 10.1186/1471-2105-6-31; Slone JD, 2017, P NATL ACAD SCI USA, V43; Smadja C, 2009, HEREDITY, V102, P77, DOI 10.1038/hdy.2008.55; Smadja C, 2009, MOL BIOL EVOL, V26, P2073, DOI 10.1093/molbev/msp116; Smadja CM, 2012, EVOLUTION, V66, P2723, DOI 10.1111/j.1558-5646.2012.01612.x; Smith CR, 2011, P NATL ACAD SCI USA, V108, P5667, DOI 10.1073/pnas.1007901108; Smith CD, 2011, P NATL ACAD SCI USA, V108, P5673, DOI 10.1073/pnas.1008617108; Smith MD, 2015, MOL BIOL EVOL, V32, P1342, DOI 10.1093/molbev/msv022; Stamatakis A, 2005, BIOINFORMATICS, V21, P456, DOI 10.1093/bioinformatics/bti191; Stolle E, 2011, BMC GENOMICS, V12, DOI 10.1186/1471-2164-12-48; Tunstall NE, 2007, J MOL EVOL, V64, P628, DOI 10.1007/s00239-006-0151-6; Vieira FG, 2011, GENOME BIOL EVOL, V3, P476, DOI 10.1093/gbe/evr033; VOGEL STEFAN, 1966, OSTERREICH BOT ZEITSCHR, V113, P302, DOI 10.1007/BF01373435; Vosshall LB, 2000, CELL, V102, P147, DOI 10.1016/S0092-8674(00)00021-0; Wang GR, 2010, P NATL ACAD SCI USA, V107, P4418, DOI 10.1073/pnas.0913392107; Weinstock GM, 2006, NATURE, V443, P931, DOI 10.1038/nature05260; Wilfert L, 2007, HEREDITY, V98, P189, DOI 10.1038/sj.hdy.6800950; Woodard SH, 2011, P NATL ACAD SCI USA, V108, P7472, DOI 10.1073/pnas.1103457108; Xie YL, 2014, BIOINFORMATICS, V30, P1660, DOI 10.1093/bioinformatics/btu077; Xu HB, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0052249; Yang ZH, 2007, MOL BIOL EVOL, V24, P1586, DOI 10.1093/molbev/msm088; Zhou XF, 2015, GENOME BIOL EVOL, V7, P2407, DOI 10.1093/gbe/evv149 97 6 6 4 7 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 1759-6653 GENOME BIOL EVOL Genome Biol. Evol. AUG 2017 9 8 2023 2036 10.1093/gbe/evx149 14 Evolutionary Biology; Genetics & Heredity Evolutionary Biology; Genetics & Heredity FG8JP WOS:000410677300004 28854688 DOAJ Gold, Green Published 2018-11-22 J Craig, N; Jones, SE; Weidel, BC; Solomon, CT Craig, Nicola; Jones, Stuart E.; Weidel, Brian C.; Solomon, Christopher T. Life history constraints explain negative relationship between fish productivity and dissolved organic carbon in lakes ECOLOGY AND EVOLUTION English Article Centrarchidae; humic waters; lake browning; life history trade-offs; reproductive output; terrestrial subsidies; water color RESOURCE AVAILABILITY; ALLOCATION MODEL; TEMPERATE LAKES; GROWTH; EVOLUTION; REPRODUCTION; POPULATIONS; CLIMATE; LIGHT; SIZE Resource availability constrains the life history strategies available to organisms and may thereby limit population growth rates and productivity. We used this conceptual framework to explore the mechanisms driving recently reported negative relationships between fish productivity and dissolved organic carbon (DOC) concentrations in lakes. We studied populations of bluegill (Lepomis macrochirus) in a set of lakes with DOC concentrations ranging from 3 to 24 mg/L; previous work has demonstrated that primary and secondary productivity of food webs is negatively related to DOC concentration across this gradient. For each population, we quantified individual growth rate, age at maturity, age-specific fecundity, maximum age, length-weight and length-egg size relationships, and other life history characteristics. We observed a strong negative relationship between maximum size and DOC concentration; for instance, fish reached masses of 150 to 260 g in low-DOC lakes but <120 g in high-DOC lakes. Relationships between fecundity and length, and between egg size and length, were constant across the DOC gradient. Because fish in high-DOC lakes reached smaller sizes but had similar fecundity and egg size at a given size, their total lifetime fecundity was as much as two orders of magnitude lower than fish in low-DOC lakes. High DOC concentrations appeared to constrain the range of bluegill life history strategies available; populations in high-DOC lakes always had low initial growth rates and high ages at maturity, whereas populations in low-DOC showed higher variability in these traits. This was also the case for the intrinsic rates of natural increase of these populations, which were always low at the high end of the DOC gradient. The potentially lower capacity for fish populations in high-DOC lakes to recover from exploitation has clear implications for the sustainable management of recreational fisheries in the face of considerable spatial heterogeneity and ongoing temporal change in lake DOC concentrations. [Craig, Nicola] McGill Univ, Dept Nat Resource Sci, MacDonald Campus, Ste Anne De Bellevue, PQ, Canada; [Jones, Stuart E.] Univ Notre Dame, Dept Biol Sci, Notre Dame, IN 46556 USA; [Weidel, Brian C.] US Geol Survey, Great Lakes Sci Ctr, Lake Ontario Biol Stn, Oswego, NY USA; [Solomon, Christopher T.] Cary Inst Ecosyst Studies, Millbrook, NY USA Craig, N (reprint author), McGill Univ, Dept Nat Resource Sci, MacDonald Campus, Ste Anne De Bellevue, PQ, Canada. nicola.craig@mail.mcgill.ca Solomon, Christopher/0000-0002-2850-4257 Natural Sciences and Engineering Research Council of Canada Funding was provided by the Natural Sciences and Engineering Research Council of Canada Aday DD, 2006, OECOLOGIA, V147, P31, DOI 10.1007/s00442-005-0242-x; Ask J, 2009, LIMNOL OCEANOGR, V54, P2034, DOI 10.4319/lo.2009.54.6.2034; BECKER G. C, 1983, FISHES WISCONSIN; Begon M, 2006, ECOLOGY INDIVIDUALS; Benoit P. - O., 2016, CANADIAN J FISHERIES, V73, P1; Bethke BJ, 2015, T AM FISH SOC, V144, P68, DOI 10.1080/00028487.2014.965345; Bolker B.M., 2008, ECOLOGICAL MODELS DA; Charnov Eric L., 1993, P1; CONNELL JH, 1970, ECOL MONOGR, V40, P49, DOI 10.2307/1942441; Craig N, 2015, LIMNOL OCEANOGR, V60, P2079, DOI 10.1002/lno.10153; DIANA JS, 1987, T AM FISH SOC, V116, P612, DOI 10.1577/1548-8659(1987)116<612:SOMCSI>2.0.CO;2; DOWNING JA, 1993, CAN J FISH AQUAT SCI, V50, P110, DOI 10.1139/f93-013; Drake Melissa T., 1997, North American Journal of Fisheries Management, V17, P496, DOI 10.1577/1548-8675(1997)017<0496:ACOBRS>2.3.CO;2; Evans CD, 2005, ENVIRON POLLUT, V137, P55, DOI 10.1016/j.envpol.2004.12.031; Finstad AG, 2014, ECOL LETT, V17, P36, DOI 10.1111/ele.12201; Fischer JR, 2014, J FISH WILDL MANAG, V5, P394, DOI 10.3996/082013-JFWM-054; Fisher R. A., 1930, GENETICAL THEORY NAT; GALLUCCI VF, 1979, T AM FISH SOC, V108, P14, DOI 10.1577/1548-8659(1979)108<14:RFATAS>2.0.CO;2; GERKING SD, 1962, ECOL MONOGR, V32, P31, DOI 10.2307/1942360; Godwin SC, 2014, LIMNOL OCEANOGR, V59, P2112, DOI 10.4319/lo.2014.59.6.2112; Green BS, 2008, ADV MAR BIOL, V54, P1, DOI 10.1016/S0065-2881(08)00001-1; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.2307/2679799; Hanson PC, 2007, FRESHWATER BIOL, V52, P814, DOI 10.1111/j.1365-2427.2007.01730.x; Heath DD, 1996, ENVIRON BIOL FISH, V45, P53, DOI 10.1007/BF00000627; Horppila J, 2010, ECOL FRESHW FISH, V19, P257, DOI 10.1111/j.1600-0633.2010.00410.x; Hunter J.R., 1985, NOAA Technical Report NMFS, V36, P67; Jennings S, 1998, P ROY SOC B-BIOL SCI, V265, P333, DOI 10.1098/rspb.1998.0300; Jensen AL, 1996, CAN J FISH AQUAT SCI, V53, P820, DOI 10.1139/cjfas-53-4-820; JONES RI, 1992, HYDROBIOLOGIA, V229, P73, DOI 10.1007/BF00006992; Karlsson J, 2015, ECOLOGY, V96, P2870, DOI 10.1890/15-0515.1; Karlsson J, 2009, NATURE, V460, P506, DOI 10.1038/nature08179; Kelly PT, 2014, ECOLOGY, V95, P1236, DOI 10.1890/13-1586.1; King JR, 1999, T AM FISH SOC, V128, P656, DOI 10.1577/1548-8659(1999)128<0656:ELBTHF>2.0.CO;2; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; MAC ARTHUR ROBERT H., 1967; MENZEL DAVID W., 1965, LIMNOL OCEANOGR, V10, P280; Monteith DT, 2007, NATURE, V450, P537, DOI 10.1038/nature06316; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; R Core Team, 2014, R LANG ENV STAT COMP; Rask M, 1990, ACIDIFICATION FINLAN, P911; Read JS, 2013, LIMNOL OCEANOGR, V58, P921, DOI 10.4319/lo.2013.58.3.0921; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; ROFF DA, 1983, CAN J FISH AQUAT SCI, V40, P1395, DOI 10.1139/f83-161; ROFF DA, 1982, CAN J FISH AQUAT SCI, V39, P1686, DOI 10.1139/f82-225; Rose KA, 2001, FISH FISH, V2, P293, DOI 10.1046/j.1467-2960.2001.00056.x; Schindler DW, 1996, NATURE, V379, P705, DOI 10.1038/379705a0; Seekell DA, 2015, CAN J FISH AQUAT SCI, V72, P1663, DOI 10.1139/cjfas-2015-0187; Seekell DA, 2015, LIMNOL OCEANOGR, V60, P1276, DOI 10.1002/lno.10096; Solomon CT, 2015, ECOSYSTEMS, V18, P376, DOI 10.1007/s10021-015-9848-y; Stasko AD, 2012, ENVIRON REV, V20, P173, DOI [10.1139/a2012-010, 10.1139/A2012-010]; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; TYLER AV, 1976, J FISH RES BOARD CAN, V33, P63, DOI 10.1139/f76-008; WELSCHMEYER NA, 1994, LIMNOL OCEANOGR, V39, P1985, DOI 10.4319/lo.1994.39.8.1985; Wetzel RG, 2001, LIMNOLOGY LAKE RIVER; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956; Wilkinson GM, 2013, GLOBAL BIOGEOCHEM CY, V27, P43, DOI 10.1029/2012GB004453; Ylikarjula J, 1999, EVOL ECOL, V13, P433, DOI 10.1023/A:1006755702230 58 3 3 2 19 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. AUG 2017 7 16 6201 6209 10.1002/ece3.3108 9 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology FG1BQ WOS:000409528000013 28861225 DOAJ Gold, Green Published 2018-11-22 J Miller, CVL; Cotter, SC Miller, Charlotte V. L.; Cotter, Sheena C. Pathogen and immune dynamics during maturation are explained by Bateman's Principle ECOLOGICAL ENTOMOLOGY English Article; Proceedings Paper 29th International Symposium and National Science Meeting of the Royal-Entomological-Society SEP, 2017 Newcastle Univ, Newcastle upon Tyne, ENGLAND Royal Entomol Soc Newcastle Univ Ecological immunology; insect; Nicrophorus vespilloides; pathogen dynamics; phenoloxidase; Photorhabdus luminescens BURYING BEETLE; TRADE-OFFS; PHOTORHABDUS-LUMINESCENS; SOCIAL IMMUNITY; BACTERIAL-INFECTION; PERSONAL IMMUNITY; TENEBRIO-MOLITOR; GRYLLUS-TEXENSIS; MANDUCA-SEXTA; INSECTS 1. Bateman's principle, stating that female fitness is maximised by increasing longevity, suggests females are likely to exhibit a stronger immune response than males. Applying these ideas to maturation, it is predicted that immature beetles will also show enhanced immunity. This study looks at how life-history strategies interplay with infection responses in a well-established immunological model, the burying beetle, Nicrophorus vespilloides (Herbst (Silphidae)), and a pathogenic bacteria, Photorhabdus luminescens (Thomas and Poinar (Enterobacteriaceae)). 2. To test this, the immune enzyme phenoloxidase (PO) and bacterial loads in sexually mature and immature beetles were tested over time after injection with P. luminescens, and survival was monitored. Breeding after infection was also tested. 3. Bacterial loads were lower in females than males, and clearance seems more prolonged in immature than mature beetles, and both these groups showed increased survival, supporting the application of Bateman's principle to the effects of maturation and sex on immunity. 4. Mature beetles were found to undergo a shorter period of PO suppression after injection with bacteria. However, while high PO was beneficial up to 20 h post-infection, it became detrimental after that. This temporal factor has rarely been investigated but is shown here to be influential on the interpretation of PO activity, which is generally perceived as beneficial after infection. 5. A trade-off between reproduction and immunity was also found, revealed only by a highly pathogenic infection. This contrasts with the effects found in studies using non-pathogenic bacteria, suggesting an enforced, resource-based trade-off is the driving force behind the change, rather than an adaptive strategy. [Miller, Charlotte V. L.] Queens Univ Belfast, Ctr Med Biol, Biol Sci, Belfast, Antrim, North Ireland; [Miller, Charlotte V. L.; Cotter, Sheena C.] Univ Lincoln, Joseph Banks Labs, Sch Life Sci, Green Lane, Lincoln LN6 7DL, England Miller, CVL (reprint author), Univ Lincoln, Joseph Banks Labs, Sch Life Sci, Green Lane, Lincoln LN6 7DL, England. chmiller@lincoln.ac.uk Cotter, Sheena/C-2312-2009 Cotter, Sheena/0000-0002-3801-8316; Miller, Charlotte/0000-0002-8536-2451 Department of Employment and Learning (Northern Ireland) PhD Scholarship; NERC fellowship [NE/H014225/2] David Clarke provided the Photorhabdus luminescens used in this study. This work was funded by a Department of Employment and Learning (Northern Ireland) PhD Scholarship to C.V.L.M. SCC was partially supported by the NERC fellowship (NE/H014225/2). S.C.C. & C.V.L.M. conceived the idea, analysed the data and wrote the paper. C.V.L.M. carried out the experiments. The authors have no competing interests to declare. Adamo SA, 2004, J INSECT PHYSIOL, V50, P209, DOI 10.1016/j.jinsphys.2003.11.011; Adamo SA, 2001, ANIM BEHAV, V62, P417, DOI 10.1006/anbe.2001.1786; Arce AN, 2012, J EVOLUTION BIOL, V25, P930, DOI 10.1111/j.1420-9101.2012.02486.x; Barnes AI, 2000, P ROY SOC B-BIOL SCI, V267, P177, DOI 10.1098/rspb.2000.0984; Boncoraglio G, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0031713; Cerenius L, 2008, TRENDS IMMUNOL, V29, P263, DOI 10.1016/j.it.2008.02.009; Ciche TA, 2003, APPL ENVIRON MICROB, V69, P1890, DOI 10.1128/AEM.69.4.1890-1897.2003; Cotter SC, 2008, J EVOLUTION BIOL, V21, P1744, DOI 10.1111/j.1420-9101.2008.01587.x; Cotter SC, 2010, ECOL LETT, V13, P1114, DOI 10.1111/j.1461-0248.2010.01500.x; Cotter SC, 2010, BEHAV ECOL, V21, P663, DOI 10.1093/beheco/arq070; Cotter SC, 2013, J ANIM ECOL, V82, P846, DOI 10.1111/1365-2656.12047; Daborn PJ, 2002, P NATL ACAD SCI USA, V99, P10742, DOI 10.1073/pnas.102068099; Degenkolb T, 2011, J CHEM ECOL, V37, P724, DOI 10.1007/s10886-011-9978-4; Eleftherianos I, 2007, P NATL ACAD SCI USA, V104, P2419, DOI 10.1073/pnas.0610525104; Eleftherianos I, 2009, FEMS MICROBIOL LETT, V293, P170, DOI 10.1111/j.1574-6968.2009.01523.x; Freitak D, 2007, BMC BIOL, V5, DOI 10.1186/1741-7007-5-56; Gonzalez-Santoyo I, 2012, ENTOMOL EXP APPL, V142, P1, DOI 10.1111/j.1570-7458.2011.01187.x; Haine ER, 2008, SCIENCE, V322, P1257, DOI 10.1126/science.1165265; HALDANE JBS, 1992, CURR SCI INDIA, V63, P599; Hall CL, 2011, ENVIRON ENTOMOL, V40, P669, DOI 10.1603/EN10137; Jacobs CGC, 2016, SCI REP-UK, V6, DOI 10.1038/srep25409; KHAN A, 1977, J INVERTEBR PATHOL, V29, P253, DOI 10.1016/S0022-2011(77)80030-X; Lavine MD, 2002, INSECT BIOCHEM MOLEC, V32, P1295, DOI 10.1016/S0965-1748(02)00092-9; MILSTEAD JE, 1979, J INVERTEBR PATHOL, V33, P324, DOI 10.1016/0022-2011(79)90033-8; Palmer WJ, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2015.2733; PARKER GA, 1972, J THEOR BIOL, V36, P529, DOI 10.1016/0022-5193(72)90007-0; PUKOWSKI ERNA, 1933, ZEITSCHR WISS BIOL ABT A ZEITSCHR MORPH U OKOL TIERE, V27, P518, DOI 10.1007/BF00403155; Rantala MJ, 2003, P ROY SOC B-BIOL SCI, V270, P2257, DOI 10.1098/rspb.2003.2472; Reavey CE, 2015, INSECTS, V6, P926, DOI 10.3390/insects6040926; Reavey CE, 2014, ECOL ENTOMOL, V39, P395, DOI 10.1111/een.12099; Reavey CE, 2014, BEHAV ECOL, V25, P415, DOI 10.1093/beheco/art127; Rolff J, 2002, P ROY SOC B-BIOL SCI, V269, P867, DOI 10.1098/rspb.2002.1959; Rolff J, 2002, P NATL ACAD SCI USA, V99, P9916, DOI 10.1073/pnas.152271999; Rolff J, 2001, CAN J ZOOL, V79, P2176, DOI 10.1139/cjz-79-12-2176; Rozen DE, 2008, P NATL ACAD SCI USA, V105, P17890, DOI 10.1073/pnas.0805403105; Sadd B, 2006, J EVOLUTION BIOL, V19, P321, DOI 10.1111/j.1420-9101.2005.01062.x; Sadd BM, 2006, P R SOC B, V273, P2571, DOI 10.1098/rspb.2006.3574; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Silva CP, 2002, CELL MICROBIOL, V4, P329, DOI 10.1046/j.1462-5822.2002.00194.x; Siva-Jothy MT, 2000, P ROY SOC B-BIOL SCI, V267, P2523, DOI 10.1098/rspb.2000.1315; Siva-Jothy MT, 2002, PHYSIOL ENTOMOL, V27, P206, DOI 10.1046/j.1365-3032.2002.00286.x; Steiger S, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1225; Steiger S, 2011, FUNCT ECOL, V25, P1368, DOI 10.1111/j.1365-2435.2011.01895.x; Trumbo S.T., 1997, ARCH INSECT BIOCH PH, V35, P227; Trumbo ST, 2007, BEHAV ECOL SOCIOBIOL, V61, P1717, DOI 10.1007/s00265-007-0403-5; Urbanski A, 2014, J INSECT PHYSIOL, V60, P98, DOI 10.1016/j.jinsphys.2013.11.009 46 2 2 2 13 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0307-6946 1365-2311 ECOL ENTOMOL Ecol. Entomol. AUG 2017 42 1 SI 28 38 10.1111/een.12451 11 Entomology Entomology FF4MD WOS:000408922400004 Bronze 2018-11-22 J Lailvaux, SP; Husak, JF Lailvaux, Simon P.; Husak, Jerry F. Introduction to the Symposium: Integrative Life-History of Whole-Organism Performance INTEGRATIVE AND COMPARATIVE BIOLOGY English Editorial Material LIZARD SCELOPORUS-MERRIAMI; LOCOMOTOR PERFORMANCE; SEXUAL SELECTION; EVOLUTIONARY PHYSIOLOGY; QUANTITATIVE GENETICS; SWIMMING PERFORMANCE; LACERTA-VIVIPARA; ANOLIS LIZARDS; TRADE-OFFS; FITNESS A strong case can be made for whole-organism performance traits (i.e., dynamic, ecologically relevant traits whose expression is shaped by underlying morphological factors) as being the ultimate integrative traits. This is not only because they capture the output of multiple lower levels of biological organization, but also because they are directly relevant to individual fitness in multiple ecological contexts, and are in many cases important proximate determinants of survival and/or reproductive success. But although many ecological and evolutionary phenomena can be examined through the lens of performance (and vice-versa), performance research has been surprisingly slow to incorporate concepts from the large and important field of life-history evolution. Such a synthesis is necessary, because shifts in resource allocation strategies can have implications for these highly ecologically relevant, functional traits, whose expression may trade-off against fecundity, immune function, or longevity, among other key life-history traits. The papers in this symposium showcase many of the ways in which life-history strategies can have direct consequences for the expression, maintenance, and evolution of whole-organism performance (and at least one case where they may not). By approaching the issue of life-history trade-offs from a number of diverse perspectives, this symposium reveals the scope for future explicit integration of life-history techniques with those of whole-organism performance studies for a more complete understanding of multivariate phenotypic evolution. [Lailvaux, Simon P.] Univ New Orleans, Dept Biol Sci, 2000 Lakeshore Dr, New Orleans, LA 70148 USA; [Husak, Jerry F.] Univ St Thomas, Dept Biol, 2115 Summit Ave, St Paul, MN 55105 USA Lailvaux, SP (reprint author), Univ New Orleans, Dept Biol Sci, 2000 Lakeshore Dr, New Orleans, LA 70148 USA. slailvaux@gmail.com Lailvaux, Simon/C-3121-2008 SICB division of DAB; SICB division of DCB; SICB division of DEC; SICB division of DEDE; SICB division of DEE; SICB division of DNB; SICB division of DVM; National Science Foundation [IOS-1637160]; Company of Biologists [EA1233] The symposium "Integrative Life-History of Whole-Organism Performance" took place at the 2017 meeting of the Society for Integrative and Comparative Biology in New Orleans, and was funded by the SICB divisions of DAB, DCB, DEC, DEDE, DEE, DNB, and DVM; the National Science Foundation [grant no. IOS-1637160 to S.L. and J.H.]; and by the Company of Biologists [EA1233] to S.L. and J.H. Addis EA, 2017, INTEGR COMP BIOL, V57, P423, DOI 10.1093/icb/icx079; Adolph SC, 2007, FUNCT ECOL, V21, P178, DOI 10.1111/j.1365-2435.2006.01209.x; Adolph SC, 2008, J EXP BIOL, V211, P1336, DOI 10.1242/jeb.011296; ARNOLD SJ, 1983, AM ZOOL, V23, P347; Bartholomew GA, 1958, ZOOGEOGRAPHY, P81; Bennett A.F., 1990, Oxford Surveys in Evolutionary Biology, V7, P251; Bonneaud C, 2017, INTEGR COMP BIOL, V57, P352, DOI 10.1093/icb/icx044; Careau V, 2017, INTEGR COMP BIOL, V57, P362, DOI 10.1093/icb/icx015; Clobert J, 2000, FUNCT ECOL, V14, P675, DOI 10.1046/j.1365-2435.2000.00477.x; Collar DC, 2006, EVOLUTION, V60, P2575; Dantzer B, 2017, INTEGR COMP BIOL, V57, P372, DOI 10.1093/icb/icx064; Feder ME, 2000, ANNU REV ECOL SYST, V31, P315, DOI 10.1146/annurev.ecolsys.31.1.315; Flatt T, 2005, BIOESSAYS, V27, P999, DOI 10.1002/bies.20290; GARLAND T, 1994, ANNU REV PHYSIOL, V56, P579, DOI 10.1146/annurev.ph.56.030194.003051; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; Ghalambor CK, 2003, INTEGR COMP BIOL, V43, P431, DOI 10.1093/icb/43.3.431; HUEY RB, 1990, PHYSIOL ZOOL, V63, P845, DOI 10.1086/physzool.63.5.30152617; HUEY RB, 1987, EVOLUTION, V41, P1116, DOI 10.1111/j.1558-5646.1987.tb05880.x; Husak JF, 2013, J EVOLUTION BIOL, V26, P1281, DOI 10.1111/jeb.12133; Husak JF, 2008, EVOL ECOL RES, V10, P213; Husak JF, 2006, EVOLUTION, V60, P2122, DOI 10.1111/j.0014-3820.2006.tb01849.x; Husak JF, 2017, INTEGR COMP BIOL, V57, P333, DOI 10.1093/icb/icx048; Husak JF, 2016, COMPR PHYSIOL, V6, P63, DOI 10.1002/cphy.c140061; Husak JF, 2015, J EXP BIOL, V218, P899, DOI 10.1242/jeb.114975; Husak JF, 2014, CURR ZOOL, V60, P755, DOI 10.1093/czoolo/60.6.755; Irschick DJ, 1998, EVOLUTION, V52, P219, DOI 10.1111/j.1558-5646.1998.tb05155.x; Irschick D, 2007, PHYSIOL BIOCHEM ZOOL, V80, P557, DOI 10.1086/521203; Irschick DJ, 2008, EVOL ECOL RES, V10, P177; Jaumann S, 2017, INTEGR COMP BIOL, V57, P396, DOI 10.1093/icb/icx034; Kilvitis HJ, 2017, INTEGR COMP BIOL, V57, P385, DOI 10.1093/icb/icx082; Lailvaux SP, 2006, ANIM BEHAV, V72, P263, DOI 10.1016/j.anbehav.2006.02.003; Lailvaux SP, 2017, INTEGR COMP BIOL, V57, P325, DOI 10.1093/icb/icx073; Lailvaux SP, 2014, Q REV BIOL, V89, P285, DOI 10.1086/678567; Lailvaux SP, 2012, P ROY SOC B-BIOL SCI, V279, P2841, DOI 10.1098/rspb.2011.2577; Lailvaux SP, 2010, ECOLOGY, V91, P1530, DOI 10.1890/09-0963.1; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Le Galliard JF, 2004, NATURE, V432, P502, DOI 10.1038/nature03057; LOSOS JB, 1990, ECOL MONOGR, V60, P369, DOI 10.2307/1943062; Miles DB, 2004, EVOL ECOL RES, V6, P63; Okada K, 2011, J EVOLUTION BIOL, V24, P1737, DOI 10.1111/j.1420-9101.2011.02303.x; Orr TJ, 2017, INTEGR COMP BIOL, V57, P407, DOI 10.1093/icb/icx052; Oufiero CE, 2007, FUNCT ECOL, V21, P676, DOI 10.1111/j.1365-2435.2007.01259.x; Reaney LT, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0134399; Reznick DN, 2004, NATURE, V431, P1095, DOI 10.1038/nature02936; Sgro CM, 2004, HEREDITY, V93, P241, DOI 10.1038/sj.hdy.6800532; Smith GD, 2017, INTEGR COMP BIOL, V57, P344, DOI 10.1093/icb/icx062; SORCI G, 1995, PHYSIOL ZOOL, V68, P698, DOI 10.1086/physzool.68.4.30166352; Swallow JG, 1998, BEHAV GENET, V28, P227, DOI 10.1023/A:1021479331779; Swanson EM, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2458; TSUJI JS, 1989, EVOL ECOL, V3, P240, DOI 10.1007/BF02270725; Veasey JS, 2001, J ANIM ECOL, V70, P20, DOI 10.1046/j.1365-2656.2001.00476.x 51 0 0 4 6 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1540-7063 1557-7023 INTEGR COMP BIOL Integr. Comp. Biol. AUG 2017 57 2 320 324 10.1093/icb/icx084 5 Zoology Zoology FE3KO WOS:000408115000013 28859412 2018-11-22 J Jaumann, S; Snell-Rood, EC Jaumann, Sarah; Snell-Rood, Emilie C. Butterflies Do Not Alter Conspecific Avoidance in Response to Variation in Density INTEGRATIVE AND COMPARATIVE BIOLOGY English Article; Proceedings Paper Symposium on Integrative Life-History of Whole-Organism Performance at the Annual Meeting of the Society-for-Integrative-and-Comparative-Biology (SICB) JAN 04-08, 2017 New Orleans, LA Soc Integrat & Comparat Biol PIERIS-RAPAE LEPIDOPTERA; OVIPOSITION SITE SELECTION; LIFE-HISTORY TRAITS; HABITAT SELECTION; BUMBLE-BEES; INTRASPECIFIC COMPETITION; LARVAL PERFORMANCE; NATURAL-SELECTION; REARING DENSITY; PARARGE-AEGERIA High conspecific densities are associated with increased levels of intraspecific competition and a variety of negative effects on performance. However, changes in life history strategy could compensate for some of these effects. For instance, females in crowded conditions often have fewer total offspring, but they may invest more in each one. Such investment could include the production of larger offspring, more time spent engaging in parental care, or more choosy decisions about where offspring are placed. For animals that have a relatively immobile juvenile stage, the costs of competition can be particularly high. Females may be able to avoid such costs by investing more in individual reproductive decisions, rearing young or laying eggs in locations away from other females. We tested the hypothesis that conspecific density cues during juvenile and adult life stages lead to changes in life history strategy, including both reproduction and oviposition choices. We predicted that high-density cues during the larval and adult stages of female Pieris rapae butterflies lead to lower fecundity but higher conspecific avoidance during oviposition, compared to similar low-density cues. We used a 2 x 2 factorial design to examine the effects of low and high conspecific density during the larval and adult stages of butterflies on avoidance behavior and fecundity. We found that past information about conspecific density did not matter; all butterflies exhibited similar levels of fecundity and a low level of conspecific avoidance during oviposition regardless of their previous experience as larvae and adults. These results suggest that P. rapae females use a fixed, rather than flexible, conspecific avoidance strategy when making oviposition decisions, and past information about conspecific density has no effect on life history and current reproductive investment. We speculate that this may be partially because past conspecific density per se is not a reliable cue for predicting current density and levels of competition, and thus it does not affect the development of life history strategies in this system. [Jaumann, Sarah; Snell-Rood, Emilie C.] Univ Minnesota, Dept Ecol Evolut & Behav, Minneapolis, MN 55418 USA Jaumann, S (reprint author), Univ Minnesota, Dept Ecol Evolut & Behav, Minneapolis, MN 55418 USA. jauma002@umn.edu Ecology, Evolution, and Behavior department at the University of Minnesota; National Science Foundation [IOS-1354737, IOS-1637160]; Company of Biologists [EA1233]; Society for Integrative and Comparative Biology division DAB; Society for Integrative and Comparative Biology division DCB; Society for Integrative and Comparative Biology division DEC; Society for Integrative and Comparative Biology division DEDE; Society for Integrative and Comparative Biology division DEE; Society for Integrative and Comparative Biology division DNB; Society for Integrative and Comparative Biology division DVM This work was supported in part by the Ecology, Evolution, and Behavior department at the University of Minnesota. The Snell-Rood laboratory was supported in part by National Science Foundation [grant number IOS-1354737]. This work was submitted in association with a Society for Integrative and Comparative Biology symposium supported by National Science Foundation [grant number IOS-1637160] and Company of Biologists [grant number EA1233 to S.L. and J.H.], and by Society for Integrative and Comparative Biology divisions DAB, DCB, DEC, DEDE, DEE, DNB, and DVM. Alto BW, 2012, MED VET ENTOMOL, V26, P396, DOI 10.1111/j.1365-2915.2012.01010.x; Applebaum SW, 1999, ANNU REV ENTOMOL, V44, P317, DOI 10.1146/annurev.ento.44.1.317; Barnes AI, 2000, P ROY SOC B-BIOL SCI, V267, P177, DOI 10.1098/rspb.2000.0984; Baude M, 2011, P ROY SOC B-BIOL SCI, V278, P2806, DOI 10.1098/rspb.2010.2659; Bauerfeind SS, 2005, OIKOS, V111, P514, DOI 10.1111/j.0030-1299.2005.13888.x; BELL WJ, 1975, BIOL REV, V50, P373, DOI 10.1111/j.1469-185X.1975.tb01058.x; Boggs CL, 2005, OECOLOGIA, V144, P353, DOI 10.1007/s00442-005-0076-6; Bossart JL, 2003, OECOLOGIA, V135, P477, DOI 10.1007/s00442-003-1211-x; Bowler DE, 2005, BIOL REV, V80, P205, DOI 10.1017/S1464793104006645; Cahenzli F, 2015, ECOLOGY, V96, P1966, DOI 10.1890/14-1275.1; Canty A., 2015, BOOT BOOTSTRAP R S P, P3; Champely S, 2015, PWR BASIC FUNCTIONS, P1; Dawson EH, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0031444; Doak P, 2006, ECOLOGY, V87, P395, DOI 10.1890/05-0647; Duarte RC, 2014, HYDROBIOLOGIA, V724, P55, DOI 10.1007/s10750-013-1712-5; El-Fakharany SKM, 2014, EGYPT J BIOL PEST CO, V24, P437; Garcia-Barros E, 2000, BIOL J LINN SOC, V70, P251, DOI 10.1006/bijl.1999.0374; Gibbs M, 2006, ENTOMOL EXP APPL, V118, P41, DOI 10.1111/j.1570-7458.2006.00361.x; Gibbs M, 2004, J INSECT SCI, V4, DOI 10.1093/jis/4.1.16; GROETERS FR, 1992, J CHEM ECOL, V18, P2353, DOI 10.1007/BF00984954; Guerra PA, 2011, BIOL REV, V86, P813, DOI 10.1111/j.1469-185X.2010.00172.x; Henaux V, 2007, J AVIAN BIOL, V38, P44, DOI 10.1111/j.0908-8857.2007.03712.x; Hern A, 1996, ANN APPL BIOL, V128, P349, DOI 10.1111/j.1744-7348.1996.tb07328.x; Hyeun-Ji L, 2016, CAN J ZOOL, V94, P41, DOI 10.1139/cjz-2015-0157; Jaumann S, 2017, ANIM BEHAV, V123, P433, DOI 10.1016/j.anbehav.2016.11.011; Jones PL, 2015, ANIM BEHAV, V101, P11, DOI 10.1016/j.anbehav.2014.12.016; JONES RE, 1977, BEHAVIOUR, V60, P236; JOSHI A, 1988, EVOLUTION, V42, P1090, DOI 10.1111/j.1558-5646.1988.tb02527.x; Kandori I, 1996, RES POPUL ECOL, V38, P111, DOI 10.1007/BF02514977; Kasumovic MM, 2011, J EVOLUTION BIOL, V24, P1325, DOI 10.1111/j.1420-9101.2011.02267.x; Kasumovic MM, 2011, Q REV BIOL, V86, P181, DOI 10.1086/661119; Kawaguchi LG, 2006, FUNCT ECOL, V20, P239, DOI 10.1111/j.1365-2435.2006.01069.x; Kawaguchi LG, 2007, P R SOC B, V274, P2661, DOI 10.1098/rspb.2007.0860; Kivela SM, 2008, J ANIM ECOL, V77, P529, DOI 10.1111/j.1365-2656.2008.01371.x; Marchand F, 1998, CAN J FISH AQUAT SCI, V55, P796, DOI 10.1139/cjfas-55-4-796; May CM, 2015, ECOL EVOL, V5, P1156, DOI 10.1002/ece3.1389; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Miller CS, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0056018; Molleman F, 2016, BIOTROPICA, V48, P229, DOI 10.1111/btp.12268; MORAN NA, 1992, AM NAT, V139, P971, DOI 10.1086/285369; Muller T, 2016, BEHAV ECOL SOCIOBIOL, V70, P2081, DOI 10.1007/s00265-016-2212-1; Niemela PT, 2012, BEHAV ECOL SOCIOBIOL, V66, P645, DOI 10.1007/s00265-011-1312-1; Nylin S, 2000, J INSECT BEHAV, V13, P469, DOI 10.1023/A:1007839200323; NYLIN S, 1993, ECOL ENTOMOL, V18, P394, DOI 10.1111/j.1365-2311.1993.tb01116.x; OBARA Y, 1968, P JPN ACAD, V44, P829, DOI 10.2183/pjab1945.44.829; Otis GW, 2006, J INSECT BEHAV, V19, P685, DOI 10.1007/s10905-006-9049-9; Papaj DR, 2000, ANNU REV ENTOMOL, V45, P423, DOI 10.1146/annurev.ento.45.1.423; PETERS TM, 1977, ANNU REV ENTOMOL, V22, P431, DOI 10.1146/annurev.en.22.010177.002243; Prokopy RJ, 2001, ANNU REV ENTOMOL, V46, P631, DOI 10.1146/annurev.ento.46.1.631; Quilodran CS, 2014, WILSON J ORNITHOL, V126, P534, DOI 10.1676/13-108.1; R Core Team, 2013, R LANG ENV STAT COMP; Raitanen J, 2014, BEHAV ECOL, V25, P110, DOI 10.1093/beheco/art092; RAUSHER MD, 1979, ANIM BEHAV, V27, P1034, DOI 10.1016/0003-3472(79)90050-2; Reed TE, 2010, P ROY SOC B-BIOL SCI, V277, P3391, DOI 10.1098/rspb.2010.0771; RENWICK JAA, 1994, ANNU REV ENTOMOL, V39, P377, DOI 10.1146/annurev.en.39.010194.002113; Resetarits WJ, 1996, AM ZOOL, V36, P205; Rogers SM, 2003, J EXP BIOL, V206, P3991, DOI 10.1242/jeb.00648; ROOT RB, 1984, ECOLOGY, V65, P147, DOI 10.2307/1939467; ROTHSCHILD M, 1977, NATURE, V266, P352, DOI 10.1038/266352a0; Saastamoinen M, 2010, AM NAT, V176, P686, DOI 10.1086/657038; Sato Y, 1999, APPL ENTOMOL ZOOL, V34, P333, DOI 10.1303/aez.34.333; Schlaepfer MA, 2002, TRENDS ECOL EVOL, V17, P474, DOI 10.1016/S0169-5347(02)02580-6; SCHOONHOVEN LM, 1990, J CHEM ECOL, V16, P1649, DOI 10.1007/BF01014097; Scott J, 1992, BUTTERFLIES N AM NAT; SHAPIRO AM, 1981, AM NAT, V117, P276, DOI 10.1086/283706; Snell-Rood EC, 2015, HEREDITY, V115, P379, DOI 10.1038/hdy.2015.47; Sommerlandt FMJ, 2014, SOCIOBIOLOGY, V61, P401; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stein M, 2015, ISR J ECOL EVOL, V61, P61, DOI 10.1080/15659801.2015.1041260; Swanger E, 2015, J INSECT BEHAV, V28, P328, DOI 10.1007/s10905-015-9504-6; Sweeney J, 1998, ECOSCIENCE, V5, P454, DOI 10.1080/11956860.1998.11682496; TABASHNIK BE, 1981, OECOLOGIA, V50, P225, DOI 10.1007/BF00348042; Tella JL, 2001, P ROY SOC B-BIOL SCI, V268, P1455, DOI 10.1098/rspb.2001.1688; Thompson ML, 2015, MAR ECOL PROG SER, V522, P115, DOI 10.3354/meps11178; TRAYNIER RMM, 1986, ENTOMOL EXP APPL, V40, P25, DOI 10.1111/j.1570-7458.1986.tb02151.x; TROETSCHLER RG, 1985, J ECON ENTOMOL, V78, P1521, DOI 10.1093/jee/78.6.1521; WIKLUND C, 1978, OIKOS, V31, P169, DOI 10.2307/3543560; WIKLUND CG, 1994, J ANIM ECOL, V63, P765, DOI 10.2307/5254; WILLIAMS KS, 1981, SCIENCE, V212, P467, DOI 10.1126/science.212.4493.467; Yoshioka M, 2012, PARASITE VECTOR, V5, DOI 10.1186/1756-3305-5-225 80 1 1 4 15 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1540-7063 1557-7023 INTEGR COMP BIOL Integr. Comp. Biol. AUG 2017 57 2 396 406 10.1093/icb/icx034 11 Zoology Zoology FE3KO WOS:000408115000021 28582548 2018-11-22 J Heegaard, E; Boddy, L; Diez, JM; Halvorsen, R; Kauserud, H; Kuyper, TW; Bassler, C; Buntgen, U; Gange, AC; Krisai-Greilhuber, I; Andrew, CJ; Ayer, F; Hoiland, K; Kirk, PM; Egli, S Heegaard, E.; Boddy, L.; Diez, J. M.; Halvorsen, R.; Kauserud, H.; Kuyper, T. W.; Baessler, C.; Buntgen, U.; Gange, A. C.; Krisai-Greilhuber, I.; Andrew, C. J.; Ayer, F.; Hoiland, K.; Kirk, P. M.; Egli, S. Fine-scale spatiotemporal dynamics of fungal fruiting: prevalence, amplitude, range and continuity ECOGRAPHY English Article ECTOMYCORRHIZAL FUNGI; CLIMATE-CHANGE; POPULATION-STRUCTURE; TRICHOLOMA-SCALPTURATUM; FOMITOPSIS-PINICOLA; COMMUNITY STRUCTURE; GENETIC-STRUCTURE; MIXED FOREST; LONG-TERM; PATTERNS Despite the critical importance of fungi as symbionts with plants, resources for animals, and drivers of ecosystem function, the spatiotemporal distributions of fungi remain poorly understood. The belowground life cycle of fungi makes it difficult to assess spatial patterns and dynamic processes even with recent molecular techniques. Here we offer an explicit spatiotemporal Bayesian inference of the drivers behind spatial distributions from investigation of a Swiss inventory of fungal fruit bodies. The unique inventory includes three temperate forest sites in which a total of 73 952 fungal fruit bodies were recorded systematically in a spatially explicit design between 1992 and 2006. Our motivation is to understand how broad-scale climate factors may influence spatiotemporal dynamics of fungal fruiting within forests, and if any such effects vary between two functional groups, ectomycorrhizal (ECM) and saprotrophic fungi. For both groups we asked: 1) how consistent are the locations of fruiting patches, the sizes of patches, the quantities of fruit bodies, and of prevalence (occupancy)? 2) Do the annual spatial characteristics of fungal fruiting change systematically over time? 3) Are spatial characteristics of fungal fruiting driven by climatic variation? We found high inter-annual continuity in fruiting for both functional groups. The saprotrophic species were characterised by small patches with variable fruit body counts. In contrast, ECM species were present in larger, but more distinctly delimited patches. The spatial characteristics of the fungal community were only indirectly influenced by climate. However, climate variability influenced overall yields and prevalence, which again links to spatial structure of fruit bodies. Both yield and prevalence were correlated with the amplitudes of occurrence and of fruit body counts, but only prevalence influenced the spatial range. Summarizing, climatic variability affects forest-stand fungal distributions via its influence on yield (amount) and prevalence (occupancy), whereas fungal life-history strategies dictate fine-scale spatial characteristics. [Heegaard, E.] Norwegian Inst Bioecon Res, Fana, Norway; [Boddy, L.] Cardiff Univ, Sch Biosci, Sir Martin Evans Bldg, Cardiff, S Glam, Wales; [Diez, J. M.] Univ Calif Riverside, Dept Bot & Plant Sci, Riverside, CA 92521 USA; [Halvorsen, R.] Univ Oslo, Geoecol Res Grp, Nat Hist Museum, Oslo, Norway; [Kauserud, H.; Andrew, C. J.; Hoiland, K.] Univ Oslo, Dept Biosci, Sect Genet & Evolutionary Biol Evogene, Oslo, Norway; [Kuyper, T. W.] Wageningen Univ, Dept Soil Qual, Wageningen, Netherlands; [Baessler, C.] Bavarian Forest Natl Pk, Grafenau, Germany; [Buntgen, U.; Ayer, F.; Egli, S.] Swiss Fed Inst Forest Snow & Landscape Res WSL, Birmensdorf, Switzerland; [Gange, A. C.] Royal Holloway Univ London, Sch Biol Sci, Egham, Surrey, England; [Krisai-Greilhuber, I.] Univ Vienna, Dept Bot & Biodivers Res, Div Systemat & Evolutionary Bot, Vienna, Austria; [Kirk, P. M.] Royal Bot Gardens, Richmond, Surrey, England Heegaard, E (reprint author), Norwegian Inst Bioecon Res, Fana, Norway. einar.heegaard@nibio.no Krisai-Greilhuber, Irmgard/0000-0003-1078-3080; Boddy, Lynne/0000-0003-1845-6738 Research Council of Norway [225043] We acknowledge the Research Council of Norway for financial support to the ClimFun project (grant 225043) and all persons responsible for data collection and management. We thank both reviewers for their help improving the manuscript. Requests concerning data availability may be addressed to SE (simon.egli@wsl.ch). Agreda T, 2015, GLOBAL CHANGE BIOL, V21, P3499, DOI 10.1111/gcb.12960; Andrew C, 2016, FUNGAL ECOL, V22, P17, DOI 10.1016/j.funeco.2016.03.005; Araujo MB, 2005, ECOGRAPHY, V28, P693, DOI 10.1111/j.2005.0906-7590.04253.x; ARNOLDS E, 1991, AGR ECOSYST ENVIRON, V35, P209, DOI 10.1016/0167-8809(91)90052-Y; Beiler KJ, 2010, NEW PHYTOL, V185, P543, DOI 10.1111/j.1469-8137.2009.03069.x; Bergemann SE, 2006, NEW PHYTOL, V170, P177, DOI 10.1111/j.1469-8137.2006.01654.x; Blangiardo M, 2015, SPATIAL AND SPATIO-TEMPORAL BAYESIAN MODELS WITH R-INLA, P1; Boddy L., 2007, ECOLOGY SAPROTROPHIC; Bonello P, 1998, NEW PHYTOL, V138, P533, DOI 10.1046/j.1469-8137.1998.00122.x; Buntgen U, 2015, AGR ECOSYST ENVIRON, V202, P148, DOI 10.1016/j.agee.2014.12.016; Buntgen U, 2014, TRENDS PLANT SCI, V19, P613, DOI 10.1016/j.tplants.2014.07.001; Buntgen U, 2013, GLOBAL CHANGE BIOL, V19, P2785, DOI 10.1111/gcb.12263; Buntgen U, 2012, NAT CLIM CHANGE, V2, P827; Burchhardt KM, 2011, MYCOLOGIA, V103, P722, DOI 10.3852/10-334; Cameletti M, 2013, ASTA-ADV STAT ANAL, V97, P109, DOI 10.1007/s10182-012-0196-3; Carriconde F, 2008, MOL ECOL, V17, P4433, DOI 10.1111/j.1365-294X.2008.03924.x; Carriconde F, 2008, MICROB ECOL, V56, P513, DOI 10.1007/s00248-008-9370-2; CLARIDGE AW, 1994, AUST J ECOL, V19, P251, DOI 10.1111/j.1442-9993.1994.tb00489.x; Cosandey-Godin A, 2015, CAN J FISH AQUAT SCI, V72, P186, DOI 10.1139/cjfas-2014-0159; DAHLBERG A, 1994, NEW PHYTOL, V128, P225, DOI 10.1111/j.1469-8137.1994.tb04006.x; Deacon J. W., 1992, Mycorrhizal functioning: an integrative plant-fungal process., P249; Dettman JR, 2001, CAN J BOT, V79, P600, DOI 10.1139/cjb-79-5-600; Diez JM, 2013, GLOBAL CHANGE BIOL, V19, P3145, DOI 10.1111/gcb.12278; Dix N.J., 1995, FUNGAL ECOLOGY; Douhan GW, 2011, FUNGAL BIOL-UK, V115, P569, DOI 10.1016/j.funbio.2011.03.005; Egli S, 2006, BIOL CONSERV, V129, P271, DOI 10.1016/j.biocon.2005.10.042; Egli S, 2011, ANN FOREST SCI, V68, P81, DOI 10.1007/s13595-010-0009-3; Egli S, 2010, ANN FOREST SCI, V67, DOI 10.1051/forest/2010011; Engler R, 2011, GLOBAL CHANGE BIOL, V17, P2330, DOI 10.1111/j.1365-2486.2010.02393.x; Ferguson BA, 2003, CAN J FOREST RES, V33, P612, DOI 10.1139/x03-065; Fiore-Donno AM, 2001, NEW PHYTOL, V152, P533, DOI 10.1046/j.0028-646X.2001.00271.x; Galante TE, 2011, MYCOLOGIA, V103, P1175, DOI 10.3852/10-388; Gange AC, 2007, SCIENCE, V316, P71, DOI 10.1126/science.1137489; Gardes M, 1996, CAN J BOT, V74, P1572, DOI 10.1139/b96-190; Gryta H, 1997, MOL ECOL, V6, P353, DOI 10.1046/j.1365-294X.1997.00200.x; Grytnes JA, 2014, GLOBAL ECOL BIOGEOGR, V23, P876, DOI 10.1111/geb.12170; Guidot A, 2004, NEW PHYTOL, V161, P539, DOI 10.1046/j.1469-8137.2003.00945.x; Hallenberg N, 2001, NORD J BOT, V21, P431, DOI 10.1111/j.1756-1051.2001.tb00793.x; Hogberg N, 1999, HEREDITY, V83, P354, DOI 10.1038/sj.hdy.6885970; Hogberg P, 2001, NATURE, V411, P789, DOI 10.1038/35081058; Hogberg P, 2006, TRENDS ECOL EVOL, V21, P548, DOI 10.1016/j.tree.2006.06.004; INGOLD CT, 1971, FUNGAL SPORES THEIR; Kauserud H, 2008, P NATL ACAD SCI USA, V105, P3811, DOI 10.1073/pnas.0709037105; Kauserud H, 2012, P NATL ACAD SCI USA, V109, P14488, DOI 10.1073/pnas.1200789109; Kauserud H, 2010, P ROY SOC B-BIOL SCI, V277, P1169, DOI 10.1098/rspb.2009.1537; Kennedy P, 2010, NEW PHYTOL, V187, P895, DOI 10.1111/j.1469-8137.2010.03399.x; Kennedy PG, 2007, J ECOL, V95, P1338, DOI 10.1111/j.1365-2745.2007.01306.x; Kennedy PG, 2009, ECOLOGY, V90, P2098, DOI 10.1890/08-1291.1; Knudsen H, 2012, FUNGA NORDICA; Koide R. T., 2012, FUNGAL ASS, P181; Komonen A, 2003, ANN ZOOL FENN, V40, P495; Komonen Atte, 2012, Entomologisk Tidskrift, V133, P173; Kretzer AM, 2005, MOL ECOL, V14, P2259, DOI 10.1111/j.1365-294X.2005.02547.x; Lenoir J, 2013, GLOBAL CHANGE BIOL, V19, P1470, DOI 10.1111/gcb.12129; Leski T, 2010, MYCORRHIZA, V20, P473, DOI 10.1007/s00572-010-0298-2; Lilleskov EA, 2004, FEMS MICROBIOL ECOL, V49, P319, DOI 10.1016/j.femsec.2004.04.004; Lindahl BD, 2013, NEW PHYTOL, V199, P288, DOI 10.1111/nph.12243; Lindgren F, 2011, J R STAT SOC B, V73, P423, DOI 10.1111/j.1467-9868.2011.00777.x; Luis P, 2005, GEODERMA, V128, P18, DOI 10.1016/j.geoderma.2004.12.023; MASER C, 1978, ECOLOGY, V59, P799, DOI 10.2307/1938784; Menendez R, 2006, P R SOC B, V273, P1465, DOI 10.1098/rspb.2006.3484; Moore D, 2008, BR MYCOL SY, V28, P79; Murat C, 2013, NEW PHYTOL, V199, P176, DOI 10.1111/nph.12264; Norros V, 2012, OIKOS, V121, P961, DOI 10.1111/j.1600-0706.2012.20052.x; Pearson RG, 2003, GLOBAL ECOL BIOGEOGR, V12, P361, DOI 10.1046/j.1466-822X.2003.00042.x; Pestana M, 2011, OECOLOGIA, V165, P723, DOI 10.1007/s00442-010-1760-8; Pinheiro J, 2000, MIXED EFFECTS MODELS; Randin CF, 2009, GLOBAL CHANGE BIOL, V15, P1557, DOI 10.1111/j.1365-2486.2008.01766.x; Riviere T, 2006, MYCORRHIZA, V16, P143, DOI 10.1007/s00572-005-0019-4; RUE H, 2005, GAUSSIAN MARKOV RAND; Rue H, 2009, J R STAT SOC B, V71, P319, DOI 10.1111/j.1467-9868.2008.00700.x; Sato H, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049777; Schigel DS, 2011, ANN ZOOL FENN, V48, P319, DOI 10.5735/086.048.0601; Simard SW, 1997, NEW PHYTOL, V137, P529, DOI 10.1046/j.1469-8137.1997.00834.x; Smith SE, 2008, MYCORRHIZAL SYMBIOSIS, 3RD EDITION, P1; Stenlid J, 2008, BR MYCOL SY, V28, P105; Taylor AFS, 2006, NEW PHYTOL, V169, P6, DOI 10.1111/j.1469-8137.2006.01612.x; Tedersoo L, 2003, NEW PHYTOL, V159, P153, DOI [10.1046/j.1469-8137.2003.00792.x, 10.1046/j.0028-646x.2003.00792.x]; Thuiller W, 2005, P NATL ACAD SCI USA, V102, P8245, DOI 10.1073/pnas.0409902102; Wheeler Q, 1984, FUNGUS INSECT RELATI; Wiegand T, 2003, OIKOS, V100, P209, DOI 10.1034/j.1600-0706.2003.12027.x; Wollan AK, 2008, J BIOGEOGR, V35, P2298, DOI 10.1111/j.1365-2699.2008.01965.x; Woodward F.I., 1987, CLIMATE PLANT DISTRI; WORTHEN WB, 1988, OIKOS, V53, P161, DOI 10.2307/3566058; Yamashita S, 2007, EUR J ENTOMOL, V104, P225, DOI 10.14411/eje.2007.035 85 5 5 4 17 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0906-7590 1600-0587 ECOGRAPHY Ecography AUG 2017 40 8 947 959 10.1111/ecog.02256 13 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology FC6SL WOS:000406971800005 2018-11-22 J Durkin, A; Fisher, CR; Cordes, EE Durkin, Alanna; Fisher, Charles R.; Cordes, Erik E. Extreme longevity in a deep-sea vestimentiferan tubeworm and its implications for the evolution of life history strategies SCIENCE OF NATURE English Article Escarpia; Siboglinidae; Tubeworm; Cold seep; Longevity; Evolution GULF-OF-MEXICO; COLD SEEPS; RATES; COMMUNITY; GROWTH; ENVIRONMENTS; AGGREGATIONS; SENESCENCE; ANIMALS; FISHES The deep sea is home to many species that have longer life spans than their shallow-water counterparts. This trend is primarily related to the decline in metabolic rates with temperature as depth increases. However, at bathyal depths, the cold-seep vestimentiferan tubeworm species Lamellibrachia luymesi and Seepiophila jonesi reach extremely old ages beyond what is predicted by the simple scaling of life span with body size and temperature. Here, we use individual-based models based on in situ growth rates to show that another species of cold-seep tubeworm found in the Gulf of Mexico, Escarpia laminata, also has an extraordinarily long life span, regularly achieving ages of 100-200 years with some individuals older than 300 years. The distribution of results from individual simulations as well as whole population simulations involving mortality and recruitment rates support these age estimates. The low 0.67% mortality rate measurements from collected populations of E. laminata are similar to mortality rates in L. luymesi and S. jonesi and play a role in evolution of the long life span of cold-seep tubeworms. These results support longevity theory, which states that in the absence of extrinsic mortality threats, natural selection will select for individuals that senesce slower and reproduce continually into their old age. [Durkin, Alanna; Cordes, Erik E.] Temple Univ, Philadelphia, PA 19122 USA; [Fisher, Charles R.] Penn State Univ, State Coll, PA USA Durkin, A (reprint author), Temple Univ, Philadelphia, PA 19122 USA. alanna.durkin@temple.edu National Oceanographic Partnership Program (NOPP) [0105CT39187]; US Bureau of Ocean Energy Management (BOEM) [0105CT39187]; National Oceanic and Atmospheric Administration's Office of Ocean Exploration and Research (NOAA OER) This research was one part of a larger study led by Dr. Jim Brooks of TDI-Brooks that was jointly funded under the National Oceanographic Partnership Program (NOPP) by the US Bureau of Ocean Energy Management (BOEM), contract #0105CT39187, and the National Oceanic and Atmospheric Administration's Office of Ocean Exploration and Research (NOAA OER). Many thanks to Erin Becker, Jeremy Potter, Liz Goehring, and Cindy Peterson for spending countless hours measuring tubeworms and to Stephanie Lessard-Pilon for her preliminary analysis of the tubeworm tag data. Collecting these tubeworms would not have been possible without the assistance of the captains and crew of the R/V Atlantis and NOAA Ship Ronald Brown and the crew and pilots of the DSV Alvin and ROV Jason II. We would also like to thank our anonymous reviewers for their valuable comments on improving this manuscript. Andrews AH, 2002, HYDROBIOLOGIA, V471, P101, DOI 10.1023/A:1016501320206; Atanasov AT, 2005, BIOSYSTEMS, V82, P137, DOI 10.1016/j.biosystems.2005.06.006; AUSTAD SN, 1993, J ZOOL, V229, P695, DOI 10.1111/j.1469-7998.1993.tb02665.x; Becker EL, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074459; Bergquist DC, 2003, J EXP MAR BIOL ECOL, V289, P197, DOI 10.1016/S0022-0981(03)00046-7; Bergquist DC, 2002, MAR ECOL PROG SER, V241, P89, DOI 10.3354/meps241089; Bergquist DC, 2000, NATURE, V403, P499, DOI 10.1038/35000647; Bergquist DC, 2007, MAR ECOL PROG SER, V330, P49, DOI 10.3354/meps330049; Cailliet GM, 2001, EXP GERONTOL, V36, P739, DOI 10.1016/S0531-5565(00)00239-4; CHILDRESS JJ, 1990, DEEP-SEA RES, V37, P929, DOI 10.1016/0198-0149(90)90104-4; Cordes EE, 2005, PLOS BIOL, V3, P497, DOI 10.1371/journal.pbio.0030077; Cordes EE, 2003, ECOL LETT, V6, P212, DOI 10.1046/j.1461-0248.2003.00415.x; Cordes EE, 2007, MAR ECOL-EVOL PERSP, V28, P160, DOI 10.1111/j.1439-0485.2006.00112.x; Cordes EE, 2010, LIMNOL OCEANOGR, V55, P2537, DOI 10.4319/lo.2010.55.6.2537; Cordes EE, 2009, ANNU REV MAR SCI, V1, P143, DOI 10.1146/annurev.marine.010908.163912; Cowart DA, 2014, HYDROBIOLOGIA, V736, P139, DOI 10.1007/s10750-014-1900-y; Dattagupta S, 2006, J EXP BIOL, V209, P3795, DOI 10.1242/jeb.02413; Deweerdt S, 2012, NATURE, V492, pS10, DOI 10.1038/492S10a; Drazen JC, 2007, LIMNOL OCEANOGR, V52, P2306, DOI 10.4319/lo.2007.52.5.2306; Fisher C.R., 1990, CRITICAL REV AQUATIC, V2, P399; Ingram WC, 2010, MAR GEOL, V278, P43, DOI 10.1016/j.margeo.2010.09.002; Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682; Kohyama T, 1998, J ECOL, V86, P633, DOI 10.1046/j.1365-2745.1998.00286.x; McClain CR, 2012, P NATL ACAD SCI USA, V109, P15366, DOI 10.1073/pnas.1208976109; Mccoy MW, 2008, ECOL LETT, V11, P710, DOI 10.1111/j.1461-0248.2008.01190.x; PAULL CK, 1985, NATURE, V317, P709, DOI 10.1038/317709a0; Ravaux J, 2003, MAR BIOL, V143, P405, DOI 10.1007/s00227-003-1086-8; Ridgway ID, 2011, REV FISH BIOL FISHER, V21, P297, DOI 10.1007/s11160-010-9171-9; Roark EB, 2009, P NATL ACAD SCI USA, V106, P5204, DOI 10.1073/pnas.0810875106; ROBERTS HH, 1994, GEO-MAR LETT, V14, P135, DOI 10.1007/BF01203725; Robison B, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0103437; SAS Institute Inc, 1989, JMP VERS 11; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060 33 0 0 3 19 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 0028-1042 1432-1904 SCI NAT-HEIDELBERG Sci. Nat. AUG 2017 104 7-8 63 10.1007/s00114-017-1479-z 7 Multidisciplinary Sciences Science & Technology - Other Topics FC6QP WOS:000406966200010 2018-11-22 J Verin, M; Bourg, S; Menu, F; Rajon, E Verin, Melissa; Bourg, Salome; Menu, Frederic; Rajon, Etienne The Biased Evolution of Generation Time AMERICAN NATURALIST English Article mutation bias; aging; reproductive strategies; neutral theory; developmental time; evolutionary demography NATURAL-SELECTION; STRUCTURED POPULATIONS; ECOLOGICAL SCENARIOS; SPONTANEOUS MUTATION; CODON USAGE; TRADE-OFF; DYNAMICS; HISTORY; PATTERNS; FITNESS Many life-history traits are important determinants of the generation time. For instance, semelparous species whose adults reproduce only once have shorter generation times than iteroparous species that reproduce on several occasions, assuming equal development duration. A shorter generation time ensures a higher growth rate in stable environments where resources are in excess and is therefore a positively selected feature in this situation. In a stable and limiting environment, all combinations of traits that produce the same number of viable offspring are selectively equivalent. Here we study the neutral evolution of life-history strategies with different generation times and show that the slowest strategy represents the most likely evolutionary outcome when mutation is considered. Indeed, strategies with longer generation times generate fewer mutants per time unit, which makes them less likely to be replaced within a given time period. This turnover bias favors the evolution of strategies with long generation times. Its real impact, however, depends on both the population size and the nature of selection on life-history strategies. The latter is primarily impacted by the relationships between life-history traits whose estimation will be crucial to understanding the evolution of life-history strategies. [Verin, Melissa; Bourg, Salome; Menu, Frederic; Rajon, Etienne] Univ Lyon 1, Lab Biometrie & Biol Evolut, CNRS, UMR5558, F-69622 Villeurbanne, France; [Verin, Melissa] Tech Univ Munich, Sect Populat Genet, Ctr Life & Food Sci Weihenstephan, Freising Weihenstephan, Germany Rajon, E (reprint author), Univ Lyon 1, Lab Biometrie & Biol Evolut, CNRS, UMR5558, F-69622 Villeurbanne, France. etienne.rajon@univ-lyon1.fr Centre National de la Recherche Scientifique [5558]; Universite Claude Bernard Lyon 1 We thank M. Ginoux and A. Nguyen for stimulating early discussions and J. Masel, J.-F. Lemaitre, the editors, and two anonymous reviewers for helpful comments and suggestions. This work was supported by the Centre National de la Recherche Scientifique (Unite Mixte de Recherche 5558) and by the Universite Claude Bernard Lyon 1. This work was performed using the computing facilities of the CC LBBE/PRABI (Computing Center of the Laboratoire de Biometrie et Biologie Evolutive/Pole Rhone-Alpes de Bioinformatique). Author participation: E.R. and F.M. designed the study; M.V. performed the neutral modeling and analyzed the results; S.B. modified the code to include selection and analyzed the results; E.R. performed additional modeling (age-dependent mutation rate, probability of fixation) and analyses; M.V. and E.R. wrote the manuscript; F.M. critically revised several versions; and all authors have read and approved the final version of the manuscript. Alizon S, 2005, AM NAT, V165, pE155, DOI 10.1086/430053; Braendle C, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P3; BULMER M, 1991, GENETICS, V129, P897; BULMER MG, 1985, AM NAT, V126, P63, DOI 10.1086/284396; Bulmer MG, 1994, THEORETICAL EVOLUTIO; Champagnat N, 2002, SELECTION, V2, P73, DOI DOI 10.1556/SELECT.2.2001.1-2.6); CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; COHEN D, 1966, J THEOR BIOL, V12, P119, DOI 10.1016/0022-5193(66)90188-3; Crow JF, 2000, NAT REV GENET, V1, P40, DOI 10.1038/35049558; Demetrius L, 2013, THEOR POPUL BIOL, V83, P39, DOI 10.1016/j.tpb.2012.10.004; Dieckmann U, 1996, J MATH BIOL, V34, P579, DOI 10.1007/BF02409751; FERRIERE R, 1995, THEOR POPUL BIOL, V48, P126, DOI 10.1006/tpbi.1995.1024; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; Geritz SAH, 1998, EVOL ECOL, V12, P35, DOI 10.1023/A:1006554906681; GILLESPIE JH, 1974, GENETICS, V76, P601; Houle D, 1998, GENETICA, V102-3, P241, DOI 10.1023/A:1017034925212; Hoyle A, 2008, J THEOR BIOL, V250, P498, DOI 10.1016/j.jtbi.2007.10.009; Hurst LD, 1998, TRENDS GENET, V14, P446, DOI 10.1016/S0168-9525(98)01577-7; KIMURA M, 1962, GENETICS, V47, P713; Kong A, 2012, NATURE, V488, P471, DOI 10.1038/nature11396; Levins R., 1968, EVOLUTION CHANGING E; McCandlish DM, 2014, Q REV BIOL, V89, P225, DOI 10.1086/677571; Metz JAJ, 2008, EVOL ECOL RES, V10, P629; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; Metz JAJ, 2016, J MATH BIOL, V72, P1011, DOI 10.1007/s00285-015-0956-2; Mitteldorf J, 2014, AM NAT, V184, P289, DOI 10.1086/677387; Orr HA, 2009, NAT REV GENET, V10, P531, DOI 10.1038/nrg2603; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; Petit RJ, 2006, ANNU REV ECOL EVOL S, V37, P187, DOI 10.1146/annurev.ecolsys.37.091305.110215; PIANKA ER, 1976, AM ZOOL, V16, P775; Proulx S. R., 2001, SELECTION, V2, P2; R Development Core Team, 2013, R FDN STAT COMP; Rajon E, 2009, J EVOLUTION BIOL, V22, P2094, DOI 10.1111/j.1420-9101.2009.01825.x; Rajon E, 2014, AM NAT, V184, pE1, DOI 10.1086/676506; Rajon E, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1552; RAND DA, 1994, PHILOS T ROY SOC B, V343, P261, DOI 10.1098/rstb.1994.0025; RISCH N, 1987, AM J HUM GENET, V41, P218; Roff DA, 2008, J GENET, V87, P339, DOI 10.1007/s12041-008-0056-9; Rokyta DR, 2005, NAT GENET, V37, P441, DOI 10.1038/ng1535; Salguero-Gomez R, 2016, P NATL ACAD SCI USA, V113, P230, DOI 10.1073/pnas.1506215112; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; Seger J., 1987, Oxford Surveys in Evolutionary Biology, V4, P182; Shah P, 2011, P NATL ACAD SCI USA, V108, P10231, DOI 10.1073/pnas.1016719108; Shpak M, 2007, GENETICS, V177, P2181, DOI 10.1534/genetics.107.080747; Spedicato G. A., 2014, MARKOVCHAIN DISCRETE; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; Stoltzfus A, 2012, BIOL DIRECT, V7, DOI 10.1186/1745-6150-7-35; Stoltzfus A, 2009, J HERED, V100, P637, DOI 10.1093/jhered/esp048; TAKADA T, 1995, J THEOR BIOL, V173, P51, DOI 10.1006/jtbi.1995.0042; Thomas JA, 2010, MOL BIOL EVOL, V27, P1173, DOI 10.1093/molbev/msq009; Van Dooren TJM, 1998, J EVOLUTION BIOL, V11, P41, DOI 10.1046/j.1420-9101.1998.11010041.x; Verin M., 2017, DATA BIASED EVOLUTIO 52 0 0 1 9 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. AUG 2017 190 2 E28 E39 10.1086/692324 12 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology FB4HM WOS:000406102400001 28731790 2018-11-22 J Shirley, MK; Cole, TJ; Charoensiriwath, S; Treleaven, P; Wells, JCK Shirley, Meghan K.; Cole, Tim J.; Charoensiriwath, Supiya; Treleaven, Philip; Wells, Jonathan C. K. Differential investment in body girths by sex: Evidence from 3D photonic scanning in a Thai cohort AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY English Article adipose tissue; interaction term; lean mass; sexual dimorphism; trade-offs X-RAY ABSORPTIOMETRY; SKELETAL-MUSCLE MASS; NATIONAL SIZING SURVEY; WAIST-HIP RATIO; FAT DISTRIBUTION; SIZE DIMORPHISM; ADIPOSE-TISSUE; GENDER-DIFFERENCES; PRIMATE EVOLUTION; SELECTION Objectives: Life history trade-offs may manifest between competing organs and tissues in the body. Sexual dimorphism in tissue investment is well-established in humans, with sex-associated body shape differences linked to natural and sexual selection. This study uses three-dimensional (3D) photonic scanning to test whether males and females differentially invest energy in various body regions in relation to two independent proxies of growth. Materials and methods: Body shape data (multiple girths) came from a Thai cohort (n = 11,610; 53% female; age range 21-88 years). Weight was considered a proxy for recent energy acquisition. Stature represented completed growth, a proxy for energy acquisition earlier in life. The data were analyzed using growth-proxy by sex interaction log-log regression models adjusting for age, salary and number of children. Results: For a given percentage increase in weight, females showed greater percentage increases than males in girths of the arm, chest, hip, thigh, knee and calf (p < 0.001), whilst males exceeded females in head and waist girths (also p < 0.001). For a given percentage increase in height, weight and all girths showed greater proportional changes in males than females (p < 0.001). Discussion: These results indicate sex-specific life history strategies wherein the direction and timing of energy investment in girths varies between the sexes. The results add to literature suggesting that sexual dimorphism in body morphology is not a fixed trait; rather, differential energy allocation to specific body regions appears to be a plastic strategy adjusted in relation to energy acquisition across the life course. [Shirley, Meghan K.; Cole, Tim J.; Charoensiriwath, Supiya; Treleaven, Philip; Wells, Jonathan C. K.] UCL Great Ormond St Inst Child Hlth, London WC1N 1EH, England Shirley, MK (reprint author), UCL Great Ormond St Inst Child Hlth, Childhood Nutr Res Ctr, 4th Floor,30 Guilford St, London WC1N 1EH, England. meghan.shirley.13@ucl.ac.uk Wells, Jonathan/0000-0003-0411-8025 Medical Research Council [MR/M012069/1] Abe T, 2003, BRIT J SPORT MED, V37, P436, DOI 10.1136/bjsm.37.5.436; AIELLO LC, 1995, CURR ANTHROPOL, V36, P199, DOI 10.1086/204350; Aiken L. S., 1991, MULTIPLE REGRESSION; Andersen GS, 2013, AM J CLIN NUTR, V98, P885, DOI 10.3945/ajcn.113.063032; Badyaev AV, 2002, TRENDS ECOL EVOL, V17, P369, DOI 10.1016/S0169-5347(02)02569-7; Berg SJ, 2001, MAYO CLIN PROC, V76, P582; Bogin B, 1999, PATTERNS HUMAN GROWT; Boot AM, 1997, AM J CLIN NUTR, V66, P232; Brookes ST, 2004, J CLIN EPIDEMIOL, V57, P229, DOI 10.1016/j.jclinepi.2003.08.009; Charnov EL, 2001, EVOL ECOL RES, V3, P521; Charoensiriwath S., 2010, INT C 3D BOD SCANN T; CLUTTONBROCK TH, 1989, NATURE, V337, P260, DOI 10.1038/337260a0; Darwin C., 1871, DESCENT MAN SELECTIO; Deaton A, 2008, AM ECON REV, V98, P468, DOI 10.1257/aer.98.2.468; Deurenberg P, 2001, EUR J CLIN NUTR, V55, P973, DOI 10.1038/sj.ejcn.1601254; DEURENBERG P, 1995, ANN NUTR METAB, V39, P234, DOI 10.1159/000177868; Deurenberg-Yap M, 2000, INT J OBESITY, V24, P1011, DOI 10.1038/sj.ijo.0801353; DIXSON AF, 2009, SEXUAL SELECTION ORI; Douros I, 1999, P SOC PHOTO-OPT INS, V3640, P234, DOI 10.1117/12.341065; Dufour DL, 2002, AM J HUM BIOL, V14, P584, DOI 10.1002/ajhb.10071; Durand CP, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0071079; Ellison PT, 2003, AM J HUM BIOL, V15, P342, DOI 10.1002/ajhb.10152; Fairbairn DJ, 1997, ANNU REV ECOL SYST, V28, P659, DOI 10.1146/annurev.ecolsys.28.1.659; Fan JT, 2005, P ROY SOC B-BIOL SCI, V272, P219, DOI 10.1098/rspb.2004.2922; Fantuzzi G, 2005, J ALLERGY CLIN IMMUN, V115, P911, DOI 10.1016/j.jaci.2005.02.023; FOLEY RA, 1991, PHILOS T ROY SOC B, V334, P223, DOI 10.1098/rstb.1991.0111; Freedman DS, 2015, AM J CLIN NUTR, V101, P425, DOI 10.3945/ajcn.114.094672; FULLER NJ, 1992, CLIN PHYSIOL, V12, P253, DOI 10.1111/j.1475-097X.1992.tb00831.x; Gabrielsson BG, 2003, OBES RES, V11, P699, DOI 10.1038/oby.2003.100; Gallagher D, 1997, J APPL PHYSIOL, V83, P229; GAULIN SJC, 1984, INT J PRIMATOL, V5, P515, DOI 10.1007/BF02692284; Gettler LT, 2011, P NATL ACAD SCI USA, V108, P16194, DOI 10.1073/pnas.1105403108; Gray PB, 2006, P ROY SOC B-BIOL SCI, V273, P333, DOI 10.1098/rspb.2005.3311; Gray PB, 2002, EVOL HUM BEHAV, V23, P193, DOI 10.1016/S1090-5138(01)00101-5; Guntupalli AM, 2008, GENDER DISCRIMINATIO, P258; Gupta V., 2001, INDIAN PEDIATR, V33, P119; Hawkes K, 2004, KINSHIP AND BEHAVIOR IN PRIMATES, P443; He Q, 2004, OBES RES, V12, P725, DOI 10.1038/oby.2004.85; Heid IM, 2010, NAT GENET, V42, P949, DOI 10.1038/ng.685; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Holden C, 1999, AM J PHYS ANTHROPOL, V110, P27, DOI 10.1002/(SICI)1096-8644(199909)110:1<27::AID-AJPA3>3.3.CO;2-7; IMMINK MDC, 1992, EUR J CLIN NUTR, V46, P419; Isler K, 2006, J HUM EVOL, V51, P228, DOI 10.1016/j.jhevol.2006.03.006; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; Kotrschal A, 2013, CURR BIOL, V23, P168, DOI 10.1016/j.cub.2012.11.058; Kurki HK, 2011, J HUM EVOL, V61, P631, DOI 10.1016/j.jhevol.2011.07.006; LANDE R, 1980, EVOLUTION, V34, P292, DOI 10.1111/j.1558-5646.1980.tb04817.x; Lassek WD, 2008, EVOL HUM BEHAV, V29, P26, DOI 10.1016/j.evolhumbehav.2007.07.005; Lassek WD, 2006, AM J PHYS ANTHROPOL, V131, P295, DOI 10.1002/ajpa.20394; Lassek WD, 2009, EVOL HUM BEHAV, V30, P322, DOI 10.1016/j.evolhumbehav.2009.04.002; Lee P. C., 1996, Evolutionary Anthropology, V5, P87, DOI 10.1002/(SICI)1520-6505(1996)5:3<87::AID-EVAN4>3.0.CO;2-T; LEMIEUX S, 1993, AM J CLIN NUTR, V58, P463; Maisey DS, 1999, LANCET, V353, P1500, DOI 10.1016/S0140-6736(99)00438-9; MARSHALL WA, 1968, ANNU REV MED, V19, P283, DOI 10.1146/annurev.me.19.020168.001435; Martin A. D., 1993, KINANTHROPOMETRY, P19; Maynard LM, 2001, PEDIATRICS, V107, P344, DOI 10.1542/peds.107.2.344; MCCLELLAND GH, 1993, PSYCHOL BULL, V114, P376, DOI 10.1037/0033-2909.114.2.376; MOERMAN ML, 1982, AM J OBSTET GYNECOL, V143, P528, DOI 10.1016/0002-9378(82)90542-7; NEGGERS Y, 1995, OBSTET GYNECOL, V85, P192, DOI 10.1016/0029-7844(94)00364-J; Nindl BC, 2002, J APPL PHYSIOL, V92, P1611, DOI 10.1152/japplphysiol.00892.2001; Norgan NG, 1997, INT J OBESITY, V21, P738, DOI 10.1038/sj.ijo.0800473; NORGAN NG, 1990, EUR J CLIN NUTR, V44, P79; Olsson M, 2002, EVOLUTION, V56, P1538; PAGEL M, 1994, ANIM BEHAV, V47, P1333, DOI 10.1006/anbe.1994.1181; Plavcan JM, 2012, HUM NATURE-INT BIOS, V23, P45, DOI 10.1007/s12110-012-9130-3; Plavcan JM, 2001, YEARB PHYS ANTHROPOL, V44, P25, DOI 10.1002/ajpa.10011; Pomeroy E, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0051795; POND CM, 1978, ANNU REV ECOL SYST, V9, P519, DOI 10.1146/annurev.es.09.110178.002511; Pond CM, 1998, FATS LIFE; Puts DA, 2010, EVOL HUM BEHAV, V31, P157, DOI 10.1016/j.evolhumbehav.2010.02.005; R Core Team, 2016, R LANG ENV STAT COMP; REBUFFESCRIVE M, 1985, J CLIN INVEST, V75, P1973, DOI 10.1172/JCI111914; Riggs BL, 2002, ENDOCR REV, V23, P279, DOI 10.1210/er.23.3.279; Rodriguez G, 2004, EUR J PEDIATR, V163, P457, DOI 10.1007/s00431-004-1468-z; Rogol AD, 2002, J ADOLESCENT HEALTH, V31, P192, DOI 10.1016/S1054-139X(02)00485-8; Santosa S, 2014, HORM MOL BIOL CLIN I, V20, P15, DOI 10.1515/hmbci-2014-0029; Schultz AH, 1949, AM J PHYS ANTHROP-NE, V7, P401, DOI 10.1002/ajpa.1330070307; Shen W, 2009, NUTR METAB, V6, DOI 10.1186/1743-7075-6-17; Shih R, 2000, J APPL PHYSIOL, V89, P1380; Shungin D, 2015, NATURE, V518, P187, DOI 10.1038/nature14132; SINGH D, 1993, J PERS SOC PSYCHOL, V65, P293, DOI 10.1037/0022-3514.65.2.293; Stearns S., 1992, EVOLUTION LIFE HIST; Swami Viren, 2005, Body Image, V2, P383, DOI 10.1016/j.bodyim.2005.08.001; Tague RG, 2005, AM J PHYS ANTHROPOL, V127, P392, DOI 10.1002/ajpa.20226; TAGUE RG, 1992, AM J PHYS ANTHROPOL, V88, P1, DOI 10.1002/ajpa.1330880102; Tanner JM, 1965, S SOC STUDY HUMAN BI, V6, P211; Tanner JM, 1990, FOETUS MAN PHYS GROW; Teder T, 2005, OIKOS, V108, P321, DOI 10.1111/j.0030-1299.2005.13609.x; Tracer DP, 2002, AM J HUM BIOL, V14, P621, DOI 10.1002/ajhb.10073; Treleaven P, 2004, IEEE SPECTRUM, V41, P29; Trivers R. L, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Wang J, 2006, AM J CLIN NUTR, V83, P809; Wells JCK, 2012, INT J OBESITY, V36, P148, DOI 10.1038/ijo.2011.51; Wells J. C. K., 2010, EVOLUTIONARY BIOL HU; Wells JCK, 2008, OBESITY, V16, P435, DOI 10.1038/oby.2007.62; Wells JCK, 2007, AM J CLIN NUTR, V85, P419; Wells JCK, 2007, BEST PRACT RES CL EN, V21, P415, DOI 10.1016/j.beem.2007.04.007; Wells JCK, 2006, BIOL REV, V81, P183, DOI 10.1017/S1464793105006974; Wells JCK, 2013, INT J EPIDEMIOL, V42, P1223, DOI 10.1093/ije/dyt130; Wells JCK, 2013, AM J HUM BIOL, V25, P594, DOI 10.1002/ajhb.22418; Wells JCK, 2012, AM J CLIN NUTR, V96, P1316, DOI 10.3945/ajcn.112.036970; Wells JCK, 2012, AM J HUM BIOL, V24, P411, DOI 10.1002/ajhb.22223; Wells JCK, 2011, AM J HUM BIOL, V23, P291, DOI 10.1002/ajhb.21151; Wells JCK, 2010, AM J HUM BIOL, V22, P456, DOI 10.1002/ajhb.21017; ZAADSTRA BM, 1993, BRIT MED J, V306, P484, DOI 10.1136/bmj.306.6876.484; Zillikens MC, 2008, DIABETOLOGIA, V51, P2233, DOI 10.1007/s00125-008-1163-0 107 1 1 2 6 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0002-9483 1096-8644 AM J PHYS ANTHROPOL Am. J. Phys. Anthropol. AUG 2017 163 4 696 706 10.1002/ajpa.23238 11 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology FB2HH WOS:000405964400004 28497849 2018-11-22 J Ellis, BJ; Oldehinkel, AJ; Nederhof, E Ellis, Bruce J.; Oldehinkel, Albertine J.; Nederhof, Esther The adaptive calibration model of stress responsivity: An empirical test in the Tracking Adolescents' Individual Lives Survey study DEVELOPMENT AND PSYCHOPATHOLOGY English Article EVOLUTIONARY-DEVELOPMENTAL THEORY; CARDIAC VAGAL REGULATION; BIOLOGICAL SENSITIVITY; MENTAL-HEALTH; REPRODUCTIVE STRATEGY; SALIVARY CORTISOL; ALLOSTATIC LOAD; SOCIAL STRESS; HPA-AXIS; CHILDHOOD The adaptive calibration model (ACM) is a theory of developmental programing focusing on calibration of stress response systems and associated life history strategies to local environmental conditions. In this article, we tested some key predictions of the ACM in a longitudinal study of Dutch adolescent males (11-16 years old; N = 351). Measures of sympathetic, parasympathetic, and adrenocortical activation, reactivity to, and recovery from social-evaluative stress validated the four-pattern taxonomy of the ACM via latent profile analysis, though with some deviations from expected patterns. The physiological profiles generally showed predicted associations with antecedent measures of familial and ecological conditions and life stress; as expected, high- and low-responsivity patterns were found under both low-stress and high-stress family conditions. The four patterns were also differentially associated with aggressive/rule-breaking behavior and withdrawn/depressed behavior. This study provides measured support for key predictions of the ACM and highlights important empirical issues and methodological challenges for future research. [Ellis, Bruce J.] Univ Utah, Salt Lake City, UT USA; [Oldehinkel, Albertine J.; Nederhof, Esther] Univ Groningen, Univ Med Ctr Groningen, Groningen, Netherlands Ellis, BJ (reprint author), Univ Utah, Dept Psychol, 380 South 1530 East,Room 502, Salt Lake City, UT 84112 USA. bruce.ellis@psych.utah.edu Netherlands Organization for Scientific Research (NOW; Medical Research Council Program) [GB-MW 940-38-011]; Netherlands Organization for Scientific Research (NOW; ZonMW Brainpower Grant) [100-001-004]; Netherlands Organization for Scientific Research (NOW; ZonMw Culture and Health Grant) [261-98-710]; Netherlands Organization for Scientific Research (NOW; Social Sciences Council Medium-Sized Investment Grants) [GB-MaGW 480-01-006, GB-MaGW 480-07-001]; Netherlands Organization for Scientific Research (NOW; Social Sciences Council Project Grants) [GB-MaGW 452-04-314, GB-MaGW 452-06-004]; Netherlands Organization for Scientific Research (NOW; NWO Large-Sized Investment Grant) [175.010.2003.005]; Netherlands Organization for Scientific Research (NOW; NWO Longitudinal Survey and Panel Funding) [481-08-013]; Dutch Ministry of Justice (WODC); European Science Foundation (EuroSTRESS Project) [FP-006]; Biobanking and Biomolecular Resources Research Infrastructure BBMRI-NL [CP 32]; Accare Center for Child and Adolescent Psychiatry; Netherlands Organization for Scientific Research (NOW; ZonMw Risk Behavior and Dependence Grant) [60-60600-97-118] This research is part of the Tracking Adolescents' Individual Lives Survey (TRAILS). Participating centers of TRAILS include various departments of the University Medical Center and University of Groningen, the Erasmus University Medical Center Rotterdam, the University of Utrecht, the Radboud Medical Center Nijmegen, and the Parnassia Bavo group, all in The Netherlands. TRAILS has been financially supported by various grants from the Netherlands Organization for Scientific Research (NOW; Medical Research Council Program Grant GB-MW 940-38-011, ZonMW Brainpower Grant 100-001-004, ZonMw Risk Behavior and Dependence Grant 60-60600-97-118, ZonMw Culture and Health Grant 261-98-710, Social Sciences Council Medium-Sized Investment Grants GB-MaGW 480-01-006 and GB-MaGW 480-07-001, Social Sciences Council Project Grants GB-MaGW 452-04-314 and GB-MaGW 452-06-004, NWO Large-Sized Investment Grant 175.010.2003.005, NWO Longitudinal Survey and Panel Funding 481-08-013). Additional funding for TRAILS was provided by the Dutch Ministry of Justice (WODC), the European Science Foundation (EuroSTRESS Project FP-006), Biobanking and Biomolecular Resources Research Infrastructure BBMRI-NL (CP 32), the participating universities, and Accare Center for Child and Adolescent Psychiatry. We are grateful to all adolescents, their parents, and teachers who participated in this research and to everyone who worked on this project and made it possible. Abidin R R, 1983, Child Health Care, V11, P70; Achenbach T. M., 2001, MANUAL ASEBA SCH AGE; Achenbach TM., 1991, MANUAL YOUTH SELF RE; Alkon A, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0086283; Beauchaine T, 2001, DEV PSYCHOPATHOL, V13, P183, DOI 10.1017/S0954579401002012; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.1111/j.1467-8624.1991.tb01558.x; BENJAMIN LS, 1963, PSYCHOSOM MED, V25, P556, DOI 10.1097/00006842-196311000-00005; Berry D., 2016, DEV PSYCHOPATHOLOGY; Bosch NM, 2012, PSYCHONEUROENDOCRINO, V37, P1439, DOI 10.1016/j.psyneuen.2012.01.013; Bouma EMC, 2009, PSYCHONEUROENDOCRINO, V34, P884, DOI 10.1016/j.psyneuen.2009.01.003; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Boyce WT, 2001, BRIT J PSYCHIAT, V179, P144, DOI 10.1192/bjp.179.2.144; Bruce J, 2009, DEV PSYCHOBIOL, V51, P14, DOI 10.1002/dev.20333; Buschgens CJM, 2009, EUR CHILD ADOLES PSY, V18, P65, DOI 10.1007/s00787-008-0704-x; Calkins SD, 2004, DEV PSYCHOBIOL, V45, P101, DOI 10.1002/dev.20020; Calkins SD, 2007, BIOL PSYCHOL, V74, P144, DOI 10.1016/j.biopsycho.2006.09.005; Chisholm J. S., 1999, DEATH HOPE SEX STEPS; Conradt E, 2014, DEV PSYCHOBIOL, V56, P821, DOI 10.1002/dev.21155; Costa Jr P. T., 1992, REVISED NEO PERSONAL; Dahl RE, 2009, DEV PSYCHOPATHOL, V21, P1, DOI 10.1017/S0954579409000017; De Bellis MD, 1999, BIOL PSYCHIAT, V45, P1259, DOI 10.1016/S0006-3223(99)00044-X; de Winter AF, 2005, EUR J EPIDEMIOL, V20, P173, DOI 10.1007/s10654-004-4948-6; Del Giudice M, 2012, DEV PSYCHOL, V48, P775, DOI 10.1037/a0026519; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Dellen H. J., 1988, COMPUTERS PSYCHOL ME, P39; Dietrich A, 2007, J AM ACAD CHILD PSY, V46, P378, DOI 10.1097/chi.0b013e31802b91ea; El-Sheikh M, 2011, DEV PSYCHOPATHOL, V23, P703, DOI 10.1017/S0954579411000034; El-Sheikh M, 2011, J ABNORM PSYCHOL, V120, P16, DOI 10.1037/a0020626; Ellis B. J., 2013, CHILD ADOLESCENT PSY, P251; Ellis BJ, 2005, DEV PSYCHOPATHOL, V17, P303, DOI 10.1017/S0954579405050157; Ellis BJ, 2006, DEV REV, V26, P175, DOI 10.1016/j.dr.2006.02.004; Ellis BJ, 2014, DEV PSYCHOPATHOL, V26, P1, DOI 10.1017/S0954579413000849; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; EPSTEIN NB, 1983, J MARITAL FAM THER, V9, P171, DOI 10.1111/j.1752-0606.1983.tb01497.x; Essex MJ, 2011, DEV PSYCHOPATHOL, V23, P1039, DOI 10.1017/S0954579411000484; Essex MJ, 2002, BIOL PSYCHIAT, V52, P776, DOI 10.1016/S0006-3223(02)01553-6; Evans BE, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0061724; Evans GW, 2007, PSYCHOL SCI, V18, P953, DOI 10.1111/j.1467-9280.2007.02008.x; Figueredo A. J., 2014, EVOLUTIONARY BEHAV S, V8, P148, DOI DOI 10.1037/H0099837; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Flaherty B. P., 2012, APA HDB RES METHODS, V3, P391, DOI DOI 10.1037/13621-000; Forbes EE, 2010, BRAIN COGNITION, V72, P66, DOI 10.1016/j.bandc.2009.10.007; Gazelle H, 2009, DEV PSYCHOL, V45, P1077, DOI 10.1037/a0016165; Gunnar MR, 2006, DEV PSYCHOPATHOL, V2, P533, DOI DOI 10.1210/JC.82.2.536; Gustafsson PE, 2010, PSYCHONEUROENDOCRINO, V35, P1410, DOI 10.1016/j.psyneuen.2010.04.004; Hackman DA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058250; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Hill-Soderlund AL, 2008, DEV PSYCHOBIOL, V50, P361, DOI 10.1002/dev.20302; Hinnant JB, 2013, DEV PSYCHOPATHOL, V25, P419, DOI 10.1017/S0954579412001150; Hinnant JB, 2009, J ABNORM CHILD PSYCH, V37, P1049, DOI 10.1007/s10802-009-9341-1; Hoekstra H. A., 2007, NEO PI R NEO FFI PER; James J, 2012, DEV PSYCHOL, V48, P687, DOI 10.1037/a0026427; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; KIRSCHBAUM C, 1993, NEUROPSYCHOBIOLOGY, V28, P76, DOI 10.1159/000119004; KIRSCHBAUM C, 1992, ASSESSMENT HORMONES; Koolhaas JM, 2011, NEUROSCI BIOBEHAV R, V35, P1291, DOI 10.1016/j.neubiorev.2011.02.003; Korte SM, 2005, NEUROSCI BIOBEHAV R, V29, P3, DOI 10.1016/j.neubiorev.2004.08.009; Laurent HK, 2014, DEV PSYCHOBIOL, V56, P340, DOI 10.1002/dev.21103; Lubke G, 2007, STRUCT EQU MODELING, V14, P26, DOI 10.1207/s15328007sem1401_2; Luecken LJ, 2009, HORM BEHAV, V55, P412, DOI 10.1016/j.yhbeh.2008.12.007; Macri S, 2011, NEUROSCI BIOBEHAV R, V35, P1534, DOI 10.1016/j.neubiorev.2010.12.014; Markus MT, 2003, PERS INDIV DIFFER, V34, P503, DOI 10.1016/S0191-8869(02)00090-9; Marsh HW, 2009, STRUCT EQU MODELING, V16, P191, DOI 10.1080/10705510902751010; Marsman R, 2012, BIOL PSYCHOL, V89, P460, DOI 10.1016/j.biopsycho.2011.12.013; Muthen B, 2003, PSYCHOL METHODS, V8, P369, DOI 10.1037/1082-989X.8.3.369; Nederhof E, 2012, BMC MED RES METHODOL, V12, DOI 10.1186/1471-2288-12-93; Nettle D, 2011, P ROY SOC B-BIOL SCI, V278, P1721, DOI 10.1098/rspb.2010.1726; Obradovic J, 2012, DEV PSYCHOPATHOL, V24, P371, DOI 10.1017/S0954579412000053; Obradovic J, 2010, CHILD DEV, V81, P270, DOI 10.1111/j.1467-8624.2009.01394.x; Oldehinkel AJ, 2004, DEV PSYCHOPATHOL, V16, P421, DOI 10.1017/S0954579404044591; Oldehinkel AJ, 2015, INT J EPIDEMIOL, V44, P76, DOI 10.1093/ije/dyu225; Oldehinkel AJ, 2014, DEV PSYCHOPATHOL, V26, P1067, DOI 10.1017/S0954579414000534; Oldehinkel AJ, 2011, PSYCHOPHYSIOLOGY, V48, P441, DOI 10.1111/j.1469-8986.2010.01118.x; Ormel J, 2012, J AM ACAD CHILD PSY, V51, P1020, DOI 10.1016/j.jaac.2012.08.004; Pang KC, 2013, DEV PSYCHOBIOL, V55, P698, DOI 10.1002/dev.21065; Parker KJ, 2011, NEUROSCI BIOBEHAV R, V35, P1466, DOI 10.1016/j.neubiorev.2010.09.003; Peckins MK, 2015, DEV PSYCHOPATHOL, V27, P1461, DOI 10.1017/S0954579415000875; Porges S W, 1994, Monogr Soc Res Child Dev, V59, P167, DOI 10.2307/1166144; Putnam S.P., 2001, ADV RES TEMPERAMENT, P165; Quas JA, 2014, DEV PSYCHOPATHOL, V26, P963, DOI 10.1017/S0954579414000480; ROBBE HWJ, 1987, HYPERTENSION, V10, P538, DOI 10.1161/01.HYP.10.5.538; Rottenberg J, 2007, BIOL PSYCHOL, V74, P200, DOI 10.1016/j.biopsycho.2005.08.010; Sijtsema JJ, 2013, DEV PSYCHOPATHOL, V25, P699, DOI 10.1017/S0954579413000114; Tarullo AR, 2006, HORM BEHAV, V50, P632, DOI 10.1016/j.yhbeh.2006.06.010; Thayer JF, 2009, NEUROSCI BIOBEHAV R, V33, P81, DOI 10.1016/j.neubiorev.2008.08.004; Van Ryzin MJ, 2009, PSYCHONEUROENDOCRINO, V34, P50, DOI 10.1016/j.psyneuen.2008.08.014; VERHULST FC, 1997, HANDLEIDING YOUTH SE; Vigil JM, 2010, CHILD DEV, V81, P1228, DOI 10.1111/j.1467-8624.2010.01464.x; Vollebergh WAM, 2005, SOC PSYCH PSYCH EPID, V40, P489, DOI 10.1007/s00127-005-0906-1; Yehuda R, 2002, NEW ENGL J MED, V346, P108, DOI 10.1056/NEJMra012941; Zisner A., 2016, DEV PSYCHOPATHOL, V2, P832, DOI DOI 10.1002/9781119125556 92 3 3 2 7 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0954-5794 1469-2198 DEV PSYCHOPATHOL Dev. Psychopathol. AUG 2017 29 3 1001 1021 10.1017/S0954579416000985 21 Psychology, Developmental Psychology FA7OG WOS:000405635400023 27772536 2018-11-22 J Dominguez-Castanedo, O; Uribe, MC; Rosales-Torres, AM Dominguez-Castanedo, Omar; Carmen Uribe, Mari; Maria Rosales-Torres, Ana Life history strategies of annual killifish Millerichthys robustus (Cyprinodontiformes:Cynolebiidae) in a seasonally ephemeral water body in Veracruz, Mexico ENVIRONMENTAL BIOLOGY OF FISHES English Article Reproductive cycle; Growth; Diapause; Oogenesis; Life cycle; Annualism FISH NOTHOBRANCHIUS-GUENTHERI; DEVELOPMENTAL BIOLOGY; EMBRYONIC DIAPAUSE; AUSTROFUNDULUS-LIMNAEUS; RIVULIDAE; BIOGEOGRAPHY; TEMPERATURE; POPULATION; DURATION; BRAZIL The annual life cycle of Millerichthys robustus is described from an ephemeral pool in Veracruz, Mexico. The state of the pool can be divided into three periods: a flood period lasting from September to March when the pool was filled with water, a drought period from April to June when the pool was dry, and a humid period in July and August when the pool was intermittently filled. Soil substrate was examined in each of these three periods (flood, drought and humid), embryos were found, and the stage of embryonic diapause was determined. During the flood period embryos were in diapause I; during the drought period in diapause II; and during the humid period mainly in diapause III with a small subset in diapause II (an example of a bet-hedging strategy). Two hatching periods (separated by two weeks) were documented during the beginning of the flood period. Fish growth was analyzed in both males and females, with females showing an overall slower growth rate and smaller adult size. In females, ovarian maturity was characterized histologically to understand the reproductive cycle. The onset of sexual maturity began during the third week after hatching (21 days) with the presence of secondary sexual characteristics in females and the beginning of Secondary Growth Stage in some ovarian follicles. All stages of oogenesis, postovulatory follicles and ovulated oocytes were observed from the fourth week post hatching (28 days) until death. M. robustus appears to exhibit similar patterns of embryonic diapause compared to other annual killifish living in seasonal water bodies closer to the equator. This study characterizes (for the first time) the adaptations and life cycle of M. robustus. This information could be useful to evaluate the potential risk of these populations and, if necessary, to develop plans for their conservation. [Dominguez-Castanedo, Omar] Univ Autonoma Metropolitana, Programa Doctorado Ciencias Biol & Salud, Coyoacan, Cdmx, Mexico; [Carmen Uribe, Mari] Univ Nacl Autonoma Mexico, Lab Biol Reprod, Dept Biol Comparada, Facl Ciencias, Coyoacan, Cdmx, Mexico; [Maria Rosales-Torres, Ana] Univ Autonoma Metropolitana Xochimilco, Lab Bioquim Reprod, Dept Prod Agr & Anim, Calz Hueso 1100,Col Villa Quietud, Coyoacan 04960, Cdmx, Mexico Rosales-Torres, AM (reprint author), Univ Autonoma Metropolitana Xochimilco, Lab Bioquim Reprod, Dept Prod Agr & Anim, Calz Hueso 1100,Col Villa Quietud, Coyoacan 04960, Cdmx, Mexico. anamaria@correo.xoc.uam.mx Comision Nacional de Ciencia y Tecnologia [375928] We appreciate the help and support of Victor Rosales Perez and Miguel Mosqueda with the collection of specimens in the field. To Stefano Valdesalici, Bela Nagy, Richard Martino (AKA) and Robert Meyer (AKA) for the valuable information suggested and provided, and to Comision Nacional de Ciencia y Tecnologia for scholarship No. 375928. We thank the academic counseling of Bruno A. Marichal Cancino and Liliana Garcia-Calva in this project. (Sampling, management and procedures performed in this research were authorized by SGPA/DGVS/02404/14, /2015 of the Subsecretaria de Gestion para la Proteccion Ambiental, Direccion General de Vida Silvestre, SEMARNAT). We also sincerely appreciate the thorough and detailed comments by the reviewers that allowed for improvement of this work. Aguilar-Morales M., 1996, MANUAL GEN TECNICAS; Arenzon A., 2001, Brazilian Journal of Biology, V61, P117, DOI 10.1590/S0034-71082001000100015; Arenzon A, 1999, HYDROBIOLOGIA, V411, P65, DOI 10.1023/A:1003868711295; BEROIS N., 2014, CELL DEV BIOL, V2014, P2, DOI [10.1146/annurev.cellbio.3.1.1, DOI 10.4172/2168-9296.1000136]; Berois N, 2012, WIRES DEV BIOL, V1, P595, DOI 10.1002/wdev.39; Blazek R, 2013, EVODEVO, V4, DOI 10.1186/2041-9139-4-24; Brown-Peterson NJ, 2011, MAR COAST FISH, V3, P52, DOI 10.1080/19425120.2011.555724; Costa WJEM, 2013, VERTEBR ZOOL, V63, P139; Costa WJEM, 2011, ICHTHYOL EXPLOR FRES, V22, P233; da Silva GC, 2011, NEOTROP ICHTHYOL, V9, P191, DOI [10.1590/S1679-62252011000100019, DOI 10.1590/S1679-62252011000100019]; DEVLAMING V, 1982, COMP BIOCHEM PHYS A, V73, P31, DOI 10.1016/0300-9629(82)90088-3; Dominguez-Castanedo O, 2013, ICHTHYOL EXPLOR FRES, V24, P15; Dorn A, 2014, BMC EVOL BIOL, V14, DOI 10.1186/s12862-014-0210-3; Eschmeyer W. N., 2016, SPECIES FAMILY SUBFA; Froese R, 2006, J APPL ICHTHYOL, V22, P241, DOI 10.1111/j.1439-0426.2006.00805.x; Furness AI, 2016, BIOL REV, V91, P796, DOI 10.1111/brv.12194; Furness AI, 2015, EVOLUTION, V69, P1461, DOI 10.1111/evo.12669; Grier Harry J., 2009, P25; Hoaglin D. C., 1991, FUNDAMENTALS EXPLORA; INGLIMA K, 1981, J EXP ZOOL, V215, P23, DOI 10.1002/jez.1402150104; Lanes LEK, 2014, J NAT HIST, V48, P1971, DOI 10.1080/00222933.2013.862577; Lorenzen ED, 2012, MOL ECOL, V21, P3656, DOI 10.1111/j.1365-294X.2012.05650.x; Loureiro M, 2016, ANNUAL FISHES: LIFE HISTORY STRATEGY, DIVERSITY, AND EVOLUTION, P3; MARKOFSKY J, 1977, J EXP ZOOL, V202, P49, DOI 10.1002/jez.1402020107; MARKOFSKY J, 1979, J EXP BIOL, V83, P203; Medina M, 1979, MANUALES TECNICOS AC; MILLER R. R, 2009, PECES DULCEACUICOLAS; Murphy WJ, 1997, MOL BIOL EVOL, V14, P790, DOI 10.1093/oxfordjournals.molbev.a025819; Passos C, 2016, ANNUAL FISHES: LIFE HISTORY STRATEGY, DIVERSITY, AND EVOLUTION, P207; Pinceel T, 2015, BIOL J LINN SOC, V114, P941, DOI 10.1111/bij.12474; Podrabsky JE, 2015, J EXP BIOL, V218, P1897, DOI 10.1242/jeb.116194; Podrabsky JE, 2010, TOP CURR GENET, V21, P203, DOI 10.1007/978-3-642-12422-8_12; Podrabsky JE, 2010, J EXP BIOL, V213, P3280, DOI 10.1242/jeb.045906; Podrabsky JE, 2001, AM J PHYSIOL-REG I, V280, pR123; Podrabsky JE, 1999, J EXP BIOL, V202, P2567; Polacik M, 2014, J EVOLUTION BIOL, V27, P854, DOI 10.1111/jeb.12359; Polacik M, 2011, J FISH BIOL, V78, P796, DOI 10.1111/j.1095-8649.2010.02893.x; Reichard M, 2016, ANNUAL FISHES: LIFE HISTORY STRATEGY, DIVERSITY, AND EVOLUTION, P133; Ribeiro AC, 2006, NEOTROP ICHTHYOL, V4, P225, DOI 10.1590/S1679-62252006000200009; RICKER W E, 1975, P382; Schalk CM, 2014, REV BIOL TROP, V62, P109, DOI 10.15517/rbt.v62i1.6567; Shidlovskiy K. M., 2010, NOTHOBRANCHIUS ARCH, V1, P18; Tanizaki K, 1988, C BRAS ZOOL BRAZ, V15, P318; Terzibasi E, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003866; Tozzini ET, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-77; VALDESALICI S., 2013, KILLI DATA SERIES, V2013, P21; Valdesalicil S, 2003, P ROY SOC B-BIOL SCI, V270, pS189, DOI 10.1098/rsbl.2003.0048; Vaz-Ferreira R, 1964, ARCH SOC BIOL MONTEV, P161; Volcan MV, 2013, J APPL ICHTHYOL, V29, P1188, DOI 10.1111/jai.12214; Volcan MV, 2012, BIOTA NEOTROP, V12, P68, DOI 10.1590/S1676-06032012000400007; Wafters B. R., 2009, J AM KILLIFISH ASS, V42, P37; WALLACE RA, 1981, AM ZOOL, V21, P325; Wildekamp R. H., 1986, CHECK LIST FRESHWATE, V2, P165; Wilderkamp RH, 2004, WORLD KILLIES ATLAS; Williams D.D., 2006, BIOL TEMPORARY WATER; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; Wootton RF, 1991, ECOLOGY TELEOST FISH, P2; WOURMS JP, 1972, J EXP ZOOL, V182, P389, DOI 10.1002/jez.1401820310; WOURMS JP, 1972, J EXP ZOOL, V182, P169, DOI 10.1002/jez.1401820203; WOURMS JP, 1972, J EXP ZOOL, V182, P143, DOI 10.1002/jez.1401820202; Young JL, 2006, FISH FISH, V7, P262, DOI 10.1111/j.1467-2979.2006.00225.x 61 2 2 4 9 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0378-1909 1573-5133 ENVIRON BIOL FISH Environ. Biol. Fishes AUG 2017 100 8 995 1006 10.1007/s10641-017-0617-y 12 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology FA9YE WOS:000405801300010 2018-11-22 J Norros, V; Halme, P Norros, Veera; Halme, Panu Growth sites of polypores from quantitative expert evaluation: Late-stage decayers and saprotrophs fruit closer to ground FUNGAL ECOLOGY English Article Dispersal; Fruit body; Fungal conservation; Habitat fragmentation; Spore release; Spore size WOOD-INHABITING FUNGI; MOVEMENT ECOLOGY; BOREAL FORESTS; DISPERSAL; TRAITS; CONSERVATION; COMMUNITIES; EVOLUTION; SPORES; FRAGMENTATION Life history traits are key to why species occur when and where they do and how their populations will respond to environmental changes. However, dispersal-related traits of fungi are generally poorly known. We studied how spore release height from the ground, an important determinant of airborne dispersal, is connected to other traits in polypores. We collected expert evaluations of fruit body growth sites for 140 species and found that experts generally provided consistent estimates of height above the ground. Height was correlated with other traits: species fruiting on living trees, earlier decay stages and deciduous hosts tend to fruit higher above the ground. While our data do not allow mechanistic explanations, our study demonstrates the potential of expert knowledge and identifies fruit body height above the ground as one consistent trait relevant to species' life history strategies. We recommend a more comprehensive expert survey as one cost-efficient way towards a more trait-based fungal ecology. (C) 2017 Elsevier Ltd and British Mycological Society. All rights reserved. [Norros, Veera] Univ Helsinki, Dept Biosci, Metapopulat Res Ctr, POB 65, FI-00014 Helsinki, Finland; [Norros, Veera] Finnish Environm Inst, Marine Res Ctr, POB 140, FI-00251 Helsinki, Finland; [Halme, Panu] Univ Jyvaskyla, Dept Biol & Environm Sci, POB 35, FI-40014 Jyvaskyla, Finland Norros, V (reprint author), Finnish Environm Inst, Marine Res Ctr, POB 140, FI-00251 Helsinki, Finland. veera.norros@helsinki.fi LUOVA graduate school; Ella and Georg Ehrnrooth Foundation; Maj and Tor Nessling foundation We are indebted to all of the experts who provided the fruiting site evaluations that made this work possible, and to Noora Kaunisto for drawing Fig. 1. We would also like to thank Claus Bassler and three anonymous reviewers for insightful comments which greatly improved the article. This study was funded by LUOVA graduate school and Ella and Georg Ehrnrooth Foundation through grants to VN and Maj and Tor Nessling foundation through a grant to PH. Abrego N, 2014, FUNGAL ECOL, V8, P18, DOI 10.1016/j.funeco.2013.12.007; Abrego N, 2015, BIOL CONSERV, V191, P469, DOI 10.1016/j.biocon.2015.07.005; Aguilar-Trigueros CA, 2015, FUNGAL BIOL REV, V29, P34, DOI 10.1016/j.fbr.2015.03.001; Akaike H, 1974, IEEE T AUTOMATIC CON, V19; Berglund H, 2008, BIOL CONSERV, V141, P3029, DOI 10.1016/j.biocon.2008.09.007; Berglund H, 2011, ECOGRAPHY, V34, P864, DOI 10.1111/j.1600-0587.2010.06141.x; Boddy L., 2008, ECOLOGY SAPROTROPHIC, P153; Bonte D, 2012, BIOL REV, V87, P290, DOI 10.1111/j.1469-185X.2011.00201.x; COMINS HN, 1980, J THEOR BIOL, V82, P205, DOI 10.1016/0022-5193(80)90099-5; Cooper N, 2016, METHODS ECOL EVOL, V7, P693, DOI 10.1111/2041-210X.12533; Dahlberg A, 2010, FUNGAL ECOL, V3, P50, DOI 10.1016/j.funeco.2009.10.004; Damschen EI, 2008, P NATL ACAD SCI USA, V105, P19078, DOI 10.1073/pnas.0802037105; Diaz S, 2016, NATURE, V529, P167, DOI 10.1038/nature16489; Dressaire E, 2016, P NATL ACAD SCI USA, V113, P2833, DOI 10.1073/pnas.1509612113; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Gardenfors U., 2010, RED LISTED SPECIES S; Gilpin M. E., 1986, CONSERVATION BIOL SC, P13; Gomez JM, 2007, PLANT SYST EVOL, V268, P119, DOI 10.1007/s00606-007-0568-4; Gregory PH, 1973, MICROBIOLOGY ATMOSPH; Halme P, 2013, INSECT CONSERV DIVER, V6, P502, DOI 10.1111/icad.12007; Halme P, 2012, FUNGAL ECOL, V5, P750, DOI 10.1016/j.funeco.2012.05.005; Halme P, 2009, ECOL INDIC, V9, P256, DOI 10.1016/j.ecolind.2008.04.005; Heilmann-Clausen J, 2001, MYCOL RES, V105, P575, DOI 10.1017/S0953756201003665; Heilmann-Clausen J, 2015, CONSERV BIOL, V29, P61, DOI 10.1111/cobi.12388; Henle K, 2004, BIODIVERS CONSERV, V13, P207, DOI 10.1023/B:BIOC.0000004319.91643.9e; Hottola J, 2009, J ECOL, V97, P1320, DOI 10.1111/j.1365-2745.2009.01583.x; Hussein T, 2013, J AEROSOL SCI, V61, P81, DOI 10.1016/j.jaerosci.2013.03.004; Jonsson MT, 2008, J ECOL, V96, P1065, DOI 10.1111/j.1365-2745.2008.01411.x; Junninen K, 2011, BIOL CONSERV, V144, P11, DOI 10.1016/j.biocon.2010.07.010; Jusino M.A., 2016, P R SOC B BIOL, V283; Kattge J, 2011, GLOBAL CHANGE BIOL, V17, P2905, DOI 10.1111/j.1365-2486.2011.02451.x; Kauserud H, 2008, FUNGAL ECOL, V1, P19, DOI 10.1016/j.funeco.2007.12.001; Kotiranta H, 2009, NORRLINIA, V19, P1; KOTIRANTA H, 2010, 2010 RED LIST FINNIS, P249; Kramer CL., 1982, DECOMPOSER BASIDIOMY, P33; Lonsdale D., 2008, EUR J FOR RES, V127; Makinen H, 2006, ECOL APPL, V16, P1865, DOI 10.1890/1051-0761(2006)016[1865:PTDOSP]2.0.CO;2; Massman WJ, 1999, BOUND-LAY METEOROL, V91, P81, DOI 10.1023/A:1001810204560; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; Nathan R, 2011, THEOR ECOL-NETH, V4, P113, DOI 10.1007/s12080-011-0115-3; Nathan R, 2008, P NATL ACAD SCI USA, V105, P19052, DOI 10.1073/pnas.0800375105; Niemela T., 2016, SUOMEN KAAVAT POLYPO; Niemela T., 2005, KAAVAT PUIDEN SIENET; Norden J, 2013, J ECOL, V101, P701, DOI 10.1111/1365-2745.12085; Norros V., 2013, MEASURING MODELLING; Norros V, 2015, ECOL EVOL, V5, P3312, DOI 10.1002/ece3.1589; Norros V, 2014, ECOLOGY, V95, P1612, DOI 10.1890/13-0877.1; Norros V, 2012, OIKOS, V121, P961, DOI 10.1111/j.1600-0706.2012.20052.x; North A, 2011, EVOLUTION, V65, P1739, DOI 10.1111/j.1558-5646.2011.01254.x; Nuss I., 1975, J CRAMER VADUZ; Ockinger E, 2010, ECOL LETT, V13, P969, DOI 10.1111/j.1461-0248.2010.01487.x; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Pereira HM, 2004, ECOL APPL, V14, P730, DOI 10.1890/02-5405; Poethke HJ, 2011, AM NAT, V177, P792, DOI 10.1086/659995; Quinn G.P., 2002, EXPT DESIGN DATA ANA; Rassi P, 2010, 2010 RED LIST FINNIS; Revell LJ, 2012, METHODS ECOL EVOL, V3, P217, DOI 10.1111/j.2041-210X.2011.00169.x; Revell LJ, 2010, METHODS ECOL EVOL, V1, P319, DOI 10.1111/j.2041-210X.2010.00044.x; Schiek D, 2012, ECONOMIC AND SOCIAL INTEGRATION: THE CHALLENGE FOR EU CONSTITUTIONAL LAW, P53; SCHWARZ G, 1978, ANN STAT, V6, P461, DOI 10.1214/aos/1176344136; Seinfeld J. H., 2006, ATMOSPHERIC CHEM PHY; Silvertown J, 2009, TRENDS ECOL EVOL, V24, P467, DOI 10.1016/j.tree.2009.03.017; Stokland JN, 2011, FOREST ECOL MANAG, V261, P1707, DOI 10.1016/j.foreco.2011.01.003; Stull RB, 1988, INTRO BOUNDARY LAYER; Travis JMJ, 2010, DIVERS DISTRIB, V16, P690, DOI 10.1111/j.1472-4642.2010.00674.x; Webb CT, 2010, ECOL LETT, V13, P267, DOI 10.1111/j.1461-0248.2010.01444.x; Woodcock P, 2015, ROUTLEDGE HANDBOOK OF FOREST ECOLOGY, P422 68 0 0 0 4 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND 1754-5048 1878-0083 FUNGAL ECOL Fungal Ecol. AUG 2017 28 53 65 10.1016/j.funeco.2017.04.004 13 Ecology; Mycology Environmental Sciences & Ecology; Mycology EY5AY WOS:000403990800006 2018-11-22 J Janca, M; Gvozdik, L Janca, Matous; Gvozdik, Lumir Costly neighbours: Heterospecific competitive interactions increase metabolic rates in dominant species SCIENTIFIC REPORTS English Article INTERFERENCE COMPETITION; INTRASPECIFIC VARIATION; TERRESTRIAL SALAMANDER; ENERGY-METABOLISM; NATURAL-SELECTION; NEWTS; SIZE; CONSEQUENCES; AGGRESSION; PHYSIOLOGY The energy costs of self-maintenance (standard metabolic rate, SMR) vary substantially among individuals within a population. Despite the importance of SMR for understanding life history strategies, ecological sources of SMR variation remain only partially understood. Stress-mediated increases in SMR are common in subordinate individuals within a population, while the direction and magnitude of the SMR shift induced by interspecific competitive interactions is largely unknown. Using laboratory experiments, we examined the influence of con-and heterospecific pairing on SMR, spontaneous activity, and somatic growth rates in the sympatrically living juvenile newts Ichthyosaura alpestris and Lissotriton vulgaris. The experimental pairing had little influence on SMR and growth rates in the smaller species, L. vulgaris. Individuals exposed to con-and heterospecific interactions were more active than individually reared newts. In the larger species, I. alpestris, heterospecific interactions induced SMR to increase beyond values of individually reared counterparts. Individuals from heterospecific pairs and larger conspecifics grew faster than did newts in other groups. The plastic shift in SMR was independent of the variation in growth rate and activity level. These results reveal a new source of individual SMR variation and potential costs of co-occurrence in ecologically similar taxa. [Janca, Matous] Masaryk Univ, Dept Bot & Zool, Kotlarska 267-2, CS-61137 Brno, Czech Republic; [Gvozdik, Lumir] Czech Acad Sci, Inst Vertebrate Biol, Kvetna 8, Brno 60365, Czech Republic Gvozdik, L (reprint author), Czech Acad Sci, Inst Vertebrate Biol, Kvetna 8, Brno 60365, Czech Republic. gvozdik@brno.cas.cz Gvozdik, Lumir/G-1178-2014 Gvozdik, Lumir/0000-0002-6495-2233 Czech Science Foundation [15-07140S] We thank the two anonymous reviewers for their comments on the previous version of this paper and P. Kristin for his help with experiments and care of animals. This research was supported by the Czech Science Foundation (15-07140S) and institutional support (RVO: 68081766) to L.G. Artacho P, 2009, EVOLUTION, V63, P1044, DOI 10.1111/j.1558-5646.2008.00603.x; Balogova M, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0128155; BENJAMINI Y, 1995, J ROY STAT SOC B MET, V57, P289; Biro PA, 2010, TRENDS ECOL EVOL, V25, P653, DOI 10.1016/j.tree.2010.08.003; Boratynski Z, 2010, FUNCT ECOL, V24, P1252, DOI 10.1111/j.1365-2435.2010.01764.x; Burton T, 2011, P ROY SOC B-BIOL SCI, V278, P3465, DOI 10.1098/rspb.2011.1778; Careau V, 2008, OIKOS, V117, P641, DOI 10.1111/j.0030-1299.2008.16513.x; Chappell MA, 2007, J EXP BIOL, V210, P4179, DOI 10.1242/jeb.006163; DeLong JP, 2014, J ANIM ECOL, V83, P51, DOI 10.1111/1365-2656.12065; Gillooly JF, 2001, SCIENCE, V293, P2248, DOI 10.1126/science.1061967; Grether GF, 2013, ANN NY ACAD SCI, V1289, P48, DOI 10.1111/nyas.12082; Gvozdik L, 2017, J EXP BIOL, V220, P1106, DOI 10.1242/jeb.145573; Hou C, 2010, P NATL ACAD SCI USA, V107, P3634, DOI 10.1073/pnas.0908071107; Killen SS, 2013, TRENDS ECOL EVOL, V28, P651, DOI 10.1016/j.tree.2013.05.005; Kristin P, 2014, J EXP ZOOL PART A, V321, P183, DOI 10.1002/jez.1849; Kristin P, 2012, COMP BIOCHEM PHYS A, V163, P147, DOI 10.1016/j.cbpa.2012.05.201; Lighton JRB, 2008, MEASURING METABOLIC; Mathot KJ, 2015, TRENDS ECOL EVOL, V30, P199, DOI 10.1016/j.tree.2015.01.010; METCALFE NB, 1995, ANIM BEHAV, V49, P431, DOI 10.1006/anbe.1995.0056; Millidine KJ, 2009, P R SOC B, V276, P3989, DOI 10.1098/rspb.2009.1219; Nagy KA, 1999, ANNU REV NUTR, V19, P247, DOI 10.1146/annurev.nutr.19.1.247; Nilsson JA, 2002, P ROY SOC B-BIOL SCI, V269, P1735, DOI 10.1098/rspb.2002.2071; Nussbaum SE, 2016, J HERPETOL, V50, P388, DOI 10.1670/15-160; Peiman KS, 2010, Q REV BIOL, V85, P133, DOI 10.1086/652374; Podhajsky L, 2016, COMP BIOCHEM PHYS A, V201, P110, DOI 10.1016/j.cbpa.2016.07.003; Ros AFH, 2014, J EXP BIOL, V217, P1768, DOI 10.1242/jeb.093666; Rosenfeld J, 2015, J ANIM ECOL, V84, P4, DOI 10.1111/1365-2656.12260; Samajova P, 2010, FUNCT ECOL, V24, P1023, DOI 10.1111/j.1365-2435.2010.01720.x; Schubert SN, 2009, GEN COMP ENDOCR, V161, P271, DOI 10.1016/j.ygcen.2009.01.013; Sloman KA, 2000, FISH PHYSIOL BIOCHEM, V23, P49, DOI 10.1023/A:1007855100185; Smyers SD, 2002, HERPETOLOGICA, V58, P422, DOI 10.1655/0018-0831(2002)058[0422:IAICOB]2.0.CO;2; Speakman JR, 2004, PHYSIOL BIOCHEM ZOOL, V77, P900, DOI 10.1086/427059; SPEAKMAN JR, 1997, DOUBLY LABELLED WATE; Van Buskirk J, 2000, ECOLOGY, V81, P3009, DOI 10.1890/0012-9658(2000)081[3009:PIPPIL]2.0.CO;2; Van Buskirk J, 2007, J ANIM ECOL, V76, P559, DOI 10.1111/j.1365-2656.2007.01218.x; Wack CL, 2012, COMP BIOCHEM PHYS A, V161, P153, DOI 10.1016/j.cbpa.2011.10.017; WALLS SC, 1990, ECOLOGY, V71, P307, DOI 10.2307/1940270; Zhang L, 2015, J THEOR BIOL, V380, P280, DOI 10.1016/j.jtbi.2015.05.023 38 0 0 1 8 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 2045-2322 SCI REP-UK Sci Rep JUL 12 2017 7 5177 10.1038/s41598-017-05485-9 6 Multidisciplinary Sciences Science & Technology - Other Topics FA4OA WOS:000405421400017 28701786 DOAJ Gold, Green Published 2018-11-22 J Nagler, C; Hornig, MK; Haug, JT; Noever, C; Hoeg, JT; Glenner, H Nagler, Christina; Hoernig, Marie K.; Haug, Joachim T.; Noever, Christoph; Hoeg, Jens T.; Glenner, Henrik The bigger, the better? Volume measurements of parasites and hosts: Parasitic barnacles (Cirripedia, Rhizocephala) and their decapod hosts PLOS ONE English Article BRIAROSACCUS-CALLOSUS BOSCHMA; LIFE-HISTORY STRATEGIES; BODY-SIZE; REPRODUCTIVE OUTPUT; HERMIT-CRABS; EGG SIZE; PELTOGASTRIDAE CRUSTACEA; COMPARATIVE MORPHOLOGY; K-SELECTION; R-SELECTION Rhizocephala, a group of parasitic castrators of other crustaceans, shows remarkable morphological adaptations to their lifestyle. The adult female parasite consists of a body that can be differentiated into two distinct regions: a sac-like structure containing the reproductive organs (the externa), and a trophic, root like system situated inside the hosts body (the interna). Parasitism results in the castration of their hosts, achieved by absorbing the entire reproductive energy of the host. Thus, the ratio of the host and parasite sizes is crucial for the understanding of the parasite's energetic cost. Using advanced imaging methods (micro-CT in conjunction with 3D modeling), we measured the volume of parasitic structures (externa, interna, egg mass, egg number, visceral mass) and the volume of the entire host. Our results show positive correlations between the volume of (1) entire rhizocephalan (externa + interna) and host body, (2) rhizocephalan externa and host body, (3) rhizocephalan visceral mass and rhizocephalan body, (4) egg mass and rhizocephalan externa, (5) rhizocephalan egg mass and their egg number. Comparing the rhizocephalan Sylon hippolytes, a parasite of caridean shrimps, and representatives of Peltogaster, parasites of hermit crabs, we could match their different traits on a reconstructed relationship. With this study we add new and significant information to our global understanding of the evolution of parasitic castrators, of interactions between a parasitic castrator and its host and of different parasitic strategies within parasitic castrators exemplified by rhizocephalans. [Nagler, Christina; Haug, Joachim T.] Ludwig Maximilians Univ Munchen, Dept Biol 2, Planegg Martinsried, Germany; [Hoernig, Marie K.] Ernst Moritz Arndt Univ Greifswald, Cytol & Evolutionary Biol, Greifswald, Germany; [Haug, Joachim T.] Ludwig Maximilians Univ Munchen, GeoBioctr, Munich, Germany; [Noever, Christoph; Glenner, Henrik] Univ Bergen, Dept Marine Biol, Bergen, Norway; [Hoeg, Jens T.] Univ Copenhagen, Marine Biol Sect, Dept Biol, Copenhagen, Denmark Nagler, C (reprint author), Ludwig Maximilians Univ Munchen, Dept Biol 2, Planegg Martinsried, Germany. christina.nagler@palaeo-evo-clevo.info publicationpage, cmec/B-4405-2017 Noever, Christoph/0000-0002-1455-4966; Nagler, Christina/0000-0003-2876-6342 Studienstiftung des deutschen Volkes; German Research Foundation (DFG) [Ha 6300/3-1]; Carlsberg Foundation [2008_01_0491, 2013_01_0130]; Danish Agency for Science, Technology and Innovation [4070001486]; Norwegian Biodiversity Information Centre (NBIC); The University of Bergen (Norway); NBIC; The University of Greifswald (Germany); DFG [INST 292/119-1 FUGG, INST 292/120-1 FUGG] CN and MKH are grateful to be funded by the Studienstiftung des deutschen Volkes with a PhD fellowship. CN is furthermore grateful to be funded by the Studienstiftung des deutschen Volkes with a grant fora six month research stay in Bergen, Norway. JTH is kindly funded by the German Research Foundation (DFG) under Ha 6300/3-1. JT Hoeg is grateful to be funded by the Carlsberg Foundation under 2008_01_0491 and 2013_01_0130 and by the Danish Agency for Science, Technology and Innovation under 4070001486. C Noever and HG were financed by the Norwegian Biodiversity Information Centre (NBIC). HG was furthermore financed by the Carlsberg Foundation under 2008_01_0491. The University of Bergen (Norway) and the NBIC financed the sampling cruise. The University of Greifswald (Germany) financed the micro CT scans with a DFG grant under INST 292/119-1 FUGG and INST 292/120-1 FUGG. ALLEN J. A., 1966, P45; Alvarez D, 2002, FUNCT ECOL, V16, P640, DOI 10.1046/j.1365-2435.2002.00658.x; Anger K, 1998, J CRUSTACEAN BIOL, V18, P823, DOI 10.2307/1549156; Barnes M., 1989, OCEANOGR MAR BIOL AN, P27; Battoni GM, 1948, I PUBBL STN ZOOL NAP, V21, P236; BAUDOIN M, 1975, EVOLUTION, V29, P335, DOI 10.1111/j.1558-5646.1975.tb00213.x; BISHOP RK, 1979, J FISH DIS, V2, P131, DOI 10.1111/j.1365-2761.1979.tb00150.x; Bolte S, 2006, J MICROSC-OXFORD, V224, P13, DOI DOI 10.1111/J.1365-2818.2006.01706.X; Boschma H., 1962, Discovery Reports, V33, P55; BOSCHMA H., 1930, PROC U S NATION MUS, V76, P1; BOWER SM, 1990, PATHOLOGY IN MARINE SCIENCE, P267; Bresciani J, 2001, J MORPHOL, V249, P9, DOI 10.1002/jmor.1039; Bush SE, 2009, FUNCT ECOL, V23, P578, DOI 10.1111/j.1365-2435.2008.01535.x; Castillo-Neyra R, 2015, PLOS NEGLECT TROP D, V9, DOI 10.1371/journal.pntd.0003433; Cavaleiro FI, 2014, INT J PARASITOL, V44, P173, DOI 10.1016/j.ijpara.2013.10.009; CEDHAGEN T, 1995, CRUSTACEANA, V68, P659; CLARKE A, 1991, FUNCT ECOL, V5, P724, DOI 10.2307/2389534; Costa S, 2013, CRUSTACEANA, V86, P34, DOI 10.1163/15685403-00003150; Fernando CH, 1970, PERCA FLUVIATILIS, V19, P1; GALIL BSA, 1995, J CRUSTACEAN BIOL, V15, P659, DOI 10.2307/1548815; Gillooly JF, 2001, SCIENCE, V293, P2248, DOI 10.1126/science.1061967; GLENNER H, 1995, NATURE, V377, P147, DOI 10.1038/377147a0; Glenner H, 2000, MAR BIOL, V136, P249, DOI 10.1007/s002270050683; Glenner H, 2002, MODERN APPROACHES TO THE STUDY OF CRUSTACEA, P301; Glenner H, 2006, MOL PHYLOGENET EVOL, V41, P528, DOI 10.1016/j.ympev.2006.06.004; Glenner H, 2010, EXP PARASITOL, V125, P3, DOI 10.1016/j.exppara.2009.09.019; GOTTO R. V., 1960, ANN AND MAG NAT HIST, V3, P211; Guha Arun, 2013, Journal of Parasitic Diseases, V37', P118, DOI 10.1007/s12639-012-0144-x; Harrison L., 1915, Parasitology Cambridge, V8; HARVEY PH, 1991, PHILOS T ROY SOC B, V332, P31, DOI 10.1098/rstb.1991.0030; Haug C, 2013, PALAEONTOL ELECTRON, V6; Haug Carolin, 2011, International Journal of Zoology, V2011, P1; Haug C, 2012, DEV GENES EVOL, V222, P253, DOI 10.1007/s00427-012-0407-7; HAWKES CR, 1985, P BIOL SOC WASH, V98, P935; HOEG JT, 1990, J CRUSTACEAN BIOL, V10, P37, DOI 10.2307/1548668; HOEG JT, 1985, J EXP MAR BIOL ECOL, V89, P221, DOI 10.1016/0022-0981(85)90128-5; HOEG JT, 1982, J EXP MAR BIOL ECOL, V58, P87, DOI 10.1016/0022-0981(82)90099-5; Hoeg JT, 1995, OCEANOGR MAR BIOL, V33, P427; HOEG JT, 1995, J MAR BIOL ASSOC UK, V75, P517, DOI 10.1017/S0025315400038996; HOEG JT, 1993, ZOOL SCR, V22, P363, DOI 10.1111/j.1463-6409.1993.tb00365.x; Hoeg JT, 1985, MARINE INVERTEBRATES, V6; Hornig MK, 2016, PALAEONTOL ELECTRON, V19; Johnson KP, 2005, EVOLUTION, V59, P1744; Kashenko S. D., 2003, RUSSIAN J MARINE BIO, V29, P150, DOI DOI 10.1023/A:1024664631438; KIRK WDJ, 1991, ECOL ENTOMOL, V16, P351, DOI 10.1111/j.1365-2311.1991.tb00227.x; KURIS AM, 1974, Q REV BIOL, V49, P129, DOI 10.1086/408018; Kuris AM, 2000, DEV AN VET, V32, P9; Lafferty KD, 2002, TRENDS ECOL EVOL, V17, P507, DOI 10.1016/S0169-5347(02)02615-0; Lafferty KD, 2009, TRENDS PARASITOL, V25, P564, DOI 10.1016/j.pt.2009.09.003; Lajeunesse MJ, 2002, P ROY SOC B-BIOL SCI, V269, P703, DOI 10.1098/rspb.2001.1943; Llodra ER, 2000, J MAR BIOL ASSOC UK, V80, P473, DOI 10.1017/S0025315400002174; LUTZEN J, 1981, J EXP MAR BIOL ECOL, V50, P231, DOI 10.1016/0022-0981(81)90052-6; LUTZEN J, 1987, J CRUSTACEAN BIOL, V7, P493, DOI 10.2307/1548297; Lutzen J, 1996, ZOOL SCR, V25, P171, DOI 10.1111/j.1463-6409.1996.tb00157.x; Lutzen Jorgen, 1992, Bulletin of the National Science Museum Series A (Zoology), V18, P117; MAC ARTHUR ROBERT H., 1967; MACDIARMID AB, 1989, J EXP MAR BIOL ECOL, V127, P229, DOI 10.1016/0022-0981(89)90076-2; Martin J. W., 2009, DECAPOD CRUSTACEAN P, V18, P197; McDermott JJ, 2010, J EXP MAR BIOL ECOL, V394, P2, DOI 10.1016/j.jembe.2010.06.022; MCLAIN DK, 1991, OIKOS, V60, P263, DOI 10.2307/3544875; McMurrich JP, 1917, T ROY SOC CAN SECT 3, V11, P47; Metscher Brian D., 2009, BMC Physiology, V9, P11, DOI 10.1186/1472-6793-9-11; Morand S, 2000, BIOL J LINN SOC, V70, P239, DOI 10.1006/bijl.1999.0370; Nilsson-Cantell CA, 1921, ZOOL BIDR UPPS, V7, P75; Noever C, 2016, J SEA RES, V113, P58, DOI 10.1016/j.seares.2015.08.002; Noever C, 2016, ZOOL J LINN SOC-LOND, V176, P3, DOI 10.1111/zoj.12304; Oh CW, 1999, J CRUSTACEAN BIOL, V19, P252, DOI 10.2307/1549231; PARRY GD, 1981, OECOLOGIA, V48, P260, DOI 10.1007/BF00347974; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PIKE R. B., 1960, JOUR LINN SOC LONDON ZOOL, V44, P239; Poulin R, 1997, ACTA OECOL, V18, P621, DOI 10.1016/S1146-609X(97)80047-1; Poulin R, 2011, ADV PARASIT, V74, P1, DOI 10.1016/B978-0-12-385897-9.00001-X; Reinhard Edward G., 1946, JOUR WASHINGTON ACAD SCI, V36, P127; Reinhard EG, 1942, J MORPHOL, V70, P69, DOI 10.1002/jmor.1050700105; Ritchie G., 1993, P153; ROSS DM, 1971, NATURE, V230, P401, DOI 10.1038/230401a0; ROTHLISBERG PC, 1976, FISH B-NOAA, V74, P994; Samuelsen TJ, 1970, BIOL 6 SPECIES ANOMU, V45, P25; Santos S, 1997, INTERCIENCIA, V22, P259; Sasal P, 1999, J ANIM ECOL, V68, P437, DOI 10.1046/j.1365-2656.1999.00313.x; SCHOLTZ G, 1995, ZOOL J LINN SOC-LOND, V113, P289, DOI 10.1006/zjls.1995.0011; Sibly RM, 1986, PHYSL ECOLOGY ANIMAL; SLOAN NA, 1984, J EXP MAR BIOL ECOL, V84, P111, DOI 10.1016/0022-0981(84)90205-3; Sombke A, 2015, J COMP NEUROL, V523, P1281, DOI 10.1002/cne.23741; THESSALOULEGAKI M, 1992, ESTUAR COAST SHELF S, V35, P593, DOI 10.1016/S0272-7714(05)80041-1; Thompson S. N., 1993, P125; Timi JT, 2005, PARASITOL RES, V95, P1, DOI 10.1007/s00436-004-1242-1; VANDAMME PA, 1993, J FISH BIOL, V42, P395, DOI 10.1006/jfbi.1993.1042; VARADARAJAN S, 1982, MAR ECOL PROG SER, V8, P197, DOI 10.3354/meps008197; Walker G, 2001, J MORPHOL, V249, P1; WALKER SE, 1988, PALAEOGEOGR PALAEOCL, V63, P45, DOI 10.1016/0031-0182(88)90090-9; WENNER EL, 1979, CRUSTACEANA, V37, P293, DOI 10.1163/156854079X01176; Yoshida R, 2016, ZOOTAXA, V4139, P209, DOI 10.11646/zootaxa.4139.2.5; Yoshida R, 2014, J CRUSTACEAN BIOL, V34, P467, DOI 10.1163/1937240X-00002246; Yoshida R, 2011, ZOOL SCI, V28, P853, DOI 10.2108/zsj.28.853 95 2 3 2 15 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One JUL 5 2017 12 7 e0179958 10.1371/journal.pone.0179958 18 Multidisciplinary Sciences Science & Technology - Other Topics FA2LF WOS:000405272200033 28678878 DOAJ Gold, Green Published 2018-11-22 J McNeish, RE; Benbow, ME; McEwan, RW McNeish, Rachel E.; Benbow, M. Eric; McEwan, Ryan W. Removal of the Invasive Shrub, Lonicera maackii (Amur Honeysuckle), from a Headwater Stream Riparian Zone Shifts Taxonomic and Functional Composition of the Aquatic Biota INVASIVE PLANT SCIENCE AND MANAGEMENT English Article Community; diversity; macroinvertebrate LIFE-HISTORY STRATEGIES; TRAIT-BASED APPROACH; SEASONAL-VARIATION; MACROINVERTEBRATE COMMUNITIES; AGRICULTURAL LANDSCAPE; ARTHROPOD COMMUNITIES; PLANT COMMUNITY; URBAN STREAM; LEAF-LITTER; DECOMPOSITION Riparian plant invasions can result in near-monocultures along stream and river systems, prompting management agencies to target invasive species for removal as an ecological restoration strategy. Riparian plant invaders can alter resource conditions in the benthos and drive bottom-up shifts in aquatic biota. However, the influence of management activities on the structure and function of aquatic communities is not well understood. We investigated how removal of a riparian invader, Lonicera maackii (Amur honeysuckle), influenced aquatic macroinvertebrate community functional and taxonomic diversity in a headwater stream. We hypothesized that removal of L. maackii from invaded riparia would result in (H-1) increased aquatic macroinvertebrate abundance, density, and diversity; (H-2) a taxonomic and functional shift in community composition; and, in particular, (H-3) increased functional diversity. Aquatic macroinvertebrates were sampled monthly from autumn 2010 to winter 2013 in headwater stream riffles with a dense riparian L. maackii invasion and those where L. maackii had been experimentally removed. We found macroinvertebrate density was significantly higher in the L. maackii removal reach (P<0.05) and that macroinvertebrate community structure and functional trait presence was distinct between stream reaches and across seasons (P<0.05). The removal reach exhibited greater functional richness during spring and summer and had more unique functionally relevant taxa (20% and 85%) compared with the L. maackii reach (5% and 75%) during summer and autumn seasons. Our results suggest bottom-up processes link restoration activities in the riparian corridor and aquatic biota through alterations of functional composition in the benthic community. [McNeish, Rachel E.; McEwan, Ryan W.] Univ Dayton, Dept Biol, Dayton, OH 45469 USA; [Benbow, M. Eric] Michigan State Univ, Dept Entomol, E Lansing, MI 48824 USA; [Benbow, M. Eric] Michigan State Univ, Dept Osteopath Med Specialties, E Lansing, MI 48824 USA; [McNeish, Rachel E.] Loyola Univ Chicago, Dept Biol, Chicago, IL 60660 USA McNeish, RE (reprint author), Univ Dayton, Dept Biol, Dayton, OH 45469 USA. rachel.e.mcneish@gmail.com National Science Foundation (NSF) [DEB 1352995]; University of Dayton Office for Graduate Academic Affairs through the Graduate Student Summer Fellowship Program We would like to thank the Centerville-Washington Park District, OH for use of the stream field site, Julia Chapman and Tiffany Schriever for assistance with R programming, Jim Crutchfield for assistance in nutrient analyses, and Casey Hanley for use of laboratory equipment and space. Special thanks to Eryn Moore, Courtney Dvorsky, Ryan Reihart, Dani Theimann, Patrick Vrablik, Michael Ruddy, and all the undergraduate students at the University of Dayton who contributed time and effort to field and laboratory work. This work was supported by the National Science Foundation (NSF: DEB 1352995) to RWM and MEB and in part by the University of Dayton Office for Graduate Academic Affairs through the Graduate Student Summer Fellowship Program. Any opinions, findings, and conclusions or recommendations expressed are those of the authors and do not necessarily reflect the views of the National Science Foundation. Ackerly DD, 2007, ECOL LETT, V10, P135, DOI 10.1111/j.1461-0248.2006.01006.x; Allan J. D., 2007, STREAM ECOLOGY STRUC; Allison SD, 2012, ECOL LETT, V15, P1058, DOI 10.1111/j.1461-0248.2012.01807.x; Arthur MA, 2012, PLANT ECOL, V213, P1571, DOI 10.1007/s11258-012-0112-7; Ballard M, 2013, ENVIRON ENTOMOL, V42, P851, DOI 10.1603/EN12315; Barber C, 2015, GEOMETRY MESH GENERA; Baxter CV, 2005, FRESHWATER BIOL, V50, P201, DOI 10.1111/j.1365-2427.2004.01328.x; Beche LA, 2006, FRESHWATER BIOL, V51, P56, DOI 10.1111/j.1365-2427.2005.01473.x; Boersma KS, 2016, ECOLOGY, V97, P583, DOI 10.1890/15-0688; Boyce RL, 2012, BIOL INVASIONS, V14, P671, DOI 10.1007/s10530-011-0108-6; Buddle CM, 2004, AM MIDL NAT, V151, P15, DOI 10.1674/0003-0031(2004)151[0015:GSAIRF]2.0.CO;2; CASE TJ, 1981, P NATL ACAD SCI-BIOL, V78, P5021, DOI 10.1073/pnas.78.8.5021; Chittka L, 2001, NATURE, V411, P653, DOI 10.1038/35079676; Christopher CC, 2012, AM MIDL NAT, V167, P256, DOI 10.1674/0003-0031-167.2.256; Cipollini D, 2008, INT J PLANT SCI, V169, P371, DOI 10.1086/526470; Cipollini D, 2008, J CHEM ECOL, V34, P144, DOI 10.1007/s10886-008-9426-2; Collier MH, 2002, AM MIDL NAT, V147, P60, DOI 10.1674/0003-0031(2002)147[0060:DPRAAB]2.0.CO;2; Conley AK, 2011, ECOL APPL, V21, P329, DOI 10.1890/10-0543.1; CUMMINS KW, 1979, ANNU REV ECOL SYST, V10, P147, DOI 10.1146/annurev.es.10.110179.001051; CUMMINS KW, 1974, BIOSCIENCE, V24, P631, DOI 10.2307/1296676; D'Angelo E, 2001, J ENVIRON QUAL, V30, P2206, DOI 10.2134/jeq2001.2206; Dwire KA, 2003, FOREST ECOL MANAG, V178, P61, DOI 10.1016/S0378-1127(03)00053-7; Ehrenfeld JG, 2010, ANNU REV ECOL EVOL S, V41, P59, DOI 10.1146/annurev-ecolsys-102209-144650; Funk JL, 2008, TRENDS ECOL EVOL, V23, P695, DOI 10.1016/j.tree.2008.07.013; Garssen AG, 2015, GLOBAL CHANGE BIOL, V21, P2881, DOI 10.1111/gcb.12921; Gorchov DL, 2003, PLANT ECOL, V166, P13, DOI 10.1023/A:1023208215796; Greene SL, 2014, RIVER RES APPL, V30, P663, DOI 10.1002/rra.2659; GREGORY SV, 1991, BIOSCIENCE, V41, P540, DOI 10.2307/1311607; Gross N, 2009, FUNCT ECOL, V23, P1167, DOI 10.1111/j.1365-2435.2009.01591.x; HAWKINS CP, 1981, ECOLOGY, V62, P387, DOI 10.2307/1936713; Hladyz S, 2011, ADV ECOL RES, V44, P211, DOI 10.1016/B978-0-12-374794-5.00004-3; Hladyz S, 2011, J APPL ECOL, V48, P443, DOI 10.1111/j.1365-2664.2010.01924.x; JACKSON DA, 1995, ECOSCIENCE, V2, P297, DOI 10.1080/11956860.1995.11682297; Jacobs SM, 2007, ECOSYSTEMS, V10, P1231, DOI 10.1007/s10021-007-9092-1; Johnson VS, 2006, FOREST ECOL MANAG, V228, P124, DOI 10.1016/j.foreco.2006.02.033; Jost L, 2006, OIKOS, V113, P363, DOI 10.1111/j.2006.0030-1299.14714.x; KEDDY PA, 1992, J VEG SCI, V3, P157, DOI 10.2307/3235676; Keeton WS, 2007, ECOL APPL, V17, P852, DOI 10.1890/06-1172; Laliberte E, 2015, FD MEASURING FUNCTIO; Laliberte E, 2010, ECOLOGY, V91, P299, DOI 10.1890/08-2244.1; Lamouroux N, 2002, ECOLOGY, V83, P1792, DOI 10.2307/3071765; LEMMON PAUL E., 1956, FOREST SCI, V2, P314; Levin LA, 2006, ECOLOGY, V87, P419, DOI 10.1890/04-1752; Loomis JD, 2014, AM MIDL NAT, V171, P204, DOI 10.1674/0003-0031-171.2.204; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; Mason NWH, 2005, OIKOS, V111, P112, DOI 10.1111/j.0030-1299.2005.13886.x; McCune B, 2002, ANAL ECOLOGICAL COMM, P102; McEwan RW, 2012, AM MIDL NAT, V168, P43; McEwan RW, 2010, FLORA, V205, P475, DOI 10.1016/j.flora.2009.12.031; McEwan RW, 2009, BIOL INVASIONS, V11, P1053, DOI 10.1007/s10530-008-9316-0; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; Mcneish RE, 2015, RIVER RES APPL, V31, P1131, DOI 10.1002/rra.2808; McNeish RE, 2016, J TORREY BOT SOC, V143, P367, DOI 10.3159/TORREY-D-15-00049.1; McNeish RE, 2012, BIOL INVASIONS, V14, P1881, DOI 10.1007/s10530-012-0199-8; Merritt RW, 2008, INTRO AQUATIC INSECT; Mineau MM, 2012, ECOLOGY, V93, P1501, DOI 10.1890/11-1700.1; Mineau MM, 2011, ECOSYSTEMS, V14, P353, DOI 10.1007/s10021-011-9415-0; Murphy JF, 2000, FRESHWATER BIOL, V43, P617; Myers CV, 2003, AM MIDL NAT, V150, P231, DOI 10.1674/0003-0031(2003)150[0231:SVIPRI]2.0.CO;2; Naiman RJ, 1997, ANNU REV ECOL SYST, V28, P621, DOI 10.1146/annurev.ecolsys.28.1.621; Oksanen AJ, 2015, VEGAN COMMUNITY ECOL; Olden JD, 2010, AM FISH S S, V73, P83; Oliver J. Douglas, 1996, Castanea, V61, P244; Peckarsky BL, 1990, FRESHWATER MACROINVE; Petchey OL, 2006, ECOL LETT, V9, P741, DOI 10.1111/j.1461-0248.2006.00924.x; Poff NL, 2006, J N AM BENTHOL SOC, V25, P730, DOI 10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2; Pohlert A, 2015, PMCMR CALCULATE MULT; Polis GA, 1996, AM NAT, V147, P813, DOI 10.1086/285880; Poulette MM, 2012, ECOL APPL, V22, P412, DOI 10.1890/11-1105.1; Reich PB, 2004, P NATL ACAD SCI USA, V101, P11001, DOI 10.1073/pnas.0403588101; Reinhart KO, 2006, DIVERS DISTRIB, V12, P776, DOI 10.1111/j.1366-9516.2006.00252.x; Richardson JS, 2010, RIVER RES APPL, V26, P55, DOI 10.1002/rra.1283; RICHARDSON JS, 1991, ECOLOGY, V72, P873, DOI 10.2307/1940589; Ricotta C, 2015, J VEG SCI, V26, P839, DOI 10.1111/jvs.12291; Schneider WJ, 1957, OHIO J SCI, V57, P11; Schriever TA, 2015, FRESHW SCI, V34, P399, DOI 10.1086/680518; Shewhart L, 2014, ENVIRON ENTOMOL, V43, P1584, DOI 10.1603/EN14183; Sokal R. R., 1981, BIOMETRY PRINCIPLES; Swan CM, 2008, ECOSCIENCE, V15, P27, DOI 10.2980/1195-6860(2008)15[27:TRONRT]2.0.CO;2; Thompson RM, 1999, OIKOS, V87, P75, DOI 10.2307/3546998; Thorp JP, 2001, ECOLOGY CLASSIFICATI; Townsend CR, 2003, FRESHWATER BIOL, V48, P768, DOI 10.1046/j.1365-2427.2003.01043.x; Trammell TLE, 2012, BIOL INVASIONS, V14, P529, DOI 10.1007/s10530-011-0093-9; USDA, 1999, LON MAACK RUPR HERD; VANNOTE RL, 1980, CAN J FISH AQUAT SCI, V37, P130, DOI 10.1139/f80-017; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1722, DOI 10.1111/j.1365-2427.2008.02035.x; Villeger S, 2008, ECOLOGY, V89, P2290, DOI 10.1890/07-1206.1; Wallace JB, 1996, ANNU REV ENTOMOL, V41, P115, DOI 10.1146/annurev.en.41.010196.000555; Walsh CJ, 2005, J N AM BENTHOL SOC, V24, P706, DOI 10.1899/0887-3593(2005)024\\[0706:TUSSCK\\]2.0.CO;2; Webb CT, 2010, ECOL LETT, V13, P267, DOI 10.1111/j.1461-0248.2010.01444.x; Weiher E, 2001, ECOLOGICAL ASSEMBLY; Xiao Yu, 2012, Chinese Journal of Plant Ecology, V36, P353, DOI 10.3724/SP.J.1258.2012.00353; Yates ED, 2004, FOREST ECOL MANAG, V190, P119, DOI 10.1016/j.foreco.2003.11.008; Zar JH, 1999, BIOSTATISTICAL ANAL 94 3 3 4 9 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 1939-7291 1939-747X INVAS PLANT SCI MANA Invasive Plant Sci. Manag. JUL-SEP 2017 10 3 232 246 10.1017/inp.2017.22 15 Plant Sciences Plant Sciences FR0ID WOS:000418744200002 Bronze 2018-11-22 J Cuadros, A; Cheminee, A; Thiriet, P; Moranta, J; Vidal, E; Sintes, J; Sagrista, N; Cardona, L Cuadros, Amalia; Cheminee, Adrien; Thiriet, Pierre; Moranta, Joan; Vidal, Eva; Sintes, Jaime; Sagrista, Neus; Cardona, Luis The three-dimensional structure of Cymodocea nodosa meadows shapes juvenile fish assemblages at Fornells Bay (Minorca Island) REGIONAL STUDIES IN MARINE SCIENCE English Article Fish nursery; Habitat structure; Seagrass meadows; Cymodocea nodosa; Balearic Islands; Mediterranean Sea EASTERN MEDITERRANEAN SEA; CORAL-REEF FISHES; HABITAT COMPLEXITY; SEAGRASS BEDS; ADRIATIC SEA; ZOSTERA-NOLTII; SPARID FISHES; NURSERY ROLE; SETTLEMENT; SCALE The role of the meadows of the Mediterranean seagrass Cymodocea nodosa as nursery habitats for fish remains largely unknown and there are only few studies investigating the influence of their structure on juvenile assemblages. Here, we monitored juvenile fish assemblages among shallow Cymodocea nodosa meadows (0-1 m) in Minorca Island (north-western Mediterranean Sea) in both July and September 2013. To assess the influence of structural components on juvenile fish assemblages, we selected two different meadow structure types: heterogeneous with intermingled boulders and homogeneous meadows, i.e. without boulders. Juvenile fish assemblages varied significantly among these two meadow structures. Heterogeneous meadows had higher total juvenile density and species richness, where some species were only found in these portions, such as Coris julis and Serranus spp. Other species, such as Symphodus spp. and Sarpa salpa, were also more abundant within heterogeneous meadows. However, densities of some species were not increased in heterogeneous meadows demonstrating a specific response to habitat structure. For instance, Diplodus annularis displayed similar abundances in both heterogeneous and homogeneous portions of the meadow. Our study reveals that the intrinsic structural variability of seagrass meadows plays a key role for the assemblage of several fish species that are characterized by different early life history strategies. (C) 2017 Elsevier B.V. All rights reserved. [Cuadros, Amalia; Vidal, Eva; Sintes, Jaime; Sagrista, Neus] IEO, Estacio Invest Jaume Ferrer, POB 502, Mao 07701, Spain; [Cuadros, Amalia; Cheminee, Adrien] Univ Perpignan Via Domitia, CNRS, Ctr Format & Rech Environm Mediterraneens CEFREM, UMR 5110, Ave P Alduy, F-66860 Perpignan, France; [Cuadros, Amalia] Univ Murcia, Marine Ecol & Conservat Res Grp, Dept Ecol & Hydrol, Campus Espinardo, E-30100 Murcia, Spain; [Cheminee, Adrien] Septentr Environm, F-13008 Marseille, France; [Thiriet, Pierre] CRESCO, Stn Marine Dinard, UMR BOREA 7208, Museum Natl Hist Nat, 38 Rue Port Blanc, F-35800 Dinard, France; [Moranta, Joan] Ecosyst Oceanog Grp GRECO, COB, IEO, Moll De Ponent S-N, Palma De Mallorca 07015, Spain; [Cardona, Luis] Univ Barcelona, IRBio, Fac Biol, Avinguda Diagonal 643, E-08028 Barcelona, Spain; [Cardona, Luis] Univ Barcelona, Dept Evolutionary Biol Ecol & Environm Sci, Avinguda Diagonal 643, E-08028 Barcelona, Spain Cheminee, A (reprint author), Univ Perpignan Via Domitia, CNRS, Ctr Format & Rech Environm Mediterraneens CEFREM, UMR 5110, Ave P Alduy, F-66860 Perpignan, France.; Cheminee, A (reprint author), Septentr Environm, F-13008 Marseille, France. amalia.cuadros1@gmail.com; adriencheminee@gmail.com; pierre.d.thiriet@gmail.com; joan.moranta@ba.ieo.es; eva.vidal@um.ieo.es; jaimesintesvila@gmail.com; neus.sb@gmail.com; luis.cardona@ub.edu Moranta, Joan/B-5522-2008 Moranta, Joan/0000-0002-9814-0735; Cheminee, Adrien/0000-0002-2982-2142 Govern de les Illes Balears (Oceanographic Center of Balearic Islands); Centre Oceanografic de les Balears (Oceanographic Center of Balearic Islands); FOREFISH project - Total Foundation This study was part of ACU's Ph.D. thesis, co-funded by the Govern de les Illes Balears and the Centre Oceanografic de les Balears (Oceanographic Center of Balearic Islands). ACH contribution was partly funded through the FOREFISH project supported by the Total Foundation. The external funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors declare that they have no conflict of interest. No animal manipulations were involved. Anderson MJ, 2008, PERMANOVA PRIMER GUI; AUGUST PV, 1983, ECOLOGY, V64, P1495, DOI 10.2307/1937504; Beck MW, 2001, BIOSCIENCE, V51, P633, DOI 10.1641/0006-3568(2001)051[0633:TICAMO]2.0.CO;2; Beck MW, 2000, J EXP MAR BIOL ECOL, V249, P29, DOI 10.1016/S0022-0981(00)00171-4; BELL JD, 1986, J EXP MAR BIOL ECOL, V104, P275; BELL JD, 1988, J EXP MAR BIOL ECOL, V122, P127, DOI 10.1016/0022-0981(88)90180-3; Bianco L, 1931, FAUNA FLORA GOLFO NA, V38; Borum J., 2004, EUROPEAN SEAGRASSES; Bussotti S, 2011, ITAL J ZOOL, V78, P243, DOI 10.1080/11250001003774652; Byrne Loren B., 2007, Urban Ecosystems, V10, P255, DOI 10.1007/s11252-007-0027-6; Cheminee A, 2016, MEDITERR MAR SCI, V17, P39; Cheminee A, 2012, THESIS, P226; Cheminee A, 2013, J EXP MAR BIOL ECOL, V442, P70, DOI 10.1016/j.jembe.2013.02.003; Clarke K. R, 2006, PRIMER V6 USER MANUA, P190; Clarke KR, 2001, CHANGE MARINE COMMUN; Coll J, 2012, SCI MAR, V76, P809, DOI 10.3989/scimar.03531.02H; Crechriou R., 2015, ATLAS POSTLARVAL FIS; Cuadros A, 2017, ESTUAR COAST SHELF S, V185, P120, DOI 10.1016/j.ecss.2016.12.014; Dahlgren CP, 2000, ECOLOGY, V81, P2227; Delgado O, 1997, OCEANOL ACTA, V20, P557; Dorenbosch M, 2005, MAR ECOL PROG SER, V299, P277, DOI 10.3354/meps299277; Elliott M., 1995, Netherlands Journal of Aquatic Ecology, V29, P397, DOI 10.1007/BF02084239; Espino F, 2011, CIENC MAR, V37, P157, DOI 10.7773/cm.v37i2.1720; Fabregas C. P, 2007, THESIS; FORNOS JJ, 1992, SEDIMENT GEOL, V75, P283, DOI 10.1016/0037-0738(92)90097-B; Garcia-Charton JA, 2004, MAR BIOL, V144, P161, DOI 10.1007/s00227-003-1170-0; GARCIARUBIES A, 1995, MAR BIOL, V124, P35, DOI 10.1007/BF00349144; Guidetti P, 2000, ESTUAR COAST SHELF S, V50, P515, DOI 10.1006/ecss.1999.0584; Guidetti P, 2002, MAR BIOL, V140, P445, DOI 10.1007/s00227-001-0725-1; Guidetti P, 2000, OCEANOL ACTA, V23, P759, DOI 10.1016/S0399-1784(00)01117-8; Guiry G. M., 2015, ALGAEBASE; Gullstrom M, 2008, MAR ECOL PROG SER, V363, P241, DOI 10.3354/meps07427; HARMELIN JG, 1987, MAR ECOL-P S Z N I, V8, P263, DOI 10.1111/j.1439-0485.1987.tb00188.x; HARMELINVIVIEN ML, 1985, REV ECOL-TERRE VIE, V40, P466; HARMELINVIVIEN ML, 1995, HYDROBIOLOGIA, V300, P309, DOI 10.1007/BF00024471; Heck KL, 2003, MAR ECOL PROG SER, V253, P123, DOI 10.3354/meps253123; Horinouchi M, 2007, J EXP MAR BIOL ECOL, V350, P111, DOI 10.1016/j.jembe.2007.06.015; Hovel KA, 2001, ECOLOGY, V82, P1814; Jenkins GP, 1998, J EXP MAR BIOL ECOL, V226, P259, DOI 10.1016/S0022-0981(97)00255-4; Kalogirou S, 2012, ESTUAR COAST SHELF S, V96, P209, DOI 10.1016/j.ecss.2011.11.008; Kalogirou S, 2010, J FISH BIOL, V77, P2338, DOI 10.1111/j.1095-8649.2010.02817.x; KOLASA J, 1995, HYDROBIOLOGIA, V303, P1, DOI 10.1007/BF00034039; Koulouri P, 2016, REG STUD MAR SCI, V3, P33, DOI 10.1016/j.rsma.2015.12.002; Leis JM, 2011, MAR BIOL, V158, P1239, DOI 10.1007/s00227-011-1644-4; Lejeune P., 1984, THESIS; Levi F., 2004, THESIS; Louisy P., 2015, EUROPE MEDITERRANEAN; MacPherson E, 1998, J EXP MAR BIOL ECOL, V220, P127, DOI 10.1016/S0022-0981(97)00086-5; Macreadie PI, 2010, ECOLOGY, V91, P2013, DOI 10.1890/08-1890.1; Manent P. M. Y. J., 2005, CATALOGO PRELIMINAR; Marba N, 1996, MAR ECOL PROG SER, V133, P203, DOI 10.3354/meps133203; Marshall NJ, 2003, COPEIA, P467, DOI 10.1643/01-056; Mascaro O, 2009, BOT MAR, V52, P429, DOI 10.1515/BOT.2009.055; Matic-Skoko S, 2004, J APPL ICHTHYOL, V20, P376, DOI 10.1111/j.1439-0426.2004.00585.x; MOTTA PJ, 1995, ENVIRON BIOL FISH, V44, P37, DOI 10.1007/BF00005906; Nagelkerken I, 2001, MAR ECOL PROG SER, V214, P225, DOI 10.3354/meps214225; ORTH RJ, 1984, ESTUARIES, V7, P339, DOI 10.2307/1351618; Pastor J, 2013, FISH RES, V148, P74, DOI 10.1016/j.fishres.2013.08.014; R Development Core Team, 2013, R LANG ENV STAT COMP; Raventos N, 2001, MAR BIOL, V138, P1115; Recasens L., 2006, TELEOSTEAN FISH ASSE; Smith TM, 2011, J EXP MAR BIOL ECOL, V399, P8, DOI 10.1016/j.jembe.2011.01.010; Thiriet P., 2014, UNDERWATER SEASCAPES, P185; Thiriet P., 2014, COMPARAISON STRUCTUR; Thiriet PD, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0164121; Verdiell-Cubedo David, 2007, Limnetica, V26, P341; VERLAQUE M, 1990, OCEANOL ACTA, V13, P373; Verweij MC, 2006, MAR ECOL PROG SER, V306, P257, DOI 10.3354/meps306257; Warry FY, 2009, OECOLOGIA, V159, P883, DOI 10.1007/s00442-008-1258-9; Wickham H, 2009, USE R, P1, DOI 10.1007/978-0-387-98141-3_1; Wilson SK, 2007, MAR BIOL, V151, P1069, DOI 10.1007/s00227-006-0538-3 71 2 2 3 4 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 2352-4855 REG STUD MAR SCI Reg. Stud. Mar. Sci. JUL 2017 14 93 101 10.1016/j.rsma.2017.05.011 9 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology FP7AP WOS:000417779000010 2018-11-22 J Rollins, JL; Chiang, P; Waite, JN; von Hipper, FA; Bell, MA Rollins, Jennifer L.; Chiang, Paul; Waite, Jason N.; von Hipper, Frank A.; Bell, Michael A. Jacks and jills: alternative life-history phenotypes and skewed sex ratio in anadromous Threespine Stickleback (Gasterosteus aculeatus) EVOLUTIONARY ECOLOGY RESEARCH English Article alternative life-history strategies; body size; frequency-dependent selection; otolith; prey abundance 3-SPINED STICKLEBACK; ADAPTIVE RADIATION; ANNUAL FISHES; TRADE-OFFS; GROWTH; EVOLUTION; SIZE; POPULATION; SELECTION; VARIABILITY Background: Anadromous Threespine Stickleback (Gasterosteus aculeatus) often have bimodal size-frequency distributions, suggesting alternative life-history phenotypes. Breeding at small size may decrease attractiveness to mates, competitiveness in territorial disputes, and fecundity, but early breeding may outweigh the fitness costs of small size if survival to reproduction is low or iteroparity is possible. Hypotheses: (1) Two size-frequency modes exist in spawning, anadromous, male and female Threespine Stickleback, and there is sexual dimorphism in the frequencies of smaller size-class fish. (2) Smaller size-class anadromous Threespine Stickleback are younger than larger size class fish. (3) Variation across years and populations in frequencies of smaller size-class fish and body size exist and is positively correlated with a proxy for prey abundance on the feeding grounds. (4) The sex ratio of anadromous, spawning individuals is 1:1 across years and populations. Methods: We measured standard length (SL) and determined sex of anadromous Threespine Stickleback from Rabbit Slough in the Cook Inlet Basin, Alaska, between 1992 and 2015 and from additional sites around Cook Inlet and the Kenai Peninsula, Alaska, in 2014 and 2015. We compared sex ratio, mean SL, and size-class frequencies among years from Rabbit Slough and among four sites in 2014 and three sites in 2015. We determined ages of smaller and larger size-classes using otoliths from subsamples collected in 2010 and 2012 from Rabbit Slough. Results: At least two size modes occurred most years in both sexes in Rabbit Slough, in three of four populations sampled in 2014, and in all populations sampled in 2015. Smaller size-class fish were younger, indicating alternative life-history phenotypes in anadromous Threespine Stickleback. The proportion of females consistently exceeded that of males in Rabbit Slough and two of three other sites, but males were more frequent than females among smaller size class fish. Both the frequency of smaller size-class fish and mean SL varied among years in Rabbit Slough and among populations during 2014 and 2015. Prey abundance in the marine feeding grounds was not correlated with the frequency of smaller size-class fish but was negatively correlated with mean SL for females and for smaller size-class males across years in Rabbit Slough. [Rollins, Jennifer L.; Chiang, Paul; Bell, Michael A.] SUNY Stony Brook, Dept Ecol & Evolut, Stony Brook, NY 11794 USA; [Waite, Jason N.] Univ Alaska Fairbanks, Sch Fisheries & Ocean Sci, Juneau, AK USA; [von Hipper, Frank A.] No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA Rollins, JL (reprint author), SUNY Stony Brook, Dept Ecol & Evolut, Stony Brook, NY 11794 USA. jennifer.rollins@stonybrook.edu NSF [BSR-8905758, DEB-0320076, DEB-0211391, DEB-0322812]; NSF GRFP [2010100659]; Stony Brook University URECA fellowships for undergraduate field assistants We thank R. Baldi, C. Sanges, H. Tsang, P. Ubba, and J. Babinski for measurement and sex determination of fish, and J. Walker and M. Cashin for otolith preparation. Many people helped collect anadromous stickleback, including P.J. Park in particular. Specimens were sampled and euthanized under several annual permits from the Alaska Department of Fish and Game and with annual approvals from the Institutional Animal Care and Use Committee to M.A.B. Sampling was supported some years by NSF grants BSR-8905758, DEB-0320076, DEB-0211391, and DEB-0322812, an NSF GRFP to J.L.R. (ID#: 2010100659), and Stony Brook University URECA fellowships for undergraduate field assistants. Aguirre WE, 2008, BIOL J LINN SOC, V95, P465, DOI 10.1111/j.1095-8312.2008.01075.x; ANEER G, 1973, ZOOL SCR, V2, P157; Baker JA, 1994, EVOLUTIONARY BIOL TH, P144; Baker JA, 2008, BEHAVIOUR, V145, P579, DOI 10.1163/156853908792451539; Basilone G, 2004, FISH RES, V68, P9, DOI 10.1016/j.fishres.2004.02.012; Bell MA, 2010, ENVIRON BIOL FISH, V89, P189, DOI 10.1007/s10641-010-9712-z; Blazek R, 2013, EVODEVO, V4, DOI 10.1186/2041-9139-4-24; Brewer MJ, 2003, STAT COMPUT, V13, P209, DOI 10.1023/A:1024214615828; Burnham KP, 2004, SOCIOL METHOD RES, V33, P261, DOI 10.1177/0049124104268644; Burnham KP, 2002, MODEL SELECTION MULT; Dauod H.A., 1986, Irish Fisheries Investigations Series A (Freshwater), P3; DUTIL JD, 1986, COPEIA, P945, DOI 10.2307/1445291; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; EMLEN ST, 1977, SCIENCE, V197, P215, DOI 10.1126/science.327542; Furness AI, 2015, EVOLUTION, V69, P1461, DOI 10.1111/evo.12669; GOLDSCHMIDT T, 1992, ANIM BEHAV, V44, P793, DOI 10.1016/S0003-3472(05)80310-0; Greenbank J., 1959, FISH B, V59, P537; GROSS MR, 1988, SCIENCE, V239, P1291, DOI 10.1126/science.239.4845.1291; GROSS MR, 1985, NATURE, V313, P47, DOI 10.1038/313047a0; Hart P. J. B., 1994, EARTH OBSERVATION Q, P1; Hendry AP, 2006, P R SOC B, V273, P1887, DOI 10.1098/rspb.2006.3534; Hernandez-Miranda E, 2006, MAR BIOL, V149, P925, DOI 10.1007/s00227-006-0249-9; HICKMAN JC, 1975, J ECOL, V63, P689, DOI 10.2307/2258745; Huston MA, 2011, ECOL MONOGR, V81, P349, DOI 10.1890/10-1523.1; Hutchings JA, 1998, CAN J FISH AQUAT SCI, V55, P22, DOI 10.1139/cjfas-55-S1-22; JONES JW, 1950, J ANIM ECOL, V19, P59, DOI 10.2307/1571; Kitano J, 2007, COPEIA, P336, DOI 10.1643/0045-8511(2007)7[336:SDITEM]2.0.CO;2; Largiader CR, 2001, HEREDITY, V86, P459, DOI 10.1046/j.1365-2540.2001.00850.x; Lee W. S., 2013, P R SOC B, V280, P2012; MacColl ADC, 2013, J ANIM ECOL, V82, P642, DOI 10.1111/1365-2656.12028; McPhail J. D., 2007, FRESHWATER FISHES BR; MCPHAIL JD, 1977, HEREDITY, V38, P53, DOI 10.1038/hdy.1977.7; Mori S, 1995, BEHAVIOUR, V132, P1011, DOI 10.1163/156853995X00423; OWENS IPF, 1994, P ROY SOC B-BIOL SCI, V258, P93, DOI 10.1098/rspb.1994.0148; Perrin N, 1995, BEHAVIOUR, V132, P1037, DOI 10.1163/156853995X00441; Polacik M, 2014, J EVOLUTION BIOL, V27, P854, DOI 10.1111/jeb.12359; Polovina JJ, 1995, DEEP-SEA RES PT I, V42, P1701, DOI 10.1016/0967-0637(95)00075-H; Reimchen Thomas E., 1994, P240; Rico C, 1992, MOL ECOL, V1, P79, DOI 10.1111/j.1365-294X.1992.tb00159.x; Rollins JL, 2014, EVOL ECOL RES, V16, P101; Rowland William J., 1994, P297; ROWLAND WJ, 1989, ANIM BEHAV, V37, P282, DOI 10.1016/0003-3472(89)90117-6; SNYDER RJ, 1989, CAN J ZOOL, V67, P2448, DOI 10.1139/z89-345; Stearns S., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; Waite JN, 2013, PROG OCEANOGR, V116, P179, DOI 10.1016/j.pocean.2013.07.006; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Wootton RJ, 1984, FUNCTIONAL BIOL STIC; WOURMS JP, 1972, J EXP ZOOL, V182, P389, DOI 10.1002/jez.1401820310; YDENBERG RC, 1989, ECOLOGY, V70, P1494, DOI 10.2307/1938208; Yershov P, 2015, POLAR BIOL, V38, P1813, DOI 10.1007/s00300-015-1743-7 51 1 1 0 6 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 1937-3791 EVOL ECOL RES Evol. Ecol. Res. JUL 2017 18 4 363 382 20 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity FI5SC WOS:000412043100002 2018-11-22 J Leiby, J; Madsen, PE Leiby, Justin; Madsen, Paul E. Margin of safety: Life history strategies and the effects of socioeconomic status on self-selection into accounting ACCOUNTING ORGANIZATIONS AND SOCIETY English Article Self-selection; Accounting human capital; Socioeconomic status; Gender diversity; Inequality; Life history theory CHILDHOOD ENVIRONMENT; AFRICAN-AMERICANS; HEALTH; RISK; NEIGHBORHOODS; ADOLESCENCE; UNCERTAINTY; ADJUSTMENT; EVOLUTION; ECONOMICS We use experimental and archival evidence to show that people who had low socioeconomic status (SES) as children participate in the U.S. accounting labor market in distinctive and consequential ways. Drawing on life history theory, we predict and show that low SES individuals select into accounting at disproportionately high rates relative to other fields, an effect driven by accounting's relatively high job security. Supplemental tests are consistent with these low SES individuals being a source of high quality human capital for the accounting profession, as low SES individuals selecting into accounting possess desirable attributes at relatively high rates. From a social perspective, we provide theory and evidence consistent with accounting being an important and secure source of upward social mobility in comparison to other fields. However, recessions cause selection into accounting by low SES individuals to decrease at a higher rate than in other fields, compromising these professional and social benefits. For example, our evidence is consistent with the "low SES effect" improving gender diversity among entrants into the accounting labor market during good economic times. However, lower self-selection rates during recessions are particularly pronounced among low SES females, who may thus bear the brunt of lost professional and social benefits. Published by Elsevier Ltd. [Leiby, Justin] Univ Georgia, Athens, GA 30602 USA; [Madsen, Paul E.] Univ Florida, Gainesville, FL 32611 USA Leiby, J (reprint author), A307-B Moore Rooker, Athens, GA 30602 USA. jleiby@uga.edu Abbott A., 1988, SYSTEM PROFESSIONS E; Advisory Committee on the Auditing Profession (ACAP), 2008, FIN REP ADV COMM AUT; AICPA (American Institute of Certified Public Accountants), 2013, TRENDS SUPPL ACC GRA; Alchian AA, 1950, J POLIT ECON, V58, P211, DOI 10.1086/256940; Allen C., 2004, MANAGERIAL AUDITING, V19, P235, DOI DOI 10.1108/02686900410517849; [Anonymous], 2014, ECONOMIST, V412, P61; Arrow K. J., 1971, ESSAYS THEORY RISK B; BARON RM, 1986, J PERS SOC PSYCHOL, V51, P1173, DOI 10.1037/0022-3514.51.6.1173; Baum C. F., 2006, INTRO MODERN ECONOME; BECKER GS, 1976, J ECON LIT, V14, P817; Blanden J, 2013, J ECON SURV, V27, P38, DOI 10.1111/j.1467-6419.2011.00690.x; Blay A. D., 2017, ISSUES ACCO IN PRESS; Brody GH, 2013, PSYCHOL SCI, V24, P1285, DOI 10.1177/0956797612471954; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Bureau of Labor Statistics, 2015, OCC OUTL HDB ACC AUD; CaMpbell M. J., 2008, STAT SQUARE 2; Carnegie GD, 2010, ACCOUNT ORG SOC, V35, P360, DOI 10.1016/j.aos.2009.09.002; Chen E, 2012, PERSPECT PSYCHOL SCI, V7, P135, DOI 10.1177/1745691612436694; Chetty R., 2017, MOBILITY REPORT CARD; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Cohen S, 2004, PSYCHOSOM MED, V66, P553, DOI 10.1097/01.psy.0000126200.05189.d3; COLARELLI SM, 1987, J APPL PSYCHOL, V72, P558, DOI 10.1037//0021-9010.72.4.558; COLEMAN JS, 1988, AM J SOCIOL, V94, pS95, DOI 10.1086/228943; Currie J, 2003, AM ECON REV, V93, P1813, DOI 10.1257/000282803322655563; DeAngelo L., 2011, COMPLETING COLL ASSE; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; GUASCH JL, 1981, AM ECON REV, V71, P275; Hackman DA, 2010, NAT REV NEUROSCI, V11, P651, DOI 10.1038/nrn2897; Hammond T, 2002, WHITE COLLAR PROFESS; Hammond TD, 1997, ACCOUNT ORG SOC, V22, P29; Hanson MD, 2007, J BEHAV MED, V30, P263, DOI 10.1007/s10865-007-9098-3; Hayes AF, 2014, BRIT J MATH STAT PSY, V67, P451, DOI 10.1111/bmsp.12028; Heller DE, 1997, J HIGH EDUC, V68, P624, DOI 10.2307/2959966; Hill EM, 2002, ADDICTION, V97, P401, DOI 10.1046/j.1360-0443.2002.00020.x; Hill S. E., 2016, PSYCHOL SCI, V27, P1; JEACLE I., 2008, CRIT PERSPECT, V19, P1296, DOI DOI 10.1016/J.CPA.2007.02.008; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY; King M, 2010, INTEGRATED PUBLIC US; Kochanska G, 2001, CHILD DEV, V72, P1091, DOI 10.1111/1467-8624.00336; Low BS, 2008, CROSS-CULT RES, V42, P201, DOI 10.1177/1069397108317669; Madsen PE, 2015, ACCOUNT REV, V90, P1115, DOI 10.2308/accr-50947; Madsen PE, 2013, ACCOUNT REV, V88, P2145, DOI 10.2308/accr-50540; Masten A. S., 1990, DEV PSYCHOPATHOL, V2, P425, DOI DOI 10.1017/S0954579400005812; McDonough P, 1997, CHOOSING COLL SOCIAL; Mitnik P. A., 2015, WORKING PAPER; Mittal C, 2016, J CONSUM RES, V43, P636, DOI 10.1093/jcr/ucw046; Mittal C, 2014, J PERS SOC PSYCHOL, V107, P621, DOI 10.1037/a0037398; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; OECD, 2010, EC POL REF GOING GRO; Oswick C., 1998, ACCOUNTING ED INT J, V7, P249; Petridou E, 1997, PREV MED, V26, P215, DOI 10.1006/pmed.1996.0130; POLACHEK SW, 1981, REV ECON STAT, V63, P60, DOI 10.2307/1924218; Preacher KJ, 2008, BEHAV RES METHODS, V40, P879, DOI 10.3758/BRM.40.3.879; Rappoport Veronica, 2016, MANAGE SCI, V63; Rivera Lauren A., 2015, PEDIGREE ELITE STUDE; ROSENBAUM PR, 1987, J AM STAT ASSOC, V82, P387, DOI 10.2307/2289440; Saemann G., 1999, J ACCOUNTING ED, V17, P1, DOI DOI 10.1016/S0748-5751(99)00007-X; SCHAFFER WM, 1983, AM NAT, V121, P418, DOI 10.1086/284070; Soteriades ES, 2003, AM J PUBLIC HEALTH, V93, P1155, DOI 10.2105/AJPH.93.7.1155; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Sullivan Commission on Diversity in the Healthcare Workforce, 2004, MISS PERS MIN HLTH P; Swain MR, 2012, ISS ACCOUNT EDUC, V27, P17, DOI 10.2308/iace-50076; Terenzini PT, 1996, RES HIGH EDUC, V37, P1, DOI 10.1007/BF01680039; University of California-Los Angeles (UCLA), 2013, COOP INSTR RES PROGR; Wang XT, 2010, PSYCHOL SCI, V21, P183, DOI 10.1177/0956797609358096; Wheeler PR, 2001, ISSUES ACCOUNTING ED, V16, P125, DOI DOI 10.2308/IACE.2001.16.1.125; WILLIS RJ, 1979, J POLIT ECON, V87, pS7, DOI 10.1086/260821; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 71 0 0 6 9 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0361-3682 1873-6289 ACCOUNT ORG SOC Account. Organ. Soc. JUL 2017 60 21 36 10.1016/j.aos.2017.07.001 16 Business, Finance Business & Economics FF8TI WOS:000409290300002 2018-11-22 J Peterson, MG; Lunde, KB; Chiu, MC; Resh, VH Peterson, Michael G.; Lunde, Kevin B.; Chiu, Ming-Chih; Resh, Vincent H. SEASONAL PROGRESSION OF AQUATIC ORGANISMS IN A TEMPORARY WETLAND IN NORTHERN CALIFORNIA WESTERN NORTH AMERICAN NATURALIST English Article INVERTEBRATE COMMUNITIES; LIFE-HISTORIES; TRADE-OFFS; POND; DISPERSAL; STREAM; POOLS; MACROINVERTEBRATES; ASSEMBLAGES; PREDATION Seasonal wetlands are important habitats for biodiversity of both invertebrate and vertebrate fauna. Many aquatic species have life history traits adapted to colonizing and developing in temporary aquatic habitats, and these traits influence the annual succession of the macroinvertebrate community. The chronology of taxon appearance and the variation in relative abundances during the hydroperiod are important for understanding population dynamics, trophic interactions, and responses to drought. This study investigated the successional changes in macroinvertebrate abundances in a seasonal wetland in northern California. Water quality parameters were measured regularly, including dissolved oxygen, temperature, pH, surface area, and specific conductance during the wet season (January-July) in 2007-2009. Macroinvertebrates were collected with net sweeps (mesh > 500 mu m), and the presence of life stages of amphibians were visually observed from March to June each year. As the hydroperiod progressed, wetland surface area decreased, while water temperature and specific conductance increased. Macroinvertebrate abundance increased with the progression of the hydroperiod, and the richness of macroinvertebrate predator taxa tripled from 2 families in March to 6 families in June. The earliest part of the hydroperiod in the wetland was dominated by Cyzicus clam shrimp and Linderiella occidentalis fairy shrimp. Limnephilus caddisfly larvae were few in number but were found exclusively in the early season. Sequential changes of dominant invertebrate taxa and relative abundances of macroinvertebrates were evident, particularly among several macroinvertebrate predators. Among these predators, the early-season community was dominated by larval dytiscid beetles, while later-season communities demonstrated increased predator richness (e.g., Notonecta backswimmers) and were dominated by Lestes damselflies. Larvae of the vertebrate predator Taricha torosa, which may act as a top predator, were present during the later stages of the hydroperiod. The phenology of individual aquatic taxa and their specific life history strategies may impact the sensitivity of macroinvertebrate populations to increased annual variation in hydroperiod that may result from climate changes in this region. [Peterson, Michael G.; Chiu, Ming-Chih; Resh, Vincent H.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA; [Lunde, Kevin B.] San Francisco Bay Reg Water Qual Control Board, 1515 Clay St,Suite 1400, Oakland, CA 94612 USA Peterson, MG (reprint author), Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. petersnig@berkeley.edu Margaret C. Walker Fund; Department of Environmental Science, Policy, and Management at the University of California, Berkeley We thank J. Ball-Damerow and many volunteers for assistance with field collections. We are grateful to the Hopland Research and Extension Center for logistical help and longterm weather information. We acknowledge L. Huickstidt for translation of the abstract into Spanish. Additionally, we thank the Margaret C. Walker Fund for graduate research in Systematic Entomology and the Edward A. Colman Fellowship in Watershed Management from the Department of Environmental Science, Policy, and Management at the University of California, Berkeley, for support. Alvarez JA, 2013, HERPETOL CONSERV BIO, V8, P539; Baines CB, 2015, ECOL EVOL, V5, P2307, DOI 10.1002/ece3.1508; Batzer DP, 1996, ANNU REV ENTOMOL, V41, P75, DOI 10.1146/annurev.en.41.010196.000451; BELK D, 1995, HYDROBIOLOGIA, V298, P315, DOI 10.1007/BF00033826; BERTE SB, 1986, CAN J ZOOL, V64, P2348, DOI 10.1139/z86-350; Biggs J, 2005, AQUAT CONSERV, V15, P693, DOI 10.1002/aqc.745; BISHOP JA, 1967, J ANIM ECOL, V36, P599, DOI 10.2307/2815; Blaustein L, 1995, ECOL ENTOMOL, V20, P311, DOI 10.1111/j.1365-2311.1995.tb00462.x; Bohonak AJ, 2003, ECOL LETT, V6, P783, DOI 10.1046/j.1461-0248.2003.00486.x; Boix D, 2004, J N AM BENTHOL SOC, V23, P29, DOI 10.1899/0887-3593(2004)023<0029:SOTACI>2.0.CO;2; Boix D, 2012, HYDROBIOLOGIA, V689, P1, DOI 10.1007/s10750-012-1015-2; Bucciarelli GM, 2015, HYDROBIOLOGIA, V749, P69, DOI 10.1007/s10750-014-2146-4; Corbet Philip S., 2003, Journal of the Entomological Society of British Columbia, V100, P3; CORBET PS, 1980, ANNU REV ENTOMOL, V25, P189, DOI 10.1146/annurev.en.25.010180.001201; CtRGHINO R., 2012, HYDROBIOLOGIA, V689, P51; DABORN GR, 1971, CAN J ZOOLOG, V49, P569, DOI 10.1139/z71-087; DAHL T.E., 1990, WETLAND LOSSES US; Gallagher SP, 1996, J CRUSTACEAN BIOL, V16, P323, DOI 10.2307/1548890; GILMER DS, 1982, T N AM WILDL NAT RES, V47, P441; HAVEL JE, 1993, FRESHWATER BIOL, V29, P47, DOI 10.1111/j.1365-2427.1993.tb00743.x; HINTON H. E., 1954, ANN AND MAG NAT HIST, V7, P158; HOLOMUZKI JR, 1987, COPEIA, P949; Isola CR, 2000, WATERBIRDS, V23, P196; Jannot JE, 2008, BIOL J LINN SOC, V95, P495, DOI 10.1111/j.1095-8312.2008.01061.x; JEFFRIES M, 1994, FRESHWATER BIOL, V32, P603, DOI 10.1111/j.1365-2427.1994.tb01151.x; Johansson F, 2001, ECOLOGY, V82, P1857, DOI 10.1890/0012-9658(2001)082[1857:LHPIAD]2.0.CO;2; Judson SW, 2010, WEST N AM NATURALIST, V70, P526, DOI 10.3398/064.070.0413; KARR JR, 1991, ECOL APPL, V1, P66, DOI 10.2307/1941848; King JL, 1996, HYDROBIOLOGIA, V328, P85, DOI 10.1007/BF00018707; KRUSKAL JB, 1964, PSYCHOMETRIKA, V29, P1, DOI 10.1007/BF02289565; Lunde KB, 2012, ECOSPHERE, V3, DOI 10.1890/ES12-00001.1; Lunde KB, 2012, ENVIRON MONIT ASSESS, V184, P3653, DOI 10.1007/s10661-011-2214-4; LUTZ PE, 1968, ECOLOGY, V49, P637, DOI 10.2307/1935529; Macan T. T., 1939, Journal of the Society for British Entomology, V2, P1; Mccauley SJ, 2008, FRESHWATER BIOL, V53, P253, DOI 10.1111/j.1365-2427.2007.01889.x; McCauley SJ, 2006, ECOGRAPHY, V29, P585, DOI 10.1111/j.0906-7590.2006.04787.x; McCauley SJ, 2010, BIOL LETTERS, V6, P449, DOI 10.1098/rsbl.2009.1082; McCreadie JW, 2013, INSECT CONSERV DIVER, V6, P105, DOI 10.1111/j.1752-4598.2012.00191.x; Moss Brian, 2009, Freshwater Reviews, V2, P103, DOI 10.1608/FRJ-2.2.1; Nicolet P, 2004, BIOL CONSERV, V120, P261, DOI 10.1016/j.biocon.2004.03.010; NILSSON AN, 1988, OECOLOGIA, V76, P131, DOI 10.1007/BF00379611; NILSSON AN, 1995, HYDROBIOLOGIA, V308, P183, DOI 10.1007/BF00006870; Palik B, 2001, WETLANDS, V21, P532, DOI 10.1672/0277-5212(2001)021[0532:SPCAAC]2.0.CO;2; Perez-Bilbao A, 2015, J LIMNOL, V74, P467, DOI 10.4081/jlimnol.2015.1060; POFF NL, 1985, J FRESHWATER ECOL, V3, P19, DOI 10.1080/02705060.1985.9665088; REID RA, 1995, CAN J FISH AQUAT SCI, V52, P1406, DOI 10.1139/f95-136; Resh VH, 2010, J N AM BENTHOL SOC, V29, P207, DOI 10.1899/08-082.1; Schafer ML, 2006, WETLANDS, V26, P57, DOI 10.1672/0277-5212(2006)26[57:IOLSOM]2.0.CO;2; Sim LL, 2013, FRESHW SCI, V32, P327, DOI 10.1899/12-024.1; Solimini AG, 2008, HYDROBIOLOGIA, V597, P109, DOI 10.1007/s10750-007-9226-7; Strachan SR, 2016, FRESHWATER BIOL, V61, P680, DOI 10.1111/fwb.12738; Strachan SR, 2014, FRESHWATER BIOL, V59, P2528, DOI 10.1111/fwb.12451; Suren AM, 2010, NEW ZEAL J MAR FRESH, V44, P229, DOI 10.1080/00288330.2010.509906; Waterkeyn A, 2008, FRESHWATER BIOL, V53, P1808, DOI 10.1111/j.1365-2427.2008.02005.x; Wickson S, 2012, MAR FRESHWATER RES, V63, P821, DOI 10.1071/MF12095; Wiggins G. B., 2004, CADDISFLIES UNDERWAT; Wiggins G. B., 1973, LIFE SCI CONTR R ONT, V88, P1; WILL K., 2007, INTRO AQUATIC INSECT, P139; Williams D.D., 2006, BIOL TEMPORARY WATER; WILLIAMS DD, 1983, INT REV GES HYDROBIO, V68, P239, DOI 10.1002/iroh.19830680210; Williams DD, 1996, J N AM BENTHOL SOC, V15, P634, DOI 10.2307/1467813; Wissinger SA, 1999, ECOLOGY, V80, P2102; Wissinger SA, 2003, FRESHWATER BIOL, V48, P255, DOI 10.1046/j.1365-2427.2003.00997.x; ZamoraMunoz C, 1996, FRESHWATER BIOL, V36, P23, DOI 10.1046/j.1365-2427.1996.00057.x 64 0 0 4 28 BRIGHAM YOUNG UNIV PROVO 290 LIFE SCIENCE MUSEUM, PROVO, UT 84602 USA 1527-0904 1944-8341 WEST N AM NATURALIST West. North Am. Naturalist JUL 2017 77 2 176 188 10.3398/064.077.0205 13 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology FE2AK WOS:000408018500004 2018-11-22 J Panzavolta, T; Panichi, A; Bracalini, M; Croci, F; Ginetti, B; Ragazzi, A; Tiberi, R; Moricca, S Panzavolta, Tiziana; Panichi, Andrea; Bracalini, Matteo; Croci, Francesco; Ginetti, Beatrice; Ragazzi, Alessandro; Tiberi, Riziero; Moricca, Salvatore Dispersal and Propagule Pressure of Botryosphaeriaceae Species in a Declining Oak Stand is Affected by Insect Vectors FORESTS English Article Botryosphaeriaceae; Cerambyx welensii; Coraebus fasciatus; oak decline; climate warming; pathogen occurrence; transport vectors ENDOPHYTIC FUNGI; COLEOPTERA CERAMBYCIDAE; DIPLODIA-CORTICOLA; CLIMATE-CHANGE; FOREST TREES; 1ST REPORT; QUERCUS; PATHOGENS; DROUGHT; CANKERS Many biotic and abiotic factors contribute to the onset of oak decline. Among biotic agents, a variety of fungi and insects cause extensive disease and insect outbreaks in oak forests. To date, research on fungus-insect interactions in Mediterranean forest ecosystems is still scarce and fragmentary. In this study, we investigated the assemblage of endophytic mycobiota and insect pests occurring in a declining oak stand, with the aim to explore if, and to what extent, the insect species were active vectors of fungal propagules. It emerged that some known latent pathogens of the Botryosphaeriaceae family, namely Botryosphaeria dothidea, Diplodia corticola, Diplodia seriata, Dothiorella sarmentorum, and Neofusicoccum parvum were isolated at high frequency from physiologically-impaired trees. In addition, propagules of these fungi were isolated from five insects, two of which (Cerambyx welensii and Coraebus fasciatus) are main oak pests. The life-history strategies of these fungi and those of wood-boring beetles were strikingly interconnected: both the fungi and beetles exploit drought-stressed trees and both occur at high frequency during hot, dry periods. This synchronicity increased their chance of co-occurrence and, consequently, their probability of jointly leading to oak decline. If these interactions would be confirmed by future studies, they could help to better understand the extensive decline/dieback of many Mediterranean forest ecosystems. [Panzavolta, Tiziana; Bracalini, Matteo; Croci, Francesco; Ginetti, Beatrice; Ragazzi, Alessandro; Tiberi, Riziero; Moricca, Salvatore] Univ Florence, Plant Pathol & Entomol Div, Dept Agrifood Prod & Environm Sci, Piazzale Cascine 28, I-50144 Florence, Italy; [Panichi, Andrea] Fdn Edmund Mach, Via E Mach 1,38010 S Michele Alladige, I-38010 Trento, Italy Moricca, S (reprint author), Univ Florence, Plant Pathol & Entomol Div, Dept Agrifood Prod & Environm Sci, Piazzale Cascine 28, I-50144 Florence, Italy. tpanzavolta@unifi.it; andrea.panichi@fmach.it; matteo.bracalini@unifi.it; francesco.croci@unifi.it; beatrice.ginetti@gmail.com; alessandro.ragazzi@unifi.it; riziero.tiberi@unifi.it; salvatore.moricca@unifi.it moricca, salvatore/0000-0003-3097-559X Allen CD, 2010, FOREST ECOL MANAG, V259, P660, DOI 10.1016/j.foreco.2009.09.001; Alves A, 2014, FUNGAL DIVERS, V67, P143, DOI 10.1007/s13225-014-0282-9; Alves A, 2004, MYCOLOGIA, V96, P598, DOI 10.2307/3762177; Benson DA, 2013, NUCLEIC ACIDS RES, V41, pD36, DOI 10.1093/nar/gks1195; Booth C., 1971, GENUS FUSARIUM; Brasier C. M., 1994, Bulletin OEPP, V24, P221; Brown N, 2017, FORESTS, V8, DOI 10.3390/f8030087; Cardenas AM, 2012, EUR J ENTOMOL, V109, P21, DOI 10.14411/eje.2012.004; Charmichael J.W., 1980, GENERA HYPHOMYCETES; Cohen SD, 1999, MYCOLOGIA, V91, P917, DOI 10.2307/3761547; Contarini Ettore, 2014, Quaderno di Studi e Notizie di Storia Naturale della Romagna, V40, P39; Curletti G., 1994, I BUPRESTIDI DITALIA; Denman S, 2016, SYST APPL MICROBIOL, V39, P484, DOI 10.1016/j.syapm.2016.07.002; Desprez-Loustau ML, 2006, ANN FOREST SCI, V63, P597, DOI 10.1051/forest:2006040; Diffenbaugh NS, 2007, GEOPHYS RES LETT, V34, DOI 10.1029/2007GL030000; Dreaden TJ, 2011, PLANT DIS, V95, P1027, DOI 10.1094/PDIS-02-11-0123; Gams W, 1971, CEPHALOSPORIUM ARTIG; Haavik LJ, 2015, FOREST ECOL MANAG, V354, P190, DOI 10.1016/j.foreco.2015.06.019; HALMSCHLAGER E, 1993, EUR J FOREST PATHOL, V23, P51; Halmschlager E., 1993, RECENT ADV STUDIES O, P77; Hanso M, 2009, PLANT PATHOL, V58, P797, DOI 10.1111/j.1365-3059.2009.02082.x; Jactel H, 2012, GLOBAL CHANGE BIOL, V18, P267, DOI 10.1111/j.1365-2486.2011.02512.x; Jurc M, 2009, BIOLOGIA, V64, P130, DOI 10.2478/s11756-009-0024-8; Kowalski T., 1992, Sydowia, V44, P137; Lynch SC, 2010, PLANT DIS, V94, P1510, DOI 10.1094/PDIS-04-10-0266; Manion P.D., 1991, TREE DIS CONCEPTS; Martin J, 2005, FOREST ECOL MANAG, V216, P166, DOI 10.1016/j.foreco.2005.05.027; Moricca S, 2000, PLANT PATHOL, V49, P774, DOI 10.1046/j.1365-3059.2000.00514.x; Moricca S, 2016, PLANT DIS, V100, P2184, DOI 10.1094/PDIS-03-16-0408-FE; Moricca S, 2012, PHYTOPATHOL MEDITERR, V51, P587; Moricca S, 2011, FOR SCI, V80, P47, DOI 10.1007/978-94-007-1599-8_3; Pujade-Villar J., 2011, AFR J MICROBIOL RES, V5, P4411; Ragazzi A, 1999, J PHYTOPATHOL, V147, P425, DOI 10.1046/j.1439-0434.1999.00090.x; Ragazzi A, 2003, FOREST PATHOL, V33, P31, DOI 10.1046/j.1439-0329.2003.3062003.x; Ragazzi A, 1999, J PHYTOPATHOL, V147, P437, DOI 10.1046/j.1439-0434.1999.00408.x; Ragazzi A., 2001, Phytopathologia Mediterranea, V40, P165; Ragazzi A., 1995, Phytopathologia Mediterranea, V34, P207; Sabbatini Peverieri G., 2005, J PLANT PATHOL, V87, P304; Sakalidis ML, 2013, DIVERS DISTRIB, V19, P873, DOI 10.1111/ddi.12030; Salle A, 2014, FOREST ECOL MANAG, V328, P79, DOI 10.1016/j.foreco.2014.05.027; Sanchez MS, 2008, FUNGAL DIVERS, V33, P87, DOI DOI 10.1007/S13225-009-0015-7; Schumacher J., 2010, JULIS KUHN ARCH, V428, P372; Sieber Thomas N., 2007, Fungal Biology Reviews, V21, P75, DOI 10.1016/j.fbr.2007.05.004; Slippers Bernard, 2007, Fungal Biology Reviews, V21, P90, DOI 10.1016/j.fbr.2007.06.002; Sturrock RN, 2011, PLANT PATHOL, V60, P133, DOI 10.1111/j.1365-3059.2010.02406.x; Sutton B. C, 1980, COELOMYCETES FUNGI I; Thomas FM, 2002, FOREST PATHOL, V32, P277, DOI 10.1046/j.1439-0329.2002.00291.x; Tiberi R, 2002, IOBC WPRS B, V25, P67; Tiberi R., 2016, ITAL J MYCOL, V45, P54; Tiberi R, 2016, ANN FOREST SCI, V73, P219, DOI 10.1007/s13595-015-0534-1; Torres-Vila LM, 2016, B ENTOMOL RES, V106, P292, DOI 10.1017/S0007485315000747; Torres-Vila LM, 2012, EUR J FOREST RES, V131, P1103, DOI 10.1007/s10342-011-0579-0; Von Arx J. A., 1987, PLANT PATHOGENIC FUN; White T. J., 1990, PCR PROTOCOLS, V1990, P315, DOI DOI 10.1016/B978-0-12-372180-8.50042-1 54 3 3 3 14 MDPI AG BASEL ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND 1999-4907 FORESTS Forests JUL 2017 8 7 228 10.3390/f8070228 11 Forestry Forestry FC2UP WOS:000406694400008 DOAJ Gold 2018-11-22 J La Mesa, M; Riginella, E; Catalano, B; Jones, CD; Mazzoldi, C La Mesa, Mario; Riginella, Emilio; Catalano, Barbara; Jones, Christopher D.; Mazzoldi, Carlotta Maternal contribution to spawning and early life-history strategies of the genus Lepidonotothen (Nototheniidae, Perciformes) along the southern Scotia Arc POLAR BIOLOGY English Article Reproductive effort; Larval traits; Nototheniid fish; Antarctic Peninsula FISH; REPRODUCTION; LARSENI; GROWTH; NUDIFRONS; SEA; AGE The coastal fish community of the southern Scotia Arc, including the South Shetland Islands and the Bransfield Strait, is composed of the genus Lepidonotothen, which consists of three widely overlapping species such as L. kempi, L. larseni and L. nudifrons. The life-history strategies of these species driven by environmental and inter-specific interactions remain poorly known. In this paper, we estimate the maternal contribution to spawning of adult females in terms of fecundity and egg size through macroscopic and histological analyses of gonads. We further investigate the size and timing of hatching, growth rate and duration of the larval stage through microstructure analysis of sagittal otoliths collected from larval samples. All three species produced eggs of relatively small size at hatching, showing a trade-off between egg size and fecundity. Total fecundity was positively related to fish size during growth, as well as to maximum size. Female gonad investment was comparable among the species, as they all start spawning at about 65% of their maximum size with a similar gonadosomatic index. All species generated small larvae (altricial) which hatched over widely different periods, resulting in a temporal succession of larval occurrence. Compared to L. kempi, the other two species had relatively slow-growing larvae. Only L. kempi and L. larseni produced overwintering larvae. Differences in maternal contribution to spawning and early life-history traits of these species contribute to reduce interspecific competition for food through ecological niche partitioning. [La Mesa, Mario; Riginella, Emilio] CNR, Inst Marine Sci, UOS Ancona, I-60125 Ancona, Italy; [Riginella, Emilio; Mazzoldi, Carlotta] Univ Padua, Dept Biol, Via U Bassi 58-B, I-35131 Padua, Italy; [Catalano, Barbara] Italian Natl Inst Environm Protect & Res, ISPRA, Via Brancati 48, I-00144 Ispra, Italy; [Jones, Christopher D.] NOAA, Southwest Fisheries Sci Ctr, Natl Marine Fisheries Serv, 8901 La Jolla Shores Dr, La Jolla, CA 92037 USA La Mesa, M (reprint author), CNR, Inst Marine Sci, UOS Ancona, I-60125 Ancona, Italy. m.lamesa@ismar.cnr.it Italian National Program for Antarctic Research (PNRA) We thank the Alfred Wegener Institut fur Polar und Meeresforschung for giving us the opportunity to collect adult fish samples during the ANT-XXVIII/4 2012 Polarstern cruise. We wish to thank also the Southwest Fisheries Science Center for giving us the opportunity to collect fish larvae during the cruises aboard the RV Moana Wave and RV Nathaniel Palmer. We are much indebted to all scientific staff, crew members and personnel aboard the vessels for their essential support in sampling activities. This study was financially supported by the Italian National Program for Antarctic Research (PNRA). The early draft of manuscript was significantly improved by the comments of three anonymous reviewers. Akaike H., 1973, 2 INT S INF THEOR, P267, DOI DOI 10.1007/978-1-4612-1694-0_; BALON EK, 1981, AM ZOOL, V21, P573; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Campana Steven E., 1992, Canadian Special Publication of Fisheries and Aquatic Sciences, V117, P73; CLARKE A, 1988, COMP BIOCHEM PHYS B, V90, P461, DOI 10.1016/0305-0491(88)90285-4; Dewitt H.H., 1990, P279; Eastman JT, 2013, ANTARCT SCI, V25, P31, DOI 10.1017/S0954102012000697; Eastman JT, 1993, ANTARCTIC FISH BIOL; Everson I., 1984, P491; Gon O, 1990, FISHES SO OCEAN; HOURIGAN TF, 1989, MAR BIOL, V100, P277, DOI 10.1007/BF00391969; HUNTER JR, 1992, FISH B-NOAA, V90, P101; Jones CD, 2003, NOAA TECHN MEM NMFS, V355, P111; Jones Christopher, 2014, NOAA Technical Memorandum NMFS-SWFSC, V524, P28; KELLERMANN A, 1990, MAR BIOL, V106, P159, DOI 10.1007/BF01314796; KELLERMANN A, 1989, Archiv fuer Fischereiwissenschaft, V39, P81; Kellermann A., 1990, Berichte zur Polarforschung, V67, P45; Kellermann AK, 2002, POLAR BIOL, V25, P799, DOI 10.1007/s00300-002-0432-5; Kellermann AK, 1986, BER POLARFORSCH, V31, P1; Kock K.-H., 1992, ANTARCTIC FISH FISHE; KOCK K-H, 1989, Archiv fuer Fischereiwissenschaft, V39, P171; Kock KH, 2005, REV FISH SCI, V13, P75, DOI 10.1080/10641260590953900; KOCK KH, 1991, ANTARCT SCI, V3, P125; KONECKI JT, 1989, POLAR BIOL, V10, P197; KOUBBI P, 1990, Cybium, V14, P225; Lucassen Magnus, 2012, Berichte zur Polar- und Meeresforschung, V652, P3; Murua H., 2003, Journal of Northwest Atlantic Fishery Science, V33, P33, DOI 10.2960/J.v33.a3; North A.W., 1991, P70; North AW, 2001, J FISH BIOL, V58, P496, DOI 10.1006/jfbi.2000.1469; North AW, 1987, P 5 C EUR ICHTH STOC, P381; Pearse AGE, 1985, HISTOCHEMISTRY THEOR; PURDOM CE, 1993, GENETICS FISH BREEDI; Radtke R.L., 1991, P101; RADTKE RL, 1990, FISH B-NOAA, V88, P557; RADTKE RL, 1993, ANTARCT SCI, V5, P51; Riginella E, 2016, POLAR BIOL, V39, P497, DOI 10.1007/s00300-015-1802-0; Ruzicka JJ, 1996, MAR ECOL PROG SER, V133, P29, DOI 10.3354/meps133029; Stearns S., 1992, EVOLUTION LIFE HIST; WALLACE RA, 1981, AM ZOOL, V21, P325 39 1 1 0 5 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0722-4060 1432-2056 POLAR BIOL Polar Biol. JUL 2017 40 7 1441 1450 10.1007/s00300-016-2068-x 10 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology FB7RX WOS:000406338800009 2018-11-22 J Yokoyama, D; Imai, N; Kitayama, K Yokoyama, Daiki; Imai, Nobuo; Kitayama, Kanehiro Effects of nitrogen and phosphorus fertilization on the activities of four different classes of fine-root and soil phosphatases in Bornean tropical rain forests PLANT AND SOIL English Article P limitation; Secondary succession; Phosphomonoesterase; Phosphodiesterase; Pyrophosphatase; Phytase MICROBIAL COMMUNITY COMPOSITION; LABILE ORGANIC PHOSPHORUS; NUTRIENT LIMITATION; ACID-PHOSPHATASE; MOUNT-KINABALU; LAND-USE; MYCORRHIZAL ASSOCIATIONS; ALTITUDINAL GRADIENTS; ENZYME-ACTIVITIES; MONTANE FORESTS Soil hydrolysable P can be a main P source for biota in P-limited tropical rain forests. Soil hydrolysable P occurs in various chemical fractions, including, monoester P, diester P, pyrophosphate and phytate, which need enzymatic hydrolysis into orthophosphate before their assimilation into biota. We examined whether P-limited plants and microbes preferentially hydrolyzed specific fraction of soil hydrolysable P and whether those in different successional stages had different abilities to hydrolyze various soil hydrolysable P. We measured four classes of phosphatase (phosphomonoesterase, PME; phosphodiesterase, PDE; pyrophosphatase, PyP; and phytase, PhT) activities for fine-roots and soils in nitrogen (N) and P fertilized primary and secondary tropical rain forests in Sabah, Malaysia. P fertilization reduced PME, PyP and PhT activities for fine-roots and PME and PyP activities for soils. Fine-roots in primary forests had higher PME and PyP activities whereas those in secondary forests had higher PhT activities. We suggest that P-limited trees and microbes depend more on hydrolysable P degraded by one step of enzymatic reaction (monoester P, pyrophosphate, and phytate) as a P source. We also suggest that trees have different soil-organic-P acquisition strategies in association with their life history strategies. [Yokoyama, Daiki; Kitayama, Kanehiro] Kyoto Univ, Grad Sch Agr, Sakyo Ku, Oiwake Cho, Kyoto 6068502, Japan; [Imai, Nobuo] Tokyo Univ Agr, Dept Forest Sci, Setagaya Ku, Sakuragaoka 1-1-1, Tokyo 1568502, Japan Yokoyama, D (reprint author), Kyoto Univ, Grad Sch Agr, Sakyo Ku, Oiwake Cho, Kyoto 6068502, Japan. daiki.yokoyama.fe@gmail.com Imai, Nobuo/0000-0002-8435-7693; Yokoyama, Daiki/0000-0002-9689-4349 JSPS KAKENHI [JP22255002, JP15K18711, JP16J11390] We thank staffs of Sabah Forestry Department and Forest Research Centre, Sabah, for their kind assistance in all aspects. We thank local coworkers for the assistance in fieldwork. This work was supported by JSPS KAKENHI JP22255002 to K. Kitayama and JP15K18711 to N. Imai, and partially supplemented by JSPS KAKENHI JP16J11390 to D. Yokoyama. Allison VJ, 2007, SOIL BIOL BIOCHEM, V39, P1770, DOI 10.1016/j.soilbio.2007.02.006; Aoki M, 2012, ECOSYSTEMS, V15, P1194, DOI 10.1007/s10021-012-9575-6; Aoyagi R, 2013, FOREST ECOL MANAG, V289, P378, DOI 10.1016/j.foreco.2012.10.037; Brundrett MC, 2009, PLANT SOIL, V320, P37, DOI 10.1007/s11104-008-9877-9; Celi L., 2007, Inositol phosphates: linking agriculture and the environment, P207, DOI 10.1079/9781845931520.0207; CLARHOLM M, 1993, BIOL FERT SOILS, V16, P287, DOI 10.1007/BF00369306; Cleveland CC, 2002, ECOSYSTEMS, V5, P680, DOI 10.1007/s10021-002-0202-9; DICK WA, 1978, SOIL BIOL BIOCHEM, V10, P59; Fanin N, 2015, FUNCT ECOL, V29, P140, DOI 10.1111/1365-2435.12329; Finegan B, 1996, TRENDS ECOL EVOL, V11, P119, DOI 10.1016/0169-5347(96)81090-1; Fujii K, 2012, SOIL BIOL BIOCHEM, V47, P142, DOI 10.1016/j.soilbio.2011.12.018; George TS, 2008, ENVIRON EXP BOT, V64, P239, DOI 10.1016/j.envexpbot.2008.05.002; Gerke J, 2015, J PLANT NUTR SOIL SC, V178, P351, DOI 10.1002/jpln.201400590; Giles CD, 2011, CAN J SOIL SCI, V91, P397, DOI [10.4141/CJSS09090, 10.4141/cjss09090]; Hall SJ, 2004, BIOGEOCHEMISTRY, V70, P27, DOI 10.1023/B:BIOG.0000049335.68897.87; Hayes JE, 2000, BIOL FERT SOILS, V32, P279, DOI 10.1007/s003740000249; Heuck C, 2015, SOIL BIOL BIOCHEM, V85, P119, DOI 10.1016/j.soilbio.2015.02.029; Hietz P, 2011, SCIENCE, V334, P664, DOI 10.1126/science.1211979; Imai N, 2012, PLANT ECOL, V213, P1413, DOI 10.1007/s11258-012-0100-y; Imai N, 2010, J TROP ECOL, V26, P627, DOI 10.1017/S0266467410000350; Imai N, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0008267; Ishidzuka N, 1999, METHODS FOREST ENV S, P219; Jackson RB, 1997, P NATL ACAD SCI USA, V94, P7362, DOI 10.1073/pnas.94.14.7362; JANOS DP, 1980, BIOTROPICA, V12, P56, DOI 10.2307/2388157; Jenkinson DS, 2004, SOIL BIOL BIOCHEM, V36, P5, DOI 10.1016/j.soilbio.2003.10.002; Keiluweit M, 2015, NAT CLIM CHANGE, V5, P588, DOI 10.1038/nclimate2580; Kitayama K, 2000, OECOLOGIA, V123, P342, DOI 10.1007/s004420051020; Kitayama K, 2002, J ECOL, V90, P37, DOI 10.1046/j.0022-0477.2001.00634.x; Kitayama K, 2013, PLANT SOIL, V367, P215, DOI 10.1007/s11104-013-1624-1; Kuzyakov Y, 2001, SOIL BIOL BIOCHEM, V33, P1915, DOI 10.1016/S0038-0717(01)00117-1; Marklein AR, 2012, NEW PHYTOL, V193, P696, DOI 10.1111/j.1469-8137.2011.03967.x; Marschner P, 2011, SOIL BIOL BIOCHEM, V43, P883, DOI 10.1016/j.soilbio.2011.01.005; McDowell RW, 2007, EUR J SOIL SCI, V58, P1348, DOI 10.1111/j.1365-2389.2007.00933.x; Menezes-Blackburn D, 2013, CRIT REV ENV SCI TEC, V43, P916, DOI 10.1080/10643389.2011.627019; MURPHY J, 1962, ANAL CHIM ACTA, V26, P31; Nannipieri P, 2012, BIOL FERT SOILS, V48, P743, DOI 10.1007/s00374-012-0723-0; Nash DM, 2014, GEODERMA, V221, P11, DOI 10.1016/j.geoderma.2013.12.004; Olander LP, 2000, BIOGEOCHEMISTRY, V49, P175, DOI 10.1023/A:1006316117817; Ong R., 2013, COBENEFITS SUSTAINAB, P1; Ostertag R, 2001, ECOLOGY, V82, P485; Phillips RP, 2006, ECOLOGY, V87, P1302, DOI 10.1890/0012-9658(2006)87[1302:TSAMAI]2.0.CO;2; Reitzel K, 2014, SOIL BIOL BIOCHEM, V74, P95, DOI 10.1016/j.soilbio.2014.03.001; Richardson AE, 2000, PLANT CELL ENVIRON, V23, P397, DOI 10.1046/j.1365-3040.2000.00557.x; Sabah Forestry Department, 2005, FOR MAN PLANN 2; Sanguin H, 2016, PLANT SOIL, V401, P151, DOI 10.1007/s11104-015-2512-7; Smith AP, 2015, GLOBAL CHANGE BIOL, V21, P3532, DOI 10.1111/gcb.12947; Strickland MS, 2010, SOIL BIOL BIOCHEM, V42, P1385, DOI 10.1016/j.soilbio.2010.05.007; Stutter MI, 2015, GEODERMA, V257, P29, DOI 10.1016/j.geoderma.2015.03.020; Sullivan BW, 2014, ECOLOGY, V95, P668, DOI 10.1890/13-0825.1; Treseder KK, 2001, ECOLOGY, V82, P946, DOI 10.1890/0012-9658(2001)082[0946:EOSNAO]2.0.CO;2; Turner BL, 2008, J ECOL, V96, P698, DOI 10.1111/j.1365-2745.2008.01384.x; Turner BL, 2007, ECOSYSTEMS, V10, P1166, DOI 10.1007/s10021-007-9086-z; Turner BL, 2014, BIOGEOCHEMISTRY, V117, P115, DOI 10.1007/s10533-013-9848-y; Turner BL, 2011, BIOGEOCHEMISTRY, V103, P297, DOI 10.1007/s10533-010-9466-x; Turner BL, 2010, APPL ENVIRON MICROB, V76, P6485, DOI 10.1128/AEM.00560-10; Turner BL, 2005, SCI TOTAL ENVIRON, V344, P27, DOI 10.1016/j.scitotenv.2005.02.003; Turner BL, 2002, SOIL BIOL BIOCHEM, V34, P27, DOI 10.1016/S0038-0717(01)00144-4; Ushio M, 2015, FUNCT ECOL, V29, P1235, DOI 10.1111/1365-2435.12424; Vance CP, 2003, NEW PHYTOL, V157, P423, DOI 10.1046/j.1469-8137.2003.00695.x; VANCE ED, 1987, SOIL BIOL BIOCHEM, V19, P703, DOI 10.1016/0038-0717(87)90052-6; Vincent AG, 2010, EUR J SOIL SCI, V61, P48, DOI 10.1111/j.1365-2389.2009.01200.x; Vincent AG, 2013, PLANT SOIL, V367, P149, DOI 10.1007/s11104-013-1731-z; VITOUSEK PM, 1986, ANNU REV ECOL SYST, V17, P137, DOI 10.1146/annurev.es.17.110186.001033; VITOUSEK PM, 1984, ECOLOGY, V65, P285, DOI 10.2307/1939481; Waldrop MP, 2000, SOIL BIOL BIOCHEM, V32, P1837, DOI 10.1016/S0038-0717(00)00157-7; WALKER TW, 1976, GEODERMA, V15, P1, DOI 10.1016/0016-7061(76)90066-5; Waring BG, 2013, ECOL LETT, V16, P887, DOI 10.1111/ele.12125; WOLFENDEN R, 1967, BIOCHIM BIOPHYS ACTA, V146, P296, DOI 10.1016/0005-2744(67)90099-X; Wu J, 2000, BIOL FERT SOILS, V32, P500, DOI 10.1007/s003740000284; Wurzburger N, 2015, ECOLOGY, V96, P2137, DOI 10.1890/14-1362.1; Zhang AM, 2012, EUR J SOIL BIOL, V52, P73, DOI 10.1016/j.ejsobi.2012.07.001 71 3 3 6 40 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0032-079X 1573-5036 PLANT SOIL Plant Soil JUL 2017 416 1-2 463 476 10.1007/s11104-017-3225-x 14 Agronomy; Plant Sciences; Soil Science Agriculture; Plant Sciences FB1PT WOS:000405916400034 2018-11-22 J Jordani, MX; de Melo, LSO; Queiroz, CD; Rossa-Feres, DD; Garey, MV Jordani, Mainara Xavier; Ouchi de Melo, Lilian Sayuri; Queiroz, Cassia de Souza; Rossa-Feres, Denise de Cerqueira; Garey, Michel Varajao Tadpole community structure in lentic and lotic habitats: richness and diversity in the Atlantic Rainforest lowland HERPETOLOGICAL JOURNAL English Article Amphibians; Community ecology; Species composition; Species diversity; Species turnover SOUTHEASTERN BRAZIL; REPRODUCTIVE MODES; TEMPORAL DISTRIBUTION; ANURAN COMMUNITY; MONTANE-MEADOW; STREAMS; PREDATION; PATTERNS; WATER; BIODIVERSITY The analysis of species richness and community composition provides basic information to understand the structure of species assemblages. Here, we compared species richness and composition, compositional similarity and species turnover of tadpole communities in 14 lentic and eight lotic habitats in the Atlantic Rainforest of southeastern Brazil. Because the occurrence in lotic habitats requires some degree of morphological or behavioural specialisations of tadpoles to fast flowing water, we expected to find low species richness and species turnover in lotic than in lentic habitats. We compared species richness using abundance and sample-based rarefaction and species composition by PERMANOVA. We analyzed the Species Abundance Distribution (SAD) in each habitat type using a Whittaker diagram. To assess the similarity in species composition, we used a hierarchical cluster analysis. We compared the beta diversity between lentic and lotic habitats using Whittaker index and the species turnover using Jaccard index. We recorded 26 anuran species in the larval stage belonging to seven families. The highest species richness was recorded in lentic habitats (20 species), whereas only seven species occurred in lotic habitats. The species composition also differed markedly between lotic and lentic habitats, with only one shared species (Aplastodiscus eugenioi). Both habitats had few dominant and rare species and a greater proportion of species with intermediate abundance, but different processes are underlying this distribution abundance pattern in each type of habitat. Our results indicate that species richness, abundance, and occurrence are associated to habitat type (lentic and lotic), indicating a possible effect of the environmental filtering process associated to different life history strategies. [Jordani, Mainara Xavier; Ouchi de Melo, Lilian Sayuri; Queiroz, Cassia de Souza] Univ Estadual Paulista UNESP, Inst Biociencias Letras Ciencias Exatas, Dept Zool & Bot, Programa Posgrad Biol Anim, R Cristovao Colombo 2265, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil; [Rossa-Feres, Denise de Cerqueira] Univ Estadual Paulista UNESP, Inst Biociencias Letras Ciencias Exatas, Dept Zool & Bot, Lab Ecol Teor, R Cristovao Colombo 2265, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil; [Garey, Michel Varajao] Univ Fed Integracao Latinoamericana UNILA, Inst Latinoamericano Ciencias Vida & Nat, Ave Tarquinio Joslin dos Santos 1000, BR-85870901 Foz Do Iguacu, PR, Brazil Jordani, MX (reprint author), Univ Estadual Paulista UNESP, Inst Biociencias Letras Ciencias Exatas, Dept Zool & Bot, Programa Posgrad Biol Anim, R Cristovao Colombo 2265, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil. mainaraxj@yahoo.com.br Rossa-Feres, Denise/B-7903-2012; Garey, Michel/A-9742-2013 Garey, Michel/0000-0002-7482-792X joint project on Brazilian tadpoles [SISBIOTA: CNPq 563075/2010-4, FAPESP 2010/52321-7]; Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2011/05603-0, 2013/26406-3, 2012/09243-0, 2013/26101-8]; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) [303522/2013-5, 159945/2012-3]; FAPESP [2008/50575-1]; PROPE/UNESP [05/2012] We thank F. S. Annibale, T. L. Oliveira, and T. V. Pereira for their help during field work. M. Raniero for helping with map. D. B. Provete for helping with and reviewing the English language. ICMBio (26954-2) and COTEC (260108-004.450/2011) provided collecting permits. The staff of PESM - Picinguaba provided technical support. This study was supported by a joint project on Brazilian tadpoles (SISBIOTA: CNPq 563075/2010-4 and FAPESP 2010/52321-7). MXJ and LSOM thank the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) for fellowships #2011/05603-0, #2013/26406-3, and #2012/09243-0, #2013/26101-8 respectively. CSQ thanks CAPES/SISBIOTA. DCRF was supported by the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq - Proc. 303522/2013-5). MVG thanks FAPESP (#2008/50575-1), PROPE/UNESP (#05/2012), and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq; #159945/2012-3) for fellowships. Afonso LG, 2007, J NAT HIST, V41, P949, DOI 10.1080/00222930701311680; Alford RA, 1999, TADPOLES, P240; Almeida A. P., 2015, HYDROBIOLOGIA, V745, P123; Altermatt F, 2013, AQUAT ECOL, V47, P365, DOI 10.1007/s10452-013-9450-3; Altig R, 1999, TADPOLES, P24; Anderson MJ, 2001, AUSTRAL ECOL, V26, P32, DOI 10.1111/j.1442-9993.2001.01070.pp.x; Bastazini CV, 2007, HERPETOLOGICA, V63, P459, DOI 10.1655/0018-0831(2007)63[459:WEVBEC]2.0.CO;2; Borcard D, 2011, USE R, P1, DOI 10.1007/978-1-4419-7976-6; Both C, 2009, HYDROBIOLOGIA, V624, P125, DOI 10.1007/s10750-008-9685-5; Chalcraft D.R., 2005, HABITAT SELECTION SP, P374; Conte CE, 2006, REV BRAS ZOOL, V23, P162, DOI 10.1590/S0101-81752006000100008; Eterovick PC, 2010, AUSTRAL ECOL, V35, P879, DOI 10.1111/j.1442-9993.2009.02094.x; Eterovick PC, 2003, J TROP ECOL, V19, P439, DOI 10.1017/S026646740300347X; Eterovick PC, 2000, AMPHIBIA-REPTILIA, V21, P439; Garey Michel V., 2014, Check List, V10, P308; Garey MV, 2012, BIOTA NEOTROP, V12, P137, DOI 10.1590/S1676-06032012000400015; Gomez-Mestre I, 2012, EVOLUTION, V66, P3687, DOI 10.1111/j.1558-5646.2012.01715.x; Gotelli NJ, 2001, ECOL LETT, V4, P379, DOI 10.1046/j.1461-0248.2001.00230.x; Haddad CFB, 2005, BIOSCIENCE, V55, P207, DOI 10.1641/0006-3568(2005)055[0207:RMIFAT]2.0.CO;2; HADDAD CFB, 2013, GUIA ANFIBIOS MATA A; Hammer O, 2001, PALAEONTOL ELECTRON, V4, P9, DOI DOI 10.1016/J.BCP.2008.05.025; Hartmann MT, 2010, IHERINGIA SER ZOOL, V100, P207, DOI 10.1590/S0073-47212010000300004; Heino J, 2015, FRESHWATER BIOL, V60, P845, DOI 10.1111/fwb.12533; Hoff KV, 1999, TADPOLES, P215; INGER R F, 1986, Journal of Tropical Ecology, V2, P193; Joly CA, 2012, BIOTA NEOTROP, V12, P123; Kopp K, 2006, CAN J ZOOL, V84, P136, DOI 10.1139/Z05-186; Kopp K, 2006, J NAT HIST, V40, P1813, DOI 10.1080/00222930601017403; Krebs C J., 1999, ECOLOGICAL METHODOLO; Lecerf A, 2005, OECOLOGIA, V146, P432, DOI 10.1007/s00442-005-0212-3; Magurran A. E., 2011, BIOL DIVERSITY FRONT; McDiarmid R.W., 1999, TADPOLES BIOL ANURAN; Myers N, 2000, NATURE, V403, P853, DOI 10.1038/35002501; Nomura F, 2011, J ZOOL, V284, P144, DOI 10.1111/j.1469-7998.2011.00791.x; Nychka D, 2015, FIELDS TOOLS SPATIAL, DOI [10.5065/D6W957CT, DOI 10.5065/D6W957CT]; Oksanen J., 2016, VEGAN COMMUNITY ECOL; Parris KM, 2004, ECOGRAPHY, V27, P392, DOI 10.1111/j.0906-7590.2004.03711.x; PEEL M. C., 2007, HYDROL EARTH SYST SC, V4, P439, DOI DOI 10.5194/HESSD-4-439-2007; Provete DB, 2014, HYDROBIOLOGIA, V734, P69, DOI 10.1007/s10750-014-1870-0; Queiroz CD, 2015, ROY SOC OPEN SCI, V2, DOI 10.1098/rsos.150165; R Core Team, 2016, R LANG ENV STAT COMP; RESETARITS WJ, 1989, ECOLOGY, V70, P220, DOI 10.2307/1938428; Ribera I, 2000, BIOL J LINN SOC, V71, P33, DOI 10.1006/bijl.1999.0412; Rohlf FJ, 2000, NTSYS 2 1 NUMERICAL; Romesburg H.C., 1984, CLUSTER ANAL RES; Rossa-Feres D, 1996, REV BRAS BIOL, V56, P309; Semlitsch RD, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0123055; SILVA FR, 2012, J BIOGEOGRAPHY, V0039; Strauss A, 2013, HYDROBIOLOGIA, V702, P27, DOI 10.1007/s10750-012-1301-z; Strauss Axel, 2010, BMC Ecology, V10, P12, DOI 10.1186/1472-6785-10-12; Tundisi JG, 2011, LIMNOLOGY, P1, DOI 10.1201/b11386; Tuomisto H, 2010, ECOGRAPHY, V33, P2, DOI 10.1111/j.1600-0587.2009.05880.x; Van Buskirk J, 2005, ECOLOGY, V86, P1936, DOI 10.1890/04-1237; Van Sluys M, 2007, AUSTRAL ECOL, V32, P254, DOI 10.1111/j.1442-9993.2007.01682.x; Vasconcelos TD, 2011, HYDROBIOLOGIA, V673, P93, DOI 10.1007/s10750-011-0762-9; VAZ-FERREIRA R, 1975, Physis Seccion B las Aguas Continentales y sus Organismos, V34, P1; Villa J., 1982, Brenesia, V19-20, P577; WASSERSUG RJ, 1983, CAN J ZOOL, V61, P761, DOI 10.1139/z83-101; Weiher E, 2011, PHILOS T R SOC B, V366, P2403, DOI 10.1098/rstb.2011.0056; Wellborn GA, 1996, ANNU REV ECOL SYST, V27, P337, DOI 10.1146/annurev.ecolsys.27.1.337; Wells K. D., 2010, ECOLOGY BEHAV AMPHIB; WHITTAKER ROBERT H., 1960, ECOL MONOGR, V30, P279, DOI 10.2307/1943563 62 0 0 3 13 BRITISH HERPETOL SOC LONDON C/O ZOOL SOC LONDON REGENTS PARK, LONDON NW1 4RY, ENGLAND 0268-0130 HERPETOL J Herpetolog. J. JUL 2017 27 3 299 306 8 Zoology Zoology FA0MA WOS:000405127900008 2018-11-22 J LaManna, JA; Martin, TE LaManna, Joseph A.; Martin, Thomas E. Seasonal fecundity and costs to lambda are more strongly affected by direct than indirect predation effects across species ECOLOGY English Article demographic costs; fitness; indirect effects; landscape of fear; life-history; mortality; predation; predation risk; reproductive success; seasonal fecundity LARVAL ANURANS; NEST PREDATION; CHEMICAL CUES; RISK; HABITAT; BIRDS; CONSEQUENCES; SONGBIRDS; RESPONSES; FRAGMENTATION Increased perceived predation risk can cause behavioral and physiological responses to reduce direct predation mortality, but these responses can also cause demographic costs through reduced reproductive output. Such indirect costs of predation risk have received increased attention in recent years, but the relative importance of direct vs. indirect predation costs to population growth (k) across species remains unclear. We measured direct nest predation rates as well as indirect benefits (i.e., reduced predation rates) and costs (i.e., decreased reproductive output) arising from parental responses to perceived offspring predation risk for 10 songbird species breeding along natural gradients in nest predation risk. We show that reductions in seasonal fecundity from behavioral responses to perceived predation risk represent significant demographic costs for six of the 10 species. However, demographic costs from these indirect predation effects on seasonal fecundity comprised only 12% of cumulative predation costs averaged across species. In contrast, costs from direct predation mortality comprised 88% of cumulative predation costs averaged across species. Demographic costs from direct offspring predation were relatively more important for species with higher within-season residual-reproductive value (i.e., multiple-brooded species) than for species with lower residual-reproductive value (i.e., single-brooded species). Costs from indirect predation effects were significant across single-but not multiple-brooded species. Ultimately, demographic costs from behavioral responses to offspring predation risk differed among species as a function of their life-history strategies. Yet direct predation mortality generally wielded a stronger influence than indirect effects on seasonal fecundity and projected lambda across species. [LaManna, Joseph A.] Univ Montana, Montana Cooperat Wildlife Res Unit, Missoula, MT 59812 USA; [Martin, Thomas E.] Univ Montana, Montana Cooperat Wildlife Res Unit, US Geol Survey, Missoula, MT 59812 USA LaManna, JA (reprint author), Univ Montana, Montana Cooperat Wildlife Res Unit, Missoula, MT 59812 USA. joe.a.lamanna@gmail.com Bair Foundation; STAR Fellowship - U.S. Environmental Protection Agency (EPA) [FP-91747701-0]; University of Montana IACUC [AUP 059-10] Many people, especially A. and M. Hemenway, J. Schoen, J. Hughes, R. Steiner, and J. Broderick, helped with data collection to inform demographic models. We also thank M. Hebble-white, J. Micron, R. Callaway, and our lab group for helpful comments on the manuscript. We greatly appreciate financial support and laud access by the Bair Foundation. Montana Fish Wildlife & Parks, the Lewis and Clark National Forest, a private landowner, and the U.S. Geological Sitrvey Climate Change Research Program. This publication was developed under STAR Fellowship Assistance Agreement no. FP-91747701-0 awarded by the U.S. Environmental Protection Agency (EPA). It has not been formally reviewed by EPA. The views and conclusions in this article are solely those of the authors. The authors declare no conflicts of interest. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. This study was conducted under the auspices of the University of Montana IACUC protocol AUP 059-10 and permits 2009-023, 2010-044, 2011-045, 2012-042, 2013-090, and 2014-084 from Montana. Fish Wildlife & Parks. BARRY MJ, 1994, OECOLOGIA, V97, P278, DOI 10.1007/BF00323161; Chivers DP, 2013, ECOL EVOL, V3, P3925, DOI 10.1002/ece3.760; CLARK CW, 1994, BEHAV ECOL, V5, P159, DOI 10.1093/beheco/5.2.159; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Creel S, 2008, TRENDS ECOL EVOL, V23, P194, DOI 10.1016/j.tree.2007.12.004; Creel S, 2007, SCIENCE, V315, P960, DOI 10.1126/science.1135918; Cresswell W, 2008, IBIS, V150, P3, DOI 10.1111/j.1474-919X.2007.00793.x; Cresswell W, 2011, J ORNITHOL, V152, P251, DOI 10.1007/s10336-010-0638-1; DeAngelis D.L., 1992, INDIVIDUAL BASED MOD; Emmering QC, 2011, J ANIM ECOL, V80, P1305, DOI 10.1111/j.1365-2656.2011.01869.x; Fontaine JJ, 2006, AM NAT, V168, P811, DOI 10.1086/508297; Fontaine JJ, 2006, ECOL LETT, V9, P428, DOI 10.1111/j.1461-0248.2006.00892.x; Fraker ME, 2009, BEHAVIOUR, V146, P1025, DOI 10.1163/156853909X404439; Ghalambor CK, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0154; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Greenberg R., 1980, P493; Hua FY, 2014, BEHAV ECOL, V25, P509, DOI 10.1093/beheco/aru017; Ibanez-Alamo J., 2015, J ORNITHOLOGY; Janssens L, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088247; Jetz W, 2012, NATURE, V491, P444, DOI 10.1038/nature11631; LaManna JA, 2016, ECOL LETT, V19, P403, DOI 10.1111/ele.12573; Lamanna JA, 2015, ECOLOGY, V96, P1670, DOI 10.1890/14-1333.1; Laundre J. W, 2010, OPEN J ECOL, V3, P1, DOI DOI 10.2174/1874213001003030001; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Lloyd P, 2005, ECOL APPL, V15, P1504, DOI 10.1890/04-1243; Maddison W. P., 2015, MESQUITE MODULAR SYS; Marchand MN, 2004, BIOL CONSERV, V117, P243, DOI 10.1016/j.biocon.2003.07.003; MARTIN TE, 1988, ECOLOGY, V69, P74, DOI 10.2307/1943162; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2007, ECOLOGY, V88, P367, DOI 10.1890/0012-9658(2007)88[367:CCOYOT]2.0.CO;2; Martin TE, 2015, SCIENCE, V349, P966, DOI 10.1126/science.aad1173; Martin TE, 2009, ANN NY ACAD SCI, V1168, P201, DOI 10.1111/j.1749-6632.2009.04577.x; Nagy LR, 2005, ECOLOGY, V86, P675, DOI 10.1890/04-0155; Peacor SD, 2006, HYDROBIOLOGIA, V573, P39, DOI 10.1007/s10750-006-0256-3; Preisser EL, 2005, ECOLOGY, V86, P501, DOI 10.1890/04-0719; PULLIAM HR, 1988, AM NAT, V132, P652, DOI 10.1086/284880; Pulliam HR, 2000, ECOL LETT, V3, P349, DOI 10.1046/j.1461-0248.2000.00143.x; Relyea RA, 2004, ECOL LETT, V7, P869, DOI 10.1111/j.1461-0248.2004.00645.x; Relyea RA, 2001, ECOLOGY, V82, P541, DOI 10.1890/0012-9658(2001)082[0541:TRBPRA]2.0.CO;2; Relyea RA, 1999, ECOLOGY, V80, P2117, DOI 10.1890/0012-9658(1999)080[2117:QTRBPI]2.0.CO;2; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; ROBINSON SK, 1995, SCIENCE, V267, P1987, DOI 10.1126/science.267.5206.1987; Shaffer TL, 2004, AUK, V121, P526, DOI 10.1642/0004-8038(2004)121[0526:AUATAN]2.0.CO;2; Sih A., 1987, P203; STRONG DR, 1992, ECOLOGY, V73, P747, DOI 10.2307/1940154; TEMPLE SA, 1988, CONSERV BIOL, V2, P340, DOI 10.1111/j.1523-1739.1988.tb00198.x; Van Buskirk J, 2000, ECOLOGY, V81, P2813, DOI 10.1890/0012-9658(2000)081[2813:TCOAID]2.0.CO;2; Van Buskirk J, 2014, ETHOLOGY, V120, P942, DOI 10.1111/eth.12266; Werner EE, 1996, ECOLOGY, V77, P157, DOI 10.2307/2265664; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Zanette LY, 2011, SCIENCE, V334, P1398, DOI 10.1126/science.1210908 51 0 0 1 17 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology JUL 2017 98 7 1829 1838 10.1002/ecy.1860 10 Ecology Environmental Sciences & Ecology EZ7BP WOS:000404875100010 28403555 2018-11-22 J Chauvet, M; Kunstler, G; Roy, J; Morin, X Chauvet, Mickael; Kunstler, Georges; Roy, Jacques; Morin, Xavier Using a forest dynamics model to link community assembly processes and traits structure FUNCTIONAL ECOLOGY English Article biotic filtering; community assembly; competition for light; environmental filtering; forest succession; limiting similarity; process-based model; productivity gradient; trait convergence; trait divergence PHYLOGENETIC STRUCTURE; PLANT-COMMUNITIES; FUNCTIONAL TRAITS; LONG-TERM; COMPETITION; COEXISTENCE; TREES; MECHANISMS; HEIGHT; CONSEQUENCES 1. Trait-based approaches have been increasingly used to understand the role of environmental and biotic filters on species assembly. However, our understanding of the relationships between traits and community assembly processes remain limited. Indeed, various assembly processes may lead to similar functional patterns, and the effects of a given process may vary with the considered traits. Especially, competition can result in trait divergence or convergence depending on whether the trait is related to niche differences or to species' competitive abilities. 2. In this study, we used a process-based forest gap-model to explore the effects of environmental and biotic assembly processes on the functional diversity of tree communities along a productivity gradient of 11 sites across central Europe. In a simulation experiment, we (i) disentangled the effects of environmental and biotic filtering on community structure, and (ii) tested whether competition resulted in trait divergence or convergence. 3. Our results confirmed the expected decrease in species richness with decreasing site fertility. We detected environmental filtering for traits related to both species environmental requirements and species competitive ability, highlighting that environmental trait filtering can affect all aspects of tree life-history strategies. 4. We observed convergence of traits related to growth and light capture resulting from competition for light, suggesting that tree species assembly is mainly driven by differences in competitive abilities. Additionally, the observed trait convergence was stronger in more productive sites than in less fertile ones, reflecting the impact of environmental conditions on competitive interactions. 5. Synthesis. Our study shows that process-based forest gap-models can help to test whether functional traits composition reveal the signature of community assembly processes. This process-based approach challenges the classical view on the links between traits and mechanisms driving community assembly. [Chauvet, Mickael; Morin, Xavier] Univ Paul Valery Montpellier, Univ Montpellier, CNRS, CEFE UMR 5175,EPHE, 1919 Route Mende, F-34293 Montpellier 5, France; [Kunstler, Georges] UR EMGR Ecosyst Montagnards, Irstea, 2 Rue Papeterie BP 76, F-38402 St Martin Dheres, France; [Roy, Jacques] CNRS, Ecotron UPS 3248, Campus Baillarguet, Montferrier Sur Lez, France Chauvet, M (reprint author), Univ Paul Valery Montpellier, Univ Montpellier, CNRS, CEFE UMR 5175,EPHE, 1919 Route Mende, F-34293 Montpellier 5, France. mickael.chauvet@cefe.cnrs.fr French Ministry of Education and Research; EU 7th FP project BACCARA [226299]; ANR BIO-PRO-FOR project [ANR 11 PDOC 030 01] We thank H. Bugmann for allowing us to work with the FORcLIM model and his constructive feedback on this study, and C. Violle and S. Hattenschwiler for helpful discussions. We also thank Sophia Ratcliffe, two anonymous referees and the associate editor for their valuable suggestions and comments on previous versions of the manuscript. M.C. was supported by a doctoral fellowship from the French Ministry of Education and Research. Some simulations used in this study have been realized for the EU 7th FP project BACCARA (contract 226299) and this study has received support from the ANR BIO-PRO-FOR project (contract ANR 11 PDOC 030 01). Adams TP, 2007, P ROY SOC B-BIOL SCI, V274, P3039, DOI 10.1098/rspb.2007.0891; Adler PB, 2013, ECOL LETT, V16, P1294, DOI 10.1111/ele.12157; Aiba M, 2013, ECOLOGY, V94, P2873, DOI 10.1890/13-0269.1; BAZZAZ FA, 1979, ANNU REV ECOL SYST, V10, P351, DOI 10.1146/annurev.es.10.110179.002031; Bernard-Verdier M, 2012, J ECOL, V100, P1422, DOI 10.1111/1365-2745.12003; Bugmann H, 2001, CLIMATIC CHANGE, V51, P259, DOI 10.1023/A:1012525626267; Bugmann H. K. M., 1994, ECOLOGY MOUNTAINOUS; Bugmann HKM, 1996, ECOLOGY, V77, P2055, DOI 10.2307/2265700; Callaway RM, 2002, NATURE, V417, P844, DOI 10.1038/nature00812; Chamberlain SA, 2014, ECOL LETT, V17, P881, DOI 10.1111/ele.12279; Chapin F., 2002, PRINCIPLES TERRESTRI; Chase JM, 2011, ECOSPHERE, V2, DOI 10.1890/ES10-00117.1; Chauvet M., 2017, DATA USING FOREST DY; Coomes DA, 2000, ECOL MONOGR, V70, P171, DOI 10.1890/0012-9615(2000)070[0171:IORCIF]2.0.CO;2; Diamond J.M., 1975, ASSEMBLY SPECIES COM, P342; Didion M, 2009, CAN J FOREST RES, V39, P1092, DOI 10.1139/X09-041; Falster D. S., 2015, BIORXIV; Freckleton RP, 2001, FUNCT ECOL, V15, P615, DOI 10.1046/j.0269-8463.2001.00558.x; Garnier E, 2004, ECOLOGY, V85, P2630, DOI 10.1890/03-0799; Gravel D, 2010, OIKOS, V119, P475, DOI 10.1111/j.1600-0706.2009.17441.x; Grime J. P., 2001, PLANT STRATEGIES VEG; Grime JP, 2006, J VEG SCI, V17, P255, DOI 10.1658/1100-9233(2006)17[255:TCATDI]2.0.CO;2; Grime JP, 1979, PLANT STRATEGIES VEG; Hardy OJ, 2008, J ECOL, V96, P914, DOI 10.1111/j.1365-2745.2008.01421.x; Hawkins BA, 2003, ECOLOGY, V84, P3105, DOI 10.1890/03-8006; Herben T, 2014, J ECOL, V102, P156, DOI 10.1111/1365-2745.12181; Jucker T, 2015, FUNCT ECOL, V29, P1078, DOI 10.1111/1365-2435.12428; Jung V, 2010, J ECOL, V98, P1134, DOI 10.1111/j.1365-2745.2010.01687.x; Kohyama TS, 2012, J ECOL, V100, P1501, DOI 10.1111/j.1365-2745.2012.02029.x; Kraft NJB, 2007, AM NAT, V170, P271, DOI 10.1086/519400; Kraft NJB, 2015, FUNCT ECOL, V29, P592, DOI 10.1111/1365-2435.12345; Kraft NJB, 2010, ECOL MONOGR, V80, P401, DOI 10.1890/09-1672.1; Kunstler G, 2016, NATURE, V529, P204, DOI 10.1038/nature16476; Kunstler G, 2012, ECOL LETT, V15, P831, DOI 10.1111/j.1461-0248.2012.01803.x; MACARTHUR R, 1967, AM NAT, V101, P377, DOI 10.1086/282505; Mayfield MM, 2010, ECOL LETT, V13, P1085, DOI 10.1111/j.1461-0248.2010.01509.x; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; Morin X, 2011, ECOL LETT, V14, P1211, DOI 10.1111/j.1461-0248.2011.01691.x; Pacala SW, 1996, ECOL MONOGR, V66, P1, DOI 10.2307/2963479; Pacala SW, 1998, AM NAT, V152, P729, DOI 10.1086/286203; Rasche L, 2012, ECOL MODEL, V232, P133, DOI 10.1016/j.ecolmodel.2012.03.004; Rees M, 2001, SCIENCE, V293, P650, DOI 10.1126/science.1062586; Scherer-Lorenzen M, 2007, PERSPECT PLANT ECOL, V9, P53, DOI 10.1016/j.ppees.2007.08.002; Shugart H. H., 1984, THEORY FOREST DYNAMI; SMITH T, 1989, VEGETATIO, V83, P49, DOI 10.1007/BF00031680; Sonnier G, 2010, J VEG SCI, V21, P1014, DOI 10.1111/j.1654-1103.2010.01210.x; Sykes MT, 1996, CLIMATIC CHANGE, V34, P161; Tilman D, 1987, FUNCT ECOL, V1, P304, DOI 10.2307/2389785; Tilman D., 1982, RESOURCE COMPETITION; TILMAN D, 1988, PLANT STRATEGIES DYN; Weiher E, 1998, OIKOS, V81, P309, DOI 10.2307/3547051; Westoby M, 2002, ANNU REV ECOL SYST, V33, P125, DOI 10.1146/annurev.ecolsys.33.010802.150452 52 0 0 7 38 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. JUL 2017 31 7 1452 1461 10.1111/1365-2435.12847 10 Ecology Environmental Sciences & Ecology EZ6WN WOS:000404860200010 2018-11-22 J Burkhart, JJ; Peterman, WE; Brocato, ER; Romine, KM; Willis, MMS; Ousterhout, BH; Anderson, TL; Drake, DL; Rowland, FE; Semlitsch, RD; Eggert, LS Burkhart, Jacob J.; Peterman, William E.; Brocato, Emily R.; Romine, Kimberly M.; Willis, M. Madeline S.; Ousterhout, Brittany H.; Anderson, Thomas L.; Drake, Dana L.; Rowland, Freya E.; Semlitsch, Raymond D.; Eggert, Lori S. The influence of breeding phenology on the genetic structure of four pond-breeding salamanders ECOLOGY AND EVOLUTION English Article Ambystoma; amphibians; Caudata; landscape genetics; life history; Notophthalmus viridescens NOTOPHTHALMUS-VIRIDESCENS RAFINESQUE; LIFE-HISTORY CHARACTERISTICS; MULTILOCUS GENOTYPE DATA; RED-SPOTTED NEWT; AMBYSTOMA-ANNULATUM; WATER-LOSS; COMPARATIVE LANDSCAPE; POPULATION-STRUCTURE; AMPHIBIANS; DYNAMICS Understanding metapopulation dynamics requires knowledge about local population dynamics and movement in both space and time. Most genetic metapopulation studies use one or two study species across the same landscape to infer population dynamics; however, using multiple co-occurring species allows for testing of hypotheses related to different life history strategies. We used genetic data to study dispersal, as measured by gene flow, in three ambystomatid salamanders (Ambystoma annulatum, A. maculatum, and A. opacum) and the Central Newt (Notophthalmus viridescens louisianensis) on the same landscape in Missouri, USA. While all four salamander species are forest dependent organisms that require fishless ponds to reproduce, they differ in breeding phenology and spatial distribution on the landscape. We use these differences in life history and distribution to address the following questions: (1) Are there species-level differences in the observed patterns of genetic diversity and genetic structure? and (2) Is dispersal influenced by landscape resistance? We detected two genetic clusters in A. annulatum and A. opacum on our landscape; both species breed in the fall and larvae overwinter in ponds. In contrast, no structure was evident in A. maculatum and N. v. louisianensis, species that breed during the spring. Tests for isolation by distance were significant for the three ambystomatids but not for N. v. louisianensis. Landscape resistance also contributed to genetic differentiation for all four species. Our results suggest species-level differences in dispersal ability and breeding phenology are driving observed patterns of genetic differentiation. From an evolutionary standpoint, the observed differences in dispersal distances and genetic structure between fall breeding and spring breeding species may be a result of the trade-off between larval period length and size at metamorphosis which in turn may influence the long-term viability of the metapopulation. Thus, it is important to consider life history differences among closely related and ecologically similar species when making management decisions. [Burkhart, Jacob J.; Brocato, Emily R.; Romine, Kimberly M.; Willis, M. Madeline S.; Rowland, Freya E.; Semlitsch, Raymond D.; Eggert, Lori S.] Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA; [Peterman, William E.] Ohio State Univ, Sch Environm & Nat Resources, Columbus, OH 43210 USA; [Ousterhout, Brittany H.] Univ Arkansas, Dept Biol Sci, Fayetteville, AR 72701 USA; [Anderson, Thomas L.] Univ Kansas, Kansas Biol Survey, Lawrence, KS 66045 USA; [Drake, Dana L.] Univ Connecticut, Dept Ecol & Evolutionary Biol, Storrs, CT USA Burkhart, JJ (reprint author), Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA. jacob.burkhart9@gmail.com Brocato, Emily/0000-0003-4429-8155; Burkhart, Jacob/0000-0002-7913-6220 U.S. Department of Defense [RC2155] U.S. Department of Defense, Grant/Award Number: RC2155 Adamack AT, 2014, METHODS ECOL EVOL, V5, P384, DOI 10.1111/2041-210X.12158; Anderson TL, 2015, ECOL APPL, V25, P1896, DOI 10.1890/14-2096.1; Bates D., 2014, ARXIV14065823; Briggler JT, 2004, SOUTHWEST NAT, V49, P209, DOI 10.1894/0038-4909(2004)049<0209:DOARSA>2.0.CO;2; Clarke RT, 2002, J AGRIC BIOL ENVIR S, V7, P361, DOI 10.1198/108571102320; Clobert J, 2009, ECOL LETT, V12, P197, DOI 10.1111/j.1461-0248.2008.01267.x; Corander J, 2006, MOL ECOL, V15, P2833, DOI 10.1111/j.1365-294X.2006.02994.x; Crawford JA, 2016, LANDSCAPE ECOL, V31, P2231, DOI 10.1007/s10980-016-0394-6; Croshaw DA, 2003, MOL ECOL NOTES, V3, P514, DOI 10.1046/j.1471-8286.2003.00496.x; Cushman SA, 2013, BIODIVERS CONSERV, V22, P2583, DOI 10.1007/s10531-013-0541-1; Dawson MN, 2002, MOL ECOL, V11, P1065, DOI 10.1046/j.1365-294X.2002.01503.x; Dyer RJ, 2010, MOL ECOL, V19, P3746, DOI 10.1111/j.1365-294X.2010.04748.x; Earl DA, 2012, CONSERV GENET RESOUR, V4, P359, DOI 10.1007/s12686-011-9548-7; Einum S, 2006, OIKOS, V113, P489, DOI 10.1111/j.2006.0030-1299.14806.x; Engler JO, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0106526; Evanno G, 2005, MOL ECOL, V14, P2611, DOI 10.1111/j.1365-294X.2005.02553.x; Gamble LR, 2007, BIOL CONSERV, V139, P247, DOI 10.1016/j.biocon.2007.07.001; GILL DE, 1978, ECOL MONOGR, V48, P145, DOI 10.2307/2937297; GILL DE, 1979, ECOLOGY, V60, P800, DOI 10.2307/1936616; Goldberg CS, 2010, MOL ECOL, V19, P3650, DOI 10.1111/j.1365-294X.2010.04673.x; Greenwald KR, 2010, ANIM CONSERV, V13, P115, DOI 10.1111/j.1469-1795.2009.00339.x; Greenwald KR, 2009, BIOL CONSERV, V142, P2493, DOI 10.1016/j.biocon.2009.05.021; Grover MC, 2000, COPEIA, P156, DOI 10.1643/0045-8511(2000)2000[0156:DOSDAM]2.0.CO;2; Hocking DJ, 2008, AM MIDL NAT, V160, P41, DOI 10.1674/0003-0031(2008)160[41:BARPOA]2.0.CO;2; Jenness J., 2006, TOPOGRAPHIC POSITION; Jones AG, 2001, MOL ECOL NOTES, V1, P293, DOI 10.1046/j.1471-8278 .2001.00115.x; Jones OR, 2010, MOL ECOL RESOUR, V10, P551, DOI 10.1111/j.1755-0998.2009.02787.x; Kalinowski ST, 2005, MOL ECOL NOTES, V5, P187, DOI 10.1111/j.1471-8286.2004.00845.x; Kierepka EM, 2016, HEREDITY, V116, P33, DOI 10.1038/hdy.2015.67; Kierepka EM, 2016, ECOL EVOL, V6, P6376, DOI 10.1002/ece3.2269; Madison DM, 1997, J HERPETOL, V31, P542, DOI 10.2307/1565607; Manel S, 2013, TRENDS ECOL EVOL, V28, P614, DOI 10.1016/j.tree.2013.05.012; Martin J. K., 2013, LANDSCAPE GENETICS M; May S. E., 2011, INDIRECT ESTIMATES G; Meirmans PG, 2006, EVOLUTION, V60, P2399, DOI 10.1111/j.0014-3820.2006.tb01874.x; Meirmans PG, 2004, MOL ECOL NOTES, V4, P792, DOI 10.1111/j.1471-8286.2004.00770.x; Mims MC, 2015, ECOLOGY, V96, P1371, DOI 10.1890/14-0490.1; Nunziata SO, 2011, CONSERV GENET RESOUR, V3, P773, DOI 10.1007/s12686-011-9455-y; Oksanen J., 2016, VEGAN COMMUNITY ECOL; Osbourn M. S., 2012, THESIS; Peterman WE, 2014, OECOLOGIA, V176, P357, DOI 10.1007/s00442-014-3041-4; Peterman WE, 2014, ANIM CONSERV, V17, P275, DOI 10.1111/acv.12090; Peterman WE, 2013, CAN J ZOOL, V91, P135, DOI 10.1139/cjz-2012-0229; Peterman W.E., 2014, RESISTANCEGA R PACKA; Peterman WE, 2015, CONSERV GENET, V16, P59, DOI 10.1007/s10592-014-0640-x; Peterman WE, 2014, MOL ECOL, V23, P2402, DOI 10.1111/mec.12747; Peterman WE, 2013, CONSERV GENET RESOUR, V5, P993, DOI 10.1007/s12686-013-9951-3; Peterman WE, 2013, CONSERV GENET RESOUR, V5, P989, DOI 10.1007/s12686-013-9950-4; Peterman WE, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0062184; Peterman WE, 2012, COPEIA, P570, DOI 10.1643/CH-11-001; Petranka J.W., 1998, SALAMANDERS US CANAD; Petranka JW, 2007, EVOL ECOL, V21, P751, DOI 10.1007/s10682-006-9149-1; Phillips BL, 2008, AM NAT, V172, pS34, DOI 10.1086/588255; Pittman S. E., 2013, J ZOOL, V169, P44; Pittman SE, 2014, BIOL CONSERV, V169, P44, DOI 10.1016/j.biocon.2013.10.020; Pritchard JK, 2000, GENETICS, V155, P945; R Core Team, 2016, R LANG ENV STAT COMP; RAYMOND M, 1995, J HERED, V86, P248, DOI 10.1093/oxfordjournals.jhered.a111573; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; Rittenhouse TAG, 2006, BIOL CONSERV, V131, P14, DOI 10.1016/j.biocon.2006.01.024; Rittenhouse TAG, 2007, WETLANDS, V27, P153, DOI 10.1672/0277-5212(2007)27[153:DOAITH]2.0.CO;2; Rothermel BB, 2002, CONSERV BIOL, V16, P1324, DOI 10.1046/j.1523-1739.2002.01085.x; Rothermel BB, 2004, ECOL APPL, V14, P1535, DOI 10.1890/03-5206; Rousset F, 2008, MOL ECOL RESOUR, V8, P103, DOI 10.1111/j.1471-8286.2007.01931.x; Schwartz MK, 2009, ECOLOGY, V90, P3222, DOI 10.1890/08-1287.1; SCOTT DE, 1994, ECOLOGY, V75, P1383, DOI 10.2307/1937462; Scrucca L, 2013, J STAT SOFTW, V53, P1; Semlitsch RD, 2012, CAN J ZOOL, V90, P1128, DOI 10.1139/Z2012-079; Semlitsch Raymond D., 1996, P217, DOI 10.1016/B978-012178075-3/50010-6; Semlitsch RD, 2016, HERPETOLOGICA, V72, P81, DOI 10.1655/HERPETOLOGICA-D-15-00049; Semlitsch RD, 2014, HERPETOLOGICA, V70, P14, DOI 10.1655/HERPETOLOGICA-D-13-00074; SEMLITSCH RD, 1988, COPEIA, P978; SEMLITSCH RD, 1987, COPEIA, P61, DOI 10.2307/1446038; SEMLITSCH RD, 1981, CAN J ZOOL, V59, P315, DOI 10.1139/z81-047; Short Bull RA, 2011, MOL ECOL, V20, P1092, DOI DOI 10.1111/J.1365-294X.2010.04944.X; Simmons AD, 2004, AM NAT, V164, P378, DOI 10.1086/423430; SPOTILA JR, 1976, COMP BIOCHEM PHYS A, V55, P407, DOI 10.1016/0300-9629(76)90069-4; Taylor BE, 2006, CONSERV BIOL, V20, P792, DOI 10.1111/j.1523-1739.2005.00321.x; Theobold D., 2007, LCAP V1 0 LANDSCAPE; Titus V, 2014, FORESTS, V5, P3070, DOI 10.3390/f5123070; Trenham PC, 2001, ECOLOGY, V82, P3519, DOI 10.2307/2680169; Urban MC, 2007, OECOLOGIA, V154, P571, DOI 10.1007/s00442-007-0856-2; Van Strien MJ, 2012, MOL ECOL, V21, P4010, DOI 10.1111/j.1365-294X.2012.05687.x; Wagner HH, 2013, CONSERV GENET, V14, P253, DOI 10.1007/s10592-012-0391-5; Werner EE, 2009, ECOL MONOGR, V79, P503, DOI 10.1890/08-1047.1; Whiteley A. R., 2014, CONSERV GENET, P573; Whiteley AR, 2004, MOL ECOL, V13, P3675, DOI 10.1111/j.1365-294X.2004.02365.x; WILBUR HM, 1980, ANNU REV ECOL SYST, V11, P67, DOI 10.1146/annurev.es.11.110180.000435 88 1 1 4 24 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. JUL 2017 7 13 4670 4681 10.1002/ece3.3060 12 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology EZ3XU WOS:000404645400015 28690797 DOAJ Gold, Green Published 2018-11-22 J Serra, SRQ; Graca, MAS; Doledec, S; Feio, MJ Serra, Sonia R. Q.; Graca, Manuel A. S.; Doledec, Sylvain; Feio, Maria Joao Chironomidae traits and life history strategies as indicators of anthropogenic disturbance ENVIRONMENTAL MONITORING AND ASSESSMENT English Article Diptera; Bioassessment; Biological traits; Life history strategies PRINCIPAL COMPONENT ANALYSIS; LARGE EUROPEAN RIVERS; INVERTEBRATE TRAITS; BENTHIC MACROINVERTEBRATES; STREAM INVERTEBRATES; NUTRIENT ENRICHMENT; ENVIRONMENTAL GRADIENTS; MEDITERRANEAN STREAM; MULTIPLE STRESSORS; BIOLOGICAL TRAITS In freshwater ecosystems, Chironomidae are currently considered indicators of poor water quality because the family is often abundant in degraded sites. However, it incorporates taxa with a large ecological and physiological diversity and different sensitivity to impairment. Yet, the usual identification of Chironomidae at coarse taxonomic levels (family or subfamily) masks genus and species sensitivities. In this study, we investigate the potential of taxonomic and functional (traits) composition of Chironomidae to detect anthropogenic disturbance. In this context, we tested some a priori hypotheses regarding the ability of Chironomidae taxonomic and trait compositions to discriminate Mediterranean streams affected by multiple stressors from least-disturbed streams. Both taxonomic and Eltonian trait composition discriminated sites according to their disturbance level. Disturbance resulted in the predicted increase of Chironomidae with higher number of stages with hibernation/diapause and of taxa with resistance forms and unpredicted increase of the proportion of taxa with longer life cycles and few generations per year. Life history strategies (LHS), corresponding to multivoltine Chironomidae that do not invest in hemoglobin and lack strong spring synchronization, were well adapted to all our Mediterranean sites with highly changeable environmental conditions. Medium-size animals favored in disturbed sites where the Mediterranean hydrological regime is altered, but the reduced number of larger-size/carnivore Chironomids suggests a limitation to secondary production. Results indicate that Chironomidae genus and respective traits could be a useful tool in the structural and functional assessment of Mediterranean streams. The ubiquitous nature of Chironomidae should be also especially relevant in the assessment of water bodies naturally poor in other groups such as the Ephemeroptera, Plecoptera, and Trichoptera, such as the lowland rivers with sandy substrates, lakes, or reservoirs. [Serra, Sonia R. Q.; Graca, Manuel A. S.; Feio, Maria Joao] Univ Coimbra, Dept Life Sci, MARE Marine & Environm Sci Ctr, P-3004517 Coimbra, Portugal; [Doledec, Sylvain] Univ Lyon 1, Biodiversite & Plasticite Hydrosyst, UMR LEHNA 5023, F-69622 Villeurbanne, France Serra, SRQ (reprint author), Univ Coimbra, Dept Life Sci, MARE Marine & Environm Sci Ctr, P-3004517 Coimbra, Portugal. sonia.rqs@gmail.com; mgraca@ci.uc.pt; sylvain.doledec@univ-lyon1.fr; mjf@ci.uc.pt Graca, Manuel/0000-0002-6470-8919; Serra, Sonia/0000-0003-4426-465X; Feio, Maria/0000-0003-0362-6802 Portuguese Foundation for Science and Technology (FCT) [SFRH/BD/80188/2011, UID/MAR/04292/2013]; University of Coimbra; University of Lyon 1; MARE, University of Coimbra, Portugal; LEHNA-Laboratoire d'Ecologie des Hydrosystemes Naturels et Anthropises, University of Lyon, France; Research Group Freshwater Ecology and Management (F.E.M.); Department of Ecology of the University of Barcelona, Spain This work was made possible by the strategic project (UID/MAR/04292/2013) granted to MARE and the PhD scholarship (SFRH/BD/80188/2011) of first author both granted by the Portuguese Foundation for Science and Technology (FCT); the cotutelage between the University of Coimbra and the University of Lyon 1; and the cooperation between the MARE, University of Coimbra, Portugal, and the LEHNA-Laboratoire d'Ecologie des Hydrosystemes Naturels et Anthropises, University of Lyon, France. The identification was supported by Narcis Prat from the Research Group Freshwater Ecology and Management (F.E.M.), from the Department of Ecology of the University of Barcelona, Spain. Andersen T., 2013, INSECT SYSTEMATI S66; Armitage PD, 1995, CHIRONOMIDAE BIOL EC; Bazzanti M, 1997, J FRESHWATER ECOL, V12, P89, DOI 10.1080/02705060.1997.9663512; Beche LA, 2009, BIODIVERS CONSERV, V18, P3909, DOI 10.1007/s10531-009-9688-1; Bonada N, 2006, J N AM BENTHOL SOC, V25, P32, DOI 10.1899/0887-3593(2006)25[32:BMAAMC]2.0.CO;2; Bonada N, 2006, ANNU REV ENTOMOL, V51, P495, DOI 10.1146/annurev.ento.51.110104.151124; Bonada N, 2007, GLOBAL CHANGE BIOL, V13, P1658, DOI 10.1111/j.1365-2486.2007.01375.x; Calle-Martinez D, 2006, J N AM BENTHOL SOC, V25, P465, DOI 10.1899/0887-3593(2006)25[465:CSSCAW]2.0.CO;2; Camargo JA, 2004, ENVIRON MONIT ASSESS, V96, P233, DOI 10.1023/B:EMAS.0000031730.78630.75; Casas JJ, 2008, J N AM BENTHOL SOC, V27, P746, DOI 10.1899/07-115.1; Chaib Nadjla, 2011, Studi Trentini di Scienze Naturali, V88, P61; Chang FH, 2014, ENVIRON MONIT ASSESS, V186, P2135, DOI 10.1007/s10661-013-3523-6; Charvet S., 1998, ANN LIMNOL, V34, P445; Chessel D, 2004, R NEWS, V4, P5, DOI DOI 10.HTTP://DX.D0I.0RG/10.2307/3780087; CHEVENET F, 1994, FRESHWATER BIOL, V31, P295, DOI 10.1111/j.1365-2427.1994.tb01742.x; Cranston P. S., 1982, FRESHWATER BIOL ASS; Cross WF, 2006, ECOLOGY, V87, P1556, DOI 10.1890/0012-9658(2006)87[1556:WNEISP]2.0.CO;2; Cross WF, 2005, LIMNOL OCEANOGR, V50, P1730, DOI 10.4319/lo.2005.50.6.1730; Cundari TR, 2002, J CHEM INF COMP SCI, V42, P1363, DOI 10.1021/ci025524s; de Haas EM, 2008, SCI TOTAL ENVIRON, V406, P430, DOI 10.1016/j.scitotenv.2008.05.048; de Haas EM, 2005, ARCH HYDROBIOL, V162, P211, DOI 10.1127/0003-9136/2005/0162-0211; Devictor V, 2010, J APPL ECOL, V47, P15, DOI 10.1111/j.1365-2664.2009.01744.x; DOLEDEC S, 1987, ACTA OECOL-OEC GEN, V8, P403; Doledec S, 2008, FRESHWATER BIOL, V53, P617, DOI 10.1111/j.1365-2427.2007.01924.x; Doledec S, 2010, J N AM BENTHOL SOC, V29, P286, DOI 10.1899/08-090.1; Dray S., 2007, R NEWS, V7, P47, DOI DOI 10.1159/000323281; Dray S, 2007, J STAT SOFTW, V22, P1; Feio MJ, 2012, ECOL INDIC, V15, P236, DOI 10.1016/j.ecolind.2011.09.039; Feio MJ, 2010, J N AM BENTHOL SOC, V29, P1397, DOI 10.1899/09-158.1; Franquet E., 1996, OCCUPATION ESPACE FL, P1; Gayraud S, 2003, FRESHWATER BIOL, V48, P2045, DOI 10.1046/j.1365-2427.2003.01139.x; Greenwood MJ, 2016, OECOLOGIA, V180, P551, DOI 10.1007/s00442-015-3462-8; Hawkes HA, 1998, WATER RES, V32, P964, DOI 10.1016/S0043-1354(97)00275-3; Hawkins Charles P., 2000, P217; Hawkins CP, 2010, J N AM BENTHOL SOC, V29, P312, DOI 10.1899/09-092.1; INAG, 2008, MAN AV BIOL QUAL AG; Lange K, 2014, FRESHWATER BIOL, V59, P2431, DOI 10.1111/fwb.12437; Langton PH, 1998, HYDROBIOLOGIA, V390, P37, DOI 10.1023/A:1003589216389; LEBRETON JD, 1991, EURO CH ENV, V2, P85; Lencioni V., 2007, DITTERI CHIRONOMIDI; Lencioni V, 2012, FRESHW SCI, V31, P525, DOI 10.1899/11-038.1; Lindegaard C., 1995, P385; Maasri A, 2008, J N AM BENTHOL SOC, V27, P38, DOI 10.1899/07-013R1.1; Marziali L, 2010, RIVER RES APPL, V26, P1036, DOI 10.1002/rra.1303; Diaz AM, 2008, FRESHWATER BIOL, V53, P1, DOI 10.1111/j.1365-2427.2007.01854.x; Menezes S, 2010, J APPL ECOL, V47, P711, DOI 10.1111/j.1365-2664.2010.01819.x; Moller Pillot H.K.M, 2009, CHIRONOMIDAE LARVAE, V2; Mondy CP, 2014, FRESHWATER BIOL, V59, P584, DOI 10.1111/fwb.12289; Oksanen J., 2015, PACKAGE VEGAN R PACK, V2.3-1, P17; Oliveira S. V., 2006, LIMNETICA, V1-2, P479; Poff NL, 2006, J N AM BENTHOL SOC, V25, P730, DOI 10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2; Poff NL, 1997, J N AM BENTHOL SOC, V16, P391, DOI 10.2307/1468026; POSTMA JF, 1995, ARCH ENVIRON CON TOX, V29, P469, DOI 10.1007/BF00208376; Prat N., 2014, GUIA RECONOCIMIENTO; Punti T, 2007, FUND APPL LIMNOL, V170, P149, DOI 10.1127/1863-9135/2007/0170-0149; Punti T, 2009, J N AM BENTHOL SOC, V28, P247, DOI 10.1899/07-172.1; R Core Team, 2015, R LANG ENV STAT COMP; REICE SR, 1991, J N AM BENTHOL SOC, V10, P42, DOI 10.2307/1467763; ROBERT P, 1976, ROY STAT SOC C-APP, V25, P257; ROMESBURG HC, 1985, COMPUT GEOSCI, V11, P19, DOI 10.1016/0098-3004(85)90036-6; SAETHER O A, 1979, Holarctic Ecology, V2, P65; Sarbu C, 2005, TALANTA, V65, P1215, DOI 10.1016/j.talanta.2004.08.047; Seire Ado, 2000, Proceedings of the Estonian Academy of Sciences Biology Ecology, V49, P307; Serra SRQ, 2017, ANN LIMNOL-INT J LIM, V53, P161, DOI 10.1051/limn/2017004; Serra SRQ, 2016, ECOL INDIC, V61, P282, DOI 10.1016/j.ecolind.2015.09.028; Servia MJ, 2000, ENVIRON MONIT ASSESS, V64, P617, DOI 10.1023/A:1006333808107; Statzner B, 2001, BASIC APPL ECOL, V2, P73, DOI 10.1078/1439-1791-00039; Statzner B, 2008, INT REV HYDROBIOL, V93, P593, DOI 10.1002/iroh.200711018; Statzner B, 2010, FRESHWATER BIOL, V55, P80, DOI 10.1111/j.1365-2427.2009.02369.x; Stewart EM, 2014, HYDROBIOLOGIA, V721, P251, DOI 10.1007/s10750-013-1667-6; Stuijfzand SC, 2000, ECOTOX ENVIRON SAFE, V46, P351, DOI 10.1006/eesa.2000.1918; Ter Braak C. J. F., 1988, Classification and Related Methods of Data Analysis. Proceedings of the First Conference of the International Federation of Classification Societies (IFCS), P551; Thioulouse J, 1997, STAT COMPUT, V7, P75, DOI 10.1023/A:1018513530268; Tokeshi M., 1995, P269; van Kleef H, 2015, BASIC APPL ECOL, V16, P325, DOI 10.1016/j.baae.2015.02.007; Verberk WCEP, 2013, FRESHW SCI, V32, P531, DOI 10.1899/12-092.1; Verberk WCEP, 2010, BASIC APPL ECOL, V11, P440, DOI 10.1016/j.baae.2010.04.001; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1722, DOI 10.1111/j.1365-2427.2008.02035.x; Vieira NKM, 2004, FRESHWATER BIOL, V49, P1243, DOI 10.1111/j.1365-2427.2004.01261.x; WIEDERHOLM T, 1981, SCHWEIZ Z HYDROL, V43, P140, DOI 10.1007/BF02502478; Yuan LL, 2010, ECOL APPL, V20, P110, DOI 10.1890/08-1750.1 81 1 1 6 38 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0167-6369 1573-2959 ENVIRON MONIT ASSESS Environ. Monit. Assess. JUL 2017 189 7 326 10.1007/s10661-017-6027-y 16 Environmental Sciences Environmental Sciences & Ecology EZ4AI WOS:000404652900023 28600682 2018-11-22 J Bieber, C; Cornils, JS; Hoelzl, F; Giroud, S; Ruf, T Bieber, Claudia; Cornils, Jessica S.; Hoelzl, Franz; Giroud, Sylvain; Ruf, Thomas The costs of locomotor activity? Maximum body temperatures and the use of torpor during the active season in edible dormice JOURNAL OF COMPARATIVE PHYSIOLOGY B-BIOCHEMICAL SYSTEMIC AND ENVIRONMENTAL PHYSIOLOGY English Article; Proceedings Paper 15th International Hibernation Symposium JUL 31-AUG 04, 2016 Las Vegas, NV Arboreal; Beech mast; Small mammal; Foraging; Date of parturition DORMOUSE GLIS-GLIS; LIVING ARCTIC HIBERNATOR; GROUND-SQUIRRELS; FEEDING ECOLOGY; LIFE-HISTORIES; SUMMER TORPOR; FOOD-INTAKE; HEAT; BEHAVIOR; MAMMALS Measuring T (b) during the active season can provide information about the timing of reproduction and the use of short bouts of torpor and may be used as a proxy for the locomotor activity of animals (i.e., maximum T (b)). This kind of information is especially important to understand life-history strategies and energetic costs and demands in hibernating mammals. We investigated T (b) throughout the active season in edible dormice (Glis glis), since they (i) have an expensive arboreal life-style, (ii) are known to show short bouts of torpor, and (iii) are adapted to pulsed resources (mast of beech trees). We show here for the first time that maximum T (b)'s in free-living active dormice (during the night) increase regularly and for up to 8 h above 40 A degrees C, which corresponds to slight hyperthermia, probably due to locomotor activity. The highest weekly mean maximum T (b) was recorded 1 week prior to hibernation (40.45 +/- 0.07 A degrees C). At the beginning of the active season and immediately prior to hibernation, the mean maximum T (b)'s were lower. The time dormice spent at T (b) above 40 A degrees C varied between sexes, depending on mast conditions. The date of parturition could be determined by a sudden increase in mean T (b) (plus 0.49 +/- 0.04 A degrees C). The occurrence of short torpor bouts (< 24 h) was strongly affected by the mast situation with much higher torpor frequencies in mast-failure years. Our data suggest that locomotor activity is strongly affected by environmental conditions, and that sexes respond differently to these changes. [Bieber, Claudia; Cornils, Jessica S.; Hoelzl, Franz; Giroud, Sylvain; Ruf, Thomas] Univ Vet Med Vienna, Res Inst Wildlife Ecol, Dept Integrat Biol & Evolut, Savoyenstr 1, A-1160 Vienna, Austria Bieber, C (reprint author), Univ Vet Med Vienna, Res Inst Wildlife Ecol, Dept Integrat Biol & Evolut, Savoyenstr 1, A-1160 Vienna, Austria. claudia.bieber@vetmeduni.ac.at Giroud, Sylvain/0000-0001-6621-7462 Austrian Science Fund (FWF); Austrian Science Fund (FWF) [P 25023]; city of Vienna; state of Lower Austria Open access funding provided by Austrian Science Fund (FWF). We thank Jennifer Utz and Frank van Breukelen for organizing the 15th International Hibernation Symposium in Las Vegas, USA (31.07.2016-05.08.2016). We enjoyed this great meeting very much. We further thank all colleagues who contributed with questions to the discussion of the oral presentation and therefore improved this publication. In this context, we especially thank Chris Turbill for his question, which leads us to include Fig. 6 in this publication. We especially thank Folko Balfanz, Wolfgang Zenker, Gabrielle Stalder, Hanno Gerritsmann, and Chris Walzer for implanting the dormice. We are grateful to our animal caretakers Peter Steiger and Michaela Salaba, who took care of our enclosure-housed animals as well as of dormice held in cages prior and after implantation. We thank Karin Lebl for her support collecting data. We thank two anonymous reviewers for their valuable comments. This study was approved by the institutional ethics committee and the national authority according to 8ff of Law for Animal Experiments, Tierversuchsgesetz-TVG of Austria, where the study was performed (BMWF GZ 68.205/167-BrGT/2004, BMWF-68.205/0041-II/10b/2008, and BMWF GZ 68.205/0112-II/3b/2011). This study was funded by the Austrian Science Fund (FWF; P 25023), the city of Vienna, and the state of Lower Austria. Arai S, 2005, J VET MED SCI, V67, P215, DOI 10.1292/jvms.67.215; Arnold W, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018641; BARNES BM, 1986, BIOL REPROD, V35, P1289, DOI 10.1095/biolreprod35.5.1289; Bieber C, 1998, J ZOOL, V244, P223, DOI 10.1111/j.1469-7998.1998.tb00027.x; Bieber C, 2009, NATURWISSENSCHAFTEN, V96, P165, DOI 10.1007/s00114-008-0471-z; Bieber C, 2014, FUNCT ECOL, V28, P167, DOI 10.1111/1365-2435.12173; Bieber Claudia, 2004, Biological Papers of the University of Alaska, V27, P113; Bondarenco A, 2014, NATURWISSENSCHAFTEN, V101, P679, DOI 10.1007/s00114-014-1202-2; CHAPPELL MA, 1981, PHYSIOL ZOOL, V54, P215, DOI 10.1086/physzool.54.2.30155822; Chayama Y, 2016, ROY SOC OPEN SCI, V3, DOI 10.1098/rsos.160002; Clarke A, 2008, FUNCT ECOL, V22, P58, DOI 10.1111/j.1365-2435.2007.01341.x; Dark J, 2005, ANNU REV NUTR, V25, P469, DOI 10.1146/annurev.nutr.25.050304.092514; Fietz J, 2005, J COMP PHYSIOL B, V175, P45, DOI 10.1007/s00360-004-0461-1; Fietz J, 2004, OECOLOGIA, V138, P202, DOI 10.1007/s00442-003-1423-0; Florant GL, 2012, J COMP PHYSIOL B, V182, P451, DOI 10.1007/s00360-011-0630-y; Fox J., 2011, R COMPANION APPL REG; Fuller A, 1998, J APPL PHYSIOL, V84, P877; Gamo Y, 2013, J EXP BIOL, V216, P3751, DOI 10.1242/jeb.090308; GEISER F, 1987, PHYSIOL ZOOL, V60, P93, DOI 10.1086/physzool.60.1.30158631; Geiser F, 2013, CURR BIOL, V23, pR188, DOI 10.1016/j.cub.2013.01.062; Geiser Fritz, 2012, P109; Geiser F, 2009, NATURWISSENSCHAFTEN, V96, P1235, DOI 10.1007/s00114-009-0583-0; Giroud S, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.1131; GOLOMBEK DA, 1993, PHYSIOL BEHAV, V53, P1049, DOI 10.1016/0031-9384(93)90358-M; HART JS, 1955, CAN J BIOCHEM PHYS, V33, P428; HELDMAIER G, 1989, J BIOL RHYTHM, V4, P251, DOI 10.1177/074873048900400211; Hoelzl F, 2015, J COMP PHYSIOL B, V185, P931, DOI 10.1007/s00360-015-0929-1; Hume ID, 2002, J COMP PHYSIOL B, V172, P197, DOI 10.1007/s00360-001-0240-1; Humphries MM, 2011, INTEGR COMP BIOL, V51, P419, DOI 10.1093/icb/icr059; JOHANSEN K, 1959, AM J PHYSIOL, V196, P1200; JOY JE, 1980, COMP BIOCHEM PHYS A, V67, P219, DOI 10.1016/0300-9629(80)90436-3; Juskaitis R, 2015, MAMMAL RES, V60, P155, DOI 10.1007/s13364-015-0213-5; KARASOV WH, 1992, AM ZOOL, V32, P238; Koenig L., 1960, Zeitschrift fuer Tierpsychologie, V17, P427; Lebl K, 2010, J COMP PHYSIOL B, V180, P447, DOI 10.1007/s00360-009-0425-6; Maynard LA, 1969, MCGRAW HILL PUBLICAT; MICHENER GR, 1992, OECOLOGIA, V89, P397, DOI 10.1007/BF00317418; Muller H, 1988, UNTERSUCHUNGEN ZUM R, V6.6; Ostfeld RS, 2000, TRENDS ECOL EVOL, V15, P232, DOI 10.1016/S0169-5347(00)01862-0; PILASTRO A, 1994, J ZOOL, V234, P13, DOI 10.1111/j.1469-7998.1994.tb06053.x; Pinheiro J., 2016, COMPUTER SOFTWARE, V3, P1, DOI DOI 10.1016/J.CR0PR0.2007.08.015; R Core Team, 2016, R FDN STAT COMP; RACEY PA, 1981, J REPROD FERTIL, V61, P123; REILLY T, 1986, INT J SPORTS MED, V7, P358, DOI 10.1055/s-2008-1025792; Rubner M, 1902, GESETZE ENERGIEVERBR; RUF T, 1991, J COMP PHYSIOL B, V160, P609, DOI 10.1007/BF00571257; Ruf T, 2006, ECOLOGY, V87, P372, DOI 10.1890/05-0672; Ruf T, 1992, VERHANDLUNGEN DTSCH; Ruf T, 2015, BIOL REV, V90, P891, DOI 10.1111/brv.12137; Sailer MM, 2009, MAMM BIOL, V74, P114, DOI 10.1016/j.mambio.2008.05.005; Schlund W, 2002, MAMM BIOL, V67, P219, DOI 10.1078/1616-5047-00033; Sheriff MJ, 2012, J COMP PHYSIOL B, V182, P841, DOI 10.1007/s00360-012-0661-z; SMITH AP, 1982, AUST J ZOOL, V30, P737, DOI 10.1071/ZO9820737; Speakman JR, 2010, INTEGR COMP BIOL, V50, P793, DOI 10.1093/icb/icq049; Speakman JR, 2010, J ANIM ECOL, V79, P726, DOI 10.1111/j.1365-2656.2010.01689.x; Strumwasser F., 1967, MAMMAL HIBERNAT, VIII, P110; Turbill C, 2003, J THERM BIOL, V28, P223, DOI 10.1016/S0306-4565(02)00067-0; Turbill C, 2011, P ROY SOC B-BIOL SCI, V278, P3355, DOI 10.1098/rspb.2011.0190; Webb PI, 1996, J COMP PHYSIOL B, V166, P325; Weinert D, 1998, PHYSIOL BEHAV, V63, P837, DOI 10.1016/S0031-9384(97)00546-5; Williams CT, 2016, COMP BIOCHEM PHYS A, V202, P53, DOI 10.1016/j.cbpa.2016.04.020; Williams CT, 2011, J COMP PHYSIOL B, V181, P1101, DOI 10.1007/s00360-011-0593-z; Wilz M, 2000, J COMP PHYSIOL B, V170, P511, DOI 10.1007/s003600000129; Zoufal K., 2005, THESIS 64 5 5 4 7 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 0174-1578 1432-136X J COMP PHYSIOL B J. Comp. Physiol. B-Biochem. Syst. Environ. Physiol. JUL 2017 187 5-6 SI 803 814 10.1007/s00360-017-1080-y 12 Physiology; Zoology Physiology; Zoology EY7ZI WOS:000404211800012 28321493 Other Gold, Green Published 2018-11-22 J Cameron, N; Bogin, B; Bolter, D; Berger, LR Cameron, Noel; Bogin, Barry; Bolter, Debra; Berger, Lee R. The postcranial skeletal maturation of Australopithecus sediba AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY English Article evolution of growth; hominin ontogeny; maturity indicators; postcranial skeleton PAN-TROGLODYTES; LIFE-HISTORY; WILD CHIMPANZEES; HUMAN-EVOLUTION; HOMO-ERECTUS; SOUTH-AFRICA; GROWTH; HOMININS; ERUPTION; PREDICTION Objectives: In 2008, an immature hominin defined as the holotype of the new species Australopithecus sediba was discovered at the 1.9 million year old Malapa site in South Africa. The specimen (MH1) includes substantial postcranial skeletal material, and provides a unique opportunity to assess its skeletal maturation. Methods: Skeletal maturity indicators observed on the proximal and distal humerus, proximal ulna, distal radius, third metacarpal, ilium and ischium, proximal femur and calcaneus were used to assess the maturity of each bone in comparison to references for modern humans and for wild chimpanzees (Pan troglodytes). Results: In comparison to humans the skeletal maturational ages for Au. sediba correspond to between 12.0 years and 15.0 years with a mean (SD) age of 13.1 (1.1) years. In comparison to the maturational pattern of chimpanzees the Au. sediba indicators suggest a skeletal maturational age of 911 years. Based on either of these skeletal maturity estimates and the body length at death of MH1, an adult height of 150-156 cm is predicted. Discussion: We conclude that the skeletal remains of MH1 are consistent with an apelike pattern of maturity when dental age estimates are also taken into consideration. This maturity schedule in australopiths is consistent with apelike estimates of age at death for the Nariokotome Homo erectus remains (KMNWT 15000), which are of similar postcranial immaturity to MH1. The findings suggest that humans may have distinctive and delayed postcranial schedules from australopiths and H. erectus, implicating a recent evolution of somatic and possibly life history strategies in human evolution. [Cameron, Noel; Bogin, Barry] Univ Loughborough, Sch Sport Exercise & Hlth Sci, Ctr Global Hlth & Human Dev, Ashby Rd, Loughborough LE11 3TU, Leics, England; [Cameron, Noel; Bogin, Barry; Bolter, Debra; Berger, Lee R.] Univ Witwatersrand, Evolutionary Studies Inst, Private Bag 3, ZA-2050 Johannesburg, South Africa; [Cameron, Noel; Bogin, Barry; Bolter, Debra; Berger, Lee R.] Univ Witwatersrand, Ctr Excellence PalaeoSci, Private Bag 3, ZA-2050 Johannesburg, South Africa; [Bolter, Debra] Modesto Coll, Dept Anthropol, Modesto, CA 95350 USA Cameron, N (reprint author), Univ Loughborough, Sch Sport Exercise & Hlth Sci, Ctr Global Hlth & Human Dev, Ashby Rd, Loughborough LE11 3TU, Leics, England. n.cameron@lboro.ac.uk ANTON SC, 2003, PATTERNS GROWTH DEV, P219; Bass W. M., 1971, HUMAN OSTEOLOGY; Berge C, 2002, HUMAN EVOLUTION THROUGH DEVELOPMENTAL CHANGE, P381; Berge C, 1998, AM J PHYS ANTHROPOL, V105, P441; Berger LR, 2010, SCIENCE, V328, P195, DOI 10.1126/science.1184944; Beunen GP, 1997, MED SCI SPORT EXER, V29, P225, DOI 10.1097/00005768-199702000-00010; Boesch C., 2000, CHIMPANZEES TAI FORE; Bogin B, 1999, PATTERNS HUMAN GROWT; BOGIN B, 2003, PATTERNS GROWTH DEV, P15; Bogin B, 2012, HUMAN BIOL EVOLUTION, P515; Bolter D, 2011, PRIMATES PERSPECTIVE, P408; Bolter DR, 2012, AM J PHYS ANTHROPOL, V147, P629, DOI 10.1002/ajpa.22025; Bolter DR, 2003, J ZOOL, V260, P99, DOI 10.1017/S0952836903003522; Brimacombe CS, 2015, AM J PHYS ANTHROPOL, V157, P19, DOI 10.1002/ajpa.22684; Cameron N., 2010, AGE ESTIMATION LIVIN; Clegg M, 1999, AM J PHYS ANTHROPOL, V110, P81, DOI 10.1002/(SICI)1096-8644(199909)110:1<81::AID-AJPA7>3.3.CO;2-K; COE C L, 1979, Primates, V20, P571, DOI 10.1007/BF02373439; Copeland SR, 2011, NATURE, V474, P76, DOI 10.1038/nature10149; Dart RA, 1925, NATURE, V115, P195, DOI 10.1038/115195a0; Dean C, 2001, NATURE, V414, P628, DOI 10.1038/414628a; Dean M. Christopher, 2009, P101, DOI 10.1007/978-1-4020-9980-9_10; Dean MC, 2009, ANN HUM BIOL, V36, P545, DOI 10.1080/03014460902956725; DesLathouwers M., 2005, INT J PRIMATOL, V26, P55; desRuiter D. J., 2013, PALEOBIOLOGY AUSTRAL, P147; desRuiter D. J., 2012, AM J PHYS ANTHR S, V54, P127; Goodall J., 1986, CHIMPANZEES GOMBE PA; Green DJ, 2012, SCIENCE, V338, P514, DOI 10.1126/science.1227123; Hamada Y, 2003, PRIMATES, V44, P259, DOI 10.1007/s10329-003-0039-7; Hamada Y, 1996, PRIMATES, V37, P279, DOI 10.1007/BF02381860; Hoerr NL, 1962, RADIOGRAPHIC ATLAS S; Kelley J, 2013, BLACKW COMPANION ANT, P97; Kelley J, 2010, P NATL ACAD SCI USA, V107, P1035, DOI 10.1073/pnas.0906206107; KERLEY ELLIS R., 1966, TULANE STUD ZOOL, V13, P71; Kimura T, 1996, PRIMATES, V37, P237, DOI 10.1007/BF02381856; Krogman W. M., 1986, HUMAN SKELETON FOREN; KUYKENDALL KL, 2003, PATTERNS GROWTH DEV, P191; Machanda Z, 2015, J HUM EVOL, V82, P137, DOI 10.1016/j.jhevol.2015.02.010; MATSUZAWA T, 1990, PRIMATES, V31, P635, DOI 10.1007/BF02382550; NISSEN HW, 1964, AM J PHYS ANTHROPOL, V22, P285, DOI 10.1002/ajpa.1330220315; Robson SL, 2006, SCH AM RES, P17; Schultz A., 1969, LIFE OF PRIMATES; Schwartz GT, 2012, CURR ANTHROPOL, V53, pS395, DOI 10.1086/667591; Smith B. Holly, 1993, P195; Smith BH, 2011, J HUM EVOL, V60, P34, DOI 10.1016/j.jhevol.2010.08.006; Smith TM, 2010, J HUM EVOL, V58, P363, DOI 10.1016/j.jhevol.2010.02.008; Smith TM, 2014, AM J PHYS ANTHROPOL, V153, P243; Smith TM, 2013, P NATL ACAD SCI USA, V110, P2787, DOI 10.1073/pnas.1218746110; Smith TJS, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0118138; TANNER JM, 1983, ARCH DIS CHILD, V58, P767, DOI 10.1136/adc.58.10.767; Tanner JM, 2001, ASSESSMENT SKELETAL; Tardieu C, 1998, AM J PHYS ANTHROPOL, V107, P163; Todd TW., 1937, ATLAS SKELETAL MAT 1; Tutin Caroline E.G., 1994, P181; Williams FL, 2007, FOLIA PRIMATOL, V78, P99, DOI 10.1159/000097060; Yasui K., 1983, AFR STU MONOGR, V4, P129; Zihlman A, 2004, P NATL ACAD SCI USA, V101, P10541, DOI 10.1073/pnas.0402635101; Zihlman AL, 2007, J ZOOL, V273, P63, DOI 10.1111/j.1469-7998.2007.00301.x; Zihlman Adrienne, 1996, P293, DOI 10.1017/CBO9780511752414.023; Zuckerman S., 1928, P ZOOL SOC LOND, P1 59 2 2 4 13 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0002-9483 1096-8644 AM J PHYS ANTHROPOL Am. J. Phys. Anthropol. JUL 2017 163 3 633 640 10.1002/ajpa.23234 8 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology EY3YW WOS:000403913200018 28464269 2018-11-22 J Johnson, MS; Aubee, C; Salice, CJ; Leigh, KB; Liu, E; Pott, U; Pillard, D Johnson, Mark S.; Aubee, Catherine; Salice, Christopher J.; Leigh, Katrina B.; Liu, Elissa; Pott, Ute; Pillard, David A review of ecological risk assessment methods for amphibians: Comparative assessment of testing methodologies and available data INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT English Review Life history; Amphibian; Ecological risk assessment; Contaminated sites COMPLEX LIFE-CYCLES; ENVIRONMENTALLY RELEVANT CONCENTRATIONS; TERATOGENESIS ASSAY-XENOPUS; MULTIPLE STRESSORS; TERRESTRIAL SALAMANDER; EMBRYONIC-DEVELOPMENT; AMMONIUM-PERCHLORATE; BREEDING AMPHIBIANS; POPULATION DECLINES; AMBYSTOMA-TIGRINUM Historically, ecological risk assessments have rarely included amphibian species, focusing preferentially on other aquatic (fish, invertebrates, algae) and terrestrial wildlife (birds and mammal) species. Often this lack of consideration is due to a paucity of toxicity data, significant variation in study design, uncertainty with regard to exposure, or a combination of all three. Productive risk assessments for amphibians are particularly challenging, given variations in complex life history strategies. Further consideration is needed for the development of useful laboratory animal models and appropriate experimental test procedures that can be effectively applied to the examination of biological response patterns. Using these standardized techniques, risk estimates can be more accurately defined to ensure adequate protection of amphibians from a variety of stress agents. Patterns in toxicity may help to ascertain whether test results from 1 amphibian group (e.g., Urodela) could be sufficiently protective of another (e.g., Anura) and/or whether some nonamphibian aquatic taxonomic groups (e.g., fish or aquatic invertebrates) may be representative of aquatic amphibian life stages. This scope is intended to be a guide in the development of methods that would yield data appropriate for ecological risk decisions applicable to amphibians. Integr Environ Assess Manag 2017;13:601-613. (c) 2016 SETAC [Johnson, Mark S.] US Army Publ Hlth Ctr, Toxicol Directorate, Aberdeen Proving Ground, MD 21005 USA; [Aubee, Catherine] US EPA, Environm Fate & Effects Div, Arlington, VA USA; [Salice, Christopher J.] Towson Univ, Environm Sci & Studies & Biol Sci, Towson, MD USA; [Leigh, Katrina B.] Ramboll Environ, Beachwood, OH USA; [Liu, Elissa; Pott, Ute] Environm & Climate Change Canada, Vancouver, BC, Canada; [Pillard, David] TRE Environm, Ft Collins, CO USA Johnson, MS (reprint author), US Army Publ Hlth Ctr, Toxicol Directorate, Aberdeen Proving Ground, MD 21005 USA. mark.s.johnson.civ@mail.mil Ankley GT, 2010, ENVIRON TOXICOL CHEM, V29, P730, DOI 10.1002/etc.34; [ASTM] American Society for Testing and Materials, 2011, ANN BOOK ASTM STAND, V11, P1; [ASTM] American Society for Testing and Materials, 2014, ANN BOOK ASTM STAND, V11, P1; [ASTM] American Society for Testing and Materials, 2013, ANN BOOK ASTM STAND, V11, P1; [ASTM] American Society for Testing and Materials, 2012, ANN BOOK ASTM STAND, V11; BANTLE JA, 1994, J APPL TOXICOL, V14, P213, DOI 10.1002/jat.2550140312; Berven KA, 2009, COPEIA, P328, DOI 10.1643/CH-08-052; Biek R, 2002, CONSERV BIOL, V16, P728, DOI 10.1046/j.1523-1739.2002.00433.x; Birge WJ, 2000, ECOTOXICOLOGY OF AMPHIBIANS AND REPTILES, P727; Bishop CA, 2000, ECOTOXICOLOGY OF AMPHIBIANS AND REPTILES, P697; Bleiler J, 2004, TR2245ENV NAV FAC EN; Boone MD, 2004, ECOL APPL, V14, P685, DOI 10.1890/02-5308; Boone MD, 2003, ECOL APPL, V13, P829, DOI 10.1890/1051-0761(2003)013[0829:IOAIHA]2.0.CO;2; Boone MD, 2007, ECOL APPL, V17, P291, DOI 10.1890/1051-0761(2007)017[0291:MSIACE]2.0.CO;2; Bridges CM, 2002, B ENVIRON CONTAM TOX, V69, P562, DOI 10.1007/s00128-002-0098-2; Bruhl CA, 2013, SCI REP-UK, V3, DOI 10.1038/srep01135; Budischak SA, 2008, ENVIRON TOXICOL CHEM, V27, P2496, DOI 10.1897/08-018.1; BURTON TM, 1975, COPEIA, P541; CALEF GW, 1973, ECOLOGY, V54, P741, DOI 10.2307/1935670; CAREY C, 1995, ENVIRON HEALTH PERSP, V103, P13, DOI 10.2307/3432406; Carey C, 1999, DEV COMP IMMUNOL, V23, P459, DOI 10.1016/S0145-305X(99)00028-2; Christensen JR, 2004, ENVIRON TOXICOL CHEM, V23, P2950, DOI 10.1897/03-573.1; Christin MS, 2004, AQUAT TOXICOL, V67, P33, DOI 10.1016/j.aquatox.2003.11.007; Collins JP, 2003, DIVERS DISTRIB, V9, P89, DOI 10.1046/j.1472-4642.2003.00012.x; Cusaac JPW, 2015, ECOTOXICOLOGY, V24, P1341, DOI 10.1007/s10646-015-1509-6; DASH MC, 1980, ECOLOGY, V61, P1025, DOI 10.2307/1936818; Daszak P, 1999, EMERG INFECT DIS, V5, P735, DOI 10.3201/eid0506.990601; Degitz SJ, 2005, TOXICOL SCI, V87, P353, DOI 10.1093/toxsci/kfi246; DeYoung DJ, 1996, B ENVIRON CONTAM TOX, V56, P143, DOI 10.1007/s001289900021; Duellman WE, 1994, BIOL AMPHIBIANS; Elphick JRF, 2011, ENVIRON TOXICOL CHEM, V30, P239, DOI 10.1002/etc.365; Fleeger JW, 2003, SCI TOTAL ENVIRON, V317, P207, DOI 10.1016/S0048-9697(03)00141-4; Forbes VE, 2001, ECOL APPL, V11, P1249, DOI 10.2307/3061025; Froese JMW, 2005, J WILDLIFE DIS, V41, P209, DOI 10.7589/0090-3558-41.1.209; Goleman WL, 2006, ENVIRON TOXICOL CHEM, V25, P1060, DOI 10.1897/04-511R.1; Goleman WL, 2002, ENVIRON TOXICOL CHEM, V21, P590, DOI 10.1002/etc.5620210318; Grant EHC, 2016, SCI REP-UK, V6, DOI 10.1038/srep25625; Hayes TB, 2000, ECOTOXICOLOGY OF AMPHIBIANS AND REPTILES, P573; Henry PFP, 2000, ECOTOXICOLOGY OF AMPHIBIANS AND REPTILES, P71; HEYER WR, 1994, MEASURING MONITORING; Hoke RA, 2005, ENVIRON TOXICOL CHEM, V24, P2677, DOI 10.1897/04-506R.1; Hopkins WA, 2006, ENVIRON HEALTH PERSP, V114, P661, DOI 10.1289/ehp.8457; Howe CM, 2004, ENVIRON TOXICOL CHEM, V23, P1928, DOI 10.1897/03-71; [ICAMA] Institute for the Control of Agrochemicals Ministry of Agriculture, 2014, 31270 ICAMA GBT 18; Jaeger RG, 1992, CARE USE AMPHIBIANS; Johnson MS, 2004, ARCH ENVIRON CON TOX, V47, P496, DOI 10.1007/s00244-004-3242-7; Johnson MS, 1999, ENVIRON TOXICOL CHEM, V18, P873, DOI 10.1897/1551-5028(1999)018<0873:BOTAPB>2.3.CO;2; Johnson MS, 2000, TOXICOL PATHOL, V28, P334, DOI 10.1177/019262330002800214; Karraker NE, 2008, ECOL APPL, V18, P724, DOI 10.1890/07-1644.1; Kerby JL, 2010, ECOL LETT, V13, P60, DOI 10.1111/j.1461-0248.2009.01399.x; Kiesecker JM, 2002, P NATL ACAD SCI USA, V99, P9900, DOI 10.1073/pnas.152098899; Lips KR, 2003, CONSERV BIOL, V17, P1078, DOI 10.1046/j.1523-1739.2003.01623.x; Martini F, 2010, ENVIRON TOXICOL CHEM, V29, P2536, DOI 10.1002/etc.313; McCusker C, 2011, GERONTOLOGY, V57, P565, DOI 10.1159/000323761; Mount DR, 1997, ENVIRON TOXICOL CHEM, V16, P2009, DOI 10.1897/1551-5028(1997)016<2009:SMTPTT>2.3.CO;2; OECD, 2009, 231 OECD; [OECD] Organisation for Economic Co-operation and Development, 2015, LARV AMPH GROWTH DEV; Petranka JW, 2003, WETLANDS, V23, P278, DOI 10.1672/7-20; Pillard DA, 1999, TOXICITY COMMON IONS; Rei C, 2015, J EXP ZOOL, V324, P393, DOI [10.1002/jez.b.22617, DOI 10.1002/JEZ.B.22617]; Rollins-Smith LA, 1998, IMMUNOL REV, V166, P221, DOI 10.1111/j.1600-065X.1998.tb01265.x; Salice CJ, 2012, J HERPETOL, V46, P675, DOI 10.1670/11-091; Salice CJ, 2011, ENVIRON TOXICOL CHEM, V30, P2874, DOI 10.1002/etc.680; SEMLITSCH RD, 1987, COPEIA, P61, DOI 10.2307/1446038; SHAFFER HB, 1993, SYST BIOL, V42, P508, DOI 10.2307/2992486; Shi HH, 2014, TOXICOL IND HEALTH, V30, P297, DOI 10.1177/0748233712457440; Song MO, 2003, DRUG CHEM TOXICOL, V26, P177, DOI 10.1081/DCT-120022647; Sparling DW, 2003, AMPHIBIAN DECLINE: AN INTEGRATED ANALYSIS OF MULTIPLE STRESSOR EFFECTS, P1; TAYLOR AC, 1946, ANAT REC, V94, P7, DOI 10.1002/ar.1090940103; United States Environmental Protection Agency (USEPA), 1996, 712C96132 USEPA; USEPA, 1975, EPA660375009; *USEPA, 2000, EPA600R99064; [USEPA] US Environmental Protection Agency, 2011, 740C09002 USEPA; [USEPA] US Environmental Protection Agency, 2014, EPA PUB; [USEPA] US Environmental Protection Agency, 2009, 740C09002 USEPA; [USEPA] US Environmental Protection Agency, 1972, FED WAT POLL CONTR A; Van Meter RJ, 2011, WETLANDS, V31, P843, DOI 10.1007/s13157-011-0199-y; Veldhoen N, 2006, AQUAT TOXICOL, V80, P217, DOI 10.1016/j.aquatox.2006.08.010; Vonesh JR, 2002, OECOLOGIA, V133, P325, DOI 10.1007/s00442-002-1039-9; Wake DB, 2008, P NATL ACAD SCI USA, V105, P11466, DOI 10.1073/pnas.0801921105; WARNER RR, 1985, AM NAT, V125, P769, DOI 10.1086/284379; Weltje L, 2013, ENVIRON TOXICOL CHEM, V32, P984, DOI 10.1002/etc.2149; WERNER EE, 1986, AM NAT, V128, P319, DOI 10.1086/284565; WILBUR HM, 1980, ANNU REV ECOL SYST, V11, P67, DOI 10.1146/annurev.es.11.110180.000435; Willson JD, 2012, ECOL APPL, V22, P1791, DOI 10.1890/11-0915.1; Willson JD, 2013, CONSERV BIOL, V27, P595, DOI 10.1111/cobi.12044; Wissinger SA, 2010, ECOLOGY, V91, P549, DOI 10.1890/08-1366.1 87 6 6 5 26 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1551-3777 1551-3793 INTEGR ENVIRON ASSES Integr. Environ. Assess. Manag. JUL 2017 13 4 601 613 10.1002/ieam.1881 13 Environmental Sciences; Toxicology Environmental Sciences & Ecology; Toxicology EX7YT WOS:000403466400009 27943571 2018-11-22 J van der Heyde, M; Ohsowski, B; Abbott, LK; Hart, M van der Heyde, Mieke; Ohsowski, Brian; Abbott, Lynette K.; Hart, Miranda Arbuscular mycorrhizal fungus responses to disturbance are context-dependent MYCORRHIZA English Article AMF; Agriculture; Root colonization; Disturbance types; Life history strategies SOIL-DISTURBANCE; COMMUNITY STRUCTURE; SPORE GERMINATION; HYPHAL GROWTH; LIFE-HISTORY; PLANT-ROOTS; COLONIZATION; DIVERSITY; FIELD; TILLAGE Anthropogenic disturbance is one of the most important forces shaping soil ecosystems. While organisms that live in the soil, such as arbuscular mycorrhizal (AM) fungi, are sensitive to disturbance, their response is not always predictable. Given the range of disturbance types and differences among AM fungi in their growth strategies, the unpredictability of the responses of AM fungi to disturbance is not surprising. We investigated the role of disturbance type (i.e., soil disruption, agriculture, host perturbation, and chemical disturbance) and fungus identity on disturbance response in the AM symbiosis. Using meta-analysis, we found evidence for differential disturbance response among AM fungal species, as well as evidence that particular fungal species are especially susceptible to certain disturbance types, perhaps because of their life history strategies. [van der Heyde, Mieke; Hart, Miranda] Univ British Columbia Okanagan, Biol, Kelowna, BC V1V 1V7, Canada; [Ohsowski, Brian] Loyola Univ, Inst Environm Sustainabil, Lakeshore Campus, Chicago, IL 60660 USA; [Abbott, Lynette K.] Univ Western Australia, UWA Inst Agr, Sch Earth & Environm, Fac Sci, Perth, WA 6001, Australia Hart, M (reprint author), Univ British Columbia Okanagan, Biol, Kelowna, BC V1V 1V7, Canada. Miranda.hart@ubc.ca Abbott, Lynette/0000-0001-8586-7858 NSERC Discovery Grant as well as a Gledden Fellowship through the Institute of Advanced Studies at The University of Western Australia MMH was funded by an NSERC Discovery Grant as well as a Gledden Fellowship through the Institute of Advanced Studies at The University of Western Australia. Thanks to Kristin Aleklett for helping with data collection. Avio L, 2013, SOIL BIOL BIOCHEM, V67, P285, DOI 10.1016/j.soilbio.2013.09.005; Barto EK, 2010, J ECOL, V98, P745, DOI 10.1111/j.1365-2745.2010.01658.x; Berga M, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0036959; BIERMANN B, 1983, NEW PHYTOL, V95, P97, DOI 10.1111/j.1469-8137.1983.tb03472.x; Boerner REJ, 1996, MYCORRHIZA, V6, P79, DOI 10.1007/s005720050111; Borriello R, 2012, BIOL FERT SOILS, V48, P911, DOI 10.1007/s00374-012-0683-4; Brundrett MC, 2013, PLANT SOIL, V370, P419, DOI 10.1007/s11104-013-1613-4; Brundrett MC, 1999, MYCORRHIZA, V8, P315, DOI 10.1007/s005720050252; Chagnon PL, 2013, TRENDS PLANT SCI, V18, P484, DOI 10.1016/j.tplants.2013.05.001; Clark RB, 1997, PLANT SOIL, V192, P15, DOI 10.1023/A:1004218915413; CONNELL JH, 1978, SCIENCE, V199, P1302, DOI 10.1126/science.199.4335.1302; Davison J, 2011, FEMS MICROBIOL ECOL, V78, P103, DOI 10.1111/j.1574-6941.2011.01103.x; de la Providencia IE, 2005, NEW PHYTOL, V165, P261, DOI 10.1111/j.1469-8137.2004.01236.x; de Souza FA, 2005, SOIL BIOL, V4; Declerck S, 2004, MYCOL RES, V108, P84, DOI 10.1017/S0953756203008761; DOERR TB, 1984, J RANGE MANAGE, V37, P135, DOI 10.2307/3898900; DOUDS DD, 1995, AGR ECOSYST ENVIRON, V52, P111, DOI 10.1016/0167-8809(94)00550-X; ESTAUN MV, 1990, AGR ECOSYST ENVIRON, V29, P123, DOI 10.1016/0167-8809(90)90266-G; EVANS DG, 1988, NEW PHYTOL, V110, P67, DOI 10.1111/j.1469-8137.1988.tb00238.x; EVANS DG, 1990, NEW PHYTOL, V114, P65, DOI 10.1111/j.1469-8137.1990.tb00374.x; FAO, 2011, STAT WORLDS LAND WAT; Fichtner A, 2014, SOIL BIOL BIOCHEM, V70, P79, DOI 10.1016/j.soilbio.2013.12.015; Fitter AH, 2005, J ECOL, V93, P231, DOI 10.1111/j.0022-0477.2005.00990.x; GEHRING CA, 2002, MYCORRHIZAL ECOLOGY, P295; Guadarrama P, 2014, PEDOBIOLOGIA, V57, P87, DOI 10.1016/j.pedobi.2014.01.002; Hart Miranda M., 2004, Tropical Ecology, V45, P97; Hart MM, 2005, PEDOBIOLOGIA, V49, P269, DOI 10.1016/j.pedobi.2004.12.001; Hart MM, 2002, MYCORRHIZA, V12, P297, DOI 10.1007/s00572-002-0186-5; Hart MM, 2002, BIOL FERT SOILS, V36, P357, DOI 10.1007/s00374-002-0539-4; Hart MM, 2002, NEW PHYTOL, V153, P335, DOI 10.1046/j.0028-646X.2001.00312.x; Helgason T, 1998, NATURE, V394, P431, DOI 10.1038/28764; Hokka V, 2004, OIKOS, V106, P73, DOI 10.1111/j.0030-1299.2004.12963.x; HUSTON MA, 1994, BIOL DIVERSITY; Jansa J, 2002, MYCORRHIZA, V12, P225, DOI [10.1007/s00572-002-0163-z, 10.1007/s005572-002-0163-z]; Jansa J, 2005, PLANT SOIL, V276, P163, DOI 10.1007/s11104-005-4274-0; Jansa J, 2003, ECOL APPL, V13, P1164, DOI 10.1890/1051-0761(2003)13[1164:STATCS]2.0.CO;2; Jansa J., 2006, SPECIAL PUBLICATION, P89, DOI DOI 10.1144/GSL.SP.2006.266.01.08; JASPER DA, 1993, NEW PHYTOL, V124, P473, DOI 10.1111/j.1469-8137.1993.tb03838.x; JASPER DA, 1989, NEW PHYTOL, V112, P93, DOI 10.1111/j.1469-8137.1989.tb00313.x; JASPER DA, 1991, NEW PHYTOL, V118, P471, DOI 10.1111/j.1469-8137.1991.tb00029.x; JOHNSON NC, 1991, OECOLOGIA, V86, P349, DOI 10.1007/BF00317600; Klironomos JN, 2001, CAN J BOT, V79, P1161, DOI 10.1139/cjb-79-10-1161; Knapp G, 2003, STAT MED, V22, P2693, DOI 10.1002/sim.1482; Koch AM, 2004, P NATL ACAD SCI USA, V101, P2369, DOI 10.1073/pnas.0306441101; Koch AM, 2017, NEW PHYTOLO IN PRESS; Kohl L, 2014, ECOL APPL, V24, P1842, DOI 10.1890/13-1821.1; Lekberg Y, 2012, J ECOL, V100, P151, DOI 10.1111/j.1365-2745.2011.01894.x; Maherali H, 2007, SCIENCE, V316, P1746, DOI 10.1126/science.1143082; Mathimaran N, 2005, MYCORRHIZA, V16, P61, DOI 10.1007/s00572-005-0014-9; McGonigle TP, 1996, SOIL BIOL BIOCHEM, V28, P263, DOI 10.1016/0038-0717(95)00129-8; McGonigle TP, 2000, APPL SOIL ECOL, V14, P147, DOI 10.1016/S0929-1393(00)00048-2; MCGONIGLE TP, 1993, MYCORRHIZA, V4, P63, DOI 10.1007/BF00204060; MCINTYRE S, 1995, J ECOL, V83, P31, DOI 10.2307/2261148; McMillen BG, 1998, SOIL BIOL BIOCHEM, V30, P1639, DOI 10.1016/S0038-0717(97)00204-6; Moora M, 2014, FEMS MICROBIOL ECOL, V90, P609, DOI 10.1111/1574-6941.12420; Morton JB, 2001, MYCOLOGIA, V93, P181, DOI 10.2307/3761615; Munkvold L, 2004, NEW PHYTOL, V164, P357, DOI 10.1111/j.1469-8137.2004.01169.x; Newsham KK, 1995, J ECOL, V83, P991, DOI 10.2307/2261180; Oehl F, 2009, AGR ECOSYST ENVIRON, V134, P257, DOI 10.1016/j.agee.2009.07.008; Opik M, 2010, NEW PHYTOL, V188, P223, DOI 10.1111/j.1469-8137.2010.03334.x; Peyret-Guzzon M, 2016, MYCORRHIZA, V26, P33, DOI 10.1007/s00572-015-0644-5; Picone C, 2000, BIOTROPICA, V32, P734, DOI 10.1646/0006-3606(2000)032[0734:DAAOAM]2.0.CO;2; PORTER WM, 1987, J APPL ECOL, V24, P659, DOI 10.2307/2403900; Powell JR, 2009, P ROY SOC B-BIOL SCI, V276, P4237, DOI 10.1098/rspb.2009.1015; Pringle A, 2002, AM J BOT, V89, P1439, DOI 10.3732/ajb.89.9.1439; R Core Team, 2013, R LANG ENV STAT COMP; Ropars J, 2015, NEW PHYTOL, V208, P638, DOI 10.1111/nph.13448; Rosendahl S, 2008, NEW PHYTOL, V179, P1154, DOI 10.1111/j.1469-8137.2008.02535.x; Rua MA, 2016, BMC EVOL BIOL, V16, DOI 10.1186/s12862-016-0698-9; Schnoor TK, 2011, MYCORRHIZA, V21, P211, DOI 10.1007/s00572-010-0325-3; Sharifi M, 2007, J PLANT PHYSIOL, V164, P1144, DOI 10.1016/j.jplph.2006.06.016; Sharmah D, 2014, AGR RES, V3, P229, DOI 10.1007/s40003-014-0110-1; Sikes BA, 2009, J ECOL, V97, P1274, DOI 10.1111/j.1365-2745.2009.01557.x; Soteras F, 2015, APPL SOIL ECOL, V85, P30, DOI 10.1016/j.apsoil.2014.09.004; Staddon PL, 2003, SCIENCE, V300, P1138, DOI 10.1126/science.1084269; STAHL PD, 1988, NEW PHYTOL, V110, P347, DOI 10.1111/j.1469-8137.1988.tb00271.x; Stover HJ, 2012, APPL SOIL ECOL, V60, P61, DOI 10.1016/j.apsoil.2012.02.016; TOMMERUP IC, 1983, T BRIT MYCOL SOC, V81, P381, DOI 10.1016/S0007-1536(83)80090-4; Torrecillas E, 2012, APPL ENVIRON MICROB, V78, P6180, DOI 10.1128/AEM.01287-12; Treseder KK, 2004, ECOL APPL, V14, P1826, DOI 10.1890/03-5133; Treseder KK, 2004, NEW PHYTOL, V164, P347, DOI 10.1111/j.1469-8137.2004.01159.x; Uibopuu A, 2009, SOIL BIOL BIOCHEM, V41, P2141, DOI 10.1016/j.soilbio.2009.07.026; Vandenkoornhuyse P, 2002, MOL ECOL, V11, P1555, DOI 10.1046/j.1365-294X.2002.01538.x; Viechtbauer W, 2010, J STAT SOFTW, V36, P1; Wagg C, 2014, P NATL ACAD SCI USA, V111, P5266, DOI 10.1073/pnas.1320054111; Wardle DA, 2004, SCIENCE, V304, P1629, DOI 10.1126/science.1094875; Wetzel K, 2014, SOIL BIOL BIOCHEM, V72, P88, DOI 10.1016/j.soilbio.2014.01.033; Wright SF, 1999, SOIL SCI SOC AM J, V63, P1825, DOI 10.2136/sssaj1999.6361825x 88 8 8 9 41 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0940-6360 1432-1890 MYCORRHIZA Mycorrhiza JUL 2017 27 5 431 440 10.1007/s00572-016-0759-3 10 Mycology Mycology EX7TU WOS:000403452500002 28120111 2018-11-22 J Pecuchet, L; Lindegren, M; Hidalgo, M; Delgado, M; Esteban, A; Fock, HO; de Sola, LG; Punzon, A; Solmundsson, J; Payne, MR Pecuchet, Laurene; Lindegren, Martin; Hidalgo, Manuel; Delgado, Marina; Esteban, Antonio; Fock, Heino O.; Gil de Sola, Luis; Punzon, Antonio; Solmundsson, Jon; Payne, Mark R. From traits to life-history strategies: Deconstructing fish community composition across European seas GLOBAL ECOLOGY AND BIOGEOGRAPHY English Article archetypal analysis; community composition; depth; fecundity; life-history strategies; marine fish; offspring survival; size; temperature; trade-off; trait FAST-SLOW CONTINUUM; FUNCTIONAL DIVERSITY; ARCHETYPAL ANALYSIS; SPECIES RICHNESS; MARINE FISH; NORTH-SEA; POPULATION REGULATION; ECOSYSTEM-FUNCTION; AMERICAN FISHES; CLIMATE-CHANGE Aim: The life history of a species is determined by trade-offs between growth, survival and reproduction to maximize fitness in a given environment. Following a theoretical model, we investigate whether the composition of marine fish communities can be understood in terms of a set of life-history strategies and whether the prevalence of the strategies follows specific spatial patterns that can be related to the environment. Location: European seas. Time period: 1980-2014. Major taxa studied: Fish. Methods: An extensive set of scientific bottom trawl surveys was collected to obtain the species composition of fish communities across European seas. We complemented these data with species-specific information regarding six life-history traits, reflecting reproductive, growth and feeding modes. We then calculated the optimal number of strategies needed to summarize the information contained in the traits by using archetypal analysis. The proportion of each obtained strategy in the communities and their spatial patterns were explained as a function of the environment and their temporal changes were investigated. Results: The species could be decomposed into a continuum of three life-history strategies-opportunistic, periodic and equilibrium-resulting from trade-offs between traits. The marked spatial patterns of these strategies could be explained by depth, temperature and its seasonality, chlorophyll and fishing effort. In recent years, opportunistic and equilibrium strategies significantly increased, probably due to an increase in temperature and decrease in fishing effort. Main conclusions: Our empirical analysis supports a theoretical framework outlining three life-history strategies of fish. The strategies vary predictably in space and time in response to the environment. This highlights the underlying process whereby fitness is optimized through trade-offs between growth, feeding and reproduction under different environmental conditions. Due to their response to the environment, life-history strategies provide a suitable tool for monitoring and understanding community changes in response to natural and anthropogenic stressors, including fishing and climate change. [Pecuchet, Laurene; Lindegren, Martin; Payne, Mark R.] Tech Univ Denmark, Natl Inst Aquat Resources DTU Aqua, Ctr Ocean Life, DK-2920 Charlottenlund, Denmark; [Hidalgo, Manuel] Inst Espanol Oceanog, Ctr Oceanog Baleares, Palma De Mallorca, Spain; [Delgado, Marina] Inst Espanol Oceanog, Ctr Oceanog Cadiz, Cadiz, Spain; [Esteban, Antonio] Inst Espanol Oceanog, Ctr Oceanog Murcia, San Pedro Del Pinatar, Spain; [Fock, Heino O.] Thuenen Inst Sea Fisheries, Hamburg, Germany; [Gil de Sola, Luis] Inst Espanol Oceanog, Ctr Oceanog Malaga, Fuengirola, Spain; [Punzon, Antonio] Inst Espanol Oceanog, Ctr Oceanog Santander, Santander, Spain; [Solmundsson, Jon] Marine & Freshwater Res Inst, Reykjavik, Iceland Pecuchet, L (reprint author), Tech Univ Denmark, Natl Inst Aquat Resources DTU Aqua, Ctr Ocean Life, DK-2920 Charlottenlund, Denmark. laupe@aqua.dtu.dk Payne, Mark/C-6844-2008 Payne, Mark/0000-0001-5795-2481; Hidalgo, Manuel/0000-0002-3494-9658; Solmundsson, Jon/0000-0002-2685-777X; Gil de Sola, Luis/0000-0003-1987-9716 Villum research [13159]; European Community [308299]; European Union's Horizon 2020 [678193] Villum research, grant no. 13159; European Community's Seventh Framework Programme (FP7 2007-2013), grant no. 308299; European Union's Horizon 2020, grant no. 678193 Barton K., 2016, PACKAGE MUMIN MULTIM; Bauckhage C, 2009, LECT NOTES COMPUT SC, V5748, P272; Bellwood DR, 2003, ECOL LETT, V6, P281, DOI 10.1046/j.1461-0248.2003.00432.x; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; BOYCE MS, 1979, AM NAT, V114, P569, DOI 10.1086/283503; Brown JH, 2006, P NATL ACAD SCI USA, V103, P17595, DOI 10.1073/pnas.0608522103; Cadotte M, 2013, ECOL LETT, V16, P1234, DOI 10.1111/ele.12161; Charnov EL, 2013, FISH FISH, V14, P213, DOI 10.1111/j.1467-2979.2012.00467.x; Collie JS, 2008, CAN J FISH AQUAT SCI, V65, P1352, DOI 10.1139/F08-048; CUTLER A, 1994, TECHNOMETRICS, V36, P338, DOI 10.2307/1269949; Diaz S, 2001, TRENDS ECOL EVOL, V16, P646, DOI 10.1016/S0169-5347(01)02283-2; Dormann CF, 2013, ECOGRAPHY, V36, P27, DOI 10.1111/j.1600-0587.2012.07348.x; Dulvy NK, 2008, AQUAT CONSERV, V18, P459, DOI 10.1002/aqc.975; Engelhard GH, 2015, ENVIRON CONSERV, V42, P227, DOI 10.1017/S0376892915000077; Eugster MJA, 2011, COMPUT STAT DATA AN, V55, P1215, DOI 10.1016/j.csda.2010.10.017; Eugster MJA, 2009, J STAT SOFTW, V30, P1; Flynn DFB, 2011, ECOLOGY, V92, P1573, DOI 10.1890/10-1245.1; Fock HO, 2014, J SEA RES, V85, P325, DOI 10.1016/j.seares.2013.06.004; Franco M, 1996, PHILOS T R SOC B, V351, P1341, DOI 10.1098/rstb.1996.0117; Froese R., 2012, FISHBASE; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; Grizzetti B, 2012, GLOBAL CHANGE BIOL, V18, P769, DOI 10.1111/j.1365-2486.2011.02576.x; Gunderson DR, 1997, CAN J FISH AQUAT SCI, V54, P990, DOI 10.1139/cjfas-54-5-990; Halpern BS, 2008, MAR ECOL PROG SER, V364, P147, DOI 10.3354/meps07553; Hart Y, 2015, NAT METHODS, V12, P233, DOI [10.1038/NMETH.3254, 10.1038/nmeth.3254]; Hiddink JG, 2006, CAN J FISH AQUAT SCI, V63, P721, DOI 10.1139/F05-266; ICES, 2015, 2015SSGEPI18 ICES CM; Jennings S, 1999, J ANIM ECOL, V68, P617, DOI 10.1046/j.1365-2656.1999.00312.x; Jennings S, 1999, FISH RES, V40, P125, DOI 10.1016/S0165-7836(98)00208-2; Juan-Jorda MJ, 2013, REV FISH BIOL FISHER, V23, P135, DOI 10.1007/s11160-012-9284-4; Juan S. D., 2007, MAR ECOL PROG SER, V334, P117; King JR, 2003, FISHERIES MANAG ECOL, V10, P249, DOI 10.1046/j.1365-2400.2003.00359.x; Lavorel S, 2002, FUNCT ECOL, V16, P545, DOI 10.1046/j.1365-2435.2002.00664.x; LEVINTON JS, 1970, LETHAIA, V3, P69, DOI 10.1111/j.1502-3931.1970.tb01264.x; Lindegren M, 2012, GLOBAL CHANGE BIOL, V18, P3491, DOI 10.1111/j.1365-2486.2012.02799.x; Litchman E, 2013, J PLANKTON RES, V35, P473, DOI 10.1093/plankt/fbt019; Longhurst A, 2002, FISH RES, V56, P125, DOI 10.1016/S0165-7836(01)00351-4; MACARTHUR R, 1960, AM NAT, V94, P25, DOI 10.1086/282106; Magurran AE, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms9405; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; McIntyre S, 1999, J VEG SCI, V10, P621, DOI 10.2307/3237077; Mims MC, 2010, ECOL FRESHW FISH, V19, P390, DOI 10.1111/j.1600-0633.2010.00422.x; Mims MC, 2012, ECOLOGY, V93, P35, DOI 10.1890/11-0370.1; Morup M, 2012, NEUROCOMPUTING, V80, P54, DOI 10.1016/j.neucom.2011.06.033; Myers RA, 2003, NATURE, V423, P280, DOI 10.1038/nature01610; Neuheimer AB, 2015, ECOLOGY, V96, P3303, DOI 10.1890/14-2491.1; NICHOLS JD, 1976, AM NAT, V110, P995, DOI 10.1086/283122; Nunez-Riboni I, 2015, J MARINE SYST, V151, P15, DOI 10.1016/j.jmarsys.2015.06.003; Olden JD, 2006, ECOL MONOGR, V76, P25, DOI 10.1890/05-0330; Oli MK, 2004, BASIC APPL ECOL, V5, P449, DOI 10.1016/j.baae.2004.06.002; Pecuchet L., 2016, REPROD TRAITS FECUND, DOI [10.1594/PANGAEA.868610, DOI 10.1594/PANGAEA.868610]; Pecuchet L, 2016, MAR ECOL PROG SER, V546, P239, DOI 10.3354/meps11613; PEPIN P, 1991, CAN J FISH AQUAT SCI, V48, P503, DOI 10.1139/f91-065; Perry AL, 2005, SCIENCE, V308, P1912, DOI 10.1126/science.1111322; Petchey OL, 2006, ECOL LETT, V9, P741, DOI 10.1111/j.1461-0248.2006.00924.x; Petchey OL, 2002, ECOL LETT, V5, P402, DOI 10.1046/j.1461-0248.2002.00339.x; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Schleuter D, 2010, ECOL MONOGR, V80, P469, DOI 10.1890/08-2225.1; Sguotti C, 2016, GLOBAL CHANGE BIOL, V22, P2729, DOI 10.1111/gcb.13316; Shipley B, 2006, SCIENCE, V314, P812, DOI 10.1126/science.1131344; Sibly RM, 2007, P NATL ACAD SCI USA, V104, P17707, DOI 10.1073/pnas.0707725104; Silvertown Jonathan, 1993, Plant Species Biology, V8, P67, DOI 10.1111/j.1442-1984.1993.tb00058.x; Stevens JD, 2000, ICES J MAR SCI, V57, P476, DOI 10.1006/jmsc.2000.0724; Tsoukali S, 2016, CAN J FISH AQUAT SCI, V73, P1405, DOI 10.1139/cjfas-2015-0378; Violle C, 2007, OIKOS, V116, P882, DOI 10.1111/j.2007.0030-1299.15559.x; Warton DI, 2011, ECOLOGY, V92, P3, DOI 10.1890/10-0340.1; Wiedmann MA, 2014, ECOL EVOL, V4, P3596, DOI 10.1002/ece3.1203; Winemiller KO, 2015, ECOL LETT, V18, P737, DOI 10.1111/ele.12462; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Wood SN, 2006, GEN ADDITIVE MODELS 72 2 2 7 35 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1466-822X 1466-8238 GLOBAL ECOL BIOGEOGR Glob. Ecol. Biogeogr. JUL 2017 26 7 812 822 10.1111/geb.12587 11 Ecology; Geography, Physical Environmental Sciences & Ecology; Physical Geography EY2WV WOS:000403834400005 2018-11-22 J Friedman, J Friedman, Jannice Variation in gene regulation underlying annual and perennial flowering in Arabideae species MOLECULAR ECOLOGY English Editorial Material annual; FLC; flowering time; perennial; vernalization EPIGENETIC MAINTENANCE; VERNALIZATION The diversity of life history strategies within the angiosperms illustrates the evolutionary flexibility of reproductive characteristics. The number of times an individual reproduces is a key life history trait, and transitions from iteroparous perennials to semelparous annuals have occurred frequently in the flowering plants. Despite the frequency of this evolutionary transition, and the importance of annuality versus perenniality to both agriculture and ecology, understanding the molecular and genetic mechanisms involved in perennial flowering is in their infancy. In this issue of Molecular Ecology, Kiefer et al. (2017) make significant progress towards understanding divergence in seasonal flowering between annual and perennial species in the Arabideae tribe of Brassicaceae. By combining a comparative approach with gene expression and sequence comparisons, they show that transcriptional differences in FLC orthologs, a floral inhibitor in Arabidopsis thaliana, have occurred repeatedly and underlie differences in flowering between annuals and perennials. [Friedman, Jannice] Syracuse Univ, Dept Biol, Syracuse, NY 13244 USA Friedman, J (reprint author), Syracuse Univ, Dept Biol, Syracuse, NY 13244 USA. friedman@syr.edu Friedman, Jannice/0000-0002-1146-0892 Albani MC, 2012, PLOS GENET, V8, DOI 10.1371/journal.pgen.1003130; Albani MC, 2010, CURR TOP DEV BIOL, V91, P323, DOI 10.1016/S0070-2153(10)91011-9; Amasino RM, 2005, CURR OPIN BIOTECH, V16, P154, DOI 10.1016/j.copbio.2005.02.004; Andres F, 2012, NAT REV GENET, V13, P627, DOI 10.1038/nrg3291; Battey NH, 2002, CURR OPIN PLANT BIOL, V5, P62, DOI 10.1016/S1369-5266(01)00229-1; Heo JB, 2011, SCIENCE, V331, P76, DOI 10.1126/science.1197349; Kiefer C, 2017, MOL ECOL, V26, P3437, DOI 10.1111/mec.14084; Sheldon CC, 2002, PLANT CELL, V14, P2527, DOI 10.1105/tpc.004564; Sung SB, 2006, NAT GENET, V38, P706, DOI 10.1038/ng1795; Wang RH, 2009, NATURE, V459, P423, DOI 10.1038/nature07988 10 0 0 1 10 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. JUL 2017 26 13 3324 3326 10.1111/mec.14171 3 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology EY1AY WOS:000403695500002 28632342 2018-11-22 J Young, RC; Welcker, J; Barger, CP; Hatch, SA; Merkling, T; Kitaiskaia, EV; Haussmann, MF; Kitaysky, AS Young, Rebecca C.; Welcker, Jorg; Barger, Christopher P.; Hatch, Scott A.; Merkling, Thomas; Kitaiskaia, Evgenia V.; Haussmann, Mark F.; Kitaysky, Alexander S. Effects of developmental conditions on growth, stress and telomeres in black-legged kittiwake chicks MOLECULAR ECOLOGY English Article antioxidant; corticosterone; early-life conditions; growth rate; telomeres; thrifty phenotype KING PENGUIN CHICKS; LONG-LIVED SEABIRD; BLUE-FOOTED BOOBY; FOOD AVAILABILITY; OXIDATIVE STRESS; RISSA-TRIDACTYLA; REPRODUCTIVE SUCCESS; LIFE STRESS; WILD BIRDS; LENGTH Early-life conditions can drive ageing patterns and life history strategies throughout the lifespan. Certain social, genetic and nutritional developmental conditions are more likely to produce high-quality offspring: those with good likelihood of recruitment and productivity. Here, we call such conditions "favoured states" and explore their relationship with physiological variables during development in a long-lived seabird, the black-legged kittiwake (Rissa tridactyla). Two favoured states were experimentally generated by manipulation of food availability and brood size, while hatching order and sex were also explored as naturally generating favoured states. Thus, the favoured states we explored were high food availability, lower levels of sibling competition, hatching first and male sex. We tested the effects of favoured developmental conditions on growth, stress, telomere length (a molecular marker associated with lifespan) and nestling survival. Generation of favoured states through manipulation of both the nutritional and social environments furthered our understanding of their relative contributions to development and phenotype: increased food availability led to larger body size, reduced stress and higher antioxidant status, while lower sibling competition (social environment) led to lower telomere loss and longer telomere lengths in fledglings. Telomere length predicted nestling survival, and wing growth was also positively correlated with telomere length, supporting the idea that telomeres may indicate individual quality, mediated by favoured states. [Young, Rebecca C.] Univ Nacl Autonoma Mexico, Inst Ecol, Ciudad Univ, Mexico City, DF, Mexico; [Young, Rebecca C.; Welcker, Jorg; Barger, Christopher P.; Kitaiskaia, Evgenia V.; Kitaysky, Alexander S.] Univ Alaska Fairbanks, Dept Biol & Wildlife, Inst Arctic Biol, Fairbanks, AK 99775 USA; [Hatch, Scott A.] Inst Seabird Res & Conservat, Anchorage, AK USA; [Merkling, Thomas] Univ Toulouse 3 Paul Sabatier, CNRS, ENFA, EDB Lab Evolut & Divers Biol,UMR5174, Toulouse, France; [Haussmann, Mark F.] Bucknell Univ, Dept Biol, Lewisburg, PA 17837 USA Young, RC (reprint author), Univ Nacl Autonoma Mexico, Inst Ecol, Ciudad Univ, Mexico City, DF, Mexico.; Young, RC (reprint author), Univ Alaska Fairbanks, Dept Biol & Wildlife, Inst Arctic Biol, Fairbanks, AK 99775 USA. rebeccacyoung721@gmail.com MERKLING, Thomas/F-4190-2011 MERKLING, Thomas/0000-0002-5878-0359; Young, Rebecca/0000-0002-3227-7966 UAF Center for Global Change Student Research Grant [G-4780]; Cooperative Institute for Alaska Research [G-4780]; Research Council of Norway [197192/V40]; Institut Polaire Francais Paul-Emile Victor [Programme 1162 SexCoMonArc] UAF Center for Global Change Student Research Grant, Grant/Award Number: G-4780; Cooperative Institute for Alaska Research, Grant/Award Number: G-4780; Research Council of Norway, Grant/Award Number: 197192/V40; Institut Polaire Francais Paul-Emile Victor, Grant/Award Number: Programme 1162 SexCoMonArc Alonso-Alvarez C, 2006, EVOLUTION, V60, P1913, DOI 10.1111/j.0014-3820.2006.tb00534.x; Alonso-Alvarez C, 2010, PHYSIOL BIOCHEM ZOOL, V83, P110, DOI 10.1086/605395; Angelier F, 2013, FUNCT ECOL, V27, P342, DOI 10.1111/1365-2435.12041; Aydinonat D, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0093839; Barrett ELB, 2013, MOL ECOL, V22, P249, DOI 10.1111/mec.12110; Bauch C, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2540; Benowitz-Fredericks ZM, 2008, DEEP-SEA RES PT II, V55, P1868, DOI 10.1016/j.dsr2.2008.04.007; Bonisoli-Alquati A, 2011, P ROY SOC B-BIOL SCI, V278, P1273, DOI 10.1098/rspb.2010.1741; Boonekamp JJ, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.3287; Cohen AA, 2013, CAN J ZOOL, V91, P64, DOI 10.1139/cjz-2012-0243; Cohen A, 2007, COMP BIOCHEM PHYS B, V147, P110, DOI 10.1016/j.cbpb.2006.12.015; Costantini D, 2014, OECOLOGIA, V175, P1107, DOI 10.1007/s00442-014-2975-x; COULSON JC, 1985, IBIS, V127, P450, DOI 10.1111/j.1474-919X.1985.tb04841.x; Dalle-Donne I, 2003, CLIN CHIM ACTA, V329, P23, DOI 10.1016/S0009-8981(03)00003-2; DRUMMOND H, 1989, ANIM BEHAV, V37, P806, DOI 10.1016/0003-3472(89)90065-1; Drummond H, 2011, P ROY SOC B-BIOL SCI, V278, P3421, DOI 10.1098/rspb.2010.2569; Drummond H, 2015, AUK, V132, P563, DOI 10.1642/AUK-14-244.1; Epel ES, 2004, P NATL ACAD SCI USA, V101, P17312, DOI 10.1073/pnas.0407162101; Foote CG, 2011, BEHAV ECOL, V22, P156, DOI 10.1093/beheco/arq178; Geiger S, 2012, MOL ECOL, V21, P1500, DOI 10.1111/j.1365-294X.2011.05331.x; Gems D, 2013, ANNU REV PHYSIOL, V75, P621, DOI 10.1146/annurev-physiol-030212-183712; Gill VA, 2002, J AVIAN BIOL, V33, P113, DOI 10.1034/j.1600-048X.2002.330201.x; Hatch SA, 2013, MAR ECOL PROG SER, V477, P271, DOI 10.3354/meps10161; Haussmann MF, 2008, MOL ECOL RESOUR, V8, P264, DOI 10.1111/j.1471-8286.2007.01973.x; Haussmann MF, 2015, BIOL LETTERS, V11, DOI 10.1098/rsbl.2015.0396; Haussmann MF, 2012, P ROY SOC B-BIOL SCI, V279, P1447, DOI 10.1098/rspb.2011.1913; Haussmann MF, 2010, CURR ZOOL, V56, P714; Haussmann MF, 2005, BIOL LETT-UK, V1, P212, DOI 10.1098/rsbl.2005.0301; Heidinger BJ, 2012, P NATL ACAD SCI USA, V109, P1743, DOI 10.1073/pnas.1113306109; Herring G, 2011, FUNCT ECOL, V25, P682, DOI 10.1111/j.1365-2435.2010.01792.x; Kim SY, 2011, EVOL ECOL, V25, P461, DOI 10.1007/s10682-010-9426-x; Kitaysky AS, 2006, P ROY SOC B-BIOL SCI, V273, P445, DOI 10.1098/rspb.2005.3351; Kitaysky AS, 2003, HORM BEHAV, V43, P140, DOI 10.1016/S0018-506X(02)00030-2; Kitaysky AS, 1999, FUNCT ECOL, V13, P577, DOI 10.1046/j.1365-2435.1999.00352.x; Leclaire S, 2015, BEHAV ECOL SOCIOBIOL, V69, P1097, DOI 10.1007/s00265-015-1922-0; Lee Phyllis C, 2013, Biol Lett, V9, P20130011, DOI 10.1098/rsbl.2013.0011; Lemaitre JF, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0209; Lopez-Jimenez L, 2016, FUNCT ECOL, V30, P605, DOI 10.1111/1365-2435.12539; Lyons DE, 2011, J FIELD ORNITHOL, V82, P88, DOI 10.1111/j.1557-9263.2010.00311.x; Merkling T., 2015, BEHAV ECOLOGY, V23, P751; Merkling T, 2014, GEN COMP ENDOCR, V198, P32, DOI 10.1016/j.ygcen.2013.12.011; Merkling T, 2012, BEHAV ECOL, V23, P751, DOI 10.1093/beheco/ars023; Mizutani Y, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0167261; Monaghan P, 2006, TRENDS ECOL EVOL, V21, P47, DOI 10.1016/j.tree.2005.11.007; Morrison KW, 2009, CONDOR, V111, P433, DOI 10.1525/cond.2009.080099; Musgrove AB, 2014, AUK, V131, P571, DOI 10.1642/AUK-14-51.1; Naslund J, 2015, OECOLOGIA, V177, P1221, DOI 10.1007/s00442-015-3263-0; Nettle D, 2016, ECOL EVOL, V6, P8138, DOI 10.1002/ece3.2551; Nettle D, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.1610; Noguera JC, 2015, BIOL LETTERS, V11, DOI 10.1098/rsbl.2014.0938; Nussey DH, 2007, CURR BIOL, V17, pR1000, DOI 10.1016/j.cub.2007.10.005; Pinheiro J., 2011, NLME LINEAR NONLINEA, V3, P1; Plot V, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040855; R Development Core Team, 2011, R LANG ENV STAT COMP; RICKLEFS RE, 1984, ORNIS SCAND, V15, P162, DOI 10.2307/3675957; Romano MD, 2006, WATERBIRDS, V29, P407, DOI 10.1675/1524-4695(2006)29[407:TTJHOM]2.0.CO;2; Romero LM, 2005, COMP BIOCHEM PHYS A, V140, P73, DOI 10.1016/j.cbpb.2004.11.004; Salomons HM, 2009, P ROY SOC B-BIOL SCI, V276, P3157, DOI 10.1098/rspb.2009.0517; Shalev C, 2013, PSYCHONEUROENDOCRINO, V38, P1835, DOI 10.1016/j.psyneuen.2013.03.010; Shalev I, 2012, BIOESSAYS, V34, P943, DOI 10.1002/bies.201200084; SHEA RE, 1985, AM NAT, V126, P116, DOI 10.1086/284400; SOHAL RS, 1993, P NATL ACAD SCI USA, V90, P7255, DOI 10.1073/pnas.90.15.7255; Speakman JR, 2015, ECOL EVOL, V5, pS745, DOI 10.1002/ece3.1790; Speakman JR, 2011, BIOESSAYS, V33, P255, DOI 10.1002/bies.201000132; Stier A, 2014, FUNCT ECOL, V28, P601, DOI 10.1111/1365-2435.12204; Tarry-Adkins JL, 2009, FASEB J, V23, P1521, DOI 10.1096/fj.08-122796; Tarry-Adkins JL, 2014, P NUTR SOC, V73, P289, DOI 10.1017/S002966511300387X; Theall KP, 2013, SOC SCI MED, V85, P50, DOI 10.1016/j.socscimed.2013.02.030; TRIVERS RL, 1973, SCIENCE, V179, P90, DOI 10.1126/science.179.4068.90; Uller T, 2013, J EVOLUTION BIOL, V26, P2161, DOI 10.1111/jeb.12212; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vincenzi S, 2015, P ROY SOC B-BIOL SCI, V282, P191, DOI 10.1098/rspb.2015.0762; Vincenzi S, 2013, DEEP-SEA RES PT II, V94, P192, DOI 10.1016/j.dsr2.2013.03.029; Vincenzi S, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.0554; Voillemot M, 2012, BMC ECOL, V12, DOI 10.1186/1472-6785-12-17; Welcker J, 2015, FUNCT ECOL, V29, P250, DOI 10.1111/1365-2435.12321; White J, 2010, ANIM BEHAV, V79, P1095, DOI 10.1016/j.anbehav.2010.02.003; WINGFIELD JC, 1975, STEROIDS, V26, P311, DOI 10.1016/0039-128X(75)90077-X; Young RC, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074931; Zuur A. F., 2009, MIXED EFFECTS MODELS 80 5 5 3 41 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. JUL 2017 26 13 3572 3584 10.1111/mec.14121 13 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology EY1AY WOS:000403695500020 28370751 2018-11-22 J Ravanbakhsh, M; Sasidharan, R; Voesenek, LACJ; Kowalchuk, GA; Jousset, A Ravanbakhsh, Mohammadhossein; Sasidharan, Rashmi; Voesenek, Laurentius A. C. J.; Kowalchuk, George A.; Jousset, Alexandre ACC deaminase-producing rhizosphere bacteria modulate plant responses to flooding JOURNAL OF ECOLOGY English Article ACC deaminase; ecophysiology; ethylene; PGP-bacteria; plastic response; Rumex palustris; submergence GROWTH-PROMOTING BACTERIA; RUMEX-PALUSTRIS; 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID; ETHYLENE PRODUCTION; HYPONASTIC GROWTH; STRESS; SUBMERGENCE; ELONGATION; PETIOLES; RHIZOBACTERIA 1. Flooding events are predicted to increase over the coming decades, calling for a better understanding of plant responses to submergence. Specific root-associated microbes alter plant hormonal balance, affecting plant growth and stress tolerance. We hypothesized that the presence of such microbes may modulate plant responses to submergence. 2. We tested whether root-associated bacteria producing the enzyme ACC (1-aminocyclopropane-1-carboxylate) deaminase affect submergence responses in Rumex palustris, a flood-tolerant riparian plant. Ethylene is a key plant hormone regulating flood-associated acclimations, and ACC deaminase activity of bacteria may decrease ethylene levels in the plant. Rumex palustris plants were inoculated with Pseudomonas putida UW4 or an isogenic mutant lacking ACC deaminase, and subsequently exposed to complete submergence. 3. Submergence triggered ethylene-mediated responses, including an increase in leaf elongation and shoot fresh weight. Flood responses, including post-submergence ethylene production, were reduced in plants inoculated with ACC deaminase-producing wild type bacteria, as compared to plants inoculated with the ACC deaminase-negative mutant. 4. Synthesis. We demonstrate that root-associated bacteria can alter plant response to environmental stress by altering plant hormonal balance. Plant-microbe interactions may thus be an overseen driver of plant life-history strategies that should be taken into account when assessing plant ecological adaptations such as abiotic stress resistance. [Ravanbakhsh, Mohammadhossein; Jousset, Alexandre] Univ Utrecht, Dept Biol, Ecol & Biodivers, NL-3584 CH Utrecht, Netherlands; [Sasidharan, Rashmi; Voesenek, Laurentius A. C. J.; Kowalchuk, George A.] Univ Utrecht, Inst Environm Biol, Plant Ecophysiol, NL-3584 CH Utrecht, Netherlands Jousset, A (reprint author), Univ Utrecht, Dept Biol, Ecol & Biodivers, NL-3584 CH Utrecht, Netherlands. a.l.c.jousset@uu.nl Sasidharan, Rashmi/C-2088-2011; Jousset, Alexandre/C-7607-2011 Sasidharan, Rashmi/0000-0002-6940-0657; Bailey-Serres J, 2008, ANNU REV PLANT BIOL, V59, P313, DOI 10.1146/annurev.arplant.59.032607.092752; Bailey-Serres J, 2010, CURR OPIN PLANT BIOL, V13, P489, DOI 10.1016/j.pbi.2010.08.002; Barnawal D, 2012, PLANT PHYSIOL BIOCH, V58, P227, DOI 10.1016/j.plaphy.2012.07.008; BRADFORD KJ, 1980, PLANT PHYSIOL, V65, P322, DOI 10.1104/pp.65.2.322; Chen L, 2013, J EXP BOT, V64, P1565, DOI 10.1093/jxb/ert031; Cox MCH, 2004, PLANT PHYSIOL, V136, P2948, DOI 10.1104/pp.104.049197; Cox MCH, 2003, PLANT PHYSIOL, V132, P282, DOI 10.1104/pp.102.014548; DUAN J, 2008, MICROB ECOL, V57, P423; Duan J, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058640; DWORKIN M, 1958, J BACTERIOL, V75, P592; Glick B. R., 2007, NEW PERSPECTIVES APP, P329; Glick BR, 2014, MICROBIOL RES, V169, P30, DOI 10.1016/j.micres.2013.09.009; Grichko VP, 2001, PLANT PHYSIOL BIOCH, V39, P11, DOI 10.1016/S0981-9428(00)01212-2; Grichko VP, 2001, PLANT PHYSIOL BIOCH, V39, P1, DOI 10.1016/S0981-9428(00)01213-4; Hattori Y, 2011, CURR OPIN PLANT BIOL, V14, P100, DOI 10.1016/j.pbi.2010.09.008; Hirabayashi Y, 2013, NAT CLIM CHANGE, V3, P816, DOI [10.1038/nclimate1911, 10.1038/NCLIMATE1911]; Jalili F, 2009, J PLANT PHYSIOL, V166, P667, DOI 10.1016/j.jplph.2008.08.004; Li JP, 2000, CURR MICROBIOL, V41, P101, DOI 10.1007/s002840010101; Ma WB, 2003, ANTON LEEUW INT J G, V83, P285, DOI 10.1023/A:1023360919140; Mayak S, 2004, PLANT SCI, V166, P525, DOI 10.1016/j.plantsci.2003.10.025; Millenaar FF, 2005, PLANT PHYSIOL, V137, P998, DOI 10.1104/pp.104.053967; Peeters AJM, 2002, J EXP BOT, V53, P391, DOI 10.1093/jexbot/53.368.391; Penrose DM, 2003, PHYSIOL PLANTARUM, V118, P10, DOI 10.1034/j.1399-3054.2003.00086.x; Pierik R, 2009, ANN BOT-LONDON, V103, P353, DOI 10.1093/aob/mcn143; Ravanbakhsh M.H., 2016, DRYAD DIGITAL REPOSI; Rieu I, 2005, J EXP BOT, V56, P841, DOI 10.1093/jxb/eri078; Sasidharan R, 2015, PLANT PHYSIOL, V169, P3, DOI 10.1104/pp.15.00387; Singh S, 2014, AOB PLANTS, V6, DOI 10.1093/aobpla/plu060; Spaepen S, 2007, FEMS MICROBIOL REV, V31, P425, DOI 10.1111/j.1574-6976.2007.00072.x; VOESENEK LACJ, 1989, PLANT CELL ENVIRON, V12, P433, DOI 10.1111/j.1365-3040.1989.tb01959.x; VOESENEK LACJ, 1992, J PLANT GROWTH REGUL, V11, P171, DOI 10.1007/BF00194367; Voesenek LACJ, 1997, PLANT PHYSIOL, V114, P1501, DOI 10.1104/pp.114.4.1501; Voesenek LACJ, 2003, ANN BOT-LONDON, V91, P205, DOI 10.1093/aob/mcf116; Voesenek LACJ, 2003, PLANT J, V33, P341, DOI 10.1046/j.1365-313X.2003.01632.x; Voesenek LACJ, 2015, NEW PHYTOL, V206, P57, DOI 10.1111/nph.13209; Vriezen WH, 1999, PLANT PHYSIOL, V121, P189, DOI 10.1104/pp.121.1.189 36 5 5 3 19 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-0477 1365-2745 J ECOL J. Ecol. JUL 2017 105 4 SI 979 986 10.1111/1365-2745.12721 8 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology EX9BW WOS:000403549500016 2018-11-22 J Claunch, NM; Frazier, JA; Escallon, C; Vernasco, BJ; Moore, IT; Taylor, EN Claunch, Natalie M.; Frazier, Julius A.; Escallon, Camilo; Vernasco, Ben J.; Moore, Ignacio T.; Taylor, Emily N. Physiological and behavioral effects of exogenous corticosterone in a free-ranging ectotherm GENERAL AND COMPARATIVE ENDOCRINOLOGY English Article Corticosterone; Stress; Testosterone; Defensive behavior; Ectotherm; Reptile; Implant COTTONMOUTHS AGKISTRODON-PISCIVORUS; THAMNOPHIS-SIRTALIS-PARIETALIS; BASE-LINE CORTICOSTERONE; GALAPAGOS MARINE IGUANAS; SIDED GARTER SNAKE; HORMONAL RESPONSES; MALE LIZARDS; PLASMA-CORTICOSTERONE; DEFENSIVE BEHAVIOR; STRESS RESPONSES In the face of global change, free-ranging organisms are expected to experience more unpredictable stressors. An understanding of how organisms with different life history strategies will respond to such changes is an integral part of biodiversity conservation. Corticosterone (CORT) levels are often used as metrics to assess the population health of wild vertebrates, despite the fact that the stress response and its effects on organismal function are highly variable. Our understanding of the stress response is primarily derived from studies on endotherms, leading to some contention on the effects of chronic stress across and within taxa. We assessed the behavioral and hormonal responses to experimentally elevated stress hormone levels in a free-ranging, arid-adapted ectotherm, the Southern Pacific rattlesnake (Crotalus helleri). Plasma CORT was significantly elevated in CORT-implanted snakes 15 days after implantation. Implantation with CORT did not affect testosterone (T) levels or defensive behavior. Interestingly, we observed increased defensive behavior in snakes with more stable daily body temperatures and in snakes with higher plasma T during handling (tubing). Regardless of treatment group, those individuals with lower baseline CORT levels and higher body temperatures tended to exhibit greater increases in CORT levels following a standardized stressor. These results suggest that CORT may not mediate physiological and behavioral trait expression in arid-adapted ectotherms such as rattlesnakes. (C) 2017 Elsevier Inc. All rights reserved. [Claunch, Natalie M.; Frazier, Julius A.; Taylor, Emily N.] Calif Polytech State Univ San Luis Obispo, Dept Biol Sci, San Luis Obispo, CA 93401 USA; [Escallon, Camilo; Vernasco, Ben J.; Moore, Ignacio T.] Virginia Tech, Dept Biol Sci, Blacksburg, VA 24061 USA; [Frazier, Julius A.] 1083 Pyle Rd, Clarksville, OH 45113 USA Claunch, NM (reprint author), Univ Florida, Dept Wildlife Ecol & Conservat, Sch Nat Resources & Environm, Gainesville, FL 32611 USA. nmclaunch@ufl.edu California Polytechnic State University, Allan Hancock College Bridges; National Science Foundation [IOS-1145625] This work was supported by California Polytechnic State University, Allan Hancock College Bridges to the Baccalaureate Program and a National Science Foundation grant to ITM (IOS-1145625). ARNOLD SJ, 1984, ANIM BEHAV, V32, P1108, DOI 10.1016/S0003-3472(84)80227-4; Baird TA, 2014, HORM BEHAV, V66, P393, DOI 10.1016/j.yhbeh.2014.05.008; Baker MR, 2013, J NAT CONSERV, V21, P309, DOI 10.1016/j.jnc.2013.03.003; Bauder JM, 2015, HERPETOL CONSERV BIO, V10, P559; Berger S, 2005, HORM BEHAV, V47, P419, DOI 10.1016/j.yhbeh.2004.11.011; Bonier F, 2009, GEN COMP ENDOCR, V163, P208, DOI 10.1016/j.ygcen.2008.12.013; Breuner CW, 2008, GEN COMP ENDOCR, V157, P288, DOI 10.1016/j.ygcen.2008.05.017; Busch DS, 2009, BIOL CONSERV, V142, P2844, DOI 10.1016/j.biocon.2009.08.013; Capehart GD, 2016, J ARID ENVIRON, V134, P79, DOI 10.1016/j.jaridenv.2016.06.018; Cash WB, 1999, J EXP ZOOL, V284, P637, DOI 10.1002/(SICI)1097-010X(19991101)284:6<637::AID-JEZ5>3.0.CO;2-N; Cockrem JF, 2013, GEN COMP ENDOCR, V181, P45, DOI 10.1016/j.ygcen.2012.11.025; Cooper WE, 2008, COPEIA, P527, DOI 10.1643/CE-07-056; Cree A, 2003, GEN COMP ENDOCR, V134, P316, DOI 10.1016/S0016-6480(03)00282-X; Dantzer B., 2014, CONSERV PHYSIOL, V2, P1, DOI DOI 10.1093/C0NPHYS/C0U023; Dayger CA, 2013, HORM BEHAV, V64, P748, DOI 10.1016/j.yhbeh.2013.09.003; DEAN RB, 1951, ANAL CHEM, V23, P636, DOI 10.1021/ac60052a025; DENARDO DF, 1994, HORM BEHAV, V28, P273, DOI 10.1006/hbeh.1994.1023; DENARDO DF, 1993, HORM BEHAV, V27, P184, DOI 10.1006/hbeh.1993.1014; DENARDO DF, 1994, HORM BEHAV, V28, P53, DOI 10.1006/hbeh.1994.1005; DesRochers DW, 2009, COMP BIOCHEM PHYS A, V152, P46, DOI 10.1016/j.cbpa.2008.08.034; Deviche P, 2016, GEN COMP ENDOCR, V234, P95, DOI 10.1016/j.ygcen.2016.06.020; Dhabhar FS, 2009, NEUROIMMUNOMODULAT, V16, P300, DOI 10.1159/000216188; Dickens MJ, 2013, GEN COMP ENDOCR, V191, P177, DOI 10.1016/j.ygcen.2013.06.014; Dupoue A, 2013, GEN COMP ENDOCR, V193, P178, DOI 10.1016/j.ygcen.2013.08.004; Escribano-Avila G, 2013, ACTA OECOL, V53, P38, DOI 10.1016/j.actao.2013.08.003; FITCH HENRY S., 1965, UNIV KANS PUBL MUS NATUR HIST, V15, P493; Gibbons JW, 2002, COPEIA, P195, DOI 10.1643/0045-8511(2002)002[0195:DBOCAP]2.0.CO;2; Glaudas X, 2005, COPEIA, P196, DOI 10.1643/CH-03-253R1; Glaudas X, 2006, ETHOLOGY, V112, P608, DOI 10.1111/j.1439-0310.2005.01183.x; Golinski A, 2014, GEN COMP ENDOCR, V205, P133, DOI 10.1016/j.ygcen.2014.05.012; GOODE MJ, 1989, ANIM BEHAV, V38, P360, DOI 10.1016/S0003-3472(89)80100-9; Hayes WK, 2002, BIOL VIPERS; Heiken KH, 2016, GEN COMP ENDOCR, V237, P27, DOI 10.1016/j.ygcen.2016.07.023; Herr MW, 2017, GEN COMP ENDOCR, V243, P89, DOI 10.1016/j.ygcen.2016.11.003; HERTZ PE, 1982, ANIM BEHAV, V30, P676, DOI 10.1016/S0003-3472(82)80137-1; Holding ML, 2014, J HERPETOL, V48, P233, DOI 10.1670/11-314; Holding ML, 2014, PHYSIOL BIOCHEM ZOOL, V87, P363, DOI 10.1086/675938; Jessop TS, 2013, FUNCT ECOL, V27, P120, DOI 10.1111/j.1365-2435.2012.02057.x; Jones SM, 2004, COMP BIOCHEM PHYS A, V137, P105, DOI 10.1016/S1095-6433(03)00267-8; Juneau V, 2015, J HERPETOL, V49, P662, DOI 10.1670/13-125; Kabelik D, 2006, HORM BEHAV, V49, P587, DOI 10.1016/j.yhbeh.2005.12.004; Kempenaers B, 2008, PHILOS T R SOC B, V363, P1711, DOI 10.1098/rstb.2007.0001; KEOGH JS, 1994, J HERPETOL, V28, P258, DOI 10.2307/1564633; King RB, 2002, ANIM BEHAV, V64, P345, DOI 10.1006/snbe.2002.3046; Klauber LM, 1956, RATTLESNAKES THEIR H, V2; Landys MM, 2006, GEN COMP ENDOCR, V148, P132, DOI 10.1016/j.ygcen.2006.02.013; LILLYWHITE H B, 1987, P422; Lind CM, 2015, PHYSIOL BIOCHEM ZOOL, V88, P624, DOI 10.1086/683058; Lind CM, 2010, GEN COMP ENDOCR, V166, P590, DOI 10.1016/j.ygcen.2010.01.026; Lutterschmidt DI, 2010, GEN COMP ENDOCR, V169, P11, DOI 10.1016/j.ygcen.2010.06.013; Lutterschmidt WI, 2009, J COMP PHYSIOL B, V179, P747, DOI 10.1007/s00360-009-0356-2; Maritz B, 2012, AFR ZOOL, V47, P270, DOI 10.3377/004.047.0215; Martin LB, 2009, GEN COMP ENDOCR, V163, P70, DOI 10.1016/j.ygcen.2009.03.008; McCormick GL, 2015, GEN COMP ENDOCR, V222, P81, DOI 10.1016/j.ygcen.2015.07.008; McCue MD, 2007, PHYSIOL BIOCHEM ZOOL, V80, P25, DOI 10.1086/509057; Moore IT, 2000, PHYSIOL BIOCHEM ZOOL, V73, P307, DOI 10.1086/316748; Moore IT, 2000, ANIM BEHAV, V59, P529, DOI 10.1006/anbe.1999.1344; Moore IT, 2003, HORM BEHAV, V43, P39, DOI 10.1016/S0018-506X(02)00038-7; Moore IT, 2001, PHYSIOL BEHAV, V72, P669, DOI 10.1016/S0031-9384(01)00413-9; Moore IT, 2001, J EXP ZOOL, V289, P99, DOI 10.1002/1097-010X(20010201)289:2<99::AID-JEZ3>3.0.CO;2-Z; MOORE MC, 1987, ANIM BEHAV, V35, P1193, DOI 10.1016/S0003-3472(87)80176-8; Muller C, 2009, GEN COMP ENDOCR, V160, P59, DOI 10.1016/j.ygcen.2008.10.018; Narayan EJ, 2014, J THERM BIOL, V41, P72, DOI 10.1016/j.jtherbio.2014.02.011; Narayan EJ, 2013, J EXP ZOOL PART A, V319, P471, DOI 10.1002/jez.1810; Neuman-Lee LA, 2015, FUNCT ECOL, V29, P1453, DOI 10.1111/1365-2435.12457; Rich EL, 2005, AM J PHYSIOL-REG I, V288, pR1628, DOI 10.1152/ajpregu.00484.2004; Romero LM, 2006, GEN COMP ENDOCR, V145, P177, DOI 10.1016/j.ygcen.2005.09.011; Romero LM, 2005, COMP BIOCHEM PHYS A, V142, P65, DOI 10.1016/j.cbpa.2005.07.014; Romero LM, 2005, COMP BIOCHEM PHYS A, V140, P73, DOI 10.1016/j.cbpb.2004.11.004; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; Schuett Gordon W., 2004, Herpetological Review, V35, P229; Schuett GW, 1996, HORM BEHAV, V30, P60, DOI 10.1006/hbeh.1996.0009; Seddon RJ, 2012, J EXP ZOOL PART A, V317A, P499, DOI 10.1002/jez.1742; SOPINKA NM, 2015, CONSERV PHYSL, V3; Spencer MM, 2015, HERPETOL CONSERV BIO, V10, P703; Sperry JH, 2008, ECOLOGY, V89, P2770, DOI 10.1890/07-2017.1; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Sykes KL, 2009, J EXP ZOOL PART A, V311A, P172, DOI 10.1002/jez.515; Taylor EN, 2004, GEN COMP ENDOCR, V136, P328, DOI 10.1016/j.ygcen.2004.01.008; Thaker M, 2010, AM NAT, V175, P50, DOI 10.1086/648558; Tyrrell CL, 1998, GEN COMP ENDOCR, V110, P97, DOI 10.1006/gcen.1997.7051; While GM, 2010, HORM BEHAV, V58, P208, DOI 10.1016/j.yhbeh.2010.03.016; Wingfield JC, 2005, J MAMMAL, V86, P248, DOI 10.1644/BHE-004.1; Wingfield JC, 2003, J NEUROENDOCRINOL, V15, P711, DOI 10.1046/j.1365-2826.2003.01033.x; Wingfield JC, 1998, AM ZOOL, V38, P191; Wingfield JC, 2008, GEN COMP ENDOCR, V157, P207, DOI 10.1016/j.ygcen.2008.04.017; Yang EJ, 2003, HORM BEHAV, V44, P281, DOI 10.1016/S0018-506X(03)00139-9 87 3 3 1 14 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0016-6480 1095-6840 GEN COMP ENDOCR Gen. Comp. Endocrinol. JUL 1 2017 248 87 96 10.1016/j.ygcen.2017.02.008 10 Endocrinology & Metabolism Endocrinology & Metabolism EW8OB WOS:000402776900011 28237812 2018-11-22 J Parto, S; Lartillot, N Parto, Sahar; Lartillot, Nicolas Detecting consistent patterns of directional adaptation using differential selection codon models BMC EVOLUTIONARY BIOLOGY English Article HIV; Evolution; Selection; HLA; Virus adaptation; Bayesian; MCMC IMMUNODEFICIENCY-VIRUS TYPE-1; AMINO-ACID SITES; PHYLOGENETIC TREES; POSITIVE SELECTION; NUCLEOTIDE SUBSTITUTION; LIKELIHOOD METHOD; ESCAPE MUTATIONS; IMMUNE ESCAPE; HIV EVOLUTION; ENVELOPE GENE Background: Phylogenetic codon models are often used to characterize the selective regimes acting on protein-coding sequences. Recent methodological developments have led to models explicitly accounting for the interplay between mutation and selection, by modeling the amino acid fitness landscape along the sequence. However, thus far, most of these models have assumed that the fitness landscape is constant over time. Fluctuations of the fitness landscape may often be random or depend on complex and unknown factors. However, some organisms may be subject to systematic changes in selective pressure, resulting in reproducible molecular adaptations across independent lineages subject to similar conditions. Results: Here, we introduce a codon-based differential selection model, which aims to detect and quantify the fine-grained consistent patterns of adaptation at the protein-coding level, as a function of external conditions experienced by the organism under investigation. The model parameterizes the global mutational pressure, as well as the site-and condition-specific amino acid selective preferences. This phylogenetic model is implemented in a Bayesian MCMC framework. After validation with simulations, we applied our method to a dataset of HIV sequences from patients with known HLA genetic background. Our differential selection model detects and characterizes differentially selected coding positions specifically associated with two different HLA alleles. Conclusion: Our differential selection model is able to identify consistent molecular adaptations as a function of repeated changes in the environment of the organism. These models can be applied to many other problems, ranging from viral adaptation to evolution of life-history strategies in plants or animals. [Parto, Sahar] Univ Montreal, Dept Biochim & Med Mol, Ctr Robert Cedergren Bioinformat & Genom, Montreal, PQ, Canada; [Lartillot, Nicolas] Univ Lyon 1, CNRS, UMR 5558, Lab Biometrie & Biol Evolut, Lyon, France Parto, S (reprint author), Univ Montreal, Dept Biochim & Med Mol, Ctr Robert Cedergren Bioinformat & Genom, Montreal, PQ, Canada. sahar.parto@umontreal.ca Natural Sciences and Engineering Research Council of Canada (NSERC); French Agence Nationale pour la Recherche [ANR-15-CE12-0010-01 / DASIRE] We are thankful to the Natural Sciences and Engineering Research Council of Canada (NSERC), and to the French Agence Nationale pour la Recherche, funding ANR-15-CE12-0010-01 / DASIRE, for financially supporting this research. Simulation analyses were run on the PRABI cluster. We also thank the anonymous reviewers for their comments on the manuscript. Alix B, 2012, NUCLEIC ACIDS RES, V40, pW573, DOI 10.1093/nar/gks485; Altfeld M, 2003, AIDS, V17, P2581, DOI 10.1097/01.aids.0000096870.36052.b6; Altfeld M, 2006, TRENDS IMMUNOL, V27, P504, DOI 10.1016/j.it.2006.09.007; Anisimova M, 2001, MOL BIOL EVOL, V18, P1585, DOI 10.1093/oxfordjournals.molbev.a003945; Brockman MA, 2007, J VIROL, V81, P12608, DOI 10.1128/JVI.01369-07; Brumme ZL, 2008, AIDS, V22, P1277, DOI 10.1097/QAD.0b013e3283021a8c; Carlson JM, 2008, MICROBES INFECT, V10, P455, DOI 10.1016/j.micinf.2008.01.013; Carlson JM, 2008, PLOS COMPUT BIOL, V4, DOI 10.1371/journal.pcbi.1000225; Crooks GE, 2004, GENOME RES, V14, P1188, DOI 10.1101/gr.849004; Edwards CTT, 2006, GENETICS, V174, P1441, DOI 10.1534/genetics.105.052019; Flores-Villanueva PO, 2003, J IMMUNOL, V170, P1925, DOI 10.4049/jimmunol.170.4.1925; Gaschen B, 2002, SCIENCE, V296, P2354, DOI 10.1126/science.1070441; GASCUEL O, 2007, RECONSTRUCTING EVOLU, P65; Gelman A, 1996, STAT SINICA, V6, P733; Gelman A, 1992, STAT SCI, V7, P457, DOI DOI 10.1214/SS/1177011136; GOLDMAN N, 1994, MOL BIOL EVOL, V11, P725; Halpern AL, 1998, MOL BIOL EVOL, V15, P910, DOI 10.1093/oxfordjournals.molbev.a025995; Huelsenbeck JP, 2001, BIOINFORMATICS, V17, P754, DOI 10.1093/bioinformatics/17.8.754; ITESCU S, 1992, J ACQ IMMUN DEF SYND, V5, P37; Kleinman CL, 2010, MOL BIOL EVOL, V27, P1546, DOI 10.1093/molbev/msq047; Lartillot N, 2006, J COMPUT BIOL, V13, P1701, DOI 10.1089/cmb.2006.13.1701; Lartillot N, 2011, MOL BIOL EVOL, V28, P729, DOI 10.1093/molbev/msq244; Lartillot N, 2009, BIOINFORMATICS, V25, P2286, DOI 10.1093/bioinformatics/btp368; Leslie A, 2005, J EXP MED, V201, P891, DOI 10.1084/jem.20041455; Leslie AJ, 2004, NAT MED, V10, P282, DOI 10.1038/nm992; Lewin A, 2007, STAT APPL GENET MOL, V6, DOI 10.2202/1544-6115.1314; Martinez-Picado J, 2006, J VIROL, V80, P3617, DOI 10.1128/JVI.80.7.3617-3623.2006; Matthews PC, 2012, J VIROL, V86, P12643, DOI 10.1128/JVI.01381-12; Migueles SA, 2000, P NATL ACAD SCI USA, V97, P2709, DOI 10.1073/pnas.050567397; Moore CB, 2002, SCIENCE, V296, P1439, DOI 10.1126/science.1069660; MUSE SV, 1994, MOL BIOL EVOL, V11, P715; Mustonen V, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.108101; Nielsen R, 1998, GENETICS, V148, P929; ROBINSON DF, 1981, MATH BIOSCI, V53, P131, DOI 10.1016/0025-5564(81)90043-2; Robinson DM, 2003, MOL BIOL EVOL, V20, P1692, DOI 10.1093/molbev/msg184; Rodrigue N, 2010, P NATL ACAD SCI USA, V107, P4629, DOI 10.1073/pnas.0910915107; Ronquist F, 2003, BIOINFORMATICS, V19, P1572, DOI 10.1093/bioinformatics/btg180; Rousseau CM, 2008, J VIROL, V82, P6434, DOI 10.1128/JVI.02455-07; RUBIN DB, 1984, ANN STAT, V12, P1151, DOI 10.1214/aos/1176346785; SAITOU N, 1987, MOL BIOL EVOL, V4, P406; Salemi M, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000950; SCHNEIDER TD, 1990, NUCLEIC ACIDS RES, V18, P6097, DOI 10.1093/nar/18.20.6097; Schweighardt B, 2010, JAIDS-J ACQ IMM DEF, V53, P36, DOI 10.1097/QAI.0b013e3181c4b885; Tamuri AU, 2014, GENETICS, V197, P257, DOI 10.1534/genetics.114.162263; Tamuri AU, 2012, GENETICS, V190, P1101, DOI 10.1534/genetics.111.136432; Tamuri AU, 2009, PLOS COMPUT BIOL, V5, DOI 10.1371/journal.pcbi.1000564; Thorne JL, 2007, MOL BIOL EVOL, V24, P1667, DOI 10.1093/molbev/msm085; Weber J, 2006, J VIROL METHODS, V136, P102, DOI 10.1016/j.jviromet.2006.04.004; Yang ZH, 2005, MOL BIOL EVOL, V22, P1107, DOI 10.1093/molbev/msi097; Yang ZH, 1998, MOL BIOL EVOL, V15, P568, DOI 10.1093/oxfordjournals.molbev.a025957; Yang ZH, 2008, MOL BIOL EVOL, V25, P568, DOI 10.1093/molbev/msm284; Zhang JZ, 2005, MOL BIOL EVOL, V22, P2472, DOI 10.1093/molbev/msi237 52 2 2 0 6 BMC LONDON CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 1471-2148 BMC EVOL BIOL BMC Evol. Biol. JUN 23 2017 17 10.1186/s12862-017-0979-y 17 Evolutionary Biology; Genetics & Heredity Evolutionary Biology; Genetics & Heredity EZ0MG WOS:000404399100001 28645318 DOAJ Gold, Green Published 2018-11-22 J Bunwong, K; Sae-Jie, W Bunwong, Kornkanok; Sae-jie, Wichuta Evolutionary consequences of age-specific harvesting: age at first reproduction ADVANCES IN DIFFERENCE EQUATIONS English Article age at first reproduction; age-selective harvesting; age-structured model; harvesting; invasion fitness; life-history evolution MATURATION; SIZE; COD; POPULATIONS; COLLAPSE The aim of this paper is to investigate harvest-induced evolution in life-history strategies of a harvested single-species population. In particular, we analyze evolution of the trait age at first reproduction. The population is grouped into four age classes, namely, zero-year-olds (newborns), one-year-olds (juveniles), two-year-olds (small adults), and individuals aged three years or older (large adults). The population is assumed to consist of a 'resident' group and a 'variant' group that are identical except that the resident group usually first reproduces as a large adult and the variant group usually first reproduces as a small adult. The effect of various age-dependent harvesting strategies on the dynamics is studied both analytically and numerically. It is shown that age-dependent harvesting strategies can cause evolution from the resident group to the variant group. In addition, we show that a limit on the harvesting of the resident group can yield a sustainable fishery of the commercially preferred resident group. [Bunwong, Kornkanok] Mahidol Univ, Dept Math, Fac Sci, Rama 6 Rd, Bangkok 10400, Thailand; [Bunwong, Kornkanok; Sae-jie, Wichuta] CHE, Ctr Excellence Math, Si Ayutthaya Rd, Bangkok 10400, Thailand; [Sae-jie, Wichuta] Prince Songkla Univ, Fac Sci & Ind Technol, Dept Appl Math & Informat, Surat Thani Campus, Surat Thani 84000, Thailand Sae-Jie, W (reprint author), CHE, Ctr Excellence Math, Si Ayutthaya Rd, Bangkok 10400, Thailand.; Sae-Jie, W (reprint author), Prince Songkla Univ, Fac Sci & Ind Technol, Dept Appl Math & Informat, Surat Thani Campus, Surat Thani 84000, Thailand. wichuta.sa@psu.ac.th Department of Mathematics, Faculty of Science, Mahidol University; Centre of Excellence in Mathematics, Commission on Higher Education, Ministry of Education; Department of Applied Mathematics and Informatics, Faculty of Science and Industrial Technology, Prince of Songkla University, Surat Thani Campus This research was financially supported by (1) the Department of Mathematics, Faculty of Science, Mahidol University, (2) the Centre of Excellence in Mathematics, Commission on Higher Education, Ministry of Education and (3) the Department of Applied Mathematics and Informatics, Faculty of Science and Industrial Technology, Prince of Songkla University, Surat Thani Campus. We would like to thank Dr. Elvin J. Moore and Dr. Anakewit Boonkasame for proofreading the manuscript. Allsop Q, 2006, BARRAMUNDI YOUR QUES, P1; Barot S, 2004, EVOL ECOL RES, V6, P659; Barot S, 2002, ICES CM DOCUMENTS, P1; Berkeley, LIFE HIST TRAITS; Best A, 2015, MATH BIOSCI, V264, P86, DOI 10.1016/j.mbs.2015.03.011; Borrell B, 2013, NATURE, V493, P597, DOI 10.1038/493597a; Bowers RG, 2005, J THEOR BIOL, V233, P363, DOI 10.1016/j.jtbi.2004.10.017; CisnerosMata MA, 1996, CAL COOP OCEAN FISH, V37, P201; Conover D, SMALLER FISH SMALLER; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Crockett L, OVERFISHING 101 IMPO; Doogan S, WHY ARE SOME ALASKA; Ernande B, 2004, P ROY SOC B-BIOL SCI, V271, P415, DOI 10.1098/rspb.2003.2519; Fisheries and Aquaculture Department, BERT GROWTH EQ; Gardmark A, 2003, EVOL ECOL RES, V5, P239; Gloucester Maritime Heritage Center, FINFISH HATCH; Keshet LE, 1987, MATH MODELS BIOL; Koster FW, 2013, FISH RES, V138, P52, DOI 10.1016/j.fishres.2012.07.002; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; Miethe T, 2010, ICES J MAR SCI, V67, P412, DOI 10.1093/icesjms/fsp248; Myers RA, 1996, ICES J MAR SCI, V53, P629, DOI 10.1006/jmsc.1996.0083; MYERS RA, 1995, CAN J FISH AQUAT SCI, V52, P1274, DOI 10.1139/f95-124; Nash RDM, 2010, FISH RES, V104, P89, DOI 10.1016/j.fishres.2010.03.001; Poos JJ, 2011, J THEOR BIOL, V279, P102, DOI 10.1016/j.jtbi.2011.03.001; Richard M, TARGETING BIGGER FIS; Saborido-Rey F., 2005, GROWTH MATURATION DY; Winkle VW, 1997, EARLY LIFE HIST RECR; Xu D, TOP 5 BIGGEST BASS W 29 0 0 0 8 SPRINGER INTERNATIONAL PUBLISHING AG CHAM GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND 1687-1847 ADV DIFFER EQU-NY Adv. Differ. Equ. JUN 2 2017 157 10.1186/s13662-017-1214-2 12 Mathematics, Applied; Mathematics Mathematics EX7EX WOS:000403412000002 DOAJ Gold 2018-11-22 J Khoomsab, K; Wannasri, S Khoomsab, Kan; Wannasri, Suwit Biological Aspects of Channa limbata (Cuvier, 1831) in Ta Bo - Huai Yai Wildlife Sanctuary, Phetchabun Province, Thailand SAINS MALAYSIANA English Article Biological aspects; Channa limbata; fecundity; gonadosomatic index; length- weight relationship WEIGHT-LENGTH RELATIONSHIPS; LIFE-HISTORY STRATEGIES; NORTHWESTERN BANGLADESH; LAKE VICTORIA; GANGES RIVER; FISH; STRIATA; SIZE The biological aspects of Channa limbata were studied between November 2013 and October 2014. A total of 346 fish specimens, 185 male and 161 female, were collected from Ta Bo, Huai Yai Wildlife Sanctuary, Phetchabun Province, Thailand. Specimens range from 7.3 - 17.2 cm in length with body weight 8 - 31 g; sex ratio between males and females was 1: 0.7. The length (L), weight (W) relationship for mixed sexes was W = 0.2064 L-1.85 (R-2=0.90). Gonadosomatic indices for males and females were measured monthly and varied from 0.21 - 0.65% and 1.96 - 3.74%, respectively. Condition factors for males and females ranged between 0.54 - 2.20 and 0.58 - 2.72, respectively, with fecundity range 956 to 4,652 eggs in females. Fecundity (F) to weight relationship was F = 189.53 W-0.59 (R-2=0.71) and fecundity to length relationship was F = 68.82 L-1.15 (R-2=0.77). The ratio between the intestine length and total length was 1: 2, indicating that C. limbata was a carnivorous feeder. Analysis of the stomach contents gave 84% insects and 16% aquatic weed. These results can be applied to conserve efforts to prevent the extinction of C. limbata in protected areas. [Khoomsab, Kan] Phetchabun Rajabhat Univ, Biol Program, Fac Sci & Technol, Phetchabun, Thailand; [Wannasri, Suwit] Phetchabun Rajabhat Univ, Fac Sci & Technol, Educ Sci Program, Phetchabun, Thailand Khoomsab, K (reprint author), Phetchabun Rajabhat Univ, Biol Program, Fac Sci & Technol, Phetchabun, Thailand. topkan13@hotmail.com National Research Council of Thailand; Research and Development Institute, Phetchabun Rajabhat University This study was financially supported by the National Research Council of Thailand and the Research and Development Institute, Phetchabun Rajabhat University. We sincerely thank Ta Bo - Huai Yai Wildlife Sanctuary Officers for assistance with the collection of samples and their hospitality. The authors also thank Dr. Jolyon Dodgson for correcting the English text. Agbugui M. O, 2013, REPORT OPINION, V5, P31; AL-HAZZAA R., 2005, TURK J ZOOL, V29, P311; Ali Anvar, 2013, Journal of Threatened Taxa, V5, P4769; Amilhat E, 2005, J FISH BIOL, V67, P23, DOI 10.1111/j.1095-8649.2005.00927.x; Ankur Kashyap, 2014, World Journal of Fish and Marine Sciences, V6, P336; Benghali S.M.A., 2014, INT J RES REV APPL S, V19, P199; Bolaji B. B., 2011, African Journal of Food, Agriculture, Nutrition and Development, V11, P4708; Cherif Mourad, 2008, Pan-American Journal of Aquatic Sciences, V3, P1; Courtenay W. R. J., 2004, SNAKEHEADS PISCES CH; Datta SN, 2013, SPRINGERPLUS, V2, DOI 10.1186/2193-1801-2-436; El-Drawany M.A., 2013, EGYPT J AQUAT RES, V39, P261, DOI [DOI 10.1016/J.EJAR.2013.11.003, DOI 10.1016/j.ejar.2013.11.003]; El-Ganainy A.A., 2010, RESEARCHER, V2, P75; Froese R, 2006, J APPL ICHTHYOL, V22, P241, DOI 10.1111/j.1439-0426.2006.00805.x; Gaikwad M. V., 2009, AFRICAN J BASIC APPL, V1, P93; Goswami M. M., 2006, J INLAND FISH SOC IN, V38, P1; Hannifer M. A., 2006, J APPL TECHNOLOGY, V22, P463; Hossain MY, 2015, SAINS MALAYS, V44, P31, DOI 10.17576/jsm-2015-4401-05; Hossain MY, 2012, SAINS MALAYS, V41, P803; HYSLOP EJ, 1980, J FISH BIOL, V17, P411, DOI 10.1111/j.1095-8649.1980.tb02775.x; Islam S. S., 2013, KHULNA U STUDIES, V12, P59; Jamabo N.A., 2015, International Journal of Fisheries and Aquaculture, V7, P25; Jin SF, 2015, PEERJ, V3, DOI 10.7717/peerj.758; Kapil Sunita, 2011, Bioscan, V6, P571; LEE PG, 1994, HYDROBIOLOGIA, V285, P59, DOI 10.1007/BF00005654; Maithya J., 2012, Lakes & Reservoirs Research and Management, V17, P65, DOI 10.1111/j.1440-1770.2012.00496.x; Mishra S. K., 1991, P NAT S NEW HOR FRES, P55; Nandikeswari R, 2013, INT J SCI RES PUB, V3, P1; NIKOLSKY G. V., 1963, ECOLOGY FISHES; Njiru M, 2006, AFR J ECOL, V44, P30, DOI 10.1111/j.1365-2028.2006.00610.x; Pauly D., 1993, J FISH RES BOARD CAN, V30, P409; Qin JG, 1996, AQUACULTURE, V144, P313, DOI 10.1016/0044-8486(96)01299-9; Rosner B, 2011, FUNDAMENTALS BIOSTAT; Song LM, 2013, SCI WORLD J, DOI 10.1155/2013/917506; Tiwari K, 2014, INT J SCI RES PUB, V4, P1; Villeger S, 2010, ECOL APPL, V20, P1512, DOI 10.1890/09-1310.1; Ward-Campbell BMS, 2005, ENVIRON BIOL FISH, V72, P251, DOI 10.1007/s10641-004-1744-9; Widodo M. S., 2013, J BASIC APPL SCI RES, V3, P387; Wijeyaratne M. J. D., 1994, VIDYODAYA J SCI, V5, P175 38 0 0 1 1 UNIV KEBANGSAAN MALAYSIA SELANGOR FACULTY SCIENCE & TECHNOLOGY, BANGI, SELANGOR, 43600, MALAYSIA 0126-6039 SAINS MALAYS Sains Malays. JUN 2017 46 6 851 858 10.17576/jsm-2017-4606-03 8 Multidisciplinary Sciences Science & Technology - Other Topics FM5BO WOS:000415045000003 Bronze 2018-11-22 J de Baca, TC; Ellis, BJ de Baca, Tomas Cabeza; Ellis, Bruce J. Early stress, parental motivation, and reproductive decision-making: applications of life history theory to parental behavior CURRENT OPINION IN PSYCHOLOGY English Review EARLY-CHILDHOOD; DEPRESSIVE SYMPTOMS; FATHER ABSENCE; MEDIATING ROLE; STRATEGY; HEALTH; GIRLS; RISK; UNPREDICTABILITY; ENVIRONMENTS This review focuses on the impact of parental behavior on child development, as interpreted from an evolutionary-developmental perspective. We employ psychosocial acceleration theory to reinterpret the effects of variation in parental investment and involvement on child development, arguing that these effects have been structured by natural selection to match the developing child to current and expected future environments. Over time, an individual's development, physiology, and behavior are organized in a coordinated manner (as instantiated in 'life history strategies') that facilitates survival and reproductive success under different conditions. We review evidence to suggest that parental behavior (1) is strategic and contingent on environmental opportunities and constraints and (2) influences child life history strategies across behavioral, cognitive, and physiological domains. [de Baca, Tomas Cabeza] Univ Calif San Francisco, Dept Psychiat, Hlth Psychol, 3333 Calif St,Suite 465, San Francisco, CA 94118 USA; [Ellis, Bruce J.] Univ Utah, Dept Psychol, 380 S 1530 E,Rm 502, Salt Lake City, UT 84112 USA; [Ellis, Bruce J.] Univ Utah, Dept Anthropol, 380 S 1530 E,Rm 502, Salt Lake City, UT 84112 USA Ellis, BJ (reprint author), Univ Utah, Dept Psychol, 380 S 1530 E,Rm 502, Salt Lake City, UT 84112 USA.; Ellis, BJ (reprint author), Univ Utah, Dept Anthropol, 380 S 1530 E,Rm 502, Salt Lake City, UT 84112 USA. bruce.ellis@psych.utah.edu National Institute of Health [T32MH019391]; National Science Foundation [BCS-1322553]; Robert Wood Johnson Foundation [73657] This work was supported by the National Institute of Health grant T32MH019391 (TCDB), the National Science Foundation grant BCS-1322553 (BJE), and the Robert Wood Johnson Foundation grant 73657 (BJE). Amir D, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0155883; Anderson KG, 2015, HUM NATURE-INT BIOS, V26, P401, DOI 10.1007/s12110-015-9243-6; Beach SRH, 2016, CHILD DEV, V87, P111, DOI 10.1111/cdev.12486; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.1111/j.1467-8624.1991.tb01558.x; Belsky J, 2015, DEV PSYCHOL, V51, P816, DOI 10.1037/dev0000017; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Cabeza de Baca T., 2016, EVOLUTIONARY BEHAV S, V10, P43, DOI DOI 10.1037/EBS0000056; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; Coall DA, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2015.0146; Conradt E, 2016, CHILD DEV, V87, P73, DOI 10.1111/cdev.12483; Culpin I, 2015, J ABNORM CHILD PSYCH, V43, P921, DOI 10.1007/s10802-014-9960-z; de Baca TC, 2016, ADAPT HUM BEHAV PHYS, V2, P93, DOI 10.1007/s40750-016-0042-z; De Baca TC, 2012, PARENT-SCI PRACT, V12, P94, DOI 10.1080/15295192.2012.680396; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Dickerson SS, 2004, PSYCHOL BULL, V130, P355, DOI 10.1037/0033-2909.130.3.355; Dunkel CS, 2015, EVOL HUM BEHAV, V36, P374, DOI 10.1016/j.evolhumbehav.2015.02.006; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2000, CHILD DEV, V71, P485, DOI 10.1111/1467-8624.00159; Ellis BJ, 2014, DEV PSYCHOPATHOL, V26, P1, DOI 10.1017/S0954579413000849; Ellis BJ, 2013, HORM BEHAV, V64, P215, DOI 10.1016/j.yhbeh.2013.02.012; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Frankenhuis WE, 2013, CURR DIR PSYCHOL SCI, V22, P407, DOI 10.1177/0963721413484324; Gettler LT, 2015, AM J PHYS ANTHROPOL, V158, P175, DOI 10.1002/ajpa.22783; Hampson SE, 2016, PERS INDIV DIFFER, V88, P120, DOI 10.1016/j.paid.2015.08.052; Henrich J, 2010, NATURE, V466, P29, DOI 10.1038/466029a; Hoyt LT, 2015, SOC SCI MED, V132, P103, DOI 10.1016/j.socscimed.2015.03.031; Humphreys KL, 2015, DEV PSYCHOBIOL, V57, P313, DOI 10.1002/dev.21293; James J, 2012, DEV PSYCHOL, V48, P687, DOI 10.1037/a0026427; King A. C., 2011, EVOLUTION, V4, P64; Klengel T, 2013, NAT NEUROSCI, V16, P33, DOI 10.1038/nn.3275; Marceau K, 2015, DEV PSYCHOBIOL, V57, P742, DOI 10.1002/dev.21214; MATHENY AP, 1995, J APPL DEV PSYCHOL, V16, P429, DOI 10.1016/0193-3973(95)90028-4; McDade Thomas W., 2016, Evolution Medicine and Public Health, P1, DOI 10.1093/emph/eov033; Meaney MJ, 2010, CHILD DEV, V81, P41, DOI 10.1111/j.1467-8624.2009.01381.x; Mittal C, 2015, J PERS SOC PSYCHOL, V109, P604, DOI 10.1037/pspi0000028; Murphy MLM, 2013, CLIN PSYCHOL SCI, V1, P30, DOI [10.1177/2167702612455743, 10.1177/2167702613478594]; Negriff S, 2015, J RES ADOLESCENCE, V25, P201, DOI 10.1111/jora.12128; Obradovic J, 2016, CHILD DEV PERSPECT, V10, P65, DOI 10.1111/cdep.12164; Parade SH, 2016, CHILD DEV, V87, P86, DOI 10.1111/cdev.12484; Romens SE, 2015, CHILD DEV, V86, P303, DOI 10.1111/cdev.12270; Ross LT, 2016, J SOC CLIN PSYCHOL, V35, P371, DOI 10.1521/jscp.2016.35.5.371; Ryan RM, 2015, J ADOLESCENT HEALTH, V57, P342, DOI 10.1016/j.jadohealth.2015.06.005; Shelleby EC, 2014, J FAM PSYCHOL, V28, P936, DOI 10.1037/fam0000035; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Stearns S., 1992, EVOLUTION LIFE HIST; Sung S, 2016, PSYCHOL SCI, V27, P667, DOI 10.1177/0956797616631958; Szepsenwol O, 2015, J PERS SOC PSYCHOL, V109, P1045, DOI 10.1037/pspi0000032; Van Brummen-Girigori OJ, 2015, EVOL MIND BEHAV, V13, P19 50 3 3 3 16 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 2352-250X CURR OPIN PSYCHOL Curr. Opin. Psychol. JUN 2017 15 1 6 10.1016/j.copsyc.2017.02.005 6 Psychology, Multidisciplinary Psychology FA8SW WOS:000405717300002 28813248 Green Accepted 2018-11-22 J Gibbs, M; Watson, P; Johnson-Sapp, K; Lind, C Gibbs, Melissa; Watson, Patrick; Johnson-Sapp, Kelsey; Lind, Craig Reproduction revisited - a decade of changes in the reproductive strategies of an invasive catfish, Pterygoplichthys disjunctivus (Weber, 1991), in Volusia Blue Spring, Florida AQUATIC INVASIONS English Article loricariid catfish; reproductive strategy; invasive species LIFE-HISTORY STRATEGIES; EGG SIZE; ARMORED CATFISH; SILURIFORMES LORICARIIDAE; POPULATION REGULATION; SAILFIN CATFISH; PARENTAL CARE; RIVER; FISH; BIOLOGY The reproductive patterns of invasive species may undergo changes in response to the pressures of a novel environment. We tracked the reproductive strategies of Pterygoplichthys disjunctivus collected in Volusia Blue Spring, adjoining the St. Johns River, over a 10 year period from 2005 through 2014. After analyzing various measures of fecundity and reproductive seasonality, we found that during that time period, P. disjunctivus reduced investment in individual offspring, while increasing overall fecundity and GSI. In addition, its reproductive season had expanded, and seasonal differences in nearly all measures became significantly smaller. This species does not seem to fit into any one reproductive strategy, nor has it moved in a consistent direction within the Winemiller-Rose reproductive strategy scheme. We suggest that despite the value of such schemes in predicting responses to environmental parameters, they may not be able to adequately describe the strategies of invasive species that have access to ecosystems that are more benign than their native habitats. [Gibbs, Melissa; Watson, Patrick; Johnson-Sapp, Kelsey; Lind, Craig] Stetson Univ, Dept Biol, 421 N Woodland Blvd, Deland, FL 32723 USA Gibbs, M (reprint author), Stetson Univ, Dept Biol, 421 N Woodland Blvd, Deland, FL 32723 USA. mgibbs@stetson.edu; pwatson@stetson.edu; kjohns2@stetson.edu; Craig.Lind@stockton.edu Stetson University's summer grant program; Brown Center for Faculty Innovation and Excellence at Stetson University We thank Blue Spring State Park (BSSP) staff for providing access to the spring run, use of the research canoe, and catfishing assistance over the years. Numerous Stetson University students helped collect and process catfish over the years, especially J. Cappabianca, E. Royal, and K. Codner. Stetson colleagues K. Work, C. Bennington, and T. Farrell all provided valuable assistance during the development of this project. This project was permitted by the Florida Department of Environmental Protection (FDEP) and partly funded by Stetson University's summer grant program (MG) and the Brown Center for Faculty Innovation and Excellence at Stetson University (CL). Rueda-Jasso RA, 2013, REV MEX BIODIVERS, V84, P318, DOI [10.7550/rmb.26091, 10.7550/rmb26091]; Arrington DA, 2006, J FISH BIOL, V68, P1347, DOI 10.1111/j.1095-8649.2006.00996.x; BLUMER LS, 1979, Q REV BIOL, V54, P149, DOI 10.1086/411154; Brown-Peterson NJ, 2011, MAR COAST FISH, V3, P52, DOI 10.1080/19425120.2011.555724; Collin R, 2015, FRONT ECOL EVOL, V2, P1, DOI DOI 10.3389/FEV0.2014.00084; de Queiroz Luiz J., 2013, Check List, V9, P540; DUARTE CM, 1989, OECOLOGIA, V80, P401, DOI 10.1007/BF00379043; Duarte S, 2011, ZOOLOGIA-CURITIBA, V28, P577, DOI 10.1590/S1984-46702011000500005; Einum S, 2000, NATURE, V405, P565, DOI 10.1038/35014600; ELGAR MA, 1990, OIKOS, V59, P283, DOI 10.2307/3545546; Feiner ZS, 2012, BIOL INVASIONS, V14, P2315, DOI 10.1007/s10530-012-0231-z; Ferreira GL, 2013, STUD NEOTROP FAUNA E, V48, P190, DOI 10.1080/01650521.2014.890849; Gibbs MA, 2008, J FISH BIOL, V73, P1562, DOI 10.1111/j.1095-8649.2008.02031.x; Gibbs M, 2010, SOUTHEAST NAT, V9, P635, DOI 10.1656/058.009.0401; Gibbs Melissa A., 2014, Florida Scientist, V77, P53; Gibbs MA, 2013, AQUAT INVASIONS, V8, P207, DOI 10.3391/ai.2013.8.2.08; Gomes ID, 2015, ENVIRON BIOL FISH, V98, P249, DOI 10.1007/s10641-014-0256-5; Goulding M, 1981, DEV HYDROBIOLOGY; Gutkowsky LFG, 2012, FISHERIES MANAGEMENT, V19, P78; Heath DD, 2003, SCIENCE, V299, P1738, DOI 10.1126/science.1079707; Hoover JJ, 2004, AQUATIC NUISANCE SPE, V04-1; Horkova K, 2015, AQUAT INVASIONS, V10, P227, DOI 10.3391/ai.2015.10.2.11; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; Johnston TA, 2002, ECOLOGY, V83, P1777, DOI 10.2307/3071764; Jonsson N, 1996, FUNCT ECOL, V10, P89, DOI 10.2307/2390266; Jumawan J.C., 2014, Asian Fisheries Science, V27, P75; JUNK WJ, 1985, AMAZONIANA, V9, P315; Kovac V, 2009, J APPL ICHTHYOL, V25, P33, DOI 10.1111/j.1439-0426.2009.01189.x; KROENING SE, 2004, 20045177 US GEOL SUR; LECREN ED, 1951, J ANIM ECOL, V20, P201; Lowe-McConnell R.H., 1987, ECOLOGICAL STUDIES T; MAZZONI R, 1995, ARQ BIOL TECNOL, V38, P135; Mazzoni R, 1997, ECOL FRESHW FISH, V6, P53, DOI 10.1111/j.1600-0633.1997.tb00143.x; Mims MC, 2012, ECOLOGY, V93, P35, DOI 10.1890/11-0370.1; MOODIE GEE, 1982, ENVIRON BIOL FISH, V7, P143; Nico LG, 2009, ANSRP B, V9, P1; NUSSBAUM RA, 1989, AM NAT, V133, P591, DOI 10.1086/284939; Olden JD, 2006, ECOL MONOGR, V76, P25, DOI 10.1890/05-0330; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; REZNICK D, 1993, ECOLOGY, V74, P2011, DOI 10.2307/1940844; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Ricker WE, 1987, COMPUTATION INTERPRE; Rollinson N, 2013, AM NAT, V182, P76, DOI 10.1086/670648; Rubio VY, 2016, AQUAT INVASIONS, V11, P337, DOI 10.3391/ai.2016.11.3.11; Sakai AK, 2001, ANNU REV ECOL SYST, V32, P305, DOI 10.1146/annurev.ecolsys.32.081501.114037; Sales CF, 2016, AN ACAD BRAS CIENC, V88, P1603, DOI 10.1590/0001-3765201620150513; Samat A, 2016, INDIAN J FISH, V63, P35; Schwassmann H.O., 1978, P187; Scott TM, 2004, FLORIDA GEOGRAPHICAL, V66; Silveira EL, 2015, J APPL ICHTHYOL, V31, P552, DOI 10.1111/jai.12699; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stevenson RJ, 2007, WM858 FLOR DEP ENV P; Suzuki HI, 2000, J FISH BIOL, V57, P791, DOI 10.1006/jfbi.2000.1352; WARE DM, 1975, J FISH RES BOARD CAN, V32, P2503, DOI 10.1139/f75-288; Wetlands Solutions, 2010, SJRWMD SPEC PUBL, VSJ2010-SP5; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Work K, 2010, SOUTHEAST NAT, V9, P649, DOI 10.1656/058.009.0402; Zahorska E, 2013, INT REV HYDROBIOL, V98, P61, DOI 10.1002/iroh.201201446; Zardo EL, 2015, NEOTROP ICHTHYOL, V13, P371, DOI 10.1590/1982-0224-20140052 60 0 0 2 5 REGIONAL EURO-ASIAN BIOLOGICAL INVASIONS CENTRE-REABIC HELSINKI PL 3, HELSINKI, 00981, FINLAND 1798-6540 1818-5487 AQUAT INVASIONS Aquat. Invasions JUN 2017 12 2 225 239 10.3391/ai.2017.12.2.10 15 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology FB9TG WOS:000406481300010 DOAJ Gold 2018-11-22 J Nathan, LR; Kanno, Y; Vokoun, JC Nathan, Lucas R.; Kanno, Yoichiro; Vokoun, Jason C. Population demographics influence genetic responses to fragmentation: A demogenetic assessment of the 'one migrant per generation' rule of thumb BIOLOGICAL CONSERVATION English Article Demogenetics; Fragmentation; Barriers; Stream networks; Dispersal; Gene flow TROUT SALVELINUS-FONTINALIS; INDIVIDUAL-BASED MODEL; BROOK TROUT; STREAM FISH; SUBDIVIDED POPULATIONS; HABITAT FRAGMENTATION; LANDSCAPE GENETICS; LIFE-HISTORY; BROWN TROUT; CONSERVATION GENETICS Fragmented landscapes reduce gene flow and impair long term population viability. Stream networks are particularly susceptible to fragmentation because dispersal is constrained to linear upstream and downstream movements. Despite these potential effects, infrequent migrations can maintain genetic diversity and as few as one migrant per generation (OMPG) is commonly suggested as sufficient gene flow to minimize losses in genetic diversity. However, demography varies by taxa, space and time, making such a generalized rule of thumb unlikely to be applicable across a diverse array of fragmentation scenarios and species. We utilized a demogenetic model to evaluate the OMPG rule and simulate the influence of population demographics on the rate of genetic changes following fragmentation in a headwater meta-population of brook trout (Salvelinus fontinalis). A single migrant per generation increased allelic diversity by an average of 15% and decreased genetic differentiation by 31% following 40 years of simulations compared to complete isolation, however OMPG was not sufficient to prevent significant changes in within- or between-population genetic metrics in all but the largest population scenario (N = 500). Less than 10 individuals were typically required to achieve no changes in both genetic metrics, yet this pattern was dependent on the source populations and will be context specific given the population sub-structuring in a given stream network. Sensitivity analyses indicated the parameter controlling the proportion of mature females spawning annually was the most influential on population genetic responses in isolated populations, suggesting that when fewer females contribute to each generation the population is more likely to experience rapid changes in allelic frequency through genetic drift. This finding supports the use of metrics such as effective population size and the number of effective breeders in predicting population stability and viability following fragmentation. Variability in population dynamic processes and associated responses to fragmentation suggest that generalized rule of thumbs for management should be used with caution. Particularly when violations of the underlying theoretical assumptions exist, consideration of demographic processes (i.e. vital rates, species specific life history strategies and dispersal) and genetic structuring will allow for more appropriate conservation recommendations. [Nathan, Lucas R.; Vokoun, Jason C.] Univ Connecticut, Wildlife & Fisheries Conservat Ctr, Dept Nat Resources & Environm, 1376 Storrs Rd,Unit 4087, Storrs, CT 06279 USA; [Kanno, Yoichiro] Clemson Univ, Dept Forestry & Environm Conservat, 261 Lehotsky Hall, Clemson, SC 29634 USA Nathan, LR (reprint author), Univ Connecticut, Wildlife & Fisheries Conservat Ctr, Dept Nat Resources & Environm, 1376 Storrs Rd,Unit 4087, Storrs, CT 06279 USA. lucas.nathan@uconn.edu; ykanno@clemson.edu; Jason.vokoun@uconn.edu Connecticut Department of Energy and Environmental Protection through the State Wildlife Grants Program; Storrs Agricultural Experiment Station through the USDA National Institute of Food and Agriculture, Hatch project [CONS00851, 218872]; Weantinoge Heritage Land Trust Empirical data collected for this research was funded by the Connecticut Department of Energy and Environmental Protection through the State Wildlife Grants Program, the Storrs Agricultural Experiment Station through the USDA National Institute of Food and Agriculture, Hatch project number CONS00851, accession number 218872, and the Weantinoge Heritage Land Trust. Assistance with field collections was provided by numerous individuals including N. Hagstom, M. Humphreys, M. Beauchene, C. Bellucci, E. Benoit, M. Davidson, G. Maynard, and J. Carmignani. We would like to thank E. Landguth for allowing access to the CDMetaPOP program and for providing troubleshooting support along with C. Day. We also thank A. Welsh, B. Letcher and two anonymous reviewers for offering constructive reviews of this manuscript. ALLENDORF FW, 1986, ZOO BIOL, V5, P181, DOI 10.1002/zoo.1430050212; ALLENDORF FW, 1983, GENETICS CONSERVATIO, P51; Allendorf FW, 2013, CONSERVATION GENETIC; Bassar RD, 2016, GLOBAL CHANGE BIOL, V22, P577, DOI 10.1111/gcb.13135; Coombs J. A., 2010, THESIS; Core Team R., 2015, R LANG ENV STAT COMP; CROW JF, 1984, P NATL ACAD SCI-BIOL, V81, P6073, DOI 10.1073/pnas.81.19.6073; Dail D, 2011, BIOMETRICS, V67, P577, DOI 10.1111/j.1541-0420.2010.01465.x; Eastern Brook Trout Joint Venture (EBTJV), 2011, CONS E BROOK TROUT A; Edmands S, 2003, CONSERV BIOL, V17, P883, DOI 10.1046/j.1523-1739.2003.02026.x; ELLSTRAND NC, 1993, ANNU REV ECOL SYST, V24, P217, DOI 10.1146/annurev.es.24.110193.001245; Fagan WF, 2002, ECOLOGY, V83, P3243, DOI 10.2307/3072074; Falconer DS, 1989, INTRO QUANTITATIVE G; Fausch KD, 2002, BIOSCIENCE, V52, P483, DOI 10.1641/0006-3568(2002)052[0483:LTRBTG]2.0.CO;2; FAUSCH KD, 1981, CAN J FISH AQUAT SCI, V38, P1220, DOI 10.1139/f81-164; Fernandez J, 2008, GENETICS, V179, P683, DOI 10.1534/genetics.107.083816; Forman RTT, 1998, ANNU REV ECOL SYST, V29, P207, DOI 10.1146/annurev.ecolsys.29.1.207; Frank BM, 2013, ECOL MODEL, V248, P184, DOI 10.1016/j.ecolmodel.2012.09.017; Frank BM, 2011, ECOL FRESHW FISH, V20, P167, DOI 10.1111/j.1600-0633.2011.00491.x; FRANKEL OH, 1974, GENETICS, V78, P53; Frankham R, 2015, MOL ECOL, V24, P2610, DOI 10.1111/mec.13139; Fraser DJ, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0370; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; Garcia MB, 2008, DIVERS DISTRIB, V14, P106, DOI 10.1111/j.1472-4642.2007.00429.x; Gonzalez-Suarez M, 2013, ECOL LETT, V16, P242, DOI 10.1111/ele.12035; Hanski I, 1998, NATURE, V396, P41, DOI 10.1038/23876; Hare MP, 2011, CONSERV BIOL, V25, P438, DOI 10.1111/j.1523-1739.2010.01637.x; Harvey BC, 2012, RIVER RES APPL, V28, P479, DOI 10.1002/rra.1574; HEDRICK PW, 1995, CONSERV BIOL, V9, P996, DOI 10.1046/j.1523-1739.1995.9050996.x; Hudy M, 2008, N AM J FISH MANAGE, V28, P1069, DOI 10.1577/M07-017.1; Hudy M, 2010, T AM FISH SOC, V139, P1276, DOI 10.1577/T10-027.1; Hutchings JA, 2002, P ROY SOC B-BIOL SCI, V269, P2487, DOI 10.1098/rspb.2002.2176; Jager HI, 2001, ENVIRON BIOL FISH, V60, P347, DOI 10.1023/A:1011036127663; Jansson R, 2007, FRESHWATER BIOL, V52, P589, DOI 10.1111/j.1365-2427.2007.01737.x; Kanno Y, 2014, RIVER RES APPL, V30, P745, DOI 10.1002/rra.2677; Kanno Y, 2015, T AM FISH SOC, V144, P373, DOI 10.1080/00028487.2014.991446; Kanno Y, 2015, GLOBAL CHANGE BIOL, V21, P1856, DOI 10.1111/gcb.12837; Kanno Y, 2014, CAN J FISH AQUAT SCI, V71, P1010, DOI 10.1139/cjfas-2013-0358; Kanno Y, 2014, FRESHWATER BIOL, V59, P142, DOI 10.1111/fwb.12254; Kanno Y, 2012, ECOL FRESHW FISH, V21, P404, DOI 10.1111/j.1600-0633.2012.00560.x; Kanno Y, 2011, MOL ECOL, V20, P3711, DOI 10.1111/j.1365-294X.2011.05210.x; Kanno Y, 2011, CONSERV GENET, V12, P619, DOI 10.1007/s10592-010-0166-9; Kemp PS, 2010, FISHERIES MANAG ECOL, V17, P297, DOI 10.1111/j.1365-2400.2010.00751.x; Kocovsky PM, 2006, T AM FISH SOC, V135, P76, DOI 10.1577/T04-175.1; Lande R, 1996, EVOLUTION, V50, P434, DOI 10.1111/j.1558-5646.1996.tb04504.x; LANDE R, 1988, SCIENCE, V241, P1455, DOI 10.1126/science.3420403; Landguth EL, 2014, ECOL APPL, V24, P1505, DOI 10.1890/13-0499.1; Landguth EL, 2012, MOL ECOL RESOUR, V12, P363, DOI 10.1111/j.1755-0998.2011.03075.x; Landguth EL, 2010, MOL ECOL, V19, P4179, DOI 10.1111/j.1365-294X.2010.04808.x; Landguth EL, 2016, METHODS ECOL EVOL; Landguth EL, 2012, CONSERV GENET RESOUR, V4, P133, DOI 10.1007/s12686-011-9492-6; Landguth EL, 2010, MOL ECOL RESOUR, V10, P156, DOI 10.1111/j.1755-0998.2009.02719.x; LARSON GL, 1985, T AM FISH SOC, V114, P195, DOI 10.1577/1548-8659(1985)114<195:EOERTI>2.0.CO;2; Layman CA, 2007, ECOL LETT, V10, P937, DOI 10.1111/j.1461-0248.2007.01087.x; Letcher BH, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0001139; LINDENMAYER DB, 1995, ECOL APPL, V5, P164, DOI 10.2307/1942061; Lowe WH, 2010, MOL ECOL, V19, P3038, DOI 10.1111/j.1365-294X.2010.04688.x; MACCRIMM.HR, 1969, J FISH RES BOARD CAN, V26, P1699, DOI 10.1139/f69-159; Marschall EA, 1996, ECOL APPL, V6, P152, DOI 10.2307/2269561; MCCORMICK JH, 1972, J FISH RES BOARD CAN, V29, P1107, DOI 10.1139/f72-165; MEISNER JD, 1990, CAN J FISH AQUAT SCI, V47, P1065, DOI 10.1139/f90-122; Mills LS, 1996, CONSERV BIOL, V10, P1509, DOI 10.1046/j.1523-1739.1996.10061509.x; Moore JW, 2014, J ANIM ECOL, V83, P1035, DOI 10.1111/1365-2656.12212; NEI M, 1983, ANN HUM GENET, V47, P253, DOI 10.1111/j.1469-1809.1983.tb00993.x; Newman D, 2001, CONSERV BIOL, V15, P1054, DOI 10.1046/j.1523-1739.2001.0150041054.x; Oddou-Muratorio S, 2014, EVOL APPL, V7, P453, DOI 10.1111/eva.12143; Omland KS, 2007, POPULATION MODELING; Palstra FP, 2011, HEREDITY, V107, P444, DOI 10.1038/hdy.2011.31; Palumbi SR, 2003, ECOL APPL, V13, pS146; Perkin JS, 2012, ECOL APPL, V22, P2176, DOI 10.1890/12-0318.1; Petty JT, 2005, T AM FISH SOC, V134, P572, DOI 10.1577/T03-229.1; Pimm SL, 2006, ANIM CONSERV, V9, P115, DOI 10.1111/j.1469-1795.2005.00010.x; Piou C, 2012, ECOL MODEL, V231, P37, DOI 10.1016/j.ecolmodel.2012.01.025; Pujol A. G., 2015, R PACKAGE VERSION 1; Robinson ZD, 2015, THESIS; Saltelli A, 1999, TECHNOMETRICS, V41, P39, DOI 10.2307/1270993; SALTELLI A, 2000, SENSITIVITY ANAL; Saltelli A, 2004, SENSITIVITY ANAL PRA; SAMSON FB, 1985, WILDLIFE SOC B, V13, P425; Sanchez-Molano E, 2013, J HERED, V104, P554, DOI 10.1093/jhered/est016; Schindler DE, 2010, NATURE, V465, P609, DOI 10.1038/nature09060; SCHLOSSER IJ, 1991, BIOSCIENCE, V41, P704, DOI 10.2307/1311765; SLATKIN M, 1981, GENETICS, V99, P323; SLATKIN M, 1980, GENETICS, V95, P503; SPIELMAN D, 1992, ZOO BIOL, V11, P343, DOI 10.1002/zoo.1430110506; SPIETH PT, 1974, GENETICS, V78, P961; STEEDMAN RJ, 1988, CAN J FISH AQUAT SCI, V45, P492, DOI 10.1139/f88-059; Tyutyunov YV, 2013, MATH MODEL NAT PHENO, V8, P80, DOI 10.1051/mmnp/20138606; VARVIO SL, 1986, HEREDITY, V57, P189, DOI 10.1038/hdy.1986.109; VIDA G, 1994, EXS, V68, P9; von BERTALANFFY LUDWIG, 1938, HUMAN BIOL, V10, P181; Vucetich JA, 2000, ANIM CONSERV, V3, P261, DOI 10.1017/S1367943000000986; Wang JL, 2004, CONSERV BIOL, V18, P332, DOI 10.1111/j.1523-1739.2004.00440.x; Wang LZ, 1997, FISHERIES, V22, P6, DOI 10.1577/1548-8446(1997)022<0006:IOWLUO>2.0.CO;2; Waples RS, 2005, MOL ECOL, V14, P3335, DOI 10.1111/j.1365-294X.2005.02673.x; Ward J. V., 1983, DYNAMICS LOTIC ECOSY, P29, DOI DOI 10.1007/S10661-006-9218-5; Weeks AR, 2011, EVOL APPL, V4, P709, DOI 10.1111/j.1752-4571.2011.00192.x; Whiteley AR, 2015, TRENDS ECOL EVOL, V30, P42, DOI 10.1016/j.tree.2014.10.009; Whiteley AR, 2013, CAN J FISH AQUAT SCI, V70, P678, DOI 10.1139/cjfas-2012-0493; Whiteley AR, 2012, CONSERV GENET, V13, P625, DOI 10.1007/s10592-011-0313-y; Wilson AJ, 2004, CONSERV GENET, V5, P25, DOI 10.1023/B:COGE.0000014053.97782.79; Wofford JEB, 2005, ECOL APPL, V15, P628, DOI 10.1890/04-0095; Wood JLA, 2014, ECOL APPL, V24, P1085, DOI 10.1890/13-1647.1; Wright S, 1931, GENETICS, V16, P0097; Xu CL, 2010, FRESHWATER BIOL, V55, P2253, DOI 10.1111/j.1365-2427.2010.02430.x; Yamamoto S, 2004, CONSERV GENET, V5, P529, DOI 10.1023/B:COGE.0000041029.38961.a0; ZWICK P, 1992, BIODIVERS CONSERV, V1, P80, DOI 10.1007/BF00731036 107 1 1 9 33 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND 0006-3207 1873-2917 BIOL CONSERV Biol. Conserv. JUN 2017 210 A 261 272 10.1016/j.biocon.2017.02.043 12 Biodiversity Conservation; Ecology; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology FB1CP WOS:000405881600028 2018-11-22 J Nomi, D; Yuta, T; Koizumi, I Nomi, Daisuke; Yuta, Teru; Koizumi, Itsuro BREEDING BIOLOGY OF FOUR SYMPATRIC TITS IN NORTIIERN JAPAN WILSON JOURNAL OF ORNITHOLOGY English Article breeding timing; clutch size; Coal Tit; Japanese Tit; Marsh Tit; multiple breeding; Varied Tit EXTRA-PAIR PATERNITY; GREAT TITS; POSTFLEDGING SURVIVAL; NEST PREDATION; PARUS-VARIUS; SEX-RATIO; DATE; MORTALITY; FREQUENCY; PALUSTRIS In order to understand evolution in life history strategies, it is useful to compare breeding parameters among closely related species and/or different habitats within the same species. The Paridae family, known as tits and chickadees, are suitable for such studies since they are distributed worldwide and use a variety of habitats. However, previous studies are mostly limited to populations in Europe and North America. Few studies have compared breeding biology in sympatric Paridae species. In this study, we investigated the breeding biology of Japanese Tits Warns minor), Coal Tits (Periparus ater), Marsh Tits (Poecile palustris), arid Varied Tits (Sittiparus varies) in a cool temperate forest of northern Japan. A previous study has shown that Japanese Tits have higher annual production (i.e., clutch size, rate of multiple brooding) compared to a European sister species, the Great Tit Warns major), possibly because of greater diversity and abundance of prey items. Therefore, we predicted that annual breeding productivity should also be high in the other sympatric species. Contrary to the expectation, annual productivities were not high for the other species with few or no second clutches, indicating the lack of a general rule of high food availability in this region. Some ecological or physiological constraints may exist for other species, such as trade-offs involving survival versus fecundity or resident versus migrant. This study provides basic but important information on breeding biology of Paridae in understudied Asian populations. [Nomi, Daisuke] Hokkaido Univ, Grad Sch Environm Sci, N10 W5, Sapporo, Hokkaido 0600810, Japan; [Yuta, Teru; Koizumi, Itsuro] Hokkaido Univ, Fac Environm Earth Sci, Sapporo, Hokkaido, Japan; [Yuta, Teru] Niigata Univ, Niigata, Japan Nomi, D (reprint author), Hokkaido Univ, Grad Sch Environm Sci, N10 W5, Sapporo, Hokkaido 0600810, Japan. Daisuke.Nomi@ees.hokudai.ac.jp Yuta, Teru/0000-0002-6654-9667 Atienzar F, 2013, ECOSCIENCE, V20, P40, DOI 10.2980/20-1-3516; BROTONS L., 1999, THESIS; Broughton RK, 2015, ACTA ORNITHOL, V50, P11, DOI 10.3161/00016454AO2015.50.1.002; Clutton-Brock T, 2010, TRENDS ECOL EVOL, V25, P562, DOI 10.1016/j.tree.2010.08.002; DHONDT AA, 1968, BIRD STUDY, V15, P127, DOI 10.1080/00063656809476192; Dhondt AA, 2001, ARDEA, V89, P155; DHONDT AA, 1990, NATURE, V348, P723, DOI 10.1038/348723a0; DHONDT AA, 1981, IBIS, V123, P96, DOI 10.1111/j.1474-919X.1981.tb00177.x; Dhondt Andre A., 2007, P299; Dietrich-Bischoff V, 2006, BEHAV ECOL SOCIOBIOL, V60, P563, DOI 10.1007/s00265-006-0201-5; ERMAN J., 1989, WILSON B, V101, P263; Gotmark F, 2002, OECOLOGIA, V130, P25, DOI 10.1007/s004420100769; GUSLER A., 1993, GREAT TIT; Harrap S, 1996, TITS NUTHATCHES TREE; Higuchi H., 1976, Tori, V25, P11; Hiura T, 2001, ECOL RES, V16, P887, DOI 10.1046/j.1440-1703.2001.00449.x; Hothorn T, 2008, BIOMETRICAL J, V50, P346, DOI 10.1002/bimj.200810425; ISHIGAKi K., 1972, RES B COLL EXPT FOR, V29, P43; Laine VN, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms10474; LSITTC K., 1972, RES B COLLECTION EXP, V30, P55; Matthysen E., 1990, Current Ornithology, V7, P209; MONROS J. S, 1997, NESTLING DIET COAL T, V44, P239; Monros JS, 2002, OIKOS, V99, P481, DOI 10.1034/j.1600-0706.2002.11909.x; Murakami Masashi, 2002, Ornithological Science, V1, P63, DOI 10.2326/osj.1.63; Naef-Daenzer B, 1999, J ANIM ECOL, V68, P708, DOI 10.1046/j.1365-2656.1999.00318.x; Naef-Daenzer B, 2001, J ANIM ECOL, V70, P730, DOI 10.1046/j.0021-8790.2001.00533.x; NAKAZAWA M., 2015, FMSB FUNCTIONS MEDIC; NILSSON JA, 1994, J ANIM ECOL, V63, P200, DOI 10.2307/5595; NILSSON JA, 1988, J ANIM ECOL, V57, P917, DOI 10.2307/5101; NISHIUMI I., 2009, NATURAL HIST BIRDS, P17; NnickmuRA T., 1970, ECOLOGICAL SEPARATIO, V6, P141; Nomi D, 2015, ACTA ORNITHOL, V50, P213, DOI 10.3161/00016454AO2015.50.2.009; Ouyang JQ, 2012, ANIM BEHAV, V84, P261, DOI 10.1016/j.anbehav.2012.05.006; Perrins C. M, 1993, HDB BIRDS EUROPE MID, VVII; R Core Team, 2013, R LANG ENV STAT COMP; Remes V, 2007, J EVOLUTION BIOL, V20, P320, DOI 10.1111/j.1420-9101.2006.01191.x; Rytkonen S, 2001, OIKOS, V93, P439, DOI 10.1034/j.1600-0706.2001.930309.x; Saino N, 2007, CLIM RES, V35, P123, DOI 10.3354/cr00719; Sanz JJ, 1998, AUK, V115, P1034; VANNOORDWIJK AJ, 1980, ARDEA, V68, P193; Verboven N, 1998, OIKOS, V81, P511, DOI 10.2307/3546771; YAHAGI E., 1996, COMP STUDY BREEDING, V14, P11; Yamaguchi N, 2005, WILSON BULL, V117, P189, DOI 10.1676/04-081; Yamaguchi N, 2004, IBIS, V146, P108, DOI 10.1111/j.1474-919X.2004.00220.x; Yamaguchi Noriyuki, 2001, Japanese Journal of Ornithology, V50, P65, DOI 10.3838/jjo.50.65; YAMASHNA INSTITUTE FOR ORNITHOLOGY, 2002, ATL JAP MIGR BIRDS 1; Yoshida K., 1985, SEASONAL POPULATION, V53, P125; Yuta T, 2016, J AVIAN BIOL, V47, P153, DOI 10.1111/jav.00713; Yuta T, 2012, ARDEA, V100, P197, DOI 10.5253/078.100.0211; Zuur AF, 2010, METHODS ECOL EVOL, V1, P3, DOI 10.1111/j.2041-210X.2009.00001.x 50 1 1 0 7 WILSON ORNITHOLOGICAL SOC WACO 5400 BOSQUE BLVD, STE 680, WACO, TX 76710 USA 1559-4491 1938-5447 WILSON J ORNITHOL Wilson J. Ornithol. JUN 2017 129 2 294 300 10.1676/16-014.1 7 Ornithology Zoology EZ7CN WOS:000404877900006 2018-11-22 J Lucena-Fredou, F; Kell, L; Fredou, T; Gaertner, D; Potier, M; Bach, P; Travassos, P; Hazin, F; Menard, F Lucena-Fredou, Flavia; Kell, Laurie; Fredou, Thierry; Gaertner, Daniel; Potier, Michel; Bach, Pascal; Travassos, Paulo; Hazin, Fabio; Menard, Frederic Vulnerability of teleosts caught by the pelagic tuna longline fleets in South Atlantic and Western Indian Oceans DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY English Article; Proceedings Paper 3rd Open Science Symposium of the Climate-Impacts-on-Oceanic-Top-Predators (CLIOTOP) Programme SEP 14-18, 2015 Donostia San Sebastian, SPAIN Climate Impacts Ocean Top Predators Productivity and Susceptibility Analysis; Bycatch; Risk; Fishery management ECOLOGICAL RISK-ASSESSMENT; LIFE-HISTORY STRATEGIES; CLIMATE-CHANGE; EXPLOITATION STATUS; TRAWL FISHERY; MARINE FISHES; BYCATCH; SUSTAINABILITY; MANAGEMENT; IMPACT Productivity and Susceptibility Analysis (PSA) is a methodology for evaluating the vulnerability of a stock based on its biological productivity and susceptibility to fishing. In this study, we evaluated the vulnerability of 60 stocks of tuna, billfishes and other teleosts caught by the tuna longline fleets operating in the South Atlantic and Indian Ocean using a semi-quantitative PSA. We (a) evaluated the vulnerability of the species in the study areas; (b) compared the vulnerability of target and non-target species and oceans; (c) analyzed the sensitivity of data entry; and (d) compared the results of the PSA to other fully quantitative assessment methods. Istiophoridae exhibited the highest scores for vulnerability. The top 10 species at risk were: Atlantic Istiophorus albicans; Indian Ocean Istiompax indica; Atlantic Makaira nigricans and Thunnus alalunga; Indian Ocean Xiphias gladius; Atlantic T. albacares, Gempylus serpens, Ranzania laevis and X. gladius; and Indian Ocean T. alalunga. All species considered at high risk were targeted or were commercialized bycatch, except for the Atlantic G. serpens and R. laevis which.were discarded, and may be considered as a false positive. Those species and others at high risk should be prioritized for further assessment and/or data collection. Most species at moderate risk were bycatch species kept for sale. Conversely, species classified at low risk were mostly discarded. Overall, species at high risk were overfished and/or subjected to overfishing. Moreover, all species considered to be within extinction risk (Critically Endangered, Endangered and Vulnerable) were in the high risk category. The good concordance between approaches corroborates the results of our analysis. PSA is not a replacement for traditional stock assessments, where a stock is assessed at regular intervals to provide management advice. It is of importance, however, where there is uncertainty about catches and life history parameters, since it can identify species at risk, and where management action and data collection is required, e.g. for many species at high and most at moderate risk in the South Atlantic and Indian oceans. [Lucena-Fredou, Flavia; Fredou, Thierry; Travassos, Paulo; Hazin, Fabio] Univ Fed Rural Pernambuco UFRPE, Dept Pesca & Aquicultura, Av Dom Manuel S-N, BR-52171900 Recife, PE, Brazil; [Lucena-Fredou, Flavia; Fredou, Thierry; Gaertner, Daniel; Potier, Michel; Bach, Pascal] Univ Montpellier, IRD, UMR MARBEC IRD, IFREMER,CNRS, CS 30171, F-34203 Sete, France; [Kell, Laurie] ICCAT, Madrid 28002, Spain; [Menard, Frederic] Aix Marseille Univ, CNRS, IRD, MIO,Univ Toulon, F-13288 Marseille, France Lucena-Fredou, F (reprint author), Univ Fed Rural Pernambuco UFRPE, Dept Pesca & Aquicultura, Av Dom Manuel S-N, BR-52171900 Recife, PE, Brazil. flavia.lucena@pq.cnpq.br Menard, Frederic/C-3913-2008; Fredou, Thierry/A-6635-2011; Bach, Pascal/E-9370-2013; Lucena Fredou, Flavia/I-3639-2012 Menard, Frederic/0000-0003-1162-660X; Fredou, Thierry/0000-0002-0510-6424; Bach, Pascal/0000-0003-0804-8466; Lucena Fredou, Flavia/0000-0001-5492-7205 Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) [BEX 2407/13-2, BEX 2702/13-4]; Ministry of Fisheries and Aquaculture of Brazil, through the onboard observer program [1] The authors would like to acknowledge the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) for providing a senior post-doc fellowship to F. Lucena Fredou and T. Fredou (Grants BEX 2407/13-2 and BEX 2702/13-4) and to the Ministry of Fisheries and Aquaculture of Brazil, through the onboard observer program (regulated by SEAP/MMA, IN No 1, 29/09/2006). The collection of data of French commercial and observer fisheries data was supported by the European Union Data Collection Framework (DCF), regulated by Commission Regulation (EC) 665/2008 of 14 July 2008 and Commission technical decision 2010/93/UE of 18 December 2009. The data processing from the collection on field and at port to archive in dedicated database was supervised by the staff of the Tuna Observatory of the Institut de Recherche pour le Developpement (IRD). We also thank two anonymous reviewers for their constructive comments on an earlier version of the manuscript. Arrizabalaga H, 2015, DEEP-SEA RES PT II, V113, P102, DOI 10.1016/j.dsr2.2014.07.001; Arrizabalaga H, 2011, AQUAT LIVING RESOUR, V24, P1, DOI 10.1051/alr/2011007; Astles KL, 2006, FISH RES, V82, P290, DOI 10.1016/j.fishres.2006.05.013; Bach P, 2013, IOTC2013WPEB0942; Bach P., 2009, IOTC2009WPEB10; Bach P., 2008, IOTC2008WPEB13; Beverton RJH, 1993, DYNAMICS EXPLOITED F; Brill Richard W., 1994, Fisheries Oceanography, V3, P204, DOI 10.1111/j.1365-2419.1994.tb00098.x; Brown SL, 2015, MAR POLICY, V51, P267, DOI 10.1016/j.marpol.2014.09.009; Brown SL, 2013, BIOL CONSERV, V168, P78, DOI 10.1016/j.biocon.2013.09.019; CCSBT, 2015, 20 M SCI COMM; Collette BB, 2011, SCIENCE, V333, P291, DOI 10.1126/science.1208730; Cortes E, 2015, ICES J MAR SCI, V72, P1057, DOI 10.1093/icesjms/fsu157; Cortes E, 2010, AQUAT LIVING RESOUR, V23, P25, DOI 10.1051/alr/2009044; Davies TD, 2012, SCI REP-UK, V2, DOI 10.1038/srep00561; Dulvy NK, 2005, J APPL ECOL, V42, P883, DOI 10.1111/j.1365-2664.2005.01063.x; Dunstan PK, 2016, OCEAN COAST MANAGE, V121, P116, DOI 10.1016/j.ocecoaman.2015.11.021; Fortuna CM, 2014, SCI MAR, V78, P227, DOI 10.3989/scimar.03920.30D; Francis TB, 2011, MAR POLICY, V35, P675, DOI 10.1016/j.marpol.2011.02.008; Fredou F. L., 2006, PROGRAMA REVIZEE AVA, P121; Fredou FL, 2016, FISH RES, V179, P308, DOI 10.1016/j.fishres.2016.03.013; Fujita R, 2014, FISH FISH, V15, P661, DOI 10.1111/faf.12040; Gallucci VF, 1995, STOCK ASSESSMENT QUA; Gamito R, 2015, FISH RES, V161, P207, DOI 10.1016/j.fishres.2014.07.014; Garcia S. M., 1995, 35 FAO, P1; Hare J. A., 2015, PLOS ONE, V11; Hewitt DA, 2005, FISH B-NOAA, V103, P433; Hobday AJ, 2011, FISH RES, V108, P372, DOI 10.1016/j.fishres.2011.01.013; Hobday AJ, 2007, R041072 AUSTR FISH M; Huang HW, 2010, FISH RES, V106, P261, DOI 10.1016/j.fishres.2010.08.005; ICCAT, 2015, 2015 SMALL TUN SPEC; ICCAT, 2015, REP STAND COMM RES S; ICES, 2012, 2012ACOM68 ICES CM; ICES, 2012, WORKSH DEV ASS BAS L; ICMBio, 2014, I CHIC MEND CONS BIO; IOTC, 2015, 18 SESS IOTC SCI COM; Isaac V., 2012, GLOBAL CHALLENGES IN, P49; IUCN, 2014, GUID US IUCN RED LIS; Jensen AL, 1996, CAN J FISH AQUAT SCI, V53, P820, DOI 10.1139/cjfas-53-4-820; Juan-Jorda MJ, 2013, REV FISH BIOL FISHER, V23, P135, DOI 10.1007/s11160-012-9284-4; King JR, 2003, FISHERIES MANAG ECOL, V10, P249, DOI 10.1046/j.1365-2400.2003.00359.x; Kwon Y. J., 2009, J KOREAN SOC FISH TE, V45, P22; Lehodey P, 2013, CLIMATIC CHANGE, V119, P95, DOI 10.1007/s10584-012-0595-1; Lessa R., 2009, DINAMICA POPULACOES, P76; Lessa R., 2009, DINAMICA POPULACOES, P35; Mackenzie BR, 2007, GLOBAL CHANGE BIOL, V13, P1348, DOI 10.1111/j.1365-2486.2007.01369.x; Marin YH, 1998, MAR FRESHWATER RES, V49, P633, DOI 10.1071/MF97243; Marine Stewardship Council, 2011, FISH ASS METH PROD S; Micheli F, 2014, BIOL CONSERV, V176, P224, DOI 10.1016/j.biocon.2014.05.031; Mourao K. R. M., 2014, PESCA MARINHA ESTUAR, P171; Musick J.A., 2001, FISHERIES, V25, P6; Nobrega M. F., 2009, DINAMICA POPULACOES, P64; Ormseth OA, 2011, FISH RES, V112, P127, DOI 10.1016/j.fishres.2011.02.010; Osio GC, 2015, FISH RES, V171, P110, DOI 10.1016/j.fishres.2015.02.005; Pacheco J. C., 2011, FISH RES, V3038, P1; Patrick WS, 2010, FISH B-NOAA, V108, P305; Pauly D, 1984, ICLARM STUD REV, V8; Perry AL, 2005, SCIENCE, V308, P1912, DOI 10.1126/science.1111322; Petitgas P, 2012, MAR ECOL PROG SER, V444, P1, DOI 10.3354/meps09451; Phillips SRM, 2015, FISH RES, V171, P87, DOI 10.1016/j.fishres.2015.01.005; Pinsky ML, 2012, CLIMATIC CHANGE, V115, P883, DOI 10.1007/s10584-012-0599-x; Poisson F, 2010, FISH B-NOAA, V108, P268; R Development Core Team, 2014, R LANG ENV STAT COMP; Reynolds JD, 2001, CONSERVATION EXPLOIT, P147; RICE JA, 1994, MATH STAT DATA ANAL; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; Sibert J, 2006, SCIENCE, V314, P1773, DOI 10.1126/science.1135347; Smith ADM, 2007, ICES J MAR SCI, V64, P633, DOI 10.1093/icesjms/fsm041; Stobutzki I, 2001, ENVIRON CONSERV, V28, P167; Stobutzki IC, 2002, FISH B-NOAA, V100, P800; Tuck GN, 2011, ICES J MAR SCI, V68, P1628, DOI 10.1093/icesjms/fsr118; Ward P., 2004, SCI MONITORING LONGL; Ward P., 2004, SETTING ANN CATCH LI; Waugh SM, 2012, MAR POLICY, V36, P933, DOI 10.1016/j.marpol.2011.11.005; WETHERALL JA, 1987, ICLARM C P, V13, P53; Zhou SJ, 2008, FISH RES, V91, P56, DOI 10.1016/j.fishres.2007.11.007 76 3 3 4 19 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0967-0645 1879-0100 DEEP-SEA RES PT II Deep-Sea Res. Part II-Top. Stud. Oceanogr. JUN 2017 140 SI 230 241 10.1016/j.dsr2.2016.10.008 12 Oceanography Oceanography EX8PT WOS:000403513400023 2018-11-22 J Arlettaz, R; Christe, P; Schaub, M Arlettaz, Raphael; Christe, Philippe; Schaub, Michael Food availability as a major driver in the evolution of life-history strategies of sibling species ECOLOGY AND EVOLUTION English Article age at first reproduction; bats; demography; life-history trade-off; multistate capture-recapture model; survival POPULATION-GROWTH RATE; MOUSE-EARED BATS; MYOTIS-MYOTIS; TEMPORAL VARIATION; ADULT SURVIVAL; DYNAMICS; MAMMALS; BLYTHII; REPRODUCTION; ENVIRONMENT Life-history theory predicts trade-offs between reproductive and survival traits such that different strategies or environmental constraints may yield comparable lifetime reproductive success among conspecifics. Food availability is one of the most important environmental factors shaping developmental processes. It notably affects key life-history components such as reproduction and survival prospect. We investigated whether food resource availability could also operate as an ultimate driver of life-history strategy variation between species. During 13 years, we marked and recaptured young and adult sibling mouse-eared bats (Myotis myotis and Myotis blythii) at sympatric colonial sites. We tested whether distinct, species-specific trophic niches and food availability patterns may drive interspecific differences in key life-history components such as age at first reproduction and survival. We took advantage of a quasi-experimental setting in which prey availability for the two species varies between years (pulse vs. nonpulse resource years), modeling mark-recapture data for demographic comparisons. Prey availability dictated both adult survival and age at first reproduction. The bat species facing a more abundant and predictable food supply early in the season started its reproductive life earlier and showed a lower adult survival probability than the species subjected to more limited and less predictable food supply, while lifetime reproductive success was comparable in both species. The observed life-history trade-off indicates that temporal patterns in food availability can drive evolutionary divergence in life-history strategies among sympatric sibling species. [Arlettaz, Raphael; Schaub, Michael] Univ Bern, Div Conservat Biol, Inst Ecol & Evolut, Bern, Switzerland; [Arlettaz, Raphael; Schaub, Michael] Swiss Ornithol Inst, Sempach, Switzerland; [Arlettaz, Raphael] CONICET CCT, IADIZA, Grp Invest Biodiversidad, Mendoza, Argentina; [Christe, Philippe] Univ Lausanne, Dept Ecol & Evolut, Biophore, Lausanne, Switzerland Arlettaz, R (reprint author), Univ Bern, Div Conservat Biol, Inst Ecol & Evolut, Bern, Switzerland. raphael.arlettaz@iee.unibe.ch Christe, Philippe/0000-0002-8605-7002 Swiss National Science Foundation [31-52584.97, 31-6145.00] Swiss National Science Foundation, Grant/Award Number: 31-52584.97 and 31-6145.00 Arlettaz R, 1997, J ZOOL, V242, P45, DOI 10.1111/j.1469-7998.1997.tb02928.x; Arlettaz R, 1999, J ANIM ECOL, V68, P460, DOI 10.1046/j.1365-2656.1999.00293.x; Arlettaz R, 2002, MAMMALIA, V66, P441; Arlettaz R, 1997, J ANIM ECOL, V66, P897, DOI 10.2307/6005; Arlettaz R, 2001, OIKOS, V95, P105, DOI 10.1034/j.1600-0706.2001.950112.x; Arlettaz R, 1996, ANIM BEHAV, V51, P1, DOI 10.1006/anbe.1996.0001; Arlettaz R, 1995, SYM ZOOL S, P361; ARLETTAZ R, 1993, MAMMALIA, V57, P148; Arlettaz Raphael, 1998, Rhinolophe, V13, P17; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Bize P, 2014, OECOLOGIA, V174, P1097, DOI 10.1007/s00442-013-2840-3; Bjorkvoll E, 2012, AM NAT, V180, P372, DOI 10.1086/666983; Brommer JE, 1998, J ANIM ECOL, V67, P359, DOI 10.1046/j.1365-2656.1998.00201.x; Clutton-Brock T, 2010, TRENDS ECOL EVOL, V25, P562, DOI 10.1016/j.tree.2010.08.002; Descamps S, 2006, P R SOC B, V273, P2369, DOI 10.1098/rspb.2006.3588; Eberhardt LL, 2002, ECOLOGY, V83, P2841, DOI 10.1890/0012-9658(2002)083[2841:APFPAO]2.0.CO;2; Frick WF, 2010, J ANIM ECOL, V79, P128, DOI 10.1111/j.1365-2656.2009.01615.x; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; Ghazali M., 2013, Vestnik Zoologii, V47, pE67, DOI 10.2478/vzoo-2013-0006; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; Karell P, 2009, J ANIM ECOL, V78, P1050, DOI 10.1111/j.1365-2656.2009.01563.x; Lack D., 1954, NATURAL REGULATION A; Lebreton JD, 2003, OIKOS, V101, P253, DOI 10.1034/j.1600-0706.2003.11848.x; MILLAR JS, 1983, ECOLOGY, V64, P631, DOI 10.2307/1937181; O'Shea TJ, 2011, J MAMMAL, V92, P433, DOI 10.1644/10-MAMM-A-162.1; Oli MK, 2003, AM NAT, V161, P422, DOI 10.1086/367591; Pelisson PF, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0076086; Pfister CA, 1998, P NATL ACAD SCI USA, V95, P213, DOI 10.1073/pnas.95.1.213; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Ransome RD, 1995, PHILOS T ROY SOC B, V350, P153, DOI 10.1098/rstb.1995.0149; ROFF D, 1980, OECOLOGIA, V45, P202, DOI 10.1007/BF00346461; Ruedi M, 2001, MOL PHYLOGENET EVOL, V21, P436, DOI 10.1006/mpev.2001.1017; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Schaub M, 2007, CONSERV BIOL, V21, P945, DOI 10.1111/j.1523-1739.2007.00743.x; Schmidt BR, 2012, ECOLOGY, V93, P657, DOI 10.1890/11-0892.1; Schorcht W, 2009, J ANIM ECOL, V78, P1182, DOI 10.1111/j.1365-2656.2009.01577.x; Stearns S., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Wilkinson GS, 2002, AGING CELL, V1, P124, DOI 10.1046/j.1474-9728.2002.00020.x 40 0 0 4 31 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. JUN 2017 7 12 4163 4172 10.1002/ece3.2909 10 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology EY3PN WOS:000403884700009 28649329 DOAJ Gold, Green Published 2018-11-22 J Martin-Fores, I; Guerin, GR; Lowe, AJ Martin-Fores, Irene; Guerin, Greg R.; Lowe, Andrew J. Weed abundance is positively correlated with native plant diversity in grasslands of southern Australia PLOS ONE English Article INVASIVE ALIEN PLANTS; EXOTIC RELATIONSHIPS; SPECIES COMPOSITION; UNITED-STATES; IMPACTS; COMMUNITIES; ECOSYSTEMS; DOMINANCE; RICHNESS; POLICY Weeds are commonly considered a threat to biodiversity, yet interactions between native and exotic species in grasslands are poorly understood and reported results vary depending on the spatial scale of study, the factors controlled for and the response variables analysed. We tested whether weed presence and abundance is related to declines in biodiversity in Australian grasslands. We employed existing field data from 241 plots along a disturbance gradient and correlated species richness, cover and Shannon diversity for natives and exotics, controlling for seasonal rainfall, climatic gradients and nutrient status. We found no negative relationships in terms of emergent diversity metrics and occupation of space, indeed, many positive relationships were revealed. When split by land-use, differences were found along the disturbance gradient. In high-moderately disturbed grasslands associated with land-uses such as cropping and modified pastures, positive associations were enhanced. Tolerance and facilitation mechanisms may be involved, such as complementary roles through different life history strategies: the exotic flora was dominated mainly by annual grasses and herbs whereas the native flora represented more diverse growth-forms with a higher proportion of perennials. The positive relationships existing between native and exotic plant species in high-moderately disturbed grasslands of South Australia are most likely due to facilitation through different strategies in occupation of space given that the effect of habitat suitability was controlled for by including environmental and disturbance factors. Consequently, although particular weeds may negatively impact biodiversity, this cannot be generalised and management focusing on general weed eradication in grasslands might be ineffectual. [Martin-Fores, Irene] Univ Complutense Madrid, Dept Ecol, Madrid, Spain; [Martin-Fores, Irene; Guerin, Greg R.] Univ Adelaide, Sch Biol Sci, Terr Ecosyst Res Network, Adelaide, SA, Australia; [Lowe, Andrew J.] Univ Adelaide, Sch Biol Sci, Environm Inst, Adelaide, SA, Australia Martin-Fores, I (reprint author), Univ Complutense Madrid, Dept Ecol, Madrid, Spain.; Martin-Fores, I (reprint author), Univ Adelaide, Sch Biol Sci, Terr Ecosyst Res Network, Adelaide, SA, Australia. imfores@pdi.ucm.es Martin-Fores, Irene/0000-0003-3627-0347; Guerin, Greg/0000-0002-2104-6695 Australian Transect Network; Terrestrial Ecosystem Research Network (TERN) This project was supported by the 'Australian Transect Network' and AusPlots facilities of the Terrestrial Ecosystem Research Network (TERN). We thank Emrys Leitch, Michelle Rodrigo and the South Australian Department of Environment, Water and Natural Resources. Arianoutsou M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0079174; Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES), 2016, LAND US AUSTR 2010 1; Braun-Blanquet J., 1932, PLANT SOCIOLOGY STUD; Carey MP, 2012, FRONT ECOL ENVIRON, V10, P373, DOI 10.1890/110060; Casado MA, 2015, DIVERS DISTRIB, V21, P609, DOI 10.1111/ddi.12326; Cleland EE, 2004, ECOL LETT, V7, P947, DOI 10.1111/j.1461-0248.2004.00655.x; Courchamp F, 2011, ISLAND INVASIVES ERA, P285; Davis M, 2011, NATURE, V474, P153, DOI 10.1038/474153a; De Miguel JM, 2010, PLANT ECOL, V210, P97, DOI 10.1007/s11258-010-9741-x; FIGUEROA ME, 1991, J ECOL, V79, P925, DOI 10.2307/2261089; Flory SL, 2010, BIOL INVASIONS, V12, P1285, DOI 10.1007/s10530-009-9546-9; Fridley JD, 2007, ECOLOGY, V88, P3, DOI 10.1890/0012-9658(2007)88[3:TIPRPA]2.0.CO;2; Gaertner M, 2009, PROG PHYS GEOG, V33, P319, DOI 10.1177/0309133309341607; Gornish ES, 2016, RESTOR ECOL, V24, P222, DOI 10.1111/rec.12308; Guerin GR, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0144779; Guo QF, 2015, PLANT ECOL, V216, P1225, DOI 10.1007/s11258-015-0503-7; Gurevitch J, 2004, TRENDS ECOL EVOL, V19, P470, DOI 10.1016/j.tree.2004.07.005; Heard L. M., 1997, GUIDE NATIVE VEGETAT; Humphries S., 1991, KOWARI, V2, P1; Hutchinson M, 2014, MONTHLY TOTAL PRECIP; Hyde M.K., 1995, TEMPERATE GRASSLANDS; Kalusova V, 2013, DIVERS DISTRIB, V19, P199, DOI 10.1111/ddi.12008; Keeley JE, 2003, ECOL APPL, V13, P1355, DOI 10.1890/02-5002; Kim S., 2015, PART SEM PART PART C; KLOOT P M, 1987, Journal of the Adelaide Botanic Gardens, V10, P99; Kulmatiski A, 2006, PLANT ECOL, V187, P261, DOI 10.1007/s11258-006-9140-5; Lenz TI, 2003, AUSTRAL ECOL, V28, P23, DOI 10.1046/j.1442-9993.2003.01238.x; Levine JM, 2003, P ROY SOC B-BIOL SCI, V270, P775, DOI 10.1098/rspb.2002.2299; Lowe S., 2000, 100 WORLDS WORST INV, P12; MacDougall AS, 2005, ECOLOGY, V86, P42, DOI 10.1890/04-0669; Martin-Fores I, 2016, J PLANT ECOL, V9, P682, DOI 10.1093/jpe/rtw043; Martin-Fores I, 2015, BIOL INVASIONS, V17, P1425, DOI 10.1007/s10530-014-0805-z; McGeoch MA, 2010, DIVERS DISTRIB, V16, P95, DOI 10.1111/j.1472-4642.2009.00633.x; Parry J, 2016, AUST J BOT, V64, P484, DOI 10.1071/BT16094; PECO B, 1983, Ecologia Mediterranea, V9, P63; Pejchar L, 2009, TRENDS ECOL EVOL, V24, P497, DOI 10.1016/j.tree.2009.03.016; Pienkowski T, 2015, ECOL ECON, V112, P68, DOI 10.1016/j.ecolecon.2015.02.012; Pimentel D, 2001, AGR ECOSYST ENVIRON, V84, P1, DOI 10.1016/S0167-8809(00)00178-X; Pimentel D, 2005, ECOL ECON, V52, P273, DOI 10.1016/j.ecolecon.2004.10.002; Prober SM, 2016, BIOL INVASIONS, V18, P3001, DOI 10.1007/s10530-016-1194-2; R Core Team, 2015, R LANG ENV STAT COMP; Robertson M., 1998, BIOL SURVEY GRASSLAN; Robinson AC, 1988, BIOL SURVEY GAWLER R; Rodriguez LF, 2006, BIOL INVASIONS, V8, P927, DOI 10.1007/s10530-005-5103-3; Saul Wolf-Christian, 2013, NeoBiota, V17, P57; Sax DF, 2002, DIVERS DISTRIB, V8, P193, DOI 10.1046/j.1472-4642.2002.00147.x; Schlaepfer MA, 2012, CONSERV BIOL, V26, P1156, DOI 10.1111/j.1523-1739.2012.01948.x; Seabloom EW, 2013, GLOBAL CHANGE BIOL, V19, P3677, DOI 10.1111/gcb.12370; Seabloom EW, 2003, P NATL ACAD SCI USA, V100, P13384, DOI 10.1073/pnas.1835728100; Simberloff D, 2005, FRONT ECOL ENVIRON, V3, P12, DOI 10.2307/3868440; Stohlgren TJ, 2003, FRONT ECOL ENVIRON, V1, P11; Tognetti PM, 2012, BIOL INVASIONS, V14, P2531, DOI 10.1007/s10530-012-0249-2; Tognetti PM, 2010, BIOL CONSERV, V143, P2494, DOI 10.1016/j.biocon.2010.06.016; Turner J., 2012, NATL RECOVERY PLAN I; Underwood EC, 2009, DIVERS DISTRIB, V15, P188, DOI 10.1111/j.1472-4642.2008.00518.x; van der Maarel E, 2007, J VEG SCI, V18, P767; Van Riel P, 2000, TRENDS ECOL EVOL, V15, P515; Vila M, 2011, ECOL LETT, V14, P702, DOI 10.1111/j.1461-0248.2011.01628.x; Zavaleta ES, 2001, TRENDS ECOL EVOL, V16, P454, DOI 10.1016/S0169-5347(01)02194-2 59 3 3 6 17 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One JUN 1 2017 12 6 e0178681 10.1371/journal.pone.0178681 13 Multidisciplinary Sciences Science & Technology - Other Topics EW6HZ WOS:000402611800103 28570604 DOAJ Gold, Green Published 2018-11-22 J Mueller, JS; Grabowski, TB; Brewer, SK; Worthington, TA Mueller, Julia S.; Grabowski, Timothy B.; Brewer, Shannon K.; Worthington, Thomas A. Effects of Temperature, Total Dissolved Solids, and Total Suspended Solids on Survival and Development Rate of Larval Arkansas River Shiner JOURNAL OF FISH AND WILDLIFE MANAGEMENT English Article developmental series; Great Plains cyprinids; pelagic-broadcast spawning cyprinids; semibuoyant eggs; threatened species NOTROPIS-GIRARDI; FORAGING SUCCESS; FISH ASSEMBLAGE; ROSYSIDE DACE; PLAINS; LIFE; CYPRINIDAE; TURBIDITY; STREAMS Decreases in the abundance and diversity of stream fishes in the North American Great Plains have been attributed to habitat fragmentation, altered hydrological and temperature regimes, and elevated levels of total dissolved solids and total suspended solids. Pelagic-broadcast spawning cyprinids, such as the Arkansas River Shiner Notropis girardi, may be particularly vulnerable to these changing conditions because of their reproductive strategy. Our objectives were to assess the effects of temperature, total dissolved solids, and total suspended solids on the developmental and survival rates of Arkansas River Shiner larvae. Results suggest temperature had the greatest influence on the developmental rate of Arkansas River Shiner larvae. However, embryos exposed to the higher levels of total dissolved solids and total suspended solids reached developmental stages earlier than counterparts at equivalent temperatures. Although this rapid development may be beneficial in fragmented waters, our data suggest it may be associated with lower survival rates. Furthermore, those embryos incubating at high temperatures, or in high levels of total dissolved solids and total suspended solids resulted in less viable embryos and larvae than those incubating in all other temperature, total dissolved solid, and total suspended solid treatment groups. As the Great Plains ecoregion continues to change, these results may assist in understanding reasons for past extirpations and future extirpation threats as well as predict stream reaches capable of sustaining Arkansas River Shiners and other species with similar early life-history strategies. [Mueller, Julia S.] Texas Tech Univ, Texas Cooperat Fish & Wildlife Res Unit, Box 42120, Lubbock, TX 79409 USA; [Mueller, Julia S.] Natl Pk Serv, 101 Katzenbach Dr, Boulder City, NV 89005 USA; [Grabowski, Timothy B.] Univ Hawaii, US Geol Survey, Hawaii Cooperat Fishery Res Unit, 200 Kawili St, Hilo, HI 96720 USA; [Brewer, Shannon K.] Oklahoma State Univ, US Geol Survey, Oklahoma Cooperat Fish & Wildlife Res Unit, 007 Agr Hall, Stillwater, OK 74078 USA; [Worthington, Thomas A.] Oklahoma State Univ, Oklahoma Cooperat Fish & Wildlife Res Unit, 007 Agr Hall, Stillwater, OK 74078 USA Grabowski, TB (reprint author), Univ Hawaii, US Geol Survey, Hawaii Cooperat Fishery Res Unit, 200 Kawili St, Hilo, HI 96720 USA. tgrabowski@usgs.gov Worthington, Thomas/0000-0002-8138-9075 Texas Tech University (AUP) [11061-08]; U.S. Fish and Wildlife Service Federal Fish and Wildlife [TE48766A-0]; U.S. Fish and Wildlife Service Great Plains Landscape Conservation Cooperative (U.S. Fish and Wildlife Service) [F11AP00112] We thank D. Fenner, B. Bristow, W.H. Brandenbug, A.L. Barkalow, S.A. Zipper, and S.P. Platania for providing the Arkansas River Shiners used in this study and K. Graves and the staff of the Tishomingo National Fish Hatchery for providing facilities and technical expertise and advice for spawning Arkansas River Shiner. G. Wilde, the Associate Editor, and three anonymous reviewers provided comments and suggestions that greatly improved an earlier version of this manuscript. This study was performed under the auspices of Texas Tech University (AUP #11061-08) and U.S. Fish and Wildlife Service Federal Fish and Wildlife Permit #TE48766A-0.; Funding was provided by the U.S. Fish and Wildlife Service Great Plains Landscape Conservation Cooperative (U.S. Fish and Wildlife Service agreement F11AP00112). Cooperating agencies for the Texas Cooperative Fish and Wildlife Research Unit are the U.S. Geological Survey, Texas Tech University, Texas Parks and Wildlife, and the Wildlife Management Institute. Cooperating agencies for the Oklahoma Cooperative Fish and Wildlife Research Unit are the U.S. Geological Survey, Oklahoma State University, and the Oklahoma Department of Wildlife Conservation and the Wildlife Management Institute. Cooperating agencies for the Hawaii Cooperative Fishery Research Unit are the U.S. Geological Survey, the University of Hawaii system, the Hawaii Department of Land and Natural Resources, and the U.S. Fish and Wildlife Service. Abramoff MD, 2004, BIOPHOTONICS INT, V11, P36, DOI DOI 10.1117/1.3589100; BESTGEN KR, 1989, AM MIDL NAT, V122, P228, DOI 10.2307/2425907; Bonner TH, 2000, J FRESHWATER ECOL, V15, P189, DOI 10.1080/02705060.2000.9663736; BOTTRELL CLYDE E., 1964, TRANS AMER MICROSCOP SOC, V83, P391, DOI 10.2307/3224757; Cederholm CJ, 1981, C SALM SPAWN GRAV RE; Chapman DC, 2007, US GEOLOGICAL SURVEY, V239; Cowley DE, 2005, 334 NEW MEX WAT RES; Dodds WK, 2004, BIOSCIENCE, V54, P205, DOI 10.1641/0006-3568(2004)054[0205:LOTETE]2.0.CO;2; Durham BW, 2009, COPEIA, P21, DOI 10.1643/CE-07-166; Field CB, 2007, CLIMATE CHANGE 2007, P617; HAMMER UT, 1971, HYDROBIOLOGIA, V37, P473, DOI 10.1007/BF00018815; Hazelton PD, 2009, FRESHWATER BIOL, V54, P1977, DOI 10.1111/j.1365-2427.2009.02248.x; Hoagstrom CW, 2011, BIOL CONSERV, V144, P21, DOI 10.1016/j.biocon.2010.07.015; Karl T. R., 2009, GLOBAL CLIMATE CHANG; KIMMEL CB, 1995, DEV DYNAM, V203, P253, DOI 10.1002/aja.1002030302; Leemans R., 2002, GLOBAL DESERTIFICATI, P215; Martin F. D., 1978, DEV FISHES MIDATLANT; MATTHEWS W J, 1980, Southwestern Naturalist, V25, P51, DOI 10.2307/3671211; Moore George A., 1944, COPEIA, V1944, P209, DOI 10.2307/1438675; Mueller J. M., 2013, THESIS; Muncy R.J., 1979, EFFECTS SUSPENDED SO; Ostrand KG, 2004, T AM FISH SOC, V133, P1329, DOI 10.1577/T03-193.1; Ostrand KG, 2002, ECOL FRESHW FISH, V11, P137, DOI 10.1034/j.1600-0633.2002.00005.x; Perkin JS, 2011, FISHERIES, V36, P371, DOI 10.1080/03632415.2011.597666; Pigg Jimmie, 1999, Proceedings of the Oklahoma Academy of Science, V79, P7; Platania SP, 1998, COPEIA, P559, DOI 10.2307/1447786; Polivka KM, 1999, ENVIRON BIOL FISH, V55, P265, DOI 10.1023/A:1007577411279; REASH R J, 1990, Proceedings of the Oklahoma Academy of Science, V70, P23; REED ROGER J., 1958, COPEIA, V1958, P325, DOI 10.2307/1439966; Reis PA, 1969, THESIS; SIEFERT RE, 1974, PROG FISH CULT, V36, P186, DOI 10.1577/1548-8659(1974)36[186:EOROCO]2.0.CO;2; Sorensen D. L., 1977, EPA600377042; [USFWS] U.S. Fish and Wildlife Service, 1998, FED REGISTER, V63, P64772; [USGS] U.S. Geological Survey, 2014, NAT WAT INF SYST DAT; Wilde GR, 2002, ENVIRON BIOL FISH, V65, P98, DOI 10.1023/A:1019620506520; Williamson CE, 1999, LIMNOL OCEANOGR, V44, P795, DOI 10.4319/lo.1999.44.3_part_2.0795; Worthington TA, 2014, GLOBAL CHANGE BIOL, V20, P89, DOI 10.1111/gcb.12329; Yi B, 1988, GEZHOUBA WATER CONTR, P69; Zamor RM, 2007, T AM FISH SOC, V136, P167, DOI 10.1577/T050316.1 39 1 1 4 14 U S FISH & WILDLIFE SERVICE SHEPHERDSTOWN NATL CONSERVATION TRAINING CENTER, CONSERVATION LIBRARY, 698 CONSERVATION WAY, SHEPHERDSTOWN, WV 25443 USA 1944-687X J FISH WILDL MANAG J. Fish Wildl. Manag. JUN 2017 8 1 79 88 10.3996/112015-JFWM-111 10 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology EX3PW WOS:000403145300007 2018-11-22 J St-Hilaire, E; Reale, D; Garant, D St-Hilaire, Etienne; Reale, Denis; Garant, Dany Determinants, selection and heritability of docility in wild eastern chipmunks (Tamias striatus) BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article Docility; Heritability; Natural selection; Personality; Repeatability; Wild rodents LIFE-HISTORY STRATEGIES; YELLOW-BELLIED MARMOTS; PHENOTYPIC SELECTION; ANIMAL PERSONALITY; FLUCTUATING SELECTION; EXPLORATORY-BEHAVIOR; DISRUPTIVE SELECTION; MICROSATELLITE LOCI; NATURAL-SELECTION; PULSED RESOURCES Many behavioural traits show important inter-individual phenotypic and genetic variation despite strong potential selection that should reduce this variability. Spatial and temporal heterogeneity in environmental conditions has been proposed to maintain such variation but empirical evidences supporting this hypothesis are still scarce for behavioural traits. Here, we analysed the repeatability and the ecological and individual factors that influence the expression of docility across different environmental contexts in wild eastern chipmunks (Tamias striatus) studied over a period of 10 years. We also estimated the heritability of docility and the patterns of viability selection acting on this trait for adults and juveniles. Docility was moderately repeatable among various contexts and was positively affected by age, was higher in males than that in females, was higher during the fall and decreased with population density. Heritability of docility was low at 0.17. We found disruptive selection for the survival of adults only, individuals more or less docile than average having a higher survival. Our study confirms that docility is both phenotypically and genetically variables and that disruptive selection might maintain the variability in this trait. Significance statement Documenting the factors allowing the maintenance of phenotypic and genetic variation of behavioural traits within natural populations is a central objective in ecology and evolution. Here, we studied a wild eastern chipmunk population over 10 years and recorded docility, a personality trait, on both juveniles and adults. We showed that docility was repeatable and that it was also heritable and influenced by different individual and environmental factors. Importantly, we also found that disruptive viability selection was acting on adult docility independently of environmental variations. Our results show that docility is both phenotypically and genetically variable and that patterns of selection acting on this trait can maintain personality heterogeneity across temporally varying environmental conditions in the wild. [St-Hilaire, Etienne; Garant, Dany] Univ Sherbrooke, Dept Biol, Sherbrooke, PQ J1K 2R1, Canada; [Reale, Denis] Univ Quebec Montreal, Dept Sci Biol, Montreal, PQ H3C 3P8, Canada Garant, D (reprint author), Univ Sherbrooke, Dept Biol, Sherbrooke, PQ J1K 2R1, Canada. Dany.Garant@USherbrooke.ca Garant, Dany/0000-0002-8091-1044 Fonds de Recherche du Quebec - Nature et Technologies (FRQNT); Natural Sciences and Engineering Research Council of Canada (NSERC); Canada Research Chair funds We are grateful to Murray M. Humphries, Fanie Pelletier, Patrick Bergeron and Pierre-Olivier Montiglio for their contribution to this project. We also want to thank the Ruiter Valley Land Trust and Nature Conservancy of Canada for allowing us to conduct this research on their lands. We thank two anonymous reviewers for comments on previous versions of this manuscript and all field assistants, coordinators and students who have helped to collect data in the field. This research was funded by a team grant from the Fonds de Recherche du Quebec - Nature et Technologies (FRQNT) to DR, DG, M.M. Humphries and F. Pelletier; by Natural Sciences and Engineering Research Council of Canada (NSERC) discovery grants to DR, DG as well as to M.M. Humphries and F. Pelletier; and by Canada Research Chair funds to DR and F. Pelletier. Anderson SJ, 2007, MOL ECOL NOTES, V7, P513, DOI 10.1111/j.1471-8286.2006.01638.x; Bates D, 2015, J STAT SOFTW, V67, P1; Bell AM, 2009, ANIM BEHAV, V77, P771, DOI 10.1016/j.anbehav.2008.12.022; Bell G, 2010, PHILOS T R SOC B, V365, P87, DOI 10.1098/rstb.2009.0150; Bergeron P, 2013, J EVOLUTION BIOL, V26, P766, DOI 10.1111/jeb.12081; Bergeron P, 2011, J EVOLUTION BIOL, V24, P1685, DOI 10.1111/j.1420-9101.2011.02294.x; Bergeron P, 2011, ECOLOGY, V92, P2027, DOI 10.1890/11-0766.1; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; BOAKE CRB, 1989, EVOL ECOL, V3, P173, DOI 10.1007/BF02270919; Boon AK, 2007, ECOL LETT, V10, P1094, DOI 10.1111/j.1461-0248.2007.01106.x; Burnham KP, 2002, MODEL SELECTION MULT; Calsbeek R, 2008, EVOLUTION, V62, P478, DOI 10.1111/j.1558-5646.2007.00282.x; Careau V, 2015, BEHAV ECOL SOCIOBIOL, V69, P653, DOI 10.1007/s00265-015-1876-2; Careau V, 2013, OECOLOGIA, V171, P11, DOI 10.1007/s00442-012-2385-x; Careau V, 2010, OECOLOGIA, V162, P303, DOI 10.1007/s00442-009-1466-y; Chambers JL, 2010, J HERED, V101, P413, DOI 10.1093/jhered/esq029; Choquet R, 2009, ENVIRON ECOL STAT SE, V3, P845, DOI 10.1007/978-0-387-78151-8_39; Class B, 2014, ECOL EVOL, V4, P427, DOI 10.1002/ece3.945; Dingemanse N. J., 2013, ANIMAL PERSONALITIES, P201, DOI [10. 7208/chicago/9780226922065. 001. 0001, DOI 10.7208/CHICAGO/9780226922065.001.0001]; Dingemanse NJ, 2010, TRENDS ECOL EVOL, V25, P81, DOI 10.1016/j.tree.2009.07.013; Dingemanse NJ, 2002, ANIM BEHAV, V64, P929, DOI 10.1006/anbe.2002.2006; Dingemanse NJ, 2005, BEHAVIOUR, V142, P1159, DOI 10.1163/156853905774539445; Dingemanse NJ, 2004, P ROY SOC B-BIOL SCI, V271, P847, DOI 10.1098/rspb.2004.2680; Dochtermann NA, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2201; Dubuc-Messier G., 2012, MOL ECOL, V21, P5363; Endler J A., 1986, NATURAL SELECTION WI; Falconer D.S., 1996, INTRO QUANTITATIVE G; Ferrari C, 2013, ANIM BEHAV, V85, P1385, DOI 10.1016/j.anbehav.2013.03.030; Grant PR, 2002, SCIENCE, V296, P707, DOI 10.1126/science.1070315; Griffiths RA, 1998, J ZOOL, V245, P431, DOI 10.1017/S0952836998008061; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hendry AP, 2009, P R SOC B, V276, P753, DOI 10.1098/rspb.2008.1321; Kalinowski ST, 2007, MOL ECOL, V16, P1099, DOI 10.1111/j.1365-294X.2007.03089.x; Kingsolver JG, 2001, AM NAT, V157, P245, DOI 10.1086/319193; Kingsolver JG, 2007, BIOSCIENCE, V57, P561, DOI 10.1641/B570706; Korpela K, 2011, OECOLOGIA, V165, P67, DOI 10.1007/s00442-010-1810-2; Landry-Cuerrier M, 2008, ECOLOGY, V89, P3306, DOI 10.1890/08-0121.1; Le Coeur C, 2015, BEHAV ECOL, V26, P1285, DOI 10.1093/beheco/arv074; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Martin JGA, 2017, J EVOLUTION BIOL, V30, P796, DOI 10.1111/jeb.13048; Martin JGA, 2008, ANIM BEHAV, V75, P309, DOI 10.1016/j.anbehav.2007.05.026; Montiglio PO, 2014, J ANIM ECOL, V83, P720, DOI 10.1111/1365-2656.12174; Montiglio PO, 2012, ANIM BEHAV, V84, P1071, DOI 10.1016/j.anbehav.2012.08.010; Montiglio PO, 2010, ANIM BEHAV, V80, P905, DOI 10.1016/j.anbehav.2010.08.014; Munro D, 2008, CAN J ZOOL, V86, P364, DOI 10.1139/Z08-008; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Petelle MB, 2015, J EVOLUTION BIOL, V28, P1840, DOI 10.1111/jeb.12700; Petelle MB, 2013, ANIM BEHAV, V86, P1147, DOI 10.1016/j.anbehav.2013.09.016; Peters MB, 2007, MOL ECOL NOTES, V7, P877, DOI 10.1111/j.1471-8286.2007.01735.x; Poissant J, 2013, ECOL EVOL, V3, P474, DOI 10.1002/ece3.468; Quinn JL, 2009, J ANIM ECOL, V78, P1203, DOI 10.1111/j.1365-2656.2009.01585.x; Reale D, 2000, ANIM BEHAV, V60, P589, DOI 10.1006/anbe.2000.1530; Reale D, 2003, ANIM BEHAV, V65, P463, DOI 10.1006/anbe.2003.2100; Reale D, 2009, J EVOLUTION BIOL, V22, P1599, DOI 10.1111/j.1420-9101.2009.01781.x; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Roff D. A, 1997, EVOLUTIONARY QUANTIT; Schuett W, 2009, ANIM BEHAV, V77, P1041, DOI 10.1016/j.anbehav.2008.12.024; Siepielski AM, 2013, ECOL LETT, V16, P1382, DOI 10.1111/ele.12174; Siepielski AM, 2009, ECOL LETT, V12, P1261, DOI 10.1111/j.1461-0248.2009.01381.x; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Spiegelhalter DJ, 2002, J ROY STAT SOC B, V64, P583, DOI 10.1111/1467-9868.00353; Stamps J, 2010, BIOL REV, V85, P301, DOI 10.1111/j.1469-185X.2009.00103.x; Stirling DG, 2002, J EVOLUTION BIOL, V15, P277, DOI 10.1046/j.1420-9101.2002.00389.x; Taylor RW, 2014, J EVOLUTION BIOL, V27, P2308, DOI 10.1111/jeb.12495; Taylor RW, 2012, J EVOLUTION BIOL, V25, P614, DOI 10.1111/j.1420-9101.2012.02456.x; Tremmel M, 2013, BEHAV ECOL, V24, P386, DOI 10.1093/beheco/ars175; van Oers K, 2005, BEHAV ECOL, V16, P716, DOI 10.1093/beheco/ari045; van Oers K, 2005, BEHAVIOUR, V142, P1185, DOI 10.1163/156853905774539364; vanOers K, 2013, ANIMAL PERSONALITIES, P149; Webster MM, 2011, BIOL REV, V86, P759, DOI 10.1111/j.1469-185X.2010.00169.x; Wilson AJ, 2010, J ANIM ECOL, V79, P13, DOI 10.1111/j.1365-2656.2009.01639.x; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835 73 1 1 3 25 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. JUN 2017 71 6 UNSP 88 10.1007/s00265-017-2320-6 13 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology EW9FD WOS:000402821300002 2018-11-22 J Ruehle, BP; Herrmann, KK; Higgins, CL Ruehle, Brandon P.; Herrmann, Kristin K.; Higgins, Christopher L. Helminth parasite assemblages in two cyprinids with different life history strategies AQUATIC ECOLOGY English Article Fish parasites; Life history strategies; Cyprinella venusta; Notropis volucellus; Parasite diversity POPULATION REGULATION; BLACKTAIL SHINER; BODY CONDITION; HOST FITNESS; FISH; DIVERSITY; INFECTION; SELECTION; CYCLE; IMMUNOCOMPETENCE Parasitic organisms can affect ecosystems by driving population dynamics of the hosts and influencing community interactions. The life history of the host can determine the relationship with its parasites. Reproductive effort and age of the host are two life history aspects often used to explain parasitic infection. In this study, we examined helminth parasite assemblages in two cyprinids with contrasting reproductive strategies, Cyprinella venusta (crevice spawners) and Notropis volucellus (broadcast spawners), in the Paluxy River (Texas) from May 2014 through October 2015. Host reproduction was measured using the gonadosomatic index, and standard length was used as an estimate of age. Parasite infection was measured using total number of helminths, parasite richness, Shannon's diversity, and Simpson's diversity. Our results revealed significant differences in parasite number and diversity between the two species, but not between males and females within species. Additionally, our results showed that standard length was a better predictor of parasitic infection than the gonadosomatic index. The relationship between host size and parasitic infection was expected; however, the lack of a relationship between gonadosomatic indices and parasitic infection was surprising. In conclusion, standard length was a better predictor of parasitic infection than the gonadosomatic index, and as such multiple species and life history traits should be considered when investigating host-parasite relationships. [Ruehle, Brandon P.; Herrmann, Kristin K.; Higgins, Christopher L.] Tarleton State Univ, Dept Biol Sci, Stephenville, TX 76402 USA Higgins, CL (reprint author), Tarleton State Univ, Dept Biol Sci, Stephenville, TX 76402 USA. higgins@tarleton.edu Ruehle, Brandon/0000-0002-9898-3169 Tarleton State University We would like to thank Tarleton State University for making this research possible through their funding and support. Special thanks to the Parasite Lab at Tarleton State, especially Nicci Carpenter, who made identification of parasite taxa possible. Finally, we would like to thank Matthew Ruehle, Hailee Walker, Robert Downey, and Tylo Farrar for assistance in the field and laboratory. Anderson RC, 2009, KEYS NEMATODE PARASI; BAKER JA, 1994, ENVIRON BIOL FISH, V39, P357, DOI 10.1007/BF00004805; Blasco-Costa I, 2013, PARASITOLOGY, V140, P266, DOI 10.1017/S0031182012001527; BOLGER T, 1989, J FISH BIOL, V34, P171, DOI 10.1111/j.1095-8649.1989.tb03300.x; Bush AO, 1997, J PARASITOL, V83, P575, DOI 10.2307/3284227; Coles James F., 1999, Northeastern Naturalist, V6, P263, DOI 10.2307/3858602; Cureton JC, 2011, BEHAVIOUR, V148, P967, DOI 10.1163/000579511X587282; DIAMOND J M, 1975, Biological Conservation, V7, P129, DOI 10.1016/0006-3207(75)90052-X; Dobson A, 2008, P NATL ACAD SCI USA, V105, P11482, DOI 10.1073/pnas.0803232105; DOBSON AP, 1986, TRENDS ECOL EVOL, V1, P11, DOI 10.1016/0169-5347(86)90060-1; Dogiel V. A., 1958, PARASITOLOGY FISHES; Dogiel VA, 1964, GEN PARASITOLOGY, P516; Edwards RJ, 1997, ECOLOGICAL PROFILES, P1; Euzet L., 1980, Memoires Societe Zoologique de France, V40, P239; FOLSTAD I, 1994, OIKOS, V69, P511, DOI 10.2307/3545863; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Gibbons LM, 2010, KEYS NEMATODE PARASI; GIBSON DI, 2002, KEYS TREMATODA, V1; Grutter AS, 2010, CORAL REEFS, V29, P31, DOI 10.1007/s00338-009-0561-1; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; HARRELL HL, 1978, COPEIA, P60; HEDRICK LESLIE R., 1935, TRANS AMER MICROSC SOC, V54, P307, DOI 10.2307/3222323; Heins DC, 2008, BEHAVIOUR, V145, P625, DOI 10.1163/156853908792451412; Heins David C., 1990, Southeastern Fishes Council Proceedings, V21, P5; Higgins CL, 2015, COPEIA, V103, P272, DOI 10.1643/CG-14-046; Hoffman G. L, 1999, PARASITES N AM FRESH; Holmes J.C., 1976, P21; HOPKINS SEWELL H., 1933, TRANS AMER MICROSC SOC, V52, P147, DOI 10.2307/3222189; Hrabik RA, 1996, 96S001 MAN TECHN CTR, P15; Hudson PJ, 2006, TRENDS ECOL EVOL, V21, P381, DOI 10.1016/j.tree.2006.04.007; HUNTER GEORGE W. III, 1940, TRANS AMER MICROSC SOC, V59, P52, DOI 10.2307/3222816; Hurd H, 2001, TRENDS PARASITOL, V17, P363, DOI 10.1016/S1471-4922(01)01927-4; Johnson PTJ, 2008, ECOL LETT, V11, P1017, DOI 10.1111/j.1461-0248.2008.01212.x; Johnson PTJ, 2012, P NATL ACAD SCI USA, V109, P9006, DOI 10.1073/pnas.1201790109; Johnson PTJ, 2010, TRENDS ECOL EVOL, V25, P362, DOI 10.1016/j.tree.2010.01.005; Johnston C.E., 1993, P600; Jost L, 2006, OIKOS, V113, P363, DOI 10.1111/j.2006.0030-1299.14714.x; Koehler AV, 2010, J PARASITOL, V96, P862, DOI 10.1645/GE-2460.1; KURIS AM, 1980, AM NAT, V116, P570, DOI 10.1086/283647; Lafferty KD, 1999, PARASITOL TODAY, V15, P111, DOI 10.1016/S0169-4758(99)01397-6; Lo CM, 1998, INT J PARASITOL, V28, P1695, DOI 10.1016/S0020-7519(98)00140-4; MAC ARTHUR ROBERT H., 1967; Macnab V, 2009, J FISH BIOL, V75, P2095, DOI 10.1111/j.1095-8649.2009.02411.x; Marcogliese D. J., 2004, ECOHEALTH, V1, P151, DOI DOI 10.1007/S10393-004-0028-3; Marcogliese DJ, 1997, TRENDS ECOL EVOL, V12, P320, DOI 10.1016/S0169-5347(97)01080-X; Marcogliese DJ, 2002, PARASITOLOGY, V124, pS83, DOI 10.1017/S003118200200149X; Moore J, 2013, J EXP BIOL, V216, P11, DOI 10.1242/jeb.074088; Moravec F, 2010, ACTA PARASITOL, V55, P144, DOI 10.2478/s11686-010-0017-3; Munz JT, 2013, AQUAT ECOL, V47, P67, DOI 10.1007/s10452-012-9425-9; POOL D, 1984, J FISH BIOL, V25, P361, DOI 10.1111/j.1095-8649.1984.tb04883.x; POULIN R, 1993, OECOLOGIA, V96, P431, DOI 10.1007/BF00317516; Poulin R, 2000, J FISH BIOL, V56, P123, DOI 10.1006/jfbi.1999.1146; Poulin R, 2007, INT J PARASITOL, V37, P359, DOI 10.1016/j.ijpara.2006.11.009; Poulin R, 2010, ADV STUD BEHAV, V41, P151, DOI 10.1016/S0065-3454(10)41005-0; Randhawa HS, 2007, PARASITOLOGY, V134, P1291, DOI 10.1017/S0031182007002521; Rohlenova K, 2010, J BIOMED BIOTECHNOL, DOI 10.1155/2010/418382; SCOTT ME, 1989, PARASITOL TODAY, V5, P176, DOI 10.1016/0169-4758(89)90140-3; Simkova A, 2005, PARASITOL RES, V95, P65, DOI 10.1007/s00436-004-1261-y; Simkova A, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-29; Thomas C., 2007, FRESHWATER FISHES TE; Thompson RM, 2005, J ANIM ECOL, V74, P77, DOI 10.1111/j.1365-2656.2004.00899.x; Tierney JF, 1996, J FISH BIOL, V49, P483; Toft C. A., 1986, COMMUNITY ECOLOGY, P445; Truemper HA, 2005, J FISH BIOL, V66, P135, DOI 10.1111/j.1095-8649.2004.0058.x; Wickham H, 2011, J STAT SOFTW, V40, P1; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242 67 1 1 2 6 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 1386-2588 1573-5125 AQUAT ECOL Aquat. Ecol. JUN 2017 51 2 247 256 10.1007/s10452-017-9614-7 10 Ecology; Limnology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology EU4HD WOS:000400989500005 2018-11-22 J Chen, BB; Shi, ZY; Sun, SJ Chen, Bin-Bin; Shi, Zeyi; Sun, Shijin Life history strategy as a mediator between childhood environmental unpredictability and adulthood personality PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Life history; Slow/fast strategy; Childhood environmental unpredictability; Personality; Five Factor Model K-FACTOR; INDIVIDUAL-DIFFERENCES; REPRODUCTIVE STRATEGY; RETROSPECTIVE REPORTS; EVOLUTION; PSYCHOPATHOLOGY; EXPERIENCE; COVITALITY; HARSH; RISK Life history (LH) theory provides a unifying perspective on understanding human behaviors as adaptive LH strategies in response to particular environmental conditions. Although several studies have examined the association between personality traits and LH strategies, there is little extant empirical literature examining how early life environmental conditions might be related to personality traits in adulthood. The purpose of the present study was to examine the relationships between childhood environmental unpredictability, life history strategies, and the basic dimensions of personality as identified by the Five Factor Model. A total of 252 undergraduate students completed measures of childhood environmental unpredictability, a slow LH strategy, and personality. Structural equation modeling indicated that, as predicted, a slow LH strategy mediated the association between childhood environmental unpredictability and five personality traits. These results define the evolutionary origin of personality traits. Limitations and suggestions for future research are discussed. (C) 2017 Elsevier Ltd. All rights reserved. [Chen, Bin-Bin; Shi, Zeyi; Sun, Shijin] Fudan Univ, Shanghai, Peoples R China Chen, BB; Sun, SJ (reprint author), Fudan Univ, Dept Psychol, 220 Handan Rd, Shanghai 200433, Peoples R China. chenbinbin@fudan.edu.cn; sunshijin@fudan.edu.cn National Natural Science Foundation of China [31500901]; National Social Science Foundation of China [16BSH090] This research was supported by National Natural Science Foundation of China (31500901) to Bin-Bin Chen, and National Social Science Foundation of China (16BSH090) to Shijin Sun. BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.1111/j.1467-8624.1991.tb01558.x; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; BREWIN CR, 1993, PSYCHOL BULL, V113, P82, DOI 10.1037/0033-2909.113.1.82; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Buss DM, 2009, PERSPECT PSYCHOL SCI, V4, P359, DOI 10.1111/j.1745-6924.2009.01138.x; Carver CS, 2014, FRONT PSYCHOL, V5, DOI 10.3389/fpsyg.2014.01357; Chen BB, 2016, EVOL PSYCHOL-US, V14, DOI 10.1177/1474704916630314; Costa Jr P. T., 1992, REVISED NEO PERSONAL; Del Giudice M, 2015, HDB EVOLUTIONARY PSY, P88, DOI DOI 10.1002/9781119125563.EVPSYCH102; Del Giudice M, 2014, PSYCHOL INQ, V25, P261, DOI 10.1080/1047840X.2014.884918; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2005, HDB EVOLUTIONARY PSY, P851; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Frankenhuis WE, 2012, DEV PSYCHOL, V48, P628, DOI 10.1037/a0025629; FRIEDMAN HS, 1993, J PERS SOC PSYCHOL, V65, P176, DOI 10.1037//0022-3514.65.1.176; Gladden PR, 2009, PERS INDIV DIFFER, V46, P270, DOI 10.1016/j.paid.2008.10.010; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Hampson SE, 2016, PERS INDIV DIFFER, V88, P120, DOI 10.1016/j.paid.2015.08.052; Hardt J, 2004, J CHILD PSYCHOL PSYC, V45, P260, DOI 10.1111/j.1469-7610.2004.00218.x; Jonason PK, 2016, EVOL PSYCHOL-US, V14, DOI 10.1177/1474704915623699; Lukaszewski A, 2015, EVOL PSYCHOL SCI, V1, P131; MACDONALD K, 1995, J PERS, V63, P525, DOI 10.1111/j.1467-6494.1995.tb00505.x; MacKinnon DP, 2004, MULTIVAR BEHAV RES, V39, P99, DOI 10.1207/s15327906mbr3901_4; Manson J. H., 2015, EVOLUTIONARY PSYCHOL, V13, P1; Muthen Linda K., 2012, MPLUS USERS GUIDE; Nettle D, 2006, AM PSYCHOL, V61, P622, DOI 10.1037/0003-066X.61.6.622; Olderbak S, 2014, PERS INDIV DIFFER, V58, P82, DOI 10.1016/j.paid.2013.10.012; Podsakoff PM, 2012, ANNU REV PSYCHOL, V63, P539, DOI 10.1146/annurev-psych-120710-100452; Price ME, 2014, FRONT HUM NEUROSCI, V8, DOI 10.3389/fnhum.2014.00363; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Schmitt DP, 2008, EVOL PSYCHOL, V6, P246, DOI 10.1177/147470490800600204; Strouts P. H., 2016, PERSONALITY EVOLUTIO; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835 37 5 5 2 14 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. JUN 1 2017 111 215 219 10.1016/j.paid.2017.02.032 5 Psychology, Social Psychology EQ3ZJ WOS:000398012200035 2018-11-22 J Li, M; Zheng, Y; Fan, RR; Zhong, QL; Cheng, DL Li, Man; Zheng, Yuan; Fan, RuiRui; Zhong, QuanLin; Cheng, DongLiang Scaling relationships of twig biomass allocation in Pinus hwangshanensis along an altitudinal gradient PLOS ONE English Article WHOLE-PLANT RESPIRATION; BELOW-GROUND BIOMASS; LEAF SIZE; ALLOMETRIC RELATIONSHIPS; HYDRAULIC ARCHITECTURE; DIMINISHING RETURNS; SHOOT ALLOMETRY; NORWAY SPRUCE; GENERAL-MODEL; WOODY-PLANTS Understanding the response of biomass allocation in twigs (the terminal branches of current-year shoots) to environmental change is crucial for elucidating forest ecosystem carbon storage, carbon cycling, and plant life history strategies under a changing climate. On the basis of interspecies investigations of broad-leaved plants, previous studies have demonstrated that plants respond to environmental factors by allocating biomass in an allometric manner between support tissues (i.e., stems) and the leaf biomass of twigs, where the scaling exponent (i.e., slope of a log - log linear relationship, a) is constant, and the scaling constant (i.e., intercept of a log - log linear relationship, log beta) varies with respect to environmental factors. However, little is known about whether the isometric scaling exponents of such biomass allocations remain invariant for single species, particularly conifers, at different altitudes and in different growing periods. In this study, we investigated how twig biomass allocation varies with elevation and period among Pinus hwangshanensis Hsia trees growing in the mountains of Southeast China. Specifically, we explored how twig stem mass, needle mass, and needle area varied throughout the growing period (early, mid-, late) and at three elevations in the Wuyi Mountains. Standardized major axis analysis was used to compare the scaling exponents and scaling constants between the biomass allocations of within-twig components. Scaling relationships between these traits differed with growing period and altitude gradient. During the different growing periods, there was an isometric scaling relationship, with a common slope of 1.0(i.e., a approximate to 1.0), between needle mass and twig mass (the sum of the total needle mass and the stem mass), whereas there were allometric scaling relationships between the stem mass and twig mass and between the needle mass and stem mass of P. hwangshanensis. The scaling constants (log beta) for needle mass vs. twig mass and for needle mass vs. stem mass increased progressively across the growing stages, whereas the scaling constants of stem mass vs. twig mass showed the opposite pattern. The scaling exponents (a) of needle area with respect to needle biomass increased significantly with growing period, changing from an allometric relationship (i.e., a < 1.0) during the early growing period to a nearly isometric relationship (i.e., a approximate to 1.0) during the late growing period. This change possibly reflects the functional adaptation of twigs in different growing periods to meet their specific reproductive or survival needs. At different points along the altitudinal gradient, the relationships among needle mass, twig mass, and stem mass were all isometric (i.e., alpha approximate to 1.0). Moreover, significant differences were found in scaling constants ( log beta) along the altitudinal gradient, such that species had a smaller stem biomass but a relatively larger needle mass at low altitude. In addition, the scaling exponents remained numerically invariant among all three altitudes, with a common slope of 0.8, suggesting that needle area failed to keep pace with the increasing needle mass at different altitudes. Our results indicated that the twig biomass allocation pattern was significantly influenced by altitude and growing period, which reflects the functional adaptation of twigs to meet their specific survival needs under different climatic conditions. [Li, Man; Zheng, Yuan; Fan, RuiRui; Cheng, DongLiang] Fujian Normal Univ, Fujian Prov Key Lab Plant Ecophysiol, Fuzhou, Fujian Province, Peoples R China; [Li, Man; Zheng, Yuan; Fan, RuiRui; Zhong, QuanLin; Cheng, DongLiang] Minist Educ, Key Lab Humid Subtrop Ecogeog Proc, Fuzhou, Fujian Province, Peoples R China Cheng, DL (reprint author), Fujian Normal Univ, Fujian Prov Key Lab Plant Ecophysiol, Fuzhou, Fujian Province, Peoples R China.; Cheng, DL (reprint author), Minist Educ, Key Lab Humid Subtrop Ecogeog Proc, Fuzhou, Fujian Province, Peoples R China. chengdl02@aliyun.com National Natural Science Foundation of China [31370589, 31170374, 31170596]; Fujian Provincial Young Talent Support Plan This study was supported by grants from the National Natural Science Foundation of China (31370589, 31170374 and 31170596) and the Fujian Provincial Young Talent Support Plan. Ackerly DD, 1999, AM J BOT, V86, P1272, DOI 10.2307/2656775; Bazzaz F. A., 1997, PLANT RESOURCE ALLOC; Cavender-Bares J, 2001, PLANT CELL ENVIRON, V24, P1243, DOI 10.1046/j.1365-3040.2001.00797.x; Chen FS, 2012, PLANT ECOL, V213, P1489, DOI 10.1007/s11258-012-0106-5; Chen JF, 2000, CHINESE J SOIL SCI, V31, P97; Cheng DL, 2007, ANN BOT-LONDON, V99, P95, DOI 10.1093/aob/mcl206; Cheng DL, 2010, BIOL LETTERS, V6, P715, DOI 10.1098/rsbl.2010.0070; Cheng DL, 2015, ANN BOT-LONDON, V115, P303, DOI 10.1093/aob/mcu238; Cheng DL, 2014, AM J BOT, V101, P617, DOI 10.3732/ajb.1300360; Cheng J, 2015, FUNCT ECOL, V30, P1; Davis SD, 1999, AM J BOT, V86, P1367, DOI 10.2307/2656919; Duncanson LI, 2015, GLOBAL ECOL BIOGEOGR, V24, P1465, DOI 10.1111/geb.12371; Enquist BJ, 2001, NATURE, V410, P655, DOI 10.1038/35070500; Enquist BJ, 2002, SCIENCE, V295, P1517, DOI 10.1126/science.1066360; Morote FAG, 2012, FOREST ECOL MANAG, V270, P85, DOI 10.1016/j.foreco.2012.01.007; Guo Hong, 2013, Forest Research, V26, P698; Hoque A. T. M. R., 2010, Marine Ecology, Progress Series, V404, P31, DOI 10.3354/meps08505; Huang YX, 2016, FUNCT ECOL, V30, P199, DOI 10.1111/1365-2435.12491; Kangkuso A, 2016, FOR SCI TECHNOL, V12, P43, DOI 10.1080/21580103.2015.1034191; Kleiman D, 2007, J ECOL, V95, P376, DOI 10.1111/j.1365-2745.2006.01205.x; Korner C, 2007, TRENDS ECOL EVOL, V22, P569, DOI 10.1016/j.tree.2007.09.006; Lambers H, 2008, TRENDS ECOL EVOL, V23, P95, DOI 10.1016/j.tree.2007.10.008; Li GY, 2008, FUNCT ECOL, V22, P557, DOI 10.1111/j.1365-2435.2008.01407.x; Li Ling-ling, 2014, Yingyong Shengtai Xuebao, V25, P1849; Li Man, 2017, Yingyong Shengtai Xuebao, V28, P537, DOI 10.13287/j.1001-9332.201702.039; Lin ZG, 1982, METEOROL SCI TECHNOL, V1982, P79; Litton CM, 2007, GLOBAL CHANGE BIOL, V13, P2089, DOI 10.1111/j.1365-2486.2007.01420.x; [刘金福 Liu Jinfu], 2013, [生态学报, Acta Ecologica Sinica], V33, P5731; Luo JX, 2006, FOREST ECOL MANAG, V221, P285, DOI 10.1016/j.foreco.2005.10.004; Lusk CH, 2003, NEW PHYTOL, V160, P329, DOI 10.1046/j.1469-8137.2003.00879.x; Lusk CH, 2000, J BIOGEOGR, V27, P1011, DOI 10.1046/j.1365-2699.2000.00449.x; McCarthy MC, 2007, FUNCT ECOL, V21, P713, DOI 10.1111/j.1365-2435.2007.01276.x; McCulloh KA, 2005, TREE PHYSIOL, V25, P257, DOI 10.1093/treephys/25.3.257; Mensah S, 2016, ANN FOR RES, V59, P49, DOI 10.15287/afr.2016.458; Milla R, 2011, P ROY SOC B, V274, P2109; Milla R, 2009, J ECOL, V97, P972, DOI 10.1111/j.1365-2745.2009.01524.x; Mori S, 2010, P NATL ACAD SCI USA, V107, P1447, DOI 10.1073/pnas.0902554107; Niinemets U, 2007, ANN BOT-LONDON, V100, P283, DOI 10.1093/aob/mcm107; Niinemets U, 2006, NEW PHYTOL, V171, P91, DOI 10.1111/j.1469-8137.2006.01741.x; Niklas K.J., 1994, PLANT ALLOMETRY SCAL; Niklas KJ, 2008, AM J BOT, V95, P549, DOI 10.3732/ajb.0800034; Niklas KJ, 2007, P NATL ACAD SCI USA, V104, P8891, DOI 10.1073/pnas.0701135104; Niklas KJ, 2009, AM J BOT, V96, P531, DOI 10.3732/ajb.0800250; Niklas KJ, 2005, ANN BOT-LONDON, V95, P315, DOI 10.1093/aob/mci028; Niklas KJ, 2002, AM J BOT, V89, P812, DOI 10.3732/ajb.89.5.812; NIKLAS KJ, 1992, OECOLOGIA, V90, P518, DOI 10.1007/BF01875445; Niklas KJ, 1999, NEW PHYTOL, V143, P19, DOI 10.1046/j.1469-8137.1999.00441.x; Nikolova PS, 2009, EUR J FOREST RES, V128, P145, DOI 10.1007/s10342-008-0211-0; Normand F, 2008, NEW PHYTOL, V178, P590, DOI 10.1111/j.1469-8137.2008.02380.x; Pan S, 2013, PLOS ONE, V8, P65; Pan Shao-An, 2015, Chinese Journal of Plant Ecology, V39, P971, DOI 10.17521/cjpe.2015.0094; Peng YH, 2010, FUNCT ECOL, V24, P502, DOI 10.1111/j.1365-2435.2009.01667.x; Pickup M, 2005, FUNCT ECOL, V19, P88, DOI 10.1111/j.0269-8463.2005.00927.x; Poorter H, 2000, AUST J PLANT PHYSIOL, V27, P1191, DOI 10.1071/PP99173; Poorter H, 2012, NEW PHYTOL, V193, P30, DOI 10.1111/j.1469-8137.2011.03952.x; Preston KA, 2003, AM J BOT, V90, P1502, DOI 10.3732/ajb.90.10.1502; Pretzsch H, 2012, SOUTH FORESTS, V74, P237, DOI 10.2989/20702620.2012.741794; Price CA, 2007, P NATL ACAD SCI USA, V104, P13204, DOI 10.1073/pnas.0702242104; R Development Core Team, 2013, LANGUANGE ENV STAT C; Sack L, 2002, OECOLOGIA, V131, P175, DOI 10.1007/s00442-002-0873-0; Scheepens JF, 2010, OECOLOGIA, V164, P141, DOI 10.1007/s00442-010-1650-0; Seifert T, 2009, EUR J FOREST RES, V128, P155, DOI 10.1007/s10342-008-0219-5; Sun SC, 2006, ANN BOT-LONDON, V97, P97, DOI 10.1093/aob/mcj004; Warton DI, 2006, BIOL REV, V81, P259, DOI 10.1017/S1464793106007007; Warton DI, 2012, METHODS ECOL EVOL, V3, P257, DOI 10.1111/j.2041-210X.2011.00153.x; Weiner J, 2004, PERSPECT PLANT ECOL, V6, P207, DOI 10.1078/1433-8319-00083; West GB, 1999, SCIENCE, V284, P1677, DOI 10.1126/science.284.5420.1677; West GB, 1997, SCIENCE, V276, P122, DOI 10.1126/science.276.5309.122; Westoby M, 2002, ANNU REV ECOL SYST, V33, P125, DOI 10.1146/annurev.ecolsys.33.010802.150452; Westoby M, 2003, OECOLOGIA, V135, P621, DOI [10.1007/s00442-003-1378-1, 10.1007/s00442-003-1231-6]; Xiang SA, 2009, TREES-STRUCT FUNCT, V23, P637, DOI 10.1007/s00468-008-0308-6; Yang XD, 2014, ACTA OECOL, V60, P17, DOI 10.1016/j.actao.2014.07.004; Yang YX, 2015, TREES-STRUCT FUNCT, V29, P737, DOI 10.1007/s00468-014-1151-6; Zhang H, 2016, ECOL ENG, V91, P7, DOI 10.1016/j.ecoleng.2016.01.040; Zhang WP, 2011, ECOL RES, V26, P819, DOI 10.1007/s11284-011-0843-2; ZHENG CH Y, 2004, BIODIVERSITY SCI, V12, P63; Zhu Jie-Dong, 2011, Chinese Journal of Plant Ecology, V35, P687, DOI 10.3724/SP.J.1258.2011.00687 77 0 0 4 19 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One MAY 26 2017 12 5 e0178344 10.1371/journal.pone.0178344 15 Multidisciplinary Sciences Science & Technology - Other Topics EV8VT WOS:000402063000038 28552954 DOAJ Gold, Green Published 2018-11-22 J Simkova, O; Frydlova, P; Zampachova, B; Frynta, D; Landova, E Simkova, Olgas; Frydlova, Petra; Zampachova, Barbora; Frynta, Daniel; Landova, Eva Development of behavioural profile in the Northern common boa (Boa imperator): Repeatable independent traits or personality? PLOS ONE English Article CONSISTENT INDIVIDUAL-DIFFERENCES; LIFE-HISTORY STRATEGIES; SNAKE THAMNOPHIS-RADIX; TITS PARUS-MAJOR; GREAT TITS; ANTIPREDATOR RESPONSES; GARTER SNAKE; COPING STYLES; OPEN-FIELD; EUBLEPHARIS-MACULARIUS Recent studies of animal personality have focused on its proximate causation and ecological and evolutionary significance in particular, but the question of its development was largely overlooked. The attributes of personality are defined as between-individual differences in behaviour, which are consistent over time (differential consistency) and contexts (contextual generality) and both can be affected by development. We assessed several candidates for personality variables measured in various tests with different contexts over several life-stages (juveniles, older juveniles, subadults and adults) in the Northern common boa. Variables describing foraging/feeding decision and some of the defensive behaviours expressed as individual average values are highly repeatable and consistent. We found two main personality axes-one associated with foraging/feeding and the speed of decision, the other reflecting agonistic behaviour. Intensity of behaviour in the feeding context changes during development, but the level of agonistic behaviour remains the same. The juveniles and adults have a similar personality structure, but there is a period of structural change of behaviour during the second year of life (subadults). These results require a new theoretical model to explain the selection pressures resulting in this developmental pattern of personality. We also studied the proximate factors and their relationship to behavioural characteristics. Physiological parameters (heart and breath rate stress response) measured in adults clustered with variables concerning the agonistic behavioural profile, while no relationship between the juvenile/adult body size and personality concerning feeding/foraging and the agonistic behavioural profile was found. Our study suggests that it is important for studies of personality development to focus on both the structural and differential consistency, because even though behaviour is differentially consistent, the structure can change. [Simkova, Olgas; Frydlova, Petra; Zampachova, Barbora; Frynta, Daniel; Landova, Eva] Charles Univ Prague, Dept Zool, Fac Sci, Prague, Czech Republic; [Zampachova, Barbora; Frynta, Daniel; Landova, Eva] Natl Inst Mental Hlth, Klecany, Czech Republic Frynta, D; Landova, E (reprint author), Charles Univ Prague, Dept Zool, Fac Sci, Prague, Czech Republic.; Frynta, D; Landova, E (reprint author), Natl Inst Mental Hlth, Klecany, Czech Republic. frynta@centrum.cz; evalandova@seznam.cz Landova, Eva/R-8759-2017; Zampachova, Barbora/R-9320-2017; Frynta, Daniel/L-7350-2016; Frydlova, Petra/P-5008-2016 Landova, Eva/0000-0001-8365-8710; Zampachova, Barbora/0000-0002-6285-0495; Frynta, Daniel/0000-0002-1375-7972; Frydlova, Petra/0000-0001-9385-9743 MEYS under NPU I program; Grant Agency of Charles University [1310414, 346315]; Czech Science Foundation (GACR) [17-15991S]; [LO1611] This study is a result of the research funded by the project Nr. LO1611 with financial support from the MEYS under the NPU I program (DF EL BZ) (http://www.msmt.cz/vyzkum-a-vyvoj-2/npu-i-lo-1). The project was supported by the Grant Agency of Charles University (1310414 and 346315) (DF EL) (http://www.cuni.cz/UKEN-65.html) and by the Czech Science Foundation (GACR) project Nr. 17-15991S (EL DF) (https://gacr.cz/en/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Aloisi AM, 1998, BRAIN RES BULL, V47, P57, DOI 10.1016/S0361-9230(98)00063-X; Aplin LM, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.1016; ARCHER J, 1973, ANIM BEHAV, V21, P205, DOI 10.1016/S0003-3472(73)80065-X; ARNOLD SJ, 1984, ANIM BEHAV, V32, P1108, DOI 10.1016/S0003-3472(84)80227-4; Bell AM, 2009, ANIM BEHAV, V77, P771, DOI 10.1016/j.anbehav.2008.12.022; Bell AM, 2004, ANIM BEHAV, V68, P1339, DOI 10.1016/j.anbehav.2004.05.007; Bergmuller R, 2010, TRENDS ECOL EVOL, V25, P504, DOI 10.1016/j.tree.2010.06.012; Besson AA, 2016, BIOL REV, V91, P1065, DOI 10.1111/brv.12210; BOISSY A, 1995, Q REV BIOL, V70, P165, DOI 10.1086/418981; Bousquet CAH, 2015, ANIM BEHAV, V110, P145, DOI 10.1016/j.anbehav.2015.09.024; Briard L, 2015, ETHOLOGY, V121, P888, DOI 10.1111/eth.12402; BRODIE ED, 1993, ANIM BEHAV, V45, P851, DOI 10.1006/anbe.1993.1106; Budaev SV, 2010, ETHOLOGY, V116, P472, DOI 10.1111/j.1439-0310.2010.01758.x; CANDLAND DK, 1969, ANN NY ACAD SCI, V159, P831, DOI 10.1111/j.1749-6632.1969.tb12982.x; Carazo P, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.3275; Card DC, 2016, MOL PHYLOGENET EVOL, V102, P104, DOI 10.1016/j.ympev.2016.05.034; Careau V, 2012, PHYSIOL BIOCHEM ZOOL, V85, P543, DOI 10.1086/666970; Carere C, 2004, PHYSIOL BEHAV, V82, P905, DOI 10.1016/j.physbeh.2004.07.009; Carere C, 2005, ANIM BEHAV, V70, P795, DOI 10.1016/j.anbehav.2005.01.003; Carere C, 2010, CURR ZOOL, V56, P728; Carrasco JL, 2005, STAT MED, V24, P4021, DOI 10.1002/sim.2397; Carter AW, 2016, PHYSIOL BEHAV, V155, P46, DOI 10.1016/j.physbeh.2015.11.034; Caspi A, 2005, ANNU REV PSYCHOL, V56, P453, DOI 10.1146/annurev.psych.55.090902.141913; Chapman BB, 2013, PLOS ONE, V8; CHISZAR D, 1976, ANIM LEARN BEHAV, V4, P273, DOI 10.3758/BF03214049; CLARK CW, 1994, BEHAV ECOL, V5, P159, DOI 10.1093/beheco/5.2.159; Class B, 2016, BEHAV ECOL SOCIOBIOL, V70, P733, DOI 10.1007/s00265-016-2096-0; Cote J, 2007, P R SOC B, V274, P383, DOI 10.1098/rspb.2006.3734; Dall SRX, 2004, ECOL LETT, V7, P734, DOI 10.1111/j.1461-0248.2004.00618.x; de Boer SF, 2017, NEUROSCI BIOBEHAV R, V74, P401, DOI 10.1016/j.neubiorev.2016.07.008; delBarrio V, 1997, PERS INDIV DIFFER, V23, P327, DOI 10.1016/S0191-8869(97)00030-5; Dingemanse NJ, 2010, PHILOS T R SOC B, V365, P3947, DOI 10.1098/rstb.2010.0221; Dingemanse NJ, 2002, ANIM BEHAV, V64, P929, DOI 10.1006/anbe.2002.2006; DuRant SE, 2008, GEN COMP ENDOCR, V156, P126, DOI 10.1016/j.ygcen.2007.12.004; Edenbrow M, 2013, OIKOS, V122, P667, DOI 10.1111/j.1600-0706.2012.20556.x; FLORES D, 1994, PHYSIOL BEHAV, V55, P1067, DOI 10.1016/0031-9384(94)90389-1; Frynta D, 2016, SCI NATURE, V103; Gardner-Santana LC, 2009, COPEIA, P363, DOI 10.1643/CP-07-271; Gosling SD, 2001, PSYCHOL BULL, V127, P45, DOI 10.1037/0033-2909.127.1.45; Groothuis TGG, 2011, DEV PSYCHOBIOL, V53, P641, DOI 10.1002/dev.20574; Guenther A, 2014, ANIM BEHAV, V90, P131, DOI 10.1016/j.anbehav.2014.01.032; Guenther A, 2013, BEHAV ECOL, V24, P402, DOI 10.1093/beheco/ars177; Gullone E, 2000, J ADOLESCENCE, V23, P393, DOI 10.1006/jado.2000.0327; Gyuris E, 2012, ANIM BEHAV, V84, P103, DOI 10.1016/j.anbehav.2012.04.014; Hawlena D, 2006, BEHAV ECOL, V17, P889, DOI 10.1093/beheco/arl023; Hedrick AV, 2012, BEHAV ECOL SOCIOBIOL, V66, P407, DOI 10.1007/s00265-011-1286-z; Herborn KA, 2011, J EXP BIOL, V214, P1732, DOI 10.1242/jeb.051383; Herczeg G, 2013, J EVOLUTION BIOL, V26, P955, DOI 10.1111/jeb.12103; Herzog H, 1974, HERPETOLOGICA, P285; HERZOG HA, 1992, DEV PSYCHOBIOL, V25, P199, DOI 10.1002/dev.420250305; HERZOG HA, 1988, ETHOLOGY, V77, P250; HERZOG HA, 1987, J COMP PSYCHOL, V101, P387, DOI 10.1037//0735-7036.101.4.387; HERZOG HA, 1986, J COMP PSYCHOL, V100, P372, DOI 10.1037//0735-7036.100.4.372; HERZOG HA, 1989, DEV PSYCHOBIOL, V22, P489, DOI 10.1002/dev.420220507; Hudson R, 2011, DEV PSYCHOBIOL, V53, P564, DOI 10.1002/dev.20535; Hynkova I, 2009, ZOOL SCI, V26, P623, DOI 10.2108/zsj.26.623; Jones KA, 2010, P R SOC B, V277, P625, DOI 10.1098/rspb.2009.1607; Koolhaas JM, 2010, FRONT NEUROENDOCRIN, V31, P307, DOI 10.1016/j.yfrne.2010.04.001; Koolhaas JM, 1999, NEUROSCI BIOBEHAV R, V23, P925, DOI 10.1016/S0149-7634(99)00026-3; Kralj-Fiser S, 2014, ANIM BEHAV, V91, P41, DOI 10.1016/j.anbehav.2014.02.016; Landova E, 2013, BEHAV ECOL SOCIOBIOL, V67, P1113, DOI 10.1007/s00265-013-1536-3; Langkilde T, 2006, J EXP BIOL, V209, P1035, DOI 10.1242/jeb.02112; Le Galliard JF, 2015, J EVOLUTION BIOL, V28, P1144, DOI 10.1111/jeb.12641; Le Galliard JF, 2013, FUNCT ECOL, V27, P136, DOI 10.1111/1365-2435.12017; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Li H, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2016.0217; Lillywhite HB, 1999, COMP BIOCHEM PHYS A, V124, P369, DOI 10.1016/S1095-6433(99)00129-4; LIND AJ, 1994, ANIM BEHAV, V48, P1261, DOI 10.1006/anbe.1994.1362; Lopez P, 2005, ANIM BEHAV, V69, P1, DOI 10.1016/j.anbehav.2004.05.010; Luttbeg B, 2010, PHILOS T R SOC B, V365, P3977, DOI 10.1098/rstb.2010.0207; Magnhagen C, 2007, BEHAV ECOL SOCIOBIOL, V61, P525, DOI 10.1007/s00265-006-0280-3; Mayer M, 2016, BEHAVIOUR, V153, P313, DOI 10.1163/1568539X-00003343; McCowan LSC, 2015, BEHAV ECOL, V26, P735, DOI 10.1093/beheco/aru239; McEvoy J, 2015, J ZOOL, V296, P58, DOI 10.1111/jzo.12217; Mell H, 2016, BEHAV ECOL SOCIOBIOL, V70, P951, DOI 10.1007/s00265-016-2117-z; Miller R, 2016, PLOS ONE, V11; MONTGOMERY GG, 1978, COPEIA, P532; Montiglio PO, 2014, J ANIM ECOL, V83, P720, DOI 10.1111/1365-2656.12174; Montiglio PO, 2012, ANIM BEHAV, V84, P1071, DOI 10.1016/j.anbehav.2012.08.010; Muller T, 2015, FRONTIERS ZOOLOGY, V12; Naguib M, 2011, DEV PSYCHOBIOL, V53, P592, DOI 10.1002/dev.20533; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Nyqvist MJ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0031619; OSSENKOPP KP, 1994, BEHAV PROCESS, V31, P129, DOI 10.1016/0376-6357(94)90001-9; Ott BD, 2007, J EXP BIOL, V210, P340, DOI 10.1242/jeb.02626; Overli O, 2007, NEUROSCI BIOBEHAV R, V31, P396, DOI 10.1016/j.neubiorev.2006.10.006; Petelle MB, 2013, ANIM BEHAV, V86, P1147, DOI 10.1016/j.anbehav.2013.09.016; Reale D, 2009, J EVOLUTION BIOL, V22, P1599, DOI 10.1111/j.1420-9101.2009.01781.x; Reale D, 2012, ANIMAL PERSONALITY E; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Reed R. N., 2009, GIANT CONSTRICTORS B; Schuett GW, 2005, J ZOOL, V267, P363, DOI 10.1017/S0952836905007624; Secor SM, 2001, COMP BIOCHEM PHYS A, V128, P565, DOI 10.1016/S1095-6433(00)00325-1; Secor SM, 2000, J EXP BIOL, V203, P2447; Sih A, 2003, ANIM BEHAV, V65, P29, DOI 10.1006/anbe.2002.2025; Sih A, 2004, Q REV BIOL, V79, P241, DOI 10.1086/422893; Sinn DL, 2008, ANIM BEHAV, V75, P433, DOI 10.1016/j.anbehav.2007.05.008; Sinn DL, 2005, J COMP PSYCHOL, V119, P99, DOI 10.1037/0735-7036.119.1.99; Siviter H, 2017, ANIM COGN, V20, P109, DOI 10.1007/s10071-016-1030-1; Smith BR, 2012, BEHAVIOUR, V149, P187, DOI 10.1163/156853912X634133; Snijders L, 2015, ANIM BEHAV, V109, P45, DOI 10.1016/j.anbehav.2015.07.037; Sommer-Trembo C, 2016, J ETHOL, V34, P155, DOI 10.1007/s10164-016-0460-1; Stamps JA, 2014, FRONT ECOL EVOL, V2, P69, DOI DOI 10.3389/FEV0.2014.00069; Stamps J, 2010, BIOL REV, V85, P301, DOI 10.1111/j.1469-185X.2009.00103.x; Stamps JA, 2016, CURR OPIN BEHAV SCI, V12, P18, DOI 10.1016/j.cobeha.2016.08.008; Stamps JA, 2014, AM NAT, V184, P647, DOI 10.1086/678116; Stamps JA, 2010, PHILOS T R SOC B, V365, P4029, DOI 10.1098/rstb.2010.0218; Statsoft S, 2001, STATISTICA; STINNER JN, 1993, AM J PHYSIOL, V264, pR79; Stowe M, 2007, J ORNITHOL, V148, pS179, DOI 10.1007/s10336-007-0145-1; Suchomelova P, 2015, BEHAV PROCESS, V120, P14, DOI 10.1016/j.beproc.2015.08.005; Talarovicova A, 2009, HORM BEHAV, V55, P235, DOI 10.1016/j.yhbeh.2008.10.010; Team RDC, 2012, R LANG ENV STAT COMP; Trillmich F, 2011, DEV PSYCHOBIOL, V53, P505, DOI 10.1002/dev.20573; Trnik M, 2011, J COMP PSYCHOL, V125, P22, DOI 10.1037/a0021186; Urszan TJ, 2015, OECOLOGIA, V178, P129, DOI 10.1007/s00442-014-3207-0; van Oers K, 2004, P ROY SOC B-BIOL SCI, V271, P65, DOI 10.1098/rspb.2003.2518; VERBEEK MEM, 1994, ANIM BEHAV, V48, P1113, DOI 10.1006/anbe.1994.1344; Verbeek MEM, 1996, EXPLORATION AGGRESSI, P11; Vetter SG, 2016, ANIM BEHAV, V115, P193, DOI 10.1016/j.anbehav.2016.03.026; Webb JK, 2003, AUSTRAL ECOL, V28, P601, DOI 10.1046/j.1442-9993.2003.t01-1-01316.x; Weiss A, 2007, AM J PRIMATOL, V69, P1264, DOI 10.1002/ajp.20428; Wilson ADM, 2012, BEHAV ECOL, V23, P1316, DOI 10.1093/beheco/ars123; Wilson D, 2007, BIOL LETT-UK, V3, P40, DOI 10.1098/rsbl.2006.0574; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wuerz Y, 2015, FRONTIERS ZOOLOGY, V12; Zhao DP, 2015, CURR ZOOL, V61, P966, DOI 10.1093/czoolo/61.6.966 127 3 3 2 17 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One MAY 24 2017 12 5 e0177911 10.1371/journal.pone.0177911 35 Multidisciplinary Sciences Science & Technology - Other Topics EV8VE WOS:000402061500044 28542424 DOAJ Gold, Green Published 2018-11-22 J Apfelbeck, B; Helm, B; Illera, JC; Mortega, KG; Smiddy, P; Evans, NP Apfelbeck, Beate; Helm, Barbara; Illera, Juan Carlos; Mortega, Kim G.; Smiddy, Patrick; Evans, Neil P. Baseline and stress-induced levels of corticosterone in male and female Afrotropical and European temperate stonechats during breeding BMC EVOLUTIONARY BIOLOGY English Article Life history; Corticosterone; Tropical-temperate; Simulated territorial intrusion (STI); Seasonal SAXICOLA-TORQUATA-AXILLARIS; HORMONE-BEHAVIOR INTERACTIONS; COMMON-GARDEN EXPERIMENT; LIFE-HISTORY STRATEGIES; TERN STERNA-HIRUNDO; REPRODUCTIVE SUCCESS; PASSERINE BIRD; TERRITORIAL AGGRESSION; ADRENOCORTICAL-RESPONSE; ENVIRONMENTAL-FACTORS Background: Latitudinal variation in avian life histories falls along a slow-fast pace of life continuum: tropical species produce small clutches, but have a high survival probability, while in temperate species the opposite pattern is found. This study investigated whether differential investment into reproduction and survival of tropical and temperate species is paralleled by differences in the secretion of the vertebrate hormone corticosterone (CORT). Depending on circulating concentrations, CORT can both act as a metabolic (low to medium levels) and a stress hormone (high levels) and, thereby, influence reproductive decisions. Baseline and stress-induced CORT was measured across sequential stages of the breeding season in males and females of closely related taxa of stonechats (Saxicola spp) from a wide distribution area. We compared stonechats from 13 sites, representing Canary Islands, European temperate and East African tropical areas. Stonechats are highly seasonal breeders at all these sites, but vary between tropical and temperate regions with regard to reproductive investment and presumably also survival. Results: In accordance with life-history theory, during parental stages, post-capture (baseline) CORT was overall lower in tropical than in temperate stonechats. However, during mating stages, tropical males had elevated post-capture (baseline) CORT concentrations, which did not differ from those of temperate males. Female and male mates of a pair showed correlated levels of post-capture CORT when sampled after simulated territorial intrusions. In contrast to the hypothesis that species with low reproduction and high annual survival should be more risk-sensitive, tropical stonechats had lower stress-induced CORT concentrations than temperate stonechats. We also found relatively high post-capture (baseline) and stress-induced CORT concentrations, in slow-paced Canary Islands stonechats. Conclusions: Our data support and refine the view that baseline CORT facilitates energetically demanding activities in males and females and reflects investment into reproduction. Low parental workload was associated with lower post-capture (baseline) CORT as expected for a slow pace of life in tropical species. On a finer resolution, however, this tropical-temperate contrast did not generally hold. Post-capture (baseline) CORT was higher during mating stages in particular in tropical males, possibly to support the energetic needs of mate-guarding. Counter to predictions based on life history theory, our data do not confirm the hypothesis that long-lived tropical populations have higher stress-induced CORT concentrations than short-lived temperate populations. Instead, in the predator-rich tropical environments of African stonechats, a dampened stress response during parental stages may increase survival probabilities of young. Overall our data further support an association between life history and baseline CORT, but challenge the role of stress-induced CORT as a mediator of tropical-temperate variation in life history. [Apfelbeck, Beate; Helm, Barbara; Mortega, Kim G.; Evans, Neil P.] Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Glasgow G12 8QQ, Lanark, Scotland; [Apfelbeck, Beate] Tech Univ Munich, Sch Life Sci Weihenstephan, Dept Ecol & Ecosystemmanagement, Terr Ecol Res Grp, D-85354 Freising Weihenstephan, Germany; [Mortega, Kim G.] Max Planck Inst Ornithol, Dept Migrat & Immunoecol, D-78315 Radolfzell am Bodensee, Germany; [Illera, Juan Carlos] Oviedo Univ, Res Unit Biodivers UO CSIC PA, Campus Mieres, Mieres 33600, Spain; [Smiddy, Patrick] Univ Coll Cork, Sch Biol Earth & Environm Sci, Cork T12 YN60, Ireland Apfelbeck, B (reprint author), Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Glasgow G12 8QQ, Lanark, Scotland.; Apfelbeck, B (reprint author), Tech Univ Munich, Sch Life Sci Weihenstephan, Dept Ecol & Ecosystemmanagement, Terr Ecol Res Grp, D-85354 Freising Weihenstephan, Germany. bea.apfelbeck@gmx.de Illera, Juan Carlos/C-6583-2014 Illera, Juan Carlos/0000-0002-4389-0264; Mortega, Kim Geraldine/0000-0002-2645-6677 Alexander von Humboldt Foundation; British Society for Neuroendocrinolgy; German Science foundation (DFG) [HE3488/5-1] This work was supported by the Alexander von Humboldt Foundation (BA), the British Society for Neuroendocrinolgy (BA, NE), and the German Science foundation (DFG, research grant to BH grant HE3488/5-1). Angelier F, 2011, J EVOLUTION BIOL, V24, P1274, DOI 10.1111/j.1420-9101.2011.02260.x; Angelier F, 2009, P R SOC B, V276, P3545, DOI 10.1098/rspb.2009.0868; Angelier F, 2009, FUNCT ECOL, V23, P784, DOI 10.1111/j.1365-2435.2009.01545.x; Apfelbeck B, 2017, BMC EVOL BIOL, V17, DOI 10.1186/s12862-017-0944-9; Apfelbeck B, 2017, HORM BEHAV, V87, P89, DOI 10.1016/j.yhbeh.2016.11.002; ASTHEIMER LB, 1992, ORNIS SCAND, V23, P355, DOI 10.2307/3676661; Bokony V., 2009, AM NAT, V173, P589; Bolker BM, 2009, TRENDS ECOL EVOL, V24, P127, DOI 10.1016/j.tree.2008.10.008; Bonier F, 2011, BIOL LETTERS, V7, P944, DOI 10.1098/rsbl.2011.0391; Bonier F, 2009, TRENDS ECOL EVOL, V24, P634, DOI 10.1016/j.tree.2009.04.013; Bonier F, 2009, GEN COMP ENDOCR, V163, P208, DOI 10.1016/j.ygcen.2008.12.013; Bowers EK, 2016, HORM BEHAV, V83, P6, DOI 10.1016/j.yhbeh.2016.05.010; Breuner CW, 2008, GEN COMP ENDOCR, V157, P288, DOI 10.1016/j.ygcen.2008.05.017; Breuner CW, 2003, HORM BEHAV, V43, P115, DOI 10.1016/S0018-506X(02)00020-X; Brooks SP, 1998, J COMPUT GRAPH STAT, V7, P434, DOI 10.2307/1390675; Buttemer WA, 2015, HORM BEHAV, V76, P34, DOI 10.1016/j.yhbeh.2015.02.002; Canoine V, 2005, HORM BEHAV, V47, P563, DOI 10.1016/j.yhbeh.2004.12.007; Canoine V, 2002, HORM BEHAV, V41, P1, DOI 10.1006/hbeh.2001.1720; Illera JC, 2008, ACTA OECOL, V34, P1, DOI 10.1016/j.actao.2008.01.003; Illera JC, 2016, ARDEOLA, V63, P15, DOI 10.13157/arla.63.1.2016.rp1; Charlier TD, 2009, HORM BEHAV, V56, P339, DOI 10.1016/j.yhbeh.2009.06.012; Christe P, 2012, P ROY SOC B-BIOL SCI, V279, P1142, DOI 10.1098/rspb.2011.1546; Cornelius JM, 2012, BIOL LETTERS, V8, P312, DOI 10.1098/rsbl.2011.0865; Crossin GT, 2013, GEN COMP ENDOCR, V193, P112, DOI 10.1016/j.ygcen.2013.07.011; Crossin GT, 2012, AM NAT, V180, pE31, DOI 10.1086/666001; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; Denwood MJ, 2016, J STAT SOFTW, V71, P1, DOI 10.18637/jss.v071.i09; Deviche P, 2016, GEN COMP ENDOCR, V235, P78, DOI 10.1016/j.ygcen.2016.06.011; Deviche P, 2014, GEN COMP ENDOCR, V203, P120, DOI 10.1016/j.ygcen.2014.01.010; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; DITTAMI JP, 1985, J ZOOL, V207, P357; Fletcher QE, 2013, EVOLUTION, V67, P1527, DOI 10.1111/evo.12014; FLINKS H, 1984, Vogelwelt, V105, P41; Flinks H., 1987, CHARADRIUS, V23, P128; Flinks H, 2008, IBIS, V150, P687, DOI 10.1111/j.1474-919X.2008.00833.x; Flinks Heiner, 1994, Limicola, V8, P28; Gelman A., 2015, ARM DATA ANAL USING; Gill SA, 2008, HORM BEHAV, V54, P115, DOI 10.1016/j.yhbeh.2008.02.003; Goymann W, 2017, FRON ECOL EVOL, V5, P1; Goymann W, 2007, GEN COMP ENDOCR, V150, P191, DOI 10.1016/j.ygcen.2006.09.014; Goymann W, 2006, HORM BEHAV, V50, P779, DOI 10.1016/j.yhbeh.2006.07.002; GWINNER E, 1994, BEHAV ECOL SOCIOBIOL, V34, P321, DOI 10.1007/BF00197002; Gwinner E, 1995, AUK, V112, P748; Hau M, 2016, ADV STUD BEHAV, V48, P41, DOI 10.1016/bs.asb.2016.01.002; Hau M, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P349; Hau M, 2010, P ROY SOC B-BIOL SCI, V277, P3203, DOI 10.1098/rspb.2010.0673; Held L, 2014, APPL STAT INFERENCE; Hodges CJ, 2015, J EVOLUTION BIOL, V28, P1383, DOI 10.1111/jeb.12662; Holberton RL, 2003, AUK, V120, P1140, DOI 10.1642/0004-8038(2003)120[1140:MTCSRA]2.0.CO;2; Illera JC, 2006, J AVIAN BIOL, V37, P447, DOI 10.1111/j.2006.0908-8857.03676.x; Illera Juan Carlos, 2002, Ardeola, V49, P273; Jarvisto PE, 2016, BEHAV ECOL SOCIOBIOL, V70, P157, DOI 10.1007/s00265-015-2034-6; Jetz W, 2008, PLOS BIOL, V6, P2650, DOI 10.1371/journal.pbio.0060303; Jones BC, 2016, HORM BEHAV, V78, P72, DOI 10.1016/j.yhbeh.2015.10.017; KETTERSON ED, 1992, AM NAT, V140, pS33, DOI 10.1086/285396; KLAASSEN M, 1995, OECOLOGIA, V104, P424, DOI 10.1007/BF00341339; KONIG S, 1995, J AVIAN BIOL, V26, P247, DOI 10.2307/3677326; Koren L, 2012, P ROY SOC B-BIOL SCI, V279, P1560, DOI 10.1098/rspb.2011.2062; Korner-Nievergelt F., 2015, BAYESIAN DATA ANAL E; Landys MM, 2007, PHYSIOL BIOCHEM ZOOL, V80, P228, DOI 10.1086/510564; Landys MM, 2006, GEN COMP ENDOCR, V148, P132, DOI 10.1016/j.ygcen.2006.02.013; Landys MM, 2010, HORM BEHAV, V58, P317, DOI 10.1016/j.yhbeh.2010.02.013; Love OP, 2014, GEN COMP ENDOCR, V199, P65, DOI 10.1016/j.ygcen.2014.01.001; Marasco V, 2011, HORM BEHAV, V60, P414, DOI 10.1016/j.yhbeh.2011.07.010; Martin TE, 2015, SCIENCE, V349, P966, DOI 10.1126/science.aad1173; Moller AP, 2007, J EVOLUTION BIOL, V20, P750, DOI 10.1111/j.1420-9101.2006.01236.x; Mortega KG, 2014, FRONT ZOOL, V11, DOI 10.1186/s12983-014-0085-6; Muller C, 2007, GEN COMP ENDOCR, V154, P128, DOI 10.1016/j.ygcen.2007.05.031; Newman AEM, 2008, ENDOCRINOLOGY, V149, P2537, DOI 10.1210/en.2007-1363; Nilsson JA, 2002, P ROY SOC B-BIOL SCI, V269, P1735, DOI 10.1098/rspb.2002.2071; Nogales M, 2004, CONSERV BIOL, V18, P310, DOI 10.1111/j.1523-1739.2004.00442.x; NUR N, 1988, EVOLUTION, V42, P351, DOI 10.1111/j.1558-5646.1988.tb04138.x; Ouyang JQ, 2013, J EVOLUTION BIOL, V26, P1988, DOI 10.1111/jeb.12202; Ouyang JQ, 2013, HORM BEHAV, V63, P776, DOI 10.1016/j.yhbeh.2013.03.002; Ouyang JQ, 2012, ANIM BEHAV, V84, P261, DOI 10.1016/j.anbehav.2012.05.006; Ouyang JQ, 2011, P ROY SOC B-BIOL SCI, V278, P2537, DOI 10.1098/rspb.2010.2490; Peach WJ, 2001, OIKOS, V93, P235, DOI 10.1034/j.1600-0706.2001.930207.x; Peig J, 2010, FUNCT ECOL, V24, P1323, DOI 10.1111/j.1365-2435.2010.01751.x; Plummer M, 2003, P 3 INT WORKSH DISTR; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; RcoreTeam, R LANG ENV STAT COMP; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Riechert J, 2014, OECOLOGIA, V176, P715, DOI 10.1007/s00442-014-3040-5; Riechert J, 2014, PHYSIOL BIOCHEM ZOOL, V87, P420, DOI 10.1086/675682; Romero LM, 2009, HORM BEHAV, V55, P375, DOI 10.1016/j.yhbeh.2008.12.009; Romero LM, 2005, COMP BIOCHEM PHYS A, V140, P73, DOI 10.1016/j.cbpb.2004.11.004; Romero LM, 2002, GEN COMP ENDOCR, V128, P1; Rosvall KA, 2012, HORM BEHAV, V62, P418, DOI 10.1016/j.yhbeh.2012.07.009; Russell EM, 2004, BEHAV ECOL, V15, P831, DOI 10.1093/beheco/arh088; Scheuerlein A, 2001, P ROY SOC B-BIOL SCI, V268, P1575, DOI 10.1098/rspb.2001.1691; Scheuerlein A., 2000, CONTROL REPROD TROPI; Scheuerlein A, 1999, P 22 INT ORN C DURB, P1756; Schmid B, 2013, OECOLOGIA, V173, P33, DOI 10.1007/s00442-013-2598-7; Schwabl H, 2005, HORM BEHAV, V47, P503, DOI 10.1016/j.yhbeh.2004.08.003; SILVERIN B, 1986, GEN COMP ENDOCR, V64, P67, DOI 10.1016/0016-6480(86)90029-8; Stearns S., 1992, EVOLUTION LIFE HIST; STUTCHBURY BJ, 1995, BEHAVIOUR, V132, P675, DOI 10.1163/156853995X00081; Tieleman BI, 2009, P R SOC B, V276, P1685, DOI 10.1098/rspb.2008.1946; Urquhart ED, 2002, STONECHATS; Versteegh MA, 2012, J EXP BIOL, V215, P3459, DOI 10.1242/jeb.073445; Versteegh MA, 2012, J EVOLUTION BIOL, V25, P1864, DOI 10.1111/j.1420-9101.2012.02574.x; Wada H, 2006, PHYSIOL BIOCHEM ZOOL, V79, P784, DOI 10.1086/505509; Whittaker R. J., 1998, ISLAND BIOGEOGRAPHY; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P9340, DOI 10.1073/pnas.0702212104; Wikelski M, 2003, P ROY SOC B-BIOL SCI, V270, P2383, DOI 10.1098/rspb.2003.2500; Williams TD, 2005, BIOSCIENCE, V55, P39, DOI 10.1641/0006-3568(2005)055[0039:MUTCOE]2.0.CO;2; Wingfield JC, 2002, COMP BIOCHEM PHYS B, V132, P275, DOI 10.1016/S1096-4959(01)00540-1; Wingfield JC, 1998, AM ZOOL, V38, P191; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 109 2 2 3 13 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1471-2148 BMC EVOL BIOL BMC Evol. Biol. MAY 22 2017 17 114 10.1186/s12862-017-0960-9 16 Evolutionary Biology; Genetics & Heredity Evolutionary Biology; Genetics & Heredity EV4SI WOS:000401751500001 28532466 DOAJ Gold, Green Published 2018-11-22 J Colominas-Ciuro, R; Santos, M; Coria, N; Barbosa, A Colominas-Ciuro, Roger; Santos, Mercedes; Coria, Nestor; Barbosa, Andres Reproductive effort affects oxidative status and stress in an Antarctic penguin species: An experimental study PLOS ONE English Article KESTREL FALCO-TINNUNCULUS; BREEDING ADELIE PENGUINS; BROOD SIZE; PYGOSCELIS-ANTARCTICA; CHINSTRAP PENGUINS; TRADE-OFF; ENERGY-EXPENDITURE; PARENTAL EFFORT; SEX; DAMAGE The oxidative cost of reproduction has been a matter of debate in recent years presumably because of the lack of proper experimental studies. Based on the hypothesis that different brood sizes produce differential reproductive costs, an experimental manipulation during breeding of Ade A lie penguins was conducted at Hope Bay, Antarctica, to study oxidative status and stress. We predict that a lower reproductive effort should be positively related to low oxidative and physiological stress. We randomly assigned nests with two chicks to a control reproductive effort group (CRE), and by removing one chick from some nests with two chicks, formed a second, low reproductive effort group (LRE). We examined how oxidative status in blood plasma (reactive oxygen metabolites, ROMs, and total antioxidant capacity, OXY) and stress (heterophil/lymphocyte ratio, H/L) responded to a lower production of offspring total biomass. Our nest manipulation showed significant differences in offspring total biomass, which was lower in the LRE group. As predicted, the LRE group had higher antioxidant capacity than individuals in the CRE group. We have also found, although marginally significant, interactions between sex and treatment in the three variables analysed. Females had higher OXY, lower ROMs and lower H/L ratio when rearing one chick, whereas males did so when rearing two except for OXY which was high regardless of treatment. Moreover, there was a significant negative correlation between the H/L ratio and OXY in females. Finally, we have found a negative and significant relationship between the duration of the experiment and OXY and ROMs and positive with H/L ratio which suggests that indeed breeding penguins are paying an effort in physiological terms in relation to the duration of the chick rearing. In conclusion, a reduction of the reproductive effort decreased oxidative stress in this long-lived bird meaning that a link exists between breeding effort and oxidative stress. However, our findings suggest different sex strategies which results in opposite physiological responses presumably depending on different life-history strategies in males and females. [Colominas-Ciuro, Roger; Barbosa, Andres] CSIC, Museo Nacl Ciencias Nat, Dept Ecol Evolut, Calle Jose Gutierrez Abascal 2, Madrid, Spain; [Santos, Mercedes; Coria, Nestor] Inst Antartico Argentino, Div Biol, Cerrito 1248, RA-1010 Buenos Aires, DF, Argentina Colominas-Ciuro, R (reprint author), CSIC, Museo Nacl Ciencias Nat, Dept Ecol Evolut, Calle Jose Gutierrez Abascal 2, Madrid, Spain. rcolominas@mncn.csic.es Colominas-Ciuro, Roger/0000-0001-6312-0702 Spanish Ministry of Economy and Competitiveness [CTM2011-24427, CTM2015-64720]; Spanish Ministry of Economy and Competitiveness FPI (Formacion de Personal Investigador) grant [BES2012-059299] This study was funded by the Spanish Ministry of Economy and Competitiveness (CTM2011-24427 and CTM2015-64720) to AB. RCC was supported a Spanish Ministry of Economy and Competitiveness FPI (Formacion de Personal Investigador) grant (BES2012-059299; http://www.mineco.gob.es/portal/site/mineco/?lang_choosen=en). Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Amat JA, 1996, J AVIAN BIOL, V27, P177, DOI 10.2307/3677150; Ardia DR, 2005, ECOLOGY, V86, P2040, DOI 10.1890/04-1619; Balaban RS, 2005, CELL, V120, P483, DOI 10.1016/j.cell.2005.02.001; Barbosa A, 2013, ANTARCT SCI, V25, P329, DOI 10.1017/S0954102012000739; Barnes AI, 2003, ANIM BEHAV, V66, P199, DOI 10.1006/anbe.2003.2122; Bates D, 2015, J STAT SOFTW, V67, P1; Beaulieu M, 2011, FUNCT ECOL, V25, P577, DOI 10.1111/j.1365-2435.2010.01825.x; Beaulieu M, 2010, P ROY SOC B-BIOL SCI, V277, P1087, DOI 10.1098/rspb.2009.1881; Beaulieu M, 2009, BEHAV ECOL, V20, P878, DOI 10.1093/beheco/arp076; Beckman KB, 1998, PHYSIOL REV, V78, P547; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Blount JD, 2016, BIOL REV, V91, P483, DOI 10.1111/brv.12179; Breuner CW, 2013, FUNCT ECOL, V27, P24, DOI 10.1111/1365-2435.12016; CHAPPELL MA, 1993, BEHAV ECOL SOCIOBIOL, V33, P173, DOI 10.1007/BF00216598; Christe P, 2012, P ROY SOC B-BIOL SCI, V279, P1142, DOI 10.1098/rspb.2011.1546; Clarke J, 1998, POLAR BIOL, V20, P248, DOI 10.1007/s003000050301; Clarke J, 2006, MAR ECOL PROG SER, V310, P247, DOI 10.3354/meps310247; Costantini D, 2014, OXIDATIVE STRESS HOR; Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x; Costantini D, 2006, COMP BIOCHEM PHYS A, V145, P137, DOI 10.1016/j.cbpa.2006.06.002; Costantini D, 2014, J EXP BIOL, V217, P4237, DOI 10.1242/jeb.114116; Costantini D, 2014, NATURWISSENSCHAFTEN, V101, P541, DOI 10.1007/s00114-014-1190-2; Davis AK, 2008, FUNCT ECOL, V22, P760, DOI 10.1111/j.1365-2435.2008.01467.x; DEERENBERG C, 1995, ZOOL-ANAL COMPLEX SY, V99, P39; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; Emaresi G, 2016, J EXP BIOL, V219, P73, DOI 10.1242/jeb.128959; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Fletcher QE, 2013, EVOLUTION, V67, P1527, DOI 10.1111/evo.12014; Fridolfsson AK, 1999, J AVIAN BIOL, V30, P116, DOI 10.2307/3677252; Gonzalez-Medina E, 2015, ANIM BEHAV, V108, P9, DOI 10.1016/j.anbehav.2015.06.025; Halliwell B, 1996, ANNU REV NUTR, V16, P33, DOI 10.1146/annurev.nu.16.070196.000341; Harman D., 1957, J GERONTOL, V2; Hayward A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016557; Heiss RS, 2012, PHYSIOL BIOCHEM ZOOL, V85, P499, DOI 10.1086/666840; Horak P, 2000, CAN J ZOOL, V78, P905, DOI 10.1139/cjz-78-6-905; Jones DP, 2006, ANTIOXID REDOX SIGN, V8, P1865, DOI 10.1089/ars.2006.8.1865; Kenward MG, 1997, BIOMETRICS, V53, P983, DOI 10.2307/2533558; Kuznetsova A, 2014, IMERTEST TEST RANDOM; LISHMAN GS, 1985, J ZOOL, V205, P245, DOI 10.1111/j.1469-7998.1985.tb03532.x; Merino S, 2006, J ANIM ECOL, V75, P1147, DOI 10.1111/j.1365-2656.2006.01135.x; Metcalfe NB, 2013, TRENDS ECOL EVOL, V28, P347, DOI 10.1016/j.tree.2013.01.015; Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x; Moberg GP, 2000, BIOLOGY OF ANIMAL STRESS, P1, DOI 10.1079/9780851993591.0001; MOLE S, 1993, OECOLOGIA, V93, P121, DOI 10.1007/BF00321201; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; MORENO J, 1995, POLAR BIOL, V15, P533; Oldakowski L, 2012, J EXP BIOL, V215, P1799, DOI 10.1242/jeb.068452; Reed TE, 2008, AM NAT, V171, pE89, DOI 10.1086/524957; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; SIIKAMAKI P, 1994, FUNCT ECOL, V8, P587, DOI 10.2307/2389919; Stearns S., 1992, EVOLUTION LIFE HIST; Stier A, 2012, FRONT ZOOL, V9, DOI 10.1186/1742-9994-9-37; Suorsa P, 2004, P ROY SOC B-BIOL SCI, V271, P435, DOI 10.1098/rspb.2003.2620; Team RC, R LANG ENV STAT COMP; Thierry AM, 2014, BEHAV ECOL SOCIOBIOL, V68, P721, DOI 10.1007/s00265-014-1685-z; TRIVELPIECE WZ, 1987, ECOLOGY, V68, P351, DOI 10.2307/1939266; Tummeleht L, 2006, COMP BIOCHEM PHYS C, V144, P166, DOI 10.1016/j.cbpc.2006.08.004; van der Meer E, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0127984; Wegmann M, 2015, PHYSIOL BEHAV, V141, P127, DOI 10.1016/j.physbeh.2015.01.017; Widmann M, 2015, MOV ECOL, V3, P1; Wiehn J., 2003, OECOLOGIA, V136, P148; Wiersma P, 2004, P ROY SOC B-BIOL SCI, V271, pS360, DOI 10.1098/rsbl.2004.0171; Williams TD, 2005, BIOSCIENCE, V55, P39, DOI 10.1641/0006-3568(2005)055[0039:MUTCOE]2.0.CO;2; Williams TD, 1995, PENGUINS; WILSON RP, 1991, MAR BIOL, V109, P181, DOI 10.1007/BF01319385; WILSON RP, 1989, POLAR BIOL, V10, P161; Xu YC, 2014, FUNCT ECOL, V28, P402, DOI 10.1111/1365-2435.12168 68 1 1 3 15 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One MAY 11 2017 12 5 e0177124 10.1371/journal.pone.0177124 15 Multidisciplinary Sciences Science & Technology - Other Topics EU8UP WOS:000401314300062 28493935 DOAJ Gold, Green Published 2018-11-22 J Beauchard, O; Verissimo, H; Queiros, AM; Herman, PMJ Beauchard, O.; Verissimo, H.; Queiros, A. M.; Herman, P. M. J. The use of multiple biological traits in marine community ecology and its potential in ecological indicator development ECOLOGICAL INDICATORS English Review Biological traits; Ecological indicators; Marine environment CO-INERTIA ANALYSIS; LIFE-HISTORY STRATEGIES; UPPER RHONE RIVER; SPECIES TRAITS; FUNCTIONAL DIVERSITY; ENVIRONMENT RELATIONSHIPS; 4TH-CORNER PROBLEM; TRAWLING DISTURBANCE; BENTHIC COMMUNITIES; INVERTEBRATE TRAITS Biological traits offer valuable approaches to understand species distributions and underlying mechanisms. Their use has received a growing interest in marine community ecology, for both fundamental and applied purposes. The need of ecological indicators as part of marine directives and conservation programmes has promoted the use of multiple traits for indicator development, but in a questionable context regarding the state of fundamental developments. Biological Trait Analysis (BTA) is a complex research field, characterised by flexible concepts and applications. In order to enhance the development of relevant marine ecological indicators, this review provides baselines for better theoretical and applied BTA. A compilation of the existing literature reveals that specific topics have dominated the use of multiple traits in marine ecology unlike in freshwater and terrestrial ecology where tests of theories and uses of evolutionary concepts consistently preceded BTA applications. Availability of data sets and analytical techniques seemed to have driven the growing use of marine BTA rather than fundamental questions regarding life history theories in marine ecosystem components and the functional nature of traits. It is therefore suggested that greater focus on life history ecology and on the links between marine species traits and ecosystem functioning are still needed to support trait-based indicator development. Life history strategy understanding is put forward as a theoretically-sound basis and fundamental pre-requisite for trait-based marine indicator development. (C) 2017 Elsevier Ltd. All rights reserved. [Beauchard, O.] Netherlands Inst Sea Res NIOZ, Korringaweg 7, NL-4401 NT Yerseke, Netherlands; [Beauchard, O.] Univ Antwerp, Ecosyst Management Res Grp, Univ Pl 1, B-2610 Antwerp, Belgium; [Verissimo, H.] Univ Coimbra, Fac Sci & Technol, Marine & Environm Sci Ctr MARE, Coimbra, Portugal; [Queiros, A. M.] Plymouth Marine Lab, Prospect Pl, Plymouth PL1 3DH, Devon, England; [Herman, P. M. J.] Deltares, Marine & Coastal Syst, Rotterdamseweg 185,POB 177, NL-2600 MH Delft, Netherlands Beauchard, O (reprint author), Netherlands Inst Sea Res NIOZ, Korringaweg 7, NL-4401 NT Yerseke, Netherlands. olivier.becauchard@nioz.nl Herman, Peter/A-9018-2011 Herman, Peter/0000-0003-2188-6341; Verissimo, Helena/0000-0003-3971-8696 European Union under the 7th Framework Programme [308392]; European Marine Observation Data Network (EMODnet) Biology project - European Commission's Directorate General for Maritime Affairs and Fisheries (DG MARE); Fundacao para a Ciencia e Tecnologia (FCT) [UID/MAR/04292/2013, SFRH/BPD/92446/2013]; UK Natural Environment Research Council; UK Department of the Environment, Food and Rural Affairs through the Marine Ecosystems Research Programme [NE/L003279/1]; UK Natural Environment Research Council's National Capability for Overseas Development Assistance This work was achieved as part of the DEVOTES project (DEVelopment Of innovative Tools for understanding marine biodiversity and assessing good Environmental Status) funded by the European Union under the 7th Framework Programme, "The Ocean of Tomorrow" theme (grant agreement no. 308392). It was also supported by the European Marine Observation Data Network (EMODnet) Biology project, funded by the European Commission's Directorate General for Maritime Affairs and Fisheries (DG MARE). HV acknowledges the support of Fundacao para a Ciencia e Tecnologia (FCT) through the strategic project UID/MAR/04292/2013 granted to MARE, and the post-doc grant SFRH/BPD/92446/2013. AMQ acknowledges funding from the UK Natural Environment Research Council and the UK Department of the Environment, Food and Rural Affairs through the Marine Ecosystems Research Programme (NE/L003279/1) and that provided as part of the UK Natural Environment Research Council's National Capability for Overseas Development Assistance. The authors greatly thank two anonymous reviewers for pertinent remarks and inspiration which enabled the achievement of the manuscript. Aarnio K, 2011, MAR ECOL-EVOL PERSP, V32, P58, DOI 10.1111/j.1439-0485.2010.00417.x; Albouy C, 2011, MAR ECOL PROG SER, V436, P17, DOI 10.3354/meps09240; Avise JC, 2011, HERMAPHRODITISM PRIM; Barton A.D., 2016, REPORT TRAIT BASED A; Barton AD, 2013, ECOL LETT, V16, P522, DOI 10.1111/ele.12063; Beauchard O, 2013, ESTUAR COAST SHELF S, V120, P21, DOI 10.1016/j.ecss.2013.01.013; Beel J, 2009, PRO INT CONF SCI INF, V1, P230; Benedetti F., 2015, J PLANKTON RES; Bolam SG, 2014, J SEA RES, V85, P162, DOI 10.1016/j.seares.2013.05.003; Bolam S.G., 2013, RELATIONSHIPS MACROI; Bonada N, 2006, ANNU REV ENTOMOL, V51, P495, DOI 10.1146/annurev.ento.51.110104.151124; BORCARD D, 1992, ECOLOGY, V73, P1045, DOI 10.2307/1940179; Borcard D, 2011, USE R, P1, DOI 10.1007/978-1-4419-7976-6; Bray T., 2001, A VIRTUAL HDB; Bremner J, 2006, J MARINE SYST, V60, P302, DOI 10.1016/j.jmarsys.2006.02.004; Bremner J, 2006, ECOL INDIC, V6, P609, DOI 10.1016/j.ecolind.2005.08.026; Bremner J, 2003, MAR ECOL PROG SER, V254, P11, DOI 10.3354/meps254011; Bremner J, 2008, J EXP MAR BIOL ECOL, V366, P37, DOI 10.1016/j.jembe.2008.07.007; Bruggeman J, 2011, J PHYCOL, V47, P52, DOI 10.1111/j.1529-8817.2010.00946.x; Calow P, 1987, FUNCT ECOL, V1, P57, DOI 10.2307/2389358; Cardeccia A., 2016, ESTUAR COAS IN PRESS; CHARNOV EL, 1991, PHILOS T ROY SOC B, V332, P41, DOI 10.1098/rstb.1991.0031; Charnov EL, 1997, NATURE, V387, P393, DOI 10.1038/387393a0; Charnov EL, 2002, EVOL ECOL RES, V4, P749; Chessel D, 2004, R NEWS, V4, P5, DOI DOI 10.HTTP://DX.D0I.0RG/10.2307/3780087; CHEVENET F, 1994, FRESHWATER BIOL, V31, P295, DOI 10.1111/j.1365-2427.1994.tb01742.x; Chown SL, 2004, FUNCT ECOL, V18, P159, DOI 10.1111/j.0269-8463.2004.00825.x; Clark MR, 2016, ICES J MAR SCI, V73, P51, DOI 10.1093/icesjms/fsv123; Cleary DFR, 2007, MAR ECOL PROG SER, V334, P73, DOI 10.3354/meps334073; Cooper KM, 2008, J EXP MAR BIOL ECOL, V366, P82, DOI 10.1016/j.jembe.2008.07.011; Cortes Enric, 2000, Reviews in Fisheries Science, V8, P299, DOI 10.1080/10408340308951115; Costello M.J., 2015, PEERJ, V3, pe1201; Daan R., 2009, 20095 NIOZ; Darling ES, 2012, ECOL LETT, V15, P1378, DOI 10.1111/j.1461-0248.2012.01861.x; Darr A, 2014, J SEA RES, V85, P315, DOI 10.1016/j.seares.2013.06.003; Davidson AD, 2012, P NATL ACAD SCI USA, V109, P3395, DOI 10.1073/pnas.1121469109; Dayton PK, 2003, AM NAT, V162, P1, DOI 10.1086/376572; de Bello F, 2010, BIOL CONSERV, V143, P9, DOI 10.1016/j.biocon.2009.04.022; de Juan S, 2007, MAR ECOL PROG SER, V334, P117; Diaz S, 2001, TRENDS ECOL EVOL, V16, P646, DOI 10.1016/S0169-5347(01)02283-2; Doledec S, 1996, ENVIRON ECOL STAT, V3, P143, DOI 10.1007/BF02427859; DOLEDEC S, 1994, FRESHWATER BIOL, V31, P277, DOI 10.1111/j.1365-2427.1994.tb01741.x; DOLEDEC S, 1994, FRESHWATER BIOL, V31, P523, DOI 10.1111/j.1365-2427.1994.tb01755.x; Doledec S, 1991, ADV ECOLOGY, V1, P133; Doledec S, 2008, FRESHWATER BIOL, V53, P617, DOI 10.1111/j.1365-2427.2007.01924.x; Dray S, 2003, ECOLOGY, V84, P3078, DOI 10.1890/03-0178; Dray S, 2003, ECOSCIENCE, V10, P110, DOI 10.1080/11956860.2003.11682757; Dray S, 2014, ECOLOGY, V95, P14, DOI 10.1890/13-0196.1; Dray S, 2008, ECOLOGY, V89, P3400, DOI 10.1890/08-0349.1; Duineveld G.C.A., 1992, NETH J SEA RES, V28, P125; Economo EP, 2005, ECOL LETT, V8, P353, DOI 10.1111/j.1461-0248.2005.00737.x; Edwards KF, 2013, ECOL LETT, V16, P56, DOI 10.1111/ele.12012; Edwards KF, 2011, ECOLOGY, V92, P2085, DOI 10.1890/11-0395.1; Ernst R, 2012, GLOBAL ECOL BIOGEOGR, V21, P704, DOI 10.1111/j.1466-8238.2011.00719.x; European Community, 2000, DIR WAT FRAM; Farre M, 2013, ECOL INDIC, V29, P159, DOI 10.1016/j.ecolind.2012.12.005; Faulwetter Sarah, 2014, Biodivers Data J, pe1024, DOI 10.3897/BDJ.2.e1024; Fleishman E, 2006, ECOL INDIC, V6, P543, DOI 10.1016/j.ecolind.2005.07.005; Fraschetti S, 2016, MAR ENVIRON RES, V115, P56, DOI 10.1016/j.marenvres.2016.02.001; Furse M, 2006, HYDROBIOLOGIA, V566, P3, DOI 10.1007/s10750-006-0067-6; Gamier E., 2007, ANN BOT, V99, P967, DOI DOI 10.1093/A0B/MC1215; Garcia C., 2010, THESIS; Gauch Hugh G., 1982, MULTIVARIATE ANAL CO; GOWER JC, 1971, BIOMETRICS, V27, P857, DOI 10.2307/2528823; Greene HW, 2005, TRENDS ECOL EVOL, V20, P23, DOI 10.1016/j.tree.2004.11.005; GREENSLADE PJM, 1983, AM NAT, V122, P352, DOI 10.1086/284140; Greenstreet SPR, 2012, ICES J MAR SCI, V69, P8, DOI 10.1093/icesjms/fsr188; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; Gusmao JB, 2016, ECOL INDIC, V66, P65, DOI [10.1016/j.ecolind.7.016.01.003, 10.1016/j.ecolind.2016.01.003]; Hamer K.C., 2002, MARINE BIOL BIRDS, P217; Heip C, 2003, MARINE SCIENCE FRONTIERS FOR EUROPE, P251; Hildrew A.G., 1987, P347; Hinz H, 2009, ECOL APPL, V19, P761, DOI 10.1890/08-0351.1; Hotelling H, 1933, J EDUC PSYCHOL, V24, P417, DOI 10.1037/h0071325; Jennings S., 1999, J ANIM ECOL, V57, P506; KEDDY PA, 1992, J VEG SCI, V3, P157, DOI 10.2307/3235676; Kenchington ELR, 2001, CAN J FISH AQUAT SCI, V58, P1043, DOI 10.1139/cjfas-58-6-1043; Kershner J, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0025248; King JR, 2003, FISHERIES MANAG ECOL, V10, P249, DOI 10.1046/j.1365-2400.2003.00359.x; Kleyer M, 2012, J VEG SCI, V23, P805, DOI 10.1111/j.1654-1103.2012.01402.x; Kristensen E., 1988, NITROGEN CYCLING COA, P275; Lavorel S, 2002, FUNCT ECOL, V16, P545, DOI 10.1046/j.1365-2435.2002.00664.x; Lawrence JM, 2013, DEV AQUAC FISH SCI, V38, P15, DOI 10.1016/B978-0-12-396491-5.00002-2; Lawton JH, 1999, OIKOS, V84, P177, DOI 10.2307/3546712; Legendre P, 1997, ECOLOGY, V78, P547; lhde T.F., 2011, FISH RES, V108, P268; Lindegarth M, 2000, J EXP MAR BIOL ECOL, V245, P155, DOI 10.1016/S0022-0981(99)00158-6; Litchman E, 2010, HYDROBIOLOGIA, V653, P15, DOI 10.1007/s10750-010-0341-5; Litchman E, 2008, ANNU REV ECOL EVOL S, V39, P615, DOI 10.1146/annurev.ecolsys.39.110707.173549; MarLIN BIOTIC, 2006, BIOL TRAITS INF CAT; Marquez EJ, 2007, J EVOLUTION BIOL, V20, P2334, DOI 10.1111/j.1420-9101.2007.01415.x; Mason NWH, 2005, OIKOS, V111, P112, DOI 10.1111/j.0030-1299.2005.13886.x; McCurdy DG, 2001, BIOL BULL, V201, P45, DOI 10.2307/1543524; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; Menezes S, 2010, J APPL ECOL, V47, P711, DOI 10.1111/j.1365-2664.2010.01819.x; Meysman FJR, 2006, TRENDS ECOL EVOL, V21, P688, DOI 10.1016/j.tree.2006.08.002; MLADENOV PV, 1984, MAR BIOL, V81, P273, DOI 10.1007/BF00393221; Mouchet MA, 2013, OIKOS, V122, P247, DOI 10.1111/j.1600-0706.2012.20411.x; Mouchet MA, 2010, FUNCT ECOL, V24, P867, DOI 10.1111/j.1365-2435.2010.01695.x; Mouillot D, 2008, BIOL CONSERV, V141, P1569, DOI 10.1016/j.biocon.2008.04.002; Mouillot D, 2014, P NATL ACAD SCI USA, V111, P13757, DOI 10.1073/pnas.1317625111; Mouillot D, 2013, PLOS BIOL, V11, DOI 10.1371/journal.pbio.1001569; Mouillot D, 2013, TRENDS ECOL EVOL, V28, P167, DOI 10.1016/j.tree.2012.10.004; Munari C, 2013, MAR ENVIRON RES, V90, P47, DOI 10.1016/j.marenvres.2013.05.011; Nyberg CD, 2005, BIOL INVASIONS, V7, P265, DOI 10.1007/s10530-004-0738-z; Oug E, 2012, J EXP MAR BIOL ECOL, V432, P94, DOI 10.1016/j.jembe.2012.07.019; Paganelli D, 2012, ESTUAR COAST SHELF S, V96, P245, DOI 10.1016/j.ecss.2011.11.014; Pavoine S, 2011, J ECOL, V99, P165, DOI 10.1111/j.1365-2745.2010.01743.x; Pearson K, 1901, PHILOS MAG, V2, P559, DOI 10.1080/14786440109462720; Pearson T.H., 1978, Oceanography and Marine Biology an Annual Review, V16, P229; Pease AA, 2012, FRESHWATER BIOL, V57, P1060, DOI 10.1111/j.1365-2427.2012.02768.x; Queiros A. M., 2016, FRONT MAR SCI, V3, DOI [10.3389/fmars.2016.00073, DOI 10.3389/FMARS.2016.00073]; Queiros AM, 2006, J EXP MAR BIOL ECOL, V335, P91, DOI 10.1016/j.jembe.2006.03.001; Queiros AM, 2015, J SEA RES, V98, P83, DOI 10.1016/j.seares.2014.10.004; Queiros AM, 2013, ECOL EVOL, V3, P3958, DOI 10.1002/ece3.769; Rachello-Dolmen PG, 2007, ESTUAR COAST SHELF S, V73, P816, DOI 10.1016/j.ecss.2007.03.017; Rao C. R., 1964, SANKHYA A, V26, P329, DOI DOI 10.2307/25049339); Resh VH, 2010, J N AM BENTHOL SOC, V29, P207, DOI 10.1899/08-082.1; Reynolds CS, 1999, AQUAT SCI, V61, P183, DOI 10.1007/s000270050061; Rhoads D.C., 1974, Oceanography mar Biol, V12, P263; Ribera I, 2001, ECOLOGY, V82, P1112; Rijnsdorp AD, 2016, ICES J MAR SCI, V73, P127, DOI 10.1093/icesjms/fsv207; Rosenzweig ML, 1999, ECOGRAPHY, V22, P614, DOI 10.1111/j.1600-0587.1999.tb00510.x; Schmera D., 2014, FRESHW BIOL, V59; Sibly R., 1985, P75; Simberloff D, 2004, AM NAT, V163, P787, DOI 10.1086/420777; Solan M, 2004, SCIENCE, V306, P1177, DOI 10.1126/science.1103960; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; Spitz J, 2014, J ANIM ECOL, V83, P1137, DOI 10.1111/1365-2656.12218; Statzner B, 1997, FRESHWATER BIOL, V38, P109, DOI 10.1046/j.1365-2427.1997.00195.x; STATZNER B, 1994, FRESHWATER BIOL, V31, P253, DOI 10.1111/j.1365-2427.1994.tb01739.x; Statzner B, 2010, FRESHWATER BIOL, V55, P80, DOI 10.1111/j.1365-2427.2009.02369.x; Stearns S., 1992, EVOLUTION LIFE HIST; Stuart-Smith RD, 2013, NATURE, V501, P539, DOI 10.1038/nature12529; Tenenhaus M., 1985, ANAL SYNTHESIS MULTI; ter Braak CJF, 2012, ECOLOGY, V93, P1525, DOI 10.1890/12-0126.1; TERBRAAK CJF, 1986, ECOLOGY, V67, P1167; TERBRAAK CJF, 1985, BIOMETRICS, V41, P859, DOI 10.2307/2530959; THIOULOUSE J, 1992, ECOLOGY, V73, P670, DOI 10.2307/1940773; Tillin HM, 2006, MAR ECOL PROG SER, V318, P31, DOI 10.3354/meps318031; Townsend CR, 1997, FRESHWATER BIOL, V37, P367, DOI 10.1046/j.1365-2427.1997.00166.x; Tyler EHM, 2012, GLOBAL ECOL BIOGEOGR, V21, P922, DOI 10.1111/j.1466-8238.2011.00726.x; Usseglio-Polatera P, 2000, FRESHWATER BIOL, V43, P175, DOI 10.1046/j.1365-2427.2000.00535.x; van Denderen PD, 2014, ECOSYSTEMS, V17, P1216, DOI 10.1007/s10021-014-9789-x; Van Hoey G, 2010, MAR POLLUT BULL, V60, P2187, DOI 10.1016/j.marpolbul.2010.09.015; van Son Thijs Christiaan, 2013, Open Marine Biology Journal, V7, P14; VANBUSKIRK J, 1994, COPEIA, P66; Villeger S, 2008, ECOLOGY, V89, P2290, DOI 10.1890/07-1206.1; Villeger S, 2010, ECOL APPL, V20, P1512, DOI 10.1890/09-1310.1; Violle C, 2007, OIKOS, V116, P882, DOI 10.1111/j.2007.0030-1299.15559.x; Webb CO, 2002, ANNU REV ECOL SYST, V33, P475, DOI 10.1146/annurev.ecolysis.33.010802.150448; Wiedmann MA, 2014, MAR ECOL PROG SER, V495, P205, DOI 10.3354/meps10558; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; WOODIN SA, 1995, BIOL BULL, V189, P49, DOI 10.2307/1542201 155 10 10 12 34 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 1470-160X 1872-7034 ECOL INDIC Ecol. Indic. MAY 2017 76 81 96 10.1016/j.ecolind.2017.01.011 16 Biodiversity Conservation; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology FB9BX WOS:000406435700009 2018-11-22 J Hossack, BR; Honeycutt, RK; Sigafus, BH; Muths, E; Crawford, CL; Jones, TR; Sorensen, JA; Rorabaugh, JC; Chambert, T Hossack, Blake R.; Honeycutt, R. Ken; Sigafus, Brent H.; Muths, Erin; Crawford, Catherine L.; Jones, Thomas R.; Sorensen, Jeff A.; Rorabaugh, James C.; Chambert, Thierry Informing recovery in a human-transformed landscape: Drought-mediated coexistence alters population trends of an imperiled salamander and invasive predators BIOLOGICAL CONSERVATION English Article Amphibian; Bullfrog; Climate resilience; Drought; Fragmentation; Invasive species CLIMATE-CHANGE; HABITAT FRAGMENTATION; TIGER SALAMANDERS; EXTINCTION RISK; DISTURBANCE; OCCUPANCY; FISHES; TRANSMISSION; COOCCURRENCE; FREQUENCY Understanding the additive or interactive threats of habitat transformation and invasive species is critical for conservation, especially where climate change is expected to increase the severity or frequency of drought. In the arid southwestern USA, this combination of stressors has caused widespread declines of native aquatic and semi-aquatic species. Achieving resilience to drought and other effects of climate change may depend upon continued management, so understanding the combined effects of stressors is important. We used Bayesian hierarchical models fitted with 10-years of pond-based monitoring surveys for the federally-endangered Sonoran Tiger Salamander (Ambystoma mavortium stebbinsi) and invasive predators (fishes and American Bullfrogs, Lithobates catesbeianus) that threaten native species. We estimated trends in occupancy of salamanders and invasive predators while accounting for hydrological dynamics of ponds, then used a two-species interaction model to directly estimate how invasive predators affected salamander occupancy. We also tested a conceptual model that predicted that drought, by limiting the distribution of invasive predators, could ultimately benefit native species. Even though occupancy of invasive predators was stationary and their presence in a pond reduced the probability of salamander presence by 23%, occupancy of Sonoran Tiger Salamanders increased, annually, by 2.2%. Occupancy of salamanders and invasive predators both declined dramatically following the 5th consecutive year of drought. Salamander occupancy recovered quickly after return to non-drought conditions, while occupancy of invasive predators remained suppressed. Models that incorporated three time-lagged periods (1 to 4 years) of local moisture conditions confirmed that salamanders and invasive predators responded differently to drought, reflecting how life-history strategies shape responses to disturbances. The positive 10-year trend in salamander occupancy and their rapid recovery after drought provided partial support for the hypothesis of drought-mediated coexistence with invasive predators. These results also suggest management opportunities for conservation of the Sonoran Tiger Salamander and other imperiled organisms in human-transformed landscapes. Published by Elsevier Ltd. [Hossack, Blake R.; Honeycutt, R. Ken] US Geol Survey, Northern Rocky Mt Sci Ctr, Aldo Leopold Wilderness Res Inst, 790 E Beckwith Ave, Missoula, MT 59801 USA; [Sigafus, Brent H.] US Geol Survey, Southwest Biol Sci Ctr, Tucson, AZ 85719 USA; [Muths, Erin] US Geol Survey, Ft Collins Sci Ctr, 2150 Ctr Ave,Bldg C, Ft Collins, CO 80526 USA; [Crawford, Catherine L.] US Fish & Wildlife Serv, 201 N Bonita Ave,Suite 141, Tucson, AZ 85745 USA; [Jones, Thomas R.; Sorensen, Jeff A.] Arizona Game & Fish Dept, 5000 W Carefree Hwy, Phoenix, AZ 85086 USA; [Rorabaugh, James C.] US Fish & Wildlife Serv, POB 31, St David, AZ 85630 USA; [Chambert, Thierry] Penn State Univ, Dept Ecosyst Sci & Management, University Pk, PA 16802 USA; [Chambert, Thierry] US Geol Survey, Patuxent Wildlife Res Ctr, Laurel, MD 20708 USA Hossack, BR (reprint author), US Geol Survey, Northern Rocky Mt Sci Ctr, Aldo Leopold Wilderness Res Inst, 790 E Beckwith Ave, Missoula, MT 59801 USA. blake_hossack@usgs.gov USGS Quick Response Program (QRP); USGS Amphibian Research and Monitoring Initiative (ARMI) We thank the many biologists and data managers for their contributions to the data used in these analyses. L. Allison, D. Cox, J. Francis, C. Lutz, C. Nelson, and T. Snow contributed extensively to project design or field surveys. Use of trade, firm, or product names is descriptive and does not imply endorsement by the U.S. Government. We also thank S. Walls, J. Houlahan, and two anonymous reviewers for comments that improved the manuscript. The authors have no conflicts of interest to declare. Financial support was provided by the USGS Quick Response Program (QRP) and the USGS Amphibian Research and Monitoring Initiative (ARMI). This manuscript is ARMI contribution no. 570. Adams MJ, 2003, ECOL LETT, V6, P343, DOI 10.1046/j.1461-0248.2003.00435.x; Atobe T, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2621; Beche LA, 2009, ECOGRAPHY, V32, P778, DOI 10.1111/j.1600-0587.2009.05612.x; Brooks SP, 1998, J COMPUT GRAPH STAT, V7, P434, DOI 10.2307/1390675; Chandler RB, 2015, J APPL ECOL, V52, P1325, DOI 10.1111/1365-2664.12481; Church DR, 2007, ECOLOGY, V88, P891, DOI 10.1890/06-0896; Collins J., 1988, GTRRM166, P45; Cook BI, 2015, SCI ADV, V1, DOI 10.1126/sciadv.1400082; Davies SJ, 2013, AUSTRAL ECOL, V38, P851, DOI 10.1111/aec.12022; DEMARAIS BD, 1993, BIOL CONSERV, V66, P195, DOI 10.1016/0006-3207(93)90005-L; Didham RK, 2007, TRENDS ECOL EVOL, V22, P489, DOI 10.1016/j.tree.2007.07.001; Doubledee RA, 2003, J WILDLIFE MANAGE, V67, P424, DOI 10.2307/3802783; Fagan WF, 2002, ECOLOGY, V83, P3250, DOI 10.1890/0012-9658(2002)083[3250:RFAERI]2.0.CO;2; Fitzpatrick BM, 2007, ECOL APPL, V17, P598, DOI 10.1890/06-0369; Gonzalez-Bernal E, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049351; Greer AL, 2008, OIKOS, V117, P1667, DOI 10.1111/j.1600-0706.2008.16783.x; Greer AL, 2008, J ANIM ECOL, V77, P364, DOI 10.1111/j.1365-2656.2007.01330.x; Hamer AJ, 2016, J APPL ECOL, V53, P1842, DOI 10.1111/1365-2664.12729; Hendrickson Dean A., 1984, DESERT PLANTS, V6, P131; HOBBS RJ, 1992, CONSERV BIOL, V6, P324, DOI 10.1046/j.1523-1739.1992.06030324.x; Holling C. S., 1959, Canadian Entomologist, V91, P385; HOLOMUZKI JR, 1994, OIKOS, V71, P55, DOI 10.2307/3546172; Hossack Blake R., 2016, Herpetological Review, V47, P177; Hossack BR, 2015, BIOL CONSERV, V187, P260, DOI 10.1016/j.biocon.2015.05.005; Hossack BR, 2013, CONSERV BIOL, V27, P1410, DOI 10.1111/cobi.12119; Johnson P.T., 2008, FRONT ECOL ENVIRON, V6, P357; JONES TR, 1988, COPEIA, P621, DOI 10.2307/1445380; Knapp RA, 2007, BIOL CONSERV, V135, P11, DOI 10.1016/j.biocon.2006.09.013; Laurance WF, 2001, CONSERV BIOL, V15, P1529, DOI 10.1046/j.1523-1739.2001.01093.x; Lawler JJ, 2002, ECOL APPL, V12, P663, DOI 10.1890/1051-0761(2002)012[0663:TSATOT]2.0.CO;2; Lozon Joseph D., 1997, Environmental Reviews, V5, P131, DOI 10.1139/er-5-2-131; MacKenzie D. L, 2006, OCCUPANCY ESTIMATION; MacKenzie DI, 2004, J ANIM ECOL, V73, P546, DOI 10.1111/j.0021-8790.2004.00828.x; Maret TJ, 2006, BIOL CONSERV, V127, P129, DOI 10.1016/j.biocon.2005.08.003; Maschinski J, 2006, CONSERV BIOL, V20, P218, DOI 10.1111/j.1523-1739.2006.00272.x; MEFFE GK, 1984, ECOLOGY, V65, P1525, DOI 10.2307/1939132; Morris WF, 2008, ECOLOGY, V89, P19, DOI 10.1890/07-0774.1; North AC, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0127037; Olden J. D., 2005, Animal Biodiversity and Conservation, V28, P75; Opdam P, 2004, BIOL CONSERV, V117, P285, DOI 10.1016/j.biocon.2003.12.008; Petranka J.W., 1998, SALAMANDERS US CANAD; Pittock Jamie, 2008, Biodiversity (Ottawa), V9, P30; Plummer M., 2013, RJAGS BAYESIAN GRAPH; Rehage JS, 2014, WETLANDS, V34, pS159, DOI 10.1007/s13157-012-0361-1; Richmond OMW, 2010, ECOL APPL, V20, P2036, DOI 10.1890/09-0470.1; Simberloff Daniel, 1999, Biological Invasions, V1, P21, DOI 10.1023/A:1010086329619; Stocker TF, 2013, CLIMATE CHANGE 2013; Storfer A, 2004, COPEIA, P783, DOI 10.1643/CG-03-095R1; THRALL J, 1971, COPEIA, P751, DOI 10.2307/1442655; Trenham PC, 2001, ECOLOGY, V82, P3519, DOI 10.2307/2680169; Trexler JC, 2005, OECOLOGIA, V145, P140, DOI 10.1007/s00442-005-0094-4; Troyer CM, 2015, CONSERV BIOL, V29, P1423, DOI 10.1111/cobi.12552; USFWS, 2002, SON TIG SAL REC PLAN; Vicente-Serrano SM, 2010, J CLIMATE, V23, P1696, DOI 10.1175/2009JCLI2909.1; Walls SC, 2013, WETLANDS, V33, P345, DOI 10.1007/s13157-013-0391-3; Wilby RL, 2010, SCI TOTAL ENVIRON, V408, P4150, DOI 10.1016/j.scitotenv.2010.05.014; Zylstra ER, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0125670 57 1 1 6 20 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND 0006-3207 1873-2917 BIOL CONSERV Biol. Conserv. MAY 2017 209 377 394 10.1016/j.biocon.2017.03.004 18 Biodiversity Conservation; Ecology; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology EY9HB WOS:000404308600042 2018-11-22 J Simonin, M; Nunan, N; Bloor, JMG; Pouteau, V; Niboyet, A Simonin, Marie; Nunan, Naoise; Bloor, Juliette M. G.; Pouteau, Valerie; Niboyet, Audrey Short-term responses and resistance of soil microbial community structure to elevated CO2 and N addition in grassland mesocosms FEMS MICROBIOLOGY LETTERS English Article global change; grassland; fungal/bacterial ratio; PLFA ATMOSPHERIC CO2; CLIMATE-CHANGE; CARBON INPUTS; ECOSYSTEM; BIOMASS; BACTERIAL; FUNGAL; RHIZOSPHERE; ENRICHMENT; IMPACT Nitrogen (N) addition is known to affect soil microbial communities, but the interactive effects of N addition with other drivers of global change remain unclear. The impacts of multiple global changes on the structure of microbial communities may be mediated by specific microbial groups with different life-history strategies. Here, we investigated the combined effects of elevated CO2 and N addition on soil microbial communities using PLFA profiling in a short-term grassland mesocosm experiment. We also examined the linkages between the relative abundance of r-and K-strategist microorganisms and resistance of the microbial community structure to experimental treatments. N addition had a significant effect on microbial community structure, likely driven by concurrent increases in plant biomass and in soil labile C and N. In contrast, microbial community structure did not change under elevated CO2 or show significant CO2 x N interactions. Resistance of soil microbial community structure decreased with increasing fungal/bacterial ratio, but showed a positive relationship with the Gram-positive/Gram-negative bacterial ratio. Our findings suggest that the Grampositive/ Gram-negative bacteria ratio may be a useful indicator of microbial community resistance and that K-strategist abundance may play a role in the short-term stability of microbial communities under global change. [Simonin, Marie; Nunan, Naoise; Pouteau, Valerie; Niboyet, Audrey] Univ Paris 06, CNRS, AgroParisTech, Inst Ecol & Environm Sci Paris,UMR 7618, F-78850 Thiverval Grignon, France; [Bloor, Juliette M. G.] INRA, UR0874, Grassland Ecosyst Res Unit, F-63039 Clermont Ferrand, France; [Simonin, Marie] Duke Univ, Dept Biol, Durham, NC USA Simonin, M (reprint author), Univ Paris 06, CNRS, AgroParisTech, Inst Ecol & Environm Sci Paris,UMR 7618, F-78850 Thiverval Grignon, France. simonin.marie@gmail.com Nunan, Naoise/0000-0003-3448-7171; SIMONIN, Marie/0000-0003-1493-881X AgroParisTech support of the Institute of Ecology and Environmental Sciences - Paris (UMR) This study was funded by AgroParisTech support of the Institute of Ecology and Environmental Sciences - Paris (UMR 7618). Allison SD, 2008, P NATL ACAD SCI USA, V105, P11512, DOI 10.1073/pnas.0801925105; Bardgett RD, 1999, FUNCT ECOL, V13, P650, DOI 10.1046/j.1365-2435.1999.00362.x; Bardgett RD, 1999, BIOL FERT SOILS, V29, P282, DOI 10.1007/s003740050554; Bardgett RD, 2008, ISME J, V2, P805, DOI 10.1038/ismej.2008.58; Bardgett RD, 2014, NATURE, V515, P505, DOI 10.1038/nature13855; Bischoff N, 2016, AGR ECOSYST ENVIRON, V235, P253, DOI 10.1016/j.agee.2016.10.022; Bloor JMG, 2008, FUNCT ECOL, V22, P537, DOI 10.1111/j.1365-2435.2008.01390.x; Bradley K, 2006, SOIL BIOL BIOCHEM, V38, P1583, DOI 10.1016/j.soilbio.2005.11.011; Chigineva NI, 2009, APPL SOIL ECOL, V42, P264, DOI 10.1016/j.apsoil.2009.05.001; Clegg CD, 2006, APPL SOIL ECOL, V31, P73, DOI 10.1016/j.apsoil.2005.04.003; de Graaff MA, 2010, NEW PHYTOL, V188, P1055, DOI 10.1111/j.1469-8137.2010.03427.x; de Vries FT, 2016, SOIL BIOL BIOCHEM, V102, P4, DOI 10.1016/j.soilbio.2016.06.023; de Vries FT, 2013, FRONT MICROBIOL, V4, DOI 10.3389/fmicb.2013.00265; Denef K, 2009, SOIL BIOL BIOCHEM, V41, P144, DOI 10.1016/j.soilbio.2008.10.008; Drigo B, 2013, GLOBAL CHANGE BIOL, V19, P621, DOI 10.1111/gcb.12045; Ebersberger D, 2004, PLANT SOIL, V264, P313, DOI 10.1023/B:PLSO.0000047768.89268.8c; Fierer N, 2007, ECOLOGY, V88, P1354, DOI 10.1890/05-1839; Frostegard A, 1996, BIOL FERT SOILS, V22, P59, DOI 10.1007/BF00384433; FROSTEGARD A, 1993, APPL ENVIRON MICROB, V59, P3605; Gallo M, 2004, MICROBIAL ECOL, V48, P218, DOI 10.1007/s00248-003-9001-x; Guenet B, 2012, GEODERMA, V170, P331, DOI 10.1016/j.geoderma.2011.12.002; Gutknecht JLM, 2012, GLOBAL CHANGE BIOL, V18, P2256, DOI 10.1111/j.1365-2486.2012.02686.x; Kandeler E, 2008, SOIL BIOL BIOCHEM, V40, P162, DOI 10.1016/j.soilbio.2007.07.018; Lagomarsino A, 2007, J SOIL SEDIMENT, V7, P399, DOI 10.1065/jss2007.04.223; Leff JW, 2015, P NATL ACAD SCI USA, V112, P10967, DOI 10.1073/pnas.1508382112; Niboyet A, 2010, PLANT SOIL, V327, P35, DOI 10.1007/s11104-009-0029-7; Oksanen J, 2007, VEGAN COMMUNITY ECOL; OLEARY W, 1988, MICROBIAL LIPIDS, P117; Philippot L, 2013, NAT REV MICROBIOL, V11, P789, DOI 10.1038/nrmicro3109; R Core Team, 2015, R LANG ENV STAT COMP; Rousk J, 2011, FEMS MICROBIOL ECOL, V76, P89, DOI 10.1111/j.1574-6941.2010.01032.x; Schimel J, 2007, ECOLOGY, V88, P1386, DOI 10.1890/06-0219; Simonin M, 2015, MICROB ECOL, V70, P809, DOI 10.1007/s00248-015-0604-9; Stocker T., 2014, WORKING GROUP 1 CONT; Treseder KK, 2008, ECOL LETT, V11, P1111, DOI 10.1111/j.1461-0248.2008.01230.x; Villa F, 2016, BIOSCIENCE, V66, P285, DOI 10.1093/biosci/biw006; Wallenstein MD, 2012, BIOGEOCHEMISTRY, V109, P35, DOI 10.1007/s10533-011-9641-8; Zak DR, 1996, ECOL APPL, V6, P257, DOI 10.2307/2269568; Zelles L, 1997, CHEMOSPHERE, V35, P275, DOI 10.1016/S0045-6535(97)00155-0; Zelles L, 1999, BIOL FERT SOILS, V29, P111, DOI 10.1007/s003740050533; Zhang KP, 2016, FRONT MICROBIOL, V7, DOI 10.3389/fmicb.2016.01032 41 1 1 7 40 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0378-1097 1574-6968 FEMS MICROBIOL LETT FEMS Microbiol. Lett. MAY 2017 364 9 fnx077 10.1093/femsle/fnx077 6 Microbiology Microbiology EZ1RF WOS:000404487800003 28430942 Green Published 2018-11-22 J Mangel, M Mangel, Marc Know your organism, know your data ICES JOURNAL OF MARINE SCIENCE English Article behavioural ecology; fisheries management; international law; life history theory; search theory; stochastic dynamic programming KRILL EUPHAUSIA-SUPERBA; GENETIC STOCK IDENTIFICATION; SALMON ONCORHYNCHUS-KISUTCH; LIFE-HISTORY STRATEGIES; LONG-LIVED SEABIRD; BOTTOM-UP CONTROL; ANTARCTIC KRILL; RECRUITMENT RELATIONSHIPS; FISHERIES MANAGEMENT; REPRODUCTIVE ECOLOGY I review my career in marine science chronologically forward from the time that I decided to become a scientist to the present. Among other themes, I illustrate how much of my career was the result of recognizing good opportunities rather than specific plans, the role that search problems have played in my career, and the power of mathematical methods to allow us to find commonalities in systems appears totally different. I discuss in detail my involvement in the International Court of Justice between Australia and Japan concerning special permit whaling in the Antarctic and conclude with my current activities-showing that surprises can happen at any point in a career. [Mangel, Marc] Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA; [Mangel, Marc] Univ Bergen, Dept Biol, N-9020 Bergen, Norway Mangel, M (reprint author), Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA.; Mangel, M (reprint author), Univ Bergen, Dept Biol, N-9020 Bergen, Norway. msmangel@ucsc.edu NOAA Fisheries; NSF; Sea Grant; USDA; Lenfest Ocean program I thank Howard Browman for inviting me to write this essay. Over a long career, I have had support from NOAA Fisheries, NSF, Sea Grant, and USDA and the Lenfest Ocean program; I thank them all. Similarly, I thank the members of my group not mentioned or cited in here for helping create the rich intellectual life that I have enjoyed in UC for almost 40 years. Although I have not published a paper with these colleagues, I thank them for friendship and support over the years: Nancy Reid (since 1974), Simon Levin (since 1977, and an able squash partner for nearly 20 years), John Gillespie and Michael Turelli (at Davis), Joe Travis (since 1996), and John Thompson (at Santa Cruz). I thank Susan Milke Mangel, my partner in this adventure of ideas, an anonymous referee and Howard Browman for comments on a previous version of the manuscript. Alonzo SH, 2003, ECOLOGY, V84, P1598, DOI 10.1890/0012-9658(2003)084[1598:EGISAT]2.0.CO;2; Alonzo SH, 2003, J APPL ECOL, V40, P692, DOI 10.1046/j.1365-2664.2003.00830.x; Alonzo SH, 2001, MAR ECOL PROG SER, V209, P203, DOI 10.3354/meps209203; Barbier M, 2016, PLOS COMPUT BIOL, V12, DOI 10.1371/journal.pcbi.1005147; Bartley D., 1992, FISH B, V90, P77; Beakes MP, 2010, T AM FISH SOC, V139, P1263, DOI 10.1577/T09-146.1; Boettiger C, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.1631; Bonsall MB, 2004, P ROY SOC B-BIOL SCI, V271, P1143, DOI 10.1098/rspb.2004.2722; Bonsall MB, 2009, THEOR POPUL BIOL, V75, P46, DOI 10.1016/j.tpb.2008.10.003; BRODZIAK J, 1992, CAN J FISH AQUAT SCI, V49, P1507, DOI 10.1139/f92-167; Bull CD, 1996, P ROY SOC B-BIOL SCI, V263, P13, DOI 10.1098/rspb.1996.0003; Clark C. W., 2000, DYNAMIC STATE VARIAB; CLARK CW, 1979, FISH B-NOAA, V77, P317; CLARK CW, 1986, THEOR POPUL BIOL, V30, P45, DOI 10.1016/0040-5809(86)90024-9; CLARK CW, 1984, AM NAT, V123, P626, DOI 10.1086/284228; CLARK CW, 1974, J CONSEIL, V36, P7; Crawford J., 2014, CHANCE ORDER CHANGE; Cresswell KA, 2012, ECOL MODEL, V246, P68, DOI 10.1016/j.ecolmodel.2012.06.034; Cresswell KA, 2009, J PLANKTON RES, V31, P1265, DOI 10.1093/plankt/fbp062; de la Mare W, 2014, SCIENCE, V345, P1125, DOI 10.1126/science.1254616; Eliassen S, 2009, AM NAT, V174, P478, DOI 10.1086/605370; Ellenberg J., 2014, HOW NOT TO BE WRONG; Elworthy S., 2007, B BRIT ECOLOGICAL SO, V38, P55; Enberg K, 2010, CAN J FISH AQUAT SCI, V67, P1708, DOI 10.1139/F10-090; Fitzmaurice M., 2016, WHALING INT LAW; Fitzmaurice M., 2016, WHALING ANTARCTIC; Friedman D., 1971, BROWNIAN MOTION DIFF; Gillespie DT, 2007, ANNU REV PHYS CHEM, V58, P35, DOI 10.1146/annurev.physchem.58.032806.104637; GILLESPIE DT, 1981, J CHEM PHYS, V75, P704, DOI 10.1063/1.442111; Giske J., 2014, P ROYAL SOC B, V281; Giske J, 2013, AM NAT, V182, P689, DOI 10.1086/673533; GOMULKIEWICZ R, 1990, CAN J FISH AQUAT SCI, V47, P611, DOI 10.1139/f90-069; Haley K. B., 1980, SEARCH THEORY ITS AP; Hay W. W., 2016, EXPT SMALL PLANET; He X, 2006, FISH B-NOAA, V104, P428; Hein A. M., 2016, P NATL ACAD SCI; Hilborn R, 1997, ECOLOGICAL DETECTIVE; Hilborn R, 2016, ICES J MAR SCI, V73, P2167, DOI 10.1093/icesjms/fsw099; Holmes F. L., 1991, FORMATION SCI LIFE 1; HOUSTON A, 1988, NATURE, V332, P29, DOI 10.1038/332029a0; Houston A. I., 1999, MODELS ADAPTIVE BEHA; Jorgensen C, 2016, J FISH BIOL, V88, P389, DOI 10.1111/jfb.12834; Koopman B. O., 1980, SEARCH SCREENING GEN; KOOPMAN BO, 1956, OPER RES, V4, P324, DOI 10.1287/opre.4.3.324; KOOPMAN BO, 1957, OPER RES, V5, P613, DOI 10.1287/opre.5.5.613; KOOPMAN BO, 1956, OPER RES, V4, P503, DOI 10.1287/opre.4.5.503; LASKER R, 1966, J FISH RES BOARD CAN, V23, P1291, DOI 10.1139/f66-121; LASKER REUBEN, 1965, LIMNOL OCEANOGR, V10, P287; Little JDC, 2002, OPER RES, V50, P146, DOI 10.1287/opre.50.1.146.17799; Ludwig D, 2001, ANNU REV ECOL SYST, V32, P481, DOI 10.1146/annurev.ecolsys.32.081501.114116; MAC ARTHUR ROBERT H., 1967; MANGEL M, 1980, SIAM J APPL MATH, V38, P120, DOI 10.1137/0138011; MANGEL M, 1981, SIAM J APPL MATH, V40, P327, DOI 10.1137/0140028; Mangel M, 1996, J FISH BIOL, V49, P877, DOI 10.1006/jfbi.1996.0218; MANGEL M, 1994, THEOR POPUL BIOL, V45, P16, DOI 10.1006/tpbi.1994.1002; MANGEL M, 1984, J APPL ECOL, V21, P563, DOI 10.2307/2403429; Mangel M, 2004, THEOR POPUL BIOL, V65, P353, DOI 10.1016/j.tpb.2003.07.005; Mangel M, 2006, THEORETICAL BIOLOGIST'S TOOLBOX: QUANTITATIVE METHODS FOR ECOLOGY AND EVOLUTIONARY BIOLOGY, P1, DOI 10.2277/ 0521537487; MANGEL M, 1986, ECOLOGY, V67, P1127, DOI 10.2307/1938669; Mangel M, 1996, ECOL APPL, V6, P338, DOI 10.2307/2269369; MANGEL M, 1990, CAN J FISH AQUAT SCI, V47, P1875, DOI 10.1139/f90-212; MANGEL M, 1977, SIAM J APPL MATH, V33, P256, DOI 10.1137/0133015; Mangel M, 2000, CAN J FISH AQUAT SCI, V57, P1, DOI 10.1139/cjfas-57-S3-1; MANGEL M, 1992, ANNU REV ECOL SYST, V23, P507; MANGEL M, 1985, CAN J FISH AQUAT SCI, V42, P150, DOI 10.1139/f85-019; MANGEL M, 1982, SIAM REV, V24, P289, DOI 10.1137/1024064; MANGEL M, 1982, ECOL MODEL, V15, P191, DOI 10.1016/0304-3800(82)90026-6; MANGEL M, 1983, J CONSEIL, V41, P93; Mangel M, 1998, ECOL MODEL, V105, P235, DOI 10.1016/S0304-3800(97)00167-1; Mangel M., 1987, Lecture Notes in Biomathematics, V72, P247; MANGEL M, 1981, IEEE T AERO ELEC SYS, V17, P814, DOI 10.1109/TAES.1981.309133; MANGEL M, 1984, J AM STAT ASSOC, V79, P259, DOI 10.2307/2288257; Mangel M, 1986, NAT RESOUR MODEL, V1, P1; Mangel M., 1989, ANAL MODELLING SOVIE; Mangel M., 1990, SELECTED SCI PAPERS; Mangel M., 1988, DYNAMIC MODELING BEH; Mangel M., 1993, US GLOBEC NEWS, V4, P1; Mangel M., 1985, SEARCH MODELS FISHER, V61, P105; Mangel M., 1985, MARINE RESOURCE EC, V1, P389; Mangel M, 2008, B MAR SCI, V83, P107; Mangel M, 2007, EVOLUTION, V61, P1208, DOI 10.1111/j.1558-5646.2007.00094.x; Mangel M, 2016, P NATL ACAD SCI USA, V113, P14523, DOI 10.1073/pnas.1604988113; Mangel M, 2016, COAST MANAGE, V44, P517, DOI 10.1080/08920753.2016.1208884; Mangel M, 2015, B MATH BIOL, V77, P857, DOI 10.1007/s11538-014-9973-3; Mangel M, 2013, CAN J FISH AQUAT SCI, V70, P930, DOI 10.1139/cjfas-2012-0372; Mangel M, 2010, ECOL MODEL, V221, P2095, DOI 10.1016/j.ecolmodel.2010.06.005; Mangel M, 2010, FISH FISH, V11, P89, DOI 10.1111/j.1467-2979.2009.00345.x; MANGEL MS, 1971, MAR GEOL, V11, pM24, DOI 10.1016/0025-3227(71)90067-3; Marinovic B, 1999, ECOL LETT, V2, P338; Marszalek D. S, 1969, Transactions Gulf Coast Ass Geol Socs, V19, P341; MARSZALEK DS, 1982, MAR BEHAV PHYSIOL, V8, P295, DOI 10.1080/10236248209387026; McHuron E. M., 2016, METHODS ECOLOGY EVOL; MCNAMARA JM, 1986, AM NAT, V127, P358, DOI 10.1086/284489; METCALFE NB, 1989, PROC R SOC SER B-BIO, V236, P7, DOI 10.1098/rspb.1989.0009; Morse P., 1977, BEGINNINGS PHYS LIFE; Munch SB, 2005, CAN J FISH AQUAT SCI, V62, P1808, DOI 10.1139/F05-073; Munch SB, 2005, ECOL LETT, V8, P691, DOI 10.1111/j.1461-0248.2005.00766.x; Munch SB, 2003, ECOLOGY, V84, P2168, DOI 10.1890/02-0137; Neyman J., 1956, P 3 BERK S MATH STAT, V4, P41; Neyman J., 1949, U CALIFORNIA PUBLICA, V1, P21; Nolting BC, 2015, ECOL COMPLEX, V22, P126, DOI 10.1016/j.ecocom.2015.03.002; Nye Mary J, 2004, BLACKETT PHYS WAR PO; Oreskes Naomi, 1999, REJECTION CONTINENTA; Park T., 1954, COMPETITION EXPT STA, P175; Press A., 2016, SCI COURT WHALING A, P346; Rashevsky N., 1969, MATH BIOPHYSICS PHYS; Richerson K, 2017, POLAR BIOL, V40, P697, DOI 10.1007/s00300-016-1994-y; Richerson K, 2015, MAR ECOL PROG SER, V529, P35, DOI 10.3354/meps11324; Roitberg BD, 2016, ECOL ENTOMOL, V41, P653, DOI 10.1111/een.12324; Salinas S, 2013, NONGENET INHERIT, V1, P38, DOI [10.2478/ngi-2013-0005, DOI 10.2478/NGI-2013-0005]; Sands P, 2012, PRINCIPLES OF INTERNATIONAL ENVIRONMENTAL LAW, 3RD EDITION, P1, DOI 10.1017/CBO9781139019842; Sands P., 2016, E W STREET OROGINS G; Satterthwaite WH, 2014, T AM FISH SOC, V143, P117, DOI 10.1080/00028487.2013.837096; Satterthwaite WH, 2012, T AM FISH SOC, V141, P781, DOI 10.1080/00028487.2012.675912; Satterthwaite WH, 2012, DEEP-SEA RES PT II, V65-70, P304, DOI 10.1016/j.dsr2.2012.02.016; Satterthwaite WH, 2012, MAR ECOL PROG SER, V454, P221, DOI 10.3354/meps09539; Satterthwaite WH, 2010, EVOL ECOL RES, V12, P779; Satterthwaite WH, 2010, EVOL APPL, V3, P221, DOI 10.1111/j.1752-4571.2009.00103.x; Satterthwaite WH, 2009, T AM FISH SOC, V138, P532, DOI 10.1577/T08-164.1; Sheldon B, 2016, MIL OPER RES, V21, P7, DOI 10.5711/1082598321207; Shelton A. O., 2013, AM NATURALIST, V181; Shelton AO, 2013, MAR ECOL PROG SER, V481, P53, DOI 10.3354/meps10245; SMITH P E, 1973, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V164, P282; Smith P.E., 1978, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V173, P117; Snover ML, 2006, AM NAT, V167, pE140, DOI 10.1086/502804; Snover ML, 2005, CAN J FISH AQUAT SCI, V62, P1219, DOI 10.1139/F05-058; Sogard SM, 2012, T AM FISH SOC, V141, P747, DOI 10.1080/00028487.2012.675902; Southwood R., 2009, ECOLOGICAL METHODS; Springsteen B., 2016, BORN RUN SIMON SCHUS; STEFANOU SE, 1986, J AGR ECON, V37, P77, DOI 10.1111/j.1477-9552.1986.tb00319.x; Stokes Donald E, 1997, PASTEURS QUADRANT BA; Stone L. D., 2016, OPTIMAL SEARCH MOVIN; Takeuchi H., 1967, DEBATE EARTH APPROAC; Thorpe JE, 1998, EVOL ECOL, V12, P581, DOI 10.1023/A:1022351814644; Tidman K., 1984, OPERATIONS EVALUATIO; Vincenzi S., 2013, RISSA TRIDACTYLA; Vincenzi S, 2014, MAR ECOL PROG SER, V515, P251, DOI 10.3354/meps10994; Vincenzi S, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.0554; Watters GM, 2013, ECOL APPL, V23, P710, DOI 10.1890/12-1371.1; Wiedenmann J, 2008, MAR ECOL PROG SER, V358, P191, DOI 10.3354/meps07350; Wiedenmann J, 2011, ECOL MODEL, V222, P3366, DOI 10.1016/j.ecolmodel.2011.07.013; Wiedenmann J, 2009, LIMNOL OCEANOGR, V54, P799, DOI 10.4319/lo.2009.54.3.0799 142 3 3 2 8 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 1054-3139 1095-9289 ICES J MAR SCI ICES J. Mar. Sci. MAY-JUN 2017 74 5 1237 1248 10.1093/icesjms/fsw228 12 Fisheries; Marine & Freshwater Biology; Oceanography Fisheries; Marine & Freshwater Biology; Oceanography EZ1DS WOS:000404450700001 Bronze 2018-11-22 J Lawson, AJ; Sedinger, JS; Taylor, EJ Lawson, Abigail J.; Sedinger, James S.; Taylor, Eric J. Life history patterns, individual heterogeneity, and density dependence in breeding common goldeneyes of the northern boreal forest JOURNAL OF AVIAN BIOLOGY English Article BRANTA-BERNICLA-NIGRICANS; EIDER SOMATERIA-MOLLISSIMA; RING-RECOVERY DATA; BUCEPHALA-CLANGULA; POPULATION-DYNAMICS; NEST BOXES; FUTURE REPRODUCTION; BARROWS GOLDENEYES; NATAL PHILOPATRY; MARKED ANIMALS Life history patterns and their associated tradeoffs influence population dynamics, as they determine how individuals allocate resources among competing demographic traits. Here we examined life history strategies in common goldeneyes Bucephala clangula (hereafter goldeneye), a cavity-nesting sea duck, in the northern boreal forest of interior Alaska, USA. We used multistate capture-mark-recapture models to estimate adult survival, breeding probability, first-year survival, and recruitment probability using a long-term nest box study (1997-2010). We detected annual variation in adult survival, which varied from 0.74 +/-. 0.12 (SE) to 0.93 +/-. 0.06. In contrast, breeding probability remained relatively high and invariant (0.84 +/- 0.11) and was positively related to individual nest success the year prior. Nonbreeding individuals in one year were more likely to remain a nonbreeder, than attempt to breed the following year. First-year survival decreased with smaller residual duckling mass and larger brood sizes. Probability of recruitment into the breeding population conditioned on survival was constant during the study (0.96 +/- 0.06), and did not vary among ages 2-5 yr-old. Overall, goldeneyes exhibited high, but somewhat variable, adult survival, and high breeding and recruitment probabilities, which is consistent with observed patterns in bet-hedging species that breed annually in high quality breeding environments, but whose reproductive output is often influenced by stochastic events. Demographic estimates from this study are among the first for goldeneyes within Alaska. Life history patterns are known to vary geographically, therefore, we recommend further examination of life history patterns within the distribution of goldeneyes. [Lawson, Abigail J.; Sedinger, James S.] Univ Nevada, Dept Nat Resources & Environm Sci, Reno, NV 89557 USA; [Lawson, Abigail J.] Clemson Univ, Dept Forestry & Environm Conservat, Clemson, SC 29634 USA; [Taylor, Eric J.] US Fish & Wildlife Serv, Migratory Bird Management, Anchorage, AK USA Lawson, AJ (reprint author), Univ Nevada, Dept Nat Resources & Environm Sci, Reno, NV 89557 USA.; Lawson, AJ (reprint author), Clemson Univ, Dept Forestry & Environm Conservat, Clemson, SC 29634 USA. abbylawson@gmail.com Lawson, Abigail/0000-0002-2799-8750 U.S. Fish and Wildlife Service [84320-9-J306X]; Migratory Bird Management, Alaska; Alaska Dept of Fish and Game; Ducks Unlimited; California Waterfowl Association's Dennis G. Raveling Scholarship We thank Univ. of Alaska, Fairbanks student chapter of The Wildlife Society for initiating this project, and the many individuals who have provided valuable field assistance since 1994; N. Dau, C. Freeman, and M. Williams, in particular. Project funding was provided by the U.S. Fish and Wildlife Service (no. 84320-9-J306X), Migratory Bird Management, Alaska, Alaska Dept of Fish and Game, Ducks Unlimited, and the California Waterfowl Association's Dennis G. Raveling Scholarship. Alisauskas RT, 2014, AUK, V131, P129, DOI 10.1642/AUK-13-214.1; ARNASON A N, 1973, Researches on Population Ecology (Tokyo), V15, P1; ARNASON A N, 1972, Researches on Population Ecology (Tokyo), V13, P97; Arnold TW, 2010, J WILDLIFE MANAGE, V74, P1175, DOI 10.2193/2009-367; Aubry LM, 2011, J ANIM ECOL, V80, P375, DOI 10.1111/j.1365-2656.2010.01784.x; AUSTIN JE, 1994, CONDOR, V96, P909, DOI 10.2307/1369101; Barker RJ, 1997, BIOMETRICS, V53, P666, DOI 10.2307/2533966; Barker RJ, 1999, BIRD STUDY, V46, P82; Bellrose F. C., 1980, DUCKS GEESE SWANS N; Blums P, 1996, AUK, V113, P505, DOI 10.2307/4088920; BLUMS P, 1994, J WILDLIFE MANAGE, V58, P76, DOI 10.2307/3809551; Boyd WS, 2009, CAN J ZOOL, V87, P337, DOI 10.1139/Z09-018; Burnham KP, 2002, MODEL SELECTION MULT; Cam E, 2002, AM NAT, V159, P96, DOI 10.1086/324126; Camfield AF, 2010, J AVIAN BIOL, V41, P273, DOI 10.1111/j.1600-048X.2009.04816.x; Christensen TK, 1999, J AVIAN BIOL, V30, P302, DOI 10.2307/3677356; Cooch E, 2001, ECOL MONOGR, V71, P377, DOI 10.1890/0012-9615(2001)071[0377:RAODRT]2.0.CO;2; COULSON JC, 1984, IBIS, V126, P525, DOI 10.1111/j.1474-919X.1984.tb02078.x; Dawson RD, 2000, CONDOR, V102, P930, DOI 10.1650/0010-5422(2000)102[0930:EOHDAE]2.0.CO;2; Descamps S, 2009, BIOL LETTERS, V5, P278, DOI 10.1098/rsbl.2008.0704; Dickey MH, 2008, GLOBAL CHANGE BIOL, V14, P1973, DOI 10.1111/j.1365-2486.2008.01622.x; DOW H, 1983, J ANIM ECOL, V52, P681, DOI 10.2307/4447; DOW H, 1984, J ANIM ECOL, V53, P679, DOI 10.2307/4543; Eadie J. M., 1995, BIRDS N AM, P170; EADIE JM, 1985, CONDOR, V87, P528, DOI 10.2307/1367952; Eadie JM, 1989, THESIS; ERIKSSON M O G, 1979, Holarctic Ecology, V2, P186; Erikstad KE, 1998, ECOLOGY, V79, P1781; Evans MR, 2002, CONDOR, V104, P610, DOI 10.1650/0010-5422(2002)104[0610:ACOTCA]2.0.CO;2; FREEMAN S, 1990, AUK, V107, P69; Frost CJ, 2013, ARCTIC, V66, P173; Gunnarsson G, 2006, OECOLOGIA, V149, P203, DOI 10.1007/s00442-006-0446-8; Guyn KL, 1999, CONDOR, V101, P369, DOI 10.2307/1370000; hlund M., 2001, NATURE, V414, P600; Kendall WL, 2002, ECOLOGY, V83, P3276; Krementz DG, 1997, J WILDLIFE MANAGE, V61, P222, DOI 10.2307/3802431; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Lee DE, 2012, AUK, V129, P124, DOI 10.1525/auk.2012.10224; Ludwichowski I, 2002, IBIS, V144, P452, DOI 10.1046/j.1474-919X.2002.00075.x; Martin M, 2009, J FIELD ORNITHOL, V80, P253, DOI 10.1111/j.1557-9263.2009.00228.x; Milonoff M, 2004, J AVIAN BIOL, V35, P344, DOI 10.1111/j.0908-8857.2004.03215.x; Milonoff M, 2002, IBIS, V144, P585, DOI 10.1046/j.1474-919X.2002.00098.x; MORGAN BJT, 1989, BIOMETRICS, V45, P1087, DOI 10.2307/2531762; Nager RG, 2001, J AVIAN BIOL, V32, P159, DOI 10.1034/j.1600-048X.2001.320209.x; NEWTON I, 1989, LIFETIME REPROD BIRD; Newton I, 1998, POPULATION LIMITATIO; Nicolai CA, 2012, J ANIM ECOL, V81, P798, DOI 10.1111/j.1365-2656.2012.01953.x; Nilsson L., 1971, VAR FAGELVARLD, V30, P180; Nummi P, 2015, OECOLOGIA, V177, P679, DOI 10.1007/s00442-014-3133-1; Oli MK, 2002, EVOL ECOL RES, V4, P563; Oppel S, 2010, CONDOR, V112, P323, DOI 10.1525/cond.2010.090199; OWEN M, 1989, J ANIM ECOL, V58, P603, DOI 10.2307/4851; Paasivaara A, 2007, J AVIAN BIOL, V38, P144, DOI 10.1111/j.2007.0908-8857.03602.x; Powell LA, 2007, CONDOR, V109, P949, DOI 10.1650/0010-5422(2007)109[949:AVODPU]2.0.CO;2; Poysa H, 1997, J AVIAN BIOL, V28, P63, DOI 10.2307/3677095; Poysa H, 1997, BEHAV ECOL SOCIOBIOL, V40, P101, DOI 10.1007/s002650050321; RHYMER JM, 1988, OECOLOGIA, V75, P20, DOI 10.1007/BF00378809; Saether BE, 1996, OIKOS, V77, P217, DOI 10.2307/3546060; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Sandercock BK, 2005, ECOLOGY, V86, P2176, DOI 10.1890/04-0563; SAS Inst, 2011, SAS OR US GUID VER 9; SAVARD JPL, 1991, AUK, V108, P568, DOI 10.2307/4088097; SAVARD JPL, 1984, ORNIS SCAND, V15, P211, DOI 10.2307/3675929; SAVARD JPL, 1988, WILDLIFE SOC B, V16, P125; SAVARD JPL, 1989, CONDOR, V91, P198, DOI 10.2307/1368163; Schamber JL, 2009, ARCTIC, V62, P190; Schmidt JH, 2006, J WILDLIFE MANAGE, V70, P792, DOI 10.2193/0022-541X(2006)70[792:SOCGDI]2.0.CO;2; Sedinger JS, 2008, J ANIM ECOL, V77, P702, DOI 10.1111/j.1365-2656.2008.01403.x; Sedinger JS, 2007, AUK, V124, P1281, DOI 10.1642/0004-8038(2007)124[1281:SABAOL]2.0.CO;2; Sedinger JS, 2007, J WILDLIFE MANAGE, V71, P496, DOI 10.2193/2005-768; Sedinger JS, 2004, AUK, V121, P68, DOI 10.1642/0004-8038(2004)121[0068:EEAROB]2.0.CO;2; SEDINGER JS, 1995, ECOLOGY, V76, P2404, DOI 10.2307/2265816; Souchay G, 2014, ECOLOGY, V95, P2745, DOI 10.1890/13-1277.1; Stearns S., 1992, EVOLUTION LIFE HIST; SWENNEN C, 1979, ARDEA, V67, P54; Traylor JJ, 2006, AUK, V123, P67, DOI 10.1642/0004-8038(2006)123[0067:EOIAEF]2.0.CO;2; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Viallefont A, 1995, AUK, V112, P67, DOI 10.2307/4088767; WELLER MILTON W., 1956, JOUR WILDLIFE MANAGEMENT, V20, P111, DOI 10.2307/3797414; White GC, 1999, BIRD STUDY, V46, P120; Wiebe KL, 2000, BEHAV ECOL SOCIOBIOL, V48, P463; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002; Wilson HM, 2012, WILDLIFE MONOGR, P1, DOI 10.1002/wmon.8; ZICUS MC, 1989, J FIELD ORNITHOL, V60, P109 85 1 1 3 12 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0908-8857 1600-048X J AVIAN BIOL J. Avian Biol. MAY 2017 48 5 597 610 10.1111/jav.00975 14 Ornithology Zoology EX3QM WOS:000403147100001 2018-11-22 J Kluen, E; Nousiainen, R; Lehikoinen, A Kluen, Edward; Nousiainen, Riikka; Lehikoinen, Aleksi Breeding phenological response to spring weather conditions in common Finnish birds: resident species respond stronger than migratory species JOURNAL OF AVIAN BIOLOGY English Article CLIMATE-CHANGE; POPULATION TRENDS; DENSITY SHIFTS; ARRIVAL; BOREAL; NORTH; FLYCATCHER; PASSERINE; DECLINES; HABITAT National bird-nest record schemes provide a valuable data source to study large-scale changes in basic breeding biology and effects of climate change on birds. Using nest-record scheme data from 26 common Finnish breeding bird species from whole Finland, we estimated the laydate of the first egg for 129 063 nesting attempts. We then investigated the relationship of mean spring temperature and spring precipitation sum to changes in the onset of laying over the period 1961-2012. In addition, we examine differences in response to these climatic variables for species grouped for different life history strategies; migration, diet and habitat. Finally, we test whether body size is related to the strength of phenological response. We show that 26 common Finnish breeding bird species have advanced their laying dates over time and to an increase in the mean spring temperature over the study period. When species are grouped according life history strategies, we find that breeding phenological change is negatively associated with changes in the mean spring temperature where residents respond strongest to changes in mean spring temperature, but also short- and long-distance migrants advance laydates with increasing spring temperatures. Breeding phenological change is also associated with spring precipitation, where resident species delay and short-distance migrants advance the onset of breeding. In addition we find that omnivorous species respond stronger than insectivorous species to changes in spring temperature. In contrast to results from an earlier study, we do not find evidence that small-sized species respond stronger to spring temperature than large-sized species. As climate warming is predicted to continue in the future, long-term citizen science schemes, such as the Finnish nest-card scheme, prove to be a valuable cost-effective way to monitor the environment and allow investigation into how species are responding to changes in their environment. [Kluen, Edward; Lehikoinen, Aleksi] Univ Helsinki, Finnish Museum Nat Hist, Helsinki Lab Ornithol, Helsinki, Finland; [Nousiainen, Riikka] Karttakeskus Oy, Helsinki, Finland Kluen, E (reprint author), Univ Helsinki, Finnish Museum Nat Hist, Helsinki Lab Ornithol, Helsinki, Finland. edward.kluen@gmail.com Lehikoinen, Aleksi/0000-0002-1989-277X Ella and Georg Ehrnrooth Foundation [283664]; Academy of Finland [275606] Many thanks go out to all the volunteer nest-card recorders who have contributed to this research, by filling out nesting details on nest-cards on breeding birds in Finland. Thanks to the Finnish Natural History Museum for managing and digitizing all nest-cards to date. Thanks to R. Duursma for help with coding in R. Comments and discussion on the results from this research by members of the Helsinki Lab of Ornithology were very helpful. We are grateful for comments on an earlier version by T. Alerstam. EK and AL received economical support from Ella and Georg Ehrnrooth Foundation and Academy of Finland (grants 283664 and 275606, respectively). Ahola M, 2004, GLOBAL CHANGE BIOL, V10, P1610, DOI 10.1111/j.1365-2486.2004.00823.x; Bates D., 2014, LME4 LINEAR MIXED EF, DOI DOI 10.18637/JSS.V067.I01; Bolker BM, 2009, TRENDS ECOL EVOL, V24, P127, DOI 10.1016/j.tree.2008.10.008; Both C, 2001, NATURE, V411, P296, DOI 10.1038/35077063; Both C, 2010, P ROY SOC B-BIOL SCI, V277, P1259, DOI 10.1098/rspb.2009.1525; Burger C, 2012, J ANIM ECOL, V81, P926, DOI 10.1111/j.1365-2656.2012.01968.x; Charmantier A, 2008, SCIENCE, V320, P800, DOI 10.1126/science.1157174; Crick HQP, 1999, NATURE, V399, P423, DOI 10.1038/20839; Crick HQP, 1997, NATURE, V388, P526, DOI 10.1038/41453; Dunn PO, 2014, J ANIM ECOL, V83, P729, DOI 10.1111/1365-2656.12162; Dunn Peter O., 2010, P113; Eeva T, 2012, J ORNITHOL, V153, P653, DOI 10.1007/s10336-011-0783-1; Ferguson-Lees J, 2011, FIELD GUIDE MONITORI; Gregory RD, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0004678; Jiguet F, 2007, GLOBAL CHANGE BIOL, V13, P1672, DOI 10.1111/j.1365-2486.2007.01386.x; Kluen E., 2016, DATA BREEDING PHENOL; Kluen E, 2011, BEHAV ECOL SOCIOBIOL, V65, P2091, DOI 10.1007/s00265-011-1218-y; Laaksonen T, 2013, BIOL CONSERV, V168, P99, DOI 10.1016/j.biocon.2013.09.007; Lehikoinen A, 2016, GLOBAL CHANGE BIOL, V22, P1121, DOI 10.1111/gcb.13150; Lehikoinen A, 2011, OECOLOGIA, V165, P349, DOI 10.1007/s00442-010-1730-1; Lehikoinen A, 2010, J AVIAN BIOL, V41, P627, DOI 10.1111/j.1600-048X.2010.05080.x; Lehikoinen A, 2009, OIKOS, V118, P829, DOI 10.1111/j.1600-0706.2008.17440.x; LINDEN M, 1992, ECOLOGY, V73, P336, DOI 10.2307/1938745; McLean N, 2016, ECOL LETT, V19, P595, DOI 10.1111/ele.12599; Mikkonen S, 2015, STOCH ENV RES RISK A, V29, P1521, DOI 10.1007/s00477-014-0992-2; Moller AP, 2008, P NATL ACAD SCI USA, V105, P16195, DOI 10.1073/pnas.0803825105; Moller AP, 2004, ADV ECOLOGICAL RES, V35; Newton I, 2004, IBIS, V146, P579, DOI 10.1111/j.1474-919X.2004.00375.x; Newton I., 1986, SPARROWHAWK; Oberg M, 2015, ECOL EVOL, V5, P345, DOI 10.1002/ece3.1345; Ovaskainen O, 2013, P NATL ACAD SCI USA, V110, P13434, DOI 10.1073/pnas.1305533110; Parmesan C, 2003, NATURE, V421, P37, DOI 10.1038/nature01286; Rainio K, 2006, J AVIAN BIOL, V37, P507, DOI 10.1111/j.0908-8857.2006.03740.x; Rhodes J. R., 2009, MIXED EFFECTS MODELS, P469, DOI DOI 10.1007/978-0-387-87458-6; Seoane J, 2008, GLOBAL ECOL BIOGEOGR, V17, P111, DOI 10.1111/j.1466-8238.2007.00351.x; Solonen T, 2014, ORNIS FENNICA, V91, P209; Stevenson IR, 2000, NATURE, V406, P366, DOI 10.1038/35019151; Torti VM, 2005, OECOLOGIA, V145, P486, DOI 10.1007/s00442-005-0175-4; Vahatalo AV, 2004, J AVIAN BIOL, V35, P210; Vaisanen R. A., 2008, TALITIAISEN PESYEKOK, P68; Valimaki K, 2016, OECOLOGIA, V181, P313, DOI 10.1007/s00442-015-3525-x; Vatka E, 2011, GLOBAL CHANGE BIOL, V17, P3002, DOI 10.1111/j.1365-2486.2011.02430.x; Venalainen A., 2005, BASIC FINNISH CLIMAT; VonHaartman L., 1969, COMMENTATIONES BIOL, V32; Walther GR, 2002, NATURE, V416, P389, DOI 10.1038/416389a 45 3 3 2 27 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0908-8857 1600-048X J AVIAN BIOL J. Avian Biol. MAY 2017 48 5 611 619 10.1111/jav.01110 9 Ornithology Zoology EX3QM WOS:000403147100002 2018-11-22 J Odermatt, J; Frommen, JG; Menz, MHM Odermatt, Jannic; Frommen, Joachim G.; Menz, Myles H. M. Consistent behavioural differences between migratory and resident hoverflies ANIMAL BEHAVIOUR English Article activity; Episyrphus balteatus; insect migration; partial migration; repeatability; Scaeva selenitica; stress; Syrphidae BALTEATUS DIPTERA SYRPHIDAE; EPISYRPHUS-BALTEATUS; PERSONALITY VARIATION; SEASONAL MIGRATION; INSECT; POPULATIONS; GENETICS; CONSEQUENCES; DISPERSAL; EVOLUTION Many animals differ consistently in the way they behave across time and context. This animal personality has been linked to traits such as life history strategies or dispersal. However, few studies have addressed the relationship between consistent behavioural differences and migration. This is of particular interest with respect to partial migration, in which only part of a population migrates while the other remains resident. We investigated whether two behavioural traits (activity and stress response) are consistent across time in individuals of two partially migratory hoverfly species, Episyrphus balteatus and Scaeva selenitica. We also investigated whether there were consistent behavioural differences between migratory and resident flies within species. Individual activity was consistent across time in both species. Additionally, activity of female E. balteatus differed between the phenotypes, with summer insects being more active than migrating and overwintering individuals in our assays. Furthermore, females of S. selenitica were more active and less easily stressed than E. balteatus. The results not only highlight that hoverflies behave consistently across time, but also that behavioural differences also occur between migratory and resident flies. They also provide evidence for the possible role of behavioural differences in influencing partial migration decisions within populations. (C) 2017 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. [Odermatt, Jannic; Menz, Myles H. M.] Univ Bern, Inst Ecol & Evolut, Dept Community Ecol, Bern, Switzerland; [Frommen, Joachim G.] Univ Bern, Inst Ecol & Evolut, Dept Behav Ecol, Hinterkappelen, Switzerland; [Menz, Myles H. M.] Univ Western Australia, Sch Plant Biol, Crawley, WA, Australia Menz, MHM (reprint author), Univ Bern, Inst Ecol & Evolut, Baltzerstr 6, CH-3012 Bern, Switzerland. myles.menz@iee.unibe.ch Menz, Myles/A-2238-2017 Menz, Myles/0000-0002-3347-5411 Attisano A, 2013, ANIM BEHAV, V86, P651, DOI 10.1016/j.anbehav.2013.07.013; AUBERT J, 1976, Mitteilungen der Schweizerischen Entomologischen Gesellschaft, V49, P115; Bates D, 2015, J STAT SOFTW, V67, P1; Bauer S, 2014, SCIENCE, V344, P54, DOI 10.1126/science.1242552; Bauer S, 2011, ANIMAL MIGRATION: A SYNTHESIS, P68; Bell AM, 2009, ANIM BEHAV, V77, P771, DOI 10.1016/j.anbehav.2008.12.022; Berthold P., 2001, BIRD MIGRATION GEN S; Boroczky K, 2013, P NATL ACAD SCI USA, V110, P3615, DOI 10.1073/pnas.1212466110; Brodin T, 2009, BEHAV ECOL, V20, P30, DOI 10.1093/beheco/arn111; Chapman BB, 2011, OIKOS, V120, P1764, DOI 10.1111/j.1600-0706.2011.20131.x; Chapman BB, 2011, ECOL LETT, V14, P871, DOI 10.1111/j.1461-0248.2011.01648.x; Chapman BB, 2011, ANIM BEHAV, V82, P391, DOI 10.1016/j.anbehav.2011.05.019; Chapman JW, 2008, CURR BIOL, V18, pR908, DOI 10.1016/j.cub.2008.08.014; Chapman JW, 2008, CURR BIOL, V18, P514, DOI 10.1016/j.cub.2008.02.080; Chapman JW, 2015, ECOL LETT, V18, P287, DOI 10.1111/ele.12407; Chapman JW, 2012, P NATL ACAD SCI USA, V109, P14924, DOI 10.1073/pnas.1207255109; Cote J, 2010, PHILOS T R SOC B, V365, P4065, DOI 10.1098/rstb.2010.0176; de Tiefenau P.Goeldlin, 1981, DANMARKS DYRELIV DAN, V1; Dingemanse NJ, 2010, TRENDS ECOL EVOL, V25, P81, DOI 10.1016/j.tree.2009.07.013; Dingle H, 2007, BIOSCIENCE, V57, P113, DOI 10.1641/B570206; Drake VA, 2012, RADAR ENTOMOLOGY: OBSERVING INSECT FLIGHT AND MIGRATION, P1, DOI 10.1079/9781845935566.0000; Ducatez S, 2012, ECOL ENTOMOL, V37, P377, DOI 10.1111/j.1365-2311.2012.01375.x; Elman A., 2009, DATA ANAL USING REGR; Francuski L, 2014, J ZOOL, V292, P156, DOI 10.1111/jzo.12090; Gamer M., 2012, IRR VARIOUS COEFFICI; Gatter W., 1990, SPIXIANA S, V15, P1; Gilbert F., 2011, NATURAL HIST HOVERFL; Gyuris E, 2012, ANIM BEHAV, V84, P103, DOI 10.1016/j.anbehav.2012.04.014; Gyuris E, 2011, P ROY SOC B-BIOL SCI, V278, P628, DOI 10.1098/rspb.2010.1326; Holland RA, 2006, SCIENCE, V313, P794, DOI 10.1126/science.1127272; Hondelmann P, 2005, B ENTOMOL RES, V95, P349, DOI 10.1079/BER2005366; Hondelmann P, 2007, ENTOMOL EXP APPL, V124, P189, DOI 10.1111/j.1570-7458.2007.00568.x; Hopper KR, 1999, ANNU REV ENTOMOL, V44, P535, DOI 10.1146/annurev.ento.44.1.535; Hu G, 2016, SCIENCE, V354, P1584, DOI 10.1126/science.aah4379; Inamine H, 2016, OIKOS, V125, P1081, DOI 10.1111/oik.03196; Jandt JM, 2014, BIOL REV, V89, P48, DOI 10.1111/brv.12042; Jauker F, 2012, AGR FOREST ENTOMOL, V14, P81, DOI 10.1111/j.1461-9563.2011.00541.x; Jones CM, 2015, MOL ECOL, V24, P4901, DOI 10.1111/mec.13362; Keil P., 2008, ECOLOGICAL ENTOMOLOG, V33, P784; Kendall MG, 1948, RANK CORRELATION MET; Koolhaas JM, 1999, NEUROSCI BIOBEHAV R, V23, P925, DOI 10.1016/S0149-7634(99)00026-3; Kralj-Fiser S, 2014, ANIM BEHAV, V91, P41, DOI 10.1016/j.anbehav.2014.02.016; LACK D, 1951, J ANIM ECOL, V20, P63; Liedvogel M, 2011, TRENDS ECOL EVOL, V26, P561, DOI 10.1016/j.tree.2011.07.009; Maibach Alain, 1992, Miscellanea Faunistica Helvetiae, V1, P1; Mettke-Hofmann C, 2005, BEHAVIOUR, V142, P1357, DOI 10.1163/156853905774539427; Mikkola K, 2003, ENTOMOL FENNICA, V14, P15; Montiglio PO, 2016, J ANIM ECOL, V85, P125, DOI 10.1111/1365-2656.12436; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Nilsson ALK, 2010, NATURWISSENSCHAFTEN, V97, P981, DOI 10.1007/s00114-010-0714-7; Pedersen E.Torp, 1984, DANSKE SVIRREFLUER, V1; Pinheiro LA, 2013, BIOL CONTROL, V67, P178, DOI 10.1016/j.biocontrol.2013.07.010; R Core Team, 2015, R LANG ENV STAT COMP; Raymond L, 2014, ECOSPHERE, V5, DOI 10.1890/ES14-00075.1; Raymond L, 2014, AGR ECOSYST ENVIRON, V185, P99, DOI 10.1016/j.agee.2013.12.019; Raymond L, 2013, MOL ECOL, V22, P5329, DOI 10.1111/mec.12483; Raymond L, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0072997; Reale D., 2012, ANIMAL PERSONALITY; Schuett W, 2011, DEV PSYCHOBIOL, V53, P631, DOI 10.1002/dev.20538; SHARMA K C, 1991, Indian Journal of Plant Protection, V19, P73; Speight M. C. D., 2014, SPECIES ACCOUNTS EUR, V78; Stefanescu C, 2013, ECOGRAPHY, V36, P474, DOI 10.1111/j.1600-0587.2012.07738.x; Suarez Andrew V., 1999, Biological Invasions, V1, P43, DOI 10.1023/A:1010038413690; Terracciano A, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0054746; Tomlinson S, 2015, COMP BIOCHEM PHYS A, V190, P61, DOI 10.1016/j.cbpa.2015.09.004; Wikelski M, 2003, NATURE, V423, P704, DOI 10.1038/423704a; Wikelski M, 2006, BIOL LETTERS, V2, P325, DOI 10.1098/rsbl.2006.0487; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Yanagawa A, 2014, FRONT BEHAV NEUROSCI, V8, DOI 10.3389/fnbeh.2014.00254; Zhan S, 2014, NATURE, V514, P317, DOI 10.1038/nature13812; Zhu HS, 2009, BMC BIOL, V7, DOI 10.1186/1741-7007-7-14 71 2 2 3 26 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 1095-8282 ANIM BEHAV Anim. Behav. MAY 2017 127 187 195 10.1016/j.anbehav.2017.03.015 9 Behavioral Sciences; Zoology Behavioral Sciences; Zoology EW7OD WOS:000402702900020 2018-11-22 J Edwards, HA; Burke, T; Dugdale, HL Edwards, Hannah A.; Burke, Terry; Dugdale, Hannah L. Repeatable and heritable behavioural variation in a wild cooperative breeder BEHAVIORAL ECOLOGY English Article Cooperative breeding; exploration; personality; heritability; repeatability; Seychelles warbler WARBLER ACROCEPHALUS-SECHELLENSIS; CONSISTENT INDIVIDUAL-DIFFERENCES; YELLOW-BELLIED MARMOTS; TIT PARUS-MAJOR; MALE GREAT TITS; EXPLORATORY-BEHAVIOR; PERSONALITY-TRAITS; SEYCHELLES WARBLER; LIFE-HISTORY; ANIMAL PERSONALITY Quantifying consistent differences in behaviour among individuals is vital to understanding the ecological and evolutionary significance of animal personality. To quantify personality, the phenotypic variation of a behavioural trait is partitioned to assess how it varies among individuals, which is also known as repeatability. If pedigree data are available, the phenotypic variation can then be further partitioned to estimate the additive genetic variance and heritability. Assessing the repeatability and heritability of personality traits therefore allows for a better understanding of what natural selection can act upon, enabling evolution. In a natural population of facultative cooperatively breeding Seychelles warbler (Acrocephalus sechellensis) on Cousin Island, a lack of breeding vacancies forces individuals into different life-history strategies, and these differences in reproductive state could generate behavioural differences among individuals in the population. We used this population to estimate the repeatability of 4 behavioural traits (novel environment exploration, novel object exploration, obstinacy/struggle rate, and escape response), and narrow-sense heritability (of behavior, h(B)(2); behavior minus observer variance; and personality), and evolvability, of the repeatable behavioural traits. We also tested for an among-individual correlation between the repeatable traits. We found that, compared to estimates in other study species, the exploratory behaviours were moderately repeatable (0.23-0.37), there was a positive among-individual correlation (0.51) between novel environment and novel object exploration, and that novel environment exploration was moderately heritable (0.17; h(B)(2) was low as it includes observer variance). This study further clarifies the additive genetic variance available for selection to act upon in this cooperatively breeding bird. [Edwards, Hannah A.; Burke, Terry] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England; [Dugdale, Hannah L.] Nat Seychelles, POB 1310, Roche Caiman, Mahe, Seychelles; [Dugdale, Hannah L.] Univ Groningen, Groningen Inst Evolutionary Life Sci, Behav Ecol & Physiol Grp, POB 11103, NL-9700 CC Groningen, Netherlands; [Dugdale, Hannah L.] Univ Leeds, Fac Biol Sci, Sch Biol, Leeds, W Yorkshire, England Edwards, HA (reprint author), Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England. hannah.a.edwards@outlook.com Dugdale, Hannah/C-7138-2008; Burke, Terry/B-3196-2011 Dugdale, Hannah/0000-0001-8769-0099; Burke, Terry/0000-0003-3848-1244 Natural Environment Research Council studentship [X/007/001-15]; Natural Environment Research Council fellowship [NE/I021748/1]; Schure Beijerinck Popping [SBP2013/46, SBP2012/26]; Leverhulme Fellowship; Natural Environment Research Council [NE/I021748/1] This work was supported by a Natural Environment Research Council studentship (X/007/001-15 to HAE), a Natural Environment Research Council fellowship (NE/I021748/1 to HLD), 2 Schure Beijerinck Popping grants (SBP2013/46 to HAE and SBP2012/26 to HLD) and TB was supported by a Leverhulme Fellowship. ALTMANN J, 1974, BEHAVIOUR, V49, P227, DOI 10.1163/156853974X00534; Archard GA, 2010, J ZOOL, V281, P149, DOI 10.1111/j.1469-7998.2010.00714.x; ARMITAGE KB, 1986, BEHAV ECOL SOCIOBIOL, V18, P419, DOI 10.1007/BF00300516; Bell AM, 2009, ANIM BEHAV, V77, P771, DOI 10.1016/j.anbehav.2008.12.022; Bergmuller R, 2010, TRENDS ECOL EVOL, V25, P504, DOI 10.1016/j.tree.2010.06.012; Bijma P, 2014, HEREDITY, V112, P61, DOI 10.1038/hdy.2013.15; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Blumstein DT, 2010, J EVOLUTION BIOL, V23, P879, DOI 10.1111/j.1420-9101.2010.01967.x; Boon AK, 2008, OIKOS, V117, P1321, DOI 10.1111/j.2008.0030-1299.16567.x; Boyer N, 2010, J ANIM ECOL, V79, P538, DOI 10.1111/j.1365-2656.2010.01659.x; Brouwer L, 2007, MOL ECOL, V16, P3134, DOI 10.1111/j.1365-294X.2007.03370.x; Brouwer L, 2010, MOL ECOL, V19, P3444, DOI 10.1111/j.1365-294X.2010.04750.x; Class B, 2014, ECOL EVOL, V4, P427, DOI 10.1002/ece3.945; Cockburn A, 1998, ANNU REV ECOL SYST, V29, P141, DOI 10.1146/annurev.ecolsys.29.1.141; Coppens CM, 2010, PHILOS T R SOC B, V365, P4021, DOI 10.1098/rstb.2010.0217; Dall SRX, 2004, ECOL LETT, V7, P734, DOI 10.1111/j.1461-0248.2004.00618.x; Dingemanse NJ, 2012, J ANIM ECOL, V81, P116, DOI 10.1111/j.1365-2656.2011.01877.x; Dingemanse NJ, 2002, ANIM BEHAV, V64, P929, DOI 10.1006/anbe.2002.2006; Dingemanse NJ, 2004, BEHAV ECOL, V15, P1023, DOI 10.1093/beheco/arh115; Dochtermann NA, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2201; Drent PJ, 2003, P ROY SOC B-BIOL SCI, V270, P45, DOI 10.1098/rspb.2002.2168; Duckworth RA, 2009, EVOLUTION, V63, P968, DOI 10.1111/j.1558-5646.2009.00625.x; Edwards H. A., 2017, DRYAD DIGITAL REPOSI; Edwards HA, 2016, BEHAV ECOL, V27, P1889, DOI 10.1093/beheco/arw119; Edwards HA, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0138439; Falconer D.S., 1996, INTRO QUANTITATIVE G; Favati A, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2531; Fisher DN, 2015, BEHAV ECOL, V26, P975, DOI 10.1093/beheco/arv048; Fisher DN, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0708; Fox RA, 2009, ANIM BEHAV, V77, P1441, DOI 10.1016/j.anbehav.2009.02.022; Gelman A., 2006, DATA ANAL USING REGR; Gelman A, 2006, BAYESIAN ANAL, V1, P515, DOI 10.1214/06-BA117A; Gomez-Laplaza LM, 2002, BEHAVIOUR, V139, P1469, DOI 10.1163/15685390260514726; Griffith SC, 2002, MOL ECOL, V11, P2195, DOI 10.1046/j.1365-294X.2002.01613.x; Hadfield JD, 2006, MOL ECOL, V15, P3715, DOI 10.1111/j.1365-294X.2006.03050.x; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hadfield JD, 2015, MCMCGLMM COURSE NOTE; Hammers M, 2013, J EVOLUTION BIOL, V26, P1999, DOI 10.1111/jeb.12204; Hammers M, 2015, EXP GERONTOL, V71, P69, DOI 10.1016/j.exger.2015.08.019; Hansen TF, 2011, EVOL BIOL, V38, P258, DOI 10.1007/s11692-011-9127-6; Herborn KA, 2010, ANIM BEHAV, V79, P835, DOI 10.1016/j.anbehav.2009.12.026; HOULE D, 1992, GENETICS, V130, P195; Kingma SA, 2016, BIOL LETTERS, V12, DOI 10.1098/rsbl.2016.0316; Komdeur J, 2005, BIOL CONSERV, V124, P15, DOI 10.1016/j.biocon.2004.12.009; Komdeur J, 2004, IBIS, V146, P298, DOI 10.1046/j.1474-919X.2004.00255.x; KOMDEUR J, 1992, NATURE, V358, P493, DOI 10.1038/358493a0; Koolhaas JM, 1999, NEUROSCI BIOBEHAV R, V23, P925, DOI 10.1016/S0149-7634(99)00026-3; Korsten P, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms3362; Kruuk LEB, 2007, J EVOLUTION BIOL, V20, P1890, DOI 10.1111/j.1420-9101.2007.01377.x; Kruuk LE, 2002, P NATL ACAD SCI USA, V97, P698; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Michelangeli M, 2016, BEHAV ECOL, V27, P62, DOI 10.1093/beheco/arv123; Morrissey MB, 2010, MOL ECOL RESOUR, V10, P711, DOI 10.1111/j.1755-0998.2009.02817.x; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Patrick SC, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.1649; Perez JA, 2010, POULTRY SCI, V89, P5, DOI 10.3382/ps.2009-00170; Petelle MB, 2015, J EVOLUTION BIOL, V28, P1840, DOI 10.1111/jeb.12700; Poissant J, 2013, ECOL EVOL, V3, P474, DOI 10.1002/ece3.468; Quinn JL, 2011, J ANIM ECOL, V80, P918, DOI 10.1111/j.1365-2656.2011.01835.x; R Development Core Team, 2013, R LANG ENV STAT COMP; Reale D, 2000, ANIM BEHAV, V60, P589, DOI 10.1006/anbe.2000.1530; Reale D, 2009, J EVOLUTION BIOL, V22, P1599, DOI 10.1111/j.1420-9101.2009.01781.x; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Richardson DS, 2001, MOL ECOL, V10, P2263, DOI 10.1046/j.0962-1083.2001.01355.x; Richardson DS, 2002, EVOLUTION, V56, P2313; Schuett W, 2010, BIOL REV, V85, P217, DOI 10.1111/j.1469-185X.2009.00101.x; Schuett W, 2009, ANIM BEHAV, V77, P1041, DOI 10.1016/j.anbehav.2008.12.024; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Sih A, 2015, TRENDS ECOL EVOL, V30, P50, DOI 10.1016/j.tree.2014.11.004; Sinn DL, 2006, J EVOLUTION BIOL, V19, P1437, DOI 10.1111/j.1420-9101.2006.01136.x; Smith BR, 2008, BEHAV ECOL, V19, P448, DOI 10.1093/beheco/arm144; Stamps JA, 2007, ECOL LETT, V10, P355, DOI 10.1111/j.1461-0248.2007.01034.x; Stirling DG, 2002, J EVOLUTION BIOL, V15, P277, DOI 10.1046/j.1420-9101.2002.00389.x; SVENDSEN GE, 1973, ECOLOGY, V54, P623, DOI 10.2307/1935349; Taylor RW, 2012, J EVOLUTION BIOL, V25, P614, DOI 10.1111/j.1420-9101.2012.02456.x; vanOers K, 2013, ANIMAL PERSONALITIES, P149; Verbeek MEM, 1996, BEHAVIOUR, V133, P945, DOI 10.1163/156853996X00314; VERBEEK MEM, 1994, ANIM BEHAV, V48, P1113, DOI 10.1006/anbe.1994.1344; Weigensberg I, 1996, EVOLUTION, V50, P2149, DOI 10.1111/j.1558-5646.1996.tb03605.x; WILEY RH, 1984, EVOLUTION, V38, P609, DOI 10.1111/j.1558-5646.1984.tb00326.x; Wilson AJ, 2010, J ANIM ECOL, V79, P13, DOI 10.1111/j.1365-2656.2009.01639.x; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wolf M, 2012, AM NAT, V179, P679, DOI 10.1086/665656; Wolf M, 2010, PHILOS T R SOC B, V365, P3959, DOI 10.1098/rstb.2010.0215; Wright David J., 2014, Conservation Evidence, V11, P20 85 2 2 4 20 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 1465-7279 BEHAV ECOL Behav. Ecol. MAY-JUN 2017 28 3 668 676 10.1093/beheco/arx013 9 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology EV7GC WOS:000401942800013 29622921 Green Published, Bronze 2018-11-22 J Recapet, C; Bize, P; Doligez, B Recapet, Charlotte; Bize, Pierre; Doligez, Blandine Food availability modulates differences in parental effort between dispersing and philopatric birds BEHAVIORAL ECOLOGY English Article breeding density; dispersal; habitat quality; oxidative stress; parental care; reproductive output SPATIALLY STRUCTURED POPULATIONS; COLLARED FLYCATCHER; REPRODUCTIVE SUCCESS; HYPOCHLOROUS ACID; LIFE-HISTORY; PIED FLYCATCHERS; OXIDATIVE STRESS; NATAL DISPERSAL; RANGE EXPANSION; PASSERINE BIRD Dispersal entails costs and might have to be traded off against other life-history traits. Dispersing and philopatric individuals may thus exhibit alternative life-history strategies. Importantly, these differences could also partly be modulated by environmental variation. Our previous results in a patchy population of a small passerine, the collared flycatcher, suggest that, as breeding density, a proxy of habitat quality, decreases, dispersing individuals invest less in reproduction but maintain a stable oxidative balance, whereas philopatric individuals maintain a high reproductive investment at the expense of increased oxidative stress. In this study, we aimed at experimentally testing whether these observed differences between dispersing and philopatric individuals across a habitat quality gradient were due to food availability, a major component of habitat quality in this system. We provided additional food for the parents to use during the nestling rearing period and we measured subsequent parental reproductive effort (through provisioning rate, adult body mass, and plasmatic markers of oxidative balance) and reproductive output. Density-dependent differences between dispersing and philopatric parents in body mass and fledging success were observed in control nests but not in supplemented nests. However, density-dependent differences in oxidative state were not altered by the supplementation. Altogether, our results support our hypothesis that food availability is responsible for some of the density-dependent differences observed in our population between dispersing and philopatric individuals but other mechanisms are also at play. Our study further emphasizes the need to account for environmental variation when studying the association between dispersal and other traits. [Recapet, Charlotte; Doligez, Blandine] Univ Lyon, Univ Claude Bernard Lyon 1, Lab Biometr & Biol Evolut, CNRS,UMR 5558, 43 Bd 11 Novembre 1918, F-69622 Villeurbanne, France; [Recapet, Charlotte] Univ Lausanne Sorge, Dept Ecol & Evolut, CH-1015 Lausanne, Switzerland; [Bize, Pierre] Univ Aberdeen, Sch Biol Sci, Tillydrone Ave, Aberdeen AB24 2TZ, Scotland; [Doligez, Blandine] Uppsala Univ, Evolut Biol Ctr EBC, Norbyvagen 14-18, S-75236 Uppsala, Sweden Recapet, C (reprint author), Univ La Rochelle, CNRS, UMR 7266, LIttoral Environm & Societes, 2 Rue Olympe Gouges, F-17000 La Rochelle, France. charlotte.recapet@normalesup.org Recapet, Charlotte/0000-0001-5414-8412 French National Center for Scientific Research (PICS France-Switzerland ); French Ministry of Research; L'Oreal Foundation-UNESCO "For Women in Science" program; Region Rhone-Alpes; Rectors' Conference of the Swiss Universities [F13/16]; Fondation pour l'Universite de Lausanne This work was supported by the French National Center for Scientific Research (PICS France-Switzerland to B.D.); the French Ministry of Research (PhD fellowship to C.R.); the L'Oreal Foundation-UNESCO "For Women in Science" program (fellowship to C.R.); the Region Rhone-Alpes (Explora'doc mobility grant to C.R.); the Rectors' Conference of the Swiss Universities (grant no F13/16 to C.R.); and the Fondation pour l'Universite de Lausanne (grant to C.R.). Ardia DR, 2007, BEHAV ECOL, V18, P259, DOI 10.1093/beheco/arl078; Beaulieu M, 2011, FUNCT ECOL, V25, P577, DOI 10.1111/j.1365-2435.2010.01825.x; Belichon S, 1996, ACTA OECOL, V17, P503; Bestion E, 2015, ECOL LETT, V18, P1226, DOI 10.1111/ele.12502; Bonte D, 2012, BIOL REV, V87, P290, DOI 10.1111/j.1469-185X.2011.00201.x; Bowler DE, 2005, BIOL REV, V80, P205, DOI 10.1017/S1464793104006645; Clobert J, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P1, DOI 10.1093/acprof:oso/9780199608898.001.0001; Clobert J, 2001, DISPERSAL; Clobert J, 2009, ECOL LETT, V12, P197, DOI 10.1111/j.1461-0248.2008.01267.x; Costantini D, 2011, METHODS ECOL EVOL, V2, P321, DOI 10.1111/j.2041-210X.2010.00080.x; Costantini D, 2009, FUNCT ECOL, V23, P506, DOI 10.1111/j.1365-2435.2009.01546.x; Cote J, 2007, P R SOC B, V274, P383, DOI 10.1098/rspb.2006.3734; Cote J, 2010, PHILOS T R SOC B, V365, P4065, DOI 10.1098/rstb.2010.0176; Cote J, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.2349; de Groot H, 1998, FUND CLIN PHARMACOL, V12, P249; Debeffe L, 2014, P BIOL SCI, V281; Doligez B, 2004, J ANIM ECOL, V73, P75, DOI 10.1111/j.1365-2656.2004.00782.x; Doligez B, 2002, J APPL STAT, V29, P407, DOI 10.1080/02664760120108845; Doligez B, 1999, J ANIM ECOL, V68, P1193, DOI 10.1046/j.1365-2656.1999.00362.x; Doligez B, 2008, J ANIM ECOL, V77, P1199, DOI 10.1111/j.1365-2656.2008.01446.x; Doligez B, 2012, J ORNITHOL, V152, pS539, DOI 10.1007/s10336-010-0643-4; Doncaster CP, 1997, AM NAT, V150, P425, DOI 10.1086/286074; Duckworth RA, 2008, AM NAT, V172, pS4, DOI 10.1086/588289; Duckworth RA, 2007, P NATL ACAD SCI USA, V104, P15017, DOI 10.1073/pnas.0706174104; Edelaar P, 2012, TRENDS ECOL EVOL, V27, P659, DOI 10.1016/j.tree.2012.07.009; FOLKES LK, 1995, ARCH BIOCHEM BIOPHYS, V323, P120, DOI 10.1006/abbi.1995.0017; Fox J., 2011, R COMPANION APPL REG; Garant D, 2005, NATURE, V433, P60, DOI 10.1038/nature03051; Grieco F, 2002, ANIM BEHAV, V64, P517, DOI 10.1006/ANBE.2002.3073; GRUNDEL R, 1987, CONDOR, V89, P319, DOI 10.2307/1368484; Hanski I, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P290; Hoset KS, 2011, BEHAV ECOL, V22, P176, DOI 10.1093/beheco/arq188; IMS RA, 1990, OIKOS, V57, P106, DOI 10.2307/3565743; Jacquin L, 2012, BEHAV ECOL, V23, P907, DOI 10.1093/beheco/ars055; Julliard R, 1996, ACTA OECOL, V17, P487; Karpestam E, 2012, EVOL ECOL, V26, P893, DOI 10.1007/s10682-011-9530-6; Kuznetsova A, 2013, R PACKAGE VERSION 1; Le Galliard JF, 2012, MOL ECOL, V21, P505, DOI 10.1111/j.1365-294X.2011.05410.x; LINDEN M, 1992, ECOLOGY, V73, P336, DOI 10.2307/1938745; Marr AB, 2002, EVOLUTION, V56, P131; Meylan S, 2009, J EXP ZOOL PART A, V311A, P377, DOI 10.1002/jez.533; MYERS JH, 1971, ECOL MONOGR, V41, P53, DOI 10.2307/1942435; Nour N, 1998, OECOLOGIA, V114, P522, DOI 10.1007/s004420050476; Paradis E, 1998, J ANIM ECOL, V67, P518, DOI 10.1046/j.1365-2656.1998.00215.x; PART T, 1995, ANIM BEHAV, V49, P1029, DOI 10.1006/anbe.1995.0132; Pattison DI, 2003, CHEM RES TOXICOL, V16, P439, DOI 10.1021/tx025670s; Pennathur S, 2010, FREE RADICAL BIO MED, V49, P205, DOI 10.1016/j.freeradbiomed.2010.04.003; Phillips BL, 2006, NATURE, V439, P803, DOI 10.1038/439803a; PRICE T, 1988, SCIENCE, V240, P798, DOI 10.1126/science.3363360; R Core Team, 2016, R LANG ENV STAT COMP; Recapet C, 2017, DRYAD DIGITAL REPOSI; Recapet C, 2016, BIOL LETTERS, V12, DOI 10.1098/rsbl.2016.0097; Recapet C, 2016, BMC EVOL BIOL, V16, DOI 10.1186/s12862-016-0697-x; Ronce O, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P119; Schwagmeyer PL, 2008, ANIM BEHAV, V75, P291, DOI 10.1016/j.anbehav.2007.05.023; Siikamaki P, 1998, ECOLOGY, V79, P1789, DOI 10.1890/0012-9658(1998)079[1789:LORSBF]2.0.CO;2; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stevens VM, 2014, ECOL LETT, V17, P1039, DOI 10.1111/ele.12303; Stevens VM, 2013, EVOL APPL, V6, P630, DOI 10.1111/eva.12049; Stier A, 2012, FRONT ZOOL, V9, DOI 10.1186/1742-9994-9-37; Svensson L., 1992, IDENTIFICATION GUIDE; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VANHORNE B, 1983, J WILDLIFE MANAGE, V47, P893; VERHULST S, 1994, AUK, V111, P714 64 0 0 3 11 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 1465-7279 BEHAV ECOL Behav. Ecol. MAY-JUN 2017 28 3 688 697 10.1093/beheco/arx017 10 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology EV7GC WOS:000401942800015 2018-11-22 J Parker, BJ; Barribeau, SM; Laughton, AM; Griffin, LH; Gerardo, NM Parker, Benjamin J.; Barribeau, Seth M.; Laughton, Alice M.; Griffin, Lynn H.; Gerardo, Nicole M. Life-history strategy determines constraints on immune function JOURNAL OF ANIMAL ECOLOGY English Article ecological immunology; fitness trade-offs; host-pathogen interactions; innate immunity; pea aphid (Acyrthosiphon pisum); polyphenism DENSITY-DEPENDENT PROPHYLAXIS; ACYRTHOSIPHON-PISUM; PEA APHID; DROSOPHILA-MELANOGASTER; DISEASE RESISTANCE; ECOLOGICAL CONSEQUENCES; SCHISTOCERCA-GREGARIA; FUNGAL PATHOGENS; GENE-EXPRESSION; DESERT LOCUST Determining the factors governing investment in immunity is critical to understanding host-pathogen ecological and evolutionary dynamics. Studies often consider disease resistance in the context of life-history theory, with the expectation that investment in immunity will be optimized in anticipation of disease risk. Immunity, however, is constrained by context-dependent fitness costs. How the costs of immunity vary across life-history strategies has yet to be considered. Pea aphids are typically unwinged but produce winged offspring in response to high population densities and deteriorating conditions. This is an example of polyphenism, a strategy used by many organisms to adjust to environmental cues. The goal of this study was to examine the relationship between the fitness costs of immunity, pathogen resistance and the strength of an immune response across aphid morphs that differ in life-history strategy but are genetically identical. We measured fecundity of winged and unwinged aphids challenged with a heat-inactivated fungal pathogen, and found that immune costs are limited to winged aphids. We hypothesized that these costs reflect stronger investment in immunity in anticipation of higher disease risk, and that winged aphids would be more resistant due to a stronger immune response. However, producing wings is energetically expensive. This guided an alternative hypothesis - that investing resources into wings could lead to a reduced capacity to resist infection. We measured survival and pathogen load after live fungal infection, and we characterized the aphid immune response to fungi by measuring immune cell concentration and gene expression. We found that winged aphids are less resistant and mount a weaker immune response than unwinged aphids, demonstrating that winged aphids pay higher costs for a less effective immune response. Our results show that polyphenism is an understudied factor influencing the expression of immune costs. More generally, our work shows that in addition to disease resistance, the costs of immunity vary between individuals with different life-history strategies. We discuss the implications of these findings for understanding how organisms invest optimally in immunity in the light of context-dependent constraints. [Parker, Benjamin J.; Barribeau, Seth M.; Laughton, Alice M.; Griffin, Lynn H.; Gerardo, Nicole M.] Emory Univ, Dept Biol, O Wayne Rollins Res Ctr, 1510 E Clifton Rd NE, Atlanta, GA 30322 USA; [Parker, Benjamin J.] Univ Oxford, Dept Zool, South Parks Rd, Oxford OX1 3PS, England; [Barribeau, Seth M.] Univ Liverpool, Inst Integrat Biol, Liverpool L69 7ZB, Merseyside, England; [Laughton, Alice M.] Queen Mary Univ London, Sch Biol & Chem Sci, London E1 4NS, England Parker, BJ (reprint author), Emory Univ, Dept Biol, O Wayne Rollins Res Ctr, 1510 E Clifton Rd NE, Atlanta, GA 30322 USA.; Parker, BJ (reprint author), Univ Oxford, Dept Zool, South Parks Rd, Oxford OX1 3PS, England. benjamin.j.parker@gmail.com NSF [IOS-1025853, DBI-1306387]; Swiss NSF [31003A-116057]; Emory University's NIH IRACDA FIRST Postdoctoral Program Members of the Gerardo laboratory, J. Brisson, N. Moran and two anonymous reviewers provided valuable feedback on drafts of this manuscript. This work was supported by NSF grant IOS-1025853 to N.M.G. B.J.P. was supported by a graduate research fellowship and NSF grant DBI-1306387. S.M.B. was supported by the Swiss NSF (# 31003A-116057 to Paul Schmid-Hempel). L.G. was supported by Emory University's NIH IRACDA FIRST Postdoctoral Program. Altincicek B, 2008, INSECT MOL BIOL, V17, P711, DOI 10.1111/j.1365-2583.2008.00835.x; Amdam GV, 2005, EXP GERONTOL, V40, P939, DOI 10.1016/j.exger.2005.08.004; Barribeau SM, 2014, P NATL ACAD SCI USA, V111, P3496, DOI 10.1073/pnas.1318628111; Barribeau SM, 2014, ECOL EVOL, V4, P488, DOI 10.1002/ece3.892; Barribeau SM, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-251; Bonte D, 2012, BIOL REV, V87, P290, DOI 10.1111/j.1469-185X.2011.00201.x; Brisson JA, 2006, BIOESSAYS, V28, P747, DOI 10.1002/bies.20436; Brisson JA, 2010, PHILOS T R SOC B, V365, P605, DOI 10.1098/rstb.2009.0255; Brunner FS, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0128; Chapman JW, 2015, ECOL LETT, V18, P287, DOI 10.1111/ele.12407; Cotter SC, 2010, ECOL LETT, V13, P1114, DOI 10.1111/j.1461-0248.2010.01500.x; Cotter SC, 2004, J ANIM ECOL, V73, P283, DOI 10.1111/j.0021-8790.2004.00806.x; Cronin JP, 2010, ECOL LETT, V13, P1221, DOI 10.1111/j.1461-0248.2010.01513.x; de Roode JC, 2011, J EVOLUTION BIOL, V24, P712, DOI 10.1111/j.1420-9101.2010.02213.x; Dixon A.F.G., 1986, P145; Feder D, 1997, J INSECT PHYSIOL, V43, P513, DOI 10.1016/S0022-1910(97)00010-3; Feng MG, 2004, ENVIRON MICROBIOL, V6, P510, DOI 10.1111/j.1462-2920.2004.00594.x; Feng MG, 2007, ECOL ENTOMOL, V32, P97, DOI 10.1111/j.1365-2311.2006.00849.x; Gandon S, 2000, P ROY SOC B-BIOL SCI, V267, P985, DOI 10.1098/rspb.2000.1100; Gandon S, 1996, P ROY SOC B-BIOL SCI, V263, P1003, DOI 10.1098/rspb.1996.0148; Gerardo NM, 2010, GENOME BIOL, V11, DOI 10.1186/gb-2010-11-2-r21; Gillespie JP, 2000, J INSECT PHYSIOL, V46, P429, DOI 10.1016/S0022-1910(99)00128-6; Graham AL, 2011, FUNCT ECOL, V25, P5, DOI 10.1111/j.1365-2435.2010.01777.x; Graham AL, 2010, SCIENCE, V330, P662, DOI 10.1126/science.1194878; Grantham ME, 2016, BIOL LETTERS, V12, DOI 10.1098/rsbl.2016.0654; Grell MN, 2011, FUNGAL GENET BIOL, V48, P343, DOI 10.1016/j.fgb.2010.12.003; GROETERS FR, 1989, EVOL ECOL, V3, P313, DOI 10.1007/BF02285262; Guershon M, 2012, INSECT SCI, V19, P649, DOI 10.1111/j.1744-7917.2012.01518.x; HAJEK AE, 1994, ANNU REV ENTOMOL, V39, P293, DOI 10.1146/annurev.en.39.010194.001453; Hajek AE, 2012, MANUAL TECHNIQUES IN, P285, DOI [10.1016/B978-0-12-386899-2.00009-9, DOI 10.1016/B978-0-12-386899-2.00009-9]; Hamilton C, 2011, BIOL LETTERS, V7, P89, DOI 10.1098/rsbl.2010.0466; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; Hothorn T, 2008, BIOMETRICAL J, V50, P346, DOI 10.1002/bimj.200810425; HUNG SY, 1992, J INVERTEBR PATHOL, V60, P152, DOI 10.1016/0022-2011(92)90089-M; JOHNSON CG, 1963, NATURE, V198, P423, DOI 10.1038/198423a0; Johnson PTJ, 2012, ECOL LETT, V15, P235, DOI 10.1111/j.1461-0248.2011.01730.x; Karlsson B, 2008, P ROY SOC B-BIOL SCI, V275, P2131, DOI 10.1098/rspb.2008.0404; Kim D, 2013, GENOME BIOL, V14, DOI 10.1186/gb-2013-14-4-r36; Kraaijeveld AR, 1997, NATURE, V389, P278; Laughton AM, 2011, J INSECT PHYSIOL, V57, P830, DOI 10.1016/j.jinsphys.2011.03.015; Lee KA, 2008, J ANIM ECOL, V77, P356, DOI 10.1111/j.1365-2656.2007.01347.x; Lee KP, 2006, P R SOC B, V273, P823, DOI 10.1098/rspb.2005.3385; Liu QN, 2013, J INVERTEBR PATHOL, V114, P313, DOI 10.1016/j.jip.2013.09.004; Lively CM, 1999, AM NAT, V153, pS34, DOI 10.1086/303210; Mackinnon MJ, 2004, PLOS BIOL, V2, P1286, DOI 10.1371/journal.pbio.0020230; Markus R, 2009, P NATL ACAD SCI USA, V106, P4805, DOI 10.1073/pnas.0801766106; Martin LB, 2007, ECOLOGY, V88, P2516, DOI 10.1890/07-0060.1; McKean KA, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-76; Miner BG, 2005, TRENDS ECOL EVOL, V20, P685, DOI 10.1016/j.tree.2005.08.002; Moller AP, 2001, AM NAT, V158, P136, DOI 10.1086/321308; Moret Y, 2000, SCIENCE, V290, P1166, DOI 10.1126/science.290.5494.1166; Myers JH, 2011, OECOLOGIA, V167, P647, DOI 10.1007/s00442-011-2023-z; Nishikori K, 2009, J INSECT PHYSIOL, V55, P351, DOI 10.1016/j.jinsphys.2009.01.001; Papierok Bernard, 1997, P187, DOI 10.1016/B978-012432555-5/50012-9; Parker B. J., 2017, DRYAD DIGITAL REPOSI; Parker BJ, 2014, EVOLUTION, V68, P2421, DOI 10.1111/evo.12418; PFENNIG DW, 1993, NATURE, V362, P836, DOI 10.1038/362836a0; Richards S, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000313; Sadd BM, 2006, P R SOC B, V273, P2571, DOI 10.1098/rspb.2006.3574; Sadd BM, 2009, EVOL APPL, V2, P113, DOI 10.1111/j.1752-4571.2008.00057.x; Schmid-Hempel P, 2003, P ROY SOC B-BIOL SCI, V270, P357, DOI 10.1098/rspb.2002.2265; Schmitz A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0042114; Serbielle C, 2009, BIOL CHEM, V390, P493, DOI 10.1515/BC.2009.061; SIMMS EL, 1987, AM NAT, V130, P570, DOI 10.1086/284731; Simpson SJ, 2011, CURR BIOL, V21, pR738, DOI 10.1016/j.cub.2011.06.006; Siva-Jothy MT, 2002, PHYSIOL ENTOMOL, V27, P206, DOI 10.1046/j.1365-3032.2002.00286.x; Sorrentino RP, 2002, DEV BIOL, V243, P65, DOI 10.1006/dbio.2001.0542; SUTHERLAND OR, 1969, J INSECT PHYSIOL, V15, P1385, DOI 10.1016/0022-1910(69)90199-1; Trapnell C, 2012, NAT PROTOC, V7, P562, DOI 10.1038/nprot.2012.016; Tryselius Y, 1997, INSECT MOL BIOL, V6, P173, DOI 10.1111/j.1365-2583.1997.tb00085.x; Valtonen TM, 2010, EVOL BIOL, V37, P49, DOI 10.1007/s11692-009-9078-3; Van Veen FJF, 2008, J ANIM ECOL, V77, P191, DOI 10.1111/j.1365-2656.2007.01325.x; Vass E, 1998, J PARASITOL, V84, P870, DOI 10.2307/3284609; Vellichirammal NN, 2016, MOL ECOL, V25, P4146, DOI 10.1111/mec.13749; Vilcinskas A, 1999, ADV PARASIT, V43, P267, DOI 10.1016/S0065-308X(08)60244-4; Wilson ACC, 2006, BMC GENOMICS, V7, DOI 10.1186/1471-2164-7-50; Wilson K, 2003, J ANIM ECOL, V72, P133, DOI 10.1046/j.1365-2656.2003.00680.x; Wilson K, 2002, P NATL ACAD SCI USA, V99, P5471, DOI [10.1073/pnas.082461999, 10.1073/pnas082461999]; Wilson K, 1998, ECOL ENTOMOL, V23, P100, DOI 10.1046/j.1365-2311.1998.00107.x; Wilson K, 2001, ECOL LETT, V4, P637, DOI 10.1046/j.1461-0248.2001.00279.x; Xia J, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0068185; Zuk M, 2002, AM NAT, V160, pS9, DOI 10.1086/342131 82 2 2 5 31 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. MAY 2017 86 3 473 483 10.1111/1365-2656.12657 11 Ecology; Zoology Environmental Sciences & Ecology; Zoology ER5FG WOS:000398826400007 28211052 Bronze 2018-11-22 J Erisman, BE; Cota-Nieto, JJ; Moreno-Baez, M; Aburto-Oropeza, O Erisman, Brad E.; Jose Cota-Nieto, Juan; Moreno-Baez, Marcia; Aburto-Oropeza, Octavio Vulnerability of spawning aggregations of a coastal marine fish to a small-scale fishery MARINE BIOLOGY English Article BARRED SAND BASS; GULF-OF-CALIFORNIA; LIFE-HISTORY STRATEGIES; CORAL-REEF FISHERIES; LONG-TERM TRENDS; SOUTHERN CALIFORNIA; PARALABRAX-NEBULIFER; EXTINCTION RISK; CLIMATE-CHANGE; MANAGEMENT For marine fishes that form spawning aggregations, vulnerability to aggregation fishing is influenced by interactions between the spatio-temporal patterns of spawning and aspects of the fishery that determine fishing effort, catch, and catch rate in relation to spawning. We investigated the spatio-temporal dynamics of spawning and fishing for the barred sand bass, Paralabrax nebulifer, in Punta Abreojos, Mexico from 2010 to 2012 as a means to assess its vulnerability to aggregation fishing by the local commercial fishery. Monthly, spatial patterns in gonadal development in collected females indicated that adults formed spawning aggregations at two sites in Punta Abreojos during July and August. Monthly patterns in the spatial distribution of fishing matched the spawning behavior of P. nebulifer, with effort and catch concentrated at spawning aggregation sites during those months. However, fishing effort, catch, and catch-per-unit effort did not increase during the spawning season, and fishing activities associated with the spawning season comprised only a small percentage of the total annual effort (22%) and catch (17%).Therefore, while the population of P. nebulifer at Punta Abreojos should be vulnerable to aggregation fishing due to the spatio-temporal dynamics of its spawning aggregations, vulnerability is greatly reduced, because fishing activities are not disproportionately focused on spawning aggregations and fishing methods are not optimized to maximize harvest from the aggregations. Differences between our results and previous studies on aggregation fisheries for P. nebulifer in California, USA, reinforce the importance of assessing factors influencing vulnerability to aggregation fishing at regional scales for prioritizing management efforts. [Erisman, Brad E.] Univ Texas Austin, Dept Marine Sci, 750 Channel View Dr, Austin, TX 78373 USA; [Jose Cota-Nieto, Juan] Ctr Biodiversidad Marina & Conservac AC, La Paz 23090, Baja Calif Sur, Mexico; [Moreno-Baez, Marcia; Aburto-Oropeza, Octavio] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92037 USA; [Moreno-Baez, Marcia] Univ New England, Dept Environm Studies, Biddeford, ME 04005 USA Erisman, BE (reprint author), Univ Texas Austin, Dept Marine Sci, 750 Channel View Dr, Austin, TX 78373 USA. berisman@utexas.edu Fondo Mexicano para la Conservacion de la Naturaleza A.C.; David & Lucile Packard Foundation; Walton Family Foundation; Helmsley Trust Foundation We thank the Cooperative Society of Fishing Production of Punta Abreojos (Sociedad Cooperativa de Produccion Pesquera Punta Abreojos S.C. de R.L.) and the fishermen of Punta Abreojos for their participation in the study and their commitment to and support for collaborative fisheries research with the Gulf of California Marine Program. We also thank G Hinojosa Arango, E Enriquez, and FJ Rousseau for assistance with fieldwork and fisheries data collections and J Robinson for his valuable comments on an earlier version of the manuscript. Financial support for this project was provided by Fondo Mexicano para la Conservacion de la Naturaleza A.C., the David & Lucile Packard Foundation, the Walton Family Foundation, and the Helmsley Trust Foundation. Abesamis RA, 2014, REV FISH BIOL FISHER, V24, P1033, DOI 10.1007/s11160-014-9362-x; Aburto-Oropeza O, 2008, CIENCIA CONSERVACION, V2008, P1; Allen LG, 2001, CALIFORNIAS LIVING M, P222; Alvarez Flores CM, 2015, ANALISIS ESTADO ACTU; ArreguinSanchez F, 1996, REV FISH BIOL FISHER, V6, P221; Asch RG, 2015, P NATL ACAD SCI USA, V112, pE4065, DOI 10.1073/pnas.1421946112; Bautista J, 2014, THESIS; Berkeley SA, 2004, FISHERIES, V29, P23, DOI 10.1577/1548-8446(2004)29[23:FSVPOA]2.0.CO;2; Brown-Peterson NJ, 2011, MAR COAST FISH, V3, P52, DOI 10.1080/19425120.2011.555724; Checkley DM, 2009, PROG OCEANOGR, V83, P49, DOI 10.1016/j.pocean.2009.07.028; Cheung WWL, 2005, BIOL CONSERV, V124, P97, DOI 10.1016/j.biocon.2005.01.017; Cinner JE, 2007, CORAL REEFS, V26, P1035, DOI 10.1007/s00338-007-0213-2; Cinner JE, 2013, CONSERV BIOL, V27, P453, DOI 10.1111/j.1523-1739.2012.01933.x; Cinner JE, 2009, CURR BIOL, V19, P206, DOI 10.1016/j.cub.2008.11.055; Clark FN, 1933, CALIF FISH GAME, V19, P25; Claro R, 2009, FISH RES, V99, P7, DOI 10.1016/j.fishres.2009.04.004; Cota-Nieto J., 2010, THESIS; Cota-Nieto JJ, 2016, STUD MAR SC IN PRESS; Cota-Nieto JJ, 2015, FISHERIES DRIVING DE; de Mitcheson YS, 2012, FISH FISH SER, V35, P225, DOI 10.1007/978-94-007-1980-4_8; Diaz GP, 2009, PESCA CONSERV, V1, P1; Domeier ML, 2012, FISH FISH SER, V35, P1, DOI 10.1007/978-94-007-1980-4_1; Ellis PD, 2010, ESSENTIAL GUIDE TO EFFECT SIZES: STATISTICAL POWER, META-ANALYSIS AND THE INTERPRETATION OF RESEARCH RESULTS, P1, DOI 10.1017/CBO9780511761676; Erisman BE, 2006, J FISH BIOL, V68, P157, DOI 10.1111/j.1095-8649.2005.00886.x; Erisman B, 2017, FISH FISH, V18, P128, DOI 10.1111/faf.12132; Erisman B, 2015, FISH RES, V164, P254, DOI 10.1016/j.fishres.2014.12.011; Erisman B, 2012, SCI REP-UK, V2, DOI 10.1038/srep00284; Erisman B, 2010, FISH RES, V106, P279, DOI 10.1016/j.fishres.2010.08.007; Erisman BE, 2011, CAN J FISH AQUAT SCI, V68, P1705, DOI 10.1139/F2011-090; Granneman JE, 2014, ICES J MAR SCI, V71, P2494, DOI 10.1093/icesjms/fsu082; Gruss A, 2014, ICES J MAR SCI, V71, P435, DOI 10.1093/icesjms/fst028; Hamilton RJ, 2012, BIOL CONSERV, V145, P246, DOI 10.1016/j.biocon.2011.11.020; Heyman W. D., 2014, P GULF CARIBBEAN FIS, V66, P104; Hollowed AB, 2001, PROG OCEANOGR, V49, P257, DOI 10.1016/S0079-6611(01)00026-X; Hovey CB, 2002, CAL COOP OCEAN FISH, V43, P174; Hutchings JA, 2004, BIOSCIENCE, V54, P297, DOI 10.1641/0006-3568(2004)054[0297:MFPCCF]2.0.CO;2; Jarvis E. T., 2010, Bulletin Southern California Academy of Sciences, V109, P123; Jarvis ET, 2014, CALIF FISH GAME, V100, P289; Jarvis ET, 2004, CAL COOP OCEAN FISH, V45, P167; King JR, 2003, FISHERIES MANAG ECOL, V10, P249, DOI 10.1046/j.1365-2400.2003.00359.x; Love MS, 1996, FISH B-NOAA, V94, P472; Mason TJ, 2010, FISH RES, V106, P93, DOI 10.1016/j.fishres.2010.07.008; McKinzie MK, 2014, FISH RES, V150, P66, DOI 10.1016/j.fishres.2013.10.016; McMillan DB, 2007, FISH HISTOLOGY FEMAL; Miller D, 1972, STATE CALIF RES AGEN, V157; Miller EF, 2014, CAL COOP OCEAN FISH, V55, P119; Mullon C, 2005, FISH FISH, V6, P111, DOI 10.1111/j.1467-2979.2005.00181.x; ODA DL, 1993, CAL COOP OCEAN FISH, V34, P122; Parrish R.H., 1981, Biological Oceanography, V1, P175; Planque B, 2007, FISH OCEANOGR, V16, P16, DOI 10.1111/j.1365-2419.2006.00411.x; Portner HO, 2010, J FISH BIOL, V77, P1745, DOI 10.1111/j.1095-8649.2010.02783.x; Ramirez-Rodriguez M, 2012, MAR POLICY, V36, P108, DOI 10.1016/j.marpol.2011.04.003; Reynolds JD, 2005, P ROY SOC B-BIOL SCI, V272, P2337, DOI 10.1098/rspb.2005.3281; Rhodes KL, 2005, 705 TNC, P52; Robertson D.R., 1991, P356; Robinson J, 2015, CORAL REEFS, V34, P371, DOI 10.1007/s00338-014-1243-1; Robinson J., 2016, THESIS; Robinson J, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0091296; Robinson J, 2011, FISH RES, V112, P96, DOI 10.1016/j.fishres.2011.08.015; Russell M.W., 2014, STATUS REPORT WORLDS; Russell MW, 2012, FISH FISH SER, V35, P371, DOI 10.1007/978-94-007-1980-4_11; Sadovy De Mitcheson Y, 2008, CONSERV BIOL, V22, P1233, DOI DOI 10.1111/J.1523-1739; Sadovy de Mitcheson Y, 2016, BIOSCIENCE, P66; Sadovy Y, 2005, J ZOOL, V267, P121, DOI 10.1017/S0952836905007466; Sadovy Y, 2005, CORAL REEFS, V24, P254, DOI 10.1007/s00338-005-0474-6; Schroeder DM, 2002, CAL COOP OCEAN FISH, V43, P182; Spencer PD, 1997, FISH OCEANOGR, V6, P188, DOI 10.1046/j.1365-2419.1997.00039.x; Teesdale GN, 2015, MAR ECOL PROG SER, V539, P255, DOI 10.3354/meps11482; Thresher RE, 1984, REPROD REEF FISHES; Tobin A, 2013, FISH RES, V143, P47, DOI 10.1016/j.fishres.2013.01.011; Turner CH, 1969, FISH B CALIF, P1; Wilberg MJ, 2010, REV FISH SCI, V18, P7, DOI 10.1080/10641260903294647; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040 73 0 0 0 16 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 0025-3162 1432-1793 MAR BIOL Mar. Biol. MAY 2017 164 5 100 10.1007/s00227-017-3135-8 18 Marine & Freshwater Biology Marine & Freshwater Biology ES0LT WOS:000399218700004 2018-11-22 J Moreira, X; Pearse, IS Moreira, X.; Pearse, I. S. Leaf habit does not determine the investment in both physical and chemical defences and pair-wise correlations between these defensive traits PLANT BIOLOGY English Article Deciduous; evergreen; herbivory; phenolic compounds; proteins; Quercus; Resource availability hypothesis; trichomes PLANT DEFENSE; RESOURCE AVAILABILITY; EVOLUTIONARY ECOLOGY; TRADE-OFFS; HERBIVORY; OAKS; EVERGREEN; MACROEVOLUTION; TOLERANCE; PATTERNS Plant life-history strategies associated with resource acquisition and economics (e.g. leaf habit) are thought to be fundamental determinants of the traits and mechanisms that drive herbivore pressure, resource allocation to plant defensive traits, and the simultaneous expression (positive correlations) or trade-offs (negative correlations) between these defensive traits. In particular, it is expected that evergreen species - which usually grow slower and support constant herbivore pressure in comparison with deciduous species - will exhibit higher levels of both physical and chemical defences and a higher predisposition to the simultaneous expression of physical and chemical defensive traits. Here, by using a dataset which included 56 oak species (Quercus genus), we investigated whether leaf habit of plant species governs the investment in both physical and chemical defences and pair-wise correlations between these defensive traits. Our results showed that leaf habit does not determine the production of most leaf physical and chemical defences. Although evergreen oak species had higher levels of leaf toughness and specific leaf mass (physical defences) than deciduous oak species, both traits are essentially prerequisites for evergreenness. Similarly, our results also showed that leaf habit does not determine pair-wise correlations between defensive traits because most physical and chemical defensive traits were simultaneously expressed in both evergreen and deciduous oak species. Our findings indicate that leaf habit does not substantially contribute to oak species differences in plant defence investment. [Moreira, X.] Mis Biol Galicia MBG CSIC, Apdo. 28, Pontevedra 36080, Galicia, Spain; [Pearse, I. S.] Illinois Nat Hist Survey, Champaign, IL 61820 USA Moreira, X (reprint author), Mis Biol Galicia MBG CSIC, Apdo. 28, Pontevedra 36080, Galicia, Spain. xmoreira1@gmail.com Moreira, Xoaquin/J-9427-2018 Moreira, Xoaquin/0000-0003-0166-838X Spanish National Research Grant [AGL2015-70748-R]; Regional Government of Galicia [IN607D 2016/001]; Ramon y Cajal Research Programme [RYC-2013-13230] Comments and suggestions from Luis Abdala-Roberts and two anonymous reviewers helped to improve the manuscript. This project was supported by a Spanish National Research Grant (AGL2015-70748-R), a grant from the Regional Government of Galicia (IN607D 2016/001) and the Ramon y Cajal Research Programme (RYC-2013-13230) to XM. Abdala-Roberts L, 2016, AM J BOT, V103, P2070, DOI 10.3732/ajb.1600310; Abdala-Roberts L, 2016, J ECOL, V104, P580, DOI 10.1111/1365-2745.12512; Agrawal AA, 2007, TRENDS ECOL EVOL, V22, P103, DOI 10.1016/j.tree.2006.10.012; Agrawal AA, 2006, ECOLOGY, V87, pS132, DOI 10.1890/0012-9658(2006)87[132:PDS]2.0.CO;2; Agrawal AA, 2011, FUNCT ECOL, V25, P420, DOI 10.1111/j.1365-2435.2010.01796.x; BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1006/abio.1976.9999; COLEY PD, 1985, SCIENCE, V230, P895, DOI 10.1126/science.230.4728.895; CYR H, 1993, NATURE, V361, P148, DOI 10.1038/361148a0; DENNO RF, 1995, ANNU REV ENTOMOL, V40, P297, DOI 10.1146/annurev.en.40.010195.001501; Eichenberg D, 2015, J ECOL, V103, P1667, DOI 10.1111/1365-2745.12475; Endara MJ, 2011, FUNCT ECOL, V25, P389, DOI 10.1111/j.1365-2435.2010.01803.x; FEENY P, 1970, ECOLOGY, V51, P565, DOI 10.2307/1934037; Forkner RE, 2004, ECOL ENTOMOL, V29, P174, DOI 10.1111/j.1365-2311.2004.0590.x; Givnish TJ, 2002, SILVA FENN, V36, P703, DOI 10.14214/sf.535; GRAHAM HD, 1992, J AGR FOOD CHEM, V40, P801, DOI 10.1021/jf00017a018; HARAUCHI T, 1982, ANAL BIOCHEM, V126, P278, DOI 10.1016/0003-2697(82)90516-4; Johnson MTJ, 2014, NEW PHYTOL, V203, P267, DOI 10.1111/nph.12763; Johnson MTJ, 2011, FUNCT ECOL, V25, P305, DOI 10.1111/j.1365-2435.2011.01838.x; Karban R, 2008, ECOLOGY, V89, P2446, DOI 10.1890/07-1523.1; Karban R, 2007, OECOLOGIA, V153, P81, DOI 10.1007/s00442-007-0709-z; Koricheva J, 2004, AM NAT, V163, pE64, DOI 10.1086/382601; Krimmel B, 2016, ECOLOGY, V97, P1357, DOI 10.1890/15-1454.1; Lohbeck M, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0123741; Martins EP, 1997, AM NAT, V149, P646, DOI 10.1086/286013; Mason CM, 2016, NEW PHYTOL, V209, P1720, DOI 10.1111/nph.13749; Moles AT, 2013, NEW PHYTOL, V198, P252, DOI 10.1111/nph.12116; Moreira X, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0152537; Moreira X, 2014, ECOL LETT, V17, P537, DOI 10.1111/ele.12253; Nunez-Farfan J, 2007, ANNU REV ECOL EVOL S, V38, P541, DOI 10.1146/annurev.ecolsys.38.091206.095822; ORIANS GH, 1977, AM NAT, V111, P677, DOI 10.1086/283199; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; Pearse IS, 2015, ECOL ENTOMOL, V40, P525, DOI 10.1111/een.12219; Pearse IS, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.1841; Pearse IS, 2013, OECOLOGIA, V173, P925, DOI 10.1007/s00442-013-2689-5; Pearse IS, 2012, EVOLUTION, V66, P2272, DOI 10.1111/j.1558-5646.2012.01591.x; Pearse IS, 2012, OECOLOGIA, V169, P489, DOI 10.1007/s00442-011-2216-5; Pearse IS, 2011, ECOL ENTOMOL, V36, P635, DOI 10.1111/j.1365-2311.2011.01308.x; Pearse IS, 2009, P NATL ACAD SCI USA, V106, P18097, DOI 10.1073/pnas.0904867106; Piper FI, 2014, J ECOL, V102, P1101, DOI 10.1111/1365-2745.12284; Poorter H, 2007, FUNCTIONAL PLANT ECO, P67; PORTER LJ, 1985, PHYTOCHEMISTRY, V25, P223, DOI 10.1016/S0031-9422(00)94533-3; Pringle EG, 2011, BIOTROPICA, V43, P299, DOI 10.1111/j.1744-7429.2010.00697.x; Reich PB, 1998, FUNCT ECOL, V12, P948, DOI 10.1046/j.1365-2435.1998.00274.x; Roslin T, 2008, OIKOS, V117, P1560, DOI 10.1111/j.0030-1299.2008.16725.x; Stamp N, 2003, Q REV BIOL, V78, P23, DOI 10.1086/367580; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Wyka TP, 2016, TREE PHYSIOL, V36, P536, DOI 10.1093/treephys/tpv108 47 1 1 3 19 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1435-8603 1438-8677 PLANT BIOLOGY Plant Biol. MAY 2017 19 3 354 359 10.1111/plb.12537 6 Plant Sciences Plant Sciences ER3ZL WOS:000398738700005 28008702 2018-11-22 J Lythgoe, KA; Gardner, A; Pybus, OG; Grove, J Lythgoe, Katrina A.; Gardner, Andy; Pybus, Oliver G.; Grove, Joe Short-Sighted Virus Evolution and a Germline Hypothesis for Chronic Viral Infections TRENDS IN MICROBIOLOGY English Review HEPATITIS-C VIRUS; CD4(+) T-CELLS; PRIMARY HIV-1 INFECTION; ESCAPE MUTATIONS; ENVELOPE PROTEINS; LATENT HIV-1; WITHIN-HOST; IN-VIVO; TRANSMISSION; DYNAMICS With extremely short generation times and high mutability, many viruses can rapidly evolve and adapt to changing environments. This ability is generally beneficial to viruses as it allows them to evade host immune responses, evolve new behaviours, and exploit ecological niches. However, natural selection typically generates adaptation in response to the immediate selection pressures that a virus experiences in its current host. Consequently, we argue that some viruses, particularly those characterised by long durations of infection and ongoing replication, may be susceptible to short-sighted evolution, whereby a virus' adaptation to its current host will be detrimental to its onward transmission within the host population. Here we outline the concept of short-sighted viral evolution and provide examples of how it may negatively impact viral transmission among hosts. We also propose that viruses that are vulnerable to short-sighted evolution may exhibit strategies that minimise its effects. We speculate on the various mechanisms by which this may be achieved, including viral life history strategies that result in low rates of within-host evolution, or the establishment of a 'germline' lineage of viruses that avoids short-sighted evolution. These concepts provide a new perspective on the way in which some viruses have been able to establish and maintain global pandemics. [Lythgoe, Katrina A.; Pybus, Oliver G.] Univ Oxford, Dept Zool, Oxford OX1 3PS, England; [Gardner, Andy] Univ St Andrews, Sch Biol, St Andrews KY16 9TH, Fife, Scotland; [Grove, Joe] UCL, Inst Immun & Transplantat, Div Infect & Immun, London WC1E 6BT, England Lythgoe, KA (reprint author), Univ Oxford, Dept Zool, Oxford OX1 3PS, England. katrina.lythgoe@zoo.ox.ac.uk Pybus, Oliver/B-2640-2012 Pybus, Oliver/0000-0002-8797-2667; Grove, Joe/0000-0001-5390-7579; Lythgoe, Katrina/0000-0002-7089-7680 Wellcome Trust; Royal Society [wtvm055984, 107653/Z/15/Z]; Natural Environment Research Council [NE/K009524/1]; European Research Council under the European Union's Seventh Framework Programme (FP7)/ERC [614725-PATHPHYLODYN] We would like to thank Jayna Raghwani, Lenka Stejskal, Robin Thompson, Lucas Walker, Chris Wymant, and two anonymous referees for helpful comments and discussions. This work was funded by The Wellcome Trust and The Royal Society grant numbers wtvm055984 (KAL) and 107653/Z/15/Z (JG), The Natural Environment Research Council grant number NE/K009524/1 (AG), and The European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant number 614725-PATHPHYLODYN (OGP) Abecasis AB, 2009, J VIROL, V83, P12917, DOI 10.1128/JVI.01022-09; Alizon S, 2013, RETROVIROLOGY, V10, DOI 10.1186/1742-4690-10-49; Asquith B, 2006, PLOS BIOL, V4, P583, DOI 10.1371/journal.pbio.0040090; Bank-Wolf BR, 2014, VET MICROBIOL, V173, P177, DOI 10.1016/j.vetmic.2014.07.020; Bedford T, 2016, CELL, V167, P892, DOI 10.1016/j.cell.2016.10.032; Belshaw R, 2008, TRENDS ECOL EVOL, V23, P188, DOI 10.1016/j.tree.2007.11.010; Berg MG, 2015, PLOS PATHOG, V11, DOI 10.1371/journal.ppat.1005325; Borschensky CM, 2014, RES VET SCI, V97, P333, DOI 10.1016/j.rvsc.2014.07.016; Brodin J, 2016, ELIFE, V5, DOI 10.7554/eLife.18889; Brown RJP, 2012, J VIROL, V86, P11956, DOI 10.1128/JVI.01079-12; Bull RA, 2015, J VIROL, V89, P5478, DOI 10.1128/JVI.03717-14; Bull RA, 2011, PLOS PATHOG, V7, DOI 10.1371/journal.ppat.1002243; Carlson JM, 2014, SCIENCE, V345, DOI 10.1126/science.1254031; Chalmet K, 2012, J INFECT DIS, V205, P174, DOI 10.1093/infdis/jir714; CHEN HS, 1992, J VIROL, V66, P5682; Chun TW, 1998, P NATL ACAD SCI USA, V95, P8869, DOI 10.1073/pnas.95.15.8869; Cook LB, 2013, VIROLOGY, V435, P131, DOI 10.1016/j.virol.2012.09.028; Crooks AM, 2015, J INFECT DIS, V212, P1361, DOI 10.1093/infdis/jiv218; Deng K, 2015, NATURE, V517, P381, DOI 10.1038/nature14053; deWolf F, 1997, AIDS, V11, P1799, DOI 10.1097/00002030-199715000-00003; Deymier MJ, 2015, PLOS PATHOG, V11, DOI 10.1371/journal.ppat.1005154; Doekes HM, 2017, PLOS COMPUT BIOL, V13, DOI 10.1371/journal.pcbi.1005228; Douam F, 2016, J VIROL, V90, P992, DOI 10.1128/JVI.02516-15; Duffy S, 2008, NAT REV GENET, V9, P267, DOI 10.1038/nrg2323; Durand T, 2010, GUT, V59, P934, DOI 10.1136/gut.2009.192088; Finzi D, 1999, NAT MED, V5, P512; Fisher R. A., 1930, GENETICAL THEORY NAT; Fletcher NF, 2010, GASTROENTEROLOGY, V139, P1365, DOI 10.1053/j.gastro.2010.06.008; Foster TL, 2016, CELL HOST MICROBE, V20, P429, DOI 10.1016/j.chom.2016.08.006; Frange P, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0069144; Fraser C, 2007, P NATL ACAD SCI USA, V104, P17441, DOI 10.1073/pnas.0708559104; Fraser C, 2014, SCIENCE, V343, P1328, DOI 10.1126/science.1243727; Frelin L, 2009, J VIROL, V83, P1379, DOI 10.1128/JVI.01902-08; Frenkel LM, 2003, J VIROL, V77, P5721, DOI 10.1128/JVI.77.10.5721-5730.2003; Goonetilleke N, 2009, J EXP MED, V206, P1253, DOI 10.1084/jem.20090365; Gray RR, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-131; Harrison A, 2011, VIRUSES-BASEL, V3, P83, DOI 10.3390/v3020083; Herbeck JT, 2011, J VIROL, V85, P7523, DOI 10.1128/JVI.02697-10; Herbeck JT, 2006, J VIROL, V80, P1637, DOI 10.1128/JVI.80.4.1637-1644.2006; Honegger JR, 2013, NAT MED, V19, P1529, DOI 10.1038/nm.3351; Immonen TT, 2015, PLOS COMPUT BIOL, V11, DOI 10.1371/journal.pcbi.1004625; Immonen TT, 2014, RETROVIROLOGY, V11, DOI 10.1186/s12977-014-0081-0; Ito M, 2011, FRONT MICROBIOL, V2, DOI 10.3389/fmicb.2011.00177; Iyer SS, 2017, P NATL ACAD SCI USA, V114, pE590, DOI 10.1073/pnas.1620144114; Joseph SB, 2015, NAT REV MICROBIOL, V13, P414, DOI 10.1038/nrmicro3471; Kawashima Y, 2009, NATURE, V458, P641, DOI 10.1038/nature07746; Keele BF, 2008, P NATL ACAD SCI USA, V105, P7552, DOI 10.1073/pnas.0802203105; Kim M., 2016, P NATL ACAD SCI USA, V113; Kipar A, 2014, VET PATHOL, V51, P505, DOI 10.1177/0300985814522077; Kouyos RD, 2011, PLOS PATHOG, V7, DOI 10.1371/journal.ppat.1002321; Kramvis A, 2016, REV MED VIROL, V26, P285, DOI 10.1002/rmv.1885; Kwei K, 2013, J VIROL, V87, P2352, DOI 10.1128/JVI.02701-12; Lackner T, 2006, P NATL ACAD SCI USA, V103, P1510, DOI 10.1073/PNAS.0508247103; Lackner T, 2005, J VIROL, V79, P9746, DOI 10.1128/JVI.79.15.9746-9755.2005; Lemey P, 2003, P NATL ACAD SCI USA, V100, P6588, DOI 10.1073/pnas.0936469100; Lemey P, 2007, PLOS COMPUT BIOL, V3, P282, DOI 10.1371/journal.pcbi.0030029; Lemey P, 2006, AIDS REV, V8, P125; Leslie AJ, 2004, NAT MED, V10, P282, DOI 10.1038/nm992; Levin Bruce R., 1994, Trends in Microbiology, V2, P76, DOI 10.1016/0966-842X(94)90538-X; Leviyang S, 2015, PLOS COMPUT BIOL, V11, DOI 10.1371/journal.pcbi.1004492; Lythgoe KA, 2013, EVOLUTION, V67, P2769, DOI 10.1111/evo.12166; Lythgoe KA, 2012, P ROY SOC B-BIOL SCI, V279, P3367, DOI 10.1098/rspb.2012.0595; Mason WS, 2008, HEPATOL INT, V2, P3, DOI 10.1007/s12072-007-9024-3; Mee CJ, 2008, J VIROL, V82, P461, DOI 10.1128/JVI.01894-07; Mellors JW, 1996, SCIENCE, V272, P1167, DOI 10.1126/science.272.5265.1167; Murphy MK, 2013, PLOS PATHOG, V9, DOI 10.1371/journal.ppat.1003173; Nassal M, 2015, GUT, V64, P1972, DOI 10.1136/gutjnl-2015-309809; Nebbia G, 2012, QJM-INT J MED, V105, P109, DOI 10.1093/qjmed/hcr270; Nowak MA, 1996, P NATL ACAD SCI USA, V93, P4398, DOI 10.1073/pnas.93.9.4398; Otto SP, 2007, BIOL GUIDE MATH MODE; Peterhans E, 2010, VET RES, V41, DOI 10.1051/vetres/2010016; Petrovic D, 2012, EUR J IMMUNOL, V42, P17, DOI 10.1002/eji.201141593; Plowright RK, 2016, PLOS NEGLECT TROP D, V10, DOI 10.1371/journal.pntd.0004796; Prince JL, 2012, PLOS PATHOG, V8, DOI 10.1371/journal.ppat.1003041; Pybus OG, 2009, NAT REV GENET, V10, P540, DOI 10.1038/nrg2583; Quinones-Mateu ME, 2000, J VIROL, V74, P9222, DOI 10.1128/JVI.74.19.9222-9233.2000; Raghwani J, 2016, PLOS PATHOG, V12, DOI 10.1371/journal.ppat.1005894; Redd AD, 2012, J INFECT DIS, V206, P1433, DOI 10.1093/infdis/jis503; Rocha C, 2013, RETROVIROLOGY, V10, DOI 10.1186/1742-4690-10-110; Sagar M, 2009, J INFECT DIS, V199, P580, DOI 10.1086/596557; Scheel TKH, 2013, NAT MED, V19, P837, DOI 10.1038/nm.3248; Seki S., 2012, FRONT MICROBIOL, V2, P1; Simonetti FR, 2016, P NATL ACAD SCI USA, V113, P1883, DOI 10.1073/pnas.1522675113; Stapleton JT, 2011, J GEN VIROL, V92, P233, DOI 10.1099/vir.0.027490-0; SUMMERS J, 1990, J VIROL, V64, P2819; Swanstrom R, 2012, CSH PERSPECT MED, V2, DOI 10.1101/cshperspect.a007443; Tong SP, 2016, J HEPATOL, V64, pS4, DOI 10.1016/j.jhep.2016.01.027; Uebelhoer L, 2008, PLOS PATHOG, V4, DOI 10.1371/journal.ppat.1000143; Van Dooren S, 2004, MOL BIOL EVOL, V21, P603, DOI 10.1093/molbev/msh053; Vrancken B, 2014, PLOS COMPUT BIOL, V10, DOI 10.1371/journal.pcbi.1003505; Wang HY, 2010, J VIROL, V84, P3454, DOI 10.1128/JVI.02164-09; Watson JM, 2016, P NATL ACAD SCI USA, V113, P12226, DOI 10.1073/pnas.1609686113; Wei XP, 2003, NATURE, V422, P307, DOI 10.1038/nature01470; Whitney JB, 2014, NATURE, V512, P74, DOI 10.1038/nature13594; Zanini F, 2015, ELIFE, V4, DOI 10.7554/eLife.11282 95 7 7 0 8 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND 0966-842X 1878-4380 TRENDS MICROBIOL Trends Microbiol. MAY 2017 25 5 336 348 10.1016/j.tim.2017.03.003 13 Biochemistry & Molecular Biology; Microbiology Biochemistry & Molecular Biology; Microbiology ES1KH WOS:000399286000005 28377208 Green Published, Green Accepted, Other Gold 2018-11-22 J Letessier, TB; Bouchet, PJ; Meeuwig, JJ Letessier, Tom B.; Bouchet, Phil J.; Meeuwig, Jessica J. Sampling mobile oceanic fishes and sharks: implications for fisheries and conservation planning BIOLOGICAL REVIEWS English Review pelagic sharks; tuna; migratory; MPA; RFMO; spatial management MARINE PROTECTED AREAS; TUNA THUNNUS-ALBACARES; ATLANTIC BLUEFIN TUNA; STABLE-ISOTOPE ANALYSIS; CENTRAL PACIFIC-OCEAN; YELLOWFIN TUNA; FRENCH-POLYNESIA; FISHING EFFORT; INDIAN-OCEAN; BIGEYE TUNA Tuna, billfish, and oceanic sharks [hereafter referred to as 'mobile oceanic fishes and sharks' (MOFS)] are characterised by conservative life-history strategies and highly migratory behaviour across large, transnational ranges. Intense exploitation over the past 65 years by a rapidly expanding high-seas fishing fleet has left many populations depleted, with consequences at the ecosystem level due to top-down control and trophic cascades. Despite increases in both CITES and IUCN Red Listings, the demographic trajectories of oceanic sharks and billfish are poorly quantified and resolved at geographic and population levels. Amongst MOFS trajectories, those of tunas are generally considered better understood, yet several populations remain either overfished or of unknown status. MOFS population trends and declines therefore remain contentious, partly due to challenges in deriving accurate abundance and biomass indices. Two major management strategies are currently recognised to address conservation issues surrounding MOFS: (i) internationally ratified legal frameworks and their associated regional fisheries management organisations (RFMOs); and (ii) spatio-temporal fishery closures, including no-take marine protected areas (MPAs). In this context, we first review fishery-dependent studies relying on data derived from catch records and from material accessible through fishing extraction, under the umbrella of RFMO-administrated management. Challenges in interpreting catch statistics notwithstanding, we find that fishery-dependent studies have enhanced the accuracy of biomass indices and the management strategies they inform, by addressing biases in reporting and non-random effort, and predicting drivers of spatial variability across meso-and oceanic scales in order to inform stock assessments. By contrast and motivated by the increase in global MPA coverage restricting extractive activities, we then detail ways in which fishery-independent methods are increasingly improving and steering management by exploring facets of MOFS ecology thus far poorly grasped. Advances in telemetry are increasingly used to explore ontogenic and seasonal movements, and provide means to consider MOFS migration corridors and residency patterns. The characterisation of trophic relationships and prey distribution through biochemical analysis and hydro-acoustics surveys has enabled the tracking of dietary shifts and mapping of high-quality foraging grounds. We conclude that while a scientific framework is available to inform initial design and subsequent implementation ofMPAs, there is a shortage in the capacity to answer basic but critical questions about MOFS ecology (who, when, where?) required to track populations non-extractively, thereby presenting a barrier to assessing empirically the performance of MPA-based management for MOFS. This sampling gap is exacerbated by the increased establishment of large (> 10000 km(2)) and very large MPAs (VLMPAs, > 100000 km(2))-great expanses of ocean lacking effectivemonitoring strategies and survey regimes appropriate to those scales. To address this shortcoming, we demonstrate the use of a non-extractive protocol to measure MOFS population recovery and MPA efficiency. We further identify technological avenues for monitoring at the VLMPA scale, through the use of spotter planes, drones, satellite technology, and horizontal acoustics, and highlight their relevance to the ecosystem-based framework of MOFS management. [Letessier, Tom B.; Bouchet, Phil J.; Meeuwig, Jessica J.] Univ Western Australia M470, Ctr Marine Futures, Oceans Inst, 35 Stirling Highway, Crawley, WA 6009, Australia; [Letessier, Tom B.] Zool Soc London, Inst Zool, Regents Pk, London NW1 4RY, England; [Bouchet, Phil J.; Meeuwig, Jessica J.] Univ Western Australia M470, Sch Anim Biol, 35 Stirling Highway, Crawley, WA 6009, Australia Letessier, TB (reprint author), Univ Western Australia M470, Ctr Marine Futures, Oceans Inst, 35 Stirling Highway, Crawley, WA 6009, Australia.; Letessier, TB (reprint author), Zool Soc London, Inst Zool, Regents Pk, London NW1 4RY, England. tom.letessier@uwa.edu.au Bouchet, Phil/0000-0002-2144-2049 Marine Biodiversity Hub through the Australian Government's National Environmental Research Program (NERP); Bertarelli Foundation T.B.L. and P.J.B. were supported by the Marine Biodiversity Hub through the Australian Government's National Environmental Research Program (NERP). T.B.L. and J.J.M. would like to acknowledge the support of the Bertarelli Foundation. Marine Biodiversity Hub partners include the Institute for Marine and Antarctic Studies, University of Tasmania; CSIRO, Geoscience Australia, Australian Institute of Marine Science, Museum Victoria, Charles Darwin University and the University of Western Australia. P.J.B. was the recipient of a scholarship for international research fees (SIRF) during the course of this work. We thank Heather Koldewey for ideas and concepts behind this review. We are grateful to Sara Maxwell and one anonymous reviewer for constructive comments. Agnew DJ, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0004570; Alpine JE, 2007, MAR FRESHWATER RES, V58, P558, DOI 10.1071/MF06214; Anticamara JA, 2011, FISH RES, V107, P131, DOI 10.1016/j.fishres.2010.10.016; Appleyard SA, 2001, MAR BIOL, V139, P383; Armsworth P. R., 2010, THEORETICAL ECOLOGY, V4, P513; Atkinson A, 2009, DEEP-SEA RES PT I, V56, P727, DOI 10.1016/j.dsr.2008.12.007; Bach P, 2003, FISH RES, V60, P281, DOI 10.1016/S0165-7836(02)00180-7; Bailey DM, 2007, MAR ECOL PROG SER, V350, P179, DOI 10.3354/meps07187; Bailey M, 2013, MAR POLICY, V40, P124, DOI 10.1016/j.marpol.2012.12.014; Bastardie F, 2010, FISH RES, V106, P501, DOI 10.1016/j.fishres.2010.09.025; Baum JK, 2004, ECOL LETT, V7, P135, DOI 10.1111/j.1461-0248.2003.00564.x; Baum JK, 2003, SCIENCE, V299, P389, DOI 10.1126/science.1079777; Baum JK, 2009, J ANIM ECOL, V78, P699, DOI 10.1111/j.1365-2656.2009.01531.x; Benoit HP, 2009, CAN J FISH AQUAT SCI, V66, P2025, DOI 10.1139/F09-116; Bertrand A, 2000, ICES J MAR SCI, V57, P919, DOI 10.1006/jmsc.2000.0579; Bertrand A, 2003, AQUAT LIVING RESOUR, V16, P197, DOI 10.1016/S0990-7440(03)00018-4; Bingham B, 2012, J FIELD ROBOT, V29, P911, DOI 10.1002/rob.21424; Block BA, 2011, NATURE, V475, P86, DOI 10.1038/nature10082; Block BA, 1998, P NATL ACAD SCI USA, V95, P9384, DOI 10.1073/pnas.95.16.9384; Block BA, 2005, NATURE, V434, P1121, DOI 10.1038/nature03463; Blower DC, 2012, MAR ECOL PROG SER, V455, P229, DOI 10.3354/meps09659; Boersch-Supan PH, 2012, MAR ECOL PROG SER, V461, P293, DOI 10.3354/meps09890; Bouchet PJ, 2015, ECOSPHERE, V6, DOI 10.1890/ES14-00380.1; Bouchet PJ, 2015, BIOL REV, V90, P699, DOI 10.1111/brv.12130; Branch TA, 2011, CONSERV BIOL, V25, P777, DOI 10.1111/j.1523-1739.2011.01687.x; Branton M, 2011, CONSERV BIOL, V25, P9, DOI 10.1111/j.1523-1739.2010.01606.x; Brierley AS, 2015, CURR BIOL, V25, P75, DOI 10.1016/j.cub.2014.10.062; Camphuysen K, 2012, BIOL CONSERV, V156, P22, DOI 10.1016/j.biocon.2011.12.024; Carlisle AB, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0030492; Chu DZ, 2011, J MAR SCI TECH-TAIW, V19, P245; Clarke SC, 2006, ECOL LETT, V9, P1115, DOI 10.1111/j.1461-0248.2006.00968.x; Clarke SC, 2013, CONSERV BIOL, V27, P197, DOI 10.1111/j.1523-1739.2012.01943.x; Collette BB, 2011, SCIENCE, V333, P291, DOI 10.1126/science.1208730; Conners ME, 2002, PROG OCEANOGR, V55, P209, DOI 10.1016/S0079-6611(02)00079-4; Cullis-Suzuki S, 2010, MAR POLICY, V34, P1036, DOI 10.1016/j.marpol.2010.03.002; Cunjak RA, 2005, OECOLOGIA, V144, P636, DOI 10.1007/s00442-005-0101-9; D'Agata S., 2015, CURR BIOL, V2, P555; Dagorn L, 2013, FISH FISH, V14, P391, DOI 10.1111/j.1467-2979.2012.00478.x; Dammannagoda ST, 2008, FISH RES, V90, P147, DOI 10.1016/j.fishres.2007.10.006; Davidson LNK, 2016, FISH FISH, V17, P438, DOI 10.1111/faf.12119; Davies T. K., 2012, 201202 ISSF, P1; Devillers R, 2015, AQUAT CONSERV, V25, P480, DOI 10.1002/aqc.2445; Dulvy NK, 2008, AQUAT CONSERV, V18, P459, DOI 10.1002/aqc.975; Dulvy NK, 2014, ELIFE, V3, DOI 10.7554/eLife.00590; Estes JA, 2011, SCIENCE, V333, P301, DOI 10.1126/science.1205106; European Commission, 2009, OFFICIAL J EUROPEAN, V2009, P1; Eveson P., 2011, AERIAL SURVEY INDEX; Fernandes PG, 2000, NATURE, V404, P35, DOI 10.1038/35003648; Ferretti F, 2008, CONSERV BIOL, V22, P952, DOI 10.1111/j.1523-1739.2008.00938.x; Ferretti F, 2013, SCI REP-UK, V3, DOI 10.1038/srep01057; Ferretti F, 2010, ECOL LETT, V13, P1055, DOI 10.1111/j.1461-0248.2010.01489.x; Flynn AJ, 2012, MAR FRESHWATER RES, V63, P1255, DOI 10.1071/MF12185; Fretwell PT, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088655; Game ET, 2009, TRENDS ECOL EVOL, V24, P360, DOI 10.1016/j.tree.2009.01.011; Gewin V, 2004, PLOS BIOL, V2, P422, DOI 10.1371/journal.pbio.0020113; Girard C, 2004, ANIM BEHAV, V67, P319, DOI 10.1016/j.anbehav.2003.07.007; Gormley AM, 2012, J APPL ECOL, V49, P474, DOI 10.1111/j.1365-2664.2012.02121.x; Gubili C, 2011, P ROY SOC B-BIOL SCI, V278, P1679, DOI 10.1098/rspb.2010.1856; Hammerschlag N, 2011, J EXP MAR BIOL ECOL, V398, P1, DOI 10.1016/j.jembe.2010.12.012; Hampton J, 2005, NATURE, V434, pE1, DOI 10.1038/nature03581; Hampton J, 2001, MAR FRESHWATER RES, V52, P937, DOI 10.1071/MF01049; Hanisch JR, 2010, N AM J FISH MANAGE, V30, P1, DOI 10.1577/M09-048.1; Harden Jones F. R., 1973, ICES J MAR SCI, V35, P95; HARDIN G, 1968, SCIENCE, V162, P1243; Hardinge J, 2013, J EXP MAR BIOL ECOL, V449, P250, DOI 10.1016/j.jembe.2013.09.018; Harrison HB, 2012, CURR BIOL, V22, P1023, DOI 10.1016/j.cub.2012.04.008; Havice E, 2013, MAR POLICY, V42, P259, DOI 10.1016/j.marpol.2013.03.003; Hawkes LA, 2011, DIVERS DISTRIB, V17, P624, DOI 10.1111/j.1472-4642.2011.00768.x; Hazen EL, 2012, MAR ECOL PROG SER, V457, P221, DOI 10.3354/meps09857; Heagney EC, 2007, MAR ECOL PROG SER, V350, P255, DOI 10.3354/meps07193; Heithaus MR, 2013, MAR ECOL PROG SER, V481, P225, DOI 10.3354/meps10235; Hilborn R., 1992, REV FISH BIOL FISHER, V2, P570, DOI DOI 10.1016/S0165-7836(99)00065-X; Hinz H, 2013, FISH FISH, V14, P110, DOI 10.1111/j.1467-2979.2012.00475.x; Hobday AJ, 2006, FISHERIES MANAG ECOL, V13, P365, DOI 10.1111/j.1365-2400.2006.00515.x; Hobday AJ, 2011, CAN J FISH AQUAT SCI, V68, P898, DOI 10.1139/F2011-031; Hodgson A, 2007, MAR TECHNOL SOC J, V41, P39, DOI 10.4031/002533207787442169; Holland K. N., 2007, FISH AQUATIC RESOURC, P189; Holland KN, 1999, FISH B-NOAA, V97, P392; Humphries NE, 2010, NATURE, V465, P1066, DOI 10.1038/nature09116; Hussey N. E., 2015, FOOD WEBS, V4, P1, DOI DOI 10.1016/J.F00WEB.2015.04.002; Hussey NE, 2015, SCIENCE, V348, DOI 10.1126/science.1255642; IOTC, 2008, REP 1 SESS IOTC WORK, P1; Irigoien X., 2014, NATURE COMMUNICATION, V5, P1, DOI DOI 10.HTTP://DX.D0I.0RG/10.1038/NC0MMS4271; ISAACS JD, 1975, SCI AM, V233, P85; IUCN & UNEP, 2015, WORLD DAT PROT AR WD; Jagannathan S, 2009, MAR ECOL PROG SER, V395, P137, DOI 10.3354/meps08266; Juan-Jorda MJ, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0070405; Juan-Jorda MJ, 2011, P NATL ACAD SCI USA, V108, P20650, DOI 10.1073/pnas.1107743108; Josse E, 2000, ICES J MAR SCI, V57, P911, DOI 10.1006/jmsc.2000.0578; Josse E, 1999, AQUAT LIVING RESOUR, V12, P303, DOI 10.1016/S0990-7440(99)00117-5; Josse E, 2000, AQUAT LIVING RESOUR, V13, P183, DOI 10.1016/S0990-7440(00)00051-6; Juan-Jorda MJ, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0322; Kelleher K., 2005, FAO TECHNICAL PAPERS; Kleisner K, 2013, FISH FISH, V14, P293, DOI 10.1111/j.1467-2979.2012.00469.x; Kleiven AR, 2011, MAR COAST FISH, V3, P383, DOI 10.1080/19425120.2011.638798; Kloser RJ, 2009, ICES J MAR SCI, V66, P998, DOI 10.1093/icesjms/fsp077; Koldewey HJ, 2010, MAR POLLUT BULL, V60, P1906, DOI 10.1016/j.marpolbul.2010.10.002; Koski William R., 2009, Aquatic Mammals, V35, P347, DOI 10.1578/AM.35.3.2009.347; Langley A, 2009, MAR POLICY, V33, P271, DOI 10.1016/j.marpol.2008.07.009; Langlois TJ, 2010, AQUAT BIOL, V9, P155, DOI 10.3354/ab00235; Langlois TJ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0045973; Lehodey P, 2008, PROG OCEANOGR, V78, P304, DOI 10.1016/j.pocean.2008.06.004; Leonard NE, 2010, J FIELD ROBOT, V27, P718, DOI 10.1002/rob.20366; Lester SE, 2009, MAR ECOL PROG SER, V384, P33, DOI 10.3354/meps08029; Letessier TB, 2013, METHODS OCEANOGR, V8, P41, DOI DOI 10.1016/J.MI0.2013.11.003; Letessier TB, 2015, J EXP MAR BIOL ECOL, V466, P120, DOI 10.1016/j.jembe.2015.02.013; Letessier Tom B., 2013, Open Journal of Marine Science, V3, P148; Letessier TB, 2009, MAR BIOL, V156, P2539, DOI 10.1007/s00227-009-1278-y; Lieber L, 2014, P 2 INT C ENV INT MA; Llope M, 2011, GLOBAL CHANGE BIOL, V17, P1251, DOI 10.1111/j.1365-2486.2010.02331.x; Lubchenco J, 2015, SCIENCE, V350, P382, DOI 10.1126/science.aad5443; LUTCAVAGE M, 1995, FISH B-NOAA, V93, P495; MacLennan D. N., 2005, FISHERIES ACOUSTICS; MacNeil MA, 2015, NATURE, V520, P341, DOI 10.1038/nature14358; Makris NC, 2006, SCIENCE, V311, P660, DOI 10.1126/science.1121756; Makris NC, 2010, OCEANOGRAPHY, V23, P204, DOI 10.5670/oceanog.2010.95; Makris NC, 2009, SCIENCE, V323, P1734, DOI 10.1126/science.1169441; Mallet D, 2014, FISH RES, V154, P44, DOI 10.1016/j.fishres.2014.01.019; Maunder MN, 2004, FISH RES, V70, P141, DOI 10.1016/j.fishres.2004.08.002; Maxwell SM, 2015, MAR POLICY, V58, P42, DOI 10.1016/j.marpol.2015.03.014; Maxwell SM, 2014, ENDANGER SPECIES RES, V26, P59, DOI 10.3354/esr00617; Maxwell SM, 2013, MAR ECOL PROG SER, V481, P289, DOI 10.3354/meps10255; McCook LJ, 2010, P NATL ACAD SCI USA, V107, P18278, DOI 10.1073/pnas.0909335107; Mclean DL, 2011, J EXP MAR BIOL ECOL, V406, P71, DOI 10.1016/j.jembe.2011.06.009; McPhee D. P., 2002, Pacific Conservation Biology, V8, P40; METUZALS K., 2009, HDB MARINE FISHERIES, P165; Michielsens CGJ, 2006, CAN J FISH AQUAT SCI, V63, P321, DOI 10.1139/F05-215; Miller DD, 2014, MAR POLICY, V44, P204, DOI 10.1016/j.marpol.2013.08.027; Moore JW, 2008, ECOL LETT, V11, P470, DOI 10.1111/j.1461-0248.2008.01163.x; Morato T, 2008, MAR ECOL PROG SER, V357, P23, DOI 10.3354/meps07269; Morato T, 2010, P NATL ACAD SCI USA, V107, P9707, DOI 10.1073/pnas.0910290107; Murphy HM, 2010, MAR FRESHWATER RES, V61, P236, DOI 10.1071/MF09068; Myers RA, 2003, NATURE, V423, P280, DOI 10.1038/nature01610; Myers RA, 2007, SCIENCE, V315, P1846, DOI 10.1126/science.1138657; Natale F, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0130746; Needle CL, 2011, ICES J MAR SCI, V68, P1647, DOI 10.1093/icesjms/fsr092; Nicol SJ, 2013, CLIMATIC CHANGE, V119, P131, DOI 10.1007/s10584-012-0598-y; Olsen EM, 2009, ECOL LETT, V12, P622, DOI 10.1111/j.1461-0248.2009.01311.x; Ono K, 2015, CAN J FISH AQUAT SCI, V72, P1177, DOI 10.1139/cjfas-2014-0146; Ortiz M, 2003, MAR FRESHWATER RES, V54, P489, DOI 10.1071/MF02028; Parsons MJG, 2014, ACOUST AUST, V42, P185; Pauly D, 2013, NATURE, V494, P303, DOI 10.1038/494303a; Piasente M., 2012, 2009048 FRDC AUSTR F; Popp BN, 2007, TERR ECOL SER, V1, P173; Priede IG, 1996, J FISH BIOL, V49, P207, DOI 10.1111/j.1095-8649.1996.tb06077.x; Proud R, 2015, METHODS ECOL EVOL, V6, P1190, DOI 10.1111/2041-210X.12396; Queiroz N, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0032374; Rooker JR, 2008, SCIENCE, V322, P742, DOI 10.1126/science.1161473; Rooker JR, 2001, MAR ECOL PROG SER, V218, P275, DOI 10.3354/meps218275; Ryan T., 2011, OVERVIEW DATA COLLEC; Sabatie R., 2004, W INDIAN OCEAN J MAR, V3, P51; Saunders RA, 2011, ICES J MAR SCI, V68, P166, DOI 10.1093/icesjms/fsq145; Schick RS, 2004, FISH OCEANOGR, V13, P225, DOI 10.1111/j.1365-2419.2004.00290.x; Scott R, 2012, GLOBAL ECOL BIOGEOGR, V21, P1053, DOI 10.1111/j.1466-8238.2011.00757.x; Secor DH, 2000, FISH RES, V46, P359, DOI 10.1016/S0165-7836(00)00159-4; Send U, 2013, J ATMOS OCEAN TECH, V30, P984, DOI 10.1175/JTECH-D-11-00169.1; Sibert J, 2003, MAR POLICY, V27, P87, DOI 10.1016/S0308-597X(02)00057-X; Sibert J, 2006, SCIENCE, V314, P1773, DOI 10.1126/science.1135347; Sibert J, 2012, P NATL ACAD SCI USA, V109, P18221, DOI 10.1073/pnas.1209468109; Singleton RL, 2014, MAR POLLUT BULL, V87, P7, DOI 10.1016/j.marpolbul.2014.07.067; Sippel T, 2015, FISH RES, V163, P152, DOI 10.1016/j.fishres.2014.04.006; Soanes LM, 2013, J APPL ECOL, V50, P671, DOI 10.1111/1365-2664.12069; Srinivasan U. Thara, 2010, Journal of Bioeconomics, V12, P183, DOI 10.1007/s10818-010-9090-9; Stanley RD, 2015, ICES J MAR SCI, V72, P1230, DOI 10.1093/icesjms/fsu212; Sumaila UR, 2015, SCI REP-UK, V5, DOI 10.1038/srep08481; Sumaila UR, 2011, NAT CLIM CHANGE, V1, P449, DOI 10.1038/NCLIMATE1301; Swartz W, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0015143; Toonen RJ, 2013, MAR POLLUT BULL, V77, P7, DOI 10.1016/j.marpolbul.2013.10.039; Trenkel VM, 2008, ICES J MAR SCI, V65, P645, DOI 10.1093/icesjms/fsn051; Utne-Palm AC, 2010, SCIENCE, V329, P333, DOI 10.1126/science.1190708; Walker E., 2010, COLLECT VOL SCI PAP, V65, P2376; Wang CH, 2009, J FISH BIOL, V75, P1173, DOI 10.1111/j.1095-8649.2009.02336.x; Ward P, 2005, ECOLOGY, V86, P835, DOI 10.1890/03-0746; Watson JEM, 2011, CONSERV BIOL, V25, P324, DOI 10.1111/j.1523-1739.2010.01587.x; Weng KC, 2005, SCIENCE, V310, P104, DOI 10.1126/science.1114616; Weng KC, 2007, MAR BIOL, V152, P877, DOI 10.1007/s00227-007-0739-4; White C, 2014, PLOS BIOL, V12, DOI 10.1371/journal.pbio.1001826; White ER, 2015, CONSERV BIOL, V29, P1186, DOI 10.1111/cobi.12478; Wintle BC, 2013, METHODS ECOL EVOL, V4, P53, DOI 10.1111/j.2041-210x.2012.00254.x; Worm B, 2005, SCIENCE, V309, P1365, DOI 10.1126/science.1113399; Worm B, 2003, P NATL ACAD SCI USA, V100, P9884, DOI 10.1073/pnas.1333941100; Worm B, 2013, MAR POLICY, V40, P194, DOI 10.1016/j.marpol.2012.12.034; Worm B, 2011, P NATL ACAD SCI USA, V108, P11942, DOI 10.1073/pnas.1102353108; Wu GCC, 2010, FISH RES, V105, P248, DOI 10.1016/j.fishres.2010.03.015; Yesson C, 2011, DEEP-SEA RES PT I, V58, P442, DOI 10.1016/j.dsr.2011.02.004 185 3 3 7 94 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1464-7931 1469-185X BIOL REV Biol. Rev. MAY 2017 92 2 627 646 10.1111/brv.12246 20 Biology Life Sciences & Biomedicine - Other Topics ER1QJ WOS:000398567200001 26680116 2018-11-22 J Rollings, N; Uhrig, EJ; Krohmer, RW; Waye, HL; Mason, RT; Olsson, M; Whittington, CM; Friesen, CR Rollings, Nicky; Uhrig, Emily J.; Krohmer, Randolph W.; Waye, Heather L.; Mason, Robert T.; Olsson, Mats; Whittington, Camilla M.; Friesen, Christopher R. Age-related sex differences in body condition and telomere dynamics of red-sided garter snakes PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article telomeres; condition; life-history strategies; sex-differences; reptile THAMNOPHIS-SIRTALIS-PARIETALIS; CONDITION-DEPENDENT TRAITS; LIFE-HISTORY TACTICS; FREE-RADICAL THEORY; OXIDATIVE STRESS; REPRODUCTIVE EFFORT; NATURAL-POPULATIONS; CELLULAR SENESCENCE; COURTSHIP BEHAVIOR; CONDITION INDEXES Life-history strategies vary dramatically between the sexes, which may drive divergence in sex-specific senescence and mortality rates. Telomeres are tandem nucleotide repeats that protect the ends of chromosomes from erosion during cell division. Telomeres have been implicated in senescence and mortality because they tend to shorten with stress, growth and age. We investigated age-specific telomere length in female and male red-sided garter snakes, Thamnophis sirtalis parietalis. We hypothesized that age-specific telomere length would differ between males and females given their divergent reproductive strategies. Male garter snakes emerge from hibernation with high levels of corticosterone, which facilitates energy mobilization to fuel mate-searching, courtship and mating behaviours during a two to four week aphagous breeding period at the den site. Conversely, females remain at the dens for only about 4 days and seem to invest more energy in growth and cellular maintenance, as they usually reproduce biennially. As male investment in reproduction involves a yearly bout of physiologically stressful activities, while females prioritize self-maintenance, we predicted male snakes would experience more age-specific telomere loss than females. We investigated this prediction using skeletochronology to determine the ages of individuals and qPCR to determine telomere length in a cross-sectional study. For both sexes, telomere length was positively related to body condition. Telomere length decreased with age in male garter snakes, but remained stable in female snakes. There was no correlation between telomere length and growth in either sex, suggesting that our results are a consequence of divergent selection on life histories of males and females. Different selection on the sexes may be the physiological consequence of the sexual dimorphism and mating system dynamics displayed by this species. [Rollings, Nicky; Whittington, Camilla M.; Friesen, Christopher R.] Univ Sydney, Sch Life & Environm Sci, Heydon Laurence Bldg A08, Sydney, NSW 2006, Australia; [Uhrig, Emily J.] Linkoping Univ, Dept Phys Chem & Biol, Linkoping, Sweden; [Uhrig, Emily J.; Mason, Robert T.] Oregon State Univ, Dept Integrat Biol, Corvallis, OR 97331 USA; [Krohmer, Randolph W.] St Xavier Univ, Dept Biol Sci, Chicago, IL USA; [Waye, Heather L.] Univ Minnesota, Div Sci & Math, Morris, MN 56267 USA; [Olsson, Mats] Univ Gothenburg, Dept Biol & Environm Sci, Gothenburg, Sweden; [Whittington, Camilla M.] Univ Sydney, Fac Sci, Sydney Sch Vet Sci, Sydney, NSW, Australia Friesen, CR (reprint author), Univ Sydney, Sch Life & Environm Sci, Heydon Laurence Bldg A08, Sydney, NSW 2006, Australia. christopher.friesen@sydney.edu.au National Science Foundation [DBI-1308394]; University of Sydney; University of Minnesota Morris Division of Science and Mathematics This material is based in part upon work supported by the National Science Foundation (DBI-1308394 to C.R.F.) and University of Sydney (Animal and Veterinary Biosciences Fellowship to C.M.W.) and University of Minnesota Morris Division of Science and Mathematics (to H.L.W.). ALEKSIUK M, 1974, COPEIA, P681, DOI 10.2307/1442681; Alonso-Alvarez C, 2007, P R SOC B, V274, P819, DOI 10.1098/rspb.2006.3764; AMES BN, 1993, P NATL ACAD SCI USA, V90, P7915, DOI 10.1073/pnas.90.17.7915; Anchelin M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016955; ANDERSSON M, 1982, BIOL J LINN SOC, V17, P375, DOI 10.1111/j.1095-8312.1982.tb02028.x; Badas EP, 2015, J EVOLUTION BIOL, V28, P896, DOI 10.1111/jeb.12615; Balaban RS, 2005, CELL, V120, P483, DOI 10.1016/j.cell.2005.02.001; Ballen C, 2012, NATURWISSENSCHAFTEN, V99, P661, DOI 10.1007/s00114-012-0941-1; Barrett ELB, 2013, MOL ECOL, V22, P249, DOI 10.1111/mec.12110; Barrett ELB, 2011, AGING CELL, V10, P913, DOI 10.1111/j.1474-9726.2011.00741.x; Bauch C, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2540; Beaulieu M, 2015, EVOLUTION, V69, P1786, DOI 10.1111/evo.12697; Behl C, 2000, Novartis Found Symp, V230, P221, DOI 10.1002/0470870818.ch16; Behl C, 2000, NOVART FDN SYMP, V230, P234, DOI 10.1002/0470870818.ch16; BLACKBURN EH, 1978, J MOL BIOL, V120, P33, DOI 10.1016/0022-2836(78)90294-2; Bouwhuis S, 2012, AM NAT, V179, pE15, DOI 10.1086/663194; Bronikowski AM, 2000, EVOLUTION, V54, P1760; Bronikowski A, 2010, INTEGR COMP BIOL, V50, P880, DOI 10.1093/icb/icq132; Bronikowski AM, 2008, AGE, V30, P169, DOI 10.1007/s11357-008-9060-5; Cease AJ, 2007, GEN COMP ENDOCR, V150, P124, DOI 10.1016/j.ygcen.2006.07.022; Chen JH, 2007, NUCLEIC ACIDS RES, V35, P7417, DOI 10.1093/nar/gkm681; Clesson D, 2002, AM MIDL NAT, V147, P376, DOI 10.1674/0003-0031(2002)147[0376:RBOMEG]2.0.CO;2; Costantini D, 2011, J COMP PHYSIOL B, V181, P447, DOI 10.1007/s00360-011-0566-2; Cox Robert M., 2007, P38; Criscuolo F, 2009, J AVIAN BIOL, V40, P342, DOI 10.1111/j.1600-048X.2008.04623.x; Dantzer B, 2015, EXP GERONTOL, V71, P38, DOI 10.1016/j.exger.2015.08.012; Dayger CA, 2016, J EXP BIOL, V219, P1022, DOI 10.1242/jeb.130450; Dayger CA, 2013, HORM BEHAV, V64, P748, DOI 10.1016/j.yhbeh.2013.09.003; Fairbairn DJ, 2007, SEX SIZE AND GENDER; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Fitch HS., 1965, ECOLOGICAL STUDY GAR, P493; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Friesen CR, 2014, J ZOOL, V292, P192, DOI 10.1111/jzo.12092; Friesen CR, 2015, J EXP BIOL, V218, P1410, DOI 10.1242/jeb.120402; Friesen CR, 2014, BEHAV ECOL SOCIOBIOL, V68, P1419, DOI 10.1007/s00265-014-1749-0; Friesen CR, 2014, CAN J ZOOL, V92, P33, DOI 10.1139/cjz-2013-0195; Gao J, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0125674; Gardner M, 2014, EXP GERONTOL, V51, P15, DOI 10.1016/j.exger.2013.12.004; Georgiev AV, 2015, J EXP BIOL, V218, P1981, DOI 10.1242/jeb.121947; Giraudeau M, 2016, BIOL LETTERS, V12, DOI 10.1098/rsbl.2016.0077; Gomes NMV, 2010, FEBS LETT, V584, P3741, DOI 10.1016/j.febslet.2010.07.031; Gregory PT, 2006, J ZOOL, V270, P414, DOI 10.1111/j.1469-7998.2006.00149.x; Gregory PT, 2009, HERPETOLOGICA, V65, P1, DOI 10.1655/0018-0831-65.1.1; GREGORY PT, 1974, CAN J ZOOL, V52, P1063, DOI 10.1139/z74-141; Gregory PT., 1977, LIFE HIST PARAMETERS, P1; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; Haussmann MF, 2003, P ROY SOC B-BIOL SCI, V270, P1387, DOI 10.1098/rspb.2003.2385; Havukainen H, 2013, J BIOL CHEM, V288, P28369, DOI 10.1074/jbc.M113.465021; Hill GE, 2011, ECOL LETT, V14, P625, DOI 10.1111/j.1461-0248.2011.01622.x; Houben JMJ, 2008, FREE RADICAL BIO MED, V44, P235, DOI 10.1016/j.freeradbiomed.2007.10.001; Ihle KE, 2015, EXP GERONTOL, V61, P113, DOI 10.1016/j.exger.2014.12.007; Johnson SL, 2015, AGEING RES REV, V19, P22, DOI 10.1016/j.arr.2014.10.007; JOY JE, 1988, ANIM BEHAV, V36, P1839, DOI 10.1016/S0003-3472(88)80126-X; JOY JE, 1985, J COMP PSYCHOL, V99, P145, DOI 10.1037/0735-7036.99.2.145; KROHMER RW, 1987, GEN COMP ENDOCR, V68, P64, DOI 10.1016/0016-6480(87)90061-X; LANDE R, 1980, EVOLUTION, V34, P292, DOI 10.1111/j.1558-5646.1980.tb04817.x; Lerner DT, 2001, GEN COMP ENDOCR, V124, P218, DOI 10.1006/gcen.2001.7695; Liu JP, 2014, CLIN EXP PHARMACOL P, V41, P445, DOI 10.1111/1440-1681.12247; Ludlow AT, 2014, J GERONTOL A-BIOL, V69, P821, DOI 10.1093/gerona/glt211; Lutterschmidt DI, 2006, CAN J ZOOL, V84, P771, DOI 10.1139/Z06-043; Monaghan P, 2014, J EXP BIOL, V217, P57, DOI 10.1242/jeb.090043; Monaghan P, 2010, ANN NY ACAD SCI, V1206, P130, DOI 10.1111/j.1749-6632.2010.05705.x; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Moore IT, 2000, ANIM BEHAV, V59, P529, DOI 10.1006/anbe.1999.1344; Morales AE, 2004, COMP BIOCHEM PHYS C, V139, P153, DOI 10.1016/j.cca.2004.10.008; Morales AE, 2012, OXIDATIVE STRESS IN AQUATIC ECOSYSTEMS, P281; Nussey DH, 2013, AGEING RES REV, V12, P214, DOI 10.1016/j.arr.2012.07.004; O'Donnell RP, 2004, BEHAV ECOL SOCIOBIOL, V56, P413, DOI 10.1007/s00265-004-0801-x; Olsson M, 2001, OIKOS, V93, P121, DOI 10.1034/j.1600-0706.2001.930113.x; Olsson M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017473; Olsson M, 2011, MOL ECOL, V20, P2085, DOI 10.1111/j.1365-294X.2011.05085.x; Olsson M, 2009, NATURWISSENSCHAFTEN, V96, P25, DOI 10.1007/s00114-008-0444-2; Palacios MG, 2012, GEN COMP ENDOCR, V175, P443, DOI 10.1016/j.ygcen.2011.11.042; Pascual P, 2003, CHEM-BIOL INTERACT, V145, P191, DOI 10.1016/S0009-2797(03)00002-4; Pauliny A, 2006, MOL ECOL, V15, P1681, DOI 10.1111/j.1365-294X.2006.02862.x; Plot V, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040855; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; PROMISLOW DEL, 1992, P ROY SOC B-BIOL SCI, V247, P203, DOI 10.1098/rspb.1992.0030; Richter T, 2007, EXP GERONTOL, V42, P1039, DOI 10.1016/j.exger.2007.08.005; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Robert KA, 2007, AGING CELL, V6, P395, DOI 10.1111/j.1474-9726.2007.00287.x; Roff D. A., 2002, LIFE HIST EVOLUTION; Rollings N, 2017, DRYAD DIGITAL REPOSI, DOI [10.5061/dryad.jv463, DOI 10.5061/DRYAD.JV463]; Rowe L, 1996, P ROY SOC B-BIOL SCI, V263, P1415, DOI 10.1098/rspb.1996.0207; Rowe L., 2005, SEXUAL CONFLICT; Sayres MAW, 2011, EVOLUTION, V65, P2800, DOI 10.1111/j.1558-5646.2011.01337.x; Schull Q, 2016, J EXP BIOL, V219, P3284, DOI 10.1242/jeb.145250; Schulte-Hostedde AI, 2005, ECOLOGY, V86, P155, DOI 10.1890/04-0232; Seehuus SC, 2006, P NATL ACAD SCI USA, V103, P962, DOI 10.1073/pnas.0502681103; Shalev C, 2013, PSYCHONEUROENDOCRINO, V38, P1835, DOI 10.1016/j.psyneuen.2013.03.010; Sharick JT, 2015, FUNCT ECOL, V29, P367, DOI 10.1111/1365-2435.12330; Shine R, 2006, WILDLIFE RES, V33, P103, DOI 10.1071/WR05030; Shine R, 2005, CAN J ZOOL, V83, P1265, DOI 10.1139/Z05-119; SHINE R, 1988, EVOLUTION, V42, P1105, DOI 10.1111/j.1558-5646.1988.tb02531.x; Shine R, 2000, ANIM BEHAV, V59, P349, DOI 10.1006/anbe.1999.1321; Shine R, 2004, BIOL CONSERV, V120, P201, DOI 10.1016/j.biocon.2004.02.014; Shine R, 2004, BEHAV ECOL, V15, P654, DOI 10.1093/beheco/arh058; Shine R, 2004, ANIM BEHAV, V67, P477, DOI 10.1016/j.anbehav.2003.05.007; Shine R, 2003, P ROY SOC B-BIOL SCI, V270, P995, DOI 10.1098/rspb.2002.2307; Shine R, 2003, BEHAV ECOL SOCIOBIOL, V54, P162, DOI 10.1007/s00265-003-0620-5; Shine R, 2001, EVOLUTION, V55, P598, DOI 10.1554/0014-3820(2001)055[0598:BITSDE]2.0.CO;2; SHINE R, 1992, AM NAT, V139, P1257, DOI 10.1086/285385; Shine R, 2001, COPEIA, P82; SHINE R, 1994, COPEIA, P326; Shine R, 1987, BIOL REPTILIA, V16, P275; Sorensen M, 2006, FREE RADICAL RES, V40, P339, DOI 10.1080/10715760500250182; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Sudyka J, 2014, J EVOLUTION BIOL, V27, P2258, DOI 10.1111/jeb.12479; Turbill C, 2012, BIOL LETTERS, V8, P304, DOI 10.1098/rsbl.2011.0758; Ujvari B, 2017, FUNCT ECOL, V31, P753, DOI 10.1111/1365-2435.12764; Ujvari B, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0007493; Van Dyke JU, 2011, COMP BIOCHEM PHYS A, V160, P504, DOI 10.1016/j.cbpa.2011.08.011; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vina J, 2005, FEBS LETT, V579, P2541, DOI 10.1016/j.febslet.2005.03.090; Vina J, 2013, HORM MOL BIOL CLIN I, V16, P65, DOI 10.1515/hmbci-2013-0039; VOGT BL, 1993, BIOCHEM PHARMACOL, V46, P257, DOI 10.1016/0006-2952(93)90412-P; von Zglinicki T, 2002, TRENDS BIOCHEM SCI, V27, P339, DOI 10.1016/S0968-0004(02)02110-2; Waye HL, 2008, GEN COMP ENDOCR, V155, P607, DOI 10.1016/j.ygcen.2007.08.005; Waye HL, 1998, CAN J ZOOL, V76, P288, DOI 10.1139/cjz-76-2-288; Waye HL, 1999, COPEIA, P819, DOI 10.2307/1447622; Weatherhead PJ, 1996, CAN J ZOOL, V74, P1617, DOI 10.1139/z96-179; White CR, 2003, PHYSIOL BIOCHEM ZOOL, V76, P135, DOI 10.1086/367939; ZAHAVI A, 1975, J THEOR BIOL, V53, P205, DOI 10.1016/0022-5193(75)90111-3; Ziegler DV, 2015, AGING CELL, V14, P1, DOI 10.1111/acel.12287 125 6 6 9 45 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. APR 12 2017 284 1852 20162146 10.1098/rspb.2016.2146 9 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology ES1NK WOS:000399294100003 28381620 Bronze, Green Published 2018-11-22 J Eros, T Eros, T. Scaling fish metacommunities in stream networks: synthesis and future research avenues COMMUNITY ECOLOGY English Article Community variability; Dispersal; Diversity; Environmental filtering; Metacommunity; Rivers DENDRITIC ECOLOGICAL NETWORKS; SPATIAL POPULATION-DYNAMICS; LIFE-HISTORY STRATEGIES; FRESH-WATER REALM; ASSEMBLAGE STRUCTURE; COMMUNITY ECOLOGY; SPECIES RICHNESS; RIVERINE FISH; ENVIRONMENTAL VARIABILITY; EMPIRICAL OBSERVATIONS The metacommunity perspective has substantially advanced our understanding of how local (within community) and dispersal (between community) processes influence the assembly of communities. The increased recognition of dispersal processes makes it necessary to re-evaluate former views on community organization in different ecological systems and for specific organisms. Stream systems have long been considered from a linear perspective, in which local community organization was examined along the longitudinal profile, from source to mouth. However, the hierarchically branching (i.e. dendritic) structure of stream networks also significantly affects both local and regional scale community organization, which has just only recently been fully recognized by ecologists. In this review, I examine how the shift from a strictly linear to a dendritic network perspective influenced the thinking about the organization of fish metacommunities in stream networks. I argue that while longitudinal patterns in the structure of fish communities are relatively well known, knowledge is still limited about how the structure of the stream network ultimately affects the spatial and temporal dynamics of metacommunities. I suggest that scaling metapopulation models up to the metacommunity level can be useful to further our understanding of the spatial structure of metacommunities. However, this requires the delineation of local communities and the quantification of the contribution of dispersal to local community dynamics. Exploring patterns in diversity, spatial distribution and temporal dynamics of metacommunities is not easily feasible in continuous stream habitats, where some parts of the habitat network are exceptionally hard to sample representatively. Combination of detailed field studies with modelling of dispersal is necessary for a better understanding of metacommunity dynamics in stream networks. Since most metacommunity level processes are likely to happen at the stream network level, further research on the effects of stream network structure is needed. Overall, separation of the effect of dispersal processes from local scale community dynamics may yield a more mechanistic understanding of the assembly of fish communities in stream networks, which may also enhance the effectiveness of restoration efforts. [Eros, T.] MTA Ctr Ecol Res, Balaton Limnol Inst, Klebelsberg K U 3, H-8237 Tihany, Hungary Eros, T (reprint author), MTA Ctr Ecol Res, Balaton Limnol Inst, Klebelsberg K U 3, H-8237 Tihany, Hungary. eros.tibor@okologia.mta.hu OTKA [K-104279]; GINOP [2.3.3-15-2016-00019] This study was supported by the OTKA K-104279 and the GINOP 2.3.3-15-2016-00019 research funds. I am indebted to professors G. D. Grossman, W. J. Matthews and my colleagues for their comments on the ms and their suggestions for improvements. Aarts BGW, 2003, HYDROBIOLOGIA, V500, P157, DOI 10.1023/A:1024638726162; Altermatt F, 2013, AQUAT ECOL, V47, P365, DOI 10.1007/s10452-013-9450-3; Angermeier PL, 1998, ECOLOGY, V79, P911, DOI 10.2307/176589; Auerbach DA, 2011, J N AM BENTHOL SOC, V30, P235, DOI 10.1899/09-126.1; Benda L, 2004, WATER RESOUR RES, V40, DOI 10.1029/2003WR002583; Benda L, 2004, BIOSCIENCE, V54, P413, DOI 10.1641/0006-3568(2004)054[0413:TNDHHC]2.0.CO;2; Bernhardt ES, 2005, SCIENCE, V308, P636, DOI 10.1126/science.1109769; Bond N. R., 2003, Ecological Management & Restoration, V4, P193, DOI 10.1046/j.1442-8903.2003.00156.x; Borthagaray AI, 2015, OIKOS, V124, P1383, DOI 10.1111/oik.01317; Borthagary A. I., 2015, AQUATIC FUNCTIONAL B, P75, DOI DOI 10.1016/B978-0-12-417015-5.00004-9; Brown BL, 2010, J ANIM ECOL, V79, P571, DOI 10.1111/j.1365-2656.2010.01668.x; Brown BL, 2011, J N AM BENTHOL SOC, V30, P310, DOI 10.1899/10-129.1; Cao Y, 2002, J N AM BENTHOL SOC, V21, P701, DOI 10.2307/1468440; Cao Y, 2001, CAN J FISH AQUAT SCI, V58, P1782, DOI 10.1139/cjfas-58-9-1782; Chase J.M., 2009, COMMUNITY ECOLOGY PR, P57; Clarke A, 2008, FRESHWATER BIOL, V53, P1707, DOI 10.1111/j.1365-2427.2008.02041.x; Czegledi I, 2016, AQUAT SCI, V78, P641, DOI 10.1007/s00027-015-0454-z; Didham RK, 2012, OIKOS, V121, P161, DOI 10.1111/j.1600-0706.2011.20273.x; Dolezsai A, 2015, BIODIVERS CONSERV, V24, P1403, DOI 10.1007/s10531-015-0864-1; Dray S, 2012, ECOL MONOGR, V82, P257, DOI 10.1890/11-1183.1; Eros T, 2010, FRESHWATER BIOL, V55, P2391, DOI 10.1111/j.1365-2427.2010.02438.x; Eros T, 2005, ECOL FRESHW FISH, V14, P256, DOI 10.1111/j.1600-0633.2005.00102.x; Eros T, 2017, RIVER RES APPL, V33, P37, DOI 10.1002/rra.3060; Eros T, 2014, HYDROBIOLOGIA, V722, P31, DOI 10.1007/s10750-013-1673-8; Eros T, 2012, FRESHWATER BIOL, V57, P1914, DOI 10.1111/j.1365-2427.2012.02842.x; Eros T, 2007, FRESHWATER BIOL, V52, P1400, DOI 10.1111/j.1365-2427.2007.01777.x; Eros T, 2017, FRESHWATER BIOL, V62, P215, DOI 10.1111/fwb.12857; Eros T, 2015, FRESHWATER BIOL, V60, P1487, DOI 10.1111/fwb.12596; Eros T, 2012, LANDSCAPE ECOL, V27, P303, DOI 10.1007/s10980-011-9659-2; Eros T, 2011, BIOL CONSERV, V144, P184, DOI 10.1016/j.biocon.2010.08.013; Fagan WF, 2002, ECOLOGY, V83, P3243, DOI 10.2307/3072074; Falke JA, 2012, ECOLOGY, V93, P858, DOI 10.1890/11-1515.1; Falke JA, 2010, AM FISH S S, V73, P207; Fausch KD, 2002, BIOSCIENCE, V52, P483, DOI 10.1641/0006-3568(2002)052[0483:LTRBTG]2.0.CO;2; Fausch KD, 2010, AM FISH S S, V73, P199; Finn DS, 2011, J N AM BENTHOL SOC, V30, P963, DOI 10.1899/11-012.1; Fisher SG, 1997, J N AM BENTHOL SOC, V16, P305, DOI 10.2307/1468020; Flotemersch JE, 2011, RIVER RES APPL, V27, P520, DOI 10.1002/rra.1367; Fullerton AH, 2016, ECOL APPL, V26, P2558, DOI 10.1002/eap.1411; Fullerton AH, 2011, CONSERV BIOL, V25, P932, DOI 10.1111/j.1523-1739.2011.01718.x; Ganio LM, 2005, FRONT ECOL ENVIRON, V3, P138, DOI 10.2307/3868541; Giam XL, 2016, GLOBAL ECOL BIOGEOGR, V25, P1194, DOI 10.1111/geb.12475; GORMAN OT, 1986, AM NAT, V128, P611, DOI 10.1086/284592; Gothe E, 2013, J ANIM ECOL, V82, P449, DOI 10.1111/1365-2656.12004; Grant EHC, 2007, ECOL LETT, V10, P165, DOI 10.1111/j.1461-0248.2006.01007.x; Grant EHC, 2009, FRESHWATER BIOL, V54, P1370, DOI 10.1111/j.1365-2427.2009.02166.x; Gravel D, 2006, ECOL LETT, V9, P399, DOI 10.1111/j.1461-0248.2006.00884.x; Grenouillet G, 2004, CAN J FISH AQUAT SCI, V61, P93, DOI 10.1139/F03-145; Grossman GD, 2010, AM FISH S S, V73, P63; Grossman GD, 1998, ECOL MONOGR, V68, P395, DOI 10.1890/0012-9615(1998)068[0395:AOISFE]2.0.CO;2; GROSSMAN GD, 1990, ENVIRON MANAGE, V14, P661, DOI 10.1007/BF02394716; HARRISON S, 1991, BIOL J LINN SOC, V42, P73, DOI 10.1111/j.1095-8312.1991.tb00552.x; Harrison Susan, 1997, P27, DOI 10.1016/B978-012323445-2/50004-3; Heino J, 2015, FRESHWATER BIOL, V60, P973, DOI 10.1111/fwb.12556; Heino J, 2015, ECOL EVOL, V5, P1525, DOI 10.1002/ece3.1460; Heino J, 2015, FRESHWATER BIOL, V60, P845, DOI 10.1111/fwb.12533; Heino J, 2013, BIOL REV, V88, P166, DOI 10.1111/j.1469-185X.2012.00244.x; Hermoso V, 2011, FRESHWATER BIOL, V56, P57, DOI 10.1111/j.1365-2427.2009.02390.x; Hitt NP, 2008, J N AM BENTHOL SOC, V27, P304, DOI 10.1899/07-096.1; Hitt NP, 2012, OIKOS, V121, P127, DOI 10.1111/j.1600-0706.2011.19482.x; Hubbs C, 1995, COPEIA, P989, DOI 10.2307/1447053; Hughes RM, 2015, ECOL INDIC, V57, P546, DOI 10.1016/j.ecolind.2015.04.044; Illies J., 1963, MITTEILUNGEN INT VER, V12, P1; Jackson DA, 2001, CAN J FISH AQUAT SCI, V58, P157, DOI 10.1139/cjfas-58-1-157; Jackson DA, 2010, AM FISH S S, V73, P503; Jacobson B, 2010, LANDSCAPE ECOL, V25, P495, DOI 10.1007/s10980-009-9442-9; Kautza A, 2012, FUND APPL LIMNOL, V180, P259, DOI 10.1127/1863-9135/2012/0282; Labonne J, 2008, OIKOS, V117, P1479, DOI 10.1111/j.2008.0030-1299.16976.x; Lamouroux N, 2002, ECOLOGY, V83, P1792, DOI 10.2307/3071765; Lasne E, 2007, RIVER RES APPL, V23, P877, DOI 10.1002/rra.1030; Legendre P, 1998, NUMERICAL ECOLOGY; Leibold MA, 2004, ECOL LETT, V7, P601, DOI 10.1111/j.1461-0248.2004.00608.x; Leibold MA, 2002, OIKOS, V97, P237, DOI 10.1034/j.1600-0706.2002.970210.x; Logue JB, 2011, TRENDS ECOL EVOL, V26, P482, DOI 10.1016/j.tree.2011.04.009; Loisl F, 2014, HYDROBIOLOGIA, V729, P77, DOI 10.1007/s10750-013-1588-4; Lowe WH, 2002, ENVIRON MANAGE, V30, P225, DOI 10.1007/s00267-001-2687-y; Lowe WH, 2002, CONSERV BIOL, V16, P183, DOI 10.1046/j.1523-1739.2002.00360.x; Lucas MC, 2001, MIGRATION FRESHWATER; Matthews W. J., 1998, PATTERNS FRESHWATER; Matthews WJ, 2010, AM FISH S S, V73, P3; Matthews WJ, 1998, AM MIDL NAT, V139, P1, DOI 10.1674/0003-0031(1998)139[0001:IODCDA]2.0.CO;2; MATTHEWS WJ, 1986, ENVIRON BIOL FISH, V17, P81, DOI 10.1007/BF00001739; McGarvey DJ, 2011, ECOL FRESHW FISH, V20, P231, DOI 10.1111/j.1600-0633.2011.00485.x; Meynard CN, 2013, J BIOGEOGR, V40, P1560, DOI 10.1111/jbi.12116; Miyazono S, 2013, FRESHWATER BIOL, V58, P1303, DOI 10.1111/fwb.12127; Muneepeerakul R, 2007, WATER RESOUR RES, V43, DOI 10.1029/2006WR005857; Muneepeerakul R, 2008, NATURE, V453, P220, DOI 10.1038/nature06813; Muneepeerakul R, 2007, J THEOR BIOL, V245, P351, DOI 10.1016/j.jtbi.2006.10.005; Oberdorff T, 2001, OIKOS, V93, P419, DOI 10.1034/j.1600-0706.2001.930307.x; Olden JD, 2006, ECOL MONOGR, V76, P25, DOI 10.1890/05-0330; Olden JD, 2010, AM FISH S S, V73, P83; OSBORNE LL, 1992, CAN J FISH AQUAT SCI, V49, P671, DOI 10.1139/f92-076; Palmer MA, 2010, FRESHWATER BIOL, V55, P205, DOI 10.1111/j.1365-2427.2009.02372.x; Pegg MA, 2007, J BIOGEOGR, V34, P549, DOI 10.1111/j.1365-2699.2006.01624.x; Peres-Neto PR, 2010, AM FISH S S, V73, P235; Perkin JS, 2012, ECOL APPL, V22, P2176, DOI 10.1890/12-0318.1; Peter S, 2011, ECOL FRESHW FISH, V20, P251, DOI 10.1111/j.1600-0633.2011.00490.x; Peterson EE, 2013, ECOL LETT, V16, P707, DOI 10.1111/ele.12084; Poole GC, 2002, FRESHWATER BIOL, V47, P641, DOI 10.1046/j.1365-2427.2002.00922.x; Poole GC, 2010, J N AM BENTHOL SOC, V29, P12, DOI 10.1899/08-070.1; Presley SJ, 2010, OIKOS, V119, P908, DOI 10.1111/j.1600-0706.2010.18544.x; Rice S. P., 2008, RIVER CONFLUENCES TR; Rice SP, 2017, GEOMORPHOLOGY, V277, P6, DOI 10.1016/j.geomorph.2016.03.027; Ridenour CJ, 2011, T AM FISH SOC, V140, P1351, DOI 10.1080/00028487.2011.620493; Ridenour CJ, 2009, RIVER RES APPL, V25, P472, DOI 10.1002/rra.1175; Rieman BE, 2000, ECOL FRESHW FISH, V9, P51, DOI 10.1034/j.1600-0633.2000.90106.x; Roberts JH, 2010, AM FISH S S, V73, P281; Saly P, 2016, ECOL COMPLEX, V28, P187, DOI 10.1016/j.ecocom.2016.05.002; Schaefer JF, 2004, AM MIDL NAT, V151, P134, DOI 10.1674/0003-0031(2004)151[0134:FADIAA]2.0.CO;2; Schlosser I.J., 1987, P17; Schlosser I.J., 1995, AM FISH SOC S, V17, P360; SCHLOSSER IJ, 1991, BIOSCIENCE, V41, P704, DOI 10.2307/1311765; SCHLOSSER IJ, 1985, ECOLOGY, V66, P1484, DOI 10.2307/1938011; SCHLOSSER IJ, 1982, ECOL MONOGR, V52, P395, DOI 10.2307/2937352; Schmera D, 2008, FUND APPL LIMNOL, V172, P205, DOI 10.1127/1863-9135/2008/0172-0205; Schmera D, 2011, ECOL INDIC, V11, P230, DOI 10.1016/j.ecolind.2010.03.009; Schmutz S, 2016, HYDROBIOLOGIA, V769, P67, DOI 10.1007/s10750-015-2354-6; Schtickzelle N, 2007, FISH FISH, V8, P297, DOI 10.1111/j.1467-2979.2007.00256.x; Smith KL, 2005, CAN J FISH AQUAT SCI, V62, P1580, DOI 10.1139/F05-098; Taylor CM, 2001, ECOLOGY, V82, P2320, DOI 10.2307/2680234; Thornbrugh DJ, 2010, CAN J FISH AQUAT SCI, V67, P143, DOI 10.1139/F09-169; Thorp JH, 2014, FRESHWATER BIOL, V59, P200, DOI 10.1111/fwb.12237; Thorp JH, 2006, RIVER RES APPL, V22, P123, DOI 10.1002/rra.901; Tonkin JD, 2016, FRESHWATER BIOL, V61, P607, DOI 10.1111/fwb.12728; Tonkin JD, 2014, FRESHWATER BIOL, V59, P1843, DOI 10.1111/fwb.12387; Troia MJ, 2013, J ENVIRON MANAGE, V128, P313, DOI 10.1016/j.jenvman.2013.05.003; VANNOTE RL, 1980, CAN J FISH AQUAT SCI, V37, P130, DOI 10.1139/f80-017; Vellend M, 2010, Q REV BIOL, V85, P183, DOI 10.1086/652373; Vitorino OB, 2016, FRESHWATER BIOL, V61, P1733, DOI 10.1111/fwb.12813; Welcomme RL, 1985, FAO FISHERIES TECHNI, V262, P330; Winegardner AK, 2012, TRENDS ECOL EVOL, V27, P253, DOI 10.1016/j.tree.2012.01.007; ZALEWSKI M, 1990, Polskie Archiwum Hydrobiologii, V37, P151 132 0 0 4 24 AKADEMIAI KIADO RT BUDAPEST PRIELLE K U 19, PO BOX 245,, H-1117 BUDAPEST, HUNGARY 1585-8553 1588-2756 COMMUNITY ECOL Community Ecol. APR 2017 18 1 72 86 10.1556/168.2017.18.1.9 15 Ecology Environmental Sciences & Ecology EX9AU WOS:000403545100009 Other Gold 2018-11-22 J Amininasab, SM; Hammers, M; Vedder, O; Komdeur, J; Korsten, P Amininasab, Seyed Mehdi; Hammers, Martijn; Vedder, Oscar; Komdeur, Jan; Korsten, Peter No effect of partner age and lifespan on female age-specific reproductive performance in blue tits JOURNAL OF AVIAN BIOLOGY English Article CLUTCH-SIZE; COLLARED FLYCATCHER; CYANISTES-CAERULEUS; MALE ATTRACTIVENESS; NATURAL-POPULATION; SEASONAL-VARIATION; LAYING DATE; GREAT TITS; SENESCENCE; SURVIVAL Studies of age-specific reproductive performance are fundamental to our understanding of population dynamics and the evolution of life-history strategies. In species with bi-parental care, reproductive ageing trajectories of either parent may be influenced by their partner's age, but this has rarely been investigated. We investigated within-individual age-specific performance (laying date and number of eggs laid) in wild female blue tits Cyanistes caeruleus and evaluated how the age and longevity of their male partner indirectly influenced the females' reproductive performance. Females showed clear age-dependence in both laying date and number of eggs laid. We found that female reproductive performance improved in early life, before showing a decline. Longer-lived females had an earlier laying date throughout their lives than shorter-lived females, but there was no difference in number of eggs laid between longer-and shorter-lived females. Within breeding pairs, the female's (age-specific) reproductive performance was not dependent on the age and longevity of the male partner. We conclude that the age and quality of the male partner may be of little importance for traits that are under direct female control. [Amininasab, Seyed Mehdi; Hammers, Martijn; Vedder, Oscar; Komdeur, Jan] Univ Groningen, Groningen Inst Evolutionary Life Sci, Groningen, Netherlands; [Amininasab, Seyed Mehdi] Behbahan Khatam Alanbia Univ Technol, Dept Environm Sci, Behbahan, Khuzestan Provi, Iran; [Vedder, Oscar] Inst Avian Res, Wilhelmshaven, Germany; [Korsten, Peter] Bielefeld Univ, Dept Anim Behav, Bielefeld, Germany Amininasab, SM (reprint author), Univ Groningen, Groningen Inst Evolutionary Life Sci, Groningen, Netherlands. s.m.amini.nasab@rug.nl European Community's Sixth Framework Programme [028696]; ALW-NWO [821.01.008]; European Union's Seventh Framework Programme [PCIG10-GA-2011-304280]; NWO VENI [863.15.020] We thank the Kraus-Groeneveld Stichting for permission to work on De Vosbergen estate. We thank Frank Groenewoud, Michele Busana, Maaike Versteegh and Lei Lv for their help and advice with the graphs. We also thank Michael Magrath, Berber de Jong, Elske Schut and numerous BSc and MSc Students for their indispensable help in the field from 2001-2014. Permission for all procedures involving handling of blue tits was granted by the Animal Experiments Committee (DEC) of the Univ. of Groningen. The research was financially supported by grant numbers 028696 (European Community's Sixth Framework Programme) and 821.01.008 (ALW-NWO) which were allocated to JK. PK was financially supported by the European Union's Seventh Framework Programme (PCIG10-GA-2011-304280). MH was supported by a NWO VENI-fellowship (863.15.020). Amininasab S. M., 2016, J KORSTEN; Amininasab SM, 2016, ACTA OECOL, V70, P37, DOI 10.1016/j.actao.2015.11.006; Auld JR, 2013, J ANIM ECOL, V82, DOI 10.1111/1365-2656.12043; Auld JR, 2011, OIKOS, V120, P1129, DOI 10.1111/j.1600-0706.2010.19161.x; Balbontin J, 2012, J EVOLUTION BIOL, V25, P2298, DOI 10.1111/j.1420-9101.2012.02606.x; Balbontin J, 2007, J ANIM ECOL, V76, P915, DOI 10.1111/j.1365-2656.2007.01269.x; Bates D., 2014, LME4 LINEAR MIXED EF, DOI DOI 10.18637/JSS.V067.I01; BLACK JM, 1995, J ANIM ECOL, V64, P234, DOI 10.2307/5758; Blas J, 2009, ECOGRAPHY, V32, P647, DOI 10.1111/j.1600-0587.2008.05700.x; Both C, 2000, ECOLOGY, V81, P3391, DOI 10.1890/0012-9658(2000)081[3391:ADDOAC]2.0.CO;2; Bouwhuis S, 2009, P R SOC B, V276, P2769, DOI 10.1098/rspb.2009.0457; Bouwhuis S., 2017, EVOLUTION SENESCENCE, P156; Brown WP, 2009, ECOLOGY, V90, P218, DOI 10.1890/07-2061.1; BURLEY N, 1986, AM NAT, V127, P415, DOI 10.1086/284493; Caro SP, 2009, FUNCT ECOL, V23, P172, DOI 10.1111/j.1365-2435.2008.01486.x; Cichon M, 2003, OECOLOGIA, V134, P78, DOI 10.1007/s00442-002-1099-x; CLUTTONBROCK TH, 1988, REPROD SUCCESS, P472; CURIO E, 1983, IBIS, V125, P400, DOI 10.1111/j.1474-919X.1983.tb03130.x; de Jong B., 2013, THESIS; Evans SR, 2011, EVOLUTION, V65, P1623, DOI 10.1111/j.1558-5646.2011.01253.x; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Hammers M, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040413; Horvathova T, 2012, P ROY SOC B-BIOL SCI, V279, P163, DOI 10.1098/rspb.2011.0663; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; Keller LF, 2008, P R SOC B, V275, P597, DOI 10.1098/rspb.2007.0961; Kim SY, 2011, OECOLOGIA, V166, P615, DOI 10.1007/s00442-011-1914-3; Kingma SA, 2009, BEHAV ECOL, V20, P172, DOI 10.1093/beheco/arn130; Korsten P, 2006, BEHAV ECOL, V17, P539, DOI 10.1093/beheco/arj061; Korsten P., 2006, THESIS; McCleery RH, 2008, P R SOC B, V275, P963, DOI 10.1098/rspb.2007.1418; Millon A, 2011, J ANIM ECOL, V80, P968, DOI 10.1111/j.1365-2656.2011.01842.x; Monaghan P, 1997, TRENDS ECOL EVOL, V12, P270, DOI 10.1016/S0169-5347(97)01094-X; Monaghan P, 1998, P ROY SOC B-BIOL SCI, V265, P1731, DOI 10.1098/rspb.1998.0495; NORRIS K, 1993, J ANIM ECOL, V62, P287, DOI 10.2307/5360; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; Nussey DH, 2013, AGEING RES REV, V12, P214, DOI 10.1016/j.arr.2012.07.004; PERRINS CM, 1965, J ANIM ECOL, V34, P601, DOI 10.2307/2453; Potti J, 2013, J EVOLUTION BIOL, V26, P1445, DOI 10.1111/jeb.12145; Reid JM, 2003, J ANIM ECOL, V72, P765, DOI 10.1046/j.1365-2656.2003.00750.x; Schroeder J, 2012, J EVOLUTION BIOL, V25, P149, DOI 10.1111/j.1420-9101.2011.02412.x; Schut E, 2014, IBIS, V156, P366, DOI 10.1111/ibi.12123; Sheldon BC, 2003, EVOLUTION, V57, P406; Stearns S., 1992, EVOLUTION LIFE HIST; Svensson L., 1992, IDENTIFICATION GUIDE; Tavecchia G, 2001, ECOLOGY, V82, P165, DOI 10.1890/0012-9658(2001)082[0165:SAARVI]2.0.CO;2; Torres R, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0027245; Trivers R. L, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; van der Jeugd HP, 2002, J EVOLUTION BIOL, V15, P380, DOI 10.1046/j.1420-9101.2002.00411.x; Vedder O, 2012, BEHAV ECOL SOCIOBIOL, V66, P603, DOI 10.1007/s00265-011-1308-x; Vedder O, 2010, BEHAV ECOL, V21, P9, DOI 10.1093/beheco/arp145; Verboven N, 1998, OIKOS, V81, P511, DOI 10.2307/3546771; Zhang H, 2015, J ANIM ECOL, V84, P797, DOI 10.1111/1365-2656.12321 53 0 0 3 7 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0908-8857 1600-048X J AVIAN BIOL J. Avian Biol. APR 2017 48 4 544 551 10.1111/jav.00970 8 Ornithology Zoology EX3QI WOS:000403146600010 2018-11-22 J Boyce, AJ; Martin, TE Boyce, Andy J.; Martin, Thomas E. Contrasting latitudinal patterns of life-history divergence in two genera of new world thrushes (Turdinae) JOURNAL OF AVIAN BIOLOGY English Article ADULT MORTALITY PROBABILITY; POSTNATAL-GROWTH RATES; CLUTCH SIZE VARIATION; NEST PREDATION RATES; SURVIVAL RATES; TROPICAL BIRDS; PARENTAL CARE; EMBRYONIC TEMPERATURE; GEOGRAPHIC-VARIATION; INCUBATION PERIODS Several long-standing hypotheses have been proposed to explain latitudinal patterns of life-history strategies. Here, we test predictions of four such hypotheses (seasonality, food limitation, nest predation and adult survival probability) by examining life-history traits and age-specific mortality rates of several species of thrushes (Turdinae) based on field studies at temperate and tropical sites and data gathered from the literature. Thrushes in the genus Catharus showed the typical pattern of slower life-history strategies in the tropics while co-occuring Turdus thrushes differed much less across latitudes. Seasonality is a broadly accepted hypothesis for latitudinal patterns, but the lack of concordance in latitudinal patterns between co-existing genera that experience the same seasonal patterns suggests seasonality cannot fully explain latitudinal trait variation in thrushes. Nest-predation also could not explain patterns based on our field data and literature data for these two genera. Total feeding rates were similar, and per-nestling feeding rates were higher at tropical latitudes in both genera, suggesting food limitation does not explain trait differences in thrushes. Latitudinal patterns of life histories in these two genera were closely associated with adult survival probability. Thus, our data suggest that environmental influences on adult survival probability may play a particularly strong role in shaping latitudinal patterns of life-history traits. [Boyce, Andy J.] Univ Montana, Montana Cooperat Wildlife Res Unit, Missoula, MT 59812 USA; [Martin, Thomas E.] Univ Montana, US Geol Survey, Wildlife Res Unit, Missoula, MT 59812 USA Boyce, AJ (reprint author), Univ Montana, Montana Cooperat Wildlife Res Unit, Missoula, MT 59812 USA. andrew1.boyce@umontana.edu National Science Foundation [DEB-0841764, DEB-1241041]; U.S. Geological Survey Climate Change Research Program; Univ. of Montana IACUC [059-10TMMCWRU] We would like to thank C. Bosque, the Inst. Nacional de Parques, and the Fondo Nacional de Ciencia, Tecnologia y Innovacion (Fonacit) for assistance in Venezuela. This work was supported by the National Science Foundation (DEB-0841764, DEB-1241041), and the U.S. Geological Survey Climate Change Research Program. This work was performed under the auspices of Univ. of Montana IACUC protocol #059-10TMMCWRU. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Author contribution statement: AJB and TEM formulated the idea, conducted fieldwork, and wrote the manuscript. AJB conducted analyses. ASHMOLE N. P., 1963, IBIS, V103b, P458, DOI 10.1111/j.1474-919X.1963.tb06766.x; BENNETT PM, 1988, NATURE, V333, P216, DOI 10.1038/333216b0; Blake JG, 2008, BIOTROPICA, V40, P485, DOI 10.1111/j.1744-7429.2007.00395.x; BRISKIE JV, 1990, AUK, V107, P789, DOI 10.2307/4088016; Burnham KP, 2002, MODEL SELECTION MULT; CASE TJ, 1978, Q REV BIOL, V53, P243, DOI 10.1086/410622; Chalfoun AD, 2007, ANIM BEHAV, V73, P579, DOI 10.1016/j.anbehav.2006.09.010; Cox WA, 2009, WILSON J ORNITHOL, V121, P667, DOI 10.1676/08-133.1; del Hoyo J, 2005, HDB BIRDS WORLD, P895; Ferretti V, 2005, P ROY SOC B-BIOL SCI, V272, P769, DOI 10.1098/rspb.2004.3039; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; GIBB JOHN, 1955, BRITISH BIRDS, V48, P49; Gill SA, 2012, J AVIAN BIOL, V43, P461, DOI 10.1111/j.1600-048X.2012.05637.x; Hackett SJ, 2008, SCIENCE, V320, P1763, DOI 10.1126/science.1157704; Heming NM, 2015, J AVIAN BIOL, V46, P352, DOI 10.1111/jav.00629; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; HUSSELL DJT, 1972, ECOL MONOGR, V42, P317, DOI 10.2307/1942213; Jetz W, 2008, PLOS BIOL, V6, P2650, DOI 10.1371/journal.pbio.0060303; Johnston JP, 1997, AM NAT, V150, P771, DOI 10.1086/286093; KARR JR, 1990, AM NAT, V136, P277, DOI 10.1086/285098; Korfel CA, 2015, OECOLOGIA, V179, P343, DOI 10.1007/s00442-015-3365-8; LAAKE J. L., 2013, 201301 AFSC NOAA NAT; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lack D., 1968, ECOLOGICAL ADAPTATIO; Lack D., 1954, NATURAL REGULATION A; LaManna JA, 2016, ECOL LETT, V19, P403, DOI 10.1111/ele.12573; Lenth R.V., 2014, LSMEANS LEAST SQUARE; Llambias PE, 2015, J ORNITHOL, V156, P933, DOI 10.1007/s10336-015-1217-2; Londono GA, 2015, FUNCT ECOL, V29, P338, DOI 10.1111/1365-2435.12348; MAC ARTHUR ROBERT H., 1967; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; Martin TE, 2006, EVOLUTION, V60, P390; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; MARTIN TE, 1992, ECOLOGY AND CONSERVATION OF NEOTROPICAL MIGRANT LANDBIRDS, P455; MARTIN TE, 1993, J FIELD ORNITHOL, V64, P507; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; Martin TE, 2008, P NATL ACAD SCI USA, V105, P9268, DOI 10.1073/pnas.0709366105; Martin TE, 2008, PHILOS T R SOC B, V363, P1663, DOI 10.1098/rstb.2007.0009; Martin TE, 2007, EVOLUTION, V61, P2558, DOI 10.1111/j.1558-5646.2007.00204.x; Martin TE, 2015, SCIENCE, V349, P966, DOI 10.1126/science.aad1173; Martin TE, 2015, AM NAT, V186, P223, DOI 10.1086/681986; Martin TE, 2015, AM NAT, V185, P380, DOI 10.1086/679612; Martin TE, 2014, AM NAT, V183, P313, DOI 10.1086/674966; Martin TE, 2011, EVOLUTION, V65, P1607, DOI 10.1111/j.1558-5646.2011.01227.x; McNamara JM, 2008, AM NAT, V172, P331, DOI 10.1086/589886; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MOREAU R. E., 1944, IBIS, V86, P286, DOI 10.1111/j.1474-919X.1944.tb04093.x; NICE MARGARET M., 1957, AUK, V74, P305; ONIKI Y, 1979, BIOTROPICA, V11, P60, DOI 10.2307/2388174; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Remes V, 2012, J AVIAN BIOL, V43, P435, DOI 10.1111/j.1600-048X.2012.05599.x; RICKLEFS RE, 1980, AUK, V97, P38; Ricklefs RE, 1997, ECOL MONOGR, V67, P23, DOI 10.1890/0012-9615(1997)067[0023:CDONWP]2.0.CO;2; Ricklefs RE, 2010, AM NAT, V175, P350, DOI 10.1086/650371; ROBINSON D, 1990, EMU, V90, P40, DOI 10.1071/MU9900040; Roff D, 1993, EVOLUTION LIFE HIST; SAETHER BE, 1987, OIKOS, V48, P79, DOI 10.2307/3565691; Sandercock BK, 2000, ECOLOGY, V81, P1351, DOI 10.1890/0012-9658(2000)081[1351:SROANP]2.0.CO;2; Shaffer TL, 2004, AUK, V121, P526, DOI 10.1642/0004-8038(2004)121[0526:AUATAN]2.0.CO;2; Sibley C. G., 1990, DISTRIBUTION TAX0NOM; Sillett TS, 2002, J ANIM ECOL, V71, P296, DOI 10.1046/j.1365-2656.2002.00599.x; Skutch A. F., 1985, ORNITHOLOGICAL MONOG, V36, P575, DOI DOI 10.2307/40168306; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; SLAGSVOLD T, 1984, J ANIM ECOL, V53, P945, DOI 10.2307/4669; SLAGSVOLD T, 1982, OECOLOGIA, V54, P159, DOI 10.1007/BF00378388; Snow D. W., 1963, Wilson Bulletin, V75, P27; Speakman JR, 2005, J EXP BIOL, V208, P1717, DOI 10.1242/jeb.01556; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Voelker G, 2008, MOL PHYLOGENET EVOL, V49, P377, DOI 10.1016/j.ympev.2008.06.014; Voelker G, 2007, MOL PHYLOGENET EVOL, V42, P422, DOI 10.1016/j.ympev.2006.07.016; White GC, 1999, BIRD STUDY, V46, P120; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P9340, DOI 10.1073/pnas.0702212104; Williams JB, 2010, INTEGR COMP BIOL, V50, P855, DOI 10.1093/icb/icq024 75 4 4 2 12 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0908-8857 1600-048X J AVIAN BIOL J. Avian Biol. APR 2017 48 4 581 590 10.1111/jav.01113 10 Ornithology Zoology EX3QI WOS:000403146600014 Bronze 2018-11-22 J Khatri, D; He, XZ; Wang, Q Khatri, Diwas; He, Xiong Z.; Wang, Qiao Effective Biological Control Depends on Life History Strategies of Both Parasitoid and Its Host: Evidence from Aphidius colemani-Myzus persicae System JOURNAL OF ECONOMIC ENTOMOLOGY English Article Life history strategy; aphid; parasitoid; augmentative release HYMENOPTERA-BRACONIDAE APHIDIINAE; PEACH-POTATO APHID; HEMIPTERA-APHIDIDAE; POPULATION-DYNAMICS; INSECTICIDE RESISTANCE; INTRINSIC RATE; GOSSYPII; HOMOPTERA; TABLE; HYM. Mechanisms behind the success and failure of aphid biological control using parasitoids are largely unknown, probably because of the lack of knowledge of life history strategies of the insects involved. Here, we measured and compared life history strategies of Myzus persicae (Sulzer) (Hemiptera: Aphididae) and its parasitoid Aphidius colemani (Viereck) (Hymenoptera: Aphidiidae), providing essential information for evaluation of the potential of A. colemani to control M. persicae. Our results show that one A. colemani female parasitized approximate to 220 aphids within 1 wk regardless of the aphid age. Almost all aphids parasitized at <4th instar died before reaching adulthood, and those parasitized at >= 4th instar produced very few offspring, contributing little to population growth. Although having 21% lower intrinsic rate of increase and 33% longer life cycle than the aphid, the parasitoid possessed reproductive output and net population growth rate twice as high as the aphid, and reached maximum lifetime reproductive potential 1 wk earlier than the aphid. The life history strategies reported here imply that A. colemani is potentially a good biological control agent of M. persicae. On the basis of this study, we hypothesize that immediately after the onset of M. persicae, a release rate of approximate to 1: 220 (female parasitoid: aphids) at a weekly interval during the first 3 wk could effectively control the pest. We suggest that the success of biological control of aphids using parasitoids largely depends on life history strategies of both insects involved and time of the season when they meet. [Khatri, Diwas; He, Xiong Z.; Wang, Qiao] Massey Univ, Inst Agr & Environm, Private Bag 11222, Palmerston North, New Zealand Wang, Q (reprint author), Massey Univ, Inst Agr & Environm, Private Bag 11222, Palmerston North, New Zealand. diwaskhatri@gmail.com; x.z.he@massey.ac.nz; q.wang@massey.ac.nz Wang, Qiao/P-3121-2018 Wang, Qiao/0000-0001-6494-2097 Massey University Doctoral Research Scholarship We thank Bioforce Ltd., Auckland, New Zealand, for providing insects for this study, and the staff of the Institute of Agriculture and Environment and Plant Growth Unit, Massey University, for providing materials and technical assistance. We are very grateful to two anonymous reviewers for their constructive comments, which have significantly improved the paper. This work was supported by a Massey University Doctoral Research Scholarship. Adly D., 2006, Egyptian Journal of Biological Pest Control, V16, P103; APRD, 2015, ARTHROPOD PESTICIDE; Archontoulis SV, 2015, AGRON J, V107, P786, DOI 10.2134/agronj2012.0506; Athanassiou CG, 2003, PHYTOPARASITICA, V31, P8, DOI 10.1007/BF02979762; BAKER RT, 1978, NEW ZEAL J EXP AGR, V6, P77, DOI 10.1080/03015521.1978.10426019; BELLOWS TS, 1992, ANNU REV ENTOMOL, V37, P587; Bellows TS, 1999, HDB BIOL CONTROL PRI, P199; Bioforce, 2016, APH COL; Burgio Giovanni, 1997, Bollettino dell'Istituto di Entomologia "Guido Grandi" della Universita degli Studi di Bologna, V51, P171; Cameron P., 2005, PESTICIDE RESISTANCE, P109; Caswell H, 2001, MATRIX POPULATION MO; Chi H, 2006, ENVIRON ENTOMOL, V35, P10, DOI 10.1603/0046-225X-35.1.10; Fernandez C, 1997, J APPL ENTOMOL, V121, P447, DOI 10.1111/j.1439-0418.1997.tb01433.x; Gariepy V, 2015, BIOL CONTROL, V80, P1, DOI 10.1016/j.biocontrol.2014.09.006; He X., 2008, THESIS; He X. Z., 2005, New Zealand Plant Protection, V58, P202; He XZ, 2011, J INSECT BEHAV, V24, P447, DOI 10.1007/s10905-011-9271-y; He XZ, 2011, J ECON ENTOMOL, V104, P1640, DOI 10.1603/EC11090; Herzog J, 2007, BIOLOGY LETT, V3, P667, DOI 10.1098/rsbl.2007.0362; Hughes R.D., 1972, P275; Jacobson RJ, 1998, BIOCONTROL SCI TECHN, V8, P377, DOI 10.1080/09583159830180; Jervis M.A., 2005, P73, DOI 10.1007/1-4020-2625-0_2; Kavallieratos NG, 2005, EUR J ENTOMOL, V102, P459, DOI 10.14411/eje.2005.066; Khatri D, 2016, J ECON ENTOMOL, V109, P1539, DOI 10.1093/jee/tow105; Lin LA, 2003, ECOL ENTOMOL, V28, P542, DOI 10.1046/j.1365-2311.2003.00536.x; Lins JC, 2011, EUR J ENTOMOL, V108, P575, DOI 10.14411/eje.2011.074; Lui S., 1984, ENTOMOL EXP APPL, V36, P239; Lykouressis D, 2009, EUR J ENTOMOL, V106, P363, DOI 10.14411/eje.2009.046; Margaritopoulos John T., 2009, BMC Ecology, V9, P13, DOI 10.1186/1472-6785-9-13; Moon HyungCheol, 2011, Korean Journal of Applied Entomology, V50, P79; Prado SG, 2015, INSECTS, V6, P538, DOI 10.3390/insects6020538; Ro TH, 1999, ECOL MODEL, V119, P197, DOI 10.1016/S0304-3800(99)00053-8; Saljoqi A, 2009, SARHAD J AGR, V25, P451; Schowalter T, 2000, INSECT ECOLOGY ECOSY; SEQUEIRA R, 1988, ENTOMOL EXP APPL, V48, P179, DOI 10.1111/j.1570-7458.1988.tb01162.x; Shah Riaz, 2013, Journal of Entomological Research, V37, P129; Silva AX, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0036366; Srigiriraju L, 2010, CROP PROT, V29, P197, DOI 10.1016/j.cropro.2009.11.006; Stary P, 2002, J APPL ENTOMOL, V126, P405, DOI 10.1046/j.1439-0418.2002.00663.x; Tang YQ, 1996, ENVIRON ENTOMOL, V25, P703, DOI 10.1093/ee/25.3.703; Tenhumberg B., 2010, NAT ED KNOWL, V1, P2; Tenhumberg B, 2009, ECOLOGY, V90, P1878, DOI 10.1890/08-1665.1; Teulon D., 2008, P 3 INT S BIOL CONTR, P421; Torres ADF, 2007, NEOTROP ENTOMOL, V36, P532, DOI 10.1590/S1519-566X2007000400009; Umina PA, 2014, J ECON ENTOMOL, V107, P1626, DOI 10.1603/EC14063; Van Driesche RG, 2008, FLA ENTOMOL, V91, P583; van Lenteren J. C., 2009, BIOL CONTROL PESTS M, P11; van Lenteren JC, 2003, QUALITY CONTROL AND PRODUCTION OF BIOLOGICAL CONTROL AGENTS: THEORY AND TESTING PROCEDURES, P167; van Toor RF, 2008, CROP PROT, V27, P236, DOI 10.1016/j.cropro.2007.05.015; VANDRIESCHE RG, 1988, ECOL ENTOMOL, V13, P215; VANSTEENIS MJ, 1995, ENTOMOL EXP APPL, V76, P121; VANSTEENIS MJ, 1995, BIOCONTROL SCI TECHN, V5, P339, DOI 10.1080/09583159550039783; VANSTEENIS MJ, 1993, J APPL ENTOMOL, V116, P192; Vasquez GM, 2006, J ECON ENTOMOL, V99, P1104 54 4 4 3 20 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 0022-0493 1938-291X J ECON ENTOMOL J. Econ. Entomol. APR 2017 110 2 400 406 10.1093/jee/tow324 7 Entomology Entomology EV0WY WOS:000401468700011 28334130 2018-11-22 J Smalas, A; Amundsen, PA; Knudsen, R Smalas, Aslak; Amundsen, Per-Arne; Knudsen, Rune The trade-off between fecundity and egg size in a polymorphic population of Arctic charr (Salvelinus alpinus (L.)) in Skogsfjordvatn, subarctic Norway ECOLOGY AND EVOLUTION English Article life history strategies; reproductive investment; salmonids; trade-offs TROUT SALMO-TRUTTA; ATLANTIC SALMON; FEMALE SIZE; EVOLUTION; MORPHS; FISH; ENVIRONMENT; SALAR; CONSEQUENCES; DIVERGENCE Reproductive traits differ between intralacustrine Arctic charr morphs. Here, we examine three sympatric lacustrine Arctic charr morphs with respect to fecundity, egg size and spawning time/site to assess reproductive investments and trade-offs, and possible fitness consequences. The littoral omnivore morph (LO-morph) utilizes the upper water for feeding and reproduction and spawn early in October. The large profundal piscivore morph (PP-morph) and the small profundal benthivore morph (PB-morph) utilize the profundal habitat for feeding and reproduction and spawn in December and November, respectively. Females from all morphs were sampled for fecundity and egg-size analysis. There were large differences between the morphs. The PB-morph had the lowest fecundity (mean = 45, SD = 13) and smallest egg size (mean = 3.2 mm, SD = 0.32 mm). In contrast, the PP-morph had the highest fecundity (mean = 859.5, SD = 462) and the largest egg size (mean = 4.5 mm, SD = 0.46 mm), whereas the LO-morph had intermediate fecundity (mean = 580, SD = 225) and egg size (mean = 4.3, SD = 0.24 mm). Fecundity increased with increasing body size within each morph. This was not the case for egg size, which was independent of body sizes within morph. Different adaptations to feeding and habitat utilization have apparently led to a difference in the trade-off between fecundity and egg size among the three different morphs. [Smalas, Aslak; Amundsen, Per-Arne; Knudsen, Rune] UiT Arctic Univ Norway, Dept Arctic & Marine Biol, Tromso, Norway Smalas, A (reprint author), UiT Arctic Univ Norway, Dept Arctic & Marine Biol, Tromso, Norway. aslak.smalas@uit.no DUARTE CM, 1989, OECOLOGIA, V80, P401, DOI 10.1007/BF00379043; Einum S, 2000, EVOLUTION, V54, P628, DOI 10.1111/j.0014-3820.2000.tb00064.x; Einum S, 1999, P ROY SOC B-BIOL SCI, V266, P2095, DOI 10.1098/rspb.1999.0893; Eiriksson G. M., 1999, Journal of Fish Biology, V55, P175, DOI 10.1006/jfbi.1999.1052; ELGAR MA, 1990, OIKOS, V59, P283, DOI 10.2307/3545546; Fleming IA, 1996, REV FISH BIOL FISHER, V6, P379, DOI 10.1007/BF00164323; Friedland KD, 2005, J SEA RES, V54, P307, DOI 10.1016/j.seares.2005.06.002; Hendry AP, 2001, AM NAT, V157, P387, DOI 10.1086/319316; Hestdahl H. I., 2013, THESIS, P45; Holden M. J., 1974, FAO FISHERIES TECHNI; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; Johnson JB, 2001, OECOLOGIA, V126, P142, DOI 10.1007/s004420000504; Jonsson B, 2001, FUNCT ECOL, V15, P310, DOI 10.1046/j.1365-2435.2001.00528.x; Klemetsen A, 2003, ECOL FRESHW FISH, V12, P1, DOI 10.1034/j.1600-0633.2003.00010.x; Klemetsen A, 2002, J FISH BIOL, V60, P933, DOI 10.1006/jfbi.2002.1905; Klemetsen Anders, 2010, Freshwater Reviews, V3, P49, DOI 10.1608/FRJ-3.1.3; Klemetsen Anders, 1997, Nordic Journal of Freshwater Research, V73, P13; Knudsen R, 2016, HYDROBIOLOGIA, V783, P239, DOI 10.1007/s10750-016-2647-4; Knudsen R, 2016, HYDROBIOLOGIA, V783, P65, DOI 10.1007/s10750-015-2601-x; Leblanc C. A. L., 2014, AQUAC RES, V47, P1100; Leblanc CAL, 2011, ETHOLOGY, V117, P664, DOI 10.1111/j.1439-0310.2011.01920.x; Louhi P, 2015, ECOL FRESHW FISH, V24, P23, DOI 10.1111/eff.12121; MANN RHK, 1985, ENVIRON BIOL FISH, V13, P277, DOI 10.1007/BF00002911; MORRIS DW, 1987, OIKOS, V49, P332, DOI 10.2307/3565769; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; Roff Derek A., 1992; SANDLUND OT, 1992, OIKOS, V64, P305, DOI 10.2307/3545056; SARGENT RC, 1987, AM NAT, V129, P32, DOI 10.1086/284621; Sibly RM, 1986, PHYSL ECOLOGY ANIMAL; Siwertsson A, 2016, HYDROBIOLOGIA, V783, P131, DOI 10.1007/s10750-015-2563-z; Skoglund S, 2015, ECOL EVOL, V5, P3114, DOI 10.1002/ece3.1573; Smalas A, 2013, J ICHTHYOL+, V53, P856, DOI DOI 10.1134/S0032945213100111; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S., 1992, EVOLUTION LIFE HIST; THORPE JE, 1984, AQUACULTURE, V43, P289, DOI 10.1016/0044-8486(84)90030-9; VANDENBERGHE EP, 1984, CAN J FISH AQUAT SCI, V41, P204, DOI 10.1139/f84-022; WALLACE JC, 1984, J FISH BIOL, V24, P427, DOI 10.1111/j.1095-8649.1984.tb04813.x; Walsh MR, 2008, P NATL ACAD SCI USA, V105, P594, DOI 10.1073/pnas.0710051105; Wootton R. J., 1998, ECOLOGY TELEOST FISH 39 2 2 1 9 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. APR 2017 7 7 2018 2024 10.1002/ece3.2669 7 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology ES7OD WOS:000399738700002 28405269 DOAJ Gold, Green Published 2018-11-22 J Lord, JP Lord, Joshua P. Impact of seawater temperature on growth and recruitment of invasive fouling species at the global scale MARINE ECOLOGY-AN EVOLUTIONARY PERSPECTIVE English Article bryozoan; fouling; global warming; invasive species; temperature; tunicate CLIMATE-CHANGE; LATITUDINAL GRADIENTS; THERMAL-STRESS; TRADE-OFFS; COMMUNITY; PATTERNS; DIFFERENTIATION; INVERTEBRATES; ASCIDIANS; RICHNESS Epibenthic fouling communities are dominated by invasive species that are globally distributed and can have substantial ecological and economic impacts in coastal habitats. Little is known about inter-specific differences in life history strategies that cosmopolitan invasive species employ to acquire space and succeed in invaded habitats. The goal of this study was to examine the impact of seawater temperature on recruitment and growth of several cosmopolitan fouling species including the tunicates Botrylloides violaceus, Botryllus schlosseri and Diplosoma listerianum, as well as the bryozoans Bugula neritina and Watersipora subtorquata. To do this, the iBARGE (Invasive Bryozoan and Ascidian Recruitment and Growth Experiment) program was developed, utilizing a global network of collaborators to examine patterns over a broad geographic scale and a wide range of naturally varying seawater temperatures. This project produced a data set of thousands of photographs from 18 marinas in five countries in summer 2014 and 2015, allowing for recruitment and growth to be tabulated at a variety of temperatures. Thermal growth curves were established for five invasive species, and growth was compared among temperatures across sites, revealing a significant thermal effect. Recruitment was linked to temperature, with generally higher recruitment at warmer seawater temperatures and the highest peak recruitment values for the bryozoan Bugula neritina. Temperature also changed the relative importance of growth and recruitment for several species. These results paint a complex picture of the interactions among invasive fouling species as they relate to seawater temperature. [Lord, Joshua P.] Monterey Bay Aquarium Res Inst, Moss Landing, CA 95039 USA Lord, JP (reprint author), Monterey Bay Aquarium Res Inst, Moss Landing, CA 95039 USA. joshua.p.lord@gmail.com Bates College Faculty Development Fund Bates College Faculty Development Fund Aldred N, 2014, BIOFOULING, V30, P259, DOI 10.1080/08927014.2013.866653; Amui-Vedel AM, 2007, J EXP MAR BIOL ECOL, V353, P1, DOI 10.1016/j.jembe.2007.02.020; Byrnes J, 2009, ECOL LETT, V12, P830, DOI 10.1111/j.1461-0248.2009.01339.x; Carman MR, 2016, MANAG BIOL INVASION, V7, P51, DOI 10.3391/mbi.2016.7.1.07; Claar DC, 2011, J EXP MAR BIOL ECOL, V399, P130, DOI 10.1016/j.jembe.2011.02.014; Comeau LA, 2015, AQUACULTURE, V441, P95, DOI 10.1016/j.aquaculture.2015.02.018; DEAN TA, 1980, OECOLOGIA, V46, P295, DOI 10.1007/BF00346255; Dijkstra J, 2007, J EXP MAR BIOL ECOL, V342, P61, DOI 10.1016/j.jembe.2006.10.015; Dijkstra JA, 2011, GLOBAL CHANGE BIOL, V17, P2360, DOI 10.1111/j.1365-2486.2010.02371.x; Edwards KF, 2010, ECOLOGY, V91, P3146, DOI 10.1890/10-0440.1; Engle VD, 1999, J BIOGEOGR, V26, P1007, DOI 10.1046/j.1365-2699.1999.00341.x; Freestone Amy L., 2009, Smithsonian Contributions to the Marine Sciences, P247; Gilman SE, 2010, TRENDS ECOL EVOL, V25, P325, DOI 10.1016/j.tree.2010.03.002; Harley CDG, 2006, ECOL LETT, V9, P228, DOI 10.1111/j.1461-0248.2005.00871.x; Heino M, 1999, J EVOLUTION BIOL, V12, P423; Helmuth B, 2002, SCIENCE, V298, P1015, DOI 10.1126/science.1076814; Helmuth B, 2006, ECOL MONOGR, V76, P461, DOI 10.1890/0012-9615(2006)076[0461:MPOTSI]2.0.CO;2; IPCC, 2014, CONTRIBUTION WORKING, V1132; Janiak DS, 2013, J EXP MAR BIOL ECOL, V443, P12, DOI 10.1016/j.jembe.2013.02.030; Koopmans M, 2008, MAR BIOTECHNOL, V10, P502, DOI 10.1007/s10126-008-9086-9; Lindeyer F., 2011, AQUAT INVASIONS, V6, P26, DOI DOI 10.3391/AI.2011.6.4; Lord J, 2015, ECOLOGY, V96, P1264, DOI 10.1890/14-0403.1; Lord JP, 2017, BIOL INVASIONS, V19, P43, DOI 10.1007/s10530-016-1262-7; Lord JP, 2015, MAR BIOL, V162, P2481, DOI 10.1007/s00227-015-2737-2; McCarthy A, 2007, J EXP MAR BIOL ECOL, V342, P172, DOI 10.1016/j.jembe.2006.10.036; Molnar JL, 2008, FRONT ECOL ENVIRON, V6, P485, DOI 10.1890/070064; Reinhardt J. F., 2012, J ECOSYSTEM ECOGRAPH, V2, P118; Ridenour WM, 2008, ECOL MONOGR, V78, P369, DOI 10.1890/06-1926.1; Riedel A, 2014, MAR ECOL PROG SER, V499, P103, DOI 10.3354/meps10695; Sagarin RD, 1999, ECOL MONOGR, V69, P465, DOI 10.1890/0012-9615(1999)069[0465:CRCIAI]2.0.CO;2; Sams MA, 2012, ECOLOGY, V93, P1153, DOI 10.1890/11-1390.1; Saunders MI, 2009, MAR BIOL, V156, P2267, DOI 10.1007/s00227-009-1254-6; SEBENS KP, 1986, ECOL MONOGR, V56, P73, DOI 10.2307/2937271; Somero GN, 2012, ANNU REV MAR SCI, V4, P39, DOI 10.1146/annurev-marine-120710-100935; Stachowicz JJ, 2002, P NATL ACAD SCI USA, V99, P15497, DOI 10.1073/pnas.242437499; Tilman D, 2004, P NATL ACAD SCI USA, V101, P10854, DOI 10.1073/pnas.0403458101; Valentine Page C., 2009, Aquatic Invasions, V4, P153, DOI 10.3391/ai.2009.4.1.16; Vance Thomas, 2009, Marine Biodiversity Records, V2, pe59, DOI 10.1017/S1755267209000815; Vieira LM, 2014, ZOOTAXA, V3857, P151, DOI 10.11646/zootaxa.3857.2.1; Watson DI, 2004, MAR BIOL, V145, P201, DOI 10.1007/s00227-003-1291-5; Yund PO, 2000, MAR BIOL, V137, P583, DOI 10.1007/s002270000378 41 0 0 5 19 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0173-9565 1439-0485 MAR ECOL-EVOL PERSP Mar. Ecol.-Evol. Persp. APR 2017 38 2 e12404 10.1111/maec.12404 10 Marine & Freshwater Biology Marine & Freshwater Biology ES7JO WOS:000399726500003 2018-11-22 J Lima, AC; Sayanda, D; Soares, AMVM; Wrona, FJ; Monaghan, KA Lima, Ana Carolina; Sayanda, Diogo; Soares, Amadeu M. V. M.; Wrona, Frederick J.; Monaghan, Kieran A. Integrating taxonomic and trait analyses to assess the impact of damming on fish communities in a northern cold region river CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article LIFE-HISTORY STRATEGIES; ALTERED FLOW REGIMES; FUNCTIONAL DIVERSITY; ENVIRONMENTAL FLOWS; SPECIES TRAITS; MANAGEMENT; RESPONSES; CANADA; FRAGMENTATION; ASSEMBLAGES Dams are considered one of the most important threats to freshwater ecosystems. To date, assessments of the impact of riverine impoundments are based primarily on taxonomic approaches where little can be inferred about functional ecological change. We assessed the impact of damming in a cold region river fish community in Alberta, Canada, by integrating taxonomic and trait-based approaches over time (before, during the first 5 years, and after 5 years of dam construction), considering the longitudinal habitat and environmental change created by reservoir formation (downstream, reservoir, and upstream). Integrating both approaches was found to be informative, as alterations to taxonomic composition in fish communities provided initial clues to a functional response in a spatiotemporal context. Biomonitoring should therefore explicitly consider longitudinal spatial gradients in the design, implementation, and evaluation of management actions. Understanding the underlying environmental causes of why the combination of some traits are connected to the risk of species loss or a decline in their distribution is an important step towards the development of better conservation and mitigation strategies. [Lima, Ana Carolina; Soares, Amadeu M. V. M.; Wrona, Frederick J.; Monaghan, Kieran A.] Univ Aveiro, Dept Biol, Campus Univ Santiago, P-3810193 Aveiro, Portugal; [Lima, Ana Carolina; Soares, Amadeu M. V. M.; Wrona, Frederick J.; Monaghan, Kieran A.] Univ Aveiro, CESAM Ctr Environm & Marine Studies, Campus Univ Santiago, P-3810193 Aveiro, Portugal; [Sayanda, Diogo] Univ Lisbon, Fac Ciencias, Dept Estat & Invest Operac, Bloco C 6,Piso 4 Campo Grande, P-1749016 Lisbon, Portugal; [Wrona, Frederick J.] Dept Environm & Pk, Environm Monitoring & Sci Div, 9888 Jasper Ave, Edmonton, AB T5J 5C6, Canada Lima, AC (reprint author), Univ Aveiro, Dept Biol, Campus Univ Santiago, P-3810193 Aveiro, Portugal.; Lima, AC (reprint author), Univ Aveiro, CESAM Ctr Environm & Marine Studies, Campus Univ Santiago, P-3810193 Aveiro, Portugal. carolina.alveslima@gmail.com CESAM, UA/M-3762-2015; Soares, Amadeu/A-8304-2008 Soares, Amadeu/0000-0003-0879-9470; monaghan, kieran/0000-0002-3063-7817 National Foundation for Science and Technology (Fundacao para a Ciencia e a Tecnologia, FCT) [SFRH/BD/51408/2011]; CESAM [UID/AMB/50017/2013] This study was supported by National Foundation for Science and Technology (Fundacao para a Ciencia e a Tecnologia, FCT) with a grant to ACL (SFRH/BD/51408/2011) and CESAM funding (UID/AMB/50017/2013). The authors thank the anonymous reviewers for valuable comments and suggestions on the manuscript. Agostinho AA, 2008, BRAZ J BIOL, V68, P1119, DOI 10.1590/S1519-69842008000500019; Antonio RR, 2007, NEOTROP ICHTHYOL, V5, P177, DOI 10.1590/S1679-62252007000200012; BALON EK, 1981, ENVIRON BIOL FISH, V6, P377, DOI 10.1007/BF00005769; Baraloto C, 2012, J APPL ECOL, V49, P861, DOI 10.1111/j.1365-2664.2012.02164.x; BAXTER RM, 1977, ANNU REV ECOL SYST, V8, P255, DOI 10.1146/annurev.es.08.110177.001351; Bellwood DR, 2006, P ROY SOC B-BIOL SCI, V273, P101, DOI 10.1098/rspb.2005.3276; Byrne J, 2006, WATER SCI TECHNOL, V53, P327, DOI 10.2166/wst.2006.328; Clarke KR, 2001, CHANGE MARINE COMMUN; Coker G.A., 2001, CANADIAN MANUSCRIPT; COOPER JE, 1980, COPEIA, P469; Diaz S, 2007, P NATL ACAD SCI USA, V104, P20684, DOI 10.1073/pnas.0704716104; Dormann CF, 2013, ECOGRAPHY, V36, P27, DOI 10.1111/j.1600-0587.2012.07348.x; Ernst R, 2006, BIOL CONSERV, V133, P143, DOI 10.1016/j.biocon.2006.05.028; FRALEY JJ, 1989, NORTHWEST SCI, V63, P133; Golder Associates Ltd, 2003, STRAT ORV RIP AQ CON; Graham P. J., 1988, AM FISHERIES SOC S, V4, P53; Haddad NM, 2008, ECOL LETT, V11, P348, DOI 10.1111/j.1461-0248.2007.01149.x; Hazewinkel R.R.O., 2007, TEMPERATURE DISSOLVE; Henle K, 2004, BIODIVERS CONSERV, V13, P207, DOI 10.1023/B:BIOC.0000004319.91643.9e; Kaufman L., 2005, WILEY SERIES PROBABI; Komori O, 2016, METHODS ECOL EVOL, V7, P249, DOI 10.1111/2041-210X.12473; Lavorel S, 2002, FUNCT ECOL, V16, P545, DOI 10.1046/j.1365-2435.2002.00664.x; Liermann CR, 2012, BIOSCIENCE, V62, P539, DOI 10.1525/bio.2012.62.6.5; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; McCune B, 2002, ANAL ECOLOGICAL COMM; Mcmanamay RA, 2015, ECOL APPL, V25, P243, DOI 10.1890/14-0247.1; Mims MC, 2010, ECOL FRESHW FISH, V19, P390, DOI 10.1111/j.1600-0633.2010.00422.x; Mims MC, 2013, FRESHWATER BIOL, V58, P50, DOI 10.1111/fwb.12037; Mims MC, 2012, ECOLOGY, V93, P35, DOI 10.1890/11-0370.1; Mitchell P, 2001, LIMNOLOGICAL ASSESSM; Mouillot D, 2013, TRENDS ECOL EVOL, V28, P167, DOI 10.1016/j.tree.2012.10.004; Muhlfeld CC, 2012, RIVER RES APPL, V28, P940, DOI 10.1002/rra.1494; Nilsson C, 2005, SCIENCE, V308, P405, DOI 10.1126/science.1107887; Olden JD, 2010, AM FISH S S, V73, P83; Olden JD, 2010, FRESHWATER BIOL, V55, P86, DOI 10.1111/j.1365-2427.2009.02179.x; Petchey OL, 2006, ECOL LETT, V9, P741, DOI 10.1111/j.1461-0248.2006.00924.x; Poff NL, 2010, FRESHWATER BIOL, V55, P147, DOI 10.1111/j.1365-2427.2009.02204.x; Poff NL, 2010, FRESHWATER BIOL, V55, P194, DOI 10.1111/j.1365-2427.2009.02272.x; POFF NL, 1995, ECOLOGY, V76, P606, DOI 10.2307/1941217; Pohlert T, 2014, PAIRWISE MULTIPLE CO; Qian SS, 2012, FRESHW SCI, V31, P681, DOI 10.1899/11-026.1; R Development Core Team, 2012, R LANG ENV STAT COMP; Rock L, 2006, NUTR CYCL AGROECOSYS, V75, P147, DOI 10.1007/s10705-006-9018-x; Romanuk TN, 2006, ECOGRAPHY, V29, P3, DOI 10.1111/j.2005.0906-7590.04181.x; Saskatchewan Environment and Resource Management, 1995, STAT ENV REP; Schindler DW, 2006, P NATL ACAD SCI USA, V103, P7210, DOI 10.1073/pnas.0601568103; Scott W. B., 1973, FRESHWATER FISHES CA; Shea K, 2002, ECOL APPL, V12, P927, DOI 10.2307/3061000; Shen Hayley H., 2011, COLD REG SCI MAR TEC; Shepherd A, 2010, HYDROL PROCESS, V24, P3864, DOI 10.1002/hyp.7818; Shook K, 2016, CAN WATER RESOUR J, V41, P94, DOI 10.1080/07011784.2014.1001439; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; Suding KN, 2008, GLOBAL CHANGE BIOL, V14, P1125, DOI 10.1111/j.1365-2486.2008.01557.x; Sustainable Resource Development Alberta, 2015, FISH WILDL MAN INF S; Venables W. N, 2002, MODERN APPL STAT S; Verberk WCEP, 2013, FRESHW SCI, V32, P531, DOI 10.1899/12-092.1; Water Survey of Canada, 2015, REAL TIM HYDR DAT MA; Webb JA, 2013, FRESHWATER BIOL, V58, P2439, DOI 10.1111/fwb.12234; Willms WD, 2006, RANGELAND ECOL MANAG, V59, P400, DOI 10.2111/05-107R1.1 59 1 1 4 16 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0706-652X 1205-7533 CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. APR 2017 74 4 452 463 10.1139/cjfas-2016-0074 12 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology ER5JB WOS:000398836600004 2018-11-22 J Ward, HGM; Post, JR; Lester, NP; Askey, PJ; Godin, T Ward, Hillary G. M.; Post, John R.; Lester, Nigel P.; Askey, Paul J.; Godin, Theresa Empirical evidence of plasticity in life-history characteristics across climatic and fish density gradients CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article GROWING DEGREE-DAY; DEPENDENT GROWTH; SOMATIC GROWTH; REACTION NORMS; POPULATIONS; SIZE; STRATEGIES; TRAITS; AGE; EVOLUTION Understanding how environmental productivity and resource competition influence somatic growth rates and plasticity in life-history traits is a critical component of population ecology. However, evolutionary effects often confound the relationship between plasticity in life-history characteristics and environmental productivity. We used a unique set of experimentally stocked populations of rainbow trout (Oncorhynchus mykiss) to empirically test predictions from life-history theory relating to patterns in immature growth rates, age- and size-at-maturity, and the energy allocated into reproduction across climatic and fish density gradients. Our results support theoretical predictions that plasticity in life-history characteristics is a function of environmental variables. In particular, we demonstrate that immature growth rates are best explained by climatic and density-dependent competition effects and that age-at-maturity and the energy allocated to reproduction depends on juvenile growth conditions. Empirical evidence of these relationships helps to improve our understanding of optimal life-history strategies of fish populations. [Ward, Hillary G. M.] Minist Forests Lands & Nat Resource Operat, 102 Ind Pl, Penticton, BC V2A 8X9, Canada; [Post, John R.] Univ Calgary, Dept Biol Sci, 2500 Univ Dr, Calgary, AB T2N 1N4, Canada; [Lester, Nigel P.] Ontario Minist Nat Resources & Forestry, Aquat Res & Monitoring Sect, 2140 East Bank Dr, Peterborough, ON K9J 7B8, Canada; [Askey, Paul J.; Godin, Theresa] Univ British Columbia, Res Evaluat & Dev Sect, Freshwater Fisheries Soc BC, 315-2202 Main Mall, Vancouver, BC V6T 1Z4, Canada Ward, HGM (reprint author), Minist Forests Lands & Nat Resource Operat, 102 Ind Pl, Penticton, BC V2A 8X9, Canada. Hillary.Ward@gov.bc.ca Natural Sciences and Engineering Research Council of Canada (NSERC); Freshwater Fisheries Society of BC (FFSBC); Industrial NSERC Post-Graduate Scholarship This study was funded by Discovery and Collaborative Research and Development Grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Freshwater Fisheries Society of BC (FFSBC) to John R. Post. We recognize the Habitat Conservation Trust Foundation (HCTF) and anglers, hunters, trappers, and guides who contribute to the Trust for making a significant financial contribution to support this project. Hillary Ward was supported by an Industrial NSERC Post-Graduate Scholarship. We thank the staff of FFSBC and the BC Ministry of Forests, Lands and Natural Resource Operations for the outstanding support they have provided for this project. This research was granted ethical approval by the Conjoint Faculties Research Ethics Board (Certification 6546) and approved by the Canadian Council on Animal Care (Protocol BI08R-21) at the University of Calgary. Field support was provided by Ron Bowron, Ariane Cantin, Kyera Cook, Jessica Courtier, Travis Desy, Jon Fearns, Eric Newton, Michelle Phillips, and Amanda Schmidt. Askey PJ, 2007, FISH RES, V83, P162, DOI 10.1016/j.fishres.2006.09.009; Askey PJ, 2013, N AM J FISH MANAGE, V33, P557, DOI 10.1080/02755947.2013.785996; Beverton R. J. H., 1957, FISHERIES INVESTMENT, V19; Biro PA, 2008, P NATL ACAD SCI USA, V105, P2919, DOI 10.1073/pnas.0708159105; Chezik KA, 2014, CAN J FISH AQUAT SCI, V71, P47, DOI 10.1139/cjfas-2013-0295; Cichon M, 2000, EVOL ECOL RES, V2, P857; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; De Roos AM, 2002, P NATL ACAD SCI USA, V99, P12907, DOI 10.1073/pnas.192174199; De Roos AM, 2003, ECOL LETT, V6, P473, DOI 10.1046/j.1461-0248.2003.00458.x; Estay F, 2012, SCI WORLD J, DOI 10.1100/2012/986590; Grant JWA, 2005, J FISH BIOL, V67, P100, DOI 10.1111/j.1095-8649.2005.00916.x; Hilborn R., 1992, QUANTITATIVE FISHERI; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; Hutchings JA, 1996, CAN J FISH AQUAT SCI, V53, P943, DOI 10.1139/cjfas-53-5-943; Johnston FD, 2007, CAN J FISH AQUAT SCI, V64, P113, DOI 10.1139/F06-172; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; Lamot C.A., 1990, THESIS; LEGGETT WC, 1978, J FISH RES BOARD CAN, V35, P1469, DOI 10.1139/f78-230; Lester NP, 2014, ECOL APPL, V24, P38, DOI 10.1890/12-2020.1; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; Lorenzen K, 2002, P ROY SOC B-BIOL SCI, V269, P49, DOI 10.1098/rspb.2001.1853; MYERS RA, 1984, CAN J FISH AQUAT SCI, V41, P1349, DOI 10.1139/f84-165; Neuheimer AB, 2007, CAN J FISH AQUAT SCI, V64, P375, DOI 10.1139/F07-003; Nuhfer Andrew J., 1994, North American Journal of Fisheries Management, V14, P423, DOI 10.1577/1548-8675(1994)014<0423:GSAVTA>2.3.CO;2; Parkinson EA, 2004, CAN J FISH AQUAT SCI, V61, P1658, DOI 10.1139/F04-101; Post JR, 1999, ECOL MONOGR, V69, P155, DOI 10.1890/0012-9615(1999)069[0155:DDPISF]2.0.CO;2; Quince C, 2008, J THEOR BIOL, V254, P197, DOI 10.1016/j.jtbi.2008.05.029; Quinn T., 2011, BEHAVIOUR ECOLOGY PA; Quinn T J, 1999, QUANTITATIVE FISH DY; Rennie MD, 2008, J ANIM ECOL, V77, P916, DOI 10.1111/j.1365-2656.2008.01412.x; RICKER WE, 1975, B FISH RES BOARD CAN, V191; Rochet MJ, 2000, ICES J MAR SCI, V57, P228, DOI 10.1006/jmsc.2000.0641; Roff Derek A., 1992; Rose KA, 2001, FISH FISH, V2, P293, DOI 10.1046/j.1467-2960.2001.00056.x; Shuter BJ, 2005, CAN J FISH AQUAT SCI, V62, P738, DOI 10.1139/F05-070; Spiegelhalter DJ, 2002, J ROY STAT SOC B, V64, P583, DOI 10.1111/1467-9868.00353; Stearns S., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Venturelli PA, 2010, CAN J FISH AQUAT SCI, V67, P1057, DOI 10.1139/F10-041; Walters C, 2000, ECOSYSTEMS, V3, P70, DOI 10.1007/s100210000011; WALTERS CJ, 1993, T AM FISH SOC, V122, P34, DOI 10.1577/1548-8659(1993)122<0034:DDGACA>2.3.CO;2; Wang TL, 2012, J APPL METEOROL CLIM, V51, P16, DOI 10.1175/JAMC-D-11-043.1; Ward HGM, 2013, CAN J FISH AQUAT SCI, V70, P1542, DOI 10.1139/cjfas-2013-0264; Ward HGM, 2012, FISH RES, V131, P52, DOI 10.1016/j.fishres.2012.07.011 45 5 5 3 14 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0706-652X 1205-7533 CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. APR 2017 74 4 464 474 10.1139/cjfas-2016-0023 11 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology ER5JB WOS:000398836600005 2018-11-22 J Lagrue, C; Rinnevalli, R; Poulin, R Lagrue, C.; Rinnevalli, R.; Poulin, R. Smelling the future: subtle life-history adjustments in response to environmental conditions and perceived transmission opportunities in a trematode PARASITOLOGY English Article progenesis; life-cycle abbreviation; Coitocaecum parvum; environmental cues; complex life cycle ECHINOSTOMA-TRIVOLVIS CERCARIAE; COITOCAECUM-PARVUM; SCHISTOSOMA-MANSONI; CYCLE ABBREVIATION; PARASITE; EMERGENCE; HOST; TEMPERATURE; STRATEGIES; EVOLUTION A number of parasites with complex life cycles can abbreviate their life cycles to increase the likelihood of reproducing. For example, some trematodes can facultatively skip the definitive host and produce viable eggs while still inside their intermediate host. The resulting shorter life cycle is clearly advantageous when transmission probabilities to the definitive hosts are low. Coitocaecum parvum can mature precociously (progenesis), and produce eggs by selfing inside its amphipod second intermediate host. Environmental factors such as definitive host density and water temperature influence the life-history strategy adopted by C. parvum in their crustacean host. However, it is also possible that information about transmission opportunities gathered earlier in the life cycle (i.e. by cercariae-producing sporocysts in the first intermediate host) could have priming effects on the adoption of one or the other life strategy. Here we document the effects of environmental parameters (host chemical cues and temperature) on cercarial production within snail hosts and parasite life-history strategy in the amphipod host. We found that environmental cues perceived early in life have limited priming effects on life-history strategies later in life and probably account for only a small part of the variation among conspecific parasites. External cues gathered at the metacercarial stage seem to largely override potential effects of the environmental conditions experienced by early stages of the parasite. [Lagrue, C.; Rinnevalli, R.; Poulin, R.] Univ Otago, Dept Zool, POB 56, Dunedin 9054, New Zealand Lagrue, C (reprint author), Univ Otago, Dept Zool, POB 56, Dunedin 9054, New Zealand. clement.lagrue@gmail.com Lagrue, Clement/0000-0003-3347-6497 University of Jyvaskyla (Finland); Royal Society of New Zealand's Marsden Fund; PBRF Enhancement Grant from Otago University's Department of Zoology This research was supported by a Travel Grant to R. R. from University of Jyvaskyla (Finland), the Royal Society of New Zealand's Marsden Fund (C. L. salary) and a PBRF Enhancement Grant to R. P. from Otago University's Department of Zoology. Badets M, 2010, J EVOLUTION BIOL, V23, P2151, DOI 10.1111/j.1420-9101.2010.02078.x; BREITHAUPT T, 2010, CHEM COMMUNICATION C; DODSON SI, 1989, OECOLOGIA, V78, P361, DOI 10.1007/BF00379110; Fingerut JT, 2003, BIOL BULL-US, V205, P110, DOI 10.2307/1543232; Frank SA, 1996, Q REV BIOL, V71, P37, DOI 10.1086/419267; Fried B, 1998, J HELMINTHOL, V72, P83, DOI 10.1017/S0022149X00001036; Fried B, 2002, J HELMINTHOL, V76, P369, DOI 10.1079/JOH2002121; Galaktionov K. V., 2003, BIOL EVOLUTION TREMA; Graham AL, 2003, J PARASITOL, V89, P458, DOI 10.1645/0022-3395(2003)089[0458:EOSSAA]2.0.CO;2; Hay KB, 2005, J MAR BIOL ASSOC UK, V85, P989, DOI 10.1017/S0025315405012002; Holomuzki JR, 2006, ECOLOGY, V87, P1038, DOI 10.1890/0012-9658(2006)87[1038:HVAPTI]2.0.CO;2; HOLTON AL, 1984, NEW ZEAL J ZOOL, V11, P1; Kats LB, 1998, ECOSCIENCE, V5, P361, DOI 10.1080/11956860.1998.11682468; Koehler AV, 2012, EVOL ECOL, V26, P1497, DOI 10.1007/s10682-012-9558-2; Lagrue C, 2009, PARASITOLOGY, V136, P231, DOI 10.1017/S0031182008005325; Lagrue C, 2008, PARASITOLOGY, V135, P1243, DOI 10.1017/S0031182008004782; Lagrue C, 2007, J EVOLUTION BIOL, V20, P1189, DOI 10.1111/j.1420-9101.2006.01277.x; Lagrue C, 2009, J EVOLUTION BIOL, V22, P1727, DOI 10.1111/j.1420-9101.2009.01787.x; Lagrue C, 2008, INT J PARASITOL, V38, P1435, DOI 10.1016/j.ijpara.2008.04.006; Lagrue C, 2007, INT J PARASITOL, V37, P1459, DOI 10.1016/j.ijpara.2007.04.022; Lagrue C, 2016, BIOL J LINN SOC, V118, P344, DOI 10.1111/bij.12722; Lagrue C, 2009, EVOLUTION, V63, P1417, DOI 10.1111/j.1558-5646.2009.00619.x; LAWSON JR, 1980, PARASITOLOGY, V81, P337; Lo CT, 1996, J PARASITOL, V82, P347, DOI 10.2307/3284178; LOKER ES, 1983, PARASITOLOGY, V87, P343, DOI 10.1017/S0031182000052689; McCarthy HO, 2002, J PARASITOL, V88, P910, DOI 10.1645/0022-3395(2002)088[0910:LHALCP]2.0.CO;2; Morand S, 1998, PARASITOL TODAY, V14, P193, DOI 10.1016/S0169-4758(98)01223-X; Mouritsen KN, 2002, J HELMINTHOL, V76, P341, DOI 10.1079/JOH2002136; Parker GA, 2003, J EVOLUTION BIOL, V16, P47, DOI 10.1046/j.1420-9101.2003.00504.x; PECHENIK JA, 1995, PARASITOLOGY, V111, P373, DOI 10.1017/S0031182000081920; Poulin R, 2002, TRENDS PARASITOL, V18, P176, DOI 10.1016/S1471-4922(02)02262-6; Poulin R, 2006, PARASITOLOGY, V132, P143, DOI 10.1017/S0031182005008693; Poulin R, 2003, EVOLUTION, V57, P2899; Poulin R, 1996, ADV PARASIT, V37, P107, DOI 10.1016/S0065-308X(08)60220-1; Rowe DK, 2001, ENVIRON BIOL FISH, V61, P407, DOI 10.1023/A:1011675602774; Seppala O, 2008, OIKOS, V117, P749, DOI 10.1111/j.0030-1299.2008.16396.x; SHOSTAK AW, 1990, J PARASITOL, V76, P790, DOI 10.2307/3282796; Thieltges DW, 2008, MAR ECOL PROG SER, V372, P147, DOI 10.3354/meps07703; Thomas F, 2002, TRENDS PARASITOL, V18, P387, DOI 10.1016/S1471-4922(02)02339-5; Tseng M, 2006, AM NAT, V168, P565, DOI 10.1086/507997; Viney M, 2011, CURR BIOL, V21, pR767, DOI 10.1016/j.cub.2011.07.023; XU XF, 1994, EXP PARASITOL, V79, P399, DOI 10.1006/expr.1994.1102 42 0 0 3 12 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0031-1820 1469-8161 PARASITOLOGY Parasitology APR 2017 144 4 464 474 10.1017/S003118201600192X 11 Parasitology Parasitology ER4ST WOS:000398792200012 27821218 2018-11-22 J Bracken, MES; Williams, SL Bracken, Matthew E. S.; Williams, Susan L. The underappreciated role of life history in mediating the functional consequences of biodiversity change OIKOS English Article INTERTIDAL COMMUNITY; PRODUCER DIVERSITY; ECOSYSTEM FUNCTION; SPECIES-DIVERSITY; PLANT DIVERSITY; NITRATE UPTAKE; DISTURBANCE; SUCCESSION; HERBIVORE; PRODUCTIVITY Biodiversity is changing on both global and local scales, motivating research to understand the consequences of these changes for how communities and ecosystems function. Here, we explore the role of life history strategies in mediating biodiversity and ecosystem functioning. In particular, we evaluate how the composition, biomass (% cover), and richness of perennial (persistence >= 1 year) and ephemeral (persistence < 1 year) species change along a gradient of increasing seaweed species richness on a rocky shoreline. We show that the majority of biomass is comprised of perennial species, especially where overall richness is low, whereas the majority of species are ephemeral, especially where overall richness is high. We then present and discuss the results of an 18-month field manipulation quantifying the factorial effects of tidal elevation, wave exposure, herbivore removals, thermal and desiccation stress amelioration, and nutrient additions on perennial versus ephemeral species. In particular, the diversity of ephemeral species was strongly affected, relative to perennial species, by tidal elevation, wave exposure, and herbivory; herbivores reduced diversity of ephemeral species relative to perennials. Relative to perennial cover, ephemeral cover was greater higher on the shore, in more wave-exposed habitats, and where herbivores were removed, plots were unscreened, and/or nutrients were added. Thus, perennials and ephemerals responded differently to environmental context and experimental manipulation. We compared nitrate uptake and photosynthesis rates of ephemeral and perennial species and found that maximum nitrate uptake and photosynthesis rates of ephemerals were twice as high as those of perennials. These results highlight the disproportionate roles that ephemeral species play in mediating ecosystem-level processes. In combination with our comparisons of the diversity and cover of perennial and ephemeral species along a biodiversity gradient, these results demonstrate the utility of incorporating life history traits into our efforts to understand the functional consequences of biodiversity change. [Bracken, Matthew E. S.] Univ Calif Irvine, Dept Ecol & Evolutionary Biol, 321 Steinhaus Hall, Irvine, CA 92697 USA; [Williams, Susan L.] Univ Calif Davis, Dept Ecol & Evolut, Bodega Bay, CA USA; [Williams, Susan L.] Univ Calif Davis, Bodega Marine Lab, Bodega Bay, CA USA Bracken, MES (reprint author), Univ Calif Irvine, Dept Ecol & Evolutionary Biol, 321 Steinhaus Hall, Irvine, CA 92697 USA. m.bracken@uci.edu National Science Foundation [OCE-0549944] This research was supported by the National Science Foundation (OCE-0549944 to SLW and MESB). Barnosky AD, 2011, NATURE, V471, P51, DOI 10.1038/nature09678; Benes KM, 2016, J PHYCOL, V52, P863, DOI 10.1111/jpy.12454; Bracken M. E. S., 2016, DRYAD DIGITAL REPOSI; Bracken MES, 2008, P NATL ACAD SCI USA, V105, P924, DOI 10.1073/pnas.0704103105; Bracken MES, 2013, ECOLOGY, V94, P1944, DOI 10.1890/12-2182.1; Bracken MES, 2012, ECOL LETT, V15, P461, DOI 10.1111/j.1461-0248.2012.01758.x; Bracken MES, 2011, ECOLOGY, V92, P1083; Cardinale BJ, 2011, AM J BOT, V98, P572, DOI 10.3732/ajb.1000364; CONNELL JH, 1978, SCIENCE, V199, P1302, DOI 10.1126/science.199.4335.1302; DAYTON PK, 1971, ECOL MONOGR, V41, P351, DOI 10.2307/1948498; Douglass JG, 2008, ECOL LETT, V11, P598, DOI 10.1111/j.1461-0248.2008.01175.x; Duffy JE, 2002, OIKOS, V99, P201, DOI 10.1034/j.1600-0706.2002.990201.x; Griffin JN, 2009, OIKOS, V118, P37, DOI 10.1111/j.1600-0706.2008.16960.x; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; Grime JP, 1998, J ECOL, V86, P902, DOI 10.1046/j.1365-2745.1998.00306.x; Harley CDG, 2003, LIMNOL OCEANOGR, V48, P1498, DOI 10.4319/lo.2003.48.4.1498; Hillebrand H, 2007, P NATL ACAD SCI USA, V104, P10904, DOI 10.1073/pnas.0701918104; Hooper DU, 2012, NATURE, V486, P105, DOI 10.1038/nature11118; Hooper DU, 1998, ECOL MONOGR, V68, P121, DOI 10.1890/0012-9615(1998)068[0121:EOPCAD]2.0.CO;2; INOUYE RS, 1987, ECOLOGY, V68, P12, DOI 10.2307/1938801; Isbell F, 2011, NATURE, V477, P199, DOI 10.1038/nature10282; LITTLER MM, 1980, AM NAT, V116, P25, DOI 10.1086/283610; LUBCHENCO J, 1978, AM NAT, V112, P23, DOI 10.1086/283250; MAC ARTHUR ROBERT H., 1967; Morelissen B, 2007, J EXP MAR BIOL ECOL, V348, P162, DOI 10.1016/j.jembe.2007.04.006; NAEEM S, 1994, NATURE, V368, P734, DOI 10.1038/368734a0; Nielsen KJ, 2003, P NATL ACAD SCI USA, V100, P7660, DOI 10.1073/pnas.0932534100; Padilla DK, 2000, J EXP MAR BIOL ECOL, V250, P207, DOI 10.1016/S0022-0981(00)00197-0; PAINE RT, 1966, AM NAT, V100, P65, DOI 10.1086/282400; Petchey OL, 2002, ECOL LETT, V5, P402, DOI 10.1046/j.1461-0248.2002.00339.x; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; ROSENBERG G, 1984, AQUAT BOT, V19, P65, DOI 10.1016/0304-3770(84)90008-1; SOUSA WP, 1979, ECOL MONOGR, V49, P227, DOI 10.2307/1942484; STENECK RS, 1994, OIKOS, V69, P476, DOI 10.2307/3545860; TILMAN D, 1987, ECOL MONOGR, V57, P189, DOI 10.2307/2937080; Tilman D, 2012, P NATL ACAD SCI USA, V109, P10394, DOI 10.1073/pnas.1208240109; Walker B, 1999, ECOSYSTEMS, V2, P95, DOI 10.1007/s100219900062; WALLENTINUS I, 1984, HYDROBIOLOGIA, V116, P363, DOI 10.1007/BF00027703; Williams SL, 2013, ECOLOGY, V94, P1089, DOI 10.1890/12-0401.1; Zavaleta ES, 2004, SCIENCE, V306, P1175, DOI 10.1126/science.1102643 40 2 2 6 30 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos APR 2017 126 4 488 496 10.1111/oik.03884 9 Ecology Environmental Sciences & Ecology EQ5IY WOS:000398117500005 Bronze 2018-11-22 J Presley, GN; Schilling, JS Presley, Gerald N.; Schilling, Jonathan S. Distinct Growth and Secretome Strategies for Two Taxonomically Divergent Brown Rot Fungi APPLIED AND ENVIRONMENTAL MICROBIOLOGY English Article Basidiomycetes; Gloeophyllum trabeum; glycoside hydrolase; proteomics; Serpula lacrymans SERPULA-LACRYMANS; GLOEOPHYLLUM-TRABEUM; VOLVATOXIN A2; WOOD; DECAY; GENOMES; MECHANISM; SUBSTRATE; CELLULOSE; WILD Brown rot fungi are wood-degrading fungi that employ both oxidative and hydrolytic mechanisms to degrade wood. Hydroxyl radicals that facilitate the oxidative component are powerful nonselective oxidants and are incompatible with hydrolytic enzymes unless they are spatially segregated in wood. Differential gene expression has been implicated in the segregation of these reactions in Postia placenta, but it is unclear if this two-step mechanism varies in other brown rot fungi with different traits and life history strategies that occupy different niches in nature. We employed proteomics to analyze a progression of wood decay on thin wafers, using brown rot fungi with significant taxonomic and niche distances: Serpula lacrymans (Boletales; "dry rot" lumber decay) and Gloeophyllum trabeum (order Gloeophyllales; slash, downed wood). Both fungi produced greater oxidoreductase diversity upon wood colonization and greater glycoside hydrolase activity later, consistent with a two-step mechanism. The two fungi invested very differently, however, in terms of growth (infrastructure) versus protein secretion (resource capture), with the ergosterol/extracted protein ratio being 7-fold higher with S. lacrymans than with G. trabeum. In line with the native substrate associations of these fungi, hemicellulase-specific activities were dominated by mannanase in S. lacrymans and by xylanase in G. trabeum. Consistent with previous observations, S. lacrymans did not produce glycoside hydrolase 6 (GH6) cellobiohydrolases (CBHs) in this study, despite taxonomically belonging to the order Boletales, which is distinguished among brown rot fungi by having CBH genes. This work suggests that distantly related brown rot fungi employ staggered mechanisms to degrade wood, but the underlying strategies vary among taxa. IMPORTANCE Wood-degrading fungi are important in forest nutrient cycling and offer promise in biotechnological applications. Brown rot fungi are unique among these fungi in that they use a nonenzymatic oxidative pretreatment before enzymatic carbohydrate hydrolysis, enabling selective removal of carbohydrates from lignin. This capacity has independently evolved multiple times, but it is unclear if different mechanisms underpin similar outcomes. Here, we grew fungi directionally on wood wafers and we found similar two-step mechanisms in taxonomically divergent brown rot fungi. The results, however, revealed strikingly different growth strategies, with S. lacrymans investing more in biomass production than secretion of proteins and G. trabeum showing the opposite pattern, with a high diversity of uncharacterized proteins. The "simplified" S. lacrymans secretomic system could help narrow gene targets central to oxidative brown rot pretreatments, and a comparison of its distinctions with G. trabeum and other brown rot fungi (e.g., Postia placenta) might offer similar traction in noncatabolic genes. [Presley, Gerald N.; Schilling, Jonathan S.] Univ Minnesota, Dept Bioprod & Biosyst Engn, St Paul, MN 55108 USA Schilling, JS (reprint author), Univ Minnesota, Dept Bioprod & Biosyst Engn, St Paul, MN 55108 USA. schillin@umn.edu U.S. Department of Energy Office of Science [DE-SC0004012]; U.S. Department of Energy Office of Science (Office of Biological and Ecological Research [BER]); U.S. Department of Energy Office of Science (BER grant) [DE-SC0012742]; National Science Foundation Graduate Research Fellowship Program [00039202] This work was funded in part by the U.S. Department of Energy Office of Science (Early Career Grant DE-SC0004012 to J.S.S., from the Office of Biological and Ecological Research [BER] and BER grant DE-SC0012742 to J.S.S.). This work was also supported by the National Science Foundation Graduate Research Fellowship Program under grant 00039202 to G.N.P. Baldrian P, 2008, FEMS MICROBIOL REV, V32, P501, DOI 10.1111/j.1574-6976.2008.00106.x; Bateman A, 2015, NUCLEIC ACIDS RES, V43, pD204, DOI 10.1093/nar/gku989; Daniel G, 2007, APPL ENVIRON MICROB, V73, P6241, DOI 10.1128/AEM.00977-07; Eastwood DC, 2011, SCIENCE, V333, P762, DOI 10.1126/science.1205411; Floudas D, 2012, SCIENCE, V336, P1715, DOI 10.1126/science.1221748; GHOSE TK, 1987, PURE APPL CHEM, V59, P257, DOI 10.1351/pac198759020257; Gilbertson RL, 1986, SYN FUNG, V1, P1; Grigoriev IV, 2014, NUCLEIC ACIDS RES, V42, pD699, DOI 10.1093/nar/gkt1183; Hibbett DS, 2001, SYST BIOL, V50, P215, DOI 10.1080/10635150151125879; Hori C, 2014, APPL ENVIRON MICROB, V80, P2062, DOI 10.1128/AEM.03652-13; Hyde SM, 1997, MICROBIOL-UK, V143, P259, DOI 10.1099/00221287-143-1-259; Jennings DH, 1991, SERPULA LACRYMANS FU; Kaffenberger JT, 2013, APPL MICROBIOL BIOT, V97, P8831, DOI 10.1007/s00253-013-5142-0; Kersten P, 2014, FUNGAL GENET BIOL, V72, P124, DOI 10.1016/j.fgb.2014.05.011; Kojima Y, 2016, APPL ENVIRON MICROB, V82, P6557, DOI 10.1128/AEM.01768-16; Korripally P, 2013, APPL ENVIRON MICROB, V79, P2377, DOI 10.1128/AEM.03880-12; Kuuskeri J, 2016, BIOTECHNOL BIOFUELS, V9, DOI 10.1186/s13068-016-0608-9; Lin SC, 2004, J MOL BIOL, V343, P477, DOI 10.1016/j.jmb.2004.08.045; Lombard V, 2014, NUCLEIC ACIDS RES, V42, pD490, DOI 10.1093/nar/gkt1178; Lundell TK, 2014, ADV BOT RES FUNGI, V70; NEWELL SY, 1988, APPL ENVIRON MICROB, V54, P1876; Palfreyman JW, 2003, FEMS MICROBIOL LETT, V228, P281, DOI 10.1016/S0378-1097(03)00783-3; Petersen TN, 2011, NAT METHODS, V8, P785, DOI 10.1038/nmeth.1701; Riley R, 2014, P NATL ACAD SCI USA, V111, P9923, DOI 10.1073/pnas.1400592111; Schilling JS, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0120679; Schilling JS, 2005, HOLZFORSCHUNG, V59, P681, DOI 10.1515/HF.2005.109; Song ZW, 2014, FUNGAL ECOL, V7, P39, DOI 10.1016/j.funeco.2013.12.004; Tateno H, 2003, J BIOL CHEM, V278, P40455, DOI 10.1074/jbc.M306836200; Weng YP, 2004, J BIOL CHEM, V279, P6805, DOI 10.1074/jbc.M308675200; White NA, 1997, MYCOL RES, V101, P580, DOI 10.1017/S0953756296003000; Zhang JW, 2016, P NATL ACAD SCI USA, V113, P10968, DOI 10.1073/pnas.1608454113 31 3 3 5 19 AMER SOC MICROBIOLOGY WASHINGTON 1752 N ST NW, WASHINGTON, DC 20036-2904 USA 0099-2240 1098-5336 APPL ENVIRON MICROB Appl. Environ. Microbiol. APR 2017 83 7 UNSP e02987 10.1128/AEM.02987-16 11 Biotechnology & Applied Microbiology; Microbiology Biotechnology & Applied Microbiology; Microbiology EP0WL WOS:000397107300006 28130302 Green Published 2018-11-22 J Ameztegui, A; Paquette, A; Shipley, B; Heym, M; Messier, C; Gravel, D Ameztegui, Aitor; Paquette, Alain; Shipley, Bill; Heym, Michael; Messier, Christian; Gravel, Dominique Shade tolerance and the functional trait: demography relationship in temperate and boreal forests FUNCTIONAL ECOLOGY English Article boreal forests; demographic performance; functional ecology; SORTIE; structural equation modelling; temperate forests; trait spectra; tree life-histories LEAF ECONOMICS SPECTRUM; LIFE-HISTORY STRATEGIES; RAIN-FOREST; LOW-LIGHT; GOOD PREDICTORS; TROPICAL TREES; TRADE-OFF; PLANT; GROWTH; DYNAMICS 1. Despite being instrumental in forest ecology, the definition and nature of shade tolerance are complex and not beyond controversy. Moreover, the role it plays in the trait-demography relationship remains unclear. 2. Here, we hypothesize that shade tolerance can be achieved by alternative combinations of traits depending on the species' functional group (evergreen vs. deciduous species) and that its ability to explain the array of traits involved in demography will also vary between these two groups. 3. We used dimension reduction to identify the main trait spectra for 48 tree species, including 23 evergreens and 25 deciduous - dispersed across 21 genera and 13 families. We assessed the relationship between functional traits, shade tolerance, and demographic performance at high and low light using structural equationmodelling. 4. The dimensions found corresponded to the trait spectra previously observed in the literature and were significantly related to measures of demography. However, our results support the existence of a divergence between evergreen and deciduous species in the way shade tolerance relates to the demography of species along light gradients. 5. We show that shade tolerance can be attained through different combination of traits depending on the functional and geographical context, and thus, its utilization as a predictor of forest dynamics and species coexistence requires previous knowledge on the role it plays in the demographic performance of the species under study. [Ameztegui, Aitor; Paquette, Alain; Messier, Christian] Univ Quebec Montreal, CFR, Montreal, PQ H3C 3P8, Canada; [Ameztegui, Aitor] CREAF, Cerdanyola Del Valles 08193, Spain; [Ameztegui, Aitor] Forest Sci Ctr Catalonia CEMFOR CTFC, Ctra St Llorenc Km 2, Solsona 25280, Spain; [Shipley, Bill; Gravel, Dominique] Univ Sherbrooke, Dept Biol, 2500 Blvd Univ, Sherbrooke, PQ J1K 2R1, Canada; [Heym, Michael] Tech Univ Munich, Chair Forest Growth & Yield, Weihenstephan, Ctr Life & Food Sci, Freising Weihenstephan, Germany; [Messier, Christian] UQO, Inst Sci Foret Temperee ISFORT, Dept Sci Nat, Ripon, PQ J0V 1V0, Canada; [Gravel, Dominique] UQAR, Dept Biol, Rimouski, PQ, Canada; [Gravel, Dominique] Quebec Ctr Biodivers Sci, Montreal, PQ, Canada Ameztegui, A (reprint author), Univ Quebec Montreal, CFR, Montreal, PQ H3C 3P8, Canada.; Ameztegui, A (reprint author), CREAF, Cerdanyola Del Valles 08193, Spain.; Ameztegui, A (reprint author), Forest Sci Ctr Catalonia CEMFOR CTFC, Ctra St Llorenc Km 2, Solsona 25280, Spain. ameztegui@gmail.com Ameztegui, Aitor/C-2587-2009 Ameztegui, Aitor/0000-0003-2006-1559 Juan de la Cierva Fellowship [FJCI-2014-20739]; NSERC Strategic Grant; NSERC industrial Chair programme; CERCA Programme of the Generalitat de Catalunya The authors acknowledge Dr. Yoshida and Dr. Evans for kindly providing the SORTIE parameters for species from Japan and United Kingdom, respectively. We are also grateful to Timothy Paine and two anonymous referees for their constructive comments on an earlier version of this manuscript. This research was supported by a Juan de la Cierva Fellowship to A.A. (FJCI-2014-20739), a NSERC Strategic Grant to D.G. and the NSERC industrial Chair programme to C.M. Additional support came from the CERCA Programme of the Generalitat de Catalunya. The authors declare no conflict of interests. Ackerly DD, 2007, ECOL LETT, V10, P135, DOI 10.1111/j.1461-0248.2006.01006.x; Adler PB, 2014, P NATL ACAD SCI USA, V111, P740, DOI 10.1073/pnas.1315179111; Ameztegui A., 2015, Ecological Modelling, V313, P84, DOI 10.1016/j.ecolmodel.2015.06.029; Ameztegui A., 2016, DRYAD DIGITAL REPOSI; Ameztegui A, 2011, J VEG SCI, V22, P1049, DOI 10.1111/j.1654-1103.2011.01316.x; Boulangeat I, 2012, GLOBAL CHANGE BIOL, V18, P3464, DOI 10.1111/j.1365-2486.2012.02783.x; Chao KJ, 2008, J ECOL, V96, P281, DOI 10.1111/j.1365-2745.2007.01343.x; Chave J, 2009, ECOL LETT, V12, P351, DOI 10.1111/j.1461-0248.2009.01285.x; Delagrange S, 2004, TREE PHYSIOL, V24, P775, DOI 10.1093/treephys/24.7.775; Funk JL, 2013, ECOLOGY, V94, P1893, DOI 10.1890/12-1602.1; GIVNISH TJ, 1988, AUST J PLANT PHYSIOL, V15, P63, DOI 10.1071/PP9880063; Gravel D, 2010, OIKOS, V119, P475, DOI 10.1111/j.1600-0706.2009.17441.x; Wright SJ, 2010, ECOLOGY, V91, P3664, DOI 10.1890/09-2335.1; King DA, 2006, FOREST ECOL MANAG, V223, P152, DOI 10.1016/j.foreco.2005.10.066; Kneeshaw DD, 2006, J ECOL, V94, P471, DOI 10.1111/j.1365-2745.2005.01070.x; KOBE RK, 1995, ECOL APPL, V5, P517, DOI 10.2307/1942040; Laanisto L, 2015, GLOBAL ECOL BIOGEOGR, V24, P571, DOI 10.1111/geb.12288; Laforest-Lapointe I, 2014, OECOLOGIA, V175, P1337, DOI 10.1007/s00442-014-2967-x; Loehle C, 2000, AM NAT, V156, P14, DOI 10.1086/303369; Lusk CH, 2008, FUNCT ECOL, V22, P454, DOI 10.1111/j.1365-2435.2008.01384.x; Lusk CH, 2015, J ECOL, V103, P479, DOI 10.1111/1365-2745.12368; Lusk CH, 2013, FUNCT ECOL, V27, P1286, DOI 10.1111/1365-2435.12129; Martinez-Vilalta J, 2010, J ECOL, V98, P1462, DOI 10.1111/j.1365-2745.2010.01718.x; Moles AT, 2006, OIKOS, V113, P91, DOI 10.1111/j.0030-1299.2006.14194.x; Mommer L, 2012, NEW PHYTOL, V195, P725, DOI 10.1111/j.1469-8137.2012.04247.x; Muller-Landau HC, 2004, BIOTROPICA, V36, P20, DOI 10.1111/j.1744-7429.2004.tb00292.x; Nascimento HEM, 2005, J VEG SCI, V16, P625, DOI 10.1658/1100-9233(2005)016[0625:DALCFA]2.0.CO;2; Osnas JLD, 2013, SCIENCE, V340, P741, DOI 10.1126/science.1231574; Pacala SW, 1996, ECOL MONOGR, V66, P1, DOI 10.2307/2963479; Paine CET, 2015, J ECOL, V103, P978, DOI 10.1111/1365-2745.12401; Paquette A, 2015, ECOL EVOL, V5, P1774, DOI 10.1002/ece3.1456; Perez-Harguindeguy N, 2013, AUST J BOT, V61, P167, DOI 10.1071/BT12225; Poorter L, 2008, ECOLOGY, V89, P1908, DOI 10.1890/07-0207.1; Poorter L, 2006, ECOLOGY, V87, P1733, DOI 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2; Poorter L, 2010, NEW PHYTOL, V185, P481, DOI 10.1111/j.1469-8137.2009.03092.x; R Core Team, 2015, R LANG ENV STAT COMP; Reich PB, 1998, FUNCT ECOL, V12, P327, DOI 10.1046/j.1365-2435.1998.00208.x; Reich PB, 2003, INT J PLANT SCI, V164, pS143, DOI 10.1086/374368; Reich PB, 2014, J ECOL, V102, P275, DOI 10.1111/1365-2745.12211; Rosseel Y, 2012, J STAT SOFTW, V48, P1; Satorra A, 1988, P BUS EC STAT SECT A, V1, P308; Shipley B., 2016, CAUSE CORRELATION BI; SHIPLEY B, 2000, CAUSE CORRELATION BI; Stahl U, 2013, ECOSPHERE, V4, DOI 10.1890/ES13-00143.1; Uriarte M, 2009, ECOL MONOGR, V79, P423, DOI 10.1890/08-0707.1; Valladares F, 2008, ANNU REV ECOL EVOL S, V39, P237, DOI 10.1146/annurev.ecolsys.39.110707.173506; vansBodegom PM, 2014, P NATL ACAD SCI USA, V111, P13733; Violle C, 2007, OIKOS, V116, P882, DOI 10.1111/j.2007.0030-1299.15559.x; Walters MB, 1999, NEW PHYTOL, V143, P143, DOI 10.1046/j.1469-8137.1999.00425.x; Walters MB, 1996, ECOLOGY, V77, P841, DOI 10.2307/2265505; Westoby M, 2002, ANNU REV ECOL SYST, V33, P125, DOI 10.1146/annurev.ecolsys.33.010802.150452; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403 52 1 2 8 52 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. APR 2017 31 4 821 830 10.1111/1365-2435.12804 10 Ecology Environmental Sciences & Ecology ER1IP WOS:000398543900003 2018-11-22 J Macke, E; Tasiemski, A; Massol, F; Callens, M; Decaestecker, E Macke, Emilie; Tasiemski, Aurelie; Massol, Francois; Callens, Martijn; Decaestecker, Ellen Life history and eco-evolutionary dynamics in light of the gut microbiota OIKOS English Article SEGMENTED FILAMENTOUS BACTERIA; FUNCTIONAL DIVERSITY INDEXES; ANTIMICROBIAL PEPTIDES; INTESTINAL MICROBIOTA; COMMENSAL BACTERIA; GENETIC DIVERSITY; DROSOPHILA-MELANOGASTER; CAENORHABDITIS-ELEGANS; PHYLOGENETIC ANALYSIS; BALANCING SELECTION The recent emergence of powerful genomic tools, such as high-throughput genomics, transcriptomics and metabolomics, combined with the study of gnotobiotic animals, have revealed overwhelming impacts of gut microbiota on the host phenotype. In addition to provide their host with metabolic functions that are not encoded in its own genome, evidence is accumulating that gut symbionts affect host traits previously thought to be solely under host genetic control, such as development and behavior. Metagenomics and metatranscriptomics studies further revealed that gut microbial communities can rapidly respond to changes in host diet or environmental conditions through changes in their structural and functional profiles, thus representing an important source of metabolic flexibility and phenotypic plasticity for the host. Hence, gut microbes appear to be an important factor affecting host ecology and evolution which is, however, not accounted for in life-history theory, or in classic population genetics, ecological and eco-evolutionary models. In this forum, we shed new light on life history and eco-evolutionary dynamics by viewing these processes through the lens of host-microbiota interactions. We follow a three-level approach. First, current knowledge on the role of gut microbiota in host physiology and behavior points out that gut symbionts can be a crucial medium of life-history strategies. Second, the particularity of the microbiota is based on its multilayered structure, composed of both a core microbiota, under host genetic and immune control, and a flexible pool of microbes modulated by the environment, which differ in constraints on their maintenance and in their contribution to host adaptation. Finally, gut symbionts can drive the ecological and evolutionary dynamics of their host through effects on individual, population, community and ecosystem levels. In conclusion, we highlight some future perspectives for integrative studies to test hypotheses on life history and eco-evolutionary dynamics in light of the gut microbiota. [Macke, Emilie; Callens, Martijn; Decaestecker, Ellen] KU Leuven Kulak, Dept Biol, Lab Aquat Biol, E Sabbelaan 53, BE-8500 Kortrijk, Belgium; [Tasiemski, Aurelie; Massol, Francois] Univ Lille, CNRS, UMR Evo Eco Paleo 8198, SPICI Grp, Lille, France Macke, E (reprint author), KU Leuven Kulak, Dept Biol, Lab Aquat Biol, E Sabbelaan 53, BE-8500 Kortrijk, Belgium. emilie.macke@kuleuven-kulak.be Massol, Francois/D-9872-2013 Massol, Francois/0000-0002-4098-955X; Decaestecker, Ellen/0000-0001-6328-5283; Tasiemski, Aurelie/0000-0003-3559-5115 Alberti M, 2015, TRENDS ECOL EVOL, V30, P114, DOI 10.1016/j.tree.2014.11.007; Aliabadi Brianna W., 2002, Biological Invasions, V4, P283, DOI 10.1023/A:1020933705556; Allesina S, 2012, NATURE, V483, P205, DOI 10.1038/nature10832; Amato KR, 2016, AM J PHYS ANTHROPOL, V159, P196, DOI 10.1002/ajpa.22908; Amsellem L., 2017, ADV ECOL RES, V57; Archie EA, 2015, CURR OPIN BEHAV SCI, V6, P28, DOI 10.1016/j.cobeha.2015.07.008; Backhed F, 2004, P NATL ACAD SCI USA, V101, P15718, DOI 10.1073/pnas.0407076101; Backhed F, 2005, SCIENCE, V307, P1915, DOI 10.1126/science.1104816; Banks JC, 2005, INT J PARASITOL, V35, P741, DOI 10.1016/j.ijpara.2005.03.003; Bates JM, 2006, DEV BIOL, V297, P374, DOI 10.1016/j.ydbio.2006.05.006; BEIER MS, 1994, J MED ENTOMOL, V31, P561, DOI 10.1093/jmedent/31.4.561; Beisner BE, 2006, BIOL INVASIONS, V8, P655, DOI 10.1007/s10530-005-2061-8; Belkaid Y, 2014, CELL, V157, P121, DOI 10.1016/j.cell.2014.03.011; Bercik P, 2011, GASTROENTEROLOGY, V141, P599, DOI 10.1053/j.gastro.2011.04.052; Berg M, 2016, ISME J, V10, P1998, DOI 10.1038/ismej.2015.253; Birney E, 2016, PLOS GENET, V12, DOI 10.1371/journal.pgen.1006105; Blaser M. J., 2014, MBIO, V5; Blekhman R, 2015, GENOME BIOL, V16, DOI 10.1186/s13059-015-0759-1; Bohan DA, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0029028; Bordenstein SR, 2015, PLOS BIOL, V13, DOI 10.1371/journal.pbio.1002226; Breitbart M, 2003, J BACTERIOL, V185, P6220, DOI 10.1128/JB.185.20.6220-6223.2003; Broderick NA, 2014, MBIO, V5, DOI 10.1128/mBio.01117-14; Broderick Nichole A, 2012, Gut Microbes, V3, P307; Brucker RM, 2012, TRENDS ECOL EVOL, V27, P443, DOI 10.1016/j.tree.2012.03.011; Brummel T, 2004, P NATL ACAD SCI USA, V101, P12974, DOI 10.1073/pnas.0405207101; Buchon N, 2009, CELL HOST MICROBE, V5, P200, DOI 10.1016/j.chom.2009.01.003; Buhnik-Rosenblau K, 2011, APPL ENVIRON MICROB, V77, P6531, DOI 10.1128/AEM.00324-11; Bulet P, 2004, IMMUNOL REV, V198, P169, DOI 10.1111/j.0105-2896.2004.0124.x; Byun C, 2013, J ECOL, V101, P128, DOI 10.1111/1365-2745.12016; Callens M, 2016, ISME J, V10, P911, DOI 10.1038/ismej.2015.166; Carmody RN, 2014, J CLIN INVEST, V124, P4173, DOI 10.1172/JCI72335; Carroll IM, 2009, MAMM GENOME, V20, P395, DOI 10.1007/s00335-009-9204-7; Ceja-Navarro JA, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms8618; Chafee ME, 2011, GENETICS, V187, P203, DOI 10.1534/genetics.110.120675; Chandler JA, 2014, SCIENCE, V345, DOI 10.1126/science.1251997; Chang JY, 2008, J INFECT DIS, V197, P435, DOI 10.1086/525047; Chao A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0125471; Chao A, 2012, ECOLOGY, V93, P2037, DOI 10.1890/11-1817.1; Charleston NA, 2006, J BIOMED INFORM, V39, P62, DOI 10.1016/j.jbi.2005.08.006; Chen BS, 2016, SCI REP-UK, V6, DOI 10.1038/srep29505; Chevalier C, 2015, CELL, V163, P1360, DOI 10.1016/j.cell.2015.11.004; Chu CC, 2013, P NATL ACAD SCI USA, V110, P11917, DOI 10.1073/pnas.1301886110; Cirimotich CM, 2011, SCIENCE, V332, P855, DOI 10.1126/science.1201618; Claesson MJ, 2012, NATURE, V488, P178, DOI 10.1038/nature11319; Clark RI, 2015, CELL REP, V12, P1656, DOI 10.1016/j.celrep.2015.08.004; Conow C, 2010, ALGORITHM MOL BIOL, V5, DOI 10.1186/1748-7188-5-16; Coon KL, 2014, MOL ECOL, V23, P2727, DOI 10.1111/mec.12771; Coyte KZ, 2015, SCIENCE, V350, P663, DOI 10.1126/science.aad2602; Cryan JF, 2015, NEUROPSYCHOPHARMACOL, V40, P241, DOI 10.1038/npp.2014.224; da Fonseca DM, 2015, CELL, V163, P354, DOI 10.1016/j.cell.2015.08.030; David LA, 2014, NATURE, V505, P559, DOI 10.1038/nature12820; Decaestecker E, 2007, NATURE, V450, P870, DOI 10.1038/nature06291; Decaestecker E, 2013, ECOL LETT, V16, P1455, DOI 10.1111/ele.12186; Degnan PH, 2012, P NATL ACAD SCI USA, V109, P13034, DOI 10.1073/pnas.1110994109; Dillon RJ, 2005, ECOL LETT, V8, P1291, DOI 10.1111/j.1461-0248.2005.00828.x; Dillon RJ, 2004, ANNU REV ENTOMOL, V49, P71, DOI 10.1146/annurev.ento.49.061802.123416; Dolfing J, 2014, ISME J, V8, P4, DOI 10.1038/ismej.2013.198; Dominguez-Bello MG, 2010, P NATL ACAD SCI USA, V107, P11971, DOI 10.1073/pnas.1002601107; Dong YM, 2009, PLOS PATHOG, V5, DOI 10.1371/journal.ppat.1000423; Douglas AE, 2015, ANNU REV ENTOMOL, V60, P17, DOI 10.1146/annurev-ento-010814-020822; Douglas AE, 2014, J MOL BIOL, V426, P3830, DOI 10.1016/j.jmb.2014.04.005; Drinkwater B., 2014, BMC BIOINFORMATICS, V15, P1; Enault F, 2017, ISME J, V11, P237, DOI 10.1038/ismej.2016.90; Engel P, 2013, FEMS MICROBIOL REV, V37, P699, DOI 10.1111/1574-6976.12025; Ezenwa VO, 2012, SCIENCE, V338, P198, DOI 10.1126/science.1227412; Feldhaar H, 2011, ECOL ENTOMOL, V36, P533, DOI 10.1111/j.1365-2311.2011.01318.x; Fernandez-Marin H, 2009, P ROY SOC B-BIOL SCI, V276, P2263, DOI 10.1098/rspb.2009.0184; Fischbach MA, 2011, CELL HOST MICROBE, V10, P336, DOI 10.1016/j.chom.2011.10.002; Ford SA, 2016, PLOS PATHOG, V12, DOI 10.1371/journal.ppat.1005465; Franzenburg S, 2013, P NATL ACAD SCI USA, V110, pE3730, DOI 10.1073/pnas.1304960110; Freese HM, 2011, MICROB ECOL, V62, P882, DOI 10.1007/s00248-011-9886-8; Freitak D, 2014, VIRULENCE, V5, P547, DOI 10.4161/viru.28367; Furst MA, 2014, NATURE, V506, P364, DOI 10.1038/nature12977; Gaboriau-Routhiau V, 2009, IMMUNITY, V31, P677, DOI 10.1016/j.immuni.2009.08.020; Gallo RL, 2011, J INVEST DERMATOL, V131, P1974, DOI 10.1038/jid.2011.182; Gandon S, 2008, J EVOLUTION BIOL, V21, P1861, DOI 10.1111/j.1420-9101.2008.01598.x; Gandon S, 2007, GENETICS, V175, P1835, DOI 10.1534/genetics.106.066399; Gantois I, 2006, APPL ENVIRON MICROB, V72, P946, DOI 10.1128/AEM.72.1.946-949.2006; GARLAND T, 1993, SYST BIOL, V42, P265, DOI 10.2307/2992464; Gavrilets S, 2003, EVOLUTION, V57, P2197; Gerardo NM, 2010, GENOME BIOL, V11, DOI 10.1186/gb-2010-11-2-r21; Gerhold P, 2015, FUNCT ECOL, V29, P600, DOI 10.1111/1365-2435.12425; Gilbert SF, 2015, NAT REV GENET, V16, P611, DOI 10.1038/nrg3982; Goodrich JK, 2014, CELL, V159, P789, DOI 10.1016/j.cell.2014.09.053; Gosset CC, 2014, MOL ECOL, V23, P3000, DOI 10.1111/mec.12784; Govaert L, 2016, ECOL LETT, V19, P839, DOI 10.1111/ele.12632; Gravel D, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms12457; Graystock P, 2014, PEERJ, V2, DOI 10.7717/peerj.522; Guinane CM, 2013, THER ADV GASTROENTER, V6, P295, DOI 10.1177/1756283X13482996; Gusarov I, 2013, CELL, V152, P818, DOI 10.1016/j.cell.2012.12.043; Hairston NG, 2005, ECOL LETT, V8, P1114, DOI 10.1111/j.1461-0248.2005.00812.x; Hehemann JH, 2010, NATURE, V464, P908, DOI 10.1038/nature08937; Heijtza RD, 2011, P NATL ACAD SCI USA, V108, P3047, DOI 10.1073/pnas.1010529108; Heintz C, 2014, CELL, V156, P408, DOI 10.1016/j.cell.2014.01.025; Hendry A. P., 2016, ECOEVOLUTIONARY DYNA; Hill DA, 2012, NAT MED, V18, P538, DOI 10.1038/nm.2657; Hiltunen T, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms6226; Honda K, 2016, NATURE, V535, P75, DOI 10.1038/nature18848; Hongoh Y, 2008, SCIENCE, V322, P1108, DOI 10.1126/science.1165578; Hooper LV, 2012, SCIENCE, V336, P1268, DOI 10.1126/science.1223490; Hooper LV, 2001, SCIENCE, V292, P1115, DOI 10.1126/science.1058709; Hosokawa T, 2008, BIOL LETTERS, V4, P45, DOI 10.1098/rsbl.2007.0510; Houthoofd K, 2002, EXP GERONTOL, V37, P1371, DOI 10.1016/S0531-5565(02)00173-0; Inoue R, 2003, FEMS MICROBIOL ECOL, V46, P213, DOI 10.1016/S0168-6496(03)00215-0; Ivanov II, 2010, MUCOSAL IMMUNOL, V3, P209, DOI 10.1038/mi.2010.3; Ives AR, 2006, AM NAT, V168, pE1, DOI 10.1086/505157; Ives AR, 2010, SYST BIOL, V59, P9, DOI 10.1093/sysbio/syp074; Josefowicz SZ, 2012, ANNU REV IMMUNOL, V30, P531, DOI 10.1146/annurev.immunol.25.022106.141623; Jost L, 2007, ECOLOGY, V88, P2427, DOI 10.1890/06-1736.1; Kahrstrom CT, 2016, NATURE, V535, P47, DOI 10.1038/535047a; Kaltenpoth M, 2014, FUNCT ECOL, V28, P315, DOI 10.1111/1365-2435.12089; Kamada N, 2013, NAT REV IMMUNOL, V13, P321, DOI 10.1038/nri3430; Kamada N, 2012, SCIENCE, V336, P1325, DOI 10.1126/science.1222195; Kataoka K, 2016, J MED INVESTIG, V63, P27, DOI 10.2152/jmi.63.27; Kau AL, 2015, SCI TRANSL MED, V7, DOI 10.1126/scitranslmed.aaa4877; Khosravi A, 2013, CURR OPIN MICROBIOL, V16, P221, DOI 10.1016/j.mib.2013.03.009; Kikuchi Y, 2012, P NATL ACAD SCI USA, V109, P8618, DOI 10.1073/pnas.1200231109; King KC, 2016, ISME J, V10, P1915, DOI 10.1038/ismej.2015.259; Koch H, 2011, P NATL ACAD SCI USA, V108, P19288, DOI 10.1073/pnas.1110474108; Koenig JE, 2011, P NATL ACAD SCI USA, V108, P4578, DOI 10.1073/pnas.1000081107; Kohl KD, 2016, FRONT MICROBIOL, V7, DOI [10.3389/fmicb.7016.00634, 10.3389/fmicb.2016.00634]; Kohl KD, 2014, ECOL LETT, V17, P1238, DOI 10.1111/ele.12329; Kohl KD, 2012, ECOL LETT, V15, P1008, DOI 10.1111/j.1461-0248.2012.01822.x; Koskella B, 2014, FEMS MICROBIOL REV, V38, P916, DOI 10.1111/1574-6976.12072; Koskella B, 2014, AM NAT, V184, pS9, DOI 10.1086/676888; Kostic AD, 2013, GENE DEV, V27, P701, DOI 10.1101/gad.212522.112; Kozak LP, 2010, INT J OBESITY, V34, pS23, DOI 10.1038/ijo.2010.179; Laroche F, 2015, AM NAT, V185, P59, DOI 10.1086/678990; LAW R, 1993, ECOLOGY, V74, P1347, DOI 10.2307/1940065; Leibold MA, 2004, ECOL LETT, V7, P601, DOI 10.1111/j.1461-0248.2004.00608.x; Ley RE, 2005, P NATL ACAD SCI USA, V102, P11070, DOI 10.1073/pnas.0504978102; Ley RE, 2008, SCIENCE, V320, P1647, DOI 10.1126/science.1155725; Ley RE, 2006, NATURE, V444, P1022, DOI 10.1038/nature4441022a; Lima-Mendez G, 2015, SCIENCE, V348, DOI 10.1126/science.1262073; Lively CM, 2014, AM NAT, V184, pS1, DOI 10.1086/677032; Lize A, 2013, TRENDS ECOL EVOL, V28, P325, DOI 10.1016/j.tree.2012.10.013; Login FH, 2011, SCIENCE, V334, P362, DOI 10.1126/science.1209728; Loreau M, 2003, ECOL LETT, V6, P673, DOI 10.1046/j.1461-0248.2003.00483.x; Lymbery Alan J., 2014, International Journal for Parasitology Parasites and Wildlife, V3, P171, DOI 10.1016/j.ijppaw.2014.04.002; Malcom JW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0014747; Malcom JW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0014645; Mantis NJ, 2011, MUCOSAL IMMUNOL, V4, P603, DOI 10.1038/mi.2011.41; Marcon E, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0090289; Maroti G, 2011, RES MICROBIOL, V162, P363, DOI 10.1016/j.resmic.2011.02.005; Martin II LB, 2006, OECOLOGIA, V147, P565, DOI 10.1007/s00442-005-0314-y; Martinson VG, 2011, MOL ECOL, V20, P619, DOI 10.1111/j.1365-294X.2010.04959.x; McNally L, 2015, PHILOS T R SOC B, V370, DOI 10.1098/rstb.2014.0298; Meister S, 2009, PLOS PATHOG, V5, DOI 10.1371/journal.ppat.1000542; Miller WJ, 2010, PLOS PATHOG, V6, DOI 10.1371/journal.ppat.1001214; Minot S, 2011, GENOME RES, V21, P1616, DOI 10.1101/gr.122705.111; Modi SR, 2013, NATURE, V499, P219, DOI 10.1038/nature12212; Moeller AH, 2016, SCIENCE, V353, P380, DOI 10.1126/science.aaf3951; Momose Y, 2008, ANTON LEEUW INT J G, V94, P165, DOI 10.1007/s10482-008-9222-6; Moon C, 2015, NATURE, V521, P90, DOI 10.1038/nature14139; Moran NA, 2015, PLOS BIOL, V13, DOI 10.1371/journal.pbio.1002311; Morris JJ, 2015, TRENDS GENET, V31, P475, DOI 10.1016/j.tig.2015.05.004; Morris JJ, 2012, MBIO, V3, DOI 10.1128/mBio.00036-12; Mougi A, 2016, SCI REP-UK, V6, DOI 10.1038/srep24478; Mouquet N, 2002, AM NAT, V159, P420, DOI 10.1086/338996; Murall C. L., 2017, ADV ECOL RES, V57; Nemergut DR, 2013, MICROBIOL MOL BIOL R, V77, P342, DOI 10.1128/MMBR.00051-12; Newell PD, 2014, APPL ENVIRON MICROB, V80, P788, DOI 10.1128/AEM.02742-13; Ogilvie LA, 2015, FRONT MICROBIOL, V6, DOI 10.3389/fmicb.2015.00918; Orsini L, 2013, TRENDS ECOL EVOL, V28, P274, DOI 10.1016/j.tree.2013.01.009; Ostaff MJ, 2013, EMBO MOL MED, V5, P1465, DOI 10.1002/emmm.201201773; Paradis E, 2002, J THEOR BIOL, V218, P175, DOI 10.1006/yjtbi.3066; Pavoine S, 2016, OIKOS, V125, P1719, DOI 10.1111/oik.03262; Peerakietkhajorn S, 2016, ENVIRON MICROBIOL, V18, P2366, DOI 10.1111/1462-2920.12919; Pelletier F, 2009, PHILOS T R SOC B, V364, P1483, DOI 10.1098/rstb.2009.0027; Petkau K, 2014, J BIOL CHEM, V289, P28719, DOI 10.1074/jbc.M114.578708; Porter NT, 2016, CELL HOST MICROBE, V19, P745, DOI 10.1016/j.chom.2016.05.019; Power AG, 2004, AM NAT, V164, pS79, DOI 10.1086/424610; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Quercia S, 2014, FRONT MICROBIOL, V5, DOI 10.3389/fmicb.2014.00587; Rakoff-Nahoum S, 2004, CELL, V118, P229, DOI 10.1016/j.cell.2004.07.002; Rakoff-Nahoum S, 2016, NATURE, V533, P255, DOI 10.1038/nature17626; Rampelli S, 2015, CURR BIOL, V25, P1682, DOI 10.1016/j.cub.2015.04.055; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Ren C, 2007, CELL METAB, V6, P144, DOI 10.1016/j.cmet.2007.06.006; Renz H, 2012, NAT REV IMMUNOL, V12, P9, DOI 10.1038/nri3112; Reyes A, 2012, NAT REV MICROBIOL, V10, P607, DOI 10.1038/nrmicro2853; Reyes A, 2010, NATURE, V466, P334, DOI 10.1038/nature09199; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Ridley EV, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0036765; Romanuk TN, 2005, BIOL INVASIONS, V7, P711, DOI 10.1007/s10530-004-0997-8; Rosengaus RB, 2011, APPL ENVIRON MICROB, V77, P4303, DOI 10.1128/AEM.01886-10; Salathe M, 2008, TRENDS ECOL EVOL, V23, P439, DOI 10.1016/j.tree.2008.04.010; Salzman NH, 2010, NAT IMMUNOL, V11, P76, DOI 10.1038/ni.1825; Samuel BS, 2006, P NATL ACAD SCI USA, V103, P10011, DOI 10.1073/pnas.0602187103; Schleuter D, 2010, ECOL MONOGR, V80, P469, DOI 10.1890/08-2225.1; Seedorf H, 2014, CELL, V159, P253, DOI 10.1016/j.cell.2014.09.008; Shapira M, 2016, TRENDS ECOL EVOL, V31, P539, DOI 10.1016/j.tree.2016.03.006; Sharon G, 2010, P NATL ACAD SCI USA, V107, P20051, DOI 10.1073/pnas.1009906107; Shin SC, 2011, SCIENCE, V334, P670, DOI 10.1126/science.1212782; Sison-Mangus MP, 2015, ISME J, V9, P59, DOI 10.1038/ismej.2014.116; Sommer F, 2013, NAT REV MICROBIOL, V11, P227, DOI 10.1038/nrmicro2974; Sonnenburg ED, 2014, CELL METAB, V20, P779, DOI 10.1016/j.cmet.2014.07.003; Spor A, 2011, NAT REV MICROBIOL, V9, P279, DOI 10.1038/nrmicro2540; Stearns S., 1992, EVOLUTION LIFE HIST; Stefka AT, 2014, P NATL ACAD SCI USA, V111, P13145, DOI 10.1073/pnas.1412008111; Storelli G, 2011, CELL METAB, V14, P403, DOI 10.1016/j.cmet.2011.07.012; STRACHAN DP, 1989, BRIT MED J, V299, P1259, DOI 10.1136/bmj.299.6710.1259; Strauss A, 2012, FUNCT ECOL, V26, P1249, DOI 10.1111/1365-2435.12011; Sudo N, 2004, J PHYSIOL-LONDON, V558, P263, DOI 10.1113/jphysiol.2004.063388; Sugihara G, 2012, SCIENCE, V338, P496, DOI 10.1126/science.1227079; Sullam KE, 2012, MOL ECOL, V21, P3363, DOI 10.1111/j.1365-294X.2012.05552.x; Tailford LE, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms8624; Tasiemski A, 2015, SCI REP-UK, V5, DOI 10.1038/srep17498; Tennessen JA, 2005, J EVOLUTION BIOL, V18, P1387, DOI 10.1111/j.1420-9101.2005.00925.x; Tennessen JA, 2008, MOL BIOL EVOL, V25, P2669, DOI 10.1093/molbev/msn208; Tennessen JA, 2009, DEV COMP IMMUNOL, V33, P1247, DOI 10.1016/j.dci.2009.07.004; Thaiss CA, 2016, NATURE, V535, P65, DOI 10.1038/nature18847; Thomas F, 2002, J EVOLUTION BIOL, V15, P356, DOI 10.1046/j.1420-9101.2002.00410.x; Thomas Hugh, 2016, Nat Rev Gastroenterol Hepatol, V13, P377, DOI 10.1038/nrgastro.2016.101; Thong-On A, 2012, MICROBES ENVIRON, V27, P186, DOI 10.1264/jsme2.ME11325; Tremaroli V, 2012, NATURE, V489, P242, DOI 10.1038/nature11552; Tsuchida T, 2004, SCIENCE, V303, P1989, DOI 10.1126/science.1094611; Turnbaugh PJ, 2006, NATURE, V444, P1027, DOI 10.1038/nature05414; Turnbaugh PJ, 2009, NATURE, V457, P480, DOI 10.1038/nature07540; Unckless RL, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2015.0291; Unckless RL, 2016, CURR BIOL, V26, P257, DOI 10.1016/j.cub.2015.11.063; Urban MC, 2008, TRENDS ECOL EVOL, V23, P311, DOI 10.1016/j.tree.2008.02.007; Vavre F, 2014, CURR OPIN INSECT SCI, V4, P29, DOI 10.1016/j.cois.2014.08.003; Vellend M, 2005, ECOL LETT, V8, P767, DOI 10.1111/j.1461-0248.2005.00775.x; Villeger S, 2008, ECOLOGY, V89, P2290, DOI 10.1890/07-1206.1; Wasielewski H, 2016, ANN NY ACAD SCI, V1372, P20, DOI 10.1111/nyas.13118; Werren JH, 2008, NAT REV MICROBIOL, V6, P741, DOI 10.1038/nrmicro1969; Whitlock R, 2014, J ECOL, V102, P857, DOI 10.1111/1365-2745.12240; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P9340, DOI 10.1073/pnas.0702212104; Wikelski M, 2003, P ROY SOC B-BIOL SCI, V270, P2383, DOI 10.1098/rspb.2003.2500; Willing BP, 2010, GASTROENTEROLOGY, V139, P1844, DOI 10.1053/j.gastro.2010.08.049; Yaung SJ, 2015, MOL SYST BIOL, V11, DOI 10.15252/msb.20145866; Zasloff M, 2002, NATURE, V415, P389, DOI 10.1038/415389a; Zhang DC, 2015, NATURE, V525, P528, DOI 10.1038/nature15367; Zoetendal Erwin G., 2001, Microbial Ecology in Health and Disease, V13, P129, DOI 10.1080/089106001750462669 236 16 17 13 111 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos APR 2017 126 4 508 531 10.1111/oik.03900 24 Ecology Environmental Sciences & Ecology EQ5IY WOS:000398117500007 2018-11-22 J Jedlikowski, J; Brambilla, M Jedlikowski, Jan; Brambilla, Mattia The adaptive value of habitat preferences from a multi-scale spatial perspective: insights from marsh-nesting avian species PEERJ English Article Habitat selection; Adaptation; Spatial scale; Nest survival; Rallidae RAIL RALLUS-AQUATICUS; GREATER SAGE-GROUSE; CRAKE PORZANA-PARVA; SITE SELECTION; REPRODUCTIVE SUCCESS; PREDATION RISK; SMALL PONDS; SURVIVAL; CONSEQUENCES; TERRITORY Background. Habitat selection and its adaptive outcomes are crucial features for animal life-history strategies. Nevertheless, congruence between habitat preferences and breeding success has been rarely demonstrated, which may result from the single scale evaluation of animal choices. As habitat selection is a complex multi-scale process in many groups of animal species, investigating adaptiveness of habitat selection in a multi-scale acting at different spatial scales enhance the fitness of bird species, and chefcekren framework is crucial. In this study, we explore whether habitat the s preferences appropriateness of single vs. multi-scale models. We expected that variables found to be more important for habitat selection at individual scale(s), would coherently play a major role in affecting nest survival at the same scale(s). Methods. We considered habitat preferences of two Rallidae species, little crake (Zapornia parva) and water rail (Rallus aquaticus), at three spatial scales (landscape, territory, and nest-site) and related them to nest survival. Single-scale versus multi-scale models (GLS and glmmPQL) were compared to check which model better described adaptiveness of habitat preferences. Consistency between the effect of variables on habitat selection and on nest survival was checked to investigate their adaptive value. Results. In both speies, muiti-scale models far nest survival were ere more supported than single-scaleones. In little crake, the multi-scale model indicated vegetation density density and water depth at the territory scale, as well as vegetation height at nest-site scale, as the most important variables. The first two variables were among the most important important for nest survival and habitat selection, and the coherent effects suggested the adaptive value of habitat preferences. In water rail,the multi-scale model of nest survival showed vegetation density at territory scale and extent of emergent vegetation within landscape scale as the most important ones, although we found a consistent effect with the habitat selection model (and hence evidence for adaptiveness) for the former. Discussion. Our work suggests caution when interpreting adaptiveness of Preferences at a single spatial scale because such an approach may under or over estimate the importance of habitat factors. As an example, we found evidence only for a weak effect of water depth at territory scale on little crake nest survival; however, according to the multi scale analysis, such effect turned out to be important and apeared highly adaptive. Therefore,multi scale approaches to the study of adaptive explanations for habitat selection mechanisms should be promoted. [Jedlikowski, Jan] Univ Warsaw, Biol & Chem Res Ctr, Fac Biol, Warsaw, Poland; [Brambilla, Mattia] Fdn Lombardia Ambiente, Settore Biodiversita & Aree Protette, Seveso, MB, Italy; [Brambilla, Mattia] Museo Sci, Sez Zool Vertebrati, Trento, Italy Jedlikowski, J (reprint author), Univ Warsaw, Biol & Chem Res Ctr, Fac Biol, Warsaw, Poland. likowski@biol.uw.edu.pl Jedlikowski, Jan/0000-0002-1320-7145; Brambilla, Mattia/0000-0002-7643-4652 European Union from the European Regional Development Fund The study was carried out at the Biological and Chemical Research Centre, University of Warsaw, established within the project co-financed by European Union from the European Regional Development Fund under the Operational Programme Innovative Economy, 2007-2013. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Albrecht T, 2006, J WILDLIFE MANAGE, V70, P784, DOI 10.2193/0022-541X(2006)70[784:FDPNPA]2.0.CO;2; Arlt D, 2007, ECOLOGY, V88, P792, DOI 10.1890/06-0574; Arnold TW, 2010, J WILDLIFE MANAGE, V74, P1175, DOI 10.2193/2009-367; Austin JE, 2013, WATERBIRDS, V36, P199, DOI 10.1675/063.036.0209; Barea LP, 2012, EMU, V112, P39, DOI 10.1071/MU10082; Barton K., 2014, PACKAGE MUMIN R PACK; Battin J, 2006, CONDOR, V108, P59, DOI 10.1650/0010-5422(2006)108[0059:CCATDA]2.0.CO;2; Beale CM, 2010, ECOL LETT, V13, P246, DOI 10.1111/j.1461-0248.2009.01422.x; BEST LB, 1977, CONDOR, V79, P192, DOI 10.2307/1367162; Blomquist SM, 2010, ECOSCIENCE, V17, P251, DOI 10.2980/17-3-3316; Bloom PM, 2013, OECOLOGIA, V173, P1249, DOI 10.1007/s00442-013-2698-4; Bonnington C, 2015, ANIM CONSERV, V18, P529, DOI 10.1111/acv.12206; Borgmann KL, 2015, WILSON J ORNITHOL, V127, P646, DOI 10.1676/14-162.1; Brambilla M, 2006, J ORNITHOL, V147, P428, DOI 10.1007/s10336-005-0028-2; Brambilla M, 2012, J ANIM ECOL, V81, P781, DOI 10.1111/j.1365-2656.2012.01970.x; Brambilla M, 2010, IBIS, V152, P310, DOI 10.1111/j.1474-919X.2009.00997.x; Brind'Amour A, 2005, LIMNOL OCEANOGR, V50, P465, DOI 10.4319/lo.2005.50.2.0465; Burnham KP, 2002, MODEL SELECTION MULT; Cade BS, 2015, ECOLOGY, V96, P2370, DOI 10.1890/14-1639.1; Chalfoun AD, 2007, J APPL ECOL, V44, P983, DOI 10.1111/j.1365-2664.2007.01352.x; Chalfoun AD, 2012, AUK, V129, P589, DOI 10.1525/auk.2012.129.4.589; Chalfoun AD, 2009, J ANIM ECOL, V78, P497, DOI 10.1111/j.1365-2656.2008.01506.x; Chamberlain MJ, 2003, J WILDLIFE MANAGE, V67, P334, DOI 10.2307/3802775; Crampton LH, 2011, CONDOR, V113, P209, DOI 10.1525/cond.2011.090206; Cresswell W, 2008, IBIS, V150, P3, DOI 10.1111/j.1474-919X.2007.00793.x; Currie D, 2000, IBIS, V142, P389, DOI 10.1111/j.1474-919X.2000.tb04435.x; Davis SK, 2005, CONDOR, V107, P605, DOI 10.1650/0010-5422(2005)107[0605:NSPATI]2.0.CO;2; Dinkins JB, 2014, CONDOR, V116, P629, DOI 10.1650/CONDOR-13-163.1; Dinsmore SJ, 2002, ECOLOGY, V83, P3476, DOI 10.1890/0012-9658(2002)083[3476:ATFMAN]2.0.CO;2; Dinsmore Stephen J., 2007, Studies in Avian Biology, V34, P73; Dolman P. M, 2012, BIRDS HABITAT RELATI, P93; Dormann CF, 2007, ECOGRAPHY, V30, P609, DOI 10.1111/j.2007.0906-7590.05171.x; ESRI, 2013, ARCGIS MAP 10 2; Fletcher RJ, 2004, CAN J ZOOL, V82, P1316, DOI 10.1139/Z04-107; FORBES LS, 1994, OIKOS, V70, P377, DOI 10.2307/3545775; Forsman JT, 2013, BEHAV ECOL, V24, P262, DOI 10.1093/beheco/ars162; Forstmeier W, 2004, OIKOS, V104, P487, DOI 10.1111/j.0030-1299.1999.12698.x; Fuller R. J., 2012, BIRDS HABITAT RELATI, P3; Germain RR, 2015, FUNCT ECOL, V29, P1522, DOI 10.1111/1365-2435.12461; Glisson WJ, 2015, WETLANDS, V35, P577, DOI 10.1007/s13157-015-0648-0; GUSTAFSON EJ, 1994, LANDSCAPE URBAN PLAN, V29, P117, DOI 10.1016/0169-2046(94)90022-1; Harvey DS, 2006, BIOL CONSERV, V130, P206, DOI 10.1016/j.biocon.2005.12.015; Hazler KR, 2004, AUK, V121, P707, DOI 10.1642/0004-8038(2004)121[0707:MLRAPA]2.0.CO;2; Helzer CJ, 1999, ECOL APPL, V9, P1448; Hoover JP, 2006, BIOL CONSERV, V127, P37, DOI 10.1016/j.biocon.2005.07.017; Ibanez-Alamo JD, 2015, J ORNITHOL, V156, pS247, DOI 10.1007/s10336-015-1207-4; Jedlikowski J, 2017, J ORNITHOL, V158, P327, DOI 10.1007/s10336-016-1373-z; Jedlikowski J, 2016, ACTA OECOL, V73, P10, DOI 10.1016/j.actao.2016.02.003; Jedlikowski J, 2015, BIRD STUDY, V62, P190, DOI 10.1080/00063657.2015.1031080; Jedlikowski J, 2014, BIRD STUDY, V61, P171, DOI 10.1080/00063657.2014.904271; KLETT AT, 1982, AUK, V99, P77, DOI 10.2307/4086023; Krawchuk MA, 2003, OIKOS, V103, P153, DOI 10.1034/j.1600-0706.2003.12487.x; Lima SL, 2009, BIOL REV, V84, P485, DOI 10.1111/j.1469-185X.2009.00085.x; Magi M, 2009, ECOSCIENCE, V16, P145, DOI 10.2980/16-2-3215; Martin PR, 2001, ECOLOGY, V82, P189, DOI 10.2307/2680096; Martin TE, 1998, ECOLOGY, V79, P656, DOI 10.1890/0012-9658(1998)079[0656:AMPOCS]2.0.CO;2; MARTIN TE, 1988, CONDOR, V90, P51, DOI 10.2307/1368432; MARTIN TE, 1993, BIOSCIENCE, V43, P523, DOI 10.2307/1311947; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Mazgajski Tomasz D., 2002, Acta Ornithologica (Warsaw), V37, P1; McGarigal K, 2016, LANDSCAPE ECOL, V31, P1161, DOI 10.1007/s10980-016-0374-x; Misenhelter MD, 2000, ECOLOGY, V81, P2892, DOI 10.1890/0012-9658(2000)081[2892:CACOHO]2.0.CO;2; Moynahan BJ, 2007, J WILDLIFE MANAGE, V71, P1773, DOI 10.2193/2005-386; Murray LD, 2014, CONDOR, V116, P74, DOI 10.1650/CONDOR-13-047-R1.1; ORIANS GH, 1991, AM NAT, V137, pS29, DOI 10.1086/285138; Pinheiro P., 2010, LINEAR NONLINEAR MIX, P1; Polak M, 2007, ARDEA, V95, P31, DOI 10.5253/078.095.0104; R Development Core Team, 2013, R LANG ENV STAT COMP; Schielzeth H, 2010, METHODS ECOL EVOL, V1, P103, DOI 10.1111/j.2041-210X.2010.00012.x; Schlaepfer MA, 2002, TRENDS ECOL EVOL, V17, P474, DOI 10.1016/S0169-5347(02)02580-6; Shitikov DA, 2012, ACTA ORNITHOL, V47, P137, DOI 10.3161/000164512X662241; Taylor P. B., 1998, RAILS GUIDE RAILS CR; Thompson FR, 2002, STUD AVIAN BIOL-SER, P8; Thompson FR, 2007, IBIS, V149, P98, DOI 10.1111/j.1474-919X.2007.00697.x; Trnka A, 2011, ORNIS FENNICA, V88, P179; Venables W. N, 2002, MODERN APPL STAT S 76 0 0 3 26 PEERJ INC LONDON 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND 2167-8359 PEERJ PeerJ MAR 28 2017 5 e3164 10.7717/peerj.3164 22 Multidisciplinary Sciences Science & Technology - Other Topics EQ3LG WOS:000397973200011 28367380 DOAJ Gold, Green Published 2018-11-22 J Scheres, B; van der Putten, WH Scheres, Ben; van der Putten, Wim H. The plant perceptron connects environment to development NATURE English Review GROWTH-DEFENSE TRADEOFFS; ARABIDOPSIS-THALIANA; SIGNAL-TRANSDUCTION; ECOSYSTEM PROCESSES; AUXIN BIOSYNTHESIS; INDUCED RESISTANCE; INSECT HERBIVORES; ROOT DEVELOPMENT; RECEPTOR KINASE; RAPID RESPONSES Plants cope with the environment in a variety of ways, and ecological analyses attempt to capture this through life-history strategies or trait-based categorization. These approaches are limited because they treat the trade-off mechanisms that underlie plant responses as a black box. Approaches that involve the molecular or physiological analysis of plant responses to the environment have elucidated intricate connections between developmental and environmental signals, but in only a few well-studied model species. By considering diversity in the plant response to the environment as the adaptation of an information-processing network, new directions can be found for the study of life-history strategies, trade-offs and evolution in plants. [Scheres, Ben] Wageningen Univ, Lab Plant Dev Biol, POB 8123, NL-6700 ES Wageningen, Netherlands; [van der Putten, Wim H.] Netherlands Inst Ecol, Dept Terr Ecol, POB 50, NL-6700 AB Wageningen, Netherlands; [van der Putten, Wim H.] Wageningen Univ, Lab Nematol, POB 8123, NL-6700 ES Wageningen, Netherlands Scheres, B (reprint author), Wageningen Univ, Lab Plant Dev Biol, POB 8123, NL-6700 ES Wageningen, Netherlands. ben.scheres@wur.nl Library, Library/A-4320-2012; van der Putten, Wim/C-3707-2011 Library, Library/0000-0002-3835-159X; van der Putten, Wim/0000-0002-9341-4442 Abley K, 2016, ANN BOT-LONDON, V117, P733, DOI 10.1093/aob/mcw016; Agrawal AA, 2012, SCIENCE, V338, P113, DOI 10.1126/science.1225977; Agrawal AA, 2011, FUNCT ECOL, V25, P420, DOI 10.1111/j.1365-2435.2010.01796.x; Albert CH, 2010, FUNCT ECOL, V24, P1192, DOI 10.1111/j.1365-2435.2010.01727.x; Albert FW, 2015, NAT REV GENET, V16, P197, DOI 10.1038/nrg3891; Alon U, 2007, NAT REV GENET, V8, P450, DOI 10.1038/nrg2102; Alpert P, 2006, J EXP BIOL, V209, P1575, DOI 10.1242/jeb.02179; Andres F, 2012, NAT REV GENET, V13, P627, DOI 10.1038/nrg3291; Araya T, 2014, P NATL ACAD SCI USA, V111, P2029, DOI 10.1073/pnas.1319953111; Atwell S, 2010, NATURE, V465, P627, DOI 10.1038/nature08800; Ballare CL, 2014, ANNU REV PLANT BIOL, V65, P335, DOI 10.1146/annurev-arplant-050213-040145; Banta JA, 2012, ECOL LETT, V15, P769, DOI 10.1111/j.1461-0248.2012.01796.x; Barberon M, 2016, CELL, V164, P447, DOI 10.1016/j.cell.2015.12.021; Bardgett RD, 2014, TRENDS ECOL EVOL, V29, P692, DOI 10.1016/j.tree.2014.10.006; Baxendale C, 2014, NEW PHYTOL, V204, P408, DOI 10.1111/nph.12915; Belkhadirl Y, 2014, TRENDS BIOCHEM SCI, V39, P447, DOI 10.1016/j.tibs.2014.06.006; Benkova E, 2003, CELL, V115, P591, DOI 10.1016/S0092-8674(03)00924-3; Besnard F, 2014, NATURE, V505, P417, DOI 10.1038/nature12791; Biere A, 2013, FUNCT ECOL, V27, P567, DOI 10.1111/1365-2435.12100; Bilsborough GD, 2011, P NATL ACAD SCI USA, V108, P3424, DOI 10.1073/pnas.1015162108; Birnbaum K, 2005, NAT METHODS, V2, P615, DOI 10.1038/nmeth0805-615; Blilou I, 2005, NATURE, V433, P39, DOI 10.1038/nature03184; BLOSSEY B, 1995, J ECOL, V83, P887, DOI 10.2307/2261425; Blumenthal DM, 2006, ECOL LETT, V9, P887, DOI 10.1111/j.1461-0248.2006.00934.x; Box MS, 2015, CURR BIOL, V25, P194, DOI 10.1016/j.cub.2014.10.076; BRAY D, 1995, NATURE, V376, P307, DOI 10.1038/376307a0; Campos ML, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms12570; Chen M, 2004, ANNU REV GENET, V38, P87, DOI 10.1146/annurev.genet.38.072902.092259; Chinnusamy V, 2007, TRENDS PLANT SCI, V12, P444, DOI 10.1016/j.tplants.2007.07.002; Civelek M, 2014, NAT REV GENET, V15, P34, DOI 10.1038/nrg3575; Claeys H, 2013, PLANT PHYSIOL, V162, P1768, DOI 10.1104/pp.113.220921; Clark SE, 1997, CELL, V89, P575, DOI 10.1016/S0092-8674(00)80239-1; Coen E, 2012, CELLS CIVILIZATIONS; Cornwell WK, 2008, ECOL LETT, V11, P1065, DOI 10.1111/j.1461-0248.2008.01219.x; Davies P, 2013, PLANT HORMONES PHYSL; de la Pena E, 2014, ECOL EVOL, V4, P3309, DOI 10.1002/ece3.1172; de Lucas M, 2008, NATURE, V451, P480, DOI 10.1038/nature06520; De Rybel B, 2014, SCIENCE, V345, DOI 10.1126/science.1255215; De Vleesschauwer D, 2013, TRENDS PLANT SCI, V18, P555, DOI 10.1016/j.tplants.2013.07.002; Dello Ioio R, 2008, SCIENCE, V322, P1380, DOI 10.1126/science.1164147; Depuydt S, 2011, CURR BIOL, V21, pR365, DOI 10.1016/j.cub.2011.03.013; Diaz S, 2004, J VEG SCI, V15, P295, DOI 10.1111/j.1654-1103.2004.tb02266.x; Diaz S, 2016, NATURE, V529, P167, DOI 10.1038/nature16489; Dicke M, 2010, TRENDS PLANT SCI, V15, P167, DOI 10.1016/j.tplants.2009.12.002; Ding ZJ, 2011, NAT CELL BIOL, V13, P447, DOI 10.1038/ncb2208; Dinneny JR, 2008, SCIENCE, V320, P942, DOI 10.1126/science.1153795; Djakovic-Petrovic T, 2007, PLANT J, V51, P117, DOI 10.1111/j.1365-313X.2007.03122.x; Domagalska MA, 2011, NAT REV MOL CELL BIO, V12, P211, DOI 10.1038/nrm3088; Dostal P, 2011, AM NAT, V177, P655, DOI 10.1086/659060; Fine PVA, 2006, ECOLOGY, V87, pS150, DOI 10.1890/0012-9658(2006)87[150:TGTAHS]2.0.CO;2; Fitzpatrick CR, 2015, ECOLOGY, V96, P2632, DOI [10.1890/14-2333.1, 10.1890/14-2333.1.sm]; Fletcher LC, 1999, SCIENCE, V283, P1911, DOI 10.1126/science.283.5409.1911; Franklin KA, 2011, P NATL ACAD SCI USA, V108, P20231, DOI 10.1073/pnas.1110682108; Freschet GT, 2015, NEW PHYTOL, V206, P1247, DOI 10.1111/nph.13352; Fu J, 2009, NAT GENET, V41, P166, DOI 10.1038/ng.308; Geng Y, 2013, PLANT CELL, V25, P2132, DOI 10.1105/tpc.113.112896; Grime JP, 2012, EVOLUTIONARY STRATEG; Haga K, 2005, PLANT CELL, V17, P103, DOI 10.1105/tpc.104.028357; Harlan J. R., 1992, CROPS MAN; Hasegawa PM, 2000, ANNU REV PLANT PHYS, V51, P463, DOI 10.1146/annurev.arplant.51.1.463; Hawkes CV, 2007, AM NAT, V170, P832, DOI 10.1086/522842; Heil M, 2002, TRENDS PLANT SCI, V7, P61, DOI 10.1016/S1360-1385(01)02186-0; HERMS DA, 1992, Q REV BIOL, V67, P283, DOI 10.1086/417659; Heywood VH, 2007, FLOWERING PLANTS WOR; Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI 10.1162/neco.1997.9.8.1735; Howe GA, 2008, ANNU REV PLANT BIOL, V59, P41, DOI 10.1146/annurev.arplant.59.032607.092825; Huot B, 2014, MOL PLANT, V7, P1267, DOI 10.1093/mp/ssu049; Jones JDG, 2006, NATURE, V444, P323, DOI 10.1038/nature05286; Julkowska MM, 2015, TRENDS PLANT SCI, V20, P586, DOI 10.1016/j.tplants.2015.06.008; Kaiserli E, 2015, DEV CELL, V35, P311, DOI 10.1016/j.devcel.2015.10.008; Karasov TL, 2014, NATURE, V512, P436, DOI 10.1038/nature13439; Kazan K, 2013, ANN BOT-LONDON, V112, P1655, DOI 10.1093/aob/mct229; Kellermeier F, 2014, PLANT CELL, V26, P1480, DOI 10.1105/tpc.113.122101; Kempel A, 2011, P NATL ACAD SCI USA, V108, P5685, DOI 10.1073/pnas.1016508108; Kostenko O., 2016, J ECOL; Krouk G, 2010, DEV CELL, V18, P927, DOI 10.1016/j.devcel.2010.05.008; Kumar SV, 2012, NATURE, V484, P242, DOI 10.1038/nature10928; Lambers H, 2008, TRENDS ECOL EVOL, V23, P95, DOI 10.1016/j.tree.2007.10.008; Lau JA, 2012, P NATL ACAD SCI USA, V109, P14058, DOI 10.1073/pnas.1202319109; Laughlin DC, 2014, J ECOL, V102, P186, DOI 10.1111/1365-2745.12187; Lavorel S, 2013, J VEG SCI, V24, P942, DOI 10.1111/jvs.12083; Lebeis SL, 2015, SCIENCE, V349, P860, DOI 10.1126/science.aaa8764; Li L, 2012, GENE DEV, V26, P785, DOI 10.1101/gad.187849.112; Lozano-Duran R, 2013, ELIFE, V2, DOI 10.7554/eLife.00983; MAC ARTHUR ROBERT H., 1967; Machado RAR, 2015, NEW PHYTOL, V207, P91, DOI 10.1111/nph.13337; Mahonen AP, 2014, NATURE, V515, P125, DOI 10.1038/nature13663; Matsuzaki Y, 2010, SCIENCE, V329, P1065, DOI 10.1126/science.1191132; Meiners SJ, 2015, INTEGRATIVE APPROACH; Messier J, 2010, ECOL LETT, V13, P838, DOI 10.1111/j.1461-0248.2010.01476.x; Mitra S, 2014, NEW PHYTOL, V201, P1385, DOI 10.1111/nph.12591; Mommer L, 2016, TRENDS PLANT SCI, V21, P209, DOI 10.1016/j.tplants.2016.01.009; Nemhauser JL, 2006, CELL, V126, P467, DOI 10.1016/j.cell.2006.05.050; Nieto C, 2015, CURR BIOL, V25, P187, DOI 10.1016/j.cub.2014.10.070; Patel D, 2013, PLANT J, V73, P980, DOI 10.1111/tpj.12088; Perez-Jaramillo JE, 2016, PLANT MOL BIOL, V90, P635, DOI 10.1007/s11103-015-0337-7; Perez-Torres CA, 2008, PLANT CELL, V20, P3258, DOI 10.1105/tpc.108.058719; Pierik R, 2014, PLANT PHYSIOL, V166, P5, DOI 10.1104/pp.114.239160; Pieterse CMJ, 2014, NEW PHYTOL, V204, P261, DOI 10.1111/nph.13029; Pieterse CMJ, 2014, ANNU REV PHYTOPATHOL, V52, P347, DOI 10.1146/annurev-phyto-082712-102340; Pieterse CMJ, 2009, NAT CHEM BIOL, V5, P308, DOI 10.1038/nchembio.164; Poelman EH, 2008, MOL ECOL, V17, P3352, DOI 10.1111/j.1365-294X.2008.03838.x; Pozo MJ, 2007, CURR OPIN PLANT BIOL, V10, P393, DOI 10.1016/j.pbi.2007.05.004; Prusinkiewicz P, 2009, P NATL ACAD SCI USA, V106, P17431, DOI 10.1073/pnas.0906696106; Qu AL, 2013, BIOCHEM BIOPH RES CO, V432, P203, DOI 10.1016/j.bbrc.2013.01.104; Rasmann S, 2005, NATURE, V434, P732, DOI 10.1038/nature03451; Reich PB, 2003, INT J PLANT SCI, V164, pS143, DOI 10.1086/374368; Rellan-Alvarez R, 2016, ANNU REV PLANT BIOL, V67, P619, DOI 10.1146/annurev-arplant-043015-111848; Rizzini L, 2011, SCIENCE, V332, P103, DOI 10.1126/science.1200660; Rodriguez E, 2016, FEBS J, V283, P1385, DOI 10.1111/febs.13613; Rohde A, 2007, TRENDS PLANT SCI, V12, P217, DOI 10.1016/j.tplants.2007.03.012; ROSENBLATT F, 1958, PSYCHOL REV, V65, P386, DOI 10.1037/h0042519; Santner A, 2009, NATURE, V459, P1071, DOI 10.1038/nature08122; Scheres B, 2007, NAT REV MOL CELL BIO, V8, P345, DOI 10.1038/nrm2164; Seabloom EW, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms8710; Searle IR, 2003, SCIENCE, V299, P109, DOI 10.1126/science.1077937; Shinohara H, 2016, P NATL ACAD SCI USA, V113, P3897, DOI 10.1073/pnas.1522639113; Shinohara N, 2013, PLOS BIOL, V11, DOI 10.1371/journal.pbio.1001474; Smakowska E, 2016, CURR OPIN PLANT BIOL, V29, P129, DOI 10.1016/j.pbi.2015.12.005; Smith RS, 2006, P NATL ACAD SCI USA, V103, P1301, DOI 10.1073/pnas.0510457103; Stepanova AN, 2008, CELL, V133, P177, DOI 10.1016/j.cell.2008.01.047; Sun Y, 2010, DEV CELL, V19, P765, DOI 10.1016/j.devcel.2010.10.010; Tabata R, 2014, SCIENCE, V346, P343, DOI 10.1126/science.1257800; Thomas CD, 2004, NATURE, V427, P145, DOI 10.1038/nature02121; van Dam NM, 2011, J ECOL, V99, P77, DOI 10.1111/j.1365-2745.2010.01761.x; van der Heijden MGA, 2016, PLOS BIOL, V14, DOI 10.1371/journal.pbio.1002378; Van Nuland ME, 2016, FUNCT ECOL, V30, P1032, DOI 10.1111/1365-2435.12690; van Velzen E, 2015, J THEOR BIOL, V372, P89, DOI 10.1016/j.jtbi.2015.02.027; Vitasse Y, 2013, OECOLOGIA, V171, P663, DOI 10.1007/s00442-012-2580-9; Vlot AC, 2009, ANNU REV PHYTOPATHOL, V47, P177, DOI 10.1146/annurev.phyto.050908.135202; Wang RH, 2009, NATURE, V459, P423, DOI 10.1038/nature07988; Warren MS, 2001, NATURE, V414, P65, DOI 10.1038/35102054; Westoby M, 2002, ANNU REV ECOL SYST, V33, P125, DOI 10.1146/annurev.ecolsys.33.010802.150452; Wooliver R, 2016, FUNCT ECOL, V30, P1099, DOI 10.1111/1365-2435.12648; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Yanovsky MJ, 2002, NATURE, V419, P308, DOI 10.1038/nature00996; Yoshida T, 2015, PLANT CELL ENVIRON, V38, P35, DOI 10.1111/pce.12351; Zhu DL, 2015, J MOL BIOL, V427, P659, DOI 10.1016/j.jmb.2014.08.025 138 13 15 12 106 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 0028-0836 1476-4687 NATURE Nature MAR 16 2017 543 7645 337 345 10.1038/nature22010 9 Multidisciplinary Sciences Science & Technology - Other Topics EN9RN WOS:000396337400037 28300110 2018-11-22 J Teichert, N; Pasquaud, S; Borja, A; Chust, G; Uriarte, A; Lepage, M Teichert, Nils; Pasquaud, Stephanie; Borja, Angel; Chust, Guillem; Uriarte, Ainhize; Lepage, Mario Living under stressful conditions: Fish life history strategies across environmental gradients in estuaries ESTUARINE COASTAL AND SHELF SCIENCE English Article Fish assemblage; Demographic strategies; Salinity gradient; Human disturbance; Environmental stress FRESH-WATER FISH; FUNCTIONAL DIVERSITY; POPULATION REGULATION; ECOLOGICAL-QUALITY; SEASONAL PATTERNS; FRENCH ESTUARIES; AMERICAN FISHES; GUILD APPROACH; COMMUNITY; INDEXES The life history strategies of fishes can be defined by specific combinations of demographic traits that influence species performances depending on environmental features. Hence, the constraints imposed by the local conditions restrict the range of successful strategies by excluding species poorly adapted. In the present study, we compared the demographic strategies of fish caught in 47 estuaries of the North East Atlantic coast, aiming to determine the specific attributes of resident species and test for changes in trait associations along the environmental gradients. Eight demographic traits were considered to project our findings within a conceptual triangular model, composed on three endpoint strategies: (i) periodic (large size, long generation time, high fecundity); (ii) opportunistic (small size, short generation time, high reproductive effort); and (iii) equilibrium (low fecundity, large egg size, parental care). We demonstrated that various life history strategies co-exist in estuaries, but equilibrium species were scarce and restricted to euhaline open-water. Resident species form a specialised assemblage adapted to high spatiotemporal variability of estuarine conditions, i.e. opportunistic attributes associated with parental care. Even with these singular attributes, our findings revealed changes in distribution of resident species across the estuarine gradients linked to their life history traits. Among other patterns, the diversity of life history strategies significantly decreased from euhaline to oligohaline areas and along gradient of human disturbances. These trends were associated with a convergence of species traits toward short generation times, suggesting that long-lived species with late maturation are more severely impacted by disturbance and environmental stress. (C) 2017 Elsevier Ltd. All rights reserved. [Teichert, Nils; Lepage, Mario] Irstea, UR EABX, Av Verdun, F-33612 Cestas, France; [Pasquaud, Stephanie] Univ Lisbon, Fac Ciencias, MARE Marine & Environm Sci Ctr, P-1749016 Lisbon, Portugal; [Borja, Angel; Chust, Guillem; Uriarte, Ainhize] AZTI, Marine Res Div, Portualdea S-N, Pasaia 20110, Spain Teichert, N (reprint author), Irstea, UR EABX, Av Verdun, F-33612 Cestas, France. nils.teichert@irstea.fr Lepage, Mario/J-7110-2012; Borja, Angel/I-3665-2018 Lepage, Mario/0000-0002-8996-5305; Borja, Angel/0000-0003-1601-2025; Chust, Guillem/0000-0003-3471-9729; Teichert, Nils/0000-0002-8873-9613 MARS Project (Managing Aquatic ecosystems and water Resources under multiple Stress) under the 7th EU Framework Programme [603378]; Basque Water Agency (URA); Host institution MARE- Marine and Environmental Sciences Centre from FCT [UID/MAR/04292/2013, SFRH/BPD/89480/2012] We are grateful for the two anonymous referees for their constructive reviews improving the manuscript. This work is part of the MARS Project (Managing Aquatic ecosystems and water Resources under multiple Stress) funded under the 7th EU Framework Programme, Theme 6 (Environment including Climate Change), Contract No.: 603378 (http://www.mars-project.eu). The Basque Water Agency (URA) partially supported the study through a Convention with AZTI. Host institution MARE- Marine and Environmental Sciences Centre was funded with project UID/MAR/04292/2013, S. Pasquaud with a Post-Doc grant (SFRH/BPD/89480/2012), both from FCT. Anderson MJ, 2006, BIOMETRICS, V62, P245, DOI 10.1111/j.1541-0420.2005.00440.x; Anderson MJ, 2001, AUSTRAL ECOL, V26, P32, DOI 10.1111/j.1442-9993.2001.01070.pp.x; Bates D., 2014, ARXIV14065823; BLABER SJM, 1995, ESTUAR COAST SHELF S, V40, P177, DOI 10.1016/S0272-7714(05)80004-6; Blanck A, 2007, FRESHWATER BIOL, V52, P843, DOI 10.1111/j.1365-2427.2007.01736.x; Blanck A, 2007, J BIOGEOGR, V34, P862, DOI 10.1111/j.1365-2699.2006.01654.x; Borja A, 2004, MAR POLLUT BULL, V48, P209, DOI 10.1016/j.marpolbul.2003.12.001; Cabral HN, 2012, ECOL INDIC, V19, P144, DOI 10.1016/j.ecolind.2011.08.005; Calcagno V, 2010, J STAT SOFTW, V34, P1; Chessel D, 2004, R NEWS, V4, P5, DOI DOI 10.HTTP://DX.D0I.0RG/10.2307/3780087; Cornwell WK, 2006, ECOLOGY, V87, P1465, DOI 10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2; Courrat A, 2009, ESTUAR COAST SHELF S, V81, P179, DOI 10.1016/j.ecss.2008.10.017; Dauvin JC, 2007, MAR POLLUT BULL, V55, P271, DOI 10.1016/j.marpolbul.2006.08.017; Delpech C, 2010, MAR POLLUT BULL, V60, P908, DOI 10.1016/j.marpolbul.2010.01.001; Elliott M, 2011, ESTUAR COAST SHELF S, V94, P306, DOI 10.1016/j.ecss.2011.06.016; Elliott M., 1995, Netherlands Journal of Aquatic Ecology, V29, P397, DOI 10.1007/BF02084239; Elliott M, 2002, ESTUAR COAST SHELF S, V55, P815, DOI 10.1006/ecss.2002.1031; Elliott M, 2007, FISH FISH, V8, P241, DOI 10.1111/j.1467-2679.2007.00253.x; Elliott M, 2007, MAR POLLUT BULL, V54, P640, DOI 10.1016/j.marpolbul.2007.02.003; Franca S, 2011, ESTUAR COAST SHELF S, V91, P262, DOI 10.1016/j.ecss.2010.10.035; Franco A, 2008, MAR ECOL PROG SER, V354, P219, DOI 10.3354/meps07203; Frimpong E.A., 2010, AM FISHERIES SOC S, P109; Froese R., 2000, FISHBASE 2000 CONCEP; Gray JS, 2009, ECOLOGY MARINE SEDIM; GREENSLADE PJM, 1983, AM NAT, V122, P352, DOI 10.1086/284140; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; HILL MO, 1976, TAXON, V25, P249, DOI 10.2307/1219449; HORN M H, 1976, Bulletin Southern California Academy of Sciences, V75, P159; Jager Z, 1999, ESTUAR COAST SHELF S, V49, P347, DOI 10.1006/ecss.1999.0504; Le Pape O, 2016, J SEA RES, V107, P43, DOI 10.1016/j.seares.2015.06.001; Lepage M, 2016, ECOL INDIC, V67, P318, DOI 10.1016/j.ecolind.2016.02.055; Liljendahl-Nurminen A, 2008, FRESHWATER BIOL, V53, P945, DOI 10.1111/j.1365-2427.2008.01952.x; Lissaker M, 2006, BEHAV ECOL SOCIOBIOL, V60, P864, DOI 10.1007/s00265-006-0230-0; Lobry J, 2006, ESTUAR COAST SHELF S, V70, P239, DOI 10.1016/j.ecss.2006.06.014; MAC ARTHUR ROBERT H., 1967; Maes J, 1998, ESTUAR COAST SHELF S, V47, P143, DOI 10.1006/ecss.1998.0350; Marchand Jocelyne, 1993, Netherlands Journal of Aquatic Ecology, V27, P427, DOI 10.1007/BF02334804; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; McLusky D.S., 2004, ESTUARINE ECOSYSTEM; Mims MC, 2010, ECOL FRESHW FISH, V19, P390, DOI 10.1111/j.1600-0633.2010.00422.x; Mouchet MA, 2010, FUNCT ECOL, V24, P867, DOI 10.1111/j.1365-2435.2010.01695.x; Mouillot D, 2007, ESTUAR COAST SHELF S, V71, P443, DOI 10.1016/j.ecss.2006.08.022; Mouillot D, 2013, TRENDS ECOL EVOL, V28, P167, DOI 10.1016/j.tree.2012.10.004; Nakagawa S, 2013, METHODS ECOL EVOL, V4, P133, DOI 10.1111/j.2041-210x.2012.00261.x; Nicolas D, 2010, ESTUAR COAST SHELF S, V88, P329, DOI 10.1016/j.ecss.2010.04.010; Nicolas D, 2010, ESTUAR COAST SHELF S, V86, P137, DOI 10.1016/j.ecss.2009.11.006; Oertli HJ, 1964, PUBBL STAZ ZOOL NA S, V33, P611; Oksanen J., 2015, VEGAN COMMUNITY ECOL; Olden JD, 2006, ECOL MONOGR, V76, P25, DOI 10.1890/05-0330; Pasquaud S, 2015, ESTUAR COAST SHELF S, V154, P122, DOI 10.1016/j.ecss.2014.12.050; Perez-Dominguez R, 2012, ECOL INDIC, V23, P34, DOI 10.1016/j.ecolind.2012.03.006; Perez-Ruzafa A, 2013, ESTUAR COAST SHELF S, V132, P17, DOI 10.1016/j.ecss.2012.04.011; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Potter IC, 2015, FISH FISH, V16, P230, DOI 10.1111/faf.12050; R Core Team, 2014, R LANG ENV STAT COMP; RAO CR, 1982, THEOR POPUL BIOL, V21, P24, DOI 10.1016/0040-5809(82)90004-1; Schleuter D, 2010, ECOL MONOGR, V80, P469, DOI 10.1890/08-2225.1; Selleslagh J, 2009, ESTUAR COAST SHELF S, V81, P149, DOI 10.1016/j.ecss.2008.10.008; Selleslagh J, 2008, ESTUAR COAST SHELF S, V77, P721, DOI 10.1016/j.ecss.2007.11.004; Stekhoven D. J., 2013, MISSFOREST NONPARAME; Taylor DL, 2016, ESTUAR COAST, V39, P1505, DOI 10.1007/s12237-016-0089-x; TAYLOR DR, 1990, OIKOS, V58, P239, DOI 10.2307/3545432; Tedesco PA, 2008, OECOLOGIA, V156, P691, DOI 10.1007/s00442-008-1021-2; Telesh I, 2013, ESTUAR COAST SHELF S, V135, P317, DOI 10.1016/j.ecss.2013.10.013; van der Linden P, 2016, ECOL INDIC, V61, P378, DOI 10.1016/j.ecolind.2015.09.039; Vila-Gispert A, 2002, REV FISH BIOL FISHER, V12, P417, DOI 10.1023/A:1025352026974; Vila-Gispert A, 2002, ENVIRON BIOL FISH, V65, P387, DOI 10.1023/A:1021181022360; Villeger S, 2010, ECOL APPL, V20, P1512, DOI 10.1890/09-1310.1; Whitfield AK, 2012, ESTUAR COAST SHELF S, V97, P78, DOI 10.1016/j.ecss.2011.11.026; WHITFIELD AK, 1990, ENVIRON BIOL FISH, V28, P295, DOI 10.1007/BF00751043; Winemiller KO, 2015, ECOL LETT, V18, P737, DOI 10.1111/ele.12462; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Wootton R., 2012, ECOLOGY TELEOST FISH 75 5 5 2 16 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0272-7714 1096-0015 ESTUAR COAST SHELF S Estuar. Coast. Shelf Sci. MAR 15 2017 188 18 26 10.1016/j.ecss.2017.02.006 9 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography ET8EC WOS:000400530500003 2018-11-22 J Diaz Pauli, B; Kolding, J; Jeyakanth, G; Heino, M Diaz Pauli, Beatriz; Kolding, Jeppe; Jeyakanth, Geetha; Heino, Mikko Effects of ambient oxygen and size-selective mortality on growth and maturation in guppies CONSERVATION PHYSIOLOGY English Article Eutrophication; fishing selection; hypoxia; life history; Poecilia reticulata; water management LIFE-HISTORY EVOLUTION; FISHERIES-INDUCED EVOLUTION; POECILIA-RETICULATA; XIPHOPHORUS-MACULATUS; GAMBUSIA-AFFINIS; OREOCHROMIS-NILOTICUS; NATURAL MORTALITY; MARINE ECOSYSTEMS; REACTION NORMS; GADUS-MORHUA Growth, onset of maturity and investment in reproduction are key traits for understanding variation in life-history strategies. Many environmental factors affect variation in these traits, but for fish, hypoxia and size-dependent mortality have become increasingly important because of human activities, such as increased nutrient enrichment (eutrophication), climate warming and selective fishing. Here, we study experimentally the effect of oxygen availability on maturation and growth in guppies (Poecilia reticulata) from two different selected lines, one subjected to positive and the other negative size-dependent fishing. This is the first study to assess the effects of both reduced ambient oxygen and size-dependent mortality in fish. We show that reduced ambient oxygen led to stunting, early maturation and high reproductive investment. Likewise, lineages that had been exposed to high mortality of larger-sized individuals displayed earlier maturation at smaller size, greater investment in reproduction and faster growth. These life-history changes were particularly evident for males. The widely reported trends towards earlier maturation in wild fish populations are often interpreted as resulting from size-selective fishing. Our results highlight that reduced ambient oxygen, which has received little experimental investigation to date, can lead to similar phenotypic changes. Thus, changes in ambient oxygen levels can be a confounding factor that occurs in parallel with fishing, complicating the causal interpretation of changes in life-history traits. We believe that better disentangling of the effects of these two extrinsic factors, which increasingly affect many freshwater and marine ecosystems, is important for making more informed management decisions. [Diaz Pauli, Beatriz; Kolding, Jeppe; Jeyakanth, Geetha; Heino, Mikko] Univ Bergen, Dept Biol, Bergen, Norway; [Diaz Pauli, Beatriz; Kolding, Jeppe; Jeyakanth, Geetha; Heino, Mikko] Hjort Ctr Marine Ecosyst Dynam, Bergen, Norway; [Kolding, Jeppe] IUCN Commiss Ecosyst Management, Fisheries Expert Grp, Gland, Switzerland; [Heino, Mikko] Inst Marine Res, Bergen, Norway; [Heino, Mikko] Int Inst Appl Syst Anal, Evolut & Ecol Program, Laxenburg, Austria; [Diaz Pauli, Beatriz] Univ Oslo, CEES, Dept Biosci, Oslo, Norway; [Diaz Pauli, Beatriz] UPMC Univ Paris 06, Paris Diderot Univ Paris 07, Sorbonne Univ, UPEC,CNRS,INRA,IRD,Inst Ecol & Sci Environm Paris, Paris, France Heino, M (reprint author), Univ Bergen, Dept Biol, Bergen, Norway.; Heino, M (reprint author), Hjort Ctr Marine Ecosyst Dynam, Bergen, Norway. beatriz.diaz-pauli@uib.no; Mikko.Heino@uib.no Heino, Mikko/C-7241-2009 Heino, Mikko/0000-0003-2928-3940 Research Council of Norway [214189/F20]; Bergen Research Foundation; University of Bergen fund This work was supported by the Research Council of Norway (project 214189/F20), the Bergen Research Foundation, and the University of Bergen fund for Open Access. Auer SK, 2010, ECOL LETT, V13, P998, DOI 10.1111/j.1461-0248.2010.01491.x; Baatrup E, 2001, ENVIRON HEALTH PERSP, V109, P1063, DOI 10.2307/3454962; Bates D, 2015, J STAT SOFTW, V67, P1; Berner D, 2007, FUNCT ECOL, V21, P505, DOI 10.1111/j.1365-2435.2007.01253.x; Beutel Marc W., 1999, Lake and Reservoir Management, V15, P285; Boukal DS, 2014, J THEOR BIOL, V359, P199, DOI 10.1016/j.jtbi.2014.05.022; Browman HI, 2008, SCIENCE, V320, P47, DOI 10.1126/science.320.5872.47b; Burnham K. P., 1998, MODEL SELECTION INFE; Cardinale M, 2004, FISH RES, V69, P263, DOI 10.1016/j.fishres.2004.04.001; Chabot D, 2008, MAR POLLUT BULL, V57, P287, DOI 10.1016/j.marpolbul.2008.04.001; Charlesworth B, 1994, EVOLUTION AGE STRUCT; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Diaz Pauli B, 2013, J EVOLUTION BIOL, V26, P2184, DOI 10.1111/jeb.12215; Diaz Pauli B, 2014, BIOL J LINN SOC, V111, P485, DOI 10.1111/bij.12241; Diaz RJ, 2008, SCIENCE, V321, P926, DOI 10.1126/science.1156401; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Doney SC, 2012, ANNU REV MAR SCI, V4, P11, DOI 10.1146/annurev-marine-041911-111611; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; Enberg K, 2012, MAR ECOL-EVOL PERSP, V33, P1, DOI 10.1111/j.1439-0485.2011.00460.x; Gislason H, 2010, FISH FISH, V11, P149, DOI 10.1111/j.1467-2979.2009.00350.x; Greven H, 2011, ECOLOGY EVOLUTION PO; Harney E, 2013, EVOLUTION, V67, P525, DOI 10.1111/j.1558-5646.2012.01758.x; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 2015, ANNU REV ECOL EVOL S, V46, P461, DOI 10.1146/annurev-ecolsys-120213-054339; Holt RE, 2015, BIOL LETTERS, V11, DOI 10.1098/rsbl.2014.1032; ILES T D, 1973, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V164, P247; Jackson MC, 2016, GEO-GEOGR ENVIRON, V3, DOI 10.1002/geo2.26; Jenny JP, 2016, GLOBAL CHANGE BIOL, V22, P1481, DOI 10.1111/gcb.13193; Jorgensen C, 2008, SCIENCE, V320, P48; KALLMAN KD, 1973, GEN COMP ENDOCR, V21, P287, DOI 10.1016/0016-6480(73)90061-0; Killen SS, 2010, ECOL LETT, V13, P184, DOI 10.1111/j.1461-0248.2009.01415.x; KOLDING J, 1993, ENVIRON BIOL FISH, V37, P25, DOI 10.1007/BF00000710; Kolding J, 2008, ECOSYSTEM APPROACH TO FISHERIES, P309, DOI 10.1079/9781845934149.0309; Kolding J, 2008, CAN J FISH AQUAT SCI, V65, P1413, DOI 10.1139/F08-059; Kolding J, 2016, ICES J MAR SCI, V73, P1697, DOI 10.1093/icesjms/fsv225; Koya Y, 2003, ZOOL SCI, V20, P1231, DOI 10.2108/zsj.20.1231; Kraak SBM, 2007, MAR ECOL PROG SER, V335, P295, DOI 10.3354/meps335295; KRAMER DL, 1981, ENVIRON BIOL FISH, V6, P299, DOI 10.1007/BF00005759; Kuparinen A, 2008, SCIENCE, V320, P47; Kuznetsova A., 2015, LMERTEST TESTS LINEA; Landry CA, 2007, COMP BIOCHEM PHYS A, V148, P317, DOI 10.1016/j.cbpa.2007.04.023; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Lorenzen K, 1996, J FISH BIOL, V49, P627, DOI 10.1111/j.1095-8649.1996.tb00060.x; Magurran AE, 2005, EVOLUTIONARY ECOLOGY; Mkumbo OC, 2015, FISHERIES MANAG ECOL, V22, P56, DOI 10.1111/fme.12084; PAULY D, 1981, MEERESFORSCHUNG, V28, P251; PAULY D, 1984, J CONSEIL, V41, P280; Pauly D, 2002, NATURE, V418, P689, DOI 10.1038/nature01017; Pauly D., 2010, EXCELLENCE ECOLOGY; Pinheiro J., 2016, NLME LINEAR NONLINEA; Portner HO, 2007, SCIENCE, V315, P95, DOI 10.1126/science.1135471; Quince C, 2008, J THEOR BIOL, V254, P197, DOI 10.1016/j.jtbi.2008.05.029; R Core Team, 2016, R LANG ENV STAT COMP; Rabalais NN, 2007, ESTUAR COAST, V30, P753, DOI 10.1007/BF02841332; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Reznick DN, 2005, CAN J FISH AQUAT SCI, V62, P791, DOI 10.1139/F05-079; REZNICK DN, 1990, J EVOLUTION BIOL, V3, P185, DOI 10.1046/j.1420-9101.1990.3030185.x; Riesch R, 2010, ECOLOGY, V91, P1494, DOI 10.1890/09-1008.1; Rocha TL, 2011, PESQUI VET BRASIL, V31, P87, DOI 10.1590/S0100-736X2011000100014; Roff DA, 1992, EVOLUTION LIFE HIST, V1, P1; Ross LG, 2000, FISH FISHERIES SERIE, V25, P89; Schlupp Ingo, 2006, Zeitschrift fuer Fischkunde, V8, P9; SCHREIBMAN MP, 1977, J EXP ZOOL, V200, P277, DOI 10.1002/jez.1402000209; SCHREIBMAN MP, 1982, CELL TISSUE RES, V224, P81, DOI 10.1007/BF00217268; Sharpe DMT, 2012, EVOL APPL, V5, P677, DOI 10.1111/j.1752-4571.2012.00245.x; Silliman RP, 1958, FISHERY B FISH WILDL, V58, P215; SNELSON FF, 1982, COPEIA, P296; Sogard SM, 1997, B MAR SCI, V60, P1129; Stearns S., 1992, EVOLUTION LIFE HIST; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Stockwell CA, 1999, ANIM CONSERV, V2, P103, DOI 10.1111/j.1469-1795.1999.tb00055.x; Tobin D, 2010, J FISH BIOL, V77, P1252, DOI 10.1111/j.1095-8649.2010.02739.x; Turner CL, 1941, J MORPHOL, V69, P161, DOI 10.1002/jmor.1050690107; Utne-Palm AC, 2010, SCIENCE, V329, P333, DOI 10.1126/science.1190708; Uusi-Heikkila S, 2015, EVOL APPL, V8, P597, DOI 10.1111/eva.12268; Van Dam A. A., 1995, AQUAC RES, V26, P427; van den Hurk R., 1974, Proceedings K ned Akad Wet (Biol med Sci), V77, P193; van Wijk SJ, 2013, FRONT ECOL ENVIRON, V11, P181, DOI 10.1890/120229; von Bertalanffy L, 1938, HUM BIOL, V10, P182; Walsh MR, 2006, ECOL LETT, V9, P142, DOI 10.1111/j.1461-0248.2005.00858.x; WEBER JM, 1983, CAN J FISH AQUAT SCI, V40, P1583, DOI 10.1139/f83-183; Wu RSS, 2003, ENVIRON SCI TECHNOL, V37, P1137, DOI 10.1021/es0258327 83 1 1 8 8 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 2051-1434 CONSERV PHYSIOL Conserv. Physiol. MAR 14 2017 5 cox010 10.1093/conphys/cox010 13 Biodiversity Conservation; Ecology; Environmental Sciences; Physiology Biodiversity & Conservation; Environmental Sciences & Ecology; Physiology EW6DZ WOS:000402599800001 28361001 DOAJ Gold, Green Published 2018-11-22 J Dubuc-Messier, G; Reale, D; Perret, P; Charmantier, A Dubuc-Messier, Gabrielle; Reale, Denis; Perret, Philippe; Charmantier, Anne Environmental heterogeneity and population differences in blue tits personality traits BEHAVIORAL ECOLOGY English Article Cyanistes caeruleus; life-history strategy; local adaptation; pace-of-life syndrome; personality WILD PASSERINE BIRD; LIFE-HISTORY STRATEGIES; GREAT TITS; ANIMAL PERSONALITY; NATURAL-SELECTION; PARUS-MAJOR; GENE FLOW; GASTEROSTEUS-ACULEATUS; BEHAVIORAL-DIFFERENCES; EXPLORATORY-BEHAVIOR Environmental heterogeneity can result in spatial variation in selection pressures that can produce local adaptations. The pace-of-life syndrome hypothesis predicts that habitat-specific selective pressures will favor the coevolution of personality, physiological, and life-history phenotypes. Few studies so far have compared these traits simultaneously across different ecological conditions. In this study, we compared 3 personality traits (handling aggression, exploration speed in a novel environment, and nest defense behavior) and 1 physiological trait (heart rate during manual restraint) across 3 Corsican blue tit (Cyanistes caeruleus) populations. These populations are located in contrasting habitats (evergreen vs. deciduous) and are situated in 2 different valleys 25 km apart. Birds from these populations are known to differ in life-history characteristics, with birds from the evergreen habitat displaying a slow pace-of-life, and birds from the deciduous habitat a comparatively faster pace-of-life. We expected personality to differ across populations, in line with the differences in pace-of-life documented for life-history traits. As expected, we found behavioral differences among populations. Despite considerable temporal variation, birds exhibited lower handling aggression in the evergreen populations. Exploration speed and male heart rate also differed across populations, although our results for exploration speed were more consistent with a phenotypic difference between the 2 valleys than between habitats. There were no clear differences in nest defense intensity among populations. Our study emphasizes the role of environmental heterogeneity in shaping population divergence in personality traits at a small spatial scale. [Dubuc-Messier, Gabrielle; Reale, Denis; Charmantier, Anne] Univ Quebec Montreal, Dept Sci Biol, CP 8888 Succursale Ctr Ville, Montreal, PQ, Canada; [Dubuc-Messier, Gabrielle; Perret, Philippe; Charmantier, Anne] CNRS, Unite Mixte Rech 5175, Ctr Ecol Fonct & Evolut, 1919 Route Mende, Montpellier 5, France Dubuc-Messier, G (reprint author), Univ Quebec Montreal, Dept Sci Biol, CP 8888 Succursale Ctr Ville, Montreal, PQ, Canada.; Dubuc-Messier, G (reprint author), CNRS, Unite Mixte Rech 5175, Ctr Ecol Fonct & Evolut, 1919 Route Mende, Montpellier 5, France. dubuc-messier.gabrielle@courrier.uqam.ca Agence Nationale de la Recherche [ANR-12-ADAP-0006-02-PEPS]; European Research Council [ERC-2013-StG-337365-SHE]; Observatoire des Science de l'Univers-Observatoire de Recherche Mediterraneen de l'Environnement; Natural Sciences and Engineering Research Council of Canada (NSERC); Fonds de Recherche Quebec Nature et Technologies; Natural Science and Engineering Research Council of Canada This work was supported by the Agence Nationale de la Recherche (BioAdapt grant ANR-12-ADAP-0006-02-PEPS to A.C.), the European Research Council (Starting grant ERC-2013-StG-337365-SHE to A.C.), the Observatoire des Science de l'Univers-Observatoire de Recherche Mediterraneen de l'Environnement to A.C., and the Natural Sciences and Engineering Research Council of Canada (NSERC; Discovery Grant) to D.R. G.D.M. received a PhD fellowship from the Fonds de Recherche Quebec Nature et Technologies and of Natural Science and Engineering Research Council of Canada. Atwell JW, 2014, AM NAT, V184, pE147, DOI 10.1086/678398; Bates D, 2014, FITTING LINEAR MIXED; Bates D., 2014, LME4 LINEAR MIXED EF, DOI DOI 10.18637/JSS.V067.I01; Bell AM, 2009, ANIM BEHAV, V77, P771, DOI 10.1016/j.anbehav.2008.12.022; Bell AM, 2005, J EVOLUTION BIOL, V18, P464, DOI 10.1111/j.1420-9101.2004.00817.x; Bell AM, 2004, ANIM BEHAV, V68, P1339, DOI 10.1016/j.anbehav.2004.05.007; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Blondel J, 1999, SCIENCE, V285, P1399, DOI 10.1126/science.285.5432.1399; Blondel J, 2006, BIOSCIENCE, V56, P661, DOI 10.1641/0006-3568(2006)56[661:ATSOPA]2.0.CO;2; Boon AK, 2007, ECOL LETT, V10, P1094, DOI 10.1111/j.1461-0248.2007.01106.x; Braillet C, 2002, J AVIAN BIOL, V33, P446, DOI 10.1034/j.1600-048X.2002.02956.x; Brommer JE, 2012, ECOL EVOL, V2, P3032, DOI 10.1002/ece3.412; Careau V, 2015, BEHAV ECOL SOCIOBIOL, V69, P653, DOI 10.1007/s00265-015-1876-2; Carere C, 2004, PHYSIOL BEHAV, V82, P905, DOI 10.1016/j.physbeh.2004.07.009; Charmantier A, 2016, EVOL APPL, V9, P135, DOI 10.1111/eva.12282; Choquet R, 2009, ENVIRON ECOL STAT SE, V3, P845, DOI 10.1007/978-0-387-78151-8_39; CLARK CW, 1994, BEHAV ECOL, V5, P159, DOI 10.1093/beheco/5.2.159; Class B, 2014, ECOL EVOL, V4, P427, DOI 10.1002/ece3.945; Cole EF, 2014, BIOL LETTERS, V10, DOI 10.1098/rsbl.2014.0178; Conrad JL, 2011, J FISH BIOL, V78, P395, DOI 10.1111/j.1095-8649.2010.02874.x; Cote J, 2007, P R SOC B, V274, P383, DOI 10.1098/rspb.2006.3734; Dammhahn M, 2012, P ROY SOC B-BIOL SCI, V279, P2645, DOI 10.1098/rspb.2012.0212; Dingemanse N. J., 2013, ANIMAL PERSONALITIES, P201, DOI [10. 7208/chicago/9780226922065. 001. 0001, DOI 10.7208/CHICAGO/9780226922065.001.0001]; Dingemanse NJ, 2014, QUANTITATIVE GENETICS IN THE WILD, P54; Dingemanse NJ, 2013, J ANIM ECOL, V82, P39, DOI 10.1111/1365-2656.12013; Dingemanse NJ, 2012, J ANIM ECOL, V81, P116, DOI 10.1111/j.1365-2656.2011.01877.x; Dingemanse NJ, 2010, ANIM BEHAV, V79, P439, DOI 10.1016/j.anbehav.2009.11.024; Dingemanse NJ, 2002, ANIM BEHAV, V64, P929, DOI 10.1006/anbe.2002.2006; Dingemanse NJ, 2004, P ROY SOC B-BIOL SCI, V271, P847, DOI 10.1098/rspb.2004.2680; Dubuc-Messier G, 2016, DRYAD DIGITAL REPOSI; Edelaar P, 2012, TRENDS ECOL EVOL, V27, P659, DOI 10.1016/j.tree.2012.07.009; Endler J A., 1986, NATURAL SELECTION WI; Ferns PN, 2010, BIRD STUDY, V57, P315, DOI 10.1080/00063651003716770; Ferrari C, 2013, ANIM BEHAV, V85, P1385, DOI 10.1016/j.anbehav.2013.03.030; FRASER DF, 1987, BEHAV ECOL SOCIOBIOL, V21, P203, DOI 10.1007/BF00292500; Fresneau N, 2014, BEHAV ECOL, V25, P359, DOI 10.1093/beheco/aru008; Fucikova E, 2009, ETHOLOGY, V115, P366, DOI 10.1111/j.1439-0310.2009.01618.x; Garant D, 2007, EVOLUTION, V61, P1546, DOI 10.1111/j.1558-5646.2007.00128.x; Garant D, 2007, FUNCT ECOL, V21, P434, DOI 10.1111/j.1365-2435.2006.01228.x; Green JA, 2011, COMP BIOCHEM PHYS A, V158, P287, DOI 10.1016/j.cbpa.2010.09.011; Groothuis TGG, 2005, NEUROSCI BIOBEHAV R, V29, P137, DOI 10.1016/j.neubiorev.2004.06.010; Grosbois V, 2006, GLOBAL CHANGE BIOL, V12, P2235, DOI 10.1111/j.1365-2486.2006.01286.x; HAKKARAINEN H, 1994, ANIM BEHAV, V48, P843, DOI 10.1006/anbe.1994.1308; Kawecki TJ, 2004, ECOL LETT, V7, P1225, DOI 10.1111/j.1461-0248.2004.00684.x; Kluen E, 2014, BEHAV ECOL SOCIOBIOL, V68, P205, DOI 10.1007/s00265-013-1635-1; Kontiainen P, 2009, BEHAV ECOL, V20, P789, DOI 10.1093/beheco/arp062; Koolhaas JM, 2007, BRAIN BEHAV EVOLUT, V70, P218, DOI 10.1159/000105485; Koolhaas JM, 1999, NEUROSCI BIOBEHAV R, V23, P925, DOI 10.1016/S0149-7634(99)00026-3; Korsten P, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms3362; Korsten P, 2010, MOL ECOL, V19, P832, DOI 10.1111/j.1365-294X.2009.04518.x; Le Galliard JF, 2015, J EVOLUTION BIOL, V28, P1144, DOI 10.1111/jeb.12641; Lenormand T, 2002, TRENDS ECOL EVOL, V17, P183, DOI 10.1016/S0169-5347(02)02497-7; Moller AP, 2014, BEHAV ECOL, V25, P1505, DOI 10.1093/beheco/aru130; MONTGOMERIE RD, 1988, Q REV BIOL, V63, P167, DOI 10.1086/415838; Montiglio PO, 2014, J ANIM ECOL, V83, P720, DOI 10.1111/1365-2656.12174; Montiglio PO, 2012, ANIM BEHAV, V84, P1071, DOI 10.1016/j.anbehav.2012.08.010; Mutzel A, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1019; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Nicolaus M, 2016, ECOL LETT, V19, P478, DOI 10.1111/ele.12584; Nicolaus M, 2012, P ROY SOC B-BIOL SCI, V279, P4885, DOI 10.1098/rspb.2012.1936; Nosil P, 2005, EVOLUTION, V59, P705; Perrins C. M., 1979, BRIT TITS; Pinheiro J, 2000, MIXED EFFECTS MODELS; Porlier M, 2012, J HERED, V103, P781, DOI 10.1093/jhered/ess064; Quinn JL, 2009, J ANIM ECOL, V78, P1203, DOI 10.1111/j.1365-2656.2009.01585.x; R Core Team, 2015, R LANG ENV STAT COMP; Reale D, 2000, ANIM BEHAV, V60, P589, DOI 10.1006/anbe.2000.1530; Reale D, 2003, ANIM BEHAV, V65, P463, DOI 10.1006/anbe.2003.2100; Reale D, 2009, J EVOLUTION BIOL, V22, P1599, DOI 10.1111/j.1420-9101.2009.01781.x; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; Richardson JL, 2014, TRENDS ECOL EVOL, V29, P165, DOI 10.1016/j.tree.2014.01.002; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Schuett W, 2010, BIOL REV, V85, P217, DOI 10.1111/j.1469-185X.2009.00101.x; Siepielski AM, 2013, ECOL LETT, V16, P1382, DOI 10.1111/ele.12174; Sih A, 2015, TRENDS ECOL EVOL, V30, P50, DOI 10.1016/j.tree.2014.11.004; Smith BR, 2008, BEHAV ECOL, V19, P448, DOI 10.1093/beheco/arm144; Stamps JA, 2007, ECOL LETT, V10, P355, DOI 10.1111/j.1461-0248.2007.01034.x; Szulkin M, 2016, MOL ECOL, V25, P542, DOI 10.1111/mec.13486; Trivers R. L, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; van Oers K, 2005, BEHAV ECOL, V16, P716, DOI 10.1093/beheco/ari045; Wang IJ, 2014, MOL ECOL, V23, P5649, DOI 10.1111/mec.12938; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P9340, DOI 10.1073/pnas.0702212104; Wikelski M, 2003, P ROY SOC B-BIOL SCI, V270, P2383, DOI 10.1098/rspb.2003.2500; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Zandt H, 1990, POPULATION BIOL PASS, P145 87 5 5 4 24 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 1465-7279 BEHAV ECOL Behav. Ecol. MAR-APR 2017 28 2 448 459 10.1093/beheco/arw148 12 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology EV4YF WOS:000401769000019 29622919 Green Published, Bronze 2018-11-22 J Benesh, DP; Lafferty, KD; Kuris, A Benesh, Daniel P.; Lafferty, Kevin D.; Kuris, Armand A life cycle database for parasitic acanthocephalans, cestodes, and nematodes ECOLOGY English Article body size; comparative analysis; complex life cycle; food web; helminth; life history; niche hift; ontogeny; predator-prey interactions; trophic transmission Parasitologists have worked out many complex life cycles over the last similar to 150 yr, yet there have been few efforts to synthesize this information to facilitate comparisons among taxa. Most existing host-parasite databases focus on particular host taxa, do not distinguish final from intermediate hosts, and lack parasite life-history information. We summarized the known life cycles of trophically transmitted parasitic acanthocephalans, cestodes, and nematodes. For 973 parasite species, we gathered information from the literature on the hosts infected at each stage of the parasite life cycle (8,510 host-parasite species associations), what parasite stage is in each host, and whether parasites need to infect certain hosts to complete the life cycle. We also collected life-history data for these parasites at each life cycle stage, including 2,313 development time measurements and 7,660 body size measurements. The result is the most comprehensive data summary available for these parasite taxa. In addition to identifying gaps in our knowledge of parasite life cycles, these data can be used to test hypotheses about life cycle evolution, host specificity, parasite life-history strategies, and the roles of parasites in food webs. [Benesh, Daniel P.; Lafferty, Kevin D.; Kuris, Armand] Univ Calif Santa Barbara, Marine Sci Inst, Santa Barbara, CA 93106 USA; [Lafferty, Kevin D.] Univ Calif Santa Barbara, Western Ecol Res Ctr, US Geol Survey Marine Sci Inst, Santa Barbara, CA 93106 USA; [Kuris, Armand] Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USA Benesh, DP (reprint author), Univ Calif Santa Barbara, Marine Sci Inst, Santa Barbara, CA 93106 USA. daniel.benesh@lifesci.ucsb.edu 0 0 0 4 25 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology MAR 2017 98 3 882 882 10.1002/ecy.1680 1 Ecology Environmental Sciences & Ecology EN2FB WOS:000395824000028 27984649 Bronze 2018-11-22 J Veprauskas, A; Cushing, JM Veprauskas, Amy; Cushing, J. M. A juvenile-adult population model: climate change, cannibalism, reproductive synchrony, and strong Allee effects JOURNAL OF BIOLOGICAL DYNAMICS English Article Structured population dynamics; bifurcation; equilibrium; synchronous cycles; imprimitive projection matrix models; cannibalism; reproductive synchrony SEMELPAROUS LESLIE MODELS; DYNAMICS; BIFURCATIONS; COLONY We study a discrete time, structured population dynamic model that is motivated by recent field observations concerning certain life history strategies of colonial- nesting gulls, specifically the glaucouswinged gull ( Larus glaucescens). The model focuses on mechanisms hypothesized to play key roles in a population's response to degraded environment resources, namely, increased cannibalism and adjustments in reproductive timing. We explore the dynamic consequences of these mechanics using a juvenile- adult structure model. Mathematically, the model is unusual in that it involves a high co- dimension bifurcation at R0 = 1 which, in turn, leads to a dynamic dichotomy between equilibrium states and synchronized oscillatory states. We give diagnostic criteria that determine which dynamic is stable. We also explore strong Allee effects caused by positive feedback mechanisms in the model and the possible consequence that a cannibalistic population can survive when a non- cannibalistic population cannot. [Veprauskas, Amy; Cushing, J. M.] Univ Arizona, Interdisciplinary Program Appl Math, Tucson, AZ 85721 USA; [Cushing, J. M.] Univ Arizona, Dept Math, Tucson, AZ 85721 USA Veprauskas, A; Cushing, JM (reprint author), Univ Arizona, Interdisciplinary Program Appl Math, Tucson, AZ 85721 USA.; Cushing, JM (reprint author), Univ Arizona, Dept Math, Tucson, AZ 85721 USA. aveprauskas@math.arizona.edu; cushing@math.arizona.edu NSF [DMS-1407564] Authors were supported by NSF grant DMS-1407564. Caswell H, 2001, MATRIX POPULATION MO; Courchamp F, 2008, ALLEE EFFECTS IN ECOLOGY AND CONSERVATION, P1; Cushing JM, 2015, CIM SER MATH SCI, V1, P215, DOI 10.1007/978-3-319-16118-1_12; Cushing JM, 2015, NAT RESOUR MODEL, V28, P497, DOI 10.1111/nrm.12079; Cushing JM, 2014, J BIOL DYNAM, V8, P57, DOI 10.1080/17513758.2014.899638; Cushing JM, 2012, J BIOL DYNAM, V6, P80, DOI 10.1080/17513758.2012.716085; Cushing JM, 2009, J MATH BIOL, V59, P75, DOI 10.1007/s00285-008-0208-9; Cushing J.M., 1994, NAT RESOUR MODEL, V8, P1; Cushing J.M., 2009, IAS PARK CITY MATH S, P47; Cushing J. M., 1998, INTRO STRUCTURED POP, V71; Cushing JM, 2006, MATH BIOSCI ENG, V3, P17; Darling FF, 1938, BIRD FLOCKS BREEDING; Dong Quan, 1992, P13; ELAYDI S. N., 1996, INTRO DIFFERENCE EQU; ELGAR MA, 1992, CANNIBALISM ECOLOGY; FOX LR, 1975, ANNU REV ECOL SYST, V6, P87, DOI 10.1146/annurev.es.06.110175.000511; Hayward JL, 2014, CONDOR, V116, P62, DOI 10.1650/CONDOR-13-016-R1.1; Henson Shandelle M., 2011, Journal of Biological Dynamics, V5, P495, DOI 10.1080/17513758.2010.529168; Henson SM, 2010, AUK, V127, P571, DOI 10.1525/auk.2010.09202; Kon R, 2004, J MATH BIOL, V48, P515, DOI 10.1007/s00285-003-0239-1; Li CK, 2002, J MATH BIOL, V44, P450, DOI 10.1007/s002850100132; POLIS GA, 1981, ANNU REV ECOL SYST, V12, P225, DOI 10.1146/annurev.es.12.110181.001301 22 1 1 0 6 TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND 1751-3758 1751-3766 J BIOL DYNAM J. Biol. Dyn. MAR 2017 11 1 1 1 24 10.1080/17513758.2015.1131853 24 Ecology; Mathematical & Computational Biology Environmental Sciences & Ecology; Mathematical & Computational Biology EN0RS WOS:000395717900001 26840043 DOAJ Gold, Green Published 2018-11-22 J Wails, CN; Gruber, ED; Slattery, E; Smith, L; Major, HL Wails, Christy N.; Gruber, Eva D.; Slattery, Ethan; Smith, Lucy; Major, Heather L. Glowing in the Light: Fluorescence of Bill Plates in the Crested Auklet (Aethia cristatella) WILSON JOURNAL OF ORNITHOLOGY English Article Aethia auklets; bill plates; breeding ornaments; fluorescence; mate selection ULTRAVIOLET VISION; SEXUAL SELECTION; ORNAMENTS; COLOR; LEAST; BIRDS We examined the fluorescence of ornaments among three auldet species: Least Anklets (Aethia pusilla), Crested Anklets (Aethia cristatella), and Parakeet Anklets (Aethia psittacula) on Gareloi Island, Alaska during the 2015 breeding season. We found that the ornamental bill plates of Crested Anklets fluoresced, but bill ornaments of Least Anklets and bills of Parakeet Auklets did not. We also found that none of the feathers in these three species exhibited fluorescence. We suggest that differences in ornamentation and fluorescence may be related to life history strategies associated with sexual selection and predator avoidance. [Wails, Christy N.; Smith, Lucy; Major, Heather L.] Univ New Brunswick, Dept Biol Sci, St John, NB E2L 4L5, Canada; [Gruber, Eva D.] Mem Univ Newfoundland, St John, NF A1B 3X9, Canada; [Slattery, Ethan] Saddleback Coll, Dept Math & Sci, Mission Viejo, CA 92692 USA Wails, CN (reprint author), Univ New Brunswick, Dept Biol Sci, St John, NB E2L 4L5, Canada. wailscn@gmail.com Wails, Christy/0000-0003-2084-5003 NPRB [1212]; UNB Start-up funds; Northern Scientific Training Program (NSTP) We thank I. L. Jones, K. F. Robbins, C. R. Schacter, J. C. Williams, L. Spitler, H. M. Renner, the staff of the Alaska Maritime National Wildlife Refuge, and the captain and crew of the M/V Tiglak for their extensive support during the 2015 field season. All fieldwork activities were performed under appropriate permits (University of New Brunswick's Animal Care Committee [CCAC] permit 20151S-01, a bird banding permit to IL Jones #22181, and a special purpose-regional director migratory bird master permit/import-export permit 00025076-0 to the U.S. Fish and Wildlife Service, Region 7). Fieldwork in 2015 was funded by a NPRB grant awarded to I. L. Jones (project #1212), UNB Start-up funds to H. L. Major, and a Northern Scientific Training Program (NSTP) Award to L. Smith. ANDERSSON M, 1982, BIOL J LINN SOC, V17, P375, DOI 10.1111/j.1095-8312.1982.tb02028.x; Andersson S, 1998, P ROY SOC B-BIOL SCI, V265, P445, DOI 10.1098/rspb.1998.0315; Arnold KE, 2002, SCIENCE, V295, P92, DOI 10.1126/science.295.5552.92; BEDARD J, 1984, J ZOOL, V202, P461; Bennett ATD, 1997, P NATL ACAD SCI USA, V94, P8618, DOI 10.1073/pnas.94.16.8618; BENNETT ATD, 1994, VISION RES, V34, P1471, DOI 10.1016/0042-6989(94)90149-X; BOND A. L., 2013, BIRDS N AM; Capuska GEM, 2011, VISION RES, V51, P1333, DOI 10.1016/j.visres.2011.04.008; Eyal G, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0128697; Fraser GS, 2002, CONDOR, V104, P413, DOI 10.1650/0010-5422(2002)104[0413:MFDIPC]2.0.CO;2; Hastad O, 2005, BIOL LETT-UK, V1, P306, DOI 10.1098/rsbl.2005.0320; JONES I. L., 2001, BIRDS N AM; JONES I. L, 1993, BIRDS N AM; JONES IL, 1992, BEHAV ECOL SOCIOBIOL, V30, P43; JONES IL, 1993, WILSON BULL, V105, P525; Jones IL, 2000, J AVIAN BIOL, V31, P119, DOI 10.1034/j.1600-048X.2000.310203.x; Jones IL, 1999, ANIM BEHAV, V57, P521, DOI 10.1006/anbe.1998.1012; JONES IL, 1993, NATURE, V362, P238, DOI 10.1038/362238a0; Jouventin P, 2005, CONDOR, V107, P144, DOI 10.1650/7512; Lind O, 2013, J EXP BIOL, V216, P1819, DOI 10.1242/jeb.082834; Payne R.B., 1972, P103; Preault M, 2005, BEHAV ECOL SOCIOBIOL, V58, P497, DOI 10.1007/s00265-005-0937-3; Savalli Udo M., 1995, Current Ornithology, V12, P141; Wilkie SE, 1998, BIOCHEM J, V330, P541 24 0 0 2 3 WILSON ORNITHOLOGICAL SOC WACO 5400 BOSQUE BLVD, STE 680, WACO, TX 76710 USA 1559-4491 1938-5447 WILSON J ORNITHOL Wilson J. Ornithol. MAR 2017 129 1 155 158 10.1676/1559-4491-129.1.155 4 Ornithology Zoology EO4DY WOS:000396646200016 2018-11-22 J Meyer, KM; Klein, AM; Rodrigues, JLM; Nusslein, K; Tringe, SG; Mirza, BS; Tiedje, JM; Bohannan, BJM Meyer, Kyle M.; Klein, Ann M.; Rodrigues, Jorge L. M.; Nuesslein, Klaus; Tringe, Susannah G.; Mirza, Babur S.; Tiedje, James M.; Bohannan, Brendan J. M. Conversion of Amazon rainforest to agriculture alters community traits of methane-cycling organisms MOLECULAR ECOLOGY English Article land use change; metagenomics; methane; microbial ecology; traits LAND-USE CHANGE; METHANOTROPHIC BACTERIAL-POPULATIONS; MICROBIAL COMMUNITIES; BRAZILIAN AMAZON; SOILS; DYNAMICS; PASTURE; DEFORESTATION; METAGENOMES; OXIDIZERS Land use change is one of the greatest environmental impacts worldwide, especially to tropical forests. The Amazon rainforest has been subject to particularly high rates of land use change, primarily to cattle pasture. A commonly observed response to cattle pasture establishment in the Amazon is the conversion of soil from a methane sink in rainforest, to a methane source in pasture. However, it is not known how the microorganisms that mediate methane flux are altered by land use change. Here, we use the deepest metagenomic sequencing of Amazonian soil to date to investigate differences in methane-cycling microorganisms and their traits across rainforest and cattle pasture soils. We found that methane-cycling microorganisms responded to land use change, with the strongest responses exhibited by methane-consuming, rather than methane-producing, microorganisms. These responses included a reduction in the relative abundance of methanotrophs and a significant decrease in the abundance of genes encoding particulate methane monooxygenase. We also observed compositional changes to methanotroph and methanogen communities as well as changes to methanotroph life history strategies. Our observations suggest that methane-cycling microorganisms are vulnerable to land use change, and this vulnerability may underlie the response of methane flux to land use change in Amazon soils. [Meyer, Kyle M.; Klein, Ann M.; Bohannan, Brendan J. M.] Univ Oregon, Inst Ecol & Evolut, Dept Biol, Eugene, OR 97403 USA; [Rodrigues, Jorge L. M.] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA; [Nuesslein, Klaus] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA; [Tringe, Susannah G.] Joint Genome Inst, US Dept Energy, Walnut Creek, CA USA; [Mirza, Babur S.] Utah State Univ, Utah Water Res Lab, Logan, UT 84322 USA; [Tiedje, James M.] Michigan State Univ, Dept Plant Soil & Microbial Sci, E Lansing, MI 48824 USA Meyer, KM; Bohannan, BJM (reprint author), Univ Oregon, Inst Ecol & Evolut, Dept Biol, Eugene, OR 97403 USA.; Rodrigues, JLM (reprint author), Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA. kmeyer@uoregon.edu; jmrodrigues@ucdavis.edu; bohannan@uoregon.edu Bohannan, Brendan/R-1582-2017 Bohannan, Brendan/0000-0003-2907-1016; Tringe, Susannah/0000-0001-6479-8427; Rodrigues, Jorge/0000-0002-6446-6462 National Science Foundation - Dimensions of Biodiversity [14422214]; NSF-FAPESP [2014/50320-4]; Agriculture and Food Research Initiative Competitive from the US Department of Agriculture - National Institute of Food and Agriculture [2009-3531905186]; U.S. Department of Energy Joint Genome Institute; DOE Office of Science User Facility; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] We gratefully acknowledge W. Tang, F. Meyer and the MGRAST team for their assistance in processing and annotating our sequence data. This project was supported by the National Science Foundation - Dimensions of Biodiversity (DEB 14422214), NSF-FAPESP (2014/50320-4), by the Agriculture and Food Research Initiative Competitive Grant 2009-3531905186 from the US Department of Agriculture - National Institute of Food and Agriculture, and by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Anthony C, 1991, Biotechnology, V18, P79; Barberan A, 2012, MOL ECOL, V21, P1909, DOI 10.1111/j.1365-294X.2011.05383.x; Bodelier PLE, 2013, ISME J, V7, P2214, DOI 10.1038/ismej.2013.99; Bodelier PLE, 2012, ECOL EVOL, V2, P106, DOI 10.1002/ece3.34; BRAY J. ROGER, 1957, ECOL MONOGR, V27, P325, DOI 10.2307/1942268; Conrad R, 1999, FEMS MICROBIOL ECOL, V28, P193, DOI 10.1016/S0168-6496(98)00086-5; Dedysh SN, 2000, INT J SYST EVOL MICR, V50, P955, DOI 10.1099/00207713-50-3-955; deMoraes JFL, 1996, GEODERMA, V70, P63, DOI 10.1016/0016-7061(95)00072-0; Dirzo R, 2003, ANNU REV ENV RESOUR, V28, P137, DOI 10.1146/annurev.energy.28.050302.105532; Feigl B, 2006, OUTLOOK AGR, V35, P199, DOI 10.5367/000000006778536738; Fernandes SAP, 2002, GEODERMA, V107, P227, DOI 10.1016/S0016-7061(01)00150-1; Fierer N, 2007, ECOLOGY, V88, P1354, DOI 10.1890/05-1839; Foley JA, 2005, SCIENCE, V309, P570, DOI 10.1126/science.1111772; Freitag TE, 2010, FEMS MICROBIOL ECOL, V73, P157, DOI 10.1111/j.1574-6941.2010.00871.x; Freitag TE, 2009, APPL ENVIRON MICROB, V75, P6679, DOI 10.1128/AEM.01021-09; Green JL, 2008, SCIENCE, V320, P1039, DOI 10.1126/science.1153475; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; Hanson RS, 1996, MICROBIOL REV, V60, P439; Hedderich R, 2013, PROKARYOTES, P635; Herpin U, 2002, SCI TOTAL ENVIRON, V286, P97, DOI 10.1016/S0048-9697(01)00967-6; Ho A, 2013, ENV MICROBIOL REP, V5, P335, DOI 10.1111/j.1758-2229.2012.00370.x; Holmes AJ, 1999, APPL ENVIRON MICROB, V65, P3312; Jesus ED, 2009, ISME J, V3, P1004, DOI 10.1038/ismej.2009.47; Knief C, 2005, APPL ENVIRON MICROB, V71, P3826, DOI 10.1128/AEM.71.7.3826-3831.2005; Knief C, 2015, FRONT MICROBIOL, V6, DOI 10.3389/fmicb.2015.01346; Kolb S, 2009, ENV MICROBIOL REP, V1, P336, DOI 10.1111/j.1758-2229.2009.00047.x; Krause S, 2014, FRONT MICROBIOL, V5, DOI 10.3389/fmicb.2014.00251; Laurance WF, 2014, TRENDS ECOL EVOL, V29, P107, DOI 10.1016/j.tree.2013.12.001; Martiny AC, 2013, ISME J, V7, P830, DOI 10.1038/ismej.2012.160; Maxfield PJ, 2008, ENVIRON MICROBIOL, V10, P1917, DOI 10.1111/j.1462-2920.2008.01587.x; McCalley CK, 2014, NATURE, V514, P478, DOI 10.1038/nature13798; Meyer F, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-386; Mirza BS, 2014, APPL ENVIRON MICROB, V80, P281, DOI 10.1128/AEM.02362-13; Mueller RC, 2014, ISME J, V8, P1548, DOI 10.1038/ismej.2013.253; Myhre G, 2014, CLIMATE CHANGE 2013: THE PHYSICAL SCIENCE BASIS, P659; Navarrete AA, 2015, MOL ECOL, V24, P2433, DOI 10.1111/mec.13172; Navarro AG, 2015, FRONT IMMUNOL, V6, DOI 10.3389/fimmu.2015.00202; Nazaries L, 2013, APPL ENVIRON MICROB, V79, P4031, DOI 10.1128/AEM.00095-13; Neill C, 1997, ECOL APPL, V7, P1216; Oksanen J., 2015, VEGAN COMMUNITY ECOL; Overbeek R, 2014, NUCLEIC ACIDS RES, V42, pD206, DOI 10.1093/nar/gkt1226; Paula FS, 2014, MOL ECOL, V23, P2988, DOI 10.1111/mec.12786; R Development Core Team, 2010, R LANG ENV STAT COMP; Rodrigues JLM, 2013, P NATL ACAD SCI USA, V110, P988, DOI 10.1073/pnas.1220608110; Seghers D, 2003, ENVIRON MICROBIOL, V5, P867, DOI 10.1046/j.1462-2920.2003.00477.x; Singh BK, 2007, APPL ENVIRON MICROB, V73, P5153, DOI 10.1128/AEM.00620-07; Steudler PA, 1996, J GEOPHYS RES-ATMOS, V101, P18547, DOI 10.1029/96JD01551; Ter Braak CJF, 1995, DATA ANAL COMMUNITY, P152; Verchot LV, 2000, ECOSYSTEMS, V3, P41, DOI 10.1007/s100210000009; Warton DI, 2011, ECOLOGY, V92, P3, DOI 10.1890/10-0340.1; Wilke A, 2015, MG RAST MANUAL VERSI, P20; Wilke A, 2012, BMC BIOINFORMATICS, V13, DOI 10.1186/1471-2105-13-141; Yimga MT, 2003, APPL ENVIRON MICROB, V69, P5593, DOI 10.1128/AEM.69.9.5593-5602.2003 53 7 8 10 51 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. MAR 2017 26 6 1547 1556 10.1111/mec.14011 10 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology EP6MT WOS:000397494300008 28100018 Bronze 2018-11-22 J Salguero-Gomez, R Salguero-Gomez, Roberto Applications of the fast-slow continuum and reproductive strategy framework of plant life histories NEW PHYTOLOGIST English Review conservation status; functional trait; life history strategy; life history trait; matrix population model; population growth rate; resilience; senescence ECONOMICS SPECTRUM; FUNCTIONAL TRAITS; PERENNIAL PLANTS; SENESCENCE; WORLDWIDE; EVOLUTION; TRIANGLE; DATABASE; SIZE; TIME Understanding the forces that shape the great amount of variation in plant longevity, reproductive output and growth rate is fundamental to effective predictions of viability, invasions and evolutionary pressures. Here, I extend the recently introduced 'fast-slow continuum and reproductive strategy' framework to quantify the variation in plant life history strategies world-wide. I use high-resolution demographic information from 625 plant species and show that this framework predicts not only key demographic properties, such as population growth rate and demographic resilience, but also has important connections to the leaf economics spectrum, biogeographical characteristics, evolutionary biology and conservation biology. This framework may allow plant biologists to unlock powerful global plant predictions from a handful of open-access field measurements. [Salguero-Gomez, Roberto] Univ Sheffield, Dept Anim & Plant Sci, Alfred Denny Bldg,Western Bank, Sheffield S10 2TN, S Yorkshire, England Salguero-Gomez, R (reprint author), Univ Sheffield, Dept Anim & Plant Sci, Alfred Denny Bldg,Western Bank, Sheffield S10 2TN, S Yorkshire, England. r.salguero@sheffield.ac.uk NERC-IRF [R/142195-11-1]; Natural Environment Research Council [NE/M018458/1] I thank H. de Kroon, O. Jones, Y. Buckley and E. Jongejans for discussions on plant life history strategies, and the following researchers with regard to the implications of this work beyond population ecology: C. Violle and P. Adler (functional traits), H. Possingham (conservation biology) and J. W. Vaupel (ageing research). M. Franco and O. Jones contributed the phylogeny. I thank D. Ackerly, K. Davis and two anonymous reviewers for constructive criticisms, and my parents for their Demetrius' entropy. Work supported by NERC-IRF R/142195-11-1. Adler PB, 2014, P NATL ACAD SCI USA, V111, P740, DOI 10.1073/pnas.1315179111; Baudisch A, 2013, J ECOL, V101, P596, DOI 10.1111/1365-2745.12084; Blomberg SP, 2003, EVOLUTION, V57, P717, DOI 10.1111/j.0014-3820.2003.tb00285.x; Caswell H, 2001, MATRIX POPULATION MO; Chave J, 2009, ECOL LETT, V12, P351, DOI 10.1111/j.1461-0248.2009.01285.x; COHEN D, 1967, J THEOR BIOL, V16, P1, DOI 10.1016/0022-5193(67)90050-1; DEMETRIUS L, 1978, NATURE, V275, P213, DOI 10.1038/275213a0; Franco M, 1996, PHILOS T R SOC B, V351, P1341, DOI 10.1098/rstb.1996.0117; Gaillard JM, 2005, AM NAT, V166, P119, DOI 10.1086/430330; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; IUCN - International Union for the Conservation of Nature, 2015, IUCN RED LIST THREAT; Jarvis A., 2008, EOS T AGU, V89, P93, DOI DOI 10.1029/2008E0100001; Jones OR, 2014, NATURE, V505, P169, DOI 10.1038/nature12789; Kattge J, 2011, GLOBAL CHANGE BIOL, V17, P2905, DOI 10.1111/j.1365-2486.2011.02451.x; Kearney M, 2006, TRENDS ECOL EVOL, V21, P481, DOI 10.1016/j.tree.2006.06.019; Kelly D, 2002, ANNU REV ECOL SYST, V33, P427, DOI 10.1146/annurev.ecolsys.33.020602.095433; KEYFITZ N, 1977, APPL MATH DEMOGRAPHY; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Koenig WD, 1998, NATURE, V396, P225, DOI 10.1038/24293; Lanner RM, 2001, EXP GERONTOL, V36, P675, DOI 10.1016/S0531-5565(00)00234-5; Milla R, 2008, FUNCT ECOL, V22, P565, DOI 10.1111/j.1365-2435.2008.01406.x; Morris W.F., 2002, QUANTITATIVE CONSERV; Penuelas J, 2010, NEW PHYTOL, V187, P564, DOI 10.1111/j.1469-8137.2010.03360.x; Revell LJ, 2009, EVOLUTION, V63, P3258, DOI 10.1111/j.1558-5646.2009.00804.x; Salguero-Gomez R, 2016, P NATL ACAD SCI USA, V113, P230, DOI 10.1073/pnas.1506215112; Salguero-Gomez R, 2015, J ECOL, V103, P202, DOI 10.1111/1365-2745.12334; SHEA K, 1994, J ECOL, V82, P951, DOI 10.2307/2261457; Silvertown J, 2001, EVOL ECOL RES, V3, P393; SILVERTOWN J, 1992, FUNCT ECOL, V6, P130, DOI 10.2307/2389746; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1999, EVOLUTION LIFE HIST; Sutherland S, 2004, OECOLOGIA, V141, P24, DOI 10.1007/s00442-004-1628-x; Sutherland WJ, 2013, J ECOL, V101, P58, DOI 10.1111/1365-2745.12025; Violle C, 2007, OIKOS, V116, P882, DOI 10.1111/j.2007.0030-1299.15559.x; Violle C, 2009, J PLANT ECOL-UK, V2, P87, DOI 10.1093/jpe/rtp007; Westoby M, 2002, ANNU REV ECOL SYST, V33, P125, DOI 10.1146/annurev.ecolsys.33.010802.150452; Wilson JB, 2000, OIKOS, V91, P77, DOI 10.1034/j.1600-0706.2000.910107.x; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403 40 11 11 8 39 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0028-646X 1469-8137 NEW PHYTOL New Phytol. MAR 2017 213 4 1618 1624 10.1111/nph.14289 7 Plant Sciences Plant Sciences EP2UI WOS:000397238600012 27864957 Bronze Y N 2018-11-22 J Park, JS Park, John S. A race against time: habitat alteration by snow geese prunes the seasonal sequence of mosquito emergence in a subarctic brackish landscape POLAR BIOLOGY English Article Seasonal ecology; Life history strategies; Temporal diversity; Tundra SPECIES DISTRIBUTION MODELS; SALT-MARSH; DIPTERA CHIRONOMIDAE; TEMPORARY PONDS; CLIMATE-CHANGE; HUDSON-BAY; DIVERSITY; VEGETATION; CULICIDAE; SALINITY Species compositions in highly seasonal habitats often exhibit predictable patterns through time. However, the roles that ecological interactions play in shaping the sequence of species phenologies through a season are largely unexplored. Across the tundra on the Hudson Bay Lowlands, extensive foraging by lesser snow goose populations has been driving alterations to the landscape. Here, I show that this widespread and dramatic disturbance increases evaporation rates of ephemeral ponds and consequently constricts the temporal availability of seasonal aquatic habitats for larval mosquitoes. I also show that this constriction decreases the temporal diversity of closely related univoltine mosquito species that have varying emergence schedules. Three species of mosquitoes emerged through the season from four sampled ephemeral ponds associated with no goose grubbing; only one species emerged, early in the season, from the four ponds that experienced heavy grubbing. This study demonstrates a mechanism for temporal composition change in a ubiquitous and abundant group of arthropods on the tundra. It does not show life history evolution of emergence time of mosquitoes; however, it highlights the rather unexplored role of ecological interactions in altering the diversity of phenologies across seasonal time. [Park, John S.] Univ Chicago, Comm Evolutionary Biol, Culver Hall 402,1025 E 57th St, Chicago, IL 60637 USA Park, JS (reprint author), Univ Chicago, Comm Evolutionary Biol, Culver Hall 402,1025 E 57th St, Chicago, IL 60637 USA. johnspark@uchicago.edu Park, John/0000-0003-2151-1160 Sherwood E. Silliman Fellowship from Yale University I thank Stephen C. Stearns for his guidance and Marta M. Wells for her support. I thank R. J. Pupedis and Yale Peabody Museum of Natural History's Division of Entomology for their generous support with equipment. L. E. Munstermann at Yale School of Public Health and S. K. Burian provided important suggestions for study design. L. E. Munstermann also aided in mosquito species identification. This project is indebted to the support and good company of D. T. Iles, D. N. Koons, R. F. Rockwell, L. M. Aubry, C. P. Mulder, and J. F. House in the field at LPB. Financial support for this project was provided by the Sherwood E. Silliman Fellowship from Yale University. Adler PB, 2005, ECOLOGY, V86, P2032, DOI 10.1890/05-0067; Adler PB, 2003, ECOL LETT, V6, P749, DOI 10.1046/j.1461-0248.2003.00497.x; Alisauskas RT, 2011, WILDLIFE MONOGR, P1, DOI 10.1002/wmon.5; BAKER MC, 1977, CONDOR, V79, P56, DOI 10.2307/1367530; Bazzanti M, 1997, J FRESHWATER ECOL, V12, P89, DOI 10.1080/02705060.1997.9663512; BENTLEY MD, 1989, ANNU REV ENTOMOL, V34, P401, DOI 10.1146/annurev.en.34.010189.002153; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; Clark TM, 2004, J EXP BIOL, V207, P2289, DOI 10.1242/jeb.01018; Coulson SJ, 2003, POLAR BIOL, V26, P530, DOI 10.1007/s00300-003-0516-x; Danks H. V., 1981, ARCTIC ARTHROPODS RE; Danks HV, 2002, OIKOS, V99, P10, DOI 10.1034/j.1600-0706.2002.990102.x; Darsie Jr R. F., 2004, IDENTIFICATION GEOGR; Drake Martin, 2001, Freshwater Forum, V17, P26; Gaston AJ, 2002, IBIS, V144, P185, DOI 10.1046/j.1474-919X.2002.00038.x; Gaston AJ, 2013, ARCTIC, V66, P43; Giannini TC, 2013, ECOGRAPHY, V36, P649, DOI 10.1111/j.1600-0587.2012.07191.x; Gjullin CM, 1961, MOSQUITOES ALASKA; Godsoe W, 2012, ECOGRAPHY, V35, P811, DOI 10.1111/j.1600-0587.2011.07103.x; Handa IT, 2002, J ECOL, V90, P86, DOI 10.1046/j.0022-0477.2001.00635.x; HAUFE WO, 1956, ECOLOGY, V37, P500, DOI 10.2307/1930173; Hodkinson ID, 1996, OIKOS, V75, P241, DOI 10.2307/3546247; JEFFERIES RL, 1979, CAN J BOT, V57, P1439, DOI 10.1139/b79-178; Jefferies RL, 2006, J ECOL, V94, P234, DOI 10.1111/j.1365-2745.2005.01086.x; Jefferies RL, 2004, INTEGR COMP BIOL, V44, P130, DOI 10.1093/icb/44.2.130; Jefferies RL, 2002, APPL VEG SCI, V5, P7, DOI 10.1658/1402-2001(2002)005[0007:FGVLAS]2.0.CO;2; Korhonen JJ, 2010, ECOLOGY, V91, P508, DOI 10.1890/09-0392.1; Leafloor JO, 2012, ARCTIC GOOSE JOINT V; MACARTHUR RH, 1965, BIOL REV, V40, P510, DOI 10.1111/j.1469-185X.1965.tb00815.x; Maciolek JA, 1989, HIGH LATITUDE LIMNOL, P193; MACLEAN SF, 1971, ARCTIC, V24, P19; Magurran AE, 2007, ECOL LETT, V10, P347, DOI 10.1111/j.1461-0248.2007.01024.x; McLaren JR, 2004, J ECOL, V92, P648, DOI 10.1111/j.0022-0477.2004.00897.x; Medeiros AS, 2011, CAN J FISH AQUAT SCI, V68, P1511, DOI [10.1139/F2011-076, 10.1139/f2011-076]; Memmott J, 2007, ECOL LETT, V10, P710, DOI 10.1111/j.1461-0248.2007.01061.x; PARKER BM, 1982, ANN ENTOMOL SOC AM, V75, P99, DOI 10.1093/aesa/75.1.99; PIANKA ER, 1966, AM NAT, V100, P33, DOI 10.1086/282398; Rouse WR, 1997, HYDROL PROCESS, V11, P873, DOI 10.1002/(SICI)1099-1085(19970630)11:8<873::AID-HYP510>3.0.CO;2-6; Schneider DW, 1996, J N AM BENTHOL SOC, V15, P64, DOI 10.2307/1467433; SHEATH RG, 1986, HYDROBIOLOGIA, V138, P75, DOI 10.1007/BF00027233; Shurin JB, 2007, OIKOS, V116, P957, DOI 10.1111/j.2007.0030-1299.15751.x; Solga MJ, 2014, NAT AREA J, V34, P227, DOI 10.3375/043.034.0213; Srivastava DS, 1996, J ECOL, V84, P31, DOI 10.2307/2261697; Van Hemert C, 2014, FRONT ECOL ENVIRON, V12, P548, DOI 10.1890/130291; Walsh MR, 2014, EVOL ECOL, V28, P397, DOI 10.1007/s10682-013-9666-7; Walsh MR, 2011, P ROY SOC B-BIOL SCI, V278, P2628, DOI 10.1098/rspb.2010.2634; WESSEL DA, 1994, BOUND-LAY METEOROL, V68, P109, DOI 10.1007/BF00712666; Witter LA, 2012, ECOL APPL, V22, P1838, DOI 10.1890/11-0569.1; Wolfe BB, 2011, GEOPHYS RES LETT, V38, DOI 10.1029/2011GL049766 48 1 1 4 16 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0722-4060 1432-2056 POLAR BIOL Polar Biol. MAR 2017 40 3 553 561 10.1007/s00300-016-1978-y 9 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology EM2WR WOS:000395177000005 2018-11-22 J Lima, AC; Wrona, FJ; Soares, AMVM Lima, Ana Carolina; Wrona, Frederick J.; Soares, Amadeu M. V. M. Fish traits as an alternative tool for the assessment of impacted rivers REVIEWS IN FISH BIOLOGY AND FISHERIES English Review Biomonitoring; Climate change; Damming; Functional ecology; River management; Species traits LIFE-HISTORY STRATEGIES; ALTERED FLOW REGIMES; FRESH-WATER BIODIVERSITY; LONG-TERM CHANGES; CLIMATE-CHANGE; SPECIES TRAITS; POTENTIAL IMPACTS; POPULATION REGULATION; ENVIRONMENTAL FLOWS; COMMUNITY ECOLOGY The current scenario of worldwide exponential increase in river impoundment (dams) and the compounded effects of climate change are among the most important threats to freshwater ecosystems. The sharp decline in the biodiversity of impacted rivers demands the enhancement of available tools for biomonitoring and improved approaches for informing environmental decision-making. Here, we demonstrate examples of how fish trait analyses could be used to assess and predict the response of fish communities to damming and how this approach has potential advantages over traditionally used methods by linking suites of traits to stressor effects through plausible cause and effect mechanisms. Using a trait-based analysis is advantageous as it transcends taxonomy, can be applied across broad spatial scales and be easily integrated into current assessment programs. Therefore, it is a promising tool for biomonitoring in freshwater ecosystems. However, some challenges remain in the application of this approach namely the lack of universality of trait-habitat links; the availability, consistency, and applicability of existing trait data; low discriminatory power and poor mechanistic understanding. Nonetheless adaptive river management can benefit from this approach by sustainably operating dams in the light of knowledge on how the functional structure of fish communities are altered, thus enabling essential habitats for fish to be maintained. [Lima, Ana Carolina; Wrona, Frederick J.; Soares, Amadeu M. V. M.] Univ Aveiro, CESAM Ctr Environm & Marine Studies, Dept Biol, Campus Univ Santiago, Aveiro, Portugal; [Wrona, Frederick J.] Dept Environm & Pk, EMSD, Edmonton, AB, Canada Lima, AC (reprint author), Univ Aveiro, CESAM Ctr Environm & Marine Studies, Dept Biol, Campus Univ Santiago, Aveiro, Portugal. carolina.alveslima@gmail.com Soares, Amadeu/A-8304-2008; CESAM, UA/M-3762-2015 Soares, Amadeu/0000-0003-0879-9470; National Foundation for Science and Technology (FCT) [SFRH/BD/51408/2011]; CESAM [UID/AMB/50017/2013] This study was supported by National Foundation for Science and Technology (FCT) with a grant to ACL (SFRH/BD/51408/2011) and CESAM funding (UID/AMB/50017/2013). The authors would like to thank the anonymous reviewers for valuable comments and suggestions on the manuscript. Aarts BGW, 2004, RIVER RES APPL, V20, P3, DOI 10.1002/rra.720; Agostinho AA, 2008, BRAZ J BIOL, V68, P1119, DOI 10.1590/S1519-69842008000500019; Agostinho AA, 2004, REV FISH BIOL FISHER, V14, P11, DOI 10.1007/s11160-004-3551-y; Alcamo J, 2007, HYDROLOG SCI J, V52, P247, DOI 10.1623/hysj.52.2.247; Angilletta MJ, 2008, EVOL APPL, V1, P286, DOI 10.1111/j.1752-4571.2008.00032.x; Barbour M. T., 1999, RAPID BIOASSESSMENT; BATES B. C., 2008, TECHNICAL PAPER INTE; Baumgartner LJ, 2014, FISH FISH, V15, P410, DOI 10.1111/faf.12023; BENDER EA, 1984, ECOLOGY, V65, P1, DOI 10.2307/1939452; Bunn SE, 2002, ENVIRON MANAGE, V30, P492, DOI 10.1007/s00267-002-2737-0; Chu C, 2005, DIVERS DISTRIB, V11, P299, DOI 10.1111/j.1366-9516.2005.00153.x; Craven SW, 2010, ENVIRON MANAGE, V46, P181, DOI 10.1007/s00267-010-9511-5; Culp Joseph M., 2011, Integrated Environmental Assessment and Management, V7, P187, DOI 10.1002/ieam.128; Cunjak RA, 1996, CAN J FISH AQUAT SCI, V53, P267, DOI 10.1139/f95-275; Daufresne M, 2004, GLOBAL CHANGE BIOL, V10, P124, DOI 10.1046/j.1529-8817.2003.00720.x; Daufresne M, 2007, GLOBAL CHANGE BIOL, V13, P2467, DOI 10.1111/j.1365-2486.2007.01449.x; Doledec S, 1999, FRESHWATER BIOL, V42, P737, DOI 10.1046/j.1365-2427.1999.00509.x; Dornelas M, 2014, SCIENCE, V344, P296, DOI 10.1126/science.1248484; Dudgeon D, 2006, BIOL REV, V81, P163, DOI 10.1017/S1464793105006950; Ferrier R, 2009, HDB CATCHMENT MANAGE; Ficke AD, 2007, REV FISH BIOL FISHER, V17, P581, DOI 10.1007/s11160-007-9059-5; Gandini CV, 2014, NEOTROP ICHTHYOL, V12, P795, DOI 10.1590/1982-0224-20130151; Garcia-Berthou E, 2007, J FISH BIOL, V71, P33, DOI 10.1111/j.1095-8649.2007.01668.x; Gayraud S, 2003, FRESHWATER BIOL, V48, P2045, DOI 10.1046/j.1365-2427.2003.01139.x; Goldstein RM, 2005, N AM J FISH MANAGE, V25, P180, DOI 10.1577/M04-042.1; Hamilton AT, 2010, HYDROBIOLOGIA, V657, P263, DOI 10.1007/s10750-010-0316-6; Hargrave CW, 2009, ECOL FRESHW FISH, V18, P24, DOI 10.1111/j.1600-0633.2008.00318.x; Helfman GS, 2009, DIVERSITY FISHES BIO; Henle K, 2004, BIODIVERS CONSERV, V13, P207, DOI 10.1023/B:BIOC.0000004319.91643.9e; Hoeinghaus DJ, 2007, J BIOGEOGR, V34, P324, DOI 10.1111/j.1365-2699.2006.01587.x; Humphries P, 2003, FRESHWATER BIOL, V48, P1141, DOI 10.1046/j.1365-2427.2003.01092.x; King J, 1998, HYDROBIOLOGIA, V384, P245, DOI 10.1023/A:1003481524320; Kingsford RT, 2011, BIOL CONSERV, V144, P1194, DOI 10.1016/j.biocon.2010.09.022; Kundzewicz Z. W., 2007, CLIMATE CHANGE 2007, P173, DOI DOI 10.1007/S11269-006-3091-4; Lake PS, 2000, J N AM BENTHOL SOC, V19, P573, DOI 10.2307/1468118; Lamouroux N, 2002, ECOLOGY, V83, P1792, DOI 10.2307/3071765; Liermann CR, 2012, BIOSCIENCE, V62, P539, DOI 10.1525/bio.2012.62.6.5; McManamay RA, 2015, ECOHYDROLOGY, V8, P460, DOI 10.1002/eco.1517; Menezes S, 2010, J APPL ECOL, V47, P711, DOI 10.1111/j.1365-2664.2010.01819.x; Milly PCD, 2008, SCIENCE, V319, P573, DOI 10.1126/science.1151915; Mims MC, 2013, FRESHWATER BIOL, V58, P50, DOI 10.1111/fwb.12037; Mims MC, 2012, ECOLOGY, V93, P35, DOI 10.1890/11-0370.1; Moss Brian, 2009, Freshwater Reviews, V2, P103, DOI 10.1608/FRJ-2.2.1; Mouchet MA, 2013, OIKOS, V122, P247, DOI 10.1111/j.1600-0706.2012.20411.x; Mouillot D, 2005, OECOLOGIA, V145, P345, DOI 10.1007/s00442-005-0151-z; Nelson JS, 1994, FISHES WORLD; Nilsson C, 2005, SCIENCE, V308, P405, DOI 10.1126/science.1107887; Nilsson C, 2000, BIOSCIENCE, V50, P783, DOI 10.1641/0006-3568(2000)050[0783:AORECB]2.0.CO;2; Olden JD, 2006, ECOL MONOGR, V76, P25, DOI 10.1890/05-0330; Olden JD, 2010, FRESHWATER BIOL, V55, P86, DOI 10.1111/j.1365-2427.2009.02179.x; Palmer MA, 2009, ENVIRON MANAGE, V44, P1053, DOI 10.1007/s00267-009-9329-1; Pelicice FM, 2015, FISH FISH, V16, P697, DOI 10.1111/faf.12089; Petchey OL, 2006, ECOL LETT, V9, P741, DOI 10.1111/j.1461-0248.2006.00924.x; Poff NL, 2007, P NATL ACAD SCI USA, V104, P5732, DOI 10.1073/pnas.0609812104; Poff NL, 2010, FRESHWATER BIOL, V55, P194, DOI 10.1111/j.1365-2427.2009.02272.x; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; POFF NL, 1990, ENVIRON MANAGE, V14, P629, DOI 10.1007/BF02394714; POFF NL, 1995, ECOLOGY, V76, P606, DOI 10.2307/1941217; Pont D, 2006, J APPL ECOL, V43, P70, DOI 10.1111/j.1365-2664.2005.01126.x; Prowse TD, 2006, ENVIRON MONIT ASSESS, V113, P167, DOI 10.1007/s10661-005-9080-x; Prowse T, 2011, AMBIO, V40, P63, DOI 10.1007/s13280-011-0217-6; Prowse TD, 2006, AMBIO, V35, P347, DOI 10.1579/0044-7447(2006)35[347:CCEOHO]2.0.CO;2; Prowse TD, 2009, AMBIO, V38, P282, DOI 10.1579/0044-7447-38.5.282; Pyron M, 2011, RIVER RES APPL, V27, P684, DOI 10.1002/rra.1383; Richter BD, 2006, RIVER RES APPL, V22, P297, DOI 10.1002/rra.892; Rivas AAF, 2012, NEW ADV CONTRIBUTION; Schindler DE, 2003, FRONT ECOL ENVIRON, V1, P31, DOI 10.2307/3867962; Schindler DW, 2001, CAN J FISH AQUAT SCI, V58, P18, DOI 10.1139/cjfas-58-1-18; Solomon S, 2007, CLIMATE CHANGE 2007: THE PHYSICAL SCIENCE BASIS, P19; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; Statzner B, 2001, ANNU REV ENTOMOL, V46, P291, DOI 10.1146/annurev.ento.46.1.291; Townsend C, 1994, FRESHWATER BIOL, P265; Van Looy K, 2014, ECOL MODEL, V273, P228, DOI 10.1016/j.ecolmodel.2013.11.010; Verberk WCEP, 2013, FRESHW SCI, V32, P531, DOI 10.1899/12-092.1; Vorosmarty CJ, 2000, SCIENCE, V289, P284, DOI 10.1126/science.289.5477.284; Walters C, 1997, CONSERV ECOL; Webb JA, 2013, FRESHWATER BIOL, V58, P2439, DOI 10.1111/fwb.12234; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Wohl E, 2012, INT J SEDIMENT RES, V27, P271, DOI 10.1016/S1001-6279(12)60035-3; Woodward G, 2010, PHILOS T R SOC B, V365, P2093, DOI 10.1098/rstb.2010.0055; Wright JP, 2006, ECOL LETT, V9, P111, DOI 10.1111/j.1461-0248.2005.00850.x; Wrona FJ, 2006, AMBIO, V35, P359, DOI 10.1579/0044-7447(2006)35[359:CCEOAB]2.0.CO;2 83 0 0 6 40 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0960-3166 1573-5184 REV FISH BIOL FISHER Rev. Fish. Biol. Fish. MAR 2017 27 1 31 42 10.1007/s11160-016-9446-x 12 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology EL1JA WOS:000394375300002 2018-11-22 J Augspurger, JM; Warburton, M; Closs, GP Augspurger, Jason M.; Warburton, Manna; Closs, Gerard P. Life-history plasticity in amphidromous and catadromous fishes: a continuum of strategies REVIEWS IN FISH BIOLOGY AND FISHERIES English Review Amphidromy; Catadromy; Life-history plasticity; Diadromy; Migration OTOLITH SRCA RATIOS; FRESH-WATER GOBY; TELEOSTEI GOBIOIDEI SICYDIINAE; GRAYLING PROTOTROCTES-MARAENA; GALAXIAS-MACULATUS JENYNS; SOUTH-WESTERN AUSTRALIA; NEW-ZEALAND; LARVAL DEVELOPMENT; PARTIAL MIGRATION; RHINOGOBIUS SP Plastic life-history strategies in diadromous fishes have long been acknowledged but have often been viewed as anomalies. Until recently, techniques were lacking to investigate the prevalence and variety of life-history strategies. However, recent technical advances, such as otolith trace element and stable isotope analyses, have provided insights into the life-histories of migratory fish, often revealing considerable plasticity. Reviews of anadromy and catadromy examined the extent of plasticity in these life-histories; however amphidromy has not been reviewed. Amphidromy, the most widespread diadromous life-history (273 + sp.), consists of two types: freshwater amphidromy, where fish rear in the ocean as larvae and return to freshwater as juveniles for growth and reproduction, and marine amphidromy, where fish utilize the marine environment for larval growth, enter freshwater for a short time, and return to the marine environment for further growth and spawning. In this review, a detailed taxonomic examination of plasticity in amphidromous fishes is utilized to determine its prevalence and ecological role. Our results indicate plasticity, as evidenced by variable use of fresh or marine environments for key life-history stages, is present on both evolutionary and ecological scales in most families of amphidromous fishes. Such variability indicates amphidromy is not necessarily a diadromous migration, but is better viewed as a spatially extensive benthic-pelagic migration. Further, adult downstream migration by amphidromous fishes parallels catadromy, suggesting a life-history continuum linking fluvial, amphidromous, catadromous, and oceanadromous life-histories. The role of egg-size/fecundity tradeoffs, migration, salinity, and landscape are discussed in the context of benthic-pelagic centered life-histories. [Augspurger, Jason M.; Warburton, Manna; Closs, Gerard P.] Univ Otago, Dept Zool, POB 56, Dunedin 9054, New Zealand Augspurger, JM (reprint author), Univ Otago, Dept Zool, POB 56, Dunedin 9054, New Zealand. augja533@student.otago.ac.nz University of Otago MW initially conceived the concept of a landscape-mediated amphidromy-catadromy continuum during discussions with GPC. During the production of this review, the same connections were later made by JMA resulting in further concept refinement by all three authors and the conclusions presented in this review. We would like to thank Matt Jarvis and Mark Kaemingk for providing valuable comments on early drafts of this manuscript. Funding for this study was provided by the University of Otago; JMA* and MW were funded by the University of Otago Doctoral Scholarships. Alerstam T, 2003, OIKOS, V103, P247, DOI 10.1034/j.1600-0706.2003.12559.x; Baker CF, 2003, NEW ZEAL J MAR FRESH, V37, P291, DOI 10.1080/00288330.2003.9517167; Barriga JP, 2007, J APPL ICHTHYOL, V23, P128, DOI 10.1111/j.1439-0426.2006.00820.x; Brehmer P, 2011, ESTUAR COAST, V34, P739, DOI 10.1007/s12237-011-9409-3; Chapman A, 2009, NEW ZEAL J MAR FRESH, V43, P563, DOI 10.1080/00288330909510022; Chapman BB, 2012, J FISH BIOL, V81, P456, DOI 10.1111/j.1095-8649.2012.03342.x; Chapman BB, 2012, J FISH BIOL, V81, P479, DOI 10.1111/j.1095-8649.2012.03349.x; Close PG, 2014, AUST J ZOOL, V62, P175, DOI 10.1071/ZO14004; Closs GP, 2013, FRESHWATER BIOL, V58, P1162, DOI 10.1111/fwb.12116; Closs GP, 2003, NEW ZEAL J MAR FRESH, V37, P301, DOI 10.1080/00288330.2003.9517168; Closs GP, 2016, INTRO FISH MIGRATION; Crook DA, 2006, J FISH BIOL, V69, P1330, DOI 10.1111/j.1095-8649.2006.01191.x; Crook DA, 2008, MAR FRESHWATER RES, V59, P638, DOI 10.1071/MF07238; Daverat F, 2006, MAR ECOL PROG SER, V308, P231, DOI 10.3354/meps308231; David B, 2004, DEP CONSERV SCI INT, V160; Dennenmoser S, 2014, BIOL J LINN SOC, V113, P943, DOI 10.1111/bij.12384; Dingle H, 2007, BIOSCIENCE, V57, P113, DOI 10.1641/B570206; Dodson JJ, 2013, BIOL REV, V88, P602, DOI 10.1111/brv.12019; Ellien C, 2011, CYBIUM, V35, P381; Eschmeyer W. N., 2015, CATALOG FISHES GENER; Feutry P, 2013, AM NAT, V181, P52, DOI 10.1086/668593; Feutry P, 2012, AQUAT BIOL, V15, P195, DOI 10.3354/ab00423; Feutry P, 2011, ECOL FRESHW FISH, V20, P636, DOI 10.1111/j.1600-0633.2011.00514.x; Fitzsimons JM, 2002, ENVIRON BIOL FISH, V65, P123; Froese R, 2015, FISHBASE, V2014; Goto A, 2006, J FISH BIOL, V68, P1731, DOI 10.1111/j.1095-8649.2006.01040.x; GOTO A, 1986, JPN J ICHTHYOL, V32, P421; Goto A, 2002, ICHTHYOL RES, V49, P318, DOI 10.1007/s102280200047; Goto A, 2003, ICHTHYOL RES, V50, P67, DOI 10.1007/s102280300009; Goto A, 2015, ENVIRON BIOL FISH, V98, P307, DOI 10.1007/s10641-014-0262-7; Guelinckx J, 2006, ESTUAR COAST SHELF S, V66, P612, DOI 10.1016/j.ecss.2005.11.007; Hammer MP, 2007, MAR FRESHWATER RES, V58, P327, DOI 10.1071/MF05258; Hicks A, 2010, MAR FRESHWATER RES, V61, P1252, DOI 10.1071/MF10011; Hicks AS, 2010, J EXP MAR BIOL ECOL, V394, P86, DOI 10.1016/j.jembe.2010.07.018; Hicks AS, 2012, FACULTATIVE AMPHIDRO; Hogan JD, 2014, ECOLOGY, V95, P2397, DOI 10.1890/13-0576.1; Huey JA, 2014, FRESHWATER BIOL, V59, P1672, DOI 10.1111/fwb.12373; Hughes JM, 2014, MOL ECOL, V23, P1000, DOI 10.1111/mec.12661; Humphries P, 2000, REGUL RIVER, V16, P421, DOI 10.1002/1099-1646(200009/10)16:5<421::AID-RRR594>3.0.CO;2-4; Iguchi K, 1999, J FISH BIOL, V54, P705, DOI 10.1006/jfbi.1998.0909; Iida M, 2010, J EXP MAR BIOL ECOL, V383, P17, DOI 10.1016/j.jembe.2009.11.006; Jarvis MG, 2015, NEW ZEAL J MAR FRESH, V49, P439, DOI 10.1080/00288330.2015.1072569; Jellyman DJ, 2000, NEW ZEAL J MAR FRESH, V34, P523, DOI 10.1080/00288330.2000.9516954; JONSSON B, 1993, REV FISH BIOL FISHER, V3, P348, DOI 10.1007/BF00043384; Joy MK, 2004, FRESHWATER BIOL, V49, P1036, DOI 10.1111/j.1365-2427.2004.01248.x; Kano Y, 2014, ICHTHYOL RES, V61, P305, DOI 10.1007/s10228-014-0400-4; Kawakami T, 2011, CYBIUM, V35, P337; Kawanabi H, 2001, FRESHWATER FISHES JA; Keith P, 2006, CYBIUM, V30, P139; Keith P, 2003, J FISH BIOL, V63, P831, DOI 10.1046/j.1095-8649.2003.00197.x; Keith P, 2012, Biology of Gobies, P243; Keith P, 2014, CYBIUM, V38, P173; Keith P, 2014, CYBIUM, V38, P133; Keith P, 2011, J NAT HIST, V45, P2725, DOI 10.1080/00222933.2011.602479; Kido MH, 1992, P NEW DIR RES MAN CO, P142; King AJ, 2013, ECOLOGY AUSTR FRESHW; Kondo M, 2013, MAR FRESHWATER RES, V64, P249, DOI 10.1071/MF12234; Koster WM, 2013, MAR FRESHWATER RES, V64, P31, DOI 10.1071/MF12196; LACK D, 1968, OIKOS, V19, P1, DOI 10.2307/3564725; Larson HK, 2010, ICHTHYOL EXPLOR FRES, V21, P123; Levin LA, 2006, INTEGR COMP BIOL, V46, P282, DOI 10.1093/icb/024; Lindstrom DP, 2012, COPEIA, P293, DOI 10.1643/CI-11-027; Ling N, 2001, J FISH BIOL, V59, P209, DOI 10.1006/jfbi.2001.1768; Lord C, 2011, J FISH BIOL, V79, P1304, DOI 10.1111/j.1095-8649.2011.03112.x; McAllister DE, 1961, B NATL MUSEUM CANADA, V172, P66; McCullough DE, 2015, HYDROBIOLOGIA, V757, P21, DOI 10.1007/s10750-015-2179-3; McDowall RM, 2007, FISH FISH, V8, P1, DOI 10.1111/j.1467-2979.2007.00232.x; McDowall RM, 2010, REV FISH BIOL FISHER, V20, P87, DOI 10.1007/s11160-009-9125-2; McDowall RM, 2009, REV FISH BIOL FISHER, V19, P1, DOI 10.1007/s11160-008-9085-y; McDowall R. M, 1990, NZ FRESHWATER FISHES; McDowall R. M., 1988, DIADROMY FISHES MIGR; MCDOWALL RM, 1971, J ROY SOC NEW ZEAL, V1, P31, DOI 10.1080/03036758.1971.10419354; McDowall RM, 2000, ENVIRON BIOL FISH, V58, P119, DOI 10.1023/A:1007666014842; MCDOWALL RM, 1992, COPEIA, P248, DOI 10.2307/1446563; McDowall RM, 1997, REV FISH BIOL FISHER, V7, P443, DOI 10.1023/A:1018404331601; McDowall RM, 2005, FALKLAND ISLANDS FRE; Miles NG, 2014, MAR FRESHWATER RES, V65, P12, DOI 10.1071/MF12340; Miller MJ, 2016, INTRO FISH MIGRATION; Morais P, 2011, J SEA RES, V65, P235, DOI 10.1016/j.seares.2010.11.001; Morgan DL, 2003, ENVIRON BIOL FISH, V66, P155, DOI 10.1023/A:1023645506913; Murphy Cheryl A., 2007, Bishop Museum Bulletin in Cultural and Environmental Studies, V3, P63; MYERS GS, 1949, COPEIA, P89; Nordlie FG, 2012, REV FISH BIOL FISHER, V22, P189, DOI 10.1007/s11160-011-9229-3; Ohara K, 2009, ICHTHYOL RES, V56, P373, DOI 10.1007/s10228-009-0110-5; OVENDEN JR, 1993, HEREDITY, V70, P223, DOI 10.1038/hdy.1993.33; Patzner RA, 2011, BIOL GOBIES; POLLARD DA, 1972, AUST J MAR FRESH RES, V23, P17; Potter IC, 2015, FISH FISH, V16, P230, DOI 10.1111/faf.12050; Radtke RL, 1996, T AM FISH SOC, V125, P613, DOI 10.1577/1548-8659(1996)125<0613:EOAMLS>2.3.CO;2; Riede K, 2004, 808050811 FED AG NAT; SCRIMGEOUR GJ, 1989, NEW ZEAL J MAR FRESH, V23, P19, DOI 10.1080/00288330.1989.9516336; Shen KN, 2008, J FISH BIOL, V73, P2497, DOI 10.1111/j.1095-8649.2008.02102.x; Shen KN, 1998, ZOOL STUD, V37, P322; Shiao JC, 2015, ENVIRON BIOL FISH, V98, P933, DOI 10.1007/s10641-014-0329-5; Sih A, 2004, Q REV BIOL, V79, P241, DOI 10.1086/422893; Sih A, 2012, ECOL LETT, V15, P278, DOI 10.1111/j.1461-0248.2011.01731.x; Smith WE, 2014, J FISH BIOL, V84, P913, DOI 10.1111/jfb.12317; Sorensen PW, 2005, ENVIRON BIOL FISH, V74, P31, DOI 10.1007/s10641-005-3212-6; Swearer SE, 1999, NATURE, V402, P799, DOI 10.1038/45533; Tabouret H, 2011, AQUAT LIVING RESOUR, V24, P369, DOI 10.1051/alr/2011137; Taillebois L, 2014, MOL PHYLOGENET EVOL, V70, P260, DOI 10.1016/j.ympev.2013.09.026; Takeshima H, 2009, ZOOL SCI, V26, P536, DOI 10.2108/zsj.26.536; Taylor MJ, 2000, HYDROBIOLOGIA, V421, P41, DOI 10.1023/A:1003965116777; TSUKAMOTO K, 1992, GEOJ LIB, V21, P145; Tsukamoto K, 1998, NATURE, V396, P635, DOI 10.1038/25264; Tsunagawa T, 2011, ECOL FRESHW FISH, V20, P33, DOI 10.1111/j.1600-0633.2010.00453.x; Tsunagawa T, 2008, J FISH BIOL, V73, P2421, DOI 10.1111/j.1095-8649.2008.02089.x; Tsunagawa T, 2010, ICHTHYOL RES, V57, P10, DOI 10.1007/s10228-009-0115-0; Tsunagawa T, 2009, AQUAT BIOL, V5, P187, DOI 10.3354/ab00153; Valade P, 2009, CYBIUM, V33, P309; Walsh CT, 2012, ECOL FRESHW FISH, V21, P145, DOI 10.1111/j.1600-0633.2011.00534.x; Walsh CT, 2011, ENVIRON BIOL FISH, V91, P471, DOI 10.1007/s10641-011-9807-1; Ward FJ, 2005, J FISH BIOL, V66, P1, DOI [10.1111/j.0022-1112.2005.00569.x, 10.1111/j.1095-8649.2004.00569.x]; WARD FJ, 1989, NEW ZEAL J MAR FRESH, V23, P345, DOI 10.1080/00288330.1989.9516371; Watanabe S, 2014, REV FISH BIOL FISHER, V24, P1, DOI 10.1007/s11160-013-9316-8; Waters JM, 2010, SYST BIOL, V59, P504, DOI 10.1093/sysbio/syq031; Wylie MJ, 2016, AQUAC RES, V47, P1472, DOI 10.1111/are.12605; Yamasaki YY, 2015, MOL PHYLOGENET EVOL, V90, P20, DOI 10.1016/j.ympev.2015.04.012 118 3 3 4 47 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0960-3166 1573-5184 REV FISH BIOL FISHER Rev. Fish. Biol. Fish. MAR 2017 27 1 177 192 10.1007/s11160-016-9463-9 16 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology EL1JA WOS:000394375300008 2018-11-22 J Tate, AT Tate, Ann T. A general model for the influence of immune priming on disease prevalence OIKOS English Article RESISTANCE; INSECT; INFECTION; VIRULENCE; PATHOGEN; TRANSMISSION; POPULATION; TOLERANCE; EVOLUTION; DYNAMICS Invertebrate immune priming, and other forms of innate immune memory in bacteria, plants, and mammals, modulate the post-infection resistance, tolerance, and survival phenotypes of individuals previously exposed to microbes. By influencing the probability of both transmission and disease-induced mortality, priming is likely to have a significant impact on disease dynamics. Two alternative models have been proposed as frameworks for the role of priming in infected populations, but the differences in their underlying key assumptions yield very different predictions for the effect of priming on disease dynamics. By examining these assumptions from the lens of within-host dynamics, the model presented in this paper demonstrates that priming systems can be characterized along a continuous dose-response gradient that unites these disparate frameworks. Moreover, it facilitates the incorporation of different kinds of immunological plasticity mechanisms, as well as the exposure probability and transmission characteristics of parasites. Simulating the interaction of these thresholds with the diversity of parasite life history strategies and distributions predicts that priming may actually inflate disease prevalence under certain conditions. Thus, priming of innate immune systems may act analogously to leaky vaccines and drive parasite virulence evolution. The results underscore the need for experimental studies that determine dose response curves for the both the probability of becoming primed following primary parasite exposure and shifts in resistance and tolerance in infected primed hosts. This framework is applicable to a variety of systems that show immunological memory. [Tate, Ann T.] Univ Houston, Dept Biol & Biochem, Houston, TX 77004 USA Tate, AT (reprint author), Univ Houston, Dept Biol & Biochem, Houston, TX 77004 USA. attate@central.uh.edu Tate, Ann/0000-0001-6601-0234 USDA National Institute of Food and Agriculture [2014-67012-22278] This work was supported by the Food Research Initiative Competitive Grant no. 2014-67012-22278 from the USDA National Institute of Food and Agriculture. ANDERSON RM, 1979, NATURE, V280, P361, DOI 10.1038/280361a0; Arino J, 2004, DISCRETE CONT DYN-B, V4, P479; Armitage SAO, 2003, J EVOLUTION BIOL, V16, P1038, DOI 10.1046/j.1420-9101.2003.00551.x; Ben-Ami F, 2010, AM NAT, V175, P106, DOI 10.1086/648672; Best A, 2013, J R SOC INTERFACE, V10, DOI 10.1098/rsif.2012.0887; Boots M, 1999, J THEOR BIOL, V201, P13, DOI 10.1006/jtbi.1999.1009; Cheng SC, 2014, SCIENCE, V345, P1579, DOI 10.1126/science.1250684; Dhooge A, 2003, ACM T MATH SOFTWARE, V29, P141, DOI 10.1145/779359.779362; Duneau D, 2011, BMC BIOL, V9, DOI 10.1186/1741-7007-9-11; DWYER G, 1991, ECOLOGY, V72, P559, DOI 10.2307/2937196; Ebert D, 1997, P ROY SOC B-BIOL SCI, V264, P985, DOI 10.1098/rspb.1997.0136; Gandon S, 2001, NATURE, V414, P751, DOI 10.1038/414751a; GOULSON D, 1995, ECOLOGY, V76, P392, DOI 10.2307/1941198; Greenhalgh D, 2000, MATH BIOSCI, V165, P1, DOI 10.1016/S0025-5564(00)00012-2; Howick VM, 2014, BMC EVOL BIOL, V14, DOI 10.1186/1471-2148-14-56; Levin BR, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003312; Lopez JH, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0454; Luna E, 2012, PLANT PHYSIOL, V158, P844, DOI 10.1104/pp.111.187468; McKean K. A., 2011, COSTS IMMUNITY EVOLU; McTaggart SJ, 2012, BIOL LETTERS, V8, P972, DOI 10.1098/rsbl.2012.0581; Pauwels K, 2011, BIOL LETTERS, V7, P156, DOI 10.1098/rsbl.2010.0634; Pham LN, 2007, PLOS PATHOG, V3, DOI 10.1371/journal.ppat.0030026; Raymond B, 2009, BIOL LETTERS, V5, P218, DOI 10.1098/rsbl.2008.0610; Read AF, 2015, PLOS BIOL, V13, DOI 10.1371/journal.pbio.1002198; Rodrigues J, 2010, SCIENCE, V329, P1353, DOI 10.1126/science.1190689; Roth O, 2009, P R SOC B, V276, P145, DOI 10.1098/rspb.2008.1157; Roth O, 2009, DEV COMP IMMUNOL, V33, P1151, DOI 10.1016/j.dci.2009.04.005; Sadd BM, 2007, CURR BIOL, V17, pR1046, DOI 10.1016/j.cub.2007.11.007; Tate AT, 2015, FUNCT ECOL, V29, P1059, DOI 10.1111/1365-2435.12411; Tate AT, 2012, OIKOS, V121, P1083, DOI 10.1111/j.1600-0706.2011.19725.x; Tidbury H.J., 2010, P ROYAL SOC B, V278, P871, DOI [10.1098/rspb.2010.1517, DOI 10.1098/RSPB.2010.1517]; Tidbury HJ, 2012, P ROY SOC B-BIOL SCI, V279, P4505, DOI 10.1098/rspb.2012.1841; Trauer-Kizilelma U, 2015, INSECT BIOCHEM MOLEC, V64, P91, DOI 10.1016/j.ibmb.2015.08.003; Zanchi C, 2012, P ROY SOC B-BIOL SCI, V279, P3223, DOI 10.1098/rspb.2012.0493; Ziauddin J, 2012, CELL HOST MICROBE, V12, P394, DOI 10.1016/j.chom.2012.10.004 35 5 5 1 12 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos MAR 2017 126 3 350 360 10.1111/oik.03274 11 Ecology Environmental Sciences & Ecology EM0WC WOS:000395037400005 2018-11-22 J Gallagher, C; Doropoulos, C Gallagher, Clare; Doropoulos, Christopher Spatial refugia mediate juvenile coral survival during coral-predator interactions CORAL REEFS English Article Corallivory; Crevice; Microhabitat; Spatial refugia; Predation; Juvenile LIFE-HISTORY STRATEGIES; CLIMATE-CHANGE; PHASE-SHIFTS; PREY REFUGES; REEF; SETTLEMENT; COMMUNITIES; SURVIVORSHIP; PARROTFISHES; DIVERSITY Coral recruitment and juvenile growth are essential processes for coral population maintenance and recovery. A growing body of research has evaluated the influence of reef microstructure on coral settlement and post-settlement survival, showing that physical refugia enhance recruitment. These studies have evaluated coral recruit morality from competition with macroalgae and indirect predation by grazing organisms, but the impact of direct predation by corallivorous piscine species on juvenile corals and how this interacts with reef microstructure is relatively unknown. This study examined whether refugia provided by micro-crevices enhance juvenile coral survival from corallivory. Juvenile corals from two different functional groups, the slow-growing massive Porites lobata and fast-growing branching Pocillopora damicornis, with average nubbin sizes of 1.4 cm x 0.3 cm and 0.5 cm x 1.0 cm (diameter x height), respectively, were attached to experimental tiles using small (1.44 cm(3)) and large (8.0 cm(3)) crevice sizes and were monitored for 29 d on a forereef in Palau. Full crevices (four sided) enhanced coral survival compared to exposed microhabitats in both coral taxa, but crevice size did not alter survival rates. Corallivores targeted recruits within crevices regardless of crevice size; dominant predators included small triggerfish (Balistidae), butterflyfish (Chaetodon), and wrasse (Cheilinus). Overall, Pocillopora suffered much higher rates of mortality than Porites. All Pocillopora were consumed by day 8 of the experiment, but mortality was significantly delayed in full crevices compared to exposed and partial crevice (three sided) microhabitats. In contrast, Por. lobata located in all microhabitats survived the entire experiment up to 29 d, with high survival in full (> 90%) and partial crevices (70%), but only 28% survival in exposed microhabitats. These findings show the importance of crevices as spatial refugia from predators for juvenile corals and highlight the importance of structural complexity for juvenile coral growth and survival that enhances reef recovery. [Gallagher, Clare] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA; [Gallagher, Clare; Doropoulos, Christopher] Palau Int Coral Reef Ctr, Koror 96940, Palau; [Doropoulos, Christopher] Univ Queensland, Sch Biol Sci, Marine Spatial Ecol Lab, St Lucia, Qld 4072, Australia; [Doropoulos, Christopher] CSIRO Oceans & Atmosphere, Dutton Pk, Qld 4102, Australia Gallagher, C (reprint author), Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA.; Gallagher, C; Doropoulos, C (reprint author), Palau Int Coral Reef Ctr, Koror 96940, Palau.; Doropoulos, C (reprint author), Univ Queensland, Sch Biol Sci, Marine Spatial Ecol Lab, St Lucia, Qld 4072, Australia.; Doropoulos, C (reprint author), CSIRO Oceans & Atmosphere, Dutton Pk, Qld 4102, Australia. cgalla44@gmail.com; christopher.doropoulos@csiro.au Doropoulos, Christopher/B-7249-2016 Doropoulos, Christopher/0000-0001-8038-2771 Department of Ecology and Evolutionary Biology at Princeton University; Office of the Dean of the College at Princeton University; Australian Endeavour Award Postdoctoral Fellowship; Marine Spatial Ecology Lab at The University of Queensland This study was funded by grants to CG from the Department of Ecology and Evolutionary Biology and the Office of the Dean of the College, both at Princeton University, and to CD through an Australian Endeavour Award Postdoctoral Fellowship. We thank Yimnang Golbuu and all the staff of PICRC for their support, along with the Marine Spatial Ecology Lab at The University of Queensland for supporting this collaboration. Mirta Zupan provided valuable field assistance and Professor Stephen Pacala provided valuable guidance. We thank Alice Rogers for reviewing the manuscript prior to submission, and Simon Brandl, Kazuhiko Sakai, and one anonymous reviewer whose efforts greatly improved the manuscript through the review process. Aeby GS, 2006, MAR ECOL PROG SER, V318, P103, DOI 10.3354/meps318103; Ainsworth TD, 2009, AQUAT BIOL, V4, P289, DOI 10.3354/ab00102; Ayre DJ, 2004, MAR ECOL PROG SER, V277, P95, DOI 10.3354/meps277095; BAK RPM, 1979, MAR BIOL, V54, P341, DOI 10.1007/BF00395440; Bean K, 2002, MAR ECOL PROG SER, V233, P263, DOI 10.3354/meps233263; Bellwood David R., 1994, Records of the Australian Museum Supplement, V20, P1; BELLWOOD DR, 1990, ENVIRON BIOL FISH, V28, P189, DOI 10.1007/BF00751035; Bellwood DR, 2004, NATURE, V429, P827, DOI 10.1038/nature02691; Bozec YM, 2015, GLOBAL CHANGE BIOL, V21, P223, DOI 10.1111/gcb.12698; Brandl SJ, 2014, CORAL REEFS, V33, P421, DOI 10.1007/s00338-013-1110-5; Brandl SJ, 2016, OECOLOGIA, V182, P203, DOI 10.1007/s00442-016-3643-0; Brandl SJ, 2014, J ANIM ECOL, V83, P661, DOI 10.1111/1365-2656.12171; BROCK RE, 1979, MAR BIOL, V51, P381, DOI 10.1007/BF00389216; CARLETON JH, 1987, B MAR SCI, V40, P85; Casey JM, 2015, SCI REP-UK, V5, DOI 10.1038/srep11903; Christiansen NA, 2009, CORAL REEFS, V28, P47, DOI 10.1007/s00338-008-0429-9; Cole AJ, 2011, CORAL REEFS, V30, P85, DOI 10.1007/s00338-010-0674-6; Cole AJ, 2008, FISH FISH, V9, P286, DOI 10.1111/j.1467-2979.2008.00290.x; Darling ES, 2012, ECOL LETT, V15, P1378, DOI 10.1111/j.1461-0248.2012.01861.x; Davies SW, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0072830; Doropoulos C, 2016, ECOL MONOGR, V86, P20, DOI 10.1890/15-0668.1; Doropoulos C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0128535; Doropoulos C, 2014, CORAL REEFS, V33, P613, DOI 10.1007/s00338-014-1149-y; Doropoulos C, 2012, ECOLOGY, V93, P2131, DOI 10.1890/12-0495.1; Edmunds PJ, 2014, J EXP MAR BIOL ECOL, V454, P78, DOI 10.1016/j.jembe.2014.02.009; Edmunds PJ, 2004, MAR ECOL PROG SER, V278, P115, DOI 10.3354/meps278115; Fox RJ, 2013, CORAL REEFS, V32, P13, DOI 10.1007/s00338-012-0945-5; Gibbs DA, 2015, PEERJ, V3, DOI 10.7717/peerj.1440; Gochfeld DJ, 2004, MAR ECOL PROG SER, V267, P145, DOI 10.3354/meps267145; Gouezo M, 2015, MAR ECOL PROG SER, V540, P73, DOI 10.3354/meps11518; HARRIOTT VJ, 1985, MAR ECOL PROG SER, V21, P81, DOI 10.3354/meps021081; HIXON MA, 1993, ECOL MONOGR, V63, P77, DOI 10.2307/2937124; Hoey AS, 2008, CORAL REEFS, V27, P37, DOI 10.1007/s00338-007-0287-x; Hughes TP, 2007, CURR BIOL, V17, P360, DOI 10.1016/j.cub.2006.12.049; JACKSON JBC, 1971, SCIENCE, V173, P623, DOI 10.1126/science.173.3997.623; JACKSON JBC, 1977, AM NAT, V111, P743, DOI 10.1086/283203; Jayewardene D, 2009, CORAL REEFS, V28, P499, DOI 10.1007/s00338-009-0475-y; KAPLAN EL, 1958, J AM STAT ASSOC, V53, P457, DOI 10.2307/2281868; Konstantinidis P, 2012, ACTA ZOOL-STOCKHOLM, V93, P351, DOI 10.1111/j.1463-6395.2011.00509.x; Lenihan HS, 2011, ECOLOGY, V92, P1959, DOI 10.1890/11-0108.1; LUBCHENCO J, 1983, ECOLOGY, V64, P1116, DOI 10.2307/1937822; MEESTERS EH, 1994, MAR ECOL PROG SER, V112, P119, DOI 10.3354/meps112119; MENGE BA, 1981, ECOL MONOGR, V51, P429, DOI 10.2307/2937323; Miller MW, 2000, CORAL REEFS, V19, P115, DOI 10.1007/s003380000079; Mumby PJ, 2016, OIKOS, V125, P644, DOI 10.1111/oik.02673; Mumby PJ, 2009, CORAL REEFS, V28, P761, DOI 10.1007/s00338-009-0506-8; Mumby PJ, 2006, ECOL APPL, V16, P747, DOI 10.1890/1051-0761(2006)016[0747:TIOEGS]2.0.CO;2; Munday PL, 1997, MAR ECOL PROG SER, V152, P227, DOI 10.3354/meps152227; NEUDECKER S, 1979, ECOLOGY, V60, P666, DOI 10.2307/1936602; Nozawa Y, 2012, J EXP MAR BIOL ECOL, V413, P145, DOI 10.1016/j.jembe.2011.12.008; Nozawa Y, 2011, ZOOL STUD, V50, P53; Nozawa Y, 2008, J EXP MAR BIOL ECOL, V367, P127, DOI 10.1016/j.jembe.2008.09.004; Penin L, 2010, MAR ECOL PROG SER, V408, P55, DOI 10.3354/meps08554; Petersen D, 2005, MAR BIOL, V146, P937, DOI 10.1007/s00227-004-1503-7; Poray AK, 2014, CORAL REEFS, V33, P67, DOI 10.1007/s00338-013-1104-3; R Development Core Team, 2015, R LANG ENV STAT COMP; Rocker MM, 2015, MAR BIODIVERS, V45, P321, DOI 10.1007/s12526-014-0239-y; Rotjan RD, 2008, MAR ECOL PROG SER, V367, P73, DOI 10.3354/meps07531; Steneck RS, 2014, MAR ECOL PROG SER, V506, P115, DOI 10.3354/meps10764; Therneau T, 2012, COXME MIXED EFFECTS; Trapon ML, 2013, CORAL REEFS, V32, P1051, DOI 10.1007/s00338-013-1059-4; Trapon ML, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0057788; Venables W. N, 2002, MODERN APPL STAT S; Venera-Ponton DE, 2011, MAR ECOL PROG SER, V421, P109, DOI 10.3354/meps08869; Walters LJ, 1996, MAR ECOL PROG SER, V137, P161, DOI 10.3354/meps137161; WESTNEAT MW, 1994, ZOOMORPHOLOGY, V114, P103, DOI 10.1007/BF00396643; Whalan S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0117675; Wolf AT, 2013, CORAL REEFS, V32, P227, DOI 10.1007/s00338-012-0969-x; Zuur A. F., 2009, MIXED EFFECTS MODELS 69 3 3 8 27 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0722-4028 1432-0975 CORAL REEFS Coral Reefs MAR 2017 36 1 51 61 10.1007/s00338-016-1518-9 11 Marine & Freshwater Biology Marine & Freshwater Biology EL0AY WOS:000394286300005 2018-11-22 J Paez, DJ; Dodson, JJ Paez, David J.; Dodson, Julian J. Environment-specific heritabilities and maternal effects for body size, morphology and survival in juvenile Atlantic salmon (Salmo salar): evidence from a field experiment ENVIRONMENTAL BIOLOGY OF FISHES English Article Additive genetic variation; Water flow; Rearing habitats; Juvenile salmon; G x E interactions LIFE-HISTORY STRATEGIES; NATURAL-POPULATIONS; GENETIC-VARIATION; SALVELINUS-FONTINALIS; QUANTITATIVE GENETICS; PHENOTYPIC PLASTICITY; REPRODUCTIVE TACTICS; SELECTIVE MORTALITY; HERITABLE VARIATION; FORAGING BEHAVIOR Environmental heterogeneity may strongly influence the amount of heritable variation in phenotypic traits and thus affect evolutionary responses to natural selection. However, the question of whether heritabilities change across environmental gradients has received little empirical attention, particularly for wild vertebrates. We tested whether levels of heritable variation in body size, morphology and survival of juvenile Atlantic salmon (Salmo salar) differed between water flow regimes. We exposed individuals of known genetic relationships to rearing habitats characterized by slow and rapid water flows in a field experiment. We found that the additive genetic variation in body size tended to be higher for individuals reared under rapid water flows. By contrast, the heritabilities of other morphological traits were not consistently higher in either water flow. We also found that salmon grew faster under rapid water flows but also suffered high mortality rates with little heritable variation explaining the variation in survival. However, part of the variation in survival in the rapid water flow was explained by maternal effects. Our results suggest a strong tendency for heritable variation, particularly in body size to be revealed only under specific environmental conditions, such as those that allow for rapid growth. We provide support for the hypothesis that genotype by environment interactions have important effects on the adaptive potential of phenotypes in nature. [Paez, David J.] Montana State Univ, Dept Microbiol & Immunol, Lewis Hall,211 Montana Hall, Bozeman, MT 59717 USA; [Dodson, Julian J.] Univ Laval, Dept Biol, 1045 Ave Med, Quebec City, PQ, Canada Paez, DJ (reprint author), Montana State Univ, Dept Microbiol & Immunol, Lewis Hall,211 Montana Hall, Bozeman, MT 59717 USA. dpaezmc@gmail.com; julian.dodson@bio.ulaval.ca NSERC This study contributes towards the research programs of CIRSA and Quebec Ocean. Funding was provided by an NSERC strategic grant awarded to L. Bernatchez., J.J.D., and H. Guderley and by an NSERC Discovery grant awarded to J.J.D. This study was approaved by the ethics committee of Universite Laval and permits were obtained from the Ministere des Forets, de la Faune et des Parcs, Quebec. We thank A. Boivin, A. Moffett, O. Rossignol, Melissa Evans, C. Lavallee, Nicolas Allen-Demers, R. Pastis and LARSA for their valuable help. We declare no conflict of interests. Allan JD, 1995, PHYS FACTORS IMPORTA, P45; Atkinson G, 2004, RELATIVE ABUNDANCE J; Aubin-Horth N, 2005, EVOL ECOL RES, V7, P1171; Bailey MM, 2010, EVOL APPL, V3, P352, DOI 10.1111/j.1752-4571.2010.00126.x; BEACHAM TD, 1987, CAN J FISH AQUAT SCI, V44, P244, DOI 10.1139/f87-034; BEACHAM TD, 1985, CAN J FISH AQUAT SCI, V42, P312, DOI 10.1139/f85-040; Blanchet S, 2008, OECOLOGIA, V157, P93, DOI 10.1007/s00442-008-1044-8; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; Carlson SM, 2011, CAN J FISH AQUAT SCI, V68, P1579, DOI 10.1139/F2011-084; Charmantier A, 2005, P ROY SOC B-BIOL SCI, V272, P1415, DOI 10.1098/rspb.2005.3117; DeWitt TJ, 2004, PHENOTYPIC PLASTICIT; Dingemanse NJ, 2009, INDIVIDUAL EXPERIENC; Einum S, 2000, EVOLUTION, V54, P628, DOI 10.1111/j.0014-3820.2000.tb00064.x; Einum S, 1999, P ROY SOC B-BIOL SCI, V266, P2095, DOI 10.1098/rspb.1999.0893; ELLIOTT JM, 1989, J ANIM ECOL, V58, P987, DOI 10.2307/5137; Falconer D.S., 1996, INTRO QUANTITATIVE G; FAUSCH KD, 1984, CAN J ZOOL, V62, P441, DOI 10.1139/z84-067; FAUSCH KD, 1981, CAN J FISH AQUAT SCI, V38, P1220, DOI 10.1139/f81-164; Friars GW, 2010, TECH REP; Garant D, 2003, EVOLUTION, V57, P1133; Garant D, 2002, EVOL ECOL RES, V4, P537; GEBHARDTHENRICH SG, 1991, J EVOLUTION BIOL, V4, P341, DOI 10.1046/j.1420-9101.1991.4030341.x; GODIN JGJ, 1989, ANIM BEHAV, V37, P943, DOI 10.1016/0003-3472(89)90139-5; GOMULKIEWICZ R, 1992, EVOLUTION, V46, P390, DOI 10.1111/j.1558-5646.1992.tb02047.x; Good SP, 2001, CAN J FISH AQUAT SCI, V58, P1187, DOI 10.1139/cjfas-58-6-1187; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hedger RD, 2005, J FISH BIOL, V67, P1054, DOI 10.1111/j.1095-8649.2005.00808.x; Hoffmann AA, 1999, TRENDS ECOL EVOL, V14, P96, DOI 10.1016/S0169-5347(99)01595-5; Karin Meyer, 2007, Journal of Zhejiang University-Science B, V8, P815, DOI 10.1631/jzus.2007.B0815; Kruuk LEB, 2004, PHILOS T ROY SOC B, V359, P873, DOI 10.1098/rstb.2003.1437; Lynch M., 1998, GENETICS ANAL QUANTI, V1; Maze-Guilmo E, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2567; McCairns RJS, 2012, J EVOLUTION BIOL, V25, P1097, DOI 10.1111/j.1420-9101.2012.02496.x; McGuigan K, 2009, TRENDS ECOL EVOL, V24, P305, DOI 10.1016/j.tree.2009.02.001; Merila J, 2001, CURR ORNITHOL, V16, P179; Merila J, 1999, GENET RES, V73, P165, DOI 10.1017/S0016672398003656; Merila J, 1997, EVOLUTION, V51, P526, DOI 10.1111/j.1558-5646.1997.tb02440.x; METCALFE NB, 1992, J FISH BIOL, V41, P93, DOI 10.1111/j.1095-8649.1992.tb03871.x; METCALFE NB, 1995, ANIM BEHAV, V49, P431, DOI 10.1006/anbe.1995.0056; METCALFE NB, 1989, PROC R SOC SER B-BIO, V236, P7, DOI 10.1098/rspb.1989.0009; Morrissey MB, 2007, J EVOLUTION BIOL, V20, P2309, DOI 10.1111/j.1420-9101.2007.01412.x; Morrissey MB, 2011, ECOL FRESHW FISH, V20, P328, DOI 10.1111/j.1600-0633.2010.00445.x; Morrissey MB, 2011, EVOLUTION, V65, P1037, DOI 10.1111/j.1558-5646.2010.01200.x; Nislow KH, 1998, CAN J FISH AQUAT SCI, V55, P116, DOI 10.1139/cjfas-55-1-116; Paez DJ, 2010, J EVOLUTION BIOL, V23, P757, DOI 10.1111/j.1420-9101.2010.01941.x; Paez DJ, 2008, FRESHWATER BIOL, V53, P1544, DOI 10.1111/j.1365-2427.2008.01989.x; Pakkasmaa S, 2000, EVOL ECOL, V14, P721, DOI 10.1023/A:1011691810801; Peres-Neto PR, 2004, OECOLOGIA, V140, P36, DOI 10.1007/s00442-004-1562-y; Perez KO, 2010, EVOLUTION, V64, P2450, DOI 10.1111/j.1558-5646.2010.00994.x; Pettersson LB, 2000, P ROY SOC B-BIOL SCI, V267, P759, DOI 10.1098/rspb.2000.1068; R Core Team, 2012, R LANG ENV STAT COMP; REIST JD, 1985, CAN J ZOOL, V63, P1429, DOI 10.1139/z85-213; Roy ML, 2013, CAN J FISH AQUAT SCI, V70, P1082, DOI 10.1139/cjfas-2012-0274; Schlichting C, 1998, PHENOTYPIC EVOLUTION; Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089; Sgro CM, 1998, EVOLUTION, V52, P134, DOI 10.1111/j.1558-5646.1998.tb05146.x; Shaw RG, 2014, HEREDITY, V112, P13, DOI 10.1038/hdy.2013.42; Sogard SM, 1997, B MAR SCI, V60, P1129; Theriault V, 2007, J EVOLUTION BIOL, V20, P2266, DOI 10.1111/j.1420-9101.2007.01417.x; Theriault V, 2008, EVOL APPL, V1, P409, DOI 10.1111/j.1752-4571.2008.00022.x; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; Watters JV, 2003, BIOL CONSERV, V112, P435, DOI 10.1016/S0006-3207(02)00343-9; Wilson AJ, 2008, J EVOLUTION BIOL, V21, P647, DOI 10.1111/j.1420-9101.2008.01500.x; Wilson AJ, 2006, PLOS BIOL, V4, P1270, DOI 10.1371/journal.pbio.0040216; WITHLER RE, 1987, GENOME, V29, P839, DOI 10.1139/g87-143; Wood CW, 2015, EVOLUTION, V69, P2927, DOI 10.1111/evo.12795 66 0 0 2 18 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0378-1909 1573-5133 ENVIRON BIOL FISH Environ. Biol. Fishes MAR 2017 100 3 209 221 10.1007/s10641-016-0572-z 13 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology EL1CG WOS:000394357500002 2018-11-22 J van Noordwijk, CGE; Baeten, L; Turin, H; Heijerman, T; Alders, K; Boer, P; Mabelis, AA; Aukema, B; Noordam, A; Remke, E; Siepel, H; Berg, MP; Bonte, D van Noordwijk, C. G. E.; Baeten, Lander; Turin, Hans; Heijerman, Theodoor; Alders, Kees; Boer, Peter; Mabelis, A. A.; Aukema, Berend; Noordam, Aart; Remke, Eva; Siepel, Henk; Berg, Matty P.; Bonte, Dries 17 years of grassland management leads to parallel local and regional biodiversity shifts among a wide range of taxonomic groups BIODIVERSITY AND CONSERVATION English Article Beta-diversity; Insects; Arthropods; Plants; Conservation management; Trait PLANT-SPECIES COMPOSITION; LIFE-HISTORY STRATEGIES; LAND-USE INTENSITY; BIOTIC HOMOGENIZATION; ENVIRONMENTAL-CONDITIONS; SEMINATURAL GRASSLANDS; CALCAREOUS GRASSLANDS; LANDSCAPE STRUCTURE; TROPHIC RANK; HABITAT LOSS Conservation management is expected to increase local biodiversity, but uniform management may lead to biotic homogenization and diversity losses at the regional scale. We evaluated the effects of renewed grazing and cutting management carried out across a whole region, on the diversity of plants and seven arthropod groups. Changes in occurrence over 17 years of intensive calcareous grassland management were analysed at the species level, which gave insight into the exact species contributing to regional homogenization or differentiation. Reponses were compared between species differing in habitat affinity, dispersal ability, food specialisation and trophic level. Local species richness increased over the sampling period for true bugs and millipedes, while carabid beetles and weevils declined in local species richness. Species richness remained unchanged for plants, woodlice, ants and spiders. Regional diversity and compositional variation generally followed local patterns. Diversity shifts were only to a limited extent explained by species' habitat affinity, dispersal ability, trophic level and food specialisation. We conclude that implementation of relatively uniform conservation management across a region did not lead to uniform changes in local species composition. This is an encouraging result for conservation managers, as it shows that there is not necessarily a conflict of interest between local and regional conservation goals. Our study also demonstrates that shifts in diversity patterns differ markedly between taxonomic groups. Single traits provide only limited understanding of these differences. This highlights the need for a wide taxonomic scope when evaluating conservation management and demonstrates the need to understand the mechanisms underlying occurrence shifts. [van Noordwijk, C. G. E.; Siepel, Henk] Radboud Univ Nijmegen, Inst Water & Wetland Res, Dept Anim Ecol & Ecophysiol, Heijendaelseweg 135, NL-6525 AJ Nijmegen, Netherlands; [van Noordwijk, C. G. E.; Remke, Eva] Bargerveen Fdn, Toernooiveld 1, NL-6525 ED Nijmegen, Netherlands; [van Noordwijk, C. G. E.; Baeten, Lander; Bonte, Dries] Univ Ghent, Dept Biol, Terr Ecol Unit, KL Ledeganckstr 35, B-9000 Ghent, Belgium; [van Noordwijk, C. G. E.] Earthwatch Inst, Mayfield House,256 Banbury Rd, Oxford OX2 7DE, England; [Baeten, Lander] Univ Ghent, Dept Forest & Water Management, Forest & Nat Lab, Geraardsbergsesteenweg 267, B-9090 Gontrode, Belgium; [Turin, Hans; Heijerman, Theodoor; Alders, Kees] Loopkeverstichting SFOC, Esdoorndreef 29, NL-6871 LK Renkum, Netherlands; [Heijerman, Theodoor] Wageningen Univ, Biosystemat Grp, Gen Foulkesweg 37, NL-6703 BL Wageningen, Netherlands; [Boer, Peter] Gemene Bos 12, NL-1861 HG Bergen, Netherlands; [Mabelis, A. A.] Wageningen UR, Ctr Ecosyst Studies, Alterra, POB 47, NL-6700 AA Wageningen, Netherlands; [Aukema, Berend] Kortenburg 31, NL-6704 AV Wageningen, Netherlands; [Noordam, Aart] Beukenrode 34, NL-2317 BH Leiden, Netherlands; [Siepel, Henk] Wageningen Univ, Nat Conservat & Plant Ecol Grp, POB 47, NL-6700 AA Wageningen, Netherlands; [Berg, Matty P.] Vrije Univ Amsterdam, Dept Ecol Sci, Boelelaan 1085, NL-1081 HV Amsterdam, Netherlands; [Berg, Matty P.] Univ Groingen, Conservat Ecol Grp, Groningen Inst Evolutionary Life Sci, Post Box 11103, NL-9700 CC Groningen, Netherlands van Noordwijk, CGE (reprint author), Radboud Univ Nijmegen, Inst Water & Wetland Res, Dept Anim Ecol & Ecophysiol, Heijendaelseweg 135, NL-6525 AJ Nijmegen, Netherlands.; van Noordwijk, CGE (reprint author), Bargerveen Fdn, Toernooiveld 1, NL-6525 ED Nijmegen, Netherlands.; van Noordwijk, CGE (reprint author), Univ Ghent, Dept Biol, Terr Ecol Unit, KL Ledeganckstr 35, B-9000 Ghent, Belgium.; van Noordwijk, CGE (reprint author), Earthwatch Inst, Mayfield House,256 Banbury Rd, Oxford OX2 7DE, England. toos.vannoordwijk@gmail.com Siepel, Henk/C-2579-2011 Siepel, Henk/0000-0003-4503-4485; Baeten, Lander/0000-0003-4262-9221; Bonte, Dries/0000-0002-3320-7505; Berg, Matty P./0000-0001-8442-8503 Dutch Ministry of Economy, Agriculture and Innovation [O + BN/2009/dk 118]; Gent University (BOF); Radboud University Nijmegen We thank Natuurmonumenten, Staatsbosbeheer and Stichting het Limburgs Land-schap for their kind permission to conduct research on their premises. Many thanks go to Nina Smits and Wim Ozinga for kindly providing the vascular plant data and plant trait data respectively. We are very grateful to Jan Kuper, Remco Versluijs, Theo Peeters, Albert Dees, Stef Waasdorp, Marten Geertsma and Wim Dimmers for their help with data collection and to four anonymous referees for their helpful comments on earlier versions of this manuscript. This research was conducted as part of the chalk grassland Project (projectnr: O + BN/2009/dk 118) within the Development and Management of Nature quality program, financed by the Dutch Ministry of Economy, Agriculture and Innovation. Toos van Noordwijk received financial support from Gent University (BOF, joint PhD grant) and Radboud University Nijmegen. BAARS MA, 1984, J ANIM ECOL, V53, P375, DOI 10.2307/4522; Baeten L, 2014, METHODS ECOL EVOL, V5, P156, DOI 10.1111/2041-210X.12137; Baiser B, 2012, P ROY SOC B-BIOL SCI, V279, P4772, DOI 10.1098/rspb.2012.1651; BOBBINK R, 1993, BIODIVERS CONSERV, V2, P616, DOI 10.1007/BF00051962; Bourn NAD, 2002, BIOL CONSERV, V104, P285, DOI 10.1016/S0006-3207(01)00193-8; Brooks DR, 2012, J APPL ECOL, V49, P1009, DOI 10.1111/j.1365-2664.2012.02194.x; Ckinger E, 2010, ECOL LETT, V13, P969, DOI DOI 10.1111/J.1461-0248.2010.01487.X; DENBOER PJ, 1985, OECOLOGIA, V67, P322, DOI 10.1007/BF00384936; DENBOER PJ, 1990, J EVOLUTION BIOL, V3, P19, DOI 10.1046/j.1420-9101.1990.3010019.x; Devin S, 2005, HYDROBIOLOGIA, V542, P113, DOI 10.1007/s10750-004-8771-6; Dias N, 2012, PEDOBIOLOGIA, V55, P137, DOI 10.1016/j.pedobi.2011.10.003; Donath TW, 2003, APPL VEG SCI, V6, P13, DOI 10.1658/1402-2001(2003)006[0013:TIOSCA]2.0.CO;2; Dormann CF, 2007, GLOBAL ECOL BIOGEOGR, V16, P774, DOI 10.1111/j.1466-8238.2007.00344.x; Doxa A, 2012, AGR ECOSYST ENVIRON, V148, P83, DOI 10.1016/j.agee.2011.11.020; Ekroos J, 2010, J APPL ECOL, V47, P459, DOI 10.1111/j.1365-2664.2009.01767.x; Fartmann T, 2006, LARVALOKOLOGIE TAGFA; Green RE, 2005, SCIENCE, V307, P550, DOI 10.1126/science.1106049; Halekoh U, 2006, J STAT SOFTW, V15, P1; Henle K, 2004, BIODIVERS CONSERV, V13, P207, DOI 10.1023/B:BIOC.0000004319.91643.9e; Hobbs RJ, 1996, RESTOR ECOL, V4, P93, DOI 10.1111/j.1526-100X.1996.tb00112.x; Holt RD, 1999, ECOLOGY, V80, P1495, DOI 10.1890/0012-9658(1999)080[1495:TRATSA]2.0.CO;2; Huxel GR, 1999, RESTOR ECOL, V7, P309, DOI 10.1046/j.1526-100X.1999.72024.x; Kaersgaard CW, 2004, J INSECT PHYSIOL, V50, P5, DOI 10.1016/j.jinsphys.2003.09.003; KASPARI M, 1993, OECOLOGIA, V96, P500, DOI 10.1007/BF00320507; Kleijn D, 2009, P R SOC B, V276, P903, DOI 10.1098/rspb.2008.1509; Konvicka M, 2008, J INSECT CONSERV, V12, P519, DOI 10.1007/s10841-007-9092-7; Korosi A, 2012, INSECT CONSERV DIVER, V5, P57, DOI 10.1111/j.1752-4598.2011.00153.x; Krauss J, 2010, ECOL LETT, V13, P597, DOI 10.1111/j.1461-0248.2010.01457.x; Kruess A, 2002, CONSERV BIOL, V16, P1570, DOI 10.1046/j.1523-1739.2002.01334.x; Lambeets K, 2009, BIOL CONSERV, V142, P625, DOI 10.1016/j.biocon.2008.11.015; McKinney ML, 1999, TRENDS ECOL EVOL, V14, P450, DOI 10.1016/S0169-5347(99)01679-1; McKinney ML, 2001, BIOTIC HOMOGENIZATION, P1; Millennium Ecosystem Assessment, 2005, EC HUM WELL BEING BI; Morris MG, 2000, BIOL CONSERV, V95, P129, DOI 10.1016/S0006-3207(00)00028-8; Mouillot D, 2013, PLOS BIOL, V11, DOI 10.1371/journal.pbio.1001569; Oertli S, 2005, BIOL CONSERV, V126, P195, DOI 10.1016/j.biocon.2005.05.014; Oksanen J., 2013, VEGAN COMMUNITY ECOL; Olden JD, 2004, TRENDS ECOL EVOL, V19, P18, DOI 10.1016/j.tree.2003.09.010; Ozinga WA, 2005, OIKOS, V108, P555, DOI 10.1111/j.0030-1299.2005.13632.x; PETERS R. H, 1986, ECOLOGICAL IMPLICATI; Polus E, 2007, BIODIVERS CONSERV, V16, P3423, DOI 10.1007/s10531-006-9008-y; Potts SG, 2010, TRENDS ECOL EVOL, V25, P345, DOI 10.1016/j.tree.2010.01.007; Poyry J, 2004, ECOL APPL, V14, P1656, DOI 10.1890/03-5151; Purtauf T, 2005, OECOLOGIA, V142, P458, DOI 10.1007/s00442-004-1740-y; Pykala J, 2003, BIODIVERS CONSERV, V12, P2211, DOI 10.1023/A:1024558617080; R Core Team, 2013, R LANG ENV STAT COMP; Romermann C, 2008, BIODIVERS CONSERV, V17, P591, DOI 10.1007/s10531-007-9283-2; Rooney TP, 2007, BIOL CONSERV, V134, P447, DOI 10.1016/j.biocon.2006.07.008; Sala OE, 2000, SCIENCE, V287, P1770, DOI 10.1126/science.287.5459.1770; Schaminee Joop H. J., 2012, Biodiversity Ecol, V4, P201, DOI 10.7809/b-e.00077; Shaw JD, 2010, J BIOGEOGR, V37, P217, DOI 10.1111/j.1365-2699.2009.02204.x; Smits NAC, 2010, THESIS; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stevens VM, 2014, ECOL LETT, V17, P1039, DOI 10.1111/ele.12303; Thiele H- U, 1977, CARABID BEETLES THEI; van Klink R, 2015, BIOL REV, V90, P347, DOI 10.1111/brv.12113; van Noordwijk CGE, 2012, J INSECT CONSERV, V16, P909, DOI 10.1007/s10841-012-9478-z; van Noordwijk CGE, 2015, ECOLOGY, V96, P518, DOI 10.1890/14-0082.1; van Noordwijk CGE, 2012, ECOL INDIC, V13, P303, DOI 10.1016/j.ecolind.2011.06.028; van Noordwijk CGE, 2014, THESIS; Vanbergen AJ, 2010, ECOL ENTOMOL, V35, P226, DOI 10.1111/j.1365-2311.2010.01175.x; Verberk WCEP, 2013, FRESHW SCI, V32, P531, DOI 10.1899/12-092.1; Verberk WCEP, 2010, BASIC APPL ECOL, V11, P440, DOI 10.1016/j.baae.2010.04.001; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1722, DOI 10.1111/j.1365-2427.2008.02035.x; WallisDeVries MF, 2002, BIOL CONSERV, V104, P265, DOI 10.1016/S0006-3207(01)00191-4 66 2 2 4 43 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0960-3115 1572-9710 BIODIVERS CONSERV Biodivers. Conserv. MAR 2017 26 3 717 734 10.1007/s10531-016-1269-5 18 Biodiversity Conservation; Ecology; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology EK0UX WOS:000393643700013 Other Gold, Green Published 2018-11-22 J van den Hoff, J; Kilpatrick, R; Welsford, D van den Hoff, John; Kilpatrick, Robbie; Welsford, Dirk Southern elephant seals (Mirounga leonina Linn.) depredate toothfish longlines in the midnight zone PLOS ONE English Article MARINE MAMMALS; KERGUELEN ISLANDS; FISHING GEAR; FISHERY; BYCATCH; OCEAN; PREDATOR; IMPACTS; ECOLOGY; CROZET Humans have devised fishing technologies that compete with marine predators for fish resources world-wide. One such fishery for the Patagonian toothfish (Dissostichus eleginoides) has developed interactions with a range of predators, some of which are marine mammals capable of diving to extreme depths for extended periods. A deep-sea camera system deployed within a toothfish fishery operating in the Southern Ocean acquired the first-ever video footage of an extreme-diver, the southern elephant seal (Mirounga leonina), depredating catch from longlines set at depths in excess of 1000m. The interactions recorded were non-lethal, however independent fisheries observer reports confirm elephant seal-longline interactions can be lethal. The seals behaviour of depredating catch at depth during the line soak-period differs to other surface-breathing species and thus presents a unique challenge to mitigate their by-catch. Deployments of deep-sea cameras on exploratory fishing gear prior to licencing and permit approvals would gather valuable information regarding the nature of interactions between deep diving/dwelling marine species and long-line fisheries operating at bathypelagic depths. Furthermore, the positive identification by sex and age class of species interacting with commercial fisheries would assist in formulating management plans and mitigation strategies founded on species-specific life-history strategies. [van den Hoff, John; Kilpatrick, Robbie; Welsford, Dirk] Australian Antarctic Div, Kingston, Tas, Australia van den Hoff, J (reprint author), Australian Antarctic Div, Kingston, Tas, Australia. john_van@aad.gov.au Australian government This was an Australian government funded project. Bailleul F, 2010, MAR ECOL PROG SER, V408, P251, DOI 10.3354/meps08560; Beaman R. J., 2011, KERGUELEN PLATEAU BA; BRIGGS K, 1975, J MAMMAL, V56, P224, DOI 10.2307/1379622; Collins MA, 2010, ADV MAR BIOL, V58, P227, DOI 10.1016/S0065.2881(10)58004.0; Costa DP, 2003, J ACOUST SOC AM, V113, P1155, DOI 10.1121/1.1538248; Cottin J.-Y., 2011, KERGUELEN PLATEAU MA, P29; Danovaro R, 2014, TRENDS ECOL EVOL, V29, P465, DOI 10.1016/j.tree.2014.06.002; Delord K, 2010, POLAR BIOL, V33, P367, DOI 10.1007/s00300-009-0713-3; Gotz T, 2015, ANIM CONSERV, V18, P102, DOI 10.1111/acv.12141; Green K, 1998, POLAR BIOL, V20, P273, DOI 10.1007/s003000050303; Hall MA, 2000, MAR POLLUT BULL, V41, P204, DOI 10.1016/S0025-326X(00)00111-9; Hamer DJ, 2012, MAR MAMMAL SCI, V28, pE345, DOI 10.1111/j.1748-7692.2011.00544.x; Hindell M. A., 2011, KERGUELEN PLATEAU MA, P203; Irigoien X, 2014, NATURE COMMUNICATION; Kilpatrick R, 2011, DEEP-SEA RES PT I, V58, P486, DOI 10.1016/j.dsr.2011.02.006; Kock KH, 2006, POLAR BIOL, V29, P379, DOI 10.1007/s00300-005-0067-4; Lewison RL, 2004, TRENDS ECOL EVOL, V19, P598, DOI 10.1016/j.tree.2004.09.004; Lord C, 2006, CCAMLR SCI, V13, P1; McMahon Clive R., 2000, Polar Record, V36, P250; McMahon CR, 2005, MAMMAL REV, V35, P82, DOI 10.1111/j.1365-2907.2005.00055.x; Moreno CA, 2008, CCAMLR SCI, V15, P79; Norse EA, 2012, MAR POLICY, V36, P307, DOI 10.1016/j.marpol.2011.06.008; O'Toole M, 2014, MAR ECOL PROG SER, V502, P281, DOI 10.3354/meps10709; Park YH, 2011, KERGUELEN PLATEAU MA, V2011, P43; Pauly D, 1998, SCIENCE, V279, P860, DOI 10.1126/science.279.5352.860; Purves MG, 2004, CCAMLR SCI, V11, P111; R Core Team, R LANG ENV STAT COMP; Ramirez-Llodra E, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022588; Read AJ, 2008, J MAMMAL, V89, P541, DOI 10.1644/07-MAMM-S-315R1.1; Roche C, 2007, CCAMLR SCI, V14, P67; Slip DJ., 1997, THESIS; Slip DJ, 1994, ELEPHANT SEALS POPUL, P237; Soffker M, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0118113; Tyack PL, 2006, J EXP BIOL, V209, P4238, DOI 10.1242/jeb.02505; van den Hoff J, 2008, MAR MAMMAL SCI, V24, P239, DOI 10.1111/j.1748-7692.2007.00181.x; Welsford D. C., 2011, KERGUELEN PLATEAU MA, P125; Welsford DC, 2013, INFORM REV COMMONWEA; Welsford DC, 2014, 2006042 FRDS AUSTR A; Wood SN, 2011, J R STAT SOC B, V73, P3, DOI 10.1111/j.1467-9868.2010.00749.x; Wood SN, 2006, GEN ADDITIVE MODELS; Zuur A.F, 2012, ZERO INFLATED MODELS 41 1 1 1 13 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One FEB 24 2017 12 2 e0172396 10.1371/journal.pone.0172396 13 Multidisciplinary Sciences Science & Technology - Other Topics EL5VB WOS:000394688200077 28234988 DOAJ Gold, Green Published 2018-11-22 J Baeza, JA; Behringer, DC Baeza, J. Antonio; Behringer, Donald C. Small-scale spatial variation in population-and individual-level reproductive parameters of the blue-legged hermit crab Clibanarius tricolor PEERJ English Article Egg production; Fecundity; Abundance; Crustacea LIFE-HISTORY STRATEGIES; CONSEQUENCES; COMPETITION; ASSEMBLAGE; MANAGEMENT; FISHERIES; SYSTEM; SINKS; FISH Management of the few regulated ornamental fisheries relies on inadequate information about the life history of the target species. Herein, we investigated the reproductive biology of the most heavily traded marine invertebrate in the western Atlantic; the blue-legged hermit crab Clibanarius tricolor. We report on density, individual-level, and population-level reproductive parameters in 14 populations spanning the Florida Keys. In C. tricolor, abundance, population-level, and individual-level reproductive parameters exhibited substantial small-scale spatial variation in the Florida Keys. For instance, the proportion of brooding females varied between 10-94% across localities. In females, average (+/- SD) fecundity varied between 184 (+/- 54) and 614 (+/- 301) embryos crab-1 across populations. Fecundity usually increases with female body size in hermit crabs. However, we found no effect of female body size on fecundity in three of the populations. Altogether, our observations suggest that C. tricolor may fit a source-sink metapopulation dynamic in the Florida Keys with low reproductive intensity and absence of a parental body size-fecundity relationship resulting in net reproductive loses at some localities. We argue in favor of additional studies describing population dynamics and other aspects of the natural history of C. tricolor (e.g., development type, larval duration) to reveal 'source' populations, capable of exporting larvae to nearby populations. Our observations imply that future studies aimed at assessing standing stocks or describing other aspects of the life history of this hermit crab need to focus on multiple localities simultaneously. This and future studies on the reproductive biology of this species will form the baseline for models aimed at assessing the stock condition and sustainability of this heavily harvested crustacean. [Baeza, J. Antonio] Clemson Univ, Dept Biol Sci, Clemson, SC USA; [Baeza, J. Antonio] Smithsonian Marine Stn, Ft Pierce, FL USA; [Baeza, J. Antonio] Univ Catolica Norte, Dept Marine Biol, Coquimbo, Chile; [Behringer, Donald C.] Univ Florida, Sch Forest Resources & Conservat, Gainesville, FL USA; [Behringer, Donald C.] Univ Florida, Emerging Pathogens Inst, Gainesville, FL USA Baeza, JA (reprint author), Clemson Univ, Dept Biol Sci, Clemson, SC USA.; Baeza, JA (reprint author), Smithsonian Marine Stn, Ft Pierce, FL USA.; Baeza, JA (reprint author), Univ Catolica Norte, Dept Marine Biol, Coquimbo, Chile. baeza.antonio@gmail.com Florida Fish and Wildlife Conservation Commission [10323] The work was supported by the Florida Fish and Wildlife Conservation Commission (grant number 10323). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Antonio Baeza J., 2016, BMC Zoology, V1, DOI 10.1186/s40850-016-0006-6; BACH C, 1976, ECOLOGY, V57, P579, DOI 10.2307/1936442; Baeza J. A., 2013, SEXUALITY EARLY DEV, V1, P1, DOI DOI 10.3354/SEDA000002; Baeza JA, 2012, J MAR BIOL ASSOC UK, V94, P141; Bartilotti C, 2008, HELGOLAND MAR RES, V62, P103, DOI 10.1007/s10152-007-0079-2; BAUER RT, 1985, J CRUSTACEAN BIOL, V5, P249, DOI 10.2307/1547872; BERTNESS MD, 1981, J EXP MAR BIOL ECOL, V49, P189, DOI 10.1016/0022-0981(81)90070-8; BERTNESS MD, 1981, ECOLOGY, V62, P751, DOI 10.2307/1937743; Buxton CD, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0107032; Calado R, 2003, J CRUSTACEAN BIOL, V23, P963, DOI 10.1651/C-2409; Chapman FA, 1997, J WORLD AQUACULT SOC, V28, P1, DOI 10.1111/j.1749-7345.1997.tb00955.x; CHARNOV E L, 1982; Dias PC, 1996, TRENDS ECOL EVOL, V11, P326, DOI 10.1016/0169-5347(96)10037-9; Elliott JM, 1983, SOME METHODS STAT AN, V25; ELWOOD RW, 1995, MAR BIOL, V123, P431, DOI 10.1007/BF00349221; Fisher R. A., 1930, GENETICAL THEORY NAT; FOTHERINGHAM N, 1976, ECOLOGY, V57, P570, DOI 10.2307/1936441; Green E, 2003, INT TRADE MARINE AQU, P31; Hartnoll R.G., 1982, P111; HAZLETT BA, 1983, J CRUSTACEAN BIOL, V3, P223, DOI 10.2307/1548259; Hernandez JE, 2012, BIOL BULL-US, V223, P278, DOI 10.1086/BBLv223n3p278; HINES AH, 1982, MAR BIOL, V69, P309, DOI 10.1007/BF00397496; Iossi CL, 2005, ANIM BIOL, V55, P111, DOI 10.1163/1570756053993479; King JR, 2003, FISHERIES MANAG ECOL, V10, P249, DOI 10.1046/j.1365-2400.2003.00359.x; PROVENZANO ANTHONY J., 1960, BULL MARINE SCI GULF AND CARIBBEAN, V10, P117; PULLIAM HR, 1988, AM NAT, V132, P652, DOI 10.1086/284880; Rhyne A, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0008413; Riascos JM, 2009, MAR ECOL PROG SER, V385, P151, DOI 10.3354/meps08042; ROBLES C, 1987, ECOLOGY, V68, P1502, DOI 10.2307/1939234; Shuster SM, 2003, MATING SYSTEMS STRAT; TEGNER MJ, 1983, J EXP MAR BIOL ECOL, V73, P125, DOI 10.1016/0022-0981(83)90079-5; Tran MV, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0091823; Turner RL, 1979, REPROD ECOLOGY MARIN, P25; Wait M, 2010, THESIS; Wait M, 2012, J CRUSTACEAN BIOL, V32, P203, DOI 10.1163/193724011X615523; West S, 2009, THEORY SEX ALLOCATIO; Wilson K, 2002, SEX RATIOS: CONCEPTS AND RESEARCH METHODS, P48, DOI 10.1017/CBO9780511542053.004; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WOOD E., 2001, COLLECTION CORAL REE; Zar JH, 1999, BIOSTATISTICAL ANAL 40 0 0 7 16 PEERJ INC LONDON 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND 2167-8359 PEERJ PeerJ FEB 15 2017 5 e3004 10.7717/peerj.3004 17 Multidisciplinary Sciences Science & Technology - Other Topics EO7VZ WOS:000396899500007 28229028 DOAJ Gold, Green Published 2018-11-22 J Perkin, JS; Knorp, NE; Boersig, TC; Gebhard, AE; Hix, LA; Johnson, TC Perkin, Joshuah S.; Knorp, Natalie E.; Boersig, Thomas C.; Gebhard, Amy E.; Hix, Lucas A.; Johnson, Thomas C. Life history theory predicts long-term fish assemblage response to stream impoundment CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article ALTERED FLOW REGIMES; FRESH-WATER BIODIVERSITY; COLORADO RIVER-BASIN; HYDROLOGIC ALTERATION; POPULATION REGULATION; ENVIRONMENTAL FLOWS; AMERICAN FISHES; STRATEGIES; MANAGEMENT; CONSERVATION Life history theory predictions for hydrologic filtering of fish assemblages are rarely tested with historical time series data. We retrospectively analyzed flow regime and fish assemblage data from the Sabine River, USA, to test relationships between life history strategies and hydrologic variability altered by impoundment construction. Downstream flow variability, but not magnitude, was altered by completion of Toledo Bend Reservoir (TBR) in 1966. Consistent with life history theory, occurrence of opportunistic strategists declined while equilibrium strategists increased as the fish assemblage was transformed between periods immediately after (1967-1973) and approximately one decade after (1979-1982) completion of TBR. Assemblage transformation was related to decline of opportunistic strategists throughout 250 km of river downstream of TBR. Temporal trajectories for opportunistic and intermediate strategist richness modelled as a function of flow variability converged 12 years postimpoundment. The spatiotemporal scaling of our study is novel among tests of life history theory, and results suggest impoundment-induced alteration to natural hydrologic filtering of fish assemblages can operate on the scale of hundreds of stream kilometres and manifest within approximately one decade. [Perkin, Joshuah S.; Boersig, Thomas C.; Gebhard, Amy E.; Hix, Lucas A.; Johnson, Thomas C.] Tennessee Technol Univ, Dept Biol, 1100 N Dixie Ave, Cookeville, TN 38505 USA; [Knorp, Natalie E.] Tennessee Technol Univ, Sch Environm Studies, 200 W 10th St, Cookeville, TN 38505 USA Perkin, JS (reprint author), Tennessee Technol Univ, Dept Biol, 1100 N Dixie Ave, Cookeville, TN 38505 USA. jperkin@tntech.edu Department of Biology at Tennessee Technological University [BIOL 6980] This study was conducted as a portion of an Ecological Ordination (BIOL 6980) class project in the Department of Biology at Tennessee Technological University. We thank the staff at the Tulane Museum of Natural History and the late Royal Suttkus for making fish collections available for our use. Meryl Mims and Julian Olden provided trait data, and Noelle Rizzardi, Victoria Kaufman, Kit Wheeler, Keith Gido and the Fish Ecology Lab, and three anonymous reviewers provided constructive criticism on the manuscript. Anderson MJ, 2003, ECOLOGY, V84, P511, DOI 10.1890/0012-9658(2003)084[0511:CAOPCA]2.0.CO;2; Arthington AH, 2006, ECOL APPL, V16, P1311, DOI 10.1890/1051-0761(2006)016[1311:TCOPEF]2.0.CO;2; Bart HL, 2010, COPEIA, P341, DOI 10.1643/OT-10-001; Bergerot B, 2015, FRESHWATER BIOL, V60, P1279, DOI 10.1111/fwb.12561; Borcard D, 2011, USE R, P1, DOI 10.1007/978-1-4419-7976-6; Cooke Steven J., 2012, Endangered Species Research, V17, P179, DOI 10.3354/esr00426; Czegledi I, 2013, FUND APPL LIMNOL, V183, P153, DOI 10.1127/1863-9135/2013/0495; Dahm C.N., 2005, RIVERS N AM, P180, DOI DOI 10.1016/B978-012088253-3/50008-0; Dudgeon D, 2006, BIOL REV, V81, P163, DOI 10.1017/S1464793105006950; Fausch KD, 2002, BIOSCIENCE, V52, P483, DOI 10.1641/0006-3568(2002)052[0483:LTRBTG]2.0.CO;2; Fencl JS, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0141210; Geheber AD, 2012, ECOL FRESHW FISH, V21, P627, DOI 10.1111/j.1600-0633.2012.00584.x; Gido KB, 2013, CAN J FISH AQUAT SCI, V70, P554, DOI 10.1139/cjfas-2012-0441; Heino J, 2013, FRESHWATER BIOL, V58, P1539, DOI 10.1111/fwb.12164; Hoeinghaus DJ, 2007, J BIOGEOGR, V34, P324, DOI 10.1111/j.1365-2699.2006.01587.x; Hubbs C, 2008, ANNOTATED CHECKLIST; JACKSON DA, 1989, AM NAT, V133, P436, DOI 10.1086/284927; Jackson DA, 2001, CAN J FISH AQUAT SCI, V58, P157, DOI 10.1139/cjfas-58-1-157; JACKSON DA, 1993, ECOLOGY, V74, P2204, DOI 10.2307/1939574; Johnson PTJ, 2008, FRONT ECOL ENVIRON, V6, P359, DOI 10.1890/070156; Kinsolving A.D., 1993, ECOSYSTEM MANAGEMENT, P236; Konrad CP, 2011, BIOSCIENCE, V61, P948, DOI 10.1525/bio.2011.61.12.5; Lehner B, 2011, FRONT ECOL ENVIRON, V9, P494, DOI 10.1890/100125; Liermann CR, 2012, BIOSCIENCE, V62, P539, DOI 10.1525/bio.2012.62.6.5; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; Malmqvist B, 2002, ENVIRON CONSERV, V29, P134, DOI 10.1017/S0376892902000097; Mathews R, 2007, J AM WATER RESOUR AS, V43, P1400, DOI 10.1111/j.1752-1688.2007.00099.x; Mcmanamay RA, 2015, ECOL APPL, V25, P243, DOI 10.1890/14-0247.1; McManamay RA, 2013, ENVIRON MANAGE, V51, P1210, DOI 10.1007/s00267-013-0055-3; Meador MR, 2015, ENVIRON BIOL FISH, V98, P663, DOI 10.1007/s10641-014-0304-1; Mims MC, 2010, ECOL FRESHW FISH, V19, P390, DOI 10.1111/j.1600-0633.2010.00422.x; Mims MC, 2013, FRESHWATER BIOL, V58, P50, DOI 10.1111/fwb.12037; Mims MC, 2012, ECOLOGY, V93, P35, DOI 10.1890/11-0370.1; Oksanen F.J., 2016, VEGAN COMMUNITY ECOL; Olden JD, 2006, ECOL MONOGR, V76, P25, DOI 10.1890/05-0330; Olden JD, 2016, CONSERV BIOL SER, P107; Olden JD, 2014, FRONT ECOL ENVIRON, V12, P176, DOI 10.1890/130076; Olden JD, 2010, AM FISH S S, V73, P83; Olden JD, 2010, FRESHWATER BIOL, V55, P86, DOI 10.1111/j.1365-2427.2009.02179.x; Onorato D, 2000, J FRESHWATER ECOL, V15, P47, DOI 10.1080/02705060.2000.9663721; Osborne MJ, 2014, MOL ECOL, V23, P5663, DOI 10.1111/mec.12970; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; Perkin JS, 2015, AQUAT CONSERV, V25, P639, DOI 10.1002/aqc.2501; Perkin JS, 2015, ECOL MONOGR, V85, P73, DOI 10.1890/14-0121.1; Phillips JD, 2008, HYDROL PROCESS, V22, P2424, DOI 10.1002/hyp.6835; Poff NL, 2006, J N AM BENTHOL SOC, V25, P730, DOI 10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2; Poff NL, 2010, FRESHWATER BIOL, V55, P147, DOI 10.1111/j.1365-2427.2009.02204.x; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; Pool TK, 2010, CAN J FISH AQUAT SCI, V67, P1791, DOI 10.1139/F10-095; POWER ME, 1995, BIOSCIENCE, V45, P159, DOI 10.2307/1312555; Pyron M, 2004, HYDROBIOLOGIA, V525, P203, DOI 10.1023/B:HYDR.0000038867.28271.45; R Core Team, 2015, R LANG ENV STAT COMP; Rahel FJ, 2008, CONSERV BIOL, V22, P521, DOI 10.1111/j.1523-1739.2008.00950.x; Richter BD, 1996, CONSERV BIOL, V10, P1163, DOI 10.1046/j.1523-1739.1996.10041163.x; Richter BD, 2003, ECOL APPL, V13, P206, DOI 10.1890/1051-0761(2003)013[0206:ESWMMR]2.0.CO;2; SCHLOSSER IJ, 1990, ENVIRON MANAGE, V14, P621, DOI 10.1007/BF02394713; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; Stoffels RJ, 2016, AQUAT SCI, V78, P355, DOI 10.1007/s00027-015-0437-0; Strayer DL, 2010, J N AM BENTHOL SOC, V29, P344, DOI 10.1899/08-171.1; Suttkus R.D., 2009, SE FISHES COUNCIL P, P1; Tedesco PA, 2008, OECOLOGIA, V156, P691, DOI 10.1007/s00442-008-1021-2; TOWNSEND CR, 1989, J N AM BENTHOL SOC, V8, P36, DOI 10.2307/1467400; TPWD, 2016, STOCK HIST TOL BEND; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Zuur A, 2007, ANAL ECOLOGICAL DATA; Zuur A. F., 2014, BEGINNERS GUIDE GENE 68 3 3 1 12 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0706-652X 1205-7533 CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. FEB 2017 74 2 228 239 10.1139/cjfas-2015-0593 12 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology EM6JW WOS:000395419700010 2018-11-22 J Mack, EW; Beck, JL; Stanford, KM; King, RB Mack, Elizabeth W.; Beck, Jennifer L.; Stanford, Kristin M.; King, Richard B. Maternal investment and delayed feeding in neonatal Lake Erie watersnakes: a life-history strategy JOURNAL OF ZOOLOGY English Article Lake Erie watersnake; neonatal feeding; natricine snakes; maternal investment; neonatal growth; life-history strategies; hibernation GOBY NEOGOBIUS-MELANOSTOMUS; NERODIA-SIPEDON; POPULATION-SIZE; GROWTH; SURVIVAL; SNAKE; EVOLUTION; HABITAT; GOBIES; RATES Neonatal growth can have lasting consequences on survival and reproduction. In many taxa, larger, faster growing neonates experience higher survival, reach sexual maturity more rapidly, and achieve higher lifetime fecundity. In contrast to their closest relatives, Lake Erie watersnakes grow slower, mature later, and may delay feeding until after their first hibernation. To determine if Lake Erie watersnakes do indeed delay feeding until after their first hibernation, we compared age class 0 (between birth and first hibernation) and age class 1 (emergence from hibernation and through the first full season) snakes in the field and in the laboratory. In the field, only 0.6% of pre-hibernation neonates were found to contain prey, while 11.9% of post-hibernation neonates contained prey. During captive feeding experiments, the probability of eating was positively correlated with age (binary logistic regression, Wald mml:msubsup12/mml:msubsup=25.354, P0.001). To clarify the underlying mechanism for delayed feeding, we compared neonatal yolk and fat reserves among species with delayed feeding (Lake Erie watersnakes, Graham's crayfish-eating snakes), species that commence feeding immediately after birth (common gartersnakes, Dekay's brown snakes) and a species falling between these extremes (queen snakes). Like Lake Erie watersnakes, Graham's crayfish-eating snakes contained large energy reserves (yolk+fat body mass to carcass mass ratio=0.39 and 0.24, respectively), common gartersnakes and Dekay's brown snakes lacked measurable reserves (0.00), and queen snakes contained intermediate reserves (0.17). Taken together, this evidence suggests that neonatal Lake Erie watersnakes do delay feeding until after their first hibernation and contain large energy reserves at birth to facilitate this behavior. While most snake life-history studies have focused on the trade-off between offspring size and number, Lake Erie watersnake females invest large amounts of energy in offspring condition. [Mack, Elizabeth W.; King, Richard B.] Northern Illinois Univ, Dept Biol Sci, De Kalb, IL USA; [Beck, Jennifer L.; Stanford, Kristin M.] Ohio State Univ, FT Stone Lab, Put In Bay, OH USA Mack, EW (reprint author), Northern Illinois Univ, Dept Biol Sci, 1679 Coughlin St, Laramie, WY 82072 USA. elizabeth.macktx@yahoo.com U.S. Fish and Wildlife Service; Ohio Sea Grant program Funding was provided by the U.S. Fish and Wildlife Service and the Ohio Sea Grant program. The authors thank all of the volunteers who have assisted with annual Lake Erie water-snake censuses and the staff at the F.T. Stone Laboratory who make monitoring possible. We also thank members of the King lab at Northern Illinois University, the Murphy lab at the University of Wyoming, and two anonymous reviewers for comments on the manuscript. Animal use was approved by the Northern Illinois University Institutional Animal Care and Use Committee, approval number LA14-0008. Baron JP, 2010, J ANIM ECOL, V79, P640, DOI 10.1111/j.1365-2656.2010.01661.x; Bergenius MAJ, 2002, OECOLOGIA, V131, P521, DOI 10.1007/s00442-002-0918-4; Brien ML, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0100276; Bronikowski AM, 2000, EVOLUTION, V54, P1760; Buckley D, 2007, EVOL DEV, V9, P105, DOI 10.1111/j.1525-142X.2006.00141.x; CARPENTER CC, 1952, ECOL MONOGR, V22, P235, DOI 10.2307/1948469; CASE TJ, 1978, ECOLOGY, V59, P1, DOI 10.2307/1936628; Department of the Interior & U. S. Fish and Wildlife Service, 2011, FED REGISTER, V76, P50680; Department of the Interior & U. S. Fish and Wildlife Service, 1999, FED REGISTER, V64, P47126; FITCH HENRY S., 1965, UNIV KANS PUBL MUS NATUR HIST, V15, P493; Gibbons J. W., 2004, N AM WATERSNAKES NAT; Herdendorf C. E., 1987, 85 US FISH WILDL SER; JAYNE BC, 1990, EVOLUTION, V44, P1204, DOI 10.1111/j.1558-5646.1990.tb05226.x; Johnson TB, 2005, J GREAT LAKES RES, V31, P78, DOI 10.1016/S0380-1330(05)70239-2; Jones PC, 2009, COPEIA, P437, DOI 10.1643/CH-08-119; Kamler E, 2008, REV FISH BIOL FISHER, V18, P143, DOI 10.1007/s11160-007-9070-x; KING RB, 1993, J HERPETOL, V27, P90, DOI 10.2307/1564912; King RB, 2006, CAN J ZOOL, V84, P108, DOI 10.1139/Z05-182; KING RB, 1986, COPEIA, P757; King RB, 2006, HERPETOL MONOGR, V20, P83, DOI 10.1655/0733-1347(2007)20[83:PSARCO]2.0.CO;2; King RB, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0146299; Kissner KJ, 2005, J ANIM ECOL, V74, P259, DOI 10.1111/j.1365-2656.2005.00919.x; MacInnis AJ, 2000, T AM FISH SOC, V129, P852, DOI 10.1577/1548-8659(2000)129<0852:AAGORG>2.3.CO;2; Madsen T, 2000, J ANIM ECOL, V69, P952, DOI 10.1046/j.1365-2656.2000.00477.x; Nowak RM, 1999, WALKERS MAMMALS WORL; OBrien TK, 2014, THESIS; Ohio Department of Natural Resources Division of Wildlife, 2016, USITC PUBL, V5356, P1; Olsson M, 2002, FUNCT ECOL, V16, P135, DOI 10.1046/j.0269-8463.2001.00600.x; Pike DA, 2008, ECOLOGY, V89, P607, DOI 10.1890/06-2162.1; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Radder RS, 2007, FUNCT ECOL, V21, P302, DOI 10.1111/j.1365-2435.2006.01238.x; ROSSMAN DA, 1996, GARTER SNAKES EVOLUT; Savitzky B. A. C., 1989, THESIS; SCHERTZER WM, 1987, J GREAT LAKES RES, V13, P468, DOI 10.1016/S0380-1330(87)71667-0; Shine Richard, 2009, P172; Stanford K. M., 2012, THESIS; Stanford KM, 2004, COPEIA, P465; Stanford KM, 2010, J FISH WILDL MANAG, V1, P122, DOI 10.3996/052010-JFWM-013; Stearns S., 1992, EVOLUTION LIFE HIST; Thompson HA, 2015, J FISH BIOL, V86, P558, DOI 10.1111/jfb.12576; Tuttle KN, 2012, CAN J ZOOL, V90, P758, DOI 10.1139/Z2012-044; Ujvari B, 2000, AMPHIBIA-REPTILIA, V21, P267, DOI 10.1163/156853800507417; Waters RM, 2005, ANIM BEHAV, V69, P363; Weatherhead PJ, 1999, J HERPETOL, V33, P577, DOI 10.2307/1565574; Williams N. R., 1969, THESIS 45 1 1 2 8 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0952-8369 1469-7998 J ZOOL J. Zool. FEB 2017 301 2 150 156 10.1111/jzo.12404 7 Zoology Zoology EM0HW WOS:000395000400008 2018-11-22 J Allen, WL; Street, SE; Capellini, I Allen, William L.; Street, Sally E.; Capellini, Isabella Fast life history traits promote invasion success in amphibians and reptiles ECOLOGY LETTERS English Article Amphibians; biological invasions; comparative analyses; invasion biology; invasive species; life history theory; population dynamics; population growth; reptiles; transient dynamics ESTABLISHMENT SUCCESS; TRANSIENT DYNAMICS; NONNATIVE REPTILES; SPECIES INVASIONS; PREDICTORS; MAMMALS; FRAMEWORK; INVADERS; CLIMATE; SPREAD Competing theoretical models make different predictions on which life history strategies facilitate growth of small populations. While 'fast' strategies allow for rapid increase in population size and limit vulnerability to stochastic events, 'slow' strategies and bet-hedging may reduce variance in vital rates in response to stochasticity. We test these predictions using biological invasions since founder alien populations start small, compiling the largest dataset yet of global herpetological introductions and life history traits. Using state-of-the-art phylogenetic comparative methods, we show that successful invaders have fast traits, such as large and frequent clutches, at both establishment and spread stages. These results, together with recent findings in mammals and plants, support 'fast advantage' models and the importance of high potential population growth rate. Conversely, successful alien birds are bet-hedgers. We propose that transient population dynamics and differences in longevity and behavioural flexibility can help reconcile apparently contrasting results across terrestrial vertebrate classes. [Allen, William L.; Street, Sally E.; Capellini, Isabella] Univ Hull, Sch Environm Sci, Cottingham Rd, Kingston Upon Hull HU6 7RX, N Humberside, England; [Allen, William L.] Swansea Univ, Dept Biosci, Singleton Pk, Swansea SA2 8PP, W Glam, Wales Allen, WL; Capellini, I (reprint author), Univ Hull, Sch Environm Sci, Cottingham Rd, Kingston Upon Hull HU6 7RX, N Humberside, England.; Allen, WL (reprint author), Swansea Univ, Dept Biosci, Singleton Pk, Swansea SA2 8PP, W Glam, Wales. w.l.allen@swansea.ac.uk; i.capellini@hull.ac.uk Allen, William/0000-0003-2654-0438; Capellini, Isabella/0000-0001-8065-2436 NERC [NE/K013777/1]; University of Hull; Natural Environment Research Council [NE/K013777/1] We thank David Iles, Roberto Salguero-Gomez and three anonymous referees for valuable comments on the manuscript. The authors declare no conflicts of interest. This work is financially supported by NERC (grant no. NE/K013777/1 to IC). Open access fees were paid by the University of Hull. Allen CR, 2013, GLOBAL ECOL BIOGEOGR, V22, P889, DOI 10.1111/geb.12054; Barton RA, 2011, P NATL ACAD SCI USA, V108, P6169, DOI 10.1073/pnas.1019140108; Blackburn TM, 2015, MOL ECOL, V24, P1942, DOI 10.1111/mec.13075; Blackburn TM, 2011, TRENDS ECOL EVOL, V26, P333, DOI 10.1016/j.tree.2011.03.023; Caceres CE, 1997, P NATL ACAD SCI USA, V94, P9171, DOI 10.1073/pnas.94.17.9171; Capellini I, 2015, ECOL LETT, V18, P1099, DOI 10.1111/ele.12493; DAISIE, 2008, HDB ALIEN SPECIES EU; de Villemereuil P., 2013, METHODS ECOLOGY EVOL, V4, P260, DOI DOI 10.1111/2041-210X.12011; Forsyth DM, 2004, CONSERV BIOL, V18, P557, DOI 10.1111/j.1523-1739.2004.00423.x; Fujisaki I, 2010, BIOL INVASIONS, V12, P2585, DOI 10.1007/s10530-009-9667-1; Gamelon M, 2014, AM NAT, V184, P673, DOI 10.1086/677929; Gonzalez-Lagos C, 2010, J EVOLUTION BIOL, V23, P1064, DOI 10.1111/j.1420-9101.2010.01976.x; Gonzalez-Suarez M, 2015, AM NAT, V185, P737, DOI 10.1086/681105; Greene WH, 2012, ECONOMETRIC ANAL; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hayes KR, 2008, BIOL INVASIONS, V10, P483, DOI 10.1007/s10530-007-9146-5; Healy K, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0298; Iles DT, 2016, J ECOL, V104, P399, DOI 10.1111/1365-2745.12516; IUCN/SSC Invasive Species Specialist Group (ISSG), 2014, GLOB INV SPEC DAT VE; Jaffe AL, 2011, BIOL LETTERS, V7, P558, DOI 10.1098/rsbl.2010.1084; Jeppsson T, 2012, AM NAT, V179, P706, DOI 10.1086/665696; Jeschke JM, 2006, GLOBAL CHANGE BIOL, V12, P1608, DOI 10.1111/j.1365-2486.2006.01213.x; Jones OR, 2014, NATURE, V505, P169, DOI 10.1038/nature12789; Kolar CS, 2001, TRENDS ECOL EVOL, V16, P199, DOI 10.1016/S0169-5347(01)02101-2; Koons DN, 2006, ECOL MODEL, V197, P418, DOI 10.1016/j.ecolmodel.2006.03.034; Kraus F., 2009, ALIEN REPTILES AMPHI; Lever C, 2003, NATURALIZED REPTILES; Liu X, 2014, ECOL LETT, V17, P821, DOI 10.1111/ele.12286; Lockwood JL, 2005, TRENDS ECOL EVOL, V20, P223, DOI 10.1016/j.tree.2005.02.004; Long J. S., 1997, REGRESSION MODELS CA; Mahoney PJ, 2015, DIVERS DISTRIB, V21, P64, DOI 10.1111/ddi.12240; Oaks JR, 2011, EVOLUTION, V65, P3285, DOI 10.1111/j.1558-5646.2011.01373.x; PIMM SL, 1991, BALANCE NATURE; Pyron R. A., 2013, BMC EVOLUTIONARY BIO, V2013, P13, DOI DOI 10.1186/1471-2148-13-93; Pyron RA, 2011, MOL PHYLOGENET EVOL, V61, P543, DOI 10.1016/j.ympev.2011.06.012; Pysek P, 2010, ANNU REV ENV RESOUR, V35, P25, DOI 10.1146/annurev-environ-033009-095548; Rago A, 2012, ECOL EVOL, V2, P1437, DOI 10.1002/ece3.261; Richardson DM, 2004, DIVERS DISTRIB, V10, P321, DOI 10.1111/j.1366-9516.2004.00096.x; Saether B.-E., 2004, AM NAT, V164, P793, DOI DOI 10.1086/425371; Saether BE, 2013, AM NAT, V182, P743, DOI 10.1086/673497; Sax DF, 2007, TRENDS ECOL EVOL, V22, P465, DOI 10.1016/j.tree.2007.06.009; Shine R, 2005, ANNU REV ECOL EVOL S, V36, P23, DOI 10.1146/annurev.ecolsys.36.102003.152631; Sol D, 2016, BIOLOGICAL INVASIONS AND ANIMAL BEHAVIOUR, P63; Sol D, 2012, SCIENCE, V337, P580, DOI 10.1126/science.1221523; Starrfelt J, 2012, BIOL REV, V87, P742, DOI 10.1111/j.1469-185X.2012.00225.x; Tingley R, 2016, GLOBAL ECOL BIOGEOGR, V25, P1050, DOI 10.1111/geb.12462; van Kleunen M, 2010, ECOL LETT, V13, P947, DOI 10.1111/j.1461-0248.2010.01503.x; van Kleunen M, 2010, ECOL LETT, V13, P235, DOI 10.1111/j.1461-0248.2009.01418.x; Van Wilgen NJ, 2012, CONSERV BIOL, V26, P267, DOI 10.1111/j.1523-1739.2011.01804.x; Venable DL, 2007, ECOLOGY, V88, P1086, DOI 10.1890/06-1495 50 12 13 5 35 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1461-023X 1461-0248 ECOL LETT Ecol. Lett. FEB 2017 20 2 222 230 10.1111/ele.12728 9 Ecology Environmental Sciences & Ecology EM2VG WOS:000395173300011 28052550 Green Published, Other Gold 2018-11-22 J Reid, BN; Mladenoff, DJ; Peery, MZ Reid, Brendan N.; Mladenoff, David J.; Peery, M. Zachariah Genetic effects of landscape, habitat preference and demography on three co-occurring turtle species MOLECULAR ECOLOGY English Article Blanding's turtle; effective population size; generation time; landscape genetics; mobility; painted turtle; population structure; snapping turtle; specialization; Wisconsin MULTILOCUS GENOTYPE DATA; LIFE-HISTORY VARIATION; POPULATION-STRUCTURE; BLANDINGS TURTLES; PAINTED TURTLES; CHRYSEMYS-PICTA; EMYDOIDEA-BLANDINGII; CHELYDRA-SERPENTINA; REGRESSION APPROACH; SEX DETERMINATION Expanding the scope of landscape genetics beyond the level of single species can help to reveal how species traits influence responses to environmental change. Multispecies studies are particularly valuable in highly threatened taxa, such as turtles, in which the impacts of anthropogenic change are strongly influenced by interspecific differences in life history strategies, habitat preferences and mobility. We sampled approximately 1500 individuals of three co-occurring turtle species across a gradient of habitat change (including varying loss of wetlands and agricultural conversion of upland habitats) in the Midwestern USA. We used genetic clustering and multiple regression methods to identify associations between genetic structure and permanent landscape features, past landscape composition and landscape change in each species. Two aquatic generalists (the painted turtle, Chrysemys picta, and the snapping turtle Chelydra serpentina) both exhibited population genetic structure consistent with isolation by distance, modulated by aquatic landscape features. Genetic divergence for the more terrestrial Blanding's turtle (Emydoidea blandingii), on the other hand, was not strongly associated with geographic distance or aquatic features, and Bayesian clustering analysis indicated that many Emydoidea populations were genetically isolated. Despite long generation times, all three species exhibited associations between genetic structure and postsettlement habitat change, indicating that long generation times may not be sufficient to delay genetic drift resulting from recent habitat fragmentation. The concordances in genetic structure observed between aquatic species, as well as isolation in the endangered, long-lived Emydoidea, reinforce the need to consider both landscape composition and demographic factors in assessing differential responses to habitat change in co-occurring species. [Reid, Brendan N.; Mladenoff, David J.; Peery, M. Zachariah] Univ Wisconsin, Dept Forest & Wildlife Ecol, 1630 Linden Dr, Madison, WI 53706 USA; [Reid, Brendan N.] Amer Museum Nat Hist, Dept Herpetol, Cent Pk West & 79th St, New York, NY 10024 USA Reid, BN (reprint author), Univ Wisconsin, Dept Forest & Wildlife Ecol, 1630 Linden Dr, Madison, WI 53706 USA.; Reid, BN (reprint author), Amer Museum Nat Hist, Dept Herpetol, Cent Pk West & 79th St, New York, NY 10024 USA. bnreid@wisc.edu USDA Hatch Act Formula Grant; EPA-STAR Fellowship Funding was provided by a USDA Hatch Act Formula Grant (to M.Z. Peery) and an EPA-STAR Fellowship (to B.N. Reid). Samples for some sites were provided by Steve Freedberg, Andy Kuhns, Gary Glowacki, Bob Hay, Alan Resetar (Field Museum of Natural History), Erik Wild (UW-Stevens Point Museum of Natural History), Jon Zellmer, Bob Hay and the Wisconsin Department of Natural Resources. Additional logistical support for locating sampling sites, accessing sites and capturing turtles was provided by Gary Casper, Samantha Foster, Mary Linton, Alice Thompson, Dick Thiel, Scott Thiel, Bob Welch, Bill and Peggy Riemer, and the Wisconsin Department of Natural Resources. Steve Freedberg and Sean Schoville provided comments on early versions of the manuscript. Field and laboratory assistants (Peter Riddle, Anthony Swichtenberg, Ryan Klausch, Sarah Tomke and Carolin Tappe) as well as members of the Peery Lab and the department of Forest and Wildlife Ecology at UW-Madison provided integral support for this project. Aeschbacher S, 2016, 072736 BIORXIV, DOI [10.1101/072736, DOI 10.1101/072736]; Anderson CD, 2010, MOL ECOL, V19, P3565, DOI 10.1111/j.1365-294X.2010.04757.x; Balkenhol N, 2009, ECOGRAPHY, V32, P818, DOI 10.1111/j.1600-0587.2009.05807.x; Barton K., 2014, PACKAGE MUMIN MULTIM; Beaudry F, 2010, J WILDLIFE MANAGE, V74, P152, DOI 10.2193/2008-370; Bohm M, 2013, BIOL CONSERV, V157, P372, DOI 10.1016/j.biocon.2012.07.015; Bouzat JL, 2009, CONSERV GENET, V10, P191, DOI 10.1007/s10592-008-9547-8; Bowne DR, 2008, COPEIA, P306, DOI 10.1643/CE-06-224; Brouat C, 2003, MOL ECOL, V12, P1731, DOI 10.1046/j.1365-294X.2003.01861.x; Bull RAS, 2011, MOL ECOL, V20, P1092, DOI 10.1111/j.1365-294X.2010.04944.x; Burnham KP, 2002, MODEL SELECTION MULT; Bury RB, 2003, AM MIDL NAT, V149, P241, DOI 10.1674/0003-0031(2003)149[0241:DIHUBB]2.0.CO;2; Callens T, 2011, MOL ECOL, V20, P1829, DOI 10.1111/j.1365-294X.2011.05028.x; Clarke RT, 2002, J AGRIC BIOL ENVIR S, V7, P361, DOI 10.1198/108571102320; Congdon JD, 2006, BLANDINGS TURTLE EMY; Davy CM, 2014, CONSERV GENET, V15, P319, DOI 10.1007/s10592-013-0540-5; Delaney KS, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0012767; Earl DA, 2012, CONSERV GENET RESOUR, V4, P359, DOI 10.1007/s12686-011-9548-7; Emaresi G, 2011, CONSERV GENET, V12, P41, DOI 10.1007/s10592-009-9985-y; Engler JO, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0106526; Epps CW, 2015, MOL ECOL, V24, P6021, DOI 10.1111/mec.13454; Epps CW, 2005, ECOL LETT, V8, P1029, DOI 10.1111/j.1461-0248.2005.00804.x; Evanno G, 2005, MOL ECOL, V14, P2611, DOI 10.1111/j.1365-294X.2005.02553.x; Ewert MA, 2005, J ZOOL, V265, P81, DOI 10.1017/S0952836904006120; Falush D, 2003, GENETICS, V164, P1567; FRANKLIN JF, 1993, ECOL APPL, V3, P202, DOI 10.2307/1941820; Frantz AC, 2012, MOL ECOL, V21, P3445, DOI 10.1111/j.1365-294X.2012.05623.x; Frantz AC, 2009, J APPL ECOL, V46, P493, DOI 10.1111/j.1365-2664.2008.01606.x; Freedberg S, 2011, BIOL CONSERV, V144, P1159, DOI 10.1016/j.biocon.2011.01.001; Garant D, 2007, FUNCT ECOL, V21, P434, DOI 10.1111/j.1365-2435.2006.01228.x; Gibbons JW, 2000, BIOSCIENCE, V50, P653, DOI 10.1641/0006-3568(2000)050[0653:TGDORD]2.0.CO;2; Gibbs JP, 2002, CONSERV BIOL, V16, P1647, DOI 10.1046/j.1523-1739.2002.01215.x; Glowacki G, 2010, RECOVERY BLANDINGS T; Goslee SC, 2007, J STAT SOFTW, V22, P1; Graves TA, 2013, MOL ECOL, V22, P3888, DOI 10.1111/mec.12348; Habel JC, 2013, BIODIVERS CONSERV, V22, P2401, DOI 10.1007/s10531-012-0407-y; Hagerty BE, 2011, LANDSCAPE ECOL, V26, P267, DOI 10.1007/s10980-010-9550-6; HARGROVE WW, 1992, LANDSCAPE ECOL, V6, P251, DOI 10.1007/BF00129703; Hartwig TS, 2004, THESIS; Hubisz MJ, 2009, MOL ECOL RESOUR, V9, P1322, DOI 10.1111/j.1755-0998.2009.02591.x; IUCN, 2014, IUCN RED LIST THREAT; Jakobsson M, 2007, BIOINFORMATICS, V23, P1801, DOI 10.1093/bioinformatics/btm233; Janecka JE, 2016, CONSERV GENET, V17, P1093, DOI 10.1007/s10592-016-0846-1; Jensen EL, 2015, J HERPETOL, V49, P314, DOI 10.1670/14-010; Jensen EL, 2014, CONSERV GENET, V15, P261, DOI 10.1007/s10592-013-0535-2; Jha S, 2015, MOL ECOL, V24, P993, DOI 10.1111/mec.13090; Jost L, 2008, MOL ECOL, V17, P4015, DOI 10.1111/j.1365-294X.2008.03887.x; Kalinowski ST, 2005, HEREDITY, V94, P33, DOI 10.1038/sj.hdy.6800548; Keller D, 2015, CONSERV GENET, V16, P503, DOI 10.1007/s10592-014-0684-y; Kelly RP, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0008594; Kisdi E, 2002, AM NAT, V159, P579, DOI 10.1086/339989; Kuo CH, 2004, CONSERV GENET, V5, P425, DOI 10.1023/B:COGE.0000041020.54140.45; Landguth EL, 2010, MOL ECOL, V19, P4179, DOI 10.1111/j.1365-294X.2010.04808.x; Latch EK, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0027794; Lefcheck JS, 2016, METHODS ECOL EVOL, V7, P573, DOI 10.1111/2041-210X.12512; LEGENDRE P, 1994, EVOLUTION, V48, P1487, DOI 10.1111/j.1558-5646.1994.tb02191.x; Lindeman PV, 1997, J HERPETOL, V31, P155, DOI 10.2307/1565349; Lippe C, 2006, MOL ECOL, V15, P1769, DOI 10.1111/j.1365-294X.2006.02902.x; Liu F, 2011, ECOL MONOGR, V81, P259, DOI 10.1890/10-0232.1; MACCULLOCH RD, 1983, J HERPETOL, V17, P283, DOI 10.2307/1563834; Manel S, 2013, TRENDS ECOL EVOL, V28, P614, DOI 10.1016/j.tree.2013.05.012; Marsack K, 2009, COPEIA, P647, DOI 10.1643/CE-08-233; McGaugh SE, 2012, CONSERV GENET, V13, P1561, DOI 10.1007/s10592-012-0403-5; Meirmans PG, 2004, MOL ECOL NOTES, V4, P792, DOI 10.1111/j.1471-8286.2004.00770.x; Mockford SW, 2007, CONSERV GENET, V8, P209, DOI 10.1007/s10592-006-9163-4; Moore JA, 2008, MOL ECOL, V17, P4630, DOI 10.1111/j.1365-294X.2008.03951.x; Nowakowski AJ, 2015, MOL ECOL, V24, P580, DOI 10.1111/mec.13052; NUNNEY L, 1993, TRENDS ECOL EVOL, V8, P234, DOI 10.1016/0169-5347(93)90197-W; OBBARD ME, 1981, COPEIA, P630; Pappas Michael J., 2000, Chelonian Conservation and Biology, V3, P557; Pavlacky DC, 2009, MOL ECOL, V18, P2945, DOI 10.1111/j.1365-294X.2009.04226.x; Peery MZ, 2010, P ROY SOC B-BIOL SCI, V277, P697, DOI 10.1098/rspb.2009.1666; Pinheiro J., 2016, NLME LINEAR NONLINEA, P1; Pritchard JK, 2000, GENETICS, V155, P945; Puechmaille SJ, 2016, MOL ECOL RESOUR, V16, P608, DOI 10.1111/1755-0998.12512; R Development Core Team, 2008, R LANG ENV STAT COMP; Refsnider JM, 2012, HERPETOL CONSERV BIO, V7, P185; Reid BN, 2016, J WILDLIFE MANAGE, V80, P553, DOI 10.1002/jwmg.1024; Reid BN, 2014, DIVERS DISTRIB, V20, P1425, DOI 10.1111/ddi.12243; Rhemtulla JM, 2007, LANDSCAPE ECOL, V22, P57, DOI 10.1007/s10980-007-9117-3; Ricciardi A, 2009, TRENDS ECOL EVOL, V24, P248, DOI 10.1016/j.tree.2008.12.006; Richardson JL, 2016, MOL ECOL, V25, P849, DOI 10.1111/mec.13527; Richardson JL, 2012, MOL ECOL, V21, P4437, DOI 10.1111/j.1365-294X.2012.05708.x; Rodder D, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0072855; Rosenberg NA, 2004, MOL ECOL NOTES, V4, P137, DOI 10.1046/j.1471-8286.2003.00566.x; Schoville SD, 2012, ANNU REV ECOL EVOL S, V43, P23, DOI 10.1146/annurev-ecolsys-110411-160248; Segelbacher G, 2010, CONSERV GENET, V11, P375, DOI 10.1007/s10592-009-0044-5; Sethuraman A, 2014, CONSERV GENET, V15, P61, DOI 10.1007/s10592-013-0521-8; Shanahan DF, 2011, LANDSCAPE ECOL, V26, P137, DOI 10.1007/s10980-010-9542-6; Steele CA, 2009, MOL ECOL, V18, P1629, DOI 10.1111/j.1365-294X.2009.04135.x; Storfer A, 2010, MOL ECOL, V19, P3496, DOI 10.1111/j.1365-294X.2010.04691.x; Toonen RJ, 2011, J MARINE BIOL, V2011; Turner MG, 2005, ECOLOGY, V86, P1967, DOI 10.1890/04-0890; van Dijk P. P., 2011, IUCN RED LIST THREAT; van Strien MJ, 2014, ECOL APPL, V24, P327, DOI 10.1890/13-0442.1; Vandergast AG, 2007, MOL ECOL, V16, P977, DOI 10.1111/j.1365-294X.2006.03216.x; Walker D, 1998, ANIM CONSERV, V1, P55, DOI 10.1111/j.1469-1795.1998.tb00226.x; Wang IJ, 2014, MOL ECOL, V23, P5649, DOI 10.1111/mec.12938; Wang IJ, 2013, EVOLUTION, V67, P3403, DOI 10.1111/evo.12134; Waples RS, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1339; WEIR BS, 1984, EVOLUTION, V38, P1358, DOI 10.1111/j.1558-5646.1984.tb05657.x; Wright S, 1931, GENETICS, V16, P0097 102 4 4 8 53 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. FEB 2017 26 3 781 798 10.1111/mec.13962 18 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology EK5DT WOS:000393947800007 27997082 2018-11-22 J Marazzi, L; Gaiser, EE; Jones, VJ; Tobias, FAC; Mackay, AW Marazzi, Luca; Gaiser, Evelyn E.; Jones, Vivienne J.; Tobias, Franco A. C.; Mackay, Anson W. Algal richness and life-history strategies are influenced by hydrology and phosphorus in two major subtropical wetlands FRESHWATER BIOLOGY English Article algae; biodiversity; hydrology; phosphorus; subtropical wetlands OKAVANGO DESMIDS ZYGNEMATOPHYCEAE; PHYTOPLANKTON COMMUNITIES; INTERMEDIATE DISTURBANCE; DIVERSITY RELATIONSHIPS; TEMPORARY FLOODPLAINS; BIOGEOGRAPHICAL NOTES; FLORIDA EVERGLADES; SPECIES-DIVERSITY; WATER CHEMISTRY; CLIMATE-CHANGE We explored controls of algal taxon richness (hereafter richness) in complex and hydrologically dynamic flood-pulsed wetlands by comparing results from independent studies in two globally important subtropical wetlands: the Okavango Delta (Botswana) and the Florida Everglades (U.S.A.). In both wetlands, the flood pulse hydrology is regulated by distinct wet and dry seasons, and creates floodplain landscapes with heterogeneous habitats; algal growth is limited by phosphorus (P); and water uses threaten ecosystem function. To inform future comparisons of algal richness and distribution patterns, we assessed the role of hydrology and P as key controls of richness, and identified indicator taxa of desiccation disturbance and P scarcity in these wetlands under increasing hydrological, nutrient, and habitat changes. We used the intermediate disturbance hypothesis, and the species-energy theory to explain algal richness patterns, and the competitive, stress-tolerant, ruderal (CSR) framework to classify indicator taxa. We collected algal samples, environmental data and information expected to influence community structure (water depth, relative depth change, P concentrations, hydroperiod and habitat type) over several years at sites representing a broad range of environmental characteristics. To account for sample size differences, we estimated algal richness by determining the asymptote of taxon accumulation curves. Using multiple regression analysis, we assessed if and how water depth, depth change, P, hydroperiod, and habitat type influence richness within each wetland. We then compared the strength of the relationships between these controlling features and richness between wetlands. Using indicator species analysis on relative abundance data, we classified C, S and R indicator taxa associated with shorter/longer hydroperiod, and lower/higher P concentrations. In either wetland, we did not observe the negative unimodal relationship between site-specific richness and water depth change that was expected following the intermediate disturbance hypothesis. It is possible that this relationship exists at more highly resolved temporal scales than the semi-annual to annual scales hypothesised here. However, as nutrient flows and algal habitats depend on these wetlands' flood pulse, maintaining the Okavango's natural pulse, and increasing freshwater flow in the Everglades would help protect these wetlands' algal diversity. Chlorophyta richness (Okavango), and total, Bacillariophyta, Chlorophyta and cyanobacteria richness (Everglades) increased with higher P concentrations, as per species-energy theory. In the Okavango, we classified 6 C and 49 R indicator taxa (e.g. many planktonic Chlorophyta), and in the Everglades, 15 C, 1 S and 9 R taxa (e.g. benthic Bacillariophyta and planktonic/benthic Chlorophyta), and one stress- and disturbance-tolerant cyanobacterium species. Our results offer baseline information for future comparisons of richness, and abundance of C, S and R indicator taxa in subtropical wetlands; this can be used to quantify how algal communities may respond to potential changes in hydrology and P due to water diversion, anthropogenic nutrient loads, and climate change. Examining microhabitat heterogeneity, nitrogen and light availability, and grazing pressure in such wetlands would further illuminate patch-scale controls of richness and life-history strategy distribution in algal communities. [Marazzi, Luca; Gaiser, Evelyn E.; Tobias, Franco A. C.] Florida Int Univ, Dept Biol Sci, SERC, Miami, FL 33199 USA; [Marazzi, Luca; Jones, Vivienne J.; Mackay, Anson W.] UCL, Dept Geog, ECRC, London, England Marazzi, L (reprint author), Florida Int Univ, Dept Biol Sci, OE-148,11200 SW 8th St, Miami, FL 33199 USA. lmarazzi@fiu.edu Marazzi, Luca/0000-0002-3098-7059 Royal Geographical Society; UCL Graduate School; DEFRA Darwin Initiative [162/14/029]; South Florida Water Management District; US Army Corps of Engineers; Florida Coastal Everglades Long Term Ecological Research (FCE LTER) of the Southeast Environmental Research Center (SERC) at Florida International University [813] We are grateful to the Royal Geographical Society, the UCL Graduate School, the DEFRA Darwin Initiative (162/14/029); the South Florida Water Management District and the US Army Corps of Engineers for funding fieldwork and laboratory analyses. We also thank: Nqobizitha Siziba, Okavango Research Institute, UCL Environmental Change Research Centre (ECRC), and FIU staff for sampling and laboratory work; Jan Axmacher for statistical advice; Mike Rugge and Daniel Gann for GIS support; Leonard Pearlstine for providing Everglades habitat data, and Joel Trexler for leading the Everglades programme; Lars Ramberg and Sophie des Clers for co-mentoring LM's Ph.D.; and Nick Schulte, John Kominoski, two anonymous reviewers, and the editor for providing thoughtful comments. This research was developed in collaboration with the Florida Coastal Everglades Long Term Ecological Research (FCE LTER) programme, and represents contribution number 813 of the Southeast Environmental Research Center (SERC) at Florida International University. [Anonymous], 2005, 15204 EN; APHA, 1998, STANDARD METHODS EXA; APHA AWWA WPCP, 2005, STANDARD METHODS EXA; Battin TJ, 2003, NATURE, V426, P439, DOI 10.1038/nature02152; Biggs BJF, 1998, ARCH HYDROBIOL, V143, P21; Borics G, 2003, HYDROBIOLOGIA, V502, P145, DOI 10.1023/B:HYDR.0000004277.07316.c8; Cardinale BJ, 2011, AM J BOT, V98, P572, DOI 10.3732/ajb.1000364; Cardinale BJ, 2009, ECOL LETT, V12, P475, DOI 10.1111/j.1461-0248.2009.01317.x; Carrick HJ, 2001, ARCH HYDROBIOL, V152, P411; CHAO A, 1984, SCAND J STAT, V11, P265; Coesel Peter F. M., 2009, Systematics and Geography of Plants, V79, P15; Coesel Peter F. M., 2008, Systematics and Geography of Plants, V78, P27; CONNELL JH, 1978, SCIENCE, V199, P1302, DOI 10.1126/science.199.4335.1302; Cronberg G., 1996, Archiv fuer Hydrobiologie Supplement, V107, P335; Darkoh M. B. K., 2014, J BIODIVERSITY ENDAN, V2, P4; Davidson TA, 2012, FRESHWATER BIOL, V57, P1253, DOI 10.1111/j.1365-2427.2012.02795.x; Pinto PD, 2015, HYDROBIOLOGIA, V752, P77, DOI 10.1007/s10750-014-2008-0; Ding Y, 2014, BIOGEOCHEMISTRY, V119, P259, DOI 10.1007/s10533-014-9964-3; Douglas MS, 1947, EVERGLADES RIVER GRA; Dufrene M, 1997, ECOL MONOGR, V67, P345, DOI 10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2; Erwin KL, 2009, WETL ECOL MANAG, V17, P71, DOI 10.1007/s11273-008-9119-1; Estenoz S, 2015, ENVIRON MANAGE, V55, P876, DOI 10.1007/s00267-015-0452-x; Folke C, 2004, ANNU REV ECOL EVOL S, V35, P557, DOI 10.1146/annurev.ecolsys.35.021103.105711; Fry EL, 2014, J VEG SCI, V25, P248, DOI 10.1111/jvs.12068; Gaiser EE, 2004, WATER RES, V38, P507, DOI 10.1016/j.watres.2003.10.020; Gaiser E, 2009, ECOL INDIC, V9, pS37, DOI 10.1016/j.ecolind.2008.08.004; Gaiser EE, 2011, CRIT REV ENV SCI TEC, V41, P92, DOI 10.1080/10643389.2010.531192; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; Grover JP, 2004, ECOL MONOGR, V74, P533, DOI 10.1890/03-4073; Grubert's Davis, 2005, Acta Biologica Universitatis Daugavpiliensis, V5, P137; Gunderson Lance H., 1994, P323; Hillebrand H, 2003, OIKOS, V100, P592, DOI 10.1034/j.1600-0706.2003.12045.x; Hubbell Stephen P., 2001, V32, pi; Izaguirre I, 2004, HYDROBIOLOGIA, V511, P25, DOI 10.1023/B:HYDR.0000014016.89127.ca; John D. M., 2002, FRESHWATER ALGAL FLO; Jordan F, 1997, T AM FISH SOC, V126, P1012, DOI 10.1577/1548-8659(1997)126<1012:SFIVHE>2.3.CO;2; JUNK W J, 1989, Canadian Special Publication of Fisheries and Aquatic Sciences, V106, P110; Junk WJ, 2002, ENVIRON CONSERV, V29, P414, DOI 10.1017/S0376892902000310; Junk WJ, 2006, AQUAT SCI, V68, P400, DOI 10.1007/s00027-006-0856-z; KOMAREK J, 1989, ARCH HYDROBIOL, V82, P247; Komarek J, 1975, ARCH HYDROBIOL S, V46, P311; Komarek J, 1999, SUSSWASSERFLORA MITT, V19, P1; Komarek J, 1986, ARCH HYDROBIOL S73, V43, P157; Kovalenko KE, 2012, HYDROBIOLOGIA, V685, P1, DOI 10.1007/s10750-011-0974-z; Kruk C, 2010, FRESHWATER BIOL, V55, P614, DOI 10.1111/j.1365-2427.2009.02298.x; Law RJ, 2014, DIATOM RES, V29, P309, DOI 10.1080/0269249X.2014.889037; Lee SS, 2013, WETLANDS, V33, P157, DOI 10.1007/s13157-012-0363-z; Liess A, 2009, J ECOL, V97, P326, DOI 10.1111/j.1365-2745.2008.01463.x; Lodge T. E., 2010, EVERGLADES HDB UNDER; Mackay AW, 2012, ECOHYDROLOGY, V5, P491, DOI 10.1002/eco.242; Mackay AW, 2011, WETLANDS, V31, P815, DOI 10.1007/s13157-011-0196-1; Marazzi, 2014, THESIS; McCarthy JM, 2003, AMBIO, V32, P453, DOI 10.1639/0044-7447(2003)032[0453:FPOTOW]2.0.CO;2; MCCORMICK PV, 1994, J APPL PHYCOL, V6, P509, DOI 10.1007/BF02182405; MEFFORD M. J., 2011, PC ORD MULTIVARIATE; Milzow C, 2009, HYDROGEOL J, V17, P1297, DOI 10.1007/s10040-009-0436-0; Murakami EA, 2009, BRAZ J BIOL, V69, P459, DOI 10.1590/S1519-69842009000300002; Murray-Hudson M, 2015, WETL ECOL MANAG, V23, P603, DOI 10.1007/s11273-014-9340-z; Noe GB, 2001, ECOSYSTEMS, V4, P603, DOI 10.1007/s10021-001-0032-1; O'Farrell I, 2003, HYDROBIOLOGIA, V502, P197, DOI 10.1023/B:HYDR.0000004282.15489.4e; Paidere J, 2007, HYDROBIOLOGIA, V592, P303, DOI 10.1007/s10750-007-0770-y; Pan Y, 2000, FRESHWATER BIOL, V44, P339, DOI 10.1046/j.1365-2427.2000.00556.x; Passy SI, 2008, P NATL ACAD SCI USA, V105, P9663, DOI 10.1073/pnas.0802542105; Passy SI, 2007, AQUAT BOT, V86, P171, DOI 10.1016/j.aquabot.2006.09.018; Pearlstine LG, 2002, J ENVIRON MANAGE, V66, P127, DOI 10.1006/jema.2002.0551; Philippi T., 2005, FINAL REPORT CERP MA; Pisani O, 2011, WATER RES, V45, P3836, DOI 10.1016/j.watres.2011.04.035; Potapova M, 2003, FRESHWATER BIOL, V48, P1311, DOI 10.1046/j.1365-2427.2003.01080.x; Prescott G. W, 1962, ALGAE W GREAT LAKES; Ptacnik R, 2008, P NATL ACAD SCI USA, V105, P5134, DOI 10.1073/pnas.0708328105; Ramberg L., 2010, WETLANDS ECOLOGY MAN, V18, P595; Ramberg L, 2006, AQUAT SCI, V68, P310, DOI 10.1007/s00027-006-0857-y; REYNOLDS CS, 1993, HYDROBIOLOGIA, V249, P183, DOI 10.1007/BF00008853; Reynolds CS, 2006, ECOL BIODIVERS CONS, P1, DOI 10.2277/ 0521605199; Rodrigues L, 2004, BIO INL WAT, P125; Rodrigues L., 2001, ACTA LIMNOL BRAS, V13, P39; Rodrigues Liliana, 2001, Revista Brasileira de Botanica, V24, P235; ROJO C, 1993, HYDROBIOLOGIA, V249, P43, DOI 10.1007/BF00008842; Rojo C, 2012, BIODIVERS CONSERV, V21, P2453, DOI 10.1007/s10531-012-0307-1; Salmaso N, 2015, FRESHWATER BIOL, V60, P603, DOI 10.1111/fwb.12520; Siziba N, 2012, AFR J ECOL, V50, P43, DOI 10.1111/j.1365-2028.2011.01289.x; Siziba N, 2011, PHYS CHEM EARTH, V36, P939, DOI 10.1016/j.pce.2011.07.055; SOMMER U, 1993, HYDROBIOLOGIA, V249, P1, DOI 10.1007/BF00008837; SOMMER U, 1993, HYDROBIOLOGIA, V249, P59, DOI 10.1007/BF00008843; Stevens DL, 2004, J AM STAT ASSOC, V99, P262, DOI 10.1198/016214504000000250; Stevenson R. J., 2008, J N AMER BENTHOL SOC, V27, P259; Stevenson R J, 1999, RAPID BIOASSESSMENT; Stevenson RJ, 2002, EPA822R02021; Strayer DL, 2010, J N AM BENTHOL SOC, V29, P344, DOI 10.1899/08-171.1; Tapolczai K, 2016, HYDROBIOLOGIA, V776, P1, DOI 10.1007/s10750-016-2736-4; Thomaz Sidinei Magela, 2010, Acta Limnol. Bras., V22, P218, DOI 10.4322/actalb.02202011; United States Environmental Protection Agency (EPA), 1983, METH CHEM AN WAT WAS; Utermohl H., 1958, MITT INT VER LIMNOL, V9, P1; VAN GINKEL C, 2002, TROPHIC STATUS ASSES; Wehr J.D., 2015, FRESHWATER ALGAE N A; WRIGHT DH, 1983, OIKOS, V41, P496, DOI 10.2307/3544109 96 1 1 4 56 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0046-5070 1365-2427 FRESHWATER BIOL Freshw. Biol. FEB 2017 62 2 274 290 10.1111/fwb.12866 17 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology EK2YN WOS:000393793100005 2018-11-22 J Van de Peer, T; Verheyen, K; Kint, V; Van Cleemput, E; Muys, B Van de Peer, Thomas; Verheyen, Kris; Kint, Vincent; Van Cleemput, Elisa; Muys, Bart Plasticity of tree architecture through interspecific and intraspecific competition in a young experimental plantation FOREST ECOLOGY AND MANAGEMENT English Article Mixed forest; Functional diversity; Plasticity; Inter-tree interactions; Competition; TreeDivNet FAGUS-SYLVATICA L.; MIXED-SPECIES STANDS; NORWAY SPRUCE; PINUS-SYLVESTRIS; FOREST DIVERSITY; GROWTH; BRANCHES; MODEL; FORM; MONOCULTURES It is acknowledged that trees behave remarkably plastic in response to environmental conditions. Even so, knowledge of how tree architecture in pure and mixed stands compare is largely underexplored. Such information is relevant from a fundamental ecological and an applied silvicultural perspective, given the increased attention for mixed species silviculture and the close linkages between tree architecture and high-quality timber production. The main objective of this work was to test the effects of competition, diversity and species identity of neighboring trees on the architecture of five important European tree species (Quercus robur, Betula pendula, Fagus sylvatica, Pinus sylvestris and Tilia cordata) in a temperate plantation before and during canopy closure. Data were collected in FORBIO-Zedelgem, a five-year old tree diversity experiment in Belgium. For 396 trees we measured architectural properties including branchiness, tree height-to-diameter (HD) ratio, branch diameter and branch insertion angle, and we investigated how these properties were shaped in different competitive neighborhoods using mixed regression models. Species showed contrasting architectural responses to neighborhood competition, in line with species life-history strategies. In more competitive environments, trees of Q, robur (slow growing and light demanding) increased HD ratio and branch insertion angle to optimize light foraging in the upper canopy; trees of B. pendula (fast growing and light-demanding) increased HD ratio and decreased branching following the branch autonomy principle; trees of F. sylvatica (slow growing and shade tolerant) increased branching to improve light uptake under shading and finally, trees of P. sylvestris (fast growing and light-demanding) and T. cordata (slow growing and shade tolerant) were not shaped in response to competition. Diversity and identity of species in a trees' neighborhood did not contribute to the architectural plasticity, although competitive differences between pure and mixed stands underpinned such effects for B. pendula, with lower branching in the highly competitive monocultures. We conclude that competition between trees, but not diversity, influences the architecture of young plantation trees before and during canopy closure in mixtures. To guide tree architectural development towards high-quality timber, management may have to pay considerable attention to competitive processes already in the juvenile forest stages. (C) 2016 Elsevier B.V. All rights reserved. [Van de Peer, Thomas; Kint, Vincent; Van Cleemput, Elisa; Muys, Bart] Katholieke Univ Leuven, Dept Earth & Environm Sci, Div Forest Nat & Landscape, Celestijnenlaan 200 E,Box 2411, BE-3001 Leuven, Belgium; [Van de Peer, Thomas; Verheyen, Kris] Univ Ghent, Dept Forest & Water Management, Forest & Nat Lab, Geraardsbergsesteenweg 267, B-9090 Gontrode, Belgium Muys, B (reprint author), Katholieke Univ Leuven, Dept Earth & Environm Sci, Div Forest Nat & Landscape, Celestijnenlaan 200 E,Box 2411, BE-3001 Leuven, Belgium. thomas.vandepeer@kuleuven.be; kris.verheyen@ugent.be; vincent.kint@kuleuven.be; elisa.van-cleemput@kuleuven.be; bart.muys@kuleuven.be Kint, Vincent/A-4587-2009 TVDP; FWO SB grant [131108] We would like to thank Michael Scherer-Lorenzen for providing trait data of the studied species, Sophia Ratcliffe and Alain Paquette for their advise on designing pardoned competition indices and the two anonymous reviewers for their constructive comments on an earlier version of this manuscript. TVDP was funded with a FWO SB grant (no. 131108). Baar F., 2005, FORETS WALLONNE, V77, P19; Balvanera P, 2006, ECOL LETT, V9, P1146, DOI 10.1111/j.1461-0248.2006.00963.x; Bayer D, 2013, TREES-STRUCT FUNCT, V27, P1035, DOI 10.1007/s00468-013-0854-4; Carnol M, 2014, FORESTRY, V87, P639, DOI 10.1093/forestry/cpu024; Contreras MA, 2011, FOREST ECOL MANAG, V262, P1939, DOI 10.1016/j.foreco.2011.08.031; Craine JM, 2013, FUNCT ECOL, V27, P833, DOI 10.1111/1365-2435.12081; Curry W.T., 1965, EFFECT PRUNING VALUE; Dieler J, 2013, FOREST ECOL MANAG, V295, P97, DOI 10.1016/j.foreco.2012.12.049; Duchateau E, 2015, PEERJ, V3, DOI 10.7717/peerj.873; Forrester DI, 2014, FOREST ECOL MANAG, V312, P282, DOI 10.1016/j.foreco.2013.10.003; Haase J, 2015, OIKOS, V124, P1674, DOI 10.1111/oik.02090; Heikinheino O., 1953, I FOR FENN, V41, P1; Hein S, 2008, FOREST ECOL MANAG, V256, P2046, DOI 10.1016/j.foreco.2008.07.033; Hein S, 2007, FOREST ECOL MANAG, V242, P155, DOI 10.1016/j.foreco.2007.01.014; Kantola A, 2007, FOREST ECOL MANAG, V241, P209, DOI 10.1016/j.foreco.2007.01.013; Kerr G, 2006, CAN J FOREST RES, V36, P132, DOI [10.1139/x05-213, 10.1139/X05-213]; Kint V, 2010, FOREST ECOL MANAG, V260, P2023, DOI 10.1016/j.foreco.2010.09.008; Kull O, 1999, TREES-STRUCT FUNCT, V14, P55, DOI 10.1007/s004680050209; Lacointe A, 2004, PLANT CELL ENVIRON, V27, P1159, DOI 10.1111/j.1365-3040.2004.01221.x; Laliberte E, 2010, ECOLOGY, V91, P299, DOI 10.1890/08-2244.1; Lang AC, 2012, J VEG SCI, V23, P837, DOI 10.1111/j.1654-1103.2012.01403.x; Lang AC, 2010, FOREST ECOL MANAG, V260, P1708, DOI 10.1016/j.foreco.2010.08.015; Lintunen A, 2013, CAN J FOREST RES, V43, P929, DOI 10.1139/cjfr-2013-0178; Lintunen A, 2010, TREES-STRUCT FUNCT, V24, P411, DOI 10.1007/s00468-010-0409-x; Longuetaud F, 2013, EUR J FOREST RES, V132, P621, DOI 10.1007/s10342-013-0699-9; Makinen H, 2006, EUR J FOREST RES, V125, P239, DOI 10.1007/s10342-006-0115-9; Nadrowski K, 2010, CURR OPIN ENV SUST, V2, P75, DOI 10.1016/j.cosust.2010.02.003; Niinemets U, 2010, ECOL RES, V25, P693, DOI 10.1007/s11284-010-0712-4; Niinemets U, 2006, ECOL MONOGR, V76, P521, DOI 10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2; Persson A., 1976, RES NOTES, V42, P122; Pretzsch H, 2016, FOREST ECOL MANAG, V373, P149, DOI 10.1016/j.foreco.2016.04.043; Pretzsch H, 2016, WOOD SCI TECHNOL, V50, P845, DOI 10.1007/s00226-016-0827-z; Pretzsch H, 2014, FOREST ECOL MANAG, V327, P251, DOI 10.1016/j.foreco.2014.04.027; Pukkala T., 1987, SILVA FENNICA, V2, P55; Ratcliffe S, 2015, FOREST ECOL MANAG, V335, P225, DOI 10.1016/j.foreco.2014.09.032; Rozenbergar D, 2014, FOREST ECOL MANAG, V318, P334, DOI 10.1016/j.foreco.2014.01.037; Sachs T, 2004, J THEOR BIOL, V230, P197, DOI 10.1016/j.jtbi.2004.05.006; Scherer-Lorenzen M, 2007, PERSPECT PLANT ECOL, V9, P53, DOI 10.1016/j.ppees.2007.08.002; Schroter M, 2012, EUR J FOREST RES, V131, P787, DOI 10.1007/s10342-011-0552-y; Setiawan NN, 2017, FOREST ECOL MANAG, V384, P424, DOI 10.1016/j.foreco.2016.10.012; Sumida A, 2002, ANN BOT-LONDON, V89, P301, DOI 10.1093/aob/mcf042; Thorpe HC, 2010, FOREST ECOL MANAG, V259, P1586, DOI 10.1016/j.foreco.2010.01.035; Valkonen S, 2003, SCAND J FOREST RES, V18, P416, DOI 10.1080/02827581.2003.9610645; Van de Peer T., 2016, J APPL ECOL IN PRESS; Verheyen K, 2016, AMBIO, V45, P29, DOI 10.1007/s13280-015-0685-1; Verheyen K, 2013, PLANT ECOL EVOL, V146, P26, DOI 10.5091/plecevo.2013.803; vonGadow K., 2012, CONTINUOUS COVER FOR; WAREING PF, 1961, ANN BOT-LONDON, V25, P321, DOI 10.1093/oxfordjournals.aob.a083754; Wilson BF, 2000, AM J BOT, V87, P601, DOI 10.2307/2656846; Zuur A. F., 2009, MIXED EFFECTS MODELS 50 6 6 3 56 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0378-1127 1872-7042 FOREST ECOL MANAG For. Ecol. Manage. FEB 1 2017 385 1 9 10.1016/j.foreco.2016.11.015 9 Forestry Forestry EI7MA WOS:000392680800001 2018-11-22 J Erickson, GM; Zelenitsky, DK; Kay, DI; Norell, MA Erickson, Gregory M.; Zelenitsky, Darla K.; Kay, David Ian; Norell, Mark A. Dinosaur incubation periods directly determined from growth-line counts in embryonic teeth show reptilian-grade development PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article Dinosauria; teeth; embryology; Neornithes; extinction LIFE-HISTORY EVOLUTION; POPULATION BIOLOGY; SAUROPOD DINOSAURS; NEST SURVIVAL; WATER-LOSS; EGGS; ALLIGATOR; RATES; TIME; PATTERNS Birds stand out from other egg-laying amniotes by producing relatively small numbers of large eggs with very short incubation periods (average 11-85 d). This aspect promotes high survivorship by limiting exposure to predation and environmental perturbation, allows for larger more fit young, and facilitates rapid attainment of adult size. Birds are living dinosaurs; their rapid development has been considered to reflect the primitive dinosaurian condition. Here, nonavian dinosaurian incubation periods in both small and large ornithischian taxa are empirically determined through growthline counts in embryonic teeth. Our results show unexpectedly slow incubation (2.8 and 5.8 mo) like those of outgroup reptiles. Developmental and physiological constraints would have rendered tooth formation and incubation inherently slow in other dinosaur lineages and basal birds. The capacity to determine incubation periods in extinct egg-laying amniotes has implications for dinosaurian embryology, life history strategies, and survivorship across the Cretaceous-Paleogene mass extinction event. [Erickson, Gregory M.; Kay, David Ian] Florida State Univ, Dept Biol Sci, B-157, Tallahassee, FL 32306 USA; [Zelenitsky, Darla K.] Univ Calgary, Dept Geosci, Calgary, AB T2N 1N4, Canada; [Norell, Mark A.] Amer Museum Nat Hist, Div Paleontol, New York, NY 10024 USA Erickson, GM (reprint author), Florida State Univ, Dept Biol Sci, B-157, Tallahassee, FL 32306 USA. gerickson@bio.fsu.edu National Science Foundation [EAR 0959029]; Macaulay Family; Natural Sciences and Engineering Research Council [327513-09] We thank James Gardner, Brandon Strilisky, Don Brinkman, Francois Therrien, and Carl Mehling for facilitating our access to specimens; Stephen Hendricks and Brian Inouye for discussions about the research; Mick Ellison and Ken Womble for photographic and graphics assistance; Amy Davison for preparing the Protoceratops materials; and Carolyn Merrill and Paul Gignac for conducting the CT scanning. Funding was generously provided by National Science Foundation Grant EAR 0959029 (to G.M.E. and M.A.N.); the Macaulay Family (M.A.N.); and Natural Sciences and Engineering Research Council Discovery Grant 327513-09 (to D.K.Z.). Avery JK, 1991, ORBANS ORAL HISTOLOG, P106; Balanoff AM, 2008, NATURWISSENSCHAFTEN, V95, P493, DOI 10.1007/s00114-008-0347-2; Bell PR, 2008, ALCHERINGA, V32, P271, DOI 10.1080/03115510802096101; Berkovitz B.K., 2000, P186, DOI 10.1017/CBO9780511542626.013; Birchard GF, 1996, J ZOOL, V240, P621, DOI 10.1111/j.1469-7998.1996.tb05312.x; Blaesild P, 2002, STAT APPL BIOL GEOLO; Booth D.T., 1991, P325, DOI 10.1017/CBO9780511585739.021; Boughner JC, 2007, ZOOLOGY, V110, P212, DOI 10.1016/j.zool.2007.01.005; Brusatte SL, 2015, BIOL REV, V90, P628, DOI 10.1111/brv.12128; Carpenter K., 1999, EGGS NESTS BABY DINO; D'Emic MD, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0069235; Dean M.C., 2000, P119, DOI 10.1017/CBO9780511542626.009; Deeming DC, 2006, J ZOOL, V270, P209, DOI 10.1111/j.1469-7998.2006.00131.x; Deeming D.C., 1991, P147, DOI 10.1017/CBO9780511585739.011; Deeming DC, 2006, PALAEONTOLOGY, V49, P171, DOI 10.1111/j.1475-4983.2005.00536.x; DEEMING DC, 2002, AVIAN INCUBATION BEH, P1; Dingus L, 2008, AM MUS NOVIT, P1, DOI 10.1206/442.1; Dinsmore SJ, 2002, ECOLOGY, V83, P3476, DOI 10.1890/0012-9658(2002)083[3476:ATFMAN]2.0.CO;2; Dong ZM, 1996, CAN J EARTH SCI, V33, P631, DOI 10.1139/e96-046; Drent R, 1975, AVIAN BIOL, V5, P333; DRENT RH, 1972, P 15 INT ORN C, P255; Erickson GM, 1996, J MORPHOL, V228, P189, DOI 10.1002/(SICI)1097-4687(199605)228:2<189::AID-JMOR7>3.0.CO;2-0; Erickson GM, 2001, NATURE, V412, P429, DOI 10.1038/35086558; Erickson GM, 1996, P NATL ACAD SCI USA, V93, P14623, DOI 10.1073/pnas.93.25.14623; Erickson GM, 2007, BIOL LETTERS, V3, P558, DOI 10.1098/rsbl.2007.0254; Erickson GM, 2006, SCIENCE, V313, P213, DOI 10.1126/science.1125721; Erickson Gregory M., 2014, P422; Erickson GM, 2014, ANNU REV EARTH PL SC, V42, P675, DOI 10.1146/annurev-earth-060313-054858; Erickson GM, 2009, ANAT REC, V292, P1514, DOI 10.1002/ar.20992; Ferguson M.W.J., 1985, Biology of Reptilia, V14, P329; Gadow H, 1883, CATALOGUE PASSERIF 5, V8; GAUTHIER JA, 1986, MEM CALIF ACAD SCI, V8, P1; GAUTHREAUX JR S. A., 1982, AVIAN BIOL, V6, P93; Gill FB, 2007, ORNITHOLOGY 3RD; Grady JM, 2014, SCIENCE, V344, P1268, DOI 10.1126/science.1253143; Grant TA, 2005, AUK, V122, P661, DOI 10.1642/0004-8038(2005)122[0661:TVIPNS]2.0.CO;2; Grellet-Tinner G, 2006, PALAEOGEOGR PALAEOCL, V232, P294, DOI 10.1016/j.palaeo.2005.10.029; Harris MP, 2006, CURR BIOL, V16, P371, DOI 10.1016/j.cub.2005.12.047; HILLSON S, 1986, TEETH; Hopwood N, 2007, INT J DEV BIOL, V51, P1, DOI 10.1387/ijdb.062189nh; Horner John R., 1994, P312; Horner JR, 2000, J VERTEBR PALEONTOL, V20, P115, DOI 10.1671/0272-4634(2000)020[0115:LBHOTH]2.0.CO;2; Hotton III N, 1980, AAAS SELECTED S, P311; HUXLEY TH, 1868, ANN MAGAZINE NATURAL, V2, P66; Iverson J.B., 1991, P87, DOI 10.1017/CBO9780511585739.008; Jackson K, 2002, ZOOLOGY, V105, P203, DOI 10.1078/0944-2006-00077; Kundrat M, 2008, ACTA ZOOL-STOCKHOLM, V89, P231, DOI 10.1111/j.1463-6395.2007.00311.x; Lee SA, 2016, PHYS REV E, V94, DOI 10.1103/PhysRevE.94.022402; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; MASSLER M, 1946, AM J ORTHOD ORAL SUR, V32, P495, DOI 10.1016/0096-6347(46)90067-1; MAYFIELD HAROLD, 1961, WILSON BULL, V73, P255; Mikhailov K. E., 1992, PAPERS AVIAN PALEONT, P141; Miller J.D., 1985, P305; NORELL MA, 1995, NATURE, V378, P774, DOI 10.1038/378774a0; NORELL MA, 1994, SCIENCE, V266, P779, DOI 10.1126/science.266.5186.779; Noro M, 2009, DEV DYNAM, V238, P100, DOI 10.1002/dvdy.21828; Osborn JW, 1998, J DENT RES, V77, P1730, DOI 10.1177/00220345980770090901; OSTROM JH, 1973, NATURE, V242, P136, DOI 10.1038/242136a0; Ozaki T, 2002, NIHON U J ORAL SCI, V28, P143; Paganelli C.V., 1991, P261, DOI 10.1017/CBO9780511585739.017; POUGH FH, 1980, AM NAT, V115, P92, DOI 10.1086/283547; PURVIS A, 1995, COMPUT APPL BIOSCI, V11, P247; RAHN H, 1974, CONDOR, V76, P147, DOI 10.2307/1366724; RAND AS, 1980, COPEIA, P531, DOI 10.2307/1444531; Ricklefs R. E., 1969, SMITHSON CONTRIB ZOO, V9, P1, DOI DOI 10.5479/SI.00810282.9; RICKLEFS RE, 1998, AVIAN GROWTH DEV EVO, P31; Rinaldi C, 2004, PALAEOGEOGR PALAEOCL, V206, P289, DOI 10.1016/j.palaeo.2004.01.008; Russell D. A., 1973, CANADIAN GEOGRAPHICA, V87, P4; Ruxton GD, 2014, PALEOBIOLOGY, V40, P323, DOI 10.1666/13028; SABATH K, 1991, Acta Palaeontologica Polonica, V36, P151; Sander PM, 2011, BIOL REV, V86, P117, DOI 10.1111/j.1469-185X.2010.00137.x; Sato T, 2005, SCIENCE, V308, P375, DOI 10.1126/science.1110578; SCHOUR I., 1939, JOUR DENTAL RES, V18, P91, DOI 10.1177/00220345390180010701; SCHOUR L., 1939, Journal of Dental Research, V18, P161; Schweitzer MH, 2005, SCIENCE, V308, P1456, DOI 10.1126/science.1112158; SEYMOUR RS, 1979, PALEOBIOLOGY, V5, P1; Tanaka K, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0142829; Thompson M.B., 2004, P45; Varricchio DJ, 2016, AUK, V133, P654, DOI 10.1642/AUK-15-216.1; Varricchio DJ, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0128458; Varricchio DJ, 1997, NATURE, V385, P247, DOI 10.1038/385247a0; Varricchio DJ, 2004, LIFE O PAST, P215; Vleck C.M., 1991, P285, DOI 10.1017/CBO9780511585739.019; VLECK D, 1980, PHYSIOL ZOOL, V53, P125, DOI 10.1086/physzool.53.2.30152575; Werner J, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0072862; Werner J, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0028442; WESTERGAARD B, 1987, J ZOOL, V212, P191, DOI 10.1111/j.1469-7998.1987.tb05984.x; WESTERGAARD B, 1986, J ZOOL, V210, P575; Wiemann J, 2015, E1323 PEERJ; WILLIAMS DLG, 1984, PALAEOGEOGR PALAEOCL, V45, P23, DOI 10.1016/0031-0182(84)90107-X; Wilson JA, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000322; Xu X, 2014, SCIENCE, V346, P1341, DOI 10.1126/science.1253293; Zahradnicek O, 2012, J ANAT, V221, P195, DOI 10.1111/j.1469-7580.2012.01531.x; Zelenitsky Darla K., 2006, Journal of the Paleontological Society of Korea, V22, P209; Zelenitsky DK, 2008, PALAEONTOLOGY, V51, P1253, DOI 10.1111/j.1475-4983.2008.00815.x; Zelenitsky DK, 1996, CAN J EARTH SCI, V33, P1655, DOI 10.1139/e96-126; ZUG GR, 2001, HERPETOLOGY INTRO BI, P135 98 11 11 1 25 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. JAN 17 2017 114 3 540 545 10.1073/pnas.1613716114 6 Multidisciplinary Sciences Science & Technology - Other Topics EH9MQ WOS:000392095800044 28049837 Green Published, Bronze 2018-11-22 J Sanz-Aguilar, A; Cortes-Avizanda, A; Serrano, D; Blanco, G; Ceballos, O; Grande, JM; Tella, JL; Donazar, JA Sanz-Aguilar, Ana; Cortes-Avizanda, Ainara; Serrano, David; Blanco, Guillermo; Ceballos, Olga; Grande, Juan M.; Tella, Jose L.; Donazar, Jose A. Sex- and age-dependent patterns of survival and breeding success in a long-lived endangered avian scavenger SCIENTIFIC REPORTS English Article VULTURES GYPS-FULVUS; MIXED-EFFECTS MODELS; LIFE-HISTORY TRAITS; EGYPTIAN VULTURE; 1ST REPRODUCTION; POPULATIONS; BIRDS; COST; SENESCENCE; MORTALITY In long-lived species, the age-, stage- and/or sex-dependent patterns of survival and reproduction determine the evolution of life history strategies, the shape of the reproductive value, and ultimately population dynamics. We evaluate the combined effects of age and sex in recruitment, breeder survival and breeding success of the globally endangered Egyptian vulture (Neophron percnopterus), using 31-years of exhaustive data on marked individuals in Spain. Mean age of first reproduction was 7-yrs for both sexes, but females showed an earlier median and a larger variance than males. We found an age-related improvement in breeding success at the population level responding to the selective appearance and disappearance of phenotypes of different quality but unrelated to within-individual aging effects. Old males (>= 8 yrs) showed a higher survival than both young males (<= 7 yrs) and females, these later in turn not showing aging effects. Evolutionary trade-offs between age of recruitment and fitness ( probably related to costs of territory acquisition and defense) as well as human-related mortality may explain these findings. Sex-and age-related differences in foraging strategies and susceptibility to toxics could be behind the relatively low survival of females and young males, adding a new concern for the conservation of this endangered species. [Sanz-Aguilar, Ana; Cortes-Avizanda, Ainara; Serrano, David; Tella, Jose L.; Donazar, Jose A.] CSIC, Estn Biol Donana, Dept Conservat Biol, Americo Vespucio S-N, E-41092 Seville, Spain; [Sanz-Aguilar, Ana] Inst Mediterraneo Estudios Avanzados CSIC UIB, Populat Ecol Grp, Miquel Marques 21, E-07190 Esporles, Islas Baleares, Spain; [Sanz-Aguilar, Ana] Miguel Hernandez Univ, Dept Appl Biol, Ecol Area, Avda Univ S-N, E-03202 Alicante, Spain; [Cortes-Avizanda, Ainara] Univ Porto, Ctr Invest Biodiversidade & Recursos Genet, Infraestruturas Portugal Biodivers Chair CIBIO In, Campus Agrario Vairao, P-4485661 Vairao, Portugal; [Cortes-Avizanda, Ainara] Univ Lisbon, Inst Super Agron, Ctr Ecol Aplicada Prof Baeta Neves, CEABN InBio, P-1349017 Lisbon, Portugal; [Blanco, Guillermo] CSIC, Museo Nacl Ciencias Nat, Dept Evolutionary Ecol, Jose Gutierrez Abascal 2, Madrid 28006, Spain; [Ceballos, Olga] UGARRA, Avda Carlos 3 1, Pamplona 31002, Spain; [Grande, Juan M.] Consejo Nacl Invest Cient & Tecn, Inst Ciencias Tierra & Ambientales La Pampa, Avda Uruguay 151, RA-6300 Santa Rosa, La Pampa, Argentina; [Grande, Juan M.] Univ Nacl La Pampa, Fac Ciencias Exactas & Nat, Ctr Estudio & Conservac Aves Rapaces Argentina, Avda Uruguay 151, RA-6300 Santa Rosa, La Pampa, Argentina Cortes-Avizanda, A (reprint author), CSIC, Estn Biol Donana, Dept Conservat Biol, Americo Vespucio S-N, E-41092 Seville, Spain.; Cortes-Avizanda, A (reprint author), Univ Porto, Ctr Invest Biodiversidade & Recursos Genet, Infraestruturas Portugal Biodivers Chair CIBIO In, Campus Agrario Vairao, P-4485661 Vairao, Portugal.; Cortes-Avizanda, A (reprint author), Univ Lisbon, Inst Super Agron, Ctr Ecol Aplicada Prof Baeta Neves, CEABN InBio, P-1349017 Lisbon, Portugal. ainara@ebd.csic.es CSIC, EBD Donana/C-4157-2011; Sanz-Aguilar, Ana/D-3778-2014; Serrano, David/B-5352-2013 CSIC, EBD Donana/0000-0003-4318-6602; Sanz-Aguilar, Ana/0000-0002-4177-9749; Serrano, David/0000-0001-6205-386X; Grande, Juan Manuel/0000-0002-8183-0780; CORTES-AVIZANDA, AINARA/0000-0002-9674-6434 Spanish Government, Viveros y Repoblaciones de Navarra [JCI-2011-09085, PI_57055, CGL2012-40013-C02-01-02, CGL2009-12753-C02-01/BOS, CGL2010-15726]; Gobierno de Navarra; Gobierno de Aragon; EU FEDER funds; Severo Ochoa Excellence Award from the Ministerio de Economia y Competitividad [SEV-2012-0262]; Fundacao para a Ciencia e a Tecnologia (FCT) [SFRH/BPD/91609/2012]; Juan de la Cierva Incorporacion Ministerio de Economia y Competitividad [IJCI-2014-20744] We thank J. C. Albero, E. Alcaine, J. M. Aguilera Sanz, C. Astrain, P. Azkona, J. A. Bardaji, J. Boletas, A. Bueno, D. Campion, J. M. Canudo, M. Carrete, C. Fernandez, O. Frias, A. Gajon, I. Gamez, D. Gomez, J. L. Gonzalez, F. Hernandez, J. L. Lagares A. Legaz, R. Lopez, G. Lopez-Lara, I. Luque, F. Martinez, P. Martinez, J. A. Pinzolas, M. de la Riva, J. Seuma, E. Ursua, and O. Ursua for their help with fieldwork. We especially thank A. Urmenta and the staff of Bardenas Reales Natural Park, for logistical support. Dr. Alice Chaplin Scott kindly reviewed the English language and three anonymous reviewers provided valuable comments on an earlier draft of this manuscript. This work was partially funded by projects JCI-2011-09085, PI_57055, CGL2012-40013-C02-01-02, CGL2009-12753-C02-01/BOS and CGL2010-15726 Spanish Government, Viveros y Repoblaciones de Navarra, Gobierno de Navarra, Gobierno de Aragon and EU FEDER funds, as well as a Severo Ochoa Excellence Award from the Ministerio de Economia y Competitividad (SEV-2012-0262). The study had permits of the Regional Governments of Navarra, Aragon and Castilla y Leon. ACA was supported by a Post-Doctoral grant from the Fundacao para a Ciencia e a Tecnologia (FCT) (SFRH/BPD/91609/2012) and a contract Juan de la Cierva Incorporacion IJCI-2014-20744 Ministerio de Economia y Competitividad. Map credits: J. C. del Moral-SEO/Birdlife; Photo credits: M. de la Riva. Bates D, 2015, J STAT SOFTW, V67, P1; BirdLife International, 2015, NEOPHR PERCN LUCN RE; Blanco G, 1997, IBIS, V139, P180, DOI 10.1111/j.1474-919X.1997.tb04522.x; Blanco G, 1996, AUK, V113, P247, DOI 10.2307/4088957; Blanco G, 2016, CHEMOSPHERE, V144, P1536, DOI 10.1016/j.chemosphere.2015.10.045; Bonduriansky R, 2008, FUNCT ECOL, V22, P443, DOI 10.1111/j.1365-2435.2008.01417.x; Burnham KP, 2002, MODEL SELECTION MULT; Carrete M, 2013, ANIM CONSERV, V16, P353, DOI 10.1111/acv.12001; Carrete M, 2010, ANIM CONSERV, V13, P390, DOI 10.1111/j.1469-1795.2010.00352.x; Carrete M, 2007, BIOL CONSERV, V136, P143, DOI 10.1016/j.biocon.2006.11.025; Chantepie S, 2016, OIKOS, V125, P167, DOI 10.1111/oik.02216; Choquet R, 2009, ECOGRAPHY, V32, P1071, DOI 10.1111/j.1600-0587.2009.05968.x; Cortes-Avizanda A, 2016, FRONT ECOL ENVIRON, V14, P191, DOI 10.1002/fee.1257; Cortes-Avizanda A, 2015, SCI REP-UK, V5, DOI 10.1038/srep17033; Cortes-Avizanda A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021016; Cortes-Avizanda A, 2009, J RAPTOR RES, V43, P43, DOI 10.3356/JRR-08-24.1; CURIO E, 1983, IBIS, V125, P400, DOI 10.1111/j.1474-919X.1983.tb03130.x; de Magalhaes JP, 2009, J EVOLUTION BIOL, V22, P1770, DOI 10.1111/j.1420-9101.2009.01783.x; Donald PF, 2007, IBIS, V149, P671, DOI 10.1111/j.1474-919X.2007.00724.x; Donazar J, 1993, IBERIAN VULTURES BIO; Donazar J. A., 2004, LIBRO ROJO AVES ESPA, P129; Donazar JA, 1999, BEHAV ECOL SOCIOBIOL, V45, P55, DOI 10.1007/s002650050539; Ferrer M, 2004, ECOL APPL, V14, P616, DOI 10.1890/02-5361; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Garda-Heras MS, 2013, PLOS ONE, V8; Grande JM, 2009, OIKOS, V118, P580, DOI 10.1111/j.1600-0706.2009.17218.x; Hawkins GL, 2012, BIOL REV, V87, P257, DOI 10.1111/j.1469-185X.2011.00193.x; Lambertucci SA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0075821; Lecomte VJ, 2010, P NATL ACAD SCI USA, V107, P6370, DOI 10.1073/pnas.0911181107; Lemaitre JF, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0209; Lieury N, 2015, BIOL CONSERV, V191, P349, DOI 10.1016/j.biocon.2015.07.008; Limmer B, 2010, OIKOS, V119, P500, DOI 10.1111/j.1600-0706.2009.16673.x; Martinez-Abrain A, 2006, MAR ECOL PROG SER, V318, P271, DOI 10.3354/meps318271; McCleery RH, 2008, P R SOC B, V275, P963, DOI 10.1098/rspb.2007.1418; McCulloch CE, 2001, GEN LINEAR MIXED MOD; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; Mihoub JB, 2010, BIOL CONSERV, V143, P839, DOI 10.1016/j.biocon.2009.12.026; Mills LS, 2012, CONSERVATION WILDLIF; Mourocq E, 2016, EVOLUTION, V70, P296, DOI 10.1111/evo.12853; Nakagawa S, 2013, METHODS ECOL EVOL, V4, P133, DOI 10.1111/j.2041-210x.2012.00261.x; Negro JJ, 2002, NATURE, V416, P807, DOI 10.1038/416807a; Newton I, 2010, POPULATION ECOLOGY R; Nussey DH, 2013, AGEING RES REV, V12, P214, DOI 10.1016/j.arr.2012.07.004; Ogada D, 2016, CONSERV LETT, V9, P89, DOI 10.1111/conl.12182; OWENS IPF, 1994, P ROY SOC B-BIOL SCI, V257, P1, DOI 10.1098/rspb.1994.0086; Pradel R, 2005, BIOMETRICS, V61, P442, DOI 10.1111/j.1541-0420.2005.00318.x; R Core Team, 2015, R LANG ENV STAT COMP; Sanz-Aguilar A, 2015, ECOLOGY, V96, P1650, DOI 10.1890/14-0437.1; Sanz-Aguilar A, 2015, OECOLOGIA, V179, P405, DOI 10.1007/s00442-015-3355-x; Sanz-Aguilar A, 2015, BIOL CONSERV, V187, P10, DOI 10.1016/j.biocon.2015.03.029; Sanz-Aguilar A, 2012, AUK, V129, P510, DOI 10.1525/auk.2012.12011; Sanz-Aguilar A, 2011, ECOL APPL, V21, P555, DOI 10.1890/09-2339.1; Sanz-Aguilar A, 2008, ECOLOGY, V89, P3195, DOI 10.1890/08-0431.1; Sergio F, 2014, NATURE, V515, P410, DOI 10.1038/nature13696; Snijders TAB, 1999, MULTILEVEL ANAL INTR; Szekely T, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0342; Tavecchia G, 2001, ECOLOGY, V82, P165, DOI 10.1890/0012-9658(2001)082[0165:SAARVI]2.0.CO;2; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; van de Pol MV, 2009, ANIM BEHAV, V77, P753, DOI 10.1016/j.anbehav.2008.11.006; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; ZUK M, 1990, PARASITOL TODAY, V6, P231, DOI 10.1016/0169-4758(90)90202-F 61 6 6 8 35 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 2045-2322 SCI REP-UK Sci Rep JAN 11 2017 7 40204 10.1038/srep40204 10 Multidisciplinary Sciences Science & Technology - Other Topics EH1NK WOS:000391533400001 28074860 DOAJ Gold, Green Published 2018-11-22 J Popejoy, T; Wolverton, S; Nagaoka, L; Randklev, CR Popejoy, Traci; Wolverton, Steve; Nagaoka, Lisa; Randklev, Charles R. An interpretive framework for assessing freshwater mussel taxonomic abundances in zooarchaeological faunas QUATERNARY INTERNATIONAL English Article Freshwater mussels; Paleozoology; Shell preservation; Shell identification; Taphonomy DEATH ASSEMBLAGES; SHELL MIDDENS; HUMAN IMPACTS; RIVER; UNIONIDAE; HISTORY; CONSERVATION; TEXAS; COMMUNITIES; POPULATIONS Zooarchaeological freshwater mussel remains provide information about past environments, faunal communities, and human behaviors. However, one challenge of using archaeological assemblages of animal remains is differential preservation such that bones and shells of some taxa are more vulnerable to processes that destroy or remove them from the record over time. Thus, remains of some species of freshwater mussels may be underrepresented in terms of presence/absence data as well as abundance compared to the life or death assemblages. Evaluating the representativeness of assemblages before using such data to answer zooarchaeological and paleozoological research questions is common practice in archaeology, particularly for vertebrate remains. However, little research has focused on evaluating representativeness for molluscan assemblages. In this paper, three processes that potentially influence archaeomalacological data are addressed: mussel life history strategies, shell identifiability, and shell robusticity. Expectations about taxonomic abundances in unionid zooarchaeological assemblages are framed and assessed using two datasets from sites from the Leon River in central Texas. As expected, shell robusticity and identifiability influence zooarchaeological abundance data; differences in life history strategy can be used to interpret past stream environments. The expectations derived in this paper can be used as interpretive tools for understanding factors that influence archaeomalacological taxonomic abundance data. (C) 2016 Elsevier Ltd and INQUA. All rights reserved. [Popejoy, Traci; Wolverton, Steve; Nagaoka, Lisa] Univ North Texas, Dept Geog, 1155 Union Circle 305279, Denton, TX 76203 USA; [Randklev, Charles R.] Inst Nat Renewable Resources, College Stn, TX 77843 USA Popejoy, T (reprint author), Univ North Texas, Dept Geog, 1155 Union Circle 305279, Denton, TX 76203 USA. TraciPopejoy@ou.edu Popejoy, Traci/0000-0002-9309-4397 Texas Department of Transportation and Coastal Environments, Inc. [41HM61, 57-3XXSA001, 57-302SA001]; AMEC Earth & Environmental, Inc. Funding for identification of the 41HM61 assemblage provided by Texas Department of Transportation and Coastal Environments, Inc. under contract number 57-3XXSA001 and work authorization 57-302SA001. Funding for the identification of the Belton Lake assemblages provided by AMEC Earth & Environmental, Inc. Three anonymous reviewers provided thoughtful comments on this paper, and we thank the special issue editors for the invitation to publish this paper. Baker F. C., 1936, Transactions of the Illinois Academy of Science, V29, P243; Bogan A.E., 1990, Paleontological Society Special Publication, P112; Botkin S., 1980, MODELING CHANGE PREH; Braje TJ, 2007, AM ANTIQUITY, V72, P735, DOI 10.2307/25470443; Burlakova LE, 2011, DIVERS DISTRIB, V17, P393, DOI 10.1111/j.1472-4642.2011.00753.x; Campbell B, 2015, J ARCHAEOL SCI, V58, P167, DOI 10.1016/j.jas.2015.02.007; Campbell DC, 2005, INVERTEBR BIOL, V124, P131, DOI 10.1111/j.1744-7410.2005.00015.x; Casey J. L., 1986, THESIS; Claassen C, 2000, AM ANTIQUITY, V65, P415, DOI 10.2307/2694068; Clark J, 1967, FIELDIANA GEOLOGY ME, V5, P111; Dillon R. T., 2000, ECOLOGY FRESHWATER M; DRIVER J.C, 1992, CIRCAEA, V9, P35; Driver JC, 2011, ETHNOBIOL LETT, V2, P19; Fisher R. A., 1930, GENETICAL THEORY NAT; [Food and Drug Administration. Department of Health and Human Services], 2014, FED REG; Galbraith HS, 2008, SOUTHWEST NAT, V53, P45, DOI 10.1894/0038-4909(2008)53[45:SORAEF]2.0.CO;2; Galbraith HS, 2010, BIOL CONSERV, V143, P1175, DOI 10.1016/j.biocon.2010.02.025; Geist V, 1998, DEER WORLD THEIR EVO; Giovas CM, 2009, J ARCHAEOL SCI, V36, P1557, DOI 10.1016/j.jas.2009.03.017; Glassow MA, 2000, AM ANTIQUITY, V65, P407, DOI 10.2307/2694067; Gobalet KW, 2001, J ARCHAEOL SCI, V28, P377, DOI 10.1006/jasc.2000.0564; Grayson D.K., 1984, QUANTITATIVE ZOOARCH, P93; GRAYSON DK, 1987, J MAMMAL, V68, P359, DOI 10.2307/1381475; Grime J. P., 2001, PLANT STRATEGIES VEG; Gulyas S., 2012, NEW HORIZONS CENTRAL, P113; Haag WR, 2014, HYDROBIOLOGIA, V735, P45, DOI 10.1007/s10750-013-1524-7; Haag WR, 2013, BIOL REV, V88, P745, DOI 10.1111/brv.12028; Haag WR, 2011, BIOL REV, V86, P225, DOI 10.1111/j.1469-185X.2010.00146.x; Haag Wendell R., 2009, P107; Haag WR, 2012, NORTH AMERICAN FRESHWATER MUSSELS: NATURAL HISTORY, ECOLOGY, AND CONSERVATION, P1, DOI 10.1017/CBO9781139048217; Harris M, 2015, J ARCHAEOL SCI, V57, P168, DOI 10.1016/j.jas.2015.01.017; Hornbach D.J., 1996, J N AM BENTHOL SOC, V15, P387; Hornbach DJ, 2010, AM MIDL NAT, V164, P22, DOI 10.1674/0003-0031-164.1.22; Howells R. G, 1996, FRESHWATER MUSSELS T; Howells R.G, 2013, FIELD GUIDE TEXAS FR; KIDWELL SM, 1995, ANNU REV ECOL SYST, V26, P269, DOI 10.1146/annurev.es.26.110195.001413; Kidwell SM, 2001, SCIENCE, V294, P1091, DOI 10.1126/science.1064539; Kidwell SM, 2013, PALAEONTOLOGY, V56, P487, DOI 10.1111/pala.12042; Kidwell SM, 2010, PALEOBIOLOGY, V36, P615, DOI 10.1666/09004.1; Klein R. G., 1984, ANAL ANIMAL BONES AR; KLIPPEL W E, 1978, Plains Anthropologist, V23, P257; Kosnik MA, 2009, PALEOBIOLOGY, V35, P565, DOI 10.1666/0094-8373-35.4.565; Lawrence B., 1973, DOMESTIKATIONSFORSCH, P397; Louys Julien, 2012, P23; LYMAN R L, 1984, Northwest Anthropological Research Notes, V18, P97; Lyman R.L., 1994, VERTEBRATE TAPHONOMY; Lyman RL, 2012, BIOL REV, V87, P513, DOI 10.1111/j.1469-185X.2011.00207.x; Lyman RL, 2008, CAMB MAN ARCHAEOL, P1, DOI 10.1017/CBO9780511813863; MAC ARTHUR ROBERT H., 1967; Mannino AM, 2002, WORLD ARCHAEOL, V33, P452; Mason RD, 1998, AM ANTIQUITY, V63, P303, DOI 10.2307/2694700; MATTESON MR, 1960, AM ANTIQUITY, V26, P117, DOI 10.2307/277171; Meadow R. H, 1980, PALEORIENT, V6, P65; Miller EJ, 2014, AM MIDL NAT, V171, P16, DOI 10.1674/0003-0031-171.1.16; Mims MC, 2012, ECOLOGY, V93, P35, DOI 10.1890/11-0370.1; Morey DF, 1998, J ARCHAEOL SCI, V25, P907, DOI 10.1006/jasc.1997.0272; Morrison AE, 2007, PAC SCI, V61, P325, DOI 10.2984/1534-6188(2007)61[325:HIOTNE]2.0.CO;2; Muckle R.J., 1985, THESIS; Nagaoka L, 2005, J ARCHAEOL SCI, V32, P941, DOI 10.1016/j.jas.2004.12.011; Nagaoka L., 1994, ASIAN PERSPECTIVES, V33; Nobles T, 2011, BIODIVERSITY LOSS IN A CHANGING PLANET, P137; Obermeyer BK, 1998, AM MIDL NAT, V139, P331, DOI 10.1674/0003-0031(1998)139[0331:ACOQVT]2.0.CO;2; Ortmann A.E., 1909, P AM PHILOS SOC, P90; Parmalee P.W., 1982, BRIMLEYANA, V8, P75; Parmalee PW, 2004, SOUTHEAST NAT, V3, P231, DOI 10.1656/1528-7092(2004)003[0231:PAPPOF]2.0.CO;2; PARMALEE PW, 1986, AM MALACOL BULL, V4, P25; PARMALEE PW, 1974, AM ANTIQUITY, V39, P421, DOI 10.2307/279431; Peacock E, 2005, CONSERV BIOL, V19, P547, DOI 10.1111/j.1523-1739.2005.00036.x; Peacock E., 2001, SE ARCHAEOLOGY, V20, P44; Peacock E., 2005, J ALABAMA ARCHAEOLOG, V51, P32; Peacock E, 2008, J ARCHAEOL SCI, V35, P2557, DOI 10.1016/j.jas.2008.04.006; Peacock Evan, 2012, P42; Peacock E, 2012, ECOL APPL, V22, P1446; Pianka E. R., 1972, R K SELECTION B SELE; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Poff NL, 1997, J N AM BENTHOL SOC, V16, P391, DOI 10.2307/1468026; Popejoy T.G., 2015, THESIS; Randklev Charles R., 2012, P68; Randklev CR, 2013, AQUAT CONSERV, V23, P390, DOI 10.1002/aqc.2340; Randklev CR, 2010, ECOL APPL, V20, P2359, DOI 10.1890/09-1425.1; Randklev CR, 2009, J ARCHAEOL SCI, V36, P205, DOI 10.1016/j.jas.2008.08.009; Shea CP, 2011, J N AM BENTHOL SOC, V30, P446, DOI 10.1899/10-073.1; Singh GG, 2015, J ARCHAEOL SCI, V58, P175, DOI 10.1016/j.jas.2015.02.029; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; Spurlock B.D., 1981, THESIS; Swetnam TW, 1999, ECOL APPL, V9, P1189, DOI 10.1890/1051-0761(1999)009[1189:AHEUTP]2.0.CO;2; Vaughn CC, 2012, FRESHWATER BIOL, V57, P982, DOI 10.1111/j.1365-2427.2012.02759.x; VAUGHN CC, 1997, CONSERVATION MANAGEM, V2, P157; Warren R.E., 1975, THESIS; Warren R. E., 1991, ILLINOIS STATE MUSEU, P23; WATTERS GT, 1994, AM MALACOL BULL, V11, P1; Williams J. D., 2008, FRESHWATER MUSSELS A; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Wolverton S., 2012, CONSERVATION BIOL AP, P1; Wolverton S., 2014, INT J OSTEOARCHAEOLO; Wolverton S, 2013, J ARCHAEOL METHOD TH, V20, P381, DOI 10.1007/s10816-012-9161-4; Wolverton S, 2010, J ARCHAEOL SCI, V37, P164, DOI 10.1016/j.jas.2009.09.028 98 2 2 2 3 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 1040-6182 1873-4553 QUATERN INT Quat. Int. JAN 5 2017 427 A 36 46 10.1016/j.quaint.2015.09.101 11 Geography, Physical; Geosciences, Multidisciplinary Physical Geography; Geology EO2CY WOS:000396505400006 2018-11-22 J Yegorov, I; Grognard, F; Mailleret, L; Halkett, F Yegorov, Ivan; Grognard, Frederic; Mailleret, Ludovic; Halkett, Fabien Optimal resource allocation for biotrophic plant pathogens IFAC PAPERSONLINE English Proceedings Paper 20th World Congress of the International-Federation-of-Automatic-Control (IFAC) JUL 09-14, 2017 Toulouse, FRANCE Int Federat Automat Control, Continental Automot, Occitanie Reg, Toulouse Metropole, CNES, Univ Toulouse III, Paul Sabatier, Inria, CNRS, OPTITRACK, MDPI, ISAE Supaero, iCODE, EECI, Int Journal Automat & Comp, IEEE CAA Journal Automatica Sinica, Moveo biotrophic pathogen; within-host multiplication; spore production; resource allocation; optimal control; singular control; switching surfaces LIFE-HISTORY STRATEGIES; VIRULENCE; EVOLUTION; DYNAMICS; FUNGUS A significant class of plant pathogens is constituted by biotrophic fungi. They set up long-term feeding relationships with their hosts. This kind of parasitism decreases competitive abilities of plants in natural environments and reduces yields in agricultural systems. Therefore, it is relevant to develop and validate mathematical models which can help to better understand how related disease associated traits evolve. In this paper, one-season dynamics of a within-host cohort of spore-producing biotrophic fungi is considered. Their within-host multiplication and outer transmission are implemented by the mycelial growth and free-living (spore) forms, respectively. We state and investigate a specific dynamic optimization problem in order to determine how the fungi allocate available host resources between mycelial growth and spore production. The pathogen fitness criterion is introduced as maximization of the reproductive output. The constructed optimal feedback strategy can serve as a benchmark to compare actual infection mechanisms. There is a singular control subregime which plays an important role from the biological point of view. It keeps the average mycelium size equal to a particular steady value and represents an intermediate configuration of the resource allocation. We also analyze the asymptotic behavior of this steady state when the lesion density is large. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved. [Yegorov, Ivan; Grognard, Frederic; Mailleret, Ludovic] UPMC Univ Paris 06, Univ Cote Dazur, CNRS, INRIA,INRA, Paris, France; [Mailleret, Ludovic] Univ Cote Dazur, CNRS, INRA, ISA, Nice, France; [Halkett, Fabien] Univ Lorraine, INRA, UMR IAM, Nancy, France Yegorov, I (reprint author), UPMC Univ Paris 06, Univ Cote Dazur, CNRS, INRIA,INRA, Paris, France. ivanyegorov@gmail.com project FunFit [ANR-13-BSV7-0011] This work was supported in part by the project FunFit ANR-13-BSV7-0011 Akhmetzhanov A. R., 2012, ADV DYNAMIC GAMES, P73; Akhmetzhanov AR, 2011, EVOLUTION, V65, P3113, DOI 10.1111/j.1558-5646.2011.01381.x; Bancal MO, 2012, ANN BOT-LONDON, V110, P113, DOI 10.1093/aob/mcs094; Clarke F. H., 1998, NONSMOOTH ANAL CONTR; Day T, 2003, TRENDS ECOL EVOL, V18, P113, DOI 10.1016/S0169-5347(02)00049-6; Day T, 2001, EVOLUTION, V55, P2389; Deacon J. W., 1997, MODERN MYCOLOGY; Gabasov R., 1982, SINGULAR OPTIMAL CON; Gilchrist MA, 2006, EVOLUTION, V60, P970; Melikyan A.A, 1998, GEN CHARACTERISTICS; Newton MR, 1999, J PHYTOPATHOL, V147, P527, DOI 10.1046/j.1439-0434.1999.00428.x; Pei MH, 2003, EUR J PLANT PATHOL, V109, P269, DOI 10.1023/A:1022822503139; PONTRYAGIN LS, 1964, MATH THEORY OPTIMAL; Robert C, 2004, PHYTOPATHOLOGY, V94, P712, DOI 10.1094/PHYTO.2004.94.7.712; SASAKI A, 1991, THEOR POPUL BIOL, V39, P201, DOI 10.1016/0040-5809(91)90036-F; Yegorov I., 2015, APPL MATH SCI, V9, P4523; Yong J., 1999, STOCHASTIC CONTROLS; Zelikin M. I., 2005, J MATH SCI, V130, P4409, DOI 10.1007/s10958-005-0350-5 18 1 1 0 0 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 2405-8963 IFAC PAPERSONLINE IFAC PAPERSONLINE 2017 50 1 3154 3159 10.1016/j.ifacol.2017.08.328 6 FU6LT WOS:000423964800025 2018-11-22 J Grossmann, I; Varnum, MEW Grossmann, Igor; Varnum, Michael E. W. Divergent life histories and other ecological adaptations: Examples of social-class differences in attention, cognition, and attunement to others BEHAVIORAL AND BRAIN SCIENCES English Editorial Material Many behavioral and psychological effects of socioeconomic status (SES), beyond those presented by Pepper & Nettle cannot be adequately explained by life-history theory. We review such effects and reflect on the corresponding ecological affordances and constraints of low-versus high-SES environments, suggesting that several ecology-specific adaptations, apart from life-history strategies, are responsible for the behavioral and psychological effects of SES. [Grossmann, Igor] Univ Waterloo, Dept Psychol, Waterloo, ON N2L 3G1, Canada; [Varnum, Michael E. W.] Arizona State Univ, Dept Psychol, Tempe, AZ 85287 USA Grossmann, I (reprint author), Univ Waterloo, Dept Psychol, Waterloo, ON N2L 3G1, Canada. igrossma@uwaterloo.ca; mvarnum@asu.edu 0 1 1 5 5 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0140-525X 1469-1825 BEHAV BRAIN SCI Behav. Brain Sci. 2017 40 UNSP e329 10.1017/S0140525X17000991 2 Psychology, Biological; Behavioral Sciences; Neurosciences Psychology; Behavioral Sciences; Neurosciences & Neurology FT2TX WOS:000423000000039 29342751 2018-11-22 J Varnum, MEW; Grossmann, I Varnum, Michael E. W.; Grossmann, Igor Pathogen prevalence is associated with cultural changes in gender equality NATURE HUMAN BEHAVIOUR English Article DISEASE Gender equality has varied across time, with dramatic shifts in countries such as the United States in the past several decades. Although differences across societies and changes within societies in gender equality have been well documented, the causes of these changes remain poorly understood. Scholars have posited that such shifts have been driven by specific events (such as Title IX and Roe versus Wade), broader social movements (such as feminism and women's liberation) or general levels of social development (for example, modernization theory(1)). Although these factors are likely to have been partly responsible for temporal variations in gender equality, they provide fairly intermediate explanations void of a comprehensive framework. Here, we use an ecological framework to explore the role of key ecological dimensions on change in gender equality over time. We focus on four key types of ecological threats/affordances that have previously been linked to cultural variations in human behaviour as potential explanations for cultural change in gender equality: infectious disease, resource scarcity, warfare and climatic stress. We show that decreases in pathogen prevalence in the United States over six decades (1951-2013) are linked to reductions in gender inequality and that such shifts in rates of infectious disease precede shifts in gender inequality. Results were robust, holding when we controlled for other ecological dimensions and for collectivism and conservative ideological identification (indicators of more broadly traditional cultural norms and attitudes). Furthermore, the effects were partially mediated by reduced teenage birth rates (a sign that people are adopting slower life history strategies), suggesting that life history strategies statistically account for the relationship between pathogen prevalence and gender inequality over time. Finally, we replicated our key effects in a different society, using comparable data from the United Kingdom over a period of seven decades (1945-2014). [Varnum, Michael E. W.] Arizona State Univ, Dept Psychol, 950 S McAllister, Tempe, AZ 85287 USA; [Grossmann, Igor] Univ Waterloo, Dept Psychol, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada Varnum, MEW (reprint author), Arizona State Univ, Dept Psychol, 950 S McAllister, Tempe, AZ 85287 USA. mvarnum@asu.edu Grossmann, Igor/0000-0003-2681-3600 Insight grant from the Social Sciences and Humanities Research Council of Canada [435-2014-0685]; John Templeton Foundation This research was supported by the Insight grant no. 435-2014-0685 from the Social Sciences and Humanities Research Council of Canada (to I.G.) and by a grant from the John Templeton Foundation 'Prospective Psychology Stage 2: A Research Competition to Martin Seligman' (sub-grant awarded to I.G.). The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation. Neither funder had any role in the study design, the data collection and analysis, the decision to publish or the preparation of the manuscript. Del Giudice M., 2015, HDB EVOLUTIONARY PSY, V1; Gangestad SW, 2006, PSYCHOL INQ, V17, P75, DOI 10.1207/s15327965pli1702_1; Gelfand MJ, 2011, SCIENCE, V332, P1100, DOI 10.1126/science.1197754; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Grossmann I, 2015, PSYCHOL SCI, V26, P311, DOI 10.1177/0956797614563765; Hill SE, 2016, ADAPT HUM BEHAV PHYS, V2, P116, DOI 10.1007/s40750-015-0040-6; Inglehart Ronald, 2003, RISING TIDE GENDER E; Jones J., 2014, GALLUP POLL SOCIAL S; Kenrick D. T., 2014, ADV CULTURE PSYCHOL, V3, P78; Manning J. E., 2014, RL30261 C RES SERV; Mills T C, 1991, J ECON SURV, V5, P215; Murray DR, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0062275; Murray DR, 2012, EUR J SOC PSYCHOL, V42, P180, DOI 10.1002/ejsp.863; Murray DR, 2011, PERS SOC PSYCHOL B, V37, P318, DOI 10.1177/0146167210394451; Oishi S, 2014, ANNU REV PSYCHOL, V65, P581, DOI 10.1146/annurev-psych-030413-152156; Schaller M, 2008, J PERS SOC PSYCHOL, V95, P212, DOI 10.1037/0022-3514.95.1.212; Schaller M, 2011, CURR DIR PSYCHOL SCI, V20, P99, DOI 10.1177/0963721411402596; Thornhill R, 2014, PARASITE STRESS THEO; Thornhill R, 2011, PHILOS T R SOC B, V366, P3466, DOI 10.1098/rstb.2011.0052; Thornhill R, 2009, BIOL REV, V84, P113, DOI 10.1111/j.1469-185X.2008.00062.x; Tommaso P., 1991, DOES BOX COX TRANSFO; Twenge JM, 2012, SEX ROLES, V67, P488, DOI 10.1007/s11199-012-0194-7; Van de Vliert E, 2013, BEHAV BRAIN SCI, V36, P465, DOI 10.1017/S0140525X12002828; Varnum M. E. W., 2014, EVOLUTIONARY BEHAV S, V8, P77, DOI [10.1037/h0098950, DOI 10.1037/H0098950]; Varnum M. E. W., BEHAV BRAIN IN PRESS; Varnum MEW, 2013, J CROSS CULT PSYCHOL, V44, P832, DOI 10.1177/0022022112466591; Ventura S., 2014, NATL VITAL STAT REPO, V63, p[4, 4]; Wellings K, 1999, J ROY SOC MED, V92, P277, DOI 10.1177/014107689909200603 28 9 9 0 1 NATURE PUBLISHING GROUP NEW YORK 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA 2397-3374 NAT HUM BEHAV Nat. Hum. Behav. JAN 2017 1 1 UNSP 0003 10.1038/s41562-016-0003 4 Psychology, Biological Psychology FR0TI WOS:000418775900024 2018-11-22 J Frederich, B; Santini, F Frederich, Bruno; Santini, Francesco Macroevolutionary analysis of the tempo of diversification in snappers and fusiliers (Percomorpha: Lutjanidae) BELGIAN JOURNAL OF ZOOLOGY English Article Lutjanus; phylogeny; ecological radiation; lineage diversification; molecular clock MITOCHONDRIAL-DNA SEQUENCES; WESTERN ATLANTIC SNAPPERS; GREAT-BARRIER-REEF; PHYLOGENETIC-RELATIONSHIPS; CORAL-REEF; MOLECULAR PHYLOGENIES; DRIVE DIVERSIFICATION; EVOLUTIONARY HISTORY; INDO-PACIFIC; FISHES The percomorph fish family Lutjanidae (snappers and fusiliers) includes about 135 reefdwelling species, mainly confined to tropical and subtropical marine waters. The great majority of snappers are active predators feeding on fishes or crustaceans, even though some species, including the fusiliers (Caesioninae), have evolved zooplanktivory. Lutjanids show a great diversity of habitat preferences, based on depth segregation and distribution across reef and associated habitats (e.g., mangroves, seagrass beds, estuaries). In spite of their great ecological and economic importance little is known about the tempo of evolution in this group. The present study provides the most comprehensive molecular phylogeny to date for lutjanids, including 70% of extant species and 19 of the 21 currently described genera. We time-calibrated our molecular tree using the oldest described lutjanid fossils, and show how this group most likely originated during the Late Cretaceous or Early Paleocene. Lutjanids experienced a significant radiation during the Late Eocene and Early Oligocene, in contrast to a pattern of Late Oligocene/Miocene radiation observed in many other reef-associated groups. The time-tree allows us to investigate the tempo of diversification, and our results suggest a variation in the rate of speciation during the evolution of the major clade formed by "lutjanins and caesionins". Variation in diet and life history strategies could explain this clade-specific dynamic, although future phylogenetic comparative studies combining additional ecological and morphological data are needed to test this hypothesis. [Frederich, Bruno] Univ Liege, AFFISH Res Ctr, Lab Morphol Fonct & & Evolut, B-4000 Liege, Belgium; [Frederich, Bruno] Univ Liege, MARE Ctr, Lab Oceanol, B-4000 Liege, Belgium; [Santini, Francesco] Assoc Italiana Studio Biodiversita, I-56100 Pisa, Italy Frederich, B (reprint author), Univ Liege, AFFISH Res Ctr, Lab Morphol Fonct & & Evolut, B-4000 Liege, Belgium.; Frederich, B (reprint author), Univ Liege, MARE Ctr, Lab Oceanol, B-4000 Liege, Belgium. bruno.frederich@ulg.ac.be; francesco.santini@alumni.utoronto.ca Frederich, Bruno/0000-0003-3438-0243 XSEDE grant [TG-DEB140025]; "Fonds National de la Recherche Scientifique of Belgium" (F.R.S-FNRS) We thank G. Carnevale (University of Torino) for advice regarding the status of the Bolca fossils, as well as for pointing out to us the lutjanid fossil from Florida. We also want to thank the branch editor and three anonymous reviewers for the useful comments made when reviewing this manuscript. The phylogenetic analyses were run on XSEDE thanks to funding by XSEDE grant TG-DEB140025 to FS. BF was funded by the "Fonds National de la Recherche Scientifique of Belgium" (F.R.S-FNRS). BF is currently a post-doctoral researcher from BELSPO (Belgian Science Policy). Aburto-Oropeza O, 2009, MAR BIOL, V156, P2461, DOI 10.1007/s00227-009-1271-5; Alfaro ME, 2007, EVOLUTION, V61, P2104, DOI 10.1111/j.1558-5646.2007.00182.x; Alfaro ME, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-255; Allen G.R, 1985, FAO FISHERIES SYNOPS, V6; Andrews KR, 2016, MOL PHYLOGENET EVOL, V100, P361, DOI 10.1016/j.ympev.2016.04.004; Bannikov AF, 2006, GEODIVERSITAS, V28, P249; Bellwood DR, 2017, BIOL REV, V92, P878, DOI 10.1111/brv.12259; Berkstrom C, 2013, MAR ECOL PROG SER, V477, P201, DOI 10.3354/meps10171; Betancur-R R., 2013, PLOS CURRENTS TREE L; Blot J, 1990, MEM MUS CIV STOR NAT, V6, P13; Briggs JC, 2012, J BIOGEOGR, V39, P12, DOI 10.1111/j.1365-2699.2011.02613.x; Burnham KP, 2002, MODEL SELECTION MULT; Carnevale G., 2014, RENDICONTI SOC PALEO, P37; Chen W.J., 2014, FRONTIERS MARINE SCI, V1, P1; Chu C, 2013, CIENC MAR, V39, P349, DOI 10.7773/cm.v39i4.2287; Cooper W.J, 2016, BIOL DAMSELFISHES, P15; Cowman PF, 2011, J EVOLUTION BIOL, V24, P2543, DOI 10.1111/j.1420-9101.2011.02391.x; de la Moriniere EC, 2003, MAR ECOL PROG SER, V246, P279; Dornburg A, 2011, EVOLUTION, V65, P1912, DOI 10.1111/j.1558-5646.2011.01275.x; Drummond AJ, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-214; Edgar RC, 2004, NUCLEIC ACIDS RES, V32, P1792, DOI 10.1093/nar/gkh340; Eschmeyer W. N., 2016, CATALOG FISHES; Frederich B, 2013, AM NAT, V181, P94, DOI 10.1086/668599; Gold JR, 2015, SYST BIODIVERS, V13, P916, DOI 10.1080/14772000.2015.1078857; Gold JR, 2011, BIOL J LINN SOC, V102, P915, DOI 10.1111/j.1095-8312.2011.01621.x; Iwatsuki Yukio, 2015, Journal of the Ocean Science Foundation, V17, P22; Johnson G.D., 1980, Bulletin of the Scripps Institution of Oceanography of the University of California, V24, P1; JOHNSON GD, 1993, B MAR SCI, V52, P3; Kazancioglu E, 2009, P R SOC B, V276, P3439, DOI 10.1098/rspb.2009.0876; Lanfear R, 2012, MOL BIOL EVOL, V29, P1695, DOI 10.1093/molbev/mss020; Litsios G, 2014, J BIOGEOGR, V41, P2140, DOI 10.1111/jbi.12370; Lobato FL, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0102094; LYTHGOE JN, 1994, J COMP PHYSIOL A, V174, P461; Maddison W. P., 2015, MESQUITE MODULAR SYS; Martinez-Andrade F, 2003, THESIS; Miller TL, 2007, MOL PHYLOGENET EVOL, V44, P450, DOI 10.1016/j.ympev.2006.10.029; Monteiro DP, 2009, BRAZ ARCH BIOL TECHN, V52, P1421, DOI 10.1590/S1516-89132009000600014; Nagelkerken I, 2000, ESTUAR COAST SHELF S, V51, P31, DOI 10.1006/ecss.2000.0617; Near TJ, 2013, P NATL ACAD SCI USA, V110, P12738, DOI 10.1073/pnas.1304661110; Newman S.J, 1995, THESIS; Newman SJ, 1996, ENVIRON BIOL FISH, V46, P123, DOI 10.1007/BF00005214; Pimentel CR, 2010, J FISH BIOL, V76, P2299, DOI 10.1111/j.1095-8649.2010.02586.x; Pybus OG, 2000, P ROY SOC B-BIOL SCI, V267, P2267, DOI 10.1098/rspb.2000.1278; R Development Core Team, 2015, R LANG ENV STAT COMP; Rabosky DL, 2008, P ROY SOC B-BIOL SCI, V275, P2363, DOI 10.1098/rspb.2008.0630; Rabosky DL, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms2958; Rabosky DL, 2006, EVOL BIOINFORM, V2, P247; Ronquist F, 2012, SYST BIOL, V61, P539, DOI 10.1093/sysbio/sys029; Sanderson MJ, 2008, SYST BIOL, V57, P335, DOI 10.1080/10635150802158688; Santini F, 2014, ITAL J ZOOL, V81, P55, DOI 10.1080/11250003.2013.878960; Santini F, 2013, J EVOLUTION BIOL, V26, P1003, DOI 10.1111/jeb.12112; Santini F, 2002, J BIOGEOGR, V29, P189, DOI 10.1046/j.1365-2699.2002.00669.x; Santini F, 2003, ZOOL J LINN SOC-LOND, V139, P565, DOI 10.1111/j.1096-3642.2003.00088.x; Santini F, 2013, MOL PHYLOGENET EVOL, V69, P165, DOI 10.1016/j.ympev.2013.05.015; Sarver SK, 1996, COPEIA, P715, DOI 10.2307/1447537; Streelman JT, 2002, EVOLUTION, V56, P961; Swift C., 1972, Contributions Sci, VNo. 230, P1; Tamura K, 2013, MOL BIOL EVOL, V30, P2725, DOI 10.1093/molbev/mst197; Tyler J. C., 1999, ST RIC GIAC TERZ BOL, V8, P245; Tyler James C., 2002, Studi e Ricerche sui Giacimenti Terziari di Bolca, V9, P47; Tyler James C., 2005, Studi e Ricerche sui Giacimenti Terziari di Bolca, V11, P97; Tylkr J.C., 2000, B MUSEO CIVICO STORI, V24, P29; Wakefield CB, 2016, J FISH BIOL, V88, P735, DOI 10.1111/jfb.12809; Yang Z, 2006, COMPUTATIONAL MOL EV; Zhou Fa-lin, 2004, Journal of Fishery Sciences of China, V11, P99; Zhu Shi-Hua, 2006, Acta Zoologica Sinica, V52, P514 66 0 0 3 9 ROYAL BELGIAN ZOOLOGICAL SOC BRUSSELS C/O PROF DR ISA SCHON, ROYAL BELGIAN INST NATURAL SCIENCES, DEPT FRESHWATER BIOLOGY, B-1000 BRUSSELS, BELGIUM 0777-6276 2295-0451 BELG J ZOOL Belg. J. Zool. 2017 147 1 17 35 10.26496/bjz.2017.2 19 Zoology Zoology FP8RV WOS:000417914700002 Bronze 2018-11-22 J Zhao, CC; Zheng, HY; Ma, C; Guo, JY; Wan, FH; Zhou, ZS Zhao, Chen-Chen; Zheng, Hai-Yan; Ma, Chao; Guo, Jian-Ying; Wan, Fang-Hao; Zhou, Zhong-Shi Effects of age at mating of both sexes on female longevity and fecundity performance in Ophraella communa LeSage (Coleoptera: Chrysomelidae) BIOCONTROL SCIENCE AND TECHNOLOGY English Article Mate age; hatch rate; trade-offs; biological control agent; sex-specific age effect MALE MATE CHOICE; MALE DROSOPHILA-MELANOGASTER; GOOD GENES; SPERM COMPETITION; BUSH-CRICKET; OLDER MALES; YOUNG SPERM; TRADE-OFFS; HISTORY; EVOLUTION Life-history strategies of animals are governed by fitness-related trait trade-offs. In particular, the age at which either one of the two sexes copulate has been shown to affect insect reproductive output and longevity. This suggests that trade-offs between longevity and reproduction might drive the choice of a mating partner based on their age and ultimately such choices might select for different life-histories. Although several studies indicate that female age at mating dictates subsequent insect longevity, fecundity, and egg hatch rate, it is unclear how male age at copulation affects these life-history traits. In this study, we simultaneously investigated the effects of female and male age on female fecundity, eggs hatch rate, and adult longevity in Ophraella communa LeSage (Coleoptera: Chrysomellidae), the primary biological control agent of the invasive common ragweed, Ambrosia artemisiifolia L. We found that young mature females lived significantly longer when they were mated with older males. Maximum female fecundity and subsequent egg hatch rate occurred when young females mated with 3-day-old males. On the other hand, females lived longer when mating with an older male. These findings are in accordance with the cost-of-reproduction concept. [Zhao, Chen-Chen; Zheng, Hai-Yan; Ma, Chao; Guo, Jian-Ying; Wan, Fang-Hao; Zhou, Zhong-Shi] Chinese Acad Agr Sci, Inst Plant Protect, State Key Lab Biol Plant Dis & Insect Pests, Beijing, Peoples R China Zhou, ZS (reprint author), Chinese Acad Agr Sci, Inst Plant Protect, State Key Lab Biol Plant Dis & Insect Pests, Beijing, Peoples R China. zhongshizhou@yahoo.com National Natural Science Foundation of China [31672089]; National Natural Science Foundation for Excellent Young Scholars [31322046] This work was funded by the National Natural Science Foundation of China (No. 31672089) and the National Natural Science Foundation for Excellent Young Scholars (No. 31322046). Alem S, 2010, BEHAV ECOL, V21, P615, DOI [10.1093/beheco/arg028, 10.1093/beheco/arq028]; Arnaud L, 1999, BEHAVIOUR, V136, P67, DOI 10.1163/156853999500677; Avent TD, 2008, ANIM BEHAV, V75, P1413, DOI 10.1016/j.anbehav.2007.09.015; Bateman PW, 2004, J ZOOL, V262, P305, DOI 10.1017/S0952836903004679; Beck CW, 2000, EVOL ECOL RES, V2, P107; Brooks R, 2001, TRENDS ECOL EVOL, V16, P308, DOI 10.1016/S0169-5347(01)02147-4; Byrne PG, 2006, P ROY SOC B-BIOL SCI, V273, P917, DOI 10.1098/rspb.2005.3372; Crow JF, 1997, P NATL ACAD SCI USA, V94, P8380, DOI 10.1073/pnas.94.16.8380; Edward DA, 2013, ANIM BEHAV, V86, P269, DOI 10.1016/j.anbehav.2013.05.014; Edward DA, 2012, EVOLUTION, V66, P2646, DOI 10.1111/j.1558-5646.2012.01648.x; Edward DA, 2011, TRENDS ECOL EVOL, V26, P647, DOI 10.1016/j.tree.2011.07.012; Foster SP, 1999, ENTOMOL EXP APPL, V91, P287, DOI 10.1046/j.1570-7458.1999.00495.x; Fricke C, 2007, ANIM BEHAV, V74, P541, DOI 10.1016/j.anbehav.2006.12.016; Hansen TF, 1995, J EVOLUTION BIOL, V8, P759, DOI 10.1046/j.1420-9101.1995.8060759.x; Hunt J, 2004, TRENDS ECOL EVOL, V19, P329, DOI 10.1016/j.tree.2004.03.035; Hunt J, 2005, AM NAT, V166, P79, DOI 10.1086/430672; Jones TM, 2004, P ROY SOC B-BIOL SCI, V271, P1311, DOI 10.1098/rspb.2004.2723; Jones TM, 2000, P ROY SOC B-BIOL SCI, V267, P681, DOI 10.1098/rspb.2000.1056; Kokko H, 1998, EVOL ECOL, V12, P739, DOI 10.1023/A:1006541701002; Kokko H, 1996, P ROY SOC B-BIOL SCI, V263, P1533, DOI 10.1098/rspb.1996.0224; LeSage L, 1986, MEMOIRS ENTOMOLOGICA, V133, P1, DOI [10.4039/entm118133fv, DOI 10.4039/ENTM118133FV]; Lupold S, 2011, BEHAV ECOL, V22, P184, DOI 10.1093/beheco/arq193; Mishra G, 2004, J APPL ENTOMOL, V128, P605, DOI 10.1111/j.1439-0418.2004.00903.605-609; Moore PJ, 2001, P NATL ACAD SCI USA, V98, P9171, DOI 10.1073/pnas.161154598; NAVASERO R, 1992, ENTOMOPHAGA, V37, P37, DOI 10.1007/BF02372972; Omkar, 2005, Journal of Applied Bioscience, V31, P43; Omkar, 2009, BIOCONTROL, V54, P637, DOI 10.1007/s10526-009-9211-3; Omkar S.K.Singh, 2006, INSECT SCI, V13, P301, DOI DOI 10.1111/J.1744-7917.2006.00098.X; Pervez A, 2004, J INSECT SCI, V4, DOI 10.1093/jis/4.1.22; Prathibha M, 2010, ZOOL STUD, V49, P806; Price DK, 1998, BEHAV GENET, V28, P395, DOI 10.1023/A:1021677804038; Radwan J, 2003, ECOL LETT, V6, P581, DOI 10.1046/j.1461-0248.2003.00484.x; Radwan J, 2000, EXP APPL ACAROL, V24, P115, DOI 10.1023/A:1006492903270; Reinhardt K, 2005, AM NAT, V165, P718, DOI 10.1086/430010; Roff D., 1992, ECOLOGY LIFE HIST TH; SAS Institute, 2004, SAS US GUID STAT; Simmons LW, 1995, BEHAV ECOL, V6, P376, DOI 10.1093/beheco/6.4.376; SIMMONS LW, 1994, ANIM BEHAV, V47, P117, DOI 10.1006/anbe.1994.1013; Siva-Jothy MT, 2000, ECOL LETT, V3, P172; Srivastava S, 2004, J APPL ENTOMOL, V128, P452, DOI 10.1111/j.1439-0418.2004.00871.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Wedell N, 2004, ANIM BEHAV, V67, P1059, DOI 10.1016/j.anbehav.2003.10.007; Wedell N, 2002, TRENDS ECOL EVOL, V17, P313, DOI 10.1016/S0169-5347(02)02533-8; Zajitschek F, 2009, AM NAT, V173, P792, DOI 10.1086/598486; Zheng H. Y., 2013, CHINESE J APPL ENTOM, V35, P120; Zhou ZS, 2012, BIOCONTROL SCI TECHN, V22, P81, DOI 10.1080/09583157.2011.643225; Zhou ZS, 2010, ENVIRON ENTOMOL, V39, P1021, DOI 10.1603/EN09176; Zhou ZS, 2009, RES BIOL INVASIONS C, P253 48 0 0 4 7 TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND 0958-3157 1360-0478 BIOCONTROL SCI TECHN Biocontrol Sci. Technol. 2017 27 10 1145 1152 10.1080/09583157.2017.1387232 8 Biotechnology & Applied Microbiology; Entomology Biotechnology & Applied Microbiology; Entomology FN2IK WOS:000415814800002 2018-11-22 J Le Bourg, E; Vijg, J Le Bourg, Eric; Vijg, Jan The Future of Human Longevity: Time for a Reality Check GERONTOLOGY English Editorial Material Limits to life span; Life-history strategy; Life expectancy; Maximum life span; Centenarians; Maximum reported age at death HUMAN LIFE-SPAN; LIMIT Gavrilov and colleagues disagree with our article in Gerontology [Vijg and Le Bourg: Gerontology 2017; 63: 432-434]. Here we address their arguments regarding human life-history strategies, maximal lifespan, and the proposal that one could live soon for 150 years. (C) 2017 S. Karger AG, Basel [Le Bourg, Eric] Univ Toulouse, CNRS, UPS, Ctr Rech Cognit Anim,Ctr Biol Integrat, Toulouse, France; [Vijg, Jan] Albert Einstein Coll Med, Dept Genet, 1301 Morris Pk Ave, Bronx, NY 10461 USA Vijg, J (reprint author), Albert Einstein Coll Med, Dept Genet, 1301 Morris Pk Ave, Bronx, NY 10461 USA. jan.vijg@einstein.yu.edu Berthelot G, 2015, SPORTS MED, V45, P1263, DOI 10.1007/s40279-015-0347-2; Dong X, 2016, NATURE, V538, P257, DOI 10.1038/nature19793; FINCH CE, 2000, CHANCE DEV AGING; Gavrilov LA, 2017, GERONTOLOGY, V63, P524, DOI 10.1159/000477965; LEBOURG E, 1993, EXP GERONTOL, V28, P217, DOI 10.1016/0531-5565(93)90030-H; POPPER KR, 1935, LOGIK FORSCHUNG; Vijg J, 2017, GERONTOLOGY, V63, P432, DOI 10.1159/000477210 7 2 3 0 3 KARGER BASEL ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND 0304-324X 1423-0003 GERONTOLOGY Gerontology 2017 63 6 527 528 10.1159/000478891 2 Geriatrics & Gerontology Geriatrics & Gerontology FK1WZ WOS:000413275600005 28848096 2018-11-22 J Schroeder, R; Schwarz, R; Crespi-Abril, AC; Perez, JAA Schroeder, Rafael; Schwarz, Richard; Cesar Crespi-Abril, Augusto; Alvarez Perez, Jose Angel Analysis of shape variability and life history strategies of Illex argentinus in the northern extreme of species distribution as a tool to differentiate spawning groups JOURNAL OF NATURAL HISTORY English Article; Proceedings Paper Meeting of Cephalopod-International-Advisory-Council (CIAC) 2015 Hakodate, JAPAN Cephalopod Int Advisory Council Cannibalism; gladius; growth depensation; morphometrics; recent growth SHORT-FINNED SQUID; GEOMETRIC MORPHOMETRICS; SOUTHERN BRAZIL; CEPHALOPODA OMMASTREPHIDAE; LOLIGO-GAHI; GROWTH; SIZE; POPULATIONS; AGE; COINDETII This study aimed to differentiate local and migratory spawning groups of the shortfin squid Illex argentinus caught in Brazilian waters using geometric and traditional morphometric methods and size-selective processes. The back-calculated length distributions reconstructed from daily growth increments deposited in the gladius allowed the identification of size-selective processes that may be related to different life history strategies. Landmark analysis on body shape (geometric morphometric) revealed that spawning groups presented significant ontogenetic variations in terms of body outline. In addition, traditional morphometric methods, based on multivariate analysis, associated juveniles of the expected migratory group (large size) and differentiated them from the local group individuals (small size). The changes in form, probably linked to the environmental gradients experienced by individuals throughout ontogeny, were interpreted as adaptations to improve swimming capacity. Migrant individuals have being differentiated from the smaller sizes group by body characteristics (broad fins, elongated and thicker mantle), which may increase the ability to perform long migrations. [Schroeder, Rafael; Alvarez Perez, Jose Angel] Univ Vale Itajai, Grp Estudos Pesqueiros, Itajai, Brazil; [Schwarz, Richard] Evolutionary Ecol Marine Fishes, GEOMAR, Kiel, Germany; [Cesar Crespi-Abril, Augusto] Ctr Nacl Patagon CENPAT CONICET, Puerto Madryn, Argentina; [Cesar Crespi-Abril, Augusto] Univ Nacl Patagonia San Juan Bosco, Puerto Madryn, Argentina Schroeder, R (reprint author), Univ Vale Itajai, Grp Estudos Pesqueiros, Itajai, Brazil. schroederichthys@gmail.com Schwarz, Richard/0000-0002-0961-5998; Schroeder, Rafael/0000-0001-7340-0214 Adams DC, 2004, ITAL J ZOOL, V71, P5, DOI 10.1080/11250000409356545; Perez JAA, 2009, LAT AM J AQUAT RES, V37, P409, DOI 10.3856/vol37-issue3-fulltext-11; ARKHIPKIN A, 1994, AQUAT LIVING RESOUR, V7, P221, DOI 10.1051/alr:1994025; ARKHIPKIN A, 1993, FISH RES, V16, P313, DOI 10.1016/0165-7836(93)90144-V; Arkhipkin A, 2000, ICES J MAR SCI, V57, P31, DOI 10.1006/jmsc.1999.0488; ARKHIPKIN A I, 1991, Scientia Marina, V55, P619; Arkhipkin A. I., 1990, FRENTE MARITIMO A, V6, P25; Arkhipkin A, 2015, CAN J FISH AQUAT SCI, V72, P400, DOI 10.1139/cjfas-2014-0386; Arkhipkin Alexander, 1998, FAO (Food and Agriculture Organization of the United Nations) Fisheries Technical Paper, V376, P157; Arkhipkin AI, 2015, REV FISH SCI AQUAC, V23, P92, DOI 10.1080/23308249.2015.1026226; Baron PJ, 2002, J MAR BIOL ASSOC UK, V82, P269; Bartol IK, 2008, INTEGR COMP BIOL, V48, P720, DOI 10.1093/icb/icn043; Bizikov V. A., 1991, P INT WORKSH, V1, P39; Bookstein FL, 1998, ACTA ZOOL ACAD SCI H, V44, P7; BOOKSTEIN FL, 1985, MORPHOMETRICS EVOLUT; Bookstein FL, 1991, MORPHOMETRIC TOOLS L; Boyle P, 2005, CEPHALOPODS: ECOLOGY AND FISHERIES, P1, DOI 10.1002/9780470995310; Boyle PR, 1996, PHILOS T ROY SOC B, V351, P985, DOI 10.1098/rstb.1996.0089; Boyle PR, 1983, CEPHALOPOD LIFE CYCL, VI; Brunetti N. E., 1990, FRENTE MARITIMO, V7, P45; Brunetti NE, 1991, FRENTE MARITIMO, V9, P53; Brunetti NE., 1988, THESIS; Cadrin SX, 2000, REV FISH BIOL FISHER, V10, P91, DOI 10.1023/A:1008939104413; Carvalho Gary R., 1998, FAO (Food and Agriculture Organization of the United Nations) Fisheries Technical Paper, V376, P199; Castellanos Z. J. A, 1960, NEOTROPICA, V6, P55; Crespi-Abril AC, 2010, J MAR BIOL ASSOC UK, V90, P547, DOI 10.1027/S0025315409990567; Crespi-Abril AC, 2012, FISH OCEANOGR, V21, P199, DOI 10.1111/j.1365-2419.2012.00615.x; Darwin C, 1859, ORIGIN SPECIES MEANS; DIXON AFG, 1985, APHID ECOLOGY, P157; Dryden I., 1998, STAT SHAPE ANAL; Fujiwara M, 2004, ECOL LETT, V7, P106, DOI 10.1046/j.1461-0248.2003.00556.x; Green CP, 2015, CAN J FISH AQUAT SCI, V72, P1609, DOI 10.1139/cjfas-2014-0559; Haefner Jr P. A., 1964, CHESAPEAKE SCI, V5, P138; HAIMOVICI M, 1990, Scientia Marina, V54, P179; Haimovici M., 1995, ICES Marine Science Symposia, V199, P414; Haimovici M., 1998, FAO (Food and Agriculture Organization of the United Nations) Fisheries Technical Paper, V376, P27; Hakoyama H, 2001, J ETHOL, V19, P129, DOI 10.1007/s101640170009; Hernandez-Garcia V, 1998, J MAR BIOL ASSOC UK, V78, P1259, DOI 10.1017/S0025315400044477; Hirtle RWM, 1981, J SHELL RES, V1, P18; Ibanez CM, 2010, REV FISH BIOL FISHER, V20, P123, DOI 10.1007/s11160-009-9129-y; Kato Y, 2016, FISH RES, V173, P169, DOI 10.1016/j.fishres.2015.09.016; Klingenberg CP, 2016, DEV GENES EVOL, V226, P113, DOI 10.1007/s00427-016-0539-2; Klingenberg CP, 2011, MOL ECOL RESOUR, V11, P353, DOI 10.1111/j.1755-0998.2010.02924.x; Kozlowski J, 2002, FUNCT ECOL, V16, P419, DOI 10.1046/j.1365-2435.2002.00646.x; Liu BL, 2015, FISH OCEANOGR, V24, P335, DOI 10.1111/fog.12112; Lombarte A, 2006, J MAR BIOL ASSOC UK, V86, P767, DOI 10.1017/S0025315406013683; Lomnicki A., 1980, POPULATION ECOLOGY I; Lorenzen K, 2016, FISH RES, V180, P4, DOI 10.1016/j.fishres.2016.01.006; Lorrain A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022194; Mangold K., 1987, P157; Martinez P, 2005, MAR BIOL, V148, P97, DOI 10.1007/s00227-005-0057-7; Mouat B, 2001, FISH RES, V52, P41, DOI 10.1016/S0165-7836(01)00229-6; Neige P, 2006, VIE MILIEU, V56, P121; O'Dor R., 1980, ICNAF SEL PAP, V6, P15; O'Dor R.K., 1993, P385; O'Dor R.K., 1998, FAO (Food and Agriculture Organization of the United Nations) Fisheries Technical Paper, V376, P233; O'Dor RK, 2000, ICES J MAR SCI, V57, P8, DOI 10.1006/jmsc.1999.0502; Perez JAA, 1996, CAN J FISH AQUAT SCI, V53, P2837, DOI 10.1139/cjfas-53-12-2837; Perez JAA, 1995, THESIS; Pfister CA, 2002, ECOLOGY, V83, P59; Richtsmeier JT, 2002, YEARB PHYS ANTHROPOL, V45, P63, DOI 10.1002/ajpa.10174; Rodhouse PG, 2012, ADV SQUID BIOL ECOLO, P109; Rohlf FJ, 1998, SYST BIOL, V47, P147, DOI 10.1080/106351598261094; Rohlf FJ, 1999, J CLASSIF, V16, P197, DOI 10.1007/s003579900054; Rohlf FJ, 2001, TPSDIG 1 47 TPSUTIL; Santos RA, 1997, SCI MAR, V61, P53; Schroeder R, 2013, J MAR BIOL ASSOC UK, V93, P1653, DOI 10.1017/S0025315412001920; Schroeder R, 2010, FISH RES, V106, P163, DOI 10.1016/j.fishres.2010.05.008; Schroeder R, 2012, 11 CEPH INT COUNC S, P39; Schwarz R, 2013, J MAR BIOL ASSOC UK, V93, P557, DOI 10.1017/S0025315412000331; Shea EK, 2002, MAR BIOL, V140, P971, DOI 10.1007/s00227-001-0772-7; Staaf DJ, 2014, J EXP BIOL, V217, P1588, DOI 10.1242/jeb.082271; Thompson DK, 2005, GROWTH FORM; Thompson JT, 2002, BIOL BULL, V203, P14, DOI 10.2307/1543454; UCHMANSKI J, 1985, PHILOS T ROY SOC B, V310, P1, DOI 10.1098/rstb.1985.0099; Vega MA, 2002, B MAR SCI, V71, P903; VIDAL EAG, 1994, ANTARCT SCI, V6, P275; Wood JB, 2000, MAR BIOL, V136, P91, DOI 10.1007/s002270050012; Zar J. H., 1984, BIOESTATISTICAL ANAL; Zecchini F, 1996, P BIOL SOC WASH, V109, P591; Zeidberg LD, 2004, J EXP BIOL, V207, P4195, DOI 10.1242/jeb.01276; Zelditch ML, 1998, SYST BIOL, V47, P159, DOI 10.1080/106351598261102; Zelditch ML, 2004, GEOMETRIC MORPHOMETR 83 0 0 2 4 TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND 0022-2933 1464-5262 J NAT HIST J. Nat. Hist. 2017 51 43-44 2585 2605 10.1080/00222933.2017.1374484 21 Biodiversity Conservation; Ecology; Zoology Biodiversity & Conservation; Environmental Sciences & Ecology; Zoology FK5GI WOS:000413525600003 2018-11-22 J Wada, T Wada, Toshifumi Size-assortative mating and arm loss in the wild shallow-water octopus Abdopus sp (Cephalopoda: Octopodidae) JOURNAL OF NATURAL HISTORY English Article; Proceedings Paper Meeting of Cephalopod-International-Advisory-Council (CIAC) 2015 Hakodate, JAPAN Cephalopod Int Advisory Council Abdopus; arm autotomy; arm regeneration; mating success; sneaking tactics ACULEATUS DORBIGNY; TAIL LOSS; AUTOTOMY; REGENERATION; GROWTH; PERFORMANCE; COMPETITION; BEHAVIOR; ANIMALS; LIZARDS The ability to autotomise and regenerate body parts as a means of escaping predation or renewing damaged tissues has evolved in several animal groups. Some octopuses belonging to the genus Abdopus are known for a high frequency of arm loss and their capacity to regenerate arms. I investigated the mating behaviour and the incidence of arm loss in a shallow-water Abdopus sp. in the wild. Mating occurred at night and at low tide. The male octopus tracked and copulated by repeatedly stretching the hectocotylised arm into the female's mantle cavity during mating bouts, mostly while the mated female actively moved to forage at the same time. Relatively smaller males adopted sneaking tactics in which they stayed around a mating pair and sometimes gained opportunistic copulations with the female. A significant positive relationship between the body weights of the male and female in each mating pair was detected. Moreover, the proportion of sneaker males that had lost at least one arm prior to mating and their number of lost arms per individual were significantly higher than those of paired males. These results suggest that male arm loss in Abdopus sp. may directly or indirectly influence male competition over females and mating success, resulting in a positive size association between members of a mating pair. This finding would be important when considering the life-history strategies of octopuses. [Wada, Toshifumi] Univ Hyogo, Inst Nat & Environm Sci, Yayoigaoka 6, Sanda, Hyogo 6691546, Japan Wada, T (reprint author), Univ Hyogo, Inst Nat & Environm Sci, Yayoigaoka 6, Sanda, Hyogo 6691546, Japan. wada@hitohaku.jp Andersson M., 1994, SEXUAL SELECTION; ARNOLD EN, 1984, J NAT HIST, V18, P127, DOI 10.1080/00222938400770131; Arnold EN., 1985, BIOL REPTILIA, P237; Boyle PR, 2000, MAR BIOL, V137, P317, DOI 10.1007/s002270000351; BROWN RM, 1995, J HERPETOL, V29, P98, DOI 10.2307/1565091; Carlini DB, 1999, B MAR SCI, V64, P57; CIGLIANO JA, 1995, ANIM BEHAV, V49, P849; Fox SF, 2000, OECOLOGIA, V122, P327, DOI 10.1007/s004420050038; Goss RJ., 1969, PRINCIPLES REGNERATI; Guzik MT, 2005, MOL PHYLOGENET EVOL, V37, P235, DOI 10.1016/j.ympev.2005.05.009; Hanlon RT, 1996, CEPHALOPOD BEHAV; HARTWICK EB, 1988, MALACOLOGIA, V29, P57; Huffard CL, 2008, MAR BIOL, V154, P353, DOI 10.1007/s00227-008-0930-2; Huffard CL, 2007, J MOLLUS STUD, V73, P185, DOI 10.1093/mollus/eym015; Huffard CL, 2006, J EXP BIOL, V209, P3697, DOI 10.1242/jeb.02435; Huffard CL, 2010, J COMP PSYCHOL, V124, P38, DOI 10.1037/a0017230; Iwata Y, 2015, J MOLLUS STUD, V81, P147, DOI 10.1093/mollus/eyu072; Iwata Y, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-236; JOLL LM, 1976, MAR BIOL, V36, P327, DOI 10.1007/BF00389194; Kaneko N, 2011, MALACOLOGIA, V54, P97, DOI 10.4002/040.054.0102; Lange MM, 1920, J EXP ZOOL, V31, P1, DOI 10.1002/jez.1400310102; Maginnis TL, 2006, BEHAV ECOL, V17, P857, DOI 10.1093/beheco/arl010; Mangold K., 1987, P157; MARTIN J, 1993, BEHAV ECOL SOCIOBIOL, V32, P185; Mohanty S, 2014, MAR BIOL, V161, P1521, DOI 10.1007/s00227-014-2437-3; Norman M.D., 2005, Phuket Marine Biological Center Research Bulletin, V66, P127; Norman MD, 2001, INVERTEBR TAXON, V15, P13, DOI 10.1071/IT99018; ROPER C F E, 1983, Memoirs of the National Museum of Victoria, V44, P49; SMITH LD, 1992, OECOLOGIA, V89, P494, DOI 10.1007/BF00317155; Stoks R, 1999, BEHAV ECOL SOCIOBIOL, V47, P70, DOI 10.1007/s002650050651; Tamura K, 2011, MOL BIOL EVOL, V28, P2731, DOI 10.1093/molbev/msr121; Uetz GW, 1996, BEHAV ECOL SOCIOBIOL, V38, P253, DOI 10.1007/s002650050240; VOIGHT JR, 1992, J ZOOL, V228, P247, DOI 10.1111/j.1469-7998.1992.tb04606.x; Wada T, 2010, ANIM BEHAV, V79, P613, DOI 10.1016/j.anbehav.2009.12.004; Ward LA, 1998, THESIS; WELLS MJ, 1972, ANIM BEHAV, V20, P293, DOI 10.1016/S0003-3472(72)80051-4; Wrinn KM, 2008, BEHAV ECOL, V19, P1282, DOI 10.1093/beheco/arn077 37 1 1 3 4 TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND 0022-2933 1464-5262 J NAT HIST J. Nat. Hist. 2017 51 43-44 2635 2644 10.1080/00222933.2016.1252069 10 Biodiversity Conservation; Ecology; Zoology Biodiversity & Conservation; Environmental Sciences & Ecology; Zoology FK5GI WOS:000413525600006 2018-11-22 S Matta, ME; Tribuzio, CA; Ebert, DA; Goldman, KJ; Gburski, CM Larson, SE; Lowry, D Matta, Mary E.; Tribuzio, Cindy A.; Ebert, David A.; Goldman, Kenneth J.; Gburski, Christopher M. Age and Growth of Elasmobranchs and Applications to Fisheries Management and Conservation in the Northeast Pacific Ocean NORTHEAST PACIFIC SHARK BIOLOGY, RESEARCH AND CONSERVATION, PT A Advances in Marine Biology English Review; Book Chapter DOGFISH SQUALUS-ACANTHIAS; EASTERN BERING-SEA; LIFE-HISTORY STRATEGIES; SKATE AMBLYRAJA-RADIATA; BRITISH-COLUMBIA WATERS; SPINY DOGFISH; BOMB RADIOCARBON; LONGNOSE SKATE; CHONDRICHTHYAN FISHES; CENTRAL CALIFORNIA In addition to being an academic endeavour, the practical purpose of conducting age and growth studies on fishes is to provide biological data to stock assessment scientists and fisheries managers so they may better understand population demographics and manage exploitation rates. Age and size data are used to build growth models, which are a critical component of stock assessments. Though age determination of elasmobranchs in the northeast Pacific Ocean (NEP) began in the 1930s, the field has evolved substantially in recent years, allowing scientists to incorporate age data into assessments for more species than ever before. Owing to the highly diverse biology of this group of fishes, each species has its own set of challenges with regard to age determination. Age determination methods typically rely on semicalcified hard structures that form regular growth patterns; however, the structure selected and preparation method used is often species specific. New staining techniques have improved the ability to assess age and improve ageing precision for some species, and advances in microchemical methods have allowed for independent means of estimating age and validating age determination accuracy. Here we describe current age determination methods for NEP elasmobranchs. While the library of available techniques is increasing, there are still some NEP species for which reliable ageing methods have yet to be defined; we discuss these challenges and potential avenues of future research. Finally, we conclude by describing how age estimates are used in growth models and subsequently in stock assessments of selected NEP elasmobranchs. [Matta, Mary E.; Gburski, Christopher M.] NOAA, Resource Ecol & Fisheries Management, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98115 USA; [Tribuzio, Cindy A.] NOAA, Auke Bay Labs, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Juneau, AK USA; [Ebert, David A.] Moss Landing Marine Labs, Pacific Shark Res Ctr, Pob 450, Moss Landing, CA 95039 USA; [Goldman, Kenneth J.] Alaska Dept Fish & Game, Homer, AK USA Matta, ME (reprint author), NOAA, Resource Ecol & Fisheries Management, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98115 USA. beth.matta@noaa.gov Ainsley SM, 2014, FISH RES, V154, P17, DOI 10.1016/j.fishres.2014.02.002; Ainsley SM, 2011, ICES J MAR SCI, V68, P1426, DOI 10.1093/icesjms/fsr072; ALVERSON DL, 1975, ICES J MAR SCI, V36, P133; Andrews AH, 2015, ENVIRON BIOL FISH, V98, P971, DOI 10.1007/s10641-014-0326-8; Araya M, 2006, ENVIRON BIOL FISH, V77, P293, DOI 10.1007/s10641-006-9110-8; Barnett LAK, 2009, J FISH BIOL, V75, P1258, DOI 10.1111/j.1095-8649.2009.02362.x; BEAMISH RJ, 1985, CAN J FISH AQUAT SCI, V42, P1799, DOI 10.1139/f85-225; Bizzarro JJ, 2007, ENVIRON BIOL FISH, V80, P197, DOI 10.1007/s10641-007-9241-6; Bizzarro JJ, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0109907; Braccini JM, 2007, MAR FRESHWATER RES, V58, P24, DOI 10.1071/MF06064; Braccini JM, 2010, AQUAT BIOL, V9, P131, DOI 10.3354/ab00246; Bubley WJ, 2012, J FISH BIOL, V80, P1300, DOI 10.1111/j.1095-8649.2011.03171.x; Burnham KP, 2004, SOCIOL METHOD RES, V33, P261, DOI 10.1177/0049124104268644; Cailliet G., 1983, PRELIMINARY STUDIES, P8; Cailliet G, 1990, ELASMOBRANCH AGE DET, P90; Cailliet GM, 2015, J FISH BIOL, V87, P1271, DOI 10.1111/jfb.12829; Cailliet GM, 2004, CRC MAR BIOL SER, P399; Cailliet GM, 2006, ENVIRON BIOL FISH, V77, P211, DOI 10.1007/s10641-006-9105-5; Camhi M., 1998, SHARKS THEIR RELATIV; Campana S. E, 2004, STOCK IDENTIFICATION, P227; Campana S. E, 2014, 94 FAO; Campana SE, 2001, J FISH BIOL, V59, P197, DOI 10.1006/jfbi.2001.1668; Campana SE, 2006, ENVIRON BIOL FISH, V77, P327, DOI 10.1007/s10641-006-9107-3; Campbell J. S, 2010, THESIS W WASHINGTON; CHEN Y, 1992, CAN J FISH AQUAT SCI, V49, P1228, DOI 10.1139/f92-138; Compagno LJV, 1984, FAO SPECIES CATALOGU, V4, P125; Conrath CL, 2002, FISH B-NOAA, V100, P674; Cortes E, 2002, CONSERV BIOL, V16, P1048, DOI 10.1046/j.1523-1739.2002.00423.x; Davis CD, 2007, ENVIRON BIOL FISH, V80, P325, DOI 10.1007/s10641-007-9224-7; Dean MN, 2006, ZOOLOGY, V109, P164, DOI 10.1016/j.zool.2006.03.002; Ebert DA, 2008, FISH RES, V94, P48, DOI 10.1016/j.fishres.2008.06.016; Elsdon TS, 2008, OCEANOGR MAR BIOL, V46, P297, DOI 10.1201/9781420065756.ch7; FABENS AJ, 1965, GROWTH, V29, P265; FERREIRA BP, 1991, FISH B-NOAA, V89, P19; Francis MP, 2007, MAR FRESHWATER RES, V58, P10, DOI 10.1071/MF06069; Gallagher M, 1999, CAN J FISH AQUAT SCI, V56, P1590, DOI 10.1139/cjfas-56-9-1590; Gallagher MJ, 2006, ENVIRON BIOL FISH, V77, P265, DOI 10.1007/s10641-006-9114-4; Gburski CM, 2007, ENVIRON BIOL FISH, V80, P337, DOI 10.1007/s10641-007-9231-8; Gertseva V., 2012, STATUS SPINY DOGFISH; Gertseva V, 2008, STATUS LONGNOSE SKAT; Gislason H, 2010, FISH FISH, V11, P149, DOI 10.1111/j.1467-2979.2009.00350.x; Goldman K. J., 2005, ELASMOBRANCH FISHERI, P97; Goldman KJ, 2012, CRC MAR BIOL SER, P423; Goldman KJ, 2006, FISH B-NOAA, V104, P278; Haas DL, 2016, ENVIRON BIOL FISH, V99, P813, DOI 10.1007/s10641-016-0518-5; Haddon M, 2001, MODELLING QUANTITATI; Hale LF, 2006, ENVIRON BIOL FISH, V77, P317, DOI 10.1007/s10641-006-9124-2; Hamady LL, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0084006; Hart J.L, 1973, FISH RES BD CAN B, V180; Henderson A. C., 2004, J NW ATL FISH SCI, V35, P79; Hoenig J. M., 1990, LIFE HIST PATTERNS E, P90; HOENIG JM, 1983, FISH B-NOAA, V81, P898; HOENIG JM, 1988, B MAR SCI, V42, P334; Hoff GR, 2008, FISH B-NOAA, V106, P233; Hoff GR, 2010, MAR ECOL PROG SER, V403, P243, DOI 10.3354/meps08424; James KC, 2014, ENVIRON BIOL FISH, V97, P435, DOI 10.1007/s10641-013-0164-0; Jensen AL, 1996, CAN J FISH AQUAT SCI, V53, P820, DOI 10.1139/cjfas-53-4-820; Kacev D., ADV MARINE IN PRESS, V78; KALISH JM, 1993, EARTH PLANET SC LETT, V114, P549, DOI 10.1016/0012-821X(93)90082-K; KALISH JM, 1989, J EXP MAR BIOL ECOL, V132, P151, DOI 10.1016/0022-0981(89)90126-3; Kerr LA, 2004, CAN J FISH AQUAT SCI, V61, P443, DOI 10.1139/F04-009; Ketchen K. S., 1986, CAN SPEC PUB FISH AQ; KETCHEN KS, 1975, J FISH RES BOARD CAN, V32, P43, DOI 10.1139/f75-006; Kimura Daniel K., 2007, ALASKA FISHERY RESEARCH BULLETIN, V12, P243; Kimura DK, 2006, MAR FRESHWATER RES, V57, P323, DOI 10.1071/MF05132; King JR, 2017, FISH RES, V193, P195, DOI 10.1016/j.fishres.2017.04.004; King JR, 2015, DEEP-SEA RES PT II, V115, P55, DOI 10.1016/j.dsr2.2013.11.002; King J. R., 2015, 22015070 DFO CAN SCI, P329; King JR, 2003, FISHERIES MANAG ECOL, V10, P249, DOI 10.1046/j.1365-2400.2003.00359.x; Kleiber P., 2009, NOAATMNMFSPIFSC17 US; KUSHER DI, 1992, ENVIRON BIOL FISH, V35, P187, DOI 10.1007/BF00002193; Lauth R. R, 2010, NMFSAFSC204 US DEP C; Lynnerup N, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001529; Maurer J. R. F., 2009, THESIS CALIFORNIA ST; McFarlane G.A., 1987, P287; McFarlane GA, 2006, FISH RES, V78, P169, DOI 10.1016/j.fishres.2006.01.009; McFarlane GA, 2002, FISH B-NOAA, V100, P861; McFarlane GA, 2009, BIOLOGY AND MANAGEMENT OF DOGFISH SHARKS, P77; McMillan MN, 2017, J FISH BIOL, V90, P559, DOI 10.1111/jfb.13189; McPhie RP, 2009, ICES J MAR SCI, V66, P546, DOI 10.1093/icesjms/fsp002; Mecklenburg C. W., 2002, FISHES ALASKA; Nakano Hideki, 1994, Bulletin of the National Research Institute of Far Seas Fisheries, V31, P141; Natanson LJ, 2008, MAR ECOL PROG SER, V361, P267, DOI 10.3354/meps07399; Natanson LJ, 2007, ENVIRON BIOL FISH, V80, P293, DOI 10.1007/s10641-007-9220-y; Natanson LJ, 2016, ENVIRON BIOL FISH, V99, P39, DOI 10.1007/s10641-015-0452-y; NATANSON LJ, 1995, FISH B-NOAA, V93, P116; NATANSON LJ, 1990, COPEIA, P1133, DOI 10.2307/1446499; Neer JA, 2001, COPEIA, P842, DOI 10.1643/0045-8511(2001)001[0842:AOTLHO]2.0.CO;2; Nielsen J, 2016, SCIENCE, V353, P702, DOI 10.1126/science.aaf1703; Ormseth, 2015, ASSESSMENT SKATE STO, P1497; Ormseth, 2016, ASSESSMENT SKATE STO, P1769; Panfili J., 2002, MANUAL FISH SCLEROCH; PARSONS G R, 1983, Northeast Gulf Science, V6, P63; Passerotti MS, 2014, MAR FRESHWATER RES, V65, P674, DOI 10.1071/MF13214; Perez CR, 2011, J MAR BIOL ASSOC UK, V91, P1149, DOI 10.1017/S0025315410002031; Piner KR, 2004, J FISH BIOL, V64, P1060, DOI 10.1111/j.1095-8649.2004.00371.x; Provost C. M, 2016, THESIS ALASKA PACIFI; Quinn T J, 1999, QUANTITATIVE FISH DY; Raoult V, 2016, SCI REP-UK, V6, DOI 10.1038/srep29698; RICHARDS FJ, 1959, J EXP BOT, V10, P290, DOI 10.1093/jxb/10.2.290; Ricker W.E., 1979, FISH PHYSIOL, VVIII, P677; Ricker WE, 1975, B FISH RES BOARD CAN, V191, P1; Rigby CL, 2016, MAR FRESHWATER RES, V67, P537, DOI 10.1071/MF15104; Robins J. B., 2015, REVOLUTIONISING FISH; Robinson HJ, 2007, ENVIRON BIOL FISH, V80, P165, DOI 10.1007/s10641-007-9222-9; SAUNDERS MW, 1993, ENVIRON BIOL FISH, V38, P49, DOI 10.1007/BF00842903; SCHNUTE J, 1981, CAN J FISH AQUAT SCI, V38, P1128, DOI 10.1139/f81-153; Serra-Pereira B, 2008, ICES J MAR SCI, V65, P1701, DOI 10.1093/icesjms/fsn167; Smith SE, 2008, SHARKS OPEN OCEAN BI, P60; Smith WD, 2007, MAR FRESHWATER RES, V58, P54, DOI 10.1071/MF06083; STEVENS JD, 1975, J MAR BIOL ASSOC UK, V55, P657, DOI 10.1017/S0025315400017318; STEVENSON DE, 2004, NMFSAFSC142 NOAA US; STEVENSON DE, 2007, FIELD GUIDE SHARKS S; Sulikowski JA, 2005, FISH B-NOAA, V103, P161; Sulikowski JA, 2003, FISH B-NOAA, V101, P405; Tanaka S., 1990, DIFFERENCES GROWTH B, P90; TAYLOR C. C., 1958, JOUR CONS PERM INTERNATL EXPLOR MER, V23, P366; Taylor IG, 2013, FISH RES, V147, P83, DOI 10.1016/j.fishres.2013.04.011; Thompson J.E, 2005, THESIS OREGON STATE; Thorrold SR, 2007, OCEANOGRAPHY, V20, P80, DOI 10.5670/oceanog.2007.31; Tribuzio C., 2016, STOCK ASSESSMENT FIS, P1915; Tribuzio CA, 2012, J FISH BIOL, V80, P1159, DOI 10.1111/j.1095-8649.2012.03241.x; Tribuzio C.A., MAR FRESHW RES; Tribuzio C.A., 2015, STOCK ASSESSMENT FIS, P1569; Tribuzio Cindy A., 2016, U S National Marine Fisheries Service Marine Fisheries Review, V78, P1; Tribuzio CA, 2010, FISH B-NOAA, V108, P119; von Bertalanffy L., 1938, HUM BIOL, V10, P181; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Winton M.V., 2011, THESIS CALIFORNIA ST; Winton MV, 2014, J MAR BIOL ASSOC UK, V94, P411, DOI 10.1017/S0025315413001525; Wischniowski S, 2008, TECHNIQUE DEV AGE DE, V2008; YUDIN KG, 1990, COPEIA, P191; Zeiner S. J., 1993, GROWTH CHARACTERISTI, P115 134 3 3 2 6 ELSEVIER ACADEMIC PRESS INC SAN DIEGO 525 B STREET, SUITE 1900, SAN DIEGO, CA 92101-4495 USA 0065-2881 978-0-12-811831-3 ADV MAR BIOL Adv. Mar. Biol. 2017 77 179 220 10.1016/bs.amb.2017.06.002 42 Marine & Freshwater Biology Marine & Freshwater Biology BI7LU WOS:000414416600006 28882214 2018-11-22 J Davis, CL; Miller, DAW; Walls, SC; Barichivich, WJ; Riley, J; Brown, ME Davis, Courtney L.; Miller, David A. W.; Walls, Susan C.; Barichivich, William J.; Riley, Jeffrey; Brown, Mary E. Life history plasticity does not confer resilience to environmental change in the mole salamander (Ambystoma talpoideum) OECOLOGIA English Article Plasticity; Climate; Occupancy; Species interactions; Paedomorphosis STANDARDIZED PRECIPITATION INDEX; SPECIES OCCURRENCE DYNAMICS; DROUGHT; METAMORPHOSIS; PEDOMORPHOSIS; OCCUPANCY; SURVIVAL; PREDATOR; FISH; SIZE Plasticity in life history strategies can be advantageous for species that occupy spatially or temporally variable environments. We examined how phenotypic plasticity influences responses of the mole salamander, Ambystoma talpoideum, to disturbance events at the St. Marks National Wildlife Refuge (SMNWR), FL, USA from 2009 to 2014. We observed periods of extensive drought early in the study, in contrast to high rainfall and expansive flooding events in later years. Flooding facilitated colonization of predatory fishes to isolated wetlands across the refuge. We employed multistate occupancy models to determine how this natural experiment influenced the occurrence of aquatic larvae and paedomorphic adults and what implications this may have for the population. We found that, in terms of occurrence, responses to environmental variation differed between larvae and paedomorphs, but plasticity (i.e. the ability to metamorphose rather than remain in aquatic environment) was not sufficient to buffer populations from declining as a result of environmental perturbations. Drought and fish presence negatively influenced occurrence dynamics of larval and paedomorphic mole salamanders and, consequently, contributed to observed short-term declines of this species. Overall occurrence of larval salamanders decreased from 0.611 in 2009 to 0.075 in 2014 and paedomorph occurrence decreased from 0.311 in 2009 to 0.121 in 2014. Although variation in selection pressures has likely maintained this polyphenism previously, our results suggest that continued changes in environmental variability and the persistence of fish in isolated wetlands could lead to a loss of paedomorphosis in the SMNWR population and, ultimately, impact regional persistence in the future. [Davis, Courtney L.; Miller, David A. W.] Penn State Univ, Dept Ecosyst Sci & Management, University Pk, PA 16802 USA; [Davis, Courtney L.] Penn State Univ, Intercollege Grad Ecol Program, University Pk, PA 16802 USA; [Walls, Susan C.; Barichivich, William J.; Brown, Mary E.] US Geol Survey, Wetland & Aquat Res Ctr, Gainesville, FL USA; [Riley, Jeffrey] US Geol Survey, South Atlant Water Sci Ctr, Gainesville, FL USA Davis, CL (reprint author), Penn State Univ, Dept Ecosyst Sci & Management, University Pk, PA 16802 USA.; Davis, CL (reprint author), Penn State Univ, Intercollege Grad Ecol Program, University Pk, PA 16802 USA. cld303@psu.edu AKAIKE H, 1973, 2 INT S INF THEOR AK; Anderson TL, 2015, ECOL APPL, V25, P1896, DOI 10.1890/14-2096.1; Babbitt KJ, 2003, CAN J ZOOL, V81, P1539, DOI 10.1139/Z03-131; Bailey LL, 2009, BIOL CONSERV, V142, P2983, DOI 10.1016/j.biocon.2009.07.028; CALDWELL JP, 1980, OECOLOGIA, V46, P285, DOI 10.1007/BF00346253; Cancelliere A, 2007, WATER RESOUR MANAG, V21, P801, DOI 10.1007/s11269-006-9062-y; Church DR, 2007, ECOLOGY, V88, P891, DOI 10.1890/06-0896; Davis CL, 2017, ECOL APPL, V27, P285, DOI 10.1002/eap.1442; Denoel M, 2009, BIOL CONSERV, V142, P509, DOI 10.1016/j.biocon.2008.11.008; Doyle JM, 2008, OECOLOGIA, V156, P87, DOI 10.1007/s00442-008-0977-2; Doyle JM, 2010, J HERPETOL, V44, P601, DOI 10.1670/09-052.1; Falke JA, 2012, ECOLOGY, V93, P858, DOI 10.1890/11-1515.1; Guttman NB, 1998, J AM WATER RESOUR AS, V34, P113, DOI 10.1111/j.1752-1688.1998.tb05964.x; JACKSON ME, 1993, ECOLOGY, V74, P342, DOI 10.2307/1939297; Jenkins K, 2015, THEOR APPL CLIMATOL, V120, P41, DOI 10.1007/s00704-014-1143-x; MacKenzie DI, 2011, METHODS ECOL EVOL, V2, P612, DOI 10.1111/j.2041-210X.2011.00110.x; Mackenzie DI, 2009, ECOLOGY, V90, P823, DOI 10.1890/08-0141.1; MacKenzie DI, 2004, J ANIM ECOL, V73, P546, DOI 10.1111/j.0021-8790.2004.00828.x; MacKenzie DI, 2003, ECOLOGY, V84, P2200, DOI 10.1890/02-3090; Miller DAW, 2012, J ANIM ECOL, V81, P1288, DOI 10.1111/j.1365-2656.2012.02001.x; MORAN NA, 1992, AM NAT, V139, P971, DOI 10.1086/285369; National Climatic Data Center, 2014, CLIM DAT ONL; PATTERSON KK, 1978, COPEIA, P649; Petranka J.W., 2010, SALAMANDERS US CANAD; R Core Team, 2014, R LANG ENV STAT COMP; Rittenhouse TAG, 2009, ECOLOGY, V90, P1620, DOI 10.1890/08-0326.1; Ryan TJ, 2004, OECOLOGIA, V140, P46, DOI 10.1007/s00442-004-1563-x; Ryan TJ, 2003, BIOL J LINN SOC, V80, P639, DOI 10.1111/j.1095-8312.2003.00260.x; SCOTT DE, 1993, AM MIDL NAT, V129, P397, DOI 10.2307/2426520; Semlitsch RD, 2008, J WILDLIFE MANAGE, V72, P260, DOI 10.2193/2007-082; SEMLITSCH RD, 1985, ECOLOGY, V66, P1123, DOI 10.2307/1939164; SEMLITSCH RD, 1987, OECOLOGIA, V72, P481, DOI 10.1007/BF00378972; SEMLITSCH RD, 1985, COPEIA, P477, DOI 10.2307/1444862; SEMLITSCH RD, 1985, OECOLOGIA, V65, P305, DOI 10.1007/BF00378903; SEMLITSCH RD, 1988, COPEIA, P978; SEMLITSCH RD, 1988, ECOLOGY, V69, P184, DOI 10.2307/1943173; Walls Susan C., 2013, Biology - Basel, V2, P399, DOI 10.3390/biology2010399; Walls SC, 2013, WETLANDS, V33, P345, DOI 10.1007/s13157-013-0391-3; WHITEMAN HH, 1994, Q REV BIOL, V69, P205, DOI 10.1086/418540 39 1 1 2 13 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia 2017 183 3 739 749 10.1007/s00442-017-3810-y 11 Ecology Environmental Sciences & Ecology FH9ZL WOS:000411577400011 28083660 2018-11-22 J Schloesser, RW; Fabrizio, MC Schloesser, Ryan W.; Fabrizio, Mary C. Condition Indices as Surrogates of Energy Density and Lipid Content in Juveniles of Three Fish Species TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY English Article COD GADUS-MORHUA; MICROPTERUS-SALMOIDES LACEPEDE; PLAICE PLEURONECTES-PLATESSA; BASS DICENTRARCHUS-LABRAX; HERRING CLUPEA-HARENGUS; LIVER-SOMATIC INDEX; LARGEMOUTH BASS; BODY-COMPOSITION; ATLANTIC SALMON; PROXIMATE COMPOSITION To guide the selection of condition indices for juvenile fishes, we compared the ability of several indirect condition indices (those based on length-mass relationships, the hepatosomatic index, and relative lipid estimates from the Distell fish fatmeter) to assess energy density and lipid content of Summer Flounder Paralichthys dentatus, Striped BassMorone saxatilis, and Atlantic Croakers Micropogonias undulatus. These species use estuarine areas as nurseries, but they have different life history strategies and ecological niches that affect their energy storage strategies. We tested hypotheses that differences in the distribution and role of lipids as energy stores among species would influence the suitability of condition indices for estimating energy and lipid content. Length-based indices were most suitable for estimating energy and lipid content of juvenile Summer Flounder and Striped Bass, suggesting that length-based indices may be appropriate for juveniles that store energy as proteins (i.e., juveniles with low lipid content). The fatmeter suitably predicted energy and lipid content of Atlantic Croakers, indicating its potential for assessing condition of juveniles that store lipids for migration and that display a high range of observed lipid content. Even though a small size range was examined, fish length improved predictions of energy and lipid content for some of the indirect condition indices for Atlantic Croakers and Summer Flounder, suggesting that fish length should be considered when developing relationships among measures of condition. The selection of condition indices should be tailored to the life stage and species of interest based on the energy and lipid storage strategies used by the fish. [Schloesser, Ryan W.; Fabrizio, Mary C.] Coll William & Mary, Virginia Inst Marine Sci, POB 1346, Gloucester Point, VA 23062 USA; [Schloesser, Ryan W.] Mote Marine Lab, 1600 Ken Thompson Pkwy, Sarasota, FL 34236 USA Schloesser, RW (reprint author), Coll William & Mary, Virginia Inst Marine Sci, POB 1346, Gloucester Point, VA 23062 USA. rschloesser@mote.org Schloesser, Ryan/0000-0002-1004-554X Virginia Sea Grant; Virginia Marine Resources Commission; VIMS We thank R. Latour (Virginia Institute of Marine Science [VIMS]), E. Hilton (VIMS), and T. Sutton (Nova Southeastern University) for loaning us equipment needed to conduct this research; J. Trushenski (Southern Illinois University) for conducting proximate composition analysis; and R. Brill and two anonymous reviewers for providing valuable comments on earlier versions of the manuscript. This project would not have been possible without the help of many individuals who collected specimens, particularly the staff of the VIMS Recruitment Program (H. Brooks, A. Comer, J. Conwell, W. Lowery, L. Machut, L. Nys, R. Norris, and T. Tuckey). Virginia Sea Grant, the Virginia Marine Resources Commission, and the VIMS Ziegler Fellowship provided funds to support this research. This paper is Contribution Number 3629 of VIMS, College of William and Mary. ADAMS SM, 1985, J FISH BIOL, V26, P111, DOI 10.1111/j.1095-8649.1985.tb04248.x; Alasalvar C, 2002, FOOD CHEM, V79, P145, DOI 10.1016/S0308-8146(02)00122-X; Anderson Richard O., 1996, P447; Blessing JJ, 2010, J FISH BIOL, V76, P2571, DOI 10.1111/j.1095-8649.2010.02633.x; BOLGER T, 1989, J FISH BIOL, V34, P171, DOI 10.1111/j.1095-8649.1989.tb03300.x; Booth D, 2002, J FISH BIOL, V60, P1126, DOI 10.1006/jfbi.2002.1922; Booth DJ, 1999, OECOLOGIA, V121, P364, DOI 10.1007/s004420050940; Bransden MP, 2007, AQUACULTURE, V268, P2, DOI 10.1016/j.aquaculture.2007.04.026; Brown ML, 2004, ECOL FRESHW FISH, V13, P23, DOI 10.1111/j.0906-6691.2004.00031.x; Burnham KP, 2002, MODEL SELECTION MULT; Caldwell LK, 2013, GEN COMP ENDOCR, V194, P124, DOI 10.1016/j.ygcen.2013.09.005; Colt J., 2001, W66QKZ00805700 US AR; CONE RS, 1989, T AM FISH SOC, V118, P510, DOI 10.1577/1548-8659(1989)118<0511:TNTRTU>2.3.CO;2; Copeland T, 2004, N AM J AQUACULT, V66, P237, DOI 10.1577/A03-033.1; Copeland T, 2008, J FRESHWATER ECOL, V23, P373, DOI 10.1080/02705060.2008.9664214; COSTOPOULOS CG, 1989, NETH J SEA RES, V24, P45, DOI 10.1016/0077-7579(89)90169-5; Crossin GT, 2005, T AM FISH SOC, V134, P184, DOI 10.1577/FT04-076.1; CROWDER LB, 1992, INDIVIDUAL-BASED MODELS AND APPROACHES IN ECOLOGY, P237; Davidson D, 2010, J FISH BIOL, V76, P913, DOI 10.1111/j.1095-8649.2010.02546.x; Distell, 2010, US MAN DIST FISH FAT; FOSTER AR, 1993, CAN J FISH AQUAT SCI, V50, P502, DOI 10.1139/f93-059; Froese R, 2006, J APPL ICHTHYOL, V22, P241, DOI 10.1111/j.1439-0426.2006.00805.x; GABELHOUSE D W JR, 1991, North American Journal of Fisheries Management, V11, P50, DOI 10.1577/1548-8675(1991)011<0050:SCIBCO>2.3.CO;2; Garcia-Berthou E, 2001, J ANIM ECOL, V70, P708, DOI 10.1046/j.1365-2656.2001.00524.x; GARDINER WR, 1980, HYDROBIOLOGIA, V69, P67, DOI 10.1007/BF00016537; Garner SB, 2012, T AM FISH SOC, V141, P1117, DOI 10.1080/00028487.2012.675894; Gaylord TG, 2003, J WORLD AQUACULT SOC, V34, P229, DOI 10.1111/j.1749-7345.2003.tb00061.x; Gjoen H. M., 2009, AQUACULTURE, V75, P127; Glover DC, 2010, T AM FISH SOC, V139, P671, DOI 10.1577/T09-110.1; Goede Ronald W., 1990, P93; Grant SM, 1998, J FISH BIOL, V52, P1105, DOI 10.1006/jfbi.1997.0639; Green AJ, 2001, ECOLOGY, V82, P1473, DOI 10.2307/2680003; Hanson KC, 2010, T AM FISH SOC, V139, P1733, DOI 10.1577/T10-014.1; HARTMAN KJ, 1995, T AM FISH SOC, V124, P347, DOI 10.1577/1548-8659(1995)124<0347:EEDOF>2.3.CO;2; HEIDINGER RC, 1977, J FISH RES BOARD CAN, V34, P633, DOI 10.1139/f77-099; Heincke Fr., 1908; Hendry AP, 2004, ECOL FRESHW FISH, V13, P185, DOI 10.1111/j.1600-0633.2004.00045.x; Hurst TP, 2003, ECOLOGY, V84, P3360, DOI 10.1890/02-0562; Jacobs JM, 2013, N AM J FISH MANAGE, V33, P468, DOI 10.1080/02755947.2013.763876; JENSEN AJ, 1979, J FISH RES BOARD CAN, V36, P1207, DOI 10.1139/f79-174; JOBLING M, 1980, J FISH BIOL, V17, P325, DOI 10.1111/j.1095-8649.1980.tb02766.x; Kaga T., 2009, 1208 N PAC AN FISH C; Kent M., 1990, Food Control, V1, P47, DOI 10.1016/0956-7135(90)90121-R; KOLOK AS, 1992, AM J PHYSIOL, V263, pR1042; Lambert Y, 1997, CAN J FISH AQUAT SCI, V54, P104, DOI 10.1139/f96-149; LECREN ED, 1951, J ANIM ECOL, V20, P201; Leonard JBK, 1999, CAN J FISH AQUAT SCI, V56, P1159, DOI 10.1139/f99-041; Litvin SY, 2011, J FISH BIOL, V78, P1294, DOI 10.1111/j.1095-8649.2011.02918.x; Lloret J., 2014, CONDITION HLTH INDIC; LOCHMANN SE, 1995, CAN J FISH AQUAT SCI, V52, P1294, DOI 10.1139/f95-126; MADDOCK DM, 1994, CAN J ZOOL, V72, P1672, DOI 10.1139/z94-223; Martinez M, 2003, J EXP BIOL, V206, P503, DOI 10.1242/jeb.00098; McDonald DG, 1998, CAN J FISH AQUAT SCI, V55, P1208, DOI 10.1139/cjfas-55-5-1208; Mesa MG, 2015, J FISH BIOL, V86, P755, DOI 10.1111/jfb.12600; Miller MJ, 2003, FISH B-NOAA, V101, P100; Morley JW, 2012, T AM FISH SOC, V141, P1109, DOI 10.1080/00028487.2012.675909; Mozsar A, 2015, J APPL ICHTHYOL, V31, P315, DOI 10.1111/jai.12658; Pangle KL, 2005, J FISH BIOL, V66, P1060, DOI 10.1111/j.1095-8649.2005.00660.x; Peters AK, 2007, J GREAT LAKES RES, V33, P253, DOI 10.3394/0380-1330(2007)33[253:MESOLM]2.0.CO;2; Post JR, 2001, ECOLOGY, V82, P1040, DOI 10.2307/2679901; Quinn G.P., 2002, EXPT DESIGN DATA ANA; Ricker WE, 1975, FISHERIES RES BOARD, V191; Saillant E, 2009, AQUAT LIVING RESOUR, V22, P105, DOI 10.1051/alr/2009010; Schloesser RW, 2016, MAR ECOL PROG SER, V557, P207, DOI 10.3354/meps11858; Schloesser RW, 2015, THESIS; Schloesser RW, 2015, T AM FISH SOC, V144, P942, DOI 10.1080/00028487.2015.1052557; Schulte-Hostedde AI, 2005, ECOLOGY, V86, P155, DOI 10.1890/04-0232; Selleslagh J, 2013, J MAR BIOL ASSOC UK, V93, P479, DOI 10.1017/S0025315412000483; SHEARER KD, 1994, AQUACULTURE, V119, P63, DOI 10.1016/0044-8486(94)90444-8; Simpkins DG, 2003, T AM FISH SOC, V132, P576, DOI 10.1577/1548-8659(2003)132<0576:PROJRT>2.0.CO;2; Singer JD, 1998, J EDUC BEHAV STAT, V23, P323; STANSBY ME, 1976, MAR FISH REV, V38, P1; Stevenson RD, 2006, INTEGR COMP BIOL, V46, P1169, DOI 10.1093/icb/icl052; Sutton SG, 2000, T AM FISH SOC, V129, P527, DOI 10.1577/1548-8659(2000)129<0527:RAFWBW>2.0.CO;2; THOMPSON JM, 1991, T AM FISH SOC, V120, P346, DOI 10.1577/1548-8659(1991)120<0346:ROSCAL>2.3.CO;2; Trudel M, 2005, N AM J FISH MANAGE, V25, P374, DOI 10.1577/M04-018.1; Tuckey T. D., 2016, ANN REPORT; Tuckey TD, 2013, T AM FISH SOC, V142, P957, DOI 10.1080/00028487.2013.788555; Vogt A, 2002, J FOOD COMPOS ANAL, V15, P205, DOI 10.1006/jfca.2002.1049; Weisberg S., 2014, APPL LINEAR REGRESSI; Wuenschel MJ, 2006, T AM FISH SOC, V135, P379, DOI 10.1577/T04-233.1; Wuycheck J.C., 1971, INT ASS THEORETICAL, V18 82 1 1 3 7 TAYLOR & FRANCIS INC PHILADELPHIA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA 0002-8487 1548-8659 T AM FISH SOC Trans. Am. Fish. Soc. 2017 146 5 1058 1069 10.1080/00028487.2017.1324523 12 Fisheries Fisheries FF3CQ WOS:000408773500019 Other Gold 2018-11-22 J Vijg, J; Le Bourg, E Vijg, Jan; Le Bourg, Eric Aging and the Inevitable Limit to Human Life Span GERONTOLOGY English Article Limits to life span; Life-history strategy; Life expectancy; Maximum life span; Centenarians; Negligible senescence; Dietary restriction; Maximum reported age at death CALORIC RESTRICTION; RHESUS-MONKEYS; LONGEVITY; SURVIVAL; MAMMALS; SENESCENCE; MORTALITY; GENETICS; SIZE There is a long-lasting debate about a natural limit to human life span, and it has been argued that the maximum reported age at death, which has not increased for ca 25 years, fluctuates around 115 years, even if some persons live beyond this age. We argue that the close connection of species-specific longevity with life history strategies explains why human life span is limited and cannot reach the considerably longer life spans of several other species. (C) 2017 S. Karger AG, Basel [Vijg, Jan] Albert Einstein Coll Med, Dept Genet, 1301 Morris Pk Ave, Bronx, NY 10467 USA; [Le Bourg, Eric] Univ Toulouse, CNRS, Ctr Rech Cognit Anim, Ctr Biol Integrat,UPS, Toulouse, France Vijg, J (reprint author), Albert Einstein Coll Med, Dept Genet, 1301 Morris Pk Ave, Bronx, NY 10467 USA. jan.vijg@einstein.yu.edu Bowman J, 2002, ECOLOGY, V83, P2049, DOI 10.1890/0012-9658(2002)083[2049:DDOMIP]2.0.CO;2; Burger O, 2012, P NATL ACAD SCI USA, V109, P18210, DOI 10.1073/pnas.1215627109; Butler PG, 2013, PALAEOGEOGR PALAEOCL, V373, P141, DOI 10.1016/j.palaeo.2012.01.016; Charlesworth B, 2000, GENETICS, V156, P927; Colman RJ, 2009, SCIENCE, V325, P201, DOI 10.1126/science.1173635; Dong X, 2016, NATURE, V538, P257, DOI 10.1038/nature19793; Finch CE, 2009, GERONTOLOGY, V55, P307, DOI 10.1159/000215589; Gladyshev VN, 2013, TRENDS GENET, V29, P506, DOI 10.1016/j.tig.2013.05.004; Gorbunova V, 2014, NAT REV GENET, V15, P531, DOI 10.1038/nrg3728; Heron M, 2016, NATL VITAL STAT REPO, V56; Jochum KP, 2012, CHEM GEOL, V300, P143, DOI 10.1016/j.chemgeo.2012.01.009; Kenyon CJ, 2010, NATURE, V464, P504, DOI 10.1038/nature08980; Le Bourg E, 1999, GERONTOLOGY, V45, P339, DOI 10.1159/000022116; Le Bourg E, 2016, BIOGERONTOLOGY, V17, P421, DOI 10.1007/s10522-015-9632-6; Le Bourg E, 2012, AGEING RES REV, V11, P325, DOI 10.1016/j.arr.2012.01.002; Masset C, 2002, POP SOC, V380; Mattison JA, 2012, NATURE, V489, P318, DOI 10.1038/nature11432; PHELAN JP, 1989, GROWTH DEVELOP AGING, V53, P4; Robine JM, 2017, MECH AGEING IN PRESS; Schaible R, 2015, P NATL ACAD SCI USA, V112, P15701, DOI 10.1073/pnas.1521002112; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; Tidiere M, 2016, SCI REP-UK, V6, DOI 10.1038/srep36361; Vaupel JW, 1997, PHILOS T ROY SOC B, V352, P1799, DOI 10.1098/rstb.1997.0164; Vijg J, 2016, GERONTOLOGY, V62, P381, DOI 10.1159/000439348 24 7 8 0 7 KARGER BASEL ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND 0304-324X 1423-0003 GERONTOLOGY Gerontology 2017 63 5 432 434 10.1159/000477210 3 Geriatrics & Gerontology Geriatrics & Gerontology FD9HV WOS:000407834300006 28511176 Bronze 2018-11-22 J Guallar, S; Galles, A Guallar, Santi; Galles, Anna AGE DETERMINATION OF AMETHYST-THROATED HUMMINGBIRD (LAMPORNIS AMETHYSTINUS) AND WHITE-EARED HUMMINGBIRD (HYLOCHARIS LEUCOTIS) ORNITOLOGIA NEOTROPICAL English Article Aging techniques; Circular statistics; Mexico; Neotropical hummingbirds; Plumage traits; Rectrix morphology BLACK-CHINNED HUMMINGBIRDS; MOLT; POPULATIONS; BIRDS Age is one the most important parameters in avian biology, since life-history strategies and population dynamics can be strongly influenced by age. Two characters are generally used to age hummingbirds (family Trochilidae): presence of maxillar striations and presence of beige to cinnamon fringes of dorsal feathers in the juvenile plumage. However, their applicability varies among species. For this reason, development and use of species specific criteria are highly recommended. Here, we describe age- and sex-dependent variation of the central rectrix shape in Amethyst-throated Hummingbird (Lampornis amethystinus) and White-eared Hummingbird (Hylocharis leucotis). Juvenile central rectrices are more pointed than definitive ones. This criterion meets three crucial properties of aging techniques: high discriminant ability (78% for Amethyst-throated Hummingbird and 99% for White-eared Hummingbird), wide temporal applicability, and ease of use with minimum experience. [Guallar, Santi] Galanthus, Carretera Juia 46, Celra 17460, Spain; [Galles, Anna] Fdn Andrena, Sagrada Familia 7, Vic 08500, Spain Guallar, S (reprint author), Galanthus, Carretera Juia 46, Celra 17460, Spain. sguallar@yahoo.com Agostinelli C, 2013, R PACKAGE CIRCULAR; Bader M, 2003, MB RULER TRIANGULAR; BALDRIDGE FA, 1983, CONDOR, V85, P102, DOI 10.2307/1367900; Balph MA, 1977, N AM BIRD BANDER, V2, P157; Baltosser W. H., 1987, N AM BIRD BANDER, V12, P151; Baltosser William H., 1994, Western Birds, V25, P104; CARPENTER FL, 1993, BEHAV ECOL SOCIOBIOL, V33, P305; COLLIER B, 1989, J FIELD ORNITHOL, V60, P230; CURIO E, 1983, IBIS, V125, P400, DOI 10.1111/j.1474-919X.1983.tb03130.x; EWALD PW, 1985, ANIM BEHAV, V33, P705, DOI 10.1016/S0003-3472(85)80001-4; Faul Franz, 2007, Behav Res Methods, V39, P175; Fisher N., 1993, STAT ANAL CIRCULAR D; Guallar S, 2009, PASERIFORMES OCCIDEN; Guallar Santi, 2010, Revista Catalana d'Ornitologia, V26, P38; Howell SNG, 2003, CONDOR, V105, P635, DOI 10.1650/7225; Howell SNG, 1995, GUIDE BIRDS MEXICO N; Jackson C. H. W., 1992, Ringing and Migration, V13, P127; Jenni L, 1994, MOULT AGEING EUROPEA; LAAKSONEN M, 1976, Ornis Fennica, V53, P9; Lande R., 2003, STOCHASTIC POPULATIO; Telleria JL, 2013, ARDEOLA, V60, P191, DOI 10.13157/arla.60.2.2013.191; Morris Sara R., 2000, North American Bird Bander, V25, P125; Navarro J, 2009, ZOOLOGY, V112, P128, DOI 10.1016/j.zool.2008.05.001; Newton I., 2008, ECOLOGY BIRD MIGRATI; ORTIZCRESPO FI, 1972, AUK, V89, P851; Peris-Alvarez SJ, 1983, J ORNITHOL, V124, P124; Pyle P., 1997, IDENTIFICATION GUIDE; R Core Team, 2016, LANG ENV STAT COMP; Ridgway R., 1911, US NATL MUSEUM B 5, V50; Samson FB, 1974, W BIRD BANDER, V49, P4; Schuchmann K. L., 1999, HDB BIRDS WORLD, V5, P468; STILES FG, 1974, AM NAT, V108, P341, DOI 10.1086/282912; STILES FG, 1972, CONDOR, V74, P25, DOI 10.2307/1366446; Svensson L., 1992, IDENTIFICATION GUIDE; Telleria JL, 1999, J AVIAN BIOL, V30, P63, DOI 10.2307/3677244; Waugh SM, 1999, POLAR BIOL, V22, P189, DOI 10.1007/s003000050409; Weller AA, 2011, ORNITOL NEOTROP, V22, P601; Wolfe JD, 2010, J FIELD ORNITHOL, V81, P186, DOI 10.1111/j.1557-9263.2010.00276.x; Yanega Gregor M., 1997, Western Birds, V28, P13 39 0 0 0 2 NEOTROPICAL ORNITHOLOGICAL SOC, USGS PATUXENT WILDLIFE RESEARCH CTR ATHENS UNIV GEORGIA, WARNELL SCH FOREST RESOURCES, ATHENS, GA 30602-2152 USA 1075-4377 ORNITOL NEOTROP ORNITOL. NEOTROP. 2017 28 129 133 5 Ornithology Zoology FC0AB WOS:000406499500007 2018-11-22 J Escalera-Vazquez, LH; Calderon-Cortes, N; Zambrano-Gonzalez, L Escalera-Vazquez, Luis H.; Calderon-Cortes, Nancy; Zambrano-Gonzalez, Luis Fish population responses to hydrological variation in a seasonal wetland in southeast Mexico NEOTROPICAL ICHTHYOLOGY English Article Dry season; Fish resilience; Life history strategies; Rainy season; Sian Ka'an LIFE-HISTORY STRATEGIES; WATER-LEVEL FLUCTUATIONS; UPPER PARANA RIVER; COMMUNITY STRUCTURE; FLORIDA-EVERGLADES; YUCATAN PENINSULA; AMERICAN FISHES; PERMANENT POOLS; PATTERNS; STREAM Hydrological variation differently affects fish species. In the present study, the response of local populations of 13 fish local species to hydrological variation in a tropical wetland was evaluated. The objectives were to analyze the abundance response of fish species with distinct life history strategies and to assess the role of hydrological variation on fish population patterns. We found that opportunistic strategists were favored by high hydrological variation in drought periods, the equilibrium strategists were related to stable habitats, and periodic strategists were regulated by floods and temperature. However, the life history strategies identified for some species in this study do not correspond to the classification reported in other studies. Our results highlight the importance to study the abundance responses of species at local and regional scales to identify variations in life-history strategies, which can reflect local adaptations of species to hydrological changes, this is useful in order to understand and predict the responses of fish populations to the local environment. [Escalera-Vazquez, Luis H.] Univ Michoacana, CONACYT Inst Invest Recursos Nat, Ave Juanito Itzicuaro SN, Morelia 58330, Michoacan, Mexico; [Calderon-Cortes, Nancy] Univ Nacl Autonoma Mexico, Escuela Nacl Estudios Super Unidad Morelia, Antigua Carretera Patzcuaro 8701, Morelia 58190, Michoacan, Mexico; [Zambrano-Gonzalez, Luis] Univ Nacl Autonoma Mexico, Inst Biol, Dept Zool, Mexico City 04510, DF, Mexico Escalera-Vazquez, LH (reprint author), Univ Michoacana, CONACYT Inst Invest Recursos Nat, Ave Juanito Itzicuaro SN, Morelia 58330, Michoacan, Mexico. lhescalera@gmail.com; ncalderon@enesmorelia.unam.mx; zambrano@ib.unam.mx Zambrano, Luis/0000-0002-8632-0712 Universidad Nacional Autonoma de Mexico (UNAM) through Programa de Apoyo a Proyectos de Investigacion e Innovacion Tecnologica (PAPIIT) [IN230007]; Secretaria del Medio ambiente y Recursos Naturales-Consejo Nacional de Ciencia y Tecnologia (SEMARNAT-CONACyT) [COI-2002-082]; CONACyT [165043]; RBSK; Comision Nacional de Areas Naturales Protegidas (CONANP) This research was financed jointly by Universidad Nacional Autonoma de Mexico (UNAM) fundings through the Programa de Apoyo a Proyectos de Investigacion e Innovacion Tecnologica (PAPIIT), Project number IN230007 and Secretaria del Medio ambiente y Recursos Naturales-Consejo Nacional de Ciencia y Tecnologia (SEMARNAT-CONACyT) COI-2002-082. LHEV thanks to CONACyT for the scholarship No. 165043 granted for PhD studies. We thank to RBSK park rangers for field help and support, as well as the Comision Nacional de Areas Naturales Protegidas (CONANP) and anonymous reviewers for the useful comments provided. Agostinho AA, 2004, REV FISH BIOL FISHER, V14, P11, DOI 10.1007/s11160-004-3551-y; Blanck A, 2007, FRESHWATER BIOL, V52, P843, DOI 10.1111/j.1365-2427.2007.01736.x; Blanck A, 2007, J BIOGEOGR, V34, P862, DOI 10.1111/j.1365-2699.2006.01654.x; Chick JH, 2004, WETLANDS, V24, P652, DOI 10.1672/0277-5212(2004)024[0652:SSAAPO]2.0.CO;2; Cochran-Biederman JL, 2010, ENVIRON BIOL FISH, V88, P143, DOI 10.1007/s10641-010-9624-y; Coops H, 2003, HYDROBIOLOGIA, V506, P23, DOI 10.1023/B:HYDR.0000008595.14393.77; DeAngelis DL, 2005, CAN J FISH AQUAT SCI, V62, P781, DOI 10.1139/F05-050; Deangelis Donald L., 1997, Journal of Aquatic Ecosystem Stress and Recovery, V6, P1; DeAngelis DL, 2010, ECOL MODEL, V221, P1131, DOI 10.1016/j.ecolmodel.2009.12.021; Eby LA, 2003, ECOL APPL, V13, P1566, DOI 10.1890/02-5211; Escalera-Vazquez LH, 2010, FRESHWATER BIOL, V55, P2557, DOI 10.1111/j.1365-2427.2010.02486.x; Franssen NR, 2006, FRESHWATER BIOL, V51, P2072, DOI 10.1111/j.1365-2427.2006.01640.x; Gawlik DE, 2002, ECOL MONOGR, V72, P329, DOI 10.1890/0012-9615(2002)072[0329:TEOPAO]2.0.CO;2; Gomes L. C., 1997, Fisheries Management and Ecology, V4, P263, DOI 10.1046/j.1365-2400.1997.00119.x; Greenfield D. W., 1997, FISHES CONTINENTAL W; Gubiani EA, 2007, ECOL FRESHW FISH, V16, P191, DOI 10.1111/j.1600-0633.2006.00211.x; Hinojosa-Garro D, 2013, NEOTROP ICHTHYOL, V11, P881, DOI 10.1590/S1679-62252013000400016; King AJ, 2003, CAN J FISH AQUAT SCI, V60, P773, DOI 10.1139/F03-057; Kobza RM, 2004, BIOL CONSERV, V116, P153, DOI 10.1016/S0006-3207(03)00186-1; Lamouroux N, 2002, ECOLOGY, V83, P1792, DOI 10.2307/3071765; Legendre P, 2001, OECOLOGIA, V129, P271, DOI 10.1007/s004420100716; Legendre P, 1998, NUMERICAL ECOLOGY; Littell R. C., 1996, SAS SYSTEM MIXED MOD; Loftus William F., 1994, P461; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; Magalhaes MF, 2007, FRESHWATER BIOL, V52, P1494, DOI 10.1111/j.1365-2427.2007.01781.x; Magoulick DD, 2003, FRESHWATER BIOL, V48, P1186, DOI 10.1046/j.1365-2427.2003.01089.x; MATTHEWS WJ, 1986, COPEIA, P388; Matthews WJ, 2003, FRESHWATER BIOL, V48, P1232, DOI 10.1046/j.1365-2427.2003.01087.x; MCKAYE KR, 1980, ENVIRON BIOL FISH, V5, P75, DOI 10.1007/BF00000953; Meffe G., 1989, ECOLOGY EVOLUTION LI; Miller R. R., 2005, FRESHWATER FISHES ME; Mims MC, 2010, ECOL FRESHW FISH, V19, P390, DOI 10.1111/j.1600-0633.2010.00422.x; Mims MC, 2012, ECOLOGY, V93, P35, DOI 10.1890/11-0370.1; Mitsch W. J., 2009, WETLAND ECOSYSTEMS; MOYLE PB, 1985, ECOLOGY, V66, P1, DOI 10.2307/1941301; Nelson JS, 2004, AM FISHERIES SOC SPE, V34; Obaza A, 2011, J FISH BIOL, V78, P495, DOI 10.1111/j.1095-8649.2010.02867.x; Oksanen J., 2013, VEGAN COMMUNITY ECOL; Olden JD, 2010, AM FISH S S, V73, P83; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; R Development Core Team, 2014, R LANG ENV STAT COMP; Richter BD, 1996, CONSERV BIOL, V10, P1163, DOI 10.1046/j.1523-1739.1996.10041163.x; Rochet MJ, 2000, ICES J MAR SCI, V57, P228, DOI 10.1006/jmsc.2000.0641; Rose KA, 2000, ENVIRON SCI POLICY, V3, P433, DOI DOI 10.1016/S1462-9011(00)00054-X; Ruetz CR, 2005, J ANIM ECOL, V74, P322, DOI 10.1111/j.1365-2656.2005.00926.x; Snodgrass JW, 1996, CAN J FISH AQUAT SCI, V53, P443, DOI 10.1139/cjfas-53-2-443; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; Taylor RC, 2001, OECOLOGIA, V127, P143, DOI 10.1007/s004420000575; Tedesco PA, 2008, OECOLOGIA, V156, P691, DOI 10.1007/s00442-008-1021-2; Tedesco P, 2006, OIKOS, V115, P117, DOI 10.1111/j.2006.0030-1299.14847.x; TERBRAAK CJF, 1995, AQUAT SCI, V57, P255, DOI 10.1007/BF00877430; TREXLER JC, 2001, EVERGLADES FLORIDA B, P153; Turner AM, 1999, CONSERV BIOL, V13, P898, DOI 10.1046/j.1523-1739.1999.97513.x; Vila-Gispert A, 2002, REV FISH BIOL FISHER, V12, P417, DOI 10.1023/A:1025352026974; Wantzen KM, 2008, HYDROBIOLOGIA, V613, P1, DOI 10.1007/s10750-008-9466-1; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Zambrano L, 2006, ICHTHYOL EXPLOR FRES, V17, P193 60 0 0 1 5 SOC BRASILEIRA ICTIOLOGIA SAO PAULO UNIV SAO PAULO, DEPT FISIOLOGIA-IB, RUA DO MATAO, TRAVESSA 14 N 321, SAO PAULO, SP 05508-900, BRAZIL 1679-6225 NEOTROP ICHTHYOL Neotrop. Ichthyol. 2017 15 2 e160129 10.1590/1982-0224-20160129 9 Zoology Zoology EZ2DJ WOS:000404519700001 DOAJ Gold 2018-11-22 J Hisamoto, Y; Goto, S Hisamoto, Yoko; Goto, Susumu Genetic control of altitudinal variation on female reproduction in Abies sachalinensis revealed by a crossing experiment JOURNAL OF FOREST RESEARCH English Article Sakhalin fir; elevation; reproductive allocation; life history strategy; inheritance ALEPPO PINE; ALLOCATION; GROWTH; PINACEAE; SEED The relationship between reproduction and vegetative growth is linked to plants' life history strategies. Female reproduction often starts earlier in trees growing at high altitudes than those at low altitudes despite their smaller size; moreover, trees growing in a severe environment tend to have a large reproductive biomass after the onset of reproduction. To determine whether these aspects of female reproduction in high-altitude trees are heritable, we analyzed the progeny of four crosses between Abies sachalinensis trees from high altitude (1100-1200m above sea level [asl]) (H) and low altitude (530m asl) (L), namely (female x male): LxH, HxL, LxL, and HxH. Progeny of each cross were planted in experimental garden at 230m asl at the University of Tokyo, Hokkaido Forest in 1986 and in 2011-2014, the number of female cones from 21 trees derived from the four crosses were counted and individual tree sizes were measured. The number of cones was in the order: LxH 250 individuals caught. The highest intersite species similarities were recorded between Yamunanagar and Panipat, followed by Wazirabad and Hamirpur, and Yamunanagar and Allahabad. The middle stretch of the river was dominated by small-bodied erytopic, indigenous, and exotic fish species with periodic and opportunistic life history strategies, and had reduced abundances of the large-bodied, prized Indian Major Carps. A trophic shift towards dominance of carnivore catfish species was evident. Multivariate analysis indicated 83.50% of the total variability in species composition in the river could be attributed to gradients of the environmental variables: dissolved oxygen, turbidity, conductivity, total dissolved solids, stream velocity, and water temperature.Insufficient flows in the middle stretch of the river have altered fish habitat availability, resulting in changes in fish composition and assemblage patterns. The study will aid efforts to conserve the aquatic communities and their habitats in the river. [Sharma, A. P.; Das, M. K.; Vass, K. K.; Tyagi, R. K.] Cent Inland Fisheries Res Inst, Kolkata 700120, W Bengal, India Das, MK (reprint author), Cent Inland Fisheries Res Inst, Kolkata 700120, W Bengal, India. mkdas412@rediffmail.com [Anonymous], 1994, ANN REP; APHA, 1998, STANDARD METHODS EXA; Arthington A. H., 2004, RAP PUBLICATION, V2004, P79; Bain M. B., 1999, AQUATIC HABITAT ASSE; Bhat A, 2003, ENVIRON BIOL FISH, V68, P25, DOI 10.1023/A:1026017119070; Braak CJF, 2002, POWER, DOI DOI 10.1038/ISMEJ.2011.139; Burge J., 1993, AM STAT ASS, V88, P364; Chondar S. L., 1999, BIOL FINFISH SHELLFI; COLWELL RK, 1994, PHILOS T ROY SOC B, V345, P101, DOI 10.1098/rstb.1994.0091; CPCB, 2005, ASS DEV RIV BAS SER; Das MK, 2012, ACTA ICHTHYOL PISCAT, V42, P47, DOI 10.3750/AIP2011.42.1.06; Das Manas Kr., 2006, Indian Journal of Fisheries, V53, P47; De Silva SS, 2007, DIVERS DISTRIB, V13, P172, DOI 10.1111/j.1472-4642.2006.00311.x; Fischer JR, 2008, ECOL FRESHW FISH, V17, P597, DOI 10.1111/j.1600-0633.2008.00312.x; Government of India (GOI), 1993, YAM ACT PLAN; Groombridge B, 1998, WORLD CONSERVATION M, V8; Hammer O, 2001, PALAEONTOL ELECTRON, V4, P9, DOI DOI 10.1016/J.BCP.2008.05.025; IUCN, 2011, INT UN CONS NAT NAT; Jackson M.L., 1964, SOIL CHEM ANAL; Jayaram K.C., 1981, FRESHWATER FISHES IN; JHINGRAN VG, 1975, FISH FISHERIES INDIA; Kazmi AA, 1997, WATER SCI TECHNOL, V36, P193, DOI 10.1016/S0273-1223(97)00474-5; Khan M. A., 1995, FINAL TECHNICAL REPO; Kolar CS, 2002, SCIENCE, V298, P1233, DOI 10.1126/science.1075753; Lima-Junior SE, 2006, ECOL FRESHW FISH, V15, P284, DOI 10.1111/j.1600-0633.2006.00156.x; Mas-Marti E, 2010, HYDROBIOLOGIA, V657, P167, DOI 10.1007/s10750-010-0292-x; Mishra D. N., 1997, CHANGING PERSPECTIVE, P57; Mishra D. N., 2001, J INLAND FISH SOC IN, V35, P93; Mishra D. N., 2007, J INLAND FISH SOC IN, V32, P48; Moza U., 2003, BULLETIN, V123; Moza U., 2001, APPL FISH AQUACULTUR, V1, P17; Piper CS, 1966, SOIL PLANT ANAL; Raghavan R, 2008, BIODIVERS CONSERV, V17, P3119, DOI 10.1007/s10531-007-9293-0; Sarkar U. K., 2010, Environmentalist, V30, P3, DOI 10.1007/s10669-009-9237-1; Sehgal K. L., 1992, SPECIAL PUBLICATION, V3; Shahnawaz A, 2010, ENVIRON MONIT ASSESS, V161, P83, DOI 10.1007/s10661-008-0729-0; Talwar P. K., 1991, INLAND FISHES INDIA; TERBRAAK CJF, 1986, ECOLOGY, V67, P1167; Tockner K, 2010, FRESHWATER BIOL, V55, P135, DOI 10.1111/j.1365-2427.2009.02371.x; Turak E., 2011, FRESHWATER BIOL, V55, P131; Vass K. K., 2011, International Journal of Ecology and Environmental Sciences, V37, P157; Vass KK, 2010, AQUAT ECOSYST HEALTH, V13, P385, DOI 10.1080/14634988.2010.530139; VVong C. M., 2007, WORLDS TOP 10 RIVERS; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242 45 0 0 1 7 TAYLOR & FRANCIS INC PHILADELPHIA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA 1463-4988 1539-4077 AQUAT ECOSYST HEALTH Aquat. Ecosyst. Health Manag. JAN-JUN 2017 20 1-2 SI 30 42 10.1080/14634988.2017.1265879 13 Ecology; Environmental Sciences; Marine & Freshwater Biology; Water Resources Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources ET6OK WOS:000400410800005 2018-11-22 J Stenert, C; Ehlert, B; Avila, AC; Sousa, FDR; Esquinatti, FM; Batzer, DP; Maltchik, L Stenert, Cristina; Ehlert, Bruna; Avila, Arthur Cardoso; Rocha Sousa, Francisco Diogo; Esquinatti, Fernanda Mara; Batzer, Darold Paul; Maltchik, Leonardo Dormant propagule banks of aquatic invertebrates in ponds invaded by exotic pine species in southern Brazil MARINE AND FRESHWATER RESEARCH English Article cladoceran; diapause; ephippial eggs; resistance; wetlands LIFE-HISTORY STRATEGIES; RESTING-EGG-PRODUCTION; BETA-DIVERSITY; COMMUNITY STRUCTURE; COASTAL PONDS; ZOOPLANKTON; ANOMOPODA; EMERGENCE; WETLANDS; NESTEDNESS Exotic pine invasion affects native wetland communities in the Southern Hemisphere by changing the hydrological regimen and physicochemical characteristics. Studies evaluating the emergence of aquatic invertebrates from dormant stages are vital to identify the resilience of aquatic communities in ponds invaded by exotic pine species. In the present study, we tested the hypotheses that: (1) pine invasion decreases the richness of drought-resistant aquatic invertebrates in ponds; (2) pine invasion modifies the invertebrate composition in ponds; and (3) these differences in species composition ( diversity) are associated primarily with species turnover. Dry sediment samples were collected from three natural ponds in native grassland and three ponds in a pine invasion matrix in southern Brazil. In all, 7205 invertebrates, primarily represented by cladocerans (18 species), were sampled after rewetting dry sediments. Pine invasion decreased the richness of aquatic invertebrates because the natural ponds had almost 60% more species and a higher number of estimated species than the pine ponds. The composition differed between natural and pine ponds, and this difference in species composition ( diversity) was associated primarily with the replacement of some species by others. The presence of pine appears to alter colonisation and survival rates of aquatic invertebrates that aestivate in dry sediments in southern Brazil wetlands. [Stenert, Cristina; Ehlert, Bruna; Avila, Arthur Cardoso; Esquinatti, Fernanda Mara; Maltchik, Leonardo] Univ Vale Rio dos Sinos UNISINOS, Lab Ecol & Conservat Aquat Ecosyst, Ave Unisinos 950, BR-93022000 Sao Leopoldo, RS, Brazil; [Rocha Sousa, Francisco Diogo] Univ Fed Santa Maria, Nucleo Estudos Biodiversidade Aquat, Programa Posgrad Biodiversidade Anim, Ave Roraima 1000, BR-97105900 Santa Maria, RS, Brazil; [Batzer, Darold Paul] Univ Georgia, Dept Entomol, 413 Biol Sci Bldg, Athens, GA 30602 USA Stenert, C (reprint author), Univ Vale Rio dos Sinos UNISINOS, Lab Ecol & Conservat Aquat Ecosyst, Ave Unisinos 950, BR-93022000 Sao Leopoldo, RS, Brazil. cstenert@unisinos.br Brazilian Research Council - CNPq; Universidade do Vale do Rio dos Sinos - UNISINOS [02.00.023/00-0]; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico - CNPq [52370695.2] Leonardo Maltchik and Cristina Stenert hold a Brazilian Research Council - CNPq Research Productivity grant. The authors declare that the data collection complied with current Brazilian laws. This work was supported by funds from Universidade do Vale do Rio dos Sinos - UNISINOS (grant number 02.00.023/00-0) and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico - CNPq (grant number 52370695.2). ABRAF, 2011, STAT YB BAS YEAR; Alekseev V, 2001, NATURE, V414, P899, DOI 10.1038/414899a; Angeler DG, 2005, J N AM BENTHOL SOC, V24, P740, DOI 10.1899/05-025.1; Aranguiz-Acuna A, 2014, J PLANKTON RES, V36, P978, DOI 10.1093/plankt/fbu034; Araujo MB, 2013, ECOL LETT, V16, P1206, DOI 10.1111/ele.12155; Audet C, 2013, J LIMNOL, V72, P524, DOI 10.4081/jlimnol.2013.e43; Avila AC, 2015, MAR FRESHWATER RES, V66, P276, DOI 10.1071/MF14048; Barwell LJ, 2015, J ANIM ECOL, V84, P1112, DOI 10.1111/1365-2656.12362; Baselga A, 2012, GLOBAL ECOL BIOGEOGR, V21, P1223, DOI 10.1111/j.1466-8238.2011.00756.x; Baselga A, 2010, GLOBAL ECOL BIOGEOGR, V19, P134, DOI 10.1111/j.1466-8238.2009.00490.x; Blackburn T., 2000, PATTERN PROCESS MACR; Brendonck L, 2003, HYDROBIOLOGIA, V491, P65, DOI 10.1023/A:1024454905119; Brown Stephen C., 2001, P237; Bustamante RO, 2005, BIOL INVASIONS, V7, P243, DOI 10.1007/s10530-004-0740-5; Caceres CE, 2004, OECOLOGIA, V141, P425, DOI 10.1007/s00442-004-1657-5; Caceres CE, 1998, ECOLOGY, V79, P1699, DOI 10.2307/176789; Chiarucci A, 2011, PHILOS T R SOC B, V366, P2426, DOI 10.1098/rstb.2011.0065; Clarke KR, 2001, CHANGE MARINE COMMUN; Colwell RK, 2004, ECOLOGY, V85, P2717, DOI 10.1890/03-0557; Cottenie K, 2003, ECOLOGY, V84, P991, DOI 10.1890/0012-9658(2003)084[0991:ZMSRVL]2.0.CO;2; Declerck SAJ, 2011, BASIC APPL ECOL, V12, P466, DOI 10.1016/j.baae.2011.05.001; Dumont H.J., 2002, INTRO CLASBRANCHIO; Ekvall MK, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0044614; ELLNER S, 1994, AM NAT, V143, P403, DOI 10.1086/285610; Elmoor-Loureiro M, 1997, MANUAL IDENTIFICACAO; Figuerola J, 2003, GLOBAL ECOL BIOGEOGR, V12, P427, DOI 10.1046/j.1466-822X.2003.00043.x; Finlayson CM, 1999, MAR FRESHWATER RES, V50, P717, DOI 10.1071/MF99098; Gao Z., 2009, FRONTIERS FORESTRY C, V4, P53, DOI [10.1007/S11461-009-0008-4, DOI 10.1007/S11461-009-0008-4]; Gleason RA, 2004, WETLANDS, V24, P562, DOI 10.1672/0277-5212(2004)024[0562:IEBORN]2.0.CO;2; Gleason RA, 2003, WETLANDS, V23, P26, DOI 10.1672/0277-5212(2003)023[0026:EOSLOE]2.0.CO;2; Gotelli NJ, 2001, ECOL LETT, V4, P379, DOI 10.1046/j.1461-0248.2001.00230.x; Green AJ, 2008, FRESHWATER BIOL, V53, P380, DOI 10.1111/j.1365-2427.2007.01901.x; GURTZ ME, 1984, ECOLOGY, V65, P1556, DOI 10.2307/1939135; Hairston NG, 1996, LIMNOL OCEANOGR, V41, P1087, DOI 10.4319/lo.1996.41.5.1087; Hudec I, 2000, HYDROBIOLOGIA, V421, P165, DOI 10.1023/A:1003919712255; Jenkins KM, 2007, J APPL ECOL, V44, P823, DOI 10.1111/j.1365-2664.2007.01298.x; Jeppesen E, 2003, HYDROBIOLOGIA, V491, P321, DOI 10.1023/A:1024488525225; Korovchinsky N. M, 1992, GUIDES IDENTIFICATIO, V3; Kotov A. A, 2006, GUIDES IDENTIFICATIO, V22; Kotov AA, 2004, HYDROBIOLOGIA, V517, P61, DOI 10.1023/B:HYDR.0000027337.57305.b0; Lampert W, 1997, LIMNOLOGY ECOLOGY LA; LIMA W. P., 1993, IMPACTO AMBIENTAL EU; Machado IF, 2012, AMPHIBIA-REPTILIA, V33, P227, DOI 10.1163/156853812X638518; Maltchik L., 2003, PESQUISAS BOT, V53, P89; McKinney ML, 2004, BIOL INVASIONS, V6, P495, DOI 10.1023/B:BINV.0000041562.31023.42; McKinney ML, 1999, TRENDS ECOL EVOL, V14, P450, DOI 10.1016/S0169-5347(99)01679-1; Morris K., 2012, WETLAND CONNECTIVITY; NARANJO LG, 1995, VEGETATIO, V118, P125, DOI 10.1007/BF00045194; Nielsen DL, 2000, J PLANKTON RES, V22, P433, DOI 10.1093/plankt/22.3.433; Nosetto MD, 2005, GLOBAL CHANGE BIOL, V11, P1101, DOI 10.1111/j.1365-2486.2005.00975.x; Olden JD, 2006, ECOL MONOGR, V76, P25, DOI 10.1890/05-0330; Olmo C, 2012, LIMNOLOGICA, V42, P310, DOI 10.1016/j.limno.2012.08.005; Orlova-Bienkowskaja M. J., 2001, CLADOCERA ANOMOPODAD, V17; Panarelli E. A., 2008, ACTA LIMNOL BRAS, V20, P73; Perello L. F. C., 2010, FACES POSISSEMIA PAI, P135; Qian H, 2005, ECOL LETT, V8, P15, DOI 10.1111/j.1461-0248.2004.00682.x; Rambo B, 2000, FISIONOMIA RIO GRAND; RICHARDSON DM, 1994, J BIOGEOGR, V21, P511, DOI 10.2307/2845655; Richardson DM, 1998, CONSERV BIOL, V12, P18, DOI 10.1046/j.1523-1739.1998.96392.x; Rolon AS, 2011, HYDROBIOLOGIA, V675, P157, DOI 10.1007/s10750-011-0813-2; SANTANGELO J.M., 2009, PRODUCAO ECLOSAO IMP; Sarma SSS, 2005, HYDROBIOLOGIA, V542, P315, DOI 10.1007/s10750-004-3247-2; Sinev A. Yu., 2005, Arthropoda Selecta, V14, P93; Sinev A. Yu., 2004, Arthropoda Selecta, V13, P99; Smirnov N N, 2013, Dokl Biol Sci, V453, P383, DOI 10.1134/S0012496613060197; SMIRNOV N.N., 1992, MACROTHRICIDAE WORLD; Smirnov N. N., 1996, CLADOCERA CHYDORINAE; Spaak P, 2004, J PLANKTON RES, V26, P625, DOI 10.1093/plankt/fbh064; Stanczak M, 2004, WETLANDS, V24, P212, DOI 10.1672/0277-5212(2004)024[0212:BIIACA]2.0.CO;2; Stenert C, 2012, MAR FRESHWATER RES, V63, P283, DOI 10.1071/MF11169; Stenert C, 2010, WETLANDS, V30, P989, DOI 10.1007/s13157-010-0083-1; Stone MK, 1998, FRESHWATER BIOL, V39, P151, DOI 10.1046/j.1365-2427.1998.00272.x; Tagliani P. R., 1995, THESIS; Ulrich W, 2007, OIKOS, V116, P2053, DOI 10.1111/j.2007.0030-1299.16173.x; Van Damme K, 2005, J NAT HIST, V39, P2125, DOI 10.1080/00222930500060884; Van Damme K, 2011, ZOOTAXA, P1; Vandekerkhove J, 2005, FRESHWATER BIOL, V50, P96, DOI 10.1111/j.1365-2427.2004.01312.x; Vanschoenwinkel B, 2007, OIKOS, V116, P1255, DOI 10.1111/j.2007.0030-1299.15860.x; Williams D.D., 2006, BIOL TEMPORARY WATER; Wissinger SA, 1999, INVERTEBRATES IN FRESHWATER WETLANDS OF NORTH AMERICA, P1043; WRIGHT DH, 1992, OECOLOGIA, V92, P416, DOI 10.1007/BF00317469; Zhang L, 2001, WATER RESOUR RES, V37, P701, DOI 10.1029/2000WR900325 82 2 2 2 7 CSIRO PUBLISHING CLAYTON UNIPARK, BLDG 1, LEVEL 1, 195 WELLINGTON RD, LOCKED BAG 10, CLAYTON, VIC 3168, AUSTRALIA 1323-1650 1448-6059 MAR FRESHWATER RES Mar. Freshw. Res. 2017 68 5 954 963 10.1071/MF16067 10 Fisheries; Limnology; Marine & Freshwater Biology; Oceanography Fisheries; Marine & Freshwater Biology; Oceanography ET3NB WOS:000400184800015 2018-11-22 J Ruiz, MG; Le Galliard, JF; Tully, T Ruiz, Marta Gallardo; Le Galliard, Jean-Francois; Tully, Thomas Genetic variation in light vision and light-dependent movement behaviour in the eyeless Collembola Folsomia candida PEDOBIOLOGIA English Article Folsomia candida; Collembolan; Light sensitivity; Eyeless species; Mobility; Intraspecific variation BIGUTTATUS-F CARABIDAE; PHOTOTACTIC BEHAVIOR; SPRINGTAIL COMMUNITIES; DERMAL PHOTORECEPTORS; COOLING TEMPERATURES; SOIL; EVOLUTION; HISTORY; PREDATION; TRAITS Animals can cope with spatiotemporal variation in their environment through mobility and selective habitat choice. Intra-specific variation in habitat choice has been documented especially for host plant preferences and cryptic habitat selection in insects. Here, we investigated the genetic variation in light sensitivity and light-dependent habitat choice in the eyeless Collembola Folsomia candida with a choice test under four different lighting conditions (control dark condition, two simulations of undergrowth natural light conditions and red light). We tested twelve clonal strains from diverse geographical origins that are clustered in two evolutionary clades with contrasting fast or slow life-history strategies. The clones differed in their mean movement probabilities in the dark treatment. These differences were related to the two different phylogenetic clades, where fast-life history clones are on average more mobile than slow-life history counterparts as predicted by the 'colonizer syndrome' hypothesis. We found behavioural avoidance of light in the three light conditions. Moreover, photophobia was stronger when the simulated light spectrum was brighter and included non-red light. Photophobia was similar among all clonal lineages and between the two clades, which suggests that this behaviour is a shared behavioural trait in this species. We discuss the use of light as an environmental cue for orientation, displacement and habitat choice under natural conditions. (C) 2017 Elsevier GmbH. All rights reserved. [Ruiz, Marta Gallardo; Le Galliard, Jean-Francois; Tully, Thomas] UPMC Univ Paris 06, Sorbonne Univ, CNRS,IRD, Inst Ecol & Sci Environm IEES,INRA, Paris, France; [Le Galliard, Jean-Francois] PSL Res Univ, Ecole Normale Super, Ctr Rech Ecol Expt & Predict CEREEP Ecotron IleDe, CNRS,UMS 3194, 78 Rue Chateau, F-77140 St Pierre Les Nemours, France; [Tully, Thomas] Paris Sorbonne Univ Paris 04, Sorbonne Univ, ESPE Acad Paris, Paris, France Ruiz, MG (reprint author), UPMC Univ Paris 06, Sorbonne Univ, CNRS,IRD, Inst Ecol & Sci Environm IEES,INRA, Paris, France. marta.gallardo_ruiz@etu.upmc.fr Le Galliard, Jean-Francois/E-8702-2011 Le Galliard, Jean-Francois/0000-0002-5965-9868 Centre National de la Recherche Scientifique; Ecole doctorate Diversite du Vivant at the Universite Pierre and Marie Curie [859/2013]; Conseil regional d'Ile-de-France [DIM R2DS I-05-098/R, 2011-11017735]; Agence Nationale de la Recherche grant of the "Investissements d'avenir" program [ANR-11-INBS-0001] We want to thank to the staff members of the EcotronlleDe-France, especially Simon Chollet, Mathieu Llavata and Florent Massol. This research was supported by the Centre National de la Recherche Scientifique and a grant from the Ecole doctorate Diversite du Vivant at the Universite Pierre and Marie Curie to M.G.R. (contract 859/2013). This work was made possible thanks to the CNRS Research Infrastructure Ecotrons supported by the Conseil regional d'Ile-de-France (DIM R2DS I-05-098/R and 2011-11017735) and the Agence Nationale de la Recherche grant of the "Investissements d'avenir" program (ANR-11-INBS-0001 AnaEE France). ARIKAWA K, 1980, NATURE, V288, P700, DOI 10.1038/288700a0; Baatrup E, 2006, ENTOMOL EXP APPL, V118, P61, DOI 10.1111/j.1570-7458.2006.00357.x; BARRA JA, 1971, Z ZELLFORSCH MIK ANA, V117, P322, DOI 10.1007/BF00324808; Bates D., 2012, IME4 LINEAR MIXED EF; Bengtsson G, 2004, J THEOR BIOL, V231, P299, DOI 10.1016/j.jtbi.2004.06.025; Beresford GW, 2013, PEDOBIOLOGIA, V56, P89, DOI 10.1016/j.pedobi.2012.12.001; Binder TR, 2008, J COMP PHYSIOL A, V194, P921, DOI 10.1007/s00359-008-0364-9; BLANDIN P, 1980, REV ECOL BIOL SOL, V17, P181; BLISS D, 1985, PLANT CELL ENVIRON, V8, P475, DOI 10.1111/j.1365-3040.1985.tb01683.x; Boiteau G, 2014, ENTOMOL EXP APPL, V152, P16, DOI 10.1111/eea.12195; Boiteau G, 2013, ENTOMOL EXP APPL, V147, P50, DOI 10.1111/eea.12048; Boiteau G, 2012, ENVIRON ENTOMOL, V41, P916, DOI 10.1603/EN12008; Borowsky B, 2011, J CRUSTACEAN BIOL, V31, P613, DOI 10.1651/10-3450.1; Briscoe AD, 2001, ANNU REV ENTOMOL, V46, P471, DOI 10.1146/annurev.ento.46.1.471; Burton OJ, 2010, ECOL LETT, V13, P1210, DOI 10.1111/j.1461-0248.2010.01505.x; Chenon P, 2000, APPL SOIL ECOL, V14, P103, DOI 10.1016/S0929-1393(00)00047-0; Christiansen K, 2005, MORPHOLOGICAL ADAPTA, P386; Clobert J, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P1, DOI 10.1093/acprof:oso/9780199608898.001.0001; Cousyn C, 2001, P NATL ACAD SCI USA, V98, P6256, DOI 10.1073/pnas.111606798; De Meester L., 1996, EVOL INT J ORG EVOLU, P1293; DEMEESTER L, 1995, HYDROBIOLOGIA, V307, P167, DOI 10.1007/BF00032009; DEMEESTER L, 1994, OECOLOGIA, V97, P333, DOI 10.1007/BF00317323; Dromph KM, 2003, EUR J SOIL BIOL, V39, P9, DOI 10.1016/S1164-5563(02)00003-1; Edelaar P, 2012, TRENDS ECOL EVOL, V27, P659, DOI 10.1016/j.tree.2012.07.009; ERNSTING G, 1981, OECOLOGIA, V51, P169, DOI 10.1007/BF00540596; ERNSTING G, 1977, OECOLOGIA, V31, P13, DOI 10.1007/BF00348704; Forstmeier W, 2011, BEHAV ECOL SOCIOBIOL, V65, P47, DOI 10.1007/s00265-010-1038-5; Fountain MT, 2005, ANNU REV ENTOMOL, V50, P201, DOI 10.1146/annurev.ento.50.071803.130331; Fox C.L, 2007, FOLSOMIA CANDIDA J I, V7, P1; Frati F, 2004, PEDOBIOLOGIA, V48, P461, DOI 10.1016/j.pedobi.2004.04.004; Friedrich M, 2013, INTEGR COMP BIOL, V53, P50, DOI 10.1093/icb/ict058; Hauzy C, 2010, OECOLOGIA, V163, P625, DOI 10.1007/s00442-010-1585-5; Hawthorne DJ, 2001, NATURE, V412, P904, DOI 10.1038/35091062; Holmstrup M., 2002, STRATEGIES COLD DROU; Huebner K, 2012, EUR J SOIL BIOL, V48, P59, DOI 10.1016/j.ejsobi.2011.10.004; Jaenike J., 1991, AM NAT, pS67; Jordana R, 2000, ARTHROPOD STRUCT DEV, V29, P289, DOI 10.1016/S1467-8039(01)00012-3; Kain JS, 2012, P NATL ACAD SCI USA, V109, P19834, DOI 10.1073/pnas.1211988109; Lampel J, 2005, CELL TISSUE RES, V321, P443, DOI 10.1007/s00441-004-1069-1; LARIMER JL, 1966, NATURE, V210, P204, DOI 10.1038/210204b0; Mallard F., 2015, J EVOLUTIONARY BIOL, P1; MARKOW TA, 1977, GENETICS, V85, P273; Matthysen E, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P3; Michels E, 2004, HYDROBIOLOGIA, V522, P221, DOI 10.1023/B:HYDR.0000029988.02195.35; Nakagawa S, 2013, METHODS ECOL EVOL, V4, P133, DOI 10.1111/j.2041-210x.2012.00261.x; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Ponge JF, 2013, PEDOBIOLOGIA, V56, P129, DOI 10.1016/j.pedobi.2013.02.001; Ponge JF, 2006, SOIL BIOL BIOCHEM, V38, P1158, DOI 10.1016/j.soilbio.2005.09.004; R Development Core Team, 2012, R LANG ENV STAT COMP; Ramirez MD, 2011, VISUAL NEUROSCI, V28, P265, DOI 10.1017/S0952523811000150; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.2307/3071970; Ronce O, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P119; Salmon S, 2014, SOIL BIOL BIOCHEM, V75, P73, DOI 10.1016/j.soilbio.2014.04.002; Salmon S, 2012, PEDOBIOLOGIA, V55, P295, DOI 10.1016/j.pedobi.2012.05.003; Salmon S, 1998, EUR J SOIL BIOL, V34, P199, DOI 10.1016/S1164-5563(00)86662-5; Sih A, 2012, ECOL LETT, V15, P278, DOI 10.1111/j.1461-0248.2011.01731.x; Smith Harry, 1994, P377; Stamps JA, 2001, DISPERSAL, V2001, P230; Taddei-Ferretti C, 2000, J PHOTOCH PHOTOBIO B, V55, P88, DOI 10.1016/S1011-1344(00)00041-5; Timmermann M, 2009, AQUAT ECOL, V43, P539, DOI 10.1007/s10452-008-9173-z; Tosini Gianluca, 1996, Physiology and Behavior, V59, P195, DOI 10.1016/0031-9384(95)02040-3; Tully T, 2006, PEDOBIOLOGIA, V50, P95, DOI 10.1016/j.pedobi.2005.11.003; Tully T., 2004, FACTEURS GENETIQUES; Tully T, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0136047; Tully T, 2011, EVOLUTION, V65, P3013, DOI 10.1111/j.1558-5646.2011.01347.x; Tully T, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003207; Ullrich-Luter EM, 2011, P NATL ACAD SCI USA, V108, P8367, DOI 10.1073/pnas.1018495108; Verdier B, 2014, ENVIRON SCI TECHNOL, V48, P8744, DOI 10.1021/es405467s; Waagner D, 2011, SOIL BIOL BIOCHEM, V43, P690, DOI 10.1016/j.soilbio.2010.11.028; WILKENS LA, 1976, J COMP PHYSIOL, V106, P69, DOI 10.1007/BF00606572; Xiang Y, 2010, NATURE, V468, P921, DOI 10.1038/nature09576 71 1 1 7 20 ELSEVIER GMBH, URBAN & FISCHER VERLAG JENA OFFICE JENA, P O BOX 100537, 07705 JENA, GERMANY 0031-4056 PEDOBIOLOGIA Pedobiologia 2017 61 33 41 10.1016/j.pedobi.2016.12.001 9 Ecology; Soil Science Environmental Sciences & Ecology; Agriculture ES4MF WOS:000399508700005 2018-11-22 J Chua, KJ; Lukaszewski, AW; Grant, DM; Sng, O Chua, Kristine J.; Lukaszewski, Aaron W.; Grant, DeMond M.; Sng, Oliver Human Life History Strategies: Calibrated to External or Internal Cues? EVOLUTIONARY PSYCHOLOGY English Article health; life history calibration; life history theory; predictive adaptive response; psychometric assessment TEENAGE PREGNANCY; PERCEIVED STRESS; HEALTH SURVEY; CHILDHOOD; ENVIRONMENTS; BEHAVIOR; RISK; EVOLUTION; ADULTHOOD; RESPONSES Human life history (LH) strategies are theoretically regulated by developmental exposure to environmental cues that ancestrally predicted LH-relevant world states (e.g., risk of morbidity-mortality). Recent modeling work has raised the question of whether the association of childhood family factors with adult LH variation arises via (i) direct sampling of external environmental cues during development and/or (ii) calibration of LH strategies to internal somatic condition (i.e.,health), which itself reflects exposure to variably favorable environments. The present research tested between these possibilities through three online surveys involving a total of over 26,000 participants. Participants completed questionnaires assessing components of self-reported environmental harshness (i.e., socioeconomic status, family neglect, and neighborhood crime), health status, and various LH-related psychological and behavioral phenotypes (e.g., mating strategies, paranoia, and anxiety), modeled as a unidimensional latent variable. Structural equation models suggested that exposure to harsh ecologies had direct effects on latent LH strategy as well as indirect effects on latent LH strategy mediated via health status. These findings suggest that human LH strategies may be calibrated to both external and internal cues and that such calibrational effects manifest in a wide range of psychological and behavioral phenotypes. [Chua, Kristine J.; Grant, DeMond M.] Oklahoma State Univ, Dept Psychol, Stillwater, OK 74078 USA; [Lukaszewski, Aaron W.] Calif State Univ Fullerton, Dept Psychol, 800 N State Coll Blvd, Fullerton, CA 92834 USA; [Sng, Oliver] Arizona State Univ, Dept Psychol, Tempe, AZ 85287 USA Lukaszewski, AW (reprint author), Calif State Univ Fullerton, Dept Psychol, 800 N State Coll Blvd, Fullerton, CA 92834 USA. alukaszewski@fullerton.edu ANDERSON JC, 1988, PSYCHOL BULL, V103, P411, DOI 10.1037//0033-2909.103.3.411; Antony MM, 1998, PSYCHOL ASSESSMENT, V10, P176, DOI 10.1037//1040-3590.10.2.176; Asparouhov T., 2010, TECHNICAL REPORT; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.1111/j.1467-8624.1991.tb01558.x; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; BENTLER PM, 1992, PSYCHOL BULL, V112, P400, DOI 10.1037/0033-2909.112.3.400; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Caeyers B., 2010, COMP CAPI PAPI RANDO; Carver CS, 2014, FRONT PSYCHOL, V5, DOI 10.3389/fpsyg.2014.01357; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; COHEN S, 1983, J HEALTH SOC BEHAV, V24, P385, DOI 10.2307/2136404; Coons SJ, 1998, MED CARE, V36, P428, DOI 10.1097/00005650-199803000-00018; Copping LT, 2014, EVOL PSYCHOL-US, V12, P200, DOI 10.1177/147470491401200115; Copping LT, 2013, HUM NATURE-INT BIOS, V24, P137, DOI 10.1007/s12110-013-9163-2; Copping LT, 2013, PERS INDIV DIFFER, V54, P908, DOI 10.1016/j.paid.2013.01.003; Dishion TJ, 2012, DEV PSYCHOL, V48, P703, DOI 10.1037/a0027304; Dunkel CS, 2011, PERS INDIV DIFFER, V51, P34, DOI 10.1016/j.paid.2011.03.005; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2014, DEV PSYCHOPATHOL, V26, P1, DOI 10.1017/S0954579413000849; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; European Values Study (EVS), 2015, EUR VAL STUD LONG DA; Ewart CK, 2002, HEALTH PSYCHOL, V21, P254, DOI 10.1037//0278-6133.21.3.254; Felitti VJ, 1998, AM J PREV MED, V14, P245, DOI 10.1016/S0749-3797(98)00017-8; Figueredo A. J., 2014, EVOLUTIONARY BEHAV S, V8, P148, DOI DOI 10.1037/H0099837; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2015, EVOL PSYCHOL-US, V13, P299, DOI 10.1177/147470491501300202; Frankenhuis WE, 2013, CURR DIR PSYCHOL SCI, V22, P407, DOI 10.1177/0963721413484324; Frederick S, 2002, J ECON LIT, V40, P351, DOI 10.1257/002205102320161311; Freeman D, 2005, BRIT J PSYCHIAT, V186, P427, DOI 10.1192/bjp.186.5.427; Fung TT, 2001, AM J CLIN NUTR, V73, P61; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Gluckman PD, 2005, TRENDS ECOL EVOL, V20, P527, DOI 10.1016/j.tree.2005.08.001; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Griskevicius V, 2012, J PERS SOC PSYCHOL, V102, P69, DOI 10.1037/a0024761; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Hampson SE, 2016, PERS INDIV DIFFER, V88, P120, DOI 10.1016/j.paid.2015.08.052; Hanson JL, 2016, SOC COGN AFFECT NEUR, V11, P405, DOI 10.1093/scan/nsv124; Hayduk LA, 2000, STRUCT EQU MODELING, V7, P111, DOI 10.1207/S15328007SEM0701_06; Hays R D, 1992, Qual Life Res, V1, P91, DOI 10.1007/BF00439716; Hays RD, 2001, ANN MED, V33, P350, DOI 10.3109/07853890109002089; Hill S. E., 2016, ADAPTIVE HUMAN BEHAV, V2, P1; Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118; Jackson JJ, 2007, EVOL HUM BEHAV, V28, P382, DOI 10.1016/j.evolhumbehav.2007.04.005; Joreskog K., 1993, TESTING STRUCTURAL E, P294; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; KIRSCHBAUM C, 1994, PSYCHONEUROENDOCRINO, V19, P313, DOI 10.1016/0306-4530(94)90013-2; Kline R. B., 2016, PRINCIPLES PRACTICE; Li CH, 2016, BEHAV RES METHODS, V48, P936, DOI 10.3758/s13428-015-0619-7; MacCallum RC, 1996, PSYCHOL METHODS, V1, P130, DOI 10.1037/1082-989X.1.2.130; McCullough ME, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2104; Mishra S., 2016, PERSONALITY SOCIAL P, V1, P23; Muthen B., 1997, ROBUST INFEREN UNPUB; Muthen L.K., 2015, MPLUS STAT ANAL LATE; Nettle D, 2014, EVOL HUM BEHAV, V35, P519, DOI 10.1016/j.evolhumbehav.2014.07.002; Nettle D, 2014, PEERJ, V2, DOI 10.7717/peerj.236; Nettle D, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1343; Norman RE, 2012, PLOS MED, V9, DOI 10.1371/journal.pmed.1001349; Petersen MB, 2015, PSYCHOL SCI, V26, P1681, DOI 10.1177/0956797615595622; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Repetti RL, 2002, PSYCHOL BULL, V128, P330, DOI 10.1037//0033-2909.128.2.330; Rickard IJ, 2014, PERSPECT PSYCHOL SCI, V9, P3, DOI 10.1177/1745691613513467; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Taylor SE, 2004, J PERS, V72, P1365, DOI 10.1111/j.1467-6494.2004.00300.x; WARE JE, 1992, MED CARE, V30, P473, DOI 10.1097/00005650-199206000-00002; Warttig SL, 2013, J HEALTH PSYCHOL, V18, P1617, DOI 10.1177/1359105313508346; YAMAGISHI T, 1994, MOTIV EMOTION, V18, P129, DOI 10.1007/BF02249397 67 3 3 1 17 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. JAN 2017 15 1 10.1177/1474704916677342 16 Psychology, Experimental Psychology EL5VC WOS:000394688300007 28164721 DOAJ Gold 2018-11-22 J Richardson, GB; Sanning, BK; Lai, MHC; Copping, LT; Hardesty, PH; Kruger, DJ Richardson, George B.; Sanning, Blair K.; Lai, Mark H. C.; Copping, Lee T.; Hardesty, Patrick H.; Kruger, Daniel J. On the Psychometric Study of Human Life History Strategies: State of the Science and Evidence of Two Independent Dimensions EVOLUTIONARY PSYCHOLOGY English Article life history theory; life history strategy; psychometrics; Super-K; mating competition; middle adulthood; structural equation modeling; bifactor model STRUCTURAL EQUATION MODELS; REPRODUCTIVE STRATEGY; LATENT-VARIABLES; SUBSTANCE USE; K-FACTOR; SOCIOECONOMIC-STATUS; ANTISOCIAL-BEHAVIOR; DARK TRIAD; TRADE-OFFS; PERSONALITY This article attends to recent discussions of validity in psychometric research on human life history strategy (LHS), provides a constructive critique of the extant literature, and describes strategies for improving construct validity. To place the psychometric study of human LHS on more solid ground, our review indicates that researchers should (a) use approaches to psychometric modeling that are consistent with their philosophies of measurement, (b) confirm the dimensionality of life history indicators, and (c) establish measurement invariance for at least a subset of indicators. Because we see confirming the dimensionality of life history indicators as the next step toward placing the psychometrics of human LHS on more solid ground, we use nationally representative data and structural equation modeling to test the structure of middle adult life history indicators. We found statistically independent mating competition and Super-K dimensions and the effects of parental harshness and childhood unpredictability on Super-K were consistent with past research. However, childhood socioeconomic status had a moderate positive effect on mating competition and no effect on Super-K, while unpredictability did not predict mating competition. We conclude that human LHS is more complex than previously suggested-there does not seem to be a single dimension of human LHS among Western adults and the effects of environmental components seem to vary between mating competition and Super-K. [Richardson, George B.; Sanning, Blair K.; Lai, Mark H. C.] Univ Cincinnati, Sch Human Serv, CRC 6305B, Cincinnati, OH 45221 USA; [Copping, Lee T.] Univ Durham, Durham, England; [Hardesty, Patrick H.] Univ Louisville, Louisville, KY 40292 USA; [Kruger, Daniel J.] Univ Michigan, Ann Arbor, MI 48109 USA Richardson, GB (reprint author), Univ Cincinnati, Sch Human Serv, CRC 6305B, Cincinnati, OH 45221 USA. george.richardson@uc.edu John D. and Catherine T. MacArthur Foundation Research Network on Successful Midlife Development; National Institute on Aging [P01-AG020166] The MIDUS 1 study (Midlife in the U.S.) was supported by the John D. and Catherine T. MacArthur Foundation Research Network on Successful Midlife Development. The MIDUS 2 research was supported by a grant from the National Institute on Aging (P01-AG020166) to conduct a longitudinal follow-up of the MIDUS 1 investigation. Adolf J, 2014, FRONT PSYCHOL, V5, DOI 10.3389/fpsyg.2014.00883; Agrawal A. A., 2010, EVOLUTION SINCE DARW, P243; Allport G. W., 1954, NATURE PREJUDICE; Barnes JC, 2014, J CRIM JUST, V42, P471, DOI 10.1016/j.jcrimjus.2014.08.003; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.1111/j.1467-8624.1991.tb01558.x; BOLLEN K, 1991, PSYCHOL BULL, V110, P305, DOI 10.1037/0033-2909.110.2.305; Bollen K. A., 1989, STRUCTURAL EQUATIONS; Borsboom D, 2003, PSYCHOL REV, V110, P203, DOI 10.1037/0033-295X.110.2.203; Borsboom D, 2006, PSYCHOL REV, V113, P433, DOI 10.1037/0033-295X.113.2.433; Borsboom D, 2006, PSYCHOMETRIKA, V71, P425, DOI 10.1007/s11336-006-1447-6; Borsboom D, 2013, ANNU REV CLIN PSYCHO, V9, P91, DOI 10.1146/annurev-clinpsy-050212-185608; Bridgman PW., 1927, LOGIC MODERN PHYS; Brown T. A, 2006, CONFIRMATORY FACTOR; BROWNE MW, 1992, SOCIOL METHOD RES, V21, P230, DOI 10.1177/0049124192021002005; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Byrne B.M., 2001, STRUCTURAL EQUATION; Cavazos-Rehg PA, 2011, AIDS BEHAV, V15, P869, DOI 10.1007/s10461-010-9669-0; Chen FF, 2006, MULTIVAR BEHAV RES, V41, P189, DOI 10.1207/s15327906mbr4102_5; Chisholm J. S., 1999, DEATH HOPE SEX STEPS; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; COHEN P, 1990, APPL PSYCH MEAS, V14, P183, DOI 10.1177/014662169001400207; Copping L. T., 2016, EVOLUTIONARY PSYCHOL; Copping LT, 2014, EVOL PSYCHOL-US, V12, P200, DOI 10.1177/147470491401200115; Curran PJ, 2014, MULTIVAR BEHAV RES, V49, P214, DOI 10.1080/00273171.2014.889594; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Dunkel CS, 2010, PERS INDIV DIFFER, V48, P681, DOI 10.1016/j.paid.2009.12.014; Edwards JR, 2011, ORGAN RES METHODS, V14, P370, DOI 10.1177/1094428110378369; Edwards JR, 2000, PSYCHOL METHODS, V5, P155, DOI 10.1037//1082-989X.5.2.155; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; ELLIS JL, 1993, PSYCHOMETRIKA, V58, P417, DOI 10.1007/BF02294649; Figueredo A.J., 2011, APPL EVOLUTIONARY PS, P201; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2015, EVOL PSYCHOL-US, V13, P299, DOI 10.1177/147470491501300202; Figueredo AJ, 2009, TWIN RES HUM GENET, V12, P555, DOI 10.1375/twin.12.6.555; Fisher H. E., 2011, APPL EVOLUTIONARY PS, P93; FISHER HE, 2009, WHY HIM WHY HER FIND; Fried EI, 2016, PSYCHOL ASSESSMENT; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Gibbons FX, 2012, DEV PSYCHOL, V48, P722, DOI 10.1037/a0026599; Giosan C., 2006, EVOLUTIONARY PSYCHOL, V4, P394, DOI DOI 10.1177/147470490600400131; Gladden P., 2009, J EVOLUTIONARY PSYCH, V7, P167, DOI DOI 10.1556/JEP.7.2009.2.5; Gladden PR, 2009, PERS INDIV DIFFER, V46, P270, DOI 10.1016/j.paid.2008.10.010; Glenn AL, 2009, INT J LAW PSYCHIAT, V32, P253, DOI 10.1016/j.ijlp.2009.04.002; Gorsuch R. L., 2005, J SCI FAC CHIANG MAI, V32, P11; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Hampson SE, 2016, PERS INDIV DIFFER, V88, P120, DOI 10.1016/j.paid.2015.08.052; Harms PD, 2016, PSYCHOL REV, V123, P84, DOI 10.1037/a0039860; Harris GT, 2007, J PERS DISORD, V21, P1, DOI 10.1521/pedi.2007.21.1.1; Hayduk L, 2007, PERS INDIV DIFFER, V42, P841, DOI 10.1016/j.paid.2006.10.001; Hayduk LA, 2012, BMC MED RES METHODOL, V12, DOI 10.1186/1471-2288-12-159; Hershberger S. L., 2005, ENCY STAT BEHAV SCI, P636; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Holtzman NS, 2014, PSYCHOL INQ, V25, P337, DOI 10.1080/1047840X.2014.915708; Holtzman Nicholas S, 2013, Evol Psychol, V11, P1101; Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118; Humensky JL, 2010, SUBST ABUSE TREAT PR, V5, DOI 10.1186/1747-597X-5-19; Jackson JJ, 2007, EVOL HUM BEHAV, V28, P382, DOI 10.1016/j.evolhumbehav.2007.04.005; Jokela M, 2010, BEHAV ECOL, V21, P906, DOI 10.1093/beheco/arq078; Jonas KG, 2016, PSYCHOL REV, V123, P90, DOI 10.1037/a0039542; Jonason PK, 2010, PSYCHOL ASSESSMENT, V22, P420, DOI 10.1037/a0019265; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Kline R. B., 2011, PRINCIPLES PRACTICE; Krueger RF, 2007, J ABNORM PSYCHOL, V116, P645, DOI 10.1037/0021-843X.116.4.645; Kruger D. J., 2015, HUMAN ETHOLOGY B, V30, P109; Lee N, 2013, J BUS RES, V66, P242, DOI 10.1016/j.jbusres.2012.08.004; Little R. J. A., 2002, STAT ANAL MISSING DA; Little TD, 1999, PSYCHOL METHODS, V4, P192, DOI 10.1037/1082-989X.4.2.192; MACDONALD K, 1995, J PERS, V63, P525, DOI 10.1111/j.1467-6494.1995.tb00505.x; Mace R, 2000, ANIM BEHAV, V59, P1, DOI 10.1006/anbe.1999.1287; MCDONALD RP, 1967, PSYCHOMETRIKA, V32, P77, DOI 10.1007/BF02289406; McGrath RE, 2005, J PERS ASSESS, V85, P112, DOI 10.1207/s15327752jpa8502_02; Menie MAWO, 2015, FRONT PSYCHOL, V6, DOI 10.3389/fpsyg.2015.00422; Mikulincer M., 2006, DYNAMICS ROMANTIC LO, P23; Muthen B., 1997, ROBUST INFEREN UNPUB; Muthen L. K, 1998, MPLUS USERS GUIDE; National Center for Education Statistics, 2012, IMPR MEAS SOC STAT N; Nedelec JL, 2014, EVOL HUM BEHAV, V35, P456, DOI 10.1016/j.evolhumbehav.2014.06.004; Olderbak S., 2012, J SOCIAL EVOLUTIONAR, V6, P111, DOI DOI 10.1037/H0099221; Olderbak S, 2014, PERS INDIV DIFFER, V58, P82, DOI 10.1016/j.paid.2013.10.012; Olderbak SG, 2010, PERS INDIV DIFFER, V49, P234, DOI 10.1016/j.paid.2010.03.041; Pannucci CJ, 2010, PLAST RECONSTR SURG, V126, P619, DOI 10.1097/PRS.0b013e3181de24bc; Penke L, 2011, AM PSYCHOL, V66, P916, DOI 10.1037/a0024626; Pettigrew TF, 1998, ANNU REV PSYCHOL, V49, P65, DOI 10.1146/annurev.psych.49.1.65; Piotrowska PJ, 2015, CLIN PSYCHOL REV, V35, P47, DOI 10.1016/j.cpr.2014.11.003; Rhemtulla M, 2015, MEAS-INTERDISCIP RES, V13, P59, DOI 10.1080/15366367.2015.1016343; Richardson G. B., 2014, EVOLUTIONARY PSYCHOL, V12; Richardson G. B., 2016, EVOLUTIONARY PSYCHOL, V2, P58, DOI DOI 10.1007/s40806-015-0034-4; Richardson GB, 2016, J DRUG ISSUES, V46, P102, DOI 10.1177/0022042615623986; Richardson GB, 2012, EVOL PSYCHOL-US, V10, P731, DOI 10.1177/147470491201000408; Robbins RN, 2004, J ADOLESCENT RES, V19, P428, DOI 10.1177/074355840328860; Ronel N, 2010, INT J OFFENDER THER, V54, P448, DOI 10.1177/0306624X09332314; Schafer J, 1997, ANAL INCOMPLETE MULT; SCHMID J, 1957, PSYCHOMETRIKA, V22, P53, DOI 10.1007/BF02289209; Sear R, 2015, POP STUD-J DEMOG, V69, pS39, DOI 10.1080/00324728.2014.982905; Sefcek JA, 2010, BIODEMOGR SOC BIOL, V56, P42, DOI 10.1080/19485561003709214; Sibly RM, 2007, P NATL ACAD SCI USA, V104, P17707, DOI 10.1073/pnas.0707725104; Sibly RM, 2009, AM NAT, V173, pE185, DOI 10.1086/598680; Spector PE, 2006, ORGAN RES METHODS, V9, P221, DOI 10.1177/1094428105284955; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Tops M, 2014, PHARMACOL BIOCHEM BE, V119, P39, DOI 10.1016/j.pbb.2013.07.015; Webster GD, 2007, J RES PERS, V41, P917, DOI 10.1016/j.jrp.2006.08.007; Yung YF, 1999, PSYCHOMETRIKA, V64, P113, DOI 10.1007/BF02294531; Zumbo B. D., 2007, LANGUAGE ASSESSMENT, V4, P223, DOI DOI 10.1080/15434300701375832 108 3 3 0 8 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. JAN 2017 15 1 10.1177/1474704916666840 24 Psychology, Experimental Psychology EL5VC WOS:000394688300002 28152627 DOAJ Gold, Green Published 2018-11-22 J Ryalls, JMW; Moore, B; Riegler, M; Bromfield, LM; Hall, AAG; Johnson, SN Ryalls, James M. W.; Moore, Ben D.; Riegler, Markus; Bromfield, Lisa M.; Hall, Aidan A. G.; Johnson, Scott N. Climate and atmospheric change impacts on sap-feeding herbivores: a mechanistic explanation based on functional groups of primary metabolites FUNCTIONAL ECOLOGY English Article alfalfa; amino acids; aphid; environmental change; herbivore; lucerne; resistance ACYRTHOSIPHON-PISUM HARRIS; ELEVATED CARBON-DIOXIDE; FACULTATIVE BACTERIAL ENDOSYMBIONTS; INSECT-PLANT INTERACTIONS; EUROPEAN LARGE RASPBERRY; AMINO-ACID; PEA APHID; SYMBIOTIC BACTERIA; NITROGEN-FIXATION; ANT INTERACTIONS 1. Global climate and atmospheric change are widely predicted to affect many ecosystems. Herbivorous insects account for 25% of the planet's species so their responses to environmental change are pivotal to how future ecosystems will function. Atmospheric change affects feeding guilds differently, however, with sap-feeding herbivores consistently identified as net beneficiaries of predicted increases in atmospheric carbon dioxide concentrations (eCO(2)). The mechanistic basis for these effects remains largely unknown, and our understanding about how multiple environmental changes, acting in tandem, shape plant-insect interactions is incomplete. 2. This study investigated how increases in temperature (eT) and eCO(2) affected the performance of the pea aphid (Acyrthosiphon pisum) via changes in amino acid concentrations in the model legume, lucerne (Medicago sativa). 3. Aphid performance increased under eCO(2) at ambient temperatures, whereby aphid fecundity, longevity, colonization success and r(m) increased by 42%, 30%, 25% and 21%, respectively. eT negated the positive effects of eCO(2) on both fecundity and r(m), however, and performance was similar to when aphids were reared at ambient CO2. 4. We identified discrete functional groups of amino acids that underpinned the effects of climate and atmospheric change, in addition to plant genotype, on aphid performance. Effects of eT and eCO(2) held true across five M. sativa genotypes, demonstrating the generality of their effects. 5. Combining this knowledge with amino acid profiles of existing cultivars raises the possibility of predicting future susceptibility to aphids and preventing outbreaks of a global pest. Moreover, environmentally induced changes in the nutritional ecology of aphids have the capacity to change life-history strategies of aphids and their direct and indirect interactions with many other organisms, including mutualists and antagonists. [Ryalls, James M. W.; Moore, Ben D.; Riegler, Markus; Bromfield, Lisa M.; Hall, Aidan A. G.; Johnson, Scott N.] Univ Western Sydney, Hawkesbury Inst Environm, Locked Bag 1797, Penrith, NSW 2751, Australia Ryalls, JMW (reprint author), Univ Western Sydney, Hawkesbury Inst Environm, Locked Bag 1797, Penrith, NSW 2751, Australia. J.Ryalls@westernsydney.edu.au Hall, Aidan/0000-0001-5508-035X Hawkesbury Institute for the Environment (Western Sydney University) This work was undertaken as part of a PhD research project funded by the Hawkesbury Institute for the Environment (Western Sydney University). Awmack C. S., 2000, Agricultural and Forest Entomology, V2, P57, DOI 10.1046/j.1461-9563.2000.00050.x; Awmack CS, 2002, ANNU REV ENTOMOL, V47, P817, DOI 10.1146/annurev.ento.47.091201.145300; Bale JS, 2002, GLOBAL CHANGE BIOL, V8, P1, DOI 10.1046/j.1365-2486.2002.00451.x; Barbosa P., 2012, INSECT OUTBREAKS REV; Barton CVM, 2010, AGR FOREST METEOROL, V150, P941, DOI 10.1016/j.agrformet.2010.03.001; BATES D, 2014, J STAT SOFTWAR UNPUB, V4, P4, DOI DOI 10.18637/JSS.V067.I01; Bell JR, 2015, J ANIM ECOL, V84, P21, DOI 10.1111/1365-2656.12282; Bezemer TM, 1998, OIKOS, V82, P212, DOI 10.2307/3546961; Bieri M, 1983, B SOC ENTOMOLOGIQUE, V56, P163; Birch ANE, 2011, J EXP BOT, V62, P3251, DOI 10.1093/jxb/err064; BLACKMAN RL, 2000, APHIDS WORLDS CROPS; Chandler SM, 2008, P R SOC B, V275, P565, DOI 10.1098/rspb.2007.1478; Coviella CE, 1999, CONSERV BIOL, V13, P700, DOI 10.1046/j.1523-1739.1999.98267.x; CSIRO, 2007, CLIM CHANG AUSTR TEC; CUSHMAN JH, 1991, OIKOS, V61, P138, DOI 10.2307/3545416; Diaz S, 1998, OECOLOGIA, V117, P177, DOI 10.1007/s004420050646; Dixon A F G., 2000, INSECT PREDATOR PREY; DIXON AFG, 1998, APHID ECOLOGY; Douglas AE, 2003, ADV INSECT PHYSIOL, V31, P73, DOI 10.1016/S0065-2806(03)31002-1; Douglas AE, 1998, ANNU REV ENTOMOL, V43, P17, DOI 10.1146/annurev.ento.43.1.17; Douglas AE, 2013, J CHEM ECOL, V39, P952, DOI 10.1007/s10886-013-0308-x; Dwivedi S, 2013, ADV AGRON, V120, P1, DOI 10.1016/B978-0-12-407686-0.00001-4; Facey SL, 2014, CURR OPIN INSECT SCI, V5, P66, DOI 10.1016/j.cois.2014.09.015; Feldhaar H, 2011, ECOL ENTOMOL, V36, P533, DOI 10.1111/j.1365-2311.2011.01318.x; Field C. B., 2014, CLIMATE CHANGE 201 A, P32; Fritz RS, 1992, PLANT RESISTANCE HER; Gao F, 2008, ENVIRON ENTOMOL, V37, P29, DOI 10.1603/0046-225X(2008)37[29:IEOECA]2.0.CO;2; Golawska S, 2008, ENTOMOL EXP APPL, V128, P147, DOI 10.1111/j.1570-7458.2008.00709.x; Golawska S, 2006, J INSECT PHYSIOL, V52, P737, DOI 10.1016/j.jinsphys.2006.04.001; Golawska S, 2014, BIOCHEM SYST ECOL, V55, P137, DOI 10.1016/j.bse.2014.03.010; Golawska S, 2012, ACTA BIOL CRACOV BOT, V54, P39, DOI 10.2478/v10182-012-0022-y; Gregory PJ, 2009, J EXP BOT, V60, P2827, DOI 10.1093/jxb/erp080; Guo HJ, 2013, GLOBAL CHANGE BIOL, V19, P3210, DOI 10.1111/gcb.12260; Hancock RD, 2015, J EXP BOT, V66, P421, DOI 10.1093/jxb/eru503; Hentley W. T., 2016, GLOBAL CLIMATE CHANG; Hentley WT, 2014, AGR FOREST ENTOMOL, V16, P350, DOI 10.1111/afe.12065; Hughes L, 2001, ENTOMOL EXP APPL, V99, P87, DOI 10.1023/A:1018921829430; Johnson SN, 2014, ANN APPL BIOL, V165, P62, DOI 10.1111/aab.12115; Johnson SN, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.00489; Johnson SN, 2013, J ANIM ECOL, V82, P1021, DOI 10.1111/1365-2656.12070; Johnson SN, 2010, OECOLOGIA, V162, P209, DOI 10.1007/s00442-009-1428-4; Karley AJ, 2002, J EXP BIOL, V205, P3009; KING RW, 1974, PLANT PHYSIOL, V53, P96, DOI 10.1104/pp.53.1.96; Kuokkanen K, 2004, GLOBAL CHANGE BIOL, V10, P1504, DOI 10.1111/j.1365-2486.2004.00820.x; LAMB RJ, 1988, MEM ENTOMOL SOC CAN, P49; MACKAY PA, 1993, OECOLOGIA, V94, P330, DOI 10.1007/BF00317106; Martin P, 2011, J APPL ENTOMOL, V135, P237, DOI 10.1111/j.1439-0418.2010.01544.x; McMenemy LS, 2009, AGR FOREST ENTOMOL, V11, P61, DOI 10.1111/j.1461-9563.2008.00409.x; Mitchell C, 2010, BIOCONTROL, V55, P321, DOI 10.1007/s10526-009-9257-2; Montllor CB, 2002, ECOL ENTOMOL, V27, P189, DOI 10.1046/j.1365-2311.2002.00393.x; Morris J. G., 1991, NUTR ENV METABOLIC A, P231; Murray TJ, 2013, GLOBAL CHANGE BIOL, V19, P1407, DOI 10.1111/gcb.12142; Murray TJ, 2013, OECOLOGIA, V171, P1025, DOI 10.1007/s00442-012-2467-9; Ness J, 2010, ANT ECOLOGY, P97; Newman J. A., 2011, CLIMATE CHANGE BIOL, P50; Newman JA, 2004, GLOBAL CHANGE BIOL, V10, P5, DOI 10.1080/13527250410001677919; Newman JA, 2003, J ANIM ECOL, V72, P556, DOI 10.1046/j.1365-2656.2003.00725.x; Pinheiro J., 2014, R PACKAGE VERSION, V3, P1; Polis GA, 1998, NATURE, V395, P744, DOI 10.1038/27323; Price PW, 2011, INSECT ECOLOGY BEHAV; RIENS B, 1991, PLANT PHYSIOL, V97, P227, DOI 10.1104/pp.97.1.227; Robinson EA, 2012, NEW PHYTOL, V194, P321, DOI 10.1111/j.1469-8137.2012.04074.x; Rogers A, 2009, PLANT PHYSIOL, V151, P1009, DOI 10.1104/pp.109.144113; Ryalls J. M. W., 2016, DRYAD DIGITAL REPOSI; Ryalls JMW, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.00345; Ryalls JMW, 2015, J EXP BOT, V66, P613, DOI 10.1093/jxb/eru439; Ryalls JMW, 2013, FRONT PLANT SCI, V4, DOI 10.3389/fpls.2013.00445; Ryalls JMW, 2013, AGR FOREST ENTOMOL, V15, P335, DOI 10.1111/afe.12024; Ryan GD, 2015, ECOL ENTOMOL, V40, P247, DOI 10.1111/een.12181; Ryan GD, 2014, ECOL ENTOMOL, V39, P309, DOI 10.1111/een.12101; Scherber C, 2013, ECOL EVOL, V3, P1449, DOI 10.1002/ece3.564; Seedmark, 2015, LUC ALF VAR; Selvaraj S., 2013, International Journal of Biodiversity and Conservation, V5, P845; Simpson SJ, 2015, ANNU REV ENTOMOL, V60, P293, DOI 10.1146/annurev-ento-010814-020917; Small E., 2011, ALFALFA RELATIVES EV; Stadler B, 2005, ANNU REV ECOL EVOL S, V36, P345, DOI 10.1146/annurev.ecolsys.36.091704.175531; Steffen W., 2009, AUSTR BIODIVERSITY; Steinbauer MJ, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0077990; Stiling P, 2007, GLOBAL CHANGE BIOL, V13, P1823, DOI 10.1111/j.1365-2486.2007.01392.x; Styrsky JD, 2007, P R SOC B, V274, P151, DOI 10.1098/rspb.2006.3701; Sun YC, 2009, J APPL ENTOMOL, V133, P189, DOI 10.1111/j.1439-0418.2008.01341.x; Sun YC, 2011, J ASIA-PAC ENTOMOL, V14, P217, DOI 10.1016/j.aspen.2010.08.001; Tremblay Antoine, 2015, LMERCONVENIENCEFUNCT; VanEmden HF, 2007, APHIDS AS CROP PESTS, P1; WAY MJ, 1963, ANNU REV ENTOMOL, V8, P307, DOI 10.1146/annurev.en.08.010163.001515; Whittington HR, 2013, FUNCT PLANT BIOL, V40, P1147, DOI 10.1071/FP12345; Wilkinson TL, 2007, APPL ENVIRON MICROB, V73, P1362, DOI 10.1128/AEM.01211-06; WINTER H, 1992, PLANT PHYSIOL, V99, P996, DOI 10.1104/pp.99.3.996; Woodring J, 2004, PHYSIOL ENTOMOL, V29, P311, DOI 10.1111/j.0307-6962.2004.00386.x; WYATT IJ, 1977, J APPL ECOL, V14, P757, DOI 10.2307/2402807; Zahran HH, 1999, MICROBIOL MOL BIOL R, V63, P968; Zeng YY, 2012, SCI CHINA LIFE SCI, V55, P920, DOI 10.1007/s11427-012-4378-8; Zvereva EL, 2006, GLOBAL CHANGE BIOL, V12, P27, DOI 10.1111/j.1365-2486.2005.01086.x 93 7 7 8 32 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. JAN 2017 31 1 161 171 10.1111/1365-2435.12715 11 Ecology Environmental Sciences & Ecology EL1IB WOS:000394372700018 2018-11-22 J Woronik, A; Wheat, CW Woronik, A.; Wheat, C. W. Advances in finding Alba: the locus affecting life history and color polymorphism in a Colias butterfly JOURNAL OF EVOLUTIONARY BIOLOGY English Article Alba; Colias; colour polymorphism; life-history polymorphism; pooled sequencing INTEGRATIVE GENOMICS VIEWER; RESOURCE-ALLOCATION; PIERID BUTTERFLIES; CONSERVED SYNTENY; MANDUCA-SEXTA; BOMBYX-MORI; BAC-FISH; CD-HIT; EVOLUTION; MIMICRY Although alternative life-history strategies exist within many populations, very little is known about their genetic basis and mechanistic insight into these traits could greatly advance the understanding of eco-evolutionary dynamics. Many species of butterfly within the genus Colias exhibit a sex-limited wing colour polymorphism, called Alba, which is correlated with an alternative life-history strategy. Here, we have taken the first steps in localizing the region carrying Alba in Colias croceus, a species with no genomic resources, by generating whole genome sequence of a single Alba mother and two sequencing pools, one for her Alba and another for her orange, offspring. These data were used in a bulk-segregant analysis wherein SNPs fulfilling the Mendelian inheritance expectations of Alba were identified. Then, using the conserved synteny in Lepidoptera, the Alba locus was assigned to chromosome 15 in Bombyx mori. We then identified candidate regions within the chromosome by investigating the distribution of Alba SNPs along the chromosome and the difference in nucleotide diversity in exons between the two pools. A region spanning similar to 5.7 Mbp at the 50 end of the chromosome was identified as likely to contain the Alba locus. These insights set the stage for more detailed genomic scans and mapping of the Alba phenotype, and demonstrate an efficient use of genomic resources in a novel species. [Woronik, A.; Wheat, C. W.] Stockholm Univ, Dept Zool, Stockholm, Sweden Woronik, A (reprint author), Stockholm Univ, Populat Genet Div, Dept Zool, Svante Arrheniusvag 18 B, S-10691 Stockholm, Sweden. alyssa.woronik@zoologi.su.se Woronik, Alyssa/0000-0003-3017-6069 Academy of Finland [131155]; Swedish Research Council [20123715]; Knut and Alice Wallenberg Foundation [2012.0058] We would like to thank Ramprasad Neethiraj and Wouter van der Bijl for help with programming, Constanti Stefanescu for sharing his knowledge regarding the ecology of C. croceus in Catalonia and Christer Wiklund for sharing his knowledge of butterfly rearing. We would also like to thank four anonymous reviewers and Dr. Nicola Nadeau for taking the time to review our manuscript. Also we thank Niklas Janz and Ruud Schilder for helpful comments on the manuscript. Finally, we would like to thank the Academy of Finland 131155, the Swedish Research Council 20123715, and the Knut and Alice Wallenberg Foundation 2012.0058 for funding. The authors declare no conflict of interest. Ahola V, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms5737; Aljanabi SM, 1997, NUCLEIC ACIDS RES, V25, P4692, DOI 10.1093/nar/25.22.4692; Andres JA, 1999, HEREDITY, V82, P328, DOI 10.1038/sj.hdy.6884930; Beldade P, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000366; BOGGS CL, 1981, AM NAT, V117, P692, DOI 10.1086/283753; BOGGS CL, 1981, OECOLOGIA, V50, P320, DOI 10.1007/BF00344970; Braendle C, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P3; Charlesworth D, 2016, EVOL APPL, V9, P74, DOI 10.1111/eva.12291; Coulson T, 2006, EVOL ECOL RES, V8, P1155; DESCIMON H, 1971, BIOCHIMIE, V53, P407, DOI 10.1016/S0300-9084(71)80108-6; DESCIMON H, 1989, J INSECT PHYSIOL, V35, P881, DOI 10.1016/0022-1910(89)90104-2; Duan J., 2009, NUCLEIC ACIDS RES, V38, pD453; Edwards D, 2012, BMC BIOINFORMATICS, V13, DOI 10.1186/1471-2105-13-167; Flatt T, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P1; Ford E. B., 1948, Entomologist London, V81, P209; FORD EB, 1945, BIOL REV, V20, P73, DOI 10.1111/j.1469-185X.1945.tb00315.x; Fu LM, 2012, BIOINFORMATICS, V28, P3150, DOI 10.1093/bioinformatics/bts565; Gallant JR, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms5817; Gaunt MW, 2002, MOL BIOL EVOL, V19, P748, DOI 10.1093/oxfordjournals.molbev.a004133; Gerould JH, 1923, GENETICS, V8, P495; Gerould JH, 1911, AM NAT, V45, P257, DOI 10.1086/279210; GRAHAM SM, 1980, P NATL ACAD SCI-BIOL, V77, P3615, DOI 10.1073/pnas.77.6.3615; Hoekstra HE, 2004, EVOLUTION, V58, P1329; Hohenlohe PA, 2011, MOL ECOL RESOUR, V11, P117, DOI 10.1111/j.1755-0998.2010.02967.x; Hohenlohe PA, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1000862; Hovanitz W., 1950, WASMANN J BIOL, V8, P1; INGRAM VM, 1957, NATURE, V180, P326, DOI 10.1038/180326a0; Jones FC, 2012, NATURE, V484, P55, DOI 10.1038/nature10944; Joron M, 2011, NATURE, V477, P203, DOI 10.1038/nature10341; Kersey PJ, 2014, NUCLEIC ACIDS RES, V42, pD546, DOI 10.1093/nar/gkt979; Klepsatel P, 2011, MOL ECOL, V20, P1795, DOI 10.1111/j.1365-294X.2011.05078.x; Kofler R, 2011, BIOINFORMATICS, V27, P3435, DOI 10.1093/bioinformatics/btr589; Kofler R, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0015925; Kronforst MR, 2015, GENETICS, V200, P1, DOI 10.1534/genetics.114.172387; Kunte K, 2014, NATURE, V507, P229, DOI 10.1038/nature13112; Lamichhaney S, 2015, NAT GENET, V48, P84, DOI DOI 10.1038/NG.3430); Lamichhaney S, 2012, P NATL ACAD SCI USA, V109, P19345, DOI 10.1073/pnas.1216128109; LANK DB, 1995, NATURE, V378, P59, DOI 10.1038/378059a0; Le Rouzic A, 2015, AM NAT, V185, pE182, DOI 10.1086/680982; Li H, 2009, BIOINFORMATICS, V25, P2078, DOI 10.1093/bioinformatics/btp352; Li WZ, 2006, BIOINFORMATICS, V22, P1658, DOI 10.1093/bioinformatics/btl158; Limeri LB, 2016, BIOL J LINN SOC, V117, P716, DOI 10.1111/bij.12697; Lowry DB, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000500; Marec F., 2009, MOL BIOL GENETICS LE, P49; Martin A, 2014, DEV BIOL, V395, P367, DOI 10.1016/j.ydbio.2014.08.031; Nielsen MG, 2000, FUNCT ECOL, V14, P718, DOI 10.1046/j.1365-2435.2000.00472.x; Nielsen MG, 1998, FUNCT ECOL, V12, P149, DOI 10.1046/j.1365-2435.1998.00167.x; Nishikawa H, 2015, NAT GENET, V47, P405, DOI 10.1038/ng.3241; Phelan P, 2001, BIOESSAYS, V23, P388, DOI 10.1002/bies.1057; Pringle EG, 2007, GENETICS, V177, P417, DOI 10.1514/genetics.107.073122; R Core Team, 2015, R LANG ENV STAT COMP; Reed RD, 2011, SCIENCE, V333, P1137, DOI 10.1126/science.1208227; REMINGTON CL, 1954, ADV GENET, V6, P403, DOI 10.1016/S0065-2660(08)60133-9; Robinson JT, 2011, NAT BIOTECHNOL, V29, P24, DOI 10.1038/nbt.1754; Rowe HC, 2011, MOL ECOL, V20, P3499, DOI 10.1111/j.1365-294X.2011.05197.x; Saccheri I, 2006, TRENDS ECOL EVOL, V21, P341, DOI 10.1016/j.tree.2006.03.018; Sahara K, 2007, GENOME, V50, P1061, DOI 10.1139/G07-082; Schlotterer C, 2014, NAT REV GENET, V15, P749, DOI 10.1038/nrg3803; Schwander T, 2014, CURR BIOL, V24, pR288, DOI 10.1016/j.cub.2014.01.056; Sedlazeck FJ, 2013, BIOINFORMATICS, V29, P2790, DOI 10.1093/bioinformatics/btt468; Stearns S., 1992, EVOLUTION LIFE HIST; Thompson MJ, 2014, HEREDITY, V113, P1, DOI 10.1038/hdy.2014.20; Thorvaldsdottir H, 2013, BRIEF BIOINFORM, V14, P178, DOI 10.1093/bib/bbs017; Timmermans M.J.T.N., 2014, P R SOC B, V281, P1; Tsubaki Y, 2003, POPUL ECOL, V45, P263, DOI 10.1007/s10144-003-0162-8; van't Hof AE, 2011, SCIENCE, V332, P958, DOI 10.1126/science.1203043; WATT WB, 1973, EVOLUTION, V27, P537, DOI 10.1111/j.1558-5646.1973.tb00703.x; Wheat CW, 2013, SYST BIOL, V62, P93, DOI 10.1093/sysbio/sys074; Xia QY, 2008, INSECT BIOCHEM MOLEC, V38, P1036, DOI 10.1016/j.ibmb.2008.11.004; Yasukochi Y, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0007465 70 1 1 2 17 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. JAN 2017 30 1 26 39 10.1111/jeb.12967 14 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity EL8ED WOS:000394852200003 27541292 2018-11-22 J Gundogdu, S; Baylan, M Gundogdu, Sedat; Baylan, Makbule Age at maturity of some fish species distributed in Turkish marine waters (Actinopterygii and Elasmobranchii) ZOOLOGY IN THE MIDDLE EAST English Article Marine fishes; first maturity; age at maturity; maximum age; Mediterranean Sea LIFE-HISTORY STRATEGIES; GROWTH; SIZE; TEMPERATURE We collected data on the age at maturity (t(m)) and maximum reported age (t(max)) for 153 stocks of marine fishes in Turkey, belonging to 59 species, 24 families and 2 classes (Actinopterygii and Elasmobranchii). Among Actinopterygii t(m) had an average of 1.8 years (1 to 4 years) while among Elasmobranchii it had an average of 11.9 years (2 to 11.9 years). Overall, t(max) ranged between two years (for Sarda sarda) and 34 years (for Squalus acanthias). Mean t(max) was found to be 6.24 years for Actinopterygii and 10.11 years for Elasmobranchii. t(m) showed a positive linear correlation with t(max) for both Actinopterygii and Elasmobranchii. Mean t(m)/t(max) did not differ significantly with sex within the Actinopterygii and Elasmobranchii. The ratio t(m)/t(max) was found to be significantly lower for Actinopterygii than for Elasmobranchii. [Gundogdu, Sedat; Baylan, Makbule] Cukurova Univ, Fac Fisheries, Dept Basic Sci, Adana, Turkey Gundogdu, S (reprint author), Cukurova Univ, Fac Fisheries, Dept Basic Sci, Adana, Turkey. sgundogdu@cu.edu.tr Gundogdu, Sedat/B-4475-2018; BAYLAN, MAKBULE/A-6724-2018 Gundogdu, Sedat/0000-0002-4415-2837; BAYLAN, MAKBULE/0000-0003-0549-0662 Archibald C.P., 1983, North American Journal of Fisheries Management, V3, P283, DOI 10.1577/1548-8659(1983)3<283:ROSHAD>2.0.CO;2; Barot S, 2004, ECOL APPL, V14, P1257, DOI 10.1890/03-5066; Bilecenoglu M, 2014, TURK J ZOOL, V38, P901, DOI 10.3906/zoo-1405-60; Binohlan C., 1998, FISHBASE 98 CONCEPTS, P176; Chen PM, 2006, FISH RES, V78, P374, DOI 10.1016/j.fishres.2005.01.007; Coll M, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011842; Drazen JC, 2012, DEEP-SEA RES PT I, V61, P34, DOI 10.1016/j.dsr.2011.11.002; Dulvy NK, 2014, ELIFE, V3, DOI 10.7554/eLife.00590; Fogarty M. J., 2009, RECRUITMENT MARINE F; Frisk MG, 2010, CRC MAR BIOL SER, P283; Froese R, 2016, FISHBASE WORLD WIDE; Gislason H, 2010, FISH FISH, V11, P149, DOI 10.1111/j.1467-2979.2009.00350.x; Goldman KJ, 2012, CRC MAR BIOL SER, P423; Gundogdu S., 2014, Journal of FisheriesSciences.com, V8, P310; He JX, 2001, ECOLOGY, V82, P784, DOI 10.1890/0012-9658(2001)082[0784:AASAFR]2.0.CO;2; Jonsson B, 2012, CAN J FISH AQUAT SCI, V69, P1817, DOI 10.1139/f2012-108; Kelly CJ, 1999, ICES J MAR SCI, V56, P61, DOI 10.1006/jmsc.1998.0426; Kjesbu Olav S., 2009, P293, DOI 10.1002/9781444312133.ch8; Neuheimer AB, 2012, GLOBAL CHANGE BIOL, V18, P1812, DOI 10.1111/j.1365-2486.2012.02673.x; Pavlov Dimitri A., 2009, P48, DOI 10.1002/9781444312133.ch2; Rochet MJ, 2000, ICES J MAR SCI, V57, P228, DOI 10.1006/jmsc.2000.0641; Roff D., 1992, EVOLUTION LIFE HIST, V48; Sokal R. R., 1981, BIOMETRY PRINCIPLES; Tsikliras AC, 2015, MEDITERR MAR SCI, V16, P5, DOI 10.12681/mms.659; Tsikliras AC, 2014, REV FISH BIOL FISHER, V24, P219, DOI 10.1007/s11160-013-9330-x; Tsikliras AC, 2013, ACTA ICHTHYOL PISCAT, V43, P1, DOI 10.3750/AIP2013.43.1.01; Tsikliras AC, 2010, REV FISH BIOL FISHER, V20, P499, DOI 10.1007/s11160-010-9158-6 27 0 0 1 2 TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND 0939-7140 2326-2680 ZOOL MIDDLE EAST Zool. Middle East 2017 63 1 24 32 10.1080/09397140.2017.1292633 9 Zoology Zoology EO4ON WOS:000396674300004 2018-11-22 J Shryock, DF; Havrilla, CA; DeFalco, LA; Esque, TC; Custer, NA; Wood, TE Shryock, Daniel F.; Havrilla, Caroline A.; DeFalco, Lesley A.; Esque, Todd C.; Custer, Nathan A.; Wood, Troy E. Landscape genetic approaches to guide native plant restoration in the Mojave Desert ECOLOGICAL APPLICATIONS English Article drylands; ecological restoration; genome scan; landscape genetics; local adaptation; Mojave Desert; multivariate analysis; seed provenance strategy; seed transfer zones; spatial genetics CARBON-ISOTOPE DISCRIMINATION; LOCAL ADAPTATION; ECOLOGICAL RESTORATION; ENCELIA-FARINOSA; CLIMATE-CHANGE; GENOME-SCAN; CONCEPTUAL ISSUES; TREE POPULATIONS; NORTH-AMERICA; TRADE-OFFS Restoring dryland ecosystems is a global challenge due to synergistic drivers of disturbance coupled with unpredictable environmental conditions. Dryland plant species have evolved complex life-history strategies to cope with fluctuating resources and climatic extremes. Although rarely quantified, local adaptation is likely widespread among these species and potentially influences restoration outcomes. The common practice of reintroducing propagules to restore dryland ecosystems, often across large spatial scales, compels evaluation of adaptive divergence within these species. Such evaluations are critical to understanding the consequences of large-scale manipulation of gene flow and to predicting success of restoration efforts. However, genetic information for species of interest can be difficult and expensive to obtain through traditional common garden experiments. Recent advances in landscape genetics offer marker-based approaches for identifying environmental drivers of adaptive genetic variability in non-model species, but tools are still needed to link these approaches with practical aspects of ecological restoration. Here, we combine spatially explicit landscape genetics models with flexible visualization tools to demonstrate how cost-effective evaluations of adaptive genetic divergence can facilitate implementation of different seed sourcing strategies in ecological restoration. We apply these methods to Amplified Fragment Length Polymorphism (AFLP) markers genotyped in two Mojave Desert shrub species of high restoration importance: the long-lived, wind-pollinated gymnosperm Ephedra nevadensis, and the short-lived, insect-pollinated angiosperm Sphaeralcea ambigua. Mean annual temperature was identified as an important driver of adaptive genetic divergence for both species. Ephedra showed stronger adaptive divergence with respect to precipitation variability, while temperature variability and precipitation averages explained a larger fraction of adaptive divergence in Sphaeralcea. We describe multivariate statistical approaches for interpolating spatial patterns of adaptive divergence while accounting for potential bias due to neutral genetic structure. Through a spatial bootstrapping procedure, we also visualize patterns in the magnitude of model uncertainty. Finally, we introduce an interactive, distance-based mapping approach that explicitly links marker-based models of adaptive divergence with local or admixture seed sourcing strategies, promoting effective native plant restoration. [Shryock, Daniel F.; DeFalco, Lesley A.; Esque, Todd C.; Custer, Nathan A.] US Geol Survey, Western Ecol Res Ctr, 160 North Stephanie St, Henderson, NV 89074 USA; [Havrilla, Caroline A.] Univ Colorado, Boulder, CO 80309 USA; [Wood, Troy E.] US Geol Survey, Colorado Plateau Res Stn, Southwest Biol Sci Ctr, POB 5614, Flagstaff, AZ 86011 USA Shryock, DF (reprint author), US Geol Survey, Western Ecol Res Ctr, 160 North Stephanie St, Henderson, NV 89074 USA. dshryock@usgs.gov Shryock, Daniel/0000-0003-0330-9815; Havrilla, Caroline A./0000-0003-3913-0980 U.S. Bureau of Land Management [BLM], Las Vegas Field Office, Nevada; BLM, California State Office; BLM, Arizona Strip Field Office, Arizona; National Park Service [NPS], Grand Canyon-Parashant National Monument; BLM, Colorado Plateau Native Plant Program; U.S. Geological Survey, Ecosystem Mission Area; United States Department of the Interior, BLM Native Plant Materials Program We thank F. Edwards (U.S. Bureau of Land Management [BLM], Las Vegas Field Office, Nevada), C. Lund (BLM, California State Office), K. Harcksen (BLM, Arizona Strip Field Office, Arizona), J. Fox (National Park Service [NPS], Grand Canyon-Parashant National Monument), and A. Pilmanis (BLM, Colorado Plateau Native Plant Program) for funding support. Additional funding was provided by the U.S. Geological Survey, Ecosystem Mission Area, and the United States Department of the Interior, BLM Native Plant Materials Program. We thank Amy Vandergast for reviewing an earlier version of this work. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. The experiments described here comply with all rules and regulations pertaining to the land and resources where they were performed. Abella SR, 2012, RESTOR ECOL, V20, P781, DOI 10.1111/j.1526-100X.2011.00848.x; Alberto FJ, 2013, GLOBAL CHANGE BIOL, V19, P1645, DOI 10.1111/gcb.12181; Anderson MJ, 2001, AUSTRAL ECOL, V26, P32, DOI 10.1111/j.1442-9993.2001.01070.pp.x; Barnes M., 2009, THESIS; BEATLEY JC, 1974, ECOLOGY, V55, P856, DOI 10.2307/1934421; BENJAMINI Y, 1995, J ROY STAT SOC B MET, V57, P289; Boehm JT, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0116219; Bower AD, 2014, ECOL APPL, V24, P913, DOI 10.1890/13-0285.1; Bragg JG, 2015, NEW PHYTOL, V207, P953, DOI 10.1111/nph.13410; Breed MF, 2013, CONSERV GENET, V14, P1, DOI 10.1007/s10592-012-0425-z; Broadhurst LM, 2008, EVOL APPL, V1, P587, DOI 10.1111/j.1752-4571.2008.00045.x; Bryant M, 2012, AM J BOT, V99, P1647, DOI 10.3732/ajb.1200099; Caballero A, 2013, BMC GENOMICS, V14, DOI 10.1186/1471-2164-14-528; Carvajal DE, 2015, AM J BOT, V102, P1552, DOI 10.3732/ajb.1500097; Chesson P, 2004, OECOLOGIA, V141, P236, DOI 10.1007/s00442-004-1551-1; CHOUHDRY A S, 1984, Journal of Science of the Hiroshima University Series B Division 2 (Botany), V19, P57; Coop G, 2010, GENETICS, V185, P1411, DOI 10.1534/genetics.110.114819; Daly C, 2008, INT J CLIMATOL, V28, P2031, DOI 10.1002/joc.1688; DANTONIO CM, 1992, ANNU REV ECOL SYST, V23, P63, DOI 10.1146/annurev.es.23.110192.000431; De Kort H, 2014, MOL ECOL, V23, P4709, DOI 10.1111/mec.12813; De Mita S, 2013, MOL ECOL, V22, P1383, DOI 10.1111/mec.12182; de Villemereuil P, 2014, MOL ECOL, V23, P2006, DOI 10.1111/mec.12705; DeFalco LA, 2009, J ARID ENVIRON, V73, P885, DOI 10.1016/j.jaridenv.2009.04.017; DeFalco LA, 2012, RESTOR ECOL, V20, P85, DOI 10.1111/j.1526-100X.2010.00739.x; Doledec S, 2000, ECOLOGY, V81, P2914, DOI 10.1890/0012-9658(2000)081[2914:NSICAA]2.0.CO;2; Drake KK, 2015, J WILDLIFE MANAGE, V79, P618, DOI 10.1002/jwmg.874; Dray S, 2007, J STAT SOFTW, V22, P1; Dufresne F, 2014, MOL ECOL, V23, P40, DOI 10.1111/mec.12581; EHLERINGER JR, 1988, OECOLOGIA, V76, P562, DOI 10.1007/BF00397870; Excoffier L, 2009, HEREDITY, V103, P285, DOI 10.1038/hdy.2009.74; Feder JL, 2010, EVOLUTION, V64, P1729, DOI 10.1111/j.1558-5646.2010.00943.x; Ferrier S, 2002, BIODIVERS CONSERV, V11, P2309, DOI 10.1023/A:1021374009951; Ferrier S, 2007, DIVERS DISTRIB, V13, P252, DOI 10.1111/j.1472-4642.2007.00341.x; Fitzpatrick MC, 2015, ECOL LETT, V18, P1, DOI 10.1111/ele.12376; Fitzpatrick MC, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1201; Foll M, 2008, GENETICS, V180, P977, DOI 10.1534/genetics.108.092221; Forester BR, 2016, MOL ECOL, V25, P104, DOI 10.1111/mec.13476; Frichot E, 2015, METHODS ECOL EVOL, V6, P925, DOI 10.1111/2041-210X.12382; Frichot E, 2014, GENETICS, V196, P973, DOI 10.1534/genetics.113.160572; Frichot E, 2013, MOL BIOL EVOL, V30, P1687, DOI 10.1093/molbev/mst063; Funk WC, 2012, TRENDS ECOL EVOL, V27, P489, DOI 10.1016/j.tree.2012.05.012; Gibson AC, 1998, BIOSCIENCE, V48, P911, DOI 10.2307/1313295; Gienapp P, 2008, MOL ECOL, V17, P167, DOI 10.1111/j.1365-294X.2007.03413.x; Gompert Z, 2014, ECOL LETT, V17, P369, DOI 10.1111/ele.12238; Haidet M, 2015, NAT AREA J, V35, P165, DOI 10.3375/043.035.0118; Hancock AM, 2011, SCIENCE, V334, P83, DOI 10.1126/science.1209244; Hao GY, 2013, NEW PHYTOL, V197, P970, DOI 10.1111/nph.12051; Hargrove WW, 2004, ENVIRON MANAGE, V34, pS39, DOI 10.1007/s00267-003-1084-0; Hereford J, 2009, AM NAT, V173, P579, DOI 10.1086/597611; Hereford R, 2006, J ARID ENVIRON, V67, P13, DOI 10.1016/j.jaridenv.2006.09.019; Herrera CM, 2008, MOL ECOL, V17, P5378, DOI 10.1111/j.1365-294X.2008.04004.x; Herrera CM, 2015, AM J BOT, V102, P225, DOI 10.3732/ajb.1400437; Hollander JL, 2010, EVOL ECOL, V24, P333, DOI 10.1007/s10682-009-9309-1; Housman DC, 2002, AM J BOT, V89, P1303, DOI 10.3732/ajb.89.8.1303; Hufford KM, 2003, TRENDS ECOL EVOL, V18, P147, DOI 10.1016/S0169-5347(03)00002-8; Johnson R., 2010, Native Plants Journal, V11, P117; Kawecki TJ, 2004, ECOL LETT, V7, P1225, DOI 10.1111/j.1461-0248.2004.00684.x; Kettenring KM, 2014, J APPL ECOL, V51, P339, DOI 10.1111/1365-2664.12202; Kramer AT, 2015, NAT AREA J, V35, P174, DOI 10.3375/043.035.0119; Kremer A, 2012, ECOL LETT, V15, P378, DOI 10.1111/j.1461-0248.2012.01746.x; Le Corre V, 2012, MOL ECOL, V21, P1548, DOI 10.1111/j.1365-294X.2012.05479.x; Leimu R, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0004010; Lesica P, 1999, RESTOR ECOL, V7, P42, DOI 10.1046/j.1526-100X.1999.07105.x; Maechler M., 2015, CLUSTER CLUSTER ANAL; Manel S, 2013, TRENDS ECOL EVOL, V28, P614, DOI 10.1016/j.tree.2013.05.012; Manel S, 2012, MOL ECOL, V21, P3729, DOI 10.1111/j.1365-294X.2012.05656.x; Manion G., 2015, GDM FUNCTIONS GEN DI; McKay JK, 2005, RESTOR ECOL, V13, P432, DOI 10.1111/j.1526-100X.2005.00058.x; Meyer S. E., 2008, AGR HDB, V727, P492; Meyer SE, 2005, PLANT ECOL, V178, P171, DOI 10.1007/s11258-004-3038-x; Meyer SE, 2015, AM J BOT, V102, P1666, DOI 10.3732/ajb.1500209; Mijangos JL, 2015, MOL ECOL, V24, P22, DOI 10.1111/mec.12995; Miriti MN, 2007, ECOLOGY, V88, P32, DOI 10.1890/0012-9658(2007)88[32:EDASOD]2.0.CO;2; MOORE ID, 1991, HYDROL PROCESS, V5, P3, DOI 10.1002/hyp.3360050103; Narum SR, 2011, MOL ECOL RESOUR, V11, P184, DOI 10.1111/j.1755-0998.2011.02987.x; Oksanen J., 2015, VEGAN COMMUNITY ECOL; Orsini L, 2013, MOL ECOL, V22, P5983, DOI 10.1111/mec.12561; Peakall R, 2012, BIOINFORMATICS, V28, P2537, DOI 10.1093/bioinformatics/bts460; Pennington RE, 1999, TREE PHYSIOL, V19, P583; Peres-Neto PR, 2001, OECOLOGIA, V129, P169, DOI 10.1007/s004420100720; Perez-Figueroa A, 2010, J EVOLUTION BIOL, V23, P2267, DOI 10.1111/j.1420-9101.2010.02093.x; Price MV, 1997, ECOLOGY, V78, P764; R Core Development Team, 2016, R VERS 3 24; Ramsey J, 2014, PHILOS T R SOC B, V369, DOI 10.1098/rstb.2013.0352; Ramsey J, 2011, P NATL ACAD SCI USA, V108, P7096, DOI 10.1073/pnas.1016631108; Rellstab C, 2015, MOL ECOL, V24, P4348, DOI 10.1111/mec.13322; Reynolds J. F., 2007, TERRESTRIAL ECOSYSTE, DOI 10.1007/978-3-540-32730-1_20; Reynolds JF, 2004, OECOLOGIA, V141, P194, DOI 10.1007/s00442-004-1524-4; Richardson BA, 2014, ECOL APPL, V24, P413, DOI 10.1890/13-0587.1; Richardson BA, 2009, INT J PLANT SCI, V170, P1120, DOI 10.1086/605870; Sandquist DR, 1997, NEW PHYTOL, V135, P635, DOI 10.1046/j.1469-8137.1997.00697.x; Sandquist DR, 2003, AM J BOT, V90, P1481, DOI 10.3732/ajb.90.10.1481; Sandquist DR, 2003, OECOLOGIA, V134, P463, DOI 10.1007/s00442-002-1129-8; Scalfi M, 2004, THEOR APPL GENET, V108, P433, DOI 10.1007/s00122-003-1461-3; Schoville SD, 2012, ANNU REV ECOL EVOL S, V43, P23, DOI 10.1146/annurev-ecolsys-110411-160248; SCHUSTER WSF, 1992, OECOLOGIA, V91, P332, DOI 10.1007/BF00317620; Schwinning S, 2013, FUNCT ECOL, V27, P886, DOI 10.1111/1365-2435.12115; Scoles-Sciulla SJ, 2015, ARID LAND RES MANAG, V29, P110, DOI 10.1080/15324982.2014.901994; Sexton JP, 2014, EVOLUTION, V68, P1, DOI 10.1111/evo.12258; Shryock DF, 2015, CONSERV GENET, V16, P1303, DOI 10.1007/s10592-015-0741-1; Shryock DF, 2014, ECOL EVOL, V4, P3046, DOI 10.1002/ece3.1159; Steane DA, 2014, MOL ECOL, V23, P2500, DOI 10.1111/mec.12751; Stocker TF, 2013, CLIMATE CHANGE 2013; Strasburg JL, 2012, PHILOS T R SOC B, V367, P364, DOI 10.1098/rstb.2011.0199; Thomassen HA, 2010, MOL ECOL, V19, P3532, DOI 10.1111/j.1365-294X.2010.04737.x; Verstraete MM, 2009, FRONT ECOL ENVIRON, V7, P421, DOI 10.1890/080119; Vilas A, 2012, J EVOLUTION BIOL, V25, P1364, DOI 10.1111/j.1420-9101.2012.02526.x; Wang TL, 2012, J APPL METEOROL CLIM, V51, P16, DOI 10.1175/JAMC-D-11-043.1; Wang TL, 2010, ECOL APPL, V20, P153, DOI 10.1890/08-2257.1; Webber J. M., 1936, CYTOLOGIA, V7, P313; Wood HM, 2008, MOL ECOL, V17, P3123, DOI 10.1111/j.1365-294X.2008.03755.x; Wood TE, 2009, P NATL ACAD SCI USA, V106, P13875, DOI 10.1073/pnas.0811575106 112 4 4 12 57 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1051-0761 1939-5582 ECOL APPL Ecol. Appl. 2017 27 2 429 445 10.1002/eap.1447 17 Ecology; Environmental Sciences Environmental Sciences & Ecology EM9LY WOS:000395634300010 28135767 Bronze 2018-11-22 J Darracq, AK; Smith, LL; Oi, DH; Conner, LM; McCleery, RA Darracq, Andrea K.; Smith, Lora L.; Oi, David H.; Conner, L. Mike; McCleery, Robert A. Invasive ants influence native lizard populations ECOSPHERE English Article invasive species; recruitment; Sceloporus undulatus; Solenopsis invicta; survival IMPORTED FIRE ANT; CAPTURE-RECAPTURE MODELS; EASTERN FENCE LIZARD; SCELOPORUS-UNDULATUS; SOLENOPSIS-INVICTA; HYMENOPTERA-FORMICIDAE; NORTHERN BOBWHITE; CANE TOADS; PREDATION; ECOSYSTEM The red imported fire ant (Solenopsis invicta; hereafter RIFA) is an invasive predator found on four continents, namely South America, North America, Australia, and Asia. Red imported fire ants are implicated in the decline of native invertebrates and vertebrates throughout their invaded range. We used the eastern fence lizard (Sceloporus undulatus) as a model species to understand the influence of RIFAs on native reptiles in the southeastern United States. Our objective was to quantify the effects of RIFAs on fence lizard recruitment and survival. We experimentally stocked populations of fence lizards into eight enclosures with either ambient or reduced numbers of RIFAs from May 2012 to October 2013. Fitting Link-Barker models, we found that the RIFA treatment affected fence lizard recruitment (f), but not survival (F). Recruitment was 1.6 times greater in the enclosures with reduced numbers of RIFAs than in those with ambient numbers. Red imported fire ants likely affect reptiles with analogous life history strategies to those of fence lizards similarly. Consequently, RIFAs may have undesirable consequences for the biodiversity of reptiles in the southeastern United States and on other continents with established RIFA populations. [Darracq, Andrea K.; Smith, Lora L.; Conner, L. Mike] Joseph W Jones Ecol Res Ctr, 3988 Jones Ctr Dr, Newton, GA 39870 USA; [Darracq, Andrea K.; McCleery, Robert A.] Univ Florida, Dept Wildlife Ecol & Conservat, 110 Newins Ziegler Hall,POB 110430, Gainesville, FL 32611 USA; [Oi, David H.] ARS, Ctr Med Agr & Vet Entomol, USDA, 1600 SW 23rd Dr, Gainesville, FL USA; [Darracq, Andrea K.] Univ North Georgia, Dept Biol, 151 Sunset Blvd, Dahlonega, GA USA Darracq, AK (reprint author), Joseph W Jones Ecol Res Ctr, 3988 Jones Ctr Dr, Newton, GA 39870 USA.; Darracq, AK (reprint author), Univ Florida, Dept Wildlife Ecol & Conservat, 110 Newins Ziegler Hall,POB 110430, Gainesville, FL 32611 USA.; Darracq, AK (reprint author), Univ North Georgia, Dept Biol, 151 Sunset Blvd, Dahlonega, GA USA. akdarracq@ung.edu McCleery, Robert/0000-0001-7018-005X Joseph W. Jones Ecological Research Center; University of Florida We thank the Joseph W. Jones Ecological Research Center and the University of Florida for supporting this research. Additionally, we are grateful for the hard work of several field technicians (S. Greenspan, D. Knapp, and S. IIromada), volunteers, interns, and the conservation staff and wildlife and herpetology laboratories at the JWJERC for their assistance in this study. We are also thankful to two anonymous reviewers whose comments greatly strengthened our paper. All experiments performed comply with the current laws of the United States of America. Ackerman R. A., 2003, BIOL SEA TURTLES, P83; Agosti D., 2000, ANTS STANDARD METHOD; Akaike H., 1973, B N PETR P 2 INT S I, P267; ALLEN CR, 1994, TEX J SCI, V46, P51; Allen CR, 1997, J HERPETOL, V31, P318, DOI 10.2307/1565408; Allen CR, 2004, AM MIDL NAT, V152, P88, DOI 10.1674/0003-0031(2004)152[0088:RIFAIO]2.0.CO;2; Allen CR, 2001, FLA ENTOMOL, V84, P250, DOI 10.2307/3496175; Allen CR, 2000, J AGR URBAN ENTOMOL, V17, P43; Allen CR, 1997, J WILDLIFE MANAGE, V61, P911, DOI 10.2307/3802200; APPERSON CS, 1984, J GEORGIA ENTOMOL SO, V19, P508; Ascunce MS, 2011, SCIENCE, V331, P1066, DOI 10.1126/science.1198734; ASIH HL SSAR, 2004, GUID US LIV AMPH REP, P1; Boronow KE, 2010, J EXP ZOOL PART A, V313A, P17, DOI 10.1002/jez.570; BRAND JM, 1972, TOXICON, V10, P259, DOI 10.1016/0041-0101(72)90011-6; Brown DJ, 2012, J FISH WILDL MANAG, V3, P142, DOI 10.3996/012012-JFWM-010; Burnham KP, 2002, MODEL SELECTION MULT; Callcott AMA, 1996, FLA ENTOMOL, V79, P240, DOI 10.2307/3495821; Carroll C. R., 2000, INVERTEBRATES WEBMAS, P321; Carroll SP, 2005, ECOL LETT, V8, P944, DOI 10.1111/j.1461-0248.2005.00800.x; Choquet R, 2009, ECOGRAPHY, V32, P1071, DOI 10.1111/j.1600-0587.2009.05968.x; Clavero M, 2005, TRENDS ECOL EVOL, V20, P110, DOI 10.1016/j.tree.2005.01.003; Clavero M, 2009, BIOL CONSERV, V142, P2043, DOI 10.1016/j.biocon.2009.03.034; COLLINS HL, 1992, J ECON ENTOMOL, V85, P2131, DOI 10.1093/jee/85.6.2131; Dabbert CB, 2002, SOUTHWEST ENTOMOL, P105; DEMARCO VG, 1985, COPEIA, P1077; Diffie S, 2010, J HERPETOL, V44, P294, DOI 10.1670/08-282.1; Dziadzio M. C., 2015, THESIS; Dziadzio MC, 2016, WILDLIFE SOC B, V40, P202, DOI 10.1002/wsb.628; Ferris DK, 1998, SOUTHWEST NAT, V43, P97; Gibbons JW, 2000, BIOSCIENCE, V50, P653, DOI 10.1641/0006-3568(2000)050[0653:TGDORD]2.0.CO;2; Goin J. W., 1992, TEXAS PARKS WILD AUG, P28; Haenel GJ, 2003, COPEIA, P113, DOI 10.1643/0045-8511(2003)003[0113:HRAISU]2.0.CO;2; Hamilton W. J., 1961, HERPETOLOGICA, V1961, P99; Kindt RC, 2005, MANUAL SOFTWARE COMM; LANDERS JL, 1980, HERPETOLOGICA, V36, P353; Langkilde T, 2009, ECOLOGY, V90, P208, DOI 10.1890/08-0355.1; Langkilde T, 2010, WILDLIFE RES, V37, P566, DOI 10.1071/WR10098; Link WA, 2005, BIOMETRICS, V61, P46, DOI 10.1111/j.0006-341X.2005.030906.x; Lockwood JL, 2013, INVASION ECOLOGY; Long AK, 2015, J MAMMAL, V96, P1135, DOI 10.1093/jmammal/gyv121; Long Andrea K., 2013, Herpetological Review, V44, P513; MACCONNELL JG, 1971, TETRAHEDRON, V27, P1129, DOI 10.1016/S0040-4020(01)90860-9; Mount R.H., 1981, Journal of the Alabama Academy of Science, V52, P66; Mueller JM, 1999, J WILDLIFE MANAGE, V63, P1291, DOI 10.2307/3802847; Newman Jillian C., 2014, Herpetology Notes, V7, P415; Orrock JL, 2004, OECOLOGIA, V140, P662, DOI 10.1007/s00442-004-1613-4; Marco MVP, 2015, J HERPETOL, V49, P70, DOI 10.1670/12-279; Parker I.M., 1999, Biological Invasions, V1, P3, DOI 10.1023/A:1010034312781; PARKER WS, 1994, COPEIA, P136; Parris LB, 2002, FLA ENTOMOL, V85, P514, DOI 10.1653/0015-4040(2002)085[0514:IIORIF]2.0.CO;2; Phillips BL, 2006, P ROY SOC B-BIOL SCI, V273, P1545, DOI 10.1098/rspb.2006.3479; Phillips BL, 2004, P NATL ACAD SCI USA, V101, P17150, DOI 10.1073/pnas.0406440101; Pinheiro J., 2016, NLME LINEAR NONLINEA; Pledger S, 2000, BIOMETRICS, V56, P434, DOI 10.1111/j.0006-341X.2000.00434.x; Pledger S, 2003, BIOMETRICS, V59, P786, DOI 10.1111/j.0006-341X.2003.00092.x; Plentovich S, 2011, BIOL INVASIONS, V13, P545, DOI 10.1007/s10530-010-9848-y; Preisser EL, 2005, ECOLOGY, V86, P501, DOI 10.1890/04-0719; R Core Team, 2014, R LANG ENV STAT COMP; Robbins TR, 2013, BIOL INVASIONS, V15, P407, DOI 10.1007/s10530-012-0295-9; Sih A, 2010, OIKOS, V119, P610, DOI 10.1111/j.1600-0706.2009.18039.x; Stuble KL, 2011, CONSERV BIOL, V25, P618, DOI 10.1111/j.1523-1739.2010.01634.x; Stuble KL, 2009, ECOL ENTOMOL, V34, P520, DOI 10.1111/j.1365-2311.2009.01098.x; Thawley CJ, 2016, J HERPETOL, V50, P284, DOI 10.1670/15-017; TINKLE DW, 1972, ECOLOGY, V53, P570, DOI 10.2307/1934772; Trauth S.E., 2004, AMPHIBIANS REPTILES; Trompeter WP, 2011, HORM BEHAV, V60, P152, DOI 10.1016/j.yhbeh.2011.04.001; Tschinkel WR, 2006, FIRE ANTS; Tuberville Tracey D., 2000, Journal of the Elisha Mitchell Scientific Society, V116, P19; United States Fish and Wildlife Service (USFWS), 2014, LIST AN; Van Lear DH, 2005, FOREST ECOL MANAG, V211, P150, DOI 10.1016/j.foreco.2005.02.014; White GC, 1999, BIRD STUDY, V46, P120; Wilcove DS, 1998, BIOSCIENCE, V48, P607, DOI 10.2307/1313420; Wylie R, 2016, ECOL MANAG RESTOR, V17, P22, DOI 10.1111/emr.12197 73 2 2 7 25 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2150-8925 ECOSPHERE Ecosphere JAN 2017 8 1 e01657 10.1002/ecs2.1657 11 Ecology Environmental Sciences & Ecology EO2KV WOS:000396526300018 DOAJ Gold 2018-11-22 J Whitney, JE; Whittier, JB; Paukert, CP Whitney, James E.; Whittier, Joanna B.; Paukert, Craig P. Environmental niche models for riverine desert fishes and their similarity according to phylogeny and functionality ECOSPHERE English Article competitive exclusion; environmental filtering; functional niche; nonnative; phylogenetic attraction; phylogenetic repulsion; phylogenetic signal; stream fish ADAPTIVE REGRESSION SPLINES; LIFE-HISTORY STRATEGIES; EXTINCTION RISK; PHENOTYPIC PLASTICITY; LIMITING SIMILARITY; COMMUNITY ECOLOGY; THERMAL TOLERANCE; SOCKEYE-SALMON; HABITAT MODELS; CLIMATE-CHANGE Environmental filtering and competitive exclusion are hypotheses frequently invoked in explaining species' environmental niches (i.e., geographic distributions). A key assumption in both hypotheses is that the functional niche (i.e., species traits) governs the environmental niche, but few studies have rigorously evaluated this assumption. Furthermore, phylogeny could be associated with these hypotheses if it is predictive of functional niche similarity via phylogenetic signal or convergent evolution, or of environmental niche similarity through phylogenetic attraction or repulsion. The objectives of this study were to investigate relationships between environmental niches, functional niches, and phylogenies of fishes of the Upper (UCRB) and Lower (LCRB) Colorado River Basins of southwestern North America. We predicted that functionally similar species would have similar environmental niches (i.e., environmental filtering) and that closely related species would be functionally similar (i.e., phylogenetic signal) and possess similar environmental niches (i.e., phylogenetic attraction). Environmental niches were quantified using environmental niche modeling, and functional similarity was determined using functional trait data. Nonnatives in the UCRB provided the only support for environmental filtering, which resulted from several warmwater nonnatives having dam number as a common predictor of their distributions, whereas several cool-and coldwater nonnatives shared mean annual air temperature as an important distributional predictor. Phylogenetic signal was supported for both natives and nonnatives in both basins. Lastly, phylogenetic attraction was only supported for native fishes in the LCRB and for nonnative fishes in the UCRB. Our results indicated that functional similarity was heavily influenced by evolutionary history, but that phylogenetic relationships and functional traits may not always predict the environmental distribution of species. However, the similarity of environmental niches among warmwater centrarchids, ictalurids, fundulids, and poeciliids in the UCRB indicated that dam removals could influence the distribution of these nonnatives simultaneously, thus providing greater conservation benefits. However, this same management strategy would have more limited effects on nonnative salmonids, catostomids, and percids with colder temperature preferences, thus necessitating other management strategies to control these species. [Whitney, James E.] Univ Missouri, Dept Fisheries & Wildlife Sci, Missouri Cooperat Fish & Wildlife Res Unit, 302 Anheuser Busch Nat Resources Bldg, Columbia, MO 65211 USA; [Whittier, Joanna B.] Univ Missouri, Dept Fisheries & Wildlife Sci, 302 Anheuser Busch Nat Resources Bldg, Columbia, MO 65211 USA; [Paukert, Craig P.] Univ Missouri, Missouri Cooperat Fish & Wildlife Res Unit, Dept Fisheries & Wildlife Sci, US Geol Survey, 302 Anheuser Busch Nat Resources Bldg, Columbia, MO 65211 USA; [Whitney, James E.] Pittsburg State Univ, Dept Biol, 223 Heckert Wells Hall, Pittsburg, KS 66762 USA Whitney, JE (reprint author), Univ Missouri, Dept Fisheries & Wildlife Sci, Missouri Cooperat Fish & Wildlife Res Unit, 302 Anheuser Busch Nat Resources Bldg, Columbia, MO 65211 USA.; Whitney, JE (reprint author), Pittsburg State Univ, Dept Biol, 223 Heckert Wells Hall, Pittsburg, KS 66762 USA. jewhitney@pittstate.edu Whittier, Joanna/0000-0002-1048-9490; Paukert, Craig/0000-0002-9369-8545 US Geological Survey; National Aquatic Gap Analysis Program; National Climate Change and Wildlife Sciences Center; US Fish and Wildlife Service; Missouri Department of Conservation; University of Missouri; Wildlife Management Institute We thank the US Geological Survey, National Aquatic Gap Analysis Program, the National Climate Change and Wildlife Sciences Center, and the US Fish and Wildlife Service for funding provided to complete this project. This project in part was completed to support the goals and objectives of the Western Native Trout Initiative and the Desert Fish Habitat Partnership under the National Fish Habitat Partnership. Previous versions of this manuscript benefitted from insightful comments by Dan Dauwalter of Trout Unlimited, Scott Bonar of the Arizona Cooperative Fish and Wildlife Research Unit, the Missouri Cooperative Fish and Wildlife Research Unit Fisheries Sciences Journal Club, and two anonymous reviewers. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government, the US Geological Survey, or other sponsoring or participating agencies. The Missouri Cooperative Fish and Wildlife Research Unit is sponsored by the Missouri Department of Conservation, the University of Missouri, the US Fish and Wildlife Service, the US Geological Survey, and the Wildlife Management Institute. Anderson MJ, 2003, ECOLOGY, V84, P511, DOI 10.1890/0012-9658(2003)084[0511:CAOPCA]2.0.CO;2; Angilletta MJ, 2002, J THERM BIOL, V27, P249, DOI 10.1016/S0306-4565(01)00094-8; [Anonymous], 2015, R LANG ENV STAT COMP; BALON EK, 1975, J FISH RES BOARD CAN, V32, P821, DOI 10.1139/f75-110; Brown J.H., 1987, P185; CARLSON C A, 1989, Canadian Special Publication of Fisheries and Aquatic Sciences, V106, P220; Carvalho RA, 2015, ECOL FRESHW FISH, V24, P317, DOI 10.1111/eff.12152; Chase J.M., 2003, ECOLOGICAL NICHES LI; Cornwell WK, 2006, ECOLOGY, V87, P1465, DOI 10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2; Darwin C., 1859, ORIGIN SPECIES; Diamond J.M., 1975, P342; Eliason EJ, 2011, SCIENCE, V332, P109, DOI 10.1126/science.1199158; Elith J, 2006, ECOGRAPHY, V29, P129, DOI 10.1111/j.2006.0906-7590.04596.x; Fagan WE, 2005, ECOLOGY, V86, P34, DOI 10.1890/04-0491; Fagan WF, 2002, ECOLOGY, V83, P3250, DOI 10.1890/0012-9658(2002)083[3250:RFAERI]2.0.CO;2; Fielding AH, 1997, ENVIRON CONSERV, V24, P38, DOI 10.1017/S0376892997000088; Franssen NR, 2013, ECOL EVOL, V3, P4648, DOI 10.1002/ece3.842; FRIEDMAN JH, 1991, ANN STAT, V19, P1, DOI 10.1214/aos/1176347963; Gois KS, 2015, HYDROBIOLOGIA, V746, P401, DOI 10.1007/s10750-014-2061-8; Gotelli NJ, 2002, ECOLOGY, V83, P2091, DOI 10.2307/3072040; GROSSMAN GD, 1982, AM NAT, V120, P423, DOI 10.1086/284004; Guisan A, 2005, ECOL LETT, V8, P993, DOI 10.1111/j.1461-0248.2005.00792.x; Harrell FE., 2015, HMISC HARRELL MISCEL; Harvey PH, 1991, COMP METHOD EVOLUTIO; Hastie T, 1996, J ROY STAT SOC B MET, V58, P155; Heino J, 2015, FRESHWATER BIOL, V60, P845, DOI 10.1111/fwb.12533; Heino J, 2013, FRESHWATER BIOL, V58, P1539, DOI 10.1111/fwb.12164; Helmus MR, 2007, ECOL LETT, V10, P917, DOI 10.1111/j.1461-0248.2007.01083.x; Higgins JV, 2005, CONSERV BIOL, V19, P432, DOI 10.1111/j.1523-1739.2005.00504.x; Jackson DA, 2001, CAN J FISH AQUAT SCI, V58, P157, DOI 10.1139/cjfas-58-1-157; Jenness J., 2006, TOPOGRAPHIC POSITION; Jensen LF, 2008, P ROY SOC B-BIOL SCI, V275, P2859, DOI 10.1098/rspb.2008.0870; Johnson PTJ, 2008, FRONT ECOL ENVIRON, V6, P359, DOI 10.1890/070156; Kozak KH, 2008, TRENDS ECOL EVOL, V23, P141, DOI 10.1016/j.tree.2008.02.001; Kraft NJB, 2007, AM NAT, V170, P271, DOI 10.1086/519400; Lande R, 2009, J EVOLUTION BIOL, V22, P1435, DOI 10.1111/j.1420-9101.2009.01754.x; Leathwick JR, 2005, FRESHWATER BIOL, V50, P2034, DOI 10.1111/j.1365-2427.2005.01448.x; Legendre P, 1998, NUMERICAL ECOLOGY; Leibold MA, 2004, ECOL LETT, V7, P601, DOI 10.1111/j.1461-0248.2004.00608.x; Lobo JM, 2008, GLOBAL ECOL BIOGEOGR, V17, P145, DOI 10.1111/j.1466-8238.2007.00358.x; Losos JB, 2008, ECOL LETT, V11, P995, DOI 10.1111/j.1461-0248.2008.01229.x; MACARTHUR R, 1967, AM NAT, V101, P377, DOI 10.1086/282505; MacCullagh P, 1984, GEN LINEAR MODELS; MacKenzie DI, 2002, ECOLOGY, V83, P2248, DOI 10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2; Mouchet MA, 2013, OIKOS, V122, P247, DOI 10.1111/j.1600-0706.2012.20411.x; Mouillot D, 2007, ESTUAR COAST SHELF S, V71, P443, DOI 10.1016/j.ecss.2006.08.022; MRLC (Multi-Resolution Land Characteristics), 2001, NAT LAND COV DAT; Oksanen J., 2015, VEGAN COMMUNITY ECOL; Olden J. D., 2005, Animal Biodiversity and Conservation, V28, P75; Olden JD, 2006, ECOL MONOGR, V76, P25, DOI 10.1890/05-0330; Olden JD, 2008, ECOLOGY, V89, P847, DOI 10.1890/06-1864.1; Olden JD, 2010, AM FISH S S, V73, P83; Paukert CP, 2011, ECOL INDIC, V11, P304, DOI 10.1016/j.ecolind.2010.05.008; Pearce J, 2000, ECOL MODEL, V133, P225, DOI 10.1016/S0304-3800(00)00322-7; Peres-Neto PR, 2004, OECOLOGIA, V140, P352, DOI 10.1007/s0042-004-1578-3; Peterson AT, 2008, ECOL MODEL, V213, P63, DOI 10.1016/j.ecolmodel.2007.11.008; POFF NL, 1995, ECOLOGY, V76, P606, DOI 10.2307/1941217; Poff NL, 1997, J N AM BENTHOL SOC, V16, P391, DOI 10.2307/1468026; Pool TK, 2010, CAN J FISH AQUAT SCI, V67, P1791, DOI 10.1139/F10-095; Prinzing A, 2001, P ROY SOC B-BIOL SCI, V268, P2383, DOI 10.1098/rspb.2001.1801; Propst DL, 2015, RIVER RES APPL, V31, P692, DOI 10.1002/rra.2768; Rahel FJ, 2013, BIOSCIENCE, V63, P362, DOI 10.1525/bio.2013.63.5.9; Sabo JL, 2010, P NATL ACAD SCI USA, V107, P21263, DOI 10.1073/pnas.1009734108; Santorelli S, 2014, ECOL EVOL, V4, P2146, DOI 10.1002/ece3.1026; Schaefer J, 2011, BIOL J LINN SOC, V103, P612, DOI 10.1111/j.1095-8312.2011.01660.x; Seebacher F, 2012, FUNCT ECOL, V26, P1418, DOI 10.1111/j.1365-2435.2012.02052.x; SHMIDA A, 1985, J BIOGEOGR, V12, P1, DOI 10.2307/2845026; Stitt BC, 2014, PHYSIOL BIOCHEM ZOOL, V87, P15, DOI 10.1086/675259; Strecker AL, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.3003; Strecker AL, 2011, ECOL APPL, V21, P3002, DOI 10.1890/11-0599.1; Theobald D. M., 2007, LCAP V 1 0 LANDSCAPE; Troia MJ, 2015, OECOLOGIA, V177, P545, DOI 10.1007/s00442-014-3178-1; USACE (United States Army Corps of Engineers), 2007, NAT INV DAMS; USDA (United States Department of Agriculture), 2007, PRISM CLIM MAPP PROJ; USGS (United States Geological Survey), 2004, NAT EL DAT; Vitt LJ, 2005, P NATL ACAD SCI USA, V102, P7877, DOI 10.1073/pnas.0501104102; Webb CO, 2002, ANNU REV ECOL SYST, V33, P475, DOI 10.1146/annurev.ecolysis.33.010802.150448; Whitney CK, 2014, T AM FISH SOC, V143, P1316, DOI 10.1080/00028487.2014.935481; Whittier J. B., 2014, CONSERVATION ASSESSM; Whittier JB, 2011, LOWER COLORADO RIVER; Wiens JJ, 2005, ANNU REV ECOL EVOL S, V36, P519, DOI 10.1146/annurev.ecolsys.36.102803.095431; Wiens JJ, 2006, AM NAT, V168, P579, DOI 10.1086/507882; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; Zobel M, 1997, TRENDS ECOL EVOL, V12, P266, DOI 10.1016/S0169-5347(97)01096-3 84 0 0 3 19 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2150-8925 ECOSPHERE Ecosphere JAN 2017 8 1 e01658 10.1002/ecs2.1658 21 Ecology Environmental Sciences & Ecology EO2KV WOS:000396526300017 DOAJ Gold 2018-11-22 J Niu, SQ; Knouft, JH Niu, Sophia Qian; Knouft, Jason H. Hydrologic characteristics, food resource abundance, and spatial variation in stream assemblages ECOHYDROLOGY English Article abundance; assemblage composition; flow variability; spatial relatedness; species richness FRESH-WATER MACROINVERTEBRATES; LIFE-HISTORY STRATEGIES; NEIGHBOR MATRICES; SPECIES RICHNESS; FISH ASSEMBLAGES; UNITED-STATES; FLOW REGIMES; DISTURBANCE; SCALE; BIODIVERSITY A primary focus of ecological research is to characterize the factors responsible for patterns in biodiversity and assemblage structure along gradients of resources and environmental conditions. In addition to biotic and abiotic factors, the spatial relatedness of locations can also influence assemblage patterns and should be accounted for when inferring the influences of environmental factors on assemblage structure. To address this issue, we examined the influences of hydrology, food resources, and a spatial component by comparing assemblage attributes of fishes and macroinvertebrates at 13 sites in the Meramec River watershed, southeastern Missouri, USA. Redundancy analyses and multiple regression techniques were used to predict variation in species composition, richness, and abundance. Results suggest that spatial processes play an important role in structuring fish assemblages, while macroinvertebrates are regulated to a greater extent by local environmental conditions. Additionally, hydrologic variability, alone or in combination with resource abundance and habitat quality, explains considerable amounts of variation in composition, richness, and abundance of fishes and macroinvertebrates. In particular, fish species richness increases with increasing flow variability, potentially because the majority of species are characterized by opportunistic and equilibrium life history strategies, which are favored by hydrologic variability; we also observed negative effects of extreme hydrologic variability on macroinvertebrate taxon richness. Overall, these results demonstrate the importance of natural flow regimes for explaining spatial variation in aquatic assemblages at the within-watershed scale and point to the strength of a framework integrating hydrologic variability, resource abundance, and spatial relatedness when predicting assemblage patterns in freshwater systems. [Niu, Sophia Qian; Knouft, Jason H.] St Louis Univ, Dept Biol, 3507 Laclede Ave, St Louis, MO 63103 USA Niu, SQ (reprint author), St Louis Univ, Dept Biol, 3507 Laclede Ave, St Louis, MO 63103 USA. sophiaqniu@gmail.com U.S. National Science Foundation [DEB-1311179, DEB-0844644] The authors greatly appreciate the help of Melissa Anthony, Dr. Collin Beachum, Dr. Kerstin Edberg, Ninon Martinez, Dr. Matt Michel, Qiu Ren, Sam Vohsen, Seth Weixlman, and Justin Zweck during collection of field data. We also thank Dr. Maria Chu for generating hydrologic models. Dr. Matt Whiles provided extremely helpful comments on previous drafts of this work. This research was supported by funds provided by the U.S. National Science Foundation (DEB-1311179 and DEB-0844644). [Anonymous], 2009, IND HYDR ALT VERS 7, P76; Beachum CE, 2016, ECOL FRESHW FISH, V25, P446, DOI 10.1111/eff.12225; Beisner BE, 2006, ECOLOGY, V87, P2985, DOI 10.1890/0012-9658(2006)87[2985:TROEAS]2.0.CO;2; Benke AC, 1999, J N AM BENTHOL SOC, V18, P308, DOI 10.2307/1468447; Borcard D, 2002, ECOL MODEL, V153, P51, DOI 10.1016/S0304-3800(01)00501-4; BORCARD D, 1992, ECOLOGY, V73, P1045, DOI 10.2307/1940179; Borcard D, 2011, USE R, P1, DOI 10.1007/978-1-4419-7976-6; Brown BL, 2010, J ANIM ECOL, V79, P571, DOI 10.1111/j.1365-2656.2010.01668.x; Bunn SE, 2002, ENVIRON MANAGE, V30, P492, DOI 10.1007/s00267-002-2737-0; Burnham KP, 2004, SOCIOL METHOD RES, V33, P261, DOI 10.1177/0049124104268644; Canty A., 2014, BOOT BOOTSTRAP R S P; Chase JM, 2010, SCIENCE, V328, P1388, DOI 10.1126/science.1187820; Chu ML, 2013, J HYDROL, V495, P1, DOI 10.1016/j.jhydrol.2013.04.051; CONNELL JH, 1978, SCIENCE, V199, P1302, DOI 10.1126/science.199.4335.1302; Cottenie K, 2005, ECOL LETT, V8, P1175, DOI 10.1111/j.1461-0248.2005.00820.x; Cross WF, 2011, ECOL APPL, V21, P2016, DOI 10.1890/10-1719.1; Death R. G., 2008, Aquatic insects: challenges to populations, P103, DOI 10.1079/9781845933968.0103; Death RG, 2002, OIKOS, V97, P18, DOI 10.1034/j.1600-0706.2002.970102.x; Dray S, 2006, ECOL MODEL, V196, P483, DOI 10.1016/j.ecolmodel.2006.02.015; Falke JA, 2010, AM FISH S S, V73, P207; Geheber AD, 2016, ECOLOGY, V97, P2691, DOI 10.1002/ecy.1503; Gordon N. D., 2004, STREAM HYDROLOGY INT, P92; Heino J, 2008, ECOL ENTOMOL, V33, P614, DOI 10.1111/j.1365-2311.2008.01012.x; Heino J, 2012, OIKOS, V121, P537, DOI 10.1111/j.1600-0706.2011.19715.x; Heino Jani, 2009, Freshwater Reviews, V2, P1, DOI 10.1608/FRJ-2.1.1; Heino J, 2010, OIKOS, V119, P129, DOI 10.1111/j.1600-0706.2009.17778.x; Hitt NP, 2011, J N AM BENTHOL SOC, V30, P296, DOI 10.1899/09-155.1; Jacobson B, 2010, LANDSCAPE ECOL, V25, P495, DOI 10.1007/s10980-009-9442-9; Jellyman PG, 2013, FRESHWATER BIOL, V58, P2614, DOI 10.1111/fwb.12238; Konrad CP, 2008, FRESHWATER BIOL, V53, P1983, DOI 10.1111/j.1365-2427.2008.02024.x; Leibold MA, 2010, ECOL LETT, V13, P1290, DOI 10.1111/j.1461-0248.2010.01523.x; Lepori F, 2006, BIOSCIENCE, V56, P809, DOI 10.1641/0006-3568(2006)56[809:DAABRC]2.0.CO;2; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; Mazerolle M., 2011, R PACKAGE VERSION, V1, P16; Merritt RW, 2008, INTRO AQUATIC INSECT; MIKE, 2011, DANISH HYDRAULIC I D; Mims MC, 2012, ECOLOGY, V93, P35, DOI 10.1890/11-0370.1; Minckley W.L., 1987, P93; Missouri Department of Conservation, 2015, MISS WAT INV ASS; Mykra H, 2007, GLOBAL ECOL BIOGEOGR, V16, P149, DOI 10.1111/j.1466-8238.2006.00272.x; Niu SQ, 2011, FRESHWATER BIOL, V56, P1209, DOI 10.1111/j.1365-2427.2010.02558.x; Niu SQ, 2017, ECOHYDROLOGY, V10, DOI 10.1002/eco.1770; Niu SQ, 2012, FRESHWATER BIOL, V57, P2367, DOI 10.1111/fwb.12016; Niu SQ., 2015, THESIS; Oksanen J., 2007, R PACKAGE VERSION, V1, P15; Olden JD, 2011, CONSERV BIOL, V25, P40, DOI 10.1111/j.1523-1739.2010.01557.x; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Peres-Neto PR, 2006, ECOLOGY, V87, P2614, DOI 10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2; Pflieger W. L., 1997, FISHES MISSOURI; Poff NL, 2006, J N AM BENTHOL SOC, V25, P730, DOI 10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2; Puth MT, 2015, J ANIM ECOL, V84, P892, DOI 10.1111/1365-2656.12382; R Core Team, 2014, R LANG ENV STAT COMP; RESH VH, 1988, J N AM BENTHOL SOC, V7, P433, DOI 10.2307/1467300; Soininen J, 2014, ECOLOGY, V95, P3284, DOI 10.1890/13-2228.1; Svensson JR, 2010, ECOLOGY, V91, P3069, DOI 10.1890/09-0671.1; Thompson R, 2006, J ANIM ECOL, V75, P476, DOI 10.1111/j.1365-2656.2006.01068.x; Townsend CR, 1997, J N AM BENTHOL SOC, V16, P531, DOI 10.2307/1468142; Venables W. N, 2002, MODERN APPL STAT S; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1722, DOI 10.1111/j.1365-2427.2008.02035.x; WARNER RR, 1985, AM NAT, V125, P769, DOI 10.1086/284379; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040 61 1 1 1 22 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1936-0584 1936-0592 ECOHYDROLOGY Ecohydrology JAN 2017 10 1 e1770 10.1002/eco.1770 12 Ecology; Environmental Sciences; Water Resources Environmental Sciences & Ecology; Water Resources EK4AS WOS:000393870100010 2018-11-22 J Ahlstrom, B; Dinh, T; Haselton, MG; Tomiyama, AJ Ahlstrom, Britt; Tran Dinh; Haselton, Martie G.; Tomiyama, A. Janet Understanding eating interventions through an evolutionary lens HEALTH PSYCHOLOGY REVIEW English Review Nutrition; eating; evolution; health psychology; evolutionary psychology SENSORY-SPECIFIC SATIETY; LIFE-HISTORY STRATEGIES; LEARNED TASTE-AVERSIONS; FOOD-INTAKE; SOCIOECONOMIC-STATUS; PRESCHOOL-CHILDREN; WEIGHT-LOSS; VEGETABLE CONSUMPTION; HEALTH-PROMOTION; DIETARY VARIETY Health psychologists aim to improve eating behaviour to achieve health. Yet the effectiveness of healthy eating interventions is often minimal. This ineffectiveness may be in part because many healthy eating interventions are in a battle against evolved mechanisms (e.g., hedonic and related systems) that promote the consumption of energy-dense foods. Such foods, once rare, are now abundant in our obesogenic society, and consequently the evolved desire for energy-dense foods can now easily lead to the overconsumption of sugary, processed, and unhealthy foods. However, humans have other evolved mechanisms that also impact eating behaviour. In this article, therefore, we review eating interventions through an evolutionary lens, and describe evolved mechanisms that are relevant to eating behaviour. We discuss how using this lens could help health psychologists design more effective eating interventions and policies. By learning to work with human nature, eating interventions can more effectively promote healthier eating and healthier lives. [Ahlstrom, Britt; Haselton, Martie G.; Tomiyama, A. Janet] Univ Calif Los Angeles, Dept Psychol, Los Angeles, CA 90095 USA; [Tran Dinh] Univ New Mexico, Dept Psychol, Albuquerque, NM 87131 USA; [Haselton, Martie G.] Univ Calif Los Angeles, Dept Commun Studies, Los Angeles, CA USA; [Haselton, Martie G.] Univ Calif Los Angeles, Inst Soc & Genet, Los Angeles, CA USA Tomiyama, AJ (reprint author), Univ Calif Los Angeles, Dept Psychol, Los Angeles, CA 90095 USA. tomiyama@psych.ucla.edu Adler NE, 1999, ANN NY ACAD SCI, V896, P3, DOI 10.1111/j.1749-6632.1999.tb08101.x; Arkadianos I, 2007, NUTR J, V6, DOI 10.1186/1475-2891-6-29; Armelagos GJ, 2014, CRIT REV FOOD SCI, V54, P1330, DOI 10.1080/10408398.2011.635817; ARWAS S, 1989, BEHAV RES THER, V27, P295, DOI 10.1016/0005-7967(89)90049-1; Aunger R, 2016, HEALTH PSYCHOL REV, V10, P425, DOI 10.1080/17437199.2016.1219673; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; Bell EA, 2003, PHYSIOL BEHAV, V78, P593, DOI 10.1016/S0031-9384(03)00055-6; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.1111/j.1467-8624.1991.tb01558.x; BERNSTEIN IL, 1978, SCIENCE, V200, P1302, DOI 10.1126/science.663613; Bernstein IL, 1999, NUTRITION, V15, P229, DOI 10.1016/S0899-9007(98)00192-0; BERNSTEIN IL, 1980, PHYSIOL BEHAV, V25, P363, DOI 10.1016/0031-9384(80)90274-7; Birch LL, 1999, ANNU REV NUTR, V19, P41, DOI 10.1146/annurev.nutr.19.1.41; BIRCH LL, 1986, APPETITE, V7, P323; Brambila-Macias J, 2011, FOOD NUTR BULL, V32, P365, DOI 10.1177/156482651103200408; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Buss DM, 2009, PERSPECT PSYCHOL SCI, V4, P359, DOI 10.1111/j.1745-6924.2009.01138.x; Buss DM, 1998, AM PSYCHOL, V53, P533, DOI 10.1037/0003-066X.53.5.533; CAHILL GF, 1976, CLIN ENDOCRINOL META, V5, P397, DOI 10.1016/S0300-595X(76)80028-X; CANNON DS, 1981, J CONSULT CLIN PSYCH, V49, P360, DOI 10.1037/0022-006X.49.3.360; Cashdan E, 1998, SOC SCI INFORM, V37, P613, DOI 10.1177/053901898037004003; CASHDAN E, 1994, HUM NATURE-INT BIOS, V5, P279, DOI 10.1007/BF02692155; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Cooke L, 2007, J HUM NUTR DIET, V20, P294, DOI 10.1111/j.1365-277X.2007.00804.x; Cooke L, 2011, APPETITE, V57, P808, DOI 10.1016/j.appet.2011.05.317; Cooke L, 2003, APPETITE, V41, P205, DOI 10.1016/S0195-6663(03)00048-5; Cooke LJ, 2004, PUBLIC HEALTH NUTR, V7, P295, DOI 10.1079/PHN2003527; Cordain L, 2005, AM J CLIN NUTR, V81, P341; Cottone E, 2007, J AM DIET ASSOC, V107, P1197, DOI 10.1016/j.jada.2007.04.005; Cummings DE, 2007, J CLIN INVEST, V117, P13, DOI 10.1172/JCI30227; Cummings DE, 2006, PHYSIOL BEHAV, V89, P71, DOI 10.1016/j.physbeh.2006.05.022; Cutler DM, 2004, CRIT PERSPECT, P643; Darmon N, 2008, AM J CLIN NUTR, V87, P1107; Dauchet L, 2006, J NUTR, V136, P2588; de Wild VWT, 2015, APPETITE, V91, P1, DOI 10.1016/j.appet.2015.03.025; Del Giudice M., 2015, HDB EVOLUTIONARY PSY, P88; Dinehart ME, 2006, PHYSIOL BEHAV, V87, P304, DOI 10.1016/j.physbeh.2005.10.018; Dovey TM, 2008, APPETITE, V50, P181, DOI 10.1016/j.appet.2007.09.009; Duncan GJ, 2010, CHILD DEV, V81, P306, DOI 10.1111/j.1467-8624.2009.01396.x; Eaton SB, 2010, AM J CLIN NUTR, V91, P295, DOI 10.3945/ajcn.2009.29058; EATON SB, 1988, AM J MED, V84, P739, DOI 10.1016/0002-9343(88)90113-1; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Epstein LH, 2011, AM J CLIN NUTR, V94, P371, DOI 10.3945/ajcn.110.009035; Fenech M, 2011, J NUTRIGENET NUTRIGE, V4, P69, DOI 10.1159/000327772; Foley Robert, 1995, Evolutionary Anthropology, V4, P194, DOI 10.1002/evan.1360040603; Forestell CA, 2007, PEDIATRICS, V120, P1247, DOI 10.1542/peds.2007-0858; Fox MK, 2004, J AM DIET ASSOC, V104, pS22, DOI 10.1016/j.jada.2003.10.026; Frankwich KA, 2015, CLIN GASTROENTEROL H, V13, P1625, DOI 10.1016/j.cgh.2015.02.044; Franz MJ, 2007, J AM DIET ASSOC, V107, P1755, DOI 10.1016/j.jada.2007.07.017; Fraser D, 1998, ANIM WELFARE, V7, P383; Futuyma DJ., 2009, EVOLUTION, P279; GARCIA J, 1955, SCIENCE, V122, P157; Geary N, 2004, PHYSIOL BEHAV, V81, P719, DOI 10.1016/j.physbeh.2004.04.013; Glanz K, 1998, J AM DIET ASSOC, V98, P1118, DOI 10.1016/S0002-8223(98)00260-0; Goldenberg JL, 2008, PSYCHOL REV, V115, P1032, DOI 10.1037/a0013326; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Heidemann C, 2008, CIRCULATION, V118, P230, DOI 10.1161/CIRCULATIONAHA.108.771881; Hill SE, 2016, PSYCHOL SCI, V27, P354, DOI 10.1177/0956797615621901; Hill SE, 2013, J EXP SOC PSYCHOL, V49, P888, DOI 10.1016/j.jesp.2013.03.016; Hockett B, 2003, EVOL ANTHROPOL, V12, P211, DOI 10.1002/evan.10116; Hofker M, 2009, NAT GENET, V41, P139, DOI 10.1038/ng0209-139; Horn CC, 2008, APPETITE, V50, P430, DOI 10.1016/j.appet.2007-09.015; Jabr F., 2013, SCI AM; Jones B. R., 2014, THESIS; Just DR, 2013, J HUM RESOUR, V48, P855; Kahn BE, 2004, J CONSUM RES, V30, P519, DOI 10.1086/380286; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Keller KL, 2002, APPETITE, V38, P3, DOI 10.1006/appe.2001.0441; Lieberman LS, 2006, APPETITE, V47, P3, DOI 10.1016/j.appet.2006.02.011; Lieberman LS, 2003, ANNU REV NUTR, V23, P345, DOI 10.1146/annurev.nutr.23.011702.073212; Lozano GA, 2010, MED HYPOTHESES, V74, P746, DOI 10.1016/j.mehy.2009.11.003; Lucock MD, 2014, ALTERN MED, V19, P68; Lutter M, 2009, J NUTR, V139, P629, DOI 10.3945/jn.108.097618; Maier A, 2007, FOOD QUAL PREFER, V18, P1023, DOI 10.1016/j.foodqual.2007.04.005; Mann T, 2007, AM PSYCHOL, V62, P220, DOI 10.1037/0003-066X.62.3.220; McCrory MA, 2012, PHYSIOL BEHAV, V107, P576, DOI 10.1016/j.physbeh.2012.06.012; Mennella JA, 2005, PEDIATRICS, V115, pE216, DOI 10.1542/peds.2004-1582; Mennella JA, 2001, PEDIATRICS, V107, part. no., DOI 10.1542/peds.107.6.e88; Mennella JA, 2008, PHYSIOL BEHAV, V94, P29, DOI 10.1016/j.physbeh.2007.11.014; Navarrete A, 2011, NATURE, V480, P91, DOI 10.1038/nature10629; Neel James V., 1999, Bulletin of the World Health Organization, V77, P353; Nettle D, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013371; Nielsen DE, 2012, GENES NUTR, V7, P559, DOI 10.1007/s12263-012-0290-x; Olszewski PK, 2009, BMC NEUROSCI, V10, DOI 10.1186/1471-2202-10-129; Patlan K. L., 2016, AG3198C110010 USDA F; PELCHAT ML, 1982, APPETITE, V3, P341, DOI 10.1016/S0195-6663(82)80052-4; Pepper G. V., 2013, PEERJPREPRINTS, V1, P1, DOI [10.7287/peerj.preprints.141v2, DOI 10.7287/PEERJ.PREPRINTS.141V2]; Pepper G. V., 2014, APPL EVOLUTIONARY AN, P225; Pepper GV, 2014, PEERJ, V2, DOI 10.7717/peerj.459; Perello M, 2010, BIOL PSYCHIAT, V67, P880, DOI 10.1016/j.biopsych.2009.10.030; PLINER P, 1982, APPETITE, V3, P283, DOI 10.1016/S0195-6663(82)80026-3; Pontzer H, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040503; Raghunathan R, 2006, J MARKETING, V70, P170, DOI 10.1509/jmkg.70.4.170; Raynor HA, 2001, PSYCHOL BULL, V127, P325, DOI 10.1037//0033-2909.127.3.325; Raynor HA, 2012, PHYSIOL BEHAV, V106, P356, DOI 10.1016/j.physbeh.2012.03.012; Roe LS, 2013, AM J CLIN NUTR, V98, P693, DOI 10.3945/ajcn.113.062901; ROLLS BJ, 1981, PHYSIOL BEHAV, V26, P215, DOI 10.1016/0031-9384(81)90014-7; ROLLS BJ, 1986, NUTR REV, V44, P93, DOI 10.1111/j.1753-4887.1986.tb07593.x; ROZIN P, 1987, PSYCHOL REV, V94, P23, DOI 10.1037//0033-295X.94.1.23; Rozin P., 1993, Food Quality and Preference, V4, P11, DOI 10.1016/0950-3293(93)90309-T; Saper CB, 2002, NEURON, V36, P199, DOI 10.1016/S0896-6273(02)00969-8; Scalera G, 2002, NUTR NEUROSCI, V5, P159, DOI 10.1080/10284150290013059; Scollan-Koliopoulos M, 2011, DIABETES EDUCATOR, V37, P669, DOI 10.1177/0145721711416133; Scott K, 2005, NEURON, V48, P455, DOI 10.1016/j.neuron.2005.10.015; Simopoulos A. P., 1999, EVOLUTIONARY ASPECTS, V84, DOI [10.1159/000059680, DOI 10.1159/000059680]; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Smith SMK, 2010, J NUTR, V140, P1832; Speakman JR, 2013, ANNU REV NUTR, V33, P289, DOI 10.1146/annurev-nutr-071811-150711; Stevenson RJ, 2010, DEV PSYCHOL, V46, P165, DOI 10.1037/a0016692; Tahiri M, 2012, AM J MED, V125, P576, DOI 10.1016/j.amjmed.2011.09.028; Thomas C, 2008, PEDIATRICS, V121, pE1240, DOI 10.1542/peds.2007-2403; Tiger L., 1992, PURSUIT PLEASURE; Tomiyama AJ, 2013, SOC PERSONAL PSYCHOL, V7, P861, DOI 10.1111/spc3.12076; Turner BL, 2013, NUTR REV, V71, P501, DOI 10.1111/nure.12039; Tybur JM, 2012, EVOL PSYCHOL-US, V10, P855, DOI 10.1177/147470491201000508; Ulijaszek SJ, 2002, P NUTR SOC, V61, P517, DOI 10.1079/PNS2002180; Union of Concerned Scientists, 2013, INV HLTH FOOD WILL S; Wang X, 2014, BMJ-BRIT MED J, V349, P4490, DOI [DOI 10.1136/BMJ.G4490, 10.1136/bmj.g4490]; Wansink B, 2004, ANNU REV NUTR, V24, P455, DOI 10.1146/annurev.nutr.24.012003.132140; Wardle J, 2003, EUR J CLIN NUTR, V57, P341, DOI 10.1038/sj.ejcn.1601541; WERTZ DC, 1994, JAMA-J AM MED ASSOC, V272, P875, DOI 10.1001/jama.272.11.875; Williams-Piehota P, 2004, PSYCHOL HEALTH, V19, P407, DOI 10.1080/08870440310001652678; Yarmolinsky DA, 2009, CELL, V139, P234, DOI 10.1016/j.cell.2009.10.001 124 1 1 5 26 ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND 1743-7199 1743-7202 HEALTH PSYCHOL REV Health Psychol. Rev. 2017 11 1 72 88 10.1080/17437199.2016.1260489 17 Psychology, Clinical Psychology EM2CM WOS:000395124000005 27842459 2018-11-22 J Yi, SX; Gantz, JD; Lee, RE Yi, Shu-Xia; Gantz, J. D.; Lee, Richard E., Jr. Desiccation enhances rapid cold-hardening in the flesh fly Sarcophaga bullata: evidence for cross tolerance between rapid physiological responses JOURNAL OF COMPARATIVE PHYSIOLOGY B-BIOCHEMICAL SYSTEMIC AND ENVIRONMENTAL PHYSIOLOGY English Article Rapid cold-hardening; Drought-induced rapid cold-hardening; Sarcophaga bullata; Desiccation; Cold tolerance; Cross tolerance MIDGE BELGICA-ANTARCTICA; HEAT-SHOCK PROTEINS; FREEZE-TOLERANCE; DROSOPHILA-MELANOGASTER; LOW-TEMPERATURES; GALL FLY; INSECTS; CRASSIPALPIS; DEHYDRATION; ACCLIMATION Many insects use rapid cold-hardening (RCH), a physiological response to sub-lethal exposure to stressors, such as chilling and desiccation, to enhance their cold tolerance within minutes. Recently, drought-induced RCH, triggered by brief, mild desiccation, was described in larvae of the freeze-tolerant gall fly (Eurosta solidaginis). However, its prevalence and ecological significance in other insects is not known. Consequently, we used a freeze-intolerant model, the flesh fly, Sarcophaga bullata, to investigate the effects and mechanisms of drought-induced RCH. In addition, we investigated how drought- and cold-induced RCH interact by exposing flies to both desiccation and chilling. Desiccation for 3 h increased larval pupariation after cold shock from 28 to 40 %-the first example of drought-induced RCH in both a freeze-intolerant insect and in a non-overwintering life stage. We also found that desiccation and chilling together enhanced the cold hardiness of larvae and adults more than either did separately, suggesting that drought and cold trigger distinct physiological mechanisms that interact to afford greater cold tolerance. These results suggest that drought-induced RCH is a highly conserved response used by insects with diverse life history strategies. Furthermore, the protective interaction between drought- and cold-induced RCH suggests that, in nature, insects use multiple cues and physiological mechanisms to fine-tune their response to changing ambient conditions. [Yi, Shu-Xia; Gantz, J. D.; Lee, Richard E., Jr.] Miami Univ, Dept Biol, 700 East High St, Oxford, OH 45056 USA Yi, SX (reprint author), Miami Univ, Dept Biol, 700 East High St, Oxford, OH 45056 USA. yis@miamioh.edu NSF [IOB-0416720, PLR 1341385] This research was supported by grants from NSF (#IOB-0416720 and PLR 1341385). Bayley M, 2001, J INSECT PHYSIOL, V47, P1197, DOI 10.1016/S0022-1910(01)00104-4; Benoit JB, 2009, COMP BIOCHEM PHYS A, V152, P518, DOI 10.1016/j.cbpa.2008.12.009; BERGMEYER HU, 1974, METHOD ENZYMAT AN, V3, P1323; Blommaart EFC, 1997, HISTOCHEM J, V29, P365, DOI 10.1023/A:1026486801018; COULSON SJ, 1991, J INSECT PHYSIOL, V37, P497, DOI 10.1016/0022-1910(91)90026-V; Danks HV, 2000, J INSECT PHYSIOL, V46, P837, DOI 10.1016/S0022-1910(99)00204-8; Fujiwara Y, 2007, J EXP BIOL, V210, P3295, DOI 10.1242/jeb.006536; Gantz JD, 2015, J INSECT PHYSIOL, V73, P30, DOI 10.1016/j.jinsphys.2014.12.004; Hayward SAL, 2007, J EXP BIOL, V210, P836, DOI 10.1242/jeb.02714; Hoback WW, 2001, J INSECT PHYSIOL, V47, P533, DOI 10.1016/S0022-1910(00)00153-0; Holmstrup M, 1999, J COMP PHYSIOL B, V169, P207, DOI 10.1007/s003600050213; Holmstrup M, 2002, P NATL ACAD SCI USA, V99, P5716, DOI 10.1073/pnas.082580699; Holmstrup Martin, 2010, P166, DOI 10.1017/CBO9780511675997.008; Kostal V, 2012, P NATL ACAD SCI USA, V109, P3270, DOI 10.1073/pnas.1119986109; Kostal V, 2011, P NATL ACAD SCI USA, V108, P13041, DOI 10.1073/pnas.1107060108; Lee Jr R. E., 1991, INSECTS LOW TEMPERAT; LEE RE, 1987, SCIENCE, V238, P1415, DOI 10.1126/science.238.4832.1415; LEE RE, 1985, PHYSIOL ENTOMOL, V10, P309, DOI 10.1111/j.1365-3032.1985.tb00052.x; Lee Richard E. Jr, 2010, P35, DOI 10.1017/CBO9780511675997.003; Levis NA, 2012, J EXP BIOL, V215, P3768, DOI 10.1242/jeb.076885; Lopez-Martinez G, 2008, INSECT BIOCHEM MOLEC, V38, P796, DOI 10.1016/j.ibmb.2008.05.006; Lopez-Martinez G, 2009, J COMP PHYSIOL B, V179, P481, DOI 10.1007/s00360-008-0334-0; Meng JY, 2009, J INSECT PHYSIOL, V55, P588, DOI 10.1016/j.jinsphys.2009.03.003; MILES MK, 1962, Q J ROY METEOR SOC, V88, P286, DOI 10.1002/qj.49708837708; MOELLER CC, 1993, J COASTAL RES, V9, P434; MORTIMORE GE, 1989, DIABETES METAB REV, V5, P49, DOI 10.1002/dmr.5610050105; Overgaard J, 2007, J INSECT PHYSIOL, V53, P1218, DOI 10.1016/j.jinsphys.2007.06.012; Rinehart JP, 2007, P NATL ACAD SCI USA, V104, P11130, DOI 10.1073/pnas.0703538104; Rinehart JP, 2000, PHYSIOL ENTOMOL, V25, P330, DOI 10.1046/j.1365-3032.2000.00201.x; Scott RC, 2004, DEV CELL, V7, P167, DOI 10.1016/j.devcel.2004.07.009; Shreve SM, 2004, J EXP BIOL, V207, P1797, DOI 10.1242/jeb.00951; Sinclair BJ, 2003, J INSECT PHYSIOL, V49, P45, DOI 10.1016/S0022-1910(02)00225-1; Sinclair BJ, 2013, INTEGR COMP BIOL, V53, P545, DOI 10.1093/icb/ict004; STOREY KB, 1988, PHYSIOL REV, V68, P27; Teets NM, 2008, AM J PHYSIOL-REG I, V294, pR1938, DOI 10.1152/ajpregu.00459.2007; Teets NM, 2013, P NATL ACAD SCI USA, V110, P9154, DOI 10.1073/pnas.1306705110; Thieden E, 2006, BRIT J DERMATOL, V154, P133, DOI 10.1111/j.1365-2133.2005.06961.x; Yi SX, 2016, J EXP BIOL, V219, P17, DOI 10.1242/jeb.124875; Yi SX, 2003, J INSECT PHYSIOL, V49, P999, DOI 10.1016/S0022-1910(03)00168-9; Yoder JA, 2006, J INSECT PHYSIOL, V52, P202, DOI 10.1016/j.jinsphys.2005.10.005 40 2 2 3 13 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 0174-1578 1432-136X J COMP PHYSIOL B J. Comp. Physiol. B-Biochem. Syst. Environ. Physiol. JAN 2017 187 1 79 86 10.1007/s00360-016-1030-0 8 Physiology; Zoology Physiology; Zoology EK0SK WOS:000393637200006 27568301 2018-11-22 J Mariash, HL; Cusson, M; Rautio, M Mariash, Heather L.; Cusson, Mathieu; Rautio, Milla Fall Composition of Storage Lipids is Associated with the Overwintering Strategy of Daphnia LIPIDS English Article Freshwater; Winter; Fatty acids; Ice; Life history strategies; Zooplankton; SDA POLYUNSATURATED FATTY-ACIDS; SUB-ARCTIC LAKE; MARINE ZOOPLANKTON; TROPHIC TRANSFER; CLADOCERAN; DIAPAUSE; PLANKTON; QUALITY; GROWTH; DIET Diapause, which occurs through the production of dormant eggs, is a strategy used by some zooplankton to avoid winter months of persistent low temperatures and low food availability. However, reports of active zooplankton under the ice indicate that other strategies also exist. This study was aimed at evaluating whether the composition of storage lipids in the fall differs between diapausing and active overwintering Daphnia. We assessed the quantity of storage lipids and fatty acid (FA) composition of Daphnia species, along with FA content of seston, in six boreal, alpine and subarctic lakes at the onset of winter, and evaluated the association between storage lipids and Daphnia overwintering strategy. We found that active overwintering Daphnia had > 55% body fat and the highest FA concentrations. Polyunsaturated FA, especially stearidonic acid (18:4n-3; SDA) and high ratios of n-3:n-6, were preferentially retained to a greater extent in active overwintering Daphnia than in those that entered diapause. Daphnia FA composition was independent of that of the seston diet, indicating that Daphnia adjusted their storage lipids according to the physiological requirements of a given overwintering strategy. The occurrence of an active overwintering strategy has consequences for zooplankton community structure, and can have important implications for the transfer of high-quality energy at higher trophic levels. [Mariash, Heather L.; Rautio, Milla] Univ Jyvaskyla, Dept Environm & Biol Sci, POB 35, Jyvaskyla 40014, Finland; [Mariash, Heather L.; Cusson, Mathieu; Rautio, Milla] Univ Quebec Chicoutimi, Dept Sci Fondamentales, Chicoutimi, PQ G7H 2B1, Canada; [Rautio, Milla] Univ Laval, Ctr Northern Studies CEN, Quebec City, PQ, Canada; [Rautio, Milla] Univ Montreal, Grp Interuniv Res Limnol & Aquat Environm GRIL, Montreal, PQ, Canada; [Mariash, Heather L.] Carleton Univ, Environm & Climate Change Canada, Div Sci & Technol, Natl Wildlife Res Ctr, 1125 Colonel By Dr, Ottawa, ON K1A 0H3, Canada Mariash, HL (reprint author), Univ Jyvaskyla, Dept Environm & Biol Sci, POB 35, Jyvaskyla 40014, Finland.; Mariash, HL (reprint author), Univ Quebec Chicoutimi, Dept Sci Fondamentales, Chicoutimi, PQ G7H 2B1, Canada.; Mariash, HL (reprint author), Carleton Univ, Environm & Climate Change Canada, Div Sci & Technol, Natl Wildlife Res Ctr, 1125 Colonel By Dr, Ottawa, ON K1A 0H3, Canada. heather.mariash@gmail.com Mariash, Heather/0000-0003-2822-5917 Academy of Finland [19205, 140775] We are grateful to the Kilpisjarvi and Simoncouche biological stations for logistical support. We thank Martin Kainz and Jorge Watzke at the Wasserkluster Lunz for technical support during FA analysis, and two anonymous reviewers for their constructive comments that improved the paper. Core funding was provided by the Academy of Finland with Grants 19205 and 140775 to MR. Ahlgren G, 2009, LIPIDS IN AQUATIC ECOSYSTEMS, P147, DOI 10.1007/978-0-387-89366-2_7; Brett MT, 2006, LIMNOL OCEANOGR, V51, P2428, DOI 10.4319/lo.2006.51.5.2428; Burns CW, 2011, FRESHWATER BIOL, V56, P889, DOI 10.1111/j.1365-2427.2010.02534.x; Caceres CE, 2004, LIMNOL OCEANOGR, V49, P1333, DOI 10.4319/lo.2004.49.4_part_2.1333; CARVALHO GR, 1983, FRESHWATER BIOL, V13, P37, DOI 10.1111/j.1365-2427.1983.tb00655.x; Chen CY, 1996, LIMNOL OCEANOGR, V41, P1077, DOI 10.4319/lo.1996.41.5.1077; DeMott WR, 1997, FRESHWATER BIOL, V38, P649, DOI 10.1046/j.1365-2427.1997.00222.x; Domis LND, 2007, OECOLOGIA, V150, P682, DOI 10.1007/s00442-006-0549-2; Dufresne F, 1998, ECOSCIENCE, V5, P433, DOI 10.1080/11956860.1998.11682481; DUFRESNE F, 1995, HEREDITY, V75, P45, DOI 10.1038/hdy.1995.102; Dupuis AP, 2009, FRESHWATER BIOL, V54, P221, DOI 10.1111/j.1365-2427.2008.02103.x; Eloranta AP, 2013, FRESHWATER BIOL, V58, P2541, DOI 10.1111/fwb.12231; Fairclough DV, 2008, ESTUAR COAST SHELF S, V77, P446, DOI 10.1016/j.ecss.2007.10.004; FARKAS T, 1964, J LIPID RES, V5, P369; Forsstrom L, 2007, INT REV HYDROBIOL, V92, P301, DOI 10.1002/iroh.200610928; Galloway AWE, 2014, FRESHWATER BIOL, V59, P1902, DOI 10.1111/fwb.12394; Gliwicz ZM, 2001, OECOLOGIA, V128, P368, DOI 10.1007/s004420100673; GRIFFITHS D, 1995, J FISH BIOL, V47, P537, DOI 10.1006/jfbi.1995.0157; Guschina IA, 2009, LIPIDS IN AQUATIC ECOSYSTEMS, P1, DOI 10.1007/978-0-387-89366-2_1; Hagen W, 1996, MAR ECOL PROG SER, V134, P85, DOI 10.3354/meps134085; Hagen W, 2001, ZOOL-ANAL COMPLEX SY, V104, P313, DOI 10.1078/0944-2006-00037; Hampton SE, 2015, J PLANKTON RES, V37, P277, DOI 10.1093/plankt/fbv002; Hartwich M, 2013, J PLANKTON RES, V35, P121, DOI 10.1093/plankt/fbs078; Heissernberger M, 2010, HYDROBIOLOGY, V650, P234; Hessen DO, 2006, FRESHWATER BIOL, V51, P1987, DOI 10.1111/j.1365-2427.2006.01619.x; Hiltunen M, 2014, LIPIDS, V49, P919, DOI 10.1007/s11745-014-3933-4; HOLM S, 1979, SCAND J STAT, V6, P65; Kattner G, 2007, CAN J FISH AQUAT SCI, V64, P1628, DOI 10.1139/F07-122; LAMPERT W, 1986, LIMNOL OCEANOGR, V31, P478, DOI 10.4319/lo.1986.31.3.0478; Lampert W, 2010, LIMNOL OCEANOGR, V55, P1893, DOI 10.4319/lo.2010.55.5.1893; Larsson P, 2006, ARCH HYDROBIOL, V167, P265, DOI 10.1127/0003-9136/2006/0167-0265; Lee RF, 2006, MAR ECOL PROG SER, V307, P273, DOI 10.3354/meps307273; Muller-Navarra DC, 2000, NATURE, V403, P74, DOI 10.1038/47469; PATALAS K, 1990, INT VER THEOR ANGEW, V24, P360; Persson J, 2006, FRESHWATER BIOL, V51, P887, DOI 10.1111/j.1365-2427.2006.01540.x; Rautio Milla, 2000, Journal of Limnology, V59, P81; Rautio M, 2011, LIMNOL OCEANOGR, V56, P1513, DOI 10.4319/lo.2011.56.4.1513; REZNICK DN, 1987, OECOLOGIA, V73, P401, DOI 10.1007/BF00385257; Roiha T, 2015, BIOGEOSCIENCES, V12, P7223, DOI 10.5194/bg-12-7223-2015; Sarma SSS, 2005, HYDROBIOLOGIA, V542, P315, DOI 10.1007/s10750-004-3247-2; Schneider T, 2016, LIMNOL OCEANOGR, V61, P1201, DOI 10.1002/lno.10283; Slusarczyk M, 2009, FRESHWATER BIOL, V54, P2252, DOI 10.1111/j.1365-2427.2009.02256.x; Taipale SJ, 2011, OIKOS, V120, P1674, DOI 10.1111/j.1600-0706.2011.19415.x; TESSIER AJ, 1982, LIMNOL OCEANOGR, V27, P707, DOI 10.4319/lo.1982.27.4.0707; TESSIER AJ, 1983, LIMNOL OCEANOGR, V28, P667, DOI 10.4319/lo.1983.28.4.0667; Thackeray SJ, 2012, FRESHWATER BIOL, V57, P345, DOI 10.1111/j.1365-2427.2011.02614.x; van der Meeren T, 2008, AQUACULTURE, V274, P375, DOI 10.1016/j.aquaculture.2007.11.041; von Elert E, 2004, HYDROBIOLOGIA, V526, P187, DOI 10.1023/B:HYDR.0000041604.01529.00; YANG XW, 1994, CAN J FISH AQUAT SCI, V51, P1391, DOI 10.1139/f94-139 49 3 3 2 22 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 0024-4201 1558-9307 LIPIDS Lipids JAN 2017 52 1 83 91 10.1007/s11745-016-4219-9 9 Biochemistry & Molecular Biology; Nutrition & Dietetics Biochemistry & Molecular Biology; Nutrition & Dietetics EK0CJ WOS:000393593800008 27981494 2018-11-22 J Gettler, LT; Ryan, CP; Eisenberg, DTA; Rzhetskaya, M; Hayes, MG; Feranil, AB; Bechayda, SA; Kuzawa, CW Gettler, Lee T.; Ryan, Calen P.; Eisenberg, Dan T. A.; Rzhetskaya, Margarita; Hayes, M. Geoffrey; Feranil, Alan B.; Bechayda, Sonny Agustin; Kuzawa, Christopher W. The role of testosterone in coordinating male life history strategies: The moderating effects of the androgen receptor CAG repeat polymorphism HORMONES AND BEHAVIOR English Article Psychobiology; Social neuroendocrinology; Fathering; Fatherhood; Childcare; Marriage; Divorce and separation; Short tandem repeats; Reproductive ecology; Steroid receptor SALIVARY TESTOSTERONE; SOCIAL-BEHAVIOR; DEPRESSIVE SYMPTOMS; REPRODUCTIVE EFFORT; MENS TESTOSTERONE; NEGATIVE FEEDBACK; ADOLESCENT MALES; PATERNAL CARE; HUMAN FATHERS; GENUS HOMO Partnered fathers often have lower testosterone than single non-parents, which is theorized to relate to elevated testosterone (T) facilitating competitive behaviors and lower T contributing to nurturing. Cultural-and individual -factors moderate the expression of such psychobiological profiles. Less is known about genetic variation's role in individual psychobiological responses to partnering and fathering, particularly as related to T. We examined the exon 1 CAG (polyglutamine) repeat (CAGn) within the androgen receptor (AR) gene. AR CAGn shapes T's effects after it binds to AR by affecting AR transcriptional activity. Thus, this polymorphism is a strong candidate to influence individual-level profiles of "androgenicity." While males with a highly androgenic profile are expected to engage in a more competitive-oriented life history strategy, low androgenic men are at increased risk of depression, which could lead to similar outcomes for certain familial dynamics, such as marriage stability and parenting. Here, in a large longitudinal study of Filipino men (n = 683), we found that men who had high androgenicity (elevated T and shorter CAGn) or low androgenicity (lower T and longer CAGn) showed elevated likelihood of relationship instability over the 4.5-year study period and were also more likely be relatively uninvolved with childcare as fathers. We did not find that CAGn moderated men's T responses to the fatherhood transition. In total, our results provide evidence for invested fathering and relationship stability at intermediate levels of androgenicity and help inform our understanding of variation in male reproductive strategies and the individual hormonal and genetic differences that underlie it. (C) 2016 Elsevier Inc. All rights reserved. [Gettler, Lee T.] Univ Notre Dame, Dept Anthropol, 636 Flanner Hall, Notre Dame, IN 46556 USA; [Gettler, Lee T.] Univ Notre Dame, Eck Inst Global Hlth, Notre Dame, IN 46556 USA; [Ryan, Calen P.; Hayes, M. Geoffrey; Kuzawa, Christopher W.] Northwestern Univ, Dept Anthropol, Evanston, IL 60208 USA; [Eisenberg, Dan T. A.] Univ Washington, Dept Anthropol, Seattle, WA 98195 USA; [Eisenberg, Dan T. A.] Univ Washington, Ctr Studies Demog & Ecol, Seattle, WA 98195 USA; [Rzhetskaya, Margarita; Hayes, M. Geoffrey] Northwestern Univ, Feinberg Sch Med, Dept Med, Div Endocrinol Metab & Mol Med, Chicago, IL 60611 USA; [Hayes, M. Geoffrey] Northwestern Univ, Feinberg Sch Med, Ctr Genet Med, Chicago, IL 60611 USA; [Feranil, Alan B.; Bechayda, Sonny Agustin] Univ San Carlos, Coll Arts & Sci, USC Off Populat Studies Fdn, Talamban Cebu City, Philippines; [Feranil, Alan B.; Bechayda, Sonny Agustin] Univ San Carlos, Coll Arts & Sci, Dept Anthropol Sociol & Hist, Talamban Cebu City, Philippines; [Kuzawa, Christopher W.] Northwestern Univ, Inst Policy Res, Evanston, IL 60208 USA Gettler, LT (reprint author), Univ Notre Dame, Dept Anthropol, 636 Flanner Hall, Notre Dame, IN 46556 USA. lgettler@nd.edu Hayes, M Geoffrey/0000-0002-4617-3981 Wenner Gren Foundation [Gr. 7356, Gr. 8186]; National Science Foundation [BCS-0542182, BCS-0962212] Work supported by: Wenner Gren Foundation (Gr. 7356; Gr. 8186) and National Science Foundation (BCS-0542182; BCS-0962212). LTG was funded by a Wenner-Gren Foundation Hunt Postdoctoral Writing Fellowship during the writing of this article. We thank the Office of Population Studies, University of San Carlos, Metro Cebu, Philippines, for their role in study design and data collection, and the Filipino participants, who provided their time for this study and for their ongoing commitment to this research. Kim Bauer assisted with background research. Elizabeth (EA) Quinn, Katy Sharrock, Jeffrey Huang, Iram Azam, Divya Mallampati, Brian Dubin, and Laura Rogers helped with various phases of lab work with these samples. Ackerman CM, 2010, J CLIN ENDOCR METAB, V95, P3242, DOI 10.1210/jc.2009-2718; Ackerman CM, 2012, J ANDROL, V33, P210, DOI 10.2164/jandrol.111.013391; Adair LS, 2011, INT J EPIDEMIOL, V40, P619, DOI 10.1093/ije/dyq085; Alexander GM, 2014, FRONT ENDOCRINOL, V5, DOI 10.3389/fendo.2014.00015; Aluja A, 2015, PHYSIOL BEHAV, V147, P91, DOI 10.1016/j.physbeh.2015.04.022; Alvarado LC, 2015, AM J PHYS ANTHROPOL, V158, P19, DOI 10.1002/ajpa.22771; Alvergne A, 2009, HORM BEHAV, V56, P491, DOI 10.1016/j.yhbeh.2009.07.013; Archer J, 2006, NEUROSCI BIOBEHAV R, V30, P319, DOI 10.1016/j.neubiorev.2004.12.007; Auyeung B, 2009, PSYCHOL SCI, V20, P144, DOI 10.1111/j.1467-9280.2009.02279.x; Bakermans-Kranenburg MJ, 2008, SOC COGN AFFECT NEUR, V3, P128, DOI 10.1093/scan/nsn004; Berenbaum SA, 2011, FRONT NEUROENDOCRIN, V32, P183, DOI 10.1016/j.yfrne.2011.03.001; BOOTH A, 1993, SOC FORCES, V72, P463, DOI 10.2307/2579857; Bramen JE, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033850; Bribiescas RG, 2001, YEARB PHYS ANTHROPOL, V44, P148, DOI 10.1002/ajpa.10025; Bribiescas RG, 2012, CURR ANTHROPOL, V53, pS424, DOI 10.1086/667538; Butovskaya ML, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0136208; Campbell B.C., 2007, INT J ANDROL, V30, P1; Carre JM, 2015, NEUROSCIENCE, V286, P171, DOI 10.1016/j.neuroscience.2014.11.029; Chamey D.S., 2004, PSYCHOBIOLOGICAL MEC; Chew SH, 2013, J ECON BEHAV ORGAN, V90, P28, DOI 10.1016/j.jebo.2013.03.008; COHEN S, 1983, J HEALTH SOC BEHAV, V24, P385, DOI 10.2307/2136404; Crabbe P, 2007, J CLIN ENDOCR METAB, V92, P3604, DOI 10.1210/jc.2007-0117; Cunningham RL, 2007, NEUROSCIENCE, V150, P609, DOI 10.1016/j.neuroscience.2007.09.038; DABBS JM, 1990, PSYCHOL SCI, V1, P209, DOI 10.1111/j.1467-9280.1990.tb00200.x; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Ebinger M, 2009, J PSYCHOPHARMACOL, V23, P841, DOI 10.1177/0269881108092337; Edelstein R.S., 2016, DEV PSYCHOBIOL, P1; Edelstein RS, 2015, AM J HUM BIOL, V27, P317, DOI 10.1002/ajhb.22670; Edelstein RS, 2014, HORM BEHAV, V65, P401, DOI 10.1016/j.yhbeh.2014.03.003; Eisenegger C., 2016, HORM BEHAV; Endendijk JJ, 2016, HORM BEHAV, V80, P68, DOI 10.1016/j.yhbeh.2016.01.016; Feldman R, 2007, CURR DIR PSYCHOL SCI, V16, P340, DOI 10.1111/j.1467-8721.2007.00532.x; Feldman R, 2013, NEUROPSYCHOPHARMACOL, V38, P1154, DOI 10.1038/npp.2013.22; Feldman R, 2012, BIOL PSYCHIAT, V72, P175, DOI 10.1016/j.biopsych.2011.12.025; Fleming AS, 2002, HORM BEHAV, V42, P399, DOI 10.1006/hbeh.2002.1840; Flinn M, 1998, BEHAV BRAIN SCI, V21, P372, DOI 10.1017/S0140525X98361221; Flinn MV, 2012, HUM NATURE-INT BIOS, V23, P68, DOI 10.1007/s12110-012-9135-y; Geary DC, 2001, PARENT-SCI PRACT, V1, P5, DOI 10.1207/S15327922PAR011&2_2; Gettler L.T., 2016, SOC SCI MED; Gettler LT, 2016, CURR ANTHROPOL, V57, pS38, DOI 10.1086/686149; Gettler LT, 2015, ADAPT HUM BEHAV PHYS, V1, P124, DOI 10.1007/s40750-014-0018-9; Gettler LT, 2014, EVOL ANTHROPOL, V23, P146, DOI 10.1002/evan.21412; Gettler LT, 2013, HORM BEHAV, V64, P755, DOI 10.1016/j.yhbeh.2013.08.019; Gettler LT, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0041559; Gettler LT, 2011, P NATL ACAD SCI USA, V108, P16194, DOI 10.1073/pnas.1105403108; Gettler LT, 2010, AM ANTHROPOL, V112, P7, DOI 10.1111/j.1548-1433.2009.01193.x; Gipson JD, 2012, CULT HEALTH SEX, V14, P613, DOI 10.1080/13691058.2012.684222; Gonzales T.P., 2004, PHILIPPINE J PSYCHOL, V37; Gray P.B., 2009, NAT PREC, P1; Gray P.B., 2016, REV HUMAN MALE FIELD; Gray PB, 2006, P ROY SOC B-BIOL SCI, V273, P333, DOI 10.1098/rspb.2005.3311; Gray PB, 2003, AM J PHYS ANTHROPOL, V122, P279, DOI 10.1002/ajpa.10293; Gray PB, 2002, EVOL HUM BEHAV, V23, P193, DOI 10.1016/S1090-5138(01)00101-5; Gray PB, 2014, FATHERING, V12, P121; Gray PB, 2007, CURR ANTHROPOL, V48, P750, DOI 10.1086/522061; Gray Peter B., 2010, FATHERHOOD EVOLUTION; Gurven M, 2009, CURR ANTHROPOL, V50, P51, DOI 10.1086/595620; Harkonen K, 2003, INT J ANDROL, V26, P187, DOI 10.1046/j.1365-2605.2003.00415.x; Harris JA, 1998, BEHAV GENET, V28, P165, DOI 10.1023/A:1021466929053; Hau M, 2007, BIOESSAYS, V29, P133, DOI 10.1002/bies.20524; Hindin MJ, 2006, AM J PUBLIC HEALTH, V96, P660, DOI 10.2105/AJPH.2005.069625; Hines M, 2011, FRONT NEUROENDOCRIN, V32, P170, DOI 10.1016/j.yfrne.2011.02.006; Hong Y, 2001, J ENDOCRINOL, V170, P485, DOI 10.1677/joe.0.1700485; Hrdy SB, 2009, MOTHERS OTHERS EVOLU; Jasienska G, 2012, EVOL HUM BEHAV, V33, P665, DOI 10.1016/j.evolhumbehav.2012.05.001; Kessler RC, 1998, AM J PSYCHIAT, V155, P1092, DOI 10.1176/ajp.155.8.1092; KETTERSON ED, 1992, AM NAT, V140, P980, DOI 10.1086/285451; Kozorovitskiy Y, 2006, NAT NEUROSCI, V9, P1094, DOI 10.1038/nn1753; Krithivas K, 1999, J ENDOCRINOL, V162, P137, DOI 10.1677/joe.0.1620137; Kuo P.X., 2015, DEV PSYCHOBIOL; Kuzawa CW, 2012, CURR ANTHROPOL, V53, pS369, DOI 10.1086/667410; Kuzawa CW, 2010, P NATL ACAD SCI USA, V107, P16800, DOI 10.1073/pnas.1006008107; Kuzawa CW, 2009, HORM BEHAV, V56, P429, DOI 10.1016/j.yhbeh.2009.07.010; Lacar L.Q., 1993, PHILIPP STUD, V41, P232; Manuck SB, 2010, PSYCHONEUROENDOCRINO, V35, P94, DOI 10.1016/j.psyneuen.2009.04.013; Mascaro JS, 2014, SOC COGN AFFECT NEUR, V9, P1704, DOI 10.1093/scan/nst166; Mascaro JS, 2013, P NATL ACAD SCI USA, V110, P15746, DOI 10.1073/pnas.1305579110; Mazur A, 1998, SOC FORCES, V77, P315, DOI 10.2307/3006019; Mazur A, 2014, ANDROLOGY-US, V2, P125, DOI 10.1111/j.2047-2927.2013.00164.x; McIntyre M, 2006, J PERS SOC PSYCHOL, V91, P642, DOI 10.1037/0022-3514.91.4.642; Mead DE, 2002, J MARITAL FAM THER, V28, P299, DOI 10.1111/j.1752-0606.2002.tb01188.x; Medina B.T.G., 2001, FILIPINO FAMILY U PH; Muller MN, 2009, P ROY SOC B-BIOL SCI, V276, P347, DOI 10.1098/rspb.2008.1028; Peper JS, 2011, PSYCHONEUROENDOCRINO, V36, P1101, DOI 10.1016/j.psyneuen.2011.05.004; Perini T, 2012, HORM BEHAV, V61, P191, DOI 10.1016/j.yhbeh.2011.12.004; Philippines McCann-Erickson, 1995, MCCANN ERICKSON PHIL; Potts R, 2012, CURR ANTHROPOL, V53, pS299, DOI 10.1086/667704; Puts DA, 2015, HORM BEHAV, V70, P14, DOI 10.1016/j.yhbeh.2015.01.006; R Core Development Team, 2011, R LANG ENV STAT COM; Rajender S, 2008, INT J LEGAL MED, V122, P367, DOI 10.1007/s00414-008-0225-7; Rajpert-De Meyts E, 2002, LANCET, V359, P44, DOI 10.1016/S0140-6736(02)07280-X; Ramchandani P, 2005, LANCET, V365, P2201, DOI 10.1016/S0140-6736(05)66778-5; Raznahan A, 2010, P NATL ACAD SCI USA, V107, P16988, DOI 10.1073/pnas.1006025107; Remage-Healey L, 2014, HORM BEHAV, V66, P552, DOI 10.1016/j.yhbeh.2014.07.014; Reynolds H.R., 1966, PHILIPPINE SOCIOLOGI, V14, P212; Ricci LA, 2009, HORM BEHAV, V55, P348, DOI 10.1016/j.yhbeh.2008.10.011; Rilling JK, 2013, NEUROPSYCHOLOGIA, V51, P731, DOI 10.1016/j.neuropsychologia.2012.12.017; Roney JR, 2015, CURR OPIN PSYCHOL, V1, P81, DOI 10.1016/j.copsyc.2014.11.003; Roney JR, 2010, P R SOC B, V277, P57, DOI 10.1098/rspb.2009.1538; Russo SJ, 2012, NAT NEUROSCI, V15, P1475, DOI 10.1038/nn.3234; Ryan C.P., 2016, AM J HUM BI IN PRESS; Ryan CP, 2013, EVOL APPL, V6, P180, DOI 10.1111/j.1752-4571.2012.00275.x; Sankar JS, 2012, GENDER MED, V9, P232, DOI 10.1016/j.genm.2012.05.001; Saxbe D.E, 2016, HORM BEHAV; Schneider G, 2011, AM J GERIAT PSYCHIAT, V19, P274, DOI 10.1097/JGP.0b013e3181e70c22; Schulz KM, 2009, ENDOCRINOLOGY, V150, P3690, DOI 10.1210/en.2008-1708; Seidman SN, 2001, BIOL PSYCHIAT, V50, P371, DOI 10.1016/S0006-3223(01)01148-9; Simmons ZL, 2011, HORM BEHAV, V60, P306, DOI 10.1016/j.yhbeh.2011.06.006; Soetaert K., 2016, R PACKAGE VERSION 1; Storey AE, 2016, HORM BEHAV, V77, P260, DOI 10.1016/j.yhbeh.2015.07.024; Storey AE, 2011, HORM BEHAV, V60, P353, DOI 10.1016/j.yhbeh.2011.07.001; Tilbrook AJ, 2001, BIOL REPROD, V64, P735, DOI 10.1095/biolreprod64.3.735; Trumble BC, 2015, PHILOS T R SOC B, V370, DOI 10.1098/rstb.2015.0014; Nguyen TV, 2016, PSYCHONEUROENDOCRINO, V63, P109, DOI 10.1016/j.psyneuen.2015.09.021; van Anders SM, 2007, HORM BEHAV, V51, P286, DOI 10.1016/j.yhbeh.2006.11.005; van Anders SM, 2015, P NATL ACAD SCI USA, V112, P13805, DOI 10.1073/pnas.1509591112; van Anders SM, 2013, FRONT NEUROENDOCRIN, V34, P198, DOI 10.1016/j.yfrne.2013.07.001; van Anders SM, 2012, HORM BEHAV, V61, P31, DOI 10.1016/j.yhbeh.2011.09.012; van Anders SM, 2011, PSYCHONEUROENDOCRINO, V36, P1265, DOI 10.1016/j.psyneuen.2011.06.001; van Anders SM, 2010, HORM BEHAV, V58, P820, DOI 10.1016/j.yhbeh.2010.08.005; van Bokhoven I, 2006, HORM BEHAV, V50, P118, DOI 10.1016/j.yhbeh.2006.02.002; Veldhuis JD, 2009, MOL CELL ENDOCRINOL, V299, P14, DOI 10.1016/j.mce.2008.09.005; Vermeersch H, 2010, EUR J ENDOCRINOL, V163, P319, DOI 10.1530/EJE-10-0090; von Eckardstein S, 2001, J CLIN ENDOCR METAB, V86, P2585, DOI 10.1210/jc.86.6.2585; Wallen K, 2005, FRONT NEUROENDOCRIN, V26, P7, DOI 10.1016/j.yfrne.2005.02.001; Weisman O, 2014, PROG NEURO-PSYCHOPH, V49, P47, DOI 10.1016/j.pnpbp.2013.11.006; WESTEBERHARD MJ, 1979, P AM PHILOS SOC, V123, P222; Zitzmann M, 2003, DIABETOLOGIA, V46, P31, DOI 10.1007/s00125-002-0980-9 128 8 8 2 17 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0018-506X 1095-6867 HORM BEHAV Horm. Behav. JAN 2017 87 164 175 10.1016/j.yhbeh.2016.10.012 12 Behavioral Sciences; Endocrinology & Metabolism Behavioral Sciences; Endocrinology & Metabolism EJ0NE WOS:000392905500019 27794482 2018-11-22 J Durrant, R Durrant, Russil Why do protective factors protect? An evolutionary developmental perspective AGGRESSION AND VIOLENT BEHAVIOR English Article GENE-ENVIRONMENT INTERACTION; DYNAMIC RISK-FACTORS; DIFFERENTIAL SUSCEPTIBILITY; INDIVIDUAL-DIFFERENCES; MALTREATED CHILDREN; CUMULATIVE RISK; YOUTH VIOLENCE; METAANALYSIS; BEHAVIOR; CHILDHOOD A growing body of research has identified a list of protective factors that decrease the likelihood of an individual engaging in criminal and antisocial behaviour. However, despite substantial empirical advances in our understanding of the factors that protect against offending, relatively little theoretical work has been directed at explaining why these factors serve a protective function and the notion of protective factors, like risk factors, is conceptually problematic. In this article I argue that we can advance our understanding of what protective factors are and why they serve a protective function by taking an evolutionary developmental perspective. More specifically, an evolutionary informed framework is provided that outlines two broad models for understanding individual differences in antisocial and prosocial behaviour. First, I suggest that individual differences in antisocial (and prosocial behaviour) are linked to the development of alternative life history strategies in response to different environmental contexts. More specifically, I argue that 'protective' factors can often be conceptualised in terms of features of the environment and/or feature of individuals that promote and/or reflect the development of slow life history strategies. Second, drawing from recent research on individual differences in plasticity I highlight how our conceptualisation of protective (and, indeed, risk) factors is contingent on the interaction between individual susceptibility to environmental influence and relevant environmental contexts. In other words, often what counts as a 'protective' factor depends on individual differences in plasticity. Inevitably, as our understanding of why protective factors protect improves, there will be advances in the nature and scope of our interventions to improve prosocial outcomes and prevention efforts will be enhanced. (C) 2016 Elsevier Ltd. All rights reserved. [Durrant, Russil] Victoria Univ Wellington, Sch Social & Cultural Studies, Inst Criminol, Wellington, New Zealand Durrant, R (reprint author), Victoria Univ Wellington, Sch Social & Cultural Studies, Inst Criminol, Wellington, New Zealand. russil.durrant@vuw.ac.nz Agnew R., 2011, UNIFIED CRIMINOLOGY; Agnew R, 2014, CRIMINOLOGY, V52, P1, DOI 10.1111/1745-9125.12031; Andershed AK, 2016, J CRIM JUST, V45, P78, DOI 10.1016/j.jcrimjus.2016.02.006; Andrews DA, 2010, PSYCHOLOGY OF CRIMINAL CONDUCT, 5TH EDITION, P1; Bakermans-Kranenburg M. J., 2015, ANN REV PSYCHOL, V66; Bakermans-Kranenburg MJ, 2011, DEV PSYCHOPATHOL, V23, P39, DOI 10.1017/S0954579410000635; Baptista J., 2016, EUROPEAN J CHILD ADO; Belsky J., 2005, ORIGINS SOCIAL MIND, P139; Belsky J, 2007, CURR DIR PSYCHOL SCI, V16, P300, DOI 10.1111/j.1467-8721.2007.00525.x; Belsky J, 2015, DEV PSYCHOPATHOL, V27, P1, DOI 10.1017/S0954579414001254; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Belsky J, 2009, PSYCHOL BULL, V135, P885, DOI 10.1037/a0017376; Bjorklund DF, 2014, DEV REV, V34, P225, DOI 10.1016/j.dr.2014.05.005; Boehm C., 2012, MORAL ORIGINS EVOLUT; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Byrd AL, 2014, BIOL PSYCHIAT, V75, P9, DOI 10.1016/j.biopsych.2013.05.004; Campbell A, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2013.0078; Caspi A, 2002, SCIENCE, V297, P851, DOI 10.1126/science.1072290; Copping LT, 2015, EVOL HUM BEHAV, V36, P182, DOI 10.1016/j.evolhumbehav.2014.10.005; Copping LT, 2013, HUM NATURE-INT BIOS, V24, P137, DOI 10.1007/s12110-013-9163-2; Crespi B, 2014, HUM NATURE-INT BIOS, V25, P6, DOI 10.1007/s12110-013-9185-9; Del Giudice M., 2011, EVOLUTION PERSONALIT, P154; Dingemanse NJ, 2013, ANIM BEHAV, V85, P1031, DOI 10.1016/j.anbehav.2012.12.032; Dubow EF, 2016, J CRIM JUST, V45, P26, DOI 10.1016/j.jcrimjus.2016.02.005; Durrant R., 2015, EVOLUTIONARY CRIMINO; Durrant R, 2016, PSYCHOL CRIME LAW, V22, P17, DOI 10.1080/1068316X.2015.1109093; Ellis BJ, 2014, DEV PSYCHOPATHOL, V26, P1, DOI 10.1017/S0954579413000849; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P7, DOI 10.1017/S0954579410000611; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Farrington D. P., 2007, SAVING CHILDREN LIFE; Farrington D. P., 2015, FORENSIC PSYCHOL, P162; Frankenhuis WE, 2016, CURR OPIN PSYCHOL, V7, P76, DOI 10.1016/j.copsyc.2015.08.011; Frankenhuis WE, 2016, DEVELOPMENTAL SCI, V19, P251, DOI 10.1111/desc.12309; Glowacz F., 2015, DEV CRIMINAL ANTISOC, P283; Gomez J. M., 2016, NATURE; Hall JE, 2012, AM J PREV MED, V43, pS60, DOI 10.1016/j.amepre.2012.04.019; Hall JE, 2012, AM J PREV MED, V43, pS1, DOI 10.1016/j.amepre.2012.04.026; Hamlin JK, 2013, CURR DIR PSYCHOL SCI, V22, P186, DOI 10.1177/0963721412470687; Henrich J, 2016, SECRET OF OUR SUCCESS: HOW CULTURE IS DRIVING HUMAN EVOLUTION, DOMESTICATING OUR SPECIES, AND MAKING US SMARTER, P1; Hochberg Z., 2013, BMC MED, V11, P1; Jaffee SR, 2007, CHILD ABUSE NEGLECT, V31, P231, DOI 10.1016/j.chiabu.2006.03.011; Jolliffe D, 2016, J CRIM JUST, V45, P32, DOI 10.1016/j.jcrimjus.2016.02.007; Kim BKE, 2016, J CRIM JUST, V45, P19, DOI 10.1016/j.jcrimjus.2016.02.015; Kim-Cohen J, 2006, MOL PSYCHIATR, V11, P903, DOI 10.1038/sj.mp.4001851; Kraemer HC, 2001, AM J PSYCHIAT, V158, P848, DOI 10.1176/appi.ajp.158.6.848; Losel F, 2012, AM J PREV MED, V43, pS68, DOI 10.1016/j.amepre.2012.04.029; Mathew S, 2014, EVOL HUM BEHAV, V35, P58, DOI 10.1016/j.evolhumbehav.2013.10.001; Pardini Dustin A, 2012, Am J Prev Med, V43, pS28, DOI 10.1016/j.amepre.2012.04.024; Pluess M, 2013, PSYCHOL BULL, V139, P901, DOI 10.1037/a0030196; Portnoy J, 2013, J CRIM JUST, V41, P292, DOI 10.1016/j.jcrimjus.2013.06.018; Roach J., 2013, EVOLUTION AND CRIME; Robbe MD, 2013, J FORENSIC PSYCHI PS, V24, P440, DOI 10.1080/14789949.2013.818162; Serin RC, 2016, PSYCHOL CRIME LAW, V22, P151, DOI 10.1080/1068316X.2015.1112013; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Stamps J. A., 2015, BIOL REV; Tomasello M, 2013, ANNU REV PSYCHOL, V64, P231, DOI 10.1146/annurev-psych-113011-143812; Ttofi MM, 2016, J CRIM JUST, V45, P4, DOI 10.1016/j.jcrimjus.2016.02.003; Tyler T. R, 2006, WHY PEOPLE OBEY LAW; van IJzendoorn MH, 2012, TRANSL PSYCHIAT, V2, DOI 10.1038/tp.2012.73; van Ijzendoorn MH, 2015, DEV PSYCHOPATHOL, V27, P151, DOI 10.1017/S0954579414001369; Ward T, 2016, PSYCHOL CRIME LAW, V22, P2, DOI 10.1080/1068316X.2015.1109094 62 2 2 1 8 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 1359-1789 1873-6335 AGGRESS VIOLENT BEH Aggress. Violent Behav. JAN-FEB 2017 32 SI 4 10 10.1016/j.avb.2016.12.002 7 Criminology & Penology; Psychology, Multidisciplinary Criminology & Penology; Psychology EI0LC WOS:000392165000002 2018-11-22 J Ji, SN; Jiang, ZG; Li, LL; Li, CW; Zhang, YJ; Ren, S; Ping, XG; Cui, SP; Chu, HJ Ji, Shengnan; Jiang, Zhigang; Li, Lili; Li, Chunwang; Zhang, Yongjun; Ren, Shien; Ping, Xiaoge; Cui, Shaopeng; Chu, Hongjun Impact of different road types on small mammals in Mt. Kalamaili Nature Reserve TRANSPORTATION RESEARCH PART D-TRANSPORT AND ENVIRONMENT English Article Road type; Avoidance; Permeability; Translocation; Rhombomys opimus; Allactaga sibirica BANFF-NATIONAL-PARK; RAIN-FOREST ROADS; MOVEMENT; ABUNDANCE; PERMEABILITY; POPULATIONS; DISTURBANCE; LANDSCAPES; AVOIDANCE; MORTALITY Understanding how roads affect connectivity of wildlife populations is one of the challenges in road ecology. Road avoidance behavior in animals may fragment populations, whereas lacking of road avoidance behavior in animals presumably result in high mortality due to wildlife-vehicle collisions. Small mammals are of great interest on account of their value as indicators of environmental impacts and their key role in ecosystems. Applying mark-recapture method, we conducted trapping experiment and artificial translocation to assess how different types of roads affect the small mammals in Mt. Kalamaili Nature Reserve in northern Xinjiang, China. The results show that of the two small mammal species that were most commonly trapped, the abundance of great gerbils (Rhombomys opimus) increased near unpaved road and decreased at paved road sites, as opposed to Mongolian five-toed jerboas (Allactaga sibirica); road crossing events of great gerbils were primarily influenced by the paved road, rather than the unpaved road, in contrast to Mongolian five-toed jerboas were unaffected by road types (no matter paved-or unpaved roads). Therefore, our results indicated that great gerbils avoided paved road, while paved road had no influence on Mongolian five-toed jerboas. The interspecific difference implied that microhabitat use preferences, life-history strategies and road substrate help to predict how species responses to barrier of different road types, but traffic volume may have little effect. However, since higher traffic levels were not coincided with the peak periods for activity of the nocturnal species, further investigations are needed to be continued. (C) 2016 Published by Elsevier Ltd. [Ji, Shengnan; Jiang, Zhigang; Li, Lili; Li, Chunwang; Ping, Xiaoge; Cui, Shaopeng] Chinese Acad Sci, Inst Zool, Key Lab Anim Ecol & Conservat Biol, Beijing 100101, Peoples R China; [Jiang, Zhigang; Li, Chunwang; Cui, Shaopeng] Univ Chinese Acad Sci, Beijing 100049, Peoples R China; [Zhang, Yongjun; Ren, Shien] Xinjiang Normal Univ, Coll Life & Environm Sci, Xinjiang 830054, Peoples R China; [Chu, Hongjun] Altai Forestry Bur, Altai 836500, Xinjiang, Peoples R China Jiang, ZG (reprint author), Chinese Acad Sci, Inst Zool, Key Lab Anim Ecol & Conservat Biol, Beijing 100101, Peoples R China. jiangzg@ioz.ac.cn Natural Science Foundation of Uygur Autonomous Region, Xinjiang, China [2013211A025]; Key Basic Science and Technology Project of the Ministry of Science and Technology, China [2013FY110300] We are grateful to the following institutions for help in data collection: Altai Forestry Bureau (B. Li, X.C. Jiang, Y.B. Li), Mt. Kalamaili Nature Reserve (L. He, Y. Ge, Bulan), Wildlife monitoring team (Aidai, Arqin, C. Deng, Hali). This project was funded by the Key Basic Science and Technology Project of the Ministry of Science and Technology, China (2013FY110300), and Natural Science Foundation of Uygur Autonomous Region, Xinjiang, China (2013211A025). Barrientos R, 2009, BIODIVERS CONSERV, V18, P405, DOI 10.1007/s10531-008-9499-9; Boarman W.I., 1996, HIGHWAYS MOVEMENT WI, P169; Brehme CS, 2013, CONSERV BIOL, V27, P710, DOI 10.1111/cobi.12081; BURNETT SE, 1992, WILDLIFE RES, V19, P95, DOI 10.1071/WR9920095; Capillas P. Ruiz, 2013, BIOL CONSERV, V158, P223; Chi H. K., 2007, EUR PMC, V16, P105; Chu H.J., 2009, BIODIVERS SCI, V17, P414; Chu H. W., 2008, THESIS; Dodd CK, 2004, BIOL CONSERV, V118, P619, DOI 10.1016/j.biocon.2003.10.011; Fahrig L, 2007, FUNCT ECOL, V21, P1003, DOI 10.1111/j.1365-2435.2007.01326.x; Fahrig L, 2009, ECOL SOC, V14; Ford AT, 2008, J MAMMAL, V89, P895, DOI 10.1644/07-MAMM-A-320.1; Forman R. T. T., 2003, ROAD ECOLOGY SCI SOL; Goosem M, 2002, WILDLIFE RES, V29, P277, DOI 10.1071/WR01058; Goosem M, 2001, WILDLIFE RES, V28, P351, DOI 10.1071/WR99093; Haapakoski M, 2012, J ANIM ECOL, V81, P1183, DOI 10.1111/j.1365-2656.2012.02005.x; Hanski I, 2001, ECOLOGY, V82, P1505, DOI 10.2307/2679796; Jaeger JAG, 2005, ECOL MODEL, V185, P329, DOI 10.1016/j.ecolmodel.2004.12.015; Kuykendall MT, 2011, SOUTHWEST NAT, V56, P9, DOI 10.1894/CLG-33.1; Leblond M, 2013, J ZOOL, V289, P32, DOI 10.1111/j.1469-7998.2012.00959.x; Leinders-Zufall T, 2000, NATURE, V405, P792, DOI 10.1038/35015572; Liu JG, 2001, SCIENCE, V292, P98, DOI 10.1126/science.1058104; Lode T, 2000, AMBIO, V29, P163, DOI 10.1579/0044-7447-29.3.163; McDonald W, 2004, J APPL ECOL, V41, P82, DOI 10.1111/j.1365-2664.2004.00877.x; McDonald WR, 2004, OIKOS, V105, P397; McGregor RL, 2008, J APPL ECOL, V45, P117, DOI 10.1111/j.1365-2664.2007.01403.x; Mortelliti A, 2008, LANDSCAPE ECOL, V23, P285, DOI 10.1007/s10980-007-9182-7; Naumov N.P., 1975, RODENTS DESERT ENV, P465; Porto Peter Flavia, 2013, Oecologia Australis, V17, P63; Rico A, 2007, FOLIA ZOOL, V56, P1; Rico A, 2009, ACTA THERIOL, V54, P297, DOI 10.4098/j.at.0001-7051.068.2008; Rondinini C, 2002, FUNCT ECOL, V16, P504, DOI 10.1046/j.1365-2435.2002.00651.x; Rytwinski T, 2012, BIOL CONSERV, V147, P87, DOI 10.1016/j.biocon.2011.11.023; Rytwinski T, 2011, ECOL APPL, V21, P589, DOI 10.1890/10-0968.1; Seiler A, 2003, THESIS; Shier DM, 2012, BIOL CONSERV, V150, P53, DOI 10.1016/j.biocon.2012.03.007; Shine R, 2004, ECOL SOC, V9; Smith A.T, 2010, GUIDE MAMMALS CHINA; White MA, 2000, REMOTE SENS ENVIRON, V74, P45, DOI 10.1016/S0034-4257(00)00119-X; Whittington J, 2004, ECOL SOC, V9; Xia CJ, 2014, BIOL CONSERV, V177, P142, DOI 10.1016/j.biocon.2014.06.021; Xu WX, 2012, ITAL J ZOOL, V79, P92, DOI 10.1080/11250003.2011.620635; Zhang Y, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0132094; Zhou Li-Zhi, 2000, Acta Zoologica Sinica, V46, P130 44 1 1 4 41 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 1361-9209 TRANSPORT RES D-TR E Transport. Res. Part D-Transport. Environ. JAN 2017 50 223 233 10.1016/j.trd.2016.11.006 11 Environmental Studies; Transportation; Transportation Science & Technology Environmental Sciences & Ecology; Transportation EI0KF WOS:000392162700017 2018-11-22 J Thys, B; Eens, M; Aerts, S; Delory, A; Iserbyt, A; Pinxten, R Thys, Bert; Eens, Marcel; Aerts, Silke; Delory, Amandine; Iserbyt, Arne; Pinxten, Rianne Exploration and sociability in a highly gregarious bird are repeatable across seasons and in the long term but are unrelated ANIMAL BEHAVIOUR English Article animal personality; behavioural syndrome; (co)variance partitioning; long term; seasonal context; social behaviour; Sturnus vulgaris STARLINGS STURNUS-VULGARIS; CONSISTENT INDIVIDUAL-DIFFERENCES; BEHAVIORAL SYNDROMES; ANIMAL PERSONALITY; GREAT TITS; CORRELATED BEHAVIORS; TRADE-OFFS; PHENOTYPIC CORRELATIONS; ADAPTIVE PERSONALITIES; FITNESS CONSEQUENCES Personality traits and behavioural syndromes are often assumed to relate to life history strategies and lifetime fitness variation and hence may be generally under selection. Key in this regard is the, often untested, assumption that individual differences in (correlated) behaviours are maintained across contexts and over an individual's lifetime. Here, we tested this assumption, using a population of 30 captive male starlings, Sturnus vulgaris, a highly gregarious avian species. We repeatedly assayed novel environment exploration and different aspects of sociability towards a female conspecific, across seasonal contexts (spring and autumn) and across a 2-year period, which represents a substantial portion of a starling's life span. We found that, regardless of plasticity at the population level, both exploration behaviour and sociability traits investigated were moderately repeatable across seasons and years, with no significant differences between repeatability estimates over different timescales. However, no evidence was found for significant between-individual correlations between the investigated traits, including different aspects of sociability. Taken together, our results provide empirical evidence that exploration and sociability are personality traits that are stable across seasons and in the long term but do not form behavioural syndromes. Given the recent evidence that personality traits are often heritable, the traits assessed in our study might have the potential to evolve independently under selection. This long-term consistency in exploration and sociability might have important implications for the social organization within complex social environments and influence a wide variety of ecologically relevant processes. (C) 2016 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. [Thys, Bert; Eens, Marcel; Aerts, Silke; Delory, Amandine; Iserbyt, Arne; Pinxten, Rianne] Univ Antwerp, Dept Biol, Behav Ecol & Ecophysiol Grp, Antwerp, Belgium; [Pinxten, Rianne] Univ Antwerp, Fac Social Sci, Antwerp Sch Educ, Antwerp, Belgium Thys, B (reprint author), Campus Drie Eiken,Bldg D Room 1-23,Univ Pl 1, B-2610 Antwerp, Belgium. bert.thys@uantwerpen.be Fonds Wetenschappelijk Onderzoek - Vlaanderen (FWO); University of Antwerp We thank Geert Eens for technical support and building the test room, Peter Scheys for animal care and Sofie Brems for preparing Fig. 1. Thomas Raap, AlexanderWeiss and two anonymous referees provided valuable feedback on the manuscript. This work was financially supported by the Fonds Wetenschappelijk Onderzoek - Vlaanderen (FWO) and the University of Antwerp. The authors declare that they have no conflict of interest. Apfelbeck B, 2008, HORM BEHAV, V54, P435, DOI 10.1016/j.yhbeh.2008.04.003; Aplin LM, 2015, ANIM BEHAV, V108, P117, DOI 10.1016/j.anbehav.2015.07.016; Bates D, 2015, J STAT SOFTW, V67, P1; Baugh AT, 2014, GEN COMP ENDOCR, V208, P154, DOI 10.1016/j.ygcen.2014.08.014; Bell AM, 2009, ANIM BEHAV, V77, P771, DOI 10.1016/j.anbehav.2008.12.022; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; BOAKE CRB, 1989, EVOL ECOL, V3, P173, DOI 10.1007/BF02270919; Boogert NJ, 2006, ANIM BEHAV, V72, P1229, DOI 10.1016/j.anbehav.2006.02.021; Boulton K, 2014, BEHAV ECOL SOCIOBIOL, V68, P791, DOI 10.1007/s00265-014-1692-0; Brommer JE, 2015, FRONT ZOOL, V12, DOI 10.1186/1742-9994-12-S1-S2; Budaev SV, 1997, J COMP PSYCHOL, V111, P399, DOI 10.1037/0735-7036.111.4.399; Class B, 2016, BEHAV ECOL SOCIOBIOL, V70, P733, DOI 10.1007/s00265-016-2096-0; Class B, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2777; Cote J, 2008, P ROY SOC B-BIOL SCI, V275, P2851, DOI 10.1098/rspb.2008.0783; Cote J, 2007, P R SOC B, V274, P383, DOI 10.1098/rspb.2006.3734; Cote J, 2010, P ROY SOC B-BIOL SCI, V277, P1571, DOI 10.1098/rspb.2009.2128; Dammhahn M., 2012, P ROYAL SOC B, V84, P1131; David M, 2012, ETHOLOGY, V118, P932, DOI 10.1111/j.1439-0310.2012.02085.x; Dingemanse NJ, 2007, J ANIM ECOL, V76, P1128, DOI 10.1111/j.1365-2656.2007.01284.x; Dingemanse NJ, 2014, QUANTITATIVE GENETICS IN THE WILD, P54; Dingemanse NJ, 2013, J ANIM ECOL, V82, P39, DOI 10.1111/1365-2656.12013; Dingemanse NJ, 2010, PHILOS T R SOC B, V365, P3947, DOI 10.1098/rstb.2010.0221; Dingemanse NJ, 2010, TRENDS ECOL EVOL, V25, P81, DOI 10.1016/j.tree.2009.07.013; Dingemanse NJ, 2002, ANIM BEHAV, V64, P929, DOI 10.1006/anbe.2002.2006; Dingemanse NJ, 2005, BEHAVIOUR, V142, P1159, DOI 10.1163/156853905774539445; Dochtermann NA, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2201; Dochtermann NA, 2013, BEHAV ECOL, V24, P806, DOI 10.1093/beheco/art002; Dochtermann NA, 2011, EVOLUTION, V65, P1814, DOI 10.1111/j.1558-5646.2011.01264.x; EENS M, 1993, BEHAVIOUR, V125, P51, DOI 10.1163/156853993X00182; EENS M, 1990, BIRD STUDY, V37, P48, DOI 10.1080/00063659009477038; Eens M, 1997, ADV STUD BEHAV, V26, P355, DOI 10.1016/S0065-3454(08)60384-8; Farine DR, 2015, J EVOLUTION BIOL, V28, P547, DOI 10.1111/jeb.12587; FEARE CJ, 1995, IBIS, V137, P379, DOI 10.1111/j.1474-919X.1995.tb08036.x; Feare CJ., 1984, STARLING; Formica VA, 2012, J EVOLUTION BIOL, V25, P130, DOI 10.1111/j.1420-9101.2011.02411.x; Funghi C, 2015, ETHOLOGY, V121, P84, DOI 10.1111/eth.12318; Garamszegi LZ, 2013, BEHAV ECOL, V24, P1068, DOI 10.1093/beheco/art033; Gelman A., 2015, ARM DATA ANAL USING; Gelman A, 1992, STAT SCI, V7, P457, DOI DOI 10.1214/SS/1177011136; Gosling SD, 2001, PSYCHOL BULL, V127, P45, DOI 10.1037/0033-2909.127.1.45; Gwinner H, 2002, HORM BEHAV, V42, P21, DOI 10.1006/hbeh.2002.1795; Haage M, 2013, BEHAV PROCESS, V100, P103, DOI 10.1016/j.beproc.2013.08.009; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hall ML, 2015, FRONT ECOL EVOL, V3, P28; Hamede RK, 2009, ECOL LETT, V12, P1147, DOI 10.1111/j.1461-0248.2009.01370.x; Kluen E, 2013, BEHAV ECOL, V24, P650, DOI 10.1093/beheco/ars221; Koski S. E., 2014, FRONTIERS ECOLOGY EV, V2, P1, DOI DOI 10.3389/FEV0.2014.00070; Koski SE, 2011, BEHAV ECOL SOCIOBIOL, V65, P2161, DOI 10.1007/s00265-011-1224-0; McCowan LSC, 2015, BEHAV ECOL, V26, P735, DOI 10.1093/beheco/aru239; McEvoy J, 2015, J ZOOL, V296, P58, DOI 10.1111/jzo.12217; McGhee KE, 2010, ANIM BEHAV, V79, P497, DOI 10.1016/j.anbehav.2009.11.037; Minderman J, 2010, BEHAV ECOL, V21, P1321, DOI 10.1093/beheco/arq151; Mutzel A, 2011, ANIM BEHAV, V81, P731, DOI 10.1016/j.anbehav.2011.01.001; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Nicolaus M, 2012, P ROY SOC B-BIOL SCI, V279, P4885, DOI 10.1098/rspb.2012.1936; Niemela PT, 2012, FUNCT ECOL, V26, P450, DOI 10.1111/j.1365-2435.2011.01939.x; Niemela PT, 2014, TRENDS ECOL EVOL, V29, P245, DOI 10.1016/j.tree.2014.02.007; Oh KP, 2010, AM NAT, V176, pE80, DOI 10.1086/655216; Pike TW, 2008, P ROY SOC B-BIOL SCI, V275, P2515, DOI 10.1098/rspb.2008.0744; PINXTEN R, 1990, ANIM BEHAV, V40, P1035, DOI 10.1016/S0003-3472(05)80171-X; Pinxten R, 2003, HORM BEHAV, V44, P103, DOI 10.1016/S0018-506X(03)00120-X; Pinxten R, 2003, HORM BEHAV, V43, P394, DOI 10.1016/S0018-506X(03)00012-6; Reale D., 2012, ANIMAL PERSONALITY; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Reale D, 2010, PHILOS T R SOC B, V365, P3937, DOI 10.1098/rstb.2010.0222; RENNER MJ, 1990, PSYCHOBIOLOGY, V18, P16; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; Schielzeth H, 2010, METHODS ECOL EVOL, V1, P103, DOI 10.1111/j.2041-210X.2010.00012.x; Schuett W, 2009, ANIM BEHAV, V77, P1041, DOI 10.1016/j.anbehav.2008.12.024; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Sinervo B, 2002, HEREDITY, V89, P329, DOI 10.1038/sj.hdy.6800148; Smith BR, 2008, BEHAV ECOL, V19, P448, DOI 10.1093/beheco/arm144; Stamps J, 2010, BIOL REV, V85, P301, DOI 10.1111/j.1469-185X.2009.00103.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Svenson L., 1984, IDENTIFICATION GUIDE; van de Pol MV, 2009, ANIM BEHAV, V77, P753, DOI 10.1016/j.anbehav.2008.11.006; VERBEEK MEM, 1994, ANIM BEHAV, V48, P1113, DOI 10.1006/anbe.1994.1344; Webster MM, 2011, BIOL REV, V86, P759, DOI 10.1111/j.1469-185X.2010.00169.x; WITTER MS, 1995, BEHAV ECOL, V6, P343, DOI 10.1093/beheco/6.3.343; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wolf M, 2014, TRENDS ECOL EVOL, V29, P306, DOI 10.1016/j.tree.2014.03.008; Wolf M, 2011, P ROY SOC B-BIOL SCI, V278, P440, DOI 10.1098/rspb.2010.1051; Wuerz Y., 2015, FRONTIERS ZOOLOGY, V12, P1; Garamszegi LZ, 2015, BEHAV ECOL SOCIOBIOL, V69, P2005, DOI 10.1007/s00265-015-2012-z; Garamszegi LZ, 2012, BEHAV ECOL SOCIOBIOL, V66, P1651, DOI 10.1007/s00265-012-1439-8; Garamszegi LZ, 2012, EVOL ECOL, V26, P1213, DOI 10.1007/s10682-012-9589-8; Zuur A. F., 2009, MIXED EFFECTS MODELS 88 2 2 4 38 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 1095-8282 ANIM BEHAV Anim. Behav. JAN 2017 123 339 348 10.1016/j.anbehav.2016.11.014 10 Behavioral Sciences; Zoology Behavioral Sciences; Zoology EH5VK WOS:000391840900036 2018-11-22 J Dennenmoser, S; Vamosi, SM; Nolte, AW; Rogers, SM Dennenmoser, Stefan; Vamosi, Steven M.; Nolte, Arne W.; Rogers, Sean M. Adaptive genomic divergence under high gene flow between freshwater and brackish-water ecotypes of prickly sculpin (Cottus asper) revealed by Pool-Seq MOLECULAR ECOLOGY English Article adaptation; amphidromy; atp1a1a; Pool-Seq; salinity genes; whole-genome scan RECOMBINATION RATE VARIATION; LOCAL ADAPTATION; THREESPINE STICKLEBACKS; ATLANTIC SALMON; NEXT-GENERATION; DIFFERENTIAL EXPRESSION; ECOLOGICAL SPECIATION; 3-SPINED STICKLEBACK; POPULATION-STRUCTURE; SALINITY TOLERANCE Understanding the genomic basis of adaptive divergence in the presence of gene flow remains a major challenge in evolutionary biology. In prickly sculpin (Cottus asper), an abundant euryhaline fish in northwestern North America, high genetic connectivity among brackish-water (estuarine) and freshwater (tributary) habitats of coastal rivers does not preclude the build-up of neutral genetic differentiation and emergence of different life history strategies. Because these two habitats present different osmotic niches, we predicted high genetic differentiation at known teleost candidate genes underlying salinity tolerance and osmoregulation. We applied whole-genome sequencing of pooled DNA samples (Pool-Seq) to explore adaptive divergence between two estuarine and two tributary habitats. Paired-end sequence reads were mapped against genomic contigs of European Cottus, and the gene content of candidate regions was explored based on comparisons with the threespine stickleback genome. Genes showing signals of repeated differentiation among brackish-water and freshwater habitats included functions such as ion transport and structural permeability in freshwater gills, which suggests that local adaptation to different osmotic niches might contribute to genomic divergence among habitats. Overall, the presence of both repeated and unique signatures of differentiation across many loci scattered throughout the genome is consistent with polygenic adaptation from standing genetic variation and locally variable selection pressures in the early stages of life history divergence. [Dennenmoser, Stefan; Nolte, Arne W.] Max Planck Inst Evolutionary Biol, August Thienemann Str 2, D-24306 Plon, Germany; [Dennenmoser, Stefan; Vamosi, Steven M.; Rogers, Sean M.] Univ Calgary, Dept Biol Sci, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada; [Nolte, Arne W.] Carl von Ossietzky Univ Oldenburg, Inst Biol, Carl von Ossietzky Str 9-11, D-26111 Oldenburg, Germany Dennenmoser, S (reprint author), Max Planck Inst Evolutionary Biol, August Thienemann Str 2, D-24306 Plon, Germany.; Dennenmoser, S (reprint author), Univ Calgary, Dept Biol Sci, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada. dennenmoser@evolbio.mpg.de Nolte, Arne/I-4661-2017; Vamosi, Steven/C-8126-2009 Vamosi, Steven/0000-0003-3903-5000 NSERC; Alberta Innovates Technology Futures New Faculty Award; Alberta Innovates Technology Futures Postgraduate scholarship; European Research Council Field assistance by Jonathan Lowey is greatly appreciated. This research was supported by NSERC Discovery Grants (SMR and SMV), an Alberta Innovates Technology Futures New Faculty Award (SMR), an Alberta Innovates Technology Futures Postgraduate scholarship (SD) and an European Research Council starting grant (AN). SMR would like to thank the Bamfield Marine Sciences Centre (BMSC) for resources while working on this study. ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1016/S0022-2836(05)80360-2; Anderson EC, 2014, MOL ECOL, V23, P502, DOI 10.1111/mec.12609; Aykanat T, 2011, GENETICA, V139, P233, DOI 10.1007/s10709-010-9540-2; Barrio AM, 2016, ELIFE, V5, DOI 10.7554/eLife.12081; Beaumont MA, 1996, P ROY SOC B-BIOL SCI, V263, P1619, DOI 10.1098/rspb.1996.0237; Bekkevold D, 2005, EVOLUTION, V59, P2656; BENJAMINI Y, 1995, J ROY STAT SOC B MET, V57, P289; Berg PR, 2015, GENOME BIOL EVOL, V7, P1644, DOI 10.1093/gbe/evv093; BOHN A, 1965, CAN J ZOOLOG, V43, P977, DOI 10.1139/z65-101; Bourret V, 2014, MOL ECOL, V23, P4444, DOI 10.1111/mec.12798; Burri R, 2015, GENOME RES, V25, P1656, DOI 10.1101/gr.196485.115; Butlin RK, 2014, EVOLUTION, V68, P935, DOI 10.1111/evo.12329; CHARLESWORTH B, 1993, GENETICS, V134, P1289; Cheng J, 2013, HEREDITY, V111, P520, DOI 10.1038/hdy.2013.76; Cheng J, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0746; Conesa A, 2005, BIOINFORMATICS, V21, P3674, DOI 10.1093/bioinformatics/bti610; Coyne JA, 2004, SPECIATION; Cruickshank TE, 2014, MOL ECOL, V23, P3133, DOI 10.1111/mec.12796; Dalziel AC, 2009, MOL ECOL, V18, P4997, DOI 10.1111/j.1365-294X.2009.04427.x; DeFaveri J, 2014, J EVOLUTION BIOL, V27, P290, DOI 10.1111/jeb.12289; DeFaveri J, 2011, EVOLUTION, V65, P1800, DOI 10.1111/j.1558-5646.2011.01247.x; Delmore KE, 2015, MOL ECOL, V24, P1873, DOI 10.1111/mec.13150; Dennenmoser S, 2015, J BIOGEOGR, V42, P1626, DOI 10.1111/jbi.12527; Dennenmoser S, 2014, BIOL J LINN SOC, V113, P943, DOI 10.1111/bij.12384; Endler J A., 1986, NATURAL SELECTION WI; Ern R, 2014, J FISH BIOL, V84, P1210, DOI 10.1111/jfb.12330; Evans DH, 2008, AM J PHYSIOL-REG I, V295, pR704, DOI 10.1152/ajpregu.90337.2008; Evans DH, 2005, PHYSIOL REV, V85, P97, DOI 10.1152/physrev.00050.2003; Feder JL, 2014, J HERED, V105, P810, DOI 10.1093/jhered/esu038; Feder JL, 2012, TRENDS GENET, V28, P342, DOI 10.1016/j.tig.2012.03.009; Ferretti L, 2013, MOL ECOL, V22, P5561, DOI 10.1111/mec.12522; Feulner PGD, 2015, PLOS GENET, V11, DOI 10.1371/journal.pgen.1004966; Flaxman SM, 2014, MOL ECOL, V23, P4074, DOI 10.1111/mec.12750; Foll M, 2008, GENETICS, V180, P977, DOI 10.1534/genetics.108.092221; Fracassetti M, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0140462; Futschik A, 2010, GENETICS, V186, P207, DOI 10.1534/genetics.110.114397; Gagnaire PA, 2013, EVOLUTION, V67, P2483, DOI 10.1111/evo.12075; Gautier M, 2013, MOL ECOL, V22, P3766, DOI 10.1111/mec.12360; Goto A, 2015, ENVIRON BIOL FISH, V98, P307, DOI 10.1007/s10641-014-0262-7; Gow JL, 2007, J EVOLUTION BIOL, V20, P2173, DOI 10.1111/j.1420-9101.2007.01427.x; Guo BC, 2015, BMC BIOL, V13, DOI 10.1186/s12915-015-0130-8; Haasl RJ, 2016, MOL ECOL, V25, P5, DOI 10.1111/mec.13339; Hemmer-Hansen J, 2013, MOL ECOL, V22, P2653, DOI 10.1111/mec.12284; Hoffmann AA, 2008, ANNU REV ECOL EVOL S, V39, P21, DOI 10.1146/annurev.ecolsys.39.110707.173532; Hohenlohe PA, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1000862; Holliday JA, 2016, NEW PHYTOL, V209, P1240, DOI 10.1111/nph.13643; Hwang PP, 2011, AM J PHYSIOL-REG I, V301, pR28, DOI 10.1152/ajpregu.00047.2011; Ito Y, 2013, FRONT PHYSIOL, V4, DOI 10.3389/fphys.2013.00059; Jones FC, 2012, NATURE, V484, P55, DOI 10.1038/nature10944; Jones FC, 2012, CURR BIOL, V22, P83, DOI 10.1016/j.cub.2011.11.045; Kaeuffer R, 2012, EVOLUTION, V66, P402, DOI 10.1111/j.1558-5646.2011.01440.x; Kinziger AP, 2010, ZOOTAXA, P50; Kirkpatrick M, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000501; Kofler R, 2011, BIOINFORMATICS, V27, P3435, DOI 10.1093/bioinformatics/btr589; Kofler R, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0015925; Kozak GM, 2014, EVOLUTION, V68, P63, DOI 10.1111/evo.12265; Lamichhaney S, 2012, P NATL ACAD SCI USA, V109, P19345, DOI 10.1073/pnas.1216128109; Langerhans RB, 2013, CURR ZOOL, V59, P31, DOI 10.1093/czoolo/59.1.31; Larsen PF, 2008, BMC GENET, V9, DOI 10.1186/1471-2156-9-12; Le Corre V, 2012, MOL ECOL, V21, P1548, DOI 10.1111/j.1365-294X.2012.05479.x; Leder EH, 2010, MOL BIOL EVOL, V27, P1495, DOI 10.1093/molbev/msq031; Lee CE, 2011, EVOLUTION, V65, P2229, DOI 10.1111/j.1558-5646.2011.01308.x; Li H, 2009, BIOINFORMATICS, V25, P2078, DOI 10.1093/bioinformatics/btp352; Lohse K, 2015, EVOLUTION, V69, P1178, DOI 10.1111/evo.12650; MacPherson A, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.1570; Malinsky M, 2015, SCIENCE, V350, P1493, DOI 10.1126/science.aac9927; Mayr Ernst, 1963, ANIMAL SPECIES EVOLU; McAllister DE, 1961, B NATL MUSEUM CANADA, V172, P66; McCairns RJS, 2008, MOL ECOL, V17, P3901, DOI 10.1111/j.1365-294X.2008.03884.x; McCairns RJS, 2010, EVOLUTION, V64, P1029, DOI 10.1111/j.1558-5646.2009.00886.x; McGaughran A, 2016, MOL BIOL EVOL, V33, P2257, DOI 10.1093/molbev/msw093; McPhail J. D., 2007, FRESHWATER FISHES BR; Mobasheri A, 2000, BIOSCIENCE REP, V20, P51, DOI 10.1023/A:1005580332144; Nachman MW, 2012, PHILOS T R SOC B, V367, P409, DOI 10.1098/rstb.2011.0249; Nei M., 1987, MOL EVOLUTIONARY GEN; Nielsen R, 2005, ANNU REV GENET, V39, P197, DOI 10.1146/annurev.genet.39.073003.112420; Nilsen TO, 2007, J EXP BIOL, V210, P2885, DOI 10.1242/jeb.002873; Norman JD, 2011, BMC GENET, V12, DOI 10.1186/1471-2156-12-81; Nosil P, 2013, EVOLUTION, V67, P2461, DOI 10.1111/evo.12191; Nosil P, 2012, PHILOS T R SOC B, V367, P332, DOI 10.1098/rstb.2011.0263; Papakostas S, 2012, MOL ECOL, V21, P3516, DOI 10.1111/j.1365-294X.2012.05553.x; Perrier C, 2013, MOL ECOL, V22, P5577, DOI 10.1111/mec.12500; Prunier J, 2012, MOL ECOL, V21, P4270, DOI 10.1111/j.1365-294X.2012.05691.x; Ravinet M, 2016, MOL ECOL, V25, P287, DOI 10.1111/mec.13332; Rellstab C, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0080422; Renaut S, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms2833; Roesti M, 2012, MOL ECOL, V21, P2852, DOI 10.1111/j.1365-294X.2012.05509.x; Ruegg K, 2014, MOL ECOL, V23, P4757, DOI 10.1111/mec.12842; Rundle HD, 2000, SCIENCE, V287, P306, DOI 10.1126/science.287.5451.306; Sambrook J, 2001, MOL CLONING LAB MANU; Schlotterer C, 2014, NAT REV GENET, V15, P749, DOI 10.1038/nrg3803; Schluter D, 2000, ECOLOGY ADAPTIVE RAD; Schluter D, 2009, SCIENCE, V323, P737, DOI 10.1126/science.1160006; Sedlazeck FJ, 2013, BIOINFORMATICS, V29, P2790, DOI 10.1093/bioinformatics/btt468; Seehausen O, 2014, NAT REV GENET, V15, P176, DOI 10.1038/nrg3644; Sexton JP, 2014, EVOLUTION, V68, P1, DOI 10.1111/evo.12258; Shafer ABA, 2013, ECOL LETT, V16, P940, DOI 10.1111/ele.12120; Shikano T, 2010, MOL ECOL, V19, P1147, DOI 10.1111/j.1365-294X.2010.04553.x; Shimada Y, 2011, MOL BIOL EVOL, V28, P181, DOI 10.1093/molbev/msq181; Smadja CM, 2012, EVOLUTION, V66, P2723, DOI 10.1111/j.1558-5646.2012.01612.x; Smolka M, 2015, GENOME BIOL, V16, DOI 10.1186/s13059-015-0803-1; Stemshorn KC, 2011, MOL ECOL, V20, P1475, DOI 10.1111/j.1365-294X.2010.04997.x; Stephan W, 2016, MOL ECOL, V25, P79, DOI 10.1111/mec.13288; Sutherland BJG, 2014, MOL ECOL, V23, P1952, DOI 10.1111/mec.12713; TAJIMA F, 1989, GENETICS, V123, P585; Tigano A, 2016, MOL ECOL, V25, P2144, DOI 10.1111/mec.13606; Tsai JR, 2007, J EXP BIOL, V210, P620, DOI 10.1242/jeb.02684; Turner TL, 2005, PLOS BIOL, V3, P1572, DOI 10.1371/journal.pbio.0030285; Urbina MA, 2013, J COMP PHYSIOL B, V183, P345, DOI 10.1007/s00360-012-0719-y; Velotta JP, 2014, OECOLOGIA, V175, P1081, DOI 10.1007/s00442-014-2961-3; Wadsworth CB, 2015, HEREDITY, V114, P593, DOI 10.1038/hdy.2014.128; Wang YF, 2009, AM J PHYSIOL-REG I, V296, pR1650, DOI 10.1152/ajpregu.00119.2009; Whitehead A, 2013, MOL ECOL, V22, P3780, DOI 10.1111/mec.12316; Whitehead A, 2011, P NATL ACAD SCI USA, V108, P6193, DOI 10.1073/pnas.1017542108; Wu CI, 2001, J EVOLUTION BIOL, V14, P851, DOI 10.1046/j.1420-9101.2001.00335.x; Yan BQ, 2013, MOL BIOL REP, V40, P925, DOI 10.1007/s11033-012-2133-7; Yeaman S, 2013, P NATL ACAD SCI USA, V110, pE1743, DOI 10.1073/pnas.1219381110; Yeaman S, 2011, EVOLUTION, V65, P1897, DOI 10.1111/j.1558-5646.2011.01269.x; Zikos A, 2014, COMP BIOCHEM PHYS A, V178, P121, DOI 10.1016/j.cbpa.2014.08.016 119 10 10 6 56 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. JAN 2017 26 1 SI 25 42 10.1111/mec.13805 18 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology EH7GJ WOS:000391940600003 27541083 2018-11-22 J Hurst, JE; Kavanagh, PS Hurst, Jessie E.; Kavanagh, Phillip S. Life history strategies and psychopathology: the faster the life strategies, the more symptoms of psychopathology EVOLUTION AND HUMAN BEHAVIOR English Article Life history theory; Life history strategy; Psychopathology; Aggression; Attachment; Self-harm DELIBERATE SELF-HARM; AGGRESSION; ATTACHMENT; DISORDER; QUESTIONNAIRE; ADOLESCENTS; PERSONALITY; ADAPTATION; MATURATION; BEHAVIOR There is little extant empirical literature examining the associations between life history strategies and symptoms of psychopathology. The current study (N = 138) investigated the associations between life history strategies, symptoms of psychopathology, aggression, incidence of self-harm behaviour, and attachment (perceived parental support) in sample drawn from the general population and community mental health service providers. The results from the study indicate those with a faster life strategy report greater levels of aggression and symptoms of psychopathology. Further, perceptions of poorer parental support were associated with a faster life history strategy. Implications for life history theory, conceptualising psychopathology, and future research directions are discussed. Crown Copyright (C) 2016 Published by Elsevier Inc. All rights reserved. [Hurst, Jessie E.; Kavanagh, Phillip S.] Univ South Australia, Adelaide, SA, Australia Kavanagh, PS (reprint author), Univ South Australia, Sch Psychol Social Work & Social Policy, GPO Box 2471, Adelaide, SA 5001, Australia. phil.kavanagh@unisa.edu.au Kavanagh, Phil/0000-0003-1090-4188 Akiskal KK, 2005, J AFFECT DISORDERS, V85, P231, DOI 10.1016/j.jad.2004.08.002; American Psychiatric Association, 2013, DSM 5 SELF RAT LEV 1; American Psychiatric Association, 2013, DIAGN STAT MAN MENT; American Psychiatric Association, 2000, DIAGN STAT MAN MENT; Andrews PW, 2009, PSYCHOL REV, V116, P620, DOI 10.1037/a0016242; BARTHOLOMEW K, 1991, J PERS SOC PSYCHOL, V61, P226, DOI 10.1037//0022-3514.61.2.226; Beauchaine TP, 2013, CHILD ADOLESCENT PSY, P111; BUSS AH, 1992, J PERS SOC PSYCHOL, V63, P452, DOI 10.1037/0022-3514.63.3.452; Buss D.M., 2005, HDB EVOLUTIONARY PSY; Buss DM, 1997, CLIN PSYCHOL REV, V17, P605, DOI 10.1016/S0272-7358(97)00037-8; Campbell A, 2008, BIOL PSYCHOL, V77, P1, DOI 10.1016/j.biopsycho.2007.09.001; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Coccaro EF, 1997, PSYCHIAT RES, V73, P147, DOI 10.1016/S0165-1781(97)00119-4; Crawford C, 2000, ANN NY ACAD SCI, V907, P21; Crawford TN, 2006, J PERS DISORD, V20, P331, DOI 10.1521/pedi.2006.20.4.331; CRICK NR, 1995, CHILD DEV, V66, P710, DOI 10.1111/j.1467-8624.1995.tb00900.x; DALY M, 1985, ETHOL SOCIOBIOL, V6, P197, DOI 10.1016/0162-3095(85)90012-3; Del Giudice M, 2014, PSYCHOL INQ, V25, P261, DOI 10.1080/1047840X.2014.884918; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Dunkel CS, 2011, PERS INDIV DIFFER, V51, P34, DOI 10.1016/j.paid.2011.03.005; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2013, CHILD ADOLESCENT PSY, P251; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Ellis BJ, 2014, DEV PSYCHOPATHOL, V26, P1, DOI 10.1017/S0954579413000849; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Fanti KA, 2014, J EARLY ADOLESCENCE; Figueredo A.J., 2012, OXFORD HDB SEXUAL CO; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2009, HUM NATURE-INT BIOS, V20, P317, DOI 10.1007/s12110-009-9068-2; Giosan C., 2006, EVOLUTIONARY PSYCHOL, V4, P394, DOI DOI 10.1177/147470490600400131; Gratz KL, 2001, J PSYCHOPATHOL BEHAV, V23, P253, DOI 10.1023/A:1012779403943; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Hayes A. F., 2013, INTRO MEDIATION MODE; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hill K, 2012, CLIN CHILD PSYCHOL P, V17, P459, DOI 10.1177/1359104511423364; Hinshaw S. P., 2013, CHILD ADOLESCENT PSY, P3; Howell D.C, 2002, STAT METHODS PSYCHOL; Ivancic L, 2014, YOUTH MENTAL HLTH RE; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kerig P. K., 2012, DEV PSYCHOPATHOLOGY; Klonsky ED, 2003, AM J PSYCHIAT, V160, P1501, DOI 10.1176/appi.ajp.160.8.1501; Koh J-B, 2015, J INTERPERSONAL VIOL; Laye-Gindhu A, 2005, J YOUTH ADOLESCENCE, V34, P447, DOI 10.1007/s10964-005-7262-z; Mangnall J, 2008, PERSPECT PSYCHIATR C, V44, P175, DOI 10.1111/j.1744-6163.2008.00172.x; Marcus RF, 2001, J GENET PSYCHOL, V162, P260, DOI 10.1080/00221320109597483; Mash E. J., 2003, CHILD PSYCHOPATHOLOG, P3; Mishra S, 2014, EVOL HUM BEHAV, V35, P126, DOI 10.1016/j.evolhumbehav.2013.11.006; Murphy D., 2000, EVOLUTION HUMAN MIND, P62; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Rodham K., 2005, PSYCHIAT TIMES, V22, P36; Simons KJ, 2001, J EARLY ADOLESCENCE, V21, P182, DOI 10.1177/0272431601021002003; Spataro J, 2004, BRIT J PSYCHIAT, V184, P416, DOI 10.1192/bjp.184.5.416; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; Trivers R. L, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Volk AA, 2012, AGGRESSIVE BEHAV, V38, P222, DOI 10.1002/ab.21418; WAKEFIELD JC, 1992, AM PSYCHOL, V47, P373, DOI 10.1037//0003-066X.47.3.373; West M, 1998, J YOUTH ADOLESCENCE, V27, P661, DOI 10.1023/A:1022891225542; Wolfe V.V., 2007, ASSESSMENT CHILDHOOD, P685 60 11 11 0 8 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 1879-0607 EVOL HUM BEHAV Evol. Hum. Behav. JAN 2017 38 1 1 8 10.1016/j.evolhumbehav.2016.06.001 8 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences EG9AS WOS:000391350000001 2018-11-22 J Murillo-Rincon, AP; Kolter, NA; Laurila, A; Orizaola, G Murillo-Rincon, Andrea P.; Kolter, Nora A.; Laurila, Anssi; Orizaola, German Intraspecific priority effects modify compensatory responses to changes in hatching phenology in an amphibian JOURNAL OF ANIMAL ECOLOGY English Article amphibians; compensatory growth; competition; development; life-history strategies; metamorphosis; phenology; synchrony EXPERIMENTAL POND COMMUNITIES; LIFE-HISTORY PLASTICITY; TIME CONSTRAINTS; CLIMATE-CHANGE; ANURAN LARVAE; LOCAL ADAPTATION; INTERFERENCE COMPETITION; PHENOTYPIC PLASTICITY; AMBYSTOMA-TALPOIDEUM; GEOGRAPHIC-VARIATION 1. In seasonal environments, modifications in the phenology of life-history events can alter the strength of time constraints experienced by organisms. Offspring can compensate for a change in timing of hatching by modifying their growth and development trajectories. However, intra-and interspecific interactions may affect these compensatory responses, in particular if differences in phenology between cohorts lead to significant priority effects (i.e. the competitive advantage that early-hatching individuals have over late-hatching ones). 2. Here, we conducted a factorial experiment to determine whether intraspecific priority effects can alter compensatory phenotypic responses to hatching delay in a synchronic breeder by rearing moor frog (Rana arvalis) tadpoles in different combinations of phenological delay and food abundance. 3. Tadpoles compensated for the hatching delay by speeding up their development, but only when reared in groups of individuals with identical hatching phenology. In mixed phenology groups, strong competitive effects by non-delayed tadpoles prevented the compensatory responses and delayed larvae metamorphosed later than in single phenology treatments. Non-delayed individuals gained advantage from developing with delayed larvae by increasing their developmental and growth rates as compared to single phenology groups. 4. Food shortage prolonged larval period and reduced mass at metamorphosis in all treatments, but it did not prevent compensatory developmental responses in larvae reared in single phenology groups. 5. This study demonstrates that strong intraspecific priority effects can constrain the compensatory growth and developmental responses to phenological change, and that priority effects can be an important factor explaining the maintenance of synchronic life histories (i.e. explosive breeding) in seasonal environments. [Murillo-Rincon, Andrea P.; Kolter, Nora A.; Laurila, Anssi; Orizaola, German] Uppsala Univ, Anim Ecol, Dept Ecol & Genet, Evolutionary Biol Ctr, S-75236 Uppsala, Sweden; [Murillo-Rincon, Andrea P.] Christian Albrechts Univ Kiel, Inst Zool, D-24118 Kiel, Germany Orizaola, G (reprint author), Uppsala Univ, Anim Ecol, Dept Ecol & Genet, Evolutionary Biol Ctr, S-75236 Uppsala, Sweden. german.orizaola@ebc.uu.se Orizaola, German/A-5217-2008 Orizaola, German/0000-0002-6748-966X Helge Ax:son Johnsons Stiftelse; Stiftelsen Oscar och Lili Lamms Minne [FO2011-0004]; Spanish Ministry of Education and Culture [MEC2007-0944]; Formas [2007-903] We thank Frank Johansson and Alex Richter-Boix for comments on a previous draft of the manuscript. Comments from the Associate Editor and three anonymous reviewers significantly improved the final version of the manuscript. The animals were collected with a permit from Uppsala County Board (521-3019-09), and the experiment was conducted with a permit from the Ethical committee for Animal Experiments in Uppsala (C92/9). This study was supported by Helge Ax:son Johnsons Stiftelse (to GO), Stiftelsen Oscar och Lili Lamms Minne (grant FO2011-0004; to GO), Spanish Ministry of Education and Culture (postdoctoral fellowship MEC2007-0944; to GO) and Formas (2007-903; to AL). Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; ALFORD RA, 1985, ECOLOGY, V66, P1097, DOI 10.2307/1939161; Altwegg R, 2003, EVOLUTION, V57, P872; Altwegg R, 2002, ECOLOGY, V83, P2542, DOI 10.1890/0012-9658(2002)083[2542:PILHPU]2.0.CO;2; Baker GC, 2000, AMPHIBIA-REPTILIA, V21, P25, DOI 10.1163/156853800507255; BEEBEE TJC, 1995, NATURE, V374, P219, DOI 10.1038/374219a0; BEEBEE TJC, 1992, PHYSIOL ZOOL, V65, P815, DOI 10.1086/physzool.65.4.30158541; Boone MD, 2002, COPEIA, P511, DOI 10.1643/0045-8511(2002)002[0511:EOHTFL]2.0.CO;2; Capellan E, 2007, J ANIM ECOL, V76, P1026, DOI 10.1111/j.1365-2656.2007.01281.x; Charmantier A, 2008, SCIENCE, V320, P800, DOI 10.1126/science.1157174; Cleland EE, 2007, TRENDS ECOL EVOL, V22, P357, DOI 10.1016/j.tree.2007.04.003; Dahl E, 2012, J ANIM ECOL, V81, P1233, DOI 10.1111/j.1365-2656.2012.02009.x; De Block M, 2004, OECOLOGIA, V140, P68, DOI 10.1007/s00442-004-1575-6; De Meester L, 2002, ACTA OECOL, V23, P121, DOI 10.1016/S1146-609X(02)01145-1; De Meester L, 2016, TRENDS ECOL EVOL, V31, P136, DOI 10.1016/j.tree.2015.12.009; Diez JM, 2012, ECOL LETT, V15, P545, DOI 10.1111/j.1461-0248.2012.01765.x; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; DRAKE JA, 1991, AM NAT, V137, P1, DOI 10.1086/285143; Dunbar RIM, 2009, BIOL REV, V84, P413, DOI 10.1111/j.1469-185X.2009.00080.x; Earl JE, 2015, COPEIA, V103, P297, DOI 10.1643/CH-14-128; Easterling DR, 2000, SCIENCE, V289, P2068, DOI 10.1126/science.289.5487.2068; Eitam A, 2005, OECOLOGIA, V146, P36, DOI 10.1007/s00442-005-0185-2; Frisbie M, 2000, CAN J ZOOL, V78, P1032, DOI 10.1139/cjz-78-6-1032; Gosner K. L., 1960, Herpetologica, V16, P183; GOTTHARD K, 2001, ANIMAL DEV ECOLOGY, P287; GRIFFITHS RA, 1993, J ANIM ECOL, V62, P274, DOI 10.2307/5358; Hedengren I., 1987, THESIS; Hernandez JP, 2012, OIKOS, V121, P259, DOI 10.1111/j.1600-0706.2011.19221.x; Hopper KR, 1996, ECOLOGY, V77, P191, DOI 10.2307/2265668; Johansson F, 1999, ECOLOGY, V80, P1242, DOI 10.1890/0012-9658(1999)080[1242:LHABRT]2.0.CO;2; Johansson F, 2001, ECOLOGY, V82, P1857, DOI 10.1890/0012-9658(2001)082[1857:LHPIAD]2.0.CO;2; LAWLER SP, 1993, ECOLOGY, V74, P174, DOI 10.2307/1939512; Loman J, 2009, J ZOOL, V279, P64, DOI 10.1111/j.1469-7998.2009.00589.x; Mangel M, 2001, EVOL ECOL RES, V3, P583; Menzel A, 2006, GLOBAL ECOL BIOGEOGR, V15, P498, DOI 10.1111/j.1466-822x.2006.00247.x; Mikolajewski DJ, 2015, ECOLOGY, V96, P1128, DOI 10.1890/14-0262.1; Olito C, 2009, AM NAT, V173, P354, DOI 10.1086/596538; Orizaola G., 2016, FIGSHARE; Orizaola G, 2016, ECOLOGY, V97, P2470, DOI 10.1002/ecy.1464; Orizaola G, 2013, OECOLOGIA, V171, P873, DOI 10.1007/s00442-012-2456-z; Orizaola G, 2010, OIKOS, V119, P980, DOI 10.1111/j.1600-0706.2009.17956.x; Parmesan C, 2000, B AM METEOROL SOC, V81, P443, DOI 10.1175/1520-0477(2000)081<0443:IOEWAC>2.3.CO;2; Phillimore AB, 2010, P NATL ACAD SCI USA, V107, P8292, DOI 10.1073/pnas.0913792107; Rasanen K, 2003, EVOLUTION, V57, P352, DOI 10.1554/0014-3820(2003)057[0352:GVIAST]2.0.CO;2; Rasmussen NL, 2015, ECOLOGY, V96, P1754, DOI 10.1890/14-1919.1; Rasmussen NL, 2014, J ANIM ECOL, V83, P1206, DOI 10.1111/1365-2656.12203; Richter-Boix A, 2014, ECOLOGY, V95, P2715, DOI 10.1890/13-1996.1; Root TL, 2003, NATURE, V421, P57, DOI 10.1038/nature01333; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; Rudolf VHW, 2013, OECOLOGIA, V173, P1043, DOI 10.1007/s00442-013-2675-y; Ryan TJ, 2004, OECOLOGIA, V140, P46, DOI 10.1007/s00442-004-1563-x; Segers FHID, 2012, BEHAV ECOL, V23, P665, DOI 10.1093/beheco/ars013; SEMLITSCH RD, 1988, ECOLOGY, V69, P184, DOI 10.2307/1943173; Sinervo B, 1996, EVOLUTION, V50, P1314, DOI 10.1111/j.1558-5646.1996.tb02371.x; STEINWASCHER K, 1978, ECOLOGY, V59, P1039, DOI 10.2307/1938556; Stoks R, 2006, ECOLOGY, V87, P809, DOI 10.1890/0012-9658(2006)87[809:TCMPPI]2.0.CO;2; Stoks R, 2005, J ANIM ECOL, V74, P708, DOI 10.1111/j.1365-2656.2005.00969.x; Strobbe F, 2004, BIOL J LINN SOC, V83, P187, DOI 10.1111/j.1095-8312.2004.00379.x; Sunahara T, 2002, ECOL ENTOMOL, V27, P346, DOI 10.1046/j.1365-2311.2002.00417.x; Urban MC, 2009, P R SOC B, V276, P4129, DOI 10.1098/rspb.2009.1382; van Asch M, 2010, FUNCT ECOL, V24, P1103, DOI 10.1111/j.1365-2435.2010.01734.x; Visser ME, 2006, OECOLOGIA, V147, P164, DOI 10.1007/s00442-005-0299-6; Vitt LJ, 2014, HERPETOLOGY INTRO BI; Walther GR, 2002, NATURE, V416, P389, DOI 10.1038/416389a; WERNER EE, 1994, ECOLOGY, V75, P197, DOI 10.2307/1939394; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; Werner EE, 1996, ECOLOGY, V77, P157, DOI 10.2307/2265664; WILBUR HM, 1985, ECOLOGY, V66, P1106, DOI 10.2307/1939162; Yearsley JM, 2004, FUNCT ECOL, V18, P563, DOI 10.1111/j.0269-8463.2004.00879.x 69 2 2 6 36 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. JAN 2017 86 1 128 135 10.1111/1365-2656.12605 8 Ecology; Zoology Environmental Sciences & Ecology; Zoology EF4TR WOS:000390325400014 27779740 Bronze 2018-11-22 J Sethi, SA; Gerken, J; Ashline, J Sethi, Suresh Andrew; Gerken, Jonathon; Ashline, Joshua Accurate aging of juvenile salmonids using fork lengths FISHERIES RESEARCH English Article Aging; Juvenile fish; Length frequency; Mixture models; Pacific salmon TUNA THUNNUS-MACCOYII; FREQUENCY DATA; AGE VALIDATION; COHO SALMON; GROWTH; SIZE; STEELHEAD; DENSITY; HABITAT; STREAMS Juvenile salmon life history strategies, survival, and habitat interactions may vary by age cohort. However, aging individual juvenile fish using scale reading is time consuming and can be error prone. Fork length data are routinely measured while sampling juvenile salmonids. We explore the performance of aging juvenile fish based solely on fork length data, using finite Gaussian mixture models to describe multimodal size distributions and estimate optimal age-discriminating length thresholds. Fork length-based ages are compared against a validation set of juvenile coho salmon, Oncorynchus kisutch, aged by scales. Results for juvenile coho salmon indicate greater than 95% accuracy can be achieved by aging fish using length thresholds estimated from mixture models. Highest accuracy is achieved when aged fish are compared to length thresholds generated from samples from the same drainage, time of year, and habitat type (lentic versus lotic), although relatively high aging accuracy can still be achieved when thresholds are extrapolated to fish from populations in different years or drainages. Fork length-based aging thresholds are applicable for taxa for which multiple age cohorts coexist sympatrically. Where applicable, the method of aging individual fish is relatively quick to implement and can avoid ager interpretation bias common in scale-based aging. Published by Elsevier B.V. [Sethi, Suresh Andrew] Cornell Univ, New York Cooperat Fish & Wildlife Res Unit, US Geol Survey, 211 Fernow Hall, Ithaca, NY 14853 USA; [Gerken, Jonathon; Ashline, Joshua] US Fish & Wildlife Serv, Anchorage Field Off, 4700 BLM Rd, Anchorage, AK 99507 USA Sethi, SA (reprint author), Cornell Univ, New York Cooperat Fish & Wildlife Res Unit, US Geol Survey, 211 Fernow Hall, Ithaca, NY 14853 USA. suresh.sethi@cornell.edu Alaska Sustainable Salmon Fund; U.S. Fish and Wildlife Service; U.S. Geological Survey We thank two anonymous reviwers, A.E. Punt, and other journal editorial staff for comments that improved this article. Funding for this project was provided by the Alaska Sustainable Salmon Fund, the U.S. Fish and Wildlife Service, and the U.S. Geological Survey. We thank the private landowners throughout the Big Lake watershed and the Alaska Department of fish and game for providing access for study sampling. Numerous U.S. Fish and Wildlife Service field technicians are thanked for their sampling efforts. The findings and conclusions in this article are those,of the author(s) and do not necessarily represent the views of the U.S. Fish and Wildlife Service. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. BEAMISH RJ, 1983, T AM FISH SOC, V112, P735, DOI 10.1577/1548-8659(1983)112<735:TFRFAV>2.0.CO;2; BISSON PA, 1988, T AM FISH SOC, V117, P262, DOI 10.1577/1548-8659(1988)117<0262:CHHUAB>2.3.CO;2; Bradley C., 2016, ECOL FRESHW IN PRESS; Campana SE, 2001, J FISH BIOL, V59, P197, DOI 10.1006/jfbi.2001.1668; Carlson SM, 2008, FUNCT ECOL, V22, P663, DOI 10.1111/j.1365-2435.2008.01416.x; Clements S, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021406; Crone R.A., 1974, FISH B, V74, P897; DOLLOFF CA, 1990, CAN J FISH AQUAT SCI, V47, P2297, DOI 10.1139/f90-256; FOURNIER DA, 1990, CAN J FISH AQUAT SCI, V47, P301, DOI 10.1139/f90-032; Fraley C, 2002, J AM STAT ASSOC, V97, P611, DOI 10.1198/016214502760047131; GADOMSKI DM, 1994, ENVIRON BIOL FISH, V39, P191, DOI 10.1007/BF00004937; Gilbert C. H., 1912, FISH B, V32, P1; Groot C, 1991, PACIFIC SALMON LIFE; Hogan E.V., 1995, GEOLOGICAL SURVEY OP, P95; Hunt L, 1999, AUST NZ J STAT, V41, P153; Jearld A. Jr, 1983, P301; Keith RM, 1998, T AM FISH SOC, V127, P889, DOI 10.1577/1548-8659(1998)127<0889:ROJSTR>2.0.CO;2; Laslett GM, 2004, ICES J MAR SCI, V61, P218, DOI 10.1016/j.icesjms.2003.12.006; Leigh GM, 2000, MAR FRESHWATER RES, V51, P143, DOI 10.1071/MF99029; MACDONALD PDM, 1979, J FISH RES BOARD CAN, V36, P987, DOI 10.1139/f79-137; Maceina MJ, 2007, FISHERIES, V32, P329, DOI 10.1577/1548-8446(2007)32[329:CSAROF]2.0.CO;2; McLachlan G. J., 2000, FINITE MIXTURE MODEL; Mosher K.H., 1968, FISHERY B, V67, P243; Myrvold KM, 2015, T AM FISH SOC, V144, P577, DOI 10.1080/00028487.2015.1022220; Quist MC, 2012, FISHERIES TECHNIQUES, THIRD EDITION, P677; R Core Team, 2015, R LANG ENV STAT COMP; Richardson N., 2016, ECOL FRESHW IN PRESS; Van Beveren E, 2014, MAR BIOL, V161, P1809, DOI 10.1007/s00227-014-2463-1; Zhu XH, 2013, T AM FISH SOC, V142, P333, DOI 10.1080/00028487.2012.741554 29 1 1 0 12 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0165-7836 1872-6763 FISH RES Fish Res. JAN 2017 185 161 168 10.1016/j.fishres.2016.09.012 8 Fisheries Fisheries ED3XA WOS:000388780600019 2018-11-22 J de Souza, FC; Dexter, KG; Phillips, OL; Brienen, RJW; Chave, J; Galbraith, DR; Gonzalez, GL; Mendoza, AM; Pennington, RT; Poorter, L; Alexiades, M; Alvarez-Davila, E; Andrade, A; Aragao, LEOC; Araujo-Murakami, A; Arets, EJMM; Aymard, GA; Baraloto, C; Barroso, JG; Bonal, D; Boot, RGA; Camargo, JLC; Comiskey, JA; Valverde, FC; de Camargo, PB; Di Fiore, A; Elias, F; Erwin, TL; Feldpausch, TR; Ferreira, L; Fyllas, NM; Gloor, E; Herault, B; Herrera, R; Higuchi, N; Coronado, ENH; Killeen, TJ; Laurance, WF; Laurance, S; Lloyd, J; Lovejoy, TE; Malhi, Y; Maracahipes, L; Marimon, BS; Marimon, BH; Mendoza, C; Morandi, P; Neill, DA; Vargas, PN; Oliveira, EA; Lenza, E; Palacios, WA; Penuela-Mora, MC; Pipoly, JJ; Pitman, NCA; Prieto, A; Quesada, CA; Ramirez-Angulo, H; Rudas, A; Ruokolainen, K; Salomao, RP; Silveira, M; Stropp, J; ter Steege, H; Thomas-Caesar, R; van der Hout, P; van der Heijden, GMF; van der Meer, PJ; Vasquez, RV; Vieira, SA; Vilanova, E; Vos, VA; Wang, O; Young, KR; Zagt, RJ; Baker, TR de Souza, Fernanda Coelho; Dexter, Kyle G.; Phillips, Oliver L.; Brienen, Roel J. W.; Chave, Jerome; Galbraith, David R.; Gonzalez, Gabriela Lopez; Monteagudo Mendoza, Abel; Pennington, R. Toby; Poorter, Lourens; Alexiades, Miguel; Alvarez-Davila, Esteban; Andrade, Ana; Aragao, Luis E. O. C.; Araujo-Murakami, Alejandro; Arets, Eric J. M. M.; Aymard C., Gerardo A.; Baraloto, Christopher; Barroso, Jorcely G.; Bonal, Damien; Boot, Rene G. A.; Camargo, Jose L. C.; Comiskey, James A.; Cornejo Valverde, Fernando; de Camargo, Plinio B.; Di Fiore, Anthony; Elias, Fernando; Erwin, Terry L.; Feldpausch, Ted R.; Ferreira, Leandro; Fyllas, Nikolaos M.; Gloor, Emanuel; Herault, Bruno; Herrera, Rafael; Higuchi, Niro; Honorio Coronado, Euridice N.; Killeen, Timothy J.; Laurance, William F.; Laurance, Susan; Lloyd, Jon; Lovejoy, Thomas E.; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S.; Marimon-Junior, Ben H.; Mendoza, Casimiro; Morandi, Paulo; Neill, David A.; Nunez Vargas, Percy; Oliveira, Edmar A.; Lenza, Eddie; Palacios, Walter A.; Penuela-Mora, Maria C.; Pipoly, John J., III; Pitman, Nigel C. A.; Prieto, Adriana; Quesada, Carlos A.; Ramirez-Angulo, Hirma; Rudas, Agustin; Ruokolainen, Kalle; Salomao, Rafael P.; Silveira, Marcos; Stropp, Juliana; ter Steege, Hans; Thomas-Caesar, Raquel; van der Hout, Peter; van der Heijden, Geertje M. F.; van der Meer, Peter J.; Vasquez, Rodolfo V.; Vieira, Simone A.; Vilanova, Emilio; Vos, Vincent A.; Wang, Ophelia; Young, Kenneth R.; Zagt, Roderick J.; Baker, Timothy R. Evolutionary heritage influences Amazon tree ecology PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article tropical tree; trait; convergent evolution; divergent selection; phylogenetic signal PHYLOGENETIC NICHE CONSERVATISM; FUNCTIONAL TRAITS; WOOD DENSITY; RAIN-FOREST; COMMUNITY ECOLOGY; SIGNAL; BIOMASS; GROWTH; PRODUCTIVITY; SIZE Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change. [de Souza, Fernanda Coelho; Phillips, Oliver L.; Brienen, Roel J. W.; Galbraith, David R.; Gonzalez, Gabriela Lopez; Aragao, Luis E. O. C.; Araujo-Murakami, Alejandro; Arets, Eric J. M. M.; Aymard C., Gerardo A.; Baraloto, Christopher; Fyllas, Nikolaos M.; Gloor, Emanuel; Baker, Timothy R.] Univ Leeds, Sch Geog, Leeds LS2 9JT, W Yorkshire, England; [Dexter, Kyle G.] Univ Edinburgh, Sch Geosci, 201 Crew Bldg,Kings Bldg, Edinburgh EH9 3FF, Midlothian, Scotland; [Dexter, Kyle G.; Pennington, R. Toby] Royal Bot Garden Edinburgh, 20a Inverleith Row, Edinburgh EH3 5LR, Midlothian, Scotland; [Chave, Jerome] Univ Paul Sabatier, CNRS, UMR 5174, Evolut & Diversite Biol, Batiment 4R1, F-31062 Toulouse, France; [Monteagudo Mendoza, Abel; Vasquez, Rodolfo V.] Jardin Bot Missouri, Prolongac Bolognesi Mz E,Lote 6, Oxapampa, Pasco, Peru; [Poorter, Lourens] Wageningen Univ & Res, Forest Ecol & Forest Management Grp, POB 47, NL-6700 AA Wageningen, Netherlands; [Alexiades, Miguel] Univ Kent, Sch Anthropol & Conservat, Marlowe Bldg, Canterbury CT2 7NR, Kent, England; [Alvarez-Davila, Esteban] Fdn Con Vida, Cra 48 20-114, Medellin, Colombia; [Andrade, Ana; Camargo, Jose L. C.] INPA, Biol Dynam Forest Fragment Project, CP 478, BR-69011970 Manaus, Amazonas, Brazil; [Andrade, Ana; Camargo, Jose L. C.] STRI, CP 478, BR-69011970 Manaus, Amazonas, Brazil; [Aragao, Luis E. O. C.; Feldpausch, Ted R.] Univ Exeter, Coll Life & Environm Sci, Geog, Exeter EX4 4RJ, Devon, England; [Aragao, Luis E. O. C.] Natl Inst Space Res INPE, Sao Paulo, Brazil; [Araujo-Murakami, Alejandro] Univ Autonoma Gabriel Rene Moreno, Museo Hist Nat Noel Kempff Mercado, Casilla 2489,Ave Irala 565, Santa Cruz, Bolivia; [Arets, Eric J. M. M.] Wageningen Univ & Res Ctr, Alterra, POB 47, NL-6700 AA Wageningen, Netherlands; [Aymard C., Gerardo A.] Herbario Univ PORT, UNELLEZ Guanare, Programa Agro & Mar, Estado Portuguesa 3350, Mesa De Cavacas, Venezuela; [Baraloto, Christopher] Florida Int Univ, Dept Biol Sci, Int Ctr Trop Bot, Miami, FL 33199 USA; [Barroso, Jorcely G.] Univ Fed Acre, Campus Cruzeiro Sul, Acre, Brazil; [Bonal, Damien] INRA, UMR 1137, Ecol & Ecophysiol Forestiere, F-54280 Champenoux, France; [Boot, Rene G. A.; Zagt, Roderick J.] Tropenbos Int, POB 232, NL-6700 AE Wageningen, Netherlands; [Comiskey, James A.] Natl Pk Serv, 120 Chatham Lane, Fredericksburg, VA 22405 USA; [Comiskey, James A.] Smithsonian Inst, 1100 Jefferson Dr SW, Washington, DC 20560 USA; [Cornejo Valverde, Fernando] Proyecto Castana, Madre De Dios, Peru; [de Camargo, Plinio B.] Univ Sao Paulo, Ctr Energia Nucl Agr, Sao Paulo, SP, Brazil; [Di Fiore, Anthony] Univ Texas Austin, Dept Anthropol, SAC Room 5-150,2201 Speedway Stop C3200, Austin, TX 78712 USA; [Elias, Fernando; Marimon, Beatriz S.; Marimon-Junior, Ben H.; Morandi, Paulo; Oliveira, Edmar A.; Lenza, Eddie] Univ Estado Mato Grosso, Campus Nova Xavantina,Caixa Postal 08, BR-78690000 Nova Xavantina, MG, Brazil; [Erwin, Terry L.] Smithsonian Inst, Dept Entomol, POB 37012,MRC 187, Washington, DC 20013 USA; [Ferreira, Leandro; Salomao, Rafael P.] Museu Paraense Emilio Goeldi, CP 399, BR-66040170 Belem, Para, Brazil; [Herault, Bruno] Univ Guyane, Univ Antilles, CNRS, Cirad,UMR EcoFoG,AgroParisTech,Inra, Campus Agron, Kourou 97310, French Guiana; [Herrera, Rafael] Ctr Ecol IVIC, Caracas, Venezuela; [Herrera, Rafael] Univ Vienna, Inst Geog & Reg Forsch, Vienna, Austria; [Higuchi, Niro; Quesada, Carlos A.] INPA, Ave Andre Araujo 2-936, BR-69067375 Manaus, Amazonas, Brazil; [Honorio Coronado, Euridice N.] Inst Invest Amazonia Peruana, Apartado 784, Iquitos, Peru; [Killeen, Timothy J.] AGTECA Amazonica, Santa Cruz, Bolivia; [Laurance, William F.; Laurance, Susan] James Cook Univ, Ctr Trop Environm & Sustainabil Sci TESS, Cairns, Qld 4878, Australia; [Laurance, William F.; Laurance, Susan] James Cook Univ, Coll Sci & Engn, Cairns, Qld 4878, Australia; [Lloyd, Jon] Imperial Coll London, Dept Life Sci, Silwood Pk Campus,Buckhurst Rd, Ascot SL5 7PY, Berks, England; [Lovejoy, Thomas E.] George Mason Univ, Environm Sci & Policy, Washington, DC USA; [Lovejoy, Thomas E.] George Mason Univ, Dept Publ & Int Affairs, Washington, DC USA; [Malhi, Yadvinder] Univ Oxford, Sch Geog & Environm, Environm Change Inst, Oxford, England; [Maracahipes, Leandro] Univ Fed Goias, Programa Posgrad Ecol & Evolucao, Goiania, Go, Brazil; [Mendoza, Casimiro] Univ Mayor San Simon, Unidad Acad Trop, Escuela Ciencias Forest, Sacta, Bolivia; [Neill, David A.] Univ Estatal Amazonica, Puyo, Pastaza, Ecuador; [Palacios, Walter A.] Univ Nacl San Antonio Abad Cusco, Ave Cultura 733, Cuzco, Peru; [Palacios, Walter A.] Univ Tcen Norte, Casilla 17-21-1787,Ave Rio Coca E6-115, Quito, Ecuador; [Palacios, Walter A.] Herbario Nacl Ecuador, Casilla 17-21-1787,Ave Rio Coca E6-115, Quito, Ecuador; [Penuela-Mora, Maria C.] Univ Reg Amazonica IKIAM, Tena, Ecuador; [Pipoly, John J., III] Broward Cty Pk & Recreat Div, 950 NW 38th St, Oakland Pk, FL 33309 USA; [Pitman, Nigel C. A.] Duke Univ, Ctr Trop Conservat, POB 90381, Durham, NC 27708 USA; [Prieto, Adriana; Rudas, Agustin] Univ Ciol Colombia, Doctorado Inst Ciencias Nat, Bogota, Colombia; [Ramirez-Angulo, Hirma] Univ Los Andes, Fac Ciencias Forestales & Ambientales, Inst Invest Desarrollo Forestal INDEFOR, Merida 5101, Venezuela; [Ruokolainen, Kalle] Univ Turku, Dept Geog & Geol, Turku 20014, Finland; [Silveira, Marcos] Univ Fed Acre, Museu Univ, BR-69910900 Rio Branco, AC, Brazil; [Stropp, Juliana] Univ Fed Alagoas, ICBS, Maceio, AL, Brazil; [ter Steege, Hans] Naturalis Biodivers Ctr, Vondellaan 55,Postbus 9517, NL-2300 RA Leiden, Netherlands; [Thomas-Caesar, Raquel] Iwokrama Intertiol Ctr Rainforest Conservat & Dev, 77 High St Kingston, Georgetown, Guyana; [van der Hout, Peter] Van der Hout Forestry Consulting, Jan Trooststr 6, NL-3078 HP Rotterdam, Netherlands; [van der Heijden, Geertje M. F.] Univ Nottingham, Sch Geog, Univ Pk, Nottingham NG7 2RD, England; [van der Meer, Peter J.] Van Hall Larenstein Univ Appl Sci, POB 9001, NL-6880 GB Velp, Netherlands; [Vieira, Simone A.] Univ Estadual Campinas, Nucleo Estudos & Pesquisas Ambientais NEPAM, Campinas, SP, Brazil; [Vilanova, Emilio] Univ Los Andes, Fac Ciencias Forest & Ambient, Merida, Venezuela; [Vos, Vincent A.] Ctr Invest & Promoc Campesinado Reg Norte Amazoni, C Nicanor Gonzalo Salvatierra 362,Casilla 16, Riberalta, Bolivia; [Vos, Vincent A.] Univ Autonoma Beni, Campus Univ, Riberalta, Bolivia; [Wang, Ophelia] No Arizona Univ, Flagstaff, AZ 86011 USA; [Young, Kenneth R.] Univ Texas Austin, Dept Geog & Environm, Austin, TX 78712 USA de Souza, FC (reprint author), Univ Leeds, Sch Geog, Leeds LS2 9JT, W Yorkshire, England. fecoelhos@gmail.com Elias, Fernando/P-4400-2014; Feldpausch, Ted/D-3436-2009; Marimon Junior, Ben Hur/E-7330-2013; James Cook University, TESS/B-8171-2012; Phillips, Oliver/A-1523-2011; Silveira, Marcos/H-7906-2013; Dexter, Kyle/D-5589-2018; Maracahipes, Leandro/F-8674-2012; Lloyd, Jonathan/F-8893-2010; Marimon, Beatriz/J-6389-2012; Vieira, Simone/H-1225-2011; Herault, Bruno/B-2765-2011; ter Steege, Hans/B-5866-2011; Lenza, Eddie/E-7232-2013 Elias, Fernando/0000-0001-9190-1733; Feldpausch, Ted/0000-0002-6631-7962; Phillips, Oliver/0000-0002-8993-6168; Silveira, Marcos/0000-0003-0485-7872; Dexter, Kyle/0000-0001-9232-5221; Maracahipes, Leandro/0000-0002-6148-3291; Lloyd, Jonathan/0000-0002-5458-9960; Marimon, Beatriz/0000-0003-3105-2914; Vieira, Simone/0000-0002-0129-4181; Herault, Bruno/0000-0002-6950-7286; ter Steege, Hans/0000-0002-8738-2659; Lenza, Eddie/0000-0001-9139-5949; Young, Kenneth R./0000-0003-0866-1260; Arets, Eric/0000-0001-7209-9028; Baraloto, Christopher/0000-0001-7322-8581; Vos, Vincent Antoine/0000-0002-0388-8530; Fyllas, Nikolaos/0000-0002-5651-5578 Gordon and Betty Moore Foundation; European Union [283080, 282664]; ERC; Natural Environment Research Council (NERC) Urgency, Consortium and Standard Grant 'AMAZONICA' [NE/ F005806/1]; Natural Environment Research Council (NERC) Urgency, Consortium and Standard Grant 'TROBIT' [NE/D005590/1]; Natural Environment Research Council (NERC) Urgency, Consortium and Standard Grant 'Niche Evolution of South American Trees' [NE/I028122/1]; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico of Brazil (CNPq); project Programa de Pesquisas Ecologicas de Longa Duracao [PELD-403725/2012-7]; Coordination for the Improvement of Higher Education Personnel - Brasil (CAPES) [117913-6]; Royal Society-Wolfson Research Merit Award; Leverhulme Trust [RF-2015-653] The field data used in this study have been generated by the RAINFOR network, which has been supported by a Gordon and Betty Moore Foundation grant, the European Union's Seventh Framework Programme projects 283080, 'GEOCARBON'; and 282664, 'AMAZALERT'; ERC grant 'Tropical Forests in the Changing Earth System'), and Natural Environment Research Council (NERC) Urgency, Consortium and Standard Grants 'AMAZONICA' (NE/ F005806/1), 'TROBIT' (NE/D005590/1) and 'Niche Evolution of South American Trees' (NE/I028122/1). Additional data were included from the Tropical Ecology Assessment and Monitoring (TEAM) Network - a collaboration between Conservation International, the Missouri Botanical Garden, the Smithsonian Institution and the Wildlife Conservation Society, and partly funded by these institutions, the Gordon and Betty Moore Foundation, and other donors. Fieldwork was also partially supported by Conselho Nacional de Desenvolvimento Cientifico e Tecnologico of Brazil (CNPq), project Programa de Pesquisas Ecologicas de Longa Duracao (PELD-403725/2012-7). F.C.S. is supported by a PhD scholarship from Coordination for the Improvement of Higher Education Personnel - Brasil (CAPES) (117913-6). O.L.P. is supported by an ERC Advanced Grant and is a Royal Society-Wolfson Research Merit Award holder and T.R.B. acknowledges support from a Leverhulme Trust Research Fellowship (RF-2015-653). Arroyo-Rodriguez V, 2012, J ECOL, V100, P702, DOI 10.1111/j.1365-2745.2011.01952.x; Baker TR, 2014, ECOL LETT, V17, P527, DOI 10.1111/ele.12252; Baker TR, 2004, GLOBAL CHANGE BIOL, V10, P545, DOI [10.1111/j.1365-2486.2004.00751.x, 10.1111/j.1529-8817.2003.00751.x]; Baker TR, 2004, PHILOS T ROY SOC B, V359, P353, DOI 10.1098/rstb.2003.1422; Baraloto C, 2012, J ECOL, V100, P690, DOI 10.1111/j.1365-2745.2012.01966.x; Blomberg SP, 2003, EVOLUTION, V57, P717, DOI 10.1111/j.0014-3820.2003.tb00285.x; Boyle B, 2013, BMC BIOINFORMATICS, V14, DOI 10.1186/1471-2105-14-16; Burns JH, 2012, ECOLOGY, V93, pS126, DOI 10.1890/11-0401.1; Cadotte MW, 2008, P NATL ACAD SCI USA, V105, P17012, DOI 10.1073/pnas.0805962105; Cadotte MW, 2013, P NATL ACAD SCI USA, V110, P8996, DOI 10.1073/pnas.1301685110; Cavender-Bares J, 2009, ECOL LETT, V12, P693, DOI 10.1111/j.1461-0248.2009.01314.x; Chave J, 2014, GLOBAL CHANGE BIOL, V20, P3177, DOI 10.1111/gcb.12629; Chave J, 2009, ECOL LETT, V12, P351, DOI 10.1111/j.1461-0248.2009.01285.x; Conner JK, 2004, A PRIMER OF ECOLOGIC; Crisp MD, 2012, NEW PHYTOL, V196, P681, DOI 10.1111/j.1469-8137.2012.04298.x; Davies TJ, 2012, ECOLOGY, V93, P242, DOI 10.1890/11-1360.1; DENSLOW JS, 1987, ANNU REV ECOL SYST, V18, P431, DOI 10.1146/annurev.es.18.110187.002243; Dexter K, 2016, PEERJ, V4, DOI 10.7717/peerj.2402; Dowle M, 2014, 2014 DATA TABLE EXTE; El-Lithy ME, 2004, PLANT PHYSIOL, V135, P444, DOI 10.1104/pp.103.036822; Enquist BJ, 2007, NATURE, V449, P218, DOI 10.1038/nature06061; Fan ZX, 2012, J ECOL, V100, P732, DOI 10.1111/j.1365-2745.2011.01939.x; Fauset S, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms7857; Feeley KJ, 2007, ECOL LETT, V10, P461, DOI 10.1111/j.1461-0248.2007.01033.x; Fine PVA, 2014, EVOLUTION, V68, P1988, DOI 10.1111/evo.12414; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Geber MA, 2003, INT J PLANT SCI, V164, pS21, DOI 10.1086/368233; Goodman RC, 2013, FOREST ECOL MANAG, V310, P994, DOI 10.1016/j.foreco.2013.09.045; Hijmans RJ, 2005, INT J CLIMATOL, V25, P1965, DOI 10.1002/joc.1276; Ives AR, 2007, SYSTEMATIC BIOL, V56, P252, DOI 10.1080/10635150701313830; Kamilar JM, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0341; Kitajima K, 2008, TROPICAL FOREST COMM, P160; Krasnov BR, 2011, ECOGRAPHY, V34, P114, DOI 10.1111/j.1600-0587.2010.06502.x; Lines ER, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013212; Lopez-Gonzalez G, 2011, J VEG SCI, V22, P610, DOI 10.1111/j.1654-1103.2011.01312.x; Losos JB, 2008, ECOL LETT, V11, P995, DOI 10.1111/j.1461-0248.2008.01229.x; Nascimento HEM, 2005, J VEG SCI, V16, P625, DOI 10.1658/1100-9233(2005)016[0625:DALCFA]2.0.CO;2; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Phillips OL, 2004, PHILOS T ROY SOC B, V359, P381, DOI 10.1098/rstb.2003.1438; Quesada CA, 2010, BIOGEOSCIENCES, V7, P1515, DOI 10.5194/bg-7-1515-2010; Revell LJ, 2012, METHODS ECOL EVOL, V3, P217, DOI 10.1111/j.2041-210X.2011.00169.x; Revell LJ, 2009, EVOLUTION, V63, P3258, DOI 10.1111/j.1558-5646.2009.00804.x; Revell LJ, 2008, SYST BIOL, V57, P591, DOI 10.1080/10635150802302427; Ribeiro EMS, 2016, ECOLOGY, V97, P1583, DOI 10.1890/15-1122.1; Santos BA, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0113109; Swenson NG, 2007, AM J BOT, V94, P451, DOI 10.3732/ajb.94.3.451; Swenson NG, 2012, ECOLOGY, V93, P490, DOI 10.1890/11-1180.1; Talbot J, 2014, FOREST ECOL MANAG, V320, P30, DOI 10.1016/j.foreco.2014.02.021; Team R. D. C, 2014, R A LANGUAGE AND ENV; ter Steege H, 2013, SCIENCE, V342, P325, DOI 10.1126/science.1243092; Uriarte M, 2010, ECOL LETT, V13, P1503, DOI 10.1111/j.1461-0248.2010.01541.x; Webb CO, 2005, MOL ECOL NOTES, V5, P181, DOI 10.1111/j.1471-8286.2004.00829.x; Webb CO, 2002, ANNU REV ECOL SYST, V33, P475, DOI 10.1146/annurev.ecolysis.33.010802.150448; Yang J, 2014, FUNCT ECOL, V28, P520, DOI 10.1111/1365-2435.12176; Zanne A. E., 2009, DRYAD DIGITAL REPOSI 55 4 4 2 39 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. DEC 14 2016 283 1844 20161587 10.1098/rspb.2016.1587 10 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology EF5XW WOS:000390404200010 Green Published, Other Gold 2018-11-22 J Mittal, C; Griskevicius, V Mittal, Chiraag; Griskevicius, Vladas Silver Spoons and Platinum Plans: How Childhood Environment Affects Adult Health Care Decisions JOURNAL OF CONSUMER RESEARCH English Article health insurance; childhood socioeconomic status; risk perception; risk propensity; financial threat FAMILY UNPREDICTABILITY SCALE; LIFE-HISTORY STRATEGIES; SOCIOECONOMIC-STATUS; UNREALISTIC OPTIMISM; RISK-TAKING; INSURANCE DECISIONS; SELF-POSITIVITY; BEHAVIOR; STRESS; PREFERENCE Can socioeconomic status in childhood influence desire for health coverage in adulthood? We develop and test a model that yielded two sets of findings across five experiments. First, people who grew up poor were generally less interested in health coverage compared to those who grew up wealthy. This effect was independent of people's current level of socioeconomic status, emerged most strongly when adults were experiencing financial threat, and was mediated by differences in willingness to take risks between people from poor versus wealthy childhoods. Second, we show that this effect reverses when people are provided with baserate information about disease. When information about the average likelihood of getting sick is made available, people who grew up poor were consistently more likely to seek health coverage than people who grew up wealthy. This effect was again strongest when people felt a sense of financial threat, and it was driven by people from poor versus wealthy childhoods differing in their perceptions of the likelihood of becoming sick. Overall, we show how, why, and when childhood socioeconomic status influences desire for health coverage. [Mittal, Chiraag] Texas A&M Univ, Mkt, Mays Business Sch, 220 Wehner Bldg,4113 TAMU, College Stn, TX 77843 USA; [Griskevicius, Vladas] Univ Minnesota, Mkt, Carlson Sch Management, 321 19th Ave South,Suite 3-150, Minneapolis, MN 55455 USA Mittal, C (reprint author), Texas A&M Univ, Mkt, Mays Business Sch, 220 Wehner Bldg,4113 TAMU, College Stn, TX 77843 USA. cmittal@tamu.edu; vladasg@umn.edu Adler NE, 2002, HEALTH AFFAIR, V21, P60, DOI 10.1377/hlthaff.21.2.60; Aiken L. S., 1991, MULTIPLE REGRESSION; American Psychological Association, 2015, STRESS AM PAYING OUR; Anderson LR, 2008, J HEALTH ECON, V27, P1260, DOI 10.1016/j.jhealeco.2008.05.011; Arrow K. J., 1971, ESSAYS THEORY RISK B; Baicker K, 2012, MILBANK Q, V90, P107, DOI 10.1111/j.1468-0009.2011.00656.x; Barnett J, 2001, RISK ANAL, V21, P171, DOI 10.1111/0272-4332.211099; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.1111/j.1467-8624.1991.tb01558.x; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Blais AR, 2006, JUDGM DECIS MAK, V1, P33; BLOCK LG, 1995, J MARKETING RES, V32, P192, DOI 10.2307/3152047; Bradley RH, 2002, ANNU REV PSYCHOL, V53, P371, DOI 10.1146/annurev.psych.53.100901.135233; Brady SS, 2002, J PEDIATR PSYCHOL, V27, P575, DOI 10.1093/jpepsy/27.7.575; Breakwell G. M, 2014, PSYCHOL RISK; Brewer NT, 2007, HEALTH PSYCHOL, V26, P136, DOI 10.1037/0278-6133.26.2.136; BrooksGunn J, 1997, FUTURE CHILD, V7, P55, DOI 10.2307/1602387; Bundorf MK, 2006, J HEALTH ECON, V25, P650, DOI 10.1016/j.jhealeco.2005.11.003; CAMERER CF, 1989, J POLICY ANAL MANAG, V8, P565, DOI 10.2307/3325045; Chaplin LN, 2007, J CONSUM RES, V34, P480, DOI 10.1086/518546; Chen E, 2004, CURR DIR PSYCHOL SCI, V13, P112, DOI 10.1111/j.0963-7214.2004.00286.x; Chen E, 2012, PERSPECT PSYCHOL SCI, V7, P135, DOI 10.1177/1745691612436694; Cohen S, 2010, ANN NY ACAD SCI, V1186, P37, DOI 10.1111/j.1749-6632.2009.05334.x; Connell PM, 2014, J CONSUM RES, V41, P119, DOI 10.1086/675218; de Meza D, 2001, RAND J ECON, V32, P249, DOI 10.2307/2696408; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; DeNavas-Walt C, 2013, INCOME POVERTY HLTH; Diener E, 2002, SOC INDIC RES, V57, P119, DOI 10.1023/A:1014411319119; Duncan GJ, 2002, AM J PUBLIC HEALTH, V92, P1151, DOI 10.2105/AJPH.92.7.1151; Duncan GJ, 2010, CHILD DEV, V81, P306, DOI 10.1111/j.1467-8624.2009.01396.x; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Evans GW, 2004, AM PSYCHOL, V59, P77, DOI 10.1037/0003-066X.59.2.77; Fischhoff B, 2003, J RISK UNCERTAINTY, V26, P137, DOI 10.1023/A:1024163023174; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Guo G, 2000, DEMOGRAPHY, V37, P431, DOI 10.2307/2648070; Hanoch Y, 2006, PSYCHOL SCI, V17, P300, DOI 10.1111/j.1467-9280.2006.01702.x; Harris P, 1996, J SOC CLIN PSYCHOL, V15, P9, DOI 10.1521/jscp.1996.15.1.9; Hayes A. F., 2013, INTRO MEDIATION MODE; Helweg-Larsen M, 2001, PERS SOC PSYCHOL REV, V5, P74, DOI 10.1207/S15327957PSPR0501_5; Hill SE, 2013, J EXP SOC PSYCHOL, V49, P888, DOI 10.1016/j.jesp.2013.03.016; HOGARTH RM, 1995, J RISK UNCERTAINTY, V10, P15, DOI 10.1007/BF01211526; HOORENS V, 1993, J APPL SOC PSYCHOL, V23, P291, DOI 10.1111/j.1559-1816.1993.tb01088.x; Horton R, 2009, LANCET, V373, P355, DOI 10.1016/S0140-6736(09)60116-1; Hsee CK, 2000, J RISK UNCERTAINTY, V20, P141, DOI 10.1023/A:1007876907268; Irwin JR, 2001, J MARKETING RES, V38, P100, DOI 10.1509/jmkr.38.1.100.18835; JENSEN EW, 1983, SOC SCI MED, V17, P201, DOI 10.1016/0277-9536(83)90117-X; Jiang Y., 2016, BASIC FACTS LOW INCO; JOHNSON EJ, 1993, J RISK UNCERTAINTY, V7, P35, DOI 10.1007/BF01065313; KAHNEMAN D, 1979, ECONOMETRICA, V47, P263, DOI 10.2307/1914185; Keller RA, 2002, J CONSUM RES, V29, P57; Klein CTF, 2002, PSYCHOL HEALTH, V17, P437, DOI 10.1080/0887044022000004920; Kunreuther H, 1996, J RISK UNCERTAINTY, V12, P171, DOI 10.1007/BF00055792; Kunreuther H., 2006, FDN TRENDS MICROECON, V1, P63; Chaplin LN, 2014, J PUBLIC POLICY MARK, V33, P78, DOI 10.1509/jppm.13.050; Laran J, 2013, PSYCHOL SCI, V24, P167, DOI 10.1177/0956797612450033; Lejuez CW, 2002, J EXP PSYCHOL-APPL, V8, P75, DOI 10.1037//1076-898X.8.2.75; Levy H, 2008, INQUIRY-J HEALTH CAR, V45, P365, DOI 10.5034/inquiryjrnl_45.04.365; LICHTENSTEIN S, 1971, J EXP PSYCHOL, V89, P46, DOI 10.1037/h0031207; LICHTENSTEIN S, 1973, J EXP PSYCHOL, V101, P16, DOI 10.1037/h0035472; Lin YC, 2003, J CONSUM PSYCHOL, V13, P464, DOI 10.1207/S15327663JCP1304_13; LINK BG, 1995, J HEALTH SOC BEHAV, V35, P80, DOI 10.2307/2626958; Loewenstein GF, 2001, PSYCHOL BULL, V127, P267, DOI 10.1037//0033-2909.127.2.267; Marjanovic Z, 2013, J ECON PSYCHOL, V36, P1, DOI 10.1016/j.joep.2013.02.005; MATHENY AP, 1995, J APPL DEV PSYCHOL, V16, P429, DOI 10.1016/0193-3973(95)90028-4; McEwen BS, 2012, P NATL ACAD SCI USA, V109, P17180, DOI 10.1073/pnas.1121254109; MCEWEN BS, 1993, ARCH INTERN MED, V153, P2093, DOI 10.1001/archinte.153.18.2093; MCKENNA FP, 1993, BRIT J PSYCHOL, V84, P39, DOI 10.1111/j.2044-8295.1993.tb02461.x; MECHANIC D, 1980, PREV MED, V9, P805, DOI 10.1016/0091-7435(80)90023-7; Menon G, 2009, ORGAN BEHAV HUM DEC, V108, P39, DOI 10.1016/j.obhdp.2008.05.001; Menon Geeta, 2007, HDB CONSUMER PSYCHOL, P981; Miller GE, 2009, P NATL ACAD SCI USA, V106, P14716, DOI 10.1073/pnas.0902971106; Minsky H, 1986, STABILIZING UNSTABLE; Mittal C, 2015, J PERS SOC PSYCHOL, V109, P604, DOI 10.1037/pspi0000028; Mittal C, 2014, J PERS SOC PSYCHOL, V107, P621, DOI 10.1037/a0037398; MOORMAN C, 1993, J CONSUM RES, V20, P208, DOI 10.1086/209344; Moss JH, 2014, HUM NATURE-INT BIOS, V25, P328, DOI 10.1007/s12110-014-9210-7; MOSSIN J, 1968, J POLIT ECON, V76, P553, DOI 10.1086/259427; Muller D, 2005, J PERS SOC PSYCHOL, V89, P852, DOI 10.1037/0022-3514.89.6.852; Nes LS, 2006, PERS SOC PSYCHOL REV, V10, P235, DOI 10.1207/s15327957pspr1003_3; Nicholson N, 2005, J RISK RES, V8, P157, DOI 10.1080/1366987032000123856; Pampel FC, 2010, ANNU REV SOCIOL, V36, P349, DOI 10.1146/annurev.soc.012809.102529; PERLOFF LS, 1986, J PERS SOC PSYCHOL, V50, P502, DOI 10.1037/0022-3514.50.3.502; Petrolia DR, 2013, LAND ECON, V89, P227, DOI 10.3368/le.89.2.227; Raghubir P, 1998, J CONSUM RES, V25, P52, DOI 10.1086/209526; Richins ML, 2015, J CONSUM RES, V41, P1333, DOI 10.1086/680087; Rindfleisch A, 1997, J CONSUM RES, V23, P312, DOI 10.1086/209486; Ross LT, 2008, J CHILD FAM STUD, V17, P13, DOI 10.1007/s10826-007-9138-1; Ross LT, 2000, J MARRIAGE FAM, V62, P549, DOI 10.1111/j.1741-3737.2000.00549.x; Roux Caroline, 2014, ADV CONSUM RES, V42, P216; Samuelson William, 1988, J RISK UNCERTAINTY, V1, P7, DOI DOI 10.1007/BF00055564; SCHLESINGER H, 1991, J RISK INSUR, V58, P109, DOI 10.2307/3520051; SCHOEMAKER PJH, 1979, J RISK INSUR, V46, P603, DOI 10.2307/252533; Sharma E, 2012, J CONSUM RES, V39, P545, DOI 10.1086/664038; Shonkoff JP, 2012, PEDIATRICS, V129, pE460, DOI 10.1542/peds.2011-0366; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; SITKIN SB, 1992, ACAD MANAGE REV, V17, P9, DOI 10.2307/258646; SLOVIC P, 1987, SCIENCE, V236, P280, DOI 10.1126/science.3563507; SLOVIC P, 1977, J RISK INSUR, V44, P237, DOI 10.2307/252136; SMITH VL, 1968, J POLIT ECON, V76, P68, DOI 10.1086/259382; Spinnewijn J, 2013, ECON J, V123, P606, DOI 10.1111/ecoj.12008; Sunstein CR, 2011, ENVIRON RESOUR ECON, V48, P435, DOI 10.1007/s10640-010-9449-3; Taylor SE, 2004, J PERS, V72, P1365, DOI 10.1111/j.1467-6494.2004.00300.x; TAYLOR SE, 1988, PSYCHOL BULL, V103, P193, DOI 10.1037//0033-2909.103.2.193; Taylor SE, 2010, P NATL ACAD SCI USA, V107, P8507, DOI 10.1073/pnas.1003890107; Thompson Debora V., 2015, ADV CONSUM RES, V46, P230; Troxel WM, 2004, CLIN CHILD FAM PSYCH, V7, P29, DOI 10.1023/B:CCFP.0000020191.73542.b0; US Department of Health and Human Services, 2013, HLTH INS MARK PREM 2; VISCUSI WK, 1987, RAND J ECON, V18, P465, DOI 10.2307/2555636; Wambach A, 2008, MICROECONOMIC INSURA, V4, P1; Watson, 1988, J PERS SOC PSYCHOL, V54, P1063; WEINSTEIN ND, 1980, J PERS SOC PSYCHOL, V39, P806, DOI 10.1037//0022-3514.39.5.806; White AE, 2013, PSYCHOL SCI, V24, P715, DOI 10.1177/0956797612461919; Yan DF, 2013, J CONSUM RES, V39, P931, DOI 10.1086/666596; Zhao XS, 2010, J CONSUM RES, V37, P197, DOI 10.1086/651257 115 5 5 7 11 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 0093-5301 1537-5277 J CONSUM RES J. Consum. Res. DEC 2016 43 4 636 656 10.1093/jcr/ucw046 21 Business Business & Economics EQ3AK WOS:000397943100009 2018-11-22 J Waterton, J; Cleland, EE Waterton, Joseph; Cleland, Elsa E. Trade-off between early emergence and herbivore susceptibility mediates exotic success in an experimental California plant community ECOLOGY AND EVOLUTION English Article community assembly; emergence; germination; herbivory; invasion; phenology; seedlings ENEMY RELEASE HYPOTHESIS; SEEDLING HERBIVORY; PERENNIAL GRASSES; ANNUAL GRASSLAND; PHENOLOGY; INVASIONS; PRIORITY; BIODIVERSITY; GERMINATION; EVOLUTION Ecological trade-offs are fundamental to theory in community ecology; critical for understanding species coexistence in diverse plant communities, as well as the evolution of diverse life-history strategies. Invasions by exotic species can provide insights into the importance of trade-offs in community assembly, because the ecological strategies of invading species often differ from those present in the native species pool. Exotic annual species have invaded many Mediterranean-climate areas around the globe, and often germinate and emerge earlier in the growing season than native species. Early-season growth can enable exotic annual species to preempt space and resources, competitively suppressing later-emerging native species; however, early-emerging individuals may also be more apparent to herbivores. This suggests a potential trade-off between seasonal phenology and susceptibility to herbivory. To evaluate this hypothesis, we monitored the emergence and growth of 12 focal species (six each native and exotic) in monoculture and polyculture, while experimentally excluding generalist herbivores both early and later in the growing season. Consistent with past studies, the exotic species emerged earlier than native species. Regardless of species origin, earlier-emerging species achieved greater biomass by the end of the experiment, but were more negatively impacted by herbivory, particularly in the early part of the growing season. This greater impact of early-season herbivory on early-active species led to a reduction in the competitive advantage of exotic species growing in polyculture, and improved the performance of later-emerging natives. Such a trade-off between early growth and susceptibility to herbivores could be an important force in community assembly in seasonal herbaceous-dominated ecosystems. These results also show how herbivore exclusion favors early-active exotic species in this system, with important implications for management in many areas invaded by early-active exotic species. [Waterton, Joseph; Cleland, Elsa E.] Univ Calif San Diego, Ecol Behav & Evolut Sect, 9500 Gilman Dr, La Jolla, CA 92093 USA Waterton, J (reprint author), Univ Calif San Diego, Ecol Behav & Evolut Sect, 9500 Gilman Dr, La Jolla, CA 92093 USA. jwaterto@ucsd.edu Cleland, Elsa/0000-0003-3920-0029 Jeanne M. Messier Memorial Fellowship Jeanne M. Messier Memorial Fellowship Abraham JK, 2009, PLANT ECOL, V201, P445, DOI 10.1007/s11258-008-9467-1; Anderson JT, 2012, P ROY SOC B-BIOL SCI, V279, P3843, DOI 10.1098/rspb.2012.1051; Augspurger CK, 2013, ECOLOGY, V94, P41, DOI 10.1890/12-0200.1; BARTOLOME JW, 1979, J ECOL, V67, P273, DOI 10.2307/2259350; Barton KE, 2013, ANN BOT-LONDON, V112, P643, DOI 10.1093/aob/mct139; Beck JJ, 2015, ECOL APPL, V25, P1259, DOI 10.1890/14-1093.1; Boege K, 2005, TRENDS ECOL EVOL, V20, P441, DOI 10.1016/j.tree.2005.05.001; Burt-Smith GS, 2003, OIKOS, V101, P345, DOI 10.1034/j.1600-0706.2003.11052.x; Cleland EE, 2006, ECOLOGY, V87, P686, DOI 10.1890/05-0529; Cleland EE, 2016, ECOSYSTEMS OF CALIFORNIA, P429; Cleland EE, 2015, OIKOS, V124, P33, DOI 10.1111/oik.01433; Colautti RI, 2004, ECOL LETT, V7, P721, DOI 10.1111/j.1461-0248.2004.00616.x; Crawley MJ, 2007, THEORETICAL ECOLOGY, P62; Cushman JH, 2011, J ECOL, V99, P524, DOI 10.1111/j.1365-2745.2010.01776.x; Deering RH, 2006, GRASSLANDS, V16, P14; Fenner M, 2005, ECOLOGY SEEDS; Fox J., 2011, R COMPANION APPL REG; Fridley JD, 2012, NATURE, V485, P359, DOI 10.1038/nature11056; Fukami T, 2015, ANNU REV ECOL EVOL S, V46, P1, DOI 10.1146/annurev-ecolsys-110411-160340; Funk JL, 2015, RESTOR ECOL, V23, P122, DOI 10.1111/rec.12162; Godoy O, 2011, FUNCT ECOL, V25, P1248, DOI 10.1111/j.1365-2435.2011.01886.x; Grman E, 2010, RESTOR ECOL, V18, P664, DOI 10.1111/j.1526-100X.2008.00497.x; Hanley ME, 2007, PLANT CELL ENVIRON, V30, P812, DOI 10.1111/j.1365-3040.2007.01671.x; Hanley ME, 2009, ANN BOT-LONDON, V103, P1347, DOI 10.1093/aob/mcp081; Hanley Mick E., 1998, Perspectives in Plant Ecology Evolution and Systematics, V1, P191, DOI 10.1078/1433-8319-00058; HEADY HF, 1958, ECOLOGY, V39, P402, DOI 10.2307/1931750; Hobbs RJ, 2001, CONSERV BIOL, V15, P1522, DOI 10.1046/j.1523-1739.2001.01092.x; Holmgren Milena, 2002, Biological Invasions, V4, P25, DOI 10.1023/A:1020535628776; Hothorn T, 2008, BIOMETRICAL J, V50, P346, DOI 10.1002/bimj.200810425; HULME PE, 1994, J ECOL, V82, P873, DOI 10.2307/2261451; Keane RM, 2002, TRENDS ECOL EVOL, V17, P164, DOI 10.1016/S0169-5347(02)02499-0; Kempel A, 2015, ECOLOGY, V96, P2923, DOI 10.1890/14-2125.1; Lambers J. Hille Ris, 2010, J ECOL, V98, P1147; Lambrinos JG, 2006, OECOLOGIA, V147, P327, DOI 10.1007/s00442-005-0259-1; Leishman MR, 2007, NEW PHYTOL, V176, P635, DOI 10.1111/j.1469-8137.2007.02189.x; Loreau M, 1998, OIKOS, V82, P600, DOI 10.2307/3546381; Marushia RG, 2010, J APPL ECOL, V47, P1290, DOI 10.1111/j.1365-2664.2010.01881.x; Menke J. W., 1992, FREMONTIA, V20, P22; Norden N, 2009, FUNCT ECOL, V23, P203, DOI 10.1111/j.1365-2435.2008.01477.x; Parker JD, 2006, SCIENCE, V311, P1459, DOI 10.1126/science.1121407; Pau S, 2011, GLOBAL CHANGE BIOL, V17, P3633, DOI 10.1111/j.1365-2486.2011.02515.x; Perez-Fernandez MA, 2000, ACTA OECOL, V21, P323, DOI 10.1016/S1146-609X(00)01084-5; Peters HA, 2007, J VEG SCI, V18, P175, DOI 10.1658/1100-9233(2007)18[175:TSOSHI]2.0.CO;2; Pinheiro J., 2015, R PACKAGE VERSION, V3, P1; Quintero C, 2014, ECOLOGY, V95, P2589, DOI 10.1890/13-2249.1; R Core Team, 2015, R LANG ENV STAT COMP; Reynolds Sally A., 2001, Madrono, V48, P230; RICE KJ, 1987, ECOLOGY, V68, P1113, DOI 10.2307/1938386; Rinella MJ, 2009, J APPL ECOL, V46, P796, DOI 10.1111/j.1365-2664.2009.01676.x; Roche CT, 2001, WEED SCI, V49, P439, DOI 10.1614/0043-1745(2001)049[0439:BOCCAY]2.0.CO;2; Sala OE, 2000, SCIENCE, V287, P1770, DOI 10.1126/science.287.5459.1770; Semchenko M, 2012, J ECOL, V100, P459, DOI 10.1111/j.1365-2745.2011.01936.x; Skaer MJ, 2013, J VEG SCI, V24, P332, DOI 10.1111/j.1654-1103.2012.01460.x; Strauss SY, 1999, TRENDS ECOL EVOL, V14, P179, DOI 10.1016/S0169-5347(98)01576-6; Sullivan AT, 2009, ECOLOGY, V90, P1346, DOI 10.1890/08-0629.1; Underwood EC, 2009, DIVERS DISTRIB, V15, P188, DOI 10.1111/j.1472-4642.2008.00518.x; Underwood N, 2014, Q REV BIOL, V89, P1, DOI 10.1086/674991; van Kleunen M, 2010, ECOL LETT, V13, P235, DOI 10.1111/j.1461-0248.2009.01418.x; Vaughn KJ, 2015, ECOL APPL, V25, P791, DOI 10.1890/14-0922.1; Vila M, 1998, ECOL APPL, V8, P1196, DOI 10.1890/1051-0761(1998)008[1196:HVFCGI]2.0.CO;2; Wainwright CE, 2013, BIOL INVASIONS, V15, P2253, DOI 10.1007/s10530-013-0449-4; Wainwright CE, 2012, J APPL ECOL, V49, P234, DOI 10.1111/j.1365-2664.2011.02088.x; Wolkovich EM, 2014, AOB PLANTS, V6, DOI 10.1093/aobpla/plu013; Wolkovich EM, 2011, FRONT ECOL ENVIRON, V9, P287, DOI 10.1890/100033; Xu J, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098601 65 1 1 3 22 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. DEC 2016 6 24 8942 8953 10.1002/ece3.2610 12 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology EH9AF WOS:000392063300026 28035282 DOAJ Gold, Green Published 2018-11-22 J Boddy, L; Hiscox, J Boddy, Lynne; Hiscox, Jennifer Fungal Ecology: Principles and Mechanisms of Colonization and Competition by Saprotrophic Fungi MICROBIOLOGY SPECTRUM English Article VOLATILE ORGANIC-COMPOUNDS; INTERSPECIFIC MYCELIAL INTERACTIONS; DIFFERENTIAL GENE-EXPRESSION; IN-VITRO INTERACTIONS; CORD-FORMING FUNGI; WOOD DECAY FUNGI; WHITE-ROT FUNGI; TRICHODERMA-HARZIANUM; FUSARIUM-VERTICILLIOIDES; HETEROBASIDION-ANNOSUM Decomposer fungi continually deplete the organic resources they inhabit, so successful colonization of new resources is a crucial part of their ecology. Colonization success can be split into (i) the ability to arrive at, gain entry into, and establish within a resource and (ii) the ability to persist within the resource until reproduction and dissemination. Fungi vary in their life history strategies, the three main drivers of which are stress (S-selected), disturbance (ruderal, or R-selected), and incidence of competitors (C-selected); however, fungi often have combinations of characteristics from different strategies. Arrival at a new resource may occur as spores or mycelium, with successful entry and establishment (primary resource capture) within the resource largely dependent on the enzymatic ability of the fungus. The communities that develop in a newly available resource depend on environmental conditions and, in particular, the levels of abiotic stress present (e.g., high temperature, low water availability). Community change occurs when these initial colonizers are replaced by species that are either more combative (secondary resource capture) or better able to tolerate conditions within the resource, either through changing abiotic conditions or due to modification of the resource by the initial colonizers. Competition for territory may involve highly specialized species-specific interactions such as mycoparasitism or may be more general; in both cases combat involves changes in morphology, metabolism, and reactive oxygen species production, and outcomes of these interactions can be altered under different environmental conditions. In summary, community development is not a simple ordered sequence, but a complex ever-changing mosaic. [Boddy, Lynne; Hiscox, Jennifer] Cardiff Univ, Sch Biosci, Cardiff CF10 3AX, S Glam, Wales Boddy, L (reprint author), Cardiff Univ, Sch Biosci, Cardiff CF10 3AX, S Glam, Wales. boddyl@cf.ac.uk Boddy, Lynne/0000-0003-1845-6738 Abraham WR, 2001, CURR MED CHEM, V8, P583, DOI 10.2174/0929867013373147; Arfi Y, 2013, APPL ENVIRON MICROB, V79, P6626, DOI 10.1128/AEM.02316-13; Baldrian P, 2004, FEMS MICROBIOL ECOL, V50, P245, DOI 10.1016/j.femsec.2004.07.005; Baxter A, 2014, J EXP BOT, V65, P1229, DOI 10.1093/jxb/ert375; BELL AA, 1986, ANNU REV PHYTOPATHOL, V24, P411, DOI 10.1146/annurev.py.24.090186.002211; BODDY L, 1983, NEW PHYTOL, V94, P623, DOI 10.1111/j.1469-8137.1983.tb04871.x; BODDY L, 1985, T BRIT MYCOL SOC, V85, P201, DOI 10.1016/S0007-1536(85)80183-2; BODDY L, 1993, MYCOL RES, V97, P641, DOI 10.1016/S0953-7562(09)80141-X; Boddy L, 1999, MYCOLOGIA, V91, P13, DOI 10.2307/3761190; Boddy L, 2000, FEMS MICROBIOL ECOL, V31, P185, DOI 10.1016/S0168-6496(99)00093-8; Boddy L, 1984, ECOLOGY PHYSL FUNGAL, P261; BODDY L, 2008, BIOPHYSICAL CHEM FRA, P239; Boddy L, 2006, 8 INT MYC C P MED IT, P13; Boddy L., 2007, BR MYCOL SY, P112; Boddy L, 2017, FUNGAL COMMUNITY ITS, P169; Boddy L, 2011, FUNGAL ECOL, V4, P163, DOI 10.1016/j.funeco.2010.10.001; Boddy L, 2008, BR MYCOL SY, V28, P211; Cairney JWG, 2005, MYCOL RES, V109, P7, DOI 10.1017/S0953756204001753; Cupul WC, 2014, ELECTRON J BIOTECHN, V17, P114, DOI 10.1016/j.ejbt.2014.04.007; Chen YN, 2015, ENVIRON SCI POLLUT R, V22, P9807, DOI 10.1007/s11356-015-4149-8; COATES D, 1985, NEW PHYTOL, V101, P153, DOI 10.1111/j.1469-8137.1985.tb02823.x; COOKE R. C., 1984, ECOLOGY SAPROTROPHIC; Crowther TW, 2014, FRONT MICROBIOL, V5, DOI 10.3389/fmicb.2014.00579; Dickie IA, 2012, ECOL LETT, V15, P133, DOI 10.1111/j.1461-0248.2011.01722.x; Dix N.J., 1995, FUNGAL ECOLOGY; DOWSON CG, 1989, NEW PHYTOL, V111, P699, DOI 10.1111/j.1469-8137.1989.tb02365.x; El Ariebi N, 2016, FUNGAL ECOL, V20, P144, DOI 10.1016/j.funeco.2015.12.013; Sanchez-Fernandez RE, 2016, MICROB ECOL, V71, P347, DOI 10.1007/s00248-015-0679-3; Estrada AER, 2011, FUNGAL GENET BIOL, V48, P874, DOI 10.1016/j.fgb.2011.06.006; Evans JA, 2008, FUNGAL ECOL, V1, P57, DOI 10.1016/j.funeco.2008.06.001; Eyre C, 2010, FUNGAL BIOL-UK, V114, P646, DOI 10.1016/j.funbio.2010.05.006; Ferguson BA, 2003, CAN J FOREST RES, V33, P612, DOI 10.1139/x03-065; Fischer G, 1999, CHEMOSPHERE, V39, P795; FREITAG M, 1992, CAN J MICROBIOL, V38, P317, DOI 10.1139/m92-053; Fricker MD, 2008, BR MYCOL SY, V28, P3; Fukami T, 2015, ANNU REV ECOL EVOL S, V46, P1, DOI 10.1146/annurev-ecolsys-110411-160340; Fukami T, 2010, ECOL LETT, V13, P675, DOI 10.1111/j.1461-0248.2010.01465.x; Gao Y, 2005, J INTEGR PLANT BIOL, V47, P499, DOI 10.1111/j.1744-7909.2005.00081.x; Garbelotto MM, 1997, MYCOLOGIA, V89, P92, DOI 10.2307/3761177; Goh YK, 2010, MYCOLOGIA, V102, P757, DOI 10.3852/09-171; GRIFFITH GS, 1991, NEW PHYTOL, V117, P259, DOI 10.1111/j.1469-8137.1991.tb04907.x; Hallenberg N, 2001, NORD J BOT, V21, P431, DOI 10.1111/j.1756-1051.2001.tb00793.x; Hallenberg Nils, 1995, Acta Universitatis Upsaliensis Symbolae Botanicae Upsalienses, V30, P95; Heaton Luke, 2012, Fungal Biology Reviews, V26, P12, DOI 10.1016/j.fbr.2012.02.001; HEDGER J, 1990, Mycologist, V4, P200; Heilmann-Clausen J, 2005, MICROBIAL ECOL, V49, P399, DOI 10.1007/s00248-004-0240-2; Heilmann-Clausen J, 2004, FOREST ECOL MANAG, V201, P105, DOI 10.1016/j.foreco.2004.07.010; Henson JM, 1999, ANNU REV PHYTOPATHOL, V37, P447, DOI 10.1146/annurev.phyto.37.1.447; Hiscox J, 2016, ENVIRON MICROBIOL, V18, P1954, DOI 10.1111/1462-2920.13141; Hiscox J, 2016, FUNGAL ECOL, V21, P32, DOI 10.1016/j.funeco.2016.01.011; Hiscox J, 2015, ISME J, V9, P2246, DOI 10.1038/ismej.2015.38; Hiscox J, 2010, FUNGAL GENET BIOL, V47, P562, DOI 10.1016/j.fgb.2010.03.007; Holmer L, 1997, OIKOS, V79, P77, DOI 10.2307/3546092; Humphris SN, 2002, FEMS MICROBIOL LETT, V210, P215, DOI 10.1111/j.1574-6968.2002.tb11183.x; Hynes J, 2007, J CHEM ECOL, V33, P43, DOI 10.1007/s10886-006-9209-6; Iakovlev A, 2000, MICROB ECOL, V39, P236; JEFFRIES P, 1995, CAN J BOT, V73, pS1284; Jonkers W, 2012, APPL ENVIRON MICROB, V78, P3656, DOI 10.1128/AEM.07841-11; Keddy P., 1989, COMPETITION; Ladygina N, 2006, PROCESS BIOCHEM, V41, P1001, DOI 10.1016/j.procbio.2005.12.007; Lang E, 1998, FEMS MICROBIOL LETT, V167, P239, DOI 10.1111/j.1574-6968.1998.tb13234.x; Lemfack MC, 2014, NUCLEIC ACIDS RES, V42, pD744, DOI 10.1093/nar/gkt1250; Lindahl BD, 2006, NEW PHYTOL, V169, P389, DOI 10.1111/j.1469-8137.2005.01581.x; Lindner DL, 2011, FUNGAL ECOL, V4, P449, DOI 10.1016/j.funeco.2011.07.001; Lumsden R., 2005, FUNGAL COMMUNITY ITS, P275; Niemela T, 1995, ANN BOT FENN, V32, P141; Norden B, 2000, NORD J BOT, V20, P215, DOI 10.1111/j.1756-1051.2000.tb01572.x; Osono T, 2005, MYCOLOGIA, V97, P589, DOI 10.3852/mycologia.97.3.589; Ottosson E., 2013, THESIS; Ottosson E, 2014, FUNGAL ECOL, V11, P17, DOI 10.1016/j.funeco.2014.03.003; Ovaskainen O, 2010, FUNGAL ECOL, V3, P274, DOI 10.1016/j.funeco.2010.01.001; Peiris D, 2008, METABOLOMICS, V4, P52, DOI 10.1007/s11306-007-0100-4; Polizzi V, 2012, FUNGAL BIOL-UK, V116, P941, DOI 10.1016/j.funbio.2012.06.001; Pouska V, 2013, POL J ECOL, V61, P119; PUGH GJF, 1988, P ROY SOC EDINB B, V94, P3; Rajala T, 2011, FUNGAL ECOL, V4, P437, DOI 10.1016/j.funeco.2011.05.005; Rayner A. D. M., 1985, DEV BIOL HIGHER FUNG, P249; RAYNER ADM, 1987, FEMS MICROBIOL ECOL, V45, P53, DOI 10.1016/0378-1097(87)90042-5; RAYNER ADM, 1994, BIOCHEM SOC T, V22, P389, DOI 10.1042/bst0220389; Read Nick D., 2012, Fungal Biology Reviews, V26, P1, DOI 10.1016/j.fbr.2012.02.003; Redfern DB, 2001, FORESTRY, V74, P53, DOI 10.1093/forestry/74.1.53; Richardson MJ, 2002, FUNGAL DIVERS, V10, P101; Rosado IV, 2007, FUNGAL GENET BIOL, V44, P950, DOI 10.1016/j.fgb.2007.01.001; Rosecke J, 2000, PHYTOCHEMISTRY, V54, P747, DOI 10.1016/S0031-9422(00)00138-2; Schoeman MW, 1996, MYCOL RES, V100, P1454, DOI 10.1016/S0953-7562(96)80077-3; Score AJ, 1997, INT BIODETER BIODEGR, V39, P225, DOI 10.1016/S0964-8305(97)00012-7; Sharma P, 2011, AFR J BIOTECHNOL, V10, P19898, DOI 10.5897/AJBX11.041; Silar P, 2005, MYCOL RES, V109, P137, DOI 10.1017/S0953756204002230; Smith ME, 2015, FUNGAL ECOL, V13, P211, DOI 10.1016/j.funeco.2014.08.010; Snajdr J, 2011, FEMS MICROBIOL ECOL, V78, P80, DOI 10.1111/j.1574-6941.2011.01123.x; Stenlid J, 2008, BR MYCOL SY, V28, P105; Strobel GA, 2001, MICROBIOL-SGM, V147, P2943, DOI 10.1099/00221287-147-11-2943; THOMPSON W, 1983, T BRIT MYCOL SOC, V81, P333, DOI 10.1016/S0007-1536(83)80085-0; Thompson W, 1984, ECOLOGY PHYSL FUNGAL, P185; Tordoff GM, 2006, MYCOL RES, V110, P335, DOI 10.1016/j.mycres.2005.11.012; Tornberg K, 2002, FEMS MICROBIOL ECOL, V40, P13, DOI [10.1016/S0168-6496(02)00200-3, 10.1111/j.1574-6941.2002.tb00931.x]; Ujor VC, 2012, LETT APPL MICROBIOL, V54, P336, DOI 10.1111/j.1472-765X.2012.03215.x; van der Wal A, 2013, FEMS MICROBIOL REV, V37, P477, DOI 10.1111/1574-6976.12001; Verma P, 2002, APPL BIOCHEM BIOTECH, V102, P109, DOI 10.1385/ABAB:102-103:1-6:109; VILGALYS R, 1994, MYCOLOGIA, V86, P270, DOI 10.2307/3760649; Watkinson SC, 2015, FUNGI; Wheatley R, 1997, INT BIODETER BIODEGR, V39, P199, DOI 10.1016/S0964-8305(97)00015-2; Wheatley RE, 2002, ANTON LEEUW INT J G, V81, P357, DOI 10.1023/A:1020592802234; Whipps John M., 2007, P223, DOI 10.1007/978-1-4020-5799-1_12; WHITE NA, 1992, FEMS MICROBIOL LETT, V98, P75; Worral JJ, 1999, STRUCTURE DYNAMICS F, P123; Zhao YX, 2015, APPL MICROBIOL BIOT, V99, P4361, DOI 10.1007/s00253-014-6367-2 107 3 3 7 48 AMER SOC MICROBIOLOGY WASHINGTON 1752 N ST NW, WASHINGTON, DC 20036-2904 USA 2165-0497 MICROBIOL SPECTR Microbiol. Spectr. DEC 2016 4 6 UNSP FUNK-0019-2016 10.1128/microbiolspec.FUNK-0019-2016 16 Microbiology Microbiology EI1AU WOS:000392208200007 28087930 2018-11-22 J Gilbert, J; Uggla, C; Mace, R Gilbert, James; Uggla, Caroline; Mace, Ruth Knowing your neighbourhood: local ecology and personal experience predict neighbourhood perceptions in Belfast, Northern Ireland ROYAL SOCIETY OPEN SCIENCE English Article life-history theory; ecological perceptions; mortality risk; morbidity risk REPRODUCTION; DEATH Evolutionary theory predicts that humans should adjust their life-history strategies in response to local ecological threats and opportunities in order to maximize their reproductive success. Cues representing threats to individuals' lives and health in modern, Western societies may come in the form of local ages at death, morbidity rate and crime rate in their local area, whereas the adult sex ratio represents a measure of the competition for reproductive partners. These characteristics are believed to have a strong influence over a wide range of behaviours, but whether they are accurately perceived has not been robustly tested. Here, we investigate whether perceptions of four neighbourhood characteristics are accurate across eight neighbourhoods in Belfast, Northern Ireland. We find that median age at death and morbidity rates are accurately perceived, whereas adult sex ratios and crime rates are not. We suggest that both neighbourhood characteristics and personal experiences contribute to the formation of perceptions. This should be considered by researchers looking for associations between area-level factors. [Gilbert, James; Uggla, Caroline; Mace, Ruth] UCL, Dept Anthropol, 14 Taviton St, London WC1H 0BW, England; [Uggla, Caroline] Stockholm Univ, Dept Sociol, Demog Unit, S-10691 Stockholm, Sweden; [Mace, Ruth] Lanzhou Univ, Life Sci, 222 Tianshui South Rd, Lanzhou 73000, Gansu, Peoples R China Gilbert, J (reprint author), UCL, Dept Anthropol, 14 Taviton St, London WC1H 0BW, England.; Mace, R (reprint author), Lanzhou Univ, Life Sci, 222 Tianshui South Rd, Lanzhou 73000, Gansu, Peoples R China. james.gilbert.14@ucl.ac.uk; r.mace@ucl.ac.uk Mace, Ruth/0000-0002-6137-7739; uggla, caroline/0000-0003-1639-3307; Gilbert, James/0000-0003-2808-2004 ERC [ERC AdG249347] This research was funded by the ERC advanced grant to R.M. (ERC AdG249347). ARK, 2014, 2015 NO IR LIF TIM S; Baldini R., 2015, BIORXIV, DOI [10.1101/014647, DOI 10.1101/014647]; Copping LT, 2015, EVOL HUM BEHAV, V36, P182, DOI 10.1016/j.evolhumbehav.2014.10.005; Copping LT, 2013, HUM NATURE-INT BIOS, V24, P137, DOI 10.1007/s12110-013-9163-2; Dixon M, 2006, UNEQUAL IMPACT CRIME; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Hox J., 1998, CLASSIFICATION DATA, P147, DOI DOI 10.1007/978-3-642-72087-1_17; Jamieson S, 2004, MED EDUC, V38, P1217, DOI 10.1111/j.1365-2929.2004.02012.x; Johns SE, 2011, HEALTH PLACE, V17, P122, DOI 10.1016/j.healthplace.2010.09.006; Kalmijn M, 1998, ANNU REV SOCIOL, V24, P395, DOI 10.1146/annurev.soc.24.1.395; Marmot M, 2005, LANCET, V365, P1099, DOI 10.1016/S0140-6736(05)71146-6; MARMOT MG, 1987, ANNU REV PUBL HEALTH, V8, P111, DOI 10.1146/annurev.pu.08.050187.000551; Nettle D, 2014, PEERJ, V2, DOI 10.7717/peerj.236; Nettle D, 2012, HUM NATURE-INT BIOS, V23, P375, DOI 10.1007/s12110-012-9153-9; NISRA, 2014, MED AG AT DEATH; NISRA [Northern Ireland Statistics and Research Agency], 2012, CENS 2011 KEY STAT N; Norman G, 2010, ADV HEALTH SCI EDUC, V15, P625, DOI 10.1007/s10459-010-9222-y; Northern Ireland Statistics and Research Agency, 2010, NO IR MULT DEPR MEAS; Pepper GV, 2013, EVOL HUM BEHAV, V34, P433, DOI 10.1016/j.evolhumbehav.2013.08.004; R Core Team, 2014, R LANG ENV STAT COMP; Rickard IJ, 2014, PERSPECT PSYCHOL SCI, V9, P3, DOI 10.1177/1745691613513467; Roff D, 1993, EVOLUTION LIFE HIST; Schacht R, 2015, ROY SOC OPEN SCI, V2, DOI 10.1098/rsos.140402; Stearns S., 1992, EVOLUTION LIFE HIST; Stearns SC, 2000, P NATL ACAD SCI USA, V97, P3309, DOI 10.1073/pnas.060289597; Sullivan Gail M, 2013, J Grad Med Educ, V5, P541, DOI 10.4300/JGME-5-4-18; Uggla C, 2016, BEHAV ECOL, V27, P158, DOI 10.1093/beheco/arv133; Uggla Caroline, 2015, Evolution Medicine and Public Health, P266, DOI 10.1093/emph/eov020; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 29 5 5 0 3 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 2054-5703 ROY SOC OPEN SCI R. Soc. Open Sci. DEC 2016 3 12 160468 10.1098/rsos.160468 8 Multidisciplinary Sciences Science & Technology - Other Topics EH4HH WOS:000391731800008 28083095 DOAJ Gold, Green Published 2018-11-22 J Perlut, NG; Strong, AM Perlut, Noah G.; Strong, Allan M. Comparative analysis of factors associated with first-year survival in two species of migratory songbirds JOURNAL OF AVIAN BIOLOGY English Article SPARROWS PASSERCULUS-SANDWICHENSIS; LIFE-HISTORY STRATEGIES; POSTFLEDGING SURVIVAL; JUVENILE SURVIVAL; PASSERINE BIRDS; HOUSE SPARROW; RECRUITMENT; DISTANCE; DISPERSAL; SIZE Our understanding of the full life cycle of most migratory birds remains limited. Estimates of survival rates, particularly for first-year birds are notably lacking. This knowledge gap results in imprecise parameters in population models and limits our ability to fully understand life history trade-offs. We used eleven years of field data to estimate first-year apparent survival (phi(1)st) for two species of migratory grassland songbirds that breed in the same managed habitats but have substantially different migration distances. We used a suite of life-history, habitat and individually-based covariates to explore causes of variation in phi(1)st. The interaction between fledge date and body mass was the best supported model of apparent survival. We found differential effects of fledging date based on nestling body mass. Overall, lighter nestlings had greater apparent survival than heavier nestlings; average or heavy nestlings within-brood had greater apparent survival when they fledged earlier in the summer. We hypothesize that heavier birds that fledge earlier in the season have a longer window of opportunity to evaluate potential breeding sites and are more likely to disperse greater distances from the natal region, thus confounding survival with permanent emigration. L ighter birds, particularly those fledged late in the breeding season may spend more time on self-maintenance and consequently have less time to evaluate potential future breeding sites, showing greater fidelity to their natal region. We found no support for management treatment (timing of mowing), sex, brood size, or species as important covariates in explaining apparent survival. Our results suggest that differential migration distances may not have a strong effect on first-year apparent survival. [Perlut, Noah G.] Univ New England, Dept Environm Studies, Biddeford, ME 04005 USA; [Strong, Allan M.] Univ Vermont, Rubenstein Sch Environm & Nat Resources, Burlington, VT USA Perlut, NG (reprint author), Univ New England, Dept Environm Studies, Biddeford, ME 04005 USA. nperlut@une.edu Univ. of New England; Rubenstein School of Environment and Natural Resources; Initiative for Future Agricultural and Food Systems; National Research Initiative of the USDA Cooperative State Research, Education and Extension Service [2001-52103-11351, 03-35101-13817]; U.S. Dept of Agriculture/National Inst. of Food and Agriculture Managed Ecosystems Program [2009-35304-05349]; Natural Resource Conservation Service's Wildlife Habitat Management Inst; Galipeau family This project was supported by the Univ. of New England, the Rubenstein School of Environment and Natural Resources, and the Initiative for Future Agricultural and Food Systems and the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, grant numbers 2001-52103-11351 and 03-35101-13817, respectively and the U.S. Dept of Agriculture/National Inst. of Food and Agriculture Managed Ecosystems Program (award no. 2009-35304-05349). Additional funding was provided by the Natural Resource Conservation Service's Wildlife Habitat Management Inst. and the Galipeau family. We thank Shelburne Farms, the Galipeau, Ross, Maile and Stern families for generous access to their land. Thanks to each summer's army of research assistants for their excellent work. Adams AAY, 2006, ECOLOGY, V87, P178, DOI 10.1890/04-1922; Anders AD, 1997, CONSERV BIOL, V11, P698, DOI 10.1046/j.1523-1739.1997.95526.x; Brown C. R., 1996, COLONALITY CLIFF SWA; Bryant D.M., 1988, P173; Buehler DM, 2008, PHILOS T R SOC B, V363, P247, DOI 10.1098/rstb.2007.2138; Chamberlain CP, 1997, OECOLOGIA, V109, P132, DOI 10.1007/s004420050067; Cleasby IR, 2010, BIOL J LINN SOC, V101, P680, DOI 10.1111/j.1095-8312.2010.01515.x; Cooper CB, 2008, ECOLOGY, V89, P3349, DOI 10.1890/08-0315.1; Cox WA, 2014, J WILDLIFE MANAGE, V78, P183, DOI 10.1002/jwmg.670; EKMAN J, 1986, EVOLUTION, V40, P159, DOI 10.1111/j.1558-5646.1986.tb05727.x; Faaborg J, 2010, ECOL MONOGR, V80, P3, DOI 10.1890/09-0395.1; Fajardo N, 2009, AUK, V126, P310, DOI 10.1525/auk.2009.07097; Green DJ, 2001, J ANIM ECOL, V70, P505, DOI 10.1046/j.1365-2656.2001.00503.x; Gruebler MU, 2008, ECOLOGY, V89, P2736, DOI 10.1890/07-0786.1; Gruebler MU, 2014, ECOL EVOL, V4, P756, DOI 10.1002/ece3.984; Han JI, 2009, AUK, V126, P779, DOI 10.1525/auk.2009.08203; Hobson KA, 1997, OECOLOGIA, V109, P142, DOI 10.1007/s004420050068; Hovick TJ, 2011, CONDOR, V113, P429, DOI 10.1525/cond.2011.100135; LACK D, 1966, POPULATION STUDIES B; MAGRATH RD, 1991, J ANIM ECOL, V60, P335, DOI 10.2307/5464; Maness TJ, 2013, ORNITHOL MONOGR, P1, DOI 10.1525/om.2013.78.1.1; Marra PP, 2000, BEHAV ECOL, V11, P299, DOI 10.1093/beheco/11.3.299; Martin TE, 2015, SCIENCE, V349, P966, DOI 10.1126/science.aad1173; McKim-Louder MI, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0056059; Middleton HA, 2008, CAN J ZOOL, V86, P875, DOI 10.1139/Z08-069; Mitchell GW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0028838; Molina-Morales M, 2012, ANIM BEHAV, V83, P671, DOI 10.1016/j.anbehav.2011.12.011; Monros JS, 2002, OIKOS, V99, P481, DOI 10.1034/j.1600-0706.2002.11909.x; [NASS] National Agricultural Statistics Service, 2010, CENS AGR; PARRISH JD, 1994, AUK, V111, P38, DOI 10.2307/4088503; Perkins DG, 2013, AUK, V130, P512, DOI 10.1525/auk.2013.12163; Perlut NG, 2008, ECOLOGY, V89, P1941, DOI 10.1890/07-0900.1; Perlut NG, 2006, ECOL APPL, V16, P2235, DOI 10.1890/1051-0761(2006)016[2235:GSIADM]2.0.CO;2; Perlut NG, 2014, AUK, V131, P224, DOI 10.1642/AUK-13-183.1; Perlut NG, 2011, J WILDLIFE MANAGE, V75, P1657, DOI 10.1002/jwmg.199; Reilly JR, 2009, J ANIM ECOL, V78, P990, DOI 10.1111/j.1365-2656.2009.01576.x; Renfrew RB, 2013, DIVERS DISTRIB, V19, P1008, DOI 10.1111/ddi.12080; Ringsby TH, 1999, OIKOS, V85, P419, DOI 10.2307/3546691; Sillett TS, 2002, J ANIM ECOL, V71, P296, DOI 10.1046/j.1365-2656.2002.00599.x; Streby HM, 2011, ECOSPHERE, V2, DOI 10.1890/ES10-00187.1; Streby HM, 2014, WILDLIFE SOC B, V38, P305, DOI 10.1002/wsb.406; Streby HM, 2014, AUK, V131, P718, DOI 10.1642/AUK-14-69.1; Stutchbury BJM, 2009, SCIENCE, V323, P896, DOI 10.1126/science.1166664; Styrsky JN, 2005, ECOLOGY, V86, P3238, DOI 10.1890/04-1613; Tarof SA, 2011, AUK, V128, P716, DOI 10.1525/auk.2011.11087; Tarwater CE, 2011, ECOLOGY, V92, P1271, DOI 10.1890/10-1386.1; Vitz AC, 2011, CONDOR, V113, P400, DOI 10.1525/cond.2011.100023; WEATHERHEAD PJ, 1994, BEHAV ECOL, V5, P426, DOI 10.1093/beheco/5.4.426; Wells KMS, 2007, CONDOR, V109, P781, DOI 10.1650/0010-5422(2007)109[781:SOPGBI]2.0.CO;2; Wheelwright N. T., 2008, BIRDS N AM, V45; White GC, 1999, BIRD STUDY, V46, P120; Zalik NJ, 2008, AUK, V125, P700, DOI 10.1525/auk.2008.07106 52 3 3 4 16 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0908-8857 1600-048X J AVIAN BIOL J. Avian Biol. DEC 2016 47 6 858 864 10.1111/jav.00892 7 Ornithology Zoology EF4UG WOS:000390326900013 2018-11-22 J Midwood, JD; Larsen, MH; Aarestrup, K; Cooke, SJ Midwood, Jonathan D.; Larsen, Martin H.; Aarestrup, Kim; Cooke, Steven J. Stress and food deprivation: linking physiological state to migration success in a teleost fish JOURNAL OF EXPERIMENTAL BIOLOGY English Article Glucocorticoid; Stress; Starvation; Passive integrated transponder tags; Freshwater; Brown trout TROUT SALMO-TRUTTA; JUVENILE CHINOOK SALMON; BROWN TROUT; ATLANTIC SALMON; LIFE-HISTORY; RAINBOW-TROUT; ENVIRONMENTAL-FACTORS; SWIMMING PERFORMANCE; SEAWATER ADAPTATION; GROWTH COMPENSATION Food deprivation is a naturally occurring stressor that is thought to influence the ultimate life-history strategy of individuals. Little is known about how food deprivation interacts with other stressors to influence migration success. European populations of brown trout (Salmo trutta) exhibit partial migration, whereby a portion of the population smoltifies and migrates to the ocean, and the rest remain in their natal stream. This distinct, natural dichotomy of life-history strategies provides an excellent opportunity to explore the roles of energetic state (as affected by food deprivation) and activation of the glucocorticoid stress response in determining life-history strategy and survival of a migratory species. Using an experimental approach, the relative influences of short-term food deprivation and experimental cortisol elevation (i. e. intra-coelomic injection of cortisol suspended in cocoa butter) on migratory status, survival and growth of juvenile brown trout relative to a control were evaluated. Fewer fish migrated in both the food deprivation and cortisol treatments; however, migration of fish in cortisol and control treatments occurred at the same time while that of fish in the food deprivation treatment was delayed for approximately 1 week. A significantly greater proportion of trout in the food deprivation treatment remained in their natal stream, but unlike the cortisol treatment, there were no long-term negative effects of food deprivation on growth, relative to the control. Overall survival rates were comparable between the food deprivation and control treatments, but significantly lower for fish in the cortisol treatment. Food availability and individual energetic state appear to dictate the future life-history strategy (migrate or remain resident) of juvenile salmonids while experimental elevation of the stress hormone cortisol causes impaired growth and reduced survival of both resident and migratory individuals. [Midwood, Jonathan D.; Cooke, Steven J.] Carleton Univ, Dept Biol, Fish Ecol & Conservat Physiol Lab, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada; [Midwood, Jonathan D.; Cooke, Steven J.] Carleton Univ, Inst Environm Sci, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada; [Larsen, Martin H.; Aarestrup, Kim] Tech Univ Denmark, Freshwater Fisheries, Natl Inst Aquat Resources, Vejlsovej 39, DK-8600 Silkeborg, Denmark Midwood, JD (reprint author), Carleton Univ, Dept Biol, Fish Ecol & Conservat Physiol Lab, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada.; Midwood, JD (reprint author), Carleton Univ, Inst Environm Sci, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada. midwoodj@gmail.com Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant; Danish National Fishing License Funds; Svenska Forskningsradet Formas; Canada Research Chairs program Funding for this project was provided by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant awarded to S.J.C. and grants to the Technical University of Denmark from the Danish National Fishing License Funds, and the Svenska Forskningsradet Formas. S.J.C. is further supported by the Canada Research Chairs program. Aarestrup K, 2002, HYDROBIOLOGIA, V483, P95, DOI 10.1023/A:1021306907338; Adriaenssens B, 2013, ECOL LETT, V16, P47, DOI 10.1111/ele.12011; Adriaenssens B, 2011, BEHAV ECOL, V22, P135, DOI 10.1093/beheco/arq185; Alerstam T, 2003, OIKOS, V103, P247, DOI 10.1034/j.1600-0706.2003.12559.x; ANDERSEN DE, 1991, CAN J FISH AQUAT SCI, V48, P1811, DOI 10.1139/f91-214; Barton B.A., 1991, Annual Review of Fish Diseases, V1, P3, DOI 10.1016/0959-8030(91)90019-G; BARTON BA, 1988, PROG FISH CULT, V50, P16, DOI 10.1577/1548-8640(1988)050<0016:FADCAS>2.3.CO;2; BARTON BA, 1985, GEN COMP ENDOCR, V59, P468, DOI 10.1016/0016-6480(85)90406-X; Barton BA, 2002, INTEGR COMP BIOL, V42, P517, DOI 10.1093/icb/42.3.517; BARTON BA, 1987, DIS AQUAT ORGAN, V2, P173; Boel M, 2014, PHYSIOL BIOCHEM ZOOL, V87, P334, DOI 10.1086/674869; BOHLIN T, 1993, CAN J FISH AQUAT SCI, V50, P1132, DOI 10.1139/f93-128; Boonstra R, 2013, FUNCT ECOL, V27, P7, DOI 10.1111/1365-2435.12048; Boonstra R, 2013, FUNCT ECOL, V27, P11, DOI 10.1111/1365-2435.12008; BUTTIKER B, 1992, J FISH BIOL, V41, P673, DOI 10.1111/j.1095-8649.1992.tb02697.x; Bystrom P, 2006, OIKOS, V115, P43, DOI 10.1111/j.2006.0030-1299.15014.x; Cai L, 2014, AQUAT BIOL, V20, P69, DOI 10.3354/ab00546; Calow P, 1998, COMP BIOCHEM PHYS A, V120, P11, DOI 10.1016/S1095-6433(98)10003-X; Caruso G, 2011, MAR ENVIRON RES, V72, P46, DOI 10.1016/j.marenvres.2011.04.005; Chapman BB, 2011, OIKOS, V120, P1764, DOI 10.1111/j.1600-0706.2011.20131.x; Costa DP, 2004, ANNU REV PHYSIOL, V66, P209, DOI 10.1146/annurev.physiol.66.032102.114245; Crespi EJ, 2013, FUNCT ECOL, V27, P93, DOI 10.1111/1365-2435.12009; Crossin GT, 2016, FUNCT ECOL, V30, P116, DOI 10.1111/1365-2435.12482; Dantzer B, 2014, CONSERV PHYSIOL, V2, DOI 10.1093/conphys/cou023; Espelid S, 1996, FISH SHELLFISH IMMUN, V6, P95, DOI 10.1006/fsim.1996.0011; FEDER ME, 1991, FUNCT ECOL, V5, P136, DOI 10.2307/2389251; FOLMAR LC, 1980, AQUACULTURE, V21, P1, DOI 10.1016/0044-8486(80)90123-4; Forseth T, 1999, J ANIM ECOL, V68, P783, DOI 10.1046/j.1365-2656.1999.00329.x; GAMPERL AK, 1994, REV FISH BIOL FISHER, V4, P215, DOI 10.1007/BF00044129; Gibbons JW, 2004, BIOSCIENCE, V54, P447, DOI 10.1641/0006-3568(2004)054[0447:PTSTAI]2.0.CO;2; Gilmour KM, 2005, PHYSIOL BIOCHEM ZOOL, V78, P669, DOI 10.1086/432144; Gregory TR, 1999, PHYSIOL BIOCHEM ZOOL, V72, P286, DOI 10.1086/316673; Halver J. E, 2002, FISH NUTR; Harrison XA, 2011, J ANIM ECOL, V80, P4, DOI 10.1111/j.1365-2656.2010.01740.x; Hoogenboom MO, 2011, J FISH BIOL, V79, P587, DOI 10.1111/j.1095-8649.2011.03039.x; Johnsson JI, 2006, P R SOC B, V273, P1281, DOI 10.1098/rspb.2005.3437; JONSSON B, 1993, REV FISH BIOL FISHER, V3, P348, DOI 10.1007/BF00043384; Jonsson N, 1998, J FISH BIOL, V53, P1306, DOI 10.1006/jfbi.1998.0796; KLEIBER M, 1961, FIRE LIFE INTRO ANIM; Koolhaas JM, 1999, NEUROSCI BIOBEHAV R, V23, P925, DOI 10.1016/S0149-7634(99)00026-3; Krimmer AN, 2011, J FISH BIOL, V79, P707, DOI 10.1111/j.1095-8649.2011.03053.x; Larsen MH, 2013, ANIM BIOTELEM, V1, P19, DOI DOI 10.1186/2050-3385-1-19; LECREN ED, 1951, J ANIM ECOL, V20, P201; Mangum CP, 1998, PHYSIOL ZOOL, V71, P471, DOI 10.1086/515953; MASON JC, 1976, J WILDLIFE MANAGE, V40, P775, DOI 10.2307/3800576; McCue MD, 2010, COMP BIOCHEM PHYS A, V156, P1, DOI 10.1016/j.cbpa.2010.01.002; MCNAMARA JM, 1987, ECOLOGY, V68, P1515, DOI 10.2307/1939235; METCALFE NB, 1995, ANIM BEHAV, V49, P431, DOI 10.1006/anbe.1995.0056; Midwood JD, 2015, J EXP ZOOL PART A, V323, P645, DOI 10.1002/jez.1955; Midwood JD, 2014, MAR ECOL PROG SER, V496, P135, DOI 10.3354/meps10524; Mommsen TP, 1999, REV FISH BIOL FISHER, V9, P211, DOI 10.1023/A:1008924418720; Nicieza AG, 1997, ECOLOGY, V78, P2385; O'Connor CM, 2014, ECOSPHERE, V5, DOI 10.1890/ES13-00388.1; Pankhurst NW, 2011, GEN COMP ENDOCR, V170, P265, DOI 10.1016/j.ygcen.2010.07.017; Pascual P, 2003, CHEM-BIOL INTERACT, V145, P191, DOI 10.1016/S0009-2797(03)00002-4; PICKERING AD, 1989, FRESHWATER BIOL, V21, P47, DOI 10.1111/j.1365-2427.1989.tb01347.x; PICKERING AD, 1982, J FISH BIOL, V20, P229, DOI 10.1111/j.1095-8649.1982.tb03923.x; PICKERING AD, 1984, J FISH BIOL, V24, P731, DOI 10.1111/j.1095-8649.1984.tb04844.x; PORTER WP, 1969, ECOL MONOGR, V39, P227, DOI 10.2307/1948545; POUGH FH, 1989, PHYSIOL ZOOL, V62, P199, DOI 10.1086/physzool.62.2.30156169; Quigley JT, 2006, J THERM BIOL, V31, P429, DOI 10.1016/j.jtherbio.2006.02.003; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Romero LM, 2000, GEN COMP ENDOCR, V118, P113, DOI 10.1006/gcen.1999.7446; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; Schreck C. B., 1990, METHODS FISH BIOL; SHERIDAN MA, 1989, AQUACULTURE, V82, P191, DOI 10.1016/0044-8486(89)90408-0; Sheriff MJ, 2011, OECOLOGIA, V166, P593, DOI 10.1007/s00442-011-1907-2; Small BC, 2006, DOMEST ANIM ENDOCRIN, V31, P340, DOI 10.1016/j.domaniend.2005.12.003; Somero GN, 2000, ANNU REV PHYSIOL, V62, P927, DOI 10.1146/annurev.physiol.62.1.927; Sopinka NM, 2015, CONSERV PHYSIOL, V3, DOI 10.1093/conphys/cov031; Spicer J, 1999, PHYSL DIVERSITY ECOL; Wang T, 2006, ANNU REV PHYSIOL, V68, P223, DOI 10.1146/annurev.physiol.68.040104.105739; Willmer P., 2009, ENV PHYSL ANIMALS; Wingfield JC, 2013, FUNCT ECOL, V27, P37, DOI 10.1111/1365-2435.12039; Zydlewski GB, 2006, FISHERIES, V31, P492, DOI 10.1577/1548-8446(2006)31[492:RMOFIS]2.0.CO;2 75 9 9 1 21 COMPANY OF BIOLOGISTS LTD CAMBRIDGE BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND 0022-0949 1477-9145 J EXP BIOL J. Exp. Biol. DEC 1 2016 219 23 3712 3718 10.1242/jeb.140665 7 Biology Life Sciences & Biomedicine - Other Topics ED4IV WOS:000388812200011 27618858 Green Published, Bronze 2018-11-22 J Hordyk, AR; Ono, K; Prince, JD; Walters, CJ Hordyk, Adrian R.; Ono, Kotaro; Prince, Jeremy D.; Walters, Carl J. A simple length-structured model based on life history ratios and incorporating size-dependent selectivity: application to spawning potential ratios for data-poor stocks CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article SMALL-SCALE FISHERIES; BERTALANFFY GROWTH-PARAMETERS; NATURAL MORTALITY; INDIVIDUAL VARIABILITY; FREQUENCY DATA; RED GROUPER; FISH; MANAGEMENT; AGE; STRATEGIES Selectivity in fish is often size-dependent, which results in differential fishing mortality rates across fish of the same age, an effect known as "Lee's Phenomenon". We extend previous work on using length composition to estimate the spawning potential ratio (SPR) for data-limited stocks by developing a computationally efficient length-structured per-recruit model that splits the population into a number of subcohorts, or growth-type-groups, to account for size-dependent fishing mortality rates. Two simple recursive equations, using the life history ratio of the natural mortality rate to the von Bertalanffy growth parameter (M/K), were developed to generate length composition data, reducing the complexity of the previous approach. Using simulated and empirical data, we demonstrate that ignoring Lee's Phenomenon results in overestimates of fishing mortality and negatively biased estimates of SPR. We also explored the behaviour of the model under various scenarios, including alternative life history strategies and the presence of size-dependent natural mortality. The model developed in this paper may be a useful tool to estimate the SPR for data-limited stock where it is not possible to apply more conventional methods. [Hordyk, Adrian R.; Prince, Jeremy D.] Murdoch Univ, Ctr Fish & Fisheries Res, 90 South St, Murdoch, WA 6150, Australia; [Ono, Kotaro] Univ Washington, Sch Aquat & Fishery Sci, Box 355020, Seattle, WA 98195 USA; [Prince, Jeremy D.] Biospherics Pty Ltd, POB 168, South Fremantle, WA 6162, Australia; [Walters, Carl J.] Univ British Columbia, Inst Oceans & Fisheries, Vancouver, BC V6T 1Z4, Canada Hordyk, AR (reprint author), Murdoch Univ, Ctr Fish & Fisheries Res, 90 South St, Murdoch, WA 6150, Australia. a.hordyk@murdoch.edu.au Hordyk, Adrian/P-2539-2017 Hordyk, Adrian/0000-0001-5620-3446 David and Lucille Packard Foundation; Murdoch University; Joint Institute for the Study of the Atmosphere and Ocean under NOAA [NA15OAR4320063, 2653] We are grateful to the David and Lucille Packard Foundation for funding and support for this study. A.H. was also supported by Murdoch University. This publication is partially funded by the Joint Institute for the Study of the Atmosphere and Ocean under NOAA Cooperative Agreement NA15OAR4320063, Contribution No. 2653. We thank J. Cope, T. Gedamke, H. Geremont, N. Gutierrez, A. MacCall, and S. Valencia for valuable comments and suggestions in a workshop relating to this research. N. Loneragan also provided useful comments that improved the quality of the paper. We are grateful to the editor and three anonymous reviewers, whose comments and suggestions greatly improved the paper. Andersen KH, 2015, FISH FISH, V16, P1, DOI 10.1111/faf.12042; Andrew NL, 2007, FISH FISH, V8, P227, DOI 10.1111/j.1467-2679.2007.00252.x; Bene C, 2003, WORLD DEV, V31, P949, DOI 10.1016/S0305-750X(03)00045-7; Bentley N, 2015, ICES J MAR SCI, V72, P186, DOI 10.1093/icesjms/fsu023; BEVERTON RJH, 1992, J FISH BIOL, V41, P137, DOI 10.1111/j.1095-8649.1992.tb03875.x; Botsford L. W., 1979, P 13 EUR MAR BIOL S, P73; BOTSFORD LW, 1981, AM NAT, V117, P38, DOI 10.1086/283685; BOTSFORD LW, 1981, J MATH BIOL, V12, P265, DOI 10.1007/BF00276917; Bull B., 2012, 135 NIWA CASAL; Charnov EL, 2014, EVOL ECOL RES, V16, P435; Charnov EL, 2013, FISH FISH, V14, P213, DOI 10.1111/j.1467-2979.2012.00467.x; Costello C, 2012, SCIENCE, V338, P517, DOI 10.1126/science.1223389; Dowling NA, 2015, FISH RES, V171, P141, DOI 10.1016/j.fishres.2014.11.005; ERZINI K, 1990, FISH RES, V9, P355, DOI 10.1016/0165-7836(90)90053-X; Eveson JP, 2007, CAN J FISH AQUAT SCI, V64, P602, DOI 10.1139/F07-036; Francis RICC, 2016, FISH RES, V180, P77, DOI 10.1016/j.fishres.2015.02.018; Gerritsen H. D., 2006, FISHERY B, V106, P116; GOODYEAR CP, 1995, T AM FISH SOC, V124, P746, DOI 10.1577/1548-8659(1995)124<0746:MSAAAE>2.3.CO;2; Hampton J, 2000, CAN J FISH AQUAT SCI, V57, P1002, DOI 10.1139/cjfas-57-5-1002; Heery EC, 2009, T AM FISH SOC, V138, P218, DOI 10.1577/T07-226.1; Hilborn R., 1992, QUANTITATIVE FISHERI; Hilborn R, 2007, AMBIO, V36, P296, DOI 10.1579/0044-7447(2007)36[296:MTSBLF]2.0.CO;2; Hilborn R, 2014, ICES J MAR SCI, V71, P1040, DOI 10.1093/icesjms/fsu034; Honey K., 2010, MAN DAT POOR FISH WO, P159; Hordyk A, 2015, ICES J MAR SCI, V72, P217, DOI 10.1093/icesjms/fsu004; Hordyk A, 2015, ICES J MAR SCI, V72, P204, DOI 10.1093/icesjms/fst235; Hordyk AR, 2015, FISH RES, V171, P20, DOI 10.1016/j.fishres.2014.12.018; Kelly CJ, 2006, FISH RES, V79, P233, DOI 10.1016/j.fishres.2006.03.007; Kenchington TJ, 2014, FISH FISH, V15, P533, DOI 10.1111/faf.12027; Kent G, 1997, FOOD POLICY, V22, P393, DOI 10.1016/S0306-9192(97)00030-4; Lee R, 1912, J CONS INT EXPLOR S, V1, P3, DOI DOI 10.1093/ICESJMS/S1.63.3; Lorenzen K, 1996, J FISH BIOL, V49, P627, DOI 10.1111/j.1095-8649.1996.tb00060.x; Lorenzen K, 2000, CAN J FISH AQUAT SCI, V57, P2374, DOI 10.1139/cjfas-57-12-2374; Magnusson A, 2013, FISH FISH, V14, P325, DOI 10.1111/j.1467-2979.2012.00473.x; Mangel M, 2007, EVOLUTION, V61, P1208, DOI 10.1111/j.1558-5646.2007.00094.x; Maunder MN, 2013, FISH RES, V142, P61, DOI 10.1016/j.fishres.2012.07.025; McGarvey R, 2007, CAN J FISH AQUAT SCI, V64, P1157, DOI 10.1139/F07-080; Methot RD, 2013, FISH RES, V142, P86, DOI 10.1016/j.fishres.2012.10.012; PENNINGS SC, 1990, MAR ECOL PROG SER, V62, P95, DOI 10.3354/meps062095; Pilling GM, 2002, CAN J FISH AQUAT SCI, V59, P424, DOI 10.1139/F02-022; Pitcher TJ, 2013, MAR POLLUT BULL, V74, P506, DOI 10.1016/j.marpolbul.2013.05.045; Prince J, 2015, FISH RES, V171, P42, DOI 10.1016/j.fishres.2015.06.008; Prince J, 2015, ICES J MAR SCI, V72, P194, DOI 10.1093/icesjms/fsu011; Punt AE, 1997, REV FISH BIOL FISHER, V7, P35, DOI 10.1023/A:1018419207494; Punt AE, 2002, MAR FRESHWATER RES, V53, P615, DOI 10.1071/MF01007; Punt AE, 2013, ICES J MAR SCI, V70, P16, DOI 10.1093/icesjms/fss185; Quinn T J, 1999, QUANTITATIVE FISH DY; R Core Team, 2015, R LANG ENV STAT COMP; SAINSBURY KJ, 1980, CAN J FISH AQUAT SCI, V37, P241, DOI 10.1139/f80-031; SCHEFFER M, 1995, ECOL MODEL, V80, P161, DOI 10.1016/0304-3800(94)00055-M; Shelton AO, 2013, AM NAT, V181, P799, DOI 10.1086/670198; SULLIVAN PJ, 1990, CAN J FISH AQUAT SCI, V47, P184, DOI 10.1139/f90-021; Taylor IG, 2013, FISH RES, V142, P75, DOI 10.1016/j.fishres.2012.08.021; VAUGHAN DS, 1994, T AM FISH SOC, V123, P1, DOI 10.1577/1548-8659(1994)123<0001:EOVBGP>2.3.CO;2; Walmsley S, 2006, OCEAN COAST MANAGE, V49, P812, DOI 10.1016/j.ocecoaman.2006.08.006; Walters C. J., 2004, FISHERIES ECOLOGY MA; WANG YG, 1995, CAN J FISH AQUAT SCI, V52, P252, DOI 10.1139/f95-025; Wang YG, 1998, CAN J FISH AQUAT SCI, V55, P2393, DOI 10.1139/cjfas-55-11-2393; WANG YG, 1995, CAN J FISH AQUAT SCI, V52, P1368, DOI 10.1139/f95-132; Worm B, 2012, TRENDS ECOL EVOL, V27, P594, DOI 10.1016/j.tree.2012.07.005 60 3 3 0 14 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0706-652X 1205-7533 CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. DEC 2016 73 12 1787 1799 10.1139/cjfas-2015-0422 13 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology EC4QO WOS:000388118700010 Green Published 2018-11-22 J Samsing, F; Oppedal, F; Dalvin, S; Johnsen, I; Vagseth, T; Dempster, T Samsing, Francisca; Oppedal, Frode; Dalvin, Sussie; Johnsen, Ingrid; Vagseth, Tone; Dempster, Tim Salmon lice (Lepeophtheirus salmonis) development times, body size, and reproductive outputs follow universal models of temperature dependence CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article LIFE-HISTORY STRATEGIES; ATLANTIC SALMON; EGG SIZE; SEA LICE; MARINE-INVERTEBRATES; PARASITIC COPEPODS; CALIGUS-ELONGATUS; VAN NOORDWIJK; JONG MODEL; TRADE-OFFS Temperatures regulate metabolism of marine ectotherms and thereby influence development, reproduction, and, as a consequence, dispersal. Despite the importance of water temperatures in the epidemiology of marine diseases, for the parasitic copepod Lepeophtheirus salmonis, the effect of high and low temperatures has not been methodically investigated. Here, we examined the effects of a wide temperature range (3-20 degrees C) on L. salmonis larval development, adult body size, reproductive outputs, and infestation success. Further, we tested if dispersal of salmon lice differed with two temperature-dependent development times to the infective stage (30 and 60 degree-days) using an individual-based dispersal model. Development times followed universal models of temperature dependence described for other marine ectotherms. Water temperatures had a negative relationship with development times, adult body size, and reproductive outputs, except at 3 degrees C, where larvae failed to reach the infective stage and all parameters were decreased, indicating low temperatures are more detrimental than high temperatures. The predictable effect of temperatures on lice development and reproduction will have important applications, such as predicting dispersal and population connectivity, to assist in controlling lice epidemics. [Samsing, Francisca; Dempster, Tim] Univ Melbourne, Sch BioSci, SALTT, Melbourne, Vic 3010, Australia; [Oppedal, Frode; Dalvin, Sussie; Johnsen, Ingrid; Vagseth, Tone; Dempster, Tim] Inst Marine Res, POB 1870, N-5817 Bergen, Norway Samsing, F (reprint author), Univ Melbourne, Sch BioSci, SALTT, Melbourne, Vic 3010, Australia. samsing@student.unimelb.edu.au Samsing, Francisca/0000-0002-6343-2295 Norwegian Seafood Research Fund [901073]; Research Council of Norway [14567]; Australian Research Council Future Fellowship This work was conducted with the assistance of Karen Anita Kvestad, Lise Dyrhovden, and Marita Larsen from the Institute of Marine Research. The project was funded by a Norwegian Seafood Research Fund grant to SD (Temperaturens innflytelse pa lakseluslarver: overlevelse og smittbarhet; grant No. 901073), a Research Council of Norway grant to FO, SD, and TD (Regional lice assessment-towards a model based management system; grant No. 14567), and an Australian Research Council Future Fellowship to TD. All experiments were conducted in accordance with the laws and regulations of the Norwegian Regulation on Animal Experimentation 1996 under the permit No. 7754. Albretsen J., 2011, FISK HAV, V2, P1; Angilletta MJ, 2004, INTEGR COMP BIOL, V44, P498, DOI 10.1093/icb/44.6.498; Asplin L, 2014, MAR BIOL RES, V10, P216, DOI 10.1080/17451000.2013.810755; Asplin L, 2011, SALMON LICE: AN INTEGRATED APPROACH TO UNDERSTANDING PARASITE ABUNDANCE AND DISTRIBUTION, P31; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; Behradek J., 1930, BIOL REV, V5, P30, DOI [10.1111/j.1469-185X.1930.tb00892.x, DOI 10.1111/J.1469-185X.1930.TB00892.X]; Besnier F, 2014, BMC GENOMICS, V15, DOI 10.1186/1471-2164-15-937; Boxaspen K, 2000, CONTRIB ZOOL, V69, P51; BRON JE, 1991, J ZOOL, V224, P201, DOI 10.1111/j.1469-7998.1991.tb04799.x; Brown CA, 2003, EVOLUTION, V57, P2184, DOI 10.1111/j.0014-3820.2003.tb00397.x; Cavaleiro FI, 2014, INT J PARASITOL, V44, P173, DOI 10.1016/j.ijpara.2013.10.009; Christians JK, 2000, FUNCT ECOL, V14, P497, DOI 10.1046/j.1365-2435.2000.00444.x; Costello MJ, 2006, TRENDS PARASITOL, V22, P475, DOI 10.1016/j.pt.2006.08.006; Costello MJ, 2009, P R SOC B, V276, P3385, DOI 10.1098/rspb.2009.0771; Costello MJ, 2009, J FISH DIS, V32, P115, DOI 10.1111/j.1365-2761.2008.01011.x; Crossan J, 2007, EVOLUTION, V61, P675, DOI 10.1111/j.1558-5646.2007.00057.x; Espedal PG, 2013, AQUACULTURE, V416, P111, DOI 10.1016/j.aquaculture.2013.09.001; Gillooly JF, 2001, SCIENCE, V293, P2248, DOI 10.1126/science.1061967; Glover KA, 2011, MAR ECOL PROG SER, V427, P161, DOI 10.3354/meps09045; Graham EM, 2008, CORAL REEFS, V27, P529, DOI 10.1007/s00338-008-0361-z; Gravil H. R., 1996, STUDIES BIOL ECOLOGY; Groner ML, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088465; Hamre LA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0073539; Hamre LA, 2009, PARASITOL INT, V58, P451, DOI 10.1016/j.parint.2009.08.009; Heuch PA, 2009, J FISH DIS, V32, P89, DOI 10.1111/j.1365-2761.2008.01002.x; Heuch PA, 2005, AQUACULTURE, V246, P79, DOI 10.1016/aquaculture.2004.12.027; Heuch PA, 2002, J MAR BIOL ASSOC UK, V82, P887, DOI 10.1017/S0025315402006306; Heuch PA, 2000, AQUAC RES, V31, P805, DOI 10.1046/j.1365-2109.2000.00512.x; JOHANNESSEN A, 1978, SARSIA, V63, P169; Johnsen IA, 2014, AQUACULT ENV INTERAC, V5, DOI 10.3354/aei00098; JOHNSON SC, 1991, CAN J ZOOL, V69, P929, DOI 10.1139/z91-138; Kinnison MT, 2001, EVOLUTION, V55, P1656; Krkosek M, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2359; Krkosek M, 2011, P NATL ACAD SCI USA, V108, P14700, DOI 10.1073/pnas.1101845108; Levitan DR, 2000, AM NAT, V156, P175, DOI 10.1086/303376; McCallum HI, 2004, TRENDS ECOL EVOL, V19, P585, DOI 10.1016/j.tree.2004.08.009; MCKINNEY ML, 1984, PALEOBIOLOGY, V10, P407; Mennerat A, 2010, EVOL BIOL, V37, P59, DOI 10.1007/s11692-010-9089-0; Murray AG, 2009, PREV VET MED, V88, P167, DOI 10.1016/j.prevetmed.2008.09.006; Nordhagen JR, 2000, CONTRIB ZOOL, V69, P99; Nordi GA, 2015, AQUACULT ENV INTERAC, V7, P15, DOI 10.3354/aei00134; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; O'Connor MI, 2007, P NATL ACAD SCI USA, V104, P1266, DOI 10.1073/pnas.0603422104; PEARSE JS, 1991, AM ZOOL, V31, P65; Pike A W, 1999, Adv Parasitol, V44, P233, DOI 10.1016/S0065-308X(08)60233-X; Pike A.W., 1993, P99; POULIN R, 1995, EVOLUTION, V49, P325, DOI 10.1111/j.1558-5646.1995.tb02245.x; POULIN R, 1989, BEHAV ECOL SOCIOBIOL, V24, P251, DOI 10.1007/BF00295205; Quinn G.P., 2002, EXPT DESIGN DATA ANA; R Development Core Team, 2009, R LANG ENV STAT COMP; Ritchie G., 1993, P153; Saksida S, 2007, J FISH DIS, V30, P357, DOI 10.1111/j.1365-2761.2007.00814.x; Salama NKG, 2013, AQUACULT ENV INTERAC, V4, P91, DOI 10.3354/aei00077; Samsing F, 2014, AQUACULT ENV INTERAC, V6, P81, DOI 10.3354/aei00118; Stien A, 2005, MAR ECOL PROG SER, V290, P263, DOI 10.3354/meps290263; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; Timi JT, 2005, PARASITOL RES, V95, P1, DOI 10.1007/s00436-004-1242-1; Treml EA, 2008, LANDSCAPE ECOL, V23, P19, DOI 10.1007/s10980-007-9138-y; Tucker CS, 2002, FISH PATHOL, V37, P107, DOI 10.3147/jsfp.37.107; Tucker CS, 2000, FISH PATHOL, V35, P137, DOI 10.3147/jsfp.35.137; Vollset KW, 2016, FISH FISH, V17, P714, DOI 10.1111/faf.12141; Vollset KW, 2014, BIOL LETTERS, V10, DOI 10.1098/rsbl.2013.0896; WOOTTEN R, 1982, P ROY SOC EDINB B, V81, P185, DOI 10.1017/S0269727000003389 63 22 22 3 41 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0706-652X 1205-7533 CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. DEC 2016 73 12 1841 1851 10.1139/cjfas-2016-0050 11 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology EC4QO WOS:000388118700014 2018-11-22 J Naslund, J; Johnsson, JI Naslund, Joacim; Johnsson, Jorgen I. State-dependent behavior and alternative behavioral strategies in brown trout (Salmo trutta L.) fry BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article Animal personality; Behavioral syndrome; Compensatory growth; Food restriction; Mirror aggression; Open-field activity; Repeatability JUVENILE COHO SALMON; CHARR SALVELINUS-FONTINALIS; LIFE-HISTORY STRATEGIES; WILD SEA-TROUT; PACE-OF-LIFE; ATLANTIC SALMON; GROWTH-RATE; BODY-SIZE; FOOD AVAILABILITY; RAINBOW-TROUT Animals generally adjust their behavior in response to bodily state (e.g., size and energy reserves) to optimize energy intake in relation to mortality risk, weighing predation probability against the risk of starvation. Here, we investigated whether brown trout Salmo trutta adjust their behavior in relation to energetic status and body size during a major early-life selection bottleneck, when fast growth is important. Over two consecutive time periods (P1 and P2; 12 and 23 days, respectively), food availability was manipulated, using four different combinations of high (H) and low (L) rations (i.e., HH, HL, LH, and LL; first and second letter denoting ration during P1 and P2, respectively). Social effects were excluded through individual isolation. Following the treatment periods, fish in the HL treatment were on average 15-21 % more active than the other groups in a forced open-field test, but large within-treatment variation provided only weak statistical support for this effect. Furthermore, fish on L-ration during P2 tended to be more actively aggressive towards their mirror image than fish on H-ration. Body size was related to behavioral expression, with larger fish being more active and aggressive. Swimming activity and active aggression were positively correlated, forming a behavioral syndrome in the studied population. Based on these behavioral traits, we could also distinguish two behavioral clusters: one consisting of more active and aggressive individuals and the other consisting of less active and aggressive individuals. This indicates that brown trout fry adopt distinct behavioral strategies early in life. This paper provides information on the state-dependence of behavior in animals, in particular young brown trout. On the one hand, our data suggest a weak energetic state feedback where activity and aggression is increased as a response to short term food restriction. This suggests a limited scope for behavioral alterations in the face of starvation. On the other hand, body size is linked to higher activity and aggression, likely as a positive feedback between size and dominance. The experiment was carried out during the main population survival bottleneck, and the results indicate that growth is important during this stage, as 1) behavioral compensation to increase growth is limited, and 2) growth likely increases the competitive ability. However, our data also suggests that the population separates into two clusters, based on combined scores of activity and aggression (which are positively linked within individuals). Thus, apart from an active and aggressive strategy, there seems to be another more passive behavioral strategy. [Naslund, Joacim; Johnsson, Jorgen I.] Univ Gothenburg, Dept Biol & Environm Sci, Box 463, S-40530 Gothenburg, Sweden Naslund, J (reprint author), Univ Gothenburg, Dept Biol & Environm Sci, Box 463, S-40530 Gothenburg, Sweden. joacim.naslund@gmail.com Helge Ax:son Johnsons stiftelse; Wilhelm och Martina Lundgrens Vetenskapsfond; Swedish Research Council Formas We thank Lin Sandquist and Christina Claesson for their assistance during field collection and in the laboratory. We are also grateful to the comments from three anonymous reviewers on a previous version of this manuscript. This study was funded by Helge Ax:son Johnsons stiftelse (JN), Wilhelm och Martina Lundgrens Vetenskapsfond (JN), and the Swedish Research Council Formas (JIJ). Adriaenssens B, 2013, ECOL LETT, V16, P47, DOI 10.1111/ele.12011; Adriaenssens B, 2011, BEHAV ECOL, V22, P135, DOI 10.1093/beheco/arq185; Alanara A, 2001, J ANIM ECOL, V70, P980, DOI 10.1046/j.0021-8790.2001.00550.x; Ali M, 2003, FISH FISH, V4, P147, DOI 10.1046/j.1467-2979.2003.00120.x; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Bell AM, 2007, ECOL LETT, V10, P828, DOI 10.1111/j.1461-0248.2007.01081.x; Bell AM, 2007, P ROY SOC B-BIOL SCI, V274, P755, DOI 10.1098/rspb.2006.0199; BOHLIN T, 1994, CAN J FISH AQUAT SCI, V51, P1920, DOI 10.1139/f94-193; Bohlin T, 1996, J FISH BIOL, V49, P157; BOHLIN T, 1993, CAN J FISH AQUAT SCI, V50, P224, DOI 10.1139/f93-025; Brett J.R., 1979, FISH PHYSIOL, V8, P599; Brodin T, 2011, J ETHOL, V29, P107, DOI 10.1007/s10164-010-0230-4; Brown M E., 1957, PHYSIOL FISHES, V1, P361, DOI [10.1016/B978-1-4832-2817-4.50015-9, DOI 10.1016/B978-1-4832-2817-4.50015-9]; Budaev SV, 2010, ETHOLOGY, V116, P472, DOI 10.1111/j.1439-0310.2010.01758.x; Burton T, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2441; Burton T, 2011, FUNCT ECOL, V25, P1379, DOI 10.1111/j.1365-2435.2011.01897.x; CHANDLER GL, 1988, T AM FISH SOC, V117, P432, DOI 10.1577/1548-8659(1988)117<0432:AGAIOJ>2.3.CO;2; CLARK CW, 1994, BEHAV ECOL, V5, P159, DOI 10.1093/beheco/5.2.159; Conceicao LEC, 1998, AQUACULTURE, V161, P95, DOI 10.1016/S0044-8486(97)00260-3; Conrad JL, 2011, J FISH BIOL, V78, P395, DOI 10.1111/j.1095-8649.2010.02874.x; Cuinat R, 1979, B FR PISCIC, V274, P1; Degerman E, 2001, FISKERIVERKET INFORM; DELLEFORS C, 1988, J FISH BIOL, V33, P741, DOI 10.1111/j.1095-8649.1988.tb05519.x; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Elliott J. M., 1994, QUANTITATIVE ECOLOGY; ELLIOTT JM, 1990, J ANIM ECOL, V59, P803, DOI 10.2307/5015; Farwell M, 2014, BEHAV ECOL SOCIOBIOL, V68, P781, DOI 10.1007/s00265-014-1691-1; Farwell M, 2009, BEHAV ECOL, V20, P913, DOI 10.1093/beheco/arp059; Fiksen O, 2011, MAR ECOL PROG SER, V432, P207, DOI 10.3354/meps09148; Geffroy B, 2015, BEHAVIOUR, V152, P147, DOI 10.1163/1568539X-00003236; GILLIAM JF, 1987, ECOLOGY, V68, P1856, DOI 10.2307/1939877; GRANT JWA, 1987, J ANIM ECOL, V56, P1001, DOI 10.2307/4962; Grimm V., 2005, INDIVIDUAL BASED MOD; Groothuis TGG, 2011, DEV PSYCHOBIOL, V53, P641, DOI 10.1002/dev.20574; Heithaus MR, 2007, J ANIM ECOL, V76, P837, DOI 10.1111/j.1365-2656.2007.01260.x; Heland M, 1999, BIOL ECOLOGY BROWN S, P115; Hojesjo J, 1999, J FISH BIOL, V55, P1009, DOI 10.1006/jfbi.1999.1113; Hojesjo J, 2004, BEHAV ECOL SOCIOBIOL, V56, P286, DOI 10.1007/s00265-004-0784-7; Hojesjo J, 2011, BEHAV ECOL SOCIOBIOL, V65, P1801, DOI 10.1007/s00265-011-1188-0; Hoogenboom MO, 2013, BEHAV ECOL, V24, P253, DOI 10.1093/beheco/ars161; Hopkins Kevin D., 1992, Journal of the World Aquaculture Society, V23, P173, DOI 10.1111/j.1749-7345.1992.tb00766.x; Huntingford F, 2005, BEHAVIOUR, V142, P1207, DOI 10.1163/156853905774539382; Johnsson JI, 2006, P R SOC B, V273, P1281, DOI 10.1098/rspb.2005.3437; Johnsson JI, 1999, J FISH BIOL, V54, P469, DOI 10.1111/j.1095-8649.1999.tb00846.x; JOHNSSON JI, 1994, ANIM BEHAV, V48, P177, DOI 10.1006/anbe.1994.1224; Johnsson JI, 1996, HORM BEHAV, V30, P13, DOI 10.1006/hbeh.1996.0003; Jonsson B, 2014, J FISH BIOL, V85, P151, DOI 10.1111/jfb.12432; Jonsson B, 2011, FISH FISH SER, V33, P1, DOI 10.1007/978-94-007-1189-1; Koolhaas JM, 1999, NEUROSCI BIOBEHAV R, V23, P925, DOI 10.1016/S0149-7634(99)00026-3; Korte SM, 2005, NEUROSCI BIOBEHAV R, V29, P3, DOI 10.1016/j.neubiorev.2004.08.009; Kortet R, 2014, BEHAV ECOL SOCIOBIOL, V68, P927, DOI 10.1007/s00265-014-1705-z; Kotrschal A, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000351; LIMA SL, 1986, ECOLOGY, V67, P377, DOI 10.2307/1938580; LUDWIG D, 1990, AM NAT, V135, P686, DOI 10.1086/285069; Luttbeg B, 2010, PHILOS T R SOC B, V365, P3977, DOI 10.1098/rstb.2010.0207; MASON JC, 1965, J FISH RES BOARD CAN, V22, P173, DOI 10.1139/f65-015; McNamara JM, 2013, SCIENCE, V340, P1084, DOI 10.1126/science.1230599; METCALFE NB, 1992, J FISH BIOL, V41, P93, DOI 10.1111/j.1095-8649.1992.tb03871.x; METCALFE NB, 1995, ANIM BEHAV, V49, P431, DOI 10.1006/anbe.1995.0056; MITTELBACH GG, 1981, ECOLOGY, V62, P1370, DOI 10.2307/1937300; Morrongiello JR, 2012, J ANIM ECOL, V81, P806, DOI 10.1111/j.1365-2656.2012.01961.x; Naslund J, 2017, ECOL FRESHW FISH, V26, P462, DOI 10.1111/eff.12291; Naslund J, 2015, OECOLOGIA, V177, P1221, DOI 10.1007/s00442-015-3263-0; Nicieza AG, 1997, ECOLOGY, V78, P2385; Nilsson N-A, 1956, REP I FRESHWATER RES, V38, P154; Orpwood JE, 2006, J ANIM ECOL, V75, P677, DOI 10.1111/j.1365-2656.2006.01088.x; Peck MA, 2015, ENVIRON BIOL FISH, V98, P1117, DOI 10.1007/s10641-014-0345-5; Pedersen BH, 1997, AQUACULTURE, V155, P259, DOI 10.1016/S0044-8486(97)00127-0; Perez KO, 2010, EVOLUTION, V64, P2450, DOI 10.1111/j.1558-5646.2010.00994.x; PETERSON I, 1984, CAN J FISH AQUAT SCI, V41, P1117, DOI 10.1139/f84-131; Pettersson JCE, 2002, THESIS; PETTERSSON LB, 1993, OECOLOGIA, V95, P353, DOI 10.1007/BF00320988; PICKERING AD, 1982, J FISH BIOL, V20, P229, DOI 10.1111/j.1095-8649.1982.tb03923.x; R Core Team, 2014, R LANG ENV STAT COMP; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Regnier T, 2015, ROY SOC OPEN SCI, V2, DOI 10.1098/rsos.150441; Regnier T, 2012, J EXP ZOOL PART A, V317A, P347, DOI 10.1002/jez.1728; Reid D, 2012, J ANIM ECOL, V81, P868, DOI 10.1111/j.1365-2656.2012.01969.x; Reinhardt UG, 1999, ANIM BEHAV, V57, P923, DOI 10.1006/anbe.1998.1051; Revelle W., 2015, PSYCH PROCEDURES PER; SIH A, 1980, SCIENCE, V210, P1041, DOI 10.1126/science.210.4473.1041; Sih A, 2004, Q REV BIOL, V79, P241, DOI 10.1086/422893; Sih A, 2015, TRENDS ECOL EVOL, V30, P50, DOI 10.1016/j.tree.2014.11.004; Skoglund H, 2006, J FISH BIOL, V68, P507, DOI 10.1111/j.1095-8649.2006.00938.x; SPSS Inc, 2001, SPSS TWOSTEP CLUST C; Stamps JA, 2007, ECOL LETT, V10, P355, DOI 10.1111/j.1461-0248.2007.01034.x; Sundstrom LF, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0063287; Sundstrom LF, 2004, BEHAV ECOL, V15, P192, DOI 10.1093/beheco/arg089; TRAVIS J, 1985, OIKOS, V45, P59, DOI 10.2307/3565222; Vehanen T, 2003, J FISH BIOL, V63, P1034, DOI 10.1046/j.1095-8649.2003.00228.x; Vollestad LA, 2003, ANIM BEHAV, V66, P561, DOI 10.1006/anbe.2003.2237; Wengstrom N, 2016, ETHOLOGY, V122, P769, DOI 10.1111/eth.12524; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; Wolf M, 2012, AM NAT, V179, P679, DOI 10.1086/665656; Zavorka L, 2015, BEHAV ECOL, V26, P877, DOI 10.1093/beheco/arv029 96 6 6 4 40 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. DEC 2016 70 12 2111 2125 10.1007/s00265-016-2215-y 15 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology EB8QW WOS:000387656900012 27881895 Green Published, Other Gold 2018-11-22 J Galatowitsch, ML; McIntosh, AR Galatowitsch, Mark L.; McIntosh, Angus R. Developmental constraints control generalist invertebrate distributions across a gradient of unpredictable disturbance FRESHWATER SCIENCE English Article life-history flexibility; unpredictable disturbance; predator-permanence gradient; freshwater temporary ponds LIFE-HISTORY PLASTICITY; PHENOTYPIC PLASTICITY; TIME CONSTRAINTS; NEW-ZEALAND; TRADE-OFFS; HETEROGENEOUS ENVIRONMENTS; GROWTH; EVOLUTION; COMMUNITIES; SPECIALISTS Mechanisms underpinning flexible life-history strategies have rarely been tested in hydrologically unpredictable ecosystems where generalists may have life-history trade-offs and developmental constraints that limit their distributions. We investigated in situ nymphal growth and developmental strategies of 2 generalists, Xanthocnemis zealandica and Sigara arguta, across a habitat-permanence gradient. In response to temporary pond drying, we anticipated a flexible generalist response with rapid growth and shorter development, resulting in smaller adult size. In comparison, we expected nymphs living in permanent lakes with predatory fish to extend growth and development in favor of larger adult size. Both species maximized growth rates in temporary ponds but had different developmental strategies that influenced their distribution. Xanthocnemis zealandica had longer development requirements (125 d), which limited their distribution in less predictable temporary ponds, whereas S. arguta were less constrained in development (56 d) and inhabited more temporary ponds. The longer development time of X. zealandica meant they benefited from flexible life-history traits: shorter development, limited desiccation tolerance in temporary ponds, and extended development and predator avoidance in permanent habitats. Sigara arguta had an opportunistic life-history strategy with a fixed, rapid developmental response across the permanence gradient and rapid colonization of refilled temporary ponds. This fixed strategy meant S. arguta was intolerant of drying and, in permanent lakes, was found only in shallow refuges from fish. Neither species differed in adult size across the permanence gradient. Our study shows how life-history strategies enable generalists to achieve broad distributions in a heterogeneous waterscape, and that resilience and flexibility to local selection pressures depend on the constraints of their phenologies. [Galatowitsch, Mark L.; McIntosh, Angus R.] Univ Canterbury, Sch Biol Sci, Ctr Integrat Ecol, Christchurch, New Zealand; [Galatowitsch, Mark L.] Ctr Coll Danville, Dept Biol, 600 West Walnut St, Danville, KY 40422 USA Galatowitsch, ML (reprint author), Univ Canterbury, Sch Biol Sci, Ctr Integrat Ecol, Christchurch, New Zealand.; Galatowitsch, ML (reprint author), Ctr Coll Danville, Dept Biol, 600 West Walnut St, Danville, KY 40422 USA. mark.galatowitsch@centre.edu; angus.mcintosh@canterbury.ac.nz McIntosh, Angus/B-2992-2011 McIntosh, Angus/0000-0003-2696-8813 Miss E. L. Hellaby Indigenous Grasslands Trust; Educate New Zealand International Doctoral Scholarship This research was funded by the Miss E. L. Hellaby Indigenous Grasslands Trust with further financial support from an Educate New Zealand International Doctoral Scholarship to MLG. Justyna Giejsztowt, Amanda Klemmer, Steve Pohe, and Sophie Hunt assisted in the field, and Linda Morris and Nicole Lauren-Manuera provided laboratory and technical support. We are grateful to the Department of Conservation (DOC) and Craigieburn and Molesworth Stations for access to field sites and to the University of Canterbury (UC) for use of the Cass field station. Additional hydrology data were provided by Hugh Robertson (DOC). Precipitation data were provided by Environment Canterbury, the National Institute of Water and Atmospheric Research CliFlo database, and University of Canterbury (UC) Center for Atmospheric Research. We thank UC's Freshwater Ecology Research Group for support, and Christoph Matthaei, Jenny Davis, Michael Winterbourn, and 2 anonymous referees for comments that improved the manuscript. Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Altwegg R, 2002, ECOLOGY, V83, P2542, DOI 10.1890/0012-9658(2002)083[2542:PILHPU]2.0.CO;2; Atkinson D, 1997, TRENDS ECOL EVOL, V12, P235, DOI 10.1016/S0169-5347(97)01058-6; Barahona J, 2005, FRESHWATER BIOL, V50, P2101, DOI 10.1111/j.1365-2427.2005.01463.x; Bates D., 2013, LME4 LINEAR MIXED EF, V1, P1, DOI DOI 10.18637/jss.v067.i01; BHATTACHARYA CG, 1967, BIOMETRICS, V23, P115, DOI 10.2307/2528285; Bogan MT, 2013, FRESHWATER BIOL, V58, P1016, DOI 10.1111/fwb.12105; Caley MJ, 2003, P ROY SOC B-BIOL SCI, V270, pS175, DOI 10.1098/rsbl.2003.0040; Carpenter SR, 1998, ECOSYSTEMS, V1, P1, DOI 10.1007/s100219900001; Clavel J, 2011, FRONT ECOL ENVIRON, V9, P222, DOI 10.1890/080216; De Block M, 2004, OECOLOGIA, V140, P68, DOI 10.1007/s00442-004-1575-6; De Block M, 2005, OIKOS, V108, P485; de Meeus T, 2000, EVOL ECOL RES, V2, P981; Deacon K. G., 1979, THESIS; DeWitt TJ, 1998, TRENDS ECOL EVOL, V13, P77, DOI 10.1016/S0169-5347(97)01274-3; Dmitriew C, 2005, OECOLOGIA, V142, P150, DOI 10.1007/s00442-004-1712-2; Galatowitsch ML, 2016, FRESHWATER BIOL, V61, P862, DOI 10.1111/fwb.12747; Gayanilo FC, 2005, FAO COMPUTERIZED INF, V8; Greig H. S., 2008, THESIS; Greig HS, 2013, J ANIM ECOL, V82, P598, DOI 10.1111/1365-2656.12042; Greig HS, 2010, ECOLOGY, V91, P836, DOI 10.1890/08-1871.1; Hothorn T., 2014, SIMULTANEOUS INFEREN; Jannot JE, 2008, BIOL J LINN SOC, V95, P495, DOI 10.1111/j.1095-8312.2008.01061.x; Jannot JE, 2009, OECOLOGIA, V161, P267, DOI 10.1007/s00442-009-1389-7; Johansson F, 2001, ECOLOGY, V82, P1857, DOI 10.1890/0012-9658(2001)082[1857:LHPIAD]2.0.CO;2; Kisdi E, 2002, AM NAT, V159, P579, DOI 10.1086/339989; Kuznetsova A., 2013, TESTS RANDOM FIXED E; Laurila A, 2002, EVOLUTION, V56, P617; Lytle DA, 2002, ECOLOGY, V83, P370; Lytle DA, 2001, AM NAT, V157, P525, DOI 10.1086/319930; Lytle DA, 2008, P R SOC B, V275, P453, DOI 10.1098/rspb.2007.1157; Massol F, 2013, ECOL COMPLEX, V16, P9, DOI 10.1016/j.ecocom.2012.05.004; McCauley SJ, 2007, OIKOS, V116, P121, DOI 10.1111/j.2006.0030-1299.15105.x; Mccauley SJ, 2008, FRESHWATER BIOL, V53, P253, DOI 10.1111/j.1365-2427.2007.01889.x; McPeek MA, 1998, ECOLOGY, V79, P867, DOI 10.1890/0012-9658(1998)079[0867:LHATSO]2.0.CO;2; McPeek MA, 1996, AM NAT, V148, pS124, DOI 10.1086/285906; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; MORAN NA, 1992, AM NAT, V139, P971, DOI 10.1086/285369; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; OSCARSON HG, 1987, OIKOS, V49, P133, DOI 10.2307/3566018; Relyea RA, 2002, AM NAT, V159, P272, DOI 10.1086/338540; Rowe RJ, 1987, DRAGONFLIES NZ; Rudolf VHW, 2007, EVOL ECOL, V21, P121, DOI 10.1007/s10682-006-0017-9; Stevens DJ, 2000, P ROY SOC B-BIOL SCI, V267, P1511, DOI 10.1098/rspb.2000.1172; Stoffels RJ, 2003, NEW ZEAL J MAR FRESH, V37, P449, DOI 10.1080/00288330.2003.9517179; Stoks R, 2005, J ANIM ECOL, V74, P708, DOI 10.1111/j.1365-2656.2005.00969.x; Thibert-Plante X, 2011, J EVOLUTION BIOL, V24, P326, DOI 10.1111/j.1420-9101.2010.02169.x; VANTIENDEREN PH, 1991, EVOLUTION, V45, P1317, DOI 10.1111/j.1558-5646.1991.tb02638.x; VENABLE DL, 1988, AM NAT, V131, P360, DOI 10.1086/284795; Verberk WCEP, 2010, J ANIM ECOL, V79, P589, DOI 10.1111/j.1365-2656.2010.01660.x; Wellborn GA, 1996, ANNU REV ECOL SYST, V27, P337, DOI 10.1146/annurev.ecolsys.27.1.337; Whiles MR, 2005, WETLANDS, V25, P462, DOI 10.1672/20; Williams DD, 1996, J N AM BENTHOL SOC, V15, P634, DOI 10.2307/1467813; Winterbourn M. J., 2006, B ENTOMOL SOC, V5, P1; WINTERBOURN MJ, 1981, NEW ZEAL J MAR FRESH, V15, P321, DOI 10.1080/00288330.1981.9515927; Wissinger SA, 2003, FRESHWATER BIOL, V48, P255, DOI 10.1046/j.1365-2427.2003.00997.x; Wissinger SA, 2006, FRESHWATER BIOL, V51, P2009, DOI 10.1111/j.1365-2427.2006.01629.x; Wissinger SA, 2009, J N AM BENTHOL SOC, V28, P12, DOI 10.1899/08-007.1; Young E. C., 2010, WATER BOATMEN BACKSW 59 1 1 4 18 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 2161-9549 2161-9565 FRESHW SCI Freshw. Sci. DEC 2016 35 4 1300 1311 10.1086/688959 12 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology EC4FC WOS:000388080700020 2018-11-22 J Henriques-Silva, R; Pinel-Alloul, B; Peres-Neto, PR Henriques-Silva, Renato; Pinel-Alloul, Bernadette; Peres-Neto, Pedro R. Climate, history and life-history strategies interact in explaining differential macroecological patterns in freshwater zooplankton GLOBAL ECOLOGY AND BIOGEOGRAPHY English Article Allee effect; cladocerans; copepods; latitudinal diversity gradient; Rapoport's rule; temperate lakes GEOGRAPHIC RANGE SIZE; LATITUDINAL DIVERSITY GRADIENT; SPECIES-RICHNESS; CRUSTACEAN ZOOPLANKTON; BETA DIVERSITY; GENE FLOW; COMMUNITY; DISPERSAL; LIMITS; SCALE AimWe investigated how freshwater microcrustaceans with different susceptibilities to Allee effects differ in the distribution of their geographical range size (GRS) and diversity along latitudinal gradients, evaluating the importance of climatic and historical factors in explaining these differences. We hypothesized that sexual copepods would have a smaller GRS and that their distribution would be linked to historical processes due to mate-finding Allee effects during colonization. Given that cyclic parthenogenetic cladocerans avoid these Allee effects, we predicted that they would exhibit a larger GRS and their distribution would be related to climatic factors rather than dispersal limitation. LocationCanadian watersheds, North America. MethodsWe used a database containing the presence-absence of freshwater zooplankton across 1665 Canadian lakes along a latitudinal gradient of 40 degrees. We computed GRS using minimum convex polygons encompassing all lakes in which each species was present. We pooled the diversity of lakes within watersheds, and computed linear regressions models between watershed diversity and average GRS with the average latitude, distance from a glacial refugium and environmental variables of the watershed. All analyses were performed separately for cladocerans and copepods. ResultsCladocerans exhibited, on average, a GRS 70% larger than that of copepods. We found a strong relationship between diversity (negative) and average GRS (positive) with latitude for cladocerans but not for copepods. Cladoceran macroecological patterns were mainly explained by climatic factors, whereas the lack of latitudinal gradients in copepods was potentially due to the influence of a northern glacial refuge and dispersal limitation. Main conclusionsOur results show that Allee effects are strongly and negatively associated with GRS, influencing the relative importance of environmental filtering and dispersal limitation on species diversity patterns. We suggest that studies should avoid lumping species with large differences in their susceptibility to Allee effects in order to better disentangle the multiple processes affecting large-scale patterns. [Henriques-Silva, Renato; Peres-Neto, Pedro R.] Univ Quebec, Dept Biol Sci, CP 8888,Succ Ctr Ville, Montreal, PQ H3C 3P8, Canada; [Henriques-Silva, Renato; Pinel-Alloul, Bernadette; Peres-Neto, Pedro R.] Quebec Ctr Biodivers Sci, Montreal, PQ H3A 1B1, Canada; [Pinel-Alloul, Bernadette] Univ Montreal, Dept Biol Sci, Montreal, PQ H3C 3J7, Canada; [Pinel-Alloul, Bernadette] Univ Montreal, GRIL, Grp Rech Interuniv Limnol & Environm Aquat, CP 6128,Succ Ctr Ville, Montreal, PQ, Canada Henriques-Silva, R (reprint author), Univ Quebec, Dept Biol Sci, CP 8888,Succ Ctr Ville, Montreal, PQ H3C 3P8, Canada. renatohenriques@gmail.com Henriques da Silva, Renato/0000-0003-2731-2023; Peres Neto, Pedro/0000-0002-5629-8067 FQRNT (Fonds Quebecois de Recherche Nature et Technologies, Quebec, Canada) team research project programme grant; National Science and Engineering Research Council (NSERC); Canada Research Chair in Spatial Modelling and Biodiversity; NSERC discovery grant We are grateful to K. Patalas and A. Salki for compiling and providing the dataset as well as Mark C. Urban and Luc De Meester and three anonymous referees for fruitful comments on earlier versions of this manuscript. R.H.-S. was supported by a FQRNT (Fonds Quebecois de Recherche Nature et Technologies, Quebec, Canada) team research project programme grant. B.P.-A. was supported by discovery grants from the National Science and Engineering Research Council (NSERC). P.R.P.-N. was supported by the Canada Research Chair in Spatial Modelling and Biodiversity and an NSERC discovery grant. ALLAN JD, 1976, AM NAT, V110, P165, DOI 10.1086/283056; ANDERSON RS, 1971, J FISH RES BOARD CAN, V28, P311, DOI 10.1139/f71-043; Barnett AJ, 2007, FRESHWATER BIOL, V52, P796, DOI 10.1111/j.1365-2427.2007.01733.x; Baselga A, 2012, METHODS ECOL EVOL, V3, P808, DOI 10.1111/j.2041-210X.2012.00224.x; Baselga A, 2012, GLOBAL ECOL BIOGEOGR, V21, P1106, DOI 10.1111/j.1466-8238.2011.00753.x; Baselga A, 2010, GLOBAL ECOL BIOGEOGR, V19, P134, DOI 10.1111/j.1466-8238.2009.00490.x; Blanchet FG, 2008, ECOLOGY, V89, P2623, DOI 10.1890/07-0986.1; Blanchet S, 2013, GLOBAL ECOL BIOGEOGR, V22, P1083, DOI 10.1111/geb.12074; Courchamp F, 1999, TRENDS ECOL EVOL, V14, P405, DOI 10.1016/S0169-5347(99)01683-3; Decaestecker E, 2009, LOST SEX: THE EVOLUTIONARY BIOLOGY OF PARTHENOGENESIS, P295, DOI 10.1007/978-90-481-2770-2_15; DesMeester L., 2002, ACTA OECOL, V23, P121, DOI [10.1016/S1146-609X(02)01145-1, DOI 10.1016/S1146-609X(02)01145-1]; DesMeester L., 2016, TRENDS ECOL EVOL, V31, P136; Dufresne F, 1997, P ROY SOC B-BIOL SCI, V264, P201, DOI 10.1098/rspb.1997.0028; Dynesius M, 2000, P NATL ACAD SCI USA, V97, P9115, DOI 10.1073/pnas.97.16.9115; Figuerola J, 2005, AM NAT, V165, P274, DOI 10.1086/427092; Fox J., 2011, R COMPANION APPL REG; Francis AP, 2003, AM NAT, V161, P523, DOI 10.1086/368223; Frisch D, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040205; Fukami T, 2015, ANNU REV ECOL EVOL S, V46, P1, DOI 10.1146/annurev-ecolsys-110411-160340; Gaston KJ, 2009, P R SOC B, V276, P1395, DOI 10.1098/rspb.2008.1480; Gray DK, 2012, J APPL ECOL, V49, P1216, DOI 10.1111/j.1365-2664.2012.02203.x; Gross J., 2015, 5 OMNIBUS TESTS COMP; Grossenbacher D, 2015, ECOL LETT, V18, P706, DOI 10.1111/ele.12449; Guisande C, 2003, OECOLOGIA, V136, P627, DOI 10.1007/s00442-003-1306-4; Havel JE, 2004, LIMNOL OCEANOGR, V49, P1229, DOI 10.4319/lo.2004.49.4_part_2.1229; Hawkins BA, 2003, ECOLOGY, V84, P3105, DOI 10.1890/03-8006; Hebert PDN, 2007, LIMNOL OCEANOGR, V52, P2507, DOI 10.4319/lo.2007.52.6.2507; HEBERT PDN, 1986, CAN J FISH AQUAT SCI, V43, P1416, DOI 10.1139/f86-175; Hessen DO, 2007, ECOGRAPHY, V30, P749, DOI 10.1111/j.2007.0906-7590.05259.x; Hillebrand H, 2004, AM NAT, V163, P192, DOI 10.1086/381004; Holt RD, 2011, AM NAT, V178, pS6, DOI 10.1086/661784; Hortal J, 2011, ECOL LETT, V14, P741, DOI 10.1111/j.1461-0248.2011.01634.x; Hothorn T., 2014, TESTING LINEAR REGRE; Jeffery NW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018364; Kramer AM, 2008, ECOLOGY, V89, P2760, DOI 10.1890/07-1505.1; Kubisch A, 2014, OIKOS, V123, P5, DOI 10.1111/j.1600-0706.2013.00706.x; Leibold MA, 2010, ECOL LETT, V13, P1290, DOI 10.1111/j.1461-0248.2010.01523.x; Lenormand T, 2002, TRENDS ECOL EVOL, V17, P183, DOI 10.1016/S0169-5347(02)02497-7; Louette G, 2007, OIKOS, V116, P419, DOI 10.1111/j.2006.0030-1299.15381.x; Marquet P. A., 2004, FRONTIERS BIOGEOGRAP; Mazaris AD, 2010, J BIOGEOGR, V37, P1341, DOI 10.1111/j.1365-2699.2010.02294.x; Mittelbach GG, 2007, ECOL LETT, V10, P315, DOI 10.1111/j.1461-0248.2007.01020.x; PALMER MW, 1990, ECOLOGY, V71, P1195, DOI 10.2307/1937387; Pantel JH, 2015, ECOL LETT, V18, P992, DOI 10.1111/ele.12480; PATALAS K, 1990, INT VER THEOR ANGEW, V24, P360; Patalas K., 1994, CANADIAN TECHNICAL R, VDepartment of Fisheries and Oceans, Central and Arctic Region; Pine-Alloul Bemadette, 2007, P203, DOI 10.1007/978-1-4020-6216-2_8; Pinel-Alloul B, 2013, GLOBAL ECOL BIOGEOGR, V22, P784, DOI 10.1111/geb.12041; PINELALLOUL B, 1995, HYDROBIOLOGIA, V300, P17; Quinn RM, 1996, OECOLOGIA, V107, P179, DOI 10.1007/BF00327901; Rahbek C, 2005, ECOL LETT, V8, P224, DOI 10.1111/j.1461-0248.2004.00701.x; Rapoport E.H., 1975, AREOGRAFIA ESTRATEGI; Santer B, 2006, ARCH HYDROBIOL, V167, P301, DOI 10.1127/0003-9136/2006/0167-0301; Sexton JP, 2009, ANNU REV ECOL EVOL S, V40, P415, DOI 10.1146/annurev.ecolsys.110308.120317; Shaw AK, 2015, AM NAT, V185, P631, DOI 10.1086/680511; Shurin JB, 2000, ECOLOGY, V81, P3062, DOI 10.2307/177401; Shurin JB, 2007, ECOL LETT, V10, P127, DOI 10.1111/j.1461-0248.2006.01009.x; Stemberger RS, 1995, CAN J FISH AQUAT SCI, V52, P2197, DOI 10.1139/f95-812; STEVENS GC, 1989, AM NAT, V133, P240, DOI 10.1086/284913; Sun XY, 2016, PALAEOWORLD, V25, P303, DOI 10.1016/j.palwor.2015.02.003; TASH JC, 1967, ECOLOGY, V48, P129, DOI 10.2307/1933424; Urban MC, 2009, P R SOC B, V276, P4129, DOI 10.1098/rspb.2009.1382; US Geological Survey, 2012, HYDRO1K; VansDoorslaer W., 2009, GLOBAL CHANGE BIOL, V15, P3046; Vavrek M.J., 2011, PALAEONTOL ELECTRON, V14, P1; Vogt RJ, 2013, OIKOS, V122, P1700, DOI 10.1111/j.1600-0706.2013.00039.x 66 4 4 1 16 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1466-822X 1466-8238 GLOBAL ECOL BIOGEOGR Glob. Ecol. Biogeogr. DEC 2016 25 12 1454 1465 10.1111/geb.12505 12 Ecology; Geography, Physical Environmental Sciences & Ecology; Physical Geography EB9YA WOS:000387752800005 2018-11-22 J Mondy, CP; Munoz, I; Doledec, S Mondy, Cedric P.; Munoz, Isabel; Doledec, Sylvain Life-history strategies constrain invertebrate community tolerance to multiple stressors: A case study in the Ebro basin SCIENCE OF THE TOTAL ENVIRONMENT English Article Aquatic invertebrates; Trait combinations; Habitat template; Boosted regression trees; Mediterranean streams; Water scarcity STREAM MACROINVERTEBRATE COMMUNITIES; FRESH-WATER MACROINVERTEBRATES; LARGE EUROPEAN RIVERS; BIOLOGICAL TRAITS; SPECIES TRAITS; AQUATIC ECOSYSTEMS; HABITAT; SEDIMENT; ECOLOGY; TEMPLET Context: Multiple stressors constitute a serious threat to aquatic ecosystems, particularly in the Mediterranean region where water scarcity is likely to interact with other anthropogenic stressors. Biological traits potentially allow the unravelling of the effects of multiple stressors. However, thus far, trait-based approaches have failed to fully deliver on their promise and still lack strong predictive power when multiple stressors are present. Goal: We aimed to quantify specific community tolerances against six anthropogenic stressors and investigate the responses of the underlying macroinvertebrate biological traits and their combinations. Methods: We built and calibrated boosted regression tree models to predict community tolerances using multiple biological traits with a priori hypotheses regarding their individual responses to specific stressors. We analysed the combinations of traits underlying community tolerance and the effect of trait association on this tolerance. Results: Our results validated the following three hypotheses: (i) the community tolerance models efficiently and robustly related trait combinations to stressor intensities and, to a lesser extent, to stressors related to the presence of dams and insecticides; (ii) the effects of traits on community tolerance not only depended on trait identity but also on the trait associations emerging at the community level from the co-occurrence of different traits in species; and (iii) the community tolerances and the underlying trait combinations were specific to the different stressors. Conclusion: This study takes a further step towards predictive tools in community ecology that consider combinations and associations of traits as the basis of stressor tolerance. Additionally, the community tolerance concept has potential application to help stream managers in the decision process regarding management options. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. [Mondy, Cedric P.; Doledec, Sylvain] Univ Lyon 1, LEHNA, UMR 5023, Biodiversite & Plasticite Hydrosyst, Villeurbanne, France; [Munoz, Isabel] Univ Barcelona, Dept Ecol, Barcelona, Spain Mondy, CP (reprint author), Univ Lyon 1, LEHNA, UMR 5023, Biodiversite & Plasticite Hydrosyst, Villeurbanne, France. cedric.mondy@gmail.com Munoz, Isabel/0000-0001-8110-9435; Mondy, Cedric/0000-0003-2788-0936 European Communities 7th Framework Program [603629-ENV-2013-6.2.1-Globaqua] This work has been supported by the European Communities 7th Framework Program Funding under Grant agreement no. 603629-ENV-2013-6.2.1-Globaqua. AHRENS WH, 1990, WEED SCI, V38, P452; Arce E, 2014, FRESHW SCI, V33, P1060, DOI 10.1086/678673; Archaimbault V, 2010, FRESHWATER BIOL, V55, P1430, DOI 10.1111/j.1365-2427.2009.02281.x; Baird DJ, 2007, ECOTOX ENVIRON SAFE, V67, P296, DOI 10.1016/j.ecoenv.2006.07.001; Bonada N, 2006, ANNU REV ENTOMOL, V51, P495, DOI 10.1146/annurev.ento.51.110104.151124; Bonada N, 2004, ENVIRON POLLUT, V132, P509, DOI 10.1016/j.envpol.2004.05.006; Bonada N, 2011, LIMNETICA, V30, P129; Bonada N, 2007, HYDROBIOLOGIA, V589, P91, DOI 10.1007/s10750-007-0723-5; Bonada N, 2007, GLOBAL CHANGE BIOL, V13, P1658, DOI 10.1111/j.1365-2486.2007.01375.x; Brabec K, 2004, HYDROBIOLOGIA, V516, P331, DOI 10.1023/B:HYDR.0000025274.47757.85; Brack W, 2015, SCI TOTAL ENVIRON, V503, P22, DOI 10.1016/j.scitotenv.2014.05.143; Brandt SA, 2000, CATENA, V40, P375, DOI 10.1016/S0341-8162(00)00093-X; Buendia C, 2013, ECOL INDIC, V25, P184, DOI 10.1016/j.ecolind.2012.09.027; CHEVENET F, 1994, FRESHWATER BIOL, V31, P295, DOI 10.1111/j.1365-2427.1994.tb01742.x; CLIFFORD HUGH F., 1966, INVEST INDIANA LAKES STREAMS, V7, P57; Coats JR, 2012, INSECTICIDE MODE ACT; Core Team R., 2016, R LANG ENV STAT COMP; Crain CM, 2008, ECOL LETT, V11, P1304, DOI 10.1111/j.1461-0248.2008.01253.x; Dewson ZS, 2007, J N AM BENTHOL SOC, V26, P401, DOI 10.1899/06-110.1; Doledec S, 2006, J N AM BENTHOL SOC, V25, P44, DOI 10.1899/0887-3593(2006)25[44:COSAFA]2.0.CO;2; Doledec S, 1999, FRESHWATER BIOL, V42, P737, DOI 10.1046/j.1365-2427.1999.00509.x; Doledec S, 2008, FRESHWATER BIOL, V53, P617, DOI 10.1111/j.1365-2427.2007.01924.x; EEA, 2012, 82012 EEA; Elith J, 2008, J ANIM ECOL, V77, P802, DOI 10.1111/j.1365-2656.2008.01390.x; ETC/ICM, 2012, 12012 ETCICM; Gayraud S, 2003, FRESHWATER BIOL, V48, P2045, DOI 10.1046/j.1365-2427.2003.01139.x; HARPER PP, 1970, ECOLOGY, V51, P925; Hering D, 2015, SCI TOTAL ENVIRON, V503, P10, DOI 10.1016/j.scitotenv.2014.06.106; Hering D, 2010, SCI TOTAL ENVIRON, V408, P4007, DOI 10.1016/j.scitotenv.2010.05.031; Ings TC, 2009, J ANIM ECOL, V78, P253, DOI 10.1111/j.1365-2656.2008.01460.x; Kuster EC, 2008, J ECOL, V96, P860, DOI 10.1111/j.1365-2745.2008.01406.x; Lange K, 2014, FRESHWATER BIOL, V59, P2431, DOI 10.1111/fwb.12437; Lawton JH, 1999, OIKOS, V84, P177, DOI 10.2307/3546712; Lessard JL, 2003, RIVER RES APPL, V19, P721, DOI 10.1002/rra.713; Liess M, 2005, ENVIRON TOXICOL CHEM, V24, P954, DOI 10.1897/03-652.1; Ludwig R, 2011, ENVIRON SCI POLICY, V14, P794, DOI 10.1016/j.envsci.2011.04.003; Malaj E, 2014, P NATL ACAD SCI USA, V111, P9549, DOI 10.1073/pnas.1321082111; Diaz AM, 2008, FRESHWATER BIOL, V53, P1, DOI 10.1111/j.1365-2427.2007.01854.x; Mondy CP, 2013, SCI TOTAL ENVIRON, V461, P750, DOI 10.1016/j.scitotenv.2013.05.072; Mondy CP, 2012, ECOL INDIC, V18, P452, DOI 10.1016/j.ecolind.2011.12.013; MUNOZ I, 1989, Regulated Rivers Research and Management, V3, P345, DOI 10.1002/rrr.3450030132; Navarro-Ortega A, 2015, SCI TOTAL ENVIRON, V503, P3, DOI 10.1016/j.scitotenv.2014.06.081; Ormerod SJ, 2010, FRESHWATER BIOL, V55, P1, DOI 10.1111/j.1365-2427.2009.02395.x; Oudin LC, 2003, SYSTEME EVALUATION Q; Pardo Isabel, 2002, Limnetica, V21, P115; Pollard AI, 2010, FRESHWATER BIOL, V55, P1420, DOI 10.1111/j.1365-2427.2009.02235.x; Rabeni CF, 2005, AQUAT SCI, V67, P395, DOI 10.1007/s00027-005-0793-2; RESH VH, 1994, FRESHWATER BIOL, V31, P539, DOI 10.1111/j.1365-2427.1994.tb01756.x; Sabater S, 2009, RIVERS OF EUROPE, 1ST EDITION, P113, DOI 10.1016/B978-0-12-369449-2.00004-7; Sarriquet PE, 2007, RIVER RES APPL, V23, P815, DOI 10.1002/rra.1013; Schafer RB, 2011, ENVIRON SCI TECHNOL, V45, P1665, DOI 10.1021/es103227q; Scheiner SM, 2008, THEOR ECOL, V1, P21, DOI 10.1007/s12080-007-0002-0; Singer MB, 2007, RIVER RES APPL, V23, P55, DOI 10.1002/rra.968; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; SPRAGUE JB, 1970, WATER RES, V4, P3, DOI 10.1016/0043-1354(70)90018-7; Statzner B, 1997, FRESHWATER BIOL, V38, P109, DOI 10.1046/j.1365-2427.1997.00195.x; Statzner B, 2007, BIODIVERS CONSERV, V16, P3609, DOI 10.1007/s10531-007-9150-1; Statzner B, 2010, FRESHWATER BIOL, V55, P80, DOI 10.1111/j.1365-2427.2009.02369.x; Tachet H, 2010, INVERTEBRES EAU DOUC; Townsend CR, 2008, J APPL ECOL, V45, P1810, DOI 10.1111/j.1365-2664.2008.01548.x; TOWNSEND CR, 1994, FRESHWATER BIOL, V31, P265, DOI 10.1111/j.1365-2427.1994.tb01740.x; Usseglio-Polatera Philippe, 2001, Archiv fuer Hydrobiologie Supplement, V139, P53; Van Looy K, 2014, ECOL INDIC, V37, P10, DOI 10.1016/j.ecolind.2013.10.006; Verberk WCEP, 2013, FRESHW SCI, V32, P531, DOI 10.1899/12-092.1; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1722, DOI 10.1111/j.1365-2427.2008.02035.x; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1739, DOI 10.1111/j.1365-2427.2008.02036.x; Vorosmarty CJ, 2010, NATURE, V467, P555, DOI 10.1038/nature09440; Von Der Ohe PC, 2004, ENVIRON TOXICOL CHEM, V23, P150; Wooster DE, 2012, RIVER RES APPL, V28, P1630, DOI 10.1002/rra.1555 69 9 9 3 22 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0048-9697 1879-1026 SCI TOTAL ENVIRON Sci. Total Environ. DEC 1 2016 572 196 206 10.1016/j.scitotenv.2016.07.227 11 Environmental Sciences Environmental Sciences & Ecology EC0RA WOS:000387807200021 27498381 Other Gold 2018-11-22 J Kuan, SH Kuan, Shu-Hui Metamorphic strategies of the Indian rice frog, Fejervarya limnocharis, in response to irrigation regimes TAIWANIA English Article ANURAN LARVAL GROWTH; LIFE-HISTORY; RANA-TEMPORARIA; PHENOTYPIC PLASTICITY; NATURAL-SELECTION; TEMPERATURE; TADPOLES; SIZE; PERFORMANCE; FITNESS Organisms gain benefits from phenotypic plasticity by possessing traits better cope with environmental variations. Although cohort-dependent life-history strategy may be ubiquitous in amphibians, it is rarely studied. I investigated whether Indian rice frog, Fejervarya limnocharis, populations from cultivated fields with different irrigation regimes have differential cohort-dependent metamorphic strategies. I tested the hypothesis that populations inhabiting temporally disrupted breeding habitats would, while populations inhabiting temporally constant breeding habitats would not show cohort-dependent metamorphic strategies in response to seasonal temperature variation. I assessed cohort-dependent strategies by comparing metamorphic weight, age, and growth rate between spring and summer cohorts in response to low and high temperatures in a factorial common garden experiment. The results showed that the plasticity of metamorphic weight and age were both very extensive in the Indian rice frog. Tadpoles from disrupted irrigation (rice paddy) populations had cohort-dependent metamorphic strategies. In contrast, tadpoles from constant irrigation (water bamboo field) populations did not show cohort-dependent metamorphic strategies. More research on cohort-dependent life-history traits is badly needed to further our understanding the evolution of life history strategies. [Kuan, Shu-Hui] Natl Taiwan Univ, Inst Ecol & Evolutionary Biol, 1,Sect 4,Roosevelt Rd, Taipei 10617, Taiwan Kuan, SH (reprint author), Natl Taiwan Univ, Inst Ecol & Evolutionary Biol, 1,Sect 4,Roosevelt Rd, Taipei 10617, Taiwan. d94b44004@ntu.edu.tw Alexander P.S., 1979, Journal of Asian Ecology, V1, P68; Altwegg R, 2003, EVOLUTION, V57, P872; Alvarez D, 2002, FUNCT ECOL, V16, P640, DOI 10.1046/j.1365-2435.2002.00658.x; Atkinson D, 1996, OIKOS, V77, P359, DOI 10.2307/3546078; Beck CW, 2000, FUNCT ECOL, V14, P32, DOI 10.1046/j.1365-2435.2000.00386.x; BERVEN KA, 1979, EVOLUTION, V33, P609, DOI 10.1111/j.1558-5646.1979.tb04714.x; BERVEN KA, 1983, AM ZOOL, V23, P85; Blouin MS, 2000, OECOLOGIA, V125, P358, DOI 10.1007/s004420000458; Cabrera-Guzman E, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0070121; Castaneda LE, 2006, PHYSIOL BIOCHEM ZOOL, V79, P919, DOI 10.1086/506006; Chuang M.F.A., 2006, THESIS; Gosner K. L., 1960, Herpetologica, V16, P183; HARKEY GA, 1988, COPEIA, P1001; Hsu JL, 2012, HERPETOLOGICA, V68, P184; Kaplan RH, 2006, EVOLUTION, V60, P142; Kingsolver JG, 2008, EVOL ECOL RES, V10, P251; Kuan SH, 2011, J ZOOL, V285, P165, DOI 10.1111/j.1469-7998.2011.00836.x; Kuan S.-H., 2016, THESIS; Lai Su-Ju, 2002, Acta Zoologica Taiwanica, V13, P11; Laugen AT, 2003, J EVOLUTION BIOL, V16, P996, DOI 10.1046/j.1420-9101.2003.00560.x; Liess A, 2013, J ANIM ECOL, V82, P1316, DOI 10.1111/1365-2656.12107; Lind MI, 2007, J EVOLUTION BIOL, V20, P1288, DOI 10.1111/j.1420-9101.2007.01353.x; Lind M.I., 2009, THESIS; Merila J, 2004, EVOL ECOL RES, V6, P727; Miner BG, 2005, TRENDS ECOL EVOL, V20, P685, DOI 10.1016/j.tree.2005.08.002; Mogali SM, 2011, CURR SCI INDIA, V101, P1219; Morey S, 2001, ECOLOGY, V82, P510, DOI 10.2307/2679876; NEWMAN RA, 1994, COPEIA, P372; NEWMAN RA, 1988, EVOLUTION, V42, P774, DOI 10.1111/j.1558-5646.1988.tb02495.x; Pigliucci M., 2001, PHENOTYPIC PLASTICIT; POUGH FH, 1984, OECOLOGIA, V65, P138, DOI 10.1007/BF00384476; Relyea RA, 2007, OECOLOGIA, V152, P389, DOI 10.1007/s00442-007-0675-5; Schlichting C, 1998, PHENOTYPIC EVOLUTION; SINSCH U, 1988, OECOLOGIA, V76, P399, DOI 10.1007/BF00377035; Stahlberg F, 2001, J EVOLUTION BIOL, V14, P755, DOI 10.1046/j.1420-9101.2001.00333.x; Watkins TB, 2006, PHYSIOL BIOCHEM ZOOL, V79, P140, DOI 10.1086/498182; Wells K.D., 2007, ECOLOGY BEHAV AMPHIB, P559 37 0 0 1 1 NATL TAIWAN UNIV PRESS TAIPEI NO 1 SECTION 4, ROOSEVELT RD, TAIPEI, 106, TAIWAN 0372-333X TAIWANIA Taiwania DEC 2016 61 4 271 278 10.6165/tai.2016.61.271 8 Plant Sciences; Horticulture Plant Sciences; Agriculture EE9SE WOS:000389965700001 DOAJ Gold 2018-11-22 J Bradley, BJ; Snowdon, CT; McGrew, WC; Lawler, RR; Guevara, EE; McIntosh, A; O'Connor, T Bradley, Brenda J.; Snowdon, Charles T.; McGrew, William C.; Lawler, Richard R.; Guevara, Elaine E.; McIntosh, Annick; O'Connor, Timothy Non-human primates avoid the detrimental effects of prenatal androgen exposure in mixed-sex litters: combined demographic, behavioral, and genetic analyses AMERICAN JOURNAL OF PRIMATOLOGY English Article aromatase; callitrichid; CYP19A1; strepsirrhine; testosterone; twins COTTON-TOP TAMARINS; TWINS REDUCE FITNESS; FEMALE CO-TWINS; SAGUINUS-OEDIPUS; PHYLOGENETIC ANALYSIS; SOCIAL-ENVIRONMENT; CALLITHRIX-JACCHUS; MARMOSET MONKEY; AMNIOTIC-FLUID; OPPOSITE-SEX Producing single versus multiple births has important life history trade-offs, including the potential benefits and risks of sharing a common in utero environment. Sex hormones can diffuse through amniotic fluid and fetal membranes, and females with male littermates risk exposure to high levels of fetal testosterone, which are shown to have masculinizing effects and negative fitness consequences in many mammals. Whereas most primates give birth to single offspring, several New World monkey and strepsirrhine species regularly give birth to small litters. We examined whether neonatal testosterone exposure might be detrimental to females in mixed-sex litters by compiling data from long-term breeding records for seven primate species (Saguinus oedipus; Varecia variegata, Varecia rubra, Microcebus murinis, Mirza coquereli, Cheirogaleus medius, Galago moholi). Litter sex ratios did not differ from the expected 1:2:1 (MM:MF:FF for twins) and 1:2:2:1 (MMM:MMF:MFF:FFF for triplets). Measures of reproductive success, including female survivorship, offspring-survivorship, and inter-birth interval, did not differ between females born in mixed-sex versus all-female litters, indicating that litter-producing non-human primates, unlike humans and rodents, show no signs of detrimental effects from androgen exposure in mixed sex litters. Although we found no evidence for CYP19A1 gene duplicationsa hypothesized mechanism for coping with androgen exposurearomatase protein evolution shows patterns of convergence among litter-producing taxa. That some primates have effectively found a way to circumvent a major cost of multiple births has implications for understanding variation in litter size and life history strategies across mammals. [Bradley, Brenda J.] George Washington Univ, Dept Anthropol, Washington, DC USA; [Bradley, Brenda J.; Guevara, Elaine E.; McIntosh, Annick] Yale Univ, Dept Anthropol, New Haven, CT 06520 USA; [Snowdon, Charles T.] Univ Wisconsin, Dept Psychol, 1202 W Johnson St, Madison, WI 53706 USA; [McGrew, William C.] Univ Cambridge, Dept Archaeol & Anthropol, Cambridge, England; [Lawler, Richard R.] James Madison Univ, Dept Sociol & Anthropol, Harrisonburg, VA 22807 USA; [O'Connor, Timothy] Univ Maryland, Sch Med, Inst Genome Sci, Baltimore, MD 21201 USA; [O'Connor, Timothy] Univ Maryland, Sch Med, Program Personalized & Genom Med, Baltimore, MD 21201 USA; [O'Connor, Timothy] Univ Maryland, College Pk, MD 20742 USA Bradley, BJ (reprint author), George Washington Univ, Sci & Engn Hall,Suite 6000 CASHP,800 22nd NW, Washington, DC 20052 USA. bradleyjbrenda@gwu.edu O'Connor, Timothy/0000-0002-0276-1896; Guevara, Elaine/0000-0003-1480-474X Yale Institute for Biospheric Studies - Program in Reproductive Ecology; Yale Reproductive Ecology Laboratory; USPHS [MH 029775, MH 035215] This research was supported by Yale Institute for Biospheric Studies - Program in Reproductive Ecology, Yale Reproductive Ecology Laboratory and USPHS MH 029775 and MH 035215. Adzhubei IA, 2010, NAT METHODS, V7, P248, DOI 10.1038/nmeth0410-248; Ahrenfeldt L, 2015, HORM BEHAV, V69, P123, DOI 10.1016/j.yhbeh.2015.01.007; Altschul SF, 1998, TRENDS BIOCHEM SCI, V23, P444, DOI 10.1016/S0968-0004(98)01298-5; [Anonymous], 2015, DUK LEM CTR DAT; Baden AL, 2013, BEHAV ECOL SOCIOBIOL, V67, P1939, DOI 10.1007/s00265-013-1601-y; Balthazart J., 1983, HORMONES BEHAVIOR HI, P159; Bromberg Y, 2007, NUCLEIC ACIDS RES, V35, P3823, DOI 10.1093/nar/gkm238; Brown GR, 2002, P NATL ACAD SCI USA, V99, P11252, DOI 10.1073/pnas.162360599; Carlson B. M., 2014, HUMAN EMBRYOLOGY DEV, P520; Chiang EFL, 2001, J EXP ZOOL, V290, P709, DOI 10.1002/jez.1121; CLARK MM, 1991, PHYSIOL BEHAV, V49, P239, DOI 10.1016/0031-9384(91)90038-P; CLARK MM, 1992, ANIM BEHAV, V43, P215, DOI 10.1016/S0003-3472(05)80217-9; CLUTTONBROCK TH, 1986, Q REV BIOL, V61, P339, DOI 10.1086/415033; COHEN J, 1992, PSYCHOL BULL, V112, P155, DOI 10.1037/0033-2909.112.1.155; Conrad DF, 2010, NATURE, V464, P704, DOI 10.1038/nature08516; Corbin CJ, 2003, MOL CELL ENDOCRINOL, V206, P147, DOI 10.1016/S0303-7207(02)00422-7; Curtis JT, 2010, PHYSIOL BEHAV, V101, P93, DOI 10.1016/j.physbeh.2010.04.020; EVEN MD, 1992, J REPROD FERTIL, V96, P709; Faul F, 2007, BEHAV RES METHODS, V39, P175, DOI 10.3758/BF03193146; FRENCH JA, 1984, ANIM BEHAV, V32, P615, DOI 10.1016/S0003-3472(84)80299-7; French JA, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2013.0084; French JA, 2013, AM J PRIMATOL, V75, P212, DOI 10.1002/ajp.22077; Gaucher EA, 2004, BMC BIOL, V2, DOI 10.1186/1741-7007-2-19; Ginther AJ, 2002, BIOL REPROD, V66, P282, DOI 10.1095/biolreprod66.2.282; Ginther AJ, 2001, ANIM BEHAV, V61, P65, DOI 10.1006/anbe.2000.1587; Gish W., 1996, BLAST 2 0 WU BLAST; Gursky S. L., 2015, THE SPECTRAL TARSIER, P256; Harris RA, 2014, P NATL ACAD SCI USA, V111, P1467, DOI 10.1073/pnas.1316037111; Helle S, 2004, EVOLUTION, V58, P430, DOI 10.1111/j.0014-3820.2004.tb01658.x; HENIKOFF S, 1992, P NATL ACAD SCI USA, V89, P10915, DOI 10.1073/pnas.89.22.10915; Hunter J, 1779, PHILOS T R SOC LOND, VB 69, P279; Husen B, 2003, BIOL REPROD, V68, P2092, DOI 10.1095/biolreprod.102.012476; Jaquish CE, 1996, J MED PRIMATOL, V25, P57, DOI 10.1111/j.1600-0684.1996.tb00194.x; JONES DT, 1992, COMPUT APPL BIOSCI, V8, P275; Kang JH, 2006, TOXICOLOGY, V226, P79, DOI 10.1016/j.tox.2006.06.009; Kappeler PM, 2016, INT J PRIMATOL, V37, P10, DOI 10.1007/s10764-015-9873-x; Kappeler PM, 1998, AM J PRIMATOL, V46, P7; Kearse M, 2012, BIOINFORMATICS, V28, P1647, DOI 10.1093/bioinformatics/bts199; Kent WJ, 2002, GENOME RES, V12, P656, DOI [10.1101/gr.229202. Article published online before March 2002, 10.1101/gr.229202]; Kiesling NMJ, 2015, MOL PHYLOGENET EVOL, V82, P386, DOI 10.1016/j.ympev.2014.03.027; Kontopoulos DG, 2013, COMPUT METH PROG BIO, V111, P711, DOI 10.1016/j.cmpb.2013.05.021; Korsten P, 2009, BIOL LETTERS, V5, P663, DOI 10.1098/rsbl.2009.0366; Kosakovsky Pond SL, 2005, BIOINFORMATICS, V21, P676, DOI DOI 10.1093/BI0INF0RMATICS/BTI079; KRACKOW S, 1995, BIOL REV, V70, P225, DOI 10.1111/j.1469-185X.1995.tb01066.x; Kragie L, 2002, ENDOCR RES, V28, P121, DOI 10.1081/ERC-120015041; Kumar P, 2009, NAT PROTOC, V4, P1073, DOI 10.1038/nprot.2009.86; LEUTENEGGER W, 1979, AM NAT, V114, P525, DOI 10.1086/283499; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Luckett W., 1976, CONTRIB PRIMATOL, V3, P142; Lummaa V, 2007, P NATL ACAD SCI USA, V104, P10915, DOI 10.1073/pnas.0605875104; Martin R. D., 1990, PRIMATE ORIGINS EVOL, P804; McIntosh AM, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0047760; Medland SE, 2008, TWIN RES HUM GENET, V11, P481, DOI 10.1375/twin.11.5.481; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; MILLER EM, 1994, PERS INDIV DIFFER, V17, P511, DOI 10.1016/0191-8869(94)90088-4; Mo ZP, 2012, CLIN CHEM LAB MED, V50, P649, DOI [10.1515/CCLM.2011.833, 10.1515/cclm.2011.833]; Monclus R, 2012, J ANIM ECOL, V81, P80, DOI 10.1111/j.1365-2656.2011.01888.x; Murrell B, 2012, PLOS GENET, V8, DOI 10.1371/journal.pgen.1002764; Nadeau NJ, 2010, TRENDS GENET, V26, P484, DOI 10.1016/j.tig.2010.08.004; Nielsen R, 1998, GENETICS, V148, P929; Petty JMA, 2015, SCI REP-UK, V5, DOI 10.1038/srep09631; Pond SLK, 2005, MOL BIOL EVOL, V22, P1208, DOI 10.1093/molbev/msi105; Pond SLK, 2005, MOL BIOL EVOL, V22, P478, DOI 10.1093/molbev/msi031; Ross C, 2001, INT J PRIMATOL, V22, P749, DOI 10.1023/A:1012065332758; Ross CN, 2007, P NATL ACAD SCI USA, V104, P6278, DOI 10.1073/pnas.0607426104; Rutherford J. N., 2014, PLOS ONE, V9; Ryan BC, 2002, NEUROSCI BIOBEHAV R, V26, P665, DOI 10.1016/S0149-7634(02)00038-6; RYAN KJ, 1961, ENDOCRINOLOGY, V69, P613, DOI 10.1210/endo-69-3-613; Schultz AH, 1948, AM J PHYS ANTHROP-NE, V6, P1, DOI 10.1002/ajpa.1330060108; SHORT RV, 1970, PHILOS T ROY SOC B, V259, P141, DOI 10.1098/rstb.1970.0054; Sim NL, 2012, NUCLEIC ACIDS RES, V40, pW452, DOI 10.1093/nar/gks539; Springer MS, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049521; Stajich JE, 2002, GENOME RES, V12, P1611, DOI 10.1101/gr.361602; Tapp AL, 2011, HORM BEHAV, V60, P713, DOI 10.1016/j.yhbeh.2011.08.011; Tardif SD, 1997, AM J PRIMATOL, V42, P323, DOI 10.1002/(SICI)1098-2345(1997)42:4<323::AID-AJP7>3.0.CO;2-Z; Tchoudakova A, 1998, ENDOCRINOLOGY, V139, P2179, DOI 10.1210/en.139.4.2179; Tietz N. W., 1976, FUNDAMENTALS CLIN CH, P1917; VOMACHKA AJ, 1986, HORM BEHAV, V20, P181, DOI 10.1016/0018-506X(86)90016-4; Weber KS, 2001, DEV BRAIN RES, V126, P217, DOI 10.1016/S0165-3806(00)00138-3; Wildman DE, 2006, P NATL ACAD SCI USA, V103, P3203, DOI 10.1073/pnas.0511344103; Windle CP, 1999, J MED PRIMATOL, V28, P73, DOI 10.1111/j.1600-0684.1999.tb00254.x; Wislocki GB, 1929, CONTRIB EMBRYOL, V20, P53; Wislocki GB, 1939, AM J ANAT, V64, P445, DOI 10.1002/aja.1000640305; Worley KC, 2014, NAT GENET, V46, P850, DOI 10.1038/ng.3042; Yang ZH, 2007, MOL BIOL EVOL, V24, P1586, DOI 10.1093/molbev/msm088; Zahed SR, 2010, AM J PRIMATOL, V72, P296, DOI 10.1002/ajp.20782; Zarrei M, 2015, NAT REV GENET, V16, P172, DOI 10.1038/nrg3871; Zehr SM, 2014, SCI DATA, V1, DOI 10.1038/sdata.2014.19; ZIEGLER TE, 1995, HORM BEHAV, V29, P407, DOI 10.1006/hbeh.1995.1028; ZIEGLER TE, 1987, BIOL REPROD, V37, P618, DOI 10.1095/biolreprod37.3.618 90 2 2 0 15 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0275-2565 1098-2345 AM J PRIMATOL Am. J. Primatol. DEC 2016 78 12 1304 1315 10.1002/ajp.22583 12 Zoology Zoology EB0ZZ WOS:000387077200006 27434275 2018-11-22 J Amundsen, PA Amundsen, Per-Arne Contrasting life-history strategies facilitated by cannibalism in a stunted Arctic charr population HYDROBIOLOGIA English Article Life-history tradeoffs; Piscivory; Reproduction; Salvelinus alpinus; Sexual maturation; Somatic growth SALVELINUS-ALPINUS L.; SIZE-STRUCTURED POPULATIONS; PHENOTYPIC PLASTICITY; ONTOGENIC NICHE; POLYMORPHISM; COMPETITION; DYNAMICS; LAKES; SPECIALIZATION; SPECIATION Life-history tradeoffs between energy investments in reproduction versus somatic growth may be highly important for fish populations suffering from food limitations. This study addresses life-history tradeoffs in a stunted Arctic charr population from a subarctic lake sampled annually over a 12-year period. The vast majority of charr matured early, grew slowly toward average adult sizes of 13-14 cm, and had a short longevity with few fish reaching ages older than 6 years. Some gender differences in life-history strategies related to sexual maturation were revealed, likely due to energetic constraints from high cost of egg production. Some charr followed a highly different growth trajectory, growing rapidly and attaining lengths > 40 cm. These fast-growing individuals matured later and reached higher ages than the stunted fish. Hence, there was a distinct tradeoff between early versus late sexual maturation, the former strategy resulting in short generation time enhancing the survival up to first spawning and the latter being related to a dietary shift to cannibalism resulting in increased growth and body size, and reproduction at a postponed maturation age. This dual pattern was sustained over the 12-year study period, apparently reflecting two contrasting stable strategies. [Amundsen, Per-Arne] UiT Arctic Univ Norway, Fac Biosci Fisheries & Econ, Dept Arctic & Marine Biol, Tromso, Norway Amundsen, PA (reprint author), UiT Arctic Univ Norway, Fac Biosci Fisheries & Econ, Dept Arctic & Marine Biol, Tromso, Norway. per-arne.amundsen@uit.no Adams CE, 1998, J FISH BIOL, V52, P1259, DOI 10.1006/jfbi.1998.0676; Agresti A., 2002, CATEGORICAL DATA ANA; AMUNDSEN PA, 1994, J FISH BIOL, V45, P181, DOI 10.1006/jfbi.1994.1222; AMUNDSEN PA, 1995, ENVIRON BIOL FISH, V43, P285, DOI 10.1007/BF00005860; Amundsen PA, 1999, ECOL FRESHW FISH, V8, P43, DOI 10.1111/j.1600-0633.1999.tb00051.x; Amundsen PA, 2007, J ANIM ECOL, V76, P149, DOI 10.1111/j.1365-2656.2006.01179.x; Amundsen PA, 2008, ENVIRON BIOL FISH, V83, P45, DOI 10.1007/s10641-007-9262-1; Arrington DA, 2002, ECOLOGY, V83, P2145, DOI 10.1890/0012-9658(2002)083[2145:HODFRO]2.0.CO;2; Berg OK, 2010, HYDROBIOLOGIA, V652, P337, DOI 10.1007/s10750-010-0366-9; Borgstrom R, 2015, POLAR BIOL, V38, P309, DOI 10.1007/s00300-014-1587-6; Bystrom P, 2006, J ANIM ECOL, V75, P434, DOI 10.1111/j.1365-2656.2006.01064.x; Claessen D, 2000, AM NAT, V155, P219, DOI 10.1086/303315; Claessen D, 2002, ECOLOGY, V83, P1660, DOI 10.1890/0012-9658(2002)083[1660:TIOSDP]2.0.CO;2; Curtis M.A., 1984, P395; Finstad AG, 2006, OIKOS, V112, P73, DOI 10.1111/j.0030-1299.2006.13990.x; Finstad AG, 2000, CAN J FISH AQUAT SCI, V57, P1718, DOI 10.1139/cjfas-57-8-1718; Finstad AG, 2004, CAN J FISH AQUAT SCI, V61, P2151, DOI 10.1139/F04-157; Finstad AG, 2001, ECOL FRESHW FISH, V10, P220, DOI 10.1034/j.1600-0633.2001.100404.x; Hammar J, 2014, J FISH BIOL, V85, P81, DOI 10.1111/jfb.12321; Hammar J, 2000, OIKOS, V88, P33, DOI 10.1034/j.1600-0706.2000.880105.x; Henriksen EH, 2016, HYDROBIOLOGIA, V783, P37, DOI 10.1007/s10750-015-2589-2; Holden M.J., 1974, MANUAL FISHERIES SCI; Jensen H, 2012, J FISH BIOL, V80, P2448, DOI 10.1111/j.1095-8649.2012.03294.x; Jonsson B, 2001, J FISH BIOL, V58, P605, DOI 10.1006/jfbi.2000.1515; Klemetsen A, 2003, ECOL FRESHW FISH, V12, P1, DOI 10.1034/j.1600-0633.2003.00010.x; Klemetsen A., 2013, J ICHTHYOL, V53, P781; Klemetsen Anders, 2010, Freshwater Reviews, V3, P49, DOI 10.1608/FRJ-3.1.3; Knudsen R, 2016, HYDROBIOLOGIA, V783, P65, DOI 10.1007/s10750-015-2601-x; PARKER HH, 1991, J FISH BIOL, V38, P123, DOI 10.1111/j.1095-8649.1991.tb03098.x; Persson L, 2000, ECOLOGY, V81, P1058; SKULASON S, 1995, TRENDS ECOL EVOL, V10, P366, DOI 10.1016/S0169-5347(00)89135-1; Smalas A, 2013, J ICHTHYOL+, V53, P856, DOI DOI 10.1134/S0032945213100111; SNORRASON SS, 1994, BIOL J LINN SOC, V52, P1; Stearns S., 1992, EVOLUTION LIFE HIST; Svanback R, 2009, AM NAT, V174, P176, DOI 10.1086/600112; Svenning M. A., 1993, THESIS; Svenning MA, 2005, J FISH BIOL, V66, P957, DOI 10.1111/j.0022-1112.2005.00646.x; Svenning Martin-A., 1995, Nordic Journal of Freshwater Research, V71, P424; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; Werner EE, 1986, COMMUNITY ECOLOGY, P344; Woods PJ, 2013, J FISH BIOL, V82, P569, DOI 10.1111/jfb.12011; Woods PJ, 2012, EVOL ECOL RES, V14, P973; Wootton R. J., 1998, ECOLOGY TELEOST FISH 43 1 1 5 21 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0018-8158 1573-5117 HYDROBIOLOGIA Hydrobiologia DEC 2016 783 1 11 19 10.1007/s10750-015-2600-y 9 Marine & Freshwater Biology Marine & Freshwater Biology EB2WE WOS:000387222500002 2018-11-22 J Nash, KL; Graham, NAJ Nash, Kirsty L.; Graham, Nicholas A. J. Ecological indicators for coral reef fisheries management FISH AND FISHERIES English Article Artisanal fisheries; ecosystem function; indicator selection; reference points; sensitivity; specificity ECOSYSTEM-BASED MANAGEMENT; DATA-POOR FISHERIES; LIFE-HISTORY STRATEGIES; SIZE-BASED INDICATORS; MARINE FOOD WEBS; FISH COMMUNITIES; REFERENCE POINTS; BODY-SIZE; FUNCTIONAL DIVERSITY; HARVEST STRATEGIES Coral reef fisheries are of great importance both economically and for food security, but many reefs are showing evidence of overfishing, with significant ecosystem-level consequences for reef condition. In response, ecological indicators have been developed to assess the state of reef fisheries and their broader ecosystem-level impacts. To date, use of fisheries indicators for coral reefs has been rather piecemeal, with no overarching understanding of their performance with respect to highlighting fishing effects. Here, we provide a review of multispecies fishery-independent indicators used to evaluate fishing impacts on coral reefs. We investigate the consistency with which indicators highlight fishing effects on coral reefs. We then address questions of statistical power and uncertainty, type of fishing gradient, scale of analysis, the influence of other variables and the need for more work to set reference points for empirical, fisheries-independent indicators on coral reefs. Our review provides knowledge that will help underpin the assessment of the ecological effects of fishing, offering essential support for the development and implementation of coral reef fisheries management plans. [Nash, Kirsty L.; Graham, Nicholas A. J.] James Cook Univ, ARC Ctr Excellence Coral Reef Studies, Townsville, Qld 4811, Australia; [Nash, Kirsty L.] Univ Tasmania, Ctr Marine Socioecol, Inst Marine & Antarctic Studies, Hobart, Tas 7000, Australia; [Graham, Nicholas A. J.] Univ Lancaster, Lancaster Environm Ctr, Lancaster LA1 4YQ, England Nash, KL (reprint author), IMAS Hobart, Private Bag 129, Hobart, Tas 7001, Australia. nashkirsty@gmail.com Graham, Nicholas/C-8360-2014; Nash, Kirsty/B-5456-2015 Graham, Nicholas/0000-0002-0304-7467; Nash, Kirsty/0000-0003-0976-3197 Australian Research Council; Royal Society This work was supported by the Australian Research Council. Nick Graham is supported by the Royal Society. Thank you to Jessica Blythe and Paul Markey for their comments on the manuscript. We thank four anonymous reviewers for their comments, which prompted significant improvements to the manuscript. Abesamis RA, 2014, REV FISH BIOL FISHER, V24, P1033, DOI 10.1007/s11160-014-9362-x; Amand M, 2004, AQUAT LIVING RESOUR, V17, P139, DOI 10.1051/alr:2004022; Appeldoorn RS, 2008, ENVIRON CONSERV, V35, P232, DOI 10.1017/S0376892908005018; Aswani S, 2015, FRONTIERS MARINE, V2, P1, DOI [10.3389/fmars.2015.00050, DOI 10.3389/FMARS.2015.00050]; Ault JS, 2014, ECOL INDIC, V44, P164, DOI 10.1016/j.ecolind.2014.04.013; Babcock EA, 2013, FISH RES, V147, P434, DOI 10.1016/j.fishres.2013.03.011; Babcock EA, 2011, CAN J FISH AQUAT SCI, V68, P343, DOI 10.1139/F10-146; Bartlett CY, 2009, CONSERV BIOL, V23, P1475, DOI 10.1111/j.1523-1739.2009.01293.x; Beets C. J., 1997, P 8 INT COR REEF S, V2, P2009; Bejarano S, 2013, MAR ECOL PROG SER, V482, P197, DOI 10.3354/meps10270; Bellwood DR, 2004, NATURE, V429, P827, DOI 10.1038/nature02691; Bianchi G, 2000, ICES J MAR SCI, V57, P558, DOI 10.1006/jmsc.2000.0727; Branch TA, 2010, NATURE, V468, P431, DOI 10.1038/nature09528; Bundy A, 2010, ICES J MAR SCI, V67, P745, DOI 10.1093/icesjms/fsp283; Caddy J., 1998, 04299345 FAO UN; Caddy J.F., 1995, FAO FISH TECH PAP, P83; CESAR H., 2003, EC WORLDWIDE CORAL R; Chabanet P, 2005, AQUAT LIVING RESOUR, V18, P215, DOI 10.1051/alr:2005028; Christensen NL, 1996, ECOL APPL, V6, P665, DOI 10.2307/2269460; Christie P, 2009, COAST MANAGE, V37, P349, DOI 10.1080/08920750902851740; Cinner JE, 2012, GLOBAL ENVIRON CHANG, V22, P651, DOI 10.1016/j.gloenvcha.2012.03.002; Cinner JE, 2013, CONSERV BIOL, V27, P453, DOI 10.1111/j.1523-1739.2012.01933.x; CLARKE KR, 1993, MAR ECOL PROG SER, V92, P205, DOI 10.3354/meps092205; Clua E, 2005, AQUAT LIVING RESOUR, V18, P199, DOI 10.1051/alr:2005026; Clua E, 2008, AQUAT LIVING RESOUR, V21, P339, DOI 10.1051/alr:2008036; Cohen PJ, 2013, MAR POLICY, V37, P278, DOI 10.1016/j.marpol.2012.05.010; Colegrave N, 2003, BEHAV ECOL, V14, P446, DOI 10.1093/beheco/14.3.446; Cope JM, 2009, CAN J FISH AQUAT SCI, V66, P1256, DOI 10.1139/F09-084; Costello C, 2012, SCIENCE, V338, P517, DOI 10.1126/science.1223389; Coulthard S, 2011, GLOBAL ENVIRON CHANG, V21, P453, DOI 10.1016/j.gloenvcha.2011.01.003; Darling ES, 2013, GLOBAL CHANGE BIOL, V19, P1930, DOI 10.1111/gcb.12191; DICKIE LM, 1987, ECOL MONOGR, V57, P233, DOI 10.2307/2937082; Dowling NA, 2015, FISH RES, V171, P130, DOI 10.1016/j.fishres.2014.09.013; Dowling NA, 2008, FISH RES, V94, P380, DOI 10.1016/j.fishres.2008.09.033; Dulvy NK, 2004, ECOL LETT, V7, P410, DOI 10.1111/j.1461-0248.2004.00593.x; Dulvy NK, 2004, CAN J FISH AQUAT SCI, V61, P466, DOI 10.1139/F03-169; Edwards CTT, 2012, REV FISH SCI, V20, P136, DOI 10.1080/10641262.2012.683210; Erisman BE, 2014, FISH RES, V159, P75, DOI 10.1016/j.fishres.2014.05.013; Essington TE, 2006, P NATL ACAD SCI USA, V103, P3171, DOI 10.1073/pnas.0510964103; Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF; FAO, 1999, IND SUST DEV MAR CAP; Francis RICC, 1997, CAN J FISH AQUAT SCI, V54, P1699, DOI 10.1139/f97-100; Friedlander AM, 2007, ECOL APPL, V17, P715, DOI 10.1890/06-0536; Friedlander AM, 2002, MAR ECOL PROG SER, V230, P253, DOI 10.3354/meps230253; Frisch AJ, 2014, MAR BIOL, V161, P61, DOI 10.1007/s00227-013-2315-4; Froese R, 2004, FISH FISH, V5, P86, DOI 10.1111/j.1467-2979.2004.00144.x; Fulton EA, 2005, ICES J MAR SCI, V62, P540, DOI 10.1016/j.icesjms.2004.12.012; Galal N, 2002, MAR FRESHWATER RES, V53, P199, DOI 10.1071/MF01158; Gislason H, 1998, ICES J MAR SCI, V55, P362, DOI 10.1006/jmsc.1997.0323; Gonzalez A, 2009, ANNU REV ECOL EVOL S, V40, P393, DOI 10.1146/annurev.ecolsys.39.110707.173349; Grace-McCaskey C. A., 2012, 12 INT COR REEF S SO, V22; Graham NAJ, 2013, CORAL REEFS, V32, P315, DOI 10.1007/s00338-012-0984-y; Graham NAJ, 2005, CORAL REEFS, V24, P118, DOI 10.1007/s00338-004-0466-y; Graham NAJ, 2015, NATURE, V518, P94, DOI 10.1038/nature14140; Greenstreet SPR, 2006, ICES J MAR SCI, V63, P573, DOI 10.1016/j.icesjms.2005.12.009; Guillemot N, 2014, ECOL INDIC, V43, P227, DOI 10.1016/j.ecolind.2014.02.015; Gurevitch J, 1999, ECOLOGY, V80, P1142, DOI 10.2307/177061; Harborne AR, 2008, J APPL ECOL, V45, P1010, DOI 10.1111/j.1365-2664.2008.01490.x; Hatcher BG, 1997, CORAL REEFS, V16, pS77, DOI 10.1007/s003380050244; Helstrom C. W., 1968, STAT THEORY SIGNAL D; Henriques S, 2014, J APPL ECOL, V51, P623, DOI 10.1111/1365-2664.12235; Hicks CC, 2014, P NATL ACAD SCI USA, V111, P17791, DOI 10.1073/pnas.1413473111; Hicks CC, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0036022; Hilborn R, 2007, AMBIO, V36, P296, DOI 10.1579/0044-7447(2007)36[296:MTSBLF]2.0.CO;2; Hoegh-Guldberg O, 2007, SCIENCE, V318, P1737, DOI 10.1126/science.1152509; Hoggarth D. D., 2006, FAO FISHERIES TECHNI, V487; Houle JE, 2012, CAN J FISH AQUAT SCI, V69, P1065, DOI 10.1139/F2012-044; Hughes TP, 2010, TRENDS ECOL EVOL, V25, P633, DOI 10.1016/j.tree.2010.07.011; Jackson JBC, 1997, CORAL REEFS, V16, pS23, DOI 10.1007/s003380050238; Jennings S, 1998, ADV MAR BIOL, V34, P201, DOI 10.1016/S0065-2881(08)60212-6; Jennings S, 2005, ICES J MAR SCI, V62, P397, DOI 10.1016/j.icesjms.2004.07.030; Jennings S, 2005, FISH FISH, V6, P212, DOI 10.1111/j.1467-2979.2005.00189.x; Jennings S, 2001, J ANIM ECOL, V70, P934, DOI 10.1046/j.0021-8790.2001.00552.x; Jennings S, 1998, P ROY SOC B-BIOL SCI, V265, P333, DOI 10.1098/rspb.1998.0300; Jennings S, 1996, AMBIO, V25, P44; Johnson AE, 2013, FISH FISH, V14, P281, DOI 10.1111/j.1467-2979.2012.00468.x; Jupiter Stacy D., 2014, Pacific Conservation Biology, V20, P165; Karnauskas M, 2014, ECOL INDIC, V46, P454, DOI 10.1016/j.ecolind.2014.07.006; Karnauskas M, 2011, FISH RES, V111, P40, DOI 10.1016/j.fishres.2011.06.010; Karr KA, 2015, J APPL ECOL, V52, P402, DOI 10.1111/1365-2664.12388; Kelly CJ, 2006, FISH RES, V79, P233, DOI 10.1016/j.fishres.2006.03.007; King JR, 2003, FISHERIES MANAG ECOL, V10, P249, DOI 10.1046/j.1365-2400.2003.00359.x; Laliberte E, 2010, ECOLOGY, V91, P299, DOI 10.1890/08-2244.1; Large SI, 2013, ICES J MAR SCI, V70, P755, DOI 10.1093/icesjms/fst067; Leigh G., 2014, STOCK ASSESSMENT QUE; Levine M, 2001, PHARMACOTHERAPY, V21, P405, DOI 10.1592/phco.21.5.405.34503; Lindfield SJ, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0092628; Link JS, 2010, ICES J MAR SCI, V67, P787, DOI 10.1093/icesjms/fsp258; Link JS, 2005, ICES J MAR SCI, V62, P569, DOI 10.1016/j.icesjms.2004.12.015; Link JS, 2002, CAN J FISH AQUAT SCI, V59, P1429, DOI 10.1139/F02-115; Lokrantz J, 2008, CORAL REEFS, V27, P967, DOI 10.1007/s00338-008-0394-3; MacNeil MA, 2015, NATURE, V520, P341, DOI 10.1038/nature14358; Madin EMP, 2010, ECOLOGY, V91, P3563, DOI 10.1890/09-2174.1; Mangi SC, 2007, OCEAN COAST MANAGE, V50, P463, DOI 10.1016/j.ocecoaman.2006.10.003; Mardle S, 2002, J ENVIRON MANAGE, V65, P49, DOI 10.1006/jema.2001.0518; Martin J, 2009, ECOL APPL, V19, P1079, DOI 10.1890/08-0255.1; McClanahan TR, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.1938; McClanahan TR, 2015, CONSERV BIOL, V29, P409, DOI 10.1111/cobi.12430; McClanahan TR, 2012, MAR ECOL PROG SER, V469, P121, DOI 10.3354/meps10009; McClanahan TR, 2011, FISHERIES MANAG ECOL, V18, P50, DOI 10.1111/j.1365-2400.2010.00768.x; McClanahan TR, 2011, P NATL ACAD SCI USA, V108, P17230, DOI 10.1073/pnas.1106861108; MCCLANAHAN TR, 1994, HYDROBIOLOGIA, V286, P109, DOI 10.1007/BF00008501; McGilliard CR, 2011, ICES J MAR SCI, V68, P201, DOI 10.1093/icesjms/fsq151; Micheli F, 2014, BIOL CONSERV, V171, P186, DOI 10.1016/j.biocon.2013.12.029; Mouillot D, 2014, P NATL ACAD SCI USA, V111, P13757, DOI 10.1073/pnas.1317625111; Mullon C., 2012, J BIOECON, V14, P267, DOI DOI 10.1007/s10818-011-9124-y; Mumby PJ, 2016, FISH FISH, V17, P266, DOI 10.1111/faf.12078; Nash KL, 2013, ECOL APPL, V23, P1632, DOI 10.1890/12-2031.1; Nash KL, 2013, ECOSYSTEMS, V16, P478, DOI 10.1007/s10021-012-9625-0; Newson Stuart E., 2009, Endangered Species Research, V7, P101, DOI 10.3354/esr00162; Newton K, 2007, CURR BIOL, V17, P655, DOI 10.1016/j.cub.2007.02.054; Nystrom M, 2012, ECOSYSTEMS, V15, P695, DOI 10.1007/s10021-012-9530-6; Pauly D, 1998, SCIENCE, V279, P860, DOI 10.1126/science.279.5352.860; PAULY D, 1995, TRENDS ECOL EVOL, V10, P430, DOI 10.1016/S0169-5347(00)89171-5; Pazhayamadom DG, 2013, FISH RES, V145, P114, DOI 10.1016/j.fishres.2013.02.002; Pestle WJ, 2013, J ISL COAST ARCHAEOL, V8, P228, DOI 10.1080/15564894.2013.797943; PETERMAN RM, 1992, MAR POLLUT BULL, V24, P231, DOI 10.1016/0025-326X(92)90559-O; Piet GJ, 2004, ICES J MAR SCI, V61, P1305, DOI 10.1016/j.icesjms.2004.08.009; Punt AE, 2001, MAR FRESHWATER RES, V52, P819, DOI 10.1071/MF00095; Rice J, 2003, OCEAN COAST MANAGE, V46, P235, DOI 10.1016/S0964-5691(03)00006-1; Rice JC, 2005, ICES J MAR SCI, V62, P516, DOI 10.1016/j.icesjms.2005.01.003; Rochet MJ, 2003, CAN J FISH AQUAT SCI, V60, P86, DOI 10.1139/F02-164; Rogers SI, 2005, MAR POLLUT BULL, V50, P9, DOI 10.1016/j.marpolbul.2004.10.028; Rouyer T, 2008, P NATL ACAD SCI USA, V105, P5420, DOI 10.1073/pnas.0709034105; Ruckelshaus M, 2008, BIOSCIENCE, V58, P53, DOI 10.1641/B580110; Russ Garry R., 2002, P421, DOI 10.1016/B978-012615185-5/50024-4; Sadovy Y, 2005, FISH FISH, V6, P167, DOI 10.1111/j.1467-2979.2005.00186.x; Sainsbury KJ, 2000, ICES J MAR SCI, V57, P731, DOI 10.1006/jmsc.2000.0737; Salomon AK, 2011, B MAR SCI, V87, P251, DOI 10.5343/bms.2010.1089; Samhouri JF, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0008907; Scandol J. P., 2004, FISHERIES RESOURCE A, V96; SHELDON RW, 1972, LIMNOL OCEANOGR, V17, P327, DOI 10.4319/lo.1972.17.3.0327; Shin YJ, 2005, ICES J MAR SCI, V62, P384, DOI 10.1016/j.icesjms.2005.01.004; Shin YJ, 2012, REV FISH BIOL FISHER, V22, P835, DOI 10.1007/s11160-012-9252-z; Shin YJ, 2010, ICES J MAR SCI, V67, P692, DOI 10.1093/icesjms/fsp294; SMITH AH, 1992, EPIDEMIOLOGY, V3, P449, DOI 10.1097/00001648-199209000-00011; Smith D, 2009, MAR COAST FISH, V1, P244, DOI 10.1577/C08-041.1; Starr RM, 2010, MAR COAST FISH, V2, P159, DOI 10.1577/C08-056.1; Steneck RS, 2014, MAR ECOL PROG SER, V506, P115, DOI 10.3354/meps10764; Tallis H, 2010, MAR POLICY, V34, P340, DOI 10.1016/j.marpol.2009.08.003; Taylor BM, 2014, CORAL REEFS, V33, P869, DOI 10.1007/s00338-014-1187-5; Taylor BM, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2423; Teh LSL, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0065397; Thorson JT, 2015, FISH FISH, V16, P342, DOI 10.1111/faf.12061; Thorson JT, 2012, CAN J FISH AQUAT SCI, V69, P1556, DOI 10.1139/F2012-077; Thrush SF, 2010, ANNU REV MAR SCI, V2, P419, DOI 10.1146/annurev-marine-120308-081129; Travis J, 2014, P NATL ACAD SCI USA, V111, P581, DOI 10.1073/pnas.1305853111; Trenkel VM, 2003, CAN J FISH AQUAT SCI, V60, P67, DOI 10.1139/F02-163; Valles H, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0086291; Villeger S, 2008, ECOLOGY, V89, P2290, DOI 10.1890/07-1206.1; Wagner T, 2013, FISHERIES, V38, P309, DOI 10.1080/03632415.2013.799466; Weijerman M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0063797; Wiedenmann J, 2013, N AM J FISH MANAGE, V33, P845, DOI 10.1080/02755947.2013.811128; Willis TJ, 2001, J FISH BIOL, V59, P1408, DOI 10.1006/jfbi.2001.1721; Wilson SK, 2008, GLOBAL CHANGE BIOL, V14, P2796, DOI 10.1111/j.1365-2486.2008.01696.x; Wilson SK, 2007, MAR BIOL, V151, P1069, DOI 10.1007/s00227-006-0538-3; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; Worm B, 2012, TRENDS ECOL EVOL, V27, P594, DOI 10.1016/j.tree.2012.07.005; Worm B, 2009, SCIENCE, V325, P578, DOI 10.1126/science.1173146; Yemane D, 2005, ICES J MAR SCI, V62, P374, DOI 10.1016/j.icesjms.2005.01.009; Yodzis P, 2000, ECOLOGY, V81, P261, DOI 10.2307/177149 161 8 8 3 67 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1467-2960 1467-2979 FISH FISH Fish. Fish. DEC 2016 17 4 1029 1054 10.1111/faf.12157 26 Fisheries Fisheries EA9CO WOS:000386938900006 2018-11-22 J Morris, H; Brodersen, C; Schwarze, FWMR; Jansen, S Morris, Hugh; Brodersen, Craig; Schwarze, Francis W. M. R.; Jansen, Steven The Parenchyma of Secondary Xylem and Its Critical Role in Tree Defense against Fungal Decay in Relation to the CODIT Model FRONTIERS IN PLANT SCIENCE English Article ray parenchyma; axial parenchyma; CODIT; reaction zone; secondary xylem; fungi; barrier zone BARRIER-ZONE FORMATION; DUTCH-ELM-DISEASE; BASIDIOMYCETE INONOTUS-HISPIDUS; LIFE-HISTORY STRATEGIES; LONG-DISTANCE TRANSPORT; ROBINIA-PSEUDOACACIA L; LIVING WOOD FIBERS; QUERCUS-ROBUR L; FOREST TREES; CLIMATE-CHANGE This review examines the roles that ray and axial parenchyma (RAP) plays against fungal pathogens in the secondary xylem of wood within the context of the CODIT model (Compartmentalization of Decay in Trees), a defense concept first conceived in the early 1970s by Alex Shigo. This model, simplistic in its design, shows how a large woody perennial is highly compartmented. Anatomical divisions in place at the time of infection or damage, (physical defense) alongside the 'active' response by the RAP during and after wounding work together in forming boundaries that function to restrict air or decay spread. The living parenchyma cells play a critical role in all of the four walls (differing anatomical constructs) that the model comprises. To understand how living cells in each of the walls of CODIT cooperate, we must have a clear vision of their complex interconnectivity from a three-dimensional perspective, along with knowledge of the huge variation in ray parenchyma (RP) and axial parenchyma (AP) abundance and patterns. Crucial patterns for defense encompass the symplastic continuum between both RP and AP and the dead tissues, with the latter including the vessel elements, libriform fibers, and imperforate tracheary elements (i.e., vasicentric and vascular tracheids). Also, the heartwood, a chemically altered antimicrobial nonliving substance that forms the core of many trees, provides an integral part of the defense system. In the heartwood, dead RAP can play an important role in defense, depending on the genetic constitution of the species. Considering the array of functions that RAP are associated with, from capacitance, through to storage, and long-distance water transport, deciding how their role in defense fits into this suite of functions is a challenge for plant scientists, and likely depends on a range of factors. Here, we explore the important role of RAP in defense against fungal pathogens and the tradeoffs involved from a viewpoint for structure-function relations, while also examining how fungi can breach the defense system using an array of enzymes in conjunction with the physically intrusive hyphae. [Morris, Hugh; Jansen, Steven] Univ Ulm, Inst Systemat Bot & Ecol, Ulm, Germany; [Brodersen, Craig] Yale Univ, Sch Forestry & Environm Studies, New Haven, CT USA; [Schwarze, Francis W. M. R.] Empa Swiss Fed Labs Mat Testing & Res, Lab Appl Wood Mat, St Gallen, Switzerland Morris, H (reprint author), Univ Ulm, Inst Systemat Bot & Ecol, Ulm, Germany. hugh.morris@uni-ulm.de Jansen, Steven/A-9868-2012 Jansen, Steven/0000-0002-4476-5334; Brodersen, Craig/0000-0002-0924-2570 German Science Foundation (DFG) [JA2175/3-1] HM and SJ acknowledge financial support from the German Science Foundation (DFG, JA2175/3-1). Addison A, 2015, J THEOR BIOL, V368, P55, DOI 10.1016/j.jtbi.2014.12.011; Aitken SN, 2008, EVOL APPL, V1, P95, DOI 10.1111/j.1752-4571.2007.00013.x; Alves ES, 2002, IAWA J, V23, P391; Anderegg WRL, 2015, NEW PHYTOL, V208, P674, DOI 10.1111/nph.13477; Anderegg WRL, 2012, TRENDS PLANT SCI, V17, P693, DOI 10.1016/j.tplants.2012.09.006; Anderson PK, 2004, TRENDS ECOL EVOL, V19, P535, DOI 10.1016/j.tree.2004.07.021; Arbellay E, 2012, J EXP BOT, V63, P3271, DOI 10.1093/jxb/ers050; Arbellay E, 2010, TREE PHYSIOL, V30, P1290, DOI 10.1093/treephys/tpq065; AzconAguilar C, 1997, SCI HORTIC-AMSTERDAM, V68, P1, DOI 10.1016/S0304-4238(96)00954-5; BANFIELD W. M., 1968, Phytopathologische Zeitschrift, V62, P21; Bari E, 2015, INT BIODETER BIODEGR, V104, P231, DOI 10.1016/j.ibiod.2015.03.033; Baum S, 2002, NEW PHYTOL, V154, P481, DOI 10.1046/j.1469-8137.2002.00390.x; Bayliss J. S., 1908, J EC BIOL, V3, P1; BEERY WH, 1983, WOOD FIBER SCI, V15, P395; Biggs A. R., 1992, DEFENSE MECH WOODY P, P13; BIGGS AR, 1986, CAN J BOT, V64, P2319, DOI 10.1139/b86-303; BIGGS AR, 1986, PHYTOPATHOLOGY, V76, P905, DOI 10.1094/Phyto-76-905; BIGGS AR, 1987, PHYTOPATHOLOGY, V77, P718, DOI 10.1094/Phyto-77-718; BLANCHETTE RA, 1982, PHYTOPATHOLOGY, V72, P1272, DOI 10.1094/Phyto-72-1272; BLANCHETTE RA, 1982, CAN J FOREST RES, V12, P304, DOI 10.1139/x82-044; Blanchette RA, 1992, DEFENSE MECH WOODY P, P76, DOI DOI 10.1007/978-3-662-01642-8_5; BODDY L, 1983, NEW PHYTOL, V94, P623, DOI 10.1111/j.1469-8137.1983.tb04871.x; Boddy L., 1992, DEFENSE MECH WOODY P, P96; BONSEN K J M, 1991, Vierteljahrsschrift der Naturforschenden Gesellschaft in Zuerich, V136, P13; BONSEN KJM, 1990, IAWA BULL, V11, P393, DOI 10.1163/22941932-90000528; BONSEN KJM, 1985, IAWA BULL, V6, P71, DOI 10.1163/22941932-90000916; Breda N, 2006, ANN FOREST SCI, V63, P625, DOI 10.1051/forest:2006042; Brodersen CR, 2016, AM J BOT, V103, P184, DOI 10.3732/ajb.1500532; Brodersen CR, 2013, IAWA J, V34, P408, DOI 10.1163/22941932-00000033; Brodersen CR, 2010, PLANT PHYSIOL, V154, P1088, DOI 10.1104/pp.110.162396; BROWN CL, 1962, AM J BOT, V49, P683, DOI 10.2307/2439160; Buisman C., 1935, REV APPL MYCOL, V41, P104; Burdekin D. A., 1979, COMMON DECAY FUNGI B; Burgert I, 2001, TREES-STRUCT FUNCT, V15, P168, DOI 10.1007/s004680000086; Burgert I, 1999, HOLZ ROH WERKST, V57, P397, DOI 10.1007/s001070050367; Carbone MS, 2013, NEW PHYTOL, V200, P1145, DOI 10.1111/nph.12448; Carlquist S, 2001, COMP WOOD ANATOMY SY; Carmona D, 2011, FUNCT ECOL, V25, P358, DOI 10.1111/j.1365-2435.2010.01794.x; Chapotin SM, 2006, AM J BOT, V93, P1251, DOI 10.3732/ajb.93.9.1251; CHATTAWAY MM, 1951, AUST J SCI RES SER B, V4, P12; CHATTAWAY MM, 1949, AUST J SCI RES SER B, V2, P227; Choat B, 2012, NATURE, V491, P752, DOI 10.1038/nature11688; Clerivet A, 2000, TREES-STRUCT FUNCT, V15, P25, DOI 10.1007/s004680000063; COLEY PD, 1985, SCIENCE, V230, P895, DOI 10.1126/science.230.4728.895; Committee I.A.W.A., 1989, IAWA B, V10, P219, DOI DOI 10.1163/22941932-90000496; Courtois H, 1963, HOLZFORSCH HOLZVERW, V15, P89; Deflorio G, 2008, FOREST ECOL MANAG, V255, P2373, DOI 10.1016/j.foreco.2007.12.040; Desprez-Loustau ML, 2006, ANN FOREST SCI, V63, P597, DOI 10.1051/forest:2006040; DOBBINS DR, 1986, BOT GAZ, V147, P278, DOI 10.1086/337595; Dujesiefken D, 2001, FORSTWISS CENTRALBL, V120, P80, DOI 10.1007/BF02796083; Duncan C. G., 1960, 2173 USDA FOR PROD L; Dutton MV, 1996, CAN J MICROBIOL, V42, P881, DOI 10.1139/m96-114; Esau K., 1953, PLANT ANATOMY; Evert R. F., 2006, ESAUS PLANT ANATOMY; Ewers FW, 2007, IAWA J, V28, P373, DOI 10.1163/22941932-90001650; Eyles A, 2003, CAN J FOREST RES, V33, P2331, DOI [10.1139/x03-149, 10.1139/X03-149]; FAHN A., 1963, N PHYTOL, V62, P91, DOI 10.1111/j.1469-8137.1963.tb06317.x; Fahn A., 1986, WOOD ANATOMY IDENTIF; Ferrenberg S, 2014, FUNCT ECOL, V28, P837, DOI 10.1111/1365-2435.12228; FISHER JB, 1981, IAWA BULL, V2, P193, DOI 10.1163/22941932-90000732; FISHER JB, 1989, BOT GAZ, V150, P251, DOI 10.1086/337770; Fisher JB, 1991, BIOL VINES, P99; Franceschi VR, 2005, NEW PHYTOL, V167, P353, DOI 10.1111/j.1469-8137.2005.01436.x; Frank A. B., 1895, KRANKHEITEN PFLANZEN; Frankenstein C, 2005, J APPL BOT FOOD QUAL, V79, P44; Fujii T, 1981, MOKUZAI GAKKAISHI, V27, P149; GARTNER BL, 1991, OECOLOGIA, V87, P180, DOI 10.1007/BF00325255; Gleason SM, 2004, TREE PHYSIOL, V24, P1087, DOI 10.1093/treephys/24.10.1087; Green F, 1997, INT BIODETER BIODEGR, V39, P113, DOI 10.1016/S0964-8305(96)00063-7; GRIFFITH GS, 1990, NEW PHYTOL, V116, P407, DOI 10.1111/j.1469-8137.1990.tb00526.x; Haberlandt G., 1914, PHYSL PLANT ANATOMY; Hacke UG, 2017, PLANT CELL ENVIRON, V40, P831, DOI 10.1111/pce.12777; Hartig R., 1878, ZERSETZUNGSERSCHEINU; Hartmann H, 2016, NEW PHYTOL, V211, P386, DOI 10.1111/nph.13955; Hepting G. H., 1935, USDA B, V409, P1; Hepting GH, 1936, PHYTOPATHOLOGY, V26, P62; Herbette S, 2015, ANN BOT-LONDON, V115, P187, DOI 10.1093/aob/mcu232; HERMS DA, 1992, Q REV BIOL, V67, P283, DOI 10.1086/417659; HESS ROBT. W., 1950, TROPICAL WOOD, V96, P1; Hillis W. E., 1977, STRUCTURE BIOSYNTHES, P247; Hillis WE, 1987, HEARTWOOD TREE EXUDA; Holl W, 1975, TRANSPORT PLANTS, P432; Hudgins JW, 2004, PLANT PHYSIOL, V135, P2134, DOI 10.1104/pp.103.037929; Hudgins JW, 2003, NEW PHYTOL, V159, P677, DOI 10.1046/j.1469-8137.2003.00839.x; Jane FW, 1934, NATURE, V133, P534, DOI 10.1038/133534a0; Jupa R, 2016, TREE PHYSIOL, V36, P756, DOI 10.1093/treephys/tpw020; Keel SG, 2007, PLANT CELL ENVIRON, V30, P963, DOI 10.1111/j.1365-3040.2007.01688.x; Kile G. K., 1991, AGR HDB, P102; Kirisits T., 2007, BARK WOOD BORING INS, P185; Klepsch MM, 2016, AOB PLANTS, V8, DOI 10.1093/aobpla/plw052; Knipfer T, 2016, PLANT PHYSIOL, V171, P1024, DOI 10.1104/pp.16.00136; Koenigs J. W., 1974, Wood and Fiber, V6, P66; KOENIGS JW, 1972, PHYTOPATHOLOGY, V62, P100, DOI 10.1094/Phyto-62-100; Koyani R. D., 2010, Mycology - An International Journal on Fungal Biology, V1, P204, DOI 10.1080/21501203.2010.516409; Koyani RD, 2015, J SUSTAIN FOREST, V34, P502, DOI 10.1080/10549811.2015.1033554; KOZLOWSKI TT, 1992, BOT REV, V58, P107, DOI 10.1007/BF02858600; Kuster E., 1913, PATHOLOGICAL PLANT A; Lamarre GPA, 2012, ECOLOGY, V93, pS195, DOI 10.1890/11-0397.1; LIESE W, 1966, HOLZ ROH WERKST, V24, P454, DOI 10.1007/BF02612874; Liese W., 1964, Holz als Roh- und Werkstoff, V22, P289, DOI 10.1007/BF02608320; Liese W., 1996, P21; Liese W., 1989, P S AUSGEWAHLTE PROB, P75; Liese W., 1970, REC ANN CONV BR WOOD, V4, P1, DOI [10.1186/s13075-015-0844-6, DOI 10.1186/S13075-015-0844-6]; Lodge J. D., 1993, BMS S SERIES, P37; LOEHLE C, 1988, CAN J FOREST RES, V18, P209, DOI 10.1139/x88-032; Loepfe L, 2007, J THEOR BIOL, V247, P788, DOI 10.1016/j.jtbi.2007.03.036; MAGEL E, 1994, TREES-STRUCT FUNCT, V8, P165; Martin JA, 2009, CAN J FOREST RES, V39, P420, DOI 10.1139/X08-183; Martinez-Cabrera HI, 2009, AM J BOT, V96, P1388, DOI 10.3732/ajb.0800237; Martinez-Vilalta J, 2012, AM J BOT, V99, P1189, DOI 10.3732/ajb.1100384; McDougall D. N., 1996, J ARBORICULT, V22, P205; MCNABB H S JR, 1970, Netherlands Journal of Plant Pathology, V76, P196, DOI 10.1007/BF01974331; Meinzer FC, 2009, FUNCT ECOL, V23, P922, DOI 10.1111/j.1365-2435.2009.01577.x; MERRILL W, 1979, PHYTOPATHOLOGY, V69, P1158, DOI 10.1094/Phyto-69-1158; Mildner M, 2014, OECOLOGIA, V175, P747, DOI 10.1007/s00442-014-2935-5; MOORE KE, 1978, CAN J FOREST RES, V8, P389, DOI 10.1139/x78-058; Morris H, 2016, IAWA J, V37, P1, DOI 10.1163/22941932-20160117; Morris H, 2016, NEW PHYTOL, V209, P1553, DOI 10.1111/nph.13737; MUELLER WC, 1984, ANN BOT-LONDON, V53, P107, DOI 10.1093/oxfordjournals.aob.a086658; MUHAMMAD AF, 1984, IAWA BULL, V5, P237, DOI 10.1163/22941932-90000897; MULHERN J, 1979, FOREST SCI, V25, P311; Nagy NE, 2012, MOL PLANT MICROBE IN, V25, P1450, DOI 10.1094/MPMI-02-12-0029-R; Nardini A, 2013, NEW PHYTOL, V200, P322, DOI 10.1111/nph.12288; Nardini A, 2011, J EXP BOT, V62, P4701, DOI 10.1093/jxb/err208; NEWBANKS D, 1983, PHYTOPATHOLOGY, V73, P1060, DOI 10.1094/Phyto-73-1060; Niklas KJ, 1992, PLANT BIOMECHANICS E; Nutman FJ, 1929, ANN APPL BIOL, V16, P40, DOI 10.1111/j.1744-7348.1929.tb07120.x; O'Brien MJ, 2015, NEW PHYTOL, V205, P1083, DOI 10.1111/nph.13134; O'Brien MJ, 2014, NAT CLIM CHANGE, V4, P710, DOI [10.1038/nclimate2281, 10.1038/NCLIMATE2281]; Orians CM, 2004, TREES-STRUCT FUNCT, V18, P501, DOI 10.1007/s00468-004-0326-y; Orians CM, 2002, AM J BOT, V89, P270, DOI 10.3732/ajb.89.2.270; Ouellette G. B., 2004, INVEST AGRAR-SIST R, V13, P119; Paine CET, 2010, FUNCT ECOL, V24, P1202, DOI 10.1111/j.1365-2435.2010.01736.x; Parfitt D, 2010, FUNGAL ECOL, V3, P338, DOI 10.1016/j.funeco.2010.02.001; PEARCE RB, 1984, PHYSIOL PLANT PATHOL, V24, P71, DOI 10.1016/0048-4059(84)90075-4; PEARCE RB, 1991, PHYSIOL MOL PLANT P, V39, P41, DOI 10.1016/0885-5765(91)90030-L; PEARCE RB, 1981, PHYSIOL PLANT PATHOL, V19, P359; PEARCE RB, 1990, EUR J FOREST PATHOL, V20, P275; PEARCE RB, 1986, PHYSIOL MOL PLANT P, V29, P197, DOI 10.1016/S0048-4059(86)80021-2; Pearce RB, 1996, NEW PHYTOL, V132, P203, DOI 10.1111/j.1469-8137.1996.tb01842.x; Phillips E. W. J., 1948, FOR PROD RES B, V22, P1; Plavcova L, 2016, AM J BOT, V103, P603, DOI 10.3732/ajb.1500489; Plavcova L, 2011, NEW PHYTOL, V192, P885, DOI 10.1111/j.1469-8137.2011.03842.x; Poorter L, 2010, NEW PHYTOL, V185, P481, DOI 10.1111/j.1469-8137.2009.03092.x; Pouzoulet J, 2014, FRONT PLANT SCI, V5, DOI 10.3389/fpls.2014.00253; PRATT C, 1974, AM J ENOL VITICULT, V25, P131; Putz FE, 1991, BIOL VINES, P73; RADEMACHER P, 1984, IAWA BULL, V5, P141, DOI 10.1163/22941932-90000879; Rayner ADM, 1988, FUNGAL DECOMPOSITION; Rayner Alan D. M., 1993, Arboricultural Journal, V17, P171; Reed DE, 2014, ENVIRON RES LETT, V9, DOI 10.1088/1748-9326/9/10/105004; Reiterer A, 2002, J MATER SCI, V37, P935, DOI 10.1023/A:1014339612423; Richardson AD, 2013, NEW PHYTOL, V197, P850, DOI 10.1111/nph.12042; Rioux D, 1998, PHYTOPATHOLOGY, V88, P494, DOI 10.1094/PHYTO.1998.88.6.494; RIOUX D, 1995, PLANTA, V196, P125; RIOUX D, 1991, CAN J BOT, V69, P2055, DOI 10.1139/b91-258; RIOUX D, 1991, CAN J BOT, V69, P2074, DOI 10.1139/b91-259; Rolshausen PE, 2010, AM J ENOL VITICULT, V61, P113; Romero C, 2008, CAN J FOREST RES, V38, P611, DOI 10.1139/X07-205; Rosas T, 2013, FRONT PLANT SCI, V4, DOI 10.3389/fpls.2013.00400; Rosell JA, 2016, NEW PHYTOL, V211, P90, DOI 10.1111/nph.13889; SAUTER JJ, 1986, PLANTA, V168, P377, DOI 10.1007/BF00392363; SAVORY JG, 1954, ANN APPL BIOL, V41, P336, DOI 10.1111/j.1744-7348.1954.tb01126.x; Schenck H, 1893, BOT MITTHEILUNGEN TR, P1; Schenk HJ, 2008, P NATL ACAD SCI USA, V105, P11248, DOI 10.1073/pnas.0804294105; Schmidt O, 2006, WOOD TREE FUNGI BIOL; SCHMITT U, 1993, TREES-STRUCT FUNCT, V8, P23; SCHMITT U, 1992, WOOD SCI TECHNOL, V26, P405; SCHMITT U, 1994, IAWA J, V15, P157, DOI 10.1163/22941932-90001357; SCHMITT U, 1990, IAWA BULL, V11, P413, DOI 10.1163/22941932-90000531; Schmitt U., 2007, PLANT CELL WALL RECE, P119; Schmitt Uwe, 2006, New Zealand Journal of Forestry Science, V36, P72; Schmitt Uwe, 2009, New Zealand Journal of Forestry Science, V39, P233; SCHOENEWEISS DF, 1959, PHYTOPATHOLOGY, V49, P335; Schwarze F, 2000, FUNGAL STRATEGIES WO; Schwarze FMWR, 2000, MYCOLOGICAL RES, V104, P126, DOI DOI 10.1017/S0953756200002525; Schwarze Francis W. M. R., 2007, Fungal Biology Reviews, V21, P133, DOI 10.1016/j.fbr.2007.09.001; Schwarze FWMR, 1995, EUR J FOREST PATHOL, V25, P327; Schwarze FWMR, 1998, NEW PHYTOL, V139, P721, DOI 10.1046/j.1469-8137.1998.00238.x; SCHWARZE FWMR, 1995, MYCOL RES, V99, P813, DOI 10.1016/S0953-7562(09)80732-6; Schwarze FWMR, 1997, MYCOL RES, V101, P1207, DOI 10.1017/S0953756297003808; Schwarze FWMR, 1998, HOLZFORSCHUNG, V52, P117, DOI 10.1515/hfsg.1998.52.2.117; Schwarze FWMR, 2000, MYCOL RES, V104, P846, DOI 10.1017/S0953756299002063; Schwarze FWMR, 2003, MYCOLOGICAL PROGR, V2, P26, DOI DOI 10.1007/S11557-006-0064-1; Schwarze FWMR, 2008, DIAGNOSIS PROGNOSIS; Sevanto S, 2014, PLANT CELL ENVIRON, V37, P153, DOI 10.1111/pce.12141; SHAIN L, 1979, PHYTOPATHOLOGY, V69, P1143, DOI 10.1094/Phyto-69-1143; SHAIN L, 1971, PHYTOPATHOLOGY, V61, P301, DOI 10.1094/Phyto-61-301; SHAIN L, 1967, PHYTOPATHOLOGY, V57, P1034; Shain Louis, 1995, P383, DOI 10.1016/B978-012276460-8/50019-9; Sharples A, 1933, ANN BOT-LONDON, V47, P827, DOI 10.1093/oxfordjournals.aob.a090419; SHIGO A, 1981, PLANT DIS, V65, P715, DOI 10.1094/PD-65-715; SHIGO A L, 1977, U S Department of Agriculture Agriculture Information Bulletin, V405, P1; Shigo A. L., 1980, Journal of Arboriculture, V6, P96; Shigo A. L., 1982, RESISTANCE FOREST TR, P103; Shigo A. L., 1976, MATERIAL ORGANISME S, V3, P221; Shigo A. L., 1979, USDA FOR SER AGRIC I, V419, P1; Shigo A. L., 1970, LAVAL U B, P7; SHIGO AL, 1984, ANNU REV PHYTOPATHOL, V22, P189, DOI 10.1146/annurev.py.22.090184.001201; SHIGO AL, 1973, ANNU REV PHYTOPATHOL, V11, P197, DOI 10.1146/annurev.py.11.090173.001213; SHIGO AL, 1977, FOREST SCI, V23, P179; SHIGO AL, 1969, PHYTOPATHOLOGY, V59, P1164; SIEBER M, 1980, IAWA BULL, V1, P49, DOI 10.1163/22941932-90000804; Sikes BA, 2010, PLANT SIGNAL BEHAV, V5, P763, DOI 10.4161/psb.5.6.11776; Singh AP, 2006, WOOD SCI TECHNOL, V40, P16, DOI 10.1007/s00226-005-0056-3; Solla A, 2005, NEW PHYTOL, V166, P1025, DOI 10.1111/j.1469-8137.2005.01384.x; SPERRY JS, 1994, PLANT CELL ENVIRON, V17, P1233, DOI 10.1111/j.1365-3040.1994.tb02021.x; Spicer R, 2007, PLANT CELL ENVIRON, V30, P934, DOI 10.1111/j.1365-3040.2007.01677.x; Spicer R, 2014, J EXP BOT, V65, P1829, DOI 10.1093/jxb/ert459; Spicer R, 2010, NEW PHYTOL, V186, P577, DOI 10.1111/j.1469-8137.2010.03236.x; Spicer Rachel, 2005, P457, DOI 10.1016/B978-012088457-5/50024-1; Stobbe H, 2002, ANN BOT-LONDON, V89, P773, DOI 10.1093/aob/mcf137; Sturrock RN, 2011, PLANT PATHOL, V60, P133, DOI 10.1111/j.1365-3059.2010.02406.x; Sun Q, 2007, PLANT PHYSIOL, V145, P1629, DOI 10.1104/pp.107.100537; Taylor F. W., 1969, WOOD FIBER SCI, V2, P142; TIPPETT JT, 1981, IAWA BULL, V2, P163, DOI 10.1163/22941932-90000724; TRUE R. P., 1955, JOUR FOREST, V53, P412; Tyree M., 2002, XYLEM STRUCTURE ASCE; von Aufsess H, 1974, EUR J FOREST PATHOL, V4, P193, DOI [10.1111/j.1439-0329.1974.tb00437.x, DOI 10.1111/J.1439-0329.1974.TB00437.X]; Wagenfuhr R, 2007, HOLZATLAS; Wargo MP, 1977, CANADIAN J FOREST RE, V7, P410, DOI DOI 10.1139/X77-051; Wheeler EA, 2007, IAWA J, V28, P229, DOI 10.1163/22941932-90001638; WHEELER EA, 1991, IAWA BULL, V12, P275, DOI 10.1163/22941932-90001256; Wheeler JK, 2005, PLANT CELL ENVIRON, V28, P800, DOI 10.1111/j.1365-3040.2005.01330.x; Wilczek A, 2014, NAT J-OPOLE, V47, P31; WISNIEWSKI M, 1995, TREES-STRUCT FUNCT, V9, P253; WOLKINGER F, 1971, HOLZFORSCHUNG, V25, P29, DOI 10.1515/hfsg.1971.25.1.29; WOLKINGER F, 1970, PHYTON-ANN REI BOT A, V14, P55; Woods A, 2005, BIOSCIENCE, V55, P761, DOI 10.1641/0006-3568(2005)055[0761:IAUDNB]2.0.CO;2; Woodward S., 1992, DEFENSE MECH WOODY P, P62; WU J, 1992, HOLZFORSCHUNG, V46, P181, DOI 10.1515/hfsg.1992.46.3.181; Yadeta K, 2013, FRONT PLANT SCI, V4, DOI [10.3389/fpls.2013.00086, 10.3389/fpls.2013.00097]; Yamada Y, 2011, TREES-STRUCT FUNCT, V25, P607, DOI 10.1007/s00468-010-0537-3; Yilgor N, 2013, BIORESOURCES, V8, P2805; Zanne AE, 2006, FUNCT ECOL, V20, P200, DOI 10.1111/j.1365-2435.2006.01101.x; Zanne AE, 2014, NATURE, V506, P89, DOI 10.1038/nature12872; Zheng JM, 2013, ANN BOT-LONDON, V112, P927, DOI 10.1093/aob/mct153; Zieminska K, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0124892; Zieminska K, 2013, AOB PLANTS, V5, DOI 10.1093/aobpla/plt046; Zimmermann M. H., 1979, IAWA B, V2, P51; Zimmermann T., 1997, ABTEILUNGS ARBEITSBE, V35, P1 241 10 10 7 48 FRONTIERS MEDIA SA LAUSANNE AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND 1664-462X FRONT PLANT SCI Front. Plant Sci. NOV 9 2016 7 1665 10.3389/fpls.2016.01665 18 Plant Sciences Plant Sciences EB3OW WOS:000387276000001 27881986 DOAJ Gold, Green Published 2018-11-22 J Aguilar, RJAO; Jahn, GA; Soto-Gamboa, M; Novaro, AJ; Carmanchahi, P Ovejero Aguilar, Ramiro J. A.; Jahn, Graciela A.; Soto-Gamboa, Mauricio; Novaro, Andres J.; Carmanchahi, Pablo The Ecology of Stress: linking life-history traits with physiological control mechanisms in free-living guanacos PEERJ English Article Stress ecology; Reproduction; Lama guanicoe; Sociality; Non-invasive methods; Hormonal profiles in wildlife FECAL GLUCOCORTICOID METABOLITES; LAMA-GUANICOE; CORTICOSTERONE LEVELS; CORTISOL METABOLITES; SEASONAL-VARIATION; ENDOCRINE CONTROL; GROUND-SQUIRRELS; TESTOSTERONE; REPRODUCTION; VALIDATION Background. Providing the context for the evolution of life-history traits, habitat features constrain successful ecological and physiological strategies. In vertebrates, a key response to life's challenges is the activation of the Stress (HPA) and Gonadal (HPG) axes. Much of the interest in stress ecology is motivated by the desire to understand the physiological mechanisms in which the environment affects fitness. As reported in the literature, several intrinsic and extrinsic factors affect variability in hormone levels. In both social and non-social animals, the frequency and type of interaction with conspecifics, as well as the status in social species, can affect HPA axis activity, resulting in changes in the reproductive success of animals. We predicted that a social environment can affect both guanaco axes by increasing the secretion of testosterone (T) and Glucocorticoid (GCs) in response to individual social interactions and the energetic demands of breeding. Assuming that prolonged elevated levels of GCs over time can be harmful to individuals, it is predicted that the HPA axis suppresses the HPG axis and causes T levels to decrease, as GCs increase. Methods. All of the data for individuals were collected by non-invasive methods (fecal samples) to address hormonal activities. This is a novel approach in physiological ecology because feces are easily obtained through non-invasive sampling in animal populations. Results. As expected, there was a marked adrenal (p-value =.3.4e-12) and gonadal (p-value = 0.002656) response due to seasonal variation in Lama guanicae. No significant differences were found in fecal GCs metabolites between males/females*season for the entire study period (p-value = 0.2839). Despite the seasonal activity variation in the hormonal profiles, our results show a positive correlation (p-value = 1.952e-11, COR = 0.50) between the adrenal and gonadal system. The marked endocrine (r(2) = 0.806) and gonad (r(2) = 0.7231) response due to seasonal variation in male guanaco individuals highlights the individual's energetic demands according to life-history strategies. This is a remarkable result because noinhibition was found between the axes as theory suggests Finally, the dataset was used to build a reactive scope model for guanacos. Discussion. Guanacos cope with the trade-off between sociability and reproductive benefits and costs, by regulating their GCs and T levels on a seasonal basis, suggesting an adaptive role of both axes to different habitat pressures. The results presented here highlight the functional role of stress and gonad axes on a critical phase of a male mammal's life the mating period when all of the resources are at the disposal of the male and must be used to maximize the chances for reproductive success. [Ovejero Aguilar, Ramiro J. A.; Soto-Gamboa, Mauricio] Univ Austral Chile, Fac Ciencias, Inst Ciencias Ambient & Evolut, Lab Ecol Conductual, Valdivia, Chile; [Ovejero Aguilar, Ramiro J. A.] CONICET MENDOZA LIE IADIZA, Inst Invest Zonas Aridas, Lab Interacc Ecol, Mendoza, Argentina; [Ovejero Aguilar, Ramiro J. A.; Carmanchahi, Pablo] Univ Nacl Comahue INIBIOMA CONICET AUSMA UNCo, AUSMA, Grp Invest Ecofisiol Fauna Silvestre GIEFAS, Neuquen, Argentina; [Jahn, Graciela A.] Univ Mendoza IMBECU CCT MENDOZA, Lab Reprod & Lactancia, Mendoza, Argentina; [Novaro, Andres J.] Programa Estepa Andino Patagon CONICET PATAGONIA, Neuquen, Argentina Aguilar, RJAO (reprint author), Univ Austral Chile, Fac Ciencias, Inst Ciencias Ambient & Evolut, Lab Ecol Conductual, Valdivia, Chile.; Aguilar, RJAO (reprint author), CONICET MENDOZA LIE IADIZA, Inst Invest Zonas Aridas, Lab Interacc Ecol, Mendoza, Argentina.; Aguilar, RJAO (reprint author), Univ Nacl Comahue INIBIOMA CONICET AUSMA UNCo, AUSMA, Grp Invest Ecofisiol Fauna Silvestre GIEFAS, Neuquen, Argentina. rovejero@mendoza-conicet.gob.ar Rufford Small Grant Foundation (RSGF) [120608]; Scientific Research Society/Sigma-Xi; FONDECYT-CONICYT-PROGRAM [3140237]; FONDECYT [11060132] This study has been funded by the Rufford Small Grant Foundation (RSGF #120608); The Scientific Research Society/Sigma-Xi and FONDECYT-CONICYT-PROGRAM (No 3140237). We thank for partial support by FONDECYT #11060132 (MSG)". The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Acebes P, 2009, MAMMALIA, P57; ASTHEIMER LB, 1992, ORNIS SCAND, V23, P355, DOI 10.2307/3676661; Bank MS, 2003, BIOL CONSERV, V112, P427, DOI 10.1016/S0006-3207(02)00342-7; Becker JB., 2002, BEHAV ENDOCRINOLOGY, P1; Blanchard RJ, 2001, PHYSIOL BEHAV, V73, P261, DOI 10.1016/S0031-9384(01)00449-8; Bonacic C, 2003, ANIM WELFARE, V12, P387; Bonier F, 2009, GEN COMP ENDOCR, V163, P208, DOI 10.1016/j.ygcen.2008.12.013; BOONSTRA R, 1993, GEN COMP ENDOCR, V91, P126, DOI 10.1006/gcen.1993.1113; Boonstra R, 2001, ECOLOGY, V82, P1930, DOI 10.2307/2680058; Boonstra R, 2005, J MAMMAL, V86, P236, DOI 10.1644/BHE-001.1; Boonstra Rudy, 2007, P139; Bozinovic F., 2002, PHYSL ECOLOGY EVOLUT, P531; Buchanan KL, 2004, ANIM BEHAV, V67, P183, DOI 10.1016/j.anbehav.2003.09.002; Busch DS, 2009, BIOL CONSERV, V142, P2844, DOI 10.1016/j.biocon.2009.08.013; Carmanchahi PD, 2011, WILDLIFE RES, V38, P61, DOI 10.1071/WR10170; Cavigelli SA, 2000, HORM BEHAV, V37, P246, DOI 10.1006/hbeh.2000.1585; Cavigelli SA, 1999, ANIM BEHAV, V57, P935, DOI 10.1006/anbe.1998.1054; Clutton-Brock TH, 2001, SCIENCE, V291, P478, DOI 10.1126/science.291.5503.478; Cote SD, 2000, BEHAVIOUR, V137, P1541, DOI 10.1163/156853900502718; Creel S, 2001, TRENDS ECOL EVOL, V16, P491, DOI 10.1016/S0169-5347(01)02227-3; Creel S, 2013, FUNCT ECOL, V27, P66, DOI 10.1111/j.1365-2435.2012.02029.x; Crespi EJ, 2013, FUNCT ECOL, V27, P93, DOI 10.1111/1365-2435.12009; Dallman MF, 2007, J PHYSIOL-LONDON, V583, P431, DOI 10.1113/jphysiol.2007.136051; DALLMAN MF, 1993, FRONT NEUROENDOCRIN, V14, P303, DOI 10.1006/frne.1993.1010; DARWIN C, 1959, ORIGIN SPECIES MEANS; de Lamo DA, 1998, CAN J ZOOL, V76, P1388, DOI 10.1139/cjz-76-7-1388; Enstrom DA, 1997, ANIM BEHAV, V54, P1135, DOI 10.1006/anbe.1997.0555; Faulkes Christopher G., 1997, P302; Franklin W.L., 1983, Special Publication American Society of Mammalogists, P573; Goymann W, 2004, ANIM BEHAV, V67, P591, DOI 10.1016/j.anbehav.2003.08.007; Hirschenhauser K, 2006, ANIM BEHAV, V71, P265, DOI 10.1016/j.anbehav.2005.04.014; Holberton RL, 1999, GEN COMP ENDOCR, V116, P49, DOI 10.1006/gcen.1999.7336; Holberton RL, 1996, AUK, V113, P558, DOI 10.2307/4088976; Jacobs JD, 2000, CONDOR, V102, P35, DOI 10.1650/0010-5422(2000)102[0035:ECOLCS]2.0.CO;2; John TM., 1965, PAVO, V4, P9; Kenagy GJ, 2000, GEN COMP ENDOCR, V117, P189, DOI 10.1006/gcen.1999.7397; Ketterson ED, 1999, AM NAT, V154, pS4, DOI 10.1086/303280; Knapp R, 1997, GEN COMP ENDOCR, V107, P273, DOI 10.1006/gcen.1997.6923; Le PP, 2005, PLOS GENET, V1, P159, DOI 10.1371/journal.pgen.0010016; LEVINE S, 2005, HDB STRESS BRAIN, P3; LOFTS B., 1960, IBIS, V102, P209, DOI 10.1111/j.1474-919X.1960.tb07113.x; Marino A, 2008, ETHOLOGY, V114, P413, DOI 10.1111/j.1439-0310.2008.01485.x; Marino A, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0089060; MARLER P, 1988, NATURE, V336, P770, DOI 10.1038/336770a0; Mateo JM, 2005, PHYSIOL BIOCHEM ZOOL, V78, P1069, DOI 10.1086/432855; Mattocks PW, 1976, THESIS; McEwen BS, 2010, HORM BEHAV, V57, P105, DOI 10.1016/j.yhbeh.2009.09.011; McGlothlin JW, 2010, AM NAT, V175, P687, DOI 10.1086/652469; MOBERG GP, 1991, J DAIRY SCI, V74, P304, DOI 10.3168/jds.S0022-0302(91)78174-5; Montes MC, 2006, J ARID ENVIRON, V64, P616, DOI 10.1016/j.jaridenv.2005.05.008; Mostl E, 2005, ANN NY ACAD SCI, V1046, P17, DOI 10.1196/annals.1343.004; Mostl E, 2002, DOMEST ANIM ENDOCRIN, V23, P67, DOI 10.1016/S0739-7240(02)00146-7; Moyer K. E., 1968, Communications in Behavioral Biology (Ser A), V2, P65; Muller MN, 2004, ANIM BEHAV, V67, P113, DOI 10.1016/j.anbehav.2003.03.013; NAIK D. V., 1963, PAVO INDIAN J ORNITHOL, V1, P103; Nespolo RF, 2003, EVOLUTION, V57, P1679; OREILLY KM, 1995, AM ZOOL, V35, P222; Ostner J, 2002, BEHAV ECOL SOCIOBIOL, V52, P485, DOI 10.1007/s00265-002-0532-9; Ovejero R, 2012, P 2 LAT AM MAMM C; Ovejero R, 2011, EUROPEAN J WILDLIFE, V57, P1, DOI [10.1007/s10344-010-0477-7, DOI 10.1007/S10344-010-0477-7]; Ovejero R, 2013, THESIS; PECZELY P, 1976, GEN COMP ENDOCR, V30, P1, DOI 10.1016/0016-6480(76)90060-5; Pereira RJG, 2006, HORM BEHAV, V49, P114, DOI 10.1016/j.yhbeh.2005.05.012; Pride RE, 2005, BIOL LETT-UK, V1, P60, DOI 10.1098/rsbl.2004.0245; Puig S., 1995, TECNICAS MANEJO GUAN, P97; PUIG S, 1995, TECNICAS MANEJO GUAN, P57; Puig S, 2008, STUD NEOTROP FAUNA E, V43, P1, DOI 10.1080/01650520701461319; R Development Core Team, 2012, R LANG ENV STAT COMP; Radovani N, 2004, 2 REUN BIN ARG CHIL, P232; Raedeke KJ, 1979, THESIS; Raouf SA, 2006, ANIM BEHAV, V71, P39, DOI 10.1016/j.anbehav.2005.03.027; Roff Derek A., 1992; Romero LM, 2009, HORM BEHAV, V55, P375, DOI 10.1016/j.yhbeh.2008.12.009; Romero LM, 2004, TRENDS ECOL EVOL, V19, P249, DOI 10.1016/j.tree.2004.03.008; Romero LM, 2000, GEN COMP ENDOCR, V119, P52, DOI 10.1006/gcen.2000.7491; Romero LM, 2002, GEN COMP ENDOCR, V128, P1; Rubenstein DR, 2009, AM NAT, V173, P650, DOI 10.1086/597606; Sapolsky R.M., 2002, BEHAV ENDOCRINOLOGY, P409; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; Schradin C, 2008, HORM BEHAV, V53, P573, DOI 10.1016/j.yhbeh.2008.01.003; SCHWABL H, 1984, AUK, V101, P499; Sheriff MJ, 2011, OECOLOGIA, V166, P869, DOI 10.1007/s00442-011-1943-y; Sheriff MJ, 2009, J COMP PHYSIOL B, V179, P305, DOI 10.1007/s00360-008-0314-4; Sinervo B, 2000, HORM BEHAV, V38, P222, DOI 10.1006/hbeh.2000.1622; Smith JE, 2012, GEN COMP ENDOCR, V178, P417, DOI 10.1016/j.ygcen.2012.06.015; Soto-Gamboa M, 2005, HORM BEHAV, V47, P311, DOI 10.1016/j.yhbeh.2004.11.010; Soto-Gamboa M, 2009, J EXP ZOOL PART A, V311A, P496, DOI 10.1002/jez.546; Stearns S., 1992, EVOLUTION LIFE HIST; Taraborelli P, 2014, ACTA THERIO IN PRESS; Tarlow EM, 2007, APPL ANIM BEHAV SCI, V102, P429, DOI 10.1016/j.applanim.2006.05.040; Tempel DJ, 2004, CONSERV BIOL, V18, P538, DOI 10.1111/j.1523-1739.2004.00372.x; Touma C, 2005, ANN NY ACAD SCI, V1046, P54, DOI 10.1196/annals.1343.006; Vera F, 2012, J EXP ZOOL PART A, V317A, P173, DOI 10.1002/jez.1711; von Holst D, 1998, ADV STUD BEHAV, V27, P1; Wasser SK, 2000, GEN COMP ENDOCR, V120, P260, DOI 10.1006/gcen.2000.7557; Wingfield JC, 2005, J MAMMAL, V86, P248, DOI 10.1644/BHE-004.1; WINGFIELD JC, 1990, AM NAT, V136, P829, DOI 10.1086/285134; Wingfield JC, 2003, J NEUROENDOCRINOL, V15, P711, DOI 10.1046/j.1365-2826.2003.01033.x; WINGFIELD JC, 1986, HORM BEHAV, V20, P405, DOI 10.1016/0018-506X(86)90003-6; Wingfield John C., 1997, P95; Young AJ, 2006, P NATL ACAD SCI USA, V103, P12005, DOI 10.1073/pnas.0510038103; Young JK, 2004, REV CHIL HIST NAT, V77, P617, DOI 10.4067/S0716-078X2004000400005; Zapata B, 2004, ANIM WELFARE, V13, P439; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 104 0 0 4 30 PEERJ INC LONDON 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND 2167-8359 PEERJ PeerJ NOV 2 2016 4 e2640 10.7717/peerj.2640 21 Multidisciplinary Sciences Science & Technology - Other Topics EB2EG WOS:000387169900004 DOAJ Gold, Green Published 2018-11-22 J Skinner, HM; Durso, AM; Neuman-Lee, LA; Durham, SL; Mueller, SD; French, SS Skinner, Heather M.; Durso, Andrew M.; Neuman-Lee, Lorin A.; Durham, Susan L.; Mueller, Sarah D.; French, Susannah S. Effects of Diet Restriction and Diet Complexity on Life History Strategies in Side-Blotched Lizards (Uta stansburiana) JOURNAL OF EXPERIMENTAL ZOOLOGY PART A-ECOLOGICAL GENETICS AND PHYSIOLOGY English Article TRADE-OFFS; ENERGY ALLOCATION; NUTRIENT COMPOSITION; UROSAURUS-ORNATUS; FOOD RESTRICTION; OXIDATIVE STRESS; IMMUNE-SYSTEMS; TREE LIZARDS; BODY-SIZE; REPRODUCTION Organisms must balance energy invested into self-maintenance, reproduction, and somatic growth over their lifetime. In this study, the effects of diet restriction and diet complexity on side-blotched lizards (Uta stansburiana) were analyzed. Thirty male lizards, housed in the laboratory, were fed either an ad libitum or a restricted diet for 18 days (phase 1). Individuals from both treatments were then assigned to a diet of the same quantity of food that was either simple (only crickets) or complex (crickets, cockroaches, waxworms, and mealworms) for 35 days (phase 2). We evaluated (1) how diet restriction affected life history strategies and (2) how diet complexity affected recovery from diet restriction as measured at the end of phase 2 by body mass, snout-vent length, calculated body condition score, wound healing, tail regrowth, bacterial killing ability, oxidative stress, and plasma testosterone and corticosterone concentrations. Lizards without diet restriction allocated more energy to self-maintenance (i.e., maintaining higher body condition scores, healing wounds more quickly) than lizards with diet restriction. Lizards with diet restriction had higher plasma testosterone concentrations and larger increases in snout-vent lengths than those fed ad libitum, which may reflect allocations toward reproduction and somatic growth. A complex diet resulted in better body condition and faster tail regrowth than a simple diet, suggesting that a complex diet enhanced recovery from diet restriction, although long-term life history choices remained unaltered. Finally, lizards on a complex diet consumed substantially less food while maintaining higher body condition, suggesting that key nutrients may be lacking from a simple diet. [Skinner, Heather M.] Washington State Univ, WIMU Reg Program Vet Med, Pullman, WA 99164 USA; [Durso, Andrew M.; Neuman-Lee, Lorin A.; French, Susannah S.] Utah State Univ, Dept Biol, 5305 Old Main Hill, Logan, UT 84322 USA; [Durso, Andrew M.; Durham, Susan L.; French, Susannah S.] Utah State Univ, Ctr Ecol, Logan, UT 84322 USA; [Mueller, Sarah D.] Univ Puget Sound, Dept Biol, Tacoma, WA 98416 USA Skinner, HM (reprint author), Utah State Univ, Dept Biol, 5305 Old Main Hill, Logan, UT 84322 USA. heatherjones@vetmed.wsu.edu National Science Foundation [IOS-1350070]; Utah Agricultural Experiment Station Project [UTA01104] Grant sponsor: National Science Foundation; grant number: IOS-1350070. Grant sponsor: Utah Agricultural Experiment Station Project # UTA01104. Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Alonso-Fernandez A, 2012, J EXP MAR BIOL ECOL, V416, P8, DOI 10.1016/j.jembe.2012.02.001; Alonzo SH, 2001, BEHAV ECOL SOCIOBIOL, V49, P176, DOI 10.1007/s002650000265; Balaban RS, 2005, CELL, V120, P483, DOI 10.1016/j.cell.2005.02.001; Barker D, 1998, ZOO BIOL, V17, P123, DOI 10.1002/(SICI)1098-2361(1998)17:2<123::AID-ZOO7>3.0.CO;2-B; Bernard JB, 1997, NUTR ADVISORY GROUP; Bjelakovic G, 2007, J Basic Clin Physiol Pharmacol, V18, P115; Bonier F, 2009, GEN COMP ENDOCR, V163, P208, DOI 10.1016/j.ygcen.2008.12.013; BOYCE MS, 1984, ANNU REV ECOL SYST, V15, P427; Casto JM, 2001, AM NAT, V157, P408, DOI 10.1086/319318; Catoni C, 2008, ANIM BEHAV, V76, P1107, DOI 10.1016/j.anbehav.2008.05.027; Cohen PG, 1999, MED HYPOTHESES, V52, P49, DOI 10.1054/mehy.1997.0624; Costantini D, 2011, J COMP PHYSIOL B, V181, P447, DOI 10.1007/s00360-011-0566-2; Cox RM, 2014, J ANIM ECOL, V83, P888, DOI 10.1111/1365-2656.12228; Crespi EJ, 2013, FUNCT ECOL, V27, P93, DOI 10.1111/1365-2435.12009; DENARDO DF, 1994, HORM BEHAV, V28, P273, DOI 10.1006/hbeh.1994.1023; Dickens MJ, 2013, GEN COMP ENDOCR, V191, P177, DOI 10.1016/j.ygcen.2013.06.014; Durso A, J EXP BIOL IN PRESS; Fidgett A. L., 2014, International Zoo Yearbook, V48, P116, DOI 10.1111/izy.12057; Finke MD, 2002, ZOO BIOL, V21, P269, DOI 10.1002/zoo.10031; French SS, 2006, GEN COMP ENDOCR, V145, P128, DOI 10.1016/j.ygcen.2005.08.005; French SS, 2007, J EXP BIOL, V210, P2859, DOI 10.1242/jeb.005348; French SS, 2007, AM NAT, V170, P79, DOI 10.1086/518569; French SS, 2012, BIOL OPEN, V1, P482, DOI 10.1242/bio.2012919; French SS, 2010, HORM BEHAV, V58, P792, DOI 10.1016/j.yhbeh.2010.08.001; GLAZIER DS, 1992, OECOLOGIA, V90, P540, DOI 10.1007/BF01875448; Goymann W, 2014, BEHAV ECOL, V25, P685, DOI 10.1093/beheco/aru019; Guarnieri DJ, 2012, BIOL PSYCHIAT, V71, P358, DOI 10.1016/j.biopsych.2011.06.028; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hasselquist D, 2012, ANIM BEHAV, V83, P1303, DOI 10.1016/j.anbehav.2012.03.025; Hoby S, 2010, J NUTR, V140, P1923, DOI 10.3945/jn.110.120998; Hoppmann E, 2007, J EXOT PET MED, V16, P210, DOI 10.1053/j.jepm.2007.10.001; Jonsson N, 2003, CAN J FISH AQUAT SCI, V60, P506, DOI [10.1139/f03-042, 10.1139/F03-042]; Keeley ER, 1998, BEHAVIOUR, V135, P65; Kitaysky AS, 2001, J COMP PHYSIOL B, V171, P701, DOI 10.1007/s003600100230; Klasing KC, 2007, BRIT POULTRY SCI, V48, P525, DOI 10.1080/00071660701671336; Kogut MH, 2009, J APPL POULTRY RES, V18, P103, DOI 10.3382/japr.2008-00080; LANDWER AJ, 1994, OECOLOGIA, V100, P243, DOI 10.1007/BF00316951; LATSHAW JD, 1991, VET IMMUNOL IMMUNOP, V30, P111; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; Lucas LD, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049895; MAC ARTHUR ROBERT H., 1967; Martin P, 1997, SCIENCE, V276, P75, DOI 10.1126/science.276.5309.75; MCCANCE RA, 1962, PROC R SOC SER B-BIO, V156, P326; McWilliams D., 2006, INT ZOO YB, V39, P69; MILSTEAD WW, 1969, AM MIDL NAT, V81, P491, DOI 10.2307/2423984; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; MOORE MC, 1986, J COMP PHYSIOL A, V158, P159, DOI 10.1007/BF01338559; Morgan KN, 2007, APPL ANIM BEHAV SCI, V102, P262, DOI 10.1016/j.applanim.2006.05.032; Nagy KA, 1999, ANNU REV NUTR, V19, P247, DOI 10.1146/annurev.nutr.19.1.247; Neuman-Lee LA, 2015, FUNCT ECOL, V29, P1453, DOI 10.1111/1365-2435.12457; Neuman-Lee LA, 2014, J COMP PHYSIOL B, V184, P623, DOI 10.1007/s00360-014-0826-z; Noble R.C., 1991, P17, DOI 10.1017/CBO9780511585739.003; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; NUSSBAUM R A, 1976, Northwest Science, V50, P243; Pankhurst NW, 2011, MAR FRESHWATER RES, V62, P1015, DOI 10.1071/MF10269; PARKER WS, 1975, COPEIA, P615; Reedy AM, 2016, BIOL J LINN SOC, V117, P516, DOI 10.1111/bij.12685; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Roff Derek A., 1992; Salmon AB, 2001, EVOLUTION, V55, P1600, DOI 10.1111/j.0014-3820.2001.tb00679.x; SCHWARZKOPF L, 1994, LIZARD ECOLOGY, P7; Sibly RM, 2013, METHODS ECOL EVOL, V4, P151, DOI 10.1111/2041-210x.12002; Sinervo B, 2000, HORM BEHAV, V38, P222, DOI 10.1006/hbeh.2000.1622; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; TANNER W W, 1972, Brigham Young University Science Bulletin Biological Series, V15, P1; Tinkle D. W., 1967, Miscellaneous Publications Museum of Zoology University of Michigan, VNo. 132, P1; URIST MR, 1961, J GEN PHYSIOL, V44, P743, DOI 10.1085/jgp.44.4.743; Verhulst S, 2005, J AVIAN BIOL, V36, P22, DOI 10.1111/j.0908-8857.2005.03342.x; WADA K, 1993, MAR BIOL, V115, P47, DOI 10.1007/BF00349385; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956; WINGFIELD JC, 1990, AM NAT, V136, P829, DOI 10.1086/285134; Yang DB, 2013, J EXP BIOL, V216, P4242, DOI 10.1242/jeb.092049; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 74 1 1 4 13 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1932-5223 1932-5231 J EXP ZOOL PART A J. Exp. Zool. Part A NOV 2016 325 9 626 637 10.1002/jez.2056 12 Zoology Zoology EI9DW WOS:000392808700006 28102007 2018-11-22 J Correll, MD; Wiest, WA; Olsen, BJ; Shriver, WG; Elphick, CS; Hodgman, TP Correll, Maureen D.; Wiest, Whitney A.; Olsen, Brian J.; Shriver, W. Gregory; Elphick, Chris S.; Hodgman, Thomas P. Habitat specialization explains avian persistence in tidal marshes ECOSPHERE English Article climate change; niche; specialism; species conservation; tidal marsh NEW-ENGLAND; ECOLOGICAL SPECIALIZATION; MODELS; POPULATION; GENERALISTS; SPECIALISTS; DIVERSITY; FRAGMENTATION; MECHANISMS; ABUNDANCE Habitat specialists are declining at alarming rates worldwide, driving biodiversity loss of the earth's next mass extinction. Specialist organisms maintain smaller functional niches than their generalist counterparts, and tradeoffs exist between these contrasting life history strategies, creating conservation challenges for specialist taxa. There is little work, however, explicitly quantifying "specialization"; such information is necessary for the development of focused conservation strategies in light of the rapidly changing landscapes of the modern world. In this study, we tested whether habitat specialism explains the persistence of breeding bird populations in tidal marshes of the northeastern United States. We used the North American Breeding Bird Survey (BBS) together with contemporary marsh bird surveys to develop a Marsh Specialization Index (MSI) for 106 bird species that regularly use tidal marshes during the breeding season. We produced four metrics of species persistence (occupancy, abundance, total biomass supported, and 14-yr population trends) and compared them to MSI values in one of the first community-scale demonstrations of specialist loss in disturbed landscapes. Our results confirm that tidal marsh specialism has short-term benefits but long-term consequences for bird persistence in coastal marsh systems, results that are generalizable across many changing landscapes. We then use this robust support of niche theory to recommend MSI as a tool for quantitatively identifying species of conservation concern in disturbed and rapidly changing landscapes such as tidal marsh. [Correll, Maureen D.; Olsen, Brian J.] Univ Maine, Sch Biol & Ecol, Orono, ME 04469 USA; [Wiest, Whitney A.; Shriver, W. Gregory] Univ Delaware, Dept Entomol & Wildlife Ecol, Newark, DE 19716 USA; [Elphick, Chris S.] Univ Connecticut, Ctr Conservat & Biodivers, Dept Ecol & Evolutionary Biol, Storrs, CT 06269 USA; [Hodgman, Thomas P.] Maine Dept Inland Fisheries & Wildlife, Bangor, ME 04401 USA Correll, MD (reprint author), Univ Maine, Sch Biol & Ecol, Orono, ME 04469 USA. maureen.correll@maine.edu Competitive State Wildlife Grant via Federal Aid in Sportfish and Wildlife Restoration to the States of Delaware, Maryland, Connecticut, and Maine [U2-5-R-1]; National Science Foundation [DGE-1144423]; United States Fish and Wildlife Service [P11AT00245, 50154-0-G-004A]; United States Department of Agriculture [ME0-H-6-00492-12]; Maine Association of Wetland Scientists We received primary funding through a Competitive State Wildlife Grant (U2-5-R-1) via Federal Aid in Sportfish and Wildlife Restoration to the States of Delaware, Maryland, Connecticut, and Maine. Additional funding was provided through a National Science Foundation Integrated Graduate Education and Research Traineeship (DGE-1144423), the United States Fish and Wildlife Service (P11AT00245, 50154-0-G-004A), the United States Department of Agriculture (ME0-H-6-00492-12), and the Maine Association of Wetland Scientists. This is Maine Agricultural and Forest Experiment Station Publication Number #3491. We thank the Maine Department of Inland Fisheries and Wildlife, University of Delaware, Rachel Carson National Wildlife Refuge (NWR), Parker River NWR, Monomoy NWR, Bombay Hook NWR, Massachusetts Audubon, New Hampshire Audubon, Audubon New York, New Jersey Audubon, The Meadowlands Field Commission, the Smithsonian Institution, SHARP field crews and landowners for data contributions, land access, and field support. Thank you also to J.C. Avise (barn swallow), L. Blumin, J. Taggert (song sparrow), M. Eising (American black duck), M. Baird (Virginia rail), J. Wolf (great egret), D. Berganza (clapper rail), D. Pancamo (common yellowthroat), F. Schulenberg (snowy egret), A. Reago (Nelson's sparrow), M. Baird (Virginia rail), Wikimedia Creative Commons, Clipart-Finder.com, Photogra-phicClipart.com, and Cliparts.co for providing images of focal species for use in our figures. We also thank E. Adams and D. Rosco for support during analysis and two anonymous reviewers whose suggestions greatly improved earlier versions of this manuscript. The findings and conclusions in this article are those of the authors and do not necessarily represent the views of our sponsors. Barnosky AD, 2011, NATURE, V471, P51, DOI 10.1038/nature09678; Barton K., 2015, MUMIN MULTIMODEL INF; Bates D, 2015, J STAT SOFTW, V67, P1; Bertness MD, 2002, P NATL ACAD SCI USA, V99, P1395, DOI 10.1073/pnas.022447299; Blonder B, 2014, GLOBAL ECOL BIOGEOGR, V23, P595, DOI 10.1111/geb.12146; Bolnick DI, 2003, AM NAT, V161, P1, DOI 10.1086/343878; Burnham K.P., 2002, ECOLOGICAL MODELLING; Carter MF, 2000, AUK, V117, P541, DOI 10.1642/0004-8038(2000)117[0541:SCPFLI]2.0.CO;2; Chase J.M., 2003, ECOLOGICAL NICHES LI; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; Clavel J, 2011, FRONT ECOL ENVIRON, V9, P222, DOI 10.1890/080216; Colles A, 2009, ECOL LETT, V12, P849, DOI 10.1111/j.1461-0248.2009.01336.x; Correll M. D., 2016, CONSERVATIO IN PRESS; Dennis RLH, 2011, BIOL J LINN SOC, V104, P725, DOI 10.1111/j.1095-8312.2011.01789.x; Dettmers R., 2000, PARTNERS FLIGHT CONS; Devictor V, 2008, OIKOS, V117, P507, DOI 10.1111/j.2008.0030-1299.16215.x; Devictor V, 2010, J APPL ECOL, V47, P15, DOI 10.1111/j.1365-2664.2009.01744.x; Elton C., 1927, ANIMAL ECOLOGY; EMLEN JT, 1971, AUK, V88, P323, DOI 10.2307/4083883; Enquist Brian, 2012, Biodiversity Ecol, V4, P288, DOI 10.7809/b-e.00086; Fischer J, 2007, GLOBAL ECOL BIOGEOGR, V16, P265, DOI 10.1111/j.1466-8238.2007.00287; Fiske IJ, 2011, J STAT SOFTW, V43, P1; FUTUYMA DJ, 1988, ANNU REV ECOL SYST, V19, P207, DOI 10.1146/annurev.es.19.110188.001231; Gaston KJ, 1997, J ANIM ECOL, V66, P579, DOI 10.2307/5951; Gedan KB, 2009, ANNU REV MAR SCI, V1, P117, DOI 10.1146/annurev.marine.010908.163930; Geraci M, 2014, J STAT SOFTW, V57, P1; Grinnell J., 1917, Auk Cambridge Mass, V34; Hodgman T., 2000, PARTNERS FLIGHT CONS; Holt RD, 2009, P NATL ACAD SCI USA, V106, P19659, DOI 10.1073/pnas.0905137106; Hutchinson G. E., 1978, INTRO POPULATION ECO; HUTCHINSON GE, 1957, COLD SPRING HARB SYM, V22, P415, DOI 10.1101/SQB.1957.022.01.039; IUCN, 2013, IUCN RED LIST INT UN; Jonsen ID, 1997, LANDSCAPE ECOL, V12, P185, DOI 10.1023/A:1007961006232; Julliard R, 2006, ECOL LETT, V9, P1237, DOI 10.1111/j.1461-0248.2006.00977.x; KAWECKI TJ, 1994, AM NAT, V144, P833, DOI 10.1086/285709; Kroodsma D. E., 2014, BIRDS N AM; LEIBOLD MA, 1995, ECOLOGY, V76, P1371, DOI 10.2307/1938141; Levins R., 1968, EVOLUTION CHANGING E; Lotts K., 2016, BUTTERFLIES MOTHS N; MACARTHUR R, 1967, AM NAT, V101, P377, DOI 10.1086/282505; MacArthur R. H., 1972, GEOGRAPHICAL ECOLOGY; Partners in Flight Science Committee, 2012, SPEC ASS DAT VERS 20; R Core Team, 2015, R LANG ENV STAT COMP; RMBO, 2014, INT MON BIRD CONS RE; Rosenberg K. V., 2014, STATE BIRDS 2014 WAT; Royle JA, 2004, BIOMETRICS, V60, P108, DOI 10.1111/j.0006-341X.2004.00142.x; Ruskin K, 2015, THESIS; Sallenger AH, 2012, NAT CLIM CHANGE, V2, P884, DOI [10.1038/NCLIMATE1597, 10.1038/nclimate1597]; Sauer J. R., 2015, N AM BREEDING BIRD S; Shea K, 2002, TRENDS ECOL EVOL, V17, P170, DOI 10.1016/S0169-5347(02)02495-3; Shepard CC, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0027374; Shriver WG, 2004, BIOL CONSERV, V119, P545, DOI 10.1016/j.biocon.2004.01.016; Silliman BR, 2004, CONSERV BIOL, V18, P1424, DOI 10.1111/j.1523-1739.2004.00112.x; The Birds of North America, 2015, BIRDS N AM; Urban MC, 2015, SCIENCE, V348, P571, DOI 10.1126/science.aaa4984; Watts B., 1999, PARTNERS FLIGHT CONS; Wiest W., 2015, THESIS; Wiest WA, 2016, CONDOR, V118, P274, DOI 10.1650/CONDOR-15-30.1; Wilkinson J. W., 2012, NATL AMPHIBIAN REPTI; WILSON DS, 1994, AM NAT, V144, P692, DOI 10.1086/285702 60 2 2 2 19 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2150-8925 ECOSPHERE Ecosphere NOV 2016 7 11 e01506 10.1002/ecs2.1506 13 Ecology Environmental Sciences & Ecology EI1AP WOS:000392207600005 DOAJ Gold 2018-11-22 J Rull, J; Abraham, S; Tadeo, E; Rodriguez, CL Rull, Juan; Abraham, Solana; Tadeo, Eduardo; Luis Rodriguez, Christian Life History and Mating Behavior of Rhagoletis solanophaga (Diptera: Tephritidae), a Non-Diapausing Species with Highly Variable Mating Duration JOURNAL OF INSECT BEHAVIOR English Article Mate guarding; sperm competition; copulation duration; paternity assurance CRYPTIC FEMALE CHOICE; FLY DRYOMYZA ANILIS; YELLOW DUNG FLIES; POMONELLA DIPTERA; APPLE MAGGOT; WALNUT FLY; SPERM COMPETITION; JUGLANDIS DIPTERA; DIAPAUSE; INSECTS As an initial contribution to understanding the adaptive value of behavioral and life-history strategies, the life cycle and mating behavior of an unstudied species of tephritid fruit fly in the genus Rhagoletis are characterized for the first time. Over a 9-month fruiting period, a small proportion of Solanum appendiculatum Dunal (< 10 %) was found to be infested with a single larva of Rhagoletis solanophaga (Hernandez & Frias). The average duration of R. solanophaga lifecycle (c.a. 140 days from egg laying to death of adults) exceeded the three month fruitless period. Additionally, R. solanophaga is capable of exploiting Solanaceous plants in at least two genera. These features could have selected for a non-diapausing species of Rhagoletis, a genus where most species are univoltine. Nevertheless, some individuals in the population became dormant. As other members of the genus, R. solanophaga exhibited a resource defense mating system with forced copulations and multiple mating. Both males and females could be highly promiscuous and individual mating success exhibited a wide range of outcomes. Regardless of mating success, mated females stored similar amounts of sperm in two spherical spermathecae. Long copulations were observed, perhaps functioning as a form of mate guarding with probable disadvantages for females. We outline hypotheses and opportunities for future comparative studies examining sperm competition and mate guarding. [Rull, Juan; Abraham, Solana] PROIMI Biotecnol CONICET, LIEMEN Div Control Biol Plagas, Ave Belgrano & Pje Caseros,T4001MVB, San Miguel De Tucuman, Tucuman, Argentina; [Tadeo, Eduardo; Luis Rodriguez, Christian] Inst Ecol AC, Red Manejo Biorrac Plagas & Vectores, Xalapa 91070, Veracruz, Mexico Rull, J (reprint author), PROIMI Biotecnol CONICET, LIEMEN Div Control Biol Plagas, Ave Belgrano & Pje Caseros,T4001MVB, San Miguel De Tucuman, Tucuman, Argentina. pomonella@gmail.com Rodriguez-Enriquez, Christian Luis/0000-0001-6339-3882 Instituto de Ecologia A.C. This study was funded by the Instituto de Ecologia A.C. to Juan Rull. AlonsoPimentel H, 1996, BEHAV ECOL SOCIOBIOL, V39, P171, DOI 10.1007/s002650050278; AVERILL AL, 1987, ECOLOGY, V68, P878, DOI 10.2307/1938359; BOLLER EF, 1976, ANNU REV ENTOMOL, V21, P223, DOI 10.1146/annurev.en.21.010176.001255; BUSH GUY L., 1966, BULL MUS COMP ZOOL HARVARD UNIV, V134, P431; Carsten LD, 2005, BEHAV ECOL, V16, P528, DOI 10.1093/beheco/ari026; Chapman T, 2003, TRENDS ECOL EVOL, V18, P41, DOI 10.1016/S0169-5347(02)00004-6; Danks H.V., 1991, P231; DENLINGER DL, 1986, ANNU REV ENTOMOL, V31, P239, DOI 10.1146/annurev.en.31.010186.001323; Denlinger DL, 2002, ANNU REV ENTOMOL, V47, P93, DOI 10.1146/annurev.ento.47.091201.145137; DICKINSON JL, 1986, BEHAV ECOL SOCIOBIOL, V18, P331, DOI 10.1007/BF00299664; Dodson GN, 1997, ANN ENTOMOL SOC AM, V90, P496, DOI 10.1093/aesa/90.4.496; EBERHARD WG, 1994, EVOLUTION, V48, P711, DOI 10.1111/j.1558-5646.1994.tb01356.x; EBERHARD WG, 1991, BIOL REV, V66, P1, DOI 10.1111/j.1469-185X.1991.tb01133.x; Feder JL, 2010, ENTOMOL EXP APPL, V136, P31, DOI 10.1111/j.1570-7458.2010.01003.x; Filchak KE, 1999, EVOLUTION, V53, P187, DOI 10.1111/j.1558-5646.1999.tb05344.x; Foote RH, 1981, TECH B, V1607, P75; Frias D., 2008, Fruit Flies of Economic Importance to Applied Knowledge. Proceedings of the 7th International Symposium on Fruit Flies of Economic Importance, 10-15 September 2006, Salvador, Brazil, P29; FRIAS D, 1984, ANN ENTOMOL SOC AM, V77, P548, DOI 10.1093/aesa/77.5.548; Frias D., 1986, BIOLOGIA, V13, P75; Frias DA, 2001, REV CHIL HIST NAT, V74, P73; FRIAS-L D, 1991, Acta Entomologica Chilena, V16, P193; Headrick D. H., 1994, STUDIA DIPTEROLOGICA, V1, P194; Hernandez-Ortiz V, 1999, INS MUND, V13, P11; Huestis DL, 2014, INFECT GENET EVOL, V28, P648, DOI 10.1016/j.meegid.2014.05.027; Keller LF, 2002, TRENDS ECOL EVOL, V17, P230, DOI 10.1016/S0169-5347(02)02489-8; Kostal V, 2006, J INSECT PHYSIOL, V52, P113, DOI 10.1016/j.jinsphys.2005.09.008; LALONDE RG, 1994, J ANIM ECOL, V63, P583, DOI 10.2307/5224; Mattsson M, 2015, ECOL EVOL, V5, pS823, DOI 10.1002/ece3.1826; Nufio CR, 2000, ENVIRON ENTOMOL, V29, P994, DOI 10.1603/0046-225X-29.5.994; OPP SB, 1990, ANN ENTOMOL SOC AM, V83, P521, DOI 10.1093/aesa/83.3.521; Opp SB, 1996, FRUIT FLY PESTS, P43; Opp SB, 2000, J INSECT BEHAV, V13, P901, DOI 10.1023/A:1007818719058; OTRONEN M, 1991, BEHAV ECOL SOCIOBIOL, V29, P33, DOI 10.1007/BF00164292; Otronen M, 1997, P ROY SOC B-BIOL SCI, V264, P777, DOI 10.1098/rspb.1997.0110; Otronen M, 1998, BEHAV ECOL SOCIOBIOL, V42, P185, DOI 10.1007/s002650050430; PAPAJ DR, 1994, BEHAV ECOL SOCIOBIOL, V34, P187, DOI 10.1007/BF00167743; Parker GA, 1999, ANIM BEHAV, V57, P795, DOI 10.1006/anbe.1998.1034; PROKOPY RJ, 1968, CAN ENTOMOL, V100, P318, DOI 10.4039/Ent100318-3; Prokopy RJ, 2000, FRUIT FLIES (TEPHRITIDAE): PHYLOGENY AND EVOLUTION OF BEHAVIOR, P219; Ramirez CC, 2008, NEOTROP ENTOMOL, V37, P651, DOI 10.1590/S1519-566X2008000600005; Rull J, 2016, J INS BEHAV UNPUB; Rull J, 2016, B ENTOMOL R IN PRESS; Rull J, 2010, BIOL J LINN SOC, V100, P213, DOI 10.1111/j.1095-8312.2010.01403.x; Schofl G, 2002, BEHAV ECOL SOCIOBIOL, V52, P426, DOI 10.1007/s00265-002-0524-9; Segura DF, 2013, J APPL ENTOMOL, V137, P19, DOI 10.1111/j.1439-0418.2010.01534.x; SIMMONS LW, 1992, EVOLUTION, V46, P366, DOI 10.1111/j.1558-5646.1992.tb02044.x; Smith JJ, 2000, FRUIT FLIES (TEPHRITIDAE): PHYLOGENY AND EVOLUTION OF BEHAVIOR, P187; Smyth E. Graywood., 1960, Bulletin of the California Department of Agriculture, V49, P16; Tauber MJ, 1986, SEASONAL ADAPTATIONS; Wilkinson Gerald S., 2005, P312 50 1 1 1 8 SPRINGER/PLENUM PUBLISHERS NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0892-7553 1572-8889 J INSECT BEHAV J. Insect Behav. NOV 2016 29 6 629 642 10.1007/s10905-016-9586-9 14 Entomology Entomology EF3WD WOS:000390254700003 2018-11-22 J Alvarenga, LDP; Porto, KC; Coelho, MLP; Zartman, CE Alvarenga, Lisi D. P.; Porto, Ktia C.; Coelho, Maria L. P.; Zartman, Charles E. How does reproductive strategy influence demography? A case study in the tropical, unisexual epiphyllous moss Crossomitrium patrisiae AMERICAN JOURNAL OF BOTANY English Article bryophyte; demography; epiphyll; Hookeriaceae; metapopulation; rainforest; reproductive strategy; tropics HEPATIC ANASTROPHYLLUM-HELLERIANUM; RAIN-FOREST LEAVES; HYLOCOMIUM-SPLENDENS; SEXUAL REPRODUCTION; METAPOPULATION DYNAMICS; TETRAPHIS-PELLUCIDA; DESERT MOSS; POPULATION; DISPERSAL; PATTERNS PREMISE OF THE STUDY: Leaf-inhabiting organisms off er an experimentally tractable model system within which to investigate the influence of alternative reproductive strategies on plant metapopulation dynamics. We conducted a field study to determine whether (1) threshold colony sizes exist for the onset of sexual and asexual expression, and (2) alternative reproductive strategies differentially influence within-patch dynamics of the tropical pleurocarpous moss Crossomitrium patrisiae. METHODS: The growth, reproduction, and fate of 2101 colonies of C. patrisiae were followed over 2 years to investigate threshold size and age for sporophyte and brood branch formation and their influence on within-patch growth rates and longevity. KEY RESULTS: Asexual expression rather than sexual onset was limited by a minimal colony size. Age was uncoupled with threshold sizes. Colonies bearing brood branches survived nearly twice as long as sterile and solely sporophytic colonies. However, no effect of reproductive strategies on colony growth rates was found. CONCLUSIONS: This study is among the few attempts to correlate life history strategies with demographic parameters of terrestrial plants. Specifically, we provide evidence for differential influence of reproductive strategies on metapopulation survivorship. [Alvarenga, Lisi D. P.; Porto, Ktia C.; Coelho, Maria L. P.] Univ Fed Pernambuco, Dept Bot, Moraes Rego Av S-N, BR-50670901 Recife, PE, Brazil; [Zartman, Charles E.] Natl Inst Amazonian Res INPA, Dept Bot, Andre Av 2936, BR-69083000 Manaus, Amazonas, Brazil Alvarenga, LDP (reprint author), Univ Fed Pernambuco, Dept Bot, Moraes Rego Av S-N, BR-50670901 Recife, PE, Brazil. lisidamaris@yahoo.com.br Fundacao O Boticario de Protecao a Natureza (FBPN); Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES); Brazil MCT/CNPq (Cooperacao Internacional-Acordos bilaterais) [017/2013] L.D.P.A. thanks the Fundacao O Boticario de Protecao a Natureza (FBPN) and Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) for financial support and the Centro de Pesquisas Ambientais do Nordeste (CEPAN) for logistic support, and Dr. Nicholas McLetchie (University of Kentucky), Paul Wilson, and two anonymous reviewers for valuable comments during the preparation of this manuscript. C.E.Z. acknowledges financial support from grant No 017/2013 from the Brazil MCT/CNPq (Cooperacao Internacional-Acordos bilaterais) while writing the manuscript. Allen B., 1990, TROPICAL BRYOLOGY, V2, P3; Alvarenga LDP, 2009, BIOTROPICA, V41, P682, DOI 10.1111/j.1744-7429.2009.00532.x; Anthony PA, 2002, FUNCT ECOL, V16, P808, DOI 10.1046/j.1365-2435.2002.00688.x; Bisang I, 2006, AM J BOT, V93, P1313, DOI 10.3732/ajb.93.9.1313; Buck William R., 1998, Memoirs of the New York Botanical Garden, V82, P1; COLEY PD, 1993, ECOLOGY, V74, P619, DOI 10.2307/1939322; CONVEY P, 1993, OIKOS, V68, P293, DOI 10.2307/3544842; Crawley MJ, 2007, R BOOK; Cronberg N, 2006, ECOGRAPHY, V29, P95, DOI 10.1111/j.2006.0906-7590.04361.x; de Oliveira SM, 2015, J ECOL, V103, P441, DOI 10.1111/1365-2745.12359; DUCKETT JG, 1993, J BRYOL, V17, P541, DOI 10.1179/jbr.1993.17.4.541; During Heinjo J., 1992, P1; Ehrlen J, 2000, PLANT ECOL, V149, P207, DOI 10.1023/A:1026531122302; Ferreira T., 2012, IMAGEJ USER GUIDE IJ; Gilbert GS, 2007, ECOLOGY, V88, P575, DOI 10.1890/05-1170; Gonzalez-Mancebo J. M., 1997, Lindbergia, V22, P36; Gradstein SR, 1997, ABSTR BOT, V21, P15; Hassel K, 2005, PLANT ECOL, V179, P207, DOI 10.1007/s11258-005-8065-8; Hock Z, 2009, PLANT ECOL, V202, P123, DOI 10.1007/s11258-008-9541-8; Johansson V, 2012, ECOLOGY, V93, P235, DOI 10.1890/11-0760.1; JONSSON BG, 1988, J BRYOL, V15, P315, DOI 10.1179/jbr.1988.15.2.315; KIMMERER RW, 1991, BRYOLOGIST, V94, P255, DOI 10.2307/3243962; KIMMERER RW, 1994, BRYOLOGIST, V97, P20, DOI 10.2307/3243344; Laaka-Lindberg S, 2001, OIKOS, V94, P525, DOI 10.1034/j.1600-0706.2001.940314.x; Lobel S, 2009, OECOLOGIA, V161, P569, DOI 10.1007/s00442-009-1402-1; Lobel S, 2009, J ECOL, V97, P176, DOI 10.1111/j.1365-2745.2008.01459.x; Longton R. E., 1983, NEW MANUAL BRYOLOGY, P386; Lucking R, 2008, FLORA NEOTROPICA MON, V103; Maciel-Silva A. S., 2014, REPROD BIOL PLANTS, P57; Marino P. C., 1993, LINDBERGIA, V17, P91; Maynard Smith J., 1978, EVOLUTION SEX; McLetchie DN, 2000, OIKOS, V90, P227, DOI 10.1034/j.1600-0706.2000.900203.x; Alvarenga LDP, 2013, J BRYOL, V35, P88, DOI 10.1179/174328213X13662092820316; Pocs T., 1982, BRYOPHYTE ECOLOGY, P59; Pohjamo M, 2004, PLANT ECOL, V173, P73, DOI 10.1023/B:VEGE.0000026330.62021.0a; Pohjamo M, 2004, PERSPECT PLANT ECOL, V6, P159; Pohjamo M, 2006, EVOL ECOL, V20, P415, DOI 10.1007/s10682-006-0011-2; R Development Core Team, 2007, R LANG ENV STAT COMP; Roads Estne, 2006, Lindbergia, V31, P63; Ruete A, 2012, P ROY SOC B-BIOL SCI, V279, P3098, DOI 10.1098/rspb.2012.0428; Rydgren K, 2002, J BRYOL, V24, P207, DOI 10.1179/037366802125001376; Rydgren K, 1998, OIKOS, V82, P5, DOI 10.2307/3546912; Schuster R. M., 1988, J HATTORI BOT LAB, V64, P237; Shaw A. J., 2000, BRYOPHYTE BIOL, P368; Soderstrom L, 2005, J BRYOL, V27, P261, DOI 10.1179/174328205X70010; Sonnleitner M, 2009, J TROP ECOL, V25, P321, DOI 10.1017/S0266467409006002; Stark L, 2001, PLANT ECOL, V157, P181; Stark LR, 2000, AM J BOT, V87, P1599, DOI 10.2307/2656736; Stark LR, 2004, AM J BOT, V91, P1, DOI 10.3732/ajb.91.1.1; STONEBURNER A, 1992, BRYOLOGIST, V95, P324, DOI 10.2307/3243491; van Dulmen A, 2001, PLANT ECOL, V153, P73, DOI 10.1023/A:1017577305193; Vanderpoorten A, 2009, INTRODUCTION TO BRYOPHYTES, P1, DOI 10.1017/CBO9780511626838; Veloso H. P., 1991, CLASSIFICACAO VEGETA; Vorholt JA, 2012, NAT REV MICROBIOL, V10, P828, DOI 10.1038/nrmicro2910; Wiklund K, 2004, BRYOLOGIST, V107, P293, DOI 10.1639/0007-2745(2004)107[0293:CEONPM]2.0.CO;2; Wu P.-C., 1987, S BIOL HUNGARICA, V35, P27; Wyatt R., 1984, EXPT BIOL BRYOPHYTES, P39; Zartman CE, 2006, BIOL CONSERV, V127, P46, DOI 10.1016/j.biocon.2005.07.012; Zartman CE, 2015, BIOTROPICA, V47, P172, DOI 10.1111/btp.12201; Zartman CE, 2012, J ECOL, V100, P980, DOI 10.1111/j.1365-2745.2012.01969.x 60 0 0 0 7 BOTANICAL SOC AMER INC ST LOUIS PO BOX 299, ST LOUIS, MO 63166-0299 USA 0002-9122 1537-2197 AM J BOT Am. J. Bot. NOV 2016 103 11 1921 1927 10.3732/ajb.1600202 7 Plant Sciences Plant Sciences ED7IR WOS:000389037800008 27849159 Bronze 2018-11-22 J Liang, K; Elias, RJ; Choh, SJ; Lee, DC; Lee, DJ Liang, Kun; Elias, Robert J.; Choh, Suk-Joo; Lee, Dong-Chan; Lee, Dong-Jin Morphometrics and paleoecology of Catenipora (Tabulata) from the Xiazhen Formation (Upper Ordovician), Zhuzhai, South China JOURNAL OF PALEONTOLOGY English Article LIFE-HISTORY STRATEGIES; MONTASTRAEA-ANNULARIS; SPECIES BOUNDARIES; CORAL; CANADA; MANITOBA; COMPLEX; GROWTH; EVOLUTION; REEFS Catenipora is one of the most common tabulate coral genera occurring in various lithofacies in the Upper Ordovician Xiazhen Formation at Zhuzhai in South China. A combination of traditional multivariate analysis and geometric morphometrics is applied to a large number of specimens to distinguish and identify species. Based on three major principal components extracted from 11 morphological characters, three major groups as determined by the cluster-analysis dendrogram are considered to be morphospecies. Their validity and distinctiveness are confirmed by discriminant analysis, descriptive statistics, and bivariate plots. Tabularium area and common wall thickness are the most meaningful characters to distinguish the three morphospecies. Geometric morphometrics is adopted to compare the morphospecies with types and/or figured specimens of species previously reported from the vicinity of Zhuzhai. Despite discrepancies in corallite size, principal component analysis and discriminant analysis, as well as consideration of overall morphological characteristics, indicate that the morphospecies represent C. zhejiangensis Yu in Yu et al., 1963, C. shiyangensis Lin and Chow, 1977, and C. dianbiancunensis Lin and Chow, 1977. Catenipora occurs in seven stratigraphic intervals in the Xiazhen Formation at Zhuzhai, representing a variety of heterogeneous environments. The coralla preservation is variable due to differential compaction; coralla preserved in limestones are commonly intact and in growth position, whereas those in shales are mostly crushed or fragmentary. The size and shape of corallites are considered primarily to be species-specific characters, but are also related to the depositional environments. In all species, morphological characters, including corallite size, septal development, and shape and size of lacunae, show high variability in accordance with lithofacies and stratigraphic position. The intraspecific differences in corallite size at various localities in the Zhuzhai area may indicate responses to local environmental factors, but may also reflect genetic differences if there was limited connection among populations. [Liang, Kun] Chinese Acad Sci, Nanjing Inst Geol & Palaeontol, Key Lab Econ Stratig & Palaeogeog, Beijing 100864, Peoples R China; [Elias, Robert J.] Univ Manitoba, Dept Geol Sci, Winnipeg, MB R3T 2N2, Canada; [Choh, Suk-Joo] Korea Univ, Dept Earth & Environm Sci, Seoul 136701, South Korea; [Lee, Dong-Chan] Chungbuk Natl Univ, Dept Earth Sci Educ, Cheongju 361763, South Korea; [Lee, Dong-Jin] Andong Natl Univ, Dept Earth & Environm Sci, Andong 760749, South Korea Liang, K (reprint author), Chinese Acad Sci, Nanjing Inst Geol & Palaeontol, Key Lab Econ Stratig & Palaeogeog, Beijing 100864, Peoples R China. kliang@nigpas.ac.cn; eliasrj@cc.umanitoba.ca; sjchoh@korea.ac.kr; dclee@chungbuk.ac.kr; djlee@andong.ac.kr Choh, Suk-Joo/0000-0002-1110-0416 National Science Foundation of China [41402013, J1210006]; National Research Foundation of Korea [NRF-2013R1A2A2A01067612, NRF-2014K2A2A2000787] This study was supported by grants from the National Science Foundation of China (Grant No. 41402013 and J1210006) and from the National Research Foundation of Korea (NRF-2013R1A2A2A01067612 and NRF-2014K2A2A2000787). We thank N. Sun, Y. Wang, and L. Guan for their assistance in the field and lab. We are grateful to an anonymous reviewer and editors P. Harries and B. Pratt for their constructive comments, which were helpful in improving the manuscript. Bae BY, 2008, J PALEONTOL, V82, P78, DOI 10.1666/05-146.1; Bae BY, 2006, J PALEONTOL, V80, P885; Bae BY, 2006, LETHAIA, V39, P141, DOI 10.1080/00241160600623723; Bae BY, 2013, LETHAIA, V46, P98, DOI 10.1111/j.1502-3931.2012.00326.x; Bian L. Z., 1990, J NANJING U EARTH SC, V3, P1; Bian L. Z., 1996, ANCIENT ORGANIC REEF, P4; Bookstein FL, 1991, MORPHOMETRIC TOOLS L; Budd AE, 2004, PALEOBIOLOGY, V30, P396, DOI 10.1666/0094-8373(2004)030<0396:OSBAHW>2.0.CO;2; BUDD AF, 1994, PALEOBIOLOGY, V20, P484; Budd AF, 2001, J PALEONTOL, V75, P527, DOI 10.1666/0022-3360(2001)075<0527:TOAEEO>2.0.CO;2; Budd AF, 2012, EVOL ECOL, V26, P265, DOI 10.1007/s10682-010-9460-8; Budd AF, 2010, SCIENCE, V328, P1558, DOI 10.1126/science.1188947; Buehler E. J., 1955, PEABODY MUSEUM NATUR, V8; Cairns S.D., 1989, Memoir of the Association of Australasian Palaeontologists, V8, P61; CHEETHAM AH, 1987, PALEOBIOLOGY, V13, P286; Chen X., 1987, J STRATIGRAPHY, V11, P23; Copper P., 2012, GEOSCIENCES, V2, P65; Deng Z.Q., 1984, STRATIGRAPHY PALAE 4, P1; DIXON OA, 1974, J PALEONTOL, V48, P568; Dryden I., 1998, STAT SHAPE ANAL; Ehrenberg C. G., 1834, ABHANDLUNGEN KONIGLI, V1, P225; ELIAS RJ, 1993, J PALEONTOL, V67, P922, DOI 10.1017/S0022336000025221; Foster A.B., 1984, PALAEONTOGRAPHICA AM, V54, P58; FOSTER AB, 1979, J EXP MAR BIOL ECOL, V39, P25, DOI 10.1016/0022-0981(79)90003-0; FOSTER AB, 1985, J PALEONTOL, V59, P1359; FOSTER AB, 1980, B MAR SCI, V30, P678; Fukami H, 2004, EVOLUTION, V58, P324, DOI 10.1111/j.0014-3820.2004.tb01648.x; GOODALL C, 1991, J ROY STAT SOC B MET, V53, P285; Hamada T., 1957, J FACULTY SCI, V10, P393; Hill D., 1981, TREATISE INVERT F S1, V2, p[F430, F379]; Hubmann B., 1992, Anzeiger der Oesterreichischen Akademie der Wissenschaften Mathematisch-Naturwissenschaftliche Klasse, V128, P113; Jackson J. E., 1991, USERS GUIDE PRINCIPA; JACKSON JBC, 1990, SCIENCE, V248, P579, DOI 10.1126/science.248.4955.579; Jolliffe I. T., 2002, SPRINGER SERIES STAT; Klaamann E., 1966, INKOMMUNIKATNYE TABU; Klaus JS, 2003, PALAIOS, V18, P3, DOI 10.1669/0883-1351(2003)018<0003:COCCRC>2.0.CO;2; Kwon SW, 2012, SEDIMENT GEOL, V267, P15, DOI 10.1016/j.sedgeo.2012.04.001; Lamarck J. B. P. A. de M. de, 1816, HIST NATURELLE ANIMA, V2; Laub R.S., 1979, Bulletins of American Paleontology, V75, P1; LEE DJ, 1990, LETHAIA, V23, P179, DOI 10.1111/j.1502-3931.1990.tb01359.x; LEE DJ, 1991, J PALEONTOL, V65, P191, DOI 10.1017/S0022336000020424; Lee DC, 2013, ACTA PALAEONTOL POL, V58, P855, DOI 10.4202/app.2010.0036; Lee DC, 2012, ALCHERINGA, V36, P387, DOI 10.1080/03115518.2012.658724; Li Y, 2004, PALAEOGEOGR PALAEOCL, V205, P235, DOI 10.1016/j.palaeo.2003.12.010; Lin B.Y., 1977, Professional Papers of Stratigraphy and Palaeontology, V3, P108; Milne-Edwards H., 1850, PALAEONTOGRAPHICAL S, V3, p[i, 1]; Milne-Edwards H., 1849, CR HEBD ACAD SCI, V29, P257; ROHLF FJ, 1990, SYST ZOOL, V39, P40, DOI 10.2307/2992207; ROHLF FJ, 1993, TRENDS ECOL EVOL, V8, P129, DOI 10.1016/0169-5347(93)90024-J; Rong J.-y., 1987, Acta Palaeontologica Sinica, V26, P507; Rong JY, 2010, SCI CHINA EARTH SCI, V53, P1, DOI 10.1007/s11430-010-0005-3; Schmidt F., 1858, ARCH NATURKUNDE LIV, V2, P1; Sokolov B.S., 1947, BIOL MOSKOVSKOE OBSH, V22, P19; Stasinska A., 1967, ACTA PALAEONTOLOGICA, V18, P1; Tchernychev B.B., 1937, VSESOIUZNOE ARKTIKI, V91, P67; Wang Guang-xu, 2010, Acta Palaeontologica Sinica, V49, P478; Watkins R, 2000, LETHAIA, V33, P55, DOI 10.1080/00241160050150302; WEBBY BD, 2002, SEPM SPECIAL PUBLICA, V72, P129, DOI DOI 10.2110/PEC.02.72.0095; [吴浩若 Wu Haoruo], 2003, [古地理学报, Journal of palaeogeography], V5, P328; Yan DT, 2009, PALAEOGEOGR PALAEOCL, V274, P32, DOI 10.1016/j.palaeo.2008.12.016; Yu C.M., 1963, CHINESE CORAL FOSSIL, P291; Yu C.M., 1960, ACTA PALAEONTOLOGICA, V8, P65; Yu J. -H., 1992, J NANJING U EARTH SC, V4, P1; Zhan R.B., 2007, ORDOVICIAN LLANDOVER; Zhan RB, 2008, PROG NAT SCI-MATER, V18, P1, DOI 10.1016/j.pnsc.2007.07.004; Zhang Y. D., 2007, ORDOVICIAN SILURIAN 66 3 3 0 1 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0022-3360 1937-2337 J PALEONTOL J. Paleontol. NOV 2016 90 6 1027 1048 10.1017/jpa.2016.60 22 Paleontology Paleontology ED3JR WOS:000388745900002 2018-11-22 J Balasubramaniam, P; Rotenberry, JT Balasubramaniam, Priya; Rotenberry, John T. Elevation and latitude interact to drive life-history variation in precocial birds: a comparative analysis using galliformes JOURNAL OF ANIMAL ECOLOGY English Article altitude; clutch size; egg mass; elevation; fecundity vs. offspring quality galliformes; interspecific variation; life-history trade-off; phylogenetic comparative methods CLUTCH SIZE; NEST PREDATION; INCUBATION BEHAVIOR; REPRODUCTIVE EFFORT; FLEDGING SUCCESS; TROPICAL BIRDS; AVIAN EGGS; EVOLUTION; SURVIVAL; FOOD 1. Elevational gradients provide a powerful laboratory for understanding the environmental and ecological drivers of geographic variation in avian life-history strategies. Environmental variation across elevational gradients is hypothesized to select for a trade-off of reduced fecundity (lower clutch size and/or fewer broods) for higher offspring quality (larger eggs and/or increased parental care) in higher elevation species and populations. In birds, a focus on altricial species from north temperate latitudes has prevented an evaluation of the generality of this trade-off, and how it is affected by latitude and intrinsic factors (development mode). 2. We performed a comparative analysis controlling for body size and phylogenetic relationships on a global data set of 135 galliform species to test (i) whether higher elevation precocial species have lower fecundity (smaller clutch and/or fewer broods) and invest more in offspring quality (greater egg mass) and (ii) whether latitude influences the traits involved and/or the trade-off, and (iii) to identify ecological and environmental drivers of life-history variation along elevational gradients. 3. Life-history traits showed significant interaction effects across elevation and latitude: temperate higher elevation species had smaller clutches and clutch mass, larger eggs and shorter incubation periods, whereas more tropical species had larger clutches, eggs and clutch mass, and longer incubation periods as elevation increased. Number of broods and body mass did not vary with elevation or latitude. Latitudinal gradient in clutch size was observed only for low-elevation species. 4. Significantly, an overlooked latitude-by-elevation interaction confounds our traditional view of clutch size variation across a tropical-to-temperate gradient. Across all latitudes, higher elevation species invested in offspring quality via larger eggs but support for reduced fecundity resulting from smaller clutches was found only along temperate elevational gradients; contrary to expectations, tropical high-elevation species showed increased fecundity. Variation in nest predation risk could explain differences between temperate and tropical elevational gradients, but we lack a consistent mechanism to explain why predation risk should vary in this manner. Alternatively, a resource availability hypothesis based on physical attributes that globally differ between elevation and latitude (seasonality in day length and temperature) seems more plausible. [Balasubramaniam, Priya; Rotenberry, John T.] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA; [Rotenberry, John T.] Univ Minnesota, Dept Ecol Evolut & Behav, 1987 Upper Buford Circle, St Paul, MN 55108 USA Balasubramaniam, P (reprint author), Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA. pbala001@ucr.edu ASHMOLE N. P., 1963, IBIS, V103b, P458, DOI 10.1111/j.1474-919X.1963.tb06766.x; Badyaev AV, 2001, ECOLOGY, V82, P2948, DOI 10.2307/2679973; Badyaev AV, 1997, OECOLOGIA, V111, P365, DOI 10.1007/s004420050247; Balasubramaniam P., 2016, DRYAD DIGITAL REPOSI; BAUR B, 1988, J ANIM ECOL, V57, P71, DOI 10.2307/4764; Bears H, 2009, J ANIM ECOL, V78, P365, DOI 10.1111/j.1365-2656.2008.01491.x; BERVEN KA, 1982, EVOLUTION, V36, P962, DOI 10.1111/j.1558-5646.1982.tb05466.x; BirdLife International & NatureServe, 2012, BIRD SPEC DISTR MAPS; Bohning-Gaese K, 2000, EVOL ECOL RES, V2, P823; Boyce AJ, 2015, AUK, V132, P424, DOI 10.1642/AUK-14-150.1; Boyle WA, 2008, OECOLOGIA, V155, P397, DOI 10.1007/s00442-007-0897-6; Boyle WA, 2016, BIOL REV, V91, P469, DOI 10.1111/brv.12180; CAREY C, 1994, J BIOSCIENCES, V19, P429, DOI 10.1007/BF02703179; CAREY C, 1980, CONDOR, V82, P335, DOI 10.2307/1367405; Chalfoun AD, 2007, ANIM BEHAV, V73, P579, DOI 10.1016/j.anbehav.2006.09.010; Chen W, 2013, J EVOLUTION BIOL, V26, P2710, DOI 10.1111/jeb.12271; Class AM, 2011, CONDOR, V113, P438, DOI 10.1525/cond.2011.100068; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; Conway CJ, 2000, EVOLUTION, V54, P670; del Hoyo J., 1994, HDB BIRDS WORLD; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; DRENT RH, 1980, ARDEA, V68, P225; ESRI, 2013, 1022 ESRI ARCGIS; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Hackett SJ, 2008, SCIENCE, V320, P1763, DOI 10.1126/science.1157704; Hardesty J. L., 2008, SEASONALITY EQUATORI; Hille SM, 2015, BIOL REV, V90, P204, DOI 10.1111/brv.12106; HOYT DF, 1979, AUK, V96, P73; JANZEN DH, 1967, AM NAT, V101, P233, DOI 10.1086/282487; Jetz W, 2012, NATURE, V491, P444, DOI 10.1038/nature11631; Jetz W, 2008, PLOS BIOL, V6, P2650, DOI 10.1371/journal.pbio.0060303; Jia CX, 2010, AUK, V127, P926, DOI 10.1525/auk.2010.09254; Korner C, 2007, TRENDS ECOL EVOL, V22, P569, DOI 10.1016/j.tree.2007.09.006; Krist M, 2011, BIOL REV, V86, P692, DOI 10.1111/j.1469-185X.2010.00166.x; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lepage D, 1999, J AVIAN BIOL, V30, P72, DOI 10.2307/3677245; Lepage D, 1998, J ANIM ECOL, V67, P210, DOI 10.1046/j.1365-2656.1998.00182.x; Maddison W. P., 2011, MESQUITE MODULAR SYS; Martin KM, 2001, WILDLIFE-HABITAT RELATIONSHIPS IN OREGON AND WASHINGTON, P239; Martin TE, 2006, EVOLUTION, V60, P390; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.ecolsys.18.1.453; Martin TE, 2009, ANN NY ACAD SCI, V1168, P201, DOI 10.1111/j.1749-6632.2009.04577.x; Martins EP, 1997, AM NAT, V149, P646, DOI 10.1086/286013; McNamara JM, 2008, AM NAT, V172, P331, DOI 10.1086/589886; Musvuugwa T, 2011, IBIS, V153, P165, DOI 10.1111/j.1474-919X.2010.01064.x; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Peh KSH, 2012, RAFFLES B ZOOL, P249; Pelayo JT, 2003, AUK, V120, P384, DOI 10.1642/0004-8038(2003)120[0384:COESFO]2.0.CO;2; Pinheiro J, 2012, NLME LINEAR NONLINEA, V3, P1; R Core Team, 2012, R LANG ENV STAT COMP; RAHN H, 1974, CONDOR, V76, P147, DOI 10.2307/1366724; RHYMER JM, 1988, OECOLOGIA, V75, P20, DOI 10.1007/BF00378809; Roff Derek A., 1992; Rose AP, 2013, ECOLOGY, V94, P1327, DOI 10.1890/12-0953.1; Sandercock BK, 2005, ECOLOGY, V86, P2176, DOI 10.1890/04-0563; Sarmiento G, 1986, HIGH ALT TROP BIOGEO, V11, P45; Skutch A. F., 1985, ORNITHOLOGICAL MONOG, V36, P575, DOI DOI 10.2307/40168306; SMITH HG, 1989, ORNIS SCAND, V20, P156, DOI 10.2307/3676885; Starck JM, 1998, AVIAN GROWTH DEV EVO; Sundqvist MK, 2013, ANNU REV ECOL EVOL S, V44, P261, DOI 10.1146/annurev-ecolsys-110512-135750; Symonds M. R., 2014, MODERN PHYLOGENETIC, P105; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Winkler D.W., 1983, Current Ornithology, V1, P33 67 1 1 7 46 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. NOV 2016 85 6 1528 1539 10.1111/1365-2656.12570 12 Ecology; Zoology Environmental Sciences & Ecology; Zoology EC7XK WOS:000388354200012 27392151 2018-11-22 J Wu, JH; Chen, HL; Zhang, YZ Wu, Jihua; Chen, Huili; Zhang, Youzheng Latitudinal variation in nematode diversity and ecological roles along the Chinese coast ECOLOGY AND EVOLUTION English Article biogeography; dietary niche; feeding selectivity; life-history group; phylogenetic diversity; soil animal; taxonomic distinctness LIFE-HISTORY TRAITS; MARINE NEMATODES; NICHE BREADTH; DEEP-SEA; SPECIES-DIVERSITY; GLOBAL PATTERNS; MACROECOLOGICAL PATTERNS; PHYLOGENETIC DIVERSITY; TAXONOMIC DISTINCTNESS; SANDY BEACHES Aim: To test changes in the phylogenetic relatedness, niche breadth, and life-history strategies of nematodes along a latitudinal gradient. Location: Sixteen wetland locations along the Pacific coast of China, from 20 degrees N to 40 degrees N. Methods: Linear regression was used to relate nematode phylogenetic relatedness (average taxonomic distinctness (AvTD) and average phylogenetic diversity [AvPD]), life-history group (based on "c-p" colonizer-persister group classification), and dietary specificity (based on guild classification of feeding selectivity) to latitude. Results: Wetland nematode taxonomic diversity (richness and Shannon diversity indices) decreased with increasing latitude along the Chinese coast. Phylogenetic diversity indices (AvTD and AvPD) significantly increased with increasing latitude. This indicates that at lower latitudes, species within the nematode community were more closely related. With increasing latitude, the nematode relative richness and abundance decreased for selective deposit feeders but increased for nonselective deposit feeders. The proportion of general opportunists decreased with increasing latitude, but persisters showed the opposite trend. The annual temperature range and the pH of sediments were more important than vegetation type in structuring nematode communities. Main conclusion: Nematode niche breadth was narrower at lower latitudes with respect to dietary specificity. Higher latitudes with a more variable climate favor r over K life-history strategists. Nematode communities at lower latitudes contained more closely related species. [Wu, Jihua; Chen, Huili; Zhang, Youzheng] Fudan Univ, Coastal Ecosyst Res Stn Yangtze River Estuary, Key Lab Biodivers Sci & Ecol Engn, Minist Educ,Sch Life Sci, Shanghai, Peoples R China; [Chen, Huili] Hangzhou Normal Univ, Hangzhou Key Lab Anim Adaptat & Evolut, Hangzhou, Zhejiang, Peoples R China Wu, JH (reprint author), Fudan Univ, Inst Biodivers Sci, Minist Educ, Key Lab Biodivers Sci & Ecol Engn, Shanghai, Peoples R China. jihuawu@fudan.edu.cn Ministry of Science and Technology of the People's Republic of China [2013CB430404]; National Natural Science Foundation of China [41201054, 41630528]; Shanghai Pujiang Scholar Program [16PJ1400900] Ministry of Science and Technology of the People's Republic of China, Grant/ Award Number: 2013CB430404; National Natural Science Foundation of China, Grant/ Award Number: 41201054 and 41630528; Shanghai Pujiang Scholar Program, Grant/ Award Number: 16PJ1400900. Adams BJ, 2007, POLAR BIOL, V30, P809, DOI 10.1007/s00300-006-0241-3; Adams BJ, 2006, SOIL BIOL BIOCHEM, V38, P3003, DOI 10.1016/j.soilbio.2006.04.030; Ahmad W., 1992, DORYLAIMIDA FREE LIV; Auer SK, 2014, GLOBAL ECOL BIOGEOGR, V23, P867, DOI 10.1111/geb.12174; Bardgett Richard D., 2005, P100, DOI 10.1017/CBO9780511541926.007; Bardgett RD, 2014, NATURE, V515, P505, DOI 10.1038/nature13855; Blanck A, 2007, J BIOGEOGR, V34, P862, DOI 10.1111/j.1365-2699.2006.01654.x; Boag B, 1998, BIODIVERS CONSERV, V7, P617, DOI 10.1023/A:1008852301349; Bongers T, 1999, TRENDS ECOL EVOL, V14, P224, DOI 10.1016/S0169-5347(98)01583-3; BONGERS T, 1990, OECOLOGIA, V83, P14, DOI 10.1007/BF00324627; BOUCHER G, 1990, MAR ECOL-P S Z N I, V11, P133, DOI 10.1111/j.1439-0485.1990.tb00234.x; Boucher G, 1995, CONSERV BIOL, V9, P1594, DOI 10.1046/j.1523-1739.1995.09061594.x; Brussaard L, 2013, SOIL ECOLOGY AND ECOSYSTEM SERVICES, P201; Cardillo M, 2005, ECOLOGY, V86, P2278, DOI 10.1890/05-0112; Cardillo M, 2002, J ANIM ECOL, V71, P79, DOI 10.1046/j.0021-8790.2001.00577.x; Clarke KR, 2001, MAR ECOL PROG SER, V216, P265, DOI 10.3354/meps216265; Clarke KR, 1998, J APPL ECOL, V35, P523, DOI 10.1046/j.1365-2664.1998.3540523.x; Decaens T, 2010, GLOBAL ECOL BIOGEOGR, V19, P287, DOI 10.1111/j.1466-8238.2009.00517.x; DEGOEDE RGM, 1993, INT S CROP, V45, P743; Dunn RR, 2009, ECOL LETT, V12, P324, DOI 10.1111/j.1461-0248.2009.01291.x; Fonseca G, 2015, ESTUAR COAST, V38, P612, DOI 10.1007/s12237-014-9844-z; Forister ML, 2015, P NATL ACAD SCI USA, V112, P442, DOI [10.1073/pnas.1423042112, 10.1073/pnas.142304211]; Gaston KJ, 2000, NATURE, V405, P220, DOI 10.1038/35012228; Gobin JF, 2006, J EXP MAR BIOL ECOL, V330, P234, DOI 10.1016/j.jembe.2005.12.030; Gonzalez-Bergonzoni I, 2012, ECOSYSTEMS, V15, P492, DOI 10.1007/s10021-012-9524-4; Goodey J. B., 1963, SOIL FRESHWATER NEMA; Graham CH, 2009, P NATL ACAD SCI USA, V106, P19673, DOI 10.1073/pnas.0901649106; Helmus MR, 2010, ECOL LETT, V13, P162, DOI 10.1111/j.1461-0248.2009.01411.x; Hille SM, 2015, BIOL REV, V90, P204, DOI 10.1111/brv.12106; Kissling WD, 2012, GLOBAL ECOL BIOGEOGR, V21, P328, DOI 10.1111/j.1466-8238.2011.00679.x; Krasnov BR, 2008, J BIOGEOGR, V35, P592, DOI 10.1111/j.1365-2699.2007.01800.x; Lambshead PJD, 2000, MAR ECOL PROG SER, V194, P159, DOI 10.3354/meps194159; Lambshead PJD, 2002, MAR ECOL PROG SER, V236, P129, DOI 10.3354/meps236129; Lee MR, 2012, MAR ECOL-EVOL PERSP, V33, P317, DOI 10.1111/j.1439-0485.2011.00497.x; Lorenzen S., 1981, VEROEFFENTLICHUNGEN DES INSTITUTS FUER MEERESFORSCHUNG IN BREMERHAVEN SUPPLEMENT, V7, P1; Mokievsky V, 2002, MAR ECOL PROG SER, V238, P101, DOI 10.3354/meps238101; Morin X, 2006, ECOL LETT, V9, P185, DOI 10.1111/j.1461-0248.2005.00864.x; Neher DA, 2010, ANNU REV PHYTOPATHOL, V48, P371, DOI 10.1146/annurev-phyto-073009-114439; Nicholas WL, 2005, BIODIVERS CONSERV, V14, P823, DOI 10.1007/s10531-004-0656-5; Nielsen UN, 2014, GLOBAL ECOL BIOGEOGR, V23, P968, DOI 10.1111/geb.12177; PROCTER DLC, 1984, J BIOGEOGR, V11, P103, DOI 10.2307/2844684; Qian H, 2013, GLOBAL ECOL BIOGEOGR, V22, P1183, DOI 10.1111/geb.12069; Rex MA, 2001, MAR ECOL PROG SER, V210, P297, DOI 10.3354/meps210297; Ricklefs RE, 2006, ECOLOGY, V87, pS3, DOI 10.1890/0012-9658(2006)87[3:EDATOO]2.0.CO;2; Safi K, 2011, PHILOS T R SOC B, V366, P2536, DOI 10.1098/rstb.2011.0024; SAINTE-MARIE B, 1991, HYDROBIOLOGIA, V223, P189, DOI 10.1007/BF00047641; Schweiger O, 2008, OECOLOGIA, V157, P485, DOI 10.1007/s00442-008-1082-2; Simon NPP, 2003, ECOSCIENCE, V10, P289, DOI 10.1080/11956860.2003.11682776; Slove J, 2010, ECOL ENTOMOL, V35, P768, DOI 10.1111/j.1365-2311.2010.01238.x; Sommer B, 2014, ECOLOGY, V95, P1000, DOI 10.1890/13-1445.1; Ulrich W, 2013, ECOGRAPHY, V36, P1106, DOI 10.1111/j.1600-0587.2013.00188.x; Vazquez DP, 2004, AM NAT, V164, pE1, DOI 10.1086/421445; Wardle D. A., 2002, COMMUNITIES ECOSYSTE; Warwick R. M., 1998, SYNOPSES BRIT FAUNA, V53; Wiens JJ, 2010, ECOL LETT, V13, P1310, DOI 10.1111/j.1461-0248.2010.01515.x; Wieser W., 1953, ACTA U LUND, V49, P1; Willig MR, 2003, ANNU REV ECOL EVOL S, V34, P273, DOI 10.1146/annurev.ecolsys.34.012103.144032; Wu TH, 2011, P NATL ACAD SCI USA, V108, P17720, DOI 10.1073/pnas.1103824108 58 1 2 3 30 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. NOV 2016 6 22 8018 8027 10.1002/ece3.2538 10 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology EB8TR WOS:000387664500008 27878074 DOAJ Gold, Green Published 2018-11-22 J Gleichsner, AM; Cleveland, JA; Minchella, DJ Gleichsner, Alyssa M.; Cleveland, Jessica A.; Minchella, Dennis J. One stimulusTwo responses: Host and parasite life-history variation in response to environmental stress EVOLUTION English Article Adaptation; climate change; disease; drought; fecundity compensation; life history; parasite; plasticity; Schistosoma mansoni; stress SCHISTOSOMA-MANSONI CERCARIAE; BIOMPHALARIA-GLABRATA; FECUNDITY COMPENSATION; RHYTHMIC EMERGENCE; CLIMATE-CHANGE; SNAIL; ESTIVATION; INFECTION; TEMPERATURE; SYSTEM Climate change stressors will place different selective pressures on both parasites and their hosts, forcing individuals to modify their life-history strategies and altering the distribution and prevalence of disease. Few studies have investigated whether parasites are able to respond to host stress and respond by varying their reproductive schedules. Additionally, multiple environmental stressors can limit the ability of a host to respond adaptively to parasite infection. This study compared both host and parasite life-history parameters in unstressed and drought-stressed environments using the human parasite, Schistosoma mansoni, in its freshwater snail intermediate host. Snail hosts infected with the parasite demonstrated a significant reproductive burst during the prepatent period (fecundity compensation), but that response was absent in a drought-stressed environment. This is the first report of the elimination of host fecundity compensation to parasitism when exposed to additional environmental stress. More surprisingly, we found that infections in drought-stressed snails had significantly higher parasite reproductive outputs than infections in unstressed snails. The finding suggests that climate change may alter the infection dynamics of this human parasite. [Gleichsner, Alyssa M.; Cleveland, Jessica A.; Minchella, Dennis J.] Purdue Univ, Dept Biol Sci, 915 West State St, W Lafayette, IN 47907 USA Gleichsner, AM (reprint author), Purdue Univ, Dept Biol Sci, 915 West State St, W Lafayette, IN 47907 USA. agleichs@purdue.edu Altizer S, 2013, SCIENCE, V341, P514, DOI 10.1126/science.1239401; ASCH HL, 1972, EXP PARASITOL, V31, P350, DOI 10.1016/0014-4894(72)90096-3; Badger LI, 2004, BRIT J BIOMED SCI, V61, P138, DOI 10.1080/09674845.2004.11732659; Beck MA, 2004, TRENDS MICROBIOL, V12, P417, DOI 10.1016/j.tim.2004.07.007; Blair L, 2002, INVERTEBR REPROD DEV, V41, P243, DOI 10.1080/07924259.2002.9652757; Calder PC, 2000, NUTR RES REV, V13, P3, DOI 10.1079/095442200108728981; Colley DG, 2014, LANCET, V383, P2253, DOI 10.1016/S0140-6736(13)61949-2; Conover WJ, 1999, PRACTICAL NONPARAMET; CREWS AE, 1989, EXP PARASITOL, V68, P326, DOI 10.1016/0014-4894(89)90114-8; Dai AG, 2013, NAT CLIM CHANGE, V3, P52, DOI [10.1038/nclimate1633, 10.1038/NCLIMATE1633]; Dobson A., 1992, GLOBAL WARMING BIODI; Elsaeed G., 2011, NATL SECURITY HUMAN, P337; EVANS NA, 1985, PARASITOLOGY, V90, P269, DOI 10.1017/S0031182000050976; Gerard C, 1997, OECOLOGIA, V112, P447, DOI 10.1007/s004420050331; Harvell CD, 2002, SCIENCE, V296, P2158, DOI 10.1126/science.1063699; Heins DC, 2012, BIOL J LINN SOC, V106, P807, DOI 10.1111/j.1095-8312.2012.01907.x; Jones-Nelson O, 2011, PARASITOL RES, V109, P675, DOI 10.1007/s00436-011-2299-2; Kelehear C, 2012, ECOL LETT, V15, P329, DOI 10.1111/j.1461-0248.2012.01742.x; LEWIS FA, 1986, J PARASITOL, V72, P813, DOI 10.2307/3281829; Marcogliese DJ, 2011, TRENDS PARASITOL, V27, P123, DOI 10.1016/j.pt.2010.11.002; MINCHELLA DJ, 1985, AM NAT, V126, P843, DOI 10.1086/284456; MINCHELLA DJ, 1985, PARASITOLOGY, V90, P205, DOI 10.1017/S0031182000049143; MINCHELLA DJ, 1981, AM NAT, V118, P876, DOI 10.1086/283879; O'Dwyer K, 2015, PARASITOL INT, V64, P632, DOI 10.1016/j.parint.2015.09.001; Paull SH, 2011, FRESHWATER BIOL, V56, P767, DOI 10.1111/j.1365-2427.2010.02547.x; RICHARDS CS, 1967, AM J TROP MED HYG, V16, P797, DOI 10.4269/ajtmh.1967.16.797; Rubaba O, 2016, AFR J AQUAT SCI, V41, P143, DOI 10.2989/16085914.2016.1145103; Sandland GJ, 2007, J INVERTEBR PATHOL, V96, P43, DOI 10.1016/j.jip.2007.02.005; Schwanz LE, 2008, BEHAV ECOL SOCIOBIOL, V62, P1351, DOI 10.1007/s00265-008-0563-y; Sorensen RE, 2001, PARASITOLOGY, V123, pS3; Studer A, 2010, MAR ECOL PROG SER, V415, P11, DOI 10.3354/meps08742; Tabachnick WJ, 2010, J EXP BIOL, V213, P946, DOI 10.1242/jeb.037564; Tavalire HF, 2016, INT J PARASITOL, V46, P123, DOI 10.1016/j.ijpara.2015.10.001; Thiele EA, 2013, TROP MED INT HEALTH, V18, P1164, DOI 10.1111/tmi.12164; Thomas F, 2002, TRENDS PARASITOL, V18, P387, DOI 10.1016/S1471-4922(02)02339-5; THORNHILL JA, 1986, PARASITOLOGY, V93, P443, DOI 10.1017/S0031182000081166; Vale PF, 2012, J EVOLUTION BIOL, V25, P1888, DOI 10.1111/j.1420-9101.2012.02579.x; White MM, 2007, J PARASITOL, V93, P1, DOI 10.1645/GE-945R.1; White MM, 2006, J LIQ CHROMATOGR R T, V29, P2167, DOI 10.1080/10826070600760358; WILLIAMS CL, 1984, J PARASITOL, V70, P450, DOI 10.2307/3281585; Zekhnini A, 2002, PARASITOL RES, V88, P768, DOI 10.1007/s00436-002-0663-y 41 1 1 3 27 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution NOV 2016 70 11 2640 2646 10.1111/evo.13061 7 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity EB0YN WOS:000387072900018 27596485 2018-11-22 J Spurgeon, JJ; Pegg, MA; Hamel, MJ Spurgeon, J. J.; Pegg, M. A.; Hamel, M. J. Multi-scale Approach to Hydrological Classification Provides Insight to Flow Structure in Altered River System RIVER RESEARCH AND APPLICATIONS English Article classification; flow regime; hydrological character; hydropeaking; climate; hierarchical scales; rivers LIFE-HISTORY STRATEGIES; MISSOURI RIVER; FISH ASSEMBLAGE; PLATTE RIVER; REGIMES; HYDROPEAKING; VARIABILITY; AUSTRALIA; TIME; ECOHYDROLOGY Rivers are hierarchical systems exhibiting processes and patterns across spatial and temporal scales principally driven by changes in flow. Hydrological indices estimated with mean or median daily flow data (i.e. daily scale) may be insensitive to anthropogenic alteration that imparts sub-daily variation to flow. Therefore, indices developed at multiple temporal resolutions may provide additional insight into the presence of flow patterns masked by traditional techniques. We characterized the flow regime along the longitudinal gradient of the Platte River, a large Great Plains USA river, using hydrological indices derived with mean daily and sub-daily flow data and a combination of multivariate statistical techniques. Three unique flow units were evident using daily scale flow data, whereas six unique flow units were evident at the sub-daily scale. Flow units at both scales were not static, but rather the presence and extent of flow units across the riverscape depended on climate, tributary inflows and human influence. Anthropogenic alteration including hydropeaking was evident at the sub-daily scale but not at the daily scale. The full complement of flow structure within regulated rivers, therefore, may not be captured using mean or median daily discharge values alone. Inductive river classification studies may benefit from assessing hydrological indices at multiple scales, particularly when investigating river systems with anthropogenic modification such as hydropeaking. Copyright (c) 2016 John Wiley & Sons, Ltd. [Spurgeon, J. J.; Pegg, M. A.; Hamel, M. J.] Univ Nebraska, Sch Nat Resources, 243A Hardin Hall,3310 Holdrege St, Lincoln, NE 68583 USA Spurgeon, JJ (reprint author), Univ Nebraska, Sch Nat Resources, 243A Hardin Hall,3310 Holdrege St, Lincoln, NE 68583 USA. jonathan.spurgeon@huskers.unl.edu Nebraska Game and Parks Commission through the National Sport Fish Restoration Fund [F-75-R]; University of Nebraska-Lincoln, Institute of Agriculture and Natural Resources We thank the Nebraska Game and Parks Commission for project funding through the National Sport Fish Restoration Fund (F-75-R) and the University of Nebraska-Lincoln, Institute of Agriculture and Natural Resources. Ayllon D, 2014, ECOHYDROLOGY, V7, P569, DOI 10.1002/eco.1379; Baumgartner LJ, 2014, FISH FISH, V15, P410, DOI 10.1111/faf.12023; Bevelhimer MS, 2015, RIVER RES APPL, V31, P867, DOI 10.1002/rra.2781; Biggs BJF, 2005, RIVER RES APPL, V21, P283, DOI 10.1002/rra.847; Bond MJ, 2015, RIVER RES APPL, V31, P120, DOI 10.1002/rra.2720; Bruno MC, 2016, ECOHYDROLOGY, V9, P68, DOI 10.1002/eco.1611; Buenau KE, 2014, RIVER RES APPL, V30, P964, DOI 10.1002/rra.2694; Bunn SE, 2002, ENVIRON MANAGE, V30, P492, DOI 10.1007/s00267-002-2737-0; Chen QH, 2015, ECOL ENG, V77, P40, DOI 10.1016/j.ecoleng.2014.12.017; Dodds WK, 2015, FRESHW SCI, V34, P1, DOI 10.1086/679756; DYNESIUS M, 1994, SCIENCE, V266, P753, DOI 10.1126/science.266.5186.753; Everitt B, 2011, USE R, P1, DOI 10.1007/978-1-4419-9650-3; Falke JA, 2011, ECOHYDROLOGY, V4, P682, DOI 10.1002/eco.158; Galat D.L., 2005, RIVERS N AM, P427; Ginting D., 2008, 20075267 US GEOL SUR, P43; Goto D., 2015, ECOLOGICAL MODELLING, V296, P79, DOI DOI 10.1016/J.EC0L; Hadley R, 1987, REGUL RIVER, V1, P331; Hamel MJ, 2016, RIVER RES APPL, V32, P320, DOI 10.1002/rra.2850; Humphries P, 2014, BIOSCIENCE, V64, P870, DOI 10.1093/biosci/biu130; Humphries P, 2013, ECOL APPL, V23, P208, DOI 10.1890/11-2255.1; JOHNSON WC, 1994, ECOL MONOGR, V64, P45, DOI 10.2307/2937055; Jones NE, 2014, CAN J FISH AQUAT SCI, V71, P1616, DOI 10.1139/cjfas-2014-0040; Kennard MJ, 2010, FRESHWATER BIOL, V55, P171, DOI 10.1111/j.1365-2427.2009.02307.x; Korman J, 2009, T AM FISH SOC, V138, P76, DOI 10.1577/T08-026.1; Larned ST, 2011, ECOHYDROLOGY, V4, P532, DOI 10.1002/eco.126; Manly BFJ, 2005, MULTIVARIATE STAT ME; MATTHEWS WJ, 1988, J N AM BENTHOL SOC, V7, P387, DOI 10.2307/1467298; McManamay RA, 2015, ECOHYDROLOGY, V8, P460, DOI 10.1002/eco.1517; Mcmanamay RA, 2015, ECOL APPL, V25, P243, DOI 10.1890/14-0247.1; McManamay RA, 2014, ECOHYDROLOGY, V7, P903, DOI 10.1002/eco.1410; Mims MC, 2013, FRESHWATER BIOL, V58, P50, DOI 10.1111/fwb.12037; Mims MC, 2012, ECOLOGY, V93, P35, DOI 10.1890/11-0370.1; Olden JD, 2003, RIVER RES APPL, V19, P101, DOI 10.1002/rra.700; Olden JD, 2012, ECOHYDROLOGY, V5, P503, DOI 10.1002/eco.251; Olden JD, 2010, AM FISH S S, V73, P83; Palmer MA, 2008, FRONT ECOL ENVIRON, V6, P81, DOI 10.1890/060148; Pegg MA, 2003, AQUAT SCI, V65, P63, DOI 10.1007/s000270300005; Pegg MA, 2002, RIVER RES APPL, V18, P31, DOI 10.1002/rra.635; Perkin JS, 2015, ECOL MONOGR, V85, P73, DOI 10.1890/14-0121.1; Peters E. J., 2005, V45, P239; Poff NL, 2010, FRESHWATER BIOL, V55, P147, DOI 10.1111/j.1365-2427.2009.02204.x; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; Poff NL, 1997, J N AM BENTHOL SOC, V16, P391, DOI 10.2307/1468026; Pracheil BM, 2013, FRONT ECOL ENVIRON, V11, P124, DOI 10.1890/120179; R-Core-Team, 2015, LANG ENV STAT COMP; Richter BD, 1996, CONSERV BIOL, V10, P1163, DOI 10.1046/j.1523-1739.1996.10041163.x; Schmutz S, 2015, RIVER RES APPL, V31, P919, DOI 10.1002/rra.2795; Stewart-Koster B, 2011, J FISH BIOL, V79, P1525, DOI 10.1111/j.1095-8649.2011.03072.x; Thoms MC, 2006, RIVER RES APPL, V22, P115, DOI 10.1002/rra.900; Thoms MC, 2003, RIVER RES APPL, V19, P443, DOI 10.1002/rra.737; Thorp JH, 2014, FRESHWATER BIOL, V59, P200, DOI 10.1111/fwb.12237; Thorp JH, 2006, RIVER RES APPL, V22, P123, DOI 10.1002/rra.901; TRAVNICHEK VH, 1995, T AM FISH SOC, V124, P836, DOI 10.1577/1548-8659(1995)124<0836:ROAWFA>2.3.CO;2; Yellen B, 2015, HYDROL PROCESS, V29, P3261, DOI 10.1002/hyp.10438; Zimmerman JKH, 2010, RIVER RES APPL, V26, P1246, DOI 10.1002/rra.1324 55 7 7 0 9 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1535-1459 1535-1467 RIVER RES APPL River Res. Appl. NOV 2016 32 9 1841 1852 10.1002/rra.3041 12 Environmental Sciences; Water Resources Environmental Sciences & Ecology; Water Resources EB4JG WOS:000387336800002 2018-11-22 J Hamel, S; Gaillard, JM; Yoccoz, NG; Albon, S; Cote, SD; Craine, JM; Festa-Bianchet, M; Garel, M; Lee, P; Moss, C; Nussey, DH; Pelletier, F; Stien, A; Tveraa, T Hamel, S.; Gaillard, J. -M.; Yoccoz, N. G.; Albon, S.; Cote, S. D.; Craine, J. M.; Festa-Bianchet, M.; Garel, M.; Lee, P.; Moss, C.; Nussey, D. H.; Pelletier, F.; Stien, A.; Tveraa, T. Cohort variation in individual body mass dissipates with age in large herbivores ECOLOGICAL MONOGRAPHS English Article catch-up growth; cohort; compensatory growth; cumulative effects; life-history tactics; mixture models; sexual selection; slow-fast continuum; ungulates; viability selection LIFE-HISTORY TACTICS; EUROPEAN ROE DEER; FEMALE SOAY SHEEP; POPULATION-DYNAMICS; REPRODUCTIVE SUCCESS; RED DEER; SEXUAL SELECTION; MIXTURE-MODELS; BIGHORN EWES; TRADE-OFFS Environmental conditions experienced during early growth and development markedly shape phenotypic traits. Consequently, individuals of the same cohort may show similar life-history tactics throughout life. Conditions experienced later in life, however, could fine-tune these initial differences, either increasing (cumulative effect) or decreasing (compensatory effect) the magnitude of cohort variation with increasing age. Our novel comparative analysis that quantifies cohort variation in individual body size trajectories shows that initial cohort variation dissipates throughout life, and that lifetime patterns change both across species with different paces of life and between sexes. We used longitudinal data on body size (mostly assessed using mass) from 11 populations of large herbivores spread along the "slow-fast" continuum of life histories. We first quantified cohort variation using mixture models to identify clusters of cohorts with similar initial size. We identified clear cohort clusters in all species except the one with the slowest pace of life, revealing that variation in early size is structured among cohorts and highlighting typological differences among cohorts. Growth trajectories differed among cohort clusters, highlighting how early size is a fundamental determinant of lifetime growth patterns. In all species, among-cohort variation in size peaked at the start of life, then quickly decreased with age and stabilized around mid-life. Cohort variation was lower in species with a slower than a faster pace of life, and vanished at prime age in species with the slowest pace of life. After accounting for viability selection, compensatory/catch-up growth in early life explained much of the decrease in cohort variation. Females showed less phenotypic variability and stronger compensatory/catch-up growth than males early in life, whereas males showed more progressive changes throughout life. These results confirm that stronger selective pressures for rapid growth make males more vulnerable to poor environmental conditions early in life and less able to recover after a poor start. Our comparative analysis illustrates how variability in growth changes over time in closely related species that span a wide range on the slow-fast continuum, the main axis of variation in life-history strategies of vertebrates. [Hamel, S.; Yoccoz, N. G.] UiT Arctic Univ Norway, Fac Biosci Fisheries & Econ, Dept Arctic & Marine Biol, N-9037 Tromso, Norway; [Gaillard, J. -M.] Univ Lyon 1, CNRS, UMR Biometrie & Biol Evolut 5558, F-69622 Villeurbanne, France; [Albon, S.] James Hutton Inst, Aberdeen AB15 8QH, Scotland; [Cote, S. D.] Univ Laval, Dept Biol, Quebec City, PQ G1V 0A6, Canada; [Cote, S. D.] Univ Laval, Ctr Etud Nord, Quebec City, PQ G1V 0A6, Canada; [Craine, J. M.] Jonas Ventures, Manhattan, KS 66502 USA; [Festa-Bianchet, M.; Pelletier, F.] Univ Sherbrooke, Dept Biol, Sherbrooke, PQ J1K 2R1, Canada; [Festa-Bianchet, M.; Pelletier, F.] Univ Sherbrooke, Ctr Etud Nord, Sherbrooke, PQ J1K 2R1, Canada; [Garel, M.] Off Natl Chasse & Faune Sauvage, Unite Faune Montagne, 5 Allee Bethleem, F-38610 Zi Mayencin, Gieres, France; [Lee, P.] Univ Stirling, Sch Nat Sci, Behav & Evolut Res Grp, Stirling FK9 4LA, Scotland; [Lee, P.; Moss, C.] Amboseli Trust Elephants, POB 15135, Nairobi 00509, Kenya; [Nussey, D. H.] Univ Edinburgh, Inst Evolutionary Biol, Kings Bldg,Ashworth Labs Charlotte Auerbach Rd, Edinburgh EH 3FL, Midlothian, Scotland; [Stien, A.; Tveraa, T.] Norwegian Inst Nat Res, NO-9296 Tromso, Norway Hamel, S (reprint author), UiT Arctic Univ Norway, Fac Biosci Fisheries & Econ, Dept Arctic & Marine Biol, N-9037 Tromso, Norway. sandra.hamel@uit.no Craine, Joseph/D-4569-2009; Nussey, Daniel/F-4155-2010 Craine, Joseph/0000-0001-6561-3244; Stien, Audun/0000-0001-8046-7337; Festa-Bianchet, Marco/0000-0002-2352-3379; Yoccoz, Nigel/0000-0003-2192-1039 Natural Sciences and Engineering Research Council of Canada; Alberta Conservation Association; Norwegian Research Council; NERC; Hutton Institute; Environmental Agency of Norway; Office National de la Chasse et de la Faune Sauvage; National Trust for Scotland; ASAB; Carnegie Trust for Universities of Scotland; FRIPRO program of the Norwegian Research Council; Biotechnology and Biological Sciences Research Council [BB/H021868/1]; Natural Environment Research Council [NE/M003035/1] The mountain goat and bighorn sheep studies are mainly supported by the Natural Sciences and Engineering Research Council of Canada and the Alberta Conservation Association. The Svalbard reindeer project is mainly financed by the Norwegian Research Council, NERC and The Hutton Institute. The Ravdol reindeer study is financed by the Environmental Agency of Norway. The mouflon and roe deer projects are supported by the Office National de la Chasse et de la Faune Sauvage. The Soay sheep project was funded by NERC and supported by National Trust for Scotland; we thank Josephine Pemberton and many other researchers involved in the project for access to the data. Funding for the elephant growth was from ASAB, Carnegie Trust for Universities of Scotland, and many private donors over 43 years. This contribution is part of the HETRAGE project supported by the FRIPRO program of the Norwegian Research Council (awarded to S. Hamel). We are extremely grateful to the many people who helped collecting these invaluable data over all these years. We thank T. Coulson for comments on a previous draft of this manuscript. We are extremely grateful to T. Ezard, an anonymous reviewer, and the Associate Editor for providing constructive and insightful comments that greatly improved this paper. Aitkin M, 2009, STAT MODELLING R; ALBON SD, 1987, J ANIM ECOL, V56, P69, DOI 10.2307/4800; Andersen R, 2000, J ANIM ECOL, V69, P672, DOI 10.1046/j.1365-2656.2000.00425.x; Auer SK, 2010, AM NAT, V176, P818, DOI 10.1086/657061; Bardsen BJ, 2012, J ANIM ECOL, V81, P364, DOI 10.1111/j.1365-2656.2011.01913.x; Baron JP, 2010, J ANIM ECOL, V79, P640, DOI 10.1111/j.1365-2656.2010.01661.x; Bates D., 2014, LME4 LINEAR MIXED EF; Bates D, 2015, J STAT SOFTW, V67, P1; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; Bernardo J, 1996, AM ZOOL, V36, P83; Bonduriansky R, 2008, FUNCT ECOL, V22, P443, DOI 10.1111/j.1365-2435.2008.01417.x; Brame R, 2006, J QUANT CRIMINOL, V22, P31, DOI 10.1007/s10940-005-9001-8; Caswell H, 2001, MATRIX POPULATION MO; Christiansen P, 2004, ZOOL J LINN SOC-LOND, V140, P523, DOI 10.1111/j.1096-3642.2004.00113.x; Clutton-Brock T.H, 1991, EVOLUTION PARENTAL C; Clutton-Brock T. H., 2004, SOAY SHEEP DYNAMICS; Clutton-Brock T.H., 1988, REPROD SUCCESS STUDI; Clutton-Brock T, 2007, SCIENCE, V318, P1882, DOI 10.1126/science.1133311; CluttonBrock TH, 1996, J ANIM ECOL, V65, P675, DOI 10.2307/5667; CLUTTONBROCK TH, 1985, NATURE, V313, P131, DOI 10.1038/313131a0; Coulson T, 2008, AM NAT, V172, P599, DOI 10.1086/591693; Crowley PH, 2015, ECOL MODEL, V308, P1, DOI 10.1016/j.ecolmodel.2015.03.018; Cubaynes S, 2012, METHODS ECOL EVOL, V3, P564, DOI 10.1111/j.2041-210X.2011.00175.x; Descamps S, 2008, J ANIM ECOL, V77, P305, DOI 10.1111/j.1365-2656.2007.01340.x; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Dobson FS, 1999, J ANIM ECOL, V68, P73, DOI 10.1046/j.1365-2656.1999.00268.x; Douhard M, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0276; Douhard M, 2013, ECOLOGY, V94, P1805, DOI 10.1890/13-0034.1; Easterling DR, 2000, SCIENCE, V289, P2068, DOI 10.1126/science.289.5487.2068; Everitt BS, 2011, CLUSTER ANAL; Festa-Bianchet M, 2000, BEHAV ECOL, V11, P633, DOI 10.1093/beheco/11.6.633; Festa-Bianchet M, 1998, BEHAV ECOL, V9, P144, DOI 10.1093/beheco/9.2.144; FESTABIANCHET M, 2008, MOUNTAIN GOATS ECOLO; Fisher R. A., 1930, GENETICAL THEORY NAT; Ford JH, 2012, METHODS ECOL EVOL, V3, P1047, DOI 10.1111/j.2041-210X.2012.00243.x; Fruhwirth-Schnatter S, 2006, FINITE MIXTURE MARKO; Gaillard J.-M, 2016, ENCY EVOLUTIONARY BI, V2, P312; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; Gaillard JM, 2005, AM NAT, V166, P119, DOI 10.1086/430330; Gaillard JM, 2003, ECOSCIENCE, V10, P412, DOI 10.1080/11956860.2003.11682789; Gaillard JM, 2003, J WILDLIFE MANAGE, V67, P767, DOI 10.2307/3802684; Gaillard JM, 2000, P ROY SOC B-BIOL SCI, V267, P471, DOI 10.1098/rspb.2000.1024; Garel M, 2006, ECOLOGY, V87, P745, DOI 10.1890/05-0584; Garel M, 2005, J ZOOL, V266, P65, DOI 10.1017/S0952836905006667; Garel M, 2007, ECOL APPL, V17, P1607, DOI 10.1890/06-0898.1; Garratt M, 2015, CURR BIOL, V25, P759, DOI 10.1016/j.cub.2014.11.071; Grafen A., 1988, REPROD SUCCESS, P454; GREEN WCH, 1991, OECOLOGIA, V86, P521, DOI 10.1007/BF00318318; Grun B, 2008, J STAT SOFTW, V28, P1; Hamel S, 2017, BIOL REV, V92, P754, DOI 10.1111/brv.12254; Hamel S, 2012, ECOL APPL, V22, P1628; Hamel S, 2010, ECOLOGY, V91, P2034, DOI 10.1890/09-1311.1; Hastings KK, 2011, ECOSPHERE, V2, DOI 10.1890/ES11-00215.1; Hayward AD, 2013, P NATL ACAD SCI USA, V110, P13886, DOI 10.1073/pnas.1301817110; Hector KL, 2012, J ANIM ECOL, V81, P583, DOI 10.1111/j.1365-2656.2011.01942.x; Herfindal I, 2015, J ANIM ECOL, V84, P702, DOI 10.1111/1365-2656.12318; Hodge SJ, 2008, J ANIM ECOL, V77, P92, DOI 10.1111/j.1365-2656.2007.01318.x; Hoeksma JB, 2006, INFANT CHILD DEV, V15, P627, DOI 10.1002/icd.483; Jones BL, 2001, SOCIOL METHOD RES, V29, P374, DOI 10.1177/0049124101029003005; Jones JH, 2010, J ANIM ECOL, V79, P1262, DOI 10.1111/j.1365-2656.2010.01687.x; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Kruuk LEB, 1999, P ROY SOC B-BIOL SCI, V266, P1655, DOI 10.1098/rspb.1999.0828; Landete-Castillejos T, 2005, BEHAV ECOL SOCIOBIOL, V57, P267, DOI 10.1007/s00265-004-0848-8; Langer P, 2008, ZOOLOGY, V111, P148, DOI 10.1016/j.zool.2007.06.007; Laws R., 1975, ELEPHANTS THEIR HABI; Le Galliard JF, 2010, J ANIM ECOL, V79, P1296, DOI 10.1111/j.1365-2656.2010.01732.x; Lebreton JD, 2005, ECOL MODEL, V188, P22, DOI 10.1016/j.ecolmodel.2005.05.003; Lee Phyllis C, 2013, Biol Lett, V9, P20130011, DOI 10.1098/rsbl.2013.0011; Lee WS, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2370; Lemaitre JF, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0209; LESLIE PH, 1966, J ANIM ECOL, V35, P291, DOI 10.2307/2396; Lidgard DC, 2005, BEHAV ECOL, V16, P541, DOI 10.1093/beheco/ari023; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Lindstrom J, 2002, ECOL LETT, V5, P338, DOI 10.1046/j.1461-0248.2002.00317.x; Madsen T, 2000, J ANIM ECOL, V69, P952, DOI 10.1046/j.1365-2656.2000.00477.x; Mainguy J, 2009, P ROY SOC B-BIOL SCI, V276, P4067, DOI 10.1098/rspb.2009.1231; Mangel M, 2005, AM NAT, V166, pE155, DOI 10.1086/444439; Marcil-Ferland D, 2013, AM NAT, V182, P775, DOI 10.1086/673534; Martin JGA, 2012, OIKOS, V121, P752, DOI 10.1111/j.1600-0706.2011.19962.x; Martin JGA, 2010, AM NAT, V176, P414, DOI 10.1086/656267; McLachlan G. J., 2000, FINITE MIXTURE MODEL; McLachlan GJ, 2014, WIRES DATA MIN KNOWL, V4, P341, DOI 10.1002/widm.1135; MCLACHLAN GJ, 1987, J R STAT SOC C-APPL, V36, P318; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; McNamara JM, 1998, BEHAV ECOL, V9, P642, DOI 10.1093/beheco/9.6.642; Melnykov V, 2013, WIRES COMPUT STAT, V5, P135, DOI 10.1002/wics.1248; Metcalfe NB, 2003, EXP GERONTOL, V38, P935, DOI 10.1016/S0531-5565(03)00159-1; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; MICHENER GR, 1990, ECOLOGY, V71, P855, DOI 10.2307/1937357; Monaghan P, 2008, PHILOS T R SOC B, V363, P1635, DOI 10.1098/rstb.2007.0011; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Moss C. J., 2011, AMBOSELI ELEPHANTS L; Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4; NEWTON I, 1989, LIFETIME REPROD BIRD; Nussey DH, 2007, CURR BIOL, V17, pR1000, DOI 10.1016/j.cub.2007.10.005; Nussey DH, 2011, ECOLOGY, V92, P1936, DOI 10.1890/11-0308.1; Nussey DH, 2009, FUNCT ECOL, V23, P809, DOI 10.1111/j.1365-2435.2009.01555.x; ORIANS GH, 1969, AM NAT, V103, P589, DOI 10.1086/282628; Ozgul A, 2009, SCIENCE, V325, P464, DOI 10.1126/science.1173668; Pelletier F, 2006, ANIM BEHAV, V71, P649, DOI 10.1016/j.anbehav.2005.07.008; Pettorelli N, 2002, P ROY SOC B-BIOL SCI, V269, P747, DOI 10.1098/rspb.2001.1791; Plard F, 2015, J ANIM ECOL, V84, P1363, DOI 10.1111/1365-2656.12378; Plard F, 2014, PLOS BIOL, V12, DOI 10.1371/journal.pbio.1001828; Plard F, 2014, ECOGRAPHY, V37, P241, DOI 10.1111/j.1600-0587.2013.00414.x; ROBERTSON A, 1992, J ZOOL, V227, P661, DOI 10.1111/j.1469-7998.1992.tb04422.x; Robinson MR, 2006, EVOLUTION, V60, P2168, DOI 10.1111/j.0014-3820.2006.tb01854.x; Rughetti M, 2010, J WILDLIFE MANAGE, V74, P1024, DOI 10.2193/2009-335; SAETHER BE, 1993, BEHAV ECOL SOCIOBIOL, V33, P147, DOI 10.1007/BF00216594; Saether BE, 2013, AM NAT, V182, P743, DOI 10.1086/673497; Schielzeth H, 2009, BEHAV ECOL, V20, P416, DOI 10.1093/beheco/arn145; Solberg EJ, 2004, ECOGRAPHY, V27, P677, DOI 10.1111/j.0906-7590.2004.03864.x; Solberg E, 2008, OECOLOGIA, V158, P485, DOI 10.1007/s00442-008-1158-z; Solberg EJ, 2007, OECOLOGIA, V154, P259, DOI 10.1007/s00442-007-0833-9; Stahl D, 2012, WIRES COMPUT STAT, V4, P341, DOI 10.1002/wics.1204; Stamps JA, 2012, ANIM BEHAV, V83, P1325, DOI 10.1016/j.anbehav.2012.02.017; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Steinheim G, 2002, J ZOOL, V258, P515, DOI 10.1017/S095283690200167X; Stenseth NC, 2002, SCIENCE, V297, P1292, DOI 10.1126/science.1071281; Stien A, 2002, J ANIM ECOL, V71, P937, DOI 10.1046/j.1365-2656.2002.00659.x; Suarez OV, 2004, CAN J ZOOL, V82, P1572, DOI 10.1139/Z04-137; Theoret-Gosselin R, 2015, OECOLOGIA, V178, P175, DOI 10.1007/s00442-014-3198-x; Therrien JF, 2007, BEHAV ECOL SOCIOBIOL, V62, P193, DOI 10.1007/s00265-007-0453-8; Thomas DW, 2001, SCIENCE, V291, P2598, DOI 10.1126/science.1057487; Toigo C, 1999, J MAMMAL, V80, P1021, DOI 10.2307/1383272; Trivers R. L., 1972, SEXUAL SELECTION DES, P138; Tuljapurkar S, 2009, ECOL LETT, V12, P93, DOI 10.1111/j.1461-0248.2008.01262.x; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; Van de Pol M, 2006, J ANIM ECOL, V75, P616, DOI 10.1111/j.1365-2656.2006.01079.x; van de Pol MV, 2009, ANIM BEHAV, V77, P753, DOI 10.1016/j.anbehav.2008.11.006; VAUPEL JW, 1979, DEMOGRAPHY, V16, P439, DOI 10.2307/2061224; Venables W. N, 2002, MODERN APPL STAT S; Verbeke G, 1996, J AM STAT ASSOC, V91, P217, DOI 10.2307/2291398; Wilkin TA, 2009, CURR BIOL, V19, P1998, DOI 10.1016/j.cub.2009.09.065; Wilson AJ, 2009, J ANIM ECOL, V78, P354, DOI 10.1111/j.1365-2656.2008.01489.x; WOOLLER RD, 1992, TRENDS ECOL EVOL, V7, P111, DOI 10.1016/0169-5347(92)90143-Y; Zedrosser A, 2013, ECOLOGY, V94, P231, DOI 10.1890/12-0229.1 140 17 17 5 39 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9615 1557-7015 ECOL MONOGR Ecol. Monogr. NOV 2016 86 4 517 543 10.1002/ecm.1232 27 Ecology Environmental Sciences & Ecology EA8TI WOS:000386911200008 Green Published 2018-11-22 J Ruh, A; Olden, JD; Sabo, JL Ruh, Albert; Olden, Julian D.; Sabo, John L. Declining streamflow induces collapse and replacement of native fish in the American Southwest FRONTIERS IN ECOLOGY AND THE ENVIRONMENT English Article ALTERED FLOW REGIMES; LIFE-HISTORY STRATEGIES; CLIMATE-CHANGE; ENVIRONMENTAL FLOWS; RIVER; WATER; BIODIVERSITY; ECOSYSTEMS; SCIENCE; PERSISTENCE Water scarcity is a global threat to freshwater biodiversity, but connecting variation in streamflow to viability of imperiled faunas remains a challenge. Here we combined time-series modeling techniques on long-term ecohydrological data to quantify flow-ecology relationships on native and non-native riverine fish in the American Southwest, and simulate likely fish trajectories and "quasi-extinction" risks in the near future. Streamflow has been declining conspicuously over the past 30 years in the Colorado and Rio Grande river basins, and year-to-year variation in streamflow influences the covariation between native and non-native fish abundance. Risks of decline are high (>50%) for nearly three-quarters of the modeled native species, and current trends in streamflow increase quasi-extinction risk for natives (+8.5%) but reduce this risk for non-natives (-5.9%). Hydrological changes need to be mitigated if we are to slow down the rapid replacement of native biodiversity with non-native species in American Southwest rivers. [Ruh, Albert; Sabo, John L.] Arizona State Univ, Julie Ann Wrigley Global Inst Sustainabil, Tempe, AZ 85281 USA; [Olden, Julian D.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA; [Sabo, John L.] Arizona State Univ, Sch Life Sci, Tempe, AZ USA Ruh, A (reprint author), Arizona State Univ, Julie Ann Wrigley Global Inst Sustainabil, Tempe, AZ 85281 USA. albert.ruhi@asu.edu US National Science Foundation [1204478]; US Department of Defense SERDP [RC-2511] We thank the numerous individuals, agencies, and institutions - including the Arizona Game and Fish Department, the New Mexico Department of Game and Fish, the Navajo Nation, and the US Forest Service - that graciously contributed the long-term fish datasets to JDO that were analyzed in this study. We also thank K Fritschie for assisting in database management, and members of the Sabo lab for suggestions that improved the manuscript. Support for this work was provided by the US National Science Foundation (1204478) to AR and JLS, and by the US Department of Defense SERDP (RC-2511) to JDO. Acreman M, 2014, FRONT ECOL ENVIRON, V12, P466, DOI 10.1890/130134; [Anonymous], 2014, CLIMATE CHANGE 2014; Bernardo JM, 2003, RIVER RES APPL, V19, P521, DOI 10.1002/rra.726; Bunn SE, 2002, ENVIRON MANAGE, V30, P492, DOI 10.1007/s00267-002-2737-0; Byers JE, 2002, OIKOS, V97, P449, DOI 10.1034/j.1600-0706.2002.970316.x; Carlisle DM, 2011, FRONT ECOL ENVIRON, V9, P264, DOI 10.1890/100053; Dettinger M, 2015, ECOL APPL, V25, P2069, DOI 10.1890/15-0938.1; Gido KB, 2013, CAN J FISH AQUAT SCI, V70, P554, DOI 10.1139/cjfas-2012-0441; Grantham TE, 2014, BIOSCIENCE, V64, P1006, DOI 10.1093/biosci/biu159; IUCN, 2013, GUID US IUCN RED LIS; Jaeger KL, 2014, P NATL ACAD SCI USA, V111, P13894, DOI 10.1073/pnas.1320890111; Johnson PTJ, 2008, FRONT ECOL ENVIRON, V6, P359, DOI 10.1890/070156; Lake PS, 2011, DROUGHT AND AQUATIC ECOSYSTEMS: EFFECTS AND RESPONSES, P1, DOI 10.1002/9781444341812; Lake PS, 2003, FRESHWATER BIOL, V48, P1161, DOI 10.1046/j.1365-2427.2003.01086.x; Lins H.F., 2012, USGS HYDROCLIMATIC D; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; Mcclure MM, 2013, CONSERV BIOL, V27, P1222, DOI 10.1111/cobi.12166; Mims MC, 2013, FRESHWATER BIOL, V58, P50, DOI 10.1111/fwb.12037; Olden JD, 2006, ECOL MONOGR, V76, P25, DOI 10.1890/05-0330; Olden JD, 2014, FRONT ECOL ENVIRON, V12, P176, DOI 10.1890/130076; Perkin JS, 2015, AQUAT CONSERV, V25, P639, DOI 10.1002/aqc.2501; Poff NL, 2007, P NATL ACAD SCI USA, V104, P5732, DOI 10.1073/pnas.0609812104; Poff NL, 2016, NAT CLIM CHANGE, V6, P25, DOI 10.1038/NCLIMATE2765; Poff NL, 2003, FRONT ECOL ENVIRON, V1, P298, DOI 10.1890/1540-9295(2003)001[0298:RFAWWE]2.0.CO;2; Poff NL, 2012, SAVING MILLION SPECI; Propst DL, 2008, ECOL APPL, V18, P1236, DOI 10.1890/07-1489.1; Ruhi A, 2015, GLOBAL CHANGE BIOL, V21, P1482, DOI 10.1111/gcb.12780; Sabater Sergi, 2008, Freshwater Reviews, V1, P75, DOI 10.1608/FRJ-1.1.5; Sabo JL, 2008, ECOL MONOGR, V78, P19, DOI 10.1890/06-1340.1; Sabo JL, 2014, P NATL ACAD SCI USA, V111, P13686, DOI 10.1073/pnas.1414385111; Sabo JL, 2010, P NATL ACAD SCI USA, V107, P21263, DOI 10.1073/pnas.1009734108; Seager R, 2013, NAT CLIM CHANGE, V3, P482, DOI [10.1038/NCLIMATE1787, 10.1038/nclimate1787]; Shafroth PB, 2010, FRESHWATER BIOL, V55, P68, DOI 10.1111/j.1365-2427.2009.02271.x; Staudt A, 2013, FRONT ECOL ENVIRON, V11, P494, DOI 10.1890/120275; Vorosmarty CJ, 2010, NATURE, V467, P555, DOI 10.1038/nature09440; Xenopoulos MA, 2005, GLOBAL CHANGE BIOL, V11, P1557, DOI 10.1111/j.1365-2486.2005.01008.x 36 0 0 1 32 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1540-9295 1540-9309 FRONT ECOL ENVIRON Front. Ecol. Environ. NOV 2016 14 9 465 472 10.1002/fee.1424 8 Ecology; Environmental Sciences Environmental Sciences & Ecology EA8TO WOS:000386912000012 2018-11-22 J Varela-Cervero, S; Lopez-Garcia, A; Barea, JM; Azcon-Aguilar, C Varela-Cervero, Sara; Lopez-Garcia, Alvaro; Barea, Jose M.; Azcon-Aguilar, Concepcion Spring to autumn changes in the arbuscular mycorrhizal fungal community composition in the different propagule types associated to a Mediterranean shrubland PLANT AND SOIL English Article Arbuscular mycorrhizal fungi; Diversity; Mycorrhizal propagules; Seasonal changes; Life strategy; Mediterranean environments LIFE-HISTORY STRATEGIES; SOIL ORGANIC-MATTER; ROOT COLONIZATION; FUNCTIONAL DIVERSITY; DISTRIBUTION PATTERNS; TEMPORAL DYNAMICS; COLONIZING ROOTS; SPORE ABUNDANCE; SOUTHEAST SPAIN; HOST-PLANTS Arbuscular mycorrhizal fungi (AMF) appear differentially represented among propagule forms [intraradical mycelium (IRM) in colonized roots, spores and extraradical mycelium (ERM)]. However, spring to autumn changes in the AMF communities harboured in the different propagule forms has not been studied, being this the aim of the present study. A terminal restriction fragment length polymorphism approach was used to monitor, in spring and autumn, the AMF community composition present in the three propagule types associated to five shrub species in a semi-arid Mediterranean environment. The AMF community composition in roots was significantly different between spring and autumn; however, no significant differences were detected in soil propagules (spores and ERM). Different trends were identified according to the preferential biomass allocation patterns of AMF phylotypes, suggesting different life strategies: those allocating mainly into IRM (belonging to the Glomeraceae), ERM (Diversisporaceae and Gigasporaceae) or spores (Pacisporaceae and Paraglomeraceae). Differences of AMF taxa in the biomass allocation patterns among propagules are maintained throughout the year. Progress in the knowledge of functional features of AMF communities and their responses to seasonal variations are important for the AMF application in Mediterranean ecosystems. [Varela-Cervero, Sara; Lopez-Garcia, Alvaro; Barea, Jose M.; Azcon-Aguilar, Concepcion] CSIC, Dept Microbiol Suelo & Sistemas Simbiot, Estn Expt Zaidin, Prof Albareda 1, E-18008 Granada, Spain Varela-Cervero, S (reprint author), CSIC, Dept Microbiol Suelo & Sistemas Simbiot, Estn Expt Zaidin, Prof Albareda 1, E-18008 Granada, Spain. sara.varela@eez.csic.es Barea, Jose Miguel/H-5893-2015 Barea, Jose Miguel/0000-0001-5021-4718; Lopez-Garcia, Alvaro/0000-0001-8267-3572 Formacion de Personal Investigador Programme (Ministerio de Ciencia e Innovacion); Spanish government under Plan Nacional de I + D + I; FEDER funds [CGL-2009-08825]; Junta de Andalucia, Consejeria de Economia, Innovacion y Ciencia [CVI-7640] Sara Varela-Cervero thanks the Formacion de Personal Investigador Programme (Ministerio de Ciencia e Innovacion) for financial support. This research was supported by the Spanish government under the Plan Nacional de I + D + I, co-financed by FEDER funds (project CGL-2009-08825) and the Junta de Andalucia, Consejeria de Economia, Innovacion y Ciencia (project CVI-7640). We also thank the Consejeria de Medio Ambiente, Junta de Andalucia (Spain) for permission to work in Sierra de Baza Natural Park. We sincerely thank Estefania Berrio for technical assistance and Jose-Miguel Barea Azcon, from the Environment and Water Agency of Andalusia, for providing the climatic data of the study site. Additionally, we would like to thank the two anonymous reviewers and the Section Editor for their valuable comments and suggestions to improve the manuscript. Allen HD, 2009, PHYS GEOGRAPHY MEDIT, P203; Bardgett RD, 2014, NATURE, V515, P505, DOI 10.1038/nature13855; Barea JM, 2011, J ARID ENVIRON, V75, P1292, DOI 10.1016/j.jaridenv.2011.06.001; Bates ST, 2013, ISME J, V7, P652, DOI 10.1038/ismej.2012.147; Bennett AE, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0083241; Bever JD, 2009, ECOL LETT, V12, P13, DOI 10.1111/j.1461-0248.2008.01254.x; Brito I, 2011, SOIL USE MANAGE, V27, P350, DOI 10.1111/j.1475-2743.2011.00350.x; Brundrett M, 1994, PRACTICAL METHODS MY; Chagnon PL, 2013, TRENDS PLANT SCI, V18, P484, DOI 10.1016/j.tplants.2013.05.001; Chytry M, 2002, J VEG SCI, V13, P79, DOI 10.1658/1100-9233(2002)013[0079:DODSWS]2.0.CO;2; Collins RE, 2007, NUCLEIC ACIDS RES, V35, pW58, DOI 10.1093/nar/gkm384; Cornejo P, 2004, FEMS MICROBIOL LETT, V241, P265, DOI 10.1016/j.femsle.2004.10.030; Cotton TEA, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0109234; Davison J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0041938; De Caceres M, 2009, ECOLOGY, V90, P3566; de Souza FA, 2003, MYCOLOGIA, V95, P1004, DOI 10.2307/3761908; Denison RF, 2011, CURR BIOL, V21, pR775, DOI 10.1016/j.cub.2011.06.018; DIAZ G, 1994, ARID SOIL RES REHAB, V8, P59; DONCASTER C. C., 1962, NEMATOLOGICA, V8, P313; Dumbrell AJ, 2011, NEW PHYTOL, V190, P794, DOI 10.1111/j.1469-8137.2010.03636.x; Fitzjohn RG, 2007, MOL ECOL NOTES, V7, P583, DOI 10.1111/j.1471-8286.2007.01744.x; GERDEMANN J. W., 1963, TRANS BRIT MYCOL SOC, V46, P235; Grabherr G, 2003, ECOL STU AN, P3; Gryndler M, 2009, MYCORRHIZA, V19, P255, DOI 10.1007/s00572-008-0217-y; Hart MM, 2002, NEW PHYTOL, V153, P335, DOI 10.1046/j.0028-646X.2001.00312.x; Hart MM, 2001, MYCOLOGIA, V93, P1186, DOI 10.2307/3761678; Helgason T, 2002, J ECOL, V90, P371, DOI 10.1046/j.1365-2745.2001.00674.x; Hempel S, 2007, ENVIRON MICROBIOL, V9, P1930, DOI 10.1111/j.1462-2920.2007.01309.x; HETRICK BAD, 1986, MYCOLOGIA, V78, P32, DOI 10.2307/3793373; Holland SM, 2008, ANAL RAREFACTION 1 3; JONER EJ, 1995, SOIL BIOL BIOCHEM, V27, P1153, DOI 10.1016/0038-0717(95)00047-I; Jung SC, 2012, J CHEM ECOL, V38, P651, DOI 10.1007/s10886-012-0134-6; Kaiser C, 2015, NEW PHYTOL, V205, P1537, DOI 10.1111/nph.13138; Kjoller R, 2000, PLANT SOIL, V226, P189, DOI 10.1023/A:1026499923717; Klironomos JN, 2002, MYCORRHIZA, V12, P181, DOI 10.1007/s00572-002-0169-6; Koide RT, 2004, MYCORRHIZA, V14, P145, DOI 10.1007/s00572-004-0307-4; Lee J, 2008, FEMS MICROBIOL ECOL, V65, P339, DOI 10.1111/j.1574-6941.2008.00531.x; Leifheit EF, 2014, PLANT SOIL, V374, P523, DOI 10.1007/s11104-013-1899-2; Li LF, 2010, FEMS MICROBIOL ECOL, V71, P418, DOI 10.1111/j.1574-6941.2009.00815.x; Liu Y, 2009, FEMS MICROBIOL ECOL, V67, P81, DOI 10.1111/j.1574-6941.2008.00597.x; Lopez-Garcia A, 2014, OECOLOGIA, V176, P1075, DOI 10.1007/s00442-014-3091-7; Lopez-Garcia A, 2014, PLANT SOIL, V379, P247, DOI 10.1007/s11104-014-2060-6; Lopez-Sanchez M. E., 1992, Mycorrhiza, V2, P33, DOI 10.1007/BF00206281; Lumini E, 2010, ENVIRON MICROBIOL, V12, P2165, DOI 10.1111/j.1462-2920.2009.02099.x; Mandyam K, 2008, MYCORRHIZA, V18, P145, DOI 10.1007/s00572-008-0165-6; Martinez-Garcia LB, 2015, NEW PHYTOL, V205, P1565, DOI 10.1111/nph.13226; Martinez-Garcia LB, 2011, SOIL BIOL BIOCHEM, V43, P682, DOI 10.1016/j.soilbio.2010.12.006; Martiny JBH, 2006, NAT REV MICROBIOL, V4, P102, DOI 10.1038/nrmicro1341; MAYR R, 1990, AGR ECOSYST ENVIRON, V29, P281, DOI 10.1016/0167-8809(90)90288-O; McArdle BH, 2001, ECOLOGY, V82, P290, DOI 10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2; MCGONIGLE TP, 1990, NEW PHYTOL, V115, P495, DOI 10.1111/j.1469-8137.1990.tb00476.x; Munkvold L, 2004, NEW PHYTOL, V164, P357, DOI 10.1111/j.1469-8137.2004.01169.x; Oehl F, 2009, AGR ECOSYST ENVIRON, V134, P257, DOI 10.1016/j.agee.2009.07.008; Opik M, 2009, NEW PHYTOL, V184, P424, DOI 10.1111/j.1469-8137.2009.02920.x; Oksanen J., 2015, VEGAN COMMUNITY ECOL; Opik M, 2010, NEW PHYTOL, V188, P223, DOI 10.1111/j.1469-8137.2010.03334.x; Opik M, 2008, NEW PHYTOL, V179, P867, DOI 10.1111/j.1469-8137.2008.02515.x; Opik M, 2006, J ECOL, V94, P778, DOI 10.1111/j.1365-2745.2006.01136.x; PHILLIPS JM, 1970, T BRIT MYCOL SOC, V55, P158, DOI 10.1016/S0007-1536(70)80110-3; Powell JR, 2009, P ROY SOC B-BIOL SCI, V276, P4237, DOI 10.1098/rspb.2009.1015; Pozo MJ, 2015, NEW PHYTOL, V205, P1431, DOI 10.1111/nph.13252; Redford AJ, 2010, ENVIRON MICROBIOL, V12, P2885, DOI 10.1111/j.1462-2920.2010.02258.x; Rillig MC, 2006, NEW PHYTOL, V171, P41, DOI 10.1111/j.1469-8137.2006.01750.x; Rodriguez-Echeverria S, 2008, EUR J SOIL BIOL, V44, P30, DOI 10.1016/j.ejsobi.2007.01.003; ROYSTON P, 1995, APPL STAT-J ROY ST C, V44, P547, DOI 10.2307/2986146; Russo SE, 2012, SOIL BIOL BIOCHEM, V55, P48, DOI 10.1016/j.soilbio.2012.05.021; Sanchez-Castro I, 2012, MYCORRHIZA, V22, P449, DOI 10.1007/s00572-011-0421-z; Santos-Gonzalez JC, 2007, APPL ENVIRON MICROB, V73, P5613, DOI 10.1128/AEM.00262-07; Sikes BA, 2014, MYCORRHIZA, V24, P219, DOI 10.1007/s00572-013-0531-x; SIMON L, 1992, APPL ENVIRON MICROB, V58, P291; Sivakumar N, 2013, ANN MICROBIOL, V63, P151, DOI 10.1007/s13213-012-0455-2; Smith SE, 2010, PLANT SOIL, V326, P3, DOI 10.1007/s11104-009-9981-5; Tamura K, 2007, MOL BIOL EVOL, V24, P1596, DOI 10.1093/molbev/msm092; Tichy L, 2006, J VEG SCI, V17, P809, DOI 10.1111/j.1654-1103.2006.tb02504.x; van der Heijden MGA, 2008, ECOL LETT, V11, P296, DOI 10.1111/j.1461-0248.2007.01139.x; van der Heijden MGA, 2015, NEW PHYTOL, V205, P1406, DOI 10.1111/nph.13288; van der Heijden MGA, 2004, NEW PHYTOL, V164, P201, DOI 10.1111/j.1469-8137.2004.01205.x; van der Heijden MGA, 1998, NATURE, V396, P69, DOI 10.1038/23932; van der Heijden MGA, 1998, ECOLOGY, V79, P2082, DOI 10.1890/0012-9658(1998)079[2082:DAMFSA]2.0.CO;2; Vandenkoornhuyse P, 2003, MOL ECOL, V12, P3085, DOI 10.1046/j.1365-294X.2003.01967.x; Varela-Cervero S, 2015, ENVIRON MICROBIOL, V17, P2882, DOI 10.1111/1462-2920.12810; Vogelsang KM, 2006, NEW PHYTOL, V172, P554, DOI 10.1111/j.1469-8137.2006.01854.x; Yang HS, 2012, BMC EVOL BIOL, V12, DOI 10.1186/1471-2148-12-50; Zangaro W, 2013, MYCORRHIZA, V23, P221, DOI 10.1007/s00572-012-0464-9 84 5 5 4 32 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0032-079X 1573-5036 PLANT SOIL Plant Soil NOV 2016 408 1-2 107 120 10.1007/s11104-016-2912-3 14 Agronomy; Plant Sciences; Soil Science Agriculture; Plant Sciences EA7CV WOS:000386787000008 2018-11-22 J Cheng, YR; Mayfield, AB; Meng, PJ; Dai, CF; Huys, R Cheng, Yu-Rong; Mayfield, Anderson B.; Meng, Pei-Jie; Dai, Chang-Feng; Huys, Rony Copepods associated with scleractinian corals: a worldwide checklist and a case study of their impact on the reef-building coral Pocillopora damicornis (Linnaeus, 1758) (Pocilloporidae) ZOOTAXA English Article; Proceedings Paper 12th International Conference on Copepoda (ICOC) JUL 14-18, 2014 Hanyang Univ, Seoul, SOUTH KOREA World Assoc Copepodologists Hanyang Univ bleaching; checklist; copepod; coral reef; infection; Symbiodinium; Scleractinia; symbiosis; water pollution GARDINEROSERIS-PLANULATA DANA; PAVONA EXPLANULATA LAMARCK; HOST-PARASITE INTERACTIONS; GREAT-BARRIER-REEF; SP-N COPEPODA; NEW-CALEDONIA; CLIMATE-CHANGE; INDO-PACIFIC; POECILOSTOMATOID COPEPODS; HARPACTICOID COPEPODS The Cnidaria have more symbiotic copepods than any other group of invertebrates, and the greatest numbers of these associates occur on hard corals. A review of the scattered literature on the diversity and taxonomic composition of scleractinian-associated copepods and their hosts revealed a total of 148 coral species, representing 66 genera and 15 families that serve as hosts to copepods. At present, 363 copepod species, representing 99 genera, 19 families and three orders, have been recorded as associates of scleractinian corals. The total included 288 cyclopoids, 68 siphonostomatoids and seven harpacticoids. Within the Cyclopoida the representation of species varied greatly among the 13 families, with a disproportionate number of species belonging to the Anchimolgidae (141 species) and Xarifiidae (92 species). Data on host utilization and geographical distribution of all copepods living symbiotically with hard corals is synthesized and host specificity patterns are highlighted. The prevalence, intensity, density, and biodiversity of copepod infection of 480 colonies of the reef-building coral Pocillopora damicornis (Linnaeus, 1758) from Nanwan Bay, southern Taiwan were documented between July 2007 and November 2008. It was hypothesized that certain environmental factors and physiological coral traits, such as the density of Symbiodinium, could influence these infection parameters. Analysis revealed that ectoparasitic copepods were the most likely to infect P. damicornis, and that Asteropontius minutus Kim, 2003 accounted for more than 50% of total copepod density in July-September 2007 when temperatures were high and bleaching occurred in similar to 75% of the sampled colonies. The data further showed that copepod virulence may be related to their life history strategies, as well as to Symbiodinium density, surface area of the host coral colonies, and concentration of nitrate and chlorophyll-a in the surrounding seawater. By tracking the abundance, diversity, and performance of infectious copepods prior, throughout, and after a natural bleaching event, the potential to use these parasites as bioindicators for predicting the future physiological performance of P. damicornis in response to environmental change, particularly bleaching events, may ultimately be further explored, developed and maximized. Humesimyzon Kim, 2010, previously placed in the Asterocheridae, is tentatively transferred to the recently resurrected family Coralliomyzontidae. The authorship and spelling of Pseudanthessius thorellii (Brady, 1880) are corrected. [Cheng, Yu-Rong; Dai, Chang-Feng] Natl Taiwan Univ, Inst Oceanog, 1 Sec 4,Roosevelt Rd, Taipei 106, Taiwan; [Mayfield, Anderson B.; Meng, Pei-Jie] Natl Museum Marine Biol & Aquarium, Pingtung, Taiwan; [Mayfield, Anderson B.] Living Oceans Fdn, Landover, MD USA; [Huys, Rony] Nat Hist Museum, Dept Life Sci, Cromwell Rd, London SW7 5BD, England Huys, R (reprint author), Nat Hist Museum, Dept Life Sci, Cromwell Rd, London SW7 5BD, England. d94241001@ntu.edu.tw; andersonblairmayfield@gmail.com; pjmeng@nmmba.gov.tw; corallab@ntu.edu.tw; rjh@nhm.ac.uk DAI, CHANG-FENG/0000-0003-2242-5643 Alcock A., 1902, TIJDSCHRIFT NEDERLAN, V7, P89; Bandera ME, 2008, ZOOL J LINN SOC-LOND, V152, P635, DOI 10.1111/j.1096-3642.2008.00375.x; Bassett-Smith P.W., 1890, ANN MAGAZINE NATURAL, V6, P353; Bernard H., 1897, CATALOGUE MADREPORAR, V3, P1; Bernard H., 1896, CATALOGUE MADREPORAR, V2, P1; Bieger A, 2009, OECOLOGIA, V160, P247, DOI 10.1007/s00442-009-1297-x; BLACK NA, 1995, BIOL BULL, V188, P234, DOI 10.2307/1542301; Boeck A., 1860, FORHANDLINGER VIDENS, V1859, P171; Boxshall G. A., 2004, INTRO COPEPOD DIVERS; Brady G. S., 1873, Annals of Natural History, V(4), P126; Brady G. S., 1876, REPORT BRIT ASS ADV, V45, P185; Brady G.S., 1880, MONOGRAPH FREE SEMIP, V3; Brook G., 1891, ANN MAGAZINE NATURAL, V8, P458; Brook G., 1893, CATALOGUE MADREPORAR, V1, P1; Brook G., 1892, ANN MAGAZINE NATURAL, V10, P451; Brown MJF, 2000, OIKOS, V91, P421, DOI 10.1034/j.1600-0706.2000.910302.x; Bruggemann F., 1877, ABHANDLUNGEN HERAUSG, V5, P395; Bruggemann F., 1879, J MUSEUM GODEFFROY H, V5, P201; Bush AO, 1997, J PARASITOL, V83, P575, DOI 10.2307/3284227; BUTTER ME, 1979, BIJDR DIERKD, V48, P140; Canario R, 2012, ZOOSYMPOSIA, V8, P49; CARMAN KR, 1985, MAR BIOL, V88, P143, DOI 10.1007/BF00397161; CASTRO P, 1988, SYMBIOSIS, V5, P161; Chamisso A. de, 1821, NOVA ACTA PHYSICOMED, V10, P343; Cheng YR, 2010, CORAL REEFS, V29, P13, DOI 10.1007/s00338-009-0559-8; Cheng YR, 2009, CORAL REEFS, V28, P681, DOI 10.1007/s00338-009-0493-9; Cheng YR, 2007, CRUSTACEANA, V80, P1135, DOI 10.1163/156854007782008531; Cheng YR, 2016, ZOOTAXA, V4174, P346, DOI 10.11646/zootaxa.4174.1.21; Cheng YR, 2016, ZOOTAXA, V4174, P274, DOI 10.11646/zootaxa.4174.1.19; Cheng Yu-Rong, 2011, Journal of the Fisheries Society of Taiwan, V38, P31; Cheng YR, 2011, ZOOL STUD, V50, P605; Cheng YR, 2011, SYST PARASITOL, V79, P227, DOI 10.1007/s11230-011-9305-z; Cheng Yu-Rong, 2010, Journal of the Fisheries Society of Taiwan, V37, P273; Cheng YR, 2009, SYST PARASITOL, V74, P17, DOI 10.1007/s11230-009-9188-4; Cheng YR, 2008, CRUSTACEANA, V81, P1099, DOI 10.1163/156854008X360833; Chevalier JP, 1971, EXPEDITION FRANCAISE, V5, P1; Clarke KR, 2001, CHANGE MARINE COMMUN; Claus C., 1863, FREILEBENDEN COPEPOD; Conradi M, 2006, J NAT HIST, V40, P739, DOI 10.1080/00222930600774210; Conradi M, 2011, ZOOTAXA, P1; CORBEL MJ, 1975, J FISH BIOL, V7, P539, DOI 10.1111/j.1095-8649.1975.tb04630.x; Crossland C, 1952, BRITISH MUSEUM NATUR, V6, P85; Cruz J, 2013, J PLANKTON RES, V35, P1046, DOI 10.1093/plankt/fbt057; Dana J. D., 1846, US EXPLORING EXPEDIT, VVII; Dana J. D., 1846, US EXPLORING EXPEDIT, VVII, p[121, 721]; Dana JD, 1846, US EXPLORING EXPEDIT, V7, P1; de Blainville H.-M.D., 1830, DICT SCI NATURELLES, V60; de Lamarck J. B. P. A. de M., 1801, SYSTEME ANIMAUX SANS; Della Valle A., 1880, LICHOMOLGUS MITTHEIL, V2, P83; DOJIRI M, 1990, AUST J ZOOL, V37, P695; DOJIRI M, 1988, J CRUSTACEAN BIOL, V8, P99, DOI 10.2307/1548435; Downs CA, 2005, MAR POLLUT BULL, V51, P486, DOI 10.1016/j.marpolbul.2005.06.028; Downs CA, 2000, MAR BIOTECHNOL, V2, P533, DOI 10.1007/s101260000038; Duchassaing P., 1861, MEMORIE REALE ACCADE, V19, P279; Dzikowski R, 2003, HELGOLAND MAR RES, V57, P220, DOI 10.1007/s10152-003-0138-2; Ehrenberg C. G., 1834, ABHANDLUNGEN KONIGLI, V1, P225; Ellis J., 1786, NATURAL HIST MANY CU, V4, P1; Ellis J., 1786, NATURAL HIST MANY CU, V4; Esper E.C.J., 1791, FORTSETZUNGEN PFLANZ, P1; Esper E.C.J., 1794, FORTSETZUNGEN PFLANZ, P221; Esper E.C.J., 1793, FORTSETZUNGEN PFLANZ, P181; Esper E.C.J., 1792, FORTSETZUNGEN PFLANZ; Esper E.C.J., 1791, FORTSETZUNGEN PFLANZ; Esper E.J.C., 1790, FORTSETZUNGEN PFLANZ, P197; Fang LS, 1997, CORAL REEFS, V16, P127, DOI 10.1007/s003380050066; Forskal P., 1775, DESCRIPTIONES ANIMAL; Gardiner J. S., 1898, Proceedings of the Zoological Society, P525; GEDDES DC, 1968, SARSIA, P9; Gerlach S.A., 1960, ATOLL RES B, V23, p[356, 1]; Giesbrecht W., 1897, ZOOL ANZ, V20, P17; Giesbrecht W., 1897, ZOOL ANZ, V20, P9; GLADFELTER WB, 1982, B MAR SCI, V32, P639; Gomez Andres, 2013, International Journal for Parasitology Parasites and Wildlife, V2, P222, DOI 10.1016/j.ijppaw.2013.07.002; Gravier Ch, 1911, ANN I OCEANOGRAPHIQU, V2, P1; Grube A.E., 1869, ABHANDLUNGEN SCHLESI, V1868-69, P91; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; Harris VA, 2014, REC AUST MUS, V66, P167, DOI 10.3853/j.2201-4349.66.2014.1596; Harvell CD, 2002, SCIENCE, V296, P2158, DOI 10.1126/science.1063699; Harvell D, 2001, HYDROBIOLOGIA, V460, P97, DOI 10.1023/A:1013169331913; HERRIOTT AB, 1979, CRUSTACEANA, V36, P166, DOI 10.1163/156854079X00357; HICKS GRF, 1983, OCEANOGR MAR BIOL, V21, P67; Ho JS, 2013, CRUSTACEANA, V86, P639, DOI 10.1163/15685403-00003184; Ho JS, 2010, CRUSTACEANA, V83, P89, DOI 10.1163/001121609X12511103974574; Ho Ju-Shey, 2008, Journal of the Fisheries Society of Taiwan, V35, P147; Hoegh-Guldberg O, 1999, MAR FRESHWATER RES, V50, P839, DOI 10.1071/MF99078; Hoffmeister J. E., 1925, PAPERS DEP MARINE BI, VXXII, P1; HOI KIM IL, 2004, [Animal Systematics, Evolution and Diversity, 한국동물분류학회지], V20, P109; HOLMES JC, 1995, WILDLIFE RES, V22, P11, DOI 10.1071/WR9950011; Holroyd PA, 2012, CRUSTACEANA, V85, P767, DOI 10.1163/156854012X649522; Hooff RC, 2006, LIMNOL OCEANOGR, V51, P2607, DOI 10.4319/lo.2006.51.6.2607; Houttuyn M., 1772, NATUURLYKE HIST UITV, VI, pi; HUDSON DA, 1992, AQUACULTURE, V105, P269, DOI 10.1016/0044-8486(92)90092-Y; HUMES A G, 1991, Bulletin Zoologisch Museum Universiteit van Amsterdam, V13, P17; HUMES A G, 1978, Publications of the Seto Marine Biological Laboratory, V24, P387; HUMES A G, 1985, Publications of the Seto Marine Biological Laboratory, V30, P277; HUMES A G, 1981, Journal of Crustacean Biology, V1, P227, DOI 10.2307/1548161; HUMES A G, 1968, Bulletin of the Museum of Comparative Zoology, V136, P353; HUMES A G, 1981, Proceedings of the Biological Society of Washington, V94, P254; Humes A.G., 1973, Zoologischer Anz, V190, P312; Humes A. G., 1964, Crustaceana, V6, P238, DOI 10.1163/156854064X00650; Humes A.G., 1973, Smithsonian Contributions to Zoology, VNo. 127, P1; HUMES A G, 1978, Smithsonian Contributions to Zoology, P1; Humes A. G., 1964, Trav Centre oceanogr Peches Nosy-Be, VNo. 6, P131; HUMES A G, 1972, Bulletin Zoologisch Museum Universiteit van Amsterdam, V2, P121; HUMES A G, 1968, Bulletin of the Museum of Comparative Zoology, V136, P415; Humes A. G., 1967, Proceedings of the United States National Museum, V122, P1; HUMES A G, 1982, Beaufortia, V32, P139; Humes A. G., 1960, Kieler Meeresforschungen, V16, P229; HUMES A G, 1983, Bulletin Zoologisch Museum Universiteit van Amsterdam, V9, P93; HUMES A. G., 1962, CRUSTACEANA, V4, P47, DOI 10.1163/156854062X00067; HUMES A G, 1992, Invertebrate Taxonomy, V6, P303, DOI 10.1071/IT9920303; HUMES A G, 1990, Beaufortia, V41, P121; Humes A. G., 1962, Bulletin of the Museum of Comparative Zoology, V128, P37; Humes A.G., 1973, SMITHS CONTR ZOOL, V127, pi; Humes A.G., 1995, PUBLICATIONS SETO MA, V37, P1; Humes AG, 1997, J NAT HIST, V31, P57, DOI 10.1080/00222939700770051; HUMES AG, 1995, J NAT HIST, V29, P65, DOI 10.1080/00222939500770041; HUMES AG, 1991, J NAT HIST, V25, P1171, DOI 10.1080/00222939100770751; HUMES AG, 1992, P BIOL SOC WASH, V105, P268; HUMES AG, 1984, ZOOL SCR, V13, P33, DOI 10.1111/j.1463-6409.1984.tb00020.x; HUMES AG, 1984, ZOOL SCR, V13, P209, DOI 10.1111/j.1463-6409.1984.tb00038.x; HUMES AG, 1991, P BIOL SOC WASH, V104, P101; HUMES AG, 1983, J NAT HIST, V17, P257, DOI 10.1080/00222938300770221; HUMES AG, 1985, B MAR SCI, V36, P467; HUMES AG, 1979, ZOOL J LINN SOC-LOND, V66, P95, DOI 10.1111/j.1096-3642.1979.tb01904.x; HUMES AG, 1985, T AM MICROSC SOC, V104, P313, DOI 10.2307/3226484; Humes AG, 1997, ZOOL SCR, V26, P51, DOI 10.1111/j.1463-6409.1997.tb00408.x; Humes AG, 1997, HYDROBIOLOGIA, V344, P195, DOI 10.1023/A:1002974816780; Humes AG, 1996, CONTRIB ZOOL, V66, P193; Humes AG, 1996, ZOOL J LINN SOC-LOND, V118, P59; HUMES AG, 1975, ZOOL J LINN SOC-LOND, V56, P171, DOI 10.1111/j.1096-3642.1975.tb00815.x; HUMES AG, 1992, HYDROBIOLOGIA, V234, P41, DOI 10.1007/BF00010778; HUMES AG, 1994, HYDROBIOLOGIA, V293, P1, DOI 10.1007/BF00229916; HUMES AG, 1984, CAH BIOL MAR, V25, P181; HUMES AG, 1979, CAH BIOL MAR, V20, P77; HUMES AG, 1991, ZOOL SCR, V20, P277, DOI 10.1111/j.1463-6409.1991.tb00291.x; HUMES AG, 1974, T AM MICROSC SOC, V93, P153, DOI 10.2307/3225283; HUMES AG, 1986, SYST PARASITOL, V8, P187, DOI 10.1007/BF00009887; HUMES AG, 1979, PAC SCI, V33, P195; HUMES AG, 1974, PAC SCI, V28, P383; HUMES AG, 1979, J NAT HIST, V13, P507, DOI 10.1080/00222937900770391; HUMES AG, 1978, HYDROBIOLOGIA, V58, P119, DOI 10.1007/BF00007993; Humes Arthur G., 1994, Beaufortia, V44, P1; Humes Arthur G., 1995, Bulletin du Museum National d'Histoire Naturelle Section A Zoologie Biologie et Ecologie Animales, V17, P141; Humes Arthur G., 1996, Publications of the Seto Marine Biological Laboratory, V37, P1; Humes Arthur G., 1993, Invertebrate Taxonomy, V7, P805, DOI 10.1071/IT9930805; Huspeni TC, 2004, ECOL APPL, V14, P795, DOI 10.1890/01-5346; Huys R, 2006, BIOL J LINN SOC, V87, P403, DOI 10.1111/j.1095-8312.2005.00579.x; HUYS R, 2009, ZOOTAXA 0806, P1; Huys R, 2012, INT J PARASITOL, V42, P71, DOI 10.1016/j.ijpara.2011.10.009; Ivanenko VN, 2014, CORAL REEFS, V33, P637, DOI 10.1007/s00338-014-1186-6; Ivanenko V.N., 1999, CRUSTACEANS BIODIVER, VI, P207; Ivanenko VN, 2004, CRUSTACEANA, V77, P1131, DOI 10.1163/1568540042900286; Johnsson R, 2002, AM MUS NOVIT, P1, DOI 10.1206/0003-0082(2002)370<0001:ANSOCC>2.0.CO;2; Jones RJ, 1998, PLANT CELL ENVIRON, V21, P1219, DOI 10.1046/j.1365-3040.1998.00345.x; Karanovic T, 2014, ZOOL ANZ, V253, P512, DOI 10.1016/j.jcz.2014.07.002; Kim I.-H., 2009, KOREAN J SYSTEMATIC, V7, P1; Kim IH, 2007, KOREAN J SYSTEMATAIC, V6, P1; Kim IH, 2010, KOREAN J BIOL SCI, V8, P1; Kim Ii-Hoi, 2014, Animal Systematics Evolution and Diversity, V30, P274, DOI 10.5635/ASED.2014.30.4.274; Kim II-Hoi, 2004, Korean Journal of Biological Sciences, V8, P165; Kim IH, 2007, J CRUSTACEAN BIOL, V27, P319, DOI 10.1651/S-2745.1; Kim Il-Hoi, 2005, Animal Cells and Systems, V9, P215; Kim Il-Hoi, 2006, Korean Journal of Systematic Zoology, V22, P63; Klunzinger CB, 1879, KORALLENTHIERE ROTHE, P1; Kuo CY, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0044364; Lafferty KD, 2003, ECOL LETT, V6, P654, DOI 10.1046/j.1461-0248.2003.00480.x; Lamarck J. B., 1816, HIST NATURELLE ANIMA; Lee JM, 2003, KOREAN J RADIOL, V4, P1, DOI 10.3348/kjr.2003.4.1.1; Lesson R.-P., 1831, ILLUSTRATIONS ZOOLOG; Lesson R.-P., 1829, ZOOLOGY, P1; Leydig F, 1853, Z WISS ZOOL, V4, P377; Link D.H.F., 1807, BESCHREIBUNG NATURAL, P101; Linnaeus C., 1766, SYSTEMA NATURAE REGN, VI; Linnaeus C., 1758, SYSTEMA NATUROE REGN, VI; Linnaeus C, 1758, SYSTEMA NATURAE REGN, V1, p[i, 1], DOI DOI 10.5962/BHL.TITLE.542; Linne C., 1767, SYSTEMA NATURAE 2, V1, P533; Marenzeller E. von, 1907, DENKSCHRIFT AKAD WIS, V80, P27; Matthai G., 1914, T LINN SOC LOND, V17, P1; Meng PJ, 2008, ENVIRON POLLUT, V156, P67, DOI 10.1016/j.envpol.2007.12.039; Milne Edwards H, 1851, ANN SCI NATURELLES 3, V15, P73; Milne Edwards H., 1860, HIST NATURELLE CORAL, V3; Milne Edwards H., 1848, ANN SCI NATURELLES 3, V10, P209; Milne Edwards H., 1850, MONOGRAPH BRIT FOSSI, pviii; Milne Edwards H, 1849, ANN SCI NATURELLES 3, V11, P233; Milne Edwards H., 1851, ANN SC NAT PARIS, V16, P21; Milne-Edwards H., 1851, ARCH MUSEUM HIST NAT, V5, P1; Misaki H., 1978, B MARINE PARK RES ST, V2, P105; Moller AP, 2010, GLOBAL CHANGE BIOL, V16, P1158, DOI 10.1111/j.1365-2486.2009.02035.x; Moseley H.N., 1881, ZOOLOGY 1, V2, P238; Moseley H.N., 1881, ZOOLOGY, V2, P127; Moshe T., 1999, BIOCHEM BIOPH RES CO, V262, P103; Moudrova Mudrova S., 2014, 12 INT C COP SEOUL K, P204; Moudrova Mudrova S., 2014, 4 MOSC INT C MOL PHY, P6; Mouritsen KN, 2002, OIKOS, V97, P462, DOI 10.1034/j.1600-0706.2002.970318.x; Nair B.U., 1984, RECORDS ZOOLOGICAL S, V81, P357; NAIR BU, 1986, CRUSTACEANA, V50, P27; Norman A. M., 1911, Transactions of the Linnean Society 2nd Ser Zoology London, V11; O'Connor MI, 2007, P NATL ACAD SCI USA, V104, P1266, DOI 10.1073/pnas.0603422104; Ogden NH, 2006, INT J PARASITOL, V36, P63, DOI 10.1016/j.ijpara.2005.08.016; Ogut H, 2005, PARASITOL RES, V96, P149, DOI 10.1007/s00436-005-1346-2; Oken L., 1815, LEHRBUCH NATURGESCHI; Overstreet R. M., 1997, Parassitologia (Rome), V39, P169; Page L. Kristen, 2013, International Journal for Parasitology Parasites and Wildlife, V2, P203, DOI 10.1016/j.ijppaw.2013.05.003; PALING JE, 1965, PARASITOLOGY, V55, P667; Pallas Peter Simon, 1766, ELENCHUS ZOOPHYTORUM; Pallas PS, 1766, ELENCHUS ZOOPHYTORUM, P1; Perez JM, 2006, BIODIVERS CONSERV, V15, P2033, DOI 10.1007/s10531-005-0773-9; Porter JW, 2001, HYDROBIOLOGIA, V460, P1, DOI 10.1023/A:1013177617800; Poulin R, 2006, J HELMINTHOL, V80, P183, DOI 10.1079/JOH2006341; Price P., 1980, EVOLUTIONARY BIOL PA; Quelch J. J., 1884, Annals of Natural History, V(5), P292; Quelch J.J., 1886, ZOOLOGY, V16, P1; Quoy J.R.C., 1833, VOYAGES DECOUVERTES; Reaka-Kudla Marjorie L., 1997, P83; Richardson LL, 1998, REV BIOL TROP, V46, P187; Richardson LL, 1998, NATURE, V392, P557, DOI 10.1038/33302; RIEPER M, 1982, MAR ECOL PROG SER, V7, P303, DOI 10.3354/meps007303; Roe K. M., 1958, Proceedings of the Royal Irish Academy, V59B, P221; Rozsa L, 2000, J PARASITOL, V86, P228, DOI 10.2307/3284760; Rueckert S, 2009, REG ENVIRON CHANGE, V9, P315, DOI 10.1007/s10113-008-0076-2; Ruppert E. E., 2004, INVERTEBRATE ZOOLOGY; Saville-Kent William, 1893, GREAT BARRIER REEF A; Schall JJ, 1996, ADV PARASIT, V37, P255, DOI 10.1016/S0065-308X(08)60222-5; Scheer G., 1974, ZOOLOGICA, V42, P1; SCHWEIGGER AF, 1820, HDB NATURGESCHICHTE; Scott T., 1893, Annals of Natural History, Vxii, P237; Scott T, 1894, ANN MAG NAT HIST, V13, P137, DOI 10.1080/00222939408677678; SEBASTIAN M J, 1974, Crustaceana (Leiden), V26, P80, DOI 10.1163/156854074X00082; SEBASTIAN MJ, 1973, HYDROBIOLOGIA, V42, P143, DOI 10.1007/BF00014150; Seifried S, 2000, J NAT HIST, V34, P1595, DOI 10.1080/00222930050117503; Smallridge CJ, 2000, PARASITOL RES, V86, P655, DOI 10.1007/PL00008547; SNELGROVE PVR, 1989, MAR BIOL, V101, P249, DOI 10.1007/BF00391464; Stella JS, 2011, OCEANOGR MAR BIOL, V49, P43; STIMSON J, 1991, J EXP MAR BIOL ECOL, V153, P63, DOI 10.1016/S0022-0981(05)80006-1; Stock J. H., 1969, Crustaceana, V16, P57; STOCK J H, 1985, Vie et Milieu, V35, P93; STOCK J H, 1975, Bulletin Zoologisch Museum Universiteit van Amsterdam, V4, P111; Stock J.H., 1989, STUDIES HONOUR PW HU, V123, P145; STOCK JAN H., 1960, CRUSTACEANA, V1, P218, DOI 10.1163/156854060X00276; STOCK JAN H., 1966, BEAUFORTIA SER MISC PUBLICATIONS ZOOL MUS AMSTERDAM, V13, P145; STOCK JH, 1985, HYDROBIOLOGIA, V120, P129, DOI 10.1007/BF00032133; STOCK JH, 1987, B MAR SCI, V40, P464; STOCK JH, 1975, STUD FAUNA CURACAO O, V47, P1; Studer T., 1901, ZOOL JB SYST, V14, P388; Stutchbury S, 1833, T LINN SOC LOND, V16, P493; Sures B, 2008, J FISH BIOL, V73, P2133, DOI 10.1111/j.1095-8649.2008.02057.x; Sures B, 2008, PARASITE, V15, P434, DOI 10.1051/parasite/2008153434; Thompson I. C., 1903, REPORT GOVT CEYLON P, V1, P227; Thompson RCA, 2010, INT J PARASITOL, V40, P1163, DOI 10.1016/j.ijpara.2010.04.009; Umbgrove J. H. F., 1940, ZOOL MEDEDEEL LEY DEN, V22, P265; Ummerkutty A. N. P., 1966, Crustaceana, V11, P17, DOI 10.1163/156854066X00414; Ummerkutty A. N. P., 1968, J. mar. biol. Ass. India, V8, P302; Unnikrishnan Nair B., 1983, P11; Urrtmerkutty A. N. P., 1962, Journal of the Marine Biological Association of India, V3, P19; Varela Carlos, 2010, Cocuyo, V18, P31; Varela Carlos, 2005, Solenodon, V5, P6; Vaughan T.W., 1918, PAP DEP MAR BIOL CAR, V9, P49; Vaughan TW, 1907, US NATL MUSEUM B, V59, P1, DOI DOI 10.5479/SI.03629236.59.I; Verill AE, 1866, P ESSEX I, V5, P17; Verill AE, 1864, B MUS COMP ZOOL HARV, V1, P29; Verrill A. E., 1869, T CONNECTICUT ACAD A, V1, P377; Verrill A. E., 1901, T CONNECTICUT ACAD A, V11, P63; Wells JW, 1936, AM J SCI, V31, P97; WELLS JW, 1968, PAC SCI, V22, P274; Worms Editorial Board, 2016, WORLD REGISTER MARIN; Yabe H., 1935, Journal of the Geological Society of Tokyo, V42, P379 267 4 5 2 17 MAGNOLIA PRESS AUCKLAND PO BOX 41383, AUCKLAND, ST LUKES 1030, NEW ZEALAND 1175-5326 1175-5334 ZOOTAXA Zootaxa OCT 11 2016 4174 1 291 345 10.11646/zootaxa.4174.1.20 55 Zoology Zoology DY6PL WOS:000385249700018 27811803 2018-11-22 J Bjorklund, DF Bjorklund, David F. Incorporating Development Into Evolutionary Psychology: Evolved Probabilistic Cognitive Mechanisms EVOLUTIONARY PSYCHOLOGY English Article evolutionary developmental psychology; life history theory; developmental plasticity; evolved cognitive mechanisms; evolved probabilistic cognitive mechanisms CHILDREN HOMO-SAPIENS; TOOL-USE; YOUNG-CHILDREN; NEONATAL IMITATION; HUMAN INFANTS; LIFE-HISTORY; EXPERIMENTAL MICROCULTURES; ENCULTURATED CHIMPANZEES; BIOLOGICAL MOTION; SOCIAL COGNITION Developmental thinking is gradually becoming integrated within mainstream evolutionary psychology. This is most apparent with respect to the role of parenting, with proponents of life history theory arguing that cognitive and behavioral plasticity early in life permits children to select different life history strategies, with such strategies being adaptive solutions to different fitness trade-offs. I argue that adaptations develop and are based on the highly plastic nature of infants' and children's behavior/cognition/brains. The concept of evolved probabilistic cognitive mechanisms is introduced, defined as information processing mechanisms evolved to solve recurrent problems faced by ancestral populations that are expressed in a probabilistic fashion in each individual in a generation and are based on the continuous and bidirectional interaction over time at all levels of organization, from the genetic through the cultural. Early perceptual/cognitive biases result in behavior that, when occurring in a species-typical environment, produce continuous adaptive changes in behavior (and cognition), yielding adaptive outcomes. Examples from social learning and tool use are provided, illustrating the development of adaptations via evolved probabilistic cognitive mechanisms. The integration of developmental concepts into mainstream evolutionary psychology (and evolutionary concepts into mainstream developmental psychology) will provide a clearer picture of what it means to be human. [Bjorklund, David F.] Florida Atlantic Univ, Dept Psychol, Boca Raton, FL 33431 USA Bjorklund, DF (reprint author), Florida Atlantic Univ, Dept Psychol, Boca Raton, FL 33431 USA. dbjorklu@fau.edu ABRAVANEL E, 1984, CHILD DEV, V55, P381, DOI 10.2307/1129950; ALEXANDER RD, 1989, HUMAN REVOLUTION, P455; Alvergne A., 2016, EVOLUTIONARY MED GUI; Anzures G, 2012, J EXP CHILD PSYCHOL, V112, P484, DOI 10.1016/j.jecp.2012.04.005; BAKEMAN R, 1990, CHILD DEV, V61, P794, DOI 10.1111/j.1467-8624.1990.tb02822.x; Bardi L, 2014, DEV PSYCHOL, V50, P986, DOI 10.1037/a0034678; Bardi L, 2011, DEVELOPMENTAL SCI, V14, P353, DOI 10.1111/j.1467-7687.2010.00985.x; Barrett TM, 2007, DEV PSYCHOL, V43, P352, DOI 10.1037/0012-1649.43.2.352; BAUMRIND D, 1967, GENET PSYCHOL MONOGR, V75, P43; Beier JS, 2012, CHILD DEV, V83, P486, DOI 10.1111/j.1467-8624.2011.01702.x; BELSKY J, 1981, DEV PSYCHOL, V17, P630, DOI 10.1037/0012-1649.17.5.630; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.1111/j.1467-8624.1991.tb01558.x; Bender CE, 2009, ANIM COGN, V12, P43, DOI 10.1007/s10071-008-0169-9; Bering JM, 2000, DEV PSYCHOBIOL, V36, P218, DOI 10.1002/(SICI)1098-2302(200004)36:3<218::AID-DEV5>3.0.CO;2-K; BERTENTHAL BI, 1984, J EXP CHILD PSYCHOL, V37, P213, DOI 10.1016/0022-0965(84)90001-8; Bertenthal BI, 1996, ANNU REV PSYCHOL, V47, P431, DOI 10.1146/annurev.psych.47.1.431; Bjorklund D. F., 2011, OXFORD HDB PLAY, P153; Bjorklund D. F., 2002, ORIGINS HUMAN NATURE; Bjorklund DF, 2007, ADV CHILD DEV BEHAV, V35, P1; Bjorklund DF, 2006, DEV REV, V26, P213, DOI 10.1016/j.dr.2006.02.007; Bjorklund DF, 2015, DEV REV, V38, P13, DOI 10.1016/j.dr.2015.07.002; Bjorklund DF, 2014, DEV REV, V34, P225, DOI 10.1016/j.dr.2014.05.005; Bjorklund DF, 1997, PSYCHOL BULL, V122, P153, DOI 10.1037/0033-2909.122.2.153; Bjorklund DF, 2000, CHILD DEV, V71, P1687, DOI 10.1111/1467-8624.00258; BJORKLUND DF, 1987, DEV REV, V7, P86, DOI 10.1016/0273-2297(87)90006-2; Bloom P, 1998, TRENDS COGN SCI, V2, P67, DOI 10.1016/S1364-6613(98)01121-8; Bock J., 2005, NATURE PLAY GREAT AP, P254; BOESCH C, 1991, ANIM BEHAV, V41, P530, DOI 10.1016/S0003-3472(05)80857-7; Boesch C, 1998, CURR ANTHROPOL, V39, P591, DOI 10.1086/204785; Bourgeois KS, 2005, INFANCY, V8, P233, DOI 10.1207/s15327078in0803_3; Bowlby J., 1969, ATTACHMENT LOSS, V1; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Brauer J, 2005, J COMP PSYCHOL, V119, P145, DOI 10.1037/0735-7036.119.2.145; Brooks R, 2002, DEV PSYCHOL, V38, P958, DOI 10.1037//0012-1649.38.6.958; Brooks-Gunn J., 2005, CHILDRENS COMPETENCE; Buss D., 2005, EVOLUTIONARY PSYCHOL; Buss D, 2016, EVOLUTIONARY PSYCHOL; Buss DM, 1998, AM PSYCHOL, V53, P533, DOI 10.1037/0003-066X.53.5.533; Buttelmann D, 2008, CHILD DEV, V79, P609, DOI 10.1111/j.1467-8624.2008.01146.x; Buttelmann D, 2007, DEVELOPMENTAL SCI, V10, pF31, DOI 10.1111/j.1467-7687.2007.00630.x; Byrne R. W., 2005, CURR BIOL, V15, pR489; Carpenter M, 1998, INFANT BEHAV DEV, V21, P315, DOI 10.1016/S0163-6383(98)90009-1; Carpenter M., 1998, MONOGR SOC RES CHILD, V63, P1, DOI [DOI 10.2307/1166214, 10.2307/1166214]; Casler K, 2005, DEVELOPMENTAL SCI, V8, P472, DOI 10.1111/j.1467-7687.2005.00438.x; Chen Z, 2000, MONOGR SOC RES CHILD, V65, pI; CHEYNE JA, 1983, DEV PSYCHOL, V19, P577, DOI 10.1037/0012-1649.19.4.577; CONNOLLY K, 1989, DEV PSYCHOL, V25, P894, DOI 10.1037//0012-1649.25.6.894; COOK M, 1989, J ABNORM PSYCHOL, V98, P448, DOI 10.1037//0021-843X.98.4.448; Csibra G, 2008, COGNITION, V107, P705, DOI 10.1016/j.cognition.2007.08.001; Csibra G, 2011, PHILOS T R SOC B, V366, P1149, DOI 10.1098/rstb.2010.0319; Cutting N, 2014, J EXP CHILD PSYCHOL, V125, P110, DOI 10.1016/j.jecp.2013.11.010; Del Giudice M, 2015, HDB EVOLUTIONARY PSY, P88, DOI DOI 10.1002/9781119125563.EVPSYCH102; DeLoache JS, 2009, DEVELOPMENTAL SCI, V12, P201, DOI 10.1111/j.1467-7687.2008.00753.x; DENNETT DC, 1990, PHILOS PHENOMEN RES, V50, P177, DOI 10.2307/2108038; Dunbar RIM, 2003, ANNU REV ANTHROPOL, V32, P163, DOI 10.1146/annurev.anthro.32.061002.093158; Dunbar Robin, 2007, OXFORD HDB EVOLUTION; Duncker K, 1945, PSYCHOL MONOGR, V58, P1; Easterbrook MA, 1999, INFANT BEHAV DEV, V22, P17, DOI 10.1016/S0163-6383(99)80003-4; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Flynn E, 2012, CHILD DEV, V83, P911, DOI 10.1111/j.1467-8624.2012.01747.x; Gardiner AK, 2014, J EXP CHILD PSYCHOL, V119, P54, DOI 10.1016/j.jecp.2013.10.008; Gardiner AK, 2012, COGNITIVE DEV, V27, P240, DOI 10.1016/j.cogdev.2012.05.001; Gardiner AK, 2011, J COGN DEV, V12, P355, DOI 10.1080/15248372.2010.542216; Geary D. C., 2016, EVOLUTIONARY PERSPEC; Geary D. C., 2005, ORIGIN MIND EVOLUTIO; GEARY DC, 1995, AM PSYCHOL, V50, P24, DOI 10.1037/0003-066X.50.1.24; Geary DC, 2010, MALE FEMALE EVOLUTIO; GERGELY G, 2005, INTERACTION STUDIES, V6, P463, DOI DOI 10.1075/IS.6.3.10GER; German TP, 2002, J COGN DEV, V3, P279, DOI 10.1207/S15327647JCD0303_2; Gray P., 2016, EVOLUTIONARY PERSPEC, P66; Gredlein JM, 2005, HUM NATURE-INT BIOS, V16, P211, DOI 10.1007/s12110-005-1004-5; Hamlin JK, 2008, DEVELOPMENTAL SCI, V11, P487, DOI 10.1111/j.1467-7687.2008.00694.x; Hare B, 2011, ANNU REV ANTHROPOL, V40, P293, DOI 10.1146/annurev-anthro-081309-145726; Harris JR, 1998, NURTURE ASSUMPTION W; Harris L. J., 2005, CAMBRIDGE ENCY CHILD, P321; Hayne H., 2003, INT J EARLY YEARS ED, V11, P7, DOI DOI 10.1080/0966976032000066055; HEIMANN M, 1989, INFANT BEHAV DEV, V12, P495, DOI 10.1016/0163-6383(89)90029-5; Herrmann E, 2007, SCIENCE, V317, P1360, DOI 10.1126/science.1146282; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hopper LM, 2010, J EXP CHILD PSYCHOL, V106, P82, DOI 10.1016/j.jecp.2009.12.001; Horner V, 2005, ANIM COGN, V8, P164, DOI 10.1007/s10071-004-0239-6; Hutt C, 1966, S ZOOLOGICAL SOC LON, V18, P61; JACOBSON SW, 1979, CHILD DEV, V50, P425, DOI 10.2307/1129418; JOHNSON MH, 1991, COGNITION, V40, P1, DOI 10.1016/0010-0277(91)90045-6; Kelemen D, 2004, PSYCHOL SCI, V15, P295, DOI 10.1111/j.0956-7976.2004.00672.x; Kelly DJ, 2007, PSYCHOL SCI, V18, P1084, DOI 10.1111/j.1467-9280.2007.02029.x; Kelly DJ, 2009, J EXP CHILD PSYCHOL, V104, P105, DOI 10.1016/j.jecp.2009.01.006; Kenward B, 2012, J EXP CHILD PSYCHOL, V112, P195, DOI 10.1016/j.jecp.2012.02.006; Keupp S, 2013, J EXP CHILD PSYCHOL, V116, P392, DOI 10.1016/j.jecp.2013.07.002; Kovacs AM, 2010, SCIENCE, V330, P1830, DOI 10.1126/science.1190792; Kuhl PK, 2006, DEVELOPMENTAL SCI, V9, pF13, DOI 10.1111/j.1467-7687.2006.00468.x; Lancy D. F, 2015, ANTHR CHILDHOOD; Leavens DA, 2005, CURR DIR PSYCHOL SCI, V14, P185, DOI 10.1111/j.0963-7214.2005.00361.x; LICKLITER R, 1990, DEV PSYCHOBIOL, V23, P15, DOI 10.1002/dev.420230103; Lickliter R, 2003, PSYCHOL BULL, V129, P819, DOI 10.1037/0033-2909.129.6.819; Liszkowski U, 2007, J CHILD LANG, V34, P1, DOI 10.1017/S0305000906007689; LoBue V, 2010, J EXP CHILD PSYCHOL, V107, P59, DOI 10.1016/j.jecp.2010.04.005; LoBue V, 2010, DEVELOPMENTAL SCI, V13, P221, DOI 10.1111/j.1467-7687.2009.00872.x; Lockman JJ, 2000, CHILD DEV, V71, P137, DOI 10.1111/1467-8624.00127; Lyons DE, 2007, P NATL ACAD SCI USA, V104, P19751, DOI 10.1073/pnas.0704452104; Martin H., 1974, ADV PEDIATR, V21, P119; MCCARTNEY K, 1990, PSYCHOL BULL, V107, P226, DOI 10.1037/0033-2909.107.2.226; McGuigan N, 2011, BRIT J PSYCHOL, V102, P1, DOI 10.1348/000712610X493115; MELTZOFF AN, 1995, DEV PSYCHOL, V31, P838, DOI 10.1037/0012-1649.31.5.838; MELTZOFF AN, 1977, SCIENCE, V198, P75, DOI 10.1126/science.198.4312.75; Mondloch CJ, 1999, PSYCHOL SCI, V10, P419, DOI 10.1111/1467-9280.00179; NAGELL K, 1993, J COMP PSYCHOL, V107, P174, DOI 10.1037/0735-7036.107.2.174; Nettle D, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0012690; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; NICHD Early Child Care Res Network, 2002, PSYCHOL SCI, V13, P199; Nielsen M, 2006, DEV PSYCHOL, V42, P555, DOI 10.1037/0012-1649.42.3.555; Nielsen M, 2012, J COMP PSYCHOL, V126, P170, DOI 10.1037/a0025168; Nielsen M, 2010, PSYCHOL SCI, V21, P729, DOI 10.1177/0956797610368808; O'Connor TG, 2003, DEV PSYCHOPATHOL, V15, P671, DOI 10.1017/S0954579403000336; Ohman A, 2001, J EXP PSYCHOL GEN, V130, P466, DOI 10.1037/0096-3445.130.3.466; Oostenbroek J, 2016, CURR BIOL, V26, P1334, DOI 10.1016/j.cub.2016.03.047; Overton W. F., 2015, HDB CHILD PSYCHOL DE, V1, P9, DOI DOI 10.1002/9781118963418.CHILDPSY102; Pascalis O, 2005, P NATL ACAD SCI USA, V102, P5297, DOI 10.1073/pnas.0406627102; Pellegrini A. D., 2016, EVOLUTIONARY PERSPEC, P95; Pellegrini AD, 2004, HUM NATURE-INT BIOS, V15, P23, DOI 10.1007/s12110-004-1002-z; PETTIT GS, 1988, CHILD DEV, V59, P107, DOI 10.2307/1130393; Piaget J., 1962, PLAY DREAMS IMITATIO; Pinker S., 1997, MIND WORKS; Placek CD, 2012, P ROY SOC B-BIOL SCI, V279, P4003, DOI 10.1098/rspb.2012.1022; Ploeger A, 2008, PSYCHOL INQ, V19, P1, DOI 10.1080/10478400701774006; Ramsey Jacklyn K., 2005, P89; RUBIN KH, 1983, HDB CHILD PSYCHOL, V4, P693; Ruiz AM, 2013, TOOL USE IN ANIMALS: COGNITION AND ECOLOGY, P119; RUSSELL J, 1991, BRIT J DEV PSYCHOL, V9, P331, DOI 10.1111/j.2044-835X.1991.tb00881.x; Salmon C, 2011, OXFORD HDB EVOLUTION; Schulz LE, 2008, CHILD DEV, V79, P395, DOI 10.1111/j.1467-8624.2007.01132.x; Schulz LE, 2007, DEV PSYCHOL, V43, P1045, DOI 10.1037/0012-1649.43.4.1045; Schulz LE, 2007, DEVELOPMENTAL SCI, V10, P322, DOI 10.1111/j.1467-7687.2007.00587.x; Shackelford T. K., 2014, EVOLUTION VIOLENCE; SHERROD KB, 1984, CHILD DEV, V55, P1174, DOI 10.2307/1129986; SIGMAN M, 1988, CHILD DEV, V59, P1251, DOI 10.2307/1130488; SIMON T, 1985, MERRILL PALMER QUART, V31, P265; Simon T., 1983, BRIT J DEV PSYCHOL, V1, P289, DOI DOI 10.1111/J.2044-835X.1983.TB00901.X; SIMPSON JA, 2008, HDB ATTACHMENT THEOR, P131; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; SMITH PK, 1987, DEV PSYCHOL, V23, P49, DOI 10.1037//0012-1649.23.1.49; SMITH PK, 1979, CHILD DEV, V50, P830, DOI 10.2307/1128950; Spelke ES, 2007, DEVELOPMENTAL SCI, V10, P89, DOI 10.1111/j.1467-7687.2007.00569.x; Stearns S., 1992, EVOLUTION LIFE HIST; Sylva K, 1976, PLAY ITS ROLE DEV EV, P244; Thompson R. A, 2006, HDB CHILD PSYCHOL, P24, DOI DOI 10.1002/9780470147658.CHPSY0302; Tomasello M, 2005, MONOGR SOC RES CHILD, V70, P1; TOMASELLO M, 1993, CHILD DEV, V64, P1688, DOI 10.2307/1131463; Tomasello M, 2009, WHY WE COOPERATE, P1; Tomasello M, 2000, CURR DIR PSYCHOL SCI, V9, P37, DOI 10.1111/1467-8721.00056; Tomasello M, 2007, DEVELOPMENTAL SCI, V10, P121, DOI 10.1111/j.1467-7687.2007.00573.x; Tomasello M, 2016, CHILD DEV, V87, P643, DOI 10.1111/cdev.12499; Tooby J., 2005, HDB EVOLUTIONARY PSY, P5, DOI DOI 10.1002/9780470939376.CH1; Tooby J., 1992, ADAPTED MIND EVOLUTI, P19, DOI DOI 10.1086/418398; Trivers R. L, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; TURKEWITZ G, 1982, DEV PSYCHOBIOL, V15, P357, DOI 10.1002/dev.420150408; Volk AA, 2013, EVOL HUM BEHAV, V34, P182, DOI 10.1016/j.evolhumbehav.2012.11.007; West-Eberhard M. J, 2003, DEV PLASTICITY EVOLU; Whiten A, 2010, MIND THE GAP: TRACING THE ORIGINS OF HUMAN UNIVERSALS, P429, DOI 10.1007/978-3-642-02725-3_20; Whiten A, 2010, DEV PSYCHOL, V46, P1694, DOI 10.1037/a0020786; Whiten A, 2009, PHILOS T R SOC B, V364, P2417, DOI 10.1098/rstb.2009.0069; Williamson RA, 2006, DEV PSYCHOL, V42, P723, DOI 10.1037/0012-1649.42.4.723; ZeiglerHill V, 2015, EVOL PSYCHOL-SER, P1, DOI 10.1007/978-3-319-12697-5 165 1 1 0 10 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. OCT-DEC 2016 14 4 10.1177/1474704916670166 14 Psychology, Experimental Psychology EG5RG WOS:000391101300002 DOAJ Gold 2018-11-22 J Izzo, C; Doubleday, ZA; Grammer, GL; Barnes, TC; Delean, S; Ferguson, GJ; Ye, QF; Gillanders, BM Izzo, Christopher; Doubleday, Zoe A.; Grammer, Gretchen L.; Barnes, Thomas C.; Delean, Steven; Ferguson, Greg J.; Ye, Qifeng; Gillanders, Bronwyn M. Multi-species response to rapid environmental change in a large estuary system: A biochronological approach ECOLOGICAL INDICATORS English Article Biochronology; Fish; Drought; Estuary; Environmental sensitivity GROWTH-INCREMENT CHRONOLOGIES; CLIMATE-CHANGE IMPACTS; FISH GROWTH; NORTHEAST PACIFIC; MARINE FISH; AUSTRALIA; ECOSYSTEMS; SHIFTS; BIODIVERSITY; VARIABILITY The sensitivity of species to environmental change is dependent on their ecological requirements (i.e. specialist v. generalist), and hence likely to be species-specific. Identifying species level variation in environmental sensitivity informs assessments of community vulnerability and assists in developing adaptive management strategies. We investigated species-specific sensitivity in fish to understand the vulnerability of differing life histories and ecological requirements to rapid environmental alteration (i.e. drought). Biochronologies of fish growth, based on increment widths in otoliths, were analysed using a mixed modelling approach. We assessed multi-decadal responses in fish growth to environmental variation in the terminal system of Australia's largest river, for three long-lived fish species with differing life histories and ecological requirements: a freshwater specialist and two estuarine generalists. Biochronologies were between 20 and 38 years long, spanned a decade of severe drought and showed considerable inter-annual variation in growth. Precipitation influenced the growth of the obligate freshwater specialist, Macquaria ambigua ambigua. Temperature and salinity influenced the growth of the two estuarine generalists: Argyrosomus japonicus (estuarine opportunist) and Acanthopagrus butcheri (estuarine dependent), respectively. These results suggest that generalisations about how species respond to environmental change may mask species-specific responses to dependent on the constraints of their ecological requirements (i.e. specialist v. generalist). These findings also highlight the importance of considering the diversity of life history strategies that inhabit an ecosystem when developing conservation and management strategies. (C) 2016 Elsevier Ltd. All rights reserved. [Izzo, Christopher; Doubleday, Zoe A.; Grammer, Gretchen L.; Barnes, Thomas C.; Gillanders, Bronwyn M.] Univ Adelaide, Sch Biol Sci, Southern Seas Ecol Labs, Adelaide, SA 5005, Australia; [Izzo, Christopher; Doubleday, Zoe A.; Grammer, Gretchen L.; Barnes, Thomas C.; Delean, Steven; Gillanders, Bronwyn M.] Univ Adelaide, Inst Environm, Adelaide, SA 5005, Australia; [Grammer, Gretchen L.; Ferguson, Greg J.; Ye, Qifeng] South Australian Res & Dev Inst, Aquat Sci, POB 120, Henley Beach, SA 5022, Australia; [Delean, Steven] Univ Adelaide, Dept Ecol & Environm Sci, Sch Biol Sci, Adelaide, SA 5005, Australia Izzo, C (reprint author), Univ Adelaide, Sch Biol Sci, Southern Seas Ecol Labs, Adelaide, SA 5005, Australia. c.izzo@adelaide.edu.au; zoe.doubleday@adelaide.edu.au; gretchen.grammer@sa.gov.au; thomas.barnes@adelaide.edu.au; steven.delean@adelaide.edu.au; greg.ferguson@sa.gov.au; qifeng.ye@sa.gov.au; bronwyn.gillanders@adelaide.edu.au Doubleday, Zoe/N-9955-2013 Doubleday, Zoe/0000-0003-0045-6377; Grammer, Gretchen/0000-0003-1605-8007 ARC [DP110100716, FT100100767] We thank David Fleer, David Short, Chris Bice and Jason Earl at the South Australian Research and Development Institute (Aquatic Sciences) and Skye Woodcock at the University of Adelaide for collecting and preparing otoliths. Thanks also to John Morrongiello for insights into model and biochronology development. This research was funded by an ARC Discovery grant (DP110100716) and Future Fellowship (FT100100767) awarded to B.M.G. ANDERSON JR, 1992, AUST J MAR FRESH RES, V43, P1103; Barto K., 2013, MUMIN MULTIMODEL INF; Bates D., 2013, R FDN STAT COMPUT; Black BA, 2008, FISH OCEANOGR, V17, P368, DOI 10.1111/j.1365-2419.2008.00484.x; Black BA, 2014, SCIENCE, V345, P1498, DOI 10.1126/science.1253209; Black BA, 2013, FISH OCEANOGR, V22, P523, DOI 10.1111/fog.12036; Black BA, 2010, ECOSCIENCE, V17, P240, DOI 10.2980/17-3-3353; Black BA, 2009, MAR ECOL PROG SER, V378, P37, DOI 10.3354/meps07854; Brander KM, 2007, P NATL ACAD SCI USA, V104, P19709, DOI 10.1073/pnas.0702059104; Brookes JD, 2015, T ROY SOC SOUTH AUST, V139, P189, DOI 10.1080/03721426.2015.1074338; Burnham KP, 2004, SOCIOL METHOD RES, V33, P261, DOI 10.1177/0049124104268644; Chambers RC, 1995, BEL BAR LIB, P155; Cheung WWL, 2009, FISH FISH, V10, P235, DOI 10.1111/j.1467-2979.2008.00315.x; Dawson TP, 2011, SCIENCE, V332, P53, DOI 10.1126/science.1200303; Disspain M, 2011, J ARCHAEOL SCI, V38, P1842, DOI 10.1016/j.jas.2011.03.027; Doney SC, 2012, ANNU REV MAR SCI, V4, P11, DOI 10.1146/annurev-marine-041911-111611; Doubleday ZA, 2015, OECOLOGIA, V179, P1079, DOI 10.1007/s00442-015-3411-6; Ferguson G. J., 2013, ESTUARIES COASTS, V36; Ferguson GJ, 2014, FISH RES, V151, P148, DOI 10.1016/j.fishres.2013.11.002; Folke C, 2004, ANNU REV ECOL EVOL S, V35, P557, DOI 10.1146/annurev.ecolsys.35.021103.105711; Fox J, 2003, J STAT SOFTW, V8, P1, DOI DOI 10.18637/JSS.V008.I15; Gillanders BM, 2015, BIOL LETTERS, V11, DOI 10.1098/rsbl.2014.0850; Government of South Australia, 2015, SURF WAT DAT WATERCO; GUYETTE RP, 1995, OECOLOGIA, V104, P272, DOI 10.1007/BF00328361; Harrell FE, 2014, R PACKAGE VERSION, V3, P14; Hoffmann AA, 2011, NATURE, V470, P479, DOI 10.1038/nature09670; Hsieh CH, 2006, NATURE, V443, P859, DOI 10.1038/nature05232; Humphries P, 1999, ENVIRON BIOL FISH, V56, P129, DOI 10.1023/A:1007536009916; Jackson JBC, 2001, SCIENCE, V293, P629, DOI 10.1126/science.292.5517.629; Jessop BM, 2004, MAR ECOL PROG SER, V272, P231, DOI 10.3354/meps272231; Last PR, 2011, GLOBAL ECOL BIOGEOGR, V20, P58, DOI 10.1111/j.1466-8238.2010.00575.x; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; Matta ME, 2016, POLAR BIOL, P1, DOI 10.1007/s00300-016-1917-y; Morrongiello JR, 2015, ECOL MONOGR, V85, P93, DOI 10.1890/13-2355.1; Morrongiello JR, 2014, GLOBAL CHANGE BIOL, V20, P1844, DOI 10.1111/gcb.12545; Morrongiello JR, 2012, NAT CLIM CHANGE, V2, P849, DOI [10.1038/NCLIMATE1616, 10.1038/nclimate1616]; Morrongiello JR, 2011, GLOBAL CHANGE BIOL, V17, P745, DOI 10.1111/j.1365-2486.2010.02259.x; Mosley LM, 2012, WATER RESOUR MANAG, V26, P3923, DOI 10.1007/s11269-012-0113-2; Neuheimer AB, 2011, NAT CLIM CHANGE, V1, P110, DOI [10.1038/nclimate1084, 10.1038/NCLIMATE1084]; Parmesan C, 2003, NATURE, V421, P37, DOI 10.1038/nature01286; Parmesan C, 2006, ANNU REV ECOL EVOL S, V37, P637, DOI 10.1146/annurev.ecolsys.37.091305.110100; Perry AL, 2005, SCIENCE, V308, P1912, DOI 10.1126/science.1111322; Potter IC, 2015, FISH FISH, V16, P230, DOI 10.1111/faf.12050; R Development Core Team, 2015, R LANG ENV STAT COMP; Roessig JM, 2004, REV FISH BIOL FISHER, V14, P251, DOI 10.1007/s11160-004-6749-0; Rountrey AN, 2014, GLOBAL CHANGE BIOL, V20, P2450, DOI 10.1111/gcb.12617; Rowland EL, 2011, ENVIRON MANAGE, V47, P322, DOI 10.1007/s00267-010-9608-x; Rypel AL, 2009, ECOL FRESHW FISH, V18, P620, DOI 10.1111/j.1600-0633.2009.00379.x; Sarre GA, 2000, FISH B-NOAA, V98, P785; Scheffer M, 2001, NATURE, V413, P591, DOI 10.1038/35098000; Stocks J, 2011, FISHERIES MANAG ECOL, V18, P121, DOI 10.1111/j.1365-2400.2010.00761.x; Swihart RK, 2003, DIVERS DISTRIB, V9, P1, DOI 10.1046/j.1472-4642.2003.00158.x; Thresher RE, 2007, P NATL ACAD SCI USA, V104, P7461, DOI 10.1073/pnas.0610546104; Thuiller W, 2005, GLOBAL ECOL BIOGEOGR, V14, P347, DOI 10.1111/j.1466-822x.2005.00162.x; Uusi-Heikkila S, 2015, EVOL APPL, V8, P597, DOI 10.1111/eva.12268; van Dijk AIJM, 2013, WATER RESOUR RES, V49, P1040, DOI 10.1002/wrcr.20123; VanDerWal J, 2013, NAT CLIM CHANGE, V3, P239, DOI [10.1038/NCLIMATE1688, 10.1038/nclimate1688]; Weisberg S, 2010, CAN J FISH AQUAT SCI, V67, P269, DOI 10.1139/F09-181; Whitten AR, 2013, FISH RES, V142, P27, DOI 10.1016/j.fishres.2012.06.021; Williams SE, 2008, PLOS BIOL, V6, P2621, DOI 10.1371/journal.pbio.0060325; Ye Q., 2013, SARDI RES REPORT SER, V698, P84; Zuur A. F., 2009, MIXED EFFECTS MODELS 62 3 3 4 28 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 1470-160X 1872-7034 ECOL INDIC Ecol. Indic. OCT 2016 69 739 748 10.1016/j.ecolind.2016.05.019 10 Biodiversity Conservation; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology ED3YT WOS:000388785100072 2018-11-22 J Trakimas, G; Whittaker, RJ; Borregaard, MK Trakimas, Giedrius; Whittaker, Robert J.; Borregaard, Michael K. Do biological traits drive geographical patterns in European amphibians? GLOBAL ECOLOGY AND BIOGEOGRAPHY English Article Amphibian biogeography; body size; clutch size; developmental biology; Europe; geographical range size; habitat specialization; macroecology; structural equation models; trait biogeography SALAMANDRINA-PERSPICILLATA SAVI; GOLDEN-STRIPED SALAMANDER; SEXUAL SIZE DIMORPHISM; LIFE-HISTORY TRAITS; BODY-SIZE; REPRODUCTIVE-BIOLOGY; AGE STRUCTURE; TRITURUS-MARMORATUS; TEMPORARY PONDS; GREEN TOAD AimsThe present-day biogeography of European amphibians has been hypothesized to have arisen from range expansion and recolonization of the northern part of the continent from southern late Pleistocene refugia, such that northern species generally possess large ranges while southerly species are mostly small-ranged. Here we test the hypothesis that these patterns are likely to be underpinned by biological traits associated with dispersal ability. We do this by analysing data for anurans and urodeles, the two main groups of European amphibians. LocationEurope. MethodsWe built a database of biological traits (body size, fecundity, life span, habitat specialization) of European amphibians, excluding island endemics. We mapped the basic macroecological patterns of range size and position, and analysed the causal pathways for range size using structural equation models (SEMs). ResultsAmphibian species with a small range size are largely restricted to areas in southern Europe associated with putative Pleistocene refugia. Those present in northern Europe are exclusively large-ranged species whose distributions extend all the way from southern Europe. SEMs explained 54% of range size variation for anurans, with long life span and high fecundity being influential explanatory variables, and explained 61% of range size variation within urodeles, with measures of species fecundity being influential. Main conclusionsSpecies that have successfully recolonized the north following deglaciation have the largest ranges for both groups of amphibians. These large-ranged species generally possess traits that indicate the potential for rapid range expansion, with differences apparent in the balance of traits between anurans and urodeles. The traits linked to northern distributions (and large range size) appear to be a mix of r and K traits, indicating that intermediate life-history strategies have proved to be optimal for range expansion into northern regions. These results integrate species biology with geographical history in explaining present-day patterns of species distribution, range size and diversity. [Trakimas, Giedrius] Vilnius Univ, Ctr Ecol & Environm Res, MK Ciurlionio 21-27, LT-03101 Vilnius, Lithuania; [Trakimas, Giedrius] Daugavpils Univ, Inst Life Sci & Technol, LV-5401 Daugavpils, Latvia; [Whittaker, Robert J.; Borregaard, Michael K.] Univ Oxford, Sch Geog & Environm, Oxford OX1 3QY, England; [Whittaker, Robert J.; Borregaard, Michael K.] Natl Museum Nat Hist, Ctr Macroecol Evolut & Climate, DK-2100 Copenhagen, Denmark Trakimas, G (reprint author), Vilnius Univ, Ctr Ecol & Environm Res, MK Ciurlionio 21-27, LT-03101 Vilnius, Lithuania. giedrius.trakimas@gf.vu.lt Trakimas, Giedrius/B-8462-2008; publicationpage, cmec/B-4405-2017 Trakimas, Giedrius/0000-0001-6294-0194; Whittaker, Robert/0000-0001-7775-3383; Borregaard, Michael/0000-0002-8146-8435 Danish Councils for Independent Research; Danish National Research Foundation [DNRF96]; [VP1-2-SMM-09-V-01-004] This study was partially supported by programme VP1-2-SMM-09-V-01-004 (to G.T.). M.K.B. was supported by a Sapere Aude post-doctoral grant from the Danish Councils for Independent Research when conducting the research. M.K.B. and R.J.W. also acknowledge the Danish National Research Foundation for funding for the Center for Macroecology, Evolution and Climate (grant DNRF96). The authors thank the reviewers and editors for constructive comments on an earlier version. Amat F, 2010, J HERPETOL, V44, P313, DOI 10.1670/08-278.1; Angelini C, 2008, AMPHIBIA-REPTILIA, V29, P161, DOI 10.1163/156853808784125072; Arnold N., 2002, REPTILES AMPHIBIANS; Arntzen J.W., 1980, AMPHIBIA-REPTILIA, V1, P187; Arntzen JW, 2007, J NAT HIST, V41, P925, DOI 10.1080/00222930701300147; Arntzen JW, 2000, AMPHIBIA-REPTILIA, V21, P155, DOI 10.1163/156853800507345; ARNTZEN JW, 1990, HOLARCTIC ECOL, V13, P325; Banks Brian, 1993, Amphibia-Reptilia, V14, P155, DOI 10.1163/156853893X00327; Bannikov A. G., 1977, GUIDE AMPHIBIANS REP; Bannikov AG., 1971, AMPHIBIANS REPTILES; Baskale E, 2011, ZOOL MIDDLE EAST, V52, P39; Beebee T. J. C., 1983, THE NATTERJACK TOAD; BELL G, 1977, ECOL MONOGR, V47, P279, DOI 10.2307/1942518; Bernini F., 2004, MONOGRAFIE PIANURA, V5; Bohme W., 1979, Salamandra, V15, P176; Bohme W, 1999, HDB REPTILIEN AMPHIB; Boll Susanne, 1997, Mertensiella, V7, P315; Bosch J., 2012, SEGUIMIENTO ALYTES D; Bosch J., 2009, ENCICLOPEDIA VIRTUAL; Bovero Stefano, 2006, Acta Herpetologica, V1, P153; Brea C., 2007, MUNIBE, V25, P170; Caetano M. H., 1993, Amphibia-Reptilia, V14, P117, DOI 10.1163/156853893X00291; Casini L., 2008, ATLANTE VERTEBRATI T; CLERGUE-GAZEAU M, 1971, Annales de Speleologie, V26, P825; Cordero Rivera A, 2007, MUNIBE, V25, P94; Corsetti L, 1999, AMPHIBIA-REPTILIA, V20, P77, DOI 10.1163/156853899X00088; Cvetkovic D, 1996, ITAL J ZOOL, V63, P107, DOI 10.1080/11250009609356116; Dandova R, 1998, ITAL J ZOOL, V65, P399, DOI 10.1080/11250009809386781; Della Rocca F, 2005, HERPETOL J, V15, P273; Diaz-Paniagua C, 1999, HERPETOL J, V9, P21; Diaz-Paniagua C., 2005, ANFIBIOS DONANA NATU; DIAZPANIAGUA C, 1990, HERPETOL J, V1, P447; Effinger N., 1997, STAPFIA, V51, P133; Esteban M, 2004, J NAT HIST, V38, P2789, DOI 10.1080/00222930310001618859; Esteban M, 2000, HERPETOL J, V10, P19; Fachbach G., 1978, ZOOL ANZ, V221, P188; Federico Marangoni, 2007, Herpetological Review, V38, P189; Fiacchini D., 2008, EC LIMN OC FUT AMB A, P407; Galan P., 2003, ANFIBIOS REPTILES PA; Galan P, 1982, ACTA VERTEBRATA, V9, P85; GALLIEN L., 1951, BULL BIOL FRANCE ET BELGIQUE, V85, P373; Gomez-Mestre I., 2009, ENCICLOPEDIA VIRTUAL; Gonzalez de la Vega J. P., 1988, ANFIBIOS REPTILES PR; GRIFFITHS RA, 1996, NEWTS SALAMANDERS EU; Guarino F.M., 2012, HYLA INTERMEDIA BOUL, P143; Guarino F.M., 1995, AMPHIBIA-REPTILIA, V16, P197; Guarino FM, 2003, J BIOSCIENCES, V28, P775, DOI 10.1007/BF02708438; Guex Gaston-Denis, 1994, Mertensiella, V4, P161; Gvozdik L, 2006, EVOLUTION, V60, P2110; IUCN, 2012, IUCN RED LIST THREAT, V2012; Jakob C, 2003, CAN J ZOOL, V81, P1905, DOI 10.1139/Z03-164; KNOEPFFLER LOUIS-PHILIPPE, 1962, VIE ET MILIEU, V13, P1; Kutrup B, 2005, AMPHIBIA-REPTILIA, V26, P49, DOI 10.1163/1568538053693314; Kyriakopoulou-Sklavounou P., COMMUNICATION; Lanza B., 1995, MORPHOLOGIC GENETIC; Lanza B., 2006, ATTI MUSEO CIVICO S, V52, P5; Lima V, 2001, AMPHIBIA-REPTILIA, V22, P55, DOI 10.1163/156853801750096178; Litvinchuk S. N., 2002, Vestnik Zoologii, V36, P35; Litvinchuk S. N., 2009, EVOLUTION SYSTEMATIC; LIZANA M, 1994, J HERPETOL, V28, P19, DOI 10.2307/1564675; Luiselli L, 2001, ITAL J ZOOL, V68, P125, DOI 10.1080/11250000109356396; Maio N., 2012, ATLANTE ANFIBIE RETT, P137; Maio N., 2012, ATLANTE ANFIBIE RETT, P95; MALETZKY A., 2004, HERPETOZOA, V17, P75; Marquez R, 1996, HERPETOL J, V6, P9; Marquez R, 1997, J HERPETOL, V31, P52, DOI 10.2307/1565328; Marquez R, 2011, ENCICLOPEDIA VIRTUAL; Martinez-Solano I., 2009, ENCICLOPEDIA VIRTUAL; Miaud C, 2005, HERPETOLOGICA, V61, P241, DOI 10.1655/04-29.1; Miaud C, 2001, J ZOOL, V254, P251, DOI 10.1017/S0952836901000760; Montori A., 2009, ENCICLOPEDIA VIRTUAL; Montori Alberto, 1992, P333; Nollert A, 1992, AMPHIBIEN EUROPAS; Olgun K, 2005, AMPHIBIA-REPTILIA, V26, P223, DOI 10.1163/1568538054253465; Panchenko I.M., 1989, VOPROSY GERPETOLOGII, V1989, P187; Pisanec E.M., 2007, AMPHIBIANS UKRAINE; Plytycz Barbara, 1993, Amphibia-Reptilia, V14, P35, DOI 10.1163/156853893X00174; Reques R., 2009, ENCICLOPEDIA VIRTUAL; Richter-Boix A, 2006, AMPHIBIA-REPTILIA, V27, P549, DOI 10.1163/156853806778877149; Romano A, 2009, ITAL J ZOOL, V76, P422, DOI 10.1080/11250000802623995; Rot-Nikcevic I., 2001, ANN SERIES HIST NATU, V11, P107; Salvador A, 2001, ANFIBIOS ESPANOLES I; Salvador A., 2012, ENCICLOPEDIA VIRTUAL; SALVIDIO S, 1993, HERPETOL J, V3, P55; Sanchez-Herraiz M.J., 2004, THESIS; Schabetsberger Robert, 1994, Alytes (Paris), V12, P41; Scillitani G., 1993, B MUS REG SCI NAT TO, V11, P209; Sequeira F, 2003, AMPHIBIA-REPTILIA, V24, P1, DOI 10.1163/156853803763806894; Sillero N., 2009, ENCICLOPEDIA VIRTUAL; Sindaco R., 2006, ATLANTE ANFIBI RETTI; Sinsch U, 2007, CAN J ZOOL, V85, P665, DOI 10.1139/Z07-046; SMIRINA EM, 1994, GERONTOLOGY, V40, P133, DOI 10.1159/000213583; Tsiora A, 2002, ZOOLOGY, V105, P55, DOI 10.1078/0944-2006-00049; Tsiora A., 2003, THESIS; Vanni S, 2006, ATLANTE ANFIBI RETTI 95 4 6 2 23 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1466-822X 1466-8238 GLOBAL ECOL BIOGEOGR Glob. Ecol. Biogeogr. OCT 2016 25 10 1228 1238 10.1111/geb.12479 11 Ecology; Geography, Physical Environmental Sciences & Ecology; Physical Geography DW5IP WOS:000383677800008 2018-11-22 J Escallon, C; Weinstein, NM; Tallant, JA; Wojtenek, W; Rodriguez-Saltos, CA; Bonaccorso, E; Moore, IT Escallon, Camilo; Weinstein, Nicole M.; Tallant, James A.; Wojtenek, Winfried; Rodriguez-Saltos, Carlos A.; Bonaccorso, Elisa; Moore, Ignacio T. Testosterone and Haemosporidian Parasites Along a Tropical Elevational Gradient in Rufous-Collared Sparrows (Zonotrichia capensis) JOURNAL OF EXPERIMENTAL ZOOLOGY PART A-ECOLOGICAL GENETICS AND PHYSIOLOGY English Article HISTORY TRADE-OFFS; MALARIA PLASMODIUM-RELICTUM; JUNCOS JUNCO-HYEMALIS; TITS PARUS-MAJOR; LIFE-HISTORY; AVIAN MALARIA; BLOOD PARASITES; PARENTAL EFFORT; WILD BIRD; IMMUNOCOMPETENCE HANDICAP Elevation has been proposed as a dominant ecological variable shaping life history traits and subsequently their underlying hormonal mechanisms. In an earlier meta-analysis of tropical birds, elevation was positively related to testosterone levels. Furthermore, parasitism by avian haemosporidians should vary with elevation as environmental conditions affect vector abundance, and while testosterone is needed for breeding, it is hypothesized to be immunosuppressive and thus could exacerbate haemosporidian infection. Our objective in this study was to examine the relationships between elevation, testosterone levels, and parasitism by avian haemosporidians. We surveyed breeding male rufous-collared sparrows (Zonotrichia capensis) across a wide elevational range along the equator. We measured baseline testosterone levels, haemosporidian infection at four elevations spanning the species' natural range in the Ecuadorian Andes (600, 1500, 2100, 3300 m). Testosterone levels from breedingmales were not related to elevation, but there was high intrapopulation variability. Testosterone levels were not related to the probability of parasitism, but our results from one population suggested that the likelihood of being infected by haemosporidian parasites was greater when in breeding condition. In conclusion, even though there is variation in life history strategies among the studied populations, wider divergence in seasonality and life history traits would probably be needed to detect an effect of elevation on testosterone if one exists. Additionally, our results show that variation in testosterone is not related to infection risk of haemosporidians, thus other factors that take a toll on energetic resources, such as reproduction, should be looked at more closely. (C) 2016 Wiley Periodicals, Inc. [Escallon, Camilo; Tallant, James A.; Moore, Ignacio T.] Virginia Tech, Dept Biol Sci, 2119 Derring Hall, Blacksburg, VA 24061 USA; [Weinstein, Nicole M.] Virginia Tech, VA MD Reg Coll Vet Med, Blacksburg, VA USA; [Wojtenek, Winfried] Univ Tecn Ambato, Direcc Salud, Ambato, Ecuador; [Rodriguez-Saltos, Carlos A.] Emory Univ, Dept Psychol, Rollins Res Ctr, Atlanta, GA 30322 USA; [Bonaccorso, Elisa] Univ Tecnol Indoamer, Fac Ciencias Medio Ambiente, Ctr Invest Biodiversidad & Cambio Climat BioCamb, Cotocollao, Quito, Ecuador Escallon, C (reprint author), Virginia Tech, Dept Biol Sci, 2119 Derring Hall, Blacksburg, VA 24061 USA. camiloescallon@gmail.com Rodriguez-Saltos, Carlos/0000-0002-3162-7645; Bonaccorso, Elisa/0000-0002-7262-9356 National Science Foundation [IOS 0545735, IOS 1353093] Grant sponsor: National Science Foundation; grant numbers: IOS 0545735 and IOS 1353093 Addis EA, 2011, HORM BEHAV, V60, P195, DOI 10.1016/j.yhbeh.2011.05.002; Addis EA, 2010, GEN COMP ENDOCR, V166, P581, DOI 10.1016/j.ygcen.2010.01.011; Allander K, 1997, FUNCT ECOL, V11, P358, DOI 10.1046/j.1365-2435.1997.00095.x; Apfelbeck B, 2011, P ROY SOC B-BIOL SCI, V278, P3233, DOI 10.1098/rspb.2011.0098; Asghar M, 2011, J AVIAN BIOL, V42, P530, DOI 10.1111/j.1600-048X.2011.05281.x; Atkinson C. T., 1991, BIRD PARASITE INTERA, P19; Badyaev AV, 2001, ECOLOGY, V82, P2948, DOI 10.2307/2679973; Badyaev AV, 1997, OECOLOGIA, V111, P365, DOI 10.1007/s004420050247; Bears H, 2009, J ANIM ECOL, V78, P365, DOI 10.1111/j.1365-2656.2008.01491.x; Bendix J., 2001, ERDKUNDE, V55, P257, DOI DOI 10.3112/ERDKUNDE.2001.03.04; Bonier F, 2014, AM NAT, V183, P54, DOI 10.1086/674130; Braude S, 1999, BEHAV ECOL, V10, P345, DOI 10.1093/beheco/10.3.345; Buttemer WA, 2000, J AVIAN BIOL, V31, P479, DOI 10.1034/j.1600-048X.2000.310407.x; Campbell T, 2007, AVIAN EXOTIC ANIMAL, P3; Casto JM, 2001, AM NAT, V157, P408, DOI 10.1086/319318; Christe P, 2012, P ROY SOC B-BIOL SCI, V279, P1142, DOI 10.1098/rspb.2011.1546; Class AM, 2011, CONDOR, V113, P438, DOI 10.1525/cond.2011.100068; Class AM, 2011, ORNITOL NEOTROP, V22, P89; Cornelius JM, 2014, J EXP BIOL, V217, P841, DOI 10.1242/jeb.080697; de Jong ME, 2014, J AVIAN BIOL, V45, P179, DOI 10.1111/j.1600-048X.2013.00199.x; Deviche P, 2006, AUK, V123, P548, DOI 10.1642/0004-8038(2006)123[548:TTTFMD]2.0.CO;2; Deviche P, 2010, PARASITOLOGY, V137, P261, DOI [10.1017/S00311820099134X, 10.1017/S003118200999134X]; Eikenaar C, 2013, J AVIAN BIOL, V44, P600, DOI 10.1111/j.1600-048X.2013.00212.x; Eikenaar C, 2012, AM NAT, V180, P642, DOI 10.1086/667891; Ezenwa VO, 2012, FUNCT ECOL, V26, P123, DOI 10.1111/j.1365-2435.2011.01919.x; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Fuxjager MJ, 2011, FUNCT ECOL, V25, P132, DOI 10.1111/j.1365-2435.2010.01784.x; Garamszegi LZ, 2008, AM NAT, V172, P533, DOI 10.1086/590955; Garamszegi LZ, 2005, HORM BEHAV, V47, P389, DOI 10.1016/j.yhbeh.2004.11.008; Garvin MC, 2006, J PARASITOL, V92, P659, DOI 10.1645/GE-759R.1; Gonzalez-Gomez PL, 2013, GEN COMP ENDOCR, V191, P1, DOI 10.1016/j.ygcen.2013.05.007; Goymann W, 2004, AM NAT, V164, P327, DOI 10.1086/422856; Goymann W, 2007, HORM BEHAV, V51, P463, DOI 10.1016/j.yhbeh.2007.01.007; GRANT BW, 1990, ECOLOGY, V71, P1765, DOI 10.2307/1937584; Hau M, 2007, BIOESSAYS, V29, P133, DOI 10.1002/bies.20524; Hau M, 2010, P ROY SOC B-BIOL SCI, V277, P3203, DOI 10.1098/rspb.2010.0673; Hille SM, 2015, BIOL REV, V90, P204, DOI 10.1111/brv.12106; Isaksson C, 2013, BMC ECOL, V13, DOI 10.1186/1472-6785-13-15; Johns JL, 2008, AM J VET RES, V69, P1067, DOI 10.2460/ajvr.69.8.1067; Jones MR, 2013, J PARASITOL, V99, P903, DOI 10.1645/12-147.1; Karell P, 2011, J EVOLUTION BIOL, V24, P1783, DOI 10.1111/j.1420-9101.2011.02308.x; Kempenaers B, 2008, PHILOS T R SOC B, V363, P1711, DOI 10.1098/rstb.2007.0001; KETTERSON ED, 1992, AM NAT, V140, pS33, DOI 10.1086/285396; Kilpatrick AM, 2006, AUK, V123, P764, DOI 10.1642/0004-8038(2006)123[764:EOCAMP]2.0.CO;2; Lachish S, 2011, J ANIM ECOL, V80, P1196, DOI 10.1111/j.1365-2656.2011.01836.x; LaPointe DA, 2012, ANN NY ACAD SCI, V1249, P211, DOI 10.1111/j.1749-6632.2011.06431.x; LaPointe DA, 2010, J PARASITOL, V96, P318, DOI 10.1645/GE-2290.1; Loiseau C, 2013, SCI REP-UK, V3, DOI 10.1038/srep01126; Lynn SE, 2009, PHYSIOL BIOCHEM ZOOL, V82, P699, DOI 10.1086/605915; Martin LB, 2009, GEN COMP ENDOCR, V163, P70, DOI 10.1016/j.ygcen.2009.03.008; Martinez-de la Puente J, 2010, BIOL LETTERS, V6, P663, DOI 10.1098/rsbl.2010.0046; McGlothlin JW, 2007, AM NAT, V170, P864, DOI 10.1086/522838; Merino S, 2000, P ROY SOC B-BIOL SCI, V267, P2507, DOI 10.1098/rspb.2000.1312; Miller AH, 1968, CALDASIA, V10, P83; Mitchell Elizabeth B., 2008, Veterinary Clinics of North America Exotic Animal Practice, V11, P501, DOI 10.1016/j.cvex.2008.03.004; Moore IT, 2005, BEHAV ECOL, V16, P755, DOI 10.1093/beheco/ari049; Moore IT, 2004, ANIM BEHAV, V67, P411, DOI 10.1016/j.anbehav.2003.03.021; Moore IT, 2002, GEN COMP ENDOCR, V129, P13, DOI 10.1016/S0016-6480(02)00563-4; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Ots I, 1996, P ROY SOC B-BIOL SCI, V263, P1443, DOI 10.1098/rspb.1996.0210; Peig J, 2009, OIKOS, V118, P1883, DOI 10.1111/j.1600-0706.2009.17643.x; Perez-Tris J, 2005, ECOL LETT, V8, P838, DOI 10.1111/j.1461-0248.2005.00788.x; Podmokla E, 2014, J AVIAN BIOL, V45, P219, DOI 10.1111/j.1600-048X.2013.00284.x; Raberg L, 2009, PHILOS T R SOC B, V364, P37, DOI 10.1098/rstb.2008.0184; Raouf SA, 1997, P ROY SOC B-BIOL SCI, V264, P1599, DOI 10.1098/rspb.1997.0223; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Roberts ML, 2004, ANIM BEHAV, V68, P227, DOI 10.1016/j.anbehav.2004.05.001; Robinson WD, 2010, AUK, V127, P253, DOI 10.1525/auk.2010.127.2.253; Romero LM, 2002, GEN COMP ENDOCR, V128, P1; Sarmiento G, 1986, HIGH ALT TROP BIOGEO, V11, P45; Sehgal RNM, 2010, J EXP BIOL, V213, P955, DOI 10.1242/jeb.037663; Sinervo B, 1998, OIKOS, V83, P432, DOI 10.2307/3546671; Stearns S., 1992, EVOLUTION LIFE HIST; Stutchbury B. J. M, 2001, BEHAV ECOLOGY TROPIC; Tomas G, 2007, FUNCT ECOL, V21, P125, DOI 10.1111/j.1365-2435.2006.01214.x; Valkiunas G, 2008, J PARASITOL, V94, P1395, DOI 10.1645/GE-1570.1; Williams TD, 2008, PHILOS T R SOC B, V363, P1687, DOI 10.1098/rstb.2007.0003; WINGFIELD JC, 1990, AM NAT, V136, P829, DOI 10.1086/285134; Wingfield JC, 2001, BRAIN BEHAV EVOLUT, V57, P239, DOI 10.1159/000047243; Yorinks N, 2000, AUK, V117, P731, DOI 10.1642/0004-8038(2000)117[0731:EOMOAB]2.0.CO;2; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 81 1 1 5 21 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1932-5223 1932-5231 J EXP ZOOL PART A J. Exp. Zool. Part A OCT 2016 325 8 501 510 10.1002/jez.2034 10 Zoology Zoology EA1NM WOS:000386359000003 27527346 2018-11-22 J Neggazi, SA; Noreikiene, K; Ost, M; Jaatinen, K Neggazi, Sara A.; Noreikiene, Kristina; Ost, Markus; Jaatinen, Kim Reproductive investment is connected to innate immunity in a long-lived animal OECOLOGIA English Article Bacteria-killing capacity; H/L ratio; Immunosuppression; Incubation stage; Somateria mollissima; Trade-offs EIDERS SOMATERIA-MOLLISSIMA; HISTORY TRADE-OFFS; COMMON EIDERS; TREE SWALLOWS; CLUTCH SIZE; ECOLOGICAL IMMUNOLOGY; INDIVIDUAL VARIATION; BREEDING EIDERS; INCUBATION FAST; FEMALE Life-history theory predicts that organisms optimize their resource allocation strategy to maximize lifetime reproductive success. Individuals can flexibly reallocate resources depending on their life-history stage, and environmental and physiological factors, which lead to variable life-history strategies even within species. Physiological trade-offs between immunity and reproduction are particularly relevant for long-lived species that need to balance current reproduction against future survival and reproduction, but their underlying mechanisms are poorly understood. A major unresolved issue is whether the first-line innate immune function is suppressed by reproductive investment. In this paper, we tested if reproductive investment is associated with the suppression of innate immunity, and how this potential trade-off is resolved depending on physiological state and residual reproductive value. We used long-lived capital-breeding female eiders (Somateria mollissima) as a model. We showed that the innate immune response, measured by plasma bacteria-killing capacity (BKC), was negatively associated with increasing reproductive investment, i.e., with increasing clutch size and advancing incubation stage. Females in a better physiological state, as indexed by low heterophil-to-lymphocyte (H/L) ratios, showed higher BKC during early incubation, but this capacity decreased as incubation progressed, whereas females in poorer state showed low BKC capacity throughout incubation. Although plasma BKC generally declined with increasing H/L ratios, this decrease was most pronounced in young females. Our results demonstrate that reproductive investment can suppress constitutive first-line immune defence in a long-lived bird, but the degree of immunosuppression depends on physiological state and age. [Neggazi, Sara A.; Noreikiene, Kristina] Univ Helsinki, Dept Biosci, Ecol Genet Res Unit, Viikinkaari 1, FIN-00014 Helsinki, Finland; [Ost, Markus] Abo Akad Univ, Fac Sci & Engn, Environm & Marine Biol, Artillerigatan 6, FIN-20520 Turku, Finland; [Ost, Markus; Jaatinen, Kim] Novia Univ Appl Sci, Coastal Zone Res Team, Raseborgsvagen 9, Ekenas 10600, Finland Noreikiene, K (reprint author), Univ Helsinki, Dept Biosci, Ecol Genet Res Unit, Viikinkaari 1, FIN-00014 Helsinki, Finland. kriste.noreikiene@gmail.com Ost, Markus/C-7376-2008 Ost, Markus/0000-0002-2205-1437 Academy of Finland [266208, 1265211]; Finnish Cultural Foundation; Walter and Andree de Nottbeck foundation; Societas pro Fauna et Flora Fennica; Otto A. Malm foundation; Swedish Cultural Foundation in Finland We thank Heikki Eriksson, Ben Steele, Petteri Lehikoinen, Martin Seltmann, and James Montanari for their efforts in the field. We are also grateful to Tuomas Ojalehto for his valuable advice on performing BKC assays and two anonymous reviewers for constructive comments. Tvarminne Zoological Station provided excellent facilities. The study was funded by The Academy of Finland (Grant # 266208 to KJ and # 1265211 to Juha Merila which supported the work of KN), The Finnish Cultural Foundation (KJ and KN), Walter and Andree de Nottbeck foundation (SN), Societas pro Fauna et Flora Fennica (KN), Otto A. Malm foundation (KN), and the Swedish Cultural Foundation in Finland (MO). Aiken L. S., 1991, MULTIPLE REGRESSION; Al-Murrani WK, 2002, BRIT POULTRY SCI, V43, P501, DOI 10.1080/0007166022000004408; Andersson M., 1994, SEXUAL SELECTION; Ardia DR, 2005, ECOLOGY, V86, P2040, DOI 10.1890/04-1619; Ardia DR, 2005, J ANIM ECOL, V74, P517, DOI 10.1111/j.1365-2656.2005.00950.x; Ardia DR, 2003, P ROY SOC B-BIOL SCI, V270, P1679, DOI 10.1098/rspb.2003.2424; BAILLIE SR, 1982, BIRD STUDY, V29, P55, DOI 10.1080/00063658209476738; Bolduc F, 2003, BIOL CONSERV, V110, P77, DOI 10.1016/S0006-3207(02)00178-7; Borgsteede FHM, 2005, HELMINTHOLOGIA, V42, P215; Borgsteede FHM, 2005, HELMINTHOLOGIA, V42, P83; Bourgeon S, 2007, DEV COMP IMMUNOL, V31, P720, DOI 10.1016/j.dci.2006.11.009; Bourgeon S, 2009, GEN COMP ENDOCR, V163, P77, DOI 10.1016/j.ygcen.2008.11.015; Bouwhuis S, 2012, AM NAT, V179, pE15, DOI 10.1086/663194; Bouwhuis S, 2010, J ANIM ECOL, V79, P1251, DOI 10.1111/j.1365-2656.2010.01730.x; Campbell TW, 1988, AVIAN HEMATOLOGY CYT; Cichon M, 2001, J EVOLUTION BIOL, V14, P180, DOI 10.1046/j.1420-9101.2001.00243.x; Cichon M, 2001, ACTA OECOL, V22, P71, DOI 10.1016/S1146-609X(00)01094-8; Clinchy M, 2004, P ROY SOC B-BIOL SCI, V271, P2473, DOI 10.1098/rspb.2004.2913; Cotter SC, 2011, FUNCT ECOL, V25, P652, DOI 10.1111/j.1365-2435.2010.01819.x; COULSON JC, 1984, IBIS, V126, P525, DOI 10.1111/j.1474-919X.1984.tb02078.x; Davis AK, 2008, FUNCT ECOL, V22, P760, DOI 10.1111/j.1365-2435.2008.01467.x; Deerenberg C, 1997, P ROY SOC B-BIOL SCI, V264, P1021, DOI 10.1098/rspb.1997.0141; Delves PJ, 2011, ROITTS ESSENTIAL IMM; Downs CJ, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0125586; DRENT RH, 1980, ARDEA, V68, P225; Ekroos J, 2012, OECOLOGIA, V170, P979, DOI 10.1007/s00442-012-2378-9; Ellis VA, 2012, AUK, V129, P231, DOI 10.1525/auk.2012.11215; French SS, 2008, GEN COMP ENDOCR, V155, P148, DOI 10.1016/j.ygcen.2007.04.007; Hamel S, 2009, J ANIM ECOL, V78, P143, DOI 10.1111/j.1365-2656.2008.01459.x; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; Hanssen SA, 2005, P ROY SOC B-BIOL SCI, V272, P1039, DOI 10.1098/rspb.2005.3057; Hanssen SA, 2004, P ROY SOC B-BIOL SCI, V271, P925, DOI 10.1098/rspb.2004.2678; Hanssen SA, 2003, OECOLOGIA, V136, P457, DOI 10.1007/s00442-003-1282-8; Hanssen SA, 2002, BEHAV ECOL SOCIOBIOL, V52, P282, DOI 10.1007/s00265-002-0523-x; Hario M, 2009, ORNIS FENNICA, V86, P81; Hasselquist D, 2012, ANIM BEHAV, V83, P1303, DOI 10.1016/j.anbehav.2012.03.025; Hobson KA, 2015, AUK, V132, P624, DOI 10.1642/AUK-14-294.1; Hollmen T, 1999, J WILDLIFE DIS, V35, P466, DOI 10.7589/0090-3558-35.3.466; Hollmen T, 2002, THESIS; Ilmonen P, 2000, P ROY SOC B-BIOL SCI, V267, P665, DOI 10.1098/rspb.2000.1053; Jaatinen K, 2011, ANIM BEHAV, V81, P1289, DOI 10.1016/j.anbehav.2011.03.020; Jamieson SE, 2006, WILDLIFE BIOL, V12, P219, DOI 10.2981/0909-6396(2006)12[219:AEOMUT]2.0.CO;2; Janeway CA, 2001, IMMUNOBIOLOGY; Kats R.K.H., 2007, THESIS; Kilgas P, 2006, PHYSIOL BIOCHEM ZOOL, V79, P565, DOI 10.1086/502817; Kilpi M, 1997, OECOLOGIA, V111, P297, DOI 10.1007/s004420050238; Kilpi M, 2001, ANIM BEHAV, V62, P527, DOI 10.1006/anbe.2001.1784; Knowles SCL, 2009, FUNCT ECOL, V23, P405, DOI 10.1111/j.1365-2435.2008.01507.x; Kortet R, 2003, BIOL J LINN SOC, V78, P117, DOI 10.1046/j.1095-8312.2003.00136.x; Liebl AL, 2009, FUNCT ECOL, V23, P1091, DOI 10.1111/j.1365-2435.2009.01592.x; Lobato E, 2005, ECOSCIENCE, V12, P27, DOI 10.2980/i1195-6860-12-1-27.1; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Love OP, 2008, AM NAT, V172, pE99, DOI 10.1086/589521; Ludtke B, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0081395; Maizels RM, 2013, NAT IMMUNOL, V14, P879, DOI 10.1038/ni.2643; Mann DR, 2000, CELL IMMUNOL, V200, P105, DOI 10.1006/cimm.2000.1623; Matson KD, 2006, PHYSIOL BIOCHEM ZOOL, V79, P556, DOI 10.1086/501057; MAXWELL MH, 1993, WORLD POULTRY SCI J, V49, P34, DOI 10.1079/WPS19930004; Meijer T, 1999, IBIS, V141, P399, DOI 10.1111/j.1474-919X.1999.tb04409.x; Merrill L, 2014, AUK, V131, P3, DOI 10.1642/AUK-13-020-R1.1; Millet S, 2007, DEV COMP IMMUNOL, V31, P188, DOI 10.1016/j.dci.2006.05.013; Moller AP, 2004, OIKOS, V104, P299, DOI 10.1111/j.0030-1299.2004.12844.x; Morgan BP, 2005, IMMUNOL LETT, V97, P171, DOI 10.1016/j.imlet.2004.11.010; Nebel S, 2013, J EXP BIOL, V216, P2752, DOI 10.1242/jeb.083204; NETER J, 1996, APPL LINEAR REGRESSI; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Ost M, 2008, OECOLOGIA, V158, P205, DOI 10.1007/s00442-008-1139-2; Ost M, 2008, J ANIM ECOL, V77, P315, DOI 10.1111/j.1365-2656.2007.01348.x; Ost M, 2011, OECOLOGIA, V166, P327, DOI 10.1007/s00442-010-1855-2; Ost M, 2010, OECOLOGIA, V162, P59, DOI 10.1007/s00442-009-1444-4; PARKER H, 1990, AUK, V107, P660, DOI 10.2307/4087996; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Proaktor G, 2007, BIOLOGY LETT, V3, P674, DOI 10.1098/rsbl.2007.0376; R Development Core Team, 2013, R LANG ENV STAT COMP; Raberg L, 2000, ECOL LETT, V3, P382, DOI 10.1046/j.1461-0248.2000.00154.x; Ricklin D, 2010, NAT IMMUNOL, V11, P785, DOI 10.1038/ni.1923; Ruiz M, 2011, HERPETOL J, V21, P131; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Stearns S., 1992, EVOLUTION LIFE HIST; Swennen C., 1991, Wildfowl, V42, P94; Taylor M. A., 2007, VET PARASITOLOGY; Thomson DL, 1998, BIOL REV, V73, P293, DOI 10.1017/S0006323198005180; Velando A, 2006, P R SOC B, V273, P1443, DOI 10.1098/rspb.2006.3480; Villanua D, 2006, PARASITOLOGY, V133, P251, DOI 10.1017/S003118200600031X; Waldeck P, 2004, BEHAVIOUR, V141, P725, DOI 10.1163/1568539042245132; Weladji RB, 2008, OECOLOGIA, V156, P237, DOI 10.1007/s00442-008-0961-x; Williams TD, 1999, P ROY SOC B-BIOL SCI, V266, P753, DOI 10.1098/rspb.1999.0701; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002; Wolak ME, 2012, METHODS ECOL EVOL, V3, P129, DOI 10.1111/j.2041-210X.2011.00125.x; Yang DB, 2013, J EXP BIOL, V216, P4242, DOI 10.1242/jeb.092049 90 3 3 6 25 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia OCT 2016 182 2 347 356 10.1007/s00442-016-3657-7 10 Ecology Environmental Sciences & Ecology DW5FS WOS:000383669300003 27215635 2018-11-22 J Doyle, MJ; Mier, KL Doyle, Miriam J.; Mier, Kathryn L. Early life history pelagic exposure profiles of selected commercially important fish species in the Gulf of Alaska DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY English Article Fish species; Early life history; Gulf of Alaska; Pelagic exposure profiles; Environmental sensitivities; Recruitment processes POLLOCK THERAGRA-CHALCOGRAMMA; COD GADUS-MACROCEPHALUS; AGE-0 WALLEYE POLLOCK; SABLEFISH ANOPLOPOMA-FIMBRIA; WESTERN GULF; NORTHERN GULF; OF-ALASKA; NEUSTONIC ICHTHYOPLANKTON; SHELIKOF-STRAIT; PACIFIC-OCEAN A synthesis of nearly four decades of ichthyoplankton survey data from the Gulf of Alaska was undertaken to provide the most comprehensive information available on the early life history ecology of five focal species: Pacific Cod (Gadus macrocephalus), Walleye Pollock (Gadus chalcogrammus), Pacific Ocean Perch (Sebastes alutus), Sablefish (Anoplopoma fimbria), and Arrowtooth Flounder (Atheresthes stomias). This analysis of historical data, along with information from published studies, is presented here in the form of ecological reviews of the species during their planktonic phase. The reviews include descriptions of temporal and spatial patterns of exposure to the environment, and interpretation regarding associated sensitivities to environmental forcing. On a temporal scale, patterns in abundance of eggs and larvae are synthesized that characterize seasonal exposure to the pelagic environment, and interannual variation that is presumed to incorporate responses to long-term environmental forcing. Spatial patterns are synthesized to identify horizontal and vertical extent of egg and larval distributions, delineate areas of primary larval habitat, and illuminate egg and larval drift pathways. The observed patterns are discussed with respect to characterizing species early life history strategies, identifying long-term adaptations to the Gulf of Alaska environment, and associated resilience and vulnerability factors that may modulate early life responses to environmental forcing in this region. For each species, gaps in knowledge are identified and are concerned primarily with the period of transition between the larval and juvenile stage, and feeding habits and ecology across seasons, habitats and sub-intervals of early ontogeny. These early life history reviews advance our ecological understanding of the pelagic phase, and fine-tune our focus for the investigation of potential response mechanisms to environmental forcing at appropriate, species-specific temporal and spatial scales. (C) 2015 Elsevier Ltd. All rights reserved. [Doyle, Miriam J.] Univ Washington, Joint Inst Study Atmosphere & Ocean, Seattle, WA 98195 USA; [Mier, Kathryn L.] NOAA, NMFS, Alaska Fisheries Sci Ctr, 7600 Sand Point Way NE, Seattle, WA 98115 USA Doyle, MJ (reprint author), Alaska Fisheries Sci Ctr, 7600 Sand Point Way NE, Seattle, WA 98115 USA. miriam.doyle@noaa.gov North Pacific Research Board; Joint Institute for the study of the Atmosphere and Ocean, University of Washington under NOAA [NA10OAR4320148]; NOAA The data presented here are based on four decades of ichthyoplankton sampling in the Gulf of Alaska. Appreciation is extended to the many scientists and crews aboard the various research vessels that collected the samples during these Alaska Fisheries Research Center (AFSC) surveys. In addition, thanks are due to scientists at the AFSC Recruitment Processes Program, and at the Plankton Sorting and Identification Center in Sczcecin, Poland, who participated over the years in processing and analysis of the samples, as well as compilation of the ichthyoplankton data. Reviews on an earlier draft of the manuscript were provided by Ann Matarese, Janet Duffy-Anderson and Lisa De Forest, and are gratefully acknowledged. Myron Peck and two anonymous reviewers also provided valuable comments that helped improve the manuscript. Partial funding for this synthesis work was provided by the North Pacific Research Board and this paper represents NPRB Publication # 554 and GOAIERP publication # 8. This research was also partially funded by the Joint Institute for the study of the Atmosphere and Ocean, University of Washington under NOAA Cooperative Agreement no. NA10OAR4320148, Contribution no. 2192, and by NOAA's Climate Regimes and Ecosystem Productivity program. The research is also contribution EcoFOCI-0785 to NOAA's Fisheries-Oceanography Coordinated Investigations. Abookire AA, 2007, J SEA RES, V57, P198, DOI 10.1016/j.seares.2006.08.004; [Anonymous], FISH OCEANOGR S1, V5, P203; Atwood E, 2010, FISH OCEANOGR, V19, P493, DOI 10.1111/j.1365-2419.2010.00559.x; Bailey KM, 2008, FISH FISH, V9, P44, DOI 10.1111/j.1467-2979.2007.00268.x; Bailey KM, 2012, MAR ECOL PROG SER, V452, P205, DOI 10.3354/meps09614; Bailey KM, 1996, FISH OCEANOGR, V5, P137, DOI 10.1111/j.1365-2419.1996.tb00088.x; Bailey KM, 2005, PROG OCEANOGR, V67, P24, DOI 10.1016/j.pocean.2005.06.001; Bailey KM, 2003, BIG FISH BANG, P293; Bailey KM, 2002, MAR ECOL PROG SER, V236, P205, DOI 10.3354/meps236205; Bailey KM, 1999, FISH OCEANOGR, V8, P264, DOI 10.1046/j.1365-2419.1999.00113.x; Bailey KM, 2000, MAR ECOL PROG SER, V198, P215, DOI 10.3354/meps198215; BAILEY KM, 1995, MAR ECOL PROG SER, V119, P11, DOI 10.3354/meps119011; Belkin I, 2002, GEOPHYS RES LETT, V29, DOI 10.1029/2001GL013806; Blood D.B., 2007, 7 NOAA NMFS US DEP C; Boeing WJ, 2008, ECOL INDIC, V8, P292, DOI 10.1016/j.ecolind.2007.03.002; BRODEUR RD, 1995, FISH B-NOAA, V93, P603; Brodeur RD, 1996, FISH OCEANOGR, V5, P148, DOI 10.1111/j.1365-2419.1996.tb00089.x; BRODEUR RD, 1994, FISH B-NOAA, V92, P223; Brodeur RD, 1996, FISH OCEANOGR, V5, P92, DOI 10.1111/j.1365-2419.1996.tb00085.x; CANINO MF, 1991, MAR ECOL PROG SER, V79, P27, DOI 10.3354/meps079027; Chilton Elizabeth, 2007, ALASKA FISHERY RESEARCH BULLETIN, V12, P264; Chilton EA, 2010, FISH B-NOAA, V108, P70; Ciannelli L, 2007, CAN J FISH AQUAT SCI, V64, P713, DOI 10.1139/F07-049; Coyle KO, 2013, J MARINE SYST, V128, P185, DOI 10.1016/j.jmarsys.2013.04.018; Coyle KO, 2005, DEEP-SEA RES PT II, V52, P217, DOI 10.1016/j.dsr2.2004.09.025; Coyle KO, 2003, FISH OCEANOGR, V12, P327, DOI 10.1046/j.1365-2419.2003.00256.x; CURY P, 1994, CAN J FISH AQUAT SCI, V51, P1664, DOI 10.1139/f94-167; deYoung B, 2004, SCIENCE, V304, P1463, DOI 10.1126/science.1094858; Dougherty A, 2012, MAR BIOL, V159, P1733, DOI 10.1007/s00227-012-1961-2; Dougherty AB, 2007, J FISH BIOL, V71, P763, DOI 10.1111/j.1095-8649.2007.01543.x; Doyle MJ, 2012, CAN J FISH AQUAT SCI, V69, P2112, DOI 10.1139/cjfas-2012-0171; Doyle MJ, 2009, PROG OCEANOGR, V80, P163, DOI 10.1016/j.pocean.2009.03.002; DOYLE MJ, 1995, FISH B-NOAA, V93, P231; DOYLE MJ, 1992, CAL COOP OCEAN FISH, V33, P141; Doyle MJ, 2002, PROG OCEANOGR, V53, P247, DOI 10.1016/S0079-6611(02)00033-2; DUNN JR, 1987, FISH RES, V5, P163, DOI 10.1016/0165-7836(87)90038-5; Fuiman Lee A., 2002, P1; Gaichas SK, 2011, CAN J FISH AQUAT SCI, V68, P1553, DOI 10.1139/F2011-080; GROVER JJ, 1990, FISH B-NOAA, V88, P811; GROVER JJ, 1986, FISH B-NOAA, V84, P484; Haltuch MA, 2011, CAN J FISH AQUAT SCI, V68, P912, DOI 10.1139/F2011-030; HINCKLEY S, 1990, FISH B-NOAA, V88, P471; Houde Edward D., 2009, Journal of Northwest Atlantic Fishery Science, V41, P53; Hulson P.J.F, 2014, STOCK ASSESSMENT FIS, P547; Hurst TP, 2010, FISH B-NOAA, V108, P382; Hurst TP, 2009, FISH OCEANOGR, V18, P301, DOI 10.1111/j.1365-2419.2009.00512.x; Jump CM, 2008, FISH RES, V89, P222, DOI 10.1016/j.fishres.2007.08.019; Kamin LM, 2014, FISH OCEANOGR, V23, P1, DOI 10.1111/fog.12038; KENDALL AW, 1991, ENVIRON BIOL FISH, V30, P173, DOI 10.1007/BF02296888; KENDALL AW, 1994, FISH B-NOAA, V92, P540; KENDALL AW, 1987, MAR FISH REV, V49, P1; Laurel BJ, 2008, J PLANKTON RES, V30, P1051, DOI 10.1093/plankt/fbn057; Laurel BJ, 2011, CAN J FISH AQUAT SCI, V68, P51, DOI 10.1139/F10-130; Laurel J, 2007, J EXP MAR BIOL ECOL, V351, P42, DOI 10.1016/j.jembe.2007.06.005; LePage C, 1997, CAN J FISH AQUAT SCI, V54, P2235, DOI 10.1139/cjfas-54-10-2235; MASON JC, 1983, CAN J FISH AQUAT SCI, V40, P2126, DOI 10.1139/f83-247; Matarese A.C., 1989, 80 NOAA NMFS US DEP; Matarese AC, 2003, NOAA PROFESSIONAL PA, V1, P281; Mecklenburg C. W., 2002, FISHES ALASKA; Miller BS, 2009, EARLY LIFE HISTORY OF MARINE FISHES, P1, DOI 10.1525/california/9780520249721.001.0001; MILLER CB, 1988, PROG OCEANOGR, V20, P293, DOI 10.1016/0079-6611(88)90044-4; Montagnes DJS, 2010, J EUKARYOT MICROBIOL, V57, P223, DOI 10.1111/j.1550-7408.2010.00476.x; Moss JH, 2016, DEEP-SEA RES PT II, V132, P146, DOI 10.1016/j.dsr2.2015.03.014; Mueter FJ, 1999, MAR ECOL PROG SER, V190, P37, DOI 10.3354/meps190037; Mundy P., 2005, GULF ALASKA BIOL OCE; Myers RA, 1998, REV FISH BIOL FISHER, V8, P285, DOI 10.1023/A:1008828730759; Napp JM, 1996, FISH OCEANOGR, V5, P19, DOI 10.1111/j.1365-2419.1996.tb00080.x; Page L. M., 2013, AM FISHERIES SOC SPE, V34; Palof KJ, 2011, MAR BIOL, V158, P779, DOI 10.1007/s00227-010-1606-2; Porter SM, 2005, MAR ECOL PROG SER, V302, P207, DOI 10.3354/meps302207; Reynolds RW, 2002, J CLIMATE, V15, P1609, DOI 10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2; Rooper CN, 2008, FISH B-NOAA, V106, P1; Rose KA, 2005, CAN J FISH AQUAT SCI, V62, P886, DOI 10.1139/F05-049; SAMEOTO DD, 1969, J FISH RES BOARD CAN, V26, P2240, DOI 10.1139/f69-213; SHENKER JM, 1986, CAN J FISH AQUAT SCI, V43, P930, DOI 10.1139/f86-115; Shima Michiyo, 1994, Fisheries Oceanography, V3, P50, DOI 10.1111/j.1365-2419.1994.tb00047.x; Shotwell S.K., 2012, DEEP SEA RES 2; Sigler M.F., 2001, Alaska Fishery Research Bulletin, V8, P57; Spies I., 2013, 7 ASSESSMENT ARROWTO, P541; Stabeno PJ, 2004, CONT SHELF RES, V24, P859, DOI 10.1016/j.csr.2004.02.007; Stachura MM, 2014, FISH OCEANOGR, V23, P389, DOI 10.1111/fog.12066; Stark JW, 2007, FISH B-NOAA, V105, P396; Strasburger WW, 2014, DEEP-SEA RES PT II, V109, P172, DOI 10.1016/j.dsr2.2013.10.007; TenBrink TT, 2013, N AM J FISH MANAGE, V33, P373, DOI 10.1080/02755947.2012.760505; THEILACKER GH, 1995, FISH B-NOAA, V93, P333; Waite JN, 2013, PROG OCEANOGR, V116, P179, DOI 10.1016/j.pocean.2013.07.006; WIEBE PH, 1976, J MAR RES, V34, P313; Wilson MT, 2006, MAR ECOL PROG SER, V317, P245, DOI 10.3354/meps317245; Wilson MT, 2009, MAR ECOL PROG SER, V392, P223, DOI 10.3354/meps08160; Wilson MT, 2005, FISH B-NOAA, V103, P207; Wing B. L., 1997, BIOL MANAGEMENT SABL, P13; Yatsu A, 2008, PROG OCEANOGR, V77, P252, DOI 10.1016/j.pocean.2008.03.009 92 7 7 3 16 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0967-0645 1879-0100 DEEP-SEA RES PT II Deep-Sea Res. Part II-Top. Stud. Oceanogr. OCT 2016 132 162 193 10.1016/j.dsr2.2015.06.019 32 Oceanography Oceanography DZ1LA WOS:000385598700013 2018-11-22 J Poysa, H; Rintala, J; Johnson, DH; Kauppinen, J; Lammi, E; Nudds, TD; Vaananen, VM Poysa, Hannu; Rintala, Jukka; Johnson, Douglas H.; Kauppinen, Jukka; Lammi, Esa; Nudds, Thomas D.; Vaananen, Veli-Matti Environmental variability and population dynamics: do European and North American ducks play by the same rules? ECOLOGY AND EVOLUTION English Article demographic stochasticity; density dependence; environmental variability; hierarchical Bayesian state-space models; life history strategy; population variability ESTIMATING DENSITY-DEPENDENCE; ECOLOGICAL TIME-SERIES; BRITISH BIRDS; TEMPORAL VARIABILITY; COMMUNITY DYNAMICS; HUNTING PRESSURE; BREEDING DUCKS; LIFE-HISTORY; WATERFOWL; PATTERNS Density dependence, population regulation, and variability in population size are fundamental population processes, the manifestation and interrelationships of which are affected by environmental variability. However, there are surprisingly few empirical studies that distinguish the effect of environmental variability from the effects of population processes. We took advantage of a unique system, in which populations of the same duck species or close ecological counterparts live in highly variable (north American prairies) and in stable (north European lakes) environments, to distinguish the relative contributions of environmental variability (measured as between-year fluctuations in wetland numbers) and intraspecific interactions (density dependence) in driving population dynamics. We tested whether populations living in stable environments (in northern Europe) were more strongly governed by density dependence than populations living in variable environments (in North America). We also addressed whether relative population dynamical responses to environmental variability versus density corresponded to differences in life history strategies between dabbling (relatively "fast species" and governed by environmental variability) and diving (relatively "slow species" and governed by density) ducks. As expected, the variance component of population fluctuations caused by changes in breeding environments was greater in North America than in Europe. Contrary to expectations, however, populations in more stable environments were not less variable nor clearly more strongly density dependent than populations in highly variable environments. Also, contrary to expectations, populations of diving ducks were neither more stable nor stronger density dependent than populations of dabbling ducks, and the effect of environmental variability on population dynamics was greater in diving than in dabbling ducks. In general, irrespective of continent and species life history, environmental variability contributed more to variation in species abundances than did density. Our findings underscore the need for more studies on populations of the same species in different environments to verify the generality of current explanations about population dynamics and its association with species life history. [Poysa, Hannu] Nat Resources Inst Finland, Joensuu, Finland; [Rintala, Jukka] Nat Resources Inst Finland, Helsinki, Finland; [Johnson, Douglas H.] USGS Northern Prairie Wildlife Res Ctr, St Paul, MN USA; [Johnson, Douglas H.] Univ Minnesota, Fisheries Wildlife & Conservat Biol, St Paul, MN 55108 USA; [Kauppinen, Jukka] Kuopio Nat Hist Museum, Kuopio, Finland; [Lammi, Esa] Environm Planning ENVIRO, Espoo, Finland; [Nudds, Thomas D.] Univ Guelph, Dept Integrat Biol, Guelph, ON, Canada; [Vaananen, Veli-Matti] Univ Helsinki, Dept Forest Sci, Helsinki, Finland Poysa, H (reprint author), Nat Resources Inst Finland, Joensuu, Finland. hannu.poysa@luke.fi Almaraz P, 2012, J ANIM ECOL, V81, P1113, DOI 10.1111/j.1365-2656.2012.01972.x; Bailey RO, 1981, T N AM WILDL NAT RES, V46, P58; Batt B.D.J., 1989, P204; Benton TG, 2002, J ANIM ECOL, V71, P320, DOI 10.1046/j.1365-2656.2002.00601.x; BETHKE RW, 1995, ECOL APPL, V5, P588, DOI 10.2307/1941969; BETHKE RW, 1993, OECOLOGIA, V93, P102, DOI 10.1007/BF00321198; Bjornstad ON, 2001, SCIENCE, V293, P638, DOI 10.1126/science.1062226; Blums P, 2002, J ANIM ECOL, V71, P438, DOI 10.1046/j.1365-2656.2002.00613.x; Bonenfant C, 2009, ADV ECOL RES, V41, P313, DOI 10.1016/S0065-2504(09)00405-X; Brook BW, 2006, ECOLOGY, V87, P1445, DOI 10.1890/0012-9658(2006)87[1445:SOEFDD]2.0.CO;2; Dennis B, 2006, ECOL MONOGR, V76, P323, DOI 10.1890/0012-9615(2006)76[323:EDDPNA]2.0.CO;2; Drever MC, 2006, OECOLOGIA, V147, P725, DOI 10.1007/s00442-005-0308-9; Feldman RE, 2015, GLOBAL ECOL BIOGEOGR, V24, P896, DOI 10.1111/geb.12323; GASTON KJ, 1994, PHILOS T R SOC B, V345, P335, DOI 10.1098/rstb.1994.0114; Gelman A, 2003, BAYESIAN DATA ANAL; Gelman A, 2006, BAYESIAN ANAL, V1, P515, DOI 10.1214/06-BA117A; Gilks W.R., 1996, MARKOV CHAIN MONTE C, P1; Gonzalez J, 2009, J ZOOL, V279, P310, DOI 10.1111/j.1469-7998.2009.00622.x; Gunnarsson G, 2013, EUR J WILDLIFE RES, V59, P305, DOI 10.1007/s10344-013-0716-9; Hagemeijer W. J., 1997, EBCC ATLAS EUROPEAN; HANSKI I, 1990, PHILOS T ROY SOC B, V330, P141, DOI 10.1098/rstb.1990.0188; HANSKI I, 1993, OIKOS, V67, P29, DOI 10.2307/3545092; Heath JP, 2006, OIKOS, V115, P573; HEATH MF, 2000, BIRDLIFE CONSERVATIO, V8; Herrando-Perez S, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0091536; Hixon MA, 2002, ECOLOGY, V83, P1490, DOI 10.1890/0012-9658(2002)083[1490:PRHCAC]2.0.CO;2; Holopainen S, 2014, FRESHWATER BIOL, V59, P2621, DOI 10.1111/fwb.12458; Holyoak M, 1996, OECOLOGIA, V108, P47, DOI 10.1007/BF00333213; Holyoak M, 1996, OECOLOGIA, V108, P54, DOI 10.1007/BF00333214; Jamieson L. E., 2004, Animal Biodiversity and Conservation, V27, P113; Johnson D. H., 1995, LONG TERM STUDIES VE, P391; JOHNSON DH, 1988, WILDLIFE MONOGR, P1; Kaitala V, 1997, P ROY SOC B-BIOL SCI, V264, P943, DOI 10.1098/rspb.1997.0130; Kauppinen J, 1999, WILDLIFE BIOL, V5, P73; Kauppinen J., 1983, FINNISH GAME RES, V40, P49; Kauppinen Jukka, 1993, Finnish Game Research, V48, P24; Kery M, 2012, BAYESIAN POPULATION ANALYSIS USING WINBUGS: A HIERARCHICAL PERSPECTIVE, P1; Kery M, 2016, APPL HIERARCHICAL MO; Knape J, 2012, ECOL LETT, V15, P17, DOI 10.1111/j.1461-0248.2011.01702.x; Koons David N., 2014, Wildfowl, P169; Koskimies P., 1991, MONITORING BIRD POPU; Krebs CJ, 2002, PHILOS T ROY SOC B, V357, P1211, DOI 10.1098/rstb.2002.1122; Laakso J, 2003, OIKOS, V102, P663, DOI 10.1034/j.1600-0706.2003.12319.x; LANDE R, 1993, AM NAT, V142, P911, DOI 10.1086/285580; Lande R., 2003, STOCHASTIC POPULATIO; Lawrence JD, 2013, METHODS ECOL EVOL, V4, P25, DOI 10.1111/j.2041-210X.2012.00255.x; Lebreton JD, 2013, J WILDLIFE MANAGE, V77, P12, DOI 10.1002/jwmg.425; LEITCH WG, 1985, J WILDLIFE MANAGE, V49, P212, DOI 10.2307/3801873; McCarthy MA, 2005, J APPL ECOL, V42, P1012, DOI 10.1111/j.1365-2664.2005.01101.x; MURDOCH WW, 1994, ECOLOGY, V75, P271, DOI 10.2307/1939533; Murray DL, 2010, ECOLOGY, V91, P571, DOI 10.1890/MS08-1032.1; Mutshinda CM, 2011, J ANIM ECOL, V80, P101, DOI 10.1111/j.1365-2656.2010.01743.x; Mutshinda CM, 2009, P ROY SOC B-BIOL SCI, V276, P2923, DOI 10.1098/rspb.2009.0523; NUDDS TD, 1994, OIKOS, V69, P295, DOI 10.2307/3546150; NUDDS TD, 1983, ECOLOGY, V64, P319, DOI 10.2307/1937079; NUMMI P, 1993, ECOGRAPHY, V16, P319, DOI 10.1111/j.1600-0587.1993.tb00221.x; Nummi P, 2015, OECOLOGIA, V177, P679, DOI 10.1007/s00442-014-3133-1; Patterson J. H., 1979, T N AM WILDL NAT RES, V44, P130; Peron G, 2012, J ANIM ECOL, V81, P960, DOI 10.1111/j.1365-2656.2012.01980.x; Petchey OL, 2000, P ROY SOC B-BIOL SCI, V267, P747, DOI 10.1098/rspb.2000.1066; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Plummer M., 2003, JAGS PROGRAM ANAL BA; Poysa H, 1996, ORNIS FENNICA, V73, P60; Poysa H, 2001, OIKOS, V94, P365, DOI 10.1034/j.1600-0706.2001.940218.x; Poysa H, 2014, J ORNITHOL, V155, P679, DOI 10.1007/s10336-014-1051-y; Poysa H, 2013, EUR J WILDLIFE RES, V59, P245, DOI 10.1007/s10344-012-0673-8; R Core Team, 2014, R LANG ENV STAT COMP; Ranta E, 2000, P ROY SOC B-BIOL SCI, V267, P1851, DOI 10.1098/rspb.2000.1220; Ripa J, 1999, ECOL LETT, V2, P219; ROHWER FC, 1988, AUK, V105, P161; Ross BE, 2015, ECOL APPL, V25, P1606, DOI 10.1890/14-0582.1; ROUGHGARDEN J, 1975, AM NAT, V109, P713, DOI 10.1086/283039; Roy C., 2016, ECOGRAPHY IN PRESS; ROYAMA T, 1992, ANAL POPULATION DYNA; Ruokolainen L, 2009, TRENDS ECOL EVOL, V24, P555, DOI 10.1016/j.tree.2009.04.009; SAETHER BE, 1987, OIKOS, V48, P79, DOI 10.2307/3565691; Saether BE, 2002, SCIENCE, V295, P2070; Saether BE, 2008, J ANIM ECOL, V77, P869, DOI 10.1111/j.1365-2656.2008.01424.x; Saether BE, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms12001; Saether BE, 2011, J ANIM ECOL, V80, P215, DOI 10.1111/j.1365-2656.2010.01751.x; Schwager M, 2006, AM NAT, V167, P879, DOI 10.1086/503609; Sibly RM, 2005, SCIENCE, V309, P607, DOI 10.1126/science.1110760; Sinclair ARE, 1996, OIKOS, V75, P164, DOI 10.2307/3546240; Stenseth NC, 1999, OIKOS, V87, P427, DOI 10.2307/3546809; Sturtz S, 2005, J STAT SOFTW, V12, P1; Suhonen S, 2011, BOREAL ENVIRON RES, V16, P71; Thomas A., 2006, R NEWS, V6, P12; TURCHIN P, 1992, ECOLOGY, V73, P289, DOI 10.2307/1938740; Turchin P, 1999, OIKOS, V84, P153, DOI 10.2307/3546876; Turchin Peter, 1995, P19, DOI 10.1016/B978-012159270-7/50003-8; Vaananen VM, 2001, WILDLIFE BIOL, V7, P3; VICKERY WL, 1984, ECOLOGY, V65, P96, DOI 10.2307/1939462; Viljugrein H, 2005, ECOLOGY, V86, P245, DOI 10.1890/04-0467; Williams CK, 2003, ECOLOGY, V84, P2654, DOI 10.1890/03-0038; WOIWOD IP, 1992, J ANIM ECOL, V61, P619, DOI 10.2307/5617; Zeng Z, 1998, ECOLOGY, V79, P2193, DOI 10.2307/176721; Ziebarth NL, 2010, ECOL LETT, V13, P21, DOI 10.1111/j.1461-0248.2009.01393.x; Zuur A. F., 2009, MIXED EFFECTS MODELS 98 2 2 5 23 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. OCT 2016 6 19 7004 7014 10.1002/ece3.2413 11 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology DZ1UJ WOS:000385626100021 28725377 DOAJ Gold, Green Published 2018-11-22 J Cozzi, G; Chynoweth, M; Kusak, J; Coban, E; Coban, A; Ozgul, A; Sekercioglu, CH Cozzi, G.; Chynoweth, M.; Kusak, J.; Coban, E.; Coban, A.; Ozgul, A.; Sekercioglu, C. H. Anthropogenic food resources foster the coexistence of distinct life history strategies: year-round sedentary and migratory brown bears JOURNAL OF ZOOLOGY English Article anthropogenic food resource; behavioral plasticity; behavioral type; habitat selection; migration; movement patterns; Ursus arctos AMERICAN BLACK BEAR; URSUS-ARCTOS; BEHAVIORAL-ADJUSTMENTS; SELECTION FUNCTIONS; HUMAN DISTURBANCE; CONSEQUENCES; POPULATION; RESPONSES; MOVEMENT; CONSERVATION Plastic behavioral adaptation to human activities can result in the enhancement and establishment of distinct behavioral types within a population. Such inter-individual behavioral variations, if unaccounted for, can lead to biases in our understanding of species' feeding habits, movement pattern and habitat selection. We tracked the movements of 16 adult brown bears in a small and isolated population in north-east Turkey to (1) identify inter-individual behavioral variations associated with the use of a garbage dump and (2) to examine how these variations influenced ranging patterns, movements behavior and habitat selection. We identified two remarkably distinct behavioral types: bears that regularly visited the dump and remained sedentary year-round and bears that never visited the dump and migrated 165.7 +/- 20.1km (round-trip mean cumulative distance +/- se) prior to hibernation to search for food. We demonstrated that during migratory trips, bears moved more rapidly and were less selective in habitat choice than during the sedentary phase; during the migration phase, forest cover was the only important environmental characteristic. Our results thus reinforce the growing evidence that animals' use of the landscape largely changes according to movement phase. Our study shows that anthropogenic food resources can influence food habits, which can have cascading effects on movement patterns and hence habitat selection, ultimately resulting in the establishment of distinct behavioral types within a population. Identification and consideration of these behavioral types is thus fundamental for the correct implementation of evidence-based conservation strategies at the population level. [Cozzi, G.; Ozgul, A.] Univ Zurich, Dept Evolutionary Biol & Environm Studies, Populat Ecol Res Grp, Winterthurerstr 190, CH-8057 Zurich, Switzerland; [Chynoweth, M.; Sekercioglu, C. H.] Univ Utah, Dept Biol, Salt Lake City, UT 84112 USA; [Kusak, J.] Univ Zagreb, Fac Vet, Dept Biol, Zagreb, Croatia; [Coban, E.; Coban, A.; Sekercioglu, C. H.] KuzeyDoga Soc, Kars, Turkey; [Coban, A.] Kafkas Univ, Inst Hlth Sci, Dept Parasitol, Kars, Turkey; [Sekercioglu, C. H.] Koc Univ, Coll Sci, Istanbul, Turkey Cozzi, G (reprint author), Univ Zurich, Dept Evolutionary Biol & Environm Studies, Populat Ecol Res Grp, Winterthurerstr 190, CH-8057 Zurich, Switzerland. gabriele.cozzi@uzh.ch Ozgul, Arpat/K-2032-2012 Ozgul, Arpat/0000-0001-7477-2642; Kusak, Josip/0000-0002-5544-6486; Sekercioglu, Cagan H./0000-0003-3193-0377 Forschungskredit der Universitat Zurich; Claraz Foundation; Ashoka Fellowship; Bosporus University; Christensen Fund; Fondation Segre; National Geographic Society; National Science Foundation; UNDP Small Grants Program; University of Utah; Whitley Fund; Kuzey Doga and Nature Turkiye Foundation We thank the General Directorate of Nature Conservation and National Parks and Forestry General Directorate of Turkey's Ministry of Forestry and Water Affairs for permitting our research. For their support, we thank the Forschungskredit der Universitat Zurich, Claraz Foundation, Ashoka Fellowship, Bosporus University, Christensen Fund, Fondation Segre, National Geographic Society, National Science Foundation, UNDP Small Grants Program, University of Utah, Whitley Fund and Kuzey Doga and Nature Turkiye Foundation donors, especially Bilge Bahar, Seha Ismen, Lin Lougheed and Batubay Ozkan, Burak Over, and Barin Yucemen. We are grateful to the KuzeyDoga staff and volunteers for their efforts through the years and to the people of Erzurum, Kars and Sarikamis for their hospitality. Beier P, 1998, CONSERV BIOL, V12, P1241, DOI 10.1046/j.1523-1739.1998.98036.x; BLANCHARD BM, 1991, BIOL CONSERV, V58, P41, DOI 10.1016/0006-3207(91)90044-A; Borger L, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P222; Boyce MS, 2002, ECOL MODEL, V157, P281, DOI 10.1016/S0304-3800(02)00200-4; Bunnefeld N, 2011, J ANIM ECOL, V80, P466, DOI 10.1111/j.1365-2656.2010.01776.x; Can OE, 2004, URSUS, V15, P48, DOI 10.2192/1537-6176(2004)015<0048:SAMOBB>2.0.CO;2; Capitani C, 2016, MAMMALIA, V80, P329, DOI 10.1515/mammalia-2014-0151; Chynoweth MW, 2016, TURK J ZOOL, V40, P972, DOI 10.3906/zoo-1509-6; Chynoweth MW, 2015, TURK J ZOOL, V39, P541, DOI 10.3906/zoo-1405-10; Craiu RV, 2011, J COMPUT GRAPH STAT, V20, P767, DOI 10.1198/jcgs.2011.09189; Dahle B, 2003, J ZOOL, V260, P329, DOI 10.1017/S0952836903003753; Dingle H, 2014, MIGRATION: THE BIOLOGY OF LIFE ON THE MOVE, 2ND EDITION, P1, DOI 10.1093/acprof:oso/9780199640386.001.0001; Elfstrom M, 2014, J WILDLIFE MANAGE, V78, P881, DOI 10.1002/jwmg.727; Elfstrom M, 2014, MAMMAL REV, V44, P5, DOI 10.1111/j.1365-2907.2012.00223.x; Elliot NB, 2014, J APPL ECOL, V51, P1169, DOI 10.1111/1365-2664.12282; Fieberg J, 2010, PHILOS T R SOC B, V365, P2233, DOI 10.1098/rstb.2010.0079; Flack A, 2016, SCI ADV, V2, DOI 10.1126/sciadv.1500931; Forester JD, 2009, ECOLOGY, V90, P3554, DOI 10.1890/08-0874.1; Fortin D, 2005, ECOLOGY, V86, P1320, DOI 10.1890/04-0953; Gill JA, 2001, BIOL CONSERV, V97, P265, DOI 10.1016/S0006-3207(00)00002-1; Goudie A. S., 2013, HUMAN IMPACT NATURAL; Hanski I, 1999, METAPOPULATION ECOLO; Kaczensky P, 2006, J ZOOL, V269, P474, DOI 10.1111/j.1469-7998.2006.00114.x; Killeen J, 2014, MOV ECOL, V2, DOI 10.1186/s40462-014-0015-4; Liley SG, 2015, URSUS, V26, P1, DOI 10.2192/URSUS-D-15-00006.1; Martin J, 2010, CAN J ZOOL, V88, P875, DOI 10.1139/Z10-053; Massemin-Challet S, 2006, IBIS, V148, P503, DOI 10.1111/j.1474-919X.2006.00550.x; Nelson ME, 1998, CAN J ZOOL, V76, P426, DOI 10.1139/cjz-76-3-426; Noyce KV, 2011, BEHAV ECOL SOCIOBIOL, V65, P823, DOI 10.1007/s00265-010-1086-x; Ordiz A, 2013, J APPL ECOL, V50, P306, DOI 10.1111/1365-2664.12047; Palmer SCF, 2014, OIKOS, V123, P923, DOI 10.1111/oik.01248; Peirce KN, 2006, URSUS, V17, P165, DOI 10.2192/1537-6176(2006)17[165:UOAGDB]2.0.CO;2; Robbins CT, 2004, URSUS, V15, P161, DOI 10.2192/1537-6176(2004)015<0161:NEOUAR>2.0.CO;2; Runge CA, 2014, FRONT ECOL ENVIRON, V12, P395, DOI 10.1890/130237; Seger RL, 2013, CAN J ZOOL, V91, P512, DOI 10.1139/cjz-2012-0326; Sekercioglu CH, 2011, BIOL CONSERV, V144, P2752, DOI 10.1016/j.biocon.2011.06.025; Sekerciolu C. H., 2012, TURKEYS 1 WILDLIFE C; SIMBERLOFF D, 1992, CONSERV BIOL, V6, P493, DOI 10.1046/j.1523-1739.1992.06040493.x; Sol D, 2013, ANIM BEHAV, V85, P1101, DOI 10.1016/j.anbehav.2013.01.023; Stien A, 2010, ECOLOGY, V91, P915, DOI 10.1890/09-0056.1; Valeix M, 2012, J APPL ECOL, V49, P73, DOI 10.1111/j.1365-2664.2011.02099.x; Weimerskirch H, 2015, SCI REP-UK, V5, DOI 10.1038/srep08853; Wood SN, 2006, GEN ADDITIVE MODELS; Yoda K, 2012, MAR ECOL PROG SER, V466, P249, DOI 10.3354/meps09939; Zeller KA, 2012, LANDSCAPE ECOL, V27, P777, DOI 10.1007/s10980-012-9737-0 45 5 5 1 23 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0952-8369 1469-7998 J ZOOL J. Zool. OCT 2016 300 2 142 150 10.1111/jzo.12365 9 Zoology Zoology DY9CQ WOS:000385430900009 2018-11-22 J Magnanou, E; Noirot, C; Falcon, J; Jorgensen, EH Magnanou, Elodie; Noirot, Celine; Falcon, Jack; Jorgensen, Even Hjalmar Sequencing and characterization of a multi-organ Arctic charr transcriptome: A toolbox for investigating polymorphism and seasonal life in a high Arctic fish MARINE GENOMICS English Article Salvelinus alpinus; Contig; 454 sequencing; Phenotype; Life-history; Physiology SALMON SALMO-SALAR; ATLANTIC SALMON; SALVELINUS-ALPINUS; HISTORY VARIATION; LEPTIN; GENERATION; L.; ANNOTATION; ADIPOSITY; FRAMEWORK The Arctic charr (Salvelinus alpinus L.) inhabits fresh water ecosystems of the high North. The species has developed a strong phenotypic plasticity and variability in life history characteristics which has made this species an attractive model for investigations on phenotype plasticity, morph formation and ecological speciation. Further, the extreme seasonal variations in environmental conditions (e.g. food availability) in the high North induce seasonal changes in phenotype, which require precise timing mechanisms and physiological preparations. Individual gating of life-history strategies (e.g. formation of resident and sea-migrating morphs) and transitions (e.g. maturation) depends on conditional traits (size/energy status) at specific assessment time windows, and complex neuroendocrine regulation, which so far is poorly understood. In the absence of a reference genome, and in order to facilitate the investigation of the complex biological mechanisms of this unique fish model, the present study reveals a reference transcriptome for the Arctic charr. Using Roche 454 GS FLX+, we targeted various organs being either at the crossroads of many key pathways (neuroendocrine, metabolic, behavioral), of different ontological origins or displaying complementary physiological functions. The assemblage yielded 34,690 contigs greater than 1000 bp with an average length (1690 bp) and annotation rate (52%) within the range, or even higher, than what has been previously obtained with other teleost de novo transcriptomes. We dramatically improve the publically available transcript data on this species that may indeed be useful for various disciplines, from basic research to applied aspects related to conservation issues and aquaculture. (C) 2016 Elsevier B.V. All rights reserved. [Magnanou, Elodie; Falcon, Jack] UPMC Univ Paris 06, Sorbonne Univ, CNRS, Observ Oceanol,BIOM, F-66650 Banyuls Sur Mer, France; [Noirot, Celine] INRA, Plateforme Bioinformat Toulouse Midi Pyrenees, Biometrie & Intelligence Artificielle UR875, BP 52627, F-31326 Castanet Tolosan, France; [Jorgensen, Even Hjalmar] UiT Arctic Univ Norway, Fac Biosci Fisheries & Econ, Dept Arctic & Marine Biol, NO-9037 Tormso, Norway Magnanou, E (reprint author), UPMC Univ Paris 06, Sorbonne Univ, CNRS, Observ Oceanol,BIOM, F-66650 Banyuls Sur Mer, France.; Jorgensen, EH (reprint author), UiT Arctic Univ Norway, Fac Biosci Fisheries & Econ, Dept Arctic & Marine Biol, NO-9037 Tormso, Norway. elodie.magnanou@obs-banyuls.fr; even.jorgensen@uit.no Tromso University Research Foundation at UiT the Arctic University of Norway, Tromso, Norway [A36144] We thank colleagues at Eurofins MWG Operon, Germany, for technical advices and Christophe Klopp at INRA, Plateforme bioinformatique Toulouse Midi-Pyrenees, for his help and support during this work. We also acknowledge the Tromso University Research Foundation (Grant no. A36144) at UiT the Arctic University of Norway, Tromso, Norway, for financial support for this study. We thank two anonymous reviewers for their valuable comments that greatly improved our manuscript. Aarseth JJ, 2010, POLAR BIOL, V33, P379, DOI 10.1007/s00300-009-0715-1; Adzhubei AA, 2007, BMC GENOMICS, V8, DOI 10.1186/1471-2164-8-209; Barb CR, 2004, ANIM REPROD SCI, V82-3, P155, DOI 10.1016/j.anireprosci.2004.04.032; Bardou P, 2014, BMC BIOINFORMATICS, V15, DOI 10.1186/1471-2105-15-293; Betancur-R R, 2013, PLOS CURR-TREE LIFE, DOI 10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288; Blum WF, 1997, HORM RES, V48, P2, DOI 10.1159/000191303; Boivin T.G., 1989, BIOL CHARRS MASU SAL, P653; Chevreux B, 2004, GENOME RES, V14, P1147, DOI 10.1101/gr.1917404; Coppe A, 2010, BMC GENOMICS, V11, DOI 10.1186/1471-2164-11-635; Davie A, 2009, CHRONOBIOL INT, V26, P379, DOI 10.1080/07420520902820947; DEMPSON JB, 1998, INT SOC ARCTIC CHAR, V6, P27; DePristo MA, 2011, NAT GENET, V43, P491, DOI 10.1038/ng.806; Di Genova A., 2011, DATABASE J BIOL DATA, V2011; DUSTON J, 1988, J COMP PHYSIOL A, V164, P259, DOI 10.1007/BF00603956; Ferraresso S, 2013, BMC GENOMICS, V14, DOI 10.1186/1471-2164-14-315; Ferraz ALJ, 2008, BMC GENOMICS, V9, DOI 10.1186/1471-2164-9-173; Fraser BA, 2011, BMC GENOMICS, V12, DOI 10.1186/1471-2164-12-202; Friedman JM, 2002, NUTR REV, V60, pS1, DOI 10.1301/002966402320634878; Froiland E, 2012, GEN COMP ENDOCR, V178, P330, DOI 10.1016/j.ygcen.2012.06.017; Froiland E, 2010, GEN COMP ENDOCR, V165, P136, DOI 10.1016/j.ygcen.2009.06.010; Hoar W.S., 1988, PHYSL DEV FISH VIVIP, P275; Ji PF, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0035152; Johansen SJS, 2003, AQUAC RES, V34, P317; Johnson L, 1980, CHARRS SALMONID FISH, P15; Jonsson B, 2001, J FISH BIOL, V58, P605, DOI 10.1006/jfbi.2000.1515; Jorgensen EH, 2014, MAR GENOM, V14, P71, DOI 10.1016/j.margen.2013.10.005; Kapralova KH, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0106084; Klemetsen A, 2003, ECOL FRESHW FISH, V12, P1, DOI 10.1034/j.1600-0633.2003.00010.x; Kristiansson E, 2009, BMC GENOMICS, V10, DOI 10.1186/1471-2164-10-345; Kurokawa T, 2005, PEPTIDES, V26, P745, DOI 10.1016/j.peptides.2004.12.017; Li H, 2009, BIOINFORMATICS, V25, P1754, DOI 10.1093/bioinformatics/btp324; Lorgen M, 2015, CURR BIOL, V25, P936, DOI 10.1016/j.cub.2015.01.074; Magnanou E, 2014, GENE, V544, P56, DOI 10.1016/j.gene.2014.04.032; Mariette J, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0096821; McCormick SD, 2013, FISH PHYSIOL, V32, P199, DOI 10.1016/B978-0-12-396951-4.00005-0; McKenna A, 2010, GENOME RES, V20, P1297, DOI 10.1101/gr.107524.110; Moriya Y, 2007, NUCLEIC ACIDS RES, V35, pW182, DOI 10.1093/nar/gkm321; NORDENG H, 1983, CAN J FISH AQUAT SCI, V40, P1372, DOI 10.1139/f83-159; Qian X, 2014, OMICS, V18, P98, DOI 10.1089/omi.2013.0110; Rikardsen AH, 2004, ECOL FRESHW FISH, V13, P305, DOI 10.1111/j.1600-0633.2004.00070.x; Saether B.-S., 2013, J ICHTHYOL, V53, P833; Striberny A., 2015, PLOS ONE; Swanson HK, 2011, CAN J FISH AQUAT SCI, V68, P2020, DOI 10.1139/F2011-111; Thorpe JE, 1998, EVOL ECOL, V12, P581, DOI 10.1023/A:1022351814644; Tveiten H, 1996, J FISH BIOL, V48, P910; Van der Auwera G. A., 2013, CURR PROTOC BIOINFOR, V11, P1, DOI DOI 10.1002/0471250953.BI1110S43; Wynne K, 2005, J ENDOCRINOL, V184, P291, DOI 10.1677/joe.1.05866; Yufera M, 2012, MAR BIOTECHNOL, V14, P423, DOI 10.1007/s10126-011-9422-3 48 1 1 2 11 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 1874-7787 1876-7478 MAR GENOM Mar. Genom. OCT 2016 29 45 53 10.1016/j.margen.2016.04.006 9 Genetics & Heredity; Marine & Freshwater Biology Genetics & Heredity; Marine & Freshwater Biology DY9RN WOS:000385472900008 27118202 2018-11-22 J Zhou, KL; Wang, MX; Sun, S Zhou, Konglin; Wang, Minxiao; Sun, Song Effects of Elevated Temperature and Food Supply on the Termination of Over-Summering and Subsequent Development of the Calanoid Copepod Calanus sinicus: Morphology, Physiology and Gene Expression PLOS ONE English Article LIFE-HISTORY STRATEGIES; SOUTHERN YELLOW SEA; COLD BOTTOM WATER; VITELLOGENIN-RECEPTOR; MARINE COPEPOD; LIPID STORAGE; MOLECULAR CHARACTERIZATION; ECDYSONE RECEPTOR; GONAD DEVELOPMENT; LOCH ENVIRONMENT The copepod Calanus sinicus Brodsky dominates the zooplankton in the Yellow Sea, China, and undergoes over-summering within the Yellow Sea Cold Water Mass (YSCWM). Termination of over-summering and subsequent development are regarded as key processes in population recruitment, and are probably linked to environmental variations in the YSCWM. In this study, we examined the effects of temperature (9 and 18 degrees C) and food conditions (0.1 mu g C mL(-1) and unfed) on metabolic rates, morphological characteristics, and relative gene expressions of six genes involved in molting, gonad development, lipid catabolism, and stress tolerance processes of C. sinicus during termination of over-summering and subsequent development. Both elevated temperature and external food supply rapidly ended over-summering of C. sinicus, accompanied by up-regulation of the ecdysteroid receptor (EcR) gene expression and increased metabolic rates. These environmental conditions resulted in irreversible termination of over-summering and ensure the success of molting. During subsequent development, the lipid reserve in oil sacs could permit only early gonad development. The food supply might be a trigger to activate the final maturity of gonad by up-regulating expression of the vitellogenin receptor (VgR) gene. Thus, food played an indispensable role in population recruitment after termination of over-summering, whereas the elevated temperature accelerated these physiological processes. This study revealed the first dynamic profiles of physiological processes involved in over-summering termination and the subsequent development of C. sinicus using morphological, physiological and molecular methods simultaneously, confirmed the quiescent state of over-summering C5 copepodites, detected the effects of environmental changes on over-summering termination and subsequent development, and provided a foundation for future investigations of the mechanisms involved in over-summering in YSCWM. [Zhou, Konglin; Wang, Minxiao; Sun, Song] Chinese Acad Sci, Inst Oceanol, Key Lab Marine Ecol & Environm Sci, Qingdao, Peoples R China; [Zhou, Konglin] Univ Chinese Acad Sci, Beijing, Peoples R China; [Zhou, Konglin; Wang, Minxiao; Sun, Song] Qingdao Natl Lab Marine Sci & Technol, Lab Marine Ecol & Environm Sci, Qingdao, Peoples R China; [Sun, Song] Chinese Acad Sci, Inst Oceanol, Jiaozhou Bay Marine Ecosyst Res Stn, Qingdao, Peoples R China; [Zhou, Konglin] State Ocean Adm, Inst Oceanog 2, Key Lab Marine Ecosyst & Biogeochem, Hangzhou, Zhejiang, Peoples R China Sun, S (reprint author), Chinese Acad Sci, Inst Oceanol, Key Lab Marine Ecol & Environm Sci, Qingdao, Peoples R China.; Sun, S (reprint author), Qingdao Natl Lab Marine Sci & Technol, Lab Marine Ecol & Environm Sci, Qingdao, Peoples R China.; Sun, S (reprint author), Chinese Acad Sci, Inst Oceanol, Jiaozhou Bay Marine Ecosyst Res Stn, Qingdao, Peoples R China. sunsong@qdio.ac.cn National Natural Science Foundation of China [41230963, 41106133]; Strategic Priority Research Program of the Chinese Academy of Sciences [XDA11020305]; National Natural Science Foundation of China - Shandong Joint Fund for Marine Ecology and Environmental Sciences [U1406403]; National Program on Basic Research of China [2014FY110500] This work was supported by the National Natural Science Foundation of China No. 41230963 (SS) and No. 41106133 (MW), the Strategic Priority Research Program of the Chinese Academy of Sciences No. XDA11020305 (SS), the National Natural Science Foundation of China - Shandong Joint Fund for Marine Ecology and Environmental Sciences No. U1406403 (SS) and National Program on Basic Research of China No. 2014FY110500 (MW). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. ARNAUD J, 1982, REPROD NUTR DEV, V22, P537, DOI 10.1051/rnd:19820410; Chen T, 2003, EUR J BIOCHEM, V270, P137, DOI 10.1046/j.1432-1033.2003.03373.x; Clark KAJ, 2012, LIMNOL OCEANOGR, V57, P65, DOI 10.4319/lo.2012.57.1.0065; Clark KAJ, 2013, GEN COMP ENDOCR, V189, P66, DOI 10.1016/j.ygcen.2013.04.002; Crain JA, 2000, ICES J MAR SCI, V57, P1773, DOI 10.1006/jmsc.2000.0979; Crain JA, 2001, DEEP-SEA RES PT II, V48, P551, DOI 10.1016/S0967-0645(00)00078-3; DAHMS HU, 1995, HYDROBIOLOGIA, V306, P199, DOI 10.1007/BF00017691; Denlinger DL, 2014, ANNU REV ENTOMOL, V59, P73, DOI 10.1146/annurev-ento-011613-162023; Goepfert S, 2005, PLANT PHYSIOL, V138, P1947, DOI 10.1104/pp.105.064311; Gunawardene YINS, 2001, INSECT BIOCHEM MOLEC, V31, P1115, DOI 10.1016/S0965-1748(01)00060-1; Hansen BH, 2008, GEN COMP ENDOCR, V158, P115, DOI 10.1016/j.ygcen.2008.05.013; Harrison PM, 1996, BBA-BIOENERGETICS, V1275, P161, DOI 10.1016/0005-2728(96)00022-9; HIRCHE HJ, 1983, MAR ECOL PROG SER, V11, P281, DOI 10.3354/meps011281; Hirche HJ, 1996, OPHELIA, V44, P129, DOI 10.1080/00785326.1995.10429843; Huang Jiaqi, 1986, Oceanologia et Limnologia Sinica, V17, P161; Hwang DS, 2010, COMP BIOCHEM PHYS C, V151, P303, DOI 10.1016/j.cbpc.2009.12.003; Irigoien X, 2004, J PLANKTON RES, V26, P259, DOI 10.1093/plankt/fbh030; Ji RB, 2011, MAR ECOL PROG SER, V440, P105, DOI 10.3354/meps09342; Johnson CL, 2004, PROG OCEANOGR, V62, P15, DOI 10.1016/j.pocean.2004.08.002; Johnson CL, 2003, MAR ECOL PROG SER, V257, P159, DOI 10.3354/meps257159; Jonasdottir Sigrun H., 1999, Fisheries Oceanography, V8, P61, DOI 10.1046/j.1365-2419.1999.00003.x; Kattner G, 2007, CAN J FISH AQUAT SCI, V64, P1628, DOI 10.1139/F07-122; Klinbunga S, 2015, AQUACULTURE, V435, P18, DOI 10.1016/j.aquaculture.2014.09.013; KOELLE MR, 1991, CELL, V67, P59, DOI 10.1016/0092-8674(91)90572-G; Krishnan M., 2008, Journal of Endocrinology and Reproduction, V12, P13; Kuballa AV, 2007, GEN COMP ENDOCR, V150, P48, DOI 10.1016/j.ygcen.2006.07.020; LAUFER H, 1987, SCIENCE, V235, P202, DOI 10.1126/science.235.4785.202; Lee RF, 2006, MAR ECOL PROG SER, V307, P273, DOI 10.3354/meps307273; Lenz PH, 2012, COMP BIOCHEM PHYS D, V7, P110, DOI 10.1016/j.cbd.2011.12.001; Li C, 2004, MAR BIOL, V145, P149, DOI 10.1007/s00227-004-1306-x; Liu GM, 2003, FISH OCEANOGR, V12, P291, DOI 10.1046/j.1365-2419.2003.00253.x; [刘梦坛 Liu Mengtan], 2011, [生态学报, Acta Ecologica Sinica], V31, P933; Madsen ML, 2008, ICES J MAR SCI, V65, P1112, DOI 10.1093/icesjms/fsn097; Maps F, 2014, J PLANKTON RES, V36, P18, DOI 10.1093/plankt/fbt100; Miller CB, 2000, ICES J MAR SCI, V57, P1786, DOI 10.1006/jmsc.2000.0975; Niehoff B, 2005, MAR ECOL PROG SER, V285, P107, DOI 10.3354/meps285107; Niehoff B, 2004, J EXP MAR BIOL ECOL, V307, P237, DOI 10.1016/j.jembe.2004.02.006; Niehoff B, 2003, J PLANKTON RES, V25, P1581, DOI 10.1093/plankt/fbg104; Niehoff B, 2002, MAR BIOL, V140, P567, DOI 10.1007/s00227-001-0731-3; Niehoff B, 2007, PROG OCEANOGR, V74, P1, DOI 10.1016/j.pocean.2006.05.005; Nilsson B, 2014, J PLANKTON RES, V36, P513, DOI 10.1093/plankt/fbt099; Ning J, 2013, DEEP-SEA RES PT II, V97, P109, DOI 10.1016/j.dsr2.2013.05.019; Ning J, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0063741; Parsons T. R., 1984, MANUAL CHEM BIOL MET; Pond DW, 2011, LIMNOL OCEANOGR, V56, P1310, DOI 10.4319/lo.2011.56.4.1310; Pu XM, 2004, J PLANKTON RES, V26, P1059, DOI 10.1093/plankt/fbh101; Pu XM, 2004, J PLANKTON RES, V26, P1049, DOI 10.1093/plankt/fbh097; Rey-Rassat C, 2002, MAR ECOL PROG SER, V238, P301, DOI 10.3354/meps238301; Roth Z, 2012, MOL REPROD DEV, V79, P478, DOI 10.1002/mrd.22055; SANTER B, 1995, J ANIM ECOL, V64, P600, DOI 10.2307/5803; Speirs DC, 2006, MAR ECOL PROG SER, V313, P173, DOI 10.3354/meps313173; STEWART JM, 1994, INVERTEBR REPROD DEV, V25, P73, DOI 10.1080/07924259.1994.9672370; Strickland J. D. H., 1968, B FISH RES BD CAN, V167, P1; Sun Song, 2011, Oceanologia et Limnologia Sinica, V42, P165; Sun S, 2010, DEEP-SEA RES PT II, V57, P1006, DOI 10.1016/j.dsr2.2010.02.002; Sun Song, 2005, GLOBEC International Newsletter, V11, P34; Svetlichny LS, 2006, J MARINE SYST, V59, P52, DOI 10.1016/j.jmarsys.2005.09.003; Swalethorp R, 2011, MAR ECOL PROG SER, V429, P125, DOI 10.3354/meps09065; Tarrant AM, 2008, MAR ECOL PROG SER, V355, P193, DOI 10.3354/meps07207; Tarrant AM, 2014, FRONT ZOOL, V11, DOI 10.1186/s12983-014-0091-8; Tiu SHK, 2008, BIOL REPROD, V79, P66, DOI 10.1095/biolreprod.107.066258; Unal E, 2013, J EXP MAR BIOL ECOL, V446, P76, DOI 10.1016/j.jembe.2013.04.020; UYE S, 1988, HYDROBIOLOGIA, V167, P285, DOI 10.1007/BF00026316; Uye S, 2000, ICES J MAR SCI, V57, P1850, DOI 10.1006/jmsc.2000.0965; Wang R, 2003, J PLANKTON RES, V25, P169, DOI 10.1093/plankt/25.2.169; Wang S., 2009, THESIS; Wang SW, 2009, MAR ECOL PROG SER, V379, P123, DOI 10.3354/meps07902; Weng X C, 1982, HYDROMETEOLOGY, P61; Zhang DY, 2001, J BIOL CHEM, P276; Zhang GT, 2007, J PLANKTON RES, V29, P179, DOI 10.1093/plankt/fbm005; Zhou KL, 2016, J PLANKTON RES, V38, P551, DOI 10.1093/plankt/fbw011 71 1 1 1 17 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One SEP 21 2016 11 9 e0161838 10.1371/journal.pone.0161838 22 Multidisciplinary Sciences Science & Technology - Other Topics DW8GK WOS:000383892700011 27652608 DOAJ Gold, Green Published 2018-11-22 J Peeters, C; Adams, RMM Peeters, Christian; Adams, Rachelle M. M. Uncoupling Flight and Reproduction in Ants: Evolution of Ergatoid Queens in Two Lineages of Megalomyrmex (Hymenoptera: Formicidae) JOURNAL OF INSECT SCIENCE English Article ovary; ergatoid; Megalomyrmex foreli; Megalomyrmex wallacei; dispersal DEPENDENT COLONY FOUNDATION Megalomyrmex Forel (Myrmicinae: Solenopsidini) consists of 44 species with diverse life history strategies. Most species are predatory and may also tend honeydew-producing insects. A morphologically derived group of species are social parasites that consume the brood and fungus garden within fungus-growing ant nests. The reproductive strategies of Megalomyrmex queens are somewhat aligned with these life-style patterns. Predatory species in the leoninus species group are large in body size and have ergatoid (i.e., permanently wingless) queens whereas the social parasitic species are smaller and typically have winged queens. We examined two ergatoid phenotypes of Megalomyrmex foreli Emery and Megalomyrmex wallacei Mann and compared them to winged species, one a social lestobiotic or "thief ant" parasite (Megalomyrmex mondabora Brandao) and the other a predator (Megalomyrmex modestus Emery). Megalomyrmex foreli colonies have a single queen with an enlarged gaster that is morphologically distinct from workers. Megalomyrmex wallacei colonies have several queens that are similar in body size to workers. Queens in both species showed a simplification of the thorax, but there was a dramatic difference in the number of ovarioles. Megalomyrmex foreli had 60-80 ovarioles compared to eight in M. wallacei and M. mondabora and M. modestus had 22-28. Along with flight loss in queens, there is an obligate shift to dependent colony founding (also called budding or fission) consequently influencing dispersal patterns. These constraints in life history traits may help explain the variation in nesting biology among Megalomyrmex species. [Peeters, Christian] UPMC, Sorbonne Univ, UMR CNRS 7618, Inst Ecol & Environm Sci, F-75005 Paris, France; [Adams, Rachelle M. M.] Ohio State Univ, Museum Biol Divers, Dept Evolut Ecol & Organismal Biol, Rm 1500,1315 Kinnear Rd, Columbus, OH 43212 USA Adams, RMM (reprint author), Ohio State Univ, Museum Biol Divers, Dept Evolut Ecol & Organismal Biol, Rm 1500,1315 Kinnear Rd, Columbus, OH 43212 USA. christian.peeters@upmc.frc; adams.1970@osu.edu Organization for Tropical Studies; La Selva Biological Station; El Ceibo Ranger Station in Costa Rica; Marie Curie International Incoming Fellowship at the University of Copenhagen [237266]; French National Research Agency (ANTEVO) [ANR-12-JSV7-0003-01] We would like to thank Janni Larsen and Ronald Vargas for their help with fieldwork, Mia Hegelund Hyldahl and Janni Larsen for laboratory assistance, and Virginie Garnier-Thibaud with the scanning electron microscope at UPMC, Paris. We are grateful for research and permit support from the Organization for Tropical Studies, La Selva Biological Station, and El Ceibo Ranger Station in Costa Rica. Field work was supported by a Marie Curie International Incoming Fellowship (237266 - ANCEPS) to R.M.M.A. at the University of Copenhagen. C.P. is supported by the French National Research Agency (ANTEVO ANR-12-JSV7-0003-01). Adams RMM, 2007, INSECT SOC, V54, P136, DOI 10.1007/s00040-007-0922-0; Adams R.M.M., 2008, THESIS; Adams RMM, 2015, J CHEM ECOL, V41, P373, DOI 10.1007/s10886-015-0565-y; Adams RMM, 2013, P NATL ACAD SCI USA, V110, P15752, DOI 10.1073/pnas.1311654110; Boudinot BE, 2013, ZOOTAXA, V3732, P1, DOI 10.11646/zootaxa.3732.1.1; BRANDAO C R F, 1990, Arquivos de Zoologia (Sao Paulo), V31, P411; Brandao C.R.F., 1987, P111; Brandão Carlos Roberto F., 2003, Pap. Avulsos Zool. (São Paulo), V43, P145, DOI 10.1590/S0031-10492003000800001; Cronin AL, 2013, ANNU REV ENTOMOL, V58, P37, DOI 10.1146/annurev-ento-120811-153643; Devries P. J., 1992, Journal of Research on the Lepidoptera, V31, P103; Heinze J, 1998, INSECT SOC, V45, P113, DOI 10.1007/s000400050073; JONES TH, 1991, J CHEM ECOL, V17, P2507, DOI 10.1007/BF00994598; Longino JT, 2010, ZOOTAXA, P35; Molet M, 2012, AM NAT, V180, P328, DOI 10.1086/667368; Molet M, 2009, BIOL J LINN SOC, V98, P198, DOI 10.1111/j.1095-8312.2009.01257.x; Peeters C, 2012, MYRMECOL NEWS, V16, P75; Peeters C, 2010, ANT ECOLOGY, P159; Ward PS, 2015, SYST ENTOMOL, V40, P61, DOI 10.1111/syen.12090 18 0 0 1 15 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1536-2442 2250-2645 J INSECT SCI J Insect Sci. SEP 12 2016 16 10.1093/jisesa/iew068 5 Entomology Entomology DW0ZP WOS:000383372600005 27620557 DOAJ Gold, Green Published 2018-11-22 J Pakanen, VM; Orell, M; Vatka, E; Rytkonen, S; Broggi, J Pakanen, Veli-Matti; Orell, Markku; Vatka, Emma; Rytkonen, Seppo; Broggi, Juli Different Ultimate Factors Define Timing of Breeding in Two Related Species PLOS ONE English Article TIT PARUS-MONTANUS; CLIMATE-CHANGE; GREAT TITS; POPULATION FLUCTUATIONS; TROPHIC INTERACTIONS; FOOD AVAILABILITY; SOCIAL-DOMINANCE; NORTHERN FINLAND; CLUTCH-SIZE; MARSH TIT Correct reproductive timing is crucial for fitness. Breeding phenology even in similar species can differ due to different selective pressures on the timing of reproduction. These selection pressures define species' responses to warming springs. The temporal match-mismatch hypothesis suggests that timing of breeding in animals is selected to match with food availability (synchrony). Alternatively, time-dependent breeding success (the date hypothesis) can result from other seasonally deteriorating ecological conditions such as intra-or interspecific competition or predation. We studied the effects of two ultimate factors on the timing of breeding, synchrony and other time-dependent factors (time-dependence), in sympatric populations of two related forest-dwelling passerine species, the great tit (Parus major) and the willow tit (Poecile montanus) by modelling recruitment with long-termcapture-recapture data. We hypothesized that these two factors have different relevance for fitness in these species. We found that local recruitment in both species showed quadratic relationships with both time-dependence and synchrony. However, the importance of these factors was markedly different between the studied species. Caterpillar food played a predominant role in predicting the timing of breeding of the great tit. In contrast, for the willow tit time-dependence modelled as timing in relation to conspecifics was more important for local recruitment than synchrony. High caterpillar biomass experienced during the pre- and post-fledging periods increased local recruitment of both species. These contrasting results confirm that these species experience different selective pressures upon the timing of breeding, and hence responses to climate change may differ. Detailed information about life-history strategies is required to understand the effects of climate change, even in closely related taxa. The temporal match-mismatch hypothesis should be extended to consider subsequent critical periods when food needs to be abundantly available. [Pakanen, Veli-Matti; Orell, Markku; Vatka, Emma; Rytkonen, Seppo] Univ Oulu, Dept Ecol, POB 3000, FIN-90014 Oulu, Finland; [Broggi, Juli] UO CISC, Res Unit Biodivers, UMIB, PA, Ed Invest 5a C Gonzalo Gutierrez Quiros S-N, Mieres 33600, Spain; [Broggi, Juli] Lund Univ, Sect Evolutionary Ecol, Dept Biol, S-22362 Lund, Sweden Pakanen, VM (reprint author), Univ Oulu, Dept Ecol, POB 3000, FIN-90014 Oulu, Finland. veli-matti.pakanen@oulu.fi Pakanen, Veli-Matti/L-8134-2015 Academy of Finland, Research Council for Biosciences and Environment [128193, 258638, 278759]; Thule Institute of the University of Oulu; Foundations' Professor Pool The Academy of Finland, Research Council for Biosciences and Environment (to MO, project numbers 128193 and 258638; to VMP, project number 278759) http://www.aka.fi/en/, Thule Institute of the University of Oulu (to MO) http://www.oulu.fi/thuleinstitute/, and Foundations' Professor Pool (to MO) http://www.professoripooli.fi/index_en.php?cat=1&lang=3. Ahola MP, 2009, J ANIM ECOL, V78, P1298, DOI 10.1111/j.1365-2656.2009.01596.x; Both C, 2001, NATURE, V411, P296, DOI 10.1038/35077063; Both C, 2009, J ANIM ECOL, V78, P73, DOI 10.1111/j.1365-2656.2008.01458.x; Burnham KP, 2002, MODEL SELECTION MULT; Dias PC, 1996, IBIS, V138, P644, DOI 10.1111/j.1474-919X.1996.tb04766.x; DRENT RH, 1980, ARDEA, V68, P225; Drent RH, 2006, ARDEA, V94, P305; DUNN E K, 1976, British Birds, V69, P45; Durant JM, 2005, ECOL LETT, V8, P952, DOI 10.1111/j.1461-0248.2005.00798.x; Durant JM, 2007, CLIM RES, V33, P271, DOI 10.3354/cr033271; Eeva T, 2012, J ORNITHOL, V153, P653, DOI 10.1007/s10336-011-0783-1; Eeva T, 2000, CAN J ZOOL, V78, P67, DOI 10.1139/cjz-78-1-67; EKMAN J, 1989, WILSON BULL, V101, P263; Garcia-Navas V, 2011, OECOLOGIA, V165, P639, DOI 10.1007/s00442-010-1858-z; GARNETT MC, 1981, IBIS, V123, P31, DOI 10.1111/j.1474-919X.1981.tb00170.x; Goodenough AE, 2011, BIRD STUDY, V58, P221, DOI 10.1080/00063657.2010.548006; Goodenough AE, 2010, CLIMATIC CHANGE, V102, P687, DOI 10.1007/s10584-010-9932-4; Gruebler MU, 2010, J AVIAN BIOL, V41, P282, DOI 10.1111/j.1600-048X.2009.04865.x; Harrap S, 1996, TITS NUTHACHES TREEC; Johansson J, 2014, J ANIM ECOL, V83, P440, DOI 10.1111/1365-2656.12151; KOIVULA K, 1993, BEHAV ECOL SOCIOBIOL, V33, P283, DOI 10.1007/BF02027126; Koivula K, 1996, IBIS, V138, P624, DOI 10.1111/j.1474-919X.1996.tb04763.x; Lambrechts MM, 2000, ECOGRAPHY, V23, P525, DOI 10.1034/j.1600-0587.2000.230502.x; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; LENS L, 1993, BEHAV ECOL SOCIOBIOL, V33, P79; Lof ME, 2012, P ROY SOC B-BIOL SCI, V279, P3161, DOI 10.1098/rspb.2012.0431; MINOT EO, 1981, J ANIM ECOL, V50, P375, DOI 10.2307/4061; Moller AP, 2008, P NATL ACAD SCI USA, V105, P16195, DOI 10.1073/pnas.0803825105; Naef-Daenzer B, 2001, J ANIM ECOL, V70, P730, DOI 10.1046/j.0021-8790.2001.00533.x; NILSSON JA, 1989, J ANIM ECOL, V58, P619, DOI 10.2307/4852; NILSSON JA, 1988, J ANIM ECOL, V57, P917, DOI 10.2307/5101; ORELL M, 1989, IBIS, V131, P112, DOI 10.1111/j.1474-919X.1989.tb02750.x; ORELL M, 1983, ANN ZOOL FENN, V20, P99; ORELL M, 1983, HOLARCTIC ECOL, V6, P413; ORELL M, 1983, ARDEA, V71, P183; Parmesan C, 2003, NATURE, V421, P37, DOI 10.1038/nature01286; PERRINS CM, 1965, J ANIM ECOL, V34, P601, DOI 10.2307/2453; Post E, 2001, P ROY SOC B-BIOL SCI, V268, P15, DOI 10.1098/rspb.2000.1324; Reale D, 2003, P ROY SOC B-BIOL SCI, V270, P591, DOI 10.1098/rspb.2002.2224; Reed TE, 2013, SCIENCE, V340, P488, DOI 10.1126/science.1232870; Rytkonen S, 1996, J AVIAN BIOL, V27, P21, DOI 10.2307/3676957; Rytkonen S, 2003, J AVIAN BIOL, V34, P288, DOI 10.1034/j.1600-048X.2003.03041.x; Stevenson IR, 2000, NATURE, V406, P366, DOI 10.1038/35019151; Thackeray SJ, 2010, GLOBAL CHANGE BIOL, V16, P3304, DOI 10.1111/j.1365-2486.2010.02165.x; VANBALEN JH, 1973, ARDEA, V61, P1; Vatka E, 2016, GLOBAL CHANGE BIOL, V22, P1585, DOI 10.1111/gcb.13144; Vatka E, 2014, OECOLOGIA, V176, P595, DOI 10.1007/s00442-014-3022-7; Vatka E, 2011, GLOBAL CHANGE BIOL, V17, P3002, DOI 10.1111/j.1365-2486.2011.02430.x; Verboven N, 1998, OIKOS, V81, P511, DOI 10.2307/3546771; Verhulst S, 2008, PHILOS T R SOC B, V363, P399, DOI 10.1098/rstb.2007.2146; Visser ME, 2012, J ORNITHOL, V153, pS75, DOI 10.1007/s10336-011-0770-6; Visser ME, 1998, P ROY SOC B-BIOL SCI, V265, P1867, DOI 10.1098/rspb.1998.0514; Wesolowski T, 1998, ARDEA, V86, P89; White GC, 1999, BIRD STUDY, V46, P120; ZANDT HS, 1994, OECOLOGIA, V97, P399, DOI 10.1007/BF00317331 55 2 2 2 23 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One SEP 9 2016 11 9 e0162643 10.1371/journal.pone.0162643 15 Multidisciplinary Sciences Science & Technology - Other Topics DV9JE WOS:000383255900143 27611971 DOAJ Gold, Green Published 2018-11-22 J Baumann, JH; Townsend, JE; Courtney, TA; Aichelman, HE; Davies, SW; Lima, FP; Castillo, KD Baumann, Justin H.; Townsend, Joseph E.; Courtney, Travis A.; Aichelman, Hannah E.; Davies, Sarah W.; Lima, Fernando P.; Castillo, Karl D. Temperature Regimes Impact Coral Assemblages along Environmental Gradients on Lagoonal Reefs in Belize PLOS ONE English Article GREAT-BARRIER-REEF; 1998 BLEACHING EVENT; CLIMATE-CHANGE; MULTIPLE STRESSORS; CARIBBEAN PANAMA; LIFE-HISTORIES; RESILIENCE; DECLINE; SEA; EUTROPHICATION Coral reefs are increasingly threatened by global and local anthropogenic stressors such as rising seawater temperature, nutrient enrichment, sedimentation, and overfishing. Although many studies have investigated the impacts of local and global stressors on coral reefs, we still do not fully understand how these stressors influence coral community structure, particularly across environmental gradients on a reef system. Here, we investigate coral community composition across three different temperature and productivity regimes along a nearshore-offshore gradient on lagoonal reefs of the Belize Mesoamerican Barrier Reef System (MBRS). A novel metric was developed using ultra-high-resolution satellite-derived estimates of sea surface temperatures (SST) to classify reefs as exposed to low (low(TP)), moderate (mod(TP)), or high (high(TP)) temperature parameters over 10 years (2003 to 2012). Coral species richness, abundance, diversity, density, and percent cover were lower at high(TP) sites relative to low(TP) and mod(TP) sites, but these coral community traits did not differ significantly between low(TP) and mod(TP) sites. Analysis of coral life history strategies revealed that high(TP) sites were dominated by hardy stress-tolerant and fast-growing weedy coral species, while low(TP) and mod(TP) sites consisted of competitive, generalist, weedy, and stress-tolerant coral species. Satellite-derived estimates of Chlorophyll-a (chl-a) were obtained for 13-years (2003-2015) as a proxy for primary production. Chl-a concentrations were highest at high(TP) sites, medial at mod(TP) sites, and lowest at low(TP) sites. Notably, thermal parameters correlated better with coral community traits between site types than productivity, suggesting that temperature (specifically number of days above the thermal bleaching threshold) played a greater role in defining coral community structure than productivity on the MBRS. Dominance of weedy and stress-tolerant genera at high(TP) sites suggests that corals utilizing these two life history strategies may be better suited to cope with warmer oceans and thus may warrant protective status under climate change. [Baumann, Justin H.; Townsend, Joseph E.; Courtney, Travis A.; Aichelman, Hannah E.; Davies, Sarah W.; Castillo, Karl D.] Univ N Carolina, Dept Marine Sci, 3202 Murray & Venable Halls, Chapel Hill, NC 27599 USA; [Courtney, Travis A.; Davies, Sarah W.] Northeastern Univ, Dept Marine & Environm Sci, 430 Nahant Rd, Nahant, MA USA; [Courtney, Travis A.] Univ Calif San Diego, Scripps Inst Oceanog, 9500 Gilman Dr, La Jolla, CA 92093 USA; [Lima, Fernando P.] Univ Porto, Ctr Invest Biodiversidade & Recursos Genet, CIBIO InBIO, Campus Agr Vairao, Vairao, Portugal Baumann, JH (reprint author), Univ N Carolina, Dept Marine Sci, 3202 Murray & Venable Halls, Chapel Hill, NC 27599 USA. baumannj@live.unc.edu Lima, Fernando/C-1398-2008 Lima, Fernando/0000-0001-9575-9834; Courtney, Travis/0000-0002-1868-9630; Baumann, Justin/0000-0003-0113-0491 Rufford Foundation [15802-1]; National Science Foundation [OCE 1459522]; Department of Defense NDSEG fellowship This work was supported by the Rufford Foundation (http://www.rufford.org) Small Grant to JHB (15802-1); National Science Foundation (Oceanography) (nsf.gov) to KDC (OCE 1459522); Department of Defense NDSEG fellowship to JHB. Alvarez-Filip L, 2013, SCI REPORTS, V3; Alvarez-Filip L, 2009, P ROY SOC LOND B BIO; Alvarez-Filip L, 2011, ECOL APPL, V21, P2223, DOI 10.1890/10-1563.1; Andrefouet S, 2002, CORAL REEFS, V21, P43, DOI 10.1007/s00338-001-0199-0; Anthony KRN, 1999, J EXP MAR BIOL ECOL, V232, P85, DOI 10.1016/S0022-0981(98)00099-9; Aronson RB, 2004, ECOLOGY, V85, P1876, DOI 10.1890/03-0108; Aronson RB, 2002, MAR BIOL, V141, P435, DOI 10.1007/s00227-002-0842-5; Barshis DJ, 2013, P NATL ACAD SCI USA, V110, P1387, DOI 10.1073/pnas.1210224110; Bell PRF, 2014, AMBIO, V43, P361, DOI 10.1007/s13280-013-0443-1; BELL PRF, 1992, WATER RES, V26, P553, DOI 10.1016/0043-1354(92)90228-V; Brown BE, 1997, CORAL REEFS, V16, pS129, DOI 10.1007/s003380050249; Buglass S, 2016, MAR POLLUT BULL, V104, P198, DOI 10.1016/j.marpolbul.2016.01.038; Burke L, 2004, REEFS RISK CARIBBEAN; Carilli J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0034418; Carilli JE, 2009, MAR POLLUT BULL, V58, P1835, DOI 10.1016/j.marpolbul.2009.07.024; Carilli JE, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006324; Carrillo L, 2015, CONT SHELF RES, V109, P164, DOI 10.1016/j.csr.2015.09.014; Castillo KD, 2012, NAT CLIM CHANGE, V2, P756, DOI [10.1038/NCLIMATE1577, 10.1038/nclimate1577]; Chin TM, 2013, ALGORITHM THEORETICA, V1, P13; Chollett I, 2012, LIMNOL OCEANOGR, V57, P1233, DOI 10.4319/lo.2012.57.4.1233; Cooper TF, 2007, ESTUAR COAST SHELF S, V74, P458, DOI 10.1016/j.ecss.2007.05.020; Cortes J., 1990, CORAL REEFS GOLFO DU; Cramer K, 2010, P 2010 AGU OC SCI M; Cramer KL, 2015, MAR POLLUT BULL, V96, P176, DOI 10.1016/j.marpolbul.2015.05.031; Cramer KL, 2012, ECOL LETT, V15, P561, DOI 10.1111/j.1461-0248.2012.01768.x; D'Croz L, 2001, B MAR SCI, V69, P203; Dale MRT, 2002, ECOSCIENCE, V9, P162, DOI 10.1080/11956860.2002.11682702; Darling ES, 2013, GLOBAL CHANGE BIOL, V19, P1930, DOI 10.1111/gcb.12191; Darling ES, 2012, ECOL LETT, V15, P1378, DOI 10.1111/j.1461-0248.2012.01861.x; Done T.J., 1982, Coral Reefs, V1, P95, DOI 10.1007/BF00301691; Donner SD, 2005, GLOBAL CHANGE BIOL, V11, P2251, DOI 10.1111/j.1365-2486.2005.01073.x; Donner SD, 2007, P NATL ACAD SCI USA, V104, P5483, DOI 10.1073/pnas.0610122104; Fabricius KE, 2005, MAR POLLUT BULL, V50, P125, DOI 10.1016/j.marpolbul.2004.11.028; Fine M, 2013, GLOBAL CHANGE BIOL, V19, P3640, DOI 10.1111/gcb.12356; Frieler K, 2013, NAT CLIM CHANGE, V3, P165, DOI 10.1038/NCLIMATE1674; Game ET, 2008, CONSERV BIOL, V22, P1619, DOI 10.1111/j.1523-1739.2008.01037.x; Gardner TA, 2003, SCIENCE, V301, P958, DOI 10.1126/science.1086050; Ginsburg R, 2003, ATOLL RES B, V496; GITTLEMAN JL, 1990, SYST ZOOL, V39, P227, DOI 10.2307/2992183; Graham NAJ, 2014, CURR OPIN ENV SUST, V7, P9, DOI 10.1016/j.cosust.2013.11.023; Green DH, 2008, MAR ECOL PROG SER, V359, P1, DOI 10.3354/meps07454; Greenstein BJ, 1998, CORAL REEFS, V17, P249, DOI 10.1007/s003380050125; Grime JP, 2012, EVOLUTIONARY STRATEG; Grottoli AG, 2006, NATURE, V440, P1186, DOI 10.1038/nature04565; Hoegh-Guldberg O, 2007, SCIENCE, V318, P1737, DOI 10.1126/science.1152509; Hughes TP, 2003, SCIENCE, V301, P929, DOI 10.1126/science.1085046; Hughes TP, 2000, ECOLOGY, V81, P2250, DOI 10.1890/0012-9658(2000)081[2250:RFLHAL]2.0.CO;2; HUNTE W, 1992, MAR BIOL, V114, P625, DOI 10.1007/BF00357259; Jackson JBC, 2001, SCIENCE, V293, P629, DOI 10.1126/science.292.5517.629; JOKIEL PL, 1990, CORAL REEFS, V8, P155, DOI 10.1007/BF00265006; Lirman D, 2007, MAR POLLUT BULL, V54, P779, DOI 10.1016/j.marpolbul.2006.12.014; Loya Y, 2001, ECOL LETT, V4, P122, DOI 10.1046/j.1461-0248.2001.00203.x; Marubini F, 1999, MAR ECOL PROG SER, V188, P117, DOI 10.3354/meps188117; McClanahan TR, 2008, MAR BIOL, V153, P755, DOI 10.1007/s00227-007-0844-4; McClanahan TR, 2014, CURR OPIN ENV SUST, V7, P59, DOI 10.1016/j.cosust.2013.11.028; McClanahan TR, 2003, ECOSYSTEMS, V6, P551, DOI 10.1007/s10021-002-0104-x; Moberg F, 1999, ECOL ECON, V29, P2151; Polonia ARM, 2015, SCI TOTAL ENVIRON, V537, P139, DOI 10.1016/j.scitotenv.2015.07.102; Oksanen J, 2013, PACKAGE VEGAN R PACK, V254, P20; Oliver TA, 2011, CORAL REEFS, V30, P429, DOI 10.1007/s00338-011-0721-y; Paris CB, 2008, CORAL REEFS, V27, P773, DOI 10.1007/s00338-008-0396-1; Paris CB, 2007, MAR ECOL PROG SER, V347, P285, DOI 10.3354/meps06985; Perry CT, 2003, CORAL REEFS, V22, P427, DOI 10.1007/s00338-003-0330-5; Pineda J, 2013, LIMNOL OCEANOGR, V58, P1531, DOI 10.4319/lo.2013.58.5.1531; Prouty NG, 2008, CORAL REEFS, V27, P727, DOI 10.1007/s00338-008-0413-4; Sheng JY, 2004, OCEAN DYNAM, V54, P232, DOI 10.1007/s10236-003-0074-3; Sheng JY, 2003, J PHYS OCEANOGR, V33, P2049, DOI 10.1175/1520-0485(2003)033<2049:ANSOCI>2.0.CO;2; Simons R., 2011, ERDDAP ENV RES DIVIS; Soto I, 2011, J MARINE BIOL, V2011; Szmant AM, 2002, ESTUARIES, V25, P743, DOI 10.1007/BF02804903; Tang L, 2006, J GEOPHYS RES OCEANS, V111; Team RC, 2012, R LANG ENV STAT COMP; Thompson DM, 2009, P ROY SOC B-BIOL SCI, V276, P2893, DOI 10.1098/rspb.2009.0591; Thurber RLV, 2014, GLOBAL CHANGE BIOL, V20, P544, DOI 10.1111/gcb.12450; Torres JL, 2002, CARIBB J SCI, V38, P222; van Hooidonk R, 2015, GLOBAL CHANGE BIOL, V21, P3389, DOI 10.1111/gcb.12901; van Woesik R, 1999, MAR FRESHWATER RES, V50, P427, DOI 10.1071/MF97046; van Woesik R, 2011, MAR ECOL PROG SER, V434, P67, DOI 10.3354/meps09203; van Woesik R, 2012, ECOL EVOL, V2, P2474, DOI 10.1002/ece3.363; West K, 2001, MAR POLLUT BULL, V42, P864, DOI 10.1016/S0025-326X(01)00040-6; Wild C, 2011, MAR FRESHWATER RES, V62, P205, DOI 10.1071/MF10254; Wooldridge S, 2005, MAR ECOL PROG SER, V295, P157, DOI 10.3354/meps295157; Wooldridge SA, 2009, MAR ECOL PROG SER, V396, P145, DOI 10.3354/meps08310; Wooldridge SA, 2009, MAR POLLUT BULL, V58, P745, DOI 10.1016/j.marpolbul.2008.12.013; Zaneveld JR, 2016, NATURE COMMUNICATION, V7 85 2 2 12 67 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One SEP 8 2016 11 9 e0162098 10.1371/journal.pone.0162098 19 Multidisciplinary Sciences Science & Technology - Other Topics DV9JB WOS:000383255600017 27606598 DOAJ Gold, Green Published 2018-11-22 J Remes, V; Matysiokova, B Remes, Vladimir; Matysiokova, Beata Survival to independence in relation to pre-fledging development and latitude in songbirds across the globe JOURNAL OF AVIAN BIOLOGY English Article AVIAN LIFE-HISTORIES; EXTENDED PARENTAL CARE; AGE-SPECIFIC MORTALITY; CLUTCH-SIZE; POSTFLEDGING SURVIVAL; NEST PREDATION; TROPICAL BIRDS; GEOGRAPHIC-VARIATION; DEVELOPMENT RATES; ADULT MORTALITY Species differ strongly in their life histories, including the probability of survival. Annual adult survival was investigated extensively in the past, whereas juvenile survival, and especially survival to independence, received much less attention. Yet, they are critical for our understanding of population demography and life-history evolution. We investigated post-fledging survival to independence (i.e. survival upon leaving the nest until nutritional independence) in 74 species of passerine birds worldwide based on 100 population level estimates extracted from published literature. Our comparative analyses revealed that survival to independence increased with the length of nestling period and relative fledging mass (ratio of fledging mass to adult body mass). At the same time, species with higher nest predation rates had shorter nestling periods and lower relative fledging mass. Thus, we identify an important trade-off in life history strategies: staying longer in the nest may improve post-fledging survival due to enhanced flight ability and sensory functions, but at the cost of a longer exposure to nest predators and increased mortality due to nest predation. Additionally, post-fledging survival to independence did not differ between species from the northern temperate zone vs species from the tropics and southern hemisphere. However, analyses of post-fledging survival curves suggest that 1) daily survival rates are not constant and improve quickly upon leaving the nest, and 2) species in the tropics and southern hemisphere have higher daily post-fledging survival rates than northern temperate species. Nevertheless, due to the accumulation of mortality risk during their much longer periods of post-fledging care, overall survival until independence is comparable across latitudes. Obtaining high-quality demographic data across latitudes to evaluate the generality of these findings and mechanisms underlying them should be a research priority. [Remes, Vladimir; Matysiokova, Beata] Palacky Univ, Dept Zool, Fac Sci, 17 Listopadu 50, CZ-77146 Olomouc, Czech Republic; [Remes, Vladimir; Matysiokova, Beata] Palacky Univ, Ornithol Lab, Fac Sci, 17 Listopadu 50, CZ-77146 Olomouc, Czech Republic Remes, V (reprint author), Palacky Univ, Dept Zool, Fac Sci, 17 Listopadu 50, CZ-77146 Olomouc, Czech Republic.; Remes, V (reprint author), Palacky Univ, Ornithol Lab, Fac Sci, 17 Listopadu 50, CZ-77146 Olomouc, Czech Republic. vladimir.remes@upol.cz Remes, Vladimir/B-6842-2016 Palacky Univ. [Prf_2016_004] This study would not be possible without hard work of generations of field ornithologists. We are obliged to N. Friedman for comments on the first draft of the manuscript and to T. Koutny for help with digitizing survival curves. K. Weidinger, M. Krist, and E. Kolarova commented on selected parts of the manuscript and their insights were much appreciated. Three reviewers and the Editor provided very valuable comments and suggestions that significantly improved this work. This study was supported by an internal grant from Palacky Univ. (Prf_2016_004). Anava A, 2001, AUK, V118, P519, DOI 10.1642/0004-8038(2001)118[0519:GRAEOA]2.0.CO;2; Bonnevie BT, 2004, OSTRICH, V75, P75, DOI 10.2989/00306520409485415; BOSQUE C, 1995, AM NAT, V145, P234, DOI 10.1086/285738; Calder W. A., 1984, SIZE FUNCTION LIFE H; Cardillo M, 2002, J ANIM ECOL, V71, P79, DOI 10.1046/j.0021-8790.2001.00577.x; Cheng YR, 2012, AM NAT, V180, P285, DOI 10.1086/667214; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; Coulson T, 2001, TRENDS ECOL EVOL, V16, P219, DOI 10.1016/S0169-5347(01)02137-1; Cox WA, 2014, J WILDLIFE MANAGE, V78, P183, DOI 10.1002/jwmg.670; Drobniak SM, 2015, BEHAV ECOL, V26, P805, DOI 10.1093/beheco/arv015; Dybala KE, 2013, ECOLOGY, V94, P1584, DOI 10.1890/12-1443.1; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Gill SA, 2012, J AVIAN BIOL, V43, P461, DOI 10.1111/j.1600-048X.2012.05637.x; Gruebler MU, 2014, ECOL EVOL, V4, P756, DOI 10.1002/ece3.984; Gruebler MU, 2010, J ANIM ECOL, V79, P334, DOI 10.1111/j.1365-2656.2009.01650.x; Jetz W, 2012, NATURE, V491, P444, DOI 10.1038/nature11631; KARR JR, 1990, AM NAT, V136, P277, DOI 10.1086/285098; Kleinbaum DG, 2011, SURVIVAL ANAL SELF L; Lack D., 1968, ECOLOGICAL ADAPTATIO; Lloyd P, 2014, J AVIAN BIOL, V45, P493, DOI 10.1111/jav.00454; Maness TJ, 2013, ORNITHOL MONOGR, P1, DOI 10.1525/om.2013.78.1.1; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; Martin TE, 2007, EVOLUTION, V61, P2558, DOI 10.1111/j.1558-5646.2007.00204.x; Martin TE, 2015, SCIENCE, V349, P966, DOI 10.1126/science.aad1173; Martin TE, 2015, AM NAT, V185, P380, DOI 10.1086/679612; Martin TE, 2014, AM NAT, V183, P313, DOI 10.1086/674966; Martin TE, 2011, EVOLUTION, V65, P1607, DOI 10.1111/j.1558-5646.2011.01227.x; Matysiokova B, 2014, FRONT ZOOL, V11, DOI 10.1186/1742-9994-11-24; Matysiokova B, 2011, ANIM BEHAV, V82, P1347, DOI 10.1016/j.anbehav.2011.09.018; Mcgregor R, 2007, IBIS, V149, P615, DOI 10.1111/j.1474-919X.2007.00670.x; McKim-Louder MI, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0056059; McNamara JM, 2008, AM NAT, V172, P331, DOI 10.1086/589886; Morrison C, 2003, J ANIM ECOL, V72, P270, DOI 10.1046/j.1365-2656.2003.00696.x; Naef-Daenzer B, 2001, J ANIM ECOL, V70, P730, DOI 10.1046/j.0021-8790.2001.00533.x; Paradis E., 2012, ANAL PHYLOGENETICS E; Peach WJ, 2001, OIKOS, V93, P235, DOI 10.1034/j.1600-0706.2001.930207.x; Perrins C.M., 1991, Oxford Ornithology Series, P190; Pinheiro J., 2013, R PACKAGE VERSION, P1, DOI DOI 10.1016/S0006-3207(01)00201-4; Remes V, 2002, EVOLUTION, V56, P2505; Remes V, 2007, J EVOLUTION BIOL, V20, P320, DOI 10.1111/j.1420-9101.2006.01191.x; Remes V, 2012, J AVIAN BIOL, V43, P435, DOI 10.1111/j.1600-048X.2012.05599.x; Ricklefs R.E., 1983, Current Ornithology, V1, P1; Ricklefs RE, 2000, CONDOR, V102, P9, DOI 10.1650/0010-5422(2000)102[0009:DDEOAT]2.0.CO;2; Ricklefs RE, 2011, J ORNITHOL, V152, P481, DOI 10.1007/s10336-010-0614-9; Ricklefs RE, 2010, AM NAT, V175, P350, DOI 10.1086/650371; Ridley AR, 2007, J ANIM ECOL, V76, P750, DOI 10.1111/j.1365-2656.2007.01248.x; Roff DA, 2005, J EVOLUTION BIOL, V18, P1425, DOI 10.1111/j.1420-9101.2005.00958.x; Roff Derek A., 1992; Rowley I., 1991, Oxford Ornithology Series, P22; Russell EM, 2004, BEHAV ECOL, V15, P831, DOI 10.1093/beheco/arh088; Russell EM, 2000, EMU, V100, P377, DOI 10.1071/MU0005S; Saether BE, 2002, SCIENCE, V295, P2070; Sankamethawee W, 2009, CONDOR, V111, P675, DOI 10.1525/cond.2009.090006; Schaefer HC, 2004, IBIS, V146, P427, DOI 10.1111/j.1474-919X.2004.00276.x; Shipley AA, 2013, AUK, V130, P501, DOI 10.1525/auk.2013.12139; Sibly Richard M., 2012, P57; Sim IMW, 2013, AUK, V130, P69, DOI 10.1525/auk.2012.12008; Stutchbury B. J. M, 2001, BEHAV ECOLOGY TROPIC; Styrsky JN, 2005, ECOLOGY, V86, P3238, DOI 10.1890/04-1613; SULLIVAN KA, 1989, J ANIM ECOL, V58, P275, DOI 10.2307/5000; Tarwater CE, 2011, ECOLOGY, V92, P1271, DOI 10.1890/10-1386.1; Tarwater CE, 2010, ANIM BEHAV, V80, P535, DOI 10.1016/j.anbehav.2010.06.017; Vila-Gispert A, 2002, REV FISH BIOL FISHER, V12, P417, DOI 10.1023/A:1025352026974; WEATHERS WW, 1989, ECOL MONOGR, V59, P223, DOI 10.2307/1942600; Whittingham MJ, 2006, J ANIM ECOL, V75, P1182, DOI 10.1111/j.1365-2656.2006.01141.x; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P9340, DOI 10.1073/pnas.0702212104; Wikelski M, 2003, P ROY SOC B-BIOL SCI, V270, P2383, DOI 10.1098/rspb.2003.2500; Wisdom MJ, 2000, ECOLOGY, V81, P628, DOI 10.2307/177365; Wolak ME, 2012, METHODS ECOL EVOL, V3, P129, DOI 10.1111/j.2041-210X.2011.00125.x; WOLF L, 1988, ANIM BEHAV, V36, P1601, DOI 10.1016/S0003-3472(88)80102-7; Woolfenden G. E., 1984, FLORIDA SCRUB JAY DE; YOMTOV Y, 1994, CONDOR, V96, P170, DOI 10.2307/1369074; YOMTOV Y, 1994, IBIS, V136, P161, DOI 10.1111/j.1474-919X.1994.tb01080.x; YOMTOV Y, 1992, IBIS, V134, P374, DOI 10.1111/j.1474-919X.1992.tb08017.x 75 8 8 3 20 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0908-8857 1600-048X J AVIAN BIOL J. Avian Biol. SEP 2016 47 5 610 618 10.1111/jav.00841 9 Ornithology Zoology DZ8NV WOS:000386128000002 Bronze 2018-11-22 J Tavera, EA; Lank, DB; Gonzalez, PM Tavera, Eveling A.; Lank, David B.; Gonzalez, Patricia M. Effects of migration distance on life history strategies of Western and Semipalmated sandpipers in Peru JOURNAL OF FIELD ORNITHOLOGY English Article culmen length; molt strategies; over-summering; Paracas; partial post-juvenile wing molt; shorebirds CALIDRIS-MAURI; RED KNOTS; SOUTHERN AFRICA; PRIMARY MOLT; ANNUAL CYCLE; BODY-MASS; BREEDING GROUNDS; FLIGHT; PATTERNS; AMERICA Migration distances of shorebird species correlate with life history strategies. To assess age-specific migratory preparation and adult wing-molt strategies, we studied Western Sandpipers (Calidris mauri) and Semipalmated Sandpipers (C.pusilla) with different migration routes at the Paracas National Reserve in Peru, one of the most austral non-breeding areas for these sandpipers, from 2012 to 2015. Western Sandpipers breed near the Bering Sea, similar to 11,000km from Paracas. Semipalmated Sandpiper populations at Paracas are a mixture of short-billed birds from western Arctic breeding sites, plus long-billed birds from eastern sites, similar to 8000km distant. Adults of both species arrive in October with primary feathers already partially renewed so wing molt starts at sites further north. Semipalmated Sandpipers with longer bills completed wing molt later than shorter billed birds. Adults of both species prepared for migration in February and March. No juvenile Western Sandpipers prepared for migration, confirming the slow over-summering life history strategy of more southerly non-breeding populations. Juvenile Semipalmated Sandpipers showed bimodality in strategies. Most showed no migratory preparation, but, during three non-breeding periods, from 27% to 31% fattened, molted, and partially replaced outer primaries during the pre-migratory period. Juveniles with longer culmens were heavier and tended to have more alternate plumage. Juveniles that were partially molting primaries had longer culmens and more alternate plumage. Juvenile Semipalmated Sandpipers from eastern-breeding populations thus have a higher propensity for a fast life history strategy, and western birds a slow one, at this non-breeding site in Peru. Western-breeding Semipalmated Sandpiper populations thus resemble Western Sandpipers, suggesting a common, possibly distance-related, effect on life history strategy. [Tavera, Eveling A.; Lank, David B.] Simon Fraser Univ, Dept Biol Sci, 8888 Univ Dr, Burnaby, BC V5A 1S6, Canada; [Tavera, Eveling A.] Ctr Ornitol & Biodiversidad CORBIDI, Santa Rita 105,Of 202, Lima 33, Peru; [Gonzalez, Patricia M.] Fdn Inalafquen, Pedro Moron 385, RA-8520 San Antonio Oeste, Rio Negro, Argentina Tavera, EA (reprint author), Simon Fraser Univ, Dept Biol Sci, 8888 Univ Dr, Burnaby, BC V5A 1S6, Canada.; Tavera, EA (reprint author), Ctr Ornitol & Biodiversidad CORBIDI, Santa Rita 105,Of 202, Lima 33, Peru. etaveraf@sfu.ca Neotropical Migratory Bird Conservation Act Program; Environment Canada; Centre for Wildlife Ecology at Simon Fraser University A number of people played key roles in obtaining all the data for our study, but we would like to give especial thanks to CORBIDI shorebird banding crew: E. Ortiz, P. Pellissier, O. Custodio, A. Mendez, Y. Tenorio, R. Huayanca, L. Burga, P. Colchao, P. Alcazar, and all the volunteers for their constant effort and help during capture and sampling processes. We deeply appreciate T. Valqui for his patience, support and first-hand cooperation during all the years of fieldwork. We are grateful to the staff of Paracas National Reserve, especially to P. Saravia for assistance in obtaining the permits with no further complications and to the head of the Reserve in those years S. Marthans for all his support and cooperation. We thank R. Ydenberg, C. Smith, and M. Drever for their support and scientific advice during the last year of fieldwork. This study was held under the permit of the Peruvian National Service of Protected Natural Areas (SERNANP). Funding for this project was provided by two grants from the Neotropical Migratory Bird Conservation Act Program administered by the U.S. Fish and Wildlife Service, and also by Environment Canada and the Centre for Wildlife Ecology at Simon Fraser University. Capture and sampling methods performed in this study followed guidelines recommended by the Canadian Council on Animal Care as approved by CCAC committee of the Simon Fraser University (Animal Care's permit number: 1043B-03). Alerstam T, 2003, OIKOS, V103, P247, DOI 10.1034/j.1600-0706.2003.12559.x; Baker AJ, 2004, P ROY SOC B-BIOL SCI, V271, P875, DOI 10.1098/rspb.2003.2663; Barta Z, 2006, OIKOS, V112, P580, DOI 10.1111/j.0030-1299.2006.14240.x; Buehler DM, 2008, PHILOS T R SOC B, V363, P247, DOI 10.1098/rstb.2007.2138; Dietz MW, 2015, IBIS, V157, P147, DOI 10.1111/ibi.12185; EISENMANN EUGENE, 1951, WILSON BULL, V63, P181; Fernandez G, 2004, ORNITOL NEOTROP, V15, P385; Fernandez G, 2007, AUK, V124, P1037, DOI 10.1642/0004-8038(2007)124[1037:VITWMO]2.0.CO;2; Franks S., 2014, BIRDS N AM ONLINE; Ginn H. B., 1983, MOLT IN BIRDS; GRATTO CL, 1983, CAN J ZOOL, V61, P1133, DOI 10.1139/z83-149; GRATTO CL, 1988, WILSON BULL, V100, P660; Gratto-Trevor C. L., 1981, WADER STUDY GROUP B, V33, P33; Gratto-Trevor C, 2012, WATERBIRDS, V35, P83, DOI 10.1675/063.035.0109; GRATTOTREVOR CL, 1991, IBIS, V133, P394, DOI 10.1111/j.1474-919X.1991.tb04587.x; Haig SM, 1997, MOL ECOL, V6, P413, DOI 10.1046/j.1365-294X.1997.t01-1-00203.x; Harrington B.A., 1979, Studies in Avian Biology, V2, P83; Harrington BA, 2010, WATERBIRDS, V33, P357, DOI 10.1675/063.033.0312; Hedenstrom A, 1999, J EXP BIOL, V202, P67; Hicklin P., 2010, BIRDS N AM ONLINE; Hockey PAR, 1998, J AVIAN BIOL, V29, P325, DOI 10.2307/3677117; HOLMES RT, 1972, AM MIDL NAT, V87, P472, DOI 10.2307/2423577; Holmgren M, 2001, TRENDS ECOL EVOL, V16, P89, DOI 10.1016/S0169-5347(00)02052-8; Howell S. N. G., 2010, PETERSON REFERENCE G; JEHL JR, 1987, ORNIS SCAND, V18, P173, DOI 10.2307/3676763; JOHNSON OW, 1983, CONDOR, V85, P406, DOI 10.2307/1367979; Kania W., 1990, WADER STUDY GROUP B, V60, P17; Lank DB, 2003, OIKOS, V103, P303, DOI 10.1034/j.1600-0706.2003.12314.x; Lind J, 2001, P ROY SOC B-BIOL SCI, V268, P1915, DOI 10.1098/rspb.2001.1740; Loftin H., 1962, BIRD BANDING, V33, P175; Manning T. H., 1956, B NATL MUSEUM CANADA; MCNEIL R, 1994, ARDEA, V82, P143; Miller MP, 2013, WATERBIRDS, V36, P166, DOI 10.1675/063.036.0206; Morrison R. I. G., 1984, WADER STUDY GROUP B, V42, P26; Morrison RIG, 2012, WATERBIRDS, V35, P120, DOI 10.1675/063.035.0112; Morrison RIG, 2005, CONDOR, V107, P449, DOI 10.1650/7614; Myers J. P., 1983, WADER STUDY GROUP B, V38, P30; Myers J. P., 1985, NEOTROPICAL ORNITHOL, V36, P520; Nebel S, 2002, AUK, V119, P922, DOI 10.1642/0004-8038(2002)119[0922:WSCMDT]2.0.CO;2; Nebel S, 2000, ARDEA, V88, P165; O'Hara P. D., 2002, THESIS; O'Hara PD, 2005, J AVIAN BIOL, V36, P191, DOI 10.1111/j.0908-8857.2005.03368.x; Paulson D., 1993, SHOREBIRDS PACIFIC N; Pearson D. J., 1974, WADER STUDY GROUP B, V12, P6; PEARSON DJ, 1984, IBIS, V126, P1, DOI 10.1111/j.1474-919X.1984.tb03659.x; Pellissier P., 2013, P 5 W HEM SHOR RES G; PHILLIPS A R, 1975, American Birds, V29, P799; Pienkowski M.W., 1985, P331; Prater A.J., 1981, P393; PRATER AJ, 1977, GUIDE IDENTIFICATION; PUTTICK GM, 1979, ARDEA, V67, P111; Pyle P., 2008, IDENTIFICATION GUI 2; Remisiewicz M, 2014, ARDEA, V102, P31, DOI 10.5253/078.102.0109; Remisiewicz Magdalena, 2011, Wader Study Group Bulletin, V118, P163; Remisiewicz M, 2010, J ORNITHOL, V151, P429, DOI 10.1007/s10336-009-0473-4; Remisiewicz M, 2009, ARDEA, V97, P271, DOI 10.5253/078.097.0302; Rogers KG, 2014, IBIS, V156, P840, DOI 10.1111/ibi.12184; Ruthrauff DR, 2009, IBIS, V151, P523, DOI 10.1111/j.1474-919X.2009.00942.x; SAS Institute, 2012, SAS V 9 4; SENNER SE, 1982, SOUTHWEST NAT, V27, P149, DOI 10.2307/3671139; Sibley David Allen, 2000, SIBLEY GUIDE BIRDS; Spaans A. L., 1981, ANN REPORT 1983 RES, P63; Spaans A. L., 1979, WADER STUDY GROUP B, V25, P32; SPAANS AL, 1976, BIRD BANDING, V47, P359, DOI 10.2307/4512271; Summers RW, 2010, IBIS, V152, P127, DOI 10.1111/j.1474-919X.2009.00972.x; Summers RW, 1995, ARDEA, V83, P351; Swaddle JP, 1997, CAN J ZOOL, V75, P1135, DOI 10.1139/z97-136; Tavera E. A., 2013, THESIS; Tree A.J., 1974, SAFRING NEWS, V3, P21; Tree A. J., 1977, SAFRING NEWS, V6, P25; Videler J. J., 2005, AVIAN FLIGHT; Warnock N, 2013, ARCTIC, V66, P407; Watts B. D., 1998, MIGRANT SHOREBIRDS U; Wetmore A., 1927, USDA TECH B, V26; Wilson H. E., 1994, BIRDS N AM, V90; Xu CL, 2015, POPUL ECOL, V57, P551, DOI 10.1007/s10144-015-0502-5; Ydenberg RC, 2004, P ROY SOC B-BIOL SCI, V271, P1263, DOI 10.1098/rspb.2004.2713; Ydenberg RC, 2007, J AVIAN BIOL, V38, P523, DOI 10.1111/j.2007.0908-8857.04202.x; ZWARTS L, 1990, ARDEA, V78, P339 79 5 5 1 26 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0273-8570 1557-9263 J FIELD ORNITHOL J. Field Ornithol. SEP 2016 87 3 293 308 10.1111/jofo.12164 16 Ornithology Zoology DW5KZ WOS:000383685000005 Bronze 2018-11-22 J Gibert, A; Gray, EF; Westoby, M; Wright, IJ; Falster, DS Gibert, Anais; Gray, Emma F.; Westoby, Mark; Wright, Ian J.; Falster, Daniel S. On the link between functional traits and growth rate: meta-analysis shows effects change with plant size, as predicted JOURNAL OF ECOLOGY English Article growth strategy; life-history traits; maximum height; ontogenetic stage; photosynthetic rate; plant development; seed mass; specific leaf area; wood density RAIN-FOREST TREES; PHYLOGENETICALLY INDEPENDENT CONTRASTS; TROPICAL DECIDUOUS FOREST; LIFE-HISTORY STRATEGIES; RESOURCE-USE EFFICIENCY; NET ASSIMILATION RATE; WOOD SPECIFIC-GRAVITY; SEEDLING GROWTH; SHADE-TOLERANCE; LEAF-AREA A plant's growth rate is seen as a central element of its ecological strategy, and as determined by its traits. Yet the literature is inconsistent about the empirical correlation between functional traits and growth, casting doubt on the capacity of some prominent traits to influence growth rate. We propose that traits should influence growth in a way that depends on the size of individual plants. We outline mechanisms and hypotheses based on new theoretical work and test these predictions in tree species using a meta-analysis of 103 studies (>500 correlations) for five traits (specific leaf area, wood density, maximum height, seed mass and maximum assimilation rate). We also recorded data for 14 other traits commonly used in the trait literature. To capture the effects of plant size, we tested for a shift in the direction of correlation between growth rates and each trait across three ontogenetic stages: seedling, sapling and adult. Results were consistent with predictions, although there were some limitations arising from unequal numbers of observation across ontogenetic stages. Specific leaf area was correlated with relative growth rate in seedlings but not in adult plants. Correlations of growth with wood density were not affected by ontogenetic stage. Seed mass, assimilation rate and maximum height were correlated with relative growth rate only in one ontogenetic stage category: seedlings, seedlings and adults, respectively. Although we were able to confirm several of our theoretical predictions, major knowledge gaps still exist in the trait literature. For example, for one-third of the traits considered, the majority (>75%) of reported correlations with growth came from the same ontogenetic stage. Synthesis. We show for some traits, how trait-growth correlations change in a predictable way with plant size. Our understanding of plant strategies should shift away from describing species as having a fixed growth strategy throughout their life (on a continuous axis from slow to fast growth), in favour of a size-dependent growth trajectories. [Gibert, Anais; Gray, Emma F.; Westoby, Mark; Wright, Ian J.; Falster, Daniel S.] Macquarie Univ, Dept Biol Sci, Sydney, NSW 2109, Australia Gibert, A (reprint author), Macquarie Univ, Dept Biol Sci, Sydney, NSW 2109, Australia. anais.gibert@gmail.com Gibert, Anais/E-5005-2018; Wright, Ian/G-4979-2012 Gibert, Anais/0000-0003-2924-2380; Wright, Ian/0000-0001-8338-9143; Westoby, Mark/0000-0001-7690-4530 Australian Research Council; Macquarie University; L'Oreal UNESCO FWIS Fellowship We thank Andrea Stephens for helpful comments on the meta-analyses, and Sean Gleason et al. for pre-publication access to their data. Charles Warren and Jordi Martinez-Vilalta kindly provided additional information about their published results. We thank Elizabeth Wenk and Freya Thomas for their friendly review of our manuscript, and Timothy Paine and two anonymous referees for their insightful comments and suggestions. This work was funded by the Australian Research Council through a fellowship to M.W, a discovery grant to D.S.F and a Macquarie University Research Excellence Scholarship and L'Oreal UNESCO FWIS Fellowship to E.F.G. Aiba M, 2009, J ECOL, V97, P992, DOI 10.1111/j.1365-2745.2009.01522.x; Aiba SI, 1997, J ECOL, V85, P611, DOI 10.2307/2960532; Antunez I, 2001, OECOLOGIA, V128, P172, DOI 10.1007/s004420100645; Atkin OK, 1998, PLANT CELL ENVIRON, V21, P1007, DOI 10.1046/j.1365-3040.1998.00356.x; AUGSPURGER CK, 1984, OECOLOGIA, V61, P211, DOI 10.1007/BF00396763; AUGSPURGER CK, 1984, J ECOL, V72, P777, DOI 10.2307/2259531; Baltzer JL, 2007, OECOLOGIA, V153, P209, DOI 10.1007/s00442-007-0722-2; Baraloto C, 2005, J ECOL, V93, P1156, DOI 10.1111/j.1365-2745.2005.01041.x; Baraloto C, 2006, J TROP ECOL, V22, P487, DOI 10.1017/S0266467406003439; BATES D, 2014, J STAT SOFTWAR UNPUB, V4, P4, DOI DOI 10.18637/JSS.V067.I01; Beckmann M, 2012, J VEG SCI, V23, P1197, DOI 10.1111/j.1654-1103.2012.01454.x; Bloor JMG, 2003, J ECOL, V91, P77, DOI 10.1046/j.1365-2745.2003.00743.x; Borenstein M., 2011, INTRO METAANALYSIS; Broncano MJ, 1998, PLANT ECOL, V138, P17, DOI 10.1023/A:1009784215900; Brown KR, 1996, TREES-STRUCT FUNCT, V10, P189; Bruhn D, 2000, NEW PHYTOL, V146, P415, DOI 10.1046/j.1469-8137.2000.00661.x; Cai ZQ, 2007, ANN BOT-LONDON, V100, P831, DOI 10.1093/aob/mcm179; Castro-Diez P, 1998, OECOLOGIA, V116, P57, DOI 10.1007/s004420050563; Castro-Diez P, 2003, PLANT ECOL, V166, P117, DOI 10.1023/A:1023209230303; Cernusak LA, 2008, PLANT PHYSIOL, V148, P642, DOI 10.1104/pp.108.123521; Chao KJ, 2008, J ECOL, V96, P281, DOI 10.1111/j.1365-2745.2007.01343.x; Chaturvedi RK, 2011, J VEG SCI, V22, P917, DOI 10.1111/j.1654-1103.2011.01299.x; Chaturvedi RK, 2014, J PLANT ECOL, V7, P544, DOI 10.1093/jpe/rtt053; Chave J, 2009, ECOL LETT, V12, P351, DOI 10.1111/j.1461-0248.2009.01285.x; Clark DA, 1999, ECOL APPL, V9, P981; CONDIT R, 1993, FOREST ECOL MANAG, V62, P123, DOI 10.1016/0378-1127(93)90046-P; Coomes DA, 1998, FUNCT ECOL, V12, P426, DOI 10.1046/j.1365-2435.1998.00211.x; Coomes DA, 2009, J ECOL, V97, P705, DOI 10.1111/j.1365-2745.2009.01507.x; Cornelissen JHC, 1996, J ECOL, V84, P755, DOI 10.2307/2261337; Cornelissen JHC, 1997, OECOLOGIA, V111, P460, DOI 10.1007/s004420050259; Cornelissen JHC, 1998, INHERENT VARIATION IN PLANT GROWTH, P363; Dalling JW, 2004, FUNCT ECOL, V18, P725, DOI 10.1111/j.0269-8463.2004.00868.x; DEBELL JD, 1994, CAN J FOREST RES, V24, P638, DOI 10.1139/x94-083; Duursma R. A., 2016, NEW PHYTOLO IN PRESS; Easdale TA, 2009, PERSPECT PLANT ECOL, V11, P203, DOI 10.1016/j.ppees.2009.03.001; Enquist BJ, 2007, NATURE, V449, P218, DOI 10.1038/nature06061; Falster DS, 2016, METHODS ECOL EVOL, V7, P136, DOI 10.1111/2041-210X.12525; Falster DS, 2015, ECOLOGY, V96, P1445, DOI 10.1890/14-1889.1; Falster DS, 2011, J ECOL, V99, P148, DOI 10.1111/j.1365-2745.2010.01735.x; Falster DS, 2005, OIKOS, V111, P57, DOI 10.1111/j.0030-1299.2005.13383.x; Fan ZX, 2012, J ECOL, V100, P732, DOI 10.1111/j.1365-2745.2011.01939.x; FARNSWORTH KD, 1995, FUNCT ECOL, V9, P355, DOI 10.2307/2389997; Fayolle A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0042381; Fujimoto T, 2006, J FOREST RES-JPN, V11, P157, DOI 10.1007/s10310-005-0200-9; Galmes J, 2005, OECOLOGIA, V145, P21, DOI 10.1007/s00442-005-0106-4; Garnier E., 2007, HDB FUNCTIONAL PLANT, P81; Gibert A., 2016, DRYAD DIGITAL REPOSI; Givnish Thomas J., 1995, P3, DOI 10.1016/B978-012276460-8/50003-5; GLEESON SK, 1994, FUNCT ECOL, V8, P543, DOI 10.2307/2390080; Grime JP, 1997, OIKOS, V79, P259, DOI 10.2307/3546011; GRIME JP, 1975, J ECOL, V63, P393, DOI 10.2307/2258728; Grime JP, 1979, PLANT STRATEGIES VEG; Grotkopp E, 2002, AM NAT, V159, P396, DOI 10.1086/338995; Grubb PJ, 1996, J ECOL, V84, P827, DOI 10.2307/2960555; Herault B, 2011, J ECOL, V99, P1431, DOI 10.1111/j.1365-2745.2011.01883.x; Hoffmann WA, 2003, J ECOL, V91, P475, DOI 10.1046/j.1365-2745.2003.00777.x; Huante P, 1995, FUNCT ECOL, V9, P849, DOI 10.2307/2389982; Huante P, 1998, OECOLOGIA, V113, P53, DOI 10.1007/s004420050353; HUANTE P, 1995, FUNCT ECOL, V9, P760, DOI 10.2307/2390249; Hunt R, 1997, NEW PHYTOL, V135, P395, DOI 10.1046/j.1469-8137.1997.00671.x; Iida Y, 2014, J ECOL, V102, P641, DOI 10.1111/1365-2745.12221; Iida Y, 2014, ECOLOGY, V95, P353, DOI 10.1890/11-2173.1; Iida Y, 2012, FUNCT ECOL, V26, P274, DOI 10.1111/j.1365-2435.2011.01921.x; Wright SJ, 2010, ECOLOGY, V91, P3664, DOI 10.1890/09-2335.1; King DA, 2006, J ECOL, V94, P670, DOI 10.1111/j.1365-2745.2006.01112.x; King DA, 2005, FUNCT ECOL, V19, P445, DOI 10.1111/j.1365-2435.2005.00982.x; KING DA, 1994, AM J BOT, V81, P948, DOI 10.2307/2445287; King DA, 1999, ECOLOGY, V80, P1944, DOI 10.2307/176670; King DA, 2011, TREE PHYSIOL-NETH, V4, P165, DOI 10.1007/978-94-007-1242-3_6; KITAJIMA K, 1994, OECOLOGIA, V98, P419, DOI 10.1007/BF00324232; Kohyama T, 2003, J ECOL, V91, P797, DOI 10.1046/j.1365-2745.2003.00810.x; Koricheva J, 2014, J ECOL, V102, P828, DOI 10.1111/1365-2745.12224; Kruger EL, 2006, FUNCT PLANT BIOL, V33, P421, DOI 10.1071/FP05310; Lajeunesse MJ., 2013, HDB METAANALYSIS ECO, P195, DOI 10.1515/9781400846184-015; LAMBERS H, 1992, ADV ECOL RES, V23, P187, DOI 10.1016/S0065-2504(08)60148-8; Lamers JPA, 2006, FOREST ECOL MANAG, V221, P249, DOI 10.1016/j.foreco.2005.10.022; Larjavaara M, 2010, FUNCT ECOL, V24, P701, DOI 10.1111/j.1365-2435.2010.01698.x; Lavorel S, 2002, FUNCT ECOL, V16, P545, DOI 10.1046/j.1365-2435.2002.00664.x; Lopez-Iglesias B, 2014, ACTA OECOL, V56, P10, DOI 10.1016/j.actao.2014.01.003; Loveys BR, 2002, PLANT CELL ENVIRON, V25, P975, DOI 10.1046/j.1365-3040.2002.00879.x; Lusk CH, 2002, AUSTRAL ECOL, V27, P173, DOI 10.1046/j.1442-9993.2002.01168.x; Lusk CH, 1997, OECOLOGIA, V109, P49, DOI 10.1007/s004420050057; Lusk CH, 2013, J ECOL, V101, P1531, DOI 10.1111/1365-2745.12152; Lusk CH, 2013, ANN BOT-LONDON, V111, P479, DOI 10.1093/aob/mcs289; Martinez-Vilalta J, 2010, J ECOL, V98, P1462, DOI 10.1111/j.1365-2745.2010.01718.x; McCormack ML, 2012, NEW PHYTOL, V195, P823, DOI 10.1111/j.1469-8137.2012.04198.x; Moles AT, 2006, OIKOS, V113, P91, DOI 10.1111/j.0030-1299.2006.14194.x; Moya R., 2008, FOREST SYSTEMS, V16, P267; Muller-Landau HC, 2004, BIOTROPICA, V36, P20, DOI 10.1111/j.1744-7429.2004.tb00292.x; Nascimento HEM, 2005, J VEG SCI, V16, P625, DOI 10.1658/1100-9233(2005)016[0625:DALCFA]2.0.CO;2; Osone Y, 2008, NEW PHYTOL, V179, P417, DOI 10.1111/j.1469-8137.2008.02476.x; Osunkoya OO, 2010, ANN BOT-LONDON, V106, P371, DOI 10.1093/aob/mcq119; OSUNKOYA OO, 1994, J ECOL, V82, P149, DOI 10.2307/2261394; Paine C. E. T., 2015, J ECOL, V4, P978; Paz H, 2005, FUNCT ECOL, V19, P707, DOI 10.1111/j.1365-2435.2005.00984.x; Poorter H, 1989, CAUSES CONSEQUENCES, P1; Poorter L, 2008, ECOLOGY, V89, P1908, DOI 10.1890/07-0207.1; Poorter L, 1999, FUNCT ECOL, V13, P396, DOI 10.1046/j.1365-2435.1999.00332.x; Poorter L, 2006, ECOLOGY, V87, P1733, DOI 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2; Poorter L, 2010, NEW PHYTOL, V185, P481, DOI 10.1111/j.1469-8137.2009.03092.x; POPMA J, 1988, OECOLOGIA, V75, P625, DOI 10.1007/BF00776429; Prior LD, 2004, AUST J BOT, V52, P303, DOI 10.1071/BT03119; Quero JL, 2008, FUNCT PLANT BIOL, V35, P725, DOI 10.1071/FP08149; R Core Team, 2014, R LANG ENV STAT COMP; Read J, 2011, AM J BOT, V98, P1762, DOI 10.3732/ajb.1100080; Rees M, 2010, AM NAT, V176, pE152, DOI 10.1086/657037; Reich PB, 1998, FUNCT ECOL, V12, P327, DOI 10.1046/j.1365-2435.1998.00208.x; Reich PB, 1998, FUNCT ECOL, V12, P395, DOI 10.1046/j.1365-2435.1998.00209.x; REICH PB, 1992, ECOL MONOGR, V62, P365, DOI 10.2307/2937116; Rossatto DR, 2009, FUNCT ECOL, V23, P689, DOI 10.1111/j.1365-2435.2009.01568.x; Ruger N, 2012, ECOLOGY, V93, P2626, DOI 10.1890/12-0622.1; Ruiz-Robleto J, 2005, PLANT BIOLOGY, V7, P484, DOI 10.1055/s-2005-865905; Sack L, 2004, OIKOS, V107, P110, DOI 10.1111/j.0030-1299.2004.13184.x; Saldana-Acosta A, 2009, FOREST ECOL MANAG, V258, P1650, DOI 10.1016/j.foreco.2009.07.027; Salgado-Luarte C, 2012, AM NAT, V180, pE42, DOI 10.1086/666612; Saverimuttu T, 1996, OECOLOGIA, V105, P281, DOI 10.1007/BF00328729; Scheiter S, 2013, NEW PHYTOL, V198, P957, DOI 10.1111/nph.12210; Shen Y, 2014, OECOLOGIA, V175, P1315, DOI 10.1007/s00442-014-2981-z; Shipley B, 2006, FUNCT ECOL, V20, P565, DOI 10.1111/j.1365-2435.2006.01135.x; Shipley B, 2002, FUNCT ECOL, V16, P682, DOI 10.1046/j.1365-2435.2002.00672.x; SHIPLEY B, 1990, AM NAT, V136, P139, DOI 10.1086/285088; Stratton LC, 2001, TREE PHYSIOL, V21, P1327, DOI 10.1093/treephys/21.18.1327; Thomas SC, 1996, AM J BOT, V83, P556, DOI 10.2307/2445913; Thomas SC, 2011, TREE PHYSIOL-NETH, V4, P33, DOI 10.1007/978-94-007-1242-3_2; Tomlinson KW, 2014, ANN BOT-LONDON, V114, P315, DOI 10.1093/aob/mcu107; Turnbull LA, 2012, ECOLOGY, V93, P1283, DOI 10.1890/11-0261.1; Veneklaas EJ, 2002, SCI HORTIC-AMSTERDAM, V93, P75, DOI 10.1016/S0304-4238(01)00315-6; Viechtbauer W, 2010, J STAT SOFTW, V36, P1; Villagra M, 2013, TREE PHYSIOL, V33, P285, DOI 10.1093/treephys/tpt003; Villar R, 2006, PLANT CELL ENVIRON, V29, P1629, DOI 10.1111/j.1365-3040.2006.01540.x; Vogel S., 1988, LIFES DEVICES PHYS W; Vogel S., 2003, COMP BIOMECHANICS LI; WALTERS MB, 1993, OECOLOGIA, V96, P219, DOI 10.1007/BF00317735; WALTERS MB, 1993, OECOLOGIA, V94, P7, DOI 10.1007/BF00317294; Walters MB, 1996, ECOLOGY, V77, P841, DOI 10.2307/2265505; Wang JR, 1998, CAN J FOREST RES, V28, P44; Warren CR, 2005, OECOLOGIA, V144, P373, DOI 10.1007/s00442-005-0092-6; Wenk EH, 2015, ECOL EVOL, V5, P5521, DOI 10.1002/ece3.1802; Westbrook JW, 2011, AM NAT, V177, P800, DOI 10.1086/659963; Westoby M, 2002, ANNU REV ECOL SYST, V33, P125, DOI 10.1146/annurev.ecolsys.33.010802.150452; Wickham H, 2009, USE R, P1, DOI 10.1007/978-0-387-98141-3_1; Wright IJ, 1999, J ECOL, V87, P85, DOI 10.1046/j.1365-2745.1999.00330.x; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Wright IJ, 2001, OECOLOGIA, V127, P21, DOI 10.1007/s004420000554; Wright IJ, 2000, FUNCT ECOL, V14, P97, DOI 10.1046/j.1365-2435.2000.00393.x; Wright SJ, 2003, ECOLOGY, V84, P3174, DOI 10.1890/02-0038; Zapata JMC, 2003, TREE PHYSIOL, V23, P879, DOI 10.1093/treephys/23.13.879; ZHANG SY, 1995, WOOD SCI TECHNOL, V29, P451, DOI 10.1007/BF00194204; Zuur A. F., 2009, MIXED EFFECTS MODELS 149 12 12 11 81 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-0477 1365-2745 J ECOL J. Ecol. SEP 2016 104 5 1488 1503 10.1111/1365-2745.12594 16 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology DW3OU WOS:000383551800027 2018-11-22 J Xiang, XL; Jiang, RM; Tao, YY; Chen, YY; Xi, YL Xiang, Xianling; Jiang, Ruiming; Tao, Yuanyuan; Chen, Yingying; Xi, Yilong Differences in life history characteristics among three sympatric evolutionary species of the Rotaria rotatoria complex JOURNAL OF FRESHWATER ECOLOGY English Article rotifer; bdelloid; Rotaria rotatoria; evolutionary species; life history traits; temperature BRACHIONUS-PLICATILIS ROTIFERA; BDELLOID ROTIFERS; GENETIC DIFFERENTIATION; DIFFERENT TEMPERATURES; CALYCIFLORUS ROTIFERA; ECOLOGICAL GENETICS; POPULATION-GROWTH; SHALLOW LAKES; FRESH-WATER; REPRODUCTION The Bdelloidea rotifer, a kind of asexually microscopic invertebrate, is the largest Metazoan group that reproduces only through parthenogenesis. Here the potential evolutionary species composition was analyzed using a coalescent approach to infer independently evolving entities from a phylogenetic tree obtained from cytochrome oxidase I sequences. Three clones (HX4, HX8 and HX19) of Bdelloidea Rotaria rotatoria were selected to be the representatives of three sympatric putative cryptic taxa for detecting the effects of temperature (24, 28 and 32 ?) on their life history traits. The results showed that the responses of life table parameters to increasing temperature were different among the three evolving entities. Evolutionary species, temperatures and their interaction significantly affected all life history parameters except that evolutionary species did not significantly affect the durations of post-reproductive period and mean lifespan. In addition, the interaction of evolutionary species and temperatures did not significantly affect the durations of post-reproductive period, offspring production or net reproductive rate. No matter what the evolutionary species was, the age-specific survival curves tended to decrease earlier and more quickly, and the peak of age-specific fecundity curves appeared earlier with increasing temperature. The three potential cryptic R. rotatoria taxa adopted variable life history strategies, low reproduction and high survivorship at low temperature, as well as high reproduction and low survivorship at high temperature. The similar adaptation abilities of HX4, HX8 and HX19 to water temperatures could be the best explanation for their coexistence in the subtropical shallow pond at a high temperature. [Xiang, Xianling; Jiang, Ruiming; Tao, Yuanyuan; Chen, Yingying; Xi, Yilong] Anhui Normal Univ, Dept Ecol, Coll Life Sci, Key Lab Biot Environm & Ecol Safety, Wuhu 241000, Anhui, Peoples R China Xiang, XL (reprint author), Anhui Normal Univ, Dept Ecol, Coll Life Sci, Key Lab Biot Environm & Ecol Safety, Wuhu 241000, Anhui, Peoples R China. xiangxianling@163.com Xiang, Xianling/Q-6388-2018 Xiang, Xianling/0000-0002-1378-5877 Natural Science Foundation of China [31200324]; Natural Science Foundation of Anhui Province [1208085QC47]; Natural Science Foundation in College of Anhui Province [KJ2012A127]; Foundation of Provincial Key Laboratory of Conservation and Utilization for Important Biological Resource in Anhui This work was supported by the Natural Science Foundation of China [grant number 31200324]; Natural Science Foundation of Anhui Province [grant number 1208085QC47]; Natural Science Foundation in College of Anhui Province [grant number KJ2012A127]; Foundation of Provincial Key Laboratory of Conservation and Utilization for Important Biological Resource in Anhui. ALLAN JD, 1976, AM NAT, V110, P165, DOI 10.1086/283056; Barraclough TG, 2007, MOL BIOL EVOL, V24, P1952, DOI 10.1093/molbev/msm123; Birky CW, 2011, ZOOL J LINN SOC-LOND, V161, P723, DOI 10.1111/j.1096-3642.2010.00674.x; Campillo S, 2011, EVOL ECOL, V25, P933, DOI 10.1007/s10682-010-9447-5; Ciros-Perez J, 2001, J PLANKTON RES, V23, P1311, DOI 10.1093/plankt/23.12.1311; Derry AM, 2003, LIMNOL OCEANOGR, V48, P675, DOI 10.4319/lo.2003.48.2.0675; Dong L.L., 2004, CHINESE J APPL ECOLO, V15, P2165; FANESTIL DD, 1965, J GERONTOL, V20, P462; Feng Li-Ke, 2004, Chinese Journal of Zoology, V39, P12; Fontaneto D, 2008, J EVOLUTION BIOL, V21, P580, DOI 10.1111/j.1420-9101.2007.01472.x; Fontaneto D, 2007, PLOS BIOL, V5, P914, DOI 10.1371/journal.pbio.0050087; Fontaneto D, 2011, HYDROBIOLOGIA, V662, P27, DOI 10.1007/s10750-010-0481-7; Fontaneto D, 2009, MOL PHYLOGENET EVOL, V53, P182, DOI 10.1016/j.ympev.2009.04.011; GALKOVSKAJA GA, 1987, HYDROBIOLOGIA, V147, P307, DOI 10.1007/BF00025759; Gilbert JJ, 2005, HYDROBIOLOGIA, V546, P257, DOI 10.1007/s10750-005-4205-3; Gomez A, 2002, EVOLUTION, V56, P1431; GOMEZ A, 1995, J EVOLUTION BIOL, V8, P601, DOI 10.1046/j.1420-9101.1995.8050601.x; Gomez A, 1996, FUNCT ECOL, V10, P681, DOI 10.2307/2390502; Guo RX, 2011, HYDROBIOLOGIA, V658, P163, DOI 10.1007/s10750-010-0459-5; [胡存兵 HU CunBing], 2008, [生态学报, Acta Ecologica Sinica], V28, P5957; Huang L, 2012, ANN LIMNOL-INT J LIM, V48, P383, DOI 10.1051/limn/2012029; KING CE, 1972, ECOLOGY, V53, P408, DOI 10.2307/1934226; KING CE, 1987, HYDROBIOLOGIA, V147, P57, DOI 10.1007/BF00025726; King CE, 1980, EVOLUTION ECOLOGY ZO, P315; Krebs C., 1985, ECOLOGY EXPT ANAL DI, P800; LEBEDEVA LI, 1987, INT REV GES HYDROBIO, V72, P695, DOI 10.1002/iroh.19870720606; Li S., 1959, ACTA HYDROBIOL SINIC, V4, P462; Lotka A. J., 1913, J WASH ACAD SCI, V3, P241; MEADOW ND, 1971, J GERONTOL, V26, P302, DOI 10.1093/geronj/26.3.302; Min GS, 2009, BMC GENOMICS, V10, DOI 10.1186/1471-2164-10-533; MIRACLE MR, 1989, HYDROBIOLOGIA, V186, P81, DOI 10.1007/BF00048900; Monaghan MT, 2009, SYST BIOL, V58, P298, DOI 10.1093/sysbio/syp027; Nogrady T., 1993, BIOL ECOLOGY SYSTEMA, P1; Ortells R, 2003, FRESHWATER BIOL, V48, P2194, DOI 10.1046/j.1365-2427.2003.01159.x; Pan L, 2014, ANN LIMNOL-INT J LIM, V50, P261, DOI 10.1051/limn/2014021; Peltier WH, 1985, EPA600485013; Perez-Legaspi IA, 1998, HYDROBIOLOGIA, V387, P341, DOI 10.1023/A:1017099906853; Pociecha A., 2010, PAPERS GLOBAL CHANGE, V17, P31; Pons J, 2006, SYST BIOL, V55, P595, DOI 10.1080/10635150600852011; Posada D, 2004, SYST BIOL, V53, P793, DOI 10.1080/10635150490522304; Pourriot R., 1986, AQUACULTURE, V5, P201; Ricci C, 2005, HYDROBIOLOGIA, V546, P307, DOI 10.1007/s10750-005-4238-7; RICCI C, 1983, HYDROBIOLOGIA, V104, P175, DOI 10.1007/BF00045965; Ricci C, 2000, HYDROBIOLOGIA, V418, P73, DOI 10.1023/A:1003840216827; RICCI C, 1991, HYDROBIOLOGIA, V211, P147, DOI 10.1007/BF00037370; Ricci Claudia, 1998, Aquatic Ecology, V32, P353, DOI 10.1023/A:1009905404868; Rico-Martinez R, 2013, ENVIRON POLLUT, V173, P5, DOI 10.1016/j.envpol.2012.09.024; Sanderson MJ, 2002, MOL BIOL EVOL, V19, P101, DOI 10.1093/oxfordjournals.molbev.a003974; Santo N, 2001, HYDROBIOLOGIA, V446, P71, DOI 10.1023/A:1017525222744; Sarma SSS, 2002, HYDROBIOLOGIA, V481, P89, DOI 10.1023/A:1021265104165; Schroder T, 2007, HYDROBIOLOGIA, V593, P129, DOI 10.1007/s10750-007-9066-5; SCOTT AP, 1978, AQUACULTURE, V14, P247, DOI 10.1016/0044-8486(78)90098-4; Segers H, 2008, HYDROBIOLOGIA, V595, P49, DOI 10.1007/s10750-007-9003-7; Serra M, 1998, HYDROBIOLOGIA, V387, P373, DOI 10.1023/A:1017083820908; SNELL TW, 1986, MAR BIOL, V92, P157, DOI 10.1007/BF00392832; SNELL TW, 1991, ECOTOX ENVIRON SAFE, V21, P308, DOI 10.1016/0147-6513(91)90070-6; SNELL TW, 1980, OECOLOGIA, V46, P343, DOI 10.1007/BF00346262; Stelzer CP, 2005, DEV HYDROBIOL, V181, P335; SWOFFORD DL, 2002, PAUP 4 0 PHYLOGENETI; Tao L.X., 2008, CHIN J APPL ECOL, V15, P2165; van der Land J., 1965, Zoologische Mededeelingen Leiden, V40, P235; Walczynska A, 2014, HYDROBIOLOGIA, V734, P17, DOI 10.1007/s10750-014-1859-8; Wang XL, 2014, ANN LIMNOL-INT J LIM, V50, P289, DOI 10.1051/limn/2014024; Welch DM, 2000, SCIENCE, V288, P1211, DOI 10.1126/science.288.5469.1211; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956; Xi YL, 2013, J FRESHWATER ECOL, V28, P539, DOI 10.1080/02705060.2013.799102; Xi YL, 2005, J FRESHWATER ECOL, V20, P707, DOI 10.1080/02705060.2005.9664794; Xiang XL, 2011, MOL ECOL, V20, P3027, DOI 10.1111/j.1365-294X.2011.05147.x; Xiang XL, 2011, MOL PHYLOGENET EVOL, V59, P386, DOI 10.1016/j.ympev.2011.02.011; Xiang XL, 2010, J FRESHWATER ECOL, V25, P9, DOI 10.1080/02705060.2010.9664352 70 4 4 9 46 TAYLOR & FRANCIS INC PHILADELPHIA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA 0270-5060 2156-6941 J FRESHWATER ECOL J. Freshw. Ecol. SEP 2016 31 3 351 360 10.1080/02705060.2016.1141379 10 Ecology; Limnology Environmental Sciences & Ecology; Marine & Freshwater Biology DX3JV WOS:000384270300005 Bronze 2018-11-22 J McFarlane, SE; Sirkia, PM; Alund, M; Qvarnstrom, A McFarlane, S. Eryn; Sirkia, Paivi M.; Alund, Murielle; Qvarnstrom, Anna Hybrid Dysfunction Expressed as Elevated Metabolic Rate in Male Ficedula Flycatchers PLOS ONE English Article CLIMATE-CHANGE; ECOLOGICAL SPECIATION; DARWINS COROLLARY; MITOCHONDRIAL; EVOLUTION; DROSOPHILA; INCOMPATIBILITIES; HYBRIDIZATION; CONSEQUENCES; SPERMATOZOA Studies of ecological speciation are often biased towards extrinsic sources of selection against hybrids, resulting from intermediate hybrid morphology, but the knowledge of how genetic incompatibilities accumulate over time under natural conditions is limited. Here we focus on a physiological trait, metabolic rate, which is central to life history strategies and thermoregulation but is also likely to be sensitive to mismatched mitonuclear interactions. We measured the resting metabolic rate of male collared, and pied flycatchers as well as of naturally occurring F1 hybrid males, in a recent hybrid zone. We found that hybrid males had a higher rather than intermediate metabolic rate, which is indicative of hybrid physiological dysfunction. Fitness costs associated with elevated metabolic rate are typically environmentally dependent and exaggerated under harsh conditions. By focusing on male hybrid dysfunction in an eco-physiological trait, our results contribute to the general understanding of how combined extrinsic and intrinsic sources of hybrid dysfunction build up under natural conditions. [McFarlane, S. Eryn; Alund, Murielle; Qvarnstrom, Anna] Dept Ecol & Genet, Anim Ecol, Norbyvagen 18D, SE-75236 Uppsala, Sweden; [Sirkia, Paivi M.] Univ Helsinki, Finnish Museum Nat Hist, Zool Unit, Helsinki, Finland; [Sirkia, Paivi M.] Univ Turku, Sect Ecol, Dept Biol, Turku, Finland McFarlane, SE (reprint author), Dept Ecol & Genet, Anim Ecol, Norbyvagen 18D, SE-75236 Uppsala, Sweden. eryn.mcfarlane@ebc.uu.se Swedish Research Council [621-2012-3722]; Natural Sciences and Engineering Research Council; Stiftelsen for Zoologisk Forskning; Academy of Finland [267430] This work was supported by funding from the Swedish Research Council (AQ 621-2012-3722), the Natural Sciences and Engineering Research Council (SEM PGS-D), Stiftelsen for Zoologisk Forskning (SEM and MA) and the Academy of Finland (PMS 267430). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Alund M, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0169; Arnqvist G, 2010, EVOLUTION, V64, P3354, DOI 10.1111/j.1558-5646.2010.01135.x; Bates D., 2015, LME4 LINEAR MIXED EF; Becker M, 2013, NAT CLIM CHANGE, V3, P1039, DOI 10.1038/NCLIMATE2027; BENNETT AF, 1979, SCIENCE, V206, P649, DOI 10.1126/science.493968; Blackmer AL, 2005, BEHAV ECOL, V16, P906, DOI 10.1093/beheco/ari069; Bolnick DI, 2008, GENETICS, V178, P1037, DOI 10.1534/genetics.107.081364; Brideau NJ, 2006, SCIENCE, V314, P1292, DOI 10.1126/science.1133953; Burton RS, 2012, MOL ECOL, V21, P4942, DOI 10.1111/mec.12006; Burton T, 2011, P ROY SOC B-BIOL SCI, V278, P3465, DOI 10.1098/rspb.2011.1778; Deerenberg C, 1998, J COMP PHYSIOL B, V168, P507, DOI 10.1007/s003600050171; Dieckmann U., 2004, ADAPTIVE SPECIATION; Dobzhansky T, 1936, GENETICS, V21, P113; Ellison CK, 2008, J EVOLUTION BIOL, V21, P1844, DOI 10.1111/j.1420-9101.2008.01608.x; Fishman L, 2001, EVOLUTION, V55, P1932; FORD WCL, 1981, J REPROD FERTIL, V63, P271; Garroway CJ, 2010, GLOBAL CHANGE BIOL, V16, P113, DOI 10.1111/j.1365-2486.2009.01948.x; Gershoni M, 2009, BIOESSAYS, V31, P642, DOI 10.1002/bies.200800139; Gomendio M, 2011, P ROY SOC LOND B BIO; HALANGK W, 1985, BIOCHIM BIOPHYS ACTA, V808, P316, DOI 10.1016/0005-2728(85)90014-3; HEWITT GM, 1988, TRENDS ECOL EVOL, V3, P158, DOI 10.1016/0169-5347(88)90033-X; Hoekstra LA, 2013, GENETICS, V195, P1129, DOI 10.1534/genetics.113.154914; Hoffmann AA, 2011, NATURE, V470, P479, DOI 10.1038/nature09670; Hothorn T., 2008, SIMULTANEOUS INFEREN; Huntley B, 2007, CLIMATIC ATLAS EUROP; Johnson NA, 2010, TRENDS GENET, V26, P317, DOI 10.1016/j.tig.2010.04.005; Kawakami T, 2014, MOL ECOLOGY RESOURCE; Klaassen M, 2004, COMP BIOCHEM PHYS A, V137, P639, DOI 10.1016/j.cbpb.2003.12.004; Krol E, 2003, J EXP BIOL, V206, P4283, DOI 10.1242/jeb.00676; Kuznetsova A, 2014, LMERTEST TESTS RANDO; Larivee ML, 2010, FUNCT ECOL, V24, P597, DOI 10.1111/j.1365-2435.2009.01680.x; Lasiewski RC, 1964, CONDOR, P212; Lighton JRB, 2008, MEASURING METABOLIC; Lundberg A., 1992, PIED FLYCATCHER; Maheshwari S, 2011, ANNU REV GENET, V45, P331, DOI 10.1146/annurev-genet-110410-132514; MANI GS, 1990, PROC R SOC SER B-BIO, V240, P29, DOI 10.1098/rspb.1990.0025; Muhlfeld CC, 2014, NATURE CLIMATE CHANG; Muller H. J., 1940, NEW SYSTEMATICS, P185; Nadachowska-Brzyska K, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003942; Nilsson JA, 2002, P ROY SOC B-BIOL SCI, V269, P1735, DOI 10.1098/rspb.2002.2071; Nosil P, 2012, OX ECOL EV, P1, DOI 10.1093/acprof:osobl/9780199587100.001.0001; Olson JR, 2010, PHYSIOL BIOCHEM ZOOL, V83, P263, DOI 10.1086/648395; Osada N, 2012, MOL BIOL EVOL, V29, P337, DOI 10.1093/molbev/msr211; Parmesan C, 2003, NATURE, V421, P37, DOI 10.1038/nature01286; Qvarnstrom A, 2005, BIOL LETTERS, V1, P68, DOI 10.1098/rsbl.2004.0265; Qvarnstrom A, 2015, EVOLUTIONARY APPL; Qvarnstrom A, 2010, PHILOS T R SOC B, V365, P1841, DOI 10.1098/rstb.2009.0306; Qvarnstrom A, 2009, ECOLOGY, V90, P1948, DOI 10.1890/08-0494.1; R Core Team, 2013, R LANG ENV STAT COMP; Rundle HD, 2005, ECOL LETT, V8, P336, DOI 10.1111/j.1461-0248.2004.00715.x; Saetre GP, 1997, NATURE, V387, P589; Schluter D, 2000, ECOLOGY ADAPTIVE RAD; Schluter D, 2009, SCIENCE, V323, P737, DOI 10.1126/science.1160006; Skibiel AL, 2013, FUNCT ECOL, V27, P1382, DOI 10.1111/1365-2435.12130; Svedin N, 2008, P R SOC B, V275, P735, DOI 10.1098/rspb.2007.0967; Tieleman BI, 2009, P R SOC B, V276, P1685, DOI 10.1098/rspb.2008.1946; Tourmente M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021244; Trier CN, 2014, PLOS GENET, V10, DOI 10.1371/journal.pgen.1004075; Turelli M, 2001, TRENDS ECOL EVOL, V16, P330, DOI 10.1016/S0169-5347(01)02177-2; Turelli M, 2007, GENETICS, V176, P1059, DOI 10.1534/genetics.106.065979 60 8 8 0 5 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One SEP 1 2016 11 9 e0161547 10.1371/journal.pone.0161547 10 Multidisciplinary Sciences Science & Technology - Other Topics DV3WN WOS:000382855600038 27583553 DOAJ Gold, Green Published 2018-11-22 J Pisapia, C; Anderson, KD; Pratchett, MS Pisapia, C.; Anderson, K. D.; Pratchett, M. S. Temporal consistency in background mortality of four dominant coral taxa along Australia's Great Barrier Reef CORAL REEFS English Article Disturbance; Resilience; Coral reefs; Partial mortality; Temporal variation; Long-term LIFE-HISTORY STRATEGIES; SCLERACTINIAN CORALS; ACROPORA-PALMATA; BUILDING CORALS; TREE MORTALITY; SIZE STRUCTURE; LESION SHAPE; REGENERATION; DISTURBANCE; COMMUNITY Studies on the population and community dynamics of scleractinian corals typically focus on catastrophic mortality associated with acute disturbances (e.g., coral bleaching and outbreaks of crown-of-thorns starfish), though corals are subject to high levels of background mortality and injuries caused by routine and chronic processes. This study quantified prevalence (proportion of colonies with injuries) and severity (areal extent of injuries on individual colonies) of background mortality and injuries for four common coral taxa (massive Porites, encrusting Montipora, Acropora hyacinthus and branching Pocillopora) on the Great Barrier Reef, Australia. Sampling was conducted over three consecutive years during which there were no major acute disturbances. A total of 2276 adult colonies were surveyed across 27 sites, within nine reefs and three distinct latitudinal sectors. The prevalence of injuries was very high (> 83%) across all four taxa, but highest for Porites (91%) and Montipora (85%). For these taxa (Montipora and Pocillopora), there was also significant temporal and spatial variation in prevalence of partial mortality. The severity of injuries ranged from 3% to more than 80% and varied among coral taxa, but was fairly constant spatially and temporally. This shows that some injuries have considerable longevity and that corals may invest relatively little in regenerating tissue over sites of previous injuries. Inter-colony variation in the severity of injury also had no apparent effect on the realized growth of individual colonies, suggesting that energy diverted to regeneration has a limited bearing on overall energetic allocation, or impacts on other life-history processes (e.g., reproduction) rather than growth. Establishing background levels of injury and regeneration is important for understanding energy investment and life-history consequences for reef-building corals as well as for predicting susceptibility to, and capacity to recover from, acute disturbances. [Pisapia, C.; Anderson, K. D.; Pratchett, M. S.] James Cook Univ, ARC Ctr Excellence Coral Reef Studies, Townsville, Qld 4811, Australia; [Pisapia, C.] James Cook Univ, Sch Marine Biol, Australian Inst Marine Sci, Townsville, Qld, Australia Pisapia, C (reprint author), James Cook Univ, ARC Ctr Excellence Coral Reef Studies, Townsville, Qld 4811, Australia.; Pisapia, C (reprint author), James Cook Univ, Sch Marine Biol, Australian Inst Marine Sci, Townsville, Qld, Australia. chiara.pisapia@my.jcu.edu.au Anderson, Kristen/0000-0002-1576-6979 ARC Centre of Excellence of Coral Reef Studies; AIMS@JCU; Graduate Research Scheme award; Great Barrier Reef Marine Park Authority Science for Management award This study was funded by the ARC Centre of Excellence of Coral Reef Studies, AIMS@JCU, a Graduate Research Scheme award and a Great Barrier Reef Marine Park Authority Science for Management award. The authors are indebted to V. Messmer for comments on the manuscript and to M. Trapon, J. Casey, A. Hoey, D. Coker, D. Schmid-Lieberg, S. Katz for assistance in the field, the staff at Lizard Island, Orpheus Island and Heron Island Research Stations, and the RV Kirby for field and logistical support. Adjeroud M, 2007, HYDROBIOLOGIA, V589, P117, DOI 10.1007/s10750-007-0726-2; ANDRES NG, 1995, MAR ECOL PROG SER, V118, P305, DOI 10.3354/meps118305; Anthony KRN, 2009, FUNCT ECOL, V23, P539, DOI 10.1111/j.1365-2435.2008.01531.x; Bachok Z, 2006, CORAL REEFS, V25, P545, DOI 10.1007/s00338-006-0130-9; Baird AH, 2002, MAR ECOL PROG SER, V237, P133, DOI 10.3354/meps237133; BAK RPM, 1983, MAR BIOL, V77, P221, DOI 10.1007/BF00395810; BAK RPM, 1979, MAR BIOL, V54, P341, DOI 10.1007/BF00395440; BAK RPM, 1980, B MAR SCI, V30, P883; BAZZAZ FA, 1987, BIOSCIENCE, V37, P58, DOI 10.2307/1310178; Bruckner AW, 2012, REV BIOL TROP, V60, P39; Bruckner AW, 2009, DIS AQUAT ORGAN, V87, P19, DOI 10.3354/dao02120; BYTHELL JC, 1993, CORAL REEFS, V12, P143, DOI 10.1007/BF00334474; Cole AJ, 2011, MAR ECOL PROG SER, V422, P155, DOI 10.3354/meps08917; Connell JH, 1997, CORAL REEFS, V16, pS101, DOI 10.1007/s003380050246; Connell JH, 1997, ECOL MONOGR, V67, P461, DOI 10.1890/0012-9615(1997)067[0461:AYSOCA]2.0.CO;2; Cumming RL, 2002, MAR ECOL PROG SER, V242, P131, DOI 10.3354/meps242131; Darling ES, 2012, ECOL LETT, V15, P1378, DOI 10.1111/j.1461-0248.2012.01861.x; De'ath G, 2012, P NATL ACAD SCI USA, V109, P17995, DOI 10.1073/pnas.1208909109; De'ath G, 2009, SCIENCE, V323, P116, DOI 10.1126/science.1165283; Denis V, 2011, MAR ECOL PROG SER, V428, P105, DOI 10.3354/meps09060; DONE TJ, 1988, MAR BIOL, V100, P51, DOI 10.1007/BF00392954; Fine M, 2002, MAR ECOL PROG SER, V234, P119, DOI 10.3354/meps234119; Fung T, 2011, ECOLOGY, V92, P967, DOI 10.1890/10-0378.1; GUZMAN HM, 1994, MAR ECOL PROG SER, V105, P231, DOI 10.3354/meps105231; Habeeb RL, 2007, ECOL APPL, V17, P641, DOI 10.1890/06-0348; Hall VR, 2001, J EXP MAR BIOL ECOL, V264, P209, DOI 10.1016/S0022-0981(01)00318-5; Hall VR, 1997, J EXP MAR BIOL ECOL, V212, P9, DOI 10.1016/S0022-0981(96)02760-8; Hall VR, 1998, THESIS; Henry LA, 2005, INT REV HYDROBIOL, V90, P125, DOI 10.1002/iroh.200410759; Hughes TP, 1999, NATURE, V397, P59, DOI 10.1038/16237; HUGHES TP, 1985, ECOL MONOGR, V55, P141, DOI 10.2307/1942555; HUGHES TP, 1987, AM NAT, V129, P818, DOI 10.1086/284677; Johnson CR, 1992, P 7 INT COR REEF S, V1, P606; Kramer Philip A., 2003, Atoll Research Bulletin, V496, P1; LANG J, 1973, B MAR SCI, V23, P260; Langmead O, 2004, ECOL MODEL, V175, P271, DOI 10.1016/j.ecolmodel.2003.10.019; Lenihan HS, 2011, ECOLOGY, V92, P1959, DOI 10.1890/11-0108.1; LIDDLE MJ, 1991, TRENDS ECOL EVOL, V6, P13, DOI 10.1016/0169-5347(91)90141-J; LIDDLE MJ, 1987, BIOL CONSERV, V42, P1, DOI 10.1016/0006-3207(87)90049-8; Lirman D, 2014, ECOL INDIC, V44, P120, DOI 10.1016/j.ecolind.2013.10.021; Lirman D, 2000, MAR ECOL PROG SER, V197, P209, DOI 10.3354/meps197209; LOYA Y, 1976, NATURE, V261, P490, DOI 10.1038/261490a0; Lugo AE, 1996, BIOTROPICA, V28, P585, DOI 10.2307/2389099; Madin JS, 2014, ECOL LETT, V17, P1008, DOI 10.1111/ele.12306; Meesters E, 1992, P 7 INT COR REEF S, V2, P681; MEESTERS EH, 1994, MAR ECOL PROG SER, V112, P119, DOI 10.3354/meps112119; MEESTERS EH, 1993, MAR ECOL PROG SER, V96, P189, DOI 10.3354/meps096189; Meesters EH, 1997, MAR ECOL PROG SER, V146, P91, DOI 10.3354/meps146091; Meesters EH, 1996, B MAR SCI, V58, P838; Nugues MM, 2003, MAR POLLUT BULL, V46, P314, DOI 10.1016/S0025-326X(02)00402-2; Oren U, 1997, MAR ECOL PROG SER, V146, P101, DOI 10.3354/meps146101; Pisapia C, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0100969; Pratchett MS, 2013, MAR ENVIRON RES, V86, P29, DOI 10.1016/j.marenvres.2013.02.007; Rinkevich B., 1989, ENV QUALITY ECOSYSTE, P257; Rotjan RD, 2008, MAR ECOL PROG SER, V367, P73, DOI 10.3354/meps07531; SCATENA FN, 1995, GEOMORPHOLOGY, V13, P199, DOI 10.1016/0169-555X(95)00021-V; Sweatman H, 2011, CORAL REEFS, V30, P521, DOI 10.1007/s00338-010-0715-1; Trapon ML, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0057788; van Mantgem PJ, 2009, SCIENCE, V323, P521, DOI 10.1126/science.1165000; Warton DI, 2011, ECOLOGY, V92, P3, DOI 10.1890/10-0340.1; White P. S., 1985, ECOLOGY NATURAL DIST, P3; Williams DE, 2012, CORAL REEFS, V31, P369, DOI 10.1007/s00338-011-0847-y; YAP HT, 1992, MAR ECOL PROG SER, V83, P91, DOI 10.3354/meps083091 63 1 1 2 107 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0722-4028 1432-0975 CORAL REEFS Coral Reefs SEP 2016 35 3 839 849 10.1007/s00338-016-1421-4 11 Marine & Freshwater Biology Marine & Freshwater Biology DU2CU WOS:000382019400009 2018-11-22 J Viladrich, N; Bramanti, L; Tsounis, G; Chocarro, B; Martinez-Quitana, A; Ambroso, S; Madurell, T; Rossi, S Viladrich, Nuria; Bramanti, Lorenzo; Tsounis, Georgios; Chocarro, Blanca; Martinez-Quitana, Angela; Ambroso, Stefano; Madurell, Teresa; Rossi, Sergio Variation in lipid and free fatty acid content during spawning in two temperate octocorals with different reproductive strategies: surface versus internal brooder CORAL REEFS English Article Energy investment; Free fatty acids; Lipids; Corallium rubrum; Paramuricea clavata GORGONIAN PARAMURICEA-CLAVATA; BENTHIC SUSPENSION FEEDERS; CORALLIUM-RUBRUM L.; PARTICULATE ORGANIC-MATTER; REEF-BUILDING CORALS; LIFE-HISTORY TRAITS; RED CORAL; GONADAL DEVELOPMENT; BIOCHEMICAL-COMPOSITION; POCILLOPORA-DAMICORNIS This study investigates the energetic investment during spawning of two Mediterranean gorgonians characterized by different reproductive strategies: Corallium rubrum (internal brooder) and Paramuricea clavata (surface brooder). Sexual products (number of oocytes and spermatic sacs) were quantified, and biochemical characteristics (lipid content and free fatty acid content and composition) were determined to investigate the parental energetic investment and demand in reproduction. Results suggested that the majority of the energetic cost was due to reproductive activity (i.e., gametogenesis and spawning). The two species exhibited different life history strategies, with P. clavata investing more energy in reproduction than C. rubrum. However, P. clavata is reproductively more sensitive to inter-annual changes in environmental conditions. [Viladrich, Nuria; Chocarro, Blanca; Rossi, Sergio] Univ Autonoma Barcelona, Inst Ciencia & Tecnol Ambientals, Edifici Z Campus UAB, Cerdanyola Del Valles 08193, Spain; [Bramanti, Lorenzo] Univ Paris 06, Sorbonne Univ, CNRS, Lab Ecogeochim Environm Benth LECOB,Observ Oceano, F-66650 Banyuls Sur Mer, France; [Bramanti, Lorenzo] Calif State Univ Northridge, Dept Biol, 18111 Nordhoff St, Northridge, CA 91330 USA; [Tsounis, Georgios; Martinez-Quitana, Angela; Ambroso, Stefano; Madurell, Teresa] CSIC, Inst Ciencies Mar, Passeig Maritim Barceloneta 37-49, E-08003 Barcelona, Spain Viladrich, N (reprint author), Univ Autonoma Barcelona, Inst Ciencia & Tecnol Ambientals, Edifici Z Campus UAB, Cerdanyola Del Valles 08193, Spain. viladrich.nuria@gmail.com Rossi, Sergio/0000-0003-4402-3418; Bramanti, Lorenzo/0000-0002-4872-840X; Viladrich, Nuria/0000-0001-8456-4812 FI AGAUR research grant [FI-2010-03824]; Ramon y Cajal contract [RyC-2007-01327]; Marie Curie International Outgoing Fellowship (Animal Forest Health) [327845]; BENTOLARV project [CTM2009-10007]; Generalitat de Catalunya [2014 SGR-1356] The authors wish to thank N. Moraleda for laboratory work and A. Sandu for help with English. N. Viladrich was funded by a FI AGAUR research grant (FI-2010-03824), S. Rossi by a Ramon y Cajal contract (RyC-2007-01327) and a Marie Curie International Outgoing Fellowship (Animal Forest Health, Grant Agreement Number 327845). This work was supported by the BENTOLARV project (CTM2009-10007). The authors want to thank the support of the Generalitat de Catalunya to MERS (2014 SGR-1356). Al-Lihaibi SS, 1998, OCEANOL ACTA, V21, P495, DOI 10.1016/S0399-1784(98)80033-9; Allemand D, 2011, CORAL REEFS: AN ECOSYSTEM IN TRANSITION, P119, DOI 10.1007/978-94-007-0114-4_9; ARAI T, 1993, CORAL REEFS, V12, P71; Ballesteros E, 2006, OCEANOGR MAR BIOL, V44, P123; Baptista M, 2012, COMP BIOCHEM PHYS B, V161, P178, DOI 10.1016/j.cbpb.2011.11.002; BARNES H, 1973, Journal of Experimental Marine Biology and Ecology, V12, P103, DOI 10.1016/0022-0981(73)90040-3; BAYNE BL, 1975, J MAR BIOL ASSOC UK, V55, P675, DOI 10.1017/S0025315400017343; Bramanti L, 2005, J EXP MAR BIOL ECOL, V314, P69, DOI 10.1016/j.jembe.2004.08.029; BREY T, 1995, MAR ECOL PROG SER, V125, P87, DOI 10.3354/meps125087; Cantin NE, 2007, MAR ECOL PROG SER, V344, P81, DOI 10.3354/meps07059; Cerrano C, 2000, ECOL LETT, V3, P284, DOI 10.1046/j.1461-0248.2000.00152.x; Chambers J. M., 1992, STAT MODELS S; Coma R, 1998, MAR ECOL PROG SER, V162, P89, DOI 10.3354/meps162089; Coma R, 2000, TRENDS ECOL EVOL, V15, P448, DOI 10.1016/S0169-5347(00)01970-4; Coma R, 2003, OIKOS, V101, P205, DOI 10.1034/j.1600-0706.2003.12028.x; COMA R, 1994, MAR ECOL PROG SER, V115, P257, DOI 10.3354/meps115257; COMA R, 1995, MAR ECOL PROG SER, V117, P173, DOI 10.3354/meps117173; Cupido R, 2012, MAR ECOL PROG SER, V469, P25, DOI 10.3354/meps09976; Dalsgaard J, 2003, ADV MAR BIOL, V46, P225, DOI 10.1016/S0065-2881(03)46005-7; Debreuil J, 2011, COMP BIOCHEM PHYS B, V159, P40, DOI 10.1016/j.cbpb.2011.01.007; Diaz-Almeyda E, 2011, CORAL REEFS, V30, P217, DOI 10.1007/s00338-010-0691-5; Doughty P, 1997, OECOLOGIA, V110, P508, DOI 10.1007/s004420050187; Fiorillo I, 2013, MAR BIOL, V160, P719, DOI 10.1007/s00227-012-2126-z; Garrabou J, 2002, J ANIM ECOL, V71, P966, DOI 10.1046/j.1365-2656.2002.00661.x; Garrabou J, 2009, GLOBAL CHANGE BIOL, V15, P1090, DOI 10.1111/j.1365-2486.2008.01823.x; Giese AC, 1959, S PHOT PLANTS AN GAT; GIESEL JT, 1976, ANNU REV ECOL SYST, V7, P57, DOI 10.1146/annurev.es.07.110176.000421; Gili JM, 1998, TRENDS ECOL EVOL, V13, P316, DOI 10.1016/S0169-5347(98)01365-2; Gori A, 2012, CORAL REEFS, V31, P823, DOI 10.1007/s00338-012-0904-1; Gori A, 2013, J EXP MAR BIOL ECOL, V444, P38, DOI 10.1016/j.jembe.2013.03.009; Gremare A, 1997, MAR ECOL PROG SER, V150, P195, DOI 10.3354/meps150195; Grottoli AG, 2004, MAR BIOL, V145, P621, DOI 10.1007/s00227-004-1337-3; GURR MI, 2002, LIPID BIOCH; Gutierrez-Rodriguez C, 2004, MOL ECOL, V13, P2211, DOI 10.1111/j.1365-294X.2004.02247.x; Hall JM, 2000, SEAFOOD HLTH NUTR, P435; Harii S, 2002, MAR BIOL, V141, P39, DOI 10.1007/s00227-002-0812-y; HARMS J, 1992, J EXP MAR BIOL ECOL, V156, P151, DOI 10.1016/0022-0981(92)90242-3; Imbs AB, 2008, RUSS J MAR BIOL, V34, P174, DOI 10.1134/S1063074008030061; Imbs AB, 2013, RUSS J MAR BIOL+, V39, P153, DOI 10.1134/S1063074013030061; Imbs AB, 2015, LIPIDS, V50, P575, DOI 10.1007/s11745-015-4021-0; Imbs AB, 2010, MAR ECOL PROG SER, V409, P65, DOI 10.3354/meps08622; JABLONSKI D, 1983, BIOL REV, V58, P21, DOI 10.1111/j.1469-185X.1983.tb00380.x; Kahng SE, 2011, MAR ECOL PROG SER, V443, P265, DOI 10.3354/meps09414; LAWRENCE JM, 1994, ECHINODERMS THROUGH TIME, P39; Lehninger A. L., 1982, PRINCIPLES BIOCH; Lenz EA, 2015, CORAL REEFS, V34, P1099, DOI 10.1007/s00338-015-1315-x; Leuzinger S, 2003, OECOLOGIA, V136, P524, DOI 10.1007/s00442-003-1305-5; MacGinitie GE, 1949, NATURAL HIST MARINE; MEIJER L, 1984, DEV BIOL, V106, P368, DOI 10.1016/0012-1606(84)90235-5; Mousseau T. A., 1998, MATERNAL EFFECTS ADA; Muller-Navarra DC, 2000, NATURE, V403, P74, DOI 10.1038/47469; Oksanen J, 2005, VEGAN COMMUNITY ECOL; Orejas C, 2002, MAR ECOL PROG SER, V231, P101, DOI 10.3354/meps231101; PECHENIK JA, 1990, OPHELIA, V32, P63, DOI 10.1080/00785236.1990.10422025; Perez MJ, 2007, COMP BIOCHEM PHYS B, V146, P187, DOI 10.1016/j.cbpb.2006.10.097; Pernet V, 2002, J COMP PHYSIOL B, V172, P455, DOI 10.1007/s00360-002-0268-x; Previati M, 2010, J EXP MAR BIOL ECOL, V390, P39, DOI 10.1016/j.jembe.2010.04.025; QIAN PY, 1992, J EXP MAR BIOL ECOL, V157, P159, DOI 10.1016/0022-0981(92)90160-C; QIAN PY, 1991, J EXP MAR BIOL ECOL, V148, P11, DOI 10.1016/0022-0981(91)90143-K; R Development Core Team, 2008, R LANG ENV STAT COMP; Raymond JF, 2007, J EXP MAR BIOL ECOL, V341, P32, DOI 10.1016/j.jembe.2006.10.030; Ribes M, 1999, MAR ECOL PROG SER, V183, P125, DOI 10.3354/meps183125; Ribes M, 2007, INVERTEBR BIOL, V126, P307, DOI 10.1111/j.1744-7410.2007.00101.x; Roff D. A., 2002, LIFE HIST EVOLUTION; Rossi S, 2004, MAR BIOL, V144, P89, DOI 10.1007/s00227-003-1168-7; Rossi S, 2003, ESTUAR COAST SHELF S, V58, P423, DOI 10.1016/S0272-7714(03)00108-2; Rossi S, 2007, MAR BIOL, V152, P429, DOI 10.1007/s00227-007-0702-4; Rossi S, 2006, MAR BIOL, V149, P643, DOI 10.1007/s00227-005-0229-5; Rossi S, 2013, OCEAN COAST MANAGE, V84, P77, DOI 10.1016/j.ocecoaman.2013.07.004; Rossi S, 2010, SCI MAR, V74, P633, DOI 10.3989/scimar.2010.74n4633; Rossi S, 2009, INVERTEBR REPROD DEV, V53, P175, DOI 10.1080/07924259.2009.9652304; Santangelo G, 2004, SCI MAR, V68, P199, DOI 10.3989/scimar.2004.68s1199; Santangelo G, 2015, HYDROBIOLOGIA, V759, P171, DOI 10.1007/s10750-015-2241-1; Sargent J, 1999, AQUACULTURE, V179, P217, DOI 10.1016/S0044-8486(99)00191-X; Sargent JR, 1988, MICROBES SEA, P119; Schols P, 2008, MACNIFICATION; Sebens KP, 1996, MAR BIOL, V127, P303, DOI 10.1007/BF00942116; Sebens KP, 1987, ANIMAL ENERGETICS, P55; SLATTERY M, 1995, MAR BIOL, V122, P461, DOI 10.1007/BF00350880; STANLEYSAMUELSON DW, 1987, BIOL BULL, V173, P92, DOI 10.2307/1541865; Stearns S., 1992, EVOLUTION LIFE HIST; STIMSON JS, 1987, B MAR SCI, V41, P889; STRATHMANN RR, 1977, AM NAT, V111, P373, DOI 10.1086/283168; Tsounis G, 2006, MAR BIOL, V149, P313, DOI 10.1007/s00227-005-0220-1; Tsounis G, 2006, MAR BIOL, V148, P513, DOI 10.1007/s00227-005-0100-8; Tsounis G, 2007, ECOSYSTEMS, V10, P975, DOI 10.1007/s10021-007-9072-5; Tsounis G, 2012, MAR ECOL PROG SER, V449, P161, DOI 10.3354/meps09521; TURON X, 1992, MAR ECOL PROG SER, V82, P235, DOI 10.3354/meps082235; VARVAS K, 1993, TETRAHEDRON LETT, V34, P3643, DOI 10.1016/S0040-4039(00)73658-6; VIGHI M, 1972, VIE MILIEU A BIOL MA, V23, P21; Viladrich N, 2015, MAR ECOL, V37, P46; Wacker A, 2001, ECOLOGY, V82, P2507, DOI 10.1890/0012-9658(2001)082[2507:PFAEFN]2.0.CO;2; WARD S, 1995, J EXP MAR BIOL ECOL, V187, P193, DOI 10.1016/0022-0981(94)00180-L; WEINHEIMER AJ, 1969, TETRAHEDRON LETT, P5185; Wild C, 2011, MAR FRESHWATER RES, V62, P205, DOI 10.1071/MF10254; Yamashiro H, 2005, FISHERIES SCI, V71, P448, DOI 10.1111/j.1444-2906.2005.00983.x; Yamashiro H, 2001, J EXP MAR BIOL ECOL, V265, P171, DOI 10.1016/S0022-0981(01)00333-1; YOUNG SD, 1971, COMP BIOCHEM PHYSIOL, V40, P945, DOI 10.1016/0305-0491(71)90040-X 98 6 7 7 19 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0722-4028 1432-0975 CORAL REEFS Coral Reefs SEP 2016 35 3 1033 1045 10.1007/s00338-016-1440-1 13 Marine & Freshwater Biology Marine & Freshwater Biology DU2CU WOS:000382019400032 2018-11-22 J Spens, AE; Douhovnikoff, V Spens, Amy E.; Douhovnikoff, Vladimir Epigenetic variation within Phragmites australis among lineages, genotypes, and ramets BIOLOGICAL INVASIONS English Article Epigenetics; Plasticity; Phragmites australis; Clonal; MS-AFLP PHENOTYPIC PLASTICITY; HABITATS; PLANT Epigenetics is likely an important factor in morphological and physiological acclimation, phenotypic plasticity, and potentially ecological dynamics such as invasiveness. We propose that Phragmites australis is an ideal model species for studies of epigenetics as a factor in plant invasions and ecology due to natural clonal replication (controlling for genetic variation) and the co-occurrence of subspecies with distinct life history strategies such as differences in invasiveness. In earlier work, genotypes and constituent clonal ramets were identified using microsatellite markers. In this pilot study, we screened the same ramets for epigenetic variation with Methylation-Sensitive AFLPs (MS-AFLPs), a modified type of AFLP dependent on differentially methylation-sensitive restriction enzymes. We found a significant difference in epigenetic signatures between introduced and native subspecies, and found that introduced P. australis demonstrated more epigenetic variation than their native counterparts. In both subspecies we observed moderate variation between genotypes relative to the higher degree of epigenetic variation found within genotypes (among ramets), suggesting that epigenotype may be more closely aligned with microhabitat than within-subspecies genotype. Finally, we observed potential epigenetic variation by site. This is the first study to investigate natural variation in DNA methylation patterns of P. australis and establishes the baseline in our understanding of the ecological relevance of epigenetics in this species. [Spens, Amy E.; Douhovnikoff, Vladimir] Bowdoin Coll, Dept Biol, 3600 Coll Stn, Brunswick, ME 04011 USA Douhovnikoff, V (reprint author), Bowdoin Coll, Dept Biol, 3600 Coll Stn, Brunswick, ME 04011 USA. vlad@bowdoin.edu Alpert P, 2002, EVOL ECOL, V16, P285, DOI 10.1023/A:1019684612767; Bossdorf O, 2008, ECOL LETT, V11, P106, DOI 10.1111/j.1461-0248.2007.01130.x; Bossdorf O, 2010, EVOL ECOL, V24, P541, DOI 10.1007/s10682-010-9372-7; Chambers RM, 1999, AQUAT BOT, V64, P261, DOI 10.1016/S0304-3770(99)00055-8; Davidson AM, 2011, ECOL LETT, V14, P419, DOI 10.1111/j.1461-0248.2011.01596.x; Donohue K, 2014, EVOLUTION, V68, P617, DOI 10.1111/evo.12347; Douhovnikoff V, 2016, AOB PLANTS, V8, DOI 10.1093/aobpla/plw006; Douhovnikoff V, 2015, PLANT ECOL, V216, P227, DOI 10.1007/s11258-014-0430-z; Douhovnikoff V, 2014, AM J BOT, V101, P1577, DOI 10.3732/ajb.1400177; Gao LX, 2010, PLANT CELL ENVIRON, V33, P1820, DOI 10.1111/j.1365-3040.2010.02186.x; Herman JJ, 2014, EVOLUTION, V68, P632, DOI 10.1111/evo.12324; Herrera CM, 2011, MOL ECOL, V20, P1675, DOI 10.1111/j.1365-294X.2011.05026.x; Massicotte R, 2011, GENET RES INT, P1; Meyerson LA, 2016, BIOL INVASIONS, V18, P2421, DOI 10.1007/s10530-016-1132-3; Mozdzer TJ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0042794; Pal C, 1998, P ROY SOC B-BIOL SCI, V265, P1319, DOI 10.1098/rspb.1998.0436; Peakall R, 2012, BIOINFORMATICS, V28, P2537, DOI 10.1093/bioinformatics/bts460; Perez-Figueroa A, 2013, MOL ECOL RESOUR, V13, P522, DOI 10.1111/1755-0998.12064; Richards CL, 2006, ECOL LETT, V9, P981, DOI 10.1111/j.1461-0248.2006.00950.x; Richards CL, 2012, ECOL LETT, V15, P1016, DOI 10.1111/j.1461-0248.2012.01824.x; Richards EJ, 2008, CURR OPIN GENET DEV, V18, P221, DOI 10.1016/j.gde.2008.01.014; Verhoeven KJF, 2014, EVOLUTION, V68, P644, DOI 10.1111/evo.12320; Verhoeven KJF, 2010, NEW PHYTOL, V185, P1108, DOI 10.1111/j.1469-8137.2009.03121.x 23 6 7 7 41 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 1387-3547 1573-1464 BIOL INVASIONS Biol. Invasions SEP 2016 18 9 SI 2457 2462 10.1007/s10530-016-1223-1 6 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology DU3UA WOS:000382136500005 2018-11-22 J Record, S; Kobe, RK; Vriesendorp, CF; Finley, AO Record, Sydne; Kobe, Richard K.; Vriesendorp, Corine F.; Finley, Andrew O. Seedling survival responses to conspecific density, soil nutrients, and irradiance vary with age in a tropical forest ECOLOGY English Article base cations; negative density dependence; nitrogen; phosphorous; shade tolerance RAIN-FOREST; GROWTH-RESPONSES; TREE SEEDLINGS; ORGANIC PHOSPHORUS; SPECIES-DIVERSITY; SHADE TOLERANCE; MOIST FOREST; TRADE-OFFS; DISTRIBUTIONS; LIMITATION Understanding processes that promote species coexistence is integral to diversity maintenance. In hyperdiverse tropical forests, local conspecific density (LCD) and light are influential to woody seedling recruitment and soil nutrients are often limiting, yet the simultaneous effects of these factors on seedling survival across time remain unknown. We fit species-and age-specific models to census and resource data of seedlings of 68 woody species from a Costa Rican wet tropical forest. In decreasing order of prevalence, seedling survivorship was related to LCD, soil base cations, irradiance, nitrogen, and phosphorus. Species-specific responses to factors did not covary, providing evidence that species life history strategies have not converged to one continuum of high-surviving stress tolerant to low-surviving stress intolerant species. Survival responses to all factors varied over the average seedling's lifetime, indicating seedling requirements change with age and conclusions drawn about processes important to species coexistence depend on temporal resolution. [Record, Sydne] Bryn Mawr Coll, Dept Biol, 101 North Mer Ave, Bryn Mawr, PA 19010 USA; [Kobe, Richard K.] Michigan State Univ, Dept Forestry, 125 Nat Resources East Lansing, E Lansing, MI 48824 USA; [Vriesendorp, Corine F.] Field Museum, Environm Culture & Conservat, 1400 South Lake Shore Dr, Chicago, IL 60605 USA; [Finley, Andrew O.] Michigan State Univ, Dept Forestry, 126 Nat Resources, E Lansing, MI 48824 USA Record, S (reprint author), Bryn Mawr Coll, Dept Biol, 101 North Mer Ave, Bryn Mawr, PA 19010 USA. srecord@brynmawr.edu NSF [DEB0075472, 0640904, 0743609, 1256747, 1354414, DMS-1513481, EF-1137309, EF-1241874, EF-1253225] NSF (DEB0075472, 0640904, 0743609, 1256747, 1354414) provided financial support. In addition, A. Finley was supported by NSF DMS-1513481, EF-1137309, EF-1241874, and EF-1253225. We thank Ademar Hurtado, Ralph Garcia, and Yehudi Hernandez (field help), Orlando Vargas (taxonomy), OTS (logistical support), Pete Herbst (seedling database support), and E. Holste (helpful discussions). Baribault TW, 2012, ECOL MONOGR, V82, P189, DOI 10.1890/11-1013.1; Bonsall MB, 2004, SCIENCE, V306, P111, DOI 10.1126/science.1100680; Borowicz VA, 2001, ECOLOGY, V82, P3057; BURSLEM DFRP, 1995, J ECOL, V83, P113, DOI 10.2307/2261155; Catovsky S, 2002, ECOL APPL, V12, P1611, DOI 10.2307/3099926; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; Clark DA, 1999, ECOL APPL, V9, P981; CLARK DA, 1992, ECOL MONOGR, V62, P315, DOI 10.2307/2937114; Clark DB, 1999, ECOLOGY, V80, P2662, DOI 10.2307/177248; Cleveland CC, 2011, ECOL LETT, V14, P939, DOI 10.1111/j.1461-0248.2011.01658.x; Colchero F, 2012, METHODS ECOL EVOL, V3, P466, DOI 10.1111/j.2041-210X.2012.00186.x; Colchero F, 2012, J ANIM ECOL, V81, P139, DOI 10.1111/j.1365-2656.2011.01898.x; Condit R, 2013, P NATL ACAD SCI USA, V110, P5064, DOI 10.1073/pnas.1218042110; CONNELL J H, 1971, P298; Finzi AC, 1998, ECOL APPL, V8, P447, DOI 10.1890/1051-0761(1998)008[0447:CTSIWT]2.0.CO;2; Harms KE, 2000, NATURE, V404, P493, DOI 10.1038/35006630; Holste EK, 2011, ECOLOGY, V92, P1828, DOI 10.1890/10-1697.1; Hubbell SP, 1999, SCIENCE, V283, P554, DOI 10.1126/science.283.5401.554; John R, 2007, P NATL ACAD SCI USA, V104, P864, DOI 10.1073/pnas.0604666104; KITAJIMA K, 1994, OECOLOGIA, V98, P419, DOI 10.1007/BF00324232; Kobe R. K., 2014, FORESTS GLOBAL CHANG, P309; Kobe RK, 2011, ECOL LETT, V14, P503, DOI 10.1111/j.1461-0248.2011.01612.x; Kobe RK, 1999, ECOLOGY, V80, P187, DOI 10.2307/176989; Kusano M, 2011, J EXP BOT, V62, P1439, DOI 10.1093/jxb/erq417; Ledo A, 2014, ECOLOGY, V95, P2169, DOI 10.1890/13-1775.1; Leigh R. A., 2006, NEW PHYTOLOLOGIST, V97, P1; Lovelock CE, 2003, OECOLOGIA, V135, P268, DOI 10.1007/s00442-002-1166-3; MACARTHUR RH, 1965, BIOL REV, V40, P510, DOI 10.1111/j.1469-185X.1965.tb00815.x; Mangan SA, 2010, NATURE, V466, P752, DOI 10.1038/nature09273; McCarthy-Neumann S, 2010, J ECOL, V98, P396, DOI 10.1111/j.1365-2745.2009.01619.x; MCDADE LA, 1994, LA SELVA ECOLOGY NAT; Metz MR, 2012, J ECOL, V100, P969, DOI 10.1111/j.1365-2745.2012.01972.x; Montgomery RA, 2002, OECOLOGIA, V131, P165, DOI 10.1007/s00442-002-0872-1; Pant HK, 2000, BIOL FERT SOILS, V30, P306, DOI 10.1007/s003740050008; Pasquini SC, 2012, OECOLOGIA, V168, P311, DOI 10.1007/s00442-011-2099-5; Pasquini SC, 2015, ECOLOGY, V96, P1866, DOI 10.1890/14-1660.1; Pearcy R, 2007, FUNCTIONAL PLANT ECO, P213; Poorter L, 2005, J ECOL, V93, P256, DOI 10.1111/j.1365-2745.2004.00956.x; POOVAIAH BW, 1993, CRIT REV PLANT SCI, V12, P185, DOI 10.1080/713608046; R Development Core Team, 2013, R LANG ENV STAT COMP; Reich PB, 2014, J ECOL, V102, P275, DOI 10.1111/1365-2745.12211; Russo SE, 2008, J ECOL, V96, P192, DOI 10.1111/j.1365-2745.2007.01330.x; Russo SE, 2005, J ECOL, V93, P879, DOI 10.1111/j.1365-2745.2005.01030.x; Santiago LS, 2012, J ECOL, V100, P309, DOI 10.1111/j.1365-2745.2011.01904.x; Schachtman DP, 1998, PLANT PHYSIOL, V116, P447, DOI 10.1104/pp.116.2.447; Schreeg LA, 2005, CAN J FOREST RES, V35, P263, DOI 10.1139/X04-168; SOULIDES D. A., 1961, SOIL SCI, V91, P291, DOI 10.1097/00010694-196105000-00001; Tanner EVJ, 1998, ECOLOGY, V79, P10; Terborgh J, 2012, AM NAT, V179, P303, DOI 10.1086/664183; VANCE CP, 1980, ANNU REV PHYTOPATHOL, V18, P259, DOI 10.1146/annurev.py.18.090180.001355; Vincent AG, 2010, EUR J SOIL SCI, V61, P48, DOI 10.1111/j.1365-2389.2009.01200.x; Vitousek PM, 2010, ECOL APPL, V20, P5, DOI 10.1890/08-0127.1; VITOUSEK PM, 1984, ECOLOGY, V65, P285, DOI 10.2307/1939481; Wood TE, 2009, ECOLOGY, V90, P109, DOI 10.1890/07-1146.1; Wright SJ, 2011, ECOLOGY, V92, P1616, DOI 10.1890/10-1558.1; Wright SJ, 2002, OECOLOGIA, V130, P1, DOI 10.1007/s004420100809; Yavitt JB, 2008, J TROP ECOL, V24, P19, DOI 10.1017/S0266467407004713 57 3 4 5 50 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology SEP 2016 97 9 2406 2415 10.1002/ecy.1458 10 Ecology Environmental Sciences & Ecology DU9HK WOS:000382527100024 27859074 Green Published, Bronze 2018-11-22 J Orizaola, G; Richter-Boix, A; Laurila, A Orizaola, German; Richter-Boix, Alex; Laurila, Anssi Transgenerational effects and impact of compensatory responses to changes in breeding phenology on antipredator defenses ECOLOGY English Article amphibians; climate change; complex life cycles; life-history strategies; metamorphosis; phenotypic plasticity; predation; transgenerational effects LIFE-HISTORY PLASTICITY; GLOBAL CLIMATE-CHANGE; TIME CONSTRAINTS; PHENOTYPIC PLASTICITY; ANURAN LARVAE; INDUCIBLE DEFENSES; NATURAL-SELECTION; PREDATION RISK; BEHAVIORAL-RESPONSES; SPECIES INTERACTIONS As organisms living in temperate environments often have only a short time window for growth and reproduction, their life-history strategies are expected to be influenced by these time constraints. Parents may alter the pace of offspring life-history as a response to changes in breeding phenology. However, the responses to changes in time constraints must be balanced with those against other stressors, such as predation, one of the strongest and more ubiquitous selective factors in nature. Here, after experimentally modifying the timing of breeding and hatching in the moor frog (Rana arvalis), we studied how compensatory responses to delayed breeding and hatching affect antipredator strategies in amphibian larvae. We examined the activity patterns, morphology and life-history responses in tadpoles exposed to different combinations of breeding and hatching delays in the presence and absence of predators. We found clear evidence of adaptive transgenerational effects since tadpoles from delayed breeding treatments increased growth and development independently of predation risk. The presence of predators reduced tadpole activity, tadpoles from delayed breeding treatments maintaining lower activity than non-delayed ones also in the absence of predators. Tadpoles reared with predators developed deeper tails and bodies, however, tadpoles from breeding delay treatments had reduced morphological defenses as compared to non-delayed individuals. No significant effects of hatching delay were detected in this study. Our study reveals that amphibian larvae exposed to breeding delay develop compensatory life-history responses even under predation risk, but these responses trade-off with the development of morphological antipredator defenses. These results suggest that under strong time constraints organisms are selected to develop fast growth and development responses, and rely on lower activity rates as their main antipredator defense. Examining how responses to changes in phenology affect species interactions is highly relevant for better understanding ecological responses to climate change. [Orizaola, German; Richter-Boix, Alex; Laurila, Anssi] Uppsala Univ, Anim Ecol, Dept Ecol & Genet, Evolutionary Biol Ctr, S-75236 Uppsala, Sweden Orizaola, G (reprint author), Uppsala Univ, Anim Ecol, Dept Ecol & Genet, Evolutionary Biol Ctr, S-75236 Uppsala, Sweden. german.orizaola@ebc.uu.se Orizaola, German/A-5217-2008 Orizaola, German/0000-0002-6748-966X Helge Ax:son Johnsons Stiftelse; Stiftelsen Oscar och Lili Lamms Minne [FO2011-0004]; Spanish Ministry of Education and Culture [MEC2007-0944]; Generalitat de Catalunya Beatriu de Pinos program [2008 BP A 00032]; Formas [2007-903] The animals were collected with a permit from Uppsala County Board (521-3019-09) and the experiment was conducted with a permit from the Ethical committee for Animal Experiments in Uppsala (C92/9). This study was supported by Helge Ax:son Johnsons Stiftelse (to G. Orizaola), Stiftelsen Oscar och Lili Lamms Minne (grant FO2011-0004; to G. Orizaola), Spanish Ministry of Education and Culture (postdoctoral fellowship MEC2007-0944; to G. Orizaola), Generalitat de Catalunya Beatriu de Pinos program (postdoctoral fellowship 2008 BP A 00032; to A. Richter-Boix) and Formas (2007-903; to A. Laurila). Agrawal AA, 1999, NATURE, V401, P60, DOI 10.1038/43425; Altwegg R, 2003, EVOLUTION, V57, P872; Altwegg R, 2002, ECOLOGY, V83, P2542, DOI 10.1890/0012-9658(2002)083[2542:PILHPU]2.0.CO;2; Alvarez D, 2006, EVOL ECOL, V20, P523, DOI 10.1007/s10682-006-9114-z; Angert AL, 2013, ANN NY ACAD SCI, V1297, P1, DOI 10.1111/nyas.12286; ANHOLT BR, 1995, ECOLOGY, V76, P2230, DOI 10.2307/1941696; BEEBEE TJC, 1995, NATURE, V374, P219, DOI 10.1038/374219a0; Benard MF, 2004, ANNU REV ECOL EVOL S, V35, P651, DOI 10.1146/annurev.ecolsys.35.021004.112426; Benard MF, 2015, GLOBAL CHANGE BIOL, V21, P1058, DOI 10.1111/gcb.12720; Crean AJ, 2011, EVOLUTION, V65, P3079, DOI 10.1111/j.1558-5646.2011.01372.x; Dayton GH, 2005, OIKOS, V111, P582, DOI 10.1111/j.1600-0706.2005.14340.x; De Block M, 2004, OECOLOGIA, V140, P68, DOI 10.1007/s00442-004-1575-6; De Block M, 2005, ECOLOGY, V86, P185, DOI 10.1890/04-0116; De Block M, 2008, OIKOS, V117, P908, DOI 10.1111/j.2008.0030-1299.16603.x; DeVito J, 2003, OIKOS, V103, P75, DOI 10.1034/j.1600-0706.2003.12527.x; Dijk B, 2016, BEHAV ECOL SOCIOBIOL, V70, P237, DOI 10.1007/s00265-015-2040-8; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Dunbar RIM, 2009, BIOL REV, V84, P413, DOI 10.1111/j.1469-185X.2009.00080.x; GASC JP, 1997, ATLAS AMPHIBIANS REP; Giesing ER, 2011, P ROY SOC B-BIOL SCI, V278, P1753, DOI 10.1098/rspb.2010.1819; Gomez-Mestre I, 2011, P ROY SOC B-BIOL SCI, V278, P3364, DOI 10.1098/rspb.2010.2762; Gosner K. L., 1960, Herpetologica, V16, P183; GOTTHARD K, 2001, ANIMAL DEV ECOLOGY, P287; GROMKO MH, 1973, J EXP ZOOL, V186, P63, DOI 10.1002/jez.1401860109; Groothuis TGG, 2008, PHILOS T R SOC B, V363, P1647, DOI 10.1098/rstb.2007.0007; HARVELL CD, 1990, Q REV BIOL, V65, P323, DOI 10.1086/416841; Horton TH, 2005, AM J HUM BIOL, V17, P34, DOI 10.1002/ajhb.20092; Huey RB, 2012, PHILOS T R SOC B, V367, P1665, DOI 10.1098/rstb.2012.0005; Johansson F, 1999, ECOLOGY, V80, P1242, DOI 10.1890/0012-9658(1999)080[1242:LHABRT]2.0.CO;2; Johansson F, 2001, ECOLOGY, V82, P1857, DOI 10.1890/0012-9658(2001)082[1857:LHPIAD]2.0.CO;2; Johnson JB, 2008, EVOLUTION, V62, P1243, DOI 10.1111/j.1558-5646.2008.00343.x; Kaplan RH, 2006, EVOLUTION, V60, P142; Kats LB, 1998, ECOSCIENCE, V5, P361, DOI 10.1080/11956860.1998.11682468; Kojima W, 2015, BEHAV ECOL SOCIOBIOL, V69, P415, DOI 10.1007/s00265-014-1854-0; Laurila A, 2006, OECOLOGIA, V147, P585, DOI 10.1007/s00442-005-0301-3; LAWLER SP, 1989, ANIM BEHAV, V38, P1039, DOI 10.1016/S0003-3472(89)80142-3; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Lindgren B, 2005, J EVOLUTION BIOL, V18, P820, DOI 10.1111/j.1420-9101.2004.00875.x; McCollum SA, 1996, EVOLUTION, V50, P583, DOI 10.1111/j.1558-5646.1996.tb03870.x; Menzel A, 2006, GLOBAL ECOL BIOGEOGR, V15, P498, DOI 10.1111/j.1466-822x.2006.00247.x; Mikolajewski DJ, 2015, ECOLOGY, V96, P1128, DOI 10.1890/14-0262.1; Nunes AL, 2014, ECOL EVOL, V4, P1491, DOI 10.1002/ece3.979; Nunes AL, 2013, OECOLOGIA, V171, P115, DOI 10.1007/s00442-012-2389-6; Orizaola G, 2014, OECOLOGIA, V174, P131, DOI 10.1007/s00442-013-2754-0; Orizaola G, 2013, OECOLOGIA, V171, P873, DOI 10.1007/s00442-012-2456-z; Orizaola G, 2010, OIKOS, V119, P980, DOI 10.1111/j.1600-0706.2009.17956.x; Parmesan C, 2003, NATURE, V421, P37, DOI 10.1038/nature01286; Parmesan C, 2006, ANNU REV ECOL EVOL S, V37, P637, DOI 10.1146/annurev.ecolsys.37.091305.110100; Phillimore AB, 2010, P NATL ACAD SCI USA, V107, P8292, DOI 10.1073/pnas.0913792107; Rasanen K, 2003, EVOLUTION, V57, P363, DOI 10.1554/0014-3820(2003)057[0363:GVIAST]2.0.CO;2; Rasmussen NL, 2015, ECOLOGY, V96, P1754, DOI 10.1890/14-1919.1; Relyea RA, 2004, ECOL LETT, V7, P869, DOI 10.1111/j.1461-0248.2004.00645.x; Relyea RA, 2001, ECOLOGY, V82, P523, DOI 10.2307/2679877; Richter-Boix A, 2014, ECOLOGY, V95, P2715, DOI 10.1890/13-1996.1; Richter-Boix A, 2011, MOL ECOL, V20, P1582, DOI 10.1111/j.1365-294X.2011.05025.x; ROHLF F, 2007, TPSRELW; ROHLF FJ, 1990, SYST ZOOL, V39, P40, DOI 10.2307/2992207; Rohlf FJ, 2008, TPSDIG2; Root TL, 2003, NATURE, V421, P57, DOI 10.1038/nature01333; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; Rudolf VHW, 2013, OECOLOGIA, V173, P1043, DOI 10.1007/s00442-013-2675-y; SEMLITSCH RD, 1988, ECOLOGY, V69, P184, DOI 10.2307/1943173; Senapathi D, 2011, P ROY SOC B-BIOL SCI, V278, P3184, DOI 10.1098/rspb.2011.0212; Sheets H. D., 2014, PCAGEN8; Sheets HD, 2009, MAKEFAN7; SIH A, 1985, ANNU REV ECOL SYST, V16, P269, DOI 10.1146/annurev.es.16.110185.001413; SKELLY DK, 1994, ANIM BEHAV, V47, P465, DOI 10.1006/anbe.1994.1063; Somero GN, 2010, J EXP BIOL, V213, P912, DOI 10.1242/jeb.037473; Steiner UK, 2007, OECOLOGIA, V152, P201, DOI 10.1007/s00442-006-0645-3; Stoks R, 2006, ECOLOGY, V87, P809, DOI 10.1890/0012-9658(2006)87[809:TCMPPI]2.0.CO;2; Storm JJ, 2010, AM NAT, V175, P382, DOI 10.1086/650443; Strobbe F, 2004, BIOL J LINN SOC, V83, P187, DOI 10.1111/j.1095-8312.2004.00379.x; Todd BD, 2011, P ROY SOC B-BIOL SCI, V278, P2191, DOI 10.1098/rspb.2010.1768; Tollrian R, 1999, ECOLOGY EVOLUTION IN; Uller T, 2013, J EVOLUTION BIOL, V26, P2161, DOI 10.1111/jeb.12212; Uller T, 2008, TRENDS ECOL EVOL, V23, P432, DOI 10.1016/j.tree.2008.04.005; Urban MC, 2007, ECOLOGY, V88, P2587, DOI 10.1890/06-1946.1; Van Buskirk J, 2000, ECOLOGY, V81, P2813, DOI 10.1890/0012-9658(2000)081[2813:TCOAID]2.0.CO;2; Van Buskirk J, 1998, BIOL J LINN SOC, V65, P301, DOI 10.1006/bijl.1998.0249; Van Buskirk J, 1997, EVOLUTION, V51, P1983, DOI 10.1111/j.1558-5646.1997.tb05119.x; Van Buskirk J, 2009, ECOL MONOGR, V79, P681, DOI 10.1890/08-1692.1; VANBUSKIRK J, 2003, J HERPETOL, V37, P192; Visser ME, 2005, P ROY SOC B-BIOL SCI, V272, P2561, DOI 10.1098/rspb.2005.3356; Visser ME, 2004, ADV ECOL RES, V35, P89, DOI 10.1016/S0065-2504(04)35005-1; Walther GR, 2002, NATURE, V416, P389, DOI 10.1038/416389a; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; WILBUR HM, 1980, ANNU REV ECOL SYST, V11, P67, DOI 10.1146/annurev.es.11.110180.000435; WOODHEAD AP, 1983, J INSECT PHYSIOL, V29, P665, DOI 10.1016/0022-1910(83)90040-9; Yang LH, 2010, ECOL LETT, V13, P1, DOI 10.1111/j.1461-0248.2009.01402.x; Zewe Frances L., 2014, Australian Zoologist, V37, P173, DOI 10.7882/AZ.2014.003 90 4 4 5 33 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology SEP 2016 97 9 2470 2478 10.1002/ecy.1464 9 Ecology Environmental Sciences & Ecology DU9HK WOS:000382527100029 27859081 2018-11-22 J Munoz, F; Violle, C; Cheptou, PO Munoz, Francois; Violle, Cyrille; Cheptou, Pierre-Olivier CSR ecological strategies and plant mating systems: outcrossing increases with competitiveness but stress-tolerance is related to mixed mating OIKOS English Article CREPIS-SANCTA ASTERACEAE; SELF-FERTILIZATION; INBREEDING DEPRESSION; REPRODUCTIVE ASSURANCE; FLOWERING PLANTS; COMPARATIVE BIOLOGY; PRIMARY SUCCESSION; POLLEN LIMITATION; LIFE-HISTORY; EVOLUTION A number of plant traits influence the success of fertilization and reproduction in plants. Collectively these traits represent ecological syndromes that are of evolutionary significance. However, while an association between mating system and colonizing ability has been proposed, the existence of a broader relationship between mating system and a species' position in ecological succession has not been extensively investigated. Grime's CSR theory stresses that an ecological succession can involve changes from colonizing to either competitive or stress-tolerant strategies. How distinct dimensions of competitiveness and stress tolerance covary with mating systems has still not been considered. We designed a comparative approach to evaluate the link between mating system, life form and CSR strategies for 1996 herbaceous and woody species. We found that CSR strategies are significantly related to mating systems. Ruderal species - colonizers in early succession - were mostly selfers while more competitive species were more often outcrossers. On the other hand, greater physiological stress tolerance was associated with mixed mating systems. Outcrossing is classically expected to be advantageous for most life history strategies other than colonizers, but we suggest that reproductive assurance can counterbalance this effect in stressful environments where populations are sparse and pollinators are rare. Therefore, our results emphasize that competition and abiotic stresses are not equivalent selective pressures on the evolution of mating systems. Finally, we found plant life span to convey additional information on mating system variation, supporting its role for mating system evolution. These findings encourage further investigation of the evolutionary role of ecological strategies as syndromes of traits and suggest that the emergence of large databases of plant traits will help address the major evolutionary hypotheses on such syndromes. [Munoz, Francois] French Inst Pondicherry, 11 St Louis St, Pondicherry 605001, India; [Munoz, Francois] Univ Montpellier 2, UMR AMAP, Blvd Lironde,TA A51-PS2, FR-34398 Montpellier 5, France; [Violle, Cyrille; Cheptou, Pierre-Olivier] Univ Montpellier 3, EPHE, Univ Montpellier, CNRS,CEFE,UMR 5175, 1919 Route Mende, FR-34293 Montpellier 5, France Munoz, F (reprint author), French Inst Pondicherry, 11 St Louis St, Pondicherry 605001, India.; Munoz, F (reprint author), Univ Montpellier 2, UMR AMAP, Blvd Lironde,TA A51-PS2, FR-34398 Montpellier 5, France. francois.munoz@cirad.fr Munoz, Francois/0000-0001-8776-4705 Armbruster P, 2005, HEREDITY, V95, P235, DOI 10.1038/sj.hdy.6800721; BAKER HG, 1957, EVOLUTION, V11, P449, DOI 10.2307/2406065; BAKER HG, 1967, EVOLUTION, V21, P853, DOI 10.1111/j.1558-5646.1967.tb03440.x; Barrett SCH, 1996, TRENDS ECOL EVOL, V11, P73, DOI 10.1016/0169-5347(96)81046-9; Barrett SCH, 1996, PHILOS T ROY SOC B, V351, P1271, DOI 10.1098/rstb.1996.0110; BAWA KS, 1980, ANNU REV ECOL SYST, V11, P15, DOI 10.1146/annurev.es.11.110180.000311; Blomberg SP, 2002, J EVOLUTION BIOL, V15, P899, DOI 10.1046/j.1420-9101.2002.00472.x; BURD M, 1994, BOT REV, V60, P83, DOI 10.1007/BF02856594; Busch JW, 2005, AM J BOT, V92, P1503, DOI 10.3732/ajb.92.9.1503; Caccianiga M, 2006, OIKOS, V112, P10, DOI 10.1111/j.0030-1299.2006.14107.x; CHARLESWORTH D, 1990, EVOLUTION, V44, P1469, DOI 10.1111/j.1558-5646.1990.tb03839.x; Cheptou PO, 2009, AM NAT, V174, P46, DOI 10.1086/599303; Cheptou PO, 2000, J EVOLUTION BIOL, V13, P522, DOI 10.1046/j.1420-9101.2000.00175.x; Cheptou PO, 2002, J EVOLUTION BIOL, V15, P753, DOI 10.1046/j.1420-9101.2002.00443.x; Davis HG, 2005, EVOL ECOL, V19, P255, DOI 10.1007/s10682-005-0912-5; Delmas CEL, 2014, BMC EVOL BIOL, V14, DOI 10.1186/s12862-014-0243-7; Dornier A, 2008, EVOLUTION, V62, P2558, DOI 10.1111/j.1558-5646.2008.00464.x; Durka W., 2012, Ecology, V93, P2297, DOI 10.1890/12-0743.1; Eckert CG, 2010, TRENDS ECOL EVOL, V25, P35, DOI 10.1016/j.tree.2009.06.013; Ellenberg H., 1991, ZEIGERWERTE PFLANZEN; Fisher RA, 1941, ANN EUGENIC, V11, P53, DOI 10.1111/j.1469-1809.1941.tb02272.x; Garamszegi L. Z., 2014, MODERN PHYLOGENETIC; Gelman A, 2006, BAYESIAN ANAL, V1, P515, DOI 10.1214/06-BA117A; GRANT WILLIAM F., 1967, TAXON, V16, P283, DOI 10.2307/1216376; Grime J.P., 2007, COMP PLANT ECOLOGY F; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; Grime JP, 1997, OIKOS, V79, P259, DOI 10.2307/3546011; GRIME JP, 1974, NATURE, V250, P26, DOI 10.1038/250026a0; Grime JP, 1979, PLANT STRATEGIES VEG; Hadfield J, 2014, MCMCGLMM COURSE NOTE; Hadfield JD, 2010, J EVOLUTION BIOL, V23, P494, DOI 10.1111/j.1420-9101.2009.01915.x; Hadfield JD, 2015, METHODS ECOL EVOL, V6, P706, DOI 10.1111/2041-210X.12354; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hodgson JG, 1999, OIKOS, V85, P282, DOI 10.2307/3546494; HUSTON M, 1987, AM NAT, V130, P168, DOI 10.1086/284704; Kalisz S, 2004, NATURE, V430, P884, DOI 10.1038/nature02776; Kattge J, 2011, GLOBAL CHANGE BIOL, V17, P2905, DOI 10.1111/j.1365-2486.2011.02451.x; Klotz S., 1984, PHYTOOKOLOGISCHE BEI; Knight TM, 2005, ANNU REV ECOL EVOL S, V36, P467, DOI 10.1146/annurev.ecolsys.36.102403.115320; Kuhn I, 2004, DIVERS DISTRIB, V10, P363, DOI 10.1111/j.1366-9516.2004.00106.x; LANDE R, 1985, EVOLUTION, V39, P24, DOI 10.1111/j.1558-5646.1985.tb04077.x; LLOYD DG, 1992, INT J PLANT SCI, V153, P370, DOI 10.1086/297041; LLOYD DG, 1979, AM NAT, V113, P67, DOI 10.1086/283365; Morgan MT, 1997, AM NAT, V150, P618, DOI 10.1086/286085; Navas ML, 2010, PLANT BIOLOGY, V12, P183, DOI 10.1111/j.1438-8677.2009.00208.x; Pannell JR, 1998, EVOLUTION, V52, P657, DOI 10.1111/j.1558-5646.1998.tb03691.x; PRICE SC, 1981, OECOLOGIA, V49, P283, DOI 10.1007/BF00349202; Raevel V, 2012, OIKOS, V121, P1761, DOI 10.1111/j.1600-0706.2012.20261.x; Raunkiaer C, 1934, LIFE FORMS PLANTS ST; RENNER SS, 1995, AM J BOT, V82, P596, DOI 10.2307/2445418; RYDIN H, 1991, ECOLOGY, V72, P1089, DOI 10.2307/1940608; SAKAI AK, 1995, ECOLOGY, V76, P2530, DOI 10.2307/2265826; Silvertown J, 2002, AM NAT, V160, P409, DOI 10.1086/342071; Snell Rebecca, 2005, BMC Ecology, V5, P2, DOI 10.1186/1472-6785-5-2; Stebbins G. L., 1950, VARIATION EVOLUTION; STEBBINS GL, 1957, AM NAT, V91, P337, DOI 10.1086/281999; STEBBINS GL, 1958, COLD SPRING HARB SYM, V23, P395; Sutherland S, 2004, OECOLOGIA, V141, P24, DOI 10.1007/s00442-004-1628-x; Uyenoyama M., 1993, OXFORD SURVEYS EVOLU; Van Kleunen M, 2007, CONSERV BIOL, V21, P1537, DOI 10.1111/j.1523-1739.2007.00765.x; Violle C, 2007, OIKOS, V116, P882, DOI 10.1111/j.2007.0030-1299.15559.x; Vogler DW, 2001, EVOLUTION, V55, P202; Westoby M, 2002, ANNU REV ECOL SYST, V33, P125, DOI 10.1146/annurev.ecolsys.33.010802.150452 63 6 6 2 45 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos SEP 2016 125 9 1296 1303 10.1111/oik.02328 8 Ecology Environmental Sciences & Ecology DU8WI WOS:000382496000009 Green Published 2018-11-22 J Pang, X; Fu, SJ; Zhang, YG Pang, Xu; Fu, Shi-Jian; Zhang, Yao-Guang Acclimation temperature alters the relationship between growth and swimming performance among juvenile common carp (Cyprinus carpio) COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY English Article Cyprinids; Ecophysiology; Individual variation; Metabolic rate; Trade-offs TROUT ONCORHYNCHUS-MYKISS; LIFE-HISTORY STRATEGIES; STANDARD METABOLIC-RATE; EUROPEAN SEA BASS; COD GADUS-MORHUA; QINGBO SPINIBARBUS-SINENSIS; RAINBOW-TROUT; ATLANTIC SALMON; INDIVIDUAL VARIATION; INTRINSIC GROWTH Individual variation in growth, metabolism and swimming performance, their possible interrelationships, and the effects of temperature were investigated in 30 juvenile common carp (Cyprinus carpio) at two acclimation temperatures (15 and 25 degrees C). We measured body mass, critical swimming speed (U-crit), resting metabolic rate (RMR), active metabolic rate (AMR) and metabolic scope (MS) twice (28 days apart) in both temperature groups. Fish acclimated to 25 degrees C showed a 204% higher specific growth rate (SGR) than those acclimated to 15 degrees C due to a 97% higher feeding rate (FR) and a 46% higher feed efficiency (FE). Among individuals, SGR was positively correlated with the FR and FE at both low and high temperatures. All measured variables (U-crit, RMR and AMR) related to swimming except MS showed a high repeatability after adjusting for body mass (mass-independent). Fish acclimated to 25 degrees C had a 40% higher U-crit compared with 15 degrees C acclimated fish, which was at least partially due to an improved metabolic capacity. AMR showed a 97% increase, and MS showed a 104% parallel increase with the higher acclimation temperature. Residual (mass-independent) U-crit was positively correlated with residual RMR, AMR and MS, except for the residual RMR at high temperature. When acclimated to the lower temperature, both the residual and absolute U-crit were negatively correlated with FR and FE and, hence, with SGR, suggesting a functional trade-off between growth and locomotion in fish acclimated to low temperatures. However, when acclimated to the higher temperature, this trade-off no longer existed; absolute U-crit was positively correlated with SGR because individuals with rapid growth exhibited greatly increased body mass. The higher metabolic capacity at 25 degrees C showed a positive effect on both swimming performance and growth rate (because of improved digestive efficiency) under the high-temperature condition, which we did not anticipate. Overall, these results indicate that temperature alters the relationship between growth and swimming performance of juvenile common carp. This change may be an adaptive strategy to seasonal temperature variation during their life history. (C) 2016 Elsevier Inc. All rights reserved. [Pang, Xu; Zhang, Yao-Guang] Southwest Univ, Key Lab Aquat Sci Chongqing, Key Lab Freshwater Fish Reprod & Dev, Educ Minist, Chongqing 400715, Peoples R China; [Fu, Shi-Jian] Chongqing Normal Univ, Lab Evolutionary Physiol & Behav, Chongqing Key Lab Anim Biol, Chongqing 401331, Peoples R China Zhang, YG (reprint author), Southwest Univ, Key Lab Aquat Sci Chongqing, Key Lab Freshwater Fish Reprod & Dev, Educ Minist, Chongqing 400715, Peoples R China. zhangyg@swu.edu.cn Program of Introducing Talents of Discipline to Universities of China (111 Program) [B14037]; Major Program of Science and Technology Commission Foundation of Chongqing [cstc2014yykfC80001]; Fundamental Research Funds for the Central Universities [XDJK2015A011]; China Postdoctoral Science Foundation [2015M572429] This study was supported by the Program of Introducing Talents of Discipline to Universities of China (111 Program) (B14037), the Major Program of Science and Technology Commission Foundation of Chongqing (cstc2014yykfC80001), the Fundamental Research Funds for the Central Universities (XDJK2015A011) and the China Postdoctoral Science Foundation (2015M572429). Alsop DH, 1997, J EXP BIOL, V200, P2337; Alvarez D, 2007, OIKOS, V116, P1144, DOI 10.1111/j.2007.0030-1299.15861.x; Angilletta MJ, 2003, TRENDS ECOL EVOL, V18, P234, DOI 10.1016/S0169-5347(03)00087-9; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Arnott SA, 2006, EVOLUTION, V60, P1269; Auer SK, 2015, J ANIM ECOL, V84, P1405, DOI 10.1111/1365-2656.12384; Auer SK, 2015, FUNCT ECOL, V29, P479, DOI 10.1111/1365-2435.12396; Barton BA, 2002, INTEGR COMP BIOL, V42, P517, DOI 10.1093/icb/42.3.517; Bell W.H., 1970, 195 FISH RES BOARD C, P195; BENNETT AF, 1979, SCIENCE, V206, P649, DOI 10.1126/science.493968; Billerbeck JM, 2001, EVOLUTION, V55, P1863; Biro PA, 2010, TRENDS ECOL EVOL, V25, P653, DOI 10.1016/j.tree.2010.08.003; Bjornsson B, 2001, ICES J MAR SCI, V58, P29, DOI 10.1006/jmsc.2000.0986; Boldsen MM, 2013, COMP BIOCHEM PHYS A, V165, P22, DOI 10.1016/j.cbpa.2013.01.027; BRETT JR, 1971, AM ZOOL, V11, P99; BRETT JR, 1964, J FISH RES BOARD CAN, V21, P1183, DOI 10.1139/f64-103; Chappell MA, 2007, J EXP BIOL, V210, P4179, DOI 10.1242/jeb.006163; Claireaux G, 2006, J EXP BIOL, V209, P3420, DOI 10.1242/jeb.02346; Clark TD, 2013, J EXP BIOL, V216, P2771, DOI 10.1242/jeb.084251; Franklin CE, 1998, CLIN EXP PHARMACOL P, V25, P753, DOI 10.1111/j.1440-1681.1998.tb02291.x; FRY FEJ, 1970, J FISH RES BOARD CAN, V27, P976, DOI 10.1139/f70-111; Fu SJ, 2009, J EXP BIOL, V212, P2296, DOI 10.1242/jeb.027102; Gallaugher P, 1995, RESP PHYSIOL, V102, P279, DOI 10.1016/0034-5687(95)00065-8; Gomes FR, 2004, PHYSIOL BIOCHEM ZOOL, V77, P197, DOI 10.1086/381471; Gregory TR, 1999, CAN J FISH AQUAT SCI, V56, P479, DOI 10.1139/cjfas-56-3-479; Gregory TR, 1998, CAN J FISH AQUAT SCI, V55, P1583, DOI 10.1139/cjfas-55-7-1583; Guderley H, 2004, COMP BIOCHEM PHYS B, V139, P371, DOI 10.1016/j.cbpc.2004.04.001; HAMMER C, 1995, COMP BIOCHEM PHYS A, V112, P1, DOI 10.1016/0300-9629(95)00060-K; Handeland SO, 2008, AQUACULTURE, V283, P36, DOI 10.1016/j.aquaculture.2008.06.042; Jain KE, 2003, J EXP BIOL, V206, P3569, DOI 10.1242/jeb.00588; KELLOGG RL, 1983, T AM FISH SOC, V112, P424, DOI 10.1577/1548-8659(1983)112<424:RBOTFG>2.0.CO;2; Kelly C, 2005, AM NAT, V166, P700, DOI 10.1086/497402; Killen SS, 2014, J EXP BIOL, V217, P859, DOI 10.1242/jeb.097899; Killen SS, 2013, TRENDS ECOL EVOL, V28, P651, DOI 10.1016/j.tree.2013.05.005; KOLOK AS, 1992, AM J PHYSIOL, V263, pR1042; Kolok AS, 1995, CAN J ZOOL, V73, P2165, DOI 10.1139/z95-254; KOLOK AS, 1994, PHYSIOL ZOOL, V67, P706, DOI 10.1086/physzool.67.3.30163766; KOTEJA P, 1987, COMP BIOCHEM PHYS A, V87, P205, DOI 10.1016/0300-9629(87)90447-6; Lee CG, 2003, J EXP BIOL, V206, P3239, DOI 10.1242/jeb.00547; Li DL, 2007, CHINESE SCI BULL, V52, P1501, DOI 10.1007/s11434-007-0217-x; Luo YP, 2008, COMP BIOCHEM PHYS A, V149, P150, DOI 10.1016/j.cbpa.2007.11.003; Maciak S, 2010, COMP BIOCHEM PHYS A, V157, P136, DOI 10.1016/j.cbpa.2010.05.017; Marras S, 2010, J EXP BIOL, V213, P26, DOI 10.1242/jeb.032136; McCarthy ID, 2000, J FISH BIOL, V57, P224, DOI 10.1111/j.1095-8649.2000.tb00788.x; METCALFE NB, 1995, ANIM BEHAV, V49, P431, DOI 10.1006/anbe.1995.0056; METCALFE NB, 1989, PROC R SOC SER B-BIO, V236, P7, DOI 10.1098/rspb.1989.0009; Morgan IJ, 2000, J FISH BIOL, V56, P637, DOI 10.1006/jfbi.1999.1183; Nelson JA, 1996, J EXP BIOL, V199, P1295; Nilsson PA, 2000, OIKOS, V88, P539, DOI 10.1034/j.1600-0706.2000.880310.x; Norin T, 2016, FUNCT ECOL, V30, P369, DOI 10.1111/1365-2435.12503; Norin T, 2012, PHYSIOL BIOCHEM ZOOL, V85, P645, DOI 10.1086/665982; Norin T, 2011, J EXP BIOL, V214, P1668, DOI 10.1242/jeb.054205; Oufiero CE, 2009, FUNCT ECOL, V23, P969, DOI 10.1111/j.1365-2435.2009.01571.x; Pang X, 2015, MAR FRESHW BEHAV PHY, V48, P431, DOI 10.1080/10236244.2015.1090205; Pang X, 2014, J THERM BIOL, V42, P25, DOI 10.1016/j.jtherbio.2014.02.014; Pang X, 2013, J COMP PHYSIOL B, V183, P99, DOI 10.1007/s00360-012-0690-7; Pang X, 2010, COMP BIOCHEM PHYS A, V155, P253, DOI 10.1016/j.cbpa.2009.11.005; PELLETIER D, 1993, FISH PHYSIOL BIOCHEM, V12, P83, DOI 10.1007/BF00004373; PELLETIER D, 1993, J EXP ZOOL, V265, P477, DOI 10.1002/jez.1402650503; Portner HO, 2008, SCIENCE, V322, P690, DOI 10.1126/science.1163156; Priede I.G., 1985, P33; Reidy SP, 2000, J EXP BIOL, V203, P347; RICHARDSON JS, 1991, ECOLOGY, V72, P873, DOI 10.2307/1940589; Roche DG, 2013, J EXP BIOL, V216, P2103, DOI 10.1242/jeb.082925; Sogard SM, 1997, B MAR SCI, V60, P1129; Svendsen JC, 2010, J EXP BIOL, V213, P2177, DOI 10.1242/jeb.041368; Webb P. W., 1975, B FISH RES BOARD CAN, V190, P1; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; White CR, 2013, J EXP BIOL, V216, P1763, DOI 10.1242/jeb.076562; Yan GJ, 2012, J THERM BIOL, V37, P424, DOI 10.1016/j.jtherbio.2012.04.006; Zeng LQ, 2009, COMP BIOCHEM PHYS A, V153, P125, DOI 10.1016/j.cbpa.2009.01.013 71 4 6 3 28 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1095-6433 1531-4332 COMP BIOCHEM PHYS A Comp. Biochem. Physiol. A-Mol. Integr. Physiol. SEP 2016 199 111 119 10.1016/j.cbpa.2016.06.011 9 Biochemistry & Molecular Biology; Physiology; Zoology Biochemistry & Molecular Biology; Physiology; Zoology DT9OU WOS:000381833000015 27312325 2018-11-22 J Behringer, V; Wudy, SA; Blum, WF; Stevens, JMG; Remer, T; Boesch, C; Hohmann, G Behringer, Verena; Wudy, Stefan A.; Blum, Werner F.; Stevens, Jeroen M. G.; Remer, Thomas; Boesch, Christophe; Hohmann, Gottfried Sex Differences in Age-Related Decline of Urinary Insulin-Like Growth Factor-Binding Protein-3 Levels in Adult Bonobos and Chimpanzees FRONTIERS IN ENDOCRINOLOGY English Article aging pattern; urinary marker; IGFBP-3; primate; ape species; pan paniscus; pan troglodytes DEVELOPING RHESUS-MONKEY; TOTAL IGF-I; PAN-TROGLODYTES; HORMONE CONCENTRATIONS; CIRCULATING LEVELS; BIOLOGICAL-FLUIDS; WILD CHIMPANZEES; MORTALITY-RATES; FACTOR (IGF)-I; IGFBP-3 LEVELS There is increasing interest in the characterization of normative senescence in humans. To assess to what extent aging patterns in humans are unique, comparative data from closely related species, such as non-human primates, can be very useful. Here, we use data from bonobos and chimpanzees, two closely related species that share a common ancestor with humans, to explore physiological markers that are indicative of aging processes. Many studies on aging in humans focus on the somatotropic axis, consisting of growth hormone (GH), insulin-like growth factors (IGFs), and IGF binding proteins (IGFBPs). In humans, IGFBP-3 levels decline steadily with increasing age. We used urinary IGFBP-3 levels as an alternative endocrine marker for IGF-I to identify the temporal pattern known to be related with age-related changes in cell proliferation, growth, and apoptosis. We measured urinary IGFBP-3 levels in samples from 71 bonobos and 102 chimpanzees. Focusing on samples from individuals aged 10 years or older, we found that urinary IGFBP-3 levels decline in both ape species with increasing age. However, in both species, females start with higher urinary IGFBP-3 levels than males, experience a steeper decline with increasing age, and converge with male levels around the age of 30-35 years. Our measurements of urinary IGFBP-3 levels indicate that bonobos and chimpanzees mirror human patterns of age-related decline in IGFBP-3 in older individuals (<10 years) of both sexes. Moreover, such as humans, both ape species show sex-specific differences in IGFBP-3 levels with females having higher levels than males, a result that correlates with sex differences in life expectancy. Using changes in urinary IGFBP-3 levels as a proxy for changes in GH and IGF-I levels that mark age-related changes in cell proliferation, this approach provides an opportunity to investigate trade-offs in life-history strategies in cross-sectional and in longitudinal studies, both in captivity and in the wild. [Behringer, Verena; Boesch, Christophe; Hohmann, Gottfried] Max Planck Inst Evolutionary Anthropol, Dept Primatol, Leipzig, Germany; [Wudy, Stefan A.; Blum, Werner F.] Univ Giessen, Ctr Child & Adolescent Med, Lab Translat Hormone Analyt Paediat Endocrinol, Giessen, Germany; [Stevens, Jeroen M. G.] Royal Zool Soc Antwerp, Ctr Res & Conservat, Antwerp, Belgium; [Remer, Thomas] Univ Bonn, IEL Nutr Epidemiol, DONALD Study Dortmund, Dortmund, Germany Behringer, V (reprint author), Max Planck Inst Evolutionary Anthropol, Dept Primatol, Leipzig, Germany. verena_behringer@eva.mpg.cle Max Planck Society This project was funded by the Max Planck Society. Baayen R. H., 2008, ANAL LINGUISTIC DATA; Barr DJ, 2013, J MEM LANG, V68, P255, DOI 10.1016/j.jml.2012.11.001; Bates D, 2013, J STAT SOFTW, V52, P1; BAXTER RC, 1986, J CLIN INVEST, V78, P1504, DOI 10.1172/JCI112742; Baxter RC, 2010, RES PERSPECT END INT, P59, DOI 10.1007/978-3-642-04302-4_5; Behringer V, 2014, J HUM EVOL, V66, P83, DOI 10.1016/j.jhevol.2013.09.008; Benbassat CA, 1997, J CLIN ENDOCR METAB, V82, P1484, DOI 10.1210/jc.82.5.1484; Bernstein RM, 2008, AM J PHYS ANTHROPOL, V136, P156, DOI 10.1002/ajpa.20791; Bernstein RM, 2013, INT J PRIMATOL, V34, P732, DOI 10.1007/s10764-013-9692-x; Bernstein RM, 2012, AM J PRIMATOL, V74, P890, DOI 10.1002/ajp.22038; Blum JW, 2008, BIOACTIVE COMPONENTS, P397; BLUM WF, 1993, J CLIN ENDOCR METAB, V76, P1610, DOI 10.1210/jc.76.6.1610; BLUM WF, 1990, J CLIN ENDOCR METAB, V70, P1292, DOI 10.1210/jcem-70-5-1292; Bronikowski AM, 2011, SCIENCE, V331, P1325, DOI 10.1126/science.1201571; Carter CS, 2002, TRENDS GENET, V18, P295, DOI 10.1016/S0168-9525(02)02696-3; Clemmons D R, 1997, Cytokine Growth Factor Rev, V8, P45, DOI 10.1016/S1359-6101(96)00053-6; Clutton-Brock TH, 2007, P R SOC B, V274, P3097, DOI 10.1098/rspb.2007.1138; COHEN P, 1991, ACTA ENDOCRINOL-COP, V124, P74; COHEN P, 1992, PSYCHONEUROENDOCRINO, V17, P335, DOI 10.1016/0306-4530(92)90039-A; Collett-Solberg PF, 2000, ENDOCRINE, V12, P121, DOI 10.1385/ENDO:12:2:121; COLMAN RJ, 1999, METHODS AGING RES, P249; COPELAND KC, 1985, J CLIN ENDOCR METAB, V60, P1154, DOI 10.1210/jcem-60-6-1154; COPELAND KC, 1982, J CLIN ENDOCR METAB, V55, P1198, DOI 10.1210/jcem-55-6-1198; CORPAS E, 1993, ENDOCR REV, V14, P20, DOI 10.1210/er.14.1.20; Crawford BA, 1997, J MED PRIMATOL, V26, P153, DOI 10.1111/j.1600-0684.1997.tb00047.x; Crawford BA, 1996, J CLIN ENDOCR METAB, V81, P65, DOI 10.1210/jc.81.1.65; CREWS DE, 2003, HUMAN SENESCENCE EVO; DAUGHADAY WH, 1989, ENDOCR REV, V10, P68, DOI 10.1210/edrv-10-1-68; DeLellis K, 2004, CANCER EPIDEM BIOMAR, V13, P1444; Dobson AJ, 2008, INTRO GEN LINEAR MOD; Erwin JM, 2002, INTERD TOP GERONTOL, V31, P1; Erwin JM, 2001, DEV PRIMATOL, P195; Field A., 2009, DISCOVERING STAT USI; Forstmeier W, 2011, BEHAV ECOL SOCIOBIOL, V65, P47, DOI 10.1007/s00265-010-1038-5; Fox J., 2011, R COMPANION APPL REG; GARGOSKY SE, 1993, J CLIN ENDOCR METAB, V76, P1631, DOI 10.1210/jc.76.6.1631; GARGOSKY SE, 1992, ENDOCRINOLOGY, V131, P3051, DOI 10.1210/en.131.6.3051; Gems D, 2014, AGING-US, V6, P84, DOI 10.18632/aging.100640; Gilissen EP, 2016, BRAIN STRUCT FUNCT, V221, P647, DOI 10.1007/s00429-014-0931-5; Hamada Y, 2002, AM J PHYS ANTHROPOL, V118, P268, DOI 10.1002/ajpa.10078; HASEGAWA Y, 1992, J CLIN ENDOCR METAB, V74, P830, DOI 10.1210/jc.74.4.830; Herndon JG, 2001, COMPARATIVE MED, V51, P60; Hill K, 2001, J HUM EVOL, V40, P437, DOI 10.1006/jhev.2001.0469; Hiraiwa-Hasegawa M., 1984, DEMOGRAPHIC STUDY LA, V25, P401, DOI DOI 10.1007/BF02381663; Janssen JAMJL, 1999, J ENDOCRINOL INVEST, V22, P313, DOI 10.1007/BF03343563; Janssen JAMJL, 1998, CLIN ENDOCRINOL, V48, P471; JONES JI, 1995, ENDOCR REV, V16, P3, DOI 10.1210/er.16.1.3; Junnila RK, 2013, NAT REV ENDOCRINOL, V9, P366, DOI 10.1038/nrendo.2013.67; JUUL A, 1995, J CLIN ENDOCR METAB, V80, P2534, DOI 10.1210/jc.80.8.2534; Kaklamani VG, 1999, J CLIN ONCOL, V17, P813, DOI 10.1200/JCO.1999.17.3.813; KATZ LEL, 1995, ENDOCRINOLOGIST, V5, P36; KING FA, 1988, SCIENCE, V240, P1475, DOI 10.1126/science.3287624; Kirkwood TBL, 2001, SEX AND LONGEVITY: SEXUALITY, GENDER, REPRODUCTION, PARENTHOOD, P1; Lamson G, 1991, Growth Factors, V5, P19, DOI 10.3109/08977199109000268; LANGFORD KS, 1995, J CLIN ENDOCR METAB, V80, P21, DOI 10.1210/jc.80.1.21; Leigh SR, 1996, AM J PHYS ANTHROPOL, V99, P43, DOI 10.1002/(SICI)1096-8644(199601)99:1<43::AID-AJPA3>3.0.CO;2-0; Littleton J, 2005, AM J PRIMATOL, V67, P281, DOI 10.1002/ajp.20185; LIU F, 1991, J CLIN ENDOCR METAB, V72, P905, DOI 10.1210/jcem-72-4-905; Martin FC, 1997, BAILLIERE CLIN ENDOC, V11, P223, DOI 10.1016/S0950-351X(97)80257-1; Miller RC, 2004, CLIN CHEM, V50, P924, DOI 10.1373/clinchem.2004.032292; Monaghan P, 2008, FUNCT ECOL, V22, P371, DOI 10.1111/j.1365-2435.2008.01418.x; Monzavi R, 2002, BEST PRACT RES CL EN, V16, P433, DOI 10.1053/beem.2002.0212; Muller MN, 2014, J HUM EVOL, V66, P107, DOI 10.1016/j.jhevol.2013.10.004; Muller MN, 2012, AM J PHYS ANTHROPOL, V149, P622, DOI DOI 10.1002/AJPA.22157; NANTOSALONEN K, 1993, ENDOCRINOLOGY, V132, P781, DOI 10.1210/en.132.2.781; Nishida T, 2003, AM J PRIMATOL, V59, P99, DOI 10.1002/ajp.10068; Olney RC, 2003, MED PEDIATR ONCOL, V41, P228, DOI 10.1002/mpo.10342; Probst-Hensch NM, 2003, CANCER EPIDEM BIOMAR, V12, P739; R Development Core Team, 2016, R LANG ENV STAT COMP; Rajaram S, 1997, ENDOCR REV, V18, P801, DOI 10.1210/er.18.6.801; Ranke MB, 1990, ACTA PAEDIATR SC S, V79, P55, DOI 10.1111/j.1651-2227.1990.tb11634.x; Rechler MM, 1991, PEPTIDE GROWTH FACTO, P263; Renehan AG, 2006, ENDOCR-RELAT CANCER, V13, P273, DOI 10.1677/erc.1.01219; Rincon M, 2005, EXP GERONTOL, V40, P873, DOI 10.1016/j.exger.2005.06.014; Rosenfeld RG, 2009, HORM RES, V71, P36, DOI 10.1159/000192434; RUDMAN D, 1990, NEW ENGL J MED, V323, P1, DOI 10.1056/NEJM199007053230101; RUDMAN D, 1985, J AM GERIATR SOC, V33, P800, DOI 10.1111/j.1532-5415.1985.tb04195.x; Rutherford JN, 2009, AM J HUM BIOL, V21, P745, DOI 10.1002/ajhb.20923; Samani AA, 2007, ENDOCR REV, V28, P20, DOI 10.1210/er.2006-0001; Schielzeth H, 2010, METHODS ECOL EVOL, V1, P103, DOI 10.1111/j.2041-210X.2010.00012.x; Schoen RE, 2002, CANCER EPIDEM BIOMAR, V11, P581; Schubert G, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0083870; SCHWANDER JC, 1983, ENDOCRINOLOGY, V113, P297, DOI 10.1210/endo-113-1-297; Seck T, 1998, EUR J ENDOCRINOL, V138, P70, DOI 10.1530/eje.0.1380070; Sherwood CC, 2011, P NATL ACAD SCI USA, V108, P13029, DOI 10.1073/pnas.1016709108; STYNE DM, 1991, J MED PRIMATOL, V20, P334; SUIKKARI AM, 1992, J CLIN ENDOCR METAB, V74, P177, DOI 10.1210/jc.74.1.177; Suwazono Y, 2005, BIOMARKERS, V10, P117, DOI 10.1080/13547500500159001; Suzuki J, 2003, PRIMATES, V44, P273, DOI 10.1007/S10329-003-0044-x; Suzuki T, 2000, CLIN ENDOCRINOL, V53, P739, DOI 10.1046/j.1365-2265.2000.01144.x; Thompson ME, 2007, CURR BIOL, V17, P2150, DOI 10.1016/j.cub.2007.11.033; Thorner MO, 1992, WILLIAMS TXB ENDOCRI, P228; Videan EN, 2008, AM J PRIMATOL, V70, P327, DOI 10.1002/ajp.20494; Videan EN, 2006, COMPARATIVE MED, V56, P291; Ward EJ, 2009, FRONT ZOOL, V6, DOI 10.1186/1742-9994-6-4; Williams JM, 2008, AM J PRIMATOL, V70, P766, DOI 10.1002/ajp.20573; Willis EL, 2014, GEN COMP ENDOCR, V195, P21, DOI 10.1016/j.ygcen.2013.10.004; Woller MJ, 2002, J CLIN ENDOCR METAB, V87, P5160, DOI 10.1210/jc.2002-020659; Yang J, 2005, EXP GERONTOL, V40, P867, DOI 10.1016/j.exger.2005.08.001; ZUMKELLER W, 1990, ACTA ENDOCRINOL-COP, V123, P499, DOI 10.1530/acta.0.1230499 100 1 2 0 6 FRONTIERS MEDIA SA LAUSANNE PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND 1664-2392 FRONT ENDOCRINOL Front. Endocrinol. AUG 23 2016 7 118 10.3389/fendo.2016.00118 10 Endocrinology & Metabolism Endocrinology & Metabolism DY7LU WOS:000385311600001 27602019 DOAJ Gold, Green Published 2018-11-22 J Ries, PR; Newton, TJ; Haro, RJ; Zigler, SJ; Davis, M Ries, Patricia R.; Newton, Teresa J.; Haro, Roger J.; Zigler, Steven J.; Davis, Mike Annual variation in recruitment of freshwater mussels and its relationship with river discharge AQUATIC CONSERVATION-MARINE AND FRESHWATER ECOSYSTEMS English Article hydroecology; unionids; monitoring; catch-curve; invertebrates PEARL MUSSEL; ASSEMBLAGE STRUCTURE; LAMPSILIS-CARDIUM; MISSISSIPPI RIVER; POPULATION-MODEL; UNIONIDAE; MARGARITIFERA; CONSERVATION; AGE; USA 1. Vital rates such as mortality, growth, and recruitment are important tools to evaluate the status of threatened populations and identify their vulnerabilities, leading to enhanced conservation strategies. 2. Native freshwater mussels are a guild of largely sedentary, filter-feeding bivalves currently facing worldwide declines. Lack of recruitment has been identified as a major threat to mussel populations. 3. A mussel bed in the Upper Mississippi River was sampled for 5 years (2008-2012). A trend analysis showed a significant decline in the percentage of species with juvenile representatives. 4. Species were grouped into equilibrium and periodic life history strategies to assess past recruitment. Residuals from catch-curve regressions quantified past year-class strength of both strategists and Amblema plicata over a 13-year period (1994-2006), and identified strong and weak year-classes. 5. Generalized linear regression models containing July maximum discharge and April minimum discharge explained 64% of the variation in recruitment strength of A. plicata. The best model for the equilibrium strategists explained 86% of the variation in recruitment and contained the same variables as A. plicata, but also incorporated the 7-day minimum discharge. For the periodic strategists, the model containing the number of low-flow pulses and the mean duration of high-flow pulses explained 56% of the variation in recruitment strength. 6. Understanding variation in recruitment dynamics of native mussels and its relationship to river discharge will be useful in designing effective management strategies to enhance conservation of this imperilled fauna. Copyright (C) 2015 John Wiley & Sons, Ltd. [Ries, Patricia R.; Newton, Teresa J.; Zigler, Steven J.] US Geol Survey, Upper Midwest Environm Sci Ctr, 2630 Fanta Reed Rd, La Crosse, WI 54603 USA; [Haro, Roger J.] Univ Wisconsin, River Studies Ctr, La Crosse, WI 54601 USA; [Davis, Mike] Minnesota Dept Nat Resources, Lake City, MN USA Ries, PR (reprint author), US Geol Survey, Upper Midwest Environm Sci Ctr, 2630 Fanta Reed Rd, La Crosse, WI 54603 USA. pries@usgs.gov Ries, Patricia/0000-0001-5095-7896; Newton, Teresa/0000-0001-9351-5852; Zigler, Steven/0000-0002-4153-0652 US Army Corps of Engineers, Upper Mississippi River Restoration, Environmental Management Program, Long Term Resource Monitoring element This research was funded by the US Army Corps of Engineers, Upper Mississippi River Restoration, Environmental Management Program, Long Term Resource Monitoring element. We thank, Bernard Sietman, Zeb Secrist, Shelby Marr, and the rest of the MNDNR dive crew for conducting the field work. We also thank Bob Kennedy for assembling discharge data, and Michelle Bartsch and two anonymous reviewers for helpful contributions. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US Government. Allen DC, 2010, J N AM BENTHOL SOC, V29, P383, DOI 10.1899/09-024.1; Augspurger T, 2003, ENVIRON TOXICOL CHEM, V22, P2569, DOI 10.1897/02-339; Bauer G, 2001, ECOL STU AN, V145, P155; Beasley CR, 1999, J CONCHOL, V36, P53; Bey CR, 2015, AQUAT CONSERV, V25, P555, DOI 10.1002/aqc.2539; Button CA, 2011, MAR ECOL PROG SER, V431, P151, DOI 10.3354/meps09094; CROUSE DT, 1987, ECOLOGY, V68, P1412, DOI 10.2307/1939225; Daraio JA, 2010, J N AM BENTHOL SOC, V29, P838, DOI 10.1899/09-118.1; Gates KK, 2015, FRESHWATER BIOL, V60, P620, DOI 10.1111/fwb.12528; Haag WR, 2007, AQUAT CONSERV, V17, P25, DOI 10.1002/aqc.773; Haag WR, 2011, BIOL REV, V86, P225, DOI 10.1111/j.1469-185X.2010.00146.x; Haag WR, 2012, NORTH AMERICAN FRESHWATER MUSSELS: NATURAL HISTORY, ECOLOGY, AND CONSERVATION, P1, DOI 10.1017/CBO9781139048217; Haag WR, 2003, FRESHWATER BIOL, V48, P2118, DOI 10.1046/j.1365-2427.2003.01155.x; Hardison BS, 2001, REGUL RIVER, V17, P77, DOI 10.1002/1099-1646(200101/02)17:1<77::AID-RRR604>3.3.CO;2-J; Hastie LC, 2008, AQUAT CONSERV, V18, P671, DOI 10.1002/aqc.879; Hastie LC, 2011, TOXICOL ENVIRON CHEM, V93, P1748, DOI 10.1080/02772248.2010.503655; Helsel D. R., 2002, 4A3 USGS, V4, pA3; HOLLANDBARTELS LE, 1989, J FRESHWATER ECOL, V5, P87, DOI 10.1080/02705060.1989.9665216; Howard JK, 2006, J N AM BENTHOL SOC, V25, P677, DOI 10.1899/0887-3593(2006)25[677:FCTASO]2.0.CO;2; HURVICH CM, 1989, BIOMETRIKA, V76, P297, DOI 10.1093/biomet/76.2.297; Johnson HE, 2010, ECOL APPL, V20, P1753, DOI 10.1890/09-1107.1; Jones JW, 2011, AQUAT CONSERV, V21, P57, DOI 10.1002/aqc.1161; Lytle DA, 2004, ECOLOGY, V85, P2493, DOI 10.1890/04-0282; Maceina Michael J., 1998, North American Journal of Fisheries Management, V18, P998, DOI 10.1577/1548-8675(1998)018<0998:VILBRI>2.0.CO;2; Maceina MJ, 1997, FISH RES, V32, P115, DOI 10.1016/S0165-7836(97)00051-9; Master Lawrence L., 2000, P93; Miller AC, 1998, REGUL RIVER, V14, P179, DOI 10.1002/(SICI)1099-1646(199803/04)14:2<179::AID-RRR496>3.0.CO;2-S; Moorkens EA, 2014, AQUAT CONSERV, V24, P853, DOI 10.1002/aqc.2530; Morales Y, 2006, J N AM BENTHOL SOC, V25, P664, DOI 10.1899/0887-3593(2006)25[664:EOSAHC]2.0.CO;2; Newton TJ, 2011, AQUAT CONSERV, V21, P122, DOI 10.1002/aqc.1170; Newton TJ, 2003, ENVIRON TOXICOL CHEM, V22, P2554, DOI 10.1897/02-342; Olden JD, 2003, RIVER RES APPL, V19, P101, DOI 10.1002/rra.700; Payne BS, 2000, AM MIDL NAT, V144, P328, DOI 10.1674/0003-0031(2000)144[0328:ROFEBU]2.0.CO;2; Peterson JT, 2011, ENVIRON MANAGE, V48, P109, DOI 10.1007/s00267-011-9688-2; Poff NL, 2006, J N AM BENTHOL SOC, V25, P730, DOI 10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; Ricker WE, 1975, FISHERIES RES BOARD, V191; ROPER DS, 1994, HYDROBIOLOGIA, V284, P205, DOI 10.1007/BF00006690; Strayer DL, 2012, ECOL APPL, V22, P1780, DOI 10.1890/11-1536.1; Strayer DL, 2004, BIOSCIENCE, V54, P429, DOI 10.1641/0006-3568(2004)054[0429:CPOPMN]2.0.CO;2; US Army Corps of Engineers, 2010, UPP MISS RIV RIV RES; Vaughn CC, 2006, J N AM BENTHOL SOC, V25, P691, DOI 10.1899/0887-3593(2006)25[691:UMIMAS]2.0.CO;2; Vaughn CC, 2004, AM MIDL NAT, V152, P336, DOI 10.1674/0003-0031(2004)152[0336:SOTMFO]2.0.CO;2; Vaughn CC, 2001, FRESHWATER BIOL, V46, P1431, DOI 10.1046/j.1365-2427.2001.00771.x; Villella RF, 2004, AM MIDL NAT, V151, P114, DOI 10.1674/0003-0031(2004)151[0114:ESARIA]2.0.CO;2; vonStorch H, 1995, ANALYSIS OF CLIMATE VARIABILITY, P11; Watters G. T, 2009, FRESHWATER MUSSELS O 47 4 4 0 23 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1052-7613 1099-0755 AQUAT CONSERV Aquat. Conserv.-Mar. Freshw. Ecosyst. AUG 2016 26 4 703 714 10.1002/aqc.2590 12 Environmental Sciences; Marine & Freshwater Biology; Water Resources Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources DW5GA WOS:000383670100008 2018-11-22 J Negroni, MA; Jongepier, E; Feldmeyer, B; Kramer, BH; Foitzik, S Negroni, Matteo Antoine; Jongepier, Evelien; Feldmeyer, Barbara; Kramer, Boris H.; Foitzik, Susanne Life history evolution in social insects: a female perspective CURRENT OPINION IN INSECT SCIENCE English Article COLONY SIZE; ANT COLONIES; KIN SELECTION; HARVESTER ANT; QUEEN; HYMENOPTERA; REPRODUCTION; WORKERS; SPAN; EUSOCIALITY Social insects are known for their unusual life histories with fecund, long-lived queens and sterile, short-lived workers. We review ultimate factors underlying variation in life history strategies in female social insects, whose social life reshapes common trade-offs, such as the one between fecundity and longevity. Interspecific life history variation is associated with colony size, mediated by changes in division of labour and extrinsic mortality. In addition to the ratio of juvenile to adult mortality, social factors such as queen number influence life history trajectories. We discuss two hypotheses explaining why queen fecundity and lifespan is higher in single-queen societies and suggest further research directions on the evolution of life history variation in social insects. [Negroni, Matteo Antoine; Jongepier, Evelien; Foitzik, Susanne] Johannes Gutenberg Univ Mainz, Inst Zool, Johannes von Muller Weg 6, D-55128 Mainz, Germany; [Feldmeyer, Barbara] Senckenberg Biodivers & Climate Res Ctr BiK F, Mol Ecol, Senckenberganlage 25, D-60325 Frankfurt, Germany; [Kramer, Boris H.] Univ Groningen, Theoret Res Evolutionary Life Sci TRES, Nijenborgh 7, NL-9747 AG Groningen, Netherlands Foitzik, S (reprint author), Johannes Gutenberg Univ Mainz, Inst Zool, Johannes von Muller Weg 6, D-55128 Mainz, Germany. foitzik@uni-mainz.de Feldmeyer, Barbara/E-5067-2015 Feldmeyer, Barbara/0000-0002-0413-7245 DFG [Fo 298/17-1, Fe 1333/6-1, FOR 2281] This study was supported by DFG grants Fo 298/17-1 and Fe 1333/6-1 of the research unit FOR 2281. Barth MB, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0105621; Boomsma JJ, 2007, CURR BIOL, V17, pR673, DOI 10.1016/j.cub.2007.06.033; Boomsma JJ, 2014, ANIM BEHAV, V92, P241, DOI 10.1016/j.anbehav.2014.03.005; Boomsma JJ, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0444; Boomsma JJ, 2009, PHILOS T R SOC B, V364, P3191, DOI 10.1098/rstb.2009.0101; Boulay R, 2014, J EVOLUTION BIOL, V27, P2856, DOI 10.1111/jeb.12515; Bourke AFG, 1999, J EVOLUTION BIOL, V12, P245, DOI 10.1046/j.1420-9101.1999.00028.x; BOURKE AFG, 1991, BIOL J LINN SOC, V43, P157, DOI 10.1111/j.1095-8312.1991.tb00591.x; BOURKE AFG, 1994, PHILOS T ROY SOC B, V345, P359, DOI 10.1098/rstb.1994.0115; Bourke AFG, 2007, ANNU REV ECOL EVOL S, V38, P103, DOI 10.1146/annurev.ecolsys.38.091206.095528; Bourke FG, 1995, SOCIAL EVOLUTION ANT; Burchill AT, 2016, INSECTES SOC; BUSCHINGER A, 1986, TRENDS ECOL EVOL, V1, P155, DOI 10.1016/0169-5347(86)90044-3; Buschinger A, 2009, MYRMECOL NEWS, V12, P219; Cassill D, 2003, J BIOECONOMICS, V2, P83; Changizi MA, 2002, J THEOR BIOL, V218, P215, DOI 10.1006/yjtbi.3070; Chapuisat M, 2002, P ROY SOC B-BIOL SCI, V269, P909, DOI 10.1098/rspb.2002.1962; Chouvenc T, 2015, INSECT SOC, V62, P23, DOI 10.1007/s00040-014-0369-z; COLE BJ, 1983, BEHAV ECOL SOCIOBIOL, V12, P191, DOI 10.1007/BF00290771; Cole BJ, 2002, ECOLOGY, V83, P1433, DOI 10.1890/0012-9658(2002)083[1433:RLAPDI]2.0.CO;2; Cronin AL, 2013, ANNU REV ENTOMOL, V58, P37, DOI 10.1146/annurev-ento-120811-153643; Dornhaus A, 2012, ANNU REV ENTOMOL, V57, P123, DOI 10.1146/annurev-ento-120710-100604; ELMES GW, 1982, J ANIM ECOL, V51, P665, DOI 10.2307/3990; Espadaler X, 2001, INSECT SOC, V48, P159, DOI 10.1007/PL00001760; Ferguson-Gow H, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.1411; Fjerdingstad EJ, 2004, EVOLUTION, V58, P1056; Fjerdingstad EJ, 1998, BEHAV ECOL SOCIOBIOL, V42, P257, DOI 10.1007/s002650050437; Flatt T, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P1; Franks NR, 2006, ANIM BEHAV, V72, P611, DOI 10.1016/j.anbehav.2005.11.019; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Giraldo YM, 2014, BEHAV ECOL SOCIOBIOL, V68, P1901, DOI 10.1007/s00265-014-1826-4; Gordon DM, 1996, ECOLOGY, V77, P2393, DOI 10.2307/2265741; Hartke TR, 2011, ANIM BEHAV, V82, P927, DOI 10.1016/j.anbehav.2011.07.022; Heinze J, 2008, GERONTOLOGY, V54, P160, DOI 10.1159/000122472; Heinze J, 2013, BEHAV ECOL SOCIOBIOL, V67, P1555, DOI 10.1007/s00265-013-1567-9; Heinze J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0035201; HOLLDOBLER B, 1977, NATURWISSENSCHAFTEN, V64, P8, DOI 10.1007/BF00439886; Holldobler B, 1990, ANTS; Holway DA, 2001, ANIM BEHAV, V61, P1181, DOI 10.1006/anbe.2000.1698; Hou C, 2010, P NATL ACAD SCI USA, V107, P3634, DOI 10.1073/pnas.0908071107; Hughes WOH, 2008, SCIENCE, V320, P1213, DOI 10.1126/science.1156108; Ingram KK, 2013, J ANIM ECOL, V82, P540, DOI 10.1111/1365-2656.12036; KASPARI M, 1995, AM NAT, V145, P610, DOI 10.1086/285758; Keller L, 1997, NATURE, V389, P958, DOI 10.1038/40130; Keller L, 1998, INSECT SOC, V45, P235, DOI 10.1007/s000400050084; Keller L, 1993, QUEEN NUMBER SOCIALI; Korb J, 2016, ANNU REV ENTOMOL, V61, P297, DOI 10.1146/annurev-ento-010715-023711; Kramer BH, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0137969; Kramer BH, 2014, BEHAV ECOL SOCIOBIOL, V68, P41, DOI 10.1007/s00265-013-1620-8; Kramer BH, 2013, BIOL J LINN SOC, V109, P710, DOI 10.1111/bij.12072; Kramer BH, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0061813; Kraus FB, 2004, BEHAV ECOL SOCIOBIOL, V55, P494, DOI 10.1007/s00265-003-0706-0; MACEVICZ S, 1976, BEHAV ECOL SOCIOBIOL, V1, P265, DOI 10.1007/BF00300068; McGlynn TP, 1999, AM NAT, V154, P690, DOI 10.1086/303270; MEDAWAR PB, 1952, UNRESOLVED PROBLEM B; Meunier L, 1999, INSECT SOC, V46, P171, DOI 10.1007/s000400050129; Michener CD, 1974, SOCIAL BEHAV BEES CO, P73; Ozan M, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1231; Palmer TM, 2004, ANIM BEHAV, V68, P993, DOI 10.1016/j.anbehav.2004.02.005; Parker JD, 2010, MYRMECOL NEWS, V13, P103; Peeters C, 2001, ANNU REV ENTOMOL, V46, P601, DOI 10.1146/annurev.ento.46.1.601; Rangel J, 2013, INSECT SOC, V60, P65, DOI 10.1007/s00040-012-0267-1; Rehan SM, 2015, TRENDS ECOL EVOL, V30, P426, DOI 10.1016/j.tree.2015.05.004; Retana J, 2015, ECOLOGY, V96, P2781, DOI 10.1890/14-2326.1.sm; Rubenstein D, COMP SOCIAL IN PRESS; Sanetra M, 2002, NATURWISSENSCHAFTEN, V89, P71, DOI 10.1007/s00114-001-0288-5; Schmid-Hempel P., 1998, PARASITES SOCIAL INS; Schrempf A, 2011, J EVOLUTION BIOL, V24, P1455, DOI 10.1111/j.1420-9101.2011.02278.x; Shik JZ, 2008, FUNCT ECOL, V22, P674, DOI 10.1111/j.1365-2435.2008.01428.x; Shik JZ, 2012, BIOL LETTERS, V8, P1059, DOI 10.1098/rsbl.2012.0463; SIEBER R, 1982, J INSECT PHYSIOL, V28, P979, DOI 10.1016/0022-1910(82)90002-6; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SZATHMARY E, 1995, NATURE, V374, P227, DOI 10.1038/374227a0; von Wyschetzki K, 2015, MOL BIOL EVOL, V32, P3173, DOI 10.1093/molbev/msv186; Wheller WM, 1911, J MORPHOL, V22, P307; Wiernasz DC, 2003, EVOLUTION, V57, P2179; Wilson EO., 1971, INSECT SOC 77 4 4 7 38 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 2214-5745 2214-5753 CURR OPIN INSECT SCI Curr. Opin. Insect Sci. AUG 2016 16 51 57 10.1016/j.cois.2016.05.008 7 Biology; Ecology; Entomology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Entomology EA2EM WOS:000386405600010 27720050 2018-11-22 J Fussell, KMD; Smith, REH; Fraker, ME; Boegman, L; Frank, KT; Miller, TJ; Tyson, JT; Arend, KK; Boisclair, D; Guildford, SJ; Hecky, RE; Hook, TO; Jensen, OP; Llopiz, JK; May, CJ; Najjar, RG; Rudstam, LG; Taggart, CT; Rao, YR; Ludsin, SA Fussell, Kristen M. DeVanna; Smith, Ralph E. H.; Fraker, Michael E.; Boegman, Leon; Frank, Kenneth T.; Miller, Thomas J.; Tyson, Jeff T.; Arend, Kristin K.; Boisclair, Daniel; Guildford, Stephanie J.; Hecky, Robert E.; Hook, Tomas O.; Jensen, Olaf P.; Llopiz, Joel K.; May, Cassandra J.; Najjar, Raymond G.; Rudstam, Lars G.; Taggart, Christopher T.; Rao, Yerubandi R.; Ludsin, Stuart A. A perspective on needed research, modeling, and management approaches that can enhance Great Lakes fisheries management under changing ecosystem conditions JOURNAL OF GREAT LAKES RESEARCH English Editorial Material PERCH PERCA-FLAVESCENS; WHITEFISH COREGONUS-CLUPEAFORMIS; LIFE-HISTORY STRATEGIES; WALLEYE SANDER-VITREUS; GLOBAL CLIMATE-CHANGE; AGE-0 YELLOW PERCH; FRESH-WATER FISH; REGIME SHIFT; RECRUITMENT SUCCESS; SALMONID COMMUNITY The Great Lakes Fishery Commission sponsored a 2-day workshop that sought to enhance the ability of Great Lakes agencies to understand, predict, and ideally manage fisheries production in the face of changes in natural and anthropogenic forcings (e.g., climate, invasive species, and nutrients). The workshop brought together 18 marine and freshwater researchers with collective expertise in aquatic ecology, physical oceanography, limnology, climate modeling, and ecosystem modeling, and two individuals with fisheries management expertise. We report on the outcome of a writing exercise undertaken as part of this workshop that challenged each participant to identify three needs, which if addressed, could most improve the ability of Great Lakes agencies to manage their fisheries in the face of ecosystem change. Participant responses fell into two categories. The first identified gaps in ecological understanding, including how physical and biological processes can regulate early life growth and survival, how life-history strategies vary across species and within populations, and how anthropogenic stressors (e.g., nutrient runoff, climate change) can interact to influence fish populations. The second category pointed to the need for improved approaches to research (e.g., meta-analytic, comparative, spatial translation) and management (e.g., mechanistic management models, consideration of multi-stock management), and also identified the need for improved predictive models of the physical environment and associated ecosystem monitoring programs. While some progress has been made toward addressing these needs, we believe that a continued focus will be necessary to enable optimal fisheries management responses to forthcoming ecosystem change. (C) 2016 Published by Elsevier B.V. on behalf of International Association for Great Lakes Research. [Fussell, Kristen M. DeVanna; Fraker, Michael E.; May, Cassandra J.; Ludsin, Stuart A.] Ohio State Univ, Dept Evolut Ecol & Organismal Biol, Aquat Ecol Lab, Columbus, OH 43212 USA; [Smith, Ralph E. H.] Univ Waterloo, Dept Biol, Waterloo, ON N2L 3G1, Canada; [Boegman, Leon] Queens Univ, Dept Civil Engn, Kingston, ON K7L 3N6, Canada; [Frank, Kenneth T.] Bedford Inst Oceanog, Dept Fisheries & Oceans, Ocean Sci Div, POB 1006, Dartmouth, NS B2Y 4A2, Canada; [Miller, Thomas J.] Univ Maryland, Chesapeake Biol Lab, Ctr Environm Sci, Solomons, MD 20688 USA; [Tyson, Jeff T.] Ohio Dept Nat Resources, Sandusky Fisheries Res Unit, Div Wildlife, 305 East Shoreline Dr, Sandusky, OH 44870 USA; [Arend, Kristin K.] Ohio Dept Nat Resources, Old Woman Creek Natl Estuarine Res Reserve, Div Wildlife, 2514 Cleveland Rd East, Huron, OH 44839 USA; [Boisclair, Daniel] Univ Montreal, Dept Sci Biol, Montreal, PQ H3C 3J7, Canada; [Guildford, Stephanie J.; Hecky, Robert E.] Univ Minnesota, Dept Biol, 2205 5th St, Duluth, MN 55812 USA; [Guildford, Stephanie J.; Hecky, Robert E.] Univ Minnesota, Large Lakes Observ, 2205 5th St, Duluth, MN 55812 USA; [Hook, Tomas O.] Purdue Univ, Dept Forestry & Nat Resources, 195 Marstellar St, W Lafayette, IN 47907 USA; [Hook, Tomas O.] Purdue Univ, Illinois Indiana Sea Grant Program, 195 Marstellar St, W Lafayette, IN 47907 USA; [Jensen, Olaf P.] Rutgers State Univ, Inst Marine & Coastal Sci, New Brunswick, NJ 08901 USA; [Llopiz, Joel K.] Woods Hole Oceanog Inst, Dept Biol, Woods Hole, MA 02543 USA; [Najjar, Raymond G.] Penn State Univ, Dept Meteorol, 503 Walker Bldg, University Pk, PA 16802 USA; [Rudstam, Lars G.] Cornell Univ, Dept Nat Resources, Cornell Biol Field Stn, Bridgeport, NY 13030 USA; [Taggart, Christopher T.] Dalhousie Univ, Dept Oceanog, 1355 Oxford St,POB 15000, Halifax, NS B3H 4R2, Canada; [Rao, Yerubandi R.] Environm Canada, Water & Sci Technol Directorate, 867 Lakeshore Rd, Burlington, ON L7R 4A6, Canada; [Fussell, Kristen M. DeVanna; Fraker, Michael E.] Ohio State Univ, Ohio Sea Grant & Stone Lab, Columbus, OH 43212 USA; [May, Cassandra J.] Bethel Coll, Dept Biol & Chem, 1001 Bethel Circle, Mishawaka, IN 46544 USA Ludsin, SA (reprint author), Ohio State Univ, Dept Evolut Ecol & Organismal Biol, Aquat Ecol Lab, Columbus, OH 43212 USA. ludsin.1@osu.edu Miller, Thomas/C-2129-2008 Miller, Thomas/0000-0001-8427-1614 Allan JD, 2013, P NATL ACAD SCI USA, V110, P372, DOI 10.1073/pnas.1213841110; Anderson PJ, 1999, MAR ECOL PROG SER, V189, P117, DOI 10.3354/meps189117; Austin JA, 2007, GEOPHYS RES LETT, V34, DOI 10.1029/2006GL029021; BAYS JS, 1983, CAN J FISH AQUAT SCI, V40, P1813, DOI 10.1139/f83-210; Beaugrand G, 2004, PROG OCEANOGR, V60, P245, DOI 10.1016/j.pocean.2004.02.018; Beaugrand G, 2003, NATURE, V426, P661, DOI 10.1038/nature02164; Begg GA, 1999, FISH RES, V43, P35, DOI 10.1016/S0165-7836(99)00065-X; BERST AH, 1972, J FISH RES BOARD CAN, V29, P877, DOI 10.1139/f72-131; BOESCH DF, 2008, GLOBAL WARMING FREE; Breitburg D, 2002, ESTUARIES, V25, P767, DOI 10.1007/BF02804904; Bremigan MT, 2003, J GREAT LAKES RES, V29, P501, DOI 10.1016/S0380-1330(03)70454-7; Brochier T, 2013, GLOBAL CHANGE BIOL, V19, P1841, DOI 10.1111/gcb.12184; Brodnik RM, 2016, CAN J FISH AQUAT SCI, V73, P416, DOI 10.1139/cjfas-2015-0161; Brook BW, 2008, TRENDS ECOL EVOL, V23, P453, DOI 10.1016/j.tree.2008.03.011; Brylawski BJ, 2006, CAN J FISH AQUAT SCI, V63, P1298, DOI 10.1139/F06-011; Bunnell DB, 2014, BIOSCIENCE, V64, P26, DOI 10.1093/biosci/bit001; Bunnell DB, 2011, FRESHWATER BIOL, V56, P1281, DOI 10.1111/j.1365-2427.2010.02568.x; Byers JE, 2002, OIKOS, V97, P449, DOI 10.1034/j.1600-0706.2002.970316.x; Carlton J. T., 2003, INVASIVE SPECIES VEC; Carreon-Martinez LB, 2014, MOL ECOL, V23, P5366, DOI 10.1111/mec.12927; Choi JS, 2005, OCEANOGR MAR BIOL, V43, P47; Christensen JH, 2007, CLIMATIC CHANGE, V81, P1, DOI 10.1007/s10584-006-9211-6; Christensen MR, 2006, GLOBAL CHANGE BIOL, V12, P2316, DOI 10.1111/j.1365-2486.2006.01257.x; CHRISTIE WJ, 1972, J FISH RES BOARD CAN, V29, P913, DOI 10.1139/f72-134; CHRISTIE WJ, 1974, J FISH RES BOARD CAN, V31, P827, DOI 10.1139/f74-104; Conover DO, 1997, CAN J FISH AQUAT SCI, V54, P2401, DOI 10.1139/cjfas-54-10-2401; CONOVER DO, 1990, OECOLOGIA, V83, P316, DOI 10.1007/BF00317554; Cousino LK, 2015, J HYDROL-REG STUD, V4, P762, DOI 10.1016/j.ejrh.2015.06.017; Crain CM, 2008, ECOL LETT, V11, P1304, DOI 10.1111/j.1461-0248.2008.01253.x; Cushing D. H., 1975, MARINE ECOLOGY FISHE; CUSHING DH, 1990, ADV MAR BIOL, V26, P249, DOI 10.1016/S0065-2881(08)60202-3; Dettmers JM, 2005, CAN J FISH AQUAT SCI, V62, P2683, DOI 10.1139/F05-173; deYoung B, 2010, MARINE ECOSYSTEMS AND GLOBAL CHANGE, P89; Doak DF, 2008, ECOLOGY, V89, P952, DOI 10.1890/07-0965.1; DuFour M. R., 2016, ECOSPHERE, V6, P1; Durant JM, 2005, ECOL LETT, V8, P952, DOI 10.1111/j.1461-0248.2005.00798.x; Durant JM, 2007, CLIM RES, V33, P271, DOI 10.3354/cr033271; Farmer T. M., 2015, NATURE COMM, V6; Feiner ZS, 2015, EVOL APPL, V8, P724, DOI 10.1111/eva.12285; Fetzer W. W., 2009, THESIS; Ficke AD, 2007, REV FISH BIOL FISHER, V17, P581, DOI 10.1007/s11160-007-9059-5; Fitzgerald DG, 2006, ECOL APPL, V16, P1487, DOI 10.1890/1051-0761(2006)016[1487:GSPAFO]2.0.CO;2; Folt CL, 1999, LIMNOL OCEANOGR, V44, P864, DOI 10.4319/lo.1999.44.3_part_2.0864; Fraker ME, 2015, J GREAT LAKES RES, V41, P830, DOI 10.1016/j.jglr.2015.04.008; FREEBERG MH, 1990, T AM FISH SOC, V119, P92, DOI 10.1577/1548-8659(1990)119<0092:EOEALS>2.3.CO;2; Glover DC, 2008, CAN J FISH AQUAT SCI, V65, P1919, DOI 10.1139/F08-100; Halpem B. S., 2008, SCIENCE, V319, P48; Hare SR, 2000, PROG OCEANOGR, V47, P103, DOI 10.1016/S0079-6611(00)00033-1; HARTMAN WL, 1972, J FISH RES BOARD CAN, V29, P899, DOI 10.1139/f72-133; Hayhoe K, 2010, J GREAT LAKES RES, V36, P7, DOI 10.1016/j.jglr.2010.03.012; Hecicy R. E., 2010, FRESHW BIOL S1, V55, P19; Hecky RE, 2004, CAN J FISH AQUAT SCI, V61, P1285, DOI [10.1139/f04-065, 10.1139/F04-065]; Hilborn R, 2003, P NATL ACAD SCI USA, V100, P6564, DOI 10.1073/pnas.1037274100; Hines A. H., 2009, BIOL MANAGEMENT EXPL; Hjort J, 1914, RAPP P V REUN CONS I, V20, P1; Hook TO, 2008, CAN J FISH AQUAT SCI, V65, P1402, DOI 10.1139/F08-066; Hofmann EE, 1998, ECOL APPL, V8, pS23, DOI 10.1890/1051-0761(1998)8[S23:EVEOMF]2.0.CO;2; Hofmann EE, 2010, MARINE ECOSYSTEMS AND GLOBAL CHANGE, P323; Holeck K. T., 2004, BIOSCIENCE, V54, P1; Hook TO, 2007, T AM FISH SOC, V136, P1298, DOI 10.1577/T06-194.1; HOUDE ED, 1994, ICES J MAR SCI, V51, P91, DOI 10.1006/jmsc.1994.1008; Houde Edward D., 2009, P91, DOI 10.1002/9781444312133.ch3; Houde Edward D., 2009, Journal of Northwest Atlantic Fishery Science, V41, P53; IHSSEN PE, 1981, CAN J FISH AQUAT SCI, V38, P1790, DOI 10.1139/f81-226; IPCC, 2013, CLIM CHANG 2013 PHYS; JOHNSON TB, 1990, T AM FISH SOC, V119, P301, DOI 10.1577/1548-8659(1990)119<0301:SWMOYW>2.3.CO;2; Jones ML, 2006, CAN J FISH AQUAT SCI, V63, P457, DOI 10.1139/F05-239; Kane DD, 2015, J GREAT LAKES RES, V41, P930, DOI 10.1016/j.jglr.2015.06.002; Kane DD, 2014, J GREAT LAKES RES, V40, P496, DOI 10.1016/j.jglr.2014.04.004; Karl TR, 2003, SCIENCE, V302, P1719, DOI 10.1126/science.1090228; KLING GW, 2003, CONFRONTING CLIMATE; Klumb RA, 2004, ECOL APPL, V14, P113, DOI 10.1890/02-5054; Krueger CC, 1995, J GREAT LAKES RES, V21, P348, DOI 10.1016/S0380-1330(95)71109-1; Kunkel KE, 1999, B AM METEOROL SOC, V80, P1077, DOI 10.1175/1520-0477(1999)080<1077:TFIWAC>2.0.CO;2; Kunkel KE, 2013, GEOPHYS RES LETT, V40, DOI 10.1002/grl.50334; KUTKUHN JH, 1981, CAN J FISH AQUAT SCI, V38, P1476, DOI 10.1139/f81-199; Last PR, 2011, GLOBAL ECOL BIOGEOGR, V20, P58, DOI 10.1111/j.1466-8238.2010.00575.x; LEGGETT WC, 1978, J FISH RES BOARD CAN, V35, P1469, DOI 10.1139/f78-230; Lindenmayer DB, 2009, TRENDS ECOL EVOL, V24, P482, DOI 10.1016/j.tree.2009.03.005; Ludsin S., 2011, RIVER DISCHARGE PRED; Ludsin SA, 2001, ECOL APPL, V11, P731, DOI 10.2307/3061113; Ludsin SA, 2014, CAN J FISH AQUAT SCI, V71, P775, DOI 10.1139/cjfas-2013-0512; Ludsin SA, 2009, J EXP MAR BIOL ECOL, V381, pS121, DOI 10.1016/j.jembe.2009.07.016; Magnuson J.J., 1997, Society for Experimental Biology Seminar Series, V61, P377; Magnuson JJ, 1997, HYDROL PROCESS, V11, P825; MAKAREWICZ JC, 1991, BIOSCIENCE, V41, P216, DOI 10.2307/1311411; Manning NF, 2013, J GREAT LAKES RES, V39, P295, DOI 10.1016/j.jglr.2013.03.010; Massol F, 2007, J ANIM ECOL, V76, P538, DOI 10.1111/j.1365-2656.2007.01226.x; MCCAULEY E, 1981, CAN J FISH AQUAT SCI, V38, P458, DOI 10.1139/f81-063; McGowan JA, 2003, DEEP-SEA RES PT II, V50, P2567, DOI 10.1016/S0967-0645(03)00135-8; MCQUEEN DJ, 1989, ECOL MONOGR, V59, P289, DOI 10.2307/1942603; Michalak AM, 2013, P NATL ACAD SCI USA, V110, P6448, DOI 10.1073/pnas.1216006110; MILLER T, 1990, T AM FISH SOC, V119, P483, DOI 10.1577/1548-8659(1990)119<0483:EOCITZ>2.3.CO;2; Miller TJ, 2007, MAR ECOL PROG SER, V347, P127, DOI 10.3354/meps06973; MILLER TJ, 1988, CAN J FISH AQUAT SCI, V45, P1657, DOI 10.1139/f88-197; Mion JB, 1998, ECOL APPL, V8, P88, DOI 10.2307/2641313; Mueter FJ, 2011, ICES J MAR SCI, V68, P1284, DOI 10.1093/icesjms/fsr022; Mulvaney KK, 2014, J GREAT LAKES RES, V40, P590, DOI 10.1016/j.jglr.2014.06.002; Myers RA, 2001, ICES J MAR SCI, V58, P937, DOI 10.1006/jmsc.2001.1109; Myers RA, 1998, FISH RES, V37, P51; MYERS RA, 1997, EARLY LIFE HIST RECR, P451; Najjar RG, 2010, ESTUAR COAST SHELF S, V86, P1, DOI 10.1016/j.ecss.2009.09.026; North E., 2009, 295 ICES; O'Reilly CM, 2003, NATURE, V424, P766, DOI 10.1038/nature01833; Olden JD, 2006, ECOL MONOGR, V76, P25, DOI 10.1890/05-0330; Ormerod SJ, 2010, FRESHWATER BIOL, V55, P1, DOI 10.1111/j.1365-2427.2009.02395.x; Ottersen G, 2010, J MARINE SYST, V79, P343, DOI 10.1016/j.jmarsys.2008.12.013; Paine RT, 1998, ECOSYSTEMS, V1, P535, DOI 10.1007/s100219900049; Pangle KL, 2012, ECOSPHERE, V3, DOI 10.1890/ES12-00224.1; Parmesan C, 2003, NATURE, V421, P37, DOI 10.1038/nature01286; Pauly D, 1998, SCIENCE, V279, P860, DOI 10.1126/science.279.5352.860; Peer AC, 2014, N AM J FISH MANAGE, V34, P94, DOI 10.1080/02755947.2013.847877; Peeters F, 2007, GLOBAL CHANGE BIOL, V13, P1898, DOI 10.1111/j.1365-2486.2007.01412.x; Petitgas P, 2013, FISH OCEANOGR, V22, P121, DOI 10.1111/fog.12010; Pimm SL, 2000, NATURE, V403, P843, DOI 10.1038/35002708; Planque B, 1999, CAN J FISH AQUAT SCI, V56, P2069, DOI 10.1139/cjfas-56-11-2069; Platt T, 2003, NATURE, V423, P398, DOI 10.1038/423398b; Pothoven SA, 2014, J GREAT LAKES RES, V40, P148, DOI 10.1016/j.jglr.2013.09.016; Pritt JJ, 2014, ICES J MAR SCI, V71, P2252, DOI 10.1093/icesjms/fsu080; Rahel FJ, 2008, CONSERV BIOL, V22, P521, DOI 10.1111/j.1523-1739.2008.00950.x; Redman RA, 2011, T AM FISH SOC, V140, P1277, DOI 10.1080/00028487.2011.620480; Reichert JM, 2010, CAN J FISH AQUAT SCI, V67, P987, DOI 10.1139/F10-036; Reid PC, 2001, FISH RES, V50, P163, DOI 10.1016/S0165-7836(00)00249-6; Roseman EF, 2005, J GREAT LAKES RES, V31, P28, DOI 10.1016/S0380-1330(05)70288-4; Ryan P. A., 2003, GREAT LAKES FISHERY, V03-02; Sahoo GB, 2013, CLIMATIC CHANGE, V116, P71, DOI 10.1007/s10584-012-0600-8; Scavia D, 2014, J GREAT LAKES RES, V40, P226, DOI 10.1016/j.jglr.2014.02.004; Scheffer M, 2001, NATURE, V413, P591, DOI 10.1038/35098000; Scheffer M, 2003, TRENDS ECOL EVOL, V18, P648, DOI 10.1016/j.tree.2003.09.002; Schindler DE, 2010, NATURE, V465, P609, DOI 10.1038/nature09060; Sepulveda-Villet OJ, 2011, CAN J FISH AQUAT SCI, V68, P1435, DOI 10.1139/F2011-077; Sesterhenn TM, 2014, J GREAT LAKES RES, V40, P113, DOI 10.1016/j.jglr.2013.09.022; Sih A, 2011, EVOL APPL, V4, P367, DOI 10.1111/j.1752-4571.2010.00166.x; SMITH SH, 1968, J FISH RES BOARD CAN, V25, P667, DOI 10.1139/f68-063; Smith VH, 1999, ENVIRON POLLUT, V100, P179, DOI 10.1016/S0269-7491(99)00091-3; Stockner JG, 2000, FISHERIES, V25, P7, DOI 10.1577/1548-8446(2000)025<0007:CO>2.0.CO;2; Strayer DL, 2010, FRESHWATER BIOL, V55, P152, DOI 10.1111/j.1365-2427.2009.02380.x; Taylor SG, 2008, GLOBAL CHANGE BIOL, V14, P229, DOI 10.1111/j.1365-2486.2007.01494.x; Turschak BA, 2014, ECOLOGY, V95, P1243, DOI 10.1890/13-0329.1; van Zwieten PAM, 2016, CAN J FISH AQUAT SCI, V73, P622, DOI 10.1139/cjfas-2015-0130; Vanderploeg HA, 2012, J GREAT LAKES RES, V38, P336, DOI 10.1016/j.jglr.2012.02.005; Vanderploeg HA, 2009, J EXP MAR BIOL ECOL, V381, pS108, DOI 10.1016/j.jembe.2009.07.015; Vitousek PM, 1997, SCIENCE, V277, P494, DOI 10.1126/science.277.5325.494; Walther GR, 2002, NATURE, V416, P389, DOI 10.1038/416389a; Wang HY, 2008, CAN J FISH AQUAT SCI, V65, P2157, DOI 10.1139/F08-124; Wang HY, 2012, J GREAT LAKES RES, V38, P477, DOI 10.1016/j.jglr.2012.06.002; Wang J, 2012, J CLIMATE, V25, P1318, DOI 10.1175/2011JCLI4066.1; Weidel B., 2014, LAKE ONTARIO 2013 CS; Wellington CG, 2010, J FISH BIOL, V76, P1729, DOI 10.1111/j.1095-8649.2010.02612.x; WELLS L, 1972, J FISH RES BOARD CAN, V29, P889, DOI 10.1139/f72-132; Winder M, 2004, GLOBAL CHANGE BIOL, V10, P1844, DOI 10.1111/j.1365-2486.2004.00849.x; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Worm B, 2009, SCIENCE, V325, P578, DOI 10.1126/science.1173146 153 3 3 5 47 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND 0380-1330 J GREAT LAKES RES J. Gt. Lakes Res. AUG 2016 42 4 743 752 10.1016/j.jglr.2016.04.007 10 Environmental Sciences; Limnology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology DW8VP WOS:000383933900001 2018-11-22 J Fernandes, HBF; of Menie, MAW; Hutz, CS; Kruger, DJ; Figueredo, AJ Fernandes, Heitor B. F.; of Menie, Michael A. Woodley; Hutz, Claudio S.; Kruger, Daniel J.; Figueredo, Aurelio Jose The strength of associations among sexual strategy traits: Variations as a function of life history speed PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Sexual Strategies Theory; Life history; SD-IE; Factor analysis; Cross-national DIFFERENTIATION-INTEGRATION EFFORT; FAST-SLOW CONTINUUM; ROMANTIC RELATIONSHIPS; PERSONALITY-TRAITS; GENDER DIFFERENCES; COLLEGE-STUDENTS; MATING-EFFORT; 53 NATIONS; SOCIOSEXUALITY; ATTACHMENT Individuals exhibit differences in their life history strategies along a continuum that ranges from fast (involving investments in immediate rewards) to slow (involving long-term relationships and investments). Components of life history have been demonstrated to be more strongly correlated in individuals with faster life histories, a phenomenon termed Strategic Differentiation-Integration Effort (SD-IE). Sexual strategies are an intrinsic component of life history, yet have not been examined for SD-IE effects. We tested SD-IE in one student and two general population samples from two countries, among sexual strategy traits and correlates (sociosexual orientation, attachment avoidance, attachment anxiety, three groups of postcoital emotions, mate value, and life history speed). Two latent factors were found to explain the overall associations among these variables. The associations between the two factors and among their respective manifest indicators within factor were stronger in individuals with less restricted sexual strategies and more negative emotionality in sexual relationships, traits which are indicative of overall faster life history, supporting SD-IE hypotheses. Sex differences were identified and accounted for by life history speed differences between men and women. Unifactorial and multifactorial views of human sexual strategies can be argued to be equally supported by data, depending on individual life history speed. (C) 2016 Elsevier Ltd. All rights reserved. [Fernandes, Heitor B. F.; Hutz, Claudio S.] Univ Fed Rio Grande do Sul, Dept Psychol, BR-90046900 Porto Alegre, RS, Brazil; [of Menie, Michael A. Woodley] Tech Univ Chemnitz, Dept Psychol, Chemnitz, Germany; [of Menie, Michael A. Woodley] Vnje Univ Brussel, Ctr Leo Apostel Interdisciplinary Studies, Brussels, Belgium; [Kruger, Daniel J.] Univ Michigan, Sch Publ Hlth, Ann Arbor, MI 48109 USA; [Figueredo, Aurelio Jose] Univ Arizona, Dept Psychol, Tucson, AZ 85721 USA Fernandes, HBF (reprint author), Univ Fed Rio Grande do Sul, Inst Psicol, Ramiro Barcelos 2600-101, Porto Alegre, RS, Brazil. heitor.barcellos@ufrgs.br Armstrong EL, 2014, PERS INDIV DIFFER, V68, P189, DOI 10.1016/j.paid.2014.03.043; Bentler P. M., 1995, EQS STRUCTURAL EQUAT; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Bogin B, 2006, SCH AM RES, P197; Bowlby J., 1969, ATTACHMENT AND LOSS, V1; Brennan K. A., 1998, ATTACHMENT THEORY CL, V1998, P46, DOI DOI 10.2105/AJPH.90.4.553; Buddie AM, 2005, J INTERPERS VIOLENCE, V20, P713, DOI 10.1177/0886260505276073; Buss D. M., 2006, PSYCHOL TOPICS, V15, P239; BUSS DM, 1989, BEHAV BRAIN SCI, V12, P1, DOI 10.1017/S0140525X00023992; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; Byrne B, 1994, STRUCTURAL EQUATION; Caico C., 2015, EUROPEAN SCI J, V11, P170; Campbell A, 2008, HUM NATURE-INT BIOS, V19, P157, DOI 10.1007/s12110-008-9036-2; Cardillo M, 2002, J ANIM ECOL, V71, P79, DOI 10.1046/j.0021-8790.2001.00577.x; Costa PT, 2001, J PERS SOC PSYCHOL, V81, P322, DOI 10.1037/0022-3514.81.2.322; Del Giudice M, 2014, PSYCHOL INQ, V25, P261, DOI 10.1080/1047840X.2014.884918; Del Giudice M, 2011, PERS SOC PSYCHOL B, V37, P193, DOI 10.1177/0146167210392789; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; DeSouza E. R., 2004, INTERAMERICAN J PSYC, V38, P33; DeSouza ER, 1998, SEX ROLES, V39, P913, DOI 10.1023/A:1018884807080; DESOUZA ER, 1992, J SEX RES, V29, P251, DOI 10.1080/00224499209551645; DeSouza ER, 1996, SEX ROLES, V34, P549, DOI 10.1007/BF01545032; Dunkel CS, 2014, PERS INDIV DIFFER, V61-62, P13, DOI 10.1016/j.paid.2013.12.017; Edlund JE, 2010, PERS INDIV DIFFER, V49, P835, DOI 10.1016/j.paid.2010.07.004; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Fernandes H. B. F., 2015, EVOLUTIONARY BEHAV S; Fernandes HBF, 2013, PERS INDIV DIFFER, V55, P1000, DOI 10.1016/j.paid.2013.07.463; Figueredo A. J., 2013, J SOCIAL EVOLUTIONAR, V7, P361, DOI DOI 10.1037/H0099182; Figueredo A. J., 2014, EVOLUTIONARY BEHAV S, V8, P148, DOI DOI 10.1037/H0099837; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2013, PERS INDIV DIFFER, V55, P251, DOI 10.1016/j.paid.2012.04.033; Figueredo AJ, 2009, HUM NATURE-INT BIOS, V20, P317, DOI 10.1007/s12110-009-9068-2; Fischer A.H., 2000, GENDER EMOTION SOCIA, P71, DOI DOI 10.1017/CBO9780511628191; Fisher HE, 2002, ARCH SEX BEHAV, V31, P413, DOI 10.1023/A:1019888024255; Galperin A, 2013, ARCH SEX BEHAV, V42, P1145, DOI 10.1007/s10508-012-0019-3; GORDON ME, 1986, ACAD MANAGE REV, V11, P191, DOI 10.2307/258340; Gorsuch R., 1983, FACTOR ANAL; Gorsuch R. L., 2005, J SCI FAC CHIANG MAI, V32, P11; Grabb E. G., 2005, REGIONS APART 4 SOCI; Haselton MG, 2001, PERS RELATIONSHIP, V8, P357, DOI 10.1111/j.1475-6811.2001.tb00045.x; HAZAN C, 1987, J PERS SOC PSYCHOL, V52, P511, DOI 10.1037//0022-3514.52.3.511; Hojjat M, 2000, J SOC PERS RELAT, V17, P598, DOI 10.1177/0265407500174007; Hughes S. M., 2010, J SOCIAL EVOLUTIONAR, V4, P254, DOI [10.1037/h0099285, DOI 10.1037/H0099285]; Jackson JJ, 2007, EVOL HUM BEHAV, V28, P382, DOI 10.1016/j.evolhumbehav.2007.04.005; Jensen A. R., 1998, G FACTOR SCI MENTAL; Jones C. B., 2005, BEHAV FLEXIBILITY PR; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kennair L. E. O., 2015, EVOLUTIONARY PSYCHOL, V1, P207; KIRKPATRICK LA, 1998, ATTACHMENT THEORY CL, P353; Kirsner BR, 2003, J AFFECT DISORDERS, V75, P131, DOI 10.1016/S0165-0327(02)00048-4; Kurzban R, 2005, EVOL HUM BEHAV, V26, P227, DOI 10.1016/j.evolhumbehav.2004.08.012; Lippa RA, 2010, ARCH SEX BEHAV, V39, P990, DOI 10.1007/s10508-008-9460-8; Lippa RA, 2009, ARCH SEX BEHAV, V38, P631, DOI 10.1007/s10508-007-9242-8; MacDonald K., 2016, PSYCHOLOGY, V7, P238; Magrath MJL, 2003, TRENDS ECOL EVOL, V18, P424, DOI 10.1016/S0169-5347(03)00124-1; McGlothlin JW, 2007, AM NAT, V170, P864, DOI 10.1086/522838; Meisenberg G, 2013, PERS INDIV DIFFER, V55, P273, DOI 10.1016/j.paid.2012.04.016; Menie MAWO, 2015, FRONT PSYCHOL, V6, DOI 10.3389/fpsyg.2015.00422; MIROWSKY J, 1995, AM SOCIOL REV, V60, P449, DOI 10.2307/2096424; Mongeau PA, 2007, COMMUN RES, V34, P526, DOI 10.1177/0093650207305235; Murray AL, 2013, INTELLIGENCE, V41, P439, DOI 10.1016/j.intell.2013.06.007; Natividade J. C., 2013, EVIDENCIAS VALIDADE; Nesse R M, 1990, Hum Nat, V1, P261, DOI 10.1007/BF02733986; Noftle EE, 2006, J RES PERS, V40, P179, DOI 10.1016/j.jrp.2004.11.003; Olderbak S., 2013, COMPARING HYPOTHESES; Olderbak S, 2014, PERS INDIV DIFFER, V58, P82, DOI 10.1016/j.paid.2013.10.012; Oli MK, 2004, BASIC APPL ECOL, V5, P449, DOI 10.1016/j.baae.2004.06.002; Ostovich JM, 2004, PERS SOC PSYCHOL B, V30, P1255, DOI 10.1177/0146167204264754; Pena SDJ, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017063; Penke L, 2008, J PERS SOC PSYCHOL, V95, P1113, DOI 10.1037/0022-3514.95.5.1113; Peterson RA, 2001, J CONSUM RES, V28, P450, DOI 10.1086/323732; Peterson RA, 2014, J BUS RES, V67, P1035, DOI 10.1016/j.jbusres.2013.08.010; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Pinker S., 2008, SEXUAL PARADOX MEN W; Rowe DC, 1997, PERS INDIV DIFFER, V23, P105, DOI 10.1016/S0191-8869(97)00005-6; Schmitt D. P., 2005, HDB EVOLUTIONARY PSY, P258; Schmitt DP, 2000, J RES PERS, V34, P141, DOI 10.1006/jrpe.1999.2267; Schwartz SH, 2009, J PERS SOC PSYCHOL, V97, P171, DOI 10.1037/a0015546; SIMPSON JA, 1991, J PERS SOC PSYCHOL, V60, P870, DOI 10.1037//0022-3514.60.6.870; SPRECHER S, 1993, SEX ROLES, V28, P511, DOI 10.1007/BF00289678; Steams S. C., 1992, EVOLUTION LIFE HIST; TOWNSEND JM, 1995, ARCH SEX BEHAV, V24, P173, DOI 10.1007/BF01541580; van Schaik Carel P., 2012, P220; Wei MF, 2007, J PERS ASSESS, V88, P187, DOI 10.1080/00223890701268041; Woodley MA, 2014, PERS INDIV DIFFER, V63, P64, DOI 10.1016/j.paid.2014.01.043; Woodley MA, 2014, PERS INDIV DIFFER, V57, P3, DOI 10.1016/j.paid.2013.09.010 87 0 0 1 4 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. AUG 2016 98 275 283 10.1016/j.paid.2016.04.019 9 Psychology, Social Psychology DV3AZ WOS:000382794700047 2018-11-22 J Lister, KN; Lamare, MD; Burritt, DJ Lister, Kathryn N.; Lamare, Miles D.; Burritt, David J. Dietary pollutants induce oxidative stress, altering maternal antioxidant provisioning and reproductive output in the temperate sea urchin Evechinus chloroticus AQUATIC TOXICOLOGY English Article Oxidative stress; Antioxidant; Pollutants; Life-history; Evechinus chloroticus UV-B RADIATION; LIFE-HISTORY; STERECHINUS-NEUMAYERI; MARINE-INVERTEBRATES; DNA-DAMAGE; GLUTATHIONE-PEROXIDASE; ULTRAVIOLET-RADIATION; LYTECHINUS-VARIEGATUS; AQUATIC ORGANISMS; CHRONIC EXPOSURE Evidence is growing to suggest that the capacity to withstand oxidative stress may play an important role in shaping life-history trade-offs, although little is known on the relationship in broadcast spawning marine invertebrates. In this group, variation in gamete quantity and quality are important drivers of offspring survival and successful recruitment. Therefore the provisioning of eggs with antioxidants may be an important driver of life history strategies because they play a critical role in preventing damage from reactive oxygen species to macromolecules. In this study, a suite of oxidative stress biomarkers was measured in the gonads and eggs of the sea urchin Evechinus chloroticus exposed to polycyclic aromatic hydrocarbons (PAHs). Links between oxidative stress markers and core components of fitness including fecundity, gamete quality and maternal transfer of antioxidants were assessed. Experimental induction of oxidative stress was achieved via exposure to a mix of four PAHs over a 21-day period. In PAH exposed individuals, we observed a significant upregulation of the antioxidant defence and detoxification enzymes SOD, CAT, GR, GPx and GST, as well as a greater pool of the non-enzymatic antioxidant glutathione in gonad tissue and eggs. In contrast, glutathione redox status was not affected by PAH exposure, with the percentage of reduced glutathione remaining at approximately 80% in both gonad tissue and released eggs. PAH-exposed adults experienced greater than three- and five-fold increases in oxidative protein and lipid damage, respectively, in gonad tissue. In contrast, eggs maintained low levels of damage, not differing from baseline levels found in eggs released from PAH-naive mothers. PAH exposure also resulted in a 2-fold reduction in fecundity of reproductively mature females but no significant alteration to egg diameter. Although PAH-exposed females released fewer eggs, successful fertilisation of those eggs was slightly enhanced with average rates ranging from 90-99% in comparison to 76-90% in control eggs. Early-stage offspring reflected maternal antioxidant status with populations derived from PAH-exposed mothers demonstrating significantly higher antioxidant levels than those derived from PAH-naive mothers. This maternally inherited protection enhanced the capacity of embryos to minimise oxidative damage to lipids and proteins during early development but, despite this, did not reduce the proportion of morphological abnormalities in the population. Overall, these findings indicate that when faced with short-term contaminant stress E. chloroticus has the capacity to trade high reproductive output during a spawning event for a greater antioxidant investment in eggs. However, this production of potentially more resilient offspring did not translate to a fitness gain, at least for the early larval stages in the present experimental conditions. (C) 2016 Elsevier B.V. All rights reserved. [Lister, Kathryn N.; Burritt, David J.] Univ Otago, Dept Bot, 464 Great King St, Dunedin 9016, New Zealand; [Lamare, Miles D.] Univ Otago, Dept Marine Sci, 410 Castle St, Dunedin 9016, New Zealand Lister, KN (reprint author), Univ Otago, Dept Bot, 464 Great King St, Dunedin 9016, New Zealand. kathryn.lister@otago.ac.nz Remy, Melanie/G-3598-2010 Remy, Melanie/0000-0002-3238-2125 University of Otago We thank D. Pecorino and M. Baird for field assistance. The University of Otago supported this research. Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Alonso-Alvarez C, 2006, EVOLUTION, V60, P1913, DOI 10.1111/j.0014-3820.2006.tb00534.x; Au DWT, 2001, ENVIRON POLLUT, V111, P11, DOI 10.1016/S0269-7491(00)00036-1; Au DWT, 2001, ENVIRON POLLUT, V111, P1, DOI 10.1016/S0269-7491(00)00035-X; Banowetz GM, 2004, ANAL BIOCHEM, V332, P314, DOI 10.1016/j.ab.2004.06.015; Baussant T, 2009, MAR POLLUT BULL, V58, P1796, DOI 10.1016/j.marpolbul.2009.08.007; Bellas J, 2005, ECOTOXICOLOGY, V14, P337, DOI 10.1007/s10646-004-6370-y; Bellas J, 2008, MAR POLLUT BULL, V57, P493, DOI 10.1016/j.marpolbul.2008.02.039; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Blount J. D., 2015, BIOL REV; BROGDON WG, 1990, COMP BIOCHEM PHYS B, V96, P339, DOI 10.1016/0305-0491(90)90385-7; Burritt DJ, 2008, PLANT CELL ENVIRON, V31, P1416, DOI 10.1111/j.1365-3040.2008.01846.x; Byrne M, 2012, MAR ENVIRON RES, V76, P3, DOI 10.1016/j.marenvres.2011.10.004; Camus L, 2003, SCI TOTAL ENVIRON, V308, P221, DOI 10.1016/S0048-9697(02)00616-2; Costantini D, 2013, J EXP BIOL, V216, P2213, DOI 10.1242/jeb.083154; Costantini D, 2010, FUNCT ECOL, V24, P950, DOI 10.1111/j.1365-2435.2010.01746.x; CRIBB AE, 1989, ANAL BIOCHEM, V183, P195, DOI 10.1016/0003-2697(89)90188-7; de Almeida EA, 2007, COMP BIOCHEM PHYS A, V146, P588, DOI 10.1016/j.cbpa.2006.02.040; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; EPA, 1987, QUAL CRIT WAT 1986; FLETCHER WJ, 1987, ECOL MONOGR, V57, P89, DOI 10.2307/1942640; Fontagne S, 2008, BRIT J NUTR, V100, P102, DOI 10.1017/S0007114507876215; FRYER HJL, 1986, ANAL BIOCHEM, V153, P262, DOI 10.1016/0003-2697(86)90090-4; Galgani F, 2011, ENVIRON MONIT ASSESS, V172, P301, DOI 10.1007/s10661-010-1335-5; Garratt M, 2011, P ROY SOC B-BIOL SCI, V278, P1098, DOI 10.1098/rspb.2010.1818; George SB, 2001, AQUACULTURE, V199, P353, DOI 10.1016/S0044-8486(01)00578-6; HABIG WH, 1974, J BIOL CHEM, V249, P7130; Halliwell B., 2007, FREE RADICALS BIOL M; Hylland K, 2006, J TOXICOL ENV HEAL A, V69, P109, DOI 10.1080/15287390500259327; Janssens BJ, 2000, J EXP BIOL, V203, P3717; King CK, 2001, MAR ECOL PROG SER, V215, P143, DOI 10.3354/meps215143; Lamare MD, 1999, MAR ECOL PROG SER, V180, P197, DOI 10.3354/meps180197; Lamare MD, 2007, AQUAT BIOL, V1, P21, DOI 10.3354/ab00003; Lesser MP, 2010, PHOTOCHEM PHOTOBIOL, V86, P382, DOI 10.1111/j.1751-1097.2009.00671.x; Lesser MP, 2006, ANNU REV PHYSIOL, V68, P253, DOI 10.1146/annurev.physiol.68.040104.110001; Lesser MP, 2003, J EXP BIOL, V206, P4097, DOI 10.1242/jeb.00621; Levitan DR, 2000, P ROY SOC B-BIOL SCI, V267, P531, DOI 10.1098/rspb.2000.1032; LEVITAN DR, 1991, BIOL BULL, V181, P371, DOI 10.2307/1542357; Lister KN, 2015, POLAR BIOL, V38, P1741, DOI 10.1007/s00300-015-1739-3; Lister KN, 2015, AQUAT TOXICOL, V161, P61, DOI 10.1016/j.aquatox.2015.01.031; Lister KN, 2010, J EXP BIOL, V213, P1967, DOI 10.1242/jeb.039990; Lister KN, 2010, PHOTOCHEM PHOTOBIOL, V86, P1091, DOI 10.1111/j.1751-1097.2010.00779.x; Livingstone DR, 2001, MAR POLLUT BULL, V42, P656, DOI 10.1016/S0025-326X(01)00060-1; Llodra ER, 2002, ADV MAR BIOL, V43, P87; Lushchak VI, 2011, AQUAT TOXICOL, V101, P13, DOI 10.1016/j.aquatox.2010.10.006; MARAL J, 1977, BIOCHEM BIOPH RES CO, V77, P1525, DOI 10.1016/S0006-291X(77)80151-4; Marshall DJ, 2008, ECOLOGY, V89, P418, DOI 10.1890/07-0449.1; Marshall DJ, 2006, MAR POLLUT BULL, V52, P734, DOI 10.1016/j.marpolbul.2006.05.005; Marshall DJ, 2009, ECOL STUD-ANAL SYNTH, V206, P165, DOI 10.1007/978-3-540-92704-4_11; Martins M, 2013, AQUAT TOXICOL, V142, P85, DOI 10.1016/j.aquatox.2013.07.019; Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x; Mihaljevic B, 1996, FREE RADICAL BIO MED, V21, P53, DOI 10.1016/0891-5849(95)02224-4; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Moran AL, 2009, BIOL BULL-US, V216, P226; PAGLIA DE, 1967, J LAB CLIN MED, V70, P158; Rahman I, 2006, NAT PROTOC, V1, P3159, DOI 10.1038/nprot.2006.378; Regoli F, 2014, MAR ENVIRON RES, V93, P106, DOI 10.1016/j.marenvres.2013.07.006; REZNICK AZ, 1994, METHOD ENZYMOL, V233, P357; Schafer S, 2009, MAR ENVIRON RES, V68, P128, DOI 10.1016/j.marenvres.2009.05.001; Speakman JR, 2015, ECOL EVOL, V5, pS745, DOI 10.1002/ece3.1790; Stearns S., 1992, EVOLUTION LIFE HIST; Uthicke S, 2009, ECOL MONOGR, V79, P3, DOI 10.1890/07-2136.1; Valavanidis A, 2006, ECOTOX ENVIRON SAFE, V64, P178, DOI 10.1016/j.ecoenv.2005.03.013; Vaschenko MA, 1999, MAR POLLUT BULL, V38, P1097, DOI 10.1016/S0025-326X(99)00116-2; WALKER MM, 1984, NEW ZEAL J MAR FRESH, V18, P393, DOI 10.1080/00288330.1984.9516060 65 7 7 4 11 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0166-445X 1879-1514 AQUAT TOXICOL Aquat. Toxicol. AUG 2016 177 106 115 10.1016/j.aquatox.2016.05.013 10 Marine & Freshwater Biology; Toxicology Marine & Freshwater Biology; Toxicology DT5NK WOS:000381529700012 27267389 2018-11-22 J Davis, RB; Javois, J; Kaasik, A; Ounap, E; Tammaru, T Davis, Robert B.; Javois, Juhan; Kaasik, Ants; Ounap, Erki; Tammaru, Toomas An ordination of life histories using morphological proxies: capital vs. income breeding in insects ECOLOGY English Article capital breeding; CSR classification; income breeding; insect ecology; insect life history; Lepidoptera; phylogenetic comparative methods; phylogenetic generalized least squares; polyphagy; r- and K-strategies EPIRRITA-AUTUMNATA LEPIDOPTERA; EGG MATURATION STRATEGY; BODY-SIZE; POPULATION-DYNAMICS; PHYLOGENETIC INERTIA; HOLOMETABOLOUS INSECTS; REPRODUCTIVE EFFORT; REALIZED FECUNDITY; FEMALE SIZE; AMINO-ACIDS Predictive classifications of life histories are essential for evolutionary ecology. While attempts to apply a single approach to all organisms may be overambitious, recent advances suggest that more narrow ordination schemes can be useful. However, these schemes mostly lack easily observable proxies of the position of a species on respective axes. It has been proposed that, in insects, the degree of capital (vs. income) breeding, reflecting the importance of adult feeding for reproduction, correlates with various ecological traits at the level of among-species comparison. We sought to prove these ideas via rigorous phylogenetic comparative analyses. We used experimentally derived life-history data for 57 species of European Geometridae (Lepidoptera), and an original phylogenetic reconstruction. The degree of capital breeding was estimated based on morphological proxies, including relative abdomen size of females. Applying Brownian-motion-based comparative analyses (with an original update to include error estimates), we demonstrated the associations between the degree of capital breeding and larval diet breadth, sexual size dimorphism, and reproductive season. Ornstein-Uhlenbeck model based phylogenetic analysis suggested a causal relationship between the degree of capital breeding and diet breadth. Our study indicates that the gradation from capital to income breeding is an informative axis to ordinate life-history strategies in flying insects which are affected by the fecundity vs. mobility trade off, with the availability of easy to record proxies contributing to its predictive power in practical contexts. [Davis, Robert B.; Javois, Juhan; Kaasik, Ants; Ounap, Erki; Tammaru, Toomas] Univ Tartu, Inst Ecol & Earth Sci, Dept Zool, Vanemuise 46, EE-51014 Tartu, Estonia; [Ounap, Erki] Estonian Univ Life Sci, Inst Agr & Environm Sci, Kreutzwaldi 5, EE-51014 Tartu, Estonia Davis, RB (reprint author), Univ Tartu, Inst Ecol & Earth Sci, Dept Zool, Vanemuise 46, EE-51014 Tartu, Estonia. davis@ut.ee Kaasik, Ants/H-2462-2012 Kaasik, Ants/0000-0002-4904-0877 Estonian Ministry of Education and Research [IUT 20-33]; Estonian Research Council (ETF) [9344, 9294]; EU through European Regional Development Fund (Centre of Excellence FIBIR) We thank our colleagues in Tartu and anonymous referees for constructive criticism. The study was supported by institutional research funding IUT 20-33 of the Estonian Ministry of Education and Research, Estonian Research Council (ETF grants no 9344, 9294) and the EU through the European Regional Development Fund (Centre of Excellence FIBIR). Arnqvist G, 2000, ANIM BEHAV, V60, P145, DOI 10.1006/anbe.2000.1446; Bauerfeind SS, 2005, J INSECT PHYSIOL, V51, P545, DOI 10.1016/j.jinsphys.2005.02.002; Bauerfeind SS, 2008, BASIC APPL ECOL, V9, P443, DOI 10.1016/j.baae.2007.05.005; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; BOGGS CL, 1981, AM NAT, V117, P692, DOI 10.1086/283753; BOGGS CL, 1993, ECOLOGY, V74, P433, DOI 10.2307/1939305; Boggs CL, 1997, ECOLOGY, V78, P192; Bonnet X, 1998, OIKOS, V83, P333, DOI 10.2307/3546846; Brett MT, 2004, OIKOS, V105, P647, DOI 10.1111/j.0030-1299.2004.12777.x; Carnicer J, 2013, GLOBAL ECOL BIOGEOGR, V22, P6, DOI 10.1111/j.1466-8238.2012.00762.x; Carvalho MC, 1998, OECOLOGIA, V116, P98, DOI 10.1007/s004420050567; Casas J, 2005, ECOLOGY, V86, P545, DOI 10.1890/04-0812; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Crafer T., 2005, FOODPLANT LIST CATER; Davey K. G., 1999, ENCY REPROD, V2, P845; Davis RB, 2012, J EVOLUTION BIOL, V25, P210, DOI 10.1111/j.1420-9101.2011.02420.x; Davis RB, 2013, EVOLUTION, V67, P583, DOI 10.1111/j.1558-5646.2012.01776.x; DIXON AFG, 1993, FUNCT ECOL, V7, P267, DOI 10.2307/2390204; DRENT RH, 1980, ARDEA, V68, P225; Drummond AJ, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-214; Ellers J, 2000, AM NAT, V156, P650, DOI 10.1086/316990; Fischer K, 2004, FUNCT ECOL, V18, P656, DOI 10.1111/j.0269-8463.2004.00892.x; Flanders Stanley E., 1942, ANN ENT SOC AMERICA, V35, P251; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; Gotthard K, 2007, AM NAT, V169, P768, DOI 10.1086/516651; Griffen BD, 2012, BIOL INVASIONS, V14, P2545, DOI 10.1007/s10530-012-0251-8; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; Hansen TF, 2005, EVOLUTION, V59, P2063; Hansen TF, 1997, EVOLUTION, V51, P1341, DOI 10.1111/j.1558-5646.1997.tb01457.x; Hansen TF, 2008, EVOLUTION, V62, P1965, DOI 10.1111/j.1558-5646.2008.00412.x; HEBERT PDN, 1983, CAN ENTOMOL, V115, P1477, DOI 10.4039/Ent1151477-11; HONEK A, 1993, OIKOS, V66, P483, DOI 10.2307/3544943; Hughes CL, 2007, ECOL ENTOMOL, V32, P437, DOI 10.1111/j.1365-2311.2007.00890.x; HUNTER AF, 1995, EVOL ECOL, V9, P275, DOI 10.1007/BF01237773; Ives AR, 2007, SYSTEMATIC BIOL, V56, P252, DOI 10.1080/10635150701313830; Javois J, 2011, ENTOMOL EXP APPL, V139, P187, DOI 10.1111/j.1570-7458.2011.01120.x; Jervis MA, 2005, ECOL ENTOMOL, V30, P359, DOI 10.1111/j.0307-6946.2005.00712.x; Jervis MA, 2008, ANNU REV ENTOMOL, V53, P361, DOI 10.1146/annurev.ento.53.103106.093433; Jervis MA, 2007, BIOL J LINN SOC, V90, P293, DOI 10.1111/j.1095-8312.2007.00721.x; Jeschke JM, 2009, EVOL ECOL, V23, P867, DOI 10.1007/s10682-008-9276-y; Johnson RA, 2006, INSECT SOC, V53, P316, DOI 10.1007/s00040-006-0874-9; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; Kemp DJ, 2003, AM NAT, V162, P290, DOI 10.1086/376890; Kristensen N. P., 2003, HDB OF ZOOLOGY; Labra A, 2009, AM NAT, V174, P204, DOI 10.1086/600088; LEATHER SR, 1988, OIKOS, V51, P386, DOI 10.2307/3565323; Leraut P., 2009, MOTHS OF EUROPE, VII; MAC ARTHUR ROBERT H., 1967; Madden AH, 1945, USDA TECHNICAL B, V896, P1; Milano P, 2010, NEOTROP ENTOMOL, V39, P172, DOI 10.1590/S1519-566X2010000200005; Miller WE, 1996, ENVIRON ENTOMOL, V25, P213, DOI 10.1093/ee/25.2.213; Molleman F, 2009, J INSECT PHYSIOL, V55, P375, DOI 10.1016/j.jinsphys.2009.01.004; O'Brien DM, 2005, PHYSIOL BIOCHEM ZOOL, V78, P819, DOI 10.1086/431191; O'Brien DM, 2000, ECOLOGY, V81, P2822, DOI 10.1890/0012-9658(2000)081[2822:ATRIAH]2.0.CO;2; Ounap E, 2008, ZOOL SCR, V37, P405, DOI 10.1111/j.1463-6409.2008.00327.x; Ounap E, 2011, EUR J ENTOMOL, V108, P267, DOI 10.14411/eje.2011.036; Pelisson PF, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0076086; Pienaar J, 2013, ECOL LETT, V16, P571, DOI 10.1111/ele.12077; Pierce S, 2013, FUNCT ECOL, V27, P1002, DOI 10.1111/1365-2435.12095; Poykko H, 2009, ECOL ENTOMOL, V34, P254, DOI 10.1111/j.1365-2311.2008.01064.x; R Development Core Team, 2012, R LANG ENV STAT COMP; Reeve JP, 1999, HEREDITY, V83, P697, DOI 10.1046/j.1365-2540.1999.00616.x; Remmel T, 2009, ECOL ENTOMOL, V34, P98, DOI 10.1111/j.1365-2311.2008.01044.x; Revell LJ, 2009, EVOLUTION, V63, P3258, DOI 10.1111/j.1558-5646.2009.00804.x; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.2307/3071970; Rhainds M, 2008, ECOL ENTOMOL, V33, P663, DOI 10.1111/j.1365-2311.2008.01027.x; Rhainds M, 2013, J INSECT BEHAV, V26, P850, DOI 10.1007/s10905-013-9400-x; Sainmont J, 2014, AM NAT, V184, P466, DOI 10.1086/677926; Sattler K., 1991, Bulletin of the British Museum (Natural History) Entomology, V60, P243; Schmidtlein S, 2012, J VEG SCI, V23, P395, DOI 10.1111/j.1654-1103.2011.01370.x; Senechal E, 2011, OECOLOGIA, V165, P593, DOI 10.1007/s00442-010-1853-4; Seppanen E. J., 1970, SUURPERHOSTOUKKIEN R; Smits A, 2001, ECOL ENTOMOL, V26, P417, DOI 10.1046/j.1365-2311.2001.00329.x; Snall N, 2007, BIOL J LINN SOC, V92, P241, DOI 10.1111/j.1095-8312.2007.00834.x; Song ZM, 2007, EUR J ENTOMOL, V104, P721, DOI 10.14411/eje.2007.091; Stearns S., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; Stephens PA, 2014, ECOLOGY, V95, P882, DOI 10.1890/13-1434.1; Stephens PA, 2009, ECOLOGY, V90, P2057, DOI 10.1890/08-1369.1; Tammaru T, 1996, OIKOS, V77, P407, DOI 10.2307/3545931; Tammaru T, 2000, ENVIRON ENTOMOL, V29, P1002, DOI 10.1603/0046-225X-29.5.1002; Tammaru T, 1995, OIKOS, V74, P296, DOI 10.2307/3545659; Tammaru T, 1996, ECOL ENTOMOL, V21, P185, DOI 10.1111/j.1365-2311.1996.tb01186.x; Tammaru T, 1996, OIKOS, V77, P561, DOI 10.2307/3545946; Tammaru T, 2002, OECOLOGIA, V133, P430, DOI 10.1007/s00442-002-1057-7; Tammaru T, 2001, ECOL ENTOMOL, V26, P646, DOI 10.1046/j.1365-2311.2001.00363.x; TWEEDIE M W F, 1976, Entomologist's Gazette, V27, P2; Varpe O, 2009, OIKOS, V118, P363, DOI 10.1111/j.1600-0706.2008.17036.x; Viidalepp J, 2007, EUR J ENTOMOL, V104, P303, DOI 10.14411/eje.2007.046; Voje KL, 2013, EVOLUTION, V67, P453, DOI 10.1111/j.1558-5646.2012.01777.x; WAGNER DL, 1992, TRENDS ECOL EVOL, V7, P216, DOI 10.1016/0169-5347(92)90047-F; Wahlberg N, 2010, MOL PHYLOGENET EVOL, V55, P929, DOI 10.1016/j.ympev.2010.01.025; Warne RW, 2012, AM NAT, V180, P130, DOI 10.1086/665995; Westoby M, 2002, ANNU REV ECOL SYST, V33, P125, DOI 10.1146/annurev.ecolsys.33.010802.150452; Wheeler D, 1996, ANNU REV ENTOMOL, V41, P407, DOI 10.1146/annurev.en.41.010196.002203; WICKMAN PO, 1989, OIKOS, V56, P209, DOI 10.2307/3565338; WITTER MS, 1993, PHILOS T R SOC B, V340, P73, DOI 10.1098/rstb.1993.0050; Yamamoto S, 2007, MOL PHYLOGENET EVOL, V44, P711, DOI 10.1016/j.ympev.2006.12.027; Zera AJ, 1997, ANNU REV ENTOMOL, V42, P207, DOI 10.1146/annurev.ento.42.1.207 99 5 5 2 23 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology AUG 2016 97 8 2112 2124 10.1002/ecy.1435 13 Ecology Environmental Sciences & Ecology DS4KI WOS:000380749600023 27859210 2018-11-22 J Forbes, VE; Galic, N; Schmolke, A; Vavra, J; Pastorok, R; Thorbek, P Forbes, Valery E.; Galic, Nika; Schmolke, Amelie; Vavra, Janna; Pastorok, Rob; Thorbek, Pernille Assessing the risks of pesticides to threatened and endangered species using population modeling: A critical review and recommendations for future work ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY English Review Ecological risk assessment; Endangered Species Act; Life history; Population viability analysis LIFE-HISTORY STRATEGIES; INDIVIDUAL-BASED MODEL; ECOLOGICAL MODELS; SALMON POPULATIONS; CHRONIC TOXICITY; SIMULATION-MODEL; CHINOOK SALMON; LEVEL TOXICITY; VIABILITY; RECOVERY United States legislation requires the US Environmental Protection Agency to ensure that pesticide use does not cause unreasonable adverse effects on the environment, including species listed under the Endangered Species Act (ESA; hereafter referred to as listed species). Despite a long history of population models used in conservation biology and resource management and a 2013 report from the US National Research Council recommending their use, application of population models for pesticide risk assessments under the ESA has been minimal. The pertinent literature published from 2004 to 2014 was reviewed to explore the availability of population models and their frequency of use in listed species risk assessments. The models were categorized in terms of structure, taxonomic coverage, purpose, inputs and outputs, and whether the models included density dependence, stochasticity, or risk estimates, or were spatially explicit. Despite the widespread availability of models and an extensive literature documenting their use in other management contexts, only 2 of the approximately 400 studies reviewed used population models to assess the risks of pesticides to listed species. This result suggests that there is an untapped potential to adapt existing models for pesticide risk assessments under the ESA, but also that there are some challenges to do so for listed species. Key conclusions from the analysis are summarized, and priorities are recommended for future work to increase the usefulness of population models as tools for pesticide risk assessments. Environ Toxicol Chem 2016;35:1904-1913. (c) 2016 SETAC [Forbes, Valery E.; Galic, Nika; Schmolke, Amelie] Univ Minnesota, Dept Ecol Evolut & Behav, St Paul, MN 55108 USA; [Vavra, Janna] Univ Nebraska, Sch Biol Sci, Lincoln, NE USA; [Pastorok, Rob] Integral Consulting, Seattle, WA USA; [Thorbek, Pernille] Jealotts Hill Int Res Ctr, Environm Safety, Bracknell, Berks, England Forbes, VE (reprint author), Univ Minnesota, Dept Ecol Evolut & Behav, St Paul, MN 55108 USA. veforbes@umn.edu Galic, Nika/0000-0002-4344-3464 CropLife America We thank M. Etterson and 2 anonymous reviewers for providing helpful comments on an earlier version of the manuscript. Funding for the present review was provided by CropLife America. Achord S, 2003, ECOL LETT, V6, P335, DOI 10.1046/j.1461-0248.2003.00438.x; Adams VM, 2005, BIOL CONSERV, V124, P425, DOI 10.1016/j.biocon.2005.02.001; Augusiak J, 2014, ECOL MODEL, V280, P117, DOI 10.1016/j.ecolmodel.2013.11.009; Baldwin DH, 2009, ECOL APPL, V19, P2004, DOI 10.1890/08-1891.1; Banks JE, 2011, BIOL CONTROL, V59, P336, DOI 10.1016/j.biocontrol.2011.09.005; Banks JE, 2010, RISK ANAL, V30, P175, DOI 10.1111/j.1539-6924.2009.01349.x; Bartell SM, 2003, HUM ECOL RISK ASSESS, V9, P907, DOI 10.1080/713610016; Baveco JM, 2014, ENVIRON TOXICOL CHEM, V33, P1517, DOI 10.1002/etc.2605; Bruggeman DJ, 2008, ENVIRON MANAGE, V42, P591, DOI 10.1007/s00267-008-9179-2; Buenau KE, 2014, RIVER RES APPL, V30, P964, DOI 10.1002/rra.2694; Busch DS, 2013, N AM J FISH MANAGE, V33, P1125, DOI 10.1080/02755947.2013.824933; Caswell H, 2001, MATRIX POPULATION MO; Chades I, 2012, CONSERV BIOL, V26, P1016, DOI 10.1111/j.1523-1739.2012.01951.x; Dohmen P., 2015, INTEGR ENVIRON ASSES, V12, P67; Ducrot V, 2010, ENVIRON SCI TECHNOL, V44, P3566, DOI 10.1021/es903860w; Dzul MC, 2013, POPUL ECOL, V55, P325, DOI 10.1007/s10144-013-0361-x; European Commission, 2013, ADDR NEW CHALL RISK; European Food Safety Authority, 2015, EFSA J, V13, P3996; European Food Safety Authority, 2015, EFSA J, V13, p[4125, 4216]; European Food Safety Authority, 2014, EFSA J, V12, P3589; Evans MEK, 2010, ECOL MONOGR, V80, P627, DOI 10.1890/09-1758.1; Finkelstein ME, 2012, P NATL ACAD SCI USA, V109, P11449, DOI 10.1073/pnas.1203141109; Forbes VE, 2015, INTEGR ENVIRON ASSES, V11, P348, DOI 10.1002/ieam.1628; Forbes VE, 2008, ENVIRON TOXICOL CHEM, V27, P1987, DOI 10.1897/08-029.1; Forbes VE, 2001, ECOL APPL, V11, P1249, DOI 10.2307/3061025; Galic N, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0054584; Galic Nika, 2010, Integrated Environmental Assessment and Management, V6, P338, DOI 10.1002/ieam.68; Grimm V, 2005, SCIENCE, V310, P987, DOI 10.1126/science.1116681; Grimm V, 2014, ECOL MODEL, V280, P129, DOI 10.1016/j.ecolmodel.2014.01.018; Grimm V, 2010, ECOL MODEL, V221, P2760, DOI 10.1016/j.ecolmodel.2010.08.019; Hanson N, 2012, INTEGR ENVIRON ASSES, V8, P262, DOI 10.1002/ieam.272; Hanson N, 2011, ECOTOXICOLOGY, V20, P1268, DOI 10.1007/s10646-011-0675-4; Harveson PM, 2004, J WILDLIFE MANAGE, V68, P909, DOI 10.2193/0022-541X(2004)068[0909:SDOFKD]2.0.CO;2; Hayashi TI, 2009, ECOL RES, V24, P945, DOI 10.1007/s11284-008-0561-6; Hendriks AJ, 1999, OIKOS, V86, P293, DOI 10.2307/3546447; Hudgens B, 2011, J WILDLIFE MANAGE, V75, P1350, DOI 10.1002/jwmg.165; Ibrahim L, 2014, ECOL MODEL, V280, P65, DOI [10.1016/j.ecolmodel.2013.08.001, 10.1016/j.ecolmode1.2013.08.001]; Kesler DC, 2007, BIOL CONSERV, V136, P520, DOI 10.1016/j.biocon.2006.12.023; Kretschmann A, 2012, ENVIRON TOXICOL CHEM, V31, P2014, DOI 10.1002/etc.1905; LANDE R, 1993, AM NAT, V142, P911, DOI 10.1086/285580; Liu C, 2013, ECOL MODEL, V248, P92, DOI 10.1016/j.ecolmodel.2012.09.016; Liu HY, 2008, BIRD CONSERV INT, V18, P292, DOI 10.1017/S0959270908000440; Luna TO, 2013, ENVIRON TOXICOL CHEM, V32, P2771, DOI 10.1002/etc.2372; Macneale KH, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0092436; Mebane CA, 2010, HUM ECOL RISK ASSESS, V16, P1026, DOI 10.1080/10807039.2010.512243; Meli M, 2013, ECOL MODEL, V250, P338, DOI 10.1016/j.ecolmodel.2012.11.010; Miller JK, 2011, BIOCONTROL, V56, P935, DOI 10.1007/s10526-011-9371-9; Munns Jr WR, 2008, POPULATION LEVEL ECO, P211; Nabe-Nielsen J, 2014, ECOL MODEL, V272, P242, DOI 10.1016/j.ecolmodel.2013.09.025; National Research Council, 2013, ASS RISKS END THREAT; National Research Council, 2009, SCI DEC ADV RISK ASS; Pastorok RA, 2003, HUM ECOL RISK ASSESS, V9, P939, DOI 10.1080/713610017; Preuss TG, 2009, ENVIRON SCI POLLUT R, V16, P250, DOI 10.1007/s11356-009-0124-6; Raimondo S, 2007, ENVIRON SCI TECHNOL, V41, P5888, DOI 10.1021/es070359o; Raimondo S, 2006, ENVIRON TOXICOL CHEM, V25, P589, DOI 10.1897/05-335R.1; Raimondo S, 2010, EPA600R OFF RES DEV; Raimondo S, 2013, ECOL MODEL, V265, P149, DOI 10.1016/j.ecolmodel.2013.06.014; Sappington LC, 2001, ENVIRON TOXICOL CHEM, V20, P2869, DOI 10.1897/1551-5028(2001)020<2869:CSOTAE>2.0.CO;2; Schipper AM, 2013, J APPL ECOL, V50, P1469, DOI 10.1111/1365-2664.12142; Schmitt W, 2013, ECOL MODEL, V255, P1, DOI 10.1016/j.ecolmodel.2013.01.017; Schmolke A, 2010, TRENDS ECOL EVOL, V25, P479, DOI 10.1016/j.tree.2010.05.001; Schmolke A, 2010, ENVIRON TOXICOL CHEM, V29, P1006, DOI 10.1002/etc.120; Schumaker NH, 2014, LANDSCAPE ECOL, V29, P579, DOI 10.1007/s10980-014-0004-4; Spromberg JA, 2005, ENVIRON TOXICOL CHEM, V24, P1532, DOI 10.1897/04-160.1; Spromberg JA, 2006, ECOL MODEL, V199, P240, DOI 10.1016/j.ecolmodel.2006.05.007; Spromberg JA, 2005, INTEGR ENVIRON ASSES, V1, P9, DOI 10.1897/IEAM_2004a-005.1; Spromberg Julann A., 2011, Integrated Environmental Assessment and Management, V7, P648, DOI 10.1002/ieam.219; Stark JD, 2004, P NATL ACAD SCI USA, V101, P732, DOI 10.1073/pnas.0304903101; Stillman RA, 2015, BIOSCIENCE, V65, P140, DOI 10.1093/biosci/biu192; Thomson DM, 2006, CONSERV BIOL, V20, P1132, DOI 10.1111/j.1523-1739.2006.00376.x; Topping CJ, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0065803; US Environmental Protection Agency US Fish & Wildlife Service National Marine Fisheries Service US Department of Agriculture, 2013, INT APPR NAT LEV PES; Van Kirk RW, 2007, ECOL MODEL, V206, P407, DOI 10.1016/j.ecolmodel.2007.04.003; Wang M, 2013, INTEGR ENVIRON ASSES, V9, P294, DOI 10.1002/ieam.1377; Wang M, 2010, ENVIRON TOXICOL CHEM, V29, P1292, DOI 10.1002/etc.151; Williams R, 2011, CONSERV BIOL, V25, P526, DOI 10.1111/j.1523-1739.2011.01656.x; Willson JD, 2012, ECOL APPL, V22, P1791, DOI 10.1890/11-0915.1; Wolf S, 2015, BIOSCIENCE, V65, P200, DOI 10.1093/biosci/biu218; Wootton JT, 2014, ECOL APPL, V24, P1251, DOI 10.1890/13-1323.1; Zeigler SL, 2014, ECOL APPL, V24, P2144, DOI 10.1890/13-1275.1 80 12 12 0 37 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0730-7268 1552-8618 ENVIRON TOXICOL CHEM Environ. Toxicol. Chem. AUG 2016 35 8 1904 1913 10.1002/etc.3440 10 Environmental Sciences; Toxicology Environmental Sciences & Ecology; Toxicology DR7CH WOS:000380057100004 27037541 Bronze 2018-11-22 J Gust, KA; Kennedy, AJ; Melby, NL; Wilbanks, MS; Laird, J; Meeks, B; Muller, EB; Nisbet, RM; Perkins, EJ Gust, Kurt A.; Kennedy, Alan J.; Melby, Nicolas L.; Wilbanks, Mitchell S.; Laird, Jennifer; Meeks, Barbara; Muller, Erik B.; Nisbet, Roger M.; Perkins, Edward J. Daphnia magna's sense of competition: intra-specific interactions (ISI) alter life history strategies and increase metals toxicity ECOTOXICOLOGY English Article Daphnia; Intra-specific interactions; Ecotoxicology; Metals toxicity; Standard toxicity assays ENERGY BUDGET THEORY; INTRASPECIFIC COMPETITION; POPULATIONS; CONSPECIFICS; INDIVIDUALS; SENSITIVITY; INVESTMENT; CHEMICALS; BIOMARKER; RESPONSES This work investigates whether the scale-up to multi-animal exposures that is commonly applied in genomics studies provides equivalent toxicity outcomes to single-animal experiments of standard Daphnia magna toxicity assays. Specifically, we tested the null hypothesis that intraspecific interactions (ISI) among D. magna have neither effect on the life history strategies of this species, nor impact toxicological outcomes in exposure experiments with Cu and Pb. The results show that ISI significantly increased mortality of D. magna in both Cu and Pb exposure experiments, decreasing 14 day LC50 s and 95 % confidence intervals from 14.5 (10.9-148.3) to 8.4 (8.2-8.7) A mu g Cu/L and from 232 (156-4810) to 68 (63-73) A mu g Pb/L. Additionally, ISI potentiated Pb impacts on reproduction eliciting a nearly 10-fold decrease in the no-observed effect concentration (from 236 to 25 A mu g/L). As an indication of environmental relevance, the effects of ISI on both mortality and reproduction in Pb exposures were sustained at both high and low food rations. Furthermore, even with a single pair of Daphnia, ISI significantly increased (p < 0.05) neonate production in control conditions, demonstrating that ISI can affect life history strategy. Given these results we reject the null hypothesis and conclude that results from scale-up assays cannot be directly applied to observations from single-animal assessments in D. magna. We postulate that D. magna senses chemical signatures of conspecifics which elicits changes in life history strategies that ultimately increase susceptibility to metal toxicity. [Gust, Kurt A.; Kennedy, Alan J.; Melby, Nicolas L.; Wilbanks, Mitchell S.; Laird, Jennifer; Perkins, Edward J.] US Army, Environm Lab, Engineer Res & Dev Ctr, Vicksburg, MS 39180 USA; [Meeks, Barbara] SpecPro Tech Serv, San Antonio, TX USA; [Muller, Erik B.] Univ Calif Santa Barbara, Inst Marine Sci, Santa Barbara, CA 93106 USA; [Nisbet, Roger M.] Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USA Gust, KA (reprint author), US Army, Environm Lab, Engineer Res & Dev Ctr, Vicksburg, MS 39180 USA. kurt.a.gust@usace.army.mil Nisbet, Roger/B-6951-2014 Muller, Erik/0000-0003-2300-0727 US Army's Environmental Quality and Installations Research Program from the US National Science Foundation; US Environmental Protection Agency [DBI-1266377] We thank the anonymous peer reviewers for their assistance in refining the content and presentation of this paper. Opinions, interpretations, conclusions, and recommendations are those of the author(s) and are not necessarily endorsed by the U.S. Army, the National Science Foundation or the U.S. Environmental Protection Agency. This work was supported by the US Army's Environmental Quality and Installations Research Program in addition to partial support to RMN and EBM from the US National Science Foundation and the US Environmental Protection Agency under Cooperative Agreement Number DBI-1266377. Ananthasubramaniam B, 2015, ECOL APPL, V25, P1691, DOI 10.1890/14-0498.1; ASTM, 2012, E119397 ASTM; Bedhomme S, 2005, ECOL ENTOMOL, V30, P1, DOI 10.1111/j.0307-6946.2005.00665.x; BURNS CW, 1995, OECOLOGIA, V101, P234, DOI 10.1007/BF00317289; Burns CW, 2000, FRESHWATER BIOL, V43, P19, DOI 10.1046/j.1365-2427.2000.00510.x; Campos B, 2013, ENVIRON SCI TECHNOL, V47, P9434, DOI 10.1021/es4012299; Colbourne JK, 2011, SCIENCE, V331, P555, DOI 10.1126/science.1197761; De Coen WM, 2003, ENVIRON TOXICOL CHEM, V22, P1632, DOI 10.1897/1551-5028(2003)22<1632:TMBLRB>2.0.CO;2; De Schamphelaere KAC, 2007, AQUAT TOXICOL, V81, P409, DOI 10.1016/j.aquatox.2007.01.002; Foit K, 2012, AQUAT TOXICOL, V106, P25, DOI 10.1016/j.aquatox.2011.09.012; Gabsi F, 2014, ENVIRON TOXICOL CHEM, V33, P1449, DOI 10.1002/etc.2409; Gabsi F, 2014, ECOL MODEL, V280, P18, DOI 10.1016/j.ecolmodel.2013.06.018; Garcia-Reyero N, 2012, ENVIRON SCI TECHNOL, V46, P42, DOI 10.1021/es201245b; Garcia-Reyero N, 2009, ENVIRON SCI TECHNOL, V43, P4188, DOI 10.1021/es803702a; Gergs A, 2013, SCI REP-UK, V3, DOI 10.1038/srep02036; GLAZIER DS, 1992, ECOLOGY, V73, P910, DOI 10.2307/1940168; Hobk A., 1990, ECOLOGY, V71, P2255; Knillmann S, 2012, ECOTOXICOLOGY, V21, P1857, DOI 10.1007/s10646-012-0919-y; Liess M, 2010, AQUAT TOXICOL, V97, P15, DOI 10.1016/j.aquatox.2009.11.018; Lurling M, 2003, J PLANKTON RES, V25, P967, DOI 10.1093/plankt/25.8.967; Martin BT, 2013, AM NAT, V181, P506, DOI 10.1086/669904; Martin BT, 2013, ECOTOXICOLOGY, V22, P574, DOI 10.1007/s10646-013-1049-x; *OECD, 1984, 202 OECD; Pohnert G, 2007, TRENDS ECOL EVOL, V22, P198, DOI 10.1016/j.tree.2007.01.005; Roy S., 2009, THESIS; Shaw JR, 2007, BMC GENOMICS, V8, DOI 10.1186/1471-2164-8-477; Stabell OB, 2003, CHEM SENSES, V28, P141, DOI 10.1093/chemse/28.2.141; Stanley JK, 2013, ENVIRON SCI TECHNOL, V47, P9424, DOI 10.1021/es401115q; U.S. Environmental Protection Agency, 2002, EPA812R02012 OFF WAT; *US EPA, 6010B US EPA; US EPA, 6020 US EPA; Viaene KPJ, 2015, ENVIRON TOXICOL CHEM, V34, P1751, DOI 10.1002/etc.2973; Yamada K, 2010, SCIENCE, V329, P1647, DOI 10.1126/science.1192020 33 2 2 2 25 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0963-9292 1573-3017 ECOTOXICOLOGY Ecotoxicology AUG 2016 25 6 1126 1135 10.1007/s10646-016-1667-1 10 Ecology; Environmental Sciences; Toxicology Environmental Sciences & Ecology; Toxicology DQ2KQ WOS:000379031600007 27151402 Other Gold, Green Published 2018-11-22 J Garcia de Leon, D; Moora, M; Opik, M; Neuenkamp, L; Gerz, M; Jairus, T; Vasar, M; Bueno, CG; Davison, J; Zobel, M Garcia de Leon, David; Moora, Mari; Opik, Maarja; Neuenkamp, Lena; Gerz, Maret; Jairus, Teele; Vasar, Martti; Bueno, C. Guillermo; Davison, John; Zobel, Martin Symbiont dynamics during ecosystem succession: co-occurring plant and arbuscular mycorrhizal fungal communities FEMS MICROBIOLOGY ECOLOGY English Article arbuscular mycorrhiza; chronosequence; covariation; dispersal limitation; plant-fungal interactions; species pool LIFE-HISTORY STRATEGIES; MOUNT-ST-HELENS; RE-ESTABLISHMENT; DIVERSITY; GRASSLAND; ROOTS; PRODUCTIVITY; ENVIRONMENT; DISPERSAL; RICHNESS Although mycorrhizas are expected to play a key role in community assembly during ecological succession, little is known about the dynamics of the symbiotic partners in natural systems. For instance, it is unclear how efficiently plants and arbuscular mycorrhizal (AM) fungi disperse into early successional ecosystems, and which, if either, symbiotic partner drives successional dynamics. This study describes the dynamics of plant and AM fungal communities, assesses correlation in the composition of plant and AM fungal communities and compares dispersal limitation of plants and AM fungi during succession. We studied gravel pits 20 and 50 years post abandonment and undisturbed grasslands in Western Estonia. The composition of plant and AM fungal communities was strongly correlated, and the strength of the correlation remained unchanged as succession progressed, indicating a stable dependence among mycorrhizal plants and AM fungi. A relatively high proportion of the AM fungal taxon pool was present in early successional sites, in comparison with the respective fraction of plants. These results suggest that AM fungi arrived faster than plants and may thus drive vegetation dynamics along secondary vegetation succession. [Garcia de Leon, David; Moora, Mari; Opik, Maarja; Neuenkamp, Lena; Gerz, Maret; Jairus, Teele; Vasar, Martti; Bueno, C. Guillermo; Davison, John; Zobel, Martin] Univ Tartu, Dept Bot, Inst Ecol & Earth Sci, Lai 40, EE-51005 Tartu, Estonia Garcia de Leon, D (reprint author), Univ Tartu, Dept Bot, Inst Ecol & Earth Sci, Lai 40, EE-51005 Tartu, Estonia. david.garciadeleon@ut.ee Opik, Maarja/A-1765-2008; Garcia de Leon, David/I-2398-2018; Moora, Mari/D-1961-2009; Zobel, Martin/H-1336-2015 Opik, Maarja/0000-0001-8025-7460; Garcia de Leon, David/0000-0001-8165-6965; Moora, Mari/0000-0002-4819-7506; Zobel, Martin/0000-0001-7957-6704; Neuenkamp, Lena/0000-0001-6108-5720 Estonian Research Council [IUT 20-28]; Estonian Science Foundation [9050, 9157]; European Regional Development Fund (Centre of Excellence EcolChange) This work was supported by the Estonian Research Council [IUT 20-28], the Estonian Science Foundation [9050, 9157] and the European Regional Development Fund (Centre of Excellence EcolChange). ALLEN EB, 1980, J APPL ECOL, V17, P139, DOI 10.2307/2402969; ALLEN MF, 1988, P ROY SOC EDINB B, V94, P63, DOI 10.1017/S0269727000007132; ALLEN MF, 1992, MYCOL RES, V96, P447, DOI 10.1016/S0953-7562(09)81089-7; ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1016/S0022-2836(05)80360-2; Bardgett RD, 2014, NATURE, V515, P505, DOI 10.1038/nature13855; Bever JD, 2009, ECOL LETT, V12, P13, DOI 10.1111/j.1461-0248.2008.01254.x; Bever JD, 1996, J ECOL, V84, P71, DOI 10.2307/2261701; da Silva IR, 2014, APPL SOIL ECOL, V84, P166, DOI 10.1016/j.apsoil.2014.07.008; Davison J, 2015, SCIENCE, V349, P970, DOI 10.1126/science.aab1161; Davison J, 2016, SOIL BIOL BIOCHEM, V97, P63, DOI 10.1016/j.soilbio.2016.03.003; Davison J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0041938; Dickie IA, 2015, NEW PHYTOL, V205, P1369, DOI 10.1111/nph.13290; Edgar RC, 2010, BIOINFORMATICS, V26, P2460, DOI 10.1093/bioinformatics/btq461; Egan C, 2014, FUNGAL ECOL, V12, P26, DOI 10.1016/j.funeco.2014.06.004; Gazol A, 2016, FEMS MICROBIOL ECOL, V92, DOI 10.1093/femsec/fiw073; Lisboa FJG, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0101238; Hart MM, 2001, MYCOLOGIA, V93, P1186, DOI 10.2307/3761678; Hausmann NT, 2010, ECOLOGY, V91, P2333, DOI 10.1890/09-0924.1; Hiiesalu I, 2014, NEW PHYTOL, V203, P233, DOI 10.1111/nph.12765; Jaagus J, 1999, NEW DATA CLIMATE EST, V85, P28; JACKSON DA, 1995, ECOSCIENCE, V2, P297, DOI 10.1080/11956860.1995.11682297; Johnson D, 2004, NEW PHYTOL, V161, P503, DOI 10.1046/j.1469-8137.2003.00938.x; Kiers ET, 2011, SCIENCE, V333, P880, DOI 10.1126/science.1208473; Kivlin SN, 2014, FUNGAL ECOL, V12, P14, DOI 10.1016/j.funeco.2014.04.004; Landis FC, 2004, NEW PHYTOL, V164, P493, DOI 10.1111/j.1469-8137.2004.01202.x; Lee J, 2008, FEMS MICROBIOL ECOL, V65, P339, DOI 10.1111/j.1574-6941.2008.00531.x; Lekberg Y, 2011, ECOLOGY, V92, P1292, DOI 10.1890/10-1516.1; Lopez-Garcia A, 2014, PLANT SOIL, V379, P247, DOI 10.1007/s11104-014-2060-6; Maltz MR, 2015, RESTOR ECOL, V23, P625, DOI 10.1111/rec.12231; Martinez-Garcia LB, 2015, NEW PHYTOL, V205, P1565, DOI 10.1111/nph.13226; Milne I, 2009, BIOINFORMATICS, V25, P126, DOI 10.1093/bioinformatics/btn575; Moora M, 2010, POSITIVE PLANT INTERACTIONS AND COMMUNITY DYNAMICS, P79; Opik M, 2013, MYCORRHIZA, V23, P411, DOI 10.1007/s00572-013-0482-2; Oksanen J., 2015, VEGAN COMMUNITY ECOL; Opik M, 2010, NEW PHYTOL, V188, P223, DOI 10.1111/j.1469-8137.2010.03334.x; Partel M, 1999, J VEG SCI, V10, P561, DOI 10.2307/3237190; Pendergast TH, 2013, NEW PHYTOL, V197, P1300, DOI 10.1111/nph.12105; Peres-Neto PR, 2001, OECOLOGIA, V129, P169, DOI 10.1007/s004420100720; Pickett STA, 2012, VEGETATION ECOLOGY, P107; R Core Team, 2015, R LANG ENV STAT COMP; Reitalu T, 2014, AGR ECOSYST ENVIRON, V182, P59, DOI 10.1016/j.agee.2012.11.005; Roberts DW, 2015, LABDSV ORDINATION MU; Saks U, 2014, BOTANY, V92, DOI 10.1139/cjb-2013-0058; SIMON L, 1992, APPL ENVIRON MICROB, V58, P291; Smith SE, 2008, MYCORRHIZAL SYMBIOSIS, 3RD EDITION, P1; Tamme R, 2014, ECOLOGY, V95, P505, DOI 10.1890/13-1000.1; Titus JH, 2007, CAN J BOT, V85, P941, DOI 10.1139/B07-099; Torrez V, 2016, APPL VEG SCI, V19, P7, DOI 10.1111/avsc.12193; Uibopuu A, 2012, PLANT SOIL, V356, P331, DOI 10.1007/s11104-011-1116-0; Varga S, 2015, MYCORRHIZA, V25, P335, DOI 10.1007/s00572-014-0613-4; Vogelsang KM, 2006, NEW PHYTOL, V172, P554, DOI 10.1111/j.1469-8137.2006.01854.x; Waterhouse AM, 2009, BIOINFORMATICS, V25, P1189, DOI 10.1093/bioinformatics/btp033; Williams A, 2011, SOIL BIOL BIOCHEM, V43, P339, DOI 10.1016/j.soilbio.2010.10.021; Yang GW, 2014, J ECOL, V102, P1072, DOI 10.1111/1365-2745.12249; Zobel M, 2014, J VEG SCI, V25, P1133, DOI 10.1111/jvs.12191; Zuur A. F., 2009, MIXED EFFECTS MODELS 56 7 7 5 32 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0168-6496 1574-6941 FEMS MICROBIOL ECOL FEMS Microbiol. Ecol. JUL 2016 92 7 UNSP fiw097 10.1093/femsec/fiw097 9 Microbiology Microbiology DR1VT WOS:000379693700008 27162183 Bronze 2018-11-22 J Tilley, JD; Butler, CM; Suarez-Morales, E; Franks, JS; Hoffmayer, ER; Gibson, DP; Comyns, BH; Ingram, GW; Blake, EM Tilley, Jason D.; Butler, Christopher M.; Suarez-Morales, Eduardo; Franks, James S.; Hoffmayer, Eric R.; Gibson, Dyan P.; Comyns, Bruce H.; Ingram, G. Walter, Jr.; Blake, E. Mae Feeding ecology of larval Atlantic bluefin tuna, Thunnus thynnus, from the central Gulf of Mexico BULLETIN OF MARINE SCIENCE English Article OIL-SPILL; COPEPOD ASSEMBLAGES; POPULATION-DYNAMICS; SHELF; OCEAN; FISH; SEA; SCOMBRIDAE; FISHERIES; PLANKTON Inter-annual and ontogenetic differences in diet and feeding intensity were examined for larval Atlantic bluefin tuna, Thunnus thynnus (Linnaeus, 1758), collected from the central Gulf of Mexico (GOM) during May 2008, 2009, and 2010 [n = 100; 3.0-6.7 mm body length (BL)]. Predominant prey groups were copepods, cirripeds, and cladocerans. Inter-annual differences in diet resulted from changes in the consumption of copepods and unique prey groups (e.g., cladocerans). Body length had an effect on T. thynnus diet, and a relative increase in copepod consumption occurred beyond 5 mm. Feeding intensity (i.e., the number of prey per digestive tract) was higher during 2010 than 2008 and 2009 and positively correlated with increasing T. thynnus BL. No fish prey were observed, which suggests piscivory in GOM T. thynnus does not occur at sizes < 6 mm. Patterns in feeding incidence (i.e., total number of digestive tracts with prey divided by the total number of digestive tracts) contrasted with reports from the Mediterranean Sea, suggesting T. thynnus may have distinct early life history strategies between the two regions. [Tilley, Jason D.; Butler, Christopher M.; Franks, James S.; Gibson, Dyan P.; Comyns, Bruce H.; Blake, E. Mae] Univ Southern Mississippi, Gulf Coast Res Lab, Ctr Fisheries Res & Dev, Ocean Springs, MS 39564 USA; [Suarez-Morales, Eduardo] El Colegio Frontera ECOSUR, Unidad Chetumal, Quintana Roo 77014, Mexico; [Hoffmayer, Eric R.; Ingram, G. Walter, Jr.] Natl Ocean & Atmospher Adm, Southeast Fisheries Sci Ctr, Mississippi Labs, Pascagoula, MS 39567 USA Tilley, JD (reprint author), Univ Southern Mississippi, Gulf Coast Res Lab, Ctr Fisheries Res & Dev, Ocean Springs, MS 39564 USA. Jason.Tilley@usm.edu Tilley, Jason/0000-0002-8512-543X Guy Harvey Ocean Foundation (GHOF); NOAA Fisheries, Southeast Fisheries Science Center (SEFSC) This research was partially funded by a grant from the Guy Harvey Ocean Foundation (GHOF) to J Franks. We acknowledge NOAA Fisheries, Southeast Fisheries Science Center (SEFSC) for funding our larval bluefin tuna research cruises through the Southeast Area Monitoring and Assessment Program (SEAMAP). We appreciate the field assistance provided by Gulf Coast Research Laboratory colleagues R Waller, J Ballard, and P Grammer and gratefully acknowledge the contributions of the captains and crew of the R/V Tommy Munro. We also appreciate the statistical guidance of J Osborne and W Wu and oceanographic advice from J Wiggert. This work is dedicated to the memory of our colleague M Blake in recognition of her contributions to ichthyoplankton research in the Gulf of Mexico. Abbriano RM, 2011, OCEANOGRAPHY, V24, P294, DOI 10.5670/oceanog.2011.80; Almeda R, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0067212; Anderson DR, 2008, MODEL BASED INFERENC; ANDERSON J T, 1988, Journal of Northwest Atlantic Fishery Science, V8, P55; Bakun A, 2003, FISH OCEANOGR, V12, P458, DOI 10.1046/j.1365-2419.2003.00258.x; Batten SD, 1998, MAR POLLUT BULL, V36, P764, DOI 10.1016/S0025-326X(98)00039-3; Block BA, 2005, NATURE, V434, P1121, DOI 10.1038/nature03463; Bolker B., 2012, GETTING STARTED GLMM; Boltovskoy D., 1999, S ATLANTIC ZOOPLANKT; Brette F, 2014, SCIENCE, V343, P772, DOI 10.1126/science.1242747; Burnham KP, 2011, BEHAV ECOL SOCIOBIOL, V65, P23, DOI 10.1007/s00265-010-1029-6; Campos-Hernandez A, 1994, COPEPODOS PELAGICOS; Carassou L, 2014, ENVIRON RES LETT, V9, DOI 10.1088/1748-9326/9/12/124003; Catalan IA, 2011, J FISH BIOL, V78, P1545, DOI 10.1111/j.1095-8649.2011.02960.x; CONWAY DVP, 1990, MAR BIOL, V105, P419, DOI 10.1007/BF01316313; Fennel K, 2011, BIOGEOSCIENCES, V8, P1881, DOI 10.5194/bg-8-1881-2011; Fox J., 2011, R COMPANION APPL REG; Fromentin JM, 2005, FISH FISH, V6, P281, DOI 10.1111/j.1467-2979.2005.00197.x; Greer AT, 2015, J MARINE SYST, V142, P111, DOI 10.1016/j.jmarsys.2014.10.008; Hare JA, 2014, ICES J MAR SCI, V71, P2343, DOI 10.1093/icesjms/fsu018; Hjort J, 1914, RAPP P V REUN CONS I, V20, P1; Houde E.D, 1987, AM FISH SOC S, V2, P17; HYCOM, 2008, HYCOM NCODA GULF MEX; HYSLOP EJ, 1980, J FISH BIOL, V17, P411, DOI 10.1111/j.1095-8649.1980.tb02775.x; Jones EB, 2015, REMOTE SENS ENVIRON, V159, P152, DOI 10.1016/j.rse.2014.11.019; Knapp JM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098233; Laiz-Carrion R, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133406; Lasker R, 1978, RAPPORTS PROCES VERB, V173, P212; Llopiz Joel K., 2015, International Commission for the Conservation of Atlantic Tunas Collective Volume of Scientific Papers, V71, P1710; Llopiz JK, 2015, DEEP-SEA RES PT II, V113, P113, DOI 10.1016/j.dsr2.2014.05.014; Lopez-Salgado I, 1998, CRUSTACEANA, V71, P312, DOI 10.1163/156854098X00284; Mather FJ, 1995, HIST DOCUMENT LIFE H; Muhling BA, 2011, B MAR SCI, V87, P687, DOI 10.5343/bms.2010.1101; Owre HB, 1967, COPEPODS FLORIDA CUR; Prairie J. C., 2012, LIMNOL OCEANOGR FLUI, V2, P121, DOI DOI 10.1215/21573689-1964713; Reeb CA, 2013, NA11NMF4720106 NOAA; Reglero P, 2011, MAR ECOL PROG SER, V433, P205, DOI 10.3354/meps09187; Reglero P, 2015, J PLANKTON RES, V37, P2, DOI 10.1093/plankt/fbu082; RICHARDS WJ, 1993, B MAR SCI, V53, P475; RICHARDS WJ, 1990, FISH B-NOAA, V88, P607; Richards WJ, 2005, EARLY STAGES ATLANTI, P2187; Richards WJ, 1976, ICCAT COLL VOL SCI P, V5, P267; Richardson DE, 2016, P NATL ACAD SCI USA, V113, P3299, DOI 10.1073/pnas.1525636113; ROFFS (Roffer's Ocean Fishing Forecasting Service), 2011, ROFFS FISH AN 2008 2; Rooker JR, 2007, REV FISH SCI, V15, P265, DOI 10.1080/10641260701484135; SAS Institute Inc, 2011, SAS STAT 9 3 USERS G; Secor D. H., 2014, COLLECT VOL SCI PAP, V70, P368; Seuront L, 2010, MAR FRESHWATER RES, V61, P263, DOI 10.1071/MF09055; Sheng YL, 2011, GEOMAT NAT HAZ RISK, V2, P329, DOI 10.1080/19475705.2011.564213; Suarez-Morales E, 2000, CRUSTACEANA, V73, P1247, DOI 10.1163/156854000505227; Suarez-Morales E, 2009, BIODIVERSITY, VI, P841; Suarez-Morales E, 1991, B PLANKTON SOC JAPAN, V1991, P593; Takasuka A, 2003, MAR ECOL PROG SER, V252, P223, DOI 10.3354/meps252223; UOTANI I, 1990, NIPPON SUISAN GAKK, V56, P713; Varela M, 2006, MAR POLLUT BULL, V53, P272, DOI 10.1016/j.marpolbul.10.005; YOUNG JW, 1990, MAR ECOL PROG SER, V61, P17, DOI 10.3354/meps061017; Yufera M, 2014, AQUACULTURE, V426, P126, DOI 10.1016/j.aquaculture.2014.01.031 57 5 5 0 12 ROSENSTIEL SCH MAR ATMOS SCI MIAMI 4600 RICKENBACKER CAUSEWAY, MIAMI, FL 33149 USA 0007-4977 1553-6955 B MAR SCI Bull. Mar. Sci. JUL 2016 92 3 321 334 10.5343/bms.2015.1067 14 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography DZ4CB WOS:000385804300003 2018-11-22 J Zizzari, ZV; van Straalen, NM; Ellers, J Zizzari, Z. V.; van Straalen, N. M.; Ellers, J. Transgenerational effects of nutrition are different for sons and daughters JOURNAL OF EVOLUTIONARY BIOLOGY English Article Collembola; environmental mismatches; food shortage; life-history traits; sex-specific effects; transgenerational plasticity LIFE-HISTORY TRAJECTORIES; INDIRECT SPERM TRANSFER; ORCHESELLA-CINCTA; THRIFTY PHENOTYPE; DEVELOPMENTAL PLASTICITY; COLLEMBOLA; FOOD; SIZE; DIET; TRAITS Food shortage is an important selective factor shaping animal life-history trajectories. Yet, despite its role, many aspects of the interaction between parental and offspring food environments remain unclear. In this study, we measured developmental plasticity in response to food availability over two generations and tested the relative contribution of paternal and maternal food availability to the performance of offspring reared under matched and mismatched food environments. We applied a cross-generational split-brood design using the springtail Orchesella cincta, which is found in the litter layer of temperate forests. The results show adverse effects of food limitation on several life-history traits and reproductive performance of both parental sexes. Food conditions of both parents contributed to the offspring phenotypic variation, providing evidence for transgenerational effects of diet. Parental diet influenced sons' age at maturity and daughters' weight at maturity. Specifically, being born to food-restricted parents allowed offspring to alleviate the adverse effects of food limitation, without reducing their performance under well-fed conditions. Thus, parents raised on a poor diet primed their offspring for a more efficient resource use. However, a mismatch between maternal and offspring food environments generated sex-specific adverse effects: female offspring born to well-fed mothers showed a decreased flexibility to deal with low-food conditions. Notably, these maternal effects of food availability were not observed in the sons. Finally, we found that the relationship between age and size at maturity differed between males and females and showed that offspring life-history strategies in O. cincta are primed differently by the parents. [Zizzari, Z. V.; van Straalen, N. M.; Ellers, J.] Vrije Univ Amsterdam, Dept Ecol Sci Anim Ecol, De Boelelaan 1085, NL-1081 HV Amsterdam, Netherlands Zizzari, ZV (reprint author), Vrije Univ Amsterdam, Dept Ecol Sci Anim Ecol, De Boelelaan 1085, NL-1081 HV Amsterdam, Netherlands. z.v.zizzari@vu.nl Ellers, Jacintha/K-5823-2012 Ellers, Jacintha/0000-0003-2665-1971; Zizzari, Valentina/0000-0002-9945-3071 Netherlands Organization for Scientific Research (NWO) [ALW1PJ/12035, 865.12.003] We are thankful for the assistance of P. Foglia Manzillo, F. Huyer and F. Monroy during this experiment and for the useful comments of the anonymous reviewers. Particular thanks go to C. Fox for comments on a first version of the manuscript. This research was financed by the Netherlands Organization for Scientific Research (NWO) via ALW Grant to ZVZ (ALW1PJ/12035) and VICI Grant to JE (865.12.003). Andersson M., 1994, SEXUAL SELECTION; Barrett ELB, 2009, P ROY SOC B-BIOL SCI, V276, P3257, DOI 10.1098/rspb.2009.0725; Bateson P, 2014, J PHYSIOL-LONDON, V592, P2357, DOI 10.1113/jphysiol.2014.271460; Bonduriansky R, 2007, J EVOLUTION BIOL, V20, P2379, DOI 10.1111/j.1420-9101.2007.01409.x; Bonduriansky R, 2009, ANNU REV ECOL EVOL S, V40, P103, DOI 10.1146/annurev.ecolsys.39.110707.173441; Brown AC, 2014, FUNCT ECOL, V28, P612, DOI 10.1111/1365-2435.12205; Brzek P, 2001, J EXP BIOL, V204, P3065; Burgess SC, 2014, OIKOS, V123, P769, DOI 10.1111/oik.01235; Cragg RG, 2001, SOIL BIOL BIOCHEM, V33, P2073, DOI 10.1016/S0038-0717(01)00138-9; Crean AJ, 2013, ECOLOGY, V94, P2575, DOI 10.1890/13-0184.1; Curley JP, 2011, HORM BEHAV, V59, P306, DOI 10.1016/j.yhbeh.2010.06.018; Desai M, 1997, BIOL REV, V72, P329, DOI 10.1017/S0006323196005026; Frago E, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088039; Franzke A, 2013, BEHAV ECOL, V24, P734, DOI 10.1093/beheco/ars205; Gill CJ, 1997, PHYSIOL BEHAV, V61, P387, DOI 10.1016/S0031-9384(96)00449-0; Giordano M, 2014, BEHAV ECOL, V25, P1459, DOI 10.1093/beheco/aru149; Gluckman PD, 2004, SCIENCE, V305, P1733, DOI 10.1126/science.1095292; Gols R, 2004, J INSECT BEHAV, V17, P317, DOI 10.1023/B:JOIR.0000031533.32859.ba; Hafer N, 2011, BIOL LETTERS, V7, P755, DOI 10.1098/rsbl.2011.0139; Hales CN, 2001, BRIT MED BULL, V60, P5, DOI 10.1093/bmb/60.1.5; Harvey SC, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0025840; JANSSEN GM, 1988, EVOLUTION, V42, P828, DOI 10.1111/j.1558-5646.1988.tb02503.x; JOOSSE ENG, 1977, OECOLOGIA, V29, P189, DOI 10.1007/BF00345694; Liefting M, 2015, J EVOLUTION BIOL, V28, P1057, DOI 10.1111/jeb.12629; Monaghan P, 2008, PHILOS T R SOC B, V363, P1635, DOI 10.1098/rstb.2007.0011; Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; Perry JC, 2010, P ROY SOC B-BIOL SCI, V277, P3639, DOI 10.1098/rspb.2010.0810; Plaistow SJ, 2004, P ROY SOC B-BIOL SCI, V271, P919, DOI 10.1098/rspb.2004.2682; Proctor HC, 1998, ANNU REV ENTOMOL, V43, P153, DOI 10.1146/annurev.ento.43.1.153; Ratikainen II, 2010, BEHAV ECOL, V21, P195, DOI 10.1093/beheco/arp168; Roff D. A., 2002, LIFE HIST EVOLUTION; Rusek J, 1998, BIODIVERS CONSERV, V7, P1207, DOI 10.1023/A:1008887817883; Saastamoinen M, 2013, OECOLOGIA, V171, P93, DOI 10.1007/s00442-012-2412-y; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Taborsky B, 2006, P ROY SOC B-BIOL SCI, V273, P741, DOI 10.1098/rspb.2005.3347; Timmermans MJTN, 2005, MOL ECOL, V14, P2017, DOI 10.1111/j.1365-294X.2005.02548.x; Triggs AM, 2012, FUNCT ECOL, V26, P1409, DOI 10.1111/j.1365-2435.2012.02051.x; Tully T, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003207; Uller T, 2013, J EVOLUTION BIOL, V26, P2161, DOI 10.1111/jeb.12212; Vahed K, 1998, BIOL REV, V73, P43, DOI 10.1017/S0006323197005112; VANSTRAALEN NM, 1985, OIKOS, V45, P253, DOI 10.2307/3565712; Verhoef HA, 1988, FUNCT ECOL, V2, P195, DOI 10.2307/2389695; Vijendravarma RK, 2010, BIOL LETTERS, V6, P238, DOI 10.1098/rsbl.2009.0754; Wei YC, 2014, P NATL ACAD SCI USA, V111, P1873, DOI 10.1073/pnas.1321195111; Wells JCK, 2007, EVOL BIOINFORM, V3, P109; White TCR, 2008, BIOL REV, V83, P227, DOI 10.1111/j.1469-185X.2008.00041.x; Zizzari ZV, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0762; Zizzari ZV, 2009, ANIM BEHAV, V78, P1261, DOI 10.1016/j.anbehav.2009.08.014; Zizzari ZV, 2014, OIKOS, V123, P1365, DOI 10.1111/oik.01496 50 4 4 3 16 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. JUL 2016 29 7 1317 1327 10.1111/jeb.12872 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity DU8XS WOS:000382500100004 27018780 2018-11-22 J Lind, MI; Zwoinska, MK; Meurling, S; Carlsson, H; Maklakov, AA Lind, Martin I.; Zwoinska, Martyna K.; Meurling, Sara; Carlsson, Hanne; Maklakov, Alexei A. Sex-specific Tradeoffs With Growth and Fitness Following Life-span Extension by Rapamycin in an Outcrossing Nematode, Caenorhabditis remanei JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES English Article Antiaging; Evolution; Longevity GENETICALLY HETEROGENEOUS MICE; DROSOPHILA-MELANOGASTER; SIZE DIMORPHISM; BODY-SIZE; MALE LONGEVITY; C-ELEGANS; EVOLUTION; INSULIN; METABOLISM; CONFLICT Rapamycin inhibits the nutrient-sensing TOR pathway and extends life span in a wide range of organisms. Although life-span extension usually differs between the sexes, the reason for this is poorly understood. Because TOR influences growth, rapamycin likely affects life-history traits such as growth and reproduction. Sexes have different life-history strategies, and theory predicts that they will resolve the tradeoffs between growth, reproduction, and life span differently. Specifically, in taxa with female-biased sexual size dimorphism, reduced growth may have smaller effects on male fitness. We investigated the effects of juvenile, adult, or life-long rapamycin treatment on growth, reproduction, life span, and individual fitness in the outcrossing nematode Caenorhabditis remanei. Life-long exposure to rapamycin always resulted in the strongest response, whereas postreproductive exposure did not affect life span. Although rapamycin resulted in longer life span and smaller size in males, male individual fitness was not affected. In contrast, size and fitness were negatively affected in females, whereas life span was only extended under high rapamycin concentrations. Our results support the hypothesis that rapamycin affects key life-history traits in a sex-specific manner. We argue that the fitness cost of life-span extension will be sex specific and propose that the smaller sex generally pay less while enjoying stronger life-span increase. [Lind, Martin I.; Zwoinska, Martyna K.; Meurling, Sara; Carlsson, Hanne; Maklakov, Alexei A.] Uppsala Univ, Ageing Res Grp, Dept Anim Ecol, Evolutionary Biol Ctr, S-75105 Uppsala, Sweden Lind, MI (reprint author), Uppsala Univ, Dept Anim Ecol, S-75236 Uppsala, Sweden. martin.i.lind@gmail.com Maklakov, Alexei/F-8167-2014; Lind, Martin/A-4189-2011 Maklakov, Alexei/0000-0002-5809-1203; Lind, Martin/0000-0001-5602-1933 Swedish Research Council [C0636601, 621-2013-4828]; Evolutionary Biology Centre, Uppsala University; European Research Council [St-G 2010 AGINGSEXDIFF 260885] This work was supported by the Swedish Research Council (C0636601) and by the Evolutionary Biology Centre, Uppsala University to M.I.L. A.A.M. was supported by the European Research Council Starting Grant-2010 (St-G 2010 AGINGSEXDIFF 260885) and by the Swedish Research Council (621-2013-4828). Andersson M., 1994, SEXUAL SELECTION; ARAK A, 1988, EVOLUTION, V42, P820, DOI 10.1111/j.1558-5646.1988.tb02501.x; Berg EC, 2012, P ROY SOC B-BIOL SCI, V279, P4296, DOI 10.1098/rspb.2012.1345; Bjedov I, 2010, CELL METAB, V11, P35, DOI 10.1016/j.cmet.2009.11.010; Bonduriansky R, 2008, FUNCT ECOL, V22, P443, DOI 10.1111/j.1365-2435.2008.01417.x; Bonduriansky R, 2009, TRENDS ECOL EVOL, V24, P280, DOI 10.1016/j.tree.2008.12.005; Brommer JE, 2002, ECOL LETT, V5, P802, DOI 10.1046/j.1461-0248.2002.00369.x; Broughton SJ, 2005, P NATL ACAD SCI USA, V102, P3105, DOI 10.1073/pnas.0405775102; Carter CS, 2016, J GERONTOL A-BIOL, V71, P866, DOI 10.1093/gerona/glu238; Charnov EL, 2001, P NATL ACAD SCI USA, V98, P9460, DOI 10.1073/pnas.161294498; Chen HY, 2014, CURR BIOL, V24, P2423, DOI 10.1016/j.cub.2014.08.055; Chen HY, 2012, CURR BIOL, V22, P2140, DOI 10.1016/j.cub.2012.09.021; Clancy DJ, 2001, SCIENCE, V292, P104, DOI 10.1126/science.1057991; Colombani J, 2003, CELL, V114, P739, DOI 10.1016/S0092-8674(03)00713-X; Criscuolo F, 2008, P ROY SOC B-BIOL SCI, V275, P1565, DOI 10.1098/rspb.2008.0148; DAVID JR, 1994, GENET SEL EVOL, V26, P229, DOI 10.1051/gse:19940305; de Magalhaes JP, 2007, J GERONTOL A-BIOL, V62, P149; Dillin A, 2002, SCIENCE, V298, P830, DOI 10.1126/science.1074240; EKLUND J, 1977, NATURE, V265, P48, DOI 10.1038/265048b0; Evans DS, 2011, AGEING RES REV, V10, P225, DOI 10.1016/j.arr.2010.04.001; Fairbairn DJ, 1997, ANNU REV ECOL SYST, V28, P659, DOI 10.1146/annurev.ecolsys.28.1.659; Gems D, 2000, GENETICS, V154, P1597; Griffin RM, 2013, MOL BIOL EVOL, V30, P2168, DOI 10.1093/molbev/mst121; Harrison DE, 2009, NATURE, V460, P392, DOI 10.1038/nature08221; HEAD G, 1995, EVOLUTION, V49, P776, DOI 10.1111/j.1558-5646.1995.tb02313.x; Holzenberger M, 2003, NATURE, V421, P182, DOI 10.1038/nature01298; Ivanov DK, 2015, J GERONTOL A-BIOL, DOI DOI 10.1093/GERONA/GLV047; Johnson SC, 2013, NATURE, V493, P338, DOI 10.1038/nature11861; Kapahi P, 2004, CURR BIOL, V14, P885, DOI 10.1016/j.cub.2004.03.059; Kraus C, 2013, AM NAT, V181, P492, DOI 10.1086/669665; LaFever L, 2005, SCIENCE, V309, P1071, DOI 10.1126/science.1111410; Lamming DW, 2012, SCIENCE, V335, P1638, DOI 10.1126/science.1215135; Lee WS, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2370; Lee WS, 2011, AM NAT, V178, P774, DOI 10.1086/662671; Lehtovaara A, 2013, AM NAT, V182, P653, DOI 10.1086/673296; LINTS FA, 1977, NATURE, V266, P624, DOI 10.1038/266624a0; Lionaki E, 2013, METHOD MOL BIOL, P473; Maklakov AA, 2013, BIOESSAYS, V35, P717, DOI 10.1002/bies.201300021; McCulloch D, 2003, AGING CELL, V2, P165, DOI 10.1046/j.1474-9728.2003.00047.x; McCulloch D, 2003, EXP GERONTOL, V38, P129, DOI 10.1016/S0531-5565(02)00147-X; Meissner B, 2004, J BIOL CHEM, V279, P36739, DOI 10.1074/jbc.M403415200; Metcalfe NB, 2003, EXP GERONTOL, V38, P935, DOI 10.1016/S0531-5565(03)00159-1; Miller RA, 2014, AGING CELL, V13, P468, DOI 10.1111/acel.12194; Miller RA, 2011, J GERONTOL A-BIOL, V66, P191, DOI 10.1093/gerona/glq178; Nussey DH, 2009, FUNCT ECOL, V23, P809, DOI 10.1111/j.1365-2435.2009.01555.x; Oldham S, 2000, PHILOS T R SOC B, V355, P945, DOI 10.1098/rstb.2000.0630; Olsson M, 2002, EVOLUTION, V56, P1867; Powers RW, 2006, GENE DEV, V20, P174, DOI 10.1101/gad.1381406; Promislow D, 2003, BEHAV GENET, V33, P191, DOI 10.1023/A:1022562103669; Reeve JP, 1999, HEREDITY, V83, P697, DOI 10.1046/j.1365-2540.1999.00616.x; Rice WR, 2001, J EVOLUTION BIOL, V14, P685, DOI 10.1046/j.1420-9101.2001.00319.x; Robert KA, 2010, AM NAT, V175, P147, DOI 10.1086/649595; Robida-Stubbs S, 2012, CELL METAB, V15, P713, DOI 10.1016/j.cmet.2012.04.007; Rollo CD, 2002, EVOL DEV, V4, P55, DOI 10.1046/j.1525-142x.2002.01053.x; Shi C, 2014, SCIENCE, V343, P536, DOI 10.1126/science.1242958; Soukas AA, 2009, GENE DEV, V23, P496, DOI 10.1101/gad.1775409; Stearns S., 1992, EVOLUTION LIFE HIST; Stearns SC, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P365; Stiernagle Theresa, 2006, WormBook, P1, DOI 10.1895/wormbook.1.101.1; Trivers R. L, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vellai T, 2003, NATURE, V426, P620, DOI 10.1038/426620a; WARD S, 1979, DEV BIOL, V73, P304, DOI 10.1016/0012-1606(79)90069-1; Wullschleger S, 2006, CELL, V124, P471, DOI 10.1016/j.cell.2006.01.016 64 6 6 0 8 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1079-5006 1758-535X J GERONTOL A-BIOL J. Gerontol. Ser. A-Biol. Sci. Med. Sci. JUL 2016 71 7 882 890 10.1093/gerona/glv174 9 Geriatrics & Gerontology; Gerontology Geriatrics & Gerontology DT0YW WOS:000381209900006 26472877 Bronze 2018-11-22 J Skirnisson, K Skirnisson, Karl Reprint of 'Association of helminth infections and food consumption in common elders Somateria mollissima in Iceland' JOURNAL OF SEA RESEARCH English Article; Proceedings Paper International NIOZ AWI Symposium on Ecology and Evolution of Marine Parasites and Diseases MAR 10-14, 2014 Texel, NETHERLANDS Royal Netherlands Inst Sea Res, Alfred Wegner Inst Common eider; Helminths; Prey; Life cycles; Seasonality; Parasites PROFILICOLLIS-BOTULUS ACANTHOCEPHALA; EIDER DUCK; LIFE-CYCLES; CARCINUS-MAENAS; 1913 CESTODA; SW ICELAND; SHORE CRAB; PARASITES; HYMENOLEPIDIDAE; REDESCRIPTION Common eider Somateria mollissima L. 1758, subsp. borealis, is widely distributed along the coasts of Iceland. In this study association of parasite infections and food composition was studied among 40 females and 38 males (66 adults, 12 subadults), shot under license on four occasions within the same year (February; before egg laying in May; after the breeding period in late June; and in November) in Skerjafjordur, SW Iceland. Parasitological examinations revealed 31 helminth species (11 digeneans, ten cestodes, seven nematodes, and three acanthocephalans). Distinct digenean species parasitized the gallbladder, kidney and bursa of Fabricius, whereas other helminths parasitized the gastrointestinal tract. Thirty-six invertebrate prey species were identified as food; waste and bread fed by humans, were also consumed by some birds. Amidostomum acutum was the only parasite found with a direct life cycle, whereas other species were food transmitted and ingested with different invertebrate prey. Opposite to females male birds rarely utilized periwinkles and gammarids as a food source. As a result, Microphallus and Microsomacanthus infection intensities were low except in February, when subadult males were responsible for an infection peak. Females caring for young increased their consumption of periwinkles close to the littoral zone in June; during pre-breeding, females also increased their gammarid intake. As a consequence, Microphallus and Microsomacanthus infection intensities temporarily peaked. Increased food intake (including Mytilus edulis) of females before the egg-laying period resulted in twofold higher Gymnophallus bursicola infection intensity than observed for males. Profilicollis botulus infection reflected seasonal changes in decapod consumption in both genders. Different life history strategies of males and females, especially before and during the breeding season and caring of young, and during molting in distinct feeding areas in summer, promote differences in consumption of prey-transmitted parasites that result in distinct infection patterns of the genders. (C) 2016 Published by Elsevier B.V. [Skirnisson, Karl] Univ Iceland, Inst Expt Pathol, Parasitol Lab, IS-112 Reykjavik, Iceland Skirnisson, K (reprint author), Univ Iceland, Inst Expt Pathol, Parasitol Lab, IS-112 Reykjavik, Iceland. karlsk@hi.is Anderson R.C., 1992, THEIR DEV TRANSMISSI; Baer J. C., 1962, ZOOLOGY ICELAND, V2; Belopolskaya M.M., 1952, BIOL SERIES, V141, P127; BISHOP CA, 1974, P HELM SOC WASH, V41, P25; Borgsteede FHM, 2006, HELMINTHOLOGIA, V43, P98, DOI 10.2478/s11687-006-0019-8; Borgsteede FHM, 2005, HELMINTHOLOGIA, V42, P83; BRAY R. A., 2008, KEYS TREMATODA, V3; Brinkman A., 1956, ZOOLOGY ICELAND, VII; Camphuysen CJ, 2002, BIOL CONSERV, V106, P303, DOI 10.1016/S0006-3207(01)00256-7; COWAN AB, 1955, J PARASITOL, V41, P43; Galaktionov K. V., 2003, BIOL EVOLUTION TREMA; Galaktionov KV, 2015, MAR BIOL, V162, P193, DOI 10.1007/s00227-014-2586-4; Galaktionov KV, 2012, PARASITOLOGY, V139, P1346, DOI 10.1017/S0031182012000583; Galaktionov KV, 2000, SYST PARASITOL, V47, P87, DOI 10.1023/A:1006426117264; Galkin A.K., 2005, B SCANDINAVIAN BALTI, V14, P58; Galkin AK, 2006, SYST PARASITOL, V64, P1, DOI 10.1007/s11230-005-9020-8; Galkin AK, 2008, SYST PARASITOL, V70, P119, DOI 10.1007/s11230-008-9134-x; Garden E. A., 1964, BIRD STUDY, V11, P280, DOI 10.1080/00063656409476078; Garoarsson A., 1977, FJOLRIT, V9; Garoarsson Arnpor, 2009, BLIKI, V30, P49; GIBSON DI, 2002, KEYS TREMATODA, V1; GORMAN M L, 1972, Ornis Scandinavica, V3, P21, DOI 10.2307/3676162; GRYTNER-ZIECINA B, 1978, Acta Parasitologica Polonica, V25, P121; Hario M., 1992, Suomen Riista, V38, P23; Hollmen T, 1999, J WILDLIFE DIS, V35, P466, DOI 10.7589/0090-3558-35.3.466; Ingolfsson A., 1977, FJOLRIT, V10; Jones A, 2005, KEYS TREMATODA, V2; Kats R.K.H., 2007, THESIS; Kulachkova V. G., 1979, Ekologiya i morfologiya gag v SSSR., P119; LIAT LB, 1980, J ZOOL, V190, P39; LOOSFRANK B, 1969, Z PARASITENK, V32, P135; Madsen H., 1945, DAN REV GAME BIOL, V1, P3; McDonald M. E., 1969, 126 US DEP INT FISH; McDonald M. E., 1988, RESOURCE PUBLICATION, V173; MCDONALD M. E., 1974, RESOURCE PUBLICATION, V122; MCDONALD ME, 1981, RESOURCE PUBLICATION, V142; MILNE H, 1976, Wildfowl, V27, P115; PERSSON L, 1974, Viltrevy (Stockholm), V9, P1; Petersen AE., 2001, AEOARFUGL AEOARRAEKT, P13; Pethon P., 1967, NYTT MAG ZOOL OSLO, V15, P97; POULIN R, 1993, INT J PARASITOL, V23, P937, DOI 10.1016/0020-7519(93)90060-C; Regel K.V., 2001, THESIS; Reiczigel J, 2005, QUANTITATIVE PARASIT; Rommel M., 2000, VETERINARMEDICINISHC; Rozsa L, 2000, J PARASITOL, V86, P228, DOI 10.2307/3284760; Ryzhikov K.M., 1985, REGION 2 CESTODA ACA; SCHILLER EL, 1955, J PARASITOL, V41, P79, DOI 10.2307/3274004; Schmidt J.D., 1986, CRC HDB TAPEWORM IDE; Skarphedinsson Kristinn H., 1996, Bulletin of the Scandinavian Society for Parasitology, V6, P90; Skirnisson K, 2004, J PARASITOL, V90, P50, DOI 10.1645/GE-118R; Skirnisson K, 2002, SARSIA, V87, P144, DOI 10.1080/003648202320205229; Skirnisson K., 2001, AEOARFUGL AEOARRAEKT, P171; Skirnisson K, 2003, B SCAND SOC PARASITO, V12-13, P50; Skirnisson K., 2001, AEOARFUGL AEOARRAEKT, P55; Skirnisson Karl, 2014, Natturufraedingurinn, V84, P89; Skirnisson Karl, 2000, Bliki (Reykjavik), V21, P1; Skirnisson Karl, 2003, Bliki (Reykjavik), V24, P3; Smidt G.D., 1996, FDN PARASITOLOGY; StatSoft Inc., 2013, STAT DAT AN SOFTW SY; Thieltges DW, 2006, J SEA RES, V55, P301, DOI 10.1016/j.seares.2005.12.001; THOMPSON AB, 1985, J ANIM ECOL, V54, P595, DOI 10.2307/4501; THOMPSON AB, 1985, PARASITOLOGY, V91, P563, DOI 10.1017/S0031182000062806; Wehr E.E., 1971, INFECT PARASITIC DIS, P184; Wesenberg-Lund E., 1952, ZOOLOGY ICELAND, VII 64 0 0 0 16 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 1385-1101 1873-1414 J SEA RES J. Sea Res. JUL 2016 113 SI 132 141 10.1016/j.seares.2016.06.002 10 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography DR1AJ WOS:000379638000015 2018-11-22 J Aoyagi, R; Kitayama, K Aoyagi, Ryota; Kitayama, Kanehiro Nutrient allocation among plant organs across 13 tree species in three Bornean rain forests with contrasting nutrient availabilities JOURNAL OF PLANT RESEARCH English Article Cell walls; Functional traits; Mixed dipterocarp forests; Nutrient productivity; Photosynthetic and non-photosynthetic organs; Tropical heath forests NITROGEN-USE EFFICIENCY; 2-MILLION-YEAR DUNE CHRONOSEQUENCE; PHOSPHORUS-USE EFFICIENCY; LEAF LIFE-SPAN; BIRCH SEEDLINGS; HABITAT SPECIALIZATION; LONG CHRONOSEQUENCE; BIOMASS ALLOCATION; C-3 PLANTS; PHOTOSYNTHESIS Allocation of nitrogen (N) and phosphorus (P) among plant organs is an important factor regulating growth rate, which is a key ecological process associated with plant life-history strategies. However, few studies have explored how N and P investment in photosynthetic (leaves) and non-photosynthetic (stems and roots) organs changes in relation to depletion of each element. We investigated nutrient concentrations of plant organs in relation to whole-plant nutrient concentration (total nutrient weight per total biomass) as an index of nutrient status of each individual using the saplings of the 13 species in three tropical rain forests with contrasting N and P availabilities (tropical evergreen forests and tropical heath forests). We found a steeper decrease in foliar N concentration than foliar P concentration with decreasing whole-plant nutrient concentration. Moreover, the steeper decrease in foliar N concentration was associated with relatively stable N concentration in stems, and vice versa for P. We suggest that the depletion of N is associated with a rapid dilution of foliar N because the cell walls in non-photosynthetic organs function as an N sink. On the other hand, these species can maintain foliar P concentration by decreasing stem P concentrations despites the depletion of P. Our results emphasize the significance of non-photosynthetic organs as an N sink for understanding the variation of foliar nutrient concentrations for the tree species in the three Bornean rain forests with different N and P availabilities. [Aoyagi, Ryota; Kitayama, Kanehiro] Kyoto Univ, Grad Sch Agr, Sakyo Ku, Kitashirakawa Oiwake Cho, Kyoto 6068502, Japan Aoyagi, R (reprint author), Kyoto Univ, Grad Sch Agr, Sakyo Ku, Kitashirakawa Oiwake Cho, Kyoto 6068502, Japan. aoyagi.ryota@gmail.com Aoyagi, Ryota/N-2971-2017 Japanese MESSC [22255002]; Global Environment Research Fund of the Ministry of the Environment, Japan [D-1006, 1-1403] We thank L. Ajon, P. Lagan, Y. Onoda, A. Hidaka, N. Imai, T. Seino, and K. Miyamoto for assisting our fieldwork and providing valuable suggestions. Permission to conduct our research was granted by the Sabah Forestry Department and the Sabah Parks. This study was supported by the Grant-in-Aid from the Japanese MESSC (22255002) to K. K. and by the Global Environment Research Fund D-1006 and 1-1403 of the Ministry of the Environment, Japan, to K.K. Aoyagi R, 2016, TROPICS IN PRESS; Aoyagi R, 2015, J TROP ECOL, V31, P231, DOI 10.1017/S0266467415000097; Canham CD, 1996, CAN J FOREST RES, V26, P1521, DOI 10.1139/x26-171; CHAPIN FS, 1990, ANNU REV ECOL SYST, V21, P423, DOI 10.1146/annurev.es.21.110190.002231; CHAPIN FS, 1980, ANNU REV ECOL SYST, V11, P233, DOI 10.1146/annurev.es.11.110180.001313; Chua G. L. S., 1995, Journal of Tropical Forest Science, V8, P240; Coomes DA, 1997, CAN J FOREST RES, V27, P831, DOI 10.1139/cjfr-27-6-831; Cordell S, 2001, OECOLOGIA, V127, P198, DOI 10.1007/s004420000588; Craine J. M., 2009, RESOURCE STRATEGIES; CREWS TE, 1995, ECOLOGY, V76, P1407, DOI 10.2307/1938144; Dent DH, 2009, BIOTROPICA, V41, P424, DOI 10.1111/j.1744-7429.2009.00505.x; Elser JJ, 2007, ECOL LETT, V10, P1135, DOI 10.1111/j.1461-0248.2007.01113.x; ERICSSON T, 1988, PHYSIOL PLANTARUM, V72, P227, DOI 10.1111/j.1399-3054.1988.tb05827.x; EVANS JR, 1989, OECOLOGIA, V78, P9, DOI 10.1007/BF00377192; Field C, 1986, EC PLANT FORM FUNCTI, P25; GARNIER E, 1995, ANN BOT-LONDON, V76, P667, DOI 10.1006/anbo.1995.1145; GEIGER DR, 1994, ANNU REV PLANT PHYS, V45, P235, DOI 10.1146/annurev.pp.45.060194.001315; Grime JP, 1979, PLANT STRATEGIES VEG; Gusewell S, 2005, PLANT ECOL, V176, P35, DOI 10.1007/s11258-004-0010-8; Gusewell S, 2004, NEW PHYTOL, V164, P243, DOI 10.1111/j.1469-8137.2004.01192.x; Harrington RA, 2001, ECOSYSTEMS, V4, P646, DOI 10.1007/s10021-001-0034-z; Hayes P, 2014, J ECOL, V102, P396, DOI 10.1111/1365-2745.12196; Hidaka A, 2011, J ECOL, V99, P849, DOI 10.1111/j.1365-2745.2011.01805.x; Hidaka A, 2009, J ECOL, V97, P984, DOI 10.1111/j.1365-2745.2009.01540.x; Hunt R, 1978, PLANT GROWTH ANAL; Imai N, 2010, J TROP ECOL, V26, P627, DOI 10.1017/S0266467410000350; INGESTAD T, 1979, PHYSIOL PLANTARUM, V45, P149, DOI 10.1111/j.1399-3054.1979.tb01679.x; INGESTAD T, 1979, PHYSIOL PLANTARUM, V45, P137, DOI 10.1111/j.1399-3054.1979.tb01678.x; JAMES Murphy, 1962, ANAL CHIM ACTA, V27, P31, DOI [10.1016/S000, DOI 10.1016/S0003-2670(00)88444-5]; Kerkhoff AJ, 2006, AM NAT, V168, pE103, DOI 10.1086/507879; Laliberte E, 2012, J ECOL, V100, P631, DOI 10.1111/j.1365-2745.2012.01962.x; LAMBERS H, 1992, ADV ECOL RES, V23, P187, DOI 10.1016/S0065-2504(08)60148-8; Lamport DTA., 1965, ADV BOT RES, V2, P151, DOI DOI 10.1016/S0065-2296(08)60251-7; Moran JA, 2000, BIOTROPICA, V32, P2; Onoda Y, 2004, FUNCT ECOL, V18, P419, DOI 10.1111/j.0269-8463.2004.00847.x; Palmiotto PA, 2004, J ECOL, V92, P609, DOI 10.1111/j.0022-0477.2004.00894.x; Poorter H, 2012, NEW PHYTOL, V193, P30, DOI 10.1111/j.1469-8137.2011.03952.x; Poorter L, 1999, FUNCT ECOL, V13, P396, DOI 10.1046/j.1365-2435.1999.00332.x; Poorter L, 2007, ECOLOGY, V88, P1000, DOI 10.1890/06-0984; R Core Team, 2014, R LANG ENV STAT COMP; Reed SC, 2012, NEW PHYTOL, V196, P173, DOI 10.1111/j.1469-8137.2012.04249.x; REICH PB, 1994, OECOLOGIA, V97, P62, DOI 10.1007/BF00317909; Reich PB, 2009, OECOLOGIA, V160, P207, DOI 10.1007/s00442-009-1291-3; Richardson SJ, 2008, FUNCT ECOL, V22, P738, DOI 10.1111/j.1365-2435.2008.01426.x; Richardson SJ, 2004, OECOLOGIA, V139, P267, DOI 10.1007/s00442-004-1501-y; Ryser P, 1997, NEW PHYTOL, V137, P293, DOI 10.1046/j.1469-8137.1997.00807.x; Sardans J, 2015, GLOBAL ECOL BIOGEOGR, V24, P147, DOI 10.1111/geb.12231; SEINO T., 2007, SABAH PARKS NATURE J, V8, P63; Sterner R. W., 2002, ECOLOGICAL STOICHIOM; Takashima T, 2004, PLANT CELL ENVIRON, V27, P1047, DOI 10.1111/j.1365-3040.2004.01209.x; Tiessen H, 1993, SOIL SAMPLING METHOD, P75, DOI DOI 10.1201/9781420005271.CH25; Turner AIM, 2000, BIOTROPICA, V32, P53; Veneklaas EJ, 2012, NEW PHYTOL, V195, P306, DOI 10.1111/j.1469-8137.2012.04190.x; Vicca S, 2012, ECOL LETT, V15, P520, DOI 10.1111/j.1461-0248.2012.01775.x; VITOUSEK PM, 1995, ECOLOGY, V76, P712, DOI 10.2307/1939338; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Wright IJ, 2002, J ECOL, V90, P534, DOI 10.1046/j.1365-2745.2002.00689.x 57 1 2 1 27 SPRINGER JAPAN KK TOKYO CHIYODA FIRST BLDG EAST, 3-8-1 NISHI-KANDA, CHIYODA-KU, TOKYO, 101-0065, JAPAN 0918-9440 1618-0860 J PLANT RES J. Plant Res. JUL 2016 129 4 675 684 10.1007/s10265-016-0826-z 10 Plant Sciences Plant Sciences DP8MC WOS:000378751200011 27056098 2018-11-22 J Varela-Cervero, S; Lopez-Garcia, A; Barea, JM; Azcon-Aguilar, C Varela-Cervero, Sara; Lopez-Garcia, Alvaro; Miguel Barea, Jose; Azcon-Aguilar, Concepcion Differences in the composition of arbuscular mycorrhizal fungal communities promoted by different propagule forms from a Mediterranean shrubland MYCORRHIZA English Article Arbuscular mycorrhizal fungi; Propagule types; Colonization strategies; Life-history traits; Mediterranean environments LIFE-HISTORY STRATEGIES; ROOTS; ECOSYSTEM; COLONIZATION; GLOMEROMYCOTA; DIVERSITY; ECOLOGY; BIODIVERSITY; ANASTOMOSIS; UNDERSTAND As it is well known, arbuscular mycorrhizal (AM) colonization can be initiated from the following three types of fungal propagules: spores, extraradical mycelium (ERM), and mycorrhizal root fragments harboring intraradical fungal structures. It has been shown that biomass allocation of AM fungi (AMF) among these three propagule types varies between fungal taxa, as also differs the ability of the different AMF propagule fractions to initiate new colonizations. In this study, the composition of the AMF community in the roots of rosemary (Rosmarinus officinalis L., a characteristic Mediterranean shrub), inoculated with the three different propagule types, was analyzed. Accordingly, cuttings from this species were inoculated with either AMF spores, ERM, or colonized roots extracted from a natural soil. The AMF diversity within the rosemary roots was characterized using terminal restriction fragment length polymorphism (T-RFLP) of the small subunit (SSU) rDNA region. The AMF community established in the rosemary plants was significantly different according to the type of propagule used as inoculum. AMF taxa differed in their ability to initiate new colonizations from each propagule type. Results suggest different colonization strategies for the different AMF families involved, Glomeraceae and Claroideoglomeraceae colonizing mainly from colonized roots whereas Pacisporaceae and Diversisporaceae from spores and ERM. This supports that AMF taxa show contrasting life-history strategies in terms of their ability to initiate new colonizations from the different propagule types. Further research to fully understand the colonization and dispersal abilities of AMF is essential for their rational use in ecosystem restoration programs. [Varela-Cervero, Sara; Lopez-Garcia, Alvaro; Miguel Barea, Jose; Azcon-Aguilar, Concepcion] CSIC, Soil Microbiol & Symbiot Syst Dept, Estn Expt Zaidin, Prof Albareda 1, E-18008 Granada, Spain Varela-Cervero, S (reprint author), CSIC, Soil Microbiol & Symbiot Syst Dept, Estn Expt Zaidin, Prof Albareda 1, E-18008 Granada, Spain. sara.varela@eez.csic.es Barea, Jose Miguel/H-5893-2015 Barea, Jose Miguel/0000-0001-5021-4718; Lopez-Garcia, Alvaro/0000-0001-8267-3572; Varela-Cervero, Sara/0000-0002-9513-0224 Formacion de Personal Investigador Programme (Ministerio de Ciencia e Innovacion); Spanish government under the Plan Nacional de I + D + I; FEDER funds [CGL-2009-08825]; Junta de Andalucia, Consejeria de Economia, Innovacion y Ciencia [CVI-7640] Sara Varela-Cervero thanks the Formacion de Personal Investigador Programme (Ministerio de Ciencia e Innovacion) for the financial support. This research was supported by the Spanish government under the Plan Nacional de I + D + I, co-financed by FEDER funds (project CGL-2009-08825), and the Junta de Andalucia, Consejeria de Economia, Innovacion y Ciencia (project CVI-7640). We also thank the Consejeria de Medio Ambiente, Junta de Andalucia (Spain), for the permission to work in Sierra de Baza Natural Park. We sincerely thank Estefania Berrio for the technical assistance. Abbott LK, 1994, METHOD MICROBIOL, V24, P1; Allen MF, 2013, NEW PHYTOL, V200, P222, DOI 10.1111/nph.12363; Bares J. M., 2013, BENEFICIAL PLANT MIC, P353; BIERMANN B, 1983, NEW PHYTOL, V95, P97, DOI 10.1111/j.1469-8137.1983.tb03472.x; Brundrett MC, 1999, MYCORRHIZA, V8, P305, DOI 10.1007/s005720050251; Chagnon PL, 2014, FEMS MICROBIOL ECOL, V88, P437, DOI 10.1111/1574-6941.12321; Chagnon PL, 2013, TRENDS PLANT SCI, V18, P484, DOI 10.1016/j.tplants.2013.05.001; Chytry M, 2002, J VEG SCI, V13, P79, DOI 10.1658/1100-9233(2002)013[0079:DODSWS]2.0.CO;2; de la Providencia IE, 2005, NEW PHYTOL, V165, P261, DOI 10.1111/j.1469-8137.2004.01236.x; Dickie IA, 2007, MYCORRHIZA, V17, P259, DOI 10.1007/s00572-007-0129-2; Fitter AH, 2005, J ECOL, V93, P231, DOI 10.1111/j.0022-0477.2005.00990.x; GERDEMANN J. W., 1963, TRANS BRIT MYCOL SOC, V46, P235; GRIME JP, 1987, NATURE, V328, P420, DOI 10.1038/328420a0; Gutjahr C, 2013, ANNU REV CELL DEV BI, V29, P593, DOI 10.1146/annurev-cellbio-101512-122413; Hart MM, 2002, NEW PHYTOL, V153, P335, DOI 10.1046/j.0028-646X.2001.00312.x; Helgason T, 2009, J EXP BOT, V60, P2465, DOI 10.1093/jxb/erp144; Hempel S, 2007, ENVIRON MICROBIOL, V9, P1930, DOI 10.1111/j.1462-2920.2007.01309.x; Hewitt E.J., 1952, TECHNICAL COMMUNICAT; IJdo M, 2010, FEMS MICROBIOL ECOL, V72, P114, DOI 10.1111/j.1574-6941.2009.00829.x; Jakobsen I, 2004, NEW PHYTOL, V164, P4, DOI 10.1111/j.1469-8137.2004.01163.x; Jeffries P, 2012, MYCOTA, VIX, P51; Klironomos JN, 2002, MYCORRHIZA, V12, P181, DOI 10.1007/s00572-002-0169-6; Lavorel S, 2011, J ECOL, V99, P135, DOI 10.1111/j.1365-2745.2010.01753.x; Lee J, 2008, FEMS MICROBIOL ECOL, V65, P339, DOI 10.1111/j.1574-6941.2008.00531.x; Legendre P, 2009, ECOLOGY, V90, P3566, DOI DOI 10.1890/08-1823.1; Lopez-Garcia A, 2014, OECOLOGIA, V176, P1075, DOI 10.1007/s00442-014-3091-7; Lopez-Garcia A, 2014, PLANT SOIL, V379, P247, DOI 10.1007/s11104-014-2060-6; Mader P, 2000, NEW PHYTOL, V146, P155, DOI 10.1046/j.1469-8137.2000.00615.x; Maherali H, 2007, SCIENCE, V316, P1746, DOI 10.1126/science.1143082; Maherali H, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0036695; Martiny JBH, 2006, NAT REV MICROBIOL, V4, P102, DOI 10.1038/nrmicro1341; McArdle BH, 2001, ECOLOGY, V82, P290, DOI 10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2; MCGONIGLE TP, 1990, NEW PHYTOL, V115, P495, DOI 10.1111/j.1469-8137.1990.tb00476.x; MILLER RM, 2000, ARBUSCULAR MYCORRHIZ; NEWSHAM KK, 1995, TRENDS ECOL EVOL, V10, P407, DOI 10.1016/S0169-5347(00)89157-0; Oksanen J., 2015, VEGAN COMMUNITY ECOL; PHILLIPS JM, 1970, T BRIT MYCOL SOC, V55, P158, DOI 10.1016/S0007-1536(70)80110-3; pik M, 2010, NEW PHYTOL, V188, P223, DOI DOI 10.1111/J.1469-8137.2010.03334.X; Powell JR, 2009, P ROY SOC B-BIOL SCI, V276, P4237, DOI 10.1098/rspb.2009.1015; Redecker D, 2013, MYCORRHIZA, V23, P515, DOI 10.1007/s00572-013-0486-y; Ripley B., 2014, MASS SUPPORT FUNCTIO; Saks U, 2014, BOTANY, V92, DOI 10.1139/cjb-2013-0058; Schalamuk S, 2010, MYCOLOGIA, V102, P261, DOI 10.3852/08-118; Sieverding E., 1991, VESICULAR ARBUSCULAR; Smith SE, 2011, ANNU REV PLANT BIOL, V62, P227, DOI 10.1146/annurev-arplant-042110-103846; Smith SE, 2008, MYCORRHIZAL SYMBIOSIS, 3RD EDITION, P1; Tichy L, 2006, J VEG SCI, V17, P809, DOI 10.1111/j.1654-1103.2006.tb02504.x; van der Heijden MGA, 2015, NEW PHYTOL, V205, P1406, DOI 10.1111/nph.13288; van der Heijden MGA, 1998, NATURE, V396, P69, DOI 10.1038/23932; Varela-Cervero S, 2015, ENVIRON MICROBIOL, V17, P2882, DOI 10.1111/1462-2920.12810; Voets L, 2006, NEW PHYTOL, V172, P185, DOI 10.1111/j.1469-8137.2006.01873.x; Werner GDA, 2015, NEW PHYTOL, V205, P1515, DOI 10.1111/nph.13092 52 8 8 3 35 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0940-6360 1432-1890 MYCORRHIZA Mycorrhiza JUL 2016 26 5 489 496 10.1007/s00572-016-0687-2 8 Mycology Mycology DP8EN WOS:000378730900012 26883142 2018-11-22 J Goodwin, JCA; King, RA; Jones, JI; Ibbotson, A; Stevens, JR Goodwin, Jill C. A.; King, R. Andrew; Jones, J. Iwan; Ibbotson, Anton; Stevens, Jamie R. A small number of anadromous females drive reproduction in a brown trout (Salmo trutta) population in an English chalk stream FRESHWATER BIOLOGY English Article microsatellite; parental investment; Salmo trutta; sea trout; stable isotope analysis FRESH-WATER-RESIDENT; STABLE-ISOTOPE ANALYSIS; LAKE DISTRICT STREAM; ATLANTIC SALMON; EGG SIZE; BROOK TROUT; SALVELINUS-FONTINALIS; SEA-TROUT; SPERM QUALITY; ARCTIC CHARR Brown trout, Salmo trutta, exhibit one of the most highly variable and polytypic life-history strategies of all salmonids. Populations may be wholly freshwater-resident or almost exclusively migratory (anadromous), or fish of a single population may exhibit varying proportions of the two life-history strategies. Both anadromous and freshwater-resident trout freely interbreed to produce fertile offspring. We quantify maternal reproductive provisioning by anadromous and freshwater-resident brown trout to their offspring and assess relative parental fitness (in terms of number, size and time of emergence of offspring). Newly emerged juvenile trout (fry) were sampled (n=119) over the emergence period in March-April 2007 in a lowland English chalk stream; samples of adult trout [anadromous (6F:12M) and freshwater-resident (22F:56M)], river-resident trout parr and macroinvertebrate prey were also collected. Using a novel combination of stable isotope analysis and microsatellite genotyping we demonstrate the overwhelming contribution of anadromous parents (both female and male) to fry production, despite the obvious presence and numerical dominance of resident adults. We unambiguously identify the maternal origins of 78% of juveniles sampled and show that maternal reproductive contribution to juvenile production in the river was higher for anadromous females (76%) than freshwater-resident fish (2.5%). Offspring of anadromous females emerged earlier and at a larger body size than offspring of resident females. Similarly, while the relative contribution of resident males (37%) was higher than that of resident females, anadromous males sired considerably more offspring (63%) than resident males. This is the first study of its kind to accurately assess the reproductive contribution of anadromous male trout. Overall, this study suggests that anadromous maternal traits provide offspring with an adaptive advantage and greater fitness in early ontogeny, and that a small number of anadromous females (six of 96 adults sampled) are the main drivers of reproduction in this system. [Goodwin, Jill C. A.; King, R. Andrew; Stevens, Jamie R.] Univ Exeter, Coll Life & Environm Sci, Dept Biosci, Exeter, Devon, England; [Goodwin, Jill C. A.; Jones, J. Iwan; Ibbotson, Anton] Winfrith Technol Ctr, Ctr Ecol & Hydrol Dorset, Dorchester, Dorset, England; [Jones, J. Iwan] Queen Mary Univ London, Sch Biol & Chem Sci, London, England; [Ibbotson, Anton] GWCT, Salmon & Trout Res Ctr, River Lab, East Stoke Wareham, Dorset, England Stevens, JR (reprint author), Univ Exeter, Dept Biosci, Geoffrey Pope Bldg,Stocker Rd, Exeter EX4 4QD, Devon, England. j.r.stevens@exeter.ac.uk King, Andrew/0000-0001-9737-214X; Jones, John Iwan/0000-0002-7238-2509 Natural Environment Research Council (UK) [NER/S/A/2005/13773]; Game and Wildlife Conservation Trust; University of Exeter; NERC [NE/C511905/1]; Natural Environment Research Council [NE/C521244/1, NE/C511905/1] We thank William Beaumont (Game and Wildlife Conservation Trust) for help with sampling and fieldwork, and Dr Rasmus Lauridsen (Game and Wildlife Conservation Trust) for advice on stable isotope analysis. This work was supported by a Natural Environment Research Council (UK) PhD studentship (NER/S/A/2005/13773); additional funding was provided by the Game and Wildlife Conservation Trust and the University of Exeter. J. I. Jones was supported by NERC grant NE/C511905/1. All tissue collection was carried out under UK Home Office licence PPL 80/1913. We thank three anonymous referees for constructive comments on an earlier draft of this manuscript. The authors declare no conflict of interests. Acolas ML, 2008, ECOL FRESHW FISH, V17, P382, DOI 10.1111/j.1600-0633.2007.00290.x; Bekkevold D, 2004, MOL ECOL, V13, P1707, DOI 10.1111/j.1365-294X.2004.02156.x; BERG OK, 1990, ENVIRON BIOL FISH, V29, P145, DOI 10.1007/BF00005031; Berg OK, 2001, FUNCT ECOL, V15, P13, DOI 10.1046/j.1365-2435.2001.00473.x; BLACK GA, 1981, CAN J ZOOL, V59, P1892, DOI 10.1139/z81-257; Bohlin T, 2001, J ANIM ECOL, V70, P112, DOI 10.1046/j.1365-2656.2001.00466.x; Brown M. E., 1967, THE TROUT; Charles K, 2006, ECOL FRESHW FISH, V15, P255, DOI 10.1111/j.1600-0633.2006.00149.x; Charles K, 2004, MAR FRESHWATER RES, V55, P185, DOI 10.1071/MF03173; Consuegra S, 2007, EVOL ECOL, V21, P229, DOI 10.1007/s10682-006-9001-7; CRISP DT, 1989, J FISH BIOL, V34, P119, DOI 10.1111/j.1095-8649.1989.tb02962.x; CURRY RA, 1995, CAN J FISH AQUAT SCI, V52, P1741, DOI 10.1139/f95-766; Curry RA, 2005, J FISH BIOL, V66, P741, DOI 10.1111/j.0022-1112.2005.00636.x; Dieperink C, 2001, ECOL FRESHW FISH, V10, P177, DOI 10.1034/j.1600-0633.2001.100307.x; Doucett RR, 1999, T AM FISH SOC, V128, P278, DOI 10.1577/1548-8659(1999)128<0278:IOAANA>2.0.CO;2; Eek D, 1997, J FISH BIOL, V51, P659, DOI 10.1111/j.1095-8649.1997.tb01522.x; Einum S, 2000, NATURE, V405, P565, DOI 10.1038/35014600; Einum S, 2000, EVOLUTION, V54, P628, DOI 10.1111/j.0014-3820.2000.tb00064.x; Einum S, 1999, P ROY SOC B-BIOL SCI, V266, P2095, DOI 10.1098/rspb.1999.0893; Eisbrenner WS, 2014, HEREDITY, V113, P86, DOI 10.1038/hdy.2013.55; Elliott J. M., 1994, QUANTITATIVE ECOLOGY; ELLIOTT JM, 1984, J ANIM ECOL, V53, P327, DOI 10.2307/4360; Elliott JM, 1998, J FISH BIOL, V53, P1120, DOI 10.1111/j.1095-8649.1998.tb00468.x; ELLIOTT JM, 1995, J FISH BIOL, V47, P893, DOI 10.1111/j.1095-8649.1995.tb06010.x; ESTOUP A, 1993, HEREDITY, V71, P488, DOI 10.1038/hdy.1993.167; Estoup A, 1996, MOL MAR BIOL BIOTECH, V5, P295; FERGUSON A, 1989, FRESHWATER BIOL, V21, P35, DOI 10.1111/j.1365-2427.1989.tb01346.x; Feuchtmayr H, 2003, RAPID COMMUN MASS SP, V17, P2605, DOI 10.1002/rcm.1227; FLEMING IA, 1990, ECOLOGY, V71, P1, DOI 10.2307/1940241; Fry B., 2008, STABLE ISOTOPE ECOLO; Garcia-Vazquez E, 2001, J HERED, V92, P146, DOI 10.1093/jhered/92.2.146; Greenberg L, 1996, REGUL RIVER, V12, P287, DOI 10.1002/(SICI)1099-1646(199603)12:2/3<287::AID-RRR396>3.3.CO;2-V; Grey J, 2001, ECOL FRESHW FISH, V10, P168, DOI 10.1034/j.1600-0633.2001.100306.x; Griffiths AM, 2009, EVOL APPL, V2, P537, DOI [10.1111/j.1752-4571.2009.00092.x, 10.1111/j.1752-4571.2009.00092-x]; GROSS MR, 1988, SCIENCE, V239, P1291, DOI 10.1126/science.239.4845.1291; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; Ibbotson A. T., 2006, TADNOLL BROOK REV HI; Jardine TD, 2008, CAN J FISH AQUAT SCI, V65, P2201, DOI 10.1139/F08-132; JONES J. W., 1954, BRIT JOUR ANIMAL BEHAVIOR, V2, P103, DOI 10.1016/S0950-5601(54)80046-3; Jones OR, 2010, MOL ECOL RESOUR, V10, P551, DOI 10.1111/j.1755-0998.2009.02787.x; JONSSON B, 1985, T AM FISH SOC, V114, P182, DOI 10.1577/1548-8659(1985)114<182:LHPOFR>2.0.CO;2; Jonsson B, 2000, AQUACULTURE, V187, P315, DOI 10.1016/S0044-8486(00)00312-4; Jonsson N, 1999, J FISH BIOL, V55, P767, DOI 10.1006/jfbi.1999.1035; LABEELUND JH, 1990, J FISH BIOL, V37, P755, DOI 10.1111/j.1095-8649.1990.tb02539.x; Lobon-Cervia J, 2000, ECOL FRESHW FISH, V9, P92, DOI 10.1034/j.1600-0633.2000.90111.x; LobonCervia J, 1997, FRESHWATER BIOL, V38, P277, DOI 10.1046/j.1365-2427.1997.00217.x; Martinez JL, 1999, ANIM GENET, V30, P464; McCarthy ID, 2000, RAPID COMMUN MASS SP, V14, P1325; Ojanguren AF, 1996, AQUACULTURE, V147, P9, DOI 10.1016/S0044-8486(96)01398-1; Olofsson H, 1999, ECOL FRESHW FISH, V8, P59, DOI 10.1111/j.1600-0633.1999.tb00054.x; OReilly PT, 1996, CAN J FISH AQUAT SCI, V53, P2292, DOI 10.1139/cjfas-53-10-2292; Petersson E, 1997, BEHAVIOUR, V134, P1, DOI 10.1163/156853997X00250; Petersson JCE, 2001, J FISH BIOL, V58, P487, DOI 10.1006/jfbi.2000.1468; Phillips DL, 2001, OECOLOGIA, V127, P171, DOI 10.1007/s004420000578; Poteaux C., 1995, THESIS U MONTPELLIER; Presa P, 1996, J FISH BIOL, V49, P1326, DOI 10.1111/j.1095-8649.1996.tb01800.x; RIEMAN BE, 1994, CAN J FISH AQUAT SCI, V51, P68, DOI 10.1139/f94-009; Roff Derek A., 1992; Sear DA, 2014, HYDROL PROCESS, V28, P86, DOI 10.1002/hyp.9565; SLETTAN A, 1995, ANIM GENET, V26, P281, DOI 10.1111/j.1365-2052.1995.tb03262.x; Theriault V, 2003, J FISH BIOL, V63, P1144, DOI 10.1046/j.1095-8649.2003.00233.x; Vignes JC, 1995, B FR PECHE PISCIC, P207, DOI 10.1051/kmae:1995023; Vladic TV, 2001, P ROY SOC B-BIOL SCI, V268, P2375, DOI 10.1098/rspb.2001.1768; Vladie T, 2006, INT VER THEOR ANGEW, V29, P1331; WALLACE JC, 1984, J FISH BIOL, V24, P427, DOI 10.1111/j.1095-8649.1984.tb04813.x; Yano A, 2013, EVOL APPL, V6, P486, DOI 10.1111/eva.12032; Youngson AF, 1997, CAN J FISH AQUAT SCI, V54, P1064, DOI 10.1139/cjfas-54-5-1064 67 3 3 2 27 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0046-5070 1365-2427 FRESHWATER BIOL Freshw. Biol. JUL 2016 61 7 1075 1089 10.1111/fwb.12768 15 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology DN6YU WOS:000377223300004 Green Published, Other Gold 2018-11-22 J Torrens, J; Heraty, JM; Murray, E; Fidalgo, P Torrens, Javier; Heraty, John M.; Murray, Elizabeth; Fidalgo, Patricio Biology and phylogenetic placement of a new species of Lasiokapala Ashmead from Argentina (Hymenoptera: Eucharitidae) SYSTEMATIC ENTOMOLOGY English Article KAPALA HYMENOPTERA; LIFE-HISTORY; CHALCIDOIDEA; FORMICIDAE; ECTATOMMA; BEHAVIOR; PARASITISM; GENUS Within the ant-parasitic wasp family Eucharitidae (Hymenoptera), the Kapala clade is a monophyletic group attacking Ectatomminae and Ponerinae. Members often express extreme phenotypic features, especially in the morphology of the paired frenal spines. Although the means of attack and developmental history of the eucharitid wasps within the ant nest are very similar, the means by which they oviposit and optimize encounters of their active first-instar larvae with ants is highly variable. The relationships and life-history strategies of Lasiokapala Ashmead (Hymenoptera: Eucharitidae) and related taxa within the Kapala clade are discussed based on phylogenetic analyses of morphological and molecular data. Descriptions are provided for the adults (both sexes), eggs and planidia of Lasiokapala spiralicornissp.n. from Santiago del Estero (Argentina). Females deposit their eggs on the underside of leaves of Sida cordifolia L. (Malvaceae) and the likely host is postulated to be the genus Ectatomma (Formicidae: Ectatomminae). Even within a closely related group of genera, there is extreme independent divergence in morphology of scutellar spines, antennae and other features, but the larvae and larval biology are highly conserved across a much larger group of Eucharitidae. This published work has been registered in ZooBank, . [Torrens, Javier; Fidalgo, Patricio] CRILAR CONICET, Entre Rios y Mendoza S-N Anillaco, RA-5301 La Rioja, Argentina; [Heraty, John M.] Univ Calif Riverside, Dept Entomol, Riverside, CA 92521 USA; [Murray, Elizabeth] Cornell Univ, Dept Entomol, Ithaca, NY 14853 USA Torrens, J (reprint author), CRILAR CONICET, Entre Rios y Mendoza S-N Anillaco, RA-5301 La Rioja, Argentina. jtorrens@crilar-conicet.gob.ar Torrens, Javier/0000-0002-3608-132X Agencia Nacional de Promocion Cientifica y Tecnologica [PICT 2324]; National Science Foundation [DEB 0730616, 1257733] This investigation was made possible through funding by Project PICT 2324 provided by Agencia Nacional de Promocion Cientifica y Tecnologica to JT and National Science Foundation grants DEB 0730616 and 1257733 to JMH. In particular, we thank Jason Mottern (Systematic Entomology Laboratory, ARS-USDA) and Christiane Weirauch (Entomology Department, UC Riverside) for help with fieldwork. We would also like to thank the Willi Henning Society for free use of the phylogenetic program TNT. Ashmead W. H, 1904, MEM CARNEGIE MUS, V1, P225; Ashmead W. H, 1899, P ENTOMOL SOC WASH, V4, P235; Buys SC, 2010, TROP ZOOL, V23, P29; Clausen C. P., 1923, Annals of the Entomological Society of America, V16, P195; CLAUSEN CURTIS P., 1940, JOUR WASHINGTON ACAD SCI, V30, P504; DESANTIS L, 1980, CATALOGO HIMENOPTERO; EADY RD, 1968, PROC R ENTOMOL SOC A, V43, P66, DOI 10.1111/j.1365-3032.1968.tb01029.x; Goloboff PA, 2008, CLADISTICS, V24, P774, DOI 10.1111/j.1096-0031.2008.00217.x; Harris R., 1979, OCC PAP ENT, V28, P1; Heraty J, 2004, SYST ENTOMOL, V29, P544, DOI 10.1111/j.0307-6970.2004.00267.x; Heraty J. M., 2015, ANN ENTOMOLOGICAL SO, V2015, P1; Heraty J. M, 2002, MEMOIRS AM ENTOMOLOG, V68, P1; HERATY JM, 1984, SYST ENTOMOL, V9, P309, DOI 10.1111/j.1365-3113.1984.tb00056.x; HERATY JM, 1993, ANN ENTOMOL SOC AM, V86, P517, DOI 10.1093/aesa/86.5.517; Heraty JM, 2000, ANN ENTOMOL SOC AM, V93, P374, DOI 10.1603/0013-8746(2000)093[0374:PROOHE]2.0.CO;2; Heraty JM, 1998, P ENTOMOL SOC WASH, V100, P72; Heraty JM, 2013, J HYMENOPT RES, V35, P1, DOI 10.3897/JHR.35.6025; Heraty JM, 2013, CLADISTICS, V29, P466, DOI 10.1111/cla.12006; Heraty JM, 2009, ZOOKEYS, P215, DOI 10.3897/zookeys.20.126; ISHII TEI, 1932, BULL IMP AGRIC EXP STA [TOKYO] [NOJI SHIKEN J6], V3, P203; Kugler C., 1982, AGRICULTURE, V24, P1; Kusnezov N., 1978, MISCELANEA I M LILLO, V61, P1; Lachaud Jean-Paul, 2012, Psyche (Cambridge), P342157; Lapola D. M., 2003, Revista Brasileira de Zoociencias, V5, P177; Maddison W. P., 2015, MESQUITE MODULAR SYS; Miller M. A., 2010, GAT COMP ENV WORKSH, P1, DOI DOI 10.1109/GCE.2010.5676129; Morello J., 2012, ECORREGIONES COMPLEJ; MORRONE J. J., 2001, BIOGEOGRAFIA AM LATI, V3; Murray E. A., 2014, THESIS U CALIFORNIA; Murray EA, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.0495; Nixon K. C., 1999, WINCLADA 0 9 9; Perez-Lachaud G, 2006, BIOTROPICA, V38, P574, DOI 10.1111/j.1744-7429.2006.00169.x; Perez-Lachaud G, 2006, ANN ENTOMOL SOC AM, V99, P567, DOI 10.1603/0013-8746(2006)99[567:BABOKH]2.0.CO;2; Perez-Lachaud G, 2015, J INSECT PHYSIOL, V75, P63, DOI 10.1016/j.jinsphys.2015.03.003; Ronquist F, 2012, SYST BIOL, V61, P539, DOI 10.1093/sysbio/sys029; Schwitzke C, 2015, ARTHROPOD-PLANT INTE, V9, P497, DOI 10.1007/s11829-015-9391-y; Shorthouse DP, 2010, SIMPLEMAPPR ONLINE T; The Global Biodiversity Information Facility, 2013, GBIF SECR GBIF BACKB; Torrens J., 2013, PSYCHE A, V2013, P1; Torrens J, 2007, P ENTOMOL SOC WASH, V109, P45; Torrens Javier, 2013, Acta Zoologica Lilloana, V57, P102; Torrens J, 2013, ZOOTAXA, V3630, P347, DOI 10.11646/zootaxa.3630.2.9; Torrens J, 2012, ZOOKEYS, P33, DOI 10.3897/zookeys.165.2089; Ward P. S., 2013, ANTWEB ANTS CALIFORN 44 1 1 0 5 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0307-6970 1365-3113 SYST ENTOMOL Syst. Entomol. JUL 2016 41 3 596 606 10.1111/syen.12176 11 Evolutionary Biology; Entomology Evolutionary Biology; Entomology DN6ZG WOS:000377224500008 2018-11-22 J Jahn, AE; Seavy, NE; Bejarano, V; Guzman, MB; Provinciato, ICC; Pizo, MA; MacPherson, M Jahn, Alex E.; Seavy, Nathaniel E.; Bejarano, Vanesa; Guzman, Marcela Benavides; Carvalho Provinciato, Ivan Celso; Pizo, Marco A.; MacPherson, Maggie Intra-tropical migration and wintering areas of Fork-tailed Flycatchers (Tyrannus savana) breeding in Sao Paulo, Brazil REVISTA BRASILEIRA DE ORNITOLOGIA English Article austral; Cerrado; Itirapina; molt; Neotropical BIRD MIGRATION; MOLT-MIGRATION; SOUTH-AMERICA; GEOLOCATORS; FUTURE Fork-tailed Flycatchers (Tyrannus s. savana) breed from central to southern South America from September to January, migrating to northern South America to spend the non-breeding season. However, little is known of the migratory routes, rate, and timing of migration of those that breed in Brazil. In 2013, we attached light-level geolocators to breeding Fork-tailed Flycatchers breeding in Sao Paulo State. Data for six male flycatchers recaptured in 2014 indicates that they exhibited two fall migration strategies. Some individuals migrated northwest to the wintering grounds (primarily Colombia, Venezuela and northern Brazil), while others first spent several weeks in southwestern Brazil before going to the wintering grounds. Mean fall migration rate was 69 km/day (+/- 13.7) during 59 (+/- 13.2) days. Some flycatchers moved during winter, using more than one winter area. Flycatchers initiated spring migration in July and migrated southeast to the breeding grounds at a mean rate of 129 km/day (+/- 19.0) during 27 (+/- 2.8) days. A detailed understanding of the annual cycle of South America's migratory birds is essential to evaluating theoretical questions, such as the evolution of their life history strategies, in addition to applied questions, such as explanations for changes in population size, or their role as disease vectors. [Jahn, Alex E.; Bejarano, Vanesa; Guzman, Marcela Benavides; Carvalho Provinciato, Ivan Celso; Pizo, Marco A.] Univ Estadual Paulista, Dept Zool, Av 24A,1515, BR-13506900 Rio Claro, SP, Brazil; [Seavy, Nathaniel E.] Point Blue Conservat Sci, 3820 Cypress Dr 11, Petaluma, CA 94954 USA; [MacPherson, Maggie] Tulane Univ, Ecol & Evolutionary Biol, New Orleans, LA 70118 USA Jahn, AE (reprint author), Univ Estadual Paulista, Dept Zool, Av 24A,1515, BR-13506900 Rio Claro, SP, Brazil. ajahn@rc.unesp.br Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2012/17225-2] We dedicate this paper to the late E. O. Willis. We thank the Estacao Ecologica de Itirapina for logistical support. This research was supported by the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP; 2012/17225-2) and conducted under SISBIO permit 40221-2, CEMAVE permit 3819/1, and COTEC permit 260108-008.399/2013. Alves MAS, 2007, REV BRAS ORNITOL, V15, P231; Antas P. T. Z., 1987, AN NAC AN AV RIO JAN, P153; Barry JH, 2009, AUK, V126, P260, DOI 10.1525/auk.2009.07137; Butler LK, 2002, AUK, V119, P1010, DOI 10.1642/0004-8038(2002)119[1010:MMIWTP]2.0.CO;2; Capllonch P., 2009, ACTA ZOOLOGICA LILLO, V53, P55; Cavalcanti R. B., 1990, AN 4 ENC NAC AN AV R, P110; Chesser R. T., 1995, THESIS; Chesser R. Terry, 1994, Bird Conservation International, V4, P91; Chesser R. Terry, 1997, Ornithological Monographs, V48, P171; Cueto Víctor R., 2008, Hornero, V23, P1; DAVIS S, 1993, FIELDIANA ZOOL, V71, P1; Fitzpatrick J. W, 2004, HDB BIRDS WORLD, V9, P170; Areta JI, 2010, ORNITOL NEOTROP, V21, P71; Jahn AE, 2004, AUK, V121, P1005, DOI 10.1642/0004-8038(2004)121[1005:RAHASA]2.0.CO;2; Jahn AE, 2013, NEOTROPICAL BIRDS ON; Jahn AE, 2014, EMU, V114, P337, DOI 10.1071/MU13084; Jahn AE, 2013, AUK, V130, P223, DOI 10.1525/auk.2013.12077; Jahn AE, 2013, AUK, V130, P247, DOI 10.1525/auk.2013.13010; Jahn AE, 2012, J ORNITHOL, V153, pS199, DOI 10.1007/s10336-012-0849-8; Lisovski S, 2012, METHODS ECOL EVOL, V3, P1055, DOI 10.1111/j.2041-210X.2012.00248.x; Marini Miguel Ângelo, 2009, Biota Neotrop., V9, P0, DOI 10.1590/S1676-06032009000100007; McKinnon EA, 2013, AUK, V130, P211, DOI 10.1525/auk.2013.12226; Parker Theodore A. Iii, 1996, P113; Parrish JD, 1997, CONDOR, V99, P681, DOI 10.2307/1370480; Pimentel T. M., 1985, THESIS; Pyle P., 1997, IDENTIFICATION GUIDE; Ralph C. J, 1993, HDB FIELD METHODS MO; RAPPOLE JH, 1991, J FIELD ORNITHOL, V62, P335; Rohwer Sievert, 2005, P87; Sick H., 1983, PUBLICACAO TECNICA, V2; Stotz D. F, 1996, NEOTROPICAL BIRDS EC; WILLIS E. O., 2003, BRAZ J BIOL, V64, P901; ZIMMER JOHN T., 1938, AUK, V55, P405 33 4 5 0 2 SOC BRASILEIRA ORNITOLOGIA VICOSA C/O ROMULO RIBON, MUSEU ZOOLOGIA JOAO MOOJEN, LADEIRA DOS OPERARIOS 54-204, VICOSA, MG 36570-000, BRAZIL 0103-5657 REV BRAS ORNITOL Rev. Bras. Ornitol. JUN 2016 24 2 116 121 6 Ornithology Zoology EE9MT WOS:000389951500007 2018-11-22 J Shi, SL; Li, ZS; Wang, H; Wu, X; Wang, S; Wang, XC; Liu, GH; Fu, BJ Shi, Songlin; Li, Zongshan; Wang, Hao; Wu, Xing; Wang, Shuai; Wang, Xiaochun; Liu, Guohua; Fu, Bojie Comparative analysis of annual rings of perennial forbs in the Loess Plateau, China DENDROCHRONOLOGIA English Article Herb-chronology; Anatomical patterns; Secondary root xylem; Permanent main root; Growth rate; Age distribution SCALE SPATIAL VARIABILITY; GROWTH RINGS; SOIL-EROSION; PLANT; ROOTS; AGE; NITROGEN; REGION; WATER; REPRODUCTION Although recent studies have demonstrated that annual growth rings are present among perennial forbs species at high northern latitudes, little is known about whether there are demarcated growth rings of perennial forbs in the Loess Plateau of China where plant growth is strongly limited by dry climate conditions and severe soil erosion. In this study, we collected the main roots of 11 perennial forbs species along the precipitation gradient in the Loess Plateau, and analyzed the growth rings in the secondary root xylem. We found that ten species showed distinct annual growth rings, and the anatomical patterns, including vessel size and density, varied considerably among different families. Our results suggest, for forbs species in the Loess Plateau, that vessel diameter in the root xylem was strongly correlated with growth rate of the forb's roots. Ring widths of the forbs showed a significant declining trend, reflecting the deteriorating signal of growth condition with age. In comparison to other families, forb species of Fabaceae usually have the evidently larger vessels that link directly to higher hydraulic capacity and growth rate. In terms of annual ring width patterns, this study provides an applicable approach to detecting effects of limited climatic conditions and life history strategies on herbaceous vegetation in the Loess Plateau. (C) 2016 Elsevier GmbH. All rights reserved. [Shi, Songlin; Li, Zongshan; Wang, Hao; Wu, Xing; Wang, Shuai; Liu, Guohua; Fu, Bojie] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China; [Shi, Songlin; Wang, Hao] Univ Chinese Acad Sci, Beijing 100049, Peoples R China; [Wang, Xiaochun] Northeast Forestry Univ, Coll Forestry, Harbin 150040, Peoples R China Li, ZS (reprint author), Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China. zsli..st@rcees.ac.cn Wang, Shuai/B-2334-2017; Fu, Bojie/B-1493-2009 Wang, Shuai/0000-0003-1595-9858; Major Program of the National Natural Science Foundation of China [41390462]; Natural Science Foundation of China [41571503] This study was supported by the Major Program of the National Natural Science Foundation of China (Grant no. 41390462) and Natural Science Foundation of China (Grant No. 41571503). We greatly thank Yu-jia Liu and Li Shen of the Tree Ring Laboratory, Northeast Forestry University of China, for the assistance of producing root sections and ring-width measurements. We are also indebted to Yi-He Lv, Xiao-Ming Feng, and Guang-yao Gao for providing insightful comments and constructive suggestions for revising an early draft of this article. Anfodillo T, 2013, IAWA J, V34, P352, DOI 10.1163/22941932-00000030; Brodribb TJ, 2000, PLANT CELL ENVIRON, V23, P1381, DOI 10.1046/j.1365-3040.2000.00647.x; Denne MP, 1999, HOLZFORSCHUNG, V53, P199, DOI 10.1515/HF.1999.033; Dietz H, 2005, ECOLOGY, V86, P327, DOI 10.1890/04-0801; Dietz H, 2004, ARCT ANTARCT ALP RES, V36, P591, DOI 10.1657/1523-0430(2004)036[0591:GIPITR]2.0.CO;2; Dietz H, 2002, CAN J BOT, V80, P642, DOI [10.1139/b02-048, 10.1139/B02-048]; Dietz H, 2002, ANN BOT-LONDON, V90, P663, DOI 10.1093/aob/mcf247; Dietz H, 1997, ANN BOT-LONDON, V80, P377, DOI 10.1006/anbo.1997.0423; Dietz H, 1998, ANN BOT-LONDON, V82, P471, DOI 10.1006/anbo.1998.0706; Feng XM, 2013, SCI REP-UK, V3, DOI 10.1038/srep02846; Franche C, 2009, PLANT SOIL, V321, P35, DOI 10.1007/s11104-008-9833-8; Fu BJ, 2009, PROG PHYS GEOG, V33, P793, DOI 10.1177/0309133309350264; Fu BJ, 2011, ECOL COMPLEX, V8, P284, DOI 10.1016/j.ecocom.2011.07.003; JEFFERIES RA, 1981, J APPL ECOL, V18, P945, DOI 10.2307/2402384; Liu YB, 2007, J INTEGR PLANT BIOL, V49, P144, DOI 10.1111/j.1672-9072.2007.00426.x; Liu YB, 2010, J VEG SCI, V21, P899, DOI 10.1111/j.1654-1103.2010.01199.x; Liu ZP, 2012, SOIL RES, V50, P114, DOI 10.1071/SR11183; Liu ZP, 2013, GEODERMA, V197, P67, DOI 10.1016/j.geoderma.2012.12.011; Lu Y., 2015, SCI REP, V5; McDowell N, 2008, NEW PHYTOL, V178, P719, DOI 10.1111/j.1469-8137.2008.02436.x; Molau U, 1997, NORD J BOT, V17, P225, DOI 10.1111/j.1756-1051.1997.tb00314.x; Moloney KA, 2009, BIOL INVASIONS, V11, P625, DOI 10.1007/s10530-008-9277-3; Nooden LD, 2001, J EXP BOT, V52, P2151, DOI 10.1093/jexbot/52.364.2151; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; Olano JM, 2013, FUNCT ECOL, V27, P1295, DOI 10.1111/1365-2435.12144; Russo SE, 2010, FUNCT ECOL, V24, P253, DOI 10.1111/j.1365-2435.2009.01670.x; Schweingruber F.H., 2005, FOR SNOW LANDSC RES, V79, P199; SONESSON M, 1991, ARCTIC, V44, P95; Stratton L, 2000, PLANT CELL ENVIRON, V23, P99, DOI 10.1046/j.1365-3040.2000.00533.x; Thomas H, 2002, MECH AGEING DEV, V123, P747, DOI 10.1016/S0047-6374(01)00420-1; von Arx G, 2006, PLANT BIOLOGY, V8, P224, DOI 10.1055/s-2005-873051; von Arx G, 2006, ECOLOGY, V87, P665, DOI 10.1890/05-1041; von Arx G, 2012, ANN BOT-LONDON, V109, P1091, DOI 10.1093/aob/mcs030; Wang YQ, 2010, GEODERMA, V159, P99, DOI 10.1016/j.geoderma.2010.07.001; Weiher E, 1999, J VEG SCI, V10, P609, DOI 10.2307/3237076; Yang WZ, 1999, SCI CHINA SER D, V42, P240, DOI 10.1007/BF02878961; Yin RS, 2010, ENVIRON MANAGE, V45, P442, DOI 10.1007/s00267-009-9387-4; Zhang XC, 2003, ACTA BOT SIN, V45, P1195; Zhao YF, 2014, QUATERN INT, V349, P196, DOI 10.1016/j.quaint.2014.06.050 39 1 1 2 17 ELSEVIER GMBH, URBAN & FISCHER VERLAG JENA OFFICE JENA, P O BOX 100537, 07705 JENA, GERMANY 1125-7865 1612-0051 DENDROCHRONOLOGIA Dendrochronologia JUN 2016 38 82 89 10.1016/j.dendro.2016.03.010 8 Plant Sciences; Forestry; Geography, Physical Plant Sciences; Forestry; Physical Geography EA8EG WOS:000386867500009 Green Published 2018-11-22 J Lusk, CH; Jimenez-Castillo, M; Aragon, R; Easdale, TA; Poorter, L; Hinojosa, LF; Mason, NWH Lusk, C. H.; Jimenez-Castillo, M.; Aragon, R.; Easdale, T. A.; Poorter, L.; Hinojosa, L. F.; Mason, N. W. H. Testing for functional convergence of temperate rainforest tree assemblages in Chile and New Zealand NEW ZEALAND JOURNAL OF BOTANY English Article Bioclimatic matching; environmental filtering; functional trait convergence; leaf dry matter content; leaf economics; leaf habit; leaf size; pollination syndrome; seed mass; wood density MEDITERRANEAN-CLIMATE ECOSYSTEMS; LIFE-HISTORY STRATEGIES; DRY-MATTER CONTENT; SHADE TOLERANCE; TROPICAL TREES; WOOD DENSITY; TRADE-OFF; LEAF-AREA; MOLECULAR PHYLOGENY; DISPERSAL SYNDROMES An important tenet of biogeography and comparative ecology is that disjunct assemblages in similar physical environments are functionally more similar to each other than to assemblages from other environments. Temperate rainforests in South America, New Zealand and Australia share certain physiognomic similarities, but we are not aware of any statistical evidence that these disjunct plant assemblages share a distinctive suite of functional traits, or trait combinations. We compiled height, leaf, wood and reproductive traits from the 25 commonest arborescent species at Chilean and New Zealand sites matched for summer rainfall, summer maximum temperatures, and winter minimum temperatures. We then used multivariate tests of trait convergence. Tropical and subtropical assemblages served as out-groups. PERMANOVA showed convergence of trait centroids at the two temperate sites, where trees on average had denser wood and smaller leaves than trees at the (sub)tropical sites. Principal components analyses carried out separately on each assemblage showed that the Chilean and New Zealand assemblages were also the most similar pair in terms of trait relationships, although New Zealand also shared strong similarities with subtropical Argentina. The main axis of variation in both temperate assemblages ranged from small, short-lived understorey trees with soft leaves, to emergents with sclerophyllous leaves and fairly dense wood. However, the New Zealand assemblage was much richer in small trees with soft leaves than its Chilean counterpart; possible historical influences on this difference include conditions favouring radiation of small trees during the late Neogene in New Zealand, competition from Chusquea bamboos in Chile and the historical absence of browsing mammals from New Zealand. Environmental filtering has produced similar values of individual traits in Chile and New Zealand, but only partial convergence of functional trait combinations. As far as we know, this is the first study to statistically test whether disjunct tree assemblages on climatically matched sites are more functionally similar to each other than to assemblages from other environments. [Lusk, C. H.] Univ Waikato, Environm Res Inst, Hamilton, New Zealand; [Jimenez-Castillo, M.] Univ Austral Chile, Inst Ciencias Ambientales & Evolut, Valdivia, Chile; [Aragon, R.] Univ Nacl Tucuman, Inst Ecol Reg, San Miguel De Tucuman, Argentina; [Easdale, T. A.] Landcare Res, Lincoln, New Zealand; [Poorter, L.] Wageningen Univ, Forest Ecol & Forest Management Grp, Wageningen, Netherlands; [Poorter, L.] IBIF, Santa Cruz, Bolivia; [Poorter, L.] Wageningen Univ, Resource Ecol Grp, Wageningen, Netherlands; [Hinojosa, L. F.] Univ Chile, Fac Ciencias, Lab Paleoecol, Santiago, Chile; [Mason, N. W. H.] Landcare Res, Hamilton, New Zealand Lusk, CH (reprint author), Univ Waikato, Environm Res Inst, Hamilton, New Zealand. clusk@waikato.ac.nz Easdale, Tomas/0000-0001-5086-8527; Jimenez-Castillo, Mylthon/0000-0003-4328-3904 Armesto J. J., 2011, BOT ECOLOGICA GUIA C; ARMESTO JJ, 1989, J BIOGEOGR, V16, P219, DOI 10.2307/2845258; Atkinson I. A. E., 1972, Proceedings, New Zealand Ecological Society, V19, P34; Baraloto C, 2010, ECOL LETT, V13, P1338, DOI 10.1111/j.1461-0248.2010.01517.x; BARBOUR MG, 1990, ISRAEL J BOT, V39, P453; Barreda Viviana, 1997, Ameghiniana, V34, P69; Barreda V, 2009, REV PALAEOBOT PALYNO, V154, P22, DOI 10.1016/j.revpalbo.2008.11.005; Barros Eduardo Cristo de Oliveira, 2013, Rodriguésia, V64, P37, DOI 10.1590/S2175-78602013000100005; BEVERIDGE A E, 1973, New Zealand Journal of Forestry, V18, P23; Biffin E, 2012, P ROY SOC B-BIOL SCI, V279, P341, DOI 10.1098/rspb.2011.0559; Bokma F, 2008, EVOLUTION, V62, P2718, DOI 10.1111/j.1558-5646.2008.00492.x; BUSBY J R, 1991, Plant Protection Quarterly, V6, P8; Bush MB, 2001, GLOBAL ECOL BIOGEOGR, V10, P359, DOI 10.1046/j.1466-822X.2001.00247.x; Chave J, 2006, ECOL APPL, V16, P2356, DOI 10.1890/1051-0761(2006)016[2356:RAPVOW]2.0.CO;2; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; CLOUT MN, 1989, NEW ZEAL J ECOL, V12, P27; CODY ML, 1978, ANNU REV ECOL SYST, V9, P265, DOI 10.1146/annurev.es.09.110178.001405; Cornelissen JHC, 2003, AUST J BOT, V51, P335, DOI 10.1071/BT02124; Cowling RM, 2005, GLOBAL ECOL BIOGEOGR, V14, P509, DOI [10.1111/j.1466-822X.2005.00166.x, 10.1111/j.1466-822x.2005.00166.x]; COWLING RM, 1994, AUST J ECOL, V19, P220; Craine JM, 2012, FRONT PLANT SCI, V3, DOI 10.3389/fpls.2012.00246; Direccion Meteorologica de Chile, 2001, EST CLIM, VII; Easdale TA, 2007, J VEG SCI, V18, P313, DOI 10.1658/1100-9233(2007)18[313:TMISDM]2.0.CO;2; Easdale TA, 2009, PERSPECT PLANT ECOL, V11, P203, DOI 10.1016/j.ppees.2009.03.001; ESCUDERO A, 1992, OECOLOGIA, V90, P80, DOI 10.1007/BF00317812; Falster DS, 2005, OIKOS, V111, P57, DOI 10.1111/j.0030-1299.2005.13383.x; Falster DS, 2003, TRENDS ECOL EVOL, V18, P337, DOI 10.1016/S0169-5347(03)00061-2; Fisher AE, 2014, SYST BOT, V39, P829, DOI 10.1600/036364414X681554; Flynn JJ, 1998, TRENDS ECOL EVOL, V13, P449, DOI 10.1016/S0169-5347(98)01457-8; Forsyth DM, 2002, NEW ZEAL J ZOOL, V29, P323, DOI 10.1080/03014223.2002.9518316; Freschet GT, 2011, GLOBAL ECOL BIOGEOGR, V20, P755, DOI 10.1111/j.1466-8238.2011.00651.x; GODOY R, 1994, REV CHIL HIST NAT, V67, P209; Gonzalez ME, 2002, PLANT ECOL, V161, P59, DOI 10.1023/A:1020378822847; Grubb PJ, 2013, BIOL REV, V88, P701, DOI 10.1111/brv.12029; Gutierrez AG, 2012, PERSPECT PLANT ECOL, V14, P243, DOI 10.1016/j.ppees.2012.01.004; Hacke UG, 2001, OECOLOGIA, V126, P457, DOI 10.1007/s004420100628; Hajek E, 1975, BIOCLIMATOGRAFIA CHI; Hajek ER, 1976, BIOCLIMATOLOGIA CHIL; Hill R.S., 1995, ECOLOGY SO CONIFERS; Hodgson JG, 2011, ANN BOT-LONDON, V108, P1337, DOI 10.1093/aob/mcr225; HOFFMANN A., 1997, FLORA SILVESTRE CHIL; Hunzinger H, 1997, MT RES DEV, V17, P299, DOI 10.2307/3674020; JOHNSON PN, 1977, NEW PHYTOL, V78, P161, DOI 10.1111/j.1469-8137.1977.tb01554.x; Wright SJ, 2010, ECOLOGY, V91, P3664, DOI 10.1890/09-2335.1; KELLY D, 1994, NEW ZEAL J BOT, V32, P509, DOI 10.1080/0028825X.1994.10412937; KIKUZAWA K, 1991, AM NAT, V138, P1250, DOI 10.1086/285281; Kitajima K, 2010, NEW PHYTOL, V186, P708, DOI 10.1111/j.1469-8137.2010.03212.x; Kooyman R, 2012, BIOTROPICA, V44, P668, DOI 10.1111/j.1744-7429.2012.00861.x; Lamanna C, 2014, P NATL ACAD SCI USA, V111, P13745, DOI 10.1073/pnas.1317722111; Leathwick JR, 2001, NEW ZEAL J BOT, V39, P447; Lee WG, 2010, NEW ZEAL J ECOL, V34, P28; LEUNING R, 1988, AGR FOREST METEOROL, V42, P121, DOI 10.1016/0168-1923(88)90072-X; Loehle C, 2000, AM NAT, V156, P14, DOI 10.1086/303369; LOEHLE C, 1988, CAN J FOREST RES, V18, P209, DOI 10.1139/x88-032; Lord J, 1997, J BIOGEOGR, V24, P205, DOI 10.1046/j.1365-2699.1997.00126.x; Lusk CH, 2011, J ECOL, V99, P491, DOI 10.1111/j.1365-2745.2010.01766.x; Lusk Christopher H., 2001, Gayana Botanica, V58, P25; Lusk CH, 2015, J ECOL, V103, P479, DOI 10.1111/1365-2745.12368; Lusk CH, 2012, ANN BOT-LONDON, V110, P177, DOI 10.1093/aob/mcs095; Lusk CH, 2010, NEW PHYTOL, V186, P429, DOI 10.1111/j.1469-8137.2010.03202.x; McGlone MS, 2010, NEW ZEAL J ECOL, V34, P137; MEFFORD M. J., 2011, PC ORD MULTIVARIATE; Moles AT, 2009, J ECOL, V97, P923, DOI 10.1111/j.1365-2745.2009.01526.x; Moles AT, 2004, J ECOL, V92, P372, DOI 10.1111/j.0022-0477.2004.00884.x; Moles AT, 2000, OIKOS, V90, P517, DOI 10.1034/j.1600-0706.2000.900310.x; MONK CD, 1966, ECOLOGY, V47, P504, DOI 10.2307/1932995; Muller-Landau HC, 2004, BIOTROPICA, V36, P20, DOI 10.1111/j.1744-7429.2004.tb00292.x; Newstrom L, 2005, NEW ZEAL J BOT, V43, P1, DOI 10.1080/0028825X.2005.9512943; NEWTON AC, 1989, J TROP ECOL, V5, P441, DOI 10.1017/S0266467400003916; Nix H., 1986, AUSTR FLORA FAUNA SE, V7; NORTON SA, 1984, NEW ZEAL J ECOL, V7, P157; OGDEN J, 1991, J VEG SCI, V2, P165, DOI 10.2307/3235948; Ogden J, 1995, ECOLOGY SO CONIFERS, P81; Oliver WRB, 1930, J ECOL, V18, P1, DOI 10.2307/2255890; Otegui M, 1999, NORD J BOT, V19, P71, DOI 10.1111/j.1756-1051.1999.tb01904.x; Ough K., 1996, Australian Forestry, V59, P178; PARKHURST DF, 1972, J ECOL, V60, P505, DOI 10.2307/2258359; Pena-Claros M, 2008, FOREST ECOL MANAG, V256, P1458, DOI 10.1016/j.foreco.2007.11.013; Peppe DJ, 2011, NEW PHYTOL, V190, P724, DOI 10.1111/j.1469-8137.2010.03615.x; Pollock ML, 2007, NEW ZEAL J ECOL, V31, P68; POOLE AL, 1990, TREES SHRUBS NZ; Poorter H, 2009, NEW PHYTOL, V182, P565, DOI 10.1111/j.1469-8137.2009.02830.x; Poorter L, 2008, OECOLOGIA, V158, P35, DOI 10.1007/s00442-008-1131-x; Poorter L, 2010, NEW PHYTOL, V185, P481, DOI 10.1111/j.1469-8137.2009.03092.x; R Development Core Team, 2008, R LANG ENV STAT COMP; Rabosky DL, 2008, EVOLUTION, V62, P1866, DOI 10.1111/j.1558-5646.2008.00409.x; Rabosky DL, 2010, EVOLUTION, V64, P1816, DOI 10.1111/j.1558-5646.2009.00926.x; READ J, 1983, AUST J ECOL, V8, P149, DOI 10.1111/j.1442-9993.1983.tb01602.x; REICH PB, 1991, OECOLOGIA, V86, P16, DOI 10.1007/BF00317383; Reich PB, 2014, J ECOL, V102, P275, DOI 10.1111/1365-2745.12211; Schimper A. F. W., 1902, PLANT GEOGRAPHY PHYS; Schneider H, 2004, NATURE, V428, P553, DOI 10.1038/nature02361; Sterck FJ, 2006, AM NAT, V167, P758, DOI 10.1086/503056; Swenson NG, 2007, AM J BOT, V94, P451, DOI 10.3732/ajb.94.3.451; Swenson NG, 2012, GLOBAL ECOL BIOGEOGR, V21, P798, DOI 10.1111/j.1466-8238.2011.00727.x; Taylor A, 2016, NEW ZEAL J BOT, V54, DOI [10.1080/0028825X.2016.1147471, DOI 10.1080/0028825X.2016.1147471]; Tng DYP, 2012, NEW PHYTOL, V196, P1001, DOI 10.1111/j.1469-8137.2012.04359.x; TORTORELLI L. A., 1956, MADERAS BOSQUES ARGE; van Gelder HA, 2006, NEW PHYTOL, V171, P367, DOI 10.1111/j.1469-8137.2006.01757.x; Veblen T. T., 1982, Bosque, V4, P73; Veblen T.T., 1996, ECOLOGY BIOGEOGRAPHY; Veblen Thomas T., 1996, P293; Veblen TT, 2016, NEW ZEAL J BOT, V54, DOI [10.1080/0028825X.2015.1130726, DOI 10.1080/0028825X.2015.1130726]; Villagran C, 1997, REV CHIL HIST NAT, V70, P241; Wardle P., 1991, VEGETATION NZ; WARMING E, 1909, OECOLOGY PLANTS INTR; WEBB LJ, 1968, ECOLOGY, V49, P296, DOI 10.2307/1934459; WEBB LJ, 1959, J ECOL, V47, P551, DOI 10.2307/2257290; Westoby M, 2002, ANNU REV ECOL SYST, V33, P125, DOI 10.1146/annurev.ecolsys.33.010802.150452; WHITEHEAD DR, 1969, EVOLUTION, V23, P28, DOI 10.1111/j.1558-5646.1969.tb03490.x; WILLSON MF, 1989, BIOTROPICA, V21, P133, DOI 10.2307/2388704; Wilson PJ, 1999, NEW PHYTOL, V143, P155, DOI 10.1046/j.1469-8137.1999.00427.x; Woodburne MO, 2014, J MAMM EVOL, V21, P1, DOI 10.1007/s10914-012-9222-1; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Yamamoto Leila Fumiyo, 2007, Acta Bot. Bras., V21, P553, DOI 10.1590/S0102-33062007000300005 115 4 4 2 18 TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND 0028-825X 1175-8643 NEW ZEAL J BOT N. Z. J. Bot. JUN 2016 54 2 SI 175 203 10.1080/0028825X.2016.1143019 29 Plant Sciences Plant Sciences DR3TQ WOS:000379825900006 2018-11-22 J Visser, B; Le Lann, C; Snaas, H; Verdeny-Vilalta, O; Harvey, JA Visser, Bertanne; Le Lann, Cecile; Snaas, Helen; Verdeny-Vilalta, Oriol; Harvey, Jeffrey A. Divergent life history strategies in congeneric hyperparasitoids EVOLUTIONARY ECOLOGY English Article Gelis; Hymenoptera; Life history theory; Metabolic rate; Reproduction ECTOPARASITOID NASONIA-VITRIPENNIS; GELIS-AGILIS HYMENOPTERA; RESTING METABOLIC-RATE; EGG SIZE; TRADE-OFF; PARASITOID WASPS; REPRODUCTIVE STRATEGIES; DROSOPHILA-MELANOGASTER; RESOURCE COMPETITION; LYSIBIA-NANA Life histories can reveal important information on the performance of individuals within their environment and how that affects evolutionary change. Major trait changes, such as trait decay or loss, may lead to pronounced differences in life history strategies when tight correlations between traits exist. Here, we show that three congeneric hyperparasitoids (Gelis agilis, Gelis acarorum and Gelis areator) that have diverged in wing development and reproductive mode employ markedly different life history strategies. Potential fecundity of Gelis sp. varied, with the wingless G. acarorum maturing a much higher number of eggs throughout life compared with the other two species. Realized lifetime fecundity, in terms of total offspring number was, however, highest for the winged G. areator. The parthenogenic G. agilis invests its resources solely in females, whilst the sexually reproducing species both invested heavily in males to reduce competitive pressures for their female offspring. Longevity also differed between species, as did the direction of the reproduction-longevity trade-off, where reproduction is heavily traded off against longevity only in the asexual G. agilis. Resting metabolic rates also differed between the winged and wingless species, with the highest metabolic rate observed in the winged G. areator. Overall, these geline hyperparasitoids showed considerable divergence in life history strategies, both in terms of timing and investment patterns. Major trait changes observed between closely related species, such as the loss of wings and sexual reproduction, may contribute to the divergence in key life history traits. [Visser, Bertanne; Snaas, Helen; Harvey, Jeffrey A.] Netherlands Inst Ecol, Dept Terr Ecol, Droevendaalsesteeg 10, NL-6708 PB Wageningen, Netherlands; [Visser, Bertanne] Catholic Univ Louvain, Evolutionary Ecol & Genet Grp, Biodivers Res Ctr, Earth & Life Inst, Croix Sud 4, B-1348 Louvain La Neuve, Belgium; [Le Lann, Cecile] Univ Rennes 1, ECOBIO, CNRS, Unite Mixte Rech 6553, F-35042 Rennes, France; [Le Lann, Cecile; Harvey, Jeffrey A.] Vrije Univ Amsterdam, Dept Ecol Sci, De Boelelaan 1085, NL-1081 HV Amsterdam, Netherlands; [Verdeny-Vilalta, Oriol] CSIC, EEZA, Dept Funct & Evolutionary Ecol, Carretera Sacramento S-N, La Canada De San Urbano 04120, Almeria, Spain Visser, B (reprint author), Netherlands Inst Ecol, Dept Terr Ecol, Droevendaalsesteeg 10, NL-6708 PB Wageningen, Netherlands.; Visser, B (reprint author), Catholic Univ Louvain, Evolutionary Ecol & Genet Grp, Biodivers Res Ctr, Earth & Life Inst, Croix Sud 4, B-1348 Louvain La Neuve, Belgium. bertannevisser@gmail.com Library, Library/A-4320-2012; Harvey, Jeffrey/B-7439-2008 Library, Library/0000-0002-3835-159X; Harvey, Jeffrey/0000-0002-4227-7935; Visser, Bertanne/0000-0003-4465-6020 IEF People Program (Marie Curie Actions) of the European Union under REA grant [274386, 298457]; Netherlands Organisation for Scientific Research Rubicon [815.12.014] We would like to thank Roel Wagenaar for his help in rearing of the hyperparasitoids and three anonymous referees for their constructive comments on earlier drafts of this manuscript. B. V. is further grateful to Louise Vet and Wim van der Putten for their hospitality to work in their institute and department. C. L. L. was supported by the IEF People Program (Marie Curie Actions) of the European Union's Seventh Framework Program (FP7/2007-2013) under REA grant agreement no 274386, project COEVOLCLIM. B. V. was supported by a Netherlands Organisation for Scientific Research Rubicon fellowship with Grant No. 815.12.014 and the IEF People Program (Marie Curie Actions) of the European Union's Seventh Framework Program (FP7/2007-2013) under REA grant agreement no 298457, project ECOLOGY&LIPOGENESIS. Boivin G, 2009, ECOL ENTOMOL, V34, P240, DOI 10.1111/j.1365-2311.2008.01063.x; Boratynski Z, 2010, FUNCT ECOL, V24, P1252, DOI 10.1111/j.1365-2435.2010.01764.x; BOURCHIER RS, 1992, ENVIRON ENTOMOL, V21, P907, DOI 10.1093/ee/21.4.907; Burton T, 2011, P ROY SOC B-BIOL SCI, V278, P3465, DOI 10.1098/rspb.2011.1778; CHARNOV EL, 1981, NATURE, V289, P27, DOI 10.1038/289027a0; CLARK AB, 1978, SCIENCE, V201, P163, DOI 10.1126/science.201.4351.163; Clark RM, 2015, J EXP BIOL, V15, P298; DENNO RF, 1989, ECOL ENTOMOL, V14, P31, DOI 10.1111/j.1365-2311.1989.tb00751.x; Development Core Team R, 2014, R LANG ENV STAT COMP; Einum S, 2000, NATURE, V405, P565, DOI 10.1038/35014600; Flatt T, 2011, EXP GERONTOL, V46, P369, DOI 10.1016/j.exger.2010.10.008; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; FOX CW, 1993, OECOLOGIA, V96, P139, DOI 10.1007/BF00318042; Gems D, 1996, NATURE, V379, P723, DOI 10.1038/379723a0; Gibbs AM, 2005, J INSECT SCI, V5, P1; Gilbert JDJ, 2010, AM NAT, V176, P212, DOI 10.1086/653661; Gillooly JF, 2001, SCIENCE, V293, P2248, DOI 10.1126/science.1061967; Giron D, 2003, ECOL LETT, V6, P273, DOI 10.1046/j.1461-0248.2003.00429.x; Giron D, 2002, FUNCT ECOL, V16, P750, DOI 10.1046/j.1365-2435.2002.00679.x; Godfray H. C. J., 1994, PARASITOIDS BEHAV EV; Gomez-Marco F, 2015, BIOL CONTROL, V81, P111, DOI 10.1016/j.biocontrol.2014.11.015; HAMILTON WD, 1967, SCIENCE, V156, P477, DOI 10.1126/science.156.3774.477; Harvey JA, 2008, EVOL ECOL, V22, P153, DOI 10.1007/s10682-007-9164-x; Harvey JA, 2005, APPL ENTOMOL ZOOL, V40, P309, DOI 10.1303/aez.2005.309; Harvey JA, 2000, ECOL ENTOMOL, V25, P267, DOI 10.1046/j.1365-2311.2000.00265.x; Harvey JA, 2015, ECOL ENTOMOL, V40, P114, DOI 10.1111/een.12165; Harvey JA, 2014, ARTHROPOD-PLANT INTE, V8, P393, DOI 10.1007/s11829-014-9319-y; Harvey JA, 2012, J INSECT PHYSIOL, V58, P816, DOI 10.1016/j.jinsphys.2012.03.002; Harvey JA, 2011, OIKOS, V120, P226, DOI 10.1111/j.1600-0706.2010.18744.x; Harvey JA, 2011, J INSECT BEHAV, V24, P282, DOI 10.1007/s10905-010-9254-4; Hoffmann AA, 2001, EVOLUTION, V55, P436; Horak D, 2008, ACTA OECOL, V33, P197, DOI 10.1016/j.actao.2007.10.007; Hsu J., 1996, MULTIPLE COMP THEORY; Hulbert AJ, 2007, PHYSIOL REV, V87, P1175, DOI 10.1152/physrev.00047.2006; Hurst Laurence D., 1996, Trends in Ecology and Evolution, V11, P46, DOI 10.1016/0169-5347(96)81041-X; Jackson DM, 2001, J ANIM ECOL, V70, P633, DOI 10.1046/j.1365-2656.2001.00518.x; JERVIS MA, 1986, BIOL REV, V61, P395, DOI 10.1111/j.1469-185X.1986.tb00660.x; Jervis MA, 2001, J ANIM ECOL, V70, P442, DOI 10.1046/j.1365-2656.2001.00507.x; Jervis M, 2011, BIOL J LINN SOC, V104, P443, DOI 10.1111/j.1095-8312.2011.01719.x; Jervis MA, 2008, ANNU REV ENTOMOL, V53, P361, DOI 10.1146/annurev.ento.53.103106.093433; Jervis MA, 2012, ECOL LETT, V15, P357, DOI 10.1111/j.1461-0248.2012.01745.x; Kawecki TJ, 2008, ANNU REV ECOL EVOL S, V39, P321, DOI 10.1146/annurev.ecolsys.38.091206.095622; Kenyon CJ, 2010, NATURE, V464, P504, DOI 10.1038/nature08980; KING BH, 1987, Q REV BIOL, V62, P367, DOI 10.1086/415618; King EG, 2011, J EVOLUTION BIOL, V24, P256, DOI 10.1111/j.1420-9101.2010.02160.x; Kolm N, 2006, J EVOLUTION BIOL, V19, P76, DOI 10.1111/j.1420-9101.2005.00987; Kramer MG, 2001, EVOLUTION, V55, P748, DOI [10.1554/0014-3820(2001)055[0748:LHCTAT]2.0.CO;2, 10.1111/j.0014-3820.2001.tb00811.x]; Lahti DC, 2009, TRENDS ECOL EVOL, V24, P487, DOI 10.1016/j.tree.2009.03.010; LAMB RY, 1979, EVOLUTION, V33, P774, DOI 10.1111/j.1558-5646.1979.tb04731.x; Laurenne N.M., 2008, THESIS; Le Lann C, 2014, ECOL ENTOMOL, V39, P578, DOI 10.1111/een.12135; Le Lann C, 2014, OECOLOGIA, V174, P967, DOI 10.1007/s00442-013-2810-9; Le Lann C, 2012, EVOL ECOL, V26, P79, DOI 10.1007/s10682-011-9498-2; Le Lann C, 2011, FUNCT ECOL, V25, P641, DOI 10.1111/j.1365-2435.2010.01813.x; Lehtonen J, 2012, TRENDS ECOL EVOL, V27, P172, DOI 10.1016/j.tree.2011.09.016; Lei GC, 1997, J NAT HIST, V31, P635, DOI 10.1080/00222939700770301; Libert P, 2010, FAUN ENTOMOL, V63, P47; Madec L, 2000, BIOL J LINN SOC, V69, P25, DOI 10.1006/bijl.1999.0324; Martin TE, 2015, SCIENCE, V349, P966, DOI 10.1126/science.aad1173; Mayhew PJ, 1999, J ANIM ECOL, V68, P906, DOI 10.1046/j.1365-2656.1999.00338.x; McIntyre GS, 2000, CAN J ZOOL, V78, P1544, DOI 10.1139/cjz-78-9-1544; MOLE S, 1993, OECOLOGIA, V93, P121, DOI 10.1007/BF00321201; Partridge L, 2002, NAT REV GENET, V3, P165, DOI 10.1038/nrg753; Pennacchio F, 2006, ANNU REV ENTOMOL, V51, P233, DOI 10.1146/annurev.ento.51.110104.151029; Poelman EH, 2012, PLOS BIOL, V10, DOI 10.1371/journal.pbio.1001435; Preziosi RF, 1996, OECOLOGIA, V108, P424, DOI 10.1007/BF00333717; PRICE PW, 1973, AM NAT, V107, P684, DOI 10.1086/282867; Reinhold K, 1999, FUNCT ECOL, V13, P217, DOI 10.1046/j.1365-2435.1999.00300.x; Rivero A, 2002, EVOL ECOL RES, V4, P407; RIVERS DB, 1994, J INSECT PHYSIOL, V40, P207, DOI 10.1016/0022-1910(94)90044-2; RIVERS DB, 1995, J INVERTEBR PATHOL, V66, P104, DOI 10.1006/jipa.1995.1071; Schwarzkopf L, 1999, AM NAT, V154, P333, DOI 10.1086/303242; Shaw MR, 2006, J INSECT CONSERV, V10, P117, DOI 10.1007/s10841-006-6288-1; Simmons FH, 1997, J INSECT PHYSIOL, V43, P779, DOI 10.1016/S0022-1910(97)00037-1; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Tatar M, 2010, ANN NY ACAD SCI, V1204, P149, DOI 10.1111/j.1749-6632.2010.05522.x; TAYLOR VA, 1981, ECOL ENTOMOL, V6, P89, DOI 10.1111/j.1365-2311.1981.tb00975.x; Timi JT, 2005, PARASITOL RES, V95, P1, DOI 10.1007/s00436-004-1242-1; Van Voorhies WA, 1999, P NATL ACAD SCI USA, V96, P11399, DOI 10.1073/pnas.96.20.11399; Visser B, 2014, BEHAV ECOL SOCIOBIOL, V68, P105, DOI 10.1007/s00265-013-1627-1; Warne RW, 2008, AM NAT, V172, pE80, DOI 10.1086/589880; West S., 2009, MONOGRAPHS POPULATIO, V44; Williams TD, 2001, P ROY SOC B-BIOL SCI, V268, P423, DOI 10.1098/rspb.2000.1374; ZUUR A. F., 2009, MIXED EFFECT MODELS 85 5 5 5 7 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 1573-8477 EVOL ECOL Evol. Ecol. JUN 2016 30 3 535 549 10.1007/s10682-016-9819-6 15 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity DQ9GZ WOS:000379519700011 2018-11-22 J Jahn, AE; Giraldo, JI; MacPherson, M; Tuero, DT; Sarasola, JH; Cereghetti, J; Masson, DA; Morales, MV Jahn, Alex E.; Giraldo, Jose I.; MacPherson, Maggie; Tuero, Diego T.; Hernan Sarasola, Jose; Cereghetti, Joaquin; Masson, Diego A.; Morales, Marvin V. Demographic variation in timing and intensity of feather molt in migratory Fork-tailed Flycatchers (Tyrannus s. savana) JOURNAL OF FIELD ORNITHOLOGY English Article Argentina; Colombia; feather; llanos; rectrix; remige WORLD BIRD MIGRATION; PIED FLYCATCHER; TROPICAL BIRDS; SOUTH-AMERICA; CLUTCH-SIZE; TRADE-OFF; BODY-MASS; AGE; CONSERVATION; STRATEGIES Understanding the annual cycle of migratory birds is imperative for evaluating the evolution of life-history strategies and developing effective conservation strategies. Yet, we still know little about the annual cycle of migratory birds that breed at south-temperate latitudes of South America. We aged, sexed, and determined the progression and intensity of body, remige, and rectrix molt of migratory Fork-tailed Flycatchers (Tyrannus s. savana) at breeding sites in southern South America and at wintering sites in northern South America. Molt of both body and flight feathers occurred primarily during the winter. In early winter, a similar proportion of young and adult flycatchers molted remiges and rectrices, but remige molt intensity (number of remiges molting) was greater and primary molt progression (mean primary feather molting) more advanced in adults. In late winter, remige molt intensity and primary molt progression did not differ between age groups. We found no difference between males and females either in the proportion of individuals molting in winter or in the intensity or progress of remige molt. Our results suggest that the nominate subspecies of Fork-tailed Flycatcher undergoes one complete, annual molt on the wintering grounds, and represents the first comprehensive evaluation of molt timing of a migratory New World flycatcher that overwinters in the tropics. Given that breeding, molt, and migration represent three key events in the annual cycle of migratory birds, knowledge of the timing of these events is the first step toward understanding the possible tradeoffs migratory birds face throughout the year. [Jahn, Alex E.] Univ Estadual Paulista, Dept Zool, Ave 24a,1515, Sao Paulo, Brazil; [Giraldo, Jose I.] Aves Int Colombia, Carrera 4,5-80, Sopo, Cundinamarca, Colombia; [MacPherson, Maggie] Tulane Univ, Dept Ecol & Evolutionary Biol, Lindy Boggs Ctr 400, New Orleans, LA 70118 USA; [Tuero, Diego T.] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Ecol Genet & Evoluc, Inst IEGEBA,CONICET UBA, Buenos Aires, DF, Argentina; [Hernan Sarasola, Jose] Univ Nacl La Pampa, CECARA, CONICET, Santa Rosa, La Pampa, Argentina; [Cereghetti, Joaquin] Univ Nacl La Pampa, Fac Ciencias Exactas & Nat, Ave Uruguay 151, La Pampa, Argentina; [Masson, Diego A.] Univ Nacl La Plata, Fac Ciencias Nat & Museo, B1904CCA,Ave 122 & 60, RA-1900 La Plata, Buenos Aires, Argentina; [Morales, Marvin V.] Univ Florida, Dept Biol, 220 Bartram Hall, Gainesville, FL 32611 USA Jahn, AE (reprint author), Univ Estadual Paulista, Dept Zool, Ave 24a,1515, Sao Paulo, Brazil. ajahn@rc.unesp.br National Geographic Society Scientific Research Grants [8444-08, 8953-11]; Gatorade Fund of the University of Florida; Idea Wild; Optics for the Tropics; National Science Foundation [IRFP-0965213]; Fundacao de Amparo a Pesquisa do Estado de Sao Paulo [2012/17225-2] We thank M. Murphy, G. Ritchison, and three anonymous reviewers for numerous helpful comments. We are grateful to numerous field assistants without whom this research would not have been possible. We thank L. Brown, V. Cueto, and D. Levey for advice, and the Sikuani and owners of private properties for access to their land. This research was funded by National Geographic Society Scientific Research Grants 8444-08 and 8953-11, the Gatorade Fund of the University of Florida, Idea Wild, Optics for the Tropics, the National Science Foundation (IRFP-0965213), and the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (2012/17225-2). Research was conducted in Argentina under permits from the Departamento de Flora y Fauna, Ministerio de Asuntos Agrarios, Provincia de Buenos Aires (Disposicion 256/11), Direccion de Recursos Naturales, Ministerio de la Produccion, Provincia de La Pampa, and in Colombia under ANLA permit 2015005957-1-000. The authors have no conflict of interest to declare. Barry JH, 2009, AUK, V126, P260, DOI 10.1525/auk.2009.07137; Butler LK, 2002, AUK, V119, P1010, DOI 10.1642/0004-8038(2002)119[1010:MMIWTP]2.0.CO;2; Carlisle JD, 2005, AUK, V122, P1070, DOI 10.1642/0004-8038(2005)122[1070:MSAADI]2.0.CO;2; Chesser R. Terry, 1994, Bird Conservation International, V4, P91; Cooper NW, 2009, J FIELD ORNITHOL, V80, P35, DOI 10.1111/j.1557-9263.2009.00203.x; Cueto Víctor R., 2008, Hornero, V23, P1; Danner R. M., 2014, FUNCTIONAL ECOLOGY, V29, P259; Dawson Terence J., 2004, Australian Mammalogy, V26, P145; Dietz MW, 2015, IBIS, V157, P147, DOI 10.1111/ibi.12185; Faaborg J, 2010, ECOL MONOGR, V80, P3, DOI 10.1890/09-0395.1; Fitzpatrick J. W, 2004, HDB BIRDS WORLD, V9, P170; HARMS NJ, 2015, P ROYAL SOC B, V0282; HEDENSTROM A, 1993, IBIS, V135, P177, DOI 10.1111/j.1474-919X.1993.tb02829.x; Hedenstrom A, 1999, J EXP BIOL, V202, P67; Heise CD, 2003, CONDOR, V105, P496, DOI 10.1650/7183; Hemborg C, 2001, OECOLOGIA, V129, P206, DOI 10.1007/s004420100710; Jahn AE, 2004, AUK, V121, P1005, DOI 10.1642/0004-8038(2004)121[1005:RAHASA]2.0.CO;2; Jahn AE, 2013, NEOTROPICAL BIRDS ON; Jahn AE, 2014, EMU, V114, P337, DOI 10.1071/MU13084; Jahn AE, 2013, AUK, V130, P223, DOI 10.1525/auk.2013.12077; Jahn AE, 2013, AUK, V130, P247, DOI 10.1525/auk.2013.13010; Jahn AE, 2012, J ORNITHOL, V153, pS199, DOI 10.1007/s10336-012-0849-8; Jenni L, 1994, MOULT AGEING EUROPEA; Jetz W, 2008, PLOS BIOL, V6, P2650, DOI 10.1371/journal.pbio.0060303; Lemke HW, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0079209; Leu M, 2002, BIOL CONSERV, V106, P45, DOI 10.1016/S0006-3207(01)00228-2; LINDSTROM A, 1993, PHYSIOL ZOOL, V66, P490, DOI 10.1086/physzool.66.4.30163805; Marini Miguel Ângelo, 2009, Biota Neotrop., V9, P0, DOI 10.1590/S1676-06032009000100007; Marra PP, 2015, BIOL LETTERS, V11, DOI 10.1098/rsbl.2015.0552; MOLLER AP, 1995, BEHAV ECOL, V6, P242, DOI 10.1093/beheco/6.3.242; Murphy Mary E., 1996, P158; MURPHY ME, 1992, ORNIS SCAND, V23, P304, DOI 10.2307/3676654; NILES DM, 1972, CONDOR, V74, P61, DOI 10.2307/1366450; Pyle P., 1997, IDENTIFICATION GUI 1; Pyle Peter, 1998, Western Birds, V29, P29; R Core Team, 2013, R LANG ENV STAT COMP; Ralph CJ, 1993, PSWGTR144 US FOR SER; Renfrew RB, 2013, DIVERS DISTRIB, V19, P1008, DOI 10.1111/ddi.12080; Ridgely RS, 2009, FIELD GUIDE SONGBIRD; Robinson WD, 2010, AUK, V127, P253, DOI 10.1525/auk.2010.127.2.253; Rohwer Sievert, 2005, P87; Rohwer S, 2013, CONDOR, V115, P421, DOI 10.1525/cond.2013.120090; Rohwer S, 2011, CONDOR, V113, P61, DOI 10.1525/cond.2011.100092; Ryder TB, 2009, ORNITOL NEOTROP, V20, P1; Saino N, 2004, P ROY SOC B-BIOL SCI, V271, P681, DOI 10.1098/rspb.2003.2656; Sherry TW, 1996, ECOLOGY, V77, P36, DOI 10.2307/2265652; SIIKAMAKI P, 1994, FUNCT ECOL, V8, P587, DOI 10.2307/2389919; Silveira MB, 2012, CONDOR, V114, P435, DOI 10.1525/cond.2012.110022; Stach R., 2012, ANIM MIGR, V1, P1, DOI DOI 10.2478/AMI-2012-0001; Stutchbury BJM, 2011, P ROY SOC B-BIOL SCI, V278, P131, DOI 10.1098/rspb.2010.1220; Svensson E, 1999, BIOL J LINN SOC, V67, P263, DOI 10.1006/bijl.1998.0302; Swaddle JP, 1997, CAN J ZOOL, V75, P1135, DOI 10.1139/z97-136; Szep T, 2009, J ORNITHOL, V150, P621, DOI 10.1007/s10336-009-0382-6; Tottrup AP, 2012, P ROY SOC B-BIOL SCI, V279, P1008, DOI 10.1098/rspb.2011.1323; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P9340, DOI 10.1073/pnas.0702212104; Wolfe JD, 2010, J FIELD ORNITHOL, V81, P186, DOI 10.1111/j.1557-9263.2010.00276.x; Zimmer J. T., 1937, American Museum Novitates, V962, P1 57 4 4 0 8 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0273-8570 1557-9263 J FIELD ORNITHOL J. Field Ornithol. JUN 2016 87 2 143 154 10.1111/jofo.12147 12 Ornithology Zoology DP6SK WOS:000378628900003 2018-11-22 J Sen, A; Kim, S; Miller, AJ; Hovey, KJ; Hourdez, S; Luther, GW; Fisher, CR Sen, Arunima; Kim, Stacy; Miller, Alex J.; Hovey, Kyle J.; Hourdez, Stephane; Luther, George W., III; Fisher, Charles R. Peripheral communities of the Eastern Lau Spreading Center and Valu Fa Ridge: community composition, temporal change and comparison to near-vent communities MARINE ECOLOGY-AN EVOLUTIONARY PERSPECTIVE English Article Deep-sea mining; hydrothermal vents; Lau Basin; peripheral MID-ATLANTIC RIDGE; DEEP-SEA BENTHOS; CRAB BYTHOGRAEA-THERMYDRON; FLOOR MASSIVE SULFIDES; BACK-ARC BASIN; HYDROTHERMAL VENTS; PACIFIC RISE; GALAPAGOS RIFT; HOT-SPRINGS; IN-SITU Western Pacific hydrothermal vents will soon be subjected to deep-sea mining and peripheral sites are considered the most practical targets. The limited information on community dynamics and temporal change in these communities makes it difficult to anticipate the impact of mining activities and recovery trajectories. We studied community composition of peripheral communities along a cline in hydrothermal chemistry on the Eastern Lau Spreading Center and Valu Fa Ridge (ELSC-VFR) and also studied patterns of temporal change. Peripheral communities located in the northern vent fields of the ELSC-VFR are significantly different from those in the southern vent fields. Higher abundances of zoanthids and anemones were found in northern peripheral sites and the symbiont-containing mussel Bathymodiolus brevior, brisingid seastars and polynoids were only present in the northern peripheral sites. By contrast, certain faunal groups were seen only in the southern peripheral sites, such as lollipop sponges, pycnogonids and ophiuroids. Taxonomic richness of the peripheral communities was similar to that of active vent communities, due to the presence of non-vent endemic species that balanced the absence of species found in areas of active venting. The communities present at waning active sites resemble those of peripheral sites, indicating that peripheral species can colonize previously active vent sites in addition to settling in the periphery of areas of venting. Growth and mortality were observed in a number of the normally slow-growing cladorhizid stick sponges, indicating that these animals may exhibit life history strategies in the vicinity of vents that differ from those previously recorded. A novel facultative association between polynoids and anemones is proposed based on their correlated distributions. [Sen, Arunima] IFREMER, REM EEP LEP, Ctr Bretagne, Plouzane, France; [Kim, Stacy] Moss Landing Marine Labs, Benth Lab, Pob 450, Moss Landing, CA 95039 USA; [Miller, Alex J.; Hovey, Kyle J.; Fisher, Charles R.] Penn State Univ, Dept Biol, University Pk, PA 16802 USA; [Hourdez, Stephane] CNRS, UMR 7144, Adaptat & Biol Invertebres Condit Extremes, Roscoff, France; [Hourdez, Stephane] Univ Paris 06, UMR 7144, Adaptat & Biol Invertebres Condit Extremes, Roscoff, France; [Luther, George W., III] Univ Delaware, Sch Marine Sci & Policy, Lewes, DE 19958 USA; [Sen, Arunima] UiT Arctic Univ Tromso, Dept Geol, Ctr Arctic Gas Hydrate Environm & Climate, Tromso, Norway Sen, A (reprint author), IFREMER, REM EEP LEP, Ctr Bretagne, Plouzane, France. arunima.sen@uit.no Luther, III, George/A-6384-2008 Luther, III, George/0000-0002-0780-885X National Science Foundation (NSF) grants Division of Ocean Sciences [02-40985, 07-32333]; NSF grants Division of Ocean Sciences [0240896, 0732439]; NSF Division of Ocean Sciences [0241250] We would like to thank the crews of the R/V Melville and the R/V Thomas G. Thompson and the crew of Jason II for making this study possible. We thank Amy Gartman, Mustafa Yucel, Andrew Madison, Katherine Mullaugh and Shufen Ma for assistance with physico-chemical measurements, Baptiste Faure, Sabine Gollner and Dominique Cowart for assistance at sea and Miles Saunders for help with digitizing and mosaicking. Many thanks are due to Kamille Hammerstrom for identifying peripheral sites and depositing markers for return visits. Katriona Shea, Denice Wardrop, Todd Lajeunesse, Steve Schaeffer and Erin Becker provided valuable feedback and insights throughout the study. We thank two anonymous reviewers for their input. This project was funded by National Science Foundation (NSF) grants Division of Ocean Sciences 02-40985 and Division of Ocean Sciences 07-32333 to C.R.F., NSF grants Division of Ocean Sciences-0240896 and Division of Ocean Sciences-0732439 to G.W.L. and NSF Division of Ocean Sciences grant 0241250 to S.K. ARQUIT AM, 1990, J GEOPHYS RES-SOLID, V95, P12947, DOI 10.1029/JB095iB08p12947; Bates AE, 2005, MAR ECOL PROG SER, V305, P1, DOI 10.3354/meps305001; BEAUCHAMP RO, 1984, CRC CR REV TOXICOL, V13, P25, DOI 10.3109/10408448409029321; Beinart RA, 2012, P NATL ACAD SCI USA, V109, pE3241, DOI 10.1073/pnas.1202690109; Boschen RE, 2013, OCEAN COAST MANAGE, V84, P54, DOI 10.1016/j.ocecoaman.2013.07.005; Both R., 1986, EOS, V67, P489, DOI DOI 10.1029/EO067I021P00489; Childress JJ, 2011, J EXP BIOL, V214, P312, DOI 10.1242/jeb.049023; CHILDRESS JJ, 1992, OCEANOGR MAR BIOL, V30, P337; Copley JTP, 1997, MAR BIOL, V129, P723, DOI 10.1007/s002270050215; CORLISS JB, 1979, SCIENCE, V203, P1073, DOI 10.1126/science.203.4385.1073; Cuvelier D, 2009, DEEP-SEA RES PT I, V56, P2026, DOI 10.1016/j.dsr.2009.06.006; DESBRUYERES D, 1994, MAR GEOL, V116, P227, DOI 10.1016/0025-3227(94)90178-3; Desbruyeres D, 2006, HDB DEEP SEA HYDROTH; Di Camillo C. G., 2010, HELGOLAND MARINE RES, V65, P495; Dilly GF, 2012, P ROY SOC B-BIOL SCI, V279, P3347, DOI 10.1098/rspb.2012.0098; Dittel AI, 2008, J SHELLFISH RES, V27, P63, DOI 10.2983/0730-8000(2008)27[63:BOTVCB]2.0.CO;2; Dunn D. F, 1976, MAR BIOL, V39, P67; EDMOND JM, 1982, NATURE, V297, P187, DOI 10.1038/297187a0; ENRIGHT JT, 1981, NATURE, V289, P219, DOI 10.1038/289219a0; Epifanio CE, 1999, MAR ECOL PROG SER, V185, P147, DOI 10.3354/meps185147; Ferrini VL, 2008, GEOCHEM GEOPHY GEOSY, V9, DOI 10.1029/2008GC002047; FISHER CR, 1994, MAR ECOL PROG SER, V103, P45, DOI 10.3354/meps103045; Galkin SV, 1997, MAR GEOL, V142, P197, DOI 10.1016/S0025-3227(97)00051-0; Garrabou J, 2001, ESTUAR COAST SHELF S, V52, P293, DOI 10.1006/ecss.2000.0699; Gartman A, 2011, AQUAT GEOCHEM, V17, P583, DOI 10.1007/s10498-011-9136-1; Gebruk AV, 2000, J MAR BIOL ASSOC UK, V80, P383, DOI 10.1017/S0025315499002088; Gebruk AV, 2000, J MAR BIOL ASSOC UK, V80, P485, DOI 10.1017/S0025315400002186; GIBBS PE, 1969, PHILOS T ROY SOC B, V255, P443, DOI 10.1098/rstb.1969.0020; GRASSLE JF, 1991, BIOSCIENCE, V41, P464, DOI 10.2307/1311803; Gray JS, 1997, MAR ECOL PROG SER, V159, P97, DOI 10.3354/meps159097; Hajdu E, 2002, SYSTEMA PORIFERA GUI, P636; Halfar J, 2002, MAR POLICY, V26, P103, DOI 10.1016/S0308-597X(01)00041-0; Henry MS, 2008, DEEP-SEA RES PT I, V55, P679, DOI 10.1016/j.dsr.2008.02.001; Hessler R. R., 1985, B BIOL SOC WASH, V6, P411; HESSLER RR, 1967, DEEP-SEA RES, V14, P65; HESSLER RR, 1988, DEEP-SEA RES, V35, P1681, DOI 10.1016/0198-0149(88)90044-1; Hoagland P, 2010, MAR POLICY, V34, P728, DOI 10.1016/j.marpol.2009.12.001; Hyman LH, 1940, INVERTEBRATES PROTOZ; JOHNSON KS, 1986, SCIENCE, V231, P1139, DOI 10.1126/science.231.4742.1139; Jollivet D, 1996, BIODIVERS CONSERV, V5, P1619, DOI 10.1007/BF00052119; JUNIPER SK, 1995, AM ZOOL, V35, P174; JUNIPER SK, 1992, GEOLOGY, V20, P895, DOI 10.1130/0091-7613(1992)020<0895:IOATBP>2.3.CO;2; Kim S, 2012, DEEP-SEA RES PT I, V62, P10, DOI 10.1016/j.dsr.2011.12.010; LAMPITT RS, 1986, MAR BIOL, V93, P69, DOI 10.1007/BF00428656; Lilley MD, 1983, HYDROTHERMAL PROCESS, VIV, P411; LONSDALE P, 1977, DEEP-SEA RES, V24, P857, DOI 10.1016/0146-6291(77)90478-7; Luther GW, 2008, MAR CHEM, V108, P221, DOI 10.1016/j.marchem.2007.03.002; Luther GW, 2012, OCEANOGRAPHY, V25, P234, DOI 10.5670/oceanog.2012.22; Luther GW, 2001, J ENVIRON MONITOR, V3, P61; Marsh L, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0048348; Martin D, 1998, OCEANOGR MAR BIOL, V36, P217; Martinez F, 2006, EARTH PLANET SC LETT, V245, P655, DOI 10.1016/j.epsl.2006.03.049; Matabos M, 2008, J MAR BIOL ASSOC UK, V88, P995, DOI 10.1017/S002531540800163X; MCCLENDON JF, 2006, BIOL BULL, V10, P66, DOI DOI 10.2307/1535667; McMullin E R, 2000, Gravit Space Biol Bull, V13, P13; Mills SW, 2007, BIOL BULL-US, V212, P185, DOI 10.2307/25066601; Mottl MJ, 2011, GEOCHIM COSMOCHIM AC, V75, P1013, DOI 10.1016/j.gca.2010.12.008; Nakamura K, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0032965; Osburn R. C., 1914, ANIMAL KINGDOM B NEW, V17, P1163; Parker GH, 1916, P NATL ACAD SCI USA, V2, P449, DOI 10.1073/pnas.2.8.449; Parker GH, 1917, J EXP ZOOL, V22, P111, DOI 10.1002/jez.1400220106; Pettibone M. H., 1963, MARINE POLYCHAETE WO; PETTIBONE MH, 1991, P BIOL SOC WASH, V104, P714; PETTIBONE MH, 1989, P BIOL SOC WASH, V102, P300; PETTIBONE MH, 1991, P BIOL SOC WASH, V104, P688; PETTIBONE MH, 1993, SMITHSONIAN CONTRIBU, V538, P1, DOI DOI 10.5479/SI.00810282.538; Pizarro O, 2003, IEEE J OCEANIC ENG, V28, P651, DOI 10.1109/JOE.2003.819154; Podowski EL, 2010, MAR ECOL PROG SER, V418, P25, DOI 10.3354/meps08797; Podowski EL, 2009, DEEP-SEA RES PT I, V56, P2041, DOI 10.1016/j.dsr.2009.07.002; Portner HO, 2002, COMP BIOCHEM PHYS A, V132, P739, DOI 10.1016/S1095-6433(02)00045-4; Ravaux J, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064074; Rex MA, 2006, MAR ECOL PROG SER, V317, P1, DOI 10.3354/meps317001; SANDERS HL, 1969, SCIENCE, V163, P1419, DOI 10.1126/science.163.3874.1419; SANDERS HL, 1968, AM NAT, V102, P243, DOI 10.1086/282541; Sarrazin J, 1997, MAR ECOL PROG SER, V153, P5, DOI 10.3354/meps153005; Sarrazin J, 1999, MAR ECOL PROG SER, V185, P1, DOI 10.3354/meps185001; Sen A, 2013, DEEP-SEA RES PT 1, V72, P48; Sen A, 2014, LIMNOL OCEANOGR, V59, P1510, DOI 10.4319/lo.2014.59.5.1510; Shank TM, 1998, DEEP-SEA RES PT II, V45, P465, DOI 10.1016/S0967-0645(97)00089-1; Singh H, 2004, IEEE J OCEANIC ENG, V29, P872, DOI 10.1109/JOE.2004.831619; SPIESS FN, 1980, SCIENCE, V207, P1421, DOI 10.1126/science.207.4438.1421; Sudarikov SM, 1995, HYDROTHERMAL VENTS P, V87, P319; Taylor B, 1996, EARTH PLANET SC LETT, V144, P35, DOI 10.1016/0012-821X(96)00148-3; Tokeshi M, 2011, J OCEANOGR, V67, P651, DOI 10.1007/s10872-011-0065-9; TUNNICLIFFE V, 1986, DEEP-SEA RES, V33, P401, DOI 10.1016/0198-0149(86)90100-7; TUNNICLIFFE V, 1990, PROG OCEANOGR, V24, P1, DOI 10.1016/0079-6611(90)90015-T; Tunnicliffe V., 1985, B BIOL SOC WASH, V6, P453; Vacelet J, 1996, MAR ECOL PROG SER, V145, P77, DOI 10.3354/meps145077; Vacelet J, 2004, ZOOMORPHOLOGY, V123, P179, DOI 10.1007/s00435-004-0100-0; VACELET J, 1995, NATURE, V373, P333, DOI 10.1038/373333a0; Vacelet J., 2007, PORIFERA RES BIODIVE, P28; Van Dover CL, 2011, NATURE, V470, P31, DOI 10.1038/470031a; Van Dover CL, 2001, SCIENCE, V294, P818, DOI 10.1126/science.1064574; VANDOVER CL, 2000, ECOLOGY DEEP SEA HYD; WILSON MV, 1984, J ECOL, V72, P1055, DOI 10.2307/2259551; WOLFF T, 1977, NATURE, V267, P780, DOI 10.1038/267780a0; Zelnio KA, 2009, MAR BIOL RES, V5, P547, DOI 10.1080/17451000902729662 97 4 4 1 19 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0173-9565 1439-0485 MAR ECOL-EVOL PERSP Mar. Ecol.-Evol. Persp. JUN 2016 37 3 599 617 10.1111/maec.12313 19 Marine & Freshwater Biology Marine & Freshwater Biology DP6YP WOS:000378646200011 Other Gold, Green Published 2018-11-22 J Nahrgang, J; Storhaug, E; Murzina, SA; Delmas, O; Nemova, NN; Berge, J Nahrgang, Jasmine; Storhaug, Ekaterina; Murzina, Svetlana A.; Delmas, Olympe; Nemova, Nina N.; Berge, Jorgen Aspects of reproductive biology of wild-caught polar cod (Boreogadus saida) from Svalbard waters POLAR BIOLOGY English Article Boreogadus saida; Reproduction; Iteroparous; Life history strategies; Group-synchronous ARCTIC COD; GADUS-MORHUA; BARENTS SEA; LEPECHIN; FISHES; SPERMATOGENESIS; GROWTH; GONAD Polar cod (Boreogadus saida) is considered a key species in the Arctic marine ecosystems. Yet detailed or even basic knowledge regarding its biology and adaptations, especially during the polar night, is in many cases poor. Data are presently unavailable in Western literature on the gonad development of polar cod and its reproductive biology in wild specimens. Accordingly, gonad development of wild-caught polar cod from fjords of the Svalbard archipelago was studied across seasons (April, August, September, November and January). Histological analyses of polar cod showed strong indication of a group-synchronous oocyte development with determinate fecundity and iteroparity. Females started gonadal development prior to April and had not yet reached the final stage of maturation in January. Testes matured more rapidly, with males ready to spawn in January. Furthermore, our data show that polar cod were able to reach sexual maturity at age 1+. Based on our data and previous reports, we hypothesise that polar cod is a total spawner. [Nahrgang, Jasmine; Storhaug, Ekaterina; Delmas, Olympe; Berge, Jorgen] UiT, Dept Arctic & Marine Biol, N-9037 Tromso, Norway; [Nahrgang, Jasmine; Berge, Jorgen] Univ Ctr Svalbard, N-9171 Longyearbyen, Norway; [Storhaug, Ekaterina] Akvaplan Niva, Fram Ctr, N-9296 Tromso, Norway; [Murzina, Svetlana A.; Nemova, Nina N.] RAS, Inst Biol, Karelian Res Ctr, Petrozavodsk, Russia Nahrgang, J (reprint author), UiT, Dept Arctic & Marine Biol, N-9037 Tromso, Norway. jasmine.m.nahrgang@uit.no Murzina, Svetlana/A-7624-2014 Murzina, Svetlana/0000-0002-9705-2741; Berge, Jorgen/0000-0003-0900-5679; Nahrgang, Jasmine/0000-0002-4202-5922 Akvaplan-niva AS (Tromso); Norwegian Research Council through the Environmental Waste Management (EWMA) project [195160]; Norwegian Research Council through Polarisation project [214184]; Arctic Field Grant (Svalbard Science Forum); Presidium of RAS "Searching fundamental research for development of the Russian Arctic" [11406194001] We thank the crew of RV Helmer Hanssen, the University Centre in Svalbard and the TUNU-Programme (UiT-Arctic University of Norway, Tromso) for providing ship time and polar cod samples. The project was financially supported by Akvaplan-niva AS (Tromso), the Norwegian Research Council through the Environmental Waste Management (EWMA) (nr 195160) and Polarisation (nr 214184) projects, the Arctic Field Grant (Svalbard Science Forum) and the Presidium of RAS "Searching fundamental research for development of the Russian Arctic" (nr 11406194001, 2014-2016). Altukhov KA, 1979, ICTHYOLOGY, V19, P874; Andriashev AP, 1954, FISHES NO SEAS USSR, P566; ARONOVICH TM, 1975, AQUACULTURE, V6, P233, DOI 10.1016/0044-8486(75)90043-5; Berge J, 2015, PROG OCEANOGR, V139, P258, DOI 10.1016/j.pocean.2015.08.005; Bouchard C, 2016, POLAR BIOL, V39, P1005, DOI 10.1007/s00300-014-1617-4; Bouchard C, 2011, PROG OCEANOGR, V90, P105, DOI 10.1016/j.pocean.2011.02.008; Bradstreet M.S.W, 1986, CAN TECH REP FISH AQ, V1491, P193; BRADSTREET MSW, 1982, ARCTIC, V35, P1; Brown-Peterson NJ, 2011, MAR COAST FISH, V3, P52, DOI 10.1080/19425120.2011.555724; BUCHOLTZ R.H, 2008, 19708 DTU NAT I AQ R; Christophorov OL, 1978, VNIRO P, V130, P33; CRAIG PC, 1982, CAN J FISH AQUAT SCI, V39, P395, DOI 10.1139/f82-057; DOROSHEV SI, 1974, AQUACULTURE, V4, P353, DOI 10.1016/0044-8486(74)90064-7; Dziewulska Katarzyna, 2003, Reprod Biol, V3, P47; ELIASSEN JE, 1982, J FISH BIOL, V20, P707, DOI 10.1111/j.1095-8649.1982.tb03981.x; Fishelson L, 2006, ANAT EMBRYOL, V211, P31, DOI 10.1007/s00429-005-0050-4; GJOSAETER H, 1994, ICES J MAR SCI, V51, P115, DOI 10.1006/jmsc.1994.1011; Gjosaeter Harald, 2009, P373; GRAHAM M, 1995, ARCTIC, V48, P130; HOP H, 1995, CAN J FISH AQUAT SCI, V52, P541, DOI 10.1139/f95-055; Hop H, 2013, MAR BIOL RES, V9, P878, DOI 10.1080/17451000.2013.775458; JENSEN T, 1991, POLAR RES, V10, P547, DOI 10.1111/j.1751-8369.1991.tb00672.x; KJESBU OS, 1990, CAN J FISH AQUAT SCI, V47, P1185, DOI 10.1139/f90-138; Lapin VI, 1981, ICTHYOLOGY, V21, P482; Lowerre-Barbieri SK, 2011, MAR COAST FISH, V3, P71, DOI 10.1080/19425120.2011.556932; McBride RS, 2015, FISH FISH, V16, P23, DOI 10.1111/faf.12043; McMillan DB, 2007, FISH HISTOLOGY FEMAL; Mikodina E. V., 2009, HISTOLOGY ICHTHYOLOG; Moskalenko BK, 1964, VOP IKHTIOL, V4, P433; Murua H., 2003, Journal of Northwest Atlantic Fishery Science, V33, P33, DOI 10.2960/J.v33.a3; Nahrgang J, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098452; PONOMARENKO V P, 1968, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V158, P131; Ponomarenko V. P., 2000, J ICHTHYOL, V40, P165; Quinn G.P., 2002, EXPT DESIGN DATA ANA; RASS T S, 1968, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V158, P135; RATTY FJ, 1990, FISH B-NOAA, V88, P207; Rideout RM, 2011, MAR COAST FISH, V3, P176, DOI 10.1080/19425120.2011.556943; Rideout RM, 2000, CAN J ZOOL, V78, P1017, DOI 10.1139/cjz-78-6-1017; Sakurai Y, 1998, MEMOIRS FACULTY FISH, V44, P77; Sameoto DD, 1984, REV CURRENT INFORM A; Wang MY, 2009, GEOPHYS RES LETT, V36, DOI 10.1029/2009GL037820 41 3 3 7 22 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0722-4060 1432-2056 POLAR BIOL Polar Biol. JUN 2016 39 6 SI 1155 1164 10.1007/s00300-015-1837-2 10 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology DP8XW WOS:000378782300017 Other Gold 2018-11-22 J Amir, D; Jordan, MR; Bribiescas, RG Amir, Dorsa; Jordan, Matthew R.; Bribiescas, Richard G. A Longitudinal Assessment of Associations between Adolescent Environment, Adversity Perception, and Economic Status on Fertility and Age of Menarche PLOS ONE English Article LIFE-HISTORY STRATEGIES; REPRODUCTIVE STRATEGIES; CHILDHOOD EXPERIENCE; SOCIOECONOMIC-STATUS; PUBERTAL MATURATION; FOOD INSECURITY; GIRLS; MORTALITY; RISK; WOMEN Purpose Perceptions of environmental adversity and access to economic resources in adolescence can theoretically affect the timing of life history transitions and investment in reproductive effort. Here we present evidence of correlations between variables associated with subjective extrinsic mortality, economic status, and reproductive effort in a nationally representative American population of young adults. Methods We used a longitudinal database that sampled American participants (N >= 1,579) at four points during early adolescence and early adulthood to test whether perceptions of environmental adversity and early economic status were associated with reproductive effort. Results We found that subjectively high ratings of environmental danger and low access to economic resources in adolescence were significantly associated with an earlier age of menarche in girls and earlier, more robust fertility in young adulthood. Conclusion While energetics and somatic condition remain as possible sources of variation, the results of this study support the hypothesis that perceptions of adversity early in life and limited access to economic resources are associated with differences in reproductive effort and scheduling. How these factors may covary with energetics and somatic condition merits further investigation. [Amir, Dorsa; Bribiescas, Richard G.] Yale Univ, Dept Anthropol, New Haven, CT 06520 USA; [Jordan, Matthew R.] Yale Univ, Dept Psychol, New Haven, CT USA Amir, D (reprint author), Yale Univ, Dept Anthropol, New Haven, CT 06520 USA. Dorsa.amir@yale.edu Amir, Dorsa/0000-0003-0255-0228 Belachew T, 2011, REPROD BIOL ENDOCRIN, V9, DOI 10.1186/1477-7827-9-125; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.1111/j.1467-8624.1991.tb01558.x; Belsky J, 2012, CURR DIR PSYCHOL SCI, V21, P310, DOI 10.1177/0963721412453588; Belsky J, 2011, J CHILD PSYCHOL PSYC, V52, P619, DOI 10.1111/j.1469-7610.2010.02327.x; Belsky J, 2009, PERSPECT PSYCHOL SCI, V4, P345, DOI 10.1111/j.1745-6924.2009.01136.x; Boynton-Jarrett R, 2013, J ADOLESCENT HEALTH, V52, P241, DOI 10.1016/j.jadohealth.2012.06.006; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Carey JR, 1998, J GERONTOL A-BIOL, V53, pB245, DOI 10.1093/gerona/53A.4.B245; Charnov Eric L., 1993, P1; Chipman A, 2015, PSYCHONEUROENDOCRINO, V62, P89, DOI 10.1016/j.psyneuen.2015.07.611; Daly M., 1978, SEX EVOLUTION BEHAV; DUNCAN GJ, 1994, CHILD DEV, V65, P296, DOI 10.1111/j.1467-8624.1994.tb00752.x; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Ellison PT, 1996, AM J HUM BIOL, V8, P725, DOI 10.1002/(SICI)1520-6300(1996)8:6<725::AID-AJHB4>3.0.CO;2-S; ELLISON PT, 1993, HUM REPROD, V8, P2248, DOI 10.1093/oxfordjournals.humrep.a138015; Ellison PT, 2003, AM J HUM BIOL, V15, P342, DOI 10.1002/ajhb.10152; Emaus A, 2008, HUM REPROD, V23, P919, DOI 10.1093/humrep/dem432; Gettler LT, 2011, P NATL ACAD SCI USA, V108, P16194, DOI 10.1073/pnas.1105403108; GOLDEN WL, 1981, ACTA GENET MED GEMEL, V30, P91, DOI 10.1017/S000156600000773X; Gordon CM, 1999, PEDIATR CLIN N AM, V46, P519, DOI 10.1016/S0031-3955(05)70135-8; Graber JA, 1997, J AM ACAD CHILD PSY, V36, P1768, DOI 10.1097/00004583-199712000-00026; GRABER JA, 1995, CHILD DEV, V66, P346, DOI 10.1111/j.1467-8624.1995.tb00875.x; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Harris K. M, 2009, NATL LONGITUDINAL ST; Harris K.M., 2009, RES DESIGN; James-Todd T, 2010, ANN EPIDEMIOL, V20, P836, DOI 10.1016/j.annepidem.2010.08.006; Jean RT, 2011, AM J EPIDEMIOL, V173, P1203, DOI 10.1093/aje/kwq498; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; KAPRIO J, 1995, HUM BIOL, V67, P739; Kawachi I, 1997, AM J PUBLIC HEALTH, V87, P1491, DOI 10.2105/AJPH.87.9.1491; Khan AD, 1996, AM J HUM BIOL, V8, P717, DOI 10.1002/(SICI)1520-6300(1996)8:6<717::AID-AJHB3>3.0.CO;2-Q; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; Kuzawa CW, 2007, AM J HUM BIOL, V19, P654, DOI 10.1002/ajhb.20659; Leitao Raquel Beatriz, 2013, Int J Adolesc Med Health, V25, P55, DOI 10.1515/ijamh-2013-0007; Lipson SF, 1996, HUM REPROD, V11, P2090; Low BS, 2008, CROSS-CULT RES, V42, P201, DOI 10.1177/1069397108317669; Martin JA, 2010, NATL VITAL STAT REP, V61, P1; Mishra GD, 2009, EARLY LIFE CIRCUMSTA; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.2307/1130900; Mpora BO, 2014, BMC WOMENS HEALTH, V14, DOI 10.1186/1472-6874-14-66; Nackers LM, 2013, J NUTR EDUC BEHAV, V45, P780, DOI 10.1016/j.jneb.2013.08.001; Nettle D, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1343; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Phipps SA, 2006, OBES REV, V7, P5, DOI 10.1111/j.1467-789X.2006.00217.x; Polak M, 1998, P ROY SOC B-BIOL SCI, V265, P2197, DOI 10.1098/rspb.1998.0559; Prebeg Z, 2000, AM J HUM BIOL, V12, P503; Quinlan RJ, 2010, HUM NATURE-INT BIOS, V21, P124, DOI 10.1007/s12110-010-9085-1; Roff Derek A., 1992; Rutherford JN, 2010, AM J HUM BIOL, V22, P310, DOI 10.1002/ajhb.20986; Saez E., 2014, WEALTH INEQUALITY US; Santos-Ruiz A, 2012, PSYCHONEUROENDOCRINO, V37, P1912, DOI 10.1016/j.psyneuen.2012.04.002; Schultz TP, 2005, FERTILITY AND INCOME; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Slovic P, 2000, PERCEPTION RISK; Snyder JK, 2011, EVOL HUM BEHAV, V32, P127, DOI 10.1016/j.evolhumbehav.2010.08.007; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; Stearns SC, 2010, NAT REV GENET, V11, P611, DOI 10.1038/nrg2831; STJOHN C, 1990, SOC SCI QUART, V71, P152; Trusts PC, 2012, PURSUING AM DREAM EC; Valeggia CR, 2001, FOUND HUM B, P85; Vandell DL, 2010, CHILD DEV, V81, P737, DOI 10.1111/j.1467-8624.2010.01431.x; Wang Xiaofei, 2013, Evolution Medicine and Public Health, P241, DOI 10.1093/emph/eot013; Wattigney WA, 1998, ETHNIC DIS, V9, P181; Wildsmith E, 2006, J MARRIAGE FAM, V68, P491, DOI 10.1111/j.1741-3737.2006.00267.x; WILSON M, 1985, ETHOL SOCIOBIOL, V6, P59, DOI 10.1016/0162-3095(85)90041-X; Yermachenko A, 2014, BIOMED RES INT, V2014 70 2 2 0 7 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One JUN 1 2016 11 6 e0155883 10.1371/journal.pone.0155883 16 Multidisciplinary Sciences Science & Technology - Other Topics DN6KZ WOS:000377184700021 27249338 DOAJ Gold, Green Published 2018-11-22 J ter Hofstede, HM; Ratcliffe, JM ter Hofstede, Hannah M.; Ratcliffe, John M. Evolutionary escalation: the bat-moth arms race JOURNAL OF EXPERIMENTAL BIOLOGY English Review Insects; Echolocation; Nocturnal; Bat-detecting ears; Arms race; Predator-prey interaction MORPHO-PELEIDES PAPILIONOIDEA; ULTRASONIC COURTSHIP SONGS; TIGER BEETLES CICINDELIDAE; LASIURUS-CINEREUS-SEMOTUS; ACOUSTIC STARTLE RESPONSE; EVASIVE FLIGHT BEHAVIOR; BIG BROWN BATS; ECHOLOCATING BATS; SOUND PRODUCTION; PRAYING-MANTIS Echolocation in bats and high-frequency hearing in their insect prey make bats and insects an ideal system for studying the sensory ecology and neuroethology of predator-prey interactions. Here, we review the evolutionary history of bats and eared insects, focusing on the insect order Lepidoptera, and consider the evidence for antipredator adaptations and predator counter-adaptations. Ears evolved in a remarkable number of body locations across insects, with the original selection pressure for ears differing between groups. Although cause and effect are difficult to determine, correlations between hearing and life history strategies in moths provide evidence for how these two variables influence each other. We consider life history variables such as size, sex, circadian and seasonal activity patterns, geographic range and the composition of sympatric bat communities. We also review hypotheses on the neural basis for antipredator behaviours (such as evasive flight and sound production) in moths. It is assumed that these prey adaptations would select for counter-adaptations in predatory bats. We suggest two levels of support for classifying bat traits as counter-adaptations: traits that allow bats to eat more eared prey than expected based on their availability in the environment provide a low level of support for counter-adaptations, whereas traits that have no other plausible explanation for their origination and maintenance than capturing defended prey constitute a high level of support. Specific predator counter-adaptations include calling at frequencies outside the sensitivity range of most eared prey, changing the pattern and frequency of echolocation calls during prey pursuit, and quiet, or 'stealth', echolocation. [ter Hofstede, Hannah M.] Dartmouth Coll, Dept Biol Sci, 78 Coll St, Hanover, NH 03755 USA; [Ratcliffe, John M.] Univ Toronto, Dept Biol, 3359 Mississauga Rd, Mississauga, ON L5L 1C6, Canada ter Hofstede, HM (reprint author), Dartmouth Coll, Dept Biol Sci, 78 Coll St, Hanover, NH 03755 USA.; Ratcliffe, JM (reprint author), Univ Toronto, Dept Biol, 3359 Mississauga Rd, Mississauga, ON L5L 1C6, Canada. hannah.ter.hofstede@dartmouth.edu; j.ratcliffe@utoronto.ca Danish Research Council (FNU); Natural Sciences and Engineering Research Council of Canada (NSERC); National Geographic Society; University of Toronto; Dartmouth College The Danish Research Council (FNU), the Natural Sciences and Engineering Research Council of Canada (NSERC), the National Geographic Society, the University of Toronto and Dartmouth College have funded our research. Acharya L, 1999, CAN J ZOOL, V77, P27, DOI 10.1139/cjz-77-1-27; ACHARYA L, 1992, CAN J ZOOL, V70, P1292, DOI 10.1139/z92-180; ACHARYA L, 1995, ANIM BEHAV, V49, P1461, DOI 10.1016/0003-3472(95)90067-5; AGEE H R, 1985, Journal of Agricultural Entomology, V2, P345; AGEE HR, 1969, ANN ENTOMOL SOC AM, V62, P801, DOI 10.1093/aesa/62.4.801; AGEE HR, 1988, ANN ENTOMOL SOC AM, V81, P977, DOI 10.1093/aesa/81.6.977; AGEE HR, 1967, J ECON ENTOMOL, V60, P366, DOI 10.1093/jee/60.2.366; Alcock J., 2013, ANIMAL BEHAV EVOLUTI; Alem S, 2011, BEHAV ECOL SOCIOBIOL, V65, P2105, DOI 10.1007/s00265-011-1219-x; Altermatt F, 2009, ENTOMOL EXP APPL, V130, P259, DOI 10.1111/j.1570-7458.2008.00817.x; Andersson S, 1998, P ROY SOC B-BIOL SCI, V265, P1345, DOI 10.1098/rspb.1998.0440; [Anonymous], TITLE ERROR; Barber JR, 2006, J EXP BIOL, V209, P2637, DOI 10.1242/jeb.02295; Barber JR, 2007, P NATL ACAD SCI USA, V104, P9331, DOI 10.1073/pnas.0703627104; Barber JR, 2015, P NATL ACAD SCI USA, V112, P2812, DOI 10.1073/pnas.1421926112; Barber JR, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0161; Bininda-Emonds ORP, 2007, NATURE, V446, P507, DOI 10.1038/nature05634; Bohmann K, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021441; BOYAN G, 1990, J COMP NEUROL, V295, P248, DOI 10.1002/cne.902950208; BOYAN GS, 1986, J COMP PHYSIOL A, V158, P391, DOI 10.1007/BF00603623; BOYD P, 1984, J COMP PHYSIOL, V154, P423, DOI 10.1007/BF00605241; CARDONE B, 1988, PHYSIOL ENTOMOL, V13, P9, DOI 10.1111/j.1365-3032.1988.tb00903.x; Clare EL, 2009, MOL ECOL, V18, P2532, DOI 10.1111/j.1365-294X.2009.04184.x; Conner WE, 1999, J EXP BIOL, V202, P1711; Corcoran AJ, 2012, J EXP BIOL, V215, P4278, DOI 10.1242/jeb.076943; Corcoran AJ, 2010, CURR ZOOL, V56, P358; Corcoran AJ, 2009, SCIENCE, V325, P325, DOI 10.1126/science.1174096; CORO F, 1993, EXPERIENTIA, V49, P285, DOI 10.1007/BF01923403; Dangles O, 2005, J EXP BIOL, V208, P461, DOI 10.1242/jeb.01369; DAWKINS R, 1979, PROC R SOC SER B-BIO, V205, P489, DOI 10.1098/rspb.1979.0081; DAWSON JW, 1995, J COMP PHYSIOL A, V176, P541; DUNNING DC, 1992, CAN J ZOOL, V70, P2218, DOI 10.1139/z92-298; Dusenbury D. B., 2001, ECOLOGY SENSING, P19; Eklof J, 2002, OIKOS, V99, P347, DOI 10.1034/j.1600-0706.2002.990216.x; Elemans CPH, 2011, SCIENCE, V333, P1885, DOI 10.1126/science.1207309; Faure PA, 2000, J EXP BIOL, V203, P3225; FAURE PA, 1993, J EXP BIOL, V178, P173; FAURE PA, 1990, J COMP PHYSIOL A, V166, P843; Fenton MB, 2012, J EXP BIOL, V215, P2935, DOI 10.1242/jeb.073171; Fenton MB, 2010, CURR BIOL, V20, pR1060, DOI 10.1016/j.cub.2010.10.037; FENTON MB, 1981, J MAMMAL, V62, P233, DOI 10.2307/1380701; FENTON MB, 1979, J COMP PHYSIOL, V132, P77, DOI 10.1007/BF00617734; FORREST TG, 1995, J EXP BIOL, V198, P2593; Forrest TG, 1997, J EXP BIOL, V200, P601; Fournier JP, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0319; Fullard JH, 2008, NATURWISSENSCHAFTEN, V95, P241, DOI 10.1007/s00114-007-0323-2; Fullard JH, 2007, BIOL LETT-UK, V3, P26, DOI 10.1098/rsbl.2006.0550; Fullard JH, 2010, NATURWISSENSCHAFTEN, V97, P53, DOI 10.1007/s00114-009-0610-1; Fullard JH, 2008, J EXP BIOL, V211, P3808, DOI 10.1242/jeb.023978; FULLARD JH, 1982, CAN J ZOOL, V60, P2572, DOI 10.1139/z82-330; Fullard JH, 1999, NATURWISSENSCHAFTEN, V86, P276, DOI 10.1007/s001140050613; Fullard JH, 2000, ANN ENTOMOL SOC AM, V93, P956, DOI 10.1603/0013-8746(2000)093[0956:ASADFA]2.0.CO;2; FULLARD JH, 1984, J COMP PHYSIOL, V155, P795, DOI 10.1007/BF00611596; Fullard JH, 1997, J COMP PHYSIOL A, V181, P477, DOI 10.1007/s003590050131; FULLARD JH, 1977, NATURE, V267, P42, DOI 10.1038/267042a0; FULLARD JH, 1988, EXPERIENTIA, V44, P423, DOI 10.1007/BF01940537; Fullard JH, 2006, AUST J ZOOL, V54, P51, DOI 10.1071/ZO05066; FULLARD JH, 1994, J EVOLUTION BIOL, V7, P435, DOI 10.1046/j.1420-9101.1994.7040435.x; FULLARD JH, 1984, J COMP PHYSIOL, V154, P249, DOI 10.1007/BF00604990; FULLARD JH, 1993, TRENDS ECOL EVOL, V8, P248, DOI 10.1016/0169-5347(93)90200-9; Fullard JH, 2004, J EVOLUTION BIOL, V17, P856, DOI 10.1111/j.1420-9101.2004.00722.x; Fullard JH, 2003, CAN J ZOOL, V81, P395, DOI 10.1139/Z03-019; FULLARD JH, 1980, CAN J ZOOL, V58, P1745, DOI 10.1139/z80-241; Fullard JH, 1998, SPR HDB AUD, V10, P279; FULLARD JH, 1982, PHYSIOL ENTOMOL, V7, P157, DOI 10.1111/j.1365-3032.1982.tb00284.x; FULLARD JH, 1983, CAN J ZOOL, V61, P1752, DOI 10.1139/z83-226; Fullard JH, 2001, ANIM BEHAV, V62, P349, DOI 10.1006/anbe.2001.1753; Fullard JH, 2001, P ROY SOC B-BIOL SCI, V268, P1375, DOI 10.1098/rspb.2001.1664; Fullard JH, 1997, J EXP BIOL, V200, P129; Ghose K, 2009, J EXP BIOL, V212, P693, DOI 10.1242/jeb.019380; Goerlitz HR, 2010, CURR BIOL, V20, P1568, DOI 10.1016/j.cub.2010.07.046; Gopfert MC, 1999, J EXP BIOL, V202, P909; Gopfert MC, 2002, P ROY SOC B-BIOL SCI, V269, P89, DOI 10.1098/rspb.2001.1646; Gopfert MC, 1999, J EXP BIOL, V202, P1579; Griffin D., 1958, LISTENING DARK; GRIFFIN DR, 1971, ANIM BEHAV, V19, P55, DOI 10.1016/S0003-3472(71)80134-3; Guignion C, 2004, CAN J ZOOL, V82, P529, DOI 10.1139/Z04-015; HARTLEY DJ, 1992, J ACOUST SOC AM, V91, P1133, DOI 10.1121/1.402640; Hasenfuss I, 1997, ZOOMORPHOLOGY, V117, P155, DOI 10.1007/s004350050040; HELLER KG, 1994, J EXP BIOL, V187, P101; Holderied MW, 2005, J EXP BIOL, V208, P1321, DOI 10.1242/jeb.01528; Holderied MW, 2003, P ROY SOC B-BIOL SCI, V270, P2293, DOI 10.1098/rspb.2003.2487; Hristov NI, 2005, NATURWISSENSCHAFTEN, V92, P164, DOI 10.1007/s00114-005-0611-7; Hulgard K, 2016, SCI REP-UK, V6, DOI 10.1038/srep21500; Jacobs DS, 2008, BEHAV ECOL, V19, P1333, DOI 10.1093/beheco/arn071; Jakobsen L, 2013, FRONT PHYSIOL, V4, DOI 10.3389/fphys.2013.00089; Jakobsen L, 2010, P NATL ACAD SCI USA, V107, P13930, DOI 10.1073/pnas.1006630107; JANZEN DH, 1980, EVOLUTION, V34, P611, DOI 10.1111/j.1558-5646.1980.tb04849.x; Jones G, 2003, BAT ECOLOGY, P301; Jones G, 1999, J EXP BIOL, V202, P3359; Kavlie RG, 2013, CURR BIOL, V23, pR334, DOI 10.1016/j.cub.2013.03.048; Kawahara AY, 2015, P NATL ACAD SCI USA, V112, P6407, DOI 10.1073/pnas.1416679112; KICK SA, 1984, J NEUROSCI, V4, P2725; Lane KA, 2008, J COMP NEUROL, V508, P677, DOI 10.1002/cne.21675; LAWRENCE BD, 1982, J ACOUST SOC AM, V71, P585, DOI 10.1121/1.387529; LEWIS FP, 1993, CAN J ZOOL, V71, P1562, DOI 10.1139/z93-221; LIBERSAT F, 1991, J COMP PHYSIOL A, V169, P507; Lucas KM, 2009, J EXP BIOL, V212, P3533, DOI 10.1242/jeb.032425; MADSEN BM, 1987, J COMP PHYSIOL A, V160, P23, DOI 10.1007/BF00613438; Matsuta N, 2013, J EXP BIOL, V216, P1210, DOI 10.1242/jeb.081398; MILLER LA, 1979, J COMP PHYSIOL, V131, P113, DOI 10.1007/BF00619071; MILLER LA, 1971, J INSECT PHYSIOL, V17, P491, DOI 10.1016/0022-1910(71)90028-X; MILLER LA, 1970, J MORPHOL, V131, P359, DOI 10.1002/jmor.1051310402; Minet Joel, 2003, Handbuch der Zoologie (Berlin), V4, P289; Misof B, 2014, SCIENCE, V346, P763, DOI 10.1126/science.1257570; MORRILL SB, 1992, CAN J ZOOL, V70, P1097, DOI 10.1139/z92-153; Moss CF, 2006, PLOS BIOL, V4, P615, DOI 10.1371/journal.pbio.0040079; Moss Cynthia F., 1995, Springer Handbook of Auditory Research, V5, P87; Muma KE, 2004, ECOL ENTOMOL, V29, P718, DOI 10.1111/j.0307-6946.2004.00655.x; Nakano R, 2009, J EXP BIOL, V212, P4072, DOI 10.1242/jeb.032466; Nakano R, 2008, P NATL ACAD SCI USA, V105, P11812, DOI 10.1073/pnas.0804056105; Nakano R, 2015, J COMP PHYSIOL A, V201, P111, DOI 10.1007/s00359-014-0945-8; Nakano R, 2013, SCI REP-UK, V3, DOI 10.1038/srep02003; NEUWEILER G, 1990, PHYSIOL REV, V70, P615; Nishida R, 2002, ANNU REV ENTOMOL, V47, P57, DOI 10.1146/annurev.ento.47.091201.145121; Niven JE, 2008, J EXP BIOL, V211, P1792, DOI 10.1242/jeb.017574; NOLEN TG, 1986, J COMP PHYSIOL A, V159, P423, DOI 10.1007/BF00604163; Oppel K, 1997, SILVERWING; Painter ML, 2009, CAN J ZOOL, V87, P865, DOI 10.1139/Z09-075; PAYNE RS, 1966, J EXP BIOL, V44, P17; PEREZ M, 1976, J INSECT PHYSIOL, V22, P1267, DOI 10.1016/0022-1910(76)90105-0; Plotnick RE, 2012, J PALEONTOL, V86, P19, DOI 10.1666/11-072.1; Ratcliffe JM, 2006, BRAIN BEHAV EVOLUT, V67, P165, DOI 10.1159/000090980; Ratcliffe JM, 2005, J EXP BIOL, V208, P4689, DOI 10.1242/jeb.01927; Ratcliffe JM, 2003, ANIM BEHAV, V65, P385, DOI 10.1006/anbe.2003.2059; Ratcliffe JM, 2008, NATURE, V455, P96, DOI 10.1038/nature07087; Ratcliffe JM, 2008, CAN J ZOOL, V86, P582, DOI 10.1139/Z08-024; Ratcliffe JM, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2012.1031; Ratcliffe JM, 2011, J COMP PHYSIOL A, V197, P413, DOI 10.1007/s00359-011-0630-0; Ratcliffe JM, 2011, P ROY SOC B-BIOL SCI, V278, P364, DOI 10.1098/rspb.2010.1488; Ratcliffe John M., 2009, P201; Ratcliffe JM, 2009, BIOL LETTERS, V5, P368, DOI 10.1098/rsbl.2009.0079; Reddy E, 2003, CAN J ZOOL, V81, P1553, DOI 10.1139/Z03-146; Regier JC, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058568; Regier JC, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-280; Robert D, 1996, CELL TISSUE RES, V284, P435, DOI 10.1007/s004410050604; ROBERT D, 1992, SCIENCE, V258, P1135, DOI 10.1126/science.1439820; ROBERT D, 1989, J EXP BIOL, V147, P279; Rodriguez RL, 2004, PHYSIOL ENTOMOL, V29, P159, DOI 10.1111/j.1365-3032.2004.00380.x; ROEDER K. D., 1962, ANIMAL BEHAVIOUR, V10, P300, DOI 10.1016/0003-3472(62)90053-2; Roeder K. D., 1962, Verhandlungen XI Internationaler Kongress fuer Entomologie Wien 1960 Vienna (Symp), V3, P7; Roeder K. D., 1974, P CAN SOC ZOOL ANN M, P71; ROEDER KD, 1957, J EXP ZOOL, V134, P127, DOI 10.1002/jez.1401340107; ROEDER KD, 1964, J INSECT PHYSIOL, V10, P529, DOI 10.1016/0022-1910(64)90025-3; ROEDER KD, 1968, SCIENCE, V159, P331, DOI 10.1126/science.159.3812.331; ROEDER KD, 1974, J INSECT PHYSIOL, V20, P55, DOI 10.1016/0022-1910(74)90123-1; ROEDER KD, 1975, J INSECT PHYSIOL, V21, P1625, DOI 10.1016/0022-1910(75)90200-0; Roeder KD, 1967, NERVE CELLS INSECT B; Roemer Heiner, 2008, Journal of Orthoptera Research, V17, P343, DOI 10.1665/1082-6467-17.2.343; ROMER H, 1988, J COMP NEUROL, V275, P201, DOI 10.1002/cne.902750204; Rosen MJ, 2009, J EXP BIOL, V212, P4056, DOI 10.1242/jeb.033183; Rydell J, 2000, P ROY SOC B-BIOL SCI, V267, P553, DOI 10.1098/rspb.2000.1036; Rydell J, 1997, P ROY SOC B-BIOL SCI, V264, P83, DOI 10.1098/rspb.1997.0012; Rydell J, 2003, NATURWISSENSCHAFTEN, V90, P80, DOI 10.1007/s00114-002-0391-2; Rydell J, 1998, P ROY SOC B-BIOL SCI, V265, P1373, DOI 10.1098/rspb.1998.0444; Rydell J, 2000, OIKOS, V88, P13, DOI 10.1034/j.1600-0706.2000.880103.x; SCHILDBERGER K, 1984, J COMP PHYSIOL, V155, P171, DOI 10.1007/BF00612635; Schmidt S, 2011, J COMP PHYSIOL A, V197, P403, DOI 10.1007/s00359-010-0552-2; Schnitzler HU, 2001, BIOSCIENCE, V51, P557, DOI 10.1641/0006-3568(2001)051[0557:EBIEB]2.0.CO;2; Schoeman MC, 2003, OECOLOGIA, V134, P154, DOI 10.1007/s00442-002-1107-1; Schulze W, 2001, J EXP BIOL, V204, P733; SIMMONS JA, 1979, SCIENCE, V203, P16, DOI 10.1126/science.758674; Simmons N. B., 1998, B AM MUS NAT HIST, V235, P2; Simmons NB, 2008, NATURE, V451, P818, DOI 10.1038/nature06549; Skals N, 2005, J EXP BIOL, V208, P595, DOI 10.1242/jeb.01400; Skals N, 2000, PHYSIOL ENTOMOL, V25, P354, DOI 10.1046/j.1365-3032.2000.00204.x; Skals N, 1999, J EXP BIOL, V202, P2937; Smith EC, 2006, NATURE, V439, P978, DOI 10.1038/nature04485; Soutar AR, 2004, BEHAV ECOL, V15, P1016, DOI 10.1093/beheco/arh103; SPANGLER HG, 1988, PHYSIOL ENTOMOL, V13, P447, DOI 10.1111/j.1365-3032.1988.tb01129.x; Stumpner A, 1996, J COMP PHYSIOL A, V178, P227; Surlykke A, 1997, NATURWISSENSCHAFTEN, V84, P356, DOI 10.1007/s001140050410; SURLYKKE A, 1986, PHYSIOL ENTOMOL, V11, P221, DOI 10.1111/j.1365-3032.1986.tb00409.x; Surlykke A, 1998, NATURWISSENSCHAFTEN, V85, P36, DOI 10.1007/s001140050449; SURLYKKE A, 1986, J COMP PHYSIOL A, V159, P267, DOI 10.1007/BF00612309; Surlykke A, 2000, J ACOUST SOC AM, V108, P2419, DOI 10.1121/1.1315295; SURLYKKE A, 1984, J EXP BIOL, V113, P323; SURLYKKE A, 1982, J INSECT PHYSIOL, V28, P357, DOI 10.1016/0022-1910(82)90048-8; Surlykke A, 2003, J EXP BIOL, V206, P2653, DOI 10.1242/jeb.00469; SURLYKKE A, 1995, NATURWISSENSCHAFTEN, V82, P382, DOI 10.1007/BF01134567; Surlykke A, 1999, NATURWISSENSCHAFTEN, V86, P238, DOI 10.1007/s001140050607; Surlykke A., 1988, NATO ASI (Advanced Science Institutes) Series Series A Life Sciences, P551; Surlykke A, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002036; Svensson GP, 2004, OIKOS, V104, P91, DOI 10.1111/j.0030-1299.2004.12517.x; Svensson MGE, 1999, OIKOS, V84, P193, DOI 10.2307/3546713; Takanashi T, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013144; Teeling EC, 2005, SCIENCE, V307, P580, DOI 10.1126/science.1105113; Teeling EC, 2009, TRENDS ECOL EVOL, V24, P351, DOI 10.1016/j.tree.2009.02.012; ter Hofstede HM, 2008, J EXP BIOL, V211, P2431, DOI 10.1242/jeb.017285; ter Hofstede HM, 2008, BIOL LETTERS, V4, P262, DOI 10.1098/rsbl.2007.0617; ter Hofstede HM, 2013, J EXP BIOL, V216, P3954, DOI 10.1242/jeb.093294; ter Hofstede HM, 2010, J COMP PHYSIOL A, V196, P349, DOI 10.1007/s00359-010-0518-4; ter Hofstede HM, 2008, BEHAV ECOL SOCIOBIOL, V63, P217, DOI 10.1007/s00265-008-0652-y; Tougaard J, 1998, J COMP PHYSIOL A, V183, P563, DOI 10.1007/s003590050282; Tougaard J, 1996, J COMP PHYSIOL A, V178, P669; TREAT ASHER E., 1955, ANN ENT SOC AMER, V48, P272; Triblehorn JD, 2005, J EXP BIOL, V208, P1867, DOI 10.1242/jeb.01565; Triblehorn JD, 2001, J ZOOL, V254, P27, DOI 10.1017/S095283690100053X; van Staaden MJ, 2003, J COMP NEUROL, V465, P579, DOI 10.1002/cne.10871; Veselka N, 2010, NATURE, V463, P939, DOI 10.1038/nature08737; WATERS DA, 1995, J EXP BIOL, V198, P475; Weller SJ, 1999, BIOL J LINN SOC, V68, P557, DOI 10.1006/bijl.1999.0363; WOHLERS DW, 1979, CELL TISSUE RES, V203, P35; Yack JE, 2007, J COMP PHYSIOL A, V193, P577, DOI 10.1007/s00359-007-0213-2; YACK JE, 1988, CAN J ZOOL, V66, P753, DOI 10.1139/z88-111; Yack JE, 1999, ZOOMORPHOLOGY, V119, P93, DOI 10.1007/s004350050084; Yack JE, 2004, MICROSC RES TECHNIQ, V63, P315, DOI 10.1002/jemt.20051; Yack JE, 2000, NATURE, V403, P265, DOI 10.1038/35002247; Yack JE, 2000, J EXP BIOL, V203, P3689; YACK JE, 1993, J COMP PHYSIOL A, V173, P301, DOI 10.1007/BF00212694; Yack JE, 2008, SENSES COMPREHENSIVE, V3, P35; Yager DD, 2008, BIOL J LINN SOC, V94, P541, DOI 10.1111/j.1095-8312.2008.00996.x; YAGER DD, 1990, J ZOOL, V221, P517, DOI 10.1111/j.1469-7998.1990.tb04017.x; Yager DD, 1997, J EXP BIOL, V200, P649; YAGER DD, 1990, J EXP BIOL, V152, P17; YAGER DD, 1987, CELL TISSUE RES, V250, P531; YAGER DD, 1989, J COMP PHYSIOL A, V165, P471, DOI 10.1007/BF00611236; YAGER DD, 1995, J COMP PHYSIOL A, V176, P587, DOI 10.1007/BF01021579; Yager DD, 2000, J ZOOL, V251, P355, DOI 10.1017/S0952836900007093; Zahiri R, 2011, ZOOL SCR, V40, P158, DOI 10.1111/j.1463-6409.2010.00459.x; Zhemchuzhnikov MK, 2014, ARTHROPOD STRUCT DEV, V43, P231, DOI 10.1016/j.asd.2014.04.001 221 10 11 8 104 COMPANY OF BIOLOGISTS LTD CAMBRIDGE BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND 0022-0949 1477-9145 J EXP BIOL J. Exp. Biol. JUN 2016 219 11 1589 1602 10.1242/jeb.086686 14 Biology Life Sciences & Biomedicine - Other Topics DN2EX WOS:000376878000009 27252453 Bronze, Green Published 2018-11-22 J Torres, KMM; Higgins, CL Torres, Kryztal M. Medina; Higgins, Christopher L. Taxonomic and functional organization in metacommunity structure of stream-fish assemblages among and within river basins in Texas AQUATIC ECOLOGY English Article Connectivity; River continuum concept; Dendritic network; Spatial distributions; Warm-water streams; Life-history LIFE-HISTORY STRATEGIES; COMMUNITY STRUCTURE; COMPREHENSIVE FRAMEWORK; ECOLOGICAL COMMUNITIES; POPULATION REGULATION; TEMPORAL VARIABILITY; CONTINUUM CONCEPT; REGRESSION TREES; SPECIES RICHNESS; PATTERNS Metacommunities are spatially structured communities linked by dispersal. They provide a connection between local community assembly and regional-level processes. One of the more widely used methods to address questions related to metacommunity concepts is those that characterize elements of metacommunity structure by quantifying aspects of coherence, species turnover, and boundary clumping. In this study, we used this approach to study the spatial ecology of freshwater fishes in Texas. Stream-fish assemblages in Texas provide an excellent opportunity to examine the patterns of metacommunity structure due to the number of drainages that empty directly into the Gulf of Mexico, which minimizes the likelihood of dispersal between basins while allowing for longitudinal movement within basins. We used fisheries data published by the Texas Parks and Wildlife Department and from the North American Water Quality Association, which consisted of 94 sampling localities distributed across 18 river basins and 11 ecoregions. To examine within-basin patterns, we focused only on the Brazos, Colorado, and Trinity rivers because of the number of sites within each of these basins. From a taxonomic standpoint, we consistently observed Clementsian patterns regardless of whether it was among or within river basins, whereas we mostly observed Gleasonian patterns from a functional perspective. Only one functional group was found at all sites in each of the three main river basins, which consisted of invertivores with an equilibrium life-history strategy. Various bioclimatic variables were significantly correlated with metacommunity structure, but these correlations differed between taxonomic and functional organization and differed depending on which river basin was considered. The results of this study support previous findings that species composition and functional traits relate to environmental gradients, but further our understanding by providing additional evidence that species sorting processes are the dominant structuring mechanisms. [Torres, Kryztal M. Medina; Higgins, Christopher L.] Tarleton State Univ, Dept Biol Sci, Stephenville, TX 76402 USA Higgins, CL (reprint author), Tarleton State Univ, Dept Biol Sci, Stephenville, TX 76402 USA. higgins@tarleton.edu Altermatt F, 2013, AQUAT ECOL, V47, P365, DOI 10.1007/s10452-013-9450-3; ANDERSON AA, 1995, SOUTHWEST NAT, V40, P314; Bertuzzo E, 2009, WATER RESOUR RES, V45, DOI 10.1029/2009WR007997; Borthagary A. I., 2015, AQUATIC FUNCTIONAL B, P75, DOI DOI 10.1016/B978-0-12-417015-5.00004-9; Carrara F, 2012, P NATL ACAD SCI USA, V109, P5761, DOI 10.1073/pnas.1119651109; Clements F. E., 1916, PLANT SUCCESSION ANA; Cook RR, 2004, OECOLOGIA, V140, P639, DOI 10.1007/s00442-004-1618-z; Cottenie K, 2003, ECOLOGY, V84, P991, DOI 10.1890/0012-9658(2003)084[0991:ZMSRVL]2.0.CO;2; De Bie T, 2012, ECOL LETT, V15, P740, DOI 10.1111/j.1461-0248.2012.01794.x; de la Sancha NU, 2014, DIVERS DISTRIB, V20, P1058, DOI 10.1111/ddi.12210; De'ath G, 2000, ECOLOGY, V81, P3178, DOI 10.2307/177409; Eros T, 2014, HYDROBIOLOGIA, V722, P31, DOI 10.1007/s10750-013-1673-8; Eros T, 2012, FRESHWATER BIOL, V57, P1914, DOI 10.1111/j.1365-2427.2012.02842.x; Evelyn H, 2007, BIODIVERS CONSERV, V16, P3179, DOI 10.1007/s10531-007-9171-9; Fernandes IM, 2014, ECOGRAPHY, V37, P464, DOI 10.1111/j.1600-0587.2013.00527.x; Gauch Hugh G., 1982, MULTIVARIATE ANAL CO; Gleason H., 1926, B TORREY BOT CLUB, V53, P7, DOI DOI 10.2307/2479933; HANSKI I, 1991, BIOL J LINN SOC, V42, P3, DOI 10.1111/j.1095-8312.1991.tb00548.x; Heino J, 2005, ECOL ENTOMOL, V30, P590, DOI 10.1111/j.0307-6946.2005.00728.x; Heino J, 2005, FRESHWATER BIOL, V50, P567, DOI 10.1111/j.1365-2427.2005.01346.x; Heino J, 2015, ECOL EVOL, V5, P1525, DOI 10.1002/ece3.1460; Heino J, 2015, FRESHWATER BIOL, V60, P845, DOI 10.1111/fwb.12533; Heino J, 2013, OECOLOGIA, V171, P971, DOI 10.1007/s00442-012-2451-4; Henriques-Silva R, 2013, ECOLOGY, V94, P627, DOI 10.1890/12-0683.1; Higgins CL, 2008, T AM FISH SOC, V137, P696, DOI 10.1577/T07-061.1; Higgins CL, 2010, ECOGRAPHY, V33, P678, DOI 10.1111/j.1600-0587.2009.05958.x; Hijmans RJ, 2005, INT J CLIMATOL, V25, P1965, DOI 10.1002/joc.1276; Hoeinghaus DJ, 2007, J BIOGEOGR, V34, P324, DOI 10.1111/j.1365-2699.2006.01587.x; Holyoak M., 2005, METACOMMUNITIES SPAT; Hortal J, 2014, J LIMNOL, V73, P46, DOI 10.4081/jlimnol.2014.887; Hoverman JT, 2011, ECOGRAPHY, V34, P1049, DOI 10.1111/j.1600-0587.2011.06856.x; Ibarra AA, 2005, ECOL FRESHW FISH, V14, P233, DOI 10.1111/j.1600-0633.2005.00096.x; Jacobson B, 2010, LANDSCAPE ECOL, V25, P495, DOI 10.1007/s10980-009-9442-9; Lamouroux N, 2002, ECOLOGY, V83, P1792, DOI 10.2307/3071765; Leibold MA, 2004, ECOL LETT, V7, P601, DOI 10.1111/j.1461-0248.2004.00608.x; Leibold MA, 2002, OIKOS, V97, P237, DOI 10.1034/j.1600-0706.2002.970210.x; Leibold MA, 2010, ECOL LETT, V13, P1290, DOI 10.1111/j.1461-0248.2010.01523.x; LINAM G, 2002, 17 TEX PARKS WILDL D; Logue JB, 2011, TRENDS ECOL EVOL, V26, P482, DOI 10.1016/j.tree.2011.04.009; Loh WY, 2011, WIRES DATA MIN KNOWL, V1, P14, DOI 10.1002/widm.8; Lopez-Gonzalez C, 2012, J BIOGEOGR, V39, P177, DOI 10.1111/j.1365-2699.2011.02590.x; Muneepeerakul R, 2008, NATURE, V453, P220, DOI 10.1038/nature06813; OBERDORFF T, 1993, HYDROBIOLOGIA, V259, P157, DOI 10.1007/BF00006595; Ostrand KG, 2002, ECOL FRESHW FISH, V11, P137, DOI 10.1034/j.1600-0633.2002.00005.x; PATTERSON BD, 1986, BIOL J LINN SOC, V28, P65, DOI 10.1111/j.1095-8312.1986.tb01749.x; Perkin JS, 2012, ECOL APPL, V22, P2176, DOI 10.1890/12-0318.1; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Poff NL, 1997, J N AM BENTHOL SOC, V16, P391, DOI 10.2307/1468026; Presley SJ, 2011, BIOTROPICA, V43, P480, DOI 10.1111/j.1744-7429.2010.00727.x; Presley SJ, 2010, OIKOS, V119, P908, DOI 10.1111/j.1600-0706.2010.18544.x; Presley SJ, 2009, OECOLOGIA, V160, P781, DOI 10.1007/s00442-009-1341-x; Guimaraes TDR, 2014, HYDROBIOLOGIA, V740, P207, DOI 10.1007/s10750-014-1954-x; Ricklefs RE, 2004, ECOL LETT, V7, P1, DOI 10.1046/j.1461-0248.2003.00554.x; Rodriguez-Iturbe R., 2009, WATER RESOUR RES, V45, P1; SCHLOSSER IJ, 1982, ECOL MONOGR, V52, P395, DOI 10.2307/2937352; Schwalb AN, 2015, FRESHWATER BIOL, V60, P911, DOI 10.1111/fwb.12544; SIMBERLOFF D, 1991, ANNU REV ECOL SYST, V22, P115, DOI 10.1146/annurev.es.22.110191.000555; SIMBERLOFF D, 1983, AM NAT, V122, P626, DOI 10.1086/284163; Sokol ER, 2011, AM NAT, V177, P630, DOI 10.1086/659625; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; Tilman D., 1982, RESOURCE COMPETITION; Tornwall Brett, 2015, Diversity-Basel, V7, P16; TOWNSEND CR, 1994, FRESHWATER BIOL, V31, P265, DOI 10.1111/j.1365-2427.1994.tb01740.x; Urban D., 2002, ANAL ECOLOGICAL COMM, P222; Urban MC, 2008, TRENDS ECOL EVOL, V23, P311, DOI 10.1016/j.tree.2008.02.007; Van Looy K, 2014, ECOL INDIC, V37, P10, DOI 10.1016/j.ecolind.2013.10.006; VANNOTE RL, 1980, CAN J FISH AQUAT SCI, V37, P130, DOI 10.1139/f80-017; WILSON DS, 1992, ECOLOGY, V73, P1984, DOI 10.2307/1941449; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, OIKOS, V63, P318, DOI 10.2307/3545395; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Winemiller KO, 1995, ENCY ENV BIOL, V2, P49 72 2 3 1 30 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 1386-2588 1573-5125 AQUAT ECOL Aquat. Ecol. JUN 2016 50 2 247 259 10.1007/s10452-016-9572-5 13 Ecology; Limnology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology DM8KB WOS:000376610200009 2018-11-22 J Galatowitsch, ML; McIntosh, AR Galatowitsch, Mark L.; McIntosh, Angus R. Trait flexibility of generalist invertebrates exposed to contrasting predation and drying stressors FRESHWATER BIOLOGY English Article anti-predator behaviour; drying tolerance; life-history flexibility; pond permanence LIFE-HISTORY STRATEGIES; WATER HABITAT GRADIENT; NEW-ZEALAND; HETEROGENEOUS ENVIRONMENTS; PHENOTYPIC PLASTICITY; PERMANENCE GRADIENT; TIME CONSTRAINTS; HARD SELECTION; TRADE-OFFS; EVOLUTION How different generalist species are able to exploit heterogeneous landscapes likely depends on whether their life-history strategies confer resilience to multiple environmental selection pressures. We investigated the life-history strategies of two generalist invertebrates, Xanthocnemis zealandica damselflies and Sigara arguta waterboatmen, which inhabit ponds varying in drying and predator presence. Using mesocosm experiments with temporary- and permanent-pond nymphs, we determined the flexibility of their predator avoidance and drying resistance.Xanthocnemis zealandica was most susceptible to predatory fish regardless of natal habitat, with permanent-pond nymphs more likely to have reduced movement, higher refuge use and slower growth than temporary-pond nymphs; growth was, however, not influenced by predator presence. Xanthocnemis zealandica had a fixed response to drying stress, with high survival rates (80-90%) during short drying periods (2-8days), regardless of natal habitat. In contrast to X.zealandica, S.arguta had a completely inflexible life-history with no differences in predator avoidance between permanent- and temporary-pond nymphs, and a complete inability to survive drying. Without flexible traits S.arguta may counter potentially high costs of predation in permanent ponds and drying mortality in temporary ponds through rapid development and terrestrial dispersal. Xanthocnemis zealandica's flexible life-history is likely driven by longer nymphal development which requires adaptation to both predator and drying stressors to complete their life-cycle over the range of habitats they occupy. Overall, these two species exemplify how generalists can strongly differ in their life-history strategies but still persist across a similar range of habitats. [Galatowitsch, Mark L.; McIntosh, Angus R.] Univ Canterbury, Sch Biol Sci, Ctr Integrat Ecol, Christchurch 1, New Zealand; [Galatowitsch, Mark L.] Ctr Coll Danville, Dept Biol, 600 West Walnut St, Danville, KY 40422 USA Galatowitsch, ML (reprint author), Ctr Coll Danville, Dept Biol, 600 West Walnut St, Danville, KY 40422 USA. mark.galatowitsch@centre.edu McIntosh, Angus/B-2992-2011 McIntosh, Angus/0000-0003-2696-8813 Miss E.L. Hellaby Indigenous Grassland Research Trust; Educate New Zealand International Doctoral Scholarship; UC's Freshwater Ecology Research Group We are grateful to Amanda Klemmer, Helen Warburton and Hamish Greig for field assistance, Linda Morris for technical support and Nick Etheridge for critical help with mesocosm construction. This work was funded by the Miss E.L. Hellaby Indigenous Grassland Research Trust and an Educate New Zealand International Doctoral Scholarship for MLG. We were also grateful to University of Canterbury (UC) for providing facilities at the Cass Field Station. Fish use in our experiments complied with UC's Animal Ethics requirements. We thank UC's Freshwater Ecology Research Group for support, and Christoph Matthaei, Jenny Davis and two anonymous reviewers for comments which improved the manuscript. Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Altwegg R, 2002, ECOLOGY, V83, P2542, DOI 10.1890/0012-9658(2002)083[2542:PILHPU]2.0.CO;2; Baber MJ, 2004, OIKOS, V107, P16; Bates D, 2013, LINEAR MIXED EFFECTS; Bogan MT, 2013, FRESHWATER BIOL, V58, P1016, DOI 10.1111/fwb.12105; Bourne EC, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2795; Caceres CE, 1997, P NATL ACAD SCI USA, V94, P9171, DOI 10.1073/pnas.94.17.9171; Chester ET, 2015, FRESHWATER BIOL, V60, P2066, DOI 10.1111/fwb.12630; CRUMPTON J, 1979, NEW ZEAL J ZOOL, V6, P285, DOI 10.1080/03014223.1979.10428367; de Meeus T, 2000, EVOL ECOL RES, V2, P981; Deacon K.J.G., 1979, THESIS U CANTERBURY; Debarre F, 2011, AM NAT, V177, pE84, DOI 10.1086/658178; DesBlock M., 2008, OIKOS, V117, P245; DeWitt TJ, 1998, TRENDS ECOL EVOL, V13, P77, DOI 10.1016/S0169-5347(97)01274-3; Franch-Gras L, 2014, INT REV HYDROBIOL, V99, P125, DOI 10.1002/iroh.201301712; Galatowitsch ML, 2011, CAN J ZOOL, V89, P714, DOI [10.1139/Z11-044, 10.1139/z11-044]; Galatowitsch M. L., 2014, THESIS U CANTERBURY; Greig H. S., 2008, THESIS U CANTERBURY; Greig HS, 2013, J ANIM ECOL, V82, P598, DOI 10.1111/1365-2656.12042; Greig HS, 2010, ECOLOGY, V91, P836, DOI 10.1890/08-1871.1; Hampton SE, 2004, OECOLOGIA, V138, P475, DOI 10.1007/s00442-003-1446-6; Johansson F, 2004, ECOL ENTOMOL, V29, P196, DOI 10.1111/j.0307-6946.2004.00592.x; Johansson F, 2001, ECOLOGY, V82, P1857, DOI 10.1890/0012-9658(2001)082[1857:LHPIAD]2.0.CO;2; Johansson F, 2000, FRESHWATER BIOL, V43, P149, DOI 10.1046/j.1365-2427.2000.00532.x; Kuznetsova A., 2013, TESTS RANDOM FIXED E; Lytle DA, 2001, AM NAT, V157, P525, DOI 10.1086/319930; McCauley SJ, 2007, OIKOS, V116, P121, DOI 10.1111/j.2006.0030-1299.15105.x; Mccauley SJ, 2008, FRESHWATER BIOL, V53, P253, DOI 10.1111/j.1365-2427.2007.01889.x; McDowall R. M., 2001, FRESHWATER FISHES NZ; MCINTOSH AR, 1994, ECOLOGY, V75, P2078, DOI 10.2307/1941612; McPeek M. A., 2004, AM NAT, V163, P88; MCPEEK MA, 1990, ECOLOGY, V71, P1714, DOI 10.2307/1937580; McPeek MA, 1996, AM NAT, V148, pS124, DOI 10.1086/285906; Murren CJ, 2015, HEREDITY, V115, P293, DOI 10.1038/hdy.2015.8; Nagelkerke CJ, 2013, ACTA BIOTHEOR, V61, P467, DOI 10.1007/s10441-013-9186-4; Peckarsky BL, 1996, ECOLOGY, V77, P1888, DOI 10.2307/2265792; R Development Core Team, 2013, R LANG ENV STAT COMP; Rebora M, 2007, PHYSIOL ENTOMOL, V32, P121, DOI 10.1111/j.1365-3032.2006.00553.x; Relyea RA, 2002, AM NAT, V159, P272, DOI 10.1086/338540; Relyea RA, 1999, ECOLOGY, V80, P2117, DOI 10.1890/0012-9658(1999)080[2117:QTRBPI]2.0.CO;2; Richter-Boix A, 2007, HYDROBIOLOGIA, V583, P43, DOI 10.1007/s10750-006-0475-7; Richter-Boix A, 2011, ECOL EVOL, V1, P15, DOI 10.1002/ece3.2; Rowe RJ, 1987, DRAGONFLIES NZ; Sih A., 1987, P203; STAPLES DJ, 1975, J FISH BIOL, V7, P1, DOI 10.1111/j.1095-8649.1975.tb04573.x; Stoffels RJ, 2003, NEW ZEAL J MAR FRESH, V37, P449, DOI 10.1080/00288330.2003.9517179; Stoks R, 2003, ECOLOGY, V84, P3327, DOI 10.1890/02-0696; Stoks R, 2000, ARCH HYDROBIOL, V147, P417; Storey RG, 2011, NEW ZEAL J MAR FRESH, V45, P213, DOI 10.1080/00288330.2011.554988; Therneau T., 2013, PACKAGE SURVIVAL ANA; Therneau T, 2001, MODELING SURVIVAL DA; Turner AM, 2009, FRESHWATER BIOL, V54, P1189, DOI 10.1111/j.1365-2427.2009.02168.x; Urban MC, 2004, ECOLOGY, V85, P2971, DOI 10.1890/03-0631; Van Buskirk J, 1998, OIKOS, V82, P20; VANTIENDEREN PH, 1991, EVOLUTION, V45, P1317, DOI 10.1111/j.1558-5646.1991.tb02638.x; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1722, DOI 10.1111/j.1365-2427.2008.02035.x; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1739, DOI 10.1111/j.1365-2427.2008.02036.x; Wellborn GA, 1996, ANNU REV ECOL SYST, V27, P337, DOI 10.1146/annurev.ecolsys.27.1.337; Werner EE, 2007, OIKOS, V116, P1713, DOI 10.1111/j.2007.0030-1299.16039.x; Wickson S, 2012, MAR FRESHWATER RES, V63, P821, DOI 10.1071/MF12095; Williams DD, 1996, J N AM BENTHOL SOC, V15, P634, DOI 10.2307/1467813; Winterbourn M. J., 2006, B ENTOMOL SOC, V14, P108; WINTERBOURN MJ, 1981, NEW ZEAL J MAR FRESH, V15, P321, DOI 10.1080/00288330.1981.9515927; Wissinger SA, 1999, ECOLOGY, V80, P2102; Wissinger SA, 2003, FRESHWATER BIOL, V48, P255, DOI 10.1046/j.1365-2427.2003.00997.x; Wissinger SA, 2006, FRESHWATER BIOL, V51, P2009, DOI 10.1111/j.1365-2427.2006.01629.x; Wissinger SA, 2009, J N AM BENTHOL SOC, V28, P12, DOI 10.1899/08-007.1; Young E. C., 2010, WATER BOATMEN BACKSW 68 3 3 4 22 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0046-5070 1365-2427 FRESHWATER BIOL Freshw. Biol. JUN 2016 61 6 862 875 10.1111/fwb.12747 14 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology DM8GS WOS:000376600100004 2018-11-22 J Boulenger, C; Acou, A; Gimenez, O; Charrier, F; Tremblay, J; Feunteun, E Boulenger, Clarisse; Acou, Anthony; Gimenez, Olivier; Charrier, Fabien; Tremblay, Julien; Feunteun, Eric Factors determining survival of European eels in two unexploited sub-populations FRESHWATER BIOLOGY English Article European eel; Life-history characteristics; sex ratio; survival ANGUILLA-ANGUILLA L; SMALL COASTAL CATCHMENT; DENSITY-DEPENDENCE; POPULATION-DYNAMICS; AMERICAN EEL; PHENOTYPIC PLASTICITY; CARRYING-CAPACITY; RECAPTURE DATA; HABITAT USE; GROWTH Estimating accurate age-specific survival probabilities and understanding the processes (density dependent or independent) that regulate this demographic parameter are fundamental to propose sustainable management options for the endangered European eel (Anguilla anguilla). In the present study, we used extensive mark-recapture data sets (13 and 17years) on eel >150mm to estimate accurate natural survival probabilities of two eel sub-populations, from the Oir and Fremur rivers, western France, and then we analysed survival probabilities in relation to density-independent (temperature) and density-dependent factors to identify those causing survival variability. The Fremur and Oir rivers are two small (<100km(2)) river systems in close proximity (65km apart). The Fremur River is a small river obstructed by dams with medium water quality, high eel recruitment and density (0.37eelm(-2)), and a male dominant population; whereas, in the Oir River, low densities of eels were observed (0.04eelm(-2)) and the sex ratio was skewed towards females. Furthermore, previous research suggested that the lotic habitats of the Fremur River have reached carrying capacity, whereas habitats in the Oir River are below habitat saturation. In the Fremur River, there were significant spatial and temporal variations in the survival probabilities. However, survival probabilities observed in the Oir River were stable over time and space. The results highlight that the differences in the characteristics of the two systems and the two sub-populations prompt different responses to regulatory processes. The contrasting pressures applied on these two sub-populations impact survival, which possibly lead to different life history strategies such as sex differentiation. [Boulenger, Clarisse; Acou, Anthony; Feunteun, Eric] Museum Natl Hist Nat, CRESCO, UPMC Serv Stan Marines, IRD,CNRS,UMR BOREA 7208, Dinard, France; [Boulenger, Clarisse] INRA, INRA Agrocampus, Ecol & Sante Ecosyst, UMR 985, 65 Rue St Brieuc,CS 84215, F-35042 Rennes, France; [Gimenez, Olivier] Ctr Ecol Fonct & Evolut, UMR 5175, Campus CNRS, Montpellier, France; [Charrier, Fabien] Fish Pass, Laille, France; [Tremblay, Julien] INRA, Pole GESTAQUA, U3E 1036, F-35042 Rennes, France; [Tremblay, Julien] ONEMA, Pole GESTAQUA, Rennes, France Boulenger, C (reprint author), INRA, INRA Agrocampus, Ecol & Sante Ecosyst, UMR 985, 65 Rue St Brieuc,CS 84215, F-35042 Rennes, France. clarisse.boulenger@rennes.inra.fr Gimenez, Olivier/G-4281-2010 Region Bretagne; MAVA Foundation; Bretagne Grands Migrateurs This study was funded by the 'Region Bretagne', the MAVA Foundation, and 'Bretagne Grands Migrateurs'. The surveys and sampling were organised and operated by the company FISH PASS and the association 'Coeur Emeraude' in the Fremur River, and the INRA-Rennes and ONEMA in the Oir River. We are especially grateful to Frederic Marchand (INRA), Julien Tremblay (INRA), Richard Delanoe (ONEMA), Virgile Mazel (FISH PASS), Sebastien Quinot (FISH PASS) and all the people that helped with sampling and data gathering. We are also grateful to ORE PFC for the salmonid data. Acou A, 2003, B FR PECHE PISCIC, P55, DOI 10.1051/kmae:2003036; Acou A, 2005, ARCH HYDROBIOL, V164, P237, DOI 10.1127/0003-9136/2005/0164-0237; Acou A, 2006, ECOL FRESHW FISH, V15, P578, DOI 10.1111/j.1600-0633.2006.00189.x; Acou A, 2011, FRESHWATER BIOL, V56, P952, DOI 10.1111/j.1365-2427.2010.02540.x; Acou Anthony, 2009, P157; Amoros C., 1993, HYDROSYSTEMES FLUVIA; Angilletta MJ, 2003, AM NAT, V162, P332; Aprahamian MW, 2007, ICES J MAR SCI, V64, P1472, DOI 10.1093/icesjms/fsm131; Bagliniere JL, 2005, ICES J MAR SCI, V62, P695, DOI 10.1016/j.icesjms.2005.02.008; Baisez A., 2001, THESIS TOULOUSE 3 U; Barker R, 2002, J APPL STAT, V29, P305, DOI 10.1080/02664760120108782; Bevacqua D., 2010, OECOLOGIA, V165, P333; Bevacqua D, 2011, HYDROBIOLOGIA, V671, P259, DOI 10.1007/s10750-011-0725-1; BISGAARD J, 1991, Dana, V9, P57; Bonhommeau S, 2010, FISH FISH, V11, P289, DOI 10.1111/j.1467-2979.2010.00362.x; Burnham KP, 2002, MODEL SELECTION MULT; CARLE FL, 1978, BIOMETRICS, V34, P621, DOI 10.2307/2530381; Carroll R., 2006, MEASUREMENT ERROR NO; Caswell H, 2000, ECOLOGY, V81, P619, DOI 10.2307/177364; Choquet R, 2009, ENVIRON ECOL STAT SE, V3, P845, DOI 10.1007/978-0-387-78151-8_39; Choquet R, 2009, ECOGRAPHY, V32, P1071, DOI 10.1111/j.1600-0587.2009.05968.x; Cucherousset J, 2011, OECOLOGIA, V167, P75, DOI 10.1007/s00442-011-1974-4; Cushing D. H., 1975, MARINE ECOLOGY FISHE; Daverat F, 2006, MAR ECOL PROG SER, V308, P231, DOI 10.3354/meps308231; Dawson W.A, 1991, ICES J MAR SCI, V47, P303; Dekker W, 2003, CAN J FISH AQUAT SCI, V60, P787, DOI 10.1139/F03-066; DeLeo GA, 1996, ECOL APPL, V6, P1281; DELEO GA, 1995, CAN J FISH AQUAT SCI, V52, P1351; Drake JM, 2005, PLOS BIOL, V3, P1300, DOI 10.1371/journal.pbio.0030222; Eberhardt LL, 2002, ECOLOGY, V83, P2841, DOI 10.1890/0012-9658(2002)083[2841:APFPAO]2.0.CO;2; ELLIOTT JM, 1989, J ANIM ECOL, V58, P987, DOI 10.2307/5137; Feunteun E, 1998, B FR PECHE PISCIC, P129, DOI 10.1051/kmae:1998038; Feunteun E, 2003, EEL BIOLOGY, P191; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; Grosbois V, 2008, BIOL REV, V83, P357, DOI 10.1111/j.1469-185X.2008.00047.x; Hanski I, 1996, J ANIM ECOL, V65, P274, DOI 10.2307/5874; HASSELL MP, 1987, J ANIM ECOL, V56, P705, DOI 10.2307/5078; HELFMAN G. S., 1987, AM FISHERIES SOC S, V1, P42; Ibbotson A, 2002, FRESHWATER BIOL, V47, P1696, DOI 10.1046/j.1365-2427.2002.00930.x; ICES (International Council for the Exploration of the Sea), 2013, REP JOINT EIFAAC ICE; Jacoby D, 2014, ANGUILLA ANGUILLA IU; JENKINS GP, 1991, CAN J FISH AQUAT SCI, V48, P1358, DOI 10.1139/f91-162; Jenkins TM, 1999, ECOLOGY, V80, P941, DOI 10.1890/0012-9658(1999)080[0941:EOPDOI]2.0.CO;2; Josset Q., 2015, ICES J MAR SCI, V73, P150; Knights B, 2003, SCI TOTAL ENVIRON, V310, P237, DOI 10.1016/S0048-9697(02)00644-7; Krueger WH, 1999, ENVIRON BIOL FISH, V55, P381, DOI 10.1023/A:1007575600789; Laffaille P, 2004, WETLANDS, V24, P642, DOI 10.1672/0277-5212(2004)024[0642:HPODEE]2.0.CO;2; Lambert P, 2007, ECOL MODEL, V206, P166, DOI 10.1016/j.ecolmodel.2007.03.003; Lasne E, 2008, ECOL FRESHW FISH, V17, P567, DOI 10.1111/j.1600-0633.2008.00307.x; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Lebreton JD, 2009, ADV ECOL RES, V41, P87, DOI 10.1016/S0065-2504(09)00403-6; Lobon-Cervia J, 2008, FRESHWATER BIOL, V53, P1832, DOI 10.1111/j.1365-2427.2008.02008.x; MORIARTY C, 1986, Vie et Milieu, V36, P233; Morin A, 1999, J N AM BENTHOL SOC, V18, P299, DOI 10.2307/1468446; NAISMITH IA, 1990, J FISH BIOL, V37, P975, DOI 10.1111/j.1095-8649.1990.tb03600.x; Noth E. G., 2008, NEW ZEAL J MAR FRESH, V42, P153; Oliveira K, 1999, CAN J FISH AQUAT SCI, V56, P795, DOI 10.1139/cjfas-56-5-795; Oliveira K, 2002, T AM FISH SOC, V131, P203, DOI 10.1577/1548-8659(2002)131<0203:SDGHOT>2.0.CO;2; Ovidio M, 2013, AQUAT ECOL, V47, P291, DOI 10.1007/s10452-013-9444-1; PANKHURST NW, 1982, J FISH BIOL, V21, P127, DOI 10.1111/j.1095-8649.1982.tb03994.x; PERSSON L, 1990, OIKOS, V59, P97, DOI 10.2307/3545128; Pradel R, 2003, BIOMETRICS, V59, P43, DOI 10.1111/1541-0420.00006; Prentice E. F., 1990, SYMPOSIUM, V7, P317; Ray C, 1996, J ANIM ECOL, V65, P556, DOI 10.2307/5736; Rivot E, 2008, CAN J FISH AQUAT SCI, V65, P117, DOI 10.1139/F07-153; SADLER K, 1979, J FISH BIOL, V15, P499, DOI 10.1111/j.1095-8649.1979.tb03633.x; Schulze T, 2004, J FISH BIOL, V65, P1543, DOI 10.1111/j.1095-8649.2004.00565.x; Sinclair ARE, 1996, OIKOS, V75, P164, DOI 10.2307/3546240; STEWARTOATEN A, 1995, AM NAT, V146, P519, DOI 10.1086/285813; Tesch F.-W., 2003, EEL; van Gils JA, 2004, OIKOS, V104, P197, DOI 10.1111/j.0030-1299.2003.12214.x; VOLLESTAD LA, 1992, J ANIM ECOL, V61, P41, DOI 10.2307/5507; VOLLESTAD LA, 1988, J ANIM ECOL, V57, P983, DOI 10.2307/5106; Walsh CT, 2002, AQUAC RES, V33, P627, DOI 10.1046/j.1365-2109.2002.00701.x; WILLIAMS B. K., 2002, ANAL MANAGEMENT ANIM 75 3 3 4 25 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0046-5070 1365-2427 FRESHWATER BIOL Freshw. Biol. JUN 2016 61 6 947 962 10.1111/fwb.12759 16 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology DM8GS WOS:000376600100011 2018-11-22 J de Leo, GA; Dobson, AP; Gatto, M de Leo, Giulio A.; Dobson, Andrew P.; Gatto, Marino Body size and meta-community structure: the allometric scaling of parasitic worm communities in their mammalian hosts PARASITOLOGY English Article intestinal nematodes; wild mammal pathology; body size; parasite community; interspecific competition; life-history strategies; allometric scaling; bioenergetic requirements LIFE-HISTORY TRAITS; POPULATION-DYNAMICS; METABOLIC THEORY; TERRESTRIAL MAMMALS; INFECTIOUS-DISEASES; WILDLIFE DISEASES; NEMATODE SYSTEM; CLIMATE-CHANGE; FOOD WEBS; MODEL In this paper we derive from first principles the expected body sizes of the parasite communities that can coexist in a mammal of given body size. We use a mixture of mathematical models and known allometric relationships to examine whether host and parasite life histories constrain the diversity of parasite species that can coexist in the population of any host species. The model consists of one differential equation for each parasite species and a single density-dependent nonlinear equation for the affected host under the assumption of exploitation competition. We derive threshold conditions for the coexistence and competitive exclusion of parasite species using invasion criteria and stability analysis of the resulting equilibria. These results are then used to evaluate the range of parasites species that can invade and establish in a target host and identify the optimal' size of a parasite species for a host of a given body size; optimal' is defined as the body size of a parasite species that cannot be outcompeted by any other parasite species. The expected distributions of parasites body sizes in hosts of different sizes are then compared with those observed in empirical studies. Our analysis predicts the relative abundance of parasites of different size that establish in the host and suggests that increasing the ratio of parasite body size to host body size above a minimum threshold increases the persistence of the parasite population. [de Leo, Giulio A.] Stanford Univ, Woods Inst Environm, Pacific Grove, CA 93950 USA; [de Leo, Giulio A.] Stanford Univ, Hopkins Marine Stn, Pacific Grove, CA 93950 USA; [Dobson, Andrew P.] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA; [Gatto, Marino] Politecn Milan, Dipartimento Elettron & Informaz, Via Ponzio 34-5, I-23100 Milan, Italy Dobson, AP (reprint author), Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA. dobson@princeton.edu Gatto, Marino/D-9531-2012 Gatto, Marino/0000-0001-8063-9178 National Center for Ecological Analysis and Synthesis - NSF [DEB-0072909]; MUR project Internazionalizzazione del Sistema Universitario [II O4 CE 4968]; McDonnell Foundation; Woods Institute's Environmental Venture Projects at Stanford University; NSF CNH [1414102] This work was supported in part by the National Center for Ecological Analysis and Synthesis (a centre funded by NSF grant No. DEB-0072909, the University of California at Santa Barbara, Seasonality and Infectious Diseases Group) (A. D. and G. D. L.), by MUR project Internazionalizzazione del Sistema Universitario II O4 CE 4968 and by a Grant on Complexity to APD from the McDonnell Foundation. G. D. L. was partially supported by a grant from the Woods Institute's Environmental Venture Projects at Stanford University and from NSF CNH 1414102. Anderson R.M., 1991, INFECT DIS HUMANS DY; ANDERSON RM, 1978, J ANIM ECOL, V47, P219, DOI 10.2307/3933; ANDERSON RM, 1978, PARASITOLOGY, V76, P119, DOI 10.1017/S0031182000047739; ANDERSON RM, 1986, T ROY SOC TROP MED H, V80, P686, DOI 10.1016/0035-9203(86)90367-6; BAILEY GNA, 1975, INT J PARASITOL, V5, P609, DOI 10.1016/0020-7519(75)90059-4; Banavar JR, 2002, P NATL ACAD SCI USA, V99, P10506, DOI 10.1073/pnas.162216899; Banavar JR, 2002, NATURE, V420, P626, DOI 10.1038/420626a; BERDING C, 1986, J THEOR BIOL, V122, P459, DOI 10.1016/S0022-5193(86)80186-2; Bolzoni L, 2008, AM NAT, V172, P818, DOI 10.1086/593000; Bolzoni L, 2008, THEOR POPUL BIOL, V73, P374, DOI 10.1016/j.tpb.2007.12.003; BOOTH DT, 1993, P ROY SOC B-BIOL SCI, V253, P125, DOI 10.1098/rspb.1993.0091; Brose U, 2006, ECOL LETT, V9, P1228, DOI 10.1111/j.1461-0248.2006.00978.x; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Cable JM, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0001130; Calder W. A., 1984, SIZE FUNCTION LIFE H; Cattadori IM, 2005, P ROY SOC B-BIOL SCI, V272, P1163, DOI 10.1098/rspb.2004.3050; CHARNOV EL, 1992, EVOL ECOL, V6, P307, DOI 10.1007/BF02270967; Charnov Eric L., 1993, P1; Cohen JE, 2003, P NATL ACAD SCI USA, V100, P1781, DOI 10.1073/pnas.232715699; Cohen JE, 2005, P NATL ACAD SCI USA, V102, P684, DOI 10.1073/pnas.0408780102; Cornell SJ, 2008, P R SOC B, V275, P511, DOI 10.1098/rspb.2007.1415; DAMUTH J, 1981, NATURE, V290, P699, DOI 10.1038/290699a0; DeLeo GA, 1996, NATURE, V379, P720, DOI 10.1038/379720a0; DIEKMANN O, 1990, J MATH BIOL, V28, P365; DIEKMANN O, 1991, J MATH BIOL, V29, P539, DOI 10.1007/BF00164051; DOBSON A, 1994, PARASITOLOGY, V109, pS97, DOI 10.1017/S0031182000085115; Dobson A. P., 1990, STRUCTURE PARASITE C, P261; Dobson A, 2008, P NATL ACAD SCI USA, V105, P11482, DOI 10.1073/pnas.0803232105; DOBSON AP, 1985, PARASITOLOGY, V91, P317, DOI 10.1017/S0031182000057401; Dodds PS, 2001, J THEOR BIOL, V209, P9, DOI 10.1006/jtbi.2000.2238; DWYER G, 1990, ECOL MONOGR, V60, P423, DOI 10.2307/1943014; Economo EP, 2005, ECOL LETT, V8, P353, DOI 10.1111/j.1461-0248.2005.00737.x; Esch G. W., 1990, PARASITE COMMUNITIES; FENNER F, 1983, PROC R SOC SER B-BIO, V218, P259, DOI 10.1098/rspb.1983.0039; Gatto M, 1998, J MATH BIOL, V37, P467, DOI 10.1007/s002850050138; Gillooly JF, 2001, SCIENCE, V293, P2248, DOI 10.1126/science.1061967; Grenfell B.T., 1995, ECOLOGY INFECT DIS N; HARVEY PH, 1991, PHILOS T ROY SOC B, V332, P31, DOI 10.1098/rstb.1991.0030; Hechinger RF, 2015, P NATL ACAD SCI USA, V112, P1656, DOI 10.1073/pnas.1423785112; Hechinger RF, 2013, AM NAT, V182, P234, DOI 10.1086/670820; Hechinger Ryan F., 2012, P234; Hechinger RF, 2011, SCIENCE, V333, P445, DOI 10.1126/science.1204337; Hudson P. J., 1994, INFECTIOUS DIS NATUR, P144; JANOVY J, 1990, J THEOR BIOL, V142, P517, DOI 10.1016/S0022-5193(05)80106-7; Jetz W, 2004, SCIENCE, V306, P266, DOI 10.1126/science.1102138; Kozlowski J, 2004, FUNCT ECOL, V18, P283, DOI 10.1111/j.0269-8463.2004.00830.x; Lafferty KD, 2015, SCIENCE, V349, P854, DOI 10.1126/science.aaa6224; Loeuille N, 2005, P NATL ACAD SCI USA, V102, P5761, DOI 10.1073/pnas.0408424102; MACARTHUR R, 1970, Theoretical Population Biology, V1, P1, DOI 10.1016/0040-5809(70)90039-0; MACARTHUR R, 1967, AM NAT, V101, P377, DOI 10.1086/282505; Marquet PA, 2004, ECOLOGY, V85, P1794, DOI 10.1890/03-0694; MAY RM, 1978, J ANIM ECOL, V47, P249, DOI 10.2307/3934; MAY RM, 1983, PROC R SOC SER B-BIO, V219, P281, DOI 10.1098/rspb.1983.0075; Molnar PK, 2013, GLOBAL CHANGE BIOL, V19, P3291, DOI 10.1111/gcb.12303; Molnar PK, 2013, ECOL LETT, V16, P9, DOI 10.1111/ele.12022; Morand S, 1996, FUNCT ECOL, V10, P210, DOI 10.2307/2389845; Morand S, 1996, OECOLOGIA, V107, P274, DOI 10.1007/BF00327912; Morand S, 1998, EVOL ECOL, V12, P717, DOI 10.1023/A:1006537600093; Morand S, 2002, EVOL ECOL RES, V4, P951; Osnas EE, 2012, EVOLUTION, V66, P391, DOI 10.1111/j.1558-5646.2011.01461.x; Osnas EE, 2010, BIOL LETTERS, V6, P505, DOI 10.1098/rsbl.2009.1019; Otto SB, 2007, NATURE, V450, P1226, DOI 10.1038/nature06359; Owen-Smith RN, 1988, MEGAHERBIVORES INFLU; Peters R.H., 1983, P1; POULIN R, 1995, PARASITOL TODAY, V11, P342, DOI 10.1016/0169-4758(95)80187-1; Poulin R, 2000, J PARASITOL, V86, P642, DOI 10.2307/3284893; POULIN R, 1995, ECOL MONOGR, V65, P283, DOI 10.2307/2937061; Price CA, 2012, ECOL LETT, V15, P1465, DOI 10.1111/j.1461-0248.2012.01860.x; Roberts M. G., 1993, ECOLOGY INFECTIOUS D, P177; ROBERTS MG, 1995, MATH BIOSCI, V126, P191, DOI 10.1016/0025-5564(94)00036-Y; Roughgarden J., 1979, THEORY POPULATION GE; Savage VM, 2004, FUNCT ECOL, V18, P257, DOI 10.1111/j.0269-8463.2004.00856.x; Savage VM, 2004, AM NAT, V163, P429, DOI 10.1086/381872; Schmidt-Nielsen K., 1984, SCALING WHY ANIMAL B; Shaw DJ, 1998, PARASITOLOGY, V117, P597, DOI 10.1017/S0031182098003448; SILVA M, 1995, AM NAT, V145, P704, DOI 10.1086/285764; SKORPING A, 1991, OIKOS, V60, P365, DOI 10.2307/3545079; Stearns S., 1992, EVOLUTION LIFE HIST; Tilman D, 2004, ECOLOGY, V85, P1797, DOI 10.1890/03-0725; VANCE RR, 1985, AM NAT, V126, P72, DOI 10.1086/284397; WAKELIN D, 1984, PARASITOLOGY, V88, P639; Weibel ER, 2004, RESP PHYSIOL NEUROBI, V140, P115, DOI 10.1016/j.resp.2004.01.006; Weitz JS, 2006, ECOL LETT, V9, P548, DOI 10.1111/j.1461-0248.2006.00900.x; West GB, 1999, SCIENCE, V284, P1677, DOI 10.1126/science.284.5420.1677; West GB, 2005, J EXP BIOL, V208, P1575, DOI 10.1242/jeb.01589; West GB, 1997, SCIENCE, V276, P122, DOI 10.1126/science.276.5309.122; White CR, 2003, P NATL ACAD SCI USA, V100, P4046, DOI 10.1073/pnas.0436428100; YODZIS P, 1992, AM NAT, V139, P1151, DOI 10.1086/285380 88 3 3 1 16 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0031-1820 1469-8161 PARASITOLOGY Parasitology JUN 2016 143 7 SI 880 893 10.1017/S0031182015001444 14 Parasitology Parasitology DN0UM WOS:000376781100008 27001526 2018-11-22 J Farahat, EA; Galal, TM; El-Midany, MM; Hassan, LM Farahat, Emad Abdelmoneim; Galal, Tarek Mohamed; El-Midany, Maha Maged; Hassan, Loutfy Mohsen Phenology, biomass and reproductive characteristics of Calotropis procera (Aiton) WT Aiton in South Cairo, Egypt RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI English Article Calotropis procera; Phenology, regression equations; Biomass; Colonization; Urbanization CLIMATE-CHANGE; SUCCESS; PLASTICITY; PLANTS Phenology is a major trait structuring life history strategies and its role in shaping plant invasions that has increasing attention. The present study aimed to examine the role of phenology, reproductive, and morphological attributes of Calotropis procera in colonizing urban areas, besides assessing its biomass and developing allometric regression equation for prediction of its biomass. Sixty-three permanent quadrats were selected to represent the distribution of C. procera in urban habitats at South Cairo Province, Egypt. The present study revealed significant positive correlation between fruiting phase of the species and temperature, as well as the vegetative phase and precipitation. C. procera is characterized by continuous flowering for 8 months, with a peak in April and May, which help in reproductive success of the species. It had its highest biomass in November (439 kg ha(-1)), but the lowest in March (343 kg ha(-1)), with an annual mean of 388 kg ha(-1). The linear regression based on plant volume as an independent variable was found to be the best fit for biomass prediction, with the highest coefficient of determination (R (2) = 0.81). The above-ground biomass of this plant encourages its potential use as a renewable energy source. Our study suggests that C. procera has efficient plastic phenological and functional attributes that may enable it to dominate many ecosystems in the future. Efficient management plans are needed to mitigate the risk of this plant on other ecosystems and conserve other native species. [Farahat, Emad Abdelmoneim; Galal, Tarek Mohamed; El-Midany, Maha Maged; Hassan, Loutfy Mohsen] Helwan Univ, Fac Sci, Dept Bot & Microbiol, Cairo, Egypt; [Farahat, Emad Abdelmoneim] Univ Gothenburg, Dept Earth Sci, Reg Climate Grp, Gothenburg, Sweden Farahat, EA (reprint author), Helwan Univ, Fac Sci, Dept Bot & Microbiol, Cairo, Egypt.; Farahat, EA (reprint author), Univ Gothenburg, Dept Earth Sci, Reg Climate Grp, Gothenburg, Sweden. emad23_1999@yahoo.com Galal, Tarek/0000-0001-9847-1051; Farahat, Emad/0000-0003-3115-1912 Arias D, 2011, BIOMASS BIOENERG, V35, P1779, DOI 10.1016/j.biombioe.2011.01.009; AUGSPURGER CK, 1983, BIOTROPICA, V15, P257, DOI 10.2307/2387650; Badeck FW, 2004, NEW PHYTOL, V162, P295, DOI 10.1111/j.1469-8137.2004.01059.x; Bradley BA, 2010, TRENDS ECOL EVOL, V25, P310, DOI 10.1016/j.tree.2009.12.003; Claesson S, 2001, SCAND J FOREST RES, V16, P138, DOI 10.1080/028275801300088206; Devineau JL, 1999, J TROP ECOL, V15, P497, DOI 10.1017/S0266467499000978; Eid EM, 2002, THESIS TANTA U TANTA, P118; EISIKOWITCH D, 1986, PLANT SYST EVOL, V152, P185, DOI 10.1007/BF00989426; El-Ghani Monier M. Abd, 1997, Journal of Arid Environments, V35, P673; El-keblawy AAM, 1987, THESIS U ALEXANDRIA, P100; El-Midany M, 2014, THESIS HELWAN U CAIR; Elton Charles, 1958, ECOLOGY INVASIONS AN; ERDMAN MD, 1981, ECON BOT, V35, P467, DOI 10.1007/BF02858597; Farahat E., 2012, FEDDES REPERT, V123, P1; Farahat E, 2015, REND LINCEI-SCI FIS, V26, P193, DOI 10.1007/s12210-015-0408-3; Goodwin BJ, 1999, CONSERV BIOL, V13, P422, DOI 10.1046/j.1523-1739.1999.013002422.x; Hameed AAA, 2009, SCI TOTAL ENVIRON, V407, P6217, DOI 10.1016/j.scitotenv.2009.08.028; Hassan LM, 2015, TREES-STRUCT FUNCT, V29, P311, DOI 10.1007/s00468-015-1158-7; Kumar A, 2004, BIOMASS ENERGY IND C, P180; Lesica P, 2010, J ARID ENVIRON, V74, P1013, DOI 10.1016/j.jaridenv.2010.02.002; Levine JM, 2003, P ROY SOC B-BIOL SCI, V270, P775, DOI 10.1098/rspb.2002.2299; Lloret F, 2005, J ECOL, V93, P512, DOI 10.1111/j.1365-2745.2005.00979.x; Lottermoser BG, 2011, J GEOCHEM EXPLOR, V111, P39, DOI 10.1016/j.gexplo.2011.07.005; Mala Rathore, 2010, Journal of Phytology, V2, P78; Miller-Rushing AJ, 2008, ECOLOGY, V89, P332, DOI 10.1890/07-0068.1; Pandey SK, 2011, J COMBUST, DOI 10.1155/2011/216762; Parsons W. T., 2001, NOXIOUS WEEDS AUSTR; RATHCKE B, 1985, ANNU REV ECOL SYST, V16, P179, DOI 10.1146/annurev.es.16.110185.001143; Razakamanarivo R. H., 2011, BIOMASS BIOENERG, V45, P1, DOI [10.1016/j.biombioe.2011.01.020, DOI 10.1016/J.BI0M-BI0E.2011.01.020]; Seghieri J, 2002, J TROP ECOL, V18, P897, DOI 10.1017/S0266467402002584; Shaltout K. H., 1990, Egyptian Journal of Botany, V33, P133; SHALTOUT KH, 1988, VEGETATIO, V74, P137, DOI 10.1007/BF00044738; SHALTOUT KH, 1994, VEGETATIO, V112, P35, DOI 10.1007/BF00045098; SINGH JS, 1974, ECOL MONOGR, V44, P351, DOI 10.2307/2937034; Singh KP, 2005, CURR SCI INDIA, V89, P964; Sobrinho MS, 2013, ACTA BOT BRAS, V27, P456, DOI 10.1590/S0102-33062013000200018; Stanton ML, 2000, EVOLUTION, V54, P93, DOI 10.1111/j.0014-3820.2000.tb00011.x; Wang CK, 2006, FOREST ECOL MANAG, V222, P9, DOI 10.1016/j.foreco.2005.10.074; Willis CG, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0008878; Wolkovich EM, 2013, AM J BOT, V100, P1407, DOI 10.3732/ajb.1200478; Wolkovich EM, 2014, AOB PLANTS, V6, P1; Zhang GM, 2006, BIOTROPICA, V38, P334, DOI 10.1111/j.1744-7429.2006.00150.x 42 2 2 0 11 SPRINGER-VERLAG ITALIA SRL MILAN VIA DECEMBRIO, 28, MILAN, 20137, ITALY 2037-4631 1720-0776 REND LINCEI-SCI FIS Rend. Lincei.-Sci. Fis. Nat. JUN 2016 27 2 197 204 10.1007/s12210-015-0450-1 8 Multidisciplinary Sciences Science & Technology - Other Topics DM5SM WOS:000376410300005 2018-11-22